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Abstract

The increasing frequency and severity of cyberattacks has made reliable cyber risk
assessment a critical concern for organizations worldwide. Traditional cyber risk
methodologies focus on the enterprise’s level of cyber maturity. Moreover, several
commercial companies provide cyber ratings using information about the organiza-
tion accessible by outside parties, often called outside-in ratings. However, merely
focusing on the enterprise’s own cyber maturity may be insufficient given the increas-
ing number of cyberattacks that exploit vulnerabilities in the organization’s supply
chain. This thesis presents innovative approaches to cyber risk assessment that in-
corporate attributes of the digital supply chain.

Chapter 2 is motivated by recent cyberattacks that relied on compromising soft-
ware companies as a vector to attack their customers, illustrating the importance
of going beyond the enterprise’s vulnerabilities and assessing potential threats from
the supply chain. Taking into account this observation, the chapter presents a data-
driven approach to identifying high risk software companies based on their relative
position in the supply chain. The newly proposed approach is based on unsuper-
vised clustering techniques applied to intuitive supply chain features of the respective
software companies. The clustering approach is applied to a self-constructed dataset
of over 4,600 software companies, and the model partitions the software companies
into two clusters. Historical breach data that was not used in the clustering suggests
that the second cluster, despite being smaller, has a significantly higher proportion
of breached companies. Furthermore, feature differences between clusters reveal that
the risky software companies tend to have many more customers and suppliers, par-
ticularly in the Technology and Business Services sectors. These findings highlight
the importance of specific supply chain features as risk drivers in assessing the cyber-
security posture of software companies.

In Chapter 3, we propose a novel approach to cyber risk assessment that directly
incorporates an attacker model and in so doing are able to better predict enterprises’
vulnerabilities. We develop a theoretical attacking agent to randomly target a com-
pany and explore neighboring nodes in the supply chain graph. Deep reinforcement
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learning algorithms are used to train the attacker over time, identifying rewarding
paths throughout the supply chain network. The fully trained attacker then sim-
ulates attacks, yielding a risk score for each individual company in the network.
This score corresponds to the relative number of breaches the company experiences
in simulation. This approach is empirically validated using a dataset of over 13,000
companies in the Retail sector, and the results are highly statistically significant when
compared to real-world breach incident data and an existing outside-in ratings model.
Because the theoretical attacker approach is validated by existing breach data and
holds predictive power, this methodology can contribute to the development of more
effective risk assessment strategies to combat the growing threat of cyberattacks.

Thesis Supervisor: Retsef Levi
Title: J. Spencer Standish (1945) Professor of Operations Management
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Chapter 1

Introduction

The increasing frequency and severity of cyberattacks (9) has made reliable cyber

risk assessment a critical concern for organizations worldwide. Traditional cyber risk

methodologies focus on the enterprise’s level of cyber maturity. This information can

be obtained by evaluating an organization’s cyber controls, processes, and procedures

with respect to accepted security principles (39). To obtain an even more thorough

assessment, organizations sometimes also conduct exercises such as penetration test-

ing and red teaming that simulate real-world attacks on internal networks to identify

vulnerabilities that attackers might exploit (2). However, performing a thorough

assessment of an organization’s network design or conducting simulation exercises

require a significant amount of time from highly trained cybersecurity professionals

and cannot be performed at scale (36). To address this challenge, several commer-

cial companies have emerged offering outside-in ratings as an alternative approach.

Outside-in ratings are based on information that can be obtained from the public

domain about an organization’s digital footprint, such as its vulnerability patching

frequency and open port policies. Companies that offer outside-in ratings often use

machine learning algorithms to process this data and generate a rating that represents

an organization’s overall cyber maturity (7). Several studies provide some evidence

that suggest outside-in ratings are correlated with the probability of experiencing a

cyberattack (11, 5). However, merely focusing on the internal cyber maturity of com-

panies may not provide a comprehensive assessment of risk, since an increasing num-
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ber of cyberattacks have exploited trusted relationships in the digital supply chain to

create innovative attack vectors even against otherwise strongly defended companies.

In other words, even if an organization has the most robust cybersecurity practices

in place, their data, customers, and reputation may still be at risk due to the actions

or vulnerabilities of a company in their supply chain (21). This observation has been

underscored by recent high-profile events. For example, the SolarWinds incident was

a massive cyberattack in 2020 that demonstrated the significant risk that third-party

suppliers can pose to organizations in the digital supply chain, as the attackers in-

serted malicious code into SolarWinds’ IT management software, affecting thousands

of organizations including U.S. government agencies and private companies (13). To

complement the existing risk assessment approaches and address the existing gaps,

this thesis presents innovative approaches and methodologies of cyber risk assessment

that directly account for potential risk drivers emerging from the enterprise’s digital

supply chain attributes.

1.1 Thesis Results

Chapter 2

Chapter 2 is motivated by the SolarWinds incident, whereby a prominent software

company was used as a vector to attack its customers, showing that traditional

risk assessment methodologies are insufficient should they not examine vulnerabil-

ities throughout an enterprise’s supply chain. To provide quantitative evidence of

this observation, the chapter presents a data-driven approach to identifying high risk

software companies based on their relative position in the supply chain and related

attributes. The approach is based on unsupervised clustering techniques applied to

intuitive supply chain features of the respective software companies. The clustering

approach is applied to a self-constructed dataset of over 4,600 software companies,

and the model partitions the software companies into two clusters. Historical cyber

breach data that was not used in the clustering suggests that the second cluster,
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despite being smaller, has a significantly higher proportion of breached companies,

including SolarWinds. Furthermore, an examination of the most significant feature

differences between clusters reveals that software companies in the risky cluster tend

to have many more customers and suppliers, particularly in the Technology and Busi-

ness Services sectors. These findings highlight the importance of specific supply chain

attributes as risk drivers in assessing the cybersecurity posture of software compa-

nies, and provide regulators several key performance indicators for assessing their own

company’s internal enterprise risk.

Chapter 3

Motivated by the fact that supply chain vulnerabilities can pose significant cyberse-

curity risks to an organization, Chapter 3 introduces a novel approach to a scalable

cyber risk assessment methodology that incorporates the global digital supply chain

to model attacker behavior. A theoretical attacking agent is developed, which ran-

domly targets a company and explores neighboring nodes in the supply chain graph.

The attacker gains utility based on the size of any newly breached companies but must

operate under certain realistic constraints. For example, successful breach probabil-

ity depends on the size of the targeted company, with smaller companies potentially

having weaker defenses. The directionality of the traversed edge and type of product

or service provided between companies also influence the spread of attacks. Deep re-

inforcement learning algorithms are used to train the attacker over time, identifying

rewarding paths throughout the supply chain network. The fully trained attacker then

simulates attacks, yielding a risk score for each individual company in the network.

This score corresponds to the relative number of breaches the company experiences

in simulation. This approach is empirically validated using a dataset of over 13,000

companies in the Retail sector, and the results are highly statistically significant when

compared to real-world breach incident data. Comparison with an existing outside-in

ratings model also demonstrates similar out-of-sample cyberattack detection power.

Furthermore, when the simulated risk scores are added as an additional feature to the

existing model, the combined model shows improved performance, indicating that the
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risk scores contribute valuable supply chain risk information beyond the outside-in

ratings. The validated theoretical attacker approach presented in this chapter offers

a new tool for assessing supply chain cyber risk that does not require propriety risk

ratings or disclosure of censored historical breaches and can contribute to the devel-

opment of more effective risk assessment strategies to combat the growing threat of

cyberattacks.
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Chapter 2

Detecting High Risk Software

Companies via Unsupervised

Clustering Based on Supply Chain

Features

2.1 Introduction

On December 13, 2020, thousands of American companies and government organi-

zations experienced one of the most sophisticated and widespread computer hacks

in history. Over 18,000 known entities were affected, including several high-profile

companies such as Microsoft, Intel, Nvidia, Cisco, and FireEye (45). Additionally,

the U.S. government reported that the attack affected federal, state, and local gov-

ernments across the country, as well as at least nine federal agencies (18). Although

the full extent of the attack is still unknown even today, it can be traced back to

a Texas-based company called SolarWinds, a large-scale software company that pro-

vides a range of IT management and monitoring software solutions to organizations of

all sizes. Its customer base spans over 190 countries and includes more than 320,000

clients, among which are 499 companies featured in the Fortune 500 list (13). The
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attack involved the insertion of a malicious code into the SolarWinds Orion software

update, which is widely used by organizations for network management. When cus-

tomers downloaded their Orion software update, they unknowingly installed malware,

giving hackers access to sensitive data and systems.

Although the SolarWinds cyberattack has unprecedented scale and impact, it

is perhaps more important because of the manner in which the attack was carried

out. The attackers compromised SolarWinds’ trusted system, allowing them to in-

sert malicious code into software updates that were distributed to customers. This

novel attack technique leveraged the digital supply chain and is particularly insidi-

ous because it highlights new cyberattack vectors that pose risks even to otherwise

strongly defended organizations. Since SolarWinds, there have been a plethora of

publicly known cyber incidents including Kaseya (27), Dependency Confusion (16),

and Codecov (40) where attackers gained access to their targets by exploiting trusted

digital supply chain connections.

Motivated by these recent high-profile cyberattacks that leveraged the digital sup-

ply chain to create innovative attack vectors, this chapter takes a data-driven ap-

proach to identifying high risk software companies based on their relative location in

the supply chain network and related attributes. Specifically, this chapter is based on

a comprehensive self-constructed dataset that covers over 4,600 software companies.

The dataset includes for each entity their organizational characteristics and publicly

available digital supply chain relationships. Using unsupervised machine learning

techniques applied to natural digital supply chain features, the companies can be

partitioned into two clusters. Analysis based on historical cyber breach incident data

that were not included in the clustering shows that there is a 278% relative difference

between the two clusters in the proportion of breached companies, and that the risky

cluster specifically includes SolarWinds. Furthermore, an examination of the most

significant feature differences between clusters demonstrates that software companies

in the risky cluster tend to have many more customers and suppliers, particularly

in the Technology and Business Services sectors. These findings suggest that supply

chain attributes are important risk drivers in assessing risk for software companies.
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These findings are of significant practical and academic importance as they provide

a valuable tool for assessing the risk of software companies that provide services to an

enterprise. Notably, the newly developed approach does not rely on propriety internal

data or historical breach disclosure, but still provides companies and organizations

with actionable insights to assess risk and make informed decision in proactively

managing their own supply chain cybersecurity and most importantly assess potential

risk from software providers.

2.2 Literature Review

This chapter describes an unsupervised machine learning clustering approach to as-

sess the risk of software companies being compromised and used as a vector to launch

cyberattacks. The history of cyber risk assessment methodologies can be traced back

to the early days of computing. In the 1960s and 1970s, computer systems were pri-

marily used by large organizations, governments, and military establishments. The

primary focus of security was on physical security and protecting against hardware

failures. As computer networks became more prevalent in the following decades, the

focus of security shifted to protecting data and information. These concepts led to a

1977 publication by the National Institute of Standards and Technology that intro-

duced the widely popular CIA triad of confidentiality, integrity, and availability as a

framework to guide data security (33). At a high level, these principles inform security

policies by ensuring data is private, unaltered, and accessible. Many organizations

and companies adopted these principles to develop their own corporate and organi-

zational cybersecurity strategies. The industry cybersecurity strategies have evolved

over the years, but typically involve a set of best practices such as implementing

firewalls, two-factor authentication, and/or employee training programs. Addition-

ally, current cyber risk assessment methods mainly rely on measuring and assessing

compliance with respect to the set of accepted best practices. For example, the most

recent Verizon Data Breach Investigations Report, which provides an annual analysis

on the state of cybersecurity and data breaches around the world, indicates current
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risk assessment methodologies primarily focus on adherence to internal security pro-

tocols (3).

Parallel to the growth of internal defense best practices, some modern organi-

zations have started trying to quantitatively assess cyber maturity. Over the past

decade, industry stakeholders such as BitSight started developing cyber ratings to

offer data-driven measures of cyber maturity and risk for individual companies. Like

other cyber ratings providers, BitSight calculates its ratings using externally observ-

able cybersecurity information about organizations, such as vulnerability patching

frequency and open port policies. By aggregating individual ratings across multi-

ple best practices, BitSight ultimately creates numerical “outside-in” risk ratings of

individual companies, somewhat similar to the way credit ratings and FICO scores

provide a numerical measure of credit risk (6). The study in (5) across thousands of

organizations showed there are statistically significant correlations between specific

BitSight outside-in ratings and the likelihood of a cybersecurity breach.

Yet, many recent high-profile events such as the SolarWinds incident have il-

lustrated that merely focusing on internal policies is not sufficient to protect against

cyberattacks since most companies today are digitally connected and interacting with

external organizations which give rise to new vulnerabilities and attack vectors. This

is further supported by the authors in (8) who argue that cyber-supply chain man-

agement “has emerged as a critical discipline” in the current digital ecosystem and

perform a decade-long study on the impact of an organization’s adoption of policies

outlined in the U.S. National Institute of Standards and Technology cybersecurity

framework. The analysis reveals that certain policies and practices are closely linked

to more effective control of breaches originating from the supply chain. More recently,

Hu et al. (19) developed an integrated dataset with company attributes, BitSight

outside-in ratings, and supply chain relationships for more than thirty-eight thou-

sand companies in the major Healthcare, Retail, and Oil and Gas sectors. The main

result of the paper is to show that a machine learning model incorporating supply

chain features significantly improves out-of-sample AUC compared to baseline model

including only company attributes and BitSight outside-in ratings. This emerging
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research demonstrates supply chain attributes are becoming key factors for assessing

cyber risk.

2.3 Data

The dataset used in this chapter comes from two main data sources. The first is data

from BitSight (6), and the second is the Veris Community Database (12). The dataset

consists of all 4,617 entities in the BitSight database that are classified as software

companies and had at least one known digital supply chain relationship with a cus-

tomer between the time period May 2017 to April 2020. There are 77,923 software

companies in the BitSight database that did not have a supply chain relationship

with a customer and are excluded from consideration. For each included software

company, the dataset contains entity data, supply chain data, and breach incident

data.

The entity data consists of internal company information such as employee count

and outside-in ratings. The outside-in ratings are generated by BitSight and are

meant to reflect internal company security posture based on an analysis of externally

observable cybersecurity data. The outside-in ratings contain a component for each

internal process such as patching cadence and software updates on a scale from 300

to 820 with higher ratings representing better internal security. The self constructed

dataset includes the annual average of each score component for the time period May

2017 to April 2018.

The supply chain data consists of over 12 million digital supply chain relationships

detailing the products or services provided between individual companies. These

connections are part of the BitSight database. Supply chain features are created by

considering the local supply chain network for each software company that consists of

all the software company’s customers, suppliers (denoted third-party suppliers), and

suppliers of these suppliers (denoted fourth-party suppliers). To avoid cycles in the

local supply chain network where suppliers are both third-parties and fourth-parties,

these companies are only included as third-parties. An example local supply chain
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network is shown in Figure 2-1 with the software company colored red. Using the

respective local supply chain networks, we calculate the number of customers, the

number of third-party suppliers, and the number of fourth-party suppliers for each

software company. We also define a variable denoted as entity local size which is

each software company’s total number of customers plus total number of third-party

suppliers. In addition, we create sector features based on the local supply chain

network by calculating each software company’s number of incoming and outgoing

edges by sector (sector definitions provided in Appendix A).

Customer Software Company Third-Party Fourth-Party

Number of customers = 5
Number of third-party suppliers = 2
Number of fourth-party suppliers = 4

Entity local size = 7

Figure 2-1: Local supply chain network of a software company
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Between the entity data and supply chain data there are in total 74 features for

each software company, as summarized in Table 2.1 (reference Appendix A for de-

tailed feature definitions).

Feature Number (n = 74)

Entity features

Employee count 1

Outside-in ratings 21

Supply chain features

Local supply chain features 4

Customer sector features 24

Supplier sector features 24

Table 2.1: Summary of features used in clustering algorithms

Finally, the breach incident data reports all documented cyberattacks in the inte-

grated BitSight and Veris databases that occurred between May 2018 to April 2020.

During this time period 72 software companies (1.6%) were breached at some point.

Although not a part of the clustering algorithm, the breaches provide a benchmark for

evaluation. Initial preprocessing revealed that many of the features have heavy-tailed

distributions. As a result, we limit extreme values by winsorizing at the 5% and 95%

percentiles, and then standardizing the resulting data.

2.4 Methodology

This section employs an unsupervised machine learning clustering to partition the

software companies based on the supply chain features described above. Subsequently,

the clusters are compared with respect to the proportion of companies in the clusters

that were breached during 2018 to 2020. Significantly different proportions would im-

ply that the supply chain features have predictive power with respect to breach risk
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from software companies. To perform this clustering, we implement a probabilistic

approach known as a Gaussian mixture model (GMM) (24). In a GMM, each cluster

is modeled as a Gaussian distribution, with its own mean and covariance matrix. The

mixture model combines these Gaussian distributions to create a more complex dis-

tribution that can better represent the data, and the model parameters are estimated

using the expectation maximization algorithm. One of the key advantages of the

GMM is its flexibility in modeling complex data distributions, making it particularly

useful for problems where the underlying structure of the data may be unknown or

difficult to model using other techniques.

We perform GMM clustering on three sets of data features (see Appendix A). The

first version, hereafter referred to as the “supply chain clustering”, includes 53 features

that encompass employee count and local supply chain network features. The second

version, hereafter referred to as the “internal posture clustering”, includes 21 features

that encompass all BitSight outside-in ratings. The third version, hereafter referred

to as the “combined clustering”, includes 74 features that encompass all features in

the supply chain clustering and internal posture clustering.

Since clustering algorithms are known to perform poorly on very high dimensional

data, a PCA feature dimensionality reduction is performed on each set of data fea-

tures, retaining the minimum number of components that explain over 90% of the

variance. Using each compressed data as input, we employ the GMM clustering al-

gorithm to produce a set of clusters, where every software company is assigned to a

specific cluster. This model only requires a single hyperparameter 𝐾 indicating the

number of desired clusters. To determine the optimal number of clusters, we calculate

the Silhouette score for a range of possible cluster sizes 𝐾 between two and fifteen

across twenty random initializations. The Silhouette score is a common metric used

to evaluate the performance of clustering algorithms and is defined in Equation (2.1).

The Silhouette score can range from -1 to 1, with 1 representing better clustering. As

a result, the cluster size 𝐾 that produced the highest mean Silhouette score across

all software companies was chosen as optimal (32).
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Silhouette Score =
1

𝑛

𝑛∑︁
𝑖=1

(︂
𝑏(𝑖)− 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))

)︂
(2.1)

where:

𝑛 : number of samples

𝑎(𝑖) : average distance to all points within the same cluster

𝑏(𝑖) : average distance to all points in the nearest neighboring cluster

A common technique to help interpret the results of unsupervised clustering al-

gorithms is to examine the differences between the center locations of each resulting

cluster, also known as the cluster centroids. Each centroid represents the average

observation within each cluster, and describing the feature differences between these

average observations provides insights into the characteristics that separate between

clusters.

2.5 Results

The GMM algorithm ultimately selects 𝐾 = 2 clusters as optimal for each of the

three sets of data features. The different clustering models are assessed based on the

documented data breaches throughout 2018 to 2020, as shown in Table 2.2.

Clustering Cluster Companies (№) Breaches (№) Breach Proportion Rate (%)

Supply Chain
1 2471 17 0.7

2 2074 55 2.6

Internal Posture
1 2380 23 1.0

2 2165 49 2.2

Combined
1 2027 15 0.7

2 2518 57 2.2

Table 2.2: Gaussian mixture model clustering results for 𝐾 = 2 clusters
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For each set of data features, the model finds two clusters of roughly equal sizes,

where the first cluster is relatively safe and the second cluster is significantly more

risky. The risky cluster of the supply chain version not only has a 278% higher breach

proportion rate than the safe cluster but also captures 76% of all breached companies

in the dataset between 2018 to 2020. The internal posture and combined versions

produce slightly weaker results, with a 131% and 201% higher breach proportion

rate that capture 68% and 79% of breached companies, respectively. This provides

evidence that supply chain features are the most significant drivers for detecting cyber

risk in software companies.

Given that the supply chain version performs best, the results of this model are

used to detect the differences between the safe and risky clusters. Figure 2-2 presents

the results of the GMM clustering algorithm projected to the first two principal

components, where every red “X” denotes a breached software company. As seen in

the figure, the model essentially finds a single dense, safe cluster as well as a single

sparse, risky cluster. In Figure 2-2 it can also be seen that the infamous SolarWinds

attack is part of the risky cluster.

Figure 2-2: Visualization of the supply chain clustering projected to the first two

principal components
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To gain further insights as to what characteristics the more risky companies have

compared to non-risky companies, the two centroids are compared. Table 2.3 shows

the top five features with the most significant standardized differences between clus-

ters. Each feature’s difference between clusters is highly statistically significant under

a standard t-test with p-values of approximately zero. From the table it is noticeable

that software companies in the risky cluster tend to have a much higher number of

customers and suppliers, particularly in the Technology and Business Services sectors.

Rank Feature Cluster 1 Median Cluster 2 Median

1 № Third-party suppliers 17 57

2 № Technology suppliers 15 49

3 № Business Services suppliers 1 4

4 № Customers and third-party suppliers 45 476

5 № Customers 21 418

Table 2.3: Top five features with the most significant standardized differences between

clusters. Each feature’s median value by cluster is reported.

2.6 Conclusions and Discussion

This chapter builds upon research in the cybersecurity field by leveraging supply chain

features to detect high risk software companies. Among several clustering models that

were built, the strongest results for this dataset solely rely on supply chain attributes,

underscoring their importance in predicting and assessing cyberattack risk. Notably,

the SolarWinds company that was involved in a major cyberattack incident belonged

to the risky cluster identified through the analysis of supply chain features, which

provides an anecdotal evidence that further supports the approach.

Besides outlining a new approach to assess cyber risk of software companies based

on digital supply chain attributes, this chapter also highlights several key performance

indicators that could be predictive of risk. Furthermore, internal information relevant
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to the assessment of a company’s cyber maturity and risk are hard to obtain at scale,

but digital supply chain relationships could be more easily mapped, at least partially.

As a result, the framework and derived insights presented in this chapter could in-

form internal enterprise risk management policies and particularly management and

surveillance of digital suppliers. Additionally, it can provide regulators and govern-

ment organizations risk assessment framework and tools to manage growing national

cybersecurity risks.

It is important to note that a potential limitation of this chapter is the exclusion

of software companies that lacked supply chain data. This exclusion could limit

the generalizability of the results, especially for companies that may not disclose

supply chain information. Future research could explore alternative methods for

estimating supply chain relationships in order to increase the coverage and accuracy

of the analysis.
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Chapter 3

A Reinforcement Learning Supply

Chain Cyber Risk Model

3.1 Introduction

With the number and severity of cyberattacks rapidly increasing, cybersecurity is a

growing priority for companies and organizations around the world. According to the

FBI’s Internet Crime Complaint Center, the number of cyberattack complaints and

the cost of cyberattack losses have significantly increased over the past five years,

reaching over $10.3 Billion in total global economic losses last year alone (9). These

concerning trends underscore the need to develop reliable cyber risk assessment frame-

works and methodologies.

To address this challenge, industry stakeholders have been collecting vast amounts

of data on security incidents, vulnerabilities, and other risk factors. One approach

that has been promoted by various companies such as BitSight attempts to assess

the cyber maturity and risk of individual organizations by developing outside-in rat-

ings (6). These ratings are based on data and information that can be collected

on the organization from the public domain and are meant to provide insights on

specific internal security postures such as patching cadence and software updates.

More recently, Hu et al. (19) have shown that incorporating detailed information on

the enterprise’s digital supply chain significantly increases out-of-sample predictive
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power beyond a model that relies on outside-in ratings alone. However, one potential

disadvantage of these approaches is that they rely on feature engineering that is some-

what subjective and have no explicit assumptions with respect to attacker behavior.

Additionally, training these models requires massive data on historical cyberattacks

and related data breaches, which is often “censored” by limited and partial public

reporting by companies. In fact, it is fair to assume that only a portion of the actual

cyberattacks are ultimately reported (15, 20).

To overcome these weaknesses, this chapter presents an innovative approach for

developing a cyber risk assessment methodology that is based on the following el-

ements. The input to the model is a global supply chain network graph, denoted

by 𝐺 = (𝑉,𝐸). Each node 𝑣 ∈ 𝑉 in the graph represents a company and each di-

rected edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 signifies a known digital supplier-customer relationship,

where the company corresponding to node u provides a digital service to the com-

pany corresponding to node v. Additionally, each node in the graph is associated

with features that indicate the size of the corresponding company, and a probability

that decreases proportionally with the size, reflecting the likelihood of a successful

direct attack on the company. Every directed edge (𝑢, 𝑣) in the graph has a product

type feature corresponding to the specific digital service provided between the two

nodes, and an additional attack probability that exploits the product type offered by

node u to node v, assuming that node u was already compromised. Given this supply

chain graph, we introduce a theoretical attacker that gains reward proportional to the

size of any newly breached company and aims to collect as much reward as possible

over a finite time horizon. However, the theoretical attacker does not know the full

supply chain graph and is assumed to only see local information such as the set of

currently accessible nodes from the current node. By repeatedly exploring accessible

edges and attempting to move along them to additional nodes in the graph, the the-

oretical attacker discovers increasingly rewarding paths throughout the supply chain

graph. Once the attacker is fully trained, cyber risk scores are generated by exam-

ining which companies the trained attacker chooses to target; for example frequently

attacked companies are likely high-value targets.
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In this chapter, we empirically implement and validate this approach by leverag-

ing a self-constructed dataset of over 13,000 companies related to the Retail sector,

along with each company’s associated supply chain relationships. After training a

theoretical attacking agent inside this supply chain network using deep reinforcement

learning (RL) algorithms, the fully trained attacker then simulates attacks, yielding a

risk score for each individual company in the network. This score corresponds to the

relative number of breaches the company experiences in simulation. We can evaluate

model performance by comparing the generated scores to real world breach incident

data. Notably, there is a highly statistically significant difference in the distribution

of risk scores between the subset of companies that experienced a cyberattack and

the subset of companies that did not. Additionally, the simulated risk scores also

have predictive power. The risk scores achieve nearly the same out-of-sample cyber-

attack detection power as a model that uses outside-in ratings, and outperform the

outside-in model when the risk scores are added as an additional feature. Because

the general attacker model is validated by real world breach data and holds predictive

power, this model provides a new tool for assessing cyber risk and can contribute to

the development of more effective risk assessment strategies to combat the growing

threat of cyberattacks.

3.2 Literature Review

3.2.1 Cyber Risk Assessment

Historically, researchers have performed cyber risk assessment by creating a variety

of supervised and unsupervised machine learning models. For example, BitSight re-

cently performed a study across thousands of organizations comparing its ratings data

between the organizations that experienced a cybersecurity incident and those that

did not, and found statistically significant correlations between specific BitSight rat-

ings and the likelihood of a cybersecurity incident (5). The research performed by Hu

et al. (19) similarly predicts enterprise cyber risk by training on a labeled dataset of
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breached versus not breached companies. Other models such as the previous chapter

use unsupervised clustering methods to detect anomalies and high risk companies.

To the best of our knowledge, there is no work that uses RL approaches to develop

predictive risk assessment models with respect to cyberattack breaches. A recent re-

view paper performed a broad survey of RL approaches developed for cybersecurity

and found that current applications are generally limited to defending against cy-

berattacks (28). For example, in one use case, an RL methodology was used to

develop an approach to protect against data infusion attacks in autonomous vehicles

(31). The model learns to make decisions based on the current state of the vehicle

to ensure safety in dynamically changing environments. There are also several ap-

plications of successful RL-based autonomous detection systems to monitor network

traffic and system activity for suspicious behavior or policy violations (48). Finally,

one interesting application of RL is the development of autonomous solutions for net-

work penetration testing (36). Penetration testing a common task in cybersecurity

that involves simulating a controlled attack on a computer system to find exploitable

vulnerabilities. The paper frames penetration testing as a Markov decision process

where network topologies represent states, available exploits represent actions, and

breached machines give rewards. The researcher implements a variety of RL algo-

rithms that find optimal attack paths in a small network. Unlike the autonomous

penetration testing paper which focuses on generating attack paths in a single com-

puter network, we focus on predicting cyber risk across thousands of companies in a

supply chain. Nevertheless, we adopt themes from the penetration testing paper such

as framing the general attacker model as a Markov decision process with potential

states, actions, rewards, and transitions.

3.2.2 Reinforcement Learning

This section provides a background on the existing RL literature. RL is a type of

machine learning that optimizes decision making in an uncertain environment by

rewarding good actions and penalizing costly ones (41). The problem is interesting

because in most realistic environments, a single action not only affects the immediate
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reward but also the next state of the environment and therefore all future rewards.

As a result, the model must learn through trial-and-error what sequence of actions

produces the most long-term reward in a constantly changing environment. In recent

years there have been many successful applications of RL ranging from Facebook’s

push notification algorithm (14), to autonomous navigation of high-altitude balloons

(4), to models that demonstrate superhuman proficiency in complicated games such

as Chess and AlphaGo (38).

RL problems are typically modeled in the form of a Markov decision process, which

is a mathematical framework used for decision-making problems in which outcomes

are partly random and partly under the control of a decision-maker. This model is

defined by a set of states 𝑆, a set of actions 𝐴, a reward function 𝑅(𝑠, 𝑎, 𝑠′) that

specifies the immediate reward for taking an action 𝑎 in state 𝑠 and transitioning to

state 𝑠′, and a transition function 𝑃 (𝑠′ | 𝑠, 𝑎) that describes the probability of moving

from one state to another after taking an action. Under the Markov decision process

tuple (𝑆,𝐴,𝑅, 𝑃 ), an agent learns a policy 𝜋(𝑠) that specifies which action to take

when in state 𝑠. The goal of the agent is to find an optimal policy 𝜋* which maximizes

the expected sum of rewards over a possibly infinite time horizon 𝑇 :

𝜋* = argmax
𝜋

E

[︃
𝑇∑︁
𝑡=0

𝑅𝑡 | 𝜋

]︃
(3.1)

Under the RL paradigm, the agent does not have complete knowledge of the

Markov decision process, and its goal is to learn the optimal policy and underlying

model dynamics through experience with the environment. Specifically, the agent

learns through an iterative process of observing the current state, taking an action,

and receiving a reward. This crucial agent-interaction loop is shown in Figure 3-1,

where at some time step 𝑡 an agent performs an action 𝑎𝑡 that produces an immediate

reward signal 𝑟𝑡 and an updated environment state 𝑠𝑡.

Once an agent is trained, it is possible to evaluate performance by initializing the

agent at some point in the environment and then calculating how much reward it

accumulates over time. A well-trained agent should consistently accumulate a large

amount of reward.
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Agent

Environment

Action
𝑎𝑡

Reward, State
𝑟𝑡, 𝑠𝑡

Figure 3-1: Agent-interaction loop

Tabular Methods

An agent must discover through trial-and-error which policy yields the most reward.

One of the most foundational algorithms for learning this optimal policy is called

Q-Learning (44). This algorithm works by creating a “Q-table” of state-action values

denoted as 𝑄(𝑠, 𝑎). The Q-table has a row for every state, a column for every action,

and each cell contains the estimated value for each state-action combination. At

first, the Q-table is randomly initialized, but over repeated interactions with the

environment the Q-table converges to the true value of each state-action combination.

Once the Q-table has converged, choosing the most rewarding action for any state

provides the optimal policy:

𝜋* = max
𝐴

𝑄(𝑠, 𝑎) (3.2)

Q-Learning is one of the most famous RL algorithms because there are mathemat-

ical guarantees the Q-table converges to the true values under certain assumptions

such as a steady exploration policy that samples all cells. Although Q-Learning is

one of the only algorithms with convergence guarantees, the main downside lies in its

requirement to enumerate every single state-action pair in a Q-table. For example, it

would be computationally infeasible to use Q-Learning in a complicated environment

like chess, where there are approximately 1043 possible board configurations, and each

configuration has many possible actions (37).
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Approximate Value Methods

To address the key limitation of enumerating every state-action combination, ap-

proximate value algorithms use a function approximator, such as a neural network,

to estimate the Q-values for each action based on the state. To provide a specific

example, consider the simple grid environment shown in Figure 3-2. In this environ-

ment, the world is represented as a two-dimensional grid of cells where each individual

cell has a binary entry (indicated by a red “X”). Since there are 41 cells, and each cell

has a binary entry, there are in total 241 possible configurations of states. Further-

more, the agent (indicated by a green stick figure) can perform four possible actions

of moving right, left, up, or down.

X

X X

X

Figure 3-2: Example grid environment

Instead of creating a Q-table with 241 rows and 4 columns, we can introduce a

parameter 𝜃 for each individual cell in the grid and each individual action. In this

new representation of the environment, there are only 41 + 4 parameters to solve.

Once the correct parameters are found the Q-values can be directly recovered from:

𝜋* = max
𝐴

𝑄𝜃(𝑠, 𝑎) (3.3)

The family of algorithms that iteratively solves the parameterized Q-table is known

as approximate value iteration. Unfortunately, vanilla approximate value iteration
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algorithms are often extremely unstable in practice (41). To improve performance,

researchers have developed many subtle algorithmic improvements to tackle various

instability issues. For example, the famous Deep Q-Network (DQN) is a popular ap-

proximate value iteration algorithm that uses a deep neural network to approximate

the Q-values. (26). DQN combines parameterized Q-Learning with experience relay,

where the agent stores past experiences in a replay buffer and samples from it to up-

date the Q-network. However, DQN suffers from a phenomenon called overestimation

bias, which can result in suboptimal policies. To overcome this limitation, researchers

have proposed several variants of DQN, including Double DQN (42), Dueling DQN

(43), and Rainbow DQN (17). These variants address the overestimation issue in

different ways, such as modifying the Q-Learning update rule to avoid overestima-

tion (Double DQN), using a separate neural network to estimate the value of each

action (Dueling DQN), or combining multiple of the proposed variants into a sin-

gle algorithm (Rainbow DQN). Although DQN and variants do not have theoretical

guarantees and can be unstable during training, they have demonstrated impressive

empirical performance across a wide range of RL tasks (22).

Policy Space Methods

The previously described algorithms find the optimal policy by randomly initializing

a value function, iteratively improving the parameters of the value function until

convergence, and then returning the optimal policy by taking the argmax of the

value function. Instead of learning a value function and then deriving a policy from

it, policy space methods focus on directly learning a single optimal policy. To do

so, these algorithms create a parameterized policy function 𝜋(𝑎|𝑠; 𝜃) that maps each

state to an action, and then updates the parameters 𝜃 using gradient ascent on the

expected sum of rewards E [𝑅𝑡 | 𝜃]:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡∇E [𝑅𝑡 | 𝜃𝑡] (3.4)

Figure 3-3 visually demonstrates the difference between approximate value meth-

ods and policy space methods. The algorithm on the left side of the figure iteratively
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learns a value function 𝑄𝜃(𝑠, 𝑎) while the algorithm on the right side of the figure

iteratively learns a policy 𝜋(𝑎|𝑠; 𝜃).

Environment Environment

State, Reward

Update 𝑄𝜃(𝑠, 𝑎)

Action

State, Reward

Update 𝜋(𝑎|𝑠; 𝜃)

Action

Figure 3-3: Value-based algorithm (left) and policy-based algorithm (right)

Once the parameters of a policy space method converge, the optimal policy di-

rectly follows. This algorithm is the most foundational policy space method and is

known as REINFORCE (46). A REINFORCE algorithm is easy to compute and

simpler to understand, but the gradient ascent process often creates a very large vari-

ance that requires many samples to converge (47). To solve this problem effectively,

researchers have combined value-based methods and policy-based methods into a sin-

gle algorithm known as the “actor-critic” framework. In actor-critic algorithms, the

critic function approximator estimates the parameterized value function and the ac-

tor function approximator solves the policy gradient ascent problem in the direction

suggested by the critic. This algorithm is shown in Figure 3-4. Overall, actor-critic

algorithms offer a balance between the advantages of value-based and policy-based

methods, and in practice often offer better performance than either method alone.

Additionally, there are many variants such as advantage actor-critic (A2C) and asyn-

chronous actor-critic (A3C) that improve upon the basic actor-critic framework by

using a parallelized architecture (25).
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Environment

State, Reward
“Actor”

State, Reward
“Critic”

Update 𝜋(𝑎|𝑠; 𝜃) Update 𝑄𝜃(𝑠, 𝑎)

Action

Figure 3-4: Actor-critic algorithm

State-of-the-art RL algorithms improve on the actor-critic framework by opti-

mizing a seemingly small hyperparameter. Recall policy space parameters update

through the gradient ascent Equation (3.4). At each iteration, the policy is updated

by a learning rate 𝛼𝑡. If the learning rate is too small the algorithm converges slowly,

and if the learning rate is too large the algorithm converges prematurely. Finding the

correct learning rate schedule is a difficult problem, but many recent algorithms such

as trust region policy optimization (TRPO) (34) and proximal policy optimization

(PPO) (35) efficiently balance the learning rate to ensure smooth, stable training.

3.3 Methodology

The input data for the general attacker model consists of a global supply chain network

graph, denoted by 𝐺 = (𝑉,𝐸). The graph consists of individual nodes 𝑣 ∈ 𝑉 , where

each node corresponds to a company. Additionally, each node is associated with

a feature that signifies the size of the respective company, and a probability that

represents the difficulty of directly attacking the company. This probability is referred

to as the internal penetration probability and decreases proportionally to the size of

the company. Each directed edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 signifies a known digital supplier-
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customer relationship, where the company corresponding to node u provides a digital

service to the company corresponding to node v. Every directed edge has a product

type feature that corresponds to the specific digital service provided, as well as a

probability indicating the ease of attack propagation between the two nodes, denoted

as the edge propagation probability. The edge propagation probability is influenced by

two factors. First, the directionality of the edge plays a role, with attacks targeting

downstream customers having a higher success rate than those targeting upstream

suppliers, due to differences in trusted cybersecurity relationship controls. Second,

the product type feature for each edge also affects the probability, as riskier types of

digital services have less secure systems, resulting in a higher probability of successful

attacks. To summarize, the input data for the general attacker model consists of a

global supply chain graph, where every node corresponds to an individual company

with size and internal penetration probability features, and every edge corresponds

to a digital supplier-customer relationship between two nodes with directionality,

product type, and edge propagation probability features.

We introduce a theoretical attacking agent that operates within this supply chain

graph, and develop a Markov decision process to model its behavior. In the context

of a Markov decision process, (S) represents the set of states in the environment, (A)

represents the set of actions available to the agent, (R) represents the reward function

that measures the desirability of a state-action pair, and (P) represents the transition

probabilities that determine the likelihood of moving from one state to another after

taking an action.

A state 𝑠 ∈ 𝑆 is defined as the collection of all known information for each node in

the network. Specifically, the state includes for each node if the node is compromised,

accessible through supply chain connections, or neither compromised nor accessible.

Under this definition, the agent does not know the full supply chain graph and is

assumed to only see local information for the set of currently compromised and acces-

sible nodes. Importantly, Equation (3.5) indicates the state space grows exponentially

according to the number of nodes in the network, suggesting deep RL algorithms are

necessary.
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|𝑆| ∈ 𝑂(4𝑛) (3.5)

At each time step, an agent can perform an attacking action against any accessible

node in the network. Every attack incurs a fixed cost, but each successful attack

gains value representing reward for breaching the new company, which is linearly

proportional to the size of the newly breached company. Therefore, the reward for

any attacking action is determined by the value of the resulting state transition minus

the cost of an action.

𝑅(𝑠′, 𝑎, 𝑠) = value(𝑠′, 𝑠)− cost(𝑎) (3.6)

Finally, the stochastic transition function reflects supply chain dynamics and de-

termines how the environment evolves over time. Specifically, if the agent is currently

at node u and attacks node v, the internal penetration probability associated with

node v and the edge propagation probability associated with edge (𝑢, 𝑣) combine to

determine the likelihood of a successful attack and subsequent state transition. If the

attack is successful, the attacked node becomes compromised, and the agent gains

access to all nodes accessible from the newly compromised node. Conversely, if the

attack is unsuccessful, the environment remains in the same state at the next time

step. Given enough time, an attacker will compromise every company in the network,

so we restrict the agent to maximize reward over a finite time horizon T.

𝑃 (𝑠′ | 𝑠, 𝑎) = internal penetration(𝑣) · edge propagation(𝑢, 𝑣) (3.7)

Under this Markov decision process, the theoretical attacking agent aims to learn

a policy that maximizes the expected cumulative reward over a finite time horizon

T. To achieve this, the agent employs a deep RL algorithm that repeatedly interacts

with the environment by selecting actions, observing state transitions, and receiv-

ing rewards. The learning process consists of multiple episodes, where each episode

begins with a random company being chosen as compromised, its immediate supply

chain connections labeled as accessible, and every other node labeled as neither com-
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promised nor accessible. Figure 3-5 demonstrates the start of an episode in a small

supply chain network. Notice the agent begins at node 4 which is compromised, the

immediate supply chain connections (nodes 1, 3, and 8) are labeled as accessible in

blue, and every other node is labeled as neither compromised nor accessible. After

the episode initialization, the agent takes actions according to its current policy until

the time horizon T is reached or all nodes in the network are compromised. At each

time step, the agent updates its estimate of the policy using the observed reward and

state transition. During the training process, the attacker learns to explore the sup-

ply chain graph, exploit the learned policy to make increasingly rewarding decisions,

and adapt its strategies based on the feedback from the rewards received. Overall,

the training process of the theoretical attacking agent involves iteratively updating

its policy based on observed state transitions and rewards, until it converges to the

optimal policy that maximizes the expected cumulative reward.

1

2

3

5

6

7

8

9

4

𝑃 (4 → 1) = internal penetration(1) · edge propagation(4,1)
𝑃 (4 → 3) = internal penetration(3) · edge propagation(4,3)
𝑃 (4 → 8) = internal penetration(8) · edge propagation(4,8)

Figure 3-5: Episode initialization in an example supply chain network
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Once the attacker is fully trained, we calculate risk scores by simulating agent ac-

tions under a Monte Carlo approach. That is, risk scores are generated by randomly

initializing a compromised company in the network and examining which companies

are ultimately compromised during an episode. This process is shown in Algorithm 1.

After the simulation episodes, each company’s final cyber risk score is defined as the

proportion of all simulation episodes in which a breach event occurs.

Algorithm 1 Monte Carlo risk simulation
1: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1, 2, . . . , 𝑁 do

2: Randomly breach a starting company.

3: Simulate agent actions for 𝑇 time steps.

4: return which companies were breached during the episode.

5: end for

3.4 Empirical Validation

We implement the general attacker model using an integrated dataset from two data

sources: BitSight (6) and the Veris Community Database (12). The dataset contains

all 8,265 companies that are classified as belonging to the Retail sector within the

BitSight database between the time period May 2017 to April 2020. In addition,

we consider all companies inside the Retail sector’s immediate supply chain network.

More specifically, for each company in the Retail sector, all of the company’s suppliers

as well as suppliers of these suppliers are added to the dataset, reference Figure 3-6.

After adding these suppliers to the original Retail companies, there are in total 13,832

companies in the final dataset.

For each company in the dataset, we have information including employee count,

digital supply chain relationships, and historical breach incidents. The digital supply

chain relationships between companies are part of the BitSight database. For each

digital supply chain relationship, the BitSight database also contains information on

the types of products supplied between supplier and customer. There are 74 total
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Retail company 1st-degree supplier 2nd-degree supplier

Figure 3-6: Adding a Retail company and its suppliers to the dataset

product types, including products ranging from payment processing, to medical sys-

tems, to web application services (see Appendix B for more details). The historical

breach incident data reports all documented cyberattacks against the companies in

the dataset. In particular, 388 companies (2.81%) were breached at some point over

the entire three-year time horizon of interest. Although the historical breach incident

data are not features of the general attacker model, the data will be used to evaluate

performance. Table 3.1 describes some summary statistics of the dataset.

Feature Data (n = 13,832)

Employee Count, Mean (SD) 7,160 (44,002)

№ Total Connections, Mean (SD) 58 (251)

№ Outgoing Connections, Mean (SD) 30 (237)

№ Incoming Connections, Mean (SD) 30 (59)

Table 3.1: Summary of data used in the attacker model
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Using the employee count and digital supply chain information as input, we gen-

erate a directed graph 𝐺 = (𝑉,𝐸). Every node 𝑣 ∈ 𝑉 corresponds to a company

with a size feature that is estimated through the company’s number of employees.

The internal penetration probability feature for each node is modeled with a power

law function proportional to the size of a company. That is, a larger company is

significantly more difficult to directly attack than a smaller company, as shown in

Equation (3.8).

Internal Penetration = min
(︀
.25, Size−.25

)︀
(3.8)

Every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 corresponds to a digital supply chain connection di-

rected from a supplier node to a customer node. The edge propagation probabilities

for each edge are defined in the following manner. First, the directionality feature

plays a role, as attacks targeting downstream supply chain customers have a tenfold

higher probability of success than attacks targeting upstream suppliers. Second, the

product type feature is modeled by binning the BitSight product types into three

categories: software edges, risky sector edges, and safe sector edges (reference Ap-

pendix B). Software edges compromise all product types related to software including

products such as Domain Name System and database hosting. Risky sector edges

compromise all product types related to historically dangerous cyber sectors such as

Finance and Healthcare. Safe sector edges compromise all remaining product types

including Education and Construction. Compared to the baseline safe sector edges,

the risky sector edges have a 50% higher edge propagation probability and the soft-

ware edges have a 100% higher edge propagation probability. In the end, the final

edge propagation probability for each edge in the graph is simply the directionality

feature multiplied by the product type feature.

It is important to emphasize that the internal penetration and edge propagation

probabilities were not manipulated to improve the results of our experiments. In-

stead, they were predetermined using general domain knowledge and established as

part of a transparent and reproducible methodology. The power law function that

models the internal penetration probability is based on the observation that larger
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companies tend to have more robust cybersecurity measures, making them less sus-

ceptible to direct attacks. We set a maximum internal penetration probability of 0.25,

which represents the potential vulnerability of a very small company. Similarly, we

model the edge propagation probabilities such that the maximum combination of any

internal penetration probability and edge propagation probability is 0.5. Therefore,

these probabilities were not designed to skew our results, but rather to enhance the

reliability and validity of our findings.

Using the supply chain graph as input, we implement the previously described

Markov decision process as an OpenAI gym environment (29). OpenAI gym is a pop-

ular RL toolkit with many benchmark environments and algorithms, and the frame-

work allows easy integration with popular open source RL algorithms. In particular,

this section integrates the proximal policy optimization (PPO) algorithm from the

Stable Baselines3 package (30) due to its stability and high performance during train-

ing. Hyperparameter tuning is performed using the Optuna package with a budget of

one-hundred trials and a total time steps limit of one million during each individual

trial (1). After selecting the hyperparameters with the highest average reward over

one-hundred evaluation episodes, a final model is trained and monitored. This model

trained until average episode reward converged (23). As seen in Figure 3-7, training

stabilizes quickly after approximately 5 million steps, and the termination point is

selected as the highest performing point around 30 million steps.

Figure 3-7: Average episode reward across training
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Using this termination point, Monte Carlo simulations are run to generate cyber

risk scores for each individual company in the dataset. We set the number of Monte

Carlo episodes to 𝑁 = 100, 000 and create landing probabilities for randomly initial-

izing each simulation. The landing probabilities for each company i are defined in

Equation (3.9) and reflect how supply chain cyberattacks typically initialize in larger

companies. After all Monte Carlo episodes have run, each company’s final risk score

is defined as the proportion of simulations in which a breach event occurs.

Landing Probability𝑖 =
Size.25𝑖

13,832∑︀
𝑗=1

Size.25𝑗

(3.9)

3.5 Results

3.5.1 Distribution of Risk Scores

Because the integrated dataset contains historical breach information, we can evaluate

the theoretical attacker approach by comparing the distribution of simulated risk

scores between the subset of companies that experienced a cyberattack and the subset

of companies that did not experience a cyberattack. As a preliminary exploration of

the results, Figure 3-8 demonstrates the distributions of risk scores between the two

subsets of companies, with the breached subset displayed in red. As seen in the figure,

most companies have a very low risk of supply chain cyberattack, while only a few

companies have a very high risk of supply chain cyberattack. This result reflects

empirical evidence where only a small proportion of companies are attacked every

year. Furthermore, the average risk score (depicted as vertical dotted lines) for the

subset of breached companies is higher as expected.

Although Figure 3-8 visually shows a difference in risk scores between the two sub-

sets of entities, it would be beneficial to understand if this difference is significant. To

do so, we perform two statistical tests. The first test is a standard independent t-test

comparing two independent distributions. The test evaluates whether the two means

are statistically different from each other when the dependent variable is normally
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Figure 3-8: Distribution of risk scores between breached and not breached companies

distributed. We also perform the Mann-Whitney U test, which is the nonparametric

version of the independent t-test. Unlike the independent t-test, the Mann-Whitney

U test does not assume that the data is normally distributed or that the variances

of the two distributions are equal. Therefore, it is used when the assumptions of the

independent t-test are not met. The results of both tests, which are displayed in

Table 3.2, demonstrate there are extremely significant differences (p-values approx-

imately zero) in risk scores between the two subsets of companies regardless of the

statistical test.

Statistical Test P-Value

Independent t-test 4.0× 10−48

Mann-Whitney U test 7.3× 10−64

Table 3.2: Results of statistical tests
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As a final comparison of distributions, we can also investigate the cumulative

distribution function (CDF) of risk scores between the two subsets of companies. We

observed that the CDF of non-breached breached companies dominates at every point,

as depicted in Figure 3-9. This strong statistical ordering property is recognized as

first-order stochastic dominance (49).

Figure 3-9: First-order stochastic dominance

3.5.2 Cyberattack Detection Power

To determine the predictive power of the risk scores we employ the methodology

outlined in Hu et al (19). Three machine learning models are created to predict the

likelihood of a cyberattack between the one-year time period May 2019 to April 2020.

The first model (Model 1) includes as features for each company basic entity infor-

mation, specifically sector and number of employees, as well as the newly developed

cyber risk scores. The second model (Model 2) includes as features for each company

basic entity information as well as BitSight outside-in ratings. The BitSight outside-in
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ratings are meant to offer data-driven measures of cyber risk for individual companies

based on externally observable information, and contain component ratings for spe-

cific company internal processes such as patching cadence and software updates on

a scale from 300 to 820 with higher ratings representing better internal security. We

leverage the outside-in ratings by calculating the average rating of each component

over the two-year time horizon May 2017 to April 2019. The third model (Model 3)

includes as features for each company basic entity information, BitSight outside-in

ratings, and the newly developed cyber risk scores. Appendix C describes all the

features in the three models. For each model, we split the dataset into stratified 70%

training and 30% testing sets and evaluate the area under the curve (AUC) metric

with respect to whether or not each company in the test set experienced a cyber

breach event. The algorithm for this binary classification problem is XGBoost (10)

and 5-fold cross validation on the training set is performed to find the optimal model

hyperparameters. This process is repeated on 1000 random splits of the dataset to

ensure stable performance. The results of all three models are shown in Table 3.3.

AUC

Model 1: 77.9%

Basic entity information and risk scores 77.7% - 78.1%

Model 2: 79.0%

Basic entity information and BitSight ratings 78.8% - 79.2%

Model 3: 79.5%

Basic entity information and BitSight ratings and risk scores 79.4% - 79.7%

Table 3.3: Out-of-sample performance for three cyberattack detection models

As seen in the table, the first model that only includes as features basic entity

information and the cyber risk scores performs competitively with the second model,

which represents a traditional outside-in ratings model. Furthermore, the third model

which includes the cyber risk scores as an additional feature outperforms the tradi-
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tional outside-in ratings model at the 95% confidence level. To gain further insights

into the contribution of each feature in the third model, a Shapley plot is utilized.

The Shapley plot quantifies the marginal contribution of the top 10 features towards

prediction performance, and reveals that the simulated cyber risk scores that come

from the general attacker model are the most important feature, as demonstrated in

Figure 3-10.

Figure 3-10: Shapley feature importance and impact for the third model

3.6 Conclusions and Discussion

In this chapter, we propose a novel cyber risk assessment approach that is based on a

generic attacker model. This type of model is interesting because it represents how an

intelligent attacker might target companies in the supply chain. Furthermore, unlike

existing supervised learning approaches to cyber risk assessment, the general attacker

approach does not require proprietary outside-in ratings or disclosure of censored

historical breaches. After empirically implementing this approach on a dataset of over

13,000 companies related to the Retail sector and training the attacker using deep RL

algorithms, we compare the distribution of simulated risk scores between the subset of
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companies that experienced a real-world cyberattack and the subset of companies that

did not, and find that the results of the analysis are highly statistically significant.

Additionally, the simulated risk scores hold predictive power by not only performing

competitively with a traditional outside-in cyber ratings model despite using data

that is much more accessible to individual companies but also outperforming the

outside-in model when including the risk scores as an additional feature.

Although the model is the first of its kind, there are many potential developments

for future work. Theoretically, the model could benefit from algorithmic improve-

ments. For example, the current implementation uses fully connected neural networks

following the conventions of Stable Baselines3. However, it is likely more sophisti-

cated approaches such as graph neural networks might improve model performance.

Practically speaking, it would also be beneficial to fine tune the internal penetration,

edge propagation, and landing probabilities. These probabilities were created using

general domain knowledge, but a more refined and data-driven approach would likely

lead to even better model performance.
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Appendix A

Features used in clustering algorithms

Entity features

• Employee count (1)

• BitSight outside-in ratings (21)

– Overall entity rating

– Botnet infections rating

– Breach history rating

– TLS/SSL certificate rating

– DKIM use rating

– DNSSEC use rating

– Outgoing communications from mobile devices rating

– Outgoing communications from desktop devices rating

– HTTP headers rating

– Insecure systems rating

– Malware servers rating

– Open ports rating

– Potentially exploited rating

– Unsupported server software rating

– Spam rating

– SPF use rating
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– SSL use rating

– Unwanted application rating

– Compromised system rating

– Patching cadence rating

– File sharing behavior rating

Supply chain features

• Local supply chain network features (4)

– Number of customers

– Number of third-party suppliers

– Number of fourth-party suppliers

– Entity local size (number of customers + third-party suppliers)

• Sector features (48)

– Number Finance customers / suppliers

– Number Energy customers / suppliers

– Number Legal customers / suppliers

– Number Business Services customers / suppliers

– Number Healthcare customers / suppliers

– Number Insurance customers / suppliers

– Number Real Estate customers / suppliers

– Number Education customers / suppliers

– Number Technology customers / suppliers

– Number Tourism customers / suppliers

– Number Retail customers / suppliers

– Number Telecommunications customers / suppliers

– Number Engineering customers / suppliers

– Number Media customers / suppliers

– Number Transportation customers / suppliers

– Number Manufacturing customers / suppliers
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– Number Consumer Goods customers / suppliers

– Number Utilities customers / suppliers

– Number Aerospace customers / suppliers

– Number Food Production customers / suppliers

– Number Government customers / suppliers

– Number Credit Union customers / suppliers

– Number Nonprofit customers / suppliers

– Number Unknown customers / suppliers
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Appendix B

Product type risk categories

Each digital supply chain connection between a supplier and customer is further

classified according to its product type. There are 74 total product types in the

BitSight database including the following:

“Shipping”, “Academic and Education”, “Email”, “Construction / Industrial”, “Quality Management”, “Help

Desk”, “Sustainability / Green Enterprise”, “Performance Management”, “Commerce”, “Order Management”, “Hard-

ware”, “Audio / Video Delivery”, “Inventory Management”, “Nonprofit / Fund Management”, “Expense Management”,

“Change Management”, “Manufacturing / Engineering”, “Procurement Solutions”, “Video Platform”, “SCM (Supply

Chain Management)”, “IT Governance”, “Payment Processor”, “Security Services”, “Business Solutions”, “Produc-

tivity Solutions”, “Financial Analytics”, “Relationship Management”, “Property Management”, “HR Management”,

“Service and Field Support”, “Mapping”, “BPM (Business Process Management)”, “Reporting”, “Medical / Health-

care”, “Legal and Professional Services”, “Ad Network”, “Media”, “GRC (Governance Risk Compliance)”, “Retail”,

“Analytics”, “Telephony”, “Enterprise Resource Planning”, “Call Center”, “Marketing Performance Management”,

“Business Intelligence”, “CMS (Content Management System)”, “Virtualization Software”, “Remote Server Solutions”,

“Back-Up and Recovery”, “Mobile Technologies”, “Network Management”, “Virtualization Hosting”, “Analytics and

Monitoring”, “Disaster Recovery”, “Software Configuration Management”, “Search Engines”, “Social Media”, “Operat-

ing Systems and Languages”, “Enterprise Mobility Management”, “CDN (Content Delivery Network)”, “Application

Management”, “SIEM (Security Information and Event Management)”, “Networking”, “Middleware”, “IT Operations”,

“Web Application”, “Hosting”, “Database”, “Enterprise Applications”, “Mainframe”, “Electronic Data Exchange”, “IT

Management”, “DNS (Domain Name System)”, “Server Technologies”

To create the risk categories that are used in the final model, we bin the product

types into three categories based on domain knowledge: safe sector edges, risky sector

edges, and software edges. The first 19 product types compromise the safe sector

edges, the next 26 product types compromise the risky sector edges, and the final 29

product types compromise the software edges.
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Appendix C

Features used in cyberattack

detection models

Model 1

1. Employee count

2. Sector

3. Cyber risk scores (general attacker model output)

Model 2

1. Employee count

2. Sector

3. Botnet infections rating

4. TLS/SSL certificate rating

5. DKIM use rating

6. DNSSEC use rating

7. Outgoing communications from mobile devices rating

8. Outgoing communications from desktop devices rating

9. HTTP headers rating

10. Insecure systems rating
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11. Malware servers rating

12. Open ports rating

13. Potentially exploited rating

14. Unsupported server software rating

15. Spam rating

16. SPF use rating

17. SSL use rating

18. Unwanted application rating

19. Compromised system rating

20. Patching cadence rating

21. File sharing behavior rating

Model 3

1. Employee count

2. Sector

3. Cyber risk scores (general attacker model output)

4. Botnet infections rating

5. TLS/SSL certificate rating

6. DKIM use rating

7. DNSSEC use rating

8. Outgoing communications from mobile devices rating

9. Outgoing communications from desktop devices rating

10. HTTP headers rating

11. Insecure systems rating

12. Malware servers rating

13. Open ports rating

14. Potentially exploited rating

15. Unsupported server software rating

16. Spam rating

58



17. SPF use rating

18. SSL use rating

19. Unwanted application rating

20. Compromised system rating

21. Patching cadence rating

22. File sharing behavior rating
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