
Pseudo-determinism

by

Ofer Grossman

S. B., Massachusetts Institute of Technology (2017)
S. M., Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Ofer Grossman. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Ofer Grossman
Department of Electrical Engineering and Computer Science
May 18, 2023

Certified by: Shafi Goldwasser
RSA Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Pseudo-determinism

by

Ofer Grossman

Submitted to the Department of Electrical Engineering and Computer Science
on June 2023, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

A curious property of randomized algorithms for search problems is that on different executions
on the same input, the algorithm may return different outputs due to differences in the internal
randomness used by the algorithm. We would like to understand how we can construct randomized
algorithms which while still using the power of randomness can ensure that when run multiple time
on the same input, with high probability result in the same output on each of the executions.

We first show a pseudo-deterministic NC algorithm for finding matchings in bipartite graphs.
As a corollary, we also show a pseudo-deterministic NC algorithm for constructing DFS trees in
graphs.

We then show a reproducible algorithm for problems in search-RL. That is, we show an algorithm
for problems in search-RL such that the output depends only on 𝑂(log 𝑛) many random bits used
by the algorithm. We also show a pseudo-deterministic log-space low time algorithm for finding
paths in undirected graphs. The algorithm is much faster than deterministic logspace algorithms
for the problem.

Next, we investigate pseudo-determinism in the context of streaming algorithms. We show both
lower and upper bounds for some classic streaming problems. Most notably, we show that the
problem of approximate counting in a stream (for which the well known algorithm of Morris gives
a 𝑂(log log 𝑛) space algorithm), has no pseudo-deterministic algorithms using space 𝑜(log 𝑛).

Finally, we examine an extension of pseudo-determinism to the context of interactive proofs.

Thesis Supervisor: Shafi Goldwasser
Title: Professor of Electrical Engineering and Computer Science

2

Acknowledgments

Thank you to Shafi being such a supportive advisor and for giving me so much freedom to work on

whatever I wanted.

3

Contents

1 Introduction 7

1.1 Some Motivation for Pseudo-determinism . 7

1.2 Outline. 10

2 Matching in pseudo-deterministic NC 11

2.1 Introduction . 11

2.1.1 Our Results . 13

2.2 Solution Outline . 14

2.3 Preliminaries . 15

2.4 Key Lemmas . 16

2.5 The Algorithm . 19

2.6 Using Fewer Random Bits . 21

2.7 Discussion . 23

3 Reproducibility and Low Space Computation 24

3.1 Introduction . 24

3.1.1 Reproducible Outputs . 24

3.1.2 Our Contribution . 25

3.1.3 Related Work . 27

3.2 Preliminaries . 28

3.3 An Algorithm for Search-RL with Reproducible Outputs 29

3.3.1 Reproducibility . 29

3.3.2 Algorithms with few influential bits . 32

4

3.3.3 High Level Proof Idea for Theorem 3.3.5 . 34

3.3.4 Algorithm and Analysis . 35

3.3.5 Why we cannot try all possible thresholds . 37

3.3.6 Discussion of Algorithm 1 . 38

3.4 Improved Pseudo-deterministic Algorithms for Path Finding 38

3.4.1 Undirected Graphs . 39

3.4.2 Eulerian Graphs . 43

3.5 Discussion . 47

3.6 Testing Connectivity for Undirected and Eulerian graphs in RL 48

3.7 Short-Walk Find Path is complete for search-RL 49

4 Psuedo-deterministic Streaming 51

4.1 Introduction . 51

4.1.1 Our Contributions . 52

4.1.2 Related work . 56

4.1.3 Open Problems . 57

4.1.4 Table of complexities . 57

4.2 Preliminaries . 57

4.3 Find-Duplicate: Pseudo-deterministic lower bounds 59

4.4 Entropy Lower Bound for Find-Duplicate . 63

4.4.1 Getting Rid of the Zero Error Requirement 65

4.5 Entropy lower bounds for finding a support element 70

4.6 Space complexity of pseudo-deterministic ℓ2-norm estimation 71

4.7 Pseudo-deterministic Upper Bounds . 74

4.7.1 Finding a nonzero row . 74

4.7.2 Point Query Estimation and Inner Product Estimation 76

4.7.3 Retrieving a Basis of a Row-space . 80

5 Lower Bound for Pseudo-Deterministic Approximate Counting 82

5.1 Introduction . 82

5.1.1 Related Work . 83

5

5.1.2 Main Result . 83

5.1.3 Markov Chain Formulation . 85

5.2 Technical Overview . 85

5.2.1 Illustrative Examples . 85

5.2.2 Proof Outline . 87

5.3 Proof of Theorem 5.1.7 . 89

5.3.1 Recurrent Behavior on Moderate Time-Scales 89

5.3.2 Decomposition into Periodic Parts . 90

5.3.3 Analysis of Periodic Decomposition . 95

5.4 Proof of Lemma 5.3.11 . 97

6 Pseudo-deterministic Proofs 101

6.1 Introduction . 101

6.1.1 Our Contribution . 101

6.1.2 Other Related Work . 105

6.1.3 Subsequent Work . 106

6.2 Definitions of Pseudo-deterministic Interactive Proofs 107

6.3 Pseudo-deterministic-AM algorithm for graph isomorphism 109

6.4 Lower bound on pseudo-deterministic AM algorithms 111

6.5 Pseudo-deterministic derandomization for BPP in subexponential time MA 113

6.6 Uniqueness in NL . 114

6.7 Structural Results . 116

6.8 Discussion and Open Problems . 119

6.9 Alternate Algorithm for Graph Isomorphism in pseudo-deterministic AM 121

6

Chapter 1

Introduction

In [GG11], Gat and Goldwasser initiated the study of probabilistic (polynomial-time) search algo-

rithms that, with high probability, output the same solution on different executions. That is, for

all inputs 𝑥, the randomized algorithm 𝐴 satisfies 𝑃𝑟𝑟1,𝑟2(𝐴(𝑥, 𝑟1) = 𝐴(𝑥, 𝑟2)) ≥ 1− 1/𝑝𝑜𝑙𝑦(𝑛).

Another way of viewing such algorithms is that for a fixed binary relation 𝑅, for every 𝑥 the

algorithm associates a canonical solution 𝑠(𝑥) satisfying (𝑥, 𝑠(𝑥)) ∈ 𝑅, and on input 𝑥 the algorithm

outputs 𝑠(𝑥) with overwhelmingly high probability. Algorithms that satisfy this condition are

called pseudo-deterministic, because they essentially offer the same functionality as deterministic

algorithms; that is, they produce a canonical output for each possible input (except with small error

probability)1. In contrast, arbitrary probabilistic algorithms that solve search problems may output

different solutions when presented with the same input (but using different internal coin tosses);

that is, on input 𝑥, the output may arbitrarily distributed among all valid solutions for 𝑥 (e.g. it

may be uniformly distributed).

Many questions come to mind, the main one being: in what instances can randomized algorithms

be made pseudo-deterministic?

1.1 Some Motivation for Pseudo-determinism

Randomization is a powerful tool in algorithm design, and it is accepted that usually a deterministic

algorithm for a problem is “better” than a randomized one, assuming the computational resources
1In fact, by amplifying the success probability, one can ensure that as black boxes, pseudo-deterministic algorithms

are indistinguishable from deterministic algorithms by a polynomial time machine.

7

for the algorithms are the same.

Why are deterministic algorithms preferred over randomized ones? We believe the main down-

sides of randomized algorithms (compared to deterministic algorithms) are the following:

• They have a nonzero probability of error, failure, or large run-time.

• Random bits must be sampled, which may be infeasible or computationally expensive.

• The output is not predictable. That is, multiple executions of the algorithm on the same input

may result in different outputs.

The first two points above have both significantly informed research on randomized algorithms.

For example, the first point motivates the distinction between Monte Carlo and Las Vegas algorithms

as well as RP versus BPP, and the need for improvements over naive amplification [IZ89,GM20].

The second point has led to work on pseudorandom generators [HILL99], how to recycle random

bits [IZ89], and efficient extractors [Tre01], to mention a few.

Notice that unlike the first two points above, which are relevant both in the context of search

and decision problems, the third point mainly applies to search problems. An algorithm for a

decision problem, if its failure probability is small enough, with high probability will result in the

same output when run twice on the same input (using different randomness). However, in the case

of algorithms for search problems, it is possible for algorithms even with zero error probability to

result in different outputs when executed twice on the same input.

The study of pseudo-determinism addresses the third point directly. Pseudo-deterministic algo-

rithms also help address the two other problems, as we discuss below.

Lowering error probability. Consider the first item above (having a nonzero probability of

error). For a standard search algorithm, it may not be clear how to reduce the probability of

error. The most standard way of reducing error probability for algorithms is via repetition – if

you have an algorithm with some error probability, and you run it 100 times and take the output

that was most common, you will end up with a lower probability of error. While this strategy is

very effective for decision problems (it can give an exponentially low probability of error after just

polynomially many repetitions), note that this strategy does not work for general search algorithms.

For example, if a search algorithm gives a different answer on each of the 100 repetitions, we will not

8

be able to reduce our error probability. However, for a pseudo-deterministic algorithm, we know that

with high probability many of the 100 repetitions of the algorithm will result in the same output,

allowing us to use this standard amplification technique. Other methods of amplification, such as

those in [IZ89,GM20] also do not work for general search problems, but do for pseudo-deterministic

algorithms.

Saving random bits. We now view the second item (random bits must be sampled, which may

be infeasible or computationally expensive). Suppose you have 10 instances of a problem, and wish

to solve all of them. Something you can do to save random bits is to simply sample random bits

once, and then use the same random bits 10 times to solve all 10 instances. By a union bound, the

probability of error in any of the 10 instances is at most a factor of 10 more than for an individual

instance. This, of course, wouldn’t work of the 10 instances were chosen adaptively. That is,

suppose you first solve the first instance, and then the second instance may depend on the output

of the output you gave for the first problem, and so on. In this case, one cannot use the union

bound. However, if the algorithm used was pseudo-deterministic, since the output to each of the

inputs does not strongly depend on the random bits chosen, the union bound would still work,

allowing us to save random bits. In this sense, one can think of a pseudo-deterministic algorithm

as one which uses “zero amortized random bits”. This is since whatever random bits used to solve

a pseudo-deterministic algorithm can with high probability later be safely reused.

This idea is used in this thesis in section 2.6 to save random bits for finding matchings and DFS

trees in graphs in RNC.

Predictable outputs. As for the third problem (the output is not predictable. That is, multiple

executions of the algorithm on the same input may result in different outputs), pseudo-deterministic

algorithms address it directly. A pseudo-deterministic algorithm is exactly one which on the same

input will with high probability result in the same output. Notice that this means if a pseudo-

deterministic algorithm is viewed as a black box, it is indistinguishable from a deterministic algo-

rithm. Whenever using it on a certain input, it results in the same output (with high probability).

So, the black box exhibits a deterministic behaviour – whenever using the black box multiple times

on the same input, it results in the same output on those multiple executions.

9

1.2 Outline.

This thesis is based on joint work with Shafi Goldwasser, Meghal Gupta, Dhiraj Holden, Yang Liu,

Sidhanth Mohanty, Mark Sellke, and David Woodruff [GG15,GL19,GGMW20,GGS23,GGH17].

In Chapter 2, based on joint work with Shafi Goldwasser [GG15], we discuss a pseudo-deterministic

parallel algorithm for finding a matching in a bipartite graph. In Chapter 3, based on joint work

with Yang Liu [GL19] we study an extension of pseudo-determinism which we call reproducibility,

and show that all problems in search-RL have reproducible algorithms. In Chapter 4, based on

joint work with Shafi Goldwasser, Sidhanth Mohanty, and David Woodruff [GGMW20], we study

pseudo-determinism in the context of streaming algorithms, showing both lower and upper bounds

for various classic streaming problems. In Chapter 5, based on joint work with Meghal Gupta and

Mark Sellke [GGS23], we continue the discussion of pseudo-determinism in the context of streaming

algorithms, proving a lower bound for the pseudo-deterministic complexity of approximate counting.

In Chapter 6, based on joint work with Shafi Goldwasser and Dhiraj Holden [GGH17], we study

an extension of the notion of pseudo-deterministic algorithms to to pseudo-deterministic interactive

proofs.

10

Chapter 2

Matching in pseudo-deterministic NC

The work in this Chapter is based on joint work with Shafi Goldwasser [GG15].

2.1 Introduction

Computing a maximum matching in a graph is a paradigm-setting algorithmic problem whose

understanding has paved the way to formulating some of the central themes of theoretical computer

science.

In particular, Edmonds [Edm65] proposed the definition of tractable polynomial-time solvable

problems versus intractable non-polynomial time solvable problems following the study of the graph

matching problem versus the graph clique problem. In the context of parallel algorithms, computing

a maximum (or possibly perfect) matching is the problem standing at the center of the 𝑅𝑁𝐶 versus

𝑁𝐶 question. It is known both in the general and in the bipartite case to be solvable by randomized

𝑅𝑁𝐶 algorithms but it is unknown if deterministic 𝑁𝐶 algorithm exist.

Brief History of the Parallel Complexity of Matching:

One can distinguish between the decision version of the perfect matching problem (which asks

whether a perfect matching exists) and the search version (which asks to return a perfect matching

if any exist).

The decision problem is equivalent to testing whether the determinant of the Tutte matrix (or a

simplified version of it in the bipartite case as shown by Edmonds [Edm65]) is identically 0. Lovász

11

[Lov79] realized that for the polynomial corresponding to the determinant of the Tutte matrix, this

can be determined in a manner similar to the randomized identity testing of polynomials [Sch80].

The Tutte matrix’s determinant is a polynomial whose degree 𝑛 is the number of nodes in the graph.

By assigning the indeterminates of the Tutte matrix values in the field F𝑝 where 𝑝 is a prime greater

than 2𝑛, we create an integer matrix which with high probability has nonzero determinant if the

Tutte matrix has nonzero determinant. Testing that a given integer matrix is non-singular can be

done in 𝑁𝐶, so an 𝑅𝑁𝐶 algorithm for the decision problem follows.

The search version was subsequently shown to be in 𝑅𝑁𝐶 by Karp, Upfal, and Wigderson

[KUW85] 1. The next breakthrough was the 𝑅𝑁𝐶 algorithm of Mulmuley, Vazirani, and Vazirani

[MVV87] which introduced the well-known isolation lemma. They assigned random weights from

the set {1, 2, . . . , 2|𝐸|} to the edges of the graph and proved the isolation lemma which states that

with high probability the assignment induces (isolates) a unique min-weight perfect matching (if at

least one perfect matching exists). Given an isolating weight assignment for a graph 𝐺, a perfect

matching in 𝐺 can be constructed in 𝑁𝐶 in a straightforward manner: for each edge we create

a process whose task is to determine if this edge participates in the unique min-weight matching.

Checking if an edge is in the unique min-weight perfect matching can be done by removing the edge

from the graph and computing the determinant of the corresponding matrix.

A significant step forward has been made by Fenner, Gurjar, and Thierauf [FGT15] who showed

how to remove randomization and obtain a quasi-𝑁𝐶 algorithm for computing perfect matchings in

bipartite graphs. Namely, they obtain a deterministic poly(log 𝑛) depth algorithm which uses more

than a polynomial number of processors to compute a perfect matching in bipartite graphs.

Essentially, [FGT15] constructs an isolating weight assignments for bipartite graphs with quasi-

polynomially large weights. More precisely, they first construct a weight function which ensures

nonzero circulation (alternating sum of weights) for all small (length at most 4 log 𝑛) cycles in the

graph. Next, they argue non-constructively that the union of all min-weight perfect matchings in

the original graph would result in a smaller graph which has no small cycles. By iterating this

argument for the new graph (after contracting degree 2 nodes with their neighbors), they show

that after 𝑘 = 𝑂(log 𝑛) iterations all cycles disappear and a single perfect matching remains. The

final weight assignment is a combination of the weight assignments in each of the 𝑘 iterations
1The algorithm probabilistically prunes out a constant fraction of edges from the graph in 𝑂(log |𝑉 |) stages such

that after each stage, the remaining graph still has a perfect matching with high probability.

12

𝑤 =
∑︀𝑘

𝑖=1𝑤𝑖𝐵
𝑘−𝑖 which can be proved to induce a unique min-weight matching for the original

graph. Note that this entire procedure is not constructive since taking the union of all min-weight

matchings takes too much time; however, it suffices to show that the weights involved in any iteration

can be bounded by 𝑂(𝑛𝑐 log𝑛), and thus one can deterministically cycle through 𝑂(𝑛𝑐𝑘 log𝑛) possible

weight assignments where each weight can be described with poly(log 𝑛) bits.

This state of affairs leaves intriguing open problems:

• Can the decision problem “does a perfect matching exist" be solved in 𝑁𝐶 without the use of

randomization?

• Can a perfect matching be found in 𝑁𝐶 without the use of a randomization, assuming that

at least one (and possibly many) perfect matching exists?

• Can an isolating weight assignment be constructed in 𝑁𝐶 without resorting to randomization?

• Can an 𝑅𝑁𝐶 algorithm be constructed such that with high probability it always finds the

same perfect matching? That is, can an algorithm output with exponentially high probability

a canonical matching for each input graph? Note that for the algorithm in [MVV87], each ran-

dom weight assignment induces a unique min-weight perfect matching, but different random

weight assignments for the same input graph may induce different matchings.

2.1.1 Our Results

In this work we settle this problem for the case of bipartite graphs.

We present a pseudo-deterministic 𝑅𝑁𝐶 algorithm for the bipartite perfect matching search

problem. On a bipartite graph 𝐺, the algorithm uses polynomially many processors, runs in

poly(log 𝑛) time, and uses poly(log 𝑛) random bits to output a canonical perfect matching of 𝐺

(or to state that no perfect matching exists). This is the first pseudo-deterministic 𝑅𝑁𝐶 algorithm

for bipartite perfect matching. In other words, previous 𝑅𝑁𝐶 algorithms would output different

matchings on different executions whereas our algorithm outputs the same perfect matching on each

execution (with high probability).

We note that the best improvements in [CRS95] and in [FGT15] of the 𝑅𝑁𝐶 algorithm of

[MVV87] to find a perfect (though not necessarily unique) bipartite matching via the isolation

lemma use 𝑂(𝑛 log 𝑚
𝑛) random bits.

13

Aggarwal, Anderson, and Kao [AAK89] found an 𝑅𝑁𝐶 algorithm for constructing a depth first

search tree for directed graphs. Their algorithm’s only use of randomization is to solve bipartite min-

weight maximum matching as a subroutine. Our results can be adapted to solve bipartite maximum

matching. Hence, our results imply a pseudo-deterministic 𝑅𝑁𝐶 algorithm for computing depth

first search (DFS) in general directed graphs.

2.2 Solution Outline

In this section, we give an overview of the proof. It is intended to provide the reader with the basic

ideas without going into detail. Sections 3-6 contain the rigorous analysis.

Let 𝐺 be a graph and 𝑤 be a weight assignment to the edges of 𝐺. We will later explain how

we construct 𝑤, but for now we treat it as given.

Our first observation, Lemma 2.4.3, is that randomization allows us to find the union of all

min-weight perfect matchings of 𝐺 (deterministically, this is not known to be possible). By taking

the union of min-weight perfect matchings, we are effectively throwing out the edges which do not

participate in any perfect matching while maintaining the property that the graph has a perfect

matching. The idea behind computing the union of min-weight perfect matchings is that for each

edge 𝑒𝑖, we create a process whose goal is to figure out if 𝑒𝑖 participates in some min-weight perfect

matching. Each such process will create a new weight assignment which lowers the weight of

𝑒𝑖 by a small amount and then uses randomization to find a min-weight perfect matching with

the new weight assignment. We pick the weights so that if 𝑒𝑖 is in a min-weight matching with

respect to the original weight assignment, then it must be in all min-weight matching with respect

to the new assignment. Also, if 𝑒𝑖 is not in a min-weight matching with respect to the original

weight assignment, then it must be in none of the min-weight matchings with respect to the new

assignment. Now, by finding a min-weight perfect matching (which we can do in 𝑅𝑁𝐶 using

techniques in [MVV87]), we can determine whether 𝑒𝑖 is in the union of min-weight matchings.

We now construct weight assignments such that the union of all edges in min-weight matchings

has many vertices of degree at most 2. Degree 2 vertices are very easy to deal with since we can

contract them with their neighbors to get a smaller graph. If we find a perfect matching on the

smaller graph, it is easy to extend it to the original graph.

By a theorem in [AHL02], we learn that if the girth (length of the shortest cycle) of 𝐺 is at least

14

4 log 𝑛, then at least 1
10 of the vertices have degree at most 2. Therefore, if our weight assignment

can make all small cycles disappear, we will be able to reduce our problem to a smaller graph and

be done.

We also show that given a weight assignment, every even cycle with nonzero circulation (alter-

nating sum of weights) disappears when we look at the union of min-weight matchings. We then

construct a weight function such that small (containing fewer than 4 log 𝑛 vertices) cycles disappear:

Lemma 2.2.1. Let 𝐺 be a bipartite graph on 𝑛 vertices. Then, for any number 𝑠, one can construct

a set of 𝑂(𝑠 log 𝑛) weight assignments with weights bounded by 𝑂(𝑠 log 𝑛) such that every cycle of

length up to 𝑠 has nonzero circulation for at least one of the weight assignments.

The proof for this Lemma appears in section 4.

We now set 𝑠 = 4 log 𝑛, and in series we update our graph for each of the 𝑂(𝑠 log 𝑛) weight

assignments by looking at the union of min-weight matchings. When we are done, we have a graph

with high girth, so we can contract many vertices of degree up to 2. We then recurse, completing

the proof.

2.3 Preliminaries

We begin with some lemmas from previous work.

Lemma 2.3.1 (Theorem 2 in [MVV87]). Given a graph 𝐺 with a weight function 𝑤 : 𝐸 → Z,

with polynomially bounded weights, it is possible to construct a 𝑤-minimal perfect matching of 𝐺 in

𝑅𝑁𝐶.

Definition 2.3.2 (Circulation). Let 𝐺(𝑉,𝐸) be a graph with weight function 𝑤. Let 𝐶 be a cycle

in the graph. The circulation 𝑐𝑤(𝐶) of an even length cycle 𝐶 = (𝑣1, 𝑣2, . . . , 𝑣𝑘) is defined as the

alternating sum of the edge weights of 𝐶,

𝑐𝑤(𝐶) = |𝑤(𝑣1, 𝑣2)− 𝑤(𝑣2, 𝑣3) + 𝑤(𝑣3, 𝑣4)− · · · − 𝑤(𝑣𝑘, 𝑣1)|.

Circulation has been used for an 𝑁𝐶 algorithm for perfect planer bipartite matching [DKR10]

and for a quasi-𝑁𝐶 algorithm for bipartite matching [FGT15].

15

Lemma 2.3.3 (Lemma 3.4 in [FGT15]). Let 𝐺 be a bipartite graph. Let 𝑤 be a weight function

such that the cycles 𝐶1, 𝐶2, . . . , 𝐶𝑛 have nonzero circulations. Then the graph 𝐺1 obtained by taking

the union of all min-weight perfect matchings on 𝐺 will not have any of the cycles 𝐶1, 𝐶2, . . . , 𝐶𝑛.

The following lemma originates in [AHL02], and is presented in this form in [FGT15].

Lemma 2.3.4 (Corollary 3.6 in [FGT15]). Let 𝐻 be a graph with girth (length of shortest cycle)

𝑔 ≥ 4 log 𝑛− 2. Then 𝐻 has average degree < 2.5. In particular, at least 1
10 (a constant fraction) of

the vertices have degree at most 2.

2.4 Key Lemmas

Recall that in [MVV87] a weight assignment is chosen at random such that with high probability

there is a unique min-weight perfect matching. Our goal will be to deterministically construct

weight assignments with similar properties.

Lemma 2.4.1 (Uniquifying assignment for small sets.). Let 𝑆 be a set with |𝑆| = 𝑛. For any number

𝑘, one can construct (in NC) a weight assignment 𝑤 : 𝑆 → Z with weights bounded by 2𝑂(𝑠 log𝑛)

such that no two distinct subsets 𝑆1, 𝑆2 ⊂ 𝑆 satisfying |𝑆1|, |𝑆2| ≤ 𝑘 have the same sum of weights.

We can think about the Lemma as an assignment which isolates all small subsets of 𝑆. We will

later use this Lemma to construct a weight assignment for the graph 𝐺.

Proof. Let 𝑆 = {𝑠1, . . . , 𝑠𝑛}. Consider the following weight assignment, where we write 𝑤(𝑚) as

shorthand for 𝑤(𝑠𝑚):

𝑤(𝑚) = 𝑝2𝑘𝑚+ 𝑝2(𝑘−1)[𝑚2]𝑝 + 𝑝2(𝑘−2)[𝑚3]𝑝 + · · ·+ 𝑘0𝑝0[𝑚𝑘+1]𝑝

where [𝑥]𝑝 means the number between 1 and 𝑝 which is equal to 𝑥 modulo 𝑝 and where 𝑝 is an

arbitrary prime greater than 𝑛2. We can find such a prime by having 𝑛2 processes each check a

different number between 𝑛2 and 2𝑛2. Each of these processes initiate 2𝑛2 processes which each test

divisibility by an integer up to 2𝑛2. (Note that this has no implications regarding generating primes

in 𝑁𝐶 since our input is of size 𝑛 instead of log 𝑛).

Suppose there exist two distinct subsets of size up to 𝑘 with equal sums of weights. We can add

zeroes to both subsets such that the sizes of the sets are exactly 𝑘. Suppose that the sums of the

16

weights of two subsets 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑘} and 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑘} are the same. We note that this

would imply that the sums of the 𝑝2𝑘𝑚 terms for both 𝐴 and 𝐵 must be equal because the 𝑝2𝑘𝑚

term is much larger than all other terms (or it is 0). Similarly, the sums of the 𝑘2(𝑘−1)𝑝2(𝑘−1)[𝑚2]𝑝

terms must equal and so on for 𝑘2(𝑘−𝑖)𝑝2(𝑘−𝑖)[𝑚𝑖+1]𝑝 for all 𝑖. Therefore, we have the following

equivalences modulo 𝑝 :

𝑎1 + 𝑎2 + · · ·+ 𝑎𝑘 ≡ 𝑏1 + 𝑏2 + · · ·+ 𝑏𝑘 (mod 𝑝)

𝑎21 + 𝑎22 + · · ·+ 𝑎2𝑘 ≡ 𝑏21 + 𝑏22 + · · ·+ 𝑏2𝑘 (mod 𝑝)

· · ·

𝑎𝑘+1
1 + 𝑎𝑘+1

2 + · · ·+ 𝑎𝑘+1
𝑘 ≡ 𝑏𝑘+1

1 + 𝑏𝑘+1
2 + · · ·+ 𝑏𝑘+1

𝑘 (mod 𝑝).

We claim that this implies that 𝐴 = 𝐵. We note that if 𝑎𝑖 ≡ 𝑏𝑗 modulo 𝑝, then 𝑎𝑖 = 𝑏𝑗 because 𝑝 is

larger than 𝑛2 which is the maximal size of 𝑎𝑖 or 𝑏𝑗 . Therefore, it will suffice to show that the set

𝐴 and the set 𝐵 are equivalent in F𝑝.

Newton’s identities, given the sums of the 𝑖th powers of the 𝑎𝑗 for 𝑖 between 1 and 𝑘, uniquely

determine the values of the fundamental symmetric polynomials in the 𝑎𝑗 . Therefore, Newton’s

identities also uniquely determine the minimal polynomial which has as roots all of the 𝑎𝑗 (with

multiplicity). We know that this polynomial will be of degree 𝑘 and therefore since the 𝑏𝑗 share this

polynomial, the set of the 𝑎𝑖 and the set of the 𝑏𝑗 must be equal (they are both the set of roots of

the same polynomial), completing the proof that the weight assignment has no two subsets of size

up to 𝑘 with the same sum of weights.

We note that the weights are bounded by 𝑝2𝑘+2 = 2𝑂(𝑘 log𝑛).

If a cycle of length 𝑠 has circulation 0, then there are two distinct subsets of size 𝑠/2 that have

the same sum of weights (namely, the sum of the weights of the cycle’s odd edges equals the sum of

the weights of the cycle’s even edges). Therefore, the above Lemma implies that we can construct

weight assignment for 𝐺 with weights bounded by 2𝑂(𝑠 log𝑛) such that all cycles of length up to 𝑠

have nonzero circulation.

Lemma 2.4.2 (Nonzero circulation for small cycles.). Let 𝐺 be a graph on 𝑛 vertices. Then for any

𝑠, one can construct a set of 𝑂(𝑠 log 𝑛) weight assignments with weights bounded by 𝑂(𝑠 log 𝑛) such

that every cycle of length up to 𝑠 has nonzero circulation for at least one of the weight assignments.

17

Proof. We begin with our weight assignment from Lemma 2.4.1 with 𝑘 = ⌊𝑠/2⌋. We consider the

weight assignment modulo small numbers, i.e., the weight functions {𝑤 (mod 𝑗)|2 ≤ 𝑗 ≤ 𝑡} for

some appropriately chosen 𝑡. (The idea here is to pick 𝑡 so that if a cycle has nonzero circulation in

𝑤, then it will have nonzero circulation in 𝑤 (mod 𝑗), for some 𝑗 ≤ 𝑡.)

We note that if the lemma does not hold then there exists a cycle 𝐶 such that 𝑐𝑤(𝐶) ≡ 0

(mod 𝑗), for all 𝑗 between 1 and 𝑡. Therefore,

lcm(2, 3, . . . , 𝑡)|𝑐𝑤(𝐶𝑖).

The right is bounded above by 2𝑂(𝑠 log𝑛). In [Nai82] we learn that lcm(2, 3, . . . , 𝑡) > 2𝑡 for

sufficiently large 𝑡, so letting 𝑡 = 𝑂(𝑠 log 𝑛) makes it so a cycle with nonzero circulation with respect

to 𝑤 is guaranteed to have nonzero circulation with respect to 𝑤 (mod 𝑗) for some 2 ≤ 𝑗 ≤ 𝑡.

Therefore, we have 𝑂(𝑠 log 𝑛) total weight assignments with weights bounded by 𝑂(𝑠 log 𝑛) such

that every cycle of length up to 𝑠 has nonzero circulation in at least one weight assignment.

The following lemma shows that in 𝑅𝑁𝐶 we can find the union of min-weight perfect matchings

of a graph 𝐺 with a weight assignment 𝑤.

Lemma 2.4.3 (Union of min-weight perfect matchings). Let 𝐺(𝑉,𝐸) be a bipartite graph with

weight function 𝑤. Let 𝐸1 be the union of all min-weight perfect matchings in 𝐺. There exists an

𝑅𝑁𝐶 algorithm for finding the set 𝐸1.

The idea behind the proof is that for each edge 𝑒𝑖, we run a process whose goal is to tell whether

𝑒𝑖 is part of a min-weight perfect matching. To do so, the process creates a new weight function

which lowers 𝑒𝑖 so that if 𝑒𝑖 was in a min-weight perfect matching, under the new weight assignment

𝑒𝑖 is in every min-weight perfect matching (but if 𝑒𝑖 was not in a min-weight perfect matching, it

should still not be in a min-weight matching). Then, we use Lemma 2.3.1 to find a min-weight

perfect matching, and we check if 𝑒𝑖 is in the matching. 𝑒𝑖 will be in the matching if and only if it

is part of a min-weight matching with respect to the original weight function.

18

Proof. For each edge 𝑒𝑖 ∈ 𝐸, consider the weight function 𝑤𝑖 defined by

𝑤𝑖(𝑒𝑗) =

⎧⎪⎨⎪⎩
2𝑤(𝑒𝑗)− 1 if 𝑖 = 𝑗

2𝑤(𝑒𝑗) if 𝑖 ̸= 𝑗.

Suppose that 𝑀 is the minimal weight for a matching with respect to 𝑤. Then with respect to

𝑤𝑖, the min-weight matching will have weight 2𝑀 if 𝑒𝑖 is in no 𝑤-minimal matching. Otherwise,

the min-weight matching will have weight 2𝑀 − 1. By finding a 𝑤𝑖-minimal, which we can do with

Lemma 2.3.1, and checking whether 𝑒𝑖 participates in the matching, we can determine whether 𝑒𝑖

is in a 𝑤-minimal matching.

Note that this is highly parallelizable: we can run the above for each edge in parallel. Then, we

return the set of all 𝑒𝑖 which are part of some 𝑤-minimal matching.

2.5 The Algorithm

We now put everything together to construct an algorithm (Fig. 1).

Perfect-Matching(𝐺)

1 If |𝐸(𝐺)| ≤ 100 :
2 Find and return a perfect matching of 𝐺 using brute force.
3 Construct the weight assignments defined in Lemma 2.4.2 with 𝑠 = 4 log 𝑛.
4 For each weight assignment 𝑤:
5 In parallel for each edge 𝑒𝑖 in 𝐺 :
6 Construct the weight 𝑤𝑖 defined in Lemma 2.4.3.
7 If 𝑒𝑖 is not in the 𝑤𝑖-minimal matching:
8 Remove 𝑒𝑖 from 𝐺.
9 Contract all edges adjacent to vertices of degree 2 in 𝐺 to create 𝐺′.

10 Run Perfect Matching(𝐺′).
11 Remove from 𝐺 all vertices part of the perfect matching of 𝐺′.
12 In parallel for each connected component of 𝐺 :
13 Find a perfect matching of the connected component (which is a cycle or a path).
14 Return the union of matchings of connected components and the matching of 𝐺′.

Figure 2-1: A pseudo-deterministic 𝑅𝑁𝐶 algorithm finding a perfect matching in a given bipartite
graph 𝐺.

We note that randomization is only used in line 7. We use the randomization in the following

19

context: given a weight assignment and an edge, output whether the edge is part of some min-weight

perfect matching. Since this is a Yes/No question, correctness implies uniqueness so our algorithm

returns the same output with high probability, and is therefore pseudo-deterministic.

We will now analyze the algorithm and show it lies in 𝑅𝑁𝐶.

We note that line 2 takes 𝑂(1) time. Line 3 is in 𝑅𝑁𝐶, as shown in Lemma 2.4.2.

Line 7 can be done in 𝑅𝑁𝐶 by Lemma 2.4.3. Line 7 is in 𝑅𝑁𝐶 since it is finding a min-weight

perfect matching when the weight function is isolating. After line 8, the graph 𝐺 still has a perfect

matching.

By Lemma 2.4.2 and Lemma 2.3.3, we see that after the loop in line 4, 𝐺 has no cycles of length

less than 4 log 𝑛. By Lemma 2.3.4, 𝐺′ will have a constant fraction of the number of vertices of 𝐺.

Therefore, the depth of the recursions line 10 gives us is log 𝑛.

In line 13, we know that each connected component only has vertices of degree 1 or 2. There-

fore, each connected component is either a path or a cycle. We can find a perfect matching here

deterministically by letting the weight of one of the edges be 1 and the weight of all other edges be

0. In this case, if we are a path we have one perfect matching which we will find, and if we are a

cycle, one of the perfect matchings will have weight 1 and the other will have weight 0. Therefore,

the weight assignment is isolating, so lines 12 and 13 are in 𝑁𝐶.

We see that every vertex is either part of a connected component from line 12 or is an element of

the perfect matching of 𝐺′. Hence, every vertex is matched, proving the correctness of the algorithm.

This completes the algorithm’s analysis.

We note that contracting edges in 𝑁𝐶 takes some care. To contract, we first create the subgraph

consisting of all edges adjacent to a vertex of degree at most 2. We can do this by running a process for

each edge which checks the degree of its vertices. Then, we will contract all connected components.

We do this by checking for each pair of vertices if they are in the same connected component (we

can do this because the 𝑆𝑇 connectivity problem is in 𝑁𝐿 which is a subset of 𝑁𝐶). Now, for each

vertex 𝑣 we find the minimal (in lexicographic order) vertex 𝑣𝑚 in its connected component and

delete 𝑣 while attaching all edges adjacent to 𝑣 to 𝑣𝑚. This completes the analysis for contraction

in 𝑁𝐶.

20

2.6 Using Fewer Random Bits

In this section, we will construct a pseudo-deterministic 𝑅𝑁𝐶 algorithm for the bipartite perfect

matching problem which uses only poly(log 𝑛) random bits.

Our algorithm is based on our previous pseudo-deterministic 𝑁𝐶 algorithm. We note that in our

previous algorithm, the only use of randomization was to solve the following subproblem: given a

graph 𝐺, a weight assignment 𝑤 with polynomially bounded weights, and an edge 𝑒, output whether

the edge 𝑒 is part of a max-weight perfect matching (we note that we can talk about max-weight

matchings even though earlier we talked about min-weight matchings because we can define a new

weight function 𝑤′(𝑒𝑖) = max𝑒𝑗 𝑤(𝑒𝑗)− 𝑤(𝑒𝑖) such that all 𝑤-minimal matchings are 𝑤′-maximal).

We will show how to solve this with polylog(𝑛) random bits.

Let 𝑀 = max𝑥∈𝐸 𝑤(𝑥). Consider the weight assignment 𝑤𝑒 defined by

𝑤𝑒(𝑒
′) =

⎧⎪⎨⎪⎩
𝑤(𝑒′) + 𝑛𝑀 if 𝑒′ = 𝑒

𝑤(𝑒′) otherwise.

If there exists a perfect matching containing 𝑒, then all max-weight perfect matchings with

respect to 𝑤𝑒 will contain 𝑒. We note that if 𝑒 is part of a max-weight matching with respect to

𝑤, then the max-weight matching with respect to 𝑤𝑒 will have weight 𝑊 + 𝑛𝑀 where 𝑊 is the

weight of the maximum perfect matching with 𝑤. On the other hand, if 𝑒 is not a max-weight

matching with respect to 𝑤, then the max-weight matching with respect to 𝑤𝑒 will have weight at

most (𝑊 − 1) + 𝑛𝑀 = (𝑊 + 𝑛𝑀)− 1. We will detect this difference by constructing a matrix and

calculating its determinant.

Consider the following matrix, where the 𝑎𝑖𝑗 will be defined later, and 𝑧 is an indeterminate.

𝐴𝑒(𝑖, 𝑗) =

⎧⎪⎨⎪⎩
𝑧𝑤𝑒(𝑣𝑖,𝑢𝑗)𝑎𝑖𝑗 if (𝑢𝑖, 𝑣𝑗) ∈ 𝐸

0 otherwise.

We can set 𝑧 to be much larger than the 𝑎𝑖𝑗 . For example, we can set 𝑧 = 𝑛𝑛2
max𝑖,𝑗 |𝑎𝑖𝑗 |𝑛. We

can write the determinant as

21

det(𝐴𝑒) =
∑︁

𝑆 a perfect matching in 𝐺

𝑠𝑔𝑛(𝑆)𝑧𝑤𝑒(𝑆)
∏︁
𝑒∈𝑆

𝑎𝑒.

We see that because we picked 𝑧 to be so large, each term where 𝑆 a max-weight matching will

be larger than the sum of all terms with non-max-weight matchings. Then, assuming that the terms

with 𝑧𝑊𝑒 (where 𝑊𝑒 is the weight of a max-weight matching with respect to 𝑤𝑒) do not cancel, we

can recover 𝑊𝑒 from the determinant by finding the largest 𝑛 such that 𝑧𝑛 ≤ 2| det(𝐴𝑒)|.

Now that we know 𝑊𝑒 for every edge 𝑒, we can find the maximum of the set {𝑊𝑒 : 𝑒 ∈ 𝐸}. The

𝑒𝑖 such that 𝑊𝑒𝑖 is maximal are the edges which are part of a max-weight perfect matching with 𝑤.

This set is the union of max-weight perfect matchings, as we wished.

Therefore, it will suffice to find 𝑎𝑖𝑗 so that the terms with 𝑧𝑊𝑒 do not cancel. This is exactly

the same as finding 𝑎𝑖𝑗 such that the matrix

𝐴′
𝑒(𝑖, 𝑗) =

⎧⎪⎨⎪⎩
𝑎𝑖𝑗 if (𝑢𝑖, 𝑣𝑗) in a max-weight matching with 𝑤𝑒

0 otherwise

has nonzero determinant.

In section 5 of [FGT15], there is a randomized construction for the 𝑎𝑖𝑗 such that for each graph

𝐺′ which has a perfect matching, the matrix

𝐴′
𝐺′(𝑖, 𝑗) =

⎧⎪⎨⎪⎩
𝑎𝑖𝑗 if (𝑢𝑖, 𝑣𝑗) ∈ 𝐸(𝐺′)

0 otherwise

has nonzero determinant with high probability. (Note that the 𝑎𝑖𝑗 do not depend on 𝐺′. This

is important because we don’t actually know that the set of edges in a max-weight matching with

𝑤𝑒.)

Because the construction uses poly(log 𝑛) bits and can achieve 1
𝑛3 probability of failure, we can

use the the same values of 𝑎𝑖𝑗 for all 𝑒, and by the union bound the probability that any failures

occur is still small: at most 1
𝑛 . Therefore, we can solve the subproblem using polylog(𝑛) bits, which

completes the proof.

22

2.7 Discussion

The above implies a pseudo-deterministic 𝑅𝑁𝐶 algorithm for depth first search, another problem

in 𝑅𝑁𝐶 that is not known to be in 𝑁𝐶. This result follows immediately from [AAK89], where

an 𝑅𝑁𝐶 algorithm for DFS is presented, and the only use of randomization is in a subroutine for

finding a min-weight perfect matching in a bipartite graph.

The above also implies 𝑅𝑁𝐶 algorithms for some network flow problems such as max-flow

approximation, which was shown in [SS91] to be 𝑁𝐶-reducible to maximum bipartite matching.

Followup work. After the work from this chapter was first published, an extension to general

(nonbipartite) graphs was shown in [AV19]. In [GG21] a pseudo-deterministic reduction from search

to weighted-decision was shown for the matroid intersection problem.

23

Chapter 3

Reproducibility and Low Space

Computation

The work in this Chapter is based on joint work with Yang Liu [GL19].

3.1 Introduction

3.1.1 Reproducible Outputs

When using a log-space machine to perform a randomized search algorithm with a polynomial-sized

output, the output cannot be fully stored. Running the algorithm again with new random bits may

result in a new (and potentially different) output. Hence, after running the computation, we lose

access to the outputted answer, and are unable to reproduce it.

Consider, for example, the following simple computational problem: Given a (directed) graph 𝐺

and two vertices 𝑠 and 𝑡 such that a random walk from 𝑠 hits 𝑡 quickly with high probability, output

two copies of the same path from 𝑠 to 𝑡. That is, the goal is to output some path 𝑃 , and then

output the same path 𝑃 again. It’s not clear how to perform the above in randomized log-space,

since after outputting some path 𝑃 , it’s not clear how to reproduce 𝑃 and be able to output it

again. So, although outputting a single path is easy, or two potentially different paths, it’s not clear

how to output the same path twice.

Another example of this phenomenon in play is that it is known that there is a randomized

reduction from NL to UL (in fact, NL is reducible to UL ∩ coUL) [RA00,GW96]. It follows that if

24

UL ⊆ RL, then NL can be solved by randomized log-space algorithms with two-way access to the

random bits (that is, there is a randomized disambiguation of NL which uses two-way access to the

random bits). However, when assuming UL ⊆ RL, it is not known whether NL can be solved by

a randomized log-space algorithm with one-way access to the random bits. The two-way access to

the random bits is needed so that the output of the reduction (which is an instance of a problem

in UL) can be accessed in a two-way fashion. If the output of the reduction was reproducible, then

one-way access to the random bits would suffice. However, it is not known whether there exists

such a reduction which is reproducible.

One way to achieve reproducibility is through pseudo-determinism. Pseudo-deterministic al-

gorithms are randomized search algorithms which, when run on the same input multiple times,

with high probability output the same result on all executions. Given such an algorithm, it is

possible to reproduce outputs: simply run the algorithm again using new randomness. We manage

to achieve reproducibility using a different and novel approach which does not involve finding a

pseudo-deterministic algorithm for the problem.

3.1.2 Our Contribution

Our contribution falls into two parts: contributions to reproducibility in the context of log-space,

and contributions to pseudo-determinism in the context of log-space.

Reproducibility: We introduce the notion of reproducibility and provide a definition in Section

3.3. Our main result shows that every problem in search-RL (see Section 3.2 for a definition of

search-RL) can be solved so that its output is reproducible. Essentially, a problem has reproducible

solutions if for every input 𝑥 we can generate a short string 𝑡𝑥 so that given both 𝑥 and 𝑡𝑥 we can

keep reproducing copies of the same 𝑦 satisfying (𝑥, 𝑦) ∈ 𝑅. That is, by memorizing only the short

string 𝑡𝑥, we can continue to produce more copies of the same output. Given such an algorithm, it is

now possible to simulate running any logspace algorithm on 𝑦 in logspace by simply memorizing 𝑡𝑥

and using it to reconstruct 𝑦 whenever needed. Otherwise, we could only run a log-space algorithm

𝐴 on 𝑦 if 𝐴 required one-way access to their input. If some algorithm 𝐴 required two-way access to

its input, we wouldn’t be able to to use composition to run that algorithm on 𝑦.

In order to achieve reproducibility, we show that for every problem in search-RL there is some

randomized log-space algorithm 𝐴 such that with high probability, the output of 𝐴 only depends

25

on the first 𝑂(log 𝑛) random bits 𝐴 samples. That is, after sampling the first 𝑂(log 𝑛) random bits,

with high probability for most choices of the rest of the random bits used by the algorithm, the

same result will be outputted. This property makes it possible for an algorithm to output a pair

(𝑦, 𝑦), where 𝑦 is a valid output to the original problem, as it can store the first 𝑂(log 𝑛) random

bits it sampled in memory, and use them to recreate 𝑦 twice. Since the algorithm can find and store

the information needed to reproduce the answer 𝑦, we say that the output is reproducible.

Our first result is that every problem in search-RL (as defined in [RTV06]) has a randomized

log-space algorithm whose output, with high probability, only depends on its first 𝑂(log 𝑛) random

bits. This implies that every problem in search-RL has reproducible solutions.

Informal Theorem 3.1.1. Every problem in search-RL has a randomized log-space algorithm

whose output, with high probability, only depends on its first 𝑂(log 𝑛) random bits.

A more precise statement is given in Section 3.3 as Theorem 3.3.5. The algorithm we present

has several other noteworthy properties, which we discuss in Subsection 3.3.6. This includes that

the output of the algorithm, when viewed as a random variable depending on the random choices

used by the algorithm, has entropy 𝑂(log 𝑛). This is significantly lower than a standard search-RL

algorithm, which may have polynomial entropy.

Pseudo-determinism: In later sections, we show faster pseudo-deterministic algorithms for find-

ing paths in undirected and Eulerian graphs. These algorithms are reproducible even without storing

𝑂(log 𝑛) bits in memory.

For undirected graphs, a deterministic log-space algorithm has been shown by Reingold [Rei08].

One of the drawbacks of this algorithm is that its runtime, while polynomial, has a very large

exponent, since it requires going over all paths of length 𝑂(log 𝑛) on a certain graph, with a large

constant hidden in the 𝑂 (for certain expositions of the algorithm, the polynomial runtime is larger

than 𝑂(𝑛109)). This can likely be improved, but we imagine it would be difficult to lower it to

a “reasonable” polynomial time complexity. We show a pseudo-deterministic algorithm for the

problem which runs in the more reasonable time of 𝑂̃(𝑚𝑛3):

Theorem 3.1.2 (Pseudo-deterministic Path Finding in Undirected graphs in 𝑂̃(𝑚𝑛3) time, 𝑂(log 𝑛)

space). Let 𝐺 be a given undirected graph with 𝑛 vertices and 𝑚 edges. Given two vertices 𝑠 and 𝑡

26

of 𝐺 which are connected, there is a pseudo-deterministic log-space algorithm which outputs a path

from 𝑠 to 𝑡. Furthermore, the algorithm runs in time 𝑂̃(𝑚𝑛3).

We then generalize the theorem to Eulerian graphs (directed graphs where each vertex has

indegree equal to its outdegree). Finding paths in such graphs deterministically has been shown

in [RTV06]. Once again, the algorithm given in [RTV06] suffers from a very large polynomial

runtime.

Theorem 3.1.3 (Pseudo-deterministic Path Finding in Eulerian graphs in 𝑂̃(𝑚5𝑛3) time, 𝑂(log 𝑛)

space). Let 𝐺 be a given Eulerian graph with 𝑛 vertices and 𝑚 edges. Given two vertices 𝑠 and 𝑡 of

𝐺 such that there is a directed path from 𝑠 to 𝑡, there is a pseudo-deterministic log-space algorithm

which outputs a path from 𝑠 to 𝑡. Furthermore, the algorithm runs in time 𝑂̃(𝑚5𝑛3).

3.1.3 Related Work

RL vs L: Related to our result on pseudo-deterministic undirected connectivity is the work of

Reingold, which showed that undirected connectivity can be solved deterministically with logarith-

mic space [Rei08]. Later, this result was extended to find pseudo-random walks on Eulerian graphs

by Reingold, Trevisan, and Vadhan [RTV06].

One of our techniques may remind some readers of the work of Saks and Zhou that show that

problems in BPL can be solved deterministically using 𝑂(log3/2(𝑛)) space [SZ99]. In [SZ99], the

authors add random noise to certain computed matrices, in order to be able to reuse certain random

bits. In this work, we pick a certain ‘threshold’ at random, and this allows us to reuse randomness

(more accurately, it makes our output be pseudo-deterministic with respect to certain random bits).

The two ideas are similar in that they use randomization in an unconventional way in order to make

the output not depend on certain random bits (for Saks and Zhou, this was helpful since it allowed

those random bits to be reused). While the approach of Saks and Zhou was surely an inspiration

for some of the high level ideas of this paper, the details of this paper turned out quite different

from those in [SZ99].

27

3.2 Preliminaries

In this section we establish some definitions and lemmas that will be useful in later parts of the

paper. Many of our definitions, especially those related to search problems in the context of log-

space, follow closely to the definitions in [RTV06].

We begin by defining a search problem.

Definition 3.2.1 (Search Problem). A search problem is a relation 𝑅 consisting of pairs (𝑥, 𝑦). We

define 𝐿𝑅 = {𝑥|∃𝑦 s.t. (𝑥, 𝑦) ∈ 𝑅}, and 𝑅(𝑥) = {𝑦|(𝑥, 𝑦) ∈ 𝑅}.

The computational task associated with a search problem 𝑅 is: given 𝑥, find a 𝑦 such that

(𝑥, 𝑦) ∈ 𝑅. From this point of view, 𝐿𝑅 corresponds to the set of valid inputs, and 𝑅(𝑥) corresponds

to the set of valid outputs on input 𝑥.

We now define classes of search problems in the context of log-space. Our definitions follow

closely to those of [RTV06].

Definition 3.2.2 (Log-space search problem). A search problem 𝑅 is log-space if there is a poly-

nomial 𝑝 such that if 𝑦 ∈ 𝑅(𝑥) then |𝑦| ≤ 𝑝(|𝑥|) and there is a deterministic log-space machine that

can decide if (𝑥, 𝑦) ∈ 𝑅 with two-way access to 𝑥 and one-way access to 𝑦.

We now define the class search-L. We remind the reader that a transducer is a Turing machine

with a read-only input tape, a work tape (in our case, of logarithmic size), and a write-only output

tape.

Definition 3.2.3 (search-L). A search problem 𝑅 is in search-L if it is log-space and if there is a

logarithmic space transducer 𝐴 such that 𝐴(𝑥) ∈ 𝑅(𝑥) for all 𝑥 in 𝐿𝑅.

Definition 3.2.4 (search-RL). A search problem 𝑅 is in search-RL if it is log-space and if there is a

randomized logarithmic space transducer 𝐴 and polynomial 𝑝 such that Pr𝑟[𝐴(𝑥, 𝑟) ∈ 𝑅(𝑥)] ≥ 1
𝑝(|𝑥|)

for all 𝑥 ∈ 𝐿𝑅.

The following computational problem is complete for search-RL:

Definition 3.2.5 (Short-Walk Find Path). Let 𝑅 be the search problem whose valid inputs

are 𝑥 = (𝐺, 𝑠, 𝑡, 1𝑘) where 𝐺 is a directed graph, 𝑠 and 𝑡 are two vertices of 𝐺, and a random walk

of length 𝑘 from 𝑠 reaches 𝑡 with probability at least 1 − 1/|𝑥| (where |𝑥| represents the length of

the input 𝑥). On such an 𝑥, a valid output is a path of length up to 𝑘 from 𝑠 to 𝑡.

28

Lemma 3.2.6. Short-Walk Find Path is complete for search-RL.

We prove the above lemma in 3.7, via a reduction from Poly-Mixing Find Path, a problem

which was shown to be complete for search-RL in [RTV06]. Intuitively speaking, the input to this

problem is a graph with low enough mixing time, and the goal is to find a path in this graph between

two input vertices 𝑠 and 𝑡. For a formal definition of Poly-Mixing Find Path, we refer the reader

to [RTV06].

Before going on to the algorithm in Section 3.3, we make a definition to simplify the explanations.

Definition 3.2.7. For a graph 𝐺 with vertices 𝑠 and 𝑡, and a positive integer 𝑘, let 𝑝𝑘(𝑠, 𝑡) denote

the probability that a random walk of length 𝑘 starting from 𝑠 goes through 𝑡.

One of the key lemmas used by the algorithm is that one can estimate the value of 𝑝𝑘(𝑠, 𝑡) up

to some polynomial additive error in search-RL. To do so, we simulate polynomially many random

walks starting at 𝑠 and count the fraction that pass through 𝑡. This is made precise in the following

lemma:

Lemma 3.2.8. Consider a graph 𝐺 with 𝑛 vertices, two of which are 𝑠 and 𝑡. Let 𝑘 be a positive

integer. Then there exists a randomized log-space algorithm that on input (𝐺, 𝑠, 𝑡, 1𝑘) outputs an

estimate 𝜇 for 𝑝𝑘(𝑠, 𝑡) satisfying |𝜇− 𝑝𝑘(𝑠, 𝑡)| ≤ 1
𝑘5𝑛5 with probability at least 1− 2𝑒−2𝑘𝑛.

Proof. To find 𝜇, we simulate many random walks from 𝑠 of length 𝑘, and then output the fraction

which reach 𝑡. More precisely, we use the following algorithm: simulate 𝑘11𝑛11 random walks of

length 𝑘 starting at 𝑠, and count how many end at 𝑡. Say that 𝐶 of them do. Then output 𝐶
𝑘11𝑛11 .

To show that this works, it suffices to note that

Pr

[︂⃒⃒⃒⃒
𝐶

𝑘11𝑛11
− 𝑝𝑘(𝑠, 𝑡)

⃒⃒⃒⃒
≤ 1

𝑘5𝑛5

]︂
≥ 1− 2𝑒−2𝑘𝑛

by Hoeffding’s inequality.

3.3 An Algorithm for Search-RL with Reproducible Outputs

3.3.1 Reproducibility

We begin with a formal definition of a problem with reproducible outputs. Essentially, a problem

has reproducible solutions if for every input 𝑥 we can generate a short string 𝑡𝑥 so that given both 𝑥

29

and 𝑡𝑥 we can keep reproducing copies of the same 𝑦 satisfying (𝑥, 𝑦) ∈ 𝑅. That is, by memorizing

only the short string 𝑡𝑥, we can continue to produce more copies of the same output.

Definition 3.3.1 (Reproducible). We say that a search problem 𝑅 has log-space reproducible solu-

tions if there exist randomized log-space algorithms 𝐴 and 𝐵 satisfying the following properties:

• On input 𝑥, with probability at least 2
3 , 𝐴 outputs a string 𝑡𝑥 of length 𝑂(log 𝑛) such that the

second bullet holds.1

• There exists some 𝑦 satisfying (𝑥, 𝑦) ∈ 𝑅 such that with probability at least 2
3 , 𝐵 outputs 𝑦

when running on input (𝑥, 𝑡𝑥).

A justification for the definition of reproducibility: One may argue that the definition pro-

posed for reproducibility is highly structured, and that there may be ways to construct algorithms

which capture the notion of reproducibility without adhering to the structure of Definition 3.3.1.

We note that the “weakest” possible notion for reproducibility is that an algorithm has reproducible

solutions if there is some randomized logspace algorithm 𝐶 which outputs (𝑦, 𝑦) where 𝑦 is a valid

output for the original problem. This is since if such an algorithm doesn’t exist, then there is no

hope to achieve any sort of reproducibility, since we essentially can’t even reproduce the output

a single time. Lemma 3.3.2 below shows that this weak notion is equivalent to Definition 3.3.1,

showing that the seemingly too-strict definition (Definition 3.3.1) is equivalent to the seemingly

too weak definition (that a problem has reproducible outputs if there exists an algorithm 𝐶 which

outputs (𝑦, 𝑦) where 𝑦 is a valid output to the original problem), demonstrating that the correct

notion of reproducibility is captured by Definition 3.3.1.

Reproducibility is closely related to pseudo-determinism. In the case where 𝑡𝑥 is of size 0, the

algorithm 𝐵 is a pseudo-deterministic algorithm for the search problem 𝑅.

An alternate way to view reproducibility is that a search problem 𝑅 has log-space reproducible

solutions if there exists some randomized log-space algorithm 𝐶 such that algorithm 𝐶 outputs (𝑦, 𝑦)

for some 𝑦 satisfying (𝑥, 𝑦) ∈ 𝑅. Essentially, this alternate view captures the fact that a problem
1Via exhaustive search, it can be shown that if for all inputs 𝑥 there exists a 𝑡𝑥 such that the second bullet holds,

there also exists a log-space algorithm 𝐴 that for all 𝑥 with high probability will output some 𝑡𝑥 satisfying the second
bullet.

30

has log-space reproducible solutions if and only if we can produce some output, and then produce

it again, ensuring that the output was not lost after the first time we computed it.

Lemma 3.3.2. A search problem 𝑅 has log-space reproducible solutions if and only if there exists

some randomized log-space algorithm 𝐶 such that for all valid inputs 𝑥 (i.e., 𝑥 ∈ 𝐿𝑅), with high

probability 𝐶(𝑥) outputs two copies of an output 𝑦 satisfying (𝑥, 𝑦) ∈ 𝑅. That is, with high probability

𝐶 outputs the tuple (𝑦, 𝑦), where (𝑥, 𝑦) ∈ 𝑅.

Proof. First we show that every search problem 𝑅 with log-space reproducible solutions has a

randomized log-space algorithm 𝐶 that given some 𝑥, with high probability outputs two copies of

an output 𝑦 satisfying (𝑥, 𝑦) ∈ 𝑅. Let 𝐴 and 𝐵 be the algorithms for problem 𝑅 from Definition

3.3.1. We now show how to amplify algorithm 𝐵 so that the probability it outputs 𝑦 is 1 − 1
4𝑛2 .

We do this by determining the 𝑖-th bit of the output for all 1 ≤ 𝑖 ≤ |𝑦|, where |𝑦| denotes the

length of the output 𝑦. More specifically, consider the algorithm 𝐵′ that loops through all 𝑖 such

that 1 ≤ 𝑖 ≤ |𝑦|, and for each index 𝑖, runs 𝐵 at least Ω(log(2𝑛|𝑦|)) times to determine the most

common bit in that position. Because there exists an input 𝑦 such that Pr𝑟[𝐵(𝑥, 𝑡𝑥, 𝑟) = 𝑦] ≥ 2
3 ,

the most common bit in each position will be the same as the bit of 𝑦 in that position. Therefore,

(after choosing a large enough constant in the Ω) by a Chernoff bound and a union bound over all

bits in 𝑦, 𝐵′ will output 𝑦 with probability at least 1− |𝑦|
8𝑛3|𝑦|3 . Now, an algorithm 𝐶 for 𝑅 can do

the following: first run 𝐴 to get 𝑡𝑥, and then run algorithm 𝐵′ two times. By a union bound, with

high probability, the output will be 𝑦 both times, as the failure probability is bounded by 2|𝑦|
8𝑛3|𝑦|3 ,

so the success probability is high.

Now we show the reverse direction. Consider an algorithm 𝐶 such that with high probability on

input 𝑥, 𝐶 will output two copies of an output 𝑦 satisfying (𝑥, 𝑦) ∈ 𝑅. Now we construct algorithms

𝐴 and 𝐵 satisfying the conditions of Definition 3.3.1. First, let algorithm 𝐴 simulate algorithm

𝐶, and output the configuration of the Turing machine corresponding to algorithm 𝐶 after 𝐶 has

outputted one copy of 𝑦 (that is, after it has outputted the comma between the two 𝑦’s in (𝑦, 𝑦)).

This will be our string 𝑡𝑥. The length of 𝑡𝑥 will be of size 𝑂(log 𝑛) as 𝐶 is a log-space algorithm.

Now, algorithm 𝐵 will continue simulating algorithm 𝐶, starting from configuration 𝑡𝑥. With high

probability, 𝐶 will output another copy of 𝑦 after reaching configuration 𝑡𝑥, since we know which

high probability 𝐶 outputs the pair same output twice. Therefore, algorithm 𝐵 will output 𝑦 with

high probability, as desired.

31

We note that if a problem 𝑅 has reproducible solutions, then for any polynomially bounded ℓ it

has a randomized logspace algorithm 𝐷 which on valid input 𝑥 outputs ℓ copies of a valid output 𝑦.

That is, it outputs (𝑦, 𝑦, . . . , 𝑦), where (𝑥, 𝑦) ∈ 𝑅. This can be done by first running the algorithm 𝐴

(from Definition 3.3.1) to create an advice string 𝑡𝑥, and then running algorithm 𝐵 (from Definition

3.3.1) ℓ times using the same advice string 𝑠 on all those ℓ executions.

3.3.2 Algorithms with few influential bits

To construct a log-space algorithm whose output is reproducible, we will design an algorithm 𝐴

whose output with high probability only depends on 𝑂(log 𝑛) of the random bits 𝐴 samples. Then,

the algorithm can store those 𝑂(log 𝑛) influential random bits, and using those it can reproduce its

output by running again using the same 𝑂(log 𝑛) influential random bits. Below we give a precise

definition of what we mean by “influential random bits”.

Definition 3.3.3 (Influential bits). 2 Let 𝑘(𝑛) be a polynomial-time computable function. Say

that a randomized log-space search algorithm 𝐴 has 𝑘(𝑛) influential bits if for all valid inputs 𝑥,

with probability at least 1
2 over random strings 𝑟1 of length 𝑘(𝑛), we have that there exists an

output 𝑦 such that 𝑦 is valid for input 𝑥 and Pr𝑟2 [𝐴(𝑥, 𝑟1, 𝑟2) = 𝑦] ≥ 2
3 . Here, 𝑟2 denotes the

remaining randomness (after 𝑟1) used by 𝐴 and 𝐴(𝑥, 𝑟1, 𝑟2) denotes the output of 𝐴 on input 𝑥 with

randomness 𝑟1 and 𝑟2.

We note that a concept closely related to algorithms with few influential bits is 𝑘-pseudo-

deterministic algorithms, which were introduced by Oded Goldreich [Gol19] after the paper this

chapter is based on was first published. A 𝑘-pseudo-deterministic algorithm is an algorithm such

that for every valid input, there is a set of valid outputs of size up to 𝑘 such that with high probability

the algorithm outputs one a value in this set. An algorithm with 𝑏 influential bits can be used to

construct a 2𝑏-pseudo-deterministic algorithm. Similarly, 𝑘-pseudo-deterministic algorithms can be

turned into algorithms with few influential bits, as shown in Theorem 8 in [Gol19].

We now prove that if a randomized log-space algorithm 𝐴 has 𝑂(log 𝑛) influential bits, then its

output is reproducible. Essentially, the idea is that the algorithm 𝐴 can store its 𝑂(log 𝑛) influential

random bits in memory and then use these bits to recompute its previous output.
2An algorithm is pseudo-deterministic if it has zero influential bits. In this sense, the above definition is an

extension of pseudo-determinism.

32

Lemma 3.3.4. If a search problem 𝑅 can be solved by a randomized log-space algorithm with

𝑂(log 𝑛) influential random bits, then it has log-space reproducible solutions.

Proof. Let 𝐶 be an algorithm for the search problem 𝑅 with 𝑏 = 𝑂(log 𝑛) influential random bits.

Let 𝑚 = poly(𝑛) be an upper bound on the output size. We will construct algorithms 𝐴 and 𝐵 that

satisfy the conditions of Definition 3.3.1, i.e., for an input 𝑥, 𝐴 outputs a string 𝑡𝑥 of length 𝑂(log 𝑛),

such that with high probability algorithm 𝐵 running on input (𝑥, 𝑡𝑥) will pseudo-deterministically

produce an output 𝑦 satisfying (𝑥, 𝑦) ∈ 𝑅.

First, we will show how to amplify the 2
3 from Definition 3.3.3. We randomly generate 𝑏 bits

(recall that 𝑏 is the number of influential random bits used by algorithm 𝐶). With probability at

least 1
2 , fixing these 𝑏 bits will cause algorithm 𝐶 to produce the same output for at least 2

3 of the

choices for the remaining random bits. We can amplify the 2
3 via repetition. That is, we can create

a new algorithm 𝐶 ′ where the 𝑘th output bit is 0 if after running 𝐶 a total of 𝑐𝑛 times (for some

constant 𝑐), the majority of times the 𝑘th output bit was a 0. Otherwise, we set the 𝑘th output bit

to be a 1. If we let 𝑐 be sufficiently large, then by a Chernoff bound and a union bound over the

coordinates of the output, we have that the whole output of 𝐶 ′ will be 𝑦 with probability at least

1− 1
2𝑛 .

Now, we describe the algorithms 𝐴 and 𝐵. Algorithm 𝐴 begins by sampling a random string

𝑠1 of length 𝑏 bits. Next, algorithm 𝐴 will test whether 𝑠1 is a “good” string. That is, we test

whether with high probability there is some 𝑦 such that the probability Pr𝑟2 [𝐶
′(𝑥, 𝑠1, 𝑟2) = 𝑦] is

large (at least 1− 1
𝑛2). This can be done by, for each output bit 𝑖, running the algorithm 𝐶 ′ a total

of Θ(𝑛2) times, and checking if the 𝑖-th output bit was the same in all executions (we remark here

that 𝐴 knows which bits of 𝐶 ′ are influential because those are the bits that are sampled first). If

Pr𝑟2 [𝐶
′(𝑥, 𝑠1, 𝑟2) = 𝑦] is at least 1− 1

2𝑛 , then 𝑠1 passes this test with probability at least 1− Θ(𝑛2)
2𝑛 . If

the string 𝑠1 passes, we know that with high probability Pr𝑟2 [𝐶
′(𝑥, 𝑠1, 𝑟2) = 𝑦] ≥ 1− 1

𝑛 . If it is the

case that for each coordinate, 𝐶 ′ outputted the same bit on each of the executions, algorithm 𝐴 can

output 𝑠1 as its string 𝑡𝑥. Otherwise, if one of the output bits was not the same on all executions

(i.e., 𝑠1 did not pass the test for having a high value of Pr𝑟2 [𝐶 ′(𝑥, 𝑠1, 𝑟2) = 𝑦]), we sample a new

string 𝑠1 and repeat. After 𝑂(log 𝑛) tries for the string 𝑠1, with high probability we will find a

good string 𝑠1, where 𝐶 ′ outputs a certain 𝑦 with high probability. Now, algorithm 𝐵 can simply

simulate algorithm 𝐶 ′ on the input (𝑡𝑥, 𝑥), where 𝑡𝑥 is the good string that 𝐴 outputted. Since

33

with high probability Pr𝑟2 [𝐶
′(𝑥, 𝑠1, 𝑟2) = 𝑦] ≥ 1− 1

𝑛 , we know that algorithm 𝐵, when run multiple

times on (𝑡𝑥, 𝑥), will output the same 𝑦 with high probability.

Note that the reduction in 3.3.4 from randomized log-space algorithms with 𝑂(log 𝑛) influential

bits to reproducible solutions is non-uniform. We needed uniformity in order to let algorithm 𝐴

know which bits of the original algorithm 𝐶 were influential.

In the rest of the section, we prove that every problem in search-RL has an algorithm with

𝑂(log 𝑛) influential bits:

Theorem 3.3.5. Every problem in search-RL has a randomized log-space algorithm that only has

𝑂(log 𝑛) influential bits.

As an immediate corollary of Theorem 3.3.5 and Lemma 3.3.4 we have:

Corollary 3.3.6. Every problem in search-RL has log-space reproducible solutions.

3.3.3 High Level Proof Idea for Theorem 3.3.5

At the high level, the idea for the algorithm for Theorem 3.3.5 is as follows. First, we consider the

problem Short-Walk Find Path from Definition 3.2.5, which we know is complete for search-RL

by Lemma 3.2.6. Now, suppose that we wish to find a path from 𝑠 to 𝑡, and we know that 𝑝𝑘(𝑠, 𝑡) ≥ 1
2

(see Definition 3.2.7 for a definition of 𝑝𝑘). This implies that there must exist an outneighbor 𝑣

of 𝑠 such that 𝑝𝑘−1(𝑣, 𝑡) ≥ 1
2 . Therefore, if we could estimate 𝑝𝑘−1(𝑣, 𝑡) for all outneighbors 𝑣

of 𝑠, we could pick the lexicographically first neighbor satisfying 𝑝𝑘−1(𝑣, 𝑡) ≥ 1
2 , and continue

recursively from there. Since 𝑣 is uniquely determined (it is the lexicographically first outneighbor

of 𝑠 satisfying 𝑝𝑘−1(𝑣, 𝑡) ≥ 1
2), if such an algorithm worked, it would be fully pseudo-deterministic

(and hence would have no influential random bits).

Unfortunately, this proposed algorithm of finding an outneighbor will not work. To see why,

consider the situation where for the first outneighbor 𝑣 of 𝑠 that we check, 𝑝𝑘−1(𝑣, 𝑡) is exactly

equal to 1/2. Then no matter how accurately we estimate 𝑝𝑘−1(𝑣, 𝑡), much of the time our estimate

will be less than 1/2, and other times it will be greater than 1/2. This makes our algorithm not

pseudo-deterministic, as in some runs we will use vertex 𝑣 in the path, and in other runs we will

not.

34

Instead, we construct an algorithm that has logarithmically many influential bits in the following

way. We will generate a threshold 𝑐 (from some distribution) and find the first outneighbor 𝑣

satisfying 𝑝𝑘−1(𝑣, 𝑡) ≥ 1/2− 𝑐, and use that vertex 𝑣 as part of our path. Then, we recurse to find

the next vertex in the path. Of course, this still fails if 𝑝𝑘−1(𝑣, 𝑡) = 1/2− 𝑐 (or if 𝑝𝑘−1(𝑣, 𝑡) is close

to 1/2− 𝑐). However, if the value of 𝑐 is far away from all values of 1/2− 𝑝𝑖(𝑢, 𝑡) for all 𝑢 and all

1 ≤ 𝑖 ≤ 𝑘, then our algorithm, for this fixed value of 𝑐, will always give the same output. Hence, to

get an algorithm with logarithmically many influential bits for Short-Walk Find Path, we just

need a way to use logarithmically many bits to select a value of 𝑐 such that for all 1 ≤ 𝑖 ≤ 𝑘, and

vertices 𝑣, |1/2− 𝑝𝑘−1(𝑣, 𝑡)− 𝑐| is large (at least 1/𝑛5𝑘5).

We are able to find such a value of 𝑐 by sampling it at random from some set of polynomial size.

Note that there are 𝑘𝑛 possible values for an expression of the form 1/2−𝑝𝑖(𝑢, 𝑡) (with 𝑖 ≤ 𝑘), since

there are 𝑛 options for 𝑢, and 𝑘 options for 𝑖, and we need 𝑐 to be far from all 𝑘𝑛 of these options.

If we were to randomly sample 𝑐 from the set { 1
𝑘4𝑛4 ,

2
𝑘4𝑛4 , . . . ,

𝑘2𝑛2

𝑘4𝑛4 }, then with high probability our

chosen value of 𝑐 would be far away from all of the expressions of the form 1/2 − 𝑝𝑖(𝑢, 𝑡) (with

𝑖 ≤ 𝑘), and hence once we fix such a 𝑐, we get the same output with high probability. Because we

can sample 𝑐 using 𝑂(log 𝑛𝑘) bits, our output will only depend on the first 𝑂(log 𝑛𝑘) bits sampled.

3.3.4 Algorithm and Analysis

Here we will state the algorithm for Theorem 3.3.5 more precisely and provide a detailed analysis.

Algorithm 1 Randomized algorithm with 𝑂(log 𝑛) influential bits for Short-Walk Find Path
on input (𝐺, 𝑠, 𝑡, 1𝑘)

1: Initialize 𝑢 = 𝑠. 𝑢 is the current vertex.
2: Choose a threshold 𝑐 from the set { 1

𝑘4𝑛4 ,
2

𝑘4𝑛4 , . . . ,
𝑘2𝑛2

𝑘4𝑛4 } uniformly at random.
3: For 𝑑 = 𝑘, 𝑘 − 1, . . . , 1:
4: Print 𝑢 (on the output tape).
5: For each outneighbor 𝑣 of 𝑢 (in lexicographic order):
6: Estimate 1/2−𝑝𝑑−1(𝑣, 𝑡), up to additive error 1

𝑘5𝑛5 (use Lemma 3.2.8). Call the estimate
𝜇.

7: If 𝜇 ≤ 𝑐 then set 𝑢← 𝑣, and continue (i.e., return to line 3).

Lemma 3.3.7. Algorithm 1 runs in randomized log-space, has 𝑂(log 𝑛𝑘) influential bits, and with

high probability it outputs a path from 𝑠 to 𝑡 in expected polynomial time.

35

Proof. We first show the algorithm runs in randomized log-space. Then we show the algorithm out-

puts a path with high probability in polynomial time, and then we show the output has 𝑂(log 𝑛𝑘)

influential bits.

Runs in randomized log-space: At every point in the algorithm, we must store in memory the

value of 𝑐 (which requires log(poly(𝑛, 𝑘)) = 𝑂(log 𝑛𝑘) bits), the current value of 𝑑, which requires

log 𝑘 bits, and the current vertex 𝑢, which requires log 𝑛 bits. In addition, in line 6 we estimate the

value of 𝑝𝑑−1(𝑣, 𝑡), which can be done in log-space by Lemma 3.2.8. Hence, the total number of bits

needed is 𝑂(log 𝑛𝑘), which is logarithmic in the input size.

With high probability outputs a path from 𝑠 to 𝑡 in polynomial time: Out of the possible

values for 𝑐 in the set { 1
𝑘4𝑛4 ,

2
𝑘4𝑛4 , . . . ,

𝑘2𝑛2

𝑘4𝑛4 }, at most 𝑘𝑛 of them could satisfy |1/2−𝑝𝑖(𝑣, 𝑡)−𝑐| ≤ 1
𝑛5𝑘5

for some value of 1 ≤ 𝑖 ≤ 𝑘 and vertex 𝑣 (since there are 𝑘𝑛 possible values of 𝑝𝑖(𝑣, 𝑡)). We choose

such a value with probability at most 1
𝑘𝑛 (since there are at most 𝑘𝑛 such “bad" choices, out of 𝑘2𝑛2

total choices for 𝑐). Now, consider the other values of 𝑐, which do not satisfy |1/2−𝑝𝑖(𝑣, 𝑡)−𝑐| ≤ 1
𝑛5𝑘5

for any 𝑖 and 𝑣. We now show that with high probability if the if statement in line 7 is satisfied, it is

the case that with high probability 1/2− 𝑝𝑑−1(𝑣, 𝑡) ≤ 𝑐. This is since 1/2− 𝑝𝑑−1(𝑣, 𝑡) is more than
1

𝑘5𝑛5 away from 𝑐, and by Lemma 3.2.8, the estimate for 𝑝𝑑−1(𝑣, 𝑡) is within 1
𝑘5𝑛5 of the true value

of 𝑝𝑑−1(𝑣, 𝑡) with high probability. Since with high probability 𝑝𝑑(𝑢, 𝑡) ≥ 1/2 − 𝑐, vertex 𝑢 must

have an outneighbor 𝑣 satisfying 𝑝𝑑−1(𝑣, 𝑡) ≥ 1/2− 𝑐. Since 𝑝𝑑−1(𝑣, 𝑡) is further than 1
𝑛5𝑘5

from 𝑐,

by Lemma 3.2.8, with high probability when reaching the vertex 𝑣 in the for loop of line 5, in line

7 the if statement will be satisfied. Hence, with high probability, 𝑢 will change on each iteration

of the for loop of line 3, and we maintain that with high probability throughout the algorithm the

values of 𝑑 and 𝑢 satisfy 𝑝𝑑(𝑢, 𝑡) ≥ 1/2− 𝑐.

Now we show that the algorithm succeeds with high probability. Once again, the probability we

choose a 𝑐 satisfying |1/2− 𝑝𝑖(𝑣, 𝑡)− 𝑐| ≤ 1
𝑛5𝑘5

for some 1 ≤ 𝑖 ≤ 𝑘 and vertex 𝑣 is at most 1
𝑛𝑘 . The

remaining probabilistic parts of the algorithm come from estimating 1/2 − 𝑝𝑖(𝑢, 𝑡) to an additive

error of 1
𝑛5𝑘5

. By Lemma 3.2.8, this has error probability at most 2𝑒−2𝑛𝑘 per estimate. As we make

at most 𝑛𝑘 estimates, the error probability here is bounded by 2𝑛𝑘𝑒−2𝑛𝑘, which is low.

36

Output has 𝑂(log 𝑛𝑘) influential bits: We claim the influential bits used by the algorithm are

the bits used to pick 𝑐. Out of the values 𝑐 in the set { 1
𝑘4𝑛4 ,

2
𝑘4𝑛4 , . . . ,

𝑘2𝑛2

𝑘4𝑛4 }, at most 𝑘𝑛 of them

could satisfy |1/2− 𝑝𝑖(𝑣, 𝑡)− 𝑐| ≤ 1
𝑛5𝑘5

for some values of 1 ≤ 𝑖 ≤ 𝑘 and vertices 𝑣. The probability

that we pick such a 𝑐 is 𝑛𝑘
𝑛2𝑘2

= 1
𝑛𝑘 , so with high probability we do not pick such a 𝑐.

Now, for the remaining values of 𝑐, the algorithm will have the same output with high probability

over the remaining random bits. We note that the only other place where randomness is used is in

line 6 to estimate 𝜇. Note that if 1/2−𝑝𝑑−1(𝑣, 𝑡) ≤ 𝑐, we also know that 1/2−𝑝𝑑−1(𝑣, 𝑡) ≤ 𝑐− 1
𝑛5𝑘5

.

Hence, by Lemma 3.2.8, the probability that in this case the if statement in line 7 is not satisfied is

at most 2𝑒−2𝑛𝑘. Similarly, if 1/2− 𝑝𝑑−1(𝑣, 𝑡) ≥ 𝑐, we know that 1/2− 𝑝𝑑−1(𝑣, 𝑡) ≥ 𝑐+ 1
𝑛5𝑘5

, and so

the if statement in line 7 is satisfied with probability at most 2𝑒−2𝑛𝑘. Hence, with high probability

(at least 1− 2𝑛𝑘𝑒−2𝑛𝑘) the if statement in line 7 is satisfied if and only if 1/2− 𝑝𝑑−1(𝑣, 𝑡) ≤ 𝑐, and

so the output is the same for almost all choices of the remaining random bits.

Lemma 3.3.7 immediately implies Theorem 3.3.5, completing the proof.

3.3.5 Why we cannot try all possible thresholds

One idea to make the algorithm pseudo-deterministic would be to try every possible value of 𝑐

(of which there are polynomially many, and therefore can be enumerated), thus removing the ran-

domization required to sample 𝑐. This idea will not immediately provide a pseudo-deterministic

algorithm, as we explain below.

Consider the approach of going over all possible values of 𝑐 in some set and choosing the first

“good one”, i.e. the first value of 𝑐 which is far from all values of 1/2− 𝑝𝑖(𝑣, 𝑡). The problem with

such an algorithm is that for a fixed value of 𝑐, it may be hard to tell whether it is a “good” value

of 𝑐. Suppose, for example, that we call a value “good” if it is at distance at least 1/𝑛2𝑘2 from any

value of 1/2 − 𝑝𝑖(𝑣, 𝑡). Then, if the distance is exactly 1/𝑛2𝑘2, it is not clear how one can check

if the value of 𝑐 is good or not. If we simply estimate the values of 1/2 − 𝑝𝑖(𝑣, 𝑡) and see if out

estimates are at distance at least 1/𝑛2𝑘2, we will sometimes choose 𝑐, and sometimes we will not

(depending on the randomness we use to test whether 𝑐 is good). Hence, the algorithm will not

be pseudo-deterministic, since this value of 𝑐 will sometimes be chosen, and sometimes a different

value of 𝑐 will be chosen.

37

3.3.6 Discussion of Algorithm 1

Algorithm 1 has the property that its output, when viewed as a distribution depending on the

random bits chosen by the algorithm, has entropy 𝑂(log 𝑛). This essentially follows from the fact

that the output of Algorithm 1 with very high probability depends on only its first 𝑂(log 𝑛) random

bits. Hence, after amplifying the success probability, one can show the entropy of the output would

be 𝑂(log 𝑛). We note that for a pseudo-deterministic algorithm, the output has entropy less than

1. An arbitrary search-RL algorithm can have polynomial entropy.

Another way to view Algorithm 1 is that with high probability, the output will be one of

polynomially many options (as opposed to a unique option, which would be achieved by a pseudo-

deterministic algorithm). That is, for each input 𝑥, there exists a list 𝐿𝑥 of polynomial size such that

with high probability, the output is in 𝐿𝑥. This follows from the fact that with high probability,

the output of Algorithm 1 only depends on its first 𝑂(log 𝑛) random bits. Therefore, with high

probability, the output will be one of 2𝑂(log𝑛) = poly(𝑛) different paths. Another way to see this

is that with high probability the outputted path depends only on the choice of 𝑐, and there are

polynomially many (𝑛2𝑘2) possible values for 𝑐.

3.4 Improved Pseudo-deterministic Algorithms for Path Finding

In this section, we show faster pseudo-deterministic algorithms for both undirected path finding and

directed path finding in Eulerian graphs. While both of these problems have been shown to be in

deterministic log-space [Rei08,RTV06], our algorithms here have a much lower run-time than those

in [Rei08,RTV06].

We note that throughout this section, to compute runtime, instead of dealing with Turing

machines, we assume that we can make the following queries in 𝑂(1) time: for a vertex 𝑣 we can

query the degree of vertex 𝑣, and given a vertex 𝑣 and an integer 𝑖 we can query the 𝑖-th neighbor

of 𝑣 (if 𝑣 has fewer than 𝑖 neighbors, such a query returns ⊥). In the case of an Eulerian graph,

we assume that for a vertex 𝑣, we can query the degree of 𝑣, its 𝑖-th in-neighbor, and its 𝑖-th

out-neighbor.

38

3.4.1 Undirected Graphs

In this section, we present the algorithm for undirected graphs. Throughout we assume that we

have a graph 𝐺 (possibly with multiedges or self-loops) with 𝑛 vertices and 𝑚 edges, and we wish

to find a path from vertex 𝑠 to vertex 𝑡 (assuming such a path exists). We will number the vertices

from 1 to 𝑛, and refer to the 𝑘𝑡ℎ vertex as “vertex 𝑘”. The idea for the algorithm is as follows.

First, note that checking connectivity using randomness in undirected graphs is possible [AKL+79]:

if vertices 𝑠 and 𝑡 are connected, then a random walk starting from 𝑠 of length 𝑂̃(𝑚𝑛) will reach

reach 𝑡 with high probability:

Lemma 3.4.1. Given an undirected or Eulerian graph 𝐺 and two vertices 𝑠 and 𝑡, there exists a

randomized algorithm running in time 𝑂̃(𝑚𝑛) that checks whether there exists a path from 𝑠 to 𝑡,

and succeeds with probability 1− 1
𝑛10 .

A version of Lemma 3.4.1 has been shown in [AKL+79]. For completeness, we include a proof

in 3.6.

Now, we proceed to prove Theorem 3.1.2, restated here for convenience.

Theorem (Pseudo-deterministic Path Finding in Undirected graphs in 𝑂̃(𝑚𝑛3) time, 𝑂(log 𝑛)

space). Let 𝐺 be a given undirected graph with 𝑛 vertices and 𝑚 edges. Given two vertices 𝑠 and 𝑡

of 𝐺 which are connected, there is a pseudo-deterministic log-space algorithm which outputs a path

from 𝑠 to 𝑡. Furthermore, the algorithm runs in time 𝑂̃(𝑚𝑛3).

For our pseudo-deterministic algorithm for undirected path finding, we use the following ap-

proach. We delete vertices of small ID from the graph one at a time (excluding 𝑠 and 𝑡), and check

if vertex 𝑠 is still connected to 𝑡. Now, suppose that after deleting vertices 1, 2, 3, . . . , 𝑘−1, excluding

𝑠 and 𝑡, (recall that we number the vertices from 1 to 𝑛, and refer to the 𝑖th vertex as “vertex 𝑖"),

𝑠 is still connected to 𝑡. However, suppose that when we delete vertices 1, 2, . . . , 𝑘, vertex 𝑠 is no

longer connected to 𝑡. Then we will recursively find paths 𝑠→ 𝑘 and 𝑘 → 𝑡. Repeating this process,

we will get a path from 𝑠→ 𝑡.

Of course, as described, this algorithm will not run in log-space (since, for example, one must

store in memory which vertices have been removed, as well as the recursion tree, both of which

may require large space). With a few modifications though, one can adapt the algorithm to run in

log-space. For a complete description of the algorithm, see Algorithm 2.

39

We use the variables 𝑣𝑐𝑢𝑟 and 𝑣𝑑𝑒𝑠𝑡 to denote the vertex our walk is currently on and the vertex

which is the destination (at the current level of the recursion).

Algorithm 2 Pseudo-deterministic log-space algorithm for undirected path finding.
1: Use Lemma 3.4.1 to test if 𝑠 and 𝑡 are connected. If they are not, return “not connected”
2: Set 𝑣𝑐𝑢𝑟 = 𝑠.
3: While 𝑣𝑐𝑢𝑟 ̸= 𝑡:
4: Set 𝑣𝑑𝑒𝑠𝑡 = 𝑡
5: For 𝑘 = 1, 2, . . . , 𝑛:
6: If 𝑣𝑐𝑢𝑟 is adjacent to 𝑣𝑑𝑒𝑠𝑡 then set 𝑣𝑐𝑢𝑟 ← 𝑣𝑑𝑒𝑠𝑡, print 𝑣𝑐𝑢𝑟 (on the output tape), and go

to line 3.
7: If 𝑣𝑐𝑢𝑟 is not connected to 𝑣𝑑𝑒𝑠𝑡 in the graph with vertices 𝑣𝑐𝑢𝑟, 𝑣𝑑𝑒𝑠𝑡, and 𝑘+1, 𝑘+2, . . . , 𝑛

(for a detailed description of the implementation of this step, see the proof of Lemma 3.4.2)
then set 𝑣𝑑𝑒𝑠𝑡 ← 𝑘.

Lemma 3.4.2. Given a graph 𝐺, Algorithm 2 outputs a path from vertex 𝑠 to 𝑡 with high probability

(if such a path exists), and runs in pseudo-deterministic log-space and time 𝑂̃(𝑚𝑛3).

Proof. We begin by providing a more detailed description of the implementation of line 7. Then,

we will analyze the algorithm in detail. Specifically, we will show that the algorithm returns a path

from 𝑠 to 𝑡 with high probability, uses logarithmic space, runs in time 𝑂̃(𝑚𝑛3), and is pseudo-

deterministic.

Description of line 7: In order to check if 𝑣𝑐𝑢𝑟 and 𝑣𝑑𝑒𝑠𝑡 are connected, we run a random walk on

the graph 𝐻 with vertices 𝑣𝑐𝑢𝑟, 𝑣𝑑𝑒𝑠𝑡, and 𝑘 + 1, 𝑘 + 2, . . . , 𝑛. To do so, in each step of the random

walk, if the walk is currently on 𝑣, we pick a random edge (𝑣, 𝑢) adjacent to 𝑣, and test if the other

endpoint 𝑢 of the edge is in 𝐻 (this can be done by testing if the ID of 𝑢 is larger or smaller than

𝑘). If it is, the random walk proceeds to 𝑢. Otherwise, the random walk remains at 𝑣. To analyze

the runtime of this walk, we note that such a walk is identical to a random walk on the graph 𝐻

which is the graph induced by 𝐺 on the vertices 𝑣𝑐𝑢𝑟, 𝑣𝑑𝑒𝑠𝑡, and 𝑘 + 1, 𝑘 + 2, . . . , 𝑛, along with

self loops, where every edge (𝑣, 𝑢) where 𝑣 ∈ 𝐻 and 𝑢 /∈ 𝐻 is replaced by a self loop at 𝑣. Since

this graph has fewer than 𝑛 vertices, and at most 𝑚 edges, by Lemma 3.4.1 Line 7 takes time 𝑂̃(𝑚𝑛).

Returns a path from 𝑠 to 𝑡 with high probability: The key claim is that the variable 𝑣𝑐𝑢𝑟

never returns to the same vertex twice, and changes in each iteration of the while loop in line 3.

40

This implies the success of the algorithm since then after at most 𝑛 iterations of line 3, 𝑣𝑐𝑢𝑟 must

have achieved the value of 𝑡 at some point.

To prove that 𝑣𝑐𝑢𝑟 never returns to the same vertex twice, and changes in each iteration of the

while loop, we consider the “destination sequence” of the vertex 𝑣 = 𝑣𝑐𝑢𝑟. We define the destination

sequence of 𝑣 to be the sequence of values the 𝑣𝑑𝑒𝑠𝑡 variable takes during the period when 𝑣 = 𝑣𝑐𝑢𝑟.

That is, the destination sequence of some vertex 𝑣 = 𝑣𝑐𝑢𝑟 is (𝑡, 𝑐1, 𝑐2, . . . , 𝑐𝑖) where 𝑐𝑗 is the value

of 𝑘 on the 𝑗th time that the if statement in line 7 evaluated to True. Note that the destination

sequence is a function of a vertex (i.e., the sequence of values the 𝑣𝑑𝑒𝑠𝑡 variable takes during the

period when 𝑣 = 𝑣𝑐𝑢𝑟 depends only on 𝑣, assuming line 7 was implemented successfully). It’s worth

noting that since during the period that 𝑣𝑐𝑢𝑟 = 𝑣, the value of 𝑘 only increases, so for a destination

sequence (𝑡, 𝑐1, 𝑐2, . . . , 𝑐𝑖) we have 𝑐1 < 𝑐2 < . . . < 𝑐𝑖.

We note that 𝑐𝑗+1 is the smallest integer such that on the graph 𝐺 induces on the vertices

𝑣𝑐𝑢𝑟, 𝑐𝑗 , and 𝑐𝑗+1 + 1, 𝑐𝑗+1 + 2, 𝑐𝑗+1, . . . , 𝑛, the vertex 𝑣𝑐𝑢𝑟 is not connected to 𝑐𝑗

Consider the following total ordering on sequences. A sequence 𝐶 = (𝑡, 𝑐1, 𝑐2, . . . , 𝑐𝑖) is larger

than 𝐷 = (𝑡, 𝑑1, 𝑑2, . . . , 𝑑𝑖, . . . , 𝑑𝑗) if either 𝑐ℓ = 𝑑ℓ for all 1 ≤ ℓ ≤ 𝑖 (and 𝑖 < 𝑗), or for the first value

of ℓ for which 𝑐ℓ ̸= 𝑑ℓ, we have 𝑐ℓ > 𝑑ℓ. Otherwise, if 𝐶 ̸= 𝐷, we say that 𝐶 < 𝐷.

We claim that during the algorithm, the destination sequences strictly increase according to the

above ordering whenever the value of 𝑣𝑐𝑢𝑟 changes, which happens every time Algorithm 2 returns

to Line 3. Note that this would imply that 𝑣𝑐𝑢𝑟 never achieves the same vertex 𝑣 twice (if it does,

that contradicts the fact that the destination sequence of 𝑣𝑐𝑢𝑟 must have increased). Hence, it

will suffice to show that the destination sequence of 𝑣𝑐𝑢𝑟 increases according to the above ordering

whenever Algorithm 2 returns to Line 3.

Suppose that 𝑢 = 𝑣𝑐𝑢𝑟. Let the destination sequence of 𝑢 be (𝑡, 𝑐1, 𝑐2, . . . , 𝑐𝑖, 𝑢
′), where the next

value achieved by 𝑣𝑐𝑢𝑟 is 𝑢′. By construction, we have that 𝑐1 < 𝑐2 < · · · < 𝑐𝑖 < 𝑢′. Also, let the

destination sequence of 𝑢′ be (𝑡, 𝑑1, 𝑑2, . . . , 𝑑𝑖, . . . , 𝑑𝑗), where we similarly have that 𝑑1 < 𝑑2 < · · · <

𝑑𝑗 . We will show that the destination sequence of 𝑢′ is larger than that of 𝑢 under the ordering

defined above.

First, we claim that 𝑐ℓ = 𝑑ℓ for 1 ≤ ℓ ≤ 𝑖. We can show this by induction. We first show that

𝑐1 = 𝑑1. Indeed, we have that 𝑑1 ≤ 𝑐1 because deleting vertices 1, 2, . . . , 𝑐1 (which doesn’t include

𝑢′) from the graph will disconnect 𝑢′ from 𝑡, as 𝑢 and 𝑢′ are adjacent. To show that 𝑑1 ≥ 𝑐1, we

41

show that there is a path from 𝑢′ to 𝑡 that doesn’t use any vertices (other than maybe 𝑡) with labels

less than 𝑐1. Indeed, deleting vertices 1, 2, . . . , 𝑢′ disconnected 𝑢 from 𝑐𝑖, but deleting 1, 2, . . . , 𝑢′−1

didn’t, so there is a path from 𝑢′ to 𝑐𝑖 that doesn’t use any vertices (other than 𝑐𝑖) with labels

less that 𝑢′. Similarly, for any 2 ≤ 𝑗 ≤ 𝑖, deleting vertices 1, 2, . . . , 𝑐𝑗 disconnected 𝑢 from 𝑐𝑗−1,

but deleting 1, 2, . . . , 𝑐𝑗 − 1 didn’t. Therefore, there is a path from 𝑐𝑗 to 𝑐𝑗−1 that doesn’t use any

vertices (other than 𝑐𝑗−1) with labels less than 𝑐𝑗 . Finally, there is a path from 𝑐1 to 𝑡 that doesn’t

use any vertices (other than maybe 𝑡) with labels less than 𝑐1. By merging all these paths together

at the endpoints, we get a path from 𝑢′ to 𝑡 doesn’t use any vertices with labels less than 𝑐1, as

desired. This implies 𝑐1 ≤ 𝑑1. Combining this with 𝑐1 ≥ 𝑑1 which we showed above, we now have

𝑐1 = 𝑑1. Now, for some integer 𝑝 < 𝑖, assume by induction that 𝑐ℓ = 𝑑ℓ for all 1 ≤ ℓ ≤ 𝑝. We

want to show that 𝑐𝑝+1 = 𝑑𝑝+1. This can be shown using the exact same argument for showing that

𝑐1 = 𝑑1, with 𝑡 replaced by 𝑐𝑝. Therefore, we have that 𝑑𝑝+1 = 𝑐𝑝+1. Now, by the same argument

again (with 𝑡 replaced by 𝑐𝑖), we can show that either 𝑑𝑖+1 > 𝑢′, or 𝑑𝑖+1 doesn’t exist. The former

occurs when 𝑢′ and 𝑐𝑖 aren’t adjacent, and the latter happens when they are. Thus, the destination

sequence of 𝑢′ is larger than that of 𝑢 under the ordering: all the first 𝑖 entries stay the same, and we

either delete the last entry, or make it larger. Thus, 𝑣𝑐𝑢𝑟 never returns to the same vertex. Hence,

it must eventually reach 𝑡, proving that the algorithm returns a path from 𝑠 to 𝑡.

To show that the algorithm succeeds with high probability, note that the only lines which are

probabilistic are lines 1 and 7. For each execution of these lines, it has failure probability at most
1

𝑛10 by Lemma 3.4.1. Each of these lines is run at most 𝑛3 times, so the total failure probability is

bounded by 𝑂
(︀

1
𝑛7

)︀
.

Uses 𝑂(log 𝑛) space: At every point in the algorithm, the following is stored: 𝑣𝑐𝑢𝑟, 𝑣𝑑𝑒𝑠𝑡, and 𝑘

(all of which require space 𝑂(log 𝑛)). In addition, in line 7 the algorithm will run a random walk,

which will require storing the id of the current vertex, as well as a counter storing how many steps

of the random walk have been executed. Both of these can be stored using logarithmic space.

Runs in time 𝑂̃(𝑚𝑛3): 𝑣𝑐𝑢𝑟 can take at most 𝑛 different values and with high probability does

not take the same value more than once (see the paragraph above on why the algorithm returns a

path with high probability for a proof of this fact). Since 𝑣𝑐𝑢𝑟 changes its value in each iteration of

42

the while loop, line 3 executes at most 𝑛 times. Line 5 runs at most 𝑛 times. Line 6 is checkable in

𝑂(log 𝑛) time, and line 7 runs in time 𝑂̃(𝑚𝑛) as shown earlier in the proof (as part of the description

of line 7). Therefore, the total runtime is 𝑂̃(𝑛× 𝑛×𝑚𝑛) = 𝑂̃(𝑚𝑛3), as desired.

Is pseudo-deterministic: Randomness is only used in lines 1 and 7, and this is only for checking

connectivity. Testing connectivity is a pseudo-deterministic protocol since given two vertices, with

high probability when testing for connectivity twice, the same result will be output (namely, if the

two vertices are connected, with high probability the algorithm will output that they are connected

in both runs. If the two vertices are not connected, with high probability the algorithm will output

that they are not connected in both runs). Since all uses of randomization is for checking connectivity

in a pseudo-deterministic fashion, the algorithm as a whole is pseudo-deterministic.

3.4.2 Eulerian Graphs

In this section, we show an efficient pseudo-deterministic log-space algorithm for finding paths in

Eulerian graphs (directed graphs such that for every vertex 𝑣, the indegree and outdegree of 𝑣 are

equal). Recall that in our model of computation, for a vertex 𝑣, we can query either the degree of 𝑣,

the 𝑖-th in-neighbor of 𝑣, or the 𝑖-th out-neighbor of 𝑣 in 𝑂(1) time. We will prove Theorem 3.1.3,

repeated below for convenience:

Theorem (Pseudo-deterministic Path Finding in Eulerian graphs in 𝑂̃(𝑚5𝑛3) time, 𝑂(log 𝑛) space).

Given an Eulerian graph 𝐺 and two vertices 𝑠 and 𝑡 where there exists a path from 𝑠 to 𝑡, there

is a pseudo-deterministic log-space algorithm which outputs a path from 𝑠 to 𝑡. Furthermore, the

algorithm runs in time 𝑂̃(𝑚5𝑛3).

The algorithm will be a variation on the algorithm for undirected graphs of Subsection 3.4.1.

First, note that as in the case with undirected graphs, checking connectivity in Eulerian graphs

can be done efficiently using a randomized algorithm (see Lemma 3.4.1). We first would like to note

that the algorithm for undirected graphs doesn’t immediately generalize to the Eulerian case. This is

because the algorithm for undirected graphs involves checking for connectivity on the graph 𝐺 with

some vertices (and their adjacent edges) removed. The reason it is possible to check connectivity in

this modified graph is that after removing vertices, the resulting graph is still undirected. However,

in the Eulerian case, removing vertices along with their edges may result in a non-Eulerian graph.

43

So, instead of removing vertices from the graph, we instead remove directed cycles in the graph.

One of the key observations is that when deleting a cycle, the resulting graph is still Eulerian, so

we can apply Lemma 3.4.1 to test for connectivity.

At the high level, the algorithm proceeds as follows: we remove directed cycles from the graph

and check (using randomization) whether vertex 𝑡 can be reached from vertex 𝑠. If it can, we

continue removing cycles. If not, then we recursively try to go from vertex 𝑠 to some vertex on

the cycle whose deletion disconnects vertex 𝑠 and 𝑡 (call this cycle 𝐶). After we find a path to

some vertex on the cycle 𝐶, note that there exists a vertex 𝑣 on 𝐶 such that deleting 𝐶 does not

disconnect 𝑣 from 𝑡. So we then walk on the cycle to 𝑣, and then recursively apply the algorithm

to find a path from 𝑣 to 𝑡.

As described, this algorithm will not work in log-space, because it is not clear how the algorithm

can store in memory a description of which cycles have been deleted. The following lemma provides

us with a way to delete cycles in a specified way, so we can compute in log-space whether an edge

is part of a deleted cycle or not.

Lemma 3.4.3. Let 𝐸 be the set of edges of 𝐺. There exists a log-space-computable permutation

𝑓 : 𝐸 → 𝐸 that satisfies the following property: if 𝑒 is an inedge of vertex 𝑣, then 𝑓(𝑒) is an outedge

of 𝑣. In particular, this condition implies for any edge 𝑒, we have that 𝑒, 𝑓(𝑒), 𝑓2(𝑒), . . . forms a

cycle in 𝐺.

Proof. Take a vertex 𝑣 of indegree 𝑑, and take some ordering of its inedges 𝑒in
1 , 𝑒

in
2 , . . . , 𝑒

in
𝑑 (say, in lex-

icographic order), and some ordering of the outedges 𝑒out
1 , 𝑒out

2 , . . . , 𝑒out
𝑑 (say again, in lexicographic

order). Then simply set 𝑓(𝑒in
𝑖) = 𝑒out

𝑖 .

Note that in our model, computing 𝑓(𝑒) takes 𝑂(𝑛) time for each edge 𝑒. In particular, for a

cycle 𝐶𝑖 formed by repeatedly applying 𝑓 to some edges, and an edge 𝑒 in the cycle, computing the

next edge in the cycle takes time 𝑂(𝑛).

The importance of the lemma is that it provides us with a way to delete cycles in some order: we

begin from the “smallest” edge (in whatever ordering) and delete the cycle associated with that edge.

Then, we pick the second smallest edge, and delete its cycle, etc. When executing this algorithm,

we may try to delete a cycle multiple times, since multiple edges correspond to the same cycle, but

this will not be an issue.

44

See Algorithm 3 for a precise description of the algorithm. As in the undirected case, we use the

variables 𝑣𝑐𝑢𝑟 and 𝑣𝑑𝑒𝑠𝑡 to denote the vertex our walk is currently on and the current destination.

We let the set of 𝑒𝑖 be the edges in 𝐺 (we denote the set of edges of 𝐺 as 𝐸), and let 𝐶𝑖 be the

cycle (𝑒𝑖, 𝑓(𝑒𝑖), 𝑓
2(𝑒𝑖), . . . , 𝑒𝑖) in 𝐺. We note that it is possible for 𝐶𝑖 and 𝐶𝑗 to have the same set

of edges for 𝑖 ̸= 𝑗 (this will not affect the correctness of the algorithm).

Algorithm 3 Pseudo-deterministic log-space algorithm for path finding in Eulerian digraphs.
1: Set 𝑣𝑐𝑢𝑟 = 𝑠. Write 𝑣𝑐𝑢𝑟 on the output tape.
2: While 𝑣𝑐𝑢𝑟 ̸= 𝑡:
3: Set 𝑣𝑑𝑒𝑠𝑡 = 𝑡.
4: For 𝑘 = 1 . . .𝑚:
5: If 𝑣𝑐𝑢𝑟 and 𝑣𝑑𝑒𝑠𝑡 are not connected using only edges in 𝐸 ∖ {𝐶1, . . . , 𝐶𝑘} (more details of

the implementation of this step are in the body of the paper in the proof of Lemma 3.4.4) then
6: If 𝑣𝑐𝑢𝑟 ∈ 𝐶𝑘:
7: Find a vertex 𝑣 ∈ 𝐶𝑘 such that 𝑣 and 𝑣𝑑𝑒𝑠𝑡 are connected using edges only in

𝐸 ∖ {𝐶1, . . . , 𝐶𝑘}.
8: Walk on 𝐶𝑘 from 𝑣𝑐𝑢𝑟 until you reach 𝑣, print the vertices on this path (on the

output tape).
9: Set 𝑣𝑐𝑢𝑟 ← 𝑣, return to top of while loop.

10: Else:
11: Find a vertex 𝑣 ∈ 𝐶𝑘 such that 𝑣𝑐𝑢𝑟 can get to 𝑣 in 𝐺 ∖ {𝐶1, . . . , 𝐶𝑘}
12: Set 𝑣𝑑𝑒𝑠𝑡 ← 𝑣.

Lemma 3.4.4. Algorithm 3 runs in time 𝑂̃(𝑚5𝑛3), is pseudo-deterministic, uses logarithmic space,

and outputs a path from 𝑠 to 𝑡 with high probability.

Proof. We first give a more detailed description of the implementation of line 5. Then, we analyze

the algorithm in steps, first showing that it returns a path with high probability, and then showing

that it runs in pseudo-deterministic log-space with runtime 𝑂̃(𝑚5𝑛3). The proof closely follows the

approach of the proof in the undirected case.

Implementation of line 5: Below, we describe the details of the implementation of step 5. As

done in the proof of Lemma 3.4.1 in Appendix 3.6, we check connectivity by making every edge

in the graph 𝐺 undirected, and then perform a random walk on the undirected graph 𝐺. The

key difficulty is to ensure that we can check if an edge is in one of the deleted cycles efficiently in

log-space.

Say that we are on vertex 𝑢, and the randomly chosen neighbor which is next in the random

45

walk is 𝑣. Let 𝑒 be the edge between 𝑢 and 𝑣. We wish to check whether 𝑒 is in any of the cycles

𝐶1, 𝐶2, . . . , 𝐶𝑘. To check whether edge 𝑒 is on the cycle 𝐶𝑖, we can check whether 𝑒 is any of the

edges 𝑒𝑖, 𝑓(𝑒𝑖), 𝑓
2(𝑒𝑖), . . . 𝑒𝑖, which can all be computed in log-space. To see if 𝑒 is on any of the

cycles 𝐶1, . . . , 𝐶𝑘, we check if 𝑒 is in each of the 𝐶𝑖. Each such check takes time 𝑂(𝑚𝑛) (since the

cycle is of length 𝑂(𝑚), and given an edge 𝑒, computing the next edge in the cycle takes time 𝑂(𝑛)).

Hence, in total it takes time 𝑂(𝑘𝑚𝑛).

Now, if 𝑒 is on one of the cycles, the random walk stays at 𝑢, and otherwise the random walk

proceeds to 𝑣. It is clear that this is equivalent to taking a random walk on the graph 𝐺′, where

𝐺′ is the graph 𝐺 but with all edges (𝑢′, 𝑣′) in at least one of the cycles 𝐶1, . . . , 𝐶𝑘 replaced with a

self-loop at 𝑢′ (since, if such an edge is chosen, the random walk stays at 𝑢′. As 𝐺′ still has at most

𝑚 edges and 𝑛 vertices, checking connectivity takes 𝑂̃(𝑚𝑛) time by Lemma 3.4.1.

Returns a path with high probability: As in the undirected case, the main claim is that 𝑣𝑐𝑢𝑟

never repeats a vertex on two different iterations of the while loop of line 2. To prove that 𝑣𝑐𝑢𝑟 is

never repeated, we will use the notion of the “destination sequence”, similar to the undirected case.

We note that our definition here of a destination sequence is different from the definition in the

undirected case. We say that the associated destination sequence to 𝑣𝑐𝑢𝑟 is the sequence of cycles

(𝐶𝑖1 , 𝐶𝑖2 , . . . , 𝐶𝑖𝑘), where we add 𝐶𝑖𝑗 to the sequence if the if statement of step 5 of the algorithm

was true when 𝑘 = 𝑖𝑗 . Note that this implies that 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑘.

Now, as in the proof of Lemma 3.4.2, we give a total ordering on all destination sequences.

Consider two destination sequences 𝑖 = (𝐶𝑖1 , 𝐶𝑖2 , . . . , 𝐶𝑖𝑘) and 𝑗 = (𝐶𝑗1 , 𝐶𝑗2 , . . . , 𝐶𝑗𝑘 , . . . , 𝐶𝑗𝑚). Say

that 𝑖 is greater than 𝑗 if either 𝑖ℓ = 𝑗ℓ for all 1 ≤ ℓ ≤ 𝑘 (and 𝑘 < 𝑚), or for the smallest value of ℓ

such that 𝑖ℓ ̸= 𝑗ℓ, we have that 𝑖ℓ > 𝑗ℓ. Otherwise, if 𝑖 ̸= 𝑗, then say that 𝑖 < 𝑗.

Now, we proceed to prove that 𝑣𝑐𝑢𝑟 never repeats a value. Say that 𝑣𝑐𝑢𝑟 is set to 𝑣′𝑐𝑢𝑟 after

one loop of line 2. Let the destination sequence of 𝑣𝑐𝑢𝑟 be 𝑖 = (𝐶𝑖1 , 𝐶𝑖2 , . . . , 𝐶𝑖𝑘) and let the

corresponding destination sequence of 𝑣′𝑐𝑢𝑟 be (𝐶𝑗1 , 𝐶𝑗2 , . . . , 𝐶𝑗𝑚). First, we claim that 𝑖𝑝 = 𝑗𝑝 for

all 1 ≤ 𝑝 ≤ 𝑘− 1. This is because 𝑣𝑐𝑢𝑟 is connected to 𝑣′𝑐𝑢𝑟 via cycle 𝐶𝑖𝑘 , so deleting 𝐶𝑖𝑝 disconnects

𝑣𝑐𝑢𝑟 and 𝑣𝑑𝑒𝑠𝑡 if and only if it disconnects 𝑣′𝑐𝑢𝑟 and 𝑣𝑑𝑒𝑠𝑡. As in the proof of Lemma 3.4.2, we have two

situations now. One case is that 𝑣′𝑐𝑢𝑟 ∈ 𝐶𝑖𝑘−1
, and therefore, 𝑚 = 𝑘 − 1 (the destination sequence

for 𝑣′𝑐𝑢𝑟 is one shorter than that of 𝑣𝑐𝑢𝑟). The other is that 𝑣′𝑐𝑢𝑟 ̸∈ 𝐶𝑖𝑘−1
, and therefore, 𝑗𝑘 ≥ 𝑖𝑘, as

46

deleting 𝐶𝑖𝑘 doesn’t disconnect 𝑣′𝑐𝑢𝑟 and 𝑣𝑑𝑒𝑠𝑡 by the condition of line 7 of the algorithm. So the

destination sequence of 𝑣′𝑐𝑢𝑟 is greater than that of 𝑣𝑐𝑢𝑟 under the total ordering described above,

which implies that 𝑣𝑐𝑢𝑟 can never repeat a vertex.

To see that the algorithm succeeds with high probability, note that the only randomness is in

lines 5, 7, and 11 for checking connectivity between two vertices. We will check connectivity at most

𝑂(𝑛𝑚2) times, so the failure probability is bounded by 𝑛𝑚2

𝑛10 by Lemma 3.4.1, as desired.

Uses 𝑂(log 𝑛) space: The information our algorithm needs to store is: 𝑠, 𝑡, 𝑣𝑐𝑢𝑟, 𝑣𝑑𝑒𝑠𝑡, and 𝑘. Af-

ter that, by Lemma 3.4.3, we can compute whether an edge 𝑒 is part of a cycle 𝐶𝑘 is log-space,

and testing whether two vertices are connected in an Eulerian graph can be done in (randomized)

log-space by Lemma 3.4.1. Therefore, everything can be implemented in log-space.

Runs in time 𝑂̃(𝑚5𝑛3): Line 2 repeats at most 𝑛 times since 𝑣𝑐𝑢𝑟 never repeats, and Line 4 repeats

at most 𝑚 times since there are 𝑚 possible values for 𝑘. Due to Lemma 3.4.1, each execution of

Line 5 takes 𝑂̃(𝑚𝑛)× 𝑂(𝑚2𝑛) time, where the 𝑂(𝑚2𝑛) comes from having to check whether each

edge we try to use comes from one of the cycles 𝐶1, . . . , 𝐶𝑘 (a factor 𝑚 from the fact that there

are up to 𝑚 cycles 𝐶𝑖, a factor 𝑚 from the fact that the size of each 𝐶𝑖 is at most 𝑚, and a factor

𝑂(𝑛) because given some edge 𝑒 in 𝐶𝑖, computing the next edge in the cycle takes time 𝑂(𝑛)).

Line 7 and 11 take time 𝑂(𝑚)× 𝑂̃(𝑚𝑛)× 𝑂(𝑚2𝑛), for the same reason as above, except with the

extra 𝑂(𝑚) factor for having to check all vertices on the cycle 𝐶𝑘. Therefore, our runtime bound is

𝑂(𝑛)×𝑂(𝑚)× (𝑂̃(𝑚𝑛)×𝑂(𝑚2) +𝑂(𝑚)× 𝑂̃(𝑚𝑛)×𝑂(𝑚2𝑛)) = 𝑂̃(𝑚5𝑛3), as desired.

Is pseudo-deterministic: The only randomness is used to check connectivity between pairs of

vertices. As each of these checks succeeds with high probability, this clearly implies that our random-

ness used will not affect the output of the algorithm, since if the two vertices tested are connected,

with high probability the same result (of “accept") will be outputted, and if the two vertices tested

are not connected, with high probability the same result (of “reject") will be outputted.

3.5 Discussion

The main problem left open is that of search-RL vs pseudo-deterministic-L:

47

Problem 3.5.1. Can every problem in search-RL be solved pseudo-deterministically in RL?

A notable open problem in complexity is whether NL equals UL. It is known that under ran-

domized reductions, with two way access to the random bits, NL is reducible to UL (in fact, it

is reducible to UL ∩ coUL) [RA00]. It is not known whether NL is reducible to UL when given

one-way access to the random bits. A reproducible reduction from NL to UL would imply such a

result, giving us the following problem:

Problem 3.5.2. Does there exist a reproducible log-space reduction from NL to UL?

Another interesting problem would be to fully derandomize the pseudo-deterministic algorithms

we present for undirected and Eulerian connectivity, in order to get deterministic log-space algo-

rithms which work in low polynomial time.

Problem 3.5.3. Does there exists a deterministic log-space algorithm for undirected connectivity

(or connectivity in Eulerian graphs) using low time complexity?

There are several natural extensions of the notion of reproducibility to the time-bounded set-

ting, some which may be worth exploring. A noteworthy extension is that of low-entropy output

algorithms. Our algorithm for search-RL has the property that its output, when viewed as a ran-

dom variable depending on the random choices of the algorithm, has 𝑂(log 𝑛) entropy. It may be

interesting to understand such algorithms in the context of time-bounded computation.

Problem 3.5.4. Let search-BPP(log 𝑛) be the set of problems solvable by randomized polynomial

time machines, whose outputs (when viewed as random variables depending on the random choices

of the algorithms) have 𝑂(log 𝑛) entropy. What is relationship between search-BPP(log 𝑛) and

search-BPP? What is the relationship between search-BPP(log 𝑛) and pseudo-deterministic-BPP?

3.6 Testing Connectivity for Undirected and Eulerian graphs in RL

In this section, we prove Lemma 3.4.1, repeated below for convenience:

Lemma. Given an undirected or Eulerian graph 𝐺 and two vertices 𝑠 and 𝑡, there exists a ran-

domized algorithm running in time 𝑂̃(𝑚𝑛) that checks whether there exists a path from 𝑠 to 𝑡, and

succeeds with probability 1− 1
𝑛10 .

48

Proof. We begin by showing that for an Eulerian graph 𝐺, if there is an edge from vertex 𝑢 to

vertex 𝑣, then there is also a path from vertex 𝑣 to vertex 𝑢. Let 𝑉𝑣 be the set of vertices reachable

from 𝑣. Note that the number of edges incoming to 𝑉𝑣 must be the same as the number of edges

going out of 𝑉𝑣. However, by the definition of 𝑉𝑣, there cannot be edges leaving the set (if there is

a an edge (𝑣′, 𝑢′) where 𝑣′ ∈ 𝑉𝑣 and 𝑢′ /∈ 𝑉𝑣, then 𝑢′ can be reached from 𝑣, and hence 𝑢′ ∈ 𝑉𝑣, a

contradiction). Hence, since there are no outgoing edges, there are also no incoming edges. Hence,

since (𝑢, 𝑣) has one endpoint in 𝑉𝑣, both endpoints must be in 𝑉𝑣, so 𝑢 ∈ 𝑉𝑣 is reachable from 𝑣.

Hence, in order to test reachability in Eulerian graphs, it is enough to test reachability in the

undirected graph defined by making all edges of the Eulerian graph undirected. Hence, it suffices

to prove the lemma for undirected graphs.

The expected number of steps needed to get to vertex 𝑡 after starting a random walk at vertex

𝑠 where there is a path from 𝑠 to 𝑡 is bounded by 2𝑚𝑛 [AKL+79]. By Markov’s inequality, the

probability that a random walk of length 4𝑚𝑛 starting at vertex 𝑠 doesn’t reach vertex 𝑡 is at most
1
2 . Therefore, starting at vertex 𝑠 and repeating 𝑂(log 𝑛) random walks of length 4𝑚𝑛 provides

the result. It is easy to check that in our model, taking one step in a random walk takes time

𝑂(log 𝑛).

3.7 Short-Walk Find Path is complete for search-RL

In this section, we prove Lemma 3.2.6, which states that Short-Walk Find Path is complete for

search-RL. We repeat the definition of Short-Walk Find Path below for convenience, and then

we proceed to prove that it is complete for search-RL.

Definition 3.7.1 (Short-Walk Find Path). Let 𝑅 be the search problem whose valid inputs

are 𝑥 = (𝐺, 𝑠, 𝑡, 1𝑘) where 𝐺 is a directed graph, 𝑠 and 𝑡 are two vertices of 𝐺, and a random walk

of length 𝑘 from 𝑠 reaches 𝑡 with probability at least 1 − 1/|𝑥|. On such an 𝑥, a valid output is a

path of length up to poly(𝑘) from 𝑠 to 𝑡.

We now prove that Short-Walk Find Path is complete for search-RL. The definition of

reductions in the context of search-RL is given in [RTV06].

Proof. First, it is easy to see that Short-Walk Find Path is in search-RL, as we can just take a

random walk starting from 𝑠 of length 𝑘.

49

Now we show that Short-Walk Find Path is search-RL-hard via a reduction from Poly-

Mixing Find Path. In [RTV06] Section A.3 (proof of Theorem 3.1), it is shown that Poly-Mixing

Find Path with input (𝐺, 𝑠, 𝑡, 1𝑘) is complete for search-RL (we refer the reader to [RTV06] for

a formal definition of Poly-Mixing Find Path. Intuitively speaking, the input to the problem

is a graph with low enough mixing time, two vertices 𝑠 and 𝑡, and 1𝑘, and the goal is to find a

path of length 𝑘 from 𝑠 to 𝑡). They also state that a path of length 𝑚 = 2𝑘 log 𝑘 starting from 𝑠

reaches 𝑡 with probability at least 1
2𝑘 in the problem Poly-Mixing Find Path. Now, we amplify

this probability of 1
2𝑘 by constructing a new graph. To do this, consider a graph 𝐺′ which is made

as follows: it has (𝑚 + 1)|𝑉 (𝐺)| vertices, each of which is a pair (𝑖, 𝑣) for 0 ≤ 𝑖 ≤ 𝑚 and vertex

𝑣 ∈ 𝐺. If the edge 𝑢→ 𝑣 is in 𝐺 then add edges (𝑖, 𝑢)→ (𝑖+ 1, 𝑣) for 0 ≤ 𝑖 ≤ 𝑚− 1 in 𝐺′. Finally,

create edges (𝑚, 𝑣) → (0, 𝑠) for all 𝑣 ̸= 𝑡, and add only a self-loop to the vertex (𝑚, 𝑡) (so if a

random walk reaches (𝑚, 𝑡), the random walk will stay there forever). Then, it is easy to see that a

random walk of length ℓ = 𝑚+ 2(𝑚+ 1)𝑘 log 𝑥 starting at (0, 𝑠) will end at (𝑚, 𝑡) with probability

at least 1−
(︀
1− 1

2𝑘

)︀2𝑘 log 𝑥 ≥ 1− 1
𝑥 . Choosing 𝑥 larger than the length of the input gives the desired

reduction. That is, when choosing such an 𝑥, given a solution to the Short-Walk Find Path,

we can output a polynomially long list 𝑦1, 𝑦2, . . . , 𝑦𝑝 such that at least one of the 𝑦𝑖 is a solution

to the Poly-Mixing Find Path instance. Therefore, Short-Walk Find Path is complete for

search-RL.

50

Chapter 4

Psuedo-deterministic Streaming

The work in this Chapter is based on joint work with Shafi Goldwasser, Sidhanth Mohanty, and

David Woodruff. [GGMW20].

4.1 Introduction

Consider some classic streaming problems: heavy hitters, approximate counting, ℓ𝑝 approximation,

finding a nonzero entry in a vector (for turnstile algorithms), counting the number of distinct

elements in a stream. These problems were shown to have low-space randomized algorithms in

[CCFC04, Mor78, Fla85, AMS99, IW05, MW10], respectively. All of these algorithms exhibit the

property that when running the algorithm multiple times on the same stream, different outputs

may result on the different executions.

For the sake of concreteness, let’s consider the problem of ℓ2 approximation: given a stream

of poly(𝑛) updates to a vector (the vector begins as the zero vector, and updates are of the form

“increase the 𝑖th entry by 1” or “decrease the 𝑗th entry by 1”), output an approximation of the ℓ2

norm of the vector. There exists a celebrated randomized algorithm for this problem [AMS99]. This

algorithm has the curious property that running the same algorithm multiple times on the same

stream may result in different approximations. That is, if Alice runs the algorithm on the same

stream as Bob (but using different randomness), Alice may get some approximation of the ℓ2 norm

(such as 27839.8), and Bob (running the same algorithm, but with your own randomness) may get a

different approximation (such as 27840.2). The randomized algorithm has the guarantee that both

51

of the approximations will be close to the true value. However, interestingly, Alice and Bob end

up with slightly different approximations. Is this behavior inherent? That is, could there exist an

algorithm which, while being randomized, for all streams with high probability both Alice and Bob

will end up with the same approximation for the ℓ2 norm?

Such an algorithm, which when run on the same stream multiple times outputs the same output

with high probability is called pseudo-deterministic. The main question we tackle in this paper is:

What streaming problems have low-memory pseudo-deterministic algorithms?

4.1.1 Our Contributions

This paper is the first to investigate pseudo-determinism in the context of streaming algorithms. We

show certain problems have pseudo-deterministic algorithms substantially faster than the optimal

deterministic algorithm, while other problems do not.

Lower Bounds

Find-Support-Elem: We show pseudo-deterministic lower bounds for finding a nonzero entry

in a vector in the turnstile model. Specifically, consider the problem Find-Support-Elem of

finding a nonzero entry in a vector for a turnstile algorithm (the input is a stream of updates of the

form “increase entry 𝑖 by 1” or “decrease entry 𝑗 by 1”, and we wish to find a nonzero entry in the

final vector). We show this problem does not have a low-memory pseudo-deterministic algorithm:

Theorem 4.1.1. There is no pseudo-deterministic algorithm for Find-Support-Elem which uses

𝑜(𝑛) memory.

This is in contrast with the work of [MW10], which shows a randomized algorithm for the

problem using polylogarithmic space.

Theorem 4.1.1 can be viewed as showing that any low-memory algorithm 𝐴 for Find-Support-

Elem must have an input 𝑥 where the output 𝐴(𝑥) (viewed as a random variable depending on the

randomness used by 𝐴) must have at least a little bit of entropy. The algorithms we know for Find-

Support-Elem have a very high amount of entropy in their outputs (the standard algorithms, for

an input which is the all 1s vector, will find a uniformly random entry). Is this inherent, or can the

entropy of the output be reduced? We show that this is inherent: for every low memory algorithm

there is an input 𝑥 such that 𝐴(𝑥) has high entropy.

52

Theorem 4.1.2. Every randomized algorithm for Find-Support-Elem using 𝑜(𝑠) space must

have an input 𝑥 such that 𝐴(𝑥) has entropy at least log
(︁

𝑛
𝑠 log𝑛

)︁
.

So, in particular, an algorithm using 𝑛1−𝜀 space must have outputs with entropy Ω(log 𝑛), which

is maximal up to constant factors.

We also show analogous lower bounds for the problem Find-Duplicatein which the input is a

stream of 3𝑛/2 integers between 1 and 𝑛, and the goal is to output a number 𝑘 which appears at

least twice in the stream:

Theorem 4.1.3. Every randomized algorithm for Find-Duplicate using 𝑜(𝑠) space must have an

input 𝑥 such that 𝐴(𝑥) has entropy at least log
(︁

𝑛
𝑠 log𝑛

)︁
.

Techniques To prove a pseudo-deterministic lower bound for Find-Support-Elem, the idea

is to show that if a pseudo-deterministic algorithm existed for Find-Support-Elem, then there

would also exist a pseudo-deterministic one-way communication protocol for the problem One-

Way-Find-Duplicate, where Alice has a subset of [𝑛] of size 3𝑛/4, and so does Bob, and they

wish to find an element which they share.

To prove a lower bound on the one-way communication problem One-Way-Find-Duplicate,

we show that if such a pseudo-deterministic protocol existed, then Bob can use Alice’s message to

recover many (𝑛/10) elements of her input (which contains much more information than one short

message). The idea is that using Alice’s message, Bob can find an element they have in common.

Then, he can remove the element he found that they have in common from his input, and repeat

to find another element they have in common (using the original message Alice sent, so Alice does

not have to send another message). After repeating 𝑛/10 times, he will have found many elements

which Alice has.

It may not be immediately obvious where pseudo-determinism is being used in this proof. The

idea is that because the algorithm is pseudo-deterministic, the element which Bob finds as the inter-

section with high probability does not depend on the randomness used by Alice. That is, let 𝑏1, 𝑏2, . . .

be the sequence of elements which Bob finds. Because the algorithm is pseudo-deterministic, there

exists a specific sequence 𝑏1, 𝑏2, . . . such that with high probability this will be the sequence of

elements which Bob finds. Notice that a randomized (but not pseudo-deterministic) algorithm for

One-Way-Find-Duplicatewould result in different sequences on different executions.

53

When the sequence 𝑏1, 𝑏2, . . . is determined in advance, we can use a union bound and argue that

with high probability, one of Alice’s messages will likely work on all of Bob’s inputs. If 𝑏1, 𝑏2, . . . is

not determined in advance, then it’s not possible to use a union bound.

Proving a lower bound on the entropy of the output of an algorithm for Find-Support-

Elem uses a similar idea, but is more technically involved. It is harder to ensure that Bob’s

later inputs will be able to succeed with Alice’s original message. The idea, at a very high level, is

to have Alice send many messages (but not too many), so that Bob’s new inputs will not strongly

depend on any part of Alice’s randomness, and also to have Alice send additional messages to keep

Bob from going down a path where Alice’s messages will no longer work.

This lower bound technique may seem similar to the way one would show a deterministic lower

bound. It’s worth noting that for certain problems, deterministic lower bounds do not generalize to

pseudo-deterministic lower bounds; see our results on pseudo-deterministic upper bounds for some

examples and intuition for why certain problems remain hard in the pseudo-deterministic setting

while others do not.

Sketching lower bounds for pseudo-deterministic ℓ2 norm estimation: The known ran-

domized algorithms (such as [AMS99]) for approximating the ℓ2 norm of a vector 𝑥 in a stream rely

on sketching, i.e., storing 𝑆𝑥 where 𝑆 is a 𝑑×𝑛 random matrix where 𝑑≪ 𝑛 and outputting the ℓ2

norm of 𝑆𝑥. More generally, an abstraction of this framework is the setting where one has a dis-

tribution over matrices 𝒟 and a function 𝑓 . One then stores a sketch of the input vector 𝑆𝑥 where

𝑆 ∼ 𝒟 and outputs 𝑓(𝑆𝑥). By far, most streaming algorithms fall into this framework and in fact

some work [LNW14,AHLW16] proves under some caveats and assumptions that low-space turnstile

streaming algorithms imply algorithms based on low-dimensional sketches. Since sketching-based

streaming algorithms are provably optimal in many settings, it motivates studying whether there

are low-dimensional sketches of 𝑥 from which the ℓ2 norm can be estimated pseudo-deterministically.

We prove a lower bound on the dimension of sketches from which the ℓ2 norm can be estimated

pseudo-deterministically:

Theorem 4.1.4. Suppose 𝒟 is a distribution over 𝑑×𝑛 matrices and 𝑓 is a function from R𝑑 to R

such that for all 𝑥 ∈ R𝑛, when 𝑆 ∼ 𝒟:

• 𝑓(𝑆𝑥) approximates the ℓ2 norm of 𝑥 to within a constant factor with high probability,

54

• 𝑓(𝑆𝑥) takes a unique value with high probability.

Then 𝑑 must be Ω (𝑛).

As an extension, we also show that

Theorem 4.1.5. For every constant 𝜀, 𝛿 > 0, every randomized sketching algorithm 𝐴 for ℓ2 norm

estimation using a 𝑂(𝑛1−𝛿)-dimensional sketch, there is a vector 𝑥 such that the output entropy

of 𝐴(𝑥) is at least 1 − 𝜀. Furthermore, there is a randomized algorithm using a 𝑂(poly log 𝑛)-

dimensional sketch with output entropy at most 1 + 𝜀 on all input vectors.

Techniques The first insight in our lower bound is that if there is a pseudo-deterministic streaming

algorithm 𝐴 for ℓ2 norm estimation in 𝑘 space, then that means there is a fixed function 𝑔 such that

𝑔(𝑥) approximates ‖𝑥‖2 and 𝐴 is a randomized algorithm to compute 𝑔(𝑥) with high probability.

The next step uses a result in the work of [HW13] to illustrate a (randomized) sequence of vectors

𝑥(1), . . . ,𝑥(𝑡) only depending on 𝑔 such that any linear sketching-based algorithm that uses sublinear

dimensional sketches outputs an incorrect approximation to the ℓ2 norm of some vector in that

sequence with constant probability, thereby implying a dimension lower bound.

Upper Bounds

On the one hand, all the problems considered so far were such that

1. There were “low-space” randomized algorithms.

2. The pseudo-deterministic and deterministic space complexity were “high” and equal up to

logarithmic factors.

This raises the question if there are natural problems where pseudo-deterministic algorithms

outperform deterministic algorithms (by more than logarithmic factors). We answer this question

in the affirmative.

We illustrate several natural problems where the pseudo-deterministic space complexity is strictly

smaller than the deterministic space complexity.

The first problem is that of finding a nonzero row in a matrix given as input in a turnstile

stream. Our result for this problem has the bonus of giving a natural problem where the pseudo-

55

deterministic streaming space complexity is strictly sandwiched between the deterministic and ran-

domized streaming space complexity.

In the problem Find-Nonzero-Row, the input is an 𝑛× 𝑑 matrix 𝐴 streamed in the turnstile

model, and the goal is to output an 𝑖 such that the 𝑖𝑡ℎ row of the matrix 𝐴 is nonzero.

Theorem 4.1.6. The randomized space complexity for Find-Nonzero-Row is ̃︀Θ(1), the pseudo-

deterministic space complexity for Find-Nonzero-Row is ̃︀Θ(𝑛), and the deterministic space com-

plexity for Find-Nonzero-Row is ̃︀Θ(𝑛𝑑).

The idea behind the proof of Theorem 4.1.6 is to sample a random vector 𝑥, and then deter-

ministically find a nonzero entry of 𝐴𝑥. With high probability, if a row of 𝐴 is nonzero, then the

corresponding entry of 𝐴𝑥 will be nonzero as well.

Discussion: Roughly speaking, in this problem there is a certain structure that allows us to

use randomness to “hash” pieces of the input together, and then apply a deterministic algorithm

on the hashed pieces. The other upper bounds we show for pseudo-deterministic algorithms also

have a structure which allows us to hash, and then use a deterministic algorithm. It is interesting

to ask if there are natural problems which have faster pseudo-deterministic algorithms than the

best deterministic algorithms, but for which the pseudo-deterministic algorithms follow a different

structure.

The next problems we show upper bounds for are estimating frequencies in a length-𝑚 stream

of elements from a large universe [𝑛] up to error 𝜀𝑚, and that of estimating the inner product of

two vectors 𝑥 and 𝑦 in an insertion-only stream of length-𝑚 up to error 𝜀 · ‖𝑥‖1 · ‖𝑦‖1. We show

a separation between the deterministic and (weak) pseudo-deterministic space complexity in the

regime where 𝑚≪ 𝑛.

Theorem 4.1.7. There is a pseudo-deterministic algorithm for point query estimation and inner

product estimation that uses 𝑂
(︁
log𝑚
𝜀 + log 𝑛

)︁
bits of space. On the other hand, any deterministic

algorithm needs Ω
(︁
log𝑛
𝜀

)︁
bits of space.

4.1.2 Related work

The problem of finding duplicates in a stream of integers between 1 and 𝑛 was first considered

by [GR09], where an 𝑂(log3 𝑛) bits of space algorithm is given, later improved by [JST11] to

56

𝑂(log2 𝑛) bits. We show that in contrast to these low space randomized algorithms, a pseudo-

deterministic algorithm needs significantly more space in the regime where the length of the stream

is, say, 3𝑛/2. [KNP+17] shows optimal lower bounds for randomized algorithms solving the problem.

The method of ℓ𝑝-sampling to sample an index of a turnstile vector with probability proportional

to its ℓ𝑝 mass, whose study was initiated in [MW10], is one way of outputting an element from the

support of a turnstile stream. A line of work [FIS08, MW10, JST11, AKO10], ultimately leading

to an optimal algorithm in [JW18] and tight lower bounds in [KNP+17], characterizes the space

complexity of randomized algorithms to output an element from the support of a turnstile vector

as Θ(poly log 𝑛), in contrast with the space lower bounds we show for algorithms constrained to a

low entropy output.

4.1.3 Open Problems

ℓ2-norm estimation: In this work, we show that there are no low-dimensional pseudo-deterministic

sketching algorithms for estimating the ℓ2-norm of a vector. However, we do not show a turnstile

streaming lower bound for pseudo-deterministic algorithms, which motivates the following question.

Does there exist a 𝑂(poly log 𝑛) space pseudo-deterministic algorithm for ℓ2-norm estimation?

Multi-pass streaming lower bounds: All the streaming lower bounds we prove are in the single

pass model, i.e., where the algorithm receives the stream exactly once. How do these lower bounds

extend to the multi-pass model, where the algorithm receives the stream multiple times? All of the

pseudo-deterministic streaming lower bounds in this paper do not even extend to 2-pass streaming

algorithms.

4.1.4 Table of complexities

In the below table, we outline the known space complexity of various problems considered in our

work.

4.2 Preliminaries

For the purposes of this work, we define a simple notion that we call a 𝑘-concentrated algorithm.

57

Problem Randomized Deterministic Pseudo-deterministic
Morris Counters Θ(log log 𝑛) Θ(log 𝑛) 𝑂(log 𝑛), Ω(log log 𝑛)
Find-Duplicate Θ(log 𝑛) Θ(𝑛) ̃︀Θ(𝑛)

ℓ2-approximation (streaming)
Θ(log 𝑛) ̃︀Θ(𝑛)

̃︀Θ(𝑛)

ℓ2-approximation (sketching) ̃︀𝑂(𝑛), ̃︀Ω(log 𝑛)
Find-Nonzero-Row ̃︀Θ(1) ̃︀Θ(𝑛𝑑) ̃︀Θ(𝑛)

Table 4.1: Table of space complexities.

Definition 4.2.1. We say that an algorithm 𝐴 is 𝑘-concentrated if for all valid inputs 𝑥, there is

some output 𝐹 (𝑥) such that Pr𝑟[𝐴(𝑥, 𝑟) = 𝐹 (𝑥)] ≥ 1
𝑘 .

The reason for making this definition is that any log 𝑘-entropy randomized algorithm, and any

(𝑘+2)-pseudo-deterministic algorithm is 𝑘-concentrated. Thus, showing an impossibility result for

𝑘-concentrated algorithms also shows an impossibility result for log 𝑘-entropy and (𝑘 + 2)-pseudo-

deterministic algorithms. Indeed, in this work, we use space lower bounds against 𝑘-concentrated

algorithms to simultaneously conclude space lower bounds against low entropy and multi-pseudo-

deterministic algorithms.

Definition 4.2.2. A turnstile streaming algorithm is one where there is a vector 𝑣, and the input is

a stream of updates of the form “increase the 𝑖th coordinate of 𝑣 by 𝑟” or “decrease the 𝑖th coordinate

of 𝑣 by 𝑟′”. The goal is to compute something about the final vector, after all of the updates.

We use a pseudorandom generator for space-bounded computation due to Nisan [Nis92], which

we recap below.

Theorem 4.2.3. There is a function 𝐺 : {0, 1}𝑠 log 𝑟 → {0, 1}𝑟 such that

1. Any bit of 𝐺(𝑥) for any input 𝑥 can be computed in 𝑂(𝑠 log 𝑟) space.

2. For all functions 𝑓 from {0, 1}𝑟 to some set 𝐴 such that 𝑓 is computable by a finite state

machine on 2𝑠 states, the total variation distance between the random variables 𝑓(𝑥) and

𝑓(𝐺(𝑦)) where 𝑥 is uniformly drawn from {0, 1}𝑟 and 𝑦 is uniformly drawn from {0, 1}𝑠 log 𝑟

is at most 2−𝑠.

58

4.3 Find-Duplicate: Pseudo-deterministic lower bounds

Consider the following problem: the input is a stream of 3𝑛/2 integers between 1 and 𝑛. The

goal is to output a number 𝑘 which appears at least twice in the stream. Call this problem Find-

Duplicate. Recall that this problem has been considered in the past literature, specifically in

[GR09,JST11,KNP+17], where upper and lower bounds for randomized algorithms have been shown.

Indeed, we know the following is true from [GR09,JST11].

Theorem 4.3.1. Find-Duplicate has an algorithm which uses 𝑂(poly log 𝑛) memory and suc-

ceeds with all but probability 1
poly(𝑛) .

We formally define a pseudo-deterministic streaming algorithm and show a pseudo-deterministic

lower bound for Find-Duplicate to contrast with the randomized algorithm from Theorem 4.3.1.

Definition 4.3.2 (Pseudo-deterministic Streaming Algorithm). A pseudo-deterministic stream-

ing algorithm is a (randomized) streaming algorithm 𝐴 such that for all valid input streams

𝑠 = ⟨𝑥1, . . . , 𝑥𝑚⟩, the algorithm 𝐴 satisfies Pr𝑟1,𝑟2 [(𝐴(𝑥, 𝑟1) = 𝐴(𝑥, 𝑟2)] ≥ 2/3.

One can also think of a pseudo-deterministic streaming algorithm as an algorithm 𝐴 such that

for every valid input stream 𝑠, there exists some valid output 𝑓(𝑠) such that the algorithm 𝐴 outputs

𝑓(𝑠) with probability at least 2/3 (one would have to amplify the success probability using repetition

to see that this alternate notion is the same as the definition above).

Definition 4.3.3 (Find-Duplicate). Define Find-Duplicate to be the streaming problem where

the input is a stream of length 3𝑛/2 consisting of up to 𝑛, and the output must be an integer which

has occured at least twice in the string.

Theorem 4.3.4. Find-Duplicate has no pseudo-deterministic algorithm with memory 𝑜(𝑛).

Proof Overview: In order to prove Theorem 4.3.4, we introduce two communication complexity

problems — One-Way-Find-Duplicate and One-Way-Partial-Recovery:

In the One-Way-Find-Duplicate problem, Alice has a list of 3𝑛/4 integers between 1 and 𝑛,

and so does Bob. Alice sends a message to Bob, after which Bob must output an integer which is

in both Alice’s and Bob’s list. Formally:

59

Definition 4.3.5 (One-Way-Find-Duplicate). Define One-Way-Find-Duplicate to be the

one-way communication complexity problem where Alice has input 𝑆𝐴 ⊆ [𝑛] and Bob has input

𝑆𝐵 ⊆ [𝑛], where |𝑆𝐴|, |𝑆𝐵| ≥ 3𝑛/4. The goal is for Bob to output an element in 𝑆𝐴 ∩ 𝑆𝐵.

The idea is that one can reduce One-Way-Find-Duplicate to Find-Duplicate. So, our

new goal will be to show that One-Way-Find-Duplicate requires high communication. To do

so, we will show that it is possible to reduce a different problem, denoted One-Way-Partial-

Recovery(defined below), to One-Way-Find-Duplicate. Informally, in the One-Way-Partial-

Recovery problem, Alice has a list of 3𝑛/4 integers between 1 and 𝑛. Bob does not have an input.

Alice sends a message to Bob, after which Bob must output 𝑛/10 distinct elements which are all in

Alice’s list. Formally:

Definition 4.3.6 (One-Way-Partial-Recovery). Define One-Way-Partial-Recovery to be

the one-way communication complexity problem where Alice has input 𝑆𝐴 ⊆ [𝑛] and Bob has no

input. The goal is for Bob to output a set 𝑆 satisfying 𝑆 ⊆ 𝑆𝐴 and |𝑆| ≥ 𝑛/10.

We will show in Claim 1 that a low memory pseudo-deterministic algorithm for Find-Duplicate im-

plies a low-communication pseudo-deterministic algorithm for One-Way-Find-Duplicate, and in

Claim 2 that a low-communication pseudo-deterministic algorithm for One-Way-Find-Duplicate im-

plies a low communication algorithm for One-Way-Partial-Recovery. Finally, in Claim 3, we

show that One-Way-Partial-Recovery cannot be solved with low communication. Combining

the claims yields Theorem 4.3.4.

Proof of Theorem 4.3.4.

Claim 1. A pseudo-deterministic algorithm for Find-Duplicate with space 𝑆 and success probabil-

ity 𝑝 implies a pseudo-deterministic communication protocol for One-Way-Find-Duplicate with

communication 𝑆 and success probability at least 𝑝.

Proof. To prove the above claim, we construct a protocol for One-Way-Find-Duplicate from

a streaming algorithm for Find-Duplicate. Given an instance of One-Way-Find-Duplicate,

Alice can stream her input set of integers in increasing order, and simulate the streaming algorithm

for Find-Duplicate. Then, she sends the current state of the algorithm (which is at most 𝑆

bits) to Bob, who continues the execution of the streaming algorithm. At the end, the streaming

60

algorithm outputs a repetition with probability 𝑝, which means the element showed up in both Alice

and Bob’s lists. Note that for a given input to Alice and Bob, Bob outputs a unique element with

high probability because the streaming algorithm is pseudo-deterministic.

Claim 2. A pseudo-deterministic one-way communication protocol for One-Way-Find-Duplicate with

𝑆 communication and failure probability 𝑂
(︀

1
𝑛2

)︀
implies a pseudo-deterministic communication pro-

tocol for One-Way-Partial-Recovery with 𝑆 communication and 𝑂
(︀
1
𝑛

)︀
failure probability.

Proof. We will show how to use a protocol for One-Way-Find-Duplicate to solve the instance

of One-Way-Partial-Recovery.

Suppose we have an instance of One-Way-Partial-Recovery. Alice sends the same message

to Bob as if the input was an instance of One-Way-Find-Duplicate, which is valid since in both

of these problems, Alice’s input is a list of length 3𝑛/4 of integers between 1 and 𝑛.

Now, Bob’s goal is to use the message sent by Alice to recover 𝑛/10 elements of Alice. Let 𝑋

be the (initially empty) set of elements of Alice’s input that Bob knows and let 𝐵 be a set of 3𝑛/4

elements in {1, . . . , 𝑛} disjoint from 𝑋, where we initially set 𝐵 to {1, 2, . . . , 𝑛}. While the size of 𝑋

is less than 𝑛/10, Bob simulates the protocol of One-Way-Find-Duplicate with Alice’s message

and input 𝐵. This will result in Bob finding a single element 𝑥 in Alice’s input that is (i) in 𝐵, and

(ii) not in 𝑋. Bob adds 𝑥 to 𝑋, and deletes 𝑥 from 𝐵. Once the size of 𝑋 is 𝑛/10, Bob outputs 𝑋.

If Alice has the set 𝐴 as her input, define 𝑓𝐴(𝐵) to be the output which the pseudo-deterministic

algorithm for One-Way-Find-Duplicate outputs with high probability when Alice’s input is 𝐴

and Bob’s input is 𝐵. Now, set 𝐵0 = {1, 2, . . . , 𝑛}, and 𝐵𝑖 = 𝐵𝑖−1 ∖ {𝑓𝐴(𝐵)}. Note that these

𝐵𝑖 (for 𝑖 = 0 through 𝑛/10) are the sets which, assuming the pseudo-deterministic algorithm never

errs during the reduction (where we say the algorithm errs if it does not output the unique element

which is guaranteed to be output with high probability), Bob will use as his inputs for the simulated

executions of One-Way-Find-Duplicate. The pseudo-deterministic algorithm does not err on any

of the 𝐵𝑖 except with probability at most 1/𝑛, by a union bound. If Bob succeeds on all of the

𝐵𝑖, that means that the sequence of inputs which will be his inputs for the simulated executions

of One-Way-Find-Duplicate are indeed 𝐵0, 𝐵1, . . . , 𝐵𝑛/10. So, since we have shown with high

probability the algorithms succeeds on all of the 𝐵𝑖, and therefore with high probability the 𝐵𝑖

are also Bob’s inputs for the simulated executions of One-Way-Find-Duplicate, we see that

61

with high probability Bob will succeed on all of the 𝑛/10 inputs he tries to simulate executions of

One-Way-Find-Duplicate with.

Note that we used the union bound over all the 𝐵𝑖 for 𝑖 = 1 through 𝑛/10. All of these 𝐵𝑖 are

a function of 𝐴. In particular, notice that by definition, the 𝐵𝑖 do not depend on the randomness

chosen by Alice.

Claim 3. Every pseudo-deterministic One-Way-Partial-Recovery protocol which succeeds with

probability at least 2
3 requires Ω(𝑛) bits of communication.

Proof. We prove this lower bound by showing that a protocol for One-Way-Partial-Recovery can

be used to obtain a protocol with exactly the same communication for the problem where Alice is

given a string 𝑥 in {0, 1}𝐶𝑛 as input, she sends a message to Bob, and Bob must exactly recover 𝑥

from Alice’s message with probability at least 2/3. This problem has a lower bound of Ω(𝑛) bits of

communication.

Suppose there exists a pseudo-deterministic algorithm for One-Way-Partial-Recovery. Given

such a pseudo-deterministic protocol that succeeds with probability at least 2/3, there is a function

𝐹 such that 𝐹 (𝑆) (a set with 𝑛/10 elements) is Bob’s output after the protocol with probability at

least 2/3 when Alice is given 𝑆 as input.

We will construct sets 𝑆1, . . . , 𝑆𝑡 to be subsets of [𝑛] of size 3𝑛/4 such that for any 𝑖 ̸= 𝑗, 𝐹 (𝑆𝑖)

is not a subset of 𝑆𝑗 . To do so, we use the probabilistic method: set 𝑆1, . . . , 𝑆𝑡 be random subsets of

[𝑛] of size 3𝑛/4. The probability that 𝐹 (𝑆𝑖) is contained 𝑆𝑗 for fixed 𝑖 ̸= 𝑗 is at most
(︀
3
4

)︀𝑛/10. Thus,

by a union bound, the probability that for any 𝑖 ̸= 𝑗, 𝐹 (𝑆𝑖) is contained 𝑆𝑗 is at most 𝑡2
(︀
3
4

)︀𝑛/10, a

quantity which is strictly less than 1 when 𝑡 is
(︀
4
3

)︀𝑛/100, so 𝑆1, . . . , 𝑆𝑡 satisfying the desired guarantee

exist.

Alice and Bob can (ahead of time) agree on an encoding of ⌊log 𝑡⌋-bit strings that is an injective

function 𝐺 from {0, 1}⌊log 𝑡⌋ to {𝑆1, . . . , 𝑆𝑡}. Now, if Alice is given a ⌊log 𝑡⌋-bit string 𝑥 as input, she

can send a message to Bob according to the pseudo-deterministic protocol for One-Way-Partial-

Recovery by treating her input as 𝐺(𝑥). Bob then recovers 𝐹 (𝐺(𝑥)) with probability at least 2/3,

and can use it to recover 𝐺(𝑥) since there is unique 𝑆𝑖 in which 𝐹 (𝐺(𝑥)) is contained. Since 𝐺 is

injective, Bob can also recover 𝑥 with probability 2/3.

This reduction establishes a lower bound of Ω(⌊log 𝑡⌋) on the pseudo-deterministic communica-

tion complexity of One-Way-Partial-Recovery, which is an Ω(𝑛) lower bound.

62

Combining Claim 1, Claim 2 and Claim 3 completes the proof of Theorem 4.3.4.

It is worth noting that the problem has pseudo-deterministic algorithms with sublinear space

if one allows multiple passes through the input. Informally, a 𝑝-pass streaming algorithm is a

streaming algorithm which, instead of seeing the stream only once, gets to see the stream 𝑝 times.

Claim 4. There is a 𝑝-pass deterministic streaming algorithm that uses ̃︀𝑂(𝑛1/𝑝) memory for the

Find-Duplicate problem.

Proof. At the start of 𝑡-th pass, the algorithm maintains a candidate interval 𝐼 of width 𝑛1−(𝑡−1)/𝑝

from which it seeks to find a repeated element. At the very beginning, this candidate interval is

[1, 𝑛]. In the 𝑡-th pass, first partition the interval into 𝑛1/𝑝 equal sized intervals 𝐼 ′1, . . . , 𝐼
′
𝑛1/𝑝 , each

of whose width (the width of an interval [𝑎, 𝑏] is 𝑏− 𝑎) is 𝑛1−𝑡/𝑝 and count the number of elements

of the stream that lie in each such subinterval – this count must exceed the width of at least one

subinterval 𝐼 ′𝑡. Update 𝐼 to 𝐼 ′𝑡 and proceed to the next pass. After 𝑝 passes, this interval will contain

at most 1 integer.

4.4 Entropy Lower Bound for Find-Duplicate

Theorem 4.4.1. Every zero-error randomized algorithm for Find-Duplicate that is 𝑛
𝑠 -concentrated

must use Ω
(︁

𝑠
log𝑛

)︁
space.

By zero error, we mean that the algorithm never outputs a number 𝑘 which is not repeated.

With probability one it either outputs a valid output, or ⊥.

Proof. We use a reduction similar to that of the pseudo-deterministic case (cf. Proof of Claim 2).

Using the exact same reduction from the proof of Claim 1, we get that a 𝑛
𝑠 -concentrated streaming

algorithm for Find-Duplicate using 𝑇 space must give us a 𝑛
𝑠 -concentrated protocol for One-

Way-Find-Duplicate with communication complexity 𝑇 . If we can give a way to convert such

a protocol for One-Way-Find-Duplicate into an 𝑂
(︁
𝑇𝑛 log𝑛

𝑠

)︁
-communication protocol for One-

Way-Partial-Recovery, the desired lower bound on 𝑇 follows from the lower bound on commu-

nication complexity of One-Way-Partial-Recovery from Claim 3. We will now show how to

make such a conversion by describing a protocol for One-Way-Partial-Recovery.

63

Alice sends Bob Θ(𝑛 log 𝑛/𝑠) messages according to the protocol for One-Way-Find-Duplicate (that

is, she simulates the protocol for One-Way-Find-Duplicate a total of Θ(𝑛 log 𝑛/𝑠) times). Bob’s

goal is to use these Θ(𝑛 log 𝑛/𝑠) messages to recover at least 𝑛/10 input elements of Alice. Towards

this goal, he maintains a set of elements recovered so far, 𝑋 (initially empty), and a family of ‘active

sets’ ℬ (initially containing the set {1, 2, . . . , 𝑛}). While the size of 𝑋 is smaller than 𝑛/10, Bob

simulates the remainder of the One-Way-Find-Duplicate protocol on every possible pair (𝐵,𝑀)

where 𝐵 is a set in ℬ and 𝑀 is one of the messages of Alice. For each such pair (𝐵,𝑀) where the

protocol is successful in finding a duplicate element 𝑥, Bob adds 𝑥 to 𝑋, removes 𝐵 from ℬ and

adds 𝐵 ∖ {𝑥} to ℬ.

We now wish to prove that this protocol indeed lets Bob recover 𝑛/10 elements of Alice. Suppose

Alice has input 𝐴. For each set 𝑆, define 𝑓𝐴(𝑆) be an element of 𝐴∩𝑆 that has probability at least

𝑠/𝑛 of being outputted by Bob on input 𝑆 at the end of a One-Way-Find-Duplicate protocol.

Let 𝑆0 := {1, 2, . . . , 𝑛} and 𝑆𝑖 := 𝑆𝑖−1 ∖ {𝑓𝐴(𝑆𝑖)} be defined for 0 ≤ 𝑖 ≤ 𝑛/10. Note that 𝑆𝑖 are

predetermined: it is a function of Alice’s input (and, in particular, not a function of the randomness

she uses when choosing her messages). For a fixed 𝑖, the probability of failure to recover 𝑓𝐴(𝑆𝑖)

from any of Alice’s messages is at most 1/𝑛2. A failure to fill in 𝑋 with 𝑛/10 elements implies that

for some 𝑖, Bob failed to recover 𝑓𝐴(𝑆𝑖) from all of Alice’s messages. The probability that such a

failure happens for a specific 𝑖 is at most (1−𝑠/𝑛)Θ(𝑛 log𝑛/𝑠). By setting the constant in the Θ to be

large enough, we can have this be at most 1
𝑛2 , and so by a union bound the probability that there

is an 𝑖 such that 𝑓𝐴(𝑆𝑖) is not recovered by Bob is at most 1/𝑛.

Thus, we obtain a protocol for One-Way-Partial-Recovery with communication complexity

𝑂(𝑇𝑛 log 𝑛/𝑠), and so 𝑇 ≤ 𝑠/ log 𝑛, completing the proof.

We obtain the following as immediate corollaries:

Corollary 4.4.2. Any zero-error log
(︀
𝑛
𝑠

)︀
-entropy randomized algorithm for Find-Duplicate must

use Ω
(︁

𝑠
log𝑛

)︁
space.

Corollary 4.4.3. Any zero-error 𝑂
(︀
𝑛
𝑠

)︀
-pseudo-deterministic algorithm for Find-Duplicate must

use Ω
(︁

𝑠
log𝑛

)︁
space.

Below we show that the above lower bound is tight up to log factors.

64

Theorem 4.4.4. For all 𝑠, there exists a zero-error randomized algorithm for Find-Duplicate us-

ing ̃︀𝑂(𝑠) space (where ̃︀𝑂 hides factors polylogarithmic in 𝑛) that is 𝑂
(︀
𝑛
𝑠

)︀
-concentrated.

Proof. Define the following algorithm 𝐴 for Find-Duplicate: pick a random number 𝑖 in [3𝑛/2],

then remember the 𝑖th element 𝑎 of the stream, and see if 𝑎 appears again later in the stream. If it

does, return 𝑥. Otherwise return ⊥.

The 𝑂
(︀
𝑛
𝑠

)︀
-concentrated algorithm algorithm is as follows: Run 𝑠 log 𝑛 copies of Algorithm 𝐴

independently (in parallel), and then output the minimum of the outputs.

We are left to show that this algorithm is indeed 𝑂
(︀
𝑛
𝑠

)︀
-concentrated.

Define 𝑓 to be a function where 𝑓(𝑖) is the total number of times which 𝑖 shows up in the

stream, and define 𝑔(𝑖) = max((𝑓(𝑖)− 1), 0). Note that then, the probability that 𝑖 is outputted by

algorithm 𝐴 is 𝑔(𝑖)/(3𝑛/2), since 𝑖 will be outputted if 𝐴 chooses to remember one of the first 𝑖− 1.

Consider the smallest 𝑎 such that
∑︀𝑎

𝑖=1 𝑔(𝑖) ≥ 𝑛/(2𝑠). We will show that the probability that the

output is less than 𝑎 with high probability. It will follow that the algorithm is 𝑠-concentrated, since

of the 𝑎−1 smallest elements, at most
∑︀𝑎−1

𝑖=1 𝑔(𝑖) outputs are possible (since if 𝑔(𝑖) = 0, then 𝑖 is not

a possible output). So, we will see that with high probability, one of at most
∑︀𝑎−1

𝑖=1 𝑔(𝑖)+1 ≤ 𝑛/(2𝑠)

outputs (namely, the valid outputs less than or equal to 𝑎) will be outputted with high probability.

And hence, at least one of them will be outputted with probability at least 𝑠
𝑛 .

The probability that the output is at most 𝑎 in a single run of algorithm 𝐴 is 3𝑛
2

∑︀𝑎
𝑖=1 𝑔(𝑖) ≥

3/(4𝑠). So, the probability that in 𝑠 log 𝑛 runs of algorithm, in at least one of them an element

which is at most 𝑎 is outputted is 1− (1− 3
4𝑠)

𝑠 log𝑛, which is polynomially small in 𝑛. Hence, with

high probability an element which is at most 𝑎 (and there are 𝑛/(2𝑠) valid outputs less than 𝑎) will

be outputted.

4.4.1 Getting Rid of the Zero Error Requirement

A downside of Theorem 4.4.1 is that it shows a lower bound only for zero-error algorithms. In this

section, we strengthen the theorem by getting rid of that requirement:

Theorem 4.4.5. Every randomized algorithm for Find-Duplicate that is 𝑛
𝑠 -concentrated and

errs with probability at most 1
𝑛2 must use Ω̃

(︀
𝑠1−𝜖

)︀
space (for all 𝜖 > 0).

65

Proof overview: We begin by outlining why the approach of Theorem 4.4.1 does not work without

the zero-error requirement. Recall that the idea in the proof was to have Alice send many messages

(for One-Way-Find-Duplicate) to Bob, and Bob simulates the One-Way-Find-Duplicate al-

gorithm (using simulated inputs he creates for himself) using these messages to find elements in

Alice’s input.

The problem is that the elements we end up removing from Bob’s simulated input1 depend

on Alice’s messages, and therefore we can’t use a union bound to bound the probability that the

protocol failed for a certain simulated input. So, we want the elements we remove from Bob’s fake

input not to depend on the inputs Alice sent. One idea to achieve this is to have Alice send a bunch

of messages (for finding a shared element), and then Bob will remove the element that gets output

the largest number of times (by simulating the protocol with each of the many messages Alice

sent). The issue with this is that if the two most common outputs have very similar probability, the

outputted element depends not only on Alice’s input, but also on the randomness she uses when

choosing what messages to send to Bob. This makes it again not possible to use a union bound.

There are two new ideas to fix this issue. The first is to use the following “Threshold” technique:

Bob will pick a random “threshold” T between 𝑘𝑠/(2𝑛) and 𝑘𝑠/(4𝑛) (where we wish to show a lower

bound on 𝑛/𝑠-concentrated algorithms, and 𝑘 is the total number of messages Alice sends to Bob).

He simulates the algorithm for One-Way-Find-Duplicate with all 𝑘 messages Alice sent him, and

gets a list 𝐿 of 𝑘 outputs. Then, he will consider the “real” output to be the lexicographically first

output 𝑦 ∈ 𝐿 where there are more than 𝑇 copies of 𝑦 in the list 𝐿 (note that since the algorithm

is 𝑛/𝑠-concentrated, its very unlikely for no such element to exist).

Now, it follows that with high probability, the shared element does not really depend on the

messages. This is because with all but probability approximately 1/
√︀

𝑘𝑠/𝑛, the threshold is far

(more than
√︀

𝑘𝑠/𝑛 log2 𝑘𝑠/𝑛 away) from the the frequency of every element in 𝐿. We note that

we pick
√︀

𝑘𝑠/𝑛 log2 𝑘𝑠/𝑛 since from noise we would expect to have the frequencies of elements in

𝐿 change by up to
√︀
𝑘𝑠/𝑛 log2 𝑘𝑠/𝑛, depending on the randomness of 𝐴. We want the threshold

to be further than that from the expected frequencies, so that with high probability there will be

no element which sometimes has frequency more than 𝑇 and sometimes has frequency less than

𝑇 , depending on Alice’s messages (recall that the goal is to make the outputs depend as little as
1recall that Bob simulates an input to the One-Way-Find-Duplicate problem, and then he repeatedly finds

elements he shares with Alice, removes them from the “fake” input, and reconstructs a large fraction Alice’s inputs

66

possible on Alice’s messages, but to only depend on shared randomness and on Alice’s input).

This is still not enough for us: we still cannot use a union bound, as 1/
√︀
𝑘𝑠/𝑛 fraction of the

time Bob’s output will depends on Alice’s message (and not just her input). The next idea resolves

this. What Alice will do is send 𝑛/
√︀
𝑘𝑠/𝑛 additional pieces of information: telling Bob where the

chosen thresholds are bad, and what threshold to use instead. We assume that we have shared

randomness so Alice knows all of the thresholds that will be chosen by Bob (note heavy-recovery

is hard, even in the presence of shared randomness, so the lower bound is sufficient with shared

randomness). Now, Alice can tell for which executions there the threshold chosen will be too close

to the likelihood of an element. So, Alice will send approximately 𝑛/
√︀

𝑘𝑠/𝑛 additional pieces of

information: telling Bob where the chosen thresholds are bad, and what threshold to use instead.

By doing so, Alice has guaranteed that a path independent of her messages will be taken.

To recap, idea 1 is to use the threshold technique so that with probability 1 − 1/
√︀
𝑘𝑠/𝑛 what

Bob does doesn’t depend on Alice’s messages (only on her input). Idea 2 is to have Alice tell Bob

where these 1/
√︀

𝑘𝑠/𝑛 bad situations are, and how to fix them.

The total amount of information Alice sends (ignoring logs) is Θ̃(𝑘𝑏 + 𝑛/
√︀

𝑘𝑠/𝑛), (where 𝑏 is

the message size we are assuming exists for pseudo-deterministically finding a shared element, and

k is the number of messages Alice sends). The factor 𝑛/
√︀
𝑘𝑠/𝑛 follows since 1/

√︀
𝑘𝑠/𝑛 of the times,

short messages will be sent to Bob due to a different threshold. A threshold requires log 𝑛 bits

to describe, which can be dropped since we are ignoring log factors. Setting 𝑛/𝑠 ≪ 𝑘 ≪ 𝑛/𝑏, we

conclude that Alice sends a total of 𝑜(𝑛) bits. This establishes a contradiction, since we need Θ̃(𝑛)

bits to solve One-Way-Partial-Recovery. So, whenever 𝑠 = 𝜔̃(𝑏), we can pick a 𝑘 such that we

get a contradiction.

Proof. Below we write the full reduction written out as an algorithm for One-Way-Find-Duplicate.

• Alice Creates 𝑘 = 𝑛/
√
𝑠𝑏 messages for One-Way-Find-Duplicate, and sends them to Bob

(Call these messages of type A).

• Additionally, Alice looks at the thresholds in the shared randomness. every time there is a

threshold that is close (within
√︀

𝑘𝑠/𝑛 log2 𝑘𝑠/𝑛) of the expected number of times a certain 𝑦

will be outputted on the corresponding input (that is, for each fake input Bob will try, Alice

checks if the probability of outputting some 𝑦 is close to 𝑇 – to be precise, say she checks if

67

its probability of being outputted, assuming a randomly chosen message by Alice, is close to

𝑇), she sends a message to Bob informing him about the bad threshold, and suggests a good

threshold to be used instead (call these messages of type B). Notice that these messages do

not depend on the messages of type A that Alice sends, and that each such message is of size

𝑂(log 𝑛).

• Bob sets 𝐵 to be the simulated input {1, ..., 𝑛}

• Bob uses each of the messages of type 𝐴 that Alice sent, along with 𝐵, to construct a list of

outputs.

• Bob looks at the shared randomness to find a threshold 𝑇 (if Alice has informed him it is a

bad threshold, use the threshold Alice suggests instead), and consider the lexicographically

minimal output y that is contained in the multiset more than 𝑇 times.

• Bob removes 𝑦 from the fake input and repeat the last three steps of the algorithm (this time

using a new threshold).

Claim 5. The above protocol solves One-Way-Partial-Recoverywith high probability using 𝑜(𝑛)

bits.

Proof. First we show that the total number of bits communicated is 𝑜(𝑛). Notice that the total

number of messages of type 𝐴 that are sent is 𝑛/
√
𝑠𝑏. We assume that each of these is of size at

most 𝑏, giving us a total of 𝑛
√
𝑏/
√
𝑠 bits sent in messages of type 𝐴. Under the assumption that

𝑏 = 𝑜(𝑛), we see that this is 𝑜(𝑛) total bits for messages of type 𝐴.

We now count the total number of bits communicated in messages of type 𝐵. Each message of

type 𝐵 is of size 𝑂(log 𝑛) (it is describing a single element, and a number corresponding to which

execution the message is relevant for, each requiring 𝑂(log 𝑛) bits). So, we wish to show that with

high probability the total number of messages of type 𝐵 is 𝑜(𝑛). The total number of messages

of type 𝐵 that will be sent is 𝑂(𝑛√
𝑘𝑠/𝑛

), since for every input, the probability that the randomly

chosen threshold (which is sampled using public randomness) is more than
√︀
𝑘𝑠/𝑛 log2 𝑘𝑠/𝑛 away

from the frequency of every output is 𝑂(1√
𝑘𝑠/𝑛

). Note that 𝑛√
𝑘𝑠/𝑛

= 𝑜(𝑛) since 𝑘𝑠 = 𝑛
√︀

𝑠
𝑏 , and we

assume 𝑏 = 𝑜(𝑠).

68

We are now left to show the protocol correctly solves One-Way-Partial-Recovery with high

probability. We will first show that, after fixing Alice’s input and the public randomness, with high

probability there will be a single sequence of inputs that Bob will try that will occur with high

probability (that is, there is a sequence of 𝑦’s that Bob goes through with high probability). To

do this, consider a certain input that Bob tries. We will bound the probability that there are two

values 𝑦 and 𝑦′ such that both 𝑦 and 𝑦′ have probability at least 1
𝑛 of being outputted. Suppose

there exists two such 𝑦 and 𝑦′ that means that at least one of them (say 𝑦, without loss of generality)

has to be the output of more than 𝑇 of the 𝑘 executions with probability more than 1
𝑛 , but less

than 𝑛−1
𝑛 . Additionally, we know that the expected number of times that 𝑦 will be outputted of

the 𝑘 times is more than
√︀
𝑘𝑠/𝑛 log2 𝑘𝑠/𝑛 away from 𝑇 (otherwise Alice will pick a different value

of 𝑇 such that this will be true, and send that value to Bob in a message of type 𝐵). However, the

probability of being more than
√︀

𝑘𝑠/𝑛 log2 𝑘𝑠/𝑛 = Θ(
(︀
𝑠
𝑏

)︀1/4
log2 𝑠/𝑏) = Θ(𝑛𝜀/4 log2 𝑛) away from

the expectation, by a Chernoff bound, is (asymptotically) less than 1
𝑛 .

Notice also, that by the assumption that the algorithm in 𝑛/𝑠-concentrated, there will always

be an output 𝑦max which is expected to appear at least 𝑠
𝑛 of the time. Also, since the threshold

𝑇 is at most 𝑘𝑠/2𝑛, the probability that 𝑦max appeared fewer than 𝑇 times is exponentially low

in 𝑘𝑠/𝑛 =
√︀
𝑠/𝑏 = Θ̃(𝑛𝜖/2), and so with high probability there will always exist a 𝑦 which was

outputted on more than 𝑇 of the executions, so in the second to last step, the multiset will always

have an element that appears at least 𝑇1 times.

Hence, by a union bound over all inputs that Bob tries, with high probability there will be a

single sequence of inputs which Bob goes through (which depends only only on the public thresholds

and Alice’s input).

We will show that each 𝑦 generated by Bob is an element in Alice’s input with high probability.

Notice that the 𝑦 that Bob picks has appeared more than 𝑇 times out of 𝑘, where 𝑇 is at least

𝑘𝑠/(4𝑛). If 𝑦 is not a valid output then its probability of being outputted is 1
𝑛2 . The probability it

is outputted at least once is at most 𝑘
𝑛2 ≤ 1

𝑛 . Taking a union bound over the inputs that Bob tries

(of which there are 𝑛/10), we get that the probability that there is an invalid 𝑦 at any point is at

most 1/10. So, with probability 9/10, no invalid 𝑦 is ever outputted.

69

4.5 Entropy lower bounds for finding a support element

Consider the turnstile model of streaming, where a vector 𝑧 ∈ R𝑛 starts out as 0 and receives updates

of the form ‘increment 𝑧𝑖 by 1’ or ‘decrement 𝑧𝑖 by 1’, and the goal of outputting a nonzero coordinate

of 𝑧. This is a well studied problem and a common randomized algorithm to solve this problem in

a small amount of space is known as ℓ0 sampling [FIS08]. ℓ0 sampling uses polylogarithmic space

and outputs a uniformly random coordinate from the support of 𝑧. A natural question one could

ask is whether the output of any low space randomized algorithm is necessarily close to uniform,

i.e., has high entropy. We answer this affirmatively and show a nearly tight tradeoff between the

space needed to solve this problem and the entropy of the output of a randomized algorithm under

the assumption that the algorithm is not allowed to output anything outside the support2

Theorem 4.5.1. Every zero-error randomized algorithm for Find-Support-Elem that is 𝑛
𝑠 -

concentrated must use Ω
(︁

𝑠
log𝑛

)︁
space.

We only provide a sketch of the proof and omit details since they are nearly identical to the

proof of Theorem 4.4.1.

Proof Sketch. Let 𝒜 be such an algorithm that uses 𝑇 space. Just like the proof of Theorem 4.4.1,

the way we show this lower bound is by illustrating that 𝒜 can be used to obtain an 𝑂
(︁
𝑇𝑛 log𝑛

𝑠

)︁
-

communication protocol for One-Way-Partial-Recovery, which combined with Claim 3 yields

the desired result.

For every element 𝑎 in Alice’s input set 𝐴, she streams ‘increment 𝑧𝑎 by 1’ and runs Θ
(︀
𝑛
𝑠 log 𝑛

)︀
independent copies of 𝒜 on the input. She then sends the states of each these independent runs of

𝒜 to Bob, which is at most 𝑇𝑛 log𝑛
𝑠 bits, to Bob. Bob maintains a set of states ℳ, initially filled

with all of Alice’s messages. While he has not yet recovered 𝑛/10 elements, Bob picks a message

𝑀 ∈ℳ and recovers 𝑥 in 𝐴 using algorithm 𝒜. And for each 𝑀 ∈ℳ, Bob resumes 𝒜 on state 𝑀

and streams ‘decrement 𝑧𝑥 by 1’ and adds the new state toℳ, and deletes 𝑀 fromℳ.

The proof of correctness for why Bob indeed eventually recovers 𝑛/10 elements of 𝐴 is identical

to that in the proof of Theorem 4.4.1, thus giving a protocol for One-Way-Partial-Recovery and

proving the statement.
2We note that using similar ideas to those in Subsection 4.4.1, the zero error requirement could be removed. We

omit this adaptation since it is very similar to that of Subsection 4.4.1.

70

We can immediately conclude the following.

Corollary 4.5.2. Any zero-error log
(︀
𝑛
𝑠

)︀
-entropy randomized algorithm for Find-Support-Elem must

use Ω
(︁

𝑠
log𝑛

)︁
space.

Corollary 4.5.3. Any zero-error 𝑂
(︀
𝑛
𝑠

)︀
-pseudo-deterministic algorithm for Find-Support-Elem must

use Ω
(︁

𝑠
log𝑛

)︁
space.

This lower bound is also tight up to polylogarithmic factors due to an algorithm nearly identical

to the one from Theorem 4.4.4. In particular, we have:

Theorem 4.5.4. For all 𝑠, there exists a zero-error randomized algorithm for Find-Duplicate us-

ing 𝑂(𝑠) space that is 𝑂
(︀
𝑛
𝑠

)︀
-concentrated.

4.6 Space complexity of pseudo-deterministic ℓ2-norm estimation

In this section, we once again consider the pseudo-deterministic complexity of ℓ2 norm estimation in

the sketching model. The algorithmic question here is to design a distribution 𝒟 over 𝑠×𝑛 matrices

along with a function 𝑓 : R𝑠 → R so that for any 𝑥 ∈ R𝑛:

Pr
𝑆∼𝒟

[𝑓(𝑆𝑥) ̸∈
[︂
1

𝛼
‖𝑥‖2, 𝛼‖𝑥‖2

]︂
≤ 1

poly(𝑛)
.

Further, we want 𝑓(𝑆𝑥) to be a pseudo-deterministic function; i.e., we want 𝑓(𝑆𝑥) to be a unique

number with high probability.

Theorem 4.6.1. The pseudo-deterministic sketching complexity of ℓ2 norm estimation is Ω(𝑛).

The following query problem is key to our lower bound.

Definition 4.6.2 (ℓ2 adaptive attack). Let 𝛼 > 0 be some constant. Let 𝑆 be an 𝑠 × 𝑛 matrix

with real-valued entries and 𝑓 : R𝑠 → R be some function. Now, consider the query model where

an algorithm is allowed to specify a vector 𝑥 ∈ R𝑛 as a query and is given 𝑓(𝑆𝑥) as a response. The

goal of the algorithm is to output 𝑦 such that

𝑓(𝑆𝑦) /∈
[︂
1

𝛼
‖𝑦‖2, 𝛼‖𝑦‖2

]︂

in as few queries as possible. We call this algorithmic problem the ℓ2-adaptive attack problem.

71

We use a theorem on adaptive attacks on ℓ2 sketches proved in [HW13].

Theorem 4.6.3. There is a poly(𝑛)-query protocol to solve the ℓ2 adaptive attack problem with

probability at least 9/10, i.e., the problem in Definition 4.6.2 when 𝑠 = 𝑜(𝑛).

We remark that there is an analogous theorem to Theorem 4.6.3 that applies to the ℓ2 heavy hit-

ters (i.e., compressed sensing) problem, so it is likely that one can also prove a pseudo-deterministic

lower bound for the heavy hitters problem in an analogous way.

Proof of Theorem 4.6.1. Suppose 𝒟 is a distribution over 𝑠×𝑛 sketching matrices and 𝑓 is a function

mapping R𝑠 to R with the property that the pair (𝒟, 𝑓) gives a pseudo-deterministic sketching

algorithm for ℓ2 norm estimation. Henceforth, we use 𝑆 to denote a random matrix sampled from

𝒟. Then there is a function 𝑔 : R𝑛 → R such that:

1. 𝑔 is an 𝛼-approximation of the ℓ2 norm.

2. On every input 𝑥, 𝑓(𝑆𝑥) = 𝑔(𝑥) with probability at least 1− 1
𝑛𝑐 for some constant 𝑐.

We will show that 𝑠 must be Ω(𝑛) by deducing a contradiction when 𝑘 = 𝑜(𝑛). Let 𝑟 be a

parameter to be chosen later. Let 𝑥(1),𝑥(2), . . . ,𝑥(𝑟) be the (random) sequence of vectors in R𝑛

obtained by the adaptive query protocol from Theorem 4.6.3 based on responses 𝑔(𝑥(0)), . . . , 𝑔(𝑥(𝑟))

where 𝑟 = poly(𝑛), and let 𝑦 be the (random) output of the protocol. Note that the guarantee

that 𝑟 = poly(𝑛) hinges on assuming 𝑠 = 𝑜(𝑛). From the guarantees of Theorem 4.6.3, for any

fixed matrix 𝐵 and function ℎ such that ℎ(𝐵𝑥(𝑖)) = 𝑔(𝑥(𝑖)) for all 𝑖, it is true with probability

at least 9/10 that ℎ(𝐵𝑦) ̸= 𝑔(𝑦). On the other hand, for any sequence of 𝑟 + 2 fixed vectors

𝑣0, . . . , 𝑣𝑟+1, 𝑓(𝑆𝑣𝑖) = 𝑔(𝑣𝑖) for all 𝑖 with probability at least 1− 1
poly(𝑛) . Call the event {𝑓(𝑆𝑥(0)) =

𝑔(𝑥(0)), . . . , 𝑓(𝑆𝑥(𝑟)) = 𝑔(𝑥(𝑟)), 𝑓(𝑆𝑦) = 𝑔(𝑦)} as ℰ . Let 𝑝𝑆 be the probability density function of

𝑆 and let 𝑝𝑇 be the probability density function of (𝑥(0), . . . ,𝑥(𝑟),𝑦). This results in the following

two estimates of Pr[ℰ].

On the one hand,

Pr[ℰ] =
∫︁
𝑆
Pr[ℰ|𝑆]𝑝𝑆(𝑆)

≤
∫︁
𝑆

1

10
𝑝𝑆(𝑆)

=
1

10
,

72

and on the other hand,

Pr[ℰ] =
∫︁
𝑥(0),...,𝑥(𝑟),𝑦

Pr[ℰ|𝑥(0), . . . ,𝑥(𝑟),𝑦]𝑝𝑇 (𝑥
(0), . . . ,𝑥(𝑟),𝑦)

≥
∫︁
𝑥(0),...,𝑥(𝑟),𝑦

(︂
1− 1

poly(𝑛)

)︂
𝑝𝑇 (𝑥

(0), . . . ,𝑥(𝑟),𝑦)

= 1− 1

poly(𝑛)
.

The contradiction arises since Pr[ℰ] cannot simultaneously be at least 1 − 1
poly(𝑛) and at most

1
10 , and hence 𝑠 cannot be 𝑜(𝑛).

Corollary 4.6.4. For any constant 𝛿 > 0, any (2− 𝛿)-concentrated sketching algorithm that where

the sketching matrix is 𝑠×𝑛 can be turned into a pseudo-deterministic one by running log 𝑛 indepen-

dent copies of the sketch and outputting the majority answer. Thus, as an upshot of Theorem 4.6.1

we obtain a lower bound of Ω
(︁

𝑛
log𝑛

)︁
on (2 − 𝛿)-concentrated algorithms for pseudo-deterministic

ℓ2-norm estimation in the sketching model.

In contrast to Corollary 4.6.4 which says that (2− 𝛿)-concentrated algorithms for ℓ2 estimation

in the sketching model need near linear dimension, we show that there is an 𝑂(poly log 𝑛)-dimension

(2 + 𝛿)-concentrated sketching algorithm to solve the problem, thus exhibiting a ‘phase transition’.

Theorem 4.6.5. There is a distribution 𝒟 over 𝑠×𝑛 matrices and a function 𝑓 : R𝑠 → R when 𝑠 =

𝑂(poly log 𝑛) For every constant 𝛿 > 0, there is an 𝑂(poly(log𝑛, log𝑚))-space (2+ 𝛿)-concentrated

sketching algorithm for ℓ2-norm estimation.

Proof. Let the true ℓ2 norm of the input vector be 𝑟. Run the classic sketching algorithm of [AMS99]

for randomized ℓ2 norm estimation with error min{1/220, 𝜀4} and failure probability 1
poly(𝑛) where

(1 + 𝜀) is the desired approximation ratio. This uses a sketch of dimension 𝑂(poly log 𝑛). Now, we

describe the function 𝑓 we use. Take the output of the sketching algorithm of [AMS99] and return

the number obtained by zeroing out all its bits beyond the first max{2 log
(︀
1
𝜀

)︀
, 5} significant bits.3

First, the outputted number is a (1 + 𝜀) approximation. Further, for each input, the output is one

of two candidates with probability 1− 1
poly(𝑛) > 1− 𝛿 for every constant 𝛿. This is because [AMS99]

3The parameters 1/220, 5 and 𝜀4 are chosen purely for safety reasons

73

produces a (1 + 𝜀4)-approximation to 𝑟, and there are only two candidates for the 2 log
(︀
1
𝜀

)︀
most

significant bits of any real number that lies in an interval [(1− 𝜀4)𝑟, (1 + 𝜀4)𝑟].

4.7 Pseudo-deterministic Upper Bounds

4.7.1 Finding a nonzero row

Given updates to an 𝑛×𝑑 matrix 𝐴 (where we assume 𝑑 ≤ 𝑛) that is initially 0 in a turnstile stream

such that all entries of 𝐴 are always in range [−𝑛3, 𝑛3], the problem Find-Nonzero-Row is to

either output an index 𝑖 such that the 𝑖th row of 𝐴 is nonzero, or output none if 𝐴 is the zero

matrix.

Theorem 4.7.1. The randomized space complexity for Find-Nonzero-Row is ̃︀Θ(1), the pseudo-

deterministic space complexity for Find-Nonzero-Row is ̃︀Θ(𝑛), and the deterministic space com-

plexity for Find-Nonzero-Row is ̃︀Θ(𝑛𝑑).

Proof. We first will show a randomized ̃︀Θ(1) space algorithm for the problem, then we will show

pseudo-deterministic upper and lower bounds, and then show the deterministic lower bound.

Randomized algorithm for Find-Nonzero-Row. A randomized algorithm for this problem

is given below. Note that the version of the algorithm as stated below does not have the desirablẽ︀𝑂(1) space guarantee, but we will show how to use a pseudorandom generator of Nisan [Nis92] to

convert the below algorithm to one that uses low space.

1. Sample a random 𝑑-dimensional vector 𝑥 where each entry is an independently drawn integer

in [−𝑛3, 𝑛3] and store it.

2. Simulate a turnstile stream which maintains 𝐴𝑥. In particular, consider the 𝑛-dimensional

vector 𝑦, which is initially 0, and for each update to 𝐴 of the form “add Δ to 𝐴𝑖𝑗”, add Δ𝑥𝑗 to

𝑦𝑖. We run an ℓ0-sampling algorithm [FIS08] on this simulated stream updating 𝑦, and return

the output of the ℓ0-sampler, which is close in total variation distance to a uniformly random

element in the support of 𝑦.

In the above algorithm, step 1 is not low-space as stated. Before we give a way to perform step 1

in ̃︀𝑂(1) space, we prove the correctness of the above algorithm. Suppose 𝐴𝑖 is a nonzero row of

74

𝐴, then let 𝑗 be an index where 𝐴𝑖 is nonzero. Suppose all coordinates of 𝑥 except for the 𝑗-th

coordinate have been sampled, there is at most one value 𝐶 for 𝑥𝑗 for which ⟨𝐴𝑖,𝑥⟩ is 0, and there

is at most a 1/𝑛3 probability that 𝑥𝑗 equals 𝐶, which means if 𝑖 is a nonzero row, then (𝐴𝑥)𝑖 is

nonzero except with probability at most 1/𝑛3. In fact, by taking a union bound over all nonzero

rows we can conclude that the set of nonzero rows and the set of nonzero indices of 𝐴𝑥 are exactly

the same, except with probability bounded by 1/𝑛2.

Now we turn our attention to implementing step 1 in low space. Towards doing so we use Nisan’s

pseudorandom generator for space bounded computation in a very similar manner to [Ind06].

Instead of sampling 3𝑑 log 𝑛 + 1 bits to store 𝑥, we sample and store a uniformly random seed

𝑤 of length 𝑂(poly log(𝑛, 𝑑)) and add Δ𝐺(𝑤)𝑗 to 𝑦𝑖 when an update “add Δ to 𝐴𝑖𝑗” is received,

where 𝐺 is the function from Theorem 4.2.3 that maps the random seed to a sequence 3𝑑 log 𝑛+ 1

bits. To prove the algorithm is still correct if we use the pseudorandom vector 𝐺(𝑤) instead of the

uniformly random vector 𝑥, we must show that when 𝐴𝑖 is nonzero, then ⟨𝐴𝑖, 𝐺(𝑤)⟩ is nonzero

with probability at least 1 − 𝑂(1/𝑛3). Towards this, for a fixed 𝑑-dimensional vector 𝑞, consider

the following finite state machine. The states are labeled by pairs (𝑖, 𝑎) where 𝑖 is in {0, 1, . . . , 𝑑}

and 𝑎 is in [−𝑛6𝑑, 𝑛6𝑑]. The FSM takes a 𝑑-dimensional vector 𝑟 as input, starts at state (0, 0),

and transitions from state (𝑖, 𝑎) to (𝑖 + 1, 𝑎 + 𝑞𝑖+1 · 𝑟𝑖+1) until it reaches a state (𝑑, ℓ). The FSM

then outputs ℓ. This establishes that for a fixed 𝑞, the function 𝑓(𝑥) := ⟨𝑞, 𝑥⟩ is computable by

an FSM on poly(𝑑, 𝑛) states, and hence from Theorem 4.2.3, 𝑓(𝑥) and 𝑓(𝐺(𝑤)) are 1/𝑑𝑛6 close in

total variation distance, which means when 𝐴𝑖 is nonzero, then ⟨𝐴𝑖, 𝐺(𝑤)⟩ is nonzero except with

probability bounded by 𝑂(1/𝑛3).

A pseudo-deterministic algorithm and lower bound for Find-Nonzero-Row The pseudo-

deterministic algorithm is very similar to the randomized algorithm from the previous section.

1. Sample a random 𝑑-dimensional vector 𝑥 where each entry is an independently drawn integer

in [−𝑛3, 𝑛3]. Store 𝑥 and maintain 𝐴𝑥.

2. Output the smallest index 𝑖 such that (𝐴𝑥)𝑖 is nonzero.

Storing 𝑥 takes 𝑂(𝑑 log 𝑛) space, and maintaining 𝐴𝑥 takes 𝑂(𝑛 log 𝑛) space. Recall from the

discussion surrounding the randomized algorithm that the set of nonzero indices of 𝐴𝑥 and the set

of nonzero rows were equal with probability 1 − 1/𝑛2, which establishes correctness of the above

75

pseudo-deterministic algorithm. The space complexity is thus 𝑂((𝑑 + 𝑛) log 𝑛), which is equal to

𝑂(𝑛 log 𝑛) from the assumption that 𝑑 ≤ 𝑛.

A pseudo-deterministic lower bound of ̃︀Ω(𝑛) follows immediately from Corollary 4.5.3 since

Find-Nonzero-Row specialized to the 𝑑 = 1 case is the same as Find-Support-Elem.

Lower Bound for deterministic algorithms. An Ω(𝑛𝑑 log 𝑛) bit space lower bound for deter-

ministic algorithms follows from a reduction to the communication complexity problem of Equal-

ity. Alice and Bob are each given 𝑛𝑑 log 𝑛 bit strings as input, which they interpret as 𝑛 × 𝑑

matrices, 𝐴 and 𝐵 respectively, where each entry is a chunk of length log 𝑛. Suppose a determinis-

tic algorithm 𝒜 takes 𝑆 bits of space to solve this problem. We will show that this can be converted

to a 𝑆-bit communication protocol to solve Equality. Alice runs 𝒜 on a turnstile stream updating

matrix 𝑋 initialized at 0 by adding 𝐴𝑖𝑗 to 𝑋𝑖𝑗 for all (𝑖, 𝑗) in [𝑛] × [𝑑]. Alice then sends the 𝑆

bits corresponding to the state of the algorithm to Bob and he continues running 𝒜 on the updates

‘add −𝐵𝑖𝑗 to 𝑋𝑖𝑗 ’. 𝒜 outputs none if and only if 𝐴 = 𝐵 and thus Bob outputs the answer to

Equality depending on the output of 𝒜. Due to a communication complexity lower bound of

Ω(𝑛𝑑 log 𝑛) on Equality, 𝑆 must be Ω(𝑛𝑑 log 𝑛).

4.7.2 Point Query Estimation and Inner Product Estimation

In this section, we give pseudo-deterministic algorithms that beat the deterministic lower bounds

for two closely related streaming problems — point query estimation and inner product estimation.

Point Query Estimation. Given a parameter 𝜀 and a stream of 𝑚 elements where each element

comes from a universe [𝑛], followed by a query 𝑖 ∈ [𝑛], output 𝑓 ′
𝑖 such that |𝑓𝑖 − 𝑓 ′

𝑖 | ≤ 𝜀𝑚 where 𝑓𝑖

is the frequency of element 𝑖 in the stream.

Inner Product Estimation. Given a parameter 𝜀 and a stream of 𝑚 updates to (initially 0-

valued) 𝑛-dimensional vectors 𝑥 and 𝑦 in an insertion-only stream4, output estimate 𝑒 satisfying

|𝑒− ⟨𝑥, 𝑦⟩| < 𝜀 · ‖𝑥‖1 · ‖𝑦‖1.

In the above problems, we will be interested in the regime where 𝑚≪ 𝑛.
4A stream where only increments by positive numbers are promised.

76

Our main result regarding a pseudo-deterministic algorithm for point query estimation is:

Theorem 4.7.2. There is an 𝑂
(︁
log𝑚
𝜀 + log 𝑛

)︁
-space pseudo-deterministic algorithm 𝒜 for point

query estimation with the following precise guarantees. For every sequence 𝑠1, . . . , 𝑠𝑚 in [𝑛]𝑚, there

is a sequence 𝑓 ′
1, . . . , 𝑓

′
𝑛 such that

1. For all 𝑖, |𝑓 ′
𝑖 − 𝑓𝑖| ≤ 𝜀𝑚 where 𝑓𝑖 is the frequency of 𝑖 in the stream.

2. Except with probability 1/𝑚, for all 𝑖 ∈ [𝑛] 𝒜 outputs 𝑓 ′
𝑖 on query 𝑖.

We remark that the deterministic complexity of the problem is Ω(log𝑛𝜀 (see Theorem 4.7.7).

Towards establishing Theorem 4.7.2, we recall two facts.

Theorem 4.7.3 (Misra–Gries algorithm [MG82]). Given a parameter 𝜀 and a length-𝑚 stream

of elements in {1, . . . , 𝑑}, there is a deterministic 𝑂
(︁
log 𝑑+log𝑚

𝜀

)︁
-space algorithm that given any

query 𝑠 ∈ [𝑑], outputs 𝑓 ′
𝑠 such that |𝑓 ′

𝑠 − 𝑓𝑠| ≤ 𝜀𝑚 where 𝑓𝑠 is the number of occurrences of 𝑠 in

the stream. An additional guarantee that the algorithm satisfies is the following, which we call

permutation invariance. Consider the stream

𝑠1, 𝑠2, . . . , 𝑠𝑚

and for any permutation 𝜋 : [𝑑]→ [𝑑], consider the stream

𝜋(𝑠1), 𝜋(𝑠2), . . . , 𝜋(𝑠𝑚).

When the algorithm is given the first stream as input, let 𝑓 ′
𝑠 denote its output on query 𝑠, and when

the algorithm is given the second stream as input, let 𝑔′𝜋(𝑠) denote its output on query 𝜋(𝑠). The

algorithm has the guarantee that 𝑓 ′
𝑠 = 𝑔′𝜋(𝑠).

Theorem 4.7.4 (Pairwise independent hashing, [V+12, Corollary 3.34]). Assume 𝑑≪ 𝑛. There is

a pairwise independent hash function ℎ : [𝑛] → [𝑑], which can be sampled using 𝑂(log 𝑛) random

bits and also can be stored in 𝑂(log 𝑛) bits.

Proof of Theorem 4.7.2. The algorithm is as follows.

• Sample a random pairwise independent hash function ℎ : [𝑛] → [𝑚3], which can be sampled

and stored in 𝑂(log 𝑛) bits.

77

• Run the Misra–Gries algorithm with the following simulated stream as input: for each 𝑠

streamed as input, stream ℎ(𝑠) to the simulation.

• Given any query 𝑠, perform query ℎ(𝑠) to the Misra–Gries algorithm running on the simulated

stream, and return its output.

Let 𝑆 be the collection of elements of [𝑛] that occur in the input stream 𝑠1, . . . , 𝑠𝑚. Assuming ℎ

maps 𝑆 into [𝑚3] without any collisions5, it follows from the permutation invariance property of

the Misra–Gries algorithm from Theorem 4.7.3 the output of the above algorithm on any query 𝑞

is equal to 𝐹 (𝑠1, . . . , 𝑠𝑚, 𝑞) for a fixed function 𝐹 . Thus if we show that ℎ indeed maps 𝑆 into [𝑚3]

injectively pseudo-determinism of the given algorithm would follow.

Given 𝑖, 𝑗 ∈ 𝑆, due to pairwise independence of ℎ, the probability that ℎ(𝑖) = ℎ(𝑗) is equal to

1/𝑚3. A union bound over all pairs of elements in 𝑆 tells us that ℎ is collision-free except with

probability at most 1/𝑚, which implies that the above algorithm is indeed pseudo-deterministic.

Theorem 4.7.5. There is a (weakly) pseudo-deterministic algorithm for inner product estimation

that uses 𝑂
(︁
log𝑚
𝜀 + log 𝑛

)︁
space.

The algorithm for inner product estimation is based on point query estimation, and towards

stating the algorithm we first state a known result that helps relate the two problems.

Lemma 4.7.6 (Easily extracted from the proof of [NNW14, Theorem 1]). Let 𝑥, 𝑦, 𝑥′, 𝑦′ be vectors

such that ‖𝑥 − 𝑥′‖∞ ≤ 𝜀‖𝑥‖1 and ‖𝑦 − 𝑦′‖∞ ≤ 𝜀‖𝑦‖1. Now, let 𝑥′′ (and respectively 𝑦′′) denote 𝑥′

with everything except the maximum 1/𝜀 entries zeroed out. Then the following holds:

|⟨𝑥′′, 𝑦′′⟩ − ⟨𝑥, 𝑦⟩| ≤ 𝜀 · ‖𝑥‖1 · ‖𝑦‖1.

Proof of Theorem 4.7.5. Given a stream of updates to 𝑥 and 𝑦, run two instances of the point query

estimation algorithm from Theorem 4.7.2 — one for updates to 𝑥 and one for updates to 𝑦. There

are 𝑥′ and 𝑦′ that only depend on the stream such that

‖𝑥− 𝑥′‖∞ ≤ 𝜀 · ‖𝑥‖1 and ‖𝑦 − 𝑦′‖∞ ≤ 𝜀 · ‖𝑦‖1
5I.e. the restriction of ℎ to domain 𝑆 is an injective function.

78

and except with probability 𝑂(1/𝑚) both point query algorithms respond to any query 𝑖 with 𝑥′𝑖

(and 𝑦′𝑖 respectively). Maintaining these two instances takes 𝑂
(︁
log𝑚
𝜀 + log 𝑛

)︁
space.

Next, enumerate over elements of [𝑛] and for each 𝑖 ∈ [𝑛] query both instances with 𝑖, and

store the running max-1/𝜀 answers to queries to each instance along with the hashed identities of

the indices of entries that are part of the running max. Storing the running max takes 𝑂
(︁
log𝑚
𝜀

)︁
space, and storing a counter to enumerate over [𝑛] takes log 𝑛 space. Thus, at the end of this

routine, except with probability 𝑂(1/𝑚) our two lists are equal to (𝑥′𝑖1 , ℎ(𝑖1)), . . . , (𝑥
′
𝑖1/𝜀

, ℎ(𝑖1/𝜀))

and (𝑦′𝑗1 , ℎ(𝑗1)), . . . , (𝑦
′
𝑗1/𝜀

, ℎ(𝑗1/𝜀)) respectively where 𝑥′𝑖1 , . . . , 𝑥𝑖1/𝜀 are the max-1/𝜀 entries of 𝑥′ and

𝑦′𝑗1 , . . . , 𝑦𝑗1/𝜀 are the max-1/𝜀 entries of 𝑦′.

Finally, if there is 𝑡, 𝑢 such that ℎ(𝑖𝑡) = ℎ(𝑖𝑢) or ℎ(𝑗𝑡) = ℎ(𝑗𝑢), return ‘fail’; otherwise output

∑︁
ℓ∈{ℎ(𝑖𝑡)}𝑡=1,...,1/𝜀∩{ℎ(𝑗𝑡)}𝑡=1,...,1/𝜀

𝑥′ℓ𝑦
′
ℓ.

With probability at least 1 − 2/𝑚, the above quantity is equal to ⟨𝑥′′, 𝑦′′⟩ from Lemma 4.7.6,

which lets us conclude via Lemma 4.7.6 that the output is within 𝜀 · ‖𝑥‖1 · ‖𝑦‖1 of the true inner

product.

Finally, we remark that the following lower bounds can be proved for deterministic algorithms.

Theorem 4.7.7. Any deterministic algorithm for point query estimation and inner product esti-

mation needs Ω
(︁
log𝑛
𝜀

)︁
space.

Proof. We prove a lower bound for point query estimation via a reduction from Equalityin com-

munication complexity. Alice encodes a log
(︀

𝑛
1/(3𝜀)

)︀
bit string as a subset 𝑆 of [𝑛] of size 1/(3𝜀) and

runs the point query streaming algorithm on the input where she streams each element of this subset

3𝜀𝑚 times. She then sends the state of the algorithm to Bob, who can query every index in the

universe and learn 𝑆 (the element corresponding to the query is in 𝑆 if and only if the response to

the query is at least 2𝜀 ·𝑚), decode 𝑆 back to a log
(︀

𝑛
1/(3𝜀)

)︀
and check if it is equal to his own input.

The space lower bound from the theorem statement then follows since log
(︀

𝑛
1/(3𝜀)

)︀
= Ω

(︁
log𝑛
𝜀

)︁
.

A space lower bound for inner product estimation follows from the lower bound for point query

estimation since the latter is a special case of the former when 𝑥 is the vector of frequencies and 𝑦

is a standard unit vector 𝑒𝑖 corresponding to query 𝑖.

79

4.7.3 Retrieving a Basis of a Row-space

We now work in a ‘mixed’ model, where an input 𝑛 × 𝑑 matrix 𝐴 of rank-≤ 𝑘 is given to us

via a sequence of updates in a turnstile stream, and each entry at all times in the stream can be

represented by an 𝑂(log 𝑛)-bit word. During this phase, there is an upper bound 𝑇 on the number

of bits of space an algorithm is allowed to use. In the “second phase”, we are allowed to perform

arbitrary computation and the goal is to output a basis for the row-span of 𝐴

We show a lower bound on 𝑇 of ̃︀Ω(𝑛𝑑) for deterministic algorithms, and a pseudo-deterministic

algorithm that uses ̃︀𝑂(poly(𝑘) · 𝑑) space in the streaming phase.

Theorem 4.7.8. Any deterministic streaming algorithm for RecoverBasis needs ̃︀Ω(𝑛𝑑) space.

Proof. Suppose the matrix 𝐴 is 0, then the algorithm would have to output the empty set. A 𝑇

space streaming algorithm for this problem could be used to solve the communication complexity

problem of equality Equality using 𝑇 bits of communication. In particular, Alice and Bob could

encode their respective inputs 𝑥 and 𝑦 as matrices 𝑀𝑥 and 𝑀𝑦. Alice can then run the 𝑇 -space

algorithm on adding 𝑀𝑥 in a turnstile stream, and send Bob the state of the algorithm. Bob can

then resume running the algorithm from Alice’s state on updates that subtract 𝑀𝑦. If Bob outputs

the empty set, then 𝑥 = 𝑦 and Bob outputs ‘yes’. Otherwise, Bob outputs ‘no’.

While the deterministic complexity is ̃︀Ω(𝑛𝑑), there is a pseudo-deterministic streaming algorithm

which uses only ̃︀𝑂(poly(𝑘) + 𝑘 · 𝑑) in its streaming phase:

Theorem 4.7.9. There is a pseudo-deterministic algorithm for RecoverBasis that uses ̃︀𝑂(poly(𝑘)+

𝑘 · 𝑑) space in its streaming phase, where the ̃︀𝑂(·) hides factors of poly log 𝑛.

Towards giving a pseudo-deterministic algorithm, we first state a result about pseudorandom

matrices that is a special case of [CW09, Lemma 3.4].

Theorem 4.7.10. There is a distribution 𝒟 over 𝑚 × 𝑛 matrices where 𝑚 = 𝑂(𝑘 log 𝑛) with ±1

entries such that for any 𝑛×𝑚 matrix 𝑈 with orthonormal columns and 𝑆 ∼ 𝒟, the following holds

with probability 1− 1/poly(𝑛):

‖𝑈𝑇𝑆𝑆𝑇𝑈 − 𝐼‖2 ≤ 1/2.

Further, the rows of 𝑆 are independent and each row can be generated by a (𝑘 + log 𝑛)-wise

independent hash family.

80

Theorem 4.7.11 (𝑡-wise independent hash families [V+12, Corollary 3.34]). There is a 𝑡-wise

independent hash family ℋ of functions from [𝑛] → {±1} such that sampling a uniformly random

ℎ from ℋ can be done using a poly(log 𝑛, 𝑡)-length random seed, and ℎ(𝑥) for any 𝑥 ∈ [𝑛] can be

computed in poly(log 𝑛, 𝑡) time and space from the random seed used to sample it.

As a consequence we have:

Corollary 4.7.12. Let 𝐴 be a 𝑛×𝑑 matrix of rank 𝑘 and let 𝒟 be the distribution over 𝑂(𝑘 log 𝑛)×𝑛

matrices from the statement of Theorem 4.7.10. Then, for 𝑆 ∼ 𝒟, 𝑆𝐴 has rank 𝑘 with probability

1− 1/poly(𝑛).

Proof. We start by writing 𝐴 in its singular value decomposition 𝑈Σ𝑉 𝑇 . Since 𝐴 has rank 𝑘, 𝑈 is a

𝑛×𝑘 matrix with orthonormal columns and Σ𝑉 𝑇 surjectively maps R𝑑 to R𝑘. From Theorem 4.7.10,

𝑆𝐴 is also full rank, which means the collection of vectors

{𝑆𝐴𝑥 : 𝑥 ∈ R𝑑} = {𝑆𝑈Σ𝑉 𝑇𝑥 : 𝑥 ∈ R𝑑} = {𝑆𝑈𝑥 : 𝑥 ∈ R𝑘}

is a 𝑘-dimensional space, and hence 𝑆𝐴 has rank 𝑘.

Proof of Theorem 4.7.9. Begin by sampling 𝑆 ∼ 𝒟 via a seed 𝑠 of length 𝑂(poly(𝑘) · poly log(𝑛))

from which entries of 𝑆 can be efficiently computed where 𝒟 is the distribution over matrices given

by Corollary 4.7.12, and maintain the sketch 𝑆𝐴 in the stream.

The row-span of 𝑆𝐴 is exactly the same as that of 𝐴 assuming the two matrices have equal

rank, which happens with probability 1− 1/poly(𝑛).

𝑆𝐴 is an 𝑂(𝑘)× 𝑑 matrix and each entry is a signed combination of at most 𝑛 entries of 𝐴 and

hence there is a bit complexity bound of ̃︀𝑂(𝑘𝑑) on the space used to store 𝑆𝐴.

In the second phase (i.e., after the stream is over) of the algorithm, we first find an orthonormal

basis 𝑄 for the row-span of 𝑆𝐴 and compute ̃︀Π𝐴 = 𝑄𝑄𝑇 . And finally, use a deterministic algorithm

to compute the singular value decomposition ̃︀𝑈Σ̃︀𝑉 𝑇 of ̃︀Π𝐴 and output the rows of ̃︀𝑉 𝑇 .

The row-span of 𝑆𝐴 and 𝐴 are equal except with probability 1/poly(𝑛); assuming this happens,̃︀Π𝐴 is exactly equal to Π𝐴, the unique projection matrix onto the row-span of 𝐴. Write Π𝐴 in

its singular value decomposition 𝑈Σ𝑉 𝑇 . If ̃︀Π𝐴 = Π𝐴, ̃︀𝑉 𝑇 is exactly equal to 𝑉 𝑇 . Since 𝑉 𝑇 is

given by a deterministic function of 𝐴, and the output of the algorithm ̃︀𝑉 is equal to 𝑉 𝑇 with high

probability, our algorithm is pseudo-deterministic.

81

Chapter 5

Lower Bound for Pseudo-Deterministic

Approximate Counting

This section is based on joint work with Meghal Gupta and Mark Sellke [GGS23].

5.1 Introduction

The study of streaming algorithms originated with the seminal paper of Morris [Mor78], which gave

a low-memory randomized algorithm to approximately count a number of elements which arrive

online in a stream. Roughly speaking, the idea is to have a counter which approximates log 𝑛,

where 𝑛 is the number of elements seen in the stream so far. Each time the algorithm encounters

an element from the stream, it increases the counter with probability about 1
𝑛 . As later proved

by [Fla85], Morris’s algorithm achieves a constant-factor approximation error for streams of length

at most 𝑁 in space 𝑂(log log𝑁).

Morris’s algorithm has the property that running it multiple times on the same stream may result

in different approximations. That is, if Alice runs the algorithm on the same stream as Bob (but

using different randomness), Alice may get some approximation (such as 230), and Bob (running

the same algorithm but with independent randomness) may get a different approximation (such as

229). Is this behavior inherent? That is, could there exist a low-space algorithm which, while being

randomized, for all streams with high probability both Alice and Bob will end up with the same

approximation for the length? Such algorithms, namely those which output the same output with

82

high probability when run multiple times on the same input, are called pseudo-deterministic.

This question of the pseudo-deterministic space complexity of approximate counting in a stream

was first posed in [GGMW20]. Our main result fully resolves the problem by giving a tight Ω(log𝑁)

lower bound. In fact, our lower bound applies for an easier threshold version of the problem asking

to distinguish between streams of length at most 𝑁 versus at least 𝑀 for any integers 𝑁 < 𝑀 .

Moreover, it depends only on 𝑁 , i.e. the problem is hard even when 𝑀 is arbitrarily larger than 𝑁 .

Theorem 5.1.1 (Informal). For any 𝑁 < 𝑀 , a pseudo-deterministic streaming algorithm to dis-

tinguish between streams of length at most 𝑁 and at least 𝑀 must use Ω(log𝑁) space.

Concurrently, [BKKS23] showed a non-trivial Ω(
√︀

log 𝑛/ log log 𝑛) space lower bound for this prob-

lem using different techniques.

5.1.1 Related Work

Prior Work on Approximate Counting in a Stream. The study of streaming algorithms

began with the work Morris [Mor78] on approximate counting; a rigorous analysis was given later

in [Fla85]. As explained earlier, the (randomized) Morris counter requires logarithmically fewer

states than a (deterministic) exact counter. The approximate counter has been useful as a the-

oretical primitive for other streaming algorithms [AJKS02,GS09,KNW10,BDW18, JW19] and its

performance has been evaluated extensively [Cve07,Csü10,XKNS21].

The optimal dependence on the error level and probability in approximate counting was deter-

mined recently in [NY22]. Moreover, [AAHNY22] studied the amortized complexity of maintaining

several approximate counters rather than just one.

As this work was being finalized, [BKKS23] independently showed a Ω(
√︀

log 𝑛/ log log𝑛) lower

bound. Their proof proceeds via reduction to one-way communication complexity. Our proof, on the

other hand, takes a completely different approach and analyzes the complexity directly by modeling

the streaming algorithm as a Markov chain and showing it behaves as an ensemble of cyclic parts

in a suitable sense.

5.1.2 Main Result

We consider the problem of pseudo-deterministic approximate counting in a stream. We first recall

the definition of a pseudo-deterministic streaming algorithm:

83

Definition 5.1.2. We define a streaming algorithm 𝒜 to be pseudo-deterministic if there exists

some function 𝐹 such that for all valid input streams 𝑥,

P𝑟[𝒜(𝑥, 𝑟) = 𝐹 (𝑥)] ≥ 2/3

where 𝑟 is the randomness sampled and used by the algorithm 𝒜.

Our main result gives a tight bound of Ω(log𝑁) bits of memory. In fact, we prove that pseudo-

deterministically distinguishing between streams of length 𝑇 ≤ 𝑁 and 𝑇 ≥ 𝑓(𝑁) requires Ω(log𝑁)

bits of memory for any function 𝑓 : N→ N.

Definition 5.1.3 (Pseudo-Deterministic Approximate Threshold Problem). Fix 𝑁,𝑀 ∈ N. Sup-

pose 𝒜 is a pseudo-deterministic streaming algorithm such that with 𝑇 the stream length:

1. 𝐹 (𝑇) = 1 for 𝑇 ≤ 𝑁 ,

2. 𝐹 (𝑇) = 0 for 𝑇 ≥𝑀 .

Then we say 𝒜 solves the (𝑁,𝑀)-pseudo-deterministic approximate threshold problem.

Theorem 5.1.4. For any 𝑓 : N → N, any sequence of pseudo-deterministic algorithms 𝒜𝑁 which

solve the (𝑁, 𝑓(𝑁))-approximate threshold problem requires Ω(log𝑁) bits of space.

Since counting is harder than thresholding, the next corollary is an immediate consequence.

Corollary 5.1.5. Any pseudo-deterministic streaming algorithm which solves approximate counting

up to a constant multiplicative factor for stream lengths at most 𝑁 requires Ω(log𝑁) bits of space.

Remark. Our result also implies a space lower bound for solving a variant of the heavy hitters

problem pseudo-deterministically. Consider a version of this problem where given a {0, 1}-valued

stream, we aim to output a bit that appeared at least 10% of the time. It follows from Corollary 5.1.5

that any pseudo-deterministic streaming algorithm solving this problem requires Ω(log𝑁) bits of

space. Indeed, if it is public information that the first 9𝑁 bits are 0 and the rest are 1, then

we are reduced to the (𝑁, 81𝑁)-approximate threshold problem by counting the 1’s. Randomized

algorithms again can solve the problem with 𝑂(log log𝑁) bits as it suffices to maintain a pair of

Morris counters for the 0’s and 1’s separately. (Note that while heavy hitters is often considered

84

to be solvable deterministically in constant space, such solutions typically assume a model where

exact counting uses constant space.)

5.1.3 Markov Chain Formulation

It will be helpful to reframe the approximate threshold problem and pseudo-determinism in the

language of Markov chains. Note that any 𝑏-bit pseudo-deterministic streaming algorithm can be

described as a Markov chain on 2𝑏 states. Throughout the rest of the paper, we use this formulation

instead, which we make precise below.

Let ℳ𝑛 be an arbitrary Markov chain on state space 𝑉 = {𝑣1, . . . , 𝑣𝑛} with starting state

𝑥0 = 𝑣1, and let 𝑥1, 𝑥2, . . . be the random states at each subsequent time. Moreover, let 𝑈 ⊆ 𝑉 be

a distinguished subset of 𝑉 .

Definition 5.1.6 (Markov Chain Solution to Pseudo-Deterministic Approximate Thresholding).

We say (ℳ𝑛, 𝑈) is a (𝑁, 𝑓(𝑁))-solution to the approximate threshold problem if:

1. P[𝑥𝑡 ∈ 𝑈] ≥ 2/3 for all 𝑡 ≤ 𝑁 ,

2. P[𝑥𝑡 ∈ 𝑈] ≤ 1/3 for all 𝑡 ≥ 𝑓(𝑁).

We sayℳ𝑛 is pseudo-deterministic if P[𝑥𝑡 ∈ 𝑈] ∈ [0, 1/3] ∪ [2/3, 1] for all 𝑡.

We will show the following:

Theorem 5.1.7. For any pseudo-deterministic (ℳ𝑛, 𝑈) that (𝑁, 𝑓(𝑁))-solves the approximate

threshold problem for some 𝑓(𝑁) > 𝑁 , it holds that 𝑛 ≥ 𝑁Ω(1).

It is easy to see that Theorem 5.1.7 implies Theorem 5.1.4 by viewing a streaming algorithm

using 𝑏 bits of memory as a Markov chain on 2𝑏 states. Here 𝑈 is the set of algorithm states on

which the algorithm outputs 1.

5.2 Technical Overview

5.2.1 Illustrative Examples

We begin by describing two examples of Markov chains that fail to solve the pseudo-deterministic

approximate threshold problem, but end up being surprisingly illustrative of the general case.

85

Example 1: Threshold Morris Counter. We first describe how to solve approximate thresh-

olding in the usual randomized (non-pseudo-deterministic) setting, where 𝑀 = 10𝑁 and for 𝑡 ∈

[𝑁, 10𝑁], it is not required that P[𝑥𝑡 ∈ 𝑈] ∈ [0, 1/3] ∪ [2/3, 1]. We will use a version of a Morris

counter with a simple two-state implementation (since we aim to threshold rather than count).

Our Markov chain will have states (𝑣1, 𝑣2) where 𝑣2 is terminal, and the transition from 𝑣1 to 𝑣2

occurs with probability 1
3𝑁 . Formally, P[𝑥𝑡+1 = 𝑣2 | 𝑥𝑡 = 𝑣2] = 1, and P[𝑥𝑡+1 = 𝑣2 | 𝑥𝑡 = 𝑣1] =

1
3𝑁 .

Setting 𝑈 = {𝑣1}, this chain gives a randomized algorithm for (𝑁, 10𝑁) approximate thresholding.

However, this example is not pseudo-deterministic because the function 𝑡 ↦→ P[𝑥𝑡 ∈ 𝑈] decays

gradually. In particular it is easy to see that P[𝑥𝑡+1 ∈ 𝑈] ≥ 0.99 · P[𝑥𝑡 ∈ 𝑈], so by the discrete-time

intermediate value theorem there exists 𝑡 such that P[𝑥𝑡 ∈ 𝑈] /∈ [0, 1/3] ∪ [2/3, 1].

Example 2: Prime Cycles. In our second example, we discuss a futile attempt to solve a simpler

version of the approximate threshold problem where it is given that the stream’s length is at most

10𝑀 = 100𝑁 . Informally speaking, on the first step the Markov chain picks a prime 𝑝𝑖. On all

subsequent steps, it simply records the current time modulo 𝑝𝑖. A main idea in our proof, outlined

in the next subsection, will be to show that any Markov chainℳ𝑛 behaves similarly to this example.

Let 𝑘 = [𝑛1/4, 2𝑛1/4] and choose 𝑘 distinct primes 𝑝1, . . . , 𝑝𝑘 ∈ [𝑛1/3, 2𝑛1/3]. Noting that∑︀𝑘
𝑖=1 𝑝𝑖 ≤ 𝑛, we can construct a Markov chain ℳ𝑛 which contains an initial state 𝑣0 as well as a

deterministic 𝑝𝑖-cycle for each 1 ≤ 𝑖 ≤ 𝑘. Here a 𝑝-cycle consists of vertices (𝑣(𝑝)0 , . . . , 𝑣
(𝑝)
𝑝−1) with dy-

namics deterministically incrementing the subscript by 1 modulo 𝑝 each time. At the first timestep,

ℳ𝑛 moves to 𝑥1 = 𝑣
(𝑝𝑖)
1 for a uniformly random 𝑝𝑖. One could try to solve the pseudo-deterministic

approximate threshold problem (with restricted stream length at most 100𝑁) by choosing a special

subset 𝑈 ⊆
⋃︀

1≤𝑖≤𝑘{𝑣
(𝑝𝑖)
0 , . . . , 𝑣

(𝑝𝑖)
𝑝𝑖−1} of the state space ofℳ𝑛.

We argue below that this is not possible, which will serve as a useful warmup for the main proof.

Note that by the discrete-time intermediate value theorem, for any such solution there must exist

0 ≤ 𝑇 ≤ 9𝑁 so that P[𝑥𝑡 ∈ 𝑈] ≥ 2/3 holds for roughly half of the values 𝑡 ∈ [𝑇, 𝑇 + 1, . . . , 𝑇 +𝑁].

To contradict pseudo-determinism, it suffices to show an upper bound

∑︁
𝑡∈[𝑇,𝑇+1,...,𝑇+𝑁]

(P[𝑥𝑡 ∈ 𝑈]− 1/2)2 ≤ 𝑜(𝑁). (5.1)

Since it involves squares of probabilities, the left-hand side can be rewritten as a sum over all pairs

86

𝑝𝑖, 𝑝𝑗 of cycle lengths. Moreover 𝑝𝑖𝑝𝑗 ≤ 𝑂(𝑛2/3) ≪ 𝑁 , so the Chinese remainder theorem implies

that every pair of distinct primes behaves almost independently on [𝑇, 𝑇+1, . . . , 𝑇+𝑁]. Combining,

it is not difficult to conclude (5.1), thus contradicting pseudo-determinism.

5.2.2 Proof Outline

Suppose for sake of contradiction that the Markov chain (ℳ𝑛, 𝑈) is pseudo-deterministic and solves

the approximate threshold problem. The main idea of our proof is to extract fromℳ𝑛 a subsystem

behaving roughly like Example 2 above, in the sense that it is an ensemble of cycles with different

period lengths. We leverage this behavior around a time 𝑇 where P[𝑥𝑠 ∈ 𝑈] ≥ 2/3 holds for roughly

half of the values 𝑠 ∈ [𝑇, 𝑇 +poly(𝑛)], which exists by the discrete-time intermediate value theorem.

Finally, we use Fourier analysis to prove there exists some 𝑠 ∈ [𝑇, 𝑇 + poly(𝑛)] where P[𝑥𝑠 ∈ 𝑈] is

not too biased, contradicting the pseudo-determinism of (ℳ𝑛, 𝑈).

Recurrent Behavior on Moderate Time-Scales. The first step is to bypass the issue of

permanent irreversible transitions as in Example 1 by considering a random time. We choose a

random time 1 ≤ 𝑡 ≤ poly(𝑛) and show that with high probability the chain behaves recurrently at

vertex 𝑥𝑡. More precisely, let 𝑡+ 𝑟 be the next time at which 𝑥𝑡+𝑟 = 𝑥𝑡 (where 𝑟 =∞ if the chain

never returns). We show in Lemma 5.3.1 that with high probability,

P[𝑟 ≤ 10𝑛] ≥ 1/2, (5.2)

P[𝑟 ≤ 𝑛18] ≥ 1− 𝑛−16. (5.3)

Using this guarantee, we can view the Markov chain from the perspective of the (random) state

𝑥𝑡 by considering the sequence of cycle lengths. The bound (5.3) allows us to define this process

up to large poly(𝑛) number of time steps, with all cycle lengths at most 𝑛18 with high probability.

This circumvents the behavior in Example 1: although the chain might eventually transition to a

terminal state and never return to 𝑥𝑡, it tends not to do so during a certain poly(𝑛) time window.

Decomposition into Periodic Parts. Next, using (5.2), it follows that there exists an integer

1 ≤ 𝑚𝑣 ≤ 10𝑛 such that conditioned on 𝑥𝑡 = 𝑣, each cycle returning to 𝑣 has probability Ω(1/𝑛) to

have length exactly 𝑚𝑣. We call cycles of length exactly 𝑚𝑣 special, and condition also on a masked

87

cycle length process ℓ⃗ which hides the special cycles but reveals all other cycle lengths in order, and

stops after a moderately large fixed poly(𝑛) number of non-special cycles.1

As an explicit example, suppose that at vertex 𝑣, there is a 1/4 probability of arriving back at

𝑣 after 3 steps, 1/4 probability of arriving back at 𝑣 after 5 steps, 1/3 probability of arriving back

at 𝑣 after 7 steps, and 1/6 probability of arriving back at 𝑣 after 11 steps, and let 𝑚𝑣 = 7. Suppose

that on a specific run of the Markov chain starting at 𝑣, the sequence of cycles taken are of lengths

(3, 5, 7, 11, 7, 5, 3, 7). Then ℓ⃗ = (3, 5, 11, 5, 3).

After this point, the number of hidden 𝑚𝑣 cycles is approximately Gaussian with poly(𝑛) stan-

dard deviation. In particular, its probability mass function is almost constant on short scales, which

lets us approximate the function

P[𝑥𝑠 ∈ 𝑈 | 𝑥𝑡 = 𝑣]

by an 𝑚𝑣-periodic function for large 𝑠. Averaging over the randomness of 𝑥𝑡, we have approximated

P[𝑥𝑠 ∈ 𝑈] by an average of periodic functions with periods 𝑚 ≤ 10𝑛.2 This completes the structural

phase of the proof. We now turn to finding a time 𝑠 such that P[𝑥𝑠 ∈ 𝑈] ∈ [1/3, 2/3].

Analysis of Periodic Decomposition. The last step is to analyze this mixture-of-cyclic behavior

at a time-region 𝑇 on which P[𝑥𝑠 ∈ 𝑈] ≥ 2/3 holds for roughly half of the values 𝑠 ∈ [𝑇, 𝑇+poly(𝑛)];

such 𝑇 exists by the discrete-time intermediate value theorem. If the different periods 𝑚𝑣 were

relatively prime, intuitively each pair of cyclic behaviors would be approximately independent over

the range [𝑇, 𝑇 + poly(𝑛)] since 𝑚𝑣𝑚
′
𝑣 ≤ 100𝑛2 ≪ poly(𝑛). This pairwise almost independence

would allow us to upper bound
∑︀

𝑠∈[𝑇,𝑇+poly(𝑛)](P[𝑥𝑠 ∈ 𝑈] − 1/2)2 similarly to Example 2, thus

contradicting pseudo-determinism.

To handle general period lengths, the key idea is to divide out common prime factors and restrict

to a corresponding arithmetic progression. Precisely, for each prime 𝑝 we let 𝑒𝑝 ≥ 0 be the largest

integer such that 𝑚𝑣 has at least some constant probability to be a multiple of 𝑝𝑒𝑝 . Then it can be

shown that 𝛽 =
∏︀

𝑝 prime 𝑝
𝑒𝑝 ≤ poly(𝑛), so we restrict attention to a fixed arithmetic progression

with difference 𝛽.

Restricting to this arithmetic progression causes the different cycles to behave almost as if
1Technically, we will assign length 𝑚𝑣 cycles to be non-special with some positive probability. This is necessary if

the cycle length always equals 𝑚𝑣, for example.
2We formalize this approximation using a notion of comparison we call 𝑐-covering, see Definition 5.3.4.

88

they are relatively prime. Precisely, the “reduced period lengths” 𝑀𝑣 = 𝑚𝑣/ gcd(𝑚𝑣, 𝛽) have the

property that any fixed prime 𝑝 has low probability of dividing 𝑀𝑣. This property does not imply

pairwise independence of different cycles: it could still be true that gcd(𝑀𝑣,𝑀
′
𝑣) > 1 holds with

high probability for independent 𝑀𝑣,𝑀
′
𝑣. However using Fourier analysis, we were still able to

show that it implies a non-trivial upper bound on
∑︀

𝑠∈[𝑇,𝑇+poly(𝑛)](P[𝑥𝑠 ∈ 𝑈]−1/2)2. As mentioned

above, such an upper bound contradicts pseudo-determinism which completes the proof.

5.3 Proof of Theorem 5.1.7

Assume 𝑛 ≥ 𝑛0 is sufficiently large and let the threshold 𝑁 > 𝑛34. We will show such a Markov

chain cannot (𝑁,𝑀)-solve the approximate counting problem for any 𝑀 . We will replace the

intervals [0, 1/3] and [2/3, 1] by [0, 10−4] and [1− 10−4, 1] in the statement of Theorem 5.1.7, which

is equivalent by amplification.

5.3.1 Recurrent Behavior on Moderate Time-Scales

Given any 𝑣 ∈ 𝑉 , let 𝜇𝑣 be the return-time distribution from 𝑣, i.e. the distribution for the smallest

𝑟 ≥ 1 such that 𝑥𝑟 = 𝑣, starting from 𝑥0 = 𝑣. (We let 𝑟 =∞ if this never holds again.)

Lemma 5.3.1. There exists 1 ≤ 𝑡 ≤ 𝑁/100 and a subset 𝑆 ⊆ 𝑉 such that:

1. P[𝑥𝑡 ∈ 𝑆] ≥ 1/2.

2. For all 𝑣 ∈ 𝑆:

P𝑟∼𝜇𝑣(𝑟 ∈ [0, 10𝑛]) ≥ 1/2,

P𝑟∼𝜇𝑣(𝑟 ∈ [0, 𝑛18]) ≥ 1− 𝑛−16.

Proof. We first show that at least 0.85-fraction of the values of 1 ≤ 𝑡 ≤ 𝑁/100 satisfy:

E𝑥𝑡P𝑟∼𝜇𝑥𝑡
(𝑟 ∈ [0, 10𝑛]) ≥ 0.85 (5.4)

Partition the interval [1, 𝑁/100] into intervals 𝐼𝑗 = [1 + (𝑗 − 1)10𝑛, 10𝑗𝑛] of length 10𝑛 for 1 ≤ 𝑗 ≤

𝑁/1000𝑛. Consider a fixed run of the Markov chain 𝑥1 . . . 𝑥𝑁/100. For each interval 𝐼𝑗 , at most 𝑛

89

values of 𝑧𝑖 for 𝑖 ∈ 𝐼𝑗 will not return to themselves at some later time in 𝐼𝑗 . Thus, in a fixed run of

the Markov chain, the return time back to 𝑥𝑡 starting from time 𝑡 is at most 10𝑛 steps for at least

0.9 fraction of times 1 ≤ 𝑡 ≤ 𝑁/100. Averaging over all runs of the Markov chain, we get that

E𝑡∈[1,𝑁/100]E𝑥𝑡P𝑟∼𝜇𝑥𝑡
(𝑟 ∈ [1, 10𝑛]) ≥ 0.9

and therefore at least 0.85 fraction of 0 < 𝑡 < 𝑁/100 satisfy (5.4) by Markov’s inequality. By an

identical argument, for at least 0.85 fraction of 1 ≤ 𝑡 ≤ 𝑁/100,

E𝑥𝑡P𝑟∼𝜇𝑥𝑡
(𝑟 ∈ [0, 𝑛18]) ≥ 1− 10𝑛−17

In particular, there exists a value of 𝑡 satisfying both conditions, which will be the value of 𝑡 in the

lemma statement.

Next applying Markov’s inequality to (5.4) shows for some 𝑆1 ⊆ 𝑉 with P[𝑥𝑡 ∈ 𝑆1] ≥ 0.6,

P𝑟∼𝜇𝑣(𝑟 ∈ [1, 10𝑛]) ≥ 1/2.

Similarly for some 𝑆2 ⊆ 𝑉 such that P[𝑥𝑡 ∈ 𝑆2] > 0.9,

P𝑟∼𝜇𝑣(𝑟 ∈ [0, 𝑛18]) ≥ 1− 100𝑛−17 ≥ 1− 𝑛−16.

Taking 𝑆 = 𝑆1 ∩ 𝑆2 completes the proof.

5.3.2 Decomposition into Periodic Parts

From now on we fix 𝑡, 𝑆 as in the previous subsection. For each 𝑣 ∈ 𝑆, define the period length

𝑚𝑣 ≡ argmax
1≤𝑚≤10𝑛

𝜇𝑣(𝑚).

Starting from 𝑥𝑡 = 𝑣, we define a sequence of steps as follows. Let (𝐶1, 𝐶2, . . .) be the sequence

of cycle lengths returning back to location 𝑥𝑡, i.e. 𝑥𝑡+𝐶1+···+𝐶𝑗 for 𝑗 ≥ 0 are exactly the times 𝑠 ≥ 𝑡

90

with 𝑥𝑠 = 𝑥𝑡. When 𝐶𝑖 = 𝑚𝑣, we assign 𝐶𝑖 to be special with probability

P[𝐶𝑖 special | 𝐶𝑖 = 𝑚𝑣] =
𝑛−2𝜇𝑣({1, 2, . . . , 𝑛18})

𝜇𝑣(𝑚𝑣)
. (5.5)

This choice of probability results in P[𝐶𝑖 special | 𝐶𝑖 ≤ 𝑛18] = 𝑛−2, which will be useful later. In

all other cases where 𝐶𝑖 ≤ 𝑛18, we assign 𝐶𝑖 to be typical. We define the special-steps sequence

(𝑠1, 𝑠2, . . .) = (𝑚𝑣,𝑚𝑣, . . .) to be the subsequence of special cycle lengths, and the typical-steps

sequence (ℓ1, ℓ2, . . .) to consist of the typical cycle lengths. Note that cycles of length greater than

𝑛18 are neither special nor typical.

If 𝑥𝑡 = 𝑣, let 𝜏𝑣 be the first time that 𝑛14 typical steps have been completed. (We let 𝜏𝑣 be

undefined or infinite for all other states 𝑣.) Let 𝑌 be the number of special cycles until time 𝜏𝑥𝑡 ,

and let 𝑠tot = 𝑌 𝑚𝑣 be the total duration of these special cycles.

For each 𝑣 ∈ 𝑆, let 𝐸𝑣 be the event that 𝑥𝑡 = 𝑣, and that all cycles until time 𝜏𝑣 are special or

typical (in particular 𝜏𝑣 <∞ on this event).

Lemma 5.3.2. For any 𝑣 ∈ 𝑆, we have P[𝐸𝑣 | 𝑥𝑡 = 𝑣] ≥ 0.99.

Proof. Note that each cycle length 𝐶𝑖 is independent and has probability at least 1− 𝑛−16 of being

at most 𝑛18 by Lemma 5.3.1. We find that with high probability the first 𝑛15 cycle lengths are

special or typical:

P
[︂

max
1≤𝑖≤𝑛15

𝐶𝑖 ≤ 𝑛17

]︂
≥ 1− 𝑛−1. (5.6)

Conditioned on the event in (5.6), each 𝐶𝑖 is labeled typical independently with probability at

least 1/2. Hence the number of typical steps among the first 𝑛15 cycles stochastically dominates a

binomial 𝐵𝑖𝑛(𝑛15, 1/2) variable, and in particular is at least 𝑛14 with probability at least 1− 𝑛−1.

On this event, 𝜏𝑣 occurs during the first 𝑛15 cycles and so 𝐸𝑣 holds with overall probability at least

(1− 𝑛−1)(1− 𝑛−1) ≥ 0.99.

Next, we use our concept of special and typical cycles to describe the distribution of 𝜏𝑣, which

we recall is the first time that 𝑛14 typical steps have been completed conditioned on 𝑥𝑡 = 𝑣.

Definition 5.3.3. A probability distribution 𝜈 on Z is 𝑚-interval-periodic if it is supported on

a discrete interval {𝐼, 𝐼 + 1, . . . , 𝐽} and within this interval, 𝜈(𝑗) = 𝜈(𝑗 + 𝑚) depends only on 𝑗

mod 𝑚. The range of 𝜈 is 𝐽 − 𝐼.

91

Similarly a sequence 𝜈⃗ = (𝜈𝐼 , 𝜈𝐼+1, . . . , 𝜈𝐽) of probability distributions on 𝑉 is 𝑚-interval-

periodic if 𝜈𝑗 = 𝜈𝑗+𝑚 depends only on 𝑗 mod 𝑚.

Definition 5.3.4. Let 𝜇, 𝜈 be probability distributions on a countable set ℐ and 0 < 𝑐 < 1 be a

constant. We say 𝜇 is a 𝑐-cover for 𝜈 if 𝜇(𝑖) ≥ 𝑐𝜈(𝑖) for all 𝑖 ∈ ℐ.

Let 𝜇
tot,𝑣,ℓ⃗

be the distribution of 𝜏𝑣 conditionally on the event 𝐸𝑣 and the sequence ℓ⃗ of 𝑛14 typical

steps. In fact, it is easy to see from (5.5) that conditionally on (𝑣,𝐸𝑣) the number 𝑧𝑖 of special

steps between each adjacent pair (ℓ𝑖−1, ℓ𝑖) of typical steps is exactly the geometric distribution

Geom(1− 𝑛−2). Thus P[𝑧𝑖 = 𝑗] = (1− 𝑛−2)𝑛−2𝑗 for each 𝑗 ∈ Z≥0, and the mean and variance are

known to be

E[𝑧𝑖] =
1

𝑛2 − 1
,

Var[𝑧𝑖] =
𝑛2

(𝑛2 − 1)2
.

Lemma 5.3.5. For each 𝑣 ∈ 𝑆 and ℓ⃗, there exists an 𝑚𝑣-interval-periodic distribution 𝜈
𝑣,ℓ⃗

with

range 𝑛6 < 𝑤𝑣 < 𝑛8 such that the distribution 𝜇
𝑡𝑜𝑡,𝑣,ℓ⃗

is a 0.06-cover of 𝜈
𝑣,ℓ⃗

.

Proof. Let 𝑍 =
∑︀𝑛14

𝑖=1 𝑧𝑖 be the total number of special cycles until time 𝜏𝑣. We first show that 𝑍

obeys a central limit theorem as 𝑛 → ∞. Note that 𝑤𝑖 = 𝑧𝑖 − E[𝑧𝑖] satisfies E[𝑤𝑖] = 0, E[𝑤2
𝑖] =

Θ(𝑛−2) and E[|𝑤𝑖|3] = Θ(𝑛−2). Hence it follows from the Berry-Esseen theorem that with Φ(𝐴) =

P𝑦∼𝒩 (0,1)[𝑦 ≤ 𝐴] the cumulative distribution function of the standard Gaussian, and 𝜇𝑍 , 𝜎𝑍 the

mean and standard deviation of 𝑍:

sup
𝐴∈R
|P
[︂
𝑍 − 𝜇𝑍

𝜎𝑍
≤ 𝐴

]︂
− Φ(𝐴)| ≤ 𝐶𝑛−2

𝑛−3
√
𝑛14
≤ 𝑂(1/𝑛2).

In particular, for 𝑛 large enough,

P[𝑍 ∈ [𝜇𝑍 − 2𝜎𝑍 , 𝜇𝑍 − 𝜎𝑍]] ≥ Φ(−1)− Φ(−2)− 0.001 ≥ 0.13,

P[𝑍 ∈ [𝜇𝑍 + 𝜎𝑍 , 𝜇𝑍 + 2𝜎𝑍]] ≥ Φ(2)− Φ(1)− 0.001 ≥ 0.13.

92

By averaging, there exist integers 𝑎1 ∈ [𝜇𝑍 − 2𝜎𝑍 , 𝜇𝑍 − 𝜎𝑍] and 𝑎2 ∈ [𝜇𝑍 + 𝜎𝑍 , 𝜇𝑍 + 2𝜎𝑍] with

P[𝑍 = 𝑎1],P[𝑍 = 𝑎2] ≥
1

8𝜎𝑍
.

Next, we claim the probability mass function of 𝑍 is log-concave; this implies that

P[𝑍 = 𝑎] ≥ 1

8𝜎𝑍
, ∀𝑎 ∈ [𝜇𝑍 − 𝜎𝑍 , 𝜇𝑍 + 𝜎𝑍]. (5.7)

Since 𝜇
tot,𝑣,ℓ⃗

is exactly the law of 𝑚𝑣𝑍 and 𝜎𝑍 = 𝑛7
√︀

Var[𝑧1] = 𝑛6(1±𝑂(1/𝑛)), the statement (5.7)

readily implies the desired result. It remains only to prove that 𝑍 has log-concave probability mass

function.

For this, first note that 𝑍 is a negative binomial distribution and its probability mass function

takes the exact form

P[𝑍 = 𝑘] =

(︂
𝑘 + 𝑛14 − 1

𝑛14 − 1

)︂
𝑛−14𝑘(1− 𝑛−2)𝑛

14
.

(This description is well-known and follows from an elementary stars and bars argument.) Hence it

suffices to show that 𝑘 ↦→
(︀
𝑘+𝑛14−1
𝑛14−1

)︀
is log-concave. For this we note that 𝑘 ↦→ 𝑘 + 𝑐 is log-concave

for each 𝑐 ≥ 0 on 𝑘 ∈ Z≥0 and

(︂
𝑘 + 𝑛14 − 1

𝑛14 − 1

)︂
=

(𝑘 + 𝑛14 − 1)(𝑘 + 𝑛14 − 2) · · · (𝑘 + 1)

(𝑛14 − 1)!

is proportional to a product of such sequences.

We remark that the conditioning on ℓ⃗ played no role above as it just shifts 𝜇
𝑡𝑜𝑡,𝑣,ℓ⃗

. However, in

the next subsection it will be important to apply Lemma 5.3.5 after conditioning on ℓ⃗.

For each 𝑣 ∈ 𝑆, typical-steps sequence ℓ⃗, and time 𝑠 > 𝑡, define the probability distribution

̃︀𝜇𝑠 = ̃︀𝜇𝑠(𝑣, ℓ⃗)

on 𝑉 to be the conditional law of 𝑥𝑠 given (𝐸𝑣, ℓ⃗).

Lemma 5.3.6. For each 𝑣 ∈ 𝑆 and ℓ⃗ and 𝑇 ′ > 𝑛33, there exists an 𝑚𝑣-interval-periodic sequence

𝜔⃗ = 𝜔⃗𝑣 = (𝜔𝑇 ′ , . . . , 𝜔𝑇 ′+𝑛5) of distributions that is 0.03-covered by the sequence ̃︀𝜇𝑇 ′ . . . ̃︀𝜇𝑇 ′+𝑛5.

Proof. For any vertex 𝑢 and time 𝑟, define 𝑃 𝑟(𝑢) to be the distribution of the Markov chain state

93

after 𝑟 steps starting from vertex 𝑢. Let

supp(𝜈
𝑣,ℓ⃗
) = {𝐼, 𝐼 + 1, . . . , 𝐽} = {𝐼(𝜈

𝑣,ℓ⃗
), 𝐼(𝜈

𝑣,ℓ⃗
) + 1, . . . , 𝐽(𝜈

𝑣,ℓ⃗
)}

be the support of 𝜈
𝑣,ℓ⃗

. Moreover let 𝜈
𝑣,ℓ⃗
(0), . . . , 𝜈

𝑣,ℓ⃗
(𝑚𝑣 − 1) be such that 𝜈

𝑣,ℓ⃗
(𝑗) = 𝜈

𝑣,ℓ⃗
(𝑗 mod 𝑚)

for 𝐼 ≤ 𝑗 ≤ 𝐽 .

We explicitly compute ̃︀𝜇𝑠 for 𝑇 ′ ≤ 𝑠 ≤ 𝑇 ′+𝑛5. With inequalities of positive measures indicating

that the difference is a positive measure, we have

̃︀𝜇𝑠(𝑣, ℓ⃗) ≥
𝑠∑︁

𝑡=1

P[𝜏𝑣 = 𝑡|(𝑥𝑡 = 𝑣, ℓ⃗)] · 𝑃 𝑠−𝑡(𝑣)

≥ 0.06

𝑠∑︁
𝑡=1

𝜈
𝑣,ℓ⃗
(𝑡) · 𝑃 𝑠−𝑡(𝑣)

= 0.06
𝐽−𝑇 ′−𝑛5∑︁
𝑢=𝐼−𝑇 ′

𝜈
𝑣,ℓ⃗
(𝑠− 𝑢) · 𝑃 𝑢(𝑣)

≥ 0.06

(︂
𝐽 − 𝐼 − 𝑛5 − 2𝑚

𝑚

)︂
·

𝑚∑︁
𝑖=1

𝜈
𝑣,ℓ⃗
(𝑠− 𝑖 mod 𝑚)

∑︁
𝐼−𝑇 ′≤𝑢≤𝐽−𝑇 ′−𝑛5

𝑢≡𝑖 mod 𝑚

𝑃 𝑢(𝑣).

Note that this lower bound is exactly 𝑚-periodic for 𝑠 in the stated range. We now show it has a

significant total mass. Note that

(︂
𝐽 − 𝐼 + 𝑛5 + 2𝑚

𝑚

)︂
·

𝑚∑︁
𝑖=1

𝜈
𝑣,ℓ⃗
(𝑠− 𝑖 mod 𝑚)

∑︁
𝐼−𝑇 ′≤𝑢≤𝐽−𝑇 ′−𝑛5

𝑢≡𝑖 mod 𝑚

𝑃 𝑢(𝑣)

≥
𝑠∑︁

𝑡=1

𝜈
𝑣,ℓ⃗
(𝑡) · 𝑃 𝑠−𝑡(𝑣)

has total mass at least 0.99 since clearly P[𝜏𝑣 < 𝑠 | 𝐸𝑣] ≥ 0.99 (by Markov’s inequality on 𝑠𝑡𝑜𝑡).

Since 𝐽 − 𝐼 ≥ 𝑛6 we have
𝐽 − 𝐼 − 𝑛5 − 2𝑚

𝐽 − 𝐼 + 𝑛5 + 2𝑚
≥ 0.99

so we conclude that the lower bound above has a total mass of at least 0.03.

94

5.3.3 Analysis of Periodic Decomposition

We fix the values 𝑚𝑣 and distributions 𝜈
𝑣,ℓ⃗

from Lemma 5.3.5. Next, we construct a “global period

length” 𝛽 as follows. For each prime 𝑝, let 𝑒𝑝 be the largest value such that

P[𝑝𝑒𝑝 divides 𝑚𝑣 | 𝑣 ∈ 𝑆] ≥ 0.55

and define 𝛽 =
∏︀

𝑝 𝑝
𝑒𝑝 .

Lemma 5.3.7. It holds that 𝛽 ≤ 𝑛2.

Proof. It suffices to observe that

log(10𝑛) ≥ E[log(𝑚𝑣) | 𝑣 ∈ 𝑆] ≥ log(𝛽0.55).

The former holds since 𝑚𝑣 ≤ 10𝑛 while the latter holds by Markov’s inequality. Hence 𝛽 ≤

(10𝑛)20/11 ≤ 𝑛2.

Let 𝑀𝑣 = 𝑚𝑣/ gcd(𝑚𝑣, 𝛽). By definition, for any prime 𝑝 we have

P[𝑝 divides 𝑀𝑥𝑡 | 𝑥𝑡 ∈ 𝑆] ≤ 0.55. (5.8)

Recalling Subsection 5.1.3, for each time 𝑠 let 𝐹 (𝑠) = 0 if P[𝑥𝑠 ∈ 𝑈] ∈ [0, 1/3] and 𝐹 (𝑠) = 1

otherwise. Moreover define

𝐹 𝑎 =
1

⌊𝑛5/𝛽⌋

⌊𝑛5/𝛽⌋∑︁
𝑖=1

𝐹 ((𝑎+ 𝑖)𝛽).

Lemma 5.3.8. There exists 𝑎 ∈ N such that |𝐹 𝑎 − 1/2| ≤ 0.01.

Proof. This follows by the discrete-time intermediate value theorem. Indeed since 𝑁 ≥ 𝑛5 we have

𝐹 0 = 1, while 𝐹 𝑎 = 0 for 𝑎 ≥ 𝑓(𝑁). Clearly |𝐹 𝑎+1 − 𝐹 𝑎| ≤ 0.01 for all 𝑎.

Throughout the rest of the proof, let 𝑇 = 𝑎𝛽 for 𝑎 as in Lemma 5.3.8. For each time 𝑇 ≤ 𝑠 ≤

𝑇 + 𝑛5, let

𝜔𝑠 = E𝑥𝑡,ℓ⃗ [P𝑣∼𝜔𝑥𝑡,ℓ,𝑠 [𝑣 ∈ 𝑈] | 𝑥𝑡 ∈ 𝑆 and 𝐸𝑥𝑡] .

(Note that {𝑥𝑡 ∈ 𝑆 and 𝐸𝑥𝑡} is just an event.)

95

Lemma 5.3.9. 𝜔𝑠 ≥ 0.99 if 𝐹 (𝑠) = 1 and 𝜔𝑠 ≤ 0.01 if 𝐹 (𝑠) = 0.

Proof. We focus on the latter statement since they are symmetric.

Given 𝑥𝑡, generate 𝑤 ∼ 𝑃 𝑠−𝑡(𝑥𝑡) to be the state of the Markov chain at time 𝑠 drawn from the

original trajectory distribution. By Bayes’ rule for expectations, since the event {𝑥𝑡 ∈ 𝑆 and 𝐸𝑥𝑡}

has probability at least 1/3, conditioning on it increases the expectation of any non-negative random

variable by a factor at most 3. In particular:

E𝑥𝑡,ℓ⃗ [P[𝑤 ∈ 𝑈] | 𝑥𝑡 ∈ 𝑆 and 𝐸𝑥𝑡] ≤
E𝑥𝑡,ℓ⃗ [P[𝑤 ∈ 𝑈]]

P[𝑥𝑡 ∈ 𝑆 and 𝐸𝑥𝑡]

=
P[𝑥𝑠 ∈ 𝑈]

P[𝑥𝑡 ∈ 𝑆 and 𝐸𝑥𝑡]

≤ 3 · 10−4.

Given 𝑥𝑡 and ℓ⃗, we also let ̃︀𝑤 ∼ 𝜔
𝑥𝑡,ℓ⃗,𝑠

for 𝜔
𝑥𝑡,ℓ⃗,𝑠

as in Lemma 5.3.6. Then the 0.03-covering

guarantee in Lemma 5.3.6 directly implies

E𝑥𝑡,ℓ⃗ [P[𝑤 ∈ 𝑈] | 𝑥𝑡 ∈ 𝑆 and 𝐸𝑥𝑡]

≥ 0.03 · E𝑥𝑡,ℓ⃗ [P[̃︀𝑤 ∈ 𝑈] | 𝑥𝑡 ∈ 𝑆 and 𝐸𝑥𝑡]

= 0.03 · 𝜔𝑠.

Combining completes the proof.

Lemma 5.3.10. It holds that ⃒⃒⃒⃒
⃒⃒ 1

⌊𝑛5/𝛽⌋

⌊𝑛5/𝛽⌋∑︁
𝑖=1

𝜔(𝑎+𝑖)𝛽 −
1

2

⃒⃒⃒⃒
⃒⃒ ≤ 0.02.

Proof. By Lemma 5.3.9, |𝜔𝑠 − 𝐹 (𝑠)| ≤ 0.01 for each 𝑠. Hence⃒⃒⃒⃒
⃒⃒ 1

⌊𝑛5/𝛽⌋

⌊𝑛5/𝛽⌋∑︁
𝑖=1

𝜔(𝑎+𝑖)𝛽 −
1

2

⃒⃒⃒⃒
⃒⃒ ≤ |𝐹 𝑎 − 1/2|+ 0.01 ≤ 0.02.

We will use the following lemma which is proved in Section 5.4.

96

Lemma 5.3.11. The following holds with 𝐿 = 𝑛3. Fix 𝑛 and let 𝑆 = (𝑆1, 𝑆2, . . . , 𝑆𝐿) ∈ [−1, 1]𝐿 be

a random sequence which is 𝑚-periodic for some random 𝑚 = 𝑚(𝑆) ≤ 10𝑛. Suppose that

−𝐿/10 ≤ E
𝐿∑︁

𝑡=1

𝑆𝑡 ≤ 𝐿/10 (5.9)

and that for each prime 𝑝,

P[𝑝 divides 𝑚] ≤ 0.55.

Then there exists an index 1 ≤ 𝑡 ≤ 𝐿 such that

|E[𝑆𝑡]| ≤ 0.9.

Combining the above, we can finally prove Theorem 5.1.7.

Proof of Theorem 5.1.7. Given a putative (ℳ𝑛, 𝑈), we apply Lemma 5.3.11 with

𝑆 = 𝑆
𝑥𝑡,ℓ⃗

= P𝑣∼𝜔𝑥𝑡,ℓ,𝑠 [𝑣 ∈ 𝑈].

where we map [0, 1] → [−1, 1] via 𝑎 ↦→ 2𝑎 − 1. The first condition holds by Lemma 5.3.10 since

E[𝑆𝑡] = 𝜔(𝑎+𝑡)𝛽 . The second condition holds by (5.8). Hence Lemma 5.3.11 implies that there

exists 𝑠 such that 𝜔𝑠 ∈ [0.02, 0.98]. This contradicts Lemma 5.3.9 above, giving a contradiction and

completing the proof.

5.4 Proof of Lemma 5.3.11

Here we prove Lemma 5.3.11 using Fourier analysis. For each 𝑚 ≥ 1, let

𝑍𝑚 = {0, 1/𝑚, . . . , (𝑚− 1)/𝑚}

and set 𝑍*
𝑚 = 𝑍𝑚∖{0}. Given a 𝑚-periodic sequence 𝑆 = (𝑆1, 𝑆2, . . .) let ̂︀𝑆 : [0, 1) → C be its

Fourier transform

̂︀𝑆(𝛼) =
⎧⎪⎨⎪⎩

1
𝑚

∑︀𝑚
𝑗=1 𝑒

2𝜋𝑖𝑗𝛼𝑆𝑗 , 𝛼 ∈ 𝑍𝑚,

0, 𝛼 /∈ 𝑍𝑚 .

(5.10)

97

The definition (5.10) agrees with the Fourier transform of 𝑆 viewed as a periodic function on Z and

hence is independent of the period 𝑚 — we could view 𝑆 as being 𝑘𝑚 periodic for any 𝑘 ≥ 1 and̂︀𝑆 would remain consistent. This allows us to use Fourier analysis on pairs 𝑆, 𝑆′ of sequences with

different period lengths 𝑚,𝑚′. Indeed with 𝑀 = 𝑚𝑚′ we can define:

⟨𝑆, 𝑆′⟩ = 1

𝑀

𝑀∑︁
𝑖=1

𝑆𝑖𝑆
′
𝑖 (5.11)

‖𝑆‖2𝐿2 =
1

𝑀

𝑀∑︁
𝑖=1

𝑆2
𝑖 (5.12)

⟨̂︀𝑆, ̂︀𝑆′⟩ =
∑︁

𝛼∈𝑍𝑀

̂︀𝑆(𝛼)̂︀𝑆′(𝛼) (5.13)

‖̂︀𝑆‖2ℓ2 =
∑︁

𝛼∈𝑍𝑚

|̂︀𝑆(𝛼)|2. (5.14)

Parseval identity’s modulo 𝑀 implies that ⟨𝑆, 𝑆′⟩ = ⟨̂︀𝑆, ̂︀𝑆′⟩ and ‖𝑆‖𝐿2 = ‖̂︀𝑆‖𝐿2 .

The next proposition approximates averages on 1, 2, . . . , 𝐿 by Fourier averages. Here and below

we let 𝜇 be the law of the random sequence 𝑆, and recall that 𝑆 ∼ 𝜇 is 𝑚(𝑆) periodic for 𝑚 ≤ 10𝑛

almost surely.

Lemma 5.4.1. Then ⃒⃒⃒⃒
⃒ 1𝐿

𝐿∑︁
𝑡=1

P𝑆∼𝜇[𝑆𝑡 = 1]2 − E𝑆,𝑆′∼𝜇⟨̂︀𝑆, ̂︀𝑆′⟩

⃒⃒⃒⃒
⃒ ≤ 𝑂(𝑛2/𝐿), (5.15)⃒⃒⃒⃒

⃒⃒
(︃
1

𝐿
E𝑆∼𝜇

𝐿∑︁
𝑡=1

𝑆𝑡

)︃2

− E𝑆,𝑆′∼𝜇[̂︀𝑆(0)̂︀𝑆′(0)]

⃒⃒⃒⃒
⃒⃒ ≤ 𝑂(𝑛2/𝐿). (5.16)

Proof. Notice that by definition,

1

𝐿

𝐿∑︁
𝑡=1

P𝑆∼𝜇[𝑆𝑡 = 1]2 =
1

𝐿
E𝑆,𝑆′∼𝜇

⟨︀
(𝑆1 . . . , 𝑆𝐿), (𝑆

′
1, . . . , 𝑆

′
𝑇)
⟩︀

where ⟨(𝑆1 . . . , 𝑆𝐿), (𝑆
′
1, . . . , 𝑆

′
𝑇)⟩ =

1
𝐿

∑︀𝐿
𝑡=1 𝑆𝑡𝑆

′
𝑡. Since 𝑀 = 𝑚𝑚′ ≤ 100𝑛2,

⃒⃒⃒⃒
1

𝐿
E𝑆,𝑆′∼𝜇

⟨︀
(𝑆1 . . . , 𝑆𝐿), (𝑆

′
1, . . . , 𝑆

′
𝑇)
⟩︀
− ⟨𝑆, 𝑆′⟩

⃒⃒⃒⃒
≤ 𝑂(𝑛2/𝐿).

98

Combining and using ⟨𝑆, 𝑆′⟩ = ⟨̂︀𝑆, ̂︀𝑆′⟩ by Parseval completes the proof of (5.15). The proof of

(5.16) is similar since

⃒⃒⃒⃒
⃒ 1𝐿E𝑆∼𝜇

𝐿∑︁
𝑡=1

𝑆𝑡 − E𝑆∼𝜇[𝑆(0)]

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒⃒ 1𝐿E𝑆∼𝜇

𝐿∑︁
𝑡=1

𝑆𝑡 −
1

𝑚(𝑆)
E𝑆∼𝜇

𝑚(𝑆)∑︁
𝑖=1

𝑆𝑖

⃒⃒⃒⃒
⃒⃒ ≤ 𝑂(𝑛/𝐿).

Indeed (E𝑆∼𝜇[̂︀𝑆(0)])2 = E𝑆,𝑆′∼𝜇[̂︀𝑆(0)̂︀𝑆′(0)], and the function 𝑥 ↦→ 𝑥2 is Lipschitz on 𝑥 ∈ [−1, 1].

The main idea to prove Lemma 5.3.11 is that 𝑆, 𝑆′ are unlikely to have similar periods. In carry-

ing out this argument we have to handle the bias ̂︀𝑆(0) separately from the 𝛼 ∈ (0, 2𝜋) contributions.

The next proposition gives an estimate to handle the latter contributions; note it is important that

the last term below mixes 𝑆, 𝑆′.

Lemma 5.4.2. For 𝑚 and 𝑚′-periodic functions 𝑆, 𝑆′ : Z→ [−1, 1],

⟨̂︀𝑆, ̂︀𝑆′⟩ ≤ ̂︀𝑆(0)̂︀𝑆′(0) + ‖ ̂︀𝑆|𝑍*
𝑚′‖ℓ2

where ̂︀𝑆|𝑍*
𝑚′ denotes the restriction of ̂︀𝑆 to 𝑍*

𝑚′ .

Proof. The summand ̂︀𝑆(𝛼)̂︀𝑆′(𝛼) in (5.13) is non-zero only when 𝛼 ∈ 𝑍𝑔 for 𝑔 = gcd(𝑚,𝑚′). This

yields an upper bound of ̂︀𝑆(0)̂︀𝑆′(0) + ‖ ̂︀𝑆|𝑍*
𝑔
‖ℓ2 · ‖ ̂︀𝑆′|𝑍*

𝑔
‖ℓ2 .

This immediately implies the claim since

‖ ̂︀𝑆|𝑍*
𝑔
‖ℓ2 ≤ ‖ ̂︀𝑆|𝑍*

𝑚′‖ℓ2

(in fact, equality holds) while

‖ ̂︀𝑆′|𝑍*
𝑔
‖ℓ2 ≤ ‖ ̂︀𝑆′|𝑍𝑀

‖ℓ2 = ‖𝑆′‖𝐿2 ≤ 1.

Lemma 5.4.3. Suppose 𝑆, 𝑆′ i.i.d.∼ 𝜇 and P𝑆∼𝜇[𝑝 divides 𝑚(𝑆)] ≤ 𝜀 for any prime 𝑝. Then

E𝑆∼𝜇
[︀
‖ ̂︀𝑆|𝑍*

𝑚′‖ℓ2
]︀
≤
√
𝜀

99

Proof. Directly by the assumption, for any fixed 𝛼 ̸= 0, we have P[𝛼 ∈ 𝑍*
𝑚′] ≤ 𝜀. Thus linearity of

expectation implies

E𝑆∼𝜇
[︀
‖ ̂︀𝑆|𝑍*

𝑚′‖
2
ℓ2
]︀
≤ 𝜀.

Applying Jensen’s inequality completes the proof.

Proof of Lemma 5.3.11. By applying Markov’s inequality to (5.15) and noting 𝑛2/𝐿 ≤ 1/𝑛 it suffices

to show that

E𝑆,𝑆′∼𝜇⟨̂︀𝑆, ̂︀𝑆′⟩
?
≤ 0.8 < 0.92. (5.17)

We first deal with the bias term of the left-hand side. Combining (5.16) and (5.9) yields

E𝑆,𝑆′∼𝜇[̂︀𝑆(0)̂︀𝑆′(0)] ≤ 0.02.

For the remaining terms 𝛼 ̸= 0, combining Proposition 5.4.2 with Lemma 5.4.3 (which holds with

𝜀 = 0.55 by assumption) yields

E𝑆,𝑆′∼𝜇
∑︁

𝛼∈𝑍*
𝑀

̂︀𝑆(𝛼)̂︀𝑆′(𝛼) ≤
√
0.55 ≤ 0.75.

Summing the contributions establishes (5.17) and thus finishes the proof.

100

Chapter 6

Pseudo-deterministic Proofs

The work in this Chapter is based on joint work with Shafi Goldwasser, and Dhiraj Holden [GGH17].

6.1 Introduction

In this chapter we extend the study of pseudo-determinism in the context of probabilistic algorithms

to the context of interactive proofs and non-determinism. We view pseudo-deterministic interactive

proofs as a natural extension of pseudo-deterministic randomized polynomial time algorithms: the

goal of the latter is to find canonical solutions to search problems whereas the goal of the former

is to prove that a solution to a search problem is canonical to a probabilistic polynomial time

verifier. This naturally models the cryptographic setting when an authority generates system-wide

parameters (e.g. an elliptic curve for all to use or a generator of a finite group) and it must prove

that the parameters were chosen properly.

6.1.1 Our Contribution

Consider the search problem of finding a large clique in a graph. A nondeterministic efficient

algorithm for this problem exists: simply guess a set of vertices 𝐶, confirm in polynomial time that

the set of vertices forms a clique, and either output 𝐶 or reject if 𝐶 is not a clique. Interestingly,

in addition to being nondeterministic, there is another feature of this algorithm; on the same input

graph there may be many possible solutions to the search problem and any one of them may be

produced as output. Namely, on different executions of the algorithm, on the same input graph 𝐺,

101

one execution may guess clique 𝐶 and another execution may guess clique 𝐶 ′ ̸= 𝐶, and both are

valid accepting executions.

A natural question is whether for each graph with a large clique, there exists a unique canonical

large clique 𝐶 which can be verified by a polynomial time verifier: that is, can the verifier 𝑉 be

convinced that the clique 𝐶 is the canonical one for the input graph? Natural candidates which come

to mind, such as being the lexicographically smallest large clique, are not known to be verifiable in

polynomial time (but seem to require the power of Σ2 computation).

In this paper, we consider this question in the setting of interactive proofs and ask whether the

interactive proof mechanism enables provers to convince a probabilistic verifier of the “uniqueness

of their answer” with high probability.

Pseudo-deterministic Interactive Proofs: We define pseudo-deterministic interactive proofs

for a search problem 𝑅 (consisting of pairs (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)) with associated function 𝑠 as a pair

of interacting algorithms: a probabilistic polynomial time verifier and a computationally unbounded

prover which on a common input instance 𝑥 engage in rounds of interaction at the end of which

with high probability the verifier output a canonical solution 𝑦 = 𝑠(𝑥) for 𝑥 if any solution exists

and otherwise rejects 𝑥. Analogously to the case of completeness in interactive proofs for languages,

we require Canonical Completeness: that for every input 𝑥, there exists an honest prover which can

send the correct solution 𝑠(𝑥) to the verifier when one exists. Analogously to the case of soundness,

we require Canonical Soundness: no dishonest prover can cause the verifier to output a solution

other than 𝑠(𝑥) (the canonical one) (except with very low probability).

One may think of the powerful prover as aiding the probabilistic polynomial time verifier to find

canonical solutions to search problems, with high probability over the randomness of the verifier.

The challenge is that pseudo-determinism should hold not only with respect to the randomness, but

also with respect to the prover: a malicious prover should not be able to cause the verifier to output

a solution other than the canonical unique one. In addition to the intrinsic complexity theoretic

interest in this problem, consistency or predictability of different executions on the same input are

natural requirements from protocols.

We define pseudo-deterministic IP (psdIP) to be the class of search problems 𝑅 (relation on

inputs and solutions) for which there exists a pseudo-deterministic polynomial round interactive

proof for 𝑅.

102

Theorem: For any problem 𝐿 in NP, there is a pseudo-deterministic polynomial round inter-

active proof for the search problem 𝑅 consisting of all pairs (𝑥,𝑤) where 𝑥 ∈ 𝐿 and 𝑤 is a witness

for 𝑥.

One can prove the above theorem by noting that finding the lexicographically first witness 𝑤

for 𝑥 is a problem in PSPACE. Then, since IP = PSPACE [Sha92], we know an interactive proof

for finding the lexicographically first witness 𝑤 exists. More formally we have:

Proof: Let us consider the function 𝑓(𝑥) which outputs the lexicographically first witness that

𝑥 ∈ 𝐿 if 𝑥 ∈ 𝐿 or ⊥ otherwise. It is easy to see that determining whether 𝑓(𝑥) = 𝑦 is in PSPACE. As

a result, there is an polynomial-round IP protocol to determine whether 𝑓(𝑥) = 𝑦. Then, the psdIP

protocol is as follows; the prover gives the verifier 𝑦 and then they run the protocol, and the verifier

accepts and outputs 𝑦 if the protocol accepts. This satisfies the conditions for pseudo-determinism

because of the completeness and soundness properties of the IP protocol.

In light of the above, we ask: do constant-round pseudo-deterministic interactive proofs exist

for hard problems in NP for which many witnesses exist? We let psdAM refer to those pseudo-

deterministic interactive proofs in which a constant number of rounds is used. 1.

Graph Isomorphism is in pseudo-deterministic AM: Theorem 6.3.1: There exists a

pseudo-deterministic constant-round Arthur-Merlin protocol for finding an isomorphism between two

given graphs.

Recall that the first protocol showing graph non-isomorphism is in constant round IP was shown

by [GMW91] and later shown to be possible using public coins via the general transformation

of private to public coins [GS86]. Our algorithm finds a unique isomorphism by producing the

lexicographically first isomorphism. In order to prove that a particular isomorphism between input

graph pairs is lexicographically smallest, the prover will prove in a sequence of sub-protocols to the

verifier that a sequence of graphs suitably defined are non-isomorphic. In an alternative construction,

we exhibit an interactive protocol that computes the automorphism group of a graph in a verifiable

fashion.

SAT is not in pseudo-deterministic AM: Theorem 6.4.2: if any NP-complete problem has

a a pseudo-deterministic constant round AM protocol, then, NP ⊆ coNP/𝑝𝑜𝑙𝑦 and the polynomial

hierarchy collapses to the third level, showing that it is unlikely that NP complete problems have
1We note that historically, the class AM referred to protocols in which the verifiers’ messages consisted of his coin

tosses, namely public-coin protocols. In this work, we use AM to refer to constant round interactive proofs

103

pseudo-deterministic constant round AM protocols.

This result extends the work of [HNOS96] which shows that if there are polynomial time unique

verifiable proofs for SAT, then the polynomial hierarchy collapses. Essentially, their result held for

deterministic interactive proofs (i.e., NP), and we extend their result to probabilistic interactive

proofs with constant number of rounds (i.e., AM).

Every problem in search-BPP is in subexponential-time pseudo-deterministic MA:

Theorem 6.5.4: For every problem in search-BPP, there exists a pseudo-deterministic MA protocol

where the verifier takes subexponential time on infinitely many input lengths.

The idea of the result is to use known circuit lower bounds to get pseudo-deterministic subex-

ponential time MA protocols for problems in search-BPP for infinitely many input lengths. We

remark that Oliveira and Santhanam [OS16] showed a subexponential time pseudo-deterministic

algorithm for infinitely many input lengths for all properties which have inverse polynomial density

and are testable in probabilistic polynomial time. (An example of such a property is the property

of being prime, as the set of primes has polynomial density.) In their construction, the condition of

high density is required in order for the property to intersect with their subexponential-size hitting

set. (Subsequent work in [Hol17] also drops this requirement but only results in an average-case

pseudo-deterministic algorithm.) In the case of MA, unconditional circuit lower bounds for MA with

a verifier which runs in exponential time have been shown by Miltersen et al [MVW99], which allows

us to no longer require inverse polynomial density. Hence, we can obtain a pseudo-deterministic

MA algorithm from circuit lower bounds. Thus, compared to [OS16], our result shows a pseudo-

derandomization (for a subexponential verifier and infinitely many input sizes 𝑛) for all problems

in search-BPP (and not just those with high density), but requires a prover.

Pseudo-deterministic NL equals search-NL: Theorem 6.6.2: For every search problem in

search-NL, there exists a pseudo-deterministic NL protocol.

We define pseudo-deterministic NL to be the class of search problems 𝑅 (a relation on inputs

and solutions) for which there exists log-space non-deterministic algorithm 𝑀 (Turing machines)

such that for every input 𝑥, there exists a unique 𝑠(𝑥) such that 𝑅(𝑥, 𝑠(𝑥)) = 1 and 𝑀(𝑥) outputs

𝑠(𝑥) or rejects 𝑥. Namely, there are no two accepting paths for input 𝑥 that result in different

outputs.

To prove the above theorem, we look at the problem of directed connectivity (that is, given a

104

directed graph 𝐺 with two vertices 𝑠 and 𝑡, we find a path from 𝑠 to 𝑡), and we show that it is possible

to find the lexicographically first path of shortest length in NL. To do so, we first find the length 𝑑

of the shortest path, which can be done in NL. Then, we find the lexicographically first outneighbor

𝑢 of 𝑠 such that there is a path of length 𝑑− 1 from 𝑢 to 𝑡. This can be done by going in order over

all outneighbors of 𝑠, and for each of them checking if there is a path of length 𝑑− 1 to 𝑡 (if there is

not such a path, that can be demonstrated in NL since NL = coNL [Imm88,Sze88]). By recursively

applying this protocol to find a path from 𝑢 to 𝑡, we end up obtaining the lexicographically first

path of shortest length, which is unique.

Structural Results: We show a few structural results regarding pseudo-deterministic interac-

tive proofs In Section 6.7. Specifically, we show that psdAM equals to the class search−Ppromise−(AM∩coAM),

where for valid inputs 𝑥, all queries to the oracle must be in the promise. We show similar results

in the case of pseudo-deterministic MA and pseudo-deterministic NP.

6.1.2 Other Related Work

In their seminal paper on NP with unique solutions, Valiant and Vazirani asked the following ques-

tion: is the inherent intractability of NP-complete problems caused by the fact that NP-complete

problems have many solutions? They show this is not the case by exhibiting a problem – SAT with

unique solutions – which is NP-hard under randomized reductions. They then showed how their

result enables to show the NP-hardness under randomized reductions for a few related problems

such as parity-SAT. We point out that our question is different. We are not restricting our study

to problems (e.g. satisfiable formulas) with unique solutions. Rather, we consider hard problems

for which there may be exponentially many solutions, and ask if one can focus on one of them and

verify it in polynomial time. In the language of satisfiability, 𝜑 can be any satisfiable formula with

exponentially many satisfying assignments; set 𝑠(𝜑) to be a unique valued function which outputs a

satisfying assignment for 𝜑. We study whether there exists an 𝑠 which can be efficiently computed,

or which has an efficient interactive proof.

The question of computing canonical labellings of graphs was considered by Babai and Luks

[BL83] in the early eighties. Clearly graph isomorphism is polynomial time reducible to computing

canonical labellings of graphs (compute the canonical labeling for your graphs and compare), how-

ever it is unknown whether the two problems are equivalent (although finding canonical labellings

105

in polynomial time seems to be known for all classes of graphs for which isomorphism can be com-

puted in polynomial time). The problem of computing a set of generators (of size 𝑂(log 𝑛)) of

the automorphism group of a graph 𝐺 was shown by Mathon [Mat79] (among other results) to be

polynomial-time reducible to the problem of computing the isomorphism of a graph. We use this

in our proof that graph isomorphism is in psdAM.

A line of work on search vs decision and hierarchy collapses, some in the flavor of our result of

Section 6.4, have appeared in [HNOS96,HN17,HHM13,CCHO05].

Finally, we mention that another notion of uniqueness has been studied in the context of inter-

active proofs by Reingold et al [RRR16], called unambiguous interactive proofs where the prover has

a unique successful strategy. This again differs from pseudo-deterministic interactive proofs, in that

we don’t assume (nor guarantee) a unique strategy by the successful prover, we only require that the

prover proves that the solution (or witness) the verifier receives is unique (with high probability).

6.1.3 Subsequent Work

In [Hol17], inspired by this work, Holden shows that for every BPP search problem there exists

an algorithm A which for infinitely many input lengths 𝑛 and for every polynomial-time samplable

distribution over inputs of length 𝑛 runs in subexponential time and produces a unique answer with

high probability on inputs drawn from the distribution and over A’s random coins.

[Hol17] expands on the work [OS16] of Oliveira and Santhanam in several ways. Recall that

the work of Oliveira and Santhanam shows a subexponential time pseudo-deterministic algorithm

for infinitely many input lengths for all properties which have inverse polynomial density and are

testable in probabilistic polynomial time. Whereas [OS16] give a pseudo-deterministic algorithm

for estimating the acceptance probability of a circuit on inputs of a given length, [Hol17] applies

to general search-BPP problems, where the input is a string of a given length over some alphabet

and algorithm’s A goal is to output a solution that satisfies a BPP testable relation with the input

string. Holden [Hol17] shows that for infinitely many input lengths, average-case (over the input

distribution) pseudo-deterministic algorithms are possible for problems in search-BPP.

106

6.2 Definitions of Pseudo-deterministic Interactive Proofs

In this section, we define pseudo-determinism in the context of nondeterminism and interactive

proofs. We begin by defining a search problem.

Definition 6.2.1 (Search Problem). A search problem is a relation 𝑅 consisting of pairs (𝑥, 𝑦). We

define 𝐿𝑅 to be the set of 𝑥’s such that there exists a 𝑦 satisfying (𝑥, 𝑦) ∈ 𝑅. An algorithm solving

the search problem is an algorithm that, when given 𝑥 ∈ 𝐿𝑅, finds a 𝑦 such that (𝑥, 𝑦) ∈ 𝑅. When

𝐿𝑅 contains all strings, we say that 𝑅 is a total search problem. Otherwise, we say 𝑅 is a promise

search problem.

We now define pseudo-determinism in the context of interactive proofs for search problems. In-

tuitively speaking, we say that an interactive proof is pseudo-deterministic if an honest prover causes

the verifier to output the same unique solution with high probability (canonical completeness), and

dishonest provers can only cause the verifier to output either the unique solution or ⊥ with high

probability (canonical soundness). In other words, dishonest provers cannot cause the verifier to

output an answer which is not the unique answer. Additionally, we have the condition that for an

input 𝑥 with no solutions, for all provers the verifier will output ⊥ with high probability (standard

soundness). We note that we use psdIP, psdAM, psdNP, psdMA, and so on, to refer to a class of

promise problems, unless otherwise stated.

Definition 6.2.2 (Pseudo-deterministic IP). A search problem 𝑅 is in pseudo-deterministic IP

(often denoted psdIP) if there exists a function 𝑠 mapping inputs to the search problem to solutions

(i.e., all 𝑥 ∈ 𝐿𝑅 satisfy (𝑥, 𝑠(𝑥)) ∈ 𝑅), and there is an interactive protocol between a probabilistic

polynomial time verifier algorithm 𝑉 and a prover (unbounded algorithm) 𝑃 such that for every

𝑥 ∈ 𝐿𝑅:

1. (Canonical Completeness) There exists a 𝑃 such that Pr𝑟[(𝑃, 𝑉)(𝑥, 𝑟) = 𝑠(𝑥)] ≥ 2
3 . (We use

(𝑃, 𝑉)(𝑥, 𝑟) to denote the output of the verifier 𝑉 when interacting with prover 𝑃 on input 𝑥

using randomness 𝑟).

2. (Canonical Soundness) For all 𝑃 ′, Pr𝑟[(𝑃 ′, 𝑉)(𝑥, 𝑟) = 𝑠(𝑥) or ⊥] ≥ 2
3 .

And (Standard Soundness) for every 𝑥 /∈ 𝐿𝑅, for all provers 𝑃 ′, Pr𝑟[(𝑃 ′, 𝑉)(𝑥, 𝑟) ̸= ⊥] ≤ 1
3 .

107

One can similarly define pseudo-deterministic MA, and pseudo-deterministic AM, where MA is a

1-round protocol, and AM is a 2-round protocol. One can show that any constant-round interactive

protocol can be reduced to a 2-round interactive protocol [Bab85]. Hence, the definition of pseudo-

deterministic AM captures the set of all search problems solvable in a constant number of rounds

of interaction.

Historical Note: Historically, AM referred to public coin protocols, whereas IP referred to

private coin protocols. In this work, we use AM to refer to constant round protocols, and IP to

refer to polynomial round protocols (unless explicitly stated otherwise). By the result of [GS86], we

know that when the prover is all-powerful, a private coin protocol can be simulated using private

coins, so in this setting the distinction between private and public coins does not matter.

Definition 6.2.3 (Pseudo-deterministic AM). A search problem 𝑅 is in pseudo-deterministic AM

(often denoted psdAM) if there exists a function 𝑠 where all 𝑥 ∈ 𝐿𝑅 satisfy (𝑥, 𝑠(𝑥)) ∈ 𝑅, a

probabilistic polynomial time verifier algorithm 𝑉 , and polynomials 𝑝 and 𝑞, such that for every

𝑥 ∈ 𝐿𝑅:

1. (Canonical Completeness) Pr𝑟∈{0,1}𝑝(𝑛)(∃𝑧 ∈ {0, 1}𝑞(𝑛) 𝑉 (𝑥, 𝑟, 𝑧) = 𝑠(𝑥)) ≥ 2
3

2. (Canonical Soundness) Pr𝑟∈{0,1}𝑝(𝑛)(∀𝑧 ∈ {0, 1}𝑞(𝑛) 𝑉 (𝑥, 𝑟, 𝑧) ∈ {𝑠(𝑥),⊥}) ≥ 2
3 .

And (Standard Soundness) for every 𝑥 /∈ 𝐿𝑅, we have Pr𝑟∈{0,1}𝑝(𝑛)(∀𝑧 ∈ {0, 1}𝑞(𝑛) 𝑉 (𝑥, 𝑟, 𝑧) =

{⊥}) ≥ 2
3 .

Definition 6.2.4 (Pseudo-deterministic MA). A search problem 𝑅 is in pseudo-deterministic MA

(often denoted psdMA) if there exists a function 𝑠 where all 𝑥 ∈ 𝐿𝑅 satisfy (𝑥, 𝑠(𝑥)) ∈ 𝑅 and

|𝑠(𝑥)| ≤ 𝑝𝑜𝑙𝑦(𝑥), a probabilistic polynomial time verifier 𝑉 such that for every 𝑥 ∈ 𝐿𝑅
2:

1. (Canonical Completeness) There exists a message 𝑀 of polynomial size such that Pr𝑟[𝑉 (𝑥,𝑀, 𝑟) =

𝑠(𝑥)] ≥ 2
3 .

2. (Canonical Soundness) For all 𝑀 ′, Pr𝑟[𝑉 (𝑥,𝑀 ′, 𝑟) = 𝑠(𝑥) or ⊥] > 2
3 .

And (Standard Soundness) for every 𝑥 /∈ 𝐿𝑅, for all 𝑀 ′, Pr𝑟[𝑉 (𝑥,𝑀 ′, 𝑟) ̸= ⊥] ≤ 1
3 .

2We remark that we use 𝑀 to denote the proof sent by the prover Merlin, and not the algorithm implemented by
the prover.

108

Pseudo-determinism can similarly be defined in the context of NP (which can be viewed as a

specific case of an interactive proof):

Definition 6.2.5 (Pseudo-deterministic NP). A search problem 𝑅 is in pseudo-deterministic NP

(often denoted psdNP) if there exists a function 𝑠 where all 𝑥 ∈ 𝐿𝑅 satisfy (𝑥, 𝑠(𝑥)) ∈ 𝑅 and

|𝑠(𝑥)| ≤ 𝑝𝑜𝑙𝑦(𝑥), and there is a deterministic polynomial time verifier 𝑉 such that for every 𝑥 ∈ 𝐿𝑅:

1. There exists a message 𝑀 of polynomial size such that 𝑉 (𝑥,𝑀) = 𝑠(𝑥).

2. For all 𝑀 ′, 𝑉 (𝑥,𝑀 ′) = 𝑠(𝑥) or 𝑉 (𝑥,𝑀 ′) = ⊥.

And for every 𝑥 /∈ 𝐿𝑅, for all 𝑀 ′, we have 𝑉 (𝑥,𝑀 ′) = ⊥.

A similar definition for pseudo-deterministic NL follows naturally:

Definition 6.2.6 (Pseudo-deterministic NL). A search problem 𝑅 is in pseudo-deterministic NL

(often denoted psdNL) if there exists a function 𝑠 where all 𝑥 ∈ 𝐿𝑅 satisfy (𝑥, 𝑠(𝑥)) ∈ 𝑅 and

|𝑠(𝑥)| ≤ 𝑝𝑜𝑙𝑦(𝑥), there is a nondeterministic log-space machine 𝑉 such that for every 𝑥 ∈ 𝐿𝑅:

1. There exist nondeterministic choices 𝑁 for the machine such that such that 𝑉 (𝑥,𝑁) = 𝑠(𝑥).

2. For all possible nondeterministic choices 𝑁 ′, 𝑉 (𝑥,𝑁 ′) = 𝑠(𝑥) or 𝑉 (𝑥,𝑁 ′) = ⊥.

And for every 𝑥 /∈ 𝐿𝑅, for all nondeterministic choices 𝑁 ′, 𝑉 (𝑥,𝑁 ′) = ⊥.

6.3 Pseudo-deterministic-AM algorithm for graph isomorphism

In this section we give an algorithm for finding an isomorphism between two graphs in AM that

outputs the same answer with high probability. The way this algorithm works is that the prover will

send the lexicographically first isomorphism to the verifier and then prove that it is the lexicograph-

ically first isomorphism. To prove that the isomorphism is the lexicographically first isomorphism,

we label the graph and run a sequence of graph non-isomorphism protocols to show no lexicograph-

ically smaller isomorphism exists. We present an alternate proof of the same result in the appendix

(the proof in the appendix is more group theoretic, whereas the proof below is more combinatorial).

Theorem 6.3.1. Finding an isomorphism between graphs can be done in psdAM.

109

Proof. Let the vertices of 𝐺1 be 𝑣1, 𝑣2, . . . , 𝑣𝑛, and the vertices of 𝐺2 be 𝑢1, 𝑢2, . . . , 𝑢𝑛. We will show

an AM algorithm which outputs a unique isomorphism 𝜑. Our algorithm will proceed in 𝑛 stages

(which we will later show can be parallelized). After the 𝑘th stage, the values 𝜑(𝑣1), 𝜑(𝑣2), . . . , 𝜑(𝑣𝑘)

will be determined.

Suppose that the values 𝜑(𝑣1), 𝜑(𝑣2), . . . , 𝜑(𝑣𝑘) have been determined. Then we will determine

the smallest 𝑟 such that there exists an isomorphism 𝜑* such that for 1 ≤ 𝑖 ≤ 𝑘, we have 𝜑*(𝑣𝑖) =

𝜑(𝑣𝑖), and in addition, 𝜑*(𝑣𝑘+1) = 𝑢𝑟. If we find 𝑟, we can set 𝜑(𝑣𝑘+1) = 𝜑*(𝑣𝑘+1) and continue to

the 𝑘 + 1𝑡ℎ stage.

To find the correct value of 𝑟, the (honest) prover will tell the verifier the value of 𝑟 and 𝜑.

Then, to show that the prover is not lying, for each 𝑟′ < 𝑟, the prover will prove that there exists

no isomorphism 𝜑′ such that for 1 ≤ 𝑖 ≤ 𝑘, we have 𝜑′(𝑣𝑖) = 𝜑(𝑣𝑖), and in addition, 𝜑′(𝑣𝑘+1) = 𝑢𝑟′ .

To prove this, the verifier will pick 𝐺1 or 𝐺2, each with probability 1/2. If the verifier picked 𝐺1,

he will randomly shuffle the vertices 𝑣𝑘+2, . . . , 𝑣𝑛, and send the shuffled graph to the prover. If the

verifier picked 𝐺2, he will set 𝑢′𝑖 = 𝜑(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑘, and 𝑢′𝑘+1 = 𝑢𝑟′ , and shuffle the rest of

the vertices. If the prover can distinguish between whether the verifier initially picked 𝐺1 or 𝐺2,

then that implies there is no isomorphism sending 𝑣𝑖 to 𝜑(𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑘, and sending 𝑣𝑘+1 to

𝑢𝑟′ . The prover now can show this for all 𝑟′ ≤ 𝑟 (in parallel), as well as exhibit the isomorphism 𝜑,

thus proving that 𝑟 is the minimum value such that there is an isomorphism sending 𝑣𝑖 to 𝜑(𝑣𝑖) for

1 ≤ 𝑖 ≤ 𝑘, and sending 𝑣𝑘+1 to 𝑢𝑟.

The above 𝑛 stages can be done in parallel in order to achieve a constant round protocol. To

do so, in the first stage, the prover sends the isomorphism 𝜑 to the verifier. Then, the verifier can

test (in parallel) for each 𝑘 whether under the assumption that 𝜑(𝑣1), 𝜑(𝑣2), . . . , 𝜑(𝑣𝑘) are correct,

𝜑(𝑣𝑘+1) is the lexicographically minimal vertex which 𝑣𝑘+1 can be sent to. The correctness of this

protocol follows from the fact that multiple AM interactive proofs can be performed in parallel

while maintaining soundness and completeness for all of the interactive proofs performed (as shown

in appendix C.1 of [Gol98]).

We note that in the above protocol, the prover only needs to have the power to solve graph

isomorphism (and graph non-isomorphism). Also, we note that the above protocol uses private

coins. While the protocol can be simulated with a public coin protocol [GS86], the simulation

requires the prover to be very powerful.

110

6.4 Lower bound on pseudo-deterministic AM algorithms

In this section, we establish that if any NP-complete problem has an AM protocol that outputs

a unique witness with high probability, then the polynomial hierarchy collapses. To do this we

show the analog of AM ⊆ NP/𝑝𝑜𝑙𝑦 for the pseudo-deterministic setting, and then use this fact

to get a NP/𝑝𝑜𝑙𝑦 algorithm with a unique witness. We can then use [HNOS96] to show that

NP ⊆ coNP/𝑝𝑜𝑙𝑦, which obtains the hierarchy collapse.

We begin by proving that psdAM ⊆ psdNP/𝑝𝑜𝑙𝑦:

Lemma 6.4.1. Suppose that there is a psdAM protocol for a search problem 𝑅, which on input

𝑥 ∈ 𝐿𝑅, outputs 𝑠(𝑥). Then, the search problem 𝑅 has a psdNP/𝑝𝑜𝑙𝑦 algorithm which, on input 𝑥,

outputs 𝑠(𝑥).

Proof. Consider a psdAM protocol, and suppose that on input 𝑥 ∈ 𝐿𝑅, it outputs 𝑠(𝑥).

Since we are guaranteed that when the verifier of the the psdAM accepts, it will output 𝑠(𝑥)

with high probability, we can use standard amplification techniques to show that the verifier will

output 𝑠(𝑥) with probability 1− 𝑜(exp(−𝑛)), assuming an honest prover, and will output anything

other than 𝑠(𝑥) with probability 𝑜(exp(−𝑛)), even with a malicious prover. Then, by a union bound,

there exists a choice of random string 𝑟 that makes the verifier output 𝑠(𝑥) for all inputs 𝑥 ∈ {0, 1}𝑛

of size 𝑛 with an honest prover, and that for malicious provers, the verifier will either reject or

output 𝑠(𝑥). We encode this string 𝑟 as the advice string for the NP/𝑝𝑜𝑙𝑦 machine.

The NP/𝑝𝑜𝑙𝑦 machine computing 𝑠 can read 𝑟 off the advice tape and then guess the prover’s

message, and whenever the verifier accepts, 𝑠(𝑥) will be output by that nondeterministic branch.

Thus 𝑠(𝑥) can be computed by an NP/𝑝𝑜𝑙𝑦 machine.

Next, we show that if an NP-complete problem has a pseudo-deterministic-NP/𝑝𝑜𝑙𝑦 algorithm,

then the polynomial hierarchy collapses.

Theorem 6.4.2. Let 𝐿 ∈ NP be an NP-complete problem. Let 𝑅 be a polynomial time algorithm

such that there exists a polynomial 𝑝 so that 𝑥 ∈ 𝐿 if and only if ∃𝑦 ∈ {0, 1}𝑝(|𝑥|)𝑅(𝑥, 𝑦). Suppose

that there is a psdAM protocol that when given some 𝑥 ∈ 𝐿, outputs a unique 𝑠(𝑥) ∈ {0, 1}𝑝(|𝑥|)

such that 𝑅(𝑥, 𝑠(𝑥)) = 1. Then, NP ⊆ coNP/𝑝𝑜𝑙𝑦 and the polynomial hierarchy collapses to the

third level.

111

Proof. Assume that there is a psdAM protocol that when given some 𝜑 ∈ 𝐿, outputs a unique 𝑠(𝜑) ∈

{0, 1}𝑝(|𝜑|) such that 𝑅(𝜑, 𝑠(𝜑)) = 1. From Lemma 6.4.1, we have that there exists psdNP/𝑝𝑜𝑙𝑦

algorithm 𝐴 that given 𝜑 ∈ 𝐿, outputs a unique witness 𝑠(𝜑) for 𝜑. Given such an algorithm 𝐴, we

can construct a function 𝑔 computable in psdNP/𝑝𝑜𝑙𝑦 that on two inputs 𝜑1 and 𝜑2, 𝑔(𝜑1, 𝜑2) is

one of either 𝜑1 or 𝜑2 with the condition that if either 𝜑1 or 𝜑2 is in 𝐿, then 𝑔(𝜑1, 𝜑2) is satisfiable.

If neither 𝜑1 nor 𝜑2 are in 𝐿, then 𝑔(𝜑1, 𝜑2) = ⊥.

To construct such a 𝑔, define a function 𝑔′ where 𝑔′(𝜑1, 𝜑2) = {𝜑1, 𝜑2} ∩ 𝐿 (i.e., 𝑔′(𝜑1, 𝜑2) is

the subset of {𝜑1, 𝜑2} consisting of satisfiable formulas). We construct 𝑔 by reducing the language

𝐿′ = {(𝜑1, 𝜑2)|𝑔′(𝜑1, 𝜑2) ̸= ∅} (which is in NP, and hence reducible to 𝐿, since 𝐿 is NP-complete) to

𝐿 and running 𝐴 to find a unique witness for 𝑔, which we can then turn into a witness for 𝐿′. Note

that a witness for 𝐿′ is either a witness for 𝜑1 or for 𝜑2. We can then check whether this unique

witness is a witness for 𝜑1 or 𝜑2, and output the 𝜑𝑖 for which it is a witness (in the case that the

witness works for both of the 𝜑𝑖, we output the lexicographically first 𝜑𝑖).

We note that we view 𝑔 as a function on the set {𝜑1, 𝜑2}. That is, we set 𝑔(𝜑1, 𝜑2) = 𝑔(𝜑2, 𝜑1)

(if a function 𝑔 does not satisfy this property, we can create a 𝑔* satisfying this property by setting

𝑔*(𝜑1, 𝜑2) = 𝑔(𝑚𝑖𝑛(𝜑1, 𝜑2),𝑚𝑎𝑥(𝜑2, 𝜑1))).

Now, our goal is to use 𝑔, which we know is computable in psdNP/𝑝𝑜𝑙𝑦 to construct an NP/𝑝𝑜𝑙𝑦

algorithm for 𝐿̄ (the complement of 𝐿).

We construct the advice string for 𝐿 for length 𝑛 as follows. Our advice string will be a set 𝑆

consisting of strings 𝜑𝑖. Start out with 𝑆 = ∅. We know that there exists a 𝜑1 ∈ {0, 1}𝑛 ∩ 𝐿 such

that 𝑔(𝜑, 𝜑1) = 𝑥 for at least half of the set {𝜑 ∈ {0, 1}𝑛 ∩ 𝐿|𝑔(𝜑, 𝑠) = 𝑠∀𝑠 ∈ 𝑆}. Such an 𝑠 exists

since in expectation, when picking a random 𝑠, half of the 𝜑’s will satisfy 𝑔(𝜑, 𝑠) = 𝑥. If we keep

doing this, we get a set 𝑆 with |𝑆| ≤ 𝑝𝑜𝑙𝑦(𝑛) such that for every 𝜑 ∈ 𝐿 of length 𝑛, there exists an

𝑠 ∈ 𝑆 such that 𝑔(𝜑, 𝑠) = 𝑥.

Now, to check that 𝜑 ∈ 𝐿̄ in NP/𝑝𝑜𝑙𝑦 (where 𝑆 as defined above is the advice), we compute

𝑔(𝜑, 𝑠) for every 𝑠 ∈ 𝑆, and check that 𝑔(𝜑, 𝑠) = 𝑠 for every 𝑠 ∈ 𝑆 which is possible because |𝑆| is

polynomial in 𝑛. It is clear that this algorithm accepts if 𝜑 /∈ 𝐿 and rejects if 𝜑 ∈ 𝐿, so therefore

𝐿 ∈ coNP/𝑝𝑜𝑙𝑦, which implies that NP ⊆ coNP/𝑝𝑜𝑙𝑦. Furthermore, NP ⊆ coNP/𝑝𝑜𝑙𝑦 implies that

the polynomial hierarchy collapses to the third level.

112

6.5 Pseudo-deterministic derandomization for BPP in subexponen-

tial time MA

In this section, we prove the existence of pseudo-deterministic subexponential time (time 𝑂(2𝑛
𝜖
) for

every 𝜖) MA protocols for problems in search-BPP for infinitely many input lengths.

In this section, we prove that every problem 𝑅 in search-BPP has an MA proof where the verifier

takes subexponential time (and the prover is unbounded). For completeness, we define search-BPP

below:

Definition 6.5.1 (Search-BPP). A binary relation 𝑅 is in search-𝐵𝑃𝑃 if there exist probabilistic

polynomial-time algorithms 𝐴,𝐵 such that

1. Given 𝑥 ∈ 𝑅𝐿, 𝐴 outputs a 𝑦 such that with probability at least 2/3, (𝑥, 𝑦) ∈ 𝑅.

2. If 𝑦 is output by 𝐴 when run on 𝑥, and (𝑥, 𝑦) /∈ 𝑅, then 𝐵 rejects on (𝑥, 𝑦) with probability

at least 2/3. Furthermore, for all 𝑥 ∈ 𝐿𝑅, with probability at least 1/2 𝐵 accepts on (𝑥, 𝑦)

with probability at least 1/2.

When 𝑥 /∈ 𝑅𝐿, 𝐴 outputs ⊥ with probability at least 2/3.

The intuition of the above definition is that 𝐴 is used to find an output 𝑦, and then 𝐵 can be

used to verify 𝑦, and amplify the success probability.

A main component of our proof will be the Nisan-Wigderson pseudo-random generator, which

shows a way to construct pseudorandom strings given access to an oracle solving a problem of high

circuit complexity.

To obtain the best running time for our pseudo-deterministic algorithm, we will need the iterated

exponential functions first used in complexity theory by [MVW99]. We will be considering functions

with half-exponential growth, i.e. functions 𝑓 such that 𝑓(𝑓(𝑛)) ∈ 𝑂(2𝑛
𝑘
) for some 𝑘.

Definition 6.5.2 (Fractional exponentials [MVW99]). The fractional exponential function 𝑒𝛼(𝑥)

will be defined as 𝐴−1(𝐴(𝑥) + 𝛼), where 𝐴 is the solution to the functional equation 𝐴(𝑒𝑥 − 1) =

𝐴(𝑥)+1. In addition, we can construct such functions so that 𝑒𝛼(𝑒𝛽(𝑥)) = 𝑒𝛼+𝛽(𝑥). It is clear from

this definition that 𝑒1(𝑛) = 𝑂(2𝑛), and that 𝑒1/2(𝑒1/2(𝑥)) = 𝑂(2𝑛). We call a function 𝑓 satisfying

𝑓(𝑥) = Θ(𝑒1/2(𝑥)) a half-exponential function.

113

Definition 6.5.3 (Half-Exponential Time MA). We define a half-exponential time MA proof to be

an interactive MA proof in which the verifier runs in half-exponential time.

Theorem 6.5.4. Given a problem 𝑅 in search-BPP, it is possible to obtain a pseudo-deterministic

MA algorithm for 𝑅 where the verifier takes subexponential time for infinitely many input lengths.

Proof. From [MVW99], we see that MA ∩ coMA where the verifier runs in half-exponential time

cannot be approximated by polynomial-sized circuits. By Nisan-Wigderson [NW94], it follows that

in half-exponential time MA, one can construct a pseudorandom generator with half-exponential

stretch which is secure against any given polynomial-size circuit for infinitely many input lengths.

We provide more details below.

Let 𝑇 be the truth-table of a hard function in MA∩ coMA. Then, let 𝑅 be a relation in search-

BPP. Recall from Definition 6.5.1 that there is an algorithm 𝐴 that given 𝑥, produces 𝑦 such that

(𝑥, 𝑦) ∈ 𝑅 with high probability if 𝑥 ∈ 𝑅𝐿.

We will now describe the 𝑀𝐴 protocol. First, the prover sends 𝑇 to the verifier and proves

that it is indeed the truth table of the hard function in half-exponential time MA (which can be

done in half-exponential time). With 𝑇 in hand, the verifier can then compute the output of the

Nisan-Wigderson pseudorandom generator. The verifier loops through the seeds in lexicographic

order and uses the pseudorandom generator on each seed to create pseudo-random strings, which

the verifier then uses as the randomness for 𝐴. Each time, the verifier tests whether (𝑥,𝐴(𝑥, 𝑟)) ∈ 𝑅

(which can be done in BPP, and hence also in MA) and returns the first such valid output.

This will output the same solution whenever the verifier both gets the correct truth-table for the

PRG, and succeeds in testing for each PRG output whether the output it provides is valid. Both

of these happen with high probability, and thus this is a pseudo-deterministic subexponential-time

MA algorithm for any problem in search-BPP which succeeds on infinitely many input lengths.

6.6 Uniqueness in NL

In this section, we prove that every problem in search-NL can be made pseudo-deterministic. For

completeness we include a definition of search-NL:

Definition 6.6.1 (search-NL). A search problem 𝑅 is in search-NL if there is a nondeterministic

log-space machine 𝑉 such that for every 𝑥 ∈ 𝐿𝑅,

114

1. There exist nondeterministic choices 𝑁 for the machine such that such that 𝑉 (𝑥,𝑁) = 𝑦, and

(𝑥, 𝑦) ∈ 𝑅.

2. For all possible nondeterministic choices 𝑁 ′, (𝑥, 𝑉 (𝑥,𝑁 ′)) ∈ 𝑅, or 𝑉 (𝑥,𝑁 ′) = ⊥.

And for every 𝑥 /∈ 𝐿𝑅, for all nondeterministic choices 𝑁 ′, 𝑉 (𝑥,𝑁 ′) = ⊥.

Theorem 6.6.2 (Pseudo-determinism NL). Every search problem in search-NL is in psdNL.

One can think of the complete search problem for NL as: given a directed graph 𝐺, and two

vertices 𝑠 and 𝑡 such that there is a path from 𝑠 to 𝑡, find a path from 𝑠 to 𝑡. Note that the

standard nondeterministic algorithm of simply guessing a path will result in different paths for

different nondeterministic guesses. Our goal will be to find a unique path, so that on different

nondeterministic choices, we will not end up with a path which is not the unique one.

The idea will be to find the lexicographically first shortest path (i.e, if the min-length path from

𝑠 to 𝑡 is of length 𝑑, we will output the lexicographically first path of length 𝑑 from 𝑠 to 𝑡). To do

so, first we will determine the length 𝑑 of the min-length path from 𝑠 to 𝑡. Then, for each neighbor

of 𝑠, we will check if it has a path of length 𝑑 − 1 to 𝑡, and move to the first such neighbor. Now,

we have reduced the problem to finding a unique path of length 𝑑− 1, which we can do recursively.

The full proof is given below:

Proof. Given a problem in search-NL, consider the set of all min-length computation histories. We

will find the lexicographically first successful computation history in this set.

To do so, we first (nondeterministically) compute the length of the min-length computation

history. This can be done because coNL = NL (so if the shortest computation history is of size 𝑇 ,

one can show a history of size 𝑇 . Also, because it is coNL to show that there is no history of size

up to 𝑇 − 1, we can show that there is no history of size less than 𝑇 in NL).

In general, using the same technique, given a state 𝑆 of the NL machine, we can tell what is the

shortest possible length for a successful computation history starting at 𝑆.

Our algorithm will proceed as follows. Given a state 𝑆 (which we initially set to be the initial

configuration of the NL machine), we will compute 𝑇 , the length of the shortest successful com-

putation path starting at 𝑆. Then, for each possible nondeterministic choice, we will check (in

NL) whether there exists a computation history of length 𝑇 − 1 given that nondeterministic choice.

Then, we will choose the lexicographically first such nondeterministic choice, and recurse.

115

This algorithm finds the lexicographically first computation path of minimal length which is

unique. Hence, the algorithm will always output the same solution (or reject), so the algorithm is

pseudo-deterministic.

6.7 Structural Results

In [GGR13], Goldreich et al showed that the set of total search problems solved by pseudo-

deterministic polynomial time randomized algorithms equals the set of total search problems solved

by deterministic polynomial time algorithms, with access to an oracle to decision problems in BPP.

In [GG15], this result was extended to the context of RNC. We show analogous theorems here.

In the context of MA, we show that for total search problems, psdMA = search−PMA∩coMA.3 In

other words, any pseudo-deterministic MA algorithm can be simulated by a polynomial time search

algorithm with an oracle solving decision problems in MA ∩ coMA, and vice versa.

In the case of search problems that are not total, we show that psdMA equals to the class

search−Ppromise−(MA∩coMA), where when the input 𝑥 is in 𝐿𝑅, all queries to the oracle must be in

the promise. We note that generally, when having an oracle to a promise problem, one is allowed to

query the oracle on inputs not in the promise, as long as the output of the algorithm as a whole is

correct for all possible answers the oracle gives to such queries. In our case, we simply do not allow

queries to the oracle to be in the promise. Such reductions have been called smart reductions [GS88].

We show similar theorems for AM, and NP. Specifically, we show psdAM = search−Ppromise−(AM∩coAM)

and psdNP = search−Ppromise−(NP∩coNP), where the reductions to the oracles are smart reductions.

In the case of total problems, one can use a similar technique to show psdAM = search−PAM∩coAM

and psdNP = search−PNP∩coNP, where the oracles can only return answers to total decision prob-

lems.

Theorem 6.7.1. The class psdMA equals the class search−Ppromise−(MA∩coMA), where on any input

𝑥 ∈ 𝐿𝑅, the all queries to the oracle are in the promise.

Proof. The proof is similar to the proofs in [GGR13] and [GG15] which show similar reductions to

decision problems in the context of pseudo-deterministic polynomial time algorithms and pseudo-

deterministic NC algorithms.
3What we call search−P is often denoted as FP.

116

First, we show that a polynomial time algorithm with an oracle for promise−(MA ∩ coMA)

decision problems which only asks queries in the promise has a corresponding pseudo-deterministic

MA algorithm. Consider a polynomial time algorithm 𝐴 which uses an oracle for promise−(MA ∩

coMA). We can simulate 𝐴 by an MA protocol where the prover sends the verifier the proof for

every question which 𝐴 asks the oracle. Then, the verifier can simply run the algorithm from 𝐴,

and whenever he accesses the oracle, he instead verifies the proof sent to him by the prover.

We note that the condition of a smart reduction is required in order for the prover to be able to

send to the verifier the list of all queries 𝐴 will make to the oracle. If 𝐴 can ask the oracle queries

not in the promise, it may be that on different executions of 𝐴, different queries will be made to the

oracle (since 𝐴 is a adaptive, and the queries 𝐴 makes may depend on the answers returned by the

oracle for queries not in the promise), so the prover is unable to predict what queries 𝐴 will need

answered.

We now show that a pseudo-deterministic MA algorithm 𝐵 has a corresponding polynomial time

algorithm 𝐴 that uses a promise−(MA∩coMA) oracle while only querying on inputs in the promise.

On input 𝑥 ∈ 𝐿𝑅, the polynomial time algorithm can ask the promise−(MA∩ coMA) oracle for the

first bit of the unique answer given by 𝐵. This is a decision problem in promise−(MA∩coMA) since

it has a constant round interactive proof (namely, run 𝐵 and then output the first bit). Similarly,

the algorithm 𝐴 can figure out every other bit of the unique answer, and then concatenate those

bits to obtain the full output.

Note that it is required that the oracle is for promise−(MA∩coMA), and not just for promise−MA,

since if one of the bits of the output is 0, the verifier must be able to convince the prover of that

(and this would require a promise−coMA protocol).

A very similar proof shows the following:

Theorem 6.7.2. The class psdNP equals the class search−Ppromise−(NP∩coNP), where on any input

𝑥 ∈ 𝐿𝑅, all queries to the oracle are in the promise.

We now prove a similar theorem for the case of AM protocols. We note that this is slightly

more subtle, since it’s not clear how to simulate a search−Ppromise−(AM∩coAM) protocol using only

a constant number of rounds of interaction, since the search-P algorithm may ask polynomial many

queries in an adaptive fashion.

117

Theorem 6.7.3. The class psdAM equals the class search−Ppromise−(AM∩coAM), where on any input

𝑥 ∈ 𝐿𝑅, the all queries to the oracle are in the promise.

Proof. First, we show that a polynomial time algorithm with an oracle for promise−(AM ∩ coAM)

decision problems where the queries are all in the promise has a corresponding pseudo-deterministic

AM algorithm. We proceed similarly to the proof of Theorem 6.7.1. Consider a polynomial time

algorithm 𝐴 which uses an oracle for promise−(AM∩coAM). The prover will internally simulate that

algorithm 𝐴, and then send to the verifier a list of all queries that 𝐴 makes to the promise−(AM∩

coAM) oracle. Then, the prover can prove the answer (in parallel), to all of those queries.

To prove correctness, suppose that the prover lies about at least one of the oracle queries. Then,

consider the first oracle query to which the prover lied. Then, by a standard simulation argument,

one can show that it can be made overwhelmingly likely that the verifier will discover that the

prover lied on that query.

Once all queries have been answered by the verifier the algorithm 𝐵 can run like 𝐴, but instead

of querying the oracle, it already knows the answer since the prover has proved it to him.

The proof that a pseudo-deterministic MA algorithm 𝐵 has a corresponding polynomial time

algorithm 𝐴 that uses an promise−(AM∩coAM) oracle is identical to the proof of Theorem 6.7.1

As a corollary of the above, we learn that private coins are no more powerful than public coins

in the pseudo-deterministic setting:

Corollary 6.7.4. A pseudo-deterministic constant round interactive proof using private coins can

be simulated by a pseudo-deterministic constant round interactive proof using public coins.

Proof. By Theorem 6.7.3, we can view the algorithm as an algorithm in search−PAM∩coAM.

By a similar argument to that in Theorem 6.7.3, one can show that psdIP = search−PIP∩coIP,

where in this context IP refers to constant round interactive proofs using private coins, and AM

refers to constant round interactive proofs using public coins. Since promise−(AM ∩ coAM) =

promise−(IP∩coIP), since every constant round private coin interactive proof for decision problems

can be simulated by a constant round interactive proof using public coins [GS86], we have:

psdAM = search−Ppromise−(AM∩coAM) = search−Ppromise−(IP∩coIP) = psdIP.

118

6.8 Discussion and Open Problems

Pseudo-determinism and TFNP: The class of total search problems solvable by pseudo-deterministic

NP algorithms is a very natural subset of TFNP, the set of all total NP search problems. It is in-

teresting to understand how the set of total psdNP problems fits in TFNP. For example, it is not

known whether TFNP = psdNP. It would be interesting either to show that every problem in

TFNP has a pseudo-deterministic NP algorithm, or to show that under plausible assumptions there

is a problem in TFNP which does not have a pseudo-deterministic NP algorithm.

Similarly, it is interesting to understand the relationship of psdNP to other subclasses of TFNP.

For example, one can ask whether every problem in PPAD has a pseudo-deterministic NP algorithm

(i.e., given a game, does there exists a pseudo-deterministic NP or AM algorithm which outputs a

Nash Equilibrium), or whether under plausible assumptions this is not the case. Similar questions

can be asked for CLS, PPP, and so on.

Pseudo-determinism in Lattice problems: There are several problems in the context of

lattices which have NP (and often also NP ∩ coNP) algorithms [AR05]. Notable examples include

gap-SVP and gap-CVP, for certain gap sizes. It would be interesting to show pseudo-deterministic

interactive proofs for those problems. In other words, one could ask: does there exists an AM

protocol for gap-SVP so that when a short vector exists, the same short vector is output every

time. Perhaps more interesting would be to show, under plausible cryptographic assumptions, that

certain such problems do not have psdAM protocols.

Pseudo-determinism and Number Theoretic Problems: The problem of generating

primes (given a number 𝑛, output a prime greater than 𝑛), and the problem of finding primi-

tive roots (given a prime 𝑝, find a primitive root mod 𝑝) have efficient randomized algorithms, and

have been studied in the context of pseudo-determinism [Gro15,GG11,OS16], though no polyno-

mial time pseudo-deterministic algorithms have been found. It is interesting to ask whether these

problems have polynomial time psdAM protocols.

The Relationship between psdAM and search−BPP: One of the main open problems in

pseudo-determinism is to determine whether every problem in search−BPP also has a polyno-

mial time pseudo-deterministic algorithm. This remains unsolved. As a step in that direction

(and as an interesting problem on its own), it is interesting to determine whether search−BPP ⊆

psdAM. In this paper, we proved a partial result in this direction, namely that search−BPP ⊆

119

𝑖.𝑜.psdMASUBEXP.

Zero Knowledge Proofs of Uniqueness: The definition of pseudo-deterministic interactive

proofs can be extended to the context of Zero Knowledge. In other words, the verifier gets no

information other than the answer, and knowing that it is the unique/canonical answer. It is

interesting to examine this notion and understand its relationship to psdAM.

The Power of the Prover in pseudo-deterministic interactive proofs: Consider a search

problem which can be solved in IP where the prover, instead of being all-powerful, is computationally

limited. We know that such a problem can be solved in psdIP if the prover has unlimited compu-

tational power (in fact, one can show it is enough for the prover to be in PSPACE). In general,

if the prover can be computationally limited for some IP protocol, can it also be computationally

limited for a psdIP protocol for the same problem? It is also interesting in general to compare the

power needed for the psdIP protocol compared to the power needed to solve the search problem

non-pseudo-deterministically. Similar questions can be asked in the context of AM.

The Power of the Prover in pseudo-deterministic private vs public coins proofs: In

our psdAM protocol for Graph Isomorphism, the verifier uses private coins, and the prover is weak

(it can be simulated by a polynomial time machine with an oracle for graph isomorphism). If using

public coins, what power would the prover need? In general, it is interesting to compare the power

needed by the prover when using private coins vs public coins in psdAM and psdIP protocols.

Pseudo-deterministic interactive proofs for setting cryptographic global system pa-

rameters: Suppose an authority must come up with global parameters for a cryptographic protocol

(for instance, a prime 𝑝 and a primitive root 𝑔 of 𝑝, which would be needed for a Diffie-Hellman

key exchange). It may be important that other parties in the protocol know that the authority

did not come up with these parameters because he happens to have a trapdoor to them. If the

authority proves to the other parties that the parameters chosen are canonical, the other parties

now know that the authority did not just pick these parameters because of a trapdoor (instead, the

authority had to pick those parameters, since those are the canonical ones). It would be interesting

to come up with a specific example of a protocol along with global parameters for which there is a

pseudo-deterministic interactive proof showing the parameters are unique.

120

6.9 Alternate Algorithm for Graph Isomorphism in pseudo-deterministic

AM

In this section, we present another psdAM algorithm for Graph Isomorphism, this one more group

theoretic (as opposed to the more combinatorial approach of the algorithm in Section 6.3). The

method we use to do this involves finding the lexicographically first isomorphism using group the-

ory. In particular, the verifier will obtain the automorphism group of one of the graphs from the

prover and verify that it is indeed the automorphism group, and then the verifier will convert an

isomorphism obtained from the prover into the lexicographically first isomorphism between the two

graphs. We will define the group-theoretic terms used below.

Definition 6.9.1 (Automorphism Group). The automorphism group 𝐴𝑢𝑡(𝐺) of a graph is the set of

permutations 𝜑 : 𝐺→ 𝐺 such that for every 𝑢, 𝑣 ∈ 𝑉 (𝐺), (𝑢, 𝑣) ∈ 𝐸(𝐺) ⇐⇒ (𝜑(𝑢), 𝜑(𝑣)) ∈ 𝐸(𝐺)

(i.e., 𝜑 is an automorphism of 𝐺).

Definition 6.9.2 (Stabilize). Given a set 𝑆 and elements 𝛼1, 𝛼2, ..., 𝛼𝑖 ∈ 𝑆, we say that a permu-

tation 𝜑 : 𝑆 → 𝑆 stabilizes {𝛼1, 𝛼2, ..., 𝛼𝑘} iff 𝜑(𝛼𝑖) = 𝛼𝑖 for 𝑖 ∈ {1, ..., 𝑘}. We also say that a group

𝐺 stabilizes {𝛼1, 𝛼2, ..., 𝛼𝑘} when every 𝜑 ∈ 𝐺 stabilizes {𝛼1, 𝛼2, ..., 𝛼𝑘}.

Definition 6.9.3 (Stabilizer). The stabilizer of an element 𝑠 in 𝑆 for a group 𝐺 acting on 𝑆 is the

set of elements of 𝐺 that stabilize 𝑠.

Lemma 6.9.4. Suppose that we are given a tuple (𝐺1, 𝐺2, 𝐻, 𝜑) where 𝐺1 and 𝐺2 are graphs,

𝐻 = 𝐴𝑢𝑡(𝐺1) is represented as a set of generators, and 𝜑 an isomorphism between 𝐺1 and 𝐺2.

Then, in polynomial time, we can compute a unique isomorphism 𝜑* from 𝐺1 to 𝐺2 independent of

the choice of 𝜑 and the representation of 𝐻.

Proof. We use the algorithm given in [Can73] to compute a canonical coset representative, observing

that the set of isomorphisms between 𝐺1 and 𝐺2 is a coset of the automorphism group of 𝐺1. Let

𝛼1, ..., 𝛼𝑡 be a basis of 𝐻, i.e., a set such that any ℎ ∈ 𝐻 fixing 𝛼1, ..., 𝛼𝑡 is the identity. Let 𝐻𝑖 be

the subgroup of 𝐻 that stabilizes 𝛼1, ..., 𝛼𝑖−1. Now, let 𝑈𝑖 be a set of coset representatives of 𝐻𝑖+1

in 𝐻𝑖. Given the generators of 𝐻𝑖, we can calculate 𝑈𝑖, and by Schreier’s theorem we can calculate

the generators for 𝐻𝑖+1. In this fashion, we can get generators and coset representatives for all the

𝐻𝑖. To produce 𝜑*, we do the following.

121

Find-First-Isomorphism

1 𝜑* = 𝜑

2 For 𝑖 = 1, ..., 𝑡

3 Let 𝑃𝑖 = {𝜑*𝑢|𝑢 ∈ 𝑈𝑖}.

4 Set 𝜑* = argmin𝜑∈𝑃𝑖
(𝜑(𝛼𝑖)).

To see that this produces a unique isomorphism that does not depend on 𝜑, observe that 𝜑*(𝛼1)

is the minimum possible value of 𝜑(𝛼1) over all isomorphisms of 𝐺1 to 𝐺2 as 𝑈1 is a set of coset

representatives for the stabilizer of 𝛼1 over 𝐻. Also, if 𝜑*(𝛼𝑖) is fixed for 𝑖 ∈ {1, ..., 𝑘}, then

𝜑*(𝛼𝑘+1) is the minimum possible value of 𝜑(𝛼𝑘+1) over all isomorphisms which take 𝛼1 to 𝜑*(𝛼1),

𝛼2 to 𝜑*(𝛼2),..., and 𝛼𝑘 to 𝜑*(𝛼𝑘), as 𝑈𝑖+1 stabilizes 𝛼1, ..., 𝛼𝑘, so everything in 𝑃𝑖+1 takes 𝛼1 to

𝜑*(𝛼1), 𝛼2 to 𝜑*(𝛼2),..., and 𝛼𝑘 to 𝜑*(𝛼𝑘). This implies that 𝜑* does not depend on 𝜑 and is

unique.

Given this result, this means that it suffices to show a protocol that lets the verifier obtain a

set of generators for the automorphism group of 𝐺1 and an isomorphism that are correct with high

probability, as by the above lemma this can be used to obtain a unique isomorphism between 𝐺1

and 𝐺2 independent of the isomorphism or the generators.

Theorem 6.9.5. There exists an interactive protocol for graph isomorphism such that with high

probability, the isomorphism that is output by the verifier is unique, where in the case of a cheating

prover the verifier fails instead of outputting a non-unique isomorphism. In other words, finding an

isomorphism between graphs can be done in psdAM.

Proof. From Lemma 6.9.4, it suffices to show an interactive protocol that computes the automor-

phism group of a graph in a verifiable fashion. [Mat79] reduces the problem of computing the

generators of the automorphism group to the problem of finding isomorphisms. Using this reduc-

tion, we can make a constant-round interactive protocol to determine the automorphism group by

finding the isomorphisms in parallel. The reason we can do this in parallel is that [Mat79] implies

that there are 𝑂(𝑛4) different pairs of graphs to check and for each pair of graphs we either run

the graph isomorphism protocol or the graph non-isomorphism protocol. In the case of the graph

isomorphism protocol, the verifier need only accept with an isomorphism in hand; for graph non-

isomorphism, the messages sent to the prover are indistinguishable between the two graphs when

122

they are isomorphic, so since the graphs and permutations are chosen independently, there is no

way for the prover to correlate their answers to gain a higher acceptance probability for isomorphic

graphs. Thus this means that the verifier can determine the automorphism group of a graph and

verify that it is indeed the entire automorphism group. Using Lemma 6.9.4 we then see that the

prover just has to give the verifier an isomorphism, and verifier can compute a unique isomorphism

using the automorphism group.

123

Bibliography

[AAHNY22] Ishaq Aden-Ali, Yanjun Han, Jelani Nelson, and Huacheng Yu. On the amortized

complexity of approximate counting. arXiv preprint arXiv:2211.03917, 2022.

[AAK89] Alok Aggarwal, Richard J Anderson, and M-Y Kao. Parallel depth-first search in

general directed graphs. In Proceedings of the twenty-first annual ACM symposium on

Theory of computing, pages 297–308. ACM, 1989.

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The moore bound for irregular graphs.

Graphs and Combinatorics, 18(1):53–57, 2002.

[AHLW16] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New characterizations in turnstile

streams with applications. In 31st Conference on Computational Complexity, CCC

2016, May 29 to June 1, 2016, Tokyo, Japan, pages 20:1–20:22, 2016.

[AJKS02] Miklós Ajtai, TS Jayram, Ravi Kumar, and D Sivakumar. Approximate counting of

inversions in a data stream. In Proceedings of the thiry-fourth annual ACM symposium

on Theory of Computing, pages 370–379, 2002.

[AKL+79] Romas Aleliunas, Richard M Karp, Richard J Lipton, Laszlo Lovasz, and Charles

Rackoff. Random walks, universal traversal sequences, and the complexity of maze

problems. In Foundations of Computer Science, 1979., 20th Annual Symposium on,

pages 218–223. IEEE, 1979.

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms

from precision sampling. arXiv preprint arXiv:1011.1263, 2010.

124

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating

the frequency moments. Journal of Computer and system sciences, 58(1):137–147,

1999.

[AR05] Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. Journal of the

ACM (JACM), 52(5):749–765, 2005.

[AV19] Nima Anari and Vijay V Vazirani. A pseudo-deterministic rnc algorithm for general

graph perfect matching. CoRR, 2019.

[Bab85] László Babai. Trading group theory for randomness. In Proceedings of the seventeenth

annual ACM symposium on Theory of computing, pages 421–429. ACM, 1985.

[BDW18] Arnab Bhattacharyya, Palash Dey, and David P Woodruff. An optimal algorithm

for ℓ1-heavy hitters in insertion streams and related problems. ACM Transactions on

Algorithms (TALG), 15(1):1–27, 2018.

[BKKS23] Vladimir Braverman, Robert Krauthgamer, Adithya Krishnan, and Shay Sapir.

Lower bounds for pseudo-deterministic counting in a stream. arXiv preprint

arXiv:2303.16287, 2023.

[BL83] László Babai and Eugene M Luks. Canonical labeling of graphs. In Proceedings of

the fifteenth annual ACM symposium on Theory of computing, pages 171–183. ACM,

1983.

[Can73] John J Cannon. Construction of defining relators for finite groups. Discrete Mathe-

matics, 5(2):105–129, 1973.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in

data streams. Theoretical Computer Science, 312(1):3–15, 2004.

[CCHO05] J. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara. Competing provers yield

improved Karp–Lipton collapse results. Information and Computation, 198(1):1–23,

2005.

125

[CRS95] Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Randomness-optimal unique

element isolation with applications to perfect matching and related problems. SIAM

Journal on Computing, 24(5):1036–1050, 1995.

[Csü10] Miklós Csürös. Approximate counting with a floating-point counter. In COCOON,

volume 6196, pages 358–367. Springer, 2010.

[Cve07] Andrej Cvetkovski. An algorithm for approximate counting using limited memory

resources. ACM SIGMETRICS Performance Evaluation Review, 35(1):181–190, 2007.

[CW09] Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the stream-

ing model. In Proceedings of the forty-first annual ACM symposium on Theory of

computing, pages 205–214. ACM, 2009.

[DKR10] Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a

perfect matching in bipartite planar graphs. Theory of Computing Systems, 47(3):737–

757, 2010.

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–

467, 1965.

[FGT15] Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in

quasi-𝑛𝑐. ECCC, 9th November 2015. http://eccc.hpi-web.de/report/2015/177/.

[FIS08] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams

and applications. International Journal of Computational Geometry & Applications,

18(01n02):3–28, 2008.

[Fla85] Philippe Flajolet. Approximate counting: a detailed analysis. BIT Numerical Mathe-

matics, 25(1):113–134, 1985.

[GG11] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers

and their cryptographic applications. In Electronic Colloquium on Computational

Complexity (ECCC), volume 18, page 136, 2011.

126

[GG15] Shafi Goldwasser and Ofer Grossman. Perfect bipartite matching in pseudo-

deterministic RNC. In Electronic Colloquium on Computational Complexity (ECCC),

volume 22, page 208, 2015.

[GG21] Sumanta Ghosh and Rohit Gurjar. Matroid intersection: A pseudo-deterministic par-

allel reduction from search to weighted-decision. In Approximation, Randomization,

and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM

2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[GGH17] Shafi Goldwasser, Ofer Grossman, and Dhiraj Holden. Pseudo-deterministic proofs. In

Electronic Colloquium on Computational Complexity (ECCC), volume 24, page 105,

2017.

[GGMW20] Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P Woodruff. Pseudo-

deterministic streaming. In 11th Innovations in Theoretical Computer Science Con-

ference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[GGR13] Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations

of pseudodeterministic algorithms. In Proceedings of the 4th conference on Innovations

in Theoretical Computer Science, pages 127–138. ACM, 2013.

[GGS23] Ofer Grossman, Meghal Gupta, and Mark Sellke. Tight space lower bound for pseudo-

deterministic approximate counting. arXiv preprint arXiv:2304.01438, 2023.

[GL19] Ofer Grossman and Yang P Liu. Reproducibility and pseudo-determinism in log-

space. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 606–620. SIAM, 2019.

[GM20] Ofer Grossman and Dana Moshkovitz. Amplification and Derandomization without

Slowdown. SIAM Journal on Computing, 49(5):959–998, 2020.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their

validity or all languages in NP have zero-knowledge proof systems. Journal of the

ACM (JACM), 38(3):690–728, 1991.

127

[Gol98] Oded Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness,

volume 17. Springer Science & Business Media, 1998.

[Gol19] Oded Goldreich. Multi-pseudodeterministic algorithms. In Electronic Colloquium on

Computational Complexity (ECCC), 2019.

[GR09] Parikshit Gopalan and Jaikumar Radhakrishnan. Finding duplicates in a data stream.

In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms,

pages 402–411. Society for Industrial and Applied Mathematics, 2009.

[Gro15] Ofer Grossman. Finding primitive roots pseudo-deterministically. In Electronic Col-

loquium on Computational Complexity (ECCC), volume 22, page 207, 2015.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive

proof systems. In Proceedings of the eighteenth annual ACM symposium on Theory of

computing, pages 59–68. ACM, 1986.

[GS88] Joachim Grollmann and Alan L Selman. Complexity measures for public-key cryp-

tosystems. SIAM Journal on Computing, 17(2):309–335, 1988.

[GS09] André Gronemeier and Martin Sauerhoff. Applying approximate counting for com-

puting the frequency moments of long data streams. Theory of Computing Systems,

44:332–348, 2009.

[GW96] Anna Gál and Avi Wigderson. Boolean complexity classes vs. their arithmetic analogs.

Random Structures and Algorithms, 9(1-2):99–111, 1996.

[HHM13] E. Hemaspaandra, L. Hemaspaandra, and C. Menton. Search versus decision for elec-

tion manipulation problems. In Proceedings of the 30th Annual Symposium on Theo-

retical Aspects of Computer Science, pages 377–388. Leibniz International Proceedings

in Informatics (LIPIcs), February/March 2013.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudoran-

dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–

1396, 1999.

128

[HN17] L. Hemaspaandra and D. Narváez. The opacity of backbones. In AAAI-2017, pages

3900–3906. AAAI Press, February 2017.

[HNOS96] Lane A Hemaspaandra, Ashish V Naik, Mitsunori Ogihara, and Alan L Selman. Com-

puting solutions uniquely collapses the polynomial hierarchy. SIAM Journal on Com-

puting, 25(4):697–708, 1996.

[Hol17] Dhiraj Holden. A note on unconditional subexponential-time pseudo-deterministic

algorithms for BPP search problems. arXiv preprint arXiv:1707.05808, 2017.

[HW13] Moritz Hardt and David P Woodruff. How robust are linear sketches to adaptive

inputs? In Proceedings of the forty-fifth annual ACM symposium on Theory of com-

puting, pages 121–130. ACM, 2013.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM

Journal on computing, 17(5):935–938, 1988.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data

stream computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

[IW05] Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of

data streams. In Proceedings of the thirty-seventh annual ACM symposium on Theory

of computing, pages 202–208. ACM, 2005.

[IZ89] Russell Impagliazzo and David Zuckerman. How to recycle random bits. In FOCS,

volume 30, pages 248–253, 1989.

[JST11] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, find-

ing duplicates in streams, and related problems. In Proceedings of the thirtieth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 49–

58. ACM, 2011.

[JW18] Rajesh Jayaram and David P Woodruff. Perfect lp sampling in a data stream. In 2018

IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages

544–555. IEEE, 2018.

129

[JW19] Rajesh Jayaram and David P Woodruff. Towards optimal moment estimation in

streaming and distributed models. In Approximation, Randomization, and Combina-

torial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[KNP+17] Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P Woodruff,

and Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for samplers

and finding duplicates in streams. In Foundations of Computer Science (FOCS), 2017

IEEE 58th Annual Symposium on, pages 475–486. Ieee, 2017.

[KNW10] Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact space complexity

of sketching and streaming small norms. In Proceedings of the twenty-first annual

ACM-SIAM symposium on Discrete Algorithms, pages 1161–1178. SIAM, 2010.

[KUW85] Richard M Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is

in random nc. In Proceedings of the seventeenth annual ACM symposium on Theory

of computing, pages 22–32. ACM, 1985.

[LNW14] Yi Li, Huy L Nguyen, and David P Woodruff. Turnstile streaming algorithms might

as well be linear sketches. In Proceedings of the forty-sixth annual ACM symposium

on Theory of computing, pages 174–183. ACM, 2014.

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In FCT, vol-

ume 79, pages 565–574, 1979.

[Mat79] Rudolf Mathon. A note on the graph isomorphism counting problem. Information

Processing Letters, 8(3):131–136, 1979.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Science of computer

programming, 2(2):143–152, 1982.

[Mor78] Robert Morris. Counting large numbers of events in small registers. Communications

of the ACM, 21(10):840–842, 1978.

130

[MVV87] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as

matrix inversion. In Proceedings of the nineteenth annual ACM symposium on Theory

of computing, pages 345–354. ACM, 1987.

[MVW99] Peter Bro Miltersen, N Variyam Vinodchandran, and Osamu Watanabe. Super-

polynomial versus half-exponential circuit size in the exponential hierarchy. In In-

ternational Computing and Combinatorics Conference, pages 210–220. Springer, 1999.

[MW10] Morteza Monemizadeh and David P Woodruff. 1-pass relative-error l p-sampling with

applications. In Proceedings of the twenty-first annual ACM-SIAM symposium on

Discrete Algorithms, pages 1143–1160. Society for Industrial and Applied Mathematics,

2010.

[Nai82] Mohan Nair. On chebyshev-type inequalities for primes. American Mathematical

Monthly, pages 126–129, 1982.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-

ica, 12(4):449–461, 1992.

[NNW14] Jelani Nelson, Huy L Nguyen, and David P Woodruff. On deterministic sketching and

streaming for sparse recovery and norm estimation. Linear Algebra and its Applica-

tions, 441:152–167, 2014.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and

System Sciences, 49(2):149–167, 1994.

[NY22] Jelani Nelson and Huacheng Yu. Optimal Bounds for Approximate Counting. In

Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems, 2022.

[OS16] Igor C Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subex-

ponential time. arXiv preprint arXiv:1612.01817, 2016.

[RA00] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM

Journal on Computing, 29(4):1118–1131, 2000.

131

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM),

55(4):17, 2008.

[RRR16] Omer Reingold, Guy N Rothblum, and Ron D Rothblum. Constant-round interactive

proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT

Symposium on Theory of Computing, pages 49–62. ACM, 2016.

[RTV06] Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom walks on regular

digraphs and the RL vs. L problem. In Proceedings of the thirty-eighth annual ACM

symposium on Theory of computing, pages 457–466. ACM, 2006.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identi-

ties. Journal of the ACM (JACM), 27(4):701–717, 1980.

[Sha92] Adi Shamir. IP=PSPACE. Journal of the ACM (JACM), 39(4):869–877, 1992.

[SS91] Maria Serna and Paul Spirakis. Tight rnc approximations to max flow. In STACS 91,

pages 118–126. Springer, 1991.

[SZ99] Michael Saks and Shiyu Zhou. 𝐵𝑃𝐻𝑆𝑃𝐴𝐶𝐸(𝑆) ⊆ 𝐷𝑆𝑃𝐴𝐶𝐸(𝑆3/2). Journal of

Computer and System Sciences, 58(2):376–403, 1999.

[Sze88] Róbert Szelepcsényi. The method of forced enumeration for nondeterministic au-

tomata. Acta Informatica, 26(3):279–284, 1988.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM,

48(4):860–879, 2001.

[V+12] Salil P Vadhan et al. Pseudorandomness. Foundations and Trends® in Theoretical

Computer Science, 7(1–3):1–336, 2012.

[XKNS21] Jingyi Xu, Sehoon Kim, Borivoje Nikolic, and Yakun Sophia Shao. Memory-efficient

hardware performance counters with approximate-counting algorithms. In 2021 IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS),

pages 226–228. IEEE, 2021.

132

	Introduction
	Some Motivation for Pseudo-determinism
	Outline.

	Matching in pseudo-deterministic NC
	Introduction
	Our Results

	Solution Outline
	Preliminaries
	Key Lemmas
	The Algorithm
	Using Fewer Random Bits
	Discussion

	Reproducibility and Low Space Computation
	Introduction
	Reproducible Outputs
	Our Contribution
	Related Work

	Preliminaries
	An Algorithm for Search-RL with Reproducible Outputs
	Reproducibility
	Algorithms with few influential bits
	High Level Proof Idea for Theorem 3.3.5
	Algorithm and Analysis
	Why we cannot try all possible thresholds
	Discussion of Algorithm 1

	Improved Pseudo-deterministic Algorithms for Path Finding
	Undirected Graphs
	Eulerian Graphs

	Discussion
	Testing Connectivity for Undirected and Eulerian graphs in RL
	Short-Walk Find Path is complete for search-RL

	Psuedo-deterministic Streaming
	Introduction
	Our Contributions
	Related work
	Open Problems
	Table of complexities

	Preliminaries
	Find-Duplicate: Pseudo-deterministic lower bounds
	Entropy Lower Bound for Find-Duplicate
	Getting Rid of the Zero Error Requirement

	Entropy lower bounds for finding a support element
	Space complexity of pseudo-deterministic 2-norm estimation
	Pseudo-deterministic Upper Bounds
	Finding a nonzero row
	Point Query Estimation and Inner Product Estimation
	Retrieving a Basis of a Row-space

	Lower Bound for Pseudo-Deterministic Approximate Counting
	Introduction
	Related Work
	Main Result
	Markov Chain Formulation

	Technical Overview
	Illustrative Examples
	Proof Outline

	Proof of Theorem 5.1.7
	Recurrent Behavior on Moderate Time-Scales
	Decomposition into Periodic Parts
	Analysis of Periodic Decomposition

	Proof of Lemma 5.3.11

	Pseudo-deterministic Proofs
	Introduction
	Our Contribution
	Other Related Work
	Subsequent Work

	Definitions of Pseudo-deterministic Interactive Proofs
	Pseudo-deterministic-AM algorithm for graph isomorphism
	Lower bound on pseudo-deterministic AM algorithms
	Pseudo-deterministic derandomization for BPP in subexponential time MA
	Uniqueness in NL
	Structural Results
	Discussion and Open Problems
	Alternate Algorithm for Graph Isomorphism in pseudo-deterministic AM

