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Abstract
In this thesis, we establish and analyze two core principles driving the success of neural networks: over-
parameterization and feature learning. We leverage these principles to design models with improved perfor-
mance and interpretability on various computer vision and biomedical applications.

We begin by discussing the benefits of over-parameterization, i.e., using increasingly large networks that
can perfectly fit training data. While prior work characterized the benefits of over-parameterized networks
for supervised learning tasks, we show that over-parameterization is also beneficial for unsupervised learning
problems, such as autoencoding. The ubiquitous advantage of using increasingly larger networks suggests
that infinitely large networks should yield best performance. Remarkably, under certain conditions, training
infinitely wide networks simplifies to training classical models known as kernel machines using the Neural
Tangent Kernel (NTK). We showcase the practical value of the NTK by deriving and using it for matrix
completion problems such as image inpainting and virtual drug screening. Additionally, we use the NTK
connection to provide theoretical guarantees for deep neural networks. Namely, we construct interpolating
infinitely wide and deep networks that are Bayes optimal, or consistent, for classification.

While the NTK has been a useful tool for understanding properties of deep networks, it lacks a key
component that is critical to the success of neural networks: feature learning. In the second part of this
thesis, we identify and mathematically characterize the mechanism through which deep neural networks au-
tomatically select features, or patterns in data. We show that neural feature learning occurs by re-weighting
features based on how much they change predictions upon perturbation, a process that is mathematically
characterized by the average gradient outer product. Our result explains prominent deep learning phenom-
ena such as spurious features, lottery tickets, and grokking. Moreover, the mechanism identified in our work
provides a backpropagation-free method for feature learning with any machine learning model. To demon-
strate the effectiveness of this general feature learning mechanism, we use it to enable feature learning in
kernel machines. We show that the resulting models, referred to as Recursive Feature Machines, achieve
state-of-the-art performance on tabular data.

Overall, this thesis advances the foundations of machine learning and provides tools for building new
machine learning models that are computationally simple, interpretable, and effective.

Thesis Supervisor: Caroline Uhler
Title: Full Professor
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Chapter 1

Introduction

Over the past decade, interest in machine learning research has spiked, with deep learning being a significant
driving force. Indeed, deep learning has been applied across various domains including computer science [35,
80] and biology [183]. Despite numerous empirical successes, our understanding of the fundamental principles
making these models effective is still emerging. By identifying core principles driving the success of deep
networks, we could provide a principled, cost-effective approach to designing and training machine learning
models with improved performance and transparency.

In this thesis, we identify and analyze two principles, over-parameterization and feature learning, that are
central contributors to the success of deep neural networks. We demonstrate that these principles in isolation
are able to shed light on various properties and phenomena exhibited by deep neural networks. Moreover,
we show that these two principles can be combined to develop state-of-the-art machine, transparent learning
models that are computationally simple to train. Below, we summarize our contributions in the context of
each of these principles. We note that each of these contributions corresponds to a self-contained chapter of
the thesis.

1.1 Over-parameterization

A common practice in deep learning is to increase model size in order to improve performance [80, 100,
208]. Indeed, there is an emerging understanding that utilizing over-parameterized models, i.e., those that
can perfectly fit training data, can lead to improved performance on supervised learning problems such as
classification and regression [16, 22, 24, 75, 135].

In Chapter 2, we demonstrate a similar benefit to using over-parameterized networks for unsupervised
learning tasks. In particular, we first discuss our prior work showcasing that over-parameterized autoencoders
learn latent representations that are better for downstream tasks than under-parameterized autoencoders.
We then analyze the properties of solutions learned by such models. Namely, we show that these models
learn solutions that are contractive around training examples and thus, automatically implement a form of
associative memory.

As using increasingly large, over-parameterized networks leads to improved performance in both super-
vised and unsupervised learning, can we train infinitely large networks to get best performance? Remarkably,
under conditions on parameter initialization, training infinitely wide neural networks corresponds to training
classical machine learning models known as kernel machines [96]. Training a kernel machine corresponds
to the conceptually simple process of transforming data with a fixed feature map and then solving linear
regression [5, 166]. Given a network architecture, the work of [96] identified a fixed feature map yielding a
kernel known as the Neural Tangent Kernel (NTK) [96]. Under a Gaussian initialization scheme, as network
width approaches infinity, the NTK can be computed in closed form, and one can mimic training an infinitely
wide network by training a kernel machine with the NTK.

Given its conceptual simplicity, how useful is the NTK as a practical tool and as a theoretical tool
for understanding properties of neural networks? In Chapter 3, we highlight the effectiveness of the NTK
by deriving a closed form for the NTK of infinitely wide neural networks used in matrix completion tasks
such as virtual drug screening and image inpainting. Notably, the NTK yields state-of-the-art performance
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for virtual drug screening and is competitive with deep convolutional networks for high resolution image
inpainting. In Chapter 4, we demonstrate that the NTK can be used to provide theoretical guarantees for
neural networks. In particular, we analyze the NTK for infinitely wide and deep fully connected networks
for classification tasks and identify explicit activation functions for which such models are Bayes optimal or
consistent.

1.2 Feature Learning

While infinitely wide networks characterized by the NTK are effective for a number of tasks, they lack a
key component that is critical to the success of neural networks: feature learning. Neural feature learning
refers to the ability of a neural network to automatically extract patterns or features from data and is often
characterized as the change in a network’s internal, hidden representations through the course of training [169,
203]. While prior work has demonstrated that feature learning can lead to improved performance [52, 169,
203], the mechanism through which deep neural networks learn features and which features are being learned
has remained unclear.

In Chapter 5, we identify the mechanism of deep neural feature learning. In particular, we posit the Deep
Neural Feature Ansatz, which states that neural feature learning occurs through a mathematical procedure
known as average gradient outer product. This procedure corresponds to up-weighting features that most
influence a trained predictor. We show that our ansatz explains prominent deep learning phenomena such
as spurious features and simplicity biases [168, 171], grokking [149], and the lottery ticket hypothesis [64].

Importantly, our ansatz provides a method for incorporating feature learning into any machine learning
model, including those that could not previously learn features. In particular, we apply our ansatz to enable
feature learning in over-parameterized, non-feature-learning kernel machines. We refer to the resulting
algorithm as a Recursive Feature Machine (RFM). We show that RFMs are (1) computationally simple, as
training involves solving a series of convex optimization problems ; (2) transparent, as learned features are
explicitly provided through a feature matrix ; and (3) effective, as they provide state-of-the-art results on
tabular data.

1.3 Preliminaries

In this section, we provide preliminaries for neural networks and kernel machines that will be used throughout
this thesis.

1.3.1 Neural Networks

We begin by outlining the basic mathematical formulation for nonlinear fully connected neural networks.

Definition 1. Given matrices {W (i)}L+1
i=1 with W (i) 2 Rki⇥ki�1 and a function � : R ! R, a fully con-

nected neural network is a function f : Rd ⇥ Rp ! Rc of the form:

f(x;W) = WL+1hL(x) ; h`(x) = �(W`h`�1(x)) for ` 2 {1, . . . , L} ;

where h1(x) = x, k0 = d, kL+1 = c, p =
PL+1

i=1 kiki�1, and � is applied element-wise. The choice L denotes
the number of hidden layers in the network, ki denotes the width of layer i, and � denotes the activation
function. Depending on the context, the depth of a network can either refer to the number of hidden layers,
L, or the number of weight matrices, L + 1, and so, we will make our definition of depth explicit in each of
the chapters. The vector W 2 Rp serves as a list of all parameters in the neural network.

It is common practice to train a neural network using a first order optimization method such as gradient
descent, which is defined below.

Definition 2. Given a dataset {(xp, yp)}n
p=1 2 Rd ⇥ Rc, a loss function L : Rc ⇥ Rc ! R, and a neural
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network f with initial parameters W(0), gradient descent with learning rate ⌘ > 0 proceeds as follows:

W(t+1) = W(t) � ⌘
nX

p=1

rWL(f(xp,W
(t)), yp) .

A common choice for loss function is the square loss, which is given by L(y, ỹ) = 1
2ky � ỹk2

2. For the
definition of other commonly used loss functions including logistic or cross entropy loss see [69]. At the time
of writing, we note that there are over 10 different variants of gradient descent present in the literature [142].
Out of these variants, we will primarily resort to using gradient descent and the Adam optimizer [101].

1.3.2 Kernel Machines
We next outline the basics of kernel machines and kernel regression that will be used in this thesis. We refer
the reader to [166] and [5] for further background on kernels and their applications. Given a training dataset
{(xp, yp)}n

p=1 2 Rd ⇥ Rc, kernel regression corresponds to first transforming each of the points xp with a
fixed feature map  : Rd ! H, where H is a Hilbert space, and then performing linear regression on the
transformed data {( (xp), yp)}n

p=1 2 H⇥Rc. To perform linear regression when H is an infinite dimensional
space, we note that finding the minimum norm solution for linear regression on requires knowledge of inner
products of transformed data, i.e., h (x), (z)iH for x, z 2 Rd [190]. These inner products can be abstracted
to a general positive semi-definite, symmetric function K : Rd ⇥ Rd ! R known as a kernel.

Definition 3. Given a set X , a symmetric function K : X ⇥ X ! R is a positive semi-definite kernel
iff for any {x(i)}n

i=1 ⇢ X and for any {ci}n
i=1 ⇢ R,

nX

i=1

nX

j=1

cicjK(x(i), x(j)) � 0.

Given a training dataset as above and a kernel function, K, we perform kernel regression as follows:

1. Build the training kernel matrix, K̂ 2 Rn⇥n with K̂i,j = K(xi, xj).

2. Solve the system of equations ↵K̂ = y where ↵ 2 Rc⇥n and y = [y1, . . . , yp] 2 Rc⇥n.

The resulting predictor, f̂ : Rd ! Rc, is given by f̂(z) = ↵K(X, z) where K(X, z) 2 Rn with K(X, z)i =
K(xi, z). Unlike the case of neural networks, we note that training a kernel machine involves solving a convex
optimization problem corresponding to a linear system of equations.

1.3.3 Neural Tangent Kernel
We lastly discuss prior literature [96] on the Neural Tangent Kernel (NTK) connection between neural
networks and kernel machines that will be used throughout this thesis. We start with the definition of the
NTK.

Definition 4 (NTK). Let f(x;W) : Rd ⇥Rp ! R denote a neural network with parameters W. The neural
tangent kernel, K : Rd ⇥ Rd ! R, is a symmetric, positive definite function given by:

K(x, x0) = hrWf(x;W(0)), rWf(x0;W(0))i,

where W(0) 2 Rp denotes the parameters at initialization.

Consider fully connected networks of the following form:

f(x;W) = W (L) cp
kL
�

 
W (L�1) cp

kL�1

�

✓
. . .

cp
k1
�
⇣
W (1)x

⌘
. . .

◆!
, (1.1)
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where W = {W (i)}L
i=1 with W (i) 2 Rki⇥ki�1 and k0 = d, kL = 1; � : R ! R is an elementwise Lipschitz

nonlinearity; and c is a constant. The key finding of [96] is that when Wi
i.i.d.⇠ N (0, 1), then as k1, k2, . . . kL !

1, KL(x, x0) converges in probability to a deterministic kernel that does not change through training. Thus,
solving kernel regression with kernel KL is equivalent to the solution given by training the neural network.
We present the case for fully connected networks from [96] below, and we note that the NTK can be computed
for various architectures such as convolutional networks [9].

Theorem. Let f : Rd ! R be a neural network defined in Eq. [1.1]. As k1, k2, . . . kL ! 1, then KL(x, x0)
converges in probability to a deterministic kernel given by the following recurrences in ⌃i, ⌃̇i, Ki:

K0(x, x0) = ⌃0(x, x0) = xT x0,

KL(x, x0) = ⌃L(x, x0) + KL�1(x, x0)⌃0

L�1(⌃L�1(x, x0)),

⌃L(x, x0) = c2E(u,v)⇠N (0,⇤L�1(x,x0))[�(u)�(v)],

⌃̇L(x, x0) = c2E(u,v)⇠N (0,⇤L�1(x,x0))[�
0(u)�0(v)],

⇤L(x, x0) =

"
⌃L�1(x, x) ⌃L�1(x, x0)

⌃L�1(x0, x) ⌃L�1(x0, x0)

#
.

Dual Activations. The expectations in the recurrences above can be simplified using the theory of dual
activation functions studied in [53]. Let �̌ : [�1, 1] ! R such that:

�̌(⇠) = c2E(u,v)⇠N (0,⇤))[�(u)�(v)], ⇤ =

"
1 ⇠

⇠ 1

#
,

1p
2⇡

Z

R
�(u)2 exp

✓
�u2

2

◆
du =

1

c2
. (1.2)

The map F such that F(�) = �̌ is an operator mapping from activation functions to positive definite
functions1, and �̌ is referred to as the dual activation [53]. The scaling factor c in the theorem above is
typically selected to satisfy the integral equation in Eq. [1.2]. As an example, when � is the ReLU, the
integral is just 1

2 times the second moment of the standard Gaussian distribution. Hence, c =
p

2 for the
ReLU. The recurrence relation for the NTK can be drastically simplified for homogenous nonlinearities for
which the dual activation has a closed form. As shown in prior work [43, 182], this is the case for the
commonly used ReLU and LeakyReLU nonlinearities. In particular, the dual activation function for ReLU
is well known [43], and we next present its form (with its derivative):

Lemma. The dual activation �̂ : [�1, 1] ! R of the ReLU is:

�̌(⇠) =
1

⇡
(⇠(⇡ � cos�1(⇠)) +

p
1 � ⇠2) (1.3)

d�̌(⇠)

d⇠
=

1

⇡
(⇡ � cos�1(⇠))

s shown in [32, 39], the NTK recursion for ReLU networks can be simplified using the dual activation. We
provide this known simplification below for completeness.

Proposition. Let f : Rd ! R be a neural network defined in Eq. [1.1]. Let � be the ReLU activation and
let c =

p
2. As k1, k2, . . . kL ! 1, then KL(x, x0) converges in probability to a deterministic kernel given by

1
The map F is more precisely from the Hilbert space L2(µ) with µ the Gaussian measure to the space of positive definite

functions. The factor c is selected so that k�kL2(µ) = 1.
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the following recurrences in ⌃i, Ki:

K0(x, x0) = ⌃0(x, x0) = xT x0,

⌃L(x, x0) = NL�1(x, x0)�̌

✓
⌃L�1(x, x0)

NL�1(x, x0)

◆
,

KL(x, x0) = ⌃L(x, x0) + KL�1(x, x0)
d�̌

d⇠

✓
⌃L�1(x, x0)

NL�1(x, x0)

◆
,

NL�1(x, x0) =
p

⌃L�1(x, x)⌃L�1(x0, x0).

This proposition follows from using the change of variables u =
p

⌃L(x, x)ũ and v =
p

⌃L(x0, x0)ṽ and the
homogeneity of ReLU when computing c2E(u,v)⇠N (0,⇤L�1(x,x0))[�(u)�(v)] using integration [32].

Given a closed form for the NTK, we can simply solve kernel regression with the NTK to train an infinite
width version of the neural network in Eq. [1.1] initialized with weights drawn from a standard Gaussian
distribution. In Chapters 3 and 4, we will showcase the practical value of using the NTK and demonstrate
how the NTK can provide insights about properties of wide and deep neural networks.
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Chapter 2

Over-parameterized Autoencoders and

Sequence Encoders

Autoencoders are classical, unsupervised neural network models for learning representations from data [15].
Since their inception, autoencoders have always contained a bottleneck layer in which network width is
smaller than the input dimension. The motivation behind such bottlenecks is to prevent the model from
learning the identity function, which would correspond to essentially copying input to output without learning
a meaningful latent representation.

Given the benefit of over-parameterization in supervised learning tasks, is there a benefit to using over-
parameterized autoencoders, i.e., those with no bottleneck layers, or will such models simply learn the identity
function? Remarkably, we found that there is indeed a benefit to using over-parameterized autoencoders in
practice. In recent work [30], we found that applying over-parameterized autoencoders to transcriptomics
data led to latent representations in which the effect of drugs was more aligned across cell types than in the
original space. Such representations would not be possible had these models learned the identity function.

Given that over-parameterized autoencoders are clearly not learning the identity function, in the following
chapter, we characterize the functions they do learn. In particular, we demonstrate that these models learn
functions that are contractive around the training examples, thereby implementing a computational model
of associative memory. The work presented in this section culminated into the following paper [152].

2.1 Introduction

Developing computational models of associative memory, a system which can recover stored patterns from
corrupted inputs, is a long-standing problem at the intersection of machine learning and neuroscience. An
early example of a computational model for memory dates back to the introduction of Hopfield networks
[85, 117]. Hopfield networks are an example of an attractor network, a system which allows for the recovery
of patterns by storing them as attractors of a dynamical system. In order to write patterns into memory,
Hopfield networks construct an energy function with local minima corresponding to the desired patterns. To
retrieve these stored patterns, the constructed energy function is iteratively minimized starting from a new
input pattern until a local minimum is discovered and returned.

While Hopfield networks can only store binary patterns, the simplicity of the model allowed for a theoret-
ical analysis of capacity [127]. In order to to implement a form of associative memory for more complex data
modalities, such as images, the idea of storing training examples as the local minima of an energy function
was extended by several recent works [17, 58, 82, 83, 164]. Unlike Hopfield networks, these modern methods
do not guarantee that a given pattern can be stored and typically lack the capacity to store patterns exactly;
see e.g. [17].

Our main finding is that standard over-parameterized neural networks trained using standard optimiza-
tion methods can implement associative memory. In contrast to energy-based methods, the storage and
retrieval mechanisms are automatic consequences of training and do not require constructing and minimiz-
ing an energy function.
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(a) Interpolation without Memorization (b) Interpolation with Memorization

x<latexit sha1_base64="9gWai3bbiX1DNkBD7lp+lWqEq5o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cq9gPaUDbbTbt0swm7E7GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VOpV664VXcGsky8nFQgR71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjqWKRtz42ezSCTmxSp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbTjTELzFl5dJ86zqnVfdu4tK7TqPowhHcAyn4MEl1OAW6tAABiE8wyu8OSPnxXl3PuatBSefOYQ/cD5/ABt2jRI=</latexit> x<latexit sha1_base64="9gWai3bbiX1DNkBD7lp+lWqEq5o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cq9gPaUDbbTbt0swm7E7GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VOpV664VXcGsky8nFQgR71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjqWKRtz42ezSCTmxSp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbTjTELzFl5dJ86zqnVfdu4tK7TqPowhHcAyn4MEl1OAW6tAABiE8wyu8OSPnxXl3PuatBSefOYQ/cD5/ABt2jRI=</latexit>

y
<latexit sha1_base64="w5ccUJjh9xZTLmaRifMRZkwSFok=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cq1hbaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLK6tr6RnmzsrW9s7tX3T941HGqGLZYLGLVCahGwSW2DDcCO4lCGgUC28H4JvfbT6g0j+WDmSToR3QoecgZNVa6n1T61Zpbd2cgy8QrSA0KNPvVr94gZmmE0jBBte56bmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1ns0un5MQqAxLGypY0ZKb+nshopPUkCmxnRM1IL3q5+J/XTU145WdcJqlByeaLwlQQE5P8bTLgCpkRE0soU9zeStiIKsqMDScPwVt8eZk8ntW987p7d1FrXBdxlOEIjuEUPLiEBtxCE1rAIIRneIU3Z+y8OO/Ox7y15BQzh/AHzucPHPuNEw==</latexit>

y
<latexit sha1_base64="w5ccUJjh9xZTLmaRifMRZkwSFok=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cq1hbaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLK6tr6RnmzsrW9s7tX3T941HGqGLZYLGLVCahGwSW2DDcCO4lCGgUC28H4JvfbT6g0j+WDmSToR3QoecgZNVa6n1T61Zpbd2cgy8QrSA0KNPvVr94gZmmE0jBBte56bmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1ns0un5MQqAxLGypY0ZKb+nshopPUkCmxnRM1IL3q5+J/XTU145WdcJqlByeaLwlQQE5P8bTLgCpkRE0soU9zeStiIKsqMDScPwVt8eZk8ntW987p7d1FrXBdxlOEIjuEUPLiEBtxCE1rAIIRneIU3Z+y8OO/Ox7y15BQzh/AHzucPHPuNEw==</latexit>

Interpolation Alone is not Sufficient for Implementing Associative Memory

Train. Ex. 3

Train. Ex. 2

Train. Ex. 1

Train. Ex. 3

Train. Ex. 2

Train. Ex. 1 Memorized Ex. 1

Memorized Ex. 3

Memorized Ex. 2

Impossible to Recover 
Training Examples

Training Examples
Recoverable as  

y-values

(c) Contractive Solution from Training (d) Iteration Recovers Training Examples

x<latexit sha1_base64="9gWai3bbiX1DNkBD7lp+lWqEq5o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cq9gPaUDbbTbt0swm7E7GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VOpV664VXcGsky8nFQgR71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjqWKRtz42ezSCTmxSp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbTjTELzFl5dJ86zqnVfdu4tK7TqPowhHcAyn4MEl1OAW6tAABiE8wyu8OSPnxXl3PuatBSefOYQ/cD5/ABt2jRI=</latexit> x<latexit sha1_base64="9gWai3bbiX1DNkBD7lp+lWqEq5o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cq9gPaUDbbTbt0swm7E7GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFg94DjhfkQHSoSCUbTS/VOpV664VXcGsky8nFQgR71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjqWKRtz42ezSCTmxSp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbTjTELzFl5dJ86zqnVfdu4tK7TqPowhHcAyn4MEl1OAW6tAABiE8wyu8OSPnxXl3PuatBSefOYQ/cD5/ABt2jRI=</latexit>

y
<latexit sha1_base64="w5ccUJjh9xZTLmaRifMRZkwSFok=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cq1hbaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLK6tr6RnmzsrW9s7tX3T941HGqGLZYLGLVCahGwSW2DDcCO4lCGgUC28H4JvfbT6g0j+WDmSToR3QoecgZNVa6n1T61Zpbd2cgy8QrSA0KNPvVr94gZmmE0jBBte56bmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1ns0un5MQqAxLGypY0ZKb+nshopPUkCmxnRM1IL3q5+J/XTU145WdcJqlByeaLwlQQE5P8bTLgCpkRE0soU9zeStiIKsqMDScPwVt8eZk8ntW987p7d1FrXBdxlOEIjuEUPLiEBtxCE1rAIIRneIU3Z+y8OO/Ox7y15BQzh/AHzucPHPuNEw==</latexit>

y
<latexit sha1_base64="w5ccUJjh9xZTLmaRifMRZkwSFok=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cq1hbaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLK6tr6RnmzsrW9s7tX3T941HGqGLZYLGLVCahGwSW2DDcCO4lCGgUC28H4JvfbT6g0j+WDmSToR3QoecgZNVa6n1T61Zpbd2cgy8QrSA0KNPvVr94gZmmE0jBBte56bmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1ns0un5MQqAxLGypY0ZKb+nshopPUkCmxnRM1IL3q5+J/XTU145WdcJqlByeaLwlQQE5P8bTLgCpkRE0soU9zeStiIKsqMDScPwVt8eZk8ntW987p7d1FrXBdxlOEIjuEUPLiEBtxCE1rAIIRneIU3Z+y8OO/Ox7y15BQzh/AHzucPHPuNEw==</latexit>

The Mechanism for Associative Memory Identified in this Work

Iteration

Train. Ex. 3
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Train. Ex. 1
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Train. Ex. 1

Figure 2-1: The difference between associative memory and interpolation is described in (a, b); the mechanism
identified in this work by which overparameterized autoencoders implement associative memory is described
in (c, d). Training examples are shown as black points, the identity function is shown as a dotted line
and functions are represented using solid, colored lines. (a) An example of a function that interpolates
the training data but does not memorize training data: training data are not recoverable from just the
function alone. (b) An example of a function that interpolates and memorizes training data: training data
are recoverable as the range of the function. (c) An example of an interpolating function for which the
training examples are attractors; the basis of attraction are shown. (d) Iteration of the function from (c)
leads to a function that is piece-wise constant almost everywhere, with the training examples corresponding
to the non-trivial constant regions. The fact that the training examples are attractors implies that iteration
provides a retrieval mechanism.

Interpolation Alone is Not Sufficient for Implementing Associative Memory. While in recent
machine learning literature (e.g., [11, 208]) the term memorization is often used interchangeably with inter-
polation, the ability of a model to perfectly fit training data, note that memorization is stronger and also
requires a model to be able to recover training data. In general, interpolation does not guarantee the ability
to recover training data nor does it guarantee the ability to associate new inputs with training examples.
Fig. 2-1a shows an example of a function that interpolates training data, but does not implement associative
memory: there is no apparent method to recover the training examples from the function alone. On the
other hand, Fig. 2-1b gives an example of a function that implements memory: the training examples are
retrieved as the range of the function.

While it has been observed (e.g., [208]) that over-parameterized networks can interpolate the training
data, there is no apriori reason why it should be possible to recover the training data from the network.
In this work, we show that, remarkably, the retrieval mechanism also follows naturally from training: the
examples can be recovered simply by iterating the learned map. A depiction of the memorization and
retrieval mechanisms is presented in Fig. 2-1c and 2-1d. More precisely, given a set of training examples
{x(i)}n

i=1 ⇢ Rd and an overparameterized neural network implementing a family of continuous functions
F = {f : Rd ! Rd}, we show that minimizing the following autoencoding objective with gradient descent
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methods leads to training examples being stored as attractors:

arg min
f2F

nX

i=1

kf(x(i)) � x(i)k2 (2.1)

Interestingly, attractors arise without any specific regularization to the above loss function. We demon-
strate this phenomenon by presenting a wealth of empirical evidence, including a network that stores 500
images from ImageNet-64 [141] as attractors. In addition, we present a proof of this phenomenon for over-
parameterized networks trained on single examples.

Furthermore, we show that a slight modification of the objective (2.1) leads to an implementation of
associative memory for sequences. More precisely, given a sequence of training examples {x(i)}n

i=1 ⇢ Rd,
minimizing the following sequence encoding objective with gradient descent methods leads to the training
sequence being stored as a stable limit cycle:

arg min
f2F

nX

i=1

kf(x((i mod n)+1))) � x(i)k2. (2.2)

Multiple cycles can be encoded similarly (Appendix A). In particular, we provide several examples of net-
works storing video and audio samples as limit cycles. Interestingly, these experiments suggest that sequence
encoding provides a more efficient mechanism for memorization and retrieval of training examples than au-
toencoding. By considering a sequence encoder as a composition of maps, we indeed prove that sequence
encoders are more contractive to a sequence of examples than autoencoders are to individual examples.

2.2 Related Work

Autoencoders [15] are commonly used for manifold learning, and the autoencoder architecture and objective
(Eq. (2.1)) have been modified in several ways to improve their ability to represent data manifolds. Two
variations, contractive and denoising autoencoders, add specific regularizers to the objective function in order
to make the functions implemented by the autoencoder contractive towards the training data [4, 159, 188].
However, these autoencoders are typically used in the under-parameterized regime, where they do not have
the capacity to interpolate (fit exactly) the training examples and hence cannot store the training examples
as fixed points.

On the other hand, it is well-known that over-parameterized neural networks can interpolate the training
data when trained with gradient descent methods [56, 57, 196, 208]. As a consequence, over-parameterized
autoencoders can store training examples as fixed points. In particular, recent work empirically studied
over-parameterized autoencoders in the setting with one training example [209].

In this paper, we take a dynamical systems perspective to study over-parameterized autoencoders and
sequence encoders. In particular, we show that not only do over-parameterized autoencoders (sequence
encoders) trained using standard methods store training examples (sequences) as fixed points (limit cycles),
but that these fixed points (limit cycles) are attractors (stable), i.e., they can be recovered via iteration.
While energy-based methods have also been shown to be able to recall sequences as stable limit cycles
[36, 103], the mechanism identified here is unrelated and novel: it does not require setting up an energy
function and is a direct consequence of training an over-parameterized network.

Background from Dynamical Systems

We now introduce tools related to dynamical systems that we will use to analyze autoencoders and sequence
encoders.

Attractors in Dynamical Systems. Let f : Rd ! Rd denote the function learned by an autoencoder
trained on a dataset X = {x(i)}n

i=1 ⇢ Rd. Consider the sequence {fk(x)}k2N where fk(x) denotes k
compositions of f applied to x 2 Rd. A point x 2 Rd is a fixed point of f if f(x) = x; in this case the
sequence {fk(x)}k2N trivially converges to x.
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Since overparameterized autoencoders interpolate the training data, it holds that f(x(i)) = x(i) for each
training example x(i) 2 X; hence all training examples are fixed points of f .1 We now formally define what
it means for a fixed point to be an attractor and provide a sufficient condition for this property.

Definition 5. A fixed point x⇤ 2 Rd is an attractor of f : Rd ! Rd if there exists an open neighborhood,
O, of x⇤, such that for any x 2 O, the sequence {fk(x)}k2N converges to x⇤ as k ! 1. The set S of all
such points is called the basin of attraction of x⇤.

Proposition 1. A fixed point x⇤ 2 Rd is an attractor of a differentiable map f if all eigenvalues of the
Jacobian of f at x⇤ are strictly less than 1 in absolute value. If any of the eigenvalues are greater than 1,
x⇤ cannot be an attractor.

Proposition 1 is a well-known condition in the theory of dynamical systems (Chapter 6 of [177]). The
condition intuitively means that the function f is “flatter” around an attractor x⇤. Since training examples
are fixed points in over-parameterized autoencoders, from Proposition 1, it follows that a training example
is an attractor if the maximum eigenvalue (in absolute value) of the Jacobian at the example is less than 1.
Since attractors are recoverable through iteration, autoencoders that store training examples as attractors
guarantee recoverability of these examples. Energy-based methods also allow for verification of whether a
training example is an attractor. However, this requires checking the second order condition that the Hessian
is positive definite at the training example, which is more computationally expensive than checking the first
order condition from Proposition 1.

Discrete Limit Cycles in Dynamical Systems. Discrete limit cycles can be considered the equivalent
of an attractor for sequence encoding, and a formal definition is provided below.

Definition 6. A finite set X⇤ = {x(i)}n
i=1 ⇢ Rd is a stable discrete limit cycle of a smooth function

f : Rd ! Rd if: (1) f(x(i)) = x(i mod n)+1 8i 2 {1, . . . n} ; (2) There exists an open neighborhood, O, of
X⇤ such that for any x 2 O, X⇤ is the limit set of {fk(x)}1

k=1.

The equivalent of Proposition 1 for verifying that a finite sequence of points forms a limit cycle is provided
below.

Proposition 2. Let network f : Rd ! Rd be trained on a given sequence x(1), . . . , x(n) such that f(x(i)) =
x((i mod n)+1). Then the sequence {x(i)}n

i=1 forms a stable discrete limit cycle if the largest eigenvalue of the
Jacobian of fn(x(i)) is (in absolute value) less than 1 for any i.

This follows directly by applying Proposition 1 to the map fn, since x(i) = fn(x(i)) and f(x(i)) =
x((i mod n)+1). Before presenting our results, we provide the following important remark.

Why the Emergence of Attractors in Autoencoders is Notable. Proposition 1 states that for a
fixed point to be an attractor, all eigenvalues of the Jacobian at that point must be less than 1 in absolute
value. Since the number of eigenvalues of the Jacobian equals the dimension of the space, this means that
the angle of the derivative is less than ⇡/4 in every eigendirection of the Jacobian. This is a highly restrictive
condition, since intuitively, we expect the “probability” of such an event to be 1/2d. Hence, a fixed point of
an arbitrary high-dimensional map is unlikely to be an attractor. Indeed, as we show in Corollary 1, fixed
points of neural networks are not generally attractors. While not yet fully understood, the emergence and,
indeed, proliferation of attractors in autoencoding is not due solely to architectures but to specific inductive
biases of the training procedures.

2.3 Empirical Findings

Training Examples are Stored as Attractors in Over-parameterized Autoencoders. In the fol-
lowing, we present a range of empirical evidence that attractors arise in autoencoders across common archi-
tectures and optimization methods. For details on the specific architecures and optimization schemes used
for each experiment, see Appendix, Fig A-1.

1
To ensure f(x(i)) ⇡ x(i)

, it is essential to train until the loss is very small; we used  10�8
.
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Figure 2-2: Example of an over-parameterized autoencoder storing 500 images from ImageNet-64 as at-
tractors after training to a reconstruction error of less than 10�8. Architecture and optimizer details are
provided in Appendix, Fig. A-1. (a) By iterating the trained autoencoder on corrupted versions of training
samples, individual training samples are recovered. (b) Samples that are corrupted by uniform random noise
or squares of varying color and size are recovered via iteration. (c) Fraction of samples recovered correctly
from different noise applied to the training images. A sample is considered recovered when the error between
the original sample and the recovered sample is less than 10�7.

Storing Images as Attractors. In Fig. 2-2, we present an example of an over-parameterized autoencoder
storing 500 images from ImageNet-64 [141] as attractors. This was achieved by training an autoencoder with
depth 10, width 1024, and cosid nonlinearity [59] on 500 training examples using the Adam [101] optimizer
to loss  10�8. We verified that all 500 training images were stored as attractors by checking that the
magnitudes of all eigenvalues of the Jacobian matrix at each example were less than 1. Indeed, Fig. 2-2a
demonstrates that iteration of the trained autoencoder map starting from corrupted inputs converges to
individual training examples. A common practice for measuring recoverability of training patterns is to
input corrupted versions of the patterns and verify that the system is able to recover the original patterns.
From Proposition 1, provided that a corrupted example is in the basin of attraction of the original example,
iteration is guaranteed to converge to the original example. In examples (5) and (6) Fig. 2-2a, the corrupted
images are not in the basin of attraction for the original examples, and so iteration converges to a different
(but contextually similar) training example. Fig. 2-2b provides further examples of correct recovery from
corrupted images. Fig. 2-2c presents a quantitative analysis of the recovery rate of training examples under
various forms of corruption. Overall, the recovery rate is remarkably high: even when 50% of the image is
corrupted, the recovery rate of the network is significantly higher than expected by chance.

Examples of autoencoders storing training examples as attractors when trained on 2000 images from
MNIST [107] and 1000 black-and-white images from CIFAR10 [105] are presented in the Appendix Fig. A-
2, Fig. A-3, respectively. The MNIST autoencoder presented in Appendix, Fig. A-2 stores 2000 training
examples as attractors. Note that one iteration of the learned map on test examples can look similar to the
identity function, but in fact, iterating until convergence yields a training example (see Appendix Fig. A-2).

Spurious Attractors. While in these examples, we verified that the training examples were stored as
attractors by checking the eigenvalue condition, there could be spurious attractors, i.e. attractors other
than the training examples. In fact, spurious attractors are known to exist for Hopfield networks [86]. To
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Figure 2-3: Example of an over-parameterized autoencoder in the 2-dimensional setting storing training
examples (represented as stars) as attractors. Basins of attraction for each sample are colored by sampling
10, 000 points in a grid around the training examples, taking the limit of the iteration for each point, and
assigning a color to the point based on the training example indicated by the limit. The vector field indicates
the direction of motion given by iteration, and the inserts indicate that iteration leads to training examples
for all points in an open set around each example.

investigate whether there are additional attractors outside of the training examples, we iterated the map
from sampled test images and randomly generated images until convergence. More precisely, we declared
convergence of the map at iteration k for some image x when kfk+1(x) � fk(x)k2 < 10�8 and concluded
that fk(x) had converged to the training example x(i) if kfk(x) � x(i)k2 < 10�7.

In general, spurious attractors can exist for over-parameterized autoencoders, and we provide examples
in the Appendix Fig. A-4. However, remarkably, for the network presented in Fig. 2-2, we could not identify
any spurious attractors even after iterating the trained map from 40, 000 test examples from ImageNet-64,
10, 000 examples of uniform random noise, and 10, 000 examples of Gaussian noise with variance 4.

Attractors Arise across Architectures, Training Methods & Initialization Schemes. We per-
formed a thorough analysis of the attractor phenomenon identified above across a number of common archi-
tectures, optimization methods, and initialization schemes. Starting with fully connected autoencoders, we
analyzed the number of training examples stored as attractors when trained on 100 black and white images
from CIFAR10 [105] under the following nonlinearities, initializations, and optimization methods:

• Nonlinearities: ReLU, Leaky Relu, SELU, cosid (cos x � x), Swish [59, 102, 156, 200], and sinusoidal
(x + (sin 10x)/5).

• Optimization Methods: Gradient Descent (GD), GD with momentum, GD with momentum and weight
decay, RMSprop, and Adam (Ch. 8 of [69]).

• Initialization Schemes: Random uniform initialization, namely U [�a, a], per weight for a 2 {0.01, 0.02,
0.05, 0.1, 0.15}. These initialization schemes subsume the PyTorch (Version 0.4) default, Xavier ini-
tialization, and Kaiming initialization [67, 79, 142].

In Appendix, Fig. A-10 and A-11, we provide the number of training examples stored as attractors for
all possible combinations of (a) nonlinearity and optimization method listed above; and (b) nonlinearity and
initialization scheme listed above. These tables demonstrate that attractors arise in all settings for which
training converged to a sufficiently low loss within 1, 000, 000 epochs. In Appendix Figures A-10, A-11 and
Appendix F, we also present examples of convolutional and recurrent networks that store training examples
as attractors, thereby demonstrating that this phenomenon is not limited to fully connected networks and
occurs in all commonly used network architectures.

Visualizing Attractors in 2D. In order to better understand the attractor phenomenon, we present an ex-
ample of an over-parameterized autoencoder storing training examples as attractors in the 2D setting, where
the basins of attraction can easily be visualized (Fig. 2-3). We trained an autoencoder to store 6 training
examples as attractors. Their basins of attraction were visualized by iterating the trained autoencoder map
starting from 10, 000 points on a grid until convergence. The vector field indicates the direction of motion
given by iteration. Also in this experiment, we found no spurious attractors. Each training example and
corresponding basin of attraction is colored differently. Interestingly, the example in Fig. 2-3 shows that
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Figure 2-4: Examples of over-parameterized sequence encoders storing training sequences as limit cycles.
Architecture and optimizer details are provided in Appendix, Fig. A-1. (a) When trained on 389 frames of
size 128 ⇥ 128 from the Disney film “Steamboat Willie”, the entire movie was stored as a limit cycle. Hence,
iteration from random noise leads to recovery of the entire sequence. (b) When trained on two sequences of
length 10 from MNIST, each sequence was stored as a limit cycle. Hence iteration from random noise leads to
the recovery of each individual sequence. (c) Visualization of the basins of attraction for a sequence encoder
storing 4 sequences as limit cycles in the 2-dimensional setting. The vector field indicates the direction of
motion given by iteration.

the metric learned by the autoencoder to separate the basins of attraction is not Euclidean distance, which
would be indicated by a Voronoi diagram.

Over-parameterized Sequence Encoders Store Training Examples as Stable Limit Cycles and
are More Efficient at Memorizing and Retrieving Examples than Autoencoders. We have thus
far analyzed the occurrence of attractors in over-parameterized autoencoders. In this section, we demon-
strate via various examples that by modifying the autoencoder objective to encode sequences (Eg. [2.2]),
we can implement a form of associative memory for sequences. For details on the specific architectures and
optimization schemes used for each experiment, see Appendix Figure A-1.

Storing Sequences as Limit Cycles. We trained a network to encode 389 frames of size 128 ⇥ 128 from
the Disney film “Steamboat Willie” by mapping frame i to frame i + 1 mod 389. Fig. 2-4(a) and the video2

show that iterating the trained network starting from random noise yields the original video.
As a second example, we encoded two 10-digit sequences from MNIST: one counting upwards from digit

0 to 9 and the other counting down from digit 9 to 0. The maximal eigenvalues of the Jacobian of the
trained encoder composed 10 times is 0.0034 and 0.0033 for the images from the first and second sequence,
respectively. Hence by Proposition 2, both sequences form limit cycles. Indeed, as shown in Fig. 2-4(b),
iteration from Gaussian noise leads to the recovery of both training sequences.

Finally, in Fig. 2-4(c), we visualized the vector field and basins of attraction for four cycles in the 2-
dimensional setting. Unlike autoencoding where points near a training example are pushed towards it via
iteration, the points now move following the cycles. In Appendix G, we also trained a sequence encoder that
stores 10 seconds of speech as a limit cycle.

Efficiency of Sequence Encoding. In Fig. 2-5, we analyze the network sizes (width and depth) needed
to store and retrieve 100 training images from MNIST using fully connected autoencoders and sequence
encoders. Interestingly, our experiments indicate that memorization and retrieval of training examples can
be performed more efficiently through sequence encoding than autoencoding. In particular, Fig. 2-5(a) shows
the number of training examples (out of 100) that are attractors for different width and depth of the network.
Note that a depth of 31 and width of 512 is needed to store almost all (99) training examples. If we instead

2
Located at: https://github.com/uhlerlab/neural_networks_associative_memory
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Figure 2-5: Sequence encoders are more efficient at implementing associative memory than autoencoders.
Number of training examples recovered are out of 100; architecture and optimizer details are provided in
the Appendix, Fig. A-1. (a) Number of recovered images when autoencoding 100 examples from MNIST
individually; a network of depth 31 and width 512 recovers 99 images out of 100. (b)-(e) Sequence encoding
the same 100 MNIST examples as sequences of different lengths improves the recovery rates; in particular,
a network of depth 1 and width 512 recovers the full 10 images when encoded as 5 sequences of length 20
(d) or 1 sequence of length 100 (e).

encode the same data using 20 sequences of length 5, all 20 sequences (and thus all 100 examples) can be
recovered using a much smaller network with a depth of 6 and 512 hidden units per layer (Fig. 2-5(b)).
Extending this idea further (Fig. 2-5(c)-(e)), if we chain all 100 examples as a single sequence, the entire
sequence is stored using a network with only 1 hidden layer and 512 hidden units.

Increasing Depth and Width leads to more Attractors/Limit Cycles. The experiments in Fig. 2-5
indicate that increasing network depth and width leads to an increase in the number of training examples
/ sequences stored as attractors / limit cycles. For over-parameterized autoencoders, this implies that the
maximum eigenvalue of the Jacobian is less than 1 for a greater number of training examples upon increasing
network depth and width (see Proposition 1), i.e., the network becomes more contractive around the training
examples. Indeed, by analyzing the histogram of the maximum eigenvalue of the Jacobian at each of the
training examples, we observed that as network depth and width increases, the mode of these histograms
shifts closer to zero (Appendix Fig. A-7). Additionally, when considering the distribution of the top 1% of
Jacobian eigenvalues, we find that as network width increases, the variance of the distribution of Jacobian
eigenvalues decreases, and when depth increases, the mode of the distribution shifts closer to zero (Appendix
Fig. A-8). In the following, we prove this phenomenon for a single training example, i.e., we prove that
autoencoders trained on a single example become more contractive at the training example with increasing
depth and width.

2.4 Theoretical Analysis of Special Cases

We now provide theoretical support for our empirical findings. Complete proofs are given in Appendix B-E.

Proof that when trained on a single example, over-parameterized autoencoders store the ex-
ample as an attractor. We outline the proof for the 1-hidden layer setting. The complete proof for the
multi-layer setting is given in the Appendix C.

Let f(z) = W1�(W2z) represent a 1-hidden layer autoencoder with elementwise nonlinearity � and
weights W1 2 Rk0⇥k and W2 2 Rk⇥k0 , applied to z 2 Rk0 . We analyze the function learned by gradient
descent with learning rate � by minimizing the following autoencoding loss on 1 training example x:

L(x, f) =
1

2
kx � f(x)k2

2. (2.3)

Let W (t)
1 , W (t)

2 denote the values of the weights after t steps of gradient descent. To prove that x is an
attractor of f after training, we solve for W (1)

1 , W (1)
2 and compute the top eigenvalue of the Jacobian of f
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at x (denoted �1(J(f(x)))).
In order to solve for W1, W2, we first identify two invariants of gradient descent (proved in Appendix B):

Invariant 1: If W1 and W2 are initialized to be rank 1 matrices of the form xu(0)T and v(0)xT respectively,
then W (t)

1 = xu(t)T and W (t)
2 = v(t)xT for all time-steps t > 0.

Invariant 2: If, in addition, all weights in each row of W1 and W2 are initialized to be equal, they remain
equal throughout training.

Invariant 1 implies that autoencoders trained on 1 example produce outputs that are multiples of the
training example. Generalizing this result, in Appendix D, we prove that autoencoders trained on multiple
examples produce outputs in the span of the training data. Invariant 2 reduces gradient descent dynamics
to the 1-dimensional setting. Using the Invariants 1 and 2 combined with gradient flow (i.e. taking the limit
as the learning rate � ! 0), we can solve for W (1)

1 and W (1)
2 .

Theorem 1. Let f(z) = W1�(W2z) denote a 1-hidden layer network with elementwise nonlinearity � and
weights W1 2 Rk0⇥k and W2 2 Rk⇥k0 , applied to z 2 Rk0 . Let x 2 Rk0 be a training example with kxk2 = 1.
Assuming �(z)

�0(z) < 1 8z 2 R, then under Invariants 1 and 2, gradient descent with learning rate � ! 0 applied

to minimize the autoencoding loss in Eq. (2.3) leads to a rank 1 solution W (1)
1 = xuT and W (1)

2 = vxT with
u, v 2 Rk satisfying:

u2
i � u(0)

i

2

2
=

Z vi

v(0)
i

�(z)

�0(z)
dz and ui�(vi) =

1

k
,

and ui = uj , vi = vj for all i, j 2 [k], where u(0) and v(0) are such that W (0)
1 = xu(0)T and W (0)

2 = v(0)xT .

Theorem 1 allows us to compute the top eigenvalue of the Jacobian at x, denoted by �1(J(f(x))).

Theorem 2. Under the setting of Theorem 1, it holds that

�1(J(f(x))) =
�0(vi)vi

�(vi)
.

Using Theorem 2, we can explicitly determine whether a training example x is an attractor, when given
a nonlinearity �, initial values for u(0) and v(0), and the width of the network k. We note that for all non-
piecewise nonlinearities used thus far, we can make any training example an attractor by selecting values for
u(0), v(0) and k appropriately.

Example. Let x be a training example in Rk0 . Suppose �(z) = 1
1+e�z for z 2 R, k = 2, and u(0)

i = v(0)
i = 1

for all i. Then by Theorems 1 and 2, it holds after training that

u2
i � 1

2
=

Z vi

1

✓
1

1 � �(z)

◆
dz and

ui

1 + e�vi
=

1

2

with ui ⇡ .697, vi ⇡ .929 and �1(J(f(x))) ⇡ .263. Since �1(J(f(x))) < 1, x is an attractor. We also
confirmed this result (up to third decimal place) experimentally by training a network using gradient descent
with learning rate 10�4.

Importantly, the analysis of Theorem 2 implies that attractors arise as a result of training and are not
simply a consequence of interpolation by a neural network with a certain architecture; see the following
corollary.

Corollary 1. Let x 2 Rk0 with kxk2 = 1 and f(z) = xuT�(vxT z), where u, v 2 Rk and � is a smooth
element-wise nonlinearity with �0(z)

�(z) < 1 for all z 2 R,
����

0(z)z
�(z)

��� > 1 for z in an open interval O ⇢ R. Then
there exist infinitely many v 2 Rk, such that f(x) = x and x is not an attractor for f .

The condition, |�0(z)z/�(z)| > 1 for z in an open interval, holds for all smooth non-linearities considered
in this paper. The proof is presented in Appendix B.

33



We note that while the linear setting with �(z) = z has been studied extensively using gradient flow
[6, 7, 72], our results extend to the non-linear setting and require novel tools.

Remarks on the Multiple Sample Setting. While we extend Invariant 1 to the multiple example
setting in Appendix D, a similar extension of Invariant 2 is required in order to generalize Theorem 1 to
multiple examples. We believe such an extension may be possible for orthonormal training examples. Under
random initialization, it may be possible to prove the attractor phenomenon by analyzing autoencoders in
the Neural Tangent Kernel (NTK) regime [96]. However, the disadvantage of such an analysis is that it relies
on computing a closed form for the NTK in the limiting case of network width approaching infinity. On the
other hand, Theorem 1 holds for a general class of non-linearities and for finite width and depth.

Remarks on Similarity to Power Iteration. The attractor phenomenon identified in this work
appears similar to that of Fast Independent Component Analysis [92] or more general nonlinear power
iteration [27], where every “eigenvector" (corresponding to a training example in our setting) of a certain
iterative map has its own basin of attraction. In particular, increasing network depth may play a similar
role to increasing the number of iterations in those methods. While the mechanism may be different,
understanding this connection is an important direction for future work.

Proof that sequence encoding provides a more efficient mechanism for memory than autoencod-
ing by analyzing sequence encoders as a composition of maps. We start by generalizing Invariants 1,
2, and Theorem 1 to the case of training a network to map an example x(i) 2 Rk0 to an example x(i+1) 2 Rk0

as follows.

Theorem 3. Let f(z) = W1�(W2z) denote a 1-hidden layer network with elementwise nonlinearity � and
weights W1 2 Rk0⇥k and W2 2 Rk⇥k0 , applied to z 2 Rk0 . Let x(i), x(i+1) 2 Rk0 be training examples
with kx(i)k2 = kx(i+1)k2 = 1. Assuming that �(z)

�0(z) < 1 8z 2 R and there exist u(0), v(0) 2 Rk such that

W (0)
1 = x(i+1)u(0)T and W (0)

2 = v(0)x(i)T with u(0)
i = u(0)

j , v(0)
i = v(0)

j 8i, j 2 [k], then gradient descent with
learning rate � ! 0 applied to minimize

L(x, f) =
1

2
kx(i+1) � f(x(i))k2

2 (2.4)

leads to a rank 1 solution W (1)
1 = x(i+1)uT and W (1)

2 = vx(i)T with u, v 2 Rk satisfying

u2
i � u(0)

i

2

2
=

Z vi

v(0)
i

�(z)

�0(z)
dz, and ui�(vi) =

1

k
,

and ui = uj, vi = vj for all i, j 2 [k].

The proof is analogous to that of Theorem 1. Sequence encoding can be viewed as a composition
of individual networks fi that are trained to map example x(i) to example x((i mod n)+1). The following
theorem provides a sufficient condition for when the composition of these individual networks stores the
sequence of training examples {x(i)}n

i=1 as a stable limit cycle.

Theorem 4. Let {x(i)}n
i=1 be n training examples with kx(i)k2 = 1 for all i 2 [n], and let {fi}n

i=1 denote n
1-hidden layer networks satisfying the assumptions in Theorem 3 and trained on the loss in Eq. (2.4). Then
the composition f = fn � fn�1 � . . . � f1 satisfies:

�1(J(f(x(1))) =
nY

i=1

 
�0(v(i)

j )v(i)
j

�(v(i)
j )

!
. (2.5)

The proof is presented in Appendix E. Theorem 4 shows that sequence encoding provides a more efficient
mechanism for memory than autoencoding. If each of the networks fi autoencoded example xi for i 2 [n],
then Theorem 2 implies that each of the n training examples is an attractor (and thus recoverable) if each
term in the product in Eq. (2.5) is less than 1. This in turn implies that the product, itself, is less than 1
and hence all training examples are stored by the corresponding sequence encoder, f , as a stable limit cycle.
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2.5 Discussion

We have shown that standard over-parameterized neural networks trained using standard optimization meth-
ods implement associative memory. In particular, we empirically showed that autoencoders store training
examples as attractors and that sequence encoders store training sequences as stable limit cycles. We then
demonstrated that sequence encoders provide a more efficient mechanism for memorization and retrieval of
data than autoencoders. In addition, we mathematically proved that when trained on a single example,
nonlinear fully connected autoencoders store the example as an attractor. By modeling sequence encoders
as a composition of maps, we showed that such encoders provide a more efficient mechanism for implement-
ing memory than autoencoders, a finding which fits with our empirical evidence. We end by discussing
implications and possible future extensions of our results.

Inductive Biases. In the over-parameterized regime, neural networks can fit the training data exactly for
different values of parameters. In general, such interpolating auto-encoders do not store data as attractors
(Corollary 1). Yet, as we showed in this paper, this is typically the case for parameter values chosen by
gradient-based optimization methods. Thus, our work identifies a novel inductive bias of the specific solutions
selected by the training procedure. Furthermore, increasing depth and width leads to networks becoming
more contractive around the training examples, as demonstrated in Figure 2-4.

While our paper concentrates on the question of implementing associative memory, we employ the same
training procedures and similar network architectures to those used in standard supervised learning tasks.
We believe that our finding on the existence and ubiquity of attractors in these maps may shed light on the
important question of inductive biases in interpolating neural networks for classification [22].

Generalization. While generalization in autoencoding often refers to the ability of a trained autoencoder to
reconstruct test data with low error [209], this notion of generalization may be problematic for the following
reason. The identity function achieves zero test error and thus “generalizes”, although no training is required
for implementing this function. In general, it is unclear how to formalize generalization for autoencoding
and alternate notions of generalization may better capture the desired properties. An alternative definition
of generalization is the ability of an autoencoder to map corrupted versions of training examples back to
their originals (as in Fig. 2-2a,b). Under this definition, over-parameterized autoencoders storing training
examples as attractors generalize (Fig. 2-2c), while the identity function does not generalize. Given this
issue with the current notion of generalization for autoencoding, it is an important line of future work to
provide a definition of generalization that appropriately captures desired properties of trained autoencoders.
Lastly, another important direction of future work is to build on the properties of autoencoders and sequence
encoders identified in this work to understand generalization properties of networks used for classification
and regression.

Metrics Used by Nonlinear Networks. In Figure 2-3, we provided a visualization of how the basins
of attraction for individual training examples subdivide the space of inputs. The picture appears very
different from the Voronoi tessellation corresponding to the 1-nearest-neighbor (1-NN) predictor, where each
input is associated to its closest training point in Euclidean distance. Yet, this may be different in high
dimension. In Appendix Fig A-9, we compare the recovery rate of our network from Figure 2-2 to that of
a 1-NN classifier and observe remarkable similarity, leading us to conjecture that the basins of attraction
of high-dimensional fully connected neural networks may be closely related to the tessellations produced by
1-NN predictors. Thus, understanding the geometry of attractors in high-dimensional neural networks is an
important direction of future research.

Connection to Biological Systems. Finally, another avenue for future exploration (and a key motivation
for the original work on Hopfield networks [85]) is the connection of autoencoding and sequence encoding
in neural nets to memory mechanisms in biological systems. Since over-parameterized autoencoders and se-
quence encoders recover stored patterns via iteration, the retrieval mechanism presented here is biologically
plausible. However, back-propagation is not believed to be a biologically plausible mechanism for storing
patterns [71]. An interesting avenue for future research is to identify storage mechanisms that are biolog-
ically plausible and to see whether similar attractor phenomena arise in other, more biologically plausible,
optimization methods.

Materials and Methods. An overview of all experimental details including datasets, network architectures,
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initialization schemes, random seeds, and training hyperparameters considered in this work are provided in
Appendix Fig. A-1, A-10, and A-11. Briefly, we used the PyTorch library [142] and two NVIDIA Titan Xp
GPUs for training all neural networks. In our autoencoding experiments on the image datasets ImageNet-64
[141], CIFAR10 [105], and MNIST [107], we trained both, fully connected networks and U-Net convolutional
networks [161]. For Fig 2-3, 2-4b, 2-4c, and 2-5 as well as for training sequence encoder models on audio and
video samples3, we used fully connected networks. For all these experiments we used the Adam optimizer
with a learning rate of 10�4 until the mean squared error dropped below 10�8. For Appendix Fig. A-10
and A-11, we fixed the architecture width and depth while varying the initialization scheme, optimization
method, and activation function.

3
Link to video and audio samples: https://github.com/uhlerlab/neural_networks_associative_memory
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Chapter 3

Infinitely wide neural networks for

matrix completion

Having characterized the benefit of over-parameterization in unsupervised learning tasks, we now showcase
the practical value of using infinitely large over-parameterized models. Namely, we derive the NTK corre-
sponding to infinitely wide networks used for matrix completion tasks such as virtual drug screening and
image inpainting. We demonstrate that the NTK of infinitely wide fully connected networks leads to state-
of-the-art performance for virtual drug screening and that the convolutional NTK (CNTK) of infinitely wide
convolutional networks leads to competitive performance for high resolution image inpainting. The work
presented in this section culminated into the following paper [154].

3.1 Introduction

Matrix completion is a fundamental problem in machine learning, arising in a variety of applications including
virtual drug screening and image inpainting Given a matrix Y with only a subset of coordinates observed, the
goal of matrix completion is to impute the unobserved entries in Y . For example, in collaborative filtering
(Fig. 3-1a), matrix completion is used to infer the interests of a user from the interests of other users. A
prominent example is the Netflix challenge of inferring movie preferences from sparsely-populated matrices
of user ratings [1]. For virtual drug screening (Fig. 3-1b), matrix completion is used to predict the effect
of a drug on a cell type/state given other drug and cell type/state combinations. For image inpainting
(Fig. 3-1c) and image reconstruction (Fig. 3-1d), matrix completion is used to restore missing pixels in a
corrupted image.

Standard approaches to matrix completion such as nuclear norm minimization [37, 38, 158] or deep
matrix factorization [8] aim for a completion that yields a low rank matrix. While such methods can be
effective in applications like collaborative filtering, where low rank can capture user similarity, such an
objective function can lead to ineffective solutions for applications including drug response imputation,
image inpainting, or image reconstruction. For example, in the case of drug response imputation, imputing
a new drug would involve predicting the values of an entirely-missing vector of gene responses (in contrast
to the aforementioned Netflix problem, which involves imputing single scalar entries of the matrix). In this
case, a low-rank reconstruction would replace all missing entries with a fixed constant, thereby leading to
poor predictive performance. Similarly, for image inpainting and reconstruction, a low rank completion is
generally ineffective since it does not take into account local image structure [115, 201]. Thus, there is a
need for a more general approach to matrix completion that can easily adapt to the structures in different
applications.

In this work, we provide a simple, fast, and flexible framework for matrix completion. To accomplish
this, we view matrix completion as an inverse problem; given a matrix Y 2 Rm⇥n such that a subset of
coordinates S = {(i, j)} ⇢ [m] ⇥ [n] are observed and the other entries are missing, we aim to construct
Ŷ 2 Rm⇥n such that Ŷi,j ⇡ Yi,j for all observed coordinates (i, j) 2 S. We use neural networks to model the
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Figure 3-1: An overview of matrix completion applications where ?’s in (a), (b) and zero (black) pixels in (c),
(d) represent unobserved entries. (a) Collaborative filtering example (the Netflix problem), where the goal
is to predict how a user would rate (on a scale of 1-5) an unseen movie. (b) Virtual drug screening, where
the problem is to predict the gene expression profile for an unobserved drug / cell type combination. In this
application entire columns are unobserved. (c,d) Image inpainting and reconstruction involves reconstructing
a corrupted region of an image (shown as black pixels). (e) Our NTK matrix completion framework is easily
adapted to solve all of the above problems by selecting a feature prior that represents an embedding of
application specific metadata.

observations in Y and use gradient descent to minimize:

L(W) =
X

(i,j)2S

(Yi,j � [Wd�(Wd�1�(. . . W2�(W1Z) . . .))]i,j)
2 , (3.1)

where W = {W`}d
`=1 are the weights of a neural network with each W` 2 Rk`+1⇥k` and kd+1 = m, k1 = p;

� : R ! R is a fixed element-wise nonlinearity; and Z 2 Rp⇥n is a fixed application-dependent matrix, which
we call the feature prior (described in detail below). The completed matrix Ŷ is then obtained using the
forward model with the trained weights, i.e., Ŷ = Wd�(Wd�1(. . . W2�(W1Z) . . .)). The main contribution
of this work is showing that minimizing the loss in Eq. [3.1] when the width {k`}d

`=2 of the neural network
tends to infinity, gives rise to a simple, fast, and flexible framework for matrix completion suitable for a
range of applications.

Superficially, the formulation in Eq. [3.1] appears similar to that of traditional supervised learning, where
a neural network is trained to map data (which would correspond to Z in our formulation) to corresponding
labels Y . However, it is important to note that in our formulation Z can be independent of the observations
Y (Z could for example be the identity matrix or a random matrix). Thus, Z should be interpreted as a
prior that can be chosen in an application-dependent manner. We will discuss the effect of this prior as well
as how to choose it for very different applications like virtual drug screening and image inpainting.

Simple and Fast Algorithm for Matrix Completion through Infinite Width Networks. A trend
for improving neural network performance is to make models larger (in multiple respects) [80, 100, 161, 206].
Underscoring this trend, several recent works have empirically demonstrated the advantage of larger (in par-
ticular, wider) networks with respect to generalization and performance for classification and representation
learning tasks [22, 135, 152, 208]. There is also an emerging theoretical understanding of the benefit of larger
models [16, 24, 75]. The extreme case where network width approaches infinity, is what we consider in this
paper in the setting of matrix completion.

While generally larger neural networks require more computational resources for training, quite counter-
intuitively, the limit as network width approaches infinity may yield computational savings. Namely, it
was recently shown that training infinite width networks is equivalent to solving kernel regression with a
particular kernel known as the neural tangent kernel (NTK) [96]. For fully connected networks, the NTK can
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be computed efficiently in closed form [96], and thus training an infinite width network reduces to solving a
linear system. While this may still be computationally expensive when the number of examples is large, we
will use recent pre-conditioner methods [124, 125, 128] to overcome this limitation.

For convolutional networks no efficient computation of the NTK (the so-called CNTK) has been known [9,
42, 179]. A major contribution of this work is to provide a memory and runtime efficient algorithm for
computing the exact CNTK for matrix completion for a class of practical neural network architectures. As
a consequence, our framework can be used to inpaint or reconstruct high-resolution images with hundreds of
thousands of pixels. We also provide software for constructing the CNTK as well as pre-computed kernels.
The simplicity and speed of our framework is exhibited by the fact that most of the results in this work
require only a CPU and can be run efficiently on a laptop.

Flexibility through Feature Prior. The matrix Z in Eq. [3.1] is key to making our framework easily
adaptable to different applications. Unlike traditional supervised learning where the goal is to learn a
mapping from data X to labels Y , the matrix Z in our framework can be independent of the observations
in Y . We refer to Z as a feature prior since, as we will see, by minimizing the loss in Eq. [3.1], the entries
of Z encode structure between the coordinates of Y (see Fig. 3-1e).

We will demonstrate the flexibility of our framework by using it in two very different applications,
namely for drug response imputation and image inpainting/reconstruction. For drug response imputation,
we will select feature priors that encode information about cell and drug type combinations. For image
inpainting and reconstruction, we will select feature priors that encode information about image coordinates.
In addition to being flexible, we will show that our approach is competitive in terms of speed and accuracy
with prior approaches that were specifically developed for drug response imputation [84, 121] or image
inpainting/reconstruction [51, 185, 187].

3.2 Matrix Completion with the NTK

In this section, we derive the NTK for matrix completion when using fully connected networks. Our derivation
provides a principled method for selecting the feature prior, Z; namely, we will show that Z should be an
embedding of coordinate metadata, i.e. information describing the coordinates of Y . For example in drug
response imputation, each column of Z could correspond to a different drug and two columns of Z should
be similar if the drug metadata is similar (e.g. the molecular structures are similar). The resulting method
is then equivalent to performing semi-supervised learning to map from the columns of Z to observed entries
in each row of Y . In Section 3.3, we will utilize this theoretical result to select an effective feature prior for
virtual drug screening.

Since the NTK forms the backbone of our framework, we start with the definition of the NTK [96]
and briefly review how solving kernel regression with the NTK connects to training infinitely wide neural
networks.

Definition 7 (NTK). Let f(w; x) : Rp ⇥ Rd ! R denote a neural network with parameters w. The corre-
sponding neural tangent kernel, K : Rd ⇥ Rd ! R, is a symmetric, continuous, positive definite function
given by:

K(x, x0) = hrwf(w(0); x), rwf(w(0); x0)i,

where w(0) 2 Rp are the network parameters at initialization.

For a review of kernel regression and kernel functions see [166]. Given training data (x(i), y(i)) 2 Rd ⇥ R
for i = 1, . . . , n, solving kernel regression with the NTK involves minimizing the loss:

L(↵) = ky � ↵K̂k2
2, (3.2)

where ↵ 2 R1⇥n, y = [y(1), . . . , y(n)]T , and K̂ 2 Rn⇥n with K̂i,j = K(x(i), x(j)). The work of [96] established
that using kernel regression with the NTK is equivalent (under mild assumptions) to training a neural
network to map x(i) to y(i) using the mean squared error, in the limit as the network width tends to infinity.
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Throughout this work, we will assume that w(0)
i

i.i.d⇠ N (0, 1) and that the nonlinearity � in Eq. [3.1] is
homogeneous (which includes, for example, the rectified linear unit (ReLU), a widely used nonlinearity)
so that the NTK corresponding to a fully connected network can be computed efficiently in closed form
[43, 96, 182].

Feature Prior Provides a Flexible Approach for Matrix Completion through
Connection with Semi-supervised Learning

A natural approach for imputing missing entries in a matrix, Y , is to first obtain an embedding of the
coordinates of Y (e.g. a map from coordinates (i, j) to Rp) and then learn a map from the coordinate
embedding to the observed entries in Y (e.g. a map from Rp to Yi,j 2 R); see also [3, Ch.1]. For example, for
virtual drug screening, one could first embed the drugs based on their molecular properties and then learn a
map from this embedding to the measured output, such as gene expression. Such an approach in which a map
is learned from an embedding to the observed samples is referred to as semi-supervised learning [69, Ch.15].
In this section, we will prove that minimizing the loss in Eq. [3.1] is equivalent to using a semi-supervised
learning approach for matrix completion. Namely, we show that the columns of Z represent an embedding
of the coordinates of Y and that the NTK is used to map from the columns of Z to the entries in Y .

It is a priori unclear how to compute the NTK for matrix completion, since this requires training examples
and labels. For this, we note the following equivalent formulation of Eq. [3.1]:

L(W) =
X

(i,j)2S

(Yi,j � hfZ(W), M{(i,j)}i)2, (3.3)

fZ(W) = W (d)Cd�(W (d�1)Cd�1�(. . . W (2)C2�(W (1)Z)) . . .),

where C` = c/
p

k` for a constant c, hA, Bi = tr(AT B) denotes the trace inner product, and M{(i,j)} is an
indicator matrix, i.e., it has a 1 in the (i, j) entry and zeros everywhere else. To ease notation, we will use
Mij to denote the indicator matrix M{(i,j)}. The formulation in Eq. [3.3] shows that we can view matrix
completion as a problem where the "training examples" are indicator matrices Mij and the "labels" are
the corresponding entries Yi,j . This reformulation yields the following closed form for the NTK for matrix
completion, where �̌ : [�1, 1] ! R denotes the dual activation function [53] to �. To keep notation simple,
we here provide the theorem when � is the ReLU activation function, but this result holds generally for
homogeneous nonlinearities; see SI Appendix A.

Theorem 5. Assume Z = {z(i)}n
i=1 2 Rp⇥n, where each column is normalized with kz(i)k2 = 1. Let fZ(W)

be a d layer fully connected network with nonlinearity �(x) = max(x, 0) and c =
p

2 in Eq. [3.3]. Then, as
widths k2, k3, . . . , kd ! 1, the NTK for matrix completion with fZ(W) is given by

K(Mij , Mi0j0) =

8
<

:
d(z(j)T

z(j0)) if i = i0

0 if i 6= i0
,

where d(⇠) = �̌(d)(⇠) + d�1(⇠)
d�̌
d⇠ (�̌(d�1)(⇠)), and �̌(h)(⇠) = �̌(�̌(h�1)(⇠)) for h � 1 and �̌(0)(⇠) = ⇠.

The proof as well as an example showing how Theorem 5 can be used in practice to compute the NTK
for matrix completion is presented in SI Appendix A. Since the kernel value between Mij and Mi0j0 is a
function of columns j and j0 of Z, Theorem 5 implies that the NTK for matrix completion maps columns of
Z to entries Yi,j , and thus the columns of Z encode structure between the coordinates of Y .

By varying the nonlinearity �, depth d, and feature prior Z, our framework encapsulates a variety
of semi-supervised learning approaches. To provide a non-trivial example, we prove in SI Appendix A
that our framework for matrix completion generalizes Laplacian-based semi-supervised learning [26]. This
insight regarding the connection between our framework for matrix completion and semi-supervised learning
represents the backbone for a simple and competitive approach to virtual drug screening described in the
next section.
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(Liu et al. 2013)
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(Hodos et al. 2018)

NTK
(Ours)

Pearson r 0.374 ± 0.0004 0.545 ± 0.0003 0.556 ± 0.0003 0.572 ± 0.0002
Mean R2 0.134 ± 10^(-5) 0.286 ± 0.0003 0.296 ± 0.0004 0.320 ± 0.0002

Mean Cosine 
Similarity 0.371 ± 10^(-5) 0.536 ± 0.0004 0.541 ± 0.0004 0.554 ± 0.0002

Evaluation 
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(Liu et al. 2013)
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(Hodos et al. 2018)

NTK
(Ours)

Pearson r 0.450 0.544 0.538 0.573
Mean R2 0.197 0.285 0.278 0.324

Mean Cosine 
Similarity 0.448 0.536 0.532 0.565

(d)
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Figure 3-2: Our infinite width neural network framework outperforms DNPP [84], FaLRTC [121], and mean
over cell types for drug response imputation on CMap. (a) We visualize the availability of cell type and
drug combinations of the subset from [84]. (b) Our method corresponds to first providing an embedding
of cell type and drug combinations as the feature prior and then applying the NTK. We show that: (1)
using a feature prior consisting of one-hot vectors for drugs corresponds to imputation by performing mean
across observations for each cell type and (2) using a feature prior that captures similarity between drugs
and cell types is effective for imputation. (c, d) Our infinite width neural network framework (denoted NTK)
outperforms DNPP and mean over cell type across three evaluation metrics. We use 5 rounds of 10-fold
cross validation to determine that the difference between our method and the next best method, DNPP, is
statistically significant (p-value less than 10�20).

3.3 Virtual Drug Screening with the NTK

CMAP is a prominent, large-scale, publicly available drug screen that considers 20,413 different compounds
and 72 different cell lines [178]. Experiments in CMAP were performed on a subset of 201,484 drug/cell line
pairs; for each of these pairs the gene expression profile of 978 landmark genes was measured. CMAP has been
an important resource for computational approaches to drug discovery and drug repurposing [30, 150, 178].
In these applications, the goal is to use a subset of observed drug/cell type pairs to predict the gene expression
profile of new drug/cell type pairs. These profiles are then used to identify drug candidates of interest that
can be tested experimentally [106, 194].

The CMAP dataset can be viewed as a 3-dimensional tensor (drugs, cell lines, genes), where many of
the entries are missing. In the following, we will use the same pre-processing of the data as in [84] to
filter out drug/cell line combinations with very few or inconsistent samples; a description and a link to the
dataset is provided in SI Appendix B. The resulting drug/cell line combinations are shown in Fig. 3-2a.
The 3-dimensional tensor can be flattened into a matrix, where the columns correspond to drug/cell line
combinations and the rows represent genes (see Fig. 3-2b); i.e., following the notation from Section 2, entry
Yij of the resulting flattened matrix is a real-valued number quantifying the gene expression of gene i in drug
and cell type combination j. This matrix has a missing column for every missing drug/cell line combination.
Classical low rank matrix factorization methods would prove ineffective in this setting since they would
replace each missing column by the same constant column. On the other hand, Theorem 5 suggests the
NTK as an effective way for imputing the missing gene expression profiles by selecting the feature prior Z
such that two columns of Z are similar if they correspond to similar drug/cell line pairs. In the following, we
discuss three different feature priors for this application; for a full description of these priors see SI Appendix
C.

Feature Prior corresponding to the Mean Over Cell Type Baseline
A simple baseline is to impute the gene expression profiles for each missing drug for a given cell line by the
mean over all observed drugs for this cell line. Quite surprisingly, this simple approach gives rise to a strong
baseline [84, 175], since cell type is the dominant factor, while drugs have subtle effects on gene expression.

While it is generally nontrivial to improve upon this simple baseline without constructing a specialized
algorithm [19, 84, 95, 146], our NTK framework provides an easy way for doing so. In particular, our
framework makes it evident that the feature prior corresponding to the mean over cell type baseline is trivial,
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since it corresponds to an embedding in which drugs are encoded via one-hot vectors (see SI Appendix D).
Thus, to improve upon this baseline, we select any feature prior that can capture similarities between drugs.

Feature Prior Corresponding to Previous Algorithms

We now demonstrate that our framework provides a direct approach to improve on previous methods for
virtual drug screening by using the output of previous methods as a feature prior in our framework. Namely,
if a method is used to produce an imputation, Ŷ , then the columns in Ŷ should represent an embedding of
drug and cell type combinations that captures their similarity. Hence, we can use Z = Ŷ as the feature prior
in our method. For illustration, we apply this approach to two state-of-the-art methods for virtual drug
screening: (1) Drug Neighbor Profile Prediction (DNPP) [84], which is a weighted nearest neighbor scheme,
and (2) Fast Low Rank Tensor Completion (FaLRTC) [121], which involves low rank matrix completion
along each slice of the CMAP tensor. We show that our framework using these feature priors yields an
improvement over the individual methods; see SI Appendix E.

Proposed Feature Prior for Drug Response Imputation

Observing the pattern of data availability in Fig. 3-2a, it is apparent that a subset of cell lines have obser-
vations for many (> 150) drugs (dense regime), while many cell lines have observations for only few ( 150)
drugs (sparse regime). While previous methods such as DNPP are quite effective in the dense regime, they
are not as effective in the sparse regime; see Fig. 3-2c and SI Appendix F. This can be explained by the fact
that in the sparse regime DNPP roughly imputes using the simple mean over cell type baseline.

For effective drug response imputation in the sparse regime, our framework can be used to construct a
simple feature prior by concatenating embeddings for cell types and drugs. In particular, we can use the
gene expression values for a reference cell type for which there are a lot of drug observations (e.g. MCF7
in CMAP) as the embedding of drugs and the mean gene expression across all observations for a given cell
type as the embedding of cell type. Fig. 3-2c shows that the NTK with this simple feature prior outperforms
mean over cell type, FaLRTC and DNPP in the sparse regime. We compare across Pearson r value, mean
R2, and mean cosine similarity. A description of all evaluation metrics is provided in SI Appendix G. By
combining our feature prior for the sparse regime with the FaLRTC based feature prior for the dense regime,
we obtain a drug imputation method that significantly outperforms DNPP, FaLRTC, and mean over cell
type on the full dataset; see Fig. 3-2d (p-value less than 10�20 based on 5 rounds of 10-fold cross validation,
with an improvement on every fold of every round across all metrics; see SI Appendix H).

3.4 Matrix Completion with the Convolutional NTK

While we have thus far derived and applied the NTK for matrix completion using fully connected networks,
these architectures are not nearly as effective as convolutional networks for matrix completion tasks in which
the target matrix is an image. Similar to the case of fully connected networks, a closed form for the NTK
corresponding to convolutional networks (the so-called CNTK) is known in the regression setting [9], but
it has not been considered in the setting of matrix completion. Moreover, the runtime for computing the
CNTK for regression scales quadratically with each image dimension. In this section, we derive the CNTK
for matrix completion and provide a computationally efficient method for computing the CNTK for matrix
completion for a class of feature priors that are effective for image inpainting and reconstruction.

We begin by deriving the CNTK for matrix completion for a simple class of convolutional networks,
when there are no downsampling or upsampling layers. We show that in this setting, the CNTK for matrix
completion can be computed using terms from the CNTK for classification. In the following proposition
(proof in SI Appendix I), ⇥(d) 2 Rm⇥n⇥m⇥n denotes the tensor corresponding to the CNTK of a d layer
convolutional network in the classification setting [9, Sec. 4].

Proposition 3. Let fZ(W) be a d layer convolutional network used to map from feature prior, Z 2 Rc⇥m⇥n,
to the target matrix, Y 2 Rm⇥n. Then as the number of convolutional filters per layer approaches infinity,
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the CNTK of fZ(W) is given by:

K(Mij , Mi0j0) = [⇥(d)(Z, Z)]i,j,i0,j0 , (3.4)

where Mij , Mi0j0 2 Rm⇥n denote indicator matrices.

CNTK Performs Semi-Supervised Learning using Image Coordinate Features
In Section 3.2, we established a connection between semi-supervised learning and matrix completion using
the NTK. We now establish a similar connection between semi-supervised learning and matrix completion
with the CNTK for a class of feature priors defined in Theorem 6 below. This class includes feature priors
that are heavily used in image inpainting applications, namely where the channels of Z are drawn i.i.d. from
a stationary distribution [42, 185]. The following theorem (proof in SI Appendix J), which is analogous to
Theorem 5 for the NTK, implies that using the CNTK for matrix completion is equivalent to mapping from
coordinate features to observed entries in the target matrix Y .

Theorem 6. Consider a convolutional network of depth d with homogeneous activation and in which all
filters have size q and circular padding. Let Z 2 Rc⇥m⇥n satisfy:

cX

`=1

X

�↵a,b↵

Z`,i+a,j+bZ`,i0+a,j0+b =  (|i � i0|, |j � j0|)

for some  : R2 ! R with maximum at (0, 0) and ↵ = q�1
2 (odd q). Then as the number of convolutional

filters per layer goes to infinity, the CNTK simplifies to:

K(Mij , Mi0j0) =  ̃(|i � i0|, |j � j0|),

where  ̃ : R2 ! R is a function that can be computed from  (a recursive formula is provided in SI Appendix
J).

Since the function  ̃ depends only on the positions of the coordinates, Theorem 6 shows that the CNTK
for matrix completion is equivalent to semi-supervised learning using kernels on features corresponding to
coordinates.

Closed Form for the CNTK of Modern Architectures for Matrix Completion
Unlike the convolutional networks considered thus far, state-of-the-art architectures for unsupervised image
inpainting such as [42, 185] incorporate a variety of layer structures including strided convolution, nearest
neighbor and bilinear upsampling, skip connections, and batch normalization. We derive (in SI Appendix
K) the CNTK for matrix completion using convolutional networks with the following layer structures: (1)
Downsampling through Strided Convolution ; (2) Nearest Neighbor Upsampling ; and (3) Bilinear Upsam-
pling.1

Efficient Computation of the CNTK of Modern Architectures for Matrix Com-
pletion
A key insight that we use to speed up the computation of the CNTK is that the kernel in Eq. [3.4] depends
only on the feature prior and not on the values of the observed pixels in an image. Hence, the CNTK need
only be computed once for all images of a given resolution. This enables a drastic speedup over recomputing
the kernel for every new image, as is currently required in classification.

However, using such a direct approach to compute the CNTK is still computationally prohibitive for
high resolution images. In particular, computing the CNTK for a network with d convolutional layers to
complete an image of size 2p⇥2q, requires O(p2q2d) runtime and O(22p+2q) space. In order to overcome these

1
The impact of linear downsampling and upsampling on the CNTK is briefly described in Appendix E of [179], but the

explicit forms are not computed nor used in the experiments.
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Figure 3-3: Large hole inpainting using (i) the CNTK, (ii) neural networks with sigmoid last layer and batch
normalization layers that are trained with Adam, and (iii) biharmonic functions. (a) Qualitative comparison
of inpainting results across the three methods. Results for all images are provided in SI Appendix Fig. S5.
(b) Comparison of peak signal-to-noise ratio (PSNR) across 3 methods with the CNTK providing the highest
average PSNR. Runtime and structural similarity index measure (SSIM) for the three methods are provided
in SI Appendix Fig. S4.

limitations, prior work [179] used the Nyström method [193] to approximate the kernel. Instead of relying
on such approximations, we here present an algorithm for computing the exact CNTK in a memory and
runtime efficient manner for any convolutional neural network with circular padding, strided convolution,
and nearest neighbor upsampling layers, when using a feature prior with i.i.d. random entries. Such networks
and feature priors are heavily used for image completion tasks [185].

Our main insight that enables such an algorithm is that for convolutional networks with strided convolu-
tion and nearest neighbor upsampling layers, the CNTK for low resolution images can be expanded to high
resolution images for any feature prior with i.i.d. random entries. In particular, if a neural network with s
downsampling and upsampling layers is used to inpaint images of resolution 2p ⇥ 2q, our algorithm requires
only an array of size 22s+p+q while storing the full CNTK requires an array of size 22p+2q. In practice, s
is exponentially smaller than p, q and so our method is significantly more memory efficient; see the follow-
ing specific example. In addition, since our method only requires computing the CNTK for images of size
2s+1 ⇥ 2s+1, the runtime of our method is O(24s) instead of O(22p+2q), and thus, our method is significantly
faster than a direct computation. A detailed description and proof of our expansion algorithm is presented
in SI Appendix L.

Example. Let fZ(W) represent a convolutional neural network with circular padding, 3 layers of strided
convolution with a stride size of 2 in each direction, and 3 nearest neighbor upsampling layers with a feature
prior Z 2 Rc⇥512⇥512 satisfying:

cX

p=1

Zp,i,jZp,i0,j0 =

8
<

:
C1 i = i0 , j = j0

C2 otherwise
,

where C1, C2 > 0 are constants. Suppose fZ(W) is used to inpaint images of size 512 ⇥ 512. Then, by
computing the CNTK for 16 ⇥ 16 resolution images, K` 2 R162

⇥162

, we can expand up to the exact CNTK
for 512 ⇥ 512 images. Computing K` takes roughly 11 seconds when using a CPU with 1 thread and K̃ uses
less than 100MB of memory with floating point precision. On the other hand, even storing the true kernel
K 2 R5122

⇥5122

would require roughly 256GB memory when using floating point precision. This is twice the
amount of RAM available on our server and 16 times the amount of RAM available on most laptops.
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3.5 Image Inpainting and Reconstruction with the CNTK

We now utilize the results of the previous section to perform large hole image inpainting and reconstruction.
As illustrated in Figs. 3-1c and 3-1d, large hole inpainting involves imputing a large contiguous region in an
image while image reconstruction involves imputing random missing pixels in an image. Recent work [185]
demonstrated that using convolutional neural networks with downsampling and upsampling layers to impute
the missing pixels in images leads to competitive results for these applications.

The methods from [185] are a special case of our framework in Eq. [3.1]; namely using convolutional
layers and letting the feature prior, Z, be a tensor with i.i.d. uniform random entries. Thus, we can use
our framework for performing image completion tasks, and instead of training deep networks, we can simply
solve kernel regression with the CNTK. We will demonstrate that this gives rise to a simple, fast, flexible, and
competitive alternative to training deep networks for high resolution image completion problems. Moreover,
we will demonstrate that our framework can be used to identify the role of architecture and feature prior on
image completion problems and aid in identifying effective architectures and feature priors.

Application 1: Large Hole Inpainting with the CNTK

We utilize the CNTK for large hole inpainting tasks from [42, 185]. We compute the CNTK for the archi-
tecture used in [42] with 6 downsampling and nearest neighbor upsampling layers for the feature prior Z
with i.i.d. entries Z`,i,j ⇠ U [0, .1], where ` 2 Z+ and i, j 2 [m] ⇥ [n]. We compute the CNTK on 128 ⇥ 128
resolution images and then expand it to the CNTK for high resolution images via our expansion technique
in Section 3.4. We compare our method against neural networks of the same architecture using the training
procedures from [42, 185] (see SI Appendix M for details). We also compare our method against inpainting
with biharmonic functions [51], which is currently the default inpainting method in scikit-image [187].

Figure 3-3a shows examples of the resulting reconstructions, and Figure 3-3b shows the peak signal-to-
noise ratio (PSNR) across all methods. Our method on average outperforms both inpainting with finite
width neural networks and inpainting with biharmonic functions.2 In SI Appendix Fig. S4, we show that
our method also outperforms the other methods in terms of structural similarity index measure (SSIM),
and that the runtime is comparable (within 2 minutes on average) across all methods in this setting. The
reconstructions across all images and methods are provided in SI Appendix Fig. S5.

Application 2: Image Reconstruction with the CNTK

We next analyze the performance of the CNTK on the image reconstruction tasks considered in [185]. While
the networks considered in [42, 185] make use of skip connections for image reconstruction, we only consider
architectures without skip connections for which we can derive the CNTK exactly (see SI Appendix M for
details). We again compare the CNTK to neural networks of the same architecture and to biharmonic
inpainting. For this comparison, we use networks with 128 filters per layer, as is done in [42, 185]. In SI
Appendix Fig. S6, we show that our model performs comparably to inpainting with biharmonic functions
and outperforms neural networks of the same architecture. In SI Appendix Fig. S6, we additionally show
that our method performs comparably to biharmonic inpainting in terms of SSIM and that our method is up
to 10 times faster than using small width neural networks on the same hardware. While our method performs
comparably to inpainting with biharmonic functions in this application, our framework is more flexible, since
we can adjust architecture and feature prior, and it outperforms inpainting with biharmonic functions for
the problem of large hole inpainting (see above). Since methods such as Adam with Langevin dynamics
[42] have enabled performance boosts for neural networks (see SI Appendix Fig. S4 & S5), an interesting
direction for future work could be to incorporate such techniques for image completion applications using
the CNTK.

2
While the PSNR values for these images are also presented in [42], they appear to be computed without replacement of the

observed pixel values. We re-ran these experiments with replacement for fair comparison with biharmonic inpainting.
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Figure 3-4: We use the CNTK to understand the impact of architecture and input on image inpainting.
(a) Heatmap visualizations of the CNTK when varying the number of downsampling/upsampling layers and
input. The visualization makes clear that the uniform random feature prior, unlike other feature priors,
results in kernels that use the region surrounding a missing pixel value for imputation regardless of the
number of downsampling layers. (b) The heatmap visualizations of the CNTK make transparent which
observed pixels are being used to inpaint a given missing pixel when using the identity feature prior. (c) A
comparison between inpainting a 128 ⇥ 128 resolution image of a rabbit with a finite width neural network
and with the CNTK when the feature prior is the identity. The CNTK is able to accurately predict the
unexpected behavior of the neural network.

Using Our Framework to Select Feature Prior and Architecture for Image Com-
pletion
In the following, we demonstrate that our framework provides a theoretical underpinning for understanding
how a given architecture and feature prior influence image completion. In particular, we use our framework
to explain why the uniform random feature prior and architectures with downsampling and upsampling layers
are effective for image completion while other feature priors such as the identity feature prior are ineffective
for this application.

The key observation enabling such interpretability is that for kernel methods, every prediction (a missing
pixel value) is a linear combination of training examples (observed pixel values). Hence, for each imputed
pixel, the CNTK can be used to provide a heatmap describing which observed pixels were most heavily
weighted in the linear combination. In order to generate such heatmaps, we reshape the CNTK into a 4
dimensional tensor. Namely, given a CNTK K 2 Rmn⇥mn, we reshape K to a tensor KT 2 Rm⇥n⇥m⇥n

where K(Mij , Mi0j0) = KT (i, j, i0, j0). To generate a heatmap for a given a coordinate (i, j), we visualize
the matrix KT (i, j, :, :) 2 Rm⇥n. This visualization allows us to decipher how architecture and feature prior
change the resulting imputation from a neural network.

The Uniform Random Feature Prior and Modern Architectures are Effective for Image Com-
pletion

In Fig. 3-4a, we visualize the kernel values K(104, 14, :, :) computed for a 128 ⇥ 128 image when varying the
number of down and upsampling layers and as well as the feature prior Z. Namely, we consider the cases
where Z is the identity, the meshgrid from [185], or the uniform random tensor used in large hole inpainting
experiments of [185]. A key observation is that the kernel values for the uniform random feature prior are
highest around the coordinate of interest regardless of the amount of down and upsampling, which is in stark
contrast to other feature priors.3 This implies that neighboring pixels are most heavily used when imputing
using the uniform random feature prior (see SI Appendix Fig. S7 for additional visualizations). Moreover,
when using the uniform random feature prior, the amount of down and upsampling increase (by powers of

3
When there are no downsampling and upsampling layers, this follows immediately from Theorem 6.
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2) the size of the region considered for imputation (see the first row of Fig. 3-4a). These heatmaps identify
the minimum amount of downsampling necessary for large hole inpainting: if there is an m ⇥ m region of
missing pixels (m � 1), we need least blog2(m + 1)c layers of downsampling to ensure that no pixel is filled
in as an average of all other pixels. This result explains the observation from [185], which showed that using
neural networks with four or fewer downsampling and upsampling layers led to worse large hole inpainting
performance on images with large missing regions.

The Identity Feature Prior is Ineffective for Image Completion

The standard feature prior for matrix completion is given by choosing Z to be the identity matrix [8, 37,
72]. As shown in Fig. 3-4a, unlike the uniform random feature prior, the identity feature prior uses pixel
observations from non-local regions for completion. Thus, we expect this feature prior to be ineffective for
image completion tasks.

Fig. 3-4b shows the result of using the CNTK for a network with 6 downsampling and upsampling
layers and the identity feature prior to impute a 128 ⇥ 128 rabbit image. The identity feature prior visually
appears to translate observed pixels from a non-local region to perform imputation. The regions that are
being translated are precisely those given by the corresponding heatmaps, e.g. the upper right quadrant is
imputed using the lower left quadrant in Fig. 3-4b.

We note that our framework accurately predicts the behavior of finite width neural networks used for
image inpainting. In Fig. 3-4c, we show the result of using a neural network with 6 downsampling and
upsampling layers, sigmoid activation on the last layer, and identity feature prior. We observe that the
neural network completes the image by translating observed pixels similarly to the imputation provided by
the corresponding CNTK. This example highlights the power of using our framework for rapidly prototyping
feature priors and architectures for image inpainting tasks.

3.6 Discussion

In this work, we presented a simple, fast, and flexible framework for matrix completion using the infinite
width limit of neural networks, i.e. the neural tangent kernel (NTK). Below, we highlight the aspects of our
framework that enable such simplicity, speed, and flexibility.

• Simple. Our framework is conceptually simple since we are using kernels to learn a map from features
of coordinates, (i, j), to entries in the target matrix, Yi,j . Our framework is computationally simple
since solving kernel regression involves solving a linear system of equations.

• Fast. Our framework is naturally fast when using the NTK of fully connected networks for matrix
completion due to the simple closed form of the kernel (Theorem 5). We develop a memory and
runtime efficient algorithm to compute and use the NTK of convolutional networks (the CNTK) for
matrix completion (Section 3.4).

• Flexible. Our framework is easily adapted to various applications by the choice of the feature prior,
thereby making our framework flexible. Moreover, we provided a principled approach for selecting the
feature prior by establishing a connection with semi-supervised learning (Theorems 5, 6) and providing
a visualization of the effect of the feature prior (Section 4).

The simplicity and speed of our framework is illustrated by the fact that many of our results (including
inpainting high resolution images) can be run on a CPU and even on a laptop (see Materials & Methods for a
link to our code). We demonstrated that our framework is flexible by using it to achieve competitive results
for virtual drug screening (Section 3.3) and image inpainting/reconstruction (Section 3.5). We envision
that our work provides a simple and accessible framework for producing strong baselines for several matrix
completion applications. We conclude with a discussion of possible future extensions and applications.

Future Applications of Our Framework

In this work, we demonstrated the flexibility of our framework by constructing feature priors for two different
applications, namely virtual drug screening and image completion. An interesting future direction is the
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extension of our framework to other modalities such as tensors, video, or audio data. For example, by using
a feature prior that captures the structure of coordinates in 3D images, we could apply our framework to
impute missing regions in three-dimensional data.

Efficient Computation of the CNTK

In classification and regression settings, a major hindrance for using the CNTK in practice is the computa-
tional complexity in computing the kernel for a large image dataset. In this work, we presented an expansion
technique to efficiently compute and store the exact CNTK for inpainting high resolution images, which
was previously considered infeasible [42, 179]. By understanding the properties of the CNTK that make it
effective for image problems, we envision that similar techniques could be applied to produce efficient kernel
machines for image classification.

Developing Techniques to Improve the Performance of the NTK

While a large number of techniques such as skip connections, batch normalization, etc. have been developed
to augment the performance of neural networks, such techniques have yet to be adapted to improve the
performance of kernels. The simplicity and effectiveness of the NTK and CNTK based on simple architectures
considered in this work motivates the development of techniques to further boost the performance of the
NTK and kernel methods in general.

Materials and Methods. For solving kernel regression with the NTK, we use the direct linear system
solver from [140] when the number of equations is fewer than 30,000, and we use EigenPro [124, 125]
otherwise. For training neural networks, we use the PyTorch library [142]. All methods requiring a GPU
are run on a single NVIDIA Titan RTX GPU. Our experiments are run on a shared server with 4 Titan
RTX GPUs, 128GB CPU RAM, and 64 threads. For the virtual drug screening experiments, we use the
subset of the CMap dataset [178] provided in [84]. A detailed description of all the methods (including
random seeds and hyperparameters for DNPP and FaLRTC) and evaluation metrics for the virtual drug
screening experiments is provided in SI Appendices C-H. A description of the t-test used for determining
the significance of our results for virtual drug screening is presented in SI Appendix H. We provide code to
replicate our results for the virtual drug screening experiments with the NTK, DNPP, FaLRTC, and mean
over cell type at https://github.com/uhlerlab/ntk_matrix_completion. We use the codebase from [84] for
performing imputation with FaLRTC.

For the image completion applications, we use the datasets from [42, 185]. For the neural network and
NTK methods used in our image inpainting and reconstruction experiments, we provide a description of all
architectures and training hyperparameters in SI Appendix M.

We provide a library for computing and using the CNTK for image inpainting and reconstruction appli-
cations in the codebase linked above. Our library lets the user define a custom neural network (similarly
to network definitions in PyTorch), and then provides a function to compute the CNTK from the given
architecture. Our method for computing the CNTK runs entirely on the CPU, and we enable paralleliza-
tion across CPU threads. Our library includes functions for computing the CNTK for networks with nearest
neighbor and bilinear upsampling layers, which are not readily available in the Neural Tangents library [139].
We additionally provide functions to solve kernel regression using the CNTK via a linear system solver or
EigenPro. A full description of the library and an example of how to use our library for image inpainting
is provided in Jupyter notebooks in our linked code. We additionally release several pre-computed kernels
that can be used for high resolution inpainting and reconstruction.
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Chapter 4

Consistency of infinitely wide and deep

neural network classifiers

In this chapter, we demonstrate the value of the NTK in providing theoretical guarantees for neural networks.
In particular, we analyze the NTK of infinitely wide and deep networks used for classification tasks. We derive
a taxonomy characterizing the solutions implemented by such models based on choice of activation function.
We then identify explicit activation functions for which infinitely wide and deep networks implement Bayes
optimal or consistent classifiers. The work presented in this section culminated into the following paper [153].

4.1 Introduction

Deep learning has produced state-of-the-art results across several application domains including computer
vision [80], natural language processing [35], and biology [183]. Despite these empirical successes, our under-
standing of basic theoretical properties of deep networks is far from satisfactory. In fact, for the fundamental
problem of classification it has not been established whether neural networks trained with standard opti-
mization methods can achieve consistency, i.e., whether they minimize the probability of misclassification
for arbitrary data distributions (a property also referred to as Bayes optimality in the statistics literature).1

There is a vast literature on the consistency of statistical machine learning methods, which has tradi-
tionally focused on methods that do not interpolate, or fit training data exactly [44, 55]. Given the recent
successes of interpolating neural networks [22, 135, 208], there is renewed interest in understanding the
consistency of interpolating machine learning models including nearest neighbor methods and kernel meth-
ods [23, 28, 48, 54, 155, 155]. While such methods can be universally consistent in the non-interpolating
regime, these models are generally not consistent in the interpolating regime [18, 54, 155]. Moreover, little
is known about the consistency of interpolating deep neural networks. Classical work [60] analyzing the
consistency of neural networks utilizes the results of Cybenko [50] and Hornik [87] to show that the Bayes
optimal classifier can be approximated by a neural network that is sufficiently wide; i.e., these prior results
are concerned with the existence of networks that achieve consistency and do not present computationally
feasible algorithms for finding such networks.

By establishing a connection between interpolating kernel smoothers and deep neural networks, we
identify and construct an explicit class of interpolating neural networks that, when trained with gradi-
ent descent, achieve consistency for classification problems. Our results utilize the recent Neural Tan-
gent Kernel (NTK) connection between training wide neural networks and using kernel methods. Several
works [96, 110, 118, 120] established conditions under which using a kernel method with the NTK is equiv-
alent to training neural networks, as network width approaches infinity. Given the conceptual simplicity
of kernel methods, the NTK has been widely used as a tool for understanding the theoretical properties of
neural networks [90, 110, 120, 154, 199]. Since neural networks in practice are often both wide and deep, we
consider the natural extension of networks that are both infinitely wide and deep.

1
Consistency refers to a property that holds in an asymptotic sense as the number of training samples approaches infinity.
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Figure 4-1: Behavior of infinitely wide and deep neural networks trained with gradient descent. (a) Taxonomy
of infinitely wide and deep networks. Depending on the choice of the activation function, �(·), these models
implement majority vote (blue), 1-nearest neighbor (red), or singular kernel classifiers (green), a subset
of which achieve consistency. (b) Regression versus classification using infinitely wide and deep networks.
While these models are not effective in the regression setting, since their predictions are near zero almost
everywhere, they can achieve consistency for classification, where only the sign of the prediction matters. (c)
Illustration of the different behaviors of infinitely wide and deep networks for varying activation functions.
Depending on the activation function, infinitely wide and deep networks implement majority vote (blue),
1-nearest neighbor (red), or singular kernel classifiers that can achieve consistency (green). Singular kernels
that grow too slowly are akin to majority vote classifiers (dashed blue), whereas those that grow too quickly
are akin to weighted nearest neighbor classifiers (dashed red).

In particular, we focus on infinitely wide and deep networks in the classification setting and show that
they have markedly different behavior than in the regression setting. Indeed, prior work [78, 90] showed that
in the regression setting, infinitely wide and deep neural networks simply predict near-zero values at all test
samples and thus, are far from consistent (see Fig. 4-1b). As a consequence, these models were dismissed
as an approach for explaining the strong performance of deep networks in practice. In stark contrast to
regression, we show that the sign of the predictor can be informative even when its numerical output is
arbitrarily close to zero (see Fig. 4-1b for an illustration). In fact, as we show in this work, this is exactly
how infinitely wide and deep neural networks can achieve Bayes optimal classification accuracy even though
the output of the network approaches zero.

To characterize the behavior of infinitely wide and deep classifiers, we establish a taxonomy of such
models, and we prove that it includes networks that achieve consistency (see Fig. 4-1a). More precisely, we
prove that infinitely wide and deep neural network classifiers implement one of the following three well-known
classifiers depending on the choice of activation function:

1. 1-nearest neighbor (1-NN) classifiers: the prediction on a new sample is the label of the nearest sample
(under Euclidean distance) in the training set [76].

2. Majority vote classifiers: the prediction on a new sample is the label of the class with greater repre-
sentation in the training set.

3. Singular kernel classifiers: the prediction on a new sample is obtained by using the kernel K(x, x̃) =
R(kx�x̃k)
kx�x̃k↵ where ↵ > 0 is the order of the singularity.2 As is standard when using kernel smoothers for

2
For this order to be well-defined, R(·) is non-negative and satisfies inf

|u|<✏
R(u) > 0 and |R(u)| < C for some ✏, C > 0.
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classification, the prediction, m(x), on a new sample x given training data {(x(i), y(i))}n
i=1 is

m(x) = sign
⇣ nX

i=1

y(i)K(x(i), x)
⌘
. (4.1)

As a corollary of a result in [54] it follows that singular kernel classifiers achieve consistency when ↵ is
the dimension of the data, d (see SI Appendix C). Hence our taxonomy and, in particular, Theorem 8 of
this work provide exact conditions under which infinitely wide and deep neural network classifiers achieve
consistency for any given data dimension. Notably, we identify a simple class of activation functions that
yield singular kernel classifiers with ↵ = d, and we thus identify concrete examples of neural networks that
achieve consistency. For example, for d = 2, the infinitely wide and deep classifier with activation function
�(x) = (x3 + (

p
6 � 3)x)/

p
12 achieves consistency. Interestingly, the popular rectified linear unit (ReLU)

activation �(x) = max(x, 0) leads to an infinitely wide and deep classifier that implements the majority
vote classifier and is thus not consistent. Similarly, the activation function �(x) = (x2 � 1)/

p
2 leads to an

infinitely wide and deep classifier that implements the 1-NN classifier and is thus also not consistent.
We note that singular kernels provide a natural transition between 1-NN and majority vote classifiers.

Namely, as discussed in [54], for ↵ > d, singular kernel classifiers behave akin to weighted nearest neighbor
classifiers since kx � x̃k↵ is extremely small for x̃ near x. Similarly, for ↵ < d, singular kernel classifiers
behave akin to majority vote classifiers since kx � x̃k↵ is no longer small for x̃ far from x. We visualize this
transition between the three classes established in our taxonomy in Fig. 4-1c.

4.2 Taxonomy of Infinitely Wide and Deep Neural Networks

In the following, we construct a taxonomy of classifiers implemented by infinitely wide and deep neural
networks. Our construction relies on the recent connection between infinitely wide neural networks and
kernel methods [96]. In particular, this connection involves utilizing a kernel method known as a kernel
machine, which is related to the kernel smoother described in Eq. [4.1]. In contrast to the kernel smoother,
a kernel machine with kernel K is given by:

sign
�
yK�1

n K(X, x)
�
, (4.2)

where X = [x(1)|x(2)| . . . |x(n)] 2 Rd⇥n denotes the training data, y = [y(1), y(2), . . . y(n)] 2 {�1, 1}1⇥n the
labels, Kn 2 Rn⇥n satisfies (Kn)i,j = K(x(i), x(j)) and K(X,x) 2 Rn satisfies (K(X, x))i = K(x(i), x).
Both kernel methods can be used as prediction schemes for classification [166]. Note that while both algo-
rithms produce predictors with the same functional form, their predictions are generally different. Indeed,
understanding the relation between kernel smoothers and kernel machines will be critical to our proof of
consistency.

Under certain conditions, training a neural network as width approaches infinity is equivalent3 to using
a kernel machine with a specific kernel known as the Neural Tangent Kernel [96], which is defined below.

Definition 8. Let f (L)(x;W) denote a fully connected network4 with L hidden layers with parameters W
operating on data x 2 Rd. For x, x̃ 2 Rd, the Neural Tangent Kernel (NTK) is given by:

K(L)(x, x̃) = hrWf (L)(x;W), rWf (L)(x̃;W)i .

To work with a simple closed form for the NTK and to avoid symmetries arising from the activation
function, we will consider training data with probability density function on Sd

+, where Sd
+ is the intersection

3
This equivalence requires a particular initialization scheme on the weights known as the NTK initialization scheme [96].

Formally, this equivalence holds when an offset term corresponding to the predictions of the neural network at initialization are

added to those given by the using a kernel machine with the NTK [96]. Like in prior works (e.g. [9, 78, 90, 109, 154]), we will

analyze the NTK without such offset. This model corresponds to averaging the predictions of infinitely many infinite width

neural networks [139].
4
Throughout this work, we consider fully connected networks that have no bias terms.
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of the unit sphere Sd in d + 1 dimensions and the non-negative orthant.5 We also assume that no samples
are repeated in the training data.

In this work, we analyze the behavior of infinitely wide and deep networks by analyzing the kernel machine
in Eq. [4.2], as depth, L, goes to infinity. To perform our analysis, we utilize the recursive formula for the
NTK of a deep network originally presented in [96]. Namely, K(L) can be expressed as a function of K(L�1)

and the network activation function, �(·), yielding a discrete dynamical system indexed by L. The exact
formula can be found in Eq. [4.5], and additional relevant results from prior works that are used in our proofs
are referenced in SI Appendix A.

Remarkably, the properties of the resulting dynamical system as L ! 1 are governed by the mean of �(z)
and its derivative, �0(z), for z ⇠ N (0, 1). For simplicity, we will assume throughout that E[�(z)2] < 1 and
similarly E[�0(z)2] < 1, an assumption that holds for many activation functions used in practice including
ReLU, leaky ReLU, sigmoid, sinusoids, and polynomials. By defining A = E[�(z)] and A0 = E[�0(z)], we
break down our analysis into the following three cases:

Case 1: A = 0 , A0 6= 0 ,

Case 2: A = 0 , A0 = 0 ,

Case 3: A 6= 0 .

Under cases 1 and 2, 0 is the unique fixed point attractor of the recurrence for K(L) and thus K(L)(x, x̃) !
0 as L ! 1 for x 6= x̃. As a consequence, cases 1 and 2 lead to infinitely wide and deep neural networks
that predict 0 almost everywhere. Hence, these networks are far from Bayes optimal in the regression setting
and were thus dismissed as an approach for explaining the strong performance of deep networks. On the
other hand, case 3 yields nonzero values for any pair of examples and thus, prior works that analyzed the
regression setting [78, 90] focused on activation functions satisfying case 3.

In stark contrast to the regression setting, we will show that infinitely wide and deep networks with
activation functions satisfying case 1 are effective for classification, with a subset achieving consistency. In
particular, we will show that networks in case 1 implement singular kernel classifiers while those in case 2
implement 1-NN classifiers. Notably, we will identify conditions and provide explicit examples of activation
functions in case 1 that guarantee consistency. We will then show that infinitely wide and deep classifiers with
activations satisfying case 3 generally correspond to majority vote classifiers. A summary of our taxonomy
is presented in Fig. 4-1a, and we will now discuss each of the three cases in more depth.

Case 1 (A = 0, A0 6= 0) networks implement singular kernel classifiers and can
achieve optimality
We establish conditions on the activation function under which an infinitely wide and deep network im-
plements a singular kernel classifier (Theorem 7). We then utilize results of [54] to show that this set of
classifiers contains those that achieve consistency for any given data dimension. Lastly, we will present
explicit activation functions that lead to infinitely wide and deep classifiers that achieve consistency. We
begin with the following theorem, which establishes conditions under which the infinite depth limit of the
NTK is a singular kernel.

Theorem 7. Let K(L) denote the NTK of a fully connected neural network with L hidden layers and
activation function �(·). For z ⇠ N (0, 1), define A = E[�(z)], A0 = E[�0(z)], and B0 = E[�0(z)2]. If A = 0
and A0 6= 0, then for x, x̃ 2 Sd

+:

lim
L!1

K(L)(x, x̃)

(A0)2L(L + 1)
=

R(kx � x̃k)

kx � x̃k↵
,

where ↵ = �2 log(A02)
log(B0) and R(·) is non-negative, bounded from above, and bounded away from 0 around 0.

The full proof is presented in SI Appendix B, and we outline its key steps in Section 4.3. Theorem 8 below
characterizes the activation functions for which the infinitely wide and deep network achieves consistency.

5
For example, min-max scaling followed by projection onto the sphere results in the data lying in this region.
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In particular, we establish the consistency of the infinitely wide and deep neural network classifier, mn(·),
given by taking the limit as L ! 1 of the kernel machine in Eq. [4.2] with K = K(L), i.e.

mn(x) = lim
L!1

sign
⇣
y
�
K(L)

n

��1
K(L)(X, x)

⌘
. (4.3)

Theorem 8. Let mn denote the classifier in Eq. [4.3] corresponding to training an infinitely wide and
deep network with activation function �(·) on n training examples. For z ⇠ N (0, 1), define A = E[�(z)],
A0 = E[�0(z)], and B0 = E[�0(z)2]. If

A = 0 and A0 6= 0 and � log(A02)

log (B0)
=

d

2
,

then this classifier is Bayes optimal.6

While the full proof of Theorem 8 is presented in SI Appendices B and C, we outline its key steps in
Section 4.3. In particular, the proof follows by using Theorem 7 above, proving that mn is a singular kernel
classifier, and then using the results of [54], which establish conditions under which singular kernel estimators
achieve optimality. The following corollaries (proofs in SI Appendix D) present concrete classes of activation
functions that satisfy the conditions of Theorem 8 for any given data dimension d.

Corollary 1. Let mn denote the classifier in Eq. [4.3] corresponding to training an infinitely wide and deep
network with activation function

�(x) =

8
><

>:

1
p

2
h7(x) + 1

p
2
x if d = 1,

1
2d/4 h3(x) +

q
1 � 2

2d/2 h2(x) + 1
2d/4 x if d � 2,

where hi(x) is the ith probabilist’s Hermite polynomial.7 Then the classifier mn is Bayes optimal.

Corollary 2. For d � 2, let mn denote the classifier in Eq. [4.3] corresponding to training an infinitely wide
and deep network with activation function

�(x) =
sin(ax)p
sinh(a2)

; �
log a2

sinh(a2)

log a2 cosh(a2)
sinh(a2)

=
d

2
.

Then the classifier mn is Bayes optimal.

We note the remarkable simplicity of the above activation functions yielding infinitely wide and deep
networks that achieve consistency. In particular, for d � 2, Corollary 1 gives activations are simply cubic
polynomials, and Corollary 2 gives sinusoidal activations where the frequency a increases with dimension
(e.g. a2 ⇡ 2.676 leads to consistency for d = 2 and a2 ⇡ 6.135 leads to consistency for d = 3). Lastly,
we note that our results are easily extended to the case where data has density on a submanifold of Sd

+ by
simply selecting ↵ to be the dimension of the data manifold in Theorem 7.

Case 2 (A = 0, A0 = 0) networks implement 1-NN
We now identify conditions on the activation function under which infinitely wide and deep networks imple-
ment the 1-NN classifier.

6
Let m(x) = argmax

ỹ2{�1,1}
P (y = ỹ|x) denote the Bayes optimal classifier. Let Xn denote the training data in Sd

+, let f(·) denote

the density on Sd
+, and let mXn := mn denote the classifier in Eq. [3]. Formally, Theorem 2 implies that at almost all x 2 Sd

+
with f(x) > 0 and for any ✏ > 0, mXn (x) converges to m(x) in probability as n ! 1, i.e.,

lim
n!1

PXn (|mXn (x)�m(x)| > ✏) = 0 .

This is the same notion of consistency, i.e., weak consistency, established for the Hilbert kernel estimator in [54].

7
The closed forms for these polynomials are as follows: h2(x) =

x2�1p
2

, h3 = x3�3xp
6

, and h7(x) =
x7�21x5+105x3�105x

12
p
35

.
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Theorem 9. Let mn denote the classifier in Eq. [4.3] corresponding to training an infinitely wide and deep
network with activation function �(·) on n training examples. For z ⇠ N (0, 1), define A = E[�(z)] and
A0 = E[�0(z)]. If A = A0 = 0, then mn(x) implements 1-NN classification for almost all x 2 Sd

+.

The proof of Theorem 9 is provided in SI Appendix E. The proof strategy is to show that the value of
the kernel between a test example and its nearest training example dominates the prediction as L ! 1. In
particular, assuming without loss of generality that xT x(1) > xT x(j) for j 2 {2, 3, . . . , n}, we prove that:

lim
L!1

K(L)(x, x(j))

K(L)(x, x(1))
= 0 .

As a result, after re-scaling by K(L)(x, x(1)), we obtain that mn(x) = sign(y(1)). We note that this proof
is analogous to the standard proof that the Gaussian kernel K(x, x̃) = exp

�
��kx � x̃k2

�
converges to the

1-NN classifier as � ! 1.

Case 3 (A 6= 0) networks implement majority vote classifiers
We now analyze infinitely wide and deep networks when the activation function satisfies E[�(z)] 6= 0 for
z ⇠ N (0, 1). In this setting, we establish conditions under which the infinitely wide and deep network
implements majority vote classification, i.e., the prediction on test samples is simply the label of the class
with greatest representation in the training set. More precisely, the following proposition (proof in SI
Appendix F) implies that when the infinite depth NTK is a constant non-zero value for any two non-equal
inputs, the resulting classifier is the majority vote classifier.

Proposition 4. Let mn denote the classifier in Eq. [4.3] corresponding to training an infinitely wide and
deep network with activation function �(·) on n training examples such that the sum of the labels y(i) is not
0. For any x, x̃ 2 Sd

+ with x 6= x̃, if the NTK K(L) satisfies

lim
L!1

K(L)(x, x̃)

C(L)
= C1 and lim

L!1

K(L)(x, x)

C(L)
6= C1, (4.4)

with C1 > 0 and 0 < C(L) < 1 for any L, then mn implements the majority vote classifier, i.e.,

mn(x) = sign

 
nX

i=1

y(i)

!
.

We now analyze which activation functions satisfy Eq. [4.4]. As described in [77, 108, 148, 204], under
case 3, the value of B0 = E[�0(z)2] for z ⇠ N (0, 1) determines the fixed point attractors of K(L) as L ! 1.
Thus, the infinite depth behavior under case 3 can be broken down into three cases based on the value of
B0. Using the terminology from [148], these cases are:

(i) B0 > 1 (Chaotic Phase),
(ii) B0 < 1 (Ordered Phase),
(iii) B0 = 1 (Edge of Chaos).

In Lemma 5 in SI Appendix G, we demonstrate that in the chaotic phase, the resulting infinite depth NTK
satisfies the conditions of Proposition 4 and thus implements the majority vote classifier. In Lemma 6 in SI
Appendix G, we similarly show that in the ordered phase the infinite depth NTK also corresponds to the
majority vote classifier.8 The remaining case known as "edge of chaos" has been analyzed in prior works
for specific activation functions; for example, the NTK for networks with ReLU activation satisfies Eq. [4.4]
with C1 = 1

4 and C(L) = L + 1 [78, 90]. Hence by Proposition 4, the corresponding infinite depth classifier
for ReLU networks corresponds to the majority vote classifier.

8
More precisely, we consider the behavior of the infinite depth classifier under ridge-regularization, as the regularization term

approaches 0.
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Classifiers Implemented by Infinitely Wide and Deep Networks with Standard
Activation Functions

We now discuss activation functions commonly used in practice and the classifiers implemented by infinitely
wide and deep networks with such activation functions. The conditions of Theorem 7 are satisfied by several
commonly used activation functions in practice including sine, erf, tanh, and hard tanh. However, as we
prove in SI Appendix H the order of singularity, ↵, in Theorem 7 for all of these activation functions is near
0.5, which is the value of ↵ that is required for consistency for data on the unit circle.

On the other hand, activation functions including ReLU, sigmoid, cosid (i.e. cos x � x) [59], and swish
(i.e. x

1+e�x ) [156] satisfy the conditions of Proposition 4, and thus, implement majority vote.
In SI Appendix I and Fig. S3, we provide experiments across several data distributions in which we

compare the performance of infinitely wide and deep classifiers using standard activation functions such as
ReLU, erf, and sine, which have closed forms for the NTK, against those that lead to consistent classifiers
according to Theorem 8 above. In all cases, we observe a strong accordance between our experiments and
theoretical results, showing that infinitely wide and deep networks using standard activation functions are
far from consistent.

Practical relevance of our results. While this work derives activation functions that lead to infinitely
wide and deep networks that are consistent for fixed data dimension as the number of training samples
approaches infinity, we demonstrate the practical value of the derived activation functions in SI Appendix J
and Fig. S4 on a variety of benchmarking datasets in the context of finitely deep networks and finite sample
sizes, concentrating in particular on the small-sample regime. Namely, in SI Appendix J and Fig. S4, we
show that grid searching over the activation functions provided in Corollaries 1 and 2 leads to improved
performance over standard classifiers including 179 models from [61], fully connected ReLU networks, as
well as ReLU NTKs from [10] on a variety of benchmarking datasets including (i) the 90 benchmarking
classification tasks in the small-sample regime (with fewer than 5000 training samples) considered in [10],
and (ii) the 3 classification tasks in the small-dimensional large-sample regime (with fewer than 15 features
and greater than 10, 000 training samples) considered in [61].

4.3 Outline of Proof Strategy for Theorems 7 and 8

In the following, we outline the proof strategy for our main results. This involves analyzing infinitely wide
and deep networks via the limiting NTK kernel given by K(L) as the number of hidden layers L ! 1. As
shown in [96], K(L) can be written recursively in terms of K(L�1) and the so-called dual activation function,
which was introduced in [53].

Definition 9. Let � : R ! R be an activation function satisfying Ex⇠N (0,1)[�(x)2] < 1. Its dual activa-
tion function �̌ : [�1, 1] ! R is given by

�̌(z) = E(u,v)⇠N (0,⇤)[�(u)�(v)], where ⇤ =

"
1 z

z 1

#
.

While all quantities in our theorems are stated in terms of activation functions, these can be restated in
terms of dual activations as follows:

A2 = �̌(0) and (A0)2 = �̌0(0) and B0 = �̌0(1) .

Assuming that � is normalized such that �̌(1) = 1,9 the recursive formula for the NTK of a deep fully
connected network for data on the unit sphere was described in [39, 96] in terms of dual activation functions
as follows.

9
Such normalization is always possible for any activation function satisfying E[�(z)2] < 1 for z ⇠ N (0, 1) and has been

used in various works before including [39, 77, 78, 90, 116, 199].
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Iteration of Piecewise Linear Function(a) (b)

Figure 4-2: Iteration of a piecewise linear function on a unit interval leads to a function with a singularity
at x = 1, upon appropriate normalization. (a) We consider the piecewise linear function f(x) given by
1 � b(1 � x) on (c, 1] and ax on [0, c], where a = .5, b = 1.5 and c = b�1

b�a . (b) We observe that upon iterating
f(·) numerically to the limit of machine precision, the resulting function strongly agrees with the theoretical
limit of Lemma 1 given by a function with singularity of order � logb a ⇡ 1.7.

Recursive Formula for the NTK. Let f (L)(x;W) denote a fully connected neural network with L hidden
layers and activation �(·). For x, x̃ 2 Sd, let z = xT x̃. Then K(L) is radial, i.e. K(L)(x, x̃) = K(L)(z), with
K(0)(z) = z and

K(L)(z) = �̌(L)(z) + K(L�1)(z)�̌0
�
�̌(L�1)(z)

�
, (4.5)

where �̌(L)(z) = �̌(�̌(L�1)(z)) with �̌(0)(z) = �̌(z) and �̌0(·) denotes the derivative of �̌(·).

We utilize the dynamical system in Eq. [4.5] to analyze the behavior of K(L)(·) as L ! 1. Theorem 7
implies that upon normalization by (L+1)�̌0(0)L, this dynamical system converges to a singular kernel with
singularity of order ↵ = � log

�
�̌0(0)

�
/ log

�
�̌0(1)

�
. We now present a sketch of the proof of this result.

We first derive the order of the singularity upon iteration of �̌, since as we show in SI Appendix B, the
order of the singularity of the infinite depth NTK is the same as that of the iterated �̌. Since we consider
data in Sd

+, �̌(·) is a function defined on the unit interval [0, 1]. Hence, understanding the properties of
infinitely wide and deep networks reduces to understanding the properties of iterating a function on the unit
interval. To provide intuition around how the iteration of a function on the unit interval can give rise to a
function with a singularity, we discuss iterating a piecewise linear function as an illuminating example; see
Fig. 4-2 for a visualization.

Lemma 1. For 0 < a < 1 and b > 1, let f : [0, 1] ! R and c = b�1
b�a such that

f(x) =

8
<

:
ax if x 2 [0, c]

1 � b(1 � x) if x 2 (c, 1]
.

Then,

lim
L!1

f (L)(x)

aL
=

R(x)

(1 � x)� logb a
,

where R(x) is non-negative, bounded from above and bounded away from 0 around x = 1.

Proof. For any x 2 [0, c], we necessarily have:

lim
L!1

f (L)(x)

aL
= lim

L!1

aLx

aL
= x.
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Now for fixed x 2 (c, 1), since x = 0 is an attractive fixed-point of f , let L0 denote the smallest integer such
that f (L0)(x)  c. Hence, since f (L0)(x) 2 [0, c], we obtain:

lim
L!1

f (L)(x)

aL
= lim

L!1

f (L�L0)(f (L0)(x))

aL�L0

1

aL0
= f (L0)(x)a�L0 . (4.6)

We next solve for L0 by analyzing the iteration of g(x) := 1 � b(1 � x). In particular, we observe that
g(L)(x) = 1 � bL(1 � x), and thus L0 is given by:

1 � bL0(1 � x)  c

=) L0 =

&
loga

✓
1 � x

1 � c

◆� logb a
'

=) a�L0 2
"✓

1 � c

1 � x

◆� logb a

,
1

a

✓
1 � c

1 � x

◆� logb a
#

.

Hence, by Eq. [4.6] we conclude that for x 2 (c, 1), it holds that

lim
L!1

f (L)(x)

aL
=

R(x)

(1 � x)� logb a
,

where R(x) is non-negative, bounded from above and bounded away from 0 around x = 1, which completes
the proof.

In SI Appendix B, we extend this analysis to the iteration of dual activations on the unit interval, thereby
establishing the order of a singularity obtained by iterating dual activation functions. We then show that
this order equals the order of the singularity given by the infinite depth NTK.

Next, we discuss the proof strategy for Theorem 8, which establishes conditions on the activation function
under which infinitely wide and deep networks achieve consistency in the classification setting. The proof
builds on results in [54] characterizing the consistency of singular kernel smoothers of the form

g(x) =

Pn
i=1 y(i)K(x(i), x)Pn

i=1 K(x(i), x)
, where K(x(i), x) =

1

kx � x(i)k↵
.

In particular, it is shown that if ↵ = d, then g(x) achieves consistency. Since Theorem 7 establishes
conditions under which the infinite depth NTK implements a singular kernel, to complete the proof we show
that infinitely wide and deep classifiers achieve consistency by (1) showing that the classifier mn implements
a singular kernel smoother, and (2) selecting � such that ↵ = d for the corresponding singular kernel.

4.4 Discussion

In this work, we identified and constructed explicit neural networks that achieve consistency for classification
when trained using standard procedures. Furthermore, we provided a taxonomy characterizing the behavior
of infinitely wide and deep neural network classifiers. Namely, we showed that these models implement one
of the following three well-known types of classifiers: (1) 1-NN (test predictions are given by the label of
the nearest training example) ; (2) majority vote (test predictions are given by the label of the class with
greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing
those that achieve consistency). We conclude by discussing implications of our work and future extensions.

Benefit of Depth in Neural Networks. An emerging trend in machine learning is that larger neural
networks capable of interpolating (i.e., perfectly fitting) the training data, can generalize to test data [22,
135, 208]. While the size of neural networks can be increased through width or depth, works such as [22,
135] primarily identified a benefit to increasing network width. Indeed, it remained unclear whether there
was any benefit to using extremely deep networks. A line of prior work analyzed the impact of selecting
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activation functions and initializations to enable the training of deep networks [134, 148, 204], while other
works [138, 198, 199] empirically demonstrated that drastically increasing depth in networks with ReLU or
tanh activation could lead to worse performance. In this work, we established a remarkable benefit of very
deep networks by proving that they achieve consistency with a careful choice of activation function. In line
with previous empirical findings, we proved that deep networks with activations such as ReLU or tanh do
not achieve consistency.

Regression versus Classification. Our results demonstrate the benefit of using infinitely wide and deep
networks for classification tasks. We note that this in stark contrast to the regression setting, where infinitely
deep and wide neural networks are far from consistent, as they simply predict a non-negative, near-zero
constant almost everywhere [78, 90]. Thus, our work provides concrete examples of neural networks that
are effective for classification but not regression. A key difference between regression and classification is
that classification requires only the sign of the prediction. In particular, as we show in this work, the sign of
the prediction of an infinitely wide and deep network can be meaningful for classification even though the
prediction itself is close to 0.

Edge of Chaos Regime. An interesting class of models that are only partially characterized by our
taxonomy corresponds to networks with activations in the edge of chaos regime, i.e., when the activation
function, �(·) satisfies E[�(z)] 6= 0 and E[�0(z)2] = 1 for z ⇠ N (0, 1). We proved that all activations in this
class that have been described so far [78, 90], including the popular ReLU activation, give rise to infinitely
wide and deep networks that implement the majority vote classifier. While it appears that all activations
in this class lead to the majority vote classifier, it remains open to understand whether there exist other
activations in this regime that implement alternative classifiers. Moreover, works analyzing the edge of
chaos regime typically consider infinite width networks with bias terms. While these bias terms are often
set to avoid exponential convergence of predictions with increasing depth, they can be detrimental in the
classification setting. For example, the work of [78] shows that with appropriate bias, the tanh activation
function leads to an infinitely wide and deep network that satisfies our Proposition 4 and thus implements
majority vote. However, without the bias, this activation function satisfies Theorem 7 and thus leads to a
singular kernel classifier. It is an interesting question to characterize how the addition of bias terms may
influence our taxonomy.

Finite vs. Infinite Neural Networks. In this work, we identified and constructed infinitely wide and
deep classifiers that achieve consistency. In particular, our results imply weak consistency of infinitely wide
and deep networks, which means that these models converge in probability to the Bayes optimal classifier as
the number of training samples approaches infinity. While recent work [18] demonstrated that finite depth
NTKs are not universally consistent, i.e., they are not consistent for arbitrary distributions, it remains open
as to whether these models are consistent in a weaker sense. An important next question is to understand
whether interpolating neural networks that are finitely wide and deep can achieve consistency for classification
and provide specific activation functions to do so. Some evidence in this direction is given by recent work
demonstrating that sufficiently wide and deep ReLU networks correctly classify points on disjoint curves
on a sphere [191]. We also note that Bayes consistency considers the setting when the number of training
examples approaches infinity. Another natural next step is to characterize the number of training examples
needed for infinitely wide and deep classifiers to reasonably approximate the Bayes optimal classifier. Recent
work [129] identified a slow (logarithmic) rate of convergence for singular kernel classifiers, thereby implying
that many training examples are needed for these models to be effective in practice. An important open
direction of future work is thus to determine not only whether finitely wide and deep networks are Bayes
optimal for classification but also whether these models require fewer samples to perform well in practice.
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Chapter 5

Mechanism of feature learning in deep

fully connected neural networks

In this final chapter, we identify the mechanism of neural feature learning, which is a key component driving
the success of deep neural networks used in practice. We posit the Deep Neural Feature Ansatz, which
states that feature learning in neural networks occurs through a procedure known as average gradient outer
product. Our ansatz explains various prominent deep learning phenomena and unifies previous work on
feature learning analyzing how particular components of networks lead to feature learning. Importantly,
our ansatz provides a method for integrating feature learning into any machine learning model. We use our
ansatz to integrate feature learning into over-parameterized kernel machines and develop Recursive Feature
Machines (RFMs). We illustrate the practical value of RFMs by using them to achieve state-of-the-art
results across two tabular data benchmarks containing over 151 classification and regression tasks. The work
presented in this section culminated into the following paper [151].

5.1 Introduction

In the last few years, neural networks have led to major breakthroughs on a variety of applications including
image generation [157], protein folding [183], and language understanding and generation [35]. The ability of
these models to automatically learn and utilize problem-specific features, or patterns in data, for prediction
is thought to be a central contributor to their success [169, 203]. Thus, a major goal of machine learning
research has been to identify the mechanism through which such neural feature learning occurs and which
features are selected. Indeed, understanding this mechanism provides the opportunity to design networks
with improved reliability and model transparency needed for various scientific and clinical applications (e.g.,
natural disaster forecasting, clinical diagnostics).

Prior works refer to neural feature learning as the change in a network’s internal, intermediate represen-
tations through the course of training [33, 203]. Significant research effort [2, 13, 14, 52, 73, 89, 111, 114,
131, 160, 169, 189, 203, 211] has shown the benefits of feature learning in neural networks over non-feature
learning models. Yet, precise characterization of the feature learning mechanism and how features emerge
remained an unsolved problem.

In this work, we posit the mechanism for feature learning in deep, nonlinear fully connected neural
networks. Informally, this mechanism corresponds to the approach of progressively re-weighting features in
proportion to the influence they have on the predictions. Mathematically stated, if Wi denotes the weights
of a trained deep network at layer i, then Gram matrix WT

i Wi, which we refer to as the ith layer Neural
Feature Matrix (NFM), is proportional to the average gradient outer product of the network with respect to
the input to this layer.

As an illustrative example of our results, consider neural networks trained to classify the presence of
glasses in images of faces. In Fig. 5-1A, we compare the NFMs and performance of a non-feature learning
network with fixed first layer weights and a feature learning network where all weights are updated. While
the NFM of the non-feature learning model (shown in red) is unchanging through training, the NFM of the
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Figure 5-1: (A) A demonstration of neural feature learning. We train two fully connected neural networks
with two-hidden-layers and ReLU activation to classify glasses in image data (96 ⇥ 96 images) from the
CelebA dataset [122], one in which the first layer is not trained and the other in which all layers are trained.
We visualize the diagonal of the first layer neural feature matrix (NFM), WT

1 W1, of the trained networks and
observe that the network with better performance learns to select pixels corresponding to glasses. (B) We
show the NFM of a layer is well approximated by the average gradient outer product of the trained network
taken with respect to the input of this layer. The correlation between the first layer NFM and the average
gradient outer product with respect to the input data is greater than 0.97 for four different classification
tasks from the CelebA dataset. We visualize the top eigenvector of these matrices and observe that both are
visually indistinguishable and highlight relevant features for prediction.

feature learning model (shown in green) evolves to represent a pattern corresponding to glasses. Even though
both networks are able to fit the training data equally well, the feature learning model has significantly lower
test classification error. A major finding of our work is that we are able to recover the key first layer
NFM matrix without access to the internal structure of the neural network. To illustrate this finding, in
Fig. 5-1B, we show that the average gradient outer product of a trained neural network with respect to the
data is strongly correlated (Pearson correlation greater than .97) with the first layer NFM for a variety of
classification tasks.

We empirically show that the feature learning mechanism identified in our work unifies previous lines
of investigation, which study the relationship between neural feature learning and various aspects of neural
networks such as network architecture [189] and weight initialization scheme [203]. In settings where feature
learning is argued to occur (e.g., in finite width networks and networks initialized near zero), the average
gradient outer product is more correlated with the neural feature matrices. Moreover, our mechanism
explains prominent deep learning phenomena including the emergence of spurious features and biases in
trained neural networks [168, 171], grokking [149], and how pruning networks can increase performance [64].

Importantly, as the average gradient outer product can be computed given any predictor, our result
provides a backpropagation-free approach for feature learning with any machine learning model including
those models that previously had no feature learning capabilities. Indeed, we can iterate between training a
machine learning model and computing the average gradient outer product of this model to learn features.
We apply this procedure to enable feature learning in class of non-feature learning models known kernel
machines [5, 166] and refer to the resulting algorithm as a Recursive Feature Machine (RFM). We demonstrate
that RFMs achieve state-of-the-art performance across two tabular data benchmarks covering over 150
datasets [61, 70], thereby highlighting the practical value of leveraging the feature learning mechanism
identified in this work.
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5.2 Results

Let f : Rd ! R denote a fully connected network with L hidden layers for L > 1, weight matrices {Wi}L+1
i=1 ,

and elementwise activation function � of the form

f(x) = WL+1hL(x) ; h`(x) = �(W`�1h`�1(x)) for ` 2 {2, . . . , L}

with h1(x) = x. We refer to the terms hi(x) as the features at layer i. We can characterize how features
hi+1(x) are constructed by understanding how Wi scales and rotates elements of hi(x). These scaling
and rotation quantities are recovered mathematically from the eigenvalues and eigenvectors of the matrix
WT

i Wi, which is the NFM at layer i. Hence, to characterize how features are updated in any layer of a
trained neural network, it suffices to characterize how the corresponding layer’s NFM is constructed. Before
mathematically stating how such NFMs are built, we connect NFM construction to the following intuitive
procedure for selecting features.

Given any predictor, a natural approach for identifying important features is to rank them by the magni-
tude of change in prediction upon perturbation. When considering infinitesimally small feature perturbations
on real-valued predictors, this approach is mathematically equivalent to computing the magnitude of the
derivative of the predictor output with respect to each feature. These magnitudes are computed by the gra-
dient outer product of the predictor given by (rf(x))(rf(x))T where rf(x) is the gradient of a predictor,
f , at a point x.1

Our main insight, the Deep Neural Feature Ansatz, is that deep networks learn features by implementing
the above approach for feature selection. Mathematically stated, we posit that the NFM of any layer of a
trained network is proportional to the average gradient outer product of the network taken with respect to
the input to this layer. In particular, let Wi denote the weights of layer i of a deep, nonlinear fully connected
neural network, f . Given a sample x, let hi(x) denote the input into layer i of the network, and let fi

denote the sub-network of f operating on hi(x). Suppose that f is trained on n samples {(xp, yp)}n
p=1. Then

throughout training,

WT
i Wi / 1

n

nX

p=1

rfi(hi(xp)) rfi(hi(xp))
T ; (Deep Neural Feature Ansatz)

where rfi(hi(xp)) denotes the gradient of fi with respect to hi(xp).2 We refer to this statement as the Deep
Neural Feature Ansatz. Formally, we prove that the ansatz holds when using gradient descent to layer-wise
train (1) ensembles of deep fully connected networks and (2) deep fully connected networks with the trainable
layer initialized at zero (see Section 5.2.4 and Appendix A). We note that for the special case of the first
layer and for networks with scalar outputs, the right hand side is related to the statistical estimator known
as the expected gradient outer product [74, 88, 181, 197].

Next, we empirically validate the ansatz when training all layers of deep fully connected networks across
127 classification tasks. In particular, in Fig. 5-2, we train fully connected networks with ReLU activation,
five-hidden layers, 1024 hidden units per layer using stochastic gradient descent on the 121 classification tasks
from [61]. In our experiments, we initialize the first layer weights near zero to reduce the impact of the initial
weights in computing correlations (see Appendix B). In Fig. 5-2A, we observe that the Pearson correlation
between the NFMs after training and the average gradient outer products have median value above .85
(shown in green) and are consistently higher than the corresponding correlation between the NFMs after
training and those at initialization (shown in red). Note that the gap between the two correlations is larger
for layers 2 through 5 since these all have NFMs of dimension 1024⇥1024 while the first layer NFM depends
on the dimension of the input data, which is on average 28.84. In addition to the 121 tasks, we also validate
the ansatz on six different image classification tasks across the CelebA dataset [122] and Street View House
Numbers (SVHN) dataset [137] (see Appendix Fig. D-1). In Fig. 5-2B, we provide a visualization of the
NFMs at initialization, NFMs after training, and average gradient outer products for a fully connected

1
For predictors with multi-dimensional outputs, we consider the Jacobian Gram matrix given by (Jf(x))T (Jf(x)), where

Jf(x) is the Jacobian of a predictor, f , at a point x.
2
Additionally, we note that the right hand side of the ansatz can be viewed as a covariance matrix when the gradients are

centered.
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Figure 5-2: (A) The correlation between the initial NFM and trained NFM (red) and the correlation between
average gradient outer product and the trained NFM (green) for each layer in five-hidden-layer ReLU fully
connected networks with 1024 hidden units per layer trained on 121 tabular data classification tasks from [61].
To compute the trained NFM, we subtract the layer weights at initialization from the final weights before
computing the Gram matrix. The higher correlation with the initial NFM in layer 1 is due to the fact that
these matrices are smaller than the 1024 ⇥ 1024 matrices in the remaining layers (on average 28.84 features
across all 121 tasks). (B) A visualization of the 64⇥64 NFM at initialization, the trained NFM, and average
gradient outer product for layers 2 through 5 of the network trained to classify rosy cheeks from CelebA
image data [122]. While the NFM at initialization is close to the identity matrix, the NFM after training has
a qualitatively different structure that is captured by the average gradient outer product (correlation > .78).
While we omit the layer 1 visualization here since the matrices are of size 27648 ⇥ 27648, the correlation
between the first layer NFM after training and the corresponding average gradient outer product is .99.

network with five-hidden-layers, 64 hidden units per layer with ReLU activation trained to classify rosy
cheeks in CelebA images. We observe that while NFMs after training have qualitatively different structure
than the NFMs at initialization, such structure is accurately captured by average gradient outer products. In
addition to the above experiments, we empirically validate that the ansatz holds for a variety of commonly
used nonlinearities such as leaky ReLU [200], hyperbolic tangent, sigmoid, and sinusoid and using standard
optimization algorithms such as Adam [101] (see Appendix Fig. D-2).

Our ansatz unifies several previous lines of investigation into feature learning. In Appendix Figs. D-3
and D-4, we provide empirical evidence that the NFMs and average gradient outer products have greater
correlation for finite width networks and networks initialized near zero, which are key regimes in which feature
learning is argued to occur [189, 203]. In particular, we corroborate our results by reporting correlation
between the NFMs after training and the average gradient outer products of networks trained on the 121
tabular classification tasks from [61] across 5 different widths and 5 initialization schemes.

5.2.1 Deep Neural Feature Ansatz sheds light on notable phenomena from deep
learning

Empirical studies of deep neural networks have brought to light a number of remarkable and often counter-
intuitive phenomena. We proceed to show that the mechanism of feature learning identified by our Deep
Neural Feature Ansatz provides an explanation for several notable deep learning phenomena including (1)
the emergence of spurious features [93, 171] and simplicity biases [91, 168] ; (2) grokking [149] ; and (3)
lottery tickets in neural networks [64].

Spurious features and simplicity biases of neural networks. The Deep Neural Feature Ansatz
implies the emergence of simplicity biases and spurious features in fully connected neural networks. Simplicity
bias refers to the property of neural networks utilizing the “simplest” available features for prediction [81, 91,
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Figure 5-3: The Deep Neural Feature Ansatz enables identification of and simplicity biases and spurious
features in fully connected networks. (A) When trained on 50000 concatenated 32 ⇥ 64 resolution images
from CIFAR10 and MNIST datasets, the diagonal of the first layer NFM of a five-hidden-layer fully connected
ReLU network indicates that digit pixels are primarily used as features for classification. The average gradient
outer product confirms that perturbing these pixels leads to the greatest change in predicted values. (B)
When trained on 1000 96 ⇥ 96 images of planes and trucks modified with a 7 ⇥ 8 pixel star pattern in the
upper left corner, the diagonal of the first layer NFM of a five-hidden-layer ReLU fully connected network
indicates the network relies solely on the star pattern for prediction. (C) When trained on 40000 96 ⇥ 96
images from CelebA to classify lipstick, the diagonal of the first layer NFM of a five-hidden-layer ReLU fully
connected network indicates the network unexpectedly relies on eye pixels for classification. To corroborate
this finding, we find that perturbing test samples by masking the lips leads to only a 3.66% drop in test
accuracy, but perturbing the test samples by masking the eyes based on the average gradient outer product
leads to a 27.22% drop in test accuracy.

99, 145, 168] even when multiple features are equally indicative of class labels. A consequence of simplicity
bias is the emergence of spurious features, which are patterns that are correlated but are not necessarily
causally related to the predictive targets [93, 171]. Examples of neural networks leveraging spurious features
include neural networks using the presence of fingers to detect band-aids [171] or, problematically, using
surgical skin markers to predict malignant skin lesions [195]. Frequently, these spurious features are “simpler”
than the patterns we consider to be causally predictive. Given their strong correlation with labels, perturbing
these simple or spurious features will lead to a larger change in the prediction of a trained model than
perturbing other available features, often including those causally related to the predictor. Hence, the
ansatz implies that neural feature learning will reinforce such features.

We demonstrate these phenomena empirically in Fig. 5-3 upon training fully connected networks on three
image classification tasks (see Appendix B for training methodology). In Fig. 5-3A, we consider the task
from [168] and train a model on 50, 000 concatenated images from CIFAR10 and MNIST datasets [105, 107].
After training, we visualize the diagonal of the first layer NFM and observe that the model is simply relying
on the digit for recognizing the image. We observe that the average gradient outer product is correlated
with the NFM (Pearson correlation 0.8504), which indicates that perturbing digit pixels leads to the greatest
change in prediction. In Fig. 5-3B, we show that neural networks will rely primarily on spurious features for
prediction even when there are only few such features. In particular, we trained fully connected networks
to classify between 1000 modified images of trucks and planes from the STL-10 dataset [45] with trucks
containing a gold star pattern and planes containing a black star pattern in the upper left corner of the
image. Visualizing the diagonal of the first layer NFM and average gradient outer product indicates that
the network simply learns to rely only on the star pattern for prediction.

Lastly, we showcase the power of our ansatz by using it to identify spurious features for a deep network
trained to classify the presence of lipstick in CelebA images. In Fig. 5-3C, we observe that the model on
original test samples achieves 90.79% accuracy. Yet, by visualizing the diagonals of the NFM and average
gradient outer product, we observe that the trained model is unexpectedly relying on the eyes to determine
whether the individual is wearing lipstick. To further corroborate this finding, we observe that the test
accuracy drops only slightly by 3.66% when replacing the lips of all test samples with those of one individual.
If we instead replace the eyes of all test samples according to the mask given by the diagonal of the average
gradient outer product, test accuracy drops by 27.22% to slightly above random chance.
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Figure 5-4: Lottery tickets in fully connected networks. (A) Visualizations of the diagonals of first layer
Neural Feature Matrices from a two-hidden-layer, width 1024 ReLU network trained on classification tasks
from CelebA and the diagonals after thresholding (replacing with pixel value 1) the top 2% of pixels. There
are 553 nonzero pixel values in the masked images. (B) Comparison in accuracy after re-training randomly
initialized neural networks of the same architecture on the masked images (i.e., pruning 98% of the corre-
sponding columns of the first layer weights).

Lottery Tickets. Introduced in [64], the “lottery ticket hypothesis” refers to the claim that a randomly-
initialized neural network contains a sub-network that can match or outperform the trained network when
trained in isolation. Such sub-networks are typically found by pruning away weights with the smallest
magnitude [64]. The sparsity of feature matrices identified in this work provides direct evidence for this
hypothesis. Indeed, such sparsity is immediately evident when visualizing the diagonals of the feature
matrix as in Fig. 5-4A.

In line with the lottery ticket hypothesis, we demonstrate that retraining neural networks after thresh-
olding coordinates of the data corresponding to these sparse regions in the neural feature matrix leads to a
consistent increase in performance in many settings. In Fig. 5-4A and B, we prune 98% of pixels in CelebA
images according to the features identified by neural feature matrix and indeed, observe a consistent increase
in predictive performance upon retraining a neural net on the thresholded features.

Grokking. Introduced in recent work [149], grokking refers to the phenomenon of deep networks exhibiting
a dramatic increase in test accuracy when training past the point where training accuracy is 100%. We
showcase a similar effect by training neural networks to classify between a subset of 96 ⇥ 96 resolution
images of airplanes and trucks from the STL-10 dataset [45] (training details are presented in Appendix B).
We modify this subset with two key features to enable grokking: (1) the dataset is small with a large class
imbalance between the two classes with 500 examples of airplanes and 53 examples of trucks and (2) there
is a small star of pixels in the upper left corner of each image that is colored white or black based on the
class label (see Fig. 5-5A). The test set is balanced with 800 examples of each class.

In Fig. 5-5B, we observe that grokking aligns with our ansatz. Indeed, in Fig. 5-5B, we observe that the
network can achieve near 100% training accuracy without any feature learning, but test accuracy remains
at roughly 80%. Yet, as training continues past this point, the average gradient outer product up-weights
pixels corresponding to the star pattern, as indicated by the first layer NFM, and test accuracy improves
drastically to 99.38%.

5.2.2 Integrating feature learning into machine learning models

We now leverage the mechanism of feature learning identified in the ansatz to provide an algorithm for
integrating feature learning into any machine learning model. We then showcase the power of this algorithm
by applying it to classical, non-feature learning models known as kernel machines and achieving state-of-the-
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Figure 5-5: Grokking in fully connected networks. (A) Modified 96 ⇥ 96 resolution images from a subset of
STL-10 [45] in which a small star in the upper left indicates whether the image is a truck or an airplane. We
use 553 total training examples with 500 examples of airplanes and 53 examples of trucks. (B) A two-hidden-
layer fully connected network quickly reaches near 100% training accuracy. Yet, as training continues past
this point, the test accuracy rises drastically from 80% to 99.38%. Corresponding feature matrices (shown
as inserts) indicate that test accuracy improved since the network has learned the star pixels that give away
the class label.

art performance on tabular datasets.
A key insight of our ansatz is that neural feature learning occurs through the average gradient outer

product, which is a mathematical operation that can be applied to any function. Given its universality, we
can apply it to any machine learning model to enable feature learning. In particular, we use an iterative
two-step strategy that alternates between first training any predictor and then using the average gradient
outer product to directly learn features.

To demonstrate the power of this feature learning approach, we apply it to classical, non-feature learning
kernel machines [166] by (1) estimating a predictor using a kernel machine ; (2) learning features using
the average gradient outer product of the trained predictor ; and (3) repeating these steps after using the
learned features to transform input to the predictor. For completeness, background on kernels is provided in
Appendix C. Intuitively, training a kernel machine involves solving linear regression after applying a feature
transformation on the data. Unlike traditional kernel functions that are fixed in advance before training, we
use kernel functions that incorporate a learnable feature matrix M into the kernel function. For simplicity,
we utilize a generalization of the Laplace kernel given by KM (x, z) = exp(��kx � zkM ) where � > 0,
M is a positive semi-definite, symmetric feature matrix, and kx � zk2

M := (x � z)T M(x � z) denotes the
Mahanolobis distance between data points x, z.3 We now alternate between using kernel regression with the
kernel function, KM , to estimate a predictor and using the average gradient outer product to update the
feature matrix, M . We refer to the resulting algorithm, presented in Algorithm 1, as a Recursive Feature
Machine (RFM).

Algorithm 1 Recursive Feature Machine (RFM)
Input: X, y, KM , T . Training data: (X, y), kernel function: KM , and number of iterations: T
Output: ↵, M . Solution to kernel regression: ↵, and feature matrix: M

M = Id⇥d . Initialize M to be the identity matrix
for t 2 T do

Ktrain = KM (X, X) . KM (X, X)i,j := KM (xi, xj)
↵ = yK�1

train
M = 1

n

P
x2X(rf(x))(rf(x))T . f(x) = ↵KM (X, x) with KM (X, x)i := KM (xi, x)

end for

3
We note that in statistical literature this distance is defined by dM (x, z) =

p
(x� z)TM�1(x� z) [126], but here, we make

use of the notation from metric learning literature [29], which omits the inverse. We additionally note that Mahanolobis kernels

can be extended to general, non-radial kernels by considering kernels of the form KM (x, z) = K(M
1
2 x,M

1
2 z).
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Figure 5-6: Grokking in RFMs trained on modified STL-10. (A) Samples from modified STL-10 (see
Section 5.2.1 and Fig. 5-5 for dataset details). (B) While training accuracy is always 100%, iteration leads
to a drastic rise in test accuracy from 55.8% to 100%. Feature matrices (shown as inserts) indicate that test
accuracy improved since the RFM has learned the star pixels that give away the class label.

In Appendix B and Appendix Figs. D-5 and D-6, we compare features learned by RFMs and deep fully
connected networks and demonstrate remarkable similarity between RFM features and first layer features
of deep fully connected neural networks. We show that the correlation between the top eigenvector of the
first layer NFM after training and that of the RFM feature matrix, M , is consistently greater than .99 for
12 different classification tasks from CelebA. We also show high correlation between RFM features and first
layer NFM features for SVHN and low rank polynomial regression tasks from [189] and [52]. Lastly, in
Appendix D, we discuss connections between RFMs and prior literature on kernel alignment [49, 192].

Given that RFMs use the same feature learning mechanism as neural networks, these models exhibit the
deep learning phenomena discussed earlier, i.e., grokking, lottery tickets, and simplicity biases. In Fig. 5-6,
we showcase that RFMs perform grokking on the same dataset used in Section 5.2.1 and Fig. 5-5. We show
that RFMs exhibit lottery ticket and simplicity bias phenomena in Appendix Figs. D-7 and D-8.

5.2.3 Recursive Feature Machines provide state-of-the-art results on tabular
data

We demonstrate the immediate practical value of the integrated feature learning mechanism by demonstrating
that RFMs achieve state-of-the-art results on two tabular benchmarks containing over 150 datasets. The
first benchmark we consider is from [61], which compares the performance of 179 different machine learning
methods including neural networks, tree-based models, and kernel machines on 121 tabular classification
tasks. In Fig. 5-7A, we show RFMs outperform these classification methods, kernel machines using the
Laplace kernel, and kernel machines using the recently introduced Neural Tangent Kernel (NTK) [96] across
the following commonly used performance metrics:

• Average accuracy: The average accuracy of the classifier across all datasets.

• P90/P95: The percentage of datasets on which the classifier obtained accuracy within 90%/95% of
that of the best performing model.

• PMA: The percentage of the maximum accuracy achieved by a classifier averaged across all datasets.

• Friedman rank: The average rank of the classifier across all datasets.

We note that while some of the datasets contain up to 130, 000 training examples, RFMs are computa-
tionally fast to train through the use of pre-conditioned linear system solvers such as EigenPro [124, 125].
Indeed, RFMs take 40 minutes to achieve these results while neural networks took 5 hours (both measure-
ments are in wall time on a server with two Titan Xp GPUs). In Fig. 5-7B, we analyze the benefit of feature
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Friedman Rank PMA (%)P95 (%)P90 (%)Avg. Accuracy (%)Classifier
17.7997.36 ± 4.0485.9692.5685.37RFM (Ours)
28.4895.95 ± 5.4174.3890.0883.76Laplace Ridge Regression
33.5594.84 ± 8.1768.6085.9582.70NTK Ridge Regression
33.5293.48 ± 12.1068.6083.4781.96Random Forest*
37.5093.21 ± 11.3769.7582.3581.81Gaussian SVM
44.1391.14 ± 12.8153.7273.5579.37Neural Net

Performance across all 121 classification datasets from Fernández-Delgado et al. 2014A B RFM vs. Laplace Kernel Error

*Best out of 179 methods from Fernández-Delgado et al. 2014

Feature learning is better

Feature learning is worse

Figure 5-7: (A) Comparison of 182 models including RFMs, NTKs, random forests, and fully connected
neural networks on 121 tabular datasets from [61]. All metrics, models, and training details are outlined
in Appendix B. RFMs took 40 minutes to achieve these results while Neural Nets took 5 hours (both
measurements are in wall time on a server with two Titan Xp GPUs). (B) To determine the benefit of
feature learning, we compare the error rate (100% - accuracy) between RFMs and Laplace kernels, which
are equivalent to RFMs without feature learning.

learning by comparing the difference in error (100% - accuracy) between RFMs and the classical Laplace
kernel, which is equivalent to an RFM without feature learning. We observe that the Laplace kernel generally
results in higher error than the RFM for larger datasets.

In Appendix Fig. D-9 and Tables D.1, D.2, D.3, and D.4 we additionally compare RFMs to two trans-
former models [163, 174], ResNet [80], and two gradient boosting tree models [41, 143] across regression and
classification tasks on a second tabular benchmark [70]. Consistent with our findings on the first tabular
benchmark, we observe that RFMs generally outperform tree-based models and neural networks at a fraction
of the computational cost (3600 compute hours for RFMs while all other methods are with 20, 000 compute
hours).

5.2.4 Theoretical Evidence for Deep Neural Feature Ansatz
We now present theoretical evidence for the Deep Neural Feature Ansatz. A summary of all theoretical
results for the Deep Neural Feature Ansatz is presented in Table 5.1.

Result Activation Steps Depth Outer layers Initialization GIA # Samples

Proposition 5 Any Any Any Fixed Zero No 1
Proposition 9 Any 1 Any Fixed Zero No Any
Proposition 10 Linear Any 2 Fixed, i.i.d. Zero No Any
Proposition 11 Linear 2 2 Trainable, i.i.d Zero No Any
Theorem 10 ReLU Any Any Fixed, i.i.d. Any Yes Any

Table 5.1: Settings for which we prove the Deep Neural Feature Ansatz. Activation refers the type of
network activation function. Steps refers to the number of steps of gradient descent for which the proof
holds. Depth refers to the depth of the neural network considered. Outer layers describes how the layers
other than the first are initialized and trained. Initialization refers to the initialization method of the first
layer weights. GIA indicates whether the gradient independence ansatz is required for the result to hold. #
Samples denotes the number of training samples considered.

To provide intuition as to when the ansatz holds, we first analyze the general setting in which we train
models, f : Rd ! R, of the form f(x) = g(Bx) with g : Rk ! R by updating the weight matrix B using
gradient descent. This setting encompasses any type of neural network in which the first layer is fully
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connected and the only trainable layer. We begin with Propostion 5 below (proof in Appendix A), which
establishes the ansatz for such functions trained on one training example (x, y) 2 Rd ⇥ R.

Proposition 5. Let f(z) = g(Bz) with f : Rd ! R and g : Rk ! R. Given one training sample (x, y),
suppose that f is trained to minimize 1

2 (y � f(x))2 using gradient descent. Let B(`) denote B after ` steps
of gradient descent. If B(0) = 0 and ft(z) := g(B(t)z), then for all time steps t:

rft(z)rft(z)T / B(t)T
B(t) .

Informally, this example demonstrates that feature learning is maximized when the ansatz holds. Namely,
if initialization is nonzero, then B(t)T

B(t) contains a term corresponding to initialization B(0)T
B(0), which

disrupts exact proportionality in the ansatz but also affects the quality of features learned. In the extreme
case of non-feature learning models such as neural network Gaussian processes [136] where the first layer
weights are drawn from a standard Gaussian distribution and fixed, then B(t)T

B(t) has rank almost surely
min(k, d) while rft(z)rft(z)T is a rank 1 matrix. From this perspective, we argue that the ansatz provides
a precise characterization of feature learning.

The difficulty in generalizing Proposition 5 to multiple steps is that the terms rg(B(t)xi) are no longer
necessarily equal for all examples after 1 step. Thus, instead of proving the result for this general class of
functions, we instead turn to classes of functions corresponding to fully connected networks. In particular,
Theorem 10 (proof in Appendix A) establishes the ansatz in the more general setting of deep, nonlinear
fully connected networks. Before stating this theorem, we introduce the relevant notation for deep neural
networks and the gradient independence ansatz used in our proof.

Notation. Let f : Rd ! R denote an L hidden layer network with element-wise activation � : R ! R of
the form:

g(x) = a>�(L)(x) �(`)(x) =

8
<

:
�
⇣q

c�
k`

W`�(`�1)(x)
⌘

` 2 {1, . . . , L}

x ` = 0
(5.1)

where a 2 RkL and W` 2 Rk`⇥k`�1 for ` 2 [L] with k` 2 Z+ and k0 = d. We denote row k of weight matrix
W` by W`,k 2 Rd⇥1.

Gradient Independence Ansatz (GIA).4 In computing gradients, whenever we multiply by a weight
matrix, W`, we can instead multiply by an i.i.d. copy of W` without changing the gradient.

We note that the GIA has been used in a range of works on analyzing neural networks including [40, 144,
165, 198, 202, 204, 205] and is implicit in the original NTK derivation [96].5 In [9], the authors rigorously
prove the gradient independence ansatz for fully connected neural networks with ReLU activation functions.

Theorem 10. Let f denote an L-hidden layer network with ReLU activation �(z) = max{0, z}. Suppose
we sample weights ak0 , W` for ` > 1 in an i.i.d. manner so that E

⇥
a2

k0

⇤
= 1, E

h
W 2

`,k00

i
= 1, E[ak0 ] = 0, and

E [W`,k00 ] = 0. Suppose W1 is fixed and arbitrary. Let {(xi, yi)}n
i=1 ⇢ Rd ⇥ R. If x ⇠ N (0, Id), then

1

k1
W>

1 W1 = Ex


lim

k2,...,kL!1

Ea

h
rxf(x)rxf(x)>

i�
.

Theorem 10 can be directly applied in a recursive fashion to prove the ansatz holds for any layer of a
deep network. In particular, we simply consider the layer-wise training scheme in which we show the ansatz
holds for the first layer, and then fix the first layer and apply Theorem 10 to the second layer and proceed
inductively.

4
This is often called an assumption in the literature (e.g., Assumption 2.2 in [202]). We prefer the word ansatz following the

terminology from [33], as this is a simplifying principle rather than a true mathematical assumption.
5
This condition is required for establishing the closed form of the deep NTK presented in [96] as observed in [202] but is not

needed to establish transition to linearity (e.g., [118]).

68



5.3 Discussion

Summary of results. Characterizing the mechanism of neural feature learning has been an unresolved
problem that is key to advancing performance and interpretability of neural networks. In this work we
posited the Deep Neural Feature Ansatz, which stated that neural feature learning occurs by up-weighting
the features most influential on model output, a process that is formulated mathematically in terms of
the average gradient outer product. Our ansatz unified previous lines of investigation into neural feature
learning and explained various deep learning phenomena. An important insight from our ansatz was that the
average gradient outer product could instead be used to learn features with any machine learning model. We
showcased the power of this insight by using it to enable feature learning with classical, non-feature learning
models known as kernel machines. The resulting algorithm, which we referred to as Recursive Feature
Machines, achieved state-of-the-art performance on tabular benchmarks containing over 150 classification
and regression tasks.

Connections and implications. We conclude with a discussion of connections between our results and
machine learning literature as well as implications of our results.

Advancing interpretability in deep learning. A key area of practical interest is understanding and interpreting
how neural networks make predictions. There is a rich literature on gradient-based methods for understanding
features used by deep networks for image classification tasks [167, 170, 207]. These methods utilize gradients
of trained networks to identify patterns that are important for prediction in a single data point. Rather than
focus on features relevant for individual samples, our ansatz directly provides a characterization of Neural
Feature Matrices, which capture features the network selects across all data points. We demonstrated how
our ansatz shed light on the emergence of spurious features in neural networks and how it could be leveraged
to identify such spurious features. We envision that the transparency provided by our ansatz can serve as a
key tool for increasing interpretability and mitigating biases of neural networks more generally.

Building state-of-the-art models at a fraction of the cost by streamlining feature learning. Neural networks
simultaneously learn a predictor and features through backpropagation. While such simultaneous learning
is a remarkable aspect of neural networks, our ansatz shows that it can also lead to inefficiencies during
training. For example, in the initial steps of training, the features are selected based on a partially trained
predictor, and the resulting features can be uninformative. To streamline the feature learning process, we
showed that we can instead train a predictor and then estimate features directly via the average gradient
outer product. This approach has already led to an improvement in performance and a reduction in time
in our experiments, specifically from 5 hours for training neural networks to 40 minutes for RFM across 121
tabular data tasks from [61]. A natural next direction is to extend this direct feature learning approach
for fully connected networks to streamline training of general network architectures including convolutional
networks, graph neural networks, and transformers. We envision that using the average gradient outer
product as an alternative to backpropagation could reduce the sizeable training costs associated with state-
of-the-art models, including large language models for which fully connected networks form the backbone.

The role of width: Transition to linearity vs. feature learning. Under the NTK initialization scheme, very
wide neural networks undergo a transition to linearity and implement kernel regression with a kernel function
that is not data adaptive and depends entirely on the network architecture [96, 118]. On the other hand,
more narrow neural networks simultaneously learn both a predictor and features. Thus, network width mod-
ulates between two different regimes: one in which networks implement non-data-adaptive kernel predictors
and another in which networks learn features. While this remarkable property highlights the flexibility of
deep networks, it also illustrates their complexity. Indeed, simply increasing width under a particular ini-
tialization scheme increases the representational power of a neural network while decreasing its ability to
learn features. In contrast, by separating predictor learning and feature learning into separate subroutines,
we can circumvent such modelling complexity without sacrificing performance.

The role of depth. Our Deep Neural Feature Ansatz provided a way to capture features at deeper layers of
a fully connected network by using the average gradient outer product. Yet, our implementation of RFMs
leveraged this feature learning mechanism to capture only features of the input, which corresponded to the
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first layer features learned by fully connected networks. Interestingly, despite only using first layer features,
RFMs provided state-of-the-art results on tabular datasets, matching or outperforming deep fully connected
networks across a variety of tasks. Thus, an interesting direction of future work is to understand the exact
nature of deep feature learning and to characterize the architectures, datasets, and settings for which deep
feature learning is beneficial.

Empirical NTK. Recently, a line of works have studied the connection between kernel learning and neural
networks through the time-dependent evolution of the NTK [63]. An insightful work [123] showed that
the after kernel, i.e. the empirical NTK at the end of training, matches the performance of the original
network. Interestingly, [12] highlighted another benefit of empricial NTK by showing that as a neural
network is trained, the empirical NTK increases alignment with the ideal kernel matrix. Given the similarity
in features learned between RFMs and neural networks, we believe that RFMs may be an effective means of
approximating the after kernel without training neural networks.

Connections to other statistical and machine learning methods. Our result connects neural feature learning
to a number of classical methods from statistics and machine learning, which we discuss below.

• Supervised dimension reduction. The problem of identifying key variables necessary to understand the
response function (called sufficient dimensionality reduction in [112]) has been investigated in depth in
the statistical literature. In particular, estimates of the gradient of the target function can be used to
identify relevant coordinates for the target function [88, 197]. A series of works proposed methods that
simultaneously learn the regression function and its gradient by non-parametric estimation [132, 133].
The gradients can then be used to improve performance on downstream prediction tasks [104]. Gradient
estimation is particularly useful for coordinate selection in multi-index models, for which the regression
function f⇤ has the form f⇤(x) = g(Ux), where U is a low rank matrix. Similar to neural feature
learning, the multi-index estimator in [88] iteratively identifies the relevant subspace by learning the
regression function and its gradient, but makes use of kernel smoothers. A line of recent work identifies
the benefits of using neural networks for such multi-index (or single-index) problems by analyzing
networks after 1 step of gradient descent [13, 52] or showing that networks identify the principal
subspace, U , through multiple steps of training [31, 131]. Another line of work [113] estimates the
Principal Hessian Directions, the eigenvectors of the average Hessian matrix of the target function, to
identify relevant coordinates. Finally, a parallel line of research on “active subspace” methods in the
context of dynamical systems has recently become a topic of active investigation [46].

• Metric and manifold learning. Updating feature matrices can also be viewed as learning a data-
dependent Mahalanobis distance, i.e. a distance dM (x, z) =

p
(x � z)T M(x � z) where M is the

feature matrix. This connects to a large body of literature on metric learning with numerous appli-
cations to various supervised and unsupervised learning problems [29]. Furthermore, we believe that
feature learning methods such as neural networks or RFMs may benefit from incorporating ideas from
the unsupervised and semi-supervised manifold learning and nonlinear dimensionality reduction litera-
ture [25, 162]. We also note that some of the early work on Radial Basis Networks explicitly addressed
metric learning as a part of kernel function construction [147].

• FisherFaces and EigenFaces. We further note the strong similarity between the eigenvectors of feature
matrices (e.g., Figs. 5-1, D-5) analyzed in this work and those given by EigenFace [173, 184], and
FisherFace [20] algorithms. While EigenFaces are obtained in a purely unsupervised fashion, the
FisherFace algorithm uses labeled images of faces and Fisher’s Linear Discriminant [62] to learn a
linear subspace for dimensionality reduction. The first layer of neural networks and RFMs also learn
linear subspaces based on labeled data but in a recursive way, using nonlinear classifiers.

• Debiasing. Debiasing is a statistical procedure of recent interest in the statistics literature [210].
Given a high-dimensional problem with a hidden low-dimensional structure, debiasing involves first
performing variable selection by using methods such as Lasso [180] or sparse PCA [98] and then fitting
a low-dimensional model to the selected coordinates. We note that this procedure is similar to a single
step of RFM. Moreover, both RFMs and neural networks can be viewed as a non-linear iterative version
of the debiasing procedure with soft coordinate selection.
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• Expectation Maximization (EM). The RFM algorithm is reminiscent of the EM algorithm [130] with
alternating estimation of the kernel predictor (M-step) and the feature matrix M (E-step). From this
viewpoint, developing estimators for the feature matrix other than the sample covariance estimator
considered in this work is an interesting future direction. Moreover, depending on properties of the
data and the target function, the feature matrix may be structured. Such structure could be leveraged
to develop more sample efficient estimators for the M-step.

• Boosting. The mechanism of neural feature learning is reminiscent of boosting [65] where a “weak
learner,” only slightly correlated with the optimal predictor, is “boosted” by repeated application.
Feature learning can similarly improve a suboptimal predictor as long as its average gradient outer
product estimate is above the noise level.

Looking forward. Overall, our work provides new insights into the operational principles of neural net-
works and how such principles can be leveraged to design new models with improved performance, compu-
tational simplicity, and transparency. We envision that the mechanism of neural feature learning identified
in this work will be key to improving neural networks and developing such new models.

Data Availability

All image datasets considered in this work, i.e., CelebA, SVHN, CIFAR10, MNIST and STL-10, are publicly
available for download via PyTorch. Tabular data from [61] is available to download via https://github.c
om/LeoYu/neural-tangent-kernel-UCI provided by [10]. Tabular data from [70] is available to download
via https://github.com/LeoGrin/tabular-benchmark.

Code Availability

Code for neural network experiments is available at https://github.com/aradha/deep_neural_feature_
ansatz. Code for RFMs is available at https://github.com/aradha/recursive_feature_machines/tre
e/pip_install.
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Chapter 6

Summary and Discussion

Summary. In this thesis, we identified over-parameterization and feature learning as two core principles
driving the success of deep learning. While the benefits of over-parameterization are well studied for su-
pervised learning tasks in the literature, we analyzed the impact of over-parameterization in unsupervised
learning. We observed that over-parameterized autoencoders learned representations that were useful for
downstream tasks such as drug re-purposing [30]. Contrary to the long-held belief that such models would
learn the identity function through training, we showed that these models in fact learn functions that are
contractive around the training examples [152].

Given the ubiquitous benefits of over-parameterization in both supervised and unsupervised learning, we
then demonstrated the effectiveness of using infinitely wide neural networks corresponding to kernel machines.
In particular, we derived the NTK of infinitely wide neural networks for matrix completion problems and
showed that these models achieve state-of-the-art performance for virtual drug screening and are competitive
with convolutional networks for image inpainting [154]. In addition to its practical value, we used the NTK
to provide theoretical guarantees for neural networks by constructing infinitely wide and deep networks that
were Bayes optimal for classification [153].

While the NTK is effective in a number of applications, these methods rely on using fixed feature trans-
formations independent of the dataset. On the other hand, neural networks are able to learn features
automatically from data, thereby giving them an edge over kernel methods on certain tasks. We thus identi-
fied the mechanism of neural feature learning. We posited the Deep Neural Feature Ansatz, which stated that
neural feature learning occurred through a procedure known as the average gradient outer product [151]. We
used our ansatz to explain prominent deep learning phenomena such as the emergence of spurious features
in neural networks.

Lastly, the feature learning mechanism identified in our work provided a means of introducing feature
learning into any machine learning model. Given that non-feature learning kernel machines were already
effective on a number of tasks, these models were prime candidates for improvement with feature learning.
We thus introduced feature learning into these models and referred to the resulting algorithm as Recursive
Feature Machines (RFMs). We showed the immediate practical value of RFMs by using them to achieve
state-of-the-art results on tabular datasets.

Next Steps. Identifying the core principles behind the success of deep networks provides a path forward for
building the next generation of machine learning models that are effective, computationally inexpensive, and
interpretable. We presented an example of the power of this philosophy through the construction of RFMs,
which were cost effective, achieved state-of-the-art results on tabular data, and provided interpretability
through the form of a feature matrix. We now discuss next directions for applying and improving these
methods.

Biomedical applications. In this thesis, we briefly touched on some applications of over-parameterized mod-
els in biomedical applications such as drug re-purposing and virtual drug screening. By integrating feature
learning into these models we can achieve effective results in this domain and also provide new biological in-
sights. In particular, simply visualizing feature matrices for predictive modeling tasks in genetics or genomics
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would already provide further insight into relationships between phenotypes and genotypes. Moreover, it
would be interesting to understand the features learned by unsupervised models in this domain, particularly
when integrating different data modalities.

Advancing understanding of the role of depth. The NTK and the average gradient outer product are useful
tools for understanding properties of trained deep networks. For example, we used the NTK to understand
inductive biases of networks for matrix completion tasks, and we used the average gradient outer product
to explain simplicity biases, grokking, and lottery tickets in deep networks. We envision that these tools
will further our understanding of the role of depth in neural networks as well. In particular, an interesting
direction of future work is to use these tools to characterize when deep feature learning is beneficial over
simply increasing depth with a random feature model.

Libraries for over-parameterized, feature learning models. The prevalence of deep networks is driven in large
part by deep learning libraries such as PyTorch [142]. These libraries provide simple building blocks for
rapidly constructing and testing novel deep learning architectures. While such libraries are still emerging for
kernel machines [139], an important direction of future work is to integrate feature learning and faster kernel
regression solvers into these libraries. We envision that such integration would lead to greater adoption of
these effective, interpretable, and conceptually simple methods by practitioners.
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Appendix A

Chapter 2 Supplementary

A Encoding Multiple Sequences

Given sequences of training examples {x(j)
i } 2 Rd for i 2 [n], j 2 [ki], ki 2 Z�0, minimizing the following

sequence encoding objective with gradient descent methods leads to training sequences being stored as limit
cycles:

arg min
f2F

nX

i=1

kiX

j=1

kf(x(j mod ki)+1
i ) � x(j)

i k2
2. (A.1)

B Proofs of Invariants, Theorem 1, and Theorem 2

We present the full proof of Invariants 1 and 2, Theorem 1, and Theorem 2 below. To simplify notation, we
use A to represent W1 and B to represent W2.

Let f(z) = A�(Bz) represent a 1-hidden layer network with elementwise, differentiable nonlinearity �,
z 2 Rk0 , B 2 Rk⇥k0 , and A 2 Rk0⇥k. Suppose that gradient descent with learning rate � is used to minimize
the following loss for the autoencoding problem with 1 training example x:

L(x, f) =
1

2
kx � f(x)k2

2. (A.2)

Gradient descent updates on A and B are as follows:

A(t+1) = A(t) + �(x � A(t)�(B(t)x))�(B(t)x)T (A.3)

B(t+1) = B(t) + � diag(�0(B(t)x))A(t)T
(x � A(t)�(B(t)x))xT , (A.4)

where diag(�0(B(t)x)) =

2

664

�0(B(t)
1,: x)

. . .
�0(B(t)

k,:x)

3

775 with B(t)
i,: representing row i of matrix B(t).

In the following, we restate and prove Invariant 1 formally:

Invariant 1. If A(0) = xa(0)T and B(0) = b(0)xT for a(0), b(0) 2 Rk, then for all time-steps t, A(t) = xa(t)T

and B(t) = b(t)xT for a(t), b(t) 2 Rk.

Proof. We provide a proof by induction. The base case follows for t = 0 from the initialization. Now we
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assume for some t that A(t) = xa(t)T and B(t) = b(t)xT . Then for time t + 1 we have:

A(t+1) = A(t) + �(x � A(t)�(B(t)x))�(B(t)x)T

= xa(t)T
+ �(x � xa(t)T

�(B(t)x))�(B(t)x)T

= x[a(t)T
+ �(1 � a(t)T

�(B(t)x))�(B(t)x)T ]

= xa(t+1)T

and similarly,

B(t+1) = B(t) + � diag(�0(B(t)x))A(t)T
(x � A(t)�(B(t)x))xT

= b(t)xT + � diag(�0(B(t)x))A(t)T
(x � A(t)�(B(t)x))xT

= [b(t) + � diag(�0(B(t)x))A(t)T
(x � A(t)�(B(t)x))]xT

= b(t+1)xT .

Hence, since the statement holds for t + 1, it holds for all time steps.

Under the initialization in Invariant 1, outputs of the network are multiples of the training example.
Generalizing this result, in Materials and Methods D, we prove that autoencoders trained on multiple
examples produce outputs in the span of the training data.

Using Invariant 1, any interpolating solution satisfies the following condition.

Proposition 6. Under the initialization in Invariant 1, if kxk2 = 1 and A(1), B(1) yield zero training
error, then A(1) = xaT , B(1) = bxT for a, b 2 Rk such that aT�(b) = 1.

Proof. From Invariant 1, it holds that A(1) = xaT , B(1) = bxT . If the loss is minimized to zero, then
f(x) = x, and thus:

x = xaT�(bxT x) = xaT�(b) ! aT�(b) = 1,

which completes the proof.

Using Proposition 6, we can compute the maximum eigenvalue of the Jacobian at training example x
(denoted �1(J(f(x))). This is done in the following result.

Proposition 7. Let the Hadamard product � denote coordinate-wise multiplication. Then �1(J(f(x))) =
aT�0(b) � b.

Proof. Note that

J(f(z)) = xaT (�0(bxT z) � b)xT = xaT (�0(b) � b)xT ,

and hence J(f(x))x = xaT (�0(b) � b). This implies that x is an eigenvector of J(f(x)) with eigenvalue
aT (�0(b) � b). Since xaT (�0(b) � b)xT is rank 1, the remaining eigenvalues of J(f(x)) are all zero, which
completes the proof.

We now prove Invariant 2, which states that if, in addition to Invariant 1, all weights in each row of A, B
are initialized to be equal, then they remain equal throughout training.

Invariant 2. Let kxk2 = 1 and A(0) = xa(0)T
, B(0) = b(0)xT for vectors a(0), b(0) 2 Rk. If a(0)

i = a(0)
1 , b(0)

i =

b(0)
1 , then a(t)

i = a(t)
1 , b(t)

i = b(t)
1 for all i 2 [k].

Proof. From the proof of Invariant 1, we have that:

a(t+1)T
= a(t)T

+ �(1 � a(t)T
�(b(t)))�(b(t))T

b(t+1) = b(t) + � diag(�0(b(t)))a(t)T
(1 � a(t)T

�(b(t))).
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Now, if a(t)
i = a(t)

1 , b(t)
i = b(t)

1 , then from the above this implies that a(t+1)
i = a(t+1)

1 , b(t+1)
i = b(t+1)

1 and the
proof follows by induction.

Using Invariants 1 and 2, we can now prove Thoerem 1.

Theorem 11. Let f(z) = A�(Bz) denote a 1-hidden layer network with elementwise nonlinearity �, z 2 Rk0 ,
B 2 Rk⇥k0 , and A 2 Rk0⇥k. Let A, B be initialized as in Invariant 1, 2. Gradient descent with learning rate
� is used to to minimize the following loss for 1 training example x 2 Rk0 with kxk2 = 1

L(x, f) =
1

2
kx � f(x)k2

2. (A.5)

Assuming �(z)
�0(z) < 1 8z 2 R, then as the learning rate � ! 0, it holds that A(1) = xaT and B(1) = bxT

with a, b 2 Rk such that

a2
i � a(0)

i

2

2
=

Z bi

b(0)i

�(z)

�0(z)
dz ; ai�(bi) =

1

k

for all i 2 [k] with ai = aj , bi = bj for all i, j 2 [k].

Proof. From Invariants 1 and 2, we have that:

a(t+1)
1 = a(t)

1 + �(1 � ka(t)
1 �(b(t)

1 ))�(b(t)
1 )

b(t+1)
1 = b(t)

1 + ��0(b(t)
1 )a(t)

1 (1 � ka(t)
1 �(b(t)

1 )).

Rearranging the above, we obtain

a(t+1)
1 � a(t)

1

�(b(t)
1 )

=
b(t+1)
1 � b(t)

1

a(t)
1 �0(b(t)

1 )

=) a(t)
1

da(t)
1

dt
=

�(b(t)
1 )

�0(b(t)
1 )

db(t)
1

dt
as � ! 0

=)
t0Z

0

a(t)
1

da(t)
1

dt
dt =

t0Z

0

�(b(t)
1 )

�0(b(t)
1 )

db(t)
1

dt
dt

=) a(t0)
1

2
� a(0)

1

2

2
=

b(t
0)

1Z

b(0)1

�(z)

�0(z)
dz,

wich completes the proof.

Using Proposition 7 and Theorem 1 above, we can calculate the values of a1, b1 explicitly. After computing
b1, the following result can be used to compute �1(J(f(x))).

Theorem 12. Under the setting of Theorem 1 it holds that

�1(J(f(x))) =
�0(b1)b1

�(b1)
.

Example. From Theorem 1, if �(z) = e2z, then the values of a1, b1 are given by solving:

a2
1 = b1,

p
b1e

2b1 =
1

k
.
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From Theorem 12, the top eigenvalue of the Jacobian at the training example is 2b1. Note that the above
equation implies b1 decreases as k increases. At k = 1,�1 = .6, at k = 2,�1 = .28, and at k = 3,�1 = .16.
This nonlinearity guarantees that training example is an attractor. Moreover, as there are no fixed points
other than the training example, there are no spurious attractors.

Remark. The analysis of Theorem 12 implies that attractors arise as a consequence of training and are
not simply consequences of interpolation by a neural network with a certain architecture; see the following
corollary.

Corollary 3. Let x 2 Rk0 with kxk2 = 1 and f(z) = xaT�(bxT z), where a, b 2 Rk and � is a smooth
element-wise nonlinearity with �0(z)

�(z) < 1 for all z 2 R,
����

0(z)z
�(z)

��� > 1 for z in an open interval O ⇢ R. Then
there exist infinitely many b 2 Rk, such that f(x) = x and x is not an attractor for f .

Proof. If ai = aj and bi = bj for all i, j 2 [k], then Propositions 6 and 7 imply that f(x) = x if:

ai�(bi) =
1

k

�1(J(f(x))) =
�0(bi)bi

�(bi)
.

However, for any value of bi such that �(bi) 6= 0, we can select a value of ai such that ai�(bi) = 1
k . Hence,

we just select appropriate ai such that ai�(bi) = 1
k for bi 2 O.

C Analysis of Deep Autoencoders with 1 Training Example
Let f(z) = Wd�(Wd�1�(Wd�2 . . .�(W1z) . . .)) represent a d � 1 hidden layer network with elementwise
nonlinearity � with z 2 Rk0 , Wi 2 Rki⇥ki�1 , and kd = k0. We again consider the setting where gradient
descent with learning rate � is used to minimize the square loss on 1 training example x. As in the 1 hidden
layer case, we derive invariants of training that allow us to derive a closed form solution when training on 1
example in the gradient flow setting.

Firstly, the following invariant (analogous to Invariant 1) holds in the deep setting.

Invariant 3. If W (0)
d = xa(0)T and W (0)

1 = b(0)xT for b(0), a(0) 2 Rk1 , Rkd�1 respectively, then for all
time-steps t, W (t)

d = xa(t)T and W (t)
1 = b(t)xT for b(t), a(t) 2 Rk1 , Rkd�1 respectively.

The proof is analogous to that of Invariant 1. Now that we have invariants of training for layers Wd, W1,
we still need to find an invariant for the intermediate layers W2, . . . , Wd�1. The following invariant extends
Invariant 2 to the deep setting.

Invariant 4. Assume kxk2 = 1 and W (0)
d = xa(0)T , W (0)

1 = b(0)xT for b(0), a(0) 2 Rk1 , Rkd�1 respectively.
Let 1m⇥n denote the m ⇥ n matrix of all 10s. If a(0)

j = a(0)
1 , b(0)

l = b(0)
1 , W (0)

i = w(0)
i 1ki⇥ki�1 with w(0)

i 2 R,
then for all time-steps t, a(t)

j = a(t)
1 , b(t)

l = b(t)
1 , W (t)

i = w(t)
i 1ki⇥ki�1 for j 2 Rkd�1 , l 2 Rk1 , and i 2

{2, . . . , d � 1}.

That is, in the deep setting, the intermediate layers remain rank 1 throughout training, if they are
initialized to be a constant times the all 1’s matrix. The proof follows by induction and is analogous to the
proof of Invariant 4.

Theorem. Let f(z) = Wd�(Wd�1�(Wd�2 . . .�(W1z) . . .)) denote a d� 1 hidden layer network with elemen-
twise nonlinearity �, with z 2 Rk0 , Wi 2 Rki⇥ki�1 , and kd = k0. Let {Wi}d

i=1 be initialized as in Invariants
3, 4. Gradient descent with learning rate � is used to to minimize the following loss for 1 training example
x 2 Rk0 with kxk2 = 1:

L(x, f) =
1

2
kx � f(x)k2

2 (A.6)
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Assuming �(z)
�0(z) < 1 8z 2 R, then as the learning rate � ! 0, we have the following relationships between

the weights a(t)
1 , b(t)

1 , w(t)
i 2 R for i 2 {1, . . . d � 2}:

w(t0)
1

2
� w(0)

1

2

2
=

b(t
0)

1Z

b(0)1

�(b1)

�0(b1)k2
db1,

w(t)
i+1

2
� w(0)

i+1

2

2
=

w(t)
iZ

w(0)
i

�(wiki�(wi�1ki�1 . . .�(b1) . . .))

�0(wiki�(wi�1ki�1 . . .�(b1) . . .))

1

�(wi�1ki�1 . . .�(b1) . . .)ki+1
dwi,

a(t)
1

2
� a(0)

1

2

2
=

w(t)
d�2Z

w(0)
d�1

�(wd�1kd�1�(wd�2kd�2 . . .�(b1) . . .))

�0(wd�1kd�1�(wd�2kd�2 . . .�(b1) . . .))

1

�(wd�2kd�2 . . .�(b1) . . .)
dwd�1.

The proof is analogous to the proof of Theorem 1. In addition, analogously to Theorem 12, we can
explicitly compute the maximum eigenvalue of the Jacobian at the training example x using the following
corollary.

Corollary 4. Under the setting of the theorem above, it holds that

�1(J(f(x))) =

⇣Qd�1
i=2 �

0(wiki�1�(wi�1ki�2 . . .�(b1) . . .))wiki�1

⌘
�0(b1)b1

�(wd�1kd�2�(wd�2kd�3 . . . (�(b1)) . . .))

The proof is analogous to that of Theorem 12. Note that in the theorem above, the integration for later
layer weights becomes increasingly complicated, since the integration depends on the values of the previous
weights. Fortunately, for certain nonlinearities, the integral is tractable; see the example below.

Example. Let �(x) = xm and assume ki = 1 for i 2 [d � 1]. Then from the theorem above, it holds that:

w2
i+1 =

w2
i

m
‘8i 2 [d � 1]

From the corollary above, �1(J(f(x))) = md�1. Hence if m < 1, then x becomes an attractor.

Remarks. In the 1 hidden layer setting, regardless of how large the width, �1(J(f(x))) = m when using
�(z) = zm. Thus, the example above demonstrates that depth can make over-parameterized autoencoders
more contractive even when width cannot.

D Trained Autoencoders Produce Outputs in the Span of the
Training Data

In the following section, we generalize Invariant 1 to the setting with multiple training examples and thus,
demonstrate that trained autoencoders produce outputs in the span of the training data.

Invariant 5. Let f(z) = A�(Bz) represent a 1-hidden layer network with elementwise, differentiable non-
linearity �, z 2 Rk0 , B 2 Rk⇥k0 , and A 2 Rk0⇥k. Suppose that gradient descent with learning rate � is used
to minimize the following loss for the autoencoding problem with n training examples {x(i)}n

i=1:

L(x, f) =
1

2
kx(i) � f(x(i))k2

2. (A.7)

If A(0) =
nP

i=1
x(i)a(0)

i

T
and B(0) =

nP
i=1

b(0)
i x(i)T for vectors a(0)

i , b(0)
i 2 Rk, then for all time-steps t, it holds

that A(t) =
nP

i=1
x(i)a(t)

i

T
and B(t) =

nP
i=1

b(t)
i x(i)T for some vectors a(t)

i , b(t)
i 2 Rk.
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Proof. The proof exactly follows the proof of Invariant 1. For completeness, we show the proof for A(t)

below. We again provide a proof by induction. The base case follows for t = 0 from the initialization. Now
we assume for some t that A(t) =

nP
i=1

x(i)a(t)
i

T
and B(t) =

nP
i=1

b(t)
i x(i)T . Then for time t + 1 we have:

A(t+1) = A(t) + �
nX

i=1

(x(i) � A(t)�(B(t)x(i)))�(B(t)x(i))T

=
nX

i=1

x(i)a(t)
i

T
+ �

nX

i=1

(x(i) �
nX

j=1

x(j)a(t)
j

T
�(B(t)x(i)))�(B(t)x(i))T

=
nX

`=1

x(`)a(t+1)
`

T
.

The proof for B(t) follows analogously. Hence, since the statement holds for t + 1, it holds for all time steps,
which completes the proof.

E Proofs of Theorem 3 and 4

By analyzing sequence encoders as a composition of maps, we prove that sequence encoding provides a more
efficient mechanism for memory than autoencoding. We begin by restating Theorem 3 below.

Theorem 13. Let f(z) = W1�(W2z) denote a 1-hidden layer network with elementwise nonlinearity � and
weights W1 2 Rk0⇥k and W2 2 Rk⇥k0 , applied to z 2 Rk0 . Let x(i), x(i+1) 2 Rk0 be training examples
with kx(i)k2 = kx(i+1)k2 = 1. Assuming that �(z)

�0(z) < 1 8z 2 R and there exist u(0), v(0) 2 Rk such that

W (0)
1 = x(i+1)u(0)T and W (0)

2 = v(0)x(i)T with u(0)
i = u(0)

j , v(0)
i = v(0)

j 8i, j 2 [k], then gradient descent with
learning rate � ! 0 applied to minimize

L(x, f) =
1

2
kx(i+1) � f(x(i))k2

2 (A.8)

leads to a rank 1 solution W (1)
1 = x(i+1)uT and W (1)

2 = vx(i)T with u, v 2 Rk satisfying

u2
i � u(0)

i

2

2
=

Z vi

v(0)
i

�(z)

�0(z)
dz, and ui�(vi) =

1

k
,

and ui = uj, vi = vj for all i, j 2 [k].

The proof exactly follows that of Theorem 1, since updates to u, v do not depend on the data x(i), x(i+1).

Theorem 14. Let {x(i)}n
i=1 be n training examples with kx(i)k2 = 1 for all i 2 [n], and let {fi}n

i=1 denote n
1-hidden layer networks satisfying the assumptions in Theorem 3 and trained on the loss in Eq. (2.4). Then
the composition f = fn � fn�1 � . . . � f1 satisfies:

�1(J(f(x(1))) =
nY

i=1

 
�0(v(i)

j )v(i)
j

�(v(i)
j )

!
. (A.9)

Proof. From Theorem 3, each of the fi for i 2 [n] have the following form after training:

fi(z) = x(i mod n+1)u(i)T
�(v(i)x(i)T

z)

with u(i)T
�(v(i)) = 1 and u(i)

l = u(i)
j , v(i)

l = v(i)
j for l, j 2 [k] and i 2 [n].
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Hence the composition f is given by:

f(z) = (fn � fn�1 � . . . � f1)(z)

= x(1)u(n)T
�(v(n)x(n)T

x(n)u(n�1)T
�(v(n�1)x(n�1) . . .�(v(1)x(1)T

z) . . .))

= x(1)u(n)T
�(v(n)u(n�1)T

�(v(n�1) . . .�(v(1)x(1)T
z) . . .)) since kx(i)k2 = 1 for all i 2 [n].

We now compute the Jacobian of f at the example x(1). Since uik�(vi) = 1 for all i 2 [n] and kx(1)k2 = 1,
it holds that

J(f(x(1))) = x(1)

 
nY

i=1

u(i)
j k�0(v(i)

j )v(i)
j

!
x(1)T

.

However, we know that u(i)
j = 1

k�(v(i)
j )

, and so we have that

�1(J(f(x(1))) =
nY

i=1

 
�0(v(i)

j )v(i)
j

�(v(i)
j )

!
,

which completes the proof.

F Limit Cycles in Recurrent Neural Networks
In order to demonstrate that recurrent neural networks (RNNs) can also memorize and recall sequences,
we trained a vanilla RNN (whose architecture is detailed in Appendix Figure A-1) to encode the following
sentence from our introduction: “Hopfield networks are able to store binary training patterns as attractive
fixed points.” When training the RNN, we encoded each word using 1-hot representation i.e., since there are
13 words in the sentence, we represented each word with a vector of size 13 and placed a “1” in the index
corresponding to the word.

We trained such that each word is mapped to the next modulo 13 using the Cross Entropy Loss (as
is done in practice). Unlike the other settings considered in this work, RNNs are used to generate new
sentences after training by sampling a new word from the vector output given a previous word1. Under
our architecture, we found that repeatedly choosing the highest probability word given the previous word
consistently output the entire training sentence regardless of the number of times this sampling process was
repeated.

G Sequence Encoding Audio
In order to demonstrate that fully connected networks can memorize high dimensional sequences, we captured
an audio clip of an 8 second recording from the Donald Trump talking pen. Each second of the audio contains
22, 050 frequencies, and we trained a fully connected network to map from the frequencies in second i to
second i+1 mod 8. We have attached an audio sample2 titled “trump_quote_recovered_from_noise.mp3”
demonstrating that iteration from random noise leads to recovery of the entire quote. The full architecture
used is provided in Appendix Figure A-1.

1
This process is usually started from inputting the all zero vector.

2
Located at: https://github.com/uhlerlab/neural_networks_associative_memory
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Dataset Nonlinearity Optimizer, LR Initialization Seeds	Used Location
10	Training	Examples,

CIFAR10
Leaky ReLU Adam, 1e-4 Default	PyTorch 2 SI	Figure S5

100	Training	Examples,
ImageNet-32

Cosid Adam,	1e-4 Default	PyTorch 3 SI	Figure S6

Dataset Width Depth Nonlinearity Optimizer, LR Initialization Seeds	Used Location
500 Examples,
ImageNet-64

1024 10 Cosid Adam,	1e-4 U[-2e-2,	2e-2] 3072 Figure	2

6	Points, 2D 512 30 Cosid Adam,	1e-4 Default PyTorch 5 Figure	3
389	Frames,

“Steamboat Willie”
1024 16 SELU Adam,	1e-4 Default	PyTorch 2 Figure	4a

2 Sequences	of	Length	10,	
MNIST

128 31 SELU Adam,	1e-4 Default	PyTorch 2 Figure	4b

4	Sequences of	Length	3,	
2D

1024 10 Cosid Adam,	1e-4 Default	PyTorch 5 Figure	4c

Autoencoding/
Sequence	encoding	
100	MNIST	Examples

N.A. N.A. SELU Adam, 1e-4 Default PyTorch 2, 5,	2072 Figure 5

2000	Examples,
MNIST

2048 10 Cosid Adam,	1e-4 Default PyTorch 2 SI	Figure	S2

1000	Examples,
CIFAR10, BW

2048 10 Cosid Adam,	1e-4 U[-2e-2,	2e-2] 2 SI Figure	S3

8	Seconds of	
Trump	Audio

15 36 SELU Adam, 1e-4 Default	PyTorch 2 SI	Supplementary	
Text		G

(a) Fully Connected Network Training Details

Conv	256
Stride=2

Leaky	RELU

x5

Conv	256
Stride=1

Leaky	RELU
Bilinear	Upsampling

Conv	256
Stride=1

Leaky	RELU

Conv	3
Stride=1

Leaky	RELU

x5 x2

(b) Convolutional Network Training Details

Dataset Width Depth Nonlinearity Optimizer, LR Initialization Seeds	Used Location
13	Word Sentence 128 31 SELU Adam, 1e-4 Default	PyTorch 2 SI Supplementary	

Text	F

(c) Recurrent Network Training Details

Figure A-1: Training details for all experiments in main text and Appendix. Unless otherwise stated, all fully
connected and convolutional networks are trained to minimize mean squared error below 10�8. (a) Train-
ing details for fully connected architectures including dataset description, network width, network depth,
nonlinearity, optimization method, learning rate, initialization scheme, random seeds used, and reference to
the experiment in the text. (b) Training details for convolutional architecture including network topology,
dataset, nonlinearity, optimization method, learning rate, initialization scheme, random seed and reference
to experiment in the text. (c) Training details for recurrent architecture including network width and depth
(for producing the next hidden state and output state), nonlinearity, optimization method, learning rate,
initialization scheme, random seed used, and reference to experiment in the text.
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Test
Example

1st
Iteration

Limit of	
Iteration

Figure A-2: Network trained on 2000 examples from MNIST stores all training examples as attractors. 1
iteration of the network leads to good reconstruction of the test example, but taking the limit of iteration
leads to recovery of training examples. Average reconstruction error after 1 iteration of 58000 test examples
is 0.0135. Training details are provided in Appendix Figure A-1.

Corrupted 
Train Ex.

Recovered 
Train Ex.

Figure A-3: Network trained on 1000 black and white images from CIFAR10 stores all training examples as
attractors. Analogously to Figure 2-2a of the main text, as training examples are attractors, iteration from
corrupted inputs results in the recovery of a training example. Training details are provided in Appendix
Figure A-1.
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Input
Example

Limit of 
Iteration

Input
Example

Limit of 
Iteration

Input
Example

Limit of 
Iteration

Gradient Descent:

Gradient Descent + 
Momentum:

Gradient Descent + 
Momentum + 
Weight Decay:

Figure A-4: Examples of spurious training examples arising in over-parameterized autoencoders trained using
different optimization methods on 100 black and white examples from CIFAR10. The networks used have 11
hidden layers, 256 hidden units per layer, SELU nonlinearity, and are initialized using the default PyTorch
initialization scheme. For all optimization methods, we use a learning rate of 10�1. We use a momentum
value of 0.009 and weight decay of 0.0001.

Input

Limit	of	
Iteration

Training	
Example

Max
Eigenvalue

0.03 0.02 0.05 0.09 0.04 0.21 0.02 0.08 0.05 0.09

(a)

(b)

Figure A-5: A U-Net convolutional autoencoder [161, 185] storing 10 CIFAR10 training examples as attrac-
tors. Training details are presented in Appendix Figure A-1b. (a) Maximum eigenvalue of the Jacobian of
the network at the training example. (b) Iteration from corrupted inputs converges to a training example. In
general, we observe that convolutional autoencoders store training examples as attractors when the receptive
field size of the hidden units in the network covers the entire image. This can be achieved by increasing the
stride of the filters, as is done in the U-Net used here.
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Example

1st
Iteration

Limit of	
Iteration

Figure A-6: A U-Net convolutional autoencoder [161, 185] storing 100 ImageNet-32 training examples as at-
tractors. Training details are presented in Appendix Figure A-1b. Iteration from corrupted inputs converges
to a training example.
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Figure A-7: Over-parameterized autoencoders become more contractive at the training examples as network
depth and width are increased. Networks are trained on 100 examples from MNIST and are a subset of
architectures considered in Figure 2-5a. Histograms of the maximum eigenvalue of the Jacobian at each of
the 100 training examples are presented for each of the nine settings.
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Figure A-8: Over-parameterized autoencoders become more contractive at the training examples as network
depth and width are increased. Networks are trained on 100 examples from MNIST and are a subset of
architectures considered in Figure 2-5a. Histograms of top 1% of 282 eigenvalues of the Jacobian at each of
the 100 training examples are presented for each of the nine settings. The variance of the distribution of
eigenvalues decreases as width increases.
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Noise	
Template

Recovery	
Rate 500/500

(No	Noise)
500/500 444/500 267/500 235/500 1/500

(At Chance)

Noise	
Template

Recovery	
Rate 500/500 500/500 500/500 500/500 486/500 500/500

Noise	
Template

Recovery	
Rate 500/500

(No	Noise)
500/500 421/500 266/500 233/500 1/500

(At Chance)

Noise	
Template

Recovery	
Rate 488/500 500/500 494/500 500/500 393/500 409/500

(a) Recovery Rate of Over-parameterized Autoencoder (b) Recovery Rate of 1 Nearest Neighbor

Figure A-9: Comparison of recovery rate of over-parameterized autoencoder trained on 500 examples from
ImageNet-64 (Figure 1 of main text) and 1 nearest neighbor (1-NN). From Figure 2 of the main text, we
know that over-parameterized autoencoders use metrics other than Euclidean distance to construct basins
of attraction around training examples. However, in this high dimensional setting, the metric used by the
over-parameterized autoencoder is similar to that of 1-NN, as is demonstrated by the similar recovery rates
from varying corruption patterns.

Opt.

Act. ReLU Leaky ReLU SELU Swish cos x � x x + sin 10x
5

GD 28/100 34/100 10/100 NA
⇤

5/100 19/100

GD +

Momentum
14/100 23/100 10/100 NA

⇤
2/100 21/100

GD +

Momentum +

Weight Decay

NA
⇤

NA
⇤

18/100 NA
⇤

22/100 NA
⇤

RMSprop 97/100 98/100 100/100 49/100 100/100 100/100

Adam 38/100 53/100 30/100 14/100 100/100 100/100

Figure A-10: Impact of optimizer and nonlinearity on number of training examples stored as attractors. In
all experiments, we used a fully connected network with 11 hidden layers, 256 hidden units per layer, and
default PyTorch initialization. (⇤) NA indicates that the training error did not even decrease below 10�5

in 1,000,000 epochs. Although more attractors arise with adaptive methods and trignometric nonlinearities,
attractors arise in all settings considered. Note that we used a loss threshold of 10�5 for this table since the
non-adaptive methods could not converge to 10�8 in 1,000,000 epochs.

Init.

Act.
ReLU Leaky ReLU SELU Swish cos x � x x + sin 10x

5

U[�0.01, 0.01] 62/100 78/100 78/100 16/100 26/100 93/100

U[�0.02, 0.02] 43/100 65/100 71/100 20/100 31/100 70/100

U[�0.05, 0.05] 55/100 55/100 29/100 32/100 100/100 89/100

U[�0.1, 0.1] 36/100 43/100 13/100 30/100 100/100 NA
⇤

U[�0.15, 0.15] 34/100 38/100 13/100 6/100 100/100 NA
⇤

Figure A-11: Impact of initialization on number of training examples stored as attractors. In all experiments,
we used a fully connected network with 11 hidden layers and 256 hidden units per layer trained using the
Adam optimizer (lr=10�4). (⇤) NA indicates that the training error did not decrease below 10�8 in 1,000,000
epochs. Attractors arise under all settings for which training converged. Generally, more attractors arise
under smaller initializations or with trignometric nonlinearities.
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Appendix B

Chapter 3 Supplementary

A Proofs for Matrix Completion with the NTK
We present the statement of Theorem 1 for a general homogeneous (degree 1), Lipschitz nonlinearity below
and then present the proof. We again note that ReLU and LeakyReLU are commonly used nonlinearities
that satisfy these conditions. The results are easily extended to homogeneous nonlinearities of arbitrary
degree and for feature priors that have columns with arbitrary norm.
Theorem. Assume Z = {z(i)}n

i=1 2 Rp⇥n, where each column is normalized with kz(i)k2 = 1. Let fZ(W)
be a d layer fully connected network with Lipschitz nonlinearity � that is homogeneous of degree 1 and c =
k�k�1

L2(µ) where L2(µ) is the Hilbert space of square Lebesgue integrable functions under Gaussian measure.
Then as layer widths k1 ! 1, k2 ! 1, . . . , kd�1 ! 1 and under the Gradient Independence Ansatz [202],
the NTK for matrix completion with fZ(W) is given by

Kd(Mij , Mi0j0) =

8
<

:
d(z(j)T

z(j0)) if i = i0

0 if i 6= i0
,

where d(⇠) = �̌(d)(⇠) + d�1(⇠)
d�̌
d⇠ (�̌(d�1)(⇠)), and �̌(k)(⇠) = �̌(�̌(k�1)(⇠)) for k � 1 and �̌(0)(⇠) = ⇠.

Proof. We proceed by induction and present the case for d = 1 first. Namely, we define gZ(M) as follows:

gZ(M) = tr(MT A�(BZ)),

where A 2 Rm⇥k, B 2 Rk⇥p, Z 2 Rp⇥n. To compute the kernel, we compute @gZ(M)
@A↵,�

, @g(M)
@B↵,�

directly. We
begin by expanding the matrix products in gZ(M). For a matrix U , we let Ui,: denote row i of U and U:,i

denote column i of U . Note that

gZ(M) = tr

✓
MT A

cp
k
�(BZ)

◆

=
cp
k

tr

0

BB@MT A

2

664

�(B1,:Z:,1) . . . �(B1,:Z:,n)
... . . .

...
�(Bk,:Z:,1) . . . �(Bk:Z:,n)

3

775

1

CCA

=
cp
k

tr

0

BB@MT

2

664

Pk
a=1 A1,a�(Ba,:X:,1) . . .

Pk
a=1 A1,a�(Ba,:Z:,n)

... . . .
...

Pk
a=1 Am,a�(Ba,:X:,1) . . .

Pk
a=1 Am,a�(Ba,:Z:,n)

3

775

1

CCA

=
cp
k

mX

i=1

nX

j=1

Mi,j

kX

a=1

Ai,a�(Ba,:Z:,j).
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We thus have that

@gZ(M)

@A↵,�
=

cp
k

nX

j=1

M↵,j�(B�,:Z:,j),

@gZ(M)

@B↵,�
=

cp
k

mX

i=1

nX

j=1

Mi,jAi,↵�(B↵,:Z:,j)Z�,j .

The NTK is given by:

K1(M, M̃) = hrgZ(M), rgZ(M 0)i

=
mX

↵=1

kX

�=1

@gZ(M)

@A↵,�
· @gZ(M 0)

@A↵,�
+

kX

↵=1

pX

�=1

@gZ(M)

@B↵,�
· @gZ(M 0)

@B↵,�
.

To simplify the computation, we note that we will only ever need the gradient at indicator matrices Mij and
Mi0j0 . Moreover, from the formula for the partial derivatives, we conclude that

@gZ(Mij)

@A↵,�
=

8
<

:
0 if ↵ 6= i

c
p

k
�(B�,:Z:,j) otherwise

,

@gZ(Mij)

@B↵,�
=

cp
k

Ai,↵�(B↵,:Z:,j)Z�,j .

Thus, we can simplify the NTK as follows:

lim
k!1

K1(Mij , Mi0j0) = lim
k!1

c2

k

kX

�=1

�(B�,:Z:,j)�(B�,:Z:,j0)1i=i0

+
c2

k

kX

↵=1

Ai,↵Ai0,↵

pX

�=1

�0(B�,:Z:,j)�
0(B�,:Z:,j0)Z�,jZ�,j0

=

8
<

:
0 i 6= i0

1(z(j)T
z(j0)) i = i0

,

which completes the base case.

For the inductive step, we assume that

lim
kd�2!1

. . . lim
k1!1

Kd�1(Mij , Mi0j0) =

8
<

:
0 i 6= i0

d�1(z(j)T
z(j0)) i = i0

.

We now show that Kd(Mij , Mi0j0) has the desired form. For this, we define:

gZ(M) = MT A
cp
kd�1

�(hZ(W)),

where A 2 Rm⇥kd�1 and hZ(W) : Rp⇥n ! Rkd�1⇥n is a d � 1 fully connected network operating on Z.
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Following the computation for the 1 layer case, we obtain

@gZ(M)

@A↵,�
=

cp
kd�1

nX

j=1

M↵,j�(hZ(W))�,j ,

@gZ(M)

@W↵,�
=

cp
kd�1

mX

i=1

nX

j=1

Mi,j

kd�1X

k=1

Ai,k
@�(hZ(W))k,j

@W↵,�
.

Now we consider the case of indicator matrices Mij , Mi0j0 . For Mij , we note that @gZ(M)
@A↵,�

is only non-zero
for the terms

@gZ(Mij)

@Ai,�
=

cp
kd�1

�(hZ(W))�,j .

Hence, if i 6= i0, we obtain that

X

↵,�

@gZ(Mij)

@A↵,�

@gZ(Mi0j0)

@A↵,�
= 0.

Similarly, for Mij , we have that

@gZ(Mij)

@W↵,�
=

cp
kd�1

kd�1X

k=1

Ai,k
@�(hZ(W))k,j

@W↵,�
.

If i 6= i0, as kd�1 ! 1, by law of large numbers:

X

↵,�

@gZ(Mij)

@B↵,�

@gZ(Mi0j0)

@B↵,�
! 0.

Thus, if i 6= i0, we conclude that Kd(Mij , Mi0j0) = 0. On the other hand, if i = i0, then we have that

X

↵,�

@gZ(Mij)

@A↵,�

@gZ(Mi0j0)

@A↵,�
=

c2

kd�1

kd�1X

k=1

�(hZ(W))k,j�(hZ(W))k,j0 . (B.1)

Similarly, if i = i0, we have that

X

↵,�

@gZ(Mij)

@B↵,�

@gZ(Mi0j0)

@B↵,�
=

c2

kd�1

0

@
kd�1X

k=1

Ai,k�
0(hZ(W))k,j

@hZ(W)k,j

@W↵,�

1

A

·

0

@
kd�1X

k=1

Ai,k�
0(hZ(W))k,j0

@hZ(W)k,j0

@W↵,�

1

A .

By the inductive hypothesis as k1, k2, . . . kd�2 ! 1, the above converges in probability to:

lim
kd�2!1

lim
kd�3!1

. . . lim
k1!1

X

↵,�

@gZ(Mij)

@B↵,�

@gZ(Mi0j0)

@B↵,�
(B.2)

! c2

kd�1

0

@
kd�1X

k=1

�0(hZ(W))k,j�
0(hZ(W))k,j0Kd�1(Mk,j , Mk,j0)

1

A . (B.3)
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Therefore, when i = i0, adding Eqs. [B.1] and [B.2] and applying the inductive hypothesis yields:

lim
kd�1!1

lim
kd�2!1

. . . lim
k1!1

Kd(Mij , Mi0j0) = �̌(�̌(d�1)(hz(j), z(j0))i)

+ Kd�1
d�̌

d⇠

⇣
�̌(d�1)(hz(j), z(j0)i))

⌘
,

which completes the proof.

We next provide an example showing how to compute the NTK for matrix completion.

Example. Suppose we have:

Y =

2

64
y11 .5 .3

.1 .2 y23

.4 y32 y33

3

75 .

Assuming we read off the observed entries of Y in row major order and that Z = I (the 3⇥3 identity matrix),
then the NTK is given by:

K =

2

66666664

(1) (0) 0 0 0

(0) (1) 0 0 0

0 0 (1) (0) 0

0 0 (0) (1) 0

0 0 0 0 (1)

3

77777775

.

The solution to kernel regression is given by:

g̃(M) =
h
.5 .3 .1 .2 .4

i
K�1k(M),

where k(M) is the vector with entries k(Mij , M) for (i, j) 2 S. As an example, for M11, we have:

k(M11) =
h
(0) (0) 0 0 0

iT
.

This example demonstrates the key difference between the NTK of fully connected networks for matrix
completion and the usual multivariate NTK: namely, the former corresponds to solving a separate kernel
regression problem for each row of the target matrix Y . By modifying the nonlinearity � and the feature
prior in Theorem 1, our framework encapsulates a broad class of semi-supervised learning approaches for
matrix completion. We provide a nontrivial example below.

Example (Semi-supervised Learning with the Graph Laplacian). The following corollary to Theorem 2
proves that semi-supervised learning using the graph Laplacian operator from [26] is a specific instance of
matrix completion with the NTK of a linear neural network used for matrix completion.

Corollary. Let X 2 Rd⇥n denote a set of data points of which a subset XS 2 Rd⇥s is labelled with labels
YS 2 R1⇥s. Let Z 2 Rp⇥n denote the projection of X onto the top p eigenvectors of the graph Laplacian.
Let gZ(M) = tr(MT A 1

p

2k
BZ) for A 2 R1⇥k, B 2 Rk⇥p. Then as k ! 1, the following are equivalent:

arg min
A,B

X

(i,j)2S

(Yij � gZ(Mij))
2 () arg min

w2Rp
kYS � wZk2

2

in the sense that gZ(Mij) = wZ:,j.

The proof follows immediately from Theorem 1 and the fact that the dual activation for �(x) = x is
�̌(⇠) = ⇠. The example above illustrates the generality of our framework for matrix completion. Moreover,
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semi-supervised learning with the graph Laplacian can naturally be extended by using the NTK for a
nonlinear neural network instead of a linear neural network. Namely, instead of using the eigenvectors of the
graph Laplacian, we can naturally extend the above corollary by using embeddings produced by autoencoders
(Ch. 14 of [69]).

Note that the flexibility to learn a low-rank imputation or imputation with other structures via our
framework is given by the feature prior, which incorporates the relationships between the coordinates of
the target matrix. Indeed, varying the feature prior can drastically change the imputation given by the
NTK, and the NTK with appropriate feature prior can even produce low-rank imputations, as shown by the
following example.

Example. Consider the Netflix problem of movie rating imputation. Suppose the target matrix Y is of the
form

Y =

"
1 2 y13

1 2 3

#
,

where the rows of Y represent users, the columns represent movies, and the coordinate Yij represents the
rating (from 1 to 5 stars) a user i gave to movie j. By first flattening the matrix Y into Yv = [1, 2, y13, 1, 2, 3],
and then using our framework with feature prior

Z =

2

64
1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

3

75 ,

leads to a low rank imputed matrix

Ŷ =

"
1 2 3

1 2 3

#
.

The above example is simplistic in that it produces a low rank imputation by assuming that the users
are identical and using a one-hot embedding for the movies. In practice, one would use a feature prior that
embeds users via external metadata (e.g. user age, gender, etc.) and our framework would predict similar
ratings for users with similar metadata.

B Experimental Details for Virtual Drug Screening in CMAP

For this application, we consider the 978 genes ⇥ 2,130 drugs ⇥ 71 cell types “large” tensor from [84]. From
this tensor, we extract the 15,855 non-null values, and leave out the cell types (‘SNU1040’, ‘HEK293T’,
‘HS27A’), as they have less than 10 drugs in the dataset (i.e. for these cell types, we would not be able to
perform 10-fold cross validation). We exclude MCF7 from the dataset when using our method, since we use
it to compute our feature prior, but we give all other methods training access to all MCF7 observations to
ensure a fair comparison. This leaves us with a dataset of 14,336 samples, which are used for imputation. A
link to download this dataset is given in [84], which we repeat here for convenience: https://github.com
/clinicalml/dgc_predict.

For training DNPP and FaLRTC, we use the same hyper-parameters as in [84]. We implemented DNPP,
mean over cell type, and our framework in Python in the above link. We use the Matlab code from [84]
located via the following link: https://github.com/clinicalml/dgc_predict/blob/b8bff6d757fc7
57aadf39034b9972db37c6da983/matlab/thirdparty/visual/FaLRTC.m.In order to make our results
for FaLRTC accessible without Matlab, we provide the imputations from FaLRTC in the following folder:
https://www.dropbox.com/sh/w23viwbm3py1dq1/AADQD3Bi_bLx4Z7X2hcLoUzXa?dl=0.
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C Feature Prior for Drug Response Imputation

DNPP performs well for imputing the effect of drugs on cell types that have many observations in the training
set, but performs poorly when imputing the effect of drugs on cell types with few observations in the training
set. Thus, to improve on DNPP, we use a dual feature prior: one for imputing the effect of drugs on cell
types with many (at least 150) observations in the training set (the dense regime), and another for imputing
the effect of drugs on cell types with few (at most 150) observations in the training set (the sparse regime).

Since DNPP and FaLRTC both yield an imputation that captures similarity between cell type and drug
combinations in the large observation regime, we can use the output of one of these methods as the feature
prior for those cell types that had greater than 150 drugs in the training set. In particular, we chose the
output of FaLRTC for the feature prior in the dense regime since applying our method with this feature
prior yielded superior results. For all observed examples that were in the training set, we use the gene
expression for the observation itself as the encoding. For all feature priors, we additionally concatenated a
constant (1.5) times the identity matrix to ensure that the corresponding kernel is positive definite1. We
then solved kernel regression exactly (using the numpy solve function [140]) for the NTK of a 1-hidden layer
ReLU network.

For those cell types with few (less than 150 observations) in the training set, we used a feature prior that
concatenates an embedding of the cell type and an embedding of the drug type. For the drug embedding,
we used the gene expression of MCF7 treated with the same drug as the drug embedding, if available in
the training set. If this vector was not available in the training set, we simply used the mean of all MCF7
observations. For the cell type embedding, we used the mean of all observations for the corresponding cell
type available in the training set. We then normalized each cell embedding to have the same norm as the
drug embedding to balance their contributions to dot products computed for the kernel. We re-scaled the
embedding for the cell type by a factor of 1.25 to give the cell type additional weight over drug type2.
Lastly, we normalized the concatenation of the embeddings and solved kernel regression via the closed form
in Theorem 1. We refer to this feature prior as the MCF7 reference prior. The code for computing our
feature priors is available at https://github.com/uhlerlab/ntk_matrix_completion.

D One-hot Encoding for Drugs is Equivalent to Imputation with Mean Over
Cell Type

The following result shows that using a feature prior consisting of a one-hot embedding for drugs leads to
performing imputation using the mean over all observations for a given cell type.

Proposition 8. Let Y 2 Rm⇥n denote the gene expression vectors for cell type c with drugs {dj}n
j=1,

such that columns {y(j)}`
i=1 are observed and columns {y(j)}n

i=`+1 are missing. Let A 2 Rm⇥k, B 2 Rk⇥p,
�(x) = max(x, 0), g : Rm⇥n ! R such that:

g(M) = tr

 
MT A

p
2p
k`
�(BZ)

!
,

where Z = In⇥n (i.e. a one-hot encoding of the drug). Then for i 2 [m], j > `, the solution to kernel
ridge-less regression with the NTK for g is:

g̃(Mij) =

✓
1

2⇡ � 1
� `

(2⇡ � 1)(2⇡ � 1 + ⇡`)

◆0

@1

`

X̀

j=1

y(j)
i

1

A .

Proof. The proof relies on the fact that the kernel matrix K for g is a block diagonal matrix. In particular,
as shown in the example in Section 3, there is one block, KBi 2 R`⇥`, for each row of Y (i.e. m blocks), and
KBi has diagonal entries (1) = 2 and off-diagonal entries (0) = 1

⇡ . Hence, each block of the kernel matrix

1
We chose the constant 1.5 by tuning this parameter to give highest Pearson r value on seed 512. We then used this constant

for all other random seeds.
2
This hyperparameter was selected to maximize Pearson r value for seed 512 and then fixed across all other random seeds.
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can be written as:

KBi =
1

`

✓✓
2 � 1

⇡

◆
I`⇥` +

1

⇡
J

◆
,

where J 2 R`⇥` is the all ones matrix. By the Sherman-Morrison formula,

K�1
Bi

=
1

`

✓
⇡

2⇡ � 1
I � ⇡

(2⇡ � 1)(2⇡ � 1 + ⇡`)
J

◆
,

and thus

g̃(Mij) =
h
y(1)

i y(2)
i . . . y(`)

i

i
K�1

Bi
1

1

⇡`
,

where 1 2 R` is the all ones vector. Hence,

g̃(Mij) =

✓
1

2⇡ � 1
� `

(2⇡ � 1)(2⇡ � 1 + ⇡`)

◆0

@1

`

X̀

j=1

y(j)
i

1

A ,

which completes the proof.

E Feature Prior Corresponding to Previous Algorithms
As discussed in Section 2 of the main text, our framework provides a direct approach for improving upon
previous methods for virtual drug screening. Using the output of DNPP and FaLRTC as the feature prior
in our framework leads to an improvement; namely, across every round and fold in 5 rounds of 10-fold cross
validation (using seeds 149, 10, 53, 77, 1928), we find that our method with the DNPP output as a feature
prior outperforms DNPP and that our method with the FaLRTC output as a feature prior outperforms
FaLRTC. This is demonstrated in SI Fig. S1 and S2.

F Performance of Methods on Sparse versus Dense Subsets
We demonstrate in SI Fig. S3 that DNPP is effective for imputation on the dense regime (i.e. for those
drug/cell type pairs with over 150 profiles), but not as effective in the sparse regime (i.e. for those drug/cell
type pairs with less than 150 profiles). FaLRTC seems to perform comparably between the dense and the
sparse regime, but under-performs DNPP on the full dataset.

G Metrics for Evaluation in Drug Response Imputation
Let Ŷ 2 Rm⇥n denote the concatenatation of the test predictions for all 10 folds and let Y ⇤ 2 Rm⇥n denote
the ground truth. We use y⇤(i) to denote the ith column of Y ⇤. Let ȳ(i) = ci1 where ci =

Pm
j=1 y(i)

j . For
A 2 Ra⇥b, let Av 2 Ra·b denote the vectorized version of A. We use the following 3 metrics for evaluating
the effectiveness of a given imputation method. All evaluation metrics have a maximum value of 1.

1. Pearson r value: This evaluation metric was used in [84] and is given by:

v =
hŶv, Y ⇤

v i
kŶvk2kY ⇤

v k2

.

2.Mean R2: This evaluation metric is given by:

v =
1

n

nX

i=1

 
1 �

Pm
j=1(ŷ

(i)
j � y⇤

j
(i))2

Pm
j=1(y

⇤

j
(i) � ȳ(i)

j )2

!
.
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3. Mean Cosine Similarity : This evaluation metric is given by:

v =
1

n

nX

i=1

hŷ(i), y⇤(i)i
kŷ(i)k2ky⇤(i)k2

.

H Statistical Significance of NTK on Drug Response Imputation

In experiments on the full dataset, we use 10-fold cross validation and 5 random seeds (149, 10, 77, 53, 1928)
for comparing our method to DNPP from [84]. For each fold, we ensure that 10% of the drugs for each cell
type are present in the test set. To determine the statistical significance of our method for improving over
DNPP, we use a one-sided test with the following corrected repeated k-fold cv test statistic for r rounds of
k-fold cross validation (as described in Section 3.3 of [34]):

t =
1
kr

Pk
i=1

Pr
j=1 dij⇣

1
kr + n2

n1

⌘
�̂2

,

where dij is the difference between the evaluation metric for our method (the output of FaLRTC as the
feature prior for the dense regime and the MCF7 reference feature prior for the sparse regime) and that of
the DNPP for fold k of round j, �̂ is the estimated variance of the differences dij , and n1 is the number of
samples used for training and n2 is the number of samples used for testing (i.e. n2

n1 ⇡ 1
9 for our setting).

This statistic is distributed according to a t-distribution with kr � 1 degrees of freedom. For the mean R2,
we obtain t = 18.29 and a corresponding p-value of 7.7 · 10�24. For the mean cosine similarity, we obtain
t = 14.75 and a p-value of 5.9 · 10�20. Thus, at a significance level of .01, we reject the null hypothesis that
our method and DNPP have the same performance.

I Matrix Completion with the CNTK

We repeat Proposition 1 from the main text and present the proof below. The tensor ⇥ 2 Rm⇥n⇥m⇥n was
defined and used in the computation of the CNTK for classification in [9].

Proposition. Let fZ(W) be a d layer convolutional network used to map from the feature prior Z 2 Rc⇥r⇥s

to the target matrix Y 2 Rm⇥n. Then as the number of convolutional filters per layer tends to infinity, the
CNTK of fZ(W) is given by:

K(Mij , Mi0j0) = [⇥(d)(Z, Z)]i,j,i0,j0 , (B.4)

where Mij , Mi0j0 2 Rm⇥n denote indicator matrices.

Proof. The proof follows almost immediately from the derivation of the CNTK for classification provided in
[9]. Namely, let g(M) = MT fZ(W) for M 2 Rm⇥n. Then, we have that:

@g(M)

@W↵,�
=

mX

i=1

nX

j=1

Mi,j
@fZ(W)i,j

@W↵,�
.

Thus, the kernel at the indicator matrices Mij , Mi0j0 is given by:

K(Mij , Mi0j0) =
@g(Mij)

@W↵,�

@g(Mi0j0)

@W↵,�
=
@fZ(W)i,j

@W↵,�

@fZ(W)i0,j0

@W↵,�
= [⇥(Z, Z)]i,j,i0,j0 ,

which completes the proof.

Below we additionally present an explicit derivation for the 1 hidden layer case for ReLU networks. This
derivation will be useful in understanding the connection between the CNTK for matrix completion with
semi-supervised learning from coordinate embeddings (i.e. Theorem 2 of the main text).
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Proposition (1 Hidden Layer Convolutional Network). Let Z 2 Rc⇥m⇥n denote the feature prior. Let ⇤
denote the neural network convolution operator and let fZ(W) = A ⇤

p
c

q
p

k
�(B ⇤ Z) denote a 1 hidden layer

convolutional network where B has k filters of size q⇥q⇥c with circular padding, A has 1 filter of size q⇥q⇥k
with circular padding for odd q, � is a homogeneous activation function of degree 1, and c2 = 1

Eu⇠N(0,1)[�(u)2] .
Let K(0), K̃(0), ⌃(0) 2 Rm⇥n⇥m⇥n such that:

⌃(0)(i, j, i0, j0) = K(0)(i, j, i0, j0) =
cX

`=1

X

�
q+1
2 m,n

q+1
2

Z`,i+m,j+nZ`,i0+m,j0+n.

If Mij and Mi0j0 are indicator matrices, then as k ! 1, the CNTK for fZ(W) is given by:

K(Mij , Mi0j0) =
1

q2

X

�
q+1
2 a,b

q+1
2

⌃(1)(i + a, j + b, i0 + a, j0 + b)

+ ⌃̇(1)(i + a, j + b, i0 + a, j0 + b)K(0)(i + a, j + b, i0 + a, j0 + b),

where

⌃(1)(i, j, i0, j0) =
q

⌃(0)(i, j, i, j)⌃(0)(i0, j0, i0, j0)�̂

 
⌃(0)(i, j, i0, j0)p

⌃(0)(i, j, i, j)⌃(0)(i0, j0, i0, j0)

!
,

⌃̇(1)(i, j, i0, j0) =
d�̂

d⇠

 
⌃(0)(i, j, i0, j0)p

⌃(0)(i, j, i, j)⌃(0)(i0, j0, i0, j0)

!
.

Proof. We provide the proof for the case of 1 input channel (c = 1) below. The proof follows analogously for
the case of multiple input channels. Let g(M) = tr(MT fZ(W)). Let Y (`) denote channel ` of 2

p

k
�(B ⇤ Z)

and let H = A ⇤
p

2
q
p

k
�(B ⇤ Z). We thus have that

Y (`)
ij =

p
c

q
p

k
�

0

@
X

�
q+1
2 a,b

q+1
2

Zi+a,j+bB
(`)
a,b

1

A ,

Hij =
kX

`=1

X

�
q+1
2 a,b

q+1
2

Y (`)
i+a,j+bA

(`)
a,b,

g(M) =
X

1i,jd

MijHij .

Now we compute the partial derivatives of f with respect to the parameters A(`)
a,b and B(`)

m,n:

@g(Mij)

@A(`)
a,b

= Y (`)
i+a,j+b,

@g(Mij)

@B(`)
m,n

=
X

�
q+1
2 a,b

q+1
2

A(`)
a,b

p
c

q
p

k
�0

0

@
X

�
q+1
2 a0,b0 q+1

2

Zi+a+a0,j+b+b0B
(`)
a0,b0

1

AZi+a+m,j+b+n.

As k ! 1, the CNTK converges in probability to:

K(Mij , Mi0j0) = E
A(`)

a,b,B(`)
m,n⇠N (0,1)

2

4
kX

`=1

X

a,b

@g(Mij)

@A(`)
a,b

@g(Mi0j0)

@A(`)
a,b

+
kX

`=1

X

m,n

@g(Mij)

@B(`)
m,n

@g(Mi0j0)

@B(`)
m,n

3

5 . (B.5)
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This expression can be simplified as follows:

K(Mij , Mi0j0) =
X

�
q+1
2 a,b

q+1
2

⌃(1)(i + a, j + b, i0 + a, j0 + b)

+ ⌃̇(1)(i + a, j + b, i0 + a, j0 + b)K(0)(i + a, j + b, i0 + a, j0 + b),

where we have:

⌃(1) =
c

q2
E

B(`)

a0,b0

2

4
X

a,b

�

0

@
X

�
q+1
2 a0,b0 q+1

2

Zi+a+a0,j+b+b0B
(`)
a0,b0

1

A�

0

@
X

�
q+1
2 a0,b0 q+1

2

Zi0+a+a0,j0+b+b0B
(`)
a0,b0

1

A

3

5 ,

⌃̇(1) =
c

q2
E

B(`)

a0,b0

2

4
X

a,b

�0

0

@
X

�
q+1
2 a0,b0 q+1

2

Zi+a+a0,j+b+b0B
(`)
a0,b0

1

A�0

0

@
X

�
q+1
2 a0,b0 q+1

2

Zi0+a+a0,j0+b+b0B
(`)
a0,b0

1

A

3

5 .

Lastly, we reduce the above expressions by substituting in the values for ⌃(0) from the statement of the
proposition. Namely, let

u =
X

a,b

�

0

@
X

�
q+1
2 a0,b0 q+1

2

Zi+a+a0,j+b+b0B
(`)
a0,b0

1

A ,

v =
X

a,b

�

0

@
X

�
q+1
2 a0,b0 q+1

2

Zi0+a+a0,j0+b+b0B
(`)
a0,b0

1

A .

Then, the above expressions for ⌃(1), ˙⌃(1) simplify to:

⌃(1) =
c

q2
E

B(`)

a0,b0
[�(u)�(v)] ,

⌃̇(1) =
c

q2
E

B(`)

a0,b0
[�0(u)�0(v)] .

Hence, we can use the formula for the dual activation of the ReLU to conclude that:

⌃(1)(i, j, i0, j0) =
1

q2

q
⌃(0)(i, j, i, j)⌃(0)(i0, j0, i0, j0)�̌

 
⌃(0)(i, j, i0, j0)p

⌃(0)(i, j, i, j)⌃(0)(i0, j0, i0, j0)

!
,

⌃̇(1)(i, j, i0, j0) =
1

q2

d�̌

d⇠

 
⌃(0)(i, j, i0, j0)p

⌃(0)(i, j, i, j)⌃(0)(i0, j0, i0, j0)

!
.

Lastly, we complete the proof by substituting these expressions for ⌃(1), ⌃̇(1) into the expression for K(Mij , Mi0j0)
above.

As implied by Proposition 1 above, the CNTK is a functional of pairs of coordinates of images, while the
usual CNTK for classification operates on pairs of images [9]. To be more specific, consider the setting where
the target matrix Y is in Rm⇥n. Then, the CNTK for matrix completion that we compute lies in Rmn⇥mn.
On the other hand, when given n images for classification, the CNTK computed in [9] lies in Rn⇥n and does
not depend on the image size.

J Equivalence with Semi-Supervised Learning for the CNTK

In the following, we present the statement and proof of Theorem 2 from the main text with the precise form
for  ̃.
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Theorem. Consider a convolutional network, fZ(W), with d hidden layers with homogeneous activation of
degree 1 and in which all filters have size q and circular padding. Let Z 2 Rc⇥m⇥n satisfy:

cX

`=1

X

�↵a,b↵

Z`,i+a,j+bZ`,i0+a,j0+b =  (|i � i0|, |j � j0|)

for some  : R2 ! R with maximum at (0, 0) and ↵ = q�1
2 (odd q). Then as the number of convolutional

filters per layer goes to infinity, the CNTK is given by:

Kd(Mij , Mi0j0) =  ̃(|i � i0|, |j � j0|)

= �̌(d)

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆
 (0, 0)

+ Kd�1(Mij , Mi0j0)
d�̌

d⇠

✓
�̌(d�1)

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆◆
,

where �̌ is the dual activation of �, �̌(d)(⇠) = �̌(�̌(d�1)(⇠)) with �̌(0)(⇠) = ⇠, and K0(Mij , Mi0j0) =  (|i �
i0|, |j � j0|).

Proof. We prove this by induction on the number of hidden layers d. We begin with the base case for d = 1:
The proof for this case follows from the proof of the Proposition for 1 hidden convolutional networks in SI
Appendix G. Namely, we have:

K(Mij , Mi0j0) =
X

�
q�1
2 a,b

q�1
2

⌃(1)(i + a, j + b, i0 + a, j0 + b)

+ ⌃̇(1)(i + a, j + b, i0 + a, j0 + b)K(0)(i + a, j + b, i0 + a, j0 + b),

where

⌃(1)(i, j, i0, j0) =
1

q2

q
⌃(0)(i, j, i, j)⌃(0)(i0, j0, i0, j0)�̌

 
⌃(0)(i, j, i0, j0)p

⌃(0)(i, j, i, j)⌃(0)(i0, j0, i0, j0)

!
,

⌃̇(1)(i, j, i0, j0) =
1

q2

d�̌

d⇠

 
⌃(0)(i, j, i0, j0)p

⌃(0)(i, j, i, j)⌃(0)(i0, j0, i0, j0)

!
.

Now since ⌃(0)(i, j, i0, j0) =  (|i � i0|, |j � j0|), we conclude that

⌃(1)(i, j, i0, j0) =
1

q2
 (0, 0)�̌

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆
,

⌃̇(1) =
1

q2

d�̌

d⇠

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆
.

Substituting the above into the expression for K(Mij , Mi0j0), we obtain

K(Mij , Mi0j0) =
1

q2

X

�
q+1
2 a,b

q+1
2

 (0, 0)�̌

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆

+  (|i � i0|, |j � j0|)d�̌

d⇠

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆
.

Note that the summand no longer depends on a, b, and thus we conclude that

K(Mij , Mi0j0) =  (0, 0)�̌

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆
+

d�̌

d⇠

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆
 (|i � i0|, |j � j0|),
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which completes the base case.
For the inductive step, we assume that the following holds for depth d � 1:

⌃(d�1)(Mij , Mi0j0) =
1

q2
�̌(d�1)

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆
 (0, 0),

⌃̇(d�1)(Mij , Mi0j0) =
1

q2

d�̌

d⇠

✓
�̌(d�2)

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆◆
,

Kd�1(Mij , Mi0j0) = q2⌃(d�1)(Mij , Mi0j0) + q2Kd�2(Mij , Mi0j0)⌃̇(d�1)(Mij , Mi0j0),

and assume that Kd�1(Mij , Mi0j0) = Kd�1(Mi+a,j+b, Mi0+a,j0+b) for any a, b 2 Z satisfying i+a, i0 +a 2 [m]
and j + b, j0 + b 2 [n] (i.e. assume that Kd�1 is shift invariant). Now, let S(d�1)(Mij , Mi0j0) be defined as
follows:

S(d�1)(Mij , Mi0j0) =
X

�
q�1
2 a,b, q�1

2

⌃(d�1)(Mi+a,j+b, Mi0+a,j0+b) = �̌(d�1)

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆
 (0, 0).

Then, by the derivation of the CNTK in [9], we obtain

⌃(d)(Mij , Mi0j0) =
1

q2
�̌

 
S(d�1)(Mij , Mi0j0)p

S(d�1)(Mij , Mij)S(d�1)(Mi0j0 , Mi0j0)

!q
S(d�1)(Mij , Mij)S(d�1)(Mi0j0 , Mi0j0)

=
1

q2
�̌

✓
�̌(d�1)

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆◆
 (0, 0),

where the last equality follows from the fact that �̌(1) = 1. Following an analogous derivation for ⌃̇(d�1),
we obtain that

⌃̇(d)(Mij , Mi0j0) =
1

q2

d�̌

d⇠

✓
�̌(d�1)

✓
 (|i � i0|, |j � j0|)

 (0, 0)

◆◆
.

Hence, the CNTK Kd(Mij , Mi0j0) is given by:

Kd(Mij , Mi0j0) =
X

�
q�1
2 a,b, q�1

2

⌃(d)(Mi+a,j+b, Mi0+a,j0+b)

+ Kd�1(Mi+a,j+b, Mi0+a,j0+b)⌃̇
(d)(Mi+a,j+b, Mi0+a,j0+b)

= q2⌃(d)(Mij , Mi0j0)

+ q2Kd�1(Mij , Mi0j0)⌃̇(d)(Mij , Mi0j0),

where the last line follows from the shift invariance of Kd�1. Lastly, we have that Kd is shift invariant since
all of the terms ⌃(d), ⌃̇(d) and Kd�1 are shift invariant. Hence, the induction is complete and the theorem
follows.

K Derivation of the CNTK for Matrix Completion with Modern Architectures

Below, we derive the CNTK for networks with fixed linear transformations. We note a similar formula
appears in the Appendix of [179], but does not appear to be derived for the cases of nearest neighbor
upsampling, nearest neighbor downsampling, and bilinear upsampling.

Proposition. Let g(M) = tr(MT AfZ(W)) denote a neural network where A 2 Rmn⇥pq is a fixed (i.e. non-
trainable) linear transformation and fZ(W) is a convolutional network under the NTK parameterization3.

3
We assume A operates on the vectorized version of fZ(W) and then the output is reshaped to size m⇥n before multiplication

by MT
.
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Then the CNTK, K 2 Rmn⇥mn, for g is given by:

K = AKfAT =) K(Mij , Mi0j0) =
pqX

a=1

pqX

b=1

Av(i,j),aAv(i0,j0),bKf (Mv�1
1 (a),v�1

2 (a), Mv�1
1 (b),v�1

2 (b)),

where v : R2 ! R is the bijective map from a coordinate (i, j) in a matrix B to its position in the vectorized
version of B and Kf 2 Rpq⇥pq is the CNTK for f .

Proof. Let wp denote a weight in f and let w denote the vector of all weights in f . We thus have that

@g(M)

@wp
=
X

m,n

Mm,n
@[AfZ(W)]v(m,n)

@wp
=
X

m,n

Mm,n

pqX

`=1

Av(m,n),`
@fZ(W)`

@wp

=) K(Mij , Mi0j0) =

*
pqX

a=1

Av(i,j),a
@fZ(W)a

@w
,

pqX

b=1

Av(i0,j0),b
@fZ(W)b

@w

+
= AKgA

T ,

which completes the proof.

While the Proposition above generally implies that a a linear transformation requires evaluating a
quadratic form when computing the CNTK, the matrix A corresponding to layers used in practice is typi-
cally extremely sparse. Hence, the required computation is simplified drastically, as is demonstrated by the
following corollaries (the proofs follow directly from the proposition above).

Corollary (Downsampling through Strided Convolution). Let ⌃(`), ⌃̇(`), K(`) 2 Rd⇥d⇥d⇥d correspond to the
tensors used in the CNTK for a depth ` convolutional network. Then, using downsampling with a stride of
2 at step `+ 1 maps the tensors to ⌃(`+1), ⌃̇(`+1), K`+1 2 R d

2 ⇥
d
2 ⇥

d
2 ⇥

d
2 as follows: 8 i, j, i0, j0 ⌘ 0 (mod 2),

⌃(`+1)

✓
i

2
,
j

2
,
i0

2
,
j0

2

◆
= ⌃(`)(i, j, i0, j0),

⌃̇(`+1)

✓
i

2
,
j

2
,
i0

2
,
j0

2

◆
= ⌃̇(`)(i, j, i0, j0),

K(`+1)

✓
i

2
,
j

2
,
i0

2
,
j0

2

◆
= K(`)(i, j, i0, j0).

Corollary (Nearest Neighbor Upsampling). Let ⌃(`), ⌃̇(`), K(`) 2 R d
2 ⇥

d
2 ⇥

d
2 ⇥

d
2 correspond to the tensors used

in the CNTK for a depth ` convolutional network. Then, using nearest neighbor upsampling with a scale
factor of 2 at step `+ 1 transforms the tensors to ⌃(`+1), ⌃̇(`+1), K(`+1) 2 Rd⇥d⇥d⇥d as follows:

⌃(`+1) (i, j, i0, j0) = ⌃(`)

✓�
i

2

⌫
,

�
j

2

⌫
,

�
i0

2

⌫
,

�
j0

2

⌫◆
,

⌃̇(`+1) (i, j, i0, j0) = ⌃̇(`)

✓�
i

2

⌫
,

�
j

2

⌫
,

�
i0

2

⌫
,

�
j0

2

⌫◆
,

K(`+1) (i, j, i0, j0) = K(`)

✓�
i

2

⌫
,

�
j

2

⌫
,

�
i0

2

⌫
,

�
j0

2

⌫◆
.

The computation for bilinear upsampling (Ch. 2.4 of [68]) is presented below. We primarily use the
structure of the updates to ⌃, ⌃̇, K to efficiently compute the CNTK when the channels of X are drawn i.i.d.
from a stationary distribution.

When bilinearly upsampling (Ch. 2.4 of [68]) an image A 2 Rd⇥d to an image Ã 2 R2d⇥2d, each coordinate
of Ã is a linear combination of four coordinates of A. Namely for ↵ = d�1

2d�1 ,

Ãi,j =
X

a,b2{0,1}

�(i,j)
a,b Ab↵ic+a,b↵jc+b,
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and �i,j
a,b is selected as follows. Let r = b↵ic, c = b↵jc and let:

`r =
r

↵
, ur =

r + 1

↵
, `c =

c

↵
, uc =

c + 1

↵
,

X = [ur � r, r � `r], Y = [uc � c, c � `c], C =
1

(ur � `r)(uc � `c)
.

Then, �(i,j)
a,b = CXaYb for a, b 2 {0, 1}. The CNTK tensors are now transformed as follows.

Corollary 5 (Bilinear Upsampling). Let ⌃(`), ⌃̇(`), K(`) 2 R d
2 ⇥

d
2 ⇥

d
2 ⇥

d
2 correspond to the tensors used in the

CNTK for a depth ` convolutional network. Then, using bilinear upsampling with a scale factor of 2 at step
`+ 1 transforms the tensors to ⌃(`+1), ⌃̇(`+1), K`+1 2 Rd⇥d⇥d⇥d as follows:

⌃(`+1) (i, j, i0, j0) =
X

a,b2{0,1}

X

a0,b02{0,1}

�(i,j)
a,b �(i0,j0)

a0,b0 ⌃(`) (b↵ic + a, b↵jc + b, b↵i0c + a0, b↵j0c + b0) ,

⌃̇(`+1) (i, j, i0, j0) =
X

a,b2{0,1}

X

a0,b02{0,1}

�(i,j)
a,b �(i0,j0)

a0,b0 ⌃̇(`) (b↵ic + a, b↵jc + b, b↵i0c + a0, b↵j0c + b0) ,

K(`+1) (i, j, i0, j0) =
X

a,b2{0,1}

X

a0,b02{0,1}

�(i,j)
a,b �(i0,j0)

a0,b0 K(`) (b↵ic + a, b↵jc + b, b↵i0c + a0, b↵j0c + b0) .

L Efficient Computation of the CNTK for High Resolution Images
Computing and storing the CNTK exactly for high resolution images is computationally prohibitive when
using a naive approach. In particular, [42] notes that the kernel K for a 500 ⇥ 500 (K 2 R500⇥500⇥500⇥500)
resolution image requires roughly 233GB of memory, which is infeasible on common hardware. In order to
overcome these computational limitations, [179] uses the Nyström method [193] to approximate the kernel.
In this section, we will demonstrate that we can compute the exact CNTK in a memory and run-time efficient
manner for any convolutional neural network with circular padding, strided convolution, and nearest neighbor
upsampling layers by using a feature prior Z that has infinitely many channels.

Our key insight is that once architecture is fixed, the the CNTK for low resolution images can be expanded
to that for high resolution images. In particular, when the convolutional architecture can be applied to both
images of resolution d1 and d2 with d2 > d1, we can expand the kernel for resolution d1, Kd1 2 Rd1⇥d1⇥d1⇥d1 ,
to a tensor of size Rd1⇥d1⇥d2⇥d2 , which can be indexed to match the entries of the kernel for resolution d2,
Kd2 2 Rd2⇥d2⇥d2⇥d2 .

In order to expand the kernel for low resolution images to the one for high resolution images, we need
only pad and permute the rows and columns of the low resolution matrix. We define the required operations
formally below (using zero indexing for our matrices).

Definition 10 (Row and Column Rotation). Let ⇧i,j : Rd⇥d ! Rd⇥d such that ⇧i,j(A) = P⇡iAP⇡j where
P⇡` is a permutation matrix with permutation ⇡`(i) = (i + `) mod d.

Definition 11 (Minimum Padding). Let M : Rd1⇥d1 ! Rd2⇥d2 with d2 � d1 such that M(A) = Ã, where

Ãi,j =

8
<

:
Ai,j i < d1, j < d1

mina,b2[d1] Aa,b otherwise
.

Example. The operator ⇧i,j rotates the rows of A down by i and rotates the columns of A right by j as
follows:

A =

2

64
A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

3

75 =) ⇧1,2(A) =

2

64
A3,2 A3,3 A3,1

A1,2 A1,3 A1,1

A2,2 A2,3 A2,1

3

75 .
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Minimum padding M : R2⇥2 ! R4⇥4 expands a matrix as follows:

A =

"
0.1 0.2

0.3 0.4

#
=) M(A) =

2

66664

0.1 0.2 0.1 0.1

0.3 0.4 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

3

77775
.

The theorem below demonstrates how to construct the kernel for a high resolution image by expanding
and indexing a low resolution kernel. We assume that all strided convolutional layers have a stride size of 2 in
each direction and all upsampling layers have a scaling factor of 2. For the following theorem, we also write
the kernel K 2 Rmn⇥mn as a 4 dimensional tensor K 2 Rm⇥n⇥m⇥n, where K(i, j, i0, j0) := K(Mij , Mi0j0).

Theorem (CNTK Expansion). Let g denote a convolutional neural network with circular padding, s down-
sampling with strided convolution layers and s nearest neighbor upsampling layers used to inpaint images in
R2s+1

⇥2s+1

. Define the feature prior Z(`) = {Z(`)
p }1

p=1 ⇢ R2`
⇥2`

for ` 2 Z+ such that:

1X

p=1

Z(`)
p,i,jZ

(`)
p,i0,j0 =

8
<

:
C1 i = i0 , j = j0

C2 otherwise
. (B.6)

Let d2 = 2p2 such that p2 > s + 1. For ↵ = 2�, let K↵ denote the CNTK for g when used to inpaint images
in R↵⇥↵ with feature prior Z(�). Let p = 2s, i0 = i mod p, j0 = j mod p. Then for i, j 2 [d2], we compute
K̃ 2 Rp⇥p⇥d2⇥d2 as follows:

K̃(i0, j0, :, :) = ⇧i0�p,j0�p(M(⇧p�i0,p�j0(Ks+1[i
0, j0, :, :]))),

and we have:

Kd2(i, j, :, :) = ⇧i�i0,j�j0K̃(i0, j0, :, :).

Proof. To provide intuition for the general case, we first prove the result for s = 0. Using the Proposition
from SI Appendix I and the conditions on Z(`), we obtain

⌃(0)(i, j, i0, j0) = K(0)(i, j, i0, j0) =

8
<

:
q2C1 if i = i0, j0 = j0

q2C2 otherwise
.

Hence for any `, `0 � 1 with `0 < `, we conclude that K`(i, j, i0, j0) = K`0(a, b, a0, b0) when (i, j) 6= (i0, j0)
and (a, b) 6= (a0, b0), and K`(i, j, i, j) = K`0(a, b, a, b) for all i, j 2 [2`] and a, b 2 [2`0 ]. Hence, by permuting
rows, columns and minimum padding K`0 , we can recover the kernel for K`. Note that for ` = 0, we do not
ever record a kernel entry for the case where (i, j) 6= (i0, j0) and so minimum padding would pad with the
incorrect minimum value of K0(0, 0, 0, 0). This is why we need to expand up from the kernel for images of
dimension 2s+1 and not just from the kernel for images of dimension 2s.

For s > 0, we rely on the nearest neighbor upsampling and downsampling corollaries from SI Appendix
K to understand which entries of K`(i, j, i0, j0) are equal to K`0(a, b, a0, b0). Since Z(`), Z(`0) have the same
range {C1, C2} of channel-wise products, it suffices to identify the elements of K`0 that are equal. These
elements will then naturally be equal in K` after minimum padding.

From [42], we have that down-sampling through strided convolution preserves stationarity, and so after
t downsampling and convolutional layers, we again have that K(t)

` (i, j, i0, j0) = K(t)
`0 (a, b, a0, b0) when (i, j) 6=

(i0, j0) and (a, b) 6= (a0, b0), and K(t)
` (i, j, i, j) = K(t)

`0 (a, b, a, b) for all i, j 2 [2`] and a, b 2 [2`0 ].
In general, upsampling (including nearest neighbor upsampling) does not preserve stationarity, as is

discussed in [42]. However, nearest neighbor upsampling preserves equality (up to permutation) between
K`(i, j, :, :) and K`(i0, j0, :, :) provided that i ⌘ i0 (mod 2s) and j ⌘ j0 (mod 2s). This follows immediately
from analyzing the output after nearest neighbor upsampling in the original image space. In the following,
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we provide an example.

Example. Consider the output of nearest neighbor upsampling a single channel Y 2 R2⇥2 to Ỹ 2 R4⇥4 :

Y =

"
Y0,0 Y0,1

Y1,0 Y1,1

#
=) Ỹ =

2

66664

Y0,0 Y0,0 Y0,1 Y0,1

Y0,0 Y0,0 Y0,1 Y0,1

Y1,0 Y1,0 Y1,1 Y1,1

Y1,0 Y1,0 Y1,1 Y1,1

3

77775
.

From the stationarity of Z(`) and since convolution and downsampling layers preserve stationarity, we have
that the CNTK for the above output K2(i, j, :, :) equals (up to permutation) K2(i0, j0, :, :) whenever i ⌘ i0 (
mod 2) and j ⌘ j0 (mod 2) since the corresponding entries in Ỹ have identical patterns of neighbors (i.e. a
row or column permutation by 2s does not affect the sums involved in the kernel computation).

Thus, we conclude that the range of entries in K`0(a, b, :, :) and K`(i, j, :, :) are equal whenever both i ⌘ a (
mod 2s) and b ⌘ j (mod 2s). To complete the proof, we just permute and minimum pads the entries of
K`0(a, b, :, :) to align the expanded matrix such that entry K`0(a, b, a, b) corresponds to K`(i, j, i, j) in the
expanded matrix.

Remarks. Note that the expansion trick provided in the theorem above solely depends on (1) the number
of downsampling and nearest neighbor upsampling layers; (2) the feature prior Z having special structure as
described in (B.6); and (3) the convolutional layers using circular padding. It importantly does not depend
on the number of layers, type of homogeneous activation function (i.e. ReLU or leakyReLU), or size of the
convolutional filters used. Hence our expansion technique can be used on a range of architectures, as we also
demonstrate in Section 4 of the main text. The permutations ⇧p�i0,p�j0 , ⇧i0�p,j0�p used to compute K̃ are
essentially used to ensure that we perform minimum padding appropriately for kernel values at the kernel’s
edges. Lastly, when there are s downsampling and upsampling layers, the smallest image size we can expand
from is an image of size 2s+1 ⇥ 2s+1. We cannot use images of size 2s since the corresponding kernel will not
contain the same minimum value as that for images of size 2s+1.

M Experimental Details for Image Inpainting
In the following, we describe the hyperparameters used for training neural networks and solving kernel
regression with the CNTK on the considered image inpainting and image reconstruction tasks.

Large Hole Inpainting

For all large hole inpainting experiments, we used the autoencoder architecture from [42] that has 6 down-
sampling and upsampling layers with no skip connections. On all images other than the “library” image, we
trained using the Adam optimizer [101] for 1000 epochs with a learning rate 10�2. For the “library” image,
we trained using the Adam optimizer for 6000 epochs with a learning rate of 10�2. We used a random seed
of 15 for all libraries. For implementing Adam with Langevin dynamics, we used the code and data from
[42] directly. We performed optimal early stopping for all neural networks, i.e. we chose the reconstruction
that has the closest match in PSNR to the ground truth. While impossible to perform in practice, optimal
early stopping allows us to compare the CNTK with the best possible result from the neural network.

For solving kernel regression with the CNTK, we trained using EigenPro [124] for 10 epochs, i.e., we did
not early stop for large hole inpainting tasks. We scaled all kernels by a factor of 0.5 to ensure convergence
with EigenPro.

Image Reconstruction

Below we list the architectures and training procedure for each image. For the neural networks, we always
trained for 6000 epochs using Adam with a learning rate of 10�3, which is the learning rate used in [185].
All neural networks have 128 convolutional filters per layer as is the case in [185]. We trained the CNTK for
the corresponding architecture with EigenPro for 50 epochs, unless otherwise specified. The architectures
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used nearest neighbor upsampling, unless otherwise specified. We observed that training longer or, ideally,
direct solving kernel regression with the CNTK for networks with nearest neighbor upsampling led to the
best PSNR results for image reconstruction tasks. This is consistent with [185] in which networks for
image reconstruction are trained twice as long as those for large hole inpainting. A direct solve was only
computationally feasible on 256 ⇥ 256 resolution images.

• “Barbara”: We use a network with 2 downsampling and upsampling layers.

• “Boat”: We use a network with 6 downsampling and upsampling layers. We train the CNTK for 100
epochs.

• “Camera Man”: We use a network with 6 downsampling and upsampling layers. We train the CNTK
for 100 epochs.

• “Couple”: We use a network with 6 downsampling and upsampling layers. We train the CNTK for 100
epochs.

• “Finger”: We use a network with 3 downsampling and upsampling layers. We train the CNTK for 100
epochs.

• “Hill”: We use a network with 6 downsampling and upsampling layers.

• “House”: We use a network with 6 downsampling and upsampling layers. We solve kernel regression
exactly using the numpy solve function.

• “Lena”: We use a network with 6 downsampling and upsampling layers.

• “Man”: We use a network with 6 downsampling and upsampling layers.

• “Montage”: We use a network with 6 downsampling and upsampling layers. We solve kernel regression
exactly using the numpy solve method.

• “Peppers”: We use a network with 5 downsampling and upsampling layers with bilinear upsampling.
We solve kernel regression exactly using the numpy solve method, but add diagonal regularization
from [109]. In particular, for kernel K 2 Rp⇥p, we add 4·10�5

p tr(K)Ip⇥p to the kernel before using the
numpy solve function.
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SEED 149 DNPP Ours (DNPP Prior) DNPP Ours (DNPP Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.298 0.302 0.544 0.548
2 0.288 0.291 0.534 0.538
3 0.296 0.298 0.541 0.545
4 0.289 0.292 0.535 0.539
5 0.290 0.293 0.535 0.539
6 0.304 0.308 0.546 0.551
7 0.293 0.296 0.540 0.545
8 0.289 0.291 0.537 0.541
9 0.308 0.311 0.552 0.556

10 0.312 0.316 0.554 0.559

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.556 0.559

SEED 10 DNPP Ours (DNPP Prior) DNPP Ours (DNPP Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.299 0.301 0.545 0.549
2 0.306 0.309 0.550 0.554
3 0.292 0.294 0.538 0.542
4 0.305 0.309 0.549 0.554
5 0.284 0.286 0.531 0.535
6 0.283 0.286 0.530 0.535
7 0.298 0.302 0.542 0.547
8 0.297 0.299 0.543 0.547
9 0.303 0.306 0.545 0.550

10 0.302 0.305 0.545 0.550

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.556 0.559

SEED 53 DNPP Ours (DNPP Prior) DNPP Ours (DNPP Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.306 0.310 0.549 0.554
2 0.287 0.290 0.532 0.537
3 0.299 0.302 0.544 0.548
4 0.292 0.295 0.538 0.542
5 0.288 0.291 0.535 0.540
6 0.302 0.304 0.546 0.550
7 0.293 0.296 0.539 0.544
8 0.295 0.298 0.541 0.546
9 0.304 0.307 0.546 0.551

10 0.294 0.297 0.538 0.543

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.555 0.559

SEED 77 DNPP Ours (DNPP Prior) DNPP Ours (DNPP Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.310 0.313 0.552 0.557
2 0.285 0.288 0.533 0.537
3 0.289 0.292 0.537 0.542
4 0.296 0.299 0.539 0.543
5 0.303 0.307 0.548 0.552
6 0.297 0.300 0.541 0.546
7 0.290 0.292 0.536 0.540
8 0.306 0.309 0.549 0.554
9 0.301 0.304 0.545 0.550

10 0.283 0.285 0.531 0.535

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.555 0.559

SEED 1928 DNPP Ours (DNPP Prior) DNPP Ours (DNPP Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.302 0.305 0.546 0.551
2 0.299 0.302 0.543 0.547
3 0.302 0.305 0.546 0.550
4 0.293 0.295 0.539 0.543
5 0.301 0.304 0.543 0.548
6 0.295 0.298 0.540 0.544
7 0.301 0.304 0.544 0.549
8 0.300 0.302 0.544 0.548
9 0.286 0.288 0.535 0.539

10 0.290 0.294 0.538 0.543

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.556 0.559

Figure B-1: Comparison between DNPP and using the output of DNPP as a feature prior. Using our method
with the output of DNPP as a feature prior leads to an improvement in all metrics across every round of
10-fold cross validation in 5 seeds.
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SEED 149 FaLRTC Ours (FaLRTC Prior) FaLRTC Ours (FaLRTC Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.290 0.313 0.541 0.562
2 0.281 0.304 0.530 0.550
3 0.285 0.307 0.535 0.556
4 0.279 0.301 0.528 0.548
5 0.281 0.304 0.530 0.551
6 0.293 0.317 0.542 0.563
7 0.280 0.303 0.532 0.553
8 0.287 0.310 0.536 0.556
9 0.294 0.317 0.545 0.565

10 0.285 0.310 0.542 0.565

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.544 0.569

SEED 10 FaLRTC Ours (FaLRTC Prior) FaLRTC Ours (FaLRTC Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.289 0.312 0.541 0.561
2 0.290 0.313 0.541 0.561
3 0.284 0.307 0.533 0.553
4 0.294 0.317 0.543 0.564
5 0.276 0.299 0.525 0.545
6 0.275 0.298 0.525 0.546
7 0.287 0.311 0.536 0.557
8 0.288 0.311 0.536 0.558
9 0.290 0.313 0.541 0.562

10 0.285 0.309 0.540 0.561

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.545 0.570

SEED 53 FaLRTC Ours (FaLRTC Prior) FaLRTC Ours (FaLRTC Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.290 0.313 0.544 0.565
2 0.277 0.299 0.525 0.546
3 0.288 0.310 0.537 0.557
4 0.283 0.306 0.533 0.554
5 0.279 0.302 0.529 0.550
6 0.289 0.312 0.542 0.562
7 0.284 0.308 0.535 0.556
8 0.288 0.311 0.539 0.559
9 0.293 0.316 0.543 0.564

10 0.287 0.311 0.535 0.556

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.545 0.570

SEED 77 FaLRTC Ours (FaLRTC Prior) FaLRTC Ours (FaLRTC Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.292 0.315 0.545 0.565
2 0.280 0.303 0.532 0.552
3 0.285 0.308 0.536 0.556
4 0.288 0.311 0.537 0.556
5 0.294 0.318 0.543 0.564
6 0.288 0.311 0.538 0.558
7 0.281 0.304 0.530 0.551
8 0.292 0.316 0.544 0.565
9 0.290 0.313 0.539 0.560

10 0.271 0.294 0.521 0.542

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.545 0.570

SEED 1928 FaLRTC Ours (FaLRTC Prior) FaLRTC Ours (FaLRTC Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.285 0.308 0.539 0.560
2 0.286 0.310 0.538 0.559
3 0.288 0.311 0.537 0.559
4 0.281 0.304 0.530 0.551
5 0.288 0.311 0.537 0.558
6 0.285 0.308 0.533 0.553
7 0.289 0.312 0.537 0.558
8 0.284 0.307 0.533 0.555
9 0.288 0.310 0.536 0.556

10 0.279 0.303 0.532 0.553

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.544 0.569

Figure B-2: Comparison between FaLRTC and using the output of FaLRTC as a feature prior. Using our
method with the output of FaLRTC as a feature prior leads to an improvement in all metrics across every
round of 10-fold cross validation in 5 seeds.
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SEED 10 FaLRTC DNPP FaLRTC DNPP

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.289 0.279 0.541 0.533
2 0.290 0.270 0.541 0.526
3 0.284 0.261 0.533 0.519
4 0.294 0.290 0.543 0.543
5 0.276 0.273 0.525 0.525
6 0.275 0.277 0.525 0.528
7 0.287 0.283 0.536 0.535
8 0.288 0.281 0.536 0.534
9 0.290 0.285 0.541 0.537

10 0.285 0.296 0.540 0.544

FaLRTC DNPP

Pearson r Pearson r

0.545 0.539

Sparse Regime ( < 150 profiles per cell type)

SEED 512 FaLRTC DNPP FaLRTC DNPP

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.292 0.310 0.522 0.550
2 0.290 0.307 0.517 0.545
3 0.289 0.304 0.518 0.545
4 0.286 0.301 0.513 0.542
5 0.290 0.310 0.518 0.550
6 0.290 0.304 0.519 0.545
7 0.270 0.282 0.499 0.526
8 0.299 0.309 0.526 0.549
9 0.287 0.305 0.515 0.545

10 0.274 0.287 0.503 0.530

FaLRTC DNPP

Pearson r Pearson r

0.542 0.560

Dense Regime ( > 150 profiles per cell type)

Figure B-3: Comparison between DNPP and FaLRTC in (a) the sparse regime (< 150 profiles per cell type)
and (b) the dense regime (> 150 profiles per cell type). We observe that FaLRTC outperforms DNPP in
almost every fold for all performance metrics in the sparse regime. On the other hand DNPP outperforms
FaLRTC in the dense regime in every fold for all performance metrics. This result demonstrates that DNPP
can be improved drastically in the sparse regime.

Image CNTK Neural Network
+ Sigmoid Last Layer

+ BatchNorm

Biharmonic Neural Network
+ Sigmoid Last Layer

+ BatchNorm
+Adam + LD

Museum 31.90 30.69 30.03 34.40

White Car 28.66 28.73 26.20 28.87

Bicycle 27.67 28.57 28.67 30.89

Chair 29.87 29.88 27.81 32.81

Car Field 28.91 29.94 27.67 30.11

Rider 29.20 27.76 29.38 29.71

Library 21.73 20.76 17.71 21.79

Vase 31.75 31.51 28.96 32.27

Pool 34.51 33.08 34.62 35.70

Average 29.36 28.99 27.89 30.73

Image CNTK Neural Network
+ Sigmoid Last Layer

+ BatchNorm

Biharmonic Neural Network
+ Sigmoid Last Layer

+ BatchNorm
+ Adam + LD

Museum 0.915 0.919 0.915 0.929

White Car 0.922 0.924 0.913 0.921

Bicycle 0.955 0.962 0.914 0.968

Chair 0.954 0.946 0.934 0.964

Car Field 0.887 0.887 0.883 0.887

Rider 0.940 0.930 0.921 0.938

Library 0.884 0.864 0.860 0.900

Vase 0.977 0.977 0.976 0.979

Pool 0.974 0.971 0.967 0.968

Average 0.934 0.931 0.920 0.939

PSNR Comparison* SSIM Comparison**

*Higher is better with a max of 100. *Higher is better with a max of 1.

Image CNTK
(Time) 

Neural Network
+ Sigmoid Last Layer

+ BatchNorm
(Time)

Biharmonic
(Time)

Neural Network
+ Sigmoid Last Layer

+ BatchNorm
+ Adam + LD

(Time)
Museum 102 91 133 3213

White Car 78 75 34 2947

Bicycle 78 69 28 2699

Chair 76 78 52 5340

Car Field 73 69 86 2885

Rider 78 75 27 2558

Library 341 122 141 3734

Vase 45 56 4 2358

Pool 260 108 30 2699

Average 125 83 59 3159

Runtime Comparison(A) (B) (C)

Figure B-4: A comparison of PSNR, SSIM, and runtime for large hole image inpainting using our framework
(CNTK), corresponding finite width neural networks, and biharmonic inpainting. We observe that the CNTK
outperforms (in PSNR and SSIM) on average both biharmonic inpainting and finite neural networks with
sigmoid last layer and batch normalization layers while maintaing a runtime that is comparable to these
methods. The last column illustrates that using more advanced techniques such as Adam with Langevin
dynamics [42] can be used to boost the performance of neural networks, but at additional computational
cost.
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BiharmonicMasked imaage Neural Network
+ Sigmoid Last Layer

+ BatchNorm

CNTK Neural Network
+ Sigmoid Last Layer

+ BatchNorm
+ Adam + LD

Figure B-5: A qualitative comparison of large hole image inpainting using our framework (CNTK), cor-
responding finite width neural networks, and biharmonic inpainting. See SI Fig. S4 for the corresponding
quantitative comparison.
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Image CNTK Neural Network 
+ Sigmoid Last Layer 

+ BatchNorm

Biharmonic

Barbara 26.61 24.78 26.75

Boat 31.99 31.39 32.07

Camera Man 27.65 27.28 28.04

Couple 32.65 31.46 32.27

Finger 31.71 28.46 33.49

Hill 33.46 32.02 33.39

House 36.10 34.00 35.60

Lena 34.96 35.07 36.08

Man 32.15 31.39 32.91

Montage 29.98 28.71 28.39

Peppers 32.25 32.25 30.33

Average 31.77 30.62 31.76

Image CNTK Neural Network 
+ Sigmoid Last Layer 

+ BatchNorm

Biharmonic

Barbara 0.843 0.673 0.865

Boat 0.873 0.883 0.882

Camera Man 0.888 0.812 0.896

Couple 0.904 0.905 0.898

Finger 0.957 0.947 0.969

Hill 0.886 0.876 0.889

House 0.936 0.903 0.920

Lena 0.911 0.933 0.921

Man 0.894 0.894 0.902

Montage 0.924 0.886 0.933

Peppers 0.922 0.941 0.915

Average 0.903 0.878 0.908

Image CNTK Neural Network 
+ Sigmoid Last Layer 

+ BatchNorm

Biharmonic

Barbara 673 407 446

Boat 1463 7827 444

Camera Man 100 2270 37

Couple 1463 7845 446

Finger 1371 1963 443

Hill 1463 7826 485

House 140 2260 38

Lena 1467 7828 442

Man 1468 7833 441

Montage 157 2253 37

Peppers 124 1273 36

Average 899 4511 300

PSNR Comparison* SSIM Comparison**

*Higher is better with a max of 100. *Higher is better with a max of 1.

Runtime Comparison(A) (B) (C)

Figure B-6: A comparison of PSNR, SSIM, and runtime for image reconstruction using our framework
(CNTK), corresponding finite width neural networks, and biharmonic inpainting. We observe that the
CNTK performs (in PSNR and SSIM) on average comparably to biharmonic inpainting and outperforms
corresponding finite neural networks with sigmoid last layer and batch normalization layers. While our
method is slower than biharmonic inpainting, it is more flexible than this method (see Fig. S4), and it is in
average much faster than training finite width neural networks for this application.

.42 .43 .45 .5

.6 .7 .8 .9

Figure B-7: Visualizing the CNTK of a neural network with nearest neighbor downsampling and upsampling
layers and a uniform random feature prior illustrates that this kernel is akin to a kernel that uses different
norms for image completion. In the above figure, we visualize the CNTK heatmap for coordinate (64, 64)
of the CNTK for a neural network with 5 nearest neighbor downsampling and upsampling layers operating
on 128 ⇥ 128 images. In each subfigure, we zero out the x percentile (provided below each image) of pixel
values. For example, the image on the bottom right corresponds to zeroing out all pixels with values below
the 90th percentile. We observe that balls of varying norms appear in this visualization: e.g., the `1 ball
appears in the upper left and an `p ball with 1 < p < 2 on the upper right.
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Appendix C

Chapter 4 Supplementary

A Preliminaries on NTK and Dual Activations

In this section, we briefly review the connection between neural networks and the NTK and properties of
dual activations that we will use to prove our main results.

In this work, we consider the setting where the data dimensionality d is fixed. Given an elementwise
function � : R ! R and a constant C satisfying C2Ez⇠N (0,1)[�(z)2] = 1, an L-hidden layer neural network
is given by the function f (L), which is defined iteratively as follows:

f (L)(x) = WL+1
Cp
kL
�(f (L�1)(x)) ; f (1)(x) = W2

Cp
k1
�(W1x) ,

where Wi 2 Rki⇥ki�1 with kL+1 = 1 and k0 = d. In the deep learning literature, � is called an activation
function, L is the depth of the network, and ki is the width of layer i for i 2 {1, 2, . . . , L}.

To analyze infinitely wide networks, we assume the entries of each Wi are independently, identically
distributed from N (0, 1). The infinitely wide network of depth L is given by considering the limit as
k1, k2, . . . kL ! 1 in order. In this limit, training all layers of the network f (L) using gradient descent with
sufficiently small learning rate leads to a predictor that is equivalent to training a kernel machine using
the NTK [96, 118]. The key idea behind this equivalence is that as layer-wise widths approach infinity, a
network is well-approximated by a first order Taylor series expansion around its weights [118]. In particular,
the Hessian of a neural network with respect to its weights is uniformly small in a ball of fixed radius [118,
Theorem 3.2], and gradient descent linearly converges to a solution within this ball [119, Theorem 4]. A
summary of key concepts regarding this transition to linearity can be found in [21].

In this work, we analyze infinitely wide and deep networks by considering the limit of infinitely wide
networks as L ! 1. Importantly, we consider the limit as width approaches infinity first before depth
in order to eliminate deviations from Gaussianity of order L/k (depth over width) arising in finite width
networks [160]. Lastly, to analyze consistency, we consider the behavior of infinitely wide and deep networks
as the number of training samples n goes to infinity. All our consistency results rely on knowledge of the
ambient dimension of the data. In particular, we focus on data lying on the hypersphere in d dimensions,
i.e., a manifold of dimension d � 1, in which setting the consistent singular kernel classifier with a kernel of
the form K(x, x̃) = 1

kx�x̃k↵ has ↵ = d � 1.

In order to analyze the behavior of the iterated dual activation, we reference the following result of [53],
which implies that the dual activation is analytic around 0 on the interval [�1, 1].

Analyticity of Dual Activations. Let �(·) be an activation function such that

Ex⇠N (0,1)[�(x)2] = 1.
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Let �̌ : [�1, 1] ! R denote the dual activation. Then, for z 2 [�1, 1],

�̌(z) =
1X

i=0

aiz
i, (C.1)

where ai � 0 for all i 2 N.

As proven in [53, Lemma 11], several key properties are implied by (C.1). Those utilized in this work are:
(1) �̌ is increasing on [0, 1], and (2) non-negativity of �̌(·) on [0, 1]. (C.1) also implies the following property
of dual activations that we will use to construct our taxonomy of infinitely wide and deep neural network
classifiers.

Lemma 2. Let �̌ : [�1, 1] ! R be a dual activation such that �̌(0) = 0, �̌(1) = 1, and �̌(z) 6= z. Then,
0  �̌0(0) < 1.

Proof. By (C.1), we need only show that 0  a1 < 1. Since �̌(1) = 1, we obtain that
P

1

i=1 ai = 1. Since
ai � 0 for all i 2 N, we conclude that 0  a1  1. Now if a1 = 1, then ai = 0 for i � 2, which implies that
�̌(z) = z. Hence, we conclude that 0  a1 < 1, which completes the proof.

B Proofs of Theorem 1 and Theorem 2
We first prove Theorem 1, which is expressed below in terms of the dual activation function.

Theorem. Let K(L) denote the NTK of a fully connected neural network with L hidden layers and activation
function �(·). For x, x̃ 2 Sd

+, let z = xT x̃. If the dual activation function �̌(·) satisfies

1) �̌(0) = 0, �̌(1) = 1,

2) 0 < �̌0(0) < 1 and �̌0(1) < 1,

then:

lim
L!1

K(L)(x, x̃)

�̌0(0)L(L + 1)
=

R(xT x̃)

kx � x̃k↵
,

where ↵ = �2 log(�̌0(0))

log(�̌0(1))
and R(u) � 0 is bounded for u 2 [0, 1] and bounded away from 0 around u = 1.

In order to prove this theorem, we first prove that the iterated, normalized NTK converges to a singular
kernel without explicitly identifying the order of the singularity.

Lemma 3. Let K(L) denote the NTK of a depth L fully connected network with normalized activation
function �. Assuming �̌ satisfies the conditions of Theorem 1, then for any x, x̃ 2 Sd

+ it holds that

lim
L!1

K(L)(x, x̃)

aL
1 (L + 1)

=  (xT x̃),

where  : [0, 1] ! R can be written as a power series with non-negative coefficients with a singularity at 1.

Proof. We utilize the form of the NTK given in [9] and utilize the radial form of the kernel in Eq. (5) of the
main text. Namely, for z 2 [0, 1], we have:

K(L)(z) =
LX

i=0

�̌(i)(z)
L�1Y

j=i

�̌0

⇣
�̌(j)(z)

⌘
, (C.2)

where �̌(i) denotes the iteration of �̌ i times. By (C.1) and since �̌(0) = 0, we have that �̌(z) =
P

1

i=1 aizi

for all z 2 [0, 1].1 Now, we bound �̌ by quadratic functions in z and bound �̌0 by linear functions in z. In
1
Note that the sum starts from a1 since �̌(0) = 0 =) a0 = 0.
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particular, using the conditions �̌(1) = 1 and �̌0(1) = C < 1, we obtain the upper bounds:

�̌(z) = a1

 
z +

1X

i=2

ai

a1
zi

!
 a1

 
z +

1X

i=2

ai

a1
z2

!
= a1

✓
z +

✓
1

a1
� 1

◆
z2

◆
,

�̌0(z) = a1

 
1 +

1X

i=2

i
ai

a1
zi�1

!
 a1

 
1 +

1X

i=2

ai

a1
iz

!
= a1

✓
1 +

✓
C

a1
� 1

◆
z

◆
.

Similarly, we obtain the lower bounds:

�̌(z) = a1

 
z +

1X

i=2

ai

a1
zi

!
� a1

✓
z +

a2

a1
z2

◆
,

�̌0(z) = a1

 
1 +

1X

i=2

i
ai

a1
zi�1

!
� a1

✓
1 +

2a2

a1
z

◆
� a1

✓
1 +

a2

a1
z

◆
.

Now, substituting the above lower and upper bounds into the recursion for �̌(i), we obtain

ai
1z

i�1Y

j=0

✓
1 +

a2

a1
�̌(j)(z)

◆
 �̌(i)(z)  ai

1z
i�1Y

j=0

✓
1 +

✓
1

a1
� 1

◆
�̌(j)(z)

◆
. (C.3)

Lastly, since C � 1, substituting (C.3) and the bounds on �̌0 into (C.2) for K(L), we obtain

(L + 1)aL
1 z

L�1Y

j=0

✓
1 +

a2

a1
�̌(j)(z)

◆
 K(L)(z)  (L + 1)aL

1 z
L�1Y

j=0

✓
1 +

✓
C

a1
� 1

◆
�̌(j)(z)

◆
.

Hence, to prove that  (z) := lim
L!1

K(L)(z)
aL
1 (L+1)

is finite for z 2 [0, 1), we need to show that

1Y

j=0

⇣
1 + C̃�̌(j)(z)

⌘
< 1

for all z 2 [0, 1) and any constant C̃. By the Cauchy criterion [176, Ch.5], the above infinite product
converges if and only if the following sum converges:

1X

j=0

C̃�̌(j)(z) < 1.

This sum converges by the ratio test. In particular,

lim
j!1

�̌(j)(z)

�̌(j�1)(z)
= lim

z!0

�̌(z)

z
= a1 < 1,

where we used the contractive mapping theorem [177] to establish the first equality, since 0 is a fixed point
attractor of �̌. As a consequence,  (z) < 1 for z 2 [0, 1). Now according to (C.2),  (z) can be written as a
convergent power series with non-negative coefficients for z 2 [0, 1). To establish the singularity of  (z) at
z = 1, we show that for any constant R > 0, there exists z0 such that  (z) > R for z > z0. In particular,
note that for any fixed L0,

lim
L!1

K(L)(z)

aL
1 (L + 1)

=  (z) � z
L0�1Y

j=0

✓
1 +

a2

a1
�̌(j)(z)

◆
.
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The right-hand side is a continuous function with maximum value
⇣
1 + a2

a1

⌘L
. Hence, by selecting L0 such

that
⇣
1 + a2

a1

⌘L0

> R, we can then pick z0 such that  (z) > R for all z > z0. Hence, we conclude that

lim
L!1

K(L)(z)

aL
1 (L + 1)

=  (z),

where  (z) can be written as a convergent power series with non-negative coefficients on [0, 1) with a
singularity at z = 1, which completes the proof.

We will now prove Theorem 1 by establishing the order of the singularity of  from Lemma 3. To
characterize the order of this singularity, we will generally characterize the order of the singularity arising
from iterating functions on the interval [0, 1]. In particular, we begin by establishing the order of the
singularity of the normalized iteration of a function that is linear around x = 1.

Lemma 4. Let

f(z) =

8
<

:
g(z) if z 2 [0, d]

1 � b(1 � z) if z 2 (d, 1]
,

with d < 1 such that f(z) is strictly monotonically increasing and g(z) can be written as a convergent power
series with non-negative coefficients with g(0) = 0, g0(0) = a < 1, and b > 1. Then for z 2 (d, 1], it holds
that

lim
L!1

f (L)(z)

aL
=

R(z)

(1 � z)� logb a
,

where R(z) is non-negative for z 2 [0, 1], bounded from above, and bounded away from 0 around z = 1.

Proof. We first visualize the curve f(z) in Fig. C-1a. For any z 2 (d, 1], let L0(x) denote the smallest number
of iterations until f (L)(z) = z0  d. Then for z 2 (d, 1), we have that

lim
L!1

f (L)(z)

aL
= lim

L!1

f (L�L0(z))(z0)

aL�L0(z)
a�L0(z).

Now by the proof of Lemma 3, we know that

lim
L!1

f (L�L0(z))(z0)

aL�L0(z)
= R̃(z0) ,

with R̃(z0) � z0. Thus, we need only analyze the term a�L0(z) to determine the pole order. In particular,
we have that L0(z) is the least integer that satisfies:

1 � bL0(z)(1 � z)  d.

Hence, L0(z) is given by:

L0(z) =

⇠
logb

✓
1 � d

1 � z

◆ ⇡

=

&
loga

✓
1 � d

1 � z

◆ 1
loga b

'

=

&
loga

✓
1 � z

1 � d

◆� logb a
'

2
"
loga

✓
1 � z

1 � d

◆� logb a

, loga

✓
1 � z

1 � d

◆� logb a

+ 1

#
.
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<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="OlQqY3YZLIxt2bgUY/MluCmov9E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJu3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCorZNMMWyxRCSqE1CNgktsGW4EdlKFNA4EPgSj25n/8IRK80Tem3GKfkwHkkecUWOlZtgvV9yqOwdZJV5OKpCj0S9/9cKEZTFKwwTVuuu5qfEnVBnOBE5LvUxjStmIDrBrqaQxan8yP3RKzqwSkihRtqQhc/X3xITGWo/jwHbG1Az1sjcT//O6mYmu/QmXaWZQssWiKBPEJGT2NQm5QmbE2BLKFLe3EjakijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fyteM8Q==</latexit>

d
<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="pxCsljL5+1ZnkmpQIdJjuiELoIU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6WGiuYhlv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7vlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jwZcIXMiIkllClubyVsRBVlxkZUsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQwEPMMrvDmPzovz7nwsWgtOPnMMf+B8/gBPv5Ap</latexit>✏

(a) (b)

<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="89J+JuC5FxMnvUsR7pwslvrJLdI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyVOM8A==</latexit>c<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="DSs/otLGM3tGcbw7Y+b2owP1uy4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfYuMvg==</latexit>

1

<latexit sha1_base64="89J+JuC5FxMnvUsR7pwslvrJLdI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlJuuXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHyVOM8A==</latexit>c

(c) (d)

Figure C-1: A visualization of the four functions bounding �̌(z) that are used to prove Theorem 1.

As a consequence,

a�L0(z) 2
"✓

1 � d

1 � z

◆� logb a

,
1

a

✓
1 � d

1 � z

◆� logb a
#

.

Thus we conclude that for z 2 (d, 1):

lim
L!1

f (L)(z)

aL
=

R(z)

(1 � z)� logb a
,

where R(z) is non-negative for z 2 [0, 1], bounded from above, and bounded away from 0 around z = 1,
which concludes the proof.

We will now utilize Lemma 4 to prove Theorem 1.

Proof. Let �̌(z) =
P

1

i=1 aizi. We will lower bound the dual activation �̌ and its derivative by the piecewise
functions:

f✏(z) =

8
<

:
a1z if z 2 [0, ✏)

�̌(z) if z 2 [✏, 1]
and h✏(z) =

8
<

:
a1 if z 2 [0, ✏)

�̌0(z) if z 2 [✏, 1]
.

The function f✏(z) is visualized in Fig. C-1b. Now consider the function k(L)
✏ (z) defined as follows:

k(L)
✏ (z) = k(L�1)

✏ (z)h✏(f
(L�1)
✏ (z)) + f (L)

✏ (z).

By definition, we have that K(L)(z) � k(L)
✏ (z) for all z 2 [0, 1]. We will now show that for any ✏̃, we can
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select k✏ such that

lim
L!1

K(L)(z) � k(L)
✏ (z)

aL
1 (L + 1)

< ✏̃. (C.4)

To prove (C.4), we first consider the updates for L > L0 where L0 is the largest integer such that k(L0)(z) =

K(L0)(z), h✏(f
(L0+1)
✏ (z)) = a1, and f (L0)

✏ (z) = �̌(L0)(z). We will first prove inductively that for T 2 N:

�̌(L0+T )(z) � f (L0+T )
✏ (z)  C1(z)

 
T�1X

i=0

a2L0+T�1+i
1

!
, (C.5)

where C1(z) is a term independent of T . We begin with the base case of T = 1. Namely, we have for
z 2 (✏, 1):

�̌(L0+1)(z) � f (L0+1)
✏ (z) 

1X

i=1

ai

⇣
�̌(L0)(z)

⌘i
� a1f

(L0)
✏ (z)

=
1X

i=2

ai

⇣
�̌(L0)(z)

⌘i ⇣
since f (L0)

✏ (z) = �̌(L0)(z)
⌘

 a2L0
1 C̃1(z) (1 � a1)

 
where C̃1(z) =

✓
lim

L!1

�̌(L)(z)

aL
1

◆2
!

= C1(z)a2L0
1 ,

which concludes the base case. Now assume the statement is true for T = T0. Then for T = T0 +1, we have:

�̌(L0+T0+1)(z) � f (L0+T0+1)
✏ (z) =

1X

i=1

ai

⇣
�̌(L0+T0)(z)

⌘i
� a1f

(L0+T0)
✏ (z)

 C1(z)

 
T0�1X

i=0

a2L0+T0+i
1

!
+

1X

i=2

ai

⇣
�̌(L0+T0)(z)

⌘i

 C1(z)

 
T0�1X

i=0

a2L0+T0+i
1

!
+ C1(z)a2L0+2T0

1

= C1(z)

 
T0X

i=0

a2L0+T0+i
1

!
,

which concludes the proof by induction. We will next prove inductively that for T 2 N:

K(L0+T )(z) � k(L0+T )
✏ (z)  C1(z)

 
T�1X

i=0

(T � i)a2L0+T�1+i
1

!
(C.6)

+ C2(z)

 
T�2X

i=0

(L0 + i + 2)a2L0+T+i
1

!
,

where C1(z), C2(z) are terms independent of T . We begin with the base case of T = 1. Namely, we have for
z 2 (✏, 1):

K(L0+1)(z) � k(L0+1)
✏ (z)  [K(L0)(z)�̌0(�̌(L0)(z)) � k(L0)

✏ (z)h✏(f
(L0)
✏ (z))] + [�̌(L0+1)(z) � f (L0+1)

✏ (z)]

= �̌(L0+1)(z) � f (L0+1)
✏ (z)

 C1(z)a2L0
1 (by (C.5)) ,
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which concludes the base case. Now, assume that (C.6) holds for T = T0. Then for T = T0 + 1, we have:

K(L0+T0+1)(z) � k(L0+T0+1)
✏ (z)  [K(L0+T0)(z)�̌0(�̌(L0+T0)(z)) � k(L0+T0)

✏ (z)h✏(f
(L0+T0)
✏ (z))]

+ [�̌(L0+T0+1)(z) � f (L0+T0+1)
✏ (z)]

=

"
K(L0+T0)(z)

1X

i=1

iai(�̌
(L0+T0)(z))i�1 � a1k

(L0+T0)
✏ (z)

#

+
h
�̌(L0+T0+1)(z) � f (L0+T0+1)

✏ (z)
i
.

Next we simplify each term in brackets via the inductive hypothesis. Let

S1 =

"
K(L0+T0)(z)

1X

i=1

iai(�̌
(L0+T0)(z))i�1 � a1k

(L0+T0)
✏ (z)

#
.

Then, given �̌0(1) = C < 1, for

C2(z) = (C � a1) lim
L!1

K(L)(z)

aL
1 (L + 1)

lim
L!1

�̌(L)(z)

aL
1

,

which is finite by Lemma 3, we have:

S1  C1(z)

 
T0�1X

i=0

(T0 � i)a2L0+T0+i
1

!
+ C2(z)

 
T0�2X

i=0

(L0 + i + 2)a2L0+T0+1+i
1

!

+ K(L0+T0)(z)
1X

i=2

iai(�̌
(L0+T0)(z))i�1

 C1(z)

 
T0�1X

i=0

(T0 � i)a2L0+T0+i
1

!
+ C2(z)

 
T0�2X

i=0

(L0 + i + 2)a2L0+T0+1+i
1

!

+ C2(z)aL0+T0
1 (L0 + T0 + 1)aL0+T0

1

 C1(z)

 
T0�1X

i=0

(T0 � i)a2L0+T0+i
1

!
+ C2(z)

 
T0�1X

i=0

(L0 + i + 2)a2L0+T0+1+i
1

!
.

Next, let:

S2 = [�̌(L0+T0+1)(z) � f (L0+T0+1)
✏ (z)].

Then, we have by (C.5) that

S2  C1(z)

 
T0X

i=0

a2L0+T0+i
1

!
.
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Therefore, combining the bounds on S1, S2, we conclude that

K(L0+T0+1)(z) � k(L0+T0+1)
✏ (z)  S1 + S2

 C1(z)

 
T0X

i=0

a2L0+T0+i
1

!
+ C1(z)

 
T0�1X

i=0

(T0 � i)a2L0+T0+i
1

!

+ C2(z)

 
T0�1X

i=0

(L0 + i + 2)a2L0+T0+1+i
1

!

= C1(z)

 
T0X

i=0

(T0 + 1 � i)a2L0+T0+i
1

!

+ C2(z)

 
T0�1X

i=0

(L0 + i + 2)a2L0+T0+1+i
1

!
,

which concludes the proof by induction and establishes (C.6). Next, (C.6) implies:

K(L0+T )(z) � k(L0+T )
✏ (z)

aL0+T
1 (L0 + T + 1)

 C1(z)

 
T�1X

i=0

T � i

T + L0 + 1
aL0�1+i
1

!

+ C2(z)

 
T�2X

i=0

L0 + i + 2

T + L0 + 1
aL0+i
1

!


⇣
C1(z)aL0�1

1 + C2(z)aL0
1

⌘ 1

1 � a1
.

Hence, since the right-hand side does not depend on T , we conclude that

lim
L!1

K(L)(z) � k(L)
✏ (z)

aL
1 (L + 1)


⇣
C1(z)aL0�1

1 + C2(z)aL0
1

⌘ 1

1 � a1
.

Lastly, note that by selecting ✏ small enough, we can make L0(z) arbitrarily large. Hence, for any fixed
z 2 [0, 1], we conclude that

lim
✏!0

lim
L!1

K(L)(z) � k(L)
✏ (z)

aL
1 (L + 1)

= 0,

and as a consequence that

lim
L!1

K(L)(z)

aL
1 (L + 1)

= lim
✏!0

lim
L!1

K(L)(z) � k(L)
✏ (z)

aL
1 (L + 1)

+ lim
✏!0

lim
L!1

k(L)
✏ (z)

aL
1 (L + 1)

= lim
✏!0

lim
L!1

k(L)
✏ (z)

aL
1 (L + 1)

. (C.7)

By uniformly bounding the right-hand side over ✏, we will establish an upper bound on the pole order for
the iterated, normalized NTK. To do this, we first show that the iterated, normalized k✏ and f✏ are equal for
z 2 (✏, 1). Let ↵(z) = k(L0(z))

✏ (z) and �(z) = f (L0(z))
✏ (z) for z 2 (✏, 1). We prove by induction for T > 0 that

k(L0(z)+T )
✏ (z) = aT

1 [↵(z) + T�(z)]. (C.8)

The base case for T = 1 follows by

k(L0(z)+1)
✏ (z) = a1[↵(z)] + a1�(z).
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Proceeding inductively, we assume that (C.8) holds for time T . Then at time T + 1, we have

k(L0(z)+T+1)
✏ (z) = a1k

L0(z)+T
✏ + fL0+T+1

✏ (z)

= aT+1
1 [↵(z) + T�(z)] + aT+1

1 �(z)

= aT+1
1 [↵(z) + (T + 1)�(z)],

which concludes the proof by induction. Thus, we obtain that

lim
L!1

k(L)
✏ (z)

aL
1 (L + 1)

= lim
L!1

k(L�L0(z))
✏ (↵(z))

aL�L0(z)
1 (L � L0(z) + 1)

✓
L � L0(z) + 1

L + 1

◆
a�L0(z)
1

= lim
T!1

aT
1 [↵(z) + T�(z)]

aT
1 (T + 1)

a�L0(z)
1

= �(z)a�L0(z)
1

= lim
L!1

f (L)
✏ (z)

aL
1

.

Next, we will uniformly bound the iterated, normalized f✏. In particular, since �̌ � f✏ and the two
functions have the same normalizing constant, we obtain

lim
L!1

f (L)
✏ (z)

aL
1

 lim
L!1

�̌(L)(z)

aL
1

.

Now, we have that for any ✏̂, �̌ is upper bounded by the function:

g̃✏̂(z) =

8
<

:
�̌(z) if z 2 [0, c)

1 � (�̌0(1) � ✏̂)(1 � z) if z 2 [c, 1]
,

where z = c is the intersection of the secant line 1� (�̌0(1)� ✏̂)(1� z) and �̌. We visualize g̃✏̂(z) in Fig. C-1c.
By Lemma 4, we know that for z 2 (c, 1):

lim
L!1

g̃(L)
✏̂ (z)

aL
1

=
R✏̂(z)

(1 � z)� log�̌0(1)�✏̂ �0(0)
,

where R✏̂(z) is non-negative for z 2 [0, 1], bounded from above, and bounded away from 0 around z = 1.
Since ✏̂ is arbitrary, we conclude that for some ✏00, for z 2 (✏00, 1):

lim
L!1

f (L)
✏ (z)

aL
1

 lim
L!1

�̌(L)(z)

aL
1

 R1(z)

(1 � z)� log�̌0(1) �̌0(0)
, (C.9)

where R1(z) is non-negative for z 2 [0, 1], bounded from above, and bounded away from 0 around z = 1. By
substituting back the above inequalities into (C.7), we conclude that

lim
L!1

K(L)(z)

aL
1 (L + 1)

= lim
✏!0

lim
L!1

K(L)(z) � k(L)
✏ (z)

aL
1 (L + 1)

+ lim
✏!0

lim
L!1

k(L)
✏ (z)

aL
1 (L + 1)

 R1(z)

(1 � z)� log�̌0(1) �̌0(0)
. (C.10)

To conclude the proof, we need to establish a similar lower bound on the above limit. We will construct
the lower bound by first establishing the order of the singularity of the iteration of �̌ and then showing that
this order is a lower bound on the order of the singularity for the iterated, normalized NTK. Note that we
have already established an upper bound on the order of the singularity of the iteration of �̌ in (C.9). Now,
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we alternatively lower bound �̌ via the following function:

f̃(z) =

8
<

:
a1z if x 2 [0, c)

1 � �̌0(1)(1 � z) if x 2 [c, 1]
,

where z = c corresponds to the intersection of the tangent lines of �̌ at z = 0 and z = 1. We visualize f̃(z)
in Fig. C-1d. By Lemma 4, we have that for z 2 (c, 1):

lim
L!1

�̌(L)(z)

aL
1

� lim
L!1

f̃ (L)(z)

aL
1

=
Q(z)

(1 � z)� log�̌0(1) �̌0(0)
,

where Q(z) is non-negative for z 2 [0, 1], bounded from above, and bounded away from 0 around z = 1.
Hence, we conclude that:

lim
L!1

�̌(L)(z)

aL
1

=
R2(z)

(1 � z)� log�̌0(1) �̌0(0)
,

where R2(z) is non-negative for z 2 [0, 1], bounded from above, and bounded away from 0 around z = 1.
Lastly, we utilize (C.2) to show that:

lim
L!1

�̌(L)(z)

aL
1

 lim
L!1

K(L)(z)

aL
1 (L + 1)

.

In particular, (C.2) states that

K(L)(z) =
LX

i=0

�̌(i)(z)
L�1Y

k=i

�̌0

⇣
�̌(k)(z)

⌘
.

We next write �̌(i)(z) as a product and substitute the computed product back into (C.2). Namely, using the
power series representation for �̌ and unrolling the iteration, we obtain:

�̌(i)(z) =
1X

j=1

aj

⇣
�̌(i�1)(z)

⌘j

= a1�̌
(i�1)(z)

0

@1 +
1X

j=2

aj

a1

⇣
�̌(i�1)(z)

⌘j

1

A

= ai
1z

i�1Y

k=0

0

@1 +
1X

j=2

aj

a1

⇣
�̌(k)(z)

⌘j

1

A .
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We similarly use the power series for �̌0(z) to conclude that

�̌0

⇣
�̌(k)(z)

⌘
=

1X

j=1

jaj

⇣
�̌(k)(z)

⌘j�1

�
1X

j=1

aj

⇣
�̌(k)(z)

⌘j�1

� a1

0

@1 +
1X

j=2

aj

a1

⇣
�̌(k)(z)

⌘j�1

1

A

� a1

0

@1 +
1X

j=2

aj

a1

⇣
�̌(k)(z)

⌘j

1

A
⇣
as �̌(k)(z)  1.

⌘
.

Therefore, we can simplify (C.2) as follows:

K(L)(z) =
LX

i=0

�̌(i)(z)
L�1Y

k=i

�̌0

⇣
�̌(k)(z)

⌘

�
LX

i=0

ai
1z

i�1Y

k=0

0

@1 +
1X

j=2

aj

a1

⇣
�̌(k)(z)

⌘j

1

A
L�1Y

k0=i

a1

0

@1 +
1X

j=2

aj

a1

⇣
�̌(k0)(z)

⌘j

1

A

=
LX

i=0

aL
1 z

L�1Y

k=0

0

@1 +
1X

j=2

aj

a1

⇣
�̌(k)(z)

⌘j

1

A

= (L + 1)�̌(L)(z),

and conclude that

K(L)(z)

aL
1 (L + 1)

� �̌(L)(z)

aL
1

.

As a consequence,

lim
L!1

K(L)(z)

aL
1 (L + 1)

� lim
L!1

�̌(L)(z)

aL
1

=
R2(z)

(1 � z)� log�̌0(1) �̌0(0)
. (C.11)

Lastly, we combine (C.10) and (C.11) to conclude that there exists some ✏ such that for z 2 (✏, 1):

R2(z)

(1 � z)� log�̌0(1) �̌0(0)
 lim

L!1

K(L)(z)

aL
1 (L + 1)

 R1(z)

(1 � z)� log�̌0(1) �̌0(0)
.

Thus, we conclude that

lim
L!1

K(L)(z)

aL
1 (L + 1)

=
R(z)

(1 � z)� log�̌0(1) �̌0(0)
,

where R(z) is non-negative for z 2 [0, 1], bounded from above, and bounded away from 0 around z = 1. This
concludes the proof of Theorem 1.

To prove Theorem 2, we will use the result of Theorem 1 and that of [54], which analyzes the consistency
of singular kernel smoothers. To connect infinitely wide and deep networks with kernel smoothers, we next
prove that the infinite depth limit of the NTK corresponds to a kernel smoother under the conditions of
Theorem 1.
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Lemma 5. Let  (z) = lim
L!1

K(L)(z)
aL
1 (L+1)

. Then under the setting of Theorem 2,

mn(x) = sign

 
nX

i=1

y(i) (xT x(i))

!
,

assuming
����

nP
i=1

y(i) (xT x(i))

���� > 0 for almost all x 2 Sd�1
+ .

Proof. Let m(L)
n (x) be defined as follows:

m(L)
n (x) = sign

✓
y
⇣
K(L)

n

⌘�1
K(L)(X, x)

◆
.

We first note that multiplying the argument to the sign function by a positive constant does not affect the
value. Hence, we have:

lim
L!1

m(L)
n (x) = lim

L!1

sign

✓
y
⇣
K(L)

n

⌘�1 K(L)(X, x)

aL
1 (L + 1)

◆
.

Now we compare the argument of the sign function above to the corresponding kernel smoother. Namely,
we have:

����y
⇣
K(L)

n

⌘�1 K(L)(X, x)

aL
1 (L + 1)

� y
K(L)(X, x)

aL
1 (L + 1)

����  kyk2

����
⇣
K(L)

n

⌘�1
� I

����
2

����
K(L)(X, x)

aL
1 (L + 1)

����
2

,

where the inequality follows from the Cauchy-Schwarz inequality and kAvk2  kAk2kvk2 for A 2 Rn⇥n, v 2
Rn. Now since 0 is an attractor for �̌, then for any h > 0, there exists L1 such that for L > L1, the
spectrum of K̂(L) is contained in [1�hn2, 1+hn2] by Weyl’s inequalities. Hence, the spectrum of

⇣
K(L)

n

⌘�1

is contained in
h

1
1+hn2 , 1

1�hn2

i
. Thus, we conclude that

����
⇣
K(L)

n

⌘�1
� I

����
2


✓

1

1 � hn2
� 1

◆
.

Hence by selecting h appropriately small, we conclude that for any ✏1, there exists L1 such that for L > L1,����
⇣
K(L)

n

⌘�1
� I

����
2

< ✏1. Next, since lim
L!1

K(L)(x(i),x)
aL(L+1) =  (xT x(i)), for any ✏2, we can select L2 such that for

L > L2, �����y
K(L)(X, x)

aL(L + 1)
�

nX

i=1

y(i) (xT x(i))

����� < ✏2.

Next under the assumption in the lemma, we may thus select ✏1, ✏2 small enough such that the argument of
m(L)

n (x) is not exactly 0 for L > max(L1, L2). Thus we can interchange the limit and the sign function. As
a consequence, for any x 6= x(i) for i 2 {1, 2, . . . , n} satisfying

Pn
i=1 y(i) (xT x(i)) 6= 0, we obtain that

lim
L!1

m(L)
n (x) = lim

L!1

sign

✓
y
⇣
K(L)

n

⌘�1 K(L)(X, x)

aL(L + 1)

◆

= sign

✓
lim

L!1

y
⇣
K(L)

n

⌘�1 K(L)(X, x)

aL(L + 1)

◆

= sign

 
nX

i=1

y(i) (xT x(i))

!
.
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Lastly, if x = x(i) for some i 2 {1, 2, . . . , n}, then since  (z) has a singularity at z = 1,

lim
L!1

m(L)
n (x) = sign

 
lim
z!1

nX

i=1

1

 (z)
y(i) (xT x(i))

!
= sign(y(i)),

which completes the proof.

We lastly utilize Theorem 1, Lemma 5, and the result of [54] to prove Theorem 2 (expressed below in
terms of dual activations), which identifies infinitely wide and deep classifiers that achieve consistency.

Theorem. Let mn denote the classifier in Eq. (3) of the main text corresponding to training an infinitely
wide and deep network with activation function � on n training points. Let m denote the Bayes optimal
classifier, i.e. m(x) = arg max

ỹ2{�1,1}

P (y = ỹ|x). If the dual activation, �̌ satisfies:

1) �̌(0) = 0, �̌(1) = 1,

2) 0 < �̌0(0) < 1 and �̌0(1) < 1,

3) � log(�̌0(0))

log(�̌0(1))
= d

2 ,

then mn satisfies lim
n!1

PX (|mn(x) � m(x)| > ✏) = 0 for almost all x 2 Sd
+ and for any ✏ > 0.

Proof. Thus far, we proved that under the conditions of Theorem 1, the classifier mn corresponds to taking
the sign of a kernel smoother using a singular kernel with singularity of order � log(�̌0(0))

log(�̌0(1))
. For data with

density in Rd, kernel smoothers with singular kernels of the form Kh(x, x̃) = 1
kx�x̃kd (i.e., the Hilbert

estimate) converge to the Bayes optimal classifier in probability for almost all samples as n ! 1 [54].
We note that multiplying Kh(x, x̃) by a non-negative function that is bounded away from 0 around 1 and
bounded from above such that the kernel is still monotonically increasing also yields consistency in the same
sense (see SI Appendix C). Returning to our setting, for any x, x̃ 2 Sd

+, we can re-write the kernel Kh(x, x̃)
as

Kh(x, x̃) =
1

kx � x̃kd
=

1

2
d
2 (1 � xT x̃)

d
2

.

The constant 1

2
d
2

again does not affect the sign function. Lastly, assumption 3 selects the order of the
singularity such that the limiting kernel from Theorem 1 can be written up to constant factors as a Hilbert
estimate, which concludes the proof of Theorem 2.

C Extension of Hilbert estimate consistency

We utilize the following extension of the result from [54] to prove Theorem 2. In this section, we follow the
notation from [54] in our statements and proofs.

Corollary. For x 2 Sd
+, let m(x) denote the Bayes optimal regressor. For x, x̃ 2 Sd

+, let K(xT x̃) =
R(xT x̃)

2
d
2 (1�xT x̃)

d
2
, where R(z) � 0 for z 2 [0, 1] is bounded from above, bounded away from 0 around z = 1, and

K(·) is monotonically increasing in [0, 1]. Given a dataset {Xi, Yi}n
i=1 ⇢ Sd

+ ⇥ R, let

mn(x) =

Pn
i=1 YiK(xT Xi)Pn
i=1 K(xT Xi)

.

Let X have any density f on Sd
+ and let Y be bounded. Then, at almost all x with f(x) > 0, mn(x) ! m(x)

in probability as n ! 1.
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Proof. The proof closely follows that of the theorem in [54] with the differences that (1) we map from
densities on Sd

+ to densities on Rd, and (2) we simply verify that the function R(z) does not change the
asymptotic analyses of the original proof. We begin by noting that the kernel K involves chordal distances
on the sphere, i.e.,

K(xT x̃) =
R
�
xT x̃

�

kx � x̃kd
.

We first define the random variable W := kP (x)�P (X)kdVd, where Vd is the volume of the unit sphere in d
dimensions and P : Sd ! Rd is the stereographic projection such that Sd

+ maps to a bounded region. We let
fP denote the density of the points P (x) for x 2 Sd

+. We note that Euclidean distances after stereographic
projection can be related to chordal distances, kx � Xk, via the following formula (up to isometries of the
sphere):

kx � Xk2 =
kP (x) � P (X)k2

(1 + kP (x)k2)(1 + kP (X)k2)
.

Since we select the projection such that kP (x)k < 1 for x 2 Sd
+, we have that (1 + kP (x)k2)(1 + kP (X)k2)

is bounded and nonzero, i.e., it is again a factor that simply scales the kernel function. We thus define

Q(x, x̃) = R(xT x̃)(1 + kP (x)k2)
d
2 (1 + kP (x̃)k2)

d
2 ,

which is bounded away from zero for some ✏ > 0 and x, x̃ such that xT x̃ > 1 � ✏. Letting Wi := VdkP (x) �
P (Xi)kd, the regressor mn(x) is given by

mn(x) =

Pn
i=1 Yi

Q(x,Xi)
WiPn

i=1
Q(x,Xi)

Wi

.

Hence, we can utilize the proof strategy of [54] for points P (x) in Rd. Namely as in [54], we analyze the
term:

|mn(x) � m(x)| 

�����

Pn
i=1(Yi � m(Xi))

Q(x,Xi)
WiPn

i=1
Q(x,Xi)

Wi

�����+
Pn

i=1 |m(Xi) � m(X))|Q(x,Xi)
WiPn

i=1
Q(x,Xi)

Wi

:= I + II.

To simplify notation, we let Qi = Q(x, Xi) and we let Q(i)

W(i)
denote the ith order statistic ordered such that

W(1)  W(2) . . .  W(n). Now, the proof strategy of [54] is to show that the terms I and II respectively
converge to 0 in probability for almost all x as n ! 1. To prove that I converges in this manner, following
the proof of [54], we have that:

E[I2|{Xi}n
i=1]  C1

1
W(1)

Pk
j=1

Q(j)

W(j)

 C2

1
W(1)Pk

j=1
1

W(j)

,

where k such that W(k) > Vd�d for small �, and C1, C2 > 0 are constants since {Q(j)}k
j=1 are non-negative

and bounded away from 0. Hence, the convergence of I follows directly from the proof of [54]. To establish
the convergence of II, we follow the proof of [54] and first establish that

An :=

P
i✓n

Q(i)

W(i)

Pn
i=1

Q(i)

W(i)

! 1

in probability as n ! 1, for all ✓ fixed in (0, 1). Let � denote the indicator function, and following the
notation of [54], let U(i) denote uniform order statistics. The work of [54] establishes that for any fixed
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✏ 2 (0, 1) there exists � such that for all W(i)  Vd�d:

(1 � ✏)fP (P (x))W(i)  U(i)  (1 + ✏)fP (P (x))W(i).

Hence, we consider the event B = [Wb✓nc  Vd�d], and then as in the proof of [54], we obtain

An�B � 1 � 2✏

1 + ✏
�

nC3
Wb✓nc

fP (P (x))
P

i✓n
Q(i)

U(i)

� 1 � 2✏

1 + ✏
� C4

n
Wb✓nc

fP (P (x))
P

i✓n
1

U(i)

,

where C3, C4 > 0 are constants since Q(i) is bounded and positive for i  b✓nc. The convergence of An then
follows by continuing the proof from [54]. Next, again following the proof of [54], for any ✏ > 0, we also
select � such that:

sup
r�

R
SP (x),r

|m(y) � m(x)|fP (y)dy
R

SP (x),r
fP (y)dy

 ✏,

where SP (x),r denotes the closed ball in Rd of radius r centered at P (x). Then as in [54], select A = {y :
m(y) � m(x) > ✏} and select ✓ 2 (0, 1) small enough such that P(kP (X(b✓nc)) � P (x)k > �) ! 0 as n ! 1.
Then, we have:

II =

Pn
i=1 |m(Xi) � m(x))| Qi

WiPn
i=1

Qi

Wi

 2

P
i>✓n

Qi

WiPn
i=1

Qi

Wi

+ 2�kP (Xb✓nc)�P (x)k>� + ✏+

P
i:P (Xi)2SP (x),�\A

Qi

WiPn
i=1

Qi

Wi

:= V1 + V2 + V3 + V4.

Now as in [54], we have that V1 ! 0 in probability, as we showed An ! 1 in probability above. Then, V2 ! 0
in probability and V3 can be made as small as possible by the choice of ✏. Lastly, V4 ! 0 since, following
the proof of [54]:

P
i:P (Xi)2SP (x),�\A

Qi

WiPn
i=1

Qi

Wi

 2✏+ C5

1
W(1)

Pn
i=1

Q(i)

W(i)

,

where C5 > 0 is a constant. The above term goes to 0 in probability by the analysis of part I and the
arbitrary choice of ✏. This concludes the proof of this extension of the result of [54].

D Proof of Corollary 1
For ease of reading, we repeat Corollary 1 below.

Corollary. Let mn denote the classifier in Eq. (3) of the main text corresponding to training an infinitely
wide and deep network with activation function

�(x) =

8
><

>:

1
p

2
h7(x) + 1

p
2
x if d = 1

1
2d/4

⇣
x3

�3x
p

6

⌘
+
q

1 � 2
2d/2

⇣
x2

�1
p

2

⌘
+ 1

2d/4 x if d � 2
,

where h7(x) is the 7th probabilist’s Hermite polynomial.2 Then the classifier mn is Bayes optimal.

Proof. We need only check that �̌(z) satisfies the conditions of Theorem 2. We first consider the case d � 2.
In particular, since x2

�1
p

2
is the 2nd normalized probabilist’s Hermite polynomial and x3

�3x
p

6
is the third

2
For d = 1, this activation function can be written in closed form as

x7�21x5+105x3+(12
p
35�105)x

12
p
70

.
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normalized probabilist’s Hermite polynomial, we have by [53, Lemma 11] that

�̌(z) =
1

2
d
2

z3 +

✓
1 � 2

2
d
2

◆
z2 +

1

2
d
2

z.

We thus have by direct computation that

�̌0(1) =
3

2
d
2

+

✓
2 � 4

2
d
2

◆
+

1

2
d
2

= 2 ; �̌0(0) =
1

2
d
2

,

and so, the result follows from Theorem 2 since

� log�̌0(1) �̌
0(0) = log2 2

d
2 =

d

2
.

Now for the case of d = 1, we have again by [53, Lemma 11] that

�̌(z) =
z7

2
+

z

2
.

By direct computation,

�̌0(1) =
7

2
+

1

2
= 4 and �̌0(0) =

1

2
.

Hence, the result follows from Theorem 2 since

� log�̌0(1) �̌
0(0) =

1

2
=

d

2
.

E Proof of Theorem 3
We repeat Theorem 3 below in terms of dual activations.

Theorem. Let mn denote the classifier in Eq. (3) of the main text corresponding to training an infinitely
wide and deep network with activation function �(·) on n training examples. If the dual activation, �̌,
satisfies:

1) �̌(0) = 0, �̌(1) = 1,

2) �̌0(0) = 0, �̌0(1) < 1 ,

then mn(x) is the 1-NN classifier for x 2 Sd
+.

Proof. Let m(L)
n (x) be defined as follows:

m(L)
n (x) = sign

✓
y
⇣
K(L)

n

⌘�1
K(L)(X, x)

◆
.

By the proof of Lemma 5, we analogously have that the Gram matrix converges to the identity matrix as
depth approaches infinity, i.e. limL!1 K(L)

n = I. For x, x̃ 2 Sd
+, let z = xT x̃ and consider the radial kernel

K(L)(z) = K(L)(x, x̃). Let �̌(z) =
P

1

i=2 aizi for ai � 0, as given by (C.1). Without loss of generality, we
assume a2 > 0. The proof will follow by using induction to establish:

�̌(L)(z) = z2L

hL(z) and K(L)(z) = z2L

gL(z), (C.12)

where hL, gL are positive, increasing functions on (0, 1]. The base case follows for L = 0 since �̌(0)(z) =
K(0)(z) = z. Hence, we assume the statement is true for L = T � 1 and prove the statement for L = T . We
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have

�̌(T )(z) = �̌
⇣
�̌(T�1)(z)

⌘
=

1X

i=2

ai

⇣
�̌(T�1)(z)

⌘i
=
⇣
�̌(T�1)(z)

⌘2
"

1X

i=2

ai

⇣
�̌(T�1)(z)

⌘i�2
#

,

and hence using the inductive hypothesis, we can conclude that

�̌(T )(z) = z2T

hT�1(z)2
"

1X

i=2

ai

⇣
�̌(T�1)(z)

⌘i�2
#

= z2T

hT (z),

where hT is positive and increasing since hT�1 and the term in brackets are positive and increasing. We
proceed similarly for K(T ). Namely, we have:

K(T )(z) = K(T�1)(z)�̌0(�̌(T�1)(z)) + �̌(T )(z)

= z2T�1

gT�1(z)

"
X

i=2

iai

⇣
�̌(T�1)(z)

⌘i�1
#

+ z2T

hT (z)

= z2T�1

�̌(T�1)(z)gT�1(z)

"
X

i=2

iai

⇣
�̌(T�1)(z)

⌘i�2
#

+ z2T

hT (z)

= z2T

 
hT�1(z)gT�1(z)

"
X

i=2

iai

⇣
�̌(T�1)(z)

⌘i�2
#

+ hT (z)

!

= z2T

gT (z),

where gT (z) is positive and increasing since hT , hT�1, gT�1 and the term in brackets are positive and in-
creasing, which completes the induction argument.

Now let zi = xT x(i) for i 2 {1, 2, . . . , n}. Without loss of generality assume that z1 > zj for all j 6= 1. To
show that limL!1 m(L)

n (x) is equivalent to the 1-NN classifier, we need only show that limL!1 m(L)
n (x) =

y(1). By (C.12) for j 6= 1, we have that

lim
L!1

K(L)(zj)

K(L)(z1)
= lim

L!1

z2L

j gL(zj)

z2L

1 gL(z1)

 lim
L!1

z2L

j

z2L

1

(since zj < z1 and gL are positive and increasing)

= 0.

As a consequence, since K(L)(z1) > 0, we obtain that

lim
L!1

m(L)
n (x) = lim

L!1

sign

✓
y
⇣
K(L)

n

⌘�1 K(L)(X, x)

K(L)(x(1), x)

◆
= y(1),

which establishes that limL!1 m(L)
n (x) converges to the 1-NN classifier, thereby completing the proof.

F Proof of Proposition 1

We repeat Proposition 1 below for ease of reading.

Proposition. Let mn denote the classifier in Eq. (3) of the main text corresponding to training an infinitely
wide and deep network with activation function �(·) on n training examples. For x, x̃ 2 Sd

+ with x 6= x̃, if
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the NTK K(L) satisfies

lim
L!1

K(L)(x, x̃)

C(L)
> C1 and lim

L!1

K(L)(x, x̃)

C(L)
6= lim

L!1

K(L)(x, x)

C(L)
(C.13)

with C1 > 0 and 0 < C(L) < 1 for any L, then mn implements the majority vote classifier, i.e.,

mn(x) = sign
⇣ nX

i=1

y(i)
⌘

.

Proof. Let C2 = limL!1

K(L)(x,x)
C(L) . We consider two cases: (1) when C2 = 1, and (2) when C2 < 1. When

C2 = 1, we have:

lim
L!1

m(L)
n (x) = lim

L!1

sign
⇣
y(K(L)

n )�1K(L)(X, x)
⌘

= lim
L!1

sign

0

@y

 
K(L)

n

K(L)(x, x)

!�1
K(L)(X, x)

C(L)

1

A

= sign

 
nX

i=1

y(i)C1

!

= sign

 
nX

i=1

y(i)

!
,

which corresponds to the majority vote classifier. When C2 < 1, we use the Sherman-Morrison formula to
compute the inverse of the Gram matrix limL!1(K(L)

n )�1. In particular, since the inverse is a continuous
map on invertible matrices,

lim
L!1

(K(L)
n )�1 =

1

(C2 � C1)
I � C1

(C2 � C1)(C2 � C1 + C1n)
J,

where I is the identity matrix and J is the all-ones matrix. Hence, we have that for x 6= x(i) for i 2
{1, 2, . . . , n}:

lim
L!1

y(K(L)
n )�1 K(L)(X, x)

C(L)
= y

✓
1

(C2 � C1)
I � C1

(C2 � C1)(C2 � C1 + C1n)
J

◆
C11

=
C1

C2 � C1 + C1n

nX

i=1

y(i),

where 1 2 Rn is the all-ones vector. Assuming that
Pn

i=1 y(i) 6= 0, we can swap the limit and sign function
to conclude that:

lim
L!1

m(L)
n (x) = sign

⇣
lim

L!1

y(K(L)
n )�1K(L)(X, x)

⌘

= sign

 
C1

C2 � C1 + C1n

nX

i=1

y(i)

!

= sign

 
nX

i=1

y(i)

!
,

which completes the proof.
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G Proofs for when Infinitely Wide and Deep Networks are Majority Vote Clas-
sifiers

The following lemma implies that any activation function satisfying �̌(0) > 0 and �̌0(1) > 1 yields a NTK
satisfying (C.13) and thus, the infinite depth classifier is the majority vote classifier by Proposition 1.

Lemma 6. Let mn denote the classifier in Eq. (3) of the main text corresponding to training an infinitely
wide and deep network with activation function �(·) on n training examples. If �̌ satisfies:

1) �̌(0) > 0, �̌(1) = 1,

2) 1 < �̌0(1) < 1,

then mn is the majority vote classifier.

Proof. We show that the limiting kernel satisfies the properties of Proposition 1 with C2 = 1. Note that
we must have �̌0(0) < 1 by Lemma 2. Now, since �̌(0) < 1 and �̌(1) = 1, by the intermediate value theorem,
there exists some c 2 (0, 1) such that �̌(c) = c.

We claim that �̌0(c) < 1. Suppose for the sake of contradiction that �̌0(c) � 1. Then, since �̌(z) can
be written as a convergent power series with non-negative coefficients, we have that �̌(z) � z for z 2 (c, 1].
Hence either �̌(z) = z on some subset of (c, 1] or �̌(z) > z for z 2 (c, 1]. In the former case, analytic
continuation implies that �̌(z) = z on [0, 1], and in the latter case, �̌(1) > 1. Thus, in either case we reach a
contradiction and thus we can conclude that �̌0(c) < 1. Therefore,it follows that c is the unique fixed point
attractor of �̌(z).

Lastly, since c 2 (0, 1), we can conclude that the infinite depth NTK solves the equilibrium equation
corresponding to the recursive formula for the NTK in Eq. (5) of the main text. Namely, for any z 2 (0, 1)
and K⇤(z) := limL!1 K(L)(z):

K⇤(z) = K⇤(z)�̌0(c) + c =) K⇤(z) =
c

1 � �̌0(c)
.

Hence, for any z 2 (0, 1), it holds that limL!1 K(L)(z) = c
1��̌0(c)

. Lastly, letting a = �̌0(1), for z = 1, we
have that

K(L)(1) =
aL � 1

a � 1
,

and so limL!1 K(L)(1) = 1. Thus, limL!1 K(L)(x, x̃) satisfies the conditions of Proposition 1, which
concludes the proof of the lemma.

We next show that if �̌ falls under case 3 with �̌0(1) < 1, then under ridge regularization, the corresponding
infinitely wide and deep classifier also implements majority vote classification.

Lemma 7. Let m(L)
n,� denote the ridge-regularized kernel machine with regularization term � and with the

NTK of a fully connected network with L hidden layers and activation function � on n training points. If �̌
satisfies:

1) �̌(0) > 0, �̌(1) = 1,

2) �̌0(1) < 1,

then lim
�!0+

lim
L!1

m(L)
n,�(x) is the majority vote classifier.

Proof. The proof follows that of Proposition 1. Since �̌0(1) < 1, z = 1 is the unique fixed point attractor of
�̌. Then as in the proof of Lemma 6, for all x, x̃ 2 Sd

+, it holds that

lim
L!1

K(L)(x, x̃) =
1

1 � �̌0(1)
.
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Letting c = 1
1��̌0(1)

, we obtain that

lim
L!1

m(L)
n,�(x) = sign

⇣
y(K(L)

n + �I)�1K(L)(X, x)
⌘

= sign
⇣
y
h

lim
L!1

(K(L)
n + �I)�1

i h
lim

L!1

K(L)(X,x)
i⌘

= sign

✓
y


1

�
I � c

�(�+ cn)
J

�
c1

◆

= sign

 
c

�+ cn

nX

i=1

y(i)

!
,

where J 2 Rn⇥n is the all-ones matrix, 1 2 Rn is the all-ones vector, and the third equality follows from the
Sherman-Morrison formula. Hence, Proposition 1 implies that lim

�!0+
lim

L!1

m(L)
n,�(x) is again the majority vote

classifier, thereby completing the proof.

H Infinitely Wide and Deep Networks with Standard Activation Functions
We now analyze where in our taxonomy lie infinitely wide and deep networks using standard activation
functions. In particular, we consider the following commonly used activation functions: ReLU, sigmoid,
swish [156], cosid [59], sine, tanh, and scaled hard tanh (Shtanh) [134]. For any activation function, we can
follow the branches of our taxonomy by checking whether A = E[�(z)] and A0 = E[�0(z)] are nonzero, where
z ⇠ N (0, 1). If the activation function leads to a singular kernel classifier, we additionally derive its order of
singularity, as given by Theorem 1.

We first outline the majority vote classifier cases below.

• ReLU (�(x) = max(x, 0)): Since A > 0, ReLU leads to a majority vote classifier.

• Sigmoid
⇣
�(x) = 1

1+e�x

⌘
: Since A > 0, sigmoid leads to a majority vote classifier.

• Swish
⇣
�(x) = x

1+e�x

⌘
: The expression for A has no closed form, but is approximated by A ⇡ 0.207

implying that swish leads to a majority vote classifier.

• Cosid (�(x) = cos(x) � x): Since A = 1
p

e
> 0, cosid leads to a majority vote classifier.

We next analyze the singular kernel classifier cases. We observe that sine, tanh, and hard tanh are all odd
functions satisfying A = 0 and A0 6= 0. Hence, these all implement singular kernel classifiers, according to
Theorem 1. For these activation functions, we compute the order of the singularity via the following steps:

1) Computing the normalization constant C = E[�(z)2].

2) Computing A0 = 1
p

C
E[�0(z)].

3) Computing B0 = 1
C E[�0(z)2].

4) Computing the order ↵ = � log(A02)
log(B0) .

We list the order of singularity for each case below.

• Sine (�(x) = sin(ax)): The normalization constant is given by C = 1
sinh(a2) and the order of singularity

is given by:

↵ = �
log a2

sinh(a2)

log a2 cosh(a2)
sinh(a2)

.
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When a is chosen such that ↵ = d
2 , the singular kernel is consistent for data with density on Sd

+. We
note that the function ↵ is monotonically increasing in a and thus has solutions for any d � 2. This
activation function is typically used with a = 1, and in this case leads to a singular kernel with order
0.593, which is near the consistent value of 0.5 for data on the unit circle.

• tanh (�(x) = tanh(x)): The normalization constant does not have a closed form, but is approximated
by C = 0.394294. The corresponding order is given numerically by ↵ ⇡ 0.44033, which is near the
consistent value of 0.5 for data on the unit circle.

• Shtanh: The activation function is given by:

�(x) =

8
<

:
kx if |x| < a

ak sign(x) if |x| � a
,

with a, k > 0. The normalization constant is given by C = k2D, where D = a2 + (1 � a2)erf
⇣

a
p

2

⌘
�

a
q

2
⇡ e�a2/2. The order of singularity is given by:

↵ = �
log

✓
1
D

⇣
erf
⇣

a
p

2

⌘⌘2
◆

log
⇣

1
D erf

⇣
a

p
2

⌘⌘ .

Interestingly, note that ↵ does not depend on the scale factor k. Moreover, this function numerically
appears to have maximum value bounded by 0.37 in the interval [1, 2], implying that it is not consistent
for any integral data dimension. For a = 1, the order is 0.364, which is close to the near-consistent
value of 0.5 for data on the unit circle.

The results for all activation functions above are summarized in Fig. C-2.

I Experiments
Below, we corroborate our theoretical results using infinitely wide and deep networks on data sampled from
a variety of distributions. As predicted by our theory, we show that standard activation functions such as
ReLU, sine, and erf, lead to infinitely wide and deep networks that are not consistent classifiers for general

Activation Infinitely Wide and 
Deep Classifier

Order of Singularity Consistency

ReLU Majority Vote N.A. Not consistent.
Sigmoid Majority Vote N.A. Not consistent.
Swish Majority Vote N.A. Not consistent.
Cosid Majority Vote N.A. Not consistent.
Sine

(a = 1)
Singular Kernel 

Classifier
0.593 Near consistent on 

unit circle.

Erf Singular Kernel 
Classifier

0.444 Near consistent on 
unit circle.

Tanh Singular Kernel 
Classifier

0.440 Near consistent on 
unit circle.

Hard Tanh
(a = 1)

Singular Kernel 
Classifier

0.364 Near consistent on 
unit circle.

Figure C-2: Classifiers implemented by infinitely wide and deep networks with standard activation functions.
ReLU and Sigmoid lead to classifiers that implement majority vote behavior since they satisfy the conditions
of Proposition 1. On the other hand, sine, tanh, and hard tanh all lead to singular kernel classifiers with
order of singularity near 0.5, which is the consistent pole order for data with density on the unit circle.
Hence, these activation functions lead to infinitely wide and deep networks that are near-consistent on the
unit circle, as is corroborated experimentally in Figure C-3a.
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data distributions. On the other hand, given data dimension, custom activation functions satisfying Theorem
2 of our work lead to infinitely wide and deep networks that are consistent classifiers.

Experimental Setup. We consider the performance of classifiers on high dimensional synthetic data dis-
tributions from which we can generate an arbitrary number of samples and, importantly, can evaluate the
performance of the Bayes optimal classifier. In particular, for labels y 2 {�1, 1} and data x 2 Sd�1

+ , we
select distributions P(x|y = �1) and P(x|y = 1). In addition, we vary the label prior, p = P(y = 1), to
generate data with unbalanced label sets.

Distributions. We consider the following variety of low and high dimensional distributions.

1) Triangular distributions on the unit circle from [48]. For ✓ 2
⇥
0, ⇡

2

⇤
and x = (cos ✓, sin ✓):

P(x|y = 1) =
8✓

⇡2
; P(x|y = �1) =

4

⇡
� 8✓

⇡2
.

2) Normalized Dirichlet distributions in arbitrary dimension. Given ↵(1),↵(2) 2 Rd
+, we sample x̃ on the

probability simplex in d dimensions (i.e. xi � 0 and kxk1 = 1) according to:

P(x̃|y = 1) =
1

Z(↵(1))

dY

i=1

x̃
↵(1)

i �1
i ; P(x̃|y = �1) =

1

Z(↵(2))

dY

i=1

x̃
↵(2)

i �1
i ,

where Z(↵) is the normalizing (or partition) function. We then generate samples x 2 Sd�1
+ by projecting

x̃ onto the unit sphere via x = x̃
kx̃k2

.

Activation Functions. We consider the performance of infinitely wide and deep networks across the
following activation functions, � : R ! R, that are normalized such that Ez⇠N (0,1)[�(z)2] = 1:

• ReLU: �(x) =
p

2 max(0, x);

• Erf: �(x) =
q

⇡
2 arcsin( 2

3 )
erf(x);

• Sine: �(x) = 1p
sinh(a2)

sin(ax);

• Cubic: �(x) = 1
2d/4 h3(x) +

q
1 � 2

2d/2 h2(x) + 1
2d/4 h1(x), where hi(x) is the ith Hermite polynomial.

We note that the erf function is similar to the tanh and hard tanh function but has a closed form for the
dual activation. In our experiments, for the sine activation, we consider a2 = {2.676, 6.135, 13.826}, which
give rise to infinitely wide and deep networks that are near-consistent (i.e., they implement singular kernel
classifiers with near-consistent pole order) for data with density in Sd�1

+ for d = 3, 5, 9. We similarly consider
cubic activation functions according to Corollary 1 that give rise to infinitely wide and deep networks that
are consistent for data with density in Sd�1

+ for d = 2, 3, 5, 9 (note that for d = 2, we use a 7th degree
polynomial according to Corollary 1).

Summary of Results. Our results are summarized in Fig. C-3. We compare the performance of
infinitely wide and deep classifiers with the following standard classifiers discussed in our taxonomy: (1)
majority vote classifier; (2) 1-nearest neighbor (1-NN); and (3) consistent singular kernel classifier given by
the Hilbert estimator [54]. Note that for a Hilbert estimator using a kernel of the form K(x, x̃) = 1

kx�x̃k↵ ,
we select ↵ to be the dimension of the data manifold (i.e., d � 1 for our data in Sd�1

+ ). Our experiments
strongly agree with our theoretical results. In particular, we find that selecting activation functions satisfying
the conditions of Theorem 2 lead to infinitely wide and deep networks that are consistent, while standardly
used activation functions lead to infinitely wide and deep networks that are not consistent for a variety of
distributions. Consistent with these experimental findings, in Fig. C-2 we compute the infinite width and
depth classifier corresponding to these standard activation functions, showing that none of them lead to
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Standard Activations Our Activations Traditional Classifiers

Distribution Label Prior ReLU Sine Erf Poly. 
2D

Sine 
3D

Cubic 
3D

Sine
5D

Cubic 
5D

Sine 
9D

Cubic 
9D

Majority 
Vote

1-NN Hilbert 
Estimate

Bayes 
Optimal

Triangular 0.2 79.79% 81.83% 83.39% 82.77% 78.53% 78.53% 77.24% 77.21% 77.04% 77.05% 79.95% 76.95% 82.77% 84.02%

Triangular 0.4 60.70% 72.03% 74.49% 73.67% 69.59% 69.59% 68.51% 68.52% 68.24% 68.27% 59.94% 68.14% 73.71% 76.44%

Dirichlet 2D 0.2 79.92% 81.2% 82.98% 82.46% 78.63% 78.63% 77.62% 77.64% 77.39% 77.4% 79.92% 77.34% 82.53% 83.64%

Dirichlet 2D 0.4 61.50% 73.15% 75.52% 74.78% 69.75% 69.75% 68.76% 68.76% 68.51% 68.51% 60.46% 68.31% 74.77% 76.16%

Dirichlet 3D 0.2 79.92% 94.73% 93.95% 93.95% 95.23% 95.22% 94.91% 94.91% 94.71% 94.71% 79.92% 94.5% 95.07% 96.22%

Dirichlet 3D 0.4 60.54% 93.86% 93.6% 93.86% 94.34% 94.34% 93.29% 93.29% 92.85% 92.79% 60.46% 92.67% 94.38% 95.09%

Dirichlet 5D 0.2 79.92% 82.66% 80.42% 80.07% 88.2% 88.17% 91.41% 91.41% 90.04% 90.04% 79.92% 89.35% 91.27% 92.96%

Dirichlet 5D 0.4 60.50% 86.26% 84.85% 84.54% 88.59% 88.61% 89.31% 89.32% 86.52% 86.65% 60.46% 85.8% 89.31% 90.48%

Dirichlet 9D 0.2 79.92% 79.92% 79.92% 79.92% 80.12% 80.1% 87.53% 87.64% 91.8% 91.56% 79.92% 89.55% 91.49% 94.25%

Dirichlet 9D 0.4 60.46% 75.84% 73.06% 70.85% 81.7% 81.64% 87.86% 87.86% 89.53% 89.26% 60.46% 86.91% 89.27% 92.13%

Dirichlet 2D [1, 2] [2, 1]

Dirichlet 3D [.5, .5, 2.5] [2.5, .1, .5]

Dirichlet 5D [3, 1, 2, 1, 1] [1, 2, 2, 2, 3]

Dirichlet 9D [1, 2, 1, 2, 1, 1, 1, 1, 1] [1, 1, 1, 2, 3, 4, 2, 2, 1]
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Figure C-3: Comparison of infinitely wide and deep neural network classifiers with varying activation function
and traditional classifiers from our taxonomy. All datasets and activation functions are detailed in the
Supplementary. (a) We report the test accuracy of infinitely wide and deep classifiers across a variety of
distributions and activation functions. The naming convention for our activation functions indicates the
dimension for which these activation functions are consistent (e.g. Poly. 2D is consistent for data on the unit
circle). Green boxes highlight activation functions that lead to networks that perform within 0.1% or better
than the Hilbert estimate, which is known to be consistent [54]. Note that the best performing activation
functions for each distribution satisfy the conditions from Theorem 2 in the main text. Additionally, note
that in higher dimensions, d = 5, 9, our theoretically derived activation functions outperform standard
activation functions by over 10%. (b) A list of depths used for our experiments. (c) Parameters of the
Dirichlet distributions used in our experiments.

infinitely wide and deep classifiers that are universally consistent. However, we identify several that are
near-consistent (order of singularity near 0.5) for data on the unit circle.

Experimental Details. In all experiments using Dirichlet distributions, we select 10000 training samples
and 10000 test samples. For all experiments with triangular distributions, we use 5000 training samples
and 10000 test samples to avoid numerical issues arising from sampling two unequal points that have a dot
product of 1. There is no validation set since we simply interpolate the training data with kernel ridgeless
regression. The depths selected for each activation are given in Fig. C-3b. We list all choices of ↵(1),↵(2)

considered in our experiments in Fig. C-3c. When using activation functions such as erf, sine, or cubics, we
consider the performance of deep Neural Network Gaussian Processes (NNGPs) instead of the NTK since we
found that deep NTKs with these activation functions lead to numerical issues, i.e. rounding kernel values
to 0 at large depths. For the NNGPs, we also ensure that the Gram matrix has 1’s along the diagonal
regardless of the depth. We found that considering depths much larger than those given in Fig. C-3b led
to numerical issues for several activation functions, i.e. kernel values were rounded to 0. Lastly, for ReLU
activation, we use 1000 training samples for d = 5, 9 and 100 for d = 2, 3 since we find that the sublinear
rate of convergence to infinite depth behavior requires greater than 105 depth (i.e. the kernel value with a
test sample is far from 1

4 , which is the infinite depth value established by [90]).

Code and Hardware. Code for experiments is available at https://github.com/uhlerlab/inf_depth_
ntks. Experiments were run using 1 Titan Xp containing 12GB of memory.
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J Effectiveness of finite-depth NTKs using our derived activation functions on
a variety of benchmarking classification tasks

While our optimality results hold for infinitely deep NTKs and as the sample size approaches infinity, we now
show that our derived activation functions result in competitive classifiers even in the small-sample setting
and when used with finite-depth NTKs. In particular, [61] described a variety of datasets in the small-sample
regime (90 classification tasks with at most 5000 samples) that have been widely used for benchmarking.
Recent work [10] demonstrated that support vector machines (SVMs) using ReLU NTKs achieved the best
performance on these classification tasks, thereby outperforming 179 other methods from [61]. Performance
on these tasks was compared using the following metrics:

1. Friedman rank. The average ranking of a classifier across all datasets, where fractional rankings are
considered, i.e., if two models are tied in their ranks, then they both receive the mean of their rankings.
Lower is better.

2. Average accuracy. The average accuracy of a classifier across all dataset. Higher is better.

3. P90/P95. The average number of datasets in which the classifier achieved within 90%/95% of the
accuracy of the best classifier. Higher is better.

4. Percentage Maximum Accuracy (PMA). The average percentage of the best classifier’s accuracy achieved
by the given classifier. Higher is better.

In Fig. C-4a, we demonstrate that grid searching over NTKs using the activation functions obtained in this
work leads to improved performance over the best models described so far across all metrics. In particular,
we grid search over NTKs of depth {1, 2, 3, 4, 5} and the following groups of activation functions obtained in
this work: (1) sinusoid activations that yield Bayes optimal infinitely deep NTKs in dimensions 1, 2, and 4
and (2) cubic polynomial activations that yield Bayes optimal infinitely deep NTKs in dimensions 1, 2, and
4. Since our derived activation functions are implemented for data on the unit sphere, we normalize all data
to the unit sphere accordingly. We then select between our best NTK and the best ReLU NTK based on
validation accuracy. For ReLU NTKs, we use the code from [10]. NTKs with our activation functions were
selected for 31 out of the 90 tasks based on validation accuracy.

While the above experiments consider the small-sample regime, we next demonstrate the effectiveness of
using NTKs with our activation functions also on small-dimensional datasets with many samples. Among
the datasets provided in [61], we consider three datasets that have over 10, 000 samples with fewer than
15 features.3 These are “chess king-rook vs. king”, “adult”, and “nursery”. Note that while the number of
features is small, we do not a priori know the ambient dimension of the data. We thus use the same grid
search over activation functions as described above. Interestingly, while for “chess king-rook vs. king” and
“nursery”, the cubic polynomial that yields Bayes optimal infinitely deep NTKs in dimension 4 was selected
in the grid search, for “adult”, the cubic polynomial that yields Bayes optimal infinitely deep NTKs for
dimension 8 was selected. In the experiments, we also compare with finite width networks. For this, we grid
search over networks of width 128 and depth between 1 hidden layer and 5 hidden layers, with and without
batch normalization [94], and over learning rates 0.01 and 0.1. We use mean squared error for training all
networks. The results are shown in Fig. C-4b. In all cases, we find that the activation functions obtained in
this work outperform both the standard ReLU NTK and finite width ReLU neural networks.

These extensive benchmarking experiments demonstrate that while our theoretical results provide activa-
tion functions that yield provably Bayes optimal infinite depth NTKs as the sample size approaches infinity,
our derived activation functions also result in competitive classifiers when used with finite-depth NTKs in
the small-sample or small-dimensional regime. Given the simplicity of these models (training an infinite
width network in the NTK regime involves solving a linear system of equations), these models should be
added to the standard toolkit of simple classifiers like SVM, random forest, or other tree-based models.

3
There are only four such datasets in this benchmark. We chose not to include statlog-shuttle, which contains 58, 000 training

samples with 9 features and 7 classes, since all ReLU NTK and neural networks achieve greater than 99.9% test accuracy, thereby

making it difficult to make meaningful comparisons.
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Model Friedman Rank Average Accuracy P90 P95 PMA

Ours 25.74 82.09% 88.89% 75.56% 95.98% ± 5.09%
ReLU NTK [ Arora et al. ICLR 2019] 28.34 81.95% 88.89% 72.22% 95.72% ± 5.17%

Random Forest* [Arora et al. ICLR 2019] 33.51 81.56% 85.56% 67.78% 95.25% ± 5.30%

Neural Net [Arora et al. ICLR 2019 ] 38.06 81.02% 85.56% 60.00% 94.55% ± 5.17%

Performance across 90 classification tasks from Fernández-Delgado et al. JMLR 2014(a)

* Best of 179 models from Fernández-Delgado et al. JMLR 2014. 

Dataset: Adult
Dataset size: 48,842
Data dimension: 14

Number of Classes: 2

Model Test Accuracy

Ours 84.92%
ReLU NTK 84.72%

Neural Net 84.87%

Dataset: Chess King-Rook vs. King
Dataset size: 28,056
Data dimension: 6

Number of Classes: 18

Model Test Accuracy

Ours 80.37%
ReLU NTK 77.37%

Neural Net 52.14%

Dataset: Nursery
Dataset size: 12,960
Data dimension: 8

Number of Classes: 5

Model Test Accuracy

Ours 99.62%
ReLU NTK 99.55%

Neural Net 98.86%

Performance comparison on low dimensional classification tasks from Fernández-Delgado et al. JMLR 2014  (b)

Figure C-4: Comparison between finite depth NTKs using the activation functions derived in our work and
a broad spectrum of 180 models including fully connected ReLU networks and ReLU NTKs on a variety of
classification tasks that are widely used for benchmarking (90 classification tasks from [61]). While our models
are provably optimal in the infinite-depth setting as the sample size approaches infinity, these experiments
demonstrate that our activation functions also result in competitive results in the small-sample setting as
well as the small-dimensional large-sample setting. All metrics and grid search parameters are presented
in SI Appendix J. (a) Grid searching over finite depth NTKs using our derived activation functions leads
to the best performance across all metrics over 180 models on all 90 small-sample classification tasks (with
fewer than 5000 training examples in [61]), thereby outperforming the ReLU NTK, which was previously
found to outperform all other methods [10]. (b) Finite depth NTKs using the activation functions derived in
our work also outperform ReLU NTK and neural networks on small-dimensional large-sample classification
tasks (with fewer than 15 features and greater than 5000 training examples in [61]).
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Appendix D

Chapter 5 Supplementary

A Theoretical evidence for Deep Neural Feature Ansatz

We present the proof of Proposition 5 below.

Proof. Gradient descent with learning rate ⌘ proceeds as follows:

B(t+1) = B(t) + ⌘rg(B(t)x)(y � g(B(t)x))xT .

If B(0) = 0, then by induction B(t) = ↵(t)xT for all time steps t where ↵(t) 2 Rk. Then, we have that

rft(z)rft(z)T = B(t)T rg(B(t)z)g(B(t)z)T B(t)

= x↵(t)T rg(B(t)z)g(B(t)z)T↵(t)xT

= (xxT )(↵(t)T rg(B(t)z)g(B(t)z)T↵(t))

/ xxT .

Similarly, we have that

B(t)T
B(t) = x↵(t)T

↵(t)xT = (xxT )(↵(t)T
↵(t)) / xxT .

We now extend the proposition above to the setting where we have multiple training samples, and we
train for one step of gradient descent.

Proposition 9. Let f(z) = g(Bz) with f : Rd ! R and g : Rk ! R. Assume g(0) = 0 and rg(0) 6= 0.
Given n training samples {(xi, yi)}n

i=1, suppose that f is trained to minimize 1
2

Pn
i=1(yi � f(xi))2 using

gradient descent. If B(0) = 0 and f1(z) := g(B(1)z), then

rf1(z)rf1(z)T / B(1)T
B(1) .

Proof. Gradient descent proceeds as follows:

B(t+1) = B(t) + ⌘
nX

i=1

rg(B(t)xi)(yi � g(B(t)xi))x
T
i .
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If B(0) = 0, then B(1) = ⌘rg(0)
Pn

i=1 yixT
i . Thus, we have that

rf1(z)rf1(z)T = B(1)T rg(B(1)z)g(B(1)z)T B(t)

= ⌘2

 
nX

i=1

yixirg(0)T

!
rg(B(1)z)g(B(1)z)T

 
rg(0)

nX

i=1

yix
T
i

!

= ⌘2

 
nX

i=1

yixi

! 
nX

i=1

yix
T
i

!⇣
rg(0)T rg(B(1)z)g(B(1)z)T rg(0)

⌘

/
 

nX

i=1

yixi

! 
nX

i=1

yix
T
i

!
.

Similarly, we have:

B(1)T
B(1) = ⌘2

 
nX

i=1

yixirg(0)T

! 
rg(0)

nX

i=1

yix
T
i

!

= ⌘2

 
nX

i=1

yixi

! 
nX

i=1

yix
T
i

!
krg(0)k2

/
 

nX

i=1

yixi

! 
nX

i=1

yix
T
i

!
.

Following a similar argument to that of Proposition 5, we now prove the ansatz for 1-hidden layer linear
neural networks.

Proposition 10. Let f : Rd ! R denote a two layer neural network of the form

f(x) = A
1p
k

Bx;

where A 2 R1⇥k, B 2 Rk⇥d. Suppose only B is trainable. Let B(t) and f (t) denote updated weights after t

steps of gradient descent on the dataset (X, y) 2 Rd⇥n ⇥R1⇥n with constant learning rate ⌘ > 0. If {A(0)
i }k

i=1

are i.i.d. random variables E[A2
i ] = 1 and B(0) = 0,

lim
k!1

B(t)>

B(t) = lim
k!1

rf (t)rf (t)>

;

where rf (t) is the gradient of f (t).1

Proof of Proposition 10. The gradient descent updates proceed as follows:

B(t+1) = B(t) +
⌘p
k

A(0)>

✓
y � A(0) 1p

k
B(t)X

◆
X> .

We provide a proof by induction. We begin with the base case with t = 1. The base case follows from the

1
Note that since f (t)

is linear, the gradient is constant and independent of the point at which it is taken.
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fact that lim
k!1

1
kA(0)A(0)>

= 1 and B(1) = ⌘
p

k
A(0)>

yX> and thus,

lim
k!1

B(1)>

B(1) = lim
k!1

⌘2

k
Xy>A(0)A(0)>

yX> = ⌘2Xy>yX> ;

lim
k!1

rf1rf>

1 = lim
k!1

B(1)>

A(0)> 1

k
A(0)B(1)

= lim
k!1

⌘2Xy>

✓
A(0) 1

k
A(0)T

◆✓
A(0) 1

k
A(0)>

◆
yX> = ⌘2Xy>yX> .

Thus, we now assume the inductive hypothesis that

lim
k!1

B(t)>

B(t) = lim
k!1

rf (t)rf (t)>

and analyze the case for timestep t + 1. We first have:

B(t+1)>

B(t+1) =


B(t) +

⌘p
k

A(0)>

✓
y � A(0) 1p

k
B(t)X

◆
X>

�> 
B(t) +

⌘p
k

A(0)>

✓
y � A(0) 1p

k
B(t)X

◆
X>

�

= B(t)>

B(t) + B(t)> ⌘p
k

A(0)>

yX> � B(t)> ⌘

k
A(0)>

A(0)B(t)XX>

+
⌘p
k

Xy>A(0)B(t) +
⌘2

k
Xy>A(0)A(0)>

yX> � ⌘2

k
Xy>A(0)A(0)>

A(0) 1p
k

B(t)XX>

� ⌘

k
XX>B(t)>

A(0)>

A(0)B(t) � ⌘2

k
XX>B(t)> 1p

k
A(0)>

A(0)A(0)>

yX>

+
⌘2

k2
XX>B(t)>

A(0)>

A(0)A(0)>

A(0)B(t)XX> .

To simplify notation, we let

Z = lim
k!1

A(0) 1p
k

B(t) ; M = lim
k!1

B(t)>

B(t),

noting that for x 2 Rd, Zx converges in distribution to a standard normal random variable by the central limit
theorem. Taking the limit as k ! 1, applying the inductive hypothesis and the fact that lim

k!1

1
kA(0)A(0)>

=

1, we reduce the above to

lim
k!1

B(t+1)>

B(t+1) = M + ⌘Z>yX> � ⌘MXX>

+ ⌘Xy>Z + ⌘2Xy>yX> � ⌘2Xy>ZXX>

� ⌘XX>M � ⌘2XX>Z>yX> + ⌘2XX>MXX> .
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We will now show that lim
k!1

rf (t+1)rf (t+1)> is of the same form. Namely, we have

rf (t+1)rf (t+1)>

= B(t+1)>

A(0)> 1

k
A(0)B(t+1)

= B(t)>

A(0)> 1

k
A(0)B(t) + B(t)>

A(0)> 1

k
A(0) ⌘p

k
A(0)>

yX>

� B(t)>

A(0)> 1

k
A(0) ⌘

k
A(0)>

A(0)B(t)XX>

+
⌘p
k

Xy>A(0)A(0)> 1

k
A(0)B(t) +

⌘2

k
Xy>A(0)A(0)> 1

k
A(0)A(0)>

yX>

� ⌘2

k
Xy>A(0)A(0)> 1

k
A(0)A(0)>

A(0) 1p
k

B(t)XX>

� ⌘p
k

XX>B(t)>

A(0)>

A(0)A(0)> 1

k
A(0)B(t)

� ⌘2

k
XX>B(t)> 1p

k
A(0)>

A(0)A(0)> 1

k
A(0)A(0)>

yX>

+
⌘2

k2
XX>B(t)>

A(0)>

A(0)A(0)> 1

k
A(0)A(0)>

A(0)B(t)XX> .

Now taking the limit as k ! 1, we reduce the above to

lim
k!1

rf (t+1)rf (t+1)>

= M + ⌘Z>yX> � ⌘MXX>

+ ⌘Xy>Z + ⌘2Xy>yX> � ⌘2Xy>ZXX>

� ⌘XX>M � ⌘2XX>Z>yX> + ⌘2XX>MXX> .

Hence, we conclude

lim
k!1

B(t+1)>

B(t+1) = lim
k!1

rf (t+1)rf (t+1)>

,

which completes the proof by induction.

In the following proposition, we extend the previous analysis to the case of two layer linear neural networks
where both layers are trained for two steps of gradient descent.

Proposition 11. Let f : Rd ! R denote a two layer neural network of the form

f(x) = A
1p
k

Bx;

where A 2 R1⇥k, B 2 Rk⇥d. Let A(t), B(t) and f (t) denote updated weights after t steps of gradient descent
on the dataset (X, y) 2 Rd⇥n ⇥ R1⇥n with constant learning rate ⌘ > 0. If {A(0)

i }k
i=1 are i.i.d. random

variables E[A(0)
i

2
] = 1 and B(0) = 0,

lim
k!1

B(2)>

B(2) = lim
k!1

rf (2)rf (2)>

;

where rf (2) is the gradient of f (2).

140



Proof. We prove the statement directly. The gradient descent updates proceed as follows:

A(t+1) = A(t) +
⌘p
k

✓
y � A(t) 1p

k
B(t)X

◆
X>B(t)>

,

B(t+1) = B(t) +
⌘p
k

A(t)>

✓
y � A(t) 1p

k
B(t)X

◆
X> .

Thus, after 1 step of gradient descent, we have

A(1) = A(0) ; B(1) =
⌘p
k

A(0)>

yX>.

From the proof of Proposition 10, we have that

lim
k!1

B(1)>

B(1) = lim
k!1

B(1)> 1

k
A(0)>

A(0)B(1) ,

and so, we define the matrix M to be:

M := lim
k!1

B(1)>

B(1).

Next, after 2 steps of gradient descent, we have:

A(2) = A(1) +
⌘p
k

✓
y � A(1) 1p

k
B(1)X

◆
X>B(1)>

= A(0) +
⌘p
k

yX>B(1)> � ⌘

k
A(0)B(1)XX>B(1)>

= A(0) +
⌘2

k
yX>Xy>A(0) � ⌘3

k2
A(0)A(0)>

yX>XX>Xy>A(0);

and
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Thus, we simplify B(2)>

B(2) as follows:

B(2)>

B(2) =
4⌘2

k
B(1)>

B(1) � 2⌘2

k
p

k
B(1)>

A(0)>

A(0)B(1)XX>

� 2⌘2

k
p

k
XX>B(1)>

A(0)>

A(0)B(1) +
⌘2

k2
XX>B(1)>

A(0)>

A(0)A(0)>

A(0)B(1)XX> .

Taking the limit as k ! 1, we simplify the above expression to

lim
k!1
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B(2) = 4⌘2M + ⌘2XX>MXX> .

A key observation is that as k ! 1, the O
�

1
k

�
and O

�
1
k2

�
terms in A(2) will vanish in the evaluation

of lim
k!1

rf (2)rf (2)> since the gradient also contains an extra 1
p

k
term from f . Hence only the O(1) terms
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given by A(0) will remain in the evaluation of lim
k!1

rf (2)rf (2)>. Using this observation, we have:

lim
k!1

rf (2)rf (2)>

= lim
k!1

B(2)> 1

k
A(2)>

A(2)B(2) = lim
k!1

B(2)> 1

k
A(0)>

A(0)B(2),

which by the expansion of B(2)>

B(2) and the proof of Proposition 10, is equivalent to 4⌘2M+⌘2XX>MXX>.

The above results demonstrate that the ansatz holds for one-hidden-layer neural networks trained in
isolation. We now prove the ansatz in the more general setting of deep, nonlinear fully connected networks
by ensembling, or averaging over infinitely many networks. We present the proof of Theorem 10 below.

Proof. For a matrix A↵ 2 Rc⇥d, we denote its p-th row by A↵,p. For a vector v 2 Rd, we denote its i-th
element by v(i). To simplify notation, we drop the subscript t if it is irrelevant (e.g., fixed) in an expression.
We consider the right hand side of the desired equation. The gradient with respect to the input is given by
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By the gradient independence ansatz, we can generate new samples fWL, . . . ,fW2,
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Pulling factors outside of the limit,
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Note that by re-sampling,
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apply the law of large numbers as kL ! 1 and split the expectation as follows.
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Evaluating the expectations above, we conclude:
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Recursively applying this procedure yields
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B Methods
Below, we provide a description of all datasets, models, and training methodology considered in this work.

Validating the Deep Neural Feature Ansatz All neural networks in Fig. 2A have 5 hidden layers with
1024 hidden units per layer and ReLU activation. We use minibatch gradient descent with a learning rate of
0.1 and batch size 128 for 500 epochs and initialize the first layer weights according to a Gaussian distribution
with mean 0 and standard deviation 10�4. All networks used in Fig. 2B and Supplementary Fig. D-1 have 5
hidden layers with 64 hidden units per layer and ReLU activation. We use minibatch gradient descent with
a learning rate of 0.2 and batch size of 128 for 500 epochs and initialize the first layer weights according to
a Gaussian distribution with mean 0 and standard deviation of 10�6.

Spurious features. For experiment in Fig. 5-3A, we constructed a training set of size 50000 concatenated
CIFAR-10 and MNIST digits, and a corresponding test set of 10000 test images. The training and test data
were generated from data loaders provided by PyTorch. We used 20% of the training samples were used
for validation. For Fig. 5-3A and B, we trained a five-hidden-layer fully connected ReLU network with 64
hidden units per layer using SGD with a learning rate of 0.2 and a mini-batch size of 128. We initialized
first layer weights from a Gaussian with mean zero and standard deviation 10�4. For Fig. 5-3C, we trained
a two-hidden-layer fully connected ReLU network with 5 hidden unhits per layer using SGD for 500 epochs
with a learning rate of 0.1 and a mini-batch size of 128. For all experiments, we train using the mean squared
error (MSE) with one-hot labels for each of the classes.

Grokking. The total number of training and validation samples used is 553 with 500 examples of airplanes
and 53 examples of trucks. We use 800 examples per class from the PyTorch test set as test data. We set a
small stars of pixels (8 pixels tall, 7 pixels wide) in the upper left corner to yellow (all 1s in the green and
red channel) if the image is a truck and all 0s if the image is a plane. We use 80% of the 553 samples for
training and 20% for validation. We train a two hidden layer fully connected ReLU network using Adam
with a learning rate of 10�4 and batch size equal to dataset size. We initialize the weights of the first layer
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of the ReLU network according to a normal distribution with standard deviation 5 ⇥ 10�3. We train RFMs
updating only the diagonals of the feature matrix for three iterations with ridge regularization of 2.5 ⇥ 10�3

and using the Laplace kernel as the base kernel function with a bandwidth of 10. We used ridge regularization
to slow down training of RFMs to visualize how the feature matrix changes through iteration. We note that
without regularization, the RFM gets 100% test accuracy within 1 iteration.

Lottery Tickets. For all binary classification tasks on CelebA, we normalize all images to be on the unit
sphere. We train 2-hidden layer ReLU networks with 1024 hidden units per layer using stochastic gradient
descent (SGD) for 500 epochs with a learning rate of 0.1 and a mini-batch size of 128. We train using the
mean squared error (MSE) with one-hot labels for each of the classes. Accuracy is reported as the argmax
across classes. We split available training data into 80% training and 20% validation for hyper-parameter
selection. We report accuracy on a held out test set provided by PyTorch [142]. In addition, since there can
be large class imbalances in this data, we ensure that the training set and test set are balanced by limiting
the number of majority class samples to the same number of minority class samples. Given that these are
higher resolution images, we limit the total number of training and validation examples per experiment to
50000 (25000 per class). When re-training networks after masking to the top 2% of pixels with highest
intensity in the diagonal of the first layer NFM, we re-initialize networks of the same architecture using the
default PyTorch initialization scheme.

RFMs trained on CelebA. For the CelebA tasks in Appendix Fig. D-5, we train RFMs for 1 iteration,
use a ridge regularization term of 10�3, and average the gradient outer product of at most 20000 examples.
All RFMs use Laplace kernels as the base kernel and use a bandwidth parameter of L = 10. We solve kernel
ridge regression exactly via the solve function in numpy [186]. We use the same training, validation, and
test splits considered in the lottery ticket experiments.

RFMs, neural networks, NTK, and Laplace kernels on SVHN. In Appendix Fig. D-6A, we train
2-hidden layer ReLU networks with 1024 hidden units per layer using stochastic gradient descent (SGD) for
500 epochs with a learning rate of 0.05 and a mini-batch size of 100. We train using the mean squared error
(MSE) with one-hot labels for each of the classes. Accuracy is reported as the argmax across classes. We
train RFMs for 5 iterations and average the gradient outer product of at most 20000 examples. We also
center gradients during computation of RFMs by subtracting the mean of the gradients before computing
the average gradient outer product. RFMs and Laplace kernels used all have a bandwidth parameter of
10. We compare with the NTK of a 2-hidden layer ReLU network. For all kernels, we solve kernel ridge
regression with ridge term of 10�3 via the solve function in numpy [186]. The test accuracy for RFMs in
Fig. D-6A is given by training a 1-hidden layer NTK with ridge regularization of 10�2 on the feature matrix
selected from the last iteration of training, which resulted in the best validation accuracy.

RFMs, neural networks, NTK, and Laplace kernels on low rank polynomial regression. In
Appendix Fig. D-6B and C, we consider the low rank polynomials from [189] and [52]. We use 1000 examples
for training and 10000 samples for testing. Following the setup of [189], we sample training inputs from a
Rademacher distribution in 30 dimensions and add random noise (see Appendix Fig. D-6B). The labels are
generated by the product of the first two coordinates of the inputs without noise. We train a 1 hidden layer
neural network for 1000 epochs using full batch gradient descent with a learning rate of .1 and initialize the
first layer with standard deviation 10�3 so as to mitigate the effect of the initialization. We train RFMs
with no ridge term and set the base kernel function as the Laplace kernel with bandwidth 10. We note the
neural network was able to interpolate the training data and achieved a training R2 of 1.

For the second low rank experiment in Appendix Fig. D-6C, we sample inputs, x, according to a 10
dimensional isotropic Gaussian distribution and sample a fixed vector, u, on the unit sphere in 10 dimensions.
The targets are given by g(uT x) where g(z) = He2(z) + He4(z) where He2, He4 are the second and fourth
probabilist’s Hermite polynomials. We train a 1 hidden layer neural network using full batch Adam [101]
with a learning rate of 10�2 and use the default PyTorch initialization. We train RFMs with no ridge term
and set the base kernel function as the Laplace kernel with bandwidth 10. We note the neural network was
able to nearly interpolate the training data within 1000 epochs and achieved a training R2 of 0.971.
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121 datasets from [61]. We first describe the experiments for 120 of the 121 datasets with fewer than
130000 examples since we used EigenPro [125] to train kernels on the largest dataset. For all kernel methods
(RFMs, Laplace kernel and NTK), we grid search over ridge regularization from the set {10, 1, .1, .01, .001}.
We grid search over 5 iterations for RFMs and used a bandwidth of 10 for all Laplace kernels. For NTK
ridge regression experiments, we grid search over NTKs corresponding to ReLU networks with between 1
and 5 hidden layers. For the dataset with 130000 samples, we use EigenPro to train all kernel methods and
RFMs. We run EigenPro for at most 50 iterations and select the iteration with best validation accuracy
for reporting test accuracy. For small datasets (i.e., those with fewer than 5000 samples), we grid search
over updating just the diagonals of M and updating the entire matrix M . Lastly, for all kernel methods
and RFMs, we grid search over normalizing the data to the unit sphere. We note that there is one dataset
(balance-scale), which had a data point with norm 0, and so we did not grid search over normalization for
this dataset.

Tabular data benchmark from [70]. We used the repository from [70] at https://github.com/Leo
Grin/tabular-benchmark, modifying the code as needed to incorporate our method. On all datasets, we
grid search over 5 iterations of RFM with the Laplace kernel, solving kernel regression in closed form at all
steps. This benchmark consists of 20 medium regression datasets (without categorical variables), 3 large
regression datasets (without categorical variables), 15 medium classification datasets (without categorical
variables), 4 large classification datasets (without categorical variables), 13 medium classification datasets
(with categorical variables), 5 large regression datasets (with categorical variables), 7 medium classification
datasets (with categorical variables), and 2 large classification datasets (with categorical variables). Fol-
lowing the terminology from [70], “medium” refers to datasets with at most 10000 training examples and
“large” refers to those with more than 10000 training examples. In general, we grid-searched over ridge
regularization parameters in {10�4, 10�3, 10�2, 10�1, 1} with fixed bandwidth L = 10. For regression, we
centered the labels and scaled their variance to 1. On large regression datasets, we also optimized for
bandwidths over {1, 5, 10, 15, 20}. We searched over two target transformations - the log transform (by =
|y| log(1 + |y|)) and sklearn.preprocessing.QuantileTransformer. In both cases, we inverted the trans-
form before testing. We also searched over data transformations - sklearn.preprocessing.StandardScaler
and sklearn.preprocessing.QuantileTransformer. We also optimized for the use of centering/not center-
ing the gradients in our computation, and extracting just the diagonal of the feature matrix. For non-kernel
methods, we compare to the metrics reported in [70]. For classification, we report the average accuracy
across the random iterations in each sweep (including random train/val/test splits). For regression, the
average R2 is reported. The reported test score is the average performance of the model with the highest
average validation performance.

We next provide a description of all metrics considered in the tabular benchmarks.

Friedman Rank. To compute Friedman rank, we rank classifiers in order of performance (e.g. the top
performer gets rank 1) for each dataset and then average the ranks. In the original results of [61], certain
classifiers were missing performance values. To compute the Friedman rank, the authors of [61] impute such
missing entries via the average classifier performance for this data. We provide code for computing the
Friedman rank that replicates the ranks provided in the original work of [61].

Average Accuracy. Average accuracy is just the average over all available accuracies across datasets. In
this case, missing accuracies are not imputed for the average and are simply dropped.

Percentage of Maximum Accuracy (PMA). An average over the percentage of the best classifier
accuracy achieved by a given model across all datasets.

P90/P95. An average over all datasets for which a classifier achieves within 90%/95% of the accuracy of
the best model.
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Average Distance to Minimum (ADTM). This metric normalizes for variance in the hardness of
different datasets. Let xij be the performance of method j for dataset i, the ADTM for method j is defined
as ADTMj = Avgi

⇣
xij�minj xij

maxj xij

⌘
. Note ADTM 2 [0, 1], with 1 indicating a method is the best among all

methods in the collection, and 0 indicating a method is the worst.

C Background on Kernel Ridge Regression

We here provide a brief review of kernel ridge regression [166]. Given a dataset {(xi, yi)}n
i=1 ⇢ Rd ⇥ R and

a Hilbert space, H, kernel ridge regression constructs an non-parametric estimator given by

bfn,� = argmin
f2H

nX

i=1

(f(xi) � yi)
2 + � kfk2

H
; (D.1)

where � � 0 is referred to as the ridge regularization parameter. Note this is an infinite dimensional
optimization problem in a Reproducing Kernel Hilbert Space, H, corresponding to a positive semi-definite
kernel function K. By virtue of the Representer theorem [190], this problem has a unique solution in the
span of the data given by

bfn,� =
nX

i=1

b↵iK(x, xi) where b↵ = y(K(X, X) + �In)�1; (D.2)

where K(X, X)ij = K(xi, xj) and y 2 R1⇥n. Naively, this involves solving a n ⇥ n linear system, which can
be typically solved in closed form for n  100, 000. For n > 100, 000, we apply the EigenPro solver [125] to
approximately solve kernel regression via early-stopped, preconditioned-SGD that can run on the GPU. For
� ! 0+, we recover the pseudo-inverse solution b↵ = yK(X, X)†. For multi-class and multi-variate problems,
yi are vector valued and we consider each class/target variable as a separate problem.

D Kernel alignment and gradient outer product

To improve kernel selection for supervised learning, a line of research [47, 49, 172] considered selecting a
kernel or a combination of kernels to maximize alignment with the following, ideal kernel, function.

Definition 12. Suppose data (x, f(x)) 2 Rd ⇥ R are generated by a target function f(x). Then, the ideal
kernel is K⇤(x, z) = f(x)f(z).

If one knows the target function f beforehand, then the ideal feature map is  (x) = f(x), as the predictor
1T (x) will recover the target value exactly (assuming no label noise). Further, in the Bayesian setting,
the ideal kernel averaged over the distribution of target functions will be optimal [97]. We now showcase a
benefit of the expected gradient outer product, M , by demonstrating that regression with a Mahalanobis
kernel using M will recover the ideal kernel when the target function is linear.

Proposition 12. Let x 2 Rd have density ⇢, let � 2 Rd, and consider the linear model, i.e., f(x) = �T x.
For z, z0 2 R, let KM (z, z0) = zT Mz0 with M = Ex[rf(x)rf(x)T ]. Then, KM = K⇤.

Proof. Note rf(x) = � for all x. Hence, M = ��T , and KM (z, z0) = zT��T z0 = f(z)f(z0) = K⇤(z, z0).

Moreover, the expected gradient outer product will provably reduce the sample complexity when the
target function depends on only a few relevant directions in the data, as implied by the following proposition.

Proposition 13. Let x 2 Rd have density ⇢ and let the target function f⇤ : Rd ! R be a polynomial with de-
gree p and rank r, i.e., f(x) = g(Ux) where U 2 Rr⇥d and g : Rr ! R. Let M = Ex

⇥
rf⇤(x)rf⇤(x)T

⇤
2 Rd⇥d.

Then, there exists a fixed polynomial kernel such that kernel ridge regression on the transformed data
(M

1
2 X, y) has the minimax sample dependence on rank, O(rp).
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Proof of Proposition 13. The gradient of the target function in directions orthogonal to the target subspace
U is 0, as the function does not vary in these directions. Thus, rf⇤(x) is in the span of U . Hence, for any
x0 2 Rd, as

Mx0 = Ex2XN

⇥
rf⇤(x)rf⇤(x)T x0

⇤
,

we have that Mx0 is also in the span of U . Therefore, the transformed data M
1
2 X lies in an r-dimensional

subspace and has an equivalent representation in an r-dimensional coordinate space. Namely, for all i, j 2 [d],
there exists ↵i,↵j 2 Rr such that kxi � xjk = k↵i � ↵jk. Further, the degree of the target function does
not change under linear transformation or rotation. The final bound follows from the generalization error
bound of linear regression for kernel ridge regression with a polynomial kernel of degree r.

Remarks. This result is in contrast to using a fixed kernel for which ⌦(dp) samples are required to
achieve better error than the trivial 0-function by kernel ridge regression [66]. While the above propositions
assume we have knowledge of the expected gradient outer product of the target function, we note that related
algorithms are optimal, even when the expected gradient outer product has not been estimated exactly. For
example, kernel ridge regression using a Mahalanobis kernel with M set to the neural feature matrix after 1
step of gradient descent gives the optimal dependence on the rank r under certain conditions on the target
function [52]. We note that a related iterative procedure using kernel smoothers to simultaneously estimate
a predictor and gradients achieves minimax optimality for low-rank function estimation [88].
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Figure D-1: (A) The correlation between the average gradient outer product and the trained NFM for each
layer in five-hidden-layer ReLU fully connected networks trained on 6 image classification tasks from CelebA
and SVHN. To compute the trained NFM, we subtract the layer weights at initialization from the final
weights before computing the Gram matrix. (B) The correlation between initial NFM and trained NFM for
each layer in five-hidden-layer ReLU fully connected networks trained on 6 image classification tasks from
CelebA and SVHN.
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Figure D-2: The correlation between the average gradient outer product and the trained NFM for each layer
in five-hidden-layer, width 64 fully connected networks trained on 121 tabular classification tasks using the
Adam optimizer with learning rate of 10�4 and default initialization scheme from PyTorch across sigmoid,
sine, hyperbolic tangent, and leaky ReLU activation. To compute the trained NFM, we subtract the layer
weights at initialization from the final weights before computing the Gram matrix. For all activations across
all layers, median correlation is above .65.
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Figure D-3: The correlation between the average gradient outer product and the trained NFM for each
layer in five-hidden-layer ReLU fully connected networks trained on 121 tabular classification tasks using
the Adam optimizer with learning rate of 10�4 and default initialization scheme from PyTorch across widths
in the range {64, 128, 256, 512, 1024}. We observe that lower width leads to higher correlation. To compute
the trained NFM, we subtract the layer weights at initialization from the final weights before computing the
Gram matrix.
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Figure D-4: The correlation between the average gradient outer product and the trained NFM for the first
layer in 1-hidden-layer, width 256 ReLU fully connected networks trained on 121 tabular classification tasks
using the Adam optimizer with learning rate of 10�4 using an initialization scheme of Gaussian with mean
0 and standard deviation in the range {10�1, 10�2, 10�4, 10�6, 10�8}. To compute the trained NFM, we
subtract the layer weights at initialization from the final weights before computing the Gram matrix. We
observe that lower initialization scheme leads to higher correlation.
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Rosy CheeksSmilingNecktie5 o’clock shadowEyebrowsLipstickTask

First Layer NFM
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Figure D-5: The top eigenvector of the first layer NFM from a two-hidden-layer, 1024 width ReLU network
and from RFM feature matrices visually highlight similar features across 12 CelebA classification tasks.
These top eigenvectors are highly correlated (Pearson correlation greater than 0.99).
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0.495Laplace Kernel

Test R2Model
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0.402NTK

0.327Fully Connected Network

Figure D-6: Comparison of first layer NFM features and RFM features and performance between two-hidden-
layer, 1024 width ReLU fully connected networks and RFMs. (A) (Left) Samples from the SVHN dataset
in which the goal is to identify the center digit from a view of potentially many digits. (Center) Upon
visualizing the diagonals of the feature matrices of RFMs and deep networks, we observe that these models
learn to select the center digit. (Right) By selecting the center digit, RFMs and deep networks provide a
10% increase in test accuracy over Laplace kernels and a 5% increase in test accuracy over NTKs. (B)
(Left) We consider the low rank setup from [189] in which the targets, y, are generated as a product of
the first two coordinates of Rademacher random variables z. (Center) Since we know the target function,
we can compare the ground truth feature matrix against the first layer NFM of a 1 hidden layer ReLU
fully connected network and the RFM feature matrix. We observe that both models learn to select the top
two coordinates. (Right) The performance of RFMs and neural networks far exceeds of NTKs and Laplace
kernels since these methods learn to select relevant coordinates for prediction. (C) (Left) The low rank
setup from [52] in which the targets, y are generated as a function of a projection of the input x onto a
1 dimensional subspace. Here, u is on the unit sphere in 10 dimensions and He2, He4 denote the second
and fourth probabilist’s Hermite polynomials. (Center) While RFMs learn to accurately approximate the
ground truth gradient outer product, fully connected networks require additional training modifications, as
discussed in [52]. (Right) As they learn the relevant subspace, RFMs far outperform 1 hidden layer ReLU
fully connected networks, NTKs, and the Laplace kernel.
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Task Glasses Mustache Goatee Eyebrows Rosy Cheeks Smiling

Thresholded RFM Features

Percent of Pixels Remaining 1.42% 1.66% 3.40% 1.44% 2.43% 1.76%

RFM Accuracy 90.92% 88.15% 89.40% 74.36% 86.66% 89.62%

RFM-T Accuracy 94.06% 91.32% 91.19% 78.11% 88.72% 91.24%

Lottery Tickets and RFMs

Figure D-7: Connections between lottery tickets in deep networks and RFMs. The diagonals of the feature
matrices of RFMs trained on CelebA are sparse, thereby indicating that only a subset of coordinates is used
for prediction. Such sparsity suggests that we can threshold to very few pixels while still minimally affecting
performance. Indeed, re-training RFMs upon thresholding to less than 3.5% of total pixels in CelebA tasks
consistently improves performance for these tasks.

Test Acc.Corrupted 

Samples

MaskCorruption

90.71%None

84.69%Lips

(1260 Pixels)

51.65%Eyes

(477 Pixels)

Diagonal of RFM Feature Matrix:

Lipstick classification with RFMs 

Diagonal of RFM Feature Matrix

Concatenated CIFAR10-MNIST Samples

CIFAR10-MNIST classification with RFMsA B

Figure D-8: RFMs accurately capture simplicity biases of deep fully connected networks. (A) We train
RFMs on a dataset similar to that from [168] in which we concatenate images of CIFAR-10 objects with
unique digits from MNIST. Upon visualizing the diagonals of the feature matrices of RFMs, we observe
that the model learns to mask the CIFAR-10 image and focus on the MNIST digit for prediction. (B) The
diagonal of the feature matrix for an RFM trained on lipstick classification unusually indicates that eyes are
used as a key feature. We thus construct a mask based on the top RFM features and replace the eyes of
all test samples with those of a single individual. The trained RFM does 39.06% worse on these corrupted
samples. On the other hand, replacing the lips of all test samples with those from the same individual leads
to only a minor, 6.02%, decrease in accuracy.
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Figure D-9: Performance of RFMs, XGBoost, Gradient Boosting Trees, Random Forests, ResNets, Trans-
formers (SAINT and FT), and fully connected networks (MLPs) from [70]. Our method used 3600 hours
in total, while all other methods used 20000 hours for tuning, as reported in [70]. Results from all models
other than RFMs are reported from the tables provided by [70]. All metrics and training details are outlined
in Methods. Large tasks have 50000 training examples except for Jannis (40306 examples) and Diamonds
(37758 examples). The medium tasks have at most 10000 samples. We show (A) average accuracy on large
classification tasks and (B) average R2 on large regression tasks. We compare model performance through
commonly used metrics across all datasets for (C) classification, and (D) regression.

n-train data-keyword FT Transformer GradientBoostingTree RandomForest Resnet SAINT XGBoost ours best method
4547.0 wine-quality - 0.458 0.504 - - 0.498 0.497 RandomForest
5457.0 isolet - - - - - - 0.868 ours
5734.0 cpu-act - 0.985 0.983 - - 0.986 0.986 XGBoost
7056.0 sulfur - 0.806 0.859 - - 0.865 0.913 ours
7484.0 Brazilian-houses - 0.996 0.993 - - 0.998 0.938 XGBoost
9625.0 Ailerons - 0.843 0.839 - - 0.844 0.841 XGBoost
9752.0 MiamiHousing2016 - 0.924 0.924 - - 0.936 0.934 XGBoost
10000.0 Bike-Sharing-Demand - 0.69 0.687 - - 0.695 0.689 XGBoost
10000.0 california - 0.846 0.83 - - 0.853 0.867 ours
10000.0 diamonds - 0.945 0.945 - - 0.946 0.945 XGBoost
10000.0 elevators - 0.863 0.841 - - 0.908 0.923 ours
10000.0 fifa - 0.663 0.655 - - 0.668 0.653 XGBoost
10000.0 house-16H - 0.541 0.486 - - 0.548 0.489 XGBoost
10000.0 house-sales - 0.884 0.871 - - 0.887 0.883 XGBoost
10000.0 houses - 0.84 0.829 - - 0.852 0.864 ours
10000.0 medical-charges - 0.979 0.979 - - 0.979 0.979 GradientBoostingTree
10000.0 nyc-taxi-green-dec-2016 - 0.554 0.563 - - 0.553 0.532 RandomForest
10000.0 pol - 0.99 0.989 - - 0.99 0.991 ours
10000.0 superconduct - 0.905 0.909 - - 0.911 0.911 ours
10000.0 year - 0.271 0.241 - - 0.282 0.303 ours
37758.0 diamonds 0.945 0.947 - 0.941 0.945 0.948 0.948 ours
50000.0 nyc-taxi-green-dec-2016 0.12 0.624 - 0.247 0.534 0.629 0.569 XGBoost
50000.0 year 0.117 0.307 - 0.119 0.289 0.307 0.334 ours

Table D.1: Regression R2 without categorical variables.
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n-train data-keyword FT Transformer GradientBoostingTree MLP RandomForest Resnet SAINT XGBoost ours best method
1787.0 wine 77.54 78.77 77.62 78.96 77.95 77.09 79.85 80.67 ours
2220.0 phoneme 85.28 86.78 84.95 88.55 86.21 85.58 86.48 88.16 RandomForest
3631.0 kdd-ipums-la-97-small 88.96 88.38 87.95 87.95 88.07 89.02 88.26 88.62 SAINT
5325.0 eye-movements 58.62 63.75 56.89 65.04 57.41 58.93 65.54 61.14 XGBoost
7057.0 pol 98.47 97.94 94.27 98.21 94.81 98.14 98.05 98.33 FT Transformer
7404.0 bank-marketing 80.42 80.27 79.18 79.82 79.37 79.09 80.44 79.73 XGBoost
9363.0 MagicTelescope 85.09 85.88 84.7 85.6 85.78 85.1 85.92 86.5 ours
9441.0 house-16H 88.16 88.2 87.78 87.8 87.5 88.16 88.83 87.78 XGBoost
10000.0 Higgs 70.62 71.08 68.86 70.76 69.44 70.72 71.42 70.73 XGBoost
10000.0 MiniBooNE 93.74 93.19 93.54 92.65 93.68 93.52 93.62 93.93 ours
10000.0 california 88.62 89.82 86.0 89.21 87.57 89.07 90.17 90.29 ours
10000.0 covertype 81.32 81.87 78.89 82.73 80.26 80.31 81.9 85.95 ours
10000.0 credit 76.53 77.22 75.99 77.28 76.1 75.99 77.38 77.66 ours
10000.0 electricity 82.0 86.16 81.04 86.14 80.86 81.77 86.83 82.93 XGBoost
10000.0 jannis 76.55 77.02 74.57 77.27 74.6 77.26 77.78 78.28 ours
40306.0 jannis 79.74 79.47 76.45 78.85 78.59 79.77 79.56 80.68 ours
50000.0 Higgs 73.13 72.55 71.15 71.98 72.39 72.75 72.83 72.44 FT Transformer
50000.0 MiniBooNE 94.34 94.14 94.32 93.53 94.44 94.32 94.43 94.97 ours
50000.0 covertype 90.69 89.76 87.43 90.59 89.39 89.53 89.74 94.1 ours

Table D.2: Classification accuracy without categorical variables.

n-train data-keyword FT Transformer GradientBoostingTree HistGradientBoostingTree RandomForest Resnet XGBoost ours best method
2836.0 analcatdata-supreme 0.977 0.981 0.982 0.981 0.978 0.983 0.987 ours
2946.0 Mercedes-Benz-Greener-Manufacturing 0.548 0.578 0.576 0.575 0.545 0.578 0.575 GradientBoostingTree
6048.0 visualizing-soil 0.998 1.0 1.0 1.0 0.998 1.0 1.0 RandomForest
6219.0 yprop-4-1 0.037 0.056 0.063 0.095 0.021 0.08 0.072 RandomForest
7484.0 Brazilian-houses 0.883 0.995 0.993 0.993 0.878 0.998 0.906 XGBoost
9999.0 OnlineNewsPopularity 0.143 0.153 0.156 0.149 0.13 0.162 0.139 XGBoost
10000.0 Bike-Sharing-Demand 0.937 0.942 0.942 0.938 0.936 0.946 0.933 XGBoost
10000.0 SGEMM-GPU-kernel-performance 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ours
10000.0 black-friday 0.379 0.615 0.616 0.609 0.36 0.619 0.612 XGBoost
10000.0 diamonds 0.99 0.99 0.991 0.988 0.989 0.991 0.991 XGBoost
10000.0 house-sales 0.891 0.891 0.89 0.875 0.881 0.896 0.891 XGBoost
10000.0 nyc-taxi-green-dec-2016 0.511 0.573 0.539 0.585 0.451 0.578 0.549 RandomForest
10000.0 particulate-matter-ukair-2017 0.673 0.683 0.69 0.674 0.658 0.691 0.662 XGBoost
37758.0 diamonds - 0.992 0.993 - - 0.993 0.993 ours
50000.0 SGEMM-GPU-kernel-performance - 1.0 1.0 - - 1.0 1.0 XGBoost
50000.0 black-friday - 0.631 0.636 - - 0.639 0.623 XGBoost
50000.0 nyc-taxi-green-dec-2016 - 0.636 0.585 - - 0.648 0.589 XGBoost
50000.0 particulate-matter-ukair-2017 - 0.706 0.71 - - 0.712 0.69 XGBoost

Table D.3: Regression R2 with categorical variables.

n-train data-keyword FT Transformer GradientBoostingTree HistGradientBoostingTree RandomForest Resnet SAINT XGBoost ours best method
3479.0 rl 70.31 77.62 76.05 79.79 70.56 68.2 77.01 70.47 RandomForest
3522.0 KDDCup09-upselling 78.05 - - - 76.98 77.8 - - FT Transformer
3589.0 KDDCup09-upselling - 80.36 80.61 80.02 - - 79.56 77.24 HistGradientBoostingTree
5325.0 eye-movements 59.83 63.94 63.58 65.73 57.93 58.54 66.77 62.75 XGBoost
10000.0 compass 75.34 74.09 75.15 79.28 74.46 71.87 76.91 77.5 RandomForest
10000.0 covertype 86.74 85.56 84.47 85.89 85.27 84.95 86.42 89.5 ours
10000.0 electricity 84.16 87.97 88.15 87.76 82.64 83.35 88.69 85.33 XGBoost
10000.0 road-safety 76.74 76.21 76.45 75.88 76.08 76.43 76.69 75.48 FT Transformer
50000.0 covertype 93.61 93.22 92.09 93.35 92.24 92.58 93.31 95.58 ours
50000.0 road-safety 78.95 78.73 78.85 78.13 78.41 77.96 80.29 77.56 XGBoost

Table D.4: Classification accuracy with categorical variables.
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