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ABSTRACT 

The field of Operations Management, and closely related fields of Operations Research and 
Industrial Engineering, focus intensely on addressing real-world problems associated with the 
design and management of product and service delivery systems in a human context. System 
Dynamics is a framework to understand, design for, and manage change emerging from both 
structural and behavioral features, and is uniquely suited to address policy questions in socio-
technical supply chain contexts. Using System Dynamics, Operations Management, and Supply 
Chain Research methods this work expands on existing toolsets and theory and provides policy 
insights in dynamic supply chain and service delivery systems. 

Chapter 1 presents a methodological contribution to the System Dynamics and Supply Chain 
Research communities by developing a novel framework for supply chain models by combining 
three classic methods: co-flow differential equation structures, spot price discovery, and 
multinomial logistic choice modeling. Chapter 2 applies this framework to build a structural theory 
explaining the simultaneous surge in food insecurity alongside surges in food surplus and 
purposeful disposal at the beginning of the COVID-19 pandemic in the United States. Utilizing 
this structural theory, this chapter further illustrates policies that could help mitigate these 
stresses. Chapter 3 continues the concepts of managing a behaviorally driven multi-echelon 
supply subject to shocks. Utilizing a simulated environment, different policy features implied by 
parallel streams of Operations Management and Supply Chain literature are directly tested. These 
include policies that range from myopic, limited information decision rules to more modern, but 
data-intensive machine learning methods. 
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Chapter 1 

Dynamic Supply Chains with Endogenous Dispositions 

 

CHAPTER ABSTRACT 

The movement of goods through a supply chain depends on both the physical flow of goods and 
on the economic decisions of each entity along the chain, including price discovery and inventory 
disposition decisions. This chapter presents a methodological contribution to the System 
Dynamics and Supply Chain Research communities by developing a novel framework for supply 
chain models by combining three classic modeling methods: co-flow differential equation 
structures, spot price discovery, and multinomial logistic choice modeling. The relative economic 
values of possible dispositions of goods, including outright disposal, are considered. For work-in-
progress, development is considered in terms of the economic value that an additional unit of time 
will bring to the finished good, and the interplay of these considerations drive goods through, or 
out of, supply chains. Incorporating these mechanisms can produce materially different behavior 
modes and can be applied to multiple levels of aggregation within a production process.  

 

Note:  

Much of the content of this chapter was previously accepted for publication at the 
System Dynamics Review on November 21, 2022. 

It was first published Online as Open Access under a Creative Commons Attribution-
NonCommercial License at the System Dynamics Review on December 20, 2022 and is 
available at https://doi.org/10.1002/sdr.1725 

 

The full citation for the published version of this chapter is: 

Paine, J. (2023), Dynamic supply chains with endogenous dispositions. System 
Dynamics Review. https://doi.org/10.1002/sdr.1725 

https://onlinelibrary.wiley.com/journal/10991727
https://doi.org/10.1002/sdr.1725
https://doi.org/10.1002/sdr.1725
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1.1 Introduction 

The sudden emergence of the novel coronavirus commonly known as COVID-19 on the 

global stage in the early part of 2020 placed immense strain on supply chains and consumers 

alike. Articles from the middle part of that year describe “dumped milk, smashed eggs, plowed 

vegetables” as producers made the decision to outright terminate work-in-progress (WIP) rather 

than move goods into a finished state for sale (Bauer, 2020; Corkery et al., 2020; Corkery & 

Taffe-Bellany, 2020; Yaffe-Bellany & Corkery, 2020; Zhou, 2020). Stated bluntly in one article: 

“[Farmers] are being forced to destroy…fresh food that they can no longer sell” (Yaffe-Bellany & 

Corkery, 2020). This was not simply driven by an overall lack of demand, as simultaneously the 

number of food-insecure people in the United States was estimated to be rising in 2020 to 45 

million from 2019’s 35.2 million after several years of steady decline. “Before the start of the 

pandemic, the overall food insecurity rate had reached its lowest point since it began to be 

measured in the 1990s, but those improvements were being upended by the pandemic” (Hake 

et al., 2021). Producers were responding to local economic forces, not to a global balance of 

supply and demand. 

This starkly illustrates how, in a supply chain context, starting a unit of production 

development does not mean that a producer will necessarily ultimately make a finished good 

available for sale. Rather, producers are continually assessing all the choices available to them 

during the production and development process. The movement of goods monotonically along 

from raw materials, to WIP, to finished goods available for sale occurs only because the 

individuals managing that process choose to move those units along each period. As another 

example consider recent research on policies to address ‘artificial shortages’ in which producers 

withhold goods strategically based on expected future earnings (Levi et al., 2021). In the first 

example, producers were choosing to end production early, and in the second choosing to 

withhold finished goods. In both cases, the implicit connection between production starts and 

finished goods available for sale seen in many of the supply chain modeling frameworks 

developed in prior System Dynamics, and even Operations Management, literature breaks 

down.  

For many contexts, the act of starting production does not necessarily guarantee that 

those units of inventory will become available to ship to customers. Aside from line losses (such 

as those due to production errors, quality assurance sampling, or even natural losses such as 

crop failure or spoilage), each unit of inventory under development represents some measure of 

operational capacity that is reserved and thus prevented from other uses. Thus, the act of 
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producing a unit of inventory has within it an opportunity cost in the form of captured production 

capacity or other resource utilization. Managers are continuously making decisions in which 

they weigh the expected value of each disposition of the units of production under their purview, 

both finished goods and WIP.  

Inventory disposition decisions can include, but are not limited to, normal production 

activities (e.g. moving material along in production or transferring finished goods to a customer 

in a sale), withholding production activities (e.g. holding production to free resources for some 

other activity or holding finished goods from sale under expectation of better future earnings), 

modifying production (e.g. ending production early and moving into a finished goods state with 

less than typical development time, or conversely spending more time under development than 

typical prior to moving in to a finished goods state), or even outright disposal of goods (e.g. 

disposing of either WIP or finished goods, outright removing them from the production process 

and any inventory). While disposition routes that regularly move goods from raw materials, to 

WIP, to finished goods, to sold-and-shipped goods can, and perhaps even should, be regular 

and routine under long-run steady state conditions, such regularity is not guaranteed but rather 

an outcome of a producer considering the relative value underlying each possible route. 

This chapter contributes to System Dynamics methodology by presenting a framework to 

close the methodological gap between traditional inventory management and development 

models that directly connect production starts to finished goods, and the observed reality that 

this progression is not guaranteed. This is achieved by extending traditional inventory 

management and supply chain models found in System Dynamics literature by allowing for the 

endogenous determination of dispositions of inventory and production in a supply chain via the 

application of multinomial logistic (MNL) choice modeling.  

Furthermore, this framework embeds the MNL mechanisms within a wider set of 

economically motivated decision rules that track the relationship between the age, or 

development time, of goods under production and their corresponding market value. In doing 

so, the value of a unit of production started and placed under development in a WIP state to the 

producer is considered in the wider context of the interplay of supply and demand (and resultant 

price setting). The value of continuing development of a unit of production is considered versus 

alternative disposition routes, including even purposeful disposal if relevant to the production 

environment. The movement of WIP into a finished goods state is done not because a specific 

period has elapsed but rather because of the underlying economic value of that decision versus 

other disposition options. 
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The remainder of this chapter is organized as follows: First a literature review places this 

chapter in the context of prior System Dynamics and related modeling research, including key 

work laying the foundations of the MNL framework presented here. Second, this prior literature 

is built upon by presenting an explicit framework to extend traditional inventory management 

models by incorporating disposition choice formulations and dynamic valuation of WIP goods. 

Third, an example model is presented that illustrates how inclusion of these mechanistic 

features can yield fundamentally different short and long-run behavior modes in similarly 

parameterized systems, and furthermore that this methodological framework can be applied to 

multiple levels of disaggregation of a production or aging process. Finally, the discussion 

reiterates the assumptions and limitations of this framework, while also emphasizing how this 

framework differs from more traditional inventory and production management modeling 

methods and how this can generate insights of interest to modelers, production managers, and 

others. 

1.2 Literature Review 

System Dynamics has a long history with incorporating models of the physical flow of goods 

through supply chains with the human elements that interact with those supply chains, starting 

with Jay Forrester’s original modeling of the interactions of labor scheduling with production 

planning at General Electric (Forrester, 1961, 1989). Further investigations have included 

inventory-workforce interactions (Mass, 1975), production scheduling and planning via material 

requirements planning (MRP) systems (Morecroft, 1983a), and consideration of the supply 

chain in larger settings that can yield business and capital equipment purchase cycles 

(Anderson & Fine, 1999; Sterman & Mosekilde, 1993). 

Stability of production, inventory, and information signals within supply chains has been 

especially of interest in prior System Dynamics literature, with extensive research on the origins 

of instability, often characterized by the bullwhip effect (Lee et al., 1997), specifically arising 

from behavioral heuristics when used in ordering decisions (Sterman, 1989a, 1989b), and how 

these systems can be stabilized either via observations on the cognitive features of the people 

making decisions (Narayanan & Moritz, 2015), or specific modifications to the information 

structure of the system (Croson et al., 2014; Croson & Donohue, 2006). 

Inventory management models appear in much of the above referenced literature, and 

are described in detail in multiple System Dynamics textbooks (for example, see chapters 18 

and 19 of Sterman, 2000, chapter 5 of  Morecroft, 2015, or other illustrative uses of similar 
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model structures in articles such as in Kampmann & Oliva, 2009). These classic models use 

basic behavioral feedback, tied to a producer’s desired inventory coverage level, to adjust a 

stock of inventory based on a perceived demand signal from a consumer. These core inventory 

management models can be readily extended by considering the time between the act of 

starting production of inventory and the availability of that inventory (see chapter 19 and chapter 

20 of Sterman, 2000 for a detailed example of this extension), or by considering other 

endogeneity such as the influence of inventory availability on customer demand patterns 

(Gonçalves et al., 2005; Morecroft, 1983b). More generally, other work has described principles 

of dynamic systems such as adding a minor loop to oscillatory systems like those seen in these 

inventory management models (Graham, 1977). 

 A key and fundamental consideration of the inventory management structures described 

above, and of the System Dynamics modeling framework is the purposeful incorporation of the 

behavioral features and heuristics employed by the individuals interacting with physical and 

information systems. These are often captured via decision rules that attempt to capture how a 

model of a human decision maker in the larger system incorporates information and 

observations to make a choice or action. This concept of modeling choices is not unique to 

System Dynamics but is also used extensively in modern economics literature. Specifically, 

discrete choice models have emerged over the last few decades as a method of empirically 

modeling the probability of observing outcomes among a finite set (Greene, 2018). For the 

scenario where choices are collectively exhaustive, mutually exclusive, finite in number, and 

that have the feature of independence from irrelevant alternatives (IIA), then MNL can be used 

(McFadden, 1974).  

 The original article that popularized of this framework in marketing applications expressly 

described how MNL could be used to form models that resolve the, often invisible, heuristics 

employed by individual decision makers into population-level outcomes: 

“The link between models of individual behavior and data on population choices is most critical 

when the decision-maker’s alternatives are qualitative, or ‘lumpy.’ In conventional consumer 

analysis… one can often plausibly assume that all individuals in a population have a common 

behavior rule, except for purely random “optimization” errors… [MNL is a] general procedure 

for formulating econometric models of population choice behavior from distributions of 

individual decision rules.” (McFadden, 1974) 
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To be clear, the MNL framework does not claim to represent the actual decision process 

used by any one decision maker to come to a singular and discrete choice, but rather capture 

the aggregate behavior observed in a population of decision makers all making similar choices. 

This MNL choice modeling framework has become the most widely used in econometric 

analysis primarily because the formula relating the utility of each choice to the probability of that 

choice is closed form and easily interpretable (Henserh et al., 2005; Train, 2009). While 

extensions of this choice model exist, such as the probit model which relax assumptions related 

to the independence of the choices (Train, 2009), in supply chain modeling the set of disposition 

choices for inventory after or during any one step of production often follow the assumption of  

being collectively exhaustive, mutually exclusive, and finite.  

The usage of this modeling framework in a supply chain context has been relatively 

limited, with perhaps a notable exception for its use in models of transportation applications 

(Aloulou, 2018; de Bok et al., 2018), especially in comparison with its near ubiquitous use in 

other settings such as Marketing (Chandukala et al., 2007). However, this has begun to change 

with the emergence of Behavioral Operations Management as a distinct subfield, which has 

leveraged the MNL framework in other choice settings in an operations context (see chapter 2 

and chapter 17 of Donohue et al., 2018 for recent examples).  

Within the System Dynamics literature, the use of discrete choice modeling frameworks 

is similarly sparse, though much of the underlying mathematical theory overlaps with parameter 

estimation tools such as method of simulated moments (Hosseinichimeh et al., 2016; Jalali et 

al., 2015; Train, 2009). Explicit use of this choice framework in System Dynamics modeling has 

followed more closely to Marketing applications, determining expected market share of different 

options given perceived utility in specific consumer contexts (Keith et al., 2017; Rahmandad & 

Sibdari, 2012). In a single industrial context found by this author, seemingly more superficially 

similar to the supply chain context discussed in this chapter, the use of the multinomial logistic 

(MNL) choice model is still ultimately framed in terms of relative market share of fuel options for 

running electricity plants (Moxnes, 1990). Those examples from compartmental aggregate 

models in System Dynamics literature do highlight an important feature discussed in more detail 

below, namely that the probabilistic nature of the MNL choice model allows for discrete and 

mutually exclusive choices at an individual level to be expressed as expected outcomes at an 

aggregate level. 
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1.3 Adding Disposition Choice Formulations into Supply Chain Models 

Consider the well-known inventory management model seen in Figure 1-1 (Sterman, 

2000). This model captures the delay between starting production and having inventory on hand 

for shipment to a customer with a delay formulation between Production Start Rate and 

Production Rate, resulting in an accumulation of inventory in the form of work-in-progress (WIP). 

When creating a model of this system, this delay can be as simple as a fixed pipeline delay or is 

often represented as a more complex third-order delay to capture some sense of multi-stage 

production.  

 

Figure 1-1. Inventory Management Model with Production Delays 

 

Each unit of inventory under development represents some measure of operational 

capacity that is reserved and thus prevented from other uses. Thus, the act of producing a unit 

of inventory contains within it an opportunity cost in the form of captured production capacity. 

When applied to WIP inventory, the opportunity cost concept can be extended by noting that act 

of holding of inventory and value-added development processes that are assumed to occur in a 

WIP state are not without cost. Aside from the more obvious direct development costs and 

holding costs of literal work in process, holding inventory in such a state could prevent another 

unit of production starts from entering development (if production capacity is finite, fixed, and 
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full), or at minimum contains some measure of opportunity cost by virtue of simply taking up 

physical space that could otherwise be utilized for a totally unrelated purpose.  

The model shown in Figure 1-1 has one clear inventory disposition route: movement into 

a finished goods state after some (average) manufacturing cycle time. However, given some 

unit of production starts, the time that unit is under development is ultimately a choice of the 

producer, not fixed a priori. As illustrated in the examples that opened this chapter, there exist 

environments where WIP can be terminated at any point and the unit under production either 

moved to a finished goods state, withheld from sale, or even outright disposed.  

The farmers described in the introduction to this chapter made the difficult decision to 

destroy their crops because ultimately it made economic sense to do so. The costs of 

harvesting, processing, and transporting their goods exceeded the value they would get from 

selling finished goods, and even exceeded the opportunity cost of leaving the goods in the field, 

either in terms of holding up productive capacity or due to the loss of value from spoilage in the 

ground. The time that a unit of production is under development, and considered WIP inventory, 

may also have a meaningful economic impact on the final value of the product at hand. 

Consider a piece of software under development, where the value of the final product may 

increase with increased development time, but with decreasing marginal returns. Or consider a 

crop that is to be planted and harvested, with a specific window of maturation time in which it 

could be sold at full market value. 

The ‘Manufacturing Cycle Time’ shown in Figure 1-1 is not fixed in this choice-centric 

view of production. At the level of an individual producer, it is not even an average of a 

distribution of times. Rather it is an explicit choice made by the producer based on the economic 

features of the landscape in which they operate. 

From the point of view of a single producer, each possible disposition of a unit of 

production in a WIP state is likely to be mutually exclusive (e.g., in a single period a farm cannot 

simultaneously destroy, harvest, and continue to cultivate a single unit of food). Under a model 

of a single producer with fully known and fixed values (or costs) associated with each 

disposition decision, this economic decision becomes a straight-forward assessment of the 

expected value of each disposition route (for example weighing the costs of shipping and storing 

food versus the costs of destroying it, offset by the value that would come from selling if it were 

sold).  
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The multinomial logistic (MNL) framework discussed above does not capture the 

individual decision-making process for any one producer in these examples who must make a 

disposition decision for their goods under development in a given timeframe. However, when 

the unit of analysis is aggregated to a system of producers, each with structurally similar 

representations of the value of those choices, then the MNL choice model becomes an 

appropriate method of capturing how these individual level, and likely heuristic, decision 

processes resolve at a population level.  

For an aggregate compartmental model of many producers, the MNL framework 

provides a probability that any unit of production will end up in any one of the disposition routes, 

which resolves to the total expected WIP inventory that is delegated to each of the possible 

disposition routes. As stated above, this requires that the individuals making these decisions 

have structurally similar decision rules, or more precisely individuals making these disposition 

decisions are fully informed with stationary costs (e.g. are fully informed about the cost structure 

of the system in which they are embedded), and that there is no correlation among choices 

(McFadden, 1974; Train, 2009). These assumptions can be relaxed in part by applying 

alternative methods that allow for correlation, like probit or mixed logit models (Revelt & Train, 

1998; Train, 2009), or modifications to allow for stochasticity of observable data (Marcus, 1991).  

The assumption that the individuals know the costs associated with each disposition in a 

supply chain context follows from the assumption that the model is capturing the aggregate 

decision processes of those actors that control the routing to those dispositions. However, the 

use of the MNL choice modeling framework is more generally consistent with classic discrete-

choice foundations and contains within it a realistic assumption of human ordering behavior, 

namely that the proportion of goods relegated to any specific disposition route is proportional to 

the relative benefit of any one of those routes.  

A model with the MNL formulation can still follow the principles of modeling decision 

making (Morrison & Oliva, 2018), even if the MNL framework itself does not reflect the 

individual-level details of the decision heuristics that result in specific inventory disposition 

choices. When embedded within a larger model that captures the delays and feedbacks that 

create the signals that form the perceived relative benefit of each choice, and that also 

acknowledges that the MNL framework results in an expected or desired outcome that may 

differ from the actual realized outcome, the resulting model is using the MNL formulation as a 

representation of the aggregate formation of a goal (or really series of goals, one for each 

disposition option) . The rest of the model still must translate that goal into action. 
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If these disposition routes follow the assumptions of MNL modeling (collectively 

exhaustive, mutually exclusive, finite, and IIA), the probability of choosing disposition route 𝑋𝑖 of 

𝑁 available choices is given by the expression below, where 𝑣𝑖 is the mean value of each 

disposition. 

𝑃(𝑋𝑖) =
𝑒𝑣𝑖

∑ 𝑒𝑣𝑖𝑁
𝐼=1

 (1) 

The components of what defines the ‘value’ of each disposition must be determined for 

each application of this framework and should be based on behaviorally realistic and grounded 

drivers under consideration by the decision makers being modeled. How a producer assigns the 

relative values of each of the disposition choices is a matter of modeling freedom and should be 

based on observations of how real producers value these choices. The advantage of the MNL 

model is that changing or updating the assumptions that form this value assessment only 

changes the relative value of each choice, and thus the relative proportion of the units under 

development delegated to each option, but not the underlying model. 

 For simplicity of presentation here and the examples elsewhere in this chapter, we 

assume that the sole driver of value is economic (e.g., proportional to expected profitability) for 

each disposition. This can be relaxed based on actual observations or assumptions of the 

system and problem being modeled to include additional drivers that determine the perceived 

relative value of each disposition route for the decision maker. For this simplified model, for 

some relative expected profitability 𝜋𝑖 for choice 𝑋𝑖, expression (1) can be rewritten as follows: 

𝑃(𝑋𝑖) =
𝑒𝛽𝜋𝑖

∑ 𝑒𝛽𝜋𝐼𝑁
𝐼=1

 (2) 

In the above, 𝛽 is the weight the producer places on the concept of expected profitability 

when making an inventory disposition decision. Given a wider definition of value, there would be 

corresponding parameters determining the weight the producer places on each driver. Under a 

full MNL model, these become free parameters used to help fit the model to observed data of 

disposition choices.  

By inspection of (2), lower absolute values of 𝛽 in this simplification have the effect of 

diminishing the relative influence of the economic value of each disposition. In the extreme case 

where 𝛽 = 0,  expression (2)  reduces to allocating equally to all dispositions, independent of the 

economic value of those dispositions. For this extreme case, the model is stating that economic 
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value is the sole driver of inventory disposition decisions, but that the influence of that driver is 

still null and thus the decision maker is indifferent among all options. 

Conversely, if the value of 𝛽 is large, then the decision maker is extremely sensitive to 

even small differences in the economic value of each disposition route, causing higher valued 

expected dispositions to be even more likely to be chosen. In the extreme case of 𝛽 → ∞ then 

the only disposition possibility for a given period is the one with the highest economic value, with 

a probability of 1 and all other dispositions being 0. A proof of these extreme conditions is 

provided in Appendix A. 

To further simplify the modeling framework presented here, we can fix values of 𝛽 to be 

the inverse of some reference price for the producer (e.g., the price at which a farm sells its 

goods under normal steady state conditions). We can do this in part because for a given weight 

𝛽 (that is neither null nor infinite) the output of the MNL choice model ultimately depends only on 

the relative difference in utility of each option (Greene, 2018), and this has the further advantage 

of allowing the relative values of each choice, 𝜋𝑖, to be expressed in terms of prices and 

monetary values, while allowing the expression above to properly reduce to a dimensionless 

probability. 

When the unit of analysis is a single producer (or even a single unit of production under 

development), these probabilities collapse into one discrete outcome. In other words, a single 

unit of production cannot be simultaneously in multiple dispositions. However, when the unit of 

analysis is expanded to consider a group of producers or continuous flow of goods through a 

production system, then expressions (1) and (2) can be used to find the expected aggregate 

values of goods in each disposition at any period of time, given the expected value (or as 

simplified in (2), profitability) of each disposition.  

As the value used in these expressions is an expected value with some variance, for any 

single unit of production the realized value may be higher or lower than that expected value. As 

the choices are assumed to be exhaustive and mutually exclusive, the expected amount of 

goods in each disposition will be nonzero at any given time, so long as the weight placed on 

economic value is not infinite as discussed above. This includes extreme cases such as a 

disposition route having an average expected zero value (often referred to as the null choice in 

Marketing a Behavioral Economics literature that uses this modeling framework), or even 

average expected negative values. Again, these disposition values are the expected values with 

some variance, and therefore there is assumed to always be some proportion of goods whose 
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actual realized value for each possible route will result in it being assigned to any one of the 

dispositions under consideration. In general, we would expect higher average economic valued 

dispositions to receive the plurality of units, but not necessarily absolutely every unit due to 

internal variance between goods.  

For example, consider a single unit of production that ends development with very low 

quality relative to the average of other units of production. Should the producer choose to move 

this unit of production through the rest of the supply chain, they will incur additional real costs of 

storage, transportation, and associated overhead, along with opportunity costs from locked up 

capital. If the quality is low enough, the good may have little to no value on the market, or even 

little to no secondary market or salvage value. The producer may still have to incur disposal 

costs at this later stage if no salvage is possible.  

By choosing to hold on to this low-quality item through production through the 

subsequent, and costly, steps that move this good towards final sale the producer possibly 

incurs more costs versus if they had chosen to dispose of the product earlier. For this specific 

example, the producer has a choice among only negative outcomes, but can make the least 

costly decision by disposing of this unit of production early, and thus free up capacity and capital 

for production of an expected higher quality unit of production. On average, the producer 

expects that moving goods through the production process towards final sale is valuable, while 

purposeful disposal of goods under production is costly. As the average expected values of 

each disposition option widen from each other, then the likelihood of a unit of production falling 

into this most costly, on average, route diminishes. However, for this specific example 

realization, the choice of disposal makes the most economic sense for the producer. The power 

of this framework is the ability to capture this more behaviorally realistic variability in outcomes 

at an aggregate level of analysis without needing to track outcomes at the most granular unit of 

production level. 

Figure 1-2 shows visually how the above MNL choice model can be incorporated into the 

basic inventory management model first presented in Figure 1-1. Note that the actual fraction of 

WIP that can continue development is not directly used in the model, rather it is implied via the 

use of the MNL choice model and the relative values of each disposition route. 
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Figure 1-2. Multinomial Logistic Choice Model and the Inventory Management Structure 

 

A cursory inspection of Figure 1-2 may imply that this example has two possible 

inventory dispositions: purposeful destruction of WIP or production (moving WIP into a finished 

goods state). However, this system represents three possible disposition outcomes in any unit 

of time by expression: Goods that the producer would like to continue to develop (i.e., stay in 

the WIP stock), goods the producer would like to dispose of, and goods the producer would like 

to move into a finished goods state. By expression (2) the relative size of each of these cohorts 
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is based on the relative economic value of each disposition. In this aggregate model of WIP 

inventory, the producer is assumed to have an ideal manufacturing cycle time that yields 

maximum economic value and determines the expected needed production start time (this is 

relaxed in the sections below), and a single processing time for WIP inventory designated for 

movement to the finished goods state and that marked for disposal. The producer may have 

different times for these two dispositions, but for the sake of compact presentation they are 

combined here. 

1.4 Dynamic Valuation of Work in progress 

The model presented in Figure 1-2  assumes fixed economic values for each inventory 

disposition. However, as discussed earlier in this chapter, the time that a unit of production is 

under development may also have a meaningful economic impact on the final value of the 

product at hand, and thus the value of either holding or shipping inventory may change with a 

concept of time under development or age of the work-in-progress (WIP). 

Adopting a co-flow structure typically used to keep track of continually time-accruing 

attributes (Hines, 2005; Sterman, 2000) can be used to keep track of a concept of average 

development time (or average age, or average maturation time, or any similar measure that is 

appropriate to the system under investigation). Figure 1-3 illustrates this extension, where a co-

flow structure is used to produce a concept of the Average Age of WIP Inventory, which in turn 

is used to adjust the expected value of moving WIP into a state of finished goods for sale to a 

downstream wholesaler or other customer.  
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Figure 1-3. Extending the Model to Track Development Time 

Note that in the above formulation, the ‘Average Age of New Production Starts’ may 

have a value of 0 units of time, or some other non-negative value. For example, when applied to 
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employee experience in a firm, an employee may arrive with some pre-existing experience. 

However, in the context of a food producer planting crops it may be safe to assume that newly 

planted crops arrive with no pre-existing maturation. The model is flexible to allow for this 

assumption to be relaxed based on specific circumstance (for example, buying partially matured 

nut trees or fully matured sows rather than starting from seeds or piglets).  

Furthermore, while it may be safe to assume that the ‘Rate of Age Gain’ is constant and 

unitary (i.e., 1 weeks/week or 1 years/year or similar). The formulation itself does allow for some 

flexibility if, as an example, a fertilizer was applied to speed maturation, or a drought hit and 

slows maturation down. 

1.5 Applying the Framework to a Model Supply Chain 

The purpose of the formulation developed above is to provide a flexible framework for applying 

this concept of age-dependent economic features affecting the disposition choices of producers. 

As mentioned earlier in this chapter, this framework must be embedded into a larger model that 

captures the delays and feedbacks that allow these new structures to properly integrate into the 

principles modeling decision making (Morrison & Oliva, 2018). The section below illustrates this 

by combining the framework developed above with spot price discovery and capacity 

management in a simple example supply chain model to illustrate the additional insights adding 

this combination of multinomial logistic (MNL) choice modeling and price-value relationships can 

yield. The purpose here is to illustrate how the fundamental modes of simulated behavior differ 

when incorporating these structures, rather than providing a specific analysis of the example 

model itself. The interested reader can find more details on this example model beyond what is 

provided below in Appendix A and the accompanying model files. 

While there may be multiple ways to construct the interplay of supply and demand that 

ultimately forms the spot price at each interface point of producers and consumers in a market, 

the example below utilizes inventory-sensitive spot pricing most often seen with commodity 

products (Chen et al., 2009; Sterman, 2000; Whelan & Forrester, 1996). At the core of this 

economic model are three balancing loops across each entity in the supply chain, with spot 

pricing driving either demand or supply. Producers offer a good at the price expected by the 

market modified by the current inventory levels. Given the current spot price in the market, the 

expected gross margin of the producer is affected, which in turn affects capacity utilization and 

production starts in a balancing loop. Additionally, the spot price is fundamentally anchored to 

what the market expects it to be, and this introduces a reinforcing loop around the spot price 
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and the expected prices. These loops, in the context of a general n-entity supply chain, are 

visually summarized in Figure 1-4. 

 

Figure 1-4. Ordering and Price Setting is Nested in Larger Interconnected Supply Chain 

 

This price setting system seen in Figure 1-4 is then combined with the MNL choice 

modeling framework shown in Figure 1-3 to create the central contribution described in this 

chapter. The exact definition of the relationship between development time and the fraction of 

the full price that the producer can extract is context specific. The concept of ‘Effect of WIP Age 

on Producer Price’ seen in Figure 1-3 is left purposefully ill-defined. This relationship is 

ultimately context-specific and can vary depending on the product under development and how 

the market values that product as a function of the development or maturation time.  

As discussed above, this relationship could be increasing with increased development 

time but with decreasing marginal returns, as in the case of software development. Or it could 

have an asymmetric gaussian shape with an ideal development time but with diminishing 

returns on either side of that time. This could be further simplified as an asymmetric trapezoidal 

shape if the window in which the full value of the good is not a single period but rather a 

window. An example of a product that could be conceptualized by a trapezoidal relationship 

between the time of development and the ability of the producer to extract the full market value 

of their goods would be a commodity food under cultivation. For such a product, there is an 

ideal window of maturation time, or work-in-progress (WIP) age utilizing the language of the 

frameworks presented above, at which the food can receive its full economic value. Outside of 
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this window, the producer or farmer can expect less than full value or even no value at all. This 

trapezoidal relationship between development age and price can be operationalized via 

expression (3). 

𝑓 (𝑡) =  

{
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(
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) 𝑡 − (

𝑑

𝑐 − 𝑑
) 𝑐 < 𝑡 ≤ 𝑑

0 𝑡 > 𝑑

 (3) 

More general trapezoidal shapes are possible that do not necessarily have linear 

changes in value (for example see Dorp & Kotz, 2003) and may be more appropriate in specific 

contexts. Appendix A presents several other functional forms that this relationship could take on 

as examples for other modeling activities, including fixed-values, linear and saturating, and 

symmetric or asymmetric gaussian relationships. 

The example supply chain model was started at steady state using the parameterization 

shown in Appendix A and model documentation that accompanies this chapter utilizing the 

trapezoidal age-value relationship presented immediately above. The exact parameters of the 

model were chosen to be semi-realistic, but ultimately, they are illustrative only and not the 

focus of the discussion below or the illustration of the new modeling structures combining co-

flow differential equation structures, spot price discovery, and MNL choice modeling. The model 

was then exposed to an exogenous shock in the underlying consumer demand for goods, 

increasing 50% over the baseline value for a total of 40 weeks (from week 10 to week 50 in 

simulated time) before returning to baseline demand. 

First, Figure 1-5 shows the demand and production pattern of the system without the 

MNL choice model nor the age-value relationship. In this baseline scenario, the supply chain is 

modeled in a manner like prior work, with production starts increasing to match increased 

demand, and all WIP inventory eventually moved into a finished goods state. Most importantly, 

this system as parameterized is relatively insensitive to the rectangular pulse in consumer 

demand, quickly returning to the prior level of production once the demand surge subsides. 

Note that this baseline model still allows for losses. Here, it is assumed that some finished 

goods are lost due to spoilage or obsolescence, resulting in more needed production starts than 

shipments in steady state. However, these losses occur as a result of the structure of the 

system, not due to explicit decisions made by the producer. 
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Figure 1-5. Baseline Response to Rectangular Pulse in Consumer Demand 

 

Figure 1-6 shows the same system with the same parameterization but with WIP 

inventory advancing through the system subject to the MNL choice model introduced in 

expression (2) and as illustrated in Figure 1-2.  

Incorporation of the MNL choice model means that prior to the shock in demand the 

producers will be disposing of some fraction of their WIP every period. In other words, the initial 

steady state value of disposal is not zero in Figure 1-6. Even though the expected value of 

disposal is significantly lower than other options, even taking on a negative value as 

parameterized in this example, some goods are still disposed of each period. As discussed in 

the sections above introducing the MNL model, the values of each disposition route are 

assumed to be expected values with some variance, and thus for any individual unit of 

production, the actual realized values of each disposition option may result in purposeful 

disposal being the most economically advantageous choice.  

A key change to the behavior of the system introduced by the MNL choice model is the 

introduction of non-zero flows towards purposeful disposal in an aggregated representation of a 

supply chain1. As described in the example above, there is expected to be some amount of 

 

 

1 Note that non-zero flows towards purposeful disposal will occur to at least some degree for all 
parameter values unless under the extreme case of zero-valued reference prices. As built here, the 𝛽 in 
expression (2) is the inverse of the reference price in the system, so zero-valued reference prices would 
drive 𝛽 to infinity and, as discussed in the introduction to the MNL framework, route goods towards the 
highest valued disposition route at each period with probability 1. For infinite reference prices, the 
probability of disposal would be the same as any other disposition option, and for any other value of 
reference prices between 0 and infinity, the disposal probability would follow expression (2). 
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disposal in real supply chains that produce goods with some degree of variability, either in terms 

of quality of the goods or in terms of the production process itself, and use of a framework like 

MNL helps capture this expected behavioral outcome that is often outright excluded in the more 

traditional supply chain models illustrated in Figure 1-1. 

As discussed in the Literature Review section, the MNL framework does not claim to 

represent the actual decision process used by decision makers to come to a singular and 

discrete choice, but rather capture the expected aggregate outcome of many similar choices. 

There may be known boundedly rational heuristics that capture the specific process being used 

by decision makers that are applicable to specific production scenarios. These explicit decision 

rules with discrete outcomes would then require keeping track of individual disposition 

outcomes. However, at an aggregate level of modeling, wherein the specific disposition of an 

individual unit of production is inconsequential relative to an aggregated response or outcome, 

the aggregated framework is preferred. 

“Discrete choice models operate at the level of individual decision makers. However, the 

researcher is usually interested in some aggregate measure, such as the average probability 

within a population or the average response to a change in some factor.” (Train, 2009) 

As discussed above, the MNL framework is used in this chapter because supply chain 

inventory disposition decisions can often be reasonably assumed to follow the underlying 

assumptions of this framework (e.g., collectively exhaustive, mutually exclusive, finite in 

number, and IIA). Should the specific decision-making process being captured in a model not 

follow these assumptions, then either an alternative framework could be used, or an agent-level 

modeling process adopted which aggregates individual disposition outcomes towards system 

level observations. 

Independent of the framework utilized, it is expected that there will be some non-zero 

flow of goods towards disposal. This non-zero flow each period under steady state means that 

the producer must carry more WIP than they would otherwise to meet the same level of 

demand. With the rectangular pulse in consumer demand comes increasing spot prices, and the 

relative value of moving goods into a finished goods state versus continuing development or 

disposing of those goods also increases. This results in the immediate drop in the disposal of 

units and a small but still present drop in the average age of goods under development. As 

production starts begin to catch up with this increase in demand, the demand surge subsides. 

The value relationships shift again, with the relative value of holding goods in the WIP state or 
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outright disposing of goods becoming more attractive versus finishing production and holding 

finished goods. This results in both an increase in maturation times and surge in disposal of 

goods.  

 

Figure 1-6. MNL Extended Model 

 

Finally, Figure 1-7 incorporates a trapezoidal relationship between the average age or 

development time for the WIP goods and the ability for the producer to extract the full spot price 

in the marketplace. Now, holding goods in a WIP state beyond the maximum age at full value, 

or attempting to move goods into a finished goods state before the minimum age at full value 

reduces the price the producer can demand in the marketplace. As with the model used in  

Figure 1-6, with onset in the increase in consumer demand comes increasing willingness to pay 

by consumers, and the relative value of moving goods into a finished goods state also 

increases, even with a smaller ability to extract the full spot price from the market from goods 

that have been developed for less time. This results in an immediate drop in the disposal of 

units and a drop in the average age of goods under development. This moving of goods into a 

finished goods state earlier than under steady state conditions continues, resulting in a larger 

and quicker rundown of WIP inventories versus seen in Figure 1-6, and a correspondingly 
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higher response in the form of later higher production starts. The net result is that the 

incorporation of this additional structure relating the development time for the WIP goods to the 

ability for the producer to extract the full spot price in the marketplace exacerbates the dynamics 

seen in the model with the MNL framework alone. 

    

 

Figure 1-7. MNL with Age-Value Relationship Model 

  

Perhaps most importantly beyond providing an example of the use of this modeling 

framework, the three scenarios illustrated above (baseline, with MNL choice modeling, and with 

MNL choice modeling and with age-value relationships) settle on three distinctly different 

qualitative modes of long run behavior. This is illustrated in Figure 1-8 for the inventory in the 

WIP stock, but similar patterns emerge for other key variables, including production starts and 

spot prices. 

For the example here, with the parameters chosen and the trapezoidal relationship 

between average age of WIP goods and the effect on price, the baseline model settles quickly 

with negligible oscillatory behavior, while incorporating the MNL choice modeling frameworks 

generates oscillatory, but damped, patterns in production starts and inventories. Adding the 
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relationship between development age and the price extracted to the marketplace can result in 

undamped oscillations over the long run. 

 

Figure 1-8. Long Horizon Comparison of Methodological Framework  

 

The incorporation of the relationship between development age and the price extracted 

to the marketplace creates an additional feedback loop connecting the Average Age WIP 

Inventory to Effect of WIP Age on Producer Price in Figure 1-3, a connection which is otherwise 

absent. Figure 1-9 provides traces of behavior for parts of the model that interact in this new 

loop that generate the long-run oscillations seen in Figure 1-8 that are otherwise absent when 

not incorporating this relationship. Specifically, as parameterized in this example with the 

trapezoidal relationship between age and price, once the age of goods significantly exceeds the 

value at which the producer can expect full value, the expected prices begin to sharply drop. In 

response, after a delay, production starts are similarly curtailed based on future expectations of 

profitability. The underlying demand, after the initial rectangular pulse, remains and as a result 

goods are eventually sold down. As the average age of the WIP reduces back to a value at 

which they would receive full market value, this drives up the price expected by the producer 

which begins instigating newly increased production starts. This cycle continues. 
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Figure 1-9. Detail on Feedback Generating Long-Run Oscillations in Model with Age-Value 
Relationship  

 

These specific outcomes are a function of the specific parameter choices utilized in this 

model and were chosen to illustrate that the behavioral modes of the model can be materially 

different versus the traditional inventory models if one chooses not to incorporate these 

mechanisms. Of interest is that inclusion of these mechanisms also implies new policies.  

In this parameterization, the long-run oscillatory behavior is sensitive to the time under 

which the producer updates production schedules, e.g., the delay that translates a desired 

production start rate into an actual production schedule, and the rate in which the producer 

incorporates the instantaneous spot pricing realized in the market into long-run expectations. 

The base model, and the model with the MNL framework but no age-value relationship, do not 

fundamentally change modes of behavior when adjusting these delays, while the full model 

does (with longer updates reducing or even eliminating the long-run oscillation). More specific 

commentary on these results is not the subject of this section of the paper, but it does reinforce 

that the presence of these mechanisms can materially change both the predicted modes of 

behavior in a model, and in turn illustrate policy levers that would have been otherwise hidden. 
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1.6 Vintaging Chains versus Aggregate Stocks 

A valid critique of the structure presented in Figure 1-3 is that the work-in-progress (WIP) by the 

producer is treated as a single aggregate collection of units with an average effective age under 

production. This structure abstracts away from capturing the outflows from WIP to either 

finished goods or to purposeful destruction of goods at specific ages, or at specific points in the 

development process, and instead considers only a concept of average age of each of these 

dispositions. Additionally, the exact distribution of ages of material that is currently under WIP is 

abstracted away with only a mean value known. 

While this aggregate framework may be a valid model in some contexts, in others it may 

be important, or at least of significant interest, to know an estimate of the distribution of ages of 

the WIP inventory and the relative volume each age cohort is contributing to the net 

dispositions. To capture these features, a vintaging chain, in which the aggregated stock of 

Work-in-Progress is disaggregated into a series of sequential sub-stocks, can be applied to 

extend the modeling framework developed above.  

This specific trade-off between a fully aggregate model and a more subdivided series of 

connected models is by no means unique to the context of this chapter and has been explored 

extensively in prior literature in System Dynamics. The original population sector of Limits to 

Growth (Meadows et al., 1972) was built after an analysis of three different levels of aggregation 

and the relative tradeoffs and benefits of disaggregation into more precise age cohorts 

(Bongaarts, 1973). On the extreme end, direct comparison of fully agent-based models with fully 

aggregate models have helped illustrate relative utility or interchangeability of these two 

approaches, notably in the context of stochastic environments (Rahmandad & Sterman, 2008). 

Specific interchangeability and tradeoffs of differing levels of aggregation and disaggregation 

with real datasets have been explored (Fallah-Fini et al., 2013) along with investigations of the 

effects of cohort disaggregation to the point of mathematically continuous cohorting (Eberlein & 

Thompson, 2013).  

While much of the work previously done does directly apply to the modeling framework 

developed in this chapter (Eberlein & Thompson, 2013), the analysis below makes the influence 

of the age-value relationship on the degree of disaggregation explicit. In doing so, this section 

reinforces that the choice of disaggregation ultimately is a free parameter left to the modeler, 

which should be based on what is behaviorally and physically realistic for the system being 
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measured. As stated in the earlier section of this chapter that introduced the MNL framework, 

when the unit of analysis is individual goods under development, the framework used here 

generates probabilities of discrete and mutually exclusive disposition outcomes. When 

aggregating the unit of analysis up to a continuous flow of goods, this probability resolves into 

expected numbers of goods in each disposition class. This section of the chapter serves to 

provide an example of how to still subdivide the development process while still maintaining the 

underlying assumptions and utility of applying the framework developed above. 

Consider the vintaging chain below in Figure 1-10. Here WIP is split into N evenly 

spaced vintages, followed by a single end-of-life cohort. This end-of-life cohort follows the same 

structure as the aggregate framework described above. The end-of-life cohort is unique in so 

much as it consists of those goods whose age no longer affects the price that can be extracted 

from the marketplace. For the trapezoidal example used above and shown in expression (3), 

this would be goods with ages older than 𝑑. All cohorts except the end-of-life have the same 

disposition options including moving along the chain furthering development. 

The age for each numbered age cohort increases regularly along the chain, starting with 

some initial age of production starts (typically assumed to have a numeric value of 0 units of 

time). Using this structure, the age of each cohort is known, including the final aggregate end-of-

life life cohort on average. 
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Figure 1-10. Core Vintaging Chain 
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Under the aggregate model framework, the value of the entire stock of WIP inventory is 

determined by the choice of age-value relationship. In the vintaging framework it can be applied 

to each cohort of ages. As an example, using the trapezoidal age-value relationship described 

in (3), in the vintaging extension we would expect that for low ages, almost all the inventories 

would be held to extract future value. At middle ages corresponding to the maximum full value, 

we would expect most of the inventory to be moved into a finished goods state. Finally, at high 

ages and especially in the terminal stock seen in Figure 1-10, we would expect most goods to 

be purposefully disposed.  

The multinomial logistic (MNL) choice model, as illustrated in Figure 1-3, is applied to 

each part of this vintaging chain (though only one subpart is presented above). As presented 

here, the function that describes the Effect of WIP Age on Producer Price is the same across 

each vintage, though a trivial extension of this framework would allow for flexible value functions 

to be applied along the length of the chain.  

Note that the structure developed here assumes that the average time to change cohorts 

categories is uniform. This formulation also assumes that economic valuation for the decisions 

around production and disposal are the same regardless of age. This is done here for clarity of 

exposition, and a more general model would apply the structure of Figure 1-3 separately, with 

possibly its own separate cost constructs, to each cohort sub-structure in Figure 1-10.  

However, the age-value relationship is being applied across the entire chain (e.g., with younger 

cohorts having a different economic value for being held onto and being allowed to mature 

versus later older cohorts).  

As the MNL choice model ultimately depends on the relative size of valuations of each 

disposition, even having uniform costing for disposal and production but different realizations of 

the value of the expected value of production means that each cohort will experience different 

splits along each disposition route. Additionally, keeping this age-value relationship and 

associated costs consistent in its application along the chain allows for more direct comparison 

of the aggregate framework to the vintaging framework. As an example, consider the scenario 

utilizing the trapezoidal age-value function described in (3), and as parameterized in Table 1-1 

below. 
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Table 1-1. Parameterization of Comparison of Vintaging and Aggregate Frameworks 

Parameter Name Description or Note Value 

Production Starts 
Fixed and the same between the aggregate and vintaging 
framework 

100 units/week 

A Minimum age of any value 2 weeks 

B Minimum age of full value 4 weeks 

C Maximum age of full value 6 weeks 

D Maximum age of any value 8 weeks 

Number of Vintage Age 
Groups 

Number of evenly aged vintaging groups, plus one end-of-life 
group 

10 groups 

Average Time to Change 
Age Categories 

Chosen such that material older than time D moves into the 
end-of-life group 

0.8 weeks 

Processing Time 
Average time for the producer, under either framework, takes 
to move material either into a finished goods state or to 
purposefully destroy it 

3 weeks 

Vintaging Framework 
Reference Price 

Reference price by which the choices in the logistic model are 
evaluated at each vintaging age group 

$1/unit 

Spot Price 
The exogenous (and here fixed) price that the market will pay 
for a full valued unit of production 

$1/unit 

 

Figure 1-11 shows how the disposition fractions determined by expression (2) evolve 

along this disaggregated development chain. Note that while purposeful disposal remains low, it 

is non-zero for each cohort, and during the ages that correspond to the maximum likely ability to 

extract the full spot price from the market (ages between 4 and 6 weeks as parameterized in 

Table 1-1), the likelihood of production (e.g. moving goods into a finished goods state) outpaces 

holding those goods in a WIP state. 

 

Figure 1-11. Example of the Evolution of Disposition Fractions in the Vintaging Framework 
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By comparing the structure for the vintaging framework in Figure 1-10 with that 

illustrated in Figure 1-3 for the aggregated framework, one key difference is that the concept of 

Average Age of WIP Inventory in the aggregated model is lost in the vintaging model. However, 

the two frameworks may be used largely interchangeably depending on the application and 

degree of utility of knowing the distribution of ages of goods in each disposition flow. This fits 

with the prior literature in this space discussed at the beginning of this section. Given the same 

number of production starts, it is possible to find an equivalent reference price that equates the 

net flow rates of each disposition route between these two models. 

For example, using the parameters in Table 1-1 for a reference price of $1/unit for the 

vintaging framework, it is possible to achieve, in equilibrium, the same net flow of goods moved 

into finished goods inventory with the same average age and with the same net flow of 

purposeful destruction in the aggregate framework with a reference price of $ 1.30463/unit. It is 

important to note that this value depends on all the parameters enumerated above, including the 

number of age cohorts, their divisions, and the shape of the age-value relationship. 

However, while this equivalence is maintained in steady state with fixed linear production 

starts, the two structures begin to diverge when the common production start rate is not fixed 

and constant for the specific reference price. Figure 1-12 illustrates this divergence, which 

focuses just on the net flows of purposeful destruction for illustrative purposes. The reference 

price that generates equivalent flows in in the case of fixed linear production starts generates 

qualitatively matching, but not exactly matching, flows in other cases of non-fixed production 

starts. It should be noted that for each of the inputs explored in Figure 1-12 there does exist a 

reference price that matches the two frameworks. For example, the reference price of 

$1.21432/unit matches the exponential growth case but causes divergences in behavior in an 

equilibrium state.  
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Figure 1-12. Comparison of Net Rates of Destruction between Aggregate and Vintaging Models 

 

While this is only one example, it demonstrates that these two frameworks can be used 

interchangeably and equivalently when the limitations above are carefully considered. 

Specifically, it is most interchangeable when the general flow rates of interest are known, and 

the net flow into finished goods and destroyed goods is most important for downstream 

processes. 

The purpose of this section has been to illustrate that the frameworks introduced in this 

chapter are not limited in application to a single aggregate stock of WIP but can also be applied 

to more disaggregated and detailed development cycles. Ultimately it is a choice of modeling 

freedom, and the choice should be based on both the reality of the system under investigation 

and the sources of value that come from the tradeoffs between a parsimonious model and more 

complete knowledge of the distribution of ages of production under a WIP state. 
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1.7 Discussion 

This chapter presents a methodological contribution to the System Dynamics community that 

expands on how decision makers choose to move goods through development processes in a 

supply chain. By combining multinomial logistic (MNL) choice modeling with economic 

processes of price discovery, a more complete understanding of the behavioral features that 

determine the physical flow of goods through a supply chain can be explored, rather than simply 

assuming fixed or even multi-order delays in processing times. 

As mentioned in the Literature Review, the underlying mathematical theory utilized by 

the MNL framework presented here already exists in the field of System Dynamics and has 

been used many times in consumer choice contexts such as modeling how the aggregate 

outcomes of individual choices resolve into population-level outcomes such as market share. 

However, the natural extension of these methods to supply chain models, which also contain 

decision makers weighing the relative value of different inventory disposition choices and which 

also has a rich history in the establishment of the field as far back as Forrester’s original work 

for General Electric, has been largely ignored. Calls for more behaviorally grounded approaches 

within supply chain research have emerged recently and there have been recent calls to better 

integrate concepts, tools and frameworks between the OM and SD domains (Ghaffarzadegan & 

Larson, 2018; Größler et al., 2008; Morrison & Oliva, 2018; Sterman et al., 2015). This chapter 

in part answers those calls by leveraging the behaviorally grounded approach of System 

Dynamics with the tools and methods already available in the field to create richer models of 

supply chains that incorporate choice. 

Using such a model supply chain, this chapter further illustrates how the modes of 

outcomes of otherwise identical systems can be materially different if one chooses not to 

incorporate the mechanisms developed herein. From a managerial perspective, the example 

also illustrated how specific policy interventions may be hidden or otherwise deemphasized 

when using a more traditional inventory management model. Models are ultimately 

simplifications of reality and tools that help understand how structural mechanisms and policy 

interventions combine to generate desired results or exacerbate already problematic behavior. 

In an environment in which producers have control over the inventory dispositions and 

development, and make those decisions based on the perceived greatest value of each option 

available to them, then abstracting away from this choice process both restricts the realism of 

the model and the richness of available policies. 
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The degree of aggregation or disaggregation of the stock of work-in-progress (WIP) was 

shown to be largely a free parameter left to the modeler and should be based on what is 

behaviorally and physically realistic for the system being measured. Both a fully aggregate and 

vintaging equivalent utilize choice modeling and economic concepts to determine the flow rates 

of goods through a supply chain and provide additional insight on the age (and thus 

corresponding value) of the goods in each disposition.  

While the aggregate framework provides an average age across all disposition choices 

in a specific production activity, the vintaging framework allows for some additional insight on 

the distribution of ages, at the cost of significant additional modeling complexity and additional 

degrees of freedom in model design. For either framework, the distribution of ages (even if just 

the mean in the case of the aggregate framework) of material under production, or passed along 

any specific disposition path, emerges from the choices of the individuals, rather than being 

imposed exogenously.  

While the context of economically motivated decision making of a producer in a supply 

chain was used here, specifically focusing on a stock of WIP goods, the methods and 

frameworks developed above could be applied to any member of a serial supply chain, each 

subject to their own process for determining the value of the choices available at each step in 

the supply chain. Additionally, while this chapter is steeped in the language of supply chains and 

production processes and was developed specifically to address a methodological shortcoming 

in traditional inventory and production management models, the frameworks used here are 

flexible enough to be applied to many other situations. So long as the problem under 

consideration allows for the decision maker to make some choice, and each possible choice can 

be enumerated, and the relative value of each disposition described, then the MNL choice 

framework can be applied to derive the probability of each of those dispositions.  

As applied here, these probabilities of disposition outcomes were assumed to apply 

uniformly across many producers and thus are proportional to the expected total flows of each 

inventory disposition for continuous compartmental models like those used in the examples of 

this chapter. It is possible to apply this chapter to more disaggregated models of individuals 

operating in a supply chain and making mutually exclusive disposition decisions each period. 

Under such a model, the MNL choice framework would be utilized to form the probability of an 

individual choosing a specific disposition route, but only one such choice would be realized each 

period.  
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However, such an application at such a granular level of analysis should be taken with 

caution, as it begins to imply that the behavioral realism of this framework lies in directly 

describing the decision process of individuals, which it does not. Rather, the methods and 

mechanism introduced in this chapter have the most power and validity when describing 

aggregated expected outcomes of otherwise (to borrow the wording of McFadden 1974) 

qualitative, and ‘lumpy’ individual decision processes. To maintain the behavioral realism that 

System Dynamics as a field has emphasized since its beginning, these methods should be 

embedded within a larger model that incorporates additional delays and feedbacks found in real 

systems. Only then can this framework be used to capture the influences of the presence of 

choice in processes that were otherwise fixed and choiceless. 

 It is the hope of the author that this chapter contributes towards rigorous and 

behaviorally grounded modeling efforts in the future by providing a novel and useful framework 

for supply chain modelers, and others, to better incorporate choices that producers and 

managers are exposed to on a continual basis. 
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Chapter 2 

Systemic Origins of Hunger Amidst Plenty During the Onset 
of the COVID-19 Pandemic in the United States 

 

 

CHAPTER ABSTRACT 

As the COVID-19 pandemic strained supply chains around the world, a striking, and seeming 
contradictory, outcome became apparent: Surges in rates of hunger occurred simultaneously with 
surges in food surplus and purposeful disposal. To better understand the systemic origins of this 
seeming imbalance, this chapter develops a dynamic model of a bifurcated food supply chain, 
from production through consumption, based on empirical observations drawn from the popular 
press and industry reports from the onset of the pandemic. The model considers both the physical 
flow of food from farmer to end consumer, along with the processes of price discovery and 
corresponding economic decisions made by the producer to ship, continue to grow, or 
purposefully dispose of food under cultivation. The resulting model combines three methods: 
compartmental differential equation modeling, inventory-based price discovery, and multinomial 
logistic choice modeling. The dynamics generated illustrate the origins of simultaneous paucity 
and plenty in a food supply chain and help suggest policy interventions. Policies that help reduce 
the upstream inventory stresses from a sudden decrease in downstream demand, or those that 
increase substitutability of end consumer goods across channels, are effective at mitigating the 
degree of purposeful food destruction and reducing economic stresses. 
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2.1 Introduction and Background 

In the early months of the emergence the COVID-19 pandemic in the United States, there 

appeared to exist a fundamental paradox in both the production and demand for commodity foods. 

Farmers and wholesalers are dumping milk and tilling crops back into the ground (Bauer, 2020; 

Corkery et al., 2020; Corkery & Taffe-Bellany, 2020; Yaffe-Bellany & Corkery, 2020; Zhou, 2020), 

while food insecurity in the end consumer notably rose (Hake et al., 2021).  

How can such states exist simultaneously? Some recent investigation of this has pointed 

towards fundamental structural features of modern supply chains (Durisin et al., 2020; Johnson, 

2021; Lougee, 2020). This chapter contributes to this ongoing body of research by developing a 

model of a of a commodity supply chain which follows the production and disposition of food from 

an original producer, through a value-add supply chain, into two separate customer types. When 

exposed to shocks in demand patterns like those seen during the COVID-19 pandemic, this model 

helps illuminate the structural features that can lead to seemingly contradictory outcomes, such 

as a surge in hunger rates simultaneously with a surge in purposeful food destruction along the 

supply chain.  

 This food supply chain model is developed here purposely highly aggregated, focusing 

not on the interaction of various foods and even on the details of the coronavirus pandemic 

itself. Instead, it presents a generic supply chain for a generic commodity foodstuff, and it shows 

how the various changes in behavior seen during the pandemic (such as a drop in demand for 

bulk packaged foods, a reduction in the productivity and availability of staff at processing plants, 

and/or a general onset of a reduction in purchasing power in one or more classes of end 

consumers) can yield the imbalance described in the press of the time. 

Differential equation compartmental models of supply chains have been a staple of 

operations management modeling since Jay Forrester first developed the tools and methods to 

describe industrial processes and business cycles in the 1950’s and 1960’s (Forrester, 1961). 

More recently, there has been a renewed interest in incorporating features of human decisions 

makers in supply chain models, and in doing so better define a concept of Behavioral 

Operations Management (Croson et al., 2013; Gino & Pisano, 2008; Hämäläinen et al., 2013).  

2.2 Methods and Model Development 

This chapter uses simulation modeling to develop a dynamic hypothesis of food imbalances in a 

supply chain subject to exogenous shocks like those brought on during the COVID-19 

pandemic. The modeling methods utilized here incorporate the human decision-making features 
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of this commodity food supply chain by allowing for the endogenous determination of 

dispositions of inventory and production in a supply chain via the application of multinomial 

logistic choice modeling to a compartmental differential equation model which tracks the 

relationship between the age, or development time, of goods under production and their 

corresponding market value. 

Consider a group of farms producing a specific crop for later sale to a wholesaler, 

processor, or even directly to end consumers. Furthermore, assume these farms manage 

inventory both in the field and in storage based on the economic implications of the possible 

dispositions of their production, rather than acting as strict price-takers who perfectly fulfill all 

demand signals. Prices are assumed to be based on a commodity product, which implies the 

use of inventory-sensitive spot pricing (Chen et al., 2009; Sterman, 2000; Whelan & Forrester, 

1996). 

Generally described the model below explores a bifurcated food supply chain consisting of 

the following entities: 

• A farmer, who is responsible for making decisions about how much to plant each time 

and how to manage his or her harvest. 

• A wholesaler firm, which receives raw and unprocessed foodstuff from the farmer, and 

does some minimum value-added work to the food. 

• Two different packaging processors 

o A CPG (consumer packaged goods) processor that received goods from the 

wholesaler and does extensive value-added rework to the food, packaging it in 

smaller consumer friendly forms for sale to the end consumer at some outlet like 

a grocery store. 

o A Bulk processor that receives goods from the wholesaler and does minor 

repacking of the food for sale directly to larger consumers like restaurants, 

governments, or schools. 

• The end consumers, which include demand for both CPG and Bulk packaged food. 

A general visual representation of these entities, and the physical flow of food, is shown in 

Figure 2-1. 
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Figure 2-1. Visual Representation of the example food chain 

 

The model developed here is purposefully bifurcated into two separate non-overlapping 

consumer types to both distinguish it from a standard linear and serial supply chain model, and 

to better capture the real world structural features that were at play during the onset of the 

COVID-19 pandemic. As discussed more in the sections below, the pandemic induced different 

shocks in demand to two different classes of consumers (CPG and Bulk), but which ultimately 

shared an upstream supplier. 

The model was developed and run in the Vensim version 8.2 software package and is fully 

documented in Appendix B.  

2.2.1 Physical Flows and Dispositions of Goods 

The farmer2 must decide about how much to plant and how to manage his or her storage 

capacity. The amount of food under cultivation at any given period is a function of the amount of 

production starts, less losses from harvesting, and from destruction (or other losses, either 

natural or purposeful). Similarly, the amount of food that has been harvested by the farmer and 

 

 

2 More generally, this could refer to any producer of a raw form of the food, which could also include 
someone raising livestock, or making milk as other examples. However, for this model the producer is 
conceptualized as someone growing a commodity vegetable like onions or potatoes. 
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is ready for shipment to the wholesaler is a function of the corresponding inflows and outflows 

into the farm storage. 

 As discussed in more detail in the prior Chapter, a unit of production started does not 

guarantee that it will be completed and represents a real opportunity cost during development. 

The dumped milk and destroyed crops referenced in the Introduction to this Chapter are 

examples of producers weighing the relative value expected from continuing development or 

holding onto finished goods against the value (less costs of disposal) that could be achieved by 

freeing up storage or production capacity. Under normal circumstances, one would expect this 

loss to be minimal across an entire supply chain. However, it cannot be ignored outright and 

ultimately motivates this modeling work.  

These physical flows are visualized in the stock-and-flow diagram (Morecroft, 2015; 

Sterman, 2000) shown in Figure 2-23. 

 

Figure 2-2. Farm – Physical Flows 

 

Food from the farmer is shipped to a wholesaler, who performs some basic valued-

added service to the goods before passing them along to entities that package the goods in 

either a CPG format (e.g., small packages like for grocery stores) or in a bulk format packaging 

 

 

3 In these diagrams, the boxes represent accumulations, which cannot be directly changed but rather are 
affected by the net of the inflows and outflows acting on that stock (Sterman, 2000). Here, these flows are 
represented by pipes and valves. For example, in Figure 2-2, the stock of ‘Food under Cultivation’ 
changes as a function of the sum of the inflows and outflows, or: 

𝑑 

𝑑𝑡
(𝐹𝑜𝑜𝑑 𝑈𝑛𝑑𝑒𝑟 𝐶𝑢𝑙𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛) = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑟𝑡𝑠 − 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑖𝑛𝑔 − 𝐿𝑜𝑠𝑠𝑒𝑠 
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Farm Finished
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Destruction of
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(e.g., with minimal packaging like for restaurants, schools, or governments). The wholesaler and 

these repackagers could, in some food supply chains, be the same. Here in this model they are 

separated out to specifically capture the dynamics described in the articles focusing on the 

processing restrictions (Corkery et al., 2020; Corkery & Taffe-Bellany, 2020).  

Like the farm, the wholesaler is assumed to have two stocks of goods under 

management, those received from the farm, and those that have received some value-added 

work and are awaiting shipment to downstream customers. This is illustrated in Figure 2-3. 

 

Figure 2-3. Wholesaler - Physical Flows 

 

The decision the warehouse must make about filling orders to either the CPG focused 

processor or the Bulk packaging focused processor may be based on many considerations, 

from specific contracts with service rate guarantees and penalties to personal preferences for 

dealing with one client over another developed over years of business operations. For 

parsimony, this model abstracts away from those details and instead allows the wholesaler to 

simply ship what is demanded as it is demanded from either channel.  

The only real heuristic that comes into play here is the choices that must be made when 

demand outstrips supply. To whom should the finished goods from the warehouse go? For 

simplicity, the model utilizes a directly proportional rule, splitting the total outflow available 

relative to the total demand in each channel. While more elaborate decision rules may be 

possible here it does not add meaningfully to the resulting dynamics. 

As discussed above, the repackagers and the wholesalers could be considered one in 

the same under some circumstances and supply chain configurations. Therefore, many of the 

decision rules found in the earlier sectors, including managing physical space and adjusting 

labor practices, are abstracted away in this sector of the model for simplicity. 
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In essence, the repackagers convert the finished goods from the wholesalers into two 

distinct and non-substitutable forms. The CPG packaging process focuses on high value-added 

processing, separating out the food into smaller packages for sale to end consumers in a retail 

environment like a grocery store. Conversely, the Bulk packaging process does minimal 

processing to the goods received from the wholesaler, perhaps adding minimal packaging for 

sale to larger clients like restaurants, schools, or governments. The inventory in each channel 

can be represented as in Figure 2-4. The key difference between these channels is that they are 

exposed to two different demand streams. 

 

Figure 2-4. Repackager - Physical Flows 

 

2.2.2 Applying a Dynamic Valuation of ‘Work in Progress’ to Commodity Goods 

As stated in the prior chapter, the time that a unit of production is under development may have 

a meaningful economic impact on the final value of the product at hand, and thus the value of 

either holding or shipping inventory may change with a concept of time under development or 

age of the work-in-progress. Here, the influence of this decision is slightly more straightforward, 

as ‘work-in-progress’ maps directly towards maturation of the commodity good. Too short of a 

maturation time, and the farmer cannot expect to be able to sell the crop or good at full market 

price, or at all. Too long of a maturation time and the farmer has either locked up resources by 

holding inventory too long or may risk crops decaying away. 
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The co-flow structure used to keep track of Average Age WIP Inventory in the prior 

chapter can be directly mapped to this model. Figure 2-5 shows this mapping, forgoing the 

multinomial logistic choice framework pieces for concise presentation. 

 

Figure 2-5. Keeping Track of the Average Age of Food Under Cultivation 

 

The multinomial logistic (MNL) framework discussed in the prior chapter is an excellent 

modeling choice here. For this system, the farm has three choices to make with respect to crops 

that are maturing in the field: 1) Harvest and move into storage (for immediate or later selling to 

the wholesaler), 2) Keep in the ground to continue to mature (or decay), or 3) Dig up and 

destroy. 

The MNL framework applies here because from the point of view of a single farmer that 

is considering a single unit of production, each of these dispositions are non-overlapping (a farm 

cannot simultaneously destroy, harvest, and continue to cultivate a single unit of food). 

However, for a larger model of a system of these decisions, the MNL framework can be used to 

represent the probability of a farmer choosing any of the above three options. In this example, 

and across many decisions, this probability becomes the proportion of the total work-in-progress 

inventory that is delegated to each of the possible disposition routes.  
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Following this framework, the stock of Food Under Cultivation (e.g., work-in-progress 

inventory) held by the farm is divided into three sub-groups, based on the relative economic 

value of each disposition. As a reminder from the prior chapter, the probability of any one unit of 

production being in a given sub-group, which in expectation is proportional to the total units that 

the producer will desire to be in any of these group, is given by the expression below: 

𝑃(𝑋𝑖) =
𝑒𝛽𝜋𝑖

∑ 𝑒𝛽𝜋𝐼𝑁
𝐼=1

 (4) 

As discussed in more detail in the prior chapter, the value on each disposition, 𝜋𝑖, can be 

taken to be the expected profitability of that disposition. Furthermore, the value that the 

producer places on profitability, 𝛽, can be taken as an inverse of a reference price for simplicity. 

Here, the reference price is chosen to be the long-run baseline stable price that the farmer 

typically receives for finished goods. 

While the model development immediately above has focused on the valuation and 

inventory disposition decisions of the Food Under Cultivation, it can be readily applied as well to 

Farm Finished Goods Inventory in storage as well, creating a series of these MNL-based sub-

models. Again, the farm has three choices: 1) Make inventory available for the wholesaler, 2) 

Keep finished goods in storage, or 3) Destroy goods. As with the Food Under Cultivation 

inventory stock, a multinomial logistic function is used, normalized with 𝛽 values all chosen to be 

the inverse of a farm reference price.  

For commodity food products, there is an ideal window of maturation time, or work-in-

progress age, at which the food can receive its full economic value. Outside of this window, the 

producer or farmer can expect less than full value or even no value at all. To capture this price-

value dynamic, a variety of analytic or empirical relationships could be explored (based on the 

reality of the exact commodity crop being developed) but for simplicity, consider the trapezoidal 

relationship between crop value and age (or maturation time) introduced in the prior chapter and 

restated in the expression below.  

𝑓 (𝑡) =  

{
  
 

  
 

0 𝑡 ≤ 𝑎

(
1

𝑏 − 𝑎
) 𝑡 − (

𝑎

𝑏 − 𝑎
) 𝑎 < 𝑡 ≤ 𝑏

1 𝑏 < 𝑡 ≤ 𝑐

(
1

𝑐 − 𝑑
) 𝑡 − (

𝑑

𝑐 − 𝑑
) 𝑐 < 𝑡 ≤ 𝑑

0 𝑡 > 𝑑

 (5) 
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2.2.3 Production Starts and Capacity Management 

The decision to plant by the farm considers the incremental profitability of an additional unit of 

production utilizing the variable costs of production and expects losses and gains from each of 

the possible inventory dispositions discussed above.  

Production capacity utilization for the farm is a function of expected gross margin as a 

representation of expected profitability. Furthermore, utilization of existing capacity is unlikely to 

be at 100 percent when averaged across all pieces of owned capacity unless at very high levels 

of expected profitability. The exact shape of this relationship will vary by industry, and even by 

individual producer, or individual piece of owned unit of production capacity.  

To qualitatively capture this behavior, consider the normal cumulative distribution 

function of utilizations versus expected profitability of a collection of different land (capacity) at 

different utilization depending on local factors. Figure 2-6 illustrates this curve under the 

assumption that under reference profitability, 50% of total production capacity is being utilized. 

The symmetric nature of this relationship is an assumption for this model and the real utilization 

relationship may be asymmetric. 

 

Figure 2-6. Farm Capacity Utilization versus Expected Gross Margin 

 

2.2.4 Linking the Sectors and Defining the Market 

As discussed in the prior chapter, there may be multiple ways to construct the interplay of 

supply and demand that determines the spot price at each interface point between the entities in 
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this food supply chain. As this chapter explicitly considers commodity goods, and the use of 

inventory-sensitive spot pricing introduced in that prior chapter is still applicable here (again 

refer to Chen et al., 2009; Sterman, 2000; Whelan & Forrester, 1996 for examples of this price 

formation mechanism).  

The multinomial logistic choice framework described in the prior chapter is utilized by the 

producer (here the farmer) in this supply chain model, with the actual spot price discounted 

based on the age-value relationship seen in expression (5), with the value of food under 

cultivation starting at zero percent of the full market spot price, then increasing linearly until it 

reaches an ideal maturation and can extract the full market spot price. After a time at full value, 

for higher of food under cultivation the value declines linearly back to zero percent of the market 

spot price. 

One of the key features of the commodity pricing model utilized here is the effect of 

inventory coverage on pricing. In net, a model will capture the downward sloping relationship 

between additional inventory (beyond a set inventory coverage goal) and the price offered by 

the firm holding that inventory.  

𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 [𝐸𝑛𝑡𝑖𝑡𝑦] 𝐼𝑛𝑒𝑛𝑡𝑜𝑟𝑦 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑛 [𝐸𝑛𝑡𝑖𝑡𝑦]𝑃𝑟𝑖𝑐𝑒

= [𝐸𝑛𝑡𝑖𝑡𝑦]𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑅𝑎𝑡𝑖𝑜−𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦 
(6) 

The sensitivity is a parameter that determines how much the price will raise or lower 

given a change in inventory coverage. As formulated here, sensitivity is assumed to be a 

positive value, with higher values corresponding to increasingly concave response functions. 

Similarly, this model assumes that there is a long-run expected cost or margin that each 

customer expects, anchored to the long-run reference prices in the system. In this manner, 

prices in this model will return to this reference price over time. This is a simplifying assumption 

that provides an additional balancing mechanism that anchors the otherwise floating prices in 

the system. 

𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 [𝐸𝑛𝑡𝑖𝑡𝑦] 𝐶𝑜𝑠𝑡𝑠 𝑜𝑛 [𝐸𝑛𝑡𝑖𝑡𝑦]𝑃𝑟𝑖𝑐𝑒

= (
[𝐸𝑛𝑡𝑖𝑡𝑦] 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑖𝑐𝑒

[𝐸𝑛𝑡𝑖𝑡𝑦]𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑟𝑖𝑐𝑒
)

−𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

 
(7) 

The effect on demand due to expected gross margin does have some element of 

sensitivity to cost built in from the definition of gross margin. However, when considering an 

expected gross margin, the influence on demand is based on a smoothed view of previous 
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prices (both costs for goods bought and the prices at which they were later sold). To affect 

demand based on the instantaneous spot price experienced by each entity, consider a linearly 

decreasing relationship that captures decreasing demand with increasing prices, with the slope 

of that relationship affected by some elasticity of demand. The functional form of this expression 

is seen below: 

𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑃𝑟𝑖𝑐𝑒 𝑜𝑛 𝐷𝑒𝑚𝑎𝑛𝑑

=  𝑀𝐼𝑁(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟,𝑀𝐴𝑋 (0,1 + 𝐷𝑒𝑚𝑎𝑛𝑑 𝐶𝑢𝑟𝑣𝑒 𝑆𝑙𝑜𝑝𝑒

∗
𝑃𝑟𝑖𝑐𝑒 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑟𝑖𝑐𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑚𝑎𝑛𝑑
) 

(8) 

Where: 

𝐷𝑒𝑚𝑎𝑛𝑑 𝐶𝑢𝑟𝑣𝑒 𝑆𝑙𝑜𝑝𝑒 =
−𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑚𝑎𝑛𝑑 ∗ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑟𝑖𝑐𝑒
 (9) 

In the above, the spot price is used to determine the effect on instantaneous demand. 

This effect is purposefully designed to be immediate, in contrast to the effect from expected 

gross margin which is based on a smoothed concept of both prices and costs. 

Combined, the relationships described above form an economic market for this 

commodity food. The decision that each entity in this food supply chain that affects the 

upstream entities is how much to order. As discussed above, this decision is based on the 

interplay of on-hand supply and expected future profitability.  

Figure 1-4 in the prior Chapter captures much of the interactions described here for a 

generic N-entity supply chain. Figure 2-7 recasts this generic structure in the terminology used 

in this commodity supply chain and adds the effect of costs on price. It also distinguishes the 

farm (which controls its own supply) versus downstream entities. Note that Figure 2-7 is not a 

complete representation of this system, and instead focuses in on the key feedback loops that 

drive this ordering decision, abstracting away from other model structure such as inventory 

decay, purposeful destruction, and capacity utilization. 
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Figure 2-7. Simplified CLD Showing Key Drivers of Ordering Decisions 



 

60 

 

Each ordering decision is driven by the interplay of five feedback loops, four balancing 

and one reinforcing. The reinforcing mechanism is of special interest as it is a floating anchor, in 

which the spot prices experienced instantaneously in the system are anchored to the history of 

observed spot prices. In other words, price inflation or deflation is based on the existing 

expectations of the consumer in that link in the chain (Lee et al., 2022). The balancing 

mechanism described above that anchors spot pricing to long run expected prices directly 

offsets this reinforcing mechanism. 

This model assumes that each entity, aside from the end consumer, is at least 

somewhat strategic, and able to plan ahead. Therefore, demand is based on a combination of 

the current spot price and the expected gross margin from the expected price. In other words, 

the customer in each link in this chain is basing his or her demand on expected future earnings 

but will modify demand given the reality of today. For both of these effects, higher prices drive 

down demand, which in turn drives up inventory, placing downwards pressure on prices and 

balancing the initial effect. The figures here only label these feedback loops for the first entity tin 

the supply chain (here the farm), but they are present at each link. 

The supply chain considered here has a distinct bifurcation before the end consumer, 

segregating food stuffs into two distinct categories, namely Consumer Packaged Goods (CPG) 

and Bulk goods. The generic price formation and ordering decision structure for a linear, serial 

supply chain seen in Figure 2-7 is directly applied to the bifurcated supply chain used here in 

Figure 2-8. 

While the difference between the linear serial supply chain and the bifurcated version 

may seem trivial, especially since the decisions being made by the Wholesaler are based on the 

aggregated demand induced by both channels in the bifurcated supply chain, it has the main 

structural effect of segregating the flows of goods into two non-substitutable paths. This occurs 

right before the end consumer, with one set of goods going towards the CPG channel and the 

other going towards the Bulk channel. This distinction in food categorization is important for the 

analyses below, which consider the effect of a major shock, disproportionally affecting one side 

of this bifurcated system.
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Figure 2-8. Simplified CLD of Drivers of Ordering Decisions in a Bifurcated Supply Chain
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2.3 A Dynamic Hypothesis of Food Imbalances 

During the onset of the novel Coronavirus in the US in early March of 2020, purchasers of bulk 

goods essentially stopped ordering from their wholesaler suppliers. This was driven in part by 

stay at home orders which reduced consumer demand originating at restaurants, and other bulk 

purchasers such as schools. Simultaneously, layoffs and financial hardship hit end consumers 

while SNAP benefits and other government programs were slow to respond and fill the 

reduction in consumer buying power (Bauer, 2020; Zhou, 2020).  

 Parts of this effect can be seen in a dataset tracking seated diners at restaurants utilizing 

the OpenTable reservation system as illustrated in Figure 2-9, which shows a near total 

evaporation in year-over-year seated diners in 2020, lasting for approximately 10 weeks, with a 

recovery to only 50% of the prior year’s diners through the summer (OpenTable, 2021). 

 

Figure 2-9. Drop in U.S. Year-Over-Year Demand for Seated Restaurant Diners (OpenTable, 2021) 

 

While the above captures seated diners utilizing this one reservation platform, similar 

trends can be seen across industries in which basic foodstuffs are consumed. Consider the 

survey data shown in Figure 2-10, which is drawn from the April 2020 Mintel report on U.S. 

consumer grocery trends (Owen, 2020) and reflects wider consumption patterns beyond just 

those seen in Figure 2-9. In this survey data, a drop in business at restaurants occurs in an 

increase in consumption at end consumer outlets like grocery stores from consumers stocking 

up. 
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Figure 2-10. Changes in U.S. Food Purchase Behavior During the Onset of the Coronavirus 
Pandemic (Owen, 2020) 

 

The model developed above was parameterized utilizing balanced demand for CPG and 

Bulk packaged goods, at a reference value of 100 food tons per week each, and conceptualized 

around a fast-growth commodity food crop such as leaf lettuce or green onions, with the 

parameter values of the trapezoidal function shown in expression (5) set to a = 4 weeks, b = 10 

weeks, c = 12 weeks, and d = 20 weeks (Growing Guides, 2021). The cost structure of the 

simulation and reference profitability of each entity were chosen to be directionally consistent 

with that seen in other commodity food supply chains, with the tightest margins being 

experienced by the farmer or producer (Galen & Hoste, 2016). 

As designed, this model allows for simultaneous shocks to different parts of the supply 

chains. However, the outcome of such simultaneous shocks, specifically a bottle neck in 

production processing combined with reduced CPG consumer spending power would trivially 

result in the outcomes described above, with reduced purchasing power and a bottle neck 

behind production.  

Rather than show this expected outcome, this work considers a minimal scenario that 

can generate similar outcomes. Specifically, consider a scenario exploring just when demand 

for bulk packaged foods evaporates as restaurants and schools close. In this scenario, the 

demand for CPG and Bulk goods is initially balanced and equal. At week 10 (corresponding to 

approximately the middle of March in the simulation), the underlying purchasing power of this 

group of consumers drops to 50% of its former value and remains there for 20 weeks before 
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returning to its prior value. In this specific scenario, consumer purchasing power for CPG 

packaged foods remains unchanged, as illustrated in Figure 2-11. 

 

Figure 2-11. 50% Drop in Bulk Purchasing Power for 20 Weeks 

This sudden reduction in total system demand by 25 percent causes a small but nevertheless 

present short run buildup of finished goods inventories throughout the supply chain even as 

initial production starts are rapidly cut as seen in Figure 2-12. However, the consequences of 

the bifurcated structure of this supply chain became clearer, resulting in a longer run buildup of 

goods just prior to the bifurcation at the wholesaler. 
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Figure 2-12. Supply and Inventories - 50% Drop in Bulk Purchasing Power for 20 Weeks 

 

CPG items continue to be produced and consumed, but not at a rate to offset the loss 

from the diminished demand in bulk packaged foods. Spot prices for bulk repackaged goods 

drop with the collapse in demand. As demand from the point of view of the wholesaler is pooled 

across both channels, the general price the wholesaler can charge collapses due to the higher 

relative inventory position. This reduction in prices induces some short term increased demand 

in the CPG channel. This has the short-term effect of shifting some goods into the CPG channel 

that would have otherwise been routed to the bulk channel. 
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Figure 2-13. Demand and Production - 50% Drop in Bulk Purchasing Power for 20 Weeks 

 

However, this price relief in the CPG channel is short-lived, as the drop in production 

starts from the farmer after the initial shock eventually results in constrained supply throughout 

the system. The resulting constraints cause prices for CPG consumers to temporarily rise to a 

marginally higher level than previously experienced before the reduction in bulk purchasing 

power as seen Figure 2-14. As parameterized here, prices throughout the system eventually 

settle back to the starting long-run prices. 
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Figure 2-14. Spot Prices - 50% Drop in Bulk Purchasing Power for 20 Weeks 

 

The spot price for the farm is affected not only by inventory values, but also by the 

quality of the food itself under cultivation. As seen in Figure 2-15 and as parameterized here, 

the age of the food under cultivation during the initial shock causes average food age to 

increase as the farm opts to hold crops in the field rather than move it through towards a 

finished goods state. Here, the shock subsides before the goods age to a point of reduced 

value. However, as demand recovers, but overall inventory availability is lower, the farm is 

economically motivated to harvest crops earlier, moving underdeveloped foodstuffs into the 

supply chain more quickly.  

 

Figure 2-15. Food Maturation - 50% Drop in Bulk Purchasing Power for 20 Weeks 
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By inspection of Figure 2-15 alongside Figure 2-14 and Figure 2-13, the period of lower 

food quality coincides with the same period of increased CPG prices and reduced CPG 

demand. The net result is higher prices for less consumption, and the production of possibly 

inferior quality goods across the supply line during this transient period immediately following 

the shock. 

Additionally, the choice model framework utilized allows for the investigation of the 

destruction of food across the supply chain, and the drop in prices alongside the drop in 

demand, coupled with a decrease in value of the food itself as it sits in the field, drives a surge 

in purposeful disposal of food alongside with the expected increased spoilage from unsold 

finished goods. However, as seen in Figure 2-16, the purposeful destruction and disposal of 

goods is only an extraordinary source of loss during the shock. In the longer run, spoilage 

remains the main source of food loss, especially for the perishable commodity foodstuffs being 

considered here. 

 

Figure 2-16. Disposal and Destruction of Food - 50% Drop in Bulk Purchasing Power for 20 Weeks 

 

This spoilage results in a long but steady ‘second wave’ of loss seen Figure 2-16. The 

source of this spoilage is almost entirely driven by unsold goods that have built at the 

wholesaler, right before the bifurcation, but were never sold in a timely fashion. This build of 

unsold goods, and their ultimate loss, is a result of the spot pricing of the system which emerges 

from the farm producer selling goods at less than full value based on the age of the food under 

cultivation. This drives down prices from the farm and drives up corresponding demand from the 

wholesaler. However, the wholesaler is unable to sell these goods in a timely fashion and losses 

from spoilage build. When total demand across both arms of the bifurcated supply chain is 
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reduced, the initial loss is slightly higher, there is no surge in demand across either arm from 

reduced prices, and this allows supply to normalize more quickly to a lower level with less 

spoilage, loss, and purposeful destruction. 

The figures above illustrate how a drop in purchasing power on the bulk consumer side 

of this bifurcated supply chain alone can induce destruction of food with simultaneous higher 

prices for consumers so long as it is large enough and long enough. This results in precisely the 

scenario described above, with destruction of food upstream and reduced consumer purchasing 

power and consumption downstream. And while the example above is illustrative in nature, the 

reduction of bulk demand from governments, schools, restaurants was often larger than 50% 

and lasted longer than 20 weeks in some locations during the beginning of the pandemic in 

2020, as seen in Figure 2-9. 

2.3.1 MNL Formulation is Necessary, but Not Sufficient 

The use of the MNL formulation is necessary to capture the purposeful disposal and destruction 

of foodstuffs by the farmer. However, it also materially changes the feedback structure of the 

system. As discussed in chapter 1, the introduction of the MNL choice framework in the 

production sector introduces a new balancing feedback loop between purposeful destruction 

and production starts. Using the terminology of this food supply chain model, this introduces 

feedback between Destruction of Food under Cultivation and Food Production Starts in the 

cultivation portion of this sector, and also between Disposal of Farm Finished Goods Inventory 

and Harvesting. 

 These mechanisms are essential to capture the key features of food destruction that 

underly the phenomena of interest for this chapter. Without these mechanisms, there is no 

destruction of crops, and the “Dumped milk, smashed eggs, [and] plowed vegetables” (Yaffe-

Bellany & Corkery, 2020) does not occur. However, the addition of this framework alone is not 

the primary driver of much of the dynamics seen in the above model analyses, thought its 

inclusion does introduce two new balancing loops with delays and thus can contribute to 

instability and oscillation in the system. 

 As an example, consider the same system subjected to the same shock in demand in 

the bulk sector, but with the MNL formulation disabled. In this modified system, food production 

starts turn into harvesting and storage with a standard third-order delay formulation. Food is still 

allowed to decay in storage, but the farm does not purposefully destroy crops under cultivation, 

nor does it purposefully dispose of food under storage. Compare Figure 2-17 below, which 



 

70 

shows demand and production with the MNL formulation turned off, to Figure 2-13 above which 

is the original analysis with this structure turned on. 

 

 
 

Figure 2-17. Demand and Production – MNL Formulation Turned Off 

 

Perhaps unsurprisingly, the inclusion of the MNL formulation has the largest effect in the 

upstream sectors, nearer the farm where this formulation is being applied. However, past the 

Wholesaler, the influence of the MNL formulation is minimal on downstream demand patterns.  

It is the interplay of supply and demand that drives material through the supply chain, 

and thus the influence of the MNL formulation in this model is limited to how it affects the supply 

available. However, removing this formulation also imposes the assumption that production 

starts are tied to finished goods availability, which is outright false here. Food was destroyed 

before entering a finished goods state and thus while this formulation is insufficient on its own 

without the price formation mechanisms, it is necessary to capture those observed outcomes. 
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 To further emphasize this point, consider an alternative formulation that abandons price 

formation as well, and instead adopts the traditional demand-driven supply chain formulation 

(see chapter 18 of Sterman, 2000 for formulation specifics and examples). In this supply chain, 

demand from the end consumer and desired inventory coverage drives all demand signals in 

the supply chain. Figure 2-18 shows the demand and production for such a system.  

 

 

Figure 2-18. Demand and Production – Classically Driven Supply Chain with No Prices 

 

Note that here, some assumptions must be made as some concepts of processing time 

are not present in the price formation and MNL model developed above. Those choices are 

unimportant relative to the observation that this traditional model breaks the connection between 

the two branches in this bifurcated supply chain.  

In this simplified model, the feedback that connects the two branches via price formation 

at the wholesaler does not exist, and thus the CPG consumer is not affected at all by shocks on 
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the bulk side of the supply chain. Again, this simplified modeling choice would be incorrect in the 

context of the problem being considered here, where a shock to the bulk demand side of the 

supply chain caused a ripple effect in inventory and prices that not only affected upstream 

producers, but also indirectly to CPG consumers. 

2.4 Policy Interventions 

The key behavior illustrated by the model is the paradox of hunger amidst plenty, which in the 

above dynamic hypothesis is illustrated when bulk demand is significantly reduced for an 

extended period of time. As shown in the scenario above, just having an exogenous reduction in 

bulk good demands from restaurants and school closures, while still maintaining the same level 

of consumer demand, is enough to cause a marked increase in food waste and spoilage. While 

the dynamics above are interesting, they beg the question of what policies are available to help 

mitigate the demanding consequences from surges in prices and food destruction.  

2.4.1 Regulatory and Programmatic Interventions 

In the United States, programs such as the Supplemental Nutrition Assistance Program (SNAP) 

are one governmental policy lever that can be used to restore consumer spending power for 

foodstuffs when faced economic hardship. As discussed in several of the referenced articles, 

changes to the SNAP program were under consideration during the early onset of the COVID-

19 pandemic to do exactly that (Bauer, 2020; Zhou, 2020). But, as the scenario exploration 

above shows, even if the SNAP program were able to totally restore consumer spending in CPG 

space, food spoilage and destruction would still occur to a significant degree. 

Given the analyses above, one possible set of policy interventions could be methods 

that mitigate the shock to the upstream producers and consumers from the sudden reduction in 

bulk consumption as best as possible. To investigate the value of such a strategy here, consider 

a modification to the wholesaler sector to allow for a regulatory agency or government to directly 

intervene and purchase raw food prior to processing. The regulator has some long run expected 

value of total demand, across CPG and Bulk channels, that slowly updates as actual demand is 

realized and compares that to the actual demand experienced.  

Under this policy, the regulator attempts to fill the gap between the expected long run 

demand and the actual experienced demand, purchasing raw unprocessed food from the 

wholesaler. Additionally, suppose that the regulator is motivated to close the gap between 

perceived long run demand for food by the consumer and the actual demand. In this scenario, 

the regulator can directly provide the purchased food, with minimal or no additional processing, 
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to the end CPG consumer to offset perceived food insecurity. The resulting purchases and 

disbursements by this policy are seen in Figure 2-19. 

Figure 2-20 shows the effect of this intervention on the price formation in the system and 

food loss from disposal and spoilage. In comparison to the dynamics seen without the 

intervention, shown in Figure 2-14 and Figure 2-16 above, this policy helps stabilize upstream 

pricing at the farm and wholesaler. From the point of view of the wholesaler, the total demand 

remains close to constant, even though one side of the supply chain has severely lessened. The 

regulator here is viewed as imperfect and thus some shock is still felt, but the rapid collapse in 

prices at the wholesaler is not experienced to the same degree. 

 

Figure 2-19. Policy Intervention – Regulator Purchase and Disbursement of Raw Foods 
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Figure 2-20. Regulator Intervention - Prices and Food Loss 

 

However, total spoilage remains high, and the long ‘second wave’ of food loss remains 

under this intervention. Spoilage here comes from not only the original supply chain, but also 

from stocks purchased by the regulator.  

2.4.2 Demand Pooling and Breaking Down the Silos in a Bifurcated Supply Chain 

While the above policy does reduce the impact of the loss of demand from bulk consumers such 

as schools and restaurants, it relies on a third-party regulator to both act quickly and be willing 

to take on the costs of purchasing and distributing excess raw foods. As implied above, one of 

the key sources of waste in the above scenarios comes from food becoming ‘stuck’ in either 

side of the bifurcated supply chain, with CPG food and Bulk packaged food becoming non-

substitutable.  
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Consider the same supply chain modeled above, but with either the CPG or Bulk 

consumer able to substitute goods from the other channel. Further assume that this substitution 

is preferentially limited, with either consumer preferring to first fill demand from his or her 

respective channel. Thus, substitution only occurs after demand at the existing spot prices is 

satisfied, and thereafter excess demand is supported by the prices in the other channel subject 

to the elasticity of demand formulation shown in expressions (8) and (9) above. As a simplifying 

assumption, assume the elasticity of demand for a good in either channel is the same for a 

given consumer. This can be easily relaxed and does not materially affect the dynamics 

explored below. Under normal stable conditions, allowing this substitution will have no effect, 

with CPG consumers fulfilling his or her demand from the CPG channel and similarly for the 

Bulk consumers and channel. However, when inventories are restricted or when pricing is so 

high as to not support the full underlying demand for goods, this allows consumers to substitute 

from the other channel if pricing and inventory availability there supports the excess demand. 

Stated differently, allow the bifurcated system shown in Figure 2-8 to be able to act as the linear 

system shown in Figure 2-7 with some assumptions. 

For the scenario described above with a 50 percent reduction in Bulk purchasing power 

for 20 weeks, with the addition of substitution of goods between the two channels in this supply 

chain, the resulting prices and food loss is illustrated in Figure 2-21. Long run prices are 

stabilized and return to the same levels experienced before the shock in demand in the Bulk 

channel. Additionally, while there is still some food loss due to purposeful destruction of crops 

early on, it is markedly less than that experienced in either the scenario with no intervention or 

in the prior intervention via a third-party regulator.  
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Figure 2-21. Pooled Demand - Prices and Food Loss 

 

Comparison of the pricing seen in Figure 2-21 with that in the scenario without any 

intervention shown in Figure 2-14 and that in the other proposed intervention from a third-party 

regulator shown in Figure 2-20 illustrates a key difference in outcomes in the short run between 

these two models. When supply and demand are pooled, the long run outcomes are more 

stable with less price increases and food destruction, but in the short term a rush of Bulk 

consumers to the lower priced CPG channel causes a surge in prices for CPG consumers as 

seen in Figure 2-22. 
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Figure 2-22. Pooled Demand – Demand Across Channels 

 

The surge in CPG prices combined with reduced supply from increased demand from 

new customers causes CPG consumers to begin to purchase more from the Bulk channel. This 

both helps stabilize inventory that would have otherwise sat and decayed in this channel and 

helps stabilize prices in the short term. In net, increases mobility of consumers between 

channels, even if imperfect (as modeled here via the preferential demand fulfillment from each 

consumer’s preferred channel) has a more robust stabilizing effect with less reliance on third-

party intervention. 

The above assumes that the underlying demand for bulk packaged goods is still the 

same as before the shock, with only the ability to purchase those goods by bulk consumers 

reduced by 50 percent. Under that circumstance, and with the preferential substitution, the total 

size of the reduction in demand experienced by upstream producers is reduced as some of the 

lost demand is recovered, albeit via another channel.  

2.5 Discussion 

In the analyses above, the concept of food insecurity for CPG consumers was only implicitly 

modeled via the increasing prices experienced in the CPG channel which emerged after a drop 

in demand in the Bulk channel. This is not only an implicit outcome of the structure of the food 

supply chain, but also exogenously exacerbated by increased unemployment or 

underemployment during the first weeks of the Coronavirus pandemic. Projections for 2020 

show the number of food-insecure people in the United States rising to 45 million from 2019’s 
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35.2 million, after several years of steady decline (Hake et al., 2021). As succinctly summarized 

by Feeding America in March of 2021: 

“Before the start of the pandemic, the overall food insecurity rate had reached its lowest point 

since it began to be measured in the 1990s, but those improvements were being upended by the 

pandemic.” (Hake et al., 2021) 

The analyses above do not impose an additional exogenous impact on the CPG 

consumers in the model, further reducing their ability to purchase goods. Rather this model 

highlights that the outcomes observed during this period, with food destruction occurring 

simultaneously with increasing food insecurity, can emerge from locally rational decisions made 

based on the economic realities faced by each entity in the supply chain. Moreover, this chapter 

emphasizes that it is the bifurcation of the supply chain itself that is a major contributor to the 

emergence of this apparent imbalance. As the end product becomes fixed in one form or 

another (either CPG or Bulk packaged in this model), and non-substitutable between channels, 

an exogenous shock to only one side of the supply chain can induce destruction of food with 

simultaneous higher prices for consumers. 

Some prior work has shown that the variability and phase shift of order and inventory 

control signals through a supply chain subjected to an exogenous shock (such as in classic 

bullwhip  scenarios) is reduced with increasing substitutability of products (Li et al., 2011). This 

chapter reinforces those observations, even though this model utilizes economic spot-price 

setting and profitability as the primary mechanism of moving goods through the supply chain, 

instead of simple order fulfillment. Even in this economic setting, a higher degree of 

substitutability between the channels in this bifurcated supply chain results in less inventory 

amplification, and in turn less waste.  

However, perfect substitutability is a major assumption of the intervention explored here, 

as is the assumption that the demand lost from a reduction in purchasing power can be 

recovered from either channel. When silos between the types of end consumers exist, limiting 

substitutability, then interventions further upstream, closer to the original producer, become 

more effective. This was explored in the intervention in which a third-party regulator acts to 

relieve supply pressure between the producer (here the farmer) and the wholesaler that 

emerges from the sudden loss of demand from one side of the supply chain. The choice of 

policy is also a question of the goal. As seen in Figure 2-23, the regulator intervention does a 

superior job of reducing food loss during the early weeks of the shock. However, on a longer 
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horizon, it can inject more waste by inducing artificial demand in the system for goods that 

ultimately spoil.  

 

 

Figure 2-23. Policy Comparison – Long Run Food Losses 
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Also, there is a precedent in the United States of a third party acting to offset such 

losses directly via government or regulatory intervention: the Temporary Emergency Food 

Assistance Program (TEFAP). Under this program, United States President Jimmy Carter 

wanted to help raise the price of milk by 6 cents per gallon to offset inflation, and in order to do 

that authorized the federal government to directly purchase less perishable dairy products 

(cheese) from farmers and wholesalers (Blakemore, 2020; Malone, 2018). In this case, the 

perishable foodstuff (milk) underwent a process to reduce perishability (conversion to cheese). 

Such a change in perishability is not part of the model developed here but is a lever that a policy 

maker can consider. Another distinct advantage of this intervention, aside from smoothing the 

shock from a sudden evaporation in demand, is that this third-party regulator now can 

redistribute these goods and possibly help further alleviate food insecurity in the system. 

However, this presupposes that the regulator is both motivated and logistically capable of 

purchasing and redistributing the goods in question, while increasing substitutability requires no 

such outside party to act. 

The model developed and explored in this chapter purposefully ignores or simplifies 

structures that may, in some contexts, be important to the dynamics that affect endogenous 

inventory disposition choices and price discovery. The producer or farmer is assumed to have 

adequate production capacity. In the specific scenarios explored here, the farm is met with an 

excess of inventory induced by a drop in demand, and thus is unlikely to consider expanding 

production capacity in the short and middle run dynamics explored here. A simple extension of 

this model would be to incorporate production capacity management based on long-run 

profitability expectations from the margin acquisition of additional land for cultivation.  

Additionally, while the model does incorporate some aspects of storage constraints on 

the farm and wholesaler sectors, several of the articles in the press during the early months of 

the Coronavirus pandemic implied that the nominal storage is not necessarily a hard upper limit, 

and the farms may be able to try to store excessive amounts of goods in temporary locations 

(hallways, sheds, even in the farmhouses) in order to avoid excessive dumping (Yaffe-Bellany & 

Corkery, 2020). However, the specific dynamics of storage acquisition and adjustment 

(purchasing or leasing additional storage space as an example) were abstracted away in this 

model and subsequent analyses.  

While this model arguably simplifies away many aspects of the supply chain, it also is 

highly parameterized, with multiple competing structures that may mask the true origins of some 

of the behaviors explored in the above analyses. For example, two competing price formation 
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mechanisms, one based on inventory coverage and the other based on anchoring to long-run 

historic pricing, arguably make it more difficult to isolate operational and policy levers outside of 

those discussed above. Also, it is reasonable to assume that the inventory coverage spot price 

formation mechanism is not appropriate at all in environments with more contract-based pricing 

or otherwise more fixed pricing. This could even vary along the supply chain, for example with 

the producers being more subject to inventory-sensitive spot pricing and with consumers being 

subject to more fixed retail pricing. This can be approximated by varying the time constants in 

the price formation mechanisms in the model, or by varying the relative strength of the 

sensitivity parameters in the inventory coverage versus long-run anchoring mechanisms. While 

these are valid concerns, and could be used to propose alternative policies, this work focuses 

on behaviors and resultant policies that are hypothesized to be relatively independent of the 

effect of these mechanisms and instead emerge from the bifurcated nature of the supply chain. 

This specific structure of the supply chain here, with a single producer, wholesaler, and 

then two consumer-facing and separated retail channels, is also a simplification. However, it 

matches the broad structure of the supply chains that motivated this work, and allows for 

exploration of a key sources of the dynamics of interest, namely the sequestration of finished 

goods in non-substitutable states. As explored in the analyses above, this non-substitutability is 

a key driver of instabilities generated when the supply chain is subject to an exogenous shock 

like that seen during the Coronavirus pandemic. For specific food products, or other supply 

chains, there may be more complex and subtle substitution effects between retail channels, or 

even multiple channels beyond the two explored here. Future application of the methods 

employed in this chapter to other supply chains should take those nuances into account. 

Ultimately, this chapter helps illuminate how a seeming contradictory outcome of 

simultaneous food insecurity with food destruction during the first months of the COVID-19 

pandemic can emerge from the interplay of price discovery and inventory disposition choices by 

entities in a simple supply chain. By combining multinomial logistic choice modeling with a 

model economic processes of price discovery, a more complete understanding of the behavioral 

features that determine the physical flow of goods through this food supply chain can be 

explored. Dynamics of the supply chain and features including the distribution of ages of food 

under production, or that passed along any specific disposition path, along with the proportions 

of food purposely disposed of emerge from the economically motivated choices of the 

individuals, rather than being imposed exogenously.   
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Chapter 3 

Simpler is (Sometimes) Better: A Comparison of Cost 
Reducing Agent Architectures in a Simulated Behaviorally 

Driven Multi-Echelon Supply Chain 

 

 

 

CHAPTER ABSTRACT 

Recent events have highlighted the real-world difficulty of managing bullwhip in multi-echelon 
supply chains. Existing streams of Operations Management and Supply Chain literature often 
focus on different parts of this problem and suggest distinct policy recommendations. This chapter 
directly compares the approaches implied by this prior work, including policies that range from 
myopic, limited information decision rules to more modern, but data-intensive machine learning 
methods. This comparison is focused on reducing costs in a simulated, behaviorally driven, multi-
echelon supply chain by experimentally changing the features of polices, including complexity, 
adaptability, incentive structure, and information availability. Results show that relatively simple 
base-stock ordering policies can achieve high cost reductions and may be preferred when 
learning is not feasible. However, when dynamic learning is possible, directly incorporating 
behavioral assumptions in policies further reduces costs. For some conditions, locally focused 
and limited information decision rules can be cost reducing globally. Under plausible conditions, 
decision makers in supply chains with other behavioral actors need not be perfectly rational and 
can be locally focused while achieving global benefits. 
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3.1 Introduction 

One of the more studied consequences of the interaction human decision making and supply 

chain structure is the emergence of instability as embodied by the ‘bullwhip effect’ in multi-

echelon supply chains. Bullwhip refers to the increasing amplitudes in both orders and on-hand 

inventory positions of members of a multi-echelon supply chain the further one moves away 

from a source of order variability (see X. Wang & Disney, 2016 for an excellent review of 

research on the origins of this effect from both a structural and behavioral perspective from the 

early 1960s through the mid-2010s).  

Given the over sixty-year history of studying this phenomenon explicitly, it could be easy 

to dismiss bullwhip as a ‘classical’ problem in Operations Management. However, the bullwhip 

effect remains a current source of excessive strain on real world inventory management 

systems via stock outs, and unnecessary capital reservation through safety stock building 

(Ellram, 2010). This phenomena is also not restricted to any one industry, but present in varying 

forms whenever ordering decisions being made in moderately complex and interlinking 

environments such as multi-echelon supply chains (Lee et al., 2004; Sterman, 1989, 2000). 

Even more recently, worldwide experiences with supply chain shortages and excesses induced 

by the Coronavirus pandemic for consumer goods, foodstuffs and medical supplies, have 

catapulted the term ‘bullwhip’ into the popular consciousness (Bamakan et al., 2021; Evenett, 

2021; Hockett, 2020; Johnson, 2021; Shih, 2020; Stank et al., 2021). 

A supply chain manager faced with bullwhip could, correctly, expect that the classical 

optimal control approaches in multi-echelon supply chains are well understood and well-studied. 

However, this prior work often ignores or over-simplifies the non-rational components of supply 

chain management, features a manager would likely be well aware of from personal experience. 

The balance between managing a supply chain under rational assumptions, versus managing a 

supply chain under behavioral expectations may cause the manager to consider more complex 

methods that could bridge this divide, or at least allow the manager to learn more accurately his 

or her environment and respond accordingly, including dynamic learning policies or more exotic 

general machine learning methods  

Thus, the problem facing managers in modern supply chains facing real and unexpected 

bullwhip is how to balance these different policy approaches. Indeed, many of the pertinent 

streams of research were developed in parallel or in isolation from each other (control theory, 

contracting, psychology, behavioral decision sciences, general purpose machine learning, etc.). 
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The influence of policy features that minimize costs in a multi-echelon supply chain have 

been pursued by various subfields within Operations Management, but they have focused on 

different parts of the overall puzzle, often resulting in distinct recommendations. The manager 

could adopt a static base-stock policy as the suggested ‘optimal’ policy from Operations 

Research; or a heuristic implied by Behavioral Operations Management that removes noise in 

the ordering decision while fully accounting for the supply line. Additionally, this manager could 

actively incorporate more information about the system in which they are embedded and move 

away from a static to a dynamic policy. The manager could also consider changing his or her 

incentive structure to better encompass others. But with limited time and resources, it is unclear 

which of the above options, either alone or in combination, should be the priority of this decision 

maker. 

This chapter directly compares these suggested policy features side-by-side. In doing 

so, this chapter provides meaningful managerial insights on where to focus limited time and 

attention. It also has implications for the wider Operations Management research community by 

revealing the research streams that generate the most incremental value in this supply chain 

context.  

To do this policy feature comparison, this chapter introduces a simulation of a multi-

echelon supply chain, based on a real-world game used to teach supply chain concepts in 

educational settings and calibrated based on real human players from historic runs of that 

game. This chapter then compares the effectiveness of reducing inventory management costs 

by introducing a policy (also referred to as an ‘agent’ in certain settings in this text as well) with 

different structural features at different positions in this simulated system 

In developing agents that allow for comparing these different policy architectures this 

chapter presents two minor methodological contributions to cost-reducing supply chain agent 

modeling: an extension of existing deep-Q network (DQN) architectures that builds from recent 

prior literature in this space, and also a model-predictive learning architecture that incorporates 

features of control theory with features of behavioral modeling.  

However, these are secondary to the main contribution of this chapter, namely the 

observation that the most complex agent architectures are not necessarily significantly better 

than simpler and more directly interpretable alternatives. For environments where learning 

about the surrounding supply chain is not feasible, the simple base-stock polices described by 

the early literature (Clark & Scarf, 1960) are cost reducing, even if the rest of the supply chain 
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breaks many of the underlying assumptions of that work. For environments where learning is 

possible, incorporating behavioral assumptions of the other actors in the supply chain improves 

cost reductions, but does not necessarily require complete, or in some cases any, knowledge of 

the states of those other actors. Simply having a model of the system that can be dynamically 

updated is sufficient to develop a cost reducing policy. 

The rest of this chapter is organized as follows: The Literature Review section provides a 

brief expansion on the relevant streams of research that imply different cost reducing policies in 

a serial multi-echelon supply chain. The Design and Methods Section gives details on 

simulation setting and the specific policy features that are tested. The Results section provides 

the outputs of statistical analyses that were performed to compare the relative cost reducing 

benefit introduced by the different policy architecture choices. Finally, the Discussion section 

provides an overview of how these results inform the decision making process of managers in 

supply chains and provides some additional notes on the limitations of this simulation setting. 

3.2 Literature Review 

Much of the emphasis of Supply Chain Management and Operations Research has been on 

intra-supply chain relationships, as multi-echelon supply chains emerged from partnerships of 

smaller firms towards the end of delivering a product or service to an end consumer from 

subcomponents sources from all over the world.  

As mentioned above, classical optimal control approaches in multi-echelon supply 

chains are well understood and well-studied. Work by Clark and Scarf demonstrated that an 

optimal control policy can be applied via a base-stock ordering system when the final customer 

demand distribution is known (Clark & Scarf, 1960). Stated simply, this system places orders 

necessary to achieve a given and fixed ‘base-stock’ quantity of units, inclusive of inventory on-

hand, on backorder, and ordered but not yet received. Their algorithm was later generalized and 

operationalized to both multi-echelon supply chains with imperfect local information and 

stationary demand patterns (Chen, 1999; Chen & Samroengraja, 2009; Lee et al., 2004).  

The field of Operations Management has increasingly followed its peers in economics, 

marketing, and finance by expanding these rational approaches by recognizing the influence of 

human heuristic-based decision rules and incorporating these behavioral observations into the 

models of supply chains and inventory management (Gino & Pisano, 2008).  

Recent work has endeavored to more clearly and explicitly define ‘Behavioral Operations 

Management’ as a subfield of Operations Management and Operations Research (Croson et 
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al., 2013; Cui & Wu, 2018; Gino & Pisano, 2008; Größler et al., 2008). Research here can focus 

on more detailed representation of human decision heuristics, but often emphasizes defining the 

gap between optimality and observed reality of decision makers over specific policy 

interventions (see Bendoly, 2013; Huang et al., 2013; Morrison & Oliva, 2018; J. Sterman, 1989 

among others). 

A key behavioral bias that leads to bullwhip is commonly identified as ‘supply-line 

underweighting’ (Croson & Donohue, 2006; Narayanan & Moritz, 2015; Sterman, 1989) and 

emerges as part of a larger anchoring and adjustment heuristic employed by decision makers in 

a multi-echelon supply chain (Sterman, 1989; Tversky & Kahneman, 1974). Here, decision 

makers systematically under-weigh the value of inventory ordered but not yet received (i.e., in 

their supply-line) relative to on-hand inventory and backorders. Mitigation of bullwhip has 

focused on adjusting the structure of the supply chain itself, the information availability along the 

supply chain (Croson et al., 2014; Croson & Donohue, 2006; Wu & Katok, 2006), and on the 

instruction and training strategies of supply chain managers (Croson et al., 2014; Martin et al., 

2004; Wu & Katok, 2006). While mitigation is possible, the underlying ordering heuristics that 

drive the emergence of bullwhip remain in many of these studies.  

Much of this prior literature, both ‘rational’ and ‘behavioral’ decision making takes place 

in a dynamic context, but often identifies or prescribes an ordering or inventory management 

rule that is static in so much as it does not vary in time. As discussed in the introduction to this 

chapter, a manager in a dynamic supply chain may very well consider a policy that does vary 

with time, or at least updates along with the manager’s understanding of his or her environment.  

Model predictive control (MPC) schemes (see Åström et al., 2001; Seborg et al., 2016 

for overviews) would allow for such online learning and adjustment, and have been used in 

operational contexts (see Ciocan & Farias, 2012; Pannek & Frazzon, 2014; Secomandi, 2008; 

Vossen et al., 2022 for recent supply chain applications of MPC). MPC methods generally are 

used as a process control method, relying on a dynamic model of a given process and a set of 

constraints to generate a control scheme to achieve a specific control target. However, the 

dynamic model used in these systems often emphasize physical and information systems, and 

abstract away or outright exclude the influences of human decision making. 

More recently, there has been an expansion of the use of neural network architectures 

that emphasize policy outcomes at the expense of simplicity and interpretability. These methods 

are likely tempting to any manager as they have been both emphasized in the popular business 
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and management press (Kelber, 2020; PYMNTS, 2022; Tarafdar et al., 2019; Urban et al., 

2020), and also explored in academic literature (see Chaharsooghi et al., 2008; Oroojlooyjadid 

et al., 2021 for two recent supply chain examples).  

However other fields that Behavioral Operations Management borrow heavily from such 

as psychology and other behavioral sciences have already noted that more complex models do 

not necessarily generate more robust or accurate outcomes. Simple linear models even with 

imperfectly (but consistently applied) weights can outperform human decision makers (Dawes & 

Corrigan, 1974; Kahneman et al., 2021; Yu & Kuncel, 2020), and simple models have also been 

found to outperform more complex models in timeseries forecasting tasks that match this supply 

chain decision setting (Makridakis et al., 2020; Makridakis & Hibon, 2000). 

3.3 Simulation and Modeling Framework 

The Beer Game  (Sterman, 1989) is a classical inventory management dynamic system 

learning tool and provides the context for the simulation and policies developed here. This is a 

multi-agent decentralized supply chain and is modeled much like real decentralized serial 

inventory management system.  

First developed by Jay Forrester at MIT, the game has been used since the 1950s to 

illustrate system thinking concepts and the prevalence of the bullwhip effect. The original 

purpose of the simulation was to illustrate the difficulty of rational thinking during time-delayed 

and non-linear information feedback loops, the value of information sharing, and most 

classically the bullwhip effect in inventory management. Since its first use in the classroom, this 

framework that has also been used extensively in related supply chain and behavioral research 

(notably Chaharsooghi et al., 2008; Croson & Donohue, 2006; Narayanan & Moritz, 2015; Oliva 

et al., 2022; Oroojlooyjadid et al., 2017; Sterman, 1989; Sterman & Dogan, 2015 among others). 

For this chapter, a discrete time model of the Beer Game was developed in both the R 

and Python scripting languages. R was used as the primary analysis and simulation 

environment, while Python was used exclusively for training more generalized machine learning 

methods explained in more detail in the sections below. More specifics about the mechanics of 

the Beer Game are provided in Appendix C. The model was made as both a self-contained 

simulation of the system over a given time horizon, and as a callable function that takes a given 

state-action pair and returns an updated state, given an ordering rule for the entities in the 

system. The order rule utilized by each entity in the supply chain itself is modular, and is able to 

generate environments with agents based on multiple models from prior work, notably (Croson 
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& Donohue, 2006; Oliva et al., 2022; Sterman, 1989; Sterman & Dogan, 2015) and also 

classical and fully rational base-stock replenishment strategies (Clark & Scarf, 1960).  

The stated goal of the game is to reduce the amount of total cost of the entire team over 

some time horizon T, subject to some known inventory holding and backorder/stockout costs. 

Backorders do not expire under the traditional interpretation of this game and must be filled from 

existing stock prior to meeting any new demand. 

𝐶𝑜𝑠𝑡𝑇𝑒𝑎𝑚 = ∑ ∑ (𝐶𝑏𝑜 ∗ 𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠𝑡,𝑛 + 𝐶𝑖𝑛𝑣 ∗  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑡,𝑛)

𝑁

𝑒𝑛𝑡𝑖𝑡𝑦=1

𝑇

𝑡=1

 (10) 

Typically, real human players are placed into this system to make inventory 

management decisions. Within a few rounds of ordering, the bullwhip in inventory and 

backorders appears, amplifying over time along the simulated supply chain as each player acts 

to reserve inventory to satisfy his or her own myopic forecasts and needs. As discussed above, 

exact solutions for optimal ordering quantities in similar serial supply chains have been 

developed, such as the base-sock method (Chen & Samroengraja, 2009; Clark & Scarf, 1960), 

but require all agents to be acting rationally and consistently, and for specific costing structures 

to be present (notably increasing costs along the supply chain). Additionally, while these optimal 

ordering methods presume stationary customer order patterns, which this simulation satisfies, 

the human participants themselves have no knowledge a priori of the distribution of the 

customer order pattern. 

In the Beer Game, the players (acting as inventory managers) have only one operational 

decision to make each period: how many units to order. How the inventory manager processes 

the information available to him or her in the environment, including either actual or perceived 

states, has been the subject of much of the prior work discussed in the Literature Review 

section above. The policies that this chapter explores ultimately need to arrive at the same 

singular ordering decision. As in the prior literature, these policies vary in complexity and the 

size of the observable space, including both rationally optimizing and heuristically satisfying 

fundamental architectures. The system these ordering decisions are embedded in is dynamic, 

especially when considering the reactions of non-perfectly rational players in the supply chain to 

the ordering signals sent by the agents.  

 However, a fully dynamic response may not necessarily be needed in all circumstances. 

Indeed, the original base-stock policies discussed in the sections above suggest static 

responses, at least to stationary input signals. For that original base-stock agent, the manager 
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need only consider the gap between total inventory on hand and on order (e.g., previously 

ordered but not received) less orders received but not filled, and some desired inventory level. 

The prior work in this field focused in part on setting that level to minimize costs. But, when 

considering behaviorally driven systems, one could consider how the policy, and in turn how the 

other players in the supply chain, may either discount or inflate any of these inputs into the 

ordering decision. 

 A strategic manager may order not based on the order received in each time period, but 

based on the long-range orders they expect to receive. A manager with low confidence in his or 

her upstream supplier’s ability to fill orders accurately and completely may discount the orders 

placed and not received. A manager may also weigh different aspects of these inputs to his or 

her ordering decision differently, placing unequal weight on orders outstanding versus orders 

received or any other aspect of the observable space. 

 On the other end of spectrum, a manager may make no decision whatsoever, and 

simply pass through orders received each period, making no attempt to manage on hand 

inventory or backlogs. 

 Of course, many other methods by which a manager arrives at an order decision could 

be considered and have in the prior 60 years of research in this space. But, the ordering 

heuristic introduced in (Sterman, 1989) and further described (Martin et al., 2004), compactly 

covers the scenarios discussed above, and is presented in (11) and (12) below: 

𝑂𝑡 = 𝑀𝐴𝑋(0, 𝐿𝑡̂ + 𝛼𝑆(𝑆
′ − 𝑆𝑡 − 𝛽 𝑆𝐿𝑡) + 𝜀𝑡) (11) 

𝑤ℎ𝑒𝑟𝑒 𝐿𝑡̂ =  𝜃𝐿𝑡 + (1 − 𝜃)𝐿̂𝑡−1 (12) 

In the above, O is the order placed at time t given the information observed in the right-

hand side of the above expression. In that expression 𝐿̂ is a smoothed interpolation of the 

expected outflow of inventory, subject to a smoothing parameter θ. SL refers to the total 

inbound supply line of inventory heading towards the player. S is the current on-hand inventory 

(or stock), and S’ is a parameter that can be considered analogous to the desired or goal on-

hand inventory of the player. Thus, we have an expression with four parameters: θ, α, β, and S’. 

As conceptualized in (Sterman, 1989), the above parameters are bounded as 0 ≤ θ, α, β ≤

1  and 0 ≤ S′, and that paper also provides fitted values for expressions (11) and (12) for a set of 

real human teams, along with a set of parameter values that best fit the overall behavior of all 

teams.  
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Note that when α = 1, β = 1, θ = 1 then expressions (11) and (12) collapse to the classical Clark 

and Scarf base-stock ordering rule, with S’ being the desired inventory level. Conversely when α 

= 0, β = 0, θ = 0, these expressions collapse to an ordering scheme in which no inventory 

management occurs whatsoever, the entity just passes through orders. 

Of course the points in this multidimensional ordering rule that map to human ordering 

decisions fall in between these bounds, and prior work has specifically emphasized the 

influences of supply chain underweighting (generally when β < 1, though also when α < 1 as 

well) on the bullwhip effects central to this paper (Sterman, 1989). For the results presented 

here, the data drawn from order traces collected in the fall of 2021 and spring of 2022 of real 

players of the beer game was fit using expressions (11) and (12) and combined with the data in 

Sterman 1989. 

The error from fitting the real order history to the simplified model in (11) and (12) can be 

expressed at both the parameter level (e.g., bootstrapped confidence intervals on fitted 

parameter values) or the overall model fit level (e.g., via root mean squared error between 

predicted and observed order traces). For the order traces collected in the fall of 2021 and 

spring of 2022, both error measures are obtainable from the fitting process. However, for the 

models developed in the Sterman 1989 paper, only the overall model root mean square error 

(RMSE) is reported, not parameter-level measures of error, and the original order traces and 

fitting process are not readily available. Thus, for this paper, the RMSE for each fit of order 

behavior was used to provide a measure of noise to the order decision. An alternative analysis 

could be done, omitting the original data from Sterman 1989 and focusing just on models 

derived from the more recent runs of the Beer Game, and using bootstrapped errors on 

parameter estimates. From limited testing, the results below are qualitatively similar using either 

RMSE or parameter level errors, so the RMSE method was used here to maximize the number 

of available models to test the policies in this paper.  

3.4 Policy Feature Construction 

As discussed in the Introduction and Literature Review sections, the cost-reducing policy the 

agent follows could either be based on early ‘rational’ base-stock modeling literature, or more 

recent heuristic ‘behavioral modeling literature. Furthermore, given either approach, the agent 

could take on a static ‘single shot’ policy, or a dynamic ‘learning’ policy. 

‘Single-Shot’ cost reducing agents operate by fixing their ordering decision rule a priori, 

either by fixing some generally cost-reducing value of the four parameters of expressions (11) 
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and (12) (e.g. ‘behavioral’ agents), or by following a base-stock replenishment policy with a fixed 

order-up to level (e.g. ‘base-stock’ agents). 

Alternatively, model-predictive ‘learning’ agents are assumed to follow a scheme similar 

to that found in model predictive control literature (Åström et al., 2001; Sutton & Barto, 2014), 

starting from the assumed cost reducing rule utilized by the ‘single-shot’ agents defined above, 

but then adjusting the parameters of that decision rule over time based on observations of the 

evolution of the environment. 

3.4.1 ‘Single-Shot’ Agents 

As stated in several of the articles in the literature review above the manager may first try to 

compensate for his or her own supply chain underweighting. Using the language of the 

behavioral ordering heuristics used here this would be equivalent to setting 𝛽 = 1  in 

expressions (11) and (12), while leaving other aspects of his or her ordering rule unchanged.  

However, given an assumption about the ordering heuristics being used by the rest of 

the supply chain, the manager could go further and actively optimize all four parameters in 

expressions (11) and (12) in his or her ordering rule. For these ‘single-shot’ agents, costs for the 

entire team of four entities are reduced by fixing the ordering parameters of all entities save one 

(the agent) in a nested set of these expressions and finding a set of parameters for the 

remaining entity that are cost reducing. This routine is illustrated in Figure 3-1. 

 

Figure 3-1. Cost Minimization Routine for the Model-Based Approach 

 

The general learned parameters for a horizon of t = 52 periods utilizing a bounded BFGS 

method to reduce costs (Byrd et al., 2005) against the ‘average’ team reported in Sterman, 

1989. For the examples used in this chapter, the pertinent values were found for gaussian 

normally drawn input of customer orders (mean orders 10 with standard deviation of 4 units) as 
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used in (Chen & Samroengraja, 2009), with the combination of values that were on average 

most reducing over 50 draws of the order distribution. Table 3-1 shows the parameters that, on 

average, were resulted in the lowest cost when applied at each position in the supply chain in 

isolation in the average team reported in Sterman 1989. 

Table 3-1. Learned Parameters for the Behavioral Single Shot Cost Reducing Agent for the 
Average Sterman 1989 Team Exposed to Normally Drawn Customer Orders 

 
 

θ α β  

     

 
    

 
    

 
    

 
    

  

Note that the above is only cost reducing if the manager happens to be in a supply chain 

that matches the average team reported in this prior literature. If the manager had a priori 

knowledge of the ordering heuristics being used by the other members of the supply chain, he 

or she could repeat the above optimization on a per-team (or per-supply chain) basis. As 

discussed in more detail below, this would provide a lower floor on cost (or upper ceiling on 

performance), as this would both correctly assume the structural features of the supply chain 

decision making processes and allow for a situationally-specific policy. However, this is not 

necessarily feasible and thus while it provides a good point of comparison is viewed as trivial in 

the context of this paper. 

Alternatively, the agent could assume that all other entities in the supply chain are fully 

rational, following a simple base-stock ordering policy. In which case, the ideal base-stock value 

for the agent itself to follow is a function of the information structure and cost structure of the 

system and the distribution of the input orders. As discussed in recent work, the information and 

costing structure used here does not perfectly match the criteria needed for direct application of 

the Clark and Scarf algorithm for optimal base-stock values, but that same work provides a 
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blueprint for obtaining near-optimal values via a grid-search method (Oroojlooyjadid et al., 

2021). Using that same method, we can obtain the average most cost reducing base-stock 

values for this specific model supply chain.  

For the same normally drawn customer order string input order string, the average most 

minimizing cost over 50 draws was determined to be (0,24,8,5). In other words, on average and 

for the four entity supply chain modeled here, when all four positions were following a base-

stock policy simultaneously, the costs are minimized when Position 1 (Retailer) has a base-

stock level of 0 units of inventory, Position 2 (Wholesaler) has a level of 24 units, Position 3 

(Distributor) has a level of 8 units, and Position 4 (Factory) as a level of 5 units. 

3.4.2 Model Predictive ‘Learning’ Agents 

These agents build on the structure developed in the ‘single-shot’ agents above by incorporating 

a concept of learning. This agent still has a static order structure at its root (either based on a 

heuristic rule like that of expressions (11) and (12), or based on a base-stock replenishment 

policy) but iteratively estimates the parameters of an assumed model of its environment (the 

other players in the supply chain), and then optimizes its own ordering rule parameters over a 

given horizon. This routine is summarized in the pseudocode in Figure 3-2. 

 

Figure 3-2. MPC Pseudocode 

 

In the routine in Figure 3-2, step of ‘populate initial parameter assumptions’ is a matter of 

modeling choice, but one that may be important, as early and unverified assumptions about the 

agent’s environment will affect the early ordering decision being made, and in turn affect the 

t = 0 
 Assume Structural and Dynamic Model of System 
 Define Agent position in System model 
 Define observable space for Agent 
 Populate initial parameter assumptions 
 Define calibration memory and optimization horizon 
 
for t in 1: horizon 
Calibrate System Model given history 

ArgMin {System Parameter Estimate} |  
Error (Expected space of simulation of System Model, 
Actual obs space) 

Return estimated parameters of System Model 
 

Optimize forward given System Model estimate 
ArgMax {Agent Decision Rule} | 

Over t:(t+opt horizon): Reward from t:horizon given 
System Model estimate 
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early evolution of the system. While many plausible choices exist, for this chapter we assume 

that the manager starts with a best-case assumption about the surrounding environment. Thus, 

for base-stock agents, at t = 0 the agent would assume that the surrounding system is 

following the average best base-stock policy (determined here to be base stock values of 

Retailer = 0, Wholesaler = 24, Distributor = 8, and Factory = 5), and then update that 

assumption in subsequent steps.  

For the manager or agent following a heuristic policy, the initial assumption is that the 

system consists of other entities that are following the average from prior literature (specifically 

Sterman, 1989 here). Thus, at t = 0 the agent follows a policy with parameters from Table 3-1 

and on subsequent time steps, updates that assumed model of the system and repeats the 

forward optimization. 

3.5 Design of Experiment 

The model predictive learning architecture introduces several new hyperparameters (calibration 

memory and optimization horizon), and structural choices around the ‘observable space’ for the 

agent. In other words, this raises questions about how information conditions affect the 

performance of the agent. 

The calibration step is highly dependent on the observation space of the agent (am I 

calibrating based on a full set of knowledge about the inventories of all other entities, or do I 

only see my own inventory?), and the optimization step is highly dependent on the objective of 

the agent (do I care about total supply chain costs, or only my own costs?). 

This choice of calibration information availability and optimization goal is not only of 

mechanical interest, but a real point of concern in prior literature in this space. Higher degrees 

of information availability directly map to concepts of supply chain integration, and entire niche 

industries have emerged around integrated information exchange systems in supply chains. 

Prior literature on model predictive control has the embedded assumption that additional 

information about the state space can only improve outcomes via a more accurate 

representation of the ‘reality’ of the system by implying that the main tradeoff in these schemes 

is between computational time and system performance (Mayne, 2014; Seborg et al., 2016). 

Additionally, the choice of motivation of the agent, either selfish and myopic on its own 

outcomes, or non-myopic and team focused, is not only a subject of intense interest in supply 

chain and economic literature but also a key point of discussion in the classroom when the Beer 

Game is used in an educational setting. 
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Thus, the Learning Agent provides an opportunity to test the value of the combination of 

these factors, adding incentive structure and information availability as additional experimental 

controls in addition to the fundamental architectures of base-stock versus behavioral. Table 3-2 

displays the full factorial conditions for features for this learning policy. When appropriate, 

subsequent figures in this chapter may use the notation in Table 3-2 to refer to specific 

experimental features. For example, a policy that is based on a base stock ordering rule, 

attempting to reduce costs for the entire supply chain, but doing so with low information, would 

be referred to as R-T-L. 

Table 3-2. Conditions with the Full Factorial Design of Experiment on Learning Agents 

 

 

 

For this chapter, the information conditions are summarized below: 

• The ‘Minimal’ condition, the information available as part of the calibration of the agent is 

the most restrictive, with the agent only having access to directly verifiable and visible 

information 

o On-hand inventory position of the agent itself and no others 

o The most recent order placed by the agent itself and no others 

• For the ‘Low Information’ condition, the calibration of the agent is given a slightly larger 

set of information, including information that it itself is not directly in control of, namely 

inbound shipments 

o On-hand inventory position of the agent itself and no others 

o Inbound shipments to of the agent itself and no others 

o The orders placed by the agent itself and no others 
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• For the ‘Classical Information’ condition, the calibration of the agent is based on 

information that a human player in the traditional playing of Beer Game could view at 

any given moment, and matches the information available to the players in used in the 

datasets used to fit the models: 

o All on-hand inventory positions of all four entities 

o All inbound shipments to all entities 

o The orders placed by the agent itself and no others 

• For the ‘High Information’ condition, the calibration of the agent is omniscient and has 

access to effectively every state variable in the system, including those only imputed and 

not directly observable (e.g., backorder): 

o All on-hand inventory positions of all four entities 

o The backorder positions of all entities 

o All inbound shipments to all entities 

o The entire order and information flows of all four entities 

In the routine described above, the agent must first assume a model of the world. Next the 

agent uses its available information to fit a best estimate of that model. It then projects forward 

and optimizes its own ordering behavior given that estimated model. The ‘Rule Complexity’ 

feature in Table 3-2 is really a simplification of what could be, a true full factorial design, two 

features: the structure of the rules that the agent assumes applies to the rest of the supply 

chain, and separately the structure of the rules that the agent itself uses for its own ordering. 

The analysis here considers that if the agent is assuming that the other entities in the supply 

chain are following a base-stock ordering policy, it will structure its own ordering rule similarly. 

Likewise, if the assumption is that a more complex heuristic ordering rule is being followed by 

the other entities in the supply chain, the agent will choose a structurally similar ordering rule.  

This simplification serves a practical purpose insomuch as it simplifies this analysis. But this 

also follows from the underlying assumptions of the base-stock ordering policy, which only has 

guarantees of optimality if the entire supply chain is following that rule. Thus, if the agent 

assumes that the other entities are following a base-stock rule, the best policy should be 

presumed to be a base-stock policy. Additionally, the base-stock policy can be viewed as a 

special case of most heuristic policies, and specifically expressions (11) and (12) used here 

when 𝛼 =  𝛽 = 1, and 𝜃 =  0 𝑜𝑟 1.  

For completeness of experimental description, the ‘base-stock’ and ‘behavioral’ 

architectures are described in more detail below: 
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• Base-Stock: 

o The agent assumes that the other entities in the supply chain are using base-

stock ordering rules,  

o The agent matches the same base-stock structure of this rule for its own 

response.  

o Each time step, the agent fits a window of prior observed information about the 

system, and its own ordering history, to a model that assumes all other agents 

are following a base-stock policy, updating an estimate of the base-stock value 

being sought by those other entities. The agent then optimizes its own base-

stock value over a forward horizon that would minimize team costs under its fitted 

model. 

• Behavioral Ordering: 

o The agent assumes that the other entities in the supply chain are using an 

ordering rule that can be described by a behavioral heuristic, in this case the rule 

from Sterman 1989.  

o The agent matches the same structure of this rule for its own response.  

o Each time step, the agent fits a window of prior observed information about the 

system, and its own ordering history, to a model that assumes all other agents 

are following this heuristic ordering rule, updating an estimate of the parameters 

in that rule for all other entities that would generate the observed behavior of the 

system. The agent then optimizes the parameters of its own ordering rule over a 

forward horizon that would minimize team costs under its fitted model. 

3.6 Results 

The results presented below are based on the cost reduction achieved by the policy agent 

placed into each of the four positions in the 49 simulated supply chains as described above. 12 

of these models of supply chains come directly from literature (specifically Sterman, 1989). 

Order traces for real runs of the game were used to create the remaining simulated supply 

chains via online runs of the Beer Game at MIT as part of various executive and graduate-level 

classes. These runs occurred twice in August of 2021, with 12 teams in one run and 22 teams in 

another run, and in June of 2022 for an additional three teams.  

Of these 49 teams, three were dropped (approximately 6%) from the analyses below as 

outliers due to poor fits of the behavioral model to the observed ordering. The performance of 

the agent at each position in isolation were also explored, but the overarching differences 
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between the agent being in one position versus the others was minimal aside from at the start of 

the supply chain, which is discussed more below. 

As used to calibrate the ‘single-shot’ agents, the simulated supply chain was subjected 

to a normally drawn input order signal of mean 10 and standard deviation 4 in a manner similar 

to (Chen & Samroengraja, 2009), and the order decision reached by each entity subject to a 

normally drawn noise term with mean zero and standard deviation drawn from the RSME of the 

fitting process described in the sections above. The normally drawn input signal from Chen & 

Samroengraja 2009 was chosen here to specifically emphasize that these results are emergent 

from the policy architectures, not any specific feature of the customer demand signal. 

For the remaining results presented below, the performance of each policy architecture 

is presented as the percentage cost reduction induced along the entire supply chain because of 

introducing that policy, versus the costs that were seen in a baseline simulation of that same 

supply chain with no such policy. The choice of this baseline is discussed in more detail in 

Appendix C, but as this chapter is intended to highlight policy features that are applicable in 

behaviorally driven supply chains, the use of a behaviorally driven baseline is appropriate here.  

3.6.1 Behavioral versus Base-Stock 

Figure 3-3 shows a box-and-whisker plot of the cost reduction observed after the introduction of 

the agent following specific policy feature choices, aggregated across all four positions in this 

simulated supply chain. Of the 16 possible combinations of conditions for the learning agent 

shown in Table 3-2, only two are illustrated in Figure 3-3, alongside the three static ‘single-shot’ 

agent policies (one with base-stock and two with behavioral policies). Only two of the full 16 

conditions for the learning agent were chosen for illustration here for compact presentation, and 

because these two specific learning conditions mirror the conditions used in the single-shot 

policies most closely (specifically the team-level optimization objective, though concepts of 

information availability do not apply to the static agents). 

 For the Behavioral Static Agent (Setting β = 1) policy, this is the simplest policy 

suggested from existing behavioral operations management literature, where in the policy is to 

follow whatever the existing behavioral heuristic would have been for that entity in that position, 

but overwriting the value β in expression (11) to be 1. At the other extreme, for the Behavioral 

Static (Separate Opt Per Team) policy, a separate optimization was conducted for each 

possible team and position the agent could find itself in. This provides a performance ceiling (or 

cost floor) for these analyses.  
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For the Behavioral Static (Opt for Average Team) agent, this follows the policy outlined 

in Table 3-1, which is the best static policy for the ‘average’ team suggested by prior literature. 

Here, it is assumed the agent following this policy has no knowledge a priori about the team 

they find themselves in and thus cannot pick the ‘best’ policy suggested by the Behavioral Static 

(Opt for Average Team) policy and thus simply assumes the policy . For the Base-Stock Static 

agent, the policy is to follow the base stock rule determined to be cost reducing on average 

given the characteristics of the customer orders. As discussed above, this is a base stock level 

by position of (0, 24, 8, 5) for this normally drawn customer order pattern. 

 

Figure 3-3. Static vs Learning Agent Induced Cost Reduction Across all Positions 

 

Perhaps the most surprising outcome of these initial results is the effectiveness of the 

static base-stock agent. This is the original policy given nearly 60 years ago, and even in this 

behavioral context in which many of the assumptions that would imply true optimality of this rule 

are broken, this policy performs better than the static behavioral policy that is assuming that it is 

operating in an ‘average’ environment. In other words, when learning is absent, and a priori 

knowledge of the responses of the other entities in the supply chain is unavailable, a static 

base-stock policy generally outperforms a static average behavioral policy. This simulated 

environment imposes the condition that the other entities do not follow a base stock policy, and 

therefore this outcome implies that most of the benefit that emerges comes from this simple 

policy approach, not from some other feature of the supply chain itself. 

This is perhaps not surprising as the base-stock policy can be viewed as a special 

hyper-rational case of the behavioral policy, but is noted nevertheless. What is noteworthy here 
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is that the static base stock policy is simpler than the static behavioral rule in so much that it can 

be collapsed down to only one parameter, versus the four in the behavioral case. Thus, for the 

case when dynamic learning does not occur, the simpler policy outperforms the more complex.  

Furthermore, simply following the first-order rule suggested by behavioral operations 

literature to just set β = 1 is not sufficient by itself to meaningfully reduce supply chain cost. 

Similarly, statically optimizing for an expectation of encountering the ‘average’ team from 

literature does reduce costs on average, but also greatly increases the spread of outcomes, 

increasing the probability of introducing a destabilizing policy. 

Figure 3-3 has another interesting implication, namely that for non-learning static 

policies, the simpler base-stock approach has greater cost reductions and conversely with 

learning policies a behavioral approach may have greater cost reductions. This is borne out by 

the ANOVA analyses shown in Table 3-3 and Table 3-4. 

 

Table 3-3. ANOVA for Static Single-Shot Agents based on Rule Complexity 

 

 Table 3-4. ANOVA for Learning Agents based on Rule Complexity 

 

 

The opposing effect of the base-stock versus behavioral architecture choice in the 

learning agents versus the static agents invites further analysis. Figure 3-4 shows the box-and-

whisker plots of cost reduction for all 16 experimental combinations described in Table 3-2. The 

prior analysis has shown differences between base-stock and behavioral rule complexity for 
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these learning agents, but Figure 3-4 implies mixed effects for degree of information availability 

and possibly different effects by optimization objective as well. 

 

Figure 3-4. Learning Agent Induced Cost Reduction Across all Positions 

 

To further explore these differences by policy feature in learning agents Table 3-5 shows 

a series of regression models against all the feature combinations described in Table 3-2. As all 

the independent variables here are factors, the summation of the regression coefficients in each 

of these regressions represents the predicted percent cost reduction of an agent with all the 

features used in the model, while the constant indicates the predicted percent cost reduction of 

the architecture being compared to the policy feature combination chosen as the baseline for 

comparison. While multiple choices are possible for this baseline policy, the analysis presented 

here chooses the simplest rule complexity, using the same combination of information and 

optimization features that would be present under the ‘standard’ conditions present in the 

original Beer Game. Specifically, the baseline is chosen to be the base-stock agent, utilizing a 

team-level optimization objective, with the standard level of information available in its 

calibration. 

Model (1) in Table 3-5 focuses on the main effects of the features in Table 3-2, 

controlling for the specific team in the simulation.  
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𝑀𝑜𝑑𝑒𝑙 (1):  𝐶𝑖 = 𝛽0 + 𝛽1𝑓𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 + 𝛽2𝑓𝑆𝑒𝑙𝑓 𝐹𝑜𝑐𝑢𝑠𝑒𝑑 + 𝛽3𝑓𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝐼𝑛𝑓𝑜 + 𝛽4𝑓𝐿𝑜𝑤𝐼𝑛𝑓𝑜 + 𝛽5𝑓𝐻𝑖𝑔ℎ𝐼𝑛𝑓𝑜

+∑𝛽𝑇𝑒𝑎𝑚𝑁
𝑓𝑡𝑒𝑎𝑚𝑁

𝑁

+ 𝜖𝑖 
(13) 

The constant is statistically significant and predicts an average reduction in cost of 

nearly 50 percent by simply using a general base-stock learning agent, with the standard 

amount of information about its environment and optimization based on team-level outcomes. 

The shift to an agent that correctly assumes its environment has behaviorally ordering others 

(vs the base-stock), further reduces the cost on average by an additional 16 percent, inverting 

the result seen in the static policies. 

What is most striking about the regression results in Model (1) of Table 3-5 is the lack of 

significance of other feature choices. The main-effects of moving towards a self-focused reward 

(e.g., having an agent that is attempting to reduce the cost for only itself and not the entire 

supply chain) are insignificant. Similarly, the difference in moving from the standard information 

set towards a more minimal and hyper limited set of information for the calibration, or conversely 

towards a higher near omniscient set of information is also insignificant. 

In Model (1), the influence of the agent in all four positions in the supply chain is 

aggregated. However, the significantly different base-stock values found in the above analyses 

for an idealized supply chain by position (Retailer = 0, Wholesaler = 24, Distributor = 8, Factory 

= 5) imply possibly different effects along the supply chain. 

Model (2) in Table 3-5 incorporates these effects by position, again with fixed effects by 

specific simulated team. Here, the policy feature baseline is expanded to specifically refer to a 

base-stock agent, optimizing on team-level outcomes, calibrating using the standard information 

set, but at position 1 (the retailer) in the supply chain.  

𝑀𝑜𝑑𝑒𝑙 2:  𝐶𝑖 = 𝛽0 + 𝛽1𝑓𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 + 𝛽2𝑓𝑆𝑒𝑙𝑓 𝐹𝑜𝑐𝑢𝑠𝑒𝑑 + 𝛽3𝑓𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝐼𝑛𝑓𝑜 + 𝛽4𝑓𝐿𝑜𝑤𝐼𝑛𝑓𝑜 + 𝛽5𝑓𝐻𝑖𝑔ℎ𝐼𝑛𝑓𝑜

+ 𝛽6𝑓𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛2 + 𝛽7𝑓𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛3 + 𝛽8𝑓𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛4 +∑𝛽𝑇𝑒𝑎𝑚𝑁
𝑓𝑇𝑒𝑎𝑚𝑁

𝑁

+ 𝜖𝑖 
(14) 

The main effects observed in Model (1) are largely maintained here, with a notable lack 

of influence of both optimization objective and information availability. However, as expected 

there are notable differences by position in the supply chain. An agent placed in Position 2 or 4 

is significantly less able to reduce costs versus one placed in Position 1 or Position 3. Generally, 

as the agent is moved further upstream from the customer order signal, the cost reducing 

influence of the agent is diminished. Position 1 is unique in that it affects the flow of information 

into the supply chain from the external customer, and thus the cost reducing effect of a policy at 
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this position is  expected. Additionally, while Position 3 is in the middle of the supply chain, that 

position is typically the source of most of the team costs in real-world runs of the Beer Game, on 

which this simulation is based. 

Finally, Model (3) introduces the interaction effect of a policy with complexity and the 

optimization objective, while still including the effects of specific position in the supply chain and 

maintaining team fixed effects. 

𝑀𝑜𝑑𝑒𝑙 3:  𝐶𝑖 = 𝛽0 + 𝛽1𝑓𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 + 𝛽2𝑓𝑆𝑒𝑙𝑓 𝐹𝑜𝑐𝑢𝑠𝑒𝑑 + 𝛽3𝑓𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝐼𝑛𝑓𝑜 + 𝛽4𝑓𝐿𝑜𝑤𝐼𝑛𝑓𝑜

+ 𝛽5𝑓𝐻𝑖𝑔ℎ𝐼𝑛𝑓𝑜 + 𝛽6𝑓𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛2 + 𝛽7𝑓𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛3 + 𝛽8𝑓𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛4

+ 𝛽9(𝑓𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 ∗ 𝑓𝑁𝑜𝑛𝑀𝑦𝑜𝑝𝑖𝑐) +∑𝛽𝑇𝑒𝑎𝑚𝑁
𝑓𝑇𝑒𝑎𝑚𝑁

𝑁

+ 𝜖𝑖 

(15) 

 

(16) 

Model (3) shows that the incorporation of a team-level optimization objective can be 

valuable if and only if the agent is following a behavioral policy (but only marginally so when 

considering the sum of the effects of 𝛽1 and 𝛽9). Additional interactions were explored but not 

included here as they were insignificant. The terms associated with the information states are 

maintained in these results as they are main effects from Table 3-2 and their insignificance is a 

surprising result of these analyses.  
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Table 3-5. Feature Influence for Learning Agents 

β

β

β

β

β

β

β

β

β

β

 

 



 

107 

This model-predictive learning agent can perform this cost reduction not necessarily by 

perfectly learning the ordering rules that govern its environment, but rather by simply having a 

model to learn in the first place. Figure 3-5 shows a measure of the error between the 

estimation of the environment learned by the agent and the actual environment ordering rules. 

As seen in the top of this figure, even when exposed to near perfect information about its 

environment, the agent may eventually learn a near accurate representation of its environment. 

However, when compared to the minimal information case as seen on the bottom of that same 

figure, the minimal case is both more likely to learn an incorrect representation of the 

environment but also is significantly less stable in its underlying model. However, even with this 

unstable and less accurate model of its surroundings, this minimal information case with a 

relative erroneous model of the environment still can perform statistically similarly to the near 

total information case. 

 

 

Figure 3-5. Sample of Learning Rates for Model-Predictive Learning Agents 



 

108 

3.6.2 Comparison to More Complex Machine Learning Methods 

The results presented above compare features between static pre-trained policies with a 

relatively small number of free parameters, to those that follow the same architecture but are 

allowed to dynamically learn over time. More complex policies are of course plausible, including 

those that discover the relationship between the observable state space, the action taken by the 

agent, and the reward directly via repeated interactions.  

The Beer Game itself has been used as a training environment in such reinforcement 

learning applications, most notably utilizing various modifications of Deep Q-Network 

architectures, including modifications to allow for independent training across entities utilizing 

pooled reward schemes (Chaharsooghi et al., 2008; Opex Analytics, 2018; Oroojlooyjadid et al., 

2021). The Beer Game as a model of a multi-echelon supply chain presents a challenge to 

direct application of DQN architecture, challenges that are often also found in real supply 

chains. Specifically challenges emerge from 1) the true ‘full state’ of information is unknown to 

any one entity, 2) rewards are communal and not realized until the end of the time horizon, 3) 

DQN architectures can be ‘over optimistic’ in even mildly noisy environments (Thrun & 

Schwartz, 1993), and perhaps most importantly 4) the current overarching quality of the system, 

e.g. whether bullwhip is in progress or if the supply chain is stable, matters almost as much if 

not more than any specific action.  

In order to address the above issues, most notably the final point in the above list, this 

chapter presents a DQN architecture for use in multi-echelon supply chains like the Beer Game 

that has the following general architecture: 1) An ‘order-plus’ action space (Oroojlooyjadid et al., 

2021) which both allows for unbounded ordering in absolute terms and follows from 

observations in the model-based approach above, 2) a dual DQN network (Z. Wang et al., 

2016) that separately maintains a value function estimation for both the current overarching 

combined state of the system and separately for each state-dependent action, 3) an observation 

space defined over a window of prior state observations corresponding to the signal delay in the 

system, 4) a combination of epsilon-greedy and Boltzmann exploration policies (Wiering, 1999), 

and finally 5) three sequential dense layers with ReLu activations of 256, 128, and 64 free 

parameters respectively for a total of 448 free parameters for the ‘single-shot’ version of this 

policy architecture. 

The environment itself is built on the same framework utilized in the other architectures 

described above, with the functionalized form of the Beer Game translated into the commonly 
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used opensource Gym research framework developed by OpenAI (Brockman et al., 2016). This 

environment allows for training against all positions in the simulated supply chain against 

randomly bootstrapped assemblages of human-like players, whose ordering rules are drawn 

from classical supply chain literature (Sterman, 1989). Additionally, this agent can be trained 

against random (but bounded) simulation horizons to avoid over-learning endgame-dependent 

policies, and even noisy realizations of ordering decisions. An illustration of this framework is 

shown in Figure 3-6.  

 

Figure 3-6. Cost Minimization Framework for the Model-Free DQN Approach 

 

The above structure is closer to the ‘single-shot’ agents described above in so much as 

the agent is unaware of its surroundings, but instead tunes a set of free parameters ahead of 

time that allow it to map a current observed state to a desired action. This DQN can be further 

improved by developing a model aware DQN structure, which is identical to the DQN described 

above, but in addition to the base set of observations about its environment also incorporates 

estimates of the ordering parameters of the other agents in the supply chain. In this manner, this 

environment-aware DQN can then be used directly in the model-predictive learning structure 

described above, with the calibration based on history sill occurring, but then this estimate of the 

system being used as a state input into the DQN. 
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However, while development of this more complex method does provide some 

methodological contribution, it does not necessarily provide more cost reducing benefit, as seen 

in Figure 3-7. The DQN is able to learn a model of its environment with sufficient success to act 

as cost-reducing policy but does no better than the Behavioral Learning agents developed 

above. 

 

Figure 3-7. Static vs Learning vs DQN Agent Induced Cost Reduction Across all Positions 

 

Indeed, the relative cost reduction, if any, gained by these agents comes at the cost of 

orders of magnitude of more complexity versus the simpler methods. One of the key differences 

between each of the above-described architectures is the degree of complexity of the agent. For 

the ‘single-shot’ agents, their parameters are determined a priori and held fixed over the course 

of the simulation. For the base-stock ‘single-shot’ agent this means that agent has only one 

parameter, the fixed desired safety-stock, while for the behavioral version of this same agent, 

the number of parameters is equal to the number of free parameters in the behavioral heuristic 

rule, which for this chapter is the four from expressions (11) and (12). For the model-predictive 

learning agents, the number of free parameters is slightly more difficult to enumerate as the 

agent is updating the value of the underlying parameters determining its order response each 

period. For a simple approximation of complexity, we can treat each of these decision points as 

another set of parameters. Finally, for the DQN the number and value of free parameters is 

fixed a priori like in the ‘single-shot’ case, but much larger. For the specific DQN architecture 

used here, 448 parameters in total across three layers. 
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Figure 3-8 illustrates this tradeoff between complexity and performance by recasting 

Figure 3-7, focusing on the median cost reduction of each architecture type as a function of 

complexity. Note the logarithmic scale for the x-axis.  

 

Figure 3-8. Median Cost Reduction of Policies as a Function of Approximate Complexity 

 

3.7 Discussion 

The most striking outcome of the results above is that the relatively naïve ordering rules that 

simply follow a fixed order response policy achieve most of the cost reduction that can be 

expected, especially when dynamic learning is not possible. This follows from the related work 

in psychology and behavioral economics referenced in the introduction to this chapter that have 

noticed that consistent and simple policies can often perform as well as more complex ones. As 

stated by others, Behavioral Operations Management “requires an operations context” while 

also acknowledging the presence of “potentially non-hyper-rational actors in [that] operational 

context” (Croson et al., 2013). Thus, it should not be surprising that these results, placed in a 

realistic operational context, follow similar observations from other fields in which non-hyper-

rational decision makers exist. 

Furthermore, the fact that the policies that assumed behavioral responses performed 

better in general, when dynamic learning is possible, than those that assume base-stock 

responses from their fellow entities in the supply chain is not surprising. At minimum, this is a 
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result of simply better matching the underlying system in which the agent is placed, and as 

stated above base-stock policies are a hyperrational special case of the behavioral policies 

explored here.  

While not included in this chapter for compact presentation, it should be noted that even 

the behavioral-based agent, when also combined with model-predictive learning structures, is 

able to perform well when placed in an environment with perfectly rational base-stock other 

agents. This is because such an agent, while still assuming behavioral responses from the 

environment, can adapt quickly. Stated differently and as seen in the results above, even 

learning a ‘wrong’ model of the environment can result in improved performance. However, this 

is not necessarily a full exploration of the explosion of the ‘Rule Complexity’ factor seen in Table 

3-2, which would consider the rule complexity followed by the agent separately from the 

assumed rule complexity followed by the rest of the supply chain separately. As discussed in 

the main text above, the simplification here follows from the assumptions that a manager 

following either policy would likely make. The non-diagonal combinations of these two sub-

features (when the structure of the policy is purposefully mismatched with the assumed policy of 

others) could also interact with the underlying actual decision rule being used by the supply 

chain. That interaction effect is abstracted away from in this work in part by simplifying these 

two dimensions into the single ‘Rule Complexity’ feature. However, this does open up 

interesting future avenues of exploration. 

The learning method itself applied in this chapter is novel insomuch as it provides one of 

the few examples of model-predictive learning methods applied in a dynamic supply chain 

setting that this author has been able to find. That this control mechanism is applied in a 

behavioral context, in which the model itself is uncertain and based on a combination of the 

physics of the system and the assumed psychology of the other players, is also a general 

extension of model-predictive control methods. The results here show that such model-

predictive learning architectures do result in better performance than the simplest single-shot 

methods, though this improvement is secondary to the initial improvement received simply by 

having a stable policy to begin with.  

These observations also allow for some discussion on the tradeoff spent on academic 

research into the areas associated with each of these policy architectures. Much work has been 

devoted recently in expanding the use of general-purpose machine learning to complex 

nonlinear systems such as the supply chain modeled here. While that work is no doubt valuable, 
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this research implies that the largest improvements come from simpler, and more interpretable, 

policies.  

That is not to say that there is no value in developing these more complex tools, but rather 

in recognizing the tradeoffs inherent in the resources expended in their design, context-specific 

customization, and on-the-ground application. In developing the observations central to this 

chapter, the author has also built recent work illustrating the application of DQN structures in a 

multi-echelon supply chain setting. This was done leveraging insights from prior literature 

developed from directly applying similar structure to the Beer Game (notably Chaharsooghi et 

al., 2008 and Oroojlooyjadid et al., 2021), but while also leveraging a dueling architecture to 

overcome some of the computational difficulties previously faced. However, the resulting tool is 

specifically trained to this environment, dependent on specific state-space observations and a 

proper meshing of its outputs into the surrounding environment. 

While this is of methodological interest in so much as it contributes to a growing body of 

literature on the mechanics of integrating DQN architecture into supply chain settings, the 

greater contribution of this chapter is the observation from above. Namely, that significantly 

simpler and more directly interpretable polices can achieve similar levels of performance to 

these more complex methods.  

‘Stable’ here does not mean ‘static.’ The ‘one-shot’ architecture is both stable and static, 

while the model-predictive architecture is stable but dynamic. Stable in this context refers to 

consistent application of a rule to transform a set of observed inputs into a given decision or 

output. The ‘one-shot’ agent defined in this chapter has a pre-determined rule, but one that is 

follows consistently as the system progresses. The model-predictive learning agent similarly has 

an assumption that a stable response rule will reduce costs, but not that it necessarily knows 

that rule a priori.  

Of additional interest in this model-predictive context is that the traditional tradeoff of 

computational time from better model fidelity and performance outcomes may not be as stark as 

previously implied in other MPC applications. Here, even the most minimal information about 

the state of the system was adequate to achieve a flexible enough policy that could adapt and 

shift over time in response to a changing environment.  

For this simple linear supply chain, this is because the system itself is nearly fully defined 

by the small amount of information to which the agent has access. There are no losses of 

physical material, and the agent has no direct control over how the other entities in the system 
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will respond to orders and shipments, only respond to how their own on-hand inventory is 

changing over time as a function of their order signals. More information about the state of the 

system is advantageous insomuch as it allows the manager to more rapidly settle on a stable 

model of his or her environment.  

Additionally, the tradeoff that does exist between model accuracy and overall 

performance, conditional on information availability, becomes clearer when considering the 

number of instances in which the agent is destabilizing. In the analyses presented here, such 

destabilizations were still rare, though did occur more frequently with both less information 

about the overall state of the system and greater divergences between the assumed model and 

the underlying reality, and between the goal of the agent and the goal of the actual cost 

structure. Thus, the tradeoff here is not represented in terms degrees of performance and 

computational cost, but rather between external validity of the model-predictive process and 

absolute risk.  

Specifically, to what degree is the manager limited to some physical or behavioral reality 

in a real system? Does the manager have access to the entire state of the environment, or just 

a more siloed view? For a fully integrated supply chain with entities held to a performance 

standard defined by overall team outcomes, then perhaps the more near-omniscient policy for 

this manager with global goals is realistic. Additionally, this chapter assumes a simple linear and 

serial supply chain, in which each step of the process has one customer and one supplier. In a 

more realistic branching supply chain, additional information about which supplier is best able to 

fill orders may be valuable but is outside the scope of this chapter. 

Indeed, for a manager in a supply chain that is not integrated and rather simply part of a 

value-add chain of independent organizations, then the locally focused ‘greedy’ goal with limited 

information may be the only realistic option. What is interesting here is that it is possible, in fact 

likely, to still be able to implement a model-predictive learning policy in this most restrictive 

context and still achieve cost reductions versus no policy.  

This chapter shows that the manager can, generally, be locally-focused and achieve 

global benefits, but not always. Having more information to discern an accurate model of the 

supply chain is not necessarily needed in the long-run, nor is having a more global the goal, but 

both correspond to reduced risk of a destabilizing outcome.  

In net, a supply chain management policy that first is consistent in its application of a rule, 

even a simple and static base-stock ordering mechanism first proposed over sixty years ago, 
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can achieve meaningful benefits, which can also be viewed as a hyperrational special case of 

many behavioral rules. For managers that find themselves embedded in the middle of a multi-

echelon supply chain, explicitly incorporating models of human behavior can further improve 

results especially if learning about the surrounding supply chain is not possible. Learning about 

the surrounding environment and adjusting allows for flaws in initial assumptions to be revealed 

and corrected in time, but when such learning is not feasible then base-stock policies remain the 

best choice. While more complex and exotic general machine learning methods like the DQN 

presented here are potentially valuable, they come at a large start-up cost and additional 

complexity. Ultimately, it is the simpler policies that are (sometimes) the better choices for 

achieving cost reduction in even complex and behaviorally driven Operations Management 

environments. 
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Appendices and Supporting Materials 

 

Appendix A Chapter 1: Dynamic Supply Chains with 
Endogenous Dispositions 

 

A.1 Model Availability 

Accompanying the main chapter and this Appendix are the full models available as .mdl files, 

along with supporting data files to illustrate the how specific analyses were run and figures 

generated. The .mdl files can be open and run using Vensim software, developed by Ventana 

Systems, Inc. A free version of the Vensim software for personal use, along with a standalone 

model viewer, is available from Ventana Systems, Inc. These model files can be obtained 

directly at: 

https://github.com/jpain3/MIT-Disseration/tree/main/chapter-1 

The models were originally developed in Vensim version 8.2 and revised in version 

9.1.1. As of Vensim version 9.0, the visual style of this software package has changed 

significantly. The .mdl files are still fully viewable these later versions of the software, but layout 

and text changes may make viewing the model slightly more difficult. The author suggests, if 

using Vensim version 9.0 or later, to view the associated .mdl files in the ‘Traditional Sketch’ or 

‘Old Sketch’ layout. In Vensim version 9.0 this can be toggled via the Tools menu as seen 

below. All screenshots of software menus or images depicting the model layout or menu 

screens in the Appendix were done in this ‘Traditional’ view scheme. 

 

Figure A-1. Switching to ‘Old Sketch’ in Vensim 9.0 and later 

https://github.com/jpain3/MIT-Disseration/tree/main/Chapter-1
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Ventana Systems, Inc provides detailed documentation on the Vensim software, including how 

to manipulate and examine specific formulations. However, the reader may quickly explore the 

influence of parameter choices on the model via the SyntheSim mode on the main Dashboard 

view of the model. This can be accessed by pressing the corresponding button in the top toolbar 

of the software as seen below:  

For the supporting model comparing the core methodological framework, the .mdl file is 

divided into views: an overview Dashboard, a view of the full model itself, and several views that 

detail specific reporting or supporting structures. Different views can be accessed via the 

buttons in each view, or via the view menu. Examples of these two views (but not the entirety of 

these views) are provided below. 

 

Figure A-2. Example of the Dashboard View of the Methodology Comparison Model 
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Figure A-3. Detail of Aggregate Framework Embedded in Full Model View of the Methodology 
Comparison Model 

 

As a note, this model view is presented entirely and largely has no hidden structure or 

hidden causal connections. The model is still provided here for the interested reader and allows 

for the reader to investigate in detail how the frameworks developed in the main chapter are 

practically applied as subcomponents in a larger model, along with alternative value-age 

relationships. 

For the model illustrating the details of the aggregate and vintaging framework, the 

presentation is designed to allow for comparison of the outputs of both frameworks when 

subjected to the same inputs. The .mdl file is divided into several views, most notably an 

overview Dashboard, and detailed views of each framework. Different views can be accessed 

via the buttons in each view, or via the view menu. Examples of these views (but not the entirety 

of these views) are provided below. 
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Figure A-4. Partial Example of the Dashboard View of the Framework Comparison Model in 
Vensim 

Note that the vintaging framework is presented for 10 age cohorts, and this is fixed by 

design. This is to make the presentation of the framework direct and easy to interpret without 

the need for subscripting or array formulations. This presentation can be greatly simplified via 

array approaches but doing so hides the underlying interplay of choices in the vintaging 

structure. However, the cost of this choice is a highly cluttered display of the fully connected 

model, along with difficulty in adjusting the number of cohorts. This fully connected view is 

present in the .mdl Vensim file, but the author encourages readers to focus on the detailed view 

of the beginning and end of the illustrative vintaging chain for ease of understanding. 
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Figure A-5. Detail of Aggregate Framework View in the Framework Comparison Model 
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Figure A-6. Detail of Vintaging Framework View in the Framework Comparison Model 

 

Furthermore, the .mdl files provided may be opened in any program that is able to read 

UTF-8 encoding and the formulations directly viewed in plaintext. Examples of programs that 

can open the .mdl file for direct viewing in plaintext include Notepad in the Windows operating 

system and Textpad in the Macintosh operating system. An example of this view of the model 

file is seen in Figure A-7. 
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Figure A-7. Example of Viewing the Supporting .mdl File in Notepad on Windows 

 

The models developed for this chapter are also fully documented utilizing the SDM-Doc 

tool described in (Martinez-Moyano, 2012). The output from this documentation tool is available 

alongside the .mdl files. 

A.2 Formulation Details for the Methodological Comparison Model 

In the main chapter, a simplified supply chain model that allows for the switching on and off of 

methodologies is used as an illustrative example of the use of the frameworks developed in a 

larger model. The sections below provide additional detail on the development of that 

comparison model, focusing on details that are not necessary to illustrate the frameworks 

developed in the main chapter, but are still of interest in the dynamics in this overarching 

system. As a note, some portions of the explanatory text from the main chapter are repeated 

below where needed to create a self-contained description of this model. 
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The model consists of a producer who manages goods flowing through two stocks: Work in 

Progress and Finished Goods. The figure below provides a high-level visual overview of the 

model, with each subsequent section providing more operational detail. 

 

 

Figure A-8. Overview of Methodological Comparison Model 

 

A.2.1 Defining the Market 

While there may be multiple ways to construct the interplay of supply and demand that 

ultimately forms the spot price at each interface point in the market illustrated in Figure A-8, the 

loops defined as B2 and R utilize inventory-sensitive spot pricing (Chen et al., 2009; Sterman, 

2000; Whelan & Forrester, 1996). These effects also feedback into B1 and even affect the loops 

that determine the relative value of each inventory disposition formed in B3+4. 

The core of this economic model is two balancing loops across each entity in the supply 

chain, with spot pricing driving either demand or supply.  
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Figure A-9. Core Two Balancing Loops Inventory-Based Spot Prices 

 

However, the above entity may exist in a chain of upstream and downstream entities, 

each ordering from their suppliers and selling to their own customers. This effects the ‘Expected 

Gross Margin’ and introduces another balancing loop. Additionally, the spot price is 

fundamentally anchored to what the market expects it to be, and this introduces a reinforcing 

loop around the spot price and the expected prices. These two new loops, in the context of the 

larger supply chain, are seen below: 

 

Figure A-10. Ordering and Price Setting is Nested in Larger Interconnected Supply Chain 
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A.2.1.1 Effect of Inventory Coverage on Price 

One of the key features of the pricing model visually summarized above is the effect of inventory 

coverage on pricing. In net, a model will capture the downward sloping relationship between 

additional inventory (beyond a set inventory coverage goal) and the price offered by the firm 

holding that inventory.  

𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 [𝐸𝑛𝑡𝑖𝑡𝑦] 𝐼𝑛𝑒𝑛𝑡𝑜𝑟𝑦 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑛 [𝐸𝑛𝑡𝑖𝑡𝑦]𝑃𝑟𝑖𝑐𝑒

= [𝐸𝑛𝑡𝑖𝑡𝑦]𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑅𝑎𝑡𝑖𝑜−𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦 
(17) 

The sensitivity is a parameter that determines how much the price will raise or lower 

given a change in inventory coverage. As formulated here, sensitivity is assumed to be a 

positive value, with higher values corresponding to increasingly concave response functions 

Another feature explored in the above formulation is a ‘cap’ on the maximum multiplier 

that inventory coverage could have on price. I.e., if inventory coverage approaches 0 (there is 

no inventory to sell), then the effect on the price will approach infinity. This does not happen as 

the increase in spot prices drives down demand from downstream customers, preventing the 

final marginal units of inventory from ever being sold in practice. 

A.2.1.2 Effect of Expected Gross Margin on Demand 

The concept of expected gross margin can be used to influence production in the case of the 

producer, and demand in the case of all other entities in the supply chain, with increases in 

expected Gross Margin assumed to induce greater production or demand.  

There may be multiple methods of incorporating this relationship here, including truncated 

sigmoidal functions and directly applying table functions. For this example, consider a simple 

truncated linear representation that meets the following criteria: 

1. Passes through the point of (1,1) on a normalized scale 

2. Is truncated at an upper maximum multiple on demand 

a. This assumes that it is infeasible for an entity will ever request more than some 

multiple of its reference demand at any expected future profit level 

b. This could be due to several possible factors not explicitly modeled such as 

storage space constraints, transportation limitations, or risk of spoilage). 

3. Is truncated at a lower level of demand  
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a. In other words, it is bounded at a minimum acceptable gross margin, which could 

be greater than 0% 

b. Paratactically this means the line passes through the point of (Minimum 

Normalized GM, 0) 

Given points 1 and 3 above, the slope of the line is defined fully by the specification of 

the minimum acceptable gross margin at which any demand or production will exist, and the 

definitions of the reference gross margin and corresponding reference demands. Examples of 

what this curve looks like can be seen in Figure A-11 below. 

 

Figure A-11. Examples of the Formulation of Demand versus Expected Gross Margin 

 

It should be emphasized that this curve is based on the expected gross margin to 

influence demand, which is in turn can be based on smoothed perceptions of previous prices 

that the entity has experienced.  

A.2.1.3 Effect of Spot Prices on Demand 

The above effect on demand due to expected gross margin does have some element of 

sensitivity to cost built in from the definition of gross margin. However, it is purposely done in 

relationship to an expected gross margin based on a smoothed view of previous prices (both 

costs for goods bought and the prices at which they were later sold). 

To affect demand based on the instantaneous spot price experienced by each entity, consider a 

linearly decreasing relationship that captures decreasing demand with increasing prices, with 
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the slope of that relationship affected by some elasticity of demand. The functional form of this 

expression is seen below: 

𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑃𝑟𝑖𝑐𝑒 𝑜𝑛 𝐷𝑒𝑚𝑎𝑛𝑑

=  𝑀𝐼𝑁(𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟,𝑀𝐴𝑋 (0,1 + 𝐷𝑒𝑚𝑎𝑛𝑑 𝐶𝑢𝑟𝑣𝑒 𝑆𝑙𝑜𝑝𝑒

∗
𝑃𝑟𝑖𝑐𝑒 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑟𝑖𝑐𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑚𝑎𝑛𝑑
) 

(18) 

Where: 

𝐷𝑒𝑚𝑎𝑛𝑑 𝐶𝑢𝑟𝑣𝑒 𝑆𝑙𝑜𝑝𝑒 =
−𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑚𝑎𝑛𝑑 ∗ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑟𝑖𝑐𝑒
 

 

(19) 

An example of the shape of this function for various values of elasticity are seen below, where e 

refers to the Reference Elasticity in expression (9) above. 

 

Figure A-12. Examples of the Formulation of Demand versus Spot Price 

 

Here the spot price is purposefully used to determine the effect of this instantaneous 

demand. This is designed to be immediate, in contrast to the effect from expected gross margin 

which is based on a smoothed concept of both prices and costs. 

Combined, the relationships described in the economic market for this commodity good 

in which the new modeling framework presented here can be applied. 
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A.2.2 Production Starts and Capacity Management 

The producer considers two different conceptualizations of profitability: the incremental 

profitability of an additional unit of production (utilizing just the variable costs of production), and 

the expected profitability from expanding production capacity (utilizing a fully allocated cost of 

production).  

As a note, in this example this relationship utilizes the ‘Producer Expected Price’ which 

is the spot price smoothed over a short time range. The producer considers the price relative to 

expected costs to form a gross margin estimation when making capacity change decisions. 

Here, this expected gross margin utilizes a fully allocated unit cost. This expected gross margin 

determines the effect on desired capacity. 

As discussed in other System Dynamics models of commodity markets (notably chapter 

20 of (Sterman, 2000)) utilization is a function of expected gross margin. Furthermore, utilization 

of existing capacity is unlikely to be at 100% when averaged across all pieces of owned 

capacity unless at very high levels of expected profitability. The exact shape of this relationship 

will vary by industry and even by individual producer or individual piece of owned unit of 

production capacity. To qualitatively capture this behavior, consider a function which 

approximates a curve approaching the CDF of a collection of different land (capacity) at different 

utilization depending on local factors. One such curve, and the one utilized in this example is 

shown in Figure 2-6. 

 

Figure A-13. Producer Capacity Utilization versus Expected Gross Margin 
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A.2.3 Discounting the Spot Price based on Development Age 

A central piece of the framework presented in the central paper is the relationship between the 

age of the goods being produced and the value they derive in the marketplace. For the example 

in the main chapter, consider a relationship of the same trapezoidal functional form as that 

described in expression (22) and illustrated in Figure A-14. Furthermore, the example below 

utilizes the single aggregate stock of work-in-progress inventory instead of a more granular 

vintaging framework as described in the main chapter. 

The quantification of the opportunity cost capturing the tradeoff between time that a unit 

of potential inventory spends under production (or development) versus the amount of economic 

value the producer can expect to get from its eventual sale is explored in more detail in the 

sections below. 

𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐴𝑔𝑒 𝑜𝑛 𝑃𝑟𝑖𝑐𝑒 = 𝑓(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑔𝑒 𝑜𝑓 𝑊𝐼𝑃) (20) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑆𝑝𝑜𝑡 𝑃𝑟𝑖𝑐𝑒

= 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐴𝑔𝑒 𝑜𝑛 𝑃𝑟𝑖𝑐𝑒 ∗ 𝑆𝑝𝑜𝑡 𝑃𝑟𝑖𝑐𝑒 𝑓𝑜𝑟 𝐹𝑢𝑙𝑙 𝑀𝑎𝑡𝑢𝑟𝑒 𝐺𝑜𝑜𝑑𝑠 
(21) 

In the above, the ‘Spot Price for Full Mature Goods’ is defined via the method described 

in expression (6), and is a function of the inventory coverage of the producer. 

A.2.4 Quantifying the Age-Value Relationship 

As discussed in more detail in the main chapter, this relationship that defines ‘Effect of Age on 

Price’ is context-specific can vary depending on the product under development and how the 

market values that product as function of the development or maturation time.  

For the example used in the model of a supply chain of a commodity product, this 

relationship can be summarized as first having a low value that rises until it reaches a peak of 

full value at an ideal maturation time, and then declines as it sits in the field either further 

maturing past its prime or even decaying. 

To capture the above dynamics, a table function could be employed but for simplicity 

consider a trapezoidal relationship between crop value and age (or maturation time). This 

relationship utilizes four parameters to capture when a crop first has any economic value, the 

range over which it has full economic value, and the age above which it again has no economic 

value. 
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𝑓 (𝑡) =  

{
  
 

  
 

0 𝑡 ≤ 𝑎

(
1

𝑏 − 𝑎
) 𝑡 − (

𝑎

𝑏 − 𝑎
) 𝑎 < 𝑡 ≤ 𝑏

1 𝑏 < 𝑡 ≤ 𝑐

(
1

𝑐 − 𝑑
) 𝑡 − (

𝑑

𝑐 − 𝑑
) 𝑐 < 𝑡 ≤ 𝑑

0 𝑡 > 𝑑

 (22) 

 

 

Figure A-14. Example of Trapezoidal Function Discounting the Value of Crops based on 
Maturation 

 

Note that the expression above assumes a linear change from minimum to maximum 

value, and constant maximum value between points c and d. More general trapezoidal shapes 

are possible that do not necessarily have these features (for example see (Dorp & Kotz, 2003)) 

and may be more appropriate in specific contexts, but this formulation is sufficient here. 

Under the aggregate model framework, which is used in this example supply chain 

model, the value of the entire stock of work-in-progress inventory is derived by the formulation 

above. If the vintaging model were used, it would be applied to each cohort of ages.  

A.2.5 A Multinomial Logistic model of Inventory Dispositions 

The section immediately below largely restates material in the main chapter. It is repeated here 

to allow for a self-contained narrative of the development of the methodological comparison 

model. 
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In the methodological comparison model, we consider that the producer has three 

choices to make with respect to units that are actively under development (WIP) 1) Terminate 

development and move into a finished goods state (for immediate or later sell to the customer), 

2) Keep under development to continue to mature (or decay), or 3) Terminate development and 

destroy or dispose. 

From the point of view of a single producer, each of these dispositions are binary (for 

example a farm cannot simultaneously destroy, harvest, and continue to cultivate a single unit of 

food). Under a model of a single producer, this economic decision becomes a straight-forward 

assessment of the expected value of each disposition route (for example weighing the of the 

costs of shipping and storing goods versus the costs of destroying it, offset by the value that 

would come from selling if it were sold). However, for a larger model of a system of producers, it 

is more appropriate to utilize a multinomial logistic model, to represent the probability of a 

producer choosing any of the above three options. 

For some relative economic value 𝜋𝑖 for choice 𝑋𝑖, the probability of choosing 𝑋𝐼 is given 

by the expression below:  

𝑃(𝑋𝑖) =
𝑒𝛽𝜋𝑖

∑ 𝑒𝛽𝜋𝐼𝑁
𝐼=1

 (23) 

In the above, 𝛽 is the weight the producer places on the concept of economic value. 

Under a full logistic model that we could fit to observed data, this becomes a free parameter. 

Here, we have no observed data, but rather a conceptual model. Thus, to simplify the model 

overall, we can fix values of 𝛽 to be the inverse of some reference price for the producer (e.g., 

the price at which a producer sells its goods under normal steady state conditions). This has the 

advantage of allowing the relative values of each choice, 𝜋𝑖, to be expressed in terms of prices 

and monetary values, while allowing the expression above to properly reduce to a 

dimensionless probability. 

𝛽𝑖 =
1

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑖𝑐𝑒
 ∀𝑖 (24) 

A.2.6 Valuing WIP Dispositions 

As discussed above, how the producer derives the relative values of each of the choices is a 

matter of modeling freedom and should ideally be based on observations of how real produces 

value these choices. The advantage of the logistic model is that changing these assumptions 
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only changes the relative value of each choice, and thus the relative proportion of the crop 

delegated to each option, but not the underlying model. 

This is the most straight forward valuation in the model and is simply the cost of 

destroying the units under development. The act of ceasing production and destroying goods is 

not considered ‘free’ and has a cost assigned to it in the model as an exogenous parameter. 

This could be expanded by applying a ‘mental resistance’ or ‘sunk cost fallacy price’ to further 

discourage the disposal of WIP, if evidence supports it. As a note, as modeled here, the value of 

disposing of goods is always negative. While the other options can be more negative, even if 

they are strictly positive, some portion of the crop is nevertheless destroyed each period under 

the multinomial logistic model. 

𝜋𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑖𝑛𝑔 𝑊𝐼𝑃 = −𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝐶𝑜𝑠𝑡 𝑡𝑜 𝐷𝑖𝑠𝑝𝑜𝑠𝑒 𝑜𝑓 𝑊𝐼𝑃 (25) 

If the producer is to finished development and store the units in the same area (or hold 

up the same production capacity) while not actually adding value to the good, they would do so 

under the expectation that they would receive their current expected price for the goods, less 

the costs for moving into an FG state, less the eventual costs for shipping to the customer. 

𝜋𝑃𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 =  𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑆ℎ𝑜𝑟𝑡 𝑅𝑢𝑛 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑖𝑐𝑒 − 𝐶𝑜𝑠𝑡 𝑡𝑜 𝑚𝑜𝑣𝑒 𝑖𝑛𝑡𝑜 𝐹𝐺 𝑠𝑡𝑎𝑡𝑒

− 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠 
(26) 

Combined with the above logistic model, this gives a fraction of the units under 

development that could be made available, at most, for shipping. 

The ‘Production Rate’ flow in the model developed in the main chapter is based on both 

the expected future need of goods to fulfill demand from the wholesaler and anticipated spoilage 

or loss in storage. 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑒𝑒𝑑𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

= 𝑆𝑀𝑂𝑂𝑇𝐻(𝐴𝑛𝑡𝑖𝑐𝑝𝑎𝑡𝑒𝑑 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐷𝑒𝑚𝑎𝑛𝑑

+ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐿𝑜𝑠𝑠 𝑜𝑓 𝐹𝐺, 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑈𝑝𝑑𝑎𝑡𝑒 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑁𝑒𝑒𝑑)  

(27) 

If the producer were fully willing to meet customer demand and replace any goods 

previously destroyed or spoiled or other loss in storage, the above alone would move the goods 

from production starts through to finished goods. However, the value of the units under 

production and available to be moved into a finished goods state is limited by the logistic model 



 

137 

described above. Thus, expression for Production Rate from the main chapter can be recast 

into this example context as seen in expression (28) below. 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

= min(1,
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑒𝑒𝑑𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
)

∗ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑁𝑒𝑒𝑑𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

(28) 

The actual number of units left in the WIP state is defined by how many units are 

destroyed and how many units are moved into a finished goods state each period. However, the 

probability that a producer will choose to destroy, or complete development is also dependent 

on how the producer values keeping units under development. There are two possible ways to 

capture the value of leaving work-in-progress alone to continue to age, both of which are 

explained below:  

The first option is both the easiest conceptually, and perhaps the most robust because it 

introduces the least number of additional assumptions: that keeping the units under 

development in a WIP state has a null value. In many logistic models, there is a ‘null choice’ or 

simply a choice of zero value, often used to represent not making a choice at all (e.g., between 

a red car and a blue car I choose to not buy a car today). For this model, the relative value of 

holding crops is 0. 

Option 1: 𝜋ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑊𝐼𝑃 =  0 (29) 

The other option is more behaviorally complex, but more realistic. Here, the producer is 

assumed to be forward looking, anticipating getting the maximum value from his or her 

production that could be expected. 

Option 2:         𝜋ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑊𝐼𝑃 =  𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝐹𝑢𝑡𝑢𝑟𝑒 𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒 −

𝑃𝑟𝑜𝑑𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠 − 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠 
(30) 

Under this model, the producer is assumed to know the shape of the relationship 

between age and value discussed above and can expect the maximum fraction of the value of 

his or her production if the maturation time is lower than the ideal maturation time, but nothing 

better than the current value for maturation times higher than the ideal value. 
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𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝐹𝑢𝑡𝑢𝑟𝑒 𝐿𝑜𝑜𝑘𝑖𝑛𝑔 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑖𝑐𝑒

= {
𝑆ℎ𝑜𝑟𝑡 𝑅𝑢𝑛 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑖𝑐𝑒 𝑖𝑓 Tmaturation < Tideal 

𝑆ℎ𝑜𝑟𝑡 𝑅𝑢𝑛 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑖𝑐𝑒 ∗ 𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐴𝑔𝑒 𝑜𝑛 𝑃𝑟𝑖𝑐𝑒 𝑜. 𝑤.
 

(31) 

Ultimately, the choice of option 2 causes the producer to reserve more units in the WIP 

state each period, as the value of the goods is viewed higher than null. 

A.2.7 Valuing FG Inventory Dispositions 

While the model development immediately above has focused on the valuation and inventory 

disposition decisions of work-in-progress production, it can be readily applied as well to finished 

goods inventory in storage as well. Again, the producer has three choices: 1) Make inventory 

available for the customer, 2) keep finished goods in storage, or 3) dispose of finished goods. 

As with the work-in-progress inventory, a multinomial logistic function can be used, normalized 

with 𝛽 values all chosen to be the inverse of a producer reference price. As a note, the inclusion 

of this feature has negligible impact on the example system parameterized in the main chapter 

but is included for completeness for the reader to experiment with. 

As with the previous sector, the value of destroying finished goods can be assumed to 

be some simple value. It is possible to expand this valuation by considering how destroying 

inventory frees storage space, but rather than complicate the valuation here, those 

considerations are rolled into the valuation of holding goods. 

𝜋𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑖𝑛𝑔 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑔𝑜𝑜𝑑𝑠 = −𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝐶𝑜𝑠𝑡 𝑡𝑜 𝐷𝑒𝑠𝑡𝑟𝑜𝑦 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 (32) 

The value of making inventory available to ship is simply the current spot price, less the 

cost of shipping those goods. Note that the current spot price is affected by the maturation of 

the units as described above. 

𝜋𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 =  𝑆𝑝𝑜𝑡 𝑃𝑟𝑖𝑐𝑒 − 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠 (33) 

As with the choice to hold WIP to further mature, there are two ways to look at the 

valuation of holding inventory rather than destroying or shipping it, either with a null value or 

with a more forward-looking model of valuation. 

Option 1: 𝜋𝐻𝑜𝑙𝑑 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =  0 (34) 

For the forward-looking estimation, consider the that the opportunity cost of storing an 

additional unit of goods for an additional unit of time increases with finite storage space, and the 
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only feasible method of storing additional units of goods when storage is full is to acquire 

additional space at some costs. This is captured in the relationship below: 

𝐶𝑜𝑠𝑡 𝑡𝑜 𝐻𝑜𝑙𝑑 𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒

= 𝐹𝑎𝑟𝑚 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠 + 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐹𝑢𝑙𝑙

∗ (𝐹𝑎𝑟𝑚 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠 + 𝐶𝑜𝑠𝑡𝑠 𝑡𝑜 𝐴𝑐𝑞𝑢𝑖𝑟𝑒 𝑆𝑡𝑜𝑟𝑎𝑔𝑒) 

(35) 

Furthermore, by holding the finished goods, the producer must be expecting not the 

current spot price, but some future estimate of the price for their goods. Combined, this gives 

the following alternative option for valuing holding inventory in this model: 

Option 2: 𝜆𝐻𝑜𝑙𝑑 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =  𝑆ℎ𝑜𝑟𝑡 𝑅𝑢𝑛 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑖𝑐𝑒 −

𝐶𝑜𝑠𝑡 𝑡𝑜 𝐻𝑜𝑙𝑑 𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 
(36) 

Either of the two options of valuation above presuppose a decision to acquire storage 

space if full. Thus, we can consider that the producer has a desired total storage space that is 

approximately equal to the actual finished goods inventory, with perhaps an additional 

allowance for free space for comfort or other purposes. 

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 =
𝐹𝐺 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦

1 − 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐹𝑟𝑒𝑒 𝑖𝑛 𝑆𝑡𝑜𝑟𝑎𝑔𝑒
 (37) 

The producer will then actively work to adjust the actual storage space to the desired 

storage space, though perhaps in an asymmetric manner. Specifically, I hypothesize that the 

producer will be quick to add space but slow to divest it. 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑆𝑝𝑎𝑐𝑒

=  𝑆𝑀𝑂𝑂𝑇𝐻 (𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑆𝑝𝑎𝑐𝑒,

{
𝑇𝑖𝑚𝑒 𝑡𝑜 𝐴𝑑𝑑 𝑡𝑜 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑖𝑓 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 > 𝐹𝑎𝑟𝑚 𝑆𝑝𝑎𝑐𝑒
𝑇𝑖𝑚𝑒 𝑡𝑜 𝑅𝑒𝑑𝑢𝑐𝑒 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑆𝑝𝑎𝑐𝑒 𝑜.𝑤.

)  

(38) 
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A.3 Limits of the MNL Formulation under Extreme Conditions 

Consider expression (2) above, restated below for the reader’s convivence: 

𝑃(𝑋𝑖) =
𝑒𝛽𝜋𝑖

∑ 𝑒𝛽𝜋𝐼𝑁
𝐼=1

 (39) 

The extreme case where 𝛽 = 0 of expression (39) is trivial to determine, and results in 

the simple equal allocation to all dispositions, independent of the economic value of those 

dispositions. 

𝑃(𝑋𝑖)𝛽= 0 = 
𝑒0𝜋𝑖

∑ 𝑒0𝜋𝐼𝑁
𝐼=1

=
1

∑ 1𝑁
𝐼=1

= 
1

𝑁
 (40) 

While the other extreme case where 𝛽 → ∞ can be determined intuitively as discussed in 

the main chapter (here, all goods are in the disposition with the highest economic value with 

probability 1 and all others with probability 0), the derivation requires a few more steps. 

First, consider the extreme value of the highest valued disposition, e.g., 𝜋𝑀 > 𝜋𝑖≠𝑀. 

𝑃(𝑋𝑀) =  
𝑒𝛽𝜋𝑀

𝑒𝛽𝜋𝑀 + ∑ 𝑒𝛽𝜋𝐼𝑁
𝐼=1
𝐼≠𝑀

 
(41) 

Next divide (41) by the leading term of the denominator, which by definition is 𝑒βπM 

𝑃(𝑋𝑀) =
𝑒𝛽𝜋𝑀  / 𝑒𝛽𝜋𝑀

(𝑒𝛽𝜋𝑀 + ∑ 𝑒𝛽𝜋𝐼𝑁
𝐼=1
𝐼≠𝑀

) / 𝑒𝛽𝜋𝑀

=
1

1 + ∑ 𝑒𝛽(𝜋𝐼−𝜋𝑀)𝑁
𝐼=1
𝐼≠𝑀

 
(42) 

As 𝜋𝑀 > 𝜋𝑖≠𝑀, therefore 𝜋𝐼 − πM < 0 ∀𝐼. The exponential terms in the denominator of (42) will all 

tend to 0 as 𝛽 → ∞ given that 𝜋𝐼 − πM is strictly negative. Finally, therefore: 

𝑃(𝑋𝑀)𝛽→∞ =
1

1 + ∑ 𝑒−∞𝑁
𝐼=1
𝐼≠𝑀

=
1

1
= 1 

(43) 

Similarly, when considering any other disposition choice with a value that is not the 

maximum, the probability must be 0 given the outcome of (43), or could also be shown directly 

to be 0 by the same procedure as above, still dividing by the leading term in the denominator of 

(41), but noting that in (42) the numerator will now be 0 for all values of dispositions not the 

maximum.  
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A.4 Some Alternative Functional Forms for the Age-Value Relationship 

The example in the main chapter and the development of the formulations above assume a 

trapezoidal relationship between the age of work-in-progress and the value that the producer 

can extract. As discussed in the main chapter, multipole alternative shapes could be feasible in 

different contexts, and even the core trapezoidal shape explored in this chapter can take on 

more complex configurations (Dorp & Kotz, 2003).  

The methodological comparison model .mdl file that accompanies this chapter allows for 

uses to experiment with several of the relationships seen in Figure A-15. Note that the 

Asymmetric Gaussian can be made to be arbitrarily close to an s-curve by setting 𝜎𝑢 to 

arbitrarily high values. 
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Null Relationship (Fixed Value) 

 

𝒇 (𝒕) =  𝟏 

Linear and Saturating Relationship 

 

𝒇(𝒕) =  {

𝟎 𝒕 ≤ 𝒂

(
𝟏

𝒃 − 𝒂
) 𝒕 − (

𝒂

𝒃 − 𝒂
) 𝒂 < 𝒕 ≤ 𝒃

𝟏 𝒕 > 𝒃

 

Trapezoidal Relationship 

 

𝒇 (𝒕) =  

{
  
 

  
 

𝟎 𝒕 ≤ 𝒂

(
𝟏

𝒃 − 𝒂
)𝒕 − (

𝒂

𝒃 − 𝒂
) 𝒂 < 𝒕 ≤ 𝒃

𝟏 𝒃 < 𝒕 ≤ 𝒄

(
𝟏

𝒄 − 𝒅
) 𝒕 − (

𝒅

𝒄 − 𝒅
) 𝒄 < 𝒕 ≤ 𝒅

𝟎 𝒕 > 𝒅

 

Asymmetric Gaussian Relationship 

 

𝒇 (𝒕) =  𝐞
(−
𝟏
𝟐
)∗(

𝐭−𝐓𝐢𝐝𝐞𝐚𝐥
𝛔

)
𝟐

 

{
𝝈 = 𝝈𝒍 𝒊𝒇 𝒕 < 𝐓𝐢𝐝𝐞𝐚𝐥
𝝈 = 𝝈𝒖 𝒐.𝒘.

 

 Figure A-15. Examples of Price-Value Relationships 
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A.5 Parameterization of the Methodological Comparison Model 

The detailed parameterization of the example supply chain model used in the main chapter is 

largely omitted for the sake of space. This was done also because the focus of that section of 

the chapter was not about the influences of specific parameter choices, but rather to illustrate 

how the methodology introduced can generate fundamentally different modes of behavior for 

otherwise identically parameterized models. The .mdl file included with the chapter comes 

parameterized in the same manner as used for the main chapter, but those parameter values 

are explicitly listed below as well. 

Below are the values used for the age-value relationship, which for the chapter utilized 

the trapezoidal relationship, which is described in expression (5) above. 

 

Table A-1. Parameterization for the Age-Value Relationship in the Methodological Comparison 
Model 

Parameter Name Description or Note Value 

A Minimum age of any value in the Trapezoidal relationship 4 weeks 

B Minimum age of full value in the Trapezoidal relationship 10 weeks 

C Maximum age of full value in the Trapezoidal relationship 14 weeks 

D Maximum age of any value in the Trapezoidal relationship 30 weeks 

Initial average WIP Age 

To ensure a steady state at the initialization of the model, this 
value should be within (inclusive) of B and C above. Chosen 
to be the average of those two numbers for simplicity of 
exposition 

12 weeks 

 

The structure used to track the average age of WIP inventory utilized in this example 

model is most similar to the ‘Coflow with Experience’ structure discussed in detail in Molecules 

of Structure (Hines, 2005), though the unit balancing takes on a different form to be 

dimensionally consistent with the rest of the system. Note that any structure that captures the 

development time of the cohort of interest could be used to relate this time to the economic 

value that could be extracted from the goods. 

As stated in the main chapter in the formulation for the co-flow that monitors the average 

age of work-in-progress inventory, the ‘Average Age of New Production Starts’ may have a 

value of 0 units of time, or some other non-negative value. For example, when applying to 

employee experience in a firm, an employee may arrive with some pre-existing experience. 

However, in the context of a food producer planting crops it may be safe to assume that newly 
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planted crops arrive with no pre-existing maturation. The model is flexible to allow for this 

assumption to be relaxed based on specific circumstance (for example, buying partially matured 

nut trees or fully matured sows rather than starting from seeds or piglets).  

Furthermore, while it may be generally safe to assume that the ‘Rate of Age Gain’ is 

constant and unitary (i.e., 1 week/week or 1 years/year or similar). The formulation itself does 

allow for some flexibility if, as an example, a fertilizer was applied to speed maturation, or a 

drought hit and slows maturation down. 

In general, the structure here is most similar to the ‘Coflow with Experience’ structure 

discussed in detail in Molecules of Structure (Hines, 2005), though the unit balancing takes on a 

different form to be dimensionally consistent with the rest of the system. Note that any structure 

that captures the development time of the cohort of interest could be used to relate this time to 

the economic value that could be extracted from the goods. 

 

Table A-2. Parameterization for the Co-Flow Structure Monitoring Average WIP Age 

Parameter Name Description or Note Value 

Rate of Maturation Gain Rate at which unit under development gains age. 1 Weeks/Week 

Average Age of New 
Units 

The average maturation of brand-new production starts. 0 Weeks 

 

 

Throughout the model there are time constants that affect the rate at which entities in 

this model supply chain either incorporate information and update estimations or limit the rate at 

which they can perform actions. These values were chosen to be behaviorally realistic (for 

example the producer incorporating price changes into their forward projection affecting 

production starts much more quickly than the customer adjusting their demand in response to 

those same price fluctuations), but again the primary purpose of this model is not to explore the 

sensitivity to these parameters but rather illustrate that different modes of behavior emerge 

when utilizing the methodological contributions illustrated in the chapter. 
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Table A-3. Parameterization for Time Constants 

Parameter Name Description or Note Value 

Time to adjust 
Production Schedule 

Average time to adjust the actual unit production starts (or planting 
schedule) to the desired value. 

26 Weeks 

Time to adjust expected 
mixed variable costs 

Time, on average, for the producer to update its expectation of the 
mixed variable costs it will typically incur per unit production started. 

2 Weeks 

Producer Processing 
Time 

The desired typical time it takes for the producer to process WIP 
goods, either by disposing of them or moving them along into 
finished goods inventory. 

4 Weeks 

Producer finished 
goods disposal time 

Time, on average, for the producer to dispose of stock of finished 
goods awaiting shipment to the customer 

4 Weeks 

Time for customer to 
adjust demand 

The time, on average, for the demand from the Customer to change 
based on the indicated demand 

4 Weeks 

Time for producer to 
adjust short-run 
expected price 

Time, on average, for the producer to incorporate the spot price into 
its expected price 

1 Week 

Time for customer to 
adjust short-run 
expected price 

Time, on average, for the customer to incorporate the producer spot 
price into its expected price 

24 Weeks 

Average Shelf Life of 
Producer Stored FG 

The average time the unit that has been moved to a finished goods 
state, but is still being stored at the producer, can sit in storage 
before spoiling and being disposed of. For non-foodstuffs this could 
be an average obsolescence time 

24 Weeks 
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The parameters below were used to from the price formation mechanism at use in this 

model and as described in the Effect of Inventory Coverage on Price and Effect of Spot Prices 

on Demand sections of this Appendix. 

 

Table A-4. Parameterization for the Effects of Inventory Coverage and Elasticities 

Parameter Name Description or Note Value 

Producer Desired 
Inventory Coverage 

Weeks supply of inventory the producer wants to have on 
hand 

2 Weeks 

Sensitivity of 
Producer Price to 
Producer Inventory 
Coverage 

Factor affecting how 'steep' the inverse relationship between 
inventory coverage and price is. Note that based on this 
formulation, this is assumed a positive value here for the 
expected inverse relationship. Higher positive values of this 
factor imply more sensitivity. 

2 (dimensionless) 

Elasticity of Customer 
Demand 

Under an assumption of a linear demand curve near the 
reference prices and demand, this is the negative value of the 
slope of that curve. Note that this parameter is assumed to 
take on a positive value under the default assumptions of 
decreasing demand with increasing spot prices. High positive 
values of the factor create a steeper, but still negatively 
sloped, demand curve. 

1 (dimensionless) 

 

As described in the main chapter and partially restated in this Appendix, the multinomial 

logistic choice model depends on the relative difference in perceived value of each disposition 

option. Thus, each option must have some manner by which that value can be calculated. For 

this specific model, this value is simply determined by comparing the expected profit from each 

disposition route along the supply chain. The costs and baseline revenue values used are given 

below. 
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Table A-5. Parameterization for Producer Costing 

Parameter Name Description or Note Value 

Reference Producer 
Price 

Price at which the Producer experiences its reference 
Gross Margin and Reference Planting. Sets the default 
profitability expectations in steady state for the producer 

$1.1/unit 

Producer Raw Material 
Costs 

Raw cost per unit (i.e., the variable cost) the producer 
endures 

$0.05/unit 

WIP Development 
Costs 

Cost of developing a single unit of productions starts for a 
single unit of time that the producer endures 

$0.01/unit/week 

Producer Cost to 
Dispose of or Abandon 
WIP 

The cost incurred by the producer to dispose of a unit being 
actively developed in a WIP state. Note that this could not 
only be the actual material cost (labor and equipment) but 
also could be extended to include physiological costs from 
sunk cost fallacy or similar resistance to disposing units 
that have already had resources invested in their 
development. 

$2/unit 

Producer Cost to Place 
in FG State 

Costs, per unit, that the producer incurs to move a unit from 
the WIP to the FG state. 

$0.1/unit 

Producer Shipping Cost 
Costs, per unit, that the producer incurs to process and 
ship goods for the Customer. 

$0.1/unit 

Producer Cost to 
Dispose of FG 
Inventory 

The cost incurred by the producer to dispose of a unit that 
is being stored after production and before shipping to the 
customer. Note that this could not only be the actual 
material cost (labor and equipment) but also could be 
extended to include physiological costs from sunk cost 
fallacy or similar resistance to disposing units that have 
already had resources invested in their development and 
storage. 

$1/unit 
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Appendix B Chapter 2: Systemic Origins of Hunger Amidst 
Plenty During the Onset of the COVID-19 
Pandemic in the United States 

 

B.1 Model Availability 

Accompanying the main chapter and this Appendix are the full models available as .mdl files. 

The .mdl files can be open and run using Vensim software, developed by Ventana Systems, Inc. 

A free version of the Vensim software for personal use, along with a standalone model viewer, 

is available from Ventana Systems, Inc. These model files can be obtained directly at: 

https://github.com/jpain3/MIT-Disseration/tree/main/chapter-2 

Ventana Systems, Inc provides detailed documentation on the Vensim software, 

including how to manipulate and examine specific formulations. However, the reader may 

quickly explore the influence of parameter choices on the model via the SyntheSim mode on the 

main Dashboard view of the model. This can be accessed by pressing the corresponding button 

in the top toolbar of the software as seen below:  

 

For the supporting Food Supply Chain model, the .mdl file is divided into views, 

consisting of an overview Dashboard, a view of the full model itself, and several views 

highlighting the physical flows of goods through each entity in this supply chain. Different views 

can be accessed via the buttons in each view, or via the view menu. Examples of these two 

views (but not the entirety of these views) are provided below. 

https://github.com/jpain3/MIT-Disseration/tree/main/Chapter-2
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Figure B-1. Example of the Dashboard View of the Food Supply Chain Model 

 

Figure B-2. Detail of Aggregate Framework Embedded in Full Model View of the Food Supply 
Chain 

 

As a note, the full model view is presented entirely and largely has no hidden structure 

or hidden causal connections. Furthermore, the .mdl file provided may be opened in any 

program that is able to read UTF-8 encoding and the formulations directly viewed in plaintext. 

Examples of programs that can open the .mdl file for direct viewing in plaintext include Notepad 
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in the Windows operating system and Textpad in the Macintosh operating system. An example 

of this view of the model file is seen in Figure B-3. 

 

 

Figure B-3. Example of Viewing the Supporting .mdl File in Notepad on Windows 

 

The models developed for this chapter are also fully documented utilizing the SDM-Doc 

tool described in (Martinez-Moyano, 2012). The output from this documentation tool is available 

alongside the .mdl files. 

B.2 Formulation Details for the Supporting Food Supply Chain Model 

The sections below provide additional detail on the development of that food supply chain 

model, focusing on details on the formulations developed for the food supply chain model seen 

in the main chapter. Please note that some portions of the explanatory text from the main 

chapter are repeated below where needed to create a self-contained description of this larger 

model. 
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The example model described below explores the application of this modeling framework to 

a hypothetical bifurcated food supply chain consisting of the following entities: 

• A farmer, who is responsible for making decisions about how much to plant each period 

and how to manage his or her harvest 

• A wholesaler firm, which receives raw and unprocessed foodstuff from the farmer, and 

does some minimum value-added work to the food 

• Two different packaging processors 

o A CPG (consumer packaged goods) processor that received good from the 

wholesaler and does extensive value-added rework to the food, packaging it in 

smaller consumer friendly forms for sale to the end consumer at some outlet like 

a grocery store 

o A Bulk processor that receives goods from the wholesaler and does minor 

repacking of the food for sale directly to larger consumers like restaurants, 

governments, or schools. 

• The end consumers, which include demand for both CPG and Bulk packaged food 

 

B.2.1 Core Market Formation Mechanisms 

The definition of this marketing being based on a commodity product implies the use of 

inventory-sensitive spot pricing (Chen et al., 2009; Sterman, 2000; Whelan & Forrester, 1996), 

and thus similar market formation mechanisms as that used in chapter 1 can be used here as 

well. The core of this economic model remains the same two balancing loops across each entity 

in the supply chain, with spot pricing driving either demand or supply as illustrated Figure A-9 

above, chained in sequence as illustrated in Figure A-10.  

 Similarly, the core mechanisms explained in more detail in Appendix A above are used 

directly in this more expansive use case in this chapter. Please refer to those sections for more 

details on the mechanics of the market and price formation. They are linked below for 

convenience: 

• A.2.1 Defining the Market 

• A.2.2 Production Starts and Capacity Management 

o Note the additional structural feature of Yield is Decreasing with Additional Arable 

Land expanded on below 
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• A.2.3 Discounting the Spot Price based on Development Age 

• A.2.4 Quantifying the Age-Value Relationship 

• A.2.5 A Multinomial Logistic model of Inventory Dispositions 

• A.2.6 Valuing WIP Dispositions 

• A.2.7 Valuing FG Inventory Dispositions 

B.2.2 Yield is Decreasing with Additional Arable Land 

To a first approximation, one could consider the net incremental productivity added by acquiring 

new land constant and fixed. However, that creates a scenario in which the farm is able to 

infinitely expand so long as the gross margin is justified (i.e., the additional operating expenses 

of the land are covered by the new production). A more realistic model though would capture 

that the net productivity would decrease with additional land under management. In other words, 

there are decreasing returns to scale with respect to land and productivity.  

While there are multiple ways to model this relationship, here a linear decay model is 

used where the farm has a known maximum amount of land that they could get any yield out of. 

Figure B-4 shows the shape of this new function, which I ultimately used in the model for both 

the reasons named above and simplicity. 

 

Figure B-4. Linearly Decaying Relationship between Yield and Arable Land 
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B.3 Alternate Combined Color Figures From the Main chapter 

For the sake of presentation in print, the figures in the main chapter are all presented without 

color. Also, to avoid excessively cluttered diagrams, figures of production, demand, and prices 

were often split into two sections (such as ‘upstream’ and ‘downstream’, or ‘producer’ and ‘non-

producer’). 

Below are selected key figures exported directly from the Vensim .mdl model viewer and 

based on the same datasets as those used for the main chapter and are based on the scenario 

of a 50% drop in bulk consumer demand for a period of 20 weeks. 

 

 

Figure B-5. 50% Drop in Bulk Purchasing for 20 Weeks – Demand and Production 
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Figure B-6. 50% Drop in Bulk Purchasing for 20 Weeks – Inventories 

 

 

Figure B-7. 50% Drop in Bulk Purchasing for 20 Weeks – Food Maturation 
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Figure B-8. 50% Drop in Bulk Purchasing for 20 Weeks – Spot Prices 

 

 

Figure B-9. 50% Drop in Bulk Purchasing for 20 Weeks – Food Loss and Disposal 



 

157 

B.4 Reference to Appendix B 

Chen, H., Wu, O. Q., & Yao, D. D. (2009). On the Benefit of Inventory-Based Dynamic Pricing 
Strategies. Production and Operations Management, 19(3), 249–260. 
https://doi.org/10.1111/j.1937-5956.2009.01099.x 

Dorp, J. R. van, & Kotz, S. (2003). Generalized trapezoidal distributions. Metrika, 58(1), 85–97. 
https://doi.org/10.1007/s001840200230 

Martinez-Moyano, I. J. (2012). Documentation for model transparency. System Dynamics 
Review, 28(2), 199–208. https://doi.org/10.1002/sdr.1471 

Sterman, J. D. (2000). Business Dynamics—Systems Thinking and Modeling for a Complex 
World (Vol. 53, Issue 4). McGraw- Hill Higher Education. 
https://doi.org/10.1057/palgrave.jors.2601336 

Whelan, J., & Forrester, J. W. (1996). Economic Supply & Demand. D-4388, 7. 
http://ocw.mit.edu/courses/sloan-school-of-management/15-988-system-dynamics-self-
study-fall-1998-spring-1999/readings/economics.pdf 

 



 

158 

 

Appendix C Chapter 3: Simpler is (Sometimes) Better: A 
Comparison of Cost Reducing Agent 
Architectures in a Simulated Behaviorally 
Driven Multi-Echelon Supply Chain  

 

C.1 Model and Code Availability 

All code used to produce the results in the main chapter are available at: 

https://github.com/jpain3/MIT-Disseration/tree/main/chapter-3 

This includes the code, in Python, used to train the DQN structures described in the 

main chapter, along with code, in R, used to apply those trained TensorFlow objects. Note that 

the DQN was originally trained using TensorFlow (Abadi et al., 2016) version 2.3.0. The DQN 

model objects must be used in an environment that similarly uses TensorFlow version 2.3.x or is 

backwards compatible with objects trained in that environment. The Python scripts also includes 

the custom OpenAI gym environment (Brockman et al., 2016) used to train the DQN agent. To 

train the agent, the package Keras-RL2 (McNally, 2019) was used as a front-end API manager 

for TensorFlow. Keras-RL2 is an extension of the Keras package (Chollet, 2015) and was used 

specifically because it better implements the dueling reward function structure central here 

(Wang et al., 2016). 

 To support use of these objects trained objects and to replicate the training process, the 

code repository includes yaml objects as well, which contain snapshots of the supporting 

packages and similar supporting infrastructure used in Python while training these DQN agents. 

Note that while these yaml objects do include all necessary packages for recreating the training 

environment, they may contain superfluous packages as well. The author has attempted to trim 

down these unnecessary packages but makes not guarantees. 

 The R scripts include self-contained functions to simulate the Beer Game over a given 

time horizon with variable values of information delays, shipping delays, costing, and order input 

types. All R scripts include code at the beginning to install any needed packages that are 

beyond the vanilla installation of R. Note that these scripts were primarily developed and run 

using RStudio as the IDE (RStudio Team, 2020), and may contain references to graphical 

https://github.com/jpain3/MIT-Disseration/tree/main/Chapter-3
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objects (such as progress bars or window status values) that may not be pertinent in all 

environments, especially headless clusters or similar decentralized computing systems.  

The code is intended to act as a flexible framework for future research and allows for 

multiple models of human ordering based on prior literature to be substituted into each position 

in the supply chain. As of this publication, the framework supports the following ordering 

schemes: 

• Base-Stock replenishment – This does not calculate the optimal base stock 

policy like that seen in (Clark & Scarf, 1960) but rather follows a fixed 

replenishment policy based on a given bast-stock value for the position in the 

supply chain 

• (Sterman, 1989) – This is the mechanism used in the main chapter and follows a 

four-parameter ordering scheme with anchoring and adjustment of expectations 

of future ordering. This ordering scheme is also derived most directly from the 

context in which the real-world runs of the Beer Game on which this paper is built 

were derived. 

• (Sterman & Dogan, 2015) – This paper was based on stationary and known 

orders, and introduces a more complex rule built on other similar research 

(Croson et al., 2014) and allows for the desired supply line to shift over time. 

• (Oliva et al., 2022) – All four variants of the model utilized in this paper are 

available as options in the framework here, but models 3 and 4 notably vary from 

the (Sterman, 1989) model described above in that they allow the response to 

differ when agents are in a backlog state. 

For all the models described above, the framework allows for entity-level parameters to 

be supplied (like those fitted to real world ordering behavior for the Sterman ’89 rule used in the 

main chapter). If no parameters are supplied, the code utilizes the ‘average’, or ‘baseline’, or 

‘best-fit’ values reported in the corresponding original paper. 

C.2 Order Data Availability 

 For the 49 simulated teams used throughout the main chapter as a testing bed for the 

agents, 11 come directly from the original presentation of the four parameter ordering rule used 

throughout the analyses here, and 1 additional team modeled on ‘average’ performance of 

those other 11 (Sterman, 1989), for 12 historic teams. These teams do not have specific order 
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traces, and instead were presented as estimated models using the four-parameter ordering rule 

in Sterman ’89. Order traces for real runs of the game were obtained from online runs of the 

Beer Game at MIT as part of various executive and graduate-level classes. These runs 

occurred twice in August of 2021, with 12 teams in one run and 22 teams in another run, and in 

June of 2022 for an additional 3 teams.  

For these more recent runs, order traces are available with the team names and exact 

dates of the games obfuscated for individual privacy. Additionally, these teams have been fitted 

to the Sterman ’89 ordering rule to provide the total 49 teams used in the main paper. The code 

used to perform this fit is also available at the repository linked above. 

C.3 Detail on the Beer Game 

The simulation environment used in this work is based on the board-game configuration 

of the Beer Game as illustrated in Figure C-1 below. This figure also shows the typical starting 

layout for the game as used in numerous previous studies using this modeling framework 

(Croson & Donohue, 2006; Narayanan & Moritz, 2015; Sterman, 1989), which is started with 12 

units of inventory on hand for each player, and 4 units of inventory in transit at each stage in the 

shipping system, and 4 orders moving through the order chain.  

 

Figure C-1. Example of Beer Game Board Layout 

 

Each round of the game proceeds as follows: 

1. Receiving inventory and advance shipping delays – Each entity receives the units in the 

shipping delay immediately to their right. The contents of the furthest shipping delay to 

the right are moved up. 
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2. Fill orders – Entity 1 (retailer) views the customer order, all others examine the ‘incoming 

orders’ and orders, inclusive of any outstanding backorders, are filled to the extended 

inventory allows  

3. Record inventory or backlog 

4. Advance order slips – the order slips further to the left are moved up 

5. Place orders – Each entity decides what to order and places it the ‘orders placed’ box to 

their right 

The stated goal of the game is to reduce the amount of total cost of the entire team over 

some time horizon T, subject to some known inventory holding and backorder/stockout costs. 

Backorders do not expire under the traditional interpretation of this game and must be filled from 

existing stock prior to meeting any new demand. In the prior studies referenced above, and in 

this work, the cost of holding inventory, 𝐶𝑖𝑛𝑣, is $0.50 per unit per period, and the cost of 

backorders, 𝐶𝑏𝑜, is $1.00 per unit per period. 

𝐶𝑜𝑠𝑡𝑇𝑒𝑎𝑚 = ∑ ∑ (𝐶𝑏𝑜 ∗ 𝐵𝑎𝑐𝑘𝑜𝑟𝑑𝑒𝑟𝑠𝑡,𝑛 + 𝐶𝑖𝑛𝑣 ∗  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑡,𝑛)

𝑁

𝑒𝑛𝑡𝑖𝑡𝑦=1

𝑇

𝑡=1

 

C.4 Applicability to Alternative Ordering Rules 

The framework allows for the cost-reducing agent to be placed in the supply chain in any 

of the positions, and for its ordering rules to be defined separately from those used by the other 

entities. Thus, a DQN agent can be placed in a supply chain run by Sterman ’89 behaving 

agents, or base-stock agents, or any other of the available ordering schemes. For the model-

predictive learning agent, this is taken a step further, and the assumption of the agent about its 

surroundings can be further defined. For simplicity of exposition, the in main chapter the core 

architecture of the agent and its assumptions about its environment were kept the same, with a 

base-stock responding agent assuming base-stock responses from the other agents. This 

follows from the idea that for an agent to assume that a base-stock response would be near 

optimal it must also assume the other agents around it is behaving similarly. Conversely, if the 

agent itself is using a behavioral response model this presupposes that the agent is assuming 

behavioral responses from its peers in the supply chain. 

However, while this matching of architecture and assumptions makes intuitive sense, it 

can be relaxed in the framework developed here, and the agent can assume any one of the 

above listed ordering rules are being used by other entities in the supply chain, and in turn use 
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any of those rules (plus the DQN structures) to respond. Furthermore, the underlying reality that 

the agent is placed in, e.g., the actual rules being followed by the other entities can take on any 

of the above forms and does not have to match the assumptions the agent is making.  

 While not the focus on the main chapter, this framework also allows for some additional 

observations, namely that the model-predictive learning method can perform well even when 

making fundamentally flawed assumptions about its environment. Table C-1 shows the results 

from placing the model-predictive learning agent (with a calibration memory of 10 time steps 

and a forward horizon of 30 timesteps as in the main chapter) that assumes the other entities int 

the supply chain is following the Sterman ’89 ordering heuristic. In reality, they are following 

Model 3 from Oliva et. .al ’22, a related but still fundamentally different ordering rule. 

 

Table C-1. Model-Predictive Learning Agent Assuming Sterman ’89 but in Oliva et al ’22 Average 
Model 3 Environment subject to Step Input 

    Model-Predictive Learning Agent  

  Baseline Costs 26257 

A
g
e

n
t 

P
o
s
it
io

n
 

1 (Retailer) 869 (-96.7%) 

2 (Wholesaler) 1040 (-96.0%) 

3 (Distributor) 2859 (-89.1%) 

4 (Factory) 12274 (-53.3%) 

  

C.5 Model-Predictive Learning Agent Hyperparameters 

The model-predictive learning agent introduced in the main chapter has several hyperparameter 

assumptions that are implied by the pseudocode used in the second that introduces that agent. 

In addition to the assumptions used to model the environment in which it resides, which is 

discussed in this Appendix in the sections above, this agent also has a calibration memory over 

which to fit an estimate of that model, and an optimization horizon over which to plan based on 

that calibrated model. 

C.5.1 Calibration Memory and Optimization Horizon 

In the main paper, all results for the model-predictive learning agent are based on a calibration 

memory of 10 units of time and a forward optimization horizon of 30 units of time. These 
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numbers are somewhat heuristically chosen based on multiple trials of the agent during 

development, and also somewhat from support in related literature (notably the memory of 10 

units used in the semi-optimal baseline developed in (Moritz et al., 2021)). However, some of 

the tradeoffs from choosing differing values of these hyperparameters can be directly explored. 

As discussed above, the choice of position 2 (wholesaler) in the supply chain was chosen for 

this analysis to isolate the main feature choices of the agents versus other idiosyncrasies. The 

hyperparameter choices are muted at this position in the supply chain as well.  

However, when a model-predictive learning agent is placed at the beginning of the 

supply chain, in position 1 (retailer) and exposed to non-stationary order inputs then the 

influence of these hyperparameters, especially the forward optimization horizon, can be more 

significant. Figure C-2 shows the total team costs incurred in the simulated four entity supply 

chain, all using the average ordering rule reported in Sterman ’89, with a model-predictive 

learning agent placed at position 1, the retailer, and exposed to either deterministically linearly 

increasing orders, or to noisily increasing orders. Figure C-3 zooms in on the specific case of 

the optimization horizon equaling 35 in the noisy non-stationary case to illustrate how the orders 

being placed by the agent in position 1 influence the overall inventory positions taken during the 

simulation. 

 

Figure C-2. Total Team Costs With MP Agent at Position 1 with Non-Stationary Increasing Orders 
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Figure C-3. Orders and Inventory with Agent at Position 1 and Horizon of 35 

  

Figure C-2 would seem to imply that, generally, a smaller optimization horizon results in 

lower costs for the team. In other words, a greedier agent in position 1, one that only considers 

the immediate future, reduces overall team costs. However, consider Figure C-4 which zooms in 

on the case with optimization horizon equal to 10. While the average team costs over the 52 

week simulation are objectively lower than in the case of the longer optimization horizon above, 

the agents behavior is arguably much worse. By attempting to minimize the costs that are 

incurred by having a destabilized supply chain, the agent effective ignores the increasing orders 

from the end customer, and eventually gets into a position later in the simulation where 

matching customer orders and incurring temporary disruptions in the supply chain are too costly 

over the near horizon. 
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Figure C-4. Orders and Inventory with Agent at Position 1 and Horizon of 10 

  

Such pernicious outcomes as function of hyperparameter choices are interesting, and of 

concern for specific scenarios but secondary to the focal points of the main chapter and thus left 

for this Appendix. 

C.5.2 Matched vs Mismatched Environmental Assumption and Agent Response 

As discussed elsewhere in the main chapter and in this Appendix, the most straightforward 

structural assumption of the model-predictive learning agent is to match the assumption of the 

environmental ordering rules with the agent’s ordering rules. If the agent assumes the other 

entities in its environment are rational base-stock actors, then the best course of action for that 

agent is to also respond in a base-stock manner. Similarly, if the agent assumes other entities 
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are not necessarily rational and following some other ordering heuristic, then using a behavioral 

response itself at minimum grants the agent more degrees of freedom to form its own ordering 

policy. 

 Figure C-5 shows box-and-whisker plots for the cost reduction for an agent placed at 

various spots the supply chain versus the baseline of no agent present for the same 49 teams 

used elsewhere in these analyses (the original 11 Sterman ’89 teams plus the average Sterman 

’89 team plus 37 additional teams fitted from real order data from three separate runs of the 

Beer Game in 2021 and 2022), subject to the step input signal from the original Sterman 89 

paper. Note that the truth’ of the environment in which the agent is acting is behaviorally-driven 

(all other agents are using the Sterman ’89 ordering rule). Note that this implies that the primary 

benefit comes from matching the assumption of the environment to the truth, independent of the 

agent architecture. However, this is less clear in the middle positions of the supply chain, and 

even reversed in some middle positions. The relationship when matching the ordering rule of 

the agent to the assumed environment is however consistent among all four positions.  

 

 

Figure C-5. Orders and Inventory with Agent at Position 1 and Horizon of 10 
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C.6 Choice of Baseline for Analyses 

The base-stock values presented in the main chapter were derived for a team that all follow 

static base-stock ordering rules, and that perform best on average for 50 draws of the order 

distribution. However, it is possible to obtain even better performance for specific draws of the 

order distribution as an even more restrictive estimated upper bound on performance (or here 

lower bound on cost incurred). Starting from the values determined above, a further grid search 

of +/- 10 units was done for each of the draws of the order string actually faced by the example 

teams used in the analyses below to determine an order-string specific estimated lower bound 

on cost that could have been achieved by a team subject to the same order pattern and 

following a base-stock replenishment policy. 

Perhaps unsurprisingly the costs incurred for the baseline simulated behaviorally 

ordering teams were significantly higher than that which would have been incurred by a similar 

supply chain in which all four entities were following the average cost-reducing base-stock 

replenishment policy, and much higher than those following an estimated idealized base-stock 

policy for the specific order pattern each team faced. As seen in Figure C-6, the median cost 

incurred by the 49 simulated behavioral teams was 13,898 while for the static base-stock team 

exposed to the same 49 input order patters experienced a median cost of 6,419, and for the 

case of order-string specific base stock rules a median cost of 3,211. 

 

 

Figure C-6. Baseline Simulated Costs of Behavioral Teams vs Base-Stock Teams 
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However, the purpose of this research is not to simply restate that the behavioral 

responses result in poorer performance than an optimal decision rule. Rather, this work 

assumes that the other entities in supply chains are acting in a behavioral manner and asks 

what features of an agent placed into such an environment can help reduce costs overall. Thus, 

the results in Figure C-6 provide two different baselines of comparison for any such agent. 

While the full team of base-stock agents provides a realistic floor of costs, the simulated 

behavioral teams do not necessarily represent a true upper bound on costs. Indeed, one or two 

teams within that sample perform reasonably similarly to the base-stock teams even with 

simulated behavioral response rules. Therefore, it is reasonable to expect that an agent placed 

into these already well performing teams could even be destabilizing and introduce additional 

costs.  

C.7 Robustness Check for Different Heuristic Parameter Combinations 

As a review, the main paper focuses on agent response in the context of other entities utilizing 

the ordering heuristic introduced in (Sterman, 1989) and (Martin et al., 2004), and summarized 

in expressions (44) and (45) below: 

𝑂𝑡 = 𝑀𝐴𝑋(0, 𝐿𝑡̂ + 𝛼𝑆(𝑆
′ − 𝑆𝑡 − 𝛽 𝑆𝐿𝑡) + 𝜀𝑡) (44) 

𝑤ℎ𝑒𝑟𝑒 𝐿𝑡̂ =  𝜃𝐿𝑡 + (1 − 𝜃)𝐿̂𝑡−1 (45) 

 This was used to fit 49 ‘human-like’ agent models using real world order data. However, 

while the above parameters are bounded as 0 ≤ θ, α, β ≤ 1  and 0 ≤ S′, the actual distribution of 

parameters in the fitted data do not uniformly fall in these ranges as seen in Figure C-7. 
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Figure C-7. Distribution of Fitted Sterman ’89 Order Parameters 

 

Given the semi-bimodal distributions of θ, α, and β, and the clustering of S’ (but which 

can vary orders of magnitude greater), an argument could be made that the policies explored in 

this work apply only to situations in which the distribution of the parameters follows a similar 

pattern to the above. 

 To explore this possibility, and thus also test the robustness of the observations in the 

main text, consider the extreme points of the parameter space and how they map to other order 

policies: 

• Fully Rational:  α = 1, β = 1, θ = 1, S’ = Clark and Scarf base-stock value. This is the 

classical full rational base-stock system described in the original Clark and Scarf paper. 

• Pass Through: α = 0, β = 0, θ = 0. This is a rule mapping to no inventory management 

whatsoever, the entity just passes through orders. 

• Full Supply Chain Underweighting:  α = 1, β = 0, θ = 1, S’ = Clark and Scarf base-stock 

number. This maps to an extreme case of the Sterman ’89 rule wherein the agent is 

totally forgetful of the supply line. 
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• Partial Supply Chain Underweighting:  α = 1, β = 0.5, θ = 1, S’ = Clark and Scarf base-

stock number. Here, the agent is partially underweighting the supply line by 50%, and 

was chosen specifically because it is in the middle of the bimodal distribution shown for 

this parameter in Figure C-7. 

In addition to the above extreme points, mean-zero gaussian noise is added to the final 

order signal to match the process used in the main paper. Here, there is no RMSE measure of 

error to use for this noise, so the standard deviation of the noise was varied along 𝜎 =

[0, 2.5, 5.0, 7.5, 10]. Combined with the four overarching conditions above, this creates a new set 

of 20 simulated teams in which to test these policy architectures (four main conditions with five 

sets of noise each). 

 The same style analysis as shown in the main chapter was performed here, only also 

incorporating the main effects of the values of α, β, and θ. As α only took on values of 0 or 1, its 

influence on this regression is colinear with that of β by examination of (44), and thus is not 

shown in the outputs below separately. 
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Table C-2. Feature Influence: Behavioral and Learning Agent at Position 2 

θ

β

σ

 

 

The magnitude and significance of the base-line model (a simple base-stock static order 

replenishment model), remains largely unchanged in these extreme supply chain models. 

Similarly, the value of incorporating explicit behavioral models is still valuable, though arguably 

simply because of the additional degrees of freedom those policies enjoy from additional 

parameters. Increasing noise does directionally reduce the performance of these agents, but not 

significantly so. Similarly, when faced with less rational and more behaviorally driven 

environments, the results from the main chapter stand. 
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Of interest, the influence of ‘learning’ in these extreme environments effectively drops 

out, though it was of notable significance in the results in the main chapter. Thus, while these 

robustness results reinforce the fundamental applicability of the overall observations of the main 

chapter (namely that most of the benefit is derived from having a base stock policy, which is 

improved by adding behavioral features), it also emphasizes that under certain conditions more 

complex policies are less applicable. 

C.8 Additional Differences Across Supply Chain Positions 

As stated in the main text of this chapter, it is reasonable to expect, or at least test for, different 

policies that emerge for an agent (or manager) in the middle versus the terminal positions in the 

supply chain. In addition to the tests done in the main text, there is another minor, but notable 

difference in the influence of an agent placed in the Retailer position in the supply chain when 

considering the extreme case where the threshold in the expression below is taken to the 

extreme minimum of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0. 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟 ≡
𝐶𝑜𝑠𝑡𝐴𝑔𝑒𝑛𝑡𝑇𝑒𝑎𝑚𝑖

− 𝐶𝑜𝑠𝑡𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑇𝑒𝑎𝑚𝑖

𝐶𝑜𝑠𝑡𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑇𝑒𝑎𝑚𝑖

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

 In other words, looking only at the first position in the supply chain (the ‘Retailer’ here), 

and only at those policies that have no destabilizing influence whatsoever. 

For this position and extreme threshold value, the introduction of a behavioral agent or 

even a dynamic learning agent has no significant improvement over the simplest static base-

stock agent. In other words, for a manager at the beginning of the supply chain, dynamically 

learning about his or her downstream partners, or more accurately incorporating behavioral 

features into her model no more valuable than the simple static base-stock policy first described 

in the 1960’s, even in an environment that breaks many of the underlying assumptions of that 

early literature. 
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Table C-3. Behavioral and Learning Agent at Position 1 with Threshold = 0 

ρ

C.9 Stability of Different Architecture Choices 

The main analyses about the influence of different agent architectures and information choices 

were all based on those runs that mixed both stabilizing and destabilizing agents. When 

incorporating all teams including those originally dropped in the main analysis as outliers, of the 

3,528 total runs (49 runs each for each across 18 different feature and information 

configurations, for 882 runs per each of four positions in the supply chain), 407 total resulted in 

higher costs being realized with the presence of the agent versus the baseline performance of 

the simulated team. Similarly, among the subset of 3,118 runs that had model-predictive 

learning features, 284 were destabilizing. 
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Table C-4 and Table C-5 show the fraction of the 3,118 runs in each condition category 

of model-predictive learning agents that were destabilizing, resulting in more incurred costs 

versus the baseline simulated teams. While the absolute numbers of destabilizing runs are low 

(no more than 6 of 49 runs in each condition in each position in the supply chain), it is 

nevertheless interesting to observe that generally higher information availability results in lower 

occurrence of destabilizing runs. This is especially true for non-myopic agents that endeavor to 

reduce costs across the entire supply chain. For myopic agents focused only on their own cost 

reduction, there is an interesting trade-off implied among the lowest information availability 

states. The lowest information state, which as defined above is only the on-hand inventory of 

the agent and its own placed orders, is less likely to be destabilizing than providing a small 

additional amount of information in the calibration process (specifically the inbound shipments 

from the agent’s supplier). This countertrend is only represented by a single difference in 

occurrence and thus cannot be said to be significant but should be noted for future inquiry. 

 

Table C-4. Percent Destabilizing for Myopic Agents 

 

Table C-5. Percent Destabilizing for Non-Myopic Agents 
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C.10 DQN Agent Architecture and Hyperparameters 

The DQN agent introduced in the main chapter serves two purposes: 1) to provide a minor 

methodological contribution by providing another viable DQN approach towards managing 

ordering decisions in multi-echelon supply chain, specifically in the beer game, and specifically 

utilizing the dueling reward function architecture (Wang et al., 2016), and intends to extend 

directly from other recent work notably on architectures that use transfer learning 

(Oroojlooyjadid et al., 2021). 2) Provide a ‘high complexity’ point for comparison of other, often 

significantly less complex, agent policy architectures. 

As the DQN itself is secondary to the central argument of this chapter, and recent prior 

literature by Oroojlooyjadid et al 2021 has provided a recent detailed assessment of the DQN 

architecture in this environment in general, only a curiously overview of the agent is provided in 

the main chapter. In the supporting material that accompanies this Appendix is all the code used 

to train both the model-free and model-aware versions of the DQN. To restate from the main 

chapter both DQN agents have the following general architecture: 1) An ‘order-plus’ action 

space (Oroojlooyjadid et al., 2021) which both allows for unbounded ordering in absolute terms 

and follows from observations in the model-based approach above, 2) a dual DQN network 

(Wang et al., 2016) that separately maintains a value function estimation for both the current 

overarching combined state of the system and separately for each action, 3) an observation 

space defined over a window of prior state observations corresponding to the signal delay in the 

system, 4) a combination of epsilon-greedy and Boltzmann exploration policies (Wiering, 1999), 

and finally 5) three sequential dense layers with ReLu activations of 256, 128, and 64 free 

parameters respectively for a total of 448 free parameters. 

 With respect to the hyperparameters of the system, the one of most interest is the 

amount of training steps employed and how this affects the spread in performance between the 

model-free version and the model-aware version of the agent. Figure C-8 shows the average 

cost improvement as a function of training steps when the agent is placed in position 1 (the 

retailer) for both versions the DQN. Note that this is inclusive of all 49 different teams, including 

destabilizing outcomes, and subject to the classical step input from Sterman ’89. While there is 

some improvement from the Model-Aware agent versus the Model-Free agent (which is also 

seen in the main chapter), this improvement is relatively minimal once sufficient training steps 

occur. Indeed, the primary value of the model aware agent is under smaller training iterations. 

This supports similar observations made in the main chapter above the model-predictive 

learning agent as well, namely that additional information about the environment is less useful 
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than expected. Here we hypothesize, given enough training data, the model-free agent can still 

determine a sufficient estimate of the state of the entire system from its own state variables 

without needing to be told an explicit representation of that system. 

 

 

Figure C-8. Overall DQN Performance at Position 1 (Retailer) versus Training Steps  
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