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ABSTRACT

This thesis comprises three chapters on public finance and information economics. The first focuses on the

interaction of imperfect information in labor markets and the tradeoffs the government faces when setting

non-linear taxes. The second focuses on the role of heterogeneity in elasticities in affecting those tradeoffs.

The third, focuses on the imperfect information in financial markets, and on how to design disclosure rules

to increase the size of gains from trade in lending markets when these markets are adversely selected.

The first chapter asks how optimal taxes are affected by reputation building and imperfect information in

labor markets. To answer that question, I build a model of labor markets with incomplete and asymmetric

information where job histories play a crucial role in transmitting information about workers’ productivity,

which allows us to better understand the efficiency and distributive consequences of imperfect monitoring

and screening in labor markets, and the tradeoffs the government faces when setting taxes. Optimal taxes are

described by generalized versions of standard redistributive and corrective taxation formulas, which depend

crucially on labor wedges: the marginal contribution to output relative to the increases in lifetime earnings

that result from supplying one extra unit of labor at each period. Using data from the Health and Retirement

Study, I find that the corrective component of taxes is likely to be large, especially at the top of the income

distribution.

The second chapter (joint with John Sturm) asks how income taxes should account for heterogeneity in

elasticities of taxable income. We address this question with a test that passes if and only if there exists a

weighted utilitarian planner for whom taxes are locally optimal. Our test incorporates standard sufficient

statistics and a novel ingredient: the variance of elasticities conditional on income. Theoretically, we show

that the test fails when these variances are sufficiently high. Empirically, we find they are indeed large in a

panel of US tax returns. We thereby conclude, without taking a stance on redistributive preferences, that

there are welfare-improving tax reforms.

The increasing availability of data in credit markets may appear to make adverse selection concerns less

relevant. However, when there is adverse selection, more information does not necessarily increase welfare.

The third chapter (joint with Robert M. Townsend and Nicole Immorlica) provides tools for making better use

of the data that is collected from potential borrowers, formulating and solving the optimal disclosure problem

of an intermediary with commitment that seeks to maximize the probability of successful transactions,

weighted by the size of the gains of these transactions. We show that any optimal disclosure policy needs to

satisfy some simple conditions in terms of local sufficient statistics. These conditions relate prices to the price
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elasticities of the expected value of the loans for the investors. Empirically, we apply our method to data

from the Townsend Thai Project – a long panel dataset with rich information on credit histories, balance

sheets, and income statements – to evaluate whether it can help develop rural credit markets in Thailand,

finding economically meaningful gains from adopting limited information disclosure policies.
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Chapter 1

Dynamic Job Market Signaling and
Optimal Taxation

1.1 Introduction
It takes time for a highly productive worker to be recognized as such in labor markets. For a worker

with little experience, it is hard for employers to infer their abilities from their short resumes. However, as
workers advance in their careers, increasing the length of their resumes, they make information about their
abilities available to potential employers. In line with this idea, there is evidence that measures of ability
that are not observed by firms become increasingly more predictive of workers’ salaries as they progress in
their careers.1

These informational imperfections drive workers to exert effort throughout their careers. In the beginning,
foreseeing higher salaries in the future, they work hard even though their current salaries are small. As they
accumulate experience, employers become able to recognize who the more productive workers are and start
paying them differentially, allowing workers to reap the benefits of their past effort. Those dynamic career
concerns may not in general induce workers to exert the efficient amount of effort.2

Besides shaping the incentives to exert effort, these informational imperfections affect the income dis-
tribution. Whenever employers cannot differentiate among workers of distinct productivities at some point
in their careers, those workers may receive the same wages. These informational imperfections, thus, may
make the higher productivity workers implicitly subsidize the lower productivity workers. Because these
informational asymmetries affect incentives and the distribution of income, it is natural to ask what can
be done to counterbalance those effects, and how the presence of these dynamic informational asymmetries
affects the efficiency and redistribution tradeoffs the government faces when setting taxes.

This paper proposes a simple model of career concerns, building on an otherwise standard dynamic
model of labor supply and demand, that addresses the connection between information transmission in labor
markets, taxes, and inequality. The model builds on the signaling logic from Spence (1973), shifting the focus
from one-time investment decisions on education to the dynamics of job market experience accumulation
and the effort decisions throughout the lifetime of a worker. Concretely, the model is built around two ideas.

1For example, Armed Forces Qualification Test (AFQT) exam scores become increasingly more predictive of workers’ salaries
(Farber and Gibbons, 1996; Altonji and Pierret, 2001; Lange, 2007).

2Indeed, Holmström (1999) shows that dynamic career concerns introduce labor supply distortions and may only partially
replace the incentives that pay-for-performance contracts could provide for workers to exert effort.
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First, it is easy for the firms to see and pay for the execution of clearly specified tasks, or deliverables, but
it is much harder for them to assess the individual contribution of each worker to the firm’s total output,
or the value of the firm. Second, firms assess the productivity of workers by looking at the resumes, which
parsimoniously summarize the history of deliverables the workers have produced so far in their careers.3

In equilibrium, working hard has dual benefits: it generates larger payments today, and it also establishes
workers’ reputations, signaling their productivity to employers. The logic behind this is the following:
employers do not know the productivities of the workers they are hiring, but they can see how many tasks
they have completed. Under the assumption that for those who are productive it is less costly to complete
deliverables, the firms can infer that those who have longer resumes are also more productive. This generates
a “rat race,” and pushes workers to exert additional effort to signal to employers their productivities. While
doing that, they build up their resumes, and progressively earn more. There is a positive return to experience
even without human capital accumulation, which is entirely due to signaling.

The simple structure of the model will also allow us to derive comparative statics and to incorporate and
understand the dual role of nonlinear taxes in correcting for the labor market imperfections and redistributing
income. This understanding is brought by a series of results that i) delineate what the optimal tax base is,
ii) write optimal tax formulas in terms of simple sufficient statistics that can be estimated and compared
to standard optimal tax formulas, which would ignore the role of information imperfections, and iii) derive
comparative statics on taxes and welfare from changes in the degree of information asymmetries.

Optimal lifetime income taxes are described by a generalization of standard Mirrleesian nonlinear taxation
formulas. This generalization accounts for the labor market imperfections, and introduces a Pigouvian
component to the standard formulas. Intuitively, optimal taxes can be thought of in two steps. First, they
correct for the informational friction at the margin where it matters by making sure that, for any extra unit
of effort, the marginal benefits to workers is equal to their marginal product of labor. Then, simultaneously,
redistributive taxes are imposed on top of these taxes following standard Mirrleesian formulas, where the costs
and benefits of redistribution are expressed in terms of the shape of the income distribution, compensated
and income elasticities, and welfare weights.4

Surprisingly, in a simple benchmark case, to correct for the career concerns distortion is not necessary to
keep track of the ratio of marginal productivities over salaries throughout the lifetime of the worker.5 It is
enough to look at this ratio only around the time of retirement. Moreover, under the assumption that the
willingness to provide deliverables and the unobserved productivities are positively correlated, and holding
constant the usual sufficient statistics for optimal taxes (elasticities and the distribution of income), taking
career concerns into account pushes towards higher marginal taxes. The reason behind this is the following:
employers do not know who are the employees retiring at the time of contracting, so those who are retiring
are offered the same wage as those who have the same experience but are more productive and are willing
to work even more. By the assumption that the willingness to complete deliverables and the unobserved
productivities are positively correlated, those who are retiring are the least productive in the pool of workers
with the same resume. This explains the wedge between their salaries and marginal product. This wedge,

3The model is a counterpart of the Arrow (1962) learning-by-doing model, where instead of affecting human capital, the
history of completion of deliverables affect, in equilibrium, employers’ perceptions of the worker productivity. This connection
is especially clear in the special case where the resume is defined as the total experience, or the cumulative sum of deliverables
a worker has produced. For this reason, we can call it a “signaling-by-doing model.”

4Moreover, these generalized formulas apply independently of the model of competition with imperfect information or of
the source of the friction that makes workers to receive salaries that are not their marginal products, provided some simple
conditions are satisfied, pretax earnings are an invertible function of the supply of deliverables, and firms make zero profits.

5Nor it is sufficient: another simple benchmark case shows that salaries can be equal to marginal productivities at all points
in the career of a worker, but the timing of labor supply decisions can be severely distorted.

11



more precisely one minus the wedge, can be interpreted as the negative externality of the “rat race”. That
is, holding the remuneration schedule of firms constant, if a worker would work more and earn one more
dollar, they would generate less than one dollar of output for the firm. This difference can be thought of
as a negative production externality, and can be corrected with Pigouvian taxes. For these reasons, taking
into account these dynamic informational imperfections pushes towards higher marginal taxes over lifetime
income.6

Recent technological changes are reshaping how workers are monitored and screened.7 This paper shows
that the elimination of informational frictions is a force that: i) pushes lower marginal corrective taxes, ii)
pushes towards higher marginal redistributive taxes, iii) has a generally ambiguous net effect on taxes, but
in sensible simple cases the corrective component dominates, and iv) it is a force that hurts society from
the point of view of a redistributive planner. On one hand, the corrective taxes diminish because, as the
strength of the “rat race” diminishes, it takes lower taxes to correct for the fact that workers work too
much over their lifetimes. On the other hand, because better information benefits disproportionally more
the more productive workers, the shape of the income distribution may change and push towards a higher
redistributive component of taxes. Relatedly, whenever redistribution towards the poorer is valued by society,
society is hurt when there is less information asymmetry because it becomes easier for high productivity
workers to separate themselves from lower productivity workers, undoing part of the implicit cross subsidies
that happen in labor markets from those high productivity workers towards the lower productivity workers.

From an empirical point of view, to calibrate the optimal taxation formulas, a key statistic that needs to
be estimated is the ratio of the marginal productivity of workers at retirement over their salaries, as a function
of their lifetime income. In principle, this labor wedge could be inferred from the shape of the lifetime income
distribution and from the signaling component of the return to experience. Although there are estimates
for the shape of the income distribution and the growth rate of salaries across the income distribution
(for example, Guvenen et al. (2021)), decomposing this growth rate into its signaling and human capital
accumulation is a considerable challenge. There are not estimates for each of those in regards to the return to
experience, but a growing literature has decomposed the return to schooling into its different components. A
simple calibration exercise combining estimates of the growth rate of salaries across the income distribution
from Guvenen et al. (2021) and assuming that the signaling share of the return to experience is equal to the
signaling share of the return to schooling from Aryal et al. (2019), indicates that the Pigouvian component
of taxes could be as high as 25% for top earners, and on average would be around 6%.

To get more direct estimates of the signaling component of the return to experience and the wedge
between salaries and marginal productivities at retirement, this paper develops an empirical strategy relying
on tax changes as a source of exogenous variation in wages and using data from the Health and Retirement
Study survey. This empirical strategy adapts results from the literature that has quantified the degree of
adverse selection in insurance markets by leveraging exogenous variation in prices (as in Einav et al. (2010);
Einav and Finkelstein (2011); Cabral et al. (2022)). In the context of imperfect information and career

6Optimal taxes do not depend only on labor wedges but also on elasticities and the shape of the income distribution.
This paper shows that from the point of view of optimal taxation formulas, similarly to results in Scheuer and Werning (2017)
common elasticity estimates are biased downwards. The reason for it is that increases in marginal retention induce the marginal
types – who are the less productive types – to work more, and therefore reduce pretax salaries, making the effective change
in post-tax wages smaller. Thus, the estimated elasticities of taxable income are lower in magnitude than the elasticities that
enter optimal taxation formulas, which keep pretax salaries fixed. This is a countervailing force that makes accounting for
career concerns push less towards higher marginal taxes.

7These changes appear in the form of increasing availability of data and new tools to analyze it (Chalfin et al., 2016; Autor,
2019; Acemoglu et al., 2020; Bales and Stone, 2020), and changes in task composition of jobs from the automation of routine
tasks (Autor et al., 2003), and the advent of “new work” (Autor, 2019).
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concerns in labor markets, the key idea is that with a source of exogenous variation in wages for a specific
labor contract, one can non-parametrically trace the shape of the labor demand curve by looking at average
productivities as a function of salaries. However, inferring productivities in labor markets is a difficult
endeavor. To circumvent that challenge two complementary approaches are adopted.

The first strategy is to assume that, although there are informational assymetries, labor markets are
competitive and, thus, we can treat hourly salaries as the average marginal productivity of workers. Under
this assumption by observing individual salary changes before and after a tax change, and observing the
number of people who retired in response to the tax change, we can infer the productivity of those who
were originally almost indifferent between retiring or not. Applying this strategy to data from the Health
and Retirement Study survey shows that, for an average worker, the Pigouvian component of taxes is of the
order of 5%, while for high earners it ranges from 10% to as high as 60%. Since optimal taxes can be thought
of as the product of a Pigouvian and a Mirrleesian component, the fact that the Pigouvian component is
so high implies that the redistributive component of taxes is potentially quite small or close to zero. In
other words, the current tax system is significantly less redistributive than otherwise might be thought, if
imperfect information was not taken into account.

The second strategy leverages the rich set of questions asked in the Health and Retirement Study and
allows for more direct tests for the mechanism highlighted in this paper. In particular, the Health and
Retirement Study includes data on cognitive scores, assessed at each interview from questions involving
counting, naming, and vocabulary tasks. We find that the pool of individuals who keep working after a
tax increase has better cognitive scores (as measured before the tax change), in line with the idea that the
changes in pretax salaries induced by tax changes are due to selection, or changes in the composition of the
pool of individuals who are still working. This effect is also larger at the top of income distribution, in line
with the idea that those informational imperfections are more pronounced for high-paying occupations.

To add realism to an otherwise stylized model, several extensions to the basic model are presented,
including on-the-job learning, richer heterogeneity in elasticities of labor supply, and richer signal structures.
This paper shows that, in these extensions, the key insights from the generalized optimal taxation formulas
and their empirical implications still hold with minor caveats. When there is human capital accumulation
on the form of on-the-job learning, the return to experience features both a signaling and human capital
accumulation component; however the same optimal lifetime income tax formula applies. When there is rich
heterogeneity in elasticities, the average labor wedge at each lifetime income level should be weighted by
those lifetime income elasticities. When resumes include richer exogenous signals which cannot be observed
by the government, the benefits and costs in optimal tax formulas should be weighted by the sensitivity
of post-tax salaries to tax changes. When the signal the firm sees is a richer function of the history of
deliverables, there may be additional distortions to be corrected, but the same optimal lifetime income tax
formula applies.

Related Literature

This paper is related and contributes to several strands of the literature, including a public finance
optimal taxation literature, the empirical and the theoretical literature on imperfect information in labor
markets, and an empirical literature on dynamic labor supply choices.

First, the taxation results in this paper build on the optimal taxation literature that goes back to the
seminal contributions of Mirrlees (1971); Diamond (1998); Saez (2001), and more precisely contribute to
a growing literature on optimal taxation with richer models of labor markets (Hariton and Piaser, 2007;
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Rothschild and Scheuer, 2013; Stantcheva, 2014, 2017; Bastani et al., 2015; Ales et al., 2015; Scheuer and
Werning, 2016; Ales and Sleet, 2016; Scheuer and Werning, 2017; da Costa and Maestri, 2019; Costinot and
Werning, 2018; Craig, 2020; Hummel, 2021; Guerreiro et al., 2022). Methodologically perhaps the closest
papers are Scheuer and Werning (2017) and Scheuer and Werning (2016), who show that standard optimal
taxation formulas apply quite generally, including a broad range of models where wages are endogenous.
Relative to these papers, this paper adds further generality to optimal taxation formulas, enriching them to
cover situations where labor market frictions introduce labor market distortions. That is, the generalized
taxation formulas in this paper hold when there are additional labor market inefficiencies, independently of
their nature. The results on welfare in this paper speak to welfare theorems for economies with informational
frictions from Prescott and Townsend (1984) and generalize results from Stantcheva (2014). In the latter,
welfare comparisons are drawn between economies with “double adverse selection” – in the form of non-linear
screening as in Miyazaki (1977) – to economies where firms know the productivity of workers. This paper
extends the comparison to more general and arbitrary frictions, as well as to other intermediary levels of
informational frictions.

Second, this paper contributes to the literature on imperfect information in labor markets, which goes
back as far as the seminal contributions of Spence (1973), to the models of the “rat race” as in Akerlof (1976)
and Miyazaki (1977), and in Stantcheva (2014), and the dynamic career concerns model of Holmström (1999),
extended and further analyzed more recently by Bonatti and Hörner (2017), Cisternas (2018), and Hörner and
Lambert (2021). Relative to this literature, this paper provides a new model of dynamic signaling combining
elements from both of these classes of models. The assumption in this paper, that firms see and pay for the
execution of clearly specified tasks, or deliverables, borrows from static competitive screening models of the
labor markets as in Miyazaki (1977), and bypasses a key limitation from the canonical career concerns setup
in Holmström (1999), where firms can see the individual contribution that each worker makes to the firms’
profits but cannot pay for performance. Conversely, the assumption that firms assess the productivity of
workers by looking at resumes borrows from Holmström (1999), and bypasses a key limitation from the static
setup in Miyazaki (1977), where firms learn the productivity of the workers through a one-time interaction,
and resumes play no role in transmitting information. Furthermore, the idea that firms see a simple public
signal builds on the motivational rating setup from Hörner and Lambert (2021), and bear resemblance to
aggregation and linearity results from Holmstrom and Milgrom (1987).

Third, a related, but more empirically focused literature, has looked at how firms learn about the pro-
ductivity of workers and whether there are information asymmetries in labor markets, including Jovanovic
(1979); Farber and Gibbons (1996); Acemoglu and Pischke (1998, 1999); Altonji and Pierret (2001); Lange
(2007); Kahn and Lange (2014); Cella et al. (2017); Aryal et al. (2019). Relative to this literature, this
paper provides new evidence for the importance of informational asymmetries in labor markets, in particular
for workers in later stages of their careers. This complements the evidence from Kahn and Lange (2014)
who found that firms have substantial uncertainty over the productivities of older workers. This paper also
contributes to the literature on technological changes and their impacts on labor markets (Autor et al., 2003;
Brynjolfsson and Mitchell, 2017; Brynjolfsson et al., 2018; Autor, 2019; Acemoglu et al., 2020; Acemoglu,
2021; Autor et al., 2022), delineating key welfare and normative implications from changes in the technologies
for monitoring and screening workers.

There is a large literature that has looked at dynamic labor supply decisions, human capital accumulation
and on-the-job learning (Heckman, 1976; Eckstein and Wolpin, 1989; Shaw, 1989; Altuğ and Miller, 1998;
Keane and Wolpin, 2001; Imai and Keane, 2004; Keane, 2011; Altonji et al., 2013). One key insight from
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that literature is that workers, when making their labor supply decisions today, would consider the impact of
those decisions today on their future salaries, and that in this context the workers’ opportunity cost of time
may not be equal to their current wages. The same effect is present in this paper, where the dependence of
future salaries on current effort decisions are alternatively explained by signaling effects.

The remainder of the paper is structured as follows. Section 1.2 presents the dynamic signaling model.
Section 1.3 presents two simple benchmark cases, and discusses a range of possibilities that the dynamic
signaling model can acommodate. Section 1.4 discusses positive properties that hold beyond these benchmark
cases. Section 1.5 introduces taxes and presents the main normative results. Section 1.6 discusses the
existing empirical evidence, the empirical strategy, and the empirical results. Section 1.7 discusses extensions,
including human capital accumulation, heterogeneous elasticities, and richer signal structures. Section 1.8
concludes.

1.2 Signaling-by-doing model
This paper adapts a standard dynamic model of labor supply, demand and taxation, by adding the

constraint that firms have limited information over the workers’ productivities and can only contract based
on a subset of the observed activities workers perform. The general setup encompasses a standard neoclassical
life-cycle labor supply problem, and with minor modifications can encompass several models of screening
and imperfect information in labor markets as special cases. These special cases include a) models where
individual contributions to output are observed and workers get paid a fixed salary independent of the
realized output, as in Holmström (1999), as well as b) models where hours are observed but output is not,
and workers are screened through the total amount of hours or observable effort they commit to offer, as
in Miyazaki (1977) or in Akerlof (1976). For exposition, we focus on one specialized version of the general
model that allows to derive clear comparative statics and simple optimal tax formulas, while retaining the
essential economic assumptions that describe dynamic job market signaling. That is, employers will see a
worker’s resume – how much in terms of deliverables a worker has provided so far in their career – and
will pay workers for the execution of these deliverables. Workers, aware of how their resumes will be read,
will choose their labor supply balancing costs and benefits in terms of current and future wages. Section
1.7 will consider several departures from this simple model, including richer signal structures and richer
heterogeneity in preferences.

1.2.1 Preferences and Technology

The household block of the model consists of a continuum overlapping generations of workers who live
for a continuum of periods going from zero to one. These workers have arbitrary preferences over labor and
consumption flows, and are forward-looking: they understand that their labor supply choices can affect the
information firms will have about them in the future. The production block of the model is described by
competitive firms with linear production functions.

More formally, workers are indexed by their types θ, which determines their productivity and their
preferences, and there are different cohorts of workers. Each worker lives for a continuum of periods that
goes from zero to one, where zero corresponds to the time the worker is born and one corresponds to the
time their life ends. At each period, workers of all ages coexist. They supply labor (h̃(·)) and consume (c̃(·))
at each period. That is, c̃(·) denotes the flow of consumption function c̃ : [0, 1] 7→ R+, and h̃(·) denotes the

15



flow of labor supply function h̃ : [0, 1] 7→ R+. An individual of type θ has a productivity v(θ) > 0, and
production is linear, that is the flow of production is equal to the product of productivities and the labor
supply h̃. Preferences are denoted U(c̃(·), h̃(·), θ),8 where c̃(·) is the time-flow of consumption and h̃(·) is the
time-flow of labor supply.

The worker problem is standard: they maximize a utility functional, subject to a lifetime budget con-
straint, where flows in the future, at age a, are discounted at the rate q(a).9 However, salaries w depend
on the information the firms have about the worker I(h̃(·), a, θ), which will be specified below, but more
generally could be a function of the flow of labor supply across all the periods h̃(·), the type θ and age a of
the worker. This captures the possibility that the workers may want to change their labor supply to influence
their future salaries, by changing the employers’ perceptions of their productivities.

V = max
c̃(·),h̃(·)

U(c̃(·), h̃(·), θ) st.

∫ 1

0
q(a)

(
c̃(a) − w(I(h̃(·), a, θ))h̃(a) − T (ỹ(·), a)

)
da ≤ 0 (1.1)

Notice that a standard life cycle labor supply problem features as a special case of this, where wages are
equal to the productivity of the worker, and this productivity would be independent of their labor supply
decisions. Notice as well that human capital accumulation of the form of on-the-job learning would generate
analogous concerns for the worker, with labor supply decisions affecting future wages through real increases
in their productivities.

Workers pay taxes T (ỹ(·), a) on their income flows ỹ, which are the product of their wages w and the
flow of labor supply h̃. Those taxes can be used to shape incentives and redistribute income. They will be
discussed in more detail in Section 1.5.

1.2.2 Contracts and Information

Firms are constrained to offer infinitesimal contracts, which is a contract for one unit of the labor supply.
Firms are unable to commit to long-term contracts; they cannot promise that they will not try to renegotiate
labor contracts once more information becomes available. This makes the firm problem essentially static.
Finally, there is free entry and exit, therefore firms make zero profits.

Firms do not observe types or productivities, but instead, they observe a signal of their past experience.
In the simplest case, we can think of that signal as how much labor a worker has supplied so far, which is
denoted by I(h̃(·), a, θ) = h(a) =

∫ a

0 h̃(ã)q(ã)dã, or the length of the resume when the worker has age a.
More generally, as covered in Sections 1.5.2 and 1.7, I(h̃(·), a, θ) can accommodate richer signal specifica-
tions, including more general functions of past experience I(h̃(·), a, θ) =

∫ a

0 ϕ(ã, a)h̃(ã)dã (with ϕ(ã, a) > 0,
continuous in both arguments), or exogenous signals I(h̃(·), a, θ) = (h(a), z(θ)). The more general idea is
that the resume is an imperfect measure of the past history of the completion of deliverables and their timing.

This detailed history, if it was perfectly observed by firms and if workers’ types are single-dimensional,
in most sensible cases, would contain enough information to allow firms to infer the workers’ type almost
instantaneously. While explicitly introducing stochastic noise on preferences or on the information could

8Although it is not necessary and it is a especially restrictive in the context of continuous time choices, assuming time-
separability of preferences can help us understand the trade-offs workers face when deciding their labor supply flows. For an
example with time-separability, see Section 1.3.2.

9These discount rates are assumed to be exogenously given, i.e. there is a technology for transferring resources across periods
at rates q(·), and that these rates are such that budget and resource constraints are well defined; that is, the present value of
resources in the economy is finite. While the first assumption is not essential, the fact that the present value of resources is
finite is important to guarantee that the economy is dynamically efficient.
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equivalently capture this imperfect inference problem, this formulation avoids dealing with technical difficul-
ties arising from multidimensional screening problems, where in this case both the type space and the space
of goods would be high-dimensional. This formulation can also flexibly accommodate other concerns that
would lie outside the immediate scope of the model, such as information becoming harder to retrieve for
work experiences that are further in the past, or firms assigning disproportional weights to some experiences
because of limited attention or because they have the wrong model of how the economy works and mistakenly
attribute increases in productivity to human capital accumulation instead of signaling. Special cases of this
formulation include observing the total experience

∫ a

0 q(ã)h̃(ã)dã, and the pace of experience accumulation∫ a

0
h̃(ã)

a dã, which are discussed in more detail in Section 1.3.
An important point to emphasize is that we should interpret what has been referred to as labor supply

h̃(·) not necessarily as hours or effort, but as what will be referred to in this paper as deliverables. That is,
h̃(·) represents the specific piece of the information on which the firms can condition their contracts. This
will allows us to consider the possibility that changes in technology make these deliverables a better or worse
measure of output. In the extreme case where h̃(·) is the flow of output, there is no information asymmetry
problem between the firms and workers, and workers will get paid for their marginal contributions to the value
of the firm output.10 Firms, moreover, do not observe output, or cannot individually assess the contribution
of each worker to output, or the firm’s profits. They can, however, infer the expected productivity given
the signal of experience, either because they have hired many employees with the same experience and have
seen how much output these employees have generated on average or because they know the economy-wide
distribution of productivities and labor supply.11

Figure 1.1 represents diagrammatically the flows of production, payments, and information. Workers
complete deliverables for the firms, and the firm sees the completion of the deliverables and the workers’
resume. Each worker’s resume keeps track of their deliverables completion history, adding those deliverables
up. Payments are based on what the firm observes, that is, resumes and the execution of the deliverable.
Output and profits are realized, but the firm cannot individually assess the contribution of each unit of
deliverable to the firm output.

1.2.3 Taxes

This model features what has been called “double adverse selection” (Stantcheva, 2014). Both firms and
the government do not observe workers’ types. We assume that firms observe the workers’ resumes, while
the government observes histories of earnings ỹ.12 This assumption captures the idea that every year, tax
payers send their tax returns to the the tax authority, and the tax authority keeps track of these tax returns.
The government faces a budget constraint and can save and borrow at the same exogenous discount rates the
workers face. Notice that because the workers face a lifetime budget constraint, the timing of tax payments

10To match this setup to canonical models of imperfect information in labor markets notice that, in the Miyazaki (1977)
model the only difference would be that the information set of firms would consist of not how much a worker has supplied so far
h(a), but how much the worker would supply over the lifetime h(1). In the Holmström (1999) model, labor supply h̃(a) would be
a two-dimensional vector of effort and an indicator function for whether the individual decides to work at any period. Workers
would get paid only by the second component of h̃(a). The information set of firms would consist of a stochastic function of
the history of effort and the type of the agent.

11The fact that firms observe hours but not individual output can also be thought of through the lens of team production
(Alchian and Demsetz, 1972). Production needs to take place inside a firm, that aggregates the work of multiple workers. For
example, the firm production function could be F=

∏n

i
1(hi > 0) ·

∑n

i
hi · vi , that is, production inside the firm is linear but

it needs multiple (n) workers to be present. In the limit of a large number of workers (n), the firm would assess the productivity
of workers only from their average productivity.

12In Section 1.5, we discuss the extent that this assumption can be relaxed, and conditions under which optimal taxes take
even simpler form.
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Figure 1.1: Flow of production, information, and payments

and transfers to and from the government is not pinned down by the model.

1.2.4 Equilibrium Definition

Equilibrium is described by workers choosing optimal consumption and labor supply flows taking salaries
and taxes as given, and anticipating the effect that their labor supply decisions have on their future salaries
and taxes, as stated in 1.1, while firms simultaneously set salaries according to the zero profit condition 1.2,
presented below, paying each worker for their expected productivity conditional on their resumes. This zero
profit condition is justified by competition among firms to enter the market and hire labor.

Definition. For each marginal unit of labor, the firms’ free entry condition is described by an Akerlof (1970)
lemons condition,13 where salaries are equal to productivity of the workers with the same resume:14

w(I(h̃(·), a, θ)) = E[v(θ)|I(h̃(·), a, θ)] (1.2)

Equation 1.2 lies at the core of the model. It simply states that at any period people with equivalent
resumes will be paid equally, and that firms will on average break-even.

Equilibrium, thus, is described by workers choosing optimal consumption and labor supply flows taking
salaries as given, and anticipating the effect that their labor supply decisions have on their future salaries,

13This condition perhaps would more precisely be named in this context, an Akerlof “peach condition”, because since it is
assumed that those who are more willing to work are those who are more productive, there is advantageous selection instead
of adverse selection.

14In this definition, it is assumed that I and h̃(·) are continuously distributed, so that the expectation is the same if it is
conditioned on the workers who accept the contract.
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as stated in 1.1, while firms simultaneously are setting salaries according to the condition 1.2, paying each
worker for their expected productivity conditional on their resumes.

1.3 Two Polar Cases
In this section, two polar cases illustrate a range of possibilities this simple setup can accommodate.

These two benchmark cases, and additional parametric examples, are illustrative of the patterns of wages
and the return to experience, as well as of the type of distortions that dynamic labor market signaling can
generate.

In the first case, payments per unit of the deliverable will be, for every worker, increasing with experience
and almost at all times different than their marginal product of labor. In spite of salaries being higher at
advanced stages of the career of the workers, there will be no intertemporal distortions. A dynamic rat race
will generate high-powered incentives for the workers to exert effort throughout their careers.

In the second case, payments per unit of the deliverable will be constant throughout the career of the
workers, and equal to their marginal product of labor. In spite of pre-tax salaries being constant, corrective
taxes will be necessary to avoid large intertemporal distortions, and excessively strong incentives to work
hard at earlier stages of the career of workers. A dynamic rat rate will generate high-powered incentives to
exert effort, but those incentives will be declining over time.

1.3.1 First Case: The Length of the Resume

The first benchmark case, or example of the informational structure we just presented, is one where the
worker’s resume is summarized by the cumulative discounted sum of what the worker has produced or its
“length,” that is, I(h̃(·), a, θ) =

∫ a

0 q(ã)h̃(ã)dã. This case has features that are closely analogous to the Arrow
(1962) learning-by-doing model, where productivity is a function of the cumulative use of a factor. Similarly
in this case, firms’ perceptions about each worker’s productivity are also a function of their cumulative labor
supply.

This case is natural if most or all of the heterogeneity in labor supply is at the extensive margin, and if,
for firms, it is hard to observe anything other than how many years or hours of experience a worker has. In
fact, in many occupations, it is hard for firms to observe and verify much more than the start and end date
of previous positions, or the number of hours someone has been working for the current position.

This case is also natural if firms believe that there is a lot of human capital accumulation, so that the
model they may have in mind is one where there is on-the-job learning, in the form of the Arrow (1962)
learning-by-doing model.15 In that vein, firms could mistake the return to experience as human capital
accumulation instead of changes in the composition of the pool of workers. That is, the firm could hire
many workers with different lengths of resumes, and observe that the pool of workers with longer resumes
is, on average, more productive. Without knowing why the pool is more productive, it may attribute that
fact to human capital accumulation instead of signaling. Firms could think the change in the composition
of workers who happen to achieve a higher degree of experience is a real return to human capital when it
is not, and still post the same salaries and make zero profits. Workers as well may not know whether they
will become more productive by working more, or whether they would just signal to employers they are
more productive. From the workers’ perspective, to make their labor supply choices, it only matters how
experience accumulation and labor supply decisions today will likely impact their future salaries.

15A more general version of the model that has both ingredients is presented and discussed in Section 1.7.
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Under the assumption that resumes are summarized by their “length,” salaries take a particularly simple
form, and satisfy a modified Akerlof lemons condition, as stated in Lemma 1.

Lemma 1. If the information of firms is defined as the “length-of-the-resume,” that is, I(h̃(·), a, θ) =∫ a

0 q(ã)h̃(ã)dã, then the Akerlof lemons condition (Equation 1.2) is equivalent to:

w(h) = E[v(θ)|h(θ) ≥ h] (1.3)

Proof. See Appendix Section 1.9.1.

Where h(θ) denotes the length of the resume of type θ at the end of their career, that is h(θ) ≡ h(1, θ).
Lemma 1 states that salaries as a function of the length of resume h are the average productivity of all the
types who eventually reach a point in their careers where their resumes are longer than h. This is the case,
because at any period, for every type who eventually reaches a longer than h resume, there is someone,
potentially from a different generation, who has a resume of length h today.16 However, if workers’ labor
supply decisions are heterogeneous only at the extensive margin (differing in how long they stay in the labor
force) or if the deliverables were defined as working additional years, then the set of workers that would be
pooled together would consist only of workers of the same cohort.17

Given equation 1.3, which describes salaries as a function of the cumulative labor supplied, it is useful to
note that lifetime income can be written quite simply. We can change variables to express the worker lifetime
income as y(h) ≡ y(h(1)) =

∫ 1
0 w(h(a))h̃(a)q(a)da =

∫ h

0 w(z)dz, that is we can express lifetime income as
instead of integrating over time, as integrating over increases in the length of the resume (dz).That is, how
much more the worker would receive for providing one extra unit of the deliverable (in present value) over
their lifetime, is the same at any point in the career of the worker and it is equal to the payment for the
last unit of the deliverable, that is y′(h) = E[v(θ)|h(θ) ≥ h]. This equation also helps simplify the analysis
behind this dynamic model of career concerns, making it as simple as a static model.

In the economically-sensible case where it is less costly for the more productive people to supply the
deliverables, salaries increase with experience. Workers at the beginning of their careers are willing to work
more, relative to the myopic trade-off between current salaries and current effort, because they expect higher
future salaries as an outcome of building up their experience, signaling to employers that they have higher
productivities. The property that exerting effort increases future salaries, by affecting employers’ perceptions
of the ability of the worker, will be shared by a large range of informational structures, as described in more
detail in Section 1.4.

At the beginning of their working life, for the first job they can get, all individuals face the same
wage. Employers cannot distinguish between workers who have no experience at all. As workers advance
in their careers, completing tasks and increasing their lifetime supply of labor, the length of the resume of
hard-working individuals works to separate them from the other workers that execute fewer tasks and have
shorter resumes. These more productive workers initiate their careers subsidizing the less productive, but
at each new task they execute, some less productive workers are left behind with a shorter resume. For
this reason, the remuneration that the more productive workers receive for the execution of tasks becomes
progressively higher.

16The same argument could be applied to any specification of I of the form I(h̃(·), a, θ) =
∫ a

0 ϕ(ã)h̃(ã)dã.
17Given this structure of labor demand and supply, a natural question in this setup is whether there exists an equilibrium,

as defined in Section 1.2.4. Proposition 11 in the Appendix Section 1.9.3, shows that it does exist under standard assumptions.
Namely, these assumptions state that the distribution of types, productivities and marginal rates of substitution are continuous,
and that marginal rates of substitution are smooth as a function of lifetime consumption and lifetime income, with bounded
derivatives.

20



The size of the return to experience depends on how many people are being left behind by these more
productive workers as they advance in their careers, and on how much more productive they are relative to
those with shorter resumes. That is, the return to experience depends on the joint distribution of preferences
and productivities.

Fortunately, there are simple and sensible assumptions on preferences and heterogeneity that allow us to
derive equally simple expressions for the return to experience and the shape of the income distribution, as
well as to analyze how they would change in response to information becoming more symmetric. Towards this
goal, let’s assume that preferences over lifetime labor supply and lifetime consumption are such that there is
a constant elasticity of lifetime labor supply and those preferences are quasilinear in lifetime consumption.18

U(c, h, θ) = c −
(

h

b(θ)

)1+ 1
ϵ
(

1 + 1
ϵ

)−1

where b(θ) = θ1−δ,v(θ) = θδ, θ ∼ Pareto with shape parameter α > 1, and 0 ≤ δ < 1. In this example, δ

governs the amount of information asymmetry: a higher δ means more heterogeneity comes from unobserved
productivities (v(θ)) instead of observable productivities (b(θ)). Under this formulation b(θ) should be
thought of as how many deliverables a worker can provide per unit of effort l, that is, h = l ·b(θ). v(θ) should
be interpreted as how much output the worker generates per unit of the deliverable, that is, y = h · v(θ).
The total productivity as a function of effort then is just the product of v(θ) and b(θ), and it is equal to
θ. Using the equilibrium definition and the convenient properties of Pareto distributions, we can guess and
verify that salaries are also a power function, so wages and experience follow a log-linear relationship:

log(w) = γ · log(h) + κ

where γ = δ
1−δ+ϵ .19 There is a constant proportional return to experience that is entirely driven by

selection or employers learning about the types who are willing to take the jobs they are offering. This
return to experience is larger when heterogeneity comes mostly from unobserved productivities, that is when
δ is higher, as there is more heterogeneity to be screened out by experience. When the elasticity parameter
ϵ is low, the return to experience is also larger: in this case, a higher experience is really indicating that the
worker is more productive. When the elasticity is low, the difference between how a marginal increase in
labor supply hurts the less productive relative to the more productive workers becomes larger.

Because higher types are more productive and are the workers who are willing to work longer, wages
increase over time, and at the time of retirement, each worker would be facing a higher salary than their
productivity. As noted earlier, whenever the resume is summarized by its “length”, the lifetime benefits of
increasing the lifetime labor supply do not depend on when the worker completes these extra units of the
deliverable. Therefore, workers face high-powered incentives to work not only at the time of retirement, but
at all moments in their careers. This implies that Pigouvian component of taxes as defined in Section 1.5 will
be positive, and will correct for that distortion. This also will imply that dynamic job market signaling, in
this case, will not introduce intertemporal distortions, and the optimal tax base will be the workers’ lifetime
earnings.

As will be discussed further in Section 1.5 the marginal Pigouvian component of taxes can be thought
18Note that given the result from Proposition 1, and assuming exogenous discount rates, it is without loss to specify preferences

in terms of lifetime labor supply and lifetime consumption. This means that behind this preference specification there could be
either heterogeneity only at the extensive margin (in which case, workers of different cohort would not be pooled together), or
richer heterogeinity in preferences (in which case, workers of different cohorts potentially would be pooled together).

19For the algebra behind this example, see Appendix Section 1.9.2.
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of as guaranteeing that workers at the margin are paid for their marginal product, i.e. post- Pigouvian tax
payments for an additional increase in lifetime labor supply marginal unit of labor (r(h)) should be such
that r(h) = v(θ). We can translate this condition as a restriction on marginal retention on earnings (r(y)),
which state that r(y) = v(θ(y))

E[v(θ)|y(θ)≥y] . In this case, under the parametric assumptions above, r(y) = α−δ
α .

Thus, these Pigouvian taxes will also be increasing in the amount of information asymmetry δ, and,
given the parametric assumptions in this example, they will be constant as a function of lifetime income. In
this case, the Pigouvian corrections can be implemented with linear taxes. This makes the implementation
particularly simple, because since these taxes are linear, they do not need to be a function of lifetime income
per se and can be implemented with history-independent annual income taxes.20

To summarize, whenever the public signal the firms can obtain from workers is the “lenghth-of-their-
resumes,” payments per unit of the deliverable will be, for every worker, increasing with experience, and
almost at all times different than their marginal product of labor. In spite of salaries being higher at
advanced stages of the career of the workers, there will be no intertemporal distortions. A dynamic rat race
will generate high-powered incentives for the workers to exert effort throughout their careers. Pigouvian
taxes can be used to correct for these high-powered incentives as will be discussed in Section 1.5, taking
lifetime income as an optimal tax base. In a simple parametric example, the return to experience will
take a familiar log-linear form, and marginal Pigouvian taxes will be constant, implying that they can be
implemented with history-independent annual taxes.

1.3.2 Second Case: The Pace of the Resume

This section presents the second benchmark case, where the resume is summarized by “pace of the
resume”: the ratio of the total amount of deliverables a worker has produced and the age of the worker, i.e.
I(h̃(·), a, θ) =

∫ a

0
h̃(ã)

a dã. This case is particularly natural if all the heterogeneity in preferences are at the
intensive margin, and employers are aware of the relationship between the heterogeneity in productivities
and the willingness to supply deliverables.

In this example payments per unit of the deliverable will be constant thoughout the career of the worker,
and equal to their marginal product of labor. However, the corrective component of taxes will be positive
and will correct for intertemporal distortions and the incentives to work too much when young.

We assume that workers have additively separable preferences over time, and preferences are heterogenous
only on the intensive margin. That is, every worker starts and ends their careers at the same age, but each
of them may be willing to supply deliverables at different rates. In other words, we can think of all the
heterogeneity as coming from how each worker evaluates different paces of work, and not from how long they
would like to stay in the labor market.

Under that assumption, any optimal allocation has each worker consuming and supplying labor at con-
stant rates over their lifetimes. As we will see in more detail in Section 1.5, the government can implement
those allocations using age-dependent and history-dependent taxes.

Moreover, whenever there is separation, more productive types will supply labor at higher rates, and
therefore will have stronger resumes. Because they supply labor at constant rates, each worker will also
reveal a constant “pace-of-the-resume,” and each type, being associated uniquely with a certain “pace” will
receive a different pre-tax salary, which will be equal to their marginal productivity. Therefore, for each

20Linearity is one property that guarantees that lifetime income taxes can be implemented with history-independent annual
taxes. Besides linearity, whenever there is heterogeneity only at the extensive margin, lifetime income taxes can be implemented
with history-independent non-linear annual taxes.
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worker, salaries will be equal to their marginal productivity almost at every point in their careers.21

The fact that pre-tax salaries are equal to the productivity of the workers does not mean, however, that
there are no distortions that taxes should take care of. In fact, taxes should correct for potentially large
intertemporal distortions that arise from the dynamic reputation building effects. Whenever young workers
consider increasing their labor supply, they receive not only larger payments now, they also improve their
resumes in all future periods, and increase the remuneration they would receive for the future completion of
deliverables. The role of Pigouvian taxes in this case is to counterbalance this effect, exactly cancelling the
dynamic reputation building benefits, and making sure that the lifetime benefits the workers would receive
by increasing their labor supply are equal to only their current salaries which in turn are already equal to
their marginal productivities.

The size of the reputation building effects, and the return to experience depend on the joint distribu-
tion of productivities and willingness to provide the deliverables. Fortunately, there are simple parametric
assumptions that allows us to derive simple expressions for the signaling return to experience and for the
corrective component of taxes. In particular, for illustrative purposes, let us assume that preferences take
the form:

U =
∫ 1

0
e−ρa

(
c̃(a) − h̃(a)1+ 1

ϵ

1 + 1
ϵ

b(θ)−(1+ 1
ϵ )

)
da,

where b(θ) is the cost of a worker of type θ to work more and provide more deliverables per unity of time.
We denote productivities by v(θ), and assume production is linear in the flow of labor supply. Productivities
and preferences are parameterized so that v(θ) = θδ, b(θ) = θ1−δ, with 0 < δ < 1.

Any optimal allocation has a constant labor supply over time. Moreover, for concreteness let’s focus on
the allocation where the redistributive component of taxes is set to zero, so that for each worker, the optimal
flow of labor supply satisfies the following first order condition:

h̃(θ) 1
ϵ b(θ)−(1+ 1

ϵ ) = v(θ)

Denoting a particular level of a resume pace as hα, using the condition above we can conclude that
pre-tax salaries as a function of the pace would satisfy w(hα) = E[v(θ)|

∫ a

0
h̃(ã)dã

a = ha] = h
δ

1+ϵ−δ
a . Notice

these are exactly the productivity of the workers for whom it is optimal to supply a certain pace hα. That
is, salaries at each period are equal to the marginal productivity of the workers. As discussed above, this
does not imply that there should be no corrective taxes; in fact the relevant labor wedge is not the static
difference between productivities and current salaries, but the difference of productivities and the sum of
current salaries and the increases in future lifetime earnings from reputation builiding effects.

In fact, for a worker who has supplied labor at the pace hα up until the age ā, increasing their labor
supply today and then reverting back to their constant flow increases their lifetime earnings by:

dy

dh̃(ā)
(ha, ā) = e−ρāh

δ
1+ϵ−δ
a +

(
δ

1 + ϵ − δ

) ∫ 1

ā

e−ρa

a
da ·

(
ha

) δ
1+ϵ−δ −1

where the first term is the current salary, and the second term are the reputation effects, that is the increase
of future payments for the completion of future deliverables (holding the future flow at the constant pace
hα). Because the first term is exactly the productivity of the workers, corrective taxes as a function of labor
supply (τ) should be exactly equal to the second term, that is:

21The exception being a zero measure moment when they have just entered the workforce and have empty resumes.
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τ(ha, ā) =
(

δ

1 + ϵ − δ

) ∫ 1

ā

e−ρa

a
da ·

(
ha

) δ
1+ϵ−δ −1

(1.4)

where ha can be inferred from the history of earnings. In this simple case, those Pigouvian taxes can be
implemented as relatively simple age- and history-dependent taxes. For workers of age a, if their lifetime
earnings has been increasing at a ratio that is consistent with a constant labor supply flow equal to hα, then
the marginal taxes on labor they should face should be equal to those in equation 1.4.22 Those Pigouvian
taxes correct not for the difference between current payment and productivities (which in this example is
zero!), but for the difference between the lifetime gains from a marginal increase in effort today and the
productivities. Those extra lifetime gains come from the positive reputation effects of exerting higher effort,
which result in higher salaries in the future.

These large intertemporal corrective taxes are suggestive that, without them, younger workers would
exert a lot more effort and work longer hours. This prediction is in line with the evidence from Landers
et al. (1996) who show that, in law firms, hours decrease with tenure and associates work too many hours
relative to their desires and relative to partners. This prediction however is at odds with the commonly
found inverted U-shaped pattern for hours over the life-cycle: younger and less experienced workers work
fewer hours, hours are mostly constant for workers between the ages of 25 to 55, and they quickly fall for
older workers (Card, 1991; Kaplan, 2012).

To summarize, whenever the public signal the firms can obtain from workers is the “pace-of-their-
resumes,” payments per unit of the deliverable will be, for every worker, constant throughout their lifetime,
and almost at all times equal to their marginal product of labor. In spite of salaries being constant, there
will be large intertemporal distortions. A dynamic rat race will generate high-powered incentives for the
workers to exert effort throughout their careers, but those incentives will be stronger for younger workers
and will decline as workers approach their retirement age. Pigouvian taxes can be used to correct for these
high-powered incentives and intertemporal distortions as will be discussed in Section 1.5.

1.4 General Positive Properties
The examples presented in the previous section were stylized, and relied on particular assumptions on

the information structure and on parametric assumptions on preferences and productivities. This section
shows properties of salaries and the return to experience that hold under a broader set of assumptions. We
focus on the case where the resume is summarized by a signal of the form I(h̃(·), a, θ) =

∫ a

0 h̃(ã)ϕ(ã, a)dã,

with ϕ(ã, a) > 0, bounded and continuous. In contrast to the previous cases, where the signal was referred
to the “length-of-the-resume” and the “pace-of-the-resume”, we say that in this more general case the firms
receive a public signal which can be called the “strength-of-the-resume” of the candidate.

Together with the overlapping generation structure of the model, this formulation can be thought of as
a parsimonious way of introducing noise in how employers assess what has been done and when. While
doing that, it implies that employers may pool together workers of different generations, whenever their past
experiences are assessed as equivalent. It allows firms to see and put different weights on past experience,
and those weights may depend on the current age of the employee as well as the age the employees had when
they completed each task.

22Notice that Lemma 5 guarantees that quite generally in this setup the government can infer the labor supply flows from
the earning flows.
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Figure 1.2: Career of Workers: Initial Salaries

a

I

1

Iθ”(a)

Iθ′(a)
Iθ(a)

Figure 1.3: Career of Workers: Signaling Return to Experience

First, for any preferences and distribution of productivities workers, every worker starts their career
with nothing to show in their resumes, and therefore the strenght of their resumes is zero. Everyone has
the same initial salary, which is equal to the average productivity of all workers. In particular, workers
with above-average productivity start their career earning less than their marginal product, as the average
productivity is everyone’s initial salary. All workers have to climb the same career ladder and before they
can show anything in their resume they are all indistinguishable for employers. This is illustrated in Figure
1.2, where the trajectories of the “strength-of-the-resume” of different hypothetical workers are plotted as a
function of their age, and the pool of workers who just started their careers is highlighted in red.

Second, at any point, assuming more productive types are more willing to provide the deliverables at
all periods, exerting more effort increases future salaries. This is the case because whenever workers decide
to exert more effort and improve their resumes, they will show to employers resumes that are more similar
to the resumes of the more productive types. This is illustrated in Figure 1.3, where in blue workers of a
certain type decide to exert more effort at a certain age, and as a result they make their resume stronger
in all future periods. This is a general property that will be satisfied in other information structures as
discussed in Section 1.5.2.

Third, workers at the peak of their careers (when they reach the highest value of the index
∫ a

0 h̃(ã)ϕ(ã, a)dã)
will earn more than their marginal productivity because they will be pooled together only with the types
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Figure 1.4: Career of Workers: Salaries at the Peak

that are willing to provide higher amounts of deliverables across all periods. This is illustrated in Figure
1.4. In Figure 1.4, a dashed horizontal line shows the pool of workers who at some point in their careers
have a resume of a certain “strenght.” As illustrated there, whenever this line is tangent to the highest
“strength-of-the-resume” a certain type of worker achieves, that this worker will be pooled together only
with people who reach even higher levels of that “strenght” and who are more productive than this worker
(under the assumption that those who are more productive are more willing to supply deliverables).

These three observations are summarized in Proposition 1, below.

Proposition 1. For any distribution of preferences and productivities, and for any ϕ, where I =
∫ a

0 ϕ(ã, a)h̃(ã)dã,
with ϕ > 0 and h̃ ≥ 0 bounded and continuous, and provided that the workers who are more productive are
more willing to supply deliverables:

1. All workers start with an empty resume and earn the same initial salaries;

2. There is a positive signaling return to experience;

3. At the peak of the career of each worker, salaries are higher than marginal productivity.

Relative to Holmström (1999), this model imposes a different assumption on the contract space. In
Holmström (1999) firms cannot pay for performance, firms do not observe effort but observe output, and
overworking in a short period of time is a way for workers to trick employers into believing they are more
productive. Here, firms must pay for the observable component of effort, the deliverables, and the fulfillment
of these deliverables add to the resumes, which is a publicly available signal to employers. At the cost of
other simplifying assumptions, the fact that firms in the model can condition payments on the performance
measures that are available to them – as in fact many of them do – adds realism to the way that career
concerns are modeled. Interestingly, employer learning under this assumption can be seen as a problem in
itself instead of a side effect of an insurance and incentives tradeoff.

This matters not only from a positive perspective, but also from a normative point of view. Workers enter
a “rat race” as in Akerlof (1976) and Holmström (1999), but interestingly, this “rat race,” in the case where
resumes are defined as the cumulative discounted sum of deliverables, does not generate an intertemporal
distortion, but rather, generates a lifetime labor supply distortion. Workers work too much, but the timing
of their labor supply decisions is not distorted. For building a resume, in that simple information structure,
there is no advantage of concentrating efforts in a particular period of their lives. The discounted sum of
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payments a worker receives from increasing the length of the resume by one unit is the same independently
of when the worker decides to increase it, and at the same time the contribution to the total output of
the economy from increasing the length of the resume by one unit is also the same independently of when
the worker decides to increase it. When the resume is alternatively summarized by its “pace,” then there
are large intertemporal distortions, but differently than Holmström (1999), the incentives to exert effort
are never too low, and they approach undistorted levels as workers approach the retirement age and the
reputation motive to exert effort disappears.

This also illustrates that the difference between current salaries and productivities does not in itself
represent a distortion. Rather, distortions come from differences between productivities and the lifetime
gains from exerting effort, where those lifetime gains are the sum of two components: current payments
and increases in future payments from reputational effects. In this particular case, salaries are initially low
but increase with experience, while the size of the distortion is constant over the lifetime of the worker.
In Section 1.3.2, a simple example – where the resume instead of being defined as the cumulative sum of
deliverables is defined as the pace of production of deliverables over time (i.e. I(h̃(·), a, θ) =

∫ a

0
h̃(ã)

a dã) –
illustrates that the opposite case is also a possibility. Salaries can be exactly equal to the productivities of
the workers at all times and, at the same time, there could be large intertemporal distortions coming from
reputational effects and how effort today affects future payments.

1.5 Taxation
In this section, we focus on the normative implications of the model and how dynamic signaling effects

should affect optimal taxation. We first focus on the case where the public signal that the firms see is defined
as the “length-of-the-resume”, or the discounted cumulative sum of what the worker has produced, and then
we extend the results to more general information structures.

As in Mirrlees (1971), the government does not observe the workers’ types, and because firms also do
not observe the types, this model features what has been called “double adverse selection” (Stantcheva,
2014). We are going to place special focus on the case where the government sets taxes on lifetime income
(y) to maximize a welfarist functional of utilities. This focus is motivated by two sets of reasons. On
the practical side, many taxes and transfers actually condition on lifetime income: most notably, the key
determinant of US social security benefits is a measure of the average earnings over the lifetime of a worker.
Furthermore, for many taxes the timing of earnings can be manipulated: the realization of capital gains can
be delayed indefinitely to avoid taxes, and there is flexibility in reporting the timing of income coming from
C-corporations. On the theoretical side, an extension of the Atkinson and Stiglitz (1976) result shows that
it is still optimal to tax lifetime income even with “double adverse selection.”

Proposition 2. (AS extension): If preferences take the form U(C(c̃(·)), H(h̃(·)), θ), then it is optimal to
tax lifetime income, even with “double adverse selection.”

Proof. See Appendix Section 1.9.4.

In this Proposition C(c̃(·)) and H(h̃(·)) are common aggregators of flows of consumption and labor supply,
respectively. The assumption on preferences says that if preferences across households are homogenous over
the timing of consumption and labor supply decisions, that is, if preferences can be written as a function
of common indexes (C, H) that aggregate the flows of consumption and labor supply, and these indexes
are the same across households, then it is optimal to use only lifetime income as the tax base. It means
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that dynamic job market signaling, under the baseline assumptions here in this paper, does not introduces
intertemporal distortions and under the benchmark case where preferences over timing of consumption and
labor flows are homogeneous across households, there would be no reason to introduce further distortions
on intertemporal decisions. This resembles a special case in Holmström (1999), where there are also no
intertemporal distortions, namely when there is no discounting and productivities follow a random walk
process. More generally, in Holmström (1999), reputation concerns in general induce workers to exert
relatively more effort earlier in their careers, and progressively exert less effort as their reputations are
consolidated.

This result echoes tax smoothing results as in Werning (2007a), and the tax smoothing ideas that go as
far back as Vickrey (1947), and adds another reason to use income averaging rules, as they are present for
example in the calculation of social security benefits. Importantly, although the income base should be the
lifetime income of a worker, those taxes do not need to be raised only at the end of a worker’s life, and can
be raised annually, as long as taxes each year depend on the history of earnings of each worker up to the
current date.

Moreover, the result is general in an important way. It essentially says that post-tax lifetime earnings,
when it is possible, should be a function of lifetime labor supply . In the simple model we just presented,
pretax lifetime earnings are a function of lifetime labor supply, and thus taxes on lifetime income are enough
to guarantee that post-tax lifetime earnings are a function of lifetime labor supply. But in extensions of
the model where pretax lifetime earnings would cease to be a function of lifetime labor supply (for example
if the signal the firm sees about a worker is a different function of the flows of labor supply instead of the
discounted sum of these flows), then the optimal policy would entail taxes meant to undo these intertemporal
distortions, and meant to make post-tax lifetime earnings a function of discounted lifetime labor supply.

1.5.1 Optimal Taxation Formulas

In this section, we derive necessary conditions for optimal taxes in terms of sufficient statistics, as in Saez
(2001). We assume that the government maximizes a welfarist functional of worker utilities, W (V (R; θ)).23

The government solves:

max
R(y)

E[W (V (R; θ))] s.t. E[y(h(R; θ), R) − R(y(h(R; θ))] ≥ 0

and subject to the constraint that pretax wages are determined by the differential equation y′(h) = E[v(θ)|h(R; θ) ≥
h] with initial condition y(0) = 0.

Solving directly for R(y) is complicated; changing taxes at an income level y has cascading effects on
salaries of everyone earning y or more, by shifting the composition of workers. However, the following
proposition allows us to simplify the problem by allowing the planner to keep salaries fixed when taxes
change. In other words, we can frame the problem as the planner solving directly for post-tax salaries,
effectively ignoring how pretax salaries are set.

Lemma 2. Without loss, we can solve directly for R̃(h) = R(y(h)), and then find y(h), and R(y). That is,
the planner can solve the simpler problem:

23This formulation is quite general, and can be converted to Pareto efficiency tests as in Werning (2007b), by picking linear
functionals of the form W (V (R; θ)) = λ(θ) · V (R; θ), making it the dual of a revenue maximization problem subject to a
minimum utility requirement for each type.
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max
R̃(h)

E[W (V (R̃; θ))] s.t. E[v(θ)h(R̃; θ) − R̃(h(R̃; θ))] ≥ 0

Proof. See Appendix Section 1.9.5.

This result applies more generally to other models of labor market frictions provided that firms make
zero profits,24 and, given any allocation, y(h) is well defined and invertible. An important example where
these conditions hold is the Azevedo and Gottlieb (2017) model of competition with adverse selection.
More generally, there could be other production externalities, imperfect competition generating compressed
wages, or monopolistic screening by a single firm. This feature allows us to conceptually separate what are
the relevant externalities coming from the information frictions that the planner would like to correct from
what are just regular transfers and innocuous price adjustments. Importantly, the same idea will be applied
in Section 1.5.2, to more general information structures, allowing us to separate issues of efficiency from
issues of redistribution quite generally.25

Proposition 3. (For single-dimensional θ) If a tax schedule is optimal, then it satisfies the following optimal
tax formula:

(
χ(y) − r(y)

r(y)

)
ϵc

r(y)g(y)y =
∫ ∞

y

(
1 − λ(ỹ)

)
g(ỹ)dỹ +

∫ ∞

y

(
χ(ỹ) − r(ỹ)

r(ỹ)

)
ηI(ỹ)g(ỹ)dỹ (1.5)

Proof. See Appendix Section 1.9.6.
where r(y) denotes the marginal retention function; ϵc

r(y) = dy
dry

r(y)
y are the local compensated elasticities;

g(y) denotes the density of y; λ(y) ≡ W ′(V )Uc

µ is the marginal value the planner places on transfer to a worker
earning y; ηI(y) = dy

dI r(y) is the income elasticity; and χ(y) ≡ v(y)
y′(h(y)) , and v(y) is the productivity of the

worker with lifetime income y.

This equation is almost the same as the standard first-order condition that appears in Saez (2001) and
Werning (2007b), with one additional ingredient: χ(y). The equation says that if a tax schedule is optimal,
then three sorts of effects should balance each other: compensated effects, mechanical and welfare effects,
and income effects. When a planner considers increasing marginal retention over a small region (holding
post-tax salaries fixed everywhere else), there are compensated effects (left-hand side of the equation) coming
from the fact that people would work more. These effects are proportional to the densities and compensated
elasticities, and they ease the feasibility constraint not by 1 − r(y) as in the standard Mirrleesian model, but
by χ(y) − r(y), that is, a worker who earns an extra dollar in their lifetime generates χ(y) units of output
per dollar earned (and retains r(y)). The mechanical and welfare effects (first term on the right-hand side of
the equation) are the same as before: the planner is giving one dollar to those who earn at least y, and this
has mechanical costs of one dollar per person and welfare effects that are weighted by the marginal value
of a dollar that the planner attributes to a transfer to the each of these people. Finally, there are income
effects that affect everyone who earns at least y. These people are induced to work less (if income effects are
negative), and, as in the compensated effects, they damage the feasibility constraint by χ(y) − r(y).

The same equation can alternatively be written in two blocks: one block that translates the redistributive
motive, and that looks exactly like the standard Mirrleesian formula,26 and a second block that defines

24Or, more generally, there is full taxation of profits, or, still, profits are uniformly shared between workers, as in Scheuer
and Werning (2017).

25Innocuous in the sense of the first and second welfare theorems, where changes in fundamentals could result in changes in
relative prices which no planner that has access to individual-specific transfers would not like to undo.

26As it appears for example in Scheuer and Werning (2017), and Saez (2001).
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retention as the product of two components, the Mirrleesian, and a Pigouvian component that corrects for
the production externality:

(
1 − rm(y)

rm(y)

)
ϵc

r(y)g(y)y =
∫ ∞

y

(
1 − λ(ỹ)

)
g(ỹ)dỹ +

∫ ∞

y

(
1 − rm(ỹ)

rm(ỹ)

)
ηI(ỹ)g(ỹ)dỹ

r(y) = rm(y) · χ(y)

This decomposition allows us to understand what exactly are the externalities that career concerns make
workers impose on each other. The key insight is that, from the point of view of individual workers, their
individual actions do not affect the whole remuneration schedule of other workers, but they do not get paid
their marginal products. When increasing their lifetime labor supply so that they get paid one extra dollar,
they are contributing to the economy not one dollar but χ(y) dollars. In other words, it is as if they would
produce one dollar but generate negative production externalities of the size of 1 − χ(y) dollars.

It is interesting to compare how (a) the economy without any information asymmetries, (b) the economy
with information asymmetries only between the government and the workers, as in the standard Mirrlees
model, and (c) the economy with information asymmetries between the firms, workers and government
compare in terms of their utility possibilities frontiers. In (b), when there are no information asymmetries
in the labor markets, the planner could set taxes to zero, and then by the first welfare theorem, we know
this is a first best allocation. Hence, there is a common point in the first and second best utility possibilities
frontiers, i.e., in the utility possibilities frontiers of (a) and (b). Now, what is perhaps surprising is that
there is a common point in the utility possibilities frontiers of (a) and (c), that is, between the third best
utility possibilities frontier and the first best utility possibilities frontier, which is achieved by setting the
Mirrleesian component of taxes to zero, so that r(y) = χ(y), as shown in Proposition 14, in the Appendix
Section 1.9.8. This further justifies the decomposition above as one between a Mirrleesian and a Pigouvian
component.

Employers, when facing workers with the same resume, do not know who are the workers who will retire
and will not extend their resumes further. By the assumption that those who are more willing to extend their
resumes are those who are more productive in the unobservable dimension, the workers who are retiring have
the smallest productivity among those with the same resume. Therefore, we have that χ(y) ≤ 1, workers
at retirement get paid more than their marginal products. From the tax formula above, holding estimates
of elasticities and densities of the income distribution constant, we can see that taking into account these
career concerns unambiguously pushes towards higher marginal taxes at every income level.

These optimal taxes do not depend only on labor wedges but also on elasticities and the shape of the
income distribution. Appendix Section 1.9.7 shows that from the point of view of optimal taxation formulas,
similarly to results in Scheuer and Werning (2017) common elasticity estimates are biased downwards. The
reason for it is that increases in marginal retention induce the marginal types – who are the less productive
types – to work more, and therefore reduce pretax salaries, making the effective change in post-tax wages
smaller. Thus, the estimated elasticities of taxable income are lower in magnitude than the elasticities that
enter optimal taxation formulas, which keep pretax salaries fixed. This is a countervailing force that pushes
towards lower instead of higher marginal taxes.

These formulas can also be read as Pareto efficiency tests, as in Werning (2007b). If a tax schedule
is Pareto efficient, then there are weights λ(y) ≥ 0 such that, given the current tax rates, the income
distribution, and the estimated elasticities and labor wedges χ(y), the formula above holds. Relative to the
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standard Pareto efficiency test, the inclusion of χ(y), holding the other estimated statistics fixed, makes the
formula easier to be satisfied, that is, higher marginal tax rates can be rationalized.

1.5.2 Taxes Under Richer Signal Structures

So far in this Section, we have assumed that firms summarize a resume by looking at its length, which
we have defined as the discounted cumulative sum of deliverables the worker has completed. This section
relaxes this assumption and considers a richer set of signal structures under the same framework.

Conditioning on the “Strength of the Resume”

In this subsection, we will allow for a broad class of signals, that take the form of hϕ(h̃(ã)1
0, a) =∫ a

0 ϕ(ã, a)h̃(ã)dã, with ϕ(ã, a) > 0, continuous in a and ã.27 The general idea behind this formulation
is that the signal the firm sees can be thought of as the “strength of the resume”. This measure is an
imperfect signal of the past history of deliverables of the worker, but completing more deliverables always
makes the resume stronger.

This formulation can capture in a reduced form different possibilities: firms may be interested in the
pace at which the worker has produced deliverables, and thus may use ϕ(ã, a) = 1/a. The firms may want
to look at the total experience, as a proxy of human capital, and use ϕ(ã, a) = q(ã). It may become hard to
verify experiences in the distant past, so that ϕ(ã, a) < q(ã). The firms may have all those concerns at the
same time, as long as, when put together, they can be summarized by the idea that firms would evaluate
the experience through the lens of an index of the form hϕ(h̃(ã)1

0, a) =
∫ a

0 ϕ(ã, a)h̃(ã)dã. This formulation
bypasses the need to introduce explicitly all those elements, and to postulate explicit stochastic processes
for shocks for each of those elements and considerations. Not introducing those shocks directly makes
the analysis of optimal tax systems tractable, and avoids technical issues arriving from multidimensional
screening problems, as well as from failures of the homogeneity assumption on preferences over the timing
of consumption and labor supply flows.28

Despite this apparent complexity, optimal taxation formulas will take a simple structure. We will follow
the same logic from Proposition 2, and assume preferences are homogeneous over the timing of labor supply
and consumption as in Proposition 2, and that more productive types are more willing to provide the
deliverables.29 Under these assumptions, it will be shown that, as in the previous section, taxes can be
described as the composition of i) corrective taxes that guarantee that the workers benefits from each marginal
increase in labor supply is equal to the their contribution to the output of the firm, and ii) redistributive
taxes that are described by the same Mirrleesian optimal taxation formulas.

To show that, we first set aside the issue of implementation, and characterize the set of optimal incentive
compatible allocations. Those allocations need to satisfy two properties, more formally stated in Lemma 3,
in Appendix Section 1.9.11. These properties state that, ii) intertemporally, labor supply decisions will not
be distorted, and ii) an analogous equation to the standard Mirrleesian formula should hold in terms of the
lifetime labor disutility index H.

27This assumption guarantees that expectations of productivities are well defined, and further it will be shown that those
expectations are increasing in the completion of tasks h̃. But, more generally, we could consider any informational structure
with these properties. Later in this section, the full history of labor supply decisions will be assumed to be observed, and there
will be richer heterogeneity in preferences to guarantee that those expectations are well-defined.

28One may worry that those weights should be endogenous to the tax system. However, as it will be shown, the same optimal
taxation formulas will hold even if those weights were to depend on the tax system.

29Which in this case follows from additionally assuming that d2H(h̃(·))
dh̃(a′)dh̃(a) < 0 .
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Then, towards the goal of implementing these optimal allocations with a system of taxes and transfers,
we establish that, quite generally, there is a positive return to experience – formally stated in Lemma 4 (in
Appendix Section 1.9.11). In other words, exerting more effort is a way to signal to employers that you are
a more productive worker, and thus, will impact future salaries positively. Intuitively, the signals considered
in this section are increasing in the effort decisions, and under the assumption that those who are willing to
exert more effort are those who are more productive, employers can infer that higher signals translate into
higher expected productivities. Besides being of interest in itself, this result is used to show that the planner
can infer labor supply decisions from earnings histories, as formally stated in Lemma 5 (in Appendix Section
1.9.11).

This result allows us to decentralize the incentive compatible and efficient allocations, analogous to the
way that Lemma 2 was used to derive the optimal lifetime income taxation formulas from Proposition 3. That
is, we can think of the planner as solving for the optimal allocation as in Lemma 3, or equivalently, solving
for post-tax wages R(h̃(·)1

0), and then implementing this post-tax retention function with history-dependent
earnings taxes.

Finally, we summarize these taxation results in Proposition 4, below, which states that the tax system
should be such that i) history-dependent taxes (Rp) should be used to correct for labor wedges, and ii) after
correcting for these distortions, lifetime income redistributive taxes should be imposed on top of these taxes,
according to standard redistributive formulas.

Proposition 4. If R(ỹ(·)1
0) is optimal, then, there exists Rm, Rp with R(ỹ(·)1

0) = Rm(Rp(ỹ(·)1
0), such that

Rm and Rp satisfy the following conditions:

1. Intertemporal, Pigouvian: for any ā,a, and H(h̃(a)1
0) = H, switching the timing of labor supply deci-

sions and holding fixed lifetime labor supply and H should leave lifetime earnings unaffected:
∫ 1

ā

dRp

dỹ(h̃(ã)a
0)

dỹ(h̃(ã)a
0)

dh̃(ā)q(ā)
dh̃(ā)q(ā)

dH
q(a)da =

∫ 1

a

dRp

dỹ(h̃(ã)a
0)

dỹ(h̃(ã)a
0)

dh̃(a)q(a)
dh̃(a)q(a)

dH
q(a)da

2. Lifetime, Pigouvian: increasing H∗ should increase lifetime earnings proportionally to the increase in
output:

R̃′
p(H) =

∫ 1

0

dRp(ỹ(h̃(ã)a
0 ; H∗)1

0)
dỹ(h̃(ã)a

0 ; H∗)
dỹ(h̃(ã)a

0 ; H∗)
dh̃(a)

dh̃(a)
dH

da = v(H)
∫ 1

0
q(a)dh̃(a)

dH
da

3. Lifetime, redistributive: Define the retention that workers face as Rm(Rp(ỹ(·))), and rm = R′
m(Rp).

After correcting for distortions, then Rm should satisfy standard Mirrleesian formulas:
(

1 − rm(Rp)
rm(Rp)

)
g(Rp)Rpϵc

r̃(Rp) =
∫ ∞

Rp

g(R̃p)
(

1 − λ(R̃p)
)

dR̃p +
∫ ∞

Rp

(
1 − rm(R̃p)

rm(R̃p)

)
g(R̃p)ηI(R̃p)dR̃p,

Notice that in this Proposition we describe taxes in “layers”, and there is a choice in describing taxes
as one layer of Pigouvian taxes and another layer of Mirrleesian taxes. An alternative formulation could
have one layer of intertemporal taxes, and another double layer of Pigouvian and Mirrleesian taxes. The
first would keep lifetime income unchanged as a function of H, and the second would feature an analogous
lifetime Pigouvian component and a redistributive component as in Proposition 3. The following remark
presents an alternative simple way of describing the Pigouvian component of taxes.

Remark 1. We can define Rp to be such that:
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v(H)q(a) = dRp(ỹ(·)1
0)

dỹ(a) w(h̃(·)a
0) +

∫ 1

a

dRp(ỹ(·)1
0)

dỹ(ã)
dw(h̃(·)ã

0)
dh̃(a)

h̃(ã)dã,

which, in the case where there are no intertemporal distortions in pre-tax salaries, simplifies to:

dRp(ỹ(·)1
0)

dỹ(a)
1

q(a) = v(H)q(a)
q(a)w(h̃(·)a

0) +
∫ 1

a

dw(h̃(·)ã
0 )

dh̃(a) h̃(ã)q(ã)dã
,

where v(H) is the marginal productivity of the type that supplies the level H of labor, and where for ease of
notation the dependence on ỹ(·)1

0 is omitted. That is, the formula should be read as a function of earnings
flows ỹ(·), through the inverse operator h̃(ỹ(·)1

0)1
0.

Notice that correcting for intertemporal distortions is a significantly more complicated endeavor: taxes
should be history-dependent, and depend on how much a change in labor supply today translates into higher
lifetime earnings, not only through its impact on current earnings, but additionally through its indirect
impact on future salaries. For workers of different earnings histories, the tax rate they would face on the
next dollar at a given period would depend on their future earnings and past earnings (which can be mapped
to their labor supply choices), and how an increase of one unit of their labor supply today would impact
current and future earnings, with the latter capturing the private benefits from the signaling effects from
that increase in labor supply.

Notice that if there is a tax system in place that already corrects for intertemporal distortions Rp, then
Proposition 4 tells us that we are back to the simpler case covered in Proposition 1. Moreover, as a corollary
of Proposition 4, we know that if the information structure does not introduce intertemporal distortions,
then the simpler optimal taxation formulas 1.5 hold.

Corollary 1. If the information structure is such that no intertemporal distortions are generated, then if
taxes are optimal they satisfy condition 1.5.

Conditioning on the Full History of Deliverables

The second case of more general endogenous information structures we consider is the case in which firms
observe the full history of deliverables, and the detailed timing of the execution of those. That is, for a
worker of age a, the firm will see the history of labor supply decisions from the time the worker was born
up to their current age a, which is denoted h̃(·)a

0 .30

We assume in this section that preferences now take the form U(C, h̃(·), θ), and that θ is high-dimensional.
To talk meaningfully about expectations of productivities conditional on some history h̃(·)a

0 , we need some
workers to be willing to provide this rich set of histories, which would not be possible for preferences of the
form U(C, H(h̃(·)), θ), or with a low dimensional type space. To keep this section simple, we additionally
assume there is a single consumption good C.31 We retain the assumption that more productive types are
more willing to provide the deliverables.32

Under those assumptions, we will show that optimal taxes can also be thought of as the composition of
i) corrective taxes that guarantee that, for each additional unit of labor, workers receive lifetime benefits

30In this case, workers of different ages are never pooled together, as any history that ends up at age a is different than a
history that ends at age a′, when a ̸= a′.

31This is without loss, since discount rates q(·) are assumed to be exogenous.
32Which in this case can be stated as: if v(θ) > v(θ′) then for any h̃(·)1

0, C, MRSC,h̃(a)(C, h̃(·), θ) < MRSC,h̃(a)(C, h̃(·), θ′),

where MRSC,h̃(a)(C, h̃(·)1
0, θ) = −

Uh̃(a)(C,h̃(·),θ)
UC (C,h̃(·),θ) .
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equivalent to their contribution to output, and ii) redistributive taxes, which, in this case, do not necessarily
take the simple Mirrleesian form of the previous section.

Towards showing that, analogously to the previous section, first we establish that if the planner could
choose the allocation, while being restricted to the set of incentive compatible allocations, any optimal
allocation would lie at the frontier of production possibilities set (Lemma 6 in the Appendix Section 1.5.2).
Then, we show that the planner can use Pigouvian taxes to achieve the frontier of the production efficient
set of allocations. This will be the case because the planner will be able to infer labor supply choices from
the history of earnings, that is, sequences of h̃(·)1

0 will map to sequences of ỹ(·)1
0 one-to-one, as in Lemma 2

and Lemma 5, from the previous sections.
To show that the planner can infer labor supply choices from the history of earnings, an important

intermediate result is that there is a positive signaling return to experience. This result is interesting on its
own, and it shows that the career concerns logic carries through this more general environment (see Lemma
7 in the Appendix Section 1.5.2, which is the analogous counterpart to Lemma 4) . This signaling return
to experience is driven by the fact that higher productivity types are those who are willing to provide labor
supply paths with a larger number of deliverables. That property is used to show that the planner can infer
labor supply decisions from earnings histories (see Lemma 8 in the Appendix Section 1.5.2), which in turn is
crucial for the ability of the planner to implement allocations at the frontier of production possibilities set.
That is, analogously to Lemma 7 and Lemma 4, from the previous Sections, Lemma 8 in this Section allows
the planner to decentralize feasible, incentive compatible allocations that lie at the efficient possibilities
frontier of the economy with the use of taxes on earnings. In doing that, Pigouvian taxes play an important
role, as stated in the following Proposition.

Proposition 5. The planner can guarantee that the allocation would lie at the frontier of the production
possibilities set by using Pigouvian taxes.

These Pigouvian taxes take the same general form as in the previous section’s Remark 1. Thus, although
this economy may look quite complicated, the same principles of tax design can be applied. There is a
caveat though. Because we have unrestricted preferences, and multiple goods, now the design of optimal
redistributive taxes, after correcting for the Pigouvian distortions, is more complicated, and without further
normative assumptions, we cannot point to lifetime income taxation as the preferred form of redistribution.
From an implementation perspective, analogously to the case analyzed in the previous Section, the structure
of taxes can be thought of as a composition of two layers of taxes. First, Pigouvian taxes correct for the
distortions. Second, on top of these taxes, another layer of taxes is imposed to take care of redistribution.33

1.5.3 Changes in Information Processing Technologies

As new technologies and richer datasets begin to affect the workplace (Chalfin et al., 2016; Autor, 2019;
Acemoglu et al., 2020; Bales and Stone, 2020), an important question to consider is the impact of these
technological changes in on the workers’ incentives to exert effort, on the distribution of income, and on the
tradeoffs the government faces when setting taxes. Those changes should affect how workers get paid and how
resumes are read, arguably making information imperfections less pronounced. On the other hand, the rising
automation of routine tasks (Autor et al., 2003), and the advent of “new work” (Autor, 2019), that is, novel
jobs reflecting changes in technology and preferences, have contributed to changes in the task composition

33Multidimensional heterogeneity can also make the second layer interact with the first layer, while retaining the general
structure of a Mirrleesian formulas. For an example, see Section 1.9.7.
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of jobs. As non-routine cognitive tasks become more prevalent, it may become harder to monitor and assess
the productivity of workers. As a result, these imperfections in the information transmission process may
become more salient. In this section, we look at the consequences of changes in fundamentals that affect
information asymmetries in labor markets.

We define information asymmetry problems in labor markets to decrease if deliverables become a better
measure of product, affecting how firms pay workers and how firms read resumes. More precisely, we adopt
the following definition.

Definition. Let preferences be U(c, h, θ) = Ũ

(
c, h/b(θ)

)
. If new productivities and tastes are such that

vn(θ) = v(θ)/∆(θ) and bn(θ) = b(θ) · ∆(θ), ∆ > 0 and increasing in θ, order preserving (meaning that if
θ > θ′, then v(θ) > v(θ′), vn(θ) > vn(θ′), MRSθ

c,h > MRSθ′
c,h, and MRSn,θ

c,h > MRSn,θ′

c,h ), then information
asymmetries in labor markets decrease.34

Under this definition, decreasing information asymmetries keeps the first-best utility possibilities frontier
unchanged. It also increases the ratio v(θ)/E[v(θ̃)|θ̃ > θ] for every type of worker, and preserves the relative
ranking of types in terms of productivities and marginal rates of substitution.

A perhaps surprising result is that information asymmetries in labor markets increase welfare in this
setup, as stated in Proposition 6. This result implies that those frictions are, in a particular way, good for
redistribution, and attenuate inequality. That is, if the way in which the government evaluates inequality is
expressed in how it sets marginal tax rates, then an increase in information asymmetries in labor markets
increases welfare, or, in other words, improves the distribution of outcomes from the point-of-view of a
redistributive planner. Information asymmetries help with redistribution, because they make it harder for
high productivity workers to separate themselves from low productivity workers. Moreover, because under
the assumptions of Lemma 2, (or the more general Lemma 5) the optimal post-tax wages do not depend
on the specifics of the model of asymmetric information, the impact on welfare is the same across different
models, provided that taxes are set optimally and following the same preferences for redistribution.

In other words, this result does not depend on the particular assumption we imposed on the information
structure that determines how salaries are set by firms. It relies on the planner being able to solve for the
allocation directly, which is possible whenever there is a one-to-one mapping between earnings and labor
supply decisions. This property is satisfied by different information structures as shown in Section 1.5.2.
Further, the result also holds across different models of career concerns, provided they satisfy the invertibility
conditions behind Lemma 2 or the more general Lemma 5, that allow for labor supply decisions of workers to
be perfectly inferred from their history of earnings. In fact, this result is a generalization of Stantcheva (2014)
Proposition 13, which compares welfare in an economy under a Miyazaki-Wilson-Spence (MWS) model of
the labor market relative to a Mirrleesian economy.35

Proposition 6. If the original tax schedule is optimal and the planner has strong enough redistributive
preferences, and leisure is a normal good, then decreasing information asymmetries in labor markets decreases
welfare.

Proof. See Appendix Section 1.9.9.
34Notice that under the assumptions behind Proposition 2, any optimal allocation makes post-tax wages a function of lifetime

labor supply. Thus, in this case, it is without loss to specify preferences as a function of lifetime labor supply and lifetime
consumption.

35Another similar setup where these conditions are satisfied is the Azevedo and Gottlieb (2017) model of competitive screening.
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The idea behind this result is that if the planner has redistributive tastes, then it sets positive marginal
redistributive taxes to transfer resources from higher types to lower types, an the incentive compatibility
constraints bind downwards (Seade, 1982; Werning, 2000). Whenever the degree of informational asymmetry
in labor markets decreases, these downward incentive compatibility constraints become tighter, as it becomes
less costly for the high types to imitate the low types. With less information asymmetry in labor markets,
the high productivity workers can use more of their previously unobserved productivities to imitate the
deliverable production of the lower productivity workers.

The impact on taxes is more subtle. When resumes are defined as the cumulative discounted sum
of deliverables, the corrective component unambiguously falls for each type, because χ(θ) = v(θ)

E[v(θ̃)|θ̃≥θ]
increases proportionally more in the numerator relative to the denominator. In that vein, we can think of
an decrease in information asymmetries in labor markets as a force towards lower taxes. To understand how
the Mirrleesian component and total marginal taxes would be affected is useful to write optimal taxes in
terms of types θ, as in the following proposition.

Proposition 7. Optimal taxes as a function of types θ must satisfy the following equations:

ry(θ) = rm(θ) · χ(θ)

1 − rm(θ)
rm(θ) f(θ)

(
− ∂ log MRS

∂θ

)−1
=

∫ ∞

θ

(1 − λ̂(θ̃))f(θ̃)dθ̃ +
∫ ∞

θ

(
1 − rm(θ̃)

rm(θ̃)

)
η(θ̃)f(θ̃)dθ

Proof. See Appendix Section 1.9.10.

Changes in the degree of informational asymmetry affect at least two key ingredients in the formula
above χ and ∂ log MRS

∂θ , and each of them, respectively, affects directly the Pigouvian and the Mirrleesian
component of taxes. They also operate very differently. The Pigouvian component of taxes for a type θ is
affected by the changes in the unobservable component of the productivity of everyone that ends up with a
lifetime income higher than y(θ). As the type of labor these people supply become more easily measurable,
type θ receives smaller implicit subsidies from higher productivity workers, and χ(θ) increases, approaching
one. The Mirrleesian component on the other hand depends on how type θ is more or less willing to provide
more deliverables relative to their local neighboring types. Thus, for any given θ, one can imagine a decrease
in informational asymmetries that can have impacts on the Pigouvian or Mirrleesian component of taxes of
arbitrarily different magnitudes. That is, the net effect on total marginal taxes, taking into account both
the Pigouvian and Mirrleesian components, is in general ambiguous.

A simple example shows that we may expect the Pigouvian component to dominate over the Mirrleesian
component in certain circumstances. Assuming, there are no income effects, and that preferences take the
simple form as in the example from Section 1.3.1, and types are Pareto distributed, we can solve for optimal
marginal retention as a function of types as:

χ = α − δ

α
,

1 − rm

rm
= 1 − λ̄

ϵ
1+ϵ

α
1−δ

=⇒ r = rm · χ =
ϵ

1+ϵ
α−δ
1−δ

(1 − λ̄) + ϵ
1+ϵ

α
1−δ

where λ̄(θ) = E[λ̂(θ̃)|θ̃ ≥ θ] denotes the marginal value of a one dollar transfer to the types above θ, which
is assumed to be constant in θ starting from some level θ̂. χ is decreasing in the degree of informational
asymmetry, thus corrective taxes increase as informational asymmetries increase. rm is increasing in the
degree of informational asymmetry, and therefore the redistributive component of taxes decrease. Provided
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that α
1+ϵ ≥ 1 (which incidentally guarantees that output is finite), holding fixed this marginal value of trans-

fers λ̄, marginal retention r decreases with the degree of informational asymmetry δ, that is, marginal taxes
increase as the degree of informational asymmetry increases. In this case, thus, the Pigouvian component
dominates over the Mirrleesian component, calling for higher marginal taxes as the degree of informational
asymmetry increases.

1.6 Empirical Evidence
The previous section has offered an understanding of the tradeoffs a government faces between incentives

and redistribution through the lens of simple sufficient statistics. In this sense, a key new element that needs
to be estimated is the ratio of marginal productivities over salaries for the last unit of labor that workers
supply.36

1.6.1 Data

To evaluate the magnitude of the signaling return to experience and the Pigouvian component of taxes
we use Health and Retirement Study data. The survey is a representative sample of the US population older
than 50 and a biannual panel covering the period from 1992-2018. It follows around 20,000 workers and it is
rich on covariates, including job histories, hours worked, education, cognition, measures of lifetime income,
and geographic, industry, and occupation variables.

There were several state and federal tax reforms over the period, which we are going to explore as a source
of exogenous variation in wages. The federal tax reforms include the Omnibus Budget Reconciliation Act of
1993, which affected mostly top income earners; the Economic Growth and Tax Relief Reconciliation Act of
2001, which affected those at the bottom and at top of the income distribution; the Jobs and Growth Tax
Relief Reconciliation Act of 2003, which affected tax rates for middle and top income earners; the American
Recovery and Reinvestment Act of 2009, with tax changes across different parts of the income distribution;
and the American Taxpayer Relief Act of 2012, which changed tax rates at the top of the income distribution.

There were also several state tax reforms. These were widely dispersed across the US, as shown in Figure
A1, although they were more prevalent in some states such as California, Connecticut, Delaware and Idaho,
and were almost completely absent in Alaska, Florida, Nebraska, North Dakota, South Dakota, Tennessee,
Texas, Washington, and Wyoming. A more detailed description of state tax reforms is presented in the
Appendix Sections 1.10.2 and 1.10.5.

To explore the variation induced by those changes in marginal rates, we construct simulated changes in
marginal tax rates at initial incomes using the NBER tax simulator. We assign a wide range of income,
consumption and demographic variables from HRS to the 32 inputs in the NBER tax simulator, adapting
and extending to our period of analysis (1992-2018) the procedure developed by Pantoja et al. (2018).37

1.6.2 Empirical Strategy and Results

The key statistic we would like to estimate is the ratio of the marginal productivity of workers at
retirement over their salaries, as a function of their lifetime income. Our approach relies on tax changes as

36More generally, we would like to estimate the difference in marginal productivities and the sum of current salaries and all
future earnings increases that result from supplying one unit of labor, at each point in the career of the workers, as discussed
in Section 1.7. While estimating marginal productivities over salaries is a considerably hard challenge, estimating the latter is
an even harder challenge. Direct attempts at estimating the latter are left for future work.

37A more detailed description of the mapping between the variables is presented in Appendix Section 1.10.1.
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a source of exogenous variation in wages, to quantify the degree of informational asymmetry. The key idea
is that, looking at the labor markets around the time of retirement, the change in average productivities
induced by the exogenous variation in wages is informative of the marginal productivity of those who are
almost indifferent between working more or retiring.

This approach builds on the literature that has quantified the degree of adverse selection in markets
described by simple Akerlof (1970) lemons conditions, such as Einav et al. (2010). In the context of health
insurance markets they analyze, the key argument is that with a source of exogenous variation in prices, one
can non-parametrically trace the shape of the cost curve for the insurance contract by looking at the average
cost as a function of prices. The average cost, for a given price, can be inferred from data on insurance claims.
Translated into our context, with a source of exogenous variation in wages (for a specific labor contract),
one can non-parametrically trace the shape of the labor demand curve by looking at average productivities
as a function of salaries.

However, inferring productivities in labor markets is a more difficult endeavor than inferring costs in in-
surance markets. In insurance markets, detailed data on insurance claims can be used to compute reasonably
precise measures of expected costs for the insurance contracts. In labor markets, most often direct data on
productivities is not available. To circumvent this challenge, two complementary approaches are adopted.
The first assumes that labor markets are competitive and therefore leverages the observation that wages
would be equal to the average productivity of workers with the same resume, as in the model presented in
this paper. The second takes advantage of the rich set of covariates available from the Health and Retirement
Study and looks at cognitive measures as proxies for productivities.

Salary Changes and Retirement Decisions

At the general level, to infer the degree of information asymmetry from salary changes, consider an
increase in marginal taxes for those who are near retirement and how it affects a pool of workers with
equivalent resumes and the same original salaries. This tax change may induce some of the individuals in
this pool to actively retire. The pool of workers who remain in the workforce in the next period is different,
because it no longer contains those who were almost indifferent between retiring or not. If those who were
almost indifferent were also less productive in the unobservable dimension, as in the model, then wages
should increase. Moreover, by observing wages before and after the change in marginal rates, we can find
the average productivity of those who are close to being indifferent between retiring or not. That is, we can
decompose wages before and after as a weighted sum of the productivites of those who are almost indifferent
and those who are not, that is:

E[vbefore] = E[vafter](1 − smg) + vmgsmg,

where, E[vbefore] and E[vafter] denotes the average productivity (or salaries) of the workers with a common
resume, respectively before and after the tax increase; smg is the share of people who are induced to retire
by the increase in marginal taxes. This simple relationship can be written in terms of labor wedges (χ),
elasticities of salaries (ϵw

r ) and semi-elasticities of labor market participation (ηp
r ). That is:

χ = vmg

E[vafter] = 1 −
E[vafter]−E[vbefore]

E[vafter]

smg
=⇒ χ = 1 + ϵw

r

ηp
r

Thus, from observing salaries before and after, and the share of people who retire as a result of a small tax
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increase, one can infer the productivity of the people who are marginally indifferent between retiring or not.
Labor wedges χ, thus, can be inferred from elasticities of salaries (ϵw

r ) and semi-elasticities of labor market
participation (ηp

r ). Data from the Health and Retirement Study is particularly well suited for recovering
these elasticities, as it includes carefully calculated measures of lifetime income, the timing of retirement
decisions, salaries, hours of work, and detailed income measures allowing us to approximate the marginal
tax rates faced by workers using the NBER taxsim model.

While this explanation has focused on salary levels, and a simple before and after comparison, in practice
we will be looking at salary changes at the individual level, and we will be pooling together different tax
reforms, across different state, time periods, and parts of the income distribution, while at the same time
controlling for year-fixed effects, initial hourly wages, and marital status. The key identification assump-
tion for the results that rely on changes in salaries is that future productivity changes, and elasticities of
participation, are independent of each other and of tax changes conditional on the set of controls.38

The Pigouvian externality (χ − 1) can also be interpreted as the coefficient of a two sample instrumental
variable regression of changes in log salaries on changes in participation, where changes in taxes are the
instrument for changes in participation. Intuitively, the coefficient on that regression tells how salaries
change when the marginal worker is forced to stay in the labor force, and thus is informative of their
productivities.

To obtain estimates for the elasticities of wages, we regress changes in log hourly salaries on simulated
changes in the log of marginal retention rates, including different sets of controls Xit, as in equation 1.6.
These controls aim to capture i) the possibility that changes in the tax schedule and in hourly wages may
both respond to business cycles fluctuations (thus the inclusion of year-fixed effects), ii) the possibility that
tax changes may have targeted different income groups and wages may evolve differently for those different
groups (thus the inclusion of log hourly wages, and other non-linear functions of hourly wages), and iii)
similarly, tax changes may have targeted differentially people of different marital status, for whom wages
may evolve differentially as well (thus the inclusion of marital status indicator variables).

∆ log wit = ϵw∆ log rit + γ′Xit + uit (1.6)

The results of this set of regressions are presented in Figure 1.11 and Table 1.3 in the Appendix Sections
1.10.4 and 1.10.5. For the main specification, which includes year fixed effects, marital status dummies,
and a 10-piece linear spline on hourly wages as controls, the estimated elasticity of wages is -0.16, with a
standard deviation of 0.1, implying that a 1% increase in marginal retention between years 0 and 2 causes
a 0.16% decrease in salaries between years 0 and 4. The effects are stronger at the 6-year horizon, with a
point estimate of -0.27, and revert back at the 8-year horizon to -0.14, when estimates also get noisier. This
is in line with the idea that marginal tax increases push the people who were almost indifferent between
retiring or not into retirement, and those people are less productive than the average worker although they
were receiving the same salaries. Salaries then would increase as employers realize that there was a change
in the productivity composition of the pool of workers still on the labor force.

It is a common wisdom that workers experience most of their salary changes when they change jobs. To
more precisely capture the effects of changes in marginal tax rates on the wages of workers, we also consider
the effects of restricting the sample to only those who switch jobs over the relevant time period. These results
are presented in Figure 1.12 and Table 1.4 in the Appendix Section 1.10.4. These elasticities are higher in

38This assumption becomes weaker when we estimate heterogeneous elasticities by different groups as in 1.6.2, as then only
within groups the elasticities of participation need to be independent of future productivity changes.
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magnitude, in line with the idea that wages are more flexible when workers switch jobs. The results from
the main specification (including the full set of controls and a 10-piece spline on hourly wages) imply a 1%
increase in marginal retention causes wages to fall by 0.34% over the 4-year horizon, and by 0.43% over the
6-year and 8-year horizons.

To obtain estimates for the semi-elasticities of participation, analogously, we regress changes in partic-
ipation39 on simulated changes in the log of marginal retention rates, including different sets of controls,
as in equation 1.7. Again, these controls aim to capture the possibility that changes in the tax schedule
and in labor market participation may both respond to business cycles fluctuations (thus the inclusion of
year-fixed effects), the possibility that tax changes may have targeted different income groups and labor
market participation may evolve differently for those different groups (thus the inclusion of log hourly wages,
and other non-linear functions of hourly wages), and similarly, tax changes may have targeted differentially
people of different marital status, for whom labor market participation may evolve differentially as well (thus
the inclusion of marital status indicator variables).

∆pit = ηp
r ∆ log rit + γ′Xit + uit (1.7)

The estimated semi-elasticities of participation when including the full set of controls and the 10-piece
spline on hourly wages are of the order of 0.10 at the 2-year horizon, 0.01 at the 4-year horizon and 0.03 at
the 6-year horizon, implying that at the 4-year horizon, a one percent increase in marginal retention causes
a 1 percentage point decrease in the probability of a worker getting out of the labor force. The relatively
larger effects at the shorter horizons when compared to the elasticity of wages is consistent with the idea
that, after a tax increase, first some of the workers drop out of the labor market, and then, as the employers
learn that the pool of the remaining workers is more productive, wages gradually increase as time passes.

Our estimates are in line with a literature that has found that the implied tax rates on labor income
from public pension rules have large disincentive effects on work (Gruber and Wise, 1998; Coile and Gruber,
2007). On the other hand, they are higher than the substitution elasticities inferred from variation in Social
Security benefits from the 1977 Social Security Act that created the so called “Notch generation” Gelber
et al. (2016). While our confidence intervals are relatively wide, the difference can also be explained by
the fact that the substitution incentives of their reform, and of Social Security benefits more generally, are
relatively more opaque (Blinder et al., 1980) than the substitution incentives from income tax reforms.

Taking the ratio of the estimated coefficients ϵw
r

ηp
r

(while multiplying ηp
r by one hundred so numerator and

denominator are in the right units) we obtain estimates for the magnitude of the labor market informational
externality (1 − χ). These results are presented in Tables 1.6 and 1.7. For the main specification, which
includes the full set of controls and the 10-piece spline on hourly wages in both the participation and wages
regressions, and looks at the effects over a 4-year horizon, the estimated negative informational externality
is around 0.16. In other words, workers are paid around 16% more than their marginal productivity for the
last unit of labor they supply.

Cognitive Measures: Inspecting the Mechanism

There could be other stories that explain why wages increase and participation falls when there are tax
increases. Most notably, firms’ labor demand may be partially elastic. In order to provide further evidence
that the pool of workers is playing a role in salary changes, we look at cognitive measures collected by the

39That is, changes in the indicator variable that is equal to one whenever the individual is working.
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Health and Retirement Study. The average cognitive measure of the individuals working is lower after a tax
increase, even when that measure is taken before the tax change.

Mental status scores in the Rand harmonized longitudinal files from the Health and Retirement Survey
are computed as the sum of vocabulary, naming, and counting scores from the HRS. Those scores are the
sum of correct answers from questions ranging from “Who are the current president and vice-president of the
United States?” to “How much is 100 minus 7? How much is that minus 7? [...].” The detailed construction
of this variable is presented in Appendix 1.10.3. Those measures can be seen as a proxy for ability, similarly
to how Armed Forces Qualification Test (AFQT) scores in the National Longitudinal Survey of Youth is
often used as a measure of ability (Farber and Gibbons, 1996; Altonji and Pierret, 2001; Lange, 2007; Craig,
2020). While it has the disadvantage of being less detailed, it has the advantage of being assessed repeatedly
for each respondent, at every survey year, and for that reason may be a more accurate measure of ability if
ability is not constant but evolves dynamically over time.

Looking at the HRS total mental status scores as a proxy of ability, we regress those scores as measured
two years before the baseline year, on changes in marginal retention and a set of control variables (Xit,
including year fixed effects, marital status and flexible functions of hourly wages), restricting the sample to
those who are working in the baseline year and four years in the future. The coefficient ηm

r on regression
1.8 translates how different are the average mental status scores of those who are working after changes in
marginal retention.

scoresit = ηm
r ∆ log rit + γ′Xit + uit (1.8)

The results for different sets of controls are presented in Table 1.10 in the Appendix Section 1.10.4.
Fixing the set of controls, the results for different time horizons are presented in Figure 1.14 in the Appendix
Section 1.10.5. For a horizon of four years after the baseline year, under the most stringent specification,
a one percent increase in marginal retention between the baseline year a two years ahead a change in the
composition of the pool of workers such that average mental status scores (as measured before the tax
change) decrease by 1.3 points (out of 15), with a standard deviation of 0.5, conditional on hourly salaries.
This effect is in line with the mechanism emphasized in this paper, where salaries change as a response to
changes in the productivity composition of the workers who are are willing to supply the deliverables given
the current incentives, and where salaries and taxes work as screening devices both for the government and
for the firms.

Heterogeneity Across Income Levels

The argument made on Section 1.6.2 is built on observing salaries and cognitive measures for the workers
who have the same equivalent resumes, and thus would face the same remuneration for their next unit of
labor they would supply. However, the elasticities of wages and the semi-elasticities of participation may be
heterogeneous across different resumes and labor contracts.

To address that heterogeneity, we estimate equations 1.6 and 1.7 locally as a function of hourly salaries,40

using local polynomial methods. That is, for different dependent variables depit, regression equations as in
1.9, where y denotes an hourly wage level. In those regressions, observations are weighted by their distance
from the hourly wages level y where the equation is being evaluated using the Epanechnikov kernel, and
an optimal bandwidth selected using a leave-one-out cross validation procedure. An additional cross-term

40Even within remuneration levels, there could be heterogeneity in elasticities and labor market wedges, in which case the
relevant optimal taxation formulas also call for the estimation of correlation among those, as in the tax formula 1.10. For
evidence of further heterogeneity across education groups and occupations, see the Appendix Section 1.10.4.
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∆ log rit(yit −y) is included to improve on the bias-variance tradeoffs, as explained in more detail in Fan and
Gijbels (1996). Optimal bandwidths are selected with the leave-one-out cross validation procedure proposed
by Racine (1993). Bootstrap confidence intervals are generated using the basic bootstrap method described
in Chapter 5 of Davison and Hinkley (1997).

depit = ϵr(y)∆ log rit + β(y)∆ log rit(yit − y) + γ(y)′Xit + uit (1.9)

The local results are presented in Figures 1.15 to 1.17 in the Appendix Section 1.10.5. They show that
elasticities of wages are higher in magnitude for high-earners, which also have lower participation semi-
elasticities. Moreover, semi-elasticities of mental status scores are also higher in magnitude for high-earners.
This is in line with the idea that informational imperfections are a larger issue for high-earning occupations
and jobs. The point estimate for the elasticities of wages suggest that at the top of the distribution of hourly
salaries the labor wedges could be very high, but also are imprecisely estimated. The lower bound on the
confidence interval at the 90th percentile would rule out a value lower the 0.5, implying that those workers
could be paid more than twice their marginal productivities. However, these values come from a combination
of high elasticities of hourly wages and low participation elasticities, which approach zero, raising concerns
about the validity of the bootstrap confidence intervals. The general message however, is that we should
expect the labor wedge χ to be decreasing in income, and it is reasonable to expect values ranging from 0.9
to less than 0.5, where 0.9 is the estimated χ for the upper third of the income distribution.

1.6.3 Comparison to Existing Evidence

In this section, we compare our estimates to the available evidence on the time patterns of salaries and
signaling on labor markets. We show that a back-of-the envelope calculation using the existing evidence
from the literature would result in a similar magnitude for the Pigouvian component of taxes we found in
the previous section.

There is documented evidence that workers experience large growth rates of salaries as a function of
experience. In fact, Guvenen et al. (2021) have documented that the top 1% earners have a very steep
growth rate of salaries, of around 2700% over a 30-year period, or 11.3% per year (and approximately 3%
per year on average across workers). While part of this pattern may be thought as the result of human
capital accumulation, and another part of it may be thought of as the result of pure luck, it is reasonable to
expect that at least another part of it is due to selection and the career concerns logic we have uncovered.
In fact, Guvenen et al. (2021) argue that no empirically plausible model of stochastic productivities could
explain the large growth rates of salaries observed at the top. Moreover, there is evidence that signaling and
learning are important to explain the dynamics of salaries and tenure in some occupations. For example,
Cella et al. (2017) have shown that the relationship between the volatility of stock returns and the tenure of
CEOs of large US firms is consistent with the idea that the market gradually learns about the CEO ability
throughout the years of the CEO tenure.

For the purpose of this paper, the key question is what share of the growth rate of salaries is due to
signaling and how can it be translated into an estimate of the corrective component of taxes. However,
there is no direct estimate in the literature that can readily be used to answer these questions. To get a
sense of what would be reasonable magnitudes for the signaling component of the growth rate of salaries,
we can look at the evidence on the return to schooling and the role of signaling in that context. Out of the
return to schooling, recent work has concluded that on average 30% can be attributed to signaling and 70%
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to human capital accumulation (Aryal et al., 2019). Combining the growth rate of salaries for top earners
from Guvenen et al. (2021) with the signaling fraction of the return to schooling from Aryal et al. (2019), we
can guess that the return to experience due to signaling, for top earners, may be of the order of 3.4% (30%
of 11.3%) per year at 10 years of experience. To translate those numbers to a magnitude for the corrective
component of taxes, using the free entry condition 1.3, we can show that the return to experience is related
to the Pigouvian component of taxes (1−χ), and the shape of the lifetime income distribution by the formula
γ = αy(1−χ)

1+αy(1−χ) . This implies that, for the values above, the Pigouvian component of taxes at the top that
could be as high as 25%, and on average around 6%.

1.7 Richer Type Space, Signal Structure and On-the-job Learning

To add realism to an otherwise stylized model, several extensions to the basic model are presented.
These extensions include human capital accumulation, richer heterogeneity in elasticities, and richer signal
structures. Key insights from the generalized optimal taxation formulas and their empirical implications will
hold with some caveats in those extensions.

The first extension allows human capital accumulation in the form of learning-by-doing as in Arrow
(1962), and relaxes the assumption that workers have constant productivities over their lifetimes, which is
an evidently implausible assumption. It is reasonable to expect that at least some part of the return to
experience observed in the data is due to increases in productivity due to on-the-job learning, or training
efforts. However, the extended model shows that this assumption is to some extent innocuous. Although it
complicates the relationship between the observed return to experience, the degree of information asymmetry
in the market and the rate of human capital accumulation, the same optimal tax formula applies when on-
the-job learning is costless.

The second extension allows for richer heterogeneity in elasticities. This extension is motivated by the
empirical evidence that there is substantial heterogeneity in how people respond to taxes, even within tax
brackets (Eissa and Liebman, 1996; Gruber and Saez, 2002; Blau and Kahn, 2007; Vere, 2011; Sturm and
Sztutman, 2021). The key modification that multidimensional types introduce is that now, at a given
income level, it matters not only how much a worker produces per unit of pretax income, but how these are
correlated with the elasticities. Intuitively, an increase in post-tax salaries at a given income will affect people
of different elasticities differently, and production will increase proportionally to the product of elasticities
and productivities, and therefore will increase more if the elasticities and the unobserved productivities are
positively correlated.

The third extension allows firms to see additional signals the government does not see. For example,
from the point of view of the employers it may be clear that some workers are on different career tracks, and
that those workers can hardly change that. But for the government, it may be hard to distinguish them, or
it may be hard to codify those distinctions into the tax system in a way that cannot be manipulated. In
this case, optimal taxes are described by a weighted version of the basic taxation formula, where the weights
are given by the sensitivity of the different post-tax retention functions to changes in marginal taxes. This
modification of the optimal tax formulas follows from the fact that there are multiple career tracks, there
are multiple pretax salary functions, while there is a single nonlinear taxation instrument the government
can use. Considering a variation in the income retention schedule and tracking how this variation affects the
post-tax salaries of different careers in response to it results in the weighted version of the basic optimal tax
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formula. The effects of changes in marginal taxes on post-tax salaries are attenuated by changes in pre-tax
salaries whenever there are information asymmetries. For this reason taking into account these different
career tracks may attenuate the magnitude of the corrective component of taxes.

The fourth extension, similarly considers the possibility that other functions of the detailed timing of
the completion of tasks may be observed by firms, while the government could see the history of earnings.
This possibility makes the signaling return to experience more involved, and introduces the possibility that
without taxes there may be intertemporal distortions. Under common preferences over the timing of labor
and consumption decisions, the optimal tax system can be written in a way where taxes that depend on the
history of earnings would correct for this distortion, and on top of these taxes, optimal lifetime income taxes
that are described by the same optimal lifetime income taxation formulas.

1.7.1 On-the-job Learning

The assumption that workers have a constant productivity over their lifetimes is, of course, extreme. It
is reasonable to expect that at least some part of the return to experience observed in the data is due to
increases in productivity due to on-the-job learning, or training efforts. A simple way to accommodate these
concerns is to allow for productivities to depend not only on the types of workers but also on experience itself,
that is v = v(θ, h). Indeed, one of the key reasons why employers may focus on experience as a signal for the
productivity of workers is exactly because accumulating experience may directly increase the productivity
of workers.

Turning back to the example from Section 1.3.1, a simple way to enrich the setup is to assume that
that productivities increase proportionally with experience, that is, productivities are v(θ, h) = ṽ(θ)hβ .
Then, because wages are the expectation of productivities conditional on h, w(h) = E[v(θ̃, h)|θ̃ ≥ θ(h), h] =
hβE[ṽ(θ̃)|θ̃ ≥ θ(h)], and the return to experience would have two components, a signaling and human capital
accumulation component. Salaries still satisfy a log-linear relationship, with a coefficient that is the sum of
the signaling δ

1−δ+ϵ and the human capital component β:

log(w) =
(

δ

1 − δ + ϵ
+ β

)
· log(h) +

(
(1 − δ)(1 + ϵ)

(1 − δ)(1 + ϵ) − δϵ

)
· log

(
α

α − δ

)

More generally, while human capital accumulation very much changes the meaning of the return to
experience, the next proposition, focusing on the simpler case where the resume is defined as the cumulative
discounted sum of deliverables, shows that the necessary condition for the optimality of taxes from 1.5 is
unchanged.

Proposition 8. Suppose productivity depends on experience and the unobserved types of workers. Then we
can write the planner’s problem as:

max
R̃(h)

E[W (V (R̃; θ))] s.t. E
[ ∫ h(R̃,θ)

0
(v(θ, h̃) − r̃h(h̃))dh̃ − I

]
≥ 0

And a necessary condition for a tax schedule to be optimal is given by the following formula (which is
analogous to 1.5):

(
χ(y) − r(y)

r(y)

)
ϵc

r(y)g(y)y =
∫ ∞

y

(
1 − λ(ỹ)

)
g(ỹ)dỹ +

∫ ∞

y

(
χ(ỹ) − r(ỹ)

r(ỹ)

)
ηI(ỹ)g(ỹ)dỹ,
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where χ(y) = v(y)
y′(h(y)) , and v(y) = v(θ(y), h(θ(y))) is the productivity at retirement of the worker with

lifetime income y. While the formula looks exactly the same, there is a subtle but important distinction. We
cannot use estimates of productivity of workers far from retirement to infer their productivity at retirement,
as these two quantities can be significantly different. Second, we cannot infer the degree of degree of
informational asymmetry by only looking at the return to experience. For these reasons, the empirical
strategies aimed at estimating χ(y) applied in the previous section are designed to be robust to these concerns,
and to aim precisely at disentangling the return to experience coming from human capital accumulation from
the return to experience coming from employers learning about productivities through job histories.

1.7.2 Heterogeneity in Elasticities

The main version of the model presented features a single-dimension of heterogeneity. Types of different
productivities and willingness to provide the deliverables sort themselves into different lifetime income levels,
and within lifetime income levels there is no heterogeneity.41 However, it is reasonable to expect that
productivities, and elasticities might be heterogenous within lifetime income levels. Although the standard
Mirrleesian first order condition is basically unchanged when agents have heterogeneous elasticities (Scheuer
and Werning, 2016; Jacquet and Lehmann, 2021; Bierbrauer et al., 2020; Sturm and Sztutman, 2021), when
there is imperfect information this heterogeneity creates a subtle interaction between the Pigouvian and
Mirrleesian component of taxes in a way that is reminiscent of Diamond (1973). Intuitively, when taxes
increase at a given bracket, different workers respond differently, while simultaneously facing different labor
wedges. Thus, how the correlation of elasticities and labor wedges matter for the total effect of the imperfect
information externality, or the total impact on the resource constraint of the economy. This is formally
presented in the following proposition, where a more general version of the tax formula 1.5 is presented,
focusing on the simpler case where the resume is defined as the cumulative discounted sum of deliverables.

Proposition 9. If a tax schedule is optimal then it needs to satisfy the following relationship:

E
[(

χ(y) − r(y)
r(y)

)
ϵc

r(y)
]
g(y)y =

∫ ∞

y

g(ỹ)
(

1 − E[λ(ỹ)]
)

dỹ +
∫ ∞

y

E
[(

χ(ỹ) − r(ỹ)
r(ỹ)

)
ηI(ỹ)

]
g(ỹ)dỹ, (1.10)

where χ(y) ≡ v(y, θ)/y′(h(y)), that is, how much more product is generated per unit of wages for someone
who is currently earning y, which conditional on the income level can still depend on the type θ.

Proof. See Appendix Section 1.9.13.

If there are no income effects, we can write: r(y) = rm(y) · rd(y), where rd(y) = E[χ(y)ϵc
r(y)]

E[ϵc
r(y)] , and(

1−rm(y)
rm(y)

)
E[ϵc

r(y)]g(y)y =
∫ ∞

y
g(ỹ)

(
1−E[λ(ỹ)]

)
dỹ. In this case, the formula looks very similar to Diamond

(1973) equation 10 in the context of a model of Pigouvian taxation with limited instruments, linear utilities
in income and separable in externalities. As in that paper, the elasticity weights how much the externality
matters. However, here there are no further multiplier effects: what we call externalities in this model – the
fact that workers appropriate more than their marginal products when they work more – does not impact
the labor supply of others except to the extent that salaries change.

41Indeed, Sturm and Sztutman (2021), among others, have shown that there is substantial heterogeneity in elasticities within
(annual) income levels.

45



1.7.3 Richer Signal Structure, Exogenous Signals

The baseline version of the model features a very simple signal structure. This simplicity allows us to
clearly understand how incentives and the distribution of income interact when there are career concerns.
However, it leaves out important elements of real labor markets, such as richer signals that firms can extract
from workers. For example, from the point-of-view of firms it may be very clear that some workers are
on different career tracks, and that those workers can hardly change that. For the government, it may be
harder to distinguish these workers, and even harder to create taxes that are specific to each career track.
This possibility can be accommodated by introducing exogenous signals that the only firms and not the
government sees.

If firms see additional exogenous signals the government does not see, then we cannot apply proposition
2. The reason behind it is that there are multiple pretax salary functions, a different career path for each
signal realization. However, we can still consider a variation a in the income retention schedule and track
how this variation affects the salaries of different careers change in response to it. The following proposition
uses this idea to derive comparable tax formulas in this more complex environment, but focusing on the
simpler case where the resumes are defined as the cumulative discounted sum of deliverables.

Proposition 10. If a tax schedule is optimal then it needs to satisfy the following relationship:

Ez

[∫ ∞

y

(
χ(ỹ, z) − rỹ

rỹ

)
ϵ

c
rỹ

(ỹ, z)g(ỹ|z)ỹ
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dry

dỹ

]
= Ez

[∫ ∞

y

∫ ∞

ỹ

(
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)
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drh(ỹ;z)

dry

d˜̃ydỹ

]

+ Ez
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y

∫ ∞

ỹ

(
χ(˜̃y, z) − r ˜̃y

r ˜̃y

)
η

h
I (˜̃y)g(˜̃y|z) ·

drh(ỹ;z)

dry

d˜̃ydỹ

]

where χ(ỹ,z)= v(h(ỹ,z);z)
y′(h(ỹ,z);z) , and drh(ỹ;z)

dry
is the response of post-tax salaries of someone who initially earn income

y, and who gets the signals z.

Proof. See Appendix Section 1.9.14.

In this case the optimal policy described by a weighted version of the standard first order condition,
where weights are given by how much post tax wages change when income taxes change at different career
paths. Taking into account this heterogeneity across career tracks may attenuate the size of the corrective
component of taxes. For example, if there are no income effects, then drh(ỹ;z)

dry
= 0 for ỹ ̸= y, and the formula

above reduces to:

Ez

[(
χ(y, z) − ry

ry

)
ϵc

ry
(y, z)g(y|z)y

drh(y;z)

dry

]
= Ez

[
drh(y;z)

dry

∫ ∞

y

(
1 − λ(ỹ; z)

)
g(ỹ|z) · dỹ

]

For any signal realizationz, the weights drh(y;z)
dry

are equal to one if there is no information asymmetry
and are less than one if there is any informational asymmetry.42 In this sense, relative to the basic Equation
1.5, holding fixed the other sufficient statistics, taking into account this source of heterogeneity would call
for relatively lower marginal taxes, attenuating the intensity with which informational asymmetries push
towards higher marginal taxes.

42For more details on how changes in salaries and the degree of informational asymmetry χare related see Section 1.6.2.
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1.8 Conclusion
While incomplete information is a key feature of labor markets, standard benchmark models of taxation

often ignore it. In this paper, we developed a simple model that allows job histories and resumes to play
this informational role, with firms using them to predict productivities and forward looking individuals
making labor supply decisions that anticipate the impact of these decisions today on future wages. In this
model, the interest from firms on learning the productivity of workers arises even when firms are allowed to
pay-for-performance and both workers and firms are risk neutral.

Moreover, we incorporated optimal taxation in this model, deriving generalized Mirrleesian formulas that
apply not only to this particular model of imperfect information in the labor market, but more generally
to models with labor market frictions, as long as the mechanism that explains how firms set wages satisfies
some simple conditions. Furthermore, the main insights from the optimal taxation formulas hold under
several extensions of the basic model, including richer signal structures, human capital accumulation, and
multidimensional heterogeneity. These generalized formulas, of independent interest, can be applied to other
setups, such as health insurance and financial markets, where taxes may need to play a dual role: correct for
informational frictions or other sources of externalities, and redistribute between different types of workers.

These formulas decompose optimal taxes into two components: a redistributive component, and a cor-
rective component. While a large non-linear income taxation literature has explored and estimated the
statistics that appear in the redistributive component of taxes, there is limited work estimating the second,
especially in the context of dynamic imperfect information in labor markets. Using data from the Health
and Retirement Study survey this paper has shown that for an average worker, the corrective component of
taxes is of the order of 5%, while for high earners it ranges from 10% to as high as 60%. This result has
implications the redistributive effects of the tax system, and is consistent with the view that the current tax
system may be less redistributive than it would have been thought, if imperfect information was not taken
into account.
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1.9 Appendix

1.9.1 Salaries with Overlapping Generations (Proof of Lemma 1)

Lemma. Given the overlapping generations structure of the model, equation 1.2 is equivalent to:

w(h(s)) = E[v(θ)|h(θ) ≥ h(s)] (1.11)

Proof. First notice that for every type who supplies h(θ) > h(s) over their lifetime, there is someone (poten-
tially from a different cohort) who now has the experience h(s). Thus E[v(θ)|h(θ, s) = h(s)] = E[v(θ)|h(θ) ≥
h(s)]. Now suppose a firm sets salaries that are not equal to the average productivity, so that equation
above is violated for some h(s). Then, a firm that offers a contract conditional on the experience level h(s)
is either making losses or positive profits. In the first case, the firm would be better off by not offering the
contract and in the second case a firm could enter the market offering an infinitesimally lower price and
making strictly positive profits.

1.9.2 Algebra Behind Example in Section 1.3.1

Salaries are given by the expectation of productivity of those who provide at least h. In terms of types
salaries are given by w(h(θ)) = E[v(θ̃)|θ̃ ≥ θ] = α

α−δ θδ. The first order conditions of the worker imply that:

w(h) = h1/ϵb(θ)−(1+1/ϵ)

Guess and verifying that the wage is a power function ,i e, w(h) = khγ , for some k and γ. We conclude
that:

w(h) = khγ = α

α − δ
k

−δϵ
(1+ϵ)(1−δ) h

1−ϵγ
(1+ϵ)(1−δ) .

And therefore

k =
(

α

α − δ

) (1−δ)(1+ϵ)
(1−δ)(1+ϵ)−δϵ

γ = δ

1 − δ + ϵ

1.9.3 Equilibrium Existence Without Taxes

Proposition 11. Assuming v(θ) smoothly increasing in types, MRS smoothly decreasing in types, consump-
tion and labor, and a continuous distribution of types, there exists an equilibrium.

Proof. Consider the direct mechanism that offers the allocation c(θ), h(θ), where c(θ) and h(θ) is the solution
to the following system of equations.

c′(θ)
h′(θ) − MRS(c(θ), h(θ), θ) = 0

E[v(θ̃)|θ̃ ≥ θ] = c′(θ)
h′(θ)
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∫
(c(θ) − v(θ)h(θ)))f(θ)dθ = 0

This allocation satisfies IC, feasibility. The first is equation is the local IC. c(θ) and h(θ) are increasing in
θ because E[v(θ̃)|θ̃ ≥ θ] is increasing in θ and MRS is decreasing in θ, and increasing in c and h. Because of
single-crossing the local IC and monotonicity together impliy that incentive constraints are globally satisfied
. The third equation is the feasibility constraint. In this case, the feasibility constraint is automatically
satisified given the first two equations, as workers get paid what they produce in expectation, firms are
offering salaries E[v(θ̃)|θ̃ ≥ θ] and making zero profits. Notice as well that

∫ θ
v(θ̃)h′(θ̃)dθ̃ < v(θ)

∫ θ

0 h′(θ̃)dθ̃ ≤
v(θ)h(θ), thus c(θ) > 0 , that is, higher types workers in this allocation subsidize lower type workers and
consumption is positive everywhere. The existence of a solution is guaranteed by the Picard-Lindelöf theorem,
given the regularity assumptions on MRS , v and the distribution of types.

1.9.4 Atkinson-Stiglitz with “Double Adverse Selection” (Proof of Proposition
2)

Proof. Any tax system generates a common budget set B that determines which pairs (C, H) are feasible.
As a first step in the proof, we are going to show that we can replicate this budget set for the workers and
save resources, without imposing taxes on timed consumption or labor flows. To do that, we generate a new
tax system where, for each pair (C, H) the new pre tax income is e(H) and post tax income is e(C), where
these are defined below:

e(C) = min
c̃(·)

∫
q(t) · c̃(t)dt st. C(c̃(·)) ≥ C and e(H) = max

h̃(·)

∫
q(t) · w(h()) · h̃(t)dt st. H(h̃(·)) ≤ H.

Under this new tax system, the worker problem can be written in three parts:
max
C,H

U(C, H, θ) st. (C, H) ∈ B and e(C) = min
c̃(·)

∫
q(t) · c̃(t)dt st. C(c̃(·)) ≥ C and e(H) = max

h̃(·)

∫
q(t) ·

w(h(t)) · h̃(t)dt st. H(h̃(·)) ≤ H

Notice that e(H) is the maximum pre-tax income that can be generated by generating at most the
disutility H. Moreover, it depends only on lifetime labor supply and not on the timing of these labor supply
decisions, because

∫
q(t) · w(h(t)) · h̃(t) = W (h). Thus, it is the maximum lifetime labor that generates at

most the disutility H. Because production depends only on lifetime labor supply (an is increasing in lifetime
labor supply), it is also the maximum production that generates at most the disutility H.

Further, because e(C) is the smallest amount of resources that achieves the subutility level C, and e(H)
is the maximum production that can be generated by generating at most the disutility H, whenever choices
change, there are more resources than required to obtain the same allocation. These extra resources can be
used to increase all the consumption possibilities (C + ∆(H), H) by some small amount ∆(H), chosen in
such way that everyone still prefers their originally labor aggregate choice H.

We have assumed that the discount rates q(·) were exogenously given, and in this case we have shown
that there is a lifetime income taxation system that is weakly better than any other tax system, as claimed in
the Proposition. An analogous argument extends the result to arbitrary endogenous discount rates q(·), that
is, discount rates that arise from competitive firms doing the intertemporal allocation of resources. Indeed,
the result is implied by a production efficiency argument as in (Diamond and Mirrlees, 1971). Moreover, we
assume throughout the paper that the economy is dynamically efficient in the sense that the present value
of the output exists and it is finite.
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1.9.5 Invertibility Condition (Proof of Lemma 2)

Lemma. Without loss, we can solve directly for R̃(h) = R(y(h)), and then find y(h), and R(y). That is,
the planner can solve the simpler problem:

max
R̃(h)

E[W (V (R̃; θ))] s.t. E[v(θ)h(R̃; θ) − R̃(h(R̃; θ))] ≥ 0

Proof. Because y′(h) is a well-defined function of the allocation and is always positive, y(h) always exists
and it is strictly increasing. Thus, there exists an inverse function h−1(y). Therefore we can define R(y) so
that R(y(h)) = R̃(h). Thus, we found the income tax schedule and equilibrium salaries that prevail in the
economy where the planner solved directly for the retention function R̃(h).

1.9.6 Optimal Taxes with Single Dimensional Heterogeneity (Proof of Propo-
sition 3)

Proof. The optimal tax schedule solves the following problem:

max
R̃

E[λ(θ)V (R̃, θ)] s.t. E[v(θ)(h(θ)) − R̃(h(θ))] ≥ 0

where E[v(θ)|MRSθ
c,h ≤ R̃′(h)] = y′(h)

R̃(h) = R(y(h))

Considering a small variation on marginal retention rates as a function of effort at a given level of effort:

E

[
λ(θ)dV (r̃, I, θ)

dr̃h

]
= −µE

[
v(θ)dh(θ)

dr̃h
− r̃(h)dh(θ)

dr̃h
− 1(h(θ) ≥ h)

]

E

[
λ(θ)

µ

dV (r̃, I, θ)
dI

1(h(θ) ≥ θ)
]

= −E

[
(v(θ) − r̃(h(θ)))dhc(θ)

dr̃h
1(h(θ) = h)

− (v(θ) − r̃(h(θ))dh(θ)
dI

1(h(θ) ≥ h) − 1(h(θ) ≥ h)
]

(
v(h) − r̃(h)

)
f(h)dhc(θ)

dr̃h
=

∫ ∞

h

f(h̃)
(

1 − λ(h̃)
)

dh̃ +
∫ ∞

h

(
v(h̃) − r̃(h̃)

)
f(h̃)dh̃

dI
dh̃

Now two steps: writing it in terms of elasticities and converting to a formula in terms of earnings. First:
(

v(h) − r̃(h)
r̃(h)

)
f(h)hdhc(θ)

dr̃h

r̃(h)
h

=
∫ ∞

h

f(h̃)
(

1 − λ(h̃)
)

dh̃ +
∫ ∞

h

(
v(h̃) − r̃(h̃)

R̃(h̃)

)
f(h̃)dh̃

dI
R̃(h̃)dh̃

(
v(h) − r̃(h)

r̃(h)

)
f(h)hϵc

r̃(h) =
∫ ∞

h

f(h̃)
(

1 − λ(h̃)
)

dh̃ +
∫ ∞

h

(
v(h̃) − r̃(h̃)

R̃(h̃)

)
f(h̃)ηI(h̃)dh̃

Then, using that:
r̃(h) = r(y(h))y′(h)

dy(h)
dr

= y′(h)dh

dr̃

dr̃

dr
= y′(h)2 dh

dr̃
(micro elasticities)

f(h) = g(y(h))y′(h)
dy(h)

dI
= y′(h)dh

dI
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dh = 1
y′(h)dy

(
v(h)/y′(h) − r(y(h))

r(y(h))

)
g(y(h))y(h)ϵc

r(y(h)) =
∫ ∞

h

f(h̃)
(

1 − λ(h̃)
)

dh̃

+
∫ ∞

h

(
v(h̃)/y′(h̃) − r(y(h̃))

R(y(h̃))

)
f(h̃)ηI(y(h̃))dh̃

(
v(y)/y′(h(y)) − r(y)

r(y)

)
g(y)yϵc

r(y) =
∫ ∞

y

g(ỹ)
(

1 − λ(ỹ)
)

dỹ +
∫ ∞

y

(
v(ỹ)/y′(h(ỹ)) − r(ỹ)

R(ỹ)

)
g(ỹ)ηI(ỹ)dỹ

1.9.7 Elasticities

The optimal tax formulas presented in Section 1.5 feature compensated and income elasticities. In the
formulas, because we are keeping the pretax salaries fixed, these elasticities can be called “micro elasticities”.
A number of empirical studies use aggregate variation in taxes (such as state-tax variations, or kinks in
the tax schedule) to estimate elasticities of taxable income. These statistics are better described as “macro
elasticities” – how income changes when the tax schedule changes for everyone, potentially affecting pretax
salaries. That is, these elasticities are inferred from the observation of how incomes from people living in
different states react to state tax reforms, or how income in different years reacted differently to federal tax
reforms (Gruber and Saez, 2002). When measuring the change in individual taxable income, they conflate
the change in behavior that responds directly to the changes in marginal taxes and the change in behavior
that responds to changes in wages that are induced by these economy-wide tax reforms. To extract the
micro elasticities from the estimated macro elasticities it is necessary to rescale them up to account for the
endogenous changes in wages due to imperfect information in labor markets. Increases in marginal retention
induce the marginal types – who are the less productive types – to work more, and therefore reduce pretax
salaries, making the effective change in post-tax wages smaller. Thus, the estimated elasticities of taxable
income are lower in magnitude than the micro elasticities that keep the pretax salaries fixed. Proposition 12
relates steady state compensated “micro elasticities” to “macro elasticities”, in the case where resumes are
defined as the cumulative discounted sum of deliverables a worker has produced.

Proposition 12. Compensated “micro elasticities” and “macro elasticities” are related by the following
formula:

ϵy,m
ry

(y) =
ϵy,M

ry
(y)

1 − α(y)ϵy,M
ry (y)

(
1 − χ(y)

)

“Macro elasticities” are lower than “micro elasticities”. A locally flat increase in marginal retention at
pretax income level y makes workers who were just indifferent at that region increase their labor supply,
lowering the average productivity of the workers at y, and therefore lowering pretax wages, and attenuating
the original increase in labor supply. How much salaries decrease is proportional to the density of people at
y relative to the mass of people above y (from which the shape parameter α(y) = g(y)y

1−G(Y ) shows up in the
formula), to how much people are changing their income (ϵy,M

ry
(y)), and to how far their productivities are

from their salaries (hence 1−χ(y) in the formula). The “micro elasticity” can be thought of as renormalizing
the original elasticity by the effective change in retention, coming both from the mechanical change induced
by the reform and from the endogenous change in salaries.
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These are “own elasticities”: they tell how income changes for someone who initially is earning y as a
response to a change in marginal rates at the same income level. Changes in marginal retention in other
income levels affect salaries in multiple other income levels: the pool of workers from each income level is
shifted, generating further compensated and uncompensated changes. For this reason, the expression for
income elasticities is also more involved. A change in the intercept of the tax schedule generates not only
further income effects but also further compensated effects. Proposition 13 relates the change in pretax
salaries to changes in income.

Proposition 13. Income “macro” elasticities and changes in pretax salaries and income “micro” elasticities
are related by the following formula:

ϵ
y′(h(y))
I = −α(y)ϵy,M

I (y)
(

1 − χ(y)
)

η(y) =
ϵy,M

I (y)
(

1 + ϵy,M
rh

(y)α(y)
(

1 − χ(y)
))

1 −
∫ y

0 α(ỹ)ϵỹ,M
I (ỹ)

(
1 − χ(ỹ)

)
y′(h(ỹ))

R(ỹ) dỹ

There are two effects playing a role in the relationship between income “micro” and “macro” elasticities.
First, assuming that income elasticities are negative, an income transfer to all workers induces them to
work less, and those who work less are the least productive, pushing towards higher salaries. Now because
salaries increase, a compensated effect is increasing the labor supply of workers, making the income “macro”
elasticity higher (or smaller in absolute value) than the income “micro” elasticity. Second, because salaries
are increasing not only at a given income level y, but everywhere below (and above) it, the income transfer
is effectively higher than what the “macro” elasticity accounts for. Thus, this is a force making the “micro”
elasticity lower (higher in absolute value) than the “macro” elasticity. Thus, whether the “macro” income
elasticity or the “micro” is larger depends on which effect dominates the other.

It should be noticed that these elasticities and the relationship between them hold in the steady state.
Moreover, they are long-term elasticities – they look at how lifetime income changes as a response to tax
reforms. As long-term elasticities, the empirical evidence on the magnitude of these is relatively scarcer
compared to elasticities over shorter horizons.

Proofs of Propositions 12 and 13

Proposition: compensated “micro elasticities” and “macro elasticities” are related by the following formula:

ϵy,m
ry

=
ϵy,M

ry

1 − α(y)ϵy,M
ry

(
1 − χ(y)

)

Proof. because
dlogrh

dlogry
= dlogy′

dlogry
+ 1

ϵy,M
ry

= ϵy,m
ry

(
1 + ϵy′(h(y))

ry

)
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and thus

ϵy′(h(y))
ry

= −α(y)ϵy,m
ry

(
1 + ϵy′(h(y))

ry

)(
1 − χ(y)

)

=⇒ ϵy′(h(y))
ry

=
−α(y)ϵy,m

ry

(
1 − χ(y)

)

1 + α(y)ϵy,m
ry

(
1 − χ(y)

)

ϵy,m
ry

=
ϵy,M

ry(
1 + ϵ

y′(h(y))
ry

) = ϵy,M
ry

(
1 + α(y)ϵy,m

ry

(
1 − χ(y)

))

=⇒ ϵy,m
ry

=
ϵy,M

ry

1 − α(y)ϵy,M
ry

(
1 − χ(y)

)

Proposition. Income “macro” elasticities and changes in pretax salaries and income “micro” elasticities
are related by the following formula:

ϵ
y′(h(y))
I = −α(y)ϵy,M

I (y)
(

1 − χ(y)
)

η(y) =
ϵy,M

I (y)
(

1 + ϵy,m
rh

(y)α(y)
(

1 − χ(y)
))

1 −
∫ y

0 α(ỹ)ϵỹ,M
I (ỹ)

(
1 − χ(ỹ)

)
y′(h(ỹ))

R(ỹ) dỹ

Proof. because
dz = dz

drh
· drh + dz

dIf
· dIf
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dIo
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· rh
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rh
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1.9.8 First Best with Pigouvian Taxes

Proposition 14. Assuming v(θ) smoothly increasing in types, MRS smoothly decreasing in types, and a
continuous distribution of types, a first best allocation can be achieved, with r(y) = χ(y).

Proof. Consider the direct mechanism that offers the allocation c(θ), h(θ), where c(θ) and h(θ) is the solution
to the following system of equations.

c′(θ)
h′(θ) − MRS(c(θ), h(θ), θ) = 0

v(θ) = c′(θ)
h′(θ)

∫
(c(θ) − v(θ)h(θ)))f(θ)dθ = 0

This allocation satisfies IC, feasibility. The first is equation is the local IC. c(θ) and h(θ) are increasing
in θ because v(θ) is increasing in θ and MRS is decreasing in θ, and increasing in c and h. Because of
single-crossing the local IC together with monotonicity implies global IC’s are satisfied . The third equation
is the feasibility constraint. Notice as well that

∫ θ
v(θ̃)h′(θ̃)dθ̃ < v(θ)

∫ θ

0 h′(θ̃)dθ̃ ≤ v(θ)h(θ), thus c(θ) > 0
, that is, higher types workers in this allocation subsidize lower type workers and we do not need to worry
about consumption being negative. Further, notice that in this allocation r(y) = χ(y). The existence of a
solution to these differential equations is guaranteed by the Picard-Lindelöf theorem, given the regularity
assumptions on MRS , v and the distribution of types.

Finally, we show that it is a first best allocation: it corresponds to an allocation where workers face linear
budgets and get paid their marginal products while receiving transfers I(θ) = c(θ) − w(θ)h(θ).

1.9.9 Welfare (Proof of Proposition 6)

Proposition. If the original tax schedule is optimal and the planner has strongly enough redistributive
preferences, and labor is a normal good, then decreasing information asymmetries in labor markets decreases
welfare.

Proof. We can set the planner’s problem as maximizing a welfare function of workers utility, subject to
incentive compatibility constraints and a feasibility constraint.

max
l(θ),c(θ)

∫
W (u(c(θ), l(θ)))f(θ)dθ

s.t. u

(
c(θ), l(θ)

)
≥ u

(
c(θ′), l(θ′)b(θ′)

b(θ)

)
∀θ, θ′ [IC’s]

∫
(c(θ) − v(θ)b(θ)l(θ)f(θ)dθ ≤ 0 [Feasibility]

The incentive compatibility constraints translate the idea that under the results from Lemma 2 (or the
more general Lemma 4) the planner can solve for the allocation in terms of consumption and deliverables
h(θ) subject to workers not being willing to misreport their types and trade their allocation (c(θ), h(θ)) to
another allocation (c(θ′), h(θ′)), and that the amount of deliverables is equal to the product of effort l(θ)
and observable component of productivities b(θ), i.e. l(θ) · b(θ) = h(θ).
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In our context the results in Seade (1982); Werning (2000), imply that out of the set of IC’s, only the local
downward are binding, provided that W ′(U)Uc is positive and decreasing, and that leisure is a normal good
(they also further imply v − r is positive,. For more details, see Appendix Section 1.9.10 and the argument
in Werning (2000)). Now, notice that those downward incentive compatibility constraints become tighter
whenever informational asymmetries decrease, while the feasibility constraint is unchanged. Thus, welfare
decreases. The result does not depend on the particulars of the information structure and besides holding
in the MWS case (as in Stantcheva (2014)), aad in other models of competition with imperfect information
such as the competitive screening model in Azevedo and Gottlieb (2017), it also holds in the case where
resumes are defined as the length of the resume, also holds under the more general information structure of
Section 1.5.2, where take the general form I(h̃(·)a

0 , a) =
∫ a

0 ϕ(ã, a)h̃(ã)dã.

1.9.10 Formula in Terms of Types (Proof of Proposition 7)

Proposition. Optimal taxes as a function of types θ must satisfy the following equations:

ry(θ) = rm(θ) · χ(θ)

1 − rm(θ)
rm(θ) f(θ)

(
− ∂ log MRS

∂θ

)−1
=

∫ ∞

θ

(1 − λ̂(θ))f(θ)dθ +
∫ ∞

θ

(
1 − rm(θ)

rm(θ)

)
η(θ)f(θ)dθ

Proof. Let’s set up the planners problem as:

max
u,h

∫
λ(θ)u(θ)f(θ)dθ

s.t. u′(θ) = Uθ(e(u(θ), h(θ), θ), h(θ), θ)
∫

(e(u(θ), h(θ), θ) − v(θ)h(θ))f(θ)dθ ≤ 0

Lagrangian
max

u,h

∫
λ u f + µ(u′ − Uθ) − κ(e − vh)f dθ

Integrate by parts

max
u,h

∫
λ u f − µ′u − µUθ − κ(e − vh)f dθ + uµ|θθ

FOC’s for u(θ),and h(θ)

λf − µ′ − µUθ,ceu − κeuf = 0

µ(Uθ,ceh + Uθ,h) − kehf + kvf = 0

Replacing eu = U−1
c on the first equation.

λUcf − µ′Uc − µUθ,c − fκ = 0

Define µ̂ = µUc/κ and λ̂ = λUc/κ, plus some rearrangement (as in Scheuer and Werning (2017))
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λ̂f − µ̂′ − µ̂MRSch′ = f

Rearrange second line and take a derivative

µ̂
Uθ,cMRS + Uθ,h

UcMRS
= f

v − MRS

MRS

−µ̂
∂ log MRS

∂θ
= f

v − MRS

MRS

We arrived at two equations:

λ̂f − µ̂′ − µ̂MRSch′ = f

−µ̂
∂ log MRS

∂θ
= f

v − r

r

Differentiating the second equation:

−µ̂ =
f v−r

r
∂ log MRS

∂θ

−µ̂′ =
f ′ v−r

r + f d
dθ ( v−r

r )
∂ log MRS

∂θ

−
∂2 log MRS

∂θ2 f v−r
r

∂ log MRS
∂θ

2

Plugging back in the first equation:

λ̂f +
f ′ v−r

r + f d
dθ ( v−r

r )
∂ log MRS

∂θ

−
∂2 log MRS

∂θ2 f v−r
r

∂ log MRS
∂θ

2 +
f v−r

r
∂ log MRS

∂θ

MRSch′ = f

λ̂ − 1 +
f ′/f v−r

r + d
dθ ( v−r

r )
∂ log MRS

∂θ

−
∂2 log MRS

∂θ2
v−r

r

∂ log MRS
∂θ

2 +
v−r

r
∂ log MRS

∂θ

MRSch′ = 0

v − r

r

(
∂ log MRS

∂θ

)−1(
f ′

f
−

∂2 log MRS
∂θ2

∂ log MRS
∂θ

+ MRSch′ + d log
dθ

(v − r

r
)
)

= 1 − λ̂

v − r

r

(
f ′

(
∂ log MRS

∂θ

)−1
− f

∂2 log MRS
∂θ2

∂ log MRS
∂θ

2

)
+

f

(
∂ log MRS

∂θ

)−1
d

dθ

(
v − r

r

)
= (1 − λ̂)f −

(
v − r

r

)
f

(
∂ log MRS

∂θ

)−1
MRSch′

Integrate both sides with respect to θ

v − r

r
f

(
∂ log MRS

∂θ

)−1∣∣∣∣
∞

θ

=
∫ ∞

θ

(1 − λ̂)fdθ −
∫ ∞

θ

(
v − r

r

)
MRSch′

∂ log MRS
∂θ

fdθ
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Notice that: η(θ) = dh
dI = MRSch′

∂ log MRS
∂θ

,

Using that lim
θ→∞

v−r
r f

(
∂ log MRS

∂θ

)−1
= 0:

v − r

r
f

(
− ∂ log MRS

∂θ

)−1
=

∫ ∞

θ

(1 − λ̂)fdθ +
∫ ∞

θ

(
v − r

r

)
ηfdθ

Finally, notice that v−r
r = χ−ry

ry

χ − ry

ry
f

(
− ∂ log MRS

∂θ

)−1
=

∫ ∞

θ

(1 − λ̂)fdθ +
∫ ∞

θ

(
χ − ry

ry

)
ηfdθ

1.9.11 Conditioning on the “Strength of the Resume” (Proof of Proposition 4)

In this section, we assume that signals take the form of hϕ(h̃(ã)1
0, a) =

∫ a

0 ϕ(ã, a)h̃(ã)dã, with ϕ(ã, a) > 0,
continuous in a and ã.

Using the logic from Proposition 2 and the assumption of homogeneous preferences over the timing of
labor supply and consumption as in Proposition 2, we will show that optimal taxation formulas will still
take a simple structure.

We first set aside the issue of implementation, and assume and characterize the set of optimal incentive
compatible allocations. Those allocations need to satisfy two properties, as stated in Lemma 3.

Lemma 3. Any optimal and incentive compatible allocation satisfies two properties:
Efficient timing: For any H(θ), h̃(·; θ)1

0 = argmax
∫ 1

0 q(a)h̃(a)da st. H(h̃(·)) = H
Lifetime optimality:

(
FH(θ, H) − r̃(H)

r̃(H)

)
f(H)Hϵc

r̃(H) =
∫ ∞

H

f(H̃)
(

1 − λ(H̃)
)

dH̃ +
∫ ∞

H

(
FH(θ, H̃) − r̃(H̃)

r̃(H̃)

)
f(H̃)ηI(H̃)dH̃,

where F (θ, H) =max
h̃

v(θ)
∫

q(a)h̃(a)da s.t. H(h̃(·)) = H, and r̃(H) = R̃′(H).

Proof. Efficient timing is an implication of production efficiency theorem of Diamond and Mirrlees (1971).
Lifetime optimality follows from standard variational argument over a retention schedule R(H), which maps
choices of H to an assigned consumption C = R(H), where we assume that no bunching takes place at the
optimal assignment.

Lemma 4. Assuming d2H(h̃(·)1
0)

dh̃(a)dh̃(a′) < 0 , MRS(C, H, θ) decreasing in θ, I(h̃(·)a
0 , a) =

∫ a

0 ϕ(a, ã)h̃(ã), salaries
are increasing in I.

Proof. Because MRS(C, H, θ) is decreasing in θ, for any R(H) strictly increasing – which is a property of
the optimal allocation described in Lemma 3 – higher types θ pick higher levels of H. Since d2H(h̃(·)1

0)
dh̃(a)dh̃(a′) < 0,

higher levels of H are followed by higher levels of each h̃(a). Therefore, conditional on age, higher types
will pick strictly higher indexes, and thus for any I > I ′ and a > 0, E[v(θ)|I, a] > E[v(θ)|I ′, a]. Therefore,
E[v(θ)|I] > E[v(θ)|I ′], and salaries are increasing in I.

Lemma 5. No two different continuous sequences h̃(a)1
0 and h̃′(a)1

0 map into the same ỹ(a)1
0.

Proof. Remember that ỹ(h̃(a), h̃(ã)a
0) = h̃(a) ·w(h̃(ã)a

0) = h̃(a) ·E[v(θ)|I(h̃(ã)a
0)] . Consider the first non zero

measure interval where h̃(a)1
0 and h̃′(a)1

0 differ, and without loss consider a ball (a, ā) where h̃(a) > h̃′(a). If
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salaries were the same for both sequences, ỹ(h̃(ã)ā
0 > ỹ(h̃′(ã)ā

0 , and the proof would be complete. However,
by Lemma 4 salaries are increasing as a function of h̃(a), thus indeed we have that ỹ(h̃(ã)ā

0 > ỹ(h̃′(ã)ā
0 .

Lemma 5 allows us to decentralize any allocation with the properties from Lemma 3.

Proposition. If R(ỹ(·)1
0) is optimal, then, there exists Rm, Rp with R(ỹ(·)1

0) = Rm(Rp(ỹ(·)1
0). Such that

Rm and Rp satisfy the following conditions:

1. Intertemporal, Pigouvian: for any ā,a, and H(h̃(a)1
0) = H, switching the timing of labor supply deci-

sions and holding fixed H∗, should leave lifetime earnings unaffected:

R̃p(H(h̃(a)1
0) = Rp(ỹ(h̃(ã)a

0)1
0)

∫ 1

ā

dRp

dỹ(h̃(ã)a
0)

dỹ(h̃(ã)a
0)

dh̃(ā)q(ā)
dh̃(ā)q(ā)

dH
q(a)da =

∫ 1

a

dRp

dỹ(h̃(ã)a
0)

dỹ(h̃(ã)a
0)

dh̃(a)q(a)
dh̃(a)q(a)

dH
q(a)da

Notice that this only describes what happens when labor supply changes across time, holding H fixed.
So leaves both retention as a function of the index H, R̃p(H), and retention as a function of the timing
of earning Rp(ỹ(·)1

0), partially defined.

2. Lifetime, Pigouvian: increasing H∗ should increase lifetime earnings proportionally to the increase in
output:

R̃(H) = Rp(ỹ(h̃(ã)a
0 ; H∗)1

0)

R̃′
p(H) =

∫ 1

0

dRp(ỹ(h̃(ã)a
0 ; H∗)1

0)
dỹ(h̃(ã)a

0 ; H∗)
dỹ(h̃(ã)a

0 ; H∗)
dh̃(a)

dh̃(a)
dH

da = v(H)
∫ 1

0
q(a)dh̃(a)

dH
da

3. Lifetime, redistributive: Define the retention that workers face as Rm(Rp(ỹ(·))), and rm = R′
m(Rp).

After correcting for distortions, then Rm should satisfy standard Mirrleesian formulas:
(

1 − rm(Rp)
rm(Rp)

)
g(Rp)Rpϵc

r̃(Rp) =
∫ ∞

Rp

g(R̃p)
(

1 − λ(R̃p)
)

dR̃p +
∫ ∞

Rp

(
1 − rm(R̃p)

rm(R̃p)

)
g(R̃p)ηI(R̃p)dR̃p,

Proposition 1.9.11 states that the tax system should be such that i) history dependent taxes (Rp) should
be used to correct for labor wedges, and ii) after correcting for these distortions, lifetime income redistributive
taxes should be imposed on top these taxes, according to standard redistributive formulas.

Remark. We can define Rp to be such that:

v(H)q(a) = dRp(ỹ(·)1
0)

dỹ(a) w(h̃(·)a
0) +

∫ 1

a

dRp(ỹ(·)1
0)

dỹ(ã)
dw(h̃(·)ã

0)
dh̃(a)

h̃(ã)dã,

which, in the case where there are no intertemporal distortions in pre-tax salaries, simplifies to:

dRp(ỹ(·)1
0)

dỹ(a)
1

q(a) = v(H)q(a)
q(a)w(h̃(·)a

0) +
∫ 1

a

dw(h̃(·)ã
0 )

dh̃(a) h̃(ã)q(ã)dã
,

where v(H) is the marginal productivity of the type that supplies the level H of labor, and where for
ease of notation the dependence on ỹ(·)1

0 is omitted. That is, the formula should be read as a function of
earnings flows ỹ(·), through the inverse operator h̃(ỹ(·)1

0)1
0.

Proof. We have established that we can find the optimal post-tax wages R̃(h̃(·)),by solving the following
problem:
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max
R̃(·)

E[W (V (R̃, θ))] s.t. E
[∫ 1

0
v(θ)q(a)h̃(a)da − R̃(h̃(·))

]
= 0

That is, we solve for the optimal post-tax wages as if there was a first layer of taxes guaranteing that the
lifetime gains from increasing the labor supply are equal to the contribution to output, ie:

∂R̃p(h̃(·))
∂h̃(a)

= v(θ)q(a)

In terms of earnings, we have that:

Rp(ỹ(h̃(·))) = R̃p(h̃(·))

Therefore,

∂R̃p(h̃(·))
∂h̃(a)

=
∫ 1

0

∂Rp(ỹ(·))
∂ỹ(ã)

∂ỹ(ã)
∂h̃(a)

dã

and
v(H)q(a) = dRp(ỹ(·)1

0)
dỹ(a) w(h̃(·)a

0) +
∫ 1

a

dRp(ỹ(·)1
0)

dỹ(ã)
dw(h̃(·)ã

0)
dh̃(a)

h̃(ã)dã,

To arrive at the the special case with no intertemporal distortions, notice that having no (pre-tax)
intertemporal distortions implies that dRp(ỹ(·)1

0)
dỹ(ã) q(ã) = dRp(ỹ(·)1

0)
dỹ(a) q(a) for every ã and a.

1.9.12 Conditioning on the Full History of Completion of Deliverables (Proof
of Proposition 5)

We assume in this section that preferences now take the form U(C, h̃(·), θ) and that θ is high-dimensional,
in the sense that, given a retention function R(h̃(·)), strictly increasing in h̃(a) for any a, for any continous
h̃(·)1

0 , there exists a type θ, for which supplying h̃(·)1
0 is optimal. We restrict household choices to the

set of continuous h̃(·). We retain the assumption more productive types are more willing to provide the
deliverables, which is stated as: for any set of salaries w(·), for any two continous flows h̃A(·)1

0 ≥h̃B(·)1
0, if

there is an non-zero measure interval L such that for ã ∈ L, h̃A(ã) > h̃B(ã), then for all ā ≥ sup L the set of
types who, given w(·), supply a labor supply flow which coincides with h̃A(·)ā

0 is on average more productive
than the set of types who supply h̃B(·)ā

0 .

Lemma 6. If the planner could choose the allocation, while being restricted to set the of incentive compatible
allocations, any optimal allocation would lie at the frontier of production possibilities set.

Proof. Follows from analogous arguments from the production efficiency theorem of Diamond and Mirrlees
(1971). That is, consider the problem

max
Cθ,h̃θ(·)

E[W (U(Cθ, h̃θ(·), θ))] st E[v(θ)
∫ 1

0
q(a)h̃θ(a)da − Cθ] ≥ 0

U(Cθ, h̃θ(·), θ) ≥ U(Cθ′ , h̃θ′(·), θ) ∀θ, θ′

By the taxation principle, we can incorporate the incentive compatibility constraints into the indirect
utility function of the workers and solve the equivalent problem:
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max
R(h̃θ(·))

E[W (V(R, θ))] st E[v(θ)
∫ 1

0
q(a)h̃θ(a; R)da − R(h̃θ(·; R))] ≥ 0 (1.12)

Now, towards a contradiction, suppose production takes place at the interior of the production possibility
frontier. Then, we can increase R(h̃θ(·)) uniformly (as lowering the price of the consumption good). Because
the indirect utility function is increasing in R, everyone would be better off, and welfare would be higher.
This is feasible, because under the assumption that labor supply decisions are continuous in a uniform
increase in R, there is a small enough increase in R(h̃θ(·)) that keeps the allocation inside the production
possibilities set.

The second result is that the planner can use Pigouvian taxes to achieve the frontier of the production
efficient set of allocations, because sequences of h̃(·)1

0 will map to sequences of ỹ(·)1
0 one-to-one, as in Lemma

2 and Lemma 5.

Lemma 7. There is a positive return to experience. That is, in any optimal allocation, salaries w(h̃(·)a
0) =

E[v(θ)|h̃(·)a
0 ] are increasing in labor supply choices h̃(ã), where ã ≤ a.

Proof. This is an immediate consequence of the assumption that the more productive types are more willing
to provide the deliverables, and that the type space is rich enough so that for any path h̃(·), expectations
are well-defined.

This Lemma, analogously to 4, establishes that there is positive return to experience.

Lemma 8. The planner can infer labor supply choices from earnings. That is, no two continuous h̃(·)1
0 map

to the same ỹ(·)1
0.

Proof. Remember that ỹ(h̃(a), h̃(ã)a
0) = h̃(a) · w(h̃(ã)a

0) = h̃(a) · E[v(θ)|h̃(ã)a
0 ] . Consider the first non zero

measure interval where h̃(a)1
0 and h̃′(a)1

0 differ, and without loss consider a ball (a, ā) where h̃(a) > h̃′(a). If
salaries were the same for both sequences, ỹ(h̃(ã)ā

0 > ỹ(h̃′(ã)ā
0 , and the proof would be complete. However,

by the previous Lemma salaries are increasing as a function of h̃(a), thus indeed we have that ỹ(h̃(ã)ā
0 >

ỹ(h̃′(ã)ā
0 .

Those results imply Pigouvian taxes should play an important role, as stated in the following Proposition.

Proposition. The planner can guarantee that the allocation would lie at the frontier of the production
possibilities set by using Pigouvian taxes.

Proof. Consider the problem 1.12. This formulation can be thought of as solving for the redistributive wage
schedule after Pigouvian taxes have been imposed, so that pre-tax salaries of the workers would have been
equal to their productivities (or the average productivity of the workers with the same labor supply history
h̃(·), if at the solution there are multiple types sharing the same history). The solution of this problem
results in a wage schedule, R(h̃(·)), which is as a function of labor supply decisions. This wage schedule,
by the previous Lemma, can be written as a function of the history of earnings ỹ(·), R(ỹ(·)), so it can be
implemented with history dependent earnings taxes.

These Pigouvian taxes take the same general form as in the previous section. Thus, although this economy
may look quite complicated, the same principles of tax design can be applied. There is a caveat though.
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Because we have unrestricted preferences, and multiple goods, now the design of optimal redistributive
taxes, after correcting for the Pigouvian distortions is more complicated, and without further normative
assumptions, we cannot point to lifetime income taxation as the preferred form of redistribution.

1.9.13 Heterogeneity in Elasticities (Proof of Proposition 9)

Proposition. If a tax schedule is optimal then it needs to satisfy the following relationship:

E
[(

χ(y) − r(y)
r(y)

)
ϵc

r(y)
]
g(y)y =

∫ ∞

y

g(ỹ)
(

1 − E[λ(ỹ)]
)

dỹ +
∫ ∞

y

E
[(

χ(ỹ) − r(ỹ)
r(ỹ)

)
ηI(ỹ)

]
g(ỹ)dỹ

where χ(y) ≡ v(y, θ)/y′(h(y))

Proof. The proof is analogous to the single dimensional heterogeneity case, except that the expectation on
the outside cannot be dropped.

1.9.14 Firms See Additional Signals (Proof of Proposition 10)
Proof.

max
R

E[λ(θ)V (R̃, θ)] s.t. E[v(θ)(h(θ)) − R̃(h(θ))] ≥ 0

where E[v(θ)|MRSθ
c,h ≤ R̃′(h)] = y′(h)

R̃(h) = R(y(h))

Considering a small variation on marginal retention rates as a function of earnings, and noticing that this variation
translates into an drh

dry
variation in the marginal retention as a function of effort:

E

[
λ(θ)

dV (r, θ)

drh

·
drh

dry

]
= −µE

[
θ

dh(θ)

drh

·
drh

dry
−

dh(θ)

drh

·
drh

dry
rh(h(θ), z(θ)) − 1(y(h(θ), z(θ)) ≥ y) ·

drh

dry

]

E

[∫ ∞

y

λ(θ)
dV (r, θ)

drh(ỹ;z)
·

drh(ỹ;z)

dry
dỹ

]
=

−µE

[∫ ∞

y

v(θ)
dh(θ)

drh(ỹ;z)
·

drh(ỹ;z)

dry
−

dh(θ)

drh(ỹ;z)
·

drh(ỹ;z)

dry
rh(h(θ), z(θ))

−1(y(h(θ), z(θ)) ≥ y) ·
drh(ỹ;z)

dry
dỹ

]

E

[∫ ∞

y

λ(θ)

µ

dV (r, θ)

dI
1(h(θ) ≥ h(ỹ; z)) ·

drh(ỹ;z)

dry
dỹ

]
=

−E

[∫ ∞

y

(
v(θ) − rh(h(θ), z(θ))

)(
dhc(θ)

drh(ỹ;z)
1(h(θ) = h(ỹ; z)) −
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drh(ỹ;z)

dry
dh̃dỹ
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ỹ

(
χ(˜̃y, z) − r ˜̃y

R(˜̃y)

)
η

h
I (˜̃y)g(˜̃y|z) ·

drh(ỹ;z)
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1.10 Empirical Appendix

1.10.1 Computing Simulated Marginal Rates and Their Changes

Whenever possible, to match available HRS variables to TAXSIM32 variables, we follow the same treat-
ment of input variables to TAXSIM as outlined in RAND’s 2014 HRS tax calculations (Pantoja et al., 2018).
Discrepancies are recorded in footnotes under the corresponding HRS variables.

Table 1.1: Correspondence of HRS and taxsim32 Variables

HRS Variable(s) Used taxsim32
variable

1 N/A taxsimid
2 43RwIWENDY year
3 RwSTATE state
4 44RwMSTAT mstat
5 RwAGEY_B page
6 SwAGEY_B sage
7 45We use the dependents variable when available and impute values when

needed.
depx

8 N/A dep13
9 N/A dep17
10 N/A dep18
11 RwIEARN pwages
12 SwIEARN swages
13 46HwIDIVIN dividends
14 N/A (but this variable is not available in RAND’s version of taxsim) intrec
15 N/A stcg
16 N/A ltcg
17 47HwRNTIN, HwIOTHI1, HwIOTHI2, HwITRSIN, HwIBNDIN, HwIBUSIN,

HwICHKIN, HwIDIN, HwIALMNY, HwICDIN, HwICHKIN, H1ISAV1,
H2ISAV2, HwIBUSIN, HwILUYR1-HwILUYR3

otherprop

18 N/A nonprop
19 RwIPENA, SwIPENA pensions
20 48RwISSDI, RwISSI, SwISSDI, SwISSI, Medicare part b) coverage variable from

FAT Files
gssi

21 RwIUNEM, SwIUNEM ui
22 HwISSI, HwIFOOD, HwIWELF, RwIWCMP, RwIVET transfers
23 49Dollar amount of rent paid variable from FAT Files rent paid
24 50Dollar amount of real estate tax paid variable from FAT Files proptax
25 51RwOOPMD, SwOOPMD otheritem
26 N/A childcare
27 52HwAMORT, Dollar amount of donations variable from FAT Files,

RwOOPMD, SwOOPMD
mortgage

28 N/A scorp
29 N/A pbusinc
30 N/A pprofinc
31 N/A sbusinc
32 N/A sprofinc
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1.10.2 State Variation in Taxes

Figures 1.5 to 1.10 illustrate in which states have had the largest and most frequent changes in real
marginal rates, for both single and joint tax returns. To observe the changes in state income tax codes,
we obtain income percentile cutoffs by converting all nominal incomes reported in the HRS dataset to 2021
dollars, using the PCE index. Then, we construct a pseudo dataset with these cutoffs in all 50 states plus
Washington DC from 1992 to 2018. We use the NBER tax simulator (taxsim32) to simulate marginal income
tax rates for these constructed individuals. Finally, we increment year by one, inflate accordingly using the
PCE index, obtain a new set of marginal income tax rates, and take the difference between the two rates to
find the policy change at each income level.

1.10.3 Mental Status Scores

The mental status summary sums the scores for serial 7’s (RwSER7, 0-5), backwards counting from 20
(RwBWC2, 0-2), and object (RwCACT, RwSCIS; 0-2 total), date (RwDY, RwMO, RwYR, RwDW; 0-4
total), and President/Vice-President (RwPRES, RwVP; 0-2 total) naming tasks. The resulting range is
0-15. Since these items were not included in Waves 1 and 2H, there is no mental summary score for these
waves, and the Wave 2A summary is called R2AMSTOT to indicate that it is limited to the AHEAD cohort
in Wave 2.

Those questions are presented in the table below.

Table 1.2: Mental Status Scores - Questions

Variable Content Score
RwCACT "What do you call the kind of prickly plant that grows in the

desert?"
0-1

RwSCIS "What do you usually use to cut paper?" 0-1
RwSCIS and RwVP whether the Respondent was able to correctly name the current

president and vice-president of the United States, respectively.
0-2

RwSER7 Number of correct subtractions in the serial 7s test. This test
asks the individual to subtract 7 from the prior number,

beginning with 100 for five trials. Correct subtractions are
based on the prior number given, so that even if one subtraction

is incorrect subsequent trials are evaluated on the given
(perhaps wrong) answer.

0-5

RwBWC20 and
RwBWC86

whether the Respondent was able to successfully count
backwards for 10 continuous numbers from 20 and 86,

respectively. Two points are given if successful on the first try,
one if successful on the second, and zero if not successful on

either try.

0-2

RwDY, RwMO,
RwYR, and RwDW

whether the Respondent was able to report today’s date
correctly, including the day of month, month, year, and day of

week, respectively.

0-4
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1.10.4 Tables

Table 1.3: Elasticities of wages

(1) (2) (3) (4) (5) (6)
ϵw -0.13 -0.061 -0.066 -0.092 -0.16 -0.16

(0.10) (0.10) (0.10) (0.099) (0.099) (0.099)
year f.e. no yes yes yes yes yes
marital status no no yes yes yes yes
hourly wages no no no linear c. spline l. spline
observations 39179 39179 39179 39179 39179 39179

Notes. Robust standard errors in parentheses. Elasticities ϵw are computed from linear regressions of changes in log hourly

wages over four years on changes in log marginal retention rates over two years (evaluated at the base year income data). Each

column includes different sets of controls: year fixed effects, marital status dummies, and hourly wages. Column (4) includes

log hourly wages. Column (5) includes a 5 piece cubic spline of log hourly wages. Column (6) includes a 10-piece linear spline

of log hourly wages.
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Table 1.4: Elasticities of wages for job switchers

(1) (2) (3) (4) (5) (6)
ϵw -0.31 -0.19 -0.19 -0.28 -0.32 -0.34

(0.18) (0.19) (0.19) (0.18) (0.18) (0.18)
year f.e. no yes yes yes yes yes
marital status no no yes yes yes yes
hourly wages no no no linear c. spline l. spline
observations 13958 13958 13958 13958 13958 13958

Notes. Robust standard errors in parentheses. Elasticities ϵw are computed from linear regressions
of changes in log hourly wages over four years on changes in log marginal retention rates over two years
(evaluated at the base year income data). The sample is restricted to those who switch jobs at least once
between the baseline year and four years later. Each column includes different sets of controls: year fixed
effects, marital status dummies, and hourly wages. Column (4) includes log hourly wages. Column (5)
includes a 5 piece cubic spline of log hourly wages. Column (6) includes a 10-piece linear spline of log hourly
wages.
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Table 1.5: Participation semi-elasticities

(1) (2) (3) (4) (5) (6)
ηp -0.039 0.063 0.044 0.037 0.013 0.010

(0.056) (0.058) (0.056) (0.062) (0.062) (0.062)
year f.e. no yes yes yes yes yes
marital status no no yes yes yes yes
hourly wages no no no linear c. spline l. spline
observations 72526 72526 72526 61526 61526 61526

Notes. Robust standard errors in parentheses. Semi-elasticities ηp are computed from linear regressions of changes of

participation over four years on changes in log marginal retention rates over two years (evaluated at the base year income

data). Each column includes different sets of controls: year fixed effects, marital status dummies, and hourly wages. Column

(4) includes log hourly wages. Column (5) includes a 5 piece cubic spline of log hourly wages. Column (6) includes a 10-piece

linear spline of log hourly wages.
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Table 1.6: "Rat race" externality estimates (4y/4y) −(1 − χ)

(1) (2) (3)
ratio 0.034 -0.014 -0.015

(-0.0095, 2.42) (-2.36, 0.027) (-2.69, 0.024)
year f.e. no yes yes
marital status no no yes
hourly wages no no no
observations 85706 85706 85706

Table 1.7: "Rat race" externality estimates (4y/4y) −(1 − χ) (cont.)

(1) (2) (3)
ratio -0.025 -0.12 -0.16

(-47.4, 0.0071) (-9.03, -0.044) (-31.3, -0.076)
year f.e. yes yes yes
marital status yes yes yes
hourly wages linear c. spline l. spline
observations 85706 85706 85706

Notes. Bootstrapped bias-corrected confidence intervals in parentheses (with 2000 bootstrap replications). Estimates for

externality (1 − χ, or one minus the labor wedge) are obtained from dividing the elasticity of wages by the participation semi-

elasticity multiplied by one hundred. Elasticities of wages are computed from linear regressions of changes in log hourly wages

over the next four years on changes in log marginal retention rates over two years (evaluated at the base year income data).

Participation semi elasticities are computed from regressing changes in participation over the next four years on changes in

log marginal retention rates over two years (evaluated at the base year income data). Each column includes different sets of

controls: year fixed effects, marital status dummies, and hourly wages. In the bottom table, column (1) includes log hourly

wages. Column (2) includes a 5 piece cubic spline of log hourly wages. Column (3) includes a 10-piece linear spline of log hourly

wages.
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Table 1.8: "Rat race" externality estimates (4y/2y) −(1 − χ)

(1) (2) (3)
ratio -0.017 -0.0045 -0.0049

(-0.22, 0.019) (-0.029, 0.013) (-0.030, 0.013)
year f.e. no yes yes
marital status no no yes
hourly wages no no no
observations 85706 85706 85706

Table 1.9: "Rat race" externality estimates (4y/2y) −(1 − χ) (cont.)

(1) (2) (3)
ratio -0.0072 -0.015 -0.015

(-0.043, 0.0086) (-0.12, 0.0045) (-0.13, 0.0053)
year f.e. yes yes yes
marital status yes yes yes
hourly wages linear c. spline l. spline
observations 85706 85706 85706

Notes. Bootstrapped bias-corrected confidence intervals in parentheses (with 2000 bootstrap replications). Estimates for

externality (1 − χ, or one minus the labor wedge) are obtained from dividing the elasticity of wages by the participation semi-

elasticity multiplied by one hundred. Elasticities of wages are computed from linear regressions of changes in log hourly wages

over the next four years on changes in log marginal retention rates over two years (evaluated at the base year income data).

Participation semi elasticities are computed from regressing changes in participation over the next two years on changes in

log marginal retention rates over two years (evaluated at the base year income data). Each column includes different sets of

controls: year fixed effects, marital status dummies, and hourly wages. In the bottom table, column (1) includes log hourly

wages. Column (2) includes a 5 piece cubic spline of log hourly wages. Column (3) includes a 10-piece linear spline of log hourly

wages.
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Table 1.10: Mental status scores

(1) (2) (3) (4) (5) (6)
ηm 0.14 -0.82 -1.08 -1.20 -1.30 -1.31

(0.42) (0.51) (0.51) (0.54) (0.54) (0.54)
year f.e. no yes yes yes yes yes
marital status no no yes yes yes yes
hourly wages no no no linear c. spline l. spline
observations 16027 13187 13187 11030 11030 11030

Notes. Robust standard errors in parentheses. Semi-elasticities ηm are computed from linear regressions of mental status

scores two years in the past on changes in log marginal retention rates over two years (evaluated at the base year income data),

restricting the sample for those who are working in the baseline year and four years ahead. Each column includes different sets

of controls: year fixed effects, marital status dummies, and hourly wages. Column (4) includes log hourly wages. Column (5)

includes a 5 piece cubic spline of log hourly wages. Column (6) includes a 10-piece linear spline of log hourly wages.
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Table 1.11: Elasticities of wages

-8y -6y -4y -2y +2y +4y +6y +8y
ϵw 0.12 -0.0089 -0.014 0.055 0.036 -0.16 -0.27 -0.14

(0.11) (0.075) (0.062) (0.047) (0.076) (0.099) (0.12) (0.15)
N 17898 25425 34685 45922 53931 39179 29253 21119

Notes. Robust standard errors in parentheses. Elasticities ϵw are computed from linear regressions of changes in log hourly

wages over k-years on changes in log marginal retention rates over two years (evaluated at the base year income data). All

specifications include year fixed effects, marital status dummies, and a 10-piece linear spline of log hourly wages.

76



Table 1.12: Elasticities of wages for job switchers

-8y -6y -4y -2y +2y +4y +6y +8y
ϵw 0.36 0.19 0.023 0.30 0.23 -0.34 -0.43 -0.43

(0.16) (0.13) (0.12) (0.12) (0.19) (0.18) (0.18) (0.21)
N 10040 11950 12375 9430 10996 13958 13703 11737

Notes. Robust standard errors in parentheses. Elasticities ϵw are computed from linear regressions of changes of log hourly

wages over k-years on changes in log marginal retention rates over two years (evaluated at the base year income data). For

each column, the sample is restricted to those who switch jobs at least once between the baseline year and k years ahead. All

specifications include year fixed effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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Table 1.13: Participation semi-elasticities

-8y -6y -4y -2y +2y +4y +6y +8y
ηp -0.039 -0.021 -0.048 -0.039 0.10 0.010 0.032 0.15

(0.026) (0.019) (0.017) (0.015) (0.047) (0.062) (0.068) (0.075)
N 20522 29053 39482 51895 72301 61526 53964 46435

Notes. Robust standard errors in parentheses. Semi-elasticities ηp are computed from linear regressions of changes of hours

wages over k-years years on changes in log marginal retention rates over two years (evaluated at the base year income data).

All specifications include year fixed effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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Table 1.14: Mental status scores

-8y -6y -4y -2y +2y +4y +6y +8y
ηm 0.32 -0.034 -0.56 0.65 -0.77 -1.31 -1.19 -0.61

(0.55) (0.61) (0.45) (0.38) (0.45) (0.54) (0.57) (0.66)
N 4362 5784 9566 13055 14705 11030 8264 5005

Notes. Robust standard errors in parentheses. For columns (5) to (8), semi-elasticities ηp are computed from linear

regressions of memory scores two years in the past over years on changes in log marginal retention rates over two years

(evaluated at the base year income data) , restricting the sample for those who are working in the baseline year and k-years

ahead. For columns (1) to (4), semi-elasticities ηp are computed from linear regressions of memory scores (2+|k|) years in the

past over years on changes in log marginal retention rates over two years (evaluated at the base year income data) , restricting

the sample for those who are working in the baseline year and |k|-years before. All specifications include year fixed effects,

marital status dummies, and a 10-piece linear spline of log hourly wages.
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Table 1.15: Income percentiles

wg. 4y wg (j.s.) 4y partic. 2y mental st. 2y
bottom third -0.14 -0.40 0.087 -0.13

(0.17) (0.25) (0.082) (0.81)
middle third -0.064 -0.37 0.19 -1.09

(0.13) (0.26) (0.078) (0.82)
upper third -0.29 -0.22 0.035 -1.18

(0.20) (0.44) (0.073) (0.62)
Observations 39179 13958 72301 14705

Notes. Robust standard errors in parentheses. Elasticities and semi-elasticities are computed from linear regressions of

different dependent variables on changes in log marginal retention rates over two years (evaluated at the base year income data).

Each column corresponds to a different dependent variable: the first column reports results where the dependent variable are

changes in log hourly wages over the next four years; the second column additionally restricts the sample to respondents who

switched jobs over the same period. The third column reports results for changes in labor force participation over two years.

The fourth column has a dependent variable mental status scores two years in the past, and restricts the sample to those who

are working in the baseline year and two years ahead. All specifications include year fixed effects, marital status dummies, and

a 10-piece linear spline of log hourly wages.
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Table 1.16: Occupations

wg. wg (j.s.) partic. mental st.
Managerial, sales, clerical 0.14 -0.10 0.10 0.48

(0.17) (0.29) (0.087) (0.70)
Professional -0.43 -0.45 0.11 0.063

(0.26) (0.54) (0.12) (0.83)
Other services 0.21 0.17 -0.18 -4.69

(0.23) (0.42) (0.14) (1.95)
Farming, forestry, mechanics, construction -0.038 -1.22 0.050 -2.60

(0.43) (0.79) (0.16) (1.70)
Operators -0.49 -0.83 0.090 -2.59

(0.22) (0.38) (0.13) (1.38)
Observations 39179 13958 72301 14705

Notes. Robust standard errors in parentheses. Elasticities and semi-elasticities are computed from linear regressions of

different dependent variables on changes in log marginal retention rates over two years (evaluated at the base year income data).

Each column corresponds to a different dependent variable: the first column reports results where the dependent variable are

changes in log hourly wages over the next four years; the second column additionally restricts the sample to respondents who

switched jobs over the same period. The third column reports results for changes in labor force participation over two years.

The fourth column has a dependent variable mental status scores two years in the past, and restricts the sample to those who

are working in the baseline year and two years ahead. All specifications include year fixed effects, marital status dummies, and

a 10-piece linear spline of log hourly wages.
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Table 1.17: Education levels

wg. wg (j.s.) partic. mental st.
high school or less -0.27 -0.28 0.018 -2.38

(0.12) (0.23) (0.067) (0.76)
more than high school -0.054 -0.39 0.18 0.43

(0.15) (0.26) (0.062) (0.52)
Observations 39179 13958 72301 14705

Notes. Robust standard errors in parentheses. Elasticities and semi-elasticities are computed from linear regressions of

different dependent variables on changes in log marginal retention rates over two years (evaluated at the base year income data).

Each column corresponds to a different dependent variable: the first column reports results where the dependent variable are

changes in log hourly wages over the next four years; the second column additionally restricts the sample to respondents who

switched jobs over the same period. The third column reports results for changes in labor force participation over two years.

The fourth column has a dependent variable mental status scores two years in the past, and restricts the sample to those who

are working in the baseline year and two years ahead. All specifications include year fixed effects, marital status dummies, and

a 10-piece linear spline of log hourly wages.
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Table 1.18: Income percentiles and education

wg. wg (j.s.) partic. mental st.
bottom third, highschool or less -0.28 -0.24 -0.020 -1.78

(0.19) (0.27) (0.099) (1.14)
middle third, highschool or less -0.21 -0.33 0.10 -3.21

(0.17) (0.38) (0.10) (1.22)
upper third, highschool or less -0.37 -0.30 -0.042 -2.50

(0.37) (0.88) (0.16) (1.63)
bottom third, more than highschool 0.15 -0.74 0.31 2.04

(0.35) (0.50) (0.14) (1.13)
middle third, more than highschool 0.093 -0.40 0.30 0.84

(0.21) (0.33) (0.11) (1.07)
upper third, more than highschool -0.26 -0.20 0.061 -0.77

(0.23) (0.50) (0.081) (0.64)
Observations 39179 13958 72301 14705

Notes. Robust standard errors in parentheses. Elasticities and semi-elasticities are computed from linear regressions of

different dependent variables on changes in log marginal retention rates over two years (evaluated at the base year income data).

Each column corresponds to a different dependent variable: the first column reports results where the dependent variable are

changes in log hourly wages over the next four years; the second column additionally restricts the sample to respondents who

switched jobs over the same period. The third column reports results for changes in labor force participation over two years.

The fourth column has a dependent variable mental status scores two years in the past, and restricts the sample to those who

are working in the baseline year and two years ahead. All specifications include year fixed effects, marital status dummies, and

a 10-piece linear spline of log hourly wages.
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1.10.5 Figures

Figure 1.5: State variation in real marginal tax rates

Notes. Percentages were calculated using the NBER tax simulator and the publicly available HRS RAND longitudinal file,
imputing each state distribution of income from the national distribution of income. Shades are proportional to the percentage
of jointly-filing taxpayers experiencing an absolute marginal tax change larger than 2%.
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Figure 1.6: State variation in real marginal tax rates

Notes. Percentages were calculated using the NBER tax simulator and the publicly available HRS RAND longitudinal file,
imputing each state distribution of income from the national distribution of income. Shades are proportional to the percentage
of jointly-filing taxpayers experiencing a marginal tax change larger than 2%.
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Figure 1.7: State variation in real marginal tax rates

Notes. Percentages were calculated using the NBER tax simulator and the publicly available HRS RAND longitudinal file,
imputing each state distribution of income from the national distribution of income. Shades are proportional to the percentage
of taxpayers experiencing a marginal tax decrease larger than 2%.
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Figure 1.8: State variation in real marginal tax rates

Notes. Percentages were calculated using the NBER tax simulator and the publicly available HRS RAND longitudinal file,
imputing each state distribution of income from the national distribution of income. Shades are proportional to the percentage
of single taxpayers experiencing an absolute marginal tax change larger than 2%.
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Figure 1.9: State variation in real marginal tax rates

Notes. Percentages were calculated using the NBER tax simulator and the publicly available HRS RAND longitudinal file,
imputing each state distribution of income from the national distribution of income. Shades are proportional to the percentage
of single taxpayers experiencing a simulated marginal tax increase larger than 2%.
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Figure 1.10: State variation in real marginal tax rates

Notes. Percentages were calculated using the NBER tax simulator and the publicly available HRS RAND longitudinal file,
imputing each state distribution of income from the national distribution of income. Shades are proportional to the percentage
of single taxpayers experiencing a simulated marginal tax decrease larger than 2%.
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Figure 1.11: Elasticity of wages over different horizons
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Notes. 95% confidence intervals. Elasticities are computed from linear regressions of changes in log hourly wages over k-years
on changes in log marginal retention rates over two years (evaluated at the base year income data). All specifications include
year fixed effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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Figure 1.12: Elasticity of wages for job switchers over different horizons
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Notes. 95% confidence intervals. Elasticities are computed from linear regressions of changes of log hourly wages over k-years
on changes in log marginal retention rates over two years (evaluated at the base year income data). For each column, the sample
is restricted to those who switch jobs at least once between the baseline year and k years ahead. All specifications include year
fixed effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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Figure 1.13: Semi-elasticities of participation over different horizons
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Notes. 95% confidence intervals. Semi-elasticities are computed from linear regressions of changes of hours wages over k-years
years on changes in log marginal retention rates over two years (evaluated at the base year income data). All specifications
include year fixed effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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Figure 1.14: Semi-elasticities of mental status scores over different horizons
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Notes. 95% confidence intervals. For the periods (k) between 2 and 8, semi-elasticities are computed from linear regressions of
memory scores two years in the past over years on changes in log marginal retention rates over two years (evaluated at the base
year income data), restricting the sample for those who are working in the baseline year and k-years ahead. Similarly, for the
periods (k) between -6 to -2, semi-elasticities are computed from linear regressions of memory scores (2+|k|) years in the past
over years on changes in log marginal retention rates over two years (evaluated at the base year income data), restricting the
sample for those who are working in the baseline year and |k|-years before. All specifications include year fixed effects, marital
status dummies, and a 10-piece linear spline of log hourly wages.
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Figure 1.15: Elasticity of wages over different hourly wages percentiles
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Notes. 95% bootstrap confidence intervals. Elasticities are computed from local linear regressions of changes in log hourly wages
over four years on changes in log marginal retention rates over two years (evaluated at the base year income data), including
year fixed effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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Figure 1.16: Semi-elasticities of participation over different hourly wages percentiles
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Notes. 95% bootstrap confidence intervals. Semi-elasticities are computed from linear regressions of changes of hours wages
over two years on changes in log marginal retention rates over two years (evaluated at the base year income data), including
year fixed effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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Figure 1.17: Estimates for one minus the labor wedge for different hourly wages percentiles
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Notes. 95% bootstrap confidence intervals. Estimates are computed from the ratio of elasticities of wages and semi-elasticities
of participation. Elasticities of participation are computed from local linear regressions of changes in log hourly wages over four
years on changes in log marginal retention rates over two years (evaluated at the base year income data). Semi-elasticities are
computed from linear regressions of changes of hours wages over two years on changes in log marginal retention rates over two
years (also evaluated at the base year income data). Each regression includes year fixed effects, marital status dummies, and a
10-piece linear spline of log hourly wages.
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Figure 1.18: Semi-elasticities of mental status scores over different hourly wages percentiles
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Notes. 95% bootstrap confidence intervals. Semi-elasticities are computed from linear regressions of memory scores 2 years
in the past over years on changes in log marginal retention rates over two years (evaluated at the base year income data),
restricting the sample to those who are working in the baseline year and 2 years ahead. Each regression includes year fixed
effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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1.10.6 Robustness Checks

Bandwidth Choice

The figures 1.14 to 1.18 show non-parametric regressions with an optimal bandwidth selected by a compu-
tationally tractable leave-one-out cross-validation criterium (Racine, 1993). This section shows that results
are not driven by the choice of bandwidth, presenting results for when the bandwidths are set to half the
size of the optimized bandwidths from the previous section.

Figure 1.19: Elasticity of wages over different hourly wages percentiles
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Notes. 95% bootstrap confidence intervals. Elasticities are computed from local linear regressions of changes in log hourly wages
over four years on changes in log marginal retention rates over two years (evaluated at the base year income data), including
year fixed effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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Figure 1.20: Semi-elasticities of participation over different hourly wages percentiles
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Notes. 95% bootstrap confidence intervals. Semi-elasticities are computed from linear regressions of changes of hours wages
over two years on changes in log marginal retention rates over two years (evaluated at the base year income data), including
year fixed effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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Figure 1.21: Estimates for one minus the labor wedge for different hourly wages percentiles
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Notes. 95% bootstrap confidence intervals. Estimates are computed from the ratio of elasticities of wages and semi-elasticities
of participation. Elasticities of participation are computed from local linear regressions of changes in log hourly wages over four
years on changes in log marginal retention rates over two years (evaluated at the base year income data). Semi-elasticities are
computed from linear regressions of changes of hours wages over two years on changes in log marginal retention rates over two
years (also evaluated at the base year income data). Each regression includes year fixed effects, marital status dummies, and a
10-piece linear spline of log hourly wages.
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Figure 1.22: Semi-elasticities of mental status scores over different hourly wages percentiles
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Notes. 95% bootstrap confidence intervals. Semi-elasticities are computed from linear regressions of memory scores 2 years
in the past over years on changes in log marginal retention rates over two years (evaluated at the base year income data),
restricting the sample to those who are working in the baseline year and 2 years ahead. Each regression includes year fixed
effects, marital status dummies, and a 10-piece linear spline of log hourly wages.
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Set of Controls

In the main part of the paper we followed the empirical literature on the elasticties of taxable income in
our choice of the set of controls, which include year-fixed effects, marital status, and initial hourly wages. In
this section, we report results when this set also includes age dummies, which are often included in the set
of control variables when estimating the effects of accruals and retirement benefits on retirement decisions.
The results are only slighlty changed, suggesting that initial set of control variables was rich enough, and
there is not much of a correlation between the individual changes in marginal tax rates and age dummies
after netting out the effects of year dummies, marital status, and initial hourly wages.

Table 1.19: Elasticities of wages

(1) (2) (3) (4) (5) (6) (7)
ϵw -0.13 -0.061 -0.066 -0.069 -0.100 -0.16 -0.16

(0.10) (0.10) (0.10) (0.10) (0.099) (0.099) (0.099)
year f.e. no yes yes yes yes yes yes
marital status no no yes yes yes yes yes
age no no no yes yes yes yes
hourly wages no no no no linear c. spline l. spline
observations 39179 39179 39179 39179 39179 39179 39179

Notes. Robust standard errors in parentheses. Elasticities ϵw are computed from linear regressions of changes in log hourly

wages over four years on changes in log marginal retention rates over two years (evaluated at the base year income data).

Each column includes different sets of controls: year fixed effects, marital status dummies, age, and hourly wages. Column (4)

includes log hourly wages. Column (5) includes a 5 piece cubic spline of log hourly wages. Column (6) includes a 10 piece linear

spline of log hourly wages.
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Table 1.20: Elasticities of wages for job switchers

(1) (2) (3) (4) (5) (6) (7)
ϵw -0.31 -0.19 -0.19 -0.20 -0.29 -0.32 -0.34

(0.18) (0.19) (0.19) (0.19) (0.18) (0.18) (0.18)
year f.e. no yes yes yes yes yes yes
marital status no no yes yes yes yes yes
age no no no yes yes yes yes
hourly wages no no no no linear c. spline l. spline
observations 13958 13958 13958 13958 13958 13958 13958

Notes. Robust standard errors in parentheses. Elasticities ϵw are computed from linear regressions of changes in log hourly

wages over four years on changes in log marginal retention rates over two years (evaluated at the base year income data). The

sample is restricted to those who switch jobs at least once between the baseline year and four years later. Each column includes

different sets of controls: year fixed effects, marital status dummies, age, and hourly wages. Column (4) includes log hourly

wages. Column (5) includes a 5 piece cubic spline of log hourly wages. Column (6) includes a 10 piece linear spline of log hourly

wages. Notes. Robust standard errors in parentheses. Elasticities ϵw are computed from linear regressions of changes in log
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Table 1.21: Elasticities of wages

-8y -6y -4y -2y +2y +4y +6y +8y
ϵw 0.12 -0.0075 -0.016 0.054 0.035 -0.16 -0.27 -0.16

(0.11) (0.075) (0.062) (0.047) (0.076) (0.099) (0.12) (0.15)
N 17898 25425 34685 45922 53931 39179 29253 21119

hourly wages over k-years on changes in log marginal retention rates over two years (evaluated at the base year income data).

All specifications include year fixed effects, marital status dummies, age dummies, and a 10 piece linear spline of log hourly

wages.
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Table 1.22: Elasticities of wages for job switchers

-8y -6y -4y -2y +2y +4y +6y +8y
ϵw 0.36 0.19 0.037 0.30 0.23 -0.34 -0.40 -0.43

(0.16) (0.13) (0.12) (0.12) (0.19) (0.18) (0.18) (0.21)
N 10040 11950 12375 9430 10996 13958 13703 11737

Notes. Robust standard errors in parentheses. Elasticities ϵw are computed from linear regressions of changes of log hourly

wages over k-years on changes in log marginal retention rates over two years (evaluated at the base year income data). For

each column, the sample is restricted to those who switch jobs at least once between the baseline year and k years ahead. All

specifications include year fixed effects, marital status dummies, age dummies, and a 10 piece linear spline of log hourly wages.

Notes. Robust standard errors in parentheses. Semi-elasticities ηp are computed from linear regressions of changes of hours
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Table 1.23: Participation semi-elasticities

(1) (2) (3) (4) (5) (6) (7)
ηp -0.039 0.063 0.044 -0.020 -0.013 -0.018 -0.021

(0.056) (0.058) (0.056) (0.054) (0.060) (0.060) (0.060)
year f.e. no yes yes yes yes yes yes
marital status no no yes yes yes yes yes
age no no no yes yes yes yes
hourly wages no no no no linear c. spline l. spline
observations 72526 72526 72526 72526 61526 61526 61526

wages over four years on changes in log marginal retention rates over two years (evaluated at the base year income data). Each

column includes different sets of controls: year fixed effects, marital status dummies, age dummies, and hourly wages. Column

(4) includes log hourly wages. Column (5) includes a 5 piece cubic spline of log hourly wages. Column (6) includes a 10 piece

linear spline of log hourly wages. Notes. Robust standard errors in parentheses. Semi-elasticities ηp are computed from linear
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Table 1.24: Participation semi-elasticities

-8y -6y -4y -2y +2y +4y +6y +8y
ηp -0.039 -0.021 -0.049 -0.040 0.087 -0.021 -0.011 0.11

(0.026) (0.019) (0.017) (0.015) (0.046) (0.060) (0.066) (0.072)
N 20522 29053 39482 51895 72301 61526 53964 46435

regressions of changes of hours wages over k-years years on changes in log marginal retention rates over two years (evaluated

at the base year income data). All specifications include year fixed effects, marital status dummies, age dummies, and a 10

piece linear spline of log hourly wages. Notes. Robust standard errors in parentheses. Semi-elasticities ηm are computed
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Table 1.25: Mental status scores

(1) (2) (3) (4) (5) (6) (7)
ηm 0.14 -0.82 -1.08 -0.98 -1.02 -1.12 -1.12

(0.42) (0.51) (0.51) (0.51) (0.55) (0.54) (0.54)
year f.e. no yes yes yes yes yes yes
marital status no no yes yes yes yes yes
age no no no yes yes yes yes
hourly wages no no no no linear c. spline l. spline
observations 16027 13187 13187 13187 11030 11030 11030

from linear regressions of mental status scores two years in the past on changes in log marginal retention rates over two years

(evaluated at the base year income data), restricting the sample for those who are working in the baseline year and four years

ahead. Each column includes different sets of controls: year fixed effects, marital status dummies, age dummies, and hourly

wages. Column (4) includes log hourly wages. Column (5) includes a 5 piece cubic spline of log hourly wages. Column (6)

includes a 10 piece linear spline of log hourly wages. Notes. Robust standard errors in parentheses. For columns (5) to (8),
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Table 1.26: Mental status scores

-8y -6y -4y -2y +2y +4y +6y +8y
ηm 0.32 0.0097 -0.57 0.67 -0.65 -1.12 -1.02 -0.40

(0.55) (0.60) (0.45) (0.38) (0.45) (0.54) (0.57) (0.66)
N 4362 5784 9566 13055 14705 11030 8264 5005

semi-elasticities ηp are computed from linear regressions of mental status scores two years in the past over years on changes

in log marginal retention rates over two years (evaluated at the base year income data) , restricting the sample for those who

are working in the baseline year and k-years ahead. For columns (1) to (4), semi-elasticities ηm are computed from linear

regressions of mental status scores (2+k) years in the past over years on changes in log marginal retention rates over two years

(evaluated at the base year income data) , restricting the sample for those who are working in the baseline year and k-years

before. All specifications include year fixed effects, marital status dummies, age dummies, and a 10 piece linear spline of log

hourly wages.
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Chapter 2

Income Taxation with Elasticity
Heterogeneity

Joint with John Sturm

2.1 Introduction
It is uncontroversial that different people respond to incentives differently. Tax responses are no exception.

Indeed, heterogeneity in tax responsiveness is a consistent finding of the empirical literature on the elasticity
of taxable income (ETI). In part, this reflects that some households—such as secondary earners and those
near retirement—simply have more elastic labor supply (Blau and Kahn, 2007; Eissa and Liebman, 1996;
Vere, 2011). It also reflects that some households pay more attention to taxes, are more adept at taking
advantage of itemizations, or are more able to avoid taxes all together (Taubinsky and Rees-Jones, 2018;
Gruber and Saez, 2002; Kopczuk, 2005).

Does heterogeneity in ETIs matter for income taxation? There is good reason to think it may be
unimportant: To first-order, the effects of any tax change on everything a planner values—i.e. tax revenue
and the distribution of household welfare—can be computed simply from the mean elasticities at each income
level (Werning, 2007; Jacquet and Lehmann, 2015; Scheuer and Werning, 2018). But beyond the first-order
approach, it is less obvious what role heterogeneity may play.

This paper explores the simple but overlooked idea that—unlike the first-order condition explored in the
literature—the planner’s second-order condition depends intimately on the structure of household hetero-
geneity. The second-order condition captures how the effects of an infinitesimal variation in taxes change
when one repeats that variation for a second time. One key source of such changes is that, due to each
household’s response to the first variation, it experiences the second tax variation at a new income level.
Notably, if households with the same initial income respond to the first variation differently and the tax
change differs across incomes, then the second variation can even have different effects on households who
faced the same taxes ex-ante.

The advantage of this differential taxation is that—all else equal—the planner prefers to increase taxes
on households with lower ETI, whose smaller responses result in smaller tax revenue losses. While the
planner cannot explicitly condition taxes on ETI, we show that whenever there is enough heterogeneity
in ETI, she can construct a particular tax variation that allows her to set a tax system as if she could
directly condition on the elasticities of taxable income, via a sorting mechanism. Namely, the variation
causes low-ETI households to move to incomes where marginal taxes increase and high-ETI households to

110



move to incomes where marginal taxes decrease. Repeating the same variation for a second time, therefore,
disproportionately targets marginal tax increases toward those who respond to them less. In other words,
the planner “sorts” households on ETI and then “extorts” them by raising taxes disproportionately more on
the unresponsive.

Our main theoretical results encapsulate these ideas in a simple, planner-agnostic “rationalizability test”
for the tax-schedule, formulated in terms of locally observable sufficient statistics. Our test passes if and
only if there exists a social planner within a broad class for whom the tax schedule is optimal among all
nearby schedules. While our test—by virtue of remaining agnostic about planner preferences—is relatively
permissive, it is at the same time stricter than the familiar test for constrained Pareto efficiency. This
is because we impose some mild restrictions on planner preferences: We assume that the social planner
maximizes a weighted sum of household utilities, where the weight on any household may be endogenous
so long as (a) it changes smoothly in that household’s utility and (b) the average weight at each income is
continuous in income. These assumptions are satisfied by most welfarist objectives studied in the optimal
taxation literature. By contrast, a “Pareto planner”—who seeks to bring each household’s utility above
a threshold—changes households’ welfare weights discontinuously at those thresholds. We show that this
subtle distinction has important implications, giving rise to a further requirement that taxes need to satisfy,
specifically, a new second-order condition.

Interestingly, we show that this condition is not only necessary but—when combined with a standard
first-order condition—also locally sufficient for tax rationalizability. This is surprising because this condition
is constructed by looking at only a small subset of possible deviations from a given tax schedule. However,
we demonstrate that all other tax deviations have significant welfare effects on a finite mass of households,
which implies that they are sub-optimal for a planner who is sufficiently biased toward the status quo. Our
test therefore provides a complete characterization of local tax rationalizability.

This analysis benefits in several ways from our approach of “testing” tax schedules by asking whether
some preferences rationalize them instead of fixing preferences and “solving” for the optimal schedule. First,
we can avoid embedding strong normative judgments into the positive analysis of tax systems. Second, we
need not extrapolate locally observed sufficient statistics to non-local tax schedules where one does not know
their true values. Third, in our particular setting, the version of the second-order condition that guarantees
the existence of preferences that rationalize the tax schedule is dramatically simpler than the second-order
condition for any specific utilitarian objective function.

In contrast to the existing literature (e.g. the first-order Pareto efficiency test of Werning (2007)), our
second-order test depends not only on the mean ETI at each income level, but also on its variance, reflecting
the scope for a planner to “sort and extort” households by elasticity. In light of the well-documented empirical
variation in ETIs, this raises the question: “Is the heterogeneity in ETIs large enough that real world tax
schedules can be improved?” The second part of the paper seeks to answer this question by evaluating our
rationalizability test in a panel of US tax returns from 1979 to 1990. Doing so requires us to move beyond
the existing literature on ETI estimation, which does not study the variance of elasticities conditional on
income.

We estimate ETI variances with a number of empirical strategies: First, we provide a lower bound on
these variances by estimating mean elasticities and group size as nonparametric functions of income for
two different groups of taxpayers—those who claim a high number of itemizations and those who claim
a low number of itemizations—and computing the variance of elasticities across those two groups at each
income level. Second, we take a less conservative structural approach, postulating and estimating a flexible
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distribution for elasticities, and then using it to obtain non-parametric point estimates for the variance
of elasticities at each income level. Third, we validate these explicit estimates by providing reduced-form
evidence for the sorting mechanism that underlies failures of the second-order condition. Specifically, we
document that income-conditional ETIs change across years as predicted by the differential reshuffling of
high- and low-elasticity households in response to observed tax changes.

Our preferred estimates have stark implications for income taxation. Although the first-order test passes,
we find that our novel second-order test fails in every year of our sample. This implies it is impossible to
rationalize the income tax schedule within the set of social planners we consider. Said differently, any social
planner willing to make at least some minimal welfare trade-offs between households would prefer a different
tax schedule. In this sense, a “free lunch” is available through tax reform. A conservative quantification
exercise suggests that either raising or lowering top taxes by 20 percentage points results in yearly welfare
gains equivalent to approximately $3000 per top earner.

Related Literature Theoretically, we contribute to a long literature on the design of non-linear income
taxation schedules when labor is supplied on the intensive margin and production is linear. Recent work
by Werning (2007), Jacquet and Lehmann (2015), and Scheuer and Werning (2018) has shown that the so-
called “ABC formula” of Diamond (1998)—a necessary first-order condition for optimality—extends to the
case of multi-dimensional heterogeneity if one simply uses the average elasticities at each income level.1 We
complement this result by providing an additional necessary condition—a second-order condition—which,
when combined with the first-order condition, is also sufficient. To our knowledge, we are the first to explicitly
study the planner’s second-order condition with respect to non-linear income taxes.2

The approach of “testing” a tax schedule rather than “solving” for optimal taxes is most similar to that
of Werning (2007); Hosseini and Shourideh (2019), and Bierbrauer et al. (2020). However, our notion of
“rationalizability” departs slightly from the Pareto efficiency criterion these papers study by requiring the
planner’s utilitarian objective to be smooth with respect to each household‘s utility, as well as continuous
across households of similar income levels. This small distinction leads to large differences in our conclusions.
Namely, the main result of Bierbrauer et al. (2020) implies that, in our setting, the first-order condition
of Werning (2007) is not only necessary but also locally sufficient for taxes to be Pareto efficient, even
when one allows for multi-dimensional heterogeneity. By contrast, we show that a distinct second-order
condition is necessary—and together with the first-order condition, locally sufficient—in order for taxes to
be rationalizable by a planner who values household utility in a smooth way. While our result does not apply
to a Pareto planner—since her desire to make transfers to a given household changes discontinuously when
that household’s utility crosses a threshold—it does apply to arbitrarily accurate smooth approximations
of any Pareto objective. Under any such smooth approximation, the planner becomes willing to tolerate a
small welfare loss to any household if it is accompanied by a large enough gain for other households. Our
results therefore illustrate a sense in which the Pareto efficiency criterion is knife-edge, falling apart once
one allows arbitrarily small trade-offs to be made across households.

Closely related to our paper is Jacquet and Lehmann (2020), who highlight shifts in the elasticity-
composition of the income distribution as a source of endogeneity in the average elasticity at any income.
They provide analytical cases and numerical examples where accounting for heterogeneity leads to a larger

1Also see a much earlier informal derivation by Saez (2001).
2Werning (2007) shows that when households vary along one dimension and their preferences have a certain functional form,

the planner’s problem is concave. This implies that the second-order condition would hold, were one to compute it.
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gap between optimal and actual income taxes at high incomes.3 We also emphasize these compositional
shifts, but take a different approach. First, by testing existing tax schedules rather than solving for new
optimal schedules, we emphasize a novel and distinct aspect of elasticity heterogeneity—that it can be so
strong to prevent existing tax schedules from being rationalized by any (smooth) social preferences. Second,
our results accommodate arbitrary multidimensional heterogeneity in preferences. The generality of our
analytical results allows us to decompose the contributions of many empirically-relevant quantities—such
as the shape of the income distribution and the curvature of the tax schedule—in mediating compositional
effects. This generality also allows us to connect our test to the data without restrictive assumptions on the
joint distribution of elasticities and productivities.

Our findings also complement other existing theoretical results in public finance and mechanism design.
First, we share with the random taxation literature an emphasis on the non-convex nature of certain tax-
ation problems (Stiglitz, 1982b,a; Hines Jr and Keen, 2021). While this literature shows that stochastic
tax schedules can be welfare-enhancing in some circumstances,4 we demonstrate that under similar—and
testable—conditions, targeted deterministic deviations can provide an alternative way to improve outcomes.
Second, our interest in targeting households according to their elasticities relates to a strand of the lit-
erature that proposes using multi-dimensional policy instruments to improve efficiency in the presence of
multi-dimensional heterogeneity. Concretely, Moser and Olea de Souza e Silva (2019) argue that income-
contingent retirement savings policies can be used to more efficiently screen on productivity when households
differ in terms of both productivity and present bias. We show how a social planner can, in fact, use a single-
dimensional instrument to target households “as if” they could condition on untaxed characteristics.5

On the empirical side, we build on the approach of Gruber and Saez (2002) to estimate elasticities
of taxable income (ETIs). We use the same NBER panel of tax returns as these authors and a similar
identification strategy, identifying ETIs from households’ changes in income following changes in taxes. Our
work extends beyond Gruber and Saez (2002) in two ways. First, we estimate elasticities conditional on
income level nonparametrically using local polynomial methods. Second, we place a greater emphasis on the
variance of ETI across households. Of course, our interest in ETI heterogeneity has significant precedent in
the literature: Gruber and Saez (2002) and Kopczuk (2005) show that itemizers are more elastic, and related
work on labor supply elasticities suggests that ETIs may be higher for second-earners, single mothers, and
those near retirement (Blau and Kahn, 2007; Eissa and Liebman, 1996; Vere, 2011). More recent work by
Kumar and Liang (2020) emphasizes heterogeneity in average ETIs between income brackets as a key source
of variation across ETI estimates in the literature.6 What distinguishes our approach to the variation in
ETIs is an interest in a new, model-implied, sufficient statistic: the variance in ETI conditional on income
level. We employ a number of identification strategies tailored to this statistic. Among these strategies
is a structural procedure that relies on flexible parametric assumptions on the distribution of elasticities

3In a similar vein, Lockwood et al. (2020) discuss how accounting for a planner’s uncertainty over households’ taxable income
elasticities affects optimal taxes. Although different in its motivation, we view Lockwood et al. (2020) as closely related to
Jacquet and Lehmann (2020) since—when a planner faces an expected budget constraint—uncertainty over states of the world
and heterogeneity across households are interchangeable for the purposes of income taxation.

4This possibility appears more generally in other mechanism design problems, see for example Maskin and Riley (1984b,a).
5More generally, our work relates to the multidimensional screening and nonlinear pricing literatures. Whereas the multi-

dimensional screening literature has emphasized direct mechanisms and revelation principle (e.g. Rochet and Stole (2003)),
we apply the taxation principle and focus on the indirect mechanism (Hammond, 1979; Rochet, 1985; Guesnerie, 1998). This
approach allows us to sidestep challenging technical issues and derive new conditions for optimality. Our approach can easily be
applied to non-linear pricing problems, where our second-order condition would translate to a condition for the local convexity
of revenues.

6Although we do not focus on inattention to tax changes, our estimation is related in spirit to Taubinsky and Rees-Jones
(2018), who estimate heterogeneity in responses to sales taxes.
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and on the linearity of tax responses. We combine this identification strategy with methods from the recent
literature on discrete-approximation algorithms in econometrics (Bonhomme and Manresa, 2015; Bonhomme
et al., 2017; Lewis et al., 2019).

Outline: The paper is organized as follows: Section 2.2 presents a simple example that introduces the key
ideas of the paper. Section 2.3 lays out the formal model. Section 2.4 presents and discusses our theoretical
test for rationalizability. Section 2.5 presents our empirical estimates and evaluates our test using US tax
return. Section 2.6 presents a simple quantification of the welfare losses from un-rationalizable tax policy.
Section 2.7 discusses our findings and Section 2.8 concludes.

2.2 Motivating example
Before proceeding to the general model, we present a simple example that introduces the key ideas

featured in our later formal results.7

A unit measure µ of households h ∈ H supply labor and consume a good—produced one-for-one with
labor—in a static economy. Households face a non-linear tax schedule T . Each household h’s preferences are
additively separable between consumption and labor, feature a constant elasticity of labor dis-utility, and
have no income effects:

V h(T ) ≡ max
z

z − T (z) − z
1+ 1

βh

1 + 1
βh

/
(θh)

1
βh , (2.1)

where θh > 0 and βh > 0 are productivity and elasticity parameters. We let zh(T ) denote the maximizer.
Within elasticity groups, productivity is Pareto with a common shape, i.e. θh | βh ∼ Pareto(α > 1).

Now, consider the problem of a planner reforming a constant top tax rate τ̄ that applies to all income
earned above income level z̄.8 Let Tτ̄ denote the entire schedule as a function of τ̄ . We assume the planner
places a constant weight λ̃ on transfers to each household in the top bracket, relative to tax revenue, and
therefore chooses τ̄ to maximize a weighted sum of welfare and tax revenue in the top bracket, or

L(τ̄) ≡ λ̃ ·Wtop(τ̄) + Revtop(τ̄) = Eh
[
λ̃ · V h(Tτ̄ ) + τ̄ · zh(Tτ̄ )

∣∣∣ zh(Tτ̄0) ≥ z̄
]
, (2.2)

Our assumptions imply that, within each elasticity group, the average post-reform income of households with
pre-reform incomes in the top bracket is a power function of the top tax rate: Eh

[
zh(Tτ̄ )

∣∣∣ zh(Tτ̄0) ≥ z̄, βh = β
]

∝
(1 − τ̄)αβ .

A natural starting place for this analysis is the standard first-order condition for the revenue effects of a
small increase in top taxes around its initial level τ̄0.

d

dτ̄

∣∣∣∣∣
τ̄=τ̄0

L(τ̄) ∝ −λ̃︸︷︷︸
Welfare effect

+ 1︸︷︷︸
Mechanical effect

− τ̄0
1 − τ̄0

α Etop[β]
︸ ︷︷ ︸

Behavioral effect

, (2.3)

where Etop[·] weights each elasticity proportionally to the total top-bracket earnings of households with
that elasticity. The welfare effect captures welfare losses that result—by the envelope theorem—from the

7Appendix 2.9.2.1 walks through the algebra, which is straightforward.
8We also assume that (a) the planner is considering a tax increase—to ensure no responses by earners outside of the top

bracket—and (b) the tax schedule is convex—which ensures intensive margin responses.
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increased tax burden at households’ initial incomes. The mechanical effect captures revenue gains as taxes
increase at households’ initial incomes, whereas the behavioral effect captures negative fiscal externalities as
households reduce their incomes in response to higher taxes.

We later show that in the data, the sum of the two revenue effects is always positive on net: raising
taxes increases tax revenues, i.e. we are on the correct side of the “Laffer curve.” Importantly, this implies
that there exists a welfare weight λ̃ > 0 that rationalizes the planner’s first-order condition. To verify that
we are not a local minimum, or—as we will say throughout—in a “Laffer valley,” we check the second-order
condition:

0 ≥ d2

dτ̄2

∣∣∣∣∣
τ̄=τ̄0

L(τ̄) ≥ d2

dτ̄2

∣∣∣∣∣
τ̄=τ̄0

Revtop(τ̄) ∝ −(2 − τ̄0) Etop[β] + τ̄0 α Etop[β2] (2.4)

Interestingly, this second-order test is sensitive to not only the mean elasticity of top earners, but also its
variance Vartop[β] = Etop[β2] − Etop[β]2. And we are in a “Laffer valley” (i.e. (2.4) fails) if—fixing the
mean elasticity—elasticities vary enough. Moreover, this conclusion is normatively neutral, as the test does
not depend on the welfare weight λ̃.9

What economic mechanism underlies the planner ability to improve taxes when faced with heterogeneous
elasticities? This is best illustrated by conceptualizing the second-order effects of a tax increase as the
difference between the effects of two successive, infinitesimal tax increases. How does the first tax change
shape the effects of the second? Here, the key idea is that the behavioral effects of the first tax change deter-
mine the income level at which each household experiences the second tax change, and therefore determine
the marginal tax change it faces. For low-elasticity households—who by definition do not respond much to
the first tax change—this has little bite. However, many high elasticity households exit the top bracket in
response to the first tax change, and so are not affected by the second one. Due to this differential sorting,
the first tax change decreases the effective elasticity of top earners; the planner’s second increase in taxes
exploits this.

z̄

βL

βH

Income

D
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y

z̄

βL

βH

Etop[β] ↓

Income

D
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y

Figure 2.1: Income density of high- (blue) and low-elasticity (orange) households before (left panel) and after (right panel)
taxes are increased. The compositional shift induced by an increase in taxes reduces the aggregate elasticity of top earners.
(The vertical line in the right panel is bunching at a kink.)

9The second inequality of (2.4) requires that second-order welfare effects are weakly positive. For the purpose of this
example, this relies on our assumption that the planner’s desire to make transfers to each top-earner is constant, not changing
as their consumption or income. However, our later results show that this assumption is unnecessary when the planner uses
more finely-tuned tax variations.

115



Is this theoretical consideration of any practical importance? Consider a back-of-the-envelope calibration:
Suppose top marginal tax rates τ̄0 are 50%, the Pareto shape parameter α is 2.5, and the average elasticity
of the top earners is 0.3, consistent with the literature. Then the first-order condition holds if the planner
places a weight λ̃ = 0.25 on transfers to top earners. The second order test (2.4) holds—so that taxes locally
maximize rather than minimize revenue—if and only if Vartop[β] ≤ 0.27. This is roughly the variance if,
for example, three quarters of households have elasticity zero and one quarter have elasticity ≈ 1.2. This
value for the variance is only slightly above a conservative lower bound we estimate in Section 2.5 based
on differences in elasticities between low- and high-itemizers. This suggests that the planner’s second-order
condition may well be violated in practice.

The rest of the paper develops the ideas illustrated above in order to (a) accommodate general planner
and household preferences, (b) provide an efficiency test that applies to the whole tax schedule and is both
necessary and sufficient, and (c) formulate this test in terms of sufficient statistics that we then evaluate in
the data. The same key ideas—elasticity variance in the planner’s second-order condition and the “sort and
extort” motive—continue to play central roles in a general environment with non-linear income taxation.

2.3 Model
We study a standard, static Mirrlees model of income taxation, but allow for arbitrary preference hetero-

geneity. After laying out the model, we describe a number of mild regularity conditions used for our main
results.

2.3.1 Environment

Time is static. There is a single consumption good and a single labor factor. Production is linear, and
we normalize the price and the wage to one.

A unit measure µ of households h ∈ H supply labor z and consume subject to a non-linear income
retention schedule to maximize utility uh. For any income retention schedule R̃ : R≥0 → R≥0, we define

zh(R̃) ≡ arg max
z≥0

uh(R̃(z), z) (2.5)

if the arg max exists, and let V h(R̃) denote the associated max.
We take as a primitive a particular income retention schedule

R : R≥0 → R≥0 (2.6)

that maps each household’s pre-tax income to its post-tax income, i.e. consumption. We denote labor supply,
consumption, and utility at R by zh0 , ch0 , and V h0 , respectively. Throughout, we will use “income retention
schedule” and “tax schedule” interchangeably.

Throughout the paper, we study tax changes ∆ : R≥0 → R relative to R. Our main results focus in
particular on very “small”—i.e. local—tax changes. Put simply, we call a tax change small if its level and
derivatives are uniformly bounded by those of R, with a small bound. More formally, we define a norm on
the space of tax changes10 by

10Our regularity assumptions ensure the derivatives used in this definition exist. In Appendix 2.9.1.1 we define a Banach
space of tax deviations on which ||·|| is defined and is a norm in the formal sense.
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||∆||= sup
{
B ∈ R>0

∣∣∣∣ ∀z ∈ R>0, |∆(z)|≤ B|R(z)| and |∆′(z)|,
∣∣∣d∆′(z)
d log z

∣∣∣ ,
∣∣∣∣
d2∆′(z)
d log z2

∣∣∣∣ ≤ B|R′(z)|
}
. (2.7)

We denote by 0 the zero tax change and by Bδ(0) the open ball of radius δ around 0.

2.3.2 Class of social planners

Throughout the paper, we study the problem of hypothetical social planners who assess welfare according
to “generalized utilitarian” criteria and face tax revenue constraints.

Definition 1. We call a level of government expenditure G and a collection of welfare-weighting functions
(wh)h∈H with wh : Im(uh) → R ∪ {−∞} a standard social objective if there exists δ > 0 such that, for
all h ∈ H, wh satisfies the following conditions on the domain V h(R+Bδ(0)):

• wh is finite,

• wh is twice-continuously differentiable,

• wh is weakly increasing, and strictly increasing for a positive measure of h ∈ H;

and wh ◦ V h(R̃) and its first two Frechet derivatives in R̃ are h-measurable within R+Bδ(0).11

Our main results rely on the notion that a social objective may “rationalize” the tax schedule R by
providing a metric according to which it is optimal among all other (nearby) tax schedules.

Definition 2. A standard social objective ((wh)h∈H, G) locally rationalizes R if there exists δ > 0 such
that

R ∈ arg max
R̃∈R+Bδ(0)

∫
wh ◦ V h(R̃) s.t.

∫ [
zh(R̃) − R̃(zh(R̃))

]
dµ ≥ G. (2.8)

The regularity conditions we impose for our formal results ensure that aggregate welfare and tax revenue
always exist locally to R, so (2.8) is well-posed.

By working within the class of standard social objectives, we restrict our focus in a few important ways.
First, the importance of any set of households to welfare is proportional to their measure. Second, welfare
is additively separable across households; this rules out certain explicit forms of fairness concerns. Third,
welfare is increasing in each household’s utility. Finally, welfare is sufficiently smooth in each household’s
utility.

The class of standard social objectives nests most, but not all planners considered in the income taxation
literature. One notable exception is a “Pareto planner” who prioritizes getting each household’s utility above
a (household-specific) “target utility.” A Pareto planner’s marginal desire to allocate additional utility to
any particular household is discontinuous at its target utility for that household, whereas a planner with a
standard social objective values this additional utility in a continuous way. Another exception is a “Rawlsian
planner” who maximizes the utility of the worst-off household. Although such a planner lacks a standard
social objective due to non-separability, one may think of the Rawlsian motive as a limit case of standard
social objectives with increasingly concave weighting functions wh.

11These derivatives exist by wh’s differentiability, Assumption 2, and (for small enough δ) Lemma 2; see Appendix 2.9.1.
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2.3.3 Regularity conditions

Whereas many results in the optimal income taxation literature rely on specific function form assump-
tions, our theoretical results instead hold under much weaker regularity conditions. For readability, we
summarize the main content of these assumptions below and state them formally in Appendix 2.9.1.

Our regularity conditions serve four main purposes. First they ensure that welfare and tax revenue are
well-defined and well-behaved (i.e. twice-continuously differentiable) in a neighborhood around the initial
tax schedule R. The main conditions we impose to this end are that the initial tax schedule R is sufficiently
smooth and has bounded elasticities, that—in a similar spirit—household utility is sufficiently smooth and
generates income and compensated elasticities of labor supply that are bounded across households.

Second, our assumptions ensure that welfare and tax revenue can be expressed as integrals over household
income z, facilitating integration by parts. To this end we assume the existence of sufficiently smooth
functions for the income density g(z) and income-conditional elasticity moments (e.g. the mean compensated
elasticity of labor supply conditional on income z).12

Third—and of somewhat more qualitative interest—we assume that, local to the initial tax schedule R,
all labor is supplied on the intensive margin. In doing so, we abstract away from interesting extensive margin
decisions, such as labor force participation and migration. We view the extensive margin of labor supply as
an interesting area for future work.

Fourth, we adopt a slightly stronger notion of a standard social objective, which we call a standard,
regular social objective. This ensures the existence of income-conditional moments for several welfare
statistics—such as the planner’s desire to transfer income to households at income z—and imposes that these
moments are sufficiently smooth in income. Our results use the assumption that average income-condition
welfare weights are continuous in income in order to argue that a small decrease in the welfare of households
earning z can be fully compensated (from the perspective of aggregate welfare) by a proportional increase
in the welfare of z + dz earners.

2.4 Rationalizability test for tax schedules
In this section, we present our main theoretical results. We provide a set of simple conditions on locally

observable sufficient statistics—i.e. a “test”—that holds if and only if the tax schedule is locally rationaliz-
able. Our test augments the first-order test of Werning (2007) with a novel, second-order condition.

After showing these conditions are necessary for rationalizability, we offer two interpretations: First, we
illustrate variational arguments about the first- and second-order changes in welfare and tax revenue that tax
change. Second, we explain the economic mechanisms at work, drawing particular attention to a novel “sort
and extort” motive for taxation with multi-dimensional heterogeneity. Finally, we show that the conditions
are also locally sufficient for rationalizability.

2.4.1 Necessary conditions

In order to state our first result, we will now introduce notation used throughout the paper. For all
z ∈ supp g, we denote by η(z), ε(z), and α(z) the average income and compensated elasticities13 and the

12While the necessity of our rationalizability test only relies on weak assumptions of this form, the sufficiency of our test
additionally requires some mild conditions on the relationship between taxes, incomes, and conditional elasticity moments in
the limits of zero and infinite incomes.

13We define these elasticities more formally in Appendix 2.9.1.2.
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local shape parameter of the income distribution at income z.14

η(z) ≡ E[ηh(R)|zh0 = z] ε(z) ≡ E[εh(R)|zh0 = z], α(z) ≡ −d log (zg(z))
d log z (2.9)

Income elasticities capture behavioral responses to changes in the level of income retention, whereas com-
pensated elasticities capture behavioral responses to changes in the slope of income retention. In addition
to these familiar statistics, our results also depend on two less well-studied statistics. These are the income-
conditional average compensated elasticity squared and an income-conditional average compensated super-
elasticity ε+h(R) that captures how households’ compensated elasticity change due to their labor supply
responses to marginal tax changes.15 We use the notation

ε2(z) ≡ E[εh(R)2|zh0 = z], ε+(z) ≡ E[ε+h(R)|zh0 = z]. (2.10)

Our first main result provides necessary conditions that constrain the relationships between these pa-
rameters and taxes at any locally rationalizable tax schedule. This test consists of a first order condition,
which is standard in the literature, and a complementary second order condition, which is novel.

Theorem 1. Suppose R is locally rationalized by some standard, regular social objective. Then for all
z ∈ supp g,

0 ≥ −1 + (1 −R′(z))z
[
η(z)
R(z) +

(
α(z) − d log

d log z

(
1 −R′(z)
R′(z)

)
− d log ε(z)

d log z

)
ε(z)
R′(z)z

]
. (ABC)

Moreover if (ABC) does not everywhere hold with equality,16 then for all z ∈ supp g,

0 ≥ −
(
1 +R′(z)

)
zε(z) +

(
1 −R′(z)

)
z

[
α(z)ε2(z) − dε2(z)

d log z + ε+(z)
]
. (DEFG)

Proof. See Appendix 2.9.3.1.

We label the first-order condition “ABC” in analogy to Diamond (1998)’s well-known “ABC formula”,
because they both derive from the planner’s first-order condition. More precisely, (ABC) can be understood
as a differentiated version of Diamond’s formula. Analogously, we dub our second-order test “DEFG.”

The first-order condition (ABC) and the second-order condition (DEFG) reflect two very different senses
in which R is robust to changes in taxes. First, (ABC) says that the planner cannot lower taxes locally to
z without reducing tax revenue, i.e. we are on the correct side of the Laffer curve. If this condition fails
then—since it is possible to lower taxes at the same time as raising tax revenue—taxes are Pareto inefficient
(Werning, 2007). By contrast, a failure of the second-order test does not imply Pareto inefficiency but rather
a slightly weaker condition: non-rationalizability within the class of planners we consider. The distinction
is that, whereas the planner responds to a failure of (ABC) by only lowering taxes, the planner responds
to a failure of (DEFG) at z with a small decrease in taxes just above z and an equal and opposite increase
in taxes just below z.17 Although this makes some households just below z worse off, we show that their

14This is related to the well-known concept of the income distribution’s “Pareto tail.” The local shape parameter is a local
version of this concept that coincides with the Pareto shape parameter if g is the density of a Pareto distribution.

15See Appendix 2.9.1.4.1 for a more formal definition.
16(ABC) does holds everywhere with equality if and only if R is a stationary point for tax revenue; this is generically false.
17The reason we use this particular deviation is that a planner’s second-order condition is only informative in directions in

which their Lagrangian is constant to first order (other directions are either infeasible or welfare-reducing). Our assumptions
guarantee that the Lagrangian is constant to first order under this deviation because they guarantee that the marginal effects
of tax changes around some income level—both on household behavior and on welfare—are continuous both in (a) what that
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decrease in welfare can be made arbitrarily small relative to the planner’s revenue gains. This willingness
to make welfare trade-offs—so long as the downside is small enough—is a key feature that distinguishes our
notion of rationalizability from Pareto efficiency.

Another important contrast between the standard first-order condition and our new second-order con-
dition is that the former only depends on average elasticities within each income level, whereas the latter
depends on a higher moment of the distribution of elasticities. Critically, in order to evaluate (DEFG), one
must—since ε2(z) = ε(z)2 + Var[εh(R)|zh0 = z]— consider the variance of compensated elasticities within
each tax bracket. For this reason, the inclusion of multi-dimensional heterogeneity can have profound effects
on the planner’s problem. Namely, when the income density is falling quickly enough (α(z) > 0)—as at
high income levels—the planner’s second-order condition fails whenever the variance in elasticities is suffi-
ciently large. In this case, it is not possible to rationalize the tax schedule R within the broad class of social
objectives we consider, even though the first-order (ABC) test known to the existing literature may pass.

2.4.2 Variational interpretation

In this section, we explain the first- and second-order conditions of Theorem 1 by illustrating the variations
in taxes that they reflect. Intuitively, if R is rationalizable—i.e. optimal for some social planner—then, for
any small variation in taxes, that planner’s Lagrangian must be constant to first order in that variation and
concave to second order.

The necessary conditions of Theorem 1 reflect these first- and second- order requirements for a particular
type of tax change: a smooth increase in retention, narrowly concentrated between z − dz and z + dz.18

By “narrow,” we mean that the amount this variation changes retention at its peak is much greater than
the range of incomes over which it changes retention. Crucially, a typical household affected by a narrow
tax change experiences a much greater change in marginal taxes than in the level of taxes. This simplifies
our analysis by allowing us to ignore (a) curvature in the planner’s desire to transfer income to any given
household and (b) income effects, which become small compared to compensated effects.19 Although our
necessary conditions focus on narrow tax variations, we later show all other tax changes are undesirable for
some planner, so that these necessary conditions are also sufficient for rationalizability.

To begin the analysis, consider the first-order effects of a tax change concentrated at some income z, as in
Figure 2.2. These effects can be decomposed, à la Saez (2001), into welfare effects, mechanical revenue effects,
and behavioral revenue effects. Welfare effects simply reflect that—since we have weakly raised retention
everywhere—households are better off as a result of the tax change. Mechanical revenue effects capture the
losses in tax revenue that occur because, ignoring any change in household labor supply behavior, taxes are
lower at each income level. Finally, behavioral revenue effects reflect that tax-change-induced changes in
household behavior—through both income and compensate effects—have fiscal externalities on the planner
whenever marginal taxes are non-zero.

Since the welfare effects are positive, revenue effects must be negative at any rationalizable schedule
(otherwise the tax schedule can be improved). The RHS of (ABC) captures these revenue effects: The −1

income level is and (b) the sign of the tax changes.
18As discussed below Theorem 1, our second-order condition couples this narrow increase in retention with a nearby, narrow

decrease in retention, which ensures that the planner’s Lagrangian is constant to first order. Below, we keep things simple
by discussing the second-order effects of only the increase in retention. This is without loss because although the decrease in
retention has opposite first-order effects, it has identical second-order effects.

19Formally, we do not “ignore” these effects. Rather, our proofs explicitly model them but show that, for sufficiently “narrow”
tax variations, they are dominated by other considerations.
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corresponds to mechanical revenue losses and the remaining terms correspond to behavioral effects, which
can increase or decrease revenue.

z-dz z z+dz
Income
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Figure 2.2: Left panel: An initial income retention schedule, before (solid) and after (dashed) a small variation in taxes. The
shaded blue area represents the size of the mechanical effect and (if appropriately weighted) the welfare effect. Right panel:
Behavioral effects due to a the same variation in taxes. Behavioral income effects (black arrow) act on households whose level
of income is affected (shaded orange area), and can have positive or negative sign. Behavioral compensated effects increase the
incomes of households whose marginal taxes decrease (green), and vice-versa (red).

We now consider the second-order effects of the same variation in taxes we have already studied to first
order. The second derivative of the planner’s Lagrangian captures how its first derivative changes as the
same variation is done more or less. In other words, we ask, “how do the effects of an infinitesimal variation
in taxes differ when we do it for a second time?” If R is optimal for some planner, then these second-order
effects must be negative on net, i.e. the Lagrangian must be locally concave. In order to compute the
Lagrangian’s local curvature, we now walk through how each component of its first derivative with respect
to the narrow variation studied above—i.e. the welfare, mechanical, and welfare effects—change when we
repeat that variation for a second time.

To begin, consider how the welfare effect changes when our tax variation is repeated for a second time.
For a narrow tax variation, the only second-order effect on welfare is as follows: When taxes change for a
second time, the amount of post-tax income transferred to each household may differ the amount transferred
during the first tax change, since—due to its behavioral response to the first tax change—that household’s
income is different than it was during the first tax change. Since these first-order behavioral effects shift all
households with incomes in [z− dz, z+ dz] toward z, where the change in retention is higher, the second tax
variation transfers more post-tax income to each household than did the first; see Figure 2.3. For this reason,
the second-order effect on welfare is positive. Rather than quantifying the precise size of this convexity, our
second-order test captures its sign with an inequality. This expresses that—because the change in welfare
effects is always positive—the change in (mechanical and behavioral) revenue effects must be negative in
order for the planner’s Lagrangian to be concave on the whole. The test therefore simply states that tax
revenues must be concave with respect to narrow tax variations.

We now turn to these revenue effects. We start with our tax variation’s mechanical effects, asking how
they change when the variation is repeated for a second time. Conveniently, this change is simply the flip side
of the second-order welfare effect considered above: When taxes change for a second time, each household
receives a greater transfer than it did the first time, since—due to its behavioral response to the first tax
change—that household’s income has moved toward z, where the variation increases retention the most.
This effect contributes a term of −R′(z)zε(z) to (DEFG).
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Just as the second tax variation’s mechanical effect changes due to households’ behavioral response to the
first variation, so too does the second tax variation’s behavioral effect change due to the mechanical effects
of the first variation. Intuitively, when taxes change for a second time, each household’s behavioral effect on
revenue is smaller, since it moves to a new income at which—due to the first variation—retention is higher,
i.e. taxes are lower. This effect contributes a second term of −R′(z)zε(z) to (DEFG), a manifestation of
Hessian symmetry

The tax variation’s second-order behavioral revenue effects are also shaped by its first-order effects on
household behavior. These “behavioral-affecting-behavioral” effects can be divided into three groups: (a)
one effect proportional to elasticities, (b) one key effect proportional to elasticity-squared, and (c) two small
“correction” terms. The elasticity-proportional effect captures the following mechanism, which leads to
less revenue-advantageous changes in behavior: Where the first variation has increased marginal retention,
households respond less to the second tax change since the change in log marginal retention is smaller,20

and vice-versa. This dampens positive labor supply responses and amplifies negative labor supply responses,
contributing a factor of −(1 −R′(z))zε(z).

We now turn our attention to a key effect of interest, one proportional to the average square of elasticities
at z. The dependence of this effect on a higher moment of the elasticity distribution means that it—unlike
the previous effects discussed—can have a qualitatively different effect when elasticities vary conditional on
income. The effect is as follows: Because households adjust their incomes in response to the first tax change,
they experience the second tax change at a different income level, where it may be larger or smaller. Moreover,
how many households relocate to each different income level—and so how many households experience greater
or smaller increases in taxes during the second tax change—depends on how many households start at each
income level, i.e. on the local shape of the income distribution. For example, suppose the income density
is sharply decreasing locally to z. In this case, the amount of income earned by households who—due to
their behavioral responses to the first tax change—face larger marginal tax decreases or smaller marginal tax
increases during the second tax change than the first is greater than the income earned by households who
face smaller tax decreases or larger tax increases during the second tax change. This is because the former
set of households are those inhabiting [z − dz, z − dz

2 ] and [z, z + dz
2 ], which contains more mass than the

complementary range of incomes when the income density is sharply decreasing; see, e.g. Figure 2.3. Since
the larger first group responds with more advantageous behavioral effects to the second tax change than the
first—whereas the second group does the opposite but is smaller—the second tax change has a more positive
behavioral effect on revenue than the first. If, on the other hand, the income density is increasing around
z, the effect flips. In total, this effect accounts for the term (1 −R′(z))zα(z)ε2(z) in (DEFG). α(z) reflects
the shape of the income density locally; ε2(z) reflects that households’ elasticities determine not only how
much they relocate different income levels (and so different tax changes) but also how strongly they respond
to those changes.

Finally, two additional “corrections” to these second-order behavioral effects account for the final two
terms of (DEFG). We emphasize these terms less because—to the extent we can estimate them—they are
quantitatively unimportant, and because they are zero in many parameterizations used in the literature. The
first adjusts the effect described in the previous paragraph to account for the possibility that the distribution
of elasticities conditional on income may vary with income locally to z. The second captures the fact that,
due to changes in the curvature of household preferences and/or the tax schedule, households may have
different elasticities during the second tax change than during the first. To the extent we can estimate these

20This is true to the extent that household elasticities remain constant; see later discussion.
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Figure 2.3: Left panel: Changes in behavior through compensated effects following the first tax change. Right panel: Initial
income density (black) and income density following the first tax change for high- (blue) and low-elasticity (orange) households.
Each household adjusts its income toward z, but the change in the income density depends on the shape of the initial income
density and the distribution of elasticities.

effects, they appear to be small (see Section 2.5.3.2). However, we do not estimate the component of these
“super-elasticities” stemming from changes in curvature of household preferences; this is an interesting area
for future work.

2.4.3 Exploring the economic mechanism

While the analysis of Section (2.4.2) explains the various terms of our second-order test (DEFG) mathe-
matically, we would also like to develop a more intuitive and economic understanding of it. Indeed, whether
the test can fail in any reasonable description of the economy is an important question, considering that
Werning (2007) shows the first-order condition (ABC) is both necessary and sufficient for global Pareto
efficiency in a certain one-dimensional setting.

In this section, we show under what conditions (DEFG) fails and, when it does, provide an intuitive
explanation of how the planner can improve the tax schedule. Our main focus is on the way that the test
fails when—due to multi-dimensional household heterogeneity—elasticities vary widely within income levels.
Here, we emphasize a novel “sort and extort” procedure through which the planner can increase tax revenue
by using a first tax change to shift the elasticity-composition of the income distribution and a second tax
change to exploit the separation of high- and low-elasticity households with differential taxes. Finally, we
also explain how the test can fail even when households differ along single dimension of heterogeneity (i.e.
productivity).

2.4.3.1 Multi-dimensional heterogeneity: “sort and extort”

The most natural and empirically relevant case in which (DEFG) fails is when there is significant variation
in ETIs within income levels. Since one dimension of heterogeneity in household preferences is required to
rationalize income differences, within-income differences are only possible with multi-dimensional heterogene-
ity. These within-income differences in household ETI point to an important limitation faced by the social
planner. In general, a social planner might like to tax different households with the same income differently,
either because she prefers some households to others or because she anticipates that they may respond to
taxes differently. For example, a revenue-maximizing planner levies high taxes on low-ETI households and
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low taxes on high-ETI households, all else equal. However, when she cannot condition taxes explicitly on
these elasticities, the planner is forced set a single tax schedule that—at each income level z—must balance
her desire to tax different z-earners differently. In this sense, the planner’s ability to target taxes is limited
by the fact that her tax instrument is lower-dimensional than the space of households she taxes with it.

This constraint—that the planner must set a single tax schedule for households who vary within income
levels—is at the core of failures of the second-order condition. To see why, consider the simple case where
households can be partitioned into a finite set of groups i ∈ I, each satisfying our regularity conditions in
isolation. We show in Appendix 2.9.3.3 that in this case the aggregate first- and second-order tests are simply
the averages of the within-group first- and second-order tests. That is, if we let Πi

ABC(z) and Πi
DEFG(z)

represent the right-hand sides of (ABC) and (DEFG) but when expectations are taken only over households
within each group i, then the our test can be expressed, for each z ∈ supp g as:

E
[
Πi(h)
ABC(z)

∣∣∣zh0 = z
]

≤ 0 and E
[
Πi(h)
DEFG(z)

∣∣∣zh0 = z
]

≤ 0. (2.11)

Moreover, if preferences within each group i are concave and additively separable over consumption and
labor and vary only in a labor dis-utility shifter, then one may show that21

Πi
ABC(z) ≤ 0 =⇒ Πi

DEFG(z) ≤ 0. (2.12)

Together, these two observations imply that the second-order test can only fail if the first-order test fails for
at least one group. In other words, all failures of (DEFG) can be attributed to the fact that for at least one
group, R is on the wrong side of the Laffer curve.

In a world with group-specific taxes, the planner could address the fact that one group is on the wrong
side of the Laffer curve by simply lowering its taxes. However, this option is not available to the planner
we consider: Any desirable decrease in taxes for one group requires a (potentially) undesirable decrease in
taxes for another group. Indeed, if group-specific failures of the first-order condition are weak enough, it
is possible for the second-order condition to hold still and for taxes to be rationalizable. In this context,
the key insight of Theorem 1 is as follows: If group-specific failures of first-order conditions are so severe
that the aggregate second-order condition fails, then the planner can improve taxes with a special, “as-if”
group-specific tax change.

The rest of this section explains how the tax variation underlying (DEFG)—the one explored more me-
chanically in Section 2.4.2—approximates group-specific taxation. A first step is to recall that since this
tax variation is arbitrarily “narrow”, it has arbitrarily small welfare effects and arbitrarily small revenue
effects through income elasticities. This implies that all of its impacts operate through compensated elas-
ticity effects.22 In particular, the sense in which our tax variation approximates group-specific taxation is
by effectively lowering taxes more for high-elasticity households and raising taxes more for low-elasticity
households.

Our tax variation accomplishes this “as-if” elasticity-dependent taxation with a two-step change in taxes,
captured by the first and second derivatives of the planner’s Lagrangian. To first-order, changing taxes
causes households to change their labor supply behavior as depicted in Figure 2.3. Crucially, low-elasticity

21See Appendix 2.9.3.3. This fact is consistent with Werning (2007)’s observation that the dual of the planner’s problem is
convex when there is one such group i.

22These compensated elasticity effects are—as illustrated for the first order variation at the beginning of Section 2.4.2—
moderated by the local shape parameter α(z). Although our test accounts for cross-group differences in this shape, we keep
this discussion simple by assuming that the shape parameter is constant across groups i.
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households end up with roughly the same income density after an infinitesimal change in taxes, whereas
high-elasticity households end up with a very different density, one which depends both on their initial
density and the shape of the tax change itself. Most importantly, we show that when the initial density is
declining steeply, high-elasticity households are disproportionately drawn toward incomes in two regions—
one where the variation decreases taxes by more and one where it increases taxes by less. That is, the
variation’s first-order effect is to “sort” households differentially, by elasticity. The second derivative of
the planner’s Lagrangian asks how the first-order effects change when the variation is performed a second
time.23 Critically, these effects improve as the variation is performed a second time, because they now
operate on households who have been sorted in just the right way to generate positive behavioral effects
on revenue: High elasticity-households are disproportionately represented where taxes decrease and low-
elasticity households are disproportionately represented where taxes increase. That is, the planner exploits
the sorting of households by “extorting” only the least-responsive households with high taxes, as if she could
tax them differentially.

Quantitatively, this sort-and-extort mechanism accounts for a factor of (1−R′(z))zα(z) Var[εh(R)2|zh(R) =
z] in our second-order test, (DEFG). We show in Appendix 2.9.3.3 that in the simplest natural case—when
household preferences are linear in consumption and CES in labor supply, and when marginal taxes and the
mean and variance of income-conditional elasticities are constant local to z—this term is the only factor that
can cause (DEFG) to fail when (ABC) holds. That is, if the first-order test holds at some income z where
marginal taxes and the income shape parameter α(z) are positive, then the second-order test fails there if
and only if—holding average elasticities at z constant—there is enough heterogeneity in these elasticities. In
other words, the second-order test binds if and only if there is enough scope for a sort-and-extort tax reform.

2.4.3.2 One-dimensional heterogeneity: “shift and exploit”

Although the most economically interesting and empirically plausible failures of (DEFG) derive from
within-income household heterogeneity, failures are also possible in models where households are homoge-
neous conditional on income. The main idea behind this possibility is similar to the “sort and extort”
mechanism explored in the previous section: The planner can change elasticities at each income level with
a first tax variation and then exploit this change by repeating the variation. The difference relative to the
heterogeneity case is that elasticity changes come not through sorting but rather through “shifts” – either in
the elasticity of individual households or in the identity of which households (each having fixed elasticities)
are represented at each income level.

Notably, it is impossible for a planner to “shift and exploit” households when utility satisfies the functional
form studied by Werning (2007).24 This functional form implies that all variation in compensated elasticities
across income levels is due to differences in income and consumption levels at which households’ preferences
are evaluated, rather than differences in the curvature of their preferences at a given level of income and
consumption. It therefore prevents the planner from using a small tax variation to shift local elasticities,
since—for any income level z—the households who each z after a tax change have the same post-tax change
elasticity as the household who previous earned z had before the tax change. In Appendix 2.9.2.2, we provide
explicit examples showing how—outside of this class of preferences—(DEFG) can fail with one-dimensional
preference heterogeneity.

23Because the variation is narrow, these effects can be simplified to compensated effects on revenue.
24This functional form nests additive CES preferences, which is perhaps the most commonly analyzed example in the literature.
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2.4.4 Sufficient conditions

So far, we have provided a novel set of necessary conditions that must be satisfied by any locally ratio-
nalizable tax schedule. However, we derived the second-order condition of our test using only very “narrow”
variations in taxes. So tax schedules which pass the (DEFG) test might still allow for other sorts of improve-
ments. Our second main result says that this is not the case: The necessary conditions of Theorem 1 are
also sufficient for local rationalizability.

This sufficiency result relies on a few mild assumptions beyond those required for Theorem 1. Aside
from the additional regularity conditions in Assumption 6 and the condition—stated in the theorem itself—
that some households at each income level have small enough elasticities, we also require that (ABC) and
(DEFG) hold in a slightly stronger sense. Finally, our sufficiency result uses a slightly weaker notion of local
optimality than the necessity result.25

We can now present Theorem 2, which shows that our characterization of locally rationalizable tax
schedules in Theorem 1 is tight: If (ABC) or (DEFG) fail, then the schedule sub-optimal for all planners; if
they pass then the schedule is optimal for some planner.

Theorem 2. Suppose that

• (ABC) and (DEFG) hold by amounts ΠABC(z) and ΠDEFG(z) that satisfy:

– For all z ∈ supp g, ΠABC(z) > 0.

– There exist bc, bz > 0 such that ΠDEFG(z) ≥ bcR(z) + bzz for all z ∈ supp g.

– There exists M such that z|Π′
ABC(z)|≤ M |ΠABC(z)| for all z ∈ supp g.

• For some sufficiently small ϵ > 0, P[εh(R) ≤ ϵ|zh0 = z] > 0 for all z ∈ supp g.26

Then there exists a standard, regular social objective that—for any M > 0—locally rationalizes R within the
sub-space of deviations

∆∗
M ≡



∆ ∈ ∆

∣∣∣∣∣ ||∆|| ≤ M

[∫
g(z) (R(z) + z)

((
∆(z)
R(z)

)2

+
(

∆′(z)
R′(z)

)2
)
dz

] 1
2


 . (2.13)

Proof. See Appendix 2.9.3.2.

Considering that (DEFG) reflects only the robustness of R to very “narrow” deviations in taxes, this
is a surprising result. Indeed, given a fixed social objective, we know that the planner must consider the
robustness of R to all possible deviations. Why do we not need additional conditions in order to rule out
these other second-order deviations?

The main insight is as follows: For an arbitrary planner, one must indeed verify additional second-
order conditions corresponding to variations in taxes not spanned by “narrow” deviations. However, there
exists a planner for whom all other deviations are undesirable. Intuitively, any non-narrow deviation has
an appreciable effect on the level of income retention, instead of just its slope. While changes in the level

25Even without this weaker notion, there exists—provided that R satisfies the test—a welfare function that, for any ∆ ∈ ∆,
prefers R to R+ ϵ∆ for all ϵ > 0 below some ϵ∆ > 0. Our weaker notion of local optimality slightly restricts ∆ so as to ensure
ϵ∆ is uniform across all remaining tax changes ∆.

26More formally, we assume there exists a conditional expectation function p≤(z; ϵ) ≡ E[1εh(R)≤ϵ|zh
0 = z] such that for all

z ∈ supp g, p≤(z; ϵ) > 0. A conditional probability function exists because zh
0 is measurable by Assumption 3, because—since

εh(R) is measurable (see the second-to-last step in the proof of Lemma 2)—the indicator 1εh(R)≤ϵ is measurable, and because
this indicator is also therefore integrable by dominated convergence.
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of retention have several effects, one of them corresponds the curvature of the planner’s re-distributional
preferences: As she transfers more money to any one household, her desire to do so may increase or decrease.
By taking the planner’s preferences to be sufficiently risk-averse around each household’s initial utility level,
we can always make negative the second-order effects of tax variations that significantly vary the level of
retention. Since (DEFG) ensures all variations that do not significantly vary the level of retention have
negative second-order effects, this is sufficient to ensure local optimality.

While our focus on rationalizability facilitates this clean characterization, we also provide results relevant
to the approach that fixes a welfare function and solves for optimal taxes. Specifically, Lemmas 6 and 7 in
Appendix 2.9.3.1 provide the planner’s full first- and second-order conditions.27

2.5 Empirical test of rationalizability
We now set out to empirically evaluate the (ABC) and (DEFG) tests. To do so, we estimate each of

the sufficient statistics that comprise them in the NBER tax return datasets, which include both a panel
of household tax returns and larger repeated cross sections within each year. After evaluating the test, we
check the robustness of our estimates using direct evidence that tax changes can indeed “sort” households
by elasticities.

To set the stage, recall our second-order (DEFG) test for “Laffer valleys.” In the simplest case where (a)
the distribution of elasticities is locally constant in z, (b) taxes are locally linear in z, and (c) labor supply
preferences are additive CES, the test simplifies to

(1 +R′(z))ε(z) ≤ (1 −R′(z))α(z)
(
ε(z)2 + Var[εh(R)|zh0 = z]

)
. (2.14)

This expression serves two expository purposes. First, it clarifies what are our main statistics of interest:
The shape of the tax schedule (R′(z)), the shape of the income distribution (α(z)), income-conditional mean
compensated elasticities of taxable income (ε(z)), and the income-conditional variance of these elasticities.
Of these statistics, income-conditional variance is the most novel to our analysis and poses the greatest
estimation challenges.

Second, (2.14) facilitates simple, back-of-the-envelope calculations. In the US, top marginal taxes are
roughly R′(z) ≈ 0.5, the income distribution features a Pareto tail with shape α(z) ≈ 2.5, and existing
elasticity estimates—while they vary widely—are in the vicinity of ε(z) ≈ 0.3 (Gruber and Saez, 2002; Saez
et al., 2012). So, the second-order condition fails if and only if the variance of elasticities of top earners
is ≥ 0.27. Indeed, this number is close to the lower bound on variance that is implied by the difference
of elasticity between itemizers and non-itemizers estimated by Gruber and Saez (2002): these groups are
roughly evenly sized and their mean elasticities differ by about one, implying the variance of elasticities
across only the two groups is about one quarter. We will estimate that within-income variances that are
significantly higher, implying that taxes are in a Laffer valley.

2.5.1 Data

We use the NBER panel and repeated cross-section of tax returns from 1979 to 1990. This sample period
includes major tax reforms such as the Economic Recovery Tax Act 1981, which decreased marginal rates in

27While we provide these conditions in full, they (a) require the estimation of many statistics in order to be evaluated and
(b) do not lend themselves to simple verification of the second-order condition, even if all of the required sufficient statistics
were known.
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3 years from 1982 to 1984; the Tax Reform Act 1986, which decreased the number of brackets and reduced
the top marginal rate to 28%; the 1987 EITC expansion; and some state level tax reforms.

The data include limited demographic information, individual-specific federal and state income tax sched-
ules,28 and various measures of income. To construct a consistent measure of taxable income for the whole
period, we closely follow Gruber and Saez (2002). The measure we use includes wage, business and capital
income, and subtracts exemptions, standard and itemized deductions. Within the panel data, we—following
the procedure that Gruber and Saez (2002) use to compute medium run elasticities—compute income changes
over 3-year windows. We compute marginal tax changes (at initial income) over the same windows, and we
drop individual-years with changes in marital status, initial (pre-deductions) income lower than $10 thousand
dollars (in 1990 terms).

The panel sample consists of a random selection of four digit endings of social security numbers. There is
purely random attrition; in some years a random subset of the sample social security numbers are excluded.
The repeated cross-section sample is larger but not a panel; it over-represents higher-income individuals,
which we account for with sample weights. Table 2.1 provides summary statistics.

Table 2.1: Summary statistics for panel data and repeated cross sections (CS)

Panel: Mean SD CS: Mean SD
Taxable income (1990 dollars) 29,489 48,501 286,603 1,222,002
Single dummy 0.30 0.46 0.22 0.42
Marginal tax rate (state+federal) 28.37 9.33 35.87 14.07
Change in rate at initial income (pp) -1.86 4.71
Log change in income 0.03 0.85
Number of observations 59,199 1,380,590
Max # obs in a year 10,717 (1987) 203,448 (1979)
Min # obs in a year 4,448 (1983) 76,134 (1983)

While this data set may not offer the cleanest imaginable identification—tax changes are not randomly
assigned to households at the individual level—we believe it is appropriate for our exercise. For one, it
contains tax changes that affect people throughout the income distribution, which allows us to estimate
ETIs at each income level. Second, the data includes substantial tax variation at both the state and federal
level, and as such workers’ behavioral responses to these changes can be thought of as typical for real tax
reforms. Finally, it contains tax changes of different sizes, and one of our strategies for estimating ETI
variance leverages this variation in treatment size.

2.5.2 Estimation of sufficient statistics

In order to evaluate our rationalizability test, we require estimates of the shape of income tax schedule,
the shape of the income distribution, and several moments of households compensated, income, and super-
ETIs conditional on income. Of these, the last is by far the most ambitious relative to the existing literature,
which typically estimates only mean uncompensated within coarse income bins.

To make this task possible, we impose three structural assumptions:

1. Households have no income elasticity.

2. Households have CES disutility of labor supply.
28These are computed using the NBER TAXSIM program, which calculates liabilities under US Federal and State income

tax laws from individual data.
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3. Households respond fully to changes in taxes within three years.

These assumptions allow us to focus on estimating the income-conditional moments of medium-run com-
pensated elasticities.29 While these assumptions are strong, they are common in the literature and we feel
that—despite them—our estimates provide a plausible assessment of our rationalizability test. Still, our
results should all be interpreted with significant caution.

2.5.2.1 Mean elasticities

We begin by estimating mean ETIs by income level. Our empirical strategy closely mirrors that of Gruber
and Saez (2002), except that—instead of estimating a single ETI—we estimate ETIs locally in the space of
year-demeaned log income z̃. Concretely, we estimate the following local regression:

∆ log zht = a(z̃) + ε(z̃) · ∆ logR′
t(zht−1) + c(z̃) ·mrsht−1 + dt−1 + ξht (2.15)

where ∆ represents time differences in t holding t − 1 fixed, so that ∆ logR′
t(zht−1) = logR′

t(zht−1) −
logR′

t−1(zht−1) is the change in marginal retention at h’s initial income. The year-demeaned-log-income-
specific constant a(z̃) controls for differences in typical income changes in different brackets so that our
estimates are not biased by, for example, mean reversion. We also control for a marital status dummy and
time fixed effects.

Methodologically, we implement this regression by first differencing out by year fixed-effects and then
running local-polynomial regressions in year-demeaned-log-income space with a constant bandwidth and
using the Epanechnikov kernel. We optimally select this bandwidth using a leave-one-out cross validation
procedure.30 We compute confidence intervals by using the basic bootstrap method described in Chapter 5
of Davison and Hinkley (1997).

Under the assumption—which we maintain throughout—that, conditional on our controls, changes in
marginal tax rates within a (demeaned) income level are as good as randomly assigned, this regression
identifies the average ETI of households with each year-demeaned log-income z̃. This is exactly the statistic
required by our theory.31 Given the presence of year fixed effects, our identifying variation consists of (a)
within-year, within-income variation in tax changes across individuals (especially those living in different
states) and (b) across-year variation in the relative tax rates between different income levels.32 Year fixed
effects control for the fact that the government may adjust taxes in anticipation of changes in aggregate
economic conditions, so long as these tax changes are uniform across tax brackets.

Figure 2.4 shows our estimates of ETI by income level.33 Our estimates are consistent with—though
somewhat on the lower end of—estimates in the literature. In line with Gruber and Saez (2002) and Kumar

29They imply that compensated elasticities are equal to uncompensated elasticities and that there households have no super-
elasticities, except through changes in the curvature of the tax schedule.

30For more details, see Appendix 2.9.5.
31Our estimation strategy differs from some earlier work, such as that of Gruber and Saez (2002), which identifies a hy-

pothetical elasticity concept based on locally linear taxes. Our elasticity concept is inclusive of changes in income caused by
“knock-on” changes in marginal taxes as a household adjusts its income.

32Decomposing these sources of variation helps to clarify in what cases our identifying assumptions are violated. For example,
variation through (a) violates the identifying assumptions if incomes decline in a state in the same year that state has a tax
change, but for unrelated—and yet not statistically independent—reasons. Variation through (b) violates the identifying
assumptions if incomes at some income level decline differentially (relative to those at other income levels) in the same year
that taxes change differentially across those brackets, but for unrelated—and yet not statistically independent—reasons.

33As discussed above, we estimate ETI locally in year-demeaned-log-income space. Figure 2.4 converts these estimates to
income space in 1990 by combining log income levels that are the same distance from average log incomes in their respective
years. Appendix Figure 2.12 shows the original estimates in year-demeaned-log-income space.
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and Liang (2020), we find somewhat higher elasticities at the bottom and the top of the income distribution.
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Figure 2.4: Mean ETI by income level in 1990 USD, and 95% confidence bands.

2.5.2.2 Variance of elasticities

Our second object of interest is the variance of ETI conditional on income level. While there is some
precedent for studying differences in ETIs across groups, our approach varies in two main ways. First,
the existing literature does not emphasize within-income variation and in some cases explicitly focuses on
across-income variation (Eissa and Liebman, 1996; Gruber and Saez, 2002; Kopczuk, 2005; Kumar and Liang,
2020). By contrast, our test explicitly calls for within-income variance estimates. Second, the literature has
focused on differences in elasticity conditional on observed characteristics. However—insofar as our test does
not apply when taxes can condition on observed heterogeneity—we are particularly interested in unobserved
heterogeneity (see Section 2.4.3.1). This focus brings with it additional identification challenges, which we
discuss.

We pursue two main strategies: (a) a conditioning on observables approach based on differences across
itemization status and (b) a structural estimation approach that relies on the linearity of tax responses.

Conditioning on observables: itemization status
Motivated by work that has documented higher elasticities for households who itemize deductions, we

use the number of itemizations to split our sample into heavy and low itemizers (Gruber and Saez, 2002;
Kopczuk, 2005). While we could simply compare household who do and do not itemize (at all), this would be
problematic in our setting because almost all high-income households do itemize. So that we have variation
in itemization status at each income level, we categorize households as low or high itemizers depending
on whether they have below or above the mean level of itemizations at their income level.34 We define

34Concretely, we compute the mean number of itemizations by income bracket (nitem) non-parametrically by estimating the
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itemization status in year before the tax changes we consider, so that it does not implicitly control for
changes in income.

After classifying individuals into these two groups, we estimate the local following regression at each
year-demeaned income level z̃:

∆ log zht = a(z̃) + εL,t(z̃) · ∆ logR′
t(zht−1) + δ(z̃) ·HIht−1 · ∆ logR′

t(zht−1)

+ c(z̃) ·mrsht−1 + dt−1 + ξht
(2.16)

where HIht−1 is an indicator for high itemizers. This differs from our estimation of unconditional mean
elasticities in two ways. First, we interact tax changes with a high income dummy in order to estimate the
difference in elasticity by itemization status. Second, by allowing εL,t(z̃) to differ across years, we ensure
that δ(z̃) measures only within-year differences in elasticities by itemization status, despite the fact that
during our sample period, a broadening of the tax base during our sample period may have both reduced
elasticities and reduced itemizations (Kopczuk, 2005).35 We estimate this regression locally in year-demeaned
log-income space with the same methodology described in Section 2.5.2.1. To compute confidence intervals,
we bootstrap both steps of the procedure just described, holding fixed the choices for the bandwidths, and
use the basic bootstrap confidence interval.

The left panel of Figure 2.5 shows our estimates of differences in elasticity between heavy and light
itemizers.36 Next, we combine these estimates with estimates of the shares of heavy-itemizers by income
bracket, in order to compute an implied lower bound on the variance of elasticities by income brackets.37

Again, we compute confidence intervals by bootstrapping the whole procedure while holding bandwidth
choices fixed. The right panel of Figure 2.5 shows the implied variance as a function of income. At high
incomes, the lower bound on variance we estimate is already close to the level required to violate the back-
of-the-envelope second-order condition discussed above.

This approach generates a conservative but robust estimate of the variance in ETI by income level. It
is conservative because it leverages only differences in elasticities across two observable groups, ignoring
observed and unobserved variation within these groups. At the same time, it is robust to the concern that
(due to super-elasticities or tax salience) households’ tax responses may be non-linear in the size of tax
changes. Such non-linearities could cause us to mistake variances in the size of tax changes for variance
in ETI at a given tax change; this is not an issue when estimating means, so long as each group faces
similarly-sized tax changes.

Structural estimation
In order to estimate unobserved heterogeneity in elasticities, we complement the approach above with a

second, more structural approach.
The key idea underlying this approach that if (a) each household’s elasticities do not depend on the size

following local regression in the space of year-demeaned log income

nitemh
t−1 = a(z̃) + b(z̃) log zh

t + ξh
t−1.

Here, a(z̃) is our actual estimate, but we include the linear term as recommended by Fan and Gijbels (1996).
35Had we not allowed εL,t(z̃) to depend on year, we may have picked up between-year differences related to that there may

be relatively more itemizers in years where both itemizers and non-itemizers have high elasticities—in which case the difference
between average elasticities of itemizers and non-itemizers across years could exceed the average difference within years—or
vice-versa.

36Appendix Figure 2.13 show the analogous plots of Figure 2.5 in the space of year-demeaned log income, where we perform
the actual estimation before mapping to 1990.

37We estimate these shares by the same local-polynomial approach used for our other regressions.
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Figure 2.5: Left panel: Difference in elasticities between heavy and light itemizers, by income level in 1990.
Right panel: Implied lower bound on variance in elasticity, by income level in 1990. In gray: 95% confidence
bands.

of the tax changes they face and (b) one has access to continuous variation in the size of tax changes, then all
moments of the distribution of elasticities—and in particular its variance—are non-parametrically identified.
Intuitively, linearity implies that as the treatment size increases, the variance of treatment responses can be
identified out of the change in the dispersion of the outcomes. This is because the heterogeneity in treatment
effects should progressively magnify the dispersion of outcomes as the size of the treatment increases.38

While linearity is, admittedly, a strong assumption, it allows us to remain very flexible in modelling
the structure of ETI heterogeneity. In particular, we assume that the distribution of elasticities has finite
support, but allow this support to have many points, each taking arbitrary values. This flexibility allows us
to approximate many different distributions, while discreteness ensures that our resulting estimates of ETI
variance cannot be driven by a fat tail.

More explicitly, we assume that

∆̂ log zht = agh
t

+ εgh
t

· ̂∆ logR′
t(zht−1) (2.17)

where ght takes a finite number of values, and where ∆̂ log zht and ̂∆ logR′
t(zht−1) are changes in log income

and change in log taxes at initial income, respectively, after partialling out by marital status, a 10-piece
linear spline in log taxable income, and year dummies. We estimate this regression by running a k-means
algorithm that minimizes the mean square error of (2.17) by assigning each (h, t) pair to a group, and
iteratively estimating {ag, εg} within groups.3940

The left panel of (2.6) displays our estimated distribution of ETIs. The estimated distribution has a very
large mass around zero and some mass at higher values, up to a maximum ETI of 16. While this number is
large, we believe it is plausible as an intensive margin elasticity at low incomes or as a proxy for extensive
margin labor supply or tax avoidance decisions at any income. For robustness, we also present versions of

38For a proof, see Appendix 2.9.5.1.
39The k-means algorithm dates back to Sebestyen (1962) and MacQueen et al. (1967), and has recently been applied by

Bonhomme and Manresa (2015); Bonhomme et al. (2017); Lewis et al. (2019).
40We do this while fixing the number of groups k, which we then select with a Bayesian information criterion subject to a

maximum possible number of groups kmax = 100 as in Bonhomme and Manresa (2015).
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our main results in which ETIs are capped at 5.
Given assignments ε̂ht of ETIs to each individual at each date t (i.e. between t and t+1), we compute the

variance in ETIs by income level using local polynomial regressions.41 In order to ensure that we capture only
within-year variation in elasticities, we estimate the following regression locally in the space of year-demeaned
log incomes z̃: (

ε̂ht − m̂t(z̃)
)2 = a(z̃) + b(z̃) log zht + ξht−1 (2.18)

where z̃ht is year-demeaned log income, and m̂t(z̃ht ) is the year and income specific mean of elasticities, also
estimated using first order local polynomials.

One important concern about this procedure is that it may be prone to small sample bias, as we estimate
a large number of parameters. To address potential small sample bias and to obtain confidence intervals for
our estimates of variance, we bootstrap the entire procedure, holding fixed the number of groups k and all
bandwidths, and then subtract from our point estimates the bootstrap estimator of the bias.

The right panel of Figure 2.6 shows our structural estimates of income-conditional variance in ETI.42

Notably, we estimate significantly higher variances than with the lower bound approach of the prior section.
Appendix Figure 2.14 shows our structural estimates when ETIs are capped at 5.
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Figure 2.6: Left panel: Distribution of ETIs identified by k-means procedure. Right panel: Implied variance
in elasticities by income level. In gray: 95% confidence bands.

2.5.2.3 Estimation of tax schedule, income density

Our rationalizability test also relies on estimates of the shape of the tax schedule and the income distri-
bution. We estimate these moments in the NBER cross sectional files, which contain more observations and
so allow for more precise estimation.

To compute α(z) in each year, we estimate a smooth functional form for the CDF of taxable income
Gt(z) in each year t with local polynomials regressions to third degree in log taxable income. Here we follow
Fan and Gijbels (1996), who recommend including terms up to one order above the derivative of interest.
We then translate our estimated coefficients for the first and second derivatives of Gt(z) in log income into

41We follow an analogous procedure to compute the third moment of ETIs.
42Here again we have combined incomes across years that share a common year-demeaned log income.
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an estimate of αt(z).43 We obtain confidence intervals by bootstrapping the whole procedure while holding
the estimated optimal bandwidth constant. Our estimates are broadly consistent across years and similar to
other recent work such as those of Hendren (2020). The left panel of Figure 2.7 shows our estimates in 1990.

We take a similar approach to estimate marginal tax rates and each of its derivatives required by our
test. In these cases we estimate local-polynomial regressions of order d, where d is the nearest odd integer
greater than the derivative of interest (in log income space). Again, we boostrap confidence intervals holding
optimal bandwidths fixed. The right panel of Figure 2.7 shows our estimates in 1990.44
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Figure 2.7: Left panel: Local shape parameter of the 1990 income distribution, by income level. Right panel:
Average marginal taxes in 1990, by income level. 95% confidence bands.

By construction, our estimates of the tax schedule do not feature any kinks. This reflects that we run
local regressions with a finite bandwidth, which smooths out the schedule. To the extent that kinks affect
our rationalizability test, we therefore ignore their effects. However, we think that a smoothed tax schedule
may be a realistic interpretation of the way that households perceive a kinked tax schedule, or a proxy for
their inability to perfectly adjust their incomes, and so do not dwell on this issue (Rees-Jones and Taubinsky,
2020).45

2.5.3 Evaluation of test

Having computed each of the elements in the (ABC) and (DEFG) formulas, we can evaluate whether the
tax schedule is rationalizable.

43Namely our estimate of αt(z) is equal to the negative of our local estimate of d2Gt(z)
d log z2 divided by our local estimate of

dGt(z)
d log z

.
44We show all years together in Appendix Figure 2.16 to 2.26.
45To ensure our test is robust to this treatment of kinks, we also estimate our second-order test with an alternative methodology

that excludes the term proportional to tax curvature. This has negligible effects, see Appendix Figure 2.39.
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2.5.3.1 First-order test

We start with the first-order test (ABC), which recall assesses whether taxes are above the top of the
Laffer curve at each income level z. Concretely, we compute—for each year t in our data—the statistic

ÂBCt(z) = −1 + 1 −R′
t(z)

R′
t(z)

(
αt(z) − d log

d log z

(
1 −R′

t(z)
R′
t(z)

)
− d log ε(z)

d log z

)
ε(z) (2.19)

where recall Rt and αt are estimated separately in each year. We compute confidence intervals for ÂBCt(z)
by combining bootstrap replications from the two different data sets we use—the panel and the cross-sectional
file for year t—assuming that observations in separate datasets are drawn independently from each other.

Our estimates of ÂBCt(z) are broadly consistent across years and consistently negative, implying that
taxes are below the top of the Laffer curve. The left panel of Figure 2.8 shows this for one representative
year; Appendix Figures 2.27 to 2.37 show our estimates for all years.

2.5.3.2 Second-order test

We now evaluate our new, second-order test (DEFG), which recall assesses whether taxes are in a Laffer
valley at each income level z. Concretely, we compute—for each year t in our data—the statistic46

D̂EFGt(z) = −
(
1 +R′

t(z)
)
ε(z) +

(
1 −R′

t(z)
) [
αt(z)ε2(z) − dε2(z)

d log z + d2 logR′
t(z)

d log z2 ε3(z)
]

(2.20)

where the elasticities are derived from our structural estimates. We compute confidence intervals in the same
way described for ÂBCt(z).

Our estimates of D̂EFGt(z) are broadly consistent across years. Strikingly, they fail at incomes above
around 90, 000 in 1990 USD. The right panel of Figure 2.8 shows this for one representative year; Appendix
Figures 2.27 to 2.37 show our estimates for all years. In Appendix Figures 2.38 to 2.40, we compare
D̂EFGt(z) with and without including the last two terms of (2.20); this has almost no effect, implying that
our estimates are not driven by the third moment of elasticities or steep changes in the second moment.

An alternative way to visualize (DEFG)—as well as to compare the implications of our different estimates
of variance—is to reframe the second-order test in terms of the minimum level of variance at which it fails.
We can then compare this level with our estimates of variance, at each income level. Figure 2.9 illustrates this
comparison.47 Blue and orange shaded regions represent the levels of ETI variance at which the (DEFG) test
passes and fails, respectively, at each income. On top of this background, we superimpose our estimates of
variance based on the two strategies in Section (2.5.2.2). The test easily fails under our structural estimates
of variance, while our lower bounds on variance based on itemization status come about half of the way to
violating the test. Not shown below (see Appendix Figure 2.14) are our structural estimates of variance
when elasticities are capped at 5; these violate the test on point estimates but cannot reject that the test
passes.

46This is equal to the RHS of (DEFG) when, as we have assumed, income effects are zero and labor supply preferences are
additive-CES; see Appendix 2.9.1.4.1 for details regarding the super-elasticity term.

47It does so under the assumptions that, at each z, (a) the tax schedule is locally linear and (b) the variance of ETIs is locally
constant. This allows the test to be framed as simple “variance test” without considering the other roles played by second and
third moments of ETIs. Figure 2.39 shows that this simplification is without significant loss.
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Figure 2.8: Left panel: ABC test evaluated in 1990. The test passes at all incomes. Right panel: DEFG test
evaluated in 1990. The test fails at high incomes. 90% confidence bands.
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Figure 2.9: 1990. Background: ETI variance consistent (blue) and inconsistent (orange) with (DEFG).
Foreground: Estimates of ETI variance. Lighter colors and dashed lines colors are 95% confidence bands.

2.5.4 Inspecting the mechanism

A number of potential confounding factors could prevent the heterogeneity in elasticities we have esti-
mate from translating into the type of elasticity-sorting that our theory predicts. For example, perhaps our
estimates mistake differences across households in the timing of tax responses for differences in the size of
tax responses.48 Another possibility is that super-elasticities—which we do not estimate—could work to at-
tenuate the level of elasticity sorting, similar to the discussion in Section 2.4.3.2. Alternatively, heterogeneity

48Our conditioning-on-observables estimates are robust to this concern, but our structural estimates are not.
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in elasticities across income levels may reflect differences in the institutional arrangements of employment in
different jobs, which may not respond to tax changes.

To address these concerns, we now attempt to directly validate the mechanism that underlies our theory,
i.e. the idea that changes in taxes cause changes in the average elasticity within each income level. The main
idea behind our strategy is as follows: In regions of the tax schedule where the income density is strongly
decreasing (α(z) > 0), a locally flat increase in marginal retention should increase the average elasticity
conditional on income. This is because—when there is significant heterogeneity in elasticities and when all
elasticity groups have proportional densities—the high elasticity types that end up at each income level z
come from much lower incomes, where the density is higher. This pattern flips where α(z) < 0, so that an
increase in marginal retention should lower the average elasticity at z.

More concretely, one can show that that for small tax changes,

∆ε(z) ≈ α(z) Var[εh(R)|zh0 = z] ∆R′(z). (2.21)

In other words, there is a positive interaction between the ETI ε(z) at a given income level and the product
of the Pareto shape α(z) and the level of marginal retention R′(z), and the size of this interaction term is
equal to the local variance of ETIs. In principle, we could therefore identify ETI variance at each income
level by including in the mean ETI regression (2.15) an interaction between tax changes and the product
of α(z) · R′(z). In practice, this approach has two limitations, and these limitations motivate our actual
strategy. First, it may be under-powered, so we pool across income levels. Second, one source of variation
in R′(z)—tax differences across states (rather than years)—may be correlated with elasticity differences for
reasons other than our mechanism and therefore bias this regression. Namely, one should expect that states
with more income-elastic or cross-state-migration-elastic populations (at any income z) respond by levying
lower marginal taxes. We therefore focus on the component of variation in taxes that comes solely from time
variation.

Our preferred specification is as follows:

∆ log
(
zht
)

= ε · ∆ logR′
t(zht−1)

+ γ · ∆ logR′
t(zht−1) · (logR′

t−1(zht−1) − logR′(zht−1)) · αt−1(zht−1)

+ c ·mrsht−1 + dt−1 + f(zht−1) + ξht

(2.22)

where logR′
t−1(zht−1) is the average log marginal retention rate at zht−1 in year t−1, logR′(zht ) is the average

log marginal retention rate at zht across years, and where f(zht−1) is a control for the level of income (either
a single linear term or ten piece splines). As discussed above, one may interpret the regression coefficient on
this interaction term as an average of within-income ETI variances, taken across incomes. Secondarily, we
also estimate (2.22) using only cross-state variation—in which case the cross-state within-year average shape
αt−1(zht−1) and average marginal taxes logR′

t−1(zht−1) are replaced by the analogous within-state across-
year average shape and average marginal taxes. Finally, we also estimate (2.22) using both cross-state and
cross-year variation, using the analogous within-state and within-year average shapes and average marginal
taxes.

Table 2.2 presents our results. In most cases we estimate positive but small and statistically insignificant
implied variances, which we interpret as moderately supportive of our theory. The small size of our estimates
using year × state variation is likely explained by attenuation bias stemming from noise in our estimates of
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Figure 2.10: Income-conditional variance implied by elasticity differences across low- and high-tax years in
1990, 95% confidence bands.

local αs.

Table 2.2: Inspecting the mechanism

year state year state
elasticity 0.44 0.21 0.49 0.21 0.48 0.22

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
variance 1.05 0.11 0.38 0.10 -0.05 0.22

(0.19) (0.12) (0.29) (0.18) (0.32) (0.31)
income control linear splines linear splines linear splines

Notes. Estimates for means and variances of elasticities using Equation 2.22. Bootstrapped standard errors in
parentheses. The first two columns report results where the variance of elasticities is inferred from variation
in elasticities across years. In the third and fourth column, it is inferred from variation across states, and in
the fifth and sixth it is inferred from variation across years and states.

Finally, we extract an implicit measure of variances by income bracket by running the regression above
non-parametrically, allowing γ(z), ϵ(z) and c(z) to depend on demeaned income. Figure 2.10 shows that, in
the year-variation-only case, we estimate implicit variances similar to those in Section 2.5.2.2. In the other
specifications, our estimates are very noisy and close to zero; see Appendix Figure 2.15. As we believe the
year-only variation is better identified, we conclude that this exercise lends moderate support to our theory
overall.
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2.6 Quantitative application
So far, we have presented evidence that the taxes in our sample can—from the perspective of any planner

in a broad class—be improved. But how large are these potential welfare gains, and what sort of tax changes
achieve them? In this section, we speak to these questions using a simple calibrated model.

Model: Motivated by the fact that our efficiency test fails only at high incomes, we remain agnostic to
the behavior of households with incomes below $100,000 and to the planner’s preferences regarding their
welfare. For households with incomes above $100,000, we impose both positive and normative assumptions.
Positively, we assume the following: First, consistent with the year 1990, top incomes are distributed as
Pareto(αtop = 2.5), are subject to an initial top marginal tax rate of τtop = 35%. Second, each top-earning
household h has a constant compensated elasticity of labor supply βh and no income elasticity. Third, βh

is distributed independently of productivity according to a Gamma distribution with mean 0.3 and variance
1.2.49

Normatively, we must take a stance on how the planner values changes in household welfare relative to
government revenue in order to quantify the gains from tax reform. To do so, we assume the following: First,
the planner places a common and constant value λtop on transfers to each top-earner, relative to government
revenue.50 Second, in setting the initial tax schedule, the planner has “followed the literature” by checking
the first- but not the second-order condition of the tax schedule. Together with our positive assumptions,
this allows us to back out the welfare weight:

λtop = 1 − 1 −R′
top

R′
top

αtop εtop ≈ 0.6. (2.23)

Simple tax reforms: To motivate the particular tax changes we consider, we return to the planner’s
second-order condition. In our specialized model, this takes a particularly uncomplicated form for any tax
change ∆ that only affects top earners:51

d2

dϵ2
Welfare(R+ ϵ∆) =

∫ [
−(1 +Rtop)εtop + (1 −Rtop)αtopε

2
top
]

︸ ︷︷ ︸
LHS of (DEFG)

(
∆′(z)
R′

top

)2
zg(z)dz. (2.24)

One may easily verify that the “LHS of (DEFG)” term is positive under our positive assumptions, implying
that the planner’s second-order condition fails, i.e. taxes are in the Laffer valley.

This expression says that a change in taxes on top earners improves welfare to the extent it changes the
marginal taxes they face. In particular, there is no need to restrict to very “narrow” tax changes—as was
done in the main text—in order to exploit the failure of the second-order condition; narrow tax changes are
just a technical device used to handle income effects and non-constant welfare weights, both of which are
absent here. Even simple tax changes, such as raising or lowering marginal taxes on all top earners, can
“sort and extort,” as illustrated in the motivating example of Section 2.2.

This in mind, we consider two very simple tax reforms: A 20 percentage point increase and a 20 percentage
point decrease in the top marginal tax rate.

49We view this as a sensible approximation of our empirical estimates of elasticity heterogeneity.
50Here, we implicitly assume that the planner does not face a hard budget constraint, but instead has a constant marginal

value of public funds.
51This follows from Lemmas 6 and 7; see Appendix 2.9.3.1.
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Welfare gains and discussion:
Consistent with the observation that taxes are in a Laffer valley, we document welfare gains from either

raising or lowering taxes. Concretely, the planner’s gains from either raising or lowering top taxes by 20pp
are equivalent to the social value of transferring a little more than $3000 to each household in the top bracket
or λtop · $3000 ≈ $2000 to the planner for each household in the top bracket.

The estimate above is a lower bound on welfare gains for several reasons. First, we take all taxes below
$100,000 as given, thus ignoring the potential gains from simultaneously changing them. Second, we restrict
taxes above $100,000 to be linear, ignoring the additional gains from using non-linear tax changes. Third,
we limit ourselves to 20 percentage point changes in the top tax rate, ignoring the gains from using larger
tax changes. Fourth—and somewhat more subtly—we ignore any behavioral effects on households with
initial incomes outside of the top bracket. This results in an underestimate since the only case in which such
households respond to top rate changes is when they jump into the top bracket, which has positive fiscal
externalities.

One topic not addressed above is the shape of the optimal tax reform, and in particular whether it is
similar to the simple reforms we consider. For instance, one may worry that a schedule with many “squiggles”
would be more effective in sorting households with different elasticities and therefore optimal. While we do
not answer this question in general, Appendix 2.9.2.3 presents a suggestive exercise in which, starting from
a sub-optimal tax schedule, we update taxes in the direction suggested by the planner’s first-order condition
until converging to a new local optimum. In a simple case with two elasticity types, we find that taxes
converge to a “two-part” schedule that smoothly transitions between a high tax rate used on low incomes
and a low tax rate used on high incomes—rather than a “squiggly” schedule.

2.7 Discussion

2.7.1 Relation to inverse optimality literature

Overall, we interpret the empirical violation of our rationalizability test as new and surprising observation
about the (in)efficiency of US income taxes. The existing literature—typified by the first-order (ABC) test—
has tended to interpret the US income tax schedule as Pareto efficient and reflective of a particular set of
social preferences that places somewhat greater weight on transfers to lower-income households (Bargain
et al., 2014). Our interpretation differs in two ways: First, the violation of our second-order test implies
that taxes are, for any social planner in the broad class we consider, inefficient. Second, not only are taxes
inefficient, but also—because they are un-rationalizable,—it is misguided to interpret taxes as reflecting any
set of social preferences. In this sense, our findings are critical of the “inverse optimum” literature which
attempts to infer a planner’s distributional preferences from the tax schedule.

At the same time, our results are consistent with a more recent interpretation of the inverse optimum
approach which shows that first-order-condition-implied “as if” welfare weights can be used to value the
distributional impacts of policies in a welfare-function-independent way (Hendren, 2020; Hendren and Sprung-
Keyser, 2020). Specifically, Hendren (2020) shows that if the weighted incidence of a policy change is positive,
then—if it is accompanied by an appropriate change in income taxes—it can be used to create a Pareto
improvement.52 While this result does not rely on our second-order condition, its interpretation is somewhat
different when the second-order condition fails. Namely, the compensatory adjustments do lead to Pareto

52Although this result is derived in a one-dimensional model, a version of it carries over to our setting if policy changes have
homogeneous impacts on households within each income level.
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improvements, but also operate strictly within the frontier, since any planner could improve welfare through
further tax changes.

2.7.2 Robustness of ETI variance estimates

We have presented a variety of estimates for variances of elasticities, some more conservative and others
requiring stronger assumptions.

Perhaps the most robust are the implicit estimates of variance presented in Section 2.5.4, because they
directly test the sorting method that underlies our theory. As we have discussed, these estimates are robust
to concerns that super-elasticities may undo the sorting effects of ETI variance or that heterogeneity in
elasticities across income levels reflect differences in the institutional arrangements that do not respond to
tax changes. However, they may be confounded by other changes in the tax system over the decade. In
particular, a broadening of the base may have reduced individual elasticities—for example by restricting tax
avoidance—at the same time as marginal taxes decreased (Kopczuk, 2005). This force counterbalances the
effects of the sorting mechanism we highlight at the top, and reinforces it at the bottom. It would therefore
bias our estimates of ETI variance downward at the top and upward at the bottom.

Our lower-bound estimates of variance based on itemization status are robust to a different set of concerns.
For one, they are not subject to the criticism above about base broadening. Also, as we discuss in Section
2.5.2.2, they do not risk mistaking non-linearities in tax responses—i.e. heterogeneity in ETIs across sizes
of tax changes—with heterogeneity in ETIs for tax changes of a given size.

By contrast, our structural estimates rely on stronger assumptions, particularly the linearity of household
tax responses and the discreteness of the elasticity distribution. Of course, they also have the advantage
of flexibly estimating unobserved heterogeneity. One potential concern to which they are robust is that
household preferences may follow a dynamic process through time, so that the same individual who is very
elastic or very productive in one year is less so during the next. So long as the distribution of types in the
population is constant, this reshuffling has no effect whatsoever on our results.

Taken together, our estimates present a consistent and robust picture of the variance of ETIs by income
level. In particular, our estimates suggest that the (DEFG) is very likely to fail for high incomes, even if a
few of the possible identification issues discussed above are active.

A final potential concern is that our theory only models intensive labor supply decisions, whereas actual
ETIs may involve extensive margin decisions. For example, households may join or leave the labor force,
find a second job, migrate between states, or hire a tax accountant. To the extent these decisions cannot be
repeated, they stand against the idea that households have a stable elasticity according to which a planner
can sort them. Of course, many extensive margin decisions, such as moving between jobs or states, can be
repeated, opening up the possibility for the planner to sort individuals based on sequences of these decisions.
Labor force participation may pose a problem for our estimates at low incomes, but insofar as those decisions
are less prevalent at the top of the income distribution, they should not affect our conclusion that the test
fails at high incomes.

2.8 Conclusion
We take a second-order approach to the classical non-linear income taxation problem. Far from a technical

detail, the second-order condition introduces a new qualitative idea for income taxation: Taxes must not
only be below the top of the Laffer curve, but also must not lie in a “Laffer valley”.
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Our theoretical results shed light on the relationship between the Laffer valley and household hetero-
geneity. As our discussion emphasizes, heterogeneity in household elasticities within income levels provides
a tax reform motive for planners who are constrained to use a single income tax schedule. By changing taxes
once, the planner can (in an imperfect way) sort high- and low-elasticity households into different parts of
the income distribution; by changing taxes again, she can exploit this separation, as if she had access to
elasticity-dependent taxes. We capture this insight in a simple test for the local rationalizability of the tax
schedule in terms of locally estimable sufficient statistics.

Our empirical results take this novel test to the data in order to assess whether actual US tax schedules
from 1979 to 1990 were rationalizable by any planner. We extend the approaches of existing empirical work
to estimate ETIs by income level and to estimate not only ETI means but also ETI variance—a key statistic
for our theory. Strikingly, our estimates reject the rationalizability of the tax schedule in every year of our
sample. Said differently, any planner in the class we consider would prefer a different tax schedule; there is
a free lunch available through tax reform. A conservative quantification exercise suggests that either raising
or lowering top taxes by 20 percentage points results in yearly welfare gains equivalent to approximately
$3000 per top earner.

142



Bibliography

Aliprantis, C. and Border, K. (2006). Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer-Verlag
Berlin Heidelberg.

Bakker, L. (2018). Uniform convergence and differentiation.

Bargain, O., Dolls, M., Neumann, D., Peichl, A., and Siegloch, S. (2014). Tax-benefit revealed social
preferences in europe and the us. Annals of Economics and Statistics/Annales d’Économie et de Statistique,
(113/114):257–289.

Bierbrauer, F., Boyer, P., and Hansen, E. (2020). Pareto-improving tax reforms and the earned income tax
credit.

Billingsley, P. (2008). Probability and measure. John Wiley & Sons.

Blau, F. D. and Kahn, L. M. (2007). Changes in the labor supply behavior of married women: 1980–2000.
Journal of Labor economics, 25(3):393–438.

Bonhomme, S., Lamadon, T., and Manresa, E. (2017). Discretizing unobserved heterogeneity. University of
Chicago, Becker Friedman Institute for Economics Working Paper, (2019-16).

Bonhomme, S. and Manresa, E. (2015). Grouped patterns of heterogeneity in panel data. Econometrica,
83(3):1147–1184.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap methods and their application. Number 1. Cambridge
university press.

Diamond, P. A. (1998). Optimal income taxation: an example with a u-shaped pattern of optimal marginal
tax rates. American Economic Review, pages 83–95.

Eissa, N. and Liebman, J. B. (1996). Labor supply response to the earned income tax credit. The quarterly
journal of economics, 111(2):605–637.

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications: monographs on statistics and
applied probability 66, volume 66. CRC Press.

Folland, G. B. (1999). Real analysis: modern techniques and their applications, volume 40. John Wiley &
Sons.

Gruber, J. and Saez, E. (2002). The elasticity of taxable income: evidence and implications. Journal of
public Economics, 84(1):1–32.

Guesnerie, R. (1998). A contribution to the pure theory of taxation. Number 25. Cambridge University Press.

Hammond, P. J. (1979). Straightforward individual incentive compatibility in large economies. The Review
of Economic Studies, 46(2):263–282.

Hendren, N. (2020). Measuring economic efficiency using inverse-optimum weights. Journal of Public Eco-
nomics, 187:104198.

143



Hendren, N. and Sprung-Keyser, B. (2020). A unified welfare analysis of government policies. The Quarterly
Journal of Economics, 135(3):1209–1318.

Himmelberg, C. (1975). Measurable relations. Fundamenta Mathematicae, (87):53—72.

Hines Jr, J. R. and Keen, M. J. (2021). Certain effects of random taxes. Journal of Public Economics,
203:104412.

Hosseini, R. and Shourideh, A. (2019). Retirement financing: An optimal reform approach. Econometrica,
87(4):1205–1265.

Jacquet, L. and Lehmann, E. (2015). Optimal income taxation when skills and behavioral elasticites are
heterogeneous.

Jacquet, L. and Lehmann, E. (2020). Optimal income taxation with composition effects. Journal of the
European Economic Association.

Kammar, O. (2016). A note on frechet diffrentiation under lebesgue integrals.

Kopczuk, W. (2005). Tax bases, tax rates and the elasticity of reported income. Journal of Public Economics,
89(11-12):2093–2119.

Kumar, A. and Liang, C.-Y. (2020). Estimating taxable income responses with elasticity heterogeneity.
Journal of Public Economics, 188:104209.

Lewis, D. J., Melcangi, D., and Pilossoph, L. (2019). Latent heterogeneity in the marginal propensity to
consume. FRB of New York Staff Report, (902).

Li, Q. and Racine, J. S. (2007). Nonparametric econometrics: theory and practice. Princeton University
Press.

Lockwood, B., Sial, A. Y., and Weinzierl, M. C. (2020). Designing, not checking, for policy robustness: An
example with optimal taxation. Technical report, National Bureau of Economic Research.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages
281–297. Oakland, CA, USA.

Martinsson, G. (2006). The implicit and inverse function theorems.

Maskin, E. and Riley, J. (1984a). Monopoly with incomplete information. The RAND Journal of Economics,
15(2):171–196.

Maskin, E. and Riley, J. (1984b). Optimal auctions with risk averse buyers. Econometrica: Journal of the
Econometric Society, pages 1473–1518.

Maurer, H. and Zowe, J. (1979). First and second-order necessary and sufficient optimality conditions for
infinite-dimensional programming problems. Mathematical programming, 16(1):98–110.

Moser, C. and Olea de Souza e Silva, P. (2019). Optimal paternalistic savings policies. Columbia Business
School Research Paper, (17-51).

Racine, J. (1993). An efficient cross-validation algorithm for window width selection for nonparametric kernel
regression. Communications in Statistics-Simulation and Computation, 22(4):1107–1114.

Rees-Jones, A. and Taubinsky, D. (2020). Measuring “schmeduling”. The Review of Economic Studies,
87(5):2399–2438.

Rochet, J.-C. (1985). The taxation principle and multi-time hamilton-jacobi equations. Journal of Mathe-
matical Economics, 14(2):113–128.

144



Rochet, J.-C. and Stole, L. A. (2003). The economics of multidimensional screening. Econometric Society
Monographs, 35:150–197.

Saez, E. (2001). Using elasticities to derive optimal income tax rates. The review of economic studies,
68(1):205–229.

Saez, E., Slemrod, J., and Giertz, S. H. (2012). The elasticity of taxable income with respect to marginal
tax rates: A critical review. Journal of economic literature, 50(1):3–50.

Scheuer, F. and Werning, I. (2018). Mirrlees meets diamond-mirrlees: Simplifying nonlinear income taxation.

Sebestyen, G. S. (1962). Decision-making processes in pattern recognition.

Shorack, G. R. (2000). Probability for statisticians. Number 04; QA273, S4. Springer.

Stiglitz, J. (1982a). Utilitarianism and horizontal equity: The case for random taxation. Journal of Public
Economics, 18(1):1–33.

Stiglitz, J. E. (1982b). Self-selection and pareto efficient taxation. Journal of public economics, 17(2):213–
240.

Taubinsky, D. and Rees-Jones, A. (2018). Attention variation and welfare: theory and evidence from a tax
salience experiment. The Review of Economic Studies, 85(4):2462–2496.

Vere, J. P. (2011). Social security and elderly labor supply: Evidence from the health and retirement study.
Labour Economics, 18(5):676–686.

Werning, I. (2007). Pareto efficient income taxation. Technical report, mimeo, MIT.

2.9 Appendix

2.9.1 Formalized statements from the main text

Below, we provide formal statements of several definitions and assumptions stated loosely in the main text.
These are organized into statements about taxes and tax changes, conditions on household and aggregate
labor supply, social objective definitions, and supporting concepts for the rationalizability test. Within these
subsections, we also provide basic technical Lemmas that illustrate the roles of several of the assumptions
and provide a foundation used in the proofs of our main results.

2.9.1.1 Taxes and tax deviations

We begin with a basic regularity condition on taxes.

Assumption 1. R is continuous on R≥0 and three-times continuously differentiable on R>0, and there exists
BR > 0 such that for all z ∈ R>0,

∣∣∣∣
dR(z)
d log z

∣∣∣∣ ≤ BR|R(z)|, and
∣∣∣∣
dR′(z)
d log z

∣∣∣∣ ,
∣∣∣∣
d2R′(z)
d log z2

∣∣∣∣ ≤ BR|R′(z)|. (2.25)

Next, we define a space of feasible tax changes ∆ by

∆ =
{

∆ : R≥0 → R

∣∣∣∣ ∆ continuous, ∆ three-times continuously differentiable on R>0, and ∃B ∈ R :

∀z ∈ R>0, |∆(z)|≤ B|R(z)| and |∆′(z)|,
∣∣∣d∆′(z)
d log z

∣∣∣ ,
∣∣∣∣
d2∆′(z)
d log z2

∣∣∣∣ ≤ B|R′(z)|
}
.

(2.26)
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This space is well-defined under Assumption 1. Note that the function ||·|| defined in (2.7) is well-defined
on ∆. The following Lemma establishes that not only is ||·|| a norm on ∆, but also (∆, ||·||) is a Banach
space. We later leverage this fact in order to apply existing results on optimization in Banach spaces.

Lemma 1. (∆, ||·||) is a Banach space.

Proof. See Appendix 2.9.6.1.

Throughout the paper, we will consider many functions of the form f : R + ∆ → R, where R + ∆ ≡
{R + ∆ | ∆ ∈ ∆}. As any such function may alternatively be understood as a function f̃(∆) = f(R + ∆)
on ∆, we will WLOG refer to such functions f as being Frechet in ∆ when the corresponding f̃ is, and with
derivatives equal to those of f̃ . Notationally, we denote the Frechet derivative of any function f : R+∆ → R
evaluated at a point R̃ by Df(R̃), if it exists. For any ∆ ∈ ∆, we let D∆f(R̃) denote Df(R̃)(∆), i.e. the
first Frechet derivative of f at R̃ in direction ∆ with magnitude ||∆|| (and similarly for higher derivatives).

2.9.1.2 Labor supply regularity conditions

Our first assumption on labor supply is a basic regularity condition on household preferences, satisfied
by typical functional forms used in the literature.

Assumption 2. Household utility is given by a function u : H × R≥0 × R≥0 → R ∪ {−∞}. On the
restricted domain H × R>0 × R>0, utility uh(c, z) is finite, has three continuous derivatives in (c, z) which
are measurable53 in (h, c, z) and satisfy uhc (c, z) > 0 and uhz (c, z) < 0.

Our next assumption is of more qualitative importance. It is a set of three conditions which together
guarantee that—locally to R—each household supplies labor purely on the intensive margin. In words, they
are as follows: First, each household h’s problem has a unique solution at R. Second, h’s labor supply
preferences—given the tax schedule—have some positive level of concavity locally, i.e. within a ball of radius
ϵh around log zh0 . Third h has a strong enough preference for supplying labor at zh0 relative to any level
outside the local neighborhood of concavity. Importantly for later results, the level of concavity and the
relative consumption preference are both uniform across households. Intuitively, these conditions hold when
households have sufficiently concave preferences relative to the curvature of the tax schedule.

Assumption 3. There exist (ϵh)h∈H, η, c̄ > 0 with ϵh h-measurable, such that for all h ∈ H

• The problem maxz∈R≥0 u
h(R(z), z) has a unique, strictly positive, and h-measurable solution zh0 at

R̃ = R,

• there exists a function vh(z̃) : Bϵh(log zh0 ) → R such that, for all z ∈ eBϵh (log zh
0 ),

uh
(
R(z)ev

h(log z), z
)

= uh
(
ch0 , z

h
0
)

and vh′′(log z) ≥ η, 54 (2.27)

• and for all z ̸∈ eBϵh (log zh
0 ),

uh
(
ec̄R (z) , z

)
≤ uh

(
e−c̄ch0 , z

h
0
)
. (2.28)

53Throughout the paper, we interpret R as a measure space with respect to the linear Borel σ-algebra and the Lebesgue
measure. The only spaces other than (subsets of) R and H on which we refer to measurability are products thereof; we interpret
all such spaces as σ-algebras with respect to the canonical product σ-algebra.

54Here, eB
ϵh (log zh

0 ) ≡
{
z ∈ R>0 | log z ∈ Bϵh (log zh

0 )
}

. Also note that any such function vh is unique since consumption
utility is strictly increasing. Also vh(z) is twice continuously differentiable since uh and R are and uh

c > 0, by the implicit
function theorem.
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The following Lemma establishes that, indeed, the assumptions stated so far guarantee each household’s
labor supply—locally to the initial tax schedule—is well-defined and unique, purely intensive, and well-
behaved.

Lemma 2. There exists δ > 0 such that zh(R̃) and ch(R̃) are well-defined, H-measurable, and strictly
positive on H × (R+Bδ(0)), and on this domain have two continuous and H-measurable Frechet derivatives
in R̃.

Proof. See Appendix 2.9.6.2

In order to state the next assumption, we first introduce the concepts of labor supply compensated
and income elasticities and “super-elasticities”. The compensated (income) elasticity of labor supply for a
household describe how labor supply changes due to changes in local marginal (the level of) taxes fixing the
local level of (marginal) taxes:

ηh(R̃) = 1
R̃(zh(R̃))

d log zh(R̃h(·; ϵ0, ϵ1))
dϵ0

∣∣∣∣∣
ϵ0=0
ϵ1=0

, εh(R̃) = 1
R̃′(zh(R̃))

d log zh(R̃h(·; ϵ0, ϵ1))
dϵ1

∣∣∣∣∣
ϵ0=0
ϵ1=0

(2.29)

where R̃h(z; ϵ0, ϵ1) = R̃(z) + ϵ0 + (z− zh(R̃))ϵ1. The super-elasticities—denoted by ηh+0(R̃), ηh+1(R̃), εh+0(R̃),
and εh+1(R̃)—are defined as the indirect change in these elasticities caused by the change in the curvature of
preferences that (for non-CES preferences) results when labor supply and income respond to tax changes.
The super-elasticities denoted with “+0” correspond to changes in elasticities induced by changes in the level
of taxes, whereas those denoted with “+1” correspond to changes induced by changes in the slope of taxes.55

Assumption 4. There exists δ,M > 0 such that:

• At R, pre- and post-tax income, zh0 and ch0 , are H-integrable.

• If R̃ ∈ R+Bδ(0), then for all h ∈ H

|ηh(R̃)|, |εh(R̃)|, |εh(R̃)−1|, |ηh+1(R̃)|, |ηh+0(R̃)|, |εh+1(R̃)|, |εh+0(R̃)| ≤ M. (2.30)

The following Lemma establishes that, under these integrability assumptions and elasticity bounds, not
only individual but also aggregate labor supply and consumption are defined and well-behaved locally to R.

Lemma 3. There exists δ > 0 such that zh(R̃), ch(R̃), and their first two Frechet derivatives in R̃ are
bounded (as linear maps) across all R̃ ∈ R + Bδ(0) by linear combinations of zh0 and ch0 and, in particular,
are H-integrable.56

Proof. See Appendix 2.9.6.3.

Next, we impose conditions that make it possible to express aggregate tax revenue in terms of an integral
over income levels, which allows us to integrate by parts.

Assumption 5. The distribution of initial pre-tax income, zh0 , admits a twice-continuously differentiable
density g on R≥0; and for each of the following elasticity variables xhn, a conditional expectation5758 x(z) ≡

55We present complete and formal definitions of elasticities and super-elasticities in Appendix 2.9.6.2.
56Moreover the first two Frechet derivatives of log zh(R̃) and log ch(R̃) are bounded uniformly across h ∈ H, R̃ ∈ R+Bδ(0);

this fact is useful in later proofs.
57We say “a” rather than “the”, as conditional expectation is unique only up to measure zero sets.
58Each such conditional expectation function E[xh

n|zh
0 ] exists since zh

0 is measurable by Assumption 4 and xh
n is integrable,

as it is measurable by arguments in the second-to-last section of the proof of Lemma 2 and bounded by Assumption 4 (then
apply dominated convergence).
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E[xhn|zh0 = z] is n-times continuously differentiable59 on supp g. This holds for xh2 = εh(R), ηh(R)εh(R), ;
xh1 = ηh(R), εh(R), ηh(R)2, εh(R)2, ηh(R)2εh(R), ηh(R)εh(R)2, ηh+1(R); and xh0 = ηh(R)3, εh(R)3, ηh+0(R),
εh+0(R), εh+1(R).

Theorem 2, but not Theorem 1, relies on the following, additional regularity condition. It allows us
to integrate by parts not only in a local region of the income schedule but over all incomes from zero to
infinity.60

Assumption 6. The following, additional regularity conditions hold:

1. limz→L z
2g(z) = 0 and limz→L zR(z)g(z) = 0 for L = 0,∞.61

2. For each of the following variables xhn and for any ϵ > 0, a conditional expectation62 x≤(z; ϵ) ≡
E[xhn(R) | zh(R) = z, εh(R) < ϵ] is n-times continuously differentiable on supp g. This holds for
xh1 = ηh(R) and xh0 = εh(R), η

h(R)2

εh(R) .

3. Each of the following are bounded in magnitude across all z ∈ supp g:
(
d logR(z)
d log z

)−1
, α(z), zα′(z), zη′(z), zε′(z), z(η2)′(z),

z(ηε)′(z), z2(ηε)′′(z), z(ε2)′(z), z(η2ε)′(z), z(ηε2)′(z), zη′
+1(z), zη′

≤(z; ϵ)
(2.31)

2.9.1.3 Social objective definitions

The basic structure imposed by the definition of a standard social objective is enough to guarantee that
each individual’s contribution to aggregate welfare is locally well-behaved.

Lemma 4. Suppose that ((wh)h∈H, G) is a standard social objective. Then there exists δ > 0 such that
wh ◦ V h(R̃) is finite and H-measurable on H × (R+Bδ(0)), and on this domain has two continuous and
H-measurable Frechet derivatives in R̃.

Proof. See Appendix 2.9.6.4.

Toward studying aggregate welfare, we now introduce additional structure to the problem of a planner.

Definition 3. A standard social objective ((wh)h∈H, G) is regular if the following hold:

1. For some δ > 0 and integrable functions b0, b1, b2 : H → R such that for all R̃ ∈ R+Bδ(0),
∣∣∣(wh ◦ uh)(ch(R̃), zh(R̃))

∣∣∣ ≤ b0(h),
∣∣∣ch(R̃)(wh ◦ uh)c(ch(R̃), zh(R̃))

∣∣∣ ≤ b1(h),

and
∣∣∣ch(R̃)2(wh ◦ uh)cc(ch(R̃), zh(R̃))

∣∣∣ ≤ b2(h).

(2.32)

59By 0-times continuously differentiable, we mean continuous.
60Of these conditions in Assumption 6, we view all but one innocuous. Specifically, in any tax schedule with a finite marginal

taxes at 0 and a positive intercept—i.e. R(0) > 0—the ratio of average to marginal retention diverges in the limit as z → 0.
Since we have already assumed that all households supply positive income, this condition—which note only need hold on the
support of h—can be made less objectionable by simply assuming there is a minimum earned income across all households.
However, this issue may warrant further attention in extensions of our work to models of labor supply on the extensive margin.

61Note that these limits are implied by the existence of aggregate income and tax revenue so long as g(z) and R(z) are not
too “squiggly.”

62Such a conditional expectation function exists since zh
0 is measurable (by Assumption 3); since ηh(R), εh(R), and ηh(R)2

εh(R)
are measurable (by the second-to-last step of the proof of Lemma 2); since this implies 1εh(R)≤ϵ is measurable; and since by
Assumption 4 the elasticities are bounded and so integrable.
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2. For each of the following variables xhn, a conditional expectation63 E[R(zh0 )xhn|zh0 = z] is n-times con-
tinuously differentiable on supp g. This holds for xh0 = λh(R) ≡ (wh ◦ uh)c(ch0 , zh0 ), λh(R)εh(R),
λh(R)η

h(R)2

εh(R) , (λγ)h(R) ≡ (wh ◦ uh)cc(ch0 , zh0 )ch0 ; and xh1 = λh(R)ηh(R).

For each variable xhn referred to in the previous definition, we—for any z ∈ supp g—denote by x(z) the
ratio64

x(z) ≡ E[R(zh0 )xhn|zh0 = z]
R(z) . (2.33)

for the remainder of the paper. Note that by Assumption 1, x(z) is n-times continuously differentiable when
the corresponding social objective is regular.

Under the additional structure imposed by a social objective’s regularity, not only individual contributions
to welfare, but also aggregate welfare is defined and well-behaved locally to R.

Lemma 5. Suppose ((wh)h∈H , G) is a standard, locally regular social objective. Then there exists δ > 0
such that wh ◦ V h(R̃) and its first two Frechet derivatives in R̃ are bounded (as linear maps) across all
R̃ ∈ R + Bδ(0) by linear combinations of the functions bn(h) from Definition 3 and, in particular, are
H-integrable.

Proof. See Appendix 2.9.6.5.

2.9.1.4 Other supporting concepts

2.9.1.4.1 Super-elasticity concepts

Fix any δ > 0 small enough that Lemma 2 applies. In the proof of Lemma 2, we establish that, at any
R̃ ∈ Bδ(R), each household h’s compensated elasticity εh(R̃) satisfies

εh(R̃) = ε̂h(zh(R̃), R̃), where ε̂h(z, R̂) ≡ 1
d log
d log zM

h(R̂(z), z) − d log R̂′(z)
d log z

(2.34)

where Mh(c, z) ≡ −uh
z (c,z)
uh

c (c,z) is h’s elasticity of substitution between consumption and leisure. One may use the
expression ε̂h(z, R̂) in order to decompose changes in h’s elasticity with respect to taxes into two components:
First, elasticity changes through the change in the tax schedule at a fixed labor supply. Second, h’s elasticity
changes through h’s change in labor supply at a fixed tax schedule. One may divide the latter changes, in
turn, into changes in elasticity stemming from income and compensated effects on labor supply. It is the
latter that defines ε+(R̃). Formally,

ε+h(R̃) =
[

d

d log z ε̂
h(z, R̃)

]
εh(R̃). (2.35)

We show in the proof of Lemma 2 that the changes in elasticity contained in ε+h(R̃) reflect two basic
channels: The change in elasticity due to changes in the curvature of preferences as taxes change, and the

63To see that conditional expectations of R(zh
0 )xh

n conditional on zh
0 (which is measurable by Assumption 3) exist, we argue

that they are measurable and bounded by integrable functions; then dominated convergence implies they are integrable. Each
R(zh

0 )xh
n is measurable since wh and uh are (locally) twice-continuously differentiable by the definition of a standard social

objective and Assumption 2, since ch
0 and zh

0 are measurable by Asumption 4, and since elasticities are measurable by arguments
in the second-to-last section of the proof of Lemma 2. Each R(zh

0 )xh
n is—by Assumption 4—bounded by a constant times one

of the integrable functions bn(h) from the definition of local regularity.
64This is a valid definition since for any z ∈ supp z ̸∋ 0, R(z) > 0 (see the proof of Lemma 2).
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change in elasticity due to changes in the curvature of the tax schedule as taxes change. That is,

ε+(z) ≡ ε+1(z) + d2 logR(z)
d log z2 (ηε2)(z) + d2 logR′(z)

d log z2 ε3(z) (2.36)

The former are zero when preferences are (locally) additively CES, whereas the latter are zero when the tax
schedule is (locally) CES.

2.9.2 Additional Discussion

2.9.2.1 Algebra for motivating example

Below, we briefly walk through the very straightforward algebra behind the example presented in Section
2.2.

Setup:
A unit measure µ of households h ∈ H supply labor and consume in a static economy subject to a tax

schedule T . The problem of each household h is

V h(Tτ̄ ) = max
z

z − T (z) − z
1+ 1

βh

1 + 1
βh

/
(θh)

1
βh (2.37)

We denote by zh(Tτ̄ the maximizer of the household’s problem. Conditional on elasticity, productivity is
distributed Pareto; θh | βh ∼ Pareto(α > 1).

We assume the tax schedule T is convex and initially imposes a constant top rate τ̄0 on all incomes above
some level z̄.

Household labor supply
To begin, we characterize the labor supply problem (2.37) of each household h. We break this analysis

into two cases. First, consider a household h for whom z̄ ≥ θh(1 − τ̄0)βh . Whenever the top tax rate is any
τ̄ ≥ τ̄0, h must have an income z weakly below z̄ since otherwise decreasing z increases utility at a rate

−1 + τ̄ +
(
z/θh

) 1
βh ≥ −1 + τ̄0 +

(
z/θh

) 1
βh > 0. (2.38)

Moreover, note that the labor supply of any such household h is unaffected by increases in the top tax rate,
since h already prefers some income z < z̄.

Second, consider a household h for whom z̄ < θh(1− τ̄0)βh . At any top tax rate τ̄ , h must have an income
z weakly above z̄ since otherwise—by T ’s convexity—increasing z increases utility at a rate weakly greater
than

1 − τ̄0 −
(
z/θh

) 1
βh > 0. (2.39)

An analogous argument implies that h has income zh strictly above z̄ at τ̄ > τ̄0 if and only if z̄ < θh(1− τ̄)βh .
When this latter inequality holds, the local differentiability of taxes and preferences implies the first order
condition:

1 − τ̄ =
(
zh/θh

)
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In summary, household labor supply is given as a function of preferences and the top tax rate τ̄ ≥ τ̄0 as

zh(Tτ̄ ) =





max
[
θh(1 − τ̄)βh

, z̄
]

if θh(1 − τ̄0)βh

> z̄

zh(Tτ̄0) ≤ z̄ otherwise.
(2.41)

Top incomes in each elasticity group:
We now compute, for any top tax rate τ̄ ≥ τ̄0 the total income Ztop(τ |β) earned above z̄ by households of

elasticity β. We define this amount to be normalized by the size of the group, i.e. the number of households
with elasticity β.

Ztop(τ̄ |β) =
∫

max
[
θ(1 − τ̄)β − z̄, 0

]
density(θ|β) dθ

=
∫

max
[
θ(1 − τ̄)β − z̄, 0

]
αθ−1−α dθ

= α

∞∫

z̄/(1−τ̄)β

(
θ(1 − τ̄)β − z̄

)
θ−1−α dθ

= α


(1 − τ̄)β

∞∫

z̄/(1−τ̄)β

θ−αdθ − z̄

∞∫

z̄/(1−τ̄)β

θ−1−αdθ




= α

[
(1 − τ̄)β 1

α− 1
(
z̄/(1 − τ̄)β

)1−α − z̄
1
α

(
z̄/(1 − τ̄)β

)−α
]

= α z̄1−α (1 − τ̄)αβ
[

1
α− 1 − 1

α

]

= z̄1−α

α− 1︸ ︷︷ ︸
≡k

(1 − τ̄)αβ

(2.42)

Tax revenue and its derivatives:
Total tax revenue earned in the top bracket is simply the top tax rate times the income earned by each

elasticity-group above z̄, or

Revtop(τ̄) = Eβ [ τ̄ · Ztop(τ̄ |β) ] = k · Eβ
[
τ̄ (1 − τ̄)αβ

]
, (2.43)

where Eβ [·] an expectation over β values according to their prevalence in the population.
Given the simple functional form for income earned in the top tax bracket, it is easy to compute derivatives
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of tax revenue as taxes increase:

Rev′
top(τ̄) = Eβ

[
k (1 − τ̄)αβ

]
− τ̄ Eβ

[
αβ k (1 − τ̄)αβ−1 ]

= Eβ [ Ztop(τ̄ |β) ] − τ̄

1 − τ̄
α Eβ [ β Ztop(τ̄ |β) ]

Rev′′
top(τ̄) = −Eβ

[
αβ k (1 − τ̄)αβ−1 ] − Eβ

[
αβ k (1 − τ̄)αβ−1 ]

+ τ̄ Eβ
[
αβ (αβ − 1) k (1 − τ̄)αβ−2 ]

= − 2α
1 − τ̄

Eβ [ β Ztop(τ̄ |β) ] − τ̄α

(1 − τ̄)2Eβ [ β Ztop(τ̄ |β) ]

+ τ̄α2

(1 − τ̄)2 Eβ
[
β2 Ztop(τ̄ |β)

]

= αEβ [Ztop(τ̄ |β)]
(1 − τ̄)2

(
−(2 − τ̄)Etop [β] + τα Etop

[
β2])

(2.44)

where Etop[·] is an expectation over elasticity groups that weights each proportionally to the share of income
earned in the top bracket by households with that elasticity.

Welfare and its derivatives:
Finally, we compute the welfare of each top-earner and its derivatives with respect to τ̄ .
Plugging in our expression for incomes zh(Tτ̄ ) into the household utility function, we obtain that for all

h with zh(Tτ̄0) > z̄ and τ̄ near enough to τ̄0,

V h(Tτ̄ ) ≡ max
z

z − T (z)︸ ︷︷ ︸
=τ̄ z̄−T (z̄)+(1−τ̄)z

− z
1+ 1

βh

1 + 1
βh

/
(θh)

1
βh

= τ̄ z̄ − T (z̄) − θh(1 − τ̄)1+βh

1 + βh
.

(2.45)

We may therefore differentiate:

d

dτ̄

∣∣∣∣
τ̄=τ̄0

V h(Tτ̄ ) = z̄ − θh(1 − τ̄0)β
h

= −(zh(Tτ̄0) − z̄)

d2

dτ̄2

∣∣∣∣
τ̄=τ̄0

V h(Tτ̄ ) = βhθh(1 − τ̄0)β
h−1 > 0

(2.46)

Of course, the utilities of households with initial incomes below z̄ are not affected by increases in τ̄ .
We conclude that

d

dτ̄

∣∣∣∣
τ̄=τ̄0

λ̃ ·Wtop(τ̄) = −λ̃ · Eβ [Ztop(τ̄ |β)] and d2

dτ̄2

∣∣∣∣
τ̄=τ̄0

λ̃ ·Wtop(τ̄) ≥ 0, (2.47)

as we have used in the main text.

2.9.2.2 One-dimensional heterogeneity: “shift and exploit”

Werning (2007) shows that if households differ only along a single dimension θh and, for some common
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concave function vc and convex function vz, both increasing, have utility

uh(c, z) = vc(c) − vz(z) / θh, (2.48)

then the problem of Pareto planner is globally convex. A similar result holds in our setting: The problem of
any planner with a standard objective so long as the weighting functions wh are concave. In particular, the
first-order condition (ABC) implies the second-order condition (DEFG).65

A natural question is whether this convexity is an essential feature of one-dimensional settings or a
consequence of the function form (2.48). To answer this question, we consider the planner’s second-order
condition in the general one-dimensional case where there is a unique type h(z) who earns each income
z ∈ supp g. Proposition 1 in Appendix 2.9.3.3 leverages the following two special properties of (2.48) in
order to show that—for these preferences—(ABC) implies (DEFG):

• The marginal rate of substitution between consumption and leisure is weakly increasing in consumption
and decreasing in leisure.66

• All of the variation in compensated elasticity across income levels is due to differences in the income
and consumption levels at which households’ preferences are evaluated, rather than differences in the
curvature of their preferences at a given level of income and consumption.

The first property is quite weak and satisfied by the standard functional forms in the literature.67 By
contrast, the second property is a much more “special” feature. The following two examples illustrate how
the planner may improve taxes when this knife-edge assumption fails by a significant enough amount.

Example 1. Taxes are linear, i.e. R(z) = rz for r ∈ (0, 1). A one-dimensional continuum of households h
have additive-CES preferences with idiosyncratic elasticities β(θh):

uh(c, z) = c + z1+1/β(θh)

1 + 1/β(θh)

/
θh (2.49)

Finally, suppose β(θ) is very sharply decreasing around some type θh(z∗).

Example 2. Taxes are linear, i.e. R(z) = rz for r ∈ (0, 1). A one-dimensional continuum of households h
have preferences:

uh(c, z) = log(c) − v
(
z/θh

)
(2.50)

for some increasing and concave function v with variable elasticity. It is easy to verify that this implies each
household supplies labor zh = θhn∗ for some common n∗ and has a (common) compensated elasticity

εh(R) = 1
1 + d log v′(n∗)

d logn∗

. (2.51)

Finally, suppose d log v′(n)
d logn is very sharply decreasing locally to n∗.

65See Proposition 1.
66This is different than what is commonly referred to as “decreasing marginal rates of substitution”, which applies to shifts

along an indifference curve. The condition we study here is slightly stronger than the convexity of preferences.
67In the cases where it does fail—such as when households have certain non-convex preferences—there seems to be little

reason to hope the planner’s problem should be convex, anyways.
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We now explain why—in either example—any planner can increase the value of her Lagrangian using a
narrow variation in taxes around z∗, as in Figure 2.2. To first order, this variation changes the elasticity
at each income level. In Example 1, this change occurs because each household adjusts its income, shifting
which elasticities are present at each income level. This effect is strongest where the change in taxes is the
most steeply increasing (decreasing), where households with much higher (lower) elasticities are drawn in
from the left (right). In Example 2, this change occurs because each household adjusts its elasticity. Namely,
those whose labor supplies increase (decrease) also experience increased (decreased) elasticities, due to the
changing curvature of v′(·). In either example, the effect of the shift in elasticities is that the same tax
variation has much better behavioral effects if performed a second time: Elasticities are particularly high
where marginal taxes increase the most and particularly low where marginal taxes decrease the most. More
succinctly, the planner can shift elasticities with a first tax change and then exploit this shift with a second.
If the shift in elasticities is dramatic enough, this effect causes the two deviations to improve the planner’s
Lagrangian on net.

2.9.2.3 Simulation exercise

We now describe in detail the simulation exercise alluded to in Section 2.6.
Concretely, each household h has constant compensated elasticities βh and no income elasticity. Within

every income level 80% of households have βh = 0.01 and 20% have βh = 2. We roughly approximate the
distribution of income in our data by assuming that productivity is distributed according to a generalized
Pareto distribution with location 0, scale e9, and shape 1/2 (this implies a Pareto tail of shape 2). Marginal
taxes are initially 50% at every income level. The planner places a constant but not common welfare weight
on each household, is indifferent between households with the same initial income, and ensures that her first-
order condition holds at the initial tax schedule. Under this calibration, the planner’s first-order condition
holds exactly but the second-order condition fails for incomes above ≈ $90, 000.

Next, we perturb marginal taxes slightly, lowering them by 1% at every income level. After computing
how households respond to this change, we recompute the planner’s first-order condition, which no longer
holds. We then move taxes slightly in the direction in which the first-order condition fails. This does not
simply push taxes back to where they began, as—at high incomes—taxes were initially at a local minimum.
We iterate this procedure until it converges.

Figure 2.11 shows how marginal retention evolves between the initial tax schedule and the final schedule
to which our procedure converges. Notably, taxes converge to a new, much lower marginal rate at high
incomes—where the second-order condition initially failed—but are barely changed at lower incomes—where
the second order condition initially held. Intuitively, an increase in marginal retention sorts high-elasticity
households into higher income levels, rationalizing further decreases in marginal taxes at the top and so on
until eventually taxes are high enough.

2.9.3 Proofs of main results

This section contains proofs of our main results. These proofs focus on the main conceptual steps and
relegate many supporting details to Appendix 2.9.6.
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Figure 2.11: Schedule of marginal retention rates following a small perturbation away from initial taxes in
the Laffer valley.

2.9.3.1 Proof of Theorem 1

The proof has three main steps. First, Lemma 6 computes the first- and second-order derivatives of
aggregate tax revenue. Second, Lemma 7 does the same for aggregate welfare. Third, we use these derivatives
to study the planner’s first- and second-order necessary conditions for optimality of the tax schedule.
Lemma 6. Take ∆ ∈ ∆ and suppose ∆ is non-zero only on some interval [z, z] ⊂ supp g. Then

D∆

∫ (
z

h(R) − R(zh(R))
)
dµ =

∫

supp g

g(z)ψ(z)∆(z)dz

D
2
∆∆

∫ (
z

h(R) − R(zh(R))
)
dµ =

∫

supp g

g(z)
[

Ψ0(z)
(

∆(z)
R(z)

)2
+ Ψ1(z)

(
∆′(z)
R′(z)

)2]
dz

where ψ(z) ≡ 1 − R′(z)
R′(z)

(
d logR(z)
d log z

η(z) +
(
α(z) − d log

d log z

(
1 − R′(z)
R′(z)

)
− d log ε(z)

d log z

)
ε(z)
)

− 1

Ψ1(z) ≡ −z
(

1 + R
′(z)
)
ε(z) + z

(
1 − R

′(z)
)[(

α(z) − d log ε2(z)
d log z

)
ε

2(z) + ε
+(z)

]

(2.52)

and ψ(z), Ψ0(z), and Ψ1(z) are continuous functions of z on supp g. (Ψ0(z) is defined in the proof.)

Proof. Let fh(R̃) ≡ zh(R̃) − R̃(zh(R̃)) denote the tax revenue earned from each household h ∈ H. In
Appendix 2.9.6.5.2 we establish that for some δ > 0, aggregate tax revenue

∫
fh(R̃)dµ is defined and has

two continuous Frechet derivatives at all R̃ ∈ R+Bδ(0). Moreover, these derivatives satisfy

Dn

∫
fh(R̃)dµ =

∫
Dnfh(R̃)dµ. (2.53)
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for n = 1, 2.
We now proceed to compute these derivatives.

First derivative of tax revenue
Fix any ∆ ∈ ∆ satisfying ∆(z) = 0 for all z outside of some interval [z, z] ⊂ supp g. To compute the

first derivative of tax revenue, we combine (2.53) with the expression (2.126) for D∆z
h(R̃) in the proof of

Lemma 2:68

D∆

∫
fh(R̃)dµ =

∫ [
(1 −R′(zh

0 ))zh
0

(
ηh(R)

∆(zh
0 )

R(zh
0 )

+ εh(R)
∆′(zh

0 )
R′(zh

0 )

)
− ∆(zh

0 )
]
dµ

=
∫

supp g

g(z)
[

(1 −R′(z))z
(
η(z) ∆(z)

R(z)
+ ε(z) ∆′(z)

R′(z)

)
− ∆(z)

]
dz

(2.54)

Finally, we integrate by parts in order to convert the term proportional to ∆′(z) into a term proportional to
∆(z). Here, we use that (a) ∆(z) = 0 outside of [z, z] ⊂ supp g, (b) by R′(z)’s continuity (from Assumption
1) and the argument in the proof of Lemma 2 that R′(z) > 0 at all z > 0, R′(z) is bounded above zero
on [z, z], (c) by Assumptions 1 and 5 and the definition of ∆, g(z) 1−R′(z)

R′(z) ε(z)z and ∆(z) are continuously
differentiable.

z∫

z

g(z) 1 −R′(z)
R′(z)

ε(z)z∆′(z)dz

= −
z∫

z

g(z) 1 −R′(z)
R′(z)

ε(z)
(

−α(z) + d log
d log z

(1 −R′(z)
R′(z)

)
+ d log ε(z)

d log z

)
∆(z)dz.

(2.55)

Subtituting this in gives us the expression ψ(z) in the statement of the lemma.
Finally, the continuity of ψ(z) on supp g follows from Assumptions 1 and 4 and the fact, noted above,

that R′(z) > 0 for all z ∈ supp g ̸∋ 0.

Second derivative of tax revenue
To begin, note that simplifying the expression (2.140) for D2

∆∆R̃(zh(R̃)) in the proof of Lemma 3 and
combining it with D2

∆∆z
h(R) = zh[(D∆ log zh(R))2 +D2

∆∆ log zh(R)] gives us

D2
∆∆f

h(R) = zh
[ (

1 −Rh′) ((D∆ log zh(R)
)2 +D2

∆∆ log zh(R)
)

−

Rh′
(

2
(
D∆ log zh(R)

) ∆h′

Rh′ + d logRh′

d log z
(
D∆ log zh(R)

)2
)] (2.56)

Substituting in for D∆ log zh(R) and D∆∆ log zh(R) using the expressions (2.126) and (2.134) in the
proof of Lemma 2, employing (2.53), and finally changing variables to integrate over income rather than

68Appendix 2.9.6.5.3 walks through the measure-theoretic steps used below to move between the first and second line; we use
similar steps without explicit reference for the rest of the proofs.
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households, we obtain

D
2
∆∆

∫
f

h(R)dµ =

∫

supp g

g(z)
[
A(z)

(
∆(z)
R(z)

)2
+ B(z)

∆(z)
R(z)

∆′(z)
R′(z)

+ C(z)
(

∆′(z)
R′(z)

)2

+D(z)
∆(z)
R(z)

∆′′(z)z
R′(z)

+ E(z)
∆′(z)
R′(z)

∆′′(z)z
R′(z)

]
dz,

where

A(z) ≡ z
(

1 − R
′(z)
)[

−η(z) +
(

1 − 2
d logR(z)
d log z

η
2(z)
)

+
d

d log z

(
d logR(z)
d log z

)
η

3(z)

+
d

d log z

(
d logR′(z)
d log z

)
(η2

ε)(z) + η+0(z)
]

− zR
′(z)
[
d logR′(z)
d log z

η
2(z)
]

B(z) ≡ 2z
(

1 − R
′(z)
)[d logR(z)

d log z
η

2(z) +
(

1 − d logR(z)
d log z

− d logR′(z)
d log z

)
(ηε)(z)

+
d

d log z

(
d logR(z)
d log z

)
(η2

ε)(z) +
d

d log z

(
d logR′(z)
d log z

)
(ηε2)(z) + η+1(z)

]
− 2zR′(z)

[
η(z) +

d logR′(z)
d log z

(ηε)(z)
]

C(z) ≡ z
(

1 − R
′(z)
)[

−ε(z) + 2
d logR(z)
d log z

(ηε)(z) +
(

1 − 2
d logR′(z)
d log z

)
ε

2(z)

+
d

d log z

(
d logR(z)
d log z

)
(ηε2)(z) +

d

d log z

(
d logR′(z)
d log z

)
ε

3(z) + ε+1(z)
]

− zR
′(z)
[

2ε(z) +
d logR′(z)
d log z

ε
2(z)
]

D(z) ≡ 2z
(

1 − R
′(z)
)

(ηε)(z)

E(z) ≡ 2z
(

1 − R
′(z)
)
ε

2(z)

(2.57)

Our assumptions guarantee that A(z) and C(z) are continuous, B(z) and E(z) are continuously differentiable,
and D(z) is twice-continuously differentiable in z on supp g;69 and moreover that each additive term of (2.57)
is integrable in isolation.70

In order to reach the expression in the statement of the Lemma, we integrate by parts:71

∫

supp g

g(z)B(z)
∆(z)
R(z)

∆′(z)
R′(z)

dz = −
∫

supp g

d

dz

(
g(z)B(z)
R(z)R′(z)

)
1
2

∆(z)2
dz

∫

supp g

g(z)E(z)
∆′(z)
R′(z)

∆′′(z)z
R′(z)

dz = −
∫

supp g

d

dz

(
g(z)zE(z)
R′(z)2

)
1
2

∆′(z)2
dz

∫

supp g

g(z)D(z)
∆(z)
R(z)

∆′′(z)z
R′(z)

dz = −
∫

supp g

d

dz

(
g(z)zD(z)
R(z)R′(z)

)
∆(z)∆′(z)dz −

∫

supp g

g(z)zD(z)
R(z)R′(z)

∆′(z)2
dz

=

∫

supp g

d2

dz2

(
g(z)zD(z)
R(z)R′(z)

)
1
2

∆(z)2
dz −

∫

supp g

g(z)zD(z)
R(z)R′(z)

∆′(z)2
dz

(2.58)

69This follows from Assumptions 1 and 5 and the facts that (a) as shown in the proof of Lemma 2, R(z), R′(z) > 0 at all
z > 0, and (b) by Assumption 3, 0 ̸∈ supp g.

70Integrability is immediate from the continuity discussed above, the continuity and positivity ofR(z) andR′(z), the continuity
of ∆(z) implied by the definition of ∆, and the fact that ∆(z) is zero outside of [z, z].

71The validity of each integration by parts follows from that (a) since ∆ is zero outside of (z, z), we may restrict each integral
to that interval (b) ∆(z) is zero at the endpoints of the interval, and (c) since [z, z] ⊂ supp g, similar continuity arguments to
those above ensure each term of each integrand is continuously differentiable as needed.
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We conclude that

D2
∆∆

∫ (
zh(R) −R(zh(R))

)
dµ =

∫

supp g

g(z)
[

Ψ0(z)
(∆(z)
R(z)

)2
+ Ψ1(z)

(∆′(z)
R′(z)

)2
]
dz

where Ψ0(z) ≡ A(z) − R(z)2

2g(z)
d

dz

(
g(z)B(z)
R(z)R′(z)

)
+ R(z)2

2g(z)
d2

dz2

(
g(z)zD(z)
R(z)R′(z)

)

Ψ1(z) ≡ C(z) − d logR(z)
d log z

D(z) − R′(z)2

2g(z)
d

dz

(
g(z)zE(z)
R′(z)2

)
(2.59)

The continuity of Ψ0 and Ψ1 on supp g follows from our earlier observations about A(z), ..., E(z), Assumptions
1 and 5, and the fact that R(z), R′(z) > 0 on supp g (see the proof of Lemma 2.

To complete the proof, it remains to simplify the expression for Ψ1(z). Here, the main step is to compute
the E(z) term. Since by definition g(z) ̸= 0 for z ∈ supp g, we have

−R′(z)2

2
d

dz

[
g(z)zE(z)
R′(z)2

]
= −g(z)

1
2

[
−α(z)E(z) + zE

′(z) − 2
d logR′(z)
d log z

E(z)
]

= g(z)
[
z(1 − R

′(z))ε2(z)
(
α(z) + 2

d logR′(z)
d log z

− 1 − d log ε2(z)
d log z

)
+ zR

′(z)
d logR′(z)
d log z

ε
2(z)
] (2.60)

Substituting this expression, the definitions of C(z) andD(z), and the definition ε+(z) ≡ d
(

d log R(z)
d log z

)
d log z (ηε2)(z)+

d
(

d log R′(z)
d log z

)
d log z ε3(z) + ε+1(z) (see Appendix 2.9.1.4.1) into the definition of Ψ1(z) and cancelling terms gives

the expression in the statement of the lemma.

Lemma 7. Let ((wh)h∈H, G) be a standard, regular social objective. Take ∆ ∈ ∆ and suppose ∆ is non-zero
only on some interval [z, z] ⊂ supp g. Then

D∆

∫
w

h ◦ V h(R)dµ =

∫

supp g

g(z)λ(z)∆(z)dz,

D
2
∆∆

∫
w

h ◦ V h(R)dµ =

∫

supp g

g(z)
[

Φ0(z)
(

∆(z)
R(z)

)2
+ Φ1(z)

(
∆′(z)
R′(z)

)2]
dz

where Φ0(z) ≡ R(z)
[

(λγ)(z) +
d logR(z)
d log z

(
λ
η2

ε

)
(z) +

1
2

(
α(z) +

d logR(z)
d log z

)
(λη)(z) − 1

2
z(λη)′(z)

]

Φ1(z) ≡ R(z)
d logR(z)
d log z

(λε)(z)

(2.61)

where Φ0(z) and Φ1(z) are continuous functions of z on supp g.

Proof. Let fh(R̃) ≡ wh ◦ V (R̃). In Appendix 2.9.6.5.2 we establish that for some δ > 0, aggregate welfare∫
fh(R̃)dµ is defined and has two continuous Frechet derivatives at all R̃ ∈ R + Bδ(0). Moreover, these

derivatives satisfy
Dn

∫
fh(R̃)dµ =

∫
Dnfh(R̃)dµ. (2.62)

for n = 1, 2.

First derivative of welfare
Fix any ∆ ∈ ∆ satisfying ∆(z) = 0 for all z outside of some interval [z, z] ⊂ supp g. To compute the first

derivative of tax revenue, we combine (2.62) with the expression (2.141) for D∆w
h ◦ V h(R̃) in the proof of
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Lemma 5:

D∆

∫
fh(R)dµ =

∫
R(zh

0 ) (wh ◦ uh)c

(
ch

0 , z
h
0
)

︸ ︷︷ ︸
=λh(R)

∆(zh
0 )

R(zh
0 )
dµ =

∫

supp g

g(z)λ(z)∆(z)dz (2.63)

where λ(z) is the average marginal value of transfers to z-earners relative to tax revenue, as defined in and
below Definition 3.

Second derivative of welfare
To begin, we simplify the expression (2.142) for D2

∆∆w
h ◦ V h(R) in the proof of Lemma 5:

D2
∆∆f

h(R) = (wh ◦ uh)cc
(
ch0 , z

h
0
)

(ch0 )2
(

∆(zh0 )
R(zh0 )

)2

+ (wh ◦ uh)c
(
ch0 , z

h
0
)
ch0
d logR(zh0 )
d log z

1
εh(R)

(
D∆ log zh(R)

)2
.

(2.64)

Substituting in for D∆ log zh(R) using the expression (2.126) in the proof of Lemma 2, employing (2.62),
and finally changing variables to integrate over income rather than households, we obtain

D2
∆∆

∫
fh(R)dµ =

∫

supp g

g(z)
[
A(z)

(∆(z)
R(z)

)2
+B(z) ∆(z)

R(z)
∆′(z)
R′(z)

+ C(z)
(∆′(z)
R′(z)

)2
]
dz.

where A(z) ≡ R(z)
(

(λγ)(z) + d logR(z)
d log z

(
λ
η2

ε

)
(z)
)

B(z) ≡ R(z)(λη)(z)d logR(z)
d log z

C(z) ≡ R(z)d logR(z)
d log z

(λε)(z)

(2.65)

where the various terms (λx)(z) are as defined in and below Definition 3. Our assumptions guarantee that
A(z) and C(z) are continuous and B(z) is continuously differentiable in z on supp g;72 and moreover that
each additive term of (2.65) is integrable in isolation.73

In order to reach the expression in the statement of the Lemma, we integrate by parts:74

∫

supp g

g(z)B(z)∆(z)
R(z)

∆′(z)
R′(z)dz = −

∫

supp g

d

dz

(
g(z)B(z)
R(z)R′(z)

)
1
2∆(z)2dz (2.66)

We conclude that

D2
∆∆

∫ (
zh(R) −R(zh(R))

)
dµ =

∫

supp g

g(z)
[

Φ0(z)
(∆(z)
R(z)

)2
+ Φ1(z)

(∆′(z)
R′(z)

)2
]
dz

where Φ0(z) ≡ A(z) − R(z)2

2g(z)
d

dz

(
g(z)B(z)
R(z)R′(z)

)
and Φ1(z) ≡ C(z)

(2.67)

The continuity of Φ0 and Φ1 on supp g follows from our earlier observations about A(z), B(z), C(z), As-
sumptions 1 and 5, Definition 3, and the fact that R(z), R′(z) > 0 on supp g (see the proof of Lemma 2. To

72This follows from Assumptions 1 and 5, Definition 3 and the facts that (a) as shown in the proof of Lemma 2, R(z), R′(z) > 0
at all z > 0, and (b) by Assumption 3, 0 ̸∈ supp g.

73Integrability is immediate from the continuity discussed above, the continuity and positivity ofR(z) andR′(z), the continuity
of ∆(z) implied by the definition of ∆, and the fact that ∆(z) is zero outside of [z, z].

74The validity of integration by parts follows from that (a) since ∆ is zero outside of (z, z), we may restrict each integral
to that interval (b) ∆(z) is zero at the endpoints of the interval, and (c) since [z, z] ⊂ supp g, similar continuity arguments to
those above ensure each term of each integrand is continuously differentiable as needed.
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complete the proof, it remains to simplify the expression for Ψ0(z) by expanding the B(z) term. Since, by
definition g(z) ̸= 0 for z ∈ supp g, we have

−R(z)2

2g(z)
d

dz

(
g(z)B(z)
R(z)R′(z)

)
= − 1

g(z)
R(z)2

2z
d

d log z

[
g(z)z(λη)(z)

R(z)

]

= − 1
g(z)

R(z)2

2z

[
−g(z)zα(z)

(λη)(z)
R(z)

+ g(z)z
z(λη)′(z)
R(z)

− g(z)
z(λη)(z)
R(z)

d logR(z)
d log z

]

=
R(z)

2

[(
α(z) +

d logR(z)
d log z

)
(λη)(z) − z(λη)′(z)

]
(2.68)

Simplifying this expression and substituting it into the definition of Φ0(z) gives the expression in the state-
ment of the Lemma.

We now turn to the third step of the proof of Theorem 1. Here, the main idea is to use the derivatives
computed in Lemmas 6 and 7 to study the first- and second-order necessary conditions that must hold for
the planner who rationalizes R.

More concretely, we may—since by assumption R is locally rationalized by a standard, regular social
objective—take ((wh)h∈H, G) to be such a social objective. Since R is locally rationalized by the social
objective, 0 must solve:

0 ∈ arg max
∆∈∆

F (∆) s.t. H(∆) ∈ R≥0

where F (∆) ≡





∫
wh ◦ uh

(
(R+ ∆)(zh(R+ ∆)), zh(R+ ∆)

)
dµ, if ∆ ∈ Bδ(0)

F (0) − 1 if ∆ ̸∈ Bδ(0)

H(∆) ≡





∫ [
zh(R+ ∆) − (R+ ∆)(zh(R+ ∆))

]
dµ−G, if ∆ ∈ Bδ(0)

0, if ∆ ̸∈ Bδ(0)

(2.69)

where δ > 0 is small enough that F and H are well-defined and within Bδ(0) have well-defined and continuous
first and second Frechet derivatives (see Appendix 2.9.6.5.2).

In Appendix 2.9.6.5.4 we show that the optimization problem (2.69) satisfies the conditions required to
apply standard results from optimization theory on Banach spaces. In particular, the fact that 0 solves
(2.69) implies: If DH(0) ̸= 0, then there exists κ ∈ R≥0 such that

• A first-order condition holds: DF (0) + κDH(0) = 0

• A second-order condition holds: for all non-zero ∆ ∈ ∆ satisfying D∆H(0) = 0, D2
∆,∆F (0) +

κD2
∆,∆H(0) ≤ 0.

Since the case where DH(0) = 0—i.e. tax revenue is, to first-order, invariant to tax changes—is unlikely to
apply in practice, we relegate it to Appendix 2.9.6.5.5. We show that in this case (ABC) holds with equality
for all z ∈ supp g, so the theorem holds. The remainder of the proof focuses on the complementary case
where DH(0) ̸= 0.

First-order condition
Recall that there exists κ ≥ 0 for which DF (0) + κDH(0) = 0. As we have assumed DH(0) ̸= 0, this

implies there exists ∆ ∈ ∆ with either D∆F (0) ̸= 0, so we must have κ > 0. Since, by the definition of a
standard social objective, λ(z) ≥ 0 for all z, Lemma 6 implies D∆F (0) ≥ 0 for all ∆ ∈ ∆ satisfying ∆(z) ≥ 0
for all z ∈ supp g.
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Putting together these observations with the expression for the first derivative of revenue in Lemma 6,
we have that for all ∆ ∈ ∆ satisfying ∆(z) ≥ 0 for all z ∈ supp g,

D∆H(0) =
∫

z∈supp g

g(z)ψ(z)∆(z)dz ≥ 0, (2.70)

where ψ(z) is as in Lemma 6 and recall ψ(z) is continuous on supp g.
We conclude that ψ(z) ≥ 0 for all z ∈ supp g, i.e. the first part of the theorem holds. Otherwise, the

continuity of g(z) (from Assumption 5 and ψ(z) imply there exists an interval [z, z > z] ⊂ supp g so that i.e.
g(z)ψ(z) < 0 at all z ∈ [z, z]. The result then follows from considering any weakly positive function ∆(z)
that is strictly positive on a non-zero-measure sub-interval of [z, z], zero outside of [z, z], and is contained in
∆.75

Second-order condition
We now argue that the second-order condition stated above implies Ψ1(z) ≤ 0 for all z ∈ supp g—

where Ψ1 is as defined in Lemma 6—as claimed in the statement of the theorem. It suffices to show
Φ1(z) +κΨ1(z) ≤ 0 for all z ∈ supp g—where Ψ0 is as defined in Lemma 7—since κ > 0 and since Φ1(z) ≥ 0
because (a) R(z), R′(z) > 0 (see the proof of 2) and (b) by Assumptions 2, the definition of a standard social
objective, and the observation in the proof of 2 that εh(R) > 0, we have εh(R), λh(R) ≥ 0 for all h ∈ H.

To see this, suppose not, i.e. Φ1(z∗) +κΨ1(z∗) > 0 at some z∗ ∈ supp g. By the continuity established in
Lemma 6 and 7 as well as that of g(z) from Assumption 5, there then exists an interval [z, z > z] ⊂ supp g on
which g(z)(Φ1(z)+κΨ1(z)) is bounded above zero and g(z)(Φ0(z)+κΨ0(z)) and g(z)ψ(z) are bounded. Let-
ting k > 0 be some number for which minz∈[z,z] g(z)(Φ0(z) +κΨ0(z)) > −kminz∈[z,z] g(z) (Φ1(z) + κΨ1(z)),
we now consider a tax changes of the form ∆(·; ẑ, r, k) that is in ∆, is zero outside of the interval Br(ẑ), and
satisfies

∫ ẑ+r
ẑ−r ∆′(z; ẑ, r, k)2dz > k

∫ ẑ+r
ẑ−r ∆(z; ẑ, r, k)2dz. Here the idea is to take ∆(·; ẑ, r, k) to be a sufficiently

narrow “bump” centered at z; we provide an explicit example in Appendix 2.9.6.5.7.
To complete the proof, consider ∆ ∈ ∆ defined by ∆(z) ≡ α1∆−(z) + α2∆+(z) for ∆−(z) ≡ ∆(·; 3

4z +
1
4z,

1
4 (z − z), k), ∆+(z) ≡ ∆(·; 1

4z + 3
4z,

1
4 (z − z), k), and some constants α−, α+ ∈ R.76 By choosing α− and

α+ appropriately—and without setting both to zero—we can use ensure that

D∆H(0) = α−

∫

supp g

g(z)ψ(z)∆−(z)dz + α+

∫

supp g

g(z)ψ(z)∆+(z)dz = 0. (2.71)

The planner’s second order condition then implies D2
∆∆F (0) +κD2

∆∆H(0) ≤ 0. However, applying Lemmas
75We give an example in Appendix 2.9.6.5.6.
76Any such tax change is in ∆ since by Lemma 1 is a Banach space.
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6 and 7 to our construction implies the opposite, a contradiction:

D2
∆∆F (0) + κD2

∆∆H(0)

= α2
−

∫

supp g

g(z)
[
(Φ0(z) + κΨ0(z))∆−(z)2 + (Φ1(z) + κΨ1(z))∆′

−(z)2
]
dz

+ α2
+

∫

supp g

g(z)
[
(Φ0(z) + κΨ0(z))∆+(z)2 + (Φ1(z) + κΨ1(z))∆′

+(z)2
]
dz

≥ α2
−

(
min

z∈[z,z]
g(z)(Φ0(z) + κΨ0(z))

)

︸ ︷︷ ︸
>−k·minz∈[z,z] g(z)(Φ1(z)+κΨ1(z))

∫

supp g

∆−(z)2dz

︸ ︷︷ ︸
< 1

k

∫
supp g

∆′
−(z)2dz

+
(

min
z∈[z,z]

g(z)(Φ1(z) + κΨ1(z))
) ∫

supp g

∆′
−(z)2dz

+ α2
+

(
min

z∈[z,z]
g(z)(Φ0(z) + κΨ0(z))

)

︸ ︷︷ ︸
>−k·minz∈[z,z] g(z)(Φ1(z)+κΨ1(z))

∫

supp g

∆+(z)2dz

︸ ︷︷ ︸
< 1

k

∫
supp g

∆′
+(z)2dz

+
(

min
z∈[z,z]

g(z)(Φ1(z) + κΨ1(z))
) ∫

supp g

∆′
+(z)2dz

> 0.

(2.72)

Above, the first equality uses that ∆−(z) and ∆+(z) are never non-zero at any common z. The final
inequality uses that α− or α+ is non-zero and that

∫
supp g ∆′

−(z)2,
∫

supp g ∆ +− (z)2 > 0.
Thus, by computing the first and second derivatives of revenues and welfare, combining those expressions,

and applying them to “narrow” deviations, we have shown that equations (ABC) and (DEFG) are necessary
conditions for the optimality of a tax schedule.

2.9.3.2 Proof of Theorem 2

The proof has three main parts. The first main part is to infer from the tax schedule a profile of marginal
welfare weights that rationalize its first order condition and a profile of marginal welfare weight curvatures
consistent with its second condition. The second main part is to construct a standard, regular social objective
that generates the desired marginal welfare weights and curvatures and to demonstrate its various properties.
The third main part studies the planner’s Lagrangian given the social objective of the previous part, and in
particular makes a Lagrangian sufficiency argument for local optimality.

Part 1: Inferring / assigning welfare weights and curvatures

Implied marginal welfare weights
Our first step in constructing a welfare function will be to infer an implied average marginal welfare

weight at each income level and then assign it to particular households within the income level. In a later
step of the proof, we will connect these inferred marginal welfare weights to an exact welfare function.

To begin, define λ̂(·) : R≥0 → R and λ̂· by

λ̂(z) =





ΠABC(z), if z ∈ supp g

0, otherwise
and λ̂h =




λ̂(zh0 )1εh(R)≤ϵ

p≤(zh
0 ;ϵ) , if z ∈ supp g

0, otherwise
(2.73)

where ϵ > 0 is any value < ϵ = 1
BR min

[
bc

λc
, bz

λz

]
, where bc > 0 and bz > 0 are the constants in the statement
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of the proof,77 and where p≤(zh0 ; ϵ) ≡ P[εh(R) ≤ ϵ|zh0 = z] is as defined Footnote 26 in the statement of the
Theorem.

By the definition of ΠABC(z) and the assumptions in the statement of the theorem, we have λ̂(z) > 0
for all z ∈ supp g. In Appendices 2.9.6.6.1 and 2.9.6.6.2, we establish several other properties of λ̂(z) and λ̂h

related to measurability, continuity, integrability, and conditional expectations. For the purpose of the main
argument of the proof, only two are essential: We show that (a) λ̂(z) is continuously differentiable on supp g
and (b) letting η≤(z; ϵ) ≡ E[ηh(R) | zh(R) = z, εh(R) < ϵ], ε≤(z; ϵ) ≡ E[εh(R) | zh(R) = z, εh(R) < ϵ],
and (η

2

ε )≤(z; ϵ) ≡ E[ η
h(R)2

εh(R) | zh(R) = z, εh(R) < ϵ] be defined as in Assumption 6, we have that for
xh = 1, ηh(R), εh(R), and ηh(R)2

εh(R) , R(zh0 )λ̂(zh0 )x≤(zh0 ; ϵ) is a conditional expectation for R(zh0 )λ̂hxh conditional
on zh0 .

Implied sufficient welfare curvature
We now proceed to use λ̂h and our observations from the previous step of the proof in order define a

convenient curvature-of-welfare variable γ̂h.
Recalling Ψ0(z) from Lemma 6, we begin by defining, for all z ∈ R≥0,

(λ̂γ)(z) =





−1 − z
R(z) − Ψ0(z)

R(z) − d log R(z)
d log z

λ̂(z)
(

η2

ε

)
≤

(z; ϵ)

− 1
2

(
α(z) + d log R(z)

d log z

)
λ̂(z)η≤(z; ϵ) + 1

2
d

d log z

(
λ̂(z)η≤(z; ϵ)

)
, if z ∈ supp g

0, otherwise.

(2.74)

Next, we define a household-level version of this curvature, constructed so as to (a) aggregate up to the
income conditional mean γ̂(z) and (b) allocation all weight to households with low elasticities, as with λ̂h.

γ̂h =





(λ̂γ)(zh
0 )

λ̂hp≤(zh
0 ;ϵ)

, if z ∈ supp g and εh(R) ≤ ϵ

0, otherwise.
(2.75)

In Appendix 2.9.6.6.3, we establish several properties of (λ̂γ)(z) and γ̂h related to measurability, conti-
nuity, integrability, and conditional expectations. For the purpose of the main argument of the proof, only
one is essential: We show that R(zh0 )(λ̂γ)(zh0 ) is a conditional expectation for R(zh0 )λ̂hγ̂h given zh0 .

Part 2: Definition and properties of a social objective
At this point, we are finally ready to define a social objective using our inferred marginal welfare weights

and curvatures λ̂h and γ̂h. To do so, take δ > 0 small enough that Assumption 4 applies, zh(R̃) and ch(R̃)
exist and have two continuous and integrable Frechet derivatives on R̃ ∈ R + Bδ(0) (see Lemmas 2 and
3), and ĉh(u) ≡ uh(·, zh0 )−1(u) is defined for all u ∈ V h(R + Bδ(0)) (see Appendix 2.9.6.6.4). Then define

77Our motivation for this particular choice of ϵ will become evident in the final step of the proof.
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((wh)h∈H, G) by:

wh : Im(uh) → R ∪ {−∞}

u 7→





λ̂h
∫

[V h
0 ,u]

eΦ(γ̂h(log ĉh(ũ)−log ch
0 ))

uhc (ĉh(ũ), zh0 )
dũ, if u ∈ V h(R+Bδ(0))

0, else

G =
∫ (

zh0 − ch0
)
dµ

(2.76)

where Φ(·) ≡
√

2π
(
Φ0(·) − 1

2
)

and Φ0 is the standard normal CDF.78

In Appendix 2.9.6.6.5, we establish two important technical properties of this social objective: We show
that wh is well-defined (the fact that G is well-defined is immediate from Assumption 4) and ((wh)h∈H, G)
is a standard, regular social objective in the sense of Definitions 1 and 3.

The key to wh’s construction is that it ensures that, for all h ∈ H with zh0 ∈ supp g,

λh(R) = (wh ◦ uh)c(ch0 , zh0 ) = λ̂h and (λγ)h(R) = ch0 (wh ◦ uh)cc(ch0 , zh0 ) = λ̂hγ̂h. (2.77)

The former of these properties is immediate from the chain rule and the fundamental theorem of calcu-
lus (here, we use the continuity of the integrand, from Assumption 2 and our characterization of ch(ũ)
in Appendix 2.9.6.6.4.) The latter is somewhat more complicated; we relegate its proof to Appendix
2.9.6.6.5 (See “Proof of regularity, part 2”). These facts allow us to relate conditional expectations of λh(R)
and (λγ)h(R) to λ̂(zh0 ) and (λ̂γ)(zh0 ): We show in Appendix 2.9.6.6.5 that expectations of R(zh0 )λh(R),
R(zh0 )λh(R)ηh(R), R(zh0 )λh(R)εh(R), R(zh0 )λh(R)η

h(R)2

εh(R) , R(zh0 )(λγ)h(R) conditional on income zh0 exist

and are equal to R(zh0 )λ̂(zh0 ), R(zh0 )λ̂(zh0 )η≤(zh0 ; ϵ), R(zh0 )λ̂(zh0 )ε≤(zh0 ; ϵ) and R(zh0 )λ̂(zh0 )
(
η2

ε

)
≤

(zh0 ; ϵ), and

R(zh0 )(λ̂γ)(zh0 ) respectively.

Part 3: Lagrangian sufficiency

Derivatives of planner’s Lagrangian
Define L : R+Bδ(0) → R by L(R̃) ≡

∫
wh ◦V h(R̃)dµ+

∫ (
zh(R̃) − ch(R̃)

)
dµ−G. Toward the eventual

goal of making a Lagrangian sufficiency argument, we now consider and compute the derivatives of L(R̃).
By Lemmas 3 and 5, we may take δ small enough that, by the linearity of differentiation, L(R̃) is twice-
continuously Frechet-differentiable on R + Bδ(0). In Appendix 2.9.6.6.6 we show that—under Assumption
6—strengthened versions of Lemmas 6 and 7 hold for the objective defined above, so that for all ∆ ∈ ∆,

D∆L(R) =
∫

supp g

g(z) [λ(z) + ψ(z)] ∆(z)dz

D2
∆∆L(R) =

∫

supp g

g(z)

[
(Φ0(z) + Ψ0(z))

(
∆(z)
R(z)

)2

+ (Φ1(z) + Ψ1(z))
(

∆′(z)
R′(z)

)2
]
dz,

(2.78)

78The only properties of Φ we will use are that Φ is infinitely continuously differentiable, Φ(0) = 0, Φ′(0) = 1, and some
scalar Φ bounds |Φ(x)| and |Φ′(x)| across all x ∈ R.
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where ψ(z),Φ0(z),Ψ0(z),Φ1(z),Ψ1(z) are as defined in Lemmas 6 and 7; recall these functions are continuous
on z ∈ supp g.

This expression for the Lagrangian’s first derivative has a straightforward implication: By (2.73) and
(2.77), λ(z) + ψ(z) = 0, so DL(R) = 0. Turning now to the Lagrangian’s second derivative, we claim there
exists a scalar b > 0 such that for all z ∈ supp g,

Φ0(z) + Ψ0(z) ≤ −b(R(z) + z) and Φ1(z) + Ψ1(z) ≤ −b(R(z) + z). (2.79)

To see this, first note that (a) by the definitions of (λ̂γ)(z) (see (2.74)) and Φ0(z), and (b) since—as
λh(R) = λ̂h and (λγ)h(R) = λ̂hγ̂h for measure one of households—the conditional expectations discussed
above remain valid if λ̂h and λ̂hγ̂h are replaced by λh(R) and (λγ)h(R), respectively, we have that for all
z ∈ supp g,

Φ0(z) = R(z)

[
(λ̂γ)(z) +

d logR(z)
d log z

λ̂(z)
(
η2

ε

)
(z; ϵ) +

1
2

(
α(z) +

d logR(z)
d log z

)
λ̂(z)η(z; ϵ) − 1

2

d
(
λ̂(z)η(z; ϵ)

)

d log z

]

=⇒ Φ0(z) + Ψ0(z) = R(z)
[

−1 − z

R(z)
− Ψ0(z)

R(z)

]
+ Ψ0(z) = −R(z) − z.

(2.80)

So Φ0(z) + Ψ0(z) ≤ −b(R(z) + z) for any b ∈ (0, 1). Moreover, by the definitions of Φ1(z) and Ψ1(z), we
have, for all z ∈ supp g,

Φ1(z) + Ψ1(z) = R(z)d logR(z)
d log z

(λε)(z)︸ ︷︷ ︸
=λ̂(z)ε≤(z;ϵ)

−ΠDEF G(z) ≤ BRϵ(λcR(z) + λzz) − bcR(z) − bzz. (2.81)

Above, the second inequality uses Assumption 1, the definitions of λc and λz, and the bounding assumption
on ΠDEFG(z) in the statement of the theorem. Recalling our definition of ϵ < 1

BR min
[
bc

λc
, bz

λz

]
, we have

shown that there exists b > 0 such that Φ1(z) + Ψ(z) ≤ −b(R(z) + z).
We summarize our observations about L’s derivatives as follows: L is twice-continuously differentiable

on R+Bδ(0) and there exists b > 0 such that for all ∆ ∈ ∆,

D∆L(R) = 0 and D2
∆∆L(R) ≤ −b||∆||2∗

where ||∆||∗≡
[∫

g(z)(z +R(z))
((

∆(z)
R(z)

)2
+
(

∆′(z)
R′(z)

)2
)
dz

] 1
2

.79
(2.82)

Lagrangian sufficiency on a restricted domain
To finish the proof, it suffices to show that, given any M > 0, there exists sufficiently small δ̃ > 0 so that

L(R̃) is maximized within R+Bδ̃(0)∩∆∗
M by R̃ = R, where ∆∗

M = {∆ ∈ ∆ | ||∆|| ≤ M ||∆||∗} is as defined
in the theorem statement. A Lagrangian sufficiency argument then completes the proof.80 The reason we
restrict the domain to ∆∗

M is that this domain rules out sequences of variations which become much larger
in the sense of ||·|| (the relevant norm for Taylor’s theorem) than in the sense of ||·||∗ (the relevant sense for
our bounds on the Lagrangian’s second derivative).

To see this, first note that for any R+ ∆ ∈ R+Bδ(0), Taylor’s theorem applied along the line between
80Put simply, Lagrangian sufficiency says that if there exists a Lagrange multiplier—in our case 1—so that a feasible point—in

our case R—maximizes the Lagrangian among all points in some set that includes all feasible points, then that point solves the
constrained optimization problem.
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R and R̃ (allowed by L’s twice-continuous differentiability), we have

L(R+ ∆) = L(R) + D∆L(R) + 1
2
D2

∆∆L(R+ α∆∆)

= L(R) + D∆L(R) + 1
2
D2

∆∆L(R) + 1
2
(
D2

∆∆L(R+ α∆∆) − D2
∆,∆L(R)

) (2.83)

for some α∆ ∈ [0, 1]. We next argue that D2
∆∆L(R+α∆∆)−D2

∆∆L(R)
||∆||2 converges to 0 uniformly across ∆ and α∆

for all sequences ∆ → 0. To see this, note that by L’s twice-continuous differentiability, we have that for all
ϵ̂ > 0, there exists δ̂ > 0 such that for all ∆̌ ∈ Bδ̂(0) and all non-zero ∆̃, ∆̂ ∈ ∆,

∣∣∣D2L∆̃,∆̂(R+ ∆̌) −D2L∆̃,∆̂(R)
∣∣∣

||∆̃||||∆̂||
< ϵ̂. (2.84)

The desired conclusion is implied by taking ∆̌ = α∆∆ and ∆̃ = ∆̂ = ∆. In particular, this implies that the
last term in (2.83) is o(||∆||2) in the sense that

1
2
(
D2

∆∆L(R+ α∆∆) − D2
∆∆L(R)

)

||∆||2 → 0 as ||∆||→ 0. (2.85)

Combining these observations with the previous step, we may, for any R+ ∆ ∈ R+Bδ(0), write

L(R+ ∆) = L(R) + D∆L(R) + 1
2D

2
∆∆L(R) + o(||∆||2)

≤ L(R) − b
||∆||2∗

2 + o(||∆||2)

=⇒ L(R+ ∆) −
(

L(R) − b

2
||∆||2∗

2

)
≤ − b

2
||∆||2∗

2 + o(||∆||2)

(2.86)

Finally, we claim that—for any M > 0—there exists δ̃ such that for all R + ∆ ∈ R + Bδ̃(0) ∩ ∆∗
M ,

L(R+ ∆) ≤ L(R) − b
2

||∆||2
∗

2 ; note this implies L(R+ ∆) ≤ L(R).
To see this, suppose otherwise, i.e. there exists a sequence ∆n → 0, with each ∆n ∈ Bδ(0) ∩ ∆∗

M , such
that for all n, L(R+ ∆n) > L(R) − b

2
||∆n||2

∗
2 . By (2.86), this implies

0 < − b

2
||∆n||2∗

2 + o(||∆||2) ≤ − b

2
√
M

||∆n||2
2 + o(||∆n||2). (2.87)

where the second inequality is by the definition of ∆∗
M . For small enough n, the RHS is strictly negative, a

contradiction.
This guarantees that—within ∆∗

M—the Lagrangian of the planner we have constructed is locally maxi-
mized at R. By Lagrangian sufficiency, this completes the proof.

2.9.3.3 Proof of claims from “sort and extort” section (2.4.3.1)

Suppose that each household h belongs to one of finitely many groups ih ∈ I. We denote income-
conditional statistics xh|zh0 = z, ih = i within each group by x(z; i) and so on. To begin, we will make use of
the following simple Lemma:
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Lemma 2.9.1. For any differentiable function f(z, i),
(
α(z) − d

d log z

)
E[f(z; ih) | zh0 = z] = E

[(
α(z; ih) − d

d log z

)
f(z; ih)

∣∣∣∣ zh0 = z

]
(2.88)

Proof. Recalling that α(z) = −d log zg(z)
d log z and multiplying through by −h(z), note that

− g(z)
(
α(z) − d

d log z

)
E[f(z; ih) | zh0 = z]

= g(z) d log
d log z (g(z)z)E[f(z; ih)|zh0 = z] + g(z) d

d log zE[f(z; ih)|zh0 = z]

= d

dz
(g(z)z)E[f(z; ih)|zh0 = z] + g(z) d

d log zE[f(z; ih)|zh0 = z]

= d

dz

(
g(z)zE[f(z; ih)|zh0 = z]

)

= d

dz

(∑

i∈I
g(z; i)zf(z; i)

)

= −
∑

i∈I
g(z; i)

(
α(z, i) − d

d log z

)
f(z; i)

= −g(z)E
[(
α(z; ih) − d

d log z

)
f(z; ih)

∣∣∣ zh0 = z

]

(2.89)

Applying this Lemma to DEFG and substituting for ε+(z) implies that DEFG can be written as:

0 ≥ −
(

1 +R′(z)
)
E[ε(z; ih) | zh

0 = z]

+
(

1 −R′(z)
)(

E
[(
α(z; ih) − d

d log z

)
ε2(z; ih)

∣∣∣ zh
0 = z

]
+ E

[
ε(z; ih) d

d log z
ε̂(z; ih)

∣∣∣ zh
0 = z

])

= −E

[
(

1 +R′(z)
)
ε(z; ih) +

(
1 −R′(z)

)((
α(z; ih) − d

d log z

)
ε2(z; ih) + ε(z; ih) d

d log z
ε̂(z; ih)

) ∣∣∣∣∣ z
h
0 = z

]

=
∑

i∈I

P
[
ih = i|zh

0 = z
]

Πi
DEF G(z)

(2.90)

Next, we assume that within each group i, preferences satisfy the function form studied in Werning
(2007):

uh(c, z) = vic(c) − viz(z) / θh, (2.91)

where vic and viz are increasing and vic is concave and viz is convex.

Proposition 1. If preferences with a group i ∈ I satisfy (2.91), then Πi
ABC(z) =⇒ Πi

DEFG(z)

Proof. Starting from (DEFG), we divide out by a factor of zε(z; i). Letting h(z, i) be the type (if one exists)
in group i who supplies labor z, we this gives us

0 ≥ − (1 +R′(z)) + (1 −R′(z))
[
α(z)ε(z; i) − dε(z; i)

d log z +
����������
d

d log z̃ |z̃=z ε̂
h(z,i)(z̃, R̃) −

�
�

��dε(z; i)
d log z

]
(2.92)

where here the fact that the last two terms cancel is an easily-verifiable property of (2.91).
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Next we rearrange the first-order condition (ABC) to get

(1 −R′(z))
(
α(z; i)ε(z; i) − ε′(z; i)z

)
= R′(z)

(
1 + Πi

ABC(z)
)

− (1 −R′(z))d logR(z)
d log z

η(z; i) − d logR′(z)
d log z

ε(z; i) (2.93)

Combining the two previous equations—the former from the second-order condition and the latter from
the first-order condition—(DEFG) for group i is equivalent to:

0 ≥ R′(z)Πi
ABC(z) − 1 − (1 −R′(z))d logR(z)

d log z η(z; i) − d logR′(z)
d log z ε(z; i) (2.94)

In order to simplify the LHS of this expression, we note that—from the definition of income and com-
pensated elasticities in (2.125)—

1 + (1 −R′(zh
0 ))

d logR(zh
0 )

d log zh
0

ηh(R) +
d logR′(zh

0 )
d log zh

0
εh(R)

= �����������
d logMh(ch

0 , z
h
0 )

d log ch
0

d logR(zh
0 )

d log zh
0

+ d log Mh(ch
0 ,zh

0 )
d log zh

0
−
HHHHH

d logR′(zh
0 )

d log zh
0

− (�1 −R′(zh
0 )) d log R(zh

0 )
d log zh

0

d log Mh(ch
0 ,zh

0 )
d log ch

0
+
HHHHH

d logR′(zh
0 )

d log zh
0

d log Mh(ch
0 ,zh

0 )
d log ch

0

d log R(zh
0 )

d log zh
0

+ d log Mh(ch
0 ,zh

0 )
d log zh

0
− d log R′(zh

0 )
d log zh

0

= εh(R)
(
d logMh(ch

0 , z
h
0 )

d log zh
0

+R′(z)d logR(z)
d log z

d logMh(ch
0 , z

h
0 )

d log ch
0

)

(2.95)

So (DEFG) is equivalent to

Πi
ABC(z) ≤ 1

R′(z)ε(z; i)
(
∂ logM(R(z), z; i)

∂z
+R′(z)d logR(z)

d log z
∂ logM(R(z), z; i)

∂c

)
. (2.96)

Since R′(z) > 0 by the proof of Lemma 2, since compensated elasticities are positive, and since the concavity
and convexity of vic and viz, respectively, imply Mh(c, z) is increasing in consumption and labor for all h, the
RHS is positive. (ABC) for group i ∈ I therefore implies (DEFG) for group i.

Proposition 2. Suppose each household h has preferences of the form

uh(c, z) = c − (z/θh)1+1/βh

1 + 1/βh (2.97)

and, local to some income z, R(z) is linear in z and the mean and variance of income-conditional elasticities
are constant in z. Then

ΠDEFG(z) = zε(z) (R′(z)ΠABC(z) − 1) + (1 −R′(z))zα(z)Var[εh(R)2|zh(R) = z]. (2.98)

Proof. This functional form for preferences implies that there are no income effects and no preference super-
elasticities. This fact and the assumptions that R′′(z) = ε′(z) = ε2′(z) = 0 imply that the first- and
second-order tests can be written, respectively, as

ΠABC(z) = −1 + (1 −R′(z))α(z) ε(z)
R′(z)

ΠDEFG(z) = − (1 +R′(z)) zε(z) + (1 −R′(z)) zα(z)ε2(z).
(2.99)
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Decomposing ε2(z) = ε(z)2 + Var[εh(R)2|zh(R) = z] then implies that

ΠDEFG(z) −R′(z)zε(z)ΠABC(z) = −zε(z)
+ (1 −R′(z)) zα(z)Var[εh(R)2|zh(R) = z].

(2.100)

2.9.4 Empirical Appendix

2.9.5 Selection of bandwidths for local regressions

For picking our bandwidths, we minimize the leave-one-one cross validations criteria, which is the average
of squared leave-one-out residuals, that is

LOOCV = 1
n

n∑

i=1
(yi − ĝ−i(xi))2, (2.101)

where ĝ−i(xi)) is the predicted value for yi using the estimated model ĝ−i that does use the observation i,
but evaluated at the covariate values xi. The average of these residuals is an estimate for the asymptotic
mean integrated square error (AMISE) of model with bandwith h. By minimizing it, we pick the model with
lowest estimated AMISE (Li and Racine, 2007).

For regressions with a large number of observations, the procedure above is computationally demanding.
To speed up computations we use the procedure described in Racine (1993), where the leave-one-out cross
validation is computed in subsamples and then is scaled down, using the fact that the optimal bandwith
should be proportional to cσxn−1/5, where c is a constant that does not depend on the number of observations
n, and σx is the standard deviation of x.

2.9.5.1 Non-parametric identification of elasticity moments

In this section we show that we can recover all moments of the distribution of elasticities from moments
in the data. We assume that behavioral responses of each worker to tax changes are linear, that is, each of
them has constant elasticities.

Under this assumption, the change in income and the change in marginal retention are related through
an equation of the form:

yht = aht + bht x
h
t

We now show that we can recover all moments of the joint distribution of (aht , bht ).
We now raise the structural equation above to the n − power and algebraically manipulate it into a

regression equation:

(yht )n = (aht + bht x
h
t )n

(yht )n =
n∑

k=0

(
n

k

)
(aht )n−k(bht xht )k
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(yht )n =
n∑

k=0

(
n

k

)
E[(aht )n−k(bht )k](xht )k +

n∑

k=0

(
n

k

)(
(aht )n−k(bht ) − E[(aht )n−k(bht )k]

)
(xht )k

Now, notice that, assuming xht is randomly assigned, for any k and k′,

E
[
(xht )k

′k
(
(aht )n−k(bht ) − E[(aht )n−k(bht )k]

)]
= 0.

Therefore, the equation above is a regression equation, where the coefficients are moments of the distri-
bution of aht and bht . Crucially, note than all moments of the joint distribution of (aht , bht ) take the form
E[(aht )n−k(aht )k] for some n and k. So we can recover it from some such regression, assuming that there is
enough variation in x (which prevents collinearity).

2.9.5.2 Derivation of mechanism regression equation

In this section, we show that the regression equation 2.22 recovers the variance of elasticities within
brackets.

We start from the following expression, based on (2.21):

E[εh|z, logR′
t] ≈ E[εh|z, logR′] + αt(z)Var[εh|z](logR′

t(z) − logR′(z)).

Writing the elasticity εh as the sum of its expectation and an expectational error ξh, we use this expression
to substitute in for elasticities in the definition of the elasticity elasticity as the approximate change in income
that results from an exogenous change in marginal taxes at the initial income level:

∆ log zht ≈ εh∆ logR′
t(zht ) + aht

≈
[
E[εh̃|zh, logR′] + α(zh)Var[εh̃|zh]

(
logR′

t(zht ) − logR′(zht )
)

+ ξht

]
∆ logR′

t(zht ) + aht

where here the expectation and variances are over the household h̃, whose income we condition on being
equal to zh.

Finally, we add and subtract terms to arrive at a regression equation:

∆ log zht ≈ E[E[εh̃|zĥ, logR′]] · ∆ logR′(zh)

+ E[Var[εh̃|zĥ]] · αt(zht )
(
logR′

t(zht ) − logR′(zht )
)

∆ logR′(zht )

+
(
Var[εh̃|zh] − E[Var[εh̃|zĥ]]

)
αt(zht )

(
logR′

t(zht ) − logR′(zht )
)

∆ logR′
t(zht )

+
(
E[εh̃|zh, logR′] − E[E[εh̃|zĥ, logR′]]

)
∆ logR′

t(zht )

+ ξht ∆ logR′
t(zht ) + aht ,

where all nested expectations are over h̃ for the inner expectation and ĥ for the outer expectation.
This is a regression equation, and it is identified under the assumption that tax changes are randomly

assigned. The coefficient on αt(zht )(logR′
t(zht )−logR′(zht ))∆ logR′

t(zht ) recovers the average variance measure
E[Var[εh̃|zĥ]].
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2.9.6 Omitted Proofs

This appendix contains proofs of supporting results used in the main theorems, as well as various technical
details.

2.9.6.1 Proof of Lemma 1

This proof shows that (∆, ||·||) is a Banach space.
∆ is a real vector space by standard arguments (the main property to consider is closure under addition).

Moreover, ||·|| induces a norm on ∆; this is easy to check:

• If ||∆||= 0, then by definition, ∆(z) = 0 for all z > 0. Continuity then implies ∆(z) = 0 for all z ≥ 0.
In the other direction, if ∆(z) = 0, then ||∆||= 0 by definition.

• For any a ∈ R, ||a∆||= |a|·||∆||.

• To show the triangle inequality, take ∆, ∆̃ ∈ ∆. Let B∆ and B∆̃ be bounds for which

∀z ∈ R>0, |∆(z)|≤ B∆|R(z)| and |∆′(z)|,
∣∣∣∣
d∆′(z)
d log z

∣∣∣∣ ,
∣∣∣∣
d2∆′(z)
d log z2

∣∣∣∣ ≤ B∆|R′(z)|

and |∆̃(z)|≤ B∆̃|R(z)| and |∆̃′(z)|,
∣∣∣∣∣
d∆̃′(z)
d log z

∣∣∣∣∣ ,
∣∣∣∣∣
d2∆̃′(z)
d log z2

∣∣∣∣∣ ≤ B∆̃|R′(z)|
(2.102)

By the linearity of differentiation, we have that

∀z ∈ R>0, |∆(z) + ∆̃(z)|≤ (B∆ +B∆̃)|R(z)|

and |∆′(z) + ∆̃′(z)|,

∣∣∣∣∣
d
(

∆′(z) + ∆̃′(z)
)

d log z

∣∣∣∣∣ ,
∣∣∣∣∣
d2
(

∆′(z) + ∆̃′(z)
)

d log z2

∣∣∣∣∣ ≤ (B∆ +B∆̃)|R′(z)|
(2.103)

which implies ∆ + ∆̃ ∈ ∆.

In order to argue that (∆, ||·||) is a real Banach space, it remains to verify that it is complete. To this
end, consider a sequence (∆n)∞

n=0 of functions in ∆. Moreover, suppose the sequence is Cauchy with respect
to ||·||. We will show the sequence converges to some limit contained in ∆.

To begin, note that since ∆n is Cauchy, so are—for each z ∈ R>0—∆n(z),∆′
n(z), d∆′

n(z)
d log z , and d2∆′

n(z)
d log z2 .

Each therefore converges pointwise to some functions ∆0(z),∆1(z),∆2(z),∆3(z) : R>0 → R. Note that the
sequence ∆n(0) is also Cauchy: Otherwise the continuity of the ∆ns implies that for some ϵ > 0, there exist
arbitrarily large n and m as well as z ∈ (0, 1) for which ∆n(z) − ∆m(z) > ϵ. Since R(z) is, by continuity,
bounded on [0, 1], this would violate that ∆n is Cauchy. So ∆0(z) is defined on R≥0.

We next establish two facts about these functions ∆k(z): First, for each k = 0, 1, 2, 3 there exists Bk ∈ R
such that

∀z ∈ R>0, |∆k(z)|≤ Bk|R(max[1,k])(z)|. (2.104)

To see this, suppose not. In this case, the bounds Bn = ||∆||n associated with each ∆n must diverge. But it is
easy to see this violates that the sequence is Cauchy. Second, we note that each ∆k(z) function is continuous
in z. This follows from the fact that, for any z ∈ R>0, |R(max[1,k])(z)| achieves some max on [z/2, 2z] by
continuity (from Assumption 1). The definition of ||·|| then implies that whichever of ∆n(·),∆′

n(·), d∆′
n(·)

d log z ,
and d2∆′

n(·)
d log z2 converges to ∆k(·) on [z/2, 2z] does so uniformly. Since each ∆n is three-times continuous
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differentiable and uniform convergence preserves continuity, this implies ∆k is continuous on [z/2, 2z]; varying
z, we get that ∆k is continuous on R>0.

In the case of k = 0, both of these observations on ∆k=0 extend to R≥0. First, the fact that ∆n → ∆0

uniformly on (0, 1], the fact that ∆n is continuous on [0,1], and the triangle inequality imply that ∆n → ∆0

uniformly on [0, 1]. So ∆0 inherits ∆n’s continuity on R≥0. Applying this continuity and that of R(z) to the
fact that for all z > 0, |∆0(z)|≤ Bk|R(z)| implies this is also true at z = 0.

Finally, we claim that for all z ∈ R>0, ∆0′(z) exists and equals ∆1(z), d∆1(z)
d log z exists and equals ∆2(z),

and d∆2(z)
d log z (z) exists and equals ∆3(z). To see this, recall we have already argued that for all m ∈ N,

∆n → ∆0,∆′
n → ∆1,

d∆′
n(·)

d log z → ∆2, and d2∆′
n(·)

d log z2 → ∆3 uniformly on [ 1
m ,m]. The lemma stated below

therefore implies that each of the derivatives described above exists and coincides in the desired way on
[ 1
m ,m]. Applying this argument for each m ∈ N gives us the desired claim on R>0.

Lemma 2.9.2. Let fn : [a, b] → R be a sequence of differentiable functions whose derivatives f ′
n are contin-

uous. If fn → f uniformly and f ′
n → g uniformly, then f is differentiable and f ′ = g.

Proof. This is a standard fact in real analysis. See, e.g., Bakker (2018).

At this point we have shown that the sequence (∆n) converges to a function ∆0 that is continuous on R≥0

and that has first, second, and third derivatives R>0 (this follows from the previous step because z > 0 on
R>0). We have shown that these derivatives are continuous on R>0 (similarly). Finally, we have shown the
existence of some B = maxk=0,1,2,3 Bk so that |∆0(z)|≤ B|R(z)|, |∆0′(z)|≤ B|R′(z)|,

∣∣∣d∆0′(z)
d log z

∣∣∣ ≤ B|R′(z)|,
and

∣∣∣d
2∆0′(z)
d log z2

∣∣∣ ≤ B|R′(z)|. Together, these observations imply ∆0 ∈ ∆.

2.9.6.2 Proof of Lemma 2

We complete the proof in seven steps. First, we establish a convenient fact we will use throughout;
second, we show the existence of a unique labor supply function within R+Bϵ̃(0) for some ϵ̃ (common across
h ∈ H); and, third and fourth, we show this labor supply function is twice continuously differentiable and
measurable. Fifth and sixth, we provide explicit expressions for the first and second derivatives of labor
supply; and, seventh, we show these as well are measurable. Eighth, we show that R̃(zh(R̃)) inherits the
relevant properties from zh(R̃).

Positivity of tax schedule
Fix any h ∈ H. We will show that an implication of the fact that zh0 > 0 is that for all z > 0, R(z) > 0

and R′(z) > 0. Under Assumption 3, this implies that for all h ∈ H, R(zh0 ), R′(zh0 ) > 0.
We begin with the R case and then proceed to the R′ case. To see the former, suppose not. Then since

R is continuous, there exists some highest z < zh0 for which R(z) = 0. But then for all z′ ∈ (z, zh0 ), we have

logR(z′) =
∫ log z′

log zh
0

R′(ez̃)ez̃
R(ez̃)︸ ︷︷ ︸

∈[−BR,BR]

dz̃ ∈ [−BR|log zh0 − log z′|, BR|log zh0 − log z′|]

=⇒ R(z′) ∈
[
e−BR|log zh

0 −log z′|, eB
R|log zh

0 −log z′|
]

·R(zh0 )

(2.105)

where the underbrace is by Assumption 1. Since R(z′) ≥ e−BR|log zh
0 −log z|R(zh0 ) > 0 for all z′ > z, R(z) > 0

by continuity, a contradiction.
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We may apply a similar argument to R’s first derivative, leveraging the observation that, since zh0 > 0
and uh and R are differentiable, h’s labor supply satisfies the first-order condition:

uhc (ch0 , zh0 )︸ ︷︷ ︸
>0

R′(zh0 ) + uhz (ch0 , zh0 )︸ ︷︷ ︸
<0

= 0 (2.106)

where the underbraces are by Assumption 2 and the fact that zh0 , ch0 > 0. This implies R′(zh0 ) > 0. The
same argument as above applied to R′ instead of R the implies that R′(z) > 0 at all z > 0.

Existence and uniqueness of labor supply function
We now claim that, for any ∆ ∈ Bĉ(c̄)(0), h’s problem (2.5) at R + ∆ has a solution within eBϵh (log zh

0 ).
To see this, first recall that by assumption, for any z ̸∈ eBϵh (zh(R)),

uh
(
R (z) ec̄, z

)
≤ uh

(
R(zh0 )e−c̄, zh0

)
(2.107)

Second, we claim that for ||∆||≤ ĉ(c̄) ≡ min(1,c̄)
2 , we have R(z) + ∆(z) ∈ [R(z)e−c̄, R(z)ec̄]. To see this, note

that ||∆||< ĉ(c̄) ≤ c̄ < ec̄ − 1 implies R(z) + ∆(z) ≤ R(z)ec̄ for all z ∈ R≥0. Moreover it is easy to verify
that for all c̄ > 0, 1 − min(1,c̄)

2 < e−c̄, implying that for ||∆||< ĉ(c̄), R(z) + ∆(z) ≥ R(z)e−c̄ with strict
inequality wherever |R(z)|> 0. Combining these observations and using that utility is strictly increasing in
consumption, we have for any z ̸∈ eBδ(log zh

0 ) that

uh (R(z) + ∆(z), z) ≤ uh
(
R (z) ec̄, z

)

≤ uh
(
R(zh0 )e−c̄, zh0

)
< uh

(
R(zh0 ) + ∆(zh0 ), zh0

) (2.108)

The final, strict, inequality uses the fact that R(zh0 ) > 0, as established above.
Since we have shown that h strictly prefers zh0 to any z ̸∈ elogB

ϵh (log zh
0 ) when facing the schedule R+ ∆,

h’s problem (2.5) can for any ∆ ∈ Bc̄(c̄)(0) be rewritten as

max
z∈eB

ϵh (log zh(R))
uh ((R+ ∆)(z), z) . (2.109)

Since the objective is continuous and the domain is compact, (2.109) has a solution, and in particular (by
the comparison-to-zh0 argument above) one within eBϵh (log zh

0 ).
We now argue that, for any ∆ ∈ Bϵ̃(0), this problem has a unique solution, where ϵ̃ ≡ min(ĉ(c̄), b(η,R))

and b(η,R) ≡ min
(

1
2 ,

η
40 max(1,BR)2

)
. To see this, consider the compensating variation function vh(·) of

Assumption 3. Since—by Assumption 2—uh is three-times continuously differentiable and uhc > 0, and—by
Assumption 1—R is three-times continuously differentiable, the implicit function theorem implies that v is
three-times continuously differentiable within Bϵh(log zh0 ). Note that, for any ∆ ∈ ∆ with ||∆||< 1 and
z ∈ eBϵh (log zh

0 ), (2.27) implies that

uh
(

(R(z) + ∆(z)) ev
h(log z)−∆̃(log z), z

)
= uh

(
R(zh0 ), zh0

)
,

where ∆̃(z̃) ≡ log
(

1 + ∆(ez̃)
R(ez̃)

)
.

(2.110)

Note that ∆̃(log z) is three-times continuously differentiable in Bϵh(log zh0 ) since R(z) > 0 and ∆ and R are
three-times continuously differentiable on R>0 by Assumption 1 and the definition of ∆.
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Combining (2.110) with (2.109) implies that, for ∆ ∈ Bĉ(c̄)< 1
2
(0), z solves h’s problem at R + ∆ if and

only if
log(z) ∈ arg min

z̃∈B
ϵh (log zh

0 )
vh(z̃) − ∆̃(z̃). (2.111)

To show that h’s problem has a unique solution at R + ∆, it therefore suffices to show that the objective
vh(·) − ∆̃(·) is strictly convex on Bϵh(log zh0 ). Since we know by assumption that vh′′(·) ≥ η, it suffices to
show that |∆̃′′(·)|< η. To this end, we compute the derivatives of ∆̃ below.

∆̃′(z̃) =
∆′(ez̃)ez̃

R(ez̃) − R′(ez̃)ez̃

R(ez̃)
∆(ez̃)
R(ez̃)

1 + ∆(ez̃)
R(ez̃)

∆̃′′(z̃) =
∆′′(ez̃)e2z̃

R(ez̃) + ∆′(ez̃)ez̃

R(ez̃) − ∆′(ez̃)ez̃

R(ez̃)
R′(ez̃)ez̃

R(ez̃) − R′′(ez̃)e2z̃

R(ez̃)
∆(ez̃)
R(ez̃) − R′(ez̃)ez̃

R(ez̃)
∆(ez̃)
R(ez̃) + 2 R′(ez̃)2e2z̃

R(ez̃)2
∆(ez̃)
R(ez̃) − R′(ez̃)ez̃

R(ez̃)
∆′(ez̃)ez̃

R(ez̃)

1 + ∆(ez̃)
R(ez̃)

−

(
∆′(ez̃)ez̃

R(ez̃) − R′(ez̃)ez̃

R(ez̃)
∆(ez̃)
R(ez̃)

1 + ∆(ez̃)
R(ez̃)

)2

(2.112)

It remains to show that these derivatives are bounded for small enough tax deviations ∆. To this end,
recall first that by Assumption 1, there exists BR ≥ 0 such that for all z ∈ R>0, |R′(z)|z ≤ BR|R(z)|
and |R′′(z)|z ≤ BR|R′(z)|. Moreover, recall that for any constant b > 0, if ||∆||< b, then |∆(z)|≤ b|R(z)|,
with strict inequality if |R(z)|> 0, and |∆′(z)|≤ b|R′(z)| and |∆′(z)|≤ b|zR′′(z)|, with strict inequality if
|R′(z)|> 0. Combining these observations, we may note that for any ∆ ∈ Bb(0), z ∈ eBϵh (log zh

0 ),
∣∣∣∣
∆(z)
R(z)

∣∣∣∣ < b,

∣∣∣∣
∆′′(z)z2

R(z)

∣∣∣∣ ≤ bBR,

∣∣∣∣
∆′(z)z
R(z)

∣∣∣∣ ≤ bBR,

∣∣∣∣
∆′(z)z
R(z)

R′(z)z
R(z)

∣∣∣∣ ≤ b(BR)2,

∣∣∣∣
R′′(ez̃)e2z̃

R(ez̃)
∆(ez̃)
R(ez̃)

∣∣∣∣ ≤ b(BR)2,

∣∣∣∣
R′(ez̃)ez̃
R(ez̃)

∆(ez̃)
R(ez̃)

∣∣∣∣ ≤ bBR,

∣∣∣∣
R′(ez̃)2e2z̃

R(ez̃)2
∆(ez̃)
R(ez̃)

∣∣∣∣ ≤ b(BR)2,

∣∣∣∣
R′(ez̃)ez̃
R(ez̃)

∆′(ez̃)ez̃
R(ez̃)

∣∣∣∣ ≤ b(BR)2

(2.113)

Combining these inequalities implies that ∆̃′′(z̃) is uniformly bounded by η across all ||∆||< b(η,R). To see
this, note that for any b ∈ (0, 1)

∆̃′′(z̃) < 5b(BR)2 + 3bBR
1 − b

+ 2bBR
(1 − b)2 ≤ 10 b

(1 − b)2 max(1, BR)2 (2.114)

In particular, ∆̃′′(z) < η if b < min
(

1
2 ,

η
40 max(1,BR)2

)
≡ b(η,R).81

Taking stock, if ∆ ∈ Bb(η,R)(0) then vh(z̃) + ∆̃(z̃) is strictly convex on Bϵh(log zh0 ), where ∆̃(·) is defined
as in (2.110). This implies that, for ∆ ∈ Bmin(ĉ(c̄),b(η,R))(0), h’s problem at R + ∆ has a unique solution.
(Note that uh(R) is therefore > −∞, a fact we will use throughout.)

Differentiability of labor supply function

81Doing out the algebra, let b̄ = min
(

1
2 ,

η

40 max(1,BR)2

)
. Then for any b < b̄,

10 b

(1 − b)2 max(1, BR)2 < 10 b̄

(1 − b̄)2 max(1, BR)2 ≤ 40b̄max(1, BR)2 ≤ η (2.115)
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So far, we have shown the existence of a unique labor supply function zh(R+∆) : R+Bmin(ĉ(c̄),b(η,R))(0) →
eBϵh (log zh

0 ) in a neighborhood of an initial tax schedule R. We will now show that zh(R + ∆) is twice
continuously differentiable.

To start, recall from (2.111) that

zh(R+ ∆) = arg min
z∈eB

ϵh (log zh
0 )

vh(log z) − ∆̃(log z). (2.116)

Recall we have already argued that vh(·) − ∆̃(·) is three times continuously differentiable on Bϵh(log zh0 ).
As we have shown that zh(R+ ∆) exists and is in eBϵh (log zh

0 ), we have the first order condition:

d

d log z

(
vh − ∆̃

) (
log zh(R+ ∆)

)
= 0. (2.117)

Toward an application of the implicit function theorem, define F : (Bmin(ĉ(c̄),b(η,R))(0) ⊂ ∆)×(Bϵh(log zh0 ) ⊂
R) → R by

F (∆, log z) ≡ d

d log z

(
vh(log z) − log

(
1 + ∆(z)

R(z)

))
(2.118)

First note that F is a map from a product of open subsets of Banach spaces to a Banach space. Next we claim
F is twice-continuously Frechet differentiable. That F is twice-continuously differentiable in log z follows
from that vh, ∆, and R are all three-times continuously differentiable, as discussed above. It therefore
suffices to show that F ’s derivatives in ∆ (including the cross-partial with log z) exist and are—at each
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∆, log z—bounded (over all directions in which the derivatives in ∆ may be taken). To see this, we compute

F (∆, log z) = vh′(log z) −
∆′(z)
R′(z) − ∆(z)

R(z)

1 + ∆(z)
R(z)

d logR(z)
d log z

D
∆̃
F (∆, log z) =


−

∆̃′(z)
R′(z) − ∆̃(z)

R(z)

1 + ∆(z)
R(z)

+
∆′(z)
R′(z) − ∆(z)

R(z)

1 + ∆(z)
R(z)

∆̃(z)
R(z)

1 + ∆(z)
R(z)


 d logR(z)

d log z

D2
∆̃∆̂

F (∆, log z) =




∆̃′(z)
R′(z) − ∆̃(z)

R(z)

1 + ∆(z)
R(z)

∆̂(z)
R(z)

1 + ∆(z)
R(z)

+
∆̃′(z)
R′(z) − ∆̃(z)

R(z)

1 + ∆(z)
R(z)

∆̃(z)
R(z)

1 + ∆(z)
R(z)

− 2
∆′(z)
R′(z) − ∆(z)

R(z)

1 + ∆(z)
R(z)

∆̃(z)
R(z)

∆̂(z)
R(z)(

1 + ∆(z)
R(z)

)2


 d logR(z)

d log z

D2
∆̃ log z

F (∆, log z) =


−

∆̃′(z)
R′(z) − ∆̃(z)

R(z)

1 + ∆(z)
R(z)

+
∆′(z)
R′(z) − ∆(z)

R(z)

1 + ∆(z)
R(z)

∆̃(z)
R(z)

1 + ∆(z)
R(z)


 d2 logR(z)

d log z2

+


−

∆̃′′(z)z
R′(z) − ∆̃′(z)

R′(z)
d log R′(z)

d log z
− ∆̃′(z)

R′(z)
d log R(z)

d log z
+ ∆̃(z)

R(z)
d log R(z)

d log z

1 + ∆(z)
R(z)

+
∆̃′(z)
R′(z) − ∆̃(z)

R(z)

1 + ∆(z)
R(z)

∆′(z)
R′(z)

d log R(z)
d log z

− ∆(z)
R(z)

d log R(z)
d log z

1 + ∆(z)
R(z)

+
∆′′(z)z
R′(z) − ∆′(z)

R′(z)
d log R′(z)

d log z
− ∆′(z)

R′(z)
d log R(z)

d log z
+ ∆(z)

R(z)
d log R(z)

d log z

1 + ∆(z)
R(z)

∆̃(z)
R(z)

1 + ∆(z)
R(z)

−
∆′(z)
R′(z) − ∆(z)

R(z)

1 + ∆(z)
R(z)

∆′(z)
R′(z)

d log R(z)
d log z

− ∆(z)
R(z)

d log R(z)
d log z

1 + ∆(z)
R(z)

∆̃(z)
R(z)

1 + ∆(z)
R(z)

+
∆′(z)
R′(z) − ∆(z)

R(z)

1 + ∆(z)
R(z)




∆̃′(z)
R′(z)

d log R(z)
d log z

− ∆̃(z)
R(z)

d log R(z)
d log z

1 + ∆(z)
R(z)

+
∆̃(z)
R(z)

1 + ∆(z)
R(z)

∆′(z)
R′(z)

d log R(z)
d log z

− ∆′(z)
R′(z)

d log R(z)
d log z

1 + ∆(z)
R(z)




 d logR(z)

d log z

(2.119)

It is immediate from Assumption 1, the definition of ∆, and the fact that ∆ ∈ B 1
2
(0) that all of the derivatives

above are bounded proportionally to ||∆̃|| and ||∆̂|| as appropriate. F is therefore Frechet differentiable.
Finally, recall we have shown that Dlog zF (∆, log z) = d2

d log(z)2

[
vh(log z) − log

(
1 + ∆(z)

R(z)

)]
> 0. The

implicit function theorem for Banach spaces82 therefore implies that a continuously differentiable solu-
tion log zh(∆) ∈ Bϵh(log zh0 ) to the equation F (∆, log z(∆)) exists on ∆Bmin(ĉ(c̄),b(η,R))(0) and satisfies
D∆̃ log z(∆) = − (Dlog zF (∆, log z(∆)))−1

D∆̃F (∆, log z(∆)). This derivative is bounded over all ∆̃ pro-
portionally to ||∆̃|| by the arguments above, so it is a Frechet derivative. Moreover, note that—since F is
twice-Frechet differentiable, log zh(∆) has a second derivative given by

D2
∆̃,∆̂

log z(∆) = (Dlog zF (∆, log z(∆)))−2
Dlog z∆̂F (∆, log z(∆))D∆̃F (∆, log z(∆))

− (Dlog zF (∆, log z(∆)))−1
D∆̃∆̂F (∆, log z(∆)).

(2.120)

Since by the arguments above this is bounded over all ∆̃, ∆̂ proportionally to ||∆̃||||∆̂||, it is a Frechet
82See, e.g., Martinsson (2006).

176



derivative as well.
Recalling from the previous step of the proof that the equation F (∆, log z) = 0 has a unique solution

on its domain, we identify elog z(∆) with zh(R + ∆) and conclude that zh(·) is twice continuously (Frechet)
differentiable in R+Bmin(ĉ(c̄),b(η,R))(0).

Measurability of labor supply
Fixing any R̃ ∈ R + Bmin(ĉ(c̄),b(γ,R))(0), we wish to show that zh(R̃)—which recall we have just shown

is well-defined—is measurable in h. This argument, written out below, is a straightforward implication of
the measurable maximum theorem as stated in Aliprantis and Border (2006). The theorem states that,83 if
Γ : H ⇒ R>0 is a weakly measurable correspondence with non-empty compact values and f : R>0 × H → R
is a Catheodory function (continuous in its first argument and measurable in its second), then the arg max
function µ(h) ≡ arg maxz∈Γ(h) f(z, h) admits a measurable selector.

First define Γ : H ⇒ R>0 by h 7→ eBϵh (log zh
0 ). Note this correspondence has non-empty and compact

values. To see it is moreover weakly measurable, note that it may be obtained by the composition of the
(by assumption and our use of the canonical product measure) measurable function h 7→ (log zh0 , ϵh) with
the correspondence Γ̃ : (z̃, ϵ) 7→ eBϵ(z̃). It therefore suffices to show that this correspondence Γ̃ is weakly
measurable. To see this fix any (WLOG non-empty) open set A ⊂ R>0 and let Ã be a dense, countable
subset of A.84 Then

Γ̃−1(A) =
{

(z̃, ϵ) ∈ R × R0 | ∃a ∈ A, a ∈ eBϵ(z̃)
}

=
{

(z̃, ϵ) ∈ R × R0 | ∃ã ∈ Ã, ã ∈ eBϵ(z̃)
}

=
⋃

ã∈A
Γ−1({ã})

(2.121)

where in the second line we have used A’s openness and Ã’s density in A. Since Ã is countable it suffices to
show each Γ−1({ã}) is measurable.85 Indeed, Γ−1({ã}) = ∅ (which is measurable) if ã ≤ 0 and if ã > 0,

Γ̃−1({ã}) = {(z̃, ϵ) ∈ R × R>0 | z̃ − ϵ ≤ log a ≤ z̃ + ϵ}

=
⋃

n=0,1,2...,m=1,2,3,...

[
log ã− n− 1

m
, log ã+ n+ 1

m

]
×
[
n+ 1

m
, 1 + n+ 1

m

]

∪
[
log ã− n− 1

m
, log ã+ n+ 1

m

]
×
[
−1 − n− 1

m
,−n− 1

m

]
(2.122)

which is Lebesgue-product-measurable since it is a countable union of rectangles.
Second, define f : R>0 × H → R by (z, h) 7→ uh(R̃(z), z). f is well-defined by Assumption 2 since

||R̃ − R||< 1 and z > 0 implies R̃(z) > 0. Moreover f is continuous since uh and R̃ are continuous, and
83Precisely, the Theorem also requires that R>0 is a separable metrizable space (it is), and H and its associated event space

constitute a measurable space (they do).
84Any non-empty subset A of R admits a countable, dense subset. Here we provide a proof: Fix any a0 ∈ A. For all n ∈ Z,

m, k ∈ N, k ≤ m; define xn
m,k as follows: If [n+ k−1

m
, n+ k

m
] intersects A, let xn

m,k be any point in their intersection; otherwise
set xn

m,k = a0. We claim that Ã =
⋃

n∈Z, k,m∈N, k≤m

{xn
m,k} is a countable (obviously) subset (obviously) of A which is dense

in A. To see Ã is dense in A, note that for all a ∈ A, a is contained in some interval [n, n + 1] for n ∈ Z, and moreover for all
m ∈ N, there exists k ∈ N, k ≤ m for which a ∈ [n + k−1

m
, n + k

m
]. Therefore, for all m ∈ N, there exists a point xn

m,k ∈ Ã

within 1
m

of a. So a is a limit point of Ã.
85This argument is similar to the one presented in Himmelberg (1975), available at http://repository.ias.ac.in/90958/1/

90958.pdf
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h-measurable since uh is.
Theorem 18.19 of Aliprantis and Border (2006) implies that the maximization problem

max
z∈Γ(h)

f(z, h) (2.123)

has an argmax correspondence that admits a measurable selector s(h) ∈ R>0. Since we have already
established that this maximization problem has a unique solution for each h, it must be that s(h) = zh(R̃).
We conclude that zh(R̃) is measurable in h.

First derivative of labor supply
We have already established each household’s labor supply function zh(R̃) is well-defined and has two

continuous Frechet derivatives when R̃ ∈ R + Bδ(0). While it is not strictly necessary to compute these
derivatives in order to complete the proof of the Lemma, this section computes explicit expressions for them,
which will be used in a later step of the proof. We therefore now fix such a R̃ and a household h ∈ H, and
will compute these Frechet derivatives.

We compute the first derivative by totally differentiating h’s MRS condition, since by continuous differ-
entiability of preferences and taxes and since zh(R̃) > 0, this always holds at the solution to h’s problem.
Fixing any direction ∆ ∈ ∆ and recalling Mh(c, z) ≡ −uh

z (c,z)
uh

c (c,z) , we have

Mh
(
R̃(zh(R̃)), zh(R̃)

)
= R̃′(zh(R̃))

d logMh(c, z)
d log c

∣∣∣∣∣c=R̃(zh(R̃))
z=zh(R̃)

(
∆(zh(R̃))
R̃(zh(R̃))

+ d log R̃(z)
d log z

∣∣∣∣
z=zh(R̃)

D∆ log zh(R̃)

)

+ d logMh(c, z)
d log z

∣∣∣∣∣c=R̃(zh(R̃))
z=zh(R̃)

D∆ log zh(R̃) = ∆′(zh(R̃))
R̃′(zh(R̃))

+ d log R̃′(z)
d log z

∣∣∣∣∣
z=zh(R̃)

D∆ log zh(R̃)

D∆ log zh(R̃) =
− d log Mh(ch,zh)

d log ch
∆(zh)
R̃(zh)

+ ∆′(zh)
R̃′(zh)

d log Mh(ch,zh)
d log ch

d log R̃(zh)
d log zh + d log Mh(ch,zh)

d log zh − d log R̃′(zh)
d log zh

∣∣∣∣∣zh≡zh(R̃),

ch≡R̃(zh)

(2.124)

where we may divide through by the denominator in the last line since—were it zero—then D∆ log zh(R̃)
would not exist for some ∆, and we have already established that D∆ log zh(R̃) exists. Note that the log of
Mh, R̃(zh), and R̃′(zh) are well defined since zh(R̃) > 0 implies R̃(zh), R̃′(zh) > 0 and since by Assumption
2 this implies uc(ch, zh) > 0, uz(ch, zh) < 0.

This expression in mind, we define

ηh(R̃) =
−d logMh(ch,zh)

d log ch

d logMh(ch,zh)
d log ch

d log R̃(zh)
d log zh + d logMh(ch,zh)

d log zh − d log R̃′(zh)
d log zh

∣∣∣∣∣∣zh≡zh(R̃),
ch≡R̃(zh)

,

εh(R̃) = 1
d logMh(ch,zh)

d log ch

d log R̃(zh)
d log zh + d logMh(ch,zh)

d log zh − d log R̃′(zh)
d log zh

∣∣∣∣∣∣zh≡zh(R̃),
ch≡R̃(zh)

.

(2.125)

Note that—by our expression for D∆ log zh(R̃)—this coincides with the definition in the main text, in (2.29),
but formally treats the set of feasible deviations. In terms of these elasticities the first Frechet derivative of
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labor supply can be written as

D∆ log zh(R̃) = ηh(R̃)∆(zh(R̃))
R̃(zh(R̃))

+ εh(R̃)∆′(zh(R̃))
R̃′(zh(R̃))

(2.126)

Aside: positivity of compensated elasticity
Since they are the second derivatives of the expenditure function, compensated elasticities are always

weakly positive. For the reader who is not convinced that εh(R̃) as defined above is indeed a compensated
elasticity in the traditional sense, we suggest Scheuer and Werning (2018). However, for completeness we
also provide below an explicit proof that ε̃h(R̃) ≥ 0.

Fix h ∈ H. Let zh ≡ zh(R̃). Since zh(R̃) solves h’s problem at R̃,

0 = d

dz

∣∣∣∣
z=zh

uh(R̃(z), z)

=uhc (R̃(zh), zh)︸ ︷︷ ︸
>0

[
R̃′(zh) −Mh(R̃(zh), zh)

]

︸ ︷︷ ︸
=0

0 ≥ d2

dz2

∣∣∣∣
z=zh

uh(R̃(z), z)

= d

dz

∣∣∣∣
z=zh

(
uhc (R̃(zh), zh)

) [
R̃′(zh) −Mh(R̃(zh), zh)

]

︸ ︷︷ ︸
=0

+ uhc (R̃(zh), zh) 1
zh

d

d log z

∣∣∣∣
z=zh

[
R̃′(z) −Mh(R̃(z), z)

]

= uhc (R̃(zh), zh)︸ ︷︷ ︸
>0

R̃′(zh)︸ ︷︷ ︸
>0

1
zh

[
d log R̃′(zh)
d log zh − d logMh(ch, zh)

d log ch
d log R̃(zh)
d log zh − d logMh(ch, zh)

d log zh

]

(2.127)

where here we have used that R̃′(zh) = Mh(R̃(zh), zh) > 0
We conclude that d log R̃′(zh)

d log zh − d logMh(ch,zh)
d log ch

d log R̃(zh)
d log zh − d logMh(ch,zh)

d log zh ≥ 0, implying εh(R̃) ≥ 0.

Second derivative of labor supply
To compute the second derivative of labor supply, we differentiate the first derivative along an arbitrary

direction ∆̃ ∈ ∆.

D2
∆̃∆

log zh(R̃) = D
∆̃

(
ηh(R̃) ∆(zh(R̃))

R̃(zh(R̃))
+ εh(R̃) ∆′(zh(R̃))

R̃′(zh(R̃))

)

= D
∆̃

(
ηh(R̃h)

) ∆h

R̃h
+ ηh

[(
∆h′zh

R̃h
− ∆h

R̃h

d log R̃h

d log z

)
D

∆̃
log zh(R̃) − ∆h

R̃h

∆̃h

R̃h

]

+D
∆̃

(
εh(R̃h)

) ∆h′

R̃h′
+ εh

[(
∆h′′zh

R̃h′
− ∆h′

R̃h′
d log R̃h

d log z

)
D

∆̃
log zh(R̃) − ∆h′

R̃h′
∆̃h′

R̃h′

]
(2.128)

where above, and in the equations below, variables are evaluated at R̃, zh = zh(R̃), and/or ch = R̃(zh) as
relevant; and R̃h is shorthand for R̃(zh) and similar.

179



Next, we compute D∆̃ε
h(R̃) and D∆̃ε

h(R̃) in isolation by differentiating (2.125):

D
∆̃
εh(R̃) = − (εh)2

[(
d

d log c

(
d logMh

d log c

)(
∆̃h

R̃h
+ d log R̃h

d log z
D

∆̃
log zh

)
+ d

d log z

(
d logMh

d log c

)
D

∆̃
log zh

)
d log R̃h

d log z

+d logMh

d log c

(
d

d log z

(
d log R̃h

d log z

)
D

∆̃
log zh + ∆̃h′zh

R̃h
− d log R̃h

d log z
∆̃h

R̃h

)

+ d

d log c

(
d logMh

d log z

)(
∆̃h

R̃h
+ d log R̃h

d log z
D

∆̃
log zh

)
+ d

d log z

(
d logMh

d log z

)
D

∆̃
log zh

−
(

d

d log z

(
d log R̃h′

d log z

)
D

∆̃
log zh + ∆̃h′′zh

R̃h′
− d log R̃h′

d log z
∆̃h′

R̃h′

)]

= ηhεh

[
d

d log z

(
d log R̃h

d log z

)
D

∆̃
log zh + ∆̃h′zh

R̃h
− d log R̃h

d log z
∆̃h

R̃h

]

+ (εh)2
[

d

d log z

(
d log R̃h′

d log z

)
D

∆̃
log zh + ∆̃h′′zh

R̃h′
− d log R̃h′

d log z
∆̃h′

R̃h′

]

+ εh
+0

∆̃h

R̃h
+ εh

+1
∆̃h′

R̃h′

where εh
+0 = − (εh)2

[(
d

d log c

(
d logMh

d log c

)(
1 + d log R̃h

d log z
ηh

)
+ d

d log z

(
d logMh

d log c

)
ηh

)
d log R̃h

d log z

+ d

d log c

(
d logMh

d log z

)(
1 + d log R̃h

d log z
ηh

)
+ d

d log z

(
d logMh

d log z

)
ηh

]

εh
+1 = − (εh)3

[(
d

d log c

(
d logMh

d log c

)
d log R̃h

d log z
+ d

d log z

(
d logMh

d log c

))
d log R̃h

d log z

+ d

d log c

(
d logMh

d log z

)
d log R̃h

d log z
+ d

d log z

(
d logMh

d log z

)]

(2.129)

Note that the terms ηhεh d
d log z

(
d log R̃h

d log z

)
D∆̃ log zh, (εh)2 d

d log z

(
d log R̃′h

d log z

)
D∆̃ log zh, εh+0

∆̃h

R̃h
, and εh+1

∆̃h′

R̃h′ cor-
respond to changes in εh(R̃) through changes in labor supply, whereas the complementary terms correspond
to changes in εh(R̃) directly through changes in the tax schedule. By the earlier expression for D∆̃ log zh, we
can decompose the terms operating through changes in labor supply into income and compensated effects.
For later use, we define ε+h to be the compensated component, i.e.

ε+h(R̃) ≡ εh+1(R̃) + ηh(εh)2 d
2 log R̃(z)
d log z2 + (εh)3 d

2 log R̃′(z)
d log z2 (2.130)
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D
∆̃
ηh(R̃) = − d logMh

d log c
D

∆̃
εh(R̃) − εhD

∆̃
d logMh

d log c

= (ηh)2
[

d

d log z

(
d log R̃h

d log z

)
D

∆̃
log zh + ∆̃′zh

R̃
− d log R̃h

d log z
∆̃h

R̃h

]

+ ηhεh

[
d

d log z

(
d log R̃h′

d log z

)
D

∆̃
log zh + ∆̃h′′zh

R̃h′
− d log R̃h′

d log z
∆̃h′

R̃h′

]

+ ηh
+0

∆̃h

R̃h
+ ηh

+1
∆̃h′

R̃h′

where ηh
+0 = − ηhεh

[(
d

d log c

(
d logMh

d log c

)(
1 + d log R̃h

d log z
ηh

)
+ d

d log z

(
d logMh

d log c

)
ηh

)
d log R̃h

d log z

+ d

d log c

(
d logMh

d log z

)(
1 + d log R̃h

d log z
ηh

)
+ d

d log z

(
d logMh

d log z

)
ηh

]

− εh

[
d

d log c

(
d logMh

d log c

)(
1 + d log R̃h

d log z
ηh

)
+ d

d log z

(
d logMh

d log c

)
ηh

]

= −
(
ηh d log R̃h

d log z
+ 1
)
εh

[
d

d log c

(
d logMh

d log c

)(
1 + d log R̃h

d log z
ηh

)
+ d

d log z

(
d logMh

d log c

)
ηh

]

− ηhεh

[
d

d log c

(
d logMh

d log z

)(
1 + d log R̃h

d log z
ηh

)
+ d

d log z

(
d logMh

d log z

)
ηh

]

ηh
+1 = − ηh(εh)2

[(
d

d log c

(
d logMh

d log c

)
d log R̃h

d log z
+ d

d log z

(
d logMh

d log c

))
d log R̃h

d log z

+ d

d log c

(
d logMh

d log z

)
d log R̃h

d log z
+ d

d log z

(
d logMh

d log z

)]

− (εh)2
[

d

d log c

(
d logMh

d log c

)
d log R̃h

d log z
+ d

d log z

(
d logMh

d log c

)]

= −
(
ηh d log R̃h

d log z
+ 1
)

(εh)2
[

d

d log c

(
d logMh

d log c

)
d log R̃h

d log z
+ d

d log z

(
d logMh

d log c

)]

− ηh(εh)2
[

d

d log c

(
d logMh

d log z

)
d log R̃h

d log z
+ d

d log z

(
d logMh

d log z

)]

= − (εh)2
[(

d

d log c

(
d logMh

d log c

)(
1 + d log R̃h

d log z
ηh

)
+ d

d log z

(
d logMh

d log c

)
ηh

)
d log R̃h

d log z

+ d

d log c

(
d logMh

d log z

)(
1 + d log R̃h

d log z
ηh

)
+ d

d log z

(
d logMh

d log z

)
ηh

]

(2.131)

Note that εh+0 = ηh+1. This reflects that they are both (essentially) second derivatives, but with opposite
orders of differentiation.

Finally, we substitute these expressions back into (2.128). Simplifying, we obtain:

D
2
∆̃∆

log z
h(R̃)

= η
h

[(
∆h′zh

R̃h
−

∆h

R̃h

d log R̃h

d log z

)
D

∆̃
log z
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∆h

R̃h

∆̃h

R̃h

]
+ ε

h
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∆h′
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d log R̃h′

d log z

)
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log z
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]
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d
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log z
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∆̃h
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d log R̃h′

d log z
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log z
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∆̃h′′zh
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h +
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∆̃h′

R̃h′
(2.132)
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∆̃∆

log z
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∆̃h

R̃h

+

[
−η

h d log R̃h

d log z
ε

h + (η
h)2

(
d

d log z

(
d log R̃h

d log z

)
ε

h +
d log R̃h

d log z

)
+ η

h
ε

h

(
d

d log z

(
d log R̃h′

d log z

)
ε

h −
d log R̃h′

d log z

)
+ η

h
+1

]
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+ (ε
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(2.134)

Measurability of labor supply derivatives
Fix any R̃ ∈ R+Bδ(0) and ∆, ∆̃ ∈ ∆. We wish to show D∆z

h(R̃) and D2
∆̃∆

zh(R̃) are measurable in h.
Because

D∆z
h(R̃) = zh(R̃)D∆ log zh(R̃)

D2
∆̃∆

zh(R̃) = zh(R̃)
[
D∆̃ log zh(R̃)D∆ log zh(R̃) +D∆̃∆ log zh(R̃)

]
,

(2.135)

and we have shown zh(R̃) is measurable, it suffices to show that D∆ log zh(R̃) and D2
∆̃∆

log zh(R̃) are
measurable in h.

We begin with D∆ log zh(R̃). Recall our expression, (2.126), for this term. Since zh(R̃) is measurable, ∆
and R̃ are continuous in z, and R̃(zh(R̃)) > 0 and R̃′(zh(R̃)) > 0 for all h ∈ H, ∆(zh(R̃))

R̃(zh(R̃))
and ∆′(zh(R̃))

R̃′(zh(R̃))
are

continuous in zh(R̃); so they are measurable. It therefore remains to show that ηh(R̃) and εh(R̃) are also
measurable.

To do so, recall the definitions of ηh(R̃) and εh(R̃) in (2.125). Their tax curvature terms, d log R̃(zh(R̃))
d log zh

and d log R̃′(zh(R̃))
d log zh , are measurable because the tax schedule is three-times continuously differentiable by

Assumption 1, R̃(zh(R̃)) and R̃′(zh(R̃)) > 0 for all h ∈ H, and zh(R̃) is measurable. Their MRS curvature
terms are measurable because they are continuous functions of the first and second derivatives of preferences,
both of which are continuous and measurable in (h, c, z)—and because for any (c, z)-continuous and (h, c, z)-
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measurable function f(h, c, z), f(h, R̃(zh(R̃)), zh(R̃)) is measurable in h.86 Since—as we have also already
argued—the denominators of both expressions in (2.125) are non-zero for all h ∈ H, both elasticities are
continuous functions of measurable functions and so are measurable.

We now argue that D2
∆̃∆

log zh(R̃) is measurable in h. Recall our expression, (2.134), for this term. On
top of the terms we have already considered in showing the first derivative is measurable, we now must also
show that ∆′′(zh(R̃))zh(R̃)

R̃′(zh(R̃))
, ∆̃′′(zh(R̃))zh(R̃)

R̃′(zh(R̃))
, and each of the super-elasticities are measurable. ∆′′(zh(R̃))zh(R̃)

R̃′(zh(R̃))

(and similarly for ∆̃) is measurable because ∆′′ and R̃′ are continuous and zh(R̃) are measurable. To
show the super-elasticities are measurable, we refer to their definitions in (2.129) and (2.131). All of the
elasticities are continuous functions of functions which we have already shown to be measurable, except
for d

d log c

(
d logMh(R̃(zh(R̃)),zh(R̃))

d log z

)
and d

d log c

(
d logMh(R̃(zh(R̃)),zh(R̃))

d log z

)
. Note that these are both continuous

functions of the first, second, and third derivatives of preferences, all of which are continuous and measurable
in (h, c, z). By our earlier observations, this implies these terms are measurable as well.

Properties of post-tax income
It remains to show that, for h ∈ H, R̃ ∈ R+Bδ(0), post-tax income R̃(zh(R̃)) is well-defined, measurable,

and strictly positive, and that it has two continuous and H-measurable Frechet derivatives in R̃.
These properties are all inherited from those of zh(R̃). Well-definedness is immediate. Measurability

follows from that zh(R̃) is measurable and R̃ is continuous. Positivity follows from that zh(R̃) > 0, our
earlier observation that R(z) > 0 for all z > 0, and that δ < 1

2 . Finally, the existence, continuity, and
measurability of Frechet derivatives follows from that R̃ is twice-continuously differentiable and that zh(R̃)
has two continuous and H-measurable Frechet derivatives.

2.9.6.3 Proof of Lemma 3

We complete the proof in several steps: First we provide bounds on the first and second derivatives of
log labor supply, second we show that labor supply and its derivatives are integrable, and third we show
that post-tax income and its derivatives are bounded and integrable. Throughout we fix δ > 0 to be smaller
than the values referred to in both Assumption 4 and Lemma 2.

First and second derivatives of labor supply: bounding
We now show that there exist uniform upper bounds on the Frechet derivativesD log zh(R̃) andD2 log zh(R̃)

(as linear maps) across all R̃ ∈ R + Bδ(0), h ∈ H. WLOG we will fix ∆, ∆̃ ∈ ∆ with ||∆||= ||∆̃||= 1 and
the show existence of uniform bounds on D∆ log zh(R̃) and D2

∆̃∆
log zh(R̃).

By the expressions (2.126) and (2.134) for the first and second derivatives of labor supply, it suffices to
provide uniform bounds on

• all elasticities and super-elasticities;

• across all z > 0, the log-tax-change terms ∆(z)
R̃(z)

, ∆′(z)
R̃′(z)

, and ∆′′(z)z
R̃′(z)

(those for ∆̃ are analogous); and

86For any measurable set A in the image of f , f−1(A) is a measurable set consisting of (h, c, z) triples. Since R̃(zh(R̃))
and zhR̃ are measurable, and since component-wise measurable functions are measurable with respect to the product measure,
the set of triples (h1, h2, h3) such that

(
h1, R̃(zh2 (R̃)), zh3 (R̃)

)
∈ f−1(A) is also measurable. It remains to show that the

diagonal of the set of these triples (h1, h2, h3) is a measurable set in H. For this it suffices to show that the diagonal function
h 7→ (h, h, h) is measurable. To see this note that it suffices to check on a generic generating element of the product measure,
e.g. H ×H′ ×H′′, whose inverse image is simply H ∩H ∩H′ ∩H′′; this is measurable if H, H′, and H′′ each are.
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• across all z > 0, the tax curvature terms d log R̃(z)
d log z , d log R̃′(z)

d log z , d
d log z

(
d log R̃(z)
d log z

)
, and d

d log z

(
d log R̃′(z)
d log z

)
.

The first bullet is ensured by Assumption 4.
Next, consider the second bullet. Since (from the Lemma we are trying to prove) we need only show this

is true for sufficiently small δ, we may WLOG assume δ < 1
2 . In this case, R̃ ∈ Bδ(0) and ||∆||= 1 imply

∣∣∣∣
∆(z)
R̃(z)

∣∣∣∣ ≤
∣∣∣∣

∆(z)
1
2R(z)

∣∣∣∣ ≤ 2,
∣∣∣∣

∆′(z)
R̃′(z)

∣∣∣∣ ≤
∣∣∣∣

∆′(z)
1
2R

′(z)

∣∣∣∣ ≤ 2,
∣∣∣∣

∆′′(z)z
R̃′(z)

∣∣∣∣ ≤ BR

∣∣∣∣
R′(z)
R̃′(z)

∣∣∣∣ ≤ BR

∣∣∣∣
R′(z)

1
2R

′(z)

∣∣∣∣ = 2BR. (2.136)

Finally, consider the third bullet. Again, using that δ < 1
2 , we have

∣∣∣∣
d log R̃(z)
d log z

∣∣∣∣ =
∣∣∣∣
R̃′(z)z
R̃(z)

∣∣∣∣ ≤
∣∣∣∣

3
2R

′(z)z
1
2R(z)

∣∣∣∣ ≤ 3BR,

∣∣∣∣
d log R̃′(z)
d log z

∣∣∣∣ =
∣∣∣∣
R̃′′(z)z
R̃′(z)

∣∣∣∣ ≤
∣∣∣∣

3
2R

′′(z)z
1
2R

′(z)

∣∣∣∣ ≤ 3BR

∣∣∣∣
d

d log z

(
d log R̃(z)
d log z

)∣∣∣∣ =

∣∣∣∣∣
R̃′′(z)z2

R̃(z)
+ R̃′(z)z

R̃(z)
−
(
R̃′(z)z
R̃(z)

)2
∣∣∣∣∣ ≤
∣∣∣∣
R̃′′(z)z2

R̃(z)

∣∣∣∣+
∣∣∣∣
R̃′(z)z
R̃(z)

∣∣∣∣+
∣∣∣∣
R̃′(z)z
R̃(z)

∣∣∣∣
2

≤
∣∣∣∣

(BR + 1
2 )R′(z)z

1
2R(z)

∣∣∣∣+ 3BR + 9(BR)2 ≤ (2BR + 1)BR3BR + 9(BR)2

∣∣∣∣
d

d log z

(
d log R̃′(z)
d log z

)∣∣∣∣ =

∣∣∣∣∣
R̃′′′(z)z2

R̃′(z)
+ R̃′′(z)z

R̃′(z)
−
(
R̃′′(z)z
R̃′(z)

)2
∣∣∣∣∣ ≤

∣∣∣∣∣∣

d2R̃′(z)
d log z2

R̃′(z)

∣∣∣∣∣∣
+ 2
∣∣∣∣
R̃′′(z)z
R̃′(z)

∣∣∣∣+
∣∣∣∣
R̃′′(z)z
R̃′(z)

∣∣∣∣
2

≤
∣∣∣∣

(BR + 1
2 )R′(z)

1
2R

′(z)

∣∣∣∣+ 6BR + 9(BR)2 ≤ (2BR + 1) + 6BR + 9(BR)2

(2.137)

where on the penultimate line, we have used that d2R̃′(z)
d log z2 = zR̃′′(z) + z2R̃′′′(z).

We conclude that the level and first two derivatives of log labor supply (appropriately normalized) are
uniformly bounded across h ∈ H and R̃ ∈ R+Bδ(0).

Integrability of labor supply and its derivatives
In this section we argue that—for any R̃ ∈ R+Bδ(0), ∆, ∆̃ ∈ ∆—zh(R̃), D∆z

h(R̃), and D2
∆̃∆

zh(R̃) are
bounded across all h ∈ H by constants times zh0 and are integrable. Since by Lemma 2, zh(R̃), D∆z

h(R̃), and
D2

∆̃∆
zh(R̃) are measurable, and by Assumption 4, zh0 is integrable, the bounding is sufficient for integrability.

To this end, a useful observation is that:

D∆z
h(R̃) = zh(R̃)D∆ log zh(R̃)

D2
∆̃∆

zh(R̃) = zh(R̃)
[
D∆̃ log zh(R̃)D∆ log zh(R̃) +D∆̃∆ log zh(R̃)

] (2.138)

Since we have shown that D∆̃ log zh(R̃), D∆ log zh(R̃), and D∆̃∆ log zh(R̃) are uniformly bounded, it remains
to show zh(R̃) is bounded in absolute value by a constant times zh0 = zh(R).

Indeed, for all R̃ ∈ R + Bδ(0), since zh(R̃) > 0 and zh(R̃) is continuously differentiable, we may apply
the fundamental theorem of calculus along a path between R and R̃, giving us

log zh(R̃) = log zh(R) +
∫ ||R̃−R||

0
D
R̃−R log zh

(
R+ α

R̃−R

||R̃−R||

)
dα

∣∣∣log zh(R̃) − log zh(R)
∣∣∣ = ||R̃−R||2M ≤ 2Mδ

(2.139)
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where D
R̃−R is the Frechet along the path between R and R̃,87 and where we have used the bounds on

log zh(R̂)’s first derivative derived in the previous step. We conclude that |zh(R̃)|≤ e2δM |zh(R)|= e2δMzh(R),
i.e. zh(R) bounds zh(R̃) as desired.

Integrability of retained income and its derivatives
In this section we argue that—for any R̃ ∈ R+Bδ(0), ∆, ∆̃ ∈ ∆—ch(R̃) = R̃(zh(R̃)), D∆R̃(zh(R̃)), and

D2
∆̃∆

R̃(zh(R̃)) are bounded by ch0 and are integrable. WLOG, we show this in the case where ||∆||= ||∆̃||= 1.
Since by Lemma 2 and the continuity of R and R̃, we know that ch0 = R(zh(R)), ch(R̃) = R̃(zh(R̃)),
D∆R̃(zh(R̃)), and D2

∆̃∆
R̃(zh(R̃)) are measurable, and since by Assumption 4 ch0 is integrable, the bounding

is sufficient for integrability. To this end, a useful observation is that:

D∆ log R̃(zh(R̃)) =
d log R̃(zh(R̃))

d log zh
D∆ log zh(R̃) +

∆(zh(R̃))

R̃(zh(R̃))

D
2
∆̃∆

log R̃(zh(R̃)) =
d log R̃(zh(R̃))

d log zh

((
d log R̃′(zh(R̃))

d log zh
+ 1 − d log R̃(zh(R̃))

d log zh

)
D

∆̃
log zh(R̃)D∆ log zh(R̃) + D

∆̃∆
log zh(R̃)

)

+
d log R̃(zh(R̃))

d log zh

((
∆̃′(zh(R̃))

R̃′(zh(R̃))
− ∆̃(zh(R̃))

R̃(zh(R̃))

)
D∆ log zh(R̃) +

(
∆′(zh(R̃))

R̃′(zh(R̃))
− ∆(zh(R̃))

R̃(zh(R̃))

)
D

∆̃
log zh(R̃)

)

− ∆(zh(R̃))

R̃(zh(R̃))

∆̃(zh(R̃))

R̃(zh(R̃))
(2.140)

We have already provided—in earlier steps of the proof—uniform bounds (across h ∈ H and R̃ ∈ R +
Bδ(0)) on d log R̃(zh(R̃))

d log zh , d log R̃′(zh(R̃))
d log zh , ∆(zh(R̃))

R̃(zh(R̃))
, ∆′(zh(R̃))
R̃′(zh(R̃))

, ∆̃(zh(R̃))
R̃(zh(R̃))

, ∆̃′(zh(R̃))
R̃′(zh(R̃))

, D∆̃ log zh(R̃), D∆ log zh(R̃),

and D∆̃∆ log zh(R̃), i.e. all of the terms above. The same argument as in the previous step of this proof
(connecting the bounds on log zh(R̃)’s derivatives to those on zh(R̃)’s derivatives) then implies that the first
two Frechet derivatives of ch(R̃) = R̃(zh(R̃)) are bounded across R̃ ∈ R + Bδ(0) by ch0 times a constant
which is uniform across h ∈ H.

2.9.6.4 Proof of Lemma 4

Here we show that within some neighborhood around R, wh ◦ V h(R̃) is finite, H-measurable, and has
two continuous and H-measurable Frechet derivative in R.

To begin, fix a standard social objective ((wh)h∈H, G) and take δ̂ > 0 small enough that Lemma 2 applies
(so the definition of a standard social objective is well-defined), and so that conditions in the definition of a
standard social objective hold.

Fixing any h ∈ H, we now proceed to verify the conditions in the Lemma statement. First, finiteness is
immediate from the definition of a standard social objective. Next, existence and continuity of derivatives:
By Assumption 2 and the positivity of consumption and labor supply (Lemma 2), uh’s first two derivatives in
(c, z) are continuous at all ch(R̃), zh(R̃) with R̃ = R+Bδ(0). Since by Lemma 2, zh(R̃) and ch(R̃) and their
first two derivatives are continuous in R̃ ∈ R+Bδ(0), this is therefore also true of V h(R̃) = uh(ch(R̃), zh(R̃)).
Since by the argument above V h(R̃) is finite on this domain, the definition of a standard social objective
implies that wh ◦ V h(R̃) is twice-continuously differentiable in R̃ ∈ R + Bδ(0). Finally, measurability of
levels and derivatives: This is stated directly in the definition of a standard social objective.

87Note this is defined since R̃−R ∈ ∆
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2.9.6.5 Proof of Lemma 5

We complete the proof in several steps. We begin by deriving explicit formulas for the first two Frechet
derivatives of wh ◦ V h(R̃), and then argue that each is integrable.

First derivative of welfare
Throughout the proof we fix δ small enough that Lemmas 2 and 4 and the conditions in Definitions 1

and 3 of standard and regular social objectives apply.
By Lemma 4, we have that for all h ∈ H, R̃ ∈ R + Bδ(0) wh ◦ V h(R̃) is twice-continuously Frechet

differentiable. Since wh ◦ V h(R̃) = wh ◦ uh(c̃h(R̃), zh(R̃)), and by Lemma 2 ch(R̃) and zh(R̃) are twice-
continuously Frechet differentiable, it is straightforward to compute the derivatives of wh ◦ V h (which exist
by Assumption 2 and the definition of a standard social objective.)

For the first derivative, we have, for any ∆ ∈ ∆,

D∆w
h ◦ V h(R̃) = (wh ◦ uh)c

(
R̃(zh(R̃)), zh(R̃)

)
R̃(zh(R̃))D∆ log R̃(zh(R̃))

+ (wh ◦ uh)z

(
R̃(zh(R̃)), zh(R̃)

)
zh(R̃)D∆ log zh(R̃)

= (wh ◦ uh)c

(
R̃(zh(R̃)), zh(R̃)

)
R̃(zh(R̃))

[

�����������
d log R̃(zh(R̃))

d log zh
D∆ log zh(R̃) + ∆(zh(R̃))

R̃(zh(R̃))

]

+
(((((((((((((((((((

(wh ◦ uh)z

(
R̃(zh(R̃)), zh(R̃)

)
zh(R̃)D∆ log zh(R̃)

= (wh ◦ uh)c

(
R̃(zh(R̃)), zh(R̃)

)
R̃(zh(R̃)) ∆(zh(R̃))

R̃(zh(R̃))
,

(2.141)

where the cancellation is by the household’s first-order condition for labor supply (see (2.106) in the proof
of Lemma 2). This generates an intuitive envelope expression.

Second derivative of welfare
To compute the second derivative of each household h’s contribution to welfare, we differentiate (2.141).

We have, for any ∆, ∆̃ ∈ ∆,

D2
∆̃∆

wh ◦ V h(R̃) =
[

(wh ◦ uh)cc

(
R̃(zh(R̃)), zh(R̃)

)
R̃(zh(R̃))

(
d log R̃(zh(R̃))

d log z
D

∆̃
log zh(R̃) + ∆̃(zh(R̃))

R̃(zh(R̃))

)

+(wh ◦ uh)zc

(
R̃(zh(R̃)), zh(R̃)

)
zh(R̃)D

∆̃
log zh(R̃)

]
∆(zh(R̃))

+ (wh ◦ uh)c

(
R̃(zh(R̃)), zh(R̃)

)
∆′(zh(R̃))zh(R̃)D

∆̃
log zh(R̃)

= (wh ◦ uh)cc

(
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)
∆̃(zh(R̃))∆(zh(R̃))

+ (wh ◦ uh)c

(
R̃(zh(R̃)), zh(R̃)

) 1
εh(R̃)

R̃′(zh(R̃))zh(R̃)

[
εh(R̃) ∆′(zh(R̃))

R̃′(zh(R̃))
+ ηh(R̃) ∆(zh(R̃))

R̃(zh(R̃))

]
D

∆̃
log zh(R̃)

= (wh ◦ uh)cc

(
R̃(zh(R̃)), zh(R̃)

)
R̃(zh(R̃))2 ∆̃(zh(R̃))

R̃(zh(R̃))
∆(zh(R̃))
R̃(zh(R̃))

+ (wh ◦ uh)c

(
R̃(zh(R̃)), zh(R̃)

)
R̃(zh(R̃))d log R̃(zh(R̃))

d log z
1

εh(R̃)
D

∆̃
log zh(R̃)D∆ log zh(R̃).

(2.142)
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The second equality follows from that

Mh(ch, zh) = −uhz (ch, zh)
uhc (ch, zh)

=⇒ Mh(ch, zh) d

dch
(wh ◦ uh)(ch, zh) = − d

dzh
(wh ◦ uh)(ch, zh)

=⇒ Mh
c︸︷︷︸

=−ηh/εh·Mh/ch

·(wh ◦ uh)c +Mh · (wh ◦ uh)cc = −(wh ◦ uh)zc

− R̃′zh

R̃

ηh

εh
(wh ◦ uh)c + R̃′zh

R̃
(wh ◦ uh)ccch = −(wh ◦ uh)zczh,

(2.143)

where here zh = zh(R̃), ch = R̃(zh), elasticities and utility are are evaluated at R̃, and we haveusing the
definitions of εh and ηh and the fact that R̃′(zh) = Mh(ch, zh) at the initial equilibrium.

Boundedness and integrability of welfare and its derivatives
Finally, we will argue that each of welfare wh ◦ V h(R̃) and its first two Frechet derivatives are, as linear

maps, bounded across all R̃ ∈ R+Bδ(0) by some linear combination of the functions bn(h) from Definition
3 (of local regularity).88 As we have already argued that each is measurable, this also implies by dominated
convergence that each is integrable.

The case of welfare itself (not its derivatives) is immediate from Definition 3. Next, consider the first
derivative of welfare. By our expression (2.141) for the first derivative, the definition of ||·||, and Definition
3, we have that

∣∣∣D∆w
h ◦ V h(R̃)

∣∣∣ ≤ ||∆||b1(h) for all h ∈ H, R̃ ∈ Bδ(0), as desired. Finally, consider the
second derivative of welfare. By our expression (2.142) for the second derivative, the definition of ||·||,
Definition 3, Assumptions 1 and 4, and the fact that any |D∆ log zh(R̃)| is bounded by a constant times
||∆|| (by Lemma 3; see Footnote 56), we have that

∣∣∣D2
∆̃∆

wh ◦ V h(R̃)
∣∣∣ ≤ ||∆||||∆̃||(b2(h) + const · b1(h)) for

all h ∈ H, R̃ ∈ Bδ(0), as desired.

2.9.6.5.1 Supporting details for Theorem 1

In this section we cover various details omitted from the proof of Theorem 1 in order to focus on the
main points. Each supporting detail is referenced in the main proof.

2.9.6.5.2 Properties of aggregate revenue and welfare

By Lemmas 3 and 5, there exists δ > 0 such that on R+Bδ(0) ∋ R,

• zh(R̃), ch(R̃) are well-defined and have two Frechet derivatives in R̃ that are continuous, H-integrable,
and bounded by linear combinations of zh0 and ch0 (which are integrable by Assumption 4). By the
linearity of differentiation, the same is true for tax revenue zh(R̃) − ch(R̃).

• wh ◦ V h(R̃) is well-defined and has two Frechet derivatives in R̃ that are continuous, H-integrable,
and bounded by linear combinations the functions bn(h) in Definition 3 (which are integrable by
assumption).

88That is, for any ∆, ∆̃ ∈ ∆, wh ◦V h(R̃) ≤ (a0
0b0(h)+a0

1b1(h)+a0
2b2(h)), D∆w

h ◦V h(R̃) ≤ ||∆||(a1
0b0(h)+a1

1b1(h)+a1
2b2(h)),

and D2
∆∆̃

wh ◦ V h(R̃) ≤ ||∆||||∆̃||(a2
0b0(h) + a2

1b1(h) + a2
2b2(h)) for some constants ak

j ∈ R.
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Theorem 1 of Kammar (2016) therefore implies that—for fh(R̃) = zh(R̃) − ch(R̃) and for fh(R̃) = wh ◦
V h(R̃)—

∫
fh(R̃)dµ is two-times Frechet differentiable on R+Bδ(0) and that

D

∫
fh(R̃)dµ =

∫
Dfh(R̃)dµ and D2

∫
fh(R̃)dµ =

∫
D2fh(R̃)dµ. (2.144)

Moreover—by dominated convergence—
∫
fh(R̃)dµ, D

∫
fh(R̃)dµ, and D2 ∫ fh(R̃)dµ are continuous in

R̃ because fh(R̃), Dfh(R̃), and D2fh(R̃) are, by Lemma 2, and because each is dominated by an integrable
function (a linear combination of zh0 , ch0 , and the functions bn(h)).89

2.9.6.5.3 Measure-theoretic steps used to change variables

The following steps are implicit in the change of variables carried out in (2.54):
∫ [

(1 −R′(zh0 ))zh0
(
ηh(R)∆(zh0 )

R(zh0 )
+ εh(R)∆′(zh0 )

R′(zh0 )

)
− ∆(zh0 )

]
dµ

=
∫

{zh
0 ∈supp g}

[
(1 −R′(zh0 ))zh0

(
ηh(R)∆(zh0 )

R(zh0 )
+ εh(R)∆′(zh0 )

R′(zh0 )

)
− ∆(zh0 )

]
dµ

=
∫

{zh
0 ∈supp g}

[
(1 −R′(zh0 ))zh0

(
η(zh0 )∆(zh0 )

R(zh0 )
+ ε(zh0 )∆′(zh0 )

R′(zh0 )

)
− ∆(zh0 )

]
dµ

=
∫

supp g

[
(1 −R′(z))z

(
η(z)∆(z)

R(z) + ε(z)∆′(z)
R′(z)

)
− ∆(z)

]
dµz

=
∫

supp g

[
(1 −R′(z))z

(
η(z)∆(z)

R(z) + ε(z)∆′(z)
R′(z)

)
− ∆(z)

]
g(z)dz

(2.146)

Above, the second line is by the absolute continuity of the integral and the fact that µ({zh0 ∈ supp g}) = 1.90

The third line follows from breaking the integral into each of its additively-separable components—each of
which are integrable by bounding arguments in the first part of the proof of Lemma 3—then applying the
definition of conditional expectation—and then adding these integrals back together them (by linearity of
Lebesgue integration). The fourth line follows from changing variables and letting µz denote the measure
on R≥0 induced by z

(H)
0 .91 The fifth line is by the Radon-Nikodyn / change of measure theorem and the

definition of the density as a Radon-Nikodyn derivative; the density exists by Assumption 5.92

89To see why this is sufficient, consider any continuous-in-R̃ and integrable-over-h function ρ(R̃, h) which is bounded across all
R̃ by some integrable ρ(h). For any sequence R̃n → R̃, we therefore have—by continuity, the integrable bound, and dominated
convergence—that

ρ(R̃n, h) → ρ(R̃, h) =⇒
∫

ρ(R̃n, h)dµ →
∫

ρ(R̃, h)dµ. (2.145)

90See Chapter 3, Theorem 2.5, Shorack (2000).
91See Chapter 3, Theorem 2.6, Shorack (2000).
92See Chapter 4, Theorem 2.2, Shorack (2000).
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2.9.6.5.4 Application of optimization-theoretic results

Recall the optimization problem (2.69):

0 ∈ arg max
∆∈∆

F (∆) s.t. H(∆) ∈ R≥0

where F (∆) ≡





∫
wh ◦ uh

(
(R+ ∆)(zh(R+ ∆)), zh(R+ ∆)

)
dµ, if ∆ ∈ Bδ(0)

F (0) − 1 if ∆ ̸∈ Bδ(0)

H(∆) ≡





∫ [
zh(R+ ∆) − (R+ ∆)(zh(R+ ∆))

]
dµ−G, if ∆ ∈ Bδ(0)

0, if ∆ ̸∈ Bδ(0)

(2.147)

where δ > 0 is small enough that F and H are well-defined and within Bδ(0) have well-defined and continuous
first and second Frechet derivatives (see Appendix 2.9.6.5.2).

We wish to apply results from optimization theory on Banach spaces results to the problem above. In
particular, we leverage Theorems 3.2 and 3.3 (part 2) of Maurer and Zowe (1979) in the special case of a
one-dimensional constraint, restated below:

Appendix Theorem 1. Let X be a real Banach space, x̄ a point in X, and F : X → R and H : X → R
functions whose first and second Frechet derivatives exist at x̄. Suppose that

x̄ ∈ arg max
H(x)≥0

F (x), (2.148)

H(x̄) = 0, and for some h ∈ X, DhH(x̄) ̸= 0 (x̄ is optimal and full-rank / regular, and H binds.).93

Then there exists κ ∈ R≥0 such that DF (x̄) + κDH(x̄) = 0 and, for all non-zero d ∈ X satisfying
DdH(x̄) = 0, D2

d,dF (x̄) + κD2
d,dH(x̄) ≤ 0.

In order to apply Appendix Theorem 1, we must verify that the optimization problem (2.69) satisfies
several conditions. It is immediate from the setup above that:

• F is a functional defined on a real Banach space, (∆, ||·||).94

• G is a map from ∆ into R, a real Banach space (w.r.t. the standard norm).

• The feasible range for G is R≥0.

• F restricted to G−1(R≥0) achieves a local (indeed, global) maximum at 0.

• The first and second Frechet derivatives of F and G exist at 0.

In order to reach the result stated in the main proof of Theorem 1, it remains to verify that H(0) = 0,
i.e. the revenue constraint binds. To see this suppose not. Since H is continuous local to 0, and F is
differentiable local to 0, it suffices to show that for any ϵ > 0, there exists ∆ ∈ ∆ with F (ϵ∆) > F (0).
To see this, define ∆ = R and note that R(zh0 ) > 0 for all h ∈ H (this follows from the fact shown
in the proof of Lemma 2 that R(z) > 0 for all z > 0 and from Assumption 3).95 By Assumption 2,

93These facts are sufficient to guarantee the strong version of Equation (2.3) of Maurer and Zowe (1979) used in their Theorem
3.3. Specifically, they imply that for any set K′ ⊂ R containing 0, 0 ∈ int(H(x̄) +DH(x̄)X −K′), where int is the topological
interior, “+” and “−” denote addition and subtraction of set elements, and DH(x̄)X, is the image of DH(x̄) (recall the Frechet
derivative DH(x̄) is a linear map X → R).

94Recall we have already shown this is a real Banach space; see Lemma 1.
95It is immediate from the defintion of ∆ that R ∈ ∆.
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V h(R + ϵ∆) > uh
(
ch0 + ϵR(zh0 ), zh0

)
> V h(R). So by Definition 1, wh · V h(R + ϵ∆) > wh ◦ V h(R) for a

positive measure of households h; so F (ϵ∆) > F (0).

2.9.6.5.5 Zero-rank case of (2.69)

Consider the optimization problem (2.69) and suppose that DH(0) = 0, i.e. D∆(0) = 0 for all ∆ ∈ ∆.
We claim in this case (ABC) holds with equality for all z ∈ supp g, so the theorem holds.

The argument is identical to that of the section “First-order condition” in the main proof of Theorem 1,
except that (a) one may start at (2.70), which now holds with equality, and (b) the argument in the next
paragraph implies ψ(z) = 0, because of (a).

2.9.6.5.6 Example of first-order tax deviation

The main proof of Theorem 1 uses the existence of a weakly positive function ∆(z) that is strictly positive
on a non-zero-measure sub-interval of [z, z], zero outside of [z, z], and is contained in ∆. We now give an
example of such a function.

We begin by defining the “deviation function”, for any z̃ > 0, δ̃ ∈ (0, z̃), by

∆̃(z; z̃, δ̃) ≡





−
(
z−(z̃−δ̃)

δ̃

)5 (
z−(z̃+δ̃)

δ̃

)5
if z ∈ Bδ̃(z̃)

0 otherwise.
(2.149)

It is easy to verify that ∆̃(·; z̃, δ̃) has four continuous and bounded derivatives, is strictly positive in Bδ̃(z̃)
and zero elsewhere, and has ∆̃(z; z̃, δ̃) ≤ ∆̃(z̃; z̃, δ̃) = 1. Moreover note that R(z) and R′(z) are bound
strictly above zero in Bδ̃(z̃) because R(z), R′(z) > 0 at all z > 0—as argued in the proof of Lemma 2—and
R and R′ are continuous by Assumption 1. Together, these observations imply ∆̃(·; z̃, δ̃) ∈ ∆.

To obtain the desired deviation ∆, consider ∆ ≡ ∆̃
(

·; z+z
2 ,

z−z
2

)
.

2.9.6.5.7 Example of second-order tax deviation

The main proof of Theorem 1 uses the existence of, for any k > 0, r > 0, ẑ ∈ supp g, a tax change ∆
that is in ∆, is zero outside of the interval Br(ẑ), and satisfies

∫ ẑ+r
ẑ−r ∆′(ẑ)2dz > k

∫ ẑ+r
ẑ−r ∆(z)2dz. Here the

idea is to take ∆(·; ẑ, r, k) to be a sufficiently narrow “bump” centered at z. We now provide an example of
some such function.

To construct the example, we use the “deviation function” defined in Appendix 2.9.6.5.6. Specifically, we
take ∆N ≡ ∆̃(·; z+z

2 , r/N) for some N ≥ 1. We have already established in Appendix 2.9.6.5.6 that ∆N ∈ ∆
and ∆N is zero outside of the interval Br(ẑ). To see that there exists N for which we obtain

∫ ẑ+r

ẑ−r
∆′
N (ẑ)2dz > k

∫ ẑ+r

ẑ−r
∆N (z)2dz, (2.150)

note that as N → ∞, the RHS converges to 0, whereas the LHS diverges to ∞.

2.9.6.6 Supporting details for Theorem 2

In this section we cover various details omitted from the proof of Theorem 2 in order to focus on the
main points. Each supporting detail is referenced in the main proof.
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2.9.6.6.1 Properties of λ̂(z) and λ̂h

We make several observations about λ̂(z) and λ̂h.
First, λ̂(z) is continuously differentiable on supp g. This is immediate from the definition of ΠABC(z)

and Assumptions 2, 5, and 6.
Second, there exists M > 0 such that for all z ∈ supp g, z|λ̂′(z)|≤ M |λ(z)|. This is immediate from the

conditions on ΠABC(z) in the statement of the theorem.
Third, there exist λc, λz ∈ R>0 such that for all z ∈ supp g, R(z)λ̂(z) ≤ λcR(z) + λzz. This can be seen

by considering the definition of ΠABC(z) and making the following observations:

• R′(z)z is bounded across all z ∈ R≥0 by BRR(z), by Assumption 2.

• η(z), ε(z) are bounded across supp g by a constant by Assumption 4.

• α(z), d log ε(z)
d log z ε(z) = zε′(z), and R(z)

R′(z)z are bounded across supp g by constants, by Assumption 6.

• For all z ∈ supp g, R(z)
∣∣∣ d
d log z

(
1−R′(z)
R′(z)

)∣∣∣ = R(z)
(∣∣∣R

′′(z)z
R′(z)

∣∣∣+
∣∣∣ 1−R′(z)
R′(z)

∣∣∣
∣∣∣R

′′(z)z
R′(z)

∣∣∣
)

≤ BR(1 + 1)R(z) +
BRkz for some constant k by Assumption 1 and the boundedness of R(z)

R′(z)z .

Fourth, λ̂h is measurable in H. This follows from that (a) εh(R) is measurable (see the second-to-last
section of the proof of Lemma 2), (b) within supp g, p≤(z; ϵ) is continuous in z and strictly positive by
assumption, (c) zh0 is measurable by Assumption 3, (d) λ̂(z) is piece-wise continuous, and (e) supp g is
measurable by Lemma 9 in Appendix 2.9.6.7.

Fifth, R(zh0 )λ̂h is integrable. We will show this by an application of Fatou’s Lemma:96 Define, for
n ∈ N, λ̂hn ≡ λ̂(zh0 )1εh(R)≤ϵ min

[
n, 1

p≤(zh
0 ;ϵ)

]
, and note that λ̂hn ≥ 0 and that λ̂hn → λ̂h pointwise. Moreover,

R(zh0 )λ̂hn is integrable since is measurable (by a similar argument to that used for R(zh0 )λ̂h) and bounded
by nR(zh0 )λ̂(zh0 ), which recall is itself bounded by nλcR(zh0 ) +nλzz

h
0 (which is integrable by Assumption 4).

Further, note that

E[R(zh0 )λ̂hn] = E
[
E[R(zh0 )λ̂hn | zh0 ]

]
= E

[
E
[
R(zh0 )λ̂(zh0 )1εh(R)≤ϵ min

[
n,

1
p≤(zh0 ; ϵ)

] ∣∣∣∣ zh0
]]

= E
[
R(zh0 )λ̂(zh0 ) min

[
n,

1
p≤(zh0 ; ϵ)

]
E
[
1εh(R)≤ϵ

∣∣∣∣ zh0
]]

= E
[
R(zh0 )λ̂(zh0 ) min

[
n,

1
p≤(zh0 ; ϵ)

]
p≤(zh0 ; ϵ)

]

≤ E
[
R(zh0 )λ̂(zh0 )

]

(2.151)

where here we have used zh0 ’s measurability to take the conditional expectation, then used the tower property
of conditional expectations, and then taken advantage of 1εh(R)≤ϵ’s integrability to pull out zh0 -measurable
terms from the conditional expectation.97 Since R(zh0 )λ̂h, and R(zh0 )λ̂hn are all non-negative, we have by
Fatou’s Lemma (and then the bounds above) that

∫
R(zh

0 )λ̂hdµ =
∫

lim inf
n→∞

R(zh
0 )λ̂h

ndµ ≤ lim inf
n→∞

∫
R(zh

0 )λ̂h
ndµ ≤ E

[
1zh

0 ∈supp gR(zh
0 )λ̂(zh

0 )
]
< ∞ (2.152)

In particular, R(zh0 )λ̂h is integrable.
96Fatou’s Lemma is a standard result in measure theory. In words, it says that, for non-negative real-valued random variables,

the lim-inf of an expectation is less than the expectation of a lim-inf.
97See, e.g., Theorems 34.3 and 34.4 of Billingsley (2008).
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2.9.6.6.2 Conditional expectations related to λ̂h

We first argue that several conditional expectations of interest—namely those of R(zh0 )λ̂h, R(zh0 )λ̂hηh(R),
R(zh0 )λ̂hεh(R), and R(zh0 )λ̂h η

h(R)2

εh(R) conditional on income—exist. Second, we show how these moments can
be related to conditional expectations of λ̂h ηh(R), εh(R) and ηh(R)2

εh(R) . Finally, we argue that each conditional
expectation is continuous in income and that the conditional expectation of R(zh0 )λ̂hηh(R) is continuously
differentiable in income. These arguments rely on facts shown in Appendix 2.9.6.6.1.

To begin, we argue that the following conditional expectation functions exist:

E
[
R(zh

0 )λ̂h
∣∣ zh

0
]
, E

[
R(zh

0 )λ̂hηh(R)
∣∣ zh

0
]
, E

[
R(zh

0 )λ̂hεh(R)
∣∣ zh

0
]
, E

[
R(zh

0 )λ̂h η
h(R)2

εh(R)

∣∣∣ zh
0

]
. (2.153)

Since by Assumption 3, zh0 is measurable, this follows so long as R(zh0 )λ̂h, R(zh0 )λ̂hηh(R), R(zh0 )λ̂hεh(R),
and R(zh0 )λ̂h η

h(R)2

εh(R) are each integrable. Indeed, each is measurable by the observations (above) that λ̂h is
measurable and (see the second-to-last step of the proof of Lemma 2) that elasticities are measurable; and
each is bounded by an integrable function, by Assumption 4 and our observation above that R(zh0 )λ̂h is
integrable.

Next we observe that, for xh = 1, ηh(R), εh(R), η
h(R)2

εh(R) ; for any conditional expectations E
[
R(zh0 )λ̂hxh | zh0

]

and E
[
xh | zh0 ,1εh(R)≤ϵ

]
;98 and with probability one,

E
[
R(zh

0 )λ̂hxh | zh
0
]

= E

[
R(zh

0 )λ̂(zh
0 )
1εh(R)≤ϵ

p≤(zh
0 ; ϵ)

xh

∣∣∣∣∣ z
h
0

]

= E

[
E

[
R(zh

0 )λ̂(zh
0 )
1εh(R)≤ϵ

p≤(zh
0 ; ϵ)

xh

∣∣∣∣∣ z
h
0 ,1εh(R)≤ϵ

] ∣∣∣∣∣ z
h
0

]

= E

[
R(zh

0 )λ̂(zh
0 )
1εh(R)≤ϵ

p≤(zh
0 ; ϵ)

E[xh| zh
0 ,1εh(R)≤ϵ]

∣∣∣∣∣ z
h
0

]

= E

[
R(zh

0 )λ̂(zh
0 )
1εh(R)≤ϵ

p≤(zh
0 ; ϵ)

·
(
E[xh| zh

0 ,1εh(R)≤ϵ = 1]1εh(R)≤ϵ + E[xh| zh
0 ,1εh(R)≤ϵ = 0]1εh(R)>ϵ

)
∣∣∣∣∣ z

h
0

]

= E

[
R(zh

0 )λ̂(zh
0 )
1εh(R)≤ϵ

p≤(zh
0 ; ϵ)

E[xh| zh
0 ,1εh(R)≤ϵ = 1]

∣∣∣∣∣ z
h
0

]

= R(zh
0 )λ̂(zh

0 ) 1
����p≤(zh

0 ; ϵ)
E[xh| zh

0 ,1εh(R)≤ϵ = 1] · (((((((E[1εh(R)≤ϵ | zh
0 ]

= R(zh
0 )λ̂(zh

0 )x≤(zh
0 ; ϵ)

(2.154)

where recall x≤(zh0 ; ϵ) = E[xh|zh0 = z, εh(R) ≤ ϵ] is as defined in Assumption 6 and where for xh = 1,
x≤(zh0 ; ϵ) simply denotes 1. Above, the second equality holds (with probability one) by the tower property,99

for any inner conditional expectation.100 The third and sixth equalities hold since the pulled-out terms
are measurable with respect to (zh0 ,1εh≤ϵ) and zh0 in the respective cases.101 The third line also uses
that E[xh| zh0 ,1εh(R)≤ϵ] exists, since xh is integrable and zh0 and 1εh(R)≤ϵ are measurable; the sixth uses that

98The latter conditional expectation exists since each xh is integrable (by observations above and Assumption 4) and since
1εh(R)≤ϵ is measurable since εh(R) is.

99See, e.g., Theorem 34.4 of Billingsley (2008)
100The inner conditional expectation exists by the bounding arguments above and since 1εh(R)<ϵ is measurable.
101See, e.g. Theorem 34.3 of Billingsley (2008).

192



E[1εh(R)≤ϵ | zh0 ] exists, since εh(R) and zh0 are measurable and any indicator is bounded. The fourth equality
is definitional and the fifth is immediate. The cancellations on the second-to-last line are with probability
one, since p≤(zh0 ; ϵ) is a conditional expectation of 1εh(R)≤ϵ on zh0 . The seventh equality is because all
conditional expectations of the same variables are equal with probability one.

Since—for any choice of conditional expectation (conditional expectations are only unique up to differ-
ences on measure zero sets)—E[R(zh0 )λ̂hxh | zh0 ] and R(zh0 )λ̂(zh0 )x≤(zh0 ; ϵ) coincide with probability one, and
since R(zh0 )λ̂(zh0 )x≤(zh0 ; ϵ) is zh0 -measurable, it follows from the definition of conditional expectation that
R(zh0 )λ̂(zh0 )x≤(zh0 ; ϵ) is a conditional expectation for R(zh0 )λ̂hxh conditional on zh0 . For the remainder of the
proof, we will work with this particular choice of conditional expectation.

Another consequence of our observations is that, for xh = εh(R), ηh(R), η
h(R)2

εh(R) , there exist functions

(λ̂x) : supp g → R—namely (λ̂x)(z) ≡ λ̂(z)x≤(z, ϵ) —that are equal to E[R(zh
0 )λ̂hxh | zh

0 =z]
R(z) for all z ∈ supp g.

Moreover, the continuous differentiability of λ̂(z) (shown above) and Assumption 6 imply that (λ̂ε)(z) and(
λ̂η

2

ε

)
(z)—as well as, by Assumption 1, R(z)(λ̂ε)(z) and R(z)

(
λ̂η

2

ε

)
(z)—are continuous in z ∈ supp g and

(λ̂η)(z)—as well as R(z)(λ̂η)(z)—is continuously differentiable in z.

2.9.6.6.3 Properties of (λ̂γ)(z) and γ̂h

We make several observations about (λ̂γ)(z) and γ̂h.
First, (λ̂γ)(z) is continuous on supp g. This follows from λ̂(z)’s continuity, Lemma 6, and Assumptions

2, 4, and 6.
Second, there exist λγc, λγz > 0 such that for all z ∈ R≥0, |R(z)(λ̂γ)(z)|≤ λγcR(z) + λγzz. This follows

from the following observations:

• (λ̂γ)(z) = 0 for z ̸∈ supp g.

• By Lemma 6, Ψ0(z) is bounded on supp g by a linear combination of z and R(z).

• d logR(z)
d log z ≤ BR by Assumption 1.

• By our observations in Appendix 2.9.6.6.2, R(z)(λ̂x)(z) = R(z)λ̂(z)x≤(z; ϵ) is—on supp g—bounded
by a linear combination of z and R(z) since—for x = η, ε, η

2

ε —x≤(z; ϵ) is bounded (by Assumption 4)
and R(z)λ̂(z) ≤ λcR(z) + λzz (see Appendix 2.9.6.6.1).

• By Assumption 6, α(z) is bounded in supp g.

• By Assumptions 4 and 6 and by our observations in Appendices 2.9.6.6.1 and 2.9.6.6.2, there exist
constants M , M ′, M ′′ such that for all z ∈ supp g

R(z)z(λ̂η)′(z) = R(z) d
dz

(
λ̂(z)η≤(z; ϵ)

)
= R(z)

(
zλ̂′(z)η≤(z; ϵ) + λ̂(z)zη′

≤(z; ϵ)
)

≤ R(z)
(
Mλ̂(z)η≤(z; ϵ) +M ′λ̂(z)

)
≤ M ′′R(z)λ̂(z)

(2.155)

which is integrable.

Third, γ̂h is measurable in h. This follows from that (a) as shown above and noted / proved in Appendix
2.9.6.6.1, (λ̂γ)(zh0 ), λ̂h, εh(R), and p(zh0 ; ϵ) are all measurable functions of h; (b) by Lemma 9 in Appendix
2.9.6.7, supp g is a measurable set; and (c) for all h with zh0 ∈ supp g and εh(R) ≤ ϵ, λ̂h > 0 and p(zh0 ; ϵ) > 0
(by Assumption 6).

Fourth R(zh0 )λ̂hγ̂h is integrable. To see this first note that R(zh0 )(λ̂γ)(zh0 ) is integrable, which follows
from (a) the continuity of R (Assumption 1); (b) the measurability of zh0 , λ̂h, and γ̂h (Assumption 3),
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Appendix 2.9.6.6.1, above); and (c) the fact that |R(zh0 )(λ̂γ)(zh0 )|≤ λγcR(zh0 ) + λγzz
h
0 for all h ∈ H, where

note the RHS is integrable by Assumption 4. One may then apply the same Fatou’s Lemma argument used
in Appendix 2.9.6.6.2.

Fifth, we claim R(zh0 )(λ̂γ)(zh0 ) is a conditional expectation for R(zh0 )λ̂hγ̂h given zh0 . To see this, note
that since zh0 is measurable, we may consider the conditional expectation

E
[
R(zh0 )λ̂hγ̂h

∣∣∣zh0
]

= E
[
R(zh0 )(λ̂γ)(zh0 )

1εh(R)≤ϵ
p(zh0 ; ϵ)

∣∣∣∣zh0
]

= R(zh0 )(λ̂γ)(zh0 )
�
�

��1
p(zh0 ; ϵ) ��������

E
[
1εh(R)≤ϵ

∣∣∣zh0
] (2.156)

where the second equality holds with probability one (same logic as in (2.154)). By the same logic as in
Appendix 2.9.6.6.2, R(zh0 )(λ̂γ)(zh0 ) is a conditional expectation for R(zh0 )λ̂hγ̂h given zh0 . For the remainder
of the proof, we work with this particular choice of conditional expectation.

2.9.6.6.4 Characterization of ĉh(u)

The main proof of Theorem 2 relies on a characterization of the compensating-consumption function
ĉh(u) ≡ uh(·, zh0 )−1(u). While useful, this characterization is very tedious, and so we (further) relegate its
proof to Appendix 2.9.6.8. Here, we simply state the result, i.e. Lemma 11:

There exists δ > 0 small enough that the function

ĉh(u) ≡ uh(·, zh0 )−1(u) (2.157)

is, for all h ∈ H, well-defined and strictly positive when u = V h(R̃) for some R̃ ∈ R + Bδ(0); moreover,
ĉh(V h(R̃)) is H-measurable. Further, there exists m̄ > 0 such that for all h ∈ H, R̃ ∈ R + Bδ(0) and—for
all real-valued functions ϕh that are defined and twice differentiable in a neighborhood around V h(R̃) and
satisfy ϕh′(V h(R̃)) > 0—we have102

∣∣∣∣ log ĉh
(
V h(R̃)

)
− log ch

(
R̃
) ∣∣∣∣ ≤ m̄

∣∣∣∣ log
[
(ϕh ◦ uh)c

(
ĉh(V h(R̃)), zh0

)]
− log

[
(ϕh ◦ uh)c

(
ch(R̃), zh(R̃)

)] ∣∣∣∣ ≤ m̄

and
∣∣∣∣∣
d log
d log c (ϕh ◦ uh)c

(
ĉh(V h(R̃)), zh0

)
− d log
d log c (ϕh ◦ uh)c

(
ch(R̃), zh(R̃)

) ∣∣∣∣∣ ≤ m̄.

(2.158)

2.9.6.6.5 Properties of wh(·)

In this section, we establish that wh is well-defined and that ((wh)h∈H, G) is a standard, regular social
objective.

Proof wh is well-defined
First, we argue wh is well-defined. First, all terms in the integrand within the definition of wh are

102The fact that ĉh(V h(R̃)) > 0 implies that uh twice differentiable and has strictly positive first consumption derivative at
all inputs where evaluated above, by Assumption 2. ϕh is twice differentiable by assumption. Finally, since ϕh′(V h(R̃)) > 0 by
assumption. Together, these observations imply all derivatives and logs used in the Lemma statement are well-defined.
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defined for [V h0 , u] because—as V h(R + Bδ(0)) is convex103—any ũ ∈ [V h0 , u] is equal to V h(R̃) for some
R̃ ∈ V h(R + Bδ(0)), which by Lemma 11 implies ĉh(ũ) is defined and strictly positive; uhc (ĉh(ũ), zh0 ) is
therefore defined and strictly positive by Assumption 2. Next, note that this integrand is continuous in
ũ, by Assumption 2 and the fact that ĉh(ũ) is continuous (which follows from that ĉh(u) = uh(·, zh0 )−1(u)
and—since ĉh(u) > 0—uh is is locally differentiable with uhc > 0, by Assumption 2.) Since the integrand is
continuous on a closed, bounded domain, the integral in the definition of wh exists (and is finite).

Proof of standard-ness
We now argue that ((wh)h∈H, G) is a standard social objective in the sense of Definition 1.
First, for all h ∈ H, wh is a function from Im(uh) to R ∪ {−∞}. Moreover, the definition of wh and the

argument for its well-definition in the previous step imply that wh is always finite-valued.
Second, we claim that for all h ∈ H and R̃ ∈ R + Bδ(0), wh(u) is twice-continuously differentiable

on the domain u ∈ V h(R + Bδ(0)). To see that wh(u) is once-continuously differentiable on this domain
follows from the fundamental theorem of calculus and the observation—established in the previous step of
the proof—that the integrand in the definition of wh is continuous in ũ; indeed,

wh′(u) = λ̂h
eΦ(γ̂h(log ĉh(u)−log ch

0 ))
uhc (ĉh(u), zh0 )

. (2.159)

To establish that wh′(u) is itself continuously differentiable, it suffices—given Assumption 2 and the ob-
servation in the proof of wh’s well-defined-ness ĉh(u) > 0 for u ∈ V h(R + Bδ(0))—to show that ĉh(u) is
continuously differentiable in u. This in turn follows from the implicit function theorem, uh(ĉh(u), zh0 )’s
continuous differentiability (from Assumption 2 and ĉh(u) > 0), and that uhc (ĉh(u), zh0 ) > 0.

Third, we claim that for all R̃ ∈ R + Bδ(0), wh(u) is weakly increasing in u for all h ∈ H and strictly
increasing for a finite measure of h ∈ H. From (2.159) it is clear that wh(u) is weakly and moreover strictly
increasing for all h ∈ H with λ̂h ≥ 0 and moreover λ̂h > 0, respectively. It therefore suffices to show λ̂h ≥ 0
for all h ∈ H and λ̂h > 0 for a finite measure of h. This follows from the definition of λ̂h and the observation
in Appendix 2.9.6.6.1 that λ̂(z) > 0 for all z ∈ supp g.

In order to show that ((wh)h∈H, G) is a standard social objective, it remains to show that for all R̃ ∈
R + Bδ(0) and all ∆, ∆̃ ∈ ∆, wh(V h(R̃)), D∆w

h(V h(R̃)), and D2
∆∆̃

wh(V h(R̃)) are measurable in h. We
begin by computing the three terms explicitly, using wh’s twice-continuous differentiability and using the
fact that—since ch(R̃) and zh(R̃) are twice-continuous differentiable by Lemma 2 and strictly positive by
integrating the bounds on their derivatives in Lemma 3, and since uh is twice-continuously differentiable on

103This follows from that R + Bδ(0) is convex and—by Assumption 2 and Lemma 2, plus the fact that within R + Bδ(0),
ch(R̃), zh(R̃) are strictly positive (this follows from integrating the bounds on their logs from Lemma 3)—V h(R̃) =
uh(ch(R̃), zh(R)) is continuous in R̃.
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R>0 × R>0 by 2—V h(R̃) = uh(ch(R̃), zh(R̃)) is twice-continuously Frechet differentiable.

wh(V h(R̃)) = λ̂h
∫

[V h
0 ,V

h(R̃)]

eΦ(γ̂h(log ĉh(ũ)−log ch
0 ))

uhc (ĉh(ũ), zh0 )
dũ

D∆w
h(V h(R̃)) = λ̂h

e
Φ
(
γ̂h
(

log ĉh(V h(R̃))−log ch
0

))

uhc (ĉh(V h(R̃)), zh0 )
D∆V

h(R̃)

D2
∆∆̃

wh(V h(R̃)) = λ̂h
e

Φ
(
γ̂h
(

log ĉh(V h(R̃))−log ch
0

))

uhc (ĉh(V h(R̃)), zh0 )

·
[
γ̂hΦ′

(
γ̂h
(

log ĉh(V h(R̃)) − log ch0
)) D∆̃V

h(R̃)D∆V
h(R̃)

uhc (ĉh(V h(R̃)), zh0 )ĉh(V h(R̃))

−uhcc(ĉh(V h(R̃)), zh0 )
uhc (ĉh(V h(R̃)), zh0 )

D∆̃V
h(R̃)D∆V

h(R̃)
uhc (ĉh(V h(R̃)), zh0 )

+ D2
∆∆̃

V h(R̃)
]

(2.160)

where in the last two lines we have used that—by the implicit function theorem—ĉh′(V h(R̃)) = uhc (ĉh(V h(R̃)), zh0 )−1.
Using the expressions above, the facts that D∆w

h(V h(R̃)) and D2
∆∆̃

wh(V h(R̃)) are measurable follow
from that

• λ̂h and γ̂h are measurable (see Appendices 2.9.6.6.1 and 2.9.6.6.3),

• ch(V h(R̃)) is measurable (see Appendix 2.9.6.6.4),

• by Assumption 2 the first two derivatives of uh in c and/or z are measurable,

• the first two Frechet derivatives of V h(R̃) are products of the first two derivatives of uh(ch(R̃), zh(R̃))
(which are measurable by Assumption 2) and the first two Frechet derivatives of ch(R̃) and zh(R̃)
(which are measurable by Lemma 2), and

• products, sums, and (with non-zero denominators) quotient of measurable functions measurable, as
are compositions of measurable functions with continuous functions and/or with measurable functions.

It remains to show that wh(V h(R̃)) is measurable. To see this, note that by substituting ũ = V h0 +α(V h(R̃)−
V h0 ), it may be rewritten as

wh(V h(R̃)) = λ̂h
(
V h(R̃) − V h0

) ∫

[0,1]

e
Φ
(
γ̂h
(

log ĉh(V h
0 +α(V h(R̃)−V h

0 ))−log ch
0

))

uhc (ĉh(V h0 + α(V h(R̃) − V h0 )), zh0 )
dα (2.161)

Note that V h(R) and V h0 are measurable as they are the composition of uh(c, z) (which is jointly measurable
in (c, z, h)) with ch(R̃) and zh(R̃) and ch(R) and zh(R), respectively, all of which are measurable by Lemma
2. This fact, the observation—made in the proof that wh is well-defined—that V h(R+Bδ(0)) is convex, and
the arguments used above to establish the measurability of wh(V h(R̃))’s derivatives imply that the integrand
in (2.161) is measurable in h. It remains to argue that the integral in (2.161) is measurable. To see this
note that the integrand is continuous in α; this follows from same the argument used (in the proof that wh

is well-defined) to argue that the integrand in wh’s definition is continuous. Lemma 4.51 of Aliprantis and
Border (2006) then implies the inner integrand is jointly measurable in (α, h). Finally, the Fubini-Tonelli
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theorem (as stated in 2.37 of Folland (1999)) then implies that the integral of (2.161) is measurable in h, as
desired.

Proof of regularity, part 1
We next establish that ((wh)h∈H, G) is regular in the sense of Definition 3. Specifically, we establish in

this step the existence of integrable functions b0, b1, b2 : H → R such that for all R̃ ∈ R+Bδ(0),
∣∣∣(wh ◦ uh)(ch(R̃), zh(R̃))

∣∣∣ ≤ b0(h),
∣∣∣ch(R̃)(wh ◦ uh)c(ch(R̃), zh(R̃))

∣∣∣ ≤ b1(h),

and
∣∣∣ch(R̃)2(wh ◦ uh)cc(ch(R̃), zh(R̃))

∣∣∣ ≤ b2(h);

(2.162)

We establish the other part of the definition of regularity in the next step.
We begin by proving the bound on the level of welfare using the bounds on the first two derivatives;

we then independently establish the bounds on the derivatives. To start, note that by the definition of
wh, (wh ◦ uh)(ch0 , zh0 ) = 0 for all h ∈ H. So applying Taylor’s theorem to the path between R and any
R̃ ∈ R+Bδ(0)—which we may do since wh(V h(R̃)) is twice-continuously Frechet differentiable for R̃ ̸= R ∈
R+Bδ(0)—gives us

wh(V h(R̃)) = D
R̃−Rw

h(V h(R)) + 1
2D

2
R̃−R,R̃−Rw

h(V h(R+ α(R̃−R))) (2.163)

for some α ∈ [0, 1], where here we have used that R̃−R ∈ ∆. By the expressions (2.141) and (2.142) for the
derivatives of wh(V h(R)) in the proof of Lemma 5, by Assumptions 1 and 4, by the existence of a uniform
bound on D log zh(R̃) (from Lemma 3; see Footnote 56), by the definition of ||·||, and finally by the existence
of the desired bounds on the derivatives of (wh ◦ ch), there exist constants k11

0 , k21
0 , and k22

0 such that, for
all h ∈ H, R̃ ∈ R+Bδ(0), non-zero ∆ ∈ ∆

|D
R̃−Rw

h(V h(R))| ≤ k11
0 ||R̃−R||b1(h)

|D2
R̃−R,R̃−Rw

h(V h(R))| ≤ ||R̃−R||2
(
k21

0 b1(h) + k22
0 b2(h)

) (2.164)

Combining these bounds with (2.163), we have

|(wh ◦ uh)(ch(R̃), zh(R̃))| ≤ δk11
0 b1(h) +

(
k21

0 b1(h) + k22
0 b2(h)

) δ2

2 ≡ b0(h) (2.165)

We now proceed to the first derivative. From (2.159), we have
∣∣∣ch(R̃) (wh ◦ uh)c(ch(R̃), zh(R̃))

∣∣∣ =
∣∣∣ch(R̃) wh′(V h(R̃)) uhc (ch(R̃), zh(R̃))

∣∣∣

= ch0 λ̂
h

∣∣∣∣∣
ch(R̃)
ch0

∣∣∣∣∣

∣∣∣∣∣
uhc (ch(R̃), zh(R̃))
uhc (ĉh(V h(R̃)), zh0 )

∣∣∣∣∣ e
Φ
(
γ̂h
(

log ĉh(V h(R̃))−log ch
0

))
︸ ︷︷ ︸

≤eΦ

(2.166)

Now note that
∣∣∣∣
ch(R̃)
ch

0

∣∣∣∣ is uniformly bounded across h ∈ H and R̃ ∈ R+Bδ(0); this follows from integrating

the fact that, by Lemma 3 (see Footnote 56), |D log ch(R̃)| is uniformly bounded. Moreover,
∣∣∣∣
uh

c (ch(R̃),zh(R̃))
uh

c (ĉh(u),zh
0 )

∣∣∣∣
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is uniformly bounded by Lemma 11 (see Appendix 2.9.6.6.4). So there exists some uniform constant k1 such
that for all h ∈ H, R̃ ∈ R+Bδ(0),

∣∣∣ch(R̃)(wh ◦ uh)c(ch(R̃), zh(R̃))
∣∣∣ ≤ k1c

h
0 λ̂

h ≡ b1(h). (2.167)

As we have established in the first step of this proof that ch0 λ̂h ≡ b1(h) is integrable, this establishes the
desired bound for the first derivative.

Finally, consider the second derivative. We start with the observation that, by (2.159),

(wh ◦ uh)c(ch(R̃), zh(R̃)) = λ̂h
uhc

(
ch(R̃), zh(R̃)

)

uhc

(
ĉh
(
uh(ch(R̃), zh(R̃))

)
, zh0

)eΦ
(
γ̂h
(

log ĉh(uh(ch(R̃),zh(R̃)))−log ch
0

))
(2.168)

An important trick for the remainder of this step is to note that for any differentiable function ϕh : V h(R+
Bδ(0)) → R with ϕh′

(
uh(ch(R̃), zh(R̃))

)
> 0 we have

uhc

(
ch(R̃), zh(R̃)

)

uhc

(
ĉh
(
uh(ch(R̃), zh(R̃))

)
, zh0

) =
(ϕh ◦ uh)c

(
ch(R̃), zh(R̃)

)

(ϕh ◦ uh)c
(
ĉh
(
uh(ch(R̃), zh(R̃))

)
, zh0

) (2.169)

We will work with the following function ϕh, which (as we will show) has several useful properties:

ϕh(u) =
∫

[uh
0 ,u]

exp



∫

[uh
0 ,u

′]

1 − uh
cc(ĉh(ũ),zh

0 )ĉh(ũ)
uh

c (ĉh(ũ),zh
0 )

uhc (ĉh(ũ), zh0 ) ĉh(ũ)
dũ


 du′ (2.170)

To see that ϕh(u) is well-defined, we first note that (by the same argument used for the well-definedness of wh)
ĉh(·) is well-defined and strictly positive where evaluated in the definition. That the inner integral used in the
definition exists follows from that the integrand is defined—since ĉh(ũ) > 0 and therefore uhc (ĉh(ũ), zh0 ) > 0
(by Assumptions 2 and 3)—and that the integrand is continuous in ũ—since ĉh(ũ) is continuous in ũ (because
uhc > 0 by Assumption 2) and by Assumption 2 uh is twice-continuously differentiable. That the outer integral
used in the definition exists follows from that the outer integral exists (since the inner integral is defined)
and is continuous in u′ (since the inner integrand’s continuity allows us to apply the fundamental theorem
of calculus).

The same fundamental-theorem-of-calculus arguments also imply that ϕh(u) is continuously differentiable
with

ϕh′(u) = exp



∫

[uh
0 ,u]

1 − uh
cc(ĉh(ũ),zh

0 )ĉh(ũ)
uh

c (ĉh(ũ),zh
0 )

uhc (ĉh(ũ), zh0 ) ĉh(ũ)
dũ


 (2.171)

and that log ϕh′(u) is continuously differentiable with

d

du
log ϕh′(u) =

1 − uh
cc(ĉh(u),zh

0 )ĉh(u)
uh

c (ĉh(u),zh
0 )

uhc (ĉh(u), zh0 ) ĉh(u)
. (2.172)

Note that log ϕh′(u) and exp[·] are both continuously differentiable, so is exp
[
log ϕh′(u)

]
= ϕh′(u), i.e. ϕh′(u)

is twice-continuously differentiable. Also, by (2.171), ϕh′(u) > 0 for all u in ϕh’s domain. Finally, note that
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for all h ∈ H, R̃ ∈ R+Bδ(0),

(ϕh ◦ uh)cc
(
ĉh(V h(R̃)), zh0

)
ĉh(V h(R̃))

(ϕh ◦ uh)c
(
ĉh(V h(R̃)), zh0

)

= ϕh′′(V h(R̃))
ϕh′(V h(R̃))

uhc

(
ĉh(V h(R̃)), zh0

)
ĉh(V h(R̃)) +

uhcc

(
ĉh(V h(R̃)), zh0

)
ĉh(V h(R̃))

uhc

(
ĉh(V h(R̃)), zh0

)

= 1

(2.173)

by (2.172).
Returning to (2.168), we now substitute using (2.169) and differentiate in order to compute ch(R̃)2 (wh ◦

uh)cc(ch(R̃), zh(R̃)):

ch(R̃)2 (wh ◦ uh)cc(ch(R̃), zh(R̃))

= ch
0 λ̂

h c
h(R̃)
ch

0

(ϕh ◦ uh)c

(
ch(R̃), zh(R̃)

)

(ϕh ◦ uh)c

(
ĉh(V h(R̃)), zh

0
) eΦ
(

γ̂h
(

log ĉh(V h(R̃))−log ch
0

))

·

[
(ϕh ◦ uh)cc

(
ch(R̃), zh(R̃)

)
ch(R̃)

(ϕh ◦ uh)c

(
ch(R̃), zh(R̃)

)

−
(ϕh ◦ uh)cc

(
ĉh(V h(R̃)), zh

0
)
ĉh(V h(R̃))

(ϕh ◦ uh)c

(
ĉh(V h(R̃)), zh

0
) ch(R̃)

ĉh(V h(R̃))�
����

ĉh′(V h(R̃)) ((((((((
uh

c (ĉh(V h(R̃)), zh
0 )

+γ̂hΦ′ (γ̂h
(

log ĉh(V h(R̃)) − log ch
0
)) ch(R̃)

ĉh(V h(R̃))
XXXXXĉh′(V h(R̃))

hhhhhhhhuh
c (ĉh(V h(R̃)), zh

0 )
]

(2.174)

where the cancellations are by our earlier observation that ĉh′(V h(R̃)) = uhc (ĉh(V h(R̃)), zh0 )−1. Next, recall
that by Lemma 11 (see 2.9.6.6.4), there exists m̄ such that for all h ∈ H, R ∈ R+Bδ(0),

∣∣∣∣ log ĉh
(
V h(R̃)

)
− log ch

(
R̃
) ∣∣∣∣ ≤ m̄

∣∣∣∣ log
[
(ϕh ◦ uh)c

(
ĉh(V h(R̃)), zh0

)]
− log

[
(ϕh ◦ uh)c

(
ch(R̃), zh(R̃)

)] ∣∣∣∣ ≤ m̄

and
∣∣∣∣∣
d log
d log c (ϕh ◦ uh)c

(
ĉh(V h(R̃)), zh0

)
− d log
d log c (ϕh ◦ uh)c

(
ch(R̃), zh(R̃)

) ∣∣∣∣∣ ≤ m̄.

(2.175)

Also recalling (as argued in the bound of the first derivative), there exists some uniform bound m̂ on
∣∣∣∣
ch(R̃)
ch

0

∣∣∣∣,
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we may use (2.174) to bound
∣∣∣ch(R̃)2 (wh ◦ uh)cc(ch(R̃), zh(R̃))

∣∣∣

≤ ch0 λ̂
h · m̂em̄eΦ


m̄+

(ϕh ◦ uh)cc
(
ĉh(V h(R̃)), zh0

)
ĉh(V h(R̃))

(ϕh ◦ uh)c
(
ĉh(V h(R̃)), zh0

)

+
(ϕh ◦ uh)cc

(
ĉh(V h(R̃)), zh0

)
ĉh(V h(R̃))

(ϕh ◦ uh)c
(
ĉh(V h(R̃)), zh0

) em̄ +
∣∣γ̂h
∣∣Φem̄




= ch0 λ̂
h · m̂em̄eΦ (m̄+ 1 + em̄

)
+

∣∣∣ch0 λ̂hγ̂h
∣∣∣ · m̂e2m̄eΦΦ ≡ b2(h)

(2.176)

which is integrable since we have—in earlier steps of this proof—shown that ch0 λ̂h and ch0 λ̂hγ̂h are integrable.
To reach the last line we have used that ch0 , λ̂h ≥ 0 and we have used (2.173).

Proof of regularity, part 2
We now establish that ((wh)h∈H, G) satisfies the second component of Definition 3. To do so, we must

show that several income-conditional expectations are continuous or continuously differentiable in income.
Since these expectations include products with λh(R) ≡ (wh ◦ uh)c(ch0 , zh0 ) and (λγ)h(R) ≡ ch0 (wh ◦

uh)cc(ch0 , zh0 ), we first compute expressions of these variables. From (2.168) and (2.174), and because
ĉh(V h0 ) = ch0 , we have

λh(R) = (wh ◦ uh)c(ch0 , zh0 ) = λ̂h and (λγ)h(R) = ch0 (wh ◦ uh)cc(ch0 , zh0 ) = λ̂hγ̂h (2.177)

Now, recall from Appendices 2.9.6.6.2 and 2.9.6.6.3 the expectations of R(zh0 )λ̂h, R(zh0 )λ̂h, R(zh0 )λ̂hηh(R),
R(zh0 )λ̂hεh(R), R(zh0 )λ̂h η

h(R)2

εh(R) , R(zh0 )λ̂hγ̂h conditional on income zh0 exist and are equal to R(zh0 )λ̂(zh0 ),

R(zh0 )λ̂(zh0 )η≤(zh0 ; ϵ), R(zh0 )λ̂(zh0 )ε≤(zh0 ; ϵ) and R(zh0 )λ̂(zh0 )
(
η2

ε

)
≤

(zh0 ; ϵ), and R(zh0 )(λ̂γ)(zh0 ) respectively
(where the moments x≤(z; ϵ) are as in Assumption 6). From our observations in those sections as well as As-
sumption 1, it moreover follows that R(z)λ̂(z), R(z)λ̂(z)ε≤(z; ϵ) and R(z)λ̂(z)

(
η2

ε

)
≤

(z; ϵ), and R(z)(λ̂γ)(z)

are continuous in z ∈ supp g; and that R(z)λ̂(z)η≤(z; ϵ) are continuously differentiable in z ∈ supp g.
Combining these observations with (2.177) implies that expectations of R(zh0 )λh(R), R(zh0 )λh(R)ηh(R),

R(zh0 )λh(R)εh(R), R(zh0 )λh(R)η
h(R)2

εh(R) , R(zh0 )(λγ)h(R) conditional on income zh0 exist and are equal to

R(zh0 )λ̂(zh0 ), R(zh0 )λ̂(zh0 )η≤(zh0 ; ϵ), R(zh0 )λ̂(zh0 )ε≤(zh0 ; ϵ) and R(zh0 )λ̂(zh0 )
(
η2

ε

)
≤

(zh0 ; ϵ), and R(zh0 )(λ̂γ)(zh0 ) re-
spectively, and so have the continuity and differentiability properties described above on supp g.

2.9.6.6.6 Strengthening Lemmas 6 and 7

We claim that—under Assumption 6 and for the welfare function defined in the main proof of Theorem
2—Lemmas 6 and 7 hold for all ∆ ∈ ∆. From the lemmas’ proofs it is clear that we need only show that
(i) for all ∆ ∈ ∆, each additive term of (2.54), (2.57), and (2.65) is integrable over supp g in isolation, and
(ii) the integration by parts steps are valid for all ∆ ∈ ∆ (rather than just the specific ∆s described in the
lemmas). To do so, first we deal with (i) by providing appropriate bounds on each term and second deal
with (ii) by (a) providing a general result about integration by parts on supp g, (b) applying it to Lemma 6,
and (c) applying it to Lemma 7.
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Bounds on revenue and welfare derivative terms
We claim that each additive term of the integral expressions in (2.54), (2.57), and (2.65) is integrable in

isolation.
By dominated convergence—and since by the definition of ∆, Assumption (1), and the arguments in the

proofs of Lemmas 6 and 7 each term is continuously differentiable and therefore measurable on supp g—it
suffices to show that each is bounded by an integrable function. Because (a) by Assumption 4, zg(z) and
R(z)g(z) are integrable on supp g, and (b) by the definition of ∆, ∆(z)

R(z) , ∆′(z)
R′(z) and ∆′′(z)z

R′(z) are bounded by
||∆|| on supp g, it suffices to show that (i) the terms (1−R′(z))zη(z), (1−R′(z))zε(z), and ∆(z) from (2.54),
(ii) the terms A(z), B(z), C(z), D(z), E(z) in (2.57), and (iii) the terms A(z), B(z), C(z) in (2.65) are each
bounded by linear combinations of z and R(z).

In the case of (2.54), this is immediate from Assumptions 1, 4, and the definition of ∆.
In the case of (2.57), this is immediate from Assumptions 1 and 4, and the definition of the conditional

expectations used in the definitions of A(z), B(z), C(z), D(z), E(z).
For the case of (2.65), we use the observations proven in Appendices 2.9.6.6.1, 2.9.6.6.2, and 2.9.6.6.3

that, over all z ∈ supp g, (λγ)(z) = (λ̂γ)(z) is bounded by a linear combination of z and R(z); (λε)(z) =
(λ̂ε)(z), (λη)(z) = (λ̂η)(z), (λη

2

ε )(z) = (λ̂η
2

ε )(z) ≤ ϵλ̂(z) = ϵλ(z) for ϵ the constant defined in the main proof
of Theorem 2; and λ(z) = λ̂(z) is bounded by a linear combination of z and R(z).104 Combining these
observations with Assumption 1 gives the desired bounds.

General integration by parts on supp g

Lemma 8. Suppose that F (z), G(z) : supp g → R are continuously differentiable. Moreover suppose F (z)
and G(z) are bounded except possibly in limits as z → 0 and/or z → ∞,105 and that for all sequences
(zn) ⊂ supp g that converge either to 0 or to ∞, limn→∞ F (zn)G(zn)g(zn) = 0. Then if F ′(z)G(z)g(z) and
F (z)d(G(z)g(z))

dz are bounded on supp g by integrable functions,106 we have
∫

supp g

F ′(z)G(z)g(z)dz = −
∫

supp g

F (z)d (G(z)g(z))
dz

dz. (2.178)

Proof. We will use throughout that, by Assumption 5, g is continuously differentiable.
To start, note that because—by the continuous differentiability of F (z), G(z), and g(z) on supp g—

F ′(z)G(z)g(z) and F (z)d(G(z)g(z))
dz are measurable on supp g, and because they are by assumption bounded

by integrable functions, they are integrable on supp g by dominated convergence.
Now, recalling Lemma 9, let B be a countable set of disjoint, open, positive intervals, so that supp g =

∪I∈BI. By the countable additivity of Lebesgue integration,
∫

supp g

F ′(z)G(z)g(z)dz =
∑

I∈B

∫

I

F ′(z)G(z)g(z)dz

and
∫

supp g

F (z)d (G(z)g(z))
dz

dz =
∑

I∈B

∫

I

F (z)d (G(z)g(z))
dz

dz

(2.179)

104Our ability to interchange λ and λ̂ is established in Appendix 2.9.6.6.5.
105More formally, for all a, b ∈ R>0, F (z) and G(z) are bounded within supp g ∩ [a, b].
106I.e. functions that integrable as random variables on the measure space defined by restricting the standard measure space

on R to supp g (which note by Lemma 9 is measurable).
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To complete the proof it therefore suffices to show that for each I ∈ I,
∫

I

F ′(z)G(z)g(z)dz = −
∫

I

F (z)d (G(z)g(z))
dz

dz. (2.180)

To this end, fix any I = (a, b) ∈ B. For any decreasing sequence an → a and increasing sequence bn → b so
that a < an < bn < b, the fact that F (z) and G(z)g(z) are defined and continuously differentiable on [an, bn]
implies we may integrate by parts:

∫

[an,bn]

F ′(z)G(z)g(z)dz = F (z)G(z)g(z)
∣∣∣
bn

an

−
∫

[an,bn]

F (z)d (G(z)g(z))
dz

dz (2.181)

where note the integral on the RHS exists because the integrand is continuous on the closed interval over
which it is integrated. Taking the limit as an → a and bn → b, we have by the continuity of Lebesgue
integration (and that both integrands are integrable) that

∫

(a,b)

F ′(z)G(z)g(z)dz = lim
z

−→b

F (z)G(z)g(z) − lim
z

+→a

F (z)G(z)g(z) −
∫

(a,b)

F (z)d (G(z)g(z))
dz

dz (2.182)

so long as the first two limits on the RHS exist. We begin with the limit from below to b. If b < ∞, then since
b > 0 by construction, since h(b) = 0 and h is continuous, and since by assumption F (z)G(z) is bounded
in the vicinity of b, the limit is zero. Alternatively, if b = ∞, then the limit is zero by assumption. Next,
consider the limit from above to a. If a > 0, then since a < ∞ by construction, the same argument used in
the b < ∞ case implies the limit is zero. If instead a = 0, then the limit is zero by assumption. So both
limits exist and equal zero, completing the proof.

Application to proof of Lemma 6
It suffices to apply Lemma 8 to each instance of integration by parts in the proof.
We begin with (2.55). We take F (z) = ∆(z) and G(z) = g(z) 1−R′(z)

R′(z) ε(z)z. The proof of Lemma 8 argues
that F and G are continuously differentiable. That they are bounded except in limits to 0 or ∞ follows
from (a) ε(z)’s boundedness (Assumption 4), (b) g(z)’s continuity (Assumption 5), (c) R′(z)’s continuity
(Assumption 1) and (d) ∆’s continuity. Now, consider the limit condition: To see it, note that because
|∆(z)|≤ ||∆|||R(z)|, ε(z) is bounded, and by Assumption 6 R(z)

R′(z)z is bounded on supp g, we have that, for all
z ∈ supp g |F (z)G(z)g(z)|≤ k1R(z)zg(z) + k2z

2g(z) for some k1, k2 ∈ R≥0. By Assumption 6, these bounds
go to 0 in limits as z → 0 or z → ∞. It remains to show F ′(z)G(z)g(z) and F (z)d(G(z)g(z))

dz are bounded on
supp g by integrable functions. To see this, note that by the observations above and Assumptions 1 and 6,
there exist constants kn ∈ R≥0 such that for all z ∈ supp g,107

|F ′(z)G(z)g(z)| ≤ k3zg(z) + k4R(z)g(z)

F (z)d (G(z)g(z))
dz

= ε(z)
[

− 1 −R′(z)
R′(z)

α(z) + d

d log z

(1 −R′(z)
R′(z)

)

︸ ︷︷ ︸
=− 1

R′(z)
d log R′(z)

d log z

+ 1 −R′(z)
R′(z)

d log ε(z)
d log z

]
∆(z)g(z)

∣∣∣F (z)d (G(z)g(z))
dz

∣∣∣ ≤
(
k5 + k6

1
R′(z)

)
R(z)g(z) ≤ k5R(z)g(z) + k7zg(z)

(2.183)

107Here, we use that α(z) ≡ − d log zg(z)
d log z

is well-defined since h is differentiable by Assumption 5 and g(z) > 0 on supp g;
d log ε(z)

d log z
is well-defined on supp g since ε(z) is continuously differentiable by Assumption 5 and strictly positive by Assumption

4 and the fact that compensated elasticities are always positive (see the proof of Lemma 2).
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Note that zg(z) and R(z)g(z) are integrable functions on supp g, since their integrals over supp g correspond
to those of zh0 and ch0 over h ∈ H and the latter are integrable by Assumption 4.

Second, we consider the B(z) term in (2.58). We take F (z) = ∆(z)2

2 and G(z) = B(z)
R(z)R′(z) . Note that

F (z) and G(z) are continuously differentiable on supp z by Assumption 1, B(z)’s continuous differentiability
(see the proof of Lemma 6), the definition of ∆, and the fact that R(z) and R′(z) are strictly positive on
R>0 (see the proof of Lemma 2). Next, note that since R(z) and R′(z) are also continuous in z (Assumption
1), R(z), R′(z) > 0 on R>0, |∆(z)|≤ ||∆|||R(z)|, and B(z) is bounded by a linear combination of z and R(z)
(shown above), F (z) andG(z) are both bounded on any domain supp g∩[a, b], a, b ∈ R>0. These observations,
combined with the fact that R(z)

R′(z)z is bounded on supp g (Assumption 6), imply |F (z)G(z)g(z)| is bounded
on supp g by a linear combination of z2g(z) and zR(z)g(z); so Assumption 6 ensures that for any sequence
(zn) ⊂ supp g such that zn → 0 or ∞, we have limn→∞ F (zn)G(zn)g(zn) = 0. Differentiating the expression
(2.57) for B(z) reveals that zB′(z) is bounded on supp g by a linear combination of z and R(z).108 This
fact, the bound on B(z), the fact that |∆(z)|≤ ||∆|||R(z)| and |∆′(z)|≤ ||∆|||R′(z)|, and Assumptions 1 and
6, give us that

|F ′(z)G(z)g(z)| =
∣∣∣∆(z)∆′(z) B(z)

R(z)R′(z)
g(z)
∣∣∣ ≤ k1zg(z) + k2R(z)g(z)

F (z)d (G(z)g(z))
dz

=
(

B′(z)z
R(z)R′(z)z

+ B(z)
R(z)R′(z)z

d log
d log z

(
zg(z)

R(z)R′(z)z

)) ∆(z)2

2
g(z)

= R(z)
R′(z)z

(
B′(z)z
R(z)2 − B(z)

R(z)2

(
α(z) + 1 + d logR(z)

d log z
+ d logR′(z)

d log z

)) ∆(z)2

2
g(z)

∣∣∣F (z)d (G(z)g(z))
dz

∣∣∣ ≤ k3zg(z) + k4R(z)g(z)

(2.185)

for all z ∈ supp g, for various constants kn ∈ R≥0. By Assumption 4, these bounds are integrable, as desired.
Third, we consider the E(z) term in (2.58). We take F (z) = ∆′(z)2

2 and G(z) = zE(z)
R′(z)2 . Note that F (z)

and G(z) are continuously differentiable on supp z by Assumptions 1, E(z)’s continuous differentiability (see
the proof of Lemma 6), the definition of ∆, and the fact that R′(z) is strictly positive on R>0 (see the proof
of Lemma 2). Since R(z) and R′(z) are also continuous in z (Assumption 1), |∆′(z)|≤ ||∆|||R′(z)|, and E(z)
is bounded by a linear combination of z and R(z) (shown above), F (z) and G(z) are both bounded on any
domain supp g∩ [a, b], a, b ∈ R>0. These observations imply |F (z)G(z)g(z)| is bounded on supp g by a linear
combination of z2g(z) and zR(z)g(z); so Assumption 6 ensures that for any sequence (zn) ⊂ supp g such
that zn → 0 or ∞, we have limn→∞ F (zn)G(zn)g(zn) = 0. Differentiating the expression (2.57) for E(z)
reveals that zE′(z) is bounded on supp g by a linear combination of z and R(z).109 This fact, the bound on

108More explicitly, we have

zB
′(z) =

[
2
(

z − zR
′(z)
)

− 2z
2

R
′′(z)
][ d log R(z)

d log z
η

2(z) +

(
1 −

d log R(z)

d log z
−

d log R′(z)

d log z

)
(ηε)(z)

+
d

d log z

(
d log R(z)

d log z

)
(η

2
ε)(z) +

d

d log z

(
d log R′(z)

d log z

)
(ηε

2)(z) + η+1(z)

]

+ 2
(

z − zR
′(z)
)[ d

d log z

d log R(z)

d log z
η

2(z) +
d log R(z)

d log z
z(η

2)′(z)

+

(
−

d

d log z

d log R(z)

d log z
−

d

d log z

d log R′(z)

d log z

)
(ηε)(z) +

(
1 −

d log R(z)

d log z
−

d log R′(z)

d log z

)
z(ηε)′(z)

+
d2

d log z2

(
d log R(z)

d log z

)
(η

2
ε)(z) +

d

d log z

(
d log R(z)

d log z

)
z(η

2
ε)′(z)

+
d2

d log z2

(
d log R′(z)

d log z

)
(ηε

2)(z) +
d

d log z

(
d log R′(z)

d log z

)
z(ηε

2)′(z) + zη
′
+1(z)

]

− 2
(

zR
′(z) + z

2
R

′′(z)
)[

η(z) +
d log R′(z)

d log z
(ηε)(z)

]
− 2zR

′(z)

[
zη

′(z) +
d

d log z

d log R′(z)

d log z
(ηε)(z) +

d log R′(z)

d log z
z(ηε)′(z)

]

(2.184)

By Assumptions 1, 4, and 6, this implies zB′(z) is bounded by a linear combination of z and R(z).
109More explicitly, we have

E′(z) = 2(1 −R′(z))(ε2)(z) − 2zR′′(z)(ε2)(z) + 2z(1 −R′(z))(ε2)′(z). (2.186)

By Assumptions 1, 4, and 6, this implies zE′(z) is bounded by a linear combination of z and R(z).
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E(z), the fact that |∆′(z)|≤ |R′(z)| and |∆′′(z)z|≤ |R′(z)|, and Assumptions 1 and 6 imply

|F ′(z)G(z)g(z)| =
∣∣∣∆′(z)∆′′(z) zE(z)

R′(z)2 g(z)
∣∣∣ ≤ k1zg(z) + k2R(z)g(z)

F (z)d (G(z)g(z))
dz

=
(
zE′(z)
R′(z)2 + E(z)

R′(z)2
d log
d log z

(
zg(z)
R′(z)2

)) ∆′(z)2

2
g(z)

=
(
zE′(z)
R′(z)2 − E(z)

R′(z)2

(
α(z) + 2d logR′(z)

d log z

)) ∆′(z)2

2
g(z)

∣∣∣F (z)d (G(z)g(z))
dz

∣∣∣ ≤ k3zg(z) + k4R(z)g(z)

(2.187)

for all z ∈ supp g, for various constants kn ∈ R≥0. By Assumption 4, these bounds are integrable, as desired.
Fourth, we consider the first term on the RHS of the third line of (2.58) (the first line proportional to

D(z)). We begin by noting that
∫

supp g

g(z)D(z)
∆(z)
R(z)

∆′′(z)z
R′(z)

dz =

∫

supp g

g(z)
D(z)z

R(z)R′(z)

[
∆(z)∆′′(z) + ∆′(z)2

]
︸ ︷︷ ︸

d
dz [∆(z)∆′(z)]

dz −
∫

supp g

g(z)D(z)
R′(z)z
R(z)

(
∆′(z)
R′(z)

)2
dz

(2.188)

where the integrals on the RHS by Assumption 1, the definition of ∆, and the fact shown above that D(z)
is bounded on supp g by a linear combination of z and R(z). We set aside the second term and integrate the
first by parts, setting F (z) = ∆(z)∆′(z) and G(z) = zD(z)

R(z)R′(z) . Note that F (z) and G(z) are continuously
differentiable on supp z by Assumption 1, D(z)’s continuous differentiability (see the proof of Lemma 6),
the definition of ∆, and the fact that R(z) and R′(z) are strictly positive on R>0 (see the proof of Lemma
2). Since R(z) and R′(z) are continuous in z (Assumption 1), R(z), R′(z) > 0 on R>0 (proof of Lemma
2), |∆(z)|≤ ||∆|||R(z)| and |∆′(z)|≤ ||∆|||R′(z)|, and D(z) is bounded by a linear combination of z and
R(z), F (z) and G(z) are both bounded on any domain supp g ∩ [a, b], a, b ∈ R>0. These bounds also ensure
|F (z)G(z)g(z)| is bounded on supp g by a linear combination of z2g(z) and zR(z)g(z); so by Assumption 6,
limn→∞ F (zn)G(zn)g(zn) = 0 for any sequence (zn) ⊂ supp g such that zn → 0 or ∞. Differentiating the
expression (2.57) for D(z) reveals that zD′(z) and z2D′′(z) are bounded on supp g by a linear combination
of z and R(z).110 This fact; the fact that |∆(z)|≤ |R(z)|, |∆′(z)|≤ |R′(z)|, and |∆′′(z)z|≤ |R′(z)|; and
Assumptions 1 and 6 imply

|F ′(z)G(z)g(z)| =
∣∣∣
(

∆(z)∆′′(z) + ∆′(z)2
)
z

D(z)
R(z)R′(z)

g(z)
∣∣∣

≤
∣∣∣
(∆′′(z)z
R′(z)

+ ∆′(z)
R′(z)

R′(z)z
R(z)

)
D(z)g(z)

∣∣∣ ≤ k1zg(z) + k2R(z)g(z)

F (z)d (G(z)g(z))
dz

=
(

zD′(z)
R(z)R′(z)

+ D(z)
R(z)R′(z)

d log
d log z

(
zg(z)

R(z)R′(z)

))
∆(z)∆′(z)g(z)

=
(

zD′(z)
R(z)R′(z)

− D(z)
R(z)R′(z)

(
α(z) + d logR(z)

d log z
+ d logR′(z)

d log z

))
∆(z)∆′(z)g(z)

∣∣∣F (z)d (G(z)g(z))
dz

∣∣∣ ≤ k8zg(z) + k9R(z)g(z)

(2.190)

for all z ∈ supp g, for various constants kn ∈ R≥0. By Assumption 4, these bounds are integrable, as desired.
Fifth, we consider the first term on the RHS of the last line of (2.58). Take F (z) = ∆(z)2

2 and G(z) =
110More explicitly, we have

D′(z) = 2(1 −R′(z))(ηε)(z) − 2zR′′(z)(ηε)(z) + 2z(1 −R′(z))(ηε)′(z)
D′′(z) = −2R′′(z)(ηε)(z) + 2(1 −R′(z))(ηε)′(z)

− 2R′′(z)(ηε)(z) − 2zR′′′(z)(ηε)(z) − 2zR′′(z)(ηε)′(z)
+ 2(1 −R′(z))(ηε)′(z) − 2zR′′(z)(ηε)′(z) + 2z(1 −R′(z))(ηε)′′(z)

(2.189)

By Assumption 1 (and the observation that z2R′′′(z) = d2R′(z)
d log z2 − zR′′(z)), Assumption 4, and Assumption 6, this implies

zD′(z) and z2D′′(z) are bounded by a linear combinations of z and R(z).
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1
g(z)

d
dz

[
g(z)zD(z)
R(z)R′(z)

]
. Before beginning to verify the conditions of Lemma 8, it is helpful to note that

G(z) = 1
R(z)R′(z)

[
zD′(z) −D(z)

(
α(z) + d logR(z)

d log z + d logR′(z)
d log z

)]
. (2.191)

Now, note that F (z) and G(z) are continuously differentiable on supp z by Assumptions 1 and 5 (for α(z)),
D(z)’s twice-continuous differentiability (see the proof of Lemma 6), the definition of ∆, and the fact that
R(z) and R′(z) are strictly positive on R>0 (see the proof of Lemma 2). Since R(z) is twice-continuously
differentiable (Assumption 1), R(z), R′(z) > 0 on R>0 (proof of Lemma 2), |∆(z)|≤ ||∆|||R(z)| (definition
of ||·||), and D(z) and zD′(z) are bounded by linear combinations of z and R(z) (shown above), F (z) and
G(z) are both bounded on any domain supp g ∩ [a, b], a, b ∈ R>0. Moreover, because |∆(z)|≤ ||∆|||R(z)|,
because d logR(z)

d log z and d logR′(z)
d log z are bounded by Assumption 1, because α(z) and R(z)

R′(z)z are bounded on
supp g by Assumption 6, and because D(z) and zD′(z) are bounded by linear combinations of z and R(z),
|F (z)G(z)g(z)| is bounded by a linear combination of z2g(z) and zR(z)g(z) over all z ∈ supp g. So by
Assumption 6, limn→∞ F (zn)G(zn)g(zn) = 0 for any sequence (zn) ⊂ supp g such that zn → 0 or ∞. Finally,
by our bounding observations on D(z), zD′(z), and z2D′′(z) (see above); the fact that |∆(z)|≤ ||∆|||R(z)|;
and Assumptions 1 and 6, we have

|F
′(z)G(z)g(z)| ≤ k1zg(z) + k2R(z)g(z) (done in previous integration-by-parts argument)

F (z)
d (G(z)g(z))

dz
=

∆(z)2

2

d

dz

[
g(z)

R(z)R′(z)

(
zD

′(z) −
(

α(z) +
d log R(z)

d log z
+

d log R′(z)

d log z

)
D(z)

)]

=
∆(z)2

2z

d

d log z

[
g(z)

R(z)R′(z)

](
zD

′(z) −
(

α(z) +
d log R(z)

d log z
+

d log R′(z)

d log z

)
D(z)

)

+
∆(z)2

2z

g(z)

R(z)R′(z)

d

d log z

[
zD

′(z) −
(

α(z) +
d log R(z)

d log z
+

d log R′(z)

d log z

)
D(z)

]

= −
1

2

(
∆(z)

R(z)

)2
R(z)

R′(z)z

(
1 + α(z) +

d log R(z)

d log z
+

d log R′(z)

d log z

)(
zD

′(z) −
(

α(z) +
d log R(z)

d log z
+

d log R′(z)

d log z

)
D(z)

)

+
1

2

(
∆(z)

R(z)

)2
R(z)

R′(z)z

[
zD

′(z) + z
2

D
′′(z) −

(
α(z) +

d log R(z)

d log z
+

d log R′(z)

d log z

)
zD

′(z)

−
(

zα
′(z) +

d

d log z

d log R(z)

d log z
+

d

d log z

d log R′(z)

d log z

)
D(z)

]

∣∣∣F (z)
d (G(z)g(z))

dz

∣∣∣ ≤ k3zg(z) + k4R(z)g(z)

(2.192)

for all z ∈ supp g, for various constants kn ∈ R≥0. By Assumption 4, these bounds are integrable, as desired.

Application to proof of Lemma 7
Consider the term proportional to (λη)(z) in (2.65). Take F (z) = ∆(z)2

2 and G(z) = z(λη)(z)
R(z) =

zR(z)(λη)(z)
R(z)2 . Note that F (z) and G(z) are continuously differentiable on supp z by Assumption 1, the fact

that ((wh)h∈H, G) is a regular social objective (see Appendix 2.9.6.6.5), the definition of ∆, and the fact that
R(z) is strictly positive on R>0 (see the proof of Lemma 2). Next, note that since R(z) is continuous in z (As-
sumption 1), R(z) > 0 on R>0, |∆(z)|≤ ||∆|||R(z)| (definition of ||·||), R(z)|(λη)(z)|≤ MR(z)λ(z) for some
constant M (by Assumption 4), and for some bc, bz > 0, R(z)λ(z) ≤ bcR(z) + bzz (recalling from Appendix
2.9.6.6.5 that λ(z) = λ̂(z), see Appendix 2.9.6.6.1), we have that F (z) and G(z) are both bounded on any
domain supp g ∩ [a, b], a, b ∈ R>0. Next, note that because |∆(z)|≤ |R(z)| and R(z)|(λη)(z)|≤ MR(z)λ(z)
for some constant M , |F (z)G(z)g(z)| is bounded over all z ∈ supp g by a constant times zR(z)λ(z)g(z); so
Assumption 6 ensures that limn→∞ F (zn)G(zn)g(zn) = 0 for any sequence (zn) ⊂ supp g such that zn → 0
or ∞. Finally, by Assumptions 1, 4, and 6, and the fact that |∆(z)|≤ ||∆|||R(z)| and |∆′(z)|≤ ||∆|||R′(z)|,
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we have

|F ′(z)G(z)g(z)| =
∣∣∣∆(z)∆′(z)R(z)

R(z)
R′(z)
R′(z)

z(λη)(z)
R(z)

g(z)
∣∣∣ ≤ k1R(z)λ(z)g(z)

F (z)d (G(z)g(z))
dz

=
(
z(λη)′(z)
R(z)

+ (λη)(z)
R(z)

d log
d log z

(
zg(z)
R(z)

)) ∆(z)2

2
g(z)

∣∣∣F (z)d (G(z)g(z))
dz

∣∣∣ ≤ k2R(z)λ(z)g(z)

(2.193)

for all z ∈ supp g, for various constants kn ∈ R≥0. Since R(z)λ(z) = R(z)λ̂(z) is bounded across supp g
by a linear combination of z and R(z) (recalling from Appendix 2.9.6.6.5 that λ(z) = λ̂(z), see Appendix
2.9.6.6.1), these bounds are integrable, as desired.

2.9.6.7 Characterization of supp g

Lemma 9. supp g is a countable union of disjoint, open, positive intervals.

Proof. First, note that for all z ∈ supp g, there exists by h’s continuity (Assumption 5) some az, bz ∈ Q such
that z ∈ (az, bz) ⊂ supp g. Since h(0) = 0 by Assumption 3, we may take az, bz ≥ 0. Since (az, bz) ∈ Q2,
which is countable, we conclude that

supp g =
⋃

n∈B
In, (2.194)

for In positive, open intervals and B countable.
Next, define an equivalence relation on B by

n ∼ m ⇐⇒ ∃i1, ..., ik s.t. ∀j = 1, ..., k − 1, Iij ∩ Iij+1 ̸= ∅ (2.195)

Letting E be the (countable) set of equivalence classes E of B under ∼, we now claim that each union
SE ≡ ∪n∈EIn is an open interval. SE is open because it is the union of open sets. To see that SE is an
interval, it suffices to show it is connected. To see this in turn, suppose not, i.e. SE = A ∪B with A,B ̸= ∅
and A ∩ B = A ∩ B = ∅. This implies that for each n ∈ E, In is contained in either A or B, since it must
be contained in A∪B and if both A∩ In and B ∩ In are non-empty, then In is not connected, contradicting
that it is an interval. As a consequence, each In∈E ⊂ A can only be in the same equivalence class as other
Im∈E ⊂ A (and similarly for B); otherwise, some interval Ij∈E on the path between them must contain
points in both A and B, violating that A ∩ B = A ∩ B = ∅. Since A and B are both non-empty and
SE = A ∪ B, we may therefore take n,m ∈ E with In ⊂ A and Im ⊂ B, implying n ̸∼ m; this violates
n,m ∈ E, a contradiction.

Finally, note that for any distinct E,E′ ∈ E , SE and SE′ are disjoint, since if they intersect then they
contain intervals In in the same equivalence class. We conclude that

supp g =
⋃

n∈B
In =

⋃

E∈E

⋃

n∈E
In =

⋃

E∈E
SE , (2.196)

where we have shown SE are disjoint, open, positive intervals and E is countable.

2.9.6.8 Indifference curve lemmas

Below, we prove two useful but tedious lemmas that establish uniform bounds on various ratios of
derivatives of household utilities. In particular, these lemmas allow us to bound such ratios along households’
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indifference curves locally to their consumption-labor profile at the initial equilibrium. These bounds are
essential to establishing regularity conditions on the social objective constructed in the proof of sufficiency.

The first lemma below shows that—roughly—given any initial, local tax schedule, there exist other local
tax schedules that cause a household to experience any local consumption-labor pair on the same indifference
curve as the initial consumption-labor pair.

The second lemma leverages the first to bound ratios of utility derivatives at certain points along indif-
ference curves local to the initial tax schedule.

Lemma 10. There exists δ, δ̃ > 0 with δ < δ̃ < 1
2 both small enough that

• Assumption 4 and Lemmas 2 and 3 apply at 2δ̃,111 and

• for all h ∈ H, R̃ ∈ R + Bδ(0), z ∈
[
min[zh0 , zh(R̃)],max[zh0 , zh(R̃)]

]
, there exists a tax schedule

R̂h(·; z, R̃) such that

– R̂h(·; z, R̃) ∈ Bδ̃(0),

– zh
(
R̂h(·; z, R̃)

)
= z, and

– V h
(
R̂h(·; z, R̃)

)
= V h

(
R̃
)

.

Proof. We complete the proof in several steps. As a preliminary step, we introduce a convenient tax deviation
that will be used throughout. Then we show how to select δ and δ̃. We proceed to fix any h ∈ H, R̃ ∈
R+Bδ(0), and z ∈ [min[zh0 , zh(R̃)],max[zh0 , zh(R̃)]] and then show the existence of an desired tax schedule
R̂(·; z, R̃) by constructing a sequence of tax changes that converge to it.

Preliminary step: a useful deviation
We begin by defining and studying the properties of a useful tax deviation that we will use later on.
For any ẑ ∈ R>0, define ∆̂(·; ẑ) : R≥0 → R by

∆̂(z; ẑ) ≡ ẑR′(ẑ)p(z; ẑ)

where p(z; ẑ) ≡

{
(log z − (log ẑ − 1))6(log z − log ẑ)(log z − (log ẑ + 1))6 if z ∈

[
elog z−1, elog z+1

]

0 else

(2.197)

One may easily verify the following properties of p(·; ẑ) : R≥0 → R:

• p(·; ẑ) is three-times continuously differentiable.

• For n = 0, 1, 2, 3, the nth log-derivative of p(·; ẑ)—i.e. dn

d log zn p(z; ẑ)—achieves a maximum absolute
value that is independent of ẑ. Note this implies the existence of ẑ-independent upper bounds p1, p2,
and p3 on the absolute value of p′(z; ẑ)z dp′(z;ẑ)

d log z z and d2p′(z;ẑ)
d log z2 z, respectively.

• p(ẑ; ẑ) = 0 and p′(ẑ; ẑ) = 1
ẑ

We now consider the implications of these facts for ∆̂(·; ẑ). In particular, we claim there exists B̂ > 0
such that for all ẑ ∈ R>0,

• ∆̂(ẑ; ẑ) = 0

• ∆̂′(ẑ; ẑ) = R′(ẑ)
111In particular, this guarantees that labor supply and household utility are well-defined at all tax schedules R̃ ∈ R +Bδ̃(0),

which facilitates the rest of the Lemma statement.
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• ∆̂(·; ẑ) ∈ ∆ and ||∆̂(·; ẑ)||≤ B̂

The first two bullets are immediate. As our observations on p(·; ẑ) imply ∆̂(·; ẑ) is three-times continu-
ously differentiable, it remains—in order to prove that ∆̂(·; ẑ) ∈ ∆—to show that ∃B ∈ R s.t. ∀z ∈ R≥0

|∆̂(z; ẑ)|≤ B|R(z)|, |∆̂′(z; ẑ)|≤ B|R′(z)|,
∣∣∣∣
d∆̂′(z; ẑ)
d log z

∣∣∣∣ ≤ B|R′(z)|, and
∣∣∣∣
d2∆̂′(z; ẑ)
d log z2

∣∣∣∣ ≤ B|R′(z)| (2.198)

Our observations about the derivatives of p(z; ẑ)—along with the fact that p(z; ẑ)=0 outside of [elog ẑ−1, elog ẑ+1]—
imply that it suffices to show there exists B ∈ R such that (a) in the levels case we have for all log z ∈
B1(log ẑ), that p̄0 R

′(ẑ)ẑ
R(ẑ)︸ ︷︷ ︸
≤BR

R(ẑ) ≤ BR(z) and (b) for n = 1, 2, 3, we have for all log z ∈ B1(log ẑ) that

p̄nR′(ẑ) ẑz ≤ BR′(z). To see that such a B exists note that by Assumption 1 R(ẑ)
R(z) ,

R′(ẑ)
R′(z) ∈ [e−BR

, eB
R ] for all

log z ∈ B1(log ẑ); similarly, | ẑz |∈ e1. This implies that we have (2.198) forB = B̂ ≡ max[p̄0BR, p̄1, p̄2, p̄3]eBR+1 >

0. We conclude that for any ẑ ∈ R>0, ∆̂(·; ẑ) ∈ ∆, and ||∆̂(·; ẑ)||≤ B̂.

Choosing appropriate δ, δ̃
We set δ̃ ∈ (0, 1

2 ) small enough that Assumption 4 and Lemmas 2 and 3 apply at 2δ̃. Note this guarantees
that labor supply zh(R̃) and household utility V h(R̃) are well-defined and twice-continuously differentiable
at all tax schedules R̃ ∈ R+Bδ̃(0), which we will use throughout.112

Next, note that by Lemma 3 (in particular see Footnote 56) there exist dz, dc > 0 such that for all
h ∈ H, R̃ ∈ R+Bδ̃(0), and non-zero ∆ ∈ ∆,

|D∆ log zh(R̃)|≤ dz||∆|| and |D∆ log ch(R̃)|≤ dc||∆|| (2.199)

Note that integrating these bounds imply log zh(R̃) ∈ Bdz δ̃
(log zh0 ) and log ch(R̃) ∈ Bdcδ̃

(log ch0 ); we use
these facts later on.

Finally, we take δ > 0 small enough that δ + dz

ε/2 B̂δ < δ̃, where for all ε > 0 is a lower bound on
compensated elasticities across all h ∈ H, R̃ ∈ R+Bδ̃(0); this exists by Assumption 4.

Setup for main claim
Now fix any h ∈ H, R̃ ∈ R+Bδ(0), and z ∈

[
min[zh0 , zh(R̃)],min[zh0 , zh(R̃)]

]
. Note that if z = zh(R̃), we

may set R̂h(·; z, R̃) = R̃ and we are done. We will therefore prove the claim in the statement of the Lemma
assuming zh(R̃) < z ≤ zh0 ; the complementary case where zh0 ≤ z < zh(R̃) is analogous.

Before proceeding, recall our goal: Having fixed h, R̃, and z ∈ (zh(R̃), zh0 ), we wish to show the existence
of a tax schedule R̂ such that

R̂ ∈ Bδ̃(0), zh(R̂) = z, and V h(R̂) = V h(R̃). (2.200)

The remainder of the proof shows the existence of R̂ in two basic steps. First, we construct a sequence
of tax schedules

(
R̂N

)
N∈N

meant to satisfy these conditions in the limit as N → N. Second, we argue the
limit actually exists and does in fact satisfy the desired conditions.

Sequence of tax schedules
112For labor supply, this is from Lemma 2; for indirect utility, it is from Assumptions 1 and 2, and the twice-continuous

differentiability of labor supply.
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As a first step toward constructing the desired sequence of tax schedules (R̂N )N∈N, define—for every
N ∈ N—ϵN ≡ log zh

0 −log zh(R̃)
N

ε/2

B̂

and for all n = 1, ..., N and ϵ ∈ [0, ϵN ], define

R̂Nn (·; ϵ) : R≥0 → R, z̃ 7→ R̂Nn−1(z̃; ϵN ) +
∆̂
(
z̃; zh(R̂Nn−1(·; ϵN ))

)

∣∣∣
∣∣∣∆̂
(

·; zh(R̂Nn−1(·; ϵN ))
)∣∣∣
∣∣∣
ϵ, (2.201)

where R̂N0 (·; ϵN ) ≡ R̃. Note that—as can be seen by iterating the definition above and applying the triangle
inequality—we have that for all N ∈ N, n = 1, ..., N, ϵ ∈ [0, ϵN ], R̂Nn (·; ϵ) ∈ R̃ + BnϵN

(0). More strongly,
we in fact have, R̂Nn (·; ϵ) ∈ R̃ + BnϵN

(0) ⊂ R + Bδ̃(0)113 since R̃ ∈ Bδ(0); since by the definition of
ϵN , nϵN ≤ NϵN ≤ dzδ

(ε/2)/B̂
; and since by the definition of δ, δ + dz

ε/2 B̂δ < δ̃. Finally, note that by the

definition of ∆̂(·; ẑ) —and our observation in the second step of this proof that for all Ř ∈ R + Bδ̃(0),
log zh(Ř) ∈ Bδ̃dz

(0)—we always have R̂Nn (z̃; ϵ) = R̃(z̃) whenever log z̃ ̸∈ [log zh0 − dz δ̃ − 1, log zh0 + dz δ̃ + 1].
We next establish two properties of the tax schedules R̂Nn (·; ϵ) that hold for all sufficiently large N .

Specifically, for large enough N , for all n = 1, ..., N , ϵ ∈ [0, ϵN ],

• log zh(R̂Nn (·; ϵ)) ≥ log zh(R̂Nn−1(·; ϵN )) + ε/2
B̂
ϵ

•
∣∣∣V h(R̂Nn (·; ϵ)) − V h(R̂Nn−1(·; ϵN ))

∣∣∣ ≤ B̃ ϵ2

2

for some constant B̃ independent of n,N, ϵ. Both of these facts are consequences of Taylor’s theorem.
More concretely, by the two-times continuous differentiability of zh(·) and V h(·) within R+Bδ̃(0), we have
that—for some ϵ̃, ϵ̂ ∈ [0, ϵN ]—

log zh(R̂N
n (·; ϵ)) = log zh(R̂N

n (·; 0)) +D∆n
log zh(R̂N

n (·; 0))ϵ+D2
∆n

log zh(R̂N
n (·; ϵ̃)) ϵ

2

2

≤ log zh(R̂N
n−1(·; ϵN )) + ε

B̂
ϵ− d2

ϵ2

2

V h(R̂N
n (·; ϵ)) − V h(R̂N

n (·; 0)) = D∆n
V h(R̂N

n (·; 0))ϵ+D2
∆n

V h(R̂N
n (·; ϵ̂)) ϵ

2

2
∣∣V h(R̂N

n (·; ϵ)) − V h(R̂N
n−1(·; ϵN ))

∣∣ ≤ 0 +
(
uh

cc

(
ch

0 e
1
2

)2
+ uh

c ch
0 e

1
2 BR 1

ε
(d1)2

)
ϵ2

2

(2.202)

where ∆n =
∆̂
(

·;zh(R̃(n)(·;0))
)

∣∣∣∣∆̂(·;zh(R̃(n)(·;0))
)∣∣∣∣ , where d1 and d2 are upper bounds on the first and second derivatives of

log labor supply across all R̃ ∈ B2δ̃(0) (by Lemma 3; see Footnote 56), and where114

uhc = max
c,z

uhc (c, z) s.t. log c ∈ Bdcδ̃
(log ch0 ), log z ∈ Bdz δ̃

(log zh0 )

uhcc = max
c,z

uhcc(c, z) s.t. log c ∈ Bdcδ̃
(log ch0 ), log z ∈ Bdz δ̃

(log zh0 )
(2.203)

The first inequality follows from Assumption 4 and the definitions of ∆̂(·; z̃, R̃) and B̂ (from the first section
of this proof). The second inequality follows from the definition of ∆̂(·; z̃, R̃), the expressions (2.141) and
(2.142) for the first and second derivatives of welfare in the proof of Lemma 5, Assumptions 1 and 4,
the fact that δ̃ < 1

2 , and the observation (from the second section of this proof) that for all Ř ∈ Bδ̃(0),
log zh(Ř) ∈ Bdz δ̃

(log zh0 ) and log ch(Ř) ∈ Bdcδ̃
(log ch0 ). (2.202) implies that claims above (those in bullets)

113Note that this justifies our usage of zh(R̂N
n−1(·; ϵN )) in the definition of R̂N

n (z; ϵ).
114The maxima defined below exist by Assumption 2.
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hold so long as ϵ is sufficiently small, which—since ϵ ∈ [0, ϵN ] and ϵN → 0 as N → ∞—holds for all N larger
than some N̂ .

We are now almost ready to define R̂N , the N th term of our tax sequence of interest. To do this,
note that iterating the first bullet established above implies that, for large enough N , log zh(R̂NN (·; ϵN )) ≥
log zh(R̃) + ε/2

B̂
εNN = log zh(R̃)

(
log zh0 − log zh(R̃)

)
= log zh0 by the definition of ϵN . Since, for this fixed

N , stringing the series of tax schedules RNn (·; ϵ) generates a continuous path of tax schedules in R+Bδ̃(0),
since zh(·) is continuous on this domain, and since z ∈ (zh(R̃), zh0 ], the intermediate value theorem implies
there exists n∗(N) ≤ N and ϵ∗(N) ∈ [0, ϵN ] such that zh(R̂Nn∗(N)(·; ϵ∗(N))) = z. We therefore define

R̂N =




R̂Nn∗(N)(·; ϵ∗(N)) if N > N̂

R̃ else.
(2.204)

By construction, R̂N ∈ R + Bδ̃(0). Moreover note that iterating the second bullet proved above implies∣∣∣V h(R̂N ) − V h(R̃)
∣∣∣ ≤ B̃ ϵNN

2 ϵN → 0 as N → ∞.

Taking stock
Let us take stock. So far, we have

• defined some δ, δ̃ > 0,

• fixed arbitrary h ∈ H, R̃ ∈ R+Bδ(0),

• assumed WLOG that zh(R̃) < zh0 and fixed z ∈
(
zh(R̃), zh0

]
, and

• shown the existence of a sequence of tax schedules
(
R̂N
)
N∈N

such that

– R̂N ∈ R+Bδ̃(0),

– zh(R̂N ) = z,

– V h(R̂N ) → V h(R̃) as N → ∞, and

– R̂N (z̃) = R̃(z̃) whenever log z̃ ̸∈ Bδ̃+1(log zh0 ).

Recall our goal is to show the existence of a tax schedule R̂ such that

R̂ ∈ Bδ̃(0), zh(R̂) = z, and V h(R̂) = V h(R̃). (2.205)

In order to do this, the final step of our proof will argue that the sequence
(
R̂N
)
N∈N

has a subsequence
(
R̂Nk

)
k∈N

that is Cauchy with respect to the metric ||·||. Because ∆ is complete (see Lemma 1) RNk

converges, and by our earlier observations, converges to some R̂ ∈ Bδ̃(0). Finally, the continuity of zh(·)
implies that zh(R̂) = z and the continuity of V h(·) implies V h(R̂) = V h(R̃), completing the proof.

Existence of a Cauchy subsequence
Finally, we argue that

(
R̂N
)
N∈N

has a subsequence which is Cauchy (in the metric ||·||). We will show
this by first arguing a subsequence has uniformly convergent third derivatives, and then argue this implies
the sequence is Cauchy.
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To the point on third derivatives, recall that for all N ∈ N, R̂N (z̃) = R̃(z̃)—and in particular R̂N ′′′(z̃) =
R̃′′′(z̃)—for all z̃ ̸∈

[
elog zh

0 −dz δ̃−1, elog zh
0 +dz δ̃+1

]
. So to show that some subsequence has uniformly convergent

third derivatives it suffices to do so only at z̃ ∈
[
elog zh

0 −dz δ̃−1, elog zh
0 +dz δ̃+1

]
. On this domain (a finite

interval), this is implied by the Arzelà-Ascoli theorem115 applied to the sequence
(
R̂N ′′′ − R̃′′′

)
N∈N

because

•
∣∣∣R̂N ′′′(z̃) − R̃′′′(z̃)

∣∣∣ is uniformly bounded across N ∈ N, z̃ ∈
[
elog zh

0 −dz δ̃−1, elog zh
0 +dz δ̃+1

]
. To see

this, note that since R̃, R̂N ∈ R+Bδ̃(0), the definition of ||·|| implies (R̂N ′′′(z̃)−R̃′′′(z̃))z̃2

R′(z̃) ∈ B4δ̃(0).116 Be-
cause (see the proof of Lemma 2) R′(z̃) > 0 for all z̃ ∈ R>0 and since R′(z̃) is continuous by Assumption
2, it and z̃ achieve strictly positive upper and lower bounds R′ and z on

[
elog zh

0 −dz δ̃−1, elog zh
0 +dz δ̃+1

]
.

We conclude that
∣∣∣R̂N ′′′(z̃) − R̃′′′(z̃)

∣∣∣ ≤ 4δ̃R′
/z.

• The sequence
(
R̂N ′′′(·) − R̃′′′(·)

)
N∈N

is equicontinuous on
[
elog zh

0 −dz δ̃−1, elog zh
0 +dz δ̃+1

]
. To see this,

first note that since the function ∆̂(·; ẑ) (see the first step of the proof) is four-times continuously
differentiable, the construction of R̂N ′′′(·) implies that R̂N ′′′(·) − R̃′′′(·) is continuously differentiable.
To show equicontinuity, it suffices to show this derivative is uniformly bounded across N ∈ N and
z̃ ∈

[
elog zh

0 −dz δ̃−1, elog zh
0 +dz δ̃+1

]
. To see this, note in turn that—again, by the construction of R̂N—

d

dz̃

∣∣∣R̂N ′′′(z̃) − R̃′′′(z̃)
∣∣∣ ≤ NϵN max

ẑ∈
[
elog zh

0 −δ̃dz ,elog zh
0 +δ̃dz

]

ž∈
[
elog zh

0 −δ̃dz−1,elog zh
0 +δ̃dz+1

]

d4

dž4 ∆̂(ž; ẑ) (2.206)

That the supremum above exists is evident from the definition of ∆̂(ž; ẑ) in (2.197). Finally, note that
the RHS of the equation above is bounded since NϵN = log zh

0 −log zh(R̃)
ε/2

B̂

which is independent of N and
z.

So far, we have shown the existence of a subsequence Nk such that R̂Nk ′′′ converges to some function—
call it Ř3 : R≥0 → R—uniformly in z. Note that (as each R̂Nk is three-times continuously differentiable)
this implies Ř3 is continuous and that Ř3(z̃) = R̃′′′(z̃) for z̃ ̸∈

[
elog zh

0 −dz δ̃−1, elog zh
0 +dz δ̃+1

]
. Now, define

Ř2 : R≥0 → R by

Ř2(z̃) = R̃′′(0) +
∫ z̃

0
Ř3(ẑ)ẑ, (2.207)

which note is well-defined since R3(ẑ) is continuous. Note that R3(z̃) = R2′(z̃). Noting that for each Nk,

R̂Nk ′′(z̃) = R̃′′(0) +
∫ z̃

0
R̂Nk ′′′(ẑ)ẑ, (2.208)

we claim that as k → ∞, RNk ′′ → Ř2 uniformly in z̃. To see this fix any ϵ > 0. Since for sufficiently high k,
|R̂Nk ′′′(z̃) − Ř3(z̃)|≤ ϵ

e
log zh

0 +dzδ̃+1−elog zh
0 −dzδ̃−1 for all z̃ ̸∈

[
elog zh

0 −dz δ̃−1, elog zh
0 +dz δ̃+1

]
and = 0 otherwise, we

115The Arzelà-Ascoli theorem is a standard result in functional analysis. It provides conditions under which a sequence of
functions has a uniformly convergent subsequence.

116The definition of ||·|| gives us d(R̂N −R)′
d log z

= z(R̂N −R)′′(z) ≤ δR′(z) and d2(R̂N −R)′

d log z2 = z(R̂N −R)′′(z)+z2(R̂N −R)′′′(z) ≤

δR′(z), which imply z2(R̂N −R)′′′(z)
R′(z) ≤ 2δ (here we have used that R′(z) > 0, see the proof of Lemma 2). Combining this with

the same observation for R̃ gives us the desired conclusion.
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have

∣∣∣Ř2(z̃) − R̂Nk ′′(z̃)
∣∣∣ ≤

∫ z̃

0

∣∣∣Ř3(ẑ) − R̂Nk ′′′(ẑ)
∣∣∣ ẑ ≤ elog zh

0 +dz δ̃+1 − elog zh
0 −dz δ̃−1

elog zh
0 +dz δ̃+1 − elog zh

0 −dz δ̃−1
ϵ = ϵ. (2.209)

Repeating this argument again for the first and zeroth derivatives of the subsequence R̂Nk , we have shown
the existence of a function Ř0 : R≥0 → R such that for n = 0, 1, 2, 3, dn

dzn R̂
Nk → dn

dzn Ř
0 uniformly as k → ∞.

Finally, we wish to conclude that R̂Nk is Cauchy with respect to the metric ||·||. To this end, fix
ϵ > 0. Take k large enough that for all k′ > k, |R̂Nk′ − Ř0|∞≤ R ϵ

2 , |(R̂Nk′ )′ − (Ř0)′|∞≤ R
′ ϵ

2 , |(R̂Nk′ )′′ −
(Ř0)′′|∞≤ R

′

e
log zh

0 +dzδ̃+1
ϵ
4 , and |(R̂Nk′ )′′′ − (Ř0)′′′|∞≤ R

′(
e

log zh
0 +dzδ̃+1

)2
ϵ
4 ,117 where here we have defined R =

max
z̃∈
[
e

log zh
0 −dzδ̃−1

,e
log zh

0 +dzδ̃+1
]R(z̃) > 0 and R

′ = max
z̃∈
[
e

log zh
0 −dzδ̃−1

,e
log zh

0 +dzδ̃+1
]R′(z̃) > 0; both exist and are

strictly positive since R(z̃), R′(z̃) are continuous and strictly positive for z̃ ∈ R>0 by Assumption 2 and the
proof of Lemma 2. To show that for all k′, k′′ > k, ||R̂Nk′ − RNk′′ ||< ϵ, we will (by the triangle inequality)
show ||R̂Nk′ − Ř0||< ϵ/2.118 Indeed, since R̂(Nk′ )(z̃) = Ř0(z̃) = R̃(z̃) for all z ̸∈

[
elog zh

0 −dz δ̃−1, elog zh
0 +dz δ̃+1

]

∣∣∣∣R̂Nk′ − Ř0
∣∣∣∣ ≤ sup

z̃∈
[

e
log zh

0 −dzδ̃−1
,e

log zh
0 +dzδ̃+1

]max
(

|R̂Nk′ (z̃) − Ř0(z̃)|
|R(z̃)| ,

|(R̂Nk′ )′(z̃) − (Ř0)′(z̃)|
|R′(z̃)| ,

|(R̂Nk′ )′′(z̃) − (Ř0)′′(z̃)|z̃
|R′(z̃)| ,

|(R̂Nk′ )′′′(z̃) − (Ř0)′′′(z̃)|z̃2

|R′(z̃)| + |(R̂Nk′ )′′(z̃) − (Ř0)′′(z̃)|z̃
|R′(z̃)|

)

= sup
z̃∈
[

e
log zh

0 −dzδ̃−1
,e

log zh
0 +dzδ̃+1

]max
(

|R̂Nk′ (z̃) − Ř0(z̃)|
R

,
|(R̂Nk′ )′(z̃) − (Ř0)′(z̃)|

R
′ ,

|(R̂Nk′ )′′(z̃) − (Ř0)′′(z̃)|elog zh
0 +dz δ̃+1

R
′ ,

|(R̂Nk′ )′′′(z̃) − (Ř0)′′′(z̃)|
(
elog zh

0 +dz δ̃+1
)2

R
′ + |(R̂Nk′ )′′(z̃) − (Ř0)′′(z̃)|elog zh

0 +dz δ̃+1

R
′ ,




≤ ϵ/2.

(2.210)

Lemma 11. There exists δ > 0 small enough that the function

ĉh(u) ≡ uh(·, zh0 )−1(u) (2.211)

is, for all h ∈ H, well-defined and strictly positive when u = V h(R̃) for some R̃ ∈ R + Bδ(0); moreover,
ĉh(V h(R̃)) is H-measurable. Further, there exists m̄ > 0 such that for all h ∈ H, R̃ ∈ R + Bδ(0) and—for
all real-valued functions ϕh that are defined and twice differentiable in a neighborhood around V h(R̃) and

117|·|∞ denotes the sup-norm.
118Although it is a slight abuse of notation to apply ||·|| to R̂Nk′ − Ř0 without having shown that Ř0 ∈ R + ∆, it is easy to

see that the argument does not depend on this.
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satisfy ϕh′(V h(R̃)) > 0—we have119

∣∣∣∣ log ĉh
(
V h(R̃)

)
− log ch

(
R̃
) ∣∣∣∣ ≤ m̄

∣∣∣∣ log
[
(ϕh ◦ uh)c

(
ĉh(V h(R̃)), zh0

)]
− log

[
(ϕh ◦ uh)c

(
ch(R̃), zh(R̃)

)] ∣∣∣∣ ≤ m̄

and
∣∣∣∣∣
d log
d log c (ϕh ◦ uh)c

(
ĉh(V h(R̃)), zh0

)
− d log
d log c (ϕh ◦ uh)c

(
ch(R̃), zh(R̃)

) ∣∣∣∣∣ ≤ m̄.

(2.212)

Proof. We complete the proof in three steps. First, we situate the claim in the statement of the Lemma in
the context of Lemma 10 and establish the existence of the function ĉh(u) and the measurability claim; along
the way we establish the bound on the levels of log consumption. Second, we prove the bound concerning
the first derivatives of ϕh ◦ uh, and third, we prove the bound concerning the second derivatives of ϕh ◦ uh.

Note that it suffices to establish the three bounds in (2.212) for three distinct bounds m̄1, m̄2, and m̄3,
as we may subsequently take their minimum; we may therefore prove each bound in isolation.

Indifference curve path
To begin, take δ and δ̃ > δ as in Lemma 10; recall that Assumption 4 and Lemmas 2 and 3 apply 2δ̃, so

that household labor supply, consumption, and indirect utility are defined at all tax schedules R̃ ∈ R+Bδ̃(0).
Recall moreover that (from the Lemma) for all R̃ ∈ R + Bδ(0), h ∈ H, z ∈ [min[zh0 , zh(R̃)],max[zh0 , zh(R̃)]],
there exists R̂h(·; z, R̃) ∈ R+Bδ̃(0) such that zh(R̂h(·; z, R̃)) = z and

V h(R̂h(·; z, R̃)) = uh
(
ch(R̂h(·; z, R̃)))︸ ︷︷ ︸

=R̂h(z;z,R̃))

, z
)

= V h(R̃). (2.213)

We define čh(z, R̃) ≡ ch(Rh(·; z, R̃))). In particular, note that Note that čh(z, R̃) = uh(·, z)−1(V h(R̃)) by
(2.213)—implying that uh(·, z)−1(V h(R̃)) exists—and that čh(z, R̃) > 0 since it is contained in

[
ch0e

−dcδ̃, ch0e
dcδ̃
]
>

0, where dc is an upper bound on the first derivative of log labor supply across households and local tax
schedules (by Lemma 3; see Footnote 56). Lastly, note that—by the implicit function theorem and since
by Assumption 2, uhc (čh(z, R̃), z) > 0 and uh is continuously differentiable—čh(z; R̃) is continuously dif-
ferentiable in z ∈ [min[zh0 , zh(R̃)],max[zh0 , zh(R̃)]]. Totally differentiating uh(čh(z, R̃), z) = V h(R̃) implies
chz (z, R̃) = −uh

z (čh(z,R̃),z)
uh

c (čh(z,R̃),z)
.

One specific implication of these observations is that the function ĉh(u) referred to in (2.211) of the
Lemma statement exists (take z = zh0 ), satisfies

log ĉh(V h(R̃)) ∈ Bdcδ̃
(log ch0 ) (2.214)

(which note establishes the desired bound in the Lemma statement) and so is strictly positive, and whenever
u = V h(R̃ ∈ R+Bδ(0)), is equal to čh(zh0 , R̃). Note also that (by Assumption 2), ch(zh(R̃), R̃) = ch(R̃).

To see that—for any R̃ ∈ R + Bδ(0)—ĉh(R̃) is measurable in h ∈ H, we apply the measurable maxi-
mum theorem as stated in Aliprantis and Border (2006).120 Specifically, define Γ : H ⇒ R>0 by Γ(h) =

119The fact that ĉh(V h(R̃)) > 0 implies that uh twice differentiable and has strictly positive first consumption derivative at
all inputs where evaluated above, by Assumption 2. ϕh is twice differentiable by assumption. Finally, since ϕh′(V h(R̃)) > 0 by
assumption. Together, these observations imply all derivatives and logs used in the Lemma statement are well-defined.

120We specialize the theorem to our setting as in the “Measurability of labor supply” step of the proof of Lemma 2. Specifically,
we use the following result: If Γ : H ⇒ R>0 is a weakly measurable correspondence with non-empty compact values and
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[
ch0e

−dcδ̃, ch0e
dcδ̃
]
; this is a non-empty- and compact-valued correspondence by construction. The fact that

Γ is weakly measurable, follows as a special case of the argument made for the correspondence used
in the ‘Measurability of labor supply” step of the proof of Lemma 2. Next define f : R>0 × H by
(c, h) 7→ −

(
uh(c, zh0 ) − V h(R̃)

)2
. f is continuous in c by Assumption 2 and measurable in h because zh0 is by

Assumption 3, because uh(·, zh0 ) therefore is by Assumption 2 and the composition of measurable functions,
and because V h(R̃) = uh(ch(R̃), zh(R̃)) is by Assumptions 2 and Lemma 2 and the composition of measur-
able functions. By the measurable maximum theorem, the argmax arg maxc∈Γ(h) f(c, h) has a measurable
selector. However note that f(c, h) is uniquely maximized by ĉh(V h(R̃)), since uh(ĉh(V h(R̃)), zh0 ) = V h(R̃)
and uh is strictly increasing in consumption. So ĉh(Ṽ h(R̃)) is measurable in h.

First derivative bounds
We now consider the first bound in (2.212). To start, note that for any h ∈ H, R̃ ∈ R + Bδ(0), z ∈

[min[zh0 , zh(R̃)],max[zh0 , zh(R̃)]], we have

d

dz
log
(
ϕ

h ◦ uh
)

c

(
č

h(z, R̃), z
)

=
(ϕh ◦ uh)cc

(
čh(z, R̃), z

)
čh(z, R̃)

(ϕh ◦ uh)c

(
čh(z, R̃), z

) čh′(z; R̃)

čh(z, R̃)
+

(ϕh ◦ uh)cz

(
čh(z, R̃), z

)

(ϕh ◦ uh)
(
čh(z, R̃), z

)

=

(
−d logMh(čh(z, R̃), z)

d log c
+

(ϕh ◦ uh)zc

(
čh(z, R̃), z

)
čh(z, R̃)

(ϕh ◦ uh)z

(
čh(z, R̃), z

)
)
čh′(z; R̃)

čh(z, R̃)
+

(ϕh ◦ uh)cz

(
čh(z, R̃), z

)

(ϕh ◦ uh)c

(
čh(z, R̃), z

)

=
ηh(R̂(·; z, R̃))

εh(R̂(·; z, R̃))

čh′(z; R̃)

čh(z, R̃)
+ (ϕh ◦ uh)zc

(
č

h(z, R̃), z
)

(((((((((((((((((((((
čh′(z; R̃)

(ϕh ◦ uh)z

(
čh(z, R̃), z

) +
1

(ϕh ◦ uh)c

(
čh(z, R̃), z

)
)

∣∣∣∣
d

d log z
log
(
ϕ

h ◦ uh
)

c

(
č

h(z, R̃), z
) ∣∣∣∣ ≤ η

ε

∣∣∣∣
d log čh(z, R̃)

d log z

∣∣∣∣
(2.215)

where we may take logs since ϕh′ > 0 by the statement of the Lemma and uhc > 0 by Assumption 2, where
we have used that Mh(c, z) = −uh

z (c,z)
uh

c (c,z) = − (ϕh◦uh)z(c,z)
(ϕh◦uh)c(c,z) , where we have used the definition of ηh and εh in

(2.125), where η and ε > 0 are upper and lower bounds on the magnitude of elasticities—per Assumption 4
and the fact that all R̂(·; z, R̃) ∈ R+Bδ̃(0)—, and where the cancellation is since, by the design of the path,

d

dz
(ϕh ◦ uh)

(
čh(z, R̃), z

)
= (ϕh ◦ uh)c

(
čh(z, R̃), z

)
čh′(z; R̃) + (ϕh ◦ uh)z

(
čh(z, R̃), z

)
= 0. (2.216)

Next—for any h ∈ H, R̃ ∈ R + Bδ(0)—the continuous differentiability of ch(·, R̃) and ϕh ◦ uh (by the

f : R>0 × H → R is a Catheodory function (continuous in its first argument and measurable in its second), then the arg max
function µ(h) ≡ arg maxz∈Γ(h) f(z, h) admits a measurable selector.
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conditions of the Lemma and Assumption 2) allow us to apply the fundamental theorem of calculus:
∣∣∣log

[
(ϕh ◦ uh)c

(
ĉh(V h(R̃)), zh0

)]
− log

[
(ϕh ◦ uh)c

(
ch(R̃), zh(R̃)

)]∣∣∣

=
∣∣∣log

[
(ϕh ◦ uh)c

(
čh(zh0 , R̃), zh0

)]
− log

[
(ϕh ◦ uh)c

(
čh(zh(R̃), R̃), zh(R̃)

)]∣∣∣

=

∣∣∣∣∣∣∣∣

max
[

log zh
0 ,log zh(R̃)

]
∫

min
[

log zh
0 ,log zh(R̃)

]
d

d log z log
[
(ϕh ◦ uh)c

(
čh(z, R̃), z

)]
d log z

∣∣∣∣∣∣∣∣

=

max
[

log zh
0 ,log zh(R̃)

]
∫

min
[

log zh
0 ,log zh(R̃)

]

∣∣∣∣
d

d log z log
[
(ϕh ◦ uh)c

(
čh(z, R̃), z

)]∣∣∣∣ d log z

≤ η

ε

max
[

log zh
0 ,log zh(R̃)

]
∫

min
[

log zh
0 ,log zh(R̃)

]

∣∣∣∣∣
d log čh(z, R̃)

d log z

∣∣∣∣∣ d log z = η

ε

max
[

log zh
0 ,log zh(R̃)

]
∫

min
[

log zh
0 ,log zh(R̃)

]
d log čh(z, R̃)

d log z d log z

= η

ε

∣∣∣∣ log čh(zh0 , R̃)︸ ︷︷ ︸
=ch(R̂h(·;zh

0 ,R̃))

− log čh(zh(R̃), R̃)︸ ︷︷ ︸
=ch(R̃)

∣∣∣∣ ≤ η

ε
dcδ̃.

(2.217)

In the second-to-last step, we have used that čh(z, R̃) is increasing in z, by Assumption 2. In the final step,
dc—and so the entire bound—is constant across all h ∈ H and R̃ ∈ R + Bδ(0) (by Lemma 3; see Footnote
56), and we have used that R̂h(·; zh0 , R̃)), R̃ ∈ R+Bδ̃(0).

Second derivative bounds
Finally, we consider the second bound in (2.212). To start, note that for any h ∈ H, R̃ ∈ R+Bδ(0), z ∈
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[min[zh0 , zh(R̃)],max[zh0 , zh(R̃)]], we have
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čh(z, R̃), z

)
(ϕh ◦ uh)cz

(
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čh(z, R̃), z

)
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čh(z, R̃), z

)
)2

− d

d log c
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čh(z, R̃)

(ϕh ◦ uh)c

(
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(2.218)

where above we have again made use of the fact that Mh(c, z) = −uh
z (c,z)
uh

c (c,z) = − (ϕh◦uh)z(c,z)
(ϕh◦uh)c(c,z) .

Next, we use the facts that

d logMh
(
čh(z, R̃), z

)

d log c
= −ηh(R̂(·; z, R̃))

εh(R̂(·; z, R̃))

and
d

d log c

d logMh
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d log c
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(2.219)

which are both easily verified from the formulae (2.125), (2.129), and (2.131) for elasticities and super-
elasticities in the proof of Lemma 2. Note that by čh(z, R̃)’s continuity in z and Assumption 2, both terms
are continuous in z.

Finally—since by čh(z, R̃)’s continuity in z, ϕh’s twice-continuous differentiability, and Assumption 2,
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čh(z, R̃), z

)

d log c︸ ︷︷ ︸
ηh(R̂(·;z,R̃))

εh(R̂(·;z,R̃))

−1

)
d log
(
ϕh ◦ uh

)
c

(
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d log čh(z, R̃)

d log z
d log z

=

∣∣∣∣∣
η+0 + 2 η

ε ε+0 +
(

η
ε

)2
ε+1

ε
+
(
η

ε

)2
+
η

ε

∣∣∣∣∣
∣∣log čh(zh
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(2.220)

where η+0, ε+0, ε+1, η, and ε are upper and lower bounds (as indicated by the notation) of the corresponding
super-elasticities and elasticities, per Assumption 4 and the fact that all R̂(·; z, R̃) ∈ R +Bδ̃(0); and where
above we have used the fact that čh(z, R̃) is increasing in z, by its definition and Assumption 2.

Since we have already shown the last term is uniformly bounded across h ∈ H and R̃ ∈ R + Bδ(0), we
have the desired conclusion.

2.10 Additional Tables and Figures
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Figure 2.12: Estimates of mean elasticity by year-demeaned log income, 95% confidence bands
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Figure 2.13: Left panel: Estimates of the difference in mean elasticities between itemization status, by
year-demeaned log income Right panel: Itemization-implied lower bound on variance, by year-demeaned log
income. 95% confidence bands.
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Figure 2.14: Structural estimates of variance in elasticities by income level, when maximum elasticity is
capped at 5, 1990, 95% confidence bands
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Figure 2.15: Left panel: Income-conditional variance implied by elasticity differences across low- and high-
tax states. Right Panel:Income-conditional variance implied by elasticity differences across low- and high-tax
state-year pairs. 1990, 95% confidence bands
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Figure 2.16: 1979. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands
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Figure 2.17: 1980. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands
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Figure 2.18: 1981. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands

0 40000 80000 120000

−
1

0
1

2
3

4

Income

al
ph

a

0 40000 80000 120000

0.
3

0.
5

0.
7

0.
9

Income

m
ar

gi
na

l r
et

en
tio

n 
R

'

Figure 2.19: 1982. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands
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Figure 2.20: 1983. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands
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Figure 2.21: 1984. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands
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Figure 2.22: 1985. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands
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Figure 2.23: 1986. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands
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Figure 2.24: 1987. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands
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Figure 2.25: 1988. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands
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Figure 2.26: 1989. Left: Local shape of income distribution. Right: Marginal retention. 95% confidence
bands
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Figure 2.27: 1979. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.28: 1980. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.29: 1981. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.30: 1982. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.31: 1983. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.32: 1984. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.33: 1985. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.34: 1986. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.35: 1987. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.36: 1988. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.37: 1989. Left Panel: ABC test. Right panel: DEFG test. 90% confidence bands
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Figure 2.38: DEFG test evaluated from 1979 (top left), to 1982 (bottom right), with and without the two
final terms of (2.20). 90% confidence bands
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Figure 2.39: DEFG test evaluated from 1983 (top left), to 1986 (bottom right), with and without the two
final terms of (2.20). 90% confidence bands
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Figure 2.40: DEFG test evaluated from 1987 (top left), to 1990 (bottom right), with and without the two
final terms of (2.20). 90% confidence bands
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Chapter 3

Optimal Credit Scores Under Adverse
Selection

Joint with Nicole Immorlica and Robert Townsend

3.1 Introduction
Data is becoming increasingly available and more easily processed. New data and methods are useful

across many economic sectors and applications, including credit markets. There is a large population of
potential borrowers who have short credit histories and thus are unable to receive credit (Bricker et al.,
2017). The new methods would allow banks to identify the creditworthy among these potential borrowers,
giving credit to those who perhaps need it the most (Jagtiani and Lemieux, 2019).

Because of this increased capacity to identify creditworthy individuals, one may hope that the inefficiencies
coming from information asymmetries would progressively disappear. However, a key reason that makes
information asymmetries generate inefficiencies in these thin credit market segments is adverse selection:
as the price of the loans decreases (or interest rates increase), the pool of borrowers can get progressively
worse. Those who would be more likely to repay are only willing to borrow at higher prices. The credit
market unravels, resulting in too few or no transactions happening. As long as there is some information
asymmetry, some heterogeneity in expected repayment rates that lenders cannot observe, there can still be
adverse selection problems.

Data owners, such as data-intensive firms and platforms, may hope that by making their data available to
financial providers they will improve credit access. However, this hope lacks a theoretical justification. The
inefficiencies arising from adverse selection do not necessarily get better with more information, and indeed,
may as well get worse. As shown in Levin (2001), more information does not necessarily increase the number
of transactions and the realized gains from trade. More information can prevent implicit cross-subsidization
between different types, making the previously subsidized types leave the market. Hence, as more data and
improved technologies for processing data arrive, there remain key issues concerning how much data to share.

To answer the question of how much data to share, we build on the literature on information design and
formulate the optimal disclosure problem of a partially informed intermediary with commitment, maximizing
the probability of successful transactions weighted by the size of gains from trade. This formulation allows us
to answer the question of which variables in a dataset should be shared with financial providers – for example,
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whether geographic information should be shared and at which level of granularity, or whether only an index
that combines different pieces of information should be shared. We construct an optimal disclosure system
and derive new conditions for the optimality of a disclosure system in terms of local sufficient statistics. The
optimal policy should satisfy three simple properties: i) generically messages should combine at most two
signals; ii) there should be an increasing relationship between the price elasticities of the value of the loans
to investors and the prices of these loans; and iii) when different signals are combined into a single message,
there should be a decreasing relationship between these elasticities and the prices these loans would have if
the signals were unbundled.

We apply our results to the rural credit markets in Thailand. This is a particularly fitting setup for at
least four different reasons. First, these credit markets are thin and there is not much risk sharing across
villages, so the potential welfare gains are large. Second, there is evidence of intensive risk sharing within
villages, which makes us think that they, through a platform acting on their behalf, are able to organize and
commit to an optimal disclosure policy. Third, a unique feature of this setup benefits us from an identification
perspective. There is a main lender, the Bank of Agriculture and Agricultural Cooperatives, a government-
owned bank, holding a significant fraction of the market for agricultural loans. This bank uses a rigid set
of rules to set interest rates. We explore variation in these rules as a source of identification for slopes of
supply and average value curves. These slopes are key ingredients in the computation of the optimal credit
scores and appear as sufficient statistics in the necessary conditions we derive for the optimality of disclosure
systems.1 Fourth, we benefit from rich data from Townsend Thai Project, including detailed information
on consumption, income and its different sources, crops, livestock, loans, and interest rates. This allows
the construction of detailed balance sheets, income and cash flow statements for each household, as well as
their credit histories. Assuming that the platform has access to the detailed information in this dataset,
while investors do not, we show what pieces of information should be made available to investors and how,
effectively constructing "optimal credit scores."

We find that the optimal disclosure policy substantially improves the gains from trade relative to a simple
full disclosure policy, with the size of gains being of the order of 0.45% the size of a typical loan per household
per month. Moreover, we find that the optimal policy puts higher weight than full disclosure credit scores
on variables seemingly related to the solvency of farmers relative to variables that are informative about
their current liquidity. Our findings can be instrumental in improving credit access in places where it is most
needed by making better use of data.

Outline of the paper: The remainder of the paper is structured as follows. Section 3.2 discusses the
related literature, and Section 3.3 presents the model and a simple motivating example, Section 3.4 presents
our theoretical results. Section 3.5 presents the data, followed by the discussion of the empirical strategy
and empirical results in Sections 3.6 and 3.7. Section 3.8 concludes.

3.2 Related literature
This paper is related to at least three different strands of the literature. There is a long line of research that

has studied adversely selected markets, starting with Akerlof (1970), including Glaeser and Kallal (1997) and
Attar et al. (2011). More recently, a large literature has appeared on empirical tests for adverse selection and
estimation of supply and demand in adversely selected markets (Finkelstein and Poterba, 2004; Cohen and

1In Appendix 3.9.3 we complement this approach with an alternative identification strategy that leverages the evidence that
there is intensive risk sharing within villages in Thailand.
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Einav, 2007; Einav et al., 2010; Hendren, 2013, 2017; Handel and Kolstad, 2015; Finkelstein and Notowidigdo,
2019; Cabral et al., 2019). Relative to the empirical literature on adverse selection, our contribution is to
combine machine learning methods to estimate slopes of supply and demand for many different markets
simultaneously. To that goal, we borrow methods from the literature on the estimation of heterogeneous
elasticities (Athey and Wager, 2019; Athey et al., 2019; Davis and Heller, 2017; Wager and Athey, 2018).

Another strand in the literature has studied information design problems (Lerner and Tirole, 2006;
Ostrovsky and Schwarz, 2010; Rayo and Segal, 2010; Bergemann and Morris, 2013; Bergemann et al., 2015;
Kamenica and Gentzkow, 2011). Our main contributions to this literature include relating the optimal policy
to sufficient statistics that can be estimated, clarifying the economic mechanisms behind simple disclosure
policies, and allowing for a fairly general multidimensional distribution of types.

Within this literature, we share the linear programming approach from Kolotilin (2018), and extend
and derive new results that are closest to their conditions and to the pairwise signals condition found in
Kolotilin and Wolitzky (2020)2. In the context of adversely selected markets as in Akerlof (1970), Levin
(2001) has analyzed conditions under which more information increases trade volume, besides providing
examples where welfare is not monotonic in the amount of information. In the context of insurance markets,
an optimal disclosure algorithm assuming a fully informed intermediary, has been developed by Garcia et al.
(2018). We in contrast do not suppose the intermediary is fully informed, but rather sees a signal and then
decides on an information disclosure policy. Kartik and Zhong (2019) have characterized the set of feasible
payoff vectors for a buyer and a seller across all possible information structures when the seller posts the
price. Besides featuring a different market structure – perfect competition on the buyers (investors) side –
we focus on a different question, which is what is the best information structure an intermediary can design,
when it is constrained to a limited information set.

A recent literature on information design, including some of the articles cited above, has studied in
detail what is called "linear" persuasion models, where the payoffs of senders (in our case, the platform) and
receivers (investors) are linear in a single dimensional state variable (Dworczak and Martini, 2019; Arieli
et al., 2020; Kolotilin et al., 2017; Dizdar and Kováč, 2020). The problem we analyze does not fit these
assumptions, as we allow for more general payoff structures and multidimensional types.

Finally, this paper is related to the literature that has linked consumption patterns to risk sharing and
insurance, including Gruber (1997); Ahlin and Townsend (2007); Giné (2011), and Townsend (1994, 1995).
In the context of Thai villages, Chiappori et al. (2014), in particular, have documented intensive consumption
risk sharing at the village level.

3.3 Model
The model features three types of agents: there are potential borrowers, investors, and a platform.

Borrowers sell up to a one dollar claim to investors in the present, with a promise of repaying it in the
future. The platform mediates these sales and specifies the information available to the other agents. If a
borrower sells a claim for a price of x ≤ 1, then the borrower receives a loan of x dollars today and promises
to repay $1 in the future. They can sell fractional shares of this claim to multiple investors, and investors
can buy claims from multiple borrowers.

Borrowers have private types ω ∈ Ω. The types could be, for example, the borrower’s default probability.
The borrower’s type ω determines the borrower’s opportunity cost of selling a claim b(ω). More concretely,

2The relationship between their results and ours is explained in more details in Section 3.4
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in the Appendix 3.9.3 we present a setup where b(ω) reflects the implicit option value that selling the claim
offers to the borrower, coming from the possibility that the borrower would not repay the loan in the states
of the world where the marginal value of consumption is high.

Investors are homogenous, each having value a(ω) for a unit claim from borrowers of type ω. Investors
share a common prior over borrower types but do not observe the type of any given borrower. Assuming
investors are risk neutral, this value is simply the discounted expected repayment conditional on the type ω

of the borrower.
The platform has access to signals z(ω) that are partially informative about the borrowers’ types, and

commits to an information disclosure policy m(·) which is a randomized mapping from signal realizations
z(ω) to an arbitrary message. For succinctness, we will write m(ω) ≡ m(z(ω)) and note that it must be
measureable with respect to the signal realizations z(ω).

After observing the signal realization, the platform sends a message m(ω) to the investors, and the
investors respond by offering contracts to borrowers. As shown in Appendix 3.9.1, under a few technical
assumptions, it is without loss to assume contracts are specified by a price x(m(ω)) offered by investors to
borrowers conditional on receiving message m. We focus on a competitive equilibrium in which investors
make zero profits. If there are multiple prices that would guarantee investors break even, we take the highest
price, which is the best price for the borrowers. More formally, we adopt the following definition.

Definition 1. A competitive equilibrium is a set of prices x∗(m(ω)) and allocations such that:

• investors break even and prices are borrower-optimal:

x∗(m(ω)) = sup(x|x = E[a(ω)|x ≥ b(ω),m(ω)]),

• borrower types for which b(ω) ≤ x∗(m(ω)) borrow up to the borrowing limit of $1,

• and borrower types for which b(ω) > x∗(m(ω)) do not borrow.

In general, there can be multiple solutions to the fixed-point equation x = E[a(ω)|x ≥ b(ω),m(ω)]). Regions
where the expectation is decreasing as price decreases correspond to adverse selection: the borrowers willing
to sell claims at this lower price are worse borrowers (and there are fewer of them), so the value of the investor
goes down and the market may unravel resulting in no trade. Similarly, regions where the expectation is
increasing as the price decreases correspond to advantageous selection and can result in unraveling in which
all trades, even inefficient ones, happen.

The key idea behind Definition 1 is that, i) investors need to take into account that the price affects the
pool of the types that are willing to borrow; and, ii) if there are multiple prices that make the investors
break even, and if the equilibrium were not the highest among them, some investor could offer a price in a
neighborhood of the highest, attracting the borrowers and generating positive profits.

We illustrate our model and implications for optimal disclosure in the following example adapted from
Levin (2001). In particular, this example demonstrates that information can decrease welfare.

Example 1. There are three types of borrowers ω ∈ Ω, associated with their repayment probabilities: low
(L), medium (M) or high (H). The three types occur with equal probability ρ(ω) = 1/3. The platform has
access to binary signal realizations. If ω = H, the signal z(ω) is {H}. Else, if ω = L or ω = M , the signal
z(ω) is {M,L}. In other words, the platform can differentiate H borrowers from M and L borrowers, but can
not differentiate M and L borrowers from each other. The borrowers’ and investor values b(ω) and a(ω) are
as in Table 3.1.
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Table 3.1: Joint distribution of values in the example

L M H
value for investors (as buyers) a(ω) 0.12 0.3 0.84
value for borrower (as sellers) b(ω) 0.06 0.24 0.36

probability ρ(ω) 1/3 1/3 1/3

Consider the following disclosure policies.

• In the full disclosure policy, the platform sends message m(ω) = z(ω). In this case, in the H market
there would be no information asymmetry. Competition between the investors would drive the price
up to their willingness to pay, 0.84, and these gains from trade would be realized by the borrowers. In
the L or M market there is asymmetric information. There cannot be a pooling equilibrium in this
market, where a bundle of the two types would be sold together, because investors’ willingness to pay
is less than the reservation value of a borrower of type M , that is, E[a(ω)|ω ∈ {M,L}] = 0.21 < 0.24.
Thus, M ’s would not be willing to sell, and the bundle unravels to L. So there will be a separating
equilibrium, and only the L will types trade, at a price of 0.12, which we can call the full disclosure
price of the bundle {M,L}. The total surplus generated by the sales of L and H borrower claims would
be (0.06+0.48)/3 = 0.18, and not all gains from trade would be realized, as the M types are left out of
the market.

• In the no-disclosure policy, the platform sends a null message. Then there is a pooling equilibrium
because the investor willingness to pay for the whole bundle is higher than the highest reservation value
for the borrowers — E[a(ω)] = 0.42 > 0.36, and we can call analogously 0.42 the no-disclosure price of
the market. The welfare now increases to (0.06+0.06+0.48)/3 = 0.2, and all the gains from trade are
realized.

Thus, in this example welfare decreases when the platform reveals more information, which is illustrative of
why more information is not always better.3

3.4 Optimal Disclosure Policies
In this section, we formulate the optimal disclosure problem of the intermediary as a linear programming

problem. Then we derive necessary conditions for the optimality of garbling and separating signals. These
conditions give economic content to what optimal disclosure policies do and tell us simple properties that
they need to satisfy. These properties are summarized in three rules-of-thumb, relating prices and elasticities
of the value for investors: i) generically messages should combine at most two signals; ii) there should be an
increasing relationship between the price elasticities of the value of the loans to investors and the prices of
these loans; and iii) when different signals are combined into a single message, there should be a decreasing
relationship between these elasticities and the prices these loans would have if the signals were unbundled.
We illustrate these properties with an example at the end of this section.

3Moreover, there is a non-monotonic relationship between information and welfare: suppose the platform has full information,
i.e., z(ω) = ω. Then welfare would increase again with disclosure policy m(ω) = z(ω) = ω. Hence full disclosure would be as
good as no disclosure which, in turn, is better than partial disclosure of the form described above.
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3.4.1 Characterization

As demonstrated by Example 1, the choice of disclosure policy impacts welfare. The optimal disclosure
policy can be described by a linear program whose constraints characterize the competitive equilibria of
Definition 1 and whose objective maximizes welfare.

This linear program can be simplified by noticing two facts: First, messages can be identified by their
equilibrium prices. This is because, if investors break even at the same price for two messages, they still
break even if these two messages are combined into a single message. Further, no higher price generates
positive profits. Therefore we can label each message by its equilibrium price. Second, because welfare
is increasing in prices, the supremum from Definition 1 can be dropped. That is, we can simply confine
x = E[a(ω)|x ≥ b(ω),m(ω)] and the objective will guarantee we select the highest such x.

Thus, for an arbitrary distribution of signals G(z)4, we can formulate the optimal informational disclosure
problem as follows. Note the choice variables are the conditional distribution of messages (equivalently,
equilibrium prices) given signals. By assigning different probabilities of the signals to different messages, the
platform affects the objective function because for each of these messages there will be a different equilibrium
price and a different pool of borrowers signing a loan contract.

Proposition 1. The optimal informational disclosure problem can be formulated as:

max
ϕ(x|z)

∫

X×Z
σ(x|z)dϕ(x|z)dG(z)

st.
∫

X̃×Z
π(x|z)dϕ(x|z)dG(z) = 0 for any measurable set X̃ ⊂ X

∫

X
dϕ(x|z) = 1 almost surely ∀z ∈ Z

where σ(x|z) ≡ E [1(x ≥ b)(x− b)|z] Borrowers’ surplus / total surplus

and π(x|z) ≡ E [1(x ≥ b)(a−x)|z] Investors’ surplus

Where we have denoted the expected borrowers’ surplus for a prevailing price x and conditional on the
signal z by σ(x|z). Similarly, we denote the expected investors profits for a prevailing price x and conditional
on signal z by π(x|z).

3.4.2 Conditions for optimality of separating signals

By starting from a given information policy, and considering revealing less information, we can arrive at
simple conditions, presented in Proposition 25 and Proposition 3.

To state these conditions, it will be convenient to discretize the model. Let m index a price, and j and
k index signals. Consider a discrete approximation of the infinite linear programming problem, with a finite
number of signals and prices, and such that for each signal zj , its full disclosure price x∗(zj) is included
in the discretization of the prices. Denote its index by x(j). Let σmj = E[(xm − b)1(xm ≥ b)|zj ]ĝ(zj) and

4To make the notation cleaner, in what follows, we drop the explicit dependence of z,a,b on ω.
5The conditions in Propostion 2 are analogous to the full disclosure conditions derived in Kolotilin (2018) under a similar

but different set of assumptions. In particular, we do not assume a single-crossing condition on types.
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Figure 3.1: Deviations from full disclosure

πmj = E[(a − xm)1(xm ≥ b)|zj ]ĝ(zj), where ĝ(zj) is the probability of signal zj . Let the decision variables
ϕm,j denote the conditional probability of price m given signal j.

The first proposition says that full disclosure, which fully separates all signals, is optimal if and only
if there is no benefit to pooling pairs of signals. We state this proposition as a characterization for the
optimality of full-disclosure, it should be noted that it applies more generally. For any policy to be optimal,
it must be the case that garbling two messages when feasible does not increase welfare. The sufficiency of this
statement only holds for full disclosure because for full disclosure garbling is the only feasible perturbation.

Proposition 2. Full disclosure is optimal if and only if
(

σmj −σx(j),j − πmj

πmk
(σmk −σx(k),k)

)
≤ 0 for all m,j,k such that πmj > 0 and πmk < 0.

The necessity part of the proof is based on the following argument. The expression above is the change
in welfare from the following deviation: move some probability of signal zj from being assigned to its full
disclosure price to another price xm, and make sure investors break even by moving some probability of
another signal zk to the same price xm in the right proportion. This deviation is illustrated in matrix form
in Figure 3.1. If the policy is optimal, then this change in welfare must be negative. To show that this
condition is also sufficient we notice that any feasible direction can be written as conical combinations of
feasible directions of the form above. The formal proof appears in Appendix 3.9.2.

To gain further economic insight into the content of this proposition and the properties of optimal
disclosure policies, we further specialize to deviations of full disclosure where signals that have nearby full
disclosure prices are combined.6 This results in a simple monotonicity condition, relating prices and the
price elasticity of the average value to investors. Recall that the price elasticity of value is defined as the
percent change in value in response to a percent change in price, i.e.:

ϵV,x(x∗(z),z) ≡ ∂E[a|b ≤ x,z]
∂x

x

E[a|b ≤ x,z]

∣∣∣∣
x=x∗(z)

.

Proposition 3. Suppose there is an interval [x,x] such that the full disclosure price x∗(z) is dense over it.
If full disclosure is optimal over this interval, then for z and z′ such that x(z) ∈ [x,x] and x(z′) ∈ [x,x], the
signal with the higher price must have higher elasticity:

x∗(z) > x∗(z′) ⇒ ϵV,x(x∗(z),z) ≥ ϵV,x(x∗(z′),z′)
6Again, this result applies more generally than only full disclosure policies, by instead of combining signals the platform

considers combining messages with nearby prices.
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where ϵV,x(x∗(z),z) is the price elasticity of the value for investors.

This proposition has a simple graphical interpretation. Presented in Figure 3.2 is a case where the state
necessary condition fails. That is, x∗(z) > x∗(z′) but ϵV,x(x∗(z),z) < ϵV,x(x∗(z′),z′). We will show that we
can garble these signals an increase the planners’ objective.

First note our equilibrium condition requires that investors break even, i.e., x = E[a|b ≤ x,z] , and so the
price elasticity of investor value reduces to:

ϵV,x(x∗(z),z) = ∂E[a|b ≤ x,z]
∂x

∣∣∣∣
x=x∗(z)

for equilibrium prices x∗(z). That is, the elasticity at an equilibrium price is simply the slope of the average
value curve at that point. In the figure, we denote this average value curve by AV GV (x,z) = E[a|b ≤ x,z]. In
general, this can be an arbitrary function; in the figure we draw it linearly as we imagine the full disclosure
prices of the signals are close and hence a linear curve is a good approximation. Points in the forty-five
degree line (dashed) correspond to prices where investors break-even, that is where they pay exactly what
that claim is worth for them. In the figure there are two signals, z and z′. The solid lines correspond to the
average value for investors as a function of prices given those corresponding signals. The average value curve
for z crosses the forty-five degree line at a higher price than the average value curve for z′, that is, the full
disclosure price of z is higher than z′.

Now, starting from the full disclosure configuration, let’s consider the consequences of creating a message
that partially garbles the two signals. In particular, let’s combine units of these two signals into a new
message, such that the resulting price (xm) is the midpoint of the two full disclosure prices.

In order to do that, we need to combine them at the right proportions to make sure the investors still
break even. When we lower the price of a unit of z, investors are going to face a profit of the size of the
blue bar, which is the difference between the average value and the price. The average value changes as
the composition of borrowers that take up the loan changes. When we do the same for a unit of z′, raising
their prices, investor are going to face a loss of the size of the red segment. For investors to break even, we
take a number of units of z and z′ that is inversely proportional to the size of these segments 7. Because
the condition fails in the proposition fails (the signal with the higher price has the flatter curve), the blue
segment is larger than the red segment. Therefore, we will be lowering the price of fewer units of z than
we are raising the price of units of z′. This means that on average we have increased prices. Because to a
first order, the change in welfare is the change in prices times the number of units for which we are changing
prices, this garbling procedure has increased welfare.

In contraposition, if the condition in Proposition 3 holds (with strict inequality), it cannot be optimal to
pool two signals z and z′ into a price x̄ where x∗(z) > x̄ > x∗(z′), as depicted in Figure 3.3.

3.4.3 Conditions for optimality of pooling signals

Instead of starting from a full disclosure configuration and analyzing the consequences of garbling signals,
Proposition 4 below starts from a no disclosure configuration, i.e., one in which all signals are pooled, and
checks the consequences of revealing more information.

Let x0 be the no disclosure price, and 0 its index. Let m,m′ index messages, and i, j, i′, j′ index signals.
7Because we are near the region where the average value of investors is equal to prices, we can ignore the change in profits

that would come from the change in quantities, because they are to a first order zero.
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x∗(z′)

x∗(z) AV GV (x,z)

AV GV (x,z′)

xxm

Figure 3.2: Example where condition for full disclosure to be optimal fails

x∗(z′)

x∗(z)
AV GV (x,z)

AV GV (x,z′)

xxm

Figure 3.3: Example where condition for full disclosure to be optimal holds
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Figure 3.4: Deviations from no disclosure

For notational convenience, let
∆π(m,j,k) ≡ πmj

πmk
π0k −π0j .

Proposition 4. No disclosure is optimal if and only if:
(

σmj −σ0j − πmj

πmk
(σmk −σ0k)

)
− ∆π(m,j,k)

∆π(m′, j′,k′)

(
σm′j′ −σ0j′ − πm′j′

πm′k′
(σm′k′ −σ0k′)

)
≤ 0

for all m,j,k,m′, j′,k′ such that πmj ,πm′j′ ,∆π(m,j,k) ≥ 0, and πmk,πm′k′ ,∆π(m′, j′,k′) < 0. If there are
no m,j,k,m′, j′,k′ such that πmk,πm′k′ ,∆π(m′, j′,k′) < 0, then no disclosure is optimal if and only if:

(
σmj −σ0j − πmj

πmk
(σmk −σ0k)

)
≤ 0

for all m,j,k,m′, j′,k′, such that πmj ,πm′j′ ,∆π(m,j,k) = 0.

This is the change in welfare from the following deviation: move some probability of signal zj away from
the no disclosure price x0 and to some other price xm, make sure investors break even by moving some
probability of another signal zk to the same price xm, in the right proportion. But now, investors do not
break even at the price x0; to fix this, repeat the procedure above for a price x′

m, and signals z′
j ,z′

k and
combine the two procedures in the right proportion. This deviation in illustrated in Figure 3.4. The quantity
∆π(m,j,k) plays an analogous role to πmj . It says when two signals j and k are assigned to price m in a
proportion that makes investors break even at m, what is the size of the profit that investors will be making
at the original price x0.

To gain further economic insight into under what conditions revealing more increases the total value
of transactions, we can specialize Proposition 4 above to the cases where disclosing information results in
infinitesimally small changes in prices. Define π(x,z) = E[(a−x)1(x ≥ b)|z]g(z), where g(z) is the density of
z or the probability mass of z.

Proposition 5. All signals z that are pooled together in x0 must satisfy:

x0
E[a|b ≤ x0,z]−x0

= κ(x0)ϵP,x(x0,z)+γ(x0)

for some constants κ(x0) and γ(x0), and where ϵP,x(x0,z) = ∂π(x0,z)
∂x

x0
π(x0,z)

The proposition implies that at any x0, few signals should be pooled together. Most of the time, complete
no disclosure is not optimal. The result arises from the following observation: in general, if there are three
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AV GV (x,z)

AV GV (x,z′)

AV GV (x,z′′)

AV GV (x,z),x

xx0

Figure 3.5: Example where the condition for no disclosure to be optimal fails

Figure 3.6: Example - Optimal information disclosure policy

or more signals combined into the same price, picking two signals and increasing their prices, and picking
another pair and decreasing their prices (making sure the investors break even) either decreases or increases
welfare. These possibilities are illustrated in Figure 3.5, where three signals are assigned to the same price
x0, and one tries deviate from the original configuration by raising the prices of a pair and lowering the
prices of another 8. Flipping the pairs, the planner can in general increase welfare, unless it happens that for
any pair of signals the change in welfare from feasible price increases is exactly the same. This indifference
can only be met if the affine relationship is satisfied. For single-dimensional or discretely distributed types,
given an arbitrary x0, this is generically satisfied only for pairs of types. For multidimensional types in Rd

this defines a subspace of dimension d−1. 9

8Although we plot the average values, the change in profits in this case also depends on the change in quantities, which are
not plotted.

9A similar result appears in Kolotilin and Wolitzky (2020) stating that is generically optimal to use pairwise signal structures.
In their case, payoffs are more general, but there is a single dimension of heterogeneity. Our result additionally states that
signals should satisfy this affine relationship, which for multidimensional types in Rd defines a subspace of dimension d − 1.
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3.4.4 Economic implications

The conclusions from Propositions 3 and 5 can be summarized in three simple rules of thumb. To arrive
at those, we also notice that Proposition 3 applies more generally, not only for signals that the platform
sees, but also to messages that combines multiple signals. Thus, these rules of thumb state that:

1. Markets with slightly higher prices should have higher price elasticities of the expected value for
investors;

2. If two signals with nearby full disclosure prices are combined into a single message, the signal with
a higher full disclosure price should feature a lower elasticity. In the example, whenever signals are
combined, the signal with the high full disclosure price has a low elasticity;

3. Generically, each message should combine few signals. In the discrete case, one or two signals.

Figure 3.6 illustrates these rules in a hypothetical example. In this example, we postulate that conditional
on each signal, supply and demand are such that: i) conditional on each signal, elasticities are constant as a
function of prices; ii) elasticities of supply are equal to one for every signal; and iii) the signals are uniformly
distributed, that is ρ(z) = 1/#Z.

In Figure 3.6, each red dot is a different z, with their full disclosure price displayed on the vertical axis,
and the elasticity of the expected value for the investors on the horizontal axis. Blue crosses represent the
optimal policy, each cross is a different message x, and on the horizontal axis is their average elasticity.

In line with the rules of thumb, one can see that the arrangement of the blue crosses are such that there is
an increasing relationship between prices and elasticities of the value for the investors, as implied by rule (1);
the yellow lines connecting the messages to the signals that are assigned to them with positive probability
are downward sloping, as implied by rule (2); and each blue cross is connected to at most two red dots, as
implied by rule (3).

3.5 Data
The Townsend Thai monthly survey is an intensive monthly survey initiated in 1998. The analysis

presented in this paper is based on 156 months from January 1999 (month 5) to December 2011 (month
160), which coincides with 13 calendar years. The four provinces of Thailand from which the sample is
drawn are Chachoengsao and Lopburi in a more developed central region and Buriram and Srisaket located
in the less developed northeastern region. The sampled townships (counties) of these provinces were part of
an initial larger baseline initiative in 1997. The data utilized here are the continuously sampled households,
those present in the survey throughout the 156 months. As we are concerned in this paper with rural credit
markets, we include only households that generated income from farm and nonfarm business activities and
drop the households whose income was almost exclusively from wage earnings. In the end, there are 541
households in the sample: 129 from Chachoengsao, 140 from Lopburi, 131 from Buriram, and 141 from
Srisaket.

Notably, the monthly data have been used to create for each of these business households complete
consistent financial accounts: Income Statement, including revenue, expenses and disposition of income
(e.g., consumption as if dividends from profits and internal investment); Balance Sheet, including assets and
liabilities, both real and financial, with net worth as the residual; and Statement of Cash Flow, with flows
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Symbol Record of loan repayment
AAA+ full and in time for the past 4 years
AAA full and in time for the past 3 years
AA full and in time for the past 2 years
A full and in time in the previous fiscal year
B overdue in the previous year or a new client

Figure 3.7: BAAC Interest rate structure for farmers

for production, consumption, investment, and financing 10. The data set also has a loan form each loan.
When the loan is initiated it specifies the lender and term, then the loan is placed on a roster and tracked
each month until it is fully repaid, if ever.

A key assumption of this paper is that the platform has access to all the variables of the Townsend
Thai monthly survey including the financial accounts, including disaggregated to the sectoral categories:
fish/shrimp, farm, business, and livestock, as well as calendar time and geographic data.

3.6 Empirical Strategy
In this section, we present our main empirical strategy using the Thai Data, which uses exogenous

variation in interest rates to identify slopes of supply and demand in these adversely selected markets. In
Appendix 3.9.3 we present an alternative identification strategy, leveraging the documented fact that there
is intensive within-village risk sharing, to estimate a structural model where consumption risk is shared at
the village level while default decisions are idiosyncratic.

The Bank of Agriculture and Agricultural Cooperatives (BAAC) uses rigid rules to set interest rates. We
can use changes in the rules as a source of exogenous variation in interest rates, to estimate the slopes of
supply and average value curves as in Einav et al. (2010), Cabral et al. (2019), among others. The key idea
is that the variation in interest, rates together with data on take-up, allows us to infer the supply of bonds
from the borrowers. Similarly, using data on repayment rates, and assuming that investors are risk neutral,
as interest rates change we can trace how repayment rates and thus the average value of the new loans for
investors change.

Because we are not only interested in the average slopes across the different households, but also in the
observable heterogeneity in these slopes, we use causal forests (Wager and Athey, 2018; Athey et al., 2019) to
estimate the levels of take-up and expected returns and, importantly, the heterogenous elasticities of take-up
and of the average value for investors.

With these estimates we can, first, test whether full disclosure is optimal (or if no disclosure or the current
scoring system would be optimal under a competitive equilibrium) and, second, compute the optimal policy.

10See Samphantharak and Townsend (2010) for details
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The econometric model we will estimate can be described by the following set of equations:

Qi = Xi ·γi + ξi Ri = Xi ·βi + ζi

where Qi denotes whether the household i takes up a loan at a particular month, and Ri is the repayment
rate conditional on taking the loan. We allow for different individuals to respond differently to changes in
prices Xi. We are interested in γ(z) = E[γi|Zi = z] and β(z) = E[βi|Zi = z], average slopes of take-up and
repayment rates with respect to price x, conditional on observable characteristics Z (which correspond to
what we refer to as signals in the model), and the levels E[Qi|Zi = z,Xi = x], and E[Ri|Zi = z,Xi = x].
These are the average slopes (with respect to price) of take-up and repayment rates, respectively, over all
households in the sample who generate signal z. The interpretation of these average slopes more concretely
is in how repayment rates, in percentage points, change when there is a $1 increase in the price of a $100
bond (β(z)); and how take-up rates change, in percentage points, when there is a $1 increase in the price of
a $100 bond (γ(z)).

Towards estimating these slopes, we want to make the following comparison: For households with ob-
servable characteristics z, how are repayment and take-up rates different when price is x versus when the
price is x′? No two households have exactly the same observable characteristics, so we need to find a way
to define who is similar to whom. Fortunately, causal forests (Athey and Wager, 2019; Wager and Athey,
2018) provide us with a solution to this question. The method uses forest-based weights to group together as
a function of the observables households with similar slopes, separating households with distinctly different
slopes. The approach solves a ’curse of dimensionality’ problem, efficiently grouping households to estimate
conditional elasticities. In doing that the algorithm effectively redefines the signals z in an economically
meaningfully way.

The key identification assumption that will allows to use the method is that conditional on observables,
Xi is exogenous, {βi, ζi,γi, ξi} ⊥⊥ Xi|Zi. Figure 3.7 provides justification for this assumption. The BAAC
uses very coarse rules for setting interest rates, which are seldom updated. Roughly, the BAAC considers
the cost of funds in the Bangcok money market but, because it receives government subsidies, it can wait
wait before making changes. It is also reluctant for public relations reasons as chartered development bank
to increase interest rates. Thus, the updates in those coarse rules are unlikely to track changes in the pool
of borrowers in these particular sample of villages. Therefore, we use the time variation in interest rates to
estimate how take-up and repayment rates change in response to interest rate changes11.

After estimating how repayment rates change with prices, we use additional assumptions to map those
into reservation values for the investor. Assuming investors are risk neutral and given a discount factor, the
average value for the investors of a unit bond they can buy is given by the simple relationship AV GV (x,z) =
E[a|b ≤ x,z] = repayment rate × discount rate. Furthermore, because take-up and repayment rates above
one hundred percent or below zero would be nonsensical, we postulate that take-up and value curves are
piece-wise linear, bounded by zero and one, implying that the reservation values for investors are bounded
by zero and the discount rate δ, as depicted in Figure 3.8.

The estimated slopes are presented in Figure 3.9. On the left side of the figure is a histogram of the
estimates of slopes of take-up E[γ|z], evaluated at each zi in the dataset. The right hand side figure is
the histogram for the estimates of slopes of repayment rates E[β|z]. We can see that estimated take-up

11Because we can construct from the monthly surveys the individual credit histories, we can create a proxy for the BAAC
rating, and conditioning on this rating, use only the time variation in interest rates to estimate the slopes of supply and
repayment rates.

247



1

Q(x,z)

x

x∗(z)
δ

AV GV (x,z)

x

Figure 3.8: Supply and average value curves

Figure 3.9: Histograms of slope estimates for take-up and repayment curves

elasticities are mostly above zero, with a mean of 0.59, and most of the estimates lying between zero and
five. The slopes of repayment rates are much more spread out, showing evidence that in these rural credit
markets, if all information were used, there would be both adverse selection (β(z) > 0), with higher prices
leading to higher repayment rates, and advantageous selection (β(z) < 0), with higher prices leading to lower
repayment rates.

To be able to compute the optimal credit scores, all we need are estimates of the joint distribution of
values for investors and borrowers. Even though the estimated slopes and levels can be readily translated
into this joint distribution, we take an additional step that is meant to make the problem computationally
easier and interpretable. Given estimates of slopes and intercepts for supply and average value curves, we
cluster them into k different groups, using a k-means algorithm12. The results of this estimation procedure
will be used in the next section to give empirical substance to the optimal credit scores that were theoretically
discussed above.

3.7 Empirical results
In this section, we combine the estimates for the joint distribution of values we presented in the previous

section to arrive at the theoretically optimal credit scores. As shown in Section 3.3, it is without loss to
identify messages with prices. We interchangeably refer to these messages or prices as credit scores.

12Alternatively, we could for example have used the empirical distribution of z for the joint distribution. However, this would
require later solving a very large linear programming problem.
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Figure 3.10: Optimal and full disclosure credit scores

Figure 3.10 illustrates the three rules of thumb we established for the optimal disclosure policy. We have
shown that: markets with higher prices should have higher elasticities of the expected value for investors;
in general, at most two signals should be combined in a single message; and when these two signals are
combined into the same message, the one that has the higher full disclosure price should feature the lowest
price elasticity of the value for investors.

These three rules of thumb imply that, in Figure 3.10, i) downward sloping yellow lines should connect
two red dots to a blue cross, reflecting the second and third rules-of-thumb; ii) blue crosses should be upward
sloping, reflecting the first rule-of-thumb. These rules-of-thumb, however, rely on local comparisons between
adjacent prices and signals that do not need to hold when dots and crosses are further apart, and that can
get blurred by the nature of the discrete approximation and the mechanics of linear programming algorithms
13. In spite of it, we can see that most of yellow lines are downward sloping, they connect two red dots to a
blue cross, and blue crosses are (mostly) upward sloping.

To compute welfare gains from the optimal policy relative to full disclosure, while avoiding counting the
gains from overfitting, we use a simple form of sample splitting. We split the sample in two halves, repeating
the procedure twenty times. At each time, in one half of the sample we compute the credit scoring rule,
while in the second half, we apply this scoring rule and evaluate the welfare gains. This procedure shows
that there would be monthly welfare gains from moving from full disclosure to the optimal policy of 0.45 %
the size of a typical loan per household. This is approximately $3 per household per month.

To get a better sense of how optimal credit scores differ in practice from standard scores that would
be exclusively targeted at predicting repayment probabilities, in Figure 3.11, we rank the variables in the
dataset by their relevance in predicting repayment probabilities (red, on the left) and optimal credit scores
(blue, on the right).

The relevance measure is a weighted sum of how many times each variable was used to create a split on the
trees of the random forest, with weights proportional to the depth where the split was created. Interestingly,
only two variables appear in the top ten most important variables at both of these two rankings: "total net
income" and "costs: other". The most important variables for predicting repayment probabilities include
for how long the individual has been a client from the BAAC, and how long since the last repayment was
overdue – which are the two variables that the BAAC uses to create its own rating for the farmers. These
two variables do not appear on the top ten variables of the optimal credit score. Instead, variables from the

13Moreover, the assumption that average value curves are piecewise linear implies that elasticities can change abruptly as
prices change.
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Figure 3.11: Variable importance comparison: Full disclosure vs optimal scores

balance sheet and cash flow statements of the farmers appear more prominently, with total revenues, and
cultivation costs and revenues being the three most important. Surprisingly, the comparison of these two
lists of variables seems to suggest that the optimal credit score would give higher weight to the solvency of
farmers, instead of their short term liquidity conditions.

3.8 Conclusion
In this paper, we presented results on how to compute optimal information disclosure policies and, more

generally, what they look like, focusing in on credit markets with asymmetric information.
We presented simple rules of thumb that describe the solution of the optimal disclosure problem in terms

of local sufficient statistics that can be estimated. Additionally, we presented a portable empirical strategy
to estimate these sufficient statistics relying on exogenous variation in interest rates14. We found that there
are economically meaningful welfare gains from pursuing optimal disclosure policies in rural credit markets.
Our estimates indicate that the monthly gains from moving from full disclosure to the optimal policy are of
the order of 0.45% the size of a typical loan, or approximately $3 per household per month.

Our framework can be applied to other setups, where in principle one can think that more information
could ameliorate adverse selection. Besides credit scores, the method can be applied to markets ranging from
health insurance to unemployment, disability insurance and workers compensation.

14A second empirical strategy, presented in Appendix 3.9.3 leverages the evidence of intensive risk sharing within villages in
rural Thailand.
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3.9 Appendix

3.9.1 Omitted definitions and propositions

As discussed in the main text, definition 1 corresponds to the outcome of a game where the investors
offer arbitrary menus of contracts to the potential borrowers without exclusivity, under the assumption 1
below (Attar et al., 2011).

Assumption 1. • The distribution Pm of b, conditional on any signal m, has bounded support.

• E[a|b,m] exists for every b and m and it is finite.

• If b is an atom of Pm, then E[a|b,m] ≥ b

• If x > x∗(m) then π(x;m) < 0, where π(x;m) =
∫

b≤x(a − x) dπ(a,b|m). In other words, at any higher
price than the equilibrium price for the message m, investors would make a loss.

Denote a contract investor i offers by a vector (ti, qi), where ti is how much the borrower would receive
in the first period, and qi is how much the borrower would pay the investor back in the second period.

Proposition 6. Under Assumption 1, the non-exclusive competition between the investors result in all
contracts that are traded being of the form ti = x∗(m) qi, where x∗(m) = sup(x|x = E[a|x ≤ b,m]) and
investors exactly break even.

Proof. Assumption 1 is exactly parallel to the assumptions in Attar et al. (2011) and the result follows from
their Propositions 1 and 2.

3.9.2 Omitted proofs

Proposition 2. Full disclosure is optimal if and only if
(

σmj −σx(j),j − πmj

πmk
(σmk −σx(k),k)

)
≤ 0 for all m,j,k such that πmj > 0 and πmk < 0.

Proof. A full disclosure configuration p is optimal if and only if for any direction ∆−→p ∈ C, where

C = {∆−→p ∈Rn×m|∆px(j),j ≤ 0, ∆pm̸=x(j),j ≥ 0, ∆px(j),j = −
∑

m̸=x(j)
∆pmj and 0 =

∑

j

πmj∆pmj}

, the resulting change in the objective function should be non positive, that is, ∆W = d ·∆−→p ≤ 0.
For all pair of indexes except those of the form x(m),m, divide the indexes in two groups, one such that

πmj > 0. Then construct vectors vmjk such that for each index in the first group each vector vmjk has a one
entry at the index mj, a − πmj

πmk
entry for an index mk in the second group and an index −1 in the index

x(j), j and πmj

πmk
entry in the diagonal index x(k),k.

Notice that by construction V ⊂ C, that is, deviations in any direction of these vectors v ∈ V are feasible.
Thus if p is optimal, then any of these deviations should generate a non positive change in welfare, which is
exactly the condition in the claim. This proves that it is necessary.

To prove sufficiency, first define S as the set of vectors v such that for each rs with πrs = 0, there is
vector vrs ∈ S with a plus one entry at rs and a minus one entry at x(s),s. Notice that the definition of
competitive price implies that for the vectors in S, the resulting change in welfare is non positive. We are
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going to show that conical combinations of the vectors in V ∪ S generate all the feasible directions d ∈ C,
starting from the full disclosure benchmark.

Notice that any direction d ∈ C, with a positive index mj with πmj > 0 must have another entry mk

with πmk < 0, otherwise it is not a feasible direction.
The proof now proceeds by induction. Given a vector d with N positive entries r,s such that πrs ̸= 0,

take a pair of entries mj and mk with πmj > 0 and πmk < 0 if there are any, and the corresponding vector
vmjk ∈ V which has these positive entries. Define αmjk = min(σmj ,− σmj

πmk
σmk), and build a new vector

d̃ = d−αmjk ·vmjk. This new vector now has at least one zero entry less and it is still lies in C. Inductively,
one can repeat the procedure until all entries rs with πrs ̸= 0 are zero. For the remaining entries with πrs = 0
we can use the simpler vectors in S which have a plus one entry at rs and a minus one entry at x(s),s. We
concluded implies that we can write d as a conical combination of vectors in V ∪ S. Thus we conclude that
the stated condition is sufficient.

Proposition 3. Suppose there is an interval [x,x] such that the full disclosure price x∗(z) is dense over it.
If full disclosure is optimal over this interval, then for z and z′ such that x(z) ∈ [x,x] and x(z′) ∈ [x,x], the
signal with the higher price must have higher elasticity:

x∗(z) > x∗(z′) ⇒ ϵV,x(x∗(z),z) ≥ ϵV,x(x∗(z′),z′)

where ϵV,x(x∗(z),z) is the price elasticity of the value for investors.

Proof. For two signals z and z′ with x(z) close to x(z′) and x(z) > x(z′), the expression in proposition 1 can
be rearranged as:

∂π(x(z),z)
dx

∂σ(x(z),z)
∂x

≥
∂π(x(z′),z′)

dx

∂σ(x(z′),z′)
∂x

Notice that: ∂σ(x(z),z)
∂x

= P (z,b ≤ x(z))

and ∂π(x(z),z)
dx

= P (z,b ≤ x(z))
[

∂E[a|b ≤ x,z]
∂x

−1
]

+ ∂P (z,b ≤ x(z))
∂x

(E[a|b ≤ x,z]−x)

= P (z,b ≤ x(z))
[

∂E[a|b ≤ x,z]
∂x

−1
]

⇒ ϵz
V (x(z)) ≥ ϵz′

V (x(z′))

Proposition 4. No disclosure is optimal if and only if:
(

σmj −σ0j − πmj

πmk
(σmk −σ0k)

)
− ∆π(m,j,k)

∆π(m′, j′,k′)

(
σm′j′ −σ0j′ − πm′j′

πm′k′
(σm′k′ −σ0k′)

)
≤ 0

for all m,j,k,m′, j′,k′ such that πmj ,πm′j′ ,∆π(m,j,k) ≥ 0, and πmk,πm′k′ ,∆π(m′, j′,k′) < 0.
If there are no m,j,k,m′, j′,k′ such that πmk,πm′k′ ,∆π(m′, j′,k′) < 0, then no disclosure is optimal if
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and only if: (
σmj −σ0j − πmj

πmk
(σmk −σ0k)

)
≤ 0

for all m,j,k,m′, j′,k′, such that πmj ,πm′j′ ,∆π(m,j,k) = 0.

Proof. The proof follows the same logic of Proposition 3. The expression is the change in welfare that results
from deviating from no disclosure to a feasible direction. This vector combines two other generally infeasible
vectors of the same form of the previous proposition. The first has has an one entry in the mj position, a
minus one entry in the 0j position, a − πmj

πmk
entry in the mk position and πmj

πmk
entry in the 0k position. The

second has analogous entries in the m′j′, 0j′, m′k′ and 0k′ positions. They are generally infeasible because
π0s is generally different than zero, while in the full disclosure case πx(s),s is zero by definition. By definition
this infeasible vector should increase the expected value for investors conditional on the no disclosure price,
while the second infeasible vector should decrease it. Then those are combined in the right proportion so

that the zero profit constraint of the investors holds with equality, that is, at the ratio −
πmj
πmk

π0k−π0j
πm′j′
πm′k′ π0k′ −π0j′

.

This shows that this direction is feasible, and therefore the condition is necessary. The qualification says
that if any of these ratios turn to be zero, then it is not necessary to find another entry or vector that would
compensate for the violation in the zero profit condition. Observe that if on the other hand there is an index
with a strictly positive πmj but for this price there is no signal such that πmk < 0, then it is not feasible to
increase mj.

Now, to prove sufficiency, notice that any feasible direction can be decomposed as conical combinations
of these directions, using the same argument in the proof of Proposition 2.

Proposition 5. All signals z that are pooled together in x0 must satisfy:

x0
E[a|b ≤ x0,z]−x0

= κ(x0)ϵP,x(x0,z)+γ(x0)

for some constants κ(x0) and γ(x0), and where ϵP,x(x0,z) = ∂π(x0,z)
∂x

x0
π(x0,z)

Proof. The condition on proposition 4 can be rewritten as:
(

σmj−σ0j

πmj
− σmk−σ0k

πmk

)

π0k
πmk

− π0j

πmj

≤

(
σm′j′ −σ0j′

πm′j′ − σm′k′ −σ0k′
πm′k′

)

π0k′
πm′k′ − π0j′

πm′j′

By assumption, πmj > 0, and πmk < 0. If we take xm to be close to x0, then π0j > 0 and π0k < 0. At the
same time, taking this limit with xm > x0, implies that the denominator on the left side of the inequality is
proportional to ϵP,x(x0,z) − ϵP,x(x0,z′), which by assumption is positive. Notice, however, that taking the
under a sequence where xm < x0 would flip the sign of the denominator, which implies that the same pair
of signals could play the role of j′ and k′ as long as x′

m approaches x0 from below.
With that in mind, and taking the limit in both sides of the inequality we conclude that the condition

can be written as:

x0
E[a|b≤x0,zj ]−x0

− x0
E[a|b≤x0,zk]−x0

ϵP,x(x0,zj)− ϵP,x(x0,zk) =
x0

E[a|b≤x0,z′
j
]−x0

− x0
E[a|b≤x0,z′

k
]−x0

ϵP,x(x0,z′
j)− ϵP,x(x0,z′

k)

Which implies that
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x0
E[a|b≤x0,z]−x0

− 1
E[a|b≤x0,z′]−x0

ϵP,x(x0,z)− ϵP,x(x0,z′) = kx0

for some constant kx0 . Further, we can rewrite this expression as:

x0
E[a|b ≤ x0,z]−x0

= κ(x0)ϵP,x(x0,z)+γ(x0)

3.9.3 Alternative identification strategy: Within village risk-sharing

In this section, we present our alternative empirical strategy to estimate the joint distribution of values for
borrowers and investors. The empirical strategy leverages the evidence that there is intensive consumption
risk sharing at the village level (Chiappori et al., 2014). We explore this idea, with a simple, more structural,
model: individuals share consumption risk, but each has its own cut-off for which if the marginal utility of
consumption at the second period is above it, she defaults.

Concretely, we use data on the time series of consumption to estimate the distribution of marginal
utilities, 15. We will assume that loans are infinitesimal, so that marginal utilities of consumption do not
change with borrowing decisions, both at the individual level and at the village level. Then we turn to data
on default and take-up to to estimate distribution of cut-offs.

With some convenient parametric assumptions, the model is just identified without exogenous variation
in interest rates16. As such, to the extent that we may worry about the changes in interest rates by the
BAAC not being completely exogenous to the demand and creditworthiness of the borrowers, this approach
provides an alternative source of identification.

The model will generate two key equations defining the reservation values for borrowers and for investors
in terms of types (that is the idiosyncratic cutoffs that trigger default) and the empirical processes for
marginal utilities of consumption.

At the village-level, a household type ω is associated with their their idiossyncratic cutoff in terms of
marginal utilities of consumption that would trigger default l(ω). Writing this cutoff in units of current
period marginal utilities of consumption we can express the reservation value of a potential borrower as:

b(ω) = δEy

[
min

{
y, l̃(ω)

}]

where l̃(ω) is the idiosyncratic penalty and the cutoff that triggers default, y is common at the village-
level ratio of marginal utilities of consumption between period 1 and 2, and δ is the discount rate. Intuitively,
because the household does not repay the loan when the marginal utility is of consumption is higher, pre-
ferring instead to incur the non-pecuniary penalty, the loan works as an insurance device. It insures them
against the states of the world where the village-level income is low, and marginal utility of consumption are
high.

Assuming the investors are risk neutral, their reservation value, conditional on ω can be written as:

a(ω) = δPy

(
y < l̃(ω)

)

15We will assume, for simplicity, a common power utility, with risk aversion coefficient of three
16With exogenous variation in interest rates, as in the previous section, the model is non-parametrically identified
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That is, for investors, the value of a unit claim to be paid in the future is the discount factor, times the
probability of repayment. The probability of repayment is just the probability that the marginal utility of
consumption is lower than the idiosyncratic cutoff that triggers default.

More formally, these expressions are derived from the following model: There are two periods. In the first
period, each household decides whether to borrow from investors. After these decisions, the resources are
pooled and a centralized decision is made with respect to consumption. In the second period, uncertainty
in wealth and preferences are realized, and households decide whether to default or not, and if they default,
they suffer a non-pecuniary idiosyncratic penalty. Then, within village risk-sharing takes place, that is, a
centralized planner makes the second round of consumption decisions subject to a feasibility constraint.

That is, in each period t = 1,2, the planner solves

max
ch

t

∑
λhuh(ch

t ) s.t.
∑

ch
t = Wt

The solution of this problem implies that λhuh′(ch
t ) = µt and therefore ch

t = uh′−1 ( µt

λh

)
= fh(Wt), where

µt is the Lagrange multiplier on the village resource constraint, and we can define Uh(Wt) = uh(fh(Wt)).
For all households and every state of nature the rate of marginal utilities at time t and t′ is the same, that
is, there is full consumption risk sharing.

Households individually decide whether to default or not, facing a household specific cost kh per unit of
loan. Default decisions happen before consumption is realized, and the resources the household did or did
not pay are added to the village level wealth Wt. Therefore the indebted household with debt b solves at
the second period:

max
repay, default

{Uh(W2 − q),Uh(W2)− lhq}

Where W2 incorporates the equilibrium responses for the other households. This formulation implies
that the equilibrium strategy is such that each household has a particular cutoff for village wealth below
which she defaults. In the limit of a small loan q, the household will default if U

′h(Wt) > lh. Moreover,
if the total volume of loans at the village level also goes to zero, then the process for marginal utilities of
consumption do not depend on the disclosure policy. If we know the distribution of penalties lh, and the
distribution of marginal utilities we can compute the distribution of default probabilities and reservation
values for investors. Assuming they are risk neutral and that they have a common discount factor δ, the
reservation value for investors, conditional on the household type ω, is the probability of repayment times
the discount factor, that is a(ω) = δP (U ′h,ω(Wt) ≤ lh,ω).

Likewise, we can find the reservation value for the potential borrowers. A borrower selling claims q and
receiving t has an utility function:

V h(b, t;ω) = Uh,ω
1 (W1 + t)+ δE

[
max{Uh,ω(W2 − q),Uh,ω(W2)− lh,ωq}

]

Which in the limit of a small loan can be written as:

Ṽ h(b, t;ω) = t− δE

[
min

{
U

′h,ω(W2)
U

′h,ω(W1)
, l̃h,ω

}]
q where l̃h,ω = lh,ω

U
′h,ω(W1)

Thus, the reservation value for a borrower of type ω is b(ω) = δE

[
min

{
U

′h,ω(W2)
U

′h,ω(W1)
, l̃h,ω

}]
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Given this formulation we can relate moments in the data to the moments in the model by the following
set of equations.

First, the observed price x can be related to type that is just indifferent l̄ between borrowing or not by
the equation:

x(z) = δEy

[
min

{
y, l̄
}

|z
]

Second, all types below this cutoff l̄ have a lower reservation value, and therefore will sell the claim. Thus
the observed takeup rates (takeup(z)), are related to the model moments by the following equation:

takeup(z) = Pl(l ≤ l̄|z)

Third, the average repayment rate is given by the average probability that marginal utility of consumption
is below the idiosyncratic cutoff of those who decided to borrow:

repayment(z) = Pl,y(y ≤ l|l ≤ l̄, z)

With additional parametric assumptions, these three equations are going to be sufficient to identify the
joint distribution of values. 17 We will assume y and l are each log normally distributed. Thus, conditional
on the distribution of marginal utilities of consumption, for each z and x, we will have three equations and
three unknowns (l̄(x|z), µl|z, σl|z).

The whole model has five moments and five parameters for each z. Two moments and parameters are
associated with the data on consumption – the mean and variance of marginal utility of consumption. Then
there are the mean and variance of cutoffs which are associated with take-up and repayment rates, and an
incidental parameter which is the type who is just indifferent l̄(x|z) at a price x. These last three are the
moments we are referencing here.

Concretely, the first equation above, that defines the type who is just indifferent l̄(x|z) at a price x,
becomes:

x(z) = δ

∫ l̄(x|z)

−∞
exp(w)ϕ

(
w −µu|z

σu|z

)
dw + δexp(l̄(x|z)) ·

(
1−Φ

(
l̄(x|z)−µu|z

σu|z

))

The second equation, describing the take-up rate, becomes:

takeup(z) = Φ
(

l̄(x|z)−µl|z
σl|z

)

And the third equation, describing the average repayment rate, becomes:

repayment(z) =
∫ l̄(x|z)

−∞
Φ
(

w −µu|z
σu|z

) ϕ
(

w−µl|z
σl|z

)

Φ
(

l̄(x|z)−µl|z
σl|z

)dw

Having related the theoretical and empirical moments, it remains to estimated the latter. That is, we
need to estimate take-up, and repayment rates as functions of the observable characteristics z. To accomplish

17If we jointly consider the model equations and assume there is exogenous variation in prices, than we would be overidentified.
Indeed, without the structural assumptions, we are already non-parametrically identified.
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Figure 3.12: Reduced form and structural model

this task, we use random forests (Breiman, 2001; Athey and Wager, 2019). 18.
These moments are translated into estimated functions µl(z), σl(z), µu(z), σu(z), using the equations

above. As in the previous estimation strategy, even though we could from these estimators infer the joint
distributions of values and observable characteristics,we take an additional step that is meant to make the
problem computationally easier and interpretable. To that goal, we use a k-means algorithm to classify
households into different clusters, according to their estimated µl,σl,µu,σu.

Given the estimates for the joint distribution of values, we can compute optimal credit scores as in the
section 3.7. Figure 3.12 compares these scores to the ones we derived using exogenous variation in interest
rates. We can see that credit scores and elasticities of the value for investors are roughly centered around
the means, but much less spread out.

18Random forests had the best out-of-sample performance among a variety of other machine learning methods, such as
boosted trees, lasso, and linear random forests.
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