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Abstract

The linear response theory (LRT) provides a set of powerful mathematical tools for
the analysis of system’s reactions to controllable perturbation. In applied sciences,
LRT is particularly useful in approximating parametric derivatives of observables in-
duced by a dynamical system. These derivatives, usually referred to as sensitivities,
are critical components of optimization, control, numerical error estimation, risk as-
sessment and other advanced computational methodologies. Efficient computation
of sensitivities in the presence of chaos has been a major and still unresolved chal-
lenge in the field. While chaotic systems are prevalent in several fields of science and
engineering, including turbulence and climate dynamics, conventional methods for
sensitivity analysis are doomed to failure due to the butterfly effect. This inherent
property of chaos means that any pair of infinitesimally close trajectories separates
exponentially fast triggering serious numerical issues.

A new promising method, known as the space-split sensitivity (S3), addresses the
adverse butterfly effect and has several appealing features. S3 directly stems from
Ruelle’s closed-form linear response formula involving Lebesgue integrals of input-
output time correlations. Its linearly separable structure combined with the chain
rule on smooth manifolds enables the derivation of ergodic-averaging schemes for
sensitivities that rigorously converge in uniformly hyperbolic systems. Thus, S3 can
be viewed as an LRT-based Monte Carlo method that averages data collected through
regularized tangent equations along a random orbit. Despite the recent theoretical
advancements, S3 in its current form is applicable to systems with one-dimensional
unstable manifolds, which makes it useless for real-world models.

In this thesis, we extend the concept of space-splitting to systems of arbitrary di-
mension, develop generic linear response algorithms for hyperbolic dynamical systems,
and demonstrate their performance using common physical models. In particular, this
work offers three major contributions to the field of nonlinear dynamics. First, we
propose a novel algorithm for differentiating ergodic measures induced by chaotic
systems. These quantities are integral components of the S3 method and arise from
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the partial integration of Ruelle’s ill-conditioned expression. Our algorithm uses the
concept of quantile functions to parameterize multi-dimensional unstable manifolds
and computes the time evolution of measure gradients in a recursive manner. We also
demonstrate that the measure gradients can be utilized as indicators of the differen-
tiability of statistics, and might dramatically reduce the statistical-averaging error in
the case of highly-oscillatory observables. Second, we blend the proposed manifold
description, algorithm for measure gradients, and linear decomposition of the input
perturbation, to derive a complete set of tangent equations for all by-products of
the regularization process. We prove that all the recursive equations converge ex-
ponentially fast in uniformly hyperbolic systems, regardless of the choice of initial
conditions. This result is used to assemble efficient one-step Monte Carlo algorithms
applicable to high-dimensional discrete and continuous-time systems. Third, we argue
that the effect of measure gradient could be negligible compared to the total linear re-
sponse if the model is statistically homogeneous. Consequently, one could accurately
approximate the sought-after sensitivity by evolving in time a single inhomogeneous
tangent that is orthogonal to the unstable subspace everywhere along an orbit. This
drastically reduces the computational complexity of the full algorithm.

Every major step of theoretical and algorithmic developments is corroborated by
several numerical examples. They also highlight aspects of the underlying dynam-
ical systems, e.g., ergodic measure distributions, Lyapunov spectra, spatiotemporal
structures of tangent solutions, that are relevant in the context of sensitivity analysis.
This thesis considers different classes of chaotic systems, including low-dimensional
discrete systems (e.g., cusp map, baker’s map, multi-dimensional solenoid map), or-
dinary differential equations (Lorenz oscillators) and partial differential equations
(Kuramoto-Sivashinsky and 3D Navier-Stokes system).

Thesis Supervisor: Qiqi Wang
Title: Associate Professor of Aeronautics and Astronautics, MIT

4



Acknowledgments

For of Him,

and through Him,

and to Him, are all things:

to whom be glory for ever.

Amen.

– Romans 11:36

Being a PhD student at MIT was an extremely rewarding and enjoyable part of my

life. Due to the outstanding rigor and large expectations, the path of every MIT

student is usually full of painful challenges and struggles. Therefore, the successful

conclusion of that long journey would not be possible without a number of people

that supported me academically, mentally and spiritually over the last few years.

First of all, I am grateful to my advisor, Prof. Qiqi Wang, who exposed me

to the staggering field of nonlinear dynamical systems. Qiqi’s invaluable support,

patience and belief in success of my research project led to this 300-page thesis. All

those hundreds of discussions I had with Qiqi did not only improve the quality of my

thesis, but also contributed to my personal growth as a research scholar.

I would like to thank the two other members of my Thesis Committee, Prof.

Johan Larsson and Prof. Semyon Dyatlov, for sharing their expertise in the field of

turbulence modeling and dynamical systems theory, and for mentoring me over the

course of my thesis research. By the same token, I would like to thank Prof. Jaime

Peraire and Prof. Adrián Lozano-Durán for reviewing my thesis and offering helpful

suggestions that led to a number of improvements of this long manuscript. I am

also grateful to Prof. Raúl Radovitzky, who supervised me at the early stage of my

doctoral program.

Some results presented in this thesis were obtained with the help of fellow stu-

dents and several other researchers. First, I would like to acknowledge the contribu-

tions of Nisha Chandramoorthy, who co-authored manuscripts included in Chapter

5



2 and Chapter 4. Nisha’s excellent thesis work provided theoretical background and

a number of starting points and research directions for my studies described in this

document. Second, I would like to thank Nikhil Oberoi, who provided a python code

for the turbulent channel flow. This enabled the completion of Chapter 7. Third,

I would like to thank Dr. Patrick Blonigan and Dr. Francesco Rizzi, who super-

vised me during my Summer 2022 internship at Sandia National Laboratories. I am

also grateful to several anonymous reviewers volunteering in the peer-review process.

Their comments significantly improved the quality of the submitted manuscripts as

well as my general understanding of the field.

Finishing this thesis would be infeasible without my family and best friends. I am

particularly grateful to my dear wife, Monika Śliwiak, for her unconditional love and

always being there for me. Unlike me, Monika always believed in a happy ending of

this journey. She was the one who perpetually supported me at every single stage

of my MIT life, in joyful and tough moments. We celebrated all success together,

and also we cried together when a failure came. I am thankful to my parents (Bar-

bara and Andrzej Śliwiak), parents-in-law (Agnieszka and Andrzej Wójcik), sisters

(Agnieszka Carewicz and Aleksandra Paszkowska) and their families, sister-in-law

(Elżbieta Nieciecka) and her family, for their continuous support. Finally, I would

like to thank my extended family and friends from MIT, Boston area and beyond:

the Bramowski family, the Kasperkiewicz family, Fr. Norbert M. Siwiński OFM

Conv., Fr. Jerzy Żebrowski OFM Conv., Fr. Jarosław Szumański, Basia Gałaj, Ania

Maziarz, Michał Papaj, Grzegorz Jarczok, members of ACSEL and ISN, members of

Polish Club at MIT.

This research was sponsored by the following programs and institutions: MIT

Department of Aeronautics and Astronautics, MIT Center for Computational Sci-

ence and Engineering, Predictive Science Academic Alliance Program 3 (PSAAP-3),

National Nuclear Security Administration, Air Force Office of Scientific Research,

Sandia National Laboratories, MIT Lincoln Laboratory (provided HPC resources

through MIT Supercloud), Lawrence Livermore National Laboratories (provided HPC

resources).

6



Contents

1 Introduction 21

1.1 Linear response of chaos and its applications . . . . . . . . . . . . . . 21

1.2 State of the art in the sensitivity analysis of chaotic systems . . . . . 25

1.3 Contributions of this work . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Thesis outline and corresponding journal publications . . . . . . . . . 33

2 Ergodic-averaging sensitivity analysis of one-dimensional chaos 35

2.1 Parameterized one-dimensional chaotic maps and their statistical de-

pendence on parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.1 Perturbations of the sawtooth map and their Lyapunov exponents 36

2.1.2 A family of cusp maps and their Lyapunov exponents . . . . . 38

2.1.3 Statistical QoI: long-time averages . . . . . . . . . . . . . . . . 39

2.2 Sensitivity analysis of one-dimensional maps . . . . . . . . . . . . . . 41

2.3 Computing SRB density gradients of one-dimensional maps . . . . . . 44

2.3.1 Interpretation of the density gradient iterative formula . . . . 44

2.3.2 Numerical examples of density gradients . . . . . . . . . . . . 47

2.4 Sensitivity as a sum of time correlations . . . . . . . . . . . . . . . . 50

2.4.1 Examples of sensitivity computation . . . . . . . . . . . . . . 50

2.4.2 Computational performance of the linear response algorithm . 51

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6.1 Binary floating point problem in simulating 1D maps . . . . . 56

2.6.2 Derivation of the linear response formula for 1D maps . . . . . 57

7



2.6.3 Derivation of an iterative procedure for the ergodic measure

gradient in 1D maps . . . . . . . . . . . . . . . . . . . . . . . 57

3 Differentiating ergodic measures on unstable manifolds 61

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Computing density gradients on one-dimensional manifolds . . . . . . 65

3.2.1 Line manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Approximating integrals of a highly oscillatory function . . . . 69

3.2.3 One-dimensional smooth manifolds . . . . . . . . . . . . . . . 73

3.3 Computing density gradients on general smooth manifolds . . . . . . 74

3.3.1 Derivation of the general formula . . . . . . . . . . . . . . . . 76

3.3.2 Example: a surface manifold . . . . . . . . . . . . . . . . . . . 79

3.4 Recursive computation for density gradients along trajectories implied

by multi-dimensional nonlinear transformations . . . . . . . . . . . . 86

3.4.1 A generic recursive procedure for evolving density gradients . 87

3.4.2 Example: evolution of a 1D manifold . . . . . . . . . . . . . . 89

3.5 Density gradients implied by coordinate charts: conclusion . . . . . . 90

3.6 SRB measure and its gradient: significance and definitions . . . . . . 91

3.7 Computing SRB density gradient for systems with one-dimensional

unstable manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.7.1 Derivation of the iterative formula . . . . . . . . . . . . . . . . 101

3.7.2 Numerical example: computing SRB density gradient on straight

unstable manifolds . . . . . . . . . . . . . . . . . . . . . . . . 104

3.8 Computing SRB density gradient for systems with general unstable

manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.8.1 Derivation of the iterative formula . . . . . . . . . . . . . . . . 107

3.8.2 General algorithm for systems with multi-dimensional unstable

manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.8.3 Numerical example: Monte Carlo integration . . . . . . . . . . 118

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8



3.10 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.10.1 Applying the simplified recursive formula for SRB density gra-

dient to 1D non-injective maps . . . . . . . . . . . . . . . . . 122

3.10.2 Probing the hyperbolicity of the Baker’s map . . . . . . . . . 125

4 Assessment of smooth and rough parameter dependence of statis-

tics in chaotic dynamical systems 129

4.1 Does the linear response really exist? . . . . . . . . . . . . . . . . . . 130

4.2 Onion map: Example of simple chaos with statistically rough behavior 131

4.3 SRB measure gradient as an indicator of the differentiability of statis-

tics of 1D chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4 Probing the differentiability of statistics of one-dimensional chaos . . 139

4.4.1 Visualizing the distribution of the ergodic measure gradient . 140

4.4.2 Hölder exponent test . . . . . . . . . . . . . . . . . . . . . . . 142

4.5 Generalization to multi-dimensional flows: Example of Lorenz 63 . . . 146

4.5.1 Uniform hyperbolicity and Ruelle’s formula of flows with one

positive LE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.5.2 Probing the differentiability of statistics of Lorenz 63 . . . . . 154

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.7 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.7.1 Validating the recursion for SRB measure gradient using Ulam’s

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.7.2 Singularity formation due to the onion map transformation . . 159

5 Generalized space-splitting algorithm for hyperbolic systems with

multidimensional unstable manifolds 163

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.2 General Ruelle’s linear response formula: fundamental aspects, practi-

cal consequences and S3 . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.3 Computation of the unstable contribution . . . . . . . . . . . . . . . 172

9



5.3.1 Reviewing critical concepts: measure-based parameterization,

integration by parts, and SRB density gradient . . . . . . . . 172

5.3.2 Derivation of recursions for the missing directional derivatives

and convergence study . . . . . . . . . . . . . . . . . . . . . . 176

5.4 Space-split algorithm for multi-dimensional hyperbolic system . . . . 184

5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6 Approximating the linear response of physical chaos 201

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.2 Space-split sensitivity (S3) method for chaotic flows . . . . . . . . . . 203

6.2.1 Numerical example: Lorenz 63 . . . . . . . . . . . . . . . . . . 208

6.2.2 Critical view on S3 . . . . . . . . . . . . . . . . . . . . . . . . 212

6.3 Unstable contribution: can we neglect that term? . . . . . . . . . . . 218

6.3.1 Empirical evidence of decaying components of the measure gra-

dient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.3.2 Impact of decaying components of the measure gradient . . . . 224

6.4 Sensitivity analysis of higher-dimensional flows with statistical homo-

geneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

6.4.1 Simplification of the S3 method . . . . . . . . . . . . . . . . . 234

6.4.2 Lorenz 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.4.3 Kuramoto-Sivashinsky . . . . . . . . . . . . . . . . . . . . . . 241

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.6.1 Full space-split algorithm – description, pseudocode and com-

plexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.6.2 Handling non-trivial time integrators and implicit schemes . . 259

7 Tangent dynamics and sensitivity analysis of turbulent flows 263

7.1 Compressible isothermal channel flow: problem description . . . . . . 264

7.2 Tangent dynamics of turbulent channel flows . . . . . . . . . . . . . . 267

10



7.3 Performance of the reduced linear response algorithm . . . . . . . . . 273

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

8 Final conclusions and future work 281

11



List of Figures

2-1 The sawtooth map at different values of parameter 𝑠. Note if 𝑠 = 0,

we obtain the classical Bernoulli shift. . . . . . . . . . . . . . . . . . . 37

2-2 Relation between the Lyapunov exponent 𝜆 and parameter 𝑠 ∈
[︀
− 1

2𝜋
, 1
𝜋

]︀
for the sawtooth map. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2-3 The cusp map at different values of the input parameters: ℎ and 𝛾. . 39

2-4 Relation between the Lyapunov exponent 𝜆 and parameter 𝛾 ∈ [0, 1]

for the cusp map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2-5 Long-time statistics with respect to the map parameter induced by the

sawtooth and cusp map. . . . . . . . . . . . . . . . . . . . . . . . . . 41

2-6 Graphical representation of two different scenarios in one-dimensional

maps, to intuitively understand the derivation of 𝑔. . . . . . . . . . . 45

2-7 Empirically estimated stationary probability distributions achieved by

the sawtooth map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2-8 Density gradient function, 𝑔(𝑥), generated using Eq. 2.16 and com-

pared against the empirically computed value of 𝑔(𝑥), where the deriva-

tive of 𝜌(𝑥) is estimated using finite difference. . . . . . . . . . . . . . 48

2-9 Empirically estimated stationary probability distributions achieved by

the cusp map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2-10 Comparison of 𝑔(𝑥) against the derivative of the empirically estimated

stationary probability distributions achieved by the cusp map. . . . . 49

2-11 Sensitivity of the density of the cusp map with respect to 𝛾 at ℎ =

1, 𝛾 = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2-12 Contributions from the 𝑘-th term to Equation (2.12) for the cusp map.

Later terms are overwhelmed by statistical noise. . . . . . . . . . . . 52

12



2-13 Parametric sensitivity of the stationary density of the sawtooth map

with respect to 𝑠 at 𝑠 = 0.1. . . . . . . . . . . . . . . . . . . . . . . . 53

2-14 Contributions from the 𝑘-th term to Eq. 2.12, for the sawtooth map.

Later terms are overwhelmed by statistical noise. . . . . . . . . . . . 53

2-15 Sawtooth map: relative error of the linear response and finite difference

methods as a function of the trajectory length. . . . . . . . . . . . . . 54

2-16 Cusp map: relative error of the linear response and finite difference

methods as a function of the trajectory length. . . . . . . . . . . . . . 55

3-1 Trajectory of the Van der Pol oscillator. . . . . . . . . . . . . . . . . 66

3-2 Quantile function, density distribution and density gradient implied by

the Van der Pol oscillator. . . . . . . . . . . . . . . . . . . . . . . . . 68

3-3 Convergence analysis of the trapezoidal rule and Monte Carlo scheme

applied to the standard and regularized integral. The regularized vari-

ant requires integrating the underlying density gradient function. . . . 71

3-4 Density distribution and curve length implied by the dynamics of the

Van der Pol oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3-5 Density gradient function 𝑔 computed directly (using Eq. 3.16) and

through a finite difference formula. Measure density implied by the

dynamics of the Van der Pol oscillator. . . . . . . . . . . . . . . . . . 75

3-6 A structured mesh representing the pre-image of the applied nonlinear

transformation together with the underlying deformed surface. . . . . 82

3-7 Extension of Figure 3-6. 𝑢1−𝑢2 and 𝑢2−𝑢3 projections of the image of

the structured mesh obtained through the applied nonlinear mapping

𝑥(𝜉). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3-8 𝑢1−𝑢3 projection of the directional derivative of log 𝜌, in the 𝑐-direction,

𝑔1 := 𝑔𝑐, and 𝑡-direction, 𝑔2 := 𝑔𝑡. . . . . . . . . . . . . . . . . . . . . 84

3-9 𝑢1 − 𝑢3 projection of the density function implied by the dynamics of

the Lorenz 63 oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . 85

13



3-10 Two components of the density gradient implied by the dynamics of

Lorenz 63 computed along two chosen parametric isolines. They are

computed using our measure-based direct approach and a finite differ-

ence approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3-11 Density gradient function is computed using the recursion involving Eq.

3.43-3.45 at three different time steps 𝑘 = 𝑡/∆𝑡. The finite difference

approximation is generated using the approach described in Section

3.2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3-12 Graphical explanation of the measure preservation property. . . . . . 96

3-13 Evaluation of the composite function 𝐽 ∘ 𝜙𝑡(𝑥) on the manifold 𝑀 =

[0, 1]2 at four consecutive steps 𝑡. In this case, the map 𝜙 is the Arnold’s

cat map (Eq. 3.49), while 𝐽(𝑥(1), 𝑥(2)) = sin(𝜋𝑥(1)) sin(𝜋𝑥(2)). This

particular 𝜙 is a classical representative of an Anosov diffeomorphism. 99

3-14 SRB measure distribution of the baker’s map. . . . . . . . . . . . . . 106

3-15 Conditional and marginal SRB distributions of the baker’s map. Com-

parison of the SRB measure gradient generated using our measure-

based approach and a finite difference formula. . . . . . . . . . . . . . 108

3-16 Convergence analysis of the iterative scheme for the SRB measure gra-

dient applied to the baker’s map. . . . . . . . . . . . . . . . . . . . . 118

3-17 Convergence analysis of the Monte Carlo scheme applied to the stan-

dard and regularized Lebesgue integral. The regularized variant in-

volves the SRB measure gradient, which is a byproduct of partial in-

tegration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3-18 SRB density gradients generated for the sawtooth map and the onion

map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3-19 Sawtooth map: relative error of the approximation of 𝑔 versus the

trajectory length 𝑁 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3-20 Numerical hyperbolicity tests of the 2D and 3D baker’s maps. . . . . 127

14



4-1 Illustration of the onion map at ℎ = 0.97 and its dependence on 𝛾.

The right-hand side plot zooms in the region in the vicinity of the tip. 132

4-2 Empirical density distribution 𝜌(𝑥) generated for the onion map (Eq.

4.1) at ℎ = 0.97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4-3 Relationship between the long-term average and the exponent 𝛾 for

the onion map at ℎ = 0.97 with 𝐽(𝑥) = 𝛿𝜖𝑐(𝑥). . . . . . . . . . . . . . 135

4-4 Distribution of the absolute value of the density gradient function gen-

erated for the onion map at ℎ = 0.97. . . . . . . . . . . . . . . . . . . 141

4-5 Results of the Hölder exponent test applied to the statistics of the

onion map in different subintervals of the parametric space. . . . . . . 144

4-6 This figure is an extension of Figure 4-5. It includes 𝛾-intervals corre-

sponding to non-smooth statistics. . . . . . . . . . . . . . . . . . . . . 145

4-7 Projection of the Lorenz 63 attractor on the 𝑥(1)-𝑥(3) plane at differ-

ent values of 𝛾 and relation between the long-time statistics and the

Rayleigh parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4-8 Relation between the modified quantity of interest, ⟨𝑥(3)⟩ − 𝑠(𝛾), and

the input Rayleigh parameter 𝛾. The quadratic function 𝑠(𝛾) was

chosen to be approximately parallel to the original statistics curve in

the chosen parametric regime. . . . . . . . . . . . . . . . . . . . . . . 149

4-9 𝑥(1)−𝑥(3) projection of the unnormalized empirical density function of

the Lorenz 63 system at different values of 𝛾. . . . . . . . . . . . . . . 151

4-10 Distribution of the absolute value of the density gradient function gen-

erated for the Lorenz 63 attractor at three different values of 𝛾 using

Algorithm 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4-11 Results of the Hölder exponent test applied to the statistics induced

by the Lorenz 63 system. The purpose of this test is to estimate the

Hölder exponent of the statistics-parameter relation. . . . . . . . . . . 156

4-12 This figure is an extension of Figure 4-11. All plots have been generated

in the same manner as their counterparts from Figure 4-11. . . . . . . 157

15



4-13 Derivatives of the density distribution of the onion map at ℎ = 0.97.

Results are compared against the finite difference approximation. . . 160

5-1 Exponential convergence rate of the iterative formulas for 𝑎 and 𝑤

demonstrated on the semi-logarithmic scale. . . . . . . . . . . . . . . 189

5-2 Relation between the relative error of the sensitivity approximation

and 𝐾 (number of Ruelle’s terms) with a fixed trajectory length 𝑁 . . 191

5-3 Relation between the relative error of the sensitivity approximation

and trajectory length 𝑁 for a fixed 𝐾. . . . . . . . . . . . . . . . . . 193

5-4 Sensitivity analysis of the baker’s map for a wide range of parame-

ters. The space-split sensitivity results are compared against the finite

difference approximation. . . . . . . . . . . . . . . . . . . . . . . . . . 194

5-5 Sensitivity analysis of the solenoid map for a wide range of parame-

ters. The space-split sensitivity results are compared against the finite

difference approximation. . . . . . . . . . . . . . . . . . . . . . . . . . 195

5-6 Lyapunov exponents of the 12-dimensional variant of the solenoid map. 196

5-7 Sensitivity analysis of the 12-dimensional variant of the solenoid map.

The space-split sensitivity results are compared against the finite dif-

ference approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6-1 Lorenz 63: long-time averages of two different objective functions and

Lyapunov exponents versus the Rayleigh parameter 𝜌. . . . . . . . . . 209

6-2 Convergence analysis of the full linear response algorithm applied to

the Lorenz 63 oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . 211

6-3 Output of Algorithm 2 generated for 𝐽 = 𝑧 and 𝐽 = exp(𝑥/4)/10000

at 144 values of 𝜌 distributed uniformly. . . . . . . . . . . . . . . . . 213

6-4 Discrete values of the stable integrand 𝐷𝐽 · 𝑣 computed using the S3

version described in Section 6.2 and its “discrete" counterpart from [161].214

6-5 Hyperbolicity verification of the Lorenz 63 oscillator. Distribution of

the normalized angle 𝛼 between unstable/center subspaces and unstable-

center/stable subspaces. . . . . . . . . . . . . . . . . . . . . . . . . . 216

16



6-6 Magnitude of both components of the SRB density gradient 𝑔 of a

two-dimensional coupled sawtooth map with two positive LEs. . . . . 222

6-7 𝐿2 norms of the SRB density gradient and Lyapunov exponents of the

two-, four-, and eight-dimensional variants of the coupled sawtooth map.223

6-8 Distribution of individual components of the SRB measure gradient of

Lorenz 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6-9 Coupled sawtooth map: long-time averages of the exponential-wave

objective function 𝐽 = exp(sin(𝑧)) sin(𝑧), where 𝑧 = 𝑥1−𝑥2 (unaligned

case), 𝑧 = 𝑥1 (partially aligned case) and 𝑧 = 𝑥1 + 𝑥2 (aligned case). . 230

6-10 Solutions to the Lorenz 96 system (Eq. 6.33) for 𝑛 = 80 stacked

horizontally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

6-11 Lyapunov spectra of multidimensional Lorenz 96 oscillators. . . . . . 239

6-12 Long-time averages of the spatially-averaged kinetic energy of the Lorenz

96 system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

6-13 Linear response approximations of the Lorenz 96 model with respect

to input forcing computed using the reduced space-slitting method and

finite differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

6-14 𝐿2 norms of 𝑐𝑖, 𝑖 = 1, ...,𝑚𝑒𝑥𝑡 = 𝑚 + 2, which were computed as by-

products of Algorithm 1. All simulation parameters are the same as

those reported in the caption of Figure 6-13. . . . . . . . . . . . . . . 243

6-15 Solutions to the Kuramoto-Sivashinsky equation (Eq. 6.34) for differ-

ent advection intensities. . . . . . . . . . . . . . . . . . . . . . . . . . 244

6-16 18 largest Lyapunov exponents of the Kuramoto-Sivashinsky equation. 245

6-17 Orthonormal Lyapunov vectors 𝑞𝑖 of the bounded Kuramoto-Sivashinsky

system (Eq. 6.34) without the extra advection term (𝑐 = 0). . . . . . 247

6-18 Long-time averages ⟨𝐽⟩ computed on a uniform 240-point grid. The

objective function represents a spatially-averaged moment (first, sec-

ond, and third) of a solution to the bounded Kuramoto-Sivashinsky

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

17



6-19 Linear response of the Kuramoto-Sivashinsky system computed for the

objective functions presented in Figure 6-18. Sensitivities were com-

puted using the reduced space-splitting method and finite differences. 250

7-1 Sketch of the computational domain used for the channel flow simulation.265

7-2 A snapshot of the streamwise velocity at 𝑡+ ≈ 124. For demonstration

purposes, the lower-bound of the scale range was increased from 0 to

0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

7-3 Wall-normal profiles of the three velocity components and density ob-

tained through spatial averaging in all statistically homogeneous direc-

tions (𝑥, 𝑧, 𝑡), 𝑢–𝑦 relation in “+" units plotted on a semi-logarithmic

coordinate system, non-zero components of the Reynolds stress tensor. 268

7-4 Streamwise tangent solutions of the turbulent channel flow at the time

instance 𝑡+ ≈ 17.3. 𝑖-th LV represents the 𝑖-th most expansive or-

thonormalized (Gram-Schmidt) Lyapunov vector. . . . . . . . . . . . 269

7-5 Lyapunov spectra of the turbulent channel flow at different values of

the kinematic viscosity 𝜈. . . . . . . . . . . . . . . . . . . . . . . . . . 271

7-6 Approximations of the leading LE, 𝜆1, at 𝑅𝑒𝜏 ≈ 550. . . . . . . . . . 272

7-7 Sensitivity analysis of the kinetic energy induced by turbulent channel

flows with respect to the input viscosity. Sensitivities were computed

using the reduced space-splitting method and finite differences. . . . . 274

7-8 Turbulent channel flow: sensitivity analysis of the streamwise velocity

profile with respect to the input viscosity. Sensitivities were computed

using the reduced space-splitting method and finite differences. . . . . 276

18



List of Tables

3.1 Computational cost of Algorithm 1. . . . . . . . . . . . . . . . . . . . 116

7.1 Mesh parameters of the channel flow at 𝑅𝑒𝜏 ≈ 550. . . . . . . . . . . 272

19



THIS PAGE INTENTIONALLY LEFT BLANK

20



Chapter 1

Introduction

Chaos is the score upon which the reality is written. – Henry Miller

1.1 Linear response of chaos and its applications

Linear response theory (LRT) [44] is a branch of computational science and engineer-

ing that provides an array of mathematical methods for analysis of system’s reaction

to small perturbations of imposed forces or control parameters. In particular, the

linear response of a dynamical system should be understood as the derivative of its

output with respect to an input parameter. The name “linear response" is a direct

consequence of the Taylor series expansion, which indicates that the system’s reac-

tion can be approximated by a linear function involving two terms: the unperturbed

term and parametric derivative re-scaled by the imposed perturbation. Indeed, the

use of Taylor series reveals one fundamental aspect of LRT. Namely, based only on

information about the system in the unperturbed state, its response can be predicted

for any small perturbation. Consequently, LRT is applicable to systems that vary

differentiably with respect to its input. Throughout this thesis, we use the phrase

“linear response" interchangeably with “sensitivity", as the main purpose of LRT is

in fact the sensitivity analysis of dynamical systems.

In the presence of chaos, the classical formulation of LRT is modified. The quan-

tity of interest is usually expressed in terms a long-time average or higher-order dis-
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tribution moments, rather than instantaneous values, of a certain observable 𝐽 . In

particular, the sought-after system’s sensitivity with respect to a scalar parameter 𝑠

equals
𝑑⟨𝐽⟩
𝑑𝑠

=:
𝑑

𝑑𝑠

(︃
lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝐽(𝑥𝑘)

)︃
, (1.1)

where 𝑥𝑘 denotes the system’s state (snapshot) at time 𝑘. Under the assumption of

ergodicity, the statistics do not depend on initial conditions. Therefore, for a given

chaotic model, the long-time statistics can be manipulated only by varying the input

parameters. A prominent result in the field of LRT is the work of Ruelle [148, 150],

who rigorously derived a closed-form expression for the linear response of chaos. That

formula is represented in terms of a convolution of the linear response operator, which

uses the information of the unperturbed system, and imposed forcing or parameter

perturbation (input). The major assumption of Ruelle’s derivation is uniform hyper-

bolicity, which is a mathematical idealization of chaotic behavior. In short, a chaotic

system defined on 𝑛-dimensional manifold 𝑀 is hyperbolic if its tangent space 𝑇𝑀

can be split into two covariant subspaces: unstable and stable. They are spanned

by expanding and contracting directions of the tangent space and correspond to pos-

itive and negative Lyapunov exponents (LEs), respectively. Whenever asymptotic

expansion and contraction rates are uniform, we speak of the strongest version of

hyperbolicity, i.e., uniform hyperbolicity. The key aspect of hyperbolicity per se is

that the three subspaces are clearly separated from each other, which means that the

smallest angle between them is far from zero everywhere on the attractor. Hyperbolic

systems are structurally stable and admit the SRB measure 𝜇 [195], which contains

the statistical description of the dynamics. In the case of flows (continuous-time

systems), the definition of hyperbolicity also considers the existence of the center

(neutral) manifold that is parallel to the evolution vector [151]. More rigorous de-

scriptions of this fundamental assumption is provided in the following chapters.

Solid numerical evidence found in the literature clearly indicates that uniform

hyperbolicity is a sufficient, but not necessary, condition for the differentiability of

statistics [18, 28]. Indeed, these empirical results are consistent with hyperbolic hy-
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pothesis of Galavotti and Cohen [59]. This hypothesis presumes that several high-

dimensional chaotic systems behave as though they were uniformly hyperbolic. It

does not mean, however, that all properties of uniform hyperbolicity are satisfied by

those systems, but several consequences following from this fundamental assumption

could still be valid. This was clearly demonstrated in [126, 163], where the authors

argued that the long-time averages computed for a 3D turbulence model are smooth

despite local non-hyperbolic behavior.

In this thesis, we focus on autonomous discrete systems,

𝑥𝑘+1 = 𝜙(𝑥𝑘; 𝑠) (1.2)

and flows
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥; 𝑠) (1.3)

governed by the diffeomorphic map 𝜙 :𝑀 →𝑀 and evolution vector 𝑓 , respectively.

Indeed, 𝜙 can be interpreted as a time integrator of Eq. 1.3. For example, using the

second-order explicit Runge-Kutta method (midpoint rule) with step size ∆𝑡, 𝜙 is

related to 𝑓 through the following relation,

𝑥𝑘+1 = 𝜙(𝑥𝑘) = 𝑥𝑘 +∆𝑡 𝑓(𝑥𝑘 +
∆𝑡

2
𝑓(𝑥𝑘)). (1.4)

Assuming the systems defined by Eq. 1.2–1.2 are uniformly hyperbolic, Ruelle’s linear

response formula is guaranteed to hold and can be expressed as follows [148, 150],

𝑑⟨𝐽⟩
𝑑𝑠

=
∞∑︁
𝑡=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒𝑑𝜇, (1.5)

where 𝑔 ∘ ℎ := 𝑔(ℎ), 𝜒 = 𝜕𝑠𝜙 ∘ 𝜙−1, 𝜙𝑡 = 𝜙(𝜙𝑡−1), 𝜙0(𝑥) = 𝑥, while 𝐷 denotes the

gradient operator (first derivative) in phase space. Since the system is assumed to be

ergodic, the Lebesgue integral with respect to measure 𝜇 can be approximated as,

∫︁
𝑀

ℎ(𝑥) 𝑑𝜇 = lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

ℎ(𝑥(𝑡)) 𝑑𝑡 ≈ 1

𝑁

𝑁−1∑︁
𝑘=0

ℎ(𝑥𝑘) (1.6)
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for any observable ℎ ∈ 𝐿1(𝜇) and a sufficiently large sample size 𝑁 . Thus, the

right-hand side (RHS) of Eq. 1.5 could potentially be approximated by comput-

ing a sufficiently long trajectory, ergodic-averaging the integrand per Eq. 1.6, and

truncating the infinite series. However, note that

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒 = (𝐷𝐽)𝑡 · (𝐷𝜙)𝑡−1...𝐷𝜙𝜒. (1.7)

(𝐷𝐽)𝑡 denotes the phase-space gradient of 𝐽 evaluated 𝑡 time steps into the future. To

facilitate the notation, we will drop the parentheses, i.e., (𝐷𝐽)𝑡 := 𝐷𝐽𝑡. Therefore,

unless 𝜒 is orthogonal to the unstable subspace, the norm of that product grows

exponentially fast with 𝑡,

‖𝐷𝜙𝑡−1𝐷𝜙𝑡−2...𝐷𝜙𝜒‖ ∼ 𝒪(exp(𝜆1𝑡)) (1.8)

with 𝜆1 > 0, which means the direct evaluation of the RHS of Eq. 1.5 is computa-

tionally infeasible. The rate of exponential growth is determined by the leading LE

denoted by 𝜆1. Indeed, due to the butterfly effect, the derivative of the composite

function 𝐽 ∘ 𝜙𝑡 is the most problematic aspect of Ruelle’s original expression. More-

over, integration by parts is prohibited in this case, because one would also need to

differentiate the SRB measure 𝜇 in the direction of 𝜒. In general, the measure is

absolutely continuous only on the expanding subspace [195]. Therefore, integration

by parts would be possible only if 𝜒 belongs to unstable manifolds everywhere in 𝑀 ,

which is generally not the case.

An accurate approximation of the sensitivity or linear response defined by Eq. 1.5

could further our understanding of several fields of science and engineering dealing

with chaotic behavior. They include:

• Fluid sciences: turbulence theory, aerodynamics [61, 48, 79, 126, 97, 18, 13, 155],

• Molecular dynamics [80, 157, 179, 77],

• Climate dynamics [110, 102, 143, 22],
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• Statistical physics [113, 49, 101],

• Plasma physics and fusion [75, 175, 54],

• Circuit theory and electromagnetism [87, 184, 108],

• Operational research and management science [183, 171, 125],

• Social sciences [67, 53].

In both non-chaotic and chaotic realms, parametric derivatives of system out-

puts are often used in the development of advanced algorithms for applied analysis

of complex systems. In particular, sensitivities are highly-desired in gradient-based

approaches for optimal design and control [86, 61, 38, 185, 81, 196, 130, 63, 55], data

assimilation [145, 119, 178, 71, 30], uncertainty quantification [9, 26, 16, 180, 116],

inverse problems [168, 74, 167], grid adaptation [96, 56], data-driven methods [76,

141, 58].

Computing sensitivities in non-chaotic ergodic systems is rather simple and does

not require further algorithmic developments. Indeed, the RHS of Eq. 1.5 can be

rigorously re-expressed in terms of a single ergodic average involving an inhomoge-

neous tangent solution that is bounded at all times. This is no longer the case in the

presence of positive Lyapunov exponents, which requires special treatment alleviating

the butterfly effect.

1.2 State of the art in the sensitivity analysis of

chaotic systems

Local sensitivity analysis could simply be performed using finite differences (FD) by

running two simulations with the input parameter being equal to 𝑠 and 𝑠+ 𝛿𝑠 [158].

There are two major reasons why we search for a technology that is better than FD.

First, notice that we need to run independent simulations at different parameter val-

ues, compute corresponding ergodic-averages, and apply a central difference scheme
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with an inherent error proportional to 𝒪(𝛿𝑠2). Therefore, the FD approximation of

sensitivities is affected by a combination of the statistical (Monte Carlo) error and

Taylor series truncation error. Intuitively, the smaller 𝛿𝑠, the longer trajectories we

need to better approximate the slope in the parametric space. The second reason is

that FD is not the best option for multi-query problems common in design optimiza-

tion and uncertainty quantification. Problems of this type usually require estimating

thousands of sensitivities of different observables with respect to large arrays of pa-

rameters [146, 78]. In the case of FD, the total cost is proportional to the number of

parameters.

Within the family of “continuous" approaches (as opposed to “discrete" FD), the

most straightforward group uses basic linear perturbation techniques. In particular,

they usually solve a recursive tangent equation, i.e., a linearized version of the origi-

nal nonlinear system. These approaches are also referred to as conventional methods,

which include adjoint methods [83, 27, 197]. Motivated by the optimal control the-

ory, the adjoint methods integrate classical tangents by parts obtaining a backwards

system that does not depend on parametric perturbations. Effectively, the cost of

sensitivity analysis is independent from the number of parameters. They are some-

times combined with automatic differentiation [142] or “discrete" methods [137, 197].

However, as described in Section 1.3, tangent solutions of any form represent the

separation of two trajectories initiated at two different, but very close to each other,

initial conditions. Thus, in the presence of chaos, they grow exponentially fast in

norm, which is indeed a direct consequence of the butterfly effect. This computational

inconvenience was circumvented in ensemble methods relying on the assumption of

ergodicity. Instead of generating a long trajectory, Eyink et al. [52] proposed com-

puting sensitivities of several truncated-in-time trajectories and taking the average

of the partial results. While this approach does not suffer from the butterfly effect

and has been proven successful for some real-world chaotic systems [29, 102], large

variances of the partial estimates make the ensemble methods prohibitively expensive

even for medium-sized models.

Yet another popular family of methods derives from the shadowing lemma [139]
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which, under the assumption of uniform hyperbolicity, guarantees the existence of a

shadowing trajectory that lies within a small distance to the reference orbit for a long

time, yet finite. The concept of shadowing was used to formulate an optimization

problem to find the shadowing direction, which can be directly used to estimate the

sensitivity of discrete systems [181, 182]. Least-Squares Shadowing (LSS) and its

derivatives were successfully applied to various low- and large-dimensional ODE and

PDE systems [129, 20, 84, 154], including 3D turbulence models [126, 18]. An alterna-

tive approach utilizing the shadowing lemma was proposed in [99]. This work replaces

the optimization problem with a periodic tangent/adjoint equation. In certain cases,

however, shadowing solutions might be unphysical and feature a dramatically different

statistical behavior compared to the unperturbed orbit [34]. Empirical evidence of the

unphysicality of shadowing solutions was demonstrated in the advection-dominated

regime of the Kuramoto-Sivashinsky model [21]. To the best of our knowledge, no

rigorous studies that quantify or bound shadowing errors due to the problem of non-

physicality are available.

Some methods directly stem from the Fluctuation-Dissipation Theorem (FDT)

[88, 2, 1, 68]. FDT is widely used in the statistical equilibrium analysis of chaotic

phenomena such as turbulent flows [115] and quantum chaos [124]. In the context of

sensitivity analysis, the FDT theorem asserts that one can approximate the infinite-

time average of an observable as a time convolution of the external perturbation and

the linear response operator that contains a statistical description of the unperturbed

system. Despite their computational efficiency, FDT-based methods often require

specific assumptions for the statistical behavior (e.g., Gaussian ergodic measure) to

reconstruct the linear response operator, which makes them hardly generalizable.

Recent algorithmic developments rely on the regularized variant of Ruelle’s ex-

pression. Indeed, as originally proposed by Ruelle in [148], one can apply integration

by parts to the original formula in order to eliminate the product of Jacobians whose

norm grows exponentially fast. However, since that formula involves Lebesgue inte-

grals with respect to the Sinai-Ruelle-Bowen (SRB) measure [195] that is absolutely

continuous only on unstable manifolds, an extra step is required before partial inte-
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gration is applied. Namely, the input perturbation should be decomposed into two

terms arranged in line with unstable and stable manifolds of the underlying dynam-

ical system [148]. These terms will be respectively referred to as the unstable and

stable contribution of the sensitivity. In the case of flows (continuous-time systems),

the center manifold should also be taken into account in the perturbation splitting

[151]. Based on this idea of regularization of Ruelle’s closed-form expression, two

conceptually similar methods for the linear response emerged in the past three years.

Those are the fast linear response algorithm [127] and space-split sensitivity (S3) al-

gorithm [31, 161]. Neither of them introduces engineered approximations except for

the ergodic-averaging required for the evaluation of Lebesgue integrals inherited from

the original formula. They rigorously converge as a typical Monte Carlo procedure for

any uniformly hyperbolic system. Methods of this type can be summarized as follows.

Split linear response into two terms (or three terms if considering a flow), such that

one uses solutions of a regularized tangent equation (immune to the butterfly effect),

while the second term requires computing the divergence on unstable manifolds. The

unstable divergence directly follows from the partial integration on the expansive tan-

gent subspace. One of the by-products is the SRB density gradient representing the

divergence of SRB measure. This quantity is obtained by differentiating the measure

preservation law, which effectively requires solving a series of regularized second-order

tangent equations [160, 162, 127]. Differentiation of SRB measures, either explicit or

implicit, is by far the most complicated and expensive part of both algorithms. Re-

lying on the assumption of uniform hyperbolicity, the authors of [31] showed that

space-splitting exists and is differentiable, rigorously proved the convergence of all

the components of S3 for systems with one positive Lyapunov exponent, and demon-

strated the convergence of ergodic averages stemming from Ruelle’s expression.

All the aforementioned approaches can generically be labelled as “math-based"

methods as they are constructed based solely on mathematical theories. This broad

family also includes methods that directly utilize transfer operators (e.g., Frobenius-

Perron or Koopman) governing the evolution of observables and/or ergodic averages

of the system [19, 98, 112, 173]. However, operator-theoretic approaches scale poorly
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with the system’s dimension. Most of them have been applied only to low-dimensional

problems so far and, to the best of our knowledge, no examples of their applications

to large physical systems are available. “Physics-based" approaches, on the other

hand, rely on physical knowledge and/or empirical data concerning a specific system

[132, 6, 96]. These methods are typically cheaper compared to most of the “math-

based" approaches; however, they are hardly generalizable and lack rigorous error

estimates.

1.3 Contributions of this work

This thesis is a collection of several contributions to the field of sensitivity analysis

of chaotic dynamical systems. Its core is the generalized linear response algorithm,

or the space-splitting sensitivity (S3) method, which regularizes the closed-form ex-

pression for the sensitivity derived by Ruelle (Eq. 1.5). The first version of S3 was

proposed in the PhD thesis of Chandramoorthy in [28]. That preliminary work in-

cluded rigorous derivation and comprehensive convergence analysis of the underlying

tangent equations and ergodic-averaging schemes; however, all the results so far were

limited to systems with one-dimensional unstable subspaces, i.e., models with one

positive Lyapunov exponent. Systems encountered in science and engineering are

typically hyperchaotic, i.e., they have more than one LE, which means that the origi-

nal derivation of S3 is not applicable to real-world cases. From the preliminary study

of S3 and this thesis, we learned that the space-splitting algorithm deserves further

developments and investigation for the following reasons:

• S3 effectively circumvents the problem of exponentially growing perturbations,

i.e, the butterfly effect. This is possible thanks to the engineered splitting of the

input perturbation and construction of numerically stable tangent recursions

for the resulting quantities.

• S3 can be formulated as a one-step local-in-time Monte Carlo scheme. It means

that the underlying numerical procedure involves collecting and averaging nec-
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essary quantities that are generated recursively in time. These averages can be

updated every time step and there is no need to save the entire history.

• Under the assumption of uniform hyperbolicity, all the recursions of S3 are guar-

anteed to convergence exponentially fast, regardless of the number of positive

LEs.

• Uniform hyperbolicity is the only assumption used in the development. It does

not rely on any other simplifications, such as specific statistical behavior or

established physical constraints.

• Thanks to the separable input-output feature of Ruelle’s expression, it is pos-

sible to isolate the most expensive part of the algorithm. One can compute it

once and apply for any input perturbation.

The content of Chapters 2-7, containing all the main contributions of this thesis,

can be classified into three major categories:

1. Algorithm for differentiating densities implied by arbitrary diffeomor-

phisims and computing ergodic measure gradients. A necessary step in

regularizing Ruelle’s original expression is integration by parts. Due to the

presence of nonuniform distributions, the regularized formula for the sensitivity

involves an extra term representing derivatives of the ergodic measure. In the

case of geometrically linear unstable manifolds, computing these new terms is

rather simple and can be done by differentiating the Frobenius-Perron operator.

More complicated manifolds require the development of systematic and gener-

alizable numerical tools that could be formulated as a trajectory-driven Monte

Carlo algorithm. We propose the measure-based parameterization of smooth

manifolds that uses quantile functions. This framework enables expressing any

directional derivative of the density implied by smooth nonlinear transforma-

tions in terms of first- and second-order derivatives of the coordinate chart. We

show that the proposed manifold description is naturally extendable to higher

dimensions, and that the density gradient formula is always invariant to any
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linear change of variables. Subsequently, we utilize this machinery to describe

the evolution of the SRB measure gradient in chaotic systems. By applying the

chain rule on smooth manifolds, we rigorously derive a set of first- and second-

order tangent equations for the Lyapunov vectors and acceleration (curvature)

vectors, both of which directly contribute to the sought-after SRB measure gra-

dient. We show that all of these tangents are immune to the butterfly effect due

to the step-by-step coordinate orthonormalization. Using the aforementioned

concept of linear invariance, we argue that the recursive othonormalization of

the chart gradients does not violate the consistency of the proposed scheme.

2. Generalization of the space-splitting sensitivity (S3) algorithm to hy-

perbolic systems of arbitrary dimension.

We combine the idea of space-splitting with the measure-based parameteriza-

tion of unstable tangent subspaces. First, we propose to decompose the input

perturbation using an orthonormal basis of the unstable manifold. Orthonor-

mal bases (a.k.a. Gram-Schmidt bases) are significantly cheaper compared to

their covariant counterparts and they dramatically simplify the entire algorithm.

Second, we rigorously derive tangent equations for all quantities arising in the

regularization of Ruelle’s expression. The key aspect of this derivation is the re-

lation between the derivatives of Lyapunov vectors and acceleration vectors, i.e.,

second-order derivatives of the coordinate chart. Third, we rigorously prove that

all the generalized tangent equations constituting the S3 algorithm converge ex-

ponentially fast in time. Finally, these recursions are assembled into a concise

ready-to-use pseudocode and its complexity is carefully studied. The gener-

alized space-splitting algorithm is applied to physically inspired hyperchaotic

systems. We also explain the interplay between the truncation parameters and

their impact on the convergence of the Monte Carlo averaging scheme.

3. Simplified S3 method and its applications.

The unstable contribution of the space-split algorithm requires solving costly

second-order tangent equations. The number of these equations scales quadrat-
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ically with the dimension of the unstable subspace. Moreover, the SRB measure

that we need to differentiate is not guaranteed to be smooth in large physical

systems because of their non-hyperbolic behavior. Due to the high cost and po-

tential stability issues in the computation of the unstable contribution, we try

to answer a fundamental question about its relevance in the context of practica-

ble systems. In particular, we investigate if there exist chaotic systems, where

the unstable contribution is small compared to the remaining parts of the total

sensitivity. We show that the effect of the SRB measure gradient could be min-

imized if the objective function is aligned with the most expansive direction of

the tangent space. This result could be used as a powerful handle in reducing

the S3 method. We demonstrate that in large systems featuring statistically ho-

mogeneous behavior in the physical space, we have freedom in representing the

objective function in infinitely many ways. Indeed, if the system’s dimension

grows, the likelihood of the desired alignment increases as well. Since several

physical systems are statistically homogeneous, we conclude that the sensitivity

could be accurately approximated through the stable contribution alone. Thus,

it might be sufficient to compute a single inhomogeneous tangent solution that

is orthogonal to the unstable subspace everywhere along a random trajectory.

We verify this remarkable conjecture by approximating sensitivities in some

physical systems, including Lorenz 96, Kuramoto-Sivashinsky and compressible

Navier-Stokes.

In addition to the three major contributions listed above, this work also offers

some minor advancements relevant to the broad field of computational science and

engineering. These contributions were used as auxiliary tools to support our major

arguments. They include:

• Numerical assessment of Lebesgue-integrability of observables induced by hy-

perbolic systems,

• Numerical method for approximating the Hölder exponent of real-valued func-

tions,
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• Efficient Monte Carlo integration of highly-oscillatory functions,

• A computable criterion for differentiability of statistics in low-dimensional chaotic

systems.

1.4 Thesis outline and corresponding journal publi-

cations

This work is structured as follows. The introduction is followed by seven self-contained

chapters that have been ordered consistently with the development process of the lin-

ear response algorithm. To a large extent, the notation is consistent throughout this

thesis and every exception is clearly highlighted. To facilitate the navigation, ap-

pendices are included at the end of their respective chapters, while the cumulative

bibliography is attached at the very end of this document. Subsequent chapters are

briefly summarized below.

Chapter 2: Offers a tutorial explaining basic concepts related to the linear response

algorithm. It explains the integration by parts on unstable manifolds, concept of SRB

measure gradients and ergodic-averaging process. These ideas are illustrated using

simple one-dimensional chaotic maps. The content of this chapter was published in

[158].

Chapter 3: Consists of two main parts. In the first one (Sections 3.1 – 3.5), the con-

cept of manifold description through quantile functions is introduced and a method

for differentiating densities implied by generic diffeomorphisms is proposed. The sec-

ond part (Sections 3.6 – 3.10) extends these concepts to limiting stationary distribu-

tions and proposes a novel ergodic-averaging algorithm to differentiate SRB densities.

These two parts were published in [160] and [162], respectively.

Chapter 4: Argues that the SRB measure gradient could be used to verify the
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existence of the linear response in chaotic dynamical systems. It develops a novel

numerical method to assess the differentiability of statics and validates the results by

approximating Hölder exponents of the statistics-vs-parameter curves. The content

of this chapter was published in [159].

Chapter 5: Generalizes the S3 method to multi-dimensional hyperbolic systems

with an arbitrary number of positive Lyapunov exponents. It rigorously derives and

analyzes the convergence of tangent equations for all the quantities arising from the

perturbation splitting and partial integration of the unstable contribution. This chap-

ter provides a pseudocode for the full space-splitting method, analyzes its complexity

and presents several numerical examples. The content of this chapter was published

in [161].

Chapter 6: Extends the discrete version of the S3 method to hyperbolic flows. Its

major contribution is the argument of small unstable contributions in statistically

homogeneous systems. Based on the concept of alignment of the objective function,

it proposes a reduced version of S3. Numerical examples involving popular physical

systems, such as Lorenz 96 and Kuramoto-Sivashinsky, are included. The content of

this chapter was published in [163].

Chapter 7: Focuses solely on turbulent channel flows. This chapter investigates

aspects of the tangent space, e.g., Lyapunov spectra, and applies the reduced S3

method to compute sensitivities of isothermal compressible channel flows.

Chapter 8: Summarizes the main conclusions of this thesis and suggests directions

for future work.

We also acknowledge that the thesis’ introduction (Chapter 1) includes parts of

the author’s relevant journal publications [158, 159, 160, 162, 161, 163].

34



Chapter 2

Ergodic-averaging sensitivity analysis

of one-dimensional chaos

This chapter serves as a tutorial introducing and explaining fundamental concepts

used throughout the thesis. Here, we focus on ergodic-averaging sensitivity analysis

of simple one-dimensional expansive maps. We demonstrate how to leverage Ruelle’s

formula, which is based on the theory of hyperbolic dynamics, to derive a rigorously

converging and immune to the butterfly effect recursive scheme for the linear response.

The presented numerical examples indicate computational advantage of the proposed

method over naïve finite difference computations. Moreover, the new method is gen-

eralizable, i.e., it does not assume that the probability distribution in phase space is

of a particular type. We thoroughly explain basic mathematical tools and ingredients

of the derived method, e.g., partial integration on unstable manifolds, the idea of

SRB measure gradients, decay of time correlations. These concepts are fundamental

in understanding the unstable contribution of the space-split sensitivity (S3) method,

which we develop in the following chapters.

The content of this chapter was published in Theoretical and Applied

Mechanics Letters by Elsevier [158].
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2.1 Parameterized one-dimensional chaotic maps and

their statistical dependence on parameter

In this section, we introduce two families of perturbed one-dimensional chaotic sys-

tems that can generally be expressed as

𝑥𝑘+1 = 𝜙(𝑥𝑘; 𝑠), 𝑥0 = 𝑥init, (2.1)

where 𝑥init is a given initial condition, while 𝑠 denotes a scalar parameter. Let 𝐽 be

a scalar observable. Our quantity of interest is the infinite-time average or ergodic

average of 𝐽 ,

⟨𝐽⟩ := lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑖=0

𝐽(𝑥𝑖; 𝑠). (2.2)

In particular, we focus on the relationship between ⟨𝐽⟩ and the parameter 𝑠 for 𝜙.

In addition, we review the concepts of Lyapunov exponents and ergodicity through

numerical illustrations on the two maps.

2.1.1 Perturbations of the sawtooth map and their Lyapunov

exponents

We consider as our first example, perturbations of the sawtooth map, also known as

the dyadic transformation or Bernoull shift [47], defined in the following way:

𝑥𝑘+1 = 𝜙(𝑥𝑘; 𝑠) = 2𝑥𝑘 + 𝑠 sin(2𝜋𝑥𝑘) mod 1, 𝑥𝑘 ∈ [0, 1). (2.3)

It is a periodic map that maps [0, 1) to itself. Figure 2-1 illustrates the sawtooth map

for different values of the parameter 𝑠.

A natural question that arises is whether the chosen map is actually chaotic. A

visible symptom of a chaotic map is its sensitiveness to initial conditions. What does

it mean in practice? Consider the sawtooth map with 𝑠 = 0 and two different but

infinitesimally close initial conditions, 𝑥 and 𝑥 + 𝛿𝑥. After one iteration, the two
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Figure 2-1: The sawtooth map at different values of parameter 𝑠. Note if 𝑠 = 0, we
obtain the classical Bernoulli shift.

trajectories will be separated by a distance of 2 𝛿𝑥. As we continue this recursion to

the 𝑁 -th iteration, that distance will rapidly grow to

2𝑁 𝛿𝑥 = exp(log(2)𝑁) 𝛿𝑥.

Therefore, we see that the two trajectories that are initially 𝛿𝑥 apart separate expo-

nentially fast. At 𝑠 = 0, the rate of exponential expansion is 𝜆 = log 2 ≈ 0.693. The

parameter 𝜆 is known as the Lyapunov exponent (LE) and is rigorously defined as

𝜆(𝑠) = lim
𝑁→∞

1

𝑛

𝑁−1∑︁
𝑘=0

log

⃒⃒⃒⃒
𝜕𝜙

𝜕𝑥
(𝑥𝑘; 𝑠)

⃒⃒⃒⃒
. (2.4)

We say that a map is chaotic when its LE is positive.

Formula 2.4 requires computing the derivative of the map at points along a tra-

jectory. Note that the value of the Lyapunov exponent does not depend on initial

condition 𝑥init, nor on the step 𝑘. Figure 2-2 shows that 𝜆 > 0 for all 𝑠 ∈ (− 1
2𝜋
, 1
𝜋
]

meaning that the sawtooth map is chaotic in this regime. This can be easily justified

by the observation that 𝜕𝜙
𝜕𝑥

≥ 1 for all 𝑥 ∈ [0, 1], when 𝑠 is in this regime.

We alert that simulating the sawtooth map with 𝑠 = 0, i.e., the classical Bernoulli
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Figure 2-2: Relation between the Lyapunov exponent 𝜆 and parameter 𝑠 ∈
[︀
− 1

2𝜋
, 1
𝜋

]︀
for the sawtooth map.

shift, may require special care. Notice that all machine-representable numbers are

dyadic rational, which means that they can be represented as a fraction with the

denominator being a power of two. Consequently, since the Bernoulli map is simply

a leftshift operation on binary digits, its numerical simulation will converge to a fixed

number in most cases. More details about this problem and possible remedies can

be found in Appendix 2.6.1. Note also that if 𝑠 = 0 and 𝑥init is rational, the forward

orbit of 𝑥init would either converge to a fixed point or be periodic, containing a finite

number of distinct values within the interval [0, 1). If 𝑥init = 0.1, then all future states

belong to a four-element set, {0.2, 0.4, 0.6, 0.8}, and 𝑥𝑘 = 𝑥𝑘+4 for all 𝑘 > 0. This is

an example of an unstable periodic orbit; in this chapter, we are interested in chaotic

orbits, which are aperiodic and unstable to perturbations.

2.1.2 A family of cusp maps and their Lyapunov exponents

Another example of a chaotic map is the cusp map 𝜙 : [0, 1] → [0, ℎ] defined as

follows,

𝑥𝑘+1 = 𝜙(𝑥𝑘;ℎ, 𝛾) = ℎ−
⃒⃒⃒⃒
1

2
− 𝑥𝑘

⃒⃒⃒⃒
−
(︂
ℎ− 1

2

)︂
|1− 2𝑥𝑘|𝛾 . (2.5)

The above function produces a spade-shaped graph, as shown in Figure 2-3. The
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Figure 2-3: The cusp map at different values of parameters ℎ and 𝛾. Note all the
curves include points (0, 0) and (1, 0), while the tip is located at (0.5, ℎ). If ℎ = 𝛾 = 1,
the map is piecewise linear, and this particular case is usually referred to as the tent
map.

cusp map is a two-parameter map with 𝑠 = {ℎ, 𝛾}, where ℎ is the height, while 𝛾 is

a parameter that determines the sharpness of the tip. We use the definition Eq. 4 to

compute the LE of the cusp map at different values of ℎ and 𝛾. From the positivity

of the Lyapunov exponent shown in Figure 2-4, we see that the cusp map is always

chaotic if 𝛾 ∈ [0, 1] and ℎ ≥ 0.6.

Historically, the cusp map has been used as a one-dimensional representation of

the three-dimensional Lorenz’63 system [110], a set of ordinary differential equations

used as a model for atmospheric convection. Specifically, the iterates of the cusp map

are local maxima of the third coordinate of the Lorenz’63 system [121].

2.1.3 Statistical QoI: long-time averages

The fundamental quantity of interest (QoI) of chaotic systems that we study in this

thesis is the long-time average of a certain observable. QoI is calculated in the fol-

lowing way:

⟨𝐽⟩ ≈ 1

𝑁

𝑁−1∑︁
𝑖=0

𝐽(𝑥𝑖), (2.6)
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Figure 2-4: Relation between the Lyapunov exponent 𝜆 and parameter 𝛾 ∈ [0, 1] for
the cusp map.

where 𝑥𝑖+1 = 𝜙(𝑥𝑖). We set 𝑁 to a sufficiently large number to minimize the effect

of variance. Figure 2-5 illustrates examples of the mean statistics (i.e. long-time

averages) and their dependence on the map parameters for both the sawtooth and

cusp map. In this particular simulation, we generate 100 million samples with the

initial condition chosen uniformly, at random between 0 and 1.

In the computation of long-time averages of the objective function, we used the

concept of ergodicity. This property guarantees that long-time averages do not depend

on the initial condition. That is, the time average of the objective function (right hand

side of Eq. 2.6) converges, as 𝑁 → ∞, to a value independent of the initial condition

𝑥0, for almost every 𝑥0 chosen uniformly between 0 and 1. This limit equals the

expected value of the same objective function with respect to the underlying ergodic,

invariant probability distribution usually denoted by 𝜌. The property of invariance

means that for any open interval 𝐴 ⊂ (0, 1), 𝜌(𝐴) = 𝜌(𝜙−1(𝐴)). Such a probability

distribution 𝜌 is known as the Sinai-Ruelle-Bowen (SRB) density or measure [194],

and it generally represents a non-uniform distribution. One of the exceptions is the

sawtooth map at 𝑠 = 0, in which case 𝜌′(𝑥) is zero everywhere on (0, 1). A rigorous

definition SRB measures and further explanations in the context of multi-dimensional
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Figure 2-5: Long-time averaged behavior with respect to the map parameter for the
sawtooth (left) and cusp map (right). The objective function itself does not depend to
the parameter, and is defined as 𝐽(𝑥) = cos(2𝜋𝑥). In our computations, 𝐽 is averaged
over 100 million samples.

systems are included in Chapter 3.

The above description can be mathematically rephrased as follows. For almost every

𝑥0 uniformly distributed in (0, 1),

⟨𝐽⟩ = lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑖=0

𝐽(𝑥𝑖) =

∫︁
𝑈

𝐽(𝑥) 𝜌(𝑥) 𝑑𝑥. (2.7)

Thus, in ergodic systems, there exist two alternative ways of computing the long-

time average, either through the averaging of the time-series or ensemble averaging.

However, the latter requires prior computation of the probability distribution, which

is generally expensive. Given these preliminary concepts, we will now review the 1D

version of Ruelle’s formula, which we later use to compute the derivative of ⟨𝐽⟩ with

respect to the map parameter.

2.2 Sensitivity analysis of one-dimensional maps

Ruelle rigorously derived a formula for the derivative of the quantity of interest, ⟨𝐽⟩,

with respect to the controllable parameter 𝑠 [148]. This expression is an ensemble

average (or expectation) with respect to 𝜌, which can be simplified for one-dimensional
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maps 𝜙 : 𝑈 → 𝑈 to

𝑑

𝑑𝑠

∫︁
𝑈

𝐽(𝑥) 𝜌(𝑥) 𝑑𝑥 =
∞∑︁
𝑘=0

∫︁
𝑈

𝑓(𝑥)
𝑑
(︀
𝐽 ∘ 𝜙𝑘

)︀
(𝑥)

𝑑𝑥
𝜌(𝑥) 𝑑𝑥, (2.8)

where

𝑓(𝑥) :=
𝜕𝜙
(︀
𝜙−1(𝑥)

)︀
𝜕𝑠

(2.9)

reflects the parametric perturbation of the map, while 𝑈 refers to the unit interval

[0, 1). In the subsequent chapters, we use 𝜒 to represent 𝑓 in multi-dimensional

systems.

A direct evaluation of Eq. 2.8 is computationally cumbersome for the following

reason. Notice that the integrand of the right hand side involves a derivative of the

composite function that can be expanded using the chain rule to the form

𝑑(𝐽 ∘ 𝜙𝑘)(𝑥)
𝑑𝑥

=
(︁𝑑𝐽
𝑑𝑥

(𝜙𝑘(𝑥))
)︁ 𝑘−1∏︁
𝑗=0

𝜕𝜙

𝜕𝑥
(𝜙𝑗(𝑥)). (2.10)

As discussed in Chapter 1, the product of map derivatives exponentially grows

with 𝑘, which means that
𝑑
(︀
𝐽 ∘ 𝜙𝑘

)︀
𝑑𝑥

(𝑥) ∼ 𝒪(𝑒𝜆𝑘), (2.11)

Nevertheless, Ruelle’s series still convergences, as large quantities cancel out along

and/or across infinitely long trajectories. Generating several trajectories and trun-

cating them at a sufficiently small 𝑘 is also hopeless, because the mean-squared error

decreases proportionally to time if 𝒪(𝑒2𝜆𝑘) trajectories are available [29]. Thus, the

direct evaluation of Ruelle’s formula is computationally infeasible. For example, con-

sider the sawtooth map with 𝑠 ∈ [− 1
2𝜋
, 1
𝜋
]. In this case, (𝜕𝜙/𝜕𝑥) ∈ [1, 4]. One

can easily verify that even for moderate values of 𝑘, an overflow error is quickly en-

countered. Another challenge is that the evaluation of the SRB distribution requires

expensive computation of map probability densities [19]. In recent studies [32, 31],

Ruelle’s formula has been reformulated to a different ensemble average, known as the

S3 formula. The latter has been derived for maps with one positive LE, and is based
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on splitting of the total sensitivity into stable and unstable contributions. Note the

notion of splitting of the perturbation space is irrelevant for 1D maps, and the one-

dimensional perturbation is, by the definition of chaos, unstable. Therefore we will

skip some aspects of the original derivation, and note that our derivation represents

only the unstable component of sensitivity in [32] specialized to 1D.

Motivated by [32, 31], we regularize Ruelle’s formula defined by Eq. 2.8–2.9 by elim-

inating the problematic differentiation operator from the composite function. The

new sensitivity expression has the following form,

𝑑

𝑑𝑠

∫︁
𝑈

𝐽(𝑥) 𝜌(𝑥) 𝑑𝑥 = −
∞∑︁
𝑘=0

∫︁
𝑈

∇𝜌𝑓(𝑥) 𝐽
(︀
𝑥𝑘) 𝜌(𝑥) 𝑑𝑥, (2.12)

where

∇𝜌𝑓(𝑥) :=
1

𝜌(𝑥)

𝑑
(︀
𝜌(𝑥) 𝑓(𝑥)

)︀
𝑑𝑥

=
𝑑𝑓

𝑑𝑥
(𝑥) + 𝑓(𝑥) 𝑔(𝑥), (2.13)

and,

𝑔(𝑥) :=
1

𝜌(𝑥)

𝑑𝜌

𝑑𝑥
(𝑥). (2.14)

For one-dimensional maps, the derivation is simple, as it requires integrating Eq. 2.8

by parts and the fact that the integral of 𝑑𝑓/𝑑𝑥 at the boundary of 𝑈 vanishes; see

Appendix 2.6.2 for the full derivation. We observe that both 𝐽 and 𝑑𝑓/𝑑𝑥 have their

analytical forms. However, the function 𝑔(𝑥), which will be referred to as density

gradient or SRB measure gradient, does not have a closed-form expression, since the

SRB distribution 𝜌 is unknown. The density gradient 𝑔 represents the variation in

phase space of the logarithm of 𝜌(𝑥),

𝑔(𝑥) :=
1

𝜌(𝑥)

𝑑𝜌

𝑑𝑥
(𝑥) =

𝑑 log 𝜌(𝑥)

𝑑𝑥
. (2.15)

In the next section, we focus on further interpretations of 𝑔(𝑥), its computation and

verification on the 1D maps introduced in Section 2.1.
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2.3 Computing SRB density gradients of one-dimensional

maps

In this section, we focus on the density gradient function, denoted by 𝑔(𝑥). First, we

present a computable, iterative scheme for 𝑔(𝑥). Moreover, we provide an intuitive

explanation for 𝑔(𝑥) and visualize it on the maps introduced in Section 2.1.

The 𝑔(𝑥) function satisfies the following recursive relation

𝑔
(︀
𝜙(𝑥)

)︀
=

𝑔(𝑥)

𝑑𝜙(𝑥)/𝑑𝑥
− 𝑑2𝜙(𝑥)/𝑑𝑥2(︀

𝑑𝜙(𝑥)/𝑑𝑥
)︀2 , (2.16)

which we derive in Appendix 2.6.3. This recursive procedure can be used to approx-

imate 𝑔(𝑥) along a trajectory in the asymptotic sense. Indeed, we need a sufficiently

large number of iterations to obtain an accurate approximation of 𝑔(𝑥) [162]. In

practice, we generate a sufficiently long trajectory, compute first and second deriva-

tives of the map evaluated along that orbit, and apply Eq. 2.16. We arbitrarily set

𝑔(𝑥init) = 0, to start the recursive procedure, and obtain 𝑔(𝜙(𝑥init)). The recursion is

continued by setting 𝑥 = 𝜙(𝑥init), and so on. For a sufficiently large 𝐾, the true value

of 𝑔(𝜙𝐾(𝑥init)) is approached, for almost every initial condition 𝑥init. In Chapter 5,

we prove that the recursion for 𝑔 converges in uniformly hyperbolic systems.

2.3.1 Interpretation of the density gradient iterative formula

To intuitively understand the density gradient formula in Eq. 2.16, we isolate the

effect of each term. Let us consider a small preimage subset of 𝜙 and two different

mapping types: 1.) linear (straight line) and 2.) constant curvature mapping (e.g.,

quadratic function). These two cases are graphically shown on the left- (numbered

as 1) and right-hand (numbered as 2) side of Figure 2-6, respectively. The 𝑥-axis

represents an interval around 𝑥𝑘 (chosen preimage subset), while the y-axis an interval

around 𝑥𝑘+1 = 𝜙(𝑥𝑘) (corresponding image). The density 𝜌, around each interval, is

shown adjacent to the axes, as a colormap. Specific colors reflect the distribution of

𝜌 on a logarithmic scale.
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Figure 2-6: Graphical representation of two different scenarios in one-dimensional
maps, to intuitively understand the derivation of 𝑔. The bold lines illustrate the
map, while shaded bars adjacent to each axis represent the corresponding density
distributions on a logarithmic scale. The region around 𝐻 corresponds to a high
value of density, while the region around 𝐿 to low values. The slope of the line is
indicated as 𝑡.

1. Let (𝑥− 𝜖, 𝑥+ 𝜖) be a subset of the system’s preimage at 𝑘th time step. Under

the assumption of linear transformation, the first derivative of 𝜙 is constant

within that subset. We additionally assume that the Jacobian is positive, while

the density decreases monotonically; thus, 𝜌(𝑥 + 𝜖) < 𝜌(𝑥 − 𝜖). Due to the

property of measure invariance (probability mass conservation), the following

relation1:

𝜌(𝜙(𝑥)) =
𝜌(𝑥)

|𝑑𝜙/𝑑𝑥|
(2.17)

holds. This equation implies that the densities at the neighborhood of given

point on the attractor and its preimage are simply related through a constant

number. Notice that

log 𝜌(𝜙(𝑥)) = log 𝜌(𝑥)− log
𝑑𝜙

𝑑𝑥
. (2.18)

1This is a version of the density evolution equation involing the Frobenius-Perron operator. See
Chapter 4 for more details.
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Thus, on a logarithmic scale, the density distribution of the preimage is shifted

by a constant compared to the current state. The colorbars of Figure 2-6 (1)

illustrate this behavior. The initial density range, bounded by 𝐿 and 𝐻, is

uniformly shifted to the left by the value of 𝑀 . The crux of this study case is the

following observation. Since 𝑑𝜙/𝑑𝑥 is constant, rates of change of logarithmic

densities in their respective coordinate systems, 𝑥𝑘 and 𝑥𝑘+1 = 𝜙(𝑥𝑘), are the

same. In addition, the preimage interval is expanded by a factor of 𝑑𝜙/𝑑𝑥. A

mathematical equivalent of the two preceding statements can be obtained by

differentiating Eq. 2.18,

(︂
1

𝜌

𝑑𝜌

𝑑𝑥

)︂ ⃒⃒⃒⃒
𝜙(𝑥)

𝑑𝜙

𝑑𝑥
=

(︂
1

𝜌

𝑑𝜌

𝑑𝑥

)︂ ⃒⃒⃒⃒
𝑥

. (2.19)

From the definition of 𝑔, this reduces to

𝑔(𝜙(𝑥)) =
𝑔(𝑥)

𝑑𝜙/𝑑𝑥
, (2.20)

which is consistent with Eq. 2.16 by setting 𝑑2𝜙/𝑑𝑥2 = 0.

2. In the second scenario, we aim to isolate the effect of the second term of Eq.

2.16. Thus, we will consider uniform measure distribution at the preimage stage,

i.e., at step 𝑘. Thus, 𝑔(𝑥𝑘) is zero by definition, which is not necessarily true for

𝑔(𝑥𝑘+1). We also assume that 𝜙 is a monotonically increasing quadratic function

intersecting the origin. Due to the probability mass conservation (see Eq. 2.18),

𝜌 is re-scaled by 𝑑𝜙/𝑑𝑥 after one iteration of 𝜙. Now, let us specifically focus on

the preimage point 𝑥 at which the slope is exactly one, as represented graphically

in Figure 2-6. We observe that at the image of the region to the left of 𝑥

the density increases and vice versa. Indeed, the larger the first derivative

of the map, the lower the density after transformation. This effect can be

mathematically described by taking the derivative of Eq. 2.18 with respect to
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𝑥 and applying the definition of 𝑔,

𝑔(𝜙(𝑥)) = − 𝑑2𝜙/𝑑𝑥2

(𝑑𝜙/𝑑𝑥)2
. (2.21)

In conclusion, the evolution of measure gradient is not only affected by expan-

sion/compression factor, represented by 𝑑𝜙/𝑑𝑥, but it also takes into account

the rate of volume change, represented by 𝑑2𝜙/𝑑𝑥2. Both effects directly fol-

low from the measure preservation or probability mass conservation laws. In

Chapter 3, these concepts are generalized and explained in more detail.

2.3.2 Numerical examples of density gradients

In the second part of this section, we show numerical results of the density gradient

procedure in two examples, the sawtooth and cusp maps, which were introduced in Eq.

2.3 and Eq. 2.5 respectively. Figure 2-7 shows the stationary probability densities

of the sawtooth map at different values of 𝑠. We observe that all curves appear

differentiable, however their derivatives are large, near the interval boundaries, when

𝑠 is close to −1/(2𝜋) or 1/𝜋. In Figure 2-8 we show the distribution of the (averaged)

density gradient function, 𝑔(𝑥), computed using Eq. 2.16, at different values of 𝑠,

and compare it against its finite difference approximation: (log(𝜌(𝑥+ 𝜖))− log(𝜌(𝑥−

𝜖)))/(2𝜖).

Note that the expected value of the density gradient is always zero since

∫︁
𝑈

𝑔(𝑥) 𝜌(𝑥) 𝑑𝑥 =

∫︁
𝑈

𝜕𝜌

𝜕𝑥
𝑑𝑥 = [𝜌(𝑥)]10 = 0. (2.22)

We repeat a similar experiment for the cusp map, whose results are presented in

Figures 2-9–2-10. We observe a behavior similar to the sawtooth map.

Similarly to the sawtooth density, the densities computed for the cusp map appear

to be differentiable over a range of the parameter 𝛾. However, as 𝛾 approaches the

value of 1, 𝜌 acquires large slopes at the boundaries. The boundedness of 𝑑𝜌/𝑑𝑥 is

needed for the computation of 𝑔(𝑥) to be well-conditioned.
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Figure 2-7: The plot shows the empirically estimated stationary probability distri-
butions achieved by the sawtooth map (Eq. 2.3). Every curve was generated using
125,829,120,000 samples and counting the number of solutions in each of 2048 bins
of equal length in the interval [0, 1).

Figure 2-8: Density gradient function, 𝑔(𝑥) (solid lines), generated using Eq. 2.16 and
compared against the empirically computed value of 𝑔(𝑥) (dots), where the derivative
of 𝜌(𝑥) is estimated using finite difference.
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Figure 2-9: The plot shows the empirically estimated stationary probability distribu-
tions achieved by the cusp map (Eq. 2.5), at ℎ = 1 and the indicated value of 𝛾. All
curves were generated in the same fashion as for the sawtooth case.

Figure 2-10: The plot compares 𝑔(𝑥) (solid lines) against the derivative of the empir-
ically estimated stationary probability distributions (dots) achieved by the cusp map
(Eq. 2.5), at ℎ = 1 and indicated value of 𝛾. All curves were generated in the same
fashion as for the sawtooth case.
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2.4 Sensitivity as a sum of time correlations

The main focus of this chapter is the evaluation of Eq. (2.12), which is an infinite

series of 𝑘-lag time correlations between ∇𝜌𝑓 and 𝐽 . Here, the 𝑘-lag time correlation

is defined as the ensemble average of the product of two quantities with respect

to 𝜌, where one is evaluated 𝑘 time steps into the future. Due to the assumed

ergodic behavior of 𝜙, these ensemble averages can be approximated by computing

time averages of data collected along truncated orbits initiated at a random initial

condition. Therefore, the sought-after sensitivity can be approximated as follows,

𝑑

𝑑𝑠

∫︁
𝑈

𝐽(𝑥) 𝜌(𝑥) 𝑑𝑥 ≈ − 1

𝑁

∞∑︁
𝑘=0

𝑁−1∑︁
𝑛=0

(︁ 𝑑𝑓
𝑑𝑥

(𝑥𝑛) + 𝑓(𝑥𝑛)𝑔(𝑥𝑛)
)︁
𝐽
(︀
𝑥𝑛+𝑘), (2.23)

where 𝑥𝑛+1 = 𝜙(𝑥𝑛), and 𝑔 is generated “in parallel" using the recursion from Eq.

2.16. Systems in which the lag-𝑘 time correlations converge to zero as 𝑘 → ∞

are known as mixing systems [8]. In Axiom A mixing systems [164], the rate of

decay of time correlations is exponential [194]. One can prove that one-dimensional

maps are Axiom A systems if their derivatives are different than 1 everywhere on

the attractor. The family of sawtooth and cusp maps that we described satisfy this

requirement, which means that we need to compute a relatively small number of time

correlations to obtain accurate approximations of the sensitivity. We also alert that

one can empirically observe the exponential decay of correlations only if the generated

trajectories are sufficiently long (see Chapter 5) for a detailed analysis.

2.4.1 Examples of sensitivity computation

To numerically verify Eq. 2.23, we consider a family of indicator functions, which

will serve as observables 𝐽𝑐(𝑥) (objective functions). Each of them will be denoted as

𝐽𝑐(𝑥) := 𝛿𝑐(𝑥) and defined such that its value is a constant 1 in a small interval around

𝑐 and zero everywhere else on the unit interval. Note that every Riemann-integrable

function can be approximated, to arbitrary precision, by linear combinations of such

indicator functions. With this particular choice, Eq. 2.23 gives us the gradient of the
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probability density, since

𝑑

𝑑𝑠

∫︁
𝑈

𝛿𝑐(𝑥) 𝜌(𝑥; 𝑠) 𝑑𝑥 =

∫︁
𝑈

𝛿𝑐(𝑥)
𝜕𝜌(𝑥; 𝑠)

𝜕𝑠
𝑑𝑥 ≈ 𝜕𝜌(𝑐; 𝑠)

𝜕𝑠
. (2.24)

By running our linear response algorithm at several values of 𝑐 in the interval [0, 1),

we effectively obtain an approximation of 𝑑𝜌/𝑑𝑠 over 𝑈 . The reason we pick indi-

cator functions as observables is that we can easily compare the result of our new

scheme against the finite difference approximation of 𝑑𝜌/𝑑𝑠. Since we deal with

one-dimensional maps, the latter can be computed by approximating the density em-

pirically at two different values of 𝑠 and applying, for example, the central finite

difference scheme. These estimates can then be used to calculate the derivatives of

any other function with a differentiable statistics, using numerical quadrature. The

choice of indicator functions exhibits yet another advantage of the regularized method

over Ruelle’s formula (Eq. 2.8). Indeed, the former is also applicable to objective

functions that have non-differentiable points, since unlike in a direct evaluation of

Ruelle’s formula, the derivative of 𝐽(𝑥) is never used.

Figure 2-11 shows numerical results for the cusp map, in which the linear response

is computed using the new formula (Eq. 2.23) and compared with the central differ-

ence derivative. We observe that only a few terms of the series are required to produce

accurate sensitivities. Figure 2-12 clearly indicates that the consecutive terms of the

series in Eq. 2.23 exponentially decay in norm. We repeat a similar experiment for

the sawtooth map (see Figures 2-13 and 2-14). In this case, we only need three

terms of Eq. 2.23 to obtain a result that is indistinguishable from its finite difference

approximation. The consecutive terms of Eq. 2.23 also decay exponentially in norm,

which is consistent with the theory.

2.4.2 Computational performance of the linear response algo-

rithm

Finally, we compare the linear response method and classical finite difference method

in terms of computational efficiency. Figures 2-15–2-16, generated respectively for
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Figure 2-11: Sensitivity of the density of the cusp map with respect to 𝛾 at ℎ = 1, 𝛾 =
0.5. The solid lines represent the result of Equation (2.12) when a finite number of
terms is used in the summation over 𝑘. The solid line marked with (▷) represents
Equation (2.12) evaluated with 17 terms, which is visibly indistinguishable from the
same series summed over 6 or more terms. The dots represent the finite difference
derivative of the density, evaluated based on the empirical density at ℎ = 1, 𝛾 = 0.505
and at ℎ = 1, 𝛾 = 0.495. Each quantity is evaluated with 125,829,120,000 samples.

Figure 2-12: Contributions from the 𝑘-th term to Equation (2.12) for the cusp map.
Later terms are overwhelmed by statistical noise.
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Figure 2-13: Sensitivity of the density of the sawtooth map with respect to 𝑠 at
𝑠 = 0.1. The solid lines represent the result of Eq. 2.12 when a finite number of terms
is used in the summation over 𝑘. The solid line marked with (○) represent Equation
(2.12) evaluated with 3 terms, is aligned with the the finite difference derivative of
the density, evaluated based on the density at 𝑠 = 0.105 and at 𝑠 = 0.095. Each
quantity is evaluated with 125,829,120,000 samples.

Figure 2-14: Contributions from the 𝑘-th term to Eq. 2.12, for the sawtooth map.
Later terms are overwhelmed by statistical noise.
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Figure 2-15: Relative error of the linear response and finite difference methods as a
function of the trajectory length. We compute the parametric derivative of density
of the sawtooth map at 𝑠 = 0.1 on the left boundary (𝑥 = 0). In the linear response
computation (curve marked with (□)), we consider only first three terms of Eq. 2.12,
which corresponds to the line marked with (○) in Figure 2-13. For the finite difference
approximation, we calculate densities at 𝑠 = 0.105, 0.095 (curve marked with (○))
and 𝑠 = 0.1005, 0.0995 (curve marked with (△)). In addition, we also computed the
linear response with our algorithm using 125,829,120,000 samples and 9 terms of Eq.
2.12, which serves as a reference value. The dashed lines are proportional to the
inverse of the square root of the number of samples.

the sawtooth and cusp maps, clearly indicate that the proposed method outperforms

its competitor. We observe that the former requires a few orders of magnitude fewer

samples to guarantee a similar error. This is a very promising observation in the

context of analysing higher-dimensional systems, since the large cost of generating

very long trajectories could make such computations infeasible.

Note in the case of both the linear response and finite difference methods, the error

is upper-bounded as follows [32],

error ≤ 𝐶√
𝑁
, (2.25)

where 𝑁 denotes the number of samples, while 𝐶 is some positive number. This

means we observe a convergence rate of a typical Monte Carlo simulation in both
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Figure 2-16: Relative error of the linear response and finite difference methods as a
function of the trajectory length. We compute the parametric derivative of density
of the cusp map at ℎ = 1, 𝛾 = 0.5 in the middle of the domain 𝑈 (𝑥 = 0.5).
In the linear response computation (curve marked with (□)), we consider first ten
terms of Eq. 2.12. For the finite difference approximation, we calculate densities at
𝛾 = 0.505, 0.495 (curve marked with (○)) and 𝛾 = 0.5005, 0.4995 (curve marked with
(△)). In addition, we also computed the linear response with our algorithm using
125,829,120,000 samples and 17 terms of Eq. 2.12, which serves as a reference value.
The dashed lines are proportional to the inverse of the square root of the number of
samples.

methods. However, the factor 𝐶 is substantially larger in case of finite differencing.

Moreover decreasing the step size (indicated as 𝛿𝑠) in the finite difference calculation,

worsens the accuracy, due the dominance of statistical noise.

2.5 Summary

We demonstrate a novel method based on Ruelle’s formalism to compute the linear

response, i.e., the parametric derivative of long-time statistics, in one-dimensional

chaotic systems. To eliminate the problem of butterfly effect, the new method reg-

ularizes Ruelle’s expression through partial integration. One of the by-products of

integration by parts is a quantity called density gradient, defined as the derivative

of the logarithmic density with respect to the state. This quantity plays a key role
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in the computation of the linear response, and is efficiently computed in a recursive

manner thanks to the property of ergodic measure conservation.

The proposed linear response method requires evaluating an infinite series of time

correlations between regularized quantities. In uniformly hyperbolic systems, the time

correlations are guaranteed to decay exponentially fast as the time gap increases. It

means that a relatively small number of the series terms should be computed to

accurately estimate the sensitivity, which we verify in our numerical tests. We also

demonstrate that the linear response formula requires several orders of magnitude

less samples compared to the finite difference method. This benefit stems precisely

from the regularization of Ruelle’s original expression.

While this work is restricted to simple one-dimensional expansive maps, the pre-

sented examples illustrate the concepts that will be later used in the derivation of

the generalized linear response algorithm, known as the space-split sensitivty (S3)

method. Here we also point out that, in certain cases, the slopes of ergodic densities

could be very large locally, which corresponds to heavy tailedness of the density gradi-

ent distribution. This phenomenon, as well as systematic methods for differentiating

SRB densities on higher-dimensional unstable manifolds is the main topic of the next

two chapters.

2.6 Appendices

This section includes supplementary material supporting certain arguments presented

in this chapter.

2.6.1 Binary floating point problem in simulating 1D maps

Consider the case 𝑠 = 0. Map 2.3 can be compactly expressed using the modulo

operator, i.e. 𝑥𝑛+1 = 2𝑥𝑛 mod 1. It means we multiply 𝑥𝑛 by 2 and if 𝑥𝑛+1 > 1,

then we also subtract 1. Using floating point arithmetic, we will observe that there

exist 𝑁 > 0 such that 𝑥𝑛 = 0 for all 𝑛 ≥ 𝑁 , which contradicts the assumption of

chaotic behavior. This phenomenon is due to the round-off errors associated with the
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modulo operator. To circumvent this problem, one can change the divisor parameter

(of the modulo operation) from 1 to 1− 𝜖, where 𝜖 is a small number, e.g. 𝜖 = 10−6.

Another possible (and simple) workaround might be a change of variables such that

the domain of the new variable has irrational length. Note this approach would also

require a modification of the objective function.

2.6.2 Derivation of the linear response formula for 1D maps

In this section, we will show Eq. 2.8–2.9 are equivalent to Eq. 2.12–2.14. Throughout

this derivation we will use a short-hand notation for the composition 𝑣∘𝜙𝑘 = 𝑣𝑘, where

𝑣 is some scalar function defined on 𝑈 = (0, 1), while 𝑘 is some integer. If 𝑘 = 0, the

subscript is dropped. First, note

∫︁
𝑈

𝑓
𝑑𝐽𝑘
𝑑𝑥

𝜌 𝑑𝑥 =

∫︁
𝑈

𝑑

𝑑𝑥
(𝑓 𝐽𝑘) 𝜌 𝑑𝑥−

∫︁
𝑈

𝐽𝑘
𝑑𝑓

𝑑𝑥
𝜌 𝑑𝑥. (2.26)

Integrate the first term of Eq. 2.26 by parts,

∫︁
𝑈

𝑑

𝑑𝑥
(𝑓 𝐽𝑘) 𝜌 𝑑𝑥 = [𝑓 𝐽𝑘 𝜌]

𝑈𝑅

𝑈𝐿
−
∫︁
𝑈

𝑓 𝐽𝑘
𝜕𝜌

𝜕𝑥
𝑑𝑥, (2.27)

where 𝑈𝐿 = 0 and 𝑈𝑅 = 1 correspond to the left and right boundary of 𝑈 , respectively.

Since the domain is periodic, the first term of Eq. 2.27 vanishes. Thus, we can combine

Eq. 2.26 and Eq. 2.27 to conclude that

∫︁
𝑈

𝑓
𝑑𝐽𝑘
𝑑𝑥

𝜌 𝑑𝑥 = −
∫︁
𝑈

𝐽𝑘

(︂
𝜕𝑓

𝜕𝑥
+

1

𝜌

𝜕𝜌

𝜕𝑥

)︂
𝜌 𝑑𝑥. (2.28)

2.6.3 Derivation of an iterative procedure for the ergodic mea-

sure gradient in 1D maps

The purpose of this section is to derive the iterative procedure to calculate the density

gradient 𝑔. We use the same notational convention as in Appendix 2.6.2. Let us
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consider a function ℎ that is integrable in 𝑈 = (0, 1) and vanishes at 𝑈𝐿 = 0 and

𝑈𝑅 = 1. Using the definition 𝑔 = (1/𝜌)(𝜕𝜌/𝜕𝑥), and integrating by parts, we obtain

∫︁
𝑈

𝑔 ℎ 𝜌 𝑑𝑥 =

∫︁
𝑈

ℎ
𝑑𝜌

𝑑𝑥
𝑑𝑥 = [ℎ 𝜌]𝑈𝑅

𝑈𝐿
−
∫︁
𝑈

𝑑ℎ

𝑑𝑥
𝜌 𝑑𝑥 = −

∫︁
𝑈

𝑑ℎ

𝑑𝑥
𝜌 𝑑𝑥. (2.29)

The key property used in this derivation is the density preservation of 𝜙. The map

𝜙 is density-preserving with respect to the density 𝜌 if

∫︁
𝑈

𝑓 𝜌 𝑑𝑥 =

∫︁
𝑈

𝑓 ∘ 𝜙𝑘 𝜌 𝑑𝑥

holds for any integer 𝑘 and any scalar observable 𝑓 . This implies the left hand side

of Eq. 2.29 can be expressed as

∫︁
𝑈

𝑔 ℎ 𝜌 𝑑𝑥 =

∫︁
𝑈

𝑔1 ℎ1 𝜌 𝑑𝑥. (2.30)

We now apply the density preservation together with the chain rule to the right hand

side of Eq. 2.29, which gives rise to

−
∫︁
𝑈

𝑑ℎ

𝑑𝑥
𝜌 𝑑𝑥 = −

∫︁
𝑈

(︂
𝑑ℎ

𝑑𝑥

)︂
1

𝜌 𝑑𝑥 = −
∫︁
𝑈

𝑑ℎ1
𝑑𝑥

1

𝑑𝜙/𝑑𝑥
𝜌 𝑑𝑥. (2.31)

Note

𝑑ℎ1
𝑑𝑥

1

𝑑𝜙/𝑑𝑥
=

𝑑

𝑑𝑥

(︂
ℎ1

𝑑𝜙/𝑑𝑥

)︂
− ℎ1

𝑑

𝑑𝑥

(︂
1

𝑑𝜙/𝑑𝑥

)︂
=

𝑑

𝑑𝑥

(︂
ℎ1

𝑑𝜙/𝑑𝑥

)︂
+ ℎ1

𝑑2𝜙/𝑑𝑥2

(𝑑𝜙/𝑑𝑥)2
,

(2.32)

and, using ℎ1(𝑈𝐿) = ℎ1(𝑈𝑅) = 0, integrate by parts to get,

−
∫︁
𝑈

𝑑

𝑑𝑥

(︂
ℎ1

𝑑𝜙/𝑑𝑥

)︂
𝜌 𝑑𝑥 = −

[︂
ℎ1

𝑑𝜙/𝑑𝑥
𝜌

]︂𝑈𝑅

𝑈𝐿

+

∫︁
𝑈

ℎ1
𝑑𝜙/𝑑𝑥

𝑑𝜌

𝑑𝑥
𝑑𝑥 =

∫︁
𝑈

ℎ1
𝑑𝜙/𝑑𝑥

𝑑𝜌

𝑑𝑥
𝑑𝑥.

(2.33)

Combine Eq. 2.31–2.33 to observe that

−
∫︁
𝑈

𝑑ℎ

𝑑𝑥
𝜌 𝑑𝑥 =

∫︁
𝑈

ℎ1

(︂
𝑔

𝑑𝜙/𝑑𝑥
− 𝑑2𝜙/𝑑𝑥2

(𝑑𝜙/𝑑𝑥)2

)︂
𝜌 𝑑𝑥. (2.34)
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Finally, by combining Eq. 2.29,2.30, and 2.34, we obtain the following identity,

∫︁
𝑈

ℎ1 𝑔1 𝜌 𝑑𝑥 =

∫︁
𝑈

ℎ1

(︂
𝑔

𝑑𝜙/𝑑𝑥
− 𝑑2𝜙/𝑑𝑥2

(𝑑𝜙/𝑑𝑥)2

)︂
𝜌 𝑑𝑥, (2.35)

from which we infer that

𝑔1 =
𝑔

𝑑𝜙/𝑑𝑥
− 𝑑2𝜙/𝑑𝑥2

(𝑑𝜙/𝑑𝑥)2
. (2.36)
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Chapter 3

Differentiating ergodic measures on

unstable manifolds

Ergodic or Sinai-Ruelle-Bowen (SRB) measures are limiting stationary distributions

describing the statistical behavior of chaotic dynamical systems. Directional deriva-

tives of SRB measure densities conditioned on unstable manifolds are critical in the

sensitivity analysis of hyperbolic chaos. These derivatives, known as the SRB density

gradients, are by-products of the regularization of Lebesgue integrals appearing in the

original linear response expression. In this chapter, we propose a novel trajectory-

driven algorithm for computing the SRB density gradient defined for systems with

high-dimensional unstable manifolds. We apply the concept of measure preservation

together with the chain rule on smooth manifolds. Due to the recursive one-step

nature of our derivations, the proposed procedure is memory-efficient and can be nat-

urally integrated with existing Monte Carlo schemes widely used in computational

chaotic dynamics. We numerically show the exponential convergence of our scheme,

analyze the computational cost, and present its use in the context of Monte Carlo

integration.

This chapter consists of two major parts. The first one, spanning Sections 3.1 – 3.5,

introduces and derives mathematical machinery for differentiating densities implied

by smooth coordinate charts describing generic manifolds. The key idea proposed

in that part is to parameterize smooth manifolds using quantile functions. We also

61



point out that Lebesgue integration of derivatives of strongly-oscillatory functions

is a recurring challenge in computational science and engineering. Integration by

parts is an effective remedy for huge computational costs associated with Monte

Carlo integration schemes. The content of this part was published in Applied

Mathematics and Computation by Elsevier [160]. The second part, spanning

Sections 3.6 – 3.10, applies these concepts to effectively differentiate SRB measures

on multi-dimensional unstable manifolds. We acknowledge that the second part

was first published in SIAM Journal on Scientic Computing in 2022 by the

Society for Industrial and Applied Mathematics (SIAM) [162]. Copyright

© by SIAM. Unauthorized reproduction of this article is prohibited.

3.1 Preliminaries

The fundamental theorem of calculus states that

∫︁ 𝑏

𝑎

𝜕𝑥𝑓(𝑥) 𝑑𝑥 = 𝑓(𝑏)− 𝑓(𝑎),

where 𝑓 is some smooth function defined on the compact interval [𝑎, 𝑏]. This theorem

is critical in many applications, including computational sciences [14, 172]. For exam-

ple, if the function 𝑓 is strongly oscillatory, a numerical quadrature on the left-hand

side would require many points and much computation to obtain accurate results.

Nevertheless, the fundamental theorem guarantees that the positive and negative

derivatives of this oscillatory function largely cancel each other out. Indeed, one can

simply compute the right-hand side directly, without truncation error.

As a generalization of the fundamental theorem, consider the integral of 𝜕𝑥𝑓 over

the same domain under some Lebesgue measure 𝑚, which is an antiderivative of the

density function 𝜌 (a.k.a. the Radon-Nikodym derivative [123]), i.e., 𝑑𝑚(𝑥) = 𝜌(𝑥) 𝑑𝑥.

In the classical version of the theorem, as mentioned in the first paragraph, the density

𝜌 is constant and equals 1/(𝑏− 𝑎) everywhere on the domain. If this is not the case,
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however, the integration by parts of 𝜕𝑥𝑓 involves the derivative of 𝜌,

∫︁ 𝑏

𝑎

𝜕𝑥𝑓(𝑥) 𝑑𝑚(𝑥) = 𝑓𝜌
⃒⃒⃒𝑏
𝑎
−
∫︁ 𝑏

𝑎

𝑓(𝑥) 𝜕𝑥𝜌(𝑥) 𝑑𝑥 = 𝑓𝜌
⃒⃒⃒𝑏
𝑎
−
∫︁ 𝑏

𝑎

𝑓(𝑥)
𝜕𝑥𝜌

𝜌
(𝑥) 𝑑𝑚(𝑥) (3.1)

Note also that Eq. 3.1 can be viewed as an extension of the Generalized Stokes

Theorem to integrals involving non-uniform measures. The second term from the RHS

of Eq. 3.1 does not appear in the classical version of this theorem because 𝜕𝑥𝜌 vanishes

everywhere on the domain. The integral in Eq. 3.1 can be approximated using a

Monte Carlo integration scheme if a set of realizations of 𝑥, {𝑥1, 𝑥2, ..., 𝑥𝑁}, distributed

according to 𝑚, is given. However, if 𝑓 is a strongly-oscillatory function with large

magnitude, the Monte Carlo method applied directly to the integral on the left-hand

side (LHS) of Eq. 3.1 would require a large amount of data to obtain an approximation

with a reasonably small error [134, 117]. Alternatively, one can consider the right-

hand side (RHS) of the same equation, which requires the function 𝑓 itself, not its

derivative. Assuming the density 𝜌 is a well-behaved function, the variance of the

integrand on the RHS is significantly smaller and, therefore, remarkably less data is

needed to obtain an accurate result. However, extra computational effort must be

put to evaluate 𝜕𝑥𝜌/𝜌 = 𝜕𝑥 log 𝜌. The computation of that function, which we denote

by 𝑔 and call density gradient1, is the main focus of this chapter.

Lebesgue integrals involving functions with high fluctuations are critical in the field

of sensitivity analysis of chaotic dynamical systems. Ruelle [148, 150] derived a closed-

form expression, known as the linear response formula, for the parametric derivative of

the mean of a quantity of interest 𝐽 . The linear response formula includes Lebesgue

integrals of directional derivatives of a strongly oscillatory 𝐽 over the manifold of

a chaotic system. A computable version of Ruelle’s formula, known as the space-

split sensitivity (S3), was originally obtained through the integration by parts of

the original formulation [32] and also presented in Chapter 2. The S3 algorithm

was successfully applied in various low-dimensional systems in the computation [158]

1While the function 𝑔 appearing in Sections 3.1 – 3.5 is not the SRB (ergodic) measure gradient,
we will stick to the same notation due to the natural equivalence. Here, 𝑔 represents a derivative of
the logarithmic density implied by smooth measure transformation.
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and assessment of existence [159] of parametric derivatives of statistical quantities

describing chaos. The crux of the computation of the regularized Ruelle’s formula

is the SRB density gradient, defined as a directional derivative of the logarithm of

the SRB density [195, 41] along the unstable manifold. While an efficient numerical

procedure for the approximation of the SRB density gradient specialized to systems

with one-dimensional unstable manifolds is available [32, 158, 159, 33], we still lack a

generalizable algorithm applicable to arbitrary higher-dimensional chaotic systems.

The main purpose of the first part of this chapter is to derive a general formula

for the density gradient 𝑔, defined on a differentiable 𝑚-dimensional manifold 𝑀

immersed in the Euclidean space R𝑛, 𝑚 ≤ 𝑛. In our analysis, we parameterize 𝑀

using the chart 𝑥(𝜉) : R𝑚 → R𝑛. Here, the 𝑔 function is an 𝑚-element vector, whose

𝑖-th component equals a directional derivative of log 𝜌, in the direction of a unit vector

𝑠𝑖, i.e.,

𝑔𝑖 =
𝜕𝑠𝑖𝜌

𝜌
=

∇𝑥𝜌 · 𝑠𝑖
𝜌

.

The scalar function 𝜌 is the density implied by 𝑥(𝜉). Without loss of generality, we

assume that the 𝑖-th directional derivative is computed along the isoparametric line in

the direction of increasing 𝑖-th component of 𝜉. Analogously to Eq. 3.1, the Lebesgue

integral of the directional derivative of 𝐽 over 𝑀 with measure 𝑚 can be written

using 𝑔𝑖, ∫︁
𝑀

∇𝑥𝐽(𝑥) · 𝑠𝑖(𝑥) 𝑑𝑚(𝑥) = −
∫︁
𝑀

𝐽(𝑥) 𝑔𝑖(𝑥) 𝑑𝑚(𝑥), (3.2)

where 𝐽 is assumed to vanish on the boundary of 𝑀 . For the reasons indicated above,

it is computationally efficient to apply the Monte Carlo method to the RHS of Eq.

3.2. Analogous integration by parts is required to regularize the linear response [32].

Thus, the derivation of a computable expression for the density gradient defined on

higher-dimensional smooth manifolds is a milestone in constructing algorithms for

differentiating SRB measures. In addition, an explicit formula for 𝑔 might serve as a

valuable tool in general numerical procedures involving integrals over geometrically

complex domains.
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3.2 Computing density gradients on one-dimensional

manifolds

In this section, we focus on the computation of the density gradient 𝑔 in the sim-

plest topological setting. In particular, we consider general smooth one-dimensional

manifolds immersed in the Euclidean space R𝑛 which can be described using a single

parameter 𝜉 ∈ [0, 1]. They are all geometrically represented by curves. Let us pick

one out of infinitely many such curves and denote it by 𝒞. We assume there exists a

one-to-one map 𝑥(𝜉) ∈ 𝒞 ⊂ R𝑛, which is at least twice differentiable with respect to 𝜉,

i.e., 𝑥(𝜉) ∈ 𝐶2([0, 1]). In this case, the density gradient function is a scalar quantity

defined as a directional derivative along 𝒞 of logarithmic density, 𝑔 = 𝜕𝑠 log 𝜌, where

𝜌 : 𝒞 → [0, 1] is a density function implied by 𝑥(𝜉). If we think of 𝜉 as a realization

of the random variable uniformly distributed in [0, 1], then 𝑥(𝜉) is in fact the inverse

cumulative distribution function (inverse CDF, a.k.a. the quantile function). Intu-

itively, 𝑥(𝜉) tells us that 100𝜉 % of all points mapped from the uniformly distributed

set are located on the curve segment between 𝑥(0) and 𝑥(𝜉). On the other hand, the

density function 𝜌 indicates the density of points mapped on 𝒞 per unit curve length.

Therefore, 𝜌 is counter-proportional to the magnitude of the first derivative of 𝑥(𝜉).

The intuitive relation between the probability distribution function and nonlinear co-

ordinate transformation has been utilized in applied statistics (inference problems);

see for example [57, 64]. These studies build upon the invariance property (transfor-

mation law) of the density function [17], which is reflected by the relation between 𝜌

and the derivative of 𝑥(𝜉).

In the following three subsections, we analytically derive the expression for 𝑔 in

terms of the inverse CDF 𝑥(𝜉) for simple line manifolds, 𝑛 = 1 (Section 3.2.1), and

general curves, 𝑛 ≥ 1 (Section 3.2.3), and demonstrate its importance in a numerical

integration experiment (Section 3.2.2). We illustrate all relevant concepts using a

certain 𝑥(𝜉) associated with the Van der Pol equation,

𝑑2𝑢

𝑑𝑡2
= 2(1− 𝑢2)

𝑑𝑢

𝑑𝑡
− 𝑢, 𝑢(0) = −𝑎, 𝑑𝑢

𝑑𝑡
(0) = 0, 𝑎 > 0, (3.3)
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Figure 3-1: Trajectory of the Van der Pol oscillator (Eq. 3.3). The red dot represents
the initial condition, as well as the solution after time 𝑇 , while the blue dot indicates
the solution after time 𝑇1/2. The vertical dashed lines correspond to 𝑢 = −𝑎 and
𝑢 = 𝑎 (boundaries of the range of 𝑢). At the green dots, the solution satisfies 𝑑𝑢/𝑑𝑡+
𝑑3𝑢/𝑑𝑡3 = 0, while the zero acceleration state, 𝑑2𝑢/𝑑𝑡2 = 0, is represented by orange
dots. The solution to Eq. 3.3, represented by the solid black curve, is an example of
a one-dimensional manifold immersed in R2.

which describes the coordinates of a 2D non-conservative oscillator with non-linear

dumping [66]. In our numerical examples, we choose 𝑎 = 2.0199, in which case

the solution [𝑢(𝑡), 𝑑𝑢(𝑡)/𝑑𝑡]𝑇 approximately lies on the limit cycle with period 𝑇 =

2𝑇1/2 ≈ 7.638 and 𝑢(𝑡) ∈ [−𝑎, 𝑎] for all 𝑡 ≥ 0. Figure 3-1 illustrates the limit cycle of

Eq. 3.3, which has been computed using the second-order Runge-Kutta (midpoint)

method with time step ∆𝑡 = 0.0001. Indeed, the solution to the Van der Pol equation

may serve as example of a nonlinear transformation from a parametric space (time 𝑡,

in this case) to a smooth manifold immersed in R (in case of the 𝑡 → 𝑢(𝑡) mapping)

or R2 (in case of the 𝑡→ [𝑢(𝑡), 𝑑𝑢(𝑡)/𝑑𝑡]𝑇 mapping).

3.2.1 Line manifolds

We start from the simplest case, i.e., when 𝒞 is a bounded line segment in R, between

𝑎 and 𝑏. The corresponding inverse CDF 𝑥(𝜉) differentiably maps [0, 1] to [𝑎, 𝑏] and
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is related to the density function by the following expression,

𝜉(𝑥) =

∫︁ 𝑥

𝑎

𝜌(𝑦) 𝑑𝑦 ∀𝑥 ∈ [𝑎, 𝑏]. (3.4)

Since 𝜉 ∈ [0, 1], 𝜌(𝑥) is in fact the probability density function (PDF) corresponding

to the CDF 𝜉(𝑥), which satisfies 𝑑𝜉 = 𝜌(𝑥) 𝑑𝑥. Using the inverse function theorem,

which asserts 𝑓 ′(𝑓−1(𝑐)) = 1/[(𝑓−1)′(𝑐)] for any differentiable one-to-one function 𝑓

at any 𝑐 such that (𝑓−1)′(𝑐) ̸= 0, we conclude that

𝑑𝑥

𝑑𝜉
(𝜉) 𝜌(𝑥(𝜉)) = 1. (3.5)

Eq. 3.5 indicates that at any point 𝑥(𝜉) on the manifold, the product of the PDF

and derivative of the inverse CDF is constant. Thus, by differentiating Eq. 3.5 with

respect to 𝜉 and reshuffling terms, we obtain a direct expression for 𝑔 at each point

on the manifold,

𝑔(𝑥(𝜉)) = 𝜕𝑥 log 𝜌(𝑥(𝜉)) =
𝜕𝑥𝜌(𝑥(𝜉))

𝜌(𝑥(𝜉))
= −

𝑑2𝑥
𝑑𝜉2

(𝜉)(︁
𝑑𝑥
𝑑𝜉
(𝜉)
)︁2 . (3.6)

To illustrate these functions and their relation, we will consider the solution to Eq.

3.3, 𝑢(𝑡), for 𝑡 ∈ [0, 𝑇1/2], where 𝑇1/2 ≈ 3.819. Based on Figure 3-1, it is evident that

𝑢(𝑡) is a one-to-one smooth function and 𝑑𝑢/𝑑𝑡 ≥ 0 in that time interval. In fact, we

can apply a linear transformation 𝑡→ 𝜉 to notice that

𝑥(𝜉) = 𝑢
(︀
𝜉𝑇1/2

)︀
(3.7)

is a representation of the inverse CDF. Next, we compute the first and second deriva-

tive of Eq. 3.7 with respect to 𝜉 and plug them into Eq. 3.6 to obtain the following

formula for 𝑔 along the trajectory,

𝑔(𝑢(𝑡)) = −
𝑑2𝑢
𝑑𝑡
(𝑡)(︀

𝑑𝑢
𝑑𝑡
(𝑡)
)︀2 Eq. 3.3

= −
2(1− 𝑢2(𝑡))𝑑𝑢

𝑑𝑡
(𝑡)− 𝑢(𝑡)(︀

𝑑𝑢
𝑑𝑡
(𝑡)
)︀2 . (3.8)
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Figure 3-2: The inverse CDF function 𝑥(𝜉) defined by the solution to the Van der Pol
equation, such that 𝑥(𝜉(𝑡)) = 𝑢(𝑡) for all 𝑡 ∈ [0, 𝑇1/2] (red), and the corresponding
density (blue) and density gradient function (green). We used data presented in
Figure 3-1 to compute all the three functions.

We observe that the density gradient is invariant to any linear change of variables,

i.e., when 𝑑𝜉/𝑑𝑡 is constant. Given a numerical solution to Eq. 3.3, the density can

be directly computed from

𝜌(𝑢(𝑡)) =
1

(𝑇1/2 𝑑𝑢(𝑡)/𝑑𝑡)
,

which follows from Eq. 3.5, whereas the density gradient function can be evaluated

using Eq. 3.8.

Figure 3-2 illustrates the inverse CDF 𝑥(𝜉), defined by Eq. 3.7, as well as the

corresponding density and density gradient. We clearly observe that both 𝜌 and 𝑔

are undefined at the endpoints, i.e., at 𝜉 = 0 and 𝜉 = 1, which is a consequence

of zero slope of 𝑥(𝜉). Moreover, the larger the rate of change of 𝑥, the smaller the

value of 𝜌, which confirms our previous intuitive explanation of the density function.

We also notice that the density gradient is zero at the point corresponding to a local

extremum of 𝜌 and the inflection point of 𝑥(𝜉).
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3.2.2 Approximating integrals of a highly oscillatory function

We now demonstrate the use of the density gradient function in the numerical com-

putation of a highly oscillatory function. Consider the following Lebesgue integral,

𝐼 =

∫︁ 𝑎

−𝑎
𝜕𝑥𝑓(𝑥) 𝑑𝜉(𝑥), (3.9)

where 𝜉(𝑥) denotes a Lebesgue measure defined by Eq. 3.4, while 𝑓 is a function

whose first derivative is integrable and bounded. Certainly, it is assumed the above

integral converges. Indeed, a sufficient condition for the convergence of 𝐼 in this case is

Lebesgue-integrability of the density gradient with respect to the density 𝜌 [159], i.e.,

𝑔 ∈ 𝐿1(𝜌). However, the necessary and sufficient condition imposes extra requirements

for the 𝑓 function itself, i.e., 𝜕𝑥𝑓 ∈ 𝐿1(𝜌) or, equivalently, 𝜕𝑥𝑓 𝜌 ∈ 𝐿1([−𝑎, 𝑎]). In our

experiment, the function 𝑓 has the following form,

𝑓(𝑥) =
(︀
(𝑥− 𝑎)(𝑥+ 𝑎) sin(𝐾𝑥2)

)︀2
, (3.10)

with some positive number 𝐾. We use Eq. 3.4 to rewrite the above integral, and then

integrate it by parts. There exist a few scenarios when the resulting boundary term

vanishes. One option is that the product 𝜕𝑥𝑓 𝜌 is periodic and integrable on [−𝑎, 𝑎].

Another possibility is when both 𝜕𝑥𝑓 and 𝜌 are bounded and at least one of them

vanishes at the domain boundaries. In any case, two new versions of 𝐼, alternative to

the original form (in Eq. 3.9), are available,

∫︁ 𝑎

−𝑎
𝜕𝑥𝑓(𝑥) 𝜌(𝑥) 𝑑𝑥 = 𝐼 = −

∫︁ 𝑎

−𝑎
𝑓(𝑥) 𝑔(𝑥) 𝑑𝜉(𝑥). (3.11)

To numerically approximate the integral 𝐼, we apply three distinct approaches. The

integral in Eq. 3.9 and the RHS of Eq. 3.11 can be estimated using a Monte Carlo

method, which requires generating a random sequence {𝑥1, 𝑥2, ..., 𝑥𝑁} distributed

according to the measure 𝜉. If such a sequence is available, then the integral of any
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Lebesgue-integrable function ℎ(𝑥) can be approximated as follows,

∫︁ 𝑎

−𝑎
ℎ(𝑥) 𝑑𝜉(𝑥) ≈ 1

𝑁

𝑁∑︁
𝑖=1

ℎ(𝑥𝑖), (3.12)

since 𝜉 ∈ [0, 1]. Finally, the integral on the LHS of Eq. 3.11 is evaluated using a

standard trapezoidal rule with a uniform 𝑁 -element grid for 𝑥 between −𝑎 and 𝑎. In

the calculation, we allot

𝑥𝑖 = 𝑢

(︂
𝑖− 1

𝑁 − 1
𝑇1/2

)︂
. (3.13)

It can be numerically verified that for this particular choice of the sequence, 𝑔 /∈ 𝐿1(𝜌),

but 𝜕𝑥𝑓 ∈ 𝐿1(𝜌). It means that the integral 𝐼 converges despite the blow-up of 𝜌 and

𝑔 at the boundaries of [−𝑎, 𝑎]. To assess the Lebesgue-integrability of these functions,

we applied the procedure described in Section 4 of [159]. This algorithm approximates

the slope of the distribution tail of any function in the logarithmic scale.

In order to compare the performance of these three integration methods, we pro-

ceed as follows. First, we generate the sequence {𝑥1, 𝑥2, ..., 𝑥𝑁}, 𝑁 = 105 (time step

is chosen such that ∆𝑡 = 𝑇1/2/(𝑁 − 1)) and, using Eq. 3.5 and Eq. 3.8, we directly

evaluate 𝜌 and 𝑔 at all points from that sequence. Subsequently, both the density

and density gradient functions are linearly interpolated everywhere between −𝑎 and

𝑎. We use these interpolators to approximate the two functions at any point of a

uniform grid (trapezoidal rule) or sequence defined by Eq. 3.13 (Monte Carlo) for an

arbitrary value of 𝑁 . If 𝐾 is sufficiently small, then the approximation error of the

trapezoidal rule is expected to be upperbounded by 𝒪(1/𝑁), because the integrand,

𝜕𝑥𝑓 𝜌, is Lebesgue-integrable [43]. According to the Nyquist-Shannon sampling the-

orem, however, the discrete representation of the integrand may not be captured

properly if 𝐾 is very large, in which case the trapezoidal rule’s error decays as in a

typical Monte Carlo method. Figure 3-3 shows the behavior of the relative error of

the approximation of 𝐼 obtained using these three methods. The error is computed

with respect to the reference solution obtained through the trapezoidal rule using

𝑁 = 108 points.
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Figure 3-3: Relative error of the approximation of 𝐼 for 𝐾 = 10 (left) and 𝐾 = 100000
(right) obtained using three methods: Monte Carlo integration applied to Eq. 3.9
(blue), Monte Carlo integration applied to the RHS of Eq. 3.11 (red), and trapezoidal
rule applied to the LHS of Eq. 3.11 (green). Black and orange dashed lines are
reference lines representing functions proportional to 𝑁−1/2 and 𝑁−1, respectively. In
each of these plots, we computed the relative error with respect to the approximation
of 𝐼 obtained using the trapezoidal with 𝑁 = 108 samples.

We observe that for a moderately-oscillatory integrand (𝐾 = 10), the relative

error of the trapezoidal rule (green curve) decays as 𝒪(1/𝑁), which confirms the

theoretical estimates. In this case, the performance of both the Monte Carlo approx-

imations (blue and red curves) does not differ much from the trapezoidal rule’s. The

Monte Carlo approximation clearly converges to a solution slightly different than the

reference solution, which is a consequence of the fact the latter was generated using

the trapezoidal rule for a linearly interpolated function. This example indicates that

there is no reason to perform integration by parts and compute 𝑔 to approximate in-

tegrals of low- or moderately-oscillatory functions. The right-hand side plot of Figure

3-3 corresponds to a different scenario, i.e., when 𝑓 is highly-oscillatory (𝐾 = 105).
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The error now decays 𝒪(1/
√
𝑁) at 𝑁 ∈ [101, 5 · 105], regardless of the integration

method. The trapezoidal rule requires almost 106 samples to guarantee satisfactory

accuracy. Note 𝜕𝑥𝑓 has a magnitude proportional to 𝐾, and thus the variance of the

sequence

{𝜕𝑥𝑓(𝑥1), 𝜕𝑥𝑓(𝑥2), ..., 𝜕𝑥𝑓(𝑥𝑁)}

is of the order of 𝐾2. Therefore, the Monte Carlo approach applied to Eq. 3.9 requires

𝒪(1010) samples to secure error of the order of 1. A similar error can be achieved

if we perform integration by parts and compute 𝑔 and generate only 𝒪(1) samples,

since the variance is reduced 1010 times.

In conclusion, the computational cost of the Monte Carlo method can be dramat-

ically reduced using the generalized fundamental calculus theorem. In case of the 𝑓

function, the regularization of the integral in Eq. 3.9 may decrease the cost even 𝐾2

times. This result is significant specifically in the context of strongly fluctuating func-

tions. Our approach, based on the integration by parts and systematic computation

of 𝑔, is particularly designed for problems in which the closed-form expression of the

measure itself is unknown. In the example we presented, we numerically reconstruct

the measure (and its derivative) by integrating the system in time and applying the

derived formulas directly to the generated data. Indeed, data-driven simulations of

this type are essential in many computational dynamics algorithms; for example, in

sensitivity analysis of chaos [32, 2]. There exist physically inspired systems, however,

for which an explicit formula for the measure is known. For example, the statistical

behavior of certain systems appearing in the kinetic theory of gases is described by the

well-understood Maxwell-Boltzmann speed distribution. In this case, one could di-

rectly apply advanced numerical integration techniques dedicated to highly-oscillatory

integrands, including Filon- and Levin-based methods [106, 37, 82] and many other;

the reader is referred to [134] for a comprehensive review of these methods. Here,

we develop a computational tool applicable to generic physics-based and data-driven

simulations and, therefore, analysis of different numerical integration rules is beyond

the scope of this chapter.
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3.2.3 One-dimensional smooth manifolds

We extend the concepts introduced in Section 3.2.1 to the case in which 𝑥(𝜉) differ-

entiably maps [0, 1] to 𝒞 ⊂ R𝑛, where 𝑛 is some positive integer. Geometrically, 𝑥(𝜉)

represents a curve embedded in the 𝑛-dimensional Euclidean space. The measure

𝜉(𝑥) can now be expressed as an integral of the density, 𝜌 : 𝒞 → [0, 1], along 𝒞 with

respect to the arc length 𝑠,

𝜉(𝑥) =

∫︁
𝒞[𝑥(0), 𝑥(𝜉)]

𝜌(𝑥) 𝑑𝑠, (3.14)

where 𝒞[𝑥(0), 𝑥(𝜉)] denotes a segment of 𝒞 between the points indicated in the square

bracket. Due to the parameterization 𝑥(𝜉), the length of the curve 𝒞 equals
∫︀
𝒞 𝑑𝑠,

while the arc length differential 𝑑𝑠 is related to 𝑑𝜉 by 𝑑𝑠 = ‖𝑑𝑥/𝑑𝜉‖ 𝑑𝜉. Using this

relation and Eq. 3.14, we obtain the following identity,

𝜌(𝑥(𝜉))

⃦⃦⃦⃦
𝑑𝑥

𝑑𝜉
(𝜉)

⃦⃦⃦⃦
= 1. (3.15)

We now differentiate Eq. 3.15 with respect to 𝜉, apply the chain rule and reshuffle

terms,

𝑔(𝑥(𝜉)) = 𝜕𝑠 log(𝜌(𝑥(𝜉))) =
𝜕𝑠𝜌

𝜌
(𝑥(𝜉)) = −

𝑑𝑥
𝑑𝜉
(𝜉) · 𝑑2𝑥

𝑑𝜉2
(𝜉)

‖𝑑𝑥
𝑑𝜉
(𝜉)‖3

, (3.16)

where 𝜕𝑠 denotes the directional derivative along the curve 𝒞 in the direction of

increasing 𝜉. Note the expression for 𝑔 in Eq. 3.16 reduces to Eq. 3.6 if 𝑥(𝜉)

represents a line manifold, i.e., 𝒞 ⊂ R1.

As an example, we re-consider the Van der Pol oscillator (Eq. 3.3). This time,

however, 𝑥(𝜉) represents a curve embedded in R2. In particular, 𝑥(𝜉) describes a

two-dimensional loop such that

𝑥(𝜉) =

⎡⎣ 𝑢(𝜉𝑇 )
𝑑𝑢
𝑑𝑡
(𝜉𝑇 )

⎤⎦ (3.17)

(see Figure 3-1 for an illustration of the loop). If a numerical solution to Eq. 3.3 is
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available, one can combine Eq. 3.15 with Eq. 3.17 to directly evaluate the density

function. Similarly, by plugging Eq. 3.17 to Eq. 3.16, it is possible to compute the

density gradient, analogously to the procedure described in Section 3.2.1. Conse-

quently, on the RHS of Eq. 3.16, 𝑑𝑥/𝑑𝜉 can be replaced with 𝑑𝑢/𝑑𝑡, and 𝑑2𝑥/𝑑𝜉2

with 𝑑2𝑢/𝑑𝑡2. We can do so because the density gradient is invariant to any linear

transformation of variables. Figure 3-4 illustrates the density function 𝜌, as well as

the length of the curve segment 𝒞[𝑥(0), 𝑥(𝜉)], versus the parameter 𝜉. We observe 𝜌

is large if the slope of the length function is small, and vice versa, which is analogous

to the 𝑥 − 𝜌 relation in Figure 3-2. In this particular case, 𝜌(𝜉) is clearly a periodic

function with period 0.5. This property is manifested in Figure 3-1. Indeed, one

can notice the relation between 𝑑𝑢/𝑑𝑡 and 𝑢 at 𝑡 ∈ [0, 𝑇1/2] is the same as −𝑑𝑢/𝑑𝑡

and −𝑢 at 𝑡 ∈ [𝑇1/2, 𝑇 ], where 𝑇1/2 corresponds to 𝜉 = 0.5. Figure 3-5 shows the

density gradient 𝑔 computed using two distict ways: through a direct evaluation via

Eq. 3.16 and a finite difference scheme (see the caption for more details). The two

approaches provide visibly identical solutions, which confirms the correctness of Eq.

3.16. Clearly, the density gradient inherits the periodic behavior of 𝜌. We notice that

the density gradient vanishes if the numerator of Eq. 3.16 is zero, which can happen

if 𝑑2𝑢/𝑑𝑡2 = 0 (at the two orange dots in Figure 3-1) and/or 𝑑𝑢/𝑑𝑡+ 𝑑3𝑢/𝑑𝑡3 = 0 (at

the six green dots in Figure 3-1). These two cases coincide with the local extrema

of the density function (i.e., 𝑑𝜌/𝑑𝜉 = 0 if at least one of these equations is satisfied).

However, zero density gradient does not imply the inflection point (𝑑2𝑢/𝑑𝑡2 = 0), in

contrast to the line manifold case (see Section 3.2.1).

3.3 Computing density gradients on general smooth

manifolds

The purpose of this section is to generalize the concept of the density gradient and

derive a formula for 𝑔 defined on higher-dimensional manifolds. Here, we consider

a smooth invertible map 𝑥(𝜉) : 𝑈 → 𝑀 , where 𝑈 ⊂ R𝑚, 𝑀 ⊂ R𝑛, 𝑚 ≤ 𝑛, 𝑥 =
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Figure 3-4: The density 𝜌 (blue) and length of the curve segment 𝒞[𝑥(0), 𝑥(𝜉)] (red)
associated with the map 𝑥(𝜉) defined by Eq. 3.17. The former is computed us-
ing the analytical expression in Eq. 3.15, while the latter is approximated by sum-
ming the length of consecutive linear segments connecting the points in the sequence
{𝑥(0), 𝑥(∆𝑡/𝑇 ), 𝑥(2∆𝑡/𝑇 ), ..., 𝑥(𝜉)}, obtained in the numerical integration of Eq. 3.3.

Figure 3-5: The density gradient function 𝑔 computed directly (using Eq. 3.16) and
through a finite difference method. In the latter approach, we note 𝜕𝑠𝜌 = 𝜕𝜉𝜌/𝜕𝜉𝑠.
Both the numerator and denominator is approximated using the central finite differ-
ence scheme on a uniform grid using data presented in Figure 3-4.
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[𝑥1, ..., 𝑥𝑛]
𝑇 and 𝜉 = [𝜉1, ..., 𝜉𝑚]

𝑇 . 𝑈 is an 𝑚-orthotope (hyperrectangle), which is

defined as the Cartesian product of 𝑚 1D line manifolds (i.e., intervals of the real

line). We no longer assume that these elementary sets only involve numbers between

0 and 1. 𝑀 is an oriented differentiable manifold, whose shape is defined by the chart

𝑥. For example, if 𝑚 = 2 and 𝑛 = 3, then 𝑀 represents a smooth surface. The

density gradient 𝑔 is now defined as a directional gradient of the logarithm of the

density function 𝜌 :𝑀 → [0, 1] implied by the chart 𝑥(𝜉). In particular, 𝑔 = ∇𝑠 log 𝜌,

∇𝑠 := [𝜕𝑠1 , 𝜕𝑠2 , ..., 𝜕𝑠𝑚 ]
𝑇 , where 𝜕𝑠𝑖 , 𝑖 = 1, ...,𝑚, denote directional derivatives along

the corresponding isoparametric curves. The 𝑖-th component of 𝑔 is the rate of change

of log 𝜌 along the curve whose preimage involves vectors 𝜉 ∈ 𝑈 with constant all

coordinates except 𝜉𝑖. If log 𝜌 is differentiable with respect to all the coordinates of

𝑥 and ∇𝑥 := [𝜕𝑥1 , 𝜕𝑥2 , ..., 𝜕𝑥𝑛 ]
𝑇 , then 𝜕𝑠𝑖 log 𝜌 = ∇𝑥 log 𝜌 · 𝑠𝑖, where 𝑠𝑖 denotes the

unit vector that is tangent to the corresponding isoparametric curve and points in

the direction of increasing 𝜉𝑖. In Section 3.3.1, we derive a generic formula for 𝑔,

while Section 3.3.2 provides a specific example of a two-dimensional smooth manifold

embedded in R3 (with 𝑚 = 2 and 𝑛 = 3).

3.3.1 Derivation of the general formula

Recall 𝑥(𝜉) : 𝑈 →𝑀 is an invertible and differentiable map, where 𝑈 ⊂ 𝑅𝑚, 𝑀 ⊂ 𝑅𝑛,

and 𝑚 ≤ 𝑛, while 𝜌(𝑥) :𝑀 → [0, 1] is the density function implied by that chart. Let

𝜔(𝑥) be the natural volume form defined on 𝑀 . Therefore, the Lebesgue measure 𝑚

of any subset 𝑉 ⊂ 𝑈 , mapped by 𝑥 to 𝑁 ⊂𝑀 , equals

𝑚(𝑉 ) =

∫︁
𝑁

𝜌(𝑥) 𝑑𝜔(𝑥), (3.18)

which implies that the measure differential 𝑑𝑚 defined on 𝑈 can be expressed in terms

of 𝜌 and the volume element defined on 𝑀 , at every point 𝑥(𝜉),

𝑑𝑚 = 𝑑𝜉1 ∧ 𝑑𝜉2 ∧ ... ∧ 𝑑𝜉𝑚 = 𝜌(𝑥) 𝑑𝜔(𝑥) = 𝜌(𝑥) 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ ... ∧ 𝑑𝑥𝑛. (3.19)
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The wedge symbol (∧) denotes the exterior product, while 𝑑𝜉𝑖, 𝑖 = 1, ...,𝑚 and 𝑑𝑥𝑖,

𝑖 = 1, ..., 𝑛 represent covectors (1-forms) associated with the corresponding coordinate

directions. Intuitively, these 1-forms measure small displacements in the direction of

one coordinate. The volume element on 𝑀 , 𝑑𝜔, can be expressed in terms of 𝜉,

𝑑𝜔(𝑥(𝜉)) =
√︀

det𝐶(𝑥(𝜉)) 𝑑𝜉1 ∧ 𝑑𝜉2 ∧ ... ∧ 𝑑𝜉𝑚, (3.20)

where 𝐶 represents the 𝑚×𝑚 metric tensor of the coordinate transformation 𝜉 → 𝑥,

defined as

𝐶(𝑥(𝜉)) = [∇𝜉𝑥(𝜉)]
𝑇 ∇𝜉𝑥(𝜉), (3.21)

or, componentwise,

𝐶𝑖𝑗(𝑥(𝜉)) = 𝜕𝜉𝑖𝑥(𝜉) · 𝜕𝜉𝑗𝑥(𝜉). (3.22)

The vector gradient ∇𝜉𝑥(𝜉) is represented by an 𝑛 × 𝑚 matrix, in which the 𝑗-th

column contains the derivative of 𝑥 with respect to 𝜉𝑗, i.e., [∇𝜉𝑥(𝜉)]𝑖𝑗 = 𝜕𝜉𝑗𝑥𝑖(𝜉).

Combining Eq. 3.19 and 3.20, we conclude that the relation between the density

function 𝜌 and metric tensor 𝐶, at any point 𝑥(𝜉) ∈ 𝑀 , can be written in the

following way,

𝜌(𝑥(𝜉))
√︀
det𝐶(𝑥(𝜉)) = 1, (3.23)

which is a generalization of Eq. 3.15. Let us now QR-factorize the vector gradient

∇𝜉𝑥(𝜉),

∇𝜉𝑥(𝜉) = 𝑄(𝑥(𝜉)) 𝑅(𝑥(𝜉)), (3.24)

where 𝑄 is an 𝑛×𝑚 matrix, whose columns form an orthonormal basis for the column

space of ∇𝜉𝑥(𝜉), while 𝑅 is an 𝑚 × 𝑚 upper-triangular matrix. Note 𝑄𝑇𝑄 = 𝐼

everywhere on 𝑀 . Using this property, we immediately notice that 𝐶 = 𝑅𝑇𝑅 and,

therefore, Eq. 3.23 reduces to

𝜌(𝑥(𝜉)) | det𝑅(𝑥(𝜉))| = 1. (3.25)
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For any invertible matrix 𝐴(𝑠), which depends on a scalar 𝑠, the following indentity

is true,
𝜕 det𝐴(𝑠)

𝜕𝑠
= det𝐴 tr

(︂
𝐴−1(𝑠)

𝜕𝐴(𝑠)

𝜕𝑠

)︂
. (3.26)

Differentiating Eq. 3.25 with respect to 𝜉𝑖, applying chain rule and Eq. 3.26, we

obtain the following expression for the 𝑖-th component of the density gradient,

𝑔𝑖(𝑥(𝜉)) =
𝜕𝑠𝑖𝜌(𝑥(𝜉))

𝜌(𝑥(𝜉))
= −𝜕𝑠𝑖 det𝑅(𝑥(𝜉))

det𝑅(𝑥(𝜉))
= − 𝜕𝜉𝑖 det𝑅(𝑥(𝜉))

det𝑅(𝑥(𝜉))‖𝜕𝜉𝑖𝑥(𝜉)‖
. (3.27)

Eq. 3.27 is computationally inconvenient, as it involves evaluating the determinant

of 𝑅 and its directional derivative. Our goal is to rewrite the RHS of that equation

such that only first and second parametric derivatives of 𝑥(𝜉), as well as 𝑄 and 𝑅

factors, are involved.

Since 𝑅 is an upper-triangular matrix, we notice that

𝜕 det𝑅

det𝑅
=
𝜕 (
∏︀𝑚

𝑘=1𝑅𝑘𝑘)∏︀𝑚
𝑘=1𝑅𝑘𝑘

=
𝑚∑︁
𝑘=1

(𝜕𝑅)𝑘𝑘
𝑅𝑘𝑘

= tr(𝜕𝑅 𝑅−1). (3.28)

Now, differentiating Eq. 3.24 with respect to 𝜉𝑖, and then left- and right-multiplying

the resulting expression by 𝑄𝑇 and 𝑅−1, respectively, we obtain

𝑄𝑇 (𝑥(𝜉)) 𝜕𝜉𝑖∇𝜉𝑥(𝜉) 𝑅
−1(𝑥(𝜉)) = 𝑄𝑇 (𝑥(𝜉)) 𝜕𝜉𝑖𝑄(𝑥(𝜉)) + 𝜕𝜉𝑖𝑅(𝑥(𝜉)) 𝑅

−1(𝑥(𝜉)).

(3.29)

Note that since 𝑄𝑇𝑄 = 𝐼, then 𝑄𝑇 𝜕𝜉𝑖𝑄 is anti-symmetric, which means its trace

vanishes. Therefore, the following equality

tr
(︀
𝑄𝑇 (𝑥(𝜉)) 𝜕𝜉𝑖∇𝜉𝑥(𝜉) 𝑅

−1(𝑥(𝜉))
)︀
= tr

(︀
𝜕𝜉𝑖𝑅(𝑥(𝜉)) 𝑅

−1(𝑥(𝜉))
)︀

(3.30)

holds everywhere on 𝑀 . Finally, by combining Eq. 3.27, 3.28 and 3.30, we obtain

the general formula for 𝑔𝑖,

𝑔𝑖(𝑥(𝜉)) = 𝜕𝑠𝑖 log 𝜌(𝑥(𝜉)) = −
tr
(︀
𝑄𝑇 (𝑥(𝜉)) 𝜕𝜉𝑖∇𝜉𝑥(𝜉) 𝑅

−1(𝑥(𝜉))
)︀

‖𝜕𝜉𝑖𝑥(𝜉)‖
, (3.31)
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which holds everywhere on 𝑀 for 𝑖 = 1, ...,𝑚. Using Einstein’s summation conven-

tion, Eq. 3.31 can be rewritten to

𝑔𝑖(𝑥(𝜉)) = −
𝑞𝑗(𝑥(𝜉)) · 𝜕𝜉𝑖𝜕𝜉𝑘𝑥(𝜉) 𝑅−1

𝑘𝑗 (𝑥(𝜉))

‖𝜕𝜉𝑖𝑥(𝜉)‖
, (3.32)

where 𝑞𝑗(𝑥(𝜉)) denotes the 𝑗-th column of 𝑄(𝑥(𝜉)). Thus, to directly compute the

density gradient at any point on a manifold, all first and second derivatives of the

chart 𝑥(𝜉) must be found. In addition, QR factorization of the vector gradient ∇𝜉𝑥

and inversion of the 𝑅 matrix must be performed. In practice, inverting the triangu-

lar matrix 𝑅 means solving a linear system using the backward substitution method,

which requires 𝒪(𝑚2) operations. Note Eq. 3.32 reduces to Eq. 3.16 if 𝑚 = 1. In

the following section, we present an example illustrating some of these quantities.

Although Eq. 3.32 is a formula for the derivative in the direction of a isoparamet-

ric curve, we can compute derivatives of log 𝜌 in an arbitrary direction using the

distributive law of the dot product.

3.3.2 Example: a surface manifold

As an example of a surface manifold (with 𝑚 = 2 and 𝑛 = 3), let us consider

𝑥(𝜉) = 𝑢(𝜉) = [𝑢1(𝜉), 𝑢2(𝜉), 𝑢3(𝜉)]
𝑇 , where 𝜉 = [𝑐, 𝑡]𝑇 , −5 ≤ 𝑐 ≤ 5, 0 ≤ 𝑡 ≤ 0.4,

𝑢(𝜉)|𝑡=0 = [𝑐, 𝑐, 28]𝑇 , and 𝜕𝑡𝑢(𝜉) = 𝑓(𝑢(𝜉)), where 𝑓 is defined as follows,

𝜕𝑡𝑢1(𝜉) = 10 (𝑢2(𝜉)− 𝑢1(𝜉)),

𝜕𝑡𝑢2(𝜉) = 𝑢1(𝜉) (28− 𝑢3(𝜉))− 𝑢2(𝜉),

𝜕𝑡𝑢3(𝜉) = 𝑢1(𝜉)𝑢2(𝜉)−
8

3
𝑢3(𝜉).

(3.33)

System 3.33 represents the Lorenz ’63 oscillator, which is a mathematical model used

for atmospheric convection [110]. This system is known to exhibit chaotic behavior.

However, we are interested in the solution in a short time interval, such that the

trajectories do not intersect and the resulting surface is orientable. In particular, we

compute 𝑥(𝜉) by numerically integrating System 3.33 in time for different values of
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𝑐 ∈ [−5, 5], using the second-order Runge-Kutta scheme with ∆𝑡 = 0.002. There

are two reasons we have chosen this particular 𝑥(𝜉). First, it serves as a perfect

example of a problem, in which the smooth one-to-one solution, 𝑥(𝜉), cannot be

found analytically. Thus, the computation of 𝑔 should be performed numerically using

closed-form relations derived in Section 3.3.1. Second, the surface described by the

chart 𝑥(𝜉) can be obtained as a evolution of 1D manifolds. This observation is utilized

in Section 3.4, where we derive expressions for evolving manifolds. To evaluate 𝜌 and

𝑔, we directly use Eq. 3.25 and Eq. 3.31, respectively. To find these quantities, the

vector gradient ∇𝜉𝑥(𝜉) = [𝜕𝑐𝑥(𝜉), 𝜕𝑡𝑥(𝜉)], as well as the following second derivatives:

𝜕2𝑐𝑥(𝜉), 𝜕
2
𝑡 𝑥(𝜉), 𝜕𝑐𝜕𝑡𝑥(𝜉), must be found at every point on the manifold. The time

derivative, 𝜕𝑡𝑥(𝜉) = 𝑓(𝑥(𝜉)), is obtained automatically as we integrate System 3.33

in time. The second derivative of 𝑥 with respect to 𝑡 is obtained using the chain rule,

𝜕2𝑡 𝑥(𝜉) = 𝜕𝑡𝑓(𝑥(𝜉)) = 𝐷𝑓(𝑥(𝜉)) 𝑓(𝑥(𝜉)),

where 𝐷𝑓 denotes the Jacobian of System 3.33. Thus, from the computational point

of view, we need to solve a tangent equation to find 𝜕𝑡𝑥(𝜉) at every point of the

trajectory defined by System 3.33. Using this approach, one can analogously find

derivatives with respect to 𝑐. Let 𝑣(𝜉) = 𝜕𝑐𝑥(𝜉) and 𝑤(𝜉) = 𝜕2𝑐𝑥(𝜉). Using the chain

rule, we conclude that

𝜕𝑡𝑣(𝜉) = 𝐷𝑓(𝑥(𝜉)) 𝑣(𝜉),

𝑣(𝜉)|𝑡=0 = [1, 1, 0]𝑇 and, by differentiating again,

𝜕𝑡𝑤(𝜉) = 𝐷2𝑓(𝑥(𝜉))(𝑤(𝜉), 𝑤(𝜉)) +𝐷𝑓(𝑥(𝜉))𝑤(𝜉),

𝑤(𝜉)|𝑡=0 = [0, 0, 0]𝑇 , where 𝐷2𝑓 denotes the Hessian of 𝑓 . Using Einstein’s sum-

mation convention, the 𝑖-th component of the bilinear form 𝐷2𝑓(𝑥(𝜉))(𝑤(𝜉), 𝑤(𝜉))

can be written as 𝜕𝑥𝑘𝜕𝑥𝑙𝑓𝑖𝑤𝑘 𝑤𝑙. Finally, the mixed derivative 𝜕𝑐𝜕𝑡𝑥(𝜉) = 𝜕𝑡𝑣(𝜉) is

a byproduct of the numerical integration of the tangent equation for 𝑣. We solve

all of these tangent equations using the same time integrator as the one mentioned
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above. Since 𝑚 = 2, the 2× 2 𝑅 matrix is inverted analytically at every point on the

trajectory.

In this case, the 𝑈 space, which is the domain (preimage) of 𝑥, is in fact a Cartesian

product of [−5, 5] and [0, 0.4]. The upper plot in Figure 3-6 graphically represents

𝑈 , while the lower plot illustrates the 𝑢1 − 𝑢3 projection of 𝑀 , obtained through

the mapping 𝑥(𝜉). For completeness, in Figure 3-7, we also include the 𝑢1 − 𝑢2

and 𝑢2 − 𝑢3 projection of the deformed mesh. It is clear that the deformation is

symmetric with respect to 𝑐 = 0. We also observe that fibers (isoparametric lines)

corresponding to larger values of 𝑡 are subject to greater stretching than those at

smaller 𝑡. These features are reflected by the distribution of the density function 𝜌,

plotted in Figure 3-9. The smaller the area of each distorted quadrilateral of the

mesh, the larger the value of the density function. Indeed, the smallest values of the

density distribution are located around 𝑡 = 0.4. This region coincides with the most

stretched quadrilaterals.

Figure 3-8 shows the two components of the density gradient 𝑔 := [𝑔𝑐, 𝑔𝑡]
𝑇 =

[𝜕𝑠1 log 𝜌, 𝜕𝑠2 log 𝜌]
𝑇 , corresponding respectively to the 𝑐- and 𝑡-direction. The distri-

bution of 𝑔𝑐 is clearly symmetric with respect to the reflection points on the isopara-

metric line 𝑐 = 0, which is a manifestation of the fact the density is symmetric and

directional derivative is computed in the direction of increasing 𝑐. The symmetry of

𝑔𝑡 is a direct consequence of the definition 𝑔𝑡 := 𝜕𝑠2 log 𝜌, where log 𝜌 itself is symmet-

ric. Note the largest-in-magnitude values of 𝑔𝑎 concentrate around the boundaries

of the range of 𝑐, i.e., at 𝑐 = ±5 and, in case of 𝑔𝑡, around 𝑢1 = 0. This reflects

the fact the density gradient measures the relative rate of change of the density. In

particular, its value becomes large if the rate of change of the density is large and/or

the density itself is small. Figure 3-10 illustrates the density gradient along the bold

isoparametric curves from Figure 3-6, computed using Eq. 3.32 directly and through

finite differencing. In case of both 𝑔𝑐 and 𝑔𝑡, we observe a good agreement between

the solution computed directly and finite difference approximation, which validates

our derivation of Eq. 3.32.
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Figure 3-6: Upper plot: a structured mesh representing the domain 𝑈 = {(𝑐, 𝑡) | 𝑐 ∈
[−5, 5], 𝑡 ∈ [0, 0.4]}. The black lines correspond to fixed values of 𝑡, while the red
lines illustrate 𝜉 with a fixed value of 𝑐. The red and black dashed lines represent
𝑐 = 5 and 𝑡 = 0.4, while the red and black bold lines refer to 𝑐 = −2.5 and 𝑡 = 0.2,
respectively. Lower plot: 𝑢1 − 𝑢3 projection of the image of the structured mesh
obtained through the mapping 𝑥(𝜉).

82



Figure 3-7: Extension of Figure 3-6. 𝑢1 − 𝑢2 (upper plot) and 𝑢2 − 𝑢3 (lower plot)
projection of the image of the structured mesh obtained through the mapping 𝑥(𝜉).
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Figure 3-8: 𝑢1−𝑢3 projection of the directional derivative of log 𝜌, in the 𝑐-direction,
𝑔1 := 𝑔𝑐 (upper plot), and 𝑡-direction, 𝑔2 := 𝑔𝑡 (lower plot).
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Figure 3-9: 𝑢1 − 𝑢3 projection of the density distribution.

Figure 3-10: The first and second component of the density gradient function 𝑔 =
[𝑔𝑐, 𝑔𝑡], respectively at 𝑡 = 0.2 (black solid line on Figure 3-6) and 𝑐 = −2.5 (red solid
line on Figure 3-6), computed directly using Eq. 3.32 and through a finite difference
method. In the latter approach, we note 𝜕𝑠𝑖𝜌 = 𝜕𝜉𝑖𝜌/𝜕𝜉𝑖𝑠𝑖, 𝑖 = 1, 2, 𝜉1 = 𝑐, 𝜉2 = 𝑡,
where 𝑠𝑖 denotes the length of the isoparametric curve associated with 𝜉𝑖. Both the
numerator and denominator is approximated using the central finite difference scheme
on a uniform grid. The relation 𝑠𝑖(𝜉𝑖) is found in a way analogous to the one described
in Section 3.2.3.
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3.4 Recursive computation for density gradients along

trajectories implied by multi-dimensional non-

linear transformations

Using the results presented in Section 3.2 and 3.3, we now propose an iterative method

for the density gradient along trajectories defined by a 𝐶2 diffeomorphism 𝜙 :𝑀𝑘 →

𝑀𝑘+1, 𝑘 ∈ Z, where both 𝑀𝑘 and 𝑀𝑘+1 represent differentiable manifolds of the

same dimension embedded in R𝑛, 𝑛 ∈ Z+. Let us consider two different charts,

𝑥𝑘(𝜉) ∈ 𝑁𝑘 ⊂𝑀𝑘 and 𝑥𝑘+1(𝜉) ∈ 𝑁𝑘+1 ⊂𝑀𝑘+1, such that

𝑥𝑘+1(𝜉) = 𝜙(𝑥𝑘(𝜉)) (3.34)

for all 𝜉 ∈ 𝑉 ⊂ 𝑈 ⊂ R𝑚, 1 ≤ 𝑚 ≤ 𝑛, 𝑘 ∈ Z. Let 𝜔𝑘 and 𝜔𝑘+1 be the natural volume

forms in 𝑀𝑘 and 𝑀𝑘+1, respectively, where 𝜔𝑘+1 is the pushforward of 𝜔𝑘 under 𝜙.

Therefore, for all 𝑘 ∈ Z, the Lebesgue measure 𝑚 of the subspace 𝑉 can be expressed

as follows,

𝑚(𝑉 ) =

∫︁
𝑁𝑘

𝜌𝑘(𝑥) 𝑑𝜔𝑘(𝑥) =

∫︁
𝑁𝑘+1

𝜌𝑘+1(𝑥) 𝑑𝜔𝑘+1(𝑥), (3.35)

where 𝜌𝑘 and 𝜌𝑘+1 are densities implied by 𝑥𝑘(𝜉) and 𝑥𝑘+1(𝜉), respectively. Following

the procedure involving Eq. 3.19-3.21, it is possible to find the relation between 𝜌𝑘,

𝜌𝑘+1, and the metric tensors of the two transformations: 𝜉 → 𝑥𝑘 and 𝜉 → 𝑥𝑘+1. Thus,

by applying the chain rule, we find a relation between the parametric derivatives

of 𝑥𝑘(𝜉) and 𝑥𝑘+1(𝜉), thanks to which a general recursive formula for the density

gradient along the trajectory defined by 𝜙 can be inferred. The 𝑔𝑘 function should

be understood as the directional derivative of the (logarithmic) density implied by

the chart 𝑥𝑘(𝜉). In Section 3.4.1, we derive an iterative procedure for 𝑔𝑘, while

Section 3.4.2 presents the use of the proposed algorithm by revisiting the Lorenz ’63

oscillator. Throughout this section, repeated indices in the subscript of any term

imply summation (Einstein’s notation), unless otherwise stated.
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3.4.1 A generic recursive procedure for evolving density gra-

dients

As pointed out above, the first step is to find a relation between the parametric

gradients of 𝑥𝑘 and 𝑥𝑘+1. Applying the definition of 𝜙 from Eq. 3.34 and the chain

rule, we can expand ∇𝜉𝑥
𝑘+1 in the following way,

∇𝜉𝑥
𝑘+1(𝜉) = 𝐷𝜙(𝑥𝑘(𝜉)) ∇𝜉𝑥

𝑘(𝜉), (3.36)

or, equivalently,

𝜕𝜉𝑖𝑥
𝑘+1(𝜉) = 𝐷𝜙(𝑥𝑘(𝜉)) 𝜕𝜉𝑖𝑥

𝑘(𝜉), (3.37)

where 𝐷𝜙 denotes the 𝑛× 𝑛 Jacobian matrix of 𝜙, i.e., (𝐷𝜙)𝑖𝑗 = 𝜕𝑥𝑗𝜙𝑖. By differen-

tiating Eq. 3.37 once more, with respect to 𝜉𝑗, we obtain

𝜕𝜉𝑖𝜕𝜉𝑗𝑥
𝑘+1(𝜉) = 𝐷2𝜙(𝑥𝑘(𝜉))

(︀
𝜕𝜉𝑖𝑥

𝑘(𝜉), 𝜕𝜉𝑗𝑥
𝑘(𝜉)

)︀
+𝐷𝜙(𝑥𝑘(𝜉)) 𝜕𝜉𝑖𝜕𝜉𝑗𝑥

𝑘(𝜉), (3.38)

where 𝐷2𝜙 is the Hessian of 𝜙, which is in fact a third-order 𝑛 × 𝑛 × 𝑛 tensor.

Analogously to the example presented in Section 3.3.2, the first term in the RHS of

Eq. 3.38 is a bilinear form that outputs an 𝑛-element vector. In this case, the 𝑖-th

component of that vector equals

𝜕𝑥𝑝𝜕𝑥𝑞𝜙𝑖(𝑥
𝑘(𝜉)) 𝜕𝜉𝑖𝑥

𝑘
𝑝(𝜉) 𝜕𝜉𝑗𝑥

𝑘
𝑞(𝜉).

In the second step, we directly use the formula for the density gradient derived in

Section 3.3.1. Let 𝑓𝑘 := 𝑓(𝑥𝑘(𝜉)) be a shorthand notation for any function 𝑓 defined

at 𝑥𝑘(𝜉), and 𝑒𝑖(𝑥𝑘(𝜉)) := 𝜕𝜉𝑖𝑥
𝑘(𝜉), 𝑎𝑖𝑗(𝑥𝑘(𝜉)) := 𝜕𝜉𝑖𝜕𝜉𝑗𝑥

𝑘(𝜉). Thus, by combining Eq.

3.37, 3.38 with Eq. 3.32 derived for a generic chart 𝑥(𝜉), we conclude that

𝑔𝑘𝑖 = −
(𝑅−1

𝑙𝑗 )
𝑘

‖𝑒𝑘𝑖 ‖
𝑞𝑘𝑗 · 𝑎𝑘𝑖𝑙, (3.39)

(∇𝜉𝑥)
𝑘 = [𝑒𝑘1 𝑒

𝑘
2 · · · 𝑒𝑘𝑚] = 𝑄𝑘 𝑅𝑘 = [𝑞𝑘1 𝑞

𝑘
2 · · · 𝑞𝑘𝑚]𝑅𝑘. (3.40)
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𝑒𝑘+1
𝑖 = 𝐷𝜙𝑘𝑒𝑘𝑖 , (3.41)

𝑎𝑘+1
𝑖𝑗 = 𝐷2𝜙𝑘(𝑒𝑘𝑖 , 𝑒

𝑘
𝑗 ) +𝐷𝜙𝑘𝑎𝑘𝑖𝑗, (3.42)

hold for any 𝜉 ∈ 𝑉 ⊂ 𝑈 .

To summarize, if a map 𝜙 relating two consecutive points on the trajectory, 𝑥𝑘(𝜉)

and 𝑥𝑘+1(𝜉), is available, then the density gradient at one point can be computed using

information associated with the other point. In particular, according to Eq. 3.39, the

𝑖-th component of 𝑔 requires knowledge of 𝑒𝑗, 𝑗 = 1, ...,𝑚 and 𝑎𝑝𝑞, 𝑝, 𝑞 = 1, ...,𝑚 at

the same point. Thus, to compute one component of the density gradient at 𝑥𝑘(𝜉)

for some 𝜉, we need to apply the recursion in Eq. 3.41 𝑘𝑚 times and, analogously,

the recursion in Eq. 3.42 1/2 𝑘𝑚2 times. The 1/2 factor is a consequence of the

fact that 𝑎𝑖𝑗(𝜉) = 𝑎𝑗𝑖(𝜉) for any admissible 𝜉, because 𝑥𝑘 is assumed to be twice

differentiable for any 𝑘 ∈ Z. In addition, at every step 𝑘, the QR factorization of

(∇𝜉𝑥)
𝑘 = [𝑒𝑘1 𝑒

𝑘
2 · · · 𝑒𝑘𝑚] and inversion (either direct if 𝑚 is small or through solving

a linear system) of the resulting 𝑚 ×𝑚 𝑅𝑘 matrix must be performed. We assume

𝑥0(𝜉) is given, from which we directly compute initial conditions for recursions in Eq.

3.41 and 3.42.

The recursion involving Eq. 3.39-3.42 can be used to devise algorithms for differ-

entiating the invariant, physical SRB measure 𝑚SRB, which is guaranteed to exist in

uniformly hyperbolic systems. The SRB measure is in fact the pushforward of the

Lebesgue measure on unstable manifolds; it contains a statistical description of the

dynamics. In general, 𝑚SRB is not absolutely continuous everywhere on the mani-

fold, but only conditional measures of 𝑚SRB along unstable manifolds are absolutely

continuous. The SRB density gradient 𝑔SRB, defined as a directional derivative of the

conditional SRB density on the unstable manifold, is a byproduct of the integration

by parts (analogous to Eq. 3.2), preceded by the disintegration of 𝑚SRB [32, 158].

Thus, if a direction of the unstable manifold is given, the recursive formula presented

in this section might be further developed to compute the SRB density gradient, de-

fined on a manifold of any dimension, along a trajectory initiated at a 𝑚SRB-typical

point.
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3.4.2 Example: evolution of a 1D manifold

In this section, we demonstrate the application of the recursive scheme for the density

gradient 𝑔𝑘. For this purpose, let us re-consider the Lorenz ’63 oscillator, defined

by System 3.33. In particular, we define 𝜙, such that it represents numerical time

integration of System 3.33 for a period of ∆𝑡, i.e., 𝑢(𝑡+∆𝑡) = 𝜙(𝑢(𝑡)) with 𝑢(𝑡) being

the solution of the system at time 𝑡. Let us consider a 1D smooth manifold embedded

in R3 described by the following chart 𝑥0(𝑐) = [𝑐, 𝑐, 28]𝑇 , −5 ≤ 𝑐 ≤ 5. Note 𝑥0(𝑐)

coincides with the black solid boundary of the surface depicted in Figures 3-6-3-7.

Now, by applying 𝜙 recursively, the next step is to numerically compute a sequence

of charts {𝑥0(𝑐), 𝑥1(𝑐), 𝑥2(𝑐), ...}, where 𝑥𝑘+1(𝑐) = 𝜙(𝑥𝑘(𝑐)). Our aim is to compute

𝑔𝑘 = 𝜕𝑠 log 𝜌
𝑘, where 𝜌𝑘 is a density implied by the chart 𝑥𝑘(𝑐). The operator 𝜕𝑠

denotes a generic directional derivative along the curve in the direction of increasing

𝑐. The formulas derived in Section 3.4.1 give us all necessary tools to compute 𝑔𝑘

along the trajectory defined by 𝜙. In this example, however, we consider the simplest

case, 𝑚 = 1. Eq. 3.39-3.42 can be dramatically simplified, because ∇𝜉𝑥 = 𝑑𝑥/𝑑𝑐 is

just a vector, and thus QR factorization is equivalent to normalizing that vector. Let

𝑒 = 𝑑𝑥/𝑑𝑐 = ‖𝑑𝑥/𝑑𝑐‖ 𝑞 and 𝑎 = 𝑑2𝑥/𝑑𝑐2 and, therefore,

𝑔𝑘 = −𝑞
𝑘 · 𝑎𝑘

‖𝑒𝑘‖2
, (3.43)

𝑒𝑘+1 = 𝐷𝜙𝑘 𝑒𝑘, 𝑞𝑘 =
𝑒𝑘

‖𝑒𝑘‖
, (3.44)

𝑎𝑘+1 = 𝐷2𝜙𝑘(𝑒𝑘, 𝑒𝑘) +𝐷𝜙𝑘 𝑎𝑘. (3.45)

Note Eq. 3.43-3.45 can be derived directly using Eq. 3.16 and the chain rule for

parametric derivatives.

How does this example differ from the one presented in Section 3.3.2? There, we

used a chart 𝑥𝑠(𝜉) : R2 → R3, 𝜉 = [𝑐, 𝑡]𝑇 , which defined a two-dimensional mani-

fold. The rate of change of 𝑥(𝜉) in the 𝑡-direction was determined by the Lorenz ’63

oscillator (System 3.33). Here, using the iterative procedure, we generate a bunch

of 1D manifolds 𝑥𝑘(𝑐). The evolution of these curves (in geometric sense) is deter-
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mined by 𝜙, which is in fact a discrete version of System 3.33. Thus, if we generate

infinitely many such curves and ∆𝑡 → 0, we effectively obtain the same surface as

the one shown in Figure 3-6. Intuitively, the density 𝜌𝑠 implied by 𝑥𝑠(𝜉) measures

number of points mapped from a uniform distribution per unit surface area. Likewise,

the density 𝜌𝑘, implied by the chart 𝑥𝑘(𝑐), measures number of points mapped from

a uniform distribution per unit curve length. Since we use the same discretization

scheme to integrate differential equations, the localization of points obtained in both

the computation of surface from Section 3.3.2 and, here, evolution of curves is exactly

the same. However, the density 𝜌𝑘 does not equal the marginal distribution of 𝜌𝑠 at

𝑡 = 𝑘∆𝑡 (assuming uniform discretization of time). In case of the surface example,

the value of the density function reflects the densification of points, mapped from a

uniform distribution, in both the 𝑡 and 𝑐 directions. In the latter example, the den-

sity is determined only by the localization of points along the evolving curve. Figure

3-11 illustrates the density gradient 𝑔𝑘 along the evolving curve, recorded at three

different time steps 𝑘. We observe 𝑔𝑘 = 0 at 𝑘 = 0, which is a consequence of the

choice of the uniformly distributed initial condition. Due to the symmetric geometry

of 𝑀𝑘, defined by the Lorenz ’63 oscillator at 𝑡 ∈ [0, 0.4], the density gradient features

symmetric behavior with respect to the origin of the 𝑔𝑘(𝑐)-vs.-𝑐 relation.

3.5 Density gradients implied by coordinate charts:

conclusion

A Monte Carlo integration scheme applied to a highly-oscillatory function might be

remarkably expensive. The computational cost, however, can be dramatically reduced

by integrating the original formulation by parts. Such treatment gives rise to a new

quantity, i.e., a directional derivative of the logarithm of the density implied by a chart

describing the integration domain. The computation of that derivative, which we call

the density gradient, requires knowledge of the first and second derivatives of the

chart with respect to the domain parameterization. If the domain manifold evolves
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Figure 3-11: Density gradient function is computed using the recursion involving Eq.
3.43-3.45 at three different time steps 𝑘 = 𝑡/∆𝑡. The finite difference approximation
is generated using the approach described in Section 3.2.3.

according to some diffeomorphism 𝜙, the calculation of the density gradient along a

trajectory requires solving a collection of first- and second-order tangent equations,

involving both the Jacobian and Hessian of 𝜙. The number of these equations is

respectively proportional to𝑚 and𝑚2, where𝑚 is the dimension of the manifold. The

formulas derived above is a major step toward constructing generalizable algorithms

for SRB density gradients.

3.6 SRB measure and its gradient: significance and

definitions

Due to their seemingly irregular and quasi-random behavior, a mathematical descrip-

tion of chaotic dynamical systems might be challenging. A major breakthrough in

the analysis of chaos was the introduction of the SRB (Sinai-Ruelle-Bowen) measure

𝜇 [147]. This scalar quantity, defined on a compact Riemannian manifold, contains

a coherent statistical description of the dynamics. Intuitively, the long-time average
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of a smooth observable, computed along a trajectory initiated at any point from a

non-zero Lebesgue measure set, converges to the 𝜇-weighted mean of the same ob-

servable. Although the concept of SRB measures was originally applied to Axiom A

systems, several rigorous studies extended this idea beyond the universe of uniformly

hyperbolic systems [195, 40, 42, 153].

Lebesgue integrals with respect to 𝜇, which indeed represent expected values of

certain smooth observables, are fundamental in the analysis of chaos. Under the

assumption of ergodicity, they equal the time-average of an infinitely-long sequence

generated along a trajectory. Integrals of this type can thus be approximated using

a Monte Carlo method. If the integrand involves highly-oscillatory derivatives, then

the Monte Carlo integration might be prohibitively expensive due to a large variance

of the sample [160]. In case of derivatives of functions evaluated at a future time

(see examples of such integrands in [31, 158, 68, 2]), the direct use of any integration

scheme might be impossible due to the butterfly effect. Indeed, the application of the

chain rule results in a product of the system’s Jacobian matrices whose norms increase

exponentially in time. A remedy for this computational difficulty is integration by

parts, which moves the differentiation operator away from the problematic function

to the SRB measure. This is in fact a consequence of the generalized fundamental

theorem of calculus. In addition to the boundary term, we effectively obtain a new

Lebesgue integral involving a product of the antiderivative of the original integrand

and the SRB density gradient 𝑔 = 𝜕 log 𝜌 = 𝜕𝜌/𝜌, where 𝜌 denotes the density of 𝜇

(i.e., the Radon-Nikodym derivative [123]).

The SRB density gradient is critical in the sensitivity analysis of chaos. The ma-

jor implication of Ruelle’s linear response theory is a closed-form expression for the

parametric derivative of long-time averages (a.k.a. the system’s sensitivity) [148, 150].

The space-split sensitivity (S3) method [32, 31, 158] reformulates Ruelle’s formula to

a computable form by splitting the perturbation vector and performing integration

by parts on unstable manifolds. Using the S3 formula, one can construct an effi-

cient and provably convergent Monte Carlo algorithm for sensitivities in uniformly

hyperbolic systems. This algorithm requires computing the SRB density gradient
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defined as a directional derivative of 𝜌 conditioned on the unstable manifold. In-

deed, the SRB measure is generally singular with respect to Lebesgue measure in the

stable direction [195]. Several algorithms for sensitivity analysis that stem from the

Fluctuation-Dissipation Theorem (FDT) [88] also require 𝑔 [2, 1, 23, 104, 68]. An

accurate reconstruction of the linear response operator in FDT-based methods is the

major challenge in deriving reliable numerical schemes. Motivated by empirical data

of certain chaotic models, some methods of this type assume Gaussian distribution

of measure (see [68] and references therein). Such an assumption reduces the FDT

linear response operator to a simple time autocorrelation function, which dramati-

cally decreases the total cost. However, this simplification restricts the algorithm to

a narrow class of atmospheric chaotic systems. The density gradient can also be used

as an reliable indicator of the differentiability of statistical quantities [159] in chaotic

systems. In particular, the slope of the distribution tail of 𝑔 has been shown to be

strictly associated with the existence of parametric derivatives of statistics. There-

fore, we seek a direct numerical procedure for 𝑔 that does not make any assumptions

about the statistical behavior of the system and is thus applicable to any chaotic

dynamical system that admits SRB measures.

There already exist algorithms for the SRB density gradient derived for systems

with one-dimensional unstable manifolds. In case of simple one-dimensional maps, one

can derive an exponentially convergent recursion for 𝑔 using the measure preservation

property [158] (see Section 2.6.3). The same formula can be inferred using the fact the

SRB density is an eigenfunction of the Frobenius-Perron operator with eigenvalue 1

[159]. The authors of [33] propose an ergodic-averaging algorithm for self-derivatives

(i.e., directional derivatives along one-dimensional expanding directions) of covariant

Lyapunov vectors (CLVs) corresponding to the only positive Lyapunov exponent,

which are tangent to unstable manifolds at any point on the attractor. Using the chain

rule on smooth manifolds, one can show 𝑔 depends on the self-derivative of CLV at the

previous time step, and this relation is governed by a second-order tangent equation

[33, 159]. In a recent work on a new method for evaluating the linear response [127],

the direct computation of 𝑔 is circumvented by re-expressing the unstable divergence
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as the volume ratio between the projection onto the contracting (stable) subspace

and the imposed perturbation. Nevertheless, several numerical methods based on

the linear response theory still require 𝑔, which justifies the need for a generalizable

algorithm for this particular quantity.

In the remainder of this chapter, we systematically derive a trajectory-driven al-

gorithm for the SRB density gradient by extending the measure preservation property

to high-dimensional smooth manifolds. Using the density-based parameterization of

unstable manifolds and the chain rule, it is possible to establish a recursive relation for

the evolution of first- and second-order parametric derivatives of the coordinate chart.

By definition, this chart is strictly associated with 𝑔 and can be interpreted as an SRB

inverse cumulative distribution (quantile function). This type of parameterization,

motivated by popular methods of statistical inference [57], has been thoroughly ex-

plained in the first part of this chapter (Sections 3.1 – 3.5) in the context of simple

Lebesgue measures. Through the relation of 𝑔, the coordinate map and its parametric

derivatives, we show the density gradient can be computed by solving a collection of

first- and second-order tangent equations. We also show that the recurring problem

of the butterfly effect, which leads to exploding norms of tangent solutions, can be

eliminated by iterative orthonormalization of the chart gradient. The major benefit

of our derivation is that it is naturally translatable to a practicable algorithm that

can be easily integrated with existing methods for sensitivity analysis of chaos.

Consider a diffeomorphic map 𝜙 : 𝑀 → 𝑀 , 𝑀 ∈ R𝑛, 𝑛 ∈ Z+ with an Axiom

A attractor. Theorem 1 of [195] asserts that there exists an invariant and physical

probability measure 𝜇 (and its density 𝜌), which satisfies:

1. Invariance/conservation of measure condition:

𝜇(𝐴) = 𝜇(𝜙−1(𝐴)) (3.46)

for any Borel subset 𝐴 ⊂𝑀 .

2. Physicality condition: there exists a positive Lebesgue measure set 𝑉 such that
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for any smooth observable 𝑓 :𝑀 → R,

∫︁
𝑀

𝑓(𝑥) 𝑑𝜇(𝑥) =

∫︁
𝑀

𝑓(𝑥) 𝜌(𝑥) 𝑑𝜔(𝑥) = lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝑓 ∘ 𝜙𝑘(𝑥0), (3.47)

for all 𝑥0 ⊂ 𝑉 . We use 𝑑𝜔 to denote the Riemmanian volume element, and

𝜙𝑘(·) = 𝜙(𝜙𝑘−1(·)), 𝜙1 = 𝜙, 𝜙0 = Id.

3. Absolute continuity: Conditional measure of 𝜇 denoted by �̃�𝑥 and defined on

the unstable manifold 𝑈𝑥 at point 𝑥 ∈ 𝑈𝑥 is absolutely continuous (an analogous

property applies to the conditional density 𝜌𝑥).

4. Singularity with respect to Lebesgue measure: 𝜇 is generally sharp in the stable

direction (across unstable manifolds).

5. Unit measure axiom (probability universe):

∫︁
𝑀

𝑑𝜇(𝑥) =

∫︁
𝑀

𝜌(𝑥) 𝑑𝜔(𝑥) = 𝜇(𝑀) = 1.

The measure 𝜇 and its density 𝜌 are respectively known as the SRB measure and

SRB density distribution. We listed their properties most important in the context

of this chapter; however, the reader is referred to [195] for a detailed description of

other significant features. One can think about Property (1) as the mass conservation

law. For example, consider a Borel subset 𝐵 ⊂ 𝑀 with a uniform measure that is

mapped to 𝜙(𝐵) ⊂ 𝑀 . If we divide 𝜙(𝐵) into a finite number of subsets occupying

the same volume, each of them generally has a different measure. In other words, each

subset generally has its unique weight unless 𝜙 represents a simple translation and/or

rotation. Property (2) states that the SRB measure is physical, which means that the

system can be observed due to the positive Lebesgue measure sets. Consequently, by

“observing" the system’s evolution for an infinitely long period of time, we can assign a

weight (density) to each non-zero-volume region of the attractor. The expected value

of any smooth function defined on 𝑀 can be computed as a simple volume integral

over 𝑀 of that function weighted by the density function. Figure 3-12 graphically

95



Figure 3-12: This figure graphically represents the measure preservation property.
The localization of green bullets represents the SRB density on some 1D subspace
of a 2D manifold 𝑀 . All green bullets are equally weighted. In this sketch, we
observe 𝜇(𝐵𝑘) = 𝜇(𝐵𝑘+1) and 𝐵𝑘+1 = 𝜙(𝐵𝑘), where 𝐵𝑘 ⊂ 𝑀 and 𝐵𝑘+1 ⊂ 𝑀 are
parameterized by smooth charts, 𝑥𝑘(𝜉) : [0, 1] → 𝐵𝑘 and 𝑥𝑘+1(𝜉) : [0, 1] → 𝐵𝑘+1,
respectively.

explains Property (1), while the remaining four properties and their consequences are

further explained and illustrated in the following sections.

As mentioned above, SRB measures are guaranteed to exist in Axiom A (or, uni-

formly hyperbolic) systems. Different rigorous studies indicate that uniform hyper-

bolicity is in fact not required for the existence of 𝜇. For example, partially hyperbolic

systems that have a mostly expanding [4] or contracting [25] central direction also

admit SRB measures. In addition, many high-dimensional systems arising from the

discretization of real-world PDE models behave as uniformly hyperbolic systems, per

the hyperbolicity hypothesis [59].

In many engineering applications, the expected value of some physically relevant

quantity 𝐽 ∈ 𝐿1(𝜌), i.e.,
∫︀
𝑀
𝐽 𝑑𝜇, is usually of interest. The major challenge in the

field of sensitivity analysis is to find a parametric derivative of the expected value,

which is critical in grid adaptation [96], optimization design [83] and uncertainty quan-

tification [180]. Ruelle rigorously derived a closed-form expression for that derivative

[148, 150],
𝑑

𝑑𝑠

∫︁
𝑀

𝐽(𝑥) 𝑑𝜇(𝑥) =
∞∑︁
𝑡=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑡(𝑥)) · 𝜒(𝑥) 𝑑𝜇(𝑥), (3.48)
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where 𝜒 denotes the derivative of 𝜙 with respect to the map parameter 𝑠2, while

𝐷 is the phase space differentiation operator. One could potentially apply a Monte

Carlo algorithm to the integrals on the RHS of Eq. 3.48. However, owing to the

butterfly effect, the direct evaluation of the integrand for a higher 𝑡 is computationally

infeasible. To illustrate this problem, let us consider the 2D Arnold’s cat map 𝜙 :

[0, 1]2 → [0, 1]2 defined as

𝑥𝑘+1 = 𝐴𝑥𝑘 mod 1, 𝐴 =

⎡⎣2 1

1 1

⎤⎦ , (3.49)

and some smooth function 𝐽(𝑥). In Figure 3-13, we observe that even for a low 𝑡,

𝐽 ∘ 𝜙𝑡 becomes highly-oscillatory, which implies that ‖𝐷(𝐽 ∘ 𝜙𝑡)‖ grows very fast

(‖ · ‖ denotes the Euclidean norm in R𝑛). Due to the presence of positive Lyapunov

exponents in chaotic systems, the rate of growth is in fact exponential. It means that

Ruelle’s formula is impractical for a direct Monte Carlo computation.

To circumvent this problem, one can split the perturbation vector 𝜒 and apply

integration by parts to move the differentiation operator away from the composite

function, as concisely described in [152]. Indeed, this approach gave rise to a form

of the FDT theorem [149] widely used in statistical mechanics, and was also utilized

to construct several numerical procedures approximating the linear response [32, 31,

127]. Based on the previous work, we carefully describe every step of the non-trivial

partial integration process.

In case of integrals with respect to a non-uniform measure, integration by parts

requires differentiating the measure itself. However, according to Property (3) and

Property (4), 𝐷𝜌 generally does not exist. In this section, let us assume 𝜒 equals a

unit vector 𝑞 that is tangent to the one-dimensional unstable manifold at every point

on the manifold 𝑀 . In a general case, 𝜒 ̸= 𝑞 and thus an extra step is required to

regularize Ruelle’s formula. This step involves a splitting of 𝜒 into two terms, such

that one term belongs to unstable manifolds everywhere on 𝑀 [152]. The reader is

also referred to Chapter 5 for a detailed description of the entire process and relevant
2Note that 𝜒 is an 𝑛-dimensional analog of the perturbation 𝑓 introduced in Chapter 2.
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computational procedures. Thus, every integral from the RHS of Eq. 3.48 can be

regularized through the following multi-step process (the description of each step

follows the equation),

𝐼 =

∫︁
𝑀

𝐷𝐽𝑡(𝑥) · 𝑞(𝑥) 𝑑𝜇(𝑥) (3.50)

=

∫︁
𝑀/𝑈

∫︁
𝑈𝑥

𝐷𝐽𝑡(𝑠) · 𝑞(𝑠) 𝑑�̃�𝑥(𝑠) 𝑑�̂�(𝑥) (3.51)

=

∫︁
𝑀/𝑈

∫︁
𝑈𝑥

𝜕𝑞𝐽𝑡(𝑠) 𝜌𝑥(𝑠) 𝑑𝑠 𝑑�̂�(𝑥) (3.52)

=

∫︁
𝑀/𝑈

∫︁ 1

0

𝜕𝜉𝐽𝑡(𝑠(𝜉)) 𝜌𝑥(𝑠(𝜉)) 𝑑𝜉 𝑑�̂�(𝑥) (3.53)

= −
∫︁
𝑀/𝑈

∫︁
𝑈𝑥

𝐽𝑡(𝑠) 𝜕𝑞𝜌𝑥(𝑠) 𝑑𝑠 𝑑�̂�(𝑥) + (boundary term) (3.54)

= −
∫︁
𝑀/𝑈

∫︁
𝑈𝑥

𝐽𝑡(𝑠)
𝜕𝑞𝜌𝑥
𝜌𝑥

(𝑠) 𝑑�̃�𝑥(𝑠) 𝑑�̂�(𝑥) + (boundary term) (3.55)

= −
∫︁
𝑀

𝐽𝑡(𝑥) 𝑔(𝑥) 𝑑𝜇(𝑥) + (boundary term), (3.56)

where 𝐽𝑡(𝑥) := 𝐽 ∘ (𝜙𝑡(𝑥)). To derive the final form of 𝐼, we perform the following

steps. First (Step 3.51), we disintegrate 𝜇 on a measurable partition 𝑈 determined

by the geometry of unstable manifolds. The quotient measure �̂� is defined such that

for all Borel sets 𝐵 ⊂𝑀 ,

𝜇(𝐵) =

∫︁
𝑀/𝑈

�̃�𝑥(𝐵 ∩ 𝑈𝑥) 𝑑�̂�(𝑥),

where �̃�𝑥 is a conditional SRB measure with density 𝜌𝑥. Subsequently, in Step 3.52,

we use the measure-density relation, 𝑑�̃�𝑥 = 𝜌𝑥 𝑑𝑠, where 𝑠 denotes the path length

as we move along 𝑈𝑥. In Step 3.53, we parameterize 𝑈𝑥, which gives rise to 𝑑𝑠 =

‖𝑥′(𝜉)‖ 𝑑𝜉. Note the multiplicative factor is absorbed by the parametric derivative of

𝐽 , because 𝜕𝜉𝐽 = ‖𝑥′(𝜉)‖ 𝜕𝑠𝐽 . Integration by parts is applied in Step 3.54, where the

differentiation operator is moved from 𝐽 to 𝜌. In Steps 3.55-3.56, we reshuffle terms

and use the above identities again to simplify the final expression. Integration by

parts also gives rise to a boundary term, which involves two integrals with respect to
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Figure 3-13: Evaluation of the composite function 𝐽 ∘ 𝜙𝑡(𝑥) on the manifold 𝑀 =
[0, 1]2 at four consecutive steps 𝑡. In this case, the map 𝜙 is the Arnold’s cat map
(Eq. 3.49), while 𝐽(𝑥(1), 𝑥(2)) = sin(𝜋𝑥(1)) sin(𝜋𝑥(2)). This particular 𝜙 is a classical
representative of an Anosov diffeomorphism.

the quotient measure of 𝐽 𝜌𝑥 evaluated at 𝜉 = 0 and 𝜉 = 1, respectively. From now

on, we shall drop the subscript notation for conditional distributions; the tilde (̃·)

notation shall imply the given distribution is restricted to a local unstable manifold.

Note the boundary term,

(boundary term) =

∫︁
𝑀/𝑈

[𝜌(𝜉) 𝐽𝑘(𝜉)]
𝜉=1
𝜉=0 𝑑�̂�(𝑥), (3.57)

can be expressed in terms of a regular volume integral over 𝑀 of the divergence on

unstable manifolds, which vanishes according to Theorem 3.1(b) of [148]. This is

indeed a direct consequence of the fact the boundary terms across two neighboring

rectangles of the Markov partition of 𝑀 cancel out. To visualize this property, let

us consider the Arnold’s cat map (Eq. 3.49), for example. Despite its “artificial"

discontinuities due to the modulo operator, this nonlinear transformation in fact

maps a smooth torus to itself. One could arbitrarily change the boundaries of the

square 𝑀 in both phase space directions without modifying the map itself, and still

describe the same torus.

Since ∫︁
𝑀

𝐷𝐽𝑘 · 𝑞 𝑑𝜇 = −
∫︁
𝑀

𝐽𝑘 𝑔 𝑑𝜇,

we can alternatively apply Monte Carlo to the RHS that involves the SRB density
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gradient 𝑔 [31, 159, 158],

𝑔(𝑥) =
𝜕𝑞𝜌(𝑥)

𝜌(𝑥)
=
𝜕𝑞𝜌(𝑥)

𝜌(𝑥)
= 𝜕𝑞 log 𝜌(𝑥). (3.58)

Note that the integrand appearing in the regularized version of 𝐼 does not grow

exponentially with 𝑡 if 𝐽 is bounded, which makes the sensitivity formula computable

(immune to the butterfly effect). The integration by parts, as presented above, is

generally useful if the integrand involves highly-oscillatory functions. The Monte

Carlo integral example presented in [160] shows that the partial integration may

reduce the number of samples by a few orders of magnitude to achieve the desired

approximation error. Therefore, the computation of 𝐽 might be beneficial not only in

the context of Ruelle/S3/FDT-based methods for sensitivity approximation, but also

in a general setting when the expected value of an ill-behaved quantity of interest in

a chaotic system is needed. The following two sections focus on the computation of 𝑔

for systems with an arbitrary number of positive LEs. The primary goal is to derive a

recursive procedure compatible with Monte Carlo algorithms widely used in the field

of chaotic dynamics.

3.7 Computing SRB density gradient for systems with

one-dimensional unstable manifolds

In this section, we consider a generic 𝑛-dimensional, 𝑛 ∈ Z+, uniformly hyperbolic

dynamical system with one-dimensional unstable manifold governed by the 𝐶2 diffeo-

morphic map 𝜙 :𝑀 →𝑀 . 𝑀 is thus a Riemannian manifold immersed in R𝑛. There

exists a measurable partition 𝑈 of 𝑀 such that each member of that partition, 𝑈𝑥,

coincides with the unstable manifold that contains 𝑥 ∈ 𝑀 . In this particular case,

each 𝑈𝑥 ⊆ 𝑀 is geometrically represented by a curve embedded in R𝑛. We strive to

compute the directional derivative of the logarithmic SRB density 𝑔 defined by Eq.

3.58.
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3.7.1 Derivation of the iterative formula

The following notation is used throughout this section. Let 𝑥𝑘(𝜉) : [0, 1] → 𝑈𝑘 ⊂ 𝑀

denote a 𝐶2 chart (diffeomorphic map) that describes the unstable manifold 𝑈𝑘, 𝑘 ∈ Z.

For any 𝑘, the two charts: 𝑥𝑘(𝜉) and 𝑥𝑘+1(𝜉), defined respectively on 𝑈𝑘 and 𝑈𝑘+1,

are related as follows,

𝑥𝑘+1(𝜉) = 𝜙(𝑥𝑘(𝜉)) (3.59)

for all 𝜉 ∈ [0, 1] (see Figure 3-12 for an illustration of an 𝑛 = 2 case). We use

𝐷𝜙 and 𝐷2𝜙 to respectively denote the Jacobian (𝑛 × 𝑛 matrix) and Hessian (𝑛 ×

𝑛 × 𝑛 third-order tensor) of 𝜙. Since 𝜙 is invertible, Eq. 3.59 can be viewed as a

mathematical description of the evolution of SRB measure. For any observable 𝑓

defined on 𝑀 , evaluated along a certain trajectory, we use the following short-hand

notation, 𝑓 ∘ 𝑥𝑘(𝜉) := 𝑓𝑘. Derivatives of the chart with respect to the parameter

𝜉 are denoted using the prime (′) symbol. The reference to the 𝑖-th component of

an array (vector/matrix/tensor) is indicated inside round brackets located in the

superscript; for example, 𝑞(𝑖) denotes the 𝑖-th component of 𝑞. Finally, we use 𝜕𝑖 to

denote differentiation with respect to the 𝑖-th coordinate of phase space.

Let us parameterize 𝑈𝑘 such that

𝜉 =

∫︁
𝒞𝑘(𝜉)

𝜌(𝑥𝑘(𝜉)) 𝑑𝑠, (3.60)

where 𝒞𝑘(𝜉) represents the segment of 𝑈𝑘 between 𝑥𝑘(0) and 𝑥𝑘(𝜉), which implies

that 𝒞𝑘(1) ≡ 𝑈𝑘. Consequently, 𝜌𝑘 is the conditional SRB density restricted to 𝑈𝑘

satisfying 𝜌𝑘 = 𝜌𝑘/
∫︀
𝑈𝑘
𝜌𝑘 𝑑𝑠. We call it measure-based parameterization, as the value

of the parameter 𝜉 coincides with the value of the SRB measure at 𝑥𝑘(𝜉) ∈ 𝑈𝑘. The

variable transformation between 𝜉 and the arc length 𝑠 implies that

𝜌(𝑥𝑘(𝜉)) ‖𝑥′𝑘(𝜉)‖ = 1. (3.61)

Note Eq. 3.61 is in fact a formula for the density change from a uniform to nonuniform

distribution due to the nonlinear variable transformation 𝑥𝑘(𝜉). Since 𝜉 ∈ [0, 1], 𝜌𝑘,
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𝜉, 𝑥𝑘 can be respectively viewed as a probability density function (PDF), cumulative

distribution (CDF), and inverse cumulative distribution (quantile function). Using

the measure-based parameterization as described above, the SRB density gradient,

defined in Eq. 3.58, can be expressed in terms of parametric derivatives of the chart,

i.e.,

𝑔(𝑥𝑘(𝜉)) =
𝜕𝑞𝜌𝑘
𝜌𝑘

(𝑥𝑘(𝜉)) = −𝑥
′
𝑘(𝜉) · 𝑥′′𝑘(𝜉)
‖𝑥′𝑘(𝜉)‖3

, (3.62)

for any 𝜉 ∈ [0, 1]. Here, the derivative 𝜕𝑞 is computed in the direction of increas-

ing value of 𝜉. The reader is referred to Section 3.2.3, where Eq. 3.62 is derived

by differentiating Eq. 3.61, and comprehensively described using various numerical

examples.

We notice 𝑥′𝑘(𝜉) = ‖𝑥′𝑘(𝜉)‖ 𝑞(𝑥𝑘(𝜉)), and rewrite Eq. 3.62 to

𝑔(𝑥𝑘(𝜉)) = −𝑞(𝑥𝑘(𝜉)) ·
𝑥′′𝑘(𝜉)

‖𝑥′𝑘(𝜉)‖2
:= −𝑞(𝑥𝑘(𝜉)) · 𝑎(𝑥𝑘(𝜉)) = −𝑞𝑘 · 𝑎𝑘. (3.63)

Eq. 3.63 indicates that the magnitude of the SRB density gradient equals the length

of the projection of the (re-scaled) curve acceleration vector on the line tangent to

the curve. We now use Eq. 3.59, differentiate it twice with respect to 𝜉, and apply

the chain rule to obtain the following expression,

𝑥′′𝑘+1(𝜉) = 𝐷2𝜙(𝑥𝑘(𝜉))(𝑥
′
𝑘(𝜉), 𝑥

′
𝑘(𝜉)) +𝐷𝜙(𝑥𝑘(𝜉)) 𝑥

′′
𝑘(𝜉), (3.64)

which means that

𝑎(𝑥𝑘+1(𝜉)) =
𝑥′′𝑘+1(𝜉)

‖𝑥′𝑘+1(𝜉)‖2
=

‖𝑥′𝑘(𝜉)‖2𝐷2𝜙(𝑥𝑘(𝜉)) (𝑞(𝑥𝑘(𝜉)), 𝑞(𝑥𝑘(𝜉)))

‖𝑥′𝑘+1(𝜉)‖2
+
𝐷𝜙(𝑥𝑘(𝜉))𝑥

′′
𝑘(𝜉)

‖𝑥′𝑘+1(𝜉)‖2
.

(3.65)

The bilinear form that appears in the first term on the RHS of Eq. 3.65 can be

expressed using Einstein’s summation convention, i.e.,

[𝐷2𝜙(𝑞, 𝑞)](𝑖𝑗𝑘) = 𝜕𝑖𝜕𝑗𝜙
(𝑘) 𝑞(𝑖) 𝑞(𝑗).
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Given

‖𝑥′𝑘+1(𝜉)‖ = 𝑟(𝑥𝑘(𝜉))‖𝑥′𝑘(𝜉)‖

and

𝑟(𝑥𝑘(𝜉)) = ‖𝐷𝜙(𝑥𝑘) 𝑞(𝑥𝑘(𝜉))‖,

we conclude that

𝑎𝑘+1 =
(𝐷2𝜙)𝑘(𝑞𝑘, 𝑞𝑘) + (𝐷𝜙)𝑘 𝑎𝑘

𝑟2𝑘
. (3.66)

From the parametric derivative of Eq. 3.59 and the definition of 𝑟(𝑥𝑘(𝜉)), the recursion

𝑞𝑘+1 =
𝐷𝜙𝑘 𝑞𝑘
𝑟𝑘

(3.67)

automatically follows. We emphasize the fact the above procedure for 𝑔 (involving Eq.

3.63, 3.66, 3.67) is completely analogous to the algorithm proposed in Section 3.4.2,

which was meant for simple Lebesgue measures evolving due to a generic non-chaotic

diffeomorphisms. Here, however, we consider the evolution of the SRB measure in

a chaotic system. Due to the butterfly effect, the tangent solution exponentially in-

creases in norm. Therefore, we need the normalizing factor 𝑟 in the iterative formula

for 𝑎 and 𝑞 along the trajectory. Since 𝜙 is uniformly hyperbolic, the solution to the

tangent equation in Eq. 3.67 converges exponentially in 𝑘 to the backward Lyapunov

vector that is tangent to the unstable manifold regardless of the choice of an initial

condition 𝑞0. Under the same assumption, the recursion in Eq. 3.66 for the acceler-

ation vector 𝑎 also uniformly converges to the true solution at an exponential rate

for any initial condition 𝑎0 bounded in norm. The reader is referred to Lemma 7.7 in

[31] for the proof of the preceding statement.

To summarize, using the measure-based manifold parameterization, we derived a

simple recursive procedure for the SRB density gradient that exponentially converges

in case of uniformly hyperbolic systems and does not depend on initial conditions. As

for now, we restrict ourselves to systems with one-dimensional unstable manifolds.

Our main intention here is to introduce basic concepts before we move to general

cases in Section 3.8.

103



3.7.2 Numerical example: computing SRB density gradient

on straight unstable manifolds

As a pedagogical example, let us consider a family of 𝑛-dimensional maps, 𝑛 ∈ Z+,

whose unstable manifolds are straight and, without loss of generality, aligned with

the first coordinate of the phase space. Certainly, this family includes, but is not

limited to, all one-dimensional chaotic maps. In this particular case, 𝑞(𝑖) = 𝛿(𝑖1),

where 𝛿 denotes the Kronecker delta. Consequently, the parametric derivative of

the chart 𝑥𝑘(𝜉), for any 𝑘, has all zero entries except the first one and, therefore,

𝑟(𝑥𝑘(𝜉)) = |𝜕1𝜙(1)(𝑥𝑘(𝜉))|. Thus, our recursive algorithm for 𝑔, which involves Eq.

3.63, 3.66, and 3.67, reduces to a single scalar iterative formula,

𝑔(𝑥𝑘+1(𝜉)) =
𝑔(𝑥𝑘(𝜉))

𝜕1𝜙(1)(𝑥𝑘(𝜉))
− 𝜕21𝜙

(1)(𝑥𝑘(𝜉))

(𝜕1𝜙(1)(𝑥𝑘(𝜉)))2
(3.68)

for all 𝜉 ∈ [0, 1]. We were allowed to drop the absolute values, because 𝑥′𝑘(𝜉) > 0,

which is a consequence of our choice of the manifold parameterization. In this simple

event of a straight unstable manifold, only two scalars are required to advance the

iteration, i.e., first- and second-order derivative (in phase space) of the first component

of 𝜙, since the map is expanding only in one direction. This result is fully consistent

with early non-systematic attempts to construct such a procedure for 𝑔 in [158, 159]

(see Section 2.6.3). The previous studies used the measure preservation property to

derive an expression analogous to Eq. 3.68.

To verify the correctness of our procedure, we consider the 2D perturbed Baker’s

map 𝜙 :𝑀 →𝑀 , with 𝑀 = [0, 2𝜋]2, defined as follows [31],

𝑥𝑘+1 = 𝜙(𝑥𝑘) =

⎛⎝⎡⎣ 2𝑥
(1)
𝑘

𝑥
(2)
𝑘 /2 + 𝜋⌊𝑥𝑘/𝜋⌋

⎤⎦ +

⎡⎣𝑠1/2 sin(𝑥
(1)
𝑘 /2) + 𝑠2/2 sin(2𝑥

(1)
𝑘 ) sin(𝑥

(2)
𝑘 )

𝑠3 sin(𝑥
(2)
𝑘 ) + 𝑠4/2 sin(2𝑥

(1)
𝑘 ) sin(𝑥

(2)
𝑘 )

⎤⎦⎞⎠ mod 2𝜋,

(3.69)

where 𝑠1, 𝑠2, 𝑠3, 𝑠4 are real-valued map parameters. If all of them are zero, we obtain
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the classical Baker’s map (first term of the RHS of Eq. 3.69), which is named after

the kneading operation that bakers apply to a two-dimensional square dough. In

particular, the dough is first stretched horizontally (in the unstable direction) by

a constant factor, then compressed vertically (in the stable direction) by the same

factor, and so forth. The square-shaped domain is stretched to a 2× 1 rectangle, cut

into two squares, which are subsequently stacked horizontally. The Baker’s map is

an invertible chaotic map with one positive and one negative Lyapunov exponent.

By introducing an extra term proportional to the four parameters, we perturb

the kneading operation in the direction not necessarily aligned with the phase space

directions. Indeed, by manipulating these parameters’ values, we can control the

shape of the unstable manifold, which gives us an excellent study case in the context

of the SRB gradient computation. Notice, for example, if 𝑠4 = 0 and 𝑠3 is sufficiently

small, the iteration in Eq. 3.67 produces 𝑞𝑘 whose second coordinate, 𝑞(2)𝑘 , converges

exponentially to zero with 𝑘. In this case, therefore, unstable manifolds are straight

and aligned with the 𝑥(1)-axis. We use this observation to design our first numerical

test.

In the first experiment, we consider the Baker’s map defined by Eq. 3.69 with

𝑠1 = 𝑠3 = 𝑠4 = 0 and 𝑠2 = 0.4. The left-hand side plot in Figure 3-14 illustrates the

normalized SRB distribution corresponding to this parameter choice, which represents

the probability of the trajectory passing through each square bin everywhere on 𝑀

(see the caption of Figure 3-14 for more details; for completeness, we also included

a case with 𝑠4 ̸= 0). We observe a smooth behavior of the SRB distribution with

respect to 𝑥(1) at any vertical level 𝑥(2). However, as we travel vertically, in the stable

direction, the SRB distribution varies sharply. These radically different behaviors are

typical symptoms of Property (3) and Property (4) of 𝜇 described in Section 3.6, and

they can also be observed in Figure 3-15, where the conditional and marginal SRB

distributions are plotted, using data from Figure 3-14.

In Figure 3-15, we also plot the SRB density gradients defined on five different

unstable manifolds. To compute 𝑔, the simplified recursion from Eq. 3.68 was directly

applied. To validate our computation, we approximated 𝑔 by applying the central
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Figure 3-14: SRB distribution of the Baker’s map with 𝑠1 = 𝑠3 = 𝑠4 = 0, 𝑠2 = 0.4
(left plot) and 𝑠1 = 𝑠2 = 𝑠3 = 0, 𝑠4 = 0.4 (right plot). We divided 𝑀 into 2562

rectangular bins of equal width and counted the number of times the trajectory
passed through each of these bins. In this experiment, we generated 8000 trajectories
of length 209, 715, 200, which gives us the total of approximately 1.68 · 1012 samples.
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finite-difference method to SRB densities plotted above. We observe a good agreement

between the results obtained with these two different approaches, which confirms the

correctness of our algorithm.

To conclude, in case of straight unstable manifolds, the SRB density gradient

can be computed using the simplified recursive relation along trajectory (Eq. 3.68),

which we verify through finite-differencing. This iteration is computationally cheap,

as it involves solving a scalar tangent equation featuring both the first and second

derivative of the first component of 𝜙. In Appendix 3.10.1, we show Eq. 3.68 can

also be applied to popular one-dimensional maps that are non-injective. We argue

that certain non-measure-preserving transformations have their higher-dimensional

analogs similar to the classical Baker’s map. Appendix 3.10.2 presents a numerical

study confirming the hyperbolicity of the Baker’s map.

3.8 Computing SRB density gradient for systems with

general unstable manifolds

We shall generalize the concepts introduced in Section 3.7 to systems with𝑚-dimensional

unstable manifolds, 𝑚 ∈ Z+. In other words, we consider general 𝑛-dimensional

chaotic systems that have 𝑚 positive LEs, 1 ≤ 𝑚 ≤ 𝑛. In this setting, the chart

𝑥𝑘(𝜉), 𝑘 ∈ Z+, is a diffeomorphism that maps an 𝑚-dimensional hypercube, [0, 1]𝑚,

to the local unstable manifold 𝑈𝑘 ⊂ 𝑀 . For example, if 𝑚 = 2 and 𝑛 = 3, then

the system has two positive LEs and its unstable manifolds are surfaces immersed in

R3 ⊃𝑀 .

3.8.1 Derivation of the iterative formula

As introduced above, let us consider an 𝑚-dimensional smooth unstable manifold 𝑈𝑘

described by the chart 𝑥𝑘(𝜉) : [0, 1]𝑚 → 𝑈𝑘 ⊂ 𝑀 . The vectors 𝑥𝑘 = [𝑥
(1)
𝑘 , ..., 𝑥

(𝑛)
𝑘 ]𝑇

and 𝜉 = [𝜉(1), ..., 𝜉(𝑚)]𝑇 have 𝑛 and 𝑚 components, respectively, and 0 ≤ 𝜉(𝑖) ≤ 1,

𝑖 = 1, ...,𝑚. We use ∇𝜉𝑥𝑘(𝜉) to denote the parametric gradient tensor of the chart.
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Figure 3-15: Upper left plot: conditional SRB distributions (SRB densities) cor-
responding to five different unstable manifolds. The numbers 36, 72, 108, 144, 180
appearing in the legend represent the index of the horizontal bin row. For exam-
ple, the red line corresponds to the SRB density defined on the unstable manifold
at 𝑥(2) ≈ 72/256 · 2𝜋 ≈ 1.76. Upper right plot: marginal SRB distribution obtained
through integrating the first coordinate out. Lower plot: SRB density gradient 𝑔
corresponding to SRB densities plotted in Figure 3-15. The 𝑔 function was computed
using two distinct approaches: through the simplified trajectory-based recursion (Eq.
3.68)(solid lines), and the central finite-difference method (dots). The oscillation of
the finite-difference approximation is a manifestation of the statistical noise.
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The 𝑖-th column of ∇𝜉𝑥𝑘(𝜉) contains the derivative of 𝑥𝑘(𝜉) with respect to 𝜉(𝑖), i.e.,

𝜕𝜉(𝑖)𝑥𝑘(𝜉). For any Borel subset 𝑉 ⊂ [0, 1]𝑚 such that 𝑥𝑘(𝑉 ) = 𝐵𝑘 ⊂ 𝑈𝑘, the SRB

measure-density relation can be expressed as follows,

𝜇(𝑉 ) =

∫︁
𝐵𝑘

𝜌𝑘(𝑥) 𝑑𝜔(𝑥), (3.70)

where 𝑑𝜔(𝑥) denotes the natural volume element defined everywhere on 𝑈𝑘. Anal-

ogously to the 1D case described in Section 3.7, 𝜌𝑘 represents the conditional SRB

density defined on 𝑈𝑘. If we QR-factorize the parametric gradient of 𝑥𝑘(𝜉),

∇𝜉𝑥𝑘(𝜉) = 𝑄(𝑥𝑘(𝜉)) 𝑅(𝑥𝑘(𝜉)) (3.71)

at any 𝜉 ∈ [0, 1]𝑚, the density conservation property could be expressed as

𝜌(𝑥𝑘(𝜉)) | det𝑅(𝑥𝑘(𝜉))| = 1, (3.72)

which is a generalization of Eq. 3.61. Furthermore, by differentiating Eq. 3.72 with

respect to 𝜉 and applying a non-trivial chain rule, we obtain

𝑔(𝑖)(𝑥𝑘(𝜉)) :=𝜕𝑠(𝑖)(𝑥𝑘(𝜉)) log 𝜌(𝑥𝑘(𝜉)) =

−
tr
(︀
𝑄𝑇 (𝑥𝑘(𝜉)) 𝜕𝜉(𝑖)∇𝜉𝑥𝑘(𝜉) 𝑅

−1(𝑥𝑘(𝜉))
)︀

‖𝜕𝜉(𝑖)𝑥𝑘(𝜉)‖
,

(3.73)

or, equivalently,

𝑔(𝑖)(𝑥𝑘(𝜉)) = −
𝑄(:𝑗)(𝑥𝑘(𝜉)) · 𝜕𝜉(𝑖)𝜕𝜉(𝑘)𝑥𝑘(𝜉) (𝑅−1)(𝑘𝑗)(𝑥(𝜉))

‖𝜕𝜉(𝑖)𝑥𝑘(𝜉)‖
(3.74)

for all 𝜉 ∈ [0, 1]𝑚, where the repeated indices imply summation (Einstein’s conven-

tion), while the superscript (: 𝑖) denotes the 𝑖-th column of a matrix. This expression

was obtained by employing the orthogonality of 𝑄 and upper-triangular structure

of 𝑅. It is computationally convenient as it does not involve parametric derivatives

of the determinant of 𝑅. Note that Eq. 3.73 represents a formula for log-density
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derivatives in the directions indicated by vectors tangent to parametric isolines. In

particular, 𝑠(𝑖) represents the tangent vector of the isoline (curve) associated with

𝜉(𝑖), 𝑖 = 1, ...,𝑚. The reader is referred to Section 3.3.1 for a step-by-step derivation

of Eq. 3.72-3.74. We acknowledge that a similar “trace" formula was derived in the

context of computing the unstable divergence in [127].

The purpose of this section is to derive an iterative (trajectory-driven) procedure

for 𝑔. Analogously to the derivation in Section 3.7, we combine Eq. 3.32, the evolution

equation

𝑥𝑘+1(𝜉) = 𝜙(𝑥𝑘(𝜉)), (3.75)

and apply the chain rule. The 1D case (𝑚 = 1) was computationally simpler because

the tangent equations for 𝑎 and 𝑞 were regularized by the scalar 𝑟 every time step

preventing the tangent solutions from blow-ups due to the positive LE . Here, we need

to compute all first- and second-order parametric derivatives of the chart to compute

𝑔. Thus, we aim to regularize tangent equations in a fashion analogous to the approach

in Section 3.7. To achieve this goal without violating the consistency of the scheme,

we recursively orthonormalize the parametric gradient through an iterative linear

transformation of the parameterization and fixing 𝜉 = 0. In particular, we change

variables from step 𝑘 to 𝑘 + 1 such that

𝜉𝑘+1 = 𝑅𝑘+1(𝑥𝑘+1(𝜉𝑘)) 𝜉𝑘.

Note that at 𝜉 = 0 we stay on the same trajectory despite the transformation. This

particular choice of 𝜉 does not restrict our algorithm to concrete trajectories. Indeed,

we want to “visit" all infinitesimally small 𝜇-typical regions of the attractor after

an infinite number of time steps, regardless of the choice of the initial condition.

Therefore, we can always linearly re-scale the feasible space of 𝜉 such that 𝜉 = 0 for

our arbitrary choice of the initial condition. To simplify the notation, we skip the

argument whenever 𝜉 = 0; for example, we use the short-hand notation 𝑥𝑘(0) := 𝑥𝑘,

𝑄(𝑥𝑘(0)) := 𝑄𝑘, and so forth. Thanks to this particular coordinate transformation,

the parametric gradient is automatically orthonormalized, because the chain rule
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implies that

∇𝜉𝑘+1
𝑥𝑘+1 = ∇𝜉𝑘𝑥𝑘+1 𝑅

−1
𝑘+1 = 𝑄𝑘+1, (3.76)

or, equivalently,

𝜕
𝜉
(𝑖)
𝑘+1
𝑥𝑘+1 = 𝜕

𝜉
(𝑗)
𝑘
𝑥𝑘+1 (𝑅

−1
𝑘+1)

(𝑗𝑖) = 𝑄
(:𝑖)
𝑘+1. (3.77)

It means that the parametric gradient of the chart has an orthonormal basis of the

column space in the updated coordinate system. Note the 𝑅 matrix represents the

Jacobian of the step-to-step parametric transformation, i.e.,

𝑅𝑘+1 = 𝜕𝜉𝑘+1/𝜕𝜉𝑘.

Through recursive re-orthonormalization of the coordinate chart, we derive a con-

sistent and recursive scheme for the unstable basis. Assuming the chart gradient is

orthogonal at step 𝑘, we take the gradient of Eq. 3.75 with respect to the 𝜉𝑘 (i.e., the

coordinates that guarantee ∇𝜉𝑘𝑥𝑘 = 𝑄𝑘) to conclude that

𝑄𝑘+1𝑅𝑘+1 = ∇𝜉𝑘𝑥𝑘+1 = ∇𝜉𝑘𝜙(𝑥𝑘) = 𝐷𝜙𝑘∇𝜉𝑘𝑥𝑘 = 𝐷𝜙𝑘𝑄𝑘, (3.78)

which further implies that

𝑄𝑘 = 𝐷𝜙𝑘−1𝐷𝜙𝑘−2 ...𝐷𝜙0𝑄0𝑅
−1
1 ...𝑅−1

𝑘−1𝑅
−1
𝑘 . (3.79)

Notice that Eq. 3.78 is obtained by differentiating the evolution equation first, and

then applying the orthonormalized coordinates. Eq. 3.79 coincides with the already

known algorithm for Gram-Schmidt (backward) Lyapunov vectors [90, 65], which

converges exponentially fast in uniformly hyperbolic systems as 𝑘 → ∞ for any

bounded 𝑄0. For a sufficiently large 𝑘, the set of column vectors of 𝑄𝑘 approximates

an orthonormal basis of the unstable (expanding) subspace 𝐸𝑢
𝑘 of the tangent space

𝑇𝑀𝑘. Specific directions of backward Lyapunov vectors at time step 𝑘, however,

depend on the choice of 𝑄0. Therefore, in this case, the “convergence" should be

understood that, for any orthonormal 𝑄0, the column space of 𝑄𝑘 is guaranteed to
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coincide with some orthonormal basis of 𝐸𝑢
𝑘 if 𝑘 → ∞. A similar procedure can be

used to compute all 𝑛 Lyapunov vectors, including those corresponding to the negative

LEs, spanning the stable (contracting) subspace 𝐸𝑠
𝑘. In uniformly hyperbolic systems,

𝑇𝑀𝑘 = 𝐸𝑢
𝑘 ⊕ 𝐸𝑠

𝑘

at every 𝑘, and both the subspaces are 𝐷𝜙-invariant (or covariant). The covariance

property implies that the product 𝐷𝜙𝑘𝑄𝑘 outputs 𝑚 vectors that belong to the un-

stable subspace of the tangent space at the next time step, 𝑇𝑀𝑘+1. In general, the

new vectors are not orthonormal. By performing the QR factorization, however, we

obtain an orthonormal basis of the unstable subspace at 𝑘 + 1. The components of

𝑅𝑘+1 contain projections of the column vectors of 𝐷𝜙𝑘𝑄𝑘 onto the basis vectors of

𝐸𝑢
𝑘+1.

There are two other important consequences of the recursive coordinate change.

First, notice that the tangent lines of parametric isolines are now orthogonal. There-

fore,

𝑔(𝑖) = 𝜕𝑠(𝑖) log 𝜌𝑘 = 𝜕𝑄(:𝑖) log 𝜌, (3.80)

where 𝑄(:𝑖) := 𝑞𝑖 denotes the 𝑖-th column of 𝑄. The second consequence is a dramatic

simplification of Eq. 3.32. Indeed, in the orthonormalized system, the 𝑅 matrix

reduces to the identity matrix, while the norm of each column of the parametric

gradient equals 1. This gives rise to the following expression for 𝑔,

𝑔
(𝑖)
𝑘+1 =− tr

(︁
𝑄𝑇
𝑘+1 𝜕𝜉(𝑖)𝑘

∇𝜉𝑘𝑥𝑘+1

)︁
=

−𝑄
(:𝑗)
𝑘+1 · 𝜕𝜉(𝑖)𝑘+1

𝜕
𝜉
(𝑗)
𝑘+1
𝑥𝑘+1 := −𝑄(:𝑗)

𝑘+1 · 𝑎
(𝑖,𝑗)
𝑘+1.

(3.81)

To complete the algorithm, we also need to recursively compute the Hessian of

the coordinate cart, i.e., all possible parametric second-order derivatives of 𝑥(𝜉). We

usually refer to those vectors as acceleration vectors or curvature vectors. They can
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be computed recursively by differentiating Eq. 3.75 twice, which gives rise to

𝜕
𝜉
(𝑖)
𝑘
𝜕
𝜉
(𝑗)
𝑘
𝑥𝑘+1 = 𝐷2𝜙𝑘(𝜕𝜉(𝑖)𝑘

𝑥𝑘, 𝜕𝜉(𝑗)𝑘
𝑥𝑘) +𝐷𝜙𝑘 𝜕𝜉(𝑖)𝑘

𝜕
𝜉
(𝑗)
𝑘
𝑥𝑘

= 𝐷2𝜙𝑘(𝑄
(:𝑖)
𝑘 , 𝑄

(:𝑗)
𝑘 ) +𝐷𝜙𝑘 𝑎

(𝑖,𝑗)
𝑘 .

(3.82)

Again, we highlight the fact that Eq. 3.82 was obtained by first differentiating the

original evolution equation (first line), and then enforcing the orthonormality of the

chart gradient (second line). To maintain the consistency of the entire scheme, we

need to change the differentiation coordinates on the left-hand side of Eq. 3.82.

Consequently, we apply the chain rule to derive a relation for the Hessian of 𝑥𝑘+1,

represented by an 𝑛×𝑚×𝑚 tensor, in the updated coordinate system:

𝜕
𝜉
(𝑖)
𝑘+1
𝜕
𝜉
(𝑗)
𝑘+1
𝑥𝑘+1 = 𝜕

𝜉
(𝑝)
𝑘
𝜕
𝜉
(𝑞)
𝑘
𝑥𝑘+1 (𝑅

−1
𝑘+1)

(𝑝𝑖) (𝑅−1
𝑘+1)

(𝑞𝑗). (3.83)

Note that in order to compute the SRB density gradient at step 𝑘 + 1, we need to

apply the Hessian re-scaling described by Eq. 3.83 to retrieve 𝑎𝑘+1. We summarize

this algorithm and carefully analyse its computational properties in Section 3.8.2.

We observe the general recursion for the acceleration vector 𝑎 in Eq. 3.82 can be

simplified to its one-dimensional counterpart in Eq. 3.66 if 𝑚 = 1. In this chapter, we

resort to an empirical study of the convergence of our algorithm (see Section 3.8.2). In

Chapter 5, we rigorously prove the stability and convergence of the re-scaled iteration

combining Eq. 3.83 and Eq. 3.82. Similar analysis of systems with one-dimensional

unstable manifolds was presented in [31, 33].

We reiterate the fact that the recursive change of coordinates has a “stabilizing"

effect. Note that both tangent iterations for the Lyapunov bases and acceleration vec-

tors respectively apply Jacobians and Hessians every time step leading to exponential

increase in norm of the corresponding products. On the other hand, these exploding

products are counterbalanced by 𝑅−1 matrices, which are by-products of the chain

rule. Therefore, this re-scaling operation does not only guarantee the consistency of

the scheme, but also eliminates the butterfly effect from the underlying recursions.

In Chapter 5, we provide rigorous arguments on the numerical stability.
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3.8.2 General algorithm for systems with multi-dimensional

unstable manifolds

We provide a practicable algorithm based on the derivation presented in the previous

section. In addition, we carefully analyse its computational cost, memory require-

ments, and numerically investigate its convergence. Algorithm 1 summarizes all steps

necessary to numerically compute the SRB density gradient at 𝑁 points along a tra-

jectory initiated at 𝑥0 ∈ 𝑀 ⊂ R𝑛. The only optional step is included in Line 1; this

step is meant to compute the dimension of the unstable subspace/manifold 𝑚. For

many chaotic maps, this parameter is known a priori and therefore Line 1 can be

skipped. If this is not the case, however, one can apply Benettin et al.’s numerical

procedure [15] to approximate a subset of the spectrum of Lyapunov exponents. This

procedure requires solving 𝑖 ∈ Z+ homogeneous tangent equations to identity 𝑖 largest

LEs. The parameter 𝑇 represents the trajectory length and affects the accuracy of

LE approximation. If the LE spectrum is evidently separated from the origin (i.e.,

the value of 0), then 𝑇 does not need to be large. Lines 3-22 of Algorithm 1 represent

the main time for-loop that computes the 𝑔 vector at one point on the manifold per

iteration. Inside this loop, we distinguish five major stages: 1) advancing first-order

tangent equation and QR factorization (Eq. 3.79), 2) advancing second-order tangent

equations (Eq. 3.82), 3) inverting the 𝑅 matrix and re-scaling the acceleration vector

𝑎 (Eq. 3.83), 4) evaluating 𝑔 (Eq. 3.81), and 5) transitioning to the next time step;

updating the Jacobian and Hessian.

Table 22 summarizes the computational cost of Algorithm 1. The third column of

this table includes the number of the floating point operations required in each stage

as a function of the trajectory length (𝑁 or 𝑇 ), system dimension 𝑛, and unstable

manifold dimension 𝑚. Note the third column includes only the leading term of the

flop count. The final two stages involve evaluations of nonlinear equations defined by

𝜙 and thus their computational cost is problem-dependent. In many physics-inspired

chaotic systems, the cost of Lines 20-21 is relatively low. Consider the Lorenz ’63

system discretized using the Euler scheme, for example. In this case, we can think
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Algorithm 1: SRB density gradient
Input : 𝑁 , 𝑇 , 𝑥0, 𝑛 = size(𝑥0)

1 𝑚 = Benettin(𝑇 ) if 𝑚 unknown;
2 Randomly generate 𝑄0, 𝑎

(𝑖,𝑗)
0 such that ncol(𝑄0) = 𝑚,

nrow(𝑄0) = size(𝑎
(𝑖,𝑗)
0 ) = 𝑛, 𝑄𝑇

0𝑄0 = 𝐼, and 𝑖, 𝑗 = 1, ...,𝑚;
3 for 𝑘 = 0, ..., 𝑁 − 1 do // main time loop
4 𝑆𝑘 = 𝐷𝜙𝑘𝑄𝑘;
5 QR-factorize: 𝑄𝑘+1𝑅𝑘+1 = 𝑆𝑘;
6 Invert 𝑅𝑘+1;
7 for 𝑖 = 1, ...,𝑚 do // 2nd-order tangent equations
8 for 𝑗 = 1, ..., 𝑖 do
9 �̃�

(𝑖,𝑗)
𝑘+1 = 𝐷2𝜙𝑘(𝑄

(:𝑖)
𝑘 , 𝑄

(:𝑗)
𝑘 ) +𝐷𝜙𝑘 𝑎

(𝑖,𝑗)
𝑘 ;

10 end
11 end
12 for 𝑖 = 1, ...,𝑚 do // re-scaling
13 for 𝑗 = 1, ..., 𝑖 do
14 𝑎

(𝑖,𝑗)
𝑘+1 = �̃�

(𝑝,𝑞)
𝑘+1 (𝑅−1)

(𝑝𝑖)
𝑘+1 (𝑅

−1)
(𝑞𝑗)
𝑘+1;

15 end
16 end
17 for 𝑖 = 1, ...,𝑚 do // evaluating 𝑔

18 𝑔
(𝑖)
𝑘+1 = −𝑄(:𝑗)

𝑘+1 · 𝑎
(𝑖,𝑗)
𝑘+1;

19 end
20 𝑥𝑘+1 = 𝜙(𝑥𝑘);
21 Evaluate: 𝐷𝜙𝑘+1 and 𝐷2𝜙𝑘+1;
22 end

Output: 𝑔(𝑖)𝑘 , 𝑖 = 1, ...,𝑚, 𝑘 = 1, ..., 𝑁 − 1

of 𝜙 as a time discretization operator of the continuous system. The Jacobian 𝐷𝜙

involves a collection of linear terms proportional to the coordinates of 𝑥, while the

Hessian 𝐷2𝜙 is constant. In many scientific/engineering applications, PDE models

are discretized in space using schemes with local support (such as the finite element

method), which implies the resulting Jacobians and Hessians of the fully-discretized

system are sparse. Therefore, in these special cases, the cost of the most expensive

stage of Algorithm 1, which involves second-order tangent equations, can potentially

be reduced to 𝑁 𝑛𝑚2. Table 22, however, reflects the worst-case scenario in which

no sparsity patterns occur. We also highlight the fact that in many high-dimensional

chaotic systems 𝑚 ≪ 𝑛 [18]. Thus, if 𝑛 is large, the re-scaling stage (Lines 12-16) is
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Table 3.1: Computational cost of Algorithm 1.

Stage Name Line No. Total Cost
Computing 𝑚 (Benettin’s algorithm) 1 𝑇 𝑛2𝑚

Generating initial conditions 2 −
Advancing first-order tangent equations 4 𝑁 𝑛2𝑚

QR factorization (Householder) 5 𝑁 𝑛𝑚2

Inverting 𝑅 6 𝑁 𝑚3

Advancing second-order tangent equations 7-11 𝑁 𝑛3𝑚2

Re-scaling 𝑎 12-16 𝑁 𝑛𝑚3

Computing 𝑔 17-19 𝑁 𝑛𝑚2

Advancing primal equation 20 Varies
Evaluating Jacobian and Hessian 21 Varies

rather cheaper than the second-order tangent equation stage (Lines 7-11).

We conclude that the leading term of the total flop count of Algorithm 1 is propor-

tional to 𝑁 𝑛3𝑚2 in a general chaotic system. In many real-world problems, however,

the final cost can be significantly reduced if one takes the advantage of the system’s

special structure. Our algorithm is moderately cheap in terms of the memory re-

quirements. The most memory-consuming structure is the Hessian which, in the

worst-case scenario, requires storing 𝑛3 floats. As we pointed out above, however, in

practical high-dimensional models, the actual “size" of the Hessian might be dramati-

cally smaller. Note also that, in order to advance tangent equations, we need to store

𝑚 𝑛-dimensional basis vectors (i.e., column vectors of 𝑄) and ∼ 1/2𝑚2 acceleration

vectors. The 1/2 factor is a consequence of the assumed smoothness of the coordinate

chart, which implies 𝑎(𝑖,𝑗) = 𝑎(𝑗,𝑖) everywhere on the manifold. Notice also that our

procedure is in fact a one-step method, which means that all quantities at step 𝑘+ 1

require data only from step 𝑘. We do not need to store data generated at previous

time steps.

Finally, we perform a numerical test to investigate the convergence properties of

Algorithm 1. For this purpose, we use the Baker’s map introduced in Eq. 3.69, as
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well as its 3D version 𝜙 : [0, 2𝜋]3 → [0, 2𝜋]3 defined as

𝑥𝑘+1 = 𝜙(𝑥𝑘) =

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

2𝑥
(1)
𝑘

3𝑥
(2)
𝑘

𝑥
(3)
𝑘 /6 + 𝜋⌊𝑥(1)𝑘 /𝜋⌋+ 𝜋/3⌊𝑥(2)𝑘 /(2𝜋/3)⌋

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
𝑠1 sin(2𝑥

(1)
𝑘 ) sin(3/2𝑥

(2)
𝑘 )

𝑠2 sin(𝑥
(1)
𝑘 ) sin(3𝑥

(2)
𝑘 )

𝑠3 sin(6𝑥
(3)
𝑘 )

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ mod 2𝜋,

(3.84)

which we shall refer to as the 3D Baker’s map. The three scalars 𝑠1, 𝑠2, 𝑠3 are

real-valued input parameters of that map. This is an invertible chaotic map with

two positive and one negative LEs, and seemingly hyperbolic behavior (see Appendix

3.10.2 for more details). This map has two expanding directions, along the 𝑥(1) and

𝑥(2) axes, and one contracting direction along the third axis. Analogously to its 2D

counterpart, this map models the kneading operation. The dough is extended by

the factor 2 and 3 along the two orthogonal directions on the 𝑥(1) − 𝑥(2) plane, cut

into 2 · 3 = 6 squares, which are subsequently stacked in the order defined by the

floor functions. These history-dependent floor functions are used to guarantee the

invertibility of the nonlinear transformation by periodically distributing the third

component of 𝑥𝑘+1 across [0, 2𝜋]. Higher-dimensional Baker’s maps have been widely

used in image encryption as a convenient generalization of Bernoulli shifts [138, 118].

To analyze the convergence, we generate three sufficiently long trajectories started

at randomly chosen initial conditions 𝑥0. For each of these trajectories, we run two

independent simulations with different, randomly chosen initial conditions for the

tangent equations (see Line 2 of Algorithm 1). Motivated by the rigorous studies, we

investigate if (and how) the difference between the SRB density gradients computed

along a single trajectory but using different initial conditions for tangent equations

decreases in norm as we advance the iteration. In particular, we compute ‖𝑔𝑘,1−𝑔𝑘,2‖,

𝑘 = 0, 1, 2, ... for two random initial condition choices for tangent equations per

trajectory, labelled as 1 and 2. The relation between that norm and time step 𝑘 for
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Figure 3-16: Relation between ‖𝑔𝑘,1 − 𝑔𝑘,2‖ and the time step 𝑘 in the semiloga-
rithmic scaling. This plot contains nine curves of three different colors. Each color
corresponds to a different map: 2D Baker’s map with curved unstable manifolds
(blue), 2D Baker’s map with straight unstable manifolds (red), and 3D Baker’s map
with 𝑠1 = 0, 𝑠2 = 0.9, 𝑠3 = 0.1 (green). In case of the 2D Baker’s map, the parameter
values are the same as those in Figure 3-14.

three different chaotic models is plotted in Figure 3-16. The 𝑔 function is generated

using Algorithm 1 for the 2D Baker’s map with 𝑚 = 1 (Eq. 3.69), as well as the 3D

Baker’s map with 𝑚 = 2 (Eq. 3.84).

We observe the norm-versus-𝑘 relation is linear in the semilogarithmic scale, which

clearly indicates an exponential convergence of our algorithm if applied to the Baker’s

map. This result implies that a relatively small number of steps (𝑘 ≈ 50) is required

to obtain the machine-precision value of the norm. Note also that the choice of a

trajectory (𝑥0) or model has a negligible effect on the error.

3.8.3 Numerical example: Monte Carlo integration

To validate Algorithm 1, we consider a square-integrable function 𝑓(𝑥) ∈ 𝐿2(𝜇) and

integrate it with respect to the SRB measure 𝜇 using a Monte Carlo procedure. By

the Central Limit Theorem, this integral can be approximated by taking the average

of the sample distributed according to 𝜇, while the approximation error is upper-
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bounded by
√︀

Var(𝑓)/𝑁 , i.e.,

⃒⃒⃒⃒
⃒
∫︁
𝑀

𝑓(𝑥) 𝑑𝜇(𝑥)− 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓(𝑥𝑘)

⃒⃒⃒⃒
⃒ ≤ 𝐶

√︂
Var(𝑓)

𝑁
, (3.85)

where 𝐶 > 0 and 𝑥𝑘+1 = 𝜙(𝑥𝑘) ∈ 𝑀 . Therefore, by generating a sufficiently long

trajectory and evaluating 𝑓 at every point along it, we gradually approach the sought-

after solution. Motivated by particular applications of the SRB density gradient

function (see Section 3.6), we consider 𝑓(𝑥) :=
∑︀𝑚

𝑗=1 𝜕𝑄(:𝑗)𝑣(𝑥), where 𝑣(𝑥) : 𝑀 → R

is some smooth function. In other words, we strive to integrate a sum of 𝑚 directional

derivatives along 𝑚-dimensional unstable manifolds of the scalar function 𝑣(𝑥). Note

integrals of this type are critical in the sensitivity computation using, for example,

the general S3 method [32, 31]. Thanks to the partial integration (see Eq. 3.50-3.56),

we can apply Monte Carlo to two alternative versions of the same integral, since

∫︁
𝑀

𝑚∑︁
𝑗=1

𝜕𝑄(:𝑗)𝑣(𝑥) 𝑑𝜇(𝑥) = 𝐼 = −
∫︁
𝑀

𝑚∑︁
𝑗=0

𝑔(𝑗)(𝑥) 𝑣(𝑥) 𝑑𝜇(𝑥). (3.86)

Using this equation, we validate Algorithm 1 for 𝑔 by comparing numerical approxi-

mations of the LHS and RHS. Due to its trajectory-driven structure, Algorithm 1 is

naturally compatible with the Monte Carlo procedure.

Two different maps shall be tested. First, we shall consider the 2D Baker’s map

(Eq. 3.69) with 𝑠4 = 0.4 and 𝑠1 = 𝑠2 = 𝑠3 = 0. As illustrated in Figure 3-14, its

unstable manifolds are curved and therefore the simplified version of the recursion

for 𝑔 (Eq. 3.68) cannot be used. In this particular case, 𝑞 has in fact two nonzero

components. Indeed, we numerically estimate that

max
𝑘∈1,2,...,𝑁

arctan

⃒⃒⃒⃒
⃒𝑞(2)𝑘

𝑞
(1)
𝑘

⃒⃒⃒⃒
⃒ ≈ 0.24 rad ≈ 14∘,

which is consistent with the illustration of unstable manifolds in Figure 3-14. The

second map is the 3D Baker’s map (Eq. 3.84) with 𝑠1 = 0, 𝑠2 = 0.9, 𝑠3 = 0.1.

One can easily verify unstable manifolds of this map are flat surfaces aligned with
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Figure 3-17: Error of the Monte Carlo approximation of the LHS (blue dots) and
RHS (orange dots) of Eq. 3.86 versus the amount of data 𝑁 used. Left: 2D Baker’s
map. Here, we compute the relative error with respect to the reference value -
1.05335809 (which equals the approximation of the RHS integral at 𝑁 = 1013) for
𝑣(𝑥) = sin(𝑥(1)) exp(𝑥(2)). Right: 3D Baker’s map. Here, we compute the absolute
error with respect to the reference value of 0 for 𝑣(𝑥) = sin(𝑥(1)) sin(3/2𝑥(2))𝑥(3).
The dashed lines represent the slope −1/2 in the logarithmic scaling.

the 𝑥(1)–𝑥(2) plane. These expanding surfaces could be curved by adding an 𝑥(3)-

dependent perturbation term to the third component of the map.

Figure 3-17 includes results of the integration test. Our primary conclusion is

that the Monte Carlo approximations of the LHS and RHS of Eq. 3.86 approach each

other as 𝑁 → ∞ with the rate 𝒪(1/
√
𝑁), which directly confirms the correctness

of Algorithm 1. Recall we require 𝑔 to regularize the linear response formula, as

it involves derivatives of strongly-oscillatory functions (see Section 3.6). The exam-

ples presented in this section, however, include mildly-oscillatory functions 𝑣(𝑥) with

derivatives that behave similarly (note they involve a combination of trigonometric,

exponential and linear functions). Nevertheless, we observe significantly smaller er-

rors of the RHS approximation in the 2D Baker’s map case. Note the approximation

error of Monte Carlo integration also depends on the variance of the integrand, which

can be upperbounded by a quantity proportional to the 𝐿2(𝜇)-norm of the SRB den-

sity gradient 𝑔, denoted by ‖𝑔‖𝐿2(𝜇). Indeed, ‖𝑔‖𝐿2(𝜇) equals 𝒪(10−2) and 𝒪(101)
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for the 2D and 3D Baker’s map, respectively. This explains the significantly better

performance of the Monte Carlo procedure in the former case. Therefore, if ‖𝑔‖𝐿2(𝜇)

exists and is sufficiently small, Monte Carlo integration might be significantly cheaper

if applied to the regularized integrals of this type, regardless of the behavior of 𝑣(𝑥).

If 𝑔 is not even Lebesgue-integrable, i.e. 𝑔 /∈ 𝐿1(𝜇), the integrals in Eq. 3.86 do not

converge, as showed in [159].

3.9 Summary

Ruelle’s linear response formula is fundamental in the construction of numerical meth-

ods for sensitivity analysis of 𝑛-dimensional hyperbolic chaotic systems. Its original

form, however, is impractical for direct computation due to the presence of derivatives

of composite functions that grow exponentially in time. Fortunately, it is possible

to easily regularize this expression through partial integration. In case of nonuni-

form measures describing the statistics of chaos, the by-product of the integration by

parts, per the generalized fundamental theorem of calculus, involves the SRB den-

sity gradient 𝑔 defined as the directional derivative of conditional SRB density on

𝑚-dimensional unstable manifolds. Computation of 𝑔 is the price that must be paid

for a computable version of Ruelle’s formula.

Using the measure-based coordinate parameterization, the time evolution of the

measure gradient is rigorously derived by applying the measure preservation property,

differentiating the coordinate charts with the chain rule on smooth manifolds. Indeed,

𝑔 can be computed in a recursive manner by solving a set of 𝒪(𝑚) first- and 𝒪(𝑚2)

second-order tangent equations, as well as step-by-step QR-factorization and inversion

of 𝑛×𝑚 and 𝑚×𝑚 matrices, respectively. While the total cost of approximating 𝑔 at

𝑁 consecutive points along a trajectory is 𝒪(𝑁𝑛3𝑚2) in the worst-case scenario, the

actual computational cost may scale linearly with the dimension of the system in many

real-world models due to their sparse structure. Moreover, this procedure requires

storing 𝒪(𝑚2) 𝑛-dimensional vectors only from the current time step to advance the

iteration in time. Therefore, in terms of the hardware requirements, our algorithm
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would definitely be a reasonable choice for high-dimensional physical systems since

𝑚≪ 𝑛.

The algorithm we propose is compatible with existing methods for sensitivity anal-

ysis that stem from the linear response theory, including the space-split sensitivity

(S3) and FDT-based methods. Many of them approximate sensitivities through an

ergodic-averaging Monte Carlo procedure and require knowledge of the directional

derivative of conditional SRB measures. Moreover, 𝑔 can be used to assess the differ-

entiability of statistical quantities in hyperbolic systems, which is a recurring theme

in theoretical studies of chaos. Thus, we believe our method provides a new major

tool for both rigorous analysis and applied studies of large chaotic systems.

3.10 Appendices

This section includes supplementary material supporting certain arguments presented

in this chapter.

3.10.1 Applying the simplified recursive formula for SRB den-

sity gradient to 1D non-injective maps

Throughout this chapter, we assume 𝜙 is an invertible map. Based on this assump-

tion, we directly use the measure preservation property to derive a recursive formula

for 𝑔, including the simplified version for maps with straight unstable manifolds,

as described in Section 3.7.2. However, in the literature, one can find several one-

dimensional maps such as the sawtooth/Bernoulli map [158], cusp map [121], logistic

map [189], onion map [159], tent map [11], and so forth. All of them are scientifically

relevant, as they represent some simplified physics or feature interesting mathemat-

ical properties. However, most of them are non-injective, which violates the basic

assumption of our derivation. In this section, however, we argue that Eq. 3.68 can

still be used to compute 𝑔 for such maps.

Many of the popular 1D chaotic maps (such as those listed above) are two-to-one.
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Thus, we assume 𝜙 satisfies this condition; however, the argument we present can be

naturally extended to other types of surjection. Let us also assume, without loss of

generality, 𝜙 : [0, 1] → [0, 1] and 𝜙 is monotonic in [0, 0.5) and (0.5, 1]. Let us now

define a two-dimensional analog of 𝜙, denoted by 𝜙2𝐷 : [0, 1]2 → [0, 1]2 and satisfying

𝑥𝑘+1 = 𝜙2𝐷(𝑥𝑘) =

⎡⎣ 𝜙(𝑥
(1)
𝑘 )

𝑥
(2)
𝑘 /2 + 0.5⌊2𝑥(1)𝑘 ⌋

⎤⎦ . (3.87)

Note 𝜙2𝐷 is invertible and resembles the 2D Baker’s map (see Eq 3.69). The invert-

ibility is guaranteed by adding the floor function in 𝜙(2)
2𝐷. Analogously to the 2D/3D

Baker’s map, here the discontinuity point is located at 𝑥(1) = 0.5, which means that

the value of 0.5 is added to 𝑥(2)𝑘 /2 if 𝑥(1)𝑘 > 0.5. If the monotonicity breaking point

was different, then the coefficients of the floor function would need to be modified

accordingly. One of the main messages of this example is to point out that any sur-

jective 1D map can be represented as a higher-dimensional invertible map with one

positive Lyapunov exponent.

Note 1D unstable manifolds of 𝜙2𝐷 are aligned with the first phase space coordi-

nate, per the argument given in Section 3.7.2. Thus, its SRB distribution is similar

to the one of Baker’s map presented in Figure 3-14. Note also that the horizontal

deformation of the trajectory of 𝜙2𝐷 is solely determined by 𝜙. This implies that the

SRB distribution of 𝜙 is in fact an integral of SRB distributions of 𝜙2𝐷 restricted to

single unstable manifolds over all values of 𝑥(2). In other words, 𝜙2𝐷 scatters the SRB

measure of 𝜙 (which is supported on [0,1]) over an infinite set of vertically stacked

intervals [0, 1] (which geometrically coincide with unstable manifolds of 𝜙2𝐷). This

further implies the SRB density of 𝜙 equals the SRB distribution of 𝜙2𝐷 integrated

with respect to the vertical (second) coordinate.

In case of the map defined by Eq. 3.87, the simplified recursive formula for 𝑔

can be expressed in terms of phase space derivatives of 𝜙 (see Section 3.7.2 for the

derivation),

𝑔(𝜙(𝑥)) =
𝑔(𝑥)

𝜙′(𝑥)
− 𝜙′′(𝑥)

𝜙′(𝑥)2
. (3.88)
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Note that Eq. 3.88 is identical as Eq. 2.36. Here, the prime symbol (′) denotes

differentiation with respect to phase space. Let 𝜌(𝑥) be the SRB density of 𝜙. The

𝑔(𝑥) function that satisfies Eq. 3.88 is not the SRB density gradient of 𝜙, defined

as 𝑔𝜙(𝑥) := 𝜌′(𝑥)/𝜌(𝑥). According to our discussion in Section 3.7.2, 𝑔(𝑥) is in fact

a conditional SRB density gradient of 𝜙2𝐷 associated with the unstable manifold

parameterized by 𝑥(2). However, as we discussed in the previous paragraph, the SRB

measure of 𝜙 can be computed by integrating “slices" of the SRB measure of 𝜙2𝐷

parallel to 𝑥(1). This implies that, given the definition of the SRB density gradient,

𝑔𝜙(𝑥) can be computed by Lebesgue-integrating the SRB density gradients obtained

in the above iteration along the vertical axis.

In practice, to construct a trajectory-based algorithm for 𝑔𝜙, we can directly

use the recursion in Eq. 3.88. The algorithm we propose is the following. Divide

the phase space [0, 1] in 𝐾 ∈ Z+ bins of equal width. Generate a sufficiently long

sequence {𝑔0, 𝑔1, 𝑔2, ...} using Eq. 3.88 starting from a random initial condition 𝑔0.

For each bin, take the average of the members of the sequence that correspond to one

bin. Based on our discussion above, the obtained average value converges to 𝑔𝜙. This

algorithm in fact provides a piecewise constant approximation of 𝑔𝜙.

To verify our argument, we present a numerical experiment in which we apply the

algorithm to two different 1D maps, the sawtooth map and onion map. Both of them

are two-to-one and piecewise smooth. Figure 3-18 shows raw values of the sequence

{𝑔0, 𝑔1, 𝑔2, ...} obtained using Eq. 3.88, their averaged values, and finite-difference

(FD) approximation of 𝑔𝜙 using empirical SRB densities of these maps. We observe

there is a good agreement between the averaged values and FD approximations in

both cases.

Finally, we perform the relative error convergence test of the averaged values with

respect to the trajectory length 𝑁 . We focus on two different bins and compute

the relative error with respect to a reference value generated using significantly more

samples. Our results generated for the sawtooth map are shown in Figure 3-19. As

expected, the error decays and is upperbounded by 𝒪(1/
√
𝑁), which is a consequence

of the Lebesgue-integration (or, equivalently, weighted averaging) of (conditional)
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Figure 3-18: SRB density gradient generated for the sawtooth map 𝑥𝑘+1 = 2𝑥𝑘 +
𝑠 sin(2𝜋 𝑥𝑘) mod 1 at 𝑠 = 0.1 (left) and the onion map 𝑥𝑘+1 = 0.97

√︀
1− |1− 2𝑥𝑘|𝛾

at 𝛾 = 0.4 (right). The averaged values (red dots) were computed by averaging the
raw values (blue dots) in each of 2048 bins. The FD Approximation data points
represent the central finite difference approximation of the SRB density gradient
using the definition of 𝑔 and empirically computed SRB densities. We generated a
trajectory of length 𝑁 = 106 to compute the raw/averaged values of 𝑔.

SRB density gradients. This example shows that a trajectory of minimum length

𝑁 = 109 should be generated in order to obtain an approximation with a relative

error smaller than 1%.

3.10.2 Probing the hyperbolicity of the Baker’s map

Hyperbolicity guarantees the tangent space can be decomposed into two 𝐷𝜙-invariant

subspaces, where one is asymptotically expanding (unstable), while the other one is

asymptotically contracting (stable). If the expansion/contraction is uniform, then

such systems are uniformly hyperbolic. Hyperbolicity is the major assumption for the

dynamical systems we consider in this chapter. Indeed, if the system is hyperbolic and

has absolutely continuous conditional measures on unstable manifolds, then the SRB

measure exists [40]. It is not always possible to analytically verify that a particular

map is hyperbolic. Fortunately, there exist numerical procedures allowing for an

efficient assessment of hyperbolicity [90]. Most of them test the two basic criteria of

hyperbolicity: 1) No zero LEs, and 2) Strict separation of the stable and unstable
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Figure 3-19: Relative error of the approximation of 𝑔𝜙(𝑥) versus the trajectory length
𝑁 . The error was computed for the sawtooth map at 𝑠 = 0.1 at two phase space
coordinates, 𝑥 ≈ 0.4 (blue curve) and 𝑥 ≈ 0.6 (orange curve). All error values were
computed with respect to the reference value generated using 𝑁 = 3.3 · 1011 samples.
The reference dashed line represents the slope −1/2 in the logarithmic scaling.

subspaces. Here, we apply the method proposed in [89], which computes the basis

vectors of the two subspaces and approximates the smallest angle between them at

different points of the manifold. If any of these angles is close to zero, then the

stable and unstable subspaces are (almost) tangent, which implies the systems is

likely to be non-hyperbolic. In Figure 3-20, we compute the PDF of 𝑑 ∈ [0, 1],

which is a normalized quantity associated with the smallest principal angle between

the stable and unstable subspace (our 𝑑 equals 𝑘! 𝑑𝑘; see the above reference for a

rigorous definition of 𝑑𝑘). If the distribution is evidently separated from the origin

(𝑑 = 0), then it is highly likely there are no tangencies between the two subspaces.

We observe the normalized parameter 𝑑 is highly unlikely to drop below the value

of 0.97. As a by-product of the applied algorithm, we computed the spectrum of

Lyapunov exponents (alternatively, one can use Benettin et al.’s algorithm [15]). The

LEs approximately equal: 0.69 ≈ log(2), −0.69 (2D Baker’s with straight unstable

subspaces), 0.69 ≈ log(2), −0.71 (2D Baker’s with curved unstable subspaces), 1.09 ≈

log(3), 0.69 ≈ log(2), −1.16 (3D Baker’s). Although a small change in the parameter
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Figure 3-20: Numerical hyperbolicity tests of the 2D and 3D Bakers map. The
parameter values are the same as the ones used is the numerical examples in Section
3.7 (2D Baker’s) and Section 3.8 (3D Baker’s). To generate the PDF, we computed
𝑁 = 106 samples of 𝑑 along a trajectory.

value does not significantly impact the LE values, it may move the PDF of 𝑑 closer

to the origin. Based on the empirical evidence presented in this section, we conclude

the 2D/3D Baker’s map is clearly hyperbolic at the chosen parameter values.
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Chapter 4

Assessment of smooth and rough

parameter dependence of statistics in

chaotic dynamical systems

Modern linear response algorithms generally assume that statistics or long-time aver-

ages implied by a chaotic system smoothly depend on input parameters. An accurate

approximation of the underlying linear response is critical is several fields of science

and engineering. The purpose of this chapter is to develop a generalizable numerical

method for the assessment of the differentiability of statistics with respect to control-

lable parameters in chaotic systems. We numerically show that the existence of the

linear response strictly depends on the Lebesgue-integrability of the SRB measure

gradient. We demonstrate the performance of the proposed method in determining

the differentiability of statistics using low-dimensional systems. The chosen examples

feature both smooth and rough statistical behavior with respect to the input.

The content of this chapter was published in Communications in Non-

linear Science and Numerical Simulation by Elsevier [159].
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4.1 Does the linear response really exist?

Ruelle [148, 150] showed that the statistics-parameter relation is guaranteed to be

smooth in uniformly hyperbolic systems. Gallavotti and Cohen [59] conjecture that

several chaotic systems encountered in science and engineering behave as if they were

uniformly hyperbolic. It means that certain systems with locally non-uniformly hy-

perbolic behavior may still feature smooth ergodic measures and/or exponentially

fast mixing [103]. This conjecture, known as the chaotic hypothesis, is also supported

by empirical evidence involving well-known physical models, including ODE models,

such as Lorenz 96 [163], as well as PDE models for turbulence governed by Kuramoto-

Sivashinsky equation [21, 163] and the 3D Navier-Stokes equation [126, 20]. The

linear response theory was successfully applied to various climate prediction models

used to better understand fluctuations of climate properties [114, 3, 105]. However,

some models used in climate modeling and geophysical fluid dynamics indicate that

the chaotic hypothesis cannot always be applied. For example, a rough statistics-

parameter relationship has been observed in an El-Niño Southern Oscillation climate

model in [35]; other work describes a similar phenomenon in a barotropic model of

atmosphere of the northern hemisphere with forcing and dissipation [70]. In [189], the

notion of the existence of linear response is addressed from the perspective of statisti-

cal mechanics, which was motivated by earlier work related to stochastic systems [73].

The authors present a simple multidimensional model whose macroscopic variables

vary differentiably with respect to the input, as opposed to its individual microscopic

subsystems. This clearly indicates a high complexity of the posed question when

considering systems with several degrees of freedom and multi-scale dynamical in-

teractions. Recently published numerical evidence [187] presents a high-dimensional

system with a clearly non-smooth statistical behavior of its large-scale dynamical

structures. which The authors of [188] warn that a direct numerical reproduction of

the statistics-parameter curve is sensitive to perturbations in data. Consequently, a

more detailed information about system’s ergodic measure should also be computed.

Chekroun et al.’s work [35] establishes a relation between the spectral gap of the
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transfer operator [10] and the smoothness of statistical quantities in the parametric

space. This dependence is used to construct a numerical framework for the assess-

ment of the differentiability of statistics. However, the authors of [170] argue that

indicators of attractor crisis, expressed in terms of a correlation function, may not

be generalizable to high-dimensional systems. We also acknowledge that a general-

ization of the Fluctuation-Dissipation Theorem (FDT) was utilized in [69] to study

the response attributes of an atmospheric general circulation model, and to verify the

applicability of the linear response theory for that particular model; similar results

obtained with FDT-based problem-dependent methods can also be found in [39, 95].

This chapter offers an alternative computational framework assessing the exis-

tence of linear response. We present a mathematical argument based on Ruelle’s for-

mula indicating a relation between the distribution of the SRB measure gradient and

smoothness of long-time averages. Our numerical experiments further demonstrate

that when the SRB measure gradient is Lebesgue-integrable, the linear response holds

and vice versa. To validate our results, we develop an auxiliary numerical method

approximating the Hölder exponent of a one-dimensional function. Our numerical

framework has two attractive features: i) solely based on one-step trajectory-driven

tangents equations, and ii) easily generalizable to multi-dimensional systems with an

arbitrary number of positive Lyapunov exponents.

4.2 Onion map: Example of simple chaos with sta-

tistically rough behavior

At the beginning of our discussion, we present a simple chaotic map that features both

smooth and non-smooth (rough) behavior. In that map, the degree of smoothness of

statistical quantities strictly depends on the value of its parameters. Let us consider

a one-dimensional map, 𝜙 : [0, 1] → [0, ℎ], defined as follows,

𝑥𝑘+1 = 𝜙(𝑥𝑘; 𝛾, ℎ) = ℎ
√︀
1− |1− 2𝑥𝑘|𝛾. (4.1)
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Figure 4-1: Illustration of the onion map at ℎ = 0.97 and its dependence on 𝛾. The
right-hand side plot zooms in the region in the vicinity of the tip.

where 𝛾 > 0, 1 ≥ ℎ > 0 are map parameters. To simplify the notation, we will

skip the parameters in the argument list, i.e., 𝜙(𝑥𝑘) = 𝜙(𝑥𝑘; 𝛾, ℎ). Figure 4-1 depicts

Eq. 4.1 at some selected parameter values. Due to its characteristic shape, this map

will be further referred to as the onion map. While the proportionality parameter ℎ

only affects the range of 𝜙, the exponent 𝛾 has a significant impact on the function

shape in the vicinity of the tip located at (0.5, ℎ). If 𝛾 < 1, the tip is sharp, i.e., the

derivative 𝜙′(0.5) does not exist, and its shape resembles the cusp map, as defined

and illustrated in [19]. The cusp map has been used in modeling as a one-dimensional

simplification of the Lorenz 63 system [121]. We observe the tip blunts when 𝛾 gets

larger than 1, and the shape of 𝜙 converges to the well-known logistic map [120] as 𝛾

approaches the value of 2. Given the cusp map and logistic map feature smooth and

non-smooth statistical behaviors [19], the onion map, which combines both of them,

is a perfect example of a map with varying regularity of statistical quantities. In our

numerical examples, we fix the value of ℎ to 0.97 and consider different values of 𝛾.

One can easily verify that the only Lyapunov exponent (LE) 𝜆, defined by Eq. 2.4,

is always positive for the onion map if ℎ = 0.97 and 𝛾 ∈ [0.15, 1.85]. If we change the

value of ℎ, then the range of 𝛾 for which 𝜆 > 0 is slightly different. A positive value of

the Lyapunov exponent implies chaotic behavior of the map reflected by the butterfly

effect, i.e. strong sensitivity to the initial conditions. LE measures rate of separation

of two trajectories of a chaotic map and its value depends only on the parameter.
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Figure 4-2: Empirical density distribution 𝜌(𝑥) generated for the onion map (Eq. 4.1)
at ℎ = 0.97. To generate 𝜌(𝑥), we divided the domain 𝑥 ∈ [0, 1] into 𝐾 = 2048 bins
of equal width, counted the number of times the trajectory passes through each bin.
We used 𝑁 = 41, 943, 040, 000 samples to per histogram. The obtained histogram is
normalized, through the multiplication by 𝐾/𝑁 , to satisfy the axiom of unit area.

As thoroughly described in Chapter 3, a function critical in the analysis of chaotic

systems is the Sinai-Ruelle-Bowen density 𝜌, which contains statistical information of

the dynamics described by 𝜙 [194, 195, 41, 158]. Intuitively, 𝜌 can be viewed as the

likelihood of the trajectory passing through a non-zero-volume region of the manifold

and, if normalized, 𝜌 can be viewed as a probability density function. In case of

one-dimensional maps defined on [0, 1], the SRB density 𝜌 is a function that maps

[0, 1] to the set of non-negative real numbers, which satisfies the unity axiom, i.e.,∫︀ 1

0
𝜌(𝑥) 𝑑𝑥 = 1. Figure 4-2 shows empirical densities 𝜌 generated for the onion map

at different values of the exponent 𝛾. We observe the empirical density distribution

is smooth if 𝛾 ≤ 0.4. When the exponent 𝛾 becomes higher, but is still no larger than

1, the approximated density is clearly bounded, but have some non-smooth regions.

If 𝛾 ≥ 1, the 𝜌 distribution features discontinuous regions. The onion map is a purely

expanding map if 0.24 < 𝛾 < 0.99, and thus SRB density exists in that parameter

regime [100]. Therefore, the observed empirical densities on the left-hand side plot

of Figure 4-2, marked with blue, red and yellow, are rigorously guaranteed to be

approximations of 𝜌.

Although no rigorous proof is available, we assume the onion map is ergodic,

which can be justified by solid numerical evidence for onion map-like systems [19].
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Ergodicity in fact means the statistics of the onion map do not depend on initial

conditions. Moreover, this property implies that the Ergodic Theorem holds, and

thus we can directly use the stationary density to compute the long-time averages

of the onion map. In particular, the theorem ensures that an infinite time average

of some quantity of interest 𝐽 is equal to the expected value of the same quantity

computed with respect to the density distribution. Mathematically, it means that

⟨𝐽⟩ = lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝐽(𝑥𝑘) =

∫︁ 1

0

𝐽(𝑥)𝜌(𝑥)𝑑𝑥 (4.2)

always holds. It is assumed that 𝐽 is an integrable bounded function and it does not

depend on the map parameter. The origins of the first assumption will be explained in

Section 4.3. Furthermore, the dependence of the objective function on the parameter

is not considered in this chapter, as it does not impose extra mathematical complexity

in the computation of sensitivities and is irrelevant in the context of our analysis.

Therefore, two critical properties can be further inferred from Eq. 4.2. First, the

map statistics ⟨𝐽⟩ solely depends on its parameter 𝛾 and, second, the smoothness

of statistics strictly depends on the smoothness of the density distribution. In our

numerical test, we set 𝐽(𝑥) = 𝛿𝜖𝑐(𝑥), 𝑐 ∈ [0, ℎ], where 𝛿𝜖𝑐(𝑥) is an indicator function,

i.e. 𝐽(𝑥) = 1 for all 𝑥 ∈ 𝑥𝜖𝑐 := [𝑐 − 𝜖/2, 𝑐 + 𝜖/2], and 𝐽(𝑥) = 0 otherwise. Note

with this particular choice of the quantity of interest, the long-time average equals

the density distribution itself evaluated at 𝑐 in the limit 𝜖 → 0, i.e. ⟨𝐽⟩ = 𝜌(𝑐) if 𝜖

is infinitesimally small. For any 𝜖 such that 𝑥𝜖𝑐 ⊂ [0, 1], ⟨𝐽⟩ equals the integral of 𝜌

over 𝑥𝜖𝑐. Note also that for any Riemann-integrable 𝐽(𝑥), the statistics can be easily

computed using a numerical integration scheme by virtue of Eq. 4.2 if 𝜌 is available.

We emphasize that the indicator function can be viewed as an approximation of an

infinitely-smooth steep function. In the context of numerical computation of Eq. 4.2,

it does not matter whether we choose a smooth or non-smooth version of the indicator

function. We pick the latter for convenience, as it exempts us from applying numerical

integration at every single value of 𝛾. Figure 4-3 illustrates the relationship between

⟨𝐽⟩ and 𝛾, for two different values of 𝑐.
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Figure 4-3: Relationship between the long-term average and the exponent 𝛾 for the
onion map (Eq. 4.1) at ℎ = 0.97 with 𝐽(𝑥) = 𝛿𝜖𝑐(𝑥). To generate this plot, we
computed density distributions at a uniform grid of 16,001 different values of 𝛾 be-
tween 0.2 and 1.8. For each value of 𝛾, we run 10 independent simulations using
𝑁 = 41, 943, 040, 000 samples per simulation. In the calculation of the density, we
divided the domain 𝑥 ∈ [0, 1] into 𝐾 = 4 bins of equal width (see Figure 4-2 for
reference).

In terms of the function smoothness, we observe a similar trend in both Figure 4-2

and Figure 4-3. In particular, if 𝛾 increases, both the density function and long-time

average become more oscillatory and even discontinuous. This result is consistent

with the study in [19], where the relationship between the smoothness of the statis-

tics and smoothness of the density distribution has been justified analytically using

the Frobenius-Perron operator, which belongs to the class of Markov operators and

describes the evolution of the SRB density [45]. The authors of [19] notice that if

the Frobenius-Perron operator is well-conditioned and the density function is differ-

entiable in phase space (with respect to 𝑥 in 1D), then 𝜕𝜌/𝜕𝛾 must be bounded. This

observation is critical for the existence of 𝑑⟨𝐽⟩/𝑑𝛾 =
∫︀ 1

0
𝐽(𝑥) 𝜕𝜌

𝜕𝛾
(𝑥)𝑑𝑥, which is the

sought-after quantity in sensitivity analysis.

Motivated by the above discussion, we strive to find a computable and generaliz-

able mathematical criterion for the existence of 𝑑⟨𝐽⟩/𝑑𝛾. In particular, our purpose

is to identify a condition that can be translated to an efficient numerical method, and
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is applicable to higher-dimensional chaotic systems.

4.3 SRB measure gradient as an indicator of the dif-

ferentiability of statistics of 1D chaos

The main focus of this section is to highlight the significance of the SRB density

(measure) gradient function, denoted by 𝑔, in the context of the differentiability of

statistics in one-dimensional chaotic maps. This function is a fundamental ingredient

of the derivative of statistics. Here, we consider 1D chaotic maps in which case 𝑔 is

defined as follows,

𝑔(𝑥) =
𝑑 log 𝜌

𝑑𝑥
(𝑥) =

𝜌′(𝑥)

𝜌(𝑥)
. (4.3)

That is, the density gradient 𝑔 is the relative rate of change of the SRB density at

each point on the 1D manifold (see Chapter 2). Throughout this section, we use the

prime symbol (′) to indicate differentiation with respect to phase space. We assume

𝜙 : [0, 1] → [0, 1] is a 1D, invertible, ergodic, 𝐶3 map with a positive LE. Let 𝐽 be a

smooth observable whose expectation with respect to the SRB density or equivalently,

the infinite-time average starting from almost everywhere, is denoted ⟨𝐽⟩. In this case,

Ruelle’s linear response formula [148, 150], which is a closed-form expression for the

parametric derivative of ⟨𝐽⟩, is given by

𝑑⟨𝐽⟩
𝑑𝛾

=
𝑑

𝑑𝛾

∫︁ 1

0

𝐽(𝑥) 𝜌(𝑥) 𝑑𝑥 =
∞∑︁
𝑘=0

∫︁ 1

0

𝑓(𝑥)
(︀
𝐽 ∘ 𝜙𝑘

)︀′
(𝑥) 𝜌(𝑥) 𝑑𝑥, (4.4)

where 𝑓 := 𝜕𝜙/𝜕𝛾 ∘ 𝜙−1 is the parameter perturbation. The subscript notation is

used to denote the number of times a map 𝜙 is applied i.e., 𝜙0(𝑥) = 𝑥 and 𝜙𝑘(𝑥) =

𝜙(𝜙𝑘−1(𝑥)) for any state vector 𝑥, while the inverse of the map is indicated using the

conventional notation, i.e., 𝜙−1. Integrating the RHS of Eq. 4.4 by parts leads to an

alternative expression for the sensitivity,

𝑑

𝑑𝛾

∫︁ 1

0

𝐽(𝑥) 𝜌(𝑥) 𝑑𝑥 = −
∞∑︁
𝑘=0

∫︁ 1

0

(︃
𝑔(𝑥) 𝑓(𝑥) + 𝑓 ′(𝑥)

)︃
(𝐽 ∘ 𝜙𝑘)(𝑥) 𝜌(𝑥) 𝑑𝑥, (4.5)
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which provides a direct relation between the derivative of the long-time average and

the density gradient function 𝑔 (see Chapter 2 for the derivation of Eq. 4.5). Eq.

4.5 is in fact a one-dimensional version of the space-split sensitivity (S3) formula,

originally derived and computed in [32]. A version of S3, which shows the relation

𝑑⟨𝐽⟩/𝑑𝛾 vs. 𝑔 for multi-dimensional systems with one positive LE, is discussed in

Section 4.5.1.

The 𝑘-time correlation between two observables 𝜑 and 𝜓 is given by

𝐶𝜑,𝜓(𝑘) =

∫︁ 1

0

𝜑 ∘ 𝜙𝑘(𝑥) 𝜓(𝑥) 𝜌(𝑥) 𝑑𝑥−(︁∫︁ 1

0

𝜑(𝑥) 𝜌(𝑥) 𝑑𝑥
)︁(︁∫︁ 1

0

𝜓(𝑥) 𝜌(𝑥) 𝑑𝑥
)︁
.

(4.6)

Using this definition and Eq. 4.5, we conclude that

𝑑

𝑑𝛾

∫︁ 1

0

𝐽(𝑥) 𝜌(𝑥) 𝑑𝑥 = −
∞∑︁
𝑘=0

𝐶𝐽, 𝑔𝑓+𝑓 ′(𝑘). (4.7)

Uniform hyperbolicity guarantees that 𝐶𝜑,𝜓(𝑘) decays exponentially with 𝑘 > 0 for

any pair of observables (𝜑, 𝜓) at a uniform rate [148, 36] within the respective function

class. Thus, there exists a positive constant 𝑐 such that

𝐶𝜑,𝜓(𝑘) ∼ 𝒪(𝑒−𝑐𝑘).

Eq. 4.7 is valid due to periodic boundary conditions. Indeed, notice that the 𝑘-term

of Eq. 4.5 is in fact a 𝑘-time correlation between 𝐽 and ℎ := 𝑔𝑓 + 𝑓 ′ because

∫︁ 1

0

(︁
𝑔(𝑥) 𝑓(𝑥) + 𝑓 ′(𝑥)

)︁
𝜌(𝑥) 𝑑𝑥 =

∫︁ 1

0

(︁
𝜌(𝑥) 𝑓(𝑥)

)︁′
𝑑𝑥 = 0. (4.8)

Similar divergence terms arise from partial integration in the case of multi-dimensional

systems with more than LE1 also vanishes (see Section 4.5.1). One can show that the

boundary terms always vanish. Therefore, we conclude that if 𝐶𝐽,ℎ(𝑘) is summable,

1This procedure can be performed only on the unstable manifold because, in general, the SRB
density is absolutely continuous along that manifold only.
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Ruelle’s formula converges and the linear response is bounded. Now, the question is

about the summability of 𝐶𝐽,ℎ(𝑘). Our goal is to use the above conclusion to identify

a computable criterion for the differentiability of statistics. Let us consider again the

the 𝑘-th term of the linear response,

𝐶𝐽,ℎ(𝑘) = 𝐶𝐽,𝑓 ′(𝑘) + 𝐶𝐽, 𝑓𝑔(𝑘). (4.9)

In our analysis, we assume 𝐽 ∈ 𝐶1 and 𝑓 ∈ 𝐶2. Thus, the sequence of the time

correlations 𝐶𝐽,𝑓 ′(𝑘) decays exponentially fast. Typically, in the context of real-world

simulations, 𝐽 represents a physical quantity, such as force or temperature, which are

smooth functions. The function 𝑓 and its derivative 𝑓 ′ are also smooth in several

physical ODE/PDE models [110, 166, 21, 163].

Notice that if 𝐶𝐽,𝑓 ′(𝑘) is absolutely summable, then the existence of the linear re-

sponse would depend only on the absolute summability of the remaining time correla-

tion, 𝐶𝐽, 𝑔𝑓 (𝑘). Consequently, there might exist weaker conditions for 𝑔 that guarantee

the convergence of Ruelle’s series, regardless on the choice of the objective function

and input perturbation. Without loss of generality, let us assume ⟨𝐽⟩ = 0 to elimi-

nate the second term of 4.6. This assumption does not violate the consistency of our

analysis because 𝑑/𝑑𝛾 ⟨𝐽⟩ = 𝑑/𝑑𝛾 ⟨𝐽 − ⟨𝐽⟩⟩. Thus, there exists a constant 𝑐 > 0 such

that for all 𝐾 ∈ Z+

⃒⃒⃒⃒
⃒∑︁
𝑘≤𝐾

(︃∫︁ 1

0

𝐽 ∘ 𝜙𝑘(𝑥) 𝑔(𝑥) 𝑓(𝑥) 𝜌(𝑥) 𝑑𝑥+
∫︁ 1

0

𝐽 ∘ 𝜙𝑘(𝑥) 𝑓 ′(𝑥) 𝜌(𝑥) 𝑑𝑥

)︃⃒⃒⃒⃒
⃒

≤
∑︁
𝑘≤𝐾

(︀
|𝐶𝐽,𝑔𝑓 (𝑘)|+ |𝐶𝐽,𝑓 ′(𝑘)|

)︀
≤
∑︁
𝑘≤𝐾

|𝐶𝐽,𝑔𝑓 (𝑘)|+ 𝑐.

(4.10)

The above inequality implies that if 𝐶𝐽, 𝑔𝑓 (𝑘) is absolutely summable, the linear re-

sponse holds. However, the converse is not necessarily true, which means that the

summability of 𝐶𝐽,𝑔𝑓 (𝑘) is a sufficient, but not necessary condition, for the smooth-

ness of statistics. There could exist weaker conditions for 𝐶𝐽,𝑔𝑓 (𝑘), under which

the linear response still exists even beyond the universe of uniformly hyperbolic sys-

tems. Assuming both 𝐽 and 𝑓 belong to the class of arbitrarily smooth functions,
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the summability of 𝐶𝐽,𝑔𝑓 (𝑘) is guaranteed if 𝑔 belongs to the space of observables

with exponential decay of correlations. For any ℎ in that function space, the Central

Limit Theorem (CLT) holds for ℎ, ℎ∘𝜙, ℎ∘𝜙2, ... [194, 109, 36] (see also general large

deviation estimates for continuous maps in [193]). In this context, CLT implies that

the random variable 1√
𝑁

∑︀𝑁−1
𝑛=0

(︀
ℎ ∘𝜙𝑛(𝑥)− ⟨ℎ⟩

)︀
is distributed according to a normal

distribution with mean 0 and a finite variance for large 𝑁 and almost every initial

condition 𝑥.

Based on the above discussion, we conclude that a comprehensive analysis of the

distribution of |𝑔| could provide us further hints into the validity of the linear re-

sponse. We expect that the statistics is differentiable if CLT holds. This conjecture

could be easily verified using Algorithm 2 to compute the time series of 𝑔 along

a typical trajectory and evaluating the second moment of the underlying distribu-

tion. Appendix 4.7.1 promptly describes a version of that algorithm adjusted to

one-dimensional maps. In the remainder of this chapter, we will leverage our numeri-

cal methods for 𝑔 to verify our analysis. For that purpose, we develop an independent

method verifying the differentiability of statistics based. In particular, we approxi-

mate the Hölder exponent of one-dimensional to alternatively assess the smoothness

of the linear response. Our numerical experiments indicate that the validity of CLT

is indeed a sufficient condition for the existence of the linear response. Moreover, it

turns out that Lebesgue-integrability of 𝑔, i.e, 𝑔 ∈ 𝐿1(𝜌), could also be sufficient.

4.4 Probing the differentiability of statistics of one-

dimensional chaos

The central part of this chapter is to identify a computable mathematical criterion

for the differentiability of statistics. As argued in Section 4.3, we anticipate there

is a relation between the properties of the distribution of |𝑔| and the validity of the

linear response. We intend to further investigate this observation using numerical

simulation. We compute the distribution of the absolute value of the density gradient
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(using Eq. 4.19) over a range of parameter values. We also compute the statistics-

parameter curve directly, from which we estimate its Hölder exponent. Accurate

estimation of the Hölder exponent requires a huge amount of samples. We can still

afford it given the low dimension of considered examples.

4.4.1 Visualizing the distribution of the ergodic measure gra-

dient

We first study the distribution of |𝑔|, considering it to be a random variable, for the

onion map introduced in Section 4.2. We empirically obtain the distributions of |𝑔|

at different 𝛾 values, from both the smooth and non-smooth regions. Based on the

procedure introduced in Section 4.7.1, we compute a sufficiently long trajectory, and

count the number of occurrences of |𝑔| in all bins, each corresponding to a subset of

the range of |𝑔|. Figure 4-4 shows the distribution of |𝑔| on a logarithmic scale at

fixed ℎ = 0.97 for different values of the parameter 𝛾.

The vertical axis of Figure 4-4 represents the number of appearances of a given

value of |𝑔| in each bin. Based on these histograms, we conclude that the probability

density function (PDF) of |𝑔|, denoted as PDF(|𝑔|), has power-law behavior, i.e.

PDF(|𝑔|) ∼ |𝑔|−𝑡,

for some exponent 𝑡. Since Figure 4-4 presents data on a log-log scale, the bin size

increases proportionally to the value of |𝑔|. Therefore, in Figure 4-4, we observe a

distribution that is proportional to

|𝑔| · PDF(|𝑔|) ∼ |𝑔|−𝑡+1.

That is, the slope of the histograms gives us the value of −𝑡+ 1.

For power-law probability distributions, the existence of the expected value, vari-

ance, and higher-order moments, is solely determined by the value of the exponent 𝑡.
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Figure 4-4: Distribution of the absolute value of the density gradient function gen-
erated for the onion map (Eq. 4.1) at ℎ = 0.97. To generate these histograms, we
divided the x-axis from 10−18 to 1084 into 𝐾 = 2048 bins with equal with in the
logarithmic scale. For each histogram, a trajectory of the length of approximately
𝑁 = 1.25 · 1011 has been computed. Along the trajectory, no instances of |𝑔| > 109

have been identified by the algorithm.

If 𝑡 ≤ 2, then the mean (expected value),

E[|𝑔|] =
∫︁ ∞

0

|𝑔| PDF(|𝑔|) 𝑑|𝑔| =
∫︁ 1

0

|𝑔(𝑥)| 𝜌(𝑥) 𝑑𝑥,

and all higher moments are infinite. If 𝑡 > 2, then the mean is finite. In other words,

the density gradient belongs to 𝐿1(𝜌), when the slope of the histogram in Figure 4-4

is less than -1. In addition, if the exponent 𝑡 is larger than 3, then the variance

var(|𝑔|) = E[𝑔2] − (E[|𝑔|])2 of the probability distribution function is finite. In this

case, the density gradient is square-integrable with respect to 𝜌, i.e., 𝑔 ∈ 𝐿2(𝜌).

From Figure 4-4, the slope at 𝛾 ≤ 0.9 is always less than -1. Thus, the absolute

value of the density gradient has finite expected value, and 𝑔 is therefore Lebesgue-

integrable as long as 𝛾 ≤ 0.9. Thus, the Lebesgue-integrability threshold must be
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in (0.9, 1.1), as all the distributions corresponding to 𝛾 ≥ 1.1 have slopes 𝑡 larger

than −1. Furthermore, square-integrabilty threshold can be estimated to be around

𝛾 = 0.5, since the slope at 𝛾 = 0.5 is approximately equal to -2. For smaller values

of 𝛾, for example, 𝛾 = 0.3, we see that both expectation and variance are finite.

4.4.2 Hölder exponent test

We need an independent numerical technique to infer a correlation between the ex-

istence of moments of |𝑔| and the validity of linear response. For this purpose, we

directly assess the smoothness of the statistics illustrated in Figure 4-3 for the onion

map. That is, we numerically estimate the Hölder exponent 𝜇 ∈ (0, 1] of the long-

time average function, which changes with 𝛾. A function ℎ(𝛾) : 𝐷 → R is Hölder

continuous in 𝐷 with exponent 𝛾, if there exists a 𝐶 > 0 such that

|ℎ(𝛾1)− ℎ(𝛾2)| ≤ 𝐶|𝛾1 − 𝛾2|𝜇 (4.11)

for all possible pairs of 𝛾1 and 𝛾2 belonging to 𝐷. If 𝜇 = 1, then ℎ(𝛾) is Lipschitz-

continuous, and in this case, also differentiable at almost every parameter value in

𝐷. Thus, to probe the smoothness of the long-time average, we numerically estimate

the Hölder exponent of the statistics-parameter relation, ⟨𝐽⟩ vs. 𝛾, from the plot in

Figure 4-3. This can be achieved by generating a sufficient number of data points

and producing a scatter plot with |⟨𝐽⟩(𝛾1) − ⟨𝐽⟩(𝛾2)| on the 𝑦-axis and |𝛾1 − 𝛾2| on

the 𝑥-axis, where 𝛾1 and 𝛾2 indicate points of evaluation of ⟨𝐽⟩(𝛾). If the logarithmic

scaling is used, the Hölder exponent 𝜇 can be approximated by estimating the slope

(steepness) of the maximum values of |⟨𝐽⟩(𝛾1) − ⟨𝐽⟩(𝛾2)| as |𝛾1 − 𝛾2| changes. The

above procedure is in fact a version of detrended fluctuation analysis (DFA) [136].

Assuming the function ⟨𝐽⟩ is sampled every 𝛿𝛾 along the x-axis, it is clear that

𝛿𝛾 = min𝛾1,𝛾2∈𝐷 |𝛾1 − 𝛾2|. We set 𝛿𝛾 = 0.0001, which allows us to capture high-

frequency oscillations. The value of 𝛿𝛾, however, cannot be too small, as the growing

statistical noise may significantly impact the value of |⟨𝐽⟩(𝛾1)− ⟨𝐽⟩(𝛾2)|. To further

reduce the effect of statistical noise, we run 10 independent simulations per one pa-
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rameter value and compute the 3-sigma confidence interval of the data coming from

these independent simulations, where the standard deviation is averaged over a chosen

interval of 𝛾.

The left-hand side column of Figures 4-5 and 4-6 illustrate the statistics versus

parameter dependence at four different intervals of 𝛾. The second column of these two

figures shows |⟨𝐽⟩(𝛾1)−⟨𝐽⟩(𝛾2)| versus |𝛾1−𝛾2| computed from the data presented in

the left-hand side column, where ⟨𝐽⟩ represents the long-time average of a modified

objective function 𝐽 . The new quantity of interest is obtained by subtracting a linear

function from ⟨𝐽⟩, illustrated in Figure 4-3, such that the resulting long-time average

vanishes at the end points of each interval of 𝛾. This modification is made to visually

amplify the roughness of the curve, which is done for demonstration purposes only.

See the caption of Figure 4-5 for more details.

The top row of Figure 4-5 corresponds to the range 𝛾 ∈ [0.2, 0.45]. It is evident

that the long-time average is smooth in this interval, as it satisfies Ineq. 4.11 with

the exponent 𝜇 ≈ 1. According to Figure 4-4, the tail of the distribution of |𝑔| has a

slope smaller than -2 in that interval, which implies that |𝑔| has both finite mean and

variance. The second row of Figure 4-5 corresponds to the interval 𝛾 ∈ [0.65, 0.9],

in which the statistics seems sharper, but the Hölder exponent 𝜇 is still close to 1.

Figure 4-4 indicates that 𝑔 is in 𝐿1(𝜌) but not in 𝐿2(𝜌) in that range (it has finite

mean, but infinite variance), as the slope of the distribution tail is between -2 and -1.

Figure 4-6 includes two sets of plots showing clearly non-smooth, even discontinuous

responses. Even for the interval 𝛾 ∈ [1.1, 1.35], the Hölder exponent is significantly

smaller than 1, which indicates that the statistics are not differentiable. In case of

𝛾 ∈ [1.55, 1.8], the long-time average is not even Hölder-continuous with respect to 𝛾.

Again correlating with our numerical results on the distribution of |𝑔|, for 𝛾 > 1, we

found that |𝑔| does not have a finite mean.

The plots in the right column of Figures 4-5 and 4-6 clearly indicate that the

statistics of the onion map is differentiable as long as 𝛾 is smaller than 1. We refer

the reader to the work of Baladi and Smania [12] involving a rigorous study of the

regularity of statistics for piecewise expading unimodal maps. Note the onion map,
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Figure 4-5: Left column: relation of the long-time average and the exponent 𝛾 for
the onion map at ℎ = 0.97. The simulation data is the same as the data presented in
Figure 4-3 for 𝑐 = 0.625, however the quantity of interest has been changed to ⟨𝐽⟩ by
subtracting a linear function describing a straight line crossing the endpoints of the
curve in Figure 4-3 in each 𝛾 interval from the original objective function. Each plot
corresponds to a different 𝛾 interval between 𝛾𝑚𝑖𝑛 and 𝛾𝑚𝑎𝑥, which has been discretized
uniformly with step size 𝛿𝛾 = 0.0001. For each value of 𝛾, we run 10 independent
simulations. Right column: Hölder exponent test results. First, for each pair of data
points from the left-hand side plot, excluding the pairs with the same value of 𝛾 (i.e.
when 𝛾1 = 𝛾2), we compute the difference of the corresponding long-time average
values versus the difference of their parameter values. Second, we compute the lower-
bound of the 3-sigma confidence interval by subtracting 6 averaged sigmas, where
sigma represents standard deviation of results obtained in 10 simulations averaged
over the interval [𝛾𝑚𝑖𝑛, 𝛾𝑚𝑎𝑥], from the computed differences of modified statistics.
This means each plot has approximately (0.5 · (𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛)/𝛿𝛾)

2 ≈ 1.6 · 106 data
points. Skew solid lines represent reference lines with the slope of 1 in the logarithmic
scale.
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Figure 4-6: This figure is an extension of Figure 4-5. It includes 𝛾-intervals corre-
sponding to non-smooth statistics. All plots have been generated in the same manner
as those in Figure 4-5 – see the corresponding caption for more details.
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at ℎ = 0.97, is a piecewise expanding unimodal map for all values of 𝛾 ∈ [0.24, 0.99]

(the boundary values are approximated up to 0.005). According to our analysis of

the distribution of |𝑔|, 𝛾 < 1.0 implies finite expectation of |𝑔|. It means that, in case

of the onion map, linear response holds when 𝑔 ∈ 𝐿1(𝜌). This result also confirms

our analysis from Section 4.3. From our numerical results, in this case, we find that

the converse is also true: when 𝑔 /∈ 𝐿1(𝜌), linear response fails. To check whether the

equivalence

𝑔 ∈ 𝐿1(𝜌) ⇐⇒
⃒⃒⃒⃒
𝑑⟨𝐽⟩
𝑑𝛾

⃒⃒⃒⃒
<∞

is generalizable, we will apply the above two-step procedure to a higher-dimensional

system with one positive LE.

4.5 Generalization to multi-dimensional flows: Ex-

ample of Lorenz 63

In this section, we generalize our conclusions from Section 4.4 to higher-dimensional

systems with a one-dimensional unstable manifold. This means we consider 𝑛-dimensional

systems that have exactly one positive Lyapunov exponent out of 𝑛 Lyapunov expo-

nents. As a test case, we consider the Lorenz 63 system [110, 166], which consists of

three coupled nonlinear ODEs,

𝑑𝑥(1)

𝑑𝑡
= 𝜎(𝑥(2) − 𝑥(1)),

𝑑𝑥(2)

𝑑𝑡
= 𝑥(1)(𝛾− 𝑥(3))− 𝑥(2),

𝑑𝑥(3)

𝑑𝑡
= 𝑥(1)𝑥(2) − 𝛽𝑥(3), (4.12)

where 𝜎 ≥ 0, 𝛽 ≥ 0, and 𝛾 ≥ 0 are the system parameters. This ODE system models

thermal convection of a fluid cell that is warmed from one side and cooled from the

opposite side. The solution to Eq. 4.12 is represented by a 3-element state vector

𝑥(𝑡) = [𝑥(1)(𝑡), 𝑥(2)(𝑡), 𝑥(3)(𝑡)]𝑇 . In our analysis, we set 𝜎 and 𝛽 to their canonical

values of 10 and 8/3, respectively, and keep them fixed, while we allow 𝛾 to vary.

Given the Lorenz ’63 system is a three-dimensional system, it has three distinct

Lyapunov exponents 𝜆𝑖, 𝑖 = 1, 2, 3, indexed in decreasing order. They satisfy the
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following constraints [166],

𝜆1 + 𝜆2 + 𝜆3 = −(1 + 𝜎 + 𝛽), 𝜆2 = 0. (4.13)

Since both parameters are assumed to be positive, it is evident that Eq. 4.13 admits

at most one positive solution. According to [166], for the canonical values of 𝜎 and

𝛽, the Lorenz 63 system is:

• non-chaotic (has no positive LEs) if 0 ≤ 𝛾 < 24.7 and 𝛾 > 99.5,

• chaotic (has one positive LE) if 24.7 ≤ 𝛾 ≤ 99.5.

Therefore, in this section, we focus on the smoothness of statistics of the Lorenz 63

system when 𝛾 ∈ [24.7, 99.5]. Several computational studies have found that the

response of this system to small parameter perturbations at 𝛾 = 28 (canonical value)

is linear, i.e., long-time averages of smooth obervables are differentiable at 𝛾 = 28

[72, 144]. To generate all results presented in this section, we integrate the system

forward in time using the second-order Runge-Kutta scheme (midpoint method) with

time step2 ∆𝑡, starting from a random initial vector 𝑥init. In our discussion, we no

longer consider the original, that is, continuous version of Lorenz 63, but rather we

focus on the discrete form using a map 𝜙, which is defined by the numerical time

integration of the Lorenz 63 system for a time of ∆𝑡; that is,

𝜙(𝑥(𝑡)) = 𝑥(𝑡+∆𝑡)

for all 𝑡 ∈ R+. In other words, a discretized orbit of 𝜙, represented by a sequence of

3-dimensional state vectors, 𝑥0, 𝑥1,..., 𝑥𝑘 := 𝑥(𝑘∆𝑡), 𝑘 ∈ Z+, is a numerical solution

of the Lorenz equations. To make sure the numerical integration error is within a

desired tolerance, one could also consider an adaptive time-stepping scheme [165].

While an extra computational effort would be required to compute ∆𝑡 every time

step, the approximated trajectory might be closer to the true solution.

2Specific values of the time step size Δ𝑡 are indicated in the captions of corresponding figures.
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Figure 4-7: Left: projection on the 𝑥(1)-𝑥(3) plane of the Lorenz 63 attractor at 𝛾 =
25 (red), 40 (green), 55 (orange) and 70 (blue). Each projection has been shifted
downwards proportionally to 𝛾 for demonstration purposes. Right: relation of the
long-time average ⟨𝑥(3)⟩ (defined by Eq. 4.14) and the system parameter 𝛾. We
generate 420,000 data points in total: for each value of 𝛾 on a uniform grid with size
𝛿𝛾 = 0.001, we run 10 independent simulations. For each data point, we compute
approximately 2.5 · 1010 time steps with ∆𝑡 = 0.01.

As a quantity of interest, we consider the long-time average of the third variable,

⟨𝑥(3)⟩ = lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝑥
(3)
𝑘 , (4.14)

which we approximate as ⟨𝑥(3)⟩ by generating sufficiently long trajectories. Figure

4-7 shows a 2D projection of the attractor at different values of 𝛾, as well as the

dependence of ⟨𝑥(3)⟩ on 𝛾. We observe that the attractor expands outward on the

𝑥(1)-𝑥(3) plane, as 𝛾 increases. This observation is also reflected in the linear relation

between ⟨𝑥(3)⟩ and 𝛾, which is shown on the right-hand side of Figure 4-7. To show

the statistical quantities of the Lorenz 63 system are in fact non-smooth at some

values of 𝛾, we subtract a smooth function 𝑠(𝛾), obtained by fitting 𝑥(3) vs. 𝛾 with

a quadratic polynomial, from the original data shown in the right plot of Figure 4-7.

Figure 4-8 illustrates the behavior of the modified quantity of interest, i.e., 𝑥(3)−𝑠(𝛾),

as 𝛾 changes. This computational treatment clearly reveals the actual regularity of

the system’s statistics. Analogously to the one-dimensional onion map, here as well

we observe a transition from a smooth response at lower values of 𝛾 to a non-smooth,
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Figure 4-8: The modified quantity of interest, ⟨𝑥(3)⟩ − 𝑠(𝛾), as a function of 𝛾, where
𝑠(𝛾) = 1.06𝛾 − 0.00095𝛾2. The quadratic function 𝑠(𝛾) was obtained using a two-
step procedure. First, as a starting point, we applied least squares polynomial fitting
to the original long-time average shown in Figure 4-7. Subsequently, we manually
adjusted the coefficient proportional to the linear term in order to expose the rough
behavior of the curve. Recall the modification of the quantity of interest was made
for demonstration purposes only.

and even discontinuous, behavior at larger values of 𝛾. Note the modified statistics

becomes sharp for values of 𝛾 slightly above 30. This is in fact the region where the

Lorenz 63 system loses its quasi-hyperbolic properties [166].

For completeness, we illustrate the 𝑥(1)–𝑥(3) projection of the empirical density

function of the Lorenz 63 system at three different values of 𝛾 in Figure 4-9. We

notice a clearly smooth distribution for 𝛾 = 28. For 𝛾 = 38, however, subtle wrinkles

are visible around the “eyes” of the attractor. In case of 𝛾 = 70, regions with large

density gradients, which clearly indicate non-smoothness of the distribution, appear

around the “eyes" and close to the boundary of the attractor.

Based on these observations, we anticipate the density gradient function to be

smooth for values of 𝛾 close to 28, and non-smooth if 𝛾 is higher. We also acknowl-

edge a consistency between Figures 4-8–4-9 and Figures 4-2–4-3, corresponding to

the Lorenz 63 system and onion map, respectively. Both pairs of figures indicate a

strong correlation between the smoothness of statistics and smoothness of the den-

sity function in phase space. To infer a more rigorous connections, we will apply the
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numerical methodology described in Section 4.4 for Lorenz 63.

4.5.1 Uniform hyperbolicity and Ruelle’s formula of flows with

one positive LE

We argue that the conclusion inferred in Section 4.3 is applicable to multi-dimensional

systems with one-dimensional unstable manifolds, such as Lorenz 63. We show that

a part of the full response is structurally similar to the regularized expression derived

for one-dimensional maps (Eq. 4.5).

Let us consider an invertible, ergodic, discrete map of a manifold𝑀 , parameterized

by 𝛾, and given by

𝑥𝑘+1 = 𝜙(𝑥𝑘; 𝛾), 𝑘 ∈ Z. (4.15)

Here, 𝑥𝑘 is an 𝑛-dimensional state vector. Eq. 4.15 may arise from the time dis-

cretization of an ODE system governed by the evolution vector ℎ. Let 𝐷 denote the

phase-space gradient operator with 𝐷𝜙 being the 𝑛×𝑛 Jacobian matrix of the system.

For the system defined by Eq. 4.15, Ruelle’s formula [148, 150] for the parametric

derivative of the long-time average can be expressed as

𝑑⟨𝐽⟩
𝑑𝛾

=
∞∑︁
𝑘=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑘) · 𝜒𝑑𝜇, (4.16)

where 𝜒 := 𝜕𝜙/𝜕𝛾 ∘ 𝜙−1 is the parametric perturbation vector, while 𝜇 is the under-

lying SRB measure. Eq. 4.16 is rigorously true if 𝜙 is a uniformly hyperbolic system.

The tangent space of such systems admits the following decomposition,

𝑇𝑥𝑀 = 𝐸𝑢(𝑥)⊕ 𝐸𝑠(𝑥)⊕ 𝐸𝑐(𝑥),

which satisfies the following properties:

• covariance property:

𝐷𝜙(𝐸𝑢(𝑥)) = 𝐸𝑢(𝜙(𝑥)), 𝐷𝜙(𝐸𝑠(𝑥)) = 𝐸𝑠(𝜙(𝑥)), 𝐷𝜙(𝐸𝑐(𝑥)) = 𝐸𝑐(𝜙(𝑥)),
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Figure 4-9: 𝑥(1) − 𝑥(3) projection of the (unnormalized) empirical density function of
the Lorenz 63 system at 𝛾 = 28 (top), 38 (middle) and 70 (bottom). To generate
each plot, a 2D box in phase space has been divided into 𝑛𝑥1 · 𝑛𝑥3 = 3840 · 2160
uniform rectangular cells/bins. The coordinates of the bottom left/upper right cor-
ner of each box are the following: [−20, 0]/[20, 50] (top), [−27, 0]/[54, 70] (middle),
[−40, 0]/[40, 80] (bottom). We computed a trajectory of length 𝑁 = 0.5 · 109 with
∆𝑡 = 0.002 for each plot. The color bars indicate the number of times the trajectory
crosses a bin.
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• uniform expansion/contraction:

for some fixed constants 𝐶 > 0, 𝜆 ∈ (0, 1), at every 𝑥 ∈ 𝑀 , every vector

𝑣 ∈ 𝐸𝑢(𝑥) satisfies

‖𝐷𝜙−𝑘(𝑥) 𝑣(𝑥)‖ ≤ 𝐶𝜆𝑘‖𝑣(𝑥)‖

for all positive integers 𝑘. And,

‖𝐷𝜙𝑘(𝑥) 𝑣(𝑥)‖ ≤ 𝐶𝜆𝑘‖𝑣(𝑥)‖

for all 𝑣 ∈ 𝐸𝑠(𝑥). The norm, ‖ · ‖ denotes the standard Euclidean norm in R𝑛,

• neutral subspace 𝐸𝑐 is one-dimensional and aligned with 𝜙 (parallel to the

evolution vector of the continuous system):

at every 𝑥 ∈𝑀 , there exist constants 𝐶 ∈ R and 𝐶1 ∈ R such that

𝑣 = 𝐶 ℎ(𝑥) ≈ 𝐶1(𝜙(𝑥)− 𝑥)

for all 𝑣 ∈ 𝐸𝑐(𝑥).

If the above properties hold, the input perturbation 𝜒 can be linearly decomposed

as 𝜒1 + 𝜒2 + 𝜒3 such that

• 𝜒1(𝑥) ∈ 𝐸𝑢(𝑥), 𝜒2(𝑥) ∈ 𝐸𝑐(𝑥), and all the three components are differentiable

on the unstable manifold;

• there exists a bounded vector field 𝑣 : 𝑀 → R𝑑 that is orthogonal to 𝐸𝑢(𝑥) ⊕

𝐸𝑐(𝑥)

The part of the linear response involving 𝜒3 will later be referred to as the stable

contribution. It can be rigorously re-expressed through a single ergodic average of

𝐷𝐽 · 𝑣 such that 𝑣 is an inhomogeneous tangent that is orthogonal to the center-

unstable manifold everywhere on the attractor. Assuming ‖𝐷𝐽‖∞ < ∞, the stable

contribution is guaranteed to be bounded. The sensitivity due to 𝜒2, i.e., the neutral

or center contribution is bounded as well, because it can be expressed in terms of
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the time-correlation between a bounded scalar and directional derivative of 𝐽 in the

direction parallel to the flow, both of which are assumed to be Hölder-continuous.

The reader is referred to [32] and Chapter 6 for more details regarding these two

terms.

We now consider the last remaining term of the splitting, 𝜒1, which we call the

unstable contribution. If the system has only one positive LE, 𝜒1, is always tangent

to the unstable manifold, geometrically represented by a curve. Let 𝑞(𝑥) be a unit

vector parallel to the unstable manifold at 𝑥 and 𝜒1 = 𝑐 𝑞. Therefore, the unstable

contribution equals

∞∑︁
𝑛=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑛) · 𝜒1 𝑑𝜇 = −
∞∑︁
𝑛=0

∫︁
𝑀

(𝐽 ∘ 𝜙𝑛) (𝑐𝑔 + 𝑏) 𝑑𝜇, (4.17)

where 𝑏 denotes the directional derivative of 𝑐 in the 𝑞 direction, while 𝑔 is the SRB

measure gradient, as defined by Eq 3.62. The reader is referred to Chapters 5-6 for

a detailed derivation of Eq. 4.17 and its generalization to systems with more than

one LE. Note that if 𝑀 itself is a one-dimensional manifold, as in the onion map,

the unstable contribution, given by Eq. 4.17 is the entire sensitivity, since there are

no stable nor center contributions. We highlight the fact that Eq. 4.17 is almost

identical to its one-dimensional counterpart (Eq. 4.5). Thus, the connection between

the regularity of 𝑔 and the existence of linear response that we described in Section

4.3 can potentially be extended to multi-dimensional systems with a one-dimensional

unstable manifold (e.g., the Lorenz 63 system). Later, in Chapter 5, it will be clear

that this methodology is easily extendable to systems with high-dimensional unstable

manifolds.

We acknowledge that the Lorenz 63 oscillator is a partially hyperbolic system at

certain values of 𝛾 [24]. Partial hyperbolicity means that, in the splitting 𝑇𝑥𝑀 = 𝐸𝑢⊕

𝐸𝑠⊕𝐸𝑐, the stable and unstable subspaces satisfy the uniform contraction/expansion

condition and the dominance condition with respect to the central subspace 𝐸𝑐 (see

[24] for a rigorous definition of these conditions). In the work of Dolgopyat [46],

the linear response theory has been rigorously extended to partially hyperbolic sys-
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tems. Therefore, the presented logic using the definition of uniform hyperbolicity is

applicable to Lorenz 63 as well.

4.5.2 Probing the differentiability of statistics of Lorenz 63

Using Algorithm 1, we compute 𝑔 and generate histograms of the absolute value of

the density gradient function |𝑔| = |𝜕𝜉 log 𝜌| for the Lorenz 63 system. Figure 4-10

illustrates the distributions of |𝑔| at three different values of 𝛾. We observe power-law

behavior of the generated histograms similar to those of the onion map in Figure 4-4.

Clearly, the exponent 𝑡, which is introduced in Section 4.4, is much higher than 3

if 𝛾 = 28. This implies that both the expected value and variance of |𝑔| are finite,

which means 𝑔 is square-integrable (with respect to 𝜌). The other two distributions

(at 𝛾 = 40 and 𝛾 = 68) feature tails with exponents 𝑡 slightly smaller than 2, which

means that 𝑔 may not be Lebesgue-integrable, as discussed in Section 4.4.

Figure 4-10 clearly indicates that the Lebesgue-integrability threshold can be es-

timated to be at some 𝛾 between 28 and 40. This result can be correlated with the

regularity of the density function 𝜌 (see Figure 4-9), which apparently loses its global

smoothness for 𝛾 ≤ 70. In an extensive study of the Lorenz 63 attractor at canonical

values of 𝛽 and 𝜎 presented in [166], it was shown that the system is quasi-hyperbolic

if 𝛾 ∈ [24.06, 31] and non-hyperbolic if 𝛾 ∈ [31, 99.5]. Quasi-hyperbolicity means

that some critical features of uniformly hyperbolic systems, e.g., smoothness of the

physical measure describing the statistical behavior on the attractor, still apply [18].

Thus, our results confirm that, in this case, the loss of (quasi-)hyperbolicity is also

an indicator of the failure of linear response.

We now estimate the Hölder exponent 𝜇, as defined in Eq. 4.11, for the statistics-

vs-parameter relation presented in Figure 4-8, using the procedure described in Sec-

tion 4.4.2. Figures 4-11-4-12 illustrate the results of the Hölder exponent numerical

test generated for three different intervals of 𝛾. These results clearly indicate the

exponent 𝜇 is approximately 1 if 𝛾 ∈ [28, 32], implying Lipschitz-continuity of that

part of the curve. The plots in the bottom row of Figure 4-11 and Figure 4-12 show

𝜇 is significantly smaller than 1, which implies the long-time average cannot be dif-
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Figure 4-10: Distribution of the absolute value of the density gradient function gen-
erated for the Lorenz 63 attractor at three different values of 𝛾 using Algorithm 1. To
generate these histograms, we divided the x-axis from 10−18 to 1084 into 𝐾 = 2048
bins of equal width in the logarithmic scale. For each histogram, a trajectory of the
length of approximately 𝑁 = 2.5 ·1010, computed by solving Eq. 4.12 with ∆𝑡 = 0.01,
is used. Along the trajectory, no instances of |𝑔| > 109 have been identified by the
algorithm.

ferentiable at 𝛾 > 36. Therefore, one can observe a clear correlation between the

Lebesgue-integrability (with respect to 𝜌) of 𝑔 and smoothness of statistics, which is

consistent with our numerical results of the onion map from Section 4.4.

4.6 Summary

Statistical quantities are critical both in understanding and in applications of chaotic

phenomena, such as turbulent flows. In many chaotic dynamical systems, the relation

between statistical quantities and system parameters is not smooth. In this chapter,

we show that the existence of the parametric derivative of a statistics or long-time

average (sensitivity) depends on whether the SRB measure gradient is Lebesgue-
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Figure 4-11: Left column: analogously to Figures 4-5 - 4-6, the simulation data
is the same as the data presented in Figure 4-8, and the quantity of interest has
been modified such that the values of the long-time average at the endpoints of each
interval is zero. It has been achieved by subtracting a linear function describing a
straight line crossing the endpoints of the original curve, ⟨𝑥3⟩ − 𝑠(𝛾). The modified
objective function has been denoted by 𝐽 . Each plot corresponds to a different 𝛾
interval, which has been discretized uniformly between 𝛾𝑚𝑖𝑛 and 𝛾𝑚𝑎𝑥 with step size
𝛿𝛾 = 0.001. For each value of 𝛾, we run 10 simulations. Right column: Hölder
exponent test of the statistical quantity ⟨𝐽⟩ = ⟨𝑧⟩ − 𝑠(𝛾) versus parameter 𝛾 relation
plotted in Figure 4-8. These plots have been generated in the same fashion as those
for the onion map in Figures 4-5 - 4-6 (see the caption of Figure 4-5 for a detailed
description), i.e., by taking the lower bound of the 3-sigma confidence interval of the
data set corresponding to [𝛾𝑚𝑖𝑛, 𝛾𝑚𝑎𝑥], obtained in 10 independent simulations. We
sample the statistics every 𝛿𝛾 = 0.001, which means each plot has approximately
0.5 · ((𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛)/𝛿𝛾)

2 = 8 · 106 data points. Skew solid lines represent reference
lines with the slope of 1 in the logarithmic scale.

156



Figure 4-12: This figure is an extension of Figure 4-11. All plots have been generated
in the same manner as their counterparts in Figure 4-11 – see caption therein for
more details.

integrable. That function represents the relative rate of change of the conditional SRB

density with respect to the coordinates of the unstable manifold. The relationship

between the sensitivity and 𝑔 is clearly reflected by the regularized Ruelle’s formula,

which stems from the linear response theory. This observation can be utilized to

construct a simple and generalizable numerical procedure to assess the differentiability

of statistics. The computation of the probability distribution of |𝑔| is the central part

of the proposed procedure. The probability density function of |𝑔| features a power-

law behavior in case of the two systems considered in this chapter: the onion map

and Lorenz 63 system. In these special cases, a numerical estimate of the power law

exponent is sufficient to determine the differentiability of statistics. We validate this

test by numerically computing the Hölder exponent of the one-dimensional output-

input relation.

4.7 Appendices

This section includes supplementary material supporting certain arguments presented

in this chapter.
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4.7.1 Validating the recursion for SRB measure gradient using

Ulam’s method

The purpose of this section is to present a simple numerical tool based on Ulam’s

method to verify the iterative formula for 𝑔 in 1D, which was derived in Section 2.6.3.

That formula is a direct consequence of the fact that the SRB density 𝜌 is stationary

in time. Indeed, it satisfies

𝜌(𝜙(𝑥)) =
𝜌(𝑥)

|𝜙′(𝑥)|
, (4.18)

which means that 𝜌 is in fact an eigenfunction of the Frobenius-Perron operator with

eigenvalue 1. Taking the logarithm of Eq. 4.18 and then differentiating with respect

to 𝑥, we obtain

𝑔(𝜙(𝑥)) =
𝑔(𝑥)

𝜙′(𝑥)
− 𝜙′′(𝑥)

𝜙′(𝑥)2
. (4.19)

While the measure preservation property in the form of Eq. 4.18 applies only to one-

to-one (injective) maps, we showed in 3.10.1 that the resulting recursive formula for

𝑔 in Eq. 4.19 is in fact applicable to non-injective maps such as the onion map. We

highlight that the operator-based approach is another way of deriving the evolution

of 𝑔.

Eq. 4.19 converges to the true value 𝜌′(𝑥)/𝜌(𝑥) upon iterating with an initial

guess 𝑔 ∘ 𝜙−𝑁(𝑥) = 0, as 𝑁 → ∞. A convenient way to numerically verify Eq. 4.19

is to approximate 𝜌′ = 𝜌𝑔 using the above formula for 𝑔. We validate the results

against the finite difference approximation of 𝜌′. Let 𝑥0, 𝑥1, ..., be a long trajectory,

and let the interval [0, 1] be divided into 𝐾 subintervals (bins), {∆𝑘}𝐾𝑘=1 , of equal

length 1/𝐾. We compute a piecewise-constant approximation of 𝜌(𝑥)𝑔(𝑥) as follows

(analogously to Ulam’s approximation [174]; see also [107] for a numerical example

involving a simple 1D map):

𝜌(𝑥)𝑔(𝑥) ≈ 𝐾

𝑁

𝑁−1∑︁
𝑛=0

𝑔(𝑥𝑛)𝐼Δ𝑘
(𝑥𝑛), ∀ 𝑥 ∈ ∆𝑘 (4.20)

where 𝐼𝐴 is the indicator function over a subset 𝐴 ⊂ [0, 1]. That is, 𝐼𝐴(𝑥) = 1,
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when 𝑥 ∈ 𝐴, and 𝐼𝐴(𝑥) = 0, otherwise. The pointwise error associated with this

approximation is proportional to
√︀
𝐾/𝑁 , i.e.,

|𝜌(𝑥)𝑔(𝑥)− (𝐾/𝑁)
𝑁−1∑︁
𝑛=0

𝑔(𝑥𝑛)𝐼Δ𝑘
(𝑥𝑛)|

decays as 𝒪(
√︀
𝐾/𝑁) for all 𝑥 ∈ ∆𝑘 if 𝑔 obeys the CLT [36]. Note that, for a fixed 𝑁 ,

the error increases proportionally to
√
𝐾 for all 𝑥 ∈ [0, 1], because the approximation

is piecewise-constant on a uniform grid of size 1/𝐾. Note if we replace 𝑔(𝑥𝑛) with 1

in the RHS of Eq. 4.20, we effectively obtain a formula for the density function itself.

Thus, from the algorithmic point of view, the process of generating 𝜌′ requires similar

steps as the process of generating 𝜌, while 𝑔 emerges as a byproduct. Analogously,

this process can be generalized to higher-dimensional systems with a 1D unstable

manifold. In such systems, 𝑔 is a scalar function, and thus Eq. 4.20 still applies

assuming an analogous partition of the higher-dimensional attractor is created.

Figure 4-13 illustrates the derivative of density generated for the onion map for the

same set of parameter values as the densities in Figure 4-2. We observe a satisfactory

match between the results generated using the above algorithm for 𝜌′(𝑥) and the

corresponding finite difference approximations as long as 𝛾 < 1.0. For larger values

of 𝛾, there is a visible discrepancy between the two approximations in the proximity

of discontinuities, which is consistent with the density 𝜌 exhibiting discontinuities for

𝛾 > 1.0 (compare with Figure 4-2). We also notice there are significant systematic

differences, in terms of the function behavior, between the three parameter regimes:

𝛾 < 1, 𝛾 = 1, 𝛾 > 1. In 4.7.2, we discuss the impact of 𝛾 on the formation of

singularities due to the onion map transformation.

4.7.2 Singularity formation due to the onion map transforma-

tion

The purpose of this appendix is to discuss the behavior of the probability density

function (PDF) and the corresponding density gradient resulting from a single onion
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Figure 4-13: Derivative of density of the onion map (Eq. 4.1) at ℎ = 0.97. We
used 𝑁 = 41, 943, 040, 000 samples and 𝐾 = 2048 bins to generate all curves. The
solid lines represent the derivative of density computed using Eq. 4.19-4.20, while the
dots represent central finite difference approximation of the same function using the
corresponding density function histograms illustrated in Figure 4-2.
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map transformation 𝜙 applied to uniformly distributed data. This analysis sheds

light on the smooth-rough regime transition at 𝛾 = 1. In our derivation, we use

generic constants, 𝐶1, 𝐶2, which represent real numbers that do not depend on map

parameters.

Let 𝑋 ∈ [0, 1] be a uniformly distributed random variable and 𝑌 = 𝜙(𝑋), where

𝜙 : [0, 1] → [0, ℎ] is the onion map defined by Eq. 4.1. The CDF 𝐹𝑌 of 𝑌 is thus

proportional to

exp(log(1− (𝑦/ℎ)2)/𝛾) = (1− (𝑦/ℎ)2)1/𝛾.

The first derivative of the CDF equals the PDF 𝑓𝑌 , which can be expressed as follows,

𝑓𝑌 (𝑦) = 𝐹 ′
𝑌 (𝑦) = 𝐶1

𝑦
(︁
1−

(︀
𝑦
ℎ

)︀2)︁ 1−𝛾
𝛾

𝛾ℎ2
. (4.21)

We observe that, after a single transformation, the PDF develops a singularity at

𝑦 = ℎ if 𝛾 > 1. Note also 𝑓𝑌 is quadratic if 𝛾 < 1, and linear if 𝛾 = 1. The

behavior of the SRB density 𝜌 is more complicated than 𝑓𝑌 , since the former reflects

the statistics obtained after infinitely many applications of 𝜙. Nevertheless, Figure

4-2, which illustrates the empirical density at different values of 𝛾, is fully consistent

with our results. Note if 𝛾 > 1, the SRB density distribution features a bunch of

spikes, while at 𝛾 = 1 the distribution seems to be piecewise linear.

Let us now compute the second derivative of the CDF,

𝐹 ′′
𝑌 (𝑦) = 𝐶2

(︁
1−

(︀
𝑦
ℎ

)︀2)︁ 1−2𝛾
𝛾

(𝛾(ℎ2 + 𝑦2)− 2𝑦2)

𝛾2 ℎ4
. (4.22)

Let the probability density gradient 𝑔𝑌 be defined as the derivative of log(𝑓𝑌 ), anal-

ogously to 𝑔. Thus, the expected value of 𝑔𝑌 equals

∫︁ ∞

−∞
𝑔𝑌 PDF(𝑔𝑌 ) 𝑑𝑔𝑌 =

∫︁ ℎ

0

𝑔𝑌 (𝑦) 𝑓𝑌 (𝑦) 𝑑𝑦 =

∫︁ ℎ

0

𝐹 ′′(𝑦) 𝑑𝑦. (4.23)

Combining Eq. 4.22 and Eq. 4.23, it is possible to analytically compute the expected
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value of 𝑔𝑌 , ∫︁ ℎ

0

𝐹 ′′(𝑦) 𝑑𝑦 =
𝐶2ℎ

− 2
𝛾

𝛾
lim
𝑦→ℎ

((ℎ− 𝑦)(ℎ+ 𝑦))
1−𝛾
𝛾 . (4.24)

Since both ℎ and 𝛾 are positive numbers, there are two possible scenarios. Namely,

the expected value of 𝑔𝑌 is finite (equals zero) if 𝛾 ≤ 1, regardless of the value of ℎ.

Otherwise, the mean of 𝑔𝑌 does not exist. In any case, the existence of the expected

value strictly depends on the behavior around the only spike of ∼ (𝑦 − ℎ)(1−𝛾)/𝛾 at

𝑦 = ℎ. This result also applies to the absolute value of 𝑔𝑌 . The above discussion

clearly indicates that a single application of 𝜙 produces non-integrable spikes if 𝛾 > 1.
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Chapter 5

Generalized space-splitting algorithm

for hyperbolic systems with

multidimensional unstable manifolds

Accurate approximations of the change of a system’s output and its statistics with

respect to the input are highly desired in computational dynamics. Ruelle’s linear

response theory provides breakthrough mathematical machinery for computing the

linear response of chaotic dynamical systems. In this chapter, we propose an algorithm

for sensitivity analysis of discrete chaos with an arbitrary number of positive Lya-

punov exponents. We combine the concept of perturbation space-splitting, which reg-

ularizes Ruelle’s original expression, together with measure-based parameterization of

the expanding subspace. We use these tools to rigorously derive trajectory-following

recursive relations that converge exponentially fast, and construct a memory-efficient

Monte Carlo scheme for derivatives of the output statistics. Thanks to the regular-

ization and lack of simplifying assumptions on the system’s behavior, our method is

immune to the common problems of other popular methods such as the exploding

tangent solutions and unphysical shadowing directions. We provide a ready-to-use

algorithm, analyze its complexity, and demonstrate several numerical examples of

sensitivity computation using physically-inspired low-dimensional systems.

We acknowledge that this chapter was first published in SIAM Journal
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on Scientic Computing in 2022 by the Society for Industrial and Applied

Mathematics (SIAM) [161]. Copyright © by SIAM. Unauthorized repro-

duction of this article is prohibited.

5.1 Preliminaries

The main purpose of this work is to generalize the space-split algorithm, which was

originally derived for systems with one-dimensional unstable manifolds. In other

words, we seek a direct numerical method based on the linear response theory ap-

plicable to chaotic systems with an arbitrary number of positive LEs. The natural

appeal of S3 is that it averages recursively-generated data along a trajectory and

rigorously converges to the true solution in time. In the context of approximating the

linear response, a “direct method" means that the only significant source of error is as-

sociated with Monte Carlo averaging. Thus, the crux of the space-splitting approach

are recursive and converging relations for different quantities that arose from both

the perturbation vector splitting and partial integration. The SRB density gradient,

which represents an unstable derivative of the SRB measure, is one such a quantity.

Indeed, as argued in Chapter 3, Lebesgue integration by parts requires knowledge of

the measure derivative itself [160]. In the case of one-dimensional chaos, this iter-

ative relation directly follows from the measure preservation property involving the

Frobenius-Perron operator [158], which we showed in the appendices of Chapter 2 and

Chapter 4. If the unstable manifold is geometrically more complex, it is convenient to

apply the measure-based parameterization of the unstable subspace, directly relating

directional derivatives of the SRB measure with the coordinate chart using quantile

functions (inverse CDFs). In the case of the unit-speed parameterization used in

[31], such a straightforward relation is not possible, which dramatically complicates

the generalization of the iterations derived in that work to systems with more than

one LE. This concept was demonstrated in the context of low-dimensional manifolds

described by simple differential equations in [160], and later used to construct an

ergodic-averaging scheme for the SRB density gradient [162]. The manifold descrip-
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tion based on quantile functions is invariant to linear coordinate transformations and

facilitates the iterative computation of directional derivatives of the SRB measure and

other differentiable quantities by solving a collection of regularized tangent equations

[162]. Here, we combine these two major concepts, i.e., perturbation space-splitting

and measure-based parameterization, to derive a general Monte Carlo scheme for

parametric derivatives of long-time averages defined by Eq. 1.1, in chaotic systems

of arbitrary dimension. Instead of constructing expensive covariant bases of unstable

manifolds to represent the perturbation splitting (see Chapter 5 of [28]), we compute

cheaper orthogonal bases, which were also used in [127] to orthogonally regularize

one of the linear response contributions. They align well with our algorithm and

simplify the derivation of all critical quantities. The path we take in this chapter sig-

nificantly differs from that of [127], since here we rely on a different representation of

perturbation splitting, manifold description, and compute the SRB density gradient

directly.

The major contributions of this chapter are the following:

• Applying the measure-based parameterization of unstable manifolds proposed

in Chapter 3 [162] and the particular form of space-splitting from [31], we gener-

alize the perturbation splitting using orthogonal bases and systematically derive

a collection of trajectory-following recursions for unstable directional derivatives

of the splitting coefficients and regularized tangent solutions.

• Based on the algebraic structure of the coordinate transformation matrices, its

derivatives and orthogonality of Lyapunov bases, we analytically infer the key

relation between the derivatives of Lyapunov vectors and second derivatives of

the coordinate chart. The method for differentiating unstable bases is a by-

product of our main algorithm and is applicable to many other problems.

• We analytically demonstrate the exponential convergence of the generalized

trajectory-following recursions for derivatives of regularized tangent equations

(derived in this chapter) and acceleration vectors (derived in [162]). We argue

that the convergence of all other quantities follows from these two.
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• We present several numerical examples that include the convergence analysis

and comparison of S3 approximations of sensitivities against finite differences.

5.2 General Ruelle’s linear response formula: funda-

mental aspects, practical consequences and S3

The purpose of this section is to review the linear response formula for discrete chaotic

systems derived by Ruelle in [148, 150], introduce basic concepts from the dynamical

systems theory that are critical in this work, and explain the notation convention

used throughout this chapter. In addition, we present the concept of space-splitting,

generalize it to systems of arbitrary dimension, and derive the stable contribution of

the linear response.

Let us consider a parameterized discrete system,

𝑥𝑘+1 = 𝜙(𝑥𝑘; 𝑠) := 𝜙(𝑥𝑘), (5.1)

governed by a diffeomorphism 𝜙 : 𝑀 → 𝑀 , 𝑀 ⊂ R𝑛, 𝑛 ∈ Z+, 𝑠 ∈ R, 𝑘 ∈ Z.

This chapter focuses on parameterized systems and therefore all derivatives of 𝜙 also

depend on 𝑠. To simplify the notation, the dependence on 𝑠 shall not be explicitly

indicated.

Notation conventions. This chapter intensively uses subscripts, superscripts, and

a combination of both, that might have different meanings. Before we continue the

technical discussion, we first explain the notation conventions that shall consistently

be used in the remainder of this work:

• Subscripts involving 𝑘 + 𝑖, 𝑖 ∈ Z, indicate that the underlying quantity is

evaluated respectively at (𝑘+𝑖)-th time step of a random trajectory. It applies to

all quantities appearing in this chapter, including map Jacobians and Hessians.

For example, the observable 𝐽 evaluated at 𝑘-th time step is denoted by 𝐽(𝑥𝑘) =

𝐽𝑘. Analogously, the Jacobian of 𝜙 evaluated at 𝑥𝑘 is denoted by 𝐷𝜙𝑘. Non-

recursive equations without the “𝑘" subscript hold at any point on the attractor.
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Subscripts of this type should never appear inside integrals over 𝑀 , because all

possible points in 𝑀 are included while integrating.

• Subscripts involving a number or symbol different than the one above have

their own unique meaning. All of them are explained immediately after the

first occurrence.

• Superscripts without round brackets indicate a particular representative of a

family of scalars or arrays. For example, basis vectors of a certain𝑚-dimensional

subspace will be denoted by 𝑞1, 𝑞2, ..., 𝑞𝑚. They should not be confused with

exponentiation. In this chapter, exponentiation is applied to the two scalars:

𝑚 and 𝑛.

• Superscripts with round brackets refer to a particular component of an array.

There might be more than one symbol in the superscript, which implies the

array involves more dimensions. The colon symbol (:) is occasionally used in

the superscript and means “all" components. For example, the 𝑗-th component

of the 𝑖-th basis vector will be denoted by (𝑞𝑖)(𝑗). The 𝑖-th column of a matrix

𝐴 is simply 𝐴(:𝑖), while 𝐴(𝑖𝑗) represents the entry from the 𝑖-th row and 𝑗-th

column of that matrix.

• Standard 𝑇 and −1 symbols are used in superscripts to denote the transposition

and inversion of a matrix, respectively.

Since we consider chaotic maps, 𝜙 has at least one positive Lyapunov exponent.

As mentioned in Section 5.1, chaoticity is manifested by the exponential growth of the

tangent solutions, which represent infinitesimal perturbations of the primal solution.

The rate of growth of the tangent solutions is determined by LE values. We assume

System 5.1 is ergodic, which implies the long-time average of a smooth observable

𝐽 : 𝑀 → R can be computed in two distinct ways: 1) through averaging of the time

series {𝐽0, 𝐽1, 𝐽2, ...} generated along a trajectory, or 2), as an expected value of 𝐽

with respect to the SRB measure 𝜇 [195]. Moreover, in ergodic systems, the long-time

statistics do not depend on the choice of the 𝜇-typical initial condition 𝑥0. The SRB
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measure is an invariant and physical measure that describes the statistical behavior

of the system. This quantity is known to be absolutely continuous on the unstable

manifold only. In the stable direction, across the expanding subspace, 𝜇 is generally

singular with respect to the Lebesgue measure [195, 162]. The basic assumption of

Ruelle’s theory is uniform hyperbolicity. This property means that the tangent space

decomposes into stable and unstable covariant subspaces everywhere on the attractor.

The dimension of the latter is the same as the number of positive Lyapunov exponents

and is fixed along any random trajectory [92]. Members of these two subspaces are

solutions to the homogeneous tangent equations and their norms uniformly decay

and grow in time at an exponential rate, respectively. Recall that there also exists

a neutral subspace aligned with the flow in continuous-time systems (ODEs), which

are beyond the scope of this work.

Under the assumption of uniform hyperbolicity, Ruelle rigorously showed that

𝑑⟨𝐽⟩
𝑑𝑠

=
∞∑︁
𝑡=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒𝑑𝜇, (5.2)

where 𝐷 represents the differentiation (gradient) operator in phase space, while 𝜒 =

𝜕𝑠𝜙∘𝜙−1 is the map perturbation vector and 𝜙𝑡 = 𝜙(𝜙𝑡−1), 𝜙0(𝑥) = 𝑥, 𝜕𝑠(·) := 𝜕(·)/𝜕𝑠.

This result assumes that the observable 𝐽 does not depend on the parameter 𝑠. If

it were otherwise, the expected value of 𝜕𝑠𝐽 would need to be added on the right-

hand side (RHS). Note that Eq. 5.2 is identical to Eq. 4.16, which suggests that the

original linear response expression is agnostic to the number of LEs. Although Eq.

5.2 is rigorously true for uniformly hyperbolic diffeomorphisms, a modified version of

Ruelle’s expression has been empirically shown to be valid in statistical mechanics

systems that violate this basic assumption [113]. Indeed, various high-dimensional

systems describing complex physical phenomena behave as if they were uniformly

hyperbolic [59, 153]. Therefore, Ruelle’s expression could potentially be applied to

various real-world chaotic systems encountered in science and engineering.

Although Eq. 5.2 provides a closed-form expression for the desired quantity, its

direct evaluation is impractical. One could naïvely approximate each integral of
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the infinite series using the Ergodic Theorem, i.e., by taking the long-time average

of the integrand along a trajectory. Note, however, that the integrand involves a

derivative of the observable 𝐽 evaluated 𝑡 time steps ahead in time. Differentiating

this composite function requires computing the product of the map Jacobians 𝐷𝜙

evaluated at 𝑡 consecutive time steps. Owing to the butterfly effect, this product

grows exponentially with 𝑡 at the rate proportional to the largest LE, 𝜆1. Assuming

𝐽 is sufficiently smooth, one can rigorously show that Ruelle’s formula is equivalent

to
𝑑⟨𝐽⟩
𝑑𝑠

=

∫︁
𝑀

𝐷𝐽 · 𝑢 𝑑𝜇, (5.3)

where 𝑢 = 𝜕𝑠𝑥, and

𝑢𝑘+1 = 𝐷𝜙𝑘 𝑢𝑘 + 𝜒𝑘+1, 𝑢0 = 0. (5.4)

According to our notational convention,

𝜒𝑘+1 = 𝜕𝑠𝜙 ∘ (𝜙−1(𝑥𝑘+1)) = 𝜕𝑠𝜙(𝑥𝑘).

Note that Eq. 5.4 is obtained by differentiating Eq. 5.1 with respect to 𝑠. The

computation of the sequence {𝑢0, 𝑢1, ...} through the above inhomogeneous tangent

equation (Eq. 5.4) is ill-conditioned, because

𝑢𝑘 =
𝑘−1∑︁
𝑖=1

(︃
𝑘−1∏︁
𝑗=𝑖

𝐷𝜙(𝑥𝑗)

)︃
𝜒(𝑥𝑖). (5.5)

Eq. 5.5 implies that

‖𝑢𝑘‖ ∼ 𝒪(exp(𝜆1𝑘)).

The equivalence of Eq. 5.3-5.4 and Eq. 5.2 directly follows from the chain rule applied

to an ergodic system. The problem of exploding tangent solutions is absent only in the

two following scenarios: 1) 𝜆1 < 0 (non-chaotic system), or 2), the tangent solution 𝑢

is orthogonal to the unstable manifold. The first scenario is trivial, because one can

use Eq. 5.4 without further modifications to estimate sensitivities, while the second

scenario is highly unlikely.
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A natural remedy for the exploding product of Jacobians is the integration by

parts applied to the original Ruelle’s expression. In the case of Lebesgue integrals,

however, one also needs to differentiate the measure itself. Note that 𝜒 does not

generally belong to the unstable subspace and, therefore, the direct partial integration

is prohibited. To circumvent this mathematical difficulty, we apply the main idea of

the space-split sensitivity (S3) method [31], which was motivated by Ruelle’s original

work [148, 150], to decompose the perturbation vector 𝜒 into two terms, 𝜒 = 𝜒1+𝜒2,

which we call the unstable and stable contribution, respectively. The original S3

splitting was constructed such that 𝜒1 is tangent to the one-dimensional expansive

subspace enabling partial integration. To guarantee the differentiability of both terms

on unstable manifolds, 𝜒1 must be expressed by a linear combination of basis vectors

of the expanding subspace. Despite its name, the other term, 𝜒2 = 𝜒− 𝜒1, does not

strictly belong to the stable subbundle.

Motivated by this concept, we require that 𝜒1 belongs to the 𝑚-dimensional un-

stable manifold at any typical point on the attractor. Recall that here we assume 𝜙

has 𝑚 ≥ 1 positive LEs. Let 𝑞𝑖(𝑥𝑘) := 𝑞𝑖𝑘, 𝑖 = 1, ...,𝑚 denote an orthonormal basis

of the unstable manifold at 𝑥𝑘 ∈ 𝑀 . Thus, we propose the following perturbation

splitting,

𝜒 = 𝜒1 + 𝜒2 =

(︃
𝑚∑︁
𝑖=1

𝑐𝑖 𝑞𝑖

)︃
+

(︃
𝜒−

𝑚∑︁
𝑖=1

𝑐𝑖 𝑞𝑖

)︃
, (5.6)

where 𝑐𝑖 is a scalar differentiable on unstable manifolds. This decomposition is local,

i.e., both the unstable basis and scalar coefficients vary from point to point on the

attractor. If we plug Eq. 5.6 back to Ruelle’s formula, we observe that the first term

can now be integrated by parts, regardless of the choice of 𝑐𝑖. Indeed, the unstable

contribution involves 𝑚 directional derivatives of 𝐽 ∘ 𝜙𝑡 in the directions indicated

by the selected orthonormal basis of the unstable manifold. The second term, i.e.,

the stable contribution, can be rigorously re-expressed as a single Lebesgue integral,

analogously to Eq. 5.3,

∞∑︁
𝑡=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒2 𝑑𝜇 =

∫︁
𝑀

𝐷𝐽 · 𝑣 𝑑𝜇, (5.7)
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where 𝑣 is a solution to the following regularized tangent equation,

𝑣𝑘+1 = 𝐷𝜙𝑘 𝑣𝑘 + 𝜒𝑘+1 −
𝑚∑︁
𝑖=1

𝑐𝑖𝑘+1 𝑞
𝑖
𝑘+1, 𝑣0 = 0, (5.8)

which is derived in the same fashion as its original counterpart in Eq. 5.4. The

proposed splitting gives us freedom in choosing the values of 𝑐𝑖, 𝑖 = 1, ...,𝑚. By

imposing the following set of 𝑚 scalar constraints,

𝑣 · 𝑞𝑖 = 0, 𝑖 = 1, ...,𝑚, (5.9)

we fix all 𝑐𝑖 and, simultaneously, enforce the tangent solution 𝑣 to be orthogonal to

the unstable manifold everywhere along a trajectory. This guarantees that the norm

of 𝑣 does not increase exponentially in time. Therefore, by combining Eq. 5.8-5.9, we

obtain a linear system with 𝑛 +𝑚 equations and the same number of unknowns (𝑛

components of 𝑣 and 𝑚 scalars 𝑐𝑖). Using the fact 𝑞𝑖 · 𝑞𝑗 = 1 if 𝑖 = 𝑗 and 𝑞𝑖 · 𝑞𝑗 = 0

otherwise, the orthogonality constraint (Eq. 5.9) can be enforced by setting

𝑐𝑖𝑘+1 = 𝑞𝑖𝑘+1 · (𝐷𝜙𝑘 𝑣𝑘 + 𝜒𝑘+1) , 𝑖 = 1, ...,𝑚. (5.10)

We refer the reader to [31] and Chapter 6 to see analogous, yet much more compli-

cated, expressions involving splitting coefficients if a covariant basis is used and the

orthogonality constraint is violated. Due to the ergodicity and uniform hyperbolicity

of 𝜙, the RHS of Eq. 5.7 can be approximated as a finite-time average of 𝐷𝐽 · 𝑣.

Assuming the integrand is Hölder continuous, the ergodic-averaging error is bounded

above as follows,⃒⃒⃒⃒
⃒
∫︁
𝑀

𝐷𝐽 · 𝑣 𝑑𝜇− 1

𝑁

𝑁−1∑︁
𝑘=0

𝐷𝐽𝑘 · 𝑣𝑘

⃒⃒⃒⃒
⃒ ≤ 𝐶1

𝑁
+ 𝐶2

√︂
log log𝑁

𝑁
. (5.11)

for some real constants 𝐶1 > 0 and 𝐶2 > 0, regardless of the value of 𝑚. The reader

is referred to [31] (Proposition 9.1) for a proof of the preceding statement. If 𝑁 is

large, the second term of the above upper bound determines the actual convergence
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rate as it decays slower. Note also that log log𝑁 grows very slowly with 𝑁 , which

means that
√︀
(log log𝑁)/𝑁 and

√︀
1/𝑁 are approximately parallel for large values of

𝑁 . This further implies that the convergence rate of the “stable" integrand is very

similar to the one of a typical Monte Carlo process.

Therefore, the computation of the stable contribution requires solving a con-

strained tangent equation (Eq. 5.8-5.9) and taking the time average of 𝐷𝐽 · 𝑣, which

is recursively computed as we move along an orbit initiated at a 𝜇-typical point. Note

that the dimension of the unstable manifold has little impact on the complexity of

that part of the algorithm. To enforce all the orthogonality constrains, one natu-

rally needs to pre-compute the basis of the unstable manifold everywhere along the

trajectory. We postpone the discussion on numerical procedures for approximating

the unstable basis vectors until Section 5.3, as they are essential ingredients of the

unstable contribution.

Key point. The perturbation vector space-splitting proposed in Eq. 5.6 is ab-

solutely critical in regularizing Ruelle’s linear response expression for the sensitivity

of a chaotic system. Indeed, it guarantees the differentiability of both terms on the

unstable subbundle, and allows to partially integrate the term involving the unsta-

ble component of 𝜒 and apply the conventional tangent equation approach together

with recursive orthogonalization (stabilization) to approximate the stable term. The

procedure for approximating the latter is largely agnostic to the dimension of the

unstable manifold. This is not the case for the unstable contribution, which is the

main focus of the following section.

5.3 Computation of the unstable contribution

5.3.1 Reviewing critical concepts: measure-based parameter-

ization, integration by parts, and SRB density gradient

To approximate the desired sensitivity, 𝑑⟨𝐽⟩/𝑑𝑠, one needs to sum up two contribu-

tions, the unstable and stable terms, as defined in the previous section (Eq. 5.6).
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Since the former contains a component of the perturbation vector that is a member

of the unstable manifold, we are allowed to apply partial integration to move the

differentiation operator away from the troublesome composite function. However, we

can do so only on unstable manifolds, because the SRB measure 𝜇 is generally non-

smooth on 𝑀 . Therefore, an extra step involving measure disintegration is required

before applying the integration by parts. Let us consider a measurable partition 𝑈

of 𝑀 aligned with the geometry of unstable manifolds. Thus, for any Borel subset

𝐵 ⊂𝑀 ,

𝜇(𝐵) =

∫︁
𝑀/𝑈

�̃�𝑥(𝐵 ∩ 𝑈𝑥) 𝑑�̂�(𝑥), (5.12)

where �̂� denotes the quotient measure defined by the partition 𝑈 , while �̃�𝑥 represents

the SRB measure conditioned on the unstable manifold 𝑈𝑥 that contains 𝑥 ∈ 𝑀 .

Intuitively, Eq. 5.12 means that the measure of 𝐵 can be computed by summing

conditional measures of local intersections weighted by the likelihood of each partition

member. Using Eq. 5.12, the unstable contribution can be expressed as follows,

∞∑︁
𝑡=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒1 𝑑𝜇 =
∞∑︁
𝑡=0

𝑚∑︁
𝑖=1

∫︁
𝑀

𝑐𝑖 𝜕𝑞𝑖(𝐽 ∘ 𝜙𝑡) 𝑑𝜇, (5.13)

where 𝜕𝑞𝑖(·) := 𝐷(·) · 𝑞𝑖 is a short-hand notation for the directional derivative in the

direction of the 𝑖-th basis vector. Within each Lebesgue integral of the above double

sum, we apply measure disintegration and then integrate by parts on 𝑈𝑥 [152],∫︁
𝑀

𝑐𝑖 𝜕𝑞𝑖(𝐽 ∘ 𝜙𝑡) 𝑑𝜇 =∫︁
𝑀/𝑈

∫︁
𝑈𝑥

𝑐𝑖 𝜕𝑞𝑖(𝐽 ∘ 𝜙𝑡) 𝑑�̃�𝑥 𝑑�̂�(𝑥) =
∫︁
𝑀/𝑈

∫︁
𝑈𝑥

𝑐𝑖 𝜕𝑞𝑖(𝐽 ∘ 𝜙𝑡) 𝜌𝑥 𝑑�̃�𝑥 𝑑�̂�(𝑥) =

−
∫︁
𝑀/𝑈

∫︁
𝑈𝑥

𝐽 ∘ 𝜙𝑡
(︂
𝜕𝑞𝑖𝑐

𝑖 + 𝑐𝑖
𝜕𝑞𝑖𝜌𝑥
𝜌𝑥

)︂
𝑑�̃�𝑥 𝑑�̂�(𝑥) + B.T.,

(5.14)

where 𝜌𝑥 and 𝜔𝑥 respectively represent the density of the conditional measure and

the natural volume form, both defined on 𝑈𝑥. The second term on the RHS of Eq.

5.14 represents the boundary term, denoted by B.T., which can be expressed as the

divergence of a smooth field on unstable manifolds. In uniformly hyperbolic systems,
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this term rigorously vanishes according to Theorem 3.1(b) of [148]. The reader is

also referred to Section 3.6 for a more intuitive explanation of this counter-intuitive

cancellation. We eventually obtain a new integral that involves two quantities, 𝑏𝑖,𝑖

and 𝑔𝑖, defined as follows,

𝑏𝑖,𝑗 := 𝜕𝑞𝑗𝑐
𝑖, 𝑔𝑖 :=

𝜕𝑞𝑖𝜌

𝜌
= 𝜕𝑞𝑖 log 𝜌. (5.15)

The computation of these two quantities is the actual price for the regularization of

the original Lebesgue integrals. The latter is known in the literature as the SRB

density gradient has thoroughly been described in Chapter 3. Recall that it reflects a

relative measure change along an unstable manifold and thus its value is independent

from its corresponding quotient measure. An efficient trajectory-driven procedure for

the computation of 𝑔 has been summarized by Algorithm 1, which we will directly use

in this chapter. Therefore, the final missing ingredients are the directional derivatives

of 𝑐𝑖. While Eq. 5.14 involves 𝑏𝑖,𝑗 with 𝑖 = 𝑗 only, we will show that all possible 𝑚2

representatives of 𝑏𝑖,𝑗 are required in the algorithm.

We intend to utilize the measure-based parameterization of unstable manifolds

proposed in Chapter 3. For the sake of clarity, we review the major points here. Let

us consider a family of smooth charts 𝑥𝑘(𝜉) : [0, 1]𝑚 → 𝑈𝑘, where 𝑈𝑘 is a partition

member that is crossed by the trajectory at time step 𝑘. Consequently, 𝑈𝑘 is an

𝑚-dimensional unstable manifold such that 𝑥𝑘 ∈ 𝑈𝑘. The measure-based parameteri-

zation is defined such that the SRB measure of any Borel subset 𝑉 ∈ [0, 1]𝑚 satisfying

𝑥𝑘(𝑉 ) = 𝐵𝑘 ⊂ 𝑈𝑘 is related to the corresponding SRB density through

�̃�𝑘(𝑉 ) =

∫︁
𝐵𝑘

𝜌𝑘 𝑑𝜔𝑘. (5.16)

Notice that we replaced 𝑥 with 𝑘 in the subscript of the local/conditional quantities

to relate them with a particular point on a random trajectory. Indeed, for a given

trajectory initiated at a randomly chosen 𝜇-typical initial condition, 𝑘 uniquely de-

termines a point on the attractor. The major benefit of this type of description is

a straightforward relation between the parametric gradient of 𝑥(𝜉), denoted by ∇𝜉𝑥,
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and the conditional SRB density 𝜌. In particular,

𝜌(𝑥(𝜉)) | det𝑅(𝑥(𝜉))| = 1 (5.17)

for any 𝜉 ∈ [0, 1]𝑚, where 𝑅 is an 𝑚×𝑚 invertible matrix obtained through the QR

factorization (orthonormalization) of the chart gradient,

∇𝜉𝑥(𝜉) = 𝑄(𝑥(𝜉))𝑅(𝑥(𝜉)), (5.18)

where 𝑄𝑇 𝑄 = 𝐼 and 𝑅 is an upper-triangular matrix containing projections of the

columns of ∇𝜉𝑥 onto its orthonormal basis stored in the 𝑄 matrix. Eq. 5.17 is

a general representation of the measure conservation in a nonlinear transformation

from a uniform (constant) to non-uniform distribution.

The crux of the SRB density gradient computation, as explained in [160], relies on

a recursive computation of the first- and second-order derivatives of the coordinate

chart. These recursive formulas are derived by taking derivatives of the original

system (Eq. 5.1) and applying the chain rule on smooth manifolds. However, note

that the naïve computation of the chart gradient is ill-conditioned, because ∇𝜉0𝑥𝑘 =

(
∏︀𝑘−1

𝑖=0 𝐷𝜙𝑖)∇𝜉0𝑥0 grows in norm exponentially fast as discussed in Section 5.2, where

𝜉0 represents the initial, i.e., the one chosen at 𝑘 = 0, parametric coordinate system.

In their recent work [162], the authors proposed a step-by-step orthonormalization

of the chart gradient through a recursive update of the coordinate system using the

following linear transformation,

𝜉𝑘+1 = 𝑅(𝑥𝑘+1(0)) 𝜉𝑘. (5.19)

Applying this coordinate change in a step-by-step manner, we ensure the parametric

gradient computed with respect to the new coordinates is orthogonal at the origin,

i.e., at 𝜉 = 0. In practice, this requires performing the QR factorization every time

step, where 𝑄 contains the orthogonal basis, while 𝑅 is used to transform coordinates.

In the orthogonalized coordinate system at 𝜉 = 0, the SRB measure gradient is can
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be expressed as a projection of the unstable basis onto a set of the acceleration (i.e.,

second derivatives of the chart) vectors denoted by 𝑎 [162],

𝑔𝑖 = −𝑞𝑗 · 𝜕𝜉(𝑖)𝜕𝜉(𝑗)𝑥 := −𝑞𝑗 · 𝑎𝑖,𝑗, (5.20)

where the repeated indices imply summation per Einstein’s convention, while 𝑎 sat-

isfies the following recursion,

𝑎𝑖,𝑗𝑘+1 =
(︀
𝐷2𝜙𝑘(𝑞

𝑝
𝑘, 𝑞

𝑞
𝑘) +𝐷𝜙𝑘 𝑎

𝑝,𝑞
𝑘

)︀
(𝑅−1

𝑘+1)
(𝑝𝑖) (𝑅−1

𝑘+1)
(𝑞𝑗). (5.21)

The product 𝐷2𝜙(𝑎, 𝑏) represents the contraction of the Hessian of 𝜙 against two

vectors, 𝑎 and 𝑏. This operation outputs a vector whose 𝑖-th component equals

(𝐷2𝜙(𝑎, 𝑏))(𝑖) = 𝜕𝑥(𝑝)𝜕𝑥(𝑞)𝜙
(𝑖) 𝑎(𝑝) 𝑏(𝑞). The choice of 𝜉 = 0 does not restrict our algo-

rithm to a certain trajectory. Note that one can freely stretch or shrink the feasible

space of 𝜉 such that the preimage of the initial state 𝑥0 is 𝜉0 = 0. From now on, all

equations will be evaluated at 𝜉 = 0 and, in order to further simplify the notation,

the argument of coordinate charts will be skipped.

5.3.2 Derivation of recursions for the missing directional deriva-

tives and convergence study

We shall now analyze the convergence of the recursive algorithm for the SRB density

gradient. Based on the above description, the iterative computation of the basis

matrix 𝑄 involves two steps, i.e., left-multiplying 𝑄 by the Jacobian matrix followed

by QR factorization of the obtained matrix product. This implies that the basis

matrix at the 𝑘-th time step equals

𝑄𝑘 = 𝐷𝜙𝑘−1 ... 𝐷𝜙0𝑄0𝑅
−1
1 ... 𝑅−1

𝑘 . (5.22)

If one replaces 𝑄0 with any arbitrary matrix that is bounded in norm, then the

process described by Eq. 5.22 is guaranteed to converge at an exponential rate if 𝜙 is a
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uniformly hyperbolic diffeomorphism [90]. It means that in ideally chaotic systems one

can generate the basis vectors of unstable manifolds, a.k.a. the backward Lyapunov

vectors, by running the trajectory-driven iteration described above. In such systems,

the product of the inverses of subsequent 𝑅 matrices decays in norm at an exponential

rate or faster as 𝑘 increases [51], i.e.,

‖𝑅−1
1 𝑅−1

2 ...𝑅−1
𝑘 ‖ ≤ exp(−𝑐𝑘), 𝑐 > 0. (5.23)

These matrices counterbalance the exploding product of Jacobians along typical tra-

jectories.

Given this remarkable behavior, we conclude that the iterative process for 𝑎 must

also converge. To see that, let us consider a difference between two approximations

of 𝑎 along a single trajectory assuming the basis vectors are the same in both the

iterations, labelled as 1 and 2,

𝑎𝑖,𝑗𝑘+1,1 − 𝑎𝑖,𝑗𝑘+1,2 := 𝛿𝑎𝑖,𝑗𝑘+1 = 𝐷𝜙𝑘 𝛿𝑎
𝑝,𝑞
𝑘 (𝑅−1

𝑘+1)
(𝑝𝑖) (𝑅−1

𝑘+1)
(𝑞𝑗). (5.24)

We observe Eq. 5.24 describes the evolution of the differences of acceleration vectors

along a trajectory. This equation implies that the differences are recursively left-

multiplied by the map Jacobian combined with a double contraction against the 𝑅

matrix. Note that the RHS of Eq. 5.24 can be viewed as a two-step algebraic process.

In the first step, one computes 𝑛 matrix products

(𝑅𝑇
𝑘+1)

−1 𝛿𝐴𝑖𝑘 (𝑅𝑘+1)
−1, 𝑖 = 1, ..., 𝑛,

where 𝛿𝐴𝑖𝑘 is an 𝑚 × 𝑚 matrix that contains the 𝑖-th components of 𝛿𝑎𝑝,𝑞𝑘 , 𝑝, 𝑞 =

1, ...,𝑚. Subsequently, the resulting 𝑛-dimensional vectors (there are 𝑚2 of them) are

left-multiplied by the same Jacobian matrix.

It is critical to note that the two algebraic steps are commutative, which means

that we are allowed to take the initial differences 𝛿𝑎𝑝,𝑞0 , 𝑝, 𝑞 = 1, ...,𝑚, left-multiply

them by a product of 𝑘 Jacobians and then recursively compute the double contrac-
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tions against 𝑘 inverses of 𝑅. Note also that the double contraction can be split

into two single ones, which further implies that we could, for example, recursively

left-multiply the difference vector by a Jacobian with a single contraction, which is

equivalent to replacing (𝑅−1
𝑘+1)

𝑝𝑖 with a Kronecker delta 𝛿𝑝𝑖. To compute the true solu-

tion at (𝑘+1)-th time step, the obtained vectors still need to be recursively contracted

against 𝑘+1 inverses of 𝑅 once more. The purpose of this discussion is to argue that

if we replace one contraction with an identity operation in Eq. 5.24, we effectively

obtain a recursion equivalent to the one in Eq. 5.22, which produces vectors with

norms of the order 𝒪(1). The second contraction appearing in the original version

of Eq. 5.22 means that these vectors are left-multiplied by the product 𝑅−1
𝑘+1...𝑅

−1
1

whose induced norm uniformly approaches 0 at an exponential rate.

Therefore, if the iteration defined by Eq. 5.22 exponentially converges to the true

solution regardless of the choice of 𝑄0, which is true for uniformly hyperbolic systems,

the recursion for 𝑎 (Eq. 5.21) also converges to its true value at an exponential rate.

The ultimate implication is that the iterative algorithm for the SRB density gradient

𝑔 does not depend on the initial guess and its true value can be obtained after a

moderately small number of iterations.

The remaining part of this section focuses on recursive computation of 𝑏, which is

the final term required to evaluate the RHS of the regularized unstable contribution in

Eq. 5.14. Recall that 𝑏 equals a parametric derivative of the scalars appearing in the

constrained tangent equation. These scalars are directly computed using Eq. 5.10.

Recall also that we describe the unstable manifold using a smooth chart 𝑥(𝜉) with a

linearly re-scaled coordinate system that ensures the orthogonality of its gradient at

𝜉 = 0 as introduced above. Thus, by differentiating Eq. 5.10, we obtain an explicit

formula for 𝑏,

𝑏𝑖,𝑗𝑘+1 = 𝜕𝑞𝑗𝑘+1
𝑐𝑖𝑘+1

‖𝜕
𝜉
(𝑗)
𝑘+1

𝑥𝑘+1(0)‖=1

====== 𝜕
𝜉
(𝑗)
𝑘+1
𝑐𝑖𝑘+1 =

𝜕
𝜉
(𝑗)
𝑘+1
𝑞𝑖𝑘+1 · 𝑓𝑘 + 𝑞𝑖𝑘+1 · 𝜕𝜉(𝑗)𝑘+1

𝑓𝑘 := 𝑝𝑖,𝑗𝑘+1 · 𝑓𝑘 + 𝑞𝑖𝑘+1 · 𝜕𝜉(𝑗)𝑘+1
𝑓𝑘,

(5.25)
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where

𝑓𝑘 := 𝐷𝜙𝑘 𝑣𝑘 + 𝜒𝑘+1 = 𝐷𝜙𝑘 𝑣𝑘 + 𝜕𝑠𝜙𝑘.

While the recipe for 𝑓 and 𝑞 has already been discussed, we still require two more

quantities, 𝑝 and parametric derivative of 𝑓 , in order to complete the algorithm. We

first focus on 𝑝, which represents the directional derivative of a backward Lyapunov

vector at the origin of the updated coordinate system. In general, however, 𝑝𝑖,𝑗

does not equal 𝑎𝑖,𝑗. The latter is defined as the second parametric derivative of the

chart evaluated at the origin. Our new quantity 𝑝, on the other hand, is defined as

the parametric derivative of 𝑞 also evaluated at the origin. Consider a 1D smooth

function ℎ(𝑒) : R → R and coordinate transformation 𝑦(𝑒). The difference between 𝑎

and 𝑝 is equivalent to the difference between ℎ′′(𝑦(𝑒)) and (ℎ′(𝑦(𝑒)))′ at a particular

instance of 𝑒. Therefore, to relate 𝑎 an 𝑝, one also needs to differentiate the re-scaling

factor represented by the 𝑅 matrix. This relationship can be found by differentiating

Eq. 5.18 with respect to the 𝑖-th chart coordinate,

𝜕𝜉(𝑖)(∇𝜉𝑥) = (𝜕𝜉(𝑖)𝑄)𝑅 +𝑄 (𝜕𝜉(𝑖)𝑅), (5.26)

which implies that

(𝜕𝜉(𝑖)𝑅)𝑅
−1 = 𝑄𝑇 𝜕𝜉(𝑖)(∇𝜉𝑥)𝑅

−1 −𝑄𝑇 (𝜕𝜉(𝑖)𝑄), (5.27)

for any 𝜉 ∈ [0, 1]𝑚. At the origin of the orthonormalized coordinate system, however,

the 𝑅 matrix equals the identity by construction and thus

𝜕𝜉(𝑖)𝑅 = 𝑄𝑇 𝐴𝑖 −𝑄𝑇 𝑃 𝑖, (5.28)

where 𝐴𝑖 and 𝑃 𝑖 respectively contain second parametric derivatives of the chart and

first parametric derivatives of basis vectors, both evaluated at the origin. Note that

(𝐴𝑖)(:𝑗) := 𝑎𝑗,𝑖 = 𝑎𝑖,𝑗 assuming 𝑥(𝜉) is sufficiently smooth and, analogously, (𝑃 𝑖)(:𝑗) :=

𝑝𝑗,𝑖. Although Eq. 5.28 provides an explicit relation between 𝐴 and 𝑃 , we still need
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more information to compute the latter as the parametric derivative of 𝑅 is unknown.

The missing puzzle piece is hidden is the structure of the matrices appearing in

Eq. 5.27. Indeed, the LHS of that equation is always upper-triangular since it is a

product of two other upper-triangular matrices, while the second term on the RHS

must be skew-symmetric, because

𝜕𝜉(𝑖)
(︀
𝑄𝑇 𝑄

)︀
= 𝜕𝜉(𝑖)𝐼 = 0 =⇒

(︀
𝑄𝑇 𝜕𝜉(𝑖)𝑄

)︀𝑇
+
(︀
𝑄𝑇 𝜕𝜉(𝑖)𝑄

)︀
= 0.

Therefore, we conclude that

(𝜕𝜉𝑙𝑅)
(𝑖𝑗) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑞𝑖 · 𝑎𝑗,𝑙 if 𝑖 = 𝑗,

𝑞𝑖 · 𝑎𝑗,𝑙 + 𝑞𝑗 · 𝑎𝑖,𝑙 if 𝑖 < 𝑗

0 otherwise.

(5.29)

We now combine Eq. 5.29 and Eq. 5.26 to infer an explicit expression for deriva-

tives of backward Lypaunov vectors at the origin,

𝑝𝑖,𝑗 = 𝑎𝑖,𝑗 − 𝑞𝑙(𝜕𝜉𝑗𝑅)
(𝑙𝑖). (5.30)

Note that the computation of 𝑝 requires only the knowledge of 𝑎 and 𝑄, both of

which are integral components of the algorithm for the SRB density gradient 𝑔 [162].

Therefore, the procedure for 𝑔 extended by the two above equations, Eq. 5.29 and Eq.

5.30, enables recursive computation of 𝑝 along a typical trajectory. If the procedure

for 𝑔 converges exponentially fast as argued above, the same is true of its extended

version. Eq. 5.29 clearly indicates that, in general, 𝑝𝑖,𝑗 ̸= 𝑝𝑗,𝑖 if 𝑖 ̸= 𝑗. That lack

of symmetry requires us to compute all 𝑚2 different 𝑝 vectors to advance the full

algorithm in time, which will be clear at the end of this section. Note that Eq. 5.30

reduces to 𝑝 = 𝑎+𝑔 𝑞 if 𝑚 = 1, where 𝑝, 𝑎, 𝑞 are vectors, while 𝑔 is a scalar. Note also

that 𝑝 = 𝑎 only if the measure is distributed uniformly. This simplified equation was

also identified in [31] (between Eq. 6.25 and 6.26), but nothing insightful could be

inferred from that simple 1D case. We implemented this simplification in the attached
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code for the baker’s map (see Section 5.5). We also acknowledge that Eq. 5.30 is

generally important in other applications spanning the fields of differential geometry

and dynamical systems (see [33] and references therein).

The final task in the derivation of the full algorithm is to apply the chain rule

in the second term of the RHS of Eq. 5.25. Notice that at 𝜉𝑘+1 = 𝜉𝑘 = 0, one

can directly change variables of the differentiation because 𝑅−1
𝑘+1 = 𝜕𝜉𝑘/𝜕𝜉𝑘+1, which

implies that

∇𝜉𝑘+1
𝑓𝑘 = ∇𝜉𝑘𝑓𝑘 𝑅

−1
𝑘+1, (5.31)

where the 𝑖-th column of ∇𝜉𝑘𝑓𝑘 can be expanded as follows,

𝜕
𝜉
(𝑖)
𝑘
𝑓𝑘 = 𝐷2𝜙𝑘(𝑣𝑘, 𝑞

𝑖
𝑘) +𝐷𝜙𝑘 𝑤

𝑖
𝑘 +𝐷𝜕𝑠𝜙𝑘 𝑞

𝑖
𝑘. (5.32)

The matrix 𝐷𝜕𝑠𝜙𝑘 represents the Jacobian of the map differentiated with respect to

the scalar 𝑠 and evaluated at time 𝑘. The new quantity, 𝑤𝑖𝑘, represents a parametric

derivative of the regularized tangent vector, i.e., 𝑤𝑖𝑘 := 𝜕
𝜉
(𝑖)
𝑘
𝑣𝑘, and is recursively

computed in the following way,

𝑤𝑖𝑘+1 = (∇𝜉𝑘+1
𝑓𝑘)

(:𝑖) − 𝑏𝑙,𝑖𝑘+1 𝑞
𝑙
𝑘+1 + 𝑐𝑙𝑘+1 𝑝

𝑙,𝑖
𝑘+1. (5.33)

This formula is obtained through parametric differentiation of Eq. 5.8. We can now

observe that the entire set of 𝑚2 scalars 𝑏𝑖,𝑗 and 𝑚2 vectors 𝑝𝑖,𝑗 are necessary in order

to advance the iteration for 𝑤𝑖. While 𝑏 appears in the recursion for 𝑤 and vice versa,

there is no need to construct large linear systems to find both the quantities. Indeed,

Eq. 5.25, 5.31, 5.32 indicate that in order to find 𝑏 at time 𝑘+1, we need all vectors 𝑤

at the previous time 𝑘. Therefore, in our algorithm, we can sequentially compute all

vectors/scalars in the following order: 𝑎, 𝑝, 𝑏 and 𝑤, at every point along a trajectory.

We already discussed the convergence of the iterations for 𝑄, 𝑎, and 𝑝. Our

final task is the convergence analysis of the recursion for 𝑤 (Eq. 5.33). Let 𝛿𝑊𝑘 :=

(𝑊1)𝑘 − (𝑊2)𝑘 be the difference of two matrices containing all vectors 𝑤 in their

columns such that (𝑊1)
(:𝑖)
𝑘 := (𝑤1)

𝑖
𝑘 and (𝑊2)

(:𝑖)
𝑘 := (𝑤2)

𝑖
𝑘, while the labels 1 and 2
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represent two different and randomly chosen initial conditions for the recursion of 𝑤.

Therefore, ‖𝛿𝑊0‖ ̸= 0 in general. Using this notation and combining Eq. 5.33 and

Eq. 5.25, we derive the following iteration for the difference matrix,

𝛿𝑊𝑘+1 =
(︀
𝐼 −𝑄𝑘+1𝑄

𝑇
𝑘+1

)︀
𝐷𝜙𝑘 𝛿𝑊𝑘 𝑅

−1
𝑘+1. (5.34)

Note that the difference matrix is left-multiplied by another matrix that is orthogonal

to the unstable manifold, because

𝑄𝑇
(︀
𝐼 −𝑄𝑄𝑇

)︀
(·) = 0.

Therefore, the recursive application of the left-hand side operator to any initial dif-

ference matrix converges to zero in norm at an exponential rate, i.e.,

‖𝑃𝑘 𝑃𝑘−1...𝑃1 𝛿𝑊0‖ ≤ exp(−𝑐𝑘), 𝑃𝑘 :=
(︀
𝐼 −𝑄𝑘+1𝑄

𝑇
𝑘+1

)︀
𝐷𝜙𝑘, (5.35)

for some constant 𝑐 > 0. To see this, let us consider a generic member of the tangent

space, 𝑣, that is bounded in norm. Any such 𝑣 can be linearly decomposed such that

𝑣 = 𝐶𝑢𝑣 + 𝐶𝑠𝑣 with 𝐶𝑢𝑣 and 𝐶𝑠𝑣 being its distinct components strictly belonging

to the unstable and stable manifolds, respectively. Thus, (𝐼 − 𝑄𝑄𝑇 )𝐶𝑢 𝑣 = 0 and

(𝐼−𝑄𝑄𝑇 )𝐶𝑠 𝑣 = 𝐶𝑠 𝑣. In addition, uniform hyperbolicity guarantees that the product

(
∏︀𝑁

𝑘=0𝐷𝜙𝑘)𝐶𝑠𝑣 strictly belongs to the stable subspace (covariance property), while

its norm is bounded above by 𝐶𝜆𝑁‖𝑣‖ with 𝐶 > 0 and 𝜆 ∈ (0, 1) (uniform decay

property). Note also that the initial difference 𝛿𝑊0 is bombarded by the product

of the inverses of 𝑅 matrices, which also decays with 𝑘 exponentially fast per our

discussion above.

Key point. The ultimate conclusion of this analysis is that all the recursions

presented and derived in this section do not depend on initial conditions and their

respective solutions converge to their true values exponentially fast. This discussion

extends the convergence analysis presented in [31] to systems with multidimensional

unstable manifolds.
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Having the collection of converging iterative expressions for different quantities

arising in the regularized version of the unstable contribution, the final step is to

take the time average of the series generated along a typical trajectory. In particular,

assuming the system is ergodic and combining Eq. 5.13-5.14, we approximate the

unstable contribution through the following triple sum,

∞∑︁
𝑡=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒1 𝑑𝜇 ≈ 1

𝑁

𝐾∑︁
𝑡=0

𝑁∑︁
𝑘=0

𝑚∑︁
𝑖=1

𝐽𝑘+𝑡
(︀
𝑏𝑖,𝑖𝑘 + 𝑐𝑖𝑘 𝑔

𝑖
𝑘

)︀
:=

𝐾∑︁
𝑡=0

𝑈(𝑁, 𝑡), (5.36)

where 𝑇,𝐾 are some positive integers. Assuming all the quantities appearing in the

above expression are Hölder continuous, the law of iterated logarithm applies and

the truncated series approximating ergodic averages converge as 𝒪(
√
log log𝑁/

√
𝑁),

regardless of the value of 𝑚. This means that for a finite 𝐾 [31],

⃒⃒⃒⃒
⃒
𝐾∑︁
𝑡=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒1 𝑑𝜇− 𝑈(𝑁, 𝑡)

⃒⃒⃒⃒
⃒ ≤ 𝐶(𝐾)

√︂
log log𝑁

𝑁
, (5.37)

where 𝐶(𝐾) is a positive scalar that depends on 𝐾. It means that for a fixed 𝐾, the

ergodic-averaging procedure for computing the unstable term approximately behaves

as typical Monte Carlo procedure, analogously to its stable counterpart. However,

note that by truncating the original infinite series, we approach a biased value that

might be significantly different than the true one if𝐾 is chosen improperly. Recall also

that due to the exponential decay of correlations, which is guaranteed in uniformly

hyperbolic systems, the sum over 𝑡 convergences to the true solution exponentially

fast if ergodic averages are exact. In other words, by setting 𝑁 = ∞ and summing

over 𝑘 first, the triple sum in the RHS of Eq. 5.36 rigorously converges to the true

solution exponentially fast as 𝐾 → ∞.

Key point. Two practical conclusions follow form this analysis. First, both 𝑁

and 𝐾 should be sufficiently large to guarantee that both the Monte Carlo error and

series truncation bias are small. Second, for a fixed and finite 𝑁*, increasing 𝐾 might

actually increase the approximation error at some point. Indeed, notice that there

exists a 𝐾* for which
∑︀∞

𝑡=𝐾*

∫︀
𝑀
𝐷(𝐽 ∘𝜙𝑡) ·𝜒1 𝑑𝜇 is within 𝒪(𝜖) from zero with 𝜖 > 0
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[31]. However, this does not guarantee 𝐶(𝐾*)
√︀
(log log𝑁*)/𝑁* is 𝒪(𝜖). In practice,

we always truncate a random trajectory and, consequently, we do not let the terms

corresponding to larger values of 𝐾 become sufficiently small.

The above discussion concludes the generalized space-split algorithm. A thorough

summary of the entire algorithm, analysis of its computational complexity, practi-

cal implementation guidelines, and demonstration of several numerical examples are

presented in the following two sections.

5.4 Space-split algorithm for multi-dimensional hy-

perbolic system

We now synthesize all derivations and analysis presented in Sections 5.2–5.3, and

construct an algorithm for sensitivity computation of chaotic dynamical systems with

an arbitrary number of degrees of freedom 𝑛 and positive Lyapunov exponents 𝑚.

Algorithm 2 is a summary of the space-split procedure in the form of a pseudocode.

Every iteration of the main time loop starts from updating the sums of the stable

and unstable integrands, 𝑠 and 𝑢, respectively (Lines 3-6). We disregard the first 𝑇

data points to ensure that all quantities contributing to the final average are close

to their respective true values up to the machine precision. Given that all recursions

exponentially converge, the value of 𝑇 is low compared to 𝑁 , i.e., 𝑇 ≪ 𝑁 .

Lines 7-11 are taken from [162], as they reflect all the steps necessary to compute

the SRB density gradient. Note that this code chunk involves advancing 𝑚 tangent

equations (Line 7), QR factorization (Line 8), inverting the 𝑅matrix (Line 9), advanc-

ing 𝑚2/2 second-order tangent equations (Line 10), and double contraction of 𝑚2/2

acceleration vectors against the 𝑅−1 matrix (Line 11). Indeed, the most expensive

stage of this chunk is Line 10, which costs 𝒪(𝑛3𝑚2) due to the presence of the third-

order tensor (Hessian of 𝜙) contracted against two different vectors. This is because

for each component of the new 𝑛-dimensional vector �̃�, one must compute and sum

up 𝑛2 different scalar products. Note also that the re-scaling stage (Line 11) involves
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Algorithm 2: Space-split sensitivity (S3) algorithm for discrete systems
Input : 𝑁 , 𝐾, 𝑇 , 𝑛, 𝑚, 𝑠 = 0, 𝑢 = 0
Output: 𝑑⟨𝐽⟩/𝑑𝑠 ≈ (𝑠+ 𝑢)/𝑁

1 Randomly generate: 𝑥0, 𝑣0, 𝑄0, 𝑎
𝑖,𝑗
0 , 𝑤𝑖

0 for all 𝑖, 𝑗 = 1, ...,𝑚;
2 for 𝑘 = 0, ..., 𝑁 − 1 do // main time loop
3 if 𝑘 ≥ 𝑇 then
4 𝑠 = 𝑠+𝐷𝐽𝑘 · 𝑣𝑘;
5 𝑢 = 𝑢− 𝐽𝑘 (𝑢𝑘 + 𝑢𝑘−1 + ...+ 𝑢𝑘−𝐾+1);
6 end
7 𝑆𝑘 = 𝐷𝜙𝑘 𝑄𝑘;
8 QR-factorize 𝑆𝑘: 𝑄𝑘+1 𝑅𝑘+1 = 𝑆𝑘;
9 Find the inverse of 𝑅𝑘+1;

10 for 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑖 do �̃�𝑖,𝑗𝑘+1 = 𝐷2𝜙𝑘(𝑞
𝑖
𝑘, 𝑞

𝑗
𝑘) +𝐷𝜙𝑘 𝑎

𝑖,𝑗
𝑘 ;

11 for 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑖 do 𝑎𝑖,𝑗𝑘+1 = �̃�𝑝,𝑞𝑘+1 (𝑅
−1)

(𝑝𝑖)
𝑘+1 (𝑅

−1)
(𝑞𝑗)
𝑘+1 ;

12 for 𝑖 = 1, ...,𝑚 do
13 for 𝑝, 𝑞 = 1, ...,𝑚 do

14 (𝜕𝜉𝑖𝑘+1
𝑅𝑘+1)

(𝑝𝑞) =

⎧⎪⎨⎪⎩
𝑞𝑝𝑘+1 · 𝑎

𝑝,𝑖
𝑘+1, if 𝑝 = 𝑞

𝑞𝑝𝑘+1 · 𝑎
𝑞,𝑖
𝑘+1 + 𝑞𝑞𝑘+1 · 𝑎

𝑝,𝑖
𝑘+1, if 𝑝 < 𝑞

0, otherwise
;

15 end
16 𝑔𝑖𝑘+1 = −tr(𝜕𝜉𝑖𝑘+1

𝑅𝑘+1);
17 end
18 𝑓𝑘 = 𝐷𝜙𝑘 𝑣𝑘 + 𝜒𝑘+1;
19 for 𝑖 = 1, ...,𝑚 do
20 𝑐𝑖𝑘+1 = 𝑞𝑖𝑘+1 · 𝑓𝑘;
21 𝜕𝜉𝑖𝑘 𝑓𝑘 = 𝐷2𝜙𝑘(𝑣𝑘, 𝑞

𝑖
𝑘) +𝐷𝜙𝑘 𝑤

𝑖
𝑘 +𝐷𝜕𝑠𝜙𝑘 𝑞

𝑖
𝑘;

22 end
23 𝑣𝑘+1 = 𝑓𝑘 − 𝑐𝑖𝑘+1 𝑞

𝑖
𝑘+1;

24 ∇𝜉𝑘+1
𝑓𝑘 = ∇𝜉𝑘𝑓𝑘 𝑅

−1
𝑘+1;

25 for 𝑖, 𝑗 = 1, ...,𝑚 do
26 𝑝𝑖,𝑗𝑘+1 = 𝑎𝑖,𝑗𝑘+1 − 𝑞𝑙𝑘+1(𝜕𝜉𝑗𝑘+1

𝑅𝑘+1)
(𝑙𝑖);

27 𝑏𝑖,𝑗𝑘+1 = 𝑝𝑖,𝑗𝑘+1 · 𝑓𝑘 + 𝑞𝑖𝑘+1 · (∇𝜉𝑘+1
𝑓𝑘)

:𝑗 ;
28 end
29 for 𝑖 = 1, ...,𝑚 do 𝑤𝑖

𝑘+1 = (∇𝜉𝑘+1
𝑓𝑘)

:𝑖 − 𝑏𝑙,𝑖𝑘+1 𝑞
𝑙
𝑘+1 − 𝑐𝑙𝑘+1 𝑝

𝑙,𝑖
𝑘+1 ;

30 Save the scalar: 𝑢𝑘+1 = 𝑏𝑖,𝑖𝑘+1 + 𝑐𝑖𝑘+1 𝑔
𝑖
𝑘+1;

31 Advance the iteration: 𝑥𝑘+1 = 𝜙(𝑥𝑘);
32 Evaluate: 𝐷𝜙𝑘+1, 𝐷2𝜙𝑘+1, 𝐷𝜕𝑠𝜙𝑘+1, 𝜒𝑘+2 , 𝐽𝑘+1, 𝐷𝐽𝑘+1;
33 end

185



four nested for-loops, which implies that the brute-force vector-by-vector re-scaling

would require 𝒪(𝑛𝑚4) floating point operations. However, as pointed out in Section

5.3, this operation can also be completed in a component-by-component fashion. It

means that one can alternatively compute 𝑛 matrix products (𝑅𝑇
𝑘+1)

−1𝐴𝑖𝑅−1
𝑘+1, where

𝐴𝑖 denotes an 𝑚×𝑚 matrix containing 𝑖-th components of all 𝑚2 instances of �̃�. The

double matrix-matrix product costs 𝒪(𝑚3) flops and thus the total cost of Line 11 is

proportional to 𝒪(𝑛𝑚3). The reader is referred to [162] for a more detailed analysis

of the computational complexity of this part of the algorithm.

Lines 12-17 compute 𝑚 upper-triangular derivatives of the 𝑅 matrix. Each com-

ponent requires evaluating one or two dot products, which implies that the cost of

executing this chunk is 𝒪(𝑛𝑚3). Here, we automatically obtain the SRB density

gradient by evaluating the traces of all instances of 𝜕𝜉𝑅. The simplified relation for

𝑔 (Line 16) is a direct consequence of the measure conservation, which was obtained

through the parametric differentiation of Eq. 5.17 using locally orthogonal coordi-

nates (a complete derivation can be found in [160]). The leading order of the flop

count of the code fragment involving Lines 18-23 is determined by Line 21. That line

evaluates 𝑚 parametric derivatives of 𝑓 through the contraction of the Hessian and

two other matrix-vector products. Per our discussion above, therefore, Line 21 re-

quires 𝒪(𝑛3𝑚) flops. The same estimate also applies to the algorithm part involving

Lines 24-30. Here, the most expensive stage is Line 26, which evaluates 𝑚2 instances

of 𝑝. Note that for each instance of 𝑝, we compute a matrix-vector product, each

requiring 𝒪(𝑛𝑚) algebraic operations. Note also the variable change (Line 24), com-

putation of all scalars 𝑏 (Line 27), and the update of 𝑤 (Line 29) cost 𝒪(𝑛𝑚2) each.

The final chunk of this algorithm, Lines 31-32, evaluates a collection of nonlinear

expressions and thus its complexity depends on the structure of the system.

Key point. Since 𝑛 ≥ 𝑚, the leading term of the total flop count of Algorithm 2

(excluding the nonlinear part) is proportional to 𝒪(𝑛3𝑚2). This estimate reflects the

worst-case scenario for a general chaotic system. However, many real-world chaotic

systems produced by spatial discretization of partial differential equations (PDEs)

have a special structure. Popular discretization schemes, such as the finite element
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method, generate systems with local dependencies. Each grid point is usually com-

municated only with the neighboring points. This implies that both the Jacobian and

Hessian of 𝜙 are sparse arrays and have a banded structure. In such systems, there-

fore, the total flop count is linear with respect to the dimension of the system 𝑛. To

conclude, the ultimate cost of approximating the sensitivity 𝑑⟨𝐽⟩/𝑑𝑠 using Algorithm

2 and data from 𝑁 consecutive states along a typical trajectory is 𝒪(𝑁 𝑛3𝑚2). For

physical systems, however, this estimate can be potentially reduced to 𝒪(𝑁 𝑛𝑚3) in

the presence of sparsity patterns arising due to a local discretization.

In terms of the storage, the largest arrays are the following: the Hessian 𝐷2𝜙, 𝑚2

vectors 𝑝, and 𝑚2/2 vectors 𝑎. They collectively have 𝑛3, 𝑚2 𝑛 and 𝑚2 𝑛 components,

respectively. In the case of PDE-related systems with a sparse structure, the number

of components to be stored is linear with respect to 𝑛. Moreover, in several physical

dynamical systems, the dimension of the unstable manifold is significantly smaller

than the system’s dimension, i.e., 𝑚/𝑛 ≪ 1 and 𝑚2 < 𝑛 [18, 126, 21]. Thus, in the

case of sparse physical systems, our algorithm requires storing two arrays no larger

than 𝑛2 entries and a few significantly smaller arrays. We encourage the reader to

explore Supplementary Materials to see an example of efficient implementation of the

Jacobian-vector and Hessian-vectors products for the 𝑛-dimensional solenoid map

introduced in Section 5.5.

Note that in order to compute all required quantities at step 𝑘 + 1, we only need

information from the previous one, i.e., 𝑘-th time step. No information from steps

𝑘 − 2, 𝑘 − 3, ..., 0 is required to advance the iteration from step 𝑘 to 𝑘 + 1. This

is a considerable advantage over other competitive methods such as the family of

shadowing methods proposed in [18, 181, 129], which require storing large arrays from

the entire history to assemble a huge global matrix. That matrix is a consequence of

the minimization problem defined over the entire trajectory. Our method does not

rely on global dependencies.

The desired sensitivity, 𝑑⟨𝐽⟩/𝑑𝑠, can be naïvely computed using the finite differ-

ence method (FD). However, the error associated with FD approximations combines

both the statistical and Taylor series truncation errors. In practice, this means that
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one might need even a few orders of magnitude more samples compared to Algo-

rithm 2 to secure a similar error of the final output [158, 31]. We also highlight

the fact that FD is not the best option for multi-query problems common in design

optimization and uncertainty quantification. Problems of this type usually require

estimating thousands of sensitivities of different observables with respect to large ar-

rays of parameters. For FD, the total cost is obviously proportional to the number

of parameters. This is not the case for the space-split algorithm, because its most

expensive part, i.e., the part that is responsible for differentiating the SRB measure

(Lines 7-17), does not depend on the parameter. Notice that 𝑔 is computed only once

per time step, regardless of the number of parameters.

5.5 Numerical results

The purpose of this section is to numerically analyze the convergence of Algorithm

2 and validate it using three different low-dimensional chaotic maps taken from the

literature. In the first part, we shall consider the two-dimensional (𝑛 = 2) baker’s

map 𝜙 : [0, 2𝜋]2 → [0, 2𝜋]2 [31],

𝑥
(1)
𝑘+1 = 2𝑥

(1)
𝑘 + 𝑠(1) sin𝑥

(1)
𝑘 + 𝑠(2)/2 sin 𝑥

(1)
𝑘 sin 2𝑥

(2)
𝑘 mod 2𝜋

𝑥
(2)
𝑘+1 = 𝑥

(2)
𝑘 /2 + 𝜋⌊𝑥𝑘/𝜋⌋+ 𝑠(3)/2 sin 𝑥

(1)
𝑘 sin 2𝑥

(2)
𝑘 + 𝑠(4)/2 sin 2𝑥

(2)
𝑘 mod 2𝜋,

(5.38)

and the three-dimensional (𝑛 = 3) solenoid map [127, 186],

𝑥
(1)
𝑘+1 = 0.05𝑥

(1)
𝑘 + 0.1 cos(8𝑥

(2)
𝑘 )− 0.1 sin(5𝑥

(3)
𝑘 )

𝑥
(2)
𝑘+1 = 2𝑥

(2)
𝑘 + 𝑠 (1 + 𝑥

(1)
𝑘 ) sin(8𝑥

(2)
𝑘 )mod 2𝜋

𝑥
(3)
𝑘+1 = 3𝑥

(3)
𝑘 + 𝑠 (1 + 𝑥

(1)
𝑘 ) cos(2𝑥

(3)
𝑘 )mod 2𝜋.

(5.39)

The baker’s map involves a set of four real-valued parameters, {𝑠(1), 𝑠(2), 𝑠(3), 𝑠(4)}.

For moderately low parameter values, this map has one positive LE (𝑚 = 1) close to

log 2 and one negative LE. Eq. 5.38 is a mathematical representation of the kneading

operation, in which a thin dough is stretched by the factor of 2 and then compressed

188



Figure 5-1: Convergence of the iterative formulas for 𝑎 and 𝑤 on the semi-logarithmic
scale. We compute vector 2-norms and matrix Frobenius norms for the baker’s map
(left) and solenoid map (right), respectively. In both cases, the parameter values are
randomly chosen from the uniform distribution [0, 0.2]. The dashed lines represent a
reference exponential function. Each marker represents a distinct randomly chosen
trajectory.

by the same factor. This stretching–compressing process is perturbed in two direc-

tions through the sine functions. The family of baker’s maps serve as deterministic

models of diffusion processes and are widely used in statistical mechanics [60]. The

second map, in Eq. 5.39, is parameterized by a single real-valued parameter 𝑠. It

was constructed in [127] by adding one additional expanding rotation and extra in-

teraction term between contracting and expanding directions of the Smale-Williams

map used in the modeling of oscillating circuits [93]. If 𝑠 is moderately low, this map

has two positive LEs (𝑚 = 2), with values close to log 2 and log 3, and a negative

one. Therefore, unstable manifolds are geometrically represented by smooth curves

immersed in R2 (baker’s map) and surfaces immersed in R3 (solenoid map).

Figure 5.5 presents convergence plots of the recursive formulas for 𝑎 and 𝑤, which

are key ingredients of Algorithm 2. We perform this test by randomly choosing two

different initial conditions 𝑤𝑖0 and 𝑎𝑖,𝑗0 , 𝑖, 𝑗 = 1, ...,𝑚, running two independent sets of

recursions, and computing the norm of the resulting difference vectors (as defined in

Eq. 5.24 and Eq. 5.34) as a function of time 𝑘. We also randomly choose parameter

values and repeat this test three times by following three randomly chosen trajectories.

We observe that both the acceleration vectors and parametric derivatives of the

tangent solution obtained through the recursions derived in Section 5.3 converge ex-
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ponentially fast, which confirms our analytical predictions. However, the iteration

for the latter quantity tends to converge faster. For the 3D map, we observe a sig-

nificantly larger convergence rate of the quantity represented by red markers. The

corresponding errors reach the machine-precision values in only 10–12 iterations, after

which the round-off error starts to dominate. This test also indicates that the rate

of convergence may vary from system to system. We also notice a significant peak

right after the beginning of the recursion in the case of the solenoid map. This is a

consequence of the randomly chosen initial condition 𝑥0 that is likely to be located

beyond the attractor given its complex geometry [127].

We now turn our attention to a different “convergence" aspect of the S3 algorithm.

Indeed, the overall accuracy of our method depends on the amount of data used in

the ergodic-averaging process of the recursively generated time series. However, apart

from the trajectory length 𝑁 , we also have freedom in choosing the number of series

terms 𝐾. To better understand the influence of that parameter on the error, we fix

𝑁 and measure the accuracy of the output of Algorithm 2 by changing 𝐾. The error

is defined as the ratio |�̃�𝑆3 − �̃�𝐹𝐷|/|�̃�𝐹𝐷|, where �̃�𝑆3 and �̃�𝐹𝐷 denote the sensitivity

approximations obtained using the S3 algorithm and finite differences, respectively.

Figure 5-2 shows the relation between error and 𝐾 for both maps. Each curve plotted

in that figure was generated for a single trajectory, i.e, the result for 𝐾* depends on

the results for 𝐾 < 𝐾*. A few important conclusions follow from Figure 5-2. First, by

fixing 𝑁 , one can distinguish two dramatically different regimes of the error function.

For low values of 𝐾, the error rapidly decays at the approximately exponential rate.

As 𝐾 gets larger, the S3 accuracy does not improve and the error might even increase.

Second, by extending the trajectory, i.e., by increasing 𝑁 , the qualitative behavior of

the error function does not change, but the particular error values decrease. These

two critical observations are consistent with the discussion associated with Eq. 5.37.

Recall that the convergence of the S3 algorithm for 𝐾 → ∞ is guaranteed only if

the particular ergodic averages (Lebesgue integrals) are exact. The exponential decay

of correlations is manifested in our numerical experiment only to some extent, i.e.,

when 𝐾 is small. Indeed, we observe that the exponentially decaying part of the
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Figure 5-2: Relation between the error and 𝐾 with a fixed trajectory length 𝑁 . In
this analysis, we tested Map 5.38 with 𝑠 = 𝑠(1) = 𝑠(2) = 0.6, 𝑠(3) = 𝑠(4) = 0 ,
𝐽 = cos(4𝑥(1)) (left) and Map 5.39 with 𝑠 = −0.05, 𝐽 = sin(𝑥(0)) cos(4𝑥(1))𝑥(2). The
error function represents a relative error computed with respect to the central finite
difference approximation with grid size 𝛿𝑠 = 0.01. The approximations of long-time
averages needed for finite differences were obtained using 1010 samples each. Dashed
lines represent reference exponential functions.
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error function extends as we increase 𝑁 . A practical takeaway is the following. Let

𝐾* be a critical value of 𝐾 that indicates the transition between the two regimes of

the error function. Notice that the value of 𝐾* may vary between different systems.

Since the cost of evaluating Line 5 of Algorithm 2 is negligible compared to the total

cost, a good strategy is to compute and save several approximations of the unstable

contribution along a single trajectory and choose the one that significantly breaks the

converging trend.

We are also interested in the behavior of the error function with respect to the

trajectory length 𝑁 for a fixed 𝐾. Figure 5-3 illustrates that relation for both maps.

All plots in Figure 5-3 clearly indicate that our algorithm behaves as a typical Monte

Carlo procedure, i.e., the error approximately scales as 𝒪(1/
√
𝑁). This is consistent

with the analytical predictions and our argument that the log log𝑁 term has little

impact on the convergence rate for large values of 𝑁 . The relative error computed for

the 3D map at 𝑠 = 0.05 does not drop below the value 0.03 as we approach 𝑁 = 108,

which suggests that an individual calibration of 𝐾 for that particular parameter value

could be done. Notice also that we respectively need 𝑁 = 𝒪(106) and 𝑁 = 𝒪(108)

samples to secure the relative error 𝒪(10−2), which means that the value of 𝐶 from

Ineq. 5.37 may significantly vary from system to system.

Given the above convergence test results, we shall now apply Algorithm 2 to

Maps 5.38–5.39 for a wide range of parameters. In this experiment, we fix the cut-off

threshold to 𝑇 = 150, which will guarantee that the trajectory-following recursions

provide us machine-precision quantities that will be used in ergodic-averaging. For

both maps, we also fix 𝐾 = 11, which is an average of the optimal values estimated

in our convergence study. For every parameter value from the chosen interval, the S3

algorithm will run over 𝑁 = 106 or 𝑁 = 107 time steps. We validate all S3 outputs by

comparing them against the central finite difference approximations (FD). The latter

are obtained by computing long-time averages of a chosen objective function, fitting

a polynomial, and applying the FD formula. Sensitivity analysis results for Map 5.38

and Map 5.39 are included in Figure 5-4 and Figure 5-5, respectively. Other technical

details are included in the captions of these two figures.
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Figure 5-3: Relation between the error and trajectory length 𝑁 for a fixed 𝐾. The
top row represents Map 5.38 with 𝑠 = 𝑠(1) = 𝑠(2), 𝑠(3) = 𝑠(4) = 0 and fixed 𝐾 = 14,
while the bottom row represents Map 5.39 with 𝐾 = 8. The objective functions and
the way the error is computed are identical to those in Figure 5-2. The dashed lines
are reference functions that are proportional to 1/

√
𝑁 .
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Figure 5-4: Sensitivity analysis of Map 5.38 for a wide range of parameters. Upper
plot: long-time averages of 𝐽 = cos(4𝑥(1)) versus two sets of parameters. The two
curves were created using 100 equally-spaced data points. For each grid point, a
random trajectory of length 𝑁 = 108 was computed. Lower plots: comparison of
sensitivities computed in two different ways: through central finite differences (FD)
and S3 algorithm using 𝑁 = 106 samples. The FD scheme was applied to an 11th-
order polynomial fit of the two curves in the top plot.

We observe that Algorithm 2 provides accurate approximations of the linear re-

sponse for a wide range of parameters for both 2D and 3D maps. The curve repre-

senting FD approximations crosses all orange bullets despite the fact the S3 estimates

were generated for a fixed 𝐾 and 𝑁 . Results of this experiment indicate that, in this

particular case, there is no need to calibrate 𝐾 and 𝑁 for every instance of the input

parameter 𝑠. If the parameter range is wider than the ones used in this study, a

further calibration might be necessary to preserve the desired accuracy.

In the second part of this section, we apply Algorithm 2 to a problem that is

more challenging than the two above. Thus, we shall consider a modified version of
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Figure 5-5: Sensitivity analysis of Map 5.39 for a wide range of parameters. Left plot:
long-time averages of 𝐽 = sin(𝑥(0)) cos(4𝑥(1))𝑥(2) versus 𝑠. The curve was created
using 100 equally-spaced data points. For each grid point, a random trajectory of
length 𝑁 = 108 was computed. Right plot: comparison of sensitivities computed in
two different ways: through central finite differences (FD) and S3 algorithm using
𝑁 = 107 samples. The FD scheme was applied to a 11th-order polynomial fit of the
curve in the left plot.

the 𝑛-dimensional solenoid map that was studied in [127]. We modify its original

version by setting different expansion coefficients in phase space. The new map has

the following form,

𝑥
(1)
𝑘+1 = 0.05𝑥

(1)
𝑘 + 𝑠+ 0.1

𝑛∑︁
𝑗=2

cos(5𝑥
(𝑗)
𝑘 )

𝑥
(𝑗)
𝑘+1 =

(︂
2 +

𝑗 − 1

𝑛− 1

)︂
𝑥
(𝑗)
𝑘 + 𝑠 (1 + 𝑥

(1)
𝑘 ) sin(2𝑥

(𝑗)
𝑘 )mod 2𝜋, 𝑗 = 2, ..., 𝑛,

(5.40)

where 𝑠 ∈ R, and 𝑥𝑘 ∈ R × [0, 2𝜋]𝑛−1 for all 𝑘 ∈ Z. This is an 𝑛-dimensional

extension of the classical solenoid map and was constructed by adding additional

expansive directions. It can be shown that for a small 𝑠, Map 5.40 has one negative

and 𝑚 = 𝑛 − 1 positive Lyapunov exponents. In our experiments, we set 𝑛 = 12,

which means that the stable subspace consists of simple 1D curves immersed in R12.

The sensitivities will be computed using the objective function from the study of the

original map, i.e.,

𝐽 = (𝑥(1))3 + 0.005
12∑︁
𝑗=2

sin(𝑥(𝑗) − 𝜋).

195



Figure 5-6: Lyapunov exponents of the 12-dimensional variant of Map 5.40. The
spectrum was computed at 96 equally-spaced parameter values. For each 𝑠, a trajec-
tory of length 𝑁 = 107 was computed. The only negative LE, 𝜆12, was re-scaled by
the factor −1/2 only for demonstration purposes.

Before we compute the linear response, we first investigate the Lyapunov spectrum

of the modified map at 𝑠 ∈ [−0.3, 0.3]. Recall that an integral component of the S3 al-

gorithm is the recursive computation of orthogonal bases of unstable manifolds. Thus,

by taking the ergodic-average of the logarithms of the diagonals of upper-triangular

matrices 𝑅, we retrieve the positive part of the LE spectrum. We can modify Lines 7-9

of Algorithm 2 by adding extra 𝑛−𝑚 tangent equations to retrieve the full Lyapunov

spectrum. This method of approximating the spectrum was proposed in [15], which

we use to plot all 12 exponents in Figure 5-6. We observe that the LE spectrum of

Map 5.40 consists of 11 positive exponents scattered approximately between log 2 and

log 3 and a negative exponent with the value oscillating around −3. The dimensions

of the tangent subspaces are fixed over the entire parametric domain.

By setting 𝑛 = 12, 𝑚 = 11, and 𝑁 = 107, 𝑇 = 150, we run Algorithm 2 to

differentiate the long-time average of 𝐽 . Using the strategy described above, we

store several approximations of the unstable contribution in our simulation, each

corresponding to a different value of 𝐾. Figure 5-7 illustrates the statistics of 𝐽 at

𝑠 ∈ [−0.3, 0.3] and corresponding sensitivities. The latter are approximated using

central finite differences and S3 with 𝐾 = 2, analogously to the previous numerical
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Figure 5-7: Sensitivity analysis of the 12-dimensional variant of Map 5.40. Left: long-
time averages of 𝐽 computed at 96 equally-spaced parameter values. For each 𝑠, a
trajectory of length 𝑁 = 109 was computed. Right: approximation of sensitivities
using a 5th-order polynomial fit with central finite differences (𝛿𝑠 = 0.6/95), and the
S3 algorithm with 𝑁 = 107, 𝑇 = 150, 𝐾 = 2.

experiments. Although 𝐾 is fixed everywhere in the parametric space in Figure 5-7,

the maximum relative error of S3 approximations is only about 5%. The largest error

is located around 𝑠 ∈ [0, 0.1], which could be further reduced by adding more samples

or tuning the value of 𝐾. This example proves the correctness of the derived linear

response algorithm summarized in Algorithm 2, which opens the door for potential

extensions to continuous-time chaos.

5.6 Summary

It is generally difficult to accurately estimate sensitivities of chaotic dynamical sys-

tems. Due to the butterfly effect, the direct simulation of state perturbations is

impractical. Several numerical methods have been proposed to compute the sensi-

tivity of chaos, but most of them suffer from at least one of the following common

problems: exploding tangent solutions, unphysicality of shadowing trajectories, huge

computational cost and storage requirements, complicated generalization.

Our new method for sensitivity analysis derives from Ruelle’s rigorous linear re-

sponse theory, which is regularized based the concept of perturbation space-splitting

and partial integration along unstable manifolds [31]. Through the intuitive measure-
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based parameterization of the unstable subspace [160, 162] and chain rule on smooth

manifolds, we systematically derive a set of trajectory-following recursions for a col-

lection of by-products arising due to the regularization of Ruelle’s formula, and an-

alytically show their exponential convergence. Similarly to the majority of methods

that stem from the linear response theory, our method is formulated as a Monte Carlo

procedure, which provably converges to the true solution approximately as 𝒪(1/
√
𝑁),

where 𝑁 is the trajectory length. The following list summarizes the main advantages

of the space-split approach:

• Immunity to the ergodicity-breaking and unphysicality errors, which are com-

mon in shadowing methods,

• Immunity to the exponential growth of norms of tangent solutions, a.k.a. the

butterfly effect phenomenon,

• Generalizability to 𝑛-dimensional systems, 𝑛 ∈ Z+; the algorithm we propose is

ready-to-use for discrete systems with an arbitrary number of positive Lyapuonv

exponents 𝑚,

• Provable convergence for uniformly hyperbolic systems,

• Translatable to memory-efficient as-we-go Monte Carlo algorithms.

The major consequence of partial Lebesgue integration is the computation of direc-

tional derivatives of the ergodic measure that describes the statistical behavior in

phase space. Recursive computation of this quantity, known as the SRB density gra-

dient, requires solving a collection first- and second-order tangent equations. Indeed,

this is the actual price for the regularized version of Ruelle’s formula. Therefore, from

the algorithmic perspective, we must perform a series of algebraic operations involv-

ing third-order tensors. We estimate that the total flop count is 𝒪(𝑛3𝑚2), which can

be reduced to 𝒪(𝑛𝑚3) for PDE-related systems with local dependencies and sparse

structures.

While this chapter solely focuses on discrete systems, the proposed algorithm can

be naturally extended to continuous-time (ODE) systems. The perturbation vector
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splitting would need to incorporate the one-dimensional neutral subspace that is

aligned with the flow. This will require some modifications of the proposed algorithm,

as the time evolution vector will need to be differentiated along unstable manifolds

as well. However, after that minor modification, the leading term of the algorithm’s

total flop count is expected to remain the same.
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Chapter 6

Approximating the linear response of

physical chaos

Parametric derivatives of statistics are highly desired quantities in prediction, design

optimization and uncertainty quantification. In the presence of chaos, the rigorous

computation of these quantities is certainly possible, but mathematically complicated

and computationally expensive. Based on Ruelle’s formalism, this chapter shows that

the sophisticated linear response algorithm can be dramatically simplified in higher-

dimensional systems featuring statistical homogeneity in the physical space. We argue

that the contribution of the SRB (Sinai-Ruelle-Bowen) measure gradient, which is an

integral yet the most cumbersome part of the full algorithm, is negligible if the objec-

tive function is appropriately aligned with unstable manifolds. This abstract condition

could potentially be satisfied by a vast family of real-world chaotic systems, regardless

of the physical meaning and mathematical form of the objective function and per-

turbed parameter. We demonstrate several numerical examples that support these

conclusions and that present the use and performance of a simplified linear response

algorithm. In the numerical experiments, we consider physical models described by

differential equations, including Lorenz 96 and Kuramoto-Sivashinsky.

The content of this chapter was published in Nonlinear Dynamics by

Springer Nature [163]. It is reproduced with permission from Springer

Nature.
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6.1 Preliminaries

In this chapter, we investigate if and under what circumstances the complex numerical

procedures for the linear response could be simplified. In particular, we attempt to

answer the fundamental question about the significance of the SRB measure change.

Rich numerical evidence found in the literate suggests that the computation of the

SRB density gradient is not necessary to accurately approximate the linear response

in a number of popular physical systems. For example, the aforementioned shadowing

methods, which in fact regularize the tangent equation and do not compute the cur-

vature of unstable manifolds, have been proven successful in 3D turbulence models

[18, 126]. Moreover, a recent theoretical study in [128] concludes that if both the

input perturbation and objective function follow the multivariate normal distribu-

tion, the effect of the measure change is expected to decay proportionally to
√︀
𝑚/𝑛,

where 𝑚 is the number of positive Lyapunov exponents (LEs), while 𝑛 denotes the

system’s dimension. That work, however, does not provide any numerical examples.

Here, we show that the contribution of the unstable divergence could potentially be

negligible if the objective function is specifically aligned with the unstable manifold.

The meaning of alignment in this context is rigorously explained later in this work.

Our numerical examples indicate that it is not uncommon that the SRB measure

change is large and even has infinite variance, while its contribution to the linear

response might be negligible at the same time. This paradox may have huge implica-

tions for approximating sensitivities in large physical systems. The only obstacle is

an additional requirement for the objective function, which typically has a concrete

physical meaning. Our argument is based on the fact that a vast family of practi-

cable systems are statistically homogeneous in physical space. They include popular

models governing climate dynamics [85], turbulence [97], population dynamics [177],

and several other phenomena. For such systems, we have freedom in representing any

spatially-averaged objective function, which effectively increases the probability of its

alignment with a tangent subspace.

Our reasoning also relies on the specific orthogonal representation of the perturba-
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tion splitting proposed and numerically tested in [161]. In particular, we use orthog-

onal Lyapunov vectors to represent unstable manifolds everywhere on the attractor.

Although they provide limited information on the geometry of the tangent space,

there are three major reasons we favor orthogonal basis vectors over their covariant

counterparts (CLVs). First, when ordered consistently with the decreasing set of LEs,

both the Lyapunov basis sets have the same linear span [15]. This cascade property

was used in [161] to stabilize the stable contribution of the S3 algorithm, as it enables

us to orthogonally project out the unstable, unstable-center, or unstable-center-stable

component of a tangent solution in a recursive manner. We also highlight the fact that

S3 does not need stable directions alone. Second, the SRB measure change computed

in the direction corresponding to the largest LE tends to be statistically smaller, even

by orders of magnitude, compared to the other orthogonal directions. SRB measure

slopes computed along the consecutive orthogonal directions are strongly correlated

with the Lyapunov spectrum. We numerically verify this property and show that,

when combined with the concept of alignment of the objective function, it may have

a huge impact in controlling the magnitude of the unstable contribution. Finally,

orthogonal Lyapunov bases are computationally cheaper compared to CLVs, as they

require only a forward tangent solver with step-by-step QR factorization.

6.2 Space-split sensitivity (S3) method for chaotic

flows

The purpose of this section is twofold. First, we review the main results of the linear

response theory, i.e., Ruelle’s closed-form expression and its computable realization,

known as the space-split sensitivity. Second, we present an extension of S3 to general

hyperbolic flows and critically analyze its properties and major implications in the

context of higher-dimensional systems.

Throughout this chapter, we consider a parameterized 𝑛-dimensional ergodic flow,

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥; 𝑠), 𝑥(0) = 𝑥0, (6.1)
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with 𝑚 ≥ 1 positive Lyapunov exponents, where 𝑠 is a real-valued scalar parameter.

The value of 𝑚 approximates the dimension of the unstable (expanding) subspace,

while particular LE values indicate the rate of exponential expansion/contraction [7].

Due to the assumed ergodicity, the statistical behavior of the system does not depend

on the initial condition 𝑥0.

For a given smooth objective function 𝐽 :𝑀 → R, our ultimate goal is to approx-

imate the parametric derivative of the long-time average of 𝐽 , defined as

𝑑⟨𝐽⟩
𝑑𝑠

:=
𝑑

𝑑𝑠
lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝐽(𝑥(𝑡; 𝑠)) 𝑑𝑡, (6.2)

where 𝑀 denotes the 𝑛-dimensional manifold defined by Eq. 6.1. We assume 𝐽 does

not depend on 𝑠.

Motivated by the work of Ruelle [148, 150], the authors of [31, 28] proposed a

new method, called the space-split sensitivity (S3), which regularizes Ruelle’s series

(see Eq. 1.5) for systems with one-dimensional unstable subspaces (𝑚 = 1). Based

on its extension to general hyperbolic maps in proposed in Chapter 5, we derive and

describe a space-split approach for chaotic flows with unstable manifolds of arbitrary

dimension (𝑚 ≥ 1). The main idea of S3, thoroughly described in the previous

chapters of this thesis, is to decompose the perturbation vector 𝜒 into three terms,

𝜒 = 𝜒𝑢 + 𝜒𝑐 + 𝜒𝑠 =

(︃
𝑚∑︁
𝑖=0

𝑐𝑖 𝑞𝑖

)︃
+
(︀
𝑐0 𝑓
)︀
+

(︃
𝜒−

𝑚∑︁
𝑖=0

𝑐𝑖 𝑞𝑖 − 𝑐0 𝑓

)︃
, (6.3)

such that 𝜒𝑢 and 𝜒𝑐 strictly belong to the unstable and neutral/center subspaces,

respectively. In this splitting, 𝑐𝑖, 𝑖 = 0, ...,𝑚 are some scalars that are differentiable on

the unstable subspace defined by a local orthonormal basis 𝑞𝑖, 𝑖 = 1, ...,𝑚. From now

on, the superscript shall indicate the index of an array’s component. This notation

does not imply exponentiation, unless explicitly stated otherwise. There are two

major benefits of the perturbation splitting defined by Eq. 6.3:

• the unstable part of the linear response, i.e., the one involving 𝜒𝑢, can now

be integrated by parts, because it involves directional derivatives only along
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unstable subspaces,

• we can always find 𝑐𝑖, 𝑖 = 0, ...,𝑚 through orthogonal projection such that the

stable part (the one involving 𝜒𝑠) of the linear response can be approximated

by solving a regularized tangent equation that is bounded in norm.

We begin from exploring the second benefit of the splitting. Using the chain rule,

one can rigorously show that the linear response defined by Ruelle’s series equals the

ergodic average of 𝐷𝐽 ·𝑣, where 𝑣 is a solution to the inhomogeneous tangent equation

with 𝜒 as the source term. Thus, by replacing 𝜒 with 𝜒𝑠 in Eq. 1.5, we conclude that

∞∑︁
𝑡=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒𝑠 𝑑𝜇 =

∫︁
𝑀

𝐷𝐽 · 𝑣 𝑑𝜇, (6.4)

where

𝑣𝑘+1 = 𝐷𝜙𝑘 𝑣𝑘 +

(︃
𝜒𝑘+1 −

𝑚∑︁
𝑖=0

𝑐𝑖𝑘+1 𝑞
𝑖
𝑘+1 − 𝑐0𝑘+1 𝑓𝑘+1

)︃
. (6.5)

The subscript notation indicates the time step, i.e.,

𝑓(𝑥(𝑘∆𝑡)) := 𝑓𝑘,

assuming uniform time discretization. To solve Eq. 6.5, we need to project out the

unstable component of 𝑣, otherwise its norm will grow exponentially in time at the rate

proportional to the largest LE. Moreover, we should also project out the component

tangent to the center manifold to eliminate the increase of sample variances, which

we illustrate later in Section 6.2.2. Therefore, we enforce 𝑣 to be orthogonal to the

unstable-center subspace by imposing a set of 𝑚+1 constraints at every point on the

manifold. Let

𝑟𝑘+1 =: 𝐷𝜙𝑘 𝑣𝑘 + 𝜒𝑘+1

and, therefore,

(𝑓𝑘+1 · 𝑓𝑘+1) 𝑐
0
𝑘+1 = 𝑓𝑘+1 ·

(︃
𝑟𝑘+1 −

𝑚∑︁
𝑖=1

𝑐𝑖𝑘+1 𝑞
𝑖
𝑘+1

)︃
, (6.6)
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𝑐𝑖𝑘+1 = 𝑞𝑖𝑘+1 ·
(︀
𝑟𝑘+1 − 𝑐0𝑘+1 𝑓𝑘+1

)︀
, 𝑖 = 1, ...,𝑚. (6.7)

Eq. 6.6–6.7 define a linear system with 𝑚 + 1 equations and 𝑚 + 1 unknowns (𝑐𝑖,

𝑖 = 0, 1, ...,𝑚). The system’s matrix involves an 𝑚 × 𝑚 identity block 𝐼, while its

Schur complement can be expressed as follows,

𝑆𝑘+1 = 𝐼 −
𝑄𝑇
𝑘+1𝑓𝑘+1(𝑄

𝑇
𝑘+1𝑓𝑘+1)

𝑇

𝑓𝑘+1 · 𝑓𝑘+1

, (6.8)

where 𝑄 is a an 𝑛×𝑚 matrix containing an orthonormal basis of the unstable man-

ifold, 𝑞𝑖, 𝑖 = 1, ...,𝑚. Thus, the coefficients 𝑐𝑖, 𝑖 = 1, ...,𝑚, stored in the array 𝑐 are

obtained by solving the following reduced system,

𝑆𝑘+1 𝑐𝑘+1 = 𝑄𝑇
𝑘+1

(︂
𝑟𝑘+1 −

𝑓𝑘+1 · 𝑟𝑘+1

𝑓𝑘+1 · 𝑓𝑘+1

𝑓𝑘+1

)︂
, (6.9)

while 𝑐0 is computed directly from Eq. 6.6. We conclude that the stable part of the

linear response can be evaluated through the ergodic average of 𝐷𝐽 · 𝑣 (see Eq. 1.6),

where 𝑣 satisfies Eq. 6.5–6.7.

The next step is the neutral contribution, which involves the perturbation com-

ponent that is parallel to 𝑓 . Analogously to Eq. 1.7, we can expand

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒𝑐 = 𝐷(𝐽 ∘ 𝜙𝑡) · (𝑐0 𝑓) = 𝑐0𝐷𝐽𝑡 · (𝐷𝜙𝑡−1...𝐷𝜙 𝑓) . (6.10)

Applying the Taylor series expansion, we note that

𝑓(𝜙(𝑥)) = 𝑓(𝑥) +𝐷𝑓(𝑥) (𝜙(𝑥)− 𝑥) +𝒪((𝜙(𝑥)− 𝑥)2), (6.11)

and, analogously,

𝜙(𝑥) = 𝑥+∆𝑡𝐷𝑓(𝑥) +𝒪(∆𝑡2). (6.12)

By differentiating Eq. 6.12 and plugging it to Eq. 6.11, we notice that in the limit

∆𝑡→ 0 we retrieve the covariance property, which reads

𝑓(𝜙(𝑥)) = 𝐷𝜙(𝑥) 𝑓(𝑥). (6.13)
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This implies that the neutral part can be simplified to

∞∑︁
𝑡=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒𝑐 𝑑𝜇 =
∞∑︁
𝑡=0

∫︁
𝑀

𝑐0𝐷𝐽𝑡 · 𝑓𝑡 𝑑𝜇 =
∞∑︁
𝑡=0

∫︁
𝑀

𝑐0−𝑡𝐷𝐽 · 𝑓 𝑑𝜇. (6.14)

Eq. 6.14 means that the neutral part of the linear response equals the infinite series

of 𝑘-time correlations between 𝑐0, which is computed for the stable part, and 𝐷𝐽 ·

𝑓 . Under the assumption of uniform hyperbolicity, for any two Hölder-continuous

observables 𝐽 and ℎ, 𝑘-time correlations exponentially converge to the product of

expected values as 𝑡→ ∞ [36, 195], i.e.,⃒⃒⃒⃒∫︁
𝑀

(𝐽 ∘ 𝜙𝑡)ℎ 𝑑𝜇−
∫︁
𝑀

𝐽 𝑑𝜇

∫︁
𝑀

ℎ 𝑑𝜇

⃒⃒⃒⃒
≤ 𝐶𝛿𝑡 (6.15)

for some 𝐶 > 0 and 𝛿 ∈ (0, 1). In the context of the linear response theory, at least

one of the observables has zero expectation with respect to 𝜇. Using this property,

we approximate the neutral part by truncating the infinite series and computing each

Lebesgue integral through Eq. 1.6.

The final missing contribution of the total linear response is the unstable term.

Indeed, this is the only term we can apply integration by parts to, which yields [161]

∞∑︁
𝑡=0

∫︁
𝑀

𝐷(𝐽 ∘ 𝜙𝑡) · 𝜒𝑢 𝑑𝜇 =
∞∑︁
𝑡=0

𝑚∑︁
𝑖=0

∫︁
𝑀

𝑐𝑖𝜕𝑞𝑖(𝐽 ∘ 𝜙𝑡) 𝑑𝜇

= −
∞∑︁
𝑡=0

𝑚∑︁
𝑖=1

∫︁
𝑀

(𝐽 ∘ 𝜙𝑡)
(︀
𝑐𝑖 𝑔𝑖 + 𝑏𝑖,𝑖

)︀
𝑑𝜇,

(6.16)

where

𝑏𝑖,𝑗 := 𝜕𝑞𝑗𝑐
𝑖, 𝑔𝑖 :=

𝜕𝑞𝑖𝜌

𝜌
, (6.17)

the operator 𝜕𝑞𝑖(·) := 𝐷(·) · 𝑞𝑖 denotes the directional derivative along 𝑞𝑖 in phase

space, while 𝜌 denotes the density of the SRB measure 𝜇 conditioned on an unstable

manifold. Several intermediate steps are required to derive the RHS of Eq. 6.16. The

reader is referred to Chapter 3 and Chapter 5 for a detailed description of every step

of this process and relevant numerical examples. The major implication of Eq. 6.16
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is that the composite function 𝐽 ∘ 𝜙𝑡 is no longer differentiated, but there are two

new quantities that must be computed instead. A rigorously convergent recursive

algorithm for 𝑏 and 𝑔 has been proposed in the aforementioned two chapters. That

algorithm requires solving a collection of first- and second-order tangent equations,

and was developed for discrete chaotic systems. In Appendix 6.6.1, we extend it

to hyperbolic flows and analyze its cost. Notice that if 𝑔 and 𝑏 are available, then,

analogously to the neutral part, the unstable term is expressed in terms of infinite

series of 𝑘-time correlations.

To summarize, the space-split method regularizes Ruelle’s original expression (Eq.

1.5) by splitting it into three major parts: stable, neutral and unstable. Each of them

can be approximated through ergodic-averaging of a single (in stable part) or many

(in neutral and unstable parts) ingredients. Recent rigorous [31] and computational

(see Chapter 5) studies have shown that the rate of convergence of all linear response

parts is approximately proportional to 1/
√
𝑁 , where 𝑁 denotes the trajectory length.

We highlight the fact that these studies were restricted to hyperbolic systems only.

Thus, the S3 method is in fact a Monte Carlo procedure that relies on recursive

formulas in the form of tangent equations that are executed to find 𝑔, 𝑏, 𝑣 and other

necessary quantities.

6.2.1 Numerical example: Lorenz 63

To test the space-split algorithm (see Algorithm 2), we shall again consider the three-

dimensional Lorenz 63 system,

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥),

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌− 𝑧)− 𝑦,

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧, (6.18)

which is one of the simplest chaotic flows. The original study of this model [110]

demonstrated chaotic behavior at 𝜎 = 10, 𝛽 = 8/3, 𝜌 ⪆ 24. For this choice of

parameters, the strange attractor has a characteristic butterfly-shaped structure as

illustrated in Section 4.5. The purpose of our experiment is to approximate the

derivative of the long-time average of 𝐽 = 𝐽(𝑧) with respect to the Rayleigh parameter
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Figure 6-1: Long-time averages of two different objective functions (left) and Lya-
punov exponents (right) versus the Rayleigh parameter 𝜌. Ergodic averages have
been taken over 𝑁∆𝑡 = 50, 000, 000 and 𝑁∆𝑡 = 5, 000 time units, respectively.

𝜌 using S3. In this section, 𝜌 should not be confused with the SRB measure density.

Figure 6-1 illustrates the behavior of the statistics of two different objective functions,

as well as the three Lyapunov exponents for 𝜌 ∈ [20, 40]. We observe that 𝜆1 becomes

positive for 𝜌 ⪆ 24, which is consistent with the original study. The presence of a

zero LE indicates there exists a tangent subspace that is parallel to the flow, which

is typical for autonomous chaos. Note that, in the chaotic regime, both long-time

averages seem to be differentiable in the considered parametric space. To integrate

Eq. 6.18 in time, we used the second-order explicit Runge-Kutta with step size

∆𝑡 = 0.005. As described in Appendix 6.6.1, the space-split algorithm requires a

few evaluations of first- and second-order differentiation operators of 𝜙 every time

step. For this particular time integrator, the computation of 𝐷2𝜙(·, ·) involves three

evaluations of the Hessian of 𝑓 , per our derivations in Appendix 6.6.2. Fortunately,

in the case of the Lorenz 63 system, 𝐷2𝑓(·, ·) is constant, which significantly reduces

the cost.

The S3 algorithm relies on several recursive formulas in the form of tangent equa-

tions. Earlier studies [31, 161] proved both analytically and numerically that these

recursions converge exponentially fast in discrete hyperbolic systems. We numerically

investigate if these results still apply to the Lorenz 63 flow. The upper plot of Figure
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6-2 illustrates a convergence test for three different quantities: SRB density gradient

𝑔, tangent solution 𝑣 and its directional derivative (along 𝑞) 𝑤. These are three major

ingredients that contribute to the total linear response. Along a single trajectory, we

impose two different initial conditions for 𝑣, 𝑤 and 𝑎 (note 𝑔 = −𝑞 · 𝑎) and compute

the norm/absolute value of the two solutions. The semi-logarithmic plot clearly in-

dicates that all the norms decrease exponentially in time with a short transition at

the beginning of simulation. To obtain a machine-precision approximation of these

quantities, we need only 50 time units. A similar behavior has been observed in the

case of discrete systems [161]. We use this result to set the truncation parameter to

𝑇∆𝑡 = 100 in our simulations to guarantee all ergodic-averaged quantities are very

close to their true values. Another property of the S3 algorithm is the convergence

rate of its final output, ⟨𝐽⟩/𝑑𝜌, with respect the time-averaging window 𝑁∆𝑡. Indeed,

a truncation of the trajectory by choosing a finite 𝑁 is the only non-negligible source

of error of the entire numerical procedure. The lower plot of Figure 6-2 shows the

decay of the relative error of the linear response approximation, which is computed

with respect to the finite difference approximation of the slope of statistics generated

in Figure 6-1. We observe that the error trend confirms theoretical predictions, which

means that S3 behaves as a typical Monte Carlo simulation.

In our simulations, we truncate the infinite series by setting 𝐾∆𝑡 = 50, where 𝐾

represents the number of series terms contributing to the numerical approximation.

The optimal value of 𝐾∆𝑡 should be relatively small, given the exponential decay of

correlations. In [161], the reader will find a more detailed study about the impact

of 𝐾 on the error. Based on the convergence study and our discussion above, we

run Algorithm 2 for Lorenz 63 (𝑛 = 3, 𝑚 = 1) to compute parametric derivatives

of the long-time averages illustrated in Figure 6-1 at 𝜌 ∈ [25, 40]. Figure 6-3 shows

the behavior of the obtained linear response approximations. For a wide range of

Rayleigh constant values, S3 provides accurate estimations of the sensitivities. Indeed,

for 𝜌 ∈ [25, 32.3] we observe good agreement between the total sensitivity, denoted

by “sum", and corresponding reference values. At 𝜌 ≈ 32.3, the S3 approximation

diverges due to the collapse of the unstable part. Note that, in both cases, the stable
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Figure 6-2: Upper: Relation of the norm/absolute value of the difference between
quantities obtained along two different random orbits, labelled as 1 and 2, and time-
averaging window 𝑘∆𝑡. Lower: Relative error of the linear response approximation
versus time-averaging window, computed for 𝐽 = 𝑧 at 𝜌 = 28. 200 independent
simulations were run at a logarithmically uniform grid of 𝑁∆𝑡. The dashed line
represents a function 𝐶/

√
𝑁∆𝑡, 𝐶 > 0.

211



contribution is small compared to the two other terms. In the following section,

we further explore the encountered problem and summarize critical aspects of the

presented algorithm.

6.2.2 Critical view on S3

In the context of approximating linear response of higher-dimensional chaos, we shall

investigate potential problems of the S3 algorithm. In particular, we focus on dy-

namical properties of chaotic flows that might lead to numerical difficulties. Some

algorithmic challenges, including the computational cost, are also discussed.

Special treatment of the neutral component

We derived a numerical scheme based on the three-term linear splitting in Eq. 6.3.

Notice that there is a subtle difference between this splitting and the one proposed

for discrete systems. In the former, the neutral term is treated separately thanks to

which the stable term includes only tangent solutions that are parallel to the unstable-

center subspace. In Figure 6-4, we plot discrete values of the stable integrand 𝐷𝐽 · 𝑣

obtained for Lorenz 63 at 𝜌 = 28 using both versions of S3. We notice that if the

neutral direction is not projected out from the tangent solution, then the standard

deviation of𝐷𝐽 ·𝑣 grows linearly with time. The extra projection against 𝑓 guarantees

the standard deviation is approximately constant.

While the convergence of the Monte Carlo procedure is now guaranteed, the extra

projection requires assembling, inverting, and differentiating the Schur complement.

As described in Appendix 6.6.1, that minor conceptual adjustment requires major

modifications of the “discrete" version of S3.

Problem with hyperbolicity and SRB measure gradient

Recall that the fundamental assumption of Ruelle’s formalism is hyperbolicity. Any

form of linearly separated perturbation splitting that enables partial integration and

that guarantees boundedness of the stable part, e.g., the one presented in this chapter
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Figure 6-3: Output of Algorithm 2 generated for 𝐽 = 𝑧 (upper) and 𝐽 =
exp(𝑥/4)/10000 (lower) at 144 values of 𝜌 distributed uniformly. Each simulation
was run for 𝑁∆𝑡 = 1, 000, 000 time units. The reference solution (dashed curve)
was obtained using central finite differences and data shown in Figure 6-1. Before
differentiation, we interpolated the data using first- and sixth-order polynomial fits,
respectively.

213



Figure 6-4: Discrete values of the stable integrand 𝐷𝐽 · 𝑣 computed using the S3
version described in Section 6.2 (red) and its “discrete" counterpart from [161] (blue).
This simulation was performed for Lorenz 63 at 𝜌 = 28. The solid lines represent the
standard deviations of 𝐷𝐽 · 𝑣 collected from the beginning of the simulation until 𝑘th
step. The dashed line represents a linear function.

or the shadowing-based variant proposed in [127], is sufficient to construct stable nu-

merical schemes. However, the dynamical structure of many chaotic flows, including

the simple Lorenz 63 system, does not satisfy all basic properties of hyperbolicity.

In Figure 6-5, we illustrate the distribution of tangency measures 0 ≤ 𝛼 ≤ 1 be-

tween two pairs of subspaces: 1) unstable and center, 2) unstable-center and stable,

along a random trajectory of Lorenz 63 at different values of the Rayleigh parame-

ter. To generate these plots, we used the fast algorithm for hyperbolicty verification

proposed by Kuptsov in [89]. The two measures we compute respectively represent

𝑑1, and 2 𝑑2, which are rigorously defined by Eq. 7 in that work. The parameter 𝛼

is closely related to the minimum angle between two subspaces normalized by 𝜋/2

as pointed out and tested in [169]. If the statistical distribution of 𝛼 is not strictly

separated from the origin, i.e., the corresponding PDF has non-zero values at 𝛼 ≈ 0,

then several tangencies of a given subspace pair are highly likely to occur. We ob-

serve that, regardless of the choice of 𝜌, there exist tangencies between the unstable

and center subspaces. Several numerical examples presented in [89] imply that the
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absence of unstable-center separation is a common property of several physical sys-

tems. However, for some 𝜌, the Lorenz 63 system admits splitting of the tangent

space into unstable-center and stable subspaces. This behavior has been known in

the literature [122] under the name of singular hyperbolicity. Note that the Lorenz 63

oscillator loses this property at 𝜌 between 30 and 35, which coincides with the collapse

of the S3 algorithm. In particular, the unstable term blows-up within this parameter

regime, which indicates that 𝜇 becomes rough along expansive directions. From the

study on differentiability of statistics of the Lorenz 63 system [159], we learn that the

SRB density gradient 𝑔 is Lebesgue integrable, i.e., 𝑔 ∈ 𝐿1(𝜇), only if 𝜌 < 32. If 𝜌

is close to the value of 28, then 𝑔 is even square-integrable. The authors of the same

paper argue that the integrability of 𝑔 is both necessary and sufficient condition for

differentiability of statistics. We conclude that even if Eq. 1.5 holds, one still needs

to handle the by-products of partial integration, which might pose a serious challenge

for Monte Carlo algorithms requiring pointwise values of derivatives of 𝜇 and other

observables.

The smoothness of the SRB measure is not guaranteed in non-hyperbolic systems,

which means that some components of 𝑔 might not exist at all at some points on the

attractor. Indeed, numerical experiments presented in [89, 169] indicate that some

higher-dimensional physical systems, e.g., the Ginzburg-Landau equation, are clearly

non-hyperbolic. Similar numerical results were provided for a 3D turbulent flow

in [126]. Since 𝑔 is an integral part of the S3 procedure and its value is computed

everywhere along a random trajectory, we expect that the unstable contribution might

blow-up in the case of such systems.

Implementation and cost

We shall now comment on practical aspects of the full linear response algorithm,

which is described in Appendix 6.6.1. In terms of the implementation, both the stable

and neutral parts do not require significant changes of the existing tangent/adjoint

solvers. The former is obtained by solving a collection of first-order tangent equations.

They are stabilized by step-by-step elimination of unstable-center tangent components
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Figure 6-5: Distribution of the normalized measure 𝛼 between unstable/center sub-
spaces (blue PDF) and unstable-center/stable subspaces (orange PDF). They have
been computed along a random trajectory of the Lorenz 63 system for 5000 time
units. To increase the accuracy of PDFs, we used the fourth-order Runge-Kutta time
integrator with ∆𝑡 = 0.005.

through QR factorization that is needed to find a new basis of the subspace (matrix

𝑄) and the Jacobian of coordinate transformation (matrix 𝑅). The 𝑅 factor can also

be used to approximate 𝑚 largest LEs, which is indeed a very useful by-product of

the proposed algorithm [15]. The unstable contribution requires the implementation

of the second-order derivative operator, which is necessary for 𝑔 and 𝑏. While this is

generally not a problem for simple systems, the need for a second-order tangent solver

might require extra tools, such as automatic differentiation packages, for complicated

higher-dimensional models.

It turns out that the presence of the Hessian is not the major burden of the full
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S3 algorithm. The typical structure of large physical systems is sparse due to the

localized stencils of the most popular spatial discretization schemes. Therefore, the

computational cost of matrix-vector or tensor-vector products is typically linear in 𝑛.

Two other factors that determine the total cost is the trajectory length 𝑁 and the

number of positive LEs 𝑚. The former defines the accuracy of ergodic-averaging and

indicates the number of primal and tangent solution updates, and thus contributes

linearly to the total cost. Based on our estimate in Appendix 6.6.1, the final cost is

proportional to the third power of 𝑚. The most expensive chunk of the algorithm

is associated with the SRB density gradient 𝑔, which requires solving 𝒪(𝑚2) second-

order tangent equations that is followed by a stabilizing normalization procedure

consuming extra 𝒪(𝑛𝑚3) flops. This might pose a serious challenge for systems with

hundreds of unstable modes, such as 3D turbulence models.

Future prospects

The non-approximative methods for computing linear response of chaotic systems,

such as the S3 algorithm, provide a rich collection of numerical tools for analysis of

the underlying dynamics. Its major drawback is that the derivation of its components

relies on the assumption of hyperbolicity and smooth SRB measure. These properties

might be violated leading to the collapse of some parts of the full S3 algorithm. Nev-

ertheless, we acknowledge the growing popularity and interest in hyperbolic systems

among physicists and engineers. In a comprehensive review book of Kuznetsov [92],

the author justifies this trend and provides several examples of hyperbolic attractors

describing physical phenomena.

Despite the problems with hyperbolicity and large costs, can we still use some

parts of the S3 algorithm to find accurate estimates of linear response for higher-

dimensional systems? As argued in [159], the collapse of the algorithm for 𝑔 does not

necessarily mean the linear response does not exist. Indeed, several aforementioned

studies involving sensitivity analysis of large systems numerically demonstrate that

their statistics are indeed differentiable. Figure 6-3 indicates that both the neutral and

stable contributions of Lorenz 63 remain “stable" over the entire parametric regime.
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Removal of the unstable contribution would dramatically reduce the cost of S3, as

the expensive and potentially incomputable 𝑔 would no longer be needed. In the case

of Lorenz 63, however, the unstable contribution accounts for approximately 40% of

the total sensitivity. Therefore, omission of the unstable contribution of this system

would give rise to significant errors. This observation leads to a fundamental question.

Are there systems whose unstable contribution is small and can be neglected? If so,

are they relevant for practitioners? We try to answer those questions in the remainder

of this chapter.

6.3 Unstable contribution: can we neglect that term?

As we pointed out in Section 6.2.2, the computation of the unstable part of the linear

response might be cumbersome due to several reasons. The purpose of this section

is to provoke a discussion about the significance of that term. In particular, we shall

present some evidence indicating that the unstable term could be negligible and thus

completely neglected if certain conditions are met.

6.3.1 Empirical evidence of decaying components of the mea-

sure gradient

Recall that the unstable contribution depends on the objective function, splitting

coefficients and their derivatives, and the SRB measure gradient. While the splitting

coefficients directly follow from the linear splitting of Ruelle’s formula and their val-

ues are chosen such that the stable tangent is bounded, the measure gradient is an

inherent property of the system and appears in the unstable contribution only. The 𝑔

vector represents the measure change in 𝑚 orthogonal directions of the local unstable

subspace. These directions, stored in the 𝑄 matrix, indicate how a trajectory of the

unperturbed system deforms in time. We also acknowledge that the computation of

𝑄 is an integral part of the S3 procedure (see Appendix 6.6.1). In that algorithm,

the columns of 𝑄 are sorted from the most expansive (𝑖 = 1) to the least expansive
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(𝑖 = 𝑚) direction.

In this analysis, we leverage our observation on monotonically increasing norms

of consecutive components of the SRB measure gradients. In particular, we observe

that in several systems with multidimensional expansive tangent subspaces

‖𝑔1‖2 < ‖𝑔2‖2 < ... < ‖𝑔𝑚‖2,

where ‖ · ‖2 denotes the 𝐿2 norm with respect to 𝜇 defined as

‖ℎ‖2 :=

√︃∫︁
𝑀

ℎ2 𝑑𝜇 (6.19)

for any scalar function ℎ ∈ 𝐿2(𝜇). Differences in norm between different components

of 𝑔 might be even orders of magnitude large if the positive Lyapunov exponents are

not close to each other. The major conclusion that follows from our observation is

that the slope of SRB measure computed in the most expansive direction is usually

small compared to the remaining directions of the unstable manifolds everywhere on

the attractor. In other words, larger expansion rates lead to the dilution of measure,

which consequently decreases the corresponding measure slopes.

We also emphasize the fact that specific directions of differentiation, indicated

by 𝑞𝑖, 𝑖 = 2, ...,𝑚, depend on the type of manifold parameterization. The only ex-

ception is 𝑞1, which coincides with the leading covariant direction of the tangent

manifold. Note also that the span of the subset of 𝑘 leading Lyapunov vectors,

span{𝑞1, 𝑞2, ..., 𝑞𝑘}, 𝑘 ≤ 𝑚, does not depend on the parameterization either. By def-

inition, first 𝑘 components of 𝑔 represent rates of measure change within the most

expansive subset. Thus, the cumulative measure change within that subset, consti-

tuted by 𝑔1, 𝑔2, ..., 𝑔𝑘, 𝑘 ≤ 𝑚, neither depends on the parameterization. In other

words, the unstable divergence of measure (or any other smooth observable) is invari-

ant to the coordinate transformation, although some ingredients might change.

To illustrate our critical observations, we will focus on the following 𝑛-dimensional
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chaotic map 𝜙 : [0, 2𝜋]𝑛 → [0, 2𝜋]𝑛 defined as

𝑥𝑖𝑘+1 = 2𝑥𝑖𝑘 + 𝑠 sin(𝑥𝑖+1
𝑘 − 𝑥𝑖𝑘) + 𝑡 sin(𝑥𝑖𝑘) mod 2𝜋, 𝑖 = 1, .., 𝑛, (6.20)

where 𝑛 ∈ Z+, 𝑠 ∈ R, 𝑡 ∈ R and 𝑥𝑛+1 = 𝑥1. This is an extension of the one-

dimensional sawtooth map [158], and therefore we shall refer to 𝜙 defined by Eq.

6.20 as the coupled sawtooth map. The first term on the RHS introduces constant

expansion that does not involve any parameters. Thus, if we set the coupling pa-

rameter to zero (𝑠 = 0), we obtain 𝑛 independent maps with the same statistical

behavior. If both the coupling and distorting terms are small, i.e., respectively 𝑠

and 𝑡 are small, then all Lyapunov exponents are clustered around the value of log 2,

which means that the attractor is expansive in all directions. By increasing |𝑠|, we

strengthen the coupling between the neighboring degrees of freedom. For 𝑛 = 2, the

phase space gradient of the coupling term is parallel to the diagonal of the square

manifold, [0, 2𝜋]2. Thus, the larger |𝑠|, the stronger variations of the measure are

expected along [1,−1]𝑇 . In the case of a weak distortion, i.e., when 𝑡 ≈ 0, the SRB

measure is expected to be approximately constant in the direction parallel to [1, 1]𝑇 .

To verify these suppositions, we directly compute 𝑔 for 𝑛 = 2 at three different

parameter sets: 1) [𝑠, 𝑡] = [0.05, 0] (weak coupling, no distortion), 2) [𝑠, 𝑡] = [−0.75, 0]

(strong coupling, no distortion), 3) [𝑠, 𝑡] = [−0.75, 0.5] (strong coupling combined with

distortion). For this purpose, we use a part of the full S3 algorithm to compute 𝑔 along

a trajectory (Lines 12-20 of Algorithm 2 in Appendix 6.6.1) and plot both |𝑔1| and

|𝑔2| on [0, 2𝜋]2. These results are illustrated in Figure 6-6. In all three cases, the first

component of 𝑔 is statistically smaller in magnitude and features milder variations

compared to the second one. They also confirm that the larger component of the

relative measure change is approximately parallel to [1,−1]𝑇 . Even in the presence

of the distortion term (Case 3), the majority of white arrows, which indicate local

orthonormal directions 𝑞1 and 𝑞2, tend to be oriented diagonal-wise. Notice that the

larger coupling |𝑠|, the larger rate of measure change in the least expansive direction

represented by 𝑞2. If there is no distortion and coupling is significant (Case 2), then
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the first component of 𝑔 is approximately zero everywhere in phase space. The largest

measure gradients appear to be located around the [1, 1]𝑇 diagonal. Furthermore, if

the coupling weakens, then the rates of expansion along 𝑞1 and 𝑞2 become similar.

In Case 1, the distribution of 𝑔1 has geometric features similar to its counterpart.

This is consistent with our analysis suggesting that both distributions are expected

to have the same limits as |𝑠| → 0.

In Figure 6-7, we plot the 𝐿2 norms of selected components of 𝑔 and corresponding

Lyapunov exponents at different values of 𝑠 and 𝑡. They were computed for the 2D

(𝑛 = 2), 4D (𝑛 = 4), and 8D (𝑛 = 8) variants of the coupled sawtooth. In agreement

with our conjecture, the norms of all components of 𝑔 are equal and very small in

the absence of the coupling term, i.e., when 𝑠 = 0. We observe the norm ratio

between 𝑔1 and 𝑔𝑚 = 𝑔𝑛 rapidly decreases as the coupling strengthens. This is also

true between 𝑔1 and other components corresponding to less expansive directions,

as clearly indicated by the 4D and 8D examples. Figure 6-7 confirms the conjecture

that the separation of Lyapunov exponents implies monotonic increase of the measure

gradient norms as sorted from the most to the least expansive directions. Our results

also indicate that if LEs are clustered around a single value, then the norm degradation

is insignificant. Note that the converse is not necessarily true. Namely, there might be

significant differences between particular components of 𝑔 even if LEs are clustered,

which is true for the 2D sawtooth map at 𝑠 ∈ [−1, 0]. This usually happens when

at least one of the components of 𝑔 is no longer integrable with respect to 𝜇 [159].

We also acknowledge the fact that square-integrability of 𝑔 with respect to 𝜇 is not

required for the existence of the linear response, as we discussed in Section 6.2.2.

Another example represents higher-dimensional continuous-time chaos. We will

consider 40-dimensional Lorenz 96 oscillator with constant forcing of value 8. The

reader is referred to Section 6.4.2 for a detailed description of the underlying ODE

system and its physical interpretation. The system we consider here has 13 positive

LEs that are approximately uniformly scattered between 0 and 1.8 (see Figure 6-11).

Figure 6-8 illustrates PDFs of individual components of the SRB measure gradient

approximated using data collected along a million time steps.
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Case 1: [𝑠, 𝑡] = [0.05, 0]

Case 2: [𝑠, 𝑡] = [−0.75, 0]

Case 3: [𝑠, 𝑡] = [−0.75, 0.5]

Figure 6-6: Magnitude of both components of the SRB density gradient 𝑔 of the two-
dimensional coupled sawtooth map with two positive LEs. White arrows respectively
represent 𝑞1 and 𝑞2, which indicate local directions of differentiation. They are plotted
every 5000 time steps. For each case, a trajectory of length 𝑁 = 3 ·105 was generated.
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Figure 6-7: 𝐿2 norm of the SRB density gradient and Lyapunov exponents of the 2D
(𝑛 = 2; top row), 4D (𝑛 = 4; middle row), and 8D (𝑛 = 8; bottom row) variant of the
coupled sawtooth map. All quantities were computed on a uniform grid of 100 values
of the coupling parameter 𝑠. For each parameter, a trajectory of length 𝑁 = 3 · 104
was generated.
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Figure 6-8: Distribution of individual components of the SRB measure gradient of
Lorenz 96. SRB measure was differentiated using Algorithm 2 for 𝑁 = 106 time steps.
ODEs were discretized in time using the second-order Runge-Kutta with time step
size 0.001.

We observe that the distribution tail monotonically gets longer as the component

index increases. This behavior is analogous to the monotonically increasing 𝐿2 norms

of the coupled sawtooth map. Here, only the first three leading components are likely

to have finite 𝐿2 norms. If 𝑖 > 6, the measure gradient is not even Lebesgue-integrable

in the corresponding directions. We refer the reader to Chapter 4 for further details

on assessing the differentiability of observables. In the next few paragraphs, we

will leverage the fact the leading (or a subset of leading) components of the measure

gradient might be significantly smaller compared to the remaining ones. In particular,

we will show that this feature could dramatically reduce the magnitude of the unstable

contribution.

6.3.2 Impact of decaying components of the measure gradient

Let us now revisit the analytical form of the unstable contribution,

𝑈 :=
∞∑︁
𝑘=0

∫︁
𝑀

𝐽 ∘ 𝜙𝑘 (𝑐 · 𝑔 + 𝑏) 𝑑𝜇, (6.21)
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where 𝑐 and 𝑔 are 𝑚-dimensional vectors, representing the splitting coefficients and

measure gradient, respectively. The scalar 𝑏 represents the sum of derivatives of

𝑐. Thus, 𝑈 is in fact an infinite series of time correlations between 𝐽 and a linear

combination of all components of 𝑔, i.e., 𝑑 := 𝑐 · 𝑔 + 𝑏. Let us now consider a well-

behaved objective function 𝐽 :𝑀 → R, where 𝑀 is an orientable compact manifold.

Let the tangent bundle of 𝑀 be expansive in all possible directions, which implies

that all LEs are positive. Without loss of generality, we assume the volume integral

of 𝐽 over 𝑀 is zero. Notice we can always add a constant number to 𝐽 to ensure the

zero mean condition, as the constant shift does not affect the linear response. Thus,

𝐽 can be expressed in terms of the divergence of a vector field 𝑍, i.e.,

𝐽 = ∇𝜉 · 𝑍. (6.22)

The nabla operator ∇𝜉 contains parametric differentiation operators in the orthonor-

malized measure-based coordinate system as introduced in Chapter 3. Recall that

the column space of the chart gradient is orthonormal. Note that the above represen-

tation of 𝐽 is not unique. If 𝑀 is one-dimensional, 𝑍 can be any function from the

family of antiderivatives of 𝐽 that differ by a constant. However, if the dimension of

𝑀 is at least two, one can find 𝑍 with various types of behavior along different phase

space directions.

By combining Eq. 6.21 and 6.22, using the measure preservation property and

integrating by parts, we conclude that

𝑈 =
∞∑︁
𝑘=0

∫︁
𝑀

𝐽 ∘ 𝜙𝑘 𝑑 𝑑𝜇,

=
∞∑︁
𝑘=0

∫︁
𝑀

𝐽 𝑑 ∘ 𝜙−𝑘 𝑑𝜇,

=
∞∑︁
𝑘=0

∫︁
𝑀

∇𝜉 · 𝑍 𝑑 ∘ 𝜙−𝑘 𝑑𝜇,

=−
∞∑︁
𝑘=0

∫︁
𝑀

𝑍 ·
[︀
∇𝜉

(︀
𝑑 ∘ 𝜙−𝑘)︀+ (𝑑 ∘ 𝜙−𝑘) 𝑔

]︀
𝑑𝜇.

(6.23)
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Notice that now all integrands of the infinite series involve dot products between

𝑍 and two new vectors: the parametric gradient of 𝑑 ∘ 𝜙−𝑘 and 𝑔 re-scaled by the

scalar 𝑑 ∘ 𝜙−𝑘. The linear response related to the second vector is in fact a sum of

time correlations between two observables. If the system is mixing and the property

of exponential decorrelation holds, then⃒⃒⃒⃒
⃒

∞∑︁
𝑘=0

∫︁
𝑀

(𝑑 ∘ 𝜙−𝑘)𝑍 · 𝑔 𝑑𝜇

⃒⃒⃒⃒
⃒ ≤ exp(−𝐶 𝑘), (6.24)

where 𝐶 denotes a positive constant whose value varies from system to system. From

the definition of the unstable manifold, we use the fact that for any pair of points in

𝑀 , 𝑥 and 𝑦,

dist
(︀
𝜙−𝑘(𝑥), 𝜙−𝑘(𝑦)

)︀
→ 0 as 𝑘 → ∞. (6.25)

This implies that norm of the parametric gradient of 𝑑 ∘ 𝜙−𝑘 decays to zero with

𝑘. However, the rate of decay of individual components of that gradient will be

different. The fastest decaying pairs are those that lie along the most expansive

covariant direction. Thus, for a large 𝑘, the derivative

𝜕𝜉𝑖
(︀
𝑑 ∘ 𝜙−𝑘(𝑥)

)︀
= lim

𝜖→0

𝑑 ∘ 𝜙−𝑘(𝑥+ 𝜖𝑞𝑖)− 𝑑 ∘ 𝜙−𝑘(𝑥)

𝜖
(6.26)

is smallest if 𝑖 = 1.

Our observation of increasing components of the measure gradient combined with

the analytical inspection of the unstable contribution, which was partially integrated

yet again, leads to the following conclusion. Indeed, one could significantly decrease

the magnitude of 𝑈 by eliminating the following ingredients: 1) the slowest-decaying

components of the parametric gradient of delayed 𝑑 and, 2), components of 𝑔 with

a larger index. This could be achieved by choosing an aligned 𝑍 vector such that

the linear response of the first term of the divergence expansion dominates over the

remaining ones. This is true, for example, when the statistics of ∇𝜉 ·𝑍 =
∑︀𝑚

𝑖=1 𝜕𝑞𝑖 𝑍
𝑖
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is dominated by its first term (𝑖 = 1), i.e.,

‖𝜕𝑞1𝑍1‖2 ≫ ‖𝜕𝑞𝑖𝑍𝑖‖2, 𝑖 = 2, ...,𝑚.

If 𝐽 has such a 𝑍 vector, we say that 𝐽 is an objective function aligned with 𝑞1. In

this special 𝐽 , we could approximate 𝑈 by keeping only the first term of ∇·𝑍. Thus,

𝑈 ≈ −
∞∑︁
𝑘=0

∫︁
𝑀

𝑍1
[︀
𝜕𝜉1
(︀
𝑑 ∘ 𝜙−𝑘)︀+ (𝑑 ∘ 𝜙−𝑘) 𝑔1

]︀
𝑑𝜇 :=

∞∑︁
𝑘=0

𝑈𝑘. (6.27)

Note that by aligning the objective function, we are effectively integrating two scalar

functions in each series term, 𝜕𝜉1
(︀
𝑑 ∘ 𝜙−𝑘)︀ and (𝑑 ∘ 𝜙−𝑘) 𝑔1. The second term is

always proportional to 𝑔1, which is typically a small number. In Lorenz 96 system,

for example, ‖𝑔1‖∞ ≪ 1 (see Figure 6-8). Also, notice that the leading term of the

series, i.e., the one corresponding to the zero time-gap, can be upperbounded using

the Cauchy-Schwartz inequality,

|𝑈1| ≤ ‖𝑍1‖2
(︀
‖𝑑 𝑔1‖2 + ‖𝜕𝑞1𝑑‖2

)︀
. (6.28)

The first term of the new inequality is proportional to ‖𝑑 𝑔1‖2. If ‖𝑔1‖∞ ≪ 1, which is

true if the measure is almost constant along 𝑞1, then ‖𝑑 𝑔1‖2 ≪ ‖𝑑‖2. This scenario is

very likely in systems with a scattered positive Lyapunov spectrum as shown above. In

the second term of Ineq. 6.28, 𝑑 is differentiated in the most expansive direction 𝑞1. It

means that all components of the SRB density gradient are differentiated once more.

This time, however, we differentiate in the direction of the mildest descent/ascent of

𝜇. One could visualize this process by considering the lateral boundary of a cylindrical

solid. In this case, the tangent line computed along the solid’s height is always parallel

to the solid and has zero slope. In any other direction, the slope is larger than zero.

Differentiation of the non-zero slopes along the solid’s height effectively kills them all.

We can apply this analogy to our case, in which we differentiate once more in the

direction of the smallest slope. Therefore, by aligning 𝐽 , the linear response related

to the parametric gradient of the delayed function is reduced for the two following
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reasons. The starting point of the series is significantly reduced and the rate of decay

of subsequent terms is fastest possible.

In light of the specific behavior of the SRB density gradient and our analysis

presented above, we shall numerically investigate the impact of the objective function

𝐽 on the statistics and their change with respect to parameters. Here, we shall

reconsider the two-dimensional version of the coupled sawtooth map introduced by

Eq. 6.20. The purpose of this experiment is to visualize long-time averages computed

at different parameter values for that map. A fundamental question we need to raise

concerns the alignment requirement. How can we say that a chosen 𝐽 is in fact aligned

with 𝑞1? Indeed, the two components of the corresponding vector 𝑍 generally depend

on both phase space coordinates. In the 2D setting, it is relatively straightforward

to find a vector field 𝑍 that satisfies that requirement. If 𝑞1 is approximately parallel

to [1, 1]𝑇 and both components of 𝑍 depend on 𝑥1 + 𝑥2 only, i.e., 𝑍 = 𝑍(𝑥1 + 𝑥2),

the corresponding 𝐽 is automatically aligned with 𝑞1, because 𝜕𝑞2𝑍2 = 0. However, if

𝑍1 = 𝑍1(𝑥1+𝑥2) and 𝑍2 = 𝑍2(𝑥1−𝑥2), then their respective 𝐿2 norms are expected

to be similar. Finally, if 𝑍 = 𝑍(𝑥1 − 𝑥2), then 𝑍2 becomes the only source of the

divergence encoded in 𝐽 giving more weight to the second component of 𝑔, which is

in fact the least desired scenario.

Thus, we shall consider three wave-like objective functions that depend on 𝑧 =

𝑥1 − 𝑥2, 𝑧 = 𝑥1, and 𝑧 = 𝑥1 + 𝑥2. The corresponding vector fields are such that

𝑍1(𝑧) = 𝑍2(𝑧) =

∫︁ 𝑧

𝐶

exp(sin(𝑧′)) sin(𝑧′) 𝑑𝑧′, (6.29)

with some arbitrary real-valued constant 𝐶. These waves have zero gradients in the

phase space directions parallel to [1, 1]𝑇 , [0, 1]𝑇 and [1,−1]𝑇 . They respectively rep-

resent functions that are weakly, moderately, and strongly aligned with the most

expansive direction of the 2D hyperchaotic sawtooth map. The statistics correspond-

ing to these objective functions evaluated at a fine parametric grid are plotted in

Figure 6-9. We observe that the variation of statistics of 𝐽 = 𝐽(𝑥1−𝑥2) is quite large

in the regions that coincide with the parametric regime of a large measure change.
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Within this parametric subset, the value of the second LE evidently decreases and

approaches the value of zero. Indeed, the largest sensitivity of the system is observed

as 𝑠 increases from 𝑠 ≈ 0.35 to 𝑠 ≈ 0.5 for all 𝑡 ∈ [−0.5, 0.5]. Thus, for this parametric

regime, the maximum value of |𝑑⟨𝐽⟩/𝑑𝑠| is 𝒪(1). In the moderate case, variations

of ⟨𝐽⟩ are significantly smaller compared to the previous example. However, we still

observe non-negligible sensitivities of order 𝒪(10−1) if 𝑠 < −0.75 and |𝑡| > 0. The

third plot of Figure 6-9 shows the statistics of a function that is aligned with the most

expansive direction, i.e., it depends on 𝑥1 + 𝑥2. The computed long-time averages

now oscillate between two values that are 𝒪(10−3) apart, across the entire parametric

space. These oscillations are distributed uniformly, even around the regions of large

measure gradients and distortions. In this case, ⟨𝐽⟩ is approximately independent of

both parameters, which implies negligible linear response.

The major conclusion that follows from the above analysis and numerical examples

is that the unstable part of the linear response might be negligible for a particular class

of objective functions 𝐽 . This could be true for any system’s parameter with respect to

which the sensitivity is computed. By applying integration by parts to the unstable

contribution yet again, we show that the effect of larger components of measure

gradient could be eliminated or reduced. Indeed, if there exists an aligned 𝑍 vector,

we can still approximate the sensitivity accurately by removing larger components

of 𝑔, cross-differentiating them in the direction of smallest slope, and removing the

slow-decaying terms from the Ruelle’s series. In high-dimensional systems, we expect

substantial reductions of the unstable contribution as long as 𝐽 is aligned with any

subspace spanned by the most expansive directions. Note also that our argument

applies only to systems with at least two positive LEs. If 𝑚 = 1, there is only one

expansive direction, which means there are no degrees of freedom for choosing an

appropriate 𝐽 .

How can these results and analysis be used in the context of practicable high-

dimensional systems? In a standard engineering design process, the quantity of in-

terest is a well-defined function with a concrete physical meaning, e.g., temperature,

kinetic energy, drag force, that is generally not aligned with some abstract subspace
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Figure 6-9: Long-time averages of the wave-like objective function 𝐽 =
exp(sin(𝑧)) sin(𝑧), where 𝑧 = 𝑥1 − 𝑥2 (upper plot), 𝑧 = 𝑥1 (middle plot) and
𝑧 = 𝑥1 + 𝑥2 (lower plot). The time averages were computed for a uniform para-
metric grid consisting of 225 and 100 points along 𝑠 and 𝑡, respectively. For each set
of parameters, a trajectory of length 𝑁 = 5 · 106 was generated. The dashed lines
represent isolines corresponding to two different values of the second (i.e., smaller)
LE: 0.5 (dark blue) and 0 (violet).
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of the chaotic attractor. In the following section, we argue that the specific condition

imposed on 𝐽 is not an obstacle for a vast family of dynamical systems encountered

in many fields such as climate science and turbulence theory. Consequently, we show

that the stable part alone can approximate the total linear response sufficiently well.

6.4 Sensitivity analysis of higher-dimensional flows

with statistical homogeneity

We presented an argument supporting the concept of small unstable contributions.

This promising observation may lead to a significant simplification of the S3 algorithm

for the linear response. As described in Section 6.3, the major requirement for the

leading unstable term 𝑈 to be small is a concrete alignment of the objective function

𝐽 . In an ideal setting, the slope (variation) of 𝐽 in the least expansive directions

should be relatively low compared to the most expansive one represented by 𝑞1. This

requirement seems to be very restrictive given complicated dynamical behavior of

general high-dimensional chaos. In the simple example introduced in Section 6.3, the

most expansive direction was predictable, thanks to which one could easily choose

a suitable 𝐽 . In this section, we will focus on a common feature of a vast group of

spatially-extended chaotic systems: statistical homogeneity in space. Relying on this

property, we argue that the system’s dimension 𝑛 increases the probability of the

desired alignment, regardless of the physical meaning and form of 𝐽 .

Statistical homogeneity in the physical space implies that the long-time behavior

of all system coordinates is approximately the same. For such systems, the objective

function is usually defined in terms of the spatial average of a physical quantity. For

1D-in-space continuous systems bounded by 𝑎 ∈ R and 𝑏 ∈ R, 𝑏 > 𝑎 , for example, 𝐽

is usually expressed as follows,

𝐽 =
1

𝑏− 𝑎

∫︁ 𝑏

𝑎

𝐽(𝑥) 𝑑𝑥 ≈ 1

𝑛

𝑛∑︁
𝑖=1

𝐽(𝑥𝑖) :=
1

𝑛

𝑛∑︁
𝑖=1

𝐽 𝑖 (6.30)

where 𝐽 : R → R is a function with a concrete physical meaning. In the case of
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the Navier-Stokes model, 𝐽 is linear if the velocity is the quantity of interest. For

energy-like quantities, such as the kinetic energy, 𝐽 could be a quadratic function.

Note that if the property of statistical homogeneity holds, then

⟨𝐽⟩ = ⟨𝐽1⟩ = ⟨𝐽2⟩ = ... = ⟨𝐽𝑛⟩,

where ⟨·⟩ denotes the long-time average. This implies that for any time-dependent

weight vector 𝑤(𝑡) ∈ W, where

W =

{︂
𝑤 ∈ R𝑛 |

𝑛∑︁
𝑖=1

𝑤𝑖(𝑡) = 1 ∀𝑡 ≥ 0

}︂
,

the following is true

⟨𝐽𝑤⟩ := ⟨
𝑛∑︁
𝑖=1

𝑤𝑖 𝐽 𝑖⟩ =
𝑛∑︁
𝑖=1

⟨𝑤𝑖 𝐽 𝑖⟩ indep.
= ⟨𝐽1⟩⟨

𝑛∑︁
𝑖=1

𝑤𝑖⟩ = ⟨𝐽⟩. (6.31)

Eq. 6.31 assumes 𝐽 𝑖 and its corresponding weight are statistically independent.

Therefore, the original objective function 𝐽 can be replaced by any member from

the class of spatially weighted functions without affecting the long-time behavior.

This critical observation implies that for any smooth 𝐽 , the feasible space of 𝐽𝑤 in-

creases with the system’s dimension 𝑛. It means that for a large 𝑛, there might be

a lot of candidates well-aligned with 𝑞1. Note that 𝑤 should primarily depend on

𝑞1, i.e., an inherent topological property of the tangent space, which justifies the as-

sumption of statistical independence of 𝑤 and a single phase space coordinate and,

consequently, independence of 𝐽 𝑖 and 𝑤 in the limit 𝑛→ ∞.

We highlight yet another common property of larger physical systems. As re-

ported by several publications (see [135] and references therein), one can distinguish

spatially localized structures of the expansive part of the covariant Lyapunov basis.

For example, in a 3D turbulent flow past a cylinder studied in [126], the most expan-

sive directions tend to be localized in the areas of primary instability. These include

the boundary layers and near-wake regions. In far-wake regions and in the free steam,
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the most expansive (leading) covariant Lyapunov vector (CLV) was reported to be in-

active, i.e., approximately zero. Moving away from the regions of primary instability,

less expansive and contracting CLVs tend to be dominant. However, as pointed out

in [135], in homogeneous systems with periodic boundary conditions, the clustered

activity regions of the leading CLV may move across the entire physical domain. In

their analysis of Rayleigh-Bénard convection [190], the authors notice that, for the

most expansive CLVs, the energy spectral density is concentrated around a specific

wave number, which turns out to be approximately the same as the one of the primal

solution. The same work demonstrates that the energy spectrum density gradually

becomes uniform as the CLV index increases. Based on the rich numerical evidence,

we expect that any time instance 𝑞1 is expected to involve local activity patterns that

are restricted to a sub-region or wobble around the entire domain. Recall that 𝑞1 and

the leading CLV are the same up to a multiplicative prefactor. This is no longer true

for 𝑞𝑖, 𝑖 = 2, ..., 𝑛, due to the orthonormalization procedure.

Given these specific properties of higher-dimensional chaos, the problem of align-

ment of 𝐽 and 𝑞1 could be easily circumvented. Notice that we have freedom in

choosing time-dependent weights, which can potentially favor only those coordinates

that correspond to the regions of “activity" of 𝑞1. As these “activity" clusters move

around in time, the corresponding weights can be adjusted accordingly keeping the re-

maining components of 𝑤 close to zero. If 𝐽 𝑖 = 𝑥𝑖, then the optimal choice of weights

is strictly determined by the components of 𝑞1. For higher-order polynomial objective

functions, the relative values of state components would also affect the corresponding

weights. Their individual contributions, however, are negligible if 𝑛 is large. A high

density of spatial coordinates facilitates search of the optimal set of weights favoring

the active components of 𝐽 in the right proportion, regardless of the form of 𝐽 𝑖. For

a dynamical system with arbitrary statistical behavior and complex tangent topol-

ogy, it is generally difficult to analytically estimate how large 𝑛 should be to ensure

the satisfactory alignment of 𝐽𝑤 leading to the neutralization of the unstable term.

Therefore, in this section, we resort to numerical studies of systems with statistical

homogeneity to guarantee that Eq. 6.31 holds.
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6.4.1 Simplification of the S3 method

Before we discuss the numerical results, we first focus on algorithmic consequences of

neglecting the effect of the SRB measure change. Indeed, a complete omission of the

unstable part in the computation of linear response dramatically simplifies the space-

split algorithm. That term, obtained through partial integration, requires computing

the SRB density gradient and derivatives of projections of tangent solutions onto

the unstable-center subspace. These two ingredients require solving 𝒪(𝑚2) second-

order tangent equations, which is by far the most expensive section of Algorithm 2.

Assuming 𝑛 is large, further simplifications can be introduced. Note that the neutral

contribution involves an infinite series of 𝑘-time correlations of 𝑐0 and 𝐷𝐽 ·𝑓 with the

leading term

𝐶 =

∫︁
𝑀

𝑐0𝐷𝐽 · 𝑓 𝑑𝜇 :=

∫︁
𝑀

(𝑐0 |𝑓 |)𝐷𝐽 · 𝑞𝑓 𝑑𝜇, (6.32)

where 𝑐0 is the projection of a center-stable component of the tangent solution onto

the center subspace normalized by the length of 𝑓 as derived in Eq. 6.6. Notice

that the form of 𝐶 is in fact identical to its unstable counterpart in its original form.

Therefore, if our conjecture of small unstable contributions applies, then 𝐶 is also

small and can be neglected in the linear response algorithm. Indeed, the 𝐿2 norms

of 𝐷𝐽 · 𝑞𝑓 , 𝐷𝐽 · 𝑞𝑢 are expected to be similar, where 𝑞𝑢 is some unstable direction,

unless the positive Lyapunov spectrum is clearly bounded away from zero. Recall

also that the projection coefficients 𝑐𝑖, 𝑖 = 0, 1, ..., 𝑛 represent dot products of a

component of 𝑣 and their corresponding tangent vectors. The direction of parametric

deformation is generally independent of Lyapunov vectors. We later demonstrate

that these coefficients become similar in value as 𝑛→ ∞. Based on this analysis, we

conclude that if our conjecture of a small 𝑈 holds, then the computation of 𝐶 could

also be neglected.

Exclusion of both unstable and neutral terms from the full S3 algorithm leaves us

with the stable term alone. The remaining part requires computing the regularized

tangent solution through step-by-step orthogonal projection of the unstable-center

component. Since 𝑓 is generally not orthogonal to the column space of 𝑄, the original
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stabilizing procedure involves an assembly and inversion of the Schur complement 𝑆.

We have directly used 𝑓 because it is always given at no cost and it allows for a

straightforward derivation of a computable formula for the neutral part of the linear

response. However, since we neglect that part as well, the process of regularizing

the tangent solution can be simplified even further. Instead of using 𝑓 and then

orthogonalizing the (𝑄, 𝑓) tuple, we can solve one more first-order tangent equation

and perform QR factorization of the extended tangent solution matrix. Thanks to

this modification, we recursively generate the orthogonal basis of the unstable-center

subspace and compute projections of 𝑣 onto that basis, which is equivalent to the

original algorithm. This can be achieved by executing Lines 9-10 of Algorithm 2

by changing 𝑚 to 𝑚𝑒𝑥𝑡, where 𝑚𝑒𝑥𝑡 should ideally be equal to 𝑚 + 1. In practice,

however, setting 𝑚𝑒𝑥𝑡 = 𝑚 + 1 may lead to instabilities due to the potentially non-

hyperbolic behavior of the system. Moreover, if 𝑛 is large, we rarely know the exact

value of 𝑚. If our aforementioned conjecture of a small 𝐶 is valid for large systems,

then we could project out a few additional components of the tangent space from 𝑣.

Therefore, as long as 𝑚𝑒𝑥𝑡 is close to 𝑚+1, the penalty of these extra projections, in

the context of sensitivity approximation, is expected to decrease as 𝑛→ ∞. The only

practical consequence is that a few extra tangent equations will have to be solved,

which barely influences the overall cost of the reduced algorithm assuming𝑚𝑒𝑥𝑡−𝑚≪

𝑚. Algorithm 1 summarizes all steps required to approximate the sensitivity. This

procedure was obtained by eliminating the unstable and neutral contributions from

the full S3 algorithm. By-products of the S3 algorithm are Lyapunov exponents,

included in the 𝑙𝑒 array, which we compute to supplement our discussion. Benettin

in [15] originally proposed this approach for approximating LEs.

The total flop count of Algorithm 3 is proportional to𝑚2, which is a consequence of

the recurrent QR factorization needed to find a basis of the center-unstable subspace

every time step. This square dependence can be further alleviated if we introduce a

skipping parameter that reduces the orthogonalization frequency of the basis matrix.

Notice that if we set 𝑣𝑘+1 = 𝑟𝑘+1, 𝑄𝑘+1 = 𝑃𝑘+1 and apply Lines 9-12 every 𝑘𝑠𝑘𝑖𝑝

time steps only, we do not violate the consistency of the linear response scheme
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Algorithm 3: Reduced space-split sensitivity algorithm for higher-
dimensional chaotic flows
Input : 𝑁 , 𝐾, 𝑇 , 𝑛, 𝑚𝑒𝑥𝑡, ∆𝑡
Output: 𝑑⟨𝐽⟩/𝑑𝑠 ≈ 𝑠/𝑁 , largest 𝑚𝑒𝑥𝑡 LEs:= 𝑙𝑒/(𝑁 ∆𝑡)

1 Randomly generate: 𝑥0, 𝑣0, 𝑄0 such that size(𝑥0) = size(𝑣0) = (𝑛, 1),
size(𝑄0) = (𝑛,𝑚𝑒𝑥𝑡);

2 Set 𝑠 = 0 and 𝑙𝑒 = zeros(𝑚𝑒𝑥𝑡);
3 for 𝑘 = 0, ..., 𝑁 − 1 do // main time loop
4 if 𝑘 ≥ 𝑇 then
5 𝑠 := 𝑠+𝐷𝐽𝑘 · 𝑣𝑘;
6 𝑙𝑒 := 𝑙𝑒+ diag(log(abs(𝑅𝑘)));
7 end
8 𝑃𝑘+1 = 𝐷𝜙𝑘𝑄𝑘;
9 QR-factorize 𝑃𝑘+1: 𝑄𝑘+1𝑅𝑘+1 = 𝑃𝑘+1;

10 𝑟𝑘+1 = 𝐷𝜙𝑘 𝑣𝑘 + 𝜒𝑘+1;
11 𝑐𝑘+1 = 𝑄𝑇

𝑘+1 𝑟𝑘+1;
12 𝑣𝑘+1 = 𝑟𝑘+1 −𝑄𝑘+1 𝑐𝑘+1;
13 Advance the iteration: 𝑥𝑘+1 = 𝜙(𝑥𝑘);
14 end

and effectively reduce the 𝑚-related factor of the total cost from 𝑚2 to 𝑚2/𝑘𝑠𝑘𝑖𝑝.

While the aspect of cost reduction is straightforward, we will discuss the consistency

of the modified scheme. By linearity and covariance property, if 𝑘𝑠𝑘𝑖𝑝 > 1, 𝑠 can

be decomposed into the original term and ⟨𝐷𝐽 · 𝑣⟩, where 𝑣 denotes the center-

unstable component of the inhomogeneous tangent. Using the assumption of small

expectations of directional derivatives in any center-unstable direction, the extra term

of sensitivity is negligible, analogously to the unstable and center contributions of the

full S3 algorithm. To maintain the consistency of Benettin’s algorithm, one must

modify its output to 𝐿𝐸𝑠 := 𝑙𝑒/(𝑁 ∆𝑡 𝑘𝑠𝑘𝑖𝑝). This is because Line 6 is executed every

time step and we are effectively adding accumulated logarithmic contribution of 𝑘𝑠𝑘𝑖𝑝

time steps. Notice that the 𝑅 matrix of the modified scheme, which is now computed

every 𝑘𝑠𝑘𝑖𝑝 time steps, is in fact a product of 𝑅 matrices that would be generated

by the standard reduced algorithm. In the case of upper-triangular matrices, the

corresponding elements of the main diagonal are simply multiplied.

We also acknowledge that the optimal value of 𝑘𝑠𝑘𝑖𝑝 is a trade-off between the cost

associated with the dimensionality of the unstable subspace and the ergodic-averaging
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error. Indeed, by modifying 𝑘𝑠𝑘𝑖𝑝, we also affect the latter. Recall that any standard

tangent recursion 𝑣 grows in norm exponentially fast, i.e., ‖𝑣𝑘‖ ≤ 𝐶 exp(𝜆1∆𝑡 𝑘).

Therefore, assuming statistical independence of spatial coordinates, the variance of

𝐷𝐽 ·𝑣 is upper-bounded by a function proportional to exp(2𝜆1∆𝑡 𝑘𝑠𝑘𝑖𝑝). Thus, finding

optimal 𝑘𝑠𝑘𝑖𝑝 depends on the problem and requires some experimentation. Here, we

set 𝑘𝑠𝑘𝑖𝑝 = 1. In the chapter on turbulence, we set 𝑘𝑠𝑘𝑖𝑝 ≫ 1 due to large values of 𝑚

and, consequently, long computation times.

6.4.2 Lorenz 96

In light of the above conclusions, we shall consider the Lorenz 96 model, which was

proposed by E. Lorenz in [111] to study spatio-temporal dynamics of the atmosphere.

Mathematically, this is an 𝑛-dimensional chaotic flow defined as follows,

𝑑𝑥𝑖

𝑑𝑡
= (𝑥𝑖+1 − 𝑥𝑖−2)𝑥𝑖−1 − 𝑥𝑖 + 𝐹, 𝑖 = 1, ..., 𝑛,

𝑥𝑖+𝑛 = 𝑥𝑖,

(6.33)

where the superscript indicates the component index, in compliance with our notation

convention. Each degree of freedom 𝑥𝑖 represents a value of a physical quantity, e.g.,

temperature or pressure, on a uniformly discretized parallel of the Earth. Analogously

to semi-discretized PDEs describing advection, this system involves spatially coupled

variables with a quadratic nonlinearity. Eq. 6.33 involves two constant parameters:

the number of sectors 𝑛 ≥ 4, each corresponding to a different meridian of the Earth,

and imposed forcing 𝐹 ∈ R+. If 𝐹 < 8/9, then the solution quickly decays to the

constant value of 𝐹 , i.e., 𝑥𝑖 = 𝐹 , 𝑖 = 1, ..., 𝑛 for all 𝑡 > 𝑡* ≈ 0 [85]. We solve Eq. 6.33

using the explicit fourth-order Runge-Kutta with ∆𝑡 = 0.005. That ODE solver will

be used throughout this section, unless stated otherwise. In Figure 6-10, we plot the

solutions for 𝑛 = 80 and three different values of 𝐹 . For 𝐹 = 3, the periodic dynamics

involves waves travelling to the west, i.e., in the direction of decreasing sector index 𝑖.

The distortion that appears at the beginning of the simulation quickly decays leading

to a predictable behavior. While some regularity is still maintained at 𝐹 = 6, the
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Figure 6-10: Solutions to the Lorenz 96 system (Eq. 6.33) for 𝑛 = 80 stacked hori-
zontally.

alignment of waves seems random which implies that some unstable modes might be

activated. If we further increase 𝐹 to the value of 9, the spatio-temporal structure of

the solution clearly reflects chaotic behavior without any distinguishable patterns.

To obtain more insights into the dynamics of the Lorenz 96 model, we analyze its

Lyapunov spectrum for the most common values of the system’s parameters [176].

In Figure 6-11, we illustrate a half of the Lyapunov spectrum for 𝐹 ∈ [0, 25] at

𝑛 = 10, 20, 40, 80. For any 𝑛 and 𝐹 < 0.9, all LEs are negative, which means that, for

any random initial condition, the solution exponentially decays to a constant value.

Within the interval 𝐹 ∈ [0.9, 4.5], the dynamics is no longer stationary, but still

non-chaotic, because 𝜆1 = 0. We observe the presence of at least one positive LE if

𝐹 > 4.5. In the chaotic regime, the dimension of the expansive manifold gradually

increases with 𝐹 to about 𝑚 = 𝑛/2 at 𝐹 = 25. Notice also that the higher 𝐹 , the

smaller the angle between the lines representing 𝜆𝑖(𝐹 ), 𝑖 = 1, 2, ... and the x-axis.

Indeed, the authors of [85] computed a curve fit for 𝜆−1
1 (𝐹 ) at 𝑛 = 35, whose close-

form formula is the following: 𝜆−1
1 (𝐹 ) = 0.158 + 123.8𝐹−2.6. Consequently, given

the self-similar behavior of the plotted spectrum, all LEs seemingly converge to fixed
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Figure 6-11: Larger half of the Lyapunov spectrum of Eq. 6.33. LEs were computed
at 240 distinct values of 𝐹 distributed uniformly between 0 and 25. For each value
of 𝐹 , we run 10 independent simulations over 5000 time units. The barely visible
shaded area represents the 2-sigma range (95% confidence) of the 10-element data set
at each value of 𝐹 .

values as the forcing 𝐹 increases.

We shall consider the spatially-averaged kinetic energy of the system as the objec-

tive function 𝐽 , which can be expressed using Eq. 6.30 with 𝐽 𝑖 = (𝑥𝑖)2. The long-time

averages ⟨𝐽⟩ for 𝐹 ∈ [0, 25] at 𝑛 = 10, 20, 40, 80 are plotted in Figure 6-12. We observe

that all four curves ⟨𝐽⟩(𝐹 ) collapse into a single curve due to spatial averaging. The

only misalignment occurs at the non-chaotic/chaotic transition region close to 𝐹 = 5.

Thus, in the extensive chaos regime of Lorenz 96, the spatially-averaged statistics is

generally independent on 𝑛, which was previously observed in [85]. We shall restrict
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Figure 6-12: Long-time means of spatially-averaged kinetic energies of the Lorenz 96
system. The statistics were computed on a uniform grid of 240 values of 𝐹 ∈ [0, 25].
For each value of 𝐹 , the objective function was time-averaged over 5 · 106 time units.

our attention to that regime, i.e., when 𝐹 ≥ 5, and compute sensitivities with respect

to 𝐹 using our reduced S3 algorithm. The slope of ⟨𝐽⟩(𝐹 ) seems to be constant and

is approximately 2 for 𝐹 ∈ [5, 25]. We will use a higher-order interpolation of the

statistics curve and differentiate it using the central finite-difference scheme. This

estimate will serve as a reference solution to evaluate the performance of Algorithm

3.

Figure 6-13 illustrates approximations of the linear response obtained with Algo-

rithm 1. In particular, we used our reduced algorithm to approximate 𝑑⟨𝐽⟩/𝑑𝐹 for

𝐹 ∈ [5, 25]. For 𝑚𝑒𝑥𝑡 = 𝑚 + 1, the algorithm generates satisfactory approximations

for 𝐹 ≥ 6. However, the standard deviation is quite large and it very often exceeds

the value of one across the entire parametric domain. These statistical fluctuations

are eliminated by increasing 𝑚𝑒𝑥𝑡. Indeed, the 𝑚𝑒𝑥𝑡 = 𝑚 + 2 case has dramatically

smaller sigmas everywhere. This result indicates that if 𝑚𝑒𝑥𝑡 is too small, the regu-

larized tangent solution may still have rapidly growing components in some parts of

the attractor leading to large variances. The smooth behavior of the linear response

in the 𝑚𝑒𝑥𝑡 = 𝑚 + 2 case suggests that these fluctuations are not caused by the

ergodic-averaging error. As expected, there is always an extra penalty for increasing

𝑚𝑒𝑥𝑡. However, the higher 𝑛, the smaller price must be paid for extra stabilizing
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projections. This observation is consistent with our conjecture suggesting that the

relative contribution of a single component of 𝑣 decreases as 𝑛 gets larger.

Figure 6-13 reveals two other critical features of the reduced algorithm. First,

if 𝑛 is sufficiently large, then the obtained sensitivity approximation might be very

accurate, i.e., the relative error is no larger than a few percent. This result confirms

our major conjecture of negligible unstable (and neutral) contributions to the total

linear response. For Lorenz 96, the impact of the SRB measure change is apparently

insignificant. The only exception is the region around 𝐹 = 5. Indeed, the error is large

in this parametric regime, regardless of the value of 𝑚𝑒𝑥𝑡 and system’s dimension 𝑛.

Although the property of spatial homogeneity is unaffected and some unstable modes

are still active, we observe the sensitivity approximation clearly deviates from the

reference solution. Note that this parametric region coincides with the rapid decrease

of positive LEs. Many of them are still positive but they are clustered. Our discussion

in Section 6.3 suggests that in this case there might be no gain due to the alignment

of 𝐽 and 𝑞1. All components of 𝑔 are expected to have similar distributions across

the phase space. Therefore, even if 𝐽 and 𝑞1 are aligned, the unstable contribution

could be significant in this case.

For completeness, in Figure 6-14, we also plot the 𝐿2 norms of the projection

scalars 𝑐𝑖, 𝑖 = 1, ...,𝑚𝑒𝑥𝑡 = 𝑚 + 2. This result confirms that all scalars contribute

almost equally to the linear response suggesting that their relative significance is

degraded as 𝑛 increases. These results also indicate that if 𝑛 is small, the scalars

corresponding to the lowest indices tend to be statistically larger compared to their

counterparts. In other words, the Lorenz 96 system with few degrees of freedom tends

to favor the contributions of ‖𝑐𝑖‖2 corresponding to the most expansive directions.

6.4.3 Kuramoto-Sivashinsky

Finally, we shall consider the Kuramoto-Sivashinsky (KS) equation, one of the sim-

plest partial differential equations modeling chaos. Similarly to Lorenz 96, KS is a

spatio-temporal description of complex dynamics driven by instabilities far from an

equilibrium. This equation was proposed decades ago to model wave propagation in
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Figure 6-13: Linear response approximations of the Lorenz 96 model with respect
to 𝐹 computed using Algorithm 1. The upper left plot illustrates approximated
sensitivities for 𝑚𝑒𝑥𝑡 = 𝑚+1, the upper right plot for 𝑚𝑒𝑥𝑡 = 𝑚+2, while the bottom
plot depicts the mean relative error of the 𝑚𝑒𝑥𝑡 = 𝑚+ 2 case computed with respect
to the reference finite-difference solution (respective colors indicate 𝑛). Sensitivities
were computed on a uniform 240-point grid between 𝐹 = 5 and 𝐹 = 25. For each
value of 𝐹 , we run 10 independent ergodic-averaging simulations over 𝑁∆𝑡 = 5000
time units. Vertical lines represent sigma intervals, while the bullets indicate the
corresponding averages. Lack of a bullet (in the upper plot) means the standard
deviation is larger than 1. The solid orange line is a finite difference approximation
of the 11-th degree polynomial fit of ⟨𝐽⟩.
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Figure 6-14: 𝐿2 norms of 𝑐𝑖, 𝑖 = 1, ...,𝑚𝑒𝑥𝑡 = 𝑚 + 2, which were computed as by-
products of Algorithm 1. All simulation parameters are the same as those reported
in the caption of Figure 6-13.

reaction-diffusion systems [91] and hydrodynamic instabilities of laminar flames [156].

A number of other applications of the KS equation can be found in the literature. In

this work, we analyze a modified version of KS, which includes an extra advection

term proportional to a constant scalar 𝑐 ∈ R. The modified equation, which was

previously studied in [21], has the following form,

𝜕𝑢

𝜕𝑡
= −(𝑢+ 𝑐)

𝜕𝑢

𝜕𝑥
− 𝜕2𝑢

𝜕𝑥2
− 𝜕4𝑢

𝜕𝑥4
,

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0,

𝜕𝑢

𝜕𝑥
(0, 𝑡) =

𝜕𝑢

𝜕𝑥
(𝐿, 𝑡) = 0,

(6.34)

where 𝑥 ∈ [0, 𝐿], 𝐿 = 128, 𝑡 ≥ 0, 𝑢(𝑥, 𝑡) ∈ R. We discretize this system in space

using the finite difference method with second-order accuracy. The grid is uniform

and involves 513 nodes, which gives us a constant spacing ∆𝑥 = 128/(513−1) = 0.25.

A combination of center and one-sided schemes is applied to approximate all spatial

derivatives as suggested in [21]. The number of ODEs, i.e., the system’s dimension,

is reduced to 𝑛 = 511 by incorporating all boundary conditions using the ghost node

technique. While this is a stiff system, we apply the fully-explicit fourth-order Runge-

Kutta scheme with a small time step ∆𝑡 = 0.0006. In Appendix 6.6.2, we discuss

how the linear response algorithm could be integrated with implicit schemes.
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Figure 6-15: Solutions to the Kuramoto-Sivashinsky equation (Eq. 6.34) for different
advection intensities.

Figure 6-15 illustrates solutions to the KS equation, 𝑢(𝑥, 𝑡), for different values of

𝑐. In the spatio-temporal space, 𝑢(𝑥, 𝑡) involves a collection of irregular branches that

switch between positive and negative values. The sign of 𝑐 determines the inclination

of these branches. If 𝑐 is positive, they tend to move in the positive direction of 𝑥 and

vice versa. By increasing the magnitude of 𝑐, the advection term starts to dominate

pushing the lightly turbulent region out of the domain. Indeed, for 𝑐 = 2, we observe

that 𝑢(𝑥, 𝑡) quickly becomes steady suggesting that all unstable modes are killed due

to the strong advection. Regardless of the value of 𝑐, one can distinguish a transitional

period at the beginning of each simulation during which the spatio-temporal branches

develop their shapes. At 𝑐 = 1.4, the spatial sub-region 𝑥 < 20 is dominated by the

convection, which results in an almost stable behavior of 𝑢(𝑥, 𝑡) in that part of the

domain. This leads to violation of statistical homogeneity along 𝑥.

Figure 6-16 depicts the 18 largest Lyapunov exponents of the KS equations for
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Figure 6-16: 18 largest Lyapunov exponents of the KS equation. The spectrum was
computed at the uniform grid between 𝑐 = −1 and 𝑐 = 2. For each value of 𝑐, 10
independent simulations were run. The sought-after quantities were obtained through
ergodic-averaging over 12, 000 time units per simulation. The solid lines represent the
mean values obtained in 10 simulations, while the shaded area represents the 2-sigma
range.

𝑐 ∈ [−1, 2]. The LE spectrum is independent of 𝑐 as long as −1 ≤ 𝑐 ≤ 1.3. At

1.3 ≤ 𝑐 ≤ 1.7, we observe a rapid decrease of all positive LEs. This coincides with the

increasing strength of the advection term. Intuitively, the dominating advection term

gradually kills the unstable modes, which consequently leads to a more predictable

behavior of 𝑢(𝑥, 𝑡). The KS system is clearly non-chaotic if 𝑐 > 1.7, which is reflected

by the stable behavior of 𝑢(𝑥, 𝑡) at 𝑐 = 2 illustrated in Figure 6-15.

We also acknowledge similarities in the behavior of LE spectra corresponding to

the Lorenz 96 and KS system. In the former, we observed an analogous collapse of

the values of positive LEs around the laminar-to-turbulence transition close to 𝐹 = 5.

Another analogy is the parametric independence of the LE spectrum at large values

of 𝐹 . Note, however, that the ratio 𝑚/𝑛 may reach the value of 1/2 in the case of

Lorenz 96, which is significantly larger compared to this case.

Selected Lyapunov vectors are plotted for 𝑡 ∈ [0, 1200] in Figure 6-17. As expected,

the leading Lyapunov vector 𝑞1 consists of relatively large structures with local sup-

port. The region of activity of 𝑞1, which corresponds to non-small components, is

limited to a thin sub-region, which moves around the entire 𝑥-space. It periodically
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bounces back and forth between the two walls. We observe that the structural be-

havior of 𝑞𝑖 visibly changes as 𝑖 increases. The support of 𝑞20 is rather global with

occasional small inactivity regions. The same is true for 𝑞40, which also features much

finer structures compared to the previous two. The 𝑞60 vector, on the other hand,

seems to be periodic and highly-oscillatory in 𝑥, and almost constant (stationary)

in 𝑡 across the entire spatio-temporal domain. The tangent vectors corresponding to

moderate indices are placed in the bottom row of Figure 6-17. They consist of finer

structures compared to the ones of 𝑞1 and have occasional small inactivity regions

throughout the entire domain. All vectors in the bottom row are visibly similar except

when 𝑡 is small. Recall that all Lyapunov vectors 𝑞𝑖 were obtained in an iterative

procedure involving a set of forward tangents that is initiated at a random initial

condition. We observe that this iteration persistently requires at least 50 time units

for a convergence run-up.

We also highlight the fact that, due to the recursive orthonormalization proce-

dure, several physical features are lost. While the orthogonal Lyapunov vectors are

sufficient to determine a basis of unstable or center-unstable subspaces required for

our linear response algorithms [161, 15], they cannot be directly used to compute

the individual contractive or center directions of the tangent space, nor can they be

used to approximate the angles between different tangent subbundles. Hence, more

information is required to study the hyperbolicity of a system [89, 92, 169].

Given these preliminary results, we apply Algorithm 1 to compute linear response

with respect to the parameter 𝑐. This time we shall consider three different spatially-

averaged objective functions: linear, quadratic and cubic, i.e., 𝐽 𝑖 = 𝑢𝑝, 𝑝 = 1, 2, 3,

respectively. The corresponding long-time averages are plotted in Figure 6-18 at

𝑐 ∈ [−1, 2]. We observe that, in all of these cases, the mean curve can be divided into

three smooth sections connected at 𝑐 ≈ 1.25 and 𝑐 ≈ 1.7. The shape of the left part

resembles a polynomial function of the same order as the objective function itself.

The middle one resembles the tangent function, while the right-hand side piece is

constant in all three cases. These three pieces coincide with three different behavior

types of 𝑢(𝑥, 𝑡) that we observed in Figure 6-15: turbulent (𝑐 ≤ 1.25), transitional
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Figure 6-17: Orthonormal Lyapunov vectors 𝑞𝑖 of the KS system (Eq. 6.34) without
the extra advection term (𝑐 = 0). The vector 𝑞𝑓 represents the normalized time
derivative of 𝑢(𝑥, 𝑡). The colorbar has linearly been re-scaled between −0.15 and 0.15
keeping the same color for all values from beyond this interval.

247



Figure 6-18: Long-time averages ⟨𝐽⟩ computed on a uniform 240-point grid of 𝑐 ∈
[−1, 2]. The operator ⟨·⟩𝑥 indicates the spatial average. For each value of 𝑐, we run
an ergodic-averaging simulation over 600,000 time units.

(1.25 ≤ 𝑐 ≤ 1.7), and advection-dominated (𝑐 ≥ 1.7) regime.

We apply our reduced linear response algorithm (Algorithm 1) to approximate

sensitivities for these three objective functions. Analogously to the previous plots, we

compare our approximations against the finite-difference reference solutions. Figure

6-19 illustrates the linear response results for different values of 𝑚𝑒𝑥𝑡. One can easily

observe a lot of similarities between these results and the ones generated for Lorenz

96. First of all, if 𝑚𝑒𝑥𝑡 = 𝑚+1, the mean solution is quite close to the reference line,

but the variance is likely to be large. The variance is significantly reduced by increas-

ing 𝑚𝑒𝑥𝑡 and, in most cases, the new mean approximations are still very accurate.
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Indeed, the accuracy can be within the reference line width in the turbulent and sta-

ble regimes. Huge disparities occur in the transitional regime, i.e., at 𝑐 ∈ [1.25, 1.7].

Similarly to the Lorenz 96 case, this region corresponds to the sudden decrease of

positive LEs. The approximation errors here are generally smaller compared to those

computed for the Lorenz 96 system. Recall that, in Figure 6-13, we observed that the

approximation error decreases as 𝑛 → ∞. Indeed, the dimension of the discretized

KS system is an order of magnitude larger than that of Lorenz 96.

Our numerical results presented in this section indicate that the linear response

of a higher-dimensional system can be accurately approximated by the reduced S3

method. That algorithm, which was obtained by eliminating the unstable and neutral

contributions, solves a regularized tangent equation by projecting out all expansive

and, if necessary, a few other tangent components. This process can be in fact for-

mulated as an optimization problem in which we minimize the 𝐿2 norm of the sum

of the standard tangent solution and a linear combination of expansive orthogonal

Lyapunov vectors. A similar concept was previously utilized in a variant of shadowing

methods known as NILSS [129], which relies on covariant Lyapunov vectors. While

there are some algorithmic differences between the reduced S3 and NILSS, this work

also sheds light on the reliability of relatively simple methods using some form of a

regularized tangent equation.

We also note that there is potential in applying the reduced version of the linear

response algorithm to the broad family of time-delayed dynamical systems. The

spatio-temporal structure of the laser dynamics with delayed feedback presented in

[5, 62] clearly features a statistically homogeneous behavior. The user would need

to represent such a system using an appropriate diffeomorphic map 𝜙 : 𝑀 → 𝑀

and compute relevant phase-space and parametric derivatives, following the recipe

described in this chapter. For systems with delay 𝜏 and constant time step ∆𝑡, one

can consider introducing approximately 𝜏/∆𝑡 extra degrees of freedom to eliminate

the time delay term as described by Eq. 1–3 in [5]. In an analogous way, one can

easily derive 𝜙 for any non-autonomous system.
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Figure 6-19: Linear response computed for the same objective functions as those
presented in Figure 6-18 using Algorithm 1. For each value of 𝑐, we run 10 independent
simulations over 3,000 time units each. Bullets and vertical lines represent the mean
and standard deviation, respectively. The results with a large standard deviation
were removed from the plot. The reference line was computed through central finite-
differencing of polynomial fits.
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6.5 Summary

Sensitivity analysis of chaotic dynamical flows is full of mathematical and algorith-

mic challenges. The linear response theory, especially Ruelle’s formalism, allows us to

better understand how different dynamical features of a system affect its sensitivity.

In particular, we can rigorously decompose the linear response formula into three

separate ingredients: unstable, neutral, and stable. This concept has been utilized in

recently developed algorithms such as the space-split sensitivity (S3). The unstable

part represents the effect of the SRB measure gradient, which requires computing

second derivatives of coordinate charts describing unstable manifolds and differenti-

ating Lyapunov vectors in all unstable directions. The neutral and stable parts, as

their names suggest, reflect the contributions of the parametric perturbation along

the center (tangent to the flow) and stable manifolds, respectively. In general, any

of these three terms might significantly contribute to the total linear response. The

example of Lorenz 63 clearly indicates that neglecting the unstable or neutral term

leads to large errors.

Despite their elegance, rigor and accuracy, direct linear response algorithms have

certain flaws. First of all, they are expensive. The leading flop count may be propor-

tional even to the cube of the number of positive Lyapunov exponents. In addition

to that, the non-hyperbolic behavior of larger systems could cause numerical insta-

bilities making the computation of measure gradients difficult. We observed that the

most expansive components of the measure gradient tend to be significantly smaller

in norm compared to the other ones. This critical observation led us to the conjec-

ture that the unstable contribution could potentially be reduced if the effect of the

larger components of the measure gradient is eliminated. To make the unstable part

small, regardless of the choice of a parameter with respect to which linear response is

computed, one could choose an aligned objective function 𝐽 . We show that if 𝐽 is rep-

resented by the unstable divergence of a smooth vector field such that the directional

derivative in the most expansive direction is dominant, the majority of the measure

gradient components could be killed. Our experiment on the hyperchaotic coupled
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sawtooth map confirms that the unstable part can be significantly reduced through an

appropriate selection of 𝐽 . While the idea of finding an aligned 𝐽 may seem to be a

purely theoretical concept, we argue that this result could be critical for practitioners

as well. Indeed, spatially-extended high-dimensional chaotic systems with statistical

homogeneity in space do allow for different representations of 𝐽 . In particular, the

objective function, which typically equals the spatial average of system coordinates

or higher-order moments, can be represented by an arbitrary linear combination of

individual coordinate terms. Consequently, this gives us freedom in choosing 𝐽 and

increases the probability of finding an aligned 𝐽 as the system’s dimension grows.

This conjecture is verified by eliminating the unstable and, consequently, the neutral

part from the full S3 algorithm. Leaving the stable contribution alone, we accurately

approximate sensitivities in both the Lorenz 96 and Kuramoto-Sivashinsky models.

Two primary goals were achieved in this work. First, we presented the full linear

response algorithm with critical analysis of its major parts and potential applica-

tions. Second, based on our analysis, we proposed a reduced variant of S3 that has

been shown to be sufficient for some higher-dimensional systems. Our results indi-

cate that, in systems with statistical homogeneity, sensitivities could be accurately

approximated by projecting out the unstable components from the tangent solution.

Hence, the effect of the SRB measure change can be negligible for a wide range of

parameters. We showed that when the Lyapunov spectrum collapses, which typically

happens when the system moves from a non-chaotic to chaotic regime, the stable

term alone is not enough. Our future work shall investigate how likely this scenario

is in real-world engineering applications. If this is a rare event, further developments

of well-established shadowing methods would not be necessary. Otherwise, one could

consider extracting some parts of the unstable contribution to correct the reduced

algorithm.
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6.6 Appendices

This section includes supplementary material supporting certain arguments presented

in this chapter.

6.6.1 Full space-split algorithm – description, pseudocode and

complexity analysis

The purpose of this section is to extend the discrete version of S3 derived in Chapter

5 to continuous chaos and present the structure of the full linear response algorithm.

We rely on the three-term splitting defined by Eq. 6.3. The major difference between

the discrete and continuous variants of S3 is that, in the latter, we additionally project

out the neutral component from the regularized tangent solution 𝑣. The computation

of the stable part involves solving a linear system for 𝑐𝑖, 𝑖 = 0, 1, ...,𝑚, because the

vector tangent to the center subspace, 𝑓 , is generally not orthogonal to the basis

of the expanding subspace. That linear system is derived in Section 6.2. Another

consequence of the three-term splitting is the emergence of the neutral contribution

of the linear response. Fortunately, as shown in Eq. 6.10-6.14, this part of the algo-

rithm re-uses some ingredients of the stable contribution and only requires computing

𝐾 ∈ Z+ 𝑘-time correlations through ergodic-averaging. Finally, the evaluation of the

unstable part also requires some adjustments. Eq. 6.16 indicates that we need 𝑐𝑖,

𝑖 = 0, 1, ...,𝑚, their unstable derivatives 𝑏, and derivatives of the SRB measure rep-

resented by 𝑔. We acknowledge that the computation of the SRB measure gradient

is agnostic to the presence of the center manifold. Using the measure preservation

property and chain rule on smooth manifolds, one can derive exponentially converging

recursive formulas for 𝑔. The reader is referred to the authors’ previous work pub-

lished in [162] for a detailed derivation and analysis of a trajectory-driven algorithm

for 𝑔. Therefore, we only need to modify the way 𝑏 is computed in the presence of

the neutral subspace. Once 𝑏 is found, the unstable part is computed similarly to its

neutral counterpart, by summing up 𝐾 𝑘-time correlations.

Note that 𝑏𝑖,𝑗 is defined as the directional derivative of 𝑐𝑖 computed along the 𝑗-th
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basis vector 𝑞𝑗. While the regularized form of the unstable contribution (RHS of Eq.

6.16) involves only self-derivatives of 𝑐𝑖, i.e., 𝑏𝑖,𝑗 with 𝑖 = 𝑗, we show that in order

to find a trajectory-following recursion, we also need all possible cross-derivatives

of 𝑐𝑖. The main tool used in the derivation of these formulas is the measure-based

parameterization of local unstable manifolds with orthonormal gradients [162]. It

means that the 𝑚-dimensional unstable manifold 𝑈𝑘 including 𝑥𝑘, i.e., the point of

𝑀 crossed by the trajectory at the 𝑘-th time step, is parameterized as follows: 𝑥𝑘(𝜉) :

[0, 1]𝑚 → 𝑈𝑘 ⊂𝑀 such that 𝑥𝑘(𝜉) is the multivariate inverse cumulative distribution

(quantile function) and ∇𝜉𝑘𝑥𝑘 = 𝑄𝑘. In this context, the marginal SRB density 𝜌𝑘

defined on 𝑈𝑘 can be viewed as the probability density function (PDF) of the uniform

measure nonlinearly re-distributed by 𝑥𝑘(𝜉). The chart coordinates 𝜉𝑘 are updated

step-by-step to ensure the orthogonality of the gradient ∇𝜉𝑘𝑥𝑘 = [𝜕𝜉1𝑘𝑥𝑘, ..., 𝜕𝜉
𝑚
𝑘
𝑥𝑘]. A

more rigorous description and analysis of this coordinate transformation can be found

in [162].

To obtain 𝑏𝑖,𝑗, 𝑖 = 0, 1, ...,𝑚, 𝑗 = 1, ...,𝑚, we simply differentiate Eq. 6.5, Eq.

6.7 and the constraint 𝑣 · 𝑓 = 0 with respect to all components of 𝜉, apply the chain

rule, and solve a linear system with 𝑚(𝑚 + 1) equations and the same number of

unknowns. Notice that, assuming ∇𝜉𝑘𝑥𝑘 = 𝑄𝑘, the directional derivatives along 𝑞𝑖

are the same as parametric derivatives with respect to 𝜉𝑖.

Differentiation of Eq. 6.5 with respect to 𝜉𝑗𝑘+1 yields

𝜕𝜉𝑗𝑘+1
𝑣𝑘+1 := 𝑤𝑗𝑘+1 =

𝜕𝜉𝑗𝑘+1
𝑟𝑘+1 −

𝑚∑︁
𝑙=1

𝑏𝑙,𝑗𝑘+1 𝑞
𝑙
𝑘+1 + 𝑐𝑙𝑘+1 𝑝

𝑙,𝑗 − 𝑏0,𝑗𝑘+1 𝑓𝑘+1 − 𝑐0𝑘+1𝐷𝑓𝑘+1 𝑞
𝑗
𝑘+1,

(6.35)

where 𝑝𝑖,𝑗 := 𝜕𝜉𝑗𝑞
𝑖. In the above equation, we used the following identity,

𝜕𝜉𝑗𝑘+1
𝑓𝑘+1 = 𝐷𝑓𝑘+1 𝜕𝜉𝑗𝑘+1

𝑥𝑘+1 = 𝐷𝑓𝑘+1 𝑞
𝑗
𝑘+1.

Consequently, differentiating Eq. 6.7, i.e., constraint enforcing 𝑣 · 𝑞 = 0, with respect
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to 𝜉𝑗𝑘+1 gives

𝑏𝑖,𝑗𝑘+1 = 𝑝𝑖,𝑗𝑘+1 ·
(︀
𝑟𝑘+1 − 𝑐0𝑘+1 𝑓𝑘+1

)︀
+ 𝑞𝑖𝑘+1 · 𝜕𝜉𝑗𝑘+1

𝑟𝑘+1

− 𝑏0,𝑗𝑘+1𝑞
𝑖
𝑘+1 · 𝑓𝑘+1 − 𝑐0𝑘+1 𝑞

𝑖
𝑘+1 ·𝐷𝑓𝑘+1 𝑞

𝑗
𝑘+1.

(6.36)

To eliminate 𝑤 from the linear system, we differentiate the constraint 𝑣 · 𝑓 = 0 with

respect to 𝜉𝑗𝑘+1 and plug Eq. 6.35 to obtain

− 𝑣𝑘+1 ·𝐷𝑓𝑘+1 𝑞
𝑗
𝑘+1 = 𝑤𝑗𝑘+1 · 𝑓𝑘+1 =

𝜕𝜉𝑗𝑘+1
𝑟𝑘+1 · 𝑓𝑘+1 −

𝑚∑︁
𝑙=1

𝑏𝑙,𝑗𝑘+1 𝑞
𝑙
𝑘+1 · 𝑓𝑘+1 + 𝑐𝑙𝑘+1 𝑝

𝑙,𝑗 · 𝑓𝑘+1

− 𝑏0,𝑗𝑘+1 𝑓𝑘+1 · 𝑓𝑘+1 − 𝑐0𝑘+1𝐷𝑓𝑘+1 𝑞
𝑗
𝑘+1 · 𝑓𝑘+1.

(6.37)

Finally, by combining Eq. 6.36–6.37, we derive the following linear system for 𝑏𝑖,𝑗,

𝑖 = 0, 1, ...,𝑚, 𝑗 = 1, ...,𝑚,

(𝑓𝑘+1 · 𝑓𝑘+1)𝑏
0,𝑗
𝑘+1 +

𝑚∑︁
𝑙=1

(𝑞𝑙𝑘+1 · 𝑓𝑘+1) 𝑏
𝑙,𝑗
𝑘+1 = 𝑑0,𝑗𝑘+1,

(𝑞𝑖𝑘+1 · 𝑓𝑘+1)𝑏
0,𝑗
𝑘+1 + 𝑏𝑖,𝑗𝑘+1 = 𝑑𝑖,𝑗𝑘+1, 𝑖, 𝑗 = 1, ...,𝑚,

(6.38)

where

𝑑0,𝑗𝑘+1 := 𝑣𝑘+1 ·𝐷𝑓𝑘+1 𝑞
𝑗
𝑘+1 + 𝜕𝜉𝑗𝑘+1

𝑟𝑘+1 · 𝑓𝑘+1

−
𝑚∑︁
𝑙=1

𝑐𝑙𝑘+1 𝑝
𝑙,𝑗
𝑘+1 · 𝑓𝑘+1 − 𝑐0𝑘+1𝐷𝑓𝑘+1 𝑞

𝑗
𝑘+1 · 𝑓𝑘+1,

𝑑𝑖,𝑗𝑘+1 := 𝑝𝑖,𝑗𝑘+1 ·
(︀
𝑟𝑘+1 − 𝑐0𝑘+1 𝑓𝑘+1

)︀
+ 𝑞𝑖𝑘+1 · 𝜕𝜉𝑗𝑘+1

𝑟𝑘+1

− 𝑐0𝑘+1 𝑞
𝑖
𝑘+1 ·𝐷𝑓𝑘+1 𝑞

𝑗
𝑘+1, 𝑖, 𝑗 = 1, ...,𝑚.

(6.39)

The Schur complement of System 6.38–6.39 consists of 𝑚2 constant-diagonal blocks.

Their values are exactly the same as the corresponding entries of 𝑆. Therefore, if the
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inverse 𝑆−1 is available, we can directly compute the sought-after quantities,

𝑏𝑖,𝑗𝑘+1 = (𝑆−1
𝑘+1)

𝑖: · 𝑑1:𝑚,𝑗𝑘+1 −
𝑚∑︁
𝑙=1

(𝑆−1
𝑘+1)

𝑖𝑙 𝑞
𝑙
𝑘+1 · 𝑓𝑘+1

𝑓𝑘+1 · 𝑓𝑘+1

𝑑0,𝑗𝑘+1

= (𝑆−1
𝑘+1)

𝑖: ·

(︃
𝑑1:𝑚,𝑗𝑘+1 −

𝑑0,𝑗𝑘+1

𝑓𝑘+1 · 𝑓𝑘+1

𝑄𝑇
𝑘+1 𝑓𝑘+1

)︃
, 𝑖, 𝑗 = 1, ...,𝑚,

(6.40)

where (𝑆−1)𝑖𝑗 indicates the entry of 𝑆−1 corresponding to its 𝑖-th row and 𝑗-th column.

Analogously, 𝑑1:𝑚,𝑗 denotes the 𝑚-dimensional array including all 𝑑𝑖,𝑗 for all 𝑖 =

1, ...,𝑚 and a fixed 𝑗. Once 𝑏𝑖,𝑗 for all 𝑖, 𝑗 = 1, ...,𝑚 is computed, 𝑏0,𝑗 and 𝑤𝑗,

𝑗 = 1, ...,𝑚 can be evaluated directly using Eq. 6.35 and Eq. 6.38.

Based on Eq. 6.35–6.40, we can now construct a trajectory-following iteration

to compute 𝑏. These equations involve some ingredients previously derived for the

stable and neutral parts. The new quantities are the parametric derivatives of the

basis vectors 𝑝, i.e., derivatives of Lyapunov vectors, and 𝜕𝜉𝑗𝑘+1
𝑟𝑘+1. The former are

computed using the procedure for 𝑔 extended by an extra low-cost projection [161].

Using the definition of 𝑟𝑘+1 and all underlying quantities, we apply the chain rule to

expand 𝜕𝜉𝑗𝑘+1
𝑟𝑘+1,

𝜕𝜉𝑗𝑘
𝑟𝑘+1 = 𝐷2𝜙(𝑣𝑘, 𝑞

𝑗
𝑘) +𝐷𝜙𝑘 𝑤

𝑗
𝑘 +𝐷𝜕𝑠𝜙𝑘 𝑞

𝑗
𝑘, (6.41)

where 𝐷2𝜙(𝑎, 𝑏) denotes the second-order bilinear form whose 𝑖-th component equals

(𝐷2𝜙(𝑎, 𝑏))𝑖 = 𝜕𝑥𝑘𝜕𝑥𝑙𝜙
𝑖 𝑎𝑘 𝑏𝑙 (per Einstein’s summation convention), while 𝐷𝜕𝑠𝜙 de-

notes the phase-space Jacobian of parametric derivative of 𝜙. Note also that Eq.

6.41 needs to be further re-scaled by the Jacobian of the coordinate transformation

from 𝜉𝑘 to 𝜉𝑘+1. Without loss of generality, we can choose 𝜉 = 0 and show that

the Jacobian of coordinate transformation is a by-product of the iterative algorithm

for the basis vectors 𝑞 [162]. Based on the above derivations, Section 6.2 and [161],

Algorithm 2 summarizes all the steps required to approximate the full linear response

of a hyperbolic flow. While the most important aspects are covered in this work, the

reader is referred to these two external references for a rigorous justification of all
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other parts.

The input parameter 𝑇 is to allow all the recursions to converge before the linear

response contributions are collected. Note that Algorithm 2 is agnostic to the time

integration method, which directly affects 𝜙 and hence the cost of computing its

derivatives. In Appendix 6.6.2, we derive relevant differentiation operators for the

midpoint scheme.

Assuming both the objective function 𝐽 and parameter 𝑠 are scalars, the com-

putational cost of Algorithm 2 depends on three parameters: the trajectory length

𝑁 , dimension of both the system 𝑛 and unstable subspace 𝑚. In this case, the

most expensive part is the computation of the SRB density gradient (Lines 12-20).

This chunk of the algorithm solves 𝑚2 second-order tangent equations (Line 12) and

performs double contraction against the transformation Jacobian (Line 13) to sta-

bilize the iteration, which costs 𝒪(𝑛3𝑚2 + 𝑛𝑚3) floating point operations (flops)

per time step. If 𝑠 is an 𝑛𝑠-dimensional vector, then the majority of the modified

part of Algorithm 2 (Lines 23-45) will need to be repeated 𝑛𝑠 times, which costs

𝒪(𝑛𝑠 (𝑛
3𝑚+𝑚2 𝑛)) flops per time step. Finally, Lines 4-8 would need to be repeated

𝑛𝐽 times if 𝐽 was an 𝑛𝐽 -dimensional vector. This would incur an extra cost propor-

tional to 𝒪(𝑛𝐽 𝑛𝑠 𝑛) flops. Therefore, assuming max(𝑚,𝑛𝑠, 𝑛𝐽) ≪ 𝑛, the leading flop

count term of the total cost of Algorithm 2 is

𝒪
(︀
𝑁 𝑛3 (𝑚2 + 𝑛𝑠𝑚)

)︀
. (6.42)

Note that the most important factor in determining the total cost is the system’s

dimension 𝑛. This number is cubed because of the contraction of the second-order

operator with two different vectors (Line 12). In practice, however, the linear differen-

tiation operators (Jacobians, Hessians) have sparse/banded structure. This usually

happens in case of PDE-related dynamical systems that have been derived using

standard discretization methods such as the finite element method. The major con-

sequence of the local structure is that the cost of evaluating first- and second-order

operator-vector contractions is in fact linear to the dimension of the system. There-
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Algorithm 4: Space-split sensitivity algorithm for hyperbolic flows
Input : 𝑁 , 𝐾, 𝑇 , 𝑛, 𝑚
Output: 𝑑⟨𝐽⟩/𝑑𝑠 ≈ (𝑠+ 𝑐+ 𝑢)/𝑁

1 Randomly generate: 𝑥0, 𝑣0, 𝑄0, 𝑎
𝑖,𝑗
0 , 𝑤𝑖

0 for all 𝑖, 𝑗 = 1, ...,𝑚;
2 Set 𝑠 = 𝑐 = 𝑢 = 0;
3 for 𝑘 = 0, ..., 𝑁 − 1 do // main time loop
4 if 𝑘 ≥ 𝑇 then
5 𝑠 := 𝑠+𝐷𝐽𝑘 · 𝑣𝑘;
6 𝑢 := 𝑢− 𝐽𝑘 (𝑢𝑘 + 𝑢𝑘−1 + ...+ 𝑢𝑘−𝐾+1);

⎫⎬⎭ Update stable (𝑠), neutral (𝑐)
and unstable (𝑢) contributions [28, 161].

7 𝑐 := 𝑐+𝐷𝐽𝑘 · 𝑓𝑘 (𝑐0𝑘 + 𝑐0𝑘−1 + ...+ 𝑐0𝑘−𝐾+1);
8 end
9 𝑃𝑘+1 = 𝐷𝜙𝑘 𝑄𝑘;

10 QR-factorize 𝑃𝑘+1: 𝑄𝑘+1 𝑅𝑘+1 = 𝑃𝑘+1;

⎫⎬⎭ Update basis vectors 𝑄 and transformation
Jacobian 𝑅. See [51] for derivation
and convergence analysis of Lyapunov basis.11 Find the inverse of 𝑅𝑘+1;

12 for 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑖 do �̃�𝑖,𝑗𝑘+1 = 𝐷2𝜙𝑘(𝑞
𝑖
𝑘, 𝑞

𝑗
𝑘) +𝐷𝜙𝑘 𝑎

𝑖,𝑗
𝑘 ;

13 for 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑖 do 𝑎𝑖,𝑗𝑘+1 = �̃�𝑝,𝑞𝑘+1 (𝑅
−1)𝑝𝑖𝑘+1 (𝑅

−1)𝑞𝑗𝑘+1 ;
14 for 𝑖 = 1, ...,𝑚 do
15 for 𝑝, 𝑞 = 1, ...,𝑚 do

16 (𝜕𝜉𝑖𝑘+1
𝑅𝑘+1)

𝑝𝑞 =

⎧⎪⎨⎪⎩
𝑞𝑝𝑘+1 · 𝑎

𝑝,𝑖
𝑘+1, if 𝑝 = 𝑞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Compute all 𝑚 components of 𝑔.
This part requires solving
𝑚2 2𝑛𝑑-order tangent equations.
Run once per time step,
regardless of dim(𝐽)

and dim(𝑠). See [162]
for original derivation.

𝑞𝑝𝑘+1 · 𝑎
𝑞,𝑖
𝑘+1 + 𝑞𝑞𝑘+1 · 𝑎

𝑝,𝑖
𝑘+1, if 𝑝 < 𝑞

0, otherwise
;

17 end
18 𝑔𝑖𝑘+1 = −tr(𝜕𝜉𝑖𝑘+1

𝑅𝑘+1);
19 end
20 for 𝑖, 𝑗 = 1, ...,𝑚 do 𝑝𝑖,𝑗𝑘+1 = 𝑎𝑖,𝑗𝑘+1 − 𝑞𝑙𝑘+1(𝜕𝜉𝑗𝑘+1

𝑅𝑘+1)
𝑙𝑖

}︂
Compute derivatives of
Lyapunov vectors [161].;

21 𝑆𝑘+1 = 𝐼 −𝑄𝑇
𝑘+1𝑓𝑘+1(𝑄

𝑇
𝑘+1𝑓𝑘+1)

𝑇 /𝑓𝑘+1 · 𝑓𝑘+1;
22 Find the inverse of 𝑆𝑘+1;
23 𝑟𝑘+1 = 𝐷𝜙𝑘 𝑣𝑘 + 𝜒𝑘+1;
24 𝑧𝑘+1 = 𝑄𝑇

𝑘+1 (𝑟𝑘+1 − (𝑓𝑘+1 · 𝑟𝑘+1)/(𝑓𝑘+1 · 𝑓𝑘+1)𝑓𝑘+1);
25 for 𝑖 = 1, ...,𝑚 do 𝑐𝑖𝑘+1 = (𝑆−1

𝑘+1)
𝑖𝑗 𝑧𝑗𝑘+1;

26 𝑐0𝑘+1 = 𝑓𝑘+1 · (𝑟𝑘+1 − 𝑐𝑖𝑘+1 𝑞
𝑖
𝑘+1)/𝑓𝑘+1 · 𝑓𝑘+1;

27 𝑣𝑘+1 = 𝑟𝑘+1 − 𝑐𝑖𝑘+1 𝑞
𝑖
𝑘+1 − 𝑐0𝑘+1 𝑓𝑘+1;

28 for 𝑖 = 1, ...,𝑚 do 𝜕𝜉𝑖𝑘 𝑟𝑘+1 = 𝐷2𝜙𝑘(𝑣𝑘, 𝑞
𝑖
𝑘) +𝐷𝜙𝑘 𝑤

𝑖
𝑘 +𝐷𝜕𝑠𝜙𝑘 𝑞

𝑖
𝑘;

29 ∇𝜉𝑘+1
𝑟𝑘+1 = ∇𝜉𝑘𝑟𝑘+1 𝑅

−1
𝑘+1;

30

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Modification
of the general
discrete S3
from [161].
This part
computes
𝑐, 𝑏, 𝑤,
according to
the derivation
presented in
this section
and Section 2.1.

31 for 𝑖 = 1, ...,𝑚 do
32 𝑑0,𝑖𝑘+1 = 𝑣𝑘+1 ·𝐷𝑓𝑘+1 𝑞

𝑖
𝑘+1 + 𝜕𝜉𝑖𝑘+1

𝑟𝑘+1 · 𝑓𝑘+1 − 𝑐𝑙𝑘+1 𝑝
𝑙,𝑖
𝑘+1 · 𝑓𝑘+1−

33 𝑐0𝑘+1 𝐷𝑓𝑘+1 𝑞
𝑖
𝑘+1 · 𝑓𝑘+1;

34 end
35 for 𝑖, 𝑗 = 1, ...,𝑚 do

𝑑𝑖,𝑗𝑘+1 = 𝑝𝑖,𝑗𝑘+1 · (𝑟𝑘+1 − 𝑐0𝑘+1 𝑓𝑘+1) + 𝑞𝑖𝑘+1 · 𝜕𝜉𝑗𝑘+1
𝑟𝑘+1 − 𝑐0𝑘+1 𝑞

𝑖
𝑘+1 ·𝐷𝑓𝑘+1 𝑞

𝑗
𝑘+1;

36 for 𝑖, 𝑗 = 1, ...,𝑚 do 𝑏𝑖,𝑗𝑘+1 = (𝑆−1
𝑘+1)

𝑖: · (𝑑1:𝑚,𝑗
𝑘+1 − 𝑑0,𝑗𝑘+1/(𝑓𝑘+1 · 𝑓𝑘+1)𝑄

𝑇
𝑘+1 𝑓𝑘+1);

37 for 𝑖 = 1, ...,𝑚 do 𝑏0,𝑖𝑘+1 = 1/(𝑓𝑘+1 · 𝑓𝑘+1) (𝑑
0,𝑖
𝑘+1 − (𝑞𝑙𝑘+1 · 𝑓𝑘+1)𝑏

𝑙,𝑖
𝑘+1);

38 for 𝑖 = 1, ...,𝑚 do
𝑤𝑖

𝑘+1 = 𝜕𝜉𝑖𝑘+1
𝑟𝑘 − 𝑏𝑙,𝑖𝑘+1 𝑞

𝑙
𝑘+1 − 𝑐𝑙𝑘+1 𝑝

𝑙,𝑖
𝑘+1 − 𝑏0,𝑖𝑘+1 𝑓𝑘+1 − 𝑐0𝑘+1 𝐷𝑓𝑘+1𝑞

𝑖
𝑘+1 ;

39 Save the two scalars: 𝑢𝑘+1 = 𝑏𝑖,𝑖𝑘+1 + 𝑐𝑖𝑘+1 𝑔
𝑖
𝑘+1 and 𝑐0𝑘+1;

40 Advance the iteration: 𝑥𝑘+1 = 𝜙(𝑥𝑘);
41 end
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fore, the leading term of the flop count dramatically decreases to

𝒪
(︀
𝑁 𝑛 (𝑚3 + 𝑛𝑠𝑚

2 + 𝑛𝑠 𝑛𝐽)
)︀
. (6.43)

6.6.2 Handling non-trivial time integrators and implicit schemes

Both Algorithm 1 and Algorithm 2 require computing first-order derivatives in phase

space as well as parametric derivatives of 𝜙. The latter also requires second-order

derivatives to compute 𝑔 and 𝑤. They are products of the chain rule applied to the

discrete version of the time-continuous system. The computational cost of evaluating

these quantities heavily depends on the time integrator. For the Euler method, for

example, differentiation of 𝜙 is equally expensive as differentiation of 𝑓 . In this work,

we use second- and fourth-order fully-explicit Runge-Kutta schemes, which involve

nested functions. If the system is sparse and its dimension 𝑛 is large, it is efficient to

compute all the tensor-vector contractions as we go rather than evaluating and storing

large Jacobians and Hessians. Therefore, our aim is to use the chain rule to express

all contraction types appearing in both algorithms such as 𝐷𝜙𝑣 in terms of similar

tensor-vector products involving derivatives of 𝑓 only. In this section, we present

derivations for the second-order Runge-Kutta map defined by Eq. 1.4. Analogous

expressions for the fourth-order scheme can be found in the attached Python code.

For the midpoint method, 𝜙(𝑥𝑘) is defined as

𝜙(𝑥𝑘) = 𝑥𝑘 +∆𝑡 𝑓

(︂
𝑥𝑘 +

∆𝑡

2
𝑓(𝑥𝑘)

)︂
:= 𝑥𝑘 +∆𝑡 𝑓(𝑥𝑝) = 𝑥𝑘 +∆𝑡 𝑓𝑝, (6.44)

where 𝑥𝑝 := 𝑥𝑘 +∆𝑡/2 𝑓(𝑥𝑘). Therefore, for any vector 𝑣 ∈ R𝑛,

𝐷𝜙𝑘 𝑣 = 𝑣 +∆𝑡𝐷𝑓𝑝 𝑣 +
∆𝑡2

2
𝐷𝑓𝑝𝐷𝑓𝑘 𝑣, (6.45)

with 𝐷𝑓𝑘 = 𝐷𝑓(𝑥𝑘) and 𝐷𝑓𝑝 = 𝐷𝑓(𝑥𝑝), in compliance with our notation convention.

Differentiating Eq. 6.45 once more and contracting it against yet another vector
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𝑎 ∈ R𝑛, we obtain the following relation,

𝐷2𝜙𝑘(𝑣, 𝑎) =∆𝑡𝐷2𝑓𝑝

(︂
𝑣 +

∆𝑡

2
𝐷𝑓𝑘 𝑣, 𝑎

)︂
+

∆𝑡2

2
𝐷2𝑓𝑝

(︂
𝑣 +

∆𝑡

2
𝐷𝑓𝑘 𝑣,𝐷𝑓𝑘 𝑎

)︂
+

∆𝑡2

2
𝐷𝑓𝑝𝐷

2𝑓𝑘(𝑣, 𝑎).

(6.46)

Recall that 𝐷2𝜙𝑘(𝑣, 𝑎) ∈ R𝑛. Assuming 𝑓 also depends on a scalar parameter 𝑠, the

parametric derivative of Eq. 6.44 expands as follows,

𝜕𝑠𝜙𝑘 = 𝜒𝑘+1 = ∆𝑡 𝜕𝑠𝑓𝑝 +
∆𝑡2

2
𝐷𝑓𝑝 𝜕𝑠𝑓𝑘, (6.47)

where 𝜕𝑠𝑓𝑘 = 𝜕𝑓/𝜕𝑠 (𝑥𝑘). The final relevant contraction, 𝐷𝜕𝑠𝜙𝑘 𝑣, involves mixed

parametric and phase-space derivatives and is obtained by differentiating Eq. 6.47,

𝐷𝜕𝑠𝜙𝑘 𝑣 =∆𝑡𝐷𝜕𝑠𝑓𝑝

(︂
𝑣 +

∆𝑡

2
𝐷𝑓𝑘 𝑣

)︂
+

∆𝑡2

2
𝐷2𝑓𝑝

(︂
𝑣 +

∆𝑡

2
𝐷𝑓𝑘 𝑣, 𝜕𝑠𝑓𝑘

)︂
+

∆𝑡2

2
𝐷𝑓𝑝𝐷𝜕𝑠𝑓 𝑣.

(6.48)

We highlight the fact that, for the midpoint method, each tensor-vector product

involving 𝜙 requires the evaluation of 𝒪(1) similar products containing 𝑓 . The fourth-

order Runge-Kutta scheme is in fact a four-level nested map from 𝑥𝑘 to 𝑥𝑘+1. In this

case, the Hessian-vectors contraction requires about 20 such evaluations. For sparse

systems, however, the cost of a single evaluation of 𝐷𝑓 𝑣, 𝐷2𝑓(𝑎, 𝑣), 𝐷𝜕𝑠𝑓 𝑣 is linear

in 𝑛.

An implicit scheme is a common choice for stiff systems. That choice does not

affect our linear response algorithms. The only part that needs to be modified is the

way the products appearing in Eq. 6.44–6.48 are computed. Let us consider a generic

implicit scheme,

ℎ(𝑥𝑘, 𝑥𝑘+1) = 0, (6.49)
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where 𝑥𝑘+1 = 𝜙(𝑥𝑘). Assuming 𝑥𝑘 is known, the 𝑛-dimensional nonlinear system

defined by Eq. 6.49 is typically solved for 𝑥𝑘+1 using a standard solver such as the

Newton-Raphson method. Differentiating Eq. 6.49 with respect to 𝑥𝑘 and multiplying

both sides by a vector 𝑣, we obtain the following system,

𝜕ℎ

𝜕𝑥𝑘+1

𝐷𝜙𝑘 𝑣 = − 𝜕ℎ

𝜕𝑥𝑘
𝑣, (6.50)

where 𝜕ℎ/𝜕𝑥𝑘 and 𝜕ℎ/𝜕𝑥𝑘+1 are the 𝑛 × 𝑛 Jacobian matrices of ℎ with respect to

𝑥𝑘 and 𝑥𝑘+1, respectively, both evaluated at (𝑥𝑘, 𝑥𝑘+1). If both 𝑥𝑘 and 𝑥𝑘+1 are

known, the linear system defined by Eq. 6.50 can be solved for 𝐷𝜙𝑘 𝑣, which is a

necessary ingredient of our linear response algorithms. To compute other tensor-

vector products, we further differentiate Eq. 6.50, apply the chain rule as presented

above, and formulate analogous linear systems.
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Chapter 7

Tangent dynamics and sensitivity

analysis of turbulent flows

Although there has recently been huge progress in the sensitivity analysis of chaos,

only a small handful of new methods has been applied to three-dimensional PDEs.

In the development process, the accuracy of the linear response approximation is

only one among several important aspects that needs to be carefully studied. Other

include Lyapunov spectra, dynamics of Lyapunov vectors and impact of the mesh

resolution. They are helpful in understanding the underlying physics and calibrating

the existing methods. Here, we shall exclusively focus on turbulent channel flows.

The purpose of this chapter is twofold. First, we analyze aspects of the underlying

tangent dynamics that play a big role in the computation of sensitivities. Second, we

apply the reduced algorithm for the sensitivity analysis proposed in Chapter 6 and

assess its performance. Numerical results presented in this chapter is a starting point

in the development of high-fidelity linear response machinery for real-world turbulent

flows.
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7.1 Compressible isothermal channel flow: problem

description

Let us consider the compressible isothermal Navier-Stokes system defined by the

following two coupled PDEs,

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌 𝑢𝑗)

𝜕𝑥𝑗
= 0,

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+
𝜕(𝜌 𝑢𝑖 𝑢𝑗)

𝜕𝑥𝑗
+
𝜕𝑝

𝜕𝑥𝑖
− 𝜕

𝜕𝑥𝑘

(︂
𝜈 𝜌

(︂
𝜕𝑢𝑖
𝜕𝑥𝑘

+
𝜕𝑢𝑘
𝜕𝑥𝑖

)︂)︂
= 0,

(7.1)

which represent the mass and momentum conservation laws, respectively. This system

is closed with the algebraic equation of state,

𝑝 = 𝜌 𝑐2, (7.2)

where 𝑐 is the (uniform in space) speed of sound, 𝑢𝑖, 𝑖 = 1, 2, 3 are the components of

the velocity vector, while 𝜌 denotes the density of the fluid. The only input/control

parameter is the kinematic viscosity denoted by 𝜈, which is a positive scalar. Re-

peated subscripts imply summation over all three spatial dimensions per Einstein’s

convention. In this chapter, we will be analyzing an approximate version of System

7.1–7.2. In particular, the original diffusive term (i.e., the term proportional to 𝜈) is

replaced with

−𝜈 𝜌 𝜕

𝜕𝑥𝑘

(︂
𝜕𝑢𝑖
𝜕𝑥𝑘

)︂
− 𝜈𝑏𝑢𝑙𝑘 𝜌

𝜕

𝜕𝑥𝑖

(︂
𝜕𝑢𝑘
𝜕𝑥𝑘

)︂
, (7.3)

where 𝑖 = 1, 2, 3. Thus, some parts of the gradient of the diffusivity are neglected

here. In addition, we add a bulk diffusivity proportional to a new input parameter

𝜈𝑏𝑢𝑙𝑘 to eliminate acoustic waves from the flow. None of these changes affects the

turbulent behavior of the system. In all our numerical experiments, we set 𝜈𝑏𝑢𝑙𝑘 to

0.9.

This modified Navier-Stokes system is defined in a box [0, 𝐿1] × [−𝐿2/2, 𝐿2/2] ×

[0, 𝐿3], where 1, 2 and 3 are the labels of Cartesian coordinates that represent the

streamwise, wall-normal and spanwise directions, respectively. We will alternately
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Figure 7-1: Sketch of the computational domain used for the channel flow simulation.

use 𝑥, 𝑦, 𝑧 to denote the corresponding spatial directions. The domain parameters

are fixed throughout this chapter and they equal: 𝐿1 = 2, 𝐿2 = 2𝛿 = 2, 𝐿3 = 1. See

Figure 7-1 for a sketch of the computational domain considered in this study.

The boundary conditions are periodic in 𝑥 and 𝑧 for all quantities, and 𝑢𝑖 = 0,

𝑖 = 1, 2, 3, 𝜕𝜌/𝜕𝑦 = 0 at 𝑦 ± 𝛿. The initial condition is zero except the streamwise

component of the velocity, which consists of two ingredients: a quadratic-function

laminar profile and random solenoidal perturbation.

The continuous governing equations are discretized in space using second-order

finite differences. The grid is uniform in both 𝑥 and 𝑧 directions, and non-uniform in

the 𝑦 direction. The grid spacing along the periodic directions is 𝐿1/𝑛1 and 𝐿3/𝑛3,

where 𝑛1 and 𝑛3 respectively denote the number of distinct points in the 𝑥 and 𝑧

directions. In the wall-normal direction, we generate 𝑛2 points with refinement close

to the wall. The semi-discrete system of ODEs is integrated in time using the explicit

fourth-order Runge-Kutta scheme.

Note that 𝜈 is constant throughout the domain under the assumed isothermal

condition. Consequently, the product of the temperature and the gas constant is

constant as well. We set its value to 100. The bulk velocity vector is aligned with the

first coordinate and equals 1, which means that the Mach number of the flow equals
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0.1, while the bulk Reynolds number

𝑅𝑒𝑏𝑢𝑙𝑘 =
𝑢𝑏𝑢𝑙𝑘 𝛿

𝜈
=

1

𝜈
. (7.4)

Note also that although the density varies in space, the small value of Mach number

implies the compressibility effects are expected to have low impact on the flow physics.

The reader is referred to [132] and the pyChan section of [133] for further details on

the construction of the initial condition, grid distribution in the wall-normal direction

and time step adjustment scheme.

We run a test simulation using the numerical framework described above and

illustrate some physical aspects of the flow. In this test case, we set 𝜈 = 3 · 10−3

and choose a mesh with (𝑛1, 𝑛2, 𝑛3) = (25, 100, 25) such that the grid resolution

in the periodic directions equals ∆𝑥+ = 17.2, ∆𝑧+ = 8.6, while the wall-normal

spacing is ∆𝑦+ = 1.1 and ∆𝑦+ = 7.6 at the wall and channel center, respectively.

Any wall-normal distance 𝑙 can be expressed using wall units, represented by the

superscript “+", through the following formula: 𝑙+ = 𝑢𝜏 𝑙/𝜈, where 𝑢𝜏 denotes the

friction velocity. In this particular simulation, 𝑢𝜏 ≈ 0.0619, which implies that the

corresponding friction Reynolds number, defined as

𝑅𝑒𝜏 =
𝑢𝜏 𝛿

𝜈
, (7.5)

is approximately 206. Figure 7-2 illustrates a select time snapshot of the streamwise

velocity reflecting typical structure of the flow, while Figure 7-3 plots some time-

averaged quantities obtained by running the test simulation over 𝑡+ = 𝑢𝜏 𝑡/𝛿 ≈ 124

time units.

The wall-normal profiles of 𝑢2 and 𝑢3 are almost zero due to the specific bound-

ary conditions, while the one of density mildly oscillates close to the value of one

confirming the almost incompressible behavior of the flow. We also observe that the

mean profile of the streamwise component is consistent with the theory (see Section

7 of [140]). In particular, the mean velocity is clearly linear with respect to 𝑦+ in

the viscous sublayer, i.e., when 𝑦+ < 5− 7, and features logarithmic behavior in the
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Figure 7-2: A snapshot of the streamwise velocity at 𝑡+ ≈ 124. For demonstration
purposes, the lower-bound of the scale range was increased from 0 to 0.5.

log-law region, which begins at 𝑦+ ≈ 30. As expected, the streamwise and spanwise

normal components of the Reynolds stress tensor 𝑅+ feature largest slopes very close

to wall, while 𝑅+
22 the smallest. All the normal components are even functions of

𝑦, while the only shear component, 𝑅+
12, is an odd function of 𝑦. This behavior is

a direct consequence of no-slip boundary conditions and can be analytically proven

using the Taylor series expansion of velocity components close the wall [140].

7.2 Tangent dynamics of turbulent channel flows

Recall that the simplified computation of sensitivities through Algorithm 3 requires

solving a single inhomogeneous tangent equation, which represents the parametric

perturbation of the state along a trajectory. To eliminate the effect of the unstable

subspace, we recursively “regularize" the tangent solution through orthogonal projec-

tion of the unstable component. This process is possible due to the knowledge of the

unstable basis, which requires solving 𝑚 homogeneous tangents at every point on the

attractor. In our notation, 𝑚 is an estimate of the total number of positive Lyapunov

exponents (LEs). Figure 7-4 illustrates snapshots of select tangent solutions of the
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Figure 7-3: Upper plots: wall-normal profiles of the three velocity components (left)
and density (right) obtained through averaging in all statistically homogeneous di-
rections (𝑥, 𝑧, 𝑡). Lower left: 𝑢–𝑦 relation in “+" units plotted on a semi-logarithmic
coordinate system. Solid lines represent the linear function 𝑢+ = 𝑦+ and logarithmic
function 𝑢+ = 1/𝜅 log(𝑦+)+𝐵, 𝜅 = 0.41, 𝐵 = 5.2. Lower right: non-zero components
of the Reynolds stress tensor.

turbulent channel flow. These plots correspond to the test case plotted in Figures

7-2–7-3 and represent the streamwise component only. In this particular case, the

dimension of the unstable subspace is 𝑚 ≈ 260.

The leading Lyapunov vector (1st LV) features a high level of disturbances close to

the walls and almost unperturbed behavior at the center of the channel. These active

(non-zero) structures have a streaky elongated shape, which was also observed in a

detailed study of the 1st LV in [131]. That paper argued the structure of the leading

CV is a direct consequence of the inhomogeneity of low-frequency components of the

flow. Our results and the discussion in [131] also agree on the fact that the coherent

structures of the leading LV are significantly smaller compared to the primal solution
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Figure 7-4: Streamwise tangent solutions of the turbulent channel flow at the time
instance 𝑡+ ≈ 17.3. 𝑖-th LV represents the 𝑖-th most expansive orthonormalized
(Gram-Schmidt) Lyapunov vector.

(see Figure 7-2). We also observe that the activity regions tend to move towards the

center as the LV index increases. The structure of the 260th CV is no longer localized

in space and includes some broader streaks. One can identify some analogies of the

geometric features between the LVs plotted in Figure 7-4 and the LVs of the Kuramoto-

Sivashinsky equation illustrated in Figure 6-17. These similarities include the wall

effect, localization patterns and respective streak sizes. Recall that all the LVs except

the leading one lose their physical properties due to the orthonormalization procedure

applied in our algorithm, although the spans of the 𝑖 most unstable Gram-Schmidt

vectors and 𝑖 most unstable covariant Lyapunov vectors (CLVs) are the same. Due to

their conserved covariance property, unstable CLVs with smaller positive exponents
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might be provide some information on the evolution of secondary instabilities [126].

The structure of the regularized tangent resembles the LVs corresponding to smaller

exponents. It typically features large and round high-magnitude streaks close to the

center, and several smaller steaks near the wall. The ergodic average of that quantity

contracted against an objective function approximates the desired linear response.

Therefore, the red regions indicate high-sensitivity regions at a given time instance.

For both full and reduced space-splitting algorithms, it is crucial to have a suffi-

ciently accurate estimate of the number of positive LEs, 𝑚. If that parameter is under-

estimated, the magnitude of the inhomogeneous tangent will rapidly blow-up. Based

on the numerical evidence presented in Sections 6.4.2–6.4.3, subtle overestimation of

𝑚 should not significantly impact the sensitivity approximation. The dependence of

𝑚 on simulation parameters, e.g., the bulk/friction Reynolds number or characteristic

mesh size, is one of the major questions in the turbulence theory. The value of 𝑚

does not only provide us the critical knowledge on the tangent-dynamic landscape of

the flow, but also determines the computational cost of the linear response algorithm.

We shall now look into some aspects of the Lyapunov spectra of the turbulent

channel flow described in the previous section. They are computed using Benettin’s

algorithm [15], which is a part of our reduced space-splitting method (its output are

“LEs" in 3). Figure 7-5 illustrates positive parts of the Lyapunov spectra generated

for the case described in the previous section. The only parameter that we vary here

is the kinematic viscosity. We observe that the leading exponents, usually denoted

by 𝜆1, grow with the Reynolds number. Indeed, the largest LE represents the rate

of separation (stretching rates) of the smallest eddies captured by the current mesh.

It could also be understood as the reciprocal of the predictability time [94], i.e., time

needed to observe sufficiently large deviation of the trajectories of two nearby par-

ticles. The localization of the most unstable, i.e., the least predictable, flow regions

is represented by the 1st LV shown in Figure 7-4. Less unstable modes correspond-

ing to smaller LEs shown in Figure 7-5 would require generating other CLVs [65],

which is beyond the scope of this chapter. All the four curves plotted in this fig-

ure feature monotonically decreasing slopes with respect to the index. This result is
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Figure 7-5: Lyapunov spectra of the turbulent channel flow at different values of
the kinematic viscosity 𝜈. The remaining input data, including the mesh and initial
condition, is fixed. Particular LE values represent ergodic averages over 𝑡+ ≈ 30−40.

consistent with the unstable Lyapunov spectra of spatiotemporal chaos presented in

the literature [20, 50]. At any fixed index, the slope of the spectrum curve nonlin-

early decreases with 𝜈. Consequently, 𝑚 grows rapidly with 𝑅𝑒𝑏𝑢𝑙𝑘, from 𝑚 ≈ 145

at 𝑅𝑒𝑏𝑢𝑙𝑘 = 2, 500 to 𝑚 ≈ 260 at 𝑅𝑒𝑏𝑢𝑙𝑘 = 3, 333 to 𝑚 ≈ 460 at 𝑅𝑒𝑏𝑢𝑙𝑘 = 5, 000 to

𝑚 ≈ 960 at 𝑅𝑒𝑏𝑢𝑙𝑘 = 10, 000.

In the next experiment, we shall study the effect of the mesh resolution on the

leading Lyapunov exponent. To maintain critical physical properties of a turbulent

flow, e.g., local dissipation rate, logarithmic law of the wall, presence of intense wall-

shear stress events and intense enstrophy fluctuations, a sufficiently refined mesh is

required [132, 191, 192]. We shall focus on the case with 𝑅𝑒𝑏𝑢𝑙𝑘 = 10, 000 (𝑅𝑒𝜏 ≈ 550)

and use six different meshes whose parameters are summarized in Table 7.1. The

total number of degrees of freedom (DOFs) of the underlying dynamical systems is

𝑛 = 4𝑛1 𝑛2 𝑛3. We plot the time evolution of the ergodic-averages approximating 𝜆1

using all six meshes in Figure 7-6 Regardless of the mesh used, all the six 𝜆1(𝑡
+)

(Lyapunov) curves require about 𝑡+ ≈ 5− 10 to reach their plateaus. At 𝑡+ ≈< 0.1,
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Table 7.1: Mesh parameters of the channel flow at 𝑅𝑒𝜏 ≈ 550.
Mesh (𝑛1, 𝑛2, 𝑛3) ∆𝑥+ ∆𝑦+|𝑤𝑎𝑙𝑙 ∆𝑦+|𝑐𝑒𝑛𝑡𝑒𝑟 ∆𝑧+

M1 (25, 100, 25) 45.8 2.8 19.6 22.9
M2 (40, 100, 40) 28.2 1.7 22.9 14.1
M3 (55, 110, 55) 20.4 1.0 23.3 10.2
M4 (80, 200, 80) 13.9 0.6 12.7 7.0
M5 (110, 300, 110) 10.1 0.6 7.6 5.0
M6 (110, 400, 110) 10.1 0.3 6.3 5.0

Figure 7-6: Approximations of the leading LE, 𝜆1, at 𝑅𝑒𝜏 ≈ 550.

the M1, M2 and M3 curves are located around the value of 0.3, while the remaining

three are closer to zero. This is a consequence of different initial conditions used for

those two simulation groups. Recall that the choice of an initial condition does not

affect the long-time averages in ergodic systems. As the simulation advances in time,

the M1 curve stabilizes at 0.33, M2 around 0.43, while the other four oscillate around

the value of 0.51. This experiment indicates that M3 is the optimal mesh for this

particular case and no further refinements are necessary to accurately approximate

𝜆1. Given 𝑚 ≈ 960 for M1, by shifting the red curve from Figure 7-5 upwards, we

estimate that 𝑚 ≈ 2, 000 at 𝑅𝑒𝜏 ≈ 550 if the mesh is sufficiently resolved. However,
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this rough estimate requires further studies as the influence of the mesh size on the

slope of Lyapunov curves is still unknown.

7.3 Performance of the reduced linear response al-

gorithm

In the final numerical experiment, we shall investigate the performance of the re-

duced response algorithm proposed in Chapter 6. The sensitivity approximations

will be compared against the finite difference solution obtained by running several

forward simulations in the neighborhood of the chosen point on the parametric space.

All the results presented here were generated using the same mesh. In particular,

(𝑛1, 𝑛2, 𝑛3) = (25, 100, 25) for all 𝑅𝑒𝜏 considered in this section. Consequently, the

grid might be under-resolved in the vicinity of the wall for a larger 𝑅𝑒𝜏 (see Table

7.1).

First, we compute the sensitivity of the long-time average of the volume-averaged

kinetic energy 𝐾 with respect to 𝜈, where

𝐾 =
1

𝐿1 𝐿2 𝐿3

∫︁ 𝐿3

0

∫︁ 𝐿2/2

−𝐿2/2

∫︁ 𝐿1

0

𝜌 (𝑢21 + 𝑢22 + 𝑢23) 𝑑𝑥 𝑑𝑦 𝑑𝑧. (7.6)

Figure 7-7 illustrates long-time averages of 𝐾 computed at 270 different values of 𝜈, as

well as sensitivities at three select values of 𝜈 obtained through the reduced algorithm

and cubic regression. Based on several preparatory simulations, the reduced algorithm

computes 𝑚 = 145 homogeneous tangents at 𝜈 = 4 ·10−4, 𝑚 = 460 at 𝜈 = 2 ·10−4 and

𝑚 = 960 at 𝜈 = 1 · 10−4. These values of 𝑚 are our best estimates of the dimension

of unstable subspaces for the chosen mesh.

Similarly to the Lyapunov exponents, the sensitivity curves require approximately

10 time plus-units to reach their plateaus. Even at 𝑡+ > 10, these curves still feature

wavy behavior, especially at higher 𝜈, which is a consequence of long time scales.

The upper plot of 7-7 clearly indicates that the statistical error increases with 𝜈.

Slow convergence of a similar ergodic averaging process was also observed in the
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Figure 7-7: Upper plot: long-time averages of 𝐾 at 270 uniformly distributed values
of 𝜈. Every data point represents an independent simulation that ran over 𝑡+ ≈ 124
time units. Lower plot: solid and dotted curves represent two independent time
evolutions of sensitivity approximations obtained though the reduced algorithm at a
fixed parameter value. Simulations represented by these two curve types respectively
begin statistical averaging after 𝑡+ ≈ 0.05 and 𝑡+ ≈ 5.5 of the primal evolution. The
dashed horizontal lines indicate reference solutions, which were obtained by taking
the derivative of the cubic fit of the data from the upper plot.
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recent study [20] in which the shadowing method was applied to a minimal channel

flow at 𝑅𝑒𝜏 ≈ 140. Here, we observe that the relative error significantly improves

as we increase the Reynolds number, from about 60 − 65% at 𝑅𝑒𝑏𝑢𝑙𝑘 = 2, 500 to

38− 45% at 𝑅𝑒𝑏𝑢𝑙𝑘 = 5, 000 to 25− 30% at 𝑅𝑒𝑏𝑢𝑙𝑘 = 10, 000. This result is consistent

with a major conclusion of Chapter 6. Indeed, the more spatially homogeneous the

flow, the better performance of the stable contribution. While the channel flow is

spatially homogeneous in both 𝑥 and 𝑧, it features considerable statistical variations

in the wall-normal direction. We have already observed a similar behavior around

the chaotic-to-laminar transition in solutions of both the Lorenz 63 and Kuramoto-

Sivashinsky systems (see Sections 6.4.2–6.4.3). At the same time, we acknowledge that

the impact of mesh resolution should be further studied. Indeed, it is still uncertain

whether the grid refinement is supportive or obstructive in the context of sensitivity

analysis of spatially-extended dynamical systems.

Finally, we shall focus on the case with 𝑅𝑒𝑏𝑢𝑙𝑘 = 10, 000 and compute the sensi-

tivity of the mean streamwise velocity profile defined as

𝑈(𝑦, 𝑡) =
1

𝐿1 𝐿3

∫︁ 𝐿3

0

∫︁ 𝐿1

0

𝑢(𝑥, 𝑦, 𝑧, 𝑡) 𝑑𝑥 𝑑𝑧. (7.7)

One of the goals here is to provide additional insights into error sources and its

distribution along the wall-normal direction. Notice also that if 𝐽 := 𝑈 , then the

sensitivity approximated as 𝑑⟨𝐽⟩/𝑑𝜈 ≈ 𝐷𝐽 · 𝑣 represents the long-time average of

the wall-normal profile of the regularized tangent solution. Results of this test are

included in Figure 7-8. The upper plot illustrates the sensitivity approximations

obtained using the reduced algorithm and linear regression. The lower one includes

statistics-parameter relations at two different points along 𝑦: one corresponds to the

center of the channel where the relative error is small, while the other one represents

the near-wall region characterized by larger errors.

The relative error of the sensitivity approximation, computed with respect to the

largest-in-magnitude reference value of 𝑑⟨𝑈⟩/𝑑𝜈, is quite small. In particular, it does

not exceed the value of 5%, except the thin near-wall regions where it reaches the value
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Figure 7-8: Upper plot: sensitivity of the mean streamwise velocity profile at 𝜈 =
10−4. The solid red line represents the mean solution of the data obtained between
𝑡+ ≈ 7 and 𝑡+ ≈ 17, while the blue shade indicates the region constrained between
the minimum and maximum value obtained in that time interval. The reference
solution (black) was obtained through linear regression of 135 data points between
𝜈 = 0.85 · 10−4 and 𝜈 = 1.15 · 10−4 as shown below. Lower plot: long-time averages of
the mean streamwise velocity at the 3rd and 50th (center) node from the wall. Every
data point represents an independent simulation that ran over 𝑡+ ≈ 124 time units.
The solid black lines represent the corresponding slopes at 𝜈 = 10−4 obtained with
the reduced S3 method.
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of approximately 30%. The blue shade is visible only at the center of the channel,

which means that the results obtained at small 𝑦+ are not expected to change visibly.

Notice that the reference solution obtained through linear regression can be treated

as “sufficiently converged" given the small variance of the time averages computed in

the parametric space. The solid black curve corresponding to the 50th (center) node

almost ideally fits into the scattered data points. This is no longer true at the 3rd

node. We also highlight the fact that the largest discrepancy (error > 10%) between

the S3 and linear regression results is located between the 2nd and 10th nodes, which

spans the distance 𝑦+ ∈ [5, 20] from the wall. According to [140], this sub-region is

usually referred to as the buffer layer. Notice also that the small error at the 2nd

node suggests that our algorithm is expected to be accurate if the wall shear stress is

our quantity of interest, i.e., when 𝐽 := 𝜏𝑤 = 𝜌 𝜈 𝑑𝑈/𝑑𝑦.

7.4 Summary

Turbulent flows are prevalent in nature and engineering systems. Understanding the

dynamics of such flows is critical in many aspects of our life such as the weather

prediction, control of hydromechanical systems, design of advanced aerospace tech-

nology. In this chapter, we considered one of the simplest turbulent flows, i.e., nearly

incompressible isothermal channel flows. Advancement of reliable numerical tools for

the applied analysis of channel units is highly desired by the scientific and engineer-

ing communities. These tools could be utilized to better understand the effect of

boundary layer, nature of dynamical instabilities, extreme events, potential singular-

ity formation and several other fundamental topics. From the mathematical point

of view, one of the inherent properties of turbulence is chaoticity that we defined in

several ways throughout this thesis. Thus, the linear response machinery that we

developed in the previous chapters could potentially be used in the comprehensive

sensitivity analysis.

In this chapter, we studied some aspects of the tangent dynamics of channel flows.

In our test case, we observed that the number of positive Lyapunov exponents grows
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10-fold when the Reynolds number increases from 𝑅𝑒𝑏𝑢𝑙𝑘 ≈ 2, 500 to 𝑅𝑒𝑏𝑢𝑙𝑘 ≈ 10, 000.

This nonlinear relation sheds some light on the total cost of the linear response algo-

rithm when applied to highly-turbulent cases. We conclude that even geometrically

simple cases might reach 𝑚 = 1, 000 or higher at moderate Reynolds numbers, which

means that high performance computing resources are a must in this type of study.

Recall that the cost of the reduced S3 algorithm is proportional to 𝑚2. We also

observed that the leading Lyapunov exponent can be dramatically underestimated if

the mesh is under-resolved. This deficiency does not affect the algorithm per se, but

it might produce results violating fundamental physics of the flow. The leading LE

determines the maximum rate of separation of two nearby trajectories of a dynamical

system. By analyzing the structure of the corresponding Lyapunov vector, one can

identify instability regions across the spatial domain. We observed that the most

expansive regions are localized and concentrated close to the wall, which is consistent

with the literature. The structure of the regularized tangent solution is completely

different. It contains both smaller, elongated streaks high-magnitude at the wall and

large broad high-magnitude structures close to the center of the channel.

We applied the reduced S3 algorithm to compute sensitivities of both the kine-

matic energy and streamwise velocity profile with respect to the kinematic viscosity.

Our results were compared against reference values obtained through polynomial re-

gression. The latter were obtained by running hundreds of forward simulations at

different parameter values. In all test cases, our method consistently provided under-

estimated approximations of sought-after sensitivities. However, we noticed signifi-

cant decrease of the relative error from about 60% at 𝑅𝑒𝑏𝑢𝑙𝑘 ≈ 2, 500 to 25− 30% at

𝑅𝑒𝑏𝑢𝑙𝑘 ≈ 10, 000. This result is consistent with our results presented in Chapter 6.

Indeed, as we approach the laminar-to-turbulence transition, the effect of the ergodic

measure gradient contributes more to the total sensitivity. In our study of the velocity

profile, we observed good agreement between the S3 and regression approximations.

The relative errors, computed with respect to the maximum reference value across the

wall-normal direction, did not exceed a few percent with the exception of the buffer

layers, where the errors reached the value of about 30% at 𝑅𝑒𝑏𝑢𝑙𝑘 ≈ 10, 000.
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In general, the performance of the reduced S3 method is similar to its main com-

petitors, i.e., the least-squares shadowing (LSS) approach and its derivatives. Our

algorithm is significantly simpler compared to shadowing methods, as it involves

solving a single inhomogeneous tangent that is recursively regularized by orthogo-

nally projecting out its unstable component. However, the leading term of the flop

count remains the same, because all of these methods require the knowledge on the

unstable directions along the random trajectory. To the best of our knowledge, most

of popular methods rely on the QR factorization as a part of the process.
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Chapter 8

Final conclusions and future work

This thesis addresses several topics at the intersection of dynamical systems, linear

response theory, numerical analysis and chaotic physics. Its main product is the gen-

eralized space-splitting (S3) method for sensitivity analysis of hyperbolic dynamical

systems with 𝑚 ≥ 1 positive Lyapunov exponents. S3 can be viewed as a one-step

Monte Carlo procedure that collects and averages data along random trajectories.

The crux of the S3 method is to regularize Ruelle’s original expression for the linear

response, because its direct evaluation is infeasible due to the phenomenon of explod-

ing Jacobian products, i.e., the butterfly effect. The reformulation of Ruelle’s result

involves two major steps: linear splitting of the input perturbation and integration

by parts. The purpose of splitting is to decompose the input such that all the result-

ing components are computable through tangent equations that are immune to the

butterfly effect. This can be achieved by representing one of the terms as a linear

combination of an orthonormal basis of the unstable subspace. That term is usually

referred to as the unstable contribution and effectively involves a sum of directional

derivatives that can be partially integrated on unstable manifolds. Moreover, by ad-

justing the scalar splitting coefficients, the remaining contribution can be solved by

evolving an inhomogeneous tangent that is bounded in time.

Conceptually, the most sophisticated part of the proposed algorithm is the proce-

dure for differentiating Sinai-Ruelle-Bowen (SRB) measures. It assumes the smooth-

ness of the limiting ergodic distributions and requires the knowledge of the unstable
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manifold curvature represented by second-order derivatives of the coordinate chart.

Consequently, one needs to evolve 𝒪(𝑚2) second-order tangent equations in time to

differentiate the SRB measure. Quantile functions are convenient in parameterizing

smooth manifolds, as they facilitate a closed-form and linearly invariant represen-

tation of the logarithmic density gradient in terms of derivatives of the coordinate

charts. The property of invariance to linear transformations allows for consistent

stabilization of the tangent recursions through step-by-step re-orthonormalization of

the chart gradient. Using this manifold description, one can recursively differentiate

the scalar coefficients arising in the splitting process, which is necessary to complete

the S3 algorithm. Under the assumption of uniform hyperbolicity, all these recursions

rigorously converge along a random trajectory at an exponential rate. We conclude

that the total cost of the space-split algorithm applied to 𝑛-dimensional systems is

𝒪(𝑛3𝑚2) per time step. In practice, dynamical systems feature a sparse structure as

they are derived by converting PDEs to ODEs using local-stencil methods, such as

the finite element method. In addition, the number of positive LEs is typically orders

of magnitude lower than the system’s dimension, in which case the total cost of S3

can be reduced to 𝒪(𝑛𝑚3) per time step. Extending the S3 method to continuous-

time systems requires further, yet minor, modifications. In particular, the original

unstable-stable splitting should also include an extra term that is aligned with the

flow. While this upgrade guarantees constant variance of the regularized tangent, a

Schur complement system must be solved because the evolution vector is generally

non-orthogonal to the unstable basis. With this adjustment, the leading term of the

flop count does not change.

Several physical dynamical systems, e.g., the Kuramoto-Sivashinsky or Navier-

Stokes equation, are non-hyperbolic, which implies that there are local tangencies

between tangent subspaces, and the smoothness of the SRB measure is no longer

guaranteed. It also implies that the computation of unstable contributions by dif-

ferentiating SRB measures in 𝑚 most expansive orthogonal directions might be in-

feasible. However, in certain systems, the unstable part of the sensitivity could be

neglected. Through double partial integration of Ruelle’s original expression, one
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can show that the effect of measure gradients is negligible if the objective function

is aligned with the most expansive direction of the tangent space. This observation

might have important implications for large physical systems featuring statistical ho-

mogeneity in space. Indeed, it is possible to represent any objective function in an

infinite number of ways if the long-time statistics of individual spatial coordinates

is approximately constant. The dimension of the unstable subspace is typically or-

ders of magnitude smaller than the system’s dimension. Consequently, by increasing

the number of degrees of freedom, the likelihood of the desired alignment grows as

well. Our numerical experiments applied to Lorenz 96, Kuramoto-Sivashinsky and

turbulent channel flow clearly confirm our conjecture. Therefore, the linear response

could be accurately approximated by computing a single inhomogeneous tangent that

is orthogonal to the unstable subspace. Eliminating the unstable part from the S3

algorithm reduces the total cost to 𝒪(𝑛𝑚2) per time step. The 𝑚2 factor is associ-

ated with the QR factorization that is required for the orthogonalization of unstable

bases along random orbits. We demonstrate that 𝑚 could be 𝒪(103) in fairly simple

turbulent channel flows with moderate Reynolds numbers. Thus, the use of high

performance computing hardware is a must in comprehensive sensitivity analysis of

turbulent flows.

A number of unanswered questions still remain, which could serve as a starting

point of future work. The following list outlines three potentially impactful research

directions and, to the best of our knowledge, have not been explored yet:

• Development of the correction term for sensitivity analysis of tran-

sitional chaos. Understanding the laminar-turbulent transition is critical in

the design of hypersonic aircraft, blood-contacting medical devices, and several

other applications. Computing the linear response of the underlying dynamical

systems is difficult, because the dimensionality of tangent subspaces is ultrasen-

sitive to input parameters. In this case, both the effect of the ergodic measure

change and the curvature of unstable manifolds are significant. That fact is ne-

glected by shadowing-based techniques (including our reduced S3 method) and,

consequently, they are all doomed to fail when applied to transitional flows.
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Since the shadowing contribution is only a part of the full response of a chaotic

system, the goal is to improve the existing methods by deriving and implement-

ing a “correction” term that will account for the neglected part. This theme is

full of fundamental and algorithmic challenges. Local non-hyperbolic behavior,

which is quite common in real-world chaotic systems, might be a source of rough

measure distributions leading to numerical instabilities. On the practical side,

one requires Hessian operators to compute the curvature of manifolds. Their ef-

ficient computation is the major, yet still unresolved, step in bridging the linear

response theory to engineering.

• Global sensitivity analysis. In this thesis, we propose numerical procedures

for sensitivity analysis at a given point in the parametric space. Indeed, Ru-

elle derived an expression enabling local analysis. It is not uncommon that

the response or long-time statistics of a physical system is strongly oscillatory

(non-convex). This could happen, for example, when the statistics-parameter

relation is inherently rough (see the example of Lorenz 63 in Chapter 4) and/or

violent physical phenomena affecting spatial homogeneity occur (see [6]). In

such cases, we are more interested in the expected value of sensitivity over

a certain parametric subdomain rather than pointwise parametric derivatives.

Several different approaches addressing this issue could be explored in detail,

e.g., adding smoothening noise to the governing equations and/or blending tan-

gent solutions corresponding to different parameter instances.

• Integration of the S3 method with LES models and generic ROM

techniques.

The purpose of this research theme is to combine the developed linear response

machinery with methods reducing the dimensionality of complex physical sys-

tems. We have observed that the performance of the reduced S3 method ap-

plied to turbulent channel flows dramatically improves as the Reynolds number

increases. Thus, it could be worth investigating its performance at Reynolds

numbers an order of magnitude larger than those considered in this work. Given
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the rapid growth of the number of positive LEs, a natural choice would be to

incorporate certain physics-based models, e.g., large eddy simulation (LES),

dramatically alleviating the total cost. Another fundamental question concerns

the influence of model order reduction techniques on long-time statistics and

tangent landscape of the underlying dynamical systems. Successful integration

of S3 and reduced order modeling (ROM) techniques could serve as a powerful

and affordable tool for applied analysis of large-scale systems.
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