
Understanding Computer Programs:
Computational and Cognitive Perspectives

by

Shashank Srikant

B. Tech., National Institute of Technology Kurukshetra (2011)
S.M., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Shashank Srikant. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce,

preserve, distribute and publicly display copies of the thesis, or release the thesis
under an open-access license.

Authored by: Shashank Srikant
Department of Electrical Engineering and Computer Science
May 15, 2023

Certified by: Una-May O’Reilly
Principal Research Scientist of the Computer Science and Artificial
Intelligence Laboratory
Thesis Supervisor

Accepted by: Leslie Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Understanding Computer Programs:

Computational and Cognitive Perspectives

by

Shashank Srikant

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, I study the understanding of computer programs (code) from two per-
spectives: computational and cognitive. I ask what the human bases of understanding
code are, and attempt to determine whether computational models trained on code
corpora (also known as code models) share similar bases.

From the computational perspective, I start by proposing a framework to test the
robustness of the information learned by code models (chapter 2). This establishes a
baseline measure for how well models comprehend code. I then describe techniques for
improving the robustness of these models while retaining their accuracy (chapter 3). I
then propose a way forward for code models to learn and reason about concurrent
programs from their execution traces (chapter 4). In doing so, I also demonstrate the
limitations of heuristics developed over the past four decades for detecting data races
in concurrent programs, highlighting the need for evaluating these heuristics further.

In the cognitive aspect, I study how our brains comprehend code using fMRI to
analyze programmers’ brains (chapter 5). I show that our brains encode information
about comprehended code similar to how code models encode that information (chap-
ter 6). I show how the framework I develop in chapter 2 can be used to automatically
generate stimuli for experiments in psycholinguistics and cognitive neuroscience (chap-
ter 7), which can improve our understanding of how our minds and brains comprehend
programs. Finally, I propose a probabilistic framework which models the mechanism
of finding important parts of a program when comprehending it (chapter 8).

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist of the Computer Science and Artificial Intelligence
Laboratory

3

4

Acknowledgments

The research presented in this thesis was done under the mentorship of Dr. Una-May

O’Reilly. In Una-May, I found an advisor who cared deeply about, and shared a

fascination for, programs and understanding them. She showed great confidence

in me when I wanted to address the idea of program understanding from diverse

perspectives–ML, cognitive neuroscience, and program analysis. Her enthusiasm in

understanding and refining with me the questions I investigate in this thesis has been

infectious and inspiring. Thank you Una-May for being the inspiring mentor and

human being you are. All of the research presented in this thesis was conducted in

collaboration with her.

A significant portion of my work in cognitive neuroscience and code model rep-

resentations that I present in this thesis was done in collaboration with the labs of

professors Ev Fedorenko and Sijia Liu. A cold-email to Ev to study the brain bases of

code understanding in 2018 and a joint-proposal to explore the robustness of code

models with Sijia in 2019 started my collaboration. Their relentless pursuit of their

topics of expertise, their availability to engage with me on various (often half-baked)

ideas I presented over the years, and their warmth and kindness in readily accepting

me as a collaborator is something I am grateful for, and that I hopefully can emulate.

I thank Ev, Sijia, and Prof. Armando Solar-Lezama for the helpful feedback they

provided as my thesis readers. Armando’s course on program analysis was not only

my first course at MIT but also the most influential, as it helped me appreciate

the program analysis perspective to some of the solutions presented in this thesis.

Thank you Amanda Abrams for patiently working with me on all my thesis-related

administrative work, and thanks Nicole Hoffman, Janet Fischer, Alicia Duarte, and

Prof. Leslie Kolodziejski, Prof. Berthold Horn for your diligence and care in making

the administrative processes a breeze to navigate through.

I had the pleasure of working with, and I am thankful to, the following excellent

collaborators who have contributed to the work I present in this thesis. I also mention

in brief the origin stories for each of these collaborations.

5

• Chapter 2 was in collaboration with Sijia Liu, Tamara Mitrovska, Shiyu Chang,

Quanfu Fan, and Gaoyuan Zhang. Thank you David Cox for the helpful discussions.

The chapter, in full, is a reprint of the material as it appears in Srikant et al. [2021],

published at ICLR 2021.

The work was a result of a joint-proposal in 2020 between Sijia and ALFA, and which

began my collaboration with Sijia’s group.

• Chapter 3 was in collaboration with Jinghan Jia, Sijia Liu, Tamara Mitrovska,

and Chuang Gan. Jinghan contributed equally with me as a primary author, who also

diligently handled the fairly involved implementation details. The chapter, in full, is a

reprint of the material as it appears in Jia et al. [2022], published at SANER 2023.

• Chapter 4. was in collaboration with Teodor Rares Begu, Malavika Samak, and

Michael Wang. Specifically, Section 4.3 in the chapter refers to a thesis I mentored,

authored by Teodor Rares Begu [Rares Begu, 2020]. Section 4.4, in full, is a re-print

of the material as it appears in Wang et al. [2023] published at SOAP 2023 at PLDI.

I was inspired to study the problem of concurrency bug detection after having unsuc-

cessfully addressed it in my S.M. thesis [Srikant, 2020]. As a side project, I proposed

using a toy language to simulate concurrent threads and assess the limitations of

various ML models. Teodor led the project, refining and implementing it in 2020.

Soon after, my work on min-max optimization informed the theoretical formulation I

propose in this chapter. The problem surfaced again when I reached out to Malavika

Samak in December 2021, during a talk by Prof. Michael Pradel, to learn more about

her work. She too had coincidentally considered using a data-driven approach to

reason about concurrent programs. We then scoped the problem, and realized the lack

of any labeled datasets. Michael Wang, who joined the ALFA group as a graduate

student then, joined this project, took charge, and developed the solution which came

to be RaceInjector.

• Chapter 5 was in collaboration with Anna Ivanova, Yotaro Sueoka, Hope Kean,

Riva Dhamala, Marina Bers, and Ev Fedorenko. Steve Shannon and Atsushi Takahashi

provided valuable support at the Martinos imaging center. This chapter is, in full, a

reprint of the arXiv report Srikant et al. [2023a], which in turn is a rewrite of Ivanova

6

et al. [2020], published at eLife 2020. The chapter informs the results of the eLife

work to a computer science audience; the original eLife work was written to primarily

inform a cognitive neuroscience audience.

A cold-email to Ev in September 2018 began this collaboration. Anna from Ev lab

had also serendipitously begun working on understanding the brain bases of code

comprehension in the week I emailed Ev. The neuroimaging perspective of program

understanding intrigued me from my days at Aspiring Minds. I even had conversations

about fMRI recordings with faculty in India before joining graduate school (see Chapter

1 for an excerpt). Serendipity ensured I went through with my desire to study this

problem.

• Chapter 6 was in collaboration with Benjamin Lipkin, Anna Ivanova and Ev

Fedorenko. Ben Lipkin contributed equally with me as a primary author in this work;

he played a central role in carefully analyzing all the data, which eventually ensured

the success of this project. The chapter, in full, is a reprint of the material as it

appears in Srikant et al. [2022], published at NeurIPS 2022.

• Chapter 7 was done with Greta Tuckute from Ev lab. It is, in full, a reprint

of the material as it appears in Srikant et al. [2023b], in submission at the time of

writing this thesis.

During a casual dinner conversation in December 2021, Greta introduced me to the

problem of stimuli generation, for which she was exploring alternate solutions at the

time. I repurposed the solution I present in chapter 2 to address the problem.

• Chapter 8. The push to explore behavioral responses to code comprehension

came from a growing sense of frustration. Around 2020, I grew jaded by the constant

stream of code models applied to software tasks willy-nilly. It seemed then that models

were being trained for the sake of it, without taking into account if programmers cared

for those tasks, and worse, likely ignoring more fundamental tasks that programmers

needed help with, such as reading others’ code. I decided to seek out startups and other

software product research groups (as opposed to the typical large research groups) in

this field which could offer me exposure and access to programmer behavior in the

software development process. I cold-emailed Stephen Magill in 2021, co-founder of

7

Muse Dev Inc (now acquired by Sonatype Inc.), in whose group I spent a summer

and tested some ideas on code comprehensibility prediction. I later developed other

ideas on this theme which came to be the work I present in this chapter. Ev later

introduced me to Prof. Yevgeni Berzak who was working on similar ideas. Thanks to

Prof. Daniel Jackson for sharing with me his thoughts on program understandability,

and David Darais for informing me of Stephen Magill’s group.

• Unpublished work. The following works were also related to the theme explored

in this thesis. With Tamara Mitrovska, then an undergraduate researcher, I pursued

some more challenging directions on probing code models for their understanding.

With Erik Hemberg, I proposed a way to use satisfiability modulo theory (SMT) to

detect loopholes that aid tax avoidance in contract law. We demonstrated success on

a small class of contract laws. This work demonstrates how symbolic approaches can

enhance machine comprehension of domain-specific languages, such as contract law,

which are generally considered inscrutable. With Stephen Magill at Sonatype Inc., I

analyzed ∼ 100K Java programs in production to test what makes a snippet of code

harder to understand. I had access to before-after snapshots of code reviews and fixes

for these programs, from which I learned patterns.

All of the research presented in this thesis was funded by a grant from the MIT-IBM

Watson AI lab. For this, I am very grateful to David Cox, Aude Oliva, and the lab.

Research I did during the summers of 2020 and 2021 was supported by the MIT-IBM

Watson AI lab and Stephen Magill’s team at Sonatype Inc. (previously Muse Dev Inc.)

respectively. The first year of my PhD was partially funded by the FinTech initiative at

CSAIL. MIT’s generous undergraduate research programs (Quest for Intelligence and

the MIT SuperUROP program) supported multiple superb undergraduate researchers

I worked with, including my collaborators Tamara (chapters 2, 3) and Teodor (chapter

4). My gratitude to all these sources for funding me and my collaborators.

I thank the following for their outstanding support with the computational resources

I needed for my experiments: John Cohn, Jessie Rosenberg, Christopher Laibinis, and

Luke Inglis from MIT-IBM AI lab and IBM Research; the ninjas at TIG, CSAIL -

Jonathan Proulx, Alex Closs, Garrett Wollman, and Shaohao Chen from BCS.

8

A significant portion of the work in this thesis is built on the effort of several

researchers—those who prepared and publicly released datasets, codebases and ML

models, those who put out helpful blogs and videos explaining their work, those who

thanklessly answered queries on public forums, and those who have diligently worked

on several important open source efforts such as Pytorch and Hugging Face. I thank

them all; I stand on the shoulders of such giants.

Kim Martineau, Rachel Gordon, Steven Nadis, Matt Busekroos, Jake Lambert,

Phil Arsenault, and Erin Underwood from CSAIL, MIT News and EmTech MIT

helped in communicating much of the work presented in this thesis to the public via

portals like MIT News, CSAIL spotlights, talks at EmTech, and posts on social media.

Several courses I took in computer science and cognitive science have shaped my

views on the topics I address in this thesis. Thanks especially to professors Armando

Solar-Lezama, Regina Barzilay, Nickolai Zeldovich, Frans Kaashoek, Nancy Kanwisher,

Pawan Sinha, Josh Tenenbaum, Ted Gibson, and Athulya Aravind for their inspiring

courses. They posed big-picture questions and constantly encouraged us to think

beyond.

It takes a village to raise a child. Some instilled a sense of rigor and curiosity

while others mentored me while I was finding my way into academia. Thanks to the

many inspiring teachers from my school; Prof. Jitender Chhabra – my undergraduate

advisor; Varun Aggarwal – my manager at Aspiring Minds; Sumit Gulwani, professors

Rupesh Nasre, Jitender Chhabra and Lav Varshney – my letter writers to graduate

school; Sumit for recommending a visit to the Microsoft Research India lab in 2017,

and to Bill Thies, Sriram Rajamani and Swami Manohar for being my hosts there

and talking to me about life after graduate school; professors Bogdan Vasilescu and

Jonathan Aldrich for being welcoming hosts at CMU in 2017. A special note of thanks

to Varun who patiently taught me to do rigorous research and eventually introduced

me to Una-May, and for setting up Aspiring Minds where I met excellent colleagues

to do fun research with.

Lastly, thanks to the many new friends I made during my stint here, and older ones

who kept in touch, many through long phone calls, all of whom ensured I remained in

9

high spirits. Cybersecurity, privacy, and GPT-4 can operate with reduced internet

data, so I will avoid mentioning them all. Michael Collins, previous flatmates, and

friends at Chateau ensured I had a comfortable stay. Multiple instructors ensured I

stayed physically healthy. Members of ALFA shared my enthusiasm for the outdoors,

finding good food spots, and having fun at work. Thank you all for the warm memories.

I am grateful to Una-May and Blake for their benevolent gesture of offering their

summer home to a few of us labmates when COVID was at its worst in the USA; they

set a very high bar for care and empathy. Thanks to my aunts and their families, who

made me a part of theirs during my stay here. Thanks to my parents for making me

who I am, and all my family for their support through the years and for visiting me

here. Thanks to my partner for always making me smile. Thanks also to the many

canine friends who kept me company through my stint here; they are too important

to remain anonymous: Kencha, Julie, Todd, Maisy, Talula, Zuko, Bucky, Luna, and

Alpha. Olivia, Lily, and Cascade make the list despite their feline forms.

This perhaps will be the most read page of my thesis. If I’ve missed mentioning

you, know that I’ll always appreciate all that you do.

10

Contents

1 Introduction 29

1.1 Puzzle 1 - Human intelligence tasks 29

1.2 Puzzle 2 - Programs and patterns . 33

1.3 Reconciling these puzzles - Questions that arise 34

1.4 Thesis map . 35

1.5 Software . 43

2 Testing the robustness of code model understanding using source

code modifications 45

2.1 Introduction . 45

2.2 Related Work . 48

2.3 Program Obfuscations as Adversarial Perturbations 49

2.4 Adversarial Program Generation via First-Order Optimization 53

2.5 Experiments & Results . 56

2.5.1 Experiments . 58

2.6 Conclusion . 61

3 Improving the robustness of code model understanding while retain-

ing model accuracy 63

3.1 Introduction . 63

3.1.1 Overview of proposed approach 65

3.1.2 Contributions . 65

3.2 Related work . 67

11

3.2.1 SSL for code . 67

3.2.2 Adversarial robustness of code models: Attacks & defenses . . 68

3.3 Preliminaries . 69

3.3.1 Code and obfuscation transformations 69

3.3.2 Problem statement . 70

3.4 Method . 71

3.4.1 Claw: CL with adversarial codes 72

3.4.2 SAT: Staggered adversarial training for fine-tuning 74

3.5 Experiment Setup . 76

3.6 Experiment Results . 79

3.6.1 Overall performance . 80

3.6.2 Why is Claw effective? A model landscape perspective 81

3.6.3 Interpretability of learned code representations 83

3.6.4 SAT enables generalization-robustness sweet spot 86

3.6.5 ClawSAT on a different architecture 87

3.6.6 Extended study to integrate SAT with ContraCode 87

3.6.7 Sensitivity of SAT to code transformation and attack strength

types. 88

3.7 Conclusion & Discussion . 89

4 Training code models to understand concurrent programs using

program execution traces 91

4.1 Introduction . 92

4.1.1 Background . 93

4.2 A theoretical formulation to learn data races 96

4.2.1 Problem formulation . 97

4.2.2 Implementation challenges . 98

4.3 Simulating data races to study the limits of ML models 99

4.3.1 Introduction . 99

4.3.2 Simulating data races - A toy language 100

12

4.3.3 Generalization properties which the generated dataset can test 101

4.3.4 Desirable capabilities of the learned models 102

4.3.5 Experiments and Results - A summary 103

4.4 First steps towards learning data races: Creating a labeled dataset . . 104

4.4.1 Method . 108

4.4.2 Results & Discussion . 111

4.4.3 Related work . 114

5 Program comprehension and the human brain 117

5.1 Introduction . 117

5.2 Related Work . 119

5.3 Background . 121

5.3.1 fMRI studies . 121

5.3.2 Regions of Interest (ROIs) . 122

5.4 Experiment Design . 123

5.4.1 Experiment workflow - An overview 123

5.4.2 Condition design . 124

5.4.3 fMRI tasks . 128

5.4.4 Locating fROIs and data analysis 128

5.5 Experiment Procedure . 130

5.6 Results . 131

5.7 Discussion . 138

5.8 Threats to validity . 141

6 Convergent representations of computer programs in humans and

code models 143

6.1 Introduction . 143

6.2 Related Work . 147

6.3 Background . 148

6.4 Brain and Model Representations . 150

6.4.1 Brain representations and decoding 150

13

6.4.2 Code properties . 152

6.4.3 Model representations and decoding. 153

6.5 Experiments & Results . 154

6.5.1 Experiment 1 - How well do the different brain systems encode

specific code properties? Do they encode the same properties? 155

6.5.2 Experiment 2 - Do brain systems encode additional code prop-

erties encoded by computational language models of code? . . 157

6.6 Discussion . 159

7 Goal-optimized linguistic stimuli for psycholinguistics and cognitive

neuroscience 163

7.1 Introduction . 163

7.2 Problem description . 166

7.3 Method . 167

7.3.1 Solution formulation . 169

7.4 Experiments & Results . 172

7.4.1 Counterfactual minimal-pair task 172

7.4.2 fMRI task . 176

7.5 Discussion . 179

8 Modeling the presence of beacons in program comprehension 181

8.1 Introduction . 181

8.2 Experiment Setup . 183

8.3 Results . 185

8.3.1 RQ 1. Do humans consistently identify beacons? 185

8.3.2 RQ 2. What are the predictors of beacons? 187

8.4 Related work . 193

9 Conclusion 195

9.1 Future work . 197

9.1.1 The role of cognitive neuroscience: path ahead 197

14

9.1.2 Applying results from neuroimaging studies to CS education

and pedagogy . 198

9.1.3 Establishing human performance for the better design of code

models . 200

9.1.4 A case for separate architectures? 201

9.1.5 Probing code models . 202

15

16

List of Figures

1-1 Excerpts from an email conversation with Prof. Harish Karnick, Emeri-

tus Fellow, IIT Kanpur, on the possibility of studying the brain bases

of programming, circa August 2017. 32

1-2 A Zipf-like distribution. For language, the X-axis represents unique

words or phrases appearing in corpora of text, and the Y-axis the

frequencies corresponding to each of those words/phrases occurring in

the corpora. Image source: Wikimedia Commons 33

1-3 Thesis map. The three verticals correspond to the three broad thesis

questions I introduce in Section 1.3. Each box describes the theme

of one chapter in this thesis. The bridge chapters inform and are

informed by ideas from chapters in both - the computational and

cognitive neuroscience verticals. The arrows indicate these relationships. 36

2-1 The advantage of our formulation when compared to the state-of-the-art. . 47

17

2-2 (a) A sample program 𝒫 containing a function foo (b) 𝒫 contains five

sites which can be transformed - two replacesites corresponding to local

variables b and r , and three insertsites at locations I1, I2, I3. Ω is a

vocabulary of tokens which can be used for the transformations. (c) This is

a perturbed program with the tokens world and set from Ω used to replace

tokens b and at location I3. These transformations do not change the original

functionality of 𝒫, but cause an incorrect prediction delete (d) Examples

of two site selection vectors zi, zii selecting different components. z𝑖 = 1

for a location 𝑖 signifies that the 𝑖th token in 𝒫 is selected to be optimally

transformed. zi corresponds to the perturbed program in (c). 50

2-3 The original loss landscape for a sample program (2-3a). Randomized

smoothing produces a flatter and smoother loss landscape (2-3b). We

plot the loss along the space determined by the vector (𝛼.sgn(∇𝑥𝑓(𝑥)) +

𝛽.Rademacher(0.5)) for 𝛼, 𝛽 ∈ [−0.05, 0.05] Engstrom et al. [2018] 55

2-4 ASRs of our approaches and Baseline against the number of optimization

iterations (2-4a) and perturbation strength of an attacker (2-4b). 60

3-1 Schematic overview. We present Claw - a contrastive learning-

based unsupervised method which learns adversarial views of the input

code to in turn learn accurate and robust representations of the code.

We also present SAT, a refinement to the adversarial training algorithm

proposed by Madry et al. Madry et al. [2018a] which helps retain the

task-independent robustness and accuracy learned by Claw while

also learning task-specific accuracy and robustness. We show that

ClawSAT yields better accuracy and robustness when compared to

state-of-the-art self-supervised learning models for code. 66

18

3-2 Two types of semantics-preserving transformations (obfuscations) can

be made to a code to attack code models–replace - where existing code

is modified at a site—location in the code, or insert - where new lines

of code are inserted at a site. We select sites at random. The specific

tokens used in these transformations (test and "Network" in the the

example) can either be a random transformation 𝑡rand(·)–a randomly

selected token from a pre-defined vocabulary, or can be an adversarial

transformation 𝑡adv(·), where the token is obtained from solving a first-

order optimization designed to fool the model Srikant et al. [2021],

Henkel et al. [2022], Yefet et al. [2020]. 69

3-3 During pre-training, we propose Claw containing two optimization

problems: (1) to learn invariant code representations by minimizing

the representation distances of a code (𝒫) from all its views (𝑡rand(𝒫),

𝑡adv(𝒫)) via CL, and (2) to generate an adversarial code 𝑡adv(𝒫) (‘hard’

positive example) by maximizing its representation distance from 𝒫.

In the example, this requires solving for a replacement token at the

randomly selected site marked as • 72

3-4 Loss landscapes: Claw (L), and ContraCode (R), the X and Y

axes represent the directional coefficients 𝛼 and 𝛽 in (3.4). 81

3-5 Explanation-by-example to demonstrate the robustness benefits of

Claw. (a) Sample program from the test set (b) Adversarially per-

turbed variant of the sample program. (c-d) Examples closest to the

sample program (a) when using Claw and ContraCode. (e-f) Ex-

amples closest to the perturbed variant (b) when using Claw and

ContraCode. 82

3-6 Effect of different update schedules (𝜏 , see Algorithm 1) on Gen-F1 and

Rob-F1. 86

4-1 Example of a potential data race on lines 1 and 10, an observed data

race on lines 5 and 6, and a safe access on lines 3 and 8. 93

19

4-2 A simple program 𝒫 with two threads and no pre-existing data races 94

4-3 A demonstration of injecting a data race in an execution trace of the

program in Figure 4-2 . 95

4-4 Program P contains two functions F1, F2. The figure illustrates two

possible instances of interleaving, I1(P), I2(P), that can occur in the

lines of functions F1, F2 when concurrently executed. The value of x

when I1, I2 end executing at time t = 3 is 1 and 0 respectively. Here,

I(P), the set of possible interleaved orders of executions, contains 4! = 24

possible orderings of lines L11,L21,L12,L22 97

5-1 The Multiple demand (MD) system and Language system highlighted

in a neurotypical adult brain. These two systems span multiple, closely

situated regions in the brain, and have been established to have very

different response profiles. What is conventionally referred to as Broca’s

region includes portions of both these systems [Fedorenko and Blank,

2020]. 122

5-2 (A) A code condition stimulus in Python and its equivalent sent con-

dition, which describes the code stimulus in words. sent controls for

brain responses to code simulation. The difference in these conditions,

code>sent, estimates code comprehension. (B) An example code and

sent stimulus in ScratchJr, a programming system with a visual inter-

face. ScratchJr allows to measure the effect of text in codes. (C) codeJ

condition with Japanese variable names, which controls for the effect

of meaningful variable names. (D, E, F) Conditions that measure the

effect of control-flow properties (for, if, seq) and type of operations

(math, str). 124

20

5-3 (A, B) Brain activations in the MD system left hemisphere (MD system

L), MD system right hemisphere (MD system R), and the Language

system. We measure responses to four conditions – codes (CP), sentences

matching the code’s operations (SP), Sentence reading (SR), and Non-

words reading (NR). We experiment in Python (N=24) and ScratchJr

(N=19). Each dot in the bars corresponds to aggregate data from one

participant. *** indicates 𝑝 < 0.001, n.s. - not significant (C) MD

system responses to two code properties – operation type (math, string

operations), and control-flow (sequential, loop (for), conditional (if))

(D) Language system responses to variable names in English (codeE)

and Japanese (codeJ) (E) Correlation of responses in the MD and the

Language systems to proficiency in Python (top) and ScratchJr (bottom).132

6-1 The approximate locations of MD and the Language systems in the

human brain. The regions depicted are used as a starting point to

functionally localize these systems in individual participants. 149

6-2 Overview. The goal of this work is to relate brain representations

of code to (1) specific code properties and (2) representations of code

produced by language models trained on code. In Experiment 1, we

predict the different static and dynamic analysis metrics from the brain

MRI recordings (each of dimension 𝐷𝐵) of 24 human subjects reading

72 unique Python programs (𝑁) by training separate linear models for

each subject and metric. In Experiment 2, we learn affine maps from

brain representations to the corresponding representations generated

by code language models (each of dimension 𝐷𝑀) on these 72 programs.151

21

6-3 Affine models are learned on brain representations to predict each of

the code properties described in Section 6.4.2, and a collection of code

models described in 6.4.3, for each of the 24 participants. The mean

decoding score across subjects is shown here, and error bars reflect the

95% confidence interval of the mean subject score. A solid line on each

bar presents the empirical baseline for a null permutation distribution on

shuffled labels. All decoding scores were compared to this permuted null

distribution using a one-sample 𝑧-test, and the significance threshold

was defined at 𝑝 < 0.001; false-discovery-rate-corrected for the number

of tests in each panel (FDR). Statistically significant results are denoted

with a *, marked at the base of the bars. Additionally, ∙-capped lines

denote selected significant paired 𝑡-tests (𝑝 < 0.05; FDR). 156

7-1 Overview. GOLI transforms a seed linguistic stimulus into a novel

stimulus which either contains a desired linguistic property or elicits a

desired cognitive outcome. It uses a language model (𝜃LLM) to represent

the seed sentence, a mapping model (𝜃map) to map it to the desired

property, and uses a gradient-based method to modify the seed sentence

(propagates gradients through the composed model 𝜃map∘ 𝜃LLM) into

a novel one. The table (right) shows an example of stimuli generated

from a seed stimulus for the three objectives we demonstrate in this work.165

7-2 . 174

8-1 Overview of experiment setup. 1. Programs are first shown to

experts. Each expert marks out the beacons they perceive. We define

the token response rate (TRR) for each token in a program as the ratio

of the number of raters who rated the token as a potential beacon to

the total number of raters. 2. A code model is then provided the same

program. The code model representations for each token is correlated

with the TRR for that token. 183

22

8-2 Behavioral responses. The responses by the ten experts on each of

the eight problems in our dataset. The left panels shows the problems

as seen by the expert. The color gradients pertain to the token response

rate (TRR): darker the shade of green, closer the TRR is to 1. The

right panel shows the token-wise distribution of expert responses. . . 190

9-1 An excerpt from Letovsky [1987] in which the authors describes the

mental processes involved in comprehension. Unfortunately, such hy-

potheses have not yet been empirically validated. 199

23

24

List of Tables

2.1 Our work solves two key problems to find optimal adversarial perturbations –

site-selectionand site-perturbation. The Baseline method refers to Ramakr-

ishnan et al. [2020]. The perturbation strength𝑘 is the maximum number of

sites which an attacker can perturb. Higher the the Attack Success Rate

(ASR), better the attack; the converse holds for F1 score. Our formulation

(Eq. 2.2), solved using two methods – alternate optimization (AO) and joint

optimization (JO), along with randomized smoothing (RS), shows a consistent

improvement in generating adversarial programs. Differences in ASR, marked

in blue, are relative to Baseline. 58

2.2 We employ an AT setup to train seq2seq with the attack formulation

we propose. Lower the ASR, higher the robustness to adversarial attacks.

Training under AO+RS attacks provides best robustness results. 60

3.1 Partially fine-tuned (PF) models show that Claw improves robustness.

Standard training (ST) yields better generalization than adversarial

training (AT) while the latter provides better robustness. 75

25

3.2 Overall performance of ClawSAT: We evaluate our models in

two settings: standard training (ST) and adversarial training (AT) by

Madry et al. [2018b]. For each of the four tasks: code summarization:

SummaryPy, SummaryJava, code completion: CompletePy, and

code clone detection: CloneJava, we report the model’s generalization

F1-score (Gen-F1) and the robustness F1 (Rob-F1)–the generalization

F1 when the model is adversarially attacked. M2 corresponds to an

adversarially trained (AT) version of the supervised model M1, first

introduced in Henkel et al. [2022]. M4 and M5 are two variants of

ClawSAT (M6): one integrates Claw with standard training (ST),

and the other integrates Claw with the adversarial training (AT)

Madry et al. [2018b]. The result 𝑎±𝑏 represents mean 𝑎 and standard

deviation 𝑏, calculated over 5 random trials. 77

3.3 Weight difference after finetuning based on different pretraining methods. 83

3.4 Overall performance of ClawSAT on transformer 87

3.5 Effectiveness of SAT on ContraCode 88

3.6 Performance of ClawSAT at different attack configurations.

We evaluate the sensitivity of our best performing model on (a) different

transformation types used during pre-training and fine-tuning (SAT)

(b) different attack strengths (number of sites) during evaluation. . . 88

4.1 Overview of RaceInjector results on a benchmark of pro-

grams. Column 1 lists the different program benchmarks in which

RaceInjector injects races. Columns 2,3,4 describe the base traces.

The remaining columns describe the traces generated by RaceInjec-

tor. Inj. pts. refers to the number of injection points available in the

base trace; Thrd the number of program threads. 110

26

4.2 Counterexamples generated by RaceInjector. A ✓ signifies

there exists at least one trace among the RaceInjector-generated

traces which is not detected by the corresponding algorithm. # Missed

reports the number of traces the algorithm misses to detect (percentage

mentioned within parenthesis). 110

7.1 GOLI automates generating stimuli which satisfy experimenter-supplied

goals. It handles a broader set of goals than handcrafted and template-

based methods while being data-driven. 164

7.2 . 174

8.1 Predicting beacons. The table reports Pearson correlations (r)

between different predictors and human judgement scores of beacons.

The correlations are computed both across all tokens appearing in the

eight problems (N=228) and an average of the correlations in each of

the eight programs in our dataset (average tokens per program = 25.3;

std = 12.9). Human refers to the normalized inter-expert agreement. 191

27

28

Chapter 1

Introduction

The central theme of this thesis is how we humans understand computer programs,

and how we can teach machines to understand programs the way we do. It stems

from two puzzling observations I made before starting graduate school, which were

the following.

1.1 Puzzle 1 - Human intelligence tasks

Before graduate school, I worked for a research group where we assessed and quantified

skills which signal employability in a labor market. Skill assessments had until then

largely been confined to objective tests (multiple-choice questions) because subjective

assessments (free-form responses) were harder to assess. Our group was one of the

first to view the problem of subjective assessments of skills as problems in computer

science. We demonstrated how many free-form response assessments can be cast as

problems in machine learning (ML) [Srikant et al., 2019]. Test-takers’ responses were

treated as data-points in a high dimensional space, from which we predicted their

true, latent, underlying score. We developed novel assessments for skills like spoken

English [Shashidhar et al., 2015a], written English [Shashidhar et al., 2015b, Unnam

et al., 2019], fine motor skills [Singh and Aggarwal, 2016] and situational judgement

[Stemler et al., 2016], in addition to domain-general skills like logic and quantitative

reasoning [Aggarwal et al., 2016].

29

One area that I was closely involved in was the assessment of computer programming

skills [Srikant and Aggarwal, 2014a, Singh et al., 2016, Takhar and Aggarwal, 2019].

We trained predictive models to look beyond the functional correctness of programs,

and assessed their partial correctness based on their semantic content. This helped

a common issue arising in program assessments: zero credit for a failed test-suite

despite having written a program that was almost what was expected. We successfully

demonstrated how to utilize corpus-level statistics to assess programs that match

those written by expert programmers.

As background, the notion of code models—language models or statistical models

trained on code corpora, was beginning to be put to test around the same time we

were developing our predictive models for assessing programs (circa 2013). Works

by Allamanis and Sutton [2013] and Raychev et al. [2015] demonstrated practical

applications like code summarization and variable renaming in Java and Javascript

respectively. The idea of using a corpus of programs to train language models and other

statistical models to ease developer workload was becoming mainstream. Allamanis

et al. [2018b] surveys subsequent works in this space.

To train our machine learning (ML) models on code, we were routinely annotating

ground truth labels for the programs in our corpus. This required experienced pro-

grammers evaluating a subset of programs in our corpus with a carefully constructed

rubric. In watching expert programmers perform this task, I made a puzzling observa-

tion: experts were needed to annotate even the simplest of programming tasks, and

irrespective of their expertise, they found annotation challenging and time consuming.

This was in contrast to domains like speech, images, and text understanding, in which

most tasks which are hard to describe using algorithms can be quite easily done by

non-experts, essentially invoking their innate human intelligence. Examples of such

tasks include identifying objects in an image or identifying inarticulate speech or text

samples. Amazon’s Mechanical Turk [Paolacci et al., 2010], a popular crowdsourc-

ing platform, uses the term human intelligence tasks (HIT) to describe such tasks.

Strangely, understanding and annotating programs were never HITs, even for the best,

expert programmers. Any one of the following explanations possibly justifies this

30

observation.

• The time the human race has been using and inventing programming languages is

much less than the time the human race has learned and acquired skills like natural

language, vision, and speech. It is hence possible that there exist dedicated brain

regions for processing language, vision, and speech while none exist for programming

languages, thus requiring us more time to process programs.

• Experience could be another factor. A typical adult is exposed to many more

years of language, vision, and speech than a programming language in their lifetime.

Perhaps a child who is exposed to a programming language as its first language will

process programs as easily as adults process natural languages.

• It is possible that the nature of programming models and environments offered by

different languages contribute to the ease with which we understand programs. For

instance, visual learners may find web mark-up languages simpler and more natural

to reason about. Similarly, some find it easier to visualize and mentally manipulate

rows and columns of data, thus finding languages like R, Matlab, and libraries like

Numpy easier to understand. Some anecdotally find functional languages easier to

comprehend than others.

While the explanations for the underlying processes were not clear, it was clear

that in order to solve this puzzle, it was necessary to address the behavioral factors

that underlie comprehension. Further, it suggested room for rigorously defining ideas

like visual learners and easier to reason about in this context.

This observation also raised questions about the different code models proposed

in the literature. The accuracy of code models at tasks such as summarization and

predicting tokens were not as high as at tasks in language processing. Was this because

training code models on tasks that were not HITs inherently harder? Understanding

the brain and behavioral bases of comprehension would hopefully inform how we could

improve training computational models to perform code reasoning tasks.

Around the same time, Siegmund et al. [2014] published their influential study

on using fMRI to study programmers’ brains. This provided additional support for

the potential to study and establish the behavioral foundation for comprehending

31

Figure 1-1: Excerpts from an email conversation with Prof. Harish Karnick, Emeritus
Fellow, IIT Kanpur, on the possibility of studying the brain bases of programming, circa
August 2017.

32

code. Shown in Figure 1-1 is my conversation on this topic with Prof. Harish Karnick,

Emeritus Fellow at Indian Institute of Technology Kanpur (IITK)1, just before I

started graduate school.

1.2 Puzzle 2 - Programs and patterns

Around the same time as I was asking these questions, I came across a now prominent

work on the naturalness of software by Hindle et al. [2016]. The authors analyzed

code in the wild—available in public software projects, open-source repositories

etc., and showed the frequency distribution of the tokens and phrases (collection of

tokens) appearing in code corpora followed a Zipf-like distribution. This frequency

distribution is obtained by first computing the frequency of all the unique tokens across

all programs appearing in a corpus, and then plotting these frequencies in a ranked

(usually descending) order. Figure 1-2 shows an example of a Zipf-like distribution.

Figure 1-2: A Zipf-like distribution. For language, the X-axis represents unique words
or phrases appearing in corpora of text, and the Y-axis the frequencies corresponding to each
of those words/phrases occurring in the corpora. Image source: Wikimedia Commons

The authors found this distribution to hold irrespective of the programming

language itself: the distribution of tokens in corpora across languages like C, Java,

Python each showed a similar distribution. Word frequencies from corpora of text

have long been shown to follow a Zipf-like distribution [Piantadosi, 2014]. Such a

statistical regularity of words and tokens has been used in applications such as data

compression [Schwartz, 1963], and cryptography [Boztas, 1999]. Hindle et al. [2016]

1https://iitk.ac.in/new/dr-harish-karnick

33

propose similar applications for code that can make use of such regularity, such as

code auto-completion, code summarization, and more.

While the reason for the occurrence of this particular distribution is currently not

well established, one popular account attributes it to a communicative optimization

principle [Piantadosi, 2014]. According to this principle, the task of speaking and

writing text is considered to have been evolved to optimally facilitate communication.

The principle suggests any communication language will exhibit a statistical regularity

that helps maximize its successful reception. In light of this principle, the results from

Hindle et al. [2016], which had also been reported in previous studies [Shooman and

Laemmel, 1977, Clark and Green, 1977, Chen, 1991], remain particularly puzzling.

For one, the distributions are similar despite the many differences in the grammar and

the execution semantics of programming languages and natural languages. Further,

the communication recipient in the case of code is an assembly-level, register-based

execution model. Why do humans then produce code with a Zipf-like token distribution

when communicating with a machine that has been invented by humans?

Could it follow that our minds—our consciously aware perceptions and thoughts

[Shiffrin et al., 2020]—use some mechanism which naturally constrains the way we

express communicative thought? What is an analytic description of this mechanism?

As a corollary, when understanding code, do our minds inherently expect this distri-

bution? How we might is unclear. Bicknell and Levy [2012], Malmaud et al. [2020]

propose a probabilistic framework to explain text understanding. Does a similar

probabilistic account explain code understanding? Importantly, are code models

encoding this probabilistic mechanism, thus giving them the ability to reason about

the communicated intent in programs? These were the open questions motivating me,

which I attempt to investigate in this thesis.

1.3 Reconciling these puzzles - Questions that arise

These two puzzles inform the theme of the questions I explore in this work. Reconciling

the questions raised by the puzzles, I ask the following questions, which lie at the

34

intersection of computational models of code understanding and human behavioral

bases of code understanding.

• Thesis Question 1: Computational perspective. To start with, what is a

good framework to evaluate code models’ understanding of programs. Code models

are either supervised—trained to infer a specific task like code summarization, type

inference, etc.; or unsupervised—language models trained on code corpora. Further,

these models are typically trained either on source code or, as I propose, can be trained

on execution traces of programs.

• Thesis Question 2: Cognitive neuroscience perspective. Similarly, what is

a good framework to understand how code comprehension happens in our brains and

minds. Brain refers to the neurons, cells, and chemicals that govern activities of an or-

ganism. Mind is often considered consciously aware perceptions and thoughts [Shiffrin

et al., 2020].

• Thesis Question 3: Bridging the two perspectives. Is there any corre-

spondence between the information encoded by code models and human brains when

comprehending programs? Can computational models help in learning how our brains

and minds comprehend programs? Can our brain and minds inform the better design

of computational models?

In the following section, I describe how the chapters in this thesis correspond to

these key research questions.

1.4 Thesis map

I develop multiple ideas to address each of the three questions introduced in Section

1.3. Each idea has been described as a separate chapter in this thesis. I motivate the

relevance of each idea and summarize key results here. I also describe how these ideas

contribute to addressing the three broader thesis questions.

Figure 1-3 summarizes the key themes of the different chapters in this thesis, and

shows how they relate ontologically.

35

Figure 1-3: Thesis map. The three verticals correspond to the three broad thesis questions
I introduce in Section 1.3. Each box describes the theme of one chapter in this thesis. The
bridge chapters inform and are informed by ideas from chapters in both - the computational
and cognitive neuroscience verticals. The arrows indicate these relationships.

Thesis Question 1. Computational perspective

Chapter 2. Testing the robustness of code model understanding using

source code modifications.

I propose a principled method to test how well models trained on source code under-

stand programs. The key idea is that humans’ understanding of code is not affected by

minor changes made to the code. We hold code models to the same test. For example,

a model’s output should not be affected by a variable being consistently renamed from

x to y. The proposed method attempts to find such small changes which (a) do not

alter the semantics of the original program, but (b) change the model’s output. If

such minor modifications are easy to find, it demonstrates the brittle understanding

these models have of programs. I formulate finding such minor modifications as a

first-order optimization problem. The optimization solves for two key components:

which parts of the program to transform, and what transformations to use. I show

that it is important to optimize both these aspects to generate the best candidate

changes which are minimal and can flip a model’s decision. Although I evaluate this

36

method on Python and Java programs, the proposed method is independent of the

model (supervised or unsupervised), or the languages the models are trained on.

The details of this method are presented in chapter 2. It is, in full, a reprint of

Generating adversarial computer programs using optimized obfuscations. Srikant, S.,

Liu, S., Mitrovska, T., Chang, S., Fan, Q., Zhang, G., and O’Reilly, U.M. (2021).

ICLR 2021. [Srikant et al., 2021]

Chapter 3. Improving the robustness of code model understanding while

retaining model accuracy

In this work, I propose improving the baseline understanding of code models that I

test and measure in chapter 2.

I separately address two types of models - unsupervised code models (language

models) and supervised, fine-tuned models. For unsupervised models, I provide a

constrastive learning setup to learn those properties which humans can naturally

reason about when comprehending code, such as invariance to variable names. For

supervised models, I identify the existence of a sweet-spot in the frequency of updates

made to the model parameters when being updated to learn the different human-like

properties.

I show that these two solutions bring models closer to what humans can reason

about when comprehending code.

I describe this work in Chapter 3. It is, in full, a reprint of CLAWSAT: Towards

Both Robust and Accurate Code Models. Jia*, J., Srikant*, S., Mitrovska, T., Chang,

S., Gan, C., Liu, S., and O’Reilly, U.M. (2023). SANER 2023 [Jia et al., 2022]. Jinghan

Jia contributed equally with me as a primary author in this work.

Chapter 4. Learning code models to understand concurrent programs using

program execution traces.

Of the several applications and developer tasks which code models can learn and assist,

tasks that reason about concurrent programs have been studied the least [Allamanis

et al., 2018a]. In this work, I describe how code models can learn to understand

37

concurrent programs, and specifically reason about data races.

I first propose a theoretical formulation for an ML model to learn data races. I

discuss how operationalizing this idea is challenging. I then study the limits of neural

networks architectures in learning and detecting data races from execution traces. I

model events appearing in a program thread as a string of characters in a toy language

that I design. Using such a language to denote threads, I study how well different ML

models can be trained to detect the presence of specific substrings in the toy language

that represent data races.

I then attempt to learn ML models on the execution traces of real concurrent

programs. In my attempt, I learned the following severe limitations in prior work:

• No comprehensive dataset of concurrent programs exists in which data race condi-

tions have been clearly labeled. Such a dataset is essential to get started with any

ML-based approach.

• Data race detection algorithms proposed over the last four decades have not been

evaluated on such comprehensive, labeled datasets. Instead, they have typically

compared their performance to other prior algorithms and have reported only relative

improvement. It is thus unclear how accurate these different algorithms are.

We develop RaceInjector to address this issue of a lack of a comprehensive dataset,

which uses a Satisfiability Modulo Theories (SMT)-based solver to generate multiple

possible traces which contain an injected data race. This generates a dataset of traces,

wherein each trace is guaranteed to contain a data race. Such a dataset is suitable as

a benchmark to rigorously evaluate other data race detection algorithms, and train

ML models to detect data races.

I describe this work in Chapter 4. Section 4.2 describes the theoretical formulation.

Section 4.3 refers to a thesis I mentored, authored by Teodor Rares Begu: Modeling

concurrency bugs using machine learning. Rares Begu, T., Srikant, S., and O’Reilly,

UM (2020). MIT SuperUROP Thesis [Rares Begu, 2020]. Section 4.4, in full, is

a reprint of RaceInjector: Injecting Races To Evaluate And Learn Dynamic Race

Detection Algorithms. Wang, M., Srikant, S., Samak, M., and O’Reilly, U.M. (2023)

Wang et al. [2023].

38

How the chapters contribute to the computational perspective.

• Chapter 2. Humans can understand code despite simple changes made to it. Can

models do the same? The method proposed in this work uses this idea, and serves as

a practical baseline test of how well code models understand code.

Given how general our formulation is, we also show its application in generating

English sentences that can elicit specific neural responses in the brain (details in

Chapter 7).

• Chapter 3. This work identifies ways to fix the brittleness in code model

understanding which the method from Chapter 2 identifies.

• Chapter 4. This work takes the first step towards training code models to

comprehend and reason about concurrent programs. It specifically develops a way

forward for designing data-driven data race detectors, which can potentially improve

upon the heuristics that have been proposed over the last four decades. To the best of

my knowledge, no previous attempts have been made in this regard.

Thesis Question 2. Cognitive neuroscience perspective

Chapter 5. In this chapter, I identify the regions of our brains involved in code

comprehension. We consider two candidate brain systems—the Multiple Demand

(MD) system and the Language system (LS). While the MD system is known to

respond to stimuli involving general problem solving, math operations, and logic

operations, the LS is known to be sensitive to language inputs alone. We establish

whether reading and comprehending programs activates the LS or the MD system by

using fMRI to study brain activity in participants reading code. We find that the LS

does not consistently respond when comprehending programs, while the MD strongly

does.

This chapter, in full, is a reprint of the arXiv report Srikant et al. [2023a]. The

report is a rewrite of Comprehension of computer code relies primarily on domain-

general executive brain regions. Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H.,

Dhamala, R., O’Reilly, U.M., Bers, M. U., and Fedorenko, E. (2020). Elife, 9:e58906

39

[Ivanova et al., 2020]. The chapter informs the results of the eLife work to a computer

science audience; the original eLife work was written to primarily inform a cognitive

neuroscience audience.

How the chapter contributes to the cognitive neuroscience perspective.

This work establishes the regions of the brain most responsible for code comprehension.

Knowledge of the functional regions of the brain involved in code comprehension

allows us to probe more into the nature of information represented (stored) in these

brain regions.

Thesis Question 3. Bridging the two perspectives

Chapter 6. Mapping brain and model representations

In this work, I attempt to describe the nature of information encoded in the different

brain regions identified in Section 1.4. This gives us an insight into the division of

labor during code comprehension. For instance, token-related information can be

encoded more prominently in Language system (LS), but, say, loops can be encoded

in the Multiple Demand (MD) system. Similarly, numbers-related processing can

happen in the MD while strings-related processing happen in the LS.

In addition to understanding this division of labor, our approach of decoding

program-related information the first step at establishing the bases of the MD system.

The MD system has typically been associated with fluid intelligence, but no description

exists of fluid intelligence. Thus, the nature of operations performed in the MD system

have not been rigorously described. Programs are a natural way to describe tasks that

resemble problem-solving and general intelligence [Newell et al., 1958]. Newell et al.

[1958] were the first to propose how tasks requiring some form of problem-solving can

be described using computer programs. Thus, if information from programs are well

encoded in the MD system (as opposed to the LS), it provides initial evidence to the

bases of the MD system.

Additionally, I test whether information encoded in the brain can predict repre-

40

sentations (embeddings) learned by code models. A strong correspondence between

the two representations—of brain regions and code models—would suggest that the

learning objective used by code models to learn the parameters of the models re-

sembles that employed by our brains, which thus result in the emergence of similar

representations.

We show that the program-related information is encoded both in the MD and

Language systems. Execution-related properties are more strongly encoded in the MD

system. We find that representations from more complex models tend to align best

with the MD system than the LS.

I describe this work in Chapter 6. It is, in full, a reprint of Convergent repre-

sentations of computer programs in human and artificial neural networks.

Srikant*, S., Lipkin*, B., Ivanova, A. A., Fedorenko, E., and O’Reilly, U.M. (2022).

NeurIPS 2022 [Srikant et al., 2022]. Ben Lipkin contributed equally with me as the

primary author of this work.

Chapter 7. Generating stimuli for cognitive neuroscience and psycholin-

guistics

Experiments in psycholinguistics and the cognitive neuroscience of language rely on

linguistic stimuli (sentences) which either possess specific linguistic properties or which

target specific cognitive processes. Such stimuli are generally assembled using manual

or semi-manual methods, limiting their quality, quantity, and diversity.

I show how the method I propose in Chapter 2 can be reformulated to automate

the generation of stimuli which target specific cognitive processes or possess desired

linguistic properties while not being subject to experimenter biases which may arise

from manual methods.

I describe this work in Chapter 7. It is, in full, a reprint of GOLI: Goal-Optimized

Linguistic Stimuli for Psycholinguistics and Cognitive Neuroscience. Srikant, S.,

Tuckute, G., Liu, S., and O’Reilly, U.M. (2023) [Srikant et al., 2023b].

41

Chapter 8. What is important to programmers when comprehending code?

Soloway and Ehrlich [1984] and Wiedenbeck [1986] proposed the presence of beacons

in programs: substrings in a program which programmers deem important to their

understanding of the program. In this work, I verify whether common factors known to

affect the comprehension of text such as surprisal and word length, and whether code

model’s representations can predict the behavioral finding by Wiedenbeck [1986]. The

motivation is to determine the factors influencing programmer notions like "important

part of the code", "confusing part of the code", and other such vaguely defined terms

typically used by programmers.

I conduct a behavioral experiment in which I find the model’s representations to

be good predictors of the importance of a token in a program’s overall comprehension,

while the surprisal of a token as a signal is a weak predictor. I describe this work in

Chapter 8.

How the chapters contribute to bridging the two perspective.

• Chapter 6.

– Our work is the first to describe the nature of program-related information encoded

in the two brain regions most closely associated with code comprehension—the Multiple

Demand system and the Language system.

– We take the first steps in describing the foundations of the MD system. Programs

are a natural way to describe problem-solving tasks, which the MD system is believed

to specialize in.

– We show a weak correspondence between the representations of a program in the

brain and in code models. Future work may try to improve the architecture of current

code models to improve this correspondence [Srikant and O’Reilly, 2021].

• Chapter 7. This work shows how experiment stimuli can be generated that

satisfy diverse goals. This utility of this method was recently demonstrated in Tuckute

et al. [2023], which establishes the ability to noninvasively control neural activity in

higher-level cortical areas, like the language network.

42

While we do not demonstrate the generation of code stimuli in this work, the method

can be used to similarly learn more about the sensitivity of the MD and Language

system to the presence of specific code patterns.

• Chapter 8. I show how language models of code, when used as proxies of expert

programmer knowledge, can help study different behavioral responses seen when

understanding code.

1.5 Software

Software repositories relevant to the chapters presented in this thesis:

• Chapter 2. https://github.com/ALFA-group/adversarial-code-generation

• Chapter 3. https://github.com/ALFA-group/CLAW-SAT

• Chapter 4. https://github.com/ALFA-group/RaceInjector-counterexamples

• Chapter 5. https://github.com/ALFA-group/neural-program-comprehension

• Chapter 6. https://github.com/ALFA-group/code-representations-ml-bra

in

• Chapter 7. https://github.com/alfa-group/goli

• Chapter 8. https://github.com/ALFA-group/beacons-in-code-comprehensi

on

43

https://github.com/ALFA-group/adversarial-code-generation
https://github.com/ALFA-group/CLAW-SAT
https://github.com/ALFA-group/RaceInjector-counterexamples
https://github.com/ALFA-group/neural-program-comprehension
https://github.com/ALFA-group/code-representations-ml-brain
https://github.com/ALFA-group/code-representations-ml-brain
https://github.com/alfa-group/goli
https://github.com/ALFA-group/beacons-in-code-comprehension
https://github.com/ALFA-group/beacons-in-code-comprehension

44

Chapter 2

Testing the robustness of code model

understanding using source code

modifications

Preface. This chapter, in full, is a re-print of Generating adversarial computer

programs using optimized obfuscations. Srikant, S., Liu, S., Mitrovska, T.,

Chang, S., Fan, Q., Zhang, G., and O’Reilly, U.M. (2021). ICLR 2021 [Srikant et al.,

2021].

Refer to Section 1.4 to read more about the motivation behind this work, and how

it connects to the rest of the chapters presented in this thesis.

2.1 Introduction

Machine learning (ML) models are increasingly being used for software engineering

tasks. Applications such as refactoring programs, auto-completing them in editors, and

synthesizing GUI code have benefited from ML models trained on large repositories of

programs, sourced from popular websites like GitHub Allamanis et al. [2018c]. They

have also been adopted to reason about and assess programs [Srikant and Aggarwal,

2014a, Si et al., 2018], find and fix bugs [Gupta et al., 2017, Pradel and Sen, 2018],

detect malware and vulnerabilities in them [Li et al., 2018b, Zhou et al., 2019] etc.

45

thus complementing traditional program analysis tools. As these models continue to

be adopted for such applications, it is important to understand how robust they are

to adversarial attacks. Such attacks can have adverse consequences, particularly in

settings such as security [Zhou et al., 2019] and compliance automation [Pedersen,

2010]. For example, an attacker could craft changes in malicious programs in a way

which forces a model to incorrectly classify them as being benign, or make changes

to pass off code which is licensed as open-source in an organization’s proprietary

code-base.

Adversarially perturbing a program should achieve two goals – a trained model

should flip its decision when provided with the perturbed version of the program, and

second, the perturbation should be imperceivable. Adversarial attacks have mainly

been considered in image classification Goodfellow et al. [2014], Carlini and Wagner

[2017], Madry et al. [2018b], where calculated minor changes made to pixels of an

image are enough to satisfy the imperceptibility requirement. Such changes escape

a human’s attention by making the image look the same as before perturbing it,

while modifying the underlying representation enough to flip a classifier’s decision.

However, programs demand a stricter imperceptibility requirement – not only should

the changes avoid human attention, but the changed program should also importantly

functionally behave the same as the unperturbed program.

Program obfuscations provide the agency to implement one such set of imperceivable

changes in programs. Obfuscating computer programs have long been used as a way

to avoid attempts at reverse-engineering them. They transform a program in a way

that only hampers humans’ comprehension of parts of the program, while retaining its

original semantics and functionality. For example, one common obfuscation operation

is to rename variables in an attempt to hide the program’s intent from a reader.

Renaming a variable sum in the program statement int sum = 0 to int xyz = 0

neither alters how a compiler analyzes this variable nor changes any computations or

states in the program; it only hampers our understanding of this variable’s role in the

program. Modifying a very small number of such aspects of a program marginally

affects how we comprehend it, thus providing a way to produce changes imperceivable

46

to both humans and a compiler. In this work, we view adversarial perturbations to

programs as a special case of applying obfuscation transformations to them.

Figure 2-1: The advantage of our formu-
lation when compared to the state-of-the-
art.

Having identified a set of candidate

transformations which produce imperceivable

changes, a specific subset needs to be chosen

in a way which would make the transformed

program adversarial. Recent attempts Yefet

et al. [2019], Ramakrishnan et al. [2020], Bielik

and Vechev [2020] which came closest to ad-

dressing this problem did not offer any rigor-

ous formulation. They recommended using a

variety of transformations without presenting

any principled approach to selecting an optimal subset of transformations. We present

a formulation which when solved provides the exact location to transform as well as

a transformation to apply at the location. Figure 2-1 illustrates this. A randomly

selected local-variable (name) when replaced by the name virtualname, which is gener-

ated by the state-of-the-art attack generation algorithm for programs Ramakrishnan

et al. [2020], is unable to fool a program summarizer (which predicts set item) unless

our proposed site optimization is applied. We provide a detailed comparison in Section

2.2. In our work, we make the following key contributions –

• We identify two problems central to defining an adversarial program – identifying

the sites in a program to apply perturbations on, and the specific perturbations to

apply on the selected sites. These perturbations are involve replacing existing tokens

or inserting new ones.

• We provide a general mathematical formulation of a perturbed program that

models site locations and the perturbation choice for each location. It is independent

of programming languages and the task on which a model is trained, while seamlessly

modeling the application of multiple transformations to the program.

• We propose a set of first-order optimization algorithms to solve our proposed formu-

lation efficiently, resulting in a differentiable generator for adversarial programs. We

47

further propose a randomized smoothing algorithm to achieve improved optimization

performance.

• Our approach demonstrates a 1.5x increase in the attack success rate over the state-

of-the-art attack generation algorithm Ramakrishnan et al. [2020] on large datasets of

Python and Java programs.

• We further show that our formulation provides better robustness against adversarial

attacks compared to the state-of-the-art when used in training an ML model.

2.2 Related Work

Due to a large body of literature on adversarial attacks in general, we focus on

related works in the domain of computer programs. Wang and Christodorescu [2019],

Quiring et al. [2019], Rabin et al. [2020], and Pierazzi et al. [2020] identify obfuscation

transformations as potential adversarial examples. They do not, however, find an

optimal set of transformations to deceive a downstream model. Liu et al. [2017]

provide a stochastic optimization formulation to obfuscate programs optimally by

maximizing its impact on an obscurity language model (OLM). However, they do not

address the problem of adversarial robustness of ML models of programs, and their

formulation is only to find the right sequence of transformations which increases their

OLM’s perplexity. They use an MCMC-based search to find the best sequence.

Yefet et al. [2019] propose perturbing programs by replacing local variables, and

inserting print statements with replaceable string arguments. They find optimal

replacements using a first-order optimization method, similar to Balog et al. [2016]

and HotFlip Ebrahimi et al. [2017]. This is an improvement over Zhang et al. [2020],

who use the Metropolis-Hastings algorithm to find an optimal replacement for variable

names. Bielik and Vechev [2020] propose a robust training strategy which trains a

model to abstain from deciding when uncertain if an input program is adversarially

perturbed. The transformation space they consider is small, which they search through

greedily. Moreover, their solution is designed to reason over a limited context of the

program (predicting variable types), and is non-trivial to extend to applications such

48

as program summarization (explored in this work) which requires reasoning over an

entire program.

Ramakrishnan et al. [2020] extend the work by Yefet et al. [2019] and is most

relevant to what we propose in this work. They experiment with a larger set of

transformations and propose a standard min-max formulation to adversarially train

robust models. Their inner-maximizer, which generates adversarial programs, models

multiple transformations applied to a program in contrast to Yefet et al. [2019].

However, they do not propose any principled way to solve the problem of choosing

between multiple program transformations. They randomly select transformation

operations to apply, and then randomly select locations in the program to apply those

transformations on.

We instead show that optimizing for locations alone improves the attack perfor-

mance. Further, we propose a joint optimization problem of finding the optimal

location and optimal transformation, only the latter of which Ramakrishnan et al.

[2020] (and Yefet et al. [2019]) address in a principled manner. Although formally

unpublished at the time of preparing this work, we compare our experiments to

Ramakrishnan et al. [2020], the state-of-the-art in evaluating and defending against

adversarial attacks on models for programs, and contrast the advantages of our

formulation.

2.3 Program Obfuscations as Adversarial Perturba-

tions

In this section, we formalize program obfuscation operations, and show how generating

adversarial programs can be cast as a constrained combinatorial optimization problem.

Program obfuscations. We view obfuscation transformations made to programs as

adversarial perturbations which can affect a downstream ML/DL model like a malware

classifier or a program summarizer. While a variety of such obfuscation transformations

exist for programs in general (see section 2A, Liu et al. [2017]), we consider two

49

Figure 2-2: (a) A sample program 𝒫 containing a function foo (b) 𝒫 contains five sites
which can be transformed - two replacesites corresponding to local variables b and r , and
three insertsites at locations I1, I2, I3. Ω is a vocabulary of tokens which can be used for
the transformations. (c) This is a perturbed program with the tokens world and set from
Ω used to replace tokens b and at location I3. These transformations do not change the
original functionality of 𝒫 , but cause an incorrect prediction delete (d) Examples of two site
selection vectors zi, zii selecting different components. z𝑖 = 1 for a location 𝑖 signifies that
the 𝑖th token in 𝒫 is selected to be optimally transformed. zi corresponds to the perturbed
program in (c).

broad classes – replaceand inserttransformations. In replacetransformations, existing

program constructs are replaced with variants which decrease readability. For example,

replacing a variable’s name, a function parameter’s name, or an object field’s name

does not affect the semantics of the program in any way. These names in any program

exclusively aid human comprehension, and thus serve as three replacetransformations.

In inserttransformations, we insert new statements to the program which are unrelated

to the code it is inserted around, thereby obfuscating its original intent. For example,

including a print statement with an arbitrary string argument does not change the

semantics of the program in any way.

Our goal hence is to introduce a systematic way to transform a program with

insertor replacetransformations such that a trained model misclassifies a program 𝒫

that it originally classified correctly.

Site-selection and Site-perturbation – Towards defining adversarial pro-

grams. Before we formally define an adversarial program, we highlight the key

factors which need to be considered in our formulation through the example program

introduced in Figure 2-2.

Consider applying the following two obfuscation transformations on the example

program 𝒫 in Figure 2-2.a – replacing local variable names (a replacetransform), and

50

inserting print statements (an inserttransform). The two local variables b and r in

𝒫 are potential candidates where the replace transform can be applied, while a print

statement can potentially be inserted at the three locations I1, I2, I3 (highlighted in

Figure 2-2.b). We notate these choices in a program as sites– locations in a program

where a unique transformation can be applied.

Thus, in order to adversarially perturb 𝒫 , we identify two important questions that

need to be addressed. First, which sites in a program should be transformed? Of the 𝑛

sites in a program, if we are allowed to choose at most 𝑘 sites, which set of ≤ 𝑘 sites

would have the highest impact on the downstream model’s performance? We identify

this as the site-selectionproblem , where the constraint 𝑘 is the perturbation

strength of an attacker. Second, what tokens should be inserted/replaced at the 𝑘

selected sites? Once we pick 𝑘 sites, we still have to determine the best choice of

tokens to replace/insert at those sites which would have the highest impact on the

downstream model. We refer to this as the site-perturbationproblem .

Mathematical formulation. In what follows, we propose a general and rigorous

formulation of adversarial programs. Let 𝒫 denote a benign program which consists

of a series of 𝑛 tokens {𝒫𝑖}𝑛𝑖=1 in the source code domain. For example, the program

in Figure 2-2.a, when read from top to bottom and left to right, forms a series of

𝑛 = 12 tokens {def, b, . . . , r, +, 5}. We ignore white spaces and other delimiters

when tokenizing. Each 𝒫𝑖 ∈ {0, 1}|Ω| here is considered a one-hot vector of length |Ω|,

where Ω is a vocabulary of tokens. Let 𝒫 ′ define a perturbed program (with respect

to 𝒫) created by solving the site-selectionand site-perturbationproblems, which use

the vocabulary Ω to find an optimal replacement. Since our formulation is agnostic

to the type of transformation, perturbation in the remainder of this section refers

to both replaceand inserttransforms. In our work, we use a shared vocabulary Ω to

select transforms from both these classes. In practice, we can also assign a unique

vocabulary to each transformation we define.

To formalize the site-selectionproblem, we introduce a vector of boolean variables

z ∈ {0, 1}𝑛 to indicate whether or not a site is selected for perturbation. If 𝑧𝑖 = 1 then

the 𝑖th site (namely, 𝒫𝑖) is perturbed. If there exist multiple occurrences of a token in

51

the program, then all such sites are marked 1. For example, in Figure 2-2.d, if the site

corresponding to local variable b is selected, then both indices of its occurrences, 𝑧3, 𝑧9

are marked as 1 as shown in 𝑧i. Moreover, the number of perturbed sites, namely,

1𝑇z ≤ 𝑘 provides a means of measuring perturbation strength. For example, 𝑘 = 1 is

the minimum perturbation possible, where only one site is allowed to be perturbed.

To define site-perturbation, we introduce a one-hot vector u𝑖 ∈ {0, 1}|Ω| to encode

the selection of a token from Ω which would serve as the insert/replace token for a

chosen transformation at a chosen site. If the 𝑗th entry [u𝑖]𝑗 = 1 and 𝑧𝑖 = 1, then

the 𝑗th token in Ω is used as the obfuscation transformation applied at the site 𝑖

(namely, to perturb 𝒫𝑖). We also have the constraint 1𝑇u𝑖 = 1, implying that only

one perturbation is performed at 𝒫𝑖. Let vector u ∈ {0, 1}𝑛×|Ω| denote 𝑛 different u𝑖

vectors, one for each token 𝑖 in 𝒫 .

Using the above formulations for site-selection, site-perturbationand perturbation

strength, the perturbed program 𝒫 ′ can then be defined as

𝒫 ′ = (1− z) · 𝒫 + z · u, where 1𝑇 z ≤ 𝑘, z ∈ {0, 1}𝑛, 1𝑇u𝑖 = 1, u𝑖 ∈ {0, 1}|Ω|, ∀𝑖, (2.1)

where · denotes the element-column wise product.

The adversarial effect of 𝒫 ′ is then measured by passing it as input to a downstream

ML/DL model 𝜃 and seeing if it successfully manages to fool it.

Generating a successful adversarial program is then formulated as the optimization

problem,

minimize
z,u

ℓattack((1− z) · 𝒫 + z · u;𝒫,𝜃)

subject to constraints in (2.1),
(2.2)

where ℓattack denotes an attack loss. In this work, we specify ℓattack as the cross-entropy

loss on the predicted output evaluated at 𝒫 ′ in an untargeted setting (namely, without

specifying the prediction label targeted by an adversary) Ramakrishnan et al. [2020].

One can also consider other specifications of ℓattack, e.g., C&W untargeted and targeted

attack losses Carlini and Wagner [2017].

52

2.4 Adversarial Program Generation via First-Order

Optimization

Solving problem (2.2) is not trivial because of its combinatorial nature (namely, the

presence of boolean variables), the presence of a bi-linear objective term (namely,

z · u), as well as the presence of multiple constraints. To address this, we present a

projected gradient descent (PGD) based joint optimization solver (JO) and propose

alternates which promise better empirical performance.

PGD as a joint optimization (JO) solver. PGD has been shown to be one of the

most effective attack generation methods to fool image classification models Madry

et al. [2018b]. Prior to applying PGD, we instantiate (2.2) into a feasible version by

relaxing boolean constraints to their convex hulls,

minimize
z,u

ℓattack(z,u)

subject to 1𝑇 z ≤ 𝑘, z ∈ [0, 1]𝑛, 1𝑇u𝑖 = 1, u𝑖 ∈ [0, 1]|Ω|, ∀𝑖,
(2.3)

where for ease of notation, the attack loss in (2.2) is denoted by ℓattack(z,u). The

continuous relaxation of binary variables in (2.3) is a commonly used trick in combina-

torial optimization to boost the stability of learning procedures in practice Boyd et al.

[2004]. Once the continuous optimization problem (2.3) is solved, a hard thresholding

operation or a randomized sampling method (which regards z and u as probability

vectors with elements drawn from a Bernoulli distribution) can be called to map a con-

tinuous solution to its discrete domain Blum and Roli [2003]. We use the randomized

sampling method in our experiments.

The PGD algorithm is then given by

{z(𝑡),u(𝑡)} = {z(𝑡−1),u(𝑡−1)} − 𝛼{∇zℓattack(z
(𝑡−1),u(𝑡−1)),∇uℓattack(z

(𝑡−1),u(𝑡−1))} (2.4)

{z(𝑡),u(𝑡)} = Proj({z(𝑡),u(𝑡)}), (2.5)

where 𝑡 denotes PGD iterations, z(0) and u(0) are given initial points, 𝛼 > 0 is a

learning rate, ∇z denotes the first-order derivative operation w.r.t. the variable z, and

53

Proj represents the projection operation w.r.t. the constraints of (2.3).

The projection step involves solving for z and u𝑖 simultaneously in a complex

convex problem.

A key insight is that the complex projection problem can equivalently be decomposed

into a sequence of sub-problems owing to the separability of the constraints w.r.t. z

and {u𝑖}. The two sub-problems are –

minimize
z

‖z− z(𝑡)‖22

subject to 1𝑇 z ≤ 𝑘, z ∈ [0, 1]𝑛,
and

minimize
u𝑖

‖u𝑖 − u
(𝑡)
𝑖 ‖22

subject to 1𝑇u𝑖 = 1, u𝑖 ∈ [0, 1]|Ω|,
∀𝑖. (2.6)

The above subproblems w.r.t. z and u𝑖 can optimally be solved by using a bisection

method that finds the root of a scalar equation. We use this decomposition and

solutions to design an alternating optimizer, which we discuss next.

Alternating optimization (AO) for fast attack generation. While JO provides

an approach to solve the unified formulation in (2.2), it suffers from the problem

of getting trapped at a poor local optima despite attaining stationarity Ghadimi

et al. [2016]. We propose using AO Bezdek and Hathaway [2003] which allows the

loss landscape to be explored more aggressively, thus leading to better empirical

convergence and optimality (see Figure 2-4a).

AO solves problem (2.2) one variable at a time – first, by optimizing the site

selection variable z keeping the site perturbation variable u fixed, and then optimizing

u keeping z fixed. That is,

z(𝑡) = argmin
1𝑇 z≤𝑘, z∈[0,1]𝑛

ℓattack(z,u
(𝑡−1)) and u

(𝑡)
𝑖 = argmin

1𝑇u𝑖=1, u𝑖∈[0,1]|Ω|
ℓattack(z

(𝑡),u) ∀𝑖. (2.7)

We can use PGD, as described in (2.6), to similarly solve each of z and u separately

in the two alternating steps. Computationally, AO is expensive than JO by a factor of

2, since we need two iterations to cover all the variables which JO covers in a single

iteration. However, in our experiments, we find AO to converge faster. The decoupling

in AO also eases implementation, and provides the flexibility to set a different number

54

of iterations for the 𝑢-step and the 𝑧-step within one iteration of AO. We also remark

that the AO setup in (2.7) can be specified in other forms, e.g. alternating direction

method of multipliers (ADMM) Boyd et al. [2011]. However, such methods use an

involved alternating scheme to solve problem (2.2). We defer evaluating these options

to future work.

Randomized smoothing (RS) to improve generating adversarial programs.

In our experiments, we noticed that the loss landscape of generating adversarial

program is not smooth (Figure 2-3). This motivated us to explore surrogate loss

functions which could smoothen it out. In our work, we employ a convolution-based

RS technique Duchi et al. [2012] to circumvent the optimization difficulty induced by

the non-smoothness of the attack loss ℓattack. We eventually obtain a smoothing loss

ℓsmooth:

ℓsmooth(z,u) = E𝜉,𝜏 [ℓattack(z+ 𝜇𝜉,u+ 𝜇𝜏)], (2.8)

where 𝜉 and 𝜏 are random samples drawn from the uniform distribution within the

unit Euclidean ball, and 𝜇 > 0 is a small smoothing parameter (set to 0.01 in our

experiments).

(a) (b)

Figure 2-3: The original loss landscape for a sam-
ple program (2-3a). Randomized smoothing produces
a flatter and smoother loss landscape (2-3b). We
plot the loss along the space determined by the vec-
tor (𝛼.sgn(∇𝑥𝑓(𝑥)) + 𝛽.Rademacher(0.5)) for 𝛼, 𝛽 ∈
[−0.05, 0.05] Engstrom et al. [2018]

The rationale behind RS (2.8)

is that the convolution of two

functions (smooth probability

density function and non-smooth

attack loss) is at least as smooth

as the smoothest of the two orig-

inal functions. The advantage

of such a formulation is that it

is independent of the loss func-

tion, downstream model, and

the optimization solver chosen

for a problem. We evaluate RS

55

on both AO and JO. In prac-

tice, we consider an empirical Monte Carlo approximation of (2.8), ℓsmooth(z,u) =∑︀𝑚
𝑗=1[ℓattack(z+ 𝜇𝜉𝑗,u+ 𝜇𝜏𝑗)]. We set 𝑚 = 10 in our experiments to save on compu-

tation time. We also find that smoothing the site perturbation variable 𝑢 contributes

the most to improving attack performance. We hence perturb only 𝑢 to further save

computation time.

2.5 Experiments & Results

We begin by discussing the following aspects of our experiment setup – the classification

task, the dataset and model we evaluate on, and the evaluation metrics we use.

Task, Transformations, Dataset. We evaluate our formulation of generating opti-

mal adversarial programs on the problem of program summarization, first introduced

by Allamanis et al. [2016]. Summarizing a function in a program involves predicting its

name, which is usually indicative of its intent. We use this benchmark to test whether

our adversarially perturbed program, which retains the functionality of the original

program, can force a trained summarizer to predict an incorrect function name. We

evaluate this on a well maintained dataset of roughly 150K Python programsRaychev

et al. [2016a] and 700K Java programs Alon et al. [2018a]. They are pre-processed

into functions, and each function is provided as input to an ML model. The name of

the function is omitted from the input. The ML model predicts a sequence of tokens

as the function name. We evaluate our work on six transformations (4 replaceand

2 inserttransformations). The results and analysis that follow pertains to the case

when any of these six transformations can be used as a valid perturbation, and the

optimization selects which to pick and apply based on the perturbation strength𝑘. This

is the same setting employed in the baseline Ramakrishnan et al. [2020].

Model. We evaluate a trained seq2seq model. It takes program tokens as input,

and generates a sequence of tokens representing its function name. We note that our

formulation is independent of the learning model, and can be evaluated on any model

for any task. The seq2seq model is trained and validated on 90% of the data while

56

tested on the remaining 10%. It is optimized using the cross-entropy loss function.

code2seq Alon et al. [2018a] is another model which has been evaluated on the

task of program summarization. Its architecture is similar to that of seq2seq and

contains two encoders - one which encodes tokens, while another which encodes AST

paths. The model when trained only on tokens performs similar to a model trained

on both tokens and paths (Table 3, Alon et al. [2018a]). Thus adversarial changes

made to tokens, as accommodated by our formulation, should have a high impact

on the model’s output. Owing to the similarity in these architectures, and since our

computational bench is in Pytorch while the original code2seq implementation is in

TensorFlow, we defer evaluating the performance of our formulation on code2seq to

future work.

Evaluation metrics. We report two metrics – Attack Success Rate (ASR) and

F1-score. ASR is defined as the percentage of output tokens misclassified by the model

on the perturbed input but correctly predicted on the unperturbed input, i.e. ASR

=
∑︀

𝑖,𝑗 1(𝜃(x
′
𝑖)̸=𝑦𝑖𝑗)∑︀

𝑖,𝑗 1(𝜃(x𝑖)=𝑦𝑖𝑗)
for each token 𝑗 in the expected output of sample 𝑖. Higher the

ASR, better the attack. Unlike Ramakrishnan et al. [2020], we evaluate our method

on those samples in the test-set which were fully, correctly classified by the model.

Evaluating on such fully correctly classified samples provides direct evidence of the

adversarial effect of the input perturbations (also the model’s adversarial robustness)

by excluding test samples that have originally been misclassified even without any

perturbation. We successfully replicated results from Ramakrishnan et al. [2020] on

the F1-score metric they use, and acknowledge the extensive care they have taken to

ensure that their results are reproducible. As reported in Table 2 of Ramakrishnan

et al. [2020], a trained seq2seq model has an F1-score of 34.3 evaluated on the

entire dataset. We consider just those samples which were correctly classified. The

F1-score corresponding to ‘No attack’ in Table 2.1 is hence 100. In all, we perturb

2800 programs in Python and 2300 programs in Java which are correctly classified.

57

Method
𝑘 = 1 site 𝑘 = 5 sites

ASR F1 ASR F1
No attack 0.00 100.00 0.00 100.00
Random replace 0.00 100.00 0.00 100.00
Baseline* 19.87 78.18 37.50 59.54
AO 23.16 +3.29 ▲ 74.78 -3.40 ▲ 43.53 +6.03 ▲ 53.75 -5.79 ▲

JO 23.32 +3.45 ▲ 74.56 -3.62 ▲ 41.95 +4.45 ▲ 56.06 -3.48 ▲

AO + RS 30.25 +10.38 ▲ 69.52 -8.66 ▲ 51.68 +14.18 ▲ 47.92 -11.62 ▲

JO + RS 23.95 +4.08 ▲ 74.24 -3.94 ▲ 48.70 +11.20 ▲ 51.55 -7.99 ▲

Table 2.1: Our work solves two key problems to find optimal adversarial perturbations –
site-selectionand site-perturbation. The Baseline method refers to Ramakrishnan et al.
[2020]. The perturbation strength𝑘 is the maximum number of sites which an attacker can
perturb. Higher the the Attack Success Rate (ASR), better the attack; the converse holds
for F1 score. Our formulation (Eq. 2.2), solved using two methods – alternate optimization
(AO) and joint optimization (JO), along with randomized smoothing (RS), shows a consistent
improvement in generating adversarial programs. Differences in ASR, marked in blue, are
relative to Baseline.

2.5.1 Experiments

We evaluate our work in three ways – first, we evaluate the overall performance of the

three approaches we propose – AO, JO, and their combination with RS, to find the best

sites and perturbations for a given program. Second, we evaluate the sensitivity of two

parameters which control our optimizers – the number of iterations they are evaluated

on, and the perturbation strength(𝑘) of an attacker. Third, we use our formulation to

train an adversarially robust seq2seq model, and evaluate its performance against

the attacks we propose.

Overall attack results. Table 2.1 summarizes our overall results. The first row

corresponds to the samples not being perturbed at all. The ASR as expected is 0. The

‘Random replace’ in row 2 corresponds to both 𝑧 and 𝑢 being selected at random. This

produces no change in the ASR, suggesting that while obfuscation transformations

can potentially deceive ML models, any random transformation will have little effect.

It is important to have some principled approach to selecting and applying these

transformations.

Ramakrishnan et al. [2020] (referred to as Baseline in Table 2.1) evaluated their

work in two settings. In the first setting, they pick 1 site at random and optimally

perturb it. They refer to this as 𝒬1
𝐺. We contrast this by selecting an optimal site

58

through our formulation. We use the same algorithm as theirs to optimally perturb

the chosen site i.e. to solve for 𝑢. This allows us to ablate the effect of incorporating

and solving the site-selectionproblem in our formulation. In the second related setting,

they pick 5 sites at random and optimally perturb them, which they refer to as 𝒬5
𝐺.

In our setup, 𝒬1
𝐺 and 𝒬5

𝐺 are equivalent to setting 𝑘 = 1 and 𝑘 = 5 respectively, and

picking random sites in 𝑧 instead of optimal ones. We run AO for 3 iterations, and JO

for 10 iterations.

We find that our formulation consistently outperforms the baseline. For 𝑘 = 1,

where the attacker can perturb at most 1 site, both AO and JO provide a 3 point

improvement in ASR, with JO marginally performing better than AO. Increasing 𝑘

improves the ASR across all methods – the attacker now has multiple sites to transform.

For 𝑘 = 5, where the attacker has at most 5 sites to transform, we find AO to provide

a 6 point improvement in ASR over the baseline, outperforming JO by 1.5 points.

Smoothing the loss function has a marked effect. For 𝑘 = 1, we find smoothing

to provide a 10 point increase (∼ 52% improvement) in ASR over the baseline when

applied to AO, while JO+RS provides a 4 point increase. Similarly, for 𝑘 = 5, we find

AO+RS to provide a 14 point increase (∼ 38% improvement), while JO+RS provides a

11 point increase, suggesting the utility of smoothing the landscape to aid optimization.

Overall, we find that accounting for site location in our formulation combined

with having a smooth loss function to optimize improves the quality of the generated

attacks by nearly 1.5 times over the state-of-the-art attack generation method for

programs.

Effect of solver iterations and perturbation strength 𝑘. We evaluate the attack

performance (ASR) of our proposed approaches against the number of iterations at

𝑘 = 5 (Figure 2-4a). For comparison, we also present the performance of Baseline,

which is not sensitive to the number of iterations (consistent with the empirical finding

in Ramakrishnan et al. [2020]), implying its least optimality. Without smoothing, JO

takes nearly 10 iterations to reach its local optimal value, whereas AO achieves it using

only 3 iterations but with improved optimality (in terms of higher ASR than JO).

This supports our hypothesis that AO allows for a much more aggressive exploration

59

of the loss landscape, proving to empirically outperform JO. With smoothing, we find

both AO+RS and JO+RS perform better than AO and JO respectively across iterations.

We thus recommend using AO+RS with 1-3 iterations as an attack generator to train

models that are robust to such adversarial attacks.

(a) (b)

Figure 2-4: ASRs of our approaches and Baseline against
the number of optimization iterations (2-4a) and perturbation
strength of an attacker (2-4b).

In Figure 2-4b, we plot

the performance of the best

performing methods as we

vary the attacker’s perturba-

tion strength(𝑘). We make

two key observations – First,

allowing a few sites (< 5)

to be perturbed is enough

to achieve 80% of the best

achievable attack rate. For example, under the AO+RS attack, the ASR is 50 when

𝑘 = 5 and 60 when 𝑘 = 20. From an attacker’s perspective, this makes it convenient

to effectively attack models of programs without being discovered. Second, we observe

that the best performing methods we propose consistently outperform Baseline

across different 𝑘. The performance with Baseline begins to converge only after

𝑘 = 10 sites, suggesting the effectiveness of our attack.

Train
Attack (ASR)

Baseline AO AO+RS

No AT 19.87 23.16 30.25

Baseline 17.99 18.87 19.11

AO+RS 12.73 13.01 13.75

Table 2.2: We employ an AT setup to train
seq2seq with the attack formulation we
propose. Lower the ASR, higher the ro-
bustness to adversarial attacks. Training
under AO+RS attacks provides best ro-
bustness results.

Improved adversarial training under

proposed attack. Adversarial training (AT)

Madry et al. [2018b] is a min-max optimiza-

tion based training method to improve a

model’s adversarial robustness. In AT, an

attack generator is used as the inner maxi-

mization oracle to produce perturbed training

examples that are then used in the outer min-

imization for model training. Using AT, we

investigate if our proposed attack generation

method (AO+RS) yields an improvement in adversarial robustness (over Baseline)

60

when it is used to adversarially train the seq2seq model. We evaluate AT in three

settings – ‘No AT’, corresponding to the regularly trained seq2seq model (the one

used in all the experiments in Table 2.1), Baseline - seq2seq trained under the

attack by Ramakrishnan et al. [2020], and AO+RS - seq2seq trained under our AO+RS

attack. We use three attackers on these models – Baseline and two of our strongest

attacks - AO and AO+RS. The row corresponding to ‘No AT’ is the same as the entries

under 𝑘 = 1 in Table 2.1. We find AT with Baseline improves robustness by ∼11

points under AO+RS, our strongest attack. However, training with AO+RS provides

an improvement of ∼16 points. This suggests AO+RS provides better robustness to

models when used as an inner maximizer in an AT setting.

2.6 Conclusion

In this paper, we propose a general formulation which mathematically defines an

adversarial attack on program source code. We model two key aspects in our formalism

– location of the transformation, and the specific choice of transformation. We show that

the best attack is generated when both these aspects are optimally chosen. Importantly,

we identify that the joint optimization problem we set up which models these two

aspects is decomposable via alternating optimization. The nature of decomposition

enables us to easily and quickly generate adversarial programs. Moreover, we show

that a randomized smoothing strategy can further help the optimizer to find better

solutions. Eventually, we conduct extensive experiments from both attack and defense

perspectives to demonstrate the improvement of our proposal over the state-of-the-art

attack generation method.

61

62

Chapter 3

Improving the robustness of code

model understanding while retaining

model accuracy

Preface. This chapter, in full, is a re-print of CLAWSAT: Towards Both Robust

and Accurate Code Models. Jia*, J., Srikant*, S., Mitrovska, T., Chang, S.,

Gan, C., Liu, S., and O’Reilly, U.M. (2023). SANER 2023 [Jia et al., 2022]. Jinghan

contributed equally with me as the primary author of this work.

Refer to Section 1.4 to read more about the motivation behind this work, and how

it connects to the rest of the chapters presented in this thesis.

3.1 Introduction

Recent progress in large language models for computer programs (i.e. code) suggests a

growing interest in self-supervised learning (SSL) methods to learn code models–deep

learning models that process and reason about code Kanade et al. [2020b], Chen et al.

[2021a,c], Jain et al. [2021a,b]. In these models, a task-agnostic encoder is learned

in a pre-training step, typically on an unlabeled corpus. The encoder is appended

to another predictive model which is then fine-tuned for a specific downstream task.

In particular, contrastive learning (CL) based self-supervision Chen et al. [2020], He

63

et al. [2020] has shown to improve the downstream performance of code reasoning

tasks when compared to state-of-the-art task-specific supervised learning (SL) models

Bui et al. [2021b], Ding et al. [2021], Jain et al. [2021b].

While CL offers to be a promising SSL approach, nearly all the existing works

focus on improving the accuracy of code models. Yet, some very recent works Henkel

et al. [2022], Yefet et al. [2020], Srikant et al. [2021] showed that trained supervised

code models are vulnerable to code obfuscation transformations. These works

propose adversarial code–changing a given code via obfuscation transformations.

Such transformed programs retain the functionality of the original program but can

fool a trained model at test time. Figure 3-2 shows an example of adversarial code

achieved by code obfuscation (more details in Section 3.3). In software engineering,

code obfuscation is a commonly-used method to hide code in software projects without

altering their functionality Collberg and Thomborson [2002], Linn and Debray [2003],

and is consequently a popular choice among malware composers Schrittwieser et al.

[2016]. Thus, it is important to study how obfuscation-based adversarial code could

affect code model representations learned by SSL. As an example, Schuster et al.

Schuster et al. [2021] successfully demonstrate adversarial code attacks on a public

code completion model pre-trained on GPT-2, a large language model of code.

Improving the robustness of ML models to adversarial code however comes at a

cost–its accuracy (model generalization). Works in vision Goodfellow et al. [2015],

Madry et al. [2018b] and text Miyato et al. [2016] have shown how adversarially trained

models improve robustness at the cost of model accuracy. While some works Su et al.

[2018], Tsipras et al. [2019] provide a theoretical framework for how the robustness of

learned models is always at odds with its accuracy, this argument is mainly confined

to the SL paradigm and vision applications, and thus remains uninvestigated in SSL

for code. While there exist similarities between SSL in vision and code, the discrete

and structured nature of inputs, and the additional constraints enforced on views

(obfuscated codes) introduce a new set of challenges that have been unexplored by the

vision community.

64

For code models, we ask: Can pre-trained models be made robust to adversarial

attacks? Is it possible to retain this ‘pre-trained robustness’ when fine-tuning on

different tasks? And importantly, is it possible to improve on both the retained

generalization and robustness during fine-tuning, thus challenging the popular

view of having to trade-off robustness for accuracy gains?

3.1.1 Overview of proposed approach

We offer two methods that help us improve not only the transfer of robustness from

pre-trained models to downstream tasks, but also co-improve fine-tuned accuracy

and robustness. The schematic overview of our proposal is shown in Figure 3-1.

First, we propose a self-supervised pre-training method, contrastive learning with

adversarial views (Claw), which leverages adversarially-obfuscating codes as positive

views of CL so as to enforce the robustness of learned code representations. We

formulate and achieve Claw through a bi-level optimization method. We show that

the representations learned from these pre-trained models yield better robustness

transfer to downstream tasks. Second, we propose staggered adversarial training

(SAT) to preserve the robustness learned during pre-training while also learning

task-specific generalization and robustness during fine-tuning. We show for the first

time that the scheduler of adversarial code generation is adjustable and is a key to

benefit both the generalization and robustness of code models.

3.1.2 Contributions

On one hand, we propose Claw by extending the standard CL framework for code.

As a baseline, we compare Claw to the state-of-the-art standard CL framework

for code models - ContraCode released by Jain et al. [2021b]. We find Claw to

‘retain’ more robustness when compared to ContraCode. Further, we provide a

detailed analysis of understanding this improved performance from the perspective

of model interpretability and characteristics of its loss landscape. On the other

hand, we integrate Claw with SAT to achieve the eventually fine-tuned ClawSAT

65

Figure 3-1: Schematic overview. We present Claw - a contrastive learning-based
unsupervised method which learns adversarial views of the input code to in turn learn
accurate and robust representations of the code. We also present SAT, a refinement to the
adversarial training algorithm proposed by Madry et al. Madry et al. [2018a] which helps
retain the task-independent robustness and accuracy learned by Claw while also learning
task-specific accuracy and robustness. We show that ClawSAT yields better accuracy and
robustness when compared to state-of-the-art self-supervised learning models for code.

models. We evaluate three tasks–code summarization, code completion, and code

clone detection, in two programming languages - Python and Java, and two different

decoder models–LSTMs and transformers. We show that ClawSAT outperforms

ContraCode Jain et al. [2021b] by roughly 6% on the summarization task, 2% on

the completion task, and 1% on the code clone task in accuracy, and by 9%, 3%, and

1% on robustness respectively. We study the effect of different attack strengths and

attack transformations on this performance, and find it to be largely stable across

different attack parameters. We will make our code and datasets available publicly,

and have uploaded an anonymized copy of it with our submission for an evaluation of

this work.

66

3.2 Related work

Due to a large body of literature on SSL and adversarial robustness, we focus our

discussion on those relevant to code models and CL (contrastive learning).

3.2.1 SSL for code

CL-based SSL methods offer a distinct advantage by being able to signal explicit

examples where the representations of two codes are expected to be similar. While

the method itself is agnostic to the input representation, all the works in CL for code

models work on code tokens directly. Existing works Jain et al. [2021b], Chen et al.

[2021b], Bui et al. [2021a], Wang et al. [2022] show that CL models for code improve

the generalization accuracy of fine-tuned models for different tasks when compared

to other pre-training methods like masked language models. Each of these works

uses semantics-preserving, random code transformations as positive views in its CL

formulation. Such transformations help the pre-trained model learn the equivalence

between representations of program elements which do not affect the executed output,

such as the choice of variable names, the algorithmic ‘approach’ used to solve a

problem, etc.

State-of-the-art CL-based representations generally provide an improvement in the

range of 1%-5% points of F1/BLEU/accuracy scores when compared to their fully

supervised counterparts and other pre-training methods like transformers, which is

significant in the context of the code tasks they evaluate, providing clear evidence

for the utility of SSL methods. While these methods improve the generalizability of

task-specific models, none of these works have studied the robustness of these models,

especially with a growing body of works showing the susceptibility of code models

to adversarial attacks Srikant et al. [2021], Henkel et al. [2022], Yefet et al. [2020].

By contrast, the adversarial robustness of CL models for image classification has

increasingly been studied by the vision community Fan et al. [2021], Jiang et al. [2020],

Kim et al. [2020], Gowal et al. [2021]. These works have shown that CL has the

potential to offer dual advantages of robustness and generalization. The fundamental

67

differences in image and code processing, including how adversarial perturbations are

defined in these two domains, motivate us to ask if and how the advantages offered by

CL can be realized for code models.

3.2.2 Adversarial robustness of code models: Attacks & de-

fenses

Wang and Christodorescu [2019], Quiring et al. [2019], Rabin et al. [2020], Pierazzi

et al. [2020] showed that obfuscation transformations made to code can serve as

adversarial attacks on code models. Following these works, recent papers Yefet et al.

[2020], Henkel et al. [2022] proposed perturbing programs by replacing local variables

and inserting print statements with replaceable string arguments. They found optimal

replacements using a first-order optimization method, similar to HotFlip Ebrahimi

et al. [2017]. Srikant et al. [2021] framed the problem of attacking code models

as a problem in combinatorial optimization, unifying the attempts made by prior

works. Yefet et al. [2020], Henkel et al. [2022], Bielik and Vechev [2020] and Srikant

et al. [2021] also proposed strategies to train code models against adversarial attacks.

While Bielik and Vechev [2020] employed a novel formulation to decide if an input is

adversarial, the other works employed the adversarial training strategy proposed by

Madry et al. [2018b]. Recently,Yang et al. [2022] proposed a black-box attack method

to generate adversarial attacks for code, which is different from the white-box setting

used in Wang and Christodorescu [2019], Quiring et al. [2019], Rabin et al. [2020],

Pierazzi et al. [2020]. In this paper, we only focused on the adversarial robustness of

white-box attacks.

Work most relevant to ours. Our work comes closest to ContraCode, the system

proposed by Jain et al. [2021b]. While they established the benefit of using CL-based

unsupervised representation learning for code, the work neglects the interrelationship

between pre-training and fine-tuning in the SSL paradigm, and the consequences of

this relationship on both the robustness and generalization of the final model.

68

3.3 Preliminaries

We begin by providing a brief background on code models, code obfuscation transfor-

mations, and SSL-aided predictive modeling for code. We then motivate the problem

of how to advance SSL for code models. We study this through the lenses of accuracy

and robustness of the learned models.

3.3.1 Code and obfuscation transformations

Let 𝒫 denote a computer program (i.e., code) which consists of a series of 𝑛 tokens

{𝒫𝑖}𝑛𝑖=1 in the source code domain. For example, Figure 3-2 shows an example code

𝒫. Given a vocabulary of tokens (denoted by Ω), each token can be regarded as a

one-hot vector of length |Ω|. Here we ignore white spaces and other delimiters when

tokenizing.

Figure 3-2: Two types of semantics-preserving transformations (obfuscations) can be made
to a code to attack code models–replace - where existing code is modified at a site—location
in the code, or insert - where new lines of code are inserted at a site. We select sites at
random. The specific tokens used in these transformations (test and "Network" in the the
example) can either be a random transformation 𝑡rand(·)–a randomly selected token from
a pre-defined vocabulary, or can be an adversarial transformation 𝑡adv(·), where the token
is obtained from solving a first-order optimization designed to fool the model Srikant et al.
[2021], Henkel et al. [2022], Yefet et al. [2020].

Let 𝑡(·) denote an obfuscation transformation, and 𝑡(𝒫) an obfuscated version of

𝒫. 𝑡(𝒫) is semantically the same as 𝒫 while possibly being different syntactically.

Following the notations defined by Srikant et al. [2021] and Henkel et al. [2022], we

refer to locations or tokens in a code which can be transformed as sites . We focus on

replace and insert transformations, where either existing tokens in a source code are

69

replaced by another token, or new lines of code are inserted in the existing code. For

example, in Figure 3-2, the replace transformation modifies the variable sum with test,

while the insert transformation introduces a new line of code print("Network").

Obfuscation transformations have been shown to serve as adversarial examples for

code models (see Section 3.2). During an adversarial attack, these transformations are

made with the goal to get the resulting transformed code to successfully fool a model’s

predictions. The transformations at any given site in a code, such as the tokens test,

"Network" in Figure 3-2, can be obtained in two ways—by random transformations

𝑡rand(·): they introduce a token sampled at random from Ω, or through adversarial

transformations 𝑡adv(·): they solve a first-order optimization problem such that the

transformed code maximizes the chances of the model making an incorrect prediction.

Our goal then turns to improve not only accuracy (i.e. prediction accuracy of

properties of code 𝒫) but also robustness (in terms of prediction accuracy of properties

of 𝑡(𝒫), obfuscated transformations of 𝒫).

3.3.2 Problem statement

SSL typically includes two learning stages: self-supervised pre-training and supervised

fine-tuning, where the former acquires deep representations of input data, and the latter

uses these learned features to build a supervised predictor specific to a downstream

task, e.g. code summarization Alon et al. [2018b] as considered in our experiments. In

the pre-training phase, let 𝜃 denote a feature-acquisition model (trained over unlabeled

data), and ℓ(𝜃) denote a pre-training loss, e.g. the normalized temperature-scaled

cross-entropy (NT-Xent) loss used in CL Wu et al. [2018], Chen et al. [2020], He

et al. [2020]. In the supervised fine-tuning phase, let 𝜃ft denote the prediction head

appended to the representation network 𝜃, and ℓft(𝜃ft ∘ 𝜃) denote a task-specific

fine-tuning loss seen as a function of the entire model 𝜃ft ∘ 𝜃, where ∘ denotes model

composition. Fine-tuning is performed over labeled data. The SSL pipeline can then

70

be summarized as

Pre-training: 𝜃pre = argmin
𝜃

ℓ(𝜃),

(Full) Fine-tuning: minimize
𝜃ft,𝜃

ℓft(𝜃ft ∘ 𝜃),

with initialization 𝜃 = 𝜃pre.

(3.1)

We remark that if we fix 𝜃 = 𝜃pre in (3.1) during fine-tuning, then the resulting scheme

is called partial fine-tuning (PF), which only learns the prediction head 𝜃ft. Based on

(3.1) for code, this work tackles the following research questions:

(Q1) How to design a self-supervised pre-training scheme to acquire 𝜃pre that is

robust to obfuscating codes?

(Q2) How to design a supervised fine-tuning scheme that can not only preserve

the generalization and robustness abilities gained from pre-training but also

achieve new improvements via task-driven supervised learning?

3.4 Method

In this section, we will study the above (Q1)-(Q2) in-depth. To address (Q1), we

will develop a new pre-training method, termed Claw, which integrates CL with

adversarial views of codes. The rationale is that promoting the invariance of represen-

tations to possible adversarial candidates should then likely improve the robustness

of models fine-tuned on these representations. To answer (Q2), we will a novel

fine-tuning method, termed staggered adversarial training (SAT), which can balance

the supervised fine-tuning with unsupervised pre-training. The rationale is that the

supervised fine-tuning overrides pre-trained data representations and hardly retains

the robustness and generalization benefits achieved during pre-training. We will show

that the interplay between pre-training and fine-tuning should be carefully studied for

robustness-generalization co-improvement in SSL for code.

71

3.4.1 Claw: CL with adversarial codes

CL Chen et al. [2020], He et al. [2020] proposes to first construct ‘positive’ example

pairs (i.e., original data paired with its transformations or ‘views’), and then maximize

agreement between them while contrasting with the rest of the data (termed ‘negatives’).

In programming languages, code obfuscation transformations naturally serve as view

generators of an input code. While we reuse the same set of transformations (that are

applicable to Python and Java programs) employed by the prior work Jain et al. [2021b],

we generate transformed views of the code differently. Jain et al. [2021b] use random

views in their CL setup, which select and apply a transformation at random from

the set of permissible transformations. We generate worst-case, optimization-based

adversarial codes Henkel et al. [2022], Srikant et al. [2021] resulting in ‘adversarial

views’.

Infusing the original code, its random view, and its adversarial view into CL,

we obtain a three-view positive tuple, denoted by (𝒫, 𝑡rand(𝒫), 𝑡adv(𝒫)). Since the

Figure 3-3: During pre-training, we propose Claw containing two optimization problems:
(1) to learn invariant code representations by minimizing the representation distances of a
code (𝒫) from all its views (𝑡rand(𝒫), 𝑡adv(𝒫)) via CL, and (2) to generate an adversarial
code 𝑡adv(𝒫) (‘hard’ positive example) by maximizing its representation distance from 𝒫.
In the example, this requires solving for a replacement token at the randomly selected site
marked as • .

72

generation of adversarial code (the right tokens for a given site) is in itself an additional

optimization task, we leverage a bi-level optimization (BLO) framework Liu et al.

[2021], Zhang et al. [2022] and define optimization problems at two levels: the upper-

level problem aims to solve the multi-view CL, while the lower-level problem aims to

solve adversarial code generation (see an illustration in Figure 3-3). This results in

the following formulation for our proposed approach Claw:

minimize
𝜃

E𝒫,𝑡rand [ℓNT−Xent(𝜃;𝒫 , 𝑡rand(𝒫))]+

E𝒫 [ℓNT−Xent(𝜃; 𝑡rand(𝒫), 𝑡adv(𝒫))]⏟ ⏞
Upper level: Multi-view CL

subject to 𝑡adv(𝒫) = argmax
𝒫 ′

ℓNT−Xent(𝜃;𝒫 ,𝒫 ′)⏟ ⏞
Lower level: Adversarial code generation

,

(3.2)

where the three-view objective function is constructed by NT-Xent losses applied to

two positive pairs (𝒫 , 𝑡rand(𝒫)) and (𝑡rand(𝒫), 𝑡adv(𝒫)), respectively. The first positive

pair is to gain the generalizable code representation by promoting the representation

invariance across the original view 𝒫 and its (benign) randomly-obfuscating view

𝑡rand, as suggested in Jain et al. [2021b]. The second positive pair is to enforce the

adversary-resilient code representation by promoting the representation invariance

across the benign code 𝑡rand and the adversarial code 𝑡adv(𝒫). Given two codes 𝒫1

and 𝒫2, the specific form of ℓNT−Xent is given by as follows:

ℓNT−Xent = −1
2

∑︀2
𝑖=1 log

exp
(︀
sim(z1(𝜃),z2(𝜃))/𝑡

)︀
∑︀

𝑘∈𝒩 (𝑖),exp
(︀
sim(z𝑖(𝜃),z𝑘(𝜃))/𝑡

)︀ (3.3)

where z𝑖 denotes the feature representation of the input code 𝒫𝑖 achieved through

the representation network 𝜃, sim(z𝑖, z𝑗) denotes the cosine similarity between two

feature representations z𝑖 and z𝑗, 𝑡 > 0 is a temperature parameter, and 𝒩 (𝑖) is the

set of batch data except the data sample 𝑖 Chen et al. [2020].

To solve the BLO problem (3.2), we apply an alternating optimization method

Bezdek and Hathaway [2003], Liu et al. [2021]. Specifically, by fixing the representation

network 𝜃, the lower-level adversarial code generation is accomplished using first-

73

order gradient descent following Srikant et al. [2021], Henkel et al. [2022]. Given the

generated adversarial code 𝑡adv(𝒫), we then in turn solve the upper-level CL problem.

The above procedure is alternatively executed for every data batch.

Adversarial view is beneficial to representation learning. To highlight the

effectiveness of incorporating adversarial codes in CL at the pre-training phase, the rows

‘ContraCode-PF’ and ‘Claw-PF’ of Table 3.1 demonstrate a warm-up experiment

by comparing the performance of the proposed pre-training method Claw with that

of the baseline approach ContraCode Jain et al. [2021b]. To precisely characterize

the effect of the learned representations on code model generalization and robustness,

we partially fine-tune (PF) a seq2seq model on the downstream task of summarizing

code (details in Section 3.5) in Python (SummaryPy) and Java (SummaryJava)

by fixing the set of weights learned during pre-training. Gen-F1 and Rob-F1 are

the generalization F1-scores and the robust F1-scores, i.e., F1 scores of the model

when attacked with adversarial codes. Partially fine-tuning these models allows us

to study the sole contribution of the pre-training method in the learned robustness

and generalization of the model. As we can see, the partially fine-tuned Claw model

(termed Claw-PF) outperforms the baseline ContraCode-PF, evidenced by the

substantial robustness improvement (4.38% increase in Rob-F1 in SummaryPy)

as well as lossless or better generalization performance (1.58% increase in Gen-F1

scores on SummaryJava). It is worth noting that adversarial codes serve as ‘hard’

positive examples in the representation space (given by maximizing the representation

distance between 𝒫 and its perturbed variant 𝒫 ′ in the lower optimization level of

Claw, (3.2)). The benefit of hard positive examples in improving generalization has

also been seen in vision Chuang et al. [2020], Wang et al. [2020a], Fan et al. [2021].

3.4.2 SAT: Staggered adversarial training for fine-tuning

As shown in the previous section, an appropriate pre-training method can improve

the quality of learned deep representations, which help improve the robustness and

accuracy of a code model. However, the state of the model present at the end of the

pre-training phase may no longer hold after supervised fine-tuning. That is because

74

Model

Partial fine-tuning

SummaryPy SummaryJava

Gen-F1 Rob-F1 Gen-F1 Rob-F1

ContraCode-PF 25.46 15.47 20.92 16.63

Claw-PF 25.45 19.05 22.50 17.14

Full fine-tuning

ContraCode-ST 36.28 28.97 41.37 33.01

Claw-ST 36.57 29.97 41.23 32.53

ContraCode-AT 32.80 32.39 38.67 35.91

Claw-AT 32.97 32.65 38.86 36.10

Table 3.1: Partially fine-tuned (PF) models show that Claw improves robustness. Standard
training (ST) yields better generalization than adversarial training (AT) while the latter
provides better robustness.

supervised learning (trained on labeled data vs. unlabeled data in representation

learning) may significantly alter the characteristics of the learned representations.

Thus, a desirable fine-tuning scheme should be able to yield accuracy and robustness

improvements complementary to the representation benefits provided by pre-training.

Towards this goal, we posit that fine-tuning should not be designed in a way which

merely optimizes a single performance metric–either accuracy or robustness.

To justify this hypothesis, we consider two extreme cases during fine-tuning: (i)

standard training (ST)-based FF, and (ii) adversarial training (AT)-based FF Madry

et al. [2018b]. ST is essentially the same setup as fully supervised training with

the only difference being in the set of initial parameters of the model. This setup

optimizes improving a model’s generalization ability. On the other hand, AT optimizes

improving the model’s adversarial robustness.

The last four rows of Table 3.1 present the performance of these two extreme

fine-tuning cases applied to the pre-trained models provided by ContraCode Jain

et al. [2021b] and Claw, respectively. As we can see, when either ST or AT is

used, different pre-training methods (ContraCode and Claw) lead to nearly the

same generalization and robustness performance. This shows that fine-tuning, when

aggressively optimizing one particular performance metric, could override the benefits

75

achieved during pre-training. To this end, we propose staggered AT (SAT), a hybrid

of ST and AT by adjusting the time instances (in terms of epoch numbers) at which

adversarial codes are generated (see Algorithm 1). SAT involves two key steps—

Algorithm 1: Staggered Adversarial Training (SAT)
1: Input:model ℳ = {𝜃ft,𝜃}, attack frequency 𝜏
2: for each epoch 𝑒 do
3: for each data batch ℬ𝑖 do
4: 1. Train ℳ by updating 𝜃ft ∘ 𝜃
5: if 𝑒 mod 𝜏 = 0 then
6: for each data batch ℬ𝑖 do
7: 2. Attack ℳ by finding adversarial codes ℬ′

𝑖

8: 3. Retrain ℳ on ℬ′
𝑖

training a model ℳ := {𝜃,𝜃ft} on a batch ℬ of data (step 1), and attacking the

learned model at a staggered frequency 𝜏 (steps 2-3). Different from AT, adversarial

code is not generated in every data batch. Instead, in SAT, we propose reducing the

frequency of adversarial learning. Accordingly, adversarial code generation occurs

at the frequency of each epoch or at every few epochs. This ensures the model

parameters retain as much of the attributes from pre-training while also learning

task-specific generalization and robustness. In SAT, the model is finetuned using (ℬ𝑖 +

ℬ′
𝑖) where ℬ′

𝑖 refers to the generated adversarial code corresponding to ℬ𝑖. Eventually,

by combining the proposed pre-training scheme Claw with the fine-tuning scheme

SAT, we term the resulting SSL framework for code as ClawSAT.

3.5 Experiment Setup

We describe the following aspects of our experiment setup - the task, dataset, and the

details of the model.

Task, dataset, error metrics. We evaluate our algorithm on four tasks: (1) code

summarization Alon et al. [2018b, 2019c], Allamanis et al. [2018d], Wang et al. [2020d],

David et al. [2020], Jain et al. [2021b] in Python, (2) code summarization in Java

(generates English description for given code snippet), (3) code completion in Python

Lu et al. [2021a] (generates the next six tokens for a given code snippet), and (4)

76

SummaryPy SummaryJava CompletePy CloneJava

Model Gen-F1 Rob-F1 Gen-F1 Rob-F1 Gen-F1 Rob-F1 Gen-F1 Rob-F1

M1 Supervised learning 33.33±0.17 26.16±0.31 38.42±0.25 29.89±0.27 56.72±0.22 53.89±0.26 67.20±0.11 64.35±0.15

M2 M1-AT Henkel et al. [2022] 33.03±0.21 32.20±0.26 37.81±0.23 34.86±0.29 55.40±0.26 55.34±0.35 66.12±0.13 65.84±0.17

M3 ContraCode Jain et al. [2021b] 36.28±0.18 28.97±0.27 41.37±0.14 33.01±0.25 57.70±0.23 54.83±0.31 69.25±0.09 68.86±0.13

M4 Claw-ST 36.57±0.20 29.97±0.22 41.23±0.17 33.53±0.22 57.65±0.25 54.75±0.31 69.63±0.09 68.95±0.15

M5 Claw-AT 32.97±0.15 32.65±0.17 38.86±0.23 36.10±0.31 57.44±0.26 57.12±0.29 69.40±0.16 69.00±0.14

M6 ClawSAT (ours) 42.12±0.19 40.70±0.23 41.77±0.27 38.80±0.33 58.80±0.24 57.21±0.28 69.73±0.10 69.25±0.13

Table 3.2: Overall performance of ClawSAT: We evaluate our models in two settings:
standard training (ST) and adversarial training (AT) by Madry et al. [2018b]. For each
of the four tasks: code summarization: SummaryPy, SummaryJava, code completion:
CompletePy, and code clone detection: CloneJava, we report the model’s generalization
F1-score (Gen-F1) and the robustness F1 (Rob-F1)–the generalization F1 when the model
is adversarially attacked. M2 corresponds to an adversarially trained (AT) version of the
supervised model M1, first introduced in Henkel et al. [2022]. M4 and M5 are two variants of
ClawSAT (M6): one integrates Claw with standard training (ST), and the other integrates
Claw with the adversarial training (AT) Madry et al. [2018b]. The result 𝑎±𝑏 represents
mean 𝑎 and standard deviation 𝑏, calculated over 5 random trials.

code clone detection Wang et al. [2020c] in Java (classifies whether a pair of code

snippets are clones of each other). For models evaluated in Python, we pre-train on

the Py-CSN dataset Husain et al. [2019], containing ∼ 500K methods, and fine-tune

on the Py150 dataset Raychev et al. [2016b], containing ∼ 200K methods. For Java,

we pre-train on the Java-CSN dataset Husain et al. [2019] containing ∼ 600K and

fine-tune on the Java-C2S Alon et al. [2018b] dataset containing ∼ 500K methods.

We use the F1-score ∈ [0, 100] to measure the performance of all our models, consistent

with all the related works, including Jain et al. [2021b]. A higher value indicates

that the model generalizes better to the task. While these F1-scores are correlated

to BLEU scores, they directly account for token-wise mis-predictions. The F1 scores

are computed following Allamanis et al. [2016], Alon et al. [2019b] Specifically, for

each of our models, we reuse the two F1 scores: Gen-F1 - the model’s generalization

performance on a task, and Rob-F1 - the model’s performance on the task when

semantics-preserving, adversarially-transformed obfuscated codes are input to it; see

details below.

Adversarial attacks, attack strength, code transformations. When attacking

code models, we use the formulation by Srikant et al. [2021] to define the strength of

77

an attack. Specifically, selecting a larger number of sites in a code—locations or tokens

in a code which can be transformed to produce an adversarial outcome—corresponds

to a stronger adversarial attack, since this allows multiple changes to be made to

the code. Also, we follow Srikant et al. [2021], Henkel et al. [2022] to specify the

set of code transformations: replace (renaming local variables, renaming function

parameters, renaming object fields, replacing boolean literals) and insert (inserting

print statements, adding dead code).

In our setup, we can leverage the attack strength at three stages–during pre-training

(using adversarially attacked code as views), when fine-tuning with adversarial training

AT Madry et al. [2018b] or SAT, and when evaluating robustness on an unseen test

set. Unless specified otherwise, we pre-train on one site, attack one site in each

iteration of SAT, and attack one site during evaluation. In Table 3.6 ,we analyze the

effect of varying the number of sites at each of these stages. We apply the first-order

optimization method proposed in Henkel et al. [2022] to generate adversarial codes.

To adversarially train these models during fine-tuning, we employ either AT Madry

et al. [2018b] or our proposed SAT for code.

Baselines. We compare ClawSAT to three baselines. (1) A supervised model

(model M1 in Table 3.2) - Pre-training has no effect on a fully supervised model. (2)

Adversarially trained supervised model (M2) on top of 𝑀1 - we use the AT setup

first proposed by Henkel et al. [2022], which in turn employs the setup from Madry

et al. [2018b]. Due to the characteristics of AT, we expect to see an improvement in

its Rob-F1 as compared to M1 but a decrease in Gen-F1. (3) The ContraCode

model (M3) from Jain et al. [2021b]. ContraCode reflects the state-of-the-art in pre-

training methods as it outperforms other pre-training models like BERT-based models

and GPT3-Codex. Hence, we do not compare ourselves again to other pre-training

models.

Models. For the summarization and completion tasks, we experiment with two

seq2seq architectures–LSTMs and transformers. For the detection task, we use a

fully connected linear layer as a decoder. The decoders are trained to predict the

task (generating English sentence summaries, generating code completions, flagging

78

code clones respectively) in both the fine-tuned and standard training settings. When

fine-tuning, we use the learned encoders from the pre-trained models. For the summa-

rization and completion tasks, we report all our results on the LSTM decoder (Table

3.2), and compare the performance of transformers in our ablation study. The LSTM

encoder has 2 layers across all experiments. In the code summarization tasks, there

exists another two-layer decoder added to the encoder to generate the summary of

the programming language. In the code completion task, we also add a two-layer

decoder to generate the code snippets. In the code clone detection task, we add one

linear layer to map the data representations to the data labels. As for the transformer

architecture, The transformer encoder has 6 layers and the transformer decoder has

another 6 layers to generate the programming language summary.

Hyperparameter setup. We optimize model parameters using Adam with linear

learning rate warm-up. For the bidirectional LSTM encoders, the maximum learning

rate for ContraCode and Claw is 10−4, and then is decayed accordingly. For the

transformer-type encoder, the maximum learning rate is 10−4 for ContraCode and

10−5 for Claw. For different downstream tasks, we optimize the parameters using

Adam with step-wise learning rate decay. The maximum learning rates of ST, AT,

SAT are 10−3 on code summarization and code completion tasks, and 10−4 for code

clone detection tasks. For downstream tasks using transformer, the learning rates of

ST, AT, SAT are 10−4. All of the downstream tasks are finetuned for 10 epochs with

practical convergence, and we utilize a validation dataset to pick the best-performed

model. All of the experiments are conducted on 4 Tesla V100 GPU with 16 GB

memory.

3.6 Experiment Results

We summarize the overall performance of ClawSAT and follow that up with multiple

additional analyses and ablations to better understand our model’s performance.

79

3.6.1 Overall performance

We evaluate the different pre-training and fine-tuning strategies we consider in Sec-

tion 3.4. The accuracy and robustness F1-scores of the different models are shown in

Table 3.2. Models M1-M3 are the baselines described in the previous section. Model

M4 pertains to using a Claw encoder with standard training (ST) for the downstream

task. Model M5 pertains to using a Claw encoder with standard adversarial train-

ing (AT) for the downstream task. And finally, M6 pertains to using SAT for the

downstream task with a Claw encoder. We observe the following:

First, from the perspective of accuracy, Table 3.2 shows that our proposal

ClawSAT (model M6) outperforms all the baselines on Gen-F1. Particularly,

ClawSAT achieves nearly 8% accuracy improvement over ContraCode (M3) on

SummaryPy. Second, we see that ClawSAT can substantially help improve the

robustness (measured by Rob-F1) of a downstream model. Compared to M3, we see

an improvement of 14.7% for SummaryPy, and 5.8% for SummaryJava. Similarly,

the gain in robustness is much more substantial in CompletePy than in accuracy.

CloneJava is the simplest of the four tasks, and we see comparable accuracies across

all the models we evaluate. Additionally, we adversarially train baselines as well

(models M2 and M5 respectively) and compare their robustness scores to ours (M6).

We make two observations–(a) As is expected with AT, we notice a drop in these

models’ accuracy–the Gen-F1 scores of M5 is lower than that of its standard-training

counterpart M4 (the same trend is observed between M2 and M1 as well). (b) While

AT-based fine-tuning provides an expected improvement in robustness over the other

baselines that use ST-based fine-tuning, the Rob-F1 they achieve is still much lower

than our model. This is because the robustness gain at the pre-training phase was

overridden by AT at the fine-tuning phase.

In summary, Table 3.2 shows that the proposed ClawSAT allows us to learn

task-specific accuracy and robustness while preserving these attributes learned

during pre-training.

80

In what follows, we analyze the performance of Claw and SAT separately from

different perspectives.

3.6.2 Why is Claw effective? A model landscape perspective

Figure 3-4: Loss landscapes: Claw (L), and ContraCode (R), the X and Y axes
represent the directional coefficients 𝛼 and 𝛽 in (3.4).

Liu et. al. Liu et al. [2020a] show that the generalization benefit of an approach

in the‘pre-training + fine-tuning’ paradigm can be deduced by the flatness of the

loss landscape of the pre-trained model. This would then let fine-tuning to force the

optimization for fine-tuning to stay in a certain neighborhood of the pre-trained model

of high quality.

To plot the loss landscapes, we follow the procedure from Li et. al. Li et al. [2018a]

by plotting

𝑓(𝛼, 𝛽) = ℓ(𝜃⋆ + 𝛼𝛿 + 𝛽𝜂) (3.4)

where 𝛿 and 𝜂 are two random direction vectors in the parameters’ subspace, and

𝜃⋆ is the parameters of a model. We average the supervised loss from the partially

fine-tuned models from 640 randomly selected samples in our test set (out of 10000,

6.4%).

81

def _makeOne(self,discriminator=None

,family=None):

from ..index import AllowedIndex

index = AllowedIndex(discriminator,family=family)

return index

(a) Sample

def _makeOne(self,repeat=None

,family=None):

from ..index import AllowedIndex

index = AllowedIndex(repeat,family=family)

return index

(b) Adversarially perturbed version of sample (a1)

def _makeOne(self,discriminator=None

family=None,action_Mode=None):

from ..indexes import FieldIndex

return FieldIndex(discriminator,family,action_mode)

(c) EBE similar to (a) - Claw

def _makeOne(self,discriminator=None

family=None,action_Mode=None):

from ..indexes import FieldIndex

return FieldIndex(discriminator,family,action_mode)

(d) EBE similar to (a) - ContraCode

def _makeOne(self,discriminator=None

family=None,action_Mode=None):

from ..indexes import FieldIndex

return FieldIndex(discriminator,family,action_mode)

(e) EBE similar to (b) - Claw

def buildIndex(self,l):

index = self.mIndex()

for strat, end, value in self.l:

index.add(strat,end)

return index

(f) EBE similar to (b) - ContraCode

Figure 3-5: Explanation-by-example to demonstrate the robustness benefits of Claw. (a)
Sample program from the test set (b) Adversarially perturbed variant of the sample program.
(c-d) Examples closest to the sample program (a) when using Claw and ContraCode.
(e-f) Examples closest to the perturbed variant (b) when using Claw and ContraCode.

Results of Figure 3-4 confirm the flatness of the loss landscape in Claw when

compared to ContraCode, implying a better transfer of generalizability by

Claw.
82

Next, we show another way to justify the flatness merit of Claw’s loss landscape.

The key idea is to track the deviations of the weights of the pre-trained encoders

in the fine-tuned setting, as inspired by Liu et al. [2020a]. Specifically, let 𝜃pre and

𝜃′
pre denote the weights of the representation model 𝜃 pre-trained by Claw and the

fine-tuned weights obtained by using different fine-tuning methods, respectively. It

was shown in Liu et al. [2020a] that the generalization benefit of an approach in

the‘pre-training + fine-tuning’ paradigm can be deduced by the deviation between

the fine-tuned weights 𝜃′
pre and the pre-trained weights 𝜃pre. This would then let

fine-tuning to force the optimization of 𝜃′
pre to stay in a certain neighborhood of 𝜃pre.

We have already shown that Claw will lead to a flatter loss landscape compared to

ContraCodepreviously. Here we computed the Frobenius norm ||𝜃′
pre − 𝜃pre||F as a

proxy to justify the generalization benefit following Liu et al. [2020a].

𝜃′
pre ||𝜃′

pre − 𝜃pre||F
Claw-ST 207.99

Claw-AT 323.41

ClawSAT 232.56

ContraCode-ST 218.14

ContraCode-AT 345.36

ContraCode-SAT 242.70

Table 3.3: Weight difference after finetuning based on different pretraining methods.

Table 3.3 summarizes the aforementioned weight characteristics for the code sum-

marization task. As we can see, the weight deviation corresponding to Claw is less

than that associated with ContraCode given a finetuning method.

The results from Table 3.3 suggest that an encoder pretrained using Claw

transfers better than that using ContraCode.

3.6.3 Interpretability of learned code representations

We evaluate the robustness benefit of Claw through the lens of (input-level) model

explanation. Following the observations from Jeyakumar et. al. Jeyakumar et al.

83

[2020] on probing models locally, we investigate Claw and ContraCode using a

training data-based model explanation method: explanation-by-example (EBE) Kim

et al. [2016]. The core idea is to leverage train-time data to explain test-time data

by matching their respective representations. If the pre-trained models are robust,

adversarially perturbing the samples should not alter their representations and thus

should be mapped to the same set of closest training examples that were found without

perturbations.

Based on EBE, we sample 100 code snippets {𝒫test
𝑖 }100𝑖=1 at random from our

test dataset, and find the closest samples {𝒫train
Claw} and {𝒫train

ContraCode} in the

training dataset using the EBE method, based on representations produced by

𝜃Claw and 𝜃ContraCode respectively. We find that 68% of the representations

from Claw match their original codes in {𝒫train
Claw} while 57% of ContraCode

representations match their original codes in {𝒫train
ContraCode}. The above re-

sults suggest that the learned representations by Claw are more adversarially

robust than ContraCode.

In what follows, we peer into the EBE method’s results with an example below.

∙ A sample program from the test-set:

def __init__(self,helper_name):

self.helper_name = helper_name

self.cheeks = []

∙ Adversarially perturbed variant of the sample program: The adversarial

attack algorithm replaces the method argument helper with edges.

def __init__(self,edges):

self.helper_name = edges

self.cheeks = []

∙ EBE sample in the train-set closest to the sample program when using

ContraCode or Claw: This is the example whose ContraCode or Claw

84

representation (encoder trained by ContraCode or Claw) is closest to the repre-

sentation of the sample program. We can find that they have the same functionality.

def __init__(self,name):

self.name = name

self.warning = []

∙ EBE sample in the train-set closest to the perturbed variants of sample

program from ContraCode: We can observe that the closest program of the

perturbed program in the training dataset is different from that of the original program.

The new closest program has different functionality from the previous test sample

program.

def setUp(self):

super(ApiCallHandlerRegressionTest,self).setUp()

self.checks = []

∙ EBE sample in the training-set closest to the perturbed sample program

from Claw: This example pertains to the representation that is closest to the

representation of the sample program computed by an encoder trained by Claw. We

see that despite comparing it to a perturbed sample’s representation, the example found

by EBE corresponds to the unpertrubed sample program, suggesting the robustness

of Claw over ContraCode.

def __init__(self,name):

self.name = name

self.warning = []

We also provide more examples in Figure 3-5. Figure 3-5.a shows a sample

Python program and Figure 3-5.b shows its respective adversarially perturbed variant.

The closest training programs in the training set mapped to the representations

before perturbations are shown in Figures 3-5.c and 3-5.d; and those mapped to the

85

representations after perturbations are shown in Figures 3-5.e and 3-5.f.

As shown in Figure 3-5, we find that EBE consistently finds the same training

examples for Claw (Figure 3-5.c and Figure 3-5.e) irrespective of the adversarial

perturbations made to the sample program, confirming its enhanced robustness.

3.6.4 SAT enables generalization-robustness sweet spot

Figure 3-6: Effect of different update schedules (𝜏 , see Algorithm 1) on Gen-F1 and
Rob-F1.

Figure 3-6.(A) shows the results from our experiments on the code summarization

task where we vary 𝜏 , the frequency of attacking the code model during SAT (see

Algorithm 1).

We generate adversarial code tokens every 𝜏 th epoch, where we vary 𝜏 from less

than 1 (corresponds to an update occurring at every batch within an epoch; this is

the AT algorithm from Madry et al. [2018b]) to 10. The X-axis shows this frequency.

We plot both Gen-F1 (left) and Rob-F1 (right) of the adversarially trained model

when varying 𝑛. Across the four tasks we evaluate in this work, We find that a sweet

spot exists in a less frequent epoch-wise schedule, associated with ClawSAT (M6,

which corresponds to 𝜏 = 1), which improves both Gen-F1 and Rob-F1 over M5

(which corresponds to 𝜏 = 0.1).

86

Results of Figure 3-6 validate our hypothesis of being able to retain the

robustness learned during pre-training while updating the model just enough

during fine-tuning to ‘learn’ new robustness while also learning the downstream

task.

3.6.5 ClawSAT on a different architecture

SummaryPy

Model Gen-F1 Rob-F1

M1 Supervised learning 32.60±0.14 30.09±0.21

M2 M1-AT Henkel et al. [2022] 31.18±0.13 30.66±0.23

M3 ContraCode Jain et al. [2021b] 34.93±0.11 32.86±0.18

M4 Claw-ST 35.37±0.14 32.31±0.20

M5 Claw-AT 34.23±0.19 33.34±0.18

M6 ClawSAT (ours) 36.39±0.12 35.53±0.24

Table 3.4: Overall performance of ClawSAT on transformer

We further evaluate SAT on a different model architecture. We consider the

transformer architecture (6-layer encoder and 6-layer decoder following Jain et al.

[2021b]), and observe similar results (see Table 3.4): ClawSAT offers the best accuracy

and robustness.

Table 3.4 shows that ClawSAT performs well across multiple encoder archi-

tectures.

3.6.6 Extended study to integrate SAT with ContraCode

To further verify the effectiveness of SAT, we employ it in ContraCode—we modify

their implementation to introduce a staggered adversarial training schedule. Table

3.5 tabulates its performance. We find that SAT also benefits ContraCode, but

the gain is smaller than ClawSAT (M6, Table 3.2). This justifies the complementary

benefits of Claw and SAT.

87

SummaryPy SummaryJava CompletePy CloneJava

Model Gen-F1 Rob-F1 Gen-F1 Rob-F1 Gen-F1 Rob-F1 Gen-F1 Rob-F1

ContraCode Jain et al. [2021b] 36.28±0.18 28.97±0.27 41.37±0.14 33.01±0.25 57.70±0.23 54.83±0.31 69.25±0.09 68.86±0.13

ContraCode-AT 35.88±0.20 31.29±0.24 38.67±0.27 35.91±0.30 57.21±0.19 56.80±0.22 69.20±0.13 68.88±0.11

ContraCode-SAT 41.01±0.20 39.80±0.21 41.27±0.16 38.14±0.24 58.04±0.17 57.01±0.30 69.47±0.10 69.08±0.21

Table 3.5: Effectiveness of SAT on ContraCode

Table 3.5 shows the complementary benefits of Claw and SAT on the state-

of-the-art SSL method ContraCode as well, demonstrating the effectiveness

of the two model-independent techniques we introduce in this work.

3.6.7 Sensitivity of SAT to code transformation and attack

strength types.

Transformations (Gen-F1, Rob-F1)

Fine-tuning

P
re

-t
ra

in
in

g replace insert All

replace 41.51, 39.84 40.49, 34.96 42.32, 40.75

insert 41.71, 40.38 41.34, 35.24 41.71, 40.38

All 42.66, 40.54 41.39, 34.91 42.12, 40.70

Attack strength (Rob-F1)

1 2 3 4 5

ContraCode 28.97 28.29 27.32 26.24 25.14

ClawSAT 40.70 40.58 39.67 38.90 38.10

Table 3.6: Performance of ClawSAT at different attack configurations. We evaluate
the sensitivity of our best performing model on (a) different transformation types used during
pre-training and fine-tuning (SAT) (b) different attack strengths (number of sites) during
evaluation.

We evaluate the sensitivity of our best-performing model on differing attack

conditions. We consider two factors: (1) Transformation type: we study the effect of

the two transformation types–replace and insert, and their combination. (2) Attack

strength: we vary the number of sites—locations in the codes that can be adversarially

transformed.

88

We summarize our results in Table 3.6. The values a, b in each cell correspond to

Gen-F1 and Rob-F1 of ClawSAT respectively.

The results from Table 3.6 suggest that when using transformations in pre-

training or in fine-tuning, it is advisable to use a combination of both replace

and insert transformations. When evaluating ClawSAT’s robustness against

stronger adversarial attacks, we find Rob-F1 consistently outperforms Con-

traCode in all the configurations we evaluate.

3.7 Conclusion & Discussion

In this work, we aim to achieve the twin goals of improved robustness and generalization

in SSL for code, specifically in contrastive learning. We realize this by proposing two

improvements–adversarial positive views in contrastive learning, and a staggered AT

schedule during fine-tuning. We find that each of these proposals provides substantial

improvements in both the generalization and robustness of downstream models; their

combination, ClawSAT, provides the best overall performance. Given the growing

adoption of SSL-based models for code-related tasks, we believe our work lays out a

framework to gain a principled understanding into the working of these models. Future

works should study this problem while attempting to also establish a theoretically

sound foundation.

When compared to SSL for vision, it seems SSL for codes benefits from milder

adversarial training during fine-tuning. Stronger attack methods for code might be

needed to explore this phenomenon further. It will also be beneficial to understand

how code models respond to perturbations, and to contrast it to our understanding of

continuous data perturbations in vision.

89

90

Chapter 4

Training code models to understand

concurrent programs using program

execution traces

Preface. Section 4.3 refers to a thesis I mentored, authored by Teodor Rares Begu:

Modeling concurrency bugs using machine learning. Rares Begu, T., Srikant,

S., and O’Reilly, UM (2020). MIT SuperUROP Thesis [Rares Begu, 2020]. Teodor

implemented and refined the idea that I proposed of using a toy language to simulate

concurrent threads and evaluating different ML models.

Section 4.4, in full, is a re-print of RaceInjector: Injecting Races To Evaluate

And Learn Dynamic Race Detection Algorithms. Wang, M., Srikant, S., Samak,

M., and O’Reilly, U.M. (2023) [Wang et al., 2023]. The data-driven approach was

developed substantially in collaboration with Michael and Malavika. Michael led the

development of the system which eventually came to be RaceInjector.

Refer to Section 1.4 to read more about the motivation behind this work, and how

it connects to the rest of the chapters presented in this thesis.

91

4.1 Introduction

Of the several applications and developer tasks which computational models of code

can help with, tasks that reason about concurrent programs have been studied the least

[Allamanis et al., 2018a]. I was inspired to study concurrent programs after having

addressed a range of data race issues in my S.M thesis [Srikant, 2020]. In Srikant [2020],

I modeled programs written in Solidity, a language used in Ethereum, a now popular

distributed ledger. The goal of the work was to learn distributed representations of

lines of Solidity programs. I tested whether these learned representations encoded the

presence of errors and bugs introduced in any given line of Solidity code. The proposed

recursive representations, similar to those learned by graph neural networks, were

insufficient to detect errors in Solidity, many of which were concurrency-related. The

recursive representations only considered static information from programs and failed

to capture the dynamic interactions which resulted in data races. The inadequacy of

my solution revealed to me the need for an improvement in machine learning models

trained to reason about concurrent programs.

In this chapter, I propose ways to train models to reason about data races in

concurrent programs, which effectively indicates a model’s understanding of concurrent

programs. I first provide some background on data races detection (Section 4.1.1).

In Section 4.2, I propose a theoretical formulation to learn to detect data races. The

proposed formulation learns to sample the best worst-case execution trace of a program

to train the model to detect data races. I discuss how operationalizing this formulation

is challenging.

In Section 4.3, I study how models simpler than the formulation described in

Section 4.2 learn data races by training the models on simulated datasets which

have specific, experimenter-controlled properties. The simulated data models events

appearing in a program thread as a string of characters. For example, a program

thread containing the three events read(x), write(x), print(x) is denoted as the

string rwp. I then study how well different ML models can be trained to detect the

presence of specific substrings which represent data races in such strings.

92

I then attempt to study traces from real concurrent programs. Soon after starting

work on this problem, I learned the following severe limitations:

• A comprehensive dataset of concurrent programs in which data races have been

clearly labeled does not exist. This impeded my ability to study how well different

ML models can be trained to detect data races.

• Solutions that have been developed over the last four decades to detect data races

have not been evaluated on such comprehensive, labeled datasets. These solutions

typically compare themselves to other prior solutions and report relative improvement.

Consequently, it is unclear how accurate these different solutions are. This observation

undermined the reliability of the solutions that have been proposed till date.

In Section 4.4, I describe RaceInjector, our proposal to create a rich dataset of

concurrent programs containing data race issues, such that the learning setup I

propose in 4.3 can be applied to real-world, complex concurrent programs. I show

how the dataset is able to generate examples of data races that previous solutions are

unable to detect.

4.1.1 Background

thread 1 thread 2
1 w(z)
2 acq(lock)

3 w(x)

4 rel(lock)

5 w(y)

6 w(y)

7 acq(lock)

8 w(x)

9 rel(lock)

10 w(z)
Figure 4-1: Example of a potential data race on lines 1 and 10, an observed data race on
lines 5 and 6, and a safe access on lines 3 and 8.

In this section, we provide a brief background on traces, data races, and the race

93

detection algorithms that we evaluate in this work.

Traces. We assume a sequential consistency memory model [Lamport, 1979], where

a program trace is a sequence of events on executing a program. An event can be

denoted as a tuple <op, thread, loc>, where op is the operation that is performed,

thread is the thread which performed the operation, and loc is the file and line which

performed the event. An op can be one of the following: read(x), write(x), lock(L)

(thread has acquired a lock on L), unlock(L) (thread has released the lock on L),

fork(T) (a thread has forked a new thread T), join(T) (a thread T has joined the

current thread). Nondeterminism in the scheduler can cause one program to have

many possible traces.

class Test {
static int x;
static int y;

void inc1() {
synchronized(lock){

x++;
}

}

void inc2() {
synchronized(lock){

y++;
}

}
}

public static void main(String[] args) {
Test test = new Test();
fork { test.inc1(); }
fork { test.inc2(); }

}

Figure 4-2: A simple program 𝒫 with two threads and no pre-existing data races

Correct reordering of traces. A trace 𝜎* is said to be a correct reordering of trace

𝜎 if it has the following properties:

1. Thread Ordering: The order of intra-thread events remains the same in both 𝜎

and 𝜎*.

2. Read-Write Consistency: For every read event in 𝜎 and 𝜎*, the most recent write

event to the variable that is read remains the same. This is to ensure that control

flow will remain the same.

3. Locking Semantics: 𝜎* does not violate the semantics of synchronization events,

94

thread 1 thread 2
1 acq(lock)

2 r(x)

3 w(x)

4 rel(lock)

5 acq(lock)

6 r(y)

7 w(y)

8 rel(lock)

(a) Original execution trace of 𝒫 (Fig 4-2)

thread 1 thread 2
1 acq(lock)

2 r(x)

3 w(x)

4 rel(lock)

5 write(z)

6 write(z)

7 acq(lock)

8 r(y)

9 w(y)

10 rel(lock)

(b) Execution trace for Figure 4-2, with a
trivial race injected.

thread 1 thread 2
1 write(z)

2 acq(lock)

3 r(y)

4 w(y)

5 rel(lock)

6 acq(lock)

7 r(x)

8 w(x)

9 rel(lock)

10 write(z)

(c) The trace after running a solver to move
the racy events apart.

Figure 4-3: A demonstration of injecting a data race in an execution trace of the program
in Figure 4-2

such as locks and unlocks.

Intuitively, 𝜎* is a correct reordering of 𝜎 if any program that produces 𝜎 can also

produce 𝜎*.

Data races. A data race occurs when two threads access the same variable without

any synchronization, where at least one of these accesses is a write. Data races can be

classified as observed or potential data races. An observed data race is where a data

race actively occurs in a trace, where two threads attempt to concurrently access a

shared variable where at least one of the accesses is a write. Observed data races are

95

trivial to detect. A potential data race is where no data race is observed, but there

exists another correct reordering of the trace where an observed data race could occur.

Potential data races are much harder to detect. See Figure 4-1 for an example. Events

5 and 6 in red are an example of an observed race, where two conflicting events occur

simultaneously. Events 1 and 10 in orange are an example of a potential race, where

they do not occur consecutively in this trace, but could in another correct reordering.

Events 3 and 8 are not racy due to synchronization mechanisms.

4.2 A theoretical formulation to learn data races

For the purpose of this discussion, I consider a program to consist of multiple functions

which can be called concurrently. Consider a system where a program P consists of

multiple functions F, each of which can be executed serially to perform a series of

operations. Let E(·) be a function which concurrently executes a program P, containing

a set of functions F, producing a concrete execution instance I𝑘(P). This instance is

an ordered list of lines from the functions in P which get executed. Assume some

random state generates this ordered list. For instance, for the functions F1 and F2 in

Figure 4-4, E(F𝑗) is trivially the sequence [L11, L21, L31, ..., Ln11] and [L12, L22, L32, ...,

Ln22], where Lij corresponds to line 𝑖 from function F𝑗, and 𝑛𝑗 is the number of lines

in F𝑗 . When called individually, these functions execute sequentially by design. When

run together though, E(P), where P is the program containing functions {F1, F2}, can

produce an execution instance containing interleaved lines from the two functions.

Two such instances I1(P) and I2(P) have been shown in Fig 4-4. Let I(P) (without

any subscript index 𝑘 to denote a concrete instance) denote the set of such interleaved

orders of execution instances possible in E(P). It is likely that some subset of execution

orders in I(P) can lead the system of programs in P to crash.

A question central to the program analysis community is - given a program P

consisting of multiple functions, can we detect if it can possibly crash when

executed concurrently by E.

96

I attempt to cast this problem in the framework of adversarial ML.

Figure 4-4: Program P contains two functions F1, F2. The figure illustrates two possible
instances of interleaving, I1(P), I2(P), that can occur in the lines of functions F1, F2 when
concurrently executed. The value of x when I1, I2 end executing at time t = 3 is 1 and 0
respectively. Here, I(P), the set of possible interleaved orders of executions, contains 4! = 24
possible orderings of lines L11,L21,L12,L22

.

4.2.1 Problem formulation

I continue with the notation introduced in Section 4.1. Let 𝜃L map each line Lij in

F𝑗 to a continuous-valued representation 𝑅𝑖𝑗 ∈ R𝑑 dimensions. Such representations

can be obtained from various methods in the literature which model lines of source

code [Alon et al., 2018a, Srikant et al., 2020]. Let 𝜃P be weights that map a program

P containing functions F to a label {0, 1} denoting the presence of a data race issue.

𝜃P in essence maps all the lines of a program to a representation of the entire program

P, wherein each line’s representation is mapped by 𝜃L.

Let IP𝑖 denote the set of possible instances of line-orderings which can be generated

when a program P𝑖 is executed by E(·). A data-point 𝑖 in 𝒟 corresponds to a program

P𝑖 concretized by any one instance I𝑘 in the set of instances I(P𝑖), and an associated

label 𝑦𝑖. Specifically, what is provided at training time is just a randomly ordered list

of lines of codes from the set of functions in P. Here, an instance I𝑘 is concretized by

the representations of each line produced by the map 𝜃L.

97

The true ordering, if there exists one, of the lines of functions which leads the

program to crash is unknown or latent. What the classifier ought to discover is an

order-invariant pattern which signals the presence or absence of a data race issue.

By training the classifier adversarially, where the adversary in this context can be

considered to simply be an instance provided during inference which is not the true

ordering, should help the classifier learn a signal which is invariant to the ordering.

The problem of detecting a data race issue thus reduces to the following objective

function -

minimize
𝜃P∘𝜃L

E(x,𝑦)∈𝒟

[︂
maximize

z∈ℐx
(ℓ(z, 𝑦,𝜃P ∘ 𝜃L))

]︂
(4.1)

Here, z is an instance sampled from the set of instances of a program P. The

parameters of the model being optimized are denoted using the composition 𝜃P ∘ 𝜃L,

which suggests that these parameters need to jointly be optimized.

Intuitively, the inner maximization is training the classifier to learn the specific

(worst-case) instance, among the combinatorial-space of instances of P, which can

correspond to the properties of data race issues. We minimize 𝜃P such that it reduces

the classification error of the {0, 1} label. In this formulation, I assume only one type

of data race issue is present in 𝒟. Further, I assume that the presence of this type of

issue in each instance 𝑖 in 𝒟 is not parameterized by any set of constraints C𝑖 on P𝑖.

4.2.2 Implementation challenges

While the formulation suggested in Eq 4.1 can potentially learn data race issues in

traces, the following challenges make it infeasible the solution for real programs.

• Representation of z. The formulation relies on 𝜃𝐿 finding a mapping of 𝑧, a line

sampled from program 𝑃 . In practice, mapping lines to a distributed representation

in a way such that the representation faithfully encodes the information conveyed

in a lines is a challenging learning task [Srikant, 2020]. Curiously, very few among

recent works on code representation learning [Allamanis et al., 2018a] focus on learning

representations of entire lines of a program. Thus, the inner problem of the objective

98

that is required to sample 𝑧 such that the inner loss is maximized can be a challenging

problem to solve.

• Efficiently sampling z ∈ ℐx. The inner problem requires different samples of z,

which in turn depends on the set ℐx to contain a large number of program instances and

corresponding labels denoting the presence of a data race. The only way to construct

a sizeable set ℐx to sample from is to execute the program P several times. This

task of multiple executions and determining ground truth for the generated instances

can be computationally expensive and infeasible. Note - this process requires ground

truth labels to begin with. Every sample in set ℐx should have a corresponding label

associated with it, making the construction of such a set a challenging bootstrapping

problem. The larger goal to construct a data race detector using this learning objective

is rendered moot if exist data race detectors which can efficiently label samples in ℐx.

As a consequence of the challenges discussed in this section, the formulation

proposed in Eq 4.1 can pragmatically be used when labeled datasets of execution

traces are more easily accessible. Section 4.4 of this chapter directly addresses the

challenge of assembling such labeled datasets.

4.3 Simulating data races to study the limits of ML

models

4.3.1 Introduction

In the previous section, I showed how a a learning objective to detect data races is

limited by the lack of an annotated dataset. To circumvent this limitation, I propose

generating a dataset containing strings generated from a language I design. I show

that the generated strings can simulate program execution traces, which allows us

to study how well ML models can be trained on the problem of data race detection.

Simulating data races also allows us to understand how much data we will need if we

were to learn the problem of data race detection using ML models, including that

referenced in objective Eq 4.1.

99

In this work, I do not study the objective proposed in Eq 4.1 on the synthetic

data, and instead study much simpler ML model architectures. The simpler models

allow for a richer understanding of the limits of learning objectives.

4.3.2 Simulating data races - A toy language

For the rest of this section, I focus on the problem of reading a variable that has not

yet been written to. This is a classic synchronization issue which comes up in various

data management systems, where a shared counter variable is either incremented or

decremented by different functions [Zhivich and Cunningham, 2009, Boehm, 2012].

If a read operation of the shared variable happens before a write occurs to it, a

segmentation fault occurs.

Synchronization is the standard methodology to prevent data races. Synchroniza-

tion prevents two threads from performing operations concurrently. The most common

mechanism for synchronization are locks. Only one thread can hold a lock at the same

time. If thread F1 holds lock L, and thread T2 requests lock L, T2 must wait until

T1 releases L in order to continue execution. This allows T1 and T2 to access the

same memory location while ensuring there is no possible race, as it is not possible for

them to access the variable at the same time due to the lock semantics.

Let us assume our setup to be the following - let each program P𝑖 in 𝒟 contain

functions, F𝑗𝑖. Each function performs one operation in every line of its code. For

a function containing 𝑘 lines, let the notation [𝑎𝑖, 𝑎2, 𝑎3, ..., 𝑎𝑘] denote the operation

map - the operations in each of its 𝑘 lines. These operations can be represented using

a continuous vector which captures what the specific operation is. See the following

section for details.

For the remainder of this discussion, I consider the following notation for the

possible set of operations -

1. Read (𝑟) Denotes a read operation of a shared variable.

2. Write (𝑤) Denotes a write operation to a shared variable.

3. Check (𝑐) Denotes a check of existence on a shared variable. In Python, say, this

check could look like

100

if shared_var is not None: Do something

else: raise ValueError(‘No value found’)

4. Up (𝑢) Denotes an Up operation of a semaphore.

5. Down (𝑑) Denotes a Down operation of a semaphore.

6. Compute (.) Denotes any other arbitrary computation not relevant to the shared

variable.

To illustrate this, if F1, F2 have the following operation maps [...𝑐..𝑟...], [..𝑤..], it means

the following -

1. F1 has 10 lines of code and F2 has 5 lines of code.

2. F1 has a check (𝑐) before a read operation (𝑟) of a shared variable. There’s one

line of arbitrary computation (.) between the check and read operation.

3. F2 has a write (𝑤) operation to a shared variable after two arbitrary computations

(.).

4.3.3 Generalization properties which the generated dataset

can test

To understand how well ML models generalize to different properties presented in data

race detection, we generate the synthetic varying across multiple dimensions. Each of

these dimensions poses a unique generalization challenge in data race detection that

would the ML models would have to generalize to.

The different dimensions are:

• Train-test split. Random separation of the full dataset based on a given train-to-

test ratio parameter. Such a split reflects the randomness of the generated execution

traces of programs. It is infeasible to train models on all possible event orderings that

can potentially appear.

• Location-specific samples. Separation of samples where meaningful operations

appear only in the first half of a trace in the training set, while they appear only in the

second half of a program in the test set. This is used to test a model’s robustness to

101

variance in the position of operations. Even if a model can correctly classify a pattern

that only occurs in the first half of a program during training, it should be able to

generalize to correctly classify the same pattern if it were to occur in the second half

of a program at test time.

• Variable inter-operational distance. The train and test set containing a

varying number of no-op operations between meaningful operations. For example, the

train set can contain samples with an inter-operational distance of 1 (e.g. w.u), while

the test set can contain samples with an inter-operational distance of 2 or 0 (e.g. w..u

and wu respectively). This variation requires the models to reason over large spans of

characters to learn and infer the presence of data races. We should expect recurrent

networks like LSTMs to outperform models with fixed and smaller spans like CNNs.

• A combination of dimensions. We combine the different variations described

above to construct a training and test set that differ across multiple dimensions

described above. This combination serves as a stronger test of generalization for the

models.

4.3.4 Desirable capabilities of the learned models

We want our learned models to possess the following desired capabilities –

1. Robustness to position variance. If the model is provided two instances during

training, say, [𝑟...], [.𝑟..], of crashes, can it generalize to predict that [..𝑟.], [...𝑟] also

cause crashes.

2. Robustness to inter-operational distance variance. If the model is provided

two instances, say, [𝑤....𝑢], [𝑤..𝑢] that correspond to correct behavior (say), can it

generalize such that [𝑤......𝑢], [𝑤𝑢] also are correct behavior. Such properties can hold

across the two behaviors.

3. Sensitivity to relative ordering of operations. The model should be able to

distinguish relative ordering of operations. For instance, the model should be able to

associate [𝑤..𝑢] with correct behavior whereas [𝑢..𝑤] with a crash.

102

4.3.5 Experiments and Results - A summary

The experiments and results from Rares Begu [2020] have been summarized briefly

here. For details, please refer to the thesis.

The aim of our experiments is to evaluate different ML models on their ability to

generalize to the conditions described in Section 4.3.4 by constructing and training

them on datasets with the properties described in Section 4.3.3.

Models. We evaluate three models: CNNs, LSTMs, and DeepSets [Zaheer et al.,

2017]. DeepSets is a deep learning architecture designed to learn a set of objects, i.e.

the model learns to permutation invariant representations of its inputs. In our case,

DeepSets serves as a baseline to evaluate how well permutation-related constraints are

learned. We use a feedforward network as a baseline.

Results summary. Our results confirm our hypotheses that only CNNs and LSTMs

can generalize learning data race patterns when provided with simulated strings

representing execution traces.

Across all of our dataset variations, CNN and LSTM-based models consistently

achieve an accuracy of above 90% (with an overall accuracy across all experiments of

98.4% and 98.6% respectively), with feed-forward and DeepSets only achieving 78.2%

and 78.1% respectively.

However, none of the models perfectly generalize to a combination of the conditions

described in Section 4.3.3. The test accuracy drops roughly to 80% and 90% for

CNNs and LSTMs respectively. This is particularly concerning since we should expect

most realistic datasets of execution traces to mimic a combination of the properties

described in Section 4.3.3. Future work should study the generalization of models

when trained on such data configurations.

These results suggest that models that have a local view of the input (CNNs,

LSTMs) have an advantage over those that do not (feed-forward, DeepSets). Further,

models that can traditionally reason about recursive structures outperform fixed length

maps, like those present in CNNs. Future work can explore whether other model

architectures like gated recurrent units and graph neural networks can generalize to a

103

combination of the properties described in Section 4.3.3.

4.4 First steps towards learning data races: Creating

a labeled dataset

Data race detection in concurrent programs using their execution traces, i.e. dynamic

analysis, has been shown to be in NP-hard [Mathur et al., 2020]. Practical algorithms

designed to detect data races hence rely either on heuristics [Lamport, 1978, Mathur

et al., 2018, Smaragdakis et al., 2012, Kini et al., 2017, Mathur et al., 2021, Savage et al.,

1997] or SMT-solvers [Wang et al., 2009, Kalhauge and Palsberg, 2018, Flanagan and

Freund, 2009, Roemer et al., 2020, Huang et al., 2014b]. The goal of these algorithms

is to start with a trace, and determine if two conflicting accesses in different threads

to a shared variable can occur concurrently in an alternate execution of the program.

Despite numerous such algorithms having been proposed over the last few decades,

it is surprising that there exist no comprehensive benchmarks comprising industry-

grade software projects which have races annotated in them—either annotated in the

source code or in the traces—which would help rigorously evaluate these algorithms.

Consequently, it is unclear what the true classification accuracy rates (true-positive,

true-negative, etc.) of these algorithms are.

For instance, none of the larger benchmark datasets such as DaCapo [Blackburn

et al., 2006], which have all been repeatedly and extensively used in the evaluation of

multiple race detection algorithms cited above, have any ground-truth annotations.

One key reason for the lack of such datasets is the absence of sound, scalable

methods to assemble them. A few prior works [Yuan et al., 2021, Lin et al., 2015,

Jalbert et al., 2011, Gao et al., 2018] have released expert-annotated datasets containing

races. However, they are too small to be effective. Jacontebe [Lin et al., 2015] contains

a total of 19 data race bugs, RadBench has 10 bugs, while GoBench [Yuan et al., 2021]

has 103 bugs for the Go language. With such small datasets, it is hard to evaluate if

current algorithms commonly miss any race patterns.

104

Another approach to assembling such datasets has been to run SMT-based race

detection algorithms on industry-grade software projects [Gao et al., 2018]. SMT-based

race detection approaches, by their design, can provably detect true-positive data

races. The detected true-positive data races are used as annotations and released

as datasets. A major limitation of these approaches however is the relatively small

number of constraints that SMT-solvers can solve at once. Longer, more complex

real-world software produce longer execution traces, which in turn non-linearly increase

the number of constraints which SMT-solvers have to solve. Detection algorithms

typically circumvent this limitation by breaking the trace into fixed-length windows

and solving each window as if they are independent of others [Huang et al., 2014a].

The assumption of independence of windows is not practical, thus limiting the number

and quality of races that can be detected. Moreover, assembling a dataset using data

races detected by known detection approaches limits the nature of races we can test

other detection algorithms on. We further discuss other prior works in Section 4.4.3.

As a direct consequence of this absence of scalable methods to assemble compre-

hensive annotated datasets, we argue that the metrics that have been employed to

evaluate any new race detection algorithm do not accurately represent their perfor-

mance. Further, we argue that the lack of such annotated datasets has potentially

stifled the state-of-the-art.

• Evaluating race detection algorithms. Presently, the efficacy of newly proposed

race detection algorithms is primarily measured by the increase in the number of

identified data races when compared to a previous algorithm. Among heuristics-based

algorithms [Lamport, 1978, Mathur et al., 2018, Smaragdakis et al., 2012, Kini et al.,

2017, Mathur et al., 2021, Savage et al., 1997], each new algorithm has successively

proposed a set of rules which purportedly improves upon previous algorithms. The

newer algorithms then demonstrate detecting races which the previous algorithms did

not. The newly detected races are verified manually by experts. In this process, it is

unclear how many true-positives and false-negatives each new set of rules introduce.

When an algorithm reports finding 𝑁 (say) new bugs which a previous algorithm had

not found, it is unclear what 𝑁 is relative to—the total number of bugs which either

105

of these algorithms are supposed to find in the first place. With surprisingly little

attention paid to this essential metric, it is unclear what the state of progress in data

race detection algorithms has been over the years.

Further, it is unclear whether an improvement proposed using a set of new rules results

in detecting newer classes of data races, assuming there exist multiple semantic classes

of use-cases in a program’s execution behavior which manifest as race bugs. It is quite

possible that a proposed improvement to an existing algorithm, while detecting a

few new bugs, may not necessarily cover a significantly larger set of such semantic

classes. An annotated dataset with a diverse set of bugs in them is the first step in

establishing and quantifying the semantic classes a detection algorithm covers.

• Training ML models. We posit that it is possible for data-driven methods to

replace the many heuristics which have been proposed over the years for race detection.

Heuristics for race detection involve learning to draw edges between events of interest

in a program’s execution trace, and identifying cliques of connected or disconnected

events. These cliques are then used to reason about and infer the existence of potential

races. These heuristics typically guarantee soundness only for the first race they

detect.

Given the inadequacy of existing guarantees, machine learning (ML) models provide a

practical alternative. ML models have been shown to outperform expert-crafted heuris-

tics when reasoning about graph-based data in the domains of compiler optimization

[Cummins et al., 2021], network-graph analysis [Bowman et al., 2020], pointer analysis

[Jeon et al., 2020], fault localization [Lou et al., 2021] and more. While such learned

models will not be able to guarantee soundness even for the first detected race, they

may well offer an improved performance in reasoning with trace-based information

over expert-crafted heuristics. However, a key requirement to train any ML model is

a sizeable, well annotated dataset.

Our solution–SMT-based race injection. We propose injecting races into existing

concurrent software as an approach to scalably create comprehensive, annotated

datasets. Specifically, we inject data races into an execution trace of a given program.

We choose to inject into the execution trace rather than the source code because

106

injecting races into the program source does not guarantee the race manifesting into

every execution trace of the program. This makes it difficult to evaluate race detection

algorithms that employ dynamic analysis methods. We refer to the execution trace

before injection as the base trace.

Adding two consecutive events that are conflicting (e.g. a read event immediately

followed by a write event to the same variable without any synchronization mechanism)

is the simplest way to inject a race into the base trace. More difficult is to inject

conflicting events that could possibly occur consecutively in a different, random

execution of the program. Our goal thus is to generate traces in which such conflicting

events appear far apart in them, making them non-trivial to detect. To achieve this,

we propose RaceInjector, which injects a trivial data race into any trace, and then

uses an SMT-solver to find an alternate, valid reordering of the base trace where

the conflicting events appear far apart. This approach is independent of how any

race detection algorithm works and the program generating the trace into which the

trivial race is injected. Our method importantly guarantees the injection of a race

while maintaining the semantics of the base trace. Thus, RaceInjector generates

traces with injected races appearing at random, valid locations, mimicking a thread

scheduler scheduling a program containing a valid data race. To ensure RaceInjector

generates data races that appear arbitrarily far apart in a trace, we propose a method

which circumvents practical limitations of SMT-solvers while guaranteeing semantics

of the base trace. We describe our approach in detail in Section 4.4.1. In this work,

we generate a small dataset and demonstrate it on the research questions that it

helps address. We also show how it can be easily extended to a comprehensive

dataset. Among the few traces we generate, we find traces with data races that

current state-of-the-art race detection methods fail to detect. This demonstrates one

immediate utility of RaceInjector. A sample of these counterexamples can be

found at https://github.com/ALFA-group/RaceInjector-counterexamples. In

Section 4.4.2, we discuss other implications of RaceInjector.

107

https://github.com/ALFA-group/RaceInjector-counterexamples

4.4.1 Method

In this section, we describe how we inject synthetic data races into program traces.

We begin with a motivating example.

Motivating example. The program 𝒫 in Figure 4-2 reads and writes to two variables

x and y. One of its possible execution traces is shown in Figure 4-3a. This is the base

trace for our injection. Originally, this program does not contain a data race. We

note that a thread switch occurs after event 6. We can trivially inject a race directly

after the thread switch by adding two write events to the trace (lines 5-6, Figure 4-3b),

resulting in an observed data race.

To invoke non-trivial reasoning to detect our injected data race, we propose using

an SMT-solver to find a correct re-ordering of the events in a trace such that (a) the

original trace’s semantics hold, and (b) the inserted events are moved apart by some 𝐿

events. One such alternate reordering can be seen in Figure 4-3c. Recall the definition

of a data race: two events that access the same variable, at least one of which is a

write, that occur in an unsynchronized manner. Our solution to generating these data

races has three steps which we describe in detail: Step 1: Instrument and execute a

program; collect base traces of relevant events. Step 2: Add a trivial data race to a

base trace, and finally, Step 3: Use an SMT-solver to make the added race harder to

detect.

Step 1. Trace collection. We start by logging a sequential trace of data accesses

and thread synchronizations in a program. See Figure 4-3a for an example trace.

Races are then injected into the collected base traces and analyzed. This decoupling of

instrumentation and race injection allows for several instrumentation frameworks to be

used. We use MCR [Huang, 2015] which instruments using the ASM framework [asm];

RoadRunner [Flanagan and Freund, 2010] which also instruments with ASM, and

Calfuzzer [Joshi et al., 2009] which instruments using the SOOT compiler framework

[Vallée-Rai et al., 1999]. SOOT and ASM allow the instrumentation frameworks to

modify the bytecode and intercept relevant events as they occur during execution.

Step 2. Adding a trivial race. To modify a base trace to add a trivial data race,

108

we insert two new write events right where there is a context switch between threads.

See Figure 4-3b for an example of modifying the base trace in Figure 4-3a. The writes

are made to a new, dummy variable to ensure the semantics of the original program

remains the same. We only inject one race into the base trace at a time before saving

it.

Step 3. Using an SMT-solver to move apart the added data race. After

having injected a trivial race comprising consecutive conflicting events, the goal is to

then find an alternate valid interleaving where the race-events are farther apart.

We set up 𝑛 SMT variables 𝑣, where each variable 𝑣𝑗 ∈ [1, 𝑛] corresponds to an

event that appears in the base trace containing a total of 𝑛 events. The value of 𝑣𝑗

signifies the location index where the event should appear. In trace 4-3a for example,

if 𝑣1 corresponds to event w(x), the assignment for 𝑣1 corresponding to the trace would

be 3, the location index w(x) appears in the trace. Similarly, if 𝑣2 corresponds to

event w(y), the assignment of 𝑣2 corresponding to the trace is 7. For a trace 𝜎, we

then formulate a constraint equation in a way that solving the constraints yields a

valid assignment made to each 𝑣𝑗 which results in an alternate trace 𝜎*.

Our constraints must ensure that the alternate trace is a correct reordering as

defined in Section 4.1.1 (thread ordering, read-write consistency, locking semantics).

These constraints have been commonly defined in race detection to find alternate

reorderings [Wang et al., 2009, Said et al., 2011, Huang et al., 2014a].

Readers can refer to Said et al. [2011] for details. However, we introduce the

following constraints in order to inject data races into base traces:

• Distance between conflicting events. We supply a hyperparameter L which

constrains the distance between the inserted racy events.

• Additional constraints. We additionally ensure that the indices assigned to

each 𝑣𝑗 is positive, unique, and lies in the interval [1, 𝑛].

We supply a conjunction of these constraints to an SMT-solver which produces an

assignment to each 𝑣𝑗. These assignments correspond to a new, valid reordering of

each event appearing in 𝜎, thus resulting in a new trace 𝜎*. Further, 𝜎* contains the

previously trivially injected race events now at least 𝐿 events apart, and ensures the

109

Base traces RaceInjector-generated traces

Program #Inj. pts Length #Thrd #Gen. traces Avg race dist. Max race dist.

ArrayList 207 677 27 207 128±111 558

TreeSet 130 756 22 130 122±115 526

LinkedList 1767 14937 451 160 112±124 851

Stack 2036 11372 451 100 87±74 458

Jigsaw 3394 97110 78 467 693±777 7396

Table 4.1: Overview of RaceInjector results on a benchmark of programs.
Column 1 lists the different program benchmarks in which RaceInjector injects races.
Columns 2,3,4 describe the base traces. The remaining columns describe the traces generated
by RaceInjector. Inj. pts. refers to the number of injection points available in the base
trace; Thrd the number of program threads.

Algorithm ArrayList TreeSet Jigsaw Stack LinkedList # Missed

HB (1979) [Lamport, 1978] ✓ ✓ ✓ p p 60 (5.6%)

SHB (2018) [Mathur et al., 2018] ✓ ✓ ✓ p p 64 (6%)

WCP (2017) [Kini et al., 2017] p ✓ p p p 21 (2%)

SyncP (2020) [Mathur et al., 2021] ✓ ✓ ✓ p p 22 (2%)

Table 4.2: Counterexamples generated by RaceInjector. A ✓ signifies there exists
at least one trace among the RaceInjector-generated traces which is not detected by the
corresponding algorithm. # Missed reports the number of traces the algorithm misses to
detect (percentage mentioned within parenthesis).

same execution semantics as that of 𝜎. We elide details of the symbolic encodings of

these constraints for the sake of brevity.

Moving events arbitrarily apart in a trace. The number of constraints in

the conjunction described above which generates 𝜎* is typically prohibitively large

for SMT-solvers to solve. Our insight to circumvent this practical problem is to

incrementally move the introduced conflicting events farther apart. We start with

reordering the conflicting events (which initially appear consecutively when injected)

and the events surrounding it in a window of fixed size. For the events in this window,

we generate the constraints described above and run RaceInjector. We choose a

window size in a way that the number of constraints does not overwhelm the solver.

Once RaceInjector generates a reordering for the events in the window, we slide

the window over by a fixed length and run RaceInjector again on the events

that appear in the shifted window. We ensure the shifted window contains at least

one of the two conflicting events we introduce, which will have been reordered from

110

their initial, consecutive indices. Running RaceInjector iteratively over smaller,

fixed-length windows 𝑘 times is computationally much more efficient than running the

solver on a large number of events just once—the number of constraints tend to grow

superlinearly with the number of events needed to reason about.

4.4.2 Results & Discussion

We demonstrate RaceInjector by using it with a suite of program benchmarks used

in prior works to generate a sample of base traces containing data races (Section 4.4.2.1).

Among the generated traces, we also find counterexamples which state-of-the-art race

detection algorithms fail to detect (Section 4.4.2.2).

4.4.2.1 Generated dataset: Quantitative description

We employ RaceInjector to generate only a small, demonstrative dataset comprising

∼1000 total traces in this work. This is nonetheless sufficient to show the ease with

which RaceInjector can be extended to generate a comprehensive dataset. We ran

our experiments without any parallelization using Java version 11.0.18, on a CPU

running Ubuntu 18.04 with 96 GB RAM.

Base traces. We run each of the five program benchmarks listed in Table 4.1 once

on the testcases from Calfuzzer [Joshi et al., 2009]. This instruments and generates

one execution trace each for each of the five programs. Table 4.1, columns 2, 3 and

4 document statistics of each program’s base trace. Each program has a different

number of threads (column 4). Consequently, each trace presents a different number

of points of injection (column 2) to introduce a trivial race—these are points at which

thread context-switches occur. We run RaceInjector on each program’s trace

(except for Jigsaw) for one hour, with a goal of injecting races into as many entry

points as possible within the allotted one hour. Since Jigsaw is a significantly larger

program than the rest, as seen by the length of an average trace generated (column

3), we run RaceInjector for ∼10 hours instead on the Jigsaw trace.

RaceInjector-generated traces. Running RaceInjector results in a total

111

of ∼1000 traces (sum of column 5). Columns 5, 6 and 7 in Table 4.1 document the

statistics of the generated traces. Note again, these are all guaranteed to contain

data races. The set of traces generated by RaceInjector for any one program will

all have the same length (column 3) because each trace is just one possible valid

reordering of the original. We find the number of traces (column 5) generated in one

hour of running RaceInjector is roughly the same across the different program

benchmarks (ignoring Jigsaw). In columns 6 and 7, we report the average distance and

the maximum distance between the injected conflicting events in the traces generated

by RaceInjector, which is measured by counting the number of events between

them. We observe the average distances (column 6) to be significantly greater than

zero, suggesting that the injected races, which are initially placed consecutively, end up

significantly apart in the generated traces. From the standard deviations (subscripts in

column 6), we see very high variance in the distance between injected races, suggesting

the heterogeneity in the potential data races introduced by RaceInjector. In

ArrayList and TreeSet, the maximum distance between the injected race events

(column 7) nearly span the length of their base traces (column 3).

This demonstrates the flexibility offered by RaceInjector to generate any number

of traces with guaranteed races that are varied in the locations they appear in. This is

a desirable feature for a high-quality annotated dataset of such concurrent programs.

Discussion: Scaling the dataset. To assemble a comprehensive dataset, we

recommend the following procedure: first, execute a program multiple times to obtain

different base traces. Second, run RaceInjector on every possible point of injection

in each base trace without constraining the time taken to complete this process. Both

the steps are easy to parallelize. We plan to extend the race detection algorithms

evaluated to include more recent tools such as RPT [Thokair et al., 2023], static race

detection methods like Infer [Distefano et al., 2019], and SMT-based methods [Huang

et al., 2014a].

Discussion: True-negative samples. In proposing RaceInjector, we only

consider the problem of generating true-positive data races. In our larger goal to

assemble a comprehensive dataset large enough to train machine learning models, we

112

would also need a method to assemble examples of true-negative cases in our dataset.

As most pairs of conflicting accesses in software are not races, we can randomly

sample such accesses, verify them using simple algorithms like HB, and label them

as true-negatives. Machine learning algorithms are tolerant to a small number of

mislabeled samples.

4.4.2.2 Counterexamples to SOTA algorithms

Table 4.2 shows that RaceInjector can easily produce counterexamples to state-of-

the-art (SOTA) detection algorithms.

This is important because it reveals for the first time their sensitivity as well as

guides future work to clearly define new rules and algorithms. We can potentially study

the contribution of the different rules present in the heuristics of different algorithms

in the decisions made by the algorithms. Thus, access to a comprehensive set of

counterexamples can potentially empirically justify the different rules implemented

by these algorithms, and can also point to equivalences between some of these rules.

While we do not directly study the counterexamples, this is a compelling direction for

future work.

We now analyze the counterexamples generated by RaceInjector that the

different algorithms fail to detect. They are available at: https://github.com/A

LFA-group/RaceInjector-counterexamples. The analysis that follows should be

interpreted with caution because the number of counterexamples is relatively small

(fewer than 100), which does not support statistical comparison tests. We will evaluate

these claims rigorously on a larger dataset in future work. This analysis is instead

indicative of the questions that can be studied.

SHB vs. HB. SHB guarantees soundness after the first detected data race it detects

in exchange for detecting fewer races overall compared to HB. We should then expect

SHB to detect fewer races on average, and conversely miss detecting more races. This

is what we observe: SHB fails to detect 64 bugs RaceInjector generates (column

7, Table 4.2), 4 more than HB. That said, the total percentage of bugs that the

algorithms fail to detect are roughly the same (∼6%). We will, in the future, also

113

https://github.com/ALFA-group/RaceInjector-counterexamples
https://github.com/ALFA-group/RaceInjector-counterexamples

compare whether they fail on the same set of counterexamples.

SyncP vs. WCP. Despite SyncP following and improving upon WCP, we do

not see a notable increase in its performance. Both fail to detect 2% of the generated

races. On the other hand, both algorithms improve upon HB, so it is expected to see

a improvement of ∼4% in the races they fail to detect when compared to HB.

LinkedList and Stack. We observe that none of the injected data races in LinkedList

and Stack fail any algorithms (columns 5, 6, Table 4.2). Besides the low number of

samples generated, a possible reason could be the large number of unsynchronized

threads. These two programs have the largest number of threads relative to the length

of their traces (Table 4.1). We suspect these threads mostly involve unsynchronized

accesses, making the injected races relatively easy to detect as well. If in the future

our hypothesis that the threads mostly involve unsynchronized accesses holds, we will

filter out such injection points to reduce the number of trivially detectable races in

our dataset.

Table 4.2 indicates that RaceInjector is able to generate data races which no

SOTA method detects. This implies RaceInjector finds locations in a program trace

which are complex to reason about. To finish, RaceInjector makes the widespread

adoption of classification accuracy-related metrics (true-positive, false-positive, true-

negative, false-negative) now possible when evaluating and comparing race detection

algorithms.

4.4.3 Related work

Prior work closest to RaceInjector has mostly compiled known bugs that have

been found over the years. Because these bugs have already been found, it is difficult

to evaluate the capability of new approaches to detect new bugs. Additionally, these

datasets are far too small to train a machine learning model, the largest being 985

races in Jbench [Gao et al., 2018]. JaConTeBe [Lin et al., 2015] is a benchmark of

Java concurrency bugs, which scrapes past papers and aggregates a list of 47 distinct

bugs along with their causes. GoBench [Yuan et al., 2021] is a dataset of 103 bugs in

Go, scraped from Github. RADBench [Jalbert et al., 2011] is a dataset composed of

114

snapshots of open-source software projects with 10 total known bugs. Jbench [Gao

et al., 2018] is a dataset of Java data races, aggregated from artifacts of existing race

detection tools, and contains 985 unique data races. Jbench contains 6 real-world

applications, and 42 custom testcases that were written during development of previous

race detection tools. Typically, all these benchmarks are curated by either expensive

manual analysis, or have been assembled using existing tools, which greatly limits

their usefulness in evaluating and improving extant race detection algorithms while

RaceInjector is fully automated. Additionally, since many of the samples have

been curated using existing tools, a machine learning model trained on these samples

will be unlikely to outperform the original tools used to find them.

115

116

Chapter 5

Program comprehension and the

human brain

Preface. This chapter, in full, is a reprint of the arXiv report Srikant et al. [2023a].

The report is a re-write of Comprehension of computer code relies primarily

on domain-general executive brain regions. Ivanova, A. A., Srikant, S., Sueoka,

Y., Kean, H. H., Dhamala, R., O’Reilly, U.M., Bers, M. U., and Fedorenko, E. (2020).

Elife, 9:e58906 [Ivanova et al., 2020]. The chapter informs the results of the eLife

work to a computer science audience; the original eLife work was written to primarily

inform the cognitive neuroscience community.

Refer to Section 1.4 to read more about the motivation behind this work, and how

it connects to the rest of the chapters presented in this thesis.

5.1 Introduction

Reading and understanding computer programs (code) has been estimated to consume

nearly 60% of a software professional’s time [Xia et al., 2017]. Yet, we understand

little of how we cognitively accomplish it, making this an open question in science.

Extending seminal precedents [Siegmund et al., 2014, Floyd et al., 2017], we attempt

in this work to study and establish the regions of the brain that are involved in

comprehending computer code.

117

The recency of code comprehension as a cognitive skill suggests that brain regions

which specialize in supporting other cognitive activities likely also support code com-

prehension. Given its association with logic and problem solving, code comprehension

can arguably be handled by regions responsible for working memory and cognitive

control, or those involved in math and logic. Similarly, code and natural language share

many common properties. They possess similar syntactic and semantic structures,

and hierarchically compose to convey meaningful information – in both code and text,

tokens are associated to form statements, which are further associated to form an

entire code or document, which results in meaning being associated with the artifact

[Fedorenko et al., 2019]. Arguably, regions of the brain involved in processing language

can support code comprehension.

Neuroimaging research is well positioned to address which regions are involved

in code comprehension. Techniques such as functional magnetic resonance imaging

(fMRI) measure brain activity when performing cognitive tasks like reading or hearing

music. Brain regions whose functions have been well established, like language or

music centers, responding to a new task, like code comprehension, can indicate the

cognitive processes likely associated with that task [Mather et al., 2013].

In this work, we use fMRI to study how code-reading related tasks engage two

known systems of brain regions – the Multiple Demand (MD) and Language systems

(details in Section 5.3). While previous neuroimaging studies have also investigated

brain regions involved in code comprehension, their results remain inconclusive. They

provide evidence for activity in regions that roughly correspond to the MD system

[Floyd et al., 2017, Huang et al., 2019, Siegmund et al., 2014, 2017, Liu et al., 2020b],

as well as in regions resembling the Language system [Siegmund et al., 2014, 2017].

Importantly, these studies do not distinguish the act of code comprehension from

other code-reading related activities like mentally simulating code. Further, most do

not quantify brain responses, and compare them to responses to other tasks associated

with working memory or language to meaningfully interpret their observations. We

review these works in Sections 5.2 and contrast their design choices to ours in Section

5.4.

118

Our contributions in this work are twofold. First, we design novel experiments and

introduce improved methods to identify brain regions involved in code comprehension.

Second, we present a new set of results which adds to our current understanding of

the cognitive bases of code comprehension. We summarize our design and method

contributions below. See Section 5.6 for details on our results.

• We offer a clearer definition of code comprehension, and design experiment condi-

tions to isolate and measure it.

• We use a state-of-the-art procedure to determine which known, well-characterized

brain systems respond to code comprehension.

• We test our experiments in two programming languages - Python and ScratchJr, a

programming system with a fully visual interface, on a group of 24 and 19 participants

respectively. Using ScratchJr enables measuring the effect of text on code comprehen-

sion, and additionally helps validate the generalizability of our results. Prior studies

have experimented only with one programming language.

• We ensure that the observations we make generalize to different code properties

like control flow (sequential programs, loops, conditionals), or types of operations

performed (string, math operations).

• We additionally investigate whether brain activity corresponding to code in the

Language system is a result of descriptive variable names used in codes.

• We make our code, stimuli, and brain data publicly available for the community

to reuse and extend. Link - https://github.com/ALFA-group/neural-program-compreh

ension

5.2 Related Work

The question of whether there exist specialized regions in the human brain which are

exclusive to specific cognitive functions goes back to Paul Broca’s investigations of

language understanding in the 1850s [Henderson, 1986]. Advances in technology to

accurately measure neural activity in the last three decades have revealed the existence

of specialized regions for a variety of cognitive functions like language processing, face

119

https://github.com/ALFA-group/neural-program-comprehension
https://github.com/ALFA-group/neural-program-comprehension

recognition, navigation etc. [Kanwisher, 2010]

The use of neuroimaging techniques to study the cognitive responses to pro-

gramming has gained momentum recently. Prior works have investigated the neural

processes involved in debugging [Castelhano et al., 2019], variable tracking when

reading programs [Ikutani and Uwano, 2014, Nakagawa et al., 2014], semantic cues

or program layout [Fakhoury et al., 2018, Schröter et al., 2017], program generation

[Krueger et al., 2020], manipulating data structures [Huang et al., 2019], biases in

code review processes [Huang et al., 2020], and programming expertise [Floyd et al.,

2017, Parnin et al., 2017, Ikutani et al., 2020].

Relevant to our scope are works which investigate regions of the brain involved in

comprehending code (as opposed to writing code, or any other coding-related activity).

Siegmund et. al. Siegmund et al. [2014], an influential work which pointed the

community’s attention to this topic, investigate the question of which regions in the

brain are involved in code comprehension. They present two sets of stimuli to 17

participants in an fMRI study. The first requires participants to read through snippets

of code and determine their outputs. The second requires them to read code snippets

with syntax errors and suggest fixes. The authors contrast activations from these two

sets of stimuli, both of which correspond to code comprehension activity in the brain,

to a baseline of no activity. They show parts of this contrast to lie in the Broca’s

region (language centers) as defined by Brodmann’s areas [Brodmann, 1909].

Floyd et. al. Floyd et al. [2017] pose a different primary research question. They

investigate, on a larger sample of 29 participants, whether it is possible to distinguish

the act of program comprehension from English sentence comprehension using brain

activity measurements. Their decoding experiments show that neural representations

for code are unique and different from language. As a secondary result, they do

comment on brain regions involved, and partially confirm Siegmund et. al.’s findings.

In their design, they use a baseline contrast of an English comprehension task and

two code-reading tasks.

Liu et. al. Liu et al. [2020b] very recently showed that code comprehension has

very low overlap with the language centers of the brain, in line with the results we

120

present in this work. They present 17 expert programmers with two code-related

tasks - the first is similar to Siegmund et. al., where participants determine code

output. The second requires participants to memorize what they call ‘fake code’ – code

snippets with scrambled tokens in each line – and confirm the presence of a specific

substring. They further administer math, logic, and language tasks to locate brain

regions involved in these functions in every participant. They report an overlap of

code activity with regions belonging to the MD system but not the language centers.

We pose the same question that Siegmund et. al. and Liu et. al. study. We differ

though in our experiment design and workflow. We compare our design choices to

these works in detail in Section 5.4. We shall see that this leads to a different set of

conclusions than those of Siegmund et. al.

5.3 Background

We provide a brief background on fMRI studies, what is measured by such scanning

machines, and the regions of the brain we investigate.

5.3.1 fMRI studies

Functional magnetic resonance imaging (fMRI) is typically used to identify regions

of the brain which respond to any cognitive task (comprehending code, in our case).

MRI machines can mark out and show brain responses in the order of a million voxels

while sampling every few seconds [Glover, 2011]. A voxel is roughly the 3-dimensional

equivalent of a pixel, and spans a few cubic millimeters of our brains.

When a brain region is involved in a cognitive task, blood flows into the region to

aid its processing. An MRI machine measures this change in blood-flow, and reports

BOLD (blood oxygen level dependent) values sampled at the machine’s frequency.

Following common practice, the parameters of a general linear model, fit to these

time-varying values, are used as a metric for brain activity. We provide details in

Section 5.5.

121

5.3.2 Regions of Interest (ROIs)

We investigate whether two well-studied systems of brain regions – the MD system

and the Language system, which we know how to locate, are also activated when we

comprehend code. A region (also referred to as parcel) here denotes a contiguous

chunk of brain mass involved in a cognitive task. A system of regions (also referred to

as a network) can comprise multiple disjoint (at the cortical level) regions, all involved

in the same cognitive task.

Figure 5-1: The Multiple demand (MD) system and Language system highlighted in
a neurotypical adult brain. These two systems span multiple, closely situated regions
in the brain, and have been established to have very different response profiles. What is
conventionally referred to as Broca’s region includes portions of both these systems [Fedorenko
and Blank, 2020].

Multiple Demand (MD) system. Since programming conceivably involves

arithmetic and general logic skills, we investigate whether the Multiple Demand system

[Duncan, 2010], the most prominent system known to support these skills, is activated.

Generally located in the prefrontal and parietal areas of the brain, this system of

regions is known to be domain-agnostic, and is activated in a host of tasks requiring

working memory and general problem solving skills, including math and logic [Duncan,

2010, Amalric and Dehaene, 2019].

Language system. Another possible candidate for processing code is the Language

system. These regions have been identified to respond to both comprehension and

production of language across modalities (written, speech, sign language), respond to

typologically diverse languages (> 50 languages, from across 10 language families),

122

form a functionally integrated system, reliably and robustly track linguistic stimuli,

and have been shown to be causally important for language [Fedorenko et al., 2010a,

Clark and Cummings, 2003, Blank and Fedorenko, 2017, Shain et al., 2019a, Mineroff

et al., 2018, Blank et al., 2014].

Figure 6-1 shows approximate locations of these systems in a neurotypical adult

brain. These systems have been consistently located roughly in the same parts of the

brain across individuals [Fedorenko et al., 2010a, 2013]. While an ROI provides a set

of broad regions observed to be involved in a cognitive task across individuals, we

further locate functional ROIs (fROIs) – specific voxels within these broad regions

which respond to working memory and language respectively in an individual. By

doing this, we account for the exact anatomical locations of these voxels, which vary

across individuals. This is one improved aspect of our experiment method over prior

works. We provide details on fROIs in Section 5.4.4.

5.4 Experiment Design

We first provide a summary of our overall workflow. We follow that with details on

three key components of our experiment design: condition design - the various

design choices we consider in creating the code stimuli we show our participants,

fMRI tasks - the tasks participants respond to in an MRI machine which enable

measuring brain activities, and processing fMRI data - how we analyze participants’

fMRI data and quantify the effect of code comprehension. In our description of these

components, we also contrast how they differ from previous works.

5.4.1 Experiment workflow - An overview

The first step of our workflow is to frame hypotheses and design conditions which can

test those hypotheses. These conditions inform the stimuli and tasks we present to

human participants in an MRI machine. Our goal is to observe the effect reading code

has on two regions of interest in our brains - the MD system and the Language system.

We first determine which voxels (fROIs) belong to the MD and the Language systems

123

Figure 5-2: (A) A code condition stimulus in Python and its equivalent sent condition,
which describes the code stimulus in words. sent controls for brain responses to code
simulation. The difference in these conditions, code>sent, estimates code comprehension.
(B) An example code and sent stimulus in ScratchJr, a programming system with a visual
interface. ScratchJr allows to measure the effect of text in codes. (C) codeJ condition with
Japanese variable names, which controls for the effect of meaningful variable names. (D, E,
F) Conditions that measure the effect of control-flow properties (for, if, seq) and type of
operations (math, str).

in each participant. We do this by getting participants to respond to localizer tasks

– tasks which have been shown to consistently activate the two systems [Fedorenko

et al., 2010a, Blank et al., 2014]. We then show participants stimuli corresponding to

our own carefully designed code conditions, and we measure brain responses to these

conditions within the identified fROIs. The goal of analyzing fMRI responses to our

code conditions is to evaluate whether they activate the fROIs as much as the localizer

tasks. If they do activate the regions as much, we infer that the fROIs are involved in

processing code. For example, if comprehending code activates the Language system as

much as comprehending English text (the localizer task for the Language system), we

then conclude that the Language system is involved in processing code comprehension

in addition to processing language comprehension.

5.4.2 Condition design

Brain activity measurements for a given condition (e.g. response to reading codes)

can meaningfully be interpreted only relative to another condition (e.g. response

to reading plain text), i.e. by contrasting two or more conditions. We describe the

different conditions we design and contrast in our work, and discuss them in light of

the design choices made by prior works.

124

Controlling for non-codes. The simplest condition pair to observe the effect of

reading code is by contrasting codes with non-codes (notated as code > non-code

in the cognitive neuroscience literature). Here, non-codes correspond to stimuli which

participants can comprehend despite not being code-like. In our study, they correspond

to statements in a natural language (English).

Our goal though is to push farther. We design conditions which help isolate the

effect of other factors which might alternatively explain the activations we observe in

different brain regions when understanding code.

Controlling for code simulation. Arguably, the task of reading code involves

more than the act of code comprehension. To appreciate why, consider the different

cognitive steps involved in reading and understanding code. On being presented

code – 1) Retinal cells are activated by the presence of characters in a program 2)

The visual system of our brain processes these characters. 3) Having recognized the

characters, our brain interprets tokens present in the text. 4) Our brain groups tokens

to recognize program statements, and eventually groups these statements to form

a mental representation of the entire code, and understands its goal. 5) Our brain

executes or simulates it to derive its final output.

In our work, we do not study the effects of reading code on the visual system

(steps 1-2). We identify steps 3-4 as code comprehension, and step 5 as carrying out

code simulation– which has also been referred to as program tracing [Soloway, 1986],

and processing code content [Ivanova et al., 2020]. For example, comprehending the

statement x=10+20 refers to associating this statement with the notion ‘x stores the

sum of numbers 10 and 20’. Code simulation in this case refers to mentally adding

numbers 10 and 20 and realizing that x stores 30. We refer to steps 3-5 collectively as

code reading .

Step 5 can potentially dominate brain measurements made when reading and

understanding code. To factor out its effect, we offer the following insight – it

is possible to describe code in different ways while retaining its code simulation

operations. A code described in sentences or as a flow diagram does not alter its

operations. Drawing on this insight, we design sentences whose content matches our

125

code conditions. We notate this condition as sent and the contrast as code > sent.

See Figure 5-2.A. for an example. If the code condition measures code comprehension

and code simulation as the dominant cognitive steps involved, the sent condition then

arguably measures natural language (sentences) processing and code simulation. The

difference in these two conditions code > sent thus allows us to isolate and measure

the act of code comprehension.

Controlling for variable names. If code comprehension is indeed treated like

language comprehension and the Language system is found to respond to it, it is

reasonable to question whether the Language system responses are caused just by

the presence of meaningful variable names and not other aspects of the code. We

control for this possibility by replacing variable names with those which mean nothing

in that context. The responses to such codes can then be attributed solely to code

comprehension and not to the presence of meaningful English words in the code. In our

work, we chose to rename variables with their Japanese equivalent names (written out

in the English script) and administer it to participants with no knowledge of Japanese.

We refer to this condition as codeJ. Figure 5-2.B shows the code in Figure 5-2.A

instead with Japanese variable names. We also account for the effect meaningful string

literals (e.g. x="hello") or meaningful keywords (for, if) may have, by designing an

equal number of stimuli without these artifacts (discussed in the following point).

Effect of control flow and operations. We additionally investigate whether

brain activations to code are consistent across different code properties. This helps

demonstrate the robustness of our observations to common variations possible in code.

We test two such properties – control flow, and the types of operations. In control flow,

we test each of loops (for), conditional statements (if), and sequential statements.

See Figures 5-2.D, E, F for examples of each of these conditions. We test two types

of operations – math and string. Figures 5-2.E, F show examples of math and str

operations respectively. Every stimulus in these conditions has exactly one each of

the three control structures, and one of the two data operations. This design also

accounts for the presence of meaningful string literals and keywords by allowing us to

observe brain activity corresponding to conditions that do not contain these artifacts

126

(math, seq respectively).

Effect of text in codes. We experiment with the conditions we describe above in

two programming languages – Python and ScratchJr. ScratchJr is a programming

system with a fully visual interface [Bers, 2018]. It is generally introduced to children

as means to express themselves creatively, where the visual interface and intuitive

drag-and-drop features representing different programming constructs enable them to

code without relying on a language like English [Bers et al., 2019]. The very nature of

this visual interface allows us rule out the influence of text on code comprehension.

Figure 5-2.B shows an example. Further, using ScratchJr as a second programming

language helps validate the generalizability of our findings. All prior works have

evaluated their findings only in one programming language.

Design choices by prior works. Floyd et. al. also use the basic contrast code >

non-code, but nothing more to isolate code comprehension. Siegmund et. al. instead

contrast code > code with syntax errors (Section 5.2). Codes with syntax errors

are still codes, and hence do not help differentiate activity in regions where non-codes

(natural language) are known to be processed. Further, the code-with-syntax-errors

condition likely measures aspects of code comprehension, code simulation, and perhaps

other skills specific to debugging and finding such errors. Thus, their contrast does

not fully isolate code comprehension. While Liu et. al. ensure their code stimuli

generalize to loops and conditions, their primary contrast code > fake code also

does not distinguish between code comprehension and code simulation. Their setup

introduces the additional effect of memorizing fake code which involves multiple

cognitive processes

Summary. To summarize, in our Python experiments, our overall experiment design

is a 3 × 3 × 2 study – 3 conditions - code, sent, codeJ (Japanese variable names),

and within each of these three conditions, we further have 3 categories of control

flow conditions, and 2 categories of operations-related conditions. Since many of

these conditions are not applicable to ScratchJr (variable names, operation types), we

evaluate only the critical code > sent condition in ScratchJr.

127

5.4.3 fMRI tasks

For each participant, in addition to presenting stimuli corresponding to code-related

conditions in an MRI machine, we present two separate tasks to localize the two

regions of interests in them. What is central to a localizer task is its ability to strongly

activate a region of interest in every individual. It has been empirically established

that reading semantically well-formed sentences in any natural language strongly

activates the Language system, while performing spatial memory tasks strongly and

distinctly activates the MD system [Fedorenko et al., 2013, 2010a]. We reuse these

established localizer tasks in our work. We provide details in Section 5.5.

We now describe how we use this localization information when analyzing brain

activity during code comprehension.

5.4.4 Locating fROIs and data analysis

We analyze brain data in the following five key steps. Our procedure follows the

Group-constrained Subject-Specific (GSS) method of locating functional regions of

interest (fROIs) that are activated consistently across individuals [Nieto-Castañón

and Fedorenko, 2012].

1. Mapping to an exemplar brain structure. To normalize differences in brain

anatomies, each participant’s brain is spatially transformed to an exemplar brain

structure like the Montreal Neurological Institute (MNI) template [Tzourio-Mazoyer

et al., 2002]. These spatially transformed coordinates are used for subsequent analyses.

2. Selecting ROIs. Regions of interest (ROIs) mark out a set of broad regions

observed to be involved in a cognitive task across individuals. For every participant,

we use these regions as a starting point, and look for voxels within them which respond

to a cognitive task. This helps avoid looking in regions which are not germane to the

task. For example, reading code will understandably also activate the visual cortex,

which is not of interest to our particular study.

In our work, we reuse a set of 20 MD parcels (10 in each hemisphere) and six

Language parcels defined in prior works [Fedorenko et al., 2010a, 2013]. These parcels

128

have been curated by aggregating ∼200 participants’ brain responses to spatial working

memory and language tasks respectively. As an alternate, one could select ROIs from

the parcels defined by Brodmann’s areas [Brodmann, 1909], an atlas which maps

regions of an exemplar’s brain to cognitive functions.

3. Identifying fROIs. For every individual, a functional region of interest (fROI)

refers to a collection of voxels within an ROI which respond to the cognitive task the

ROI is involved in. Owing to differences in anatomies, the specific set of voxels which

respond to a cognitive task (like spatial reasoning or language) varies across individuals.

ROIs, aggregated from across individuals, help narrow down the search space to locate

these specific voxels in every individual by pointing to a swath of regions known to

respond to the task. fROIs in turn identify specific voxels functionally involved in

the cognitive task. Localizer tasks (Section 5.4.3) for each system help identify these

voxels. By the end of this step, we establish in each participant fROIs for the MD

and the Language systems. We provide details in Appendix 6-1.

4. Aggregate activation data within a participant. We use the fROIs defined

for the two systems in the previous step in all our remaining experiment conditions.

Specifically, we measure the activations of our code conditions in the selected fROIs.

At this stage, we have at least two sets of activation measurements for each voxel in

an fROI – one corresponding to the localizer task, and the others corresponding to

the different code-related conditions. For each fROI, we obtain a single response value

per condition by averaging the responses of all voxels within the fROI.

5. Aggregate activation data across participants. For each system, we then

evaluate whether the distribution of participant-level responses to the code conditions

is comparable to that of the localizer task. If it is, we conclude that the system is

involved in processing code conditions.

Multi-participant analysis without functional localizers. Among prior works,

Liu et. al. alone use localizer tasks to find task-selective voxels in individual par-

ticipants. However, they do not use ROIs (step 2 above) and instead perform a

whole-brain analysis, and report overlaps as against measuring exact activations in

fROIs. Their setup coupled with their ambiguous condition design (discussed in

129

Section 5.4.2) makes it hard to infer brain regions accurately.

In fMRI studies which do not use localizer information, as in the case of Siegmund et.

al., Floyd et. al., and other works which have studied different aspects of programming,

the primary difference is that ROIs are defined based on anatomy, and not on their

function (i.e. how they respond to localizer tasks). Concretely, this difference arises

in steps 3 and 4, where instead of aggregating activations within an fROI, activations

are estimated in each voxel across the entire brain and aggregated across participants

(also called the group analysis procedure). The location of such aggregated active

voxels is then described using anatomical labels, such as Brodmann areas [Brodmann,

1909]. This method has broadly been referred to as reverse inference in neuroimaging

studies [Poldrack, 2011].

The reverse inference method assumes that fROIs are spatially fixed among indi-

viduals and can be uniquely located in the exemplar brain structure. While reverse

inference is not always a concern, especially when the regions are anatomically well

separated and distinct (e.g. visual system vs. MD system), it has been shown to yield

inaccurate estimates in the measurements of the closely situated MD and the Language

systems [Brett et al., 2002, Amunts and Zilles, 2012, Fedorenko et al., 2012, Fedorenko

and Blank, 2020]. What is referred to as the language region by Brodmann’s areas

(areas 44 and 45) in one individual can instead refer to functional regions belonging to

the MD system in another individual, owing to differences in individual anatomies

[Fedorenko et al., 2012, 2011]. The GSS approach of function-based ROI identification

helps circumvent this potential cause for inaccuracy.

5.5 Experiment Procedure

We describe in brief our experiment procedure. We recruited 24 participants for

Experiment 1 (Python) and 19 participants for Experiment 2 (ScratchJr), with no

overlap between these groups. On the day of the scan, having provided consent,

participants spent 1.5 − 2 hours in the scanner. In Experiment 1, in the week of

their scheduled fMRI scan, each participant additionally completed an assessment in

130

Python to evaluate their fluency in it.

Once in the scanner, a participant was presented with two localizer tasks, adopted

from prior works [Fedorenko et al., 2013, 2010a], to locate the MD system and Language

system respectively in their brain. The MD system localizer task is a working memory

task, presented in two grades of difficulty - easy and hard. The Language system

task has two conditions - sentence reading (SR), and non-word reading (NR). SR

requires reading sentences which are structurally and semantically meaningful. NR

requires reading sentences with pronounceable yet meaningless non-words (e.g. BIZBY

ACWORILLY BUSHU SNOOKI BILIBOP KUKEE). These two conditions serve as references to

measure other experiment conditions against – the Language system has been shown

to respond strongly to SR while only minimally to NR.

Participants were also presented with coding tasks. The tasks shown were balanced

between the three conditions - codeE (code with semantically meaningful variable

names in English), sent (sentences describing programs, controlled for code simulation),

and codeJ (code with Japanese variable names). Each participant saw 72 problems,

24 from each of the three conditions. Each of these set of 24 problems further had an

equal number of control-flow and operations-related conditions. Any given participant

saw only one of the three versions of a problem.

The data from the localizer scans was used to locate the fROIs in the MD and the

Language systems in every participant. We fit a general linear model to the time series

brain activation data generated as a response to our different tasks. The parameters

of this model (𝛽) are used as a metric for brain activity (BOLD) in all our analyses.

5.6 Results

We present our questions and their corresponding results here. In our results, we

discuss the neural activations in different regions of the brain (Figures 5-3.A, 5-3.B).

The x-axis in these plots corresponds to the different conditions participants responded

to, and the y-axis represents activation strength (𝛽 values). Each dot in each bar

corresponds to one participant’s aggregate activity in the fROIs localized in them.

131

Figure 5-3: (A, B) Brain activations in the MD system left hemisphere (MD system L), MD
system right hemisphere (MD system R), and the Language system. We measure responses
to four conditions – codes (CP), sentences matching the code’s operations (SP), Sentence
reading (SR), and Non-words reading (NR). We experiment in Python (N=24) and ScratchJr
(N=19). Each dot in the bars corresponds to aggregate data from one participant. ***
indicates 𝑝 < 0.001, n.s. - not significant (C) MD system responses to two code properties –
operation type (math, string operations), and control-flow (sequential, loop (for), conditional
(if)) (D) Language system responses to variable names in English (codeE) and Japanese
(codeJ) (E) Correlation of responses in the MD and the Language systems to proficiency in
Python (top) and ScratchJr (bottom).

When reporting results of a contrast between any two conditions, we measure the

difference in the average 𝛽 values (∆𝛽) and compute its associated p-value.

RQ 1. Does code reading activate the Multiple Demand (MD) system?

Conditions contrasted. code, sentence reading, non-word reading

We begin by investigating whether reading code, which involves both code com-

prehension and code simulation, activates the MD system. We do this by comparing

the activations of our primary code-related condition - code problems, to the localizer

tasks for the Language system - sentence reading and non-word reading. We notate

these conditions as CP, SR, and NR respectively in Figure 5-3.A, B. We evaluate two

sets of fROIs in the MD system - one in each hemisphere of the brain (Figure 5-3.A,

B., left and center plots). From the plots, we see both sentence reading and non-word

reading, the language localizer conditions, have minimal activations in the MD system

in both hemispheres. This is expected since the MD system is not sensitive to language

tasks [Blank et al., 2014]. We find that code problems, which account for both code

132

comprehension and code simulation, activate fROIs in both hemispheres of the MD

system consistently and significantly more than the baselines in both our experiments

(Python: ∆𝛽= 2.17, p < 0.001; ScratchJr: ∆𝛽= 1.23, p < 0.001). This suggests that

the MD system is involved in reading code.

We confirm whether these responses are consistent across code properties, which

will establish its robustness to the variations possible in code. We test two properties

– control-flow (sequential, for, if), and types of data manipulated in them (string,

math operations) in Python. We observe strong responses regardless of the type of

operations and control flow (Figure 5-3.C; y-axis is response to CP). We thus conclude

that the responses in the MD system to code problems were not a result of any one

particular type of problem, or mental operations related to a particular control flow.

This clearly identifies and establishes the role of the MD system in code reading .

Prior works did not identify and study this system of regions.

RQ 1 result. Yes, code reading activates the MD system. Its responses are

independent of the control-flow operations and types of data operations present

in codes.

RQ 2. Does code comprehension activate the Multiple Demand (MD) system?

Conditions contrasted. code, sent, sentence reading, non-word reading

Since we find that code reading activates the MD system, we investigate whether

these were responses to code comprehension or code simulation. To answer this,

we study the effect of both our code-related conditions – code problems (CP), and

sentence problems which match the code problems for their content (SP). We find that

sentence problems, which measure only code simulation and not code comprehension,

activate the MD system significantly greater than the language localizer baselines in

both hemispheres only for Python (left: ∆𝛽= 1.51, p < 0.001; right: ∆𝛽= 0.78, p

< 0.001). This activation is not significant for ScratchJr (left: ∆𝛽= 0.09, p = 0.93;

right: ∆𝛽= −0.40, p = 0.004), suggesting that code simulation is not consistently

supported by the MD. However, we find that code problems, which measure both

133

code comprehension and code simulation, strongly activate fROIs in both hemispheres.

This is despite sentence problems taking slightly longer on average to respond to. We

hence find that CP strongly activates the MD system and SP does not. This implies

that the difference CP > SP, which measures code comprehension, strongly activates it.

This is strong evidence for the MD system’s consistent and robust activation to code

comprehension, and shows it is not just a response to the underlying code simulation

operations.

We investigate further for any hemispheric bias towards code comprehension.

Previous works have shown that math and logic problems typically activate the MD

system in the left-hemisphere of the brain [Amalric and Dehaene, 2016, 2019]. We

did not find any such bias in Python (MD-L plot, Figure 5-3.A). In ScratchJr, we

observe stronger responses in the right hemisphere (∆𝛽= 0.57, p < 0.001; MD-R plot,

5-3.B), perhaps reflecting a known bias of the right-hemisphere towards visuo-spatial

processing [Sheremata et al., 2010].

Follow up analyses of activity within individual regions within the MD system

showed that 17 of the 20 fROIs in the Python experiment, and 14 of the 20 fROIs

in the ScratchJr experiment responded significantly more strongly to code problems

than to sentence problems. This demonstrates code processing is broadly distributed

across the MD system and is not localized to a particular subset of regions within it.

Within this activated subset, we evaluate whether any fROIs are selective to code

problems in comparison to other cognitively demanding tasks which activate the MD

system. We find none for ScratchJr, and three regions in the frontal lobe (precentral-A,

precentral-B, midFrontal) which exhibit stronger responses to Python code problems

than to the hard working memory localizer task for the MD system. However, the

magnitude of code > sent in these regions (∆𝛽= 1.03, 0.95, 0.97) was comparable

to the mean magnitude across all MD system fROIs (average ∆𝛽= 1.03), suggesting

that the high response was caused by the underlying code simulation rather than code

comprehension. We conclude that code comprehension is broadly supported by the

MD system, and no specific regions in the MD system are functionally specialized for

it.

134

These new results further establish the role of the MD system in processing code

comprehension, which we narrowly and clearly define in this work.

RQ 2 result. Yes, code comprehension consistently activates the MD system.

Unlike math and logic, it activates fROIs in both the left and right hemispheres.

In fact, no specific fROI within the MD system specializes for code comprehension,

and it is instead broadly supported by the entire system.

RQ 3. Does code reading activate the Language system?

Conditions contrasted. code, sent, sentence reading, non-word reading

We investigate the Language system similarly for responses to our code conditions.

Figures 5-3.A, B (rightmost plot) show the aggregate responses in the Language

system to the two code conditions and the two language localizer conditions described

above. As expected of the localizers, we find the activations of sentence reading to

be significantly greater than non-word reading [Blank et al., 2014, Fedorenko et al.,

2010a]. Among the code conditions, we find that sentence problems activate the

Language system as much as the sentence localizer task in both Python and ScratchJr.

This is again expected since sentence problems contain English sentences describing

what the program does (Figure 5-2.A). However, the responses to code problems were

weaker than responses to sentence problems in both experiments (Python: ∆𝛽= 0.98,

p < 0.001, ScratchJr: ∆𝛽= 0.99, p < 0.001). This observation alone does not yield any

insight on whether code activates the Language system, and we hence compare these

activations to the localizer baseline non-word reading. Non-word reading is a lower

bound for activity in the Language system; this is the activity seen in the Language

system when it is not actively engaged in linguistic interpretation. Responses to the

code condition were stronger than non-word reading only in the Python experiment

(∆𝛽= 0.78, p < 0.001) but not in the ScratchJr experiment (∆𝛽= 0.15, p= 0.29),

implying that code does not consistently activate the Language system.

The result from this principled investigation of the Language system is contrary

to that of Siegmund et. al., who report the involvement of the language system in

135

addition to other brain regions. We discuss this further in Section 5.7.

RQ 3 result. No, code reading does not consistently activate the Language

system.

RQ 4. Do meaningful variable names affect the Language system’s response to

code?

Conditions contrasted. codeE, codeJ

Since we find that Python code activates the Language system but ScratchJr does

not, we investigate whether this is a consequence of meaningful variable names present

in codes. To study this effect, we had participants read half the Python code problems

with semantically meaningful variable names in English (codeE) and the other half

with Japanese variable names (codeJ), making them semantically meaningless; 18 of

the 24 participants reported no knowledge of Japanese. In the Language system, we

found no effect of meaningful variable names (∆𝛽= 0.03, p = 0.84) (Figure 5-3.D,

non-speakers), knowledge of Japanese (∆𝛽= 0.03, p = 0.93) (Figure 5-3.D, speakers),

nor any interaction between the two (∆𝛽= 0.09, p = 0.71), suggesting that the

Language system response was not affected by the presence of semantically meaningful

variable names. This result is surprising since the Language system has been shown

to be very sensitive to word meaning [Anderson et al., 2019]. A possible explanation

is that participants do not fully engage with the words’ meanings to solve problems.

RQ 4 result. Meaningful variable names do not affect the Language system’s

response to code.

RQ 5. Are there regions outside the MD system and Language system that

respond to code comprehension?

To search for regions responsive to code comprehension outside the MD system

and Language system, we perform a whole-brain Group-constrained Subject Specific

136

analysis. For both Python and ScratchJr, we search for brain areas with activations

where code > sent. We then examine the response of such regions to code and

sentence problems (cross-validated with held-out data), as well as to conditions from

the two localizer experiments. In both experiments, the discovered regions spatially

resembled the MD system. For Python, any region that responded to code also

responded to the spatial working memory task (MD system localizer). In case of

ScratchJr, some fROIs responded more strongly to code problems than to the spatial

working memory task; these fROIs were located in early visual areas/ventral visual

stream which likely responded to low-level visual properties of ScratchJr code (which

contains colorful icons, objects, etc.). These whole-brain analyses demonstrate that

the MD system responds robustly and consistently to code comprehension, confirming

the results of the fROI-based analyses discussed in RQs 1 and 3. This further shows

that fROI-based analyses did not miss any non-visual regions outside the boundaries

of the MD and the Language systems that was activated by code comprehension.

RQ 5 result. We found no code-selective regions outside the MD and the

Language systems.

RQ 6. Does expertise affect how the MD and the Language systems respond to

code comprehension?

We study the role of expertise by correlating responses within each system with

independently obtained proficiency scores for participants of Experiment 1 (a 1-hour

Python assessment module) and with in-scanner accuracy scores for Experiment 2

participants. Figure 5-3.E plots the percentage proficiency scores (x-axis) against code

comprehension (code > sent). No correlations were significant. However, due to a

relatively low number of participants (N = 24 and N = 19, respectively), these results

should be interpreted with caution.

137

RQ 6 result. We did not have enough data to observe the effect of expertise

on the MD and the Language systems’ responses to code comprehension.

5.7 Discussion

We present a new set of results which improves our understanding of the cognitive

bases of program comprehension. We find that code reading (which we identify to

include both code comprehension and code simulation) strongly activates only the

MD system and not the Language system. Despite their anatomical proximity in the

left-hemisphere of our brains, our work clearly distinguishes the roles of both these

systems by means of functional localizers.

MD system results. We find that the MD system consistently processes code reading .

We support our observations by showing these activations generalize across two code

properties - control flow and data operations, suggesting that the system’s response is

robust to variations in code. We further learn that the MD system responds consistently

to code comprehension. It also responds to code simulation strongly in Python, but we

see only a weak evidence for it in ScratchJr, which needs to be investigated in future

work. It is reasonable to expect the MD system to process code reading , since both

code comprehension and simulation requires attention, working memory, inhibitory

control, planning, and general flexible relational reasoning - cognitive processes long

linked to the MD system [Duncan and Owen, 2000, Duncan, 2010]. This finding

also supports Liu et. al.’s recent results [Liu et al., 2020b]. Since no other regions

outside the MD system responded to codes, we posit this system stores code-specific

knowledge in addition to processing it. This knowledge likely includes concepts specific

to a programming language (e.g. the syntax marking an array in Java vs. Python)

and concepts shared across languages (loops, conditions). Evidence from studies on

processing mathematics and physics [Fischer et al., 2016, Amalric and Dehaene, 2019]

has shown that the MD system can store some domain-specific representations in

the long term, perhaps for evolutionarily late-emerging and late-acquired domains of

138

knowledge. In conclusion, we identify a known brain system, which had previously not

been studied for its role in code reading tasks, to be involved in code comprehension

specifically.

Language system results. We importantly establish in this work that code reading

is not consistently processed by the Language system. This is a new finding, and adds

to the results from Siegmund et. al. and Floyd et. al., while confirming results from

Liu et. al.. Siegmund et. al. report the involvement of the language centers in code

comprehension by showing evidence of left-lateralized brain activity. While it is unclear

whether their observations were technically from the Language system or the MD

system, we suspect that they observed code simulation and not code comprehension.

Additionally, and surprisingly, we find that the Language system is insensitive to the

presence of meaningful variable names. More work is required to determine why the

Language system showed some activity in response to Python code.

The Language system does not respond consistently to code comprehension despite

numerous similarities between code and natural language. However, the lack of

consistent Language system engagement in code comprehension does not mean that

the mechanisms underlying language and code processing are completely different.

It is possible that both the MD and the Language systems have similarly organized

neural circuits that allow them to map a symbol to a concept. However, the fact that

we observed code-related activity primarily in the MD system indicates that code

comprehension does not activate the same neural circuits as language, and needs to

use domain-general MD system circuits instead.

Having identified the regions activated when reading programs, we discuss how

our results affect the programming languages (PL), software engineering (SE), and

CS education (CS-Ed) communities.

Impact on the PL, SE, CS-Ed communities. To understand how our results can

be applied specifically to improving how we can understand programs, we first establish

the relationship between two cognitive activities engaging the same brain system (in

our case - working memory tasks and code comprehension engaging the MD system).

A few studies have claimed that for any two cognitive activities that share the same

139

brain resources, training one activity will lead to an improvement in the other [Jaeggi

et al., 2008, Melby-Lervåg and Hulme, 2013]. For example, if language and music

share and activate the same brain system, then tools and approaches used to engage

and train one activity should be transferable to, and will lead to an improvement in

the other. Since the effects of training and improving one’s MD system are not well

understood, it is unclear whether training on cognitively demanding non-coding tasks

could improve our ability to read and understand programs.

Based on the opposite conclusions presented in Siegmund et. al., Portnoff et. al.

[Portnoff, 2018] and similar other works suggest adopting a “languages first" approach

when teaching programming. Evidence from our work does not support this claim,

and we caution against adopting practices that are used to teach natural languages

for programming just based on conclusions from recent neuroimaging studies.

The Language system not being involved in code comprehension should not diminish

the role of language in understanding programs. The use of poorly named variables has

been shown to increase cognitive load [Fakhoury et al., 2019], and non-native English

speakers have been found to often struggle with learning English-based programming

languages [Guo, 2018]. Future work should reconcile this disparity, and aim to show

how results from studies on cognition can aid understanding programs.

ML models for code. Recent advances in machine learning (ML) models trained on

large corpora of programs have shown models’ ability to perform tasks like renaming

functions, bug detection, etc. [Allamanis et al., 2018a]. Deep networks learn a

‘language model’ of programs, and likely learn a generalized way to represent these

programs. Do these model-learned representations correspond to the representations

(activation data) in the different fROIs from our study? Such a correspondence may

have far reaching implications. For instance, if we can probe and isolate specific

weights or layers that encode loops and recursion in a recurrent model like seq2seq,

code2seq, or GPT-3, the existence of a correspondence between representations may

help locate the encodings of loops and recursion in our brains. Such a correspondence

has recently been established between representations stored in the visual cortex and

those learned by deep convolutional networks for image processing and recognition

140

[Yamins et al., 2014, Khaligh-Razavi and Kriegeskorte, 2014, Cadena et al., 2019].

This promises to be a compelling direction for future work.

5.8 Threats to validity

There are limitations to the results we report in this work. One possible threat is posed

by the tasks we designed – do our programming tasks measure code comprehension

and understanding? The programs we present in this study are short snippets of

procedural code with limited program properties. They do not have complex control

and data dependencies generally seen in production-grade programming projects.

Properties like function calls, objects, types, complex data, and state changes in the

program are not included either and should be studied in the future, building on the

understanding of simpler snippets provided by our work. Further, we study a very

specific activity related to programming – reading programs, and do not investigate

other equally important aspects like designing solutions, selecting appropriate data

structures, and writing programs.

In designing our code stimuli, having overtly informative variables names poses

the risk of participants not going through all the lines of code presented to them,

and instead just guessing what the code does by gleaning variable names. To avoid

this, we constrain our variable names to be informative and natural (as it would

appear in a real codebase) to the extent they do not reveal fully the intent of the

entire code snippet. However, such a constraint does not appear in actual coding

scenarios. Disparate stimuli are a source of possible confounds. If some conditions had

disproportionately longer code than others, it would be unclear if any trend we saw in

brain activations were a function of the condition, or such factors like code length. In

an attempt at avoiding this, we ensured that the stimuli in our 3× 3× 2 conditions

had similar code lengths and overall response times. However, they are not all equal.

Expertise is also a potential confound which could affect the generalizability of

the results we see. The majority of our participants were recruited from a university

setting and had roughly 3-6 years of programming experience. While our participants’

141

experience level was largely homogeneous in our study, expertise could interact with

brain functions associated with program comprehension, as it does with other cognitive

functions [Agrawal et al., 2018, Hoenig et al., 2011, Gomez et al., 2019]. Accounting

for the role of expertise would require running these experiments on a population with

varying proficiencies.

Neuroimaging experiments generally risk lack of generalizability of results owing to

low sample sizes. In our work, the relatively small sample sizes (N=24 for Experiment

1, and N=19 for Experiment 2) affect only our group analyses (of comparing aggregate

information across participants). Although these sample sizes are the norm in the

neuroimaging community, the robustness of our results are limited by the small number

of participants. We see this as an opportunity for authors from similar neuroimaging

studies to collaborate to analyze data across these works, which will also help amortize

the high costs of carrying out this type of experiments.

142

Chapter 6

Convergent representations of

computer programs in humans and

code models

Preface. This chapter, in full, is a re-print of Convergent representations of

computer programs in human and artificial neural networks. Srikant*, S.,

Lipkin*, B., Ivanova, A. A., Fedorenko, E., and O’Reilly, U.M. (2022). NeurIPS 2022

[Srikant et al., 2022]. Ben contributed equally with me as the primary author of this

work.

Refer to Section 1.4 to read more about the motivation behind this work, and how

it connects to the rest of the chapters presented in this thesis.

6.1 Introduction

Computer code comprehension is a complex task which recruits multiple cognitive

processes—from syntactic parsing to mentally simulating programs. Despite the

prevalence of this task, the representations of code processed in the human brain

during code comprehension remain uninvestigated. Is it possible that common code

properties and program semantics are faithfully represented in brain activity patterns

when code is read and evaluated? A few prior works have used data derived from

143

functional magnetic resonance imaging (fMRI) and electroencephalography (EEG)

to locate physical regions in the brain involved in code-related activities like code

comprehension and debugging [Siegmund et al., 2017, Floyd et al., 2017, Peitek et al.,

2018, Castelhano et al., 2019, Ivanova et al., 2020, Liu et al., 2020b, Ikutani et al.,

2021, Peitek et al., 2021], code writing [Krueger et al., 2020, Karas et al., 2021],

and data structure manipulation [Huang et al., 2019]. These studies have helped

determine whether code-related activities join other activities supported by those

brain regions, such as working memory (processed by a set of brain regions known

as the Multiple Demand system) or language processing (processed by the Language

system–another set of brain regions). While these results improve our understanding

of the brain regions involved in code comprehension, it still remains unclear what

specific code-related information these regions encode. For example, does the response

in a region seen during code comprehension encode specific syntactic or semantic code

properties? Do responses from multiple brain regions correspond to the same set of

properties? Or, are different code properties encoded in different regions?

A possible approach and its limitation. One way to learn what information

is encoded in the brain is to decode a code property of interest from recordings of

brain signals when reading code (through fMRI or EEG). Being able to decode the

property accurately from a specific region of the brain establishes that information

related to that code property is faithfully represented in that brain region. A question

central to such a decoding analysis is the choice of the target code property–what code

properties should be investigated? We can hand-select a set of fundamental properties

of code and test if they can be decoded. While helpful, such a set will not preclude

other, more complex aspects of code possibly being encoded.

ML models of code as a tool to reverse engineer what is encoded. To

address the limited scope of hand-selected properties, we look to machine learning

(ML) models trained on code. Dubbed code models, they are trained on large corpora

of code, in an unsupervised manner, to learn ML model representations of computer

programs. Code models are increasingly being used in software engineering workflows

[Allamanis et al., 2018a], and have been shown to perform well on tasks like code

144

summarization [Alon et al., 2019a], detecting variable misuse [Bichsel et al., 2016],

and more recently, code auto-completion [Chen et al., 2021a]. These representations

have been shown to encode and describe complex code properties [Bichsel et al., 2016,

Allamanis et al., 2018d, Srikant et al., 2021]. Successfully decoding these code model

representations from brain activity data then allows us to probe whether complex

code properties are also encoded in the brain.

Besides serving as a tool to reverse engineer what is encoded in different brain

regions, another distinct advantage of decoding code model representations is its

potential to serve as a tool to reverse engineer our cognitive processes. It is currently

unclear what mechanisms drive code comprehension. If we find one class of ML models

(say, masked language models) to be more predictive than another (say, autoencoders),

it is reasonable to suspect that our brains optimize objectives more similar to that of

masked-LMs than that of autoencoders when comprehending code. As a corollary, a

poor correspondence between the information encoded by our brains and ML models

suggests the possibility of unexplored neural architectures and objectives which may

better model our cognition, which in turn may outperform extant ML models. [Yamins

et al., 2013] first showed how information encoded in our visual system resembles what

convolutional neural networks learn when trained to recognize images. We attempt

to establish a similar correspondence between code models and the human brain in

comprehending code.

Why code comprehension? We focus on code comprehension in this work because

very little of this important skill has been analyzed from a cognitive neuroscience

perspective while steady advances are being made in training ML models to understand

code and increase programmer productivity [Fedorenko et al., 2019, Hellendoorn

and Sawant, 2021]. Extant ML models for understanding programming are direct

adoptions of the state-of-the-art in language processing research. However, recent

works in neuroimaging like Liu et al. [2020b] and Ivanova et al. [2020] suggest that code

comprehension does not share the same neural bases as natural language comprehension.

Do code models then mimic human cognition of programs? If not, can we consider

other model architectures and training objectives which are directly inspired by results

145

from neuroscience? Our work provides early considerations towards these directions.

Further, characterizing the representations of different code properties in the human

brain can inform us about the nature of human algorithmic problem solving more

generally. We can possibly characterize signatures of brain activity corresponding to

fundamental logic operators like iterative reasoning, conditional reasoning, retrieving

calculations that were previously computed, etc. seen in individuals when solving

carefully designed code comprehension tasks. Such signatures will then allow us

to characterize other tasks which involve similar logic operators, but which are not

naturally described as computer programs e.g. general logic reasoning, problem

solving, and more generally, our ability to employ abstractions and form concepts

[Rule et al., 2020].

Our setup. We introduce a framework to evaluate the code properties encoded in

human brain representations of code by analyzing fMRI recordings of programmers

comprehending Python programs. We present two means of proceeding— one, probing

of brain region representations for specific code properties, and two, analyzing the

mapping of these representations onto various code models with differing model

complexity. We utilize the publicly available dataset from [Ivanova et al., 2020]

for all our analyses as it offers high quality, granular brain response data on code

comprehension stimuli controlled across multiple code properties. We train affine

models on brain representations to predict hand-selected code properties which express

syntactic and semantic behavior of programs. Similarly, we predict code representations

obtained from a suite of code models. We investigate the effects that brain regions,

the nature of code properties, and the complexity of the code models have on the

accuracies of these prediction tasks.

Key findings. We explore two questions: (1) Do brain systems encode specific code

properties? Are there differences in how well each brain system encodes each code

property? (2) Do brain systems encode more complex properties of code, derived

from the representations of code models? To answer these, we perform three critical

comparisons: between code properties and code models, code models and brain systems,

and brain systems and code models. We further provide a preliminary analysis into the

146

relationship between code models and the brain in the context of what properties code

model representations encode. We find the Multiple Demand system and the Language

system consistently encode both hand-selected code properties and data-derived code

model representations, using features which cannot be explained by only low-level

visual characteristics of the code. Within this set, the Multiple Demand system most

effectively decodes runtime properties of code like the number of steps involved in a

code’s execution, while the Language system decodes syntax-related properties like

the number of tokens in a program and the control structures present in it. These

results improve our understanding of the functional organization of the two brain

systems—MD and the Language systems—that we study, and provide initial evidence

for incorporating the roles of these two distinct brain systems in the design of training

objectives of code models.

We provide an open-source framework to replicate our experiments, and we release

our data and analysis publicly. Link - https://github.com/ALFA-group/code-represe

ntations-ml-brain. This should enable authors from other neuroimaging studies or

code model developers to collaborate and analyze data across these works, which will

also help amortize the high costs of carrying out such experiments.

6.2 Related Work

Of the prior works that have investigated the neural bases of programming through

fMRI and EEG techniques [Siegmund et al., 2017, Floyd et al., 2017, Peitek et al.,

2018, Castelhano et al., 2019, Huang et al., 2019, Krueger et al., 2020, Ivanova et al.,

2020, Liu et al., 2020b, Ikutani et al., 2021, Peitek et al., 2021] and through behavioral

studies [Prat et al., 2020, Casalnuovo et al., 2020a, Crichton et al., 2021], the following

probe brain recordings for program properties encoded in them.

Floyd et al. [2017] learn a linear model to successfully classify whether an observed

brain activity corresponds to reading code or reading text. Ikutani et al. [2021] study

expert programmers and show that it is possible to classify code into the four problem

categories–math, search, sort, and string from the brain activations corresponding to

147

https://github.com/ALFA-group/code-representations-ml-brain
https://github.com/ALFA-group/code-representations-ml-brain

the code. Similarly, Liu et al. [2020b] classify whether a brain signal corresponds to

code implementing an if condition or not. Peitek et al. [2021] analyze correlations

between brain recordings of participants reading code and a set of code complexity

metrics.

In testing for code properties, our work uses a similar methodology (a linear model

trained on fMRI data), but we evaluate a larger set of static and dynamic code

properties, often reflecting key programming constructs like control flow. Further, we

perform these tests in the brain regions identified by Liu et al. [2020b] and Ivanova

et al. [2020] as being responsive specifically to code comprehension, offering finer

insight into the content of these specific regions’ representations. In addition, we

study representations generated by a suite of ML models with varying complexity and

compare those learned representations to brain representations.

Brain representations have also been studied in domains like natural language,

vision, and motor control. Among related works in natural language, a domain that

resembles programming languages, Mitchell et al. [2008], Pallier et al. [2011], Brennan

and Pylkkänen [2017], Jain and Huth [2018], Gauthier and Levy [2019], Schwartz et al.

[2019], Wang et al. [2020b], Schrimpf et al. [2021a], Cao et al. [2021], Caucheteux et al.

[2021], Toneva and Wehbe [2019] have studied brain representations of words and

sentences by relating them to representations produced by language models. While

the broader tools we use to investigate these representations, like multi-voxel pattern

analysis (MVPA), are similar to some of these prior works, our focus is on properties

specific to code and not natural language.

6.3 Background

We provide a brief background on fMRI signals as a proxy for brain representations

and describe the brain systems that we probe in this work.

Measuring brain activity with fMRI. Functional magnetic resonance imaging

(fMRI) is a brain imaging technique used to measure brain activity in specific brain

regions. When a brain region is active, blood flows into the region to aid its processing.

148

An MRI machine measures this change in blood flow, and reports BOLD (blood oxygen

level dependent) values sampled at the machine’s frequency [Glover, 2011, usually

2 seconds]. The smallest unit of brain tissue for which BOLD signal is recorded is

called a voxel (an equivalent of a 3D pixel); it comprises several cubic millimeters

of brain tissue. For our analyses, we select subsets of voxels belonging to specific

brain systems. Following common practice, the parameters of a general linear model,

fit to time-varying BOLD values, are used as a measure of the overall activation in

each voxel in response to a given input. It is the values of these parameters that, in

concordance with common practices in the neuroscience community, can be accessed

as brain representations.

Figure 6-1: The approximate locations
of MD and the Language systems in the
human brain. The regions depicted are
used as a starting point to functionally
localize these systems in individual partic-
ipants.

Brain systems. A system of brain regions

can span different areas of the brain but be-

haves as a holistic unit, showing similar pat-

terns of engagement across a given cognitive

task. We probe the following systems in our

work: (a) Multiple Demand (MD) sys-

tem: this system of regions is known to en-

gage in cognitively demanding, domain agnos-

tic tasks like problem solving, logic, and spatial memory tasks. Liu et al. [2020b] and

Ivanova et al. [2020] reported that this system is active during code comprehension.

(b) Language system (LS): this system responds during language production and

comprehension across modalities (speech, text) and languages (across 11 language

families, including American sign language). (c) Visual system (VS): these regions

respond primarily to visual inputs. (d) Auditory system: these regions respond

primarily to auditory inputs.

We probe the Visual system and Auditory system since they are involved in general

perception. While we do not expect activity in Auditory system, we expect the

Visual system to reflect low-level visual properties of the code (e.g. code length and

indentation to reflect code-related properties.

149

6.4 Brain and Model Representations

We describe in this section the method we follow to gather representations of code in

the brain (Section 6.4.1), evaluate the different code properties they encode (Section

6.4.2), and how we compare brain representations to those generated by ML models

(Section 6.4.3).

6.4.1 Brain representations and decoding

We provide a summary of how we process activation signals in the brain elicited by

code comprehension, to probe whether they encode any specific code properties.

Dataset. We use the publicly available brain recordings released as part of the study

by Ivanova et al. [2020] (MIT license). It contains brain recordings of 24 participants,

each of whom gave consent and is not personally identifiable according to Ivanova et al.

[2020] protocol requirements, reading 72 programs from a set of 108 unique Python

programs. The 72 programs were presented in 12 blocks of 6 programs each. These

programs were 3-10 lines in length and contained simple Python constructs, such

as lists, for loops and if statements. A whole program was presented at once, and

the task required participants to read the code and mentally compute the expected

output, press a button when done, and select one of four choices presented to them

which matched their calculated output.

From dataset to brain representations. The original dataset contains 3D images

of the brain of each participant. Each voxel value in these images is an estimate of

the response strength in this voxel when a particular code (or sentence) problem is

presented. To determine which brain systems contain information about particular

code properties, we focus our analyses to four systems – MD, Language, Visual, and

Auditory (Section 6.3). A vector of voxels’ activation values in each brain system

is then taken to constitute that system’s representation of a computer program and

serves as an input to all our analyses.

Analyzing brain representations of code. We probe brain representations from

each participant separately. We do not average data across participants since the

150

Figure 6-2: Overview. The goal of this work is to relate brain representations of code to
(1) specific code properties and (2) representations of code produced by language models
trained on code. In Experiment 1, we predict the different static and dynamic analysis metrics
from the brain MRI recordings (each of dimension 𝐷𝐵) of 24 human subjects reading 72
unique Python programs (𝑁) by training separate linear models for each subject and metric.
In Experiment 2, we learn affine maps from brain representations to the corresponding
representations generated by code language models (each of dimension 𝐷𝑀) on these 72
programs.

regions which respond to any task (comprehending code in our case) need not align

anatomically. For each of two experiments—decoding different code properties, and

mapping to code model representations—we train ridge regression/classification models

which take as input normalized brain representations per participant. We hence learn 24

different regression models, for each code property or code model (one per participant),

and then report the mean performance of these models across participants. This

procedure is also referred to as multi-voxel pattern analysis (MVPA) [Norman et al.,

2006]. Linear models are conventionally preferred for probes into brain representations

since there has been evidence supporting the idea that other brain areas linearly map

information from such brain representations [Kamitani and Tong, 2005, Kriegeskorte,

2011]. We choose a linear model primarily to control for over-fitting in light of the

relatively small dataset.

A remark on data scarcity. For each participant, we train a linear regression/clas-

sification model with L2-regularization for on unique cross-validated leave-one-run-out

folds of the 72 programs they attempted (or 48 programs when sentences are removed).

On the order of 1000 voxels were selected from each brain region responding to any

151

given program per participant, thus resulting in a feature set of dimensions 72× 1000.

Such dimensions allow for strong statistical tests to support the robustness of the

predictions made. As a baseline for the model predictions, we use the accuracy of a

null permutation distribution generated from sampling 1000 random assignments of

the labels.

6.4.2 Code properties

We attempt to decode the following code properties from brain representations.

(a) Code vs. sentences: classify whether an input stimulus is a code or an English

sentences describing a code (referred to as sentences). (b) Variable language:

classify whether a program contains variable names written in English or Japanese

(written in English characters). (c) Control flow: predict whether a program contains

a loop (for loop), a branch (if condition), or has sequential instructions. (d) Data

type: predict whether a program contains string or numeric operations. (e) Static

analysis: predict static properties of a program like token count: number of tokens in

the program, node count: number of AST nodes, cyclomatic complexity, and Halstead

difficulty. The latter two metrics have been used by software engineering practitioners

to quantify the complexity of code, and to quantify the difficulty a human would

experience when comprehending code respectively. We defer predicting other advanced

static analysis metrics such as tracking abstract interpretation joins, data flow analysis-

related metrics, etc. to future work. (f) Dynamic analysis: predict information

about a code’s execution behavior like runtime steps: number of instructions executed

in the program, and bytecode ops: number of bytecode operations executed in running

the program.

Program length as a potential confound. Since the properties we examine can

also potentially be differentiated using program length and other low-level code features,

it is a potential confound in our experiments. We measured the inter-correlations

of these properties, and their correlation to the number of tokens in the program

(program length) We expectedly found the four static analysis properties to be highly

correlated to each other and to bytecode ops. We hence use one representative metric

152

each from the two categories of properties for the rest of our analysis–token count

for static analysis, and runtime steps for dynamic analysis. Importantly, the other

properties we examine cannot be explained by program length alone, and therefore

program length is not a confound in our experiments.

Mapping to code properties. The brain representations (Section 6.4.1) are mapped

to each of the code properties by training a ridge regression (for static analysis and

dynamic analysis properties; continuous values) or a classification model each for

every participant-property pair. To evaluate model performance, we use classification

accuracy when the predicted values are categorical (e.g. string vs. numeric data

types), and the Pearson correlation coefficient when the predicted values are continuous

(e.g. number of runtime steps). We choose Pearson correlation over RMSE, the

canonical distance metric for continuous values, for its simplicity and interpretability.

When testing for the significance of these predictions, we perform false discovery rate

(FDR) correction for the number of brain systems tested and the number of properties

tested.

6.4.3 Model representations and decoding.

We evaluate a bench of unsupervised language models, spanning from count-based

language models to transformer neural networks [Vaswani et al., 2017]. These models

were all trained on large (∼1M programs) Python datasets [Husain et al., 2019, Puri

et al., 2021]. We use the output of the trained encoders (raw logits) in each of the

neural network models as representations of the code input to the model. We vary

the general complexity of these models to test whether that variation is meaningful in

establishing the quality of brain to model fits. Model complexity here is the number

of a model’s learnable parameters. We evaluate the following models, ordered by their

increasing model complexity: simple frequency-based language models—bag-of-words,

TF-IDF; auto-encoder based unsupervised models—seq2seq [Sutskever et al., 2014],

CodeTransformer [Zügner et al., 2021], CodeBERT [Feng et al., 2020], CodeBERTa

[HuggingFace, 2020]; auto-regressive models with similar model complexity—XLNet

[Yang et al., 2019], CodeGPT [Microsoft, 2021].

153

Baseline: Token projection model. We compare the results of the above models

against an aggressive baseline (relative to the null-distribution labeling baseline), a

token projection model provided by using unique Gaussian-distributed random vectors

for the token embeddings in a vocabulary, and returning the sum of these token

embeddings across a program. The resultant embedding is not transformed by any

model or any weights–it instead serves as a proxy for the tokens that appear in the

program. The results of this baseline model should be interpreted as the level of

performance achievable from the presence of tokens alone with no semantic or syntactic

information.

Mapping to code model representations. The brain representations (Section

6.4.1) are mapped to code representations by training another set of ridge regression

models to learn an affine map, and a ranked accuracy metric is used to compare

outputs. Ranked accuracy scores are commonly used in information retrieval where

several elements in a range are similar to the correct one. In our case, the top-ranked

prediction by the linear model indicates the closest fit (Euclidean distance) to the

code model’s representation. When reporting result significance, we perform false

discovery rate (FDR) correction for the number of brain systems and the number of

models. All experiments in this work were run on a single 8-core laptop in under an

hour following setup.

6.5 Experiments & Results

Our experiments address two research questions:

• Experiment 1. How well do the different brain systems encode specific code proper-

ties? Do they encode the same properties?

• Experiment 2. Do brain systems encode additional code properties represented by

computational language models of code?

154

6.5.1 Experiment 1 - How well do the different brain systems

encode specific code properties? Do they encode the

same properties?

We analyze the classification models and regressions trained on brain representations

to predict each of the code properties described in Section 6.4.2. The results of our

analyses are summarized in Figure 6-3. The classification and regression tests are

marked on the x-axis of the left and right subplots respectively; the classification

accuracy or Pearson correlation for each of the tasks is marked on the y-axes. We

plot dynamic and static properties separately from the others because their baselines

are different due to a difference in the similarity metric (classification accuracy vs.

Pearson correlation). The baselines for the categorical code properties differ from each

other due to variation in the number of target classes.

Auditory and Visual systems. The Auditory system and the Visual system serve

as negative and baseline controls for the other systems. Since our code comprehension

task is visual, we do not decode any meaningful information between programs from

Auditory system, although we do observe decoding of code vs sentences, perhaps

explained by previous work showing auditory cortex activation during silent sentence

reading [Perrone-Bertolotti et al., 2012]. The Visual system serves as a baseline for

low-level visual features of the code (the layout and indentation of the code, the

presence of letters and alphabets in the programs, etc.). In Analysis 2, we show that

the MD and the Language systems encode more than such visual features. The MD

and the Language systems yield the following observations.

Analysis 1 - How accurately are different properties predicted by MD and

LS? The MD and LS together decode all the properties well above chance barring

variable language. The variable language finding is consistent with Ivanova et al. [2020],

who show a lack of any significant difference in the aggregate neural activity between

English and Japanese variables names—variable names seem to not be encoded any

differently in the context of programs we study. To analyze the other results, we

use paired two-sample 𝑡-tests (𝑝 < 0.05; FDR-corrected) and examine whether for a

155

Figure 6-3: Affine models are learned on brain representations to predict each of the code
properties described in Section 6.4.2, and a collection of code models described in 6.4.3, for
each of the 24 participants. The mean decoding score across subjects is shown here, and
error bars reflect the 95% confidence interval of the mean subject score. A solid line on each
bar presents the empirical baseline for a null permutation distribution on shuffled labels. All
decoding scores were compared to this permuted null distribution using a one-sample 𝑧-test,
and the significance threshold was defined at 𝑝 < 0.001; false-discovery-rate-corrected for
the number of tests in each panel (FDR). Statistically significant results are denoted with a
*, marked at the base of the bars. Additionally, ∙-capped lines denote selected significant
paired 𝑡-tests (𝑝 < 0.05; FDR).

given property, any one brain system decodes it significantly more effectively than

another. We find that the MD system decodes the dynamic analysis property better

than the Language system. We additionally test if any brain system has a preference

for a specific code property over another. We find that the MD decodes the dynamic

analysis property significantly better than the static analysis property. These findings

establish the role of the MD system in encoding code-simulation and execution related

information—an important of aspect of code comprehension.

Analysis 2 - Multi-system partial regression analysis. The decoding

performance of the VS is comparable to that of the MD and LS (Figure 6-3). To assess

the possibility that all three systems - MD, LS, and VS encode the same properties (all

potentially related to low level program features), we employ a multi-system partial

regression analysis. For each brain system, MD and LS (𝑆𝑖), we train two models–one

which decodes from VS, and another which decodes from 𝑆𝑖+VS. If the difference in

the prediction accuracies between the two models is significant, we conclude that 𝑆𝑖

encodes at least some information which is orthogonal to the information encoded

by the Visual system. This method is similar to a variance-partitioning analysis

156

which is often employed in encoding models, e.g. [Deniz et al., 2019]. For all core

properties, control flow , data type, dynamic analysis, and static analysis, we find

the MD to encode information orthogonal to the VS. For control flow and static

analysis, the LS also encodes information orthogonal to the VS. This suggests that

low-level code properties are insufficient to explain the key results from Experiment 1.

Other combinations in the regression model reveal that the MD encodes information

orthogonal to the LS when predicting code vs. sentences and dynamic analysis.

Key learnings from Experiment 6.5.1. All core code properties are decodable

from the representations of high-level brain systems, and this information is beyond

that which can be explained from low-level visual information alone. Although no

property is exclusively encoded in any one brain system, the MD system significantly

encodes dynamic analysis-related properties–more than what the LS encodes, and

more than static analysis properties. Similarly, we find evidence for the LS to also

significantly encode static analysis and control flow related properties. These are new

results on the nature of code properties different brain systems seem to process and

encode. To explore properties which may not be specified by the set we investigate

in this experiment, in the following section, we leverage code models as hypothesis-

free proxy representations for code syntax and semantics, and see if any one system

preferentially encodes a code model.

6.5.2 Experiment 2 - Do brain systems encode additional code

properties encoded by computational language models

of code?

We train ridge regression models with brain representations of programs from specific

brain systems to predict code model representations of the same programs. The set of

results from this experiment are summarized in Figure 6-3.

Auditory and Visual systems. Similar to Experiment 1, these systems perform

as expected, with the Auditory system exhibiting the lowest decoding performance

across code models, and the Visual system acting as a proxy for low-level information.

157

Analysis 1 - How well do brain representations in MD and LS map to code

model representations? We find that the MD and LS map to all the models in our

suite significantly more accurately than the null permutation baseline (Figure 6-3).

Further, we find that the MD ranked accuracy is higher than LS for CodeBERTa,

CodeTransformer, seq2seq and TF-IDF (differences evaluated using two-sample 𝑡-tests;

𝑝 < 0.05; FDR-corrected.

Analysis 2 - The effect of model complexity on decoding to code models.

We investigate the impact model complexity has on the performance of the mapping

between brain and code representations.

We compare each of these code models against the Token Projection baseline

model, which only encodes the presence of specific tokens, with no contextual or

distributional information. We find that the MD system maps to all the models

more accurately than the Token Projection, but this is not observed for the LS. In

a set of paired two-tailed 𝑡-tests (𝑝 < 0.05; FDR-corrected), we find that the MD

maps to three models: CodeBERTa, CodeTransformer, and bag-of-words significantly

more accurately than to the Token Projection model. Curiously, since all but 3 of

these mappings do not significantly surpass the model which can be explained using

only token-level information, these data suggest that the brain signals we access

primarily encode token-level information. To investigate this further, we analyze the

correspondence between brain representations and code models in the context of the

code properties they encode.

Analysis 3 - Code model and brain representations in the context of code

properties. We first evaluate whether the different code properties we investigate in

this work can be decoded from code model representations. We find that all the code

properties are strongly encoded in all models. Since we have computed the mapping

accuracies from code models → code properties (mentioned above), and from brain

representations → code properties. we compute how well brain representation decoding

results map to code model decoding results using Spearman rank correlation. We

find two clusters in decoding performance across the code properties, each reflecting a

distinct computational motif. We see perfect rank correspondence between the 𝑧-scores

158

of the decoding results for the MD and three transformer architectures: CodeBERTa,

CodeBERT, and CodeTransformer, and between LS and two token-based models:

bag-of-words and Token Projection.

Key learnings from Experiment 6.5.2. The MD decodes representations from

four models of code significantly more accurately than LS, providing evidence that

some aspects of code are more faithfully represented in the MD. A follow up partial

regression analysis, as in 6.5.1, reveals that for most models, MD encodes information

orthogonal to the LS, and each system encodes information above low-level VS.

Analyzing the correspondence between code models and brain representations

based on the code properties they each encode reveals that the MD system maps

preferentially to complex code models, encoding more than just token-level information.

We discuss these results further in the following section.

6.6 Discussion

Through this study, we learn what computer program-related information can be

decoded from the brain, and which brain systems primarily encode that information.

Brain representations and code properties. We show that the MD system

preferentially encodes dynamic analysis-related properties when compared to other

brain systems and other properties. Further, we find the Language system encodes

syntax-related properties like control flow and static analysis. These findings are

complementary to the results from Liu et al. [2020b] and Ivanova et al. [2020]–

they show how the MD system is recruited in both mentally simulating code and

comprehending code. They however do not find any consistent response in the

Language system to either code simulation or comprehension. Our results show that

despite not exhibiting significant average responses, these systems do encode code-

specific properties, improving our understanding of these brain systems’ functional

organization.

Brain representations and code model representations. Another key contri-

bution of our work, from Experiment 2, is demonstrating that it is possible to map

159

brain representations to representations learned by code models. In particular, we

observe encoding of the properties represented by code models in the MD and LS,

with 4 models more accurately mapped from MD. This is particularly noteworthy

since these models, which are trained on source code symbols, can be mapped more

faithfully from the representations of a network implicated in problem-solving than

one associated with composition in languages.

We also considered model complexity as a relevant feature, and note that the MD

and LS map to a combination of token projection embeddings almost as well as to

complex models like XLNet. One plausible explanation for this surprising result is

that the program stimuli are simple enough to allow the different properties evaluated

in our work (control flow , data type, etc.) to be discerned from token level information

alone (as validated in Experiment 1), which is likely why the Token Projection model

also predicts these properties very well. Taken together, these data suggest that the

information being decoded from brain activations in these two regions is driven at

least by the information conveyed by tokens in the programs. This finding is notably

consistent with work in the field of natural language which show swaths of cortex are

predicted primarily by the token-level properties of sentence stimuli [Toneva et al.,

2022].

While we see that information encoded in both the MD and the Language systems

are driven by token-level information, a clearer trend emerges when evaluating brain-

code model mapping in the context of specific code properties. We find that the MD

shows decoding performance consistent with complex model architectures, suggesting

that it may encode more than just token-related information, as complex code models

capture contextual information as well. This is a new result, which along with

Experiment 1, suggest distinct roles for the LS (purely token-level) and MD (more

complex interactions) with respect to computer code comprehension and execution.

Way forward. Our findings have the potential to improve our understanding of the

organization of the human brain, which can in turn lead to the design of better code

models. In computer vision, results by Tschopp et al. [2018], Schrimpf et al. [2020]

show how deep network architectures that mimic the visual system exhibit superior

160

image classification rates on image recognition tasks. Our findings prompt yet another

reconsideration of the current design of ML models of code. Extant code model

architectures do not explicitly model the Multiple Demand system in any way–they

only model syntactic information and infer dependency information from program

ASTs. Taking inspiration from the role of the Multiple Demand system we identified

in this work, modeling dynamic runtime information as well as static code structure

should be explored. See Srikant and O’Reilly [2021] for a related discussion.

We also provide initial results supporting the ability to decode specific and funda-

mental code-related primitives like control flow information. This sets us up to study

other complex human cognitive processes which involve such primitives, but which

are not naturally described in terms of code, like general problem solving, employing

hierarchical and complex decision making strategies, etc. Such a study also promises

to support the recent proposal of a child as a hacker [Rule et al., 2020].

Our work also promises to enhance code prosthetics–artificial interfaces that can

help the physically challenged engage with programming environments. Such systems

generally rely on designing and constructing brain decoders–models that convert brain

activity to electrical impulses modulating external devices, which remains an open

challenge. See the discussion in Nuyujukian et al. [2018] and Andersen et al. [2019]

for details.

Limitations. The average program in any software project exhibits non-trivial

control and data dependencies, object manipulation, function calls, types, and state

changes. However, the programming tasks in Ivanova et al. [2020] are short snippets of

procedural code with limited program properties. Responses to longer programs, with

more complex properties and across multiple languages, should be studied on a larger

number of participants in the future, in order to build on the trends provided by our

work. Further, while there are multiple equally important aspects to programming

like designing solutions, selecting appropriate data structures, and writing programs,

here we have chosen to study only a single specific activity—code comprehension.

Future work should explore these other aspects. Our results do not allow us to infer

whether the MD and LS are driven by the same underlying features of code that are

161

used to discriminate between code properties and code models, so future work might

consider an encoding analysis. Finally, as with all neural decoding analyses, extracting

information from the mental states of participants should be done with caution to

ensure it is not used for any exploitative purpose.

162

Chapter 7

Goal-optimized linguistic stimuli for

psycholinguistics and cognitive

neuroscience

Preface. This chapter, in full, is a re-print of GOLI: Goal-Optimized Linguistic

Stimuli for Psycholinguistics and Cognitive Neuroscience. Srikant, S., Tuckute,

G., Liu, S., and O’Reilly, U.M. Submitted to ACL 2023 [Srikant et al., 2023b]. The

fMRI experiment (experiment 2) described in this work is described in full in [Tuckute

et al., 2023].

Refer to Section 1.4 to read more about the motivation behind this work, and how

it connects to the rest of the chapters presented in this thesis.

7.1 Introduction

Experiments in psycholinguistics and cognitive neuroscience of language aim to un-

derstand the representations and computations that support human comprehension

and production abilities. In comprehension studies in particular, experiments record

behavioral (eye-tracking and self-paced reading times) or neural outcomes (electroen-

cephalogram, EEG, and functional magnetic resonance imaging, fMRI) while humans

process carefully designed linguistic input [Lai et al., 2015, Shain et al., 2019b, Wehbe

163

Specify goals? Data-
driven?

Automate?

Handcrafted ✓ p p

Template-based ✓ p ✓

Naturalistic corpora p ✓ ✓

GOLI (this work) ¦ ✓ ✓

Table 7.1: GOLI automates generating stimuli which satisfy experimenter-supplied goals. It
handles a broader set of goals than handcrafted and template-based methods while being
data-driven.

et al., 2021, Heilbron et al., 2022]. Similar methods have been recently extended to

probe how computational and language models process such linguistic input as well

[Warstadt et al., 2019, Jeretic et al., 2020].

Linguistic stimuli (sentences) used in such experiments are typically hand-constructed

[Martín-Loeches et al., 2012, Lai et al., 2015]. While handcrafting provides the ex-

perimenter with significant control over the goals of the constructed stimuli (e.g.

the stimuli should adhere to grammatical rules such as subject-verb agreement or

convey information about a particular topic), assembling a sizeable set of stimuli

is time- and resource-intensive. Another important concern is the diversity of the

resulting stimuli—they are generally limited by the experimenter’s vocabulary and

assumptions. Experimenters could easily be misguided by their top-down assumptions

or an inaccurate formulation of the hypothesis being tested and use sets of words,

sentence structures, or concepts that are biased in some way. Studies have shown how

such biased stimuli have led to incorrect scientific conclusions [Chaves and Dery, 2018,

Siegelman et al., 2019].

Another approach to constructing stimuli is to use templates [Warstadt et al.,

2020]. An experimenter defines templates which structure and constrain stimuli.

Stimuli are generated with a template by filling them with words sampled from

different naturalistic vocabularies (e.g. of parts of speech). While this automates

the process of creating stimuli and allows goal specification similar to handcrafting

[Warstadt et al., 2019, Jeretic et al., 2020], the generated stimuli are still constrained

to the experimenter’s notions of a ‘correct’ template. Templates also often generate

unnatural and incorrect sentences, which then need to be manually filtered out by the

164

SerifShow SVG Download SVG

\boldsymbol\theta\mathrm{map}\cirEnter LaTeX

Linguistic stimuli

Linguistic / cognitive outcome

Novel linguistic stimuli

The cat
was angry Seed stimulus I don’t find that particularly funny.

Counterfactual minimal pair I don’t find that particularly annoying.
fMRI task - high Pear don’t find that particularly Cance.
fMRI task - low This don’t find that particularly funny.

Figure 7-1: Overview. GOLI transforms a seed linguistic stimulus into a novel stimulus
which either contains a desired linguistic property or elicits a desired cognitive outcome. It
uses a language model (𝜃LLM) to represent the seed sentence, a mapping model (𝜃map) to
map it to the desired property, and uses a gradient-based method to modify the seed sentence
(propagates gradients through the composed model 𝜃map∘ 𝜃LLM) into a novel one. The table
(right) shows an example of stimuli generated from a seed stimulus for the three objectives
we demonstrate in this work.

experimenter.

Yet another popular approach, which we refer to as the search-based method

(SBM), involves randomly sampling from naturalistic text corpora [Kennedy et al.,

2013, Nastase et al., 2021, Heilbron et al., 2022]. While this approach circumvents

biases potentially introduced in handcrafted and template-guided stimuli, it has no effi-

cient way to identify goals like targeted phenomena (e.g. sentiment polarity, surprisal,

agreement, garden-path effects, licensing, gross syntactic expectation, center embed-

ding, long-distance dependencies, and others mentioned in Marvin and Linzen [2018],

Hu et al. [2020]) or infrequent phenomena [Bresnan and Kanerva, 1989, Losiewicz,

1992, Hoffmann, 2004, Ross, 2018, Turner, 2020] within the large corpora that need to

be sampled to find suitable sentences. Prior work has manually edited such sampled

texts and inserted linguistic properties of interest to create naturalistic stimuli [Futrell

et al., 2020]. Further, sampling from corpora does not enable creating minimal pair

stimuli–pairs of sentences that differ only in a very specific linguistic property. Minimal

pairs are extensively used in psycholinguistic and language research to isolate causal

attributes of behavior [Bemis and Pylkkänen, 2011, Kochari et al., 2018, Parrish and

Pylkkänen, 2021]. Thus, minimal pairs, targeted and infrequent phenomena are mostly

studied through stimuli that experimenters handcraft or create from templates.

It then seems that handcrafted and template-based stimuli offer significant control

over the created stimuli, but may introduce undesirable experimenter-biases and are

also time- and resource-expensive to create. On the other hand, automated sampling

165

from naturalistic corpora avoids experimenter-biases, but is not suited to test targeted

or infrequent phenomena (Table 7.1). We propose a method that is data-driven,

automated, efficient, and can fulfill a large set of experimenter goals which includes

targeted and infrequent phenomena.

GOLI (Figure 7-1) is an automated approach to generate goal-optimized linguistic

stimuli. GOLI starts from a seed sentence and modifies it until it satisfies experimenter-

specified outcomes (linguistic or cognitive) by solving a gradient-based optimization

formulation. Constraints on the generated stimuli can be easily enforced via the

optimization formulation, providing the necessary control over stimuli that is typically

offered by handcrafting and template-based approaches. In fact, we show that GOLI-

generated stimuli can satisfy a broader set of goals than what handcrafting or template-

use satisfies. GOLI is data-driven and is not bound to inductive biases of experimenters

since it relies on data-driven computational models to transform the seed sentence

and optimize it to achieve the desired goal.

We demonstrate GOLI on two deliberately different tasks: generation of minimal-

pair counterfactuals and the generation of stimuli which predict specific responses in

the human brain. These tasks differ in the nature of their outcomes, desired goals, and

the constraints imposed on the generated sentences. Across these differences, we show

that GOLI can successfully and easily model the various constraints posed by these

tasks and efficiently generate novel stimuli, outperforming other methods currently

used to prepare stimuli for such tasks. We will make all the code and data related to

this work publicly available.

7.2 Problem description

In this section, we state the assumptions underlying GOLI. We introduce notation

that we use in the rest of this work and then state the problem we solve.

GOLI assumes an experiment uses a set of linguistic stimuli to stimulate either

a language property or a cognitive outcome. Further, it assumes the property or

outcome is quantifiable, and a statistical model can predict its values corresponding

166

to an input linguistic stimulus. For example, if an experiment outcome measures

logical inaccuracy (linguistic outcome) or reading times (cognitive outcome) in a

sentence, then GOLI assumes a model which maps a random sentence stimulus 𝒮 to

a quantifiable measure of either the extent of inaccuracy (former) or the time taken

to read a sentence (latter). We denote the mapping model as 𝜃map- the weights it is

parameterized by, and the linguistic property or cognitive outcome as 𝑦 ∈ R. If the

model does not initially exist, it can be learned as a preliminary step. We discuss in

Section 7.5 the case where learning such a mapping model is not feasible.

Generally, 𝜃map is trained to predict 𝑦 ∈ R from representations 𝑟 ∈ R𝑑 of the

input stimulus 𝒮. We use a large language model 𝜃LLM without loss of generality, i.e.

𝑟 = 𝜃LLM(𝒮). Any alternate representation which is similarly differentiable can also

be used, and this is yet another strength of GOLI.

𝒮 = {𝑥𝑖}𝑛𝑖=1 denotes a sentence stimulus consisting of 𝑛 tokens 𝑥𝑖 ∈ {0, 1}|𝑉 |,

where 𝑥𝑖 is a token from the set 𝑉 , the vocabulary of permissible tokens which the

LLM processes. We provide concrete examples describing the structure of 𝑥𝑖 in Section

7.3. Following this notation, we have 𝑦pred = 𝜃map∘ 𝜃LLM({𝑥𝑖}𝑛𝑖=1), where ∘ denotes

model composition, i.e. 𝒮 is first input to 𝜃LLM, whose output is then input to 𝜃map.

GOLI allows any number of and any kind of such models to be composed together.

We study the problem of generating a sentence 𝒮gen by transforming 𝒮 into 𝒮gen

in a way such that 𝑦pred, the prediction of 𝜃map∘ 𝜃LLM, is close to 𝑦desired, an outcome

specified by the experimenter.

7.3 Method

In this section, we motivate our method using an example. We then show how the

problem of generating novel linguistic stimuli can be cast and solved as a problem in

first-order (gradient-based) optimization. Consider the sentence:

Running slow makes me very happy.

which when input to the model ℳ = 𝜃map ∘ 𝜃LLM predicts the sentiment 𝑦pred =

positive (𝜃map is a binary sentiment classifier). Further, let the vocabulary 𝑉 consist

167

of the tokens:

𝑉 =

⎧⎨⎩Run, Sit, Stand, ing, ed, slow, happy,

car, me, you, very, makes, well, ·, ?

⎫⎬⎭ (7.1)

The sentence has six space separated words with a terminating period symbol in

it. Let’s assume tokenizing this sentence generates the following eight tokens:

𝒮 = {𝑥𝑖}8𝑖=1 = {Run, ing, slow,makes,me, very, happy, ·} (7.2)

Further assume we desire a novel sentence whose prediction is 𝑦desired = negative. The

generation of sentences that we describe in this work involves modifying a subset of

the eight tokens in 𝒮 in a way that results in the model ℳ predicting a value that is

closer to 𝑦desired i.e. is transformed to a negative sentiment sentence.

Two important questions need to be addressed to generate such sentences. First,

which tokens or sites in the sentence should be modified? Of the 𝑛 sites, if we are

allowed to choose at most 𝑘 sites, which set of ≤ 𝑘 sites would best guide ℳ to the

desired prediction. We call this the site selection problem. Second, how should a

token at a given site be modified, and what should the modified token be? We call

this the site perturbation problem.

Site selection. The benefit of isolating site selection as a distinct sub-problem is it

supports complex formulations, such as constraining and optimizing specific sites. For

instance, site selection and site perturbation can be jointly optimized: an optimal site

can depend on the optimal token found by the site perturbation sub-problem and vice

versa.

We employ a simple site selection strategy in this work. To select 𝑘 specific sites

from the available 𝑛 sites, we follow the gradient-based word importance method from

Wallace et al. [2019]. The method first sorts the tokens 𝑥𝑖 in decreasing order of the

magnitude of the gradient on the output 𝑦 with respect to 𝑥𝑖. The top 𝑘 magnitude

tokens are selected as the sites to perturb, since they impact the output the most.

Site perturbation. At a given site, there are three operations which would modify

the token: replace an existing token with another token, insert another token at the

site–either before or after the token present at the site, or retain the token at the

168

site unaltered (this is equivalent to not selecting a site to carry out a modification

operation).

We discuss only replace modifications, since deletion and insertion reduce to replace

modifications. Deletion is replacing with an empty token, and an insertion is a replace

modification applied to a dummy token inserted at a site.

A replacement token modification strategy requires a replacement token 𝑢𝑖∈

{0, 1}|𝑉 | to be identified from the set of tokens 𝑉 . For example, if the selected site for

replacement in (7.2) is 3: slow, then a possible sentence could result from replacing

slow with car (token 8 sampled from the vocabulary 𝑉 in (7.1)), resulting in the

previously unseen sentence: Running car makes me very happy. Increasing the

number of sites to be perturbed results in a sentence that is very different from

the original sentence. Similarly, inserting new tokens can introduce new words and

phrases.

Selecting an appropriate token from a vocabulary is a combinatorially expensive

problem: it takes 𝑂(|𝑉 |𝑘) time to select tokens at 𝑘 sites from the vocabulary 𝑉 , since

each site offers |𝑉 | possible tokens to choose from. The aim is to thus tractably select

a replacement token 𝑢𝑖 at a site 𝑖 such that the predicted activation 𝑦pred matches

𝑦desired. We set this up as a combinatorial optimization problem and solve for 𝑢𝑖.

7.3.1 Solution formulation

Based on the site selection perturbation formulation, we formally define the described

replacement operation.

For a sentence 𝒮 = {𝑥𝑖}𝑛𝑖=1and a set 𝐾 of 𝑘 site indices to perturb, wherein each

site index 𝑗 satisfies (1 ≤ 𝑗 ≤ 𝑛), we formalize site perturbation in the following way:

we introduce a one-hot vector u𝑖 ∈ {0, 1}|𝑉 | to encode the selection of a token from 𝑉

which would serve as the replaced token for at a chosen site.

If the 𝑗th entry [u𝑖]𝑗 = 1 and 𝑖 ∈ 𝐾, then the 𝑗th token in 𝑉 is used as the modified

token which will replace 𝑥𝑖 at the site 𝑖. We also impose the constraint 1𝑇u𝑖 = 1,

implying that only one perturbation is performed at 𝑥𝑖.

Let vector u ∈ {0, 1}𝑘×|𝑉 | denote 𝑘 different u𝑖 vectors, one for each token 𝑖 ∈ 𝐾,

169

where |𝐾| = 𝑘. We then define a newly generated or transformed sentence 𝒮gen as

comprising tokens {𝑥gen
𝑖 }𝑛𝑖=1, where each 𝑥gen

𝑖 is defined as:

𝑥gen
𝑖 =

⎧⎪⎨⎪⎩
𝑢𝑖, ∀𝑖 ∈ 𝐾, where 1𝑇u𝑖 = 1, u𝑖 ∈ {0, 1}|𝑉 |

𝑥𝑖, ∀𝑖 ̸∈ 𝐾

(7.3)

We solve the following objective to obtain 𝑢:

minimize
𝑢

ℓ(𝑢;𝑥,𝜃map ∘ 𝜃LLM)

subject to constraints in (7.3)
(7.4)

where ℓ denotes an appropriate loss function which encodes the desired cognitive

outcome. Algorithm 2 in Appendix 2 describes how GOLI solves this optimization

problem.

Algorithm

Algorithm 2: GOLI: A gradient-based sentence transformation method
1: Input: Random 𝒮 = {𝑥𝑖}𝑛𝑖=1, model ℳ = 𝜃map ∘ 𝜃LLM; Learning rate 𝛼; Loss function

ℓ; Perturbation iterations 𝑁 ; Number of sites to perturb 𝑘
2: ◁ Site selection
3: 𝒯 = OrderByImportance({𝑥𝑖}𝑛𝑖=1)
4: ◁ From Wallace et al. [2019]; see Section 7.3
5:
6: ◁ Site perturbation
7: 𝑢 = 𝑥
8: for 𝑗 in 𝑁 do
9: for 𝑥𝑖 in 𝒯 do

10: if 𝑘 > 0 then
11: 𝑢soft

𝑖 = softmax(𝑢𝑖)
12: 𝑢𝑖= Multinomial(𝑢soft

𝑖)
13: 𝑘 = 𝑘 − 1

14: 𝑦pred= ℳ(𝑢) ◁ Forward pass
15: ∇ = 𝜕

𝜕𝑢ℓ(𝑦
pred) ◁ Backward pass

16: 𝑢 = 𝑢 − 𝛼.∇
17: 𝒮gen= 𝑢
18: return 𝒮gen

Summary. A backward pass (line 17) allows gradients with respect to the input 𝑢 to

be propagated from the loss function ℓ. The input is then modified in the direction of

170

these gradients (line 18), with the modified input passed to ℳ (line 11-16).

To solve Eq (7.4) effectively, we relax u𝑖 ∈ {0, 1}|𝑉 | to u𝑖 ∈ [0, 1]|𝑉 |. This continuous

relaxation of binary variables is a commonly used trick in combinatorial optimization

to boost the stability of learning procedures in practice [Boyd et al., 2004].

See Jang et al. [2017], Maddison et al. [2017] for details on how the softmax (line 11,

Algorithm 2) aids in reparametrization of the argmax functionality in the categorical

case. This is theoretically equivalent to the Gumbel softmax trick.

Once the continuous optimization problem Eq (7.4) is solved, a hard thresholding

operation or a randomized sampling method can be used to map a continuous solution

to its discrete domain. For the randomized sampling method, we consider u as proba-

bility vectors with elements drawn from a Multinomial distribution. A Multinomial

distribution models selecting one of the |𝑉 | classes when selecting a token from the

vocabulary. We use the randomized sampling method in our experiments and follow

the setup described in Algorithm 1 in Xu et al. [2019]. See also Xu et al. [2019] for a

proof of convergence of the randomized sampling method.

When incorporating additional constraints, such as capitalizing the first word

or ensuring the last word is a punctuation, we sample from a subset of 𝑢𝑖 indices.

Originally, |𝑢𝑖| = |𝑉 |. To sample from a subset of the vocabulary, say capitalized

letters, we identify the set of indices 𝐶 in the vocabulary corresponding to capitalized

letters. When sampling from 𝑢𝑖, we mask out all those indices not in 𝐶, and sample

only from those present in 𝐶.

Incorporating additional constraints. A variety of constraints on 𝒮gen can be

imposed by using appropriate loss functions and vocabulary subsets to find candidate

replacement tokens from. Section 7.4.1 discusses how a loss function can be modified to

generate stimuli that are grammatically likely. Similarly, other site-specific constraints

like capitalizing the first word of a sentence or the last token being a punctuation can

be ensured by assigning different subsets of naturalistic vocabularies when solving the

site perturbation problem.

171

7.4 Experiments & Results

We demonstrate and assess GOLI on two tasks—constructing minimal pairs of

counterfactual sentences for sentiment analysis, and an fMRI-based targeted brain

response task. These two tasks differ in the questions they ask, the architectures used

to encode sentences (BERT vs. GPT2-XL), the outcome of 𝜃map (sentiment-class

classification vs. brain region response predictions), the set of constraints imposed

on the generated sentences, and consequently the loss functions needed to generate

sentences. We describe these details below.

7.4.1 Counterfactual minimal-pair task

Training-data augmentation with counterfactuals (CFs) has been proposed as a way to

mitigate out-of-domain generalization of NLP models [Levesque et al., 2012, Kaushik

et al., 2020]. Rooted in causal learning, a CF in the context of NLP models is designed

to study the change in an NLP model’s prediction following an intervention to its

input text, generally implemented as minimal edits to the text. Such minimal changes

to different input features help ascertain the causal role of these features in a model’s

prediction. Producing such CF stimuli though can be challenging, and resembles the

process of developing minimal-pair stimuli in psycholinguistics experiments discussed

in Section 7.1, Introduction.

Recent work however has explored automated generation algorithms for such CFs

[Wang and Culotta, 2021, Yang et al., 2021, Howard et al., 2022]. Notably, Howard

et al. [2022], the state-of-the-art, propose a system to generate CFs for sentiment

analysis on the SST-2 IMDB movie reviews dataset [Socher et al., 2013]. The CF

reviews they generate have the opposite sentiment as the original stimulus, while being

natural in a way that would resemble CFs generated by human experts [Kaushik et al.,

2020, Gardner et al., 2020]. We demonstrate how GOLI can be setup for this task by

appropriately customizing the loss function and constraints in the formulation in Eq.

(7.4).

Objective. We use a BERT-based sentiment classifier fine-tuned on the SST-2 task

172

(binary classification) as our mapping model, 𝜃map. In this case, BERT serves as 𝜃LLM.

Our objective then is to generate modifications to a given sentiment review such that

𝜃map∘ 𝜃LLM flips its prediction on the modified sentence and the modified sentence is

close to the original sentence.

Loss, Constraints. We use the standard binary cross entropy (LossBCE) as our loss

function as it allows us to specify the desired class we want 𝜃map to predict in the

binary sentiment classification task:

ℓ(𝑢) = BCE(𝜃map ∘ 𝜃LLM(𝑢), 𝑦
desired) (7.5)

where 𝑦desired is 0 for the negative sentiment class and 1 for positive. An alternate loss

function which we do not try and defer to future work is ensuring general fluency and

grammaticality of the generated sentences [Goswamy et al., 2020] by introducing two

additional loss terms:

ℓ(𝑢) = LossBCE + LossBOW +KL(𝐻(𝑢), 𝐻(𝑥)) (7.6)

where LossBOW = − log(
∑︀

(𝑝𝑖𝑢𝑖)) penalizes selecting a 𝑢𝑖 whose bag-of-words proba-

bility 𝑝𝑖 is low or unlikely, and KL(·) is the KL-divergence between the intermediate

decoder representation 𝐻(·) of the modified input 𝑢 and the unmodified, original

input stimuli 𝑥. The KL-term ensures the distribution of each generated token 𝑢𝑖 is

similar to the original token 𝑥𝑖. To ensure minimal pairs, we select a maximum of two

sites to be modified in each original sentence.

Evaluation. We evaluate our generated stimuli against the CF-generation method

introduced in Howard et al. [2022]. They work with a subset of the IMDB dataset

(training set, N=8173). For each sentence in the training set, they generate a CF

using the following complex setup: first, they provide a prompt (a part of the original

stimulus) and a desired sentiment (positive or negative) to a pre-trained adaptation

of the GPT-2 model (first proposed by Gururangan et al. [2020]). The model is

optimized to generate reviews which complete the prompt and are of the desired

sentiment polarity. Second, they use a constrained decoding algorithm (first proposed

173

Test-set 1 Test-set 2 Test-set 3
GOLI 93.370.01 94.940.53 92.140.05

NeuroCF-1g 92.750.03 93.100.06 89.270.04

NeuroCF-np 93.100.05 94.740.08 91.181.17

Expert-crafted 92.630.48 97.340.37 95.220.45

MoverScore Perplexity
GOLI 0.45 39.2

NeuroCF-1g 0.46 14.1

NeuroCF-np 0.20 12.7

Expert-crafted 0.70 19.3

Table 7.2

Figure 7-2

Results. Table 7.2: GOLI-generated counterfactual sentences vs. NeuroCF Howard et al.
[2022] vs. expert-crafted CFs (serves as an upper bound; Kaushik et al. [2020]), augmented
with training data to improve the robustness of a RoBERTa-based sentiment analysis classifier.
Top. Accuracy (percent) on three unseen test sets. Std. dev. across 10 runs mentioned
as subscripts. Bottom. MoverScore and Perplexity, two quality measures of the generated
sentences. Figure 7-2: A histogram of 𝑦pred from sentences sampled using a search-based
method (SBM), and those generated by GOLI optimized on two objectives: fMRI-high and
fMRI-low.

174

by Lu et al. [2021b]) with the adapted GPT-2 model to ensure the generated sentence

remains a minimal pair to the given input sentence. They augment the generated

CFs with the training set and fine-tune a RoBERTa-based classifier. They augment

with CFs generated from two settings–NeuroCF-1g: where they provide just the first

word in the original stimulus as a prompt to their system, and NeuroCF-np: which

selects a subset of the original sentence as a prompt. They evaluate the fine-tuned

model on three out-of-distribution test sets - Test-set 1: another subset from the

IMDB dataset (N=2245), Test-set 2: a dataset from Kaushik et al. [2020] (N=488),

Test-set 3: a dataset from Gardner et al. [2020] (N=488). Accuracy on the test set

and descriptive metrics of the generated sentences (described below) serve as merit

indicators for the effectiveness of the generated CFs.

To evaluate GOLI, we generate minimal-pairs for each sentence in their training

set, and fine-tune and evaluate their RoBERTa model using an augmented dataset

containing GOLI-generated sentences. We compare the accuracy of the RoBERTa

model against the CFs generated by NeuroCF-1g and NeuroCF-np. Expert-crafted

CFs generated by Kaushik et al. [2020] serves as an upper bound for performance in

our evaluation.

Results. Table 7.2, Top shows the accuracy of the CF-augmented RoBERTa models

on the three test sets, averaged over 10 random runs. Across the test sets, we see that

GOLI consistently outperforms NeuroCF-1g, and is comparable in its performance to

NeuroCF-np. We highlight that GOLI uses a very generic formulation for transforming

an input sentence to meet a desired goal, and despite the generality, is capable of

matching the performance of a bespoke solution like NeuroCF.

Further, to evaluate the quality of the generated sentences, Howard et al. [2022]

use two metrics (Table 7.2, Bottom): MoverScore [Zhao et al., 2019] and perplexity.

A MoverScore is computed between the generated counterfactual and the original

sentence. A low score suggests the two sentences are similar. We see that GOLI

generates sentences of similar MoverScores to NeuroCF-1g and comparable to NeuroCF-

np. However, the average counterfactuals created by experts seem to be fairly farther

off from their respective original sentences, suggesting room for automated stimuli

175

generation methods to improve.

Perplexity is a measure of how likely a given sentence is, which we evaluate on

GPT-J, a domain-agnostic model. A lower score suggests a higher likelihood of the

sentence. Table 7.2 shows that GOLI produces sentences with comparatively higher

perplexity. This was expected since we do not incorporate felicity-related loss terms

as described in Eq. (7.6). As seen in previous works e.g. Goswamy et al. [2020], a

modified loss incorporating felicity should improve perplexity, making it comparable

to NeuroCF. We defer this verification to future work.

7.4.2 fMRI task

A characterization of the sentences that activate the language network in the human

brain [Fedorenko et al., 2010b] remains an open question. The fMRI task is to thus

generate sentences that predict a desired brain response in the language network.

To do so, we set up an fMRI experiment where we first collect brain responses of

participants reading random sentences. We then fit a linear model 𝜃map to predict

these brain responses from LLM representations of the sentences. Given a trained 𝜃map,

we use GOLI to generate novel sentences using a separate dataset of seed sentences.

Objectives. GOLI is provided two separate objectives: to generate sentences

that predict high responses in the language network (fMRI-high; 𝑦pred≥ +0.4) and

to generate another set of sentences which predict low brain responses (fMRI-low;

𝑦pred≤ −0.3).

Setup. We invited participants (N=5) to passively read a set of 1000 diverse, corpus-

extracted 6-word sentences in an event-related design (referred henceforth as training

set) We pre-process and select responses from language-selective areas of the brain.

Voxels (3D pixels) from these areas were averaged within and across each participant to

yield a scalar language network response value associated with each sentence stimulus.

The range of brain responses values predicted by 𝜃map on the training set across

participants was [−0.47,+0.54]. These values represent z-scores of brain responses

and hence are both positive and negative–they represent relative magnitudes of brain

responses. Based on the training set, we interpret negative values ≤ −0.3 as a low

176

response and ≥ +0.4 as high. A linear model 𝜃map∈ R𝑑 was learned to predict these

average brain responses across participants from GPT2-XL representations 𝑟 ∈ R𝑑 of

sentences (𝑑 = 1600).

Loss, Constraints. We model the fMRI-high and fMRI-low objectives with a

squared-loss function:

ℓ(𝑢) = (𝑦desired − 𝜃map ∘ 𝜃LLM(𝑢))
2 (7.7)

To generate sentences with high positive and high negative desired predicted responses,

we set 𝑦desired to +1.2 and −0.8 respectively, values slightly beyond the maximum and

minimum predicted values seen on the training set.

The number of words in each sentence in 𝒮gen was constrained to contain six

space separated words, terminated by a punctuation, with the first word capitalized.

These constraints ensure avoiding confounding effects of sentence length and unusual

orthography (e.g. lack of capitalization, no end-of-sentence punctuation) in fMRI

recordings.

Search-based method (SBM). We compare GOLI to a search-based approach

which is routinely used to assemble language stimuli for such a task: exhaustively

searching a large, unseen naturalistic corpus of text. Each sentence from such a

corpus is individually tested against the desired goal. Unlike GOLI, the search-based

method does not modify any sentences in the set of sentences it searches through–it

just filters and selects those that achieve the desired goal. A key drawback of this

method is that a prohibitively large corpus may then need to be sampled from should

a small proportion of natural sentences meet the desired goals (fMRI-high, fMRI-low

objectives for this task). Further, as discussed in Section 7.1, natural sentences may

not necessarily meet the desired goals for this task—the brain may well be responsive

to a very particular subset of sentences and sentence structure patterns. SBM over a

naturalistic corpus then threatens the discovery of such patterns.

Evaluation criteria. We select 1500 sentences extracted from various, diverse text

corpora (referred henceforth as test set) to evaluate SBM and GOLI. We demonstrate

177

the utility of GOLI over SBM along two dimensions: sample efficiency: the number

of sentences needed in a corpus which when sampled results in the desired number of

linguistic stimuli which satisfy the desired goal, and solution diversity: whether

the sentences generated by GOLI achieves (or outperforms) the desired goal in both

quality and quantity.

Results. Figures 7-2 summarizes our results. We plot the distribution of 𝑦pred–

predictions made by 𝜃map—on processing sentences produced by GOLI and by SBM

on the test set (N=1500). We see that while most randomly sampled sentences

(marked in blue, SBM) in the test set elicit average brain responses (around the

z-score 0 of 𝑦pred), 0.2% (3
1500

) sentences elicit high brain responses (𝑦pred≥ 0.4). In

sharp contrast, we find that GOLI, when optimized for fMRI-high (green curve in

Figure 7-2), generates 80% (838
1049

) high-response prediction sentences. We work with

1049 GOLI-generated sentences because 451 (1500–1049) of those failed the automated

filters.

Comparing the two methods on the fMRI-low objective, we see 0.2% (4
1500

) sentences

in SBM elicit low brain responses (𝑦pred≤ 0.3). GOLI sentences optimized for fMRI-

low (red curve, Figure 7-2) yield an interesting observation: despite the sentences

being optimized to minimize their predictions, we find that, unlike in the fMRI-high

objective, GOLI is unable to generate sentences that predict values significantly lower

than those found on the test set. GOLI generates 0.8% (8
990

) low-response sentences,

although the overall average 𝑦pred drops to −0.05 in fMRI-low, from +0.02 in the SBM

setting.

These results suggest that in order to assemble a total of 500 high or low activity

sentences (a reasonable estimate of the number of unique sentences needed in an

fMRI experiment), one would have to significantly increase the number of sentences

to sample from when using SBM, which increases the compute and data-needs to run

such experiments. For the fMRI-high objective especially, we see that the number of

sentences required to sample from may be significantly higher than 20x since we never

see sentences greater than 0.40 on the training set, while GOLI reveals that perhaps

high-response sentences are those that predict ≥ 0.65.

178

Further, we find that GOLI generates fairly unusual sentence structures for the

fMRI-high objective (Fig 7-1), while generating more ‘regular-looking’ sentences for

the fMRI-low objective. This is an interesting result which would not have been

discovered had we sampled from regular text corpora via SBM. Collecting brain data

for the GOLI-generated sentences, and analyzing the implication of these unusual

fMRI-high sentences on the neuroscience of language-responsive brain regions is left

for future work. We discuss this more in Section 7.5.

7.5 Discussion

We demonstrate the effectiveness of GOLI in generating stimuli in two distinct

experiment settings. The minimal pairs task demonstrates how easily GOLI can be

employed to generate a tightly constrained set of stimuli. It is infeasible to generate

such stimuli pairs using either templates or by looking in naturalistic corpora.

In the fMRI task, GOLI helped generate stimuli that are predicted to elicit high

or low responses in the language network in the human brain. Knowing which stimuli

elicit maximal activity in neurons can provide useful insight into the representations

and computations that brain areas perform [Hubel and Wiesel, 2009, Bashivan et al.,

2019, Xiao and Kreiman, 2020]. The task—of predicting specific brain responses—is

unique, and we demonstrate how such goals can successfully be encoded in GOLI,

which even handcrafting does not support. We highlight the innovative use of 𝜃map as

a surrogate model to quantify and predict the goal, which GOLI then uses to guide

stimuli generation. It is possible that the unusual fMRI-high sentences generated

by GOLI are high on surprisal, since only a few words are abruptly modified in

𝒮gen. This hypothesis can be confirmed in a follow-up fMRI study where participants’

brain responses to GOLI-generated sentences are compared to their responses to

other meaningful sentences with one or two words randomly swapped out. We will

investigate this in future work.

GOLI in other domains. GOLI can potentially be used to generate inputs in

domains beyond language, such as tasks in memory [Barr et al., 2016], motor-control

179

[Srivastava et al., 2022], planning in robotics [Aznan et al., 2019], and AI [Chollet,

2019] or in engineering such as circuit design [Liu et al., 2018], processor design [Ritter

and Hack, 2020] and electric machine design [Wang et al., 2017]. In each of these

works, the authors attempt to generate hand-crafted stimuli or inputs in a discrete

domain (similar to linguistic stimuli) that are required to satisfy a suite of constraints

their respective problem domains pose.

180

Chapter 8

Modeling the presence of beacons in

program comprehension

8.1 Introduction

The software engineering (SE) community has long tried to establish what makes

a program—a one-page length computer program in the context of this work—easy

to understand. This question has been addressed from three broad perspectives:

empirical [Buse and Weimer, 2008, Zimmermann et al., 2010, Srikant and Aggarwal,

2014b, Scalabrino et al., 2017, Trockman et al., 2018], behavioral [Soloway and Ehrlich,

1984, Wiedenbeck, 1986, Letovsky, 1987, Casalnuovo et al., 2020b,a] and theoretical

[Parnas, 1972, 1979, Koppel and Jackson, 2020].

Among them, a few behavioral studies have addressed finding important parts

of a program during its comprehension. Soloway and Ehrlich [1984], Wiedenbeck

[1986], Letovsky [1987] conjectured the presence of beacons and schemas. Beacons

and schemas refer to ‘important’ substrings or patterns which convey the key ideas of

a bug-free program’s functionality. These works show the absence of such beacons

or schemas makes it harder for programmers to comprehend a program. Wiedenbeck

[1986], in particular, defines beacons as those snippets which experts attend to but

novices do not, as novices are unable to appreciate the importance of such snippets.

She bases this on her experiment in which she observes expert programmers to recall

181

from memory parts of codes which are very different from what novice programmers

recall. Similarly, Soloway and Ehrlich [1984] and Letovsky [1987] propose the presence

of schemas which aid code comprehension. Through controlled behavioral tests, they

show how comprehension diminishes among expert programmers when programs

diverge from their most expected schema.

While these works make an important intellectual contribution, they provide only

weak empirical evidence for the presence of beacons. These studies were conducted on

very few program samples and the samples were chosen in a way that the presence of

beacons was apparent.

In the context of these prior works, the central questions we investigate are:

Do humans consistently identify beacons in any program? What are the

predictors of these beacons?

For possible predictors of beacons, we look to recent literature on text compre-

hension. Hahn and Keller [2018], Malmaud et al. [2020], Schrimpf et al. [2021b]

recently showed that language model representations of sentences exhibited a close cor-

respondence to behavioral responses to understanding those sentences (reading times,

eye-gaze information). Further, Srikant et al. [2022] recently provided initial evidence

for a correspondence between code model representations and the representations of

programs encoded in the brains.

Building on these results, we explore whether representations of code learned by

code models [Allal et al., 2023, Chowdhery et al., 2022, Brown et al., 2020] can predict

the presence of beacons. In the context of our work, we use code models as proxies

for expert programmers since they have been trained on extensive code corpora, and

evaluate whether these models encode the presence of beacons.

Predicting the presence of such beacons can inform how our minds seek information

in any program. Knowledge about the factors affecting our information-seeking can

have important consequences—these factors can potentially be used to reduce the

mental load [Crichton et al., 2021] of reading and understanding programs. It is

possible that an increase in the number of beacons in a program increases confusion,

182

as it increases the number of things to attend to. Consequently, these factors can be

used as objectives by generative models of code [Allal et al., 2023, Chowdhery et al.,

2022, Brown et al., 2020] when generating and synthesizing programs—for example,

they can be constrained to generate programs containing just one beacon in it.

In addition to using code model representations as predictors, we also investigate

the surprisal of a token. Studies in language comprehension have shown the surprisal

of a word to be a strong predictor of comprehension difficulty [Bicknell and Levy,

2010]. Beacons may correlate strongly to those parts of the program which are difficult

to comprehend.

Section 8.2 provides details on the experiment setup and Section 8.3 discusses the

results from our experiments. Related work is discussed in Section 8.4.

Figure 8-1: Overview of experiment setup. 1. Programs are first shown to experts.
Each expert marks out the beacons they perceive. We define the token response rate (TRR)
for each token in a program as the ratio of the number of raters who rated the token as a
potential beacon to the total number of raters. 2. A code model is then provided the same
program. The code model representations for each token is correlated with the TRR for that
token.

8.2 Experiment Setup

We describe the dataset we use to collect responses from experts, the code model we

use to predict beacons, and the behavioral experiment in which experts mark out

183

beacons in programs. Figure 3-1 provides an overview of the experiment setup.

Dataset. We sample a total of 10 programs at random from two sources: Kanade

et al. [2020a] and Lin et al. [2017]. The dataset by Kanade et al. [2020a] contains

de-duplicated programs sourced from software projects that have been on Github.

Each program in the sampled set contains between 14 to 34 tokens (they can be

described in 4-20 lines of Python code. They can be viewed at https://github.com

/ALFA-group/beacons-in-code-comprehension/blob/main/data/codes.xlsx).

Code representation. We experimented with code models available on Hugging face,

and selected Santacoder [Allal et al., 2023]. Santacoder is a 1.1B parameter model

trained on the Python, Java, and JavaScript subset of The Stack (v1.1) [Kocetkov

et al., 2022], a 6.4 TB dataset of permissively licensed source code in 358 programming

languages. The main model uses Multi Query Attention [Shazeer, 2019], was trained

using near-deduplication and comment-to-code ratio as filtering criteria and using

the Fill-in-the-Middle objective (a variant of the cloze task). In our experiments, we

use the activations of the model’s final layer as representations for each token in a

program. The dimensions of the representations ∈ R2048. Future work should evaluate

the sensitivity of the encoded information in other layers of the model.

Behavioral responses. We enlisted programmers to read and understand programs

and mark tokens in programs they deemed beacons. The aim was to have multiple

programmers evaluate every program in our dataset and for each programmer, record

those tokens they considered to be beacons. If beacons exist, we should observe a

consensus among the marked tokens.

Programmers who were recruited for the study (henceforth referred to as experts

E𝑖) had at least four years of experience in Python. Thirteen programmers were

selected, out of which ten programmers completed the surveys. The results in this

study are based on the responses from the ten experts.

We used Qualtrics for our surveys1. One of the response formats which Qualtrics

provides, which was suitable for our study, allows participants to mark out individual

tokens in text. Each screen in our survey presented one program in a non-editable

1https://www.qualtrics.com/

184

https://github.com/ALFA-group/beacons-in-code-comprehension/blob/main/data/codes.xlsx
https://github.com/ALFA-group/beacons-in-code-comprehension/blob/main/data/codes.xlsx

textbox. Experts could select multiple, space-separated tokens in these programs.

They were provided with the following instruction:

You will be required to highlight the most important "snippet" in the code

shown to you. A "snippet" means a substring that is crucial to help you

comprehend what the function ‘foo‘ is doing. If there are multiple such

"key" snippets, highlight them all.

The survey is available at this URL: https://mit.co1.qualtrics.com/jfe/form/S

V_bIpZfY2rWDlb4cC

Tokenization. Qualtrics tokenizes based on whitespaces, which experts can select

as being a beacon. Santacoder on the other hand uses a byte-pair encoding (BPE)

tokenizer. Outcomes from the two tokenization methods should be aligned carefully.

For example, set(arr[k+m]) can be one Qualtrics token. The BPE-tokens for this

token are the following seven tokens: {, set, arr, [, k, +, m,], }. In our work,

we consider the model’s representation of a Qualtrics token to be the mean of the

representations of the corresponding BPE tokens [Malmaud et al., 2020].

Alternate model representation. As a baseline, we use GPT-4 [Bubeck et al., 2023]

to test how well the model representations can predict experts’ judgement scores of

beacons. We get GPT-4 to predict the beacons in a program using few-shot prompting.

To predict the beacons of a program, we supply the remaining programs from the

dataset and their corresponding beacons as prompts. This serves as an alternate,

weakly supervised model representation since neither do we explicitly define what

beacons are, nor do we define other concepts like tokens when prompting the model.

8.3 Results

8.3.1 RQ 1. Do humans consistently identify beacons?

To determine whether there exists a consensus in humans recognizing beacons in pro-

grams, we measure the inter-expert correlation of the 10 experts on the 8 programming

problems they were shown. The inter-expert correlation is obtained by correlating

185

https://mit.co1.qualtrics.com/jfe/form/SV_bIpZfY2rWDlb4cC
https://mit.co1.qualtrics.com/jfe/form/SV_bIpZfY2rWDlb4cC

the judgement scores of each expert with the average of all other experts, and then

avearging those correlations for all experts to get a single value. This normalized

average inter-expert consensus across the ten experts and eight programming problems

was 0.58 (also reported in Table 8.1, row 1). We will return to discussing this in RQ 2

in the context of other predictors of beacons.

We also study the distribution of the judgement scores of experts for each token

in a program. For each token, we define its Token Response Rate (TRR) as TRR =∑︀
𝑖 1(E𝑖=1)∑︀
𝑖 1(E𝑖)

for each expert E𝑖. Each expert selects a token as either being important or

not. The plots in Figure 8-2 show the distribution of TRR scores in the eight programs.

The X-axis in each sub-figure shows all the unique tokens in the program that was

marked important by at least one expert. The Y-axis shows the TRR corresponding

to each such token.

The histograms of TRRs in 8-2 suggest that longer programs (larger total number

of tokens) have a wider spread in judgement scores as compared to shorter programs,

suggesting that it is easier to identify beacons in shorter programs than longer ones.

The effect of program length needs to be investigated in future work. Despite the

wider spread however, all the distributions show few tokens appearing in each program

that have high TRRs (> 0.7). This suggests the consistent presence of a few tokens

across programs which seem to be prioritized more than others in their perceived

contribution to understanding those programs.

Discussion: Going beyond TRR. We note here that the TRR could possibly be

a restrictive metric to measure the consensus between experts. In every program,

we find the beacons marked out by the experts span multiple program tokens. For

a beacon spanning a line or a set of tokens, the boundaries marked out by experts

can differ by a few tokens or even lines, on either side of the intended beacon. In

such cases, it is unfair to predict beacons at the level of a token using code model

representations or other predictors. So, it then seems reasonable to have a metric

which measures clusters of tokens or lines of code, instead of a metric measuring every

token itself. That way, it should be sufficient if the predictors can predict tokens

within any given cluster, without needing to predict to any one token in the cluster

186

specifically.

Yes, experts identify the same set of beacons in a given program with an

inter-expert agreement (across 10 experts) of 𝑟 = 0.58

8.3.2 RQ 2. What are the predictors of beacons?

We evaluate different predictors of beacons. We test two predictors: code model

representations and token surprisal, a well established predictor of reading times of

text [Bicknell and Levy, 2012]. Table 8.1 reports the correlations of the predictors

with each token’s response rate (TRR). For each token, the TRR is the average of

all the experts’ judgement scores. The normalized inter-expert agreement (described

in RQ 1) is reported in row 1. Since the model’s representation ∈ R2048, we report

the most correlating feature of the model. Similarly, likelihood of a token (which is

the inverse of token surprisal) is computed as the log likelihood of observing a token

conditioned on observing all the tokens preceding it. The model is trained to infer

these likelihoods.

We report correlations in two settings: across programs, and within programs.

In the former, we correlate the model representation and likelihood for each token

with the TRR of that token across all programs in our dataset, totaling 228 tokens.

In the latter, we calculate correlations for each program separately, and average the

correlations across the 8 programs (average tokens per program = 25.3; std = 12.9). It

is justifiable to treat every token independently because for any one token, its model

representations and likelihood already accounts for the information in the tokens

preceding it.

Table 8.1 shows the inter-expert correlation is 0.58 on average for each program,

while across programs, the inter-expert correlation of 0.48. The inter-expert correlation

serves as a ceiling for the predictions we should expect from other predictors.

Compared to the inter-expert correlations, we find the model’s best representation

feature predicts beacons with an average correlation of 0.72 per program. These

187

Problem 1 - Expert annotations of beacons Token response rate for Problem 1

Problem 2 - Expert annotations of beacons Token response rate for Problem 2

Problem 3 - Expert annotations of beacons Token response rate for Problem 3

188

Problem 4 - Expert annotations of beacons Token response rate for Problem 4

Problem 5 - Expert annotations of beacons Token response rate for Problem 5

Problem 6 - Expert annotations of beacons Token response rate for Problem 6

189

Problem 7 - Expert annotations of beacons Token response rate for Problem 7

Problem 8 - Expert annotations of beacons Token response rate for Problem 8

Figure 8-2: Behavioral responses. The responses by the ten experts on each of the eight
problems in our dataset. The left panels shows the problems as seen by the expert. The
color gradients pertain to the token response rate (TRR): darker the shade of green, closer
the TRR is to 1. The right panel shows the token-wise distribution of expert responses.

190

encouraging results suggest that the model representation does encode factors that

affect the perception of beacons. Model correlations outperforming inter-expert

correlations (0.72 vs. 0.58) on an average in programs is perhaps indicative of the

relatively low number of tokens in each program (average N = 25.3). Future studies

should investigate a larger number of programs, including longer programs in the

dataset.

The likelihood, and thus the surprisal, of tokens does not seem to correlate with

the presence of beacons. This suggests the factors driving our ability to perceive

beacons are likely different than the factors affecting comprehension reading times

[Bicknell and Levy, 2012], and consequently, comprehension difficulty. Future work

should investigate the factors that are encoded in the model representations which

correlate with beacons.

Correlation (r) Correlation (r)
Predictor Across programs Program-wise

Human (inter-expert) 0.48 0.58
Model 0.38 0.72
Likelihood of token -0.02 -0.07
GPT-4 (few-shot) 0.36 0.71

Table 8.1: Predicting beacons. The table reports Pearson correlations (r) between different
predictors and human judgement scores of beacons. The correlations are computed both
across all tokens appearing in the eight problems (N=228) and an average of the correlations
in each of the eight programs in our dataset (average tokens per program = 25.3; std = 12.9).
Human refers to the normalized inter-expert agreement.

Discussion: More baselines. The model representations’ correlations should

be interpreted in the context of multiple baselines. Baselines can be used to better

understand both the inputs and outputs of our experiment design. The inputs are model

representations, whose effects can be studied further. Different model architectures can

be explored to see if their model representations affect the predictability of beacons.

Other baselines controlling for features like the use of types, data structures, operations,

and different syntax-features can be investigated as well.

To study the effect of the output, we introduce an alternate set of judgement scores—

191

those produced by GPT-4 [Bubeck et al., 2023]. GPT-4 was prompted to identify

beacons when given a program. We see that model representations are able to predict

GPT-4 identified beacons almost as well as those identified by experts. This may

suggest that there could be other surface-level features which the model representations

may be correlating with. To test this further, future work can investigate GPT-4’s

predictions of beacons by prompting it with programs whose lines are scrambled. GPT-

4 should be unable to identify any meaningful lines when presented with scrambled

lines. However, despite the scrambling, if GPT-4 predictions continue to correlate

highly with model representations, it would confirm the central role of token-level,

syntax-related features in predicting beacons.

The criterion validity of our current design has not been established. While we

intend for participants to identify beacons, participants may likely be interpreting

it to represent some other feature such as confusion, difficulty in reading, etc. To

ascertain this, the experiment design can include programs containing bugs, which are

delivered at random to the participants: participants identifying bugs as beacons will

test participants’ understanding of the concept of importance and beacons.

Discussion: Is every token not a beacons? One question that arises from this

study is—should not every token be marked important, and considered a beacon?

What even justifies some token being perceived to be more important than another?

We address this from the lens of information theory. Several prior works have

shown that the distribution of the different tokens that appear in programs are not

uniform [Piantadosi, 2014, Shooman and Laemmel, 1977, Clark and Green, 1977, Chen,

1991]. One explanation offered for this observation is that our language production is

optimized for communication, thus resulting in a distribution of tokens where some

are more informative than others. The inclusion of non-informative tokens helps

communicate information in a noisy-channel setting [Gibson et al., 2017, Ryskin et al.,

2018].

Perceiving beacons also supports this general observation. If there inherently

are some tokens which perceivably convey more information then others, then the

experiment proposed in this work help discovering them. We go a step further in our

192

experiments by also attempting to explain this perceptual phenomenon (beacons) by

establishing their predictors.

These results can be analyzed from the lens of computational models as well, and

how language models of code are trained. If the model representations are predictive

of the beacons that expert programmers identify, which we show to be the case, then

it is possible that the neural mechanism involved in code comprehension is similar

to the objectives employed in training code models. It is possible that beacons are

an artefact of objectives such as masked language model training. To establish this,

future work should look at models trained on various objectives to see if there exists

any effect of the objectives on the predictions of beacons.

8.4 Related work

We provide a brief overview of relevant works in empirical and behavioral SE which

have addressed the problem of code comprehension:

Comprehensibility is generally quantified as either judgement scores provided by

human programmers or the number of bugs or fixes identified in the program during

code-review recorded on platforms such as GitHub. While Trockman et al. [2018]

identify properties with some weak correlation to comprehensibility, all other works

fail to identify any determinants.

Empirical SE. The empirical SE community has attempted to predict the compre-

hensibility of code by its properties [Buse and Weimer, 2008, Zimmermann et al., 2010,

Scalabrino et al., 2017]. These properties are descriptive statistics which serve as

proxy representations of the code. Examples of such properties are—counts describing

the syntax tree of the program such as the number of tokens in the code, the number

of specific dependencies, etc. A mapping model 𝜃map is learned to predict comprehen-

sibility from these properties. Works in empirical SE that have studied this question

all conclude by showing the inability of such properties in predicting comprehensibility.

Further, these properties describe code-level behavior, and are incapable of identifying

specific snippets (substrings) of a program which causally affect comprehensibility.

193

Behavioral SE. The behavioral SE community has stayed clear of using inherent

program properties like dependence graphs, syntax trees, etc. as predictors of compre-

hensibility. Instead, they have attempted to predict comprehensibility behaviorally by

positing the presence of beacons and schemas [Soloway and Ehrlich, 1984, Wiedenbeck,

1986, Letovsky, 1987]. Beacons refer to ‘important’ snippets which convey a bug-free

code’s functionality. Wiedenbeck [1986] shows how expert programmers consistently

tend to identify these crucial parts of a code while novice programmers do not when

tasked to recall the functionality of a code. In doing so, Wiedenbeck [1986] defines

beacons as those snippets which experts tend to recall but novices are unable to appre-

ciate the importance of, and hence do not tend to recall. We propose a computational

mechanism which does not inherently depend on discovering what experts and novices

believe through elaborate behavioral experiments.

Theoretical perspectives. Parnas [1972, 1979], Koppel and Jackson [2020] offer

insights into the foundations of concepts like modularity and dependence which in

turn directly affect our ability to understand software systems. While the theoretical

underpinnings are essential for the better design of software, and attempt to unify

different software design choices, it is not sufficient. We conjecture that irrespective of

the principles guiding a software’s design, there exists patterns in how humans seek

information from any program. Our work attempts to establish and understand the

drivers of such human behavior.

Probabilistic accounts of language reading. Chater and Manning [2006],

Bicknell and Levy [2010], Armeni et al. [2017], Malmaud et al. [2020], Schrimpf et al.

[2021b] provide probabilistic accounts of reading. Our work is closest to that of

Schrimpf et al. [2021b], Malmaud et al. [2020] where behavioral information such as

reading times and eye gaze information is predicted from model representations. See

Ma and Jazayeri [2014] for probabilistic accounts of uncertainty in other tasks like

vision and motor responses.

194

Chapter 9

Conclusion

I started this thesis with the following three questions:

• Thesis Question 1: Computational perspective. What is a good framework

to evaluate code models’ understanding of programs?

• Thesis Question 2: Cognitive neuroscience perspective. What is a good

framework to understand how code comprehension happens in our brains and minds?

• Thesis Question 3: Bridging the two perspectives. Can computational

models help in learning how our brains and minds comprehend programs? Can our

brain and minds inform the better design of computational models?

My work contributes to improving each of these three perspectives in the following

ways.

Computational perspective. Chapter 2 builds on the observation that humans

can understand code despite simple changes made to it. I ask whether code models

do the same? The method proposed in this work implements this idea, and serves as

a practical baseline test of how well code models understand code. Given how general

our formulation is, I show its application in generating English sentences that can

elicit specific neural responses in the brain (details in Chapter 7). Chapter 3 follows

up on the brittleness of models understanding identified in Chapter 2, and proposes

ways to fix the brittleness.

Chapter 4 presents a different perspective on the topic of code models. This

chapter presents the first step towards training code models to comprehend and reason

195

about concurrent programs. It specifically develops a way forward for designing

data-driven data race detectors, which can potentially improve upon the heuristics

that have been proposed over the last four decades. The chapter demonstrates a

strong case for how code models have to be thought of differently than NLP models.

The task of understanding concurrent behavior is unique to programs.

Cognitive neuroscience perspective. Chapter 5 studies two candidate brain

regions most likely responsible for code comprehension—the Multiple Demand system

and the Language system. Knowledge of the functional regions of the brain involved in

code comprehension allows us to probe more into the nature of information represented

(stored) in these brain regions. This study presents an example of a group analysis,

where the neural responses in the MD and language systems are compared across

the total number of participants in the fMRI study. We show that on average, the

MD system responds more consistently during code comprehension than the language

system.

Bridging the two perspectives. We follow up on the group analysis on the

neuroimaging work with an individual analysis of the information stored in these brain

systems, presented in Chapter 6. This work presents a few firsts. We take the first

steps in describing the foundations of the MD system. Programs are a natural way to

describe problem-solving tasks, which the MD system is believed to specialize in. We

then decode the presence of code properties in the different regions. To test for code

properties which may not be enumerable, we propose using code model representations.

We show a weak correspondence between the representations of a program in the brain

and in code models.

Chapter 7 contributes to the bridging the two perspectives by directly demon-

strating the method used in Chapter 2 to generate experiment stimuli that satisfy

diverse goals. Such stimuli were recently used in Tuckute et al. [2023] to noninvasively

control neural activity in higher-level cortical areas, like the language network. While

we do not demonstrate the generation of code stimuli directly in this work, the method

can be used to similarly learn more about the sensitivity of the MD and Language

system to the presence of specific code patterns.

196

In Chapter 8, I show how language models of code, when used as proxies of

expert programmer knowledge, can help study different behavioral responses seen

when understanding code. This is a use-case for how code models can directly inform

and improve our understanding of the cognitive bases of code understanding.

9.1 Future work

The thesis motivates a number of directions for future work that I discuss below.

9.1.1 The role of cognitive neuroscience: path ahead

The results from the cognitive neuroscience perspective presented in this thesis pri-

marily improve our understanding of the brain bases of code comprehension. We learn

of the different brain systems involved in comprehension, and establish the role of

the Multiple Demand system in comprehension (Chapter 5), and also learn of the

nature of programming concepts encoded in these systems (Chapter 6). While the

results from these chapters improve our current understanding of the neural bases

of comprehension, they are insufficient in explaining our behavior when reading and

understanding code. The brain bases of understanding limits us to ask questions about

the anatomy and neuroscience of information processing, while the many behavioral

responses to code, which cognitive psychology helps studying, remain addressed. For

instance, the behavioral responses to code understanding such as those I show in

Chapter 8 will be essential to learn more about the limits of reasoning about code.

Such responses will also provide us with information to propose models of our behavior,

which hopefully can also inform the design of code models.

In my view, the way forward for understanding more about code comprehension

is by using methods in cognitive psychology—measuring and studying behavioral

responses to carefully designed experiments in code comprehension. These meth-

ods can potentially address unresolved questions such as the role of expertise in

code comprehension and whether the semantics of different families of programming

languages require different mental models to reason about, e.g., determining the

197

skills needed to reason about functional languages, web-based languages (Javascript,

PHP), numerical languages (Matlab, R, GNU Octave), or distributed and parallel

languages (Go, OpenMP)—all of which anecdotally have required different kinds of

reasoning. Addressing such questions can directly lead to the better design of user-first

programming languages.

Prior works in cognitive psychology have hypothesized the different processes

involved in comprehension. For example, Figure 9-1d isplays an excerpt from Letovsky

[1987], where the authors describe the mental processes involved in comprehension.

Unfortunately, these models have not undergone empirical validation. However, by

utilizing the methods available today in cognitive psychology and machine learning, we

can now revisit such inquiries and empirically establish these hypotheses. Moreover,

the abundance of software artifacts and data enhances the feasibility of conducting

such studies.

As an additional benefit, methods in cognitive psychology generally do not require

extensive equipment and expertise like those needed for setting up neuroimaging

experiments such as fMRI.

Further, this thesis addresses questions only in code comprehension. Future work

should utilize cognitive psychology to address equally important questions in other

activities related to programming, including code writing, code debugging, and software

design.

9.1.2 Applying results from neuroimaging studies to CS edu-

cation and pedagogy

To understand how the neuroimaging results from this thesis can be applied specifically

to improving how we can understand programs, we first establish the relationship

between two cognitive activities engaging the same brain system (in our case - working

memory tasks and code comprehension engaging the MD system). A few studies have

claimed that for any two cognitive activities that share the same brain resources,

training one activity will lead to an improvement in the other [Jaeggi et al., 2008,

198

Figure 9-1: An excerpt from Letovsky [1987] in which the authors describes the mental
processes involved in comprehension. Unfortunately, such hypotheses have not yet been
empirically validated.

199

Melby-Lervåg and Hulme, 2013]. For example, if language and music share and

activate the same brain system, then tools and approaches used to engage and train

one activity should be transferable to, and will lead to an improvement in the other.

Since the effects of training and improving one’s MD system are not well understood, it

is unclear whether training on cognitively demanding non-coding tasks could improve

our ability to read and understand programs.

The effect of training and improving abilities that by studying other abilities which

activate the same brain systems should be explored in future work.

9.1.3 Establishing human performance for the better design

of code models

Pavlick and Kwiatkowski [2019] analyze human performance on inference tasks in

language. They study responses to the textual entailment (RTE) task, which expects

conclusions to be drawn about the world on the basis of limited information expressed

in natural language. For example, the sentence Three dogs on a sidewalk being true

implies that the sentence There is more than one dog here is true. They perform this

study on 50 human subjects, wherein each subject is presented 100 such entailment

sentence pairs and is required to respond with one of either entailment, neutral, or

contradiction for each pair. The authors show that humans consistently disagree on

this task, and report a multi-modal distribution in their responses. Further, and

importantly, they find that the uncertainty expressed by humans is not captured by

state of the art inference models like BERT fine-tuned on this RTE task.

Studies such as those by Pavlick and Kwiatkowski [2019] suggest a partial un-

derstanding of our own capabilities and limitations on inference tasks. While recent

advances in probing such language models for various properties Hewitt and Liang

[2019], Voita and Titov [2020] is a step in the right direction in understanding these

models better, they focus primarily on interpreting information learned by these

black-box language models. Ambiguity faced by humans during inference is currently

neither explained nor modeled in such models. The same learning applies to code

200

models as well.

There is a need to learn and acknowledge such gaps in our own abilities, and use

such results to motivate the design of better ‘general-purpose’ language models of code.

It is unclear though how such reconciliation can be operationalized. One observation

is that neuro-symbolic systems are trained by integrating external knowledge sources

to a learning model. It is possible that with the right choice of external knowledge

sources, such as formal logic, relational reasoning, etc., this integration might result in

a performance similar to ours.

We see these ambiguities as litmus tests for any system – be it fully neural, or

neuro-symbolic, in explaining human-like cognition. Establishing such ambiguities,

and having neuro-symbolic models replicate them will be a worthy initial challenge.

Encoding these ambiguities and integrating them in the design of neuro-symbolic

models can be another challenge to follow it.

9.1.4 A case for separate architectures?

Diachek et al. [2020] investigate the neural regions involved in language comprehension.

The authors find that the MD system does not consistently response to language

comprehension tasks, while the language system is. Despite language understanding

seemingly requiring the application of logic and symbolic manipulation – cognitive

functions generally associated with the MD system, the lack of significant activity

in the MD system challenges our intuition of how we cognitively process language.

However, Diachek et al. [2020] suggest their results do not rule out the influence of

the MD system in our ability to understand and infer language. The authors suggest

that the MD system could likely be recruited for language production tasks, and in

comprehension/inference tasks in everyday noisy channel conditions.

On the other hand, results from 5 on the neural bases of program comprehension

tasks suggest that program comprehension and simulation, which typically entail

computational and symbolic manipulation, strongly activate only the MD system and

not the language system.

These two results when read together seem to suggest that there is a need for two

201

distinct architectures to support the broad range of reasoning and inference tasks in

language that we engage in – one which models the MD system and the other the

language system. We raise the question of whether evidence from how we anatomically

process and infer language-related tasks can directly transfer to the design of neuro-

symbolic computational models. It is reasonable to conceive a neurosymbolic model

comprising two sub-models – one trained exclusively on symbolic and logic-related

reasoning, and the other resembling a language model.

A step towards redesigning model architectures can be to first incorporate be-

havioral information as learning objectives. For instance, the work in Chapter 8

and other prior works like ? provide evidence for various perceptual and behavioral

limitations we possess when reading and understanding code. Gathering enough data

on such behavioral responses enables ML models to learn these objectives in addition

to learning other language model-related objectives. Such an ensemble of objectives

can be an easy way to ensure our biases are incorporated into the code models we

train and use.

9.1.5 Probing code models

Probing models that have been trained on code corpora for the concepts they learn is

another challenging area of future work that is motivated by the results from Chapter

2. Chapter 3 provides solutions to address the limitations of code models demonstrated

in Chapter 2, by suggesting improvements to the training architecture of code models

using methods like contrastive learning and adversarial training. These methods,

however, are unable to address the question of whether the models imbibe and learn

specific concepts.

Recent work in probing natural language models have demonstrated promising

directions of exploration to address such questions [Andreas and Klein, 2017, Hewitt

and Manning, 2019, Voita and Titov, 2020, Hernandez and Andreas, 2021]. Future

work should establish paradigms to similarly probe code models for code concept

understanding.

202

Bibliography

Asm bytecode analysis framework. URL https://asm.ow2.io/. [Page 108.]

Varun Aggarwal, Shashank Srikant, and Harsh Nisar. Ameo 2015: A dataset comprising
amcat test scores, biodata details and employment outcomes of job seekers. In
Proceedings of the 3rd IKDD Conference on Data Science, 2016, CODS ’16, New
York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342179.
doi: 10.1145/2888451.2892037. URL https://doi.org/10.1145/2888451.2892037.
[Page 29.]

Aakash Agrawal, KVS Hari, and SP Arun. How does reading expertise influence letter
representations in the brain? an fmri study. Journal of Vision, 18(10):1161–1161,
2018. [Page 142.]

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki,
Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan
Dey, et al. Santacoder: don’t reach for the stars! arXiv preprint arXiv:2301.03988,
2023. [Pages 182, 183, and 184.]

Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive
scale using language modeling. In 2013 10th Working Conference on Mining Software
Repositories (MSR), pages 207–216, 2013. doi: 10.1109/MSR.2013.6624029.
[Page 30.]

Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network
for extreme summarization of source code. In International conference on machine
learning, pages 2091–2100, 2016. [Pages 56 and 77.]

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey
of machine learning for big code and naturalness. ACM Computing Surveys (CSUR),
51(4):1–37, 2018a. [Pages 37, 92, 98, 140, and 144.]

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A
survey of machine learning for big code and naturalness. ACM Comput. Surv., 51
(4), jul 2018b. ISSN 0360-0300. doi: 10.1145/3212695. URL https://doi.org/10
.1145/3212695. [Page 30.]

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey
of machine learning for big code and naturalness. ACM Computing Surveys (CSUR),
51(4):1–37, 2018c. [Page 45.]

203

https://asm.ow2.io/
https://doi.org/10.1145/2888451.2892037
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to repre-
sent programs with graphs. In International Conference on Learning Representations,
2018d. URL https://openreview.net/forum?id=BJOFETxR-. [Pages 76 and 145.]

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences
from structured representations of code. arXiv preprint arXiv:1808.01400, 2018a.
[Pages 56, 57, and 97.]

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A general path-based
representation for predicting program properties. ACM SIGPLAN Notices, 53(4):
404–419, 2018b. [Pages 70, 76, and 77.]

Uri Alon, Omer Levy, and Eran Yahav. code2seq: Generating sequences from struc-
tured representations of code. In International Conference on Learning Representa-
tions, 2019a. URL https://openreview.net/forum?id=H1gKYo09tX. [Page 145.]

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning
distributed representations of code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019b. [Page 77.]

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning
distributed representations of code. Proc. ACM Program. Lang., 3(POPL), jan
2019c. doi: 10.1145/3290353. URL https://doi.org/10.1145/3290353. [Page 76.]

Marie Amalric and Stanislas Dehaene. Origins of the brain networks for advanced
mathematics in expert mathematicians. Proceedings of the National Academy of
Sciences, 113(18):4909–4917, 2016. [Page 134.]

Marie Amalric and Stanislas Dehaene. A distinct cortical network for mathematical
knowledge in the human brain. NeuroImage, 189:19–31, 2019. [Pages 122, 134,
and 138.]

Katrin Amunts and Karl Zilles. Architecture and organizational principles of broca’s
region. Trends in cognitive sciences, 16(8):418–426, 2012. [Page 130.]

Richard A Andersen, Tyson Aflalo, and Spencer Kellis. From thought to action: The
brain–machine interface in posterior parietal cortex. Proceedings of the National
Academy of Sciences, 116(52):26274–26279, 2019. [Page 161.]

Andrew James Anderson, Edmund C Lalor, Feng Lin, Jeffrey R Binder, Leonardo
Fernandino, Colin J Humphries, Lisa L Conant, Rajeev DS Raizada, Scott Grimm,
and Xixi Wang. Multiple regions of a cortical network commonly encode the meaning
of words in multiple grammatical positions of read sentences. Cerebral cortex, 29(6):
2396–2411, 2019. [Page 136.]

Jacob Andreas and Dan Klein. Analogs of linguistic structure in deep representations.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 2893–2897, Copenhagen, Denmark, September 2017. Association

204

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1145/3290353

for Computational Linguistics. doi: 10.18653/v1/D17-1311. URL https://aclant
hology.org/D17-1311. [Page 202.]

Kristijan Armeni, Roel M Willems, and Stefan L Frank. Probabilistic language models
in cognitive neuroscience: Promises and pitfalls. Neuroscience & Biobehavioral
Reviews, 83:579–588, 2017. [Page 194.]

Nik Khadijah Nik Aznan, Jason D Connolly, Noura Al Moubayed, and Toby P Breckon.
Using variable natural environment brain-computer interface stimuli for real-time
humanoid robot navigation. In 2019 International Conference on Robotics and
Automation (ICRA), pages 4889–4895. IEEE, 2019. [Page 180.]

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel
Tarlow. Deepcoder: Learning to write programs. arXiv preprint arXiv:1611.01989,
2016. [Page 48.]

Rachel Barr, Alecia Moser, Sylvia Rusnak, Laura Zimmermann, Kelly Dickerson,
Herietta Lee, and Peter Gerhardstein. The impact of memory load and perceptual
cues on puzzle learning by 24-month olds. Developmental Psychobiology, 58(7):
817–828, 2016. [Page 179.]

Pouya Bashivan, Kohitij Kar, and James J. DiCarlo. Neural population control via
deep image synthesis. Science, 364, 2019. [Page 179.]

Douglas Knox Bemis and Liina Pylkkänen. Simple composition: A magnetoen-
cephalography investigation into the comprehension of minimal linguistic phrases.
The Journal of Neuroscience, 31:2801 – 2814, 2011. [Page 165.]

Marina U Bers, Carina González-González, and Mª Belén Armas-Torres. Coding as
a playground: Promoting positive learning experiences in childhood classrooms.
Computers & Education, 138:130–145, 2019. [Page 127.]

Marina Umaschi Bers. Coding, playgrounds and literacy in early childhood education:
The development of kibo robotics and scratchjr. In 2018 IEEE global engineering
education conference (EDUCON), pages 2094–2102. IEEE, 2018. [Page 127.]

James C Bezdek and Richard J Hathaway. Convergence of alternating optimization.
Neural, Parallel & Scientific Computations, 11(4):351–368, 2003. [Pages 54 and 73.]

Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statis-
tical deobfuscation of android applications. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 343–355,
2016. [Page 145.]

Klinton Bicknell and Roger Levy. A rational model of eye movement control in reading.
In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, ACL ’10, page 1168–1178, USA, 2010. Association for Computational
Linguistics. [Pages 183 and 194.]

205

https://aclanthology.org/D17-1311
https://aclanthology.org/D17-1311

Klinton Bicknell and Roger Levy. Word predictability and frequency effects in a rational
model of reading. In Proceedings of the 34th Annual Meeting of the Cognitive Science
Society, page 126–131, Sapporo, Japan, 2012. [Pages 34, 187, and 191.]

Pavol Bielik and Martin Vechev. Adversarial robustness for code. arXiv preprint
arXiv:2002.04694, 2020. [Pages 47, 48, and 68.]

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. The dacapo benchmarks: Java benchmarking
development and analysis. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions, OOPSLA ’06, page 169–190, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595933484. doi: 10.1145/1167473.1167488. URL
https://doi.org/10.1145/1167473.1167488. [Page 104.]

Idan Blank, Nancy Kanwisher, and Evelina Fedorenko. A functional dissociation
between language and multiple-demand systems revealed in patterns of bold signal
fluctuations. Journal of neurophysiology, 112(5):1105–1118, 2014. [Pages 123, 124,
132, and 135.]

Idan A Blank and Evelina Fedorenko. Domain-general brain regions do not track
linguistic input as closely as language-selective regions. Journal of Neuroscience, 37
(41):9999–10011, 2017. [Page 123.]

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM computing surveys (CSUR), 35(3):
268–308, 2003. [Page 53.]

Hans-J Boehm. Position paper: Nondeterminism is unavoidable, but data races are
pure evil. In Proceedings of the 2012 ACM workshop on Relaxing synchronization
for multicore and manycore scalability, pages 9–14, 2012. [Page 100.]

Benjamin Bowman, Craig Laprade, Yuede Ji, and H Howie Huang. Detecting lateral
movement in enterprise computer networks with unsupervised graph ai. In RAID,
pages 257–268, 2020. [Page 106.]

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004. [Pages 53 and 171.]

Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now Publishers Inc,
2011. [Page 55.]

Serdar Boztas. Entropies, guessing, and cryptography. Department of Mathematics,
Royal Melbourne Institute of Technology, Tech. Rep, 6:2–3, 1999. [Page 33.]

206

https://doi.org/10.1145/1167473.1167488

Jonathan R Brennan and Liina Pylkkänen. Meg evidence for incremental sentence
composition in the anterior temporal lobe. Cognitive science, 41:1515–1531, 2017.
[Page 148.]

Joan Bresnan and Jonni M Kanerva. Locative inversion in chicheŵa: A case study of
factorization in grammar. Linguistic inquiry, pages 1–50, 1989. [Page 165.]

Matthew Brett, Ingrid S Johnsrude, and Adrian M Owen. The problem of functional
localization in the human brain. Nature reviews neuroscience, 3(3):243–249, 2002.
[Page 130.]

Korbinian Brodmann. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren
Prinzipien dargestellt auf Grund des Zellenbaues. Barth, 1909. [Pages 120, 129,
and 130.]

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,
2020. URL https://arxiv.org/abs/2005.14165. [Pages 182 and 183.]

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha
Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general
intelligence: Early experiments with gpt-4, 2023. [Pages 185 and 192.]

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. Self-Supervised Contrastive Learning for
Code Retrieval and Summarization via Semantic-Preserving Transformations, page
511–521. Association for Computing Machinery, New York, NY, USA, 2021a. ISBN
9781450380379. URL https://doi.org/10.1145/3404835.3462840. [Page 67.]

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. Self-supervised contrastive learning
for code retrieval and summarization via semantic-preserving transformations. In
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 511–521, 2021b. [Page 64.]

Raymond PL Buse and Westley R Weimer. A metric for software readability. In
Proceedings of the 2008 international symposium on Software testing and analysis,
pages 121–130, 2008. [Pages 181 and 193.]

Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S
Tolias, Matthias Bethge, and Alexander S Ecker. Deep convolutional models improve
predictions of macaque v1 responses to natural images. PLoS computational biology,
15(4):e1006897, 2019. [Page 141.]

207

https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3404835.3462840

Lu Cao, Dandan Huang, Yue Zhang, Xiaowei Jiang, and Yanan Chen. Brain decoding
using fnirs. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14):
12602–12611, May 2021. [Page 148.]

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE,
2017. [Pages 46 and 52.]

Casey Casalnuovo, Kevin Lee, Hulin Wang, Prem Devanbu, and Emily Morgan. Do
programmers prefer predictable expressions in code? Cognitive Science, 44(12):
e12921, 2020a. [Pages 147 and 181.]

Casey Casalnuovo, E Morgan, and P Devanbu. Does surprisal predict code comprehen-
sion difficulty. In Proceedings of the 42nd Annual Meeting of the Cognitive Science
Society. Cognitive Science Society Toronto, Canada, 2020b. [Page 181.]

Joao Castelhano, Isabel C Duarte, Carlos Ferreira, Joao Duraes, Henrique Madeira,
and Miguel Castelo-Branco. The role of the insula in intuitive expert bug detection
in computer code: an fmri study. Brain imaging and behavior, 13(3):623–637, 2019.
[Pages 120, 144, and 147.]

Charlotte Caucheteux, Alexandre Gramfort, and Jean-Remi King. Decomposing
lexical and compositional syntax and semantics with deep language models. In
International Conference on Machine Learning, pages 1336–1348. PMLR, 2021.
[Page 148.]

Nick Chater and Christopher D Manning. Probabilistic models of language processing
and acquisition. Trends in cognitive sciences, 10(7):335–344, 2006. [Page 194.]

Rui Pedro Chaves and Jeruen E. Dery. Frequency effects in subject islands. Journal
of Linguistics, 55:475 – 521, 2018. [Page 164.]

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021a. [Pages 63 and 145.]

208

Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Graham Neubig, Bogdan Vasilescu,
and Claire Le Goues. Varclr: Variable semantic representation pre-training via
contrastive learning, 2021b. [Page 67.]

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International
conference on machine learning, pages 1597–1607. PMLR, 2020. [Pages 63, 70, 72,
and 73.]

Yehong Chen. Zipf’s law in natural languages, programming languages, and command
languages : the simon-yule approach. International Journal of Systems Science, 22:
2299–2312, 1991. [Pages 34 and 192.]

Zimin Chen, Vincent Josua Hellendoorn, Pascal Lamblin, Petros Maniatis, Pierre-
Antoine Manzagol, Daniel Tarlow, and Subhodeep Moitra. PLUR: A unifying, graph-
based view of program learning, understanding, and repair. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021c. URL https://openreview.net/forum?i
d=GEm4o9A6Jfb. [Page 63.]

François Chollet. On the measure of intelligence. CoRR, abs/1911.01547, 2019. URL
http://arxiv.org/abs/1911.01547. [Page 180.]

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai,
Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan
Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022. [Pages 182 and 183.]

Ching-Yao Chuang, Joshua Robinson, Lin Yen-Chen, Antonio Torralba, and Stefanie
Jegelka. Debiased contrastive learning. arXiv preprint arXiv:2007.00224, 2020.
[Page 74.]

David Glenn Clark and Jeffrey L Cummings. Aphasia. In Neurological Disorders,
pages 265–275. Elsevier, 2003. [Page 123.]

Douglas W Clark and C Cordell Green. An empirical study of list structure in lisp.
Communications of the ACM, 20(2):78–87, 1977. [Pages 34 and 192.]

209

https://openreview.net/forum?id=GEm4o9A6Jfb
https://openreview.net/forum?id=GEm4o9A6Jfb
http://arxiv.org/abs/1911.01547

Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing, and
obfuscation-tools for software protection. IEEE Transactions on software engineering,
28(8):735–746, 2002. [Page 64.]

Will Crichton, Maneesh Agrawala, and Pat Hanrahan. The role of working memory in
program tracing. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450380966. doi: 10.1145/3411764.3445257. URL https:
//doi.org/10.1145/3411764.3445257. [Pages 147 and 182.]

Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F P
O’Boyle, and Hugh Leather. Programl: A graph-based program representation for
data flow analysis and compiler optimizations. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 2244–2253. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/cummins21a.html.
[Page 106.]

Yaniv David, Uri Alon, and Eran Yahav. Neural reverse engineering of stripped binaries
using augmented control flow graphs. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–28, 2020. [Page 76.]

Fatma Deniz, Anwar O Nunez-Elizalde, Alexander G Huth, and Jack L Gallant. The
representation of semantic information across human cerebral cortex during listening
versus reading is invariant to stimulus modality. The journal of neuroscience., 39,
2019. [Page 157.]

Evgeniia Diachek, Idan Blank, Matthew Siegelman, Josef Affourtit, and Evelina
Fedorenko. The domain-general multiple demand (md) network does not support
core aspects of language comprehension: a large-scale fmri investigation. Journal of
Neuroscience, 40(23):4536–4550, 2020. [Page 201.]

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessandro Morari, Baishakhi Ray,
and Saikat Chakraborty. Contrastive learning for source code with structural and
functional properties. CoRR, abs/2110.03868, 2021. URL https://arxiv.org/ab
s/2110.03868. [Page 64.]

Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W O’Hearn. Scaling
static analyses at facebook. Communications of the ACM, 62(8):62–70, 2019.
[Page 112.]

John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing
for stochastic optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.
[Page 55.]

John Duncan. The multiple-demand (md) system of the primate brain: mental
programs for intelligent behaviour. Trends in cognitive sciences, 14(4):172–179,
2010. [Pages 122 and 138.]

210

https://doi.org/10.1145/3411764.3445257
https://doi.org/10.1145/3411764.3445257
https://proceedings.mlr.press/v139/cummins21a.html
https://arxiv.org/abs/2110.03868
https://arxiv.org/abs/2110.03868

John Duncan and Adrian M Owen. Common regions of the human frontal lobe
recruited by diverse cognitive demands. Trends in neurosciences, 23(10):475–483,
2000. [Page 138.]

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box
adversarial examples for text classification. arXiv preprint arXiv:1712.06751, 2017.
[Pages 48 and 68.]

Logan Engstrom, Andrew Ilyas, and Anish Athalye. Evaluating and understanding
the robustness of adversarial logit pairing. arXiv preprint arXiv:1807.10272, 2018.
[Pages 18 and 55.]

Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. The effect
of poor source code lexicon and readability on developers’ cognitive load. In 2018
IEEE/ACM 26th International Conference on Program Comprehension (ICPC),
pages 286–28610. IEEE, 2018. [Page 120.]

Sarah Fakhoury, Devjeet Roy, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope.
Measuring the impact of lexical and structural inconsistencies on developers’ cog-
nitive load during bug localization. Empirical Software Engineering, pages 1–39,
2019. [Page 140.]

Lijie Fan, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, and Chuang Gan. When does
contrastive learning preserve adversarial robustness from pretraining to finetuning?
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021. URL https://openre
view.net/forum?id=70kOIgjKhbA. [Pages 67 and 74.]

Evelina Fedorenko and Idan A Blank. Broca’s area is not a natural kind. Trends in
cognitive sciences, 24(4):270–284, 2020. [Pages 20, 122, and 130.]

Evelina Fedorenko, Po-Jang Hsieh, Alfonso Nieto-Castañón, Susan Whitfield-Gabrieli,
and Nancy Kanwisher. New method for fmri investigations of language: defining rois
functionally in individual subjects. Journal of neurophysiology, 104(2):1177–1194,
2010a. [Pages 123, 124, 128, 131, and 135.]

Evelina Fedorenko, Po-Jang Hsieh, Alfonso Nieto-Castanon, Susan L. Whitfield-
Gabrieli, and Nancy G. Kanwisher. New method for fmri investigations of language:
defining rois functionally in individual subjects. Journal of neurophysiology, 104 2:
1177–94, 2010b. [Page 176.]

Evelina Fedorenko, Michael K Behr, and Nancy Kanwisher. Functional specificity for
high-level linguistic processing in the human brain. Proceedings of the National
Academy of Sciences, 108(39):16428–16433, 2011. [Page 130.]

Evelina Fedorenko, John Duncan, and Nancy Kanwisher. Language-selective and
domain-general regions lie side by side within broca’s area. Current Biology, 22(21):
2059–2062, 2012. [Page 130.]

211

https://openreview.net/forum?id=70kOIgjKhbA
https://openreview.net/forum?id=70kOIgjKhbA

Evelina Fedorenko, John Duncan, and Nancy Kanwisher. Broad domain generality in
focal regions of frontal and parietal cortex. Proceedings of the National Academy of
Sciences, 110(41):16616–16621, 2013. [Pages 123, 128, and 131.]

Evelina Fedorenko, Anna Ivanova, Riva Dhamala, and Marina Umaschi Bers. The
language of programming: a cognitive perspective. Trends in cognitive sciences, 23
(7):525–528, 2019. [Pages 118 and 145.]

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155,
2020. [Page 153.]

Jason Fischer, John G Mikhael, Joshua B Tenenbaum, and Nancy Kanwisher. Func-
tional neuroanatomy of intuitive physical inference. Proceedings of the national
academy of sciences, 113(34):E5072–E5081, 2016. [Page 138.]

Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and precise dynamic race
detection. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09, page 121–133, New York, NY,
USA, 2009. Association for Computing Machinery. ISBN 9781605583921. doi:
10.1145/1542476.1542490. URL https://doi.org/10.1145/1542476.1542490.
[Page 104.]

Cormac Flanagan and Stephen N. Freund. The roadrunner dynamic analysis framework
for concurrent programs. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE ’10,
page 1–8, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781450300827. doi: 10.1145/1806672.1806674. URL https://doi.org/10.1145/
1806672.1806674. [Page 108.]

Benjamin Floyd, Tyler Santander, and Westley Weimer. Decoding the representation of
code in the brain: An fmri study of code review and expertise. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), pages 175–186.
IEEE, 2017. [Pages 117, 118, 120, 144, and 147.]

Richard Futrell, Edward Gibson, Harry J. Tily, Idan Asher Blank, Anastasia Vishn-
evetsky, Steven T. Piantadosi, and Evelina Fedorenko. The natural stories corpus:
a reading-time corpus of english texts containing rare syntactic constructions. Lan-
guage Resources and Evaluation, 55:63 – 77, 2020. [Page 165.]

Jian Gao, Xin Yang, Yu Jiang, Han Liu, Weiliang Ying, and Xian Zhang. Jbench: A
dataset of data races for concurrency testing. In Proceedings of the 15th International
Conference on Mining Software Repositories, MSR ’18, page 6–9, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450357166. doi:
10.1145/3196398.3196451. URL https://doi.org/10.1145/3196398.3196451.
[Pages 104, 105, 114, and 115.]

212

https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1806672.1806674
https://doi.org/10.1145/1806672.1806674
https://doi.org/10.1145/3196398.3196451

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan Berant, Ben Bogin, Sihao Chen,
Pradeep Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, Nitish Gupta,
Hannaneh Hajishirzi, Gabriel Ilharco, Daniel Khashabi, Kevin Lin, Jiangming Liu,
Nelson F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer Singh, Noah A. Smith, Sanjay
Subramanian, Reut Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou. Evaluating
models’ local decision boundaries via contrast sets. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages 1307–1323, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.f indi
ngs-emnlp.117. URL https://aclanthology.org/2020.findings-emnlp.117.
[Pages 172 and 175.]

Jon Gauthier and Roger Levy. Linking artificial and human neural representations of
language. arXiv preprint arXiv:1910.01244, 2019. [Page 148.]

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approxi-
mation methods for nonconvex stochastic composite optimization. Mathematical
Programming, 155(1-2):267–305, 2016. [Page 54.]

Edward Gibson, Caitlin Tan, Richard Futrell, Kyle Mahowald, Lars Konieczny, Barbara
Hemforth, and Evelina Fedorenko. Don’t underestimate the benefits of being
misunderstood. Psychological science, 28(6):703–712, 2017. [Page 192.]

Gary H Glover. Overview of functional magnetic resonance imaging. Neurosurgery
Clinics, 22(2):133–139, 2011. [Pages 121 and 149.]

Jesse Gomez, Michael Barnett, and Kalanit Grill-Spector. Extensive childhood
experience with pokémon suggests eccentricity drives organization of visual cortex.
Nature human behaviour, 3(6):611–624, 2019. [Page 142.]

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. International Conference on Learning Representations, arXiv
preprint arXiv:1412.6572, 2015. [Page 64.]

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014. [Page 46.]

Tushar Goswamy, Ishika Singh, Ahsan Barkati, and Ashutosh Modi. Adapting
a language model for controlled affective text generation. In Proceedings of
the 28th International Conference on Computational Linguistics, pages 2787–
2801, Barcelona, Spain (Online), December 2020. International Committee on
Computational Linguistics. doi: 10.18653/v1/2020.coling-main.251. URL
https://aclanthology.org/2020.coling-main.251. [Pages 173 and 176.]

Sven Gowal, Po-Sen Huang, Aaron van den Oord, Timothy Mann, and Pushmeet
Kohli. Self-supervised adversarial robustness for the low-label, high-data regime.
In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=bgQek2O63w. [Page 67.]

213

https://aclanthology.org/2020.findings-emnlp.117
https://aclanthology.org/2020.coling-main.251
https://openreview.net/forum?id=bgQek2O63w
https://openreview.net/forum?id=bgQek2O63w

Philip J Guo. Non-native english speakers learning computer programming: Barriers,
desires, and design opportunities. In Proceedings of the 2018 CHI conference on
human factors in computing systems, pages 1–14, 2018. [Page 140.]

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing
common c language errors by deep learning. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, pages 1345–1351, 2017. [Page 45.]

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug
Downey, and Noah A. Smith. Don’t stop pretraining: Adapt language models to
domains and tasks. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8342–8360, Online, July 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.740. URL
https://aclanthology.org/2020.acl-main.740. [Page 173.]

Michael Hahn and Frank Keller. Modeling task effects in human reading with neural
attention. CoRR, abs/1808.00054, 2018. URL http://arxiv.org/abs/1808.00054.
[Page 182.]

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9729–
9738, 2020. [Pages 63, 70, and 72.]

Micha Heilbron, Kristijan Armeni, Jan-Mathijs Schoffelen, Peter Hagoort, and Floris P.
de Lange. A hierarchy of linguistic predictions during natural language comprehen-
sion. Proceedings of the National Academy of Sciences, 119(32):e2201968119, 2022.
doi: 10.1073/pnas.2201968119. URL https://www.pnas.org/doi/abs/10.1073/p
nas.2201968119. [Pages 164 and 165.]

Vincent J Hellendoorn and Anand Ashok Sawant. The growing cost of deep learning
for source code. Communications of the ACM, 65(1):31–33, 2021. [Page 145.]

Victor W Henderson. Paul broca’s less heralded contributions to aphasia research:
Historical perspective and contemporary relevance. Archives of Neurology, 43(6):
609–612, 1986. [Page 119.]

Jordan Henkel, Goutham Ramakrishnan, Zi Wang, Aws Albarghouthi, Somesh Jha,
and Thomas Reps. Semantic robustness of models of source code. In 2022 IEEE In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 526–537, 2022. doi: 10.1109/SANER53432.2022.00070. [Pages 19, 26, 64, 67,
68, 69, 72, 74, 77, 78, and 87.]

Evan Hernandez and Jacob Andreas. The low-dimensional linear geometry of con-
textualized word representations. In Proceedings of the 25th Conference on Com-
putational Natural Language Learning, pages 82–93, Online, November 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.conll-1.7. URL
https://aclanthology.org/2021.conll-1.7. [Page 202.]

214

https://aclanthology.org/2020.acl-main.740
http://arxiv.org/abs/1808.00054
https://www.pnas.org/doi/abs/10.1073/pnas.2201968119
https://www.pnas.org/doi/abs/10.1073/pnas.2201968119
https://aclanthology.org/2021.conll-1.7

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733–2743, Hong Kong, China, November 2019.
Association for Computational Linguistics. doi: 10.18653/v1/D19-1275. URL
https://www.aclweb.org/anthology/D19-1275. [Page 200.]

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word
representations. In Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4129–4138, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419. URL
https://aclanthology.org/N19-1419. [Page 202.]

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu.
On the naturalness of software. Communications of the ACM, 59(5):122–131, 2016.
[Pages 33 and 34.]

Klaus Hoenig, Cornelia Müller, Bärbel Herrnberger, Eun-Jin Sim, Manfred Spitzer,
Günter Ehret, and Markus Kiefer. Neuroplasticity of semantic representations for
musical instruments in professional musicians. NeuroImage, 56(3):1714–1725, 2011.
[Page 142.]

Sebastian Hoffmann. Are low-frequency complex prepositions. Corpus approaches to
grammaticalization in English, 13:171, 2004. [Page 165.]

Phillip Howard, Gadi Singer, Vasudev Lal, Yejin Choi, and Swabha Swayamdipta.
Neurocounterfactuals: Beyond minimal-edit counterfactuals for richer data augmen-
tation. arXiv preprint arXiv:2210.12365, 2022. [Pages 172, 173, 174, and 175.]

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox, and Roger Levy. A systematic
assessment of syntactic generalization in neural language models. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages
1725–1744, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.158. URL https://aclanthology.org/2020.acl-mai
n.158. [Page 165.]

Jeff Huang. Stateless model checking concurrent programs with maximal causality
reduction. SIGPLAN Not., 50(6):165–174, jun 2015. ISSN 0362-1340. doi: 10.1145/
2813885.2737975. URL https://doi.org/10.1145/2813885.2737975. [Page 108.]

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal sound predictive
race detection with control flow abstraction. SIGPLAN Not., 49(6):337–348, jun
2014a. ISSN 0362-1340. doi: 10.1145/2666356.2594315. URL https://doi.org/10
.1145/2666356.2594315. [Pages 105, 109, and 112.]

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. Maximal sound predictive race
detection with control flow abstraction. In Proceedings of the 35th ACM SIGPLAN

215

https://www.aclweb.org/anthology/D19-1275
https://aclanthology.org/N19-1419
https://aclanthology.org/2020.acl-main.158
https://aclanthology.org/2020.acl-main.158
https://doi.org/10.1145/2813885.2737975
https://doi.org/10.1145/2666356.2594315
https://doi.org/10.1145/2666356.2594315

conference on programming language design and implementation, pages 337–348,
2014b. [Page 104.]

Yu Huang, Xinyu Liu, Ryan Krueger, Tyler Santander, Xiaosu Hu, Kevin Leach, and
Westley Weimer. Distilling neural representations of data structure manipulation
using fmri and fnirs. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 396–407. IEEE, 2019. [Pages 118, 120, 144, and 147.]

Yu Huang, Kevin Leach, Zohreh Sharafi, Nicholas McKay, Tyler Santander, and
Westley Weimer. Biases and differences in code review using medical imaging and
eye-tracking: genders, humans, and machines. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 456–468, 2020. [Page 120.]

David H. Hubel and Torsten N. Wiesel. Republication of the journal of physiology
(1959) 148, 574-591: Receptive fields of single neurones in the cat’s striate cortex.
1959. The Journal of physiology, 587 Pt 12:2721–32, 2009. [Page 179.]

HuggingFace. Codeberta - a roberta-like model trained on the codesearchnet dataset
from github. HuggingFace, 2020. URL https://huggingface.co/huggingface/C
odeBERTa-small-v1. [Page 153.]

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. Codesearchnet challenge: Evaluating the state of semantic code
search. CoRR, abs/1909.09436, 2019. URL http://arxiv.org/abs/1909.09436.
[Pages 77 and 153.]

Yoshiharu Ikutani and Hidetake Uwano. Brain activity measurement during program
comprehension with nirs. In 15th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), pages 1–6. IEEE, 2014. [Page 120.]

Yoshiharu Ikutani, Takatomi Kubo, Satoshi Nishida, Hideaki Hata, Kenichi Mat-
sumoto, Kazushi Ikeda, and Shinji Nishimoto. Expert programmers have fine-tuned
cortical representations of source code. Eneuro, 2020. [Page 120.]

Yoshiharu Ikutani, Takatomi Kubo, Satoshi Nishida, Hideaki Hata, Kenichi Mat-
sumoto, Kazushi Ikeda, and Shinji Nishimoto. Expert programmers have fine-tuned
cortical representations of source code. Eneuro, 8(1), 2021. [Pages 144 and 147.]

Anna A Ivanova, Shashank Srikant, Yotaro Sueoka, Hope H Kean, Riva Dhamala,
Una-May O’Reilly, Marina U Bers, and Evelina Fedorenko. Comprehension of
computer code relies primarily on domain-general executive brain regions. Elife, 9:
e58906, 2020. [Pages 6, 40, 117, 125, 144, 145, 146, 147, 148, 149, 150, 155, 159,
and 161.]

Susanne M Jaeggi, Martin Buschkuehl, John Jonides, and Walter J Perrig. Improving
fluid intelligence with training on working memory. Proceedings of the National
Academy of Sciences, 105(19):6829–6833, 2008. [Pages 140 and 198.]

216

https://huggingface.co/huggingface/CodeBERTa-small-v1
https://huggingface.co/huggingface/CodeBERTa-small-v1
http://arxiv.org/abs/1909.09436

Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram K. Rajamani, and Rahul Sharma. Jigsaw: Large language
models meet program synthesis. CoRR, abs/2112.02969, 2021a. URL https:
//arxiv.org/abs/2112.02969. [Page 63.]

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph Gonzalez, and Ion
Stoica. Contrastive code representation learning. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pages 5954–
5971, Online and Punta Cana, Dominican Republic, November 2021b. Association
for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.482. URL
https://aclanthology.org/2021.emnlp-main.482. [Pages 63, 64, 65, 66, 67, 68,
72, 73, 74, 75, 76, 77, 78, 87, and 88.]

Shailee Jain and Alexander Huth. Incorporating context into language encoding models
for fmri. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018. [Page 148.]

Nicholas Jalbert, Cristiano Pereira, Gilles Pokam, and Koushik Sen. RADBench: A
concurrency bug benchmark suite. In 3rd USENIX Workshop on Hot Topics in
Parallelism (HotPar 11), Berkeley, CA, May 2011. USENIX Association. URL
https://www.usenix.org/conference/hotpar-11/radbench-concurrency-bug
-benchmark-suite. [Pages 104 and 114.]

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=rkE3y85ee. [Page 171.]

Minseok Jeon, Myungho Lee, and Hakjoo Oh. Learning graph-based heuristics for
pointer analysis without handcrafting application-specific features. Proceedings of
the ACM on Programming Languages, 4(OOPSLA):1–30, 2020. [Page 106.]

Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan, and Adina Williams. Are natu-
ral language inference models IMPPRESsive? Learning IMPlicature and PRE-
Supposition. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8690–8705, Online, July 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.768. URL
https://aclanthology.org/2020.acl-main.768. [Page 164.]

Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani
Srivastava. How can i explain this to you? an empirical study of deep neural network
explanation methods. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 4211–4222. Curran Associates, Inc., 2020. URL https://proceedings.ne
urips.cc/paper/2020/file/2c29d89cc56cdb191c60db2f0bae796b-Paper.pdf.
[Page 83.]

217

https://arxiv.org/abs/2112.02969
https://arxiv.org/abs/2112.02969
https://aclanthology.org/2021.emnlp-main.482
https://www.usenix.org/conference/hotpar-11/radbench-concurrency-bug-benchmark-suite
https://www.usenix.org/conference/hotpar-11/radbench-concurrency-bug-benchmark-suite
https://openreview.net/forum?id=rkE3y85ee
https://aclanthology.org/2020.acl-main.768
https://proceedings.neurips.cc/paper/2020/file/2c29d89cc56cdb191c60db2f0bae796b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2c29d89cc56cdb191c60db2f0bae796b-Paper.pdf

Jinghan Jia, Shashank Srikant, Tamara Mitrovska, Chuang Gan, Shiyu Chang, Sijia
Liu, and Una-May O’Reilly. Clawsat: Towards both robust and accurate code
models. arXiv preprint arXiv:2211.11711, 2022. [Pages 6, 37, and 63.]

Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Robust pre-training by
adversarial contrastive learning. arXiv preprint arXiv:2010.13337, 2020. [Page 67.]

Pallavi Joshi, Mayur Naik, Chang-Seo Park, and Koushik Sen. Calfuzzer: An extensible
active testing framework for concurrent programs. In Ahmed Bouajjani and Oded
Maler, editors, Computer Aided Verification, pages 675–681, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg. ISBN 978-3-642-02658-4. [Pages 108 and 111.]

Christian Gram Kalhauge and Jens Palsberg. Sound deadlock prediction. Proc.
ACM Program. Lang., 2(OOPSLA), oct 2018. doi: 10.1145/3276516. URL
https://doi.org/10.1145/3276516. [Page 104.]

Yukiyasu Kamitani and Frank Tong. Decoding the visual and subjective contents of
the human brain. Nature neuroscience, 8(5):679–685, 2005. [Page 151.]

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and
evaluating contextual embedding of source code. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML’20. JMLR.org, 2020a. [Page 184.]

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and
evaluating contextual embedding of source code. In International Conference on
Machine Learning, pages 5110–5121. PMLR, 2020b. [Page 63.]

Nancy Kanwisher. Functional specificity in the human brain: a window into the
functional architecture of the mind. Proceedings of the National Academy of
Sciences, 107(25):11163–11170, 2010. [Page 120.]

Zachary Karas, Andrew Jahn, Westley Weimer, and Yu Huang. Connecting the
dots: rethinking the relationship between code and prose writing with functional
connectivity. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 767–779, 2021. [Page 144.]

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. Learning the difference
that makes a difference with counterfactually-augmented data. In International
Conference on Learning Representations, 2020. URL https://openreview.net/f
orum?id=Sklgs0NFvr. [Pages 172, 174, and 175.]

Alan Kennedy, Joël Pynte, Wayne S. Murray, and Shirley-Anne S. Paul. Frequency and
predictability effects in the dundee corpus: An eye movement analysis. Quarterly
Journal of Experimental Psychology, 66:601 – 618, 2013. [Page 165.]

Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not
unsupervised, models may explain it cortical representation. PLoS computational
biology, 10(11):e1003915, 2014. [Page 141.]

218

https://doi.org/10.1145/3276516
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr

Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn
to criticize! criticism for interpretability. Advances in neural information processing
systems, 29, 2016. [Page 84.]

Minseon Kim, Jihoon Tack, and Sung Ju Hwang. Adversarial self-supervised contrastive
learning. arXiv preprint arXiv:2006.07589, 2020. [Page 67.]

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. Dynamic race prediction
in linear time. SIGPLAN Not., 52(6):157–170, jun 2017. ISSN 0362-1340. doi:
10.1145/3140587.3062374. URL https://doi.org/10.1145/3140587.3062374.
[Pages 104, 105, and 110.]

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos
Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm de Vries. The stack: 3 tb of
permissively licensed source code. Preprint, 2022. [Page 184.]

Arnold R Kochari, Ashley Glen Lewis, Jan-Mathijs Schoffelen, and Herbert Schriefers.
Semantic and syntactic composition of minimal adjective-noun phrases in dutch:
An meg study. Neuropsychologia, 155, 2018. [Page 165.]

James Koppel and Daniel Jackson. Demystifying dependence. In Proceedings of the
2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, pages 48–64, 2020. [Pages 181 and 194.]

Nikolaus Kriegeskorte. Pattern-information analysis: from stimulus decoding to
computational-model testing. Neuroimage, 56(2):411–421, 2011. [Page 151.]

Ryan Krueger, Yu Huang, Xinyu Liu, Tyler Santander, Westley Weimer, and Kevin
Leach. Neurological divide: an fmri study of prose and code writing. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE), pages
678–690. IEEE, 2020. [Pages 120, 144, and 147.]

Vicky Tzuyin Lai, Roel M. Willems, and Peter Hagoort. Feel between the lines:
Implied emotion in sentence comprehension. Journal of Cognitive Neuroscience, 27:
1528–1541, 2015. [Pages 163 and 164.]

Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, C-28(9):690–691, 1979. doi: 10.1109/
TC.1979.1675439. [Page 94.]

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, jul 1978. ISSN 0001-0782. doi: 10.1145/359545.359
563. URL https://doi.org/10.1145/359545.359563. [Pages 104, 105, and 110.]

Stanley Letovsky. Cognitive processes in program comprehension. Journal of Systems
and software, 7(4):325–339, 1987. [Pages 23, 181, 182, 194, 198, and 199.]

219

https://doi.org/10.1145/3140587.3062374
https://doi.org/10.1145/359545.359563

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema
challenge. In Thirteenth international conference on the principles of knowledge
representation and reasoning, 2012. [Page 172.]

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing
the loss landscape of neural nets. Advances in neural information processing systems,
31, 2018a. [Page 81.]

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng,
and Yuyi Zhong. Vuldeepecker: A deep learning-based system for vulnerability
detection. arXiv preprint arXiv:1801.01681, 2018b. [Page 45.]

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs:
A multi-lingual program repair benchmark set based on the quixey challenge. In
Proceedings Companion of the 2017 ACM SIGPLAN international conference on
systems, programming, languages, and applications: software for humanity, pages
55–56, 2017. [Page 184.]

Ziyi Lin, Darko Marinov, Hao Zhong, Yuting Chen, and Jianjun Zhao. Jacontebe: A
benchmark suite of real-world java concurrency bugs (t). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 178–189,
2015. doi: 10.1109/ASE.2015.87. [Pages 104 and 114.]

Cullen Linn and Saumya Debray. Obfuscation of executable code to improve resistance
to static disassembly. In Proceedings of the 10th ACM conference on Computer and
communications security, pages 290–299, 2003. [Page 64.]

Han Liu, Chengnian Sun, Zhendong Su, Yu Jiang, Ming Gu, and Jiaguang Sun.
Stochastic optimization of program obfuscation. In 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE), pages 221–231. IEEE, 2017.
[Pages 48 and 49.]

Hong Liu, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. Towards un-
derstanding the transferability of deep representations, 2020a. URL https:
//openreview.net/forum?id=BylKL1SKvr. [Pages 81 and 83.]

Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating
bi-level optimization for learning and vision from a unified perspective: A survey
and beyond. arXiv preprint arXiv:2101.11517, 2021. [Page 73.]

Xiaoping Liu, Jihong Ren, Wendem Beyene, Simon Ku, Chin Hong Heah, and Sherman
Hsu. Design optimization and accurate extraction of on-die decoupling capacitors
for high-performance applications. In 2018 IEEE 68th Electronic Components and
Technology Conference (ECTC), pages 1712–1719. IEEE, 2018. [Page 180.]

Yun-Fei Liu, Judy Kim, Colin Wilson, and Marina Bedny. Computer code compre-
hension shares neural resources with formal logical inference in the fronto-parietal
network. Elife, 9:e59340, 2020b. [Pages 118, 120, 138, 144, 145, 147, 148, 149,
and 159.]

220

https://openreview.net/forum?id=BylKL1SKvr
https://openreview.net/forum?id=BylKL1SKvr

Beth L Losiewicz. The effect of frequency on linguistic morphology. The University of
Texas at Austin, 1992. [Page 165.]

Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and
Lingming Zhang. Boosting coverage-based fault localization via graph-based rep-
resentation learning. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 664–676, 2021. [Page 106.]

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco,
Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine
learning benchmark dataset for code understanding and generation. arXiv preprint
arXiv:2102.04664, 2021a. [Page 76.]

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula,
and Yejin Choi. NeuroLogic decoding: (un)supervised neural text generation
with predicate logic constraints. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4288–4299, Online, June 2021b. Association
for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.339. URL
https://aclanthology.org/2021.naacl-main.339. [Page 175.]

Wei Ji Ma and Mehrdad Jazayeri. Neural coding of uncertainty and probability.
Annual review of neuroscience, 37:205–220, 2014. [Page 194.]

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A
continuous relaxation of discrete random variables. In International Conference on
Learning Representations, 2017. URL https://openreview.net/forum?id=S1jE5L
5gl. [Page 171.]

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. 2018
ICLR, arXiv preprint arXiv:1706.06083, 2018a. [Pages 18 and 66.]

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations, 2018b. [Pages 26, 46, 53, 60,
64, 68, 75, 77, 78, and 86.]

Jonathan Malmaud, Roger Levy, and Yevgeni Berzak. Bridging information-seeking
human gaze and machine reading comprehension. In CoNLL. Association for
Computational Linguistics, 2020. [Pages 34, 182, 185, and 194.]

Manuel Martín-Loeches, Anabel Fernández, Annekathrin Schacht, Werner Sommer,
Pilar Casado, Laura Jiménez-Ortega, and Sabela Fondevila. The influence of emo-
tional words on sentence processing: Electrophysiological and behavioral evidence.
Neuropsychologia, 50:3262–3272, 2012. [Page 164.]

221

https://aclanthology.org/2021.naacl-main.339
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl

Rebecca Marvin and Tal Linzen. Targeted syntactic evaluation of language models.
arXiv preprint arXiv:1808.09031, 2018. [Page 165.]

Mara Mather, John T Cacioppo, and Nancy Kanwisher. How fmri can inform cognitive
theories. Perspectives on Psychological Science, 8(1):108–113, 2013. [Page 118.]

Umang Mathur, Dileep Kini, and Mahesh Viswanathan. What happens-after the
first race? enhancing the predictive power of happens-before based dynamic race
detection. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29,
2018. [Pages 104, 105, and 110.]

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. The complexity
of dynamic data race prediction. In Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’20, page 713–727, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450371049. doi:
10.1145/3373718.3394783. URL https://doi.org/10.1145/3373718.3394783.
[Page 104.]

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. Optimal prediction
of synchronization-preserving races. Proc. ACM Program. Lang., 5(POPL), jan
2021. doi: 10.1145/3434317. URL https://doi.org/10.1145/3434317. [Pages 104,
105, and 110.]

Monica Melby-Lervåg and Charles Hulme. Is working memory training effective?
a meta-analytic review. Developmental psychology, 49(2):270, 2013. [Pages 140
and 200.]

Microsoft. Codegpt-small-py. HuggingFace, 2021. URL https://huggingface.co/m
icrosoft/CodeGPT-small-py. [Page 153.]

Zachary Mineroff, Idan Asher Blank, Kyle Mahowald, and Evelina Fedorenko. A robust
dissociation among the language, multiple demand, and default mode networks:
evidence from inter-region correlations in effect size. Neuropsychologia, 119:501–511,
2018. [Page 123.]

Tom M Mitchell, Svetlana V Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L
Malave, Robert A Mason, and Marcel Adam Just. Predicting human brain activ-
ity associated with the meanings of nouns. science, 320(5880):1191–1195, 2008.
[Page 148.]

Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods for
semi-supervised text classification. arXiv preprint arXiv:1605.07725, 2016. [Page 64.]

Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden, Kenichi Mat-
sumoto, and Daniel M German. Quantifying programmers’ mental workload during
program comprehension based on cerebral blood flow measurement: A controlled
experiment. In Companion proceedings of the 36th international conference on
software engineering, pages 448–451, 2014. [Page 120.]

222

https://doi.org/10.1145/3373718.3394783
https://doi.org/10.1145/3434317
https://huggingface.co/microsoft/CodeGPT-small-py
https://huggingface.co/microsoft/CodeGPT-small-py

Samuel A. Nastase, Yun-Fei Liu, Hanna Hillman, Asieh Zadbood, Liat Hasenfratz,
Neggin Keshavarzian, Janice Chen, Christopher John Honey, Yaara Yeshurun, Mor
Regev, Mai Nguyen, Claire H. C. Chang, Christopher A. Baldassano, Olga Lositsky,
Erez Simony, Michael A. Chow, Yuan Chang Leong, Paula P. Brooks, Emily T.
Micciche, Gina Choe, Ariel Goldstein, Tamara Vanderwal, Yaroslav O. Halchenko,
Kenneth A. Norman, and Uri Hasson. The “narratives” fmri dataset for evaluating
models of naturalistic language comprehension. Scientific Data, 8, 2021. [Page 165.]

Allen Newell, John Calman Shaw, and Herbert A Simon. Elements of a theory of
human problem solving. Psychological review, 65(3):151, 1958. [Page 40.]

Alfonso Nieto-Castañón and Evelina Fedorenko. Subject-specific functional localizers
increase sensitivity and functional resolution of multi-subject analyses. Neuroimage,
63(3):1646–1669, 2012. [Page 128.]

Kenneth A Norman, Sean M Polyn, Greg J Detre, and James V Haxby. Beyond
mind-reading: multi-voxel pattern analysis of fmri data. Trends in cognitive sciences,
10(9):424–430, 2006. [Page 151.]

Paul Nuyujukian, Jose Albites Sanabria, Jad Saab, Chethan Pandarinath, Beata
Jarosiewicz, Christine H Blabe, Brian Franco, Stephen T Mernoff, Emad N Eskandar,
John D Simeral, et al. Cortical control of a tablet computer by people with paralysis.
PloS one, 13(11):e0204566, 2018. [Page 161.]

Christophe Pallier, Anne-Dominique Devauchelle, and Stanislas Dehaene. Cortical
representation of the constituent structure of sentences. Proceedings of the National
Academy of Sciences, 108(6):2522–2527, 2011. [Page 148.]

Gabriele Paolacci, Jesse Chandler, and Panagiotis G Ipeirotis. Running experiments
on amazon mechanical turk. Judgment and Decision making, 5(5):411–419, 2010.
[Page 30.]

David Lorge Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972. [Pages 181 and 194.]

David Lorge Parnas. Designing software for ease of extension and contraction. IEEE
transactions on software engineering, (2):128–138, 1979. [Pages 181 and 194.]

Chris Parnin, Janet Siegmund, and Norman Peitek. On the nature of programmer
expertise. In Ppig, page 16, 2017. [Page 120.]

Alicia Parrish and Liina Pylkkänen. Conceptual combination in the latl with and
without syntactic composition. Neurobiology of Language, 3:46–66, 2021. [Page 165.]

Ellie Pavlick and Tom Kwiatkowski. Inherent disagreements in human textual infer-
ences. Transactions of the Association for Computational Linguistics, 7:677–694,
2019. [Page 200.]

223

Palle Martin Pedersen. Methods and systems for identifying an area of interest in
protectable content, September 14 2010. US Patent 7,797,245. [Page 46.]

Norman Peitek, Janet Siegmund, Chris Parnin, Sven Apel, Johannes C Hofmeister,
and André Brechmann. Simultaneous measurement of program comprehension
with fmri and eye tracking: A case study. In Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement,
pages 1–10, 2018. [Pages 144 and 147.]

Norman Peitek, Sven Apel, Chris Parnin, André Brechmann, and Janet Siegmund.
Program comprehension and code complexity metrics: An fmri study. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages
524–536. IEEE, 2021. [Pages 144, 147, and 148.]

Marcela Perrone-Bertolotti, Jan Kujala, Juan R. Vidal, Carlos M. Hamame, Tomas
Ossandon, Olivier Bertrand, Lorella Minotti, Philippe Kahane, Karim Jerbi, and
Jean-Philippe Lachaux. How silent is silent reading? intracerebral evidence for
top-down activation of temporal voice areas during reading. Journal of Neuroscience,
32(49):17554–17562, 2012. [Page 155.]

Steven T Piantadosi. Zipf’s word frequency law in natural language: A critical review
and future directions. Psychonomic bulletin & review, 21:1112–1130, 2014. [Pages 33,
34, and 192.]

Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro. In-
triguing properties of adversarial ml attacks in the problem space. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1332–1349. IEEE, 2020. [Pages 48
and 68.]

Russell A Poldrack. Inferring mental states from neuroimaging data: from reverse
inference to large-scale decoding. Neuron, 72(5):692–697, 2011. [Page 130.]

Scott R Portnoff. The introductory computer programming course is first and foremost
a language course. ACM Inroads, 9(2):34–52, 2018. [Page 140.]

Michael Pradel and Koushik Sen. Deepbugs: A learning approach to name-based bug
detection. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–25,
2018. [Page 45.]

Chantel S Prat, Tara M Madhyastha, Malayka J Mottarella, and Chu-Hsuan Kuo.
Relating natural language aptitude to individual differences in learning programming
languages. Scientific reports, 10(1):1–10, 2020. [Page 147.]

Ruchir Puri, David Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladmir
Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost,
Luca Buratti, Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and
Frederick Reiss. Codenet: A large-scale ai for code dataset for learning a diversity
of coding tasks, 2021. [Page 153.]

224

Erwin Quiring, Alwin Maier, and Konrad Rieck. Misleading authorship attribution
of source code using adversarial learning. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 479–496, 2019. [Pages 48 and 68.]

Md Rabin, Rafiqul Islam, and Mohammad Amin Alipour. Evaluation of generalizability
of neural program analyzers under semantic-preserving transformations. arXiv
preprint arXiv:2004.07313, 2020. [Pages 48 and 68.]

Goutham Ramakrishnan, Jordan Henkel, Zi Wang, Aws Albarghouthi, Somesh Jha,
and Thomas Reps. Semantic robustness of models of source code. arXiv preprint
arXiv:2002.03043, 2020. [Pages 25, 47, 48, 49, 52, 56, 57, 58, 59, and 61.]

Teodor Rares Begu. Modelling concurrency bugs using machine learning. Master’s
thesis, Imperial College London, 2020. [Pages 6, 38, 91, and 103.]

Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties
from" big code". ACM SIGPLAN Notices, 50(1):111–124, 2015. [Page 30.]

Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with
decision trees. ACM SIGPLAN Notices, 51(10):731–747, 2016a. [Page 56.]

Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with
decision trees. SIGPLAN Not., 51(10):731–747, oct 2016b. ISSN 0362-1340. doi:
10.1145/3022671.2984041. URL https://doi.org/10.1145/3022671.2984041.
[Page 77.]

Fabian Ritter and Sebastian Hack. Pmevo: portable inference of port mappings for
out-of-order processors by evolutionary optimization. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 608–622, 2020. [Page 180.]

Jake Roemer, Kaan Genç, and Michael D Bond. Smarttrack: efficient predictive race
detection. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 747–762, 2020. [Page 104.]

Daniel Ross. Small corpora and low-frequency phenomena: try and beyond contempo-
rary, standard english. Corpus, (18), 2018. [Page 165.]

Joshua S Rule, Joshua B Tenenbaum, and Steven T Piantadosi. The child as hacker.
Trends in cognitive sciences, 24(11):900–915, 2020. [Pages 146 and 161.]

Rachel Ryskin, Richard Futrell, Swathi Kiran, and Edward Gibson. Comprehenders
model the nature of noise in the environment. Cognition, 181:141–150, 2018.
[Page 192.]

Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. Generating data race
witnesses by an smt-based analysis. In Mihaela Bobaru, Klaus Havelund, Gerard J.
Holzmann, and Rajeev Joshi, editors, NASA Formal Methods, pages 313–327, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-20398-5. [Page 109.]

225

https://doi.org/10.1145/3022671.2984041

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems (TOCS), 15(4):391–411, 1997. [Pages 104
and 105.]

Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario Linares-Vásquez,
Denys Poshyvanyk, and Rocco Oliveto. Automatically assessing code understand-
ability: How far are we? In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 417–427. IEEE, 2017. [Pages 181
and 193.]

Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B.
Issa, Kohitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, Kailyn
Schmidt, Daniel L. K. Yamins, and James J. DiCarlo. Brain-score: Which artificial
neural network for object recognition is most brain-like? bioRxiv, 2020. [Page 160.]

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A. Hosseini,
Nancy Kanwisher, Joshua B. Tenenbaum, and Evelina Fedorenko. The neural
architecture of language: Integrative modeling converges on predictive processing.
Proceedings of the National Academy of Sciences, 118(45), 2021a. [Page 148.]

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A. Hosseini,
Nancy Kanwisher, Joshua B. Tenenbaum, and Evelina Fedorenko. The neural
architecture of language: Integrative modeling converges on predictive processing.
Proceedings of the National Academy of Sciences, 118(45):e2105646118, 2021b. doi:
10.1073/pnas.2105646118. URL https://www.pnas.org/doi/abs/10.1073/pnas.
2105646118. [Pages 182 and 194.]

Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik,
and Edgar Weippl. Protecting software through obfuscation: Can it keep pace with
progress in code analysis? ACM Computing Surveys (CSUR), 49(1):1–37, 2016.
[Page 64.]

Ivonne Schröter, Jacob Krüger, Janet Siegmund, and Thomas Leich. Comprehending
studies on program comprehension. In 2017 IEEE/ACM 25th International Confer-
ence on Program Comprehension (ICPC), pages 308–311. IEEE, 2017. [Page 120.]

Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. You autocom-
plete me: Poisoning vulnerabilities in neural code completion. In 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2021. [Page 64.]

Dan Schwartz, Mariya Toneva, and Leila Wehbe. Inducing brain-relevant bias in
natural language processing models. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019. [Page 148.]

Eugene S Schwartz. A dictionary for minimum redundancy encoding. Journal of the
ACM (JACM), 10(4):413–439, 1963. [Page 33.]

226

https://www.pnas.org/doi/abs/10.1073/pnas.2105646118
https://www.pnas.org/doi/abs/10.1073/pnas.2105646118

Cory Shain, Idan Blank, Marten van Schijndel, Evelina Fedorenko, and William
Schuler. fmri reveals language-specific predictive coding during naturalistic sentence
comprehension. Neuropsychologia, 2019a. [Page 123.]

Cory Shain, Idan Asher Blank, Marten van Schijndel, Evelina Fedorenko, and William
Schuler. fmri reveals language-specific predictive coding during naturalistic sentence
comprehension. Neuropsychologia, 138, 2019b. [Page 163.]

Vinay Shashidhar, Nishant Pandey, and Varun Aggarwal. Automatic spontaneous
speech grading: A novel feature derivation technique using the crowd. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1085–1094, Beijing, China, July 2015a. Association for
Computational Linguistics. doi: 10.3115/v1/P15-1105. URL https://aclantholo
gy.org/P15-1105. [Page 29.]

Vinay Shashidhar, Nishant Pandey, and Varun Aggarwal. Spoken english grading:
Machine learning with crowd intelligence. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’15, page
2089–2097, New York, NY, USA, 2015b. Association for Computing Machinery.
ISBN 9781450336642. doi: 10.1145/2783258.2788595. URL https://doi.org/10.1
145/2783258.2788595. [Page 29.]

Noam Shazeer. Fast transformer decoding: One write-head is all you need. CoRR,
abs/1911.02150, 2019. URL http://arxiv.org/abs/1911.02150. [Page 184.]

Summer L Sheremata, Katherine C Bettencourt, and David C Somers. Hemispheric
asymmetry in visuotopic posterior parietal cortex emerges with visual short-term
memory load. Journal of Neuroscience, 30(38):12581–12588, 2010. [Page 134.]

Richard M. Shiffrin, Danielle S. Bassett, Nikolaus Kriegeskorte, and Joshua B. Tenen-
baum. The brain produces mind by modeling. Proceedings of the National Academy
of Sciences, 117(47):29299–29301, 2020. doi: 10.1073/pnas.1912340117. URL
https://www.pnas.org/doi/abs/10.1073/pnas.1912340117. [Pages 34 and 35.]

M Shooman and A Laemmel. Statistical theory of computer programs information
content and complexity. In COMPCON’77, pages 341–342. IEEE Computer Society,
1977. [Pages 34 and 192.]

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning
loop invariants for program verification. In Neural Information Processing Systems,
2018. [Page 45.]

Matthew Siegelman, Idan A Blank, Zachary Mineroff, and Evelina Fedorenko. An
attempt to conceptually replicate the dissociation between syntax and semantics
during sentence comprehension. Neuroscience, 413:219–229, 2019. [Page 164.]

227

https://aclanthology.org/P15-1105
https://aclanthology.org/P15-1105
https://doi.org/10.1145/2783258.2788595
https://doi.org/10.1145/2783258.2788595
http://arxiv.org/abs/1911.02150
https://www.pnas.org/doi/abs/10.1073/pnas.1912340117

Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann, Thomas
Leich, Gunter Saake, and André Brechmann. Understanding understanding source
code with functional magnetic resonance imaging. In Proceedings of the 36th
International Conference on Software Engineering, pages 378–389, 2014. [Pages 31,
117, 118, and 120.]

Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister, Chris-
tian Kästner, Andrew Begel, Anja Bethmann, and André Brechmann. Measuring
neural efficiency of program comprehension. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 140–150, 2017. [Pages 118,
144, and 147.]

Bhanu Pratap Singh and Varun Aggarwal. Apps to measure motor skills of voca-
tional workers. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, UbiComp ’16, page 340–350, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450344616. doi:
10.1145/2971648.2971739. URL https://doi.org/10.1145/2971648.2971739.
[Page 29.]

Gursimran Singh, Shashank Srikant, and Varun Aggarwal. Question independent
grading using machine learning: The case of computer program grading. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 263–272, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939696.
URL https://doi.org/10.1145/2939672.2939696. [Page 30.]

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flana-
gan. Sound Predictive Race Detection in Polynomial Time, page 387–400. Associa-
tion for Computing Machinery, New York, NY, USA, 2012. ISBN 9781450310833.
URL https://doi.org/10.1145/2103656.2103702. [Pages 104 and 105.]

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. Recursive deep models for semantic com-
positionality over a sentiment treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle,
Washington, USA, October 2013. Association for Computational Linguistics. URL
https://aclanthology.org/D13-1170. [Page 172.]

Elliot Soloway. Learning to program= learning to construct mechanisms and explana-
tions. Communications of the ACM, 29(9):850–858, 1986. [Page 125.]

Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge. IEEE
Transactions on software engineering, (5):595–609, 1984. [Pages 42, 181, 182,
and 194.]

Shashank Srikant. Vulcan: classifying vulnerabilities in solidity smart contracts using
dependency-based deep program representations. Master’s thesis, Massachusetts
Institute of Technology, 2020. [Pages 6, 92, and 98.]

228

https://doi.org/10.1145/2971648.2971739
https://doi.org/10.1145/2939672.2939696
https://doi.org/10.1145/2103656.2103702
https://aclanthology.org/D13-1170

Shashank Srikant and Varun Aggarwal. A system to grade computer programming skills
using machine learning. In Proceedings of the 20th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’14, page 1887–1896, New
York, NY, USA, 2014a. Association for Computing Machinery. ISBN 9781450329569.
doi: 10.1145/2623330.2623377. URL https://doi.org/10.1145/2623330.2623377.
[Pages 30 and 45.]

Shashank Srikant and Varun Aggarwal. A system to grade computer programming skills
using machine learning. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1887–1896, 2014b.
[Page 181.]

Shashank Srikant and Una-May O’Reilly. Can cognitive neuroscience inform neuro-
symbolic inference models? In Is Neuro-Symbolic SOTA still a myth for Natural
Language Inference? The first workshop, 2021. URL https://openreview.net/f
orum?id=iXv7fYSQ54. [Pages 42 and 161.]

Shashank Srikant, Rohit Takhar, Vishal Venugopal, and Varun Aggarwal. Skill
evaluation. Commun. ACM, 62(11):60–61, oct 2019. ISSN 0001-0782. doi: 10.1145/
3355268. URL https://doi.org/10.1145/3355268. [Page 29.]

Shashank Srikant, Nicolas Lesimple, and Una-May O’Reilly. Dependency-based neural
representations for classifying lines of programs. arXiv preprint arXiv:2004.10166,
2020. [Page 97.]

Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan, Gaoyuan
Zhang, and Una-May O’Reilly. Generating adversarial computer programs using
optimized obfuscations. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=PH5PH9ZO_4. [Pages 6, 19, 37, 45,
64, 67, 68, 69, 72, 74, 77, 78, and 145.]

Shashank Srikant, Ben Lipkin, Anna Ivanova, Evelina Fedorenko, and Una-May
O' Reilly. Convergent representations of computer programs in human and artificial
neural networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pages 18834–18849. Curran Associates, Inc., 2022. URL https://proceedings.ne
urips.cc/paper_files/paper/2022/file/77b5aaf2826c95c98e5eb4ab830073d
e-Paper-Conference.pdf. [Pages 7, 41, 143, and 182.]

Shashank Srikant, Anna A. Ivanova, Yotaro Sueoka, Hope H. Kean, Riva Dhamala,
Evelina Fedorenko, Marina U. Bers, and Una-May O’Reilly. Program comprehension
does not primarily rely on the language centers of the human brain, 2023a. [Pages 6,
39, and 117.]

Shashank Srikant, Greta Tuckute, Sijia Liu, and Una-May O’Reilly. Goli: Goal-
optimized linguistic stimuli for psycholinguistics and cognitive neuroscience. In
submission, 2023b. [Pages 7, 41, and 163.]

229

https://doi.org/10.1145/2623330.2623377
https://openreview.net/forum?id=iXv7fYSQ54
https://openreview.net/forum?id=iXv7fYSQ54
https://doi.org/10.1145/3355268
https://openreview.net/forum?id=PH5PH9ZO_4
https://proceedings.neurips.cc/paper_files/paper/2022/file/77b5aaf2826c95c98e5eb4ab830073de-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77b5aaf2826c95c98e5eb4ab830073de-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77b5aaf2826c95c98e5eb4ab830073de-Paper-Conference.pdf

Megha Srivastava, Erdem Biyik, Suvir Mirchandani, Noah Goodman, and Dorsa Sadigh.
Assistive teaching of motor control tasks to humans. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=k3MX8EK6Zf.
[Page 180.]

Steven E Stemler, Varun Aggarwal, and Siddharth Nithyanand. Knowing what not to
do is a critical job skill: evidence from 10 different scoring methods. International
Journal of Selection and Assessment, 24(3):229–245, 2016. [Page 29.]

Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is
robustness the cost of accuracy?–a comprehensive study on the robustness of 18
deep image classification models. arXiv preprint arXiv:1808.01688, 2018. [Page 64.]

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 27.
Curran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2
014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf. [Page 153.]

Rohit Takhar and Varun Aggarwal. Grading uncompilable programs. Proceedings of
the AAAI Conference on Artificial Intelligence, 33(01):9389–9396, Jul. 2019. doi:
10.1609/aaai.v33i01.33019389. URL https://ojs.aaai.org/index.php/AAAI/ar
ticle/view/4987. [Page 30.]

Mosaad Al Thokair, Minjian Zhang, Umang Mathur, and Mahesh Viswanathan.
Dynamic race detection with o(1) samples. Proc. ACM Program. Lang., 7(POPL),
jan 2023. doi: 10.1145/3571238. URL https://doi.org/10.1145/3571238.
[Page 112.]

Mariya Toneva and Leila Wehbe. Interpreting and improving natural-language process-
ing (in machines) with natural language-processing (in the brain). In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/749a8e6c2
31831ef7756db230b4359c8-Paper.pdf. [Page 148.]

Mariya Toneva, Tom M. Mitchell, and Leila Wehbe. Combining computational
controls with natural text reveals new aspects of meaning composition. bioRxiv,
2022. [Page 160.]

Asher Trockman, Keenen Cates, Mark Mozina, Tuan Nguyen, Christian Kästner, and
Bogdan Vasilescu. “automatically assessing code understandability” reanalyzed:
Combined metrics matter. In International Conference on Mining Software Reposi-
tories, MSR, pages 314–318. ACM, 2018. doi: https://doi.org/10.1145/3196398.31
96441. [Pages 181 and 193.]

230

https://openreview.net/forum?id=k3MX8EK6Zf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/4987
https://ojs.aaai.org/index.php/AAAI/article/view/4987
https://doi.org/10.1145/3571238
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf

Fabian David Tschopp, Michael B. Reiser, and Srinivas C. Turaga. A connectome
based hexagonal lattice convolutional network model of the drosophila visual system,
2018. [Page 160.]

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Alek-
sander Madry. Robustness may be at odds with accuracy. In International Conference
on Learning Representations, 2019. URL https://openreview.net/forum?id=Sy
xAb30cY7. [Page 64.]

Greta Tuckute, Aalok Sathe, Shashank Srikant, Maya Taliaferro, Mingye Wang,
Martin Schrimpf, Kendrick Kay, and Evelina Fedorenko. Driving and suppressing
the human language network using large language models. bioRxiv, 2023. doi:
10.1101/2023.04.16.537080. URL https://www.biorxiv.org/content/early/2023
/04/16/2023.04.16.537080. [Pages 42, 163, and 196.]

Chris Turner. Towards a new pedagogical approach to some and any based on
large-scale corpus analysis. 2020. [Page 165.]

Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou, Fabrice Crivello,
Olivier Etard, Nicolas Delcroix, Bernard Mazoyer, and Marc Joliot. Automated
anatomical labeling of activations in spm using a macroscopic anatomical parcellation
of the mni mri single-subject brain. Neuroimage, 15(1):273–289, 2002. [Page 128.]

Abhishek Unnam, Rohit Takhar, and Varun Aggarwal. Grading emails and generating
feedback. International Educational Data Mining Society, 2019. [Page 29.]

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a java bytecode optimization framework. In Proceedings of
the 1999 Conference of the Centre for Advanced Studies on Collaborative Research,
CASCON ’99, page 13. IBM Press, 1999. [Page 108.]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file
/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. [Page 153.]

Elena Voita and Ivan Titov. Information-theoretic probing with minimum description
length. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 183–196, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.14. URL
https://aclanthology.org/2020.emnlp-main.14. [Pages 200 and 202.]

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subramanian, Matt Gardner, and
Sameer Singh. AllenNLP interpret: A framework for explaining predictions of
NLP models. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural

231

https://openreview.net/forum?id=SyxAb30cY7
https://openreview.net/forum?id=SyxAb30cY7
https://www.biorxiv.org/content/early/2023/04/16/2023.04.16.537080
https://www.biorxiv.org/content/early/2023/04/16/2023.04.16.537080
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.emnlp-main.14

Language Processing (EMNLP-IJCNLP): System Demonstrations, pages 7–12, Hong
Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-3002. URL https://aclanthology.org/D19-3002. [Pages 168
and 170.]

Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. Symbolic predictive
analysis for concurrent programs. In International Symposium on Formal Methods,
pages 256–272. Springer, 2009. [Pages 104 and 109.]

Feng Wang, Huaping Liu, Di Guo, and Fuchun Sun. Unsupervised representation learn-
ing by invariancepropagation. arXiv preprint arXiv:2010.11694, 2020a. [Page 74.]

Ke Wang and Mihai Christodorescu. Coset: A benchmark for evaluating neural
program embeddings. arXiv preprint arXiv:1905.11445, 2019. [Pages 48 and 68.]

Michael Wang, Shashank Srikant, Malavika Samak, and Una-May O’Reilly. Raceinjec-
tor: Injecting races to evaluate and learn dynamic race detection algorithms. State
Of the Art in Program Analysis (SOAP), Workshop at PLDI, 2023. [Pages 6, 38,
and 91.]

Shaonan Wang, Jiajun Zhang, Nan Lin, and Chengqing Zong. Probing brain activation
patterns by dissociating semantics and syntax in sentences. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(05):9201–9208, Apr. 2020b. doi:
10.1609/aaai.v34i05.6457. [Page 148.]

Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. Detecting code clones with
graph neural network and flow-augmented abstract syntax tree. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 261–271. IEEE, 2020c. [Page 77.]

Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao Wan, Xiao Liu, Li Li, Hao
Wu, Jin Liu, and Xin Jiang. Syncobert: Syntax-guided multi-modal contrastive
pre-training for code representation. AAAI, 2022. [Page 67.]

Yawei Wang, Giacomo Bacco, and Nicola Bianchi. Geometry analysis and optimization
of pm-assisted reluctance motors. IEEE Transactions on Industry Applications, 53
(5):4338–4347, 2017. doi: 10.1109/TIA.2017.2702111. [Page 180.]

Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. Learning semantic pro-
gram embeddings with graph interval neural network. Proceedings of the ACM on
Programming Languages, 4(OOPSLA):1–27, 2020d. [Page 76.]

Zhao Wang and Aron Culotta. Robustness to spurious correlations in text classification
via automatically generated counterfactuals. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(16):14024–14031, May 2021. doi: 10.1609/aaai.v35i16.
17651. [Page 172.]

232

https://aclanthology.org/D19-3002

Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Hagen Blix, Yining Nie, Anna Alsop,
Shikha Bordia, Haokun Liu, Alicia Parrish, Sheng-Fu Wang, Jason Phang, Anhad
Mohananey, Phu Mon Htut, Paloma Jeretic, and Samuel R. Bowman. Investigating
BERT’s knowledge of language: Five analysis methods with NPIs. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 2877–2887, Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1286. URL https://aclantho
logy.org/D19-1286. [Page 164.]

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu
Wang, and Samuel R. Bowman. BLiMP: The benchmark of linguistic minimal
pairs for English. Transactions of the Association for Computational Linguistics, 8:
377–392, 2020. doi: 10.1162/tacl_a_00321. URL https://aclanthology.org/202
0.tacl-1.25. [Page 164.]

Leila Wehbe, Idan Asher Blank, Cory Shain, Richard Futrell, Roger Levy, Titus von der
Malsburg, Nathaniel Smith, Edward Gibson, and Evelina Fedorenko. Incremental
language comprehension difficulty predicts activity in the language network but not
the multiple demand network. Cerebral Cortex, 31(9):4006–4023, 2021. [Page 163.]

Susan Wiedenbeck. Beacons in computer program comprehension. International
Journal of Man-Machine Studies, 25(6):697–709, 1986. [Pages 42, 181, and 194.]

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature
learning via non-parametric instance discrimination. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3733–3742, 2018.
[Page 70.]

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shanping
Li. Measuring program comprehension: A large-scale field study with professionals.
IEEE Transactions on Software Engineering, 44(10):951–976, 2017. [Page 117.]

Will Xiao and Gabriel Kreiman. Xdream: Finding preferred stimuli for visual neurons
using generative networks and gradient-free optimization. PLoS Computational
Biology, 16, 2020. [Page 179.]

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and
Xue Lin. Topology attack and defense for graph neural networks: An optimization
perspective. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pages 3961–3967. International Joint Conferences
on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/550. URL
https://doi.org/10.24963/ijcai.2019/550. [Page 171.]

Daniel L Yamins, Ha Hong, Charles Cadieu, and James J DiCarlo. Hierarchical modular
optimization of convolutional networks achieves representations similar to macaque it
and human ventral stream. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,

233

https://aclanthology.org/D19-1286
https://aclanthology.org/D19-1286
https://aclanthology.org/2020.tacl-1.25
https://aclanthology.org/2020.tacl-1.25
https://doi.org/10.24963/ijcai.2019/550

and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc
/paper/2013/file/9a1756fd0c741126d7bbd4b692ccbd91-Paper.pdf. [Page 145.]

Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert,
and James J DiCarlo. Performance-optimized hierarchical models predict neural
responses in higher visual cortex. Proceedings of the national academy of sciences,
111(23):8619–8624, 2014. [Page 141.]

Linyi Yang, Jiazheng Li, Padraig Cunningham, Yue Zhang, Barry Smyth, and Ruihai
Dong. Exploring the efficacy of automatically generated counterfactuals for senti-
ment analysis. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 306–316, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.26. URL
https://aclanthology.org/2021.acl-long.26. [Page 172.]

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understand-
ing. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2
019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf. [Page 153.]

Zhou Yang, Jieke Shi, Junda He, and David Lo. Natural attack for pre-trained
models of code. In Proceedings of the 44th International Conference on Software
Engineering, pages 1482–1493, 2022. [Page 68.]

Noam Yefet, Uri Alon, and Eran Yahav. Adversarial examples for models of code.
arXiv preprint arXiv:1910.07517, 2019. [Pages 47, 48, and 49.]

Noam Yefet, Uri Alon, and Eran Yahav. Adversarial examples for models of code. Pro-
ceedings of the ACM on Programming Languages, 4(OOPSLA):1–30, 2020. [Pages 19,
64, 67, 68, and 69.]

Ting Yuan, Guangwei Li, Jie Lu, Chen Liu, Lian Li, and Jingling Xue. Gobench: A
benchmark suite of real-world go concurrency bugs. In 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), pages 187–199,
2021. doi: 10.1109/CGO51591.2021.9370317. [Pages 104 and 114.]

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/fi
le/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf. [Page 103.]

234

https://proceedings.neurips.cc/paper/2013/file/9a1756fd0c741126d7bbd4b692ccbd91-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9a1756fd0c741126d7bbd4b692ccbd91-Paper.pdf
https://aclanthology.org/2021.acl-long.26
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf

Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. Generating
adversarial examples for holding robustness of source code processing models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
1169–1176, 2020. [Page 48.]

Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and
Sijia Liu. Revisiting and advancing fast adversarial training through the lens of
bi-level optimization. In International Conference on Machine Learning, pages
26693–26712, 2022. [Page 73.]

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer, and Steffen
Eger. MoverScore: Text generation evaluating with contextualized embeddings
and earth mover distance. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 563–578, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi: 10.18653/v
1/D19-1053. URL https://aclanthology.org/D19-1053. [Page 175.]

Michael Zhivich and Robert K Cunningham. The real cost of software errors. IEEE
Security & Privacy, 7(2):87–90, 2009. [Page 100.]

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign:
Effective vulnerability identification by learning comprehensive program semantics
via graph neural networks. In Advances in Neural Information Processing Systems,
pages 10197–10207, 2019. [Pages 45 and 46.]

Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. Searching for a
needle in a haystack: Predicting security vulnerabilities for windows vista. In 2010
Third international conference on software testing, verification and validation, pages
421–428. IEEE, 2010. [Pages 181 and 193.]

Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Gün-
nemann. Language-agnostic representation learning of source code from structure
and context. In International Conference on Learning Representations (ICLR),
2021. [Page 153.]

235

https://aclanthology.org/D19-1053

	Introduction
	Puzzle 1 - Human intelligence tasks
	Puzzle 2 - Programs and patterns
	Reconciling these puzzles - Questions that arise
	Thesis map
	Software

	Testing the robustness of code model understanding using source code modifications
	Introduction
	Related Work
	Program Obfuscations as Adversarial Perturbations
	Adversarial Program Generation via First-Order Optimization
	Experiments & Results
	Experiments

	Conclusion

	Improving the robustness of code model understanding while retaining model accuracy
	Introduction
	Overview of proposed approach
	Contributions

	Related work
	SSL for code
	Adversarial robustness of code models: Attacks & defenses

	Preliminaries
	Code and obfuscation transformations
	Problem statement

	Method
	Claw: CL with adversarial codes
	SAT: Staggered adversarial training for fine-tuning

	Experiment Setup
	Experiment Results
	Overall performance
	Why is Claw effective? A model landscape perspective
	Interpretability of learned code representations
	SAT enables generalization-robustness sweet spot
	ClawSAT on a different architecture
	Extended study to integrate SAT with ContraCode
	Sensitivity of SAT to code transformation and attack strength types.

	Conclusion & Discussion

	Training code models to understand concurrent programs using program execution traces
	Introduction
	Background

	A theoretical formulation to learn data races
	Problem formulation
	Implementation challenges

	Simulating data races to study the limits of ML models
	Introduction
	Simulating data races - A toy language
	Generalization properties which the generated dataset can test
	Desirable capabilities of the learned models
	Experiments and Results - A summary

	First steps towards learning data races: Creating a labeled dataset
	Method
	Results & Discussion
	Related work

	Program comprehension and the human brain
	Introduction
	Related Work
	Background
	fMRI studies
	Regions of Interest (ROIs)

	Experiment Design
	Experiment workflow - An overview
	Condition design
	fMRI tasks
	Locating fROIs and data analysis

	Experiment Procedure
	Results
	Discussion
	Threats to validity

	Convergent representations of computer programs in humans and code models
	Introduction
	Related Work
	Background
	Brain and Model Representations
	Brain representations and decoding
	Code properties
	Model representations and decoding.

	Experiments & Results
	Experiment 1 - How well do the different brain systems encode specific code properties? Do they encode the same properties?
	Experiment 2 - Do brain systems encode additional code properties encoded by computational language models of code?

	Discussion

	Goal-optimized linguistic stimuli for psycholinguistics and cognitive neuroscience
	Introduction
	Problem description
	Method
	Solution formulation

	Experiments & Results
	Counterfactual minimal-pair task
	fMRI task

	Discussion

	Modeling the presence of beacons in program comprehension
	Introduction
	Experiment Setup
	Results
	RQ 1. Do humans consistently identify beacons?
	RQ 2. What are the predictors of beacons?

	Related work

	Conclusion
	Future work
	The role of cognitive neuroscience: path ahead
	Applying results from neuroimaging studies to CS education and pedagogy
	Establishing human performance for the better design of code models
	A case for separate architectures?
	Probing code models

