
10 Entropy methods

10.1 Information entropy
We’re going to shift away from concentration results now. This next concept was essentially invented by Shannon,

and we’ll focus on its combinatorial applications.

Definition 10.1

Let X be a discrete random variable taking values in some set S. Then the entropy of X is

H(X) =
∑
s∈S
−ps log2 ps ,

where ps = Pr(X = s).

Intuitively, entropy is supposed to measure the amount of randomness or information in the random variable X.

Because we’re doing combinatorics, we’ll work with base-2 logarithms - this is really more of a convention than

anything else, and all logs in this section mean base 2.

Example 10.2

The entropy of a Bernoulli variable Ber(p) is just −p log2 p − (1− p) log2(1− p), which has a maximum of 1 at

p = 1
2 .

Basically, this tracks how “surprised” we are when we hear a sample from the distribution. This idea essentially

comes from trying to encode messages efficiently: for example, if a coin only comes up heads 1% of the time, encoding

it as a binary string directly is not the most efficient way.

Lemma 10.3

H(X) ≤ log2 |range(X)|.

Proof. This is convexity of the function x → x log2 x .

Equality holds when we have the uniform distribution: then H(X) tells us the number of binary bits needed to

specify which choice of X we pick out.

Denote by H(X, Y ) the entropy of the joint random variable Z = (X, Y ), where X and Y are not necessarily

independent. This means we have

H(X, Y ) =
∑
(x,y)

−Pr(X = x, Y = y) log2 Pr(X = x, Y = y).

Lemma 10.4 (Subadditivity)

Given any two random variables X, Y , H(X, Y ) ≤ H(X) +H(Y ).

Proof. Expanding H(X) +H(Y )−H(X, Y ) out, this gives

H(X) +H(Y )−H(X, Y ) =
∑
x,y

(−p(x, y) log2 p(x)− p(x, y) log2 p(y) + p(x, y) log2 p(x, y)) =
∑
x,y

p(x, y) log2
p(x, y)

p(x)p(y)
.
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Let f (t) = t log t, which is a convex function. Then by Jensen’s, we can bound this as

=
∑
x,y

p(x)p(y)f

(
p(x, y)

p(x)p(y)

)
≥ f (1) = 0.

Basically, there’s at least as much information in X and Y individually as when we put them together.

H(X) +H(Y )−H(X, Y ) = I(X, Y )

is called the mutual information, and it’s always nonnegative.

In particular, if X and Y are independent, then H(X, Y ) = H(X) +H(Y ) . In this case, the amount of information

in our variable X is just the sum of the individual parts.

Corollary 10.5

For any random variables X1, · · · , Xn,

H(X1, · · · , Xn) ≤ H(X1) + · · ·+H(Xn).

There’s also a notion of “conditional entropy:” let E be an event with positive probability, and then we have

H(X|E) =
∑
x

−Pr(X = x |E) log2 Pr(X = x |E).

What’s really important to us, though, is when we condition on a second random variable: if X and Y are jointly

distributed, we define

H(X|Y ) = Ey [H(X|Y = y)] .

Essentially, this is how much new information we get given a certain piece of information about Y .

Lemma 10.6 (Chain rule)

For any random variables X, Y , H(X|Y ) = H(X, Y )−H(Y ).

Proof.

H(X|Y ) = Ey [H(X|Y = y)]

=
∑
y

Pr(Y = y)H(X|Y = y) =
∑
y

−p(y)
∑
x

p(x |y) log2 p(x |y)

=
∑
x,y

−p(x, y) log2 p(x, y) +
∑
x,y

p(x, y) log2(y)

=
∑
x,y

−p(x, y) log2 p(x, y) +
∑
y

p(y) log2(y),

where the first equality follows from Bayes’ rule and the last because
∑
x p(x, y) = p(y).

In other words, the conditional entropy is just the total entropy minus what we “already knew about Y .” In particular,

if X = Y , or if X = f (Y ) (so we know X given Y ), the conditional entropy is 0. On the other hand, if X and Y are

independent, the conditional entropy is just H(X).
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Lemma 10.7 (Dropping conditioning)

For any random variables X, Y, Z, H(X|Y ) ≤ H(X) and H(X|Y, Z) ≤ H(X|Z).

Proof. These follow from the chain rule (Lemma 10.6) and subadditivity (Lemma 10.4). For example,

H(X|Y ) = H(X, Y )−H(Y ) ≤ H(X).

10.2 Various direct applications
Let’s start to see how this can be useful! Entropy’s use primarily comes up in tail bounds. Here’s a philosophy: we

want to show an upper bound on some quantity, so we start by taking the log of both sides. The left side is the log

of some quantity, so take a uniform probability distribution on the things we want to count: we now have an entropy.

Theorem 10.8

Let F be a collection of subsets of [n], and let pi be the fraction of subsets in F that contain the element i . Then

log2 |F| ≤
n∑
i=1

H(pi),

where H(p) is the binary entropy of the Bernoulli variable

H(p) = −p log2 p − (1− p) log2(1− p).

Proof. Let X = (X1, · · · , Xn) be the characteristic vector for a uniform random element F ∈ F : this means that Xi
is 1 if i ∈ F and 0 otherwise. The entries aren’t necessarily independent here, so we can play with this with entropy:

log2 |F| is just H(X), because we have a uniform distribution (this is the equality case of Lemma 10.3).

By subadditivity, this is at most H(X1) + · · ·+H(Xn). Each Xi is a Bernoulli random variable with probability pi ,

which is what we want.

Theorem 10.9

Let k ≤ n
2 . Then ∑

0≤i≤k

(
n

i

)
≤ 2H

(
k
n

)
n.

Proof. Let X = (X1, · · · , Xn) ∈ {0, 1}n be the uniform random vector conditioned on X1 + · · · + Xn ≤ k . By

Lemma 10.3, the logarithm of the left hand side is H(X), and by subadditivity, this is at most H(X1) + · · ·+H(Xn).
Conditioning on the sum of the Xi being exactly m, each Xi is a Bernoulli variable with probability mn . Since the sum

is always at most k , we can say that Xi is Bernoulli with probability at most kn . Since this is less than 12 by assumption

and the entropy of a Bernoulli increases until p = 1/2, we have that H(Xi) ≤ H
(
k
n

)
.

Now there are n copies of this term, and rearranging gives the result.

We get a similar result if we don’t pick everything with probability 12 but instead with probability p: then we get a

relative entropy called the Kullback-Leibler divergence.
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Theorem 10.10 (This was problem 32 from our problem set)

Let S1, · · · , Sk be subsets of [n], and suppose that for every pair of distinct subsets A,B ⊆ [n], there exists an i

such that

|Si ∩ A| 6= |Si ∩ B|.

Then k ≥ (2− o(1)) n
log2 n

.

This is called a coin weighing problem, because we can imagine that we have two types of coins, where one is a

little heavier than the other. We can then weigh k times, and we want to be able to tell how many counterfeit coins

we have. Well, if there always exists an i that distinguishes them, then we know exactly which coins we want. It turns

out we need at least ≈ 2n
log2 n

weighings to do the job.

The main idea here is that there’s some information that we’re gaining on each comparison Si : can we get enough

to deduce the set of coins?

Proof. Let X be a uniform random subset of [n]. Since there are 2n different possibilities that are uniformly weighted,

the entropy of X is just n. Observe that X contains the same information as the sizes of all |X ∩Si | for 1 ≤ i ≤ k : in

particular, this is an injective map, since no two subsets have the same set of intersections. By subadditivity,

H(X) = H(|X ∩ S1|, · · · , |X ∩ Sk |) ≤ H(|X ∩ S1|) + · · ·+H(|X ∩ Sk |).

Because X is a uniform subset of 1 through n, |X ∩Si | is binomial with distribution Bin
(
|Si |, 12

)
. The entropy of such

a binomial distribution is bounded by log2 |Si |, and |Si | ≤ n, so this gives

n = H(X) ≤ k log2 n,

which is enough to give everything except for the factor of 2.

However, note that the binomial distribution is not uniform: it’s highly concentrated, and thus we should have

much less entropy than a uniform distribution! Heuristically, we know that the binomial distribution is concentrated in

a
√
|Si |-interval, so the entropy should be essentially related to log2(|Si |). This turns out to be true if we work out

the calculations, and that gives us

H

(
Bin

(
|Si |,

1

2

))
≤
(
1

2
+ o(1)

)
log2m

and now rearranging gives the result that we want.

As a sidenote, the actual entropy of the Binomial distribution is 12 log2m +O(1).

10.3 Bregman’s theorem
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Definition 10.11

The permanent of an n × n matrix is

per A =
∑
σ∈Sn

∏
ai ,σi .

In contrast, the determinant is similar but includes a sign:

det A =
∑
σ∈Sn

sgn(σ)
∏
ai ,σi .

These are very different quantities - in particular, the determinant is believed to be much easier to calculate.

Let’s only consider matrices A ⊂ {0, 1}n×n: any such matrix can be encoded by a bipartite graph with n row nodes

and n column nodes, where row i and column j are connected if and only if there’s a 1 in the corresponding entry.

Lemma 10.12

The permanent of a matrix A ⊂ {0, 1}n×n is equal to the number of perfect matchings in the corresponding

bipartite graph.

Proof. The permanent expands over all permutations, and we count a permutation if and only if every edge we try to

use exists (giving us a product of 1).

So here’s a natural question to ask: if we have some degree distribution (for example, d-regular), what is the

maximum number of perfect matchings that are possible? One possible extremal graph is a union of complete bipartite

graphs: in the d-regular case, the number of perfect matchings is just d! to some power. Is this the best we can do

in general?

Theorem 10.13 (Bregman)

Given a matrix A ∈ {0, 1}n×n whose i th row sums to di for all i ,

per A ≤
n∏
i=1

(di !)
1/di .

Note that a disjoint union of complete bipartite graphs Ks,s gives the equality case.

Proof by Radhakrishnan. Let σ be a uniform permutation of [n], conditioned on all Ai ,σi being 1 in our matrix. In

other words, we are picking a uniform random perfect matching! By Lemma 10.12, H(σ) = log2(perA).

Attempt 1 (Subadditivity): σ has n different coordinates, one for the entry σi picked in each row, so each

coordinate is a random variable. As we’ve done in the previous examples, we can try to apply subadditivity here,

bounding the entropy for the i th coordinate by H(σi). If there are di 1s in that row, we can say that H(σi) ≤ log2 di
(we may not have equality because we don’t have a uniform distribution on the σis). Unfortunately, this is not enough!

Because the σi are not chosen independently (e.g. picking something in the first row affects the others), applying

subadditivity directly costs us a lot.

Attempt 2 (Randomization + chain rule): Instead, let’s reveal the rows in a uniform random order and then

apply the chain rule. If τ is a uniform permutation in Sn, we now have

H(σ) = H(στ1) +H(στ2 |στ1) + · · ·+H(στn |στ1 , · · · , στn−1).
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Take expectations on both sides. We know that the left hand side is independent of the ordering - at the end of the

process, we still see all the rows, so the information we get is the same. Thus,

H(σ) = E[H(στ1)] + E[H(στ2 |στ1)] + · · ·+ E[H(στn |στ1 , · · · , στn−1)].

What’s the contribution of the i th row of our original matrix to this sum? If the row appears in the k th term of the

sum, then it contributes E[H(σi | · · · )], where · · · represents a uniform subset of k − 1 other rows. Then,

E[H(σi | · · · )] ≤ E[log2(number of available entries in row i | · · · )].

Since we only care about the ordering of the di rows whose entries conflict with the di 1s in row i , and each ordering

is equally likely,

=
1

di
(log2 1 + log2 2 + · · ·+ log2 di) =

1

di
log2(di !).

Plugging this back into the sum,

E[H(σ)] ≤
n∑
i=1

1

di
log2(di !),

and exponentiating both sides yields the result.

10.4 A useful entropy lemma

Lemma 10.14 (Shearer’s lemma (special))

For any random variables X, Y, Z,

2H(X, Y, Z) ≤ H(X, Y ) +H(X,Z) +H(Y, Z).

Proof. By the chain rule,

H(X, Y, Z) = H(X) +H(Y |X) +H(Z|X, Y ).

Now, add up the following:

H(X, Y ) = H(X) +H(Y |X)

H(X,Z) = H(X) +H(Z|X)

H(Y, Z) = H(Y ) +H(Z|Y ).

Dropping conditioning on H(X, Y, Z) yields the result.

What are some applications of this?

Corollary 10.15

Given a finite set S ⊂ R3, consider the orthogonal projections πxy (S) onto the xy -plane (and similarly for the xz

and yz-planes). We have

|S|2 ≤ πxy (S)πxz(S)πyz(S).

Equality holds for a Cartesian box.
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Proof. Let (X, Y, Z) be a uniform point in S. Then log2 |S| is the entropy H(X, Y, Z), and by Shearer, this entropy is

at most

2 log2 |S| ≤ H(X, Y ) +H(X,Z) +H(Y, Z).

The shadow distribution doesn’t need to be uniform, but we can upper bound its entropy with that of the uniform

distribution:

≤ log2 πxy (S) + log2 πxz(S) + log2 πyz(S).

Taking 2 to the power of both sides gives the result.

Remark. We can actually get the same result for a volume S ⊂ R3: the volume of S squared is at most the areas of

the projections onto the planes. This can be proved by approximating S as a union of grid boxes!

Let’s now look at Shearer’s inequality in its general form.

Theorem 10.16 (Shearer’s lemma, general)

Let A1, · · · , As ⊆ [n], where each i ∈ [n] appears in at least k different Ajs. Let X1, · · · , Xn be random variables

and define the joint random variables

XAj = (Xi)i∈Aj .

Then

kH(X1, · · · , Xn) ≤ H(XA1) + · · ·+H(XAS).

In the special case (Lemma 10.14), A1, A2, and A3 are just the two-element subsets of (1, 2, 3). The proof of the

general case is the same! Let’s establish a corollary analogous to Corollary 10.15:

Corollary 10.17

Let A1, · · · , As ⊆ Ω, where each i ∈ Ω appears in at least k different Aj ’s. Then for every family F of subsets of

Ω,

|F|k ≤
S∏
j=1

|F|Aj |,

where the notation F|Aj means F restricted to the elements of Aj : {S ∩ A : S ∈ F}.

Proof. Let (X1, · · · , Xn) ∈ {0, 1}n be the indicator vector of a uniform random F ∈ F . Then

k log2 |F| = kH(X1, · · · , Xn) ≤
S∑
j=1

H(XAj ).

Again, we can upper bound by the uniform entropy:

k log2 |F| ≤
s∑
j=1

log2 |F|Aj |,

and exponentiate both sides to get the desired result.

Let’s use this for a combinatorial application: in particular, what was the problem that inspired this inequality?

102



Problem 10.18 (Easy)

What is the largest intersecting family of subsets of m elements, where “intersecting family” means every pair has

a nonempty intersection?

The answer is 2m−1: we can just pick every subset that contains the element 1. This is maximal, because any

set A and its complement [m] \ A can’t both appear. If we look back to the beginning of class, the original problem

restricted us to only k-element subsets; without this restriction, the problem is easy.

Problem 10.19

What is the largest set of graphs on n labeled vertices so that every pair has a common triangle?

We can get 18 of the total: fix a triangle, and pick all graphs containing that fixed triangle. We also know that it’s

less than 1
2 of the total, because we can’t pick both a graph and its complement.

Theorem 10.20 (Chung-Frankl-Graham-Shearer)

Every triangle-intersecting family of graphs on n labeled vertices has at most 2(
n
2
)−2 elements.

Proof. Let G be a triangle-intersecting family on n vertices. Notice that if we restrict ourselves to half our graph and

look at the shadow on the two cliques, we must still have an edge-intersecting family, because what’s left is a complete

bipartite graph.

More concretely, let m =
(
n
2

)
. Pick a subset S ⊆ [n] with |S| =

⌊
n
2

⌋
, and let AS be the union of cliques on S and

[n] \ S. Kn \A is triangle free, so G|A must be intersecting. This means that |G|AS | ≤ 2|AS |−1 by the logic above: now

if we look at all possible Ss, each edge of Kn appears in k different ASs, where k = r
m

(
n

bn/2c
)
, r = |AS|.

Now by Shearer’s lemma,

|G|k ≤
∏
|G|AS | =

(
2r−1

)( n
bn/2c) .

This simplifies to |G| ≤ 2m−mr , where mr is the inverse of the edge density, and since mr ≥ 2 for all n, this yields the

desired result.

What’s the truth, though?

Theorem 10.21 (Ellis-Filmus-Friedgut, 2012)

Every triangle-intersecting family of graphs on n labeled vertices has at most 18 · 2
(n
2
) elements.

The proof of this more refined result uses Fourier analysis!

10.5 Entropy in graph theory

Problem 10.22

Among all d-regular graphs G, how can we maximize the quantity

i(G)1/v(G),

where i(G) is the number of independent sets and v(G) is the number of vertices of G?
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It turns out that this quantity is maximized for a disjoint union of copies of Kd,d . Let’s start by doing this in a

special case:

Theorem 10.23 (Kahn)

For a bipartite n-vertex d-regular graph G,

i(G) ≤ [i(Kd,d)]n/2d .

Equality holds if and only if G is the disjoint union of copies of Kd,d .

Proof. Pick a bipartition of V (G) = A ∪ B, and let X = (Xv )v∈V (G) be the indicator vector for an independent set of

G chosen uniformly at random. (In other words, pick a random independent set, and put a 1 for each vertex in the

set and 0 everywhere else.) Then the entropy of this variable is just H(X) = log2(i(G)).

How can we upper bound this? X is not necessarily uniform or independent on the vertices, but we can still write

log2(i(G)) = H(X) = H(XA) +H(XB|XA).

Observe that because the graph is d-regular and bipartite, each vertex in A lies in the neighbor sets of d vertices in

B. Therefore, we can simplify the first term using Theorem 10.16 and also bound the second term by subadditivity:

H(X) ≤
1

d

∑
b∈B
H(XN(b)) +

∑
b∈B
H(Xb|XA)

Dropping conditioning on the second term (forgetting about the non-neighbors),

H(X) ≤
1

d

∑
b∈B
H(XN(b)) +

∑
b∈B
H(Xb|XN(b)).

Fix a b ∈ B. We upper bound the expression

H(XN(b)) + dH(Xb|XN(b)).

We want to relate this to the entropy of i(Kd,d) somehow: we will do so by replacing Xb with d identical independent

variables X(1)b , . . . , X
(d)
b that have the same distribution given XN(b) as the original Xb. Then,

H(XN(b)) + dH(Xb|XN(b)) = H(XN(b)) +H
(
X
(1)
b |XN(b)

)
+ · · ·+H

(
X
(d)
b |XN(b)

)
= H(XN(b)) +H

(
X
(1)
b , · · · , X

(d)
b |XN(b)

)
= H(XN(b), X

(1)
b , · · · , X

(d)
b ),

where the last equality follows from the chain rule. The key observation is that the joint random variable Y =

(XN(b), X
(1)
b , · · · , X

(d)
b ) is the indicator variable of some random independent set of Kd,d : XN(b) corresponds to the d

vertices on the left side and the d variables X(i)b correspond to d different vertices on the right side! The values that

Y takes correspond to independent sets, because the original Xb (and thus none of the copies) is never 1 if there’s a

1 in any coordinate of XN(b).

This distribution of Y may not be uniform, but we can still upper bound its entropy by the entropy of the uniform

distribution over independent sets of Kd,d , which is (by Lemma 10.3 as always) log2(i(Kd,d)).

Our graph G is d-regular, so the two pieces of the bipartition have size n
2 . Because the above bound holds for

every b ∈ B,

log2 i(G) ≤
n

2d
log2(i(Kd,d))
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as desired.

In this proof, we used almost nothing about independent sets, and that motivates us to generalize this result.

Definition 10.24

A graph homomorphism G → H is a map of the vertex set V (G) → V (H) such that every edge uv ∈ G is

mapped to an edge φ(u)φ(v) in H.

Example 10.25

Here are two examples of graph homomorphisms:

• Independent sets: Let H be the graph on two vertices {0, 1} with an edge between 0 and 1 and a self-loop

on 0. Then, a map φ : (V (G)) → H induces a homomorphism if and only if φ−1(1) forms an independent

set.
• q-colorings: Let H = Kq. The proper q-colorings of a graph G correspond to homomorphisms from G to

H: color each vertex in G mapping to i with the color i .

Theorem 10.26 (Galvin-Tetai)

Let G be an n-vertex, d-regular bipartite graph, and let H be any (possibly looped) graph. Let Hom(G,H) to be

the set of homomorphisms from G to H: then

|Hom(G,H)| ≤ |Hom(Kd,d , H)|n/2d .

The proof of this result is identical to the proof of Theorem 10.23.

Corollary 10.27

Let G be an n-vertex d-regular bipartite graph, and let q ∈ N. Let cq(G) denote the number of proper q-colorings

of G: then

cq(G) ≤ cq(Kd,d)v(G).

Proof. Let X be the vector of colors of a uniformly random coloring of G, and the rest follows as above.

Is it possible to prove an analog of Theorem 10.23 for general (not necessarily bipartite) graphs? The answer is

yes!

Theorem 10.28

For a n-vertex d-regular graph G,

i(G) ≤ [i(Kd,d)]n/2d .

Equality holds if (and only if) G is the disjoint union of copies of Kd,d .

Proof. We will reduce to the bipartite case.

Lemma 10.29 (Zhao)

For all G,

i(G)2 ≤ i(G ×K2).
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Remark. There’s lots of ways to denote a graph product. Given two paths G and H on 4 vertices, there’s three main

ways to construct a graph product of those paths:

These, naturally, should be denoted G�H, G ×H, and G �H, respectively.

Proof of lemma. We will construct an injection from I(GtG), the collection of independent sets in two disjoint copies

of G, to I(G ×K2). Think of G tG as two copies of G, one above the other, and G ×K2 as the same thing but with

parallel edges replaced with crosses.

Let’s say we have some independent set S ∈ I(G t G): if we take those same vertices in G × K2, we might not

have an independent set, because there are some bad edges: treating G t G as two layers 0 and 1,

Ebad = {uv ∈ E(G) : (u, 0), (v , 1) ∈ S}.

All edges in Ebad correspond to an edge in G × K2 with one endpoint in {u ∈ V (G) : (u, 0) ∈ S}, which is the

set of vertices of S (our not-quite independent set) in the top layer. Fix some ordering of the subsets of V (G) (for

example, lexicographical, and take Q to be the first subset (in our ordering) of V (G) such that each bad edge in Ebad

has exactly one endpoint in Q. In other words, we’re finding some canonical subset that “shows” our bipartition.

Now swap each pair of V (G × K2) in Q (in other words, replace (v , 0) with (v , 1) and vice versa): we can check

that this gives us an independent set in G × K2. In addition, this mapping is injective: find the edges of E that

correspond to Ebad, and then we can find Q and reverse all of the swaps that we did.

The graph G × K2 is d-regular and bipartite with 2n vertices, so we can apply Theorem 10.23. This gives an

inequality

i(G) ≤ i(G ×K2)
1
2 ≤ i(Kd,d)n/2d ,

and we’re done.

This means that for independent sets, we can drop the bipartite hypothesis: can we do the same in general for

graph homomorphisms? The answer is no!

Example 10.30

Take H to be two disjoint loops. Any graph homomorphism into H sends each connected component to one of

the two vertices of H, so the graph with the most graph homomorphisms into H is not a union of copies of Kd,d
but rather a union of cliques Kd+1, since we’re just trying to maximize the number of connected components.

The above bipartite swapping trick does not work for some variants of the problem, such as the number of q-

colorings instead of the number of independent sets. Recently, the problem for the number of proper colorings was

settled using a different method by Sah, Sawhney, Stoner, and Zhao.

Also, we can reduce “bipartite” to “triangle-free” in the graph homomorphism theorem. On the flip side, for any G

with triangles, there exists a graph H for which the theorem is not true! However, we don’t have good conjectures on

classifications of the graph H.
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10.6 More on graph homomorphisms: Sidorenko’s conjecture

Definition 10.31

Let t(H,G) denote the number of homomorphisms from G to H, divided by the total number of vertex maps

|V (G)||V (H)|.

In other words, this is the probability that a uniform random vertex map induces a graph homomorphism.

Conjecture 10.32 (Sidorenko)

If H is a bipartite graph, then for all G, the homomorphism density

t(H,G) ≥ t(K2, G)e(H),

where t(K2, G) is the edge density.

Rephrased, this can be phrased another way: among all graphs G with a fixed edge density, which G has the

minimum number of copies of H? Sidorenko’s conjecture says (informally) that this is a “random” G. This is still an

open problem, but let’s look at a specific case.

Theorem 10.33

Let G be a graph with n vertices and m edges, and let P4 be a three-edge path. Then

hom(P4, G) ≥ n3
(
2m

n2

)3
=
8m3

n2
.

Proof. We’ll use the entropy method, but the proof will look slightly different from the techniques that have been

used so far. We’re trying to lower-bound our quantity this time, so we don’t necessarily want to start with a uniform

distribution.

Basically, our goal is to construct a probability distribution on the set of homomorphisms Hom(P4, G) with entropy

at least log2
(
(2m)3

n2

)
. Then by the uniform inequality, we can find that the entropy of the uniform distribution, which

is log2 of the number of homomorphisms, is at least that quantity. Note that a homomorphism is just a 4-vertex path.

Construct X, Y, Z,W to be a 4-vertex walk on G in the following way: let XY be a unfirom edge of the graph, Z

be a uniform neighbor of Y (allowing X), and W be a uniform neighbor of Z. The entropy of this distribution is, by

the chain rule,

H(X, Y, Z,W ) = H(X) +H(Y |X) +H(Z|X, Y ) +H(W |X, Y, Z).

Note that if XY is a uniform edge, Y Z and ZW are also uniformly distributed. This is because the vertex probability

distribution of X is proportional to d(v): specifically,

Pr(X = v) =
d(v)

2m
.

This is true for Y as well, and now the distribution of Z as a uniform neighbor of Y is the same as the distribution of

X as a uniform neighbor of Y : Z|Y ∼ X|Y . So Y Z is uniform, and so is ZW by the same argument. That means

H(X, Y, Z,W ) = H(X) +H(Y |X) +H(Z|Y ) +H(W |Z) = H(X) + 3H(Y |X),
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and this is (by definition) ∑
v

−d(v)
2m

log2
d(v)

2m
+ 3

∑
v

d(v)

2m
log2 d(v),

where log2 d(v) is H(Y |X = v). Expanding and applying convexity, this is

= log2(2m) + 2
∑
v

d(v)

2m
log2 d(v) ≥ log2(2m) +

2n

2m
·
2m

n
log2
2m

n
,

and rearranging gives an entropy of log2
(2m)3

2n .

It turns out that this proof works for every tree. For what kinds of graphs is Sidorenko’s conjecture harder to

resolve?

Fact 10.34

The smallest open case of Sidorenko’s conjecture is the following Mobius graph: it’s K5,5 minus a Hamiltonian

cycle.

It turns out this is the incidence graph of the smallest simplicial complex of the Mobius strip. One side is the set

of vertices, and the other is the set of faces.

Notably, the Mobius graph doesn’t fit the conditions of the following theorem, which resolves Sidorenko’s conjecture

for certain graphs:

Theorem 10.35 (Conlon-Fox-Sudakov)

Sidorenko’s conjecture holds for a graph H if there exists a bipartition H = A t B such that there exists a vertex

a ∈ A with N(a) = B.

There are also ways to interpret Sidorenko’s conjecture beyond graph theory! It turns out Sidorenko’s conjecture

where H is a three-edge path (Theorem 10.33) is equivalent to the following inequality:

Proposition 10.36

Given a function f : [0, 1]2 → [0,∞],∫
[0,1]4
f (x, y)f (y , z)f (z, w)dxdydzdw ≥

(∫
[0,1]2
f (x, y)dxdy

)3
.

As a grad student, Professor Zhao posted on Math Overflow a few years ago asking for a Cauchy-Schwarz proof

of this. A week ago, Sidorenko actually answered it!

Sidorenko. Think of g(x) =
∫
f (x, y)dy as representing the “degree of x.” Then the left hand side becomes∫

f (x, y)f (z, y)g(z)dxdydz

but we can also rewrite the graph as a path u → x → y → z , so the left hand side is also∫
g(x)f (x, y)f (z, y)dxdydz.

108



Applying Cauchy-Schwarz,

LHS ≥
∫
g(x)1/2f (x, y)f (z, y)g(z)1/2

and since this integral is symmetric with respect to x and z , we can write this as

=

∫ (∫
g(x)1/2f (x, y)dx

)2
dy ≥

(∫
g(x)1/2f (x, y)dxdy

)2
by Cauchy-Schwarz, and now we can integrate out(∫

g(x)3/2dx

)2
≥
(∫
g(x)dx

)3
=

(∫
f (x, y)dxdy

)3
,

and we’re done.
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