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Abstract

Geosynchronous (GEO) satellites maneuver frequently to maintain their Earth-relative
position despite drift incurred from natural perturbations, but quantifying their di-
verse maneuver patterns can be challenging. Even for individual satellites, between
one station-keeping cycle and the next, the frequency, magnitude, and direction of
maneuvers can change. Additionally, there is very little accountability among oper-
ators to disclose detailed mission objectives and precise orbital data or to adhere to
operational guidelines. This complicates the process of characterizing station-keeping
control objectives, predicting maneuvers, and recognizing the early signs of a shift
in a satellite’s pattern of life (PoL). Characterizing PoLs for a diverse range of GEO
satellites can help to contextualize historic on-orbit behaviors and behavior patterns,
cultivate generalized maneuver prediction on a large scale, and help future behaviors
to be quickly identified as anomalous, nominal, or indicative of a certain mission ob-
jective. This work presents two Python tools designed to address these challenges by
improving the general accessibility of broad-scale PoL characterization and predictive
aspects of Space Situational Awareness (SSA).

First, a nomenclature for a generalizable PoL model is proposed, and a simple
algorithm is introduced to enable PoL characterization according to this model. The
algorithm is shown to efficiently process a large number of satellite histories by iso-
lating PoL shifts - called nodes - even from sparse or low-precision position histories
like collections of two-line-element (TLE) sets. Then, a second simulation tool is
described and demonstrated to evaluate probabilistic maneuver prediction models in
context of physical viewing constraints determined by user-defined surveillance sce-
narios. This work explores the potential of both tools to address data accessibility
challenges and facilitate GEO satellite behavior characterization in order to foster a
more cohesive and communicative SSA research community.

Thesis Supervisor: Richard Linares
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Geosynchronous (GEO) satellites maneuver frequently to maintain their Earth-relative

position despite drift incurred from natural perturbations, but their maneuver pat-

terns are often difficult to quantify [15]. Even for individual satellites, between one

station-keeping cycle and the next, the frequency, magnitude, and direction of ma-

neuvers can change. This diversity complicates the process of characterizing station-

keeping control objectives, predicting maneuvers, and recognizing the early signs of

a shift in a satellite’s pattern of life (PoL) since some understanding of a satellite’s

nominal behavior is necessary to identify abnormal behavior. This work discusses the

implementation of two Python tools designed to improve the general accessibility of

broad-scale PoL analysis and the predictive aspects of Space Situational Awareness

(SSA). Chapter 1 provides a brief introduction to SSA in the geosynchronous orbital

regime, Chapter 2 discusses a simple algorithm for processing large amounts of histor-

ical positional data for GEO satellites, and Chapter 3 introduces a tool for evaluating

maneuver prediction models in the context of satellite tracking. The implications and

further potential of these tools are discussed in Chapter 4.
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1.1 Background

1.1.1 Satellite Pattern of Life

In this work, Pattern of Life (PoL) refers to the unique timeline of behaviors displayed

by an individual satellite over the course of its life on orbit. Some behaviors - or

behavioral modes - are present within the PoLs of a large number of satellites, and if

they can be characterized for a sizeable, varied population of active and retired GEO

satellites, the resulting PoLs may exhibit trends and provide metrics with which future

satellite behaviors can be compared. Contextualizing GEO satellite behaviors and

behavior patterns is a necessary step in implementing generalized maneuver prediction

on a large scale and can help future behaviors to be quickly identified as anomalous,

nominal, or indicative of a certain mission objective [50].

A major component of broad-scale PoL characterization is recognizing behavioral

shifts at the macro level. Even though each PoL is unique, its behavioral modes

can be sorted into broad categories such as orbit insertion, libration, station-keeping,

longitudinal-shifts, or end-of-life (EoL) behaviors [37, 55, 36, 47, 12]. Modes within

these categories share general features but may appear to have substantial differences

when studied at smaller timescales. For example, periods of orbit insertion look dis-

similar for satellites with different propulsion schemes, but they can be classified under

the same general mode category. EoL behavioral modes are also highly individual

since they are affected by a satellite’s maneuverability constraints like remaining fuel

or malfunctioning thrusters.

Station-keeping encompasses the largest components of most PoLs in GEO. At

the macro level, this class of behaviors includes time periods during which a satellite’s

periodic motion is centered at a consistent longitude so that it remains within the

bounds of a fixed, Earth-relative station. Since there are many maneuver schemes

that meet this criterion, there are many possible sub-classes of station-keeping behav-

ioral modes. Therefore, when performing generalized PoL characterization to identify

macro-level behavioral modes, it is important to use a method that can identify peri-

ods of long-term station-keeping while ignoring minor variations - such as those shown

14



Figure 1-1: Example of maneuver variability within a station-keeping rou-
tine. Geographic position history for ArabSat 5A (Satellite ID: 36745) during a
station-keeping behavioral mode. The latitude history shows regular, high-thrust
North-South maneuvers every 14 days, but the longitude history is indicative of a
much more variable East-West station-keeping routine with high-thrust maneuvers
every 11 to 18 days. The satellite’s largest gap between East-West station-keeping
maneuvers over this period falls in the second half of December 2021.

in Figure 1-1 - that typify most station-keeping routines.

1.1.2 Orbital Slots and Station-Keeping Maneuvers

GEO stations - also referred to as orbital slots - usually encompass a longitudinal

range of a few tenths of a degree, though this can vary between operators, mission

types, and even regions within the geostationary belt as is the case in Figure 1-2

[43, 8]. They also have a variety of latitudinal ranges. Most station-keeping maneuvers

can be categorized as East-West or North-South and adjust a satellite’s longitude

and inclination respectively. The main thruster burn is along the axis of forward

motion for East-West maneuvers and along the transverse axis during North-South

maneuvers. Typically, North-South maneuvers require more fuel, so satellites with

different mission priorities have different optimizations for North-South maneuver

15



routines and, as a consequence, different latitudinal ranges [14]. Additionally, North-

South maneuvers and routines often change over the course of a satellite’s lifetime

since the magnitude of the force generated by a satellite’s thrusters tends to be less

tractable as they age, and fuel constraints become more actionable as a satellite

approaches retirement [10].

Propulsion mechanisms are another factor that influences the magnitude, fre-

quency, and consistency of station-keeping maneuvers [54, 39]. Most satellites use

chemical thrusters exclusively or hybrid propulsion systems with supplemental Hall

Effect thrusters for small, frequent North-South maneuvers. However, electric propul-

sion systems are becoming more common, and electric thrusters are generally capable

of more precise maneuvers than chemical thrusters [32, 23]. As a result, satellites with

electric or hybrid propulsion systems may perform multiple station-keeping maneu-

vers every day while satellites with chemical propulsion systems tend to maneuver a

few times a week at most [8, 12]. This leads to a disparity in maneuver magnitudes as

well since station-keeping routines with less frequent maneuvers require larger burns

to achieve comparable station sizes.

1.1.3 Satellite Tracking

Most automated satellite tracking does not account for routine maneuvers like station-

keeping. As is the case in Figure 1-3, satellites often deviate from their expected

trajectory between observations, resulting in lost or cross-tagged objects. Maneuver

prediction algorithms can help mitigate this problem, but as shown in Figure 1-4, even

small variations in maneuver magnitudes and timing can have a significant impact

on a satellite’s location at the time when it is next observed. Sometimes satellites go

days or weeks unobserved, during which time they may have performed any number

of maneuvers that changed their orbits.

Not only does the likelihood of a lost or cross-tagged satellite increase with the time

between observations; it also increases the closer a satellite operates to other objects.

Satellites in clusters operate in close proximity, requiring them to maneuver often

and making it more difficult for sensors to distinguish them from one another. Figure

16



(a)

(b)

Figure 1-2: Comparison of an electrically-propelled and chemically-
propelled station-keeping in GEO. (a) Time history for Eutelsat 172B (Satellite
ID: 42741), a high-power satellite based on the Eurostar-3000EOR bus with an elec-
tric propulsion system [2]. For this station-keeping scheme, the longitudinal range is
extremely small at only 0.04∘. (b) Time history for ASTRA 1F (Satellite ID: 23842),
an SES communications satellite based on the HS-601 bus with a chemical propulsion
system [9]. The longitudinal range for this station-keeping scheme is approximately
0.2∘, much larger than the electric system’s.
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Figure 1-3: Comparison of static and maneuver-aware trajectories. The static
trajectory (black) was propagated with SGP4 to simulate a stale, TLE-sourced orbit.
The maneuver-aware trajectory (red) experienced a station-keeping maneuver at the
beginning of the simulation window and was propagated with the MAPS propagator
described in Chapter 3 which accounts for J2 perturbations as well as the gravitational
effects of the Sun and Moon. This simulation shows that the two trajectories grow
further apart with time. Determining the post-maneuver orbit becomes more difficult
the longer the satellite’s post-maneuver tracklets remain uncorrelated.

1-5 shows the angular and linear distance between three satellites in the ASTRA

19.2∘E cluster over the span of 17 days. All three satellites operated within a 70

km station during this time, and sometimes two of these satellites passed less than

3 km from each other. Even under ideal conditions, it can be difficult for ground-

based sensors to resolve objects that operate this closely. Non-ideal sensor location,

weather patterns, and satellite orientation can make distinguishing between similarly

clustered satellites nearly impossible. In cases like this, accounting for station-keeping

maneuvers is essential to maintaining clean object histories.

1.2 Literature Review

1.2.1 PoL Usage and Applications

Despite the fact that the concept of PoL characterization has already been used to

inform maneuver and anomalous behavior detection algorithms [30, 35, 63], the con-
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(a) (b)

Figure 1-4: Error in propagated satellite position resulting from predicted
maneuver time and ∆𝑉 errors. (a) Error in kilometers for propagated satellite
position as a function of error in predicted maneuver ∆𝑉 . This relationship is shown
for three different observation times. (b) Error in kilometers for propagated satellite
position as a function of error in predicted maneuver time. Again, this function is
displayed for three inter-observation times. While the offset is linear for ∆𝑉 , it is
parabolic and potentially much larger when resulting from maneuver time error.
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Figure 1-5: Inter-satellite distances for three clustered GEO satellites. Inter-
satellite distances in degrees (top) and kilometers (bottom) for ASTRA 1N (Satellite
ID: 37775), ASTRA 1M (Satellite ID: 33436), and ASTRA 1L (Satellite ID: 31306) in
the SES-operated ASTRA 19.2∘E satellite cluster. The maximum and minimum dis-
tances observed between ASTRA 1N and ASTRA 1M for this time period are 59.69
km and 2.13 km respectively which correspond to angular separations of 0.10048∘ and
0.00084∘.

20



cept of PoL itself is nebulous within the research community. There is no standard for

PoL characterization on which to base a communicable analysis between researchers

and research objectives. In some works, the term pattern of life is used to refer to a

sequence of historical data points, while in others it refers to the features of a distinct

station-keeping routine or broader trends in maneuver behavior [19, 48, 16, 7]. This

inconsistency requires that the structure of a PoL must be defined on a case-by-case

basis depending on the target analysis, and these definitions are often difficult to

generalize.

Describing PoLs as sequences of station-keeping objectives or timelines of individ-

ual maneuvers poses problems when applied to diverse groups of satellites and analysis

objectives. Segmenting a satellite’s PoL by station-keeping objective requires prior

knowledge of the satellite’s mission or of behaviors associated with the designated

objectives; this information is not always readily accessible [22, 20]. Systems that

characterize PoL via maneuver detection and characterization are complicated by

the diversity of maneuver profiles in GEO. In addition to single-burn maneuvers, a

maneuver-dependent PoL model would have to accommodate satellites that perform

long burns or multiple, consecutive burns for the same objective. As a result, maneu-

ver classification is highly subjective because many conventions must be adopted for

how to characterize all of these maneuvers in a way that is useful to PoL analysis.

Maneuver-dependent conventions also neglect passive behaviors, focusing on periods

of activity instead of larger patterns in a satellite’s life cycle. For these reasons, a

generalized PoL model cannot be maneuver-dependent at the macro level.

1.2.2 Orbit Determination and Maneuver Prediction

PoL characterization at all levels is highly dependent on the time-density and format

of the historical data being analyzed. The NORAD satellite catalogue is maintained

by correlating optical or radar tracklets for pre-catalogued objects, but uncorrelated

tracklets can accumulate when orbit information is inaccurate or outdated [22, 40, 65].

This can be the result of sparse observations, measurement noise, low ground-station

availability, or degraded data [33, 21, 53, 31]. Frequent maneuvers make orbit de-
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termination even more difficult, especially in the more crowded portions of the geo-

stationary belt [44, 56]. Tracking in object-dense areas can be significantly impacted

by the uncertainty introduced by sensing techniques, making multiple nearby objects

difficult to resolve and resulting in cross-tagged satellite data [64, 28]. Cross-tagging

and uncorrelated tracklets often happen during and after maneuvers since multiple

post-maneuver tracklets are necessary to recover the orbit [60, 38, 41].

Maneuver prediction techniques can mitigate some of the challenging aspects of

satellite tracking and orbit recovery. Shabarekh et al. [58, 57] developed a probabilis-

tic Interval Similarity Model (ISM) that was able to correctly predict maneuvers for

Galaxy 15 (Satellite ID: 28884) at a resolution of 24-hour time steps during extended

periods of regular station-keeping. Qin et al. demonstrated that services provided by

the BeiDou Navigation Satellite System (BDS) can be improved by predicting and

accounting for station-keeping maneuvers [46]. A few efforts are focused on predicting

a satellite’s post-maneuver state or its station-keeping control objectives as a means

of maneuver prediction [59, 17]. These methods have been shown to be reasonably

effective for individual satellites or station-keeping schemes. However, they have not

been tested for large-scale satellite tracking, and currently, it is more common for an-

alysts to employ generalized maneuver detection algorithms to characterize maneuver

time and ∆𝑉 rather than use proactive prediction methods [45, 42, 66, 18].
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1.3 Collaborative and Accessible SSA

Understanding satellite behavior and associated intent is an integral component of

SSA, but there is very little accountability among operators to disclose detailed mis-

sion objectives and precise orbital data or to adhere to operational guidelines [20, 22].

The challenges posed by this lack of communication will escalate as more satellites are

operated and abandoned in the already crowded geostationary belt [26, 61]. Persis-

tent surveillance of both active payloads and debris is necessary to determine object

trajectories and assess potential collision risks, but catalogue discrepancies and poor

integration between data sources continue to interfere with satellite tracking and data

analysis efforts [22, 61, 65]. Collaborative SSA can address many of these systemic

problems by making data, software, and best practices more accessible to researchers,

operators, and analysts. This includes improved communication and conformity of

nomenclature, not just between operators, but between operators, analysts, and SSA

software developers who may not have first-hand experience with operational chal-

lenges. This work presents two Python-based SSA tools designed to combat data

accessibility and quality obstacles common to researchers and operators alike.

Chapter 2 proposes a nomenclature for a generalizable PoL model and, accord-

ingly, presents a simple algorithm that can quickly characterize PoLs for a large num-

ber of satellite histories to identify instances of macro-level behavioral modes. The

algorithm is able to isolate PoL shifts - called nodes - even from sparse or low-precision

position histories like collections of two-line-element sets (TLE), meaning that it is

effective regardless of the user’s access to high-quality, proprietary orbital data. It is

particularly efficient as a method of isolating training data for more complex analy-

ses. For example, the tool can quickly locate periods of nominal station-keeping in

hundreds of satellite histories so that this behavior can be analyzed by a clustering

algorithm or another machine learning technique [20, 52].

Evaluating realistic confidence in the error associated with orbital estimates is

another SSA challenge made more difficult by a communication disconnect. Errors

in orbital data can be caused by imperfect propagation or measurements - the details
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of which are not publicly released for many data sources [22]. Frequent undisclosed

maneuvers also contribute to this error since tracklets observed during and directly

after a maneuver are often uncorrelated or yield poor orbital estimates until the arc of

active tracklets no longer includes pre-maneuver observations [44]. This is one reason

why maneuver prediction, especially during periods of regular station-keeping, is so

appealing. Unfortunately, many maneuver prediction models are designed around

or exclusively tested on a single satellite or aggregated system and focus solely on

the timing of predicted maneuvers [58, 45]. Time comparison results can provide an

informative metric for a model’s ability to recognize behavior abnormalities, especially

when the context is singular. However, more information is necessary to determine

whether a particular model can provide the precision and accuracy necessary to work

with specific sensors, data, or software. Hence, when evaluating model performance

for more general applications like catalogue hygiene, it is more helpful to characterize

prediction results in terms of the satellite’s post-maneuver location or state.

To that end, Chapter 3 presents a simulation tool that evaluates probabilistic ma-

neuver prediction models in the context of physical viewing constraints. It allows users

to define a prediction model and a surveillance scenario in which a satellite maneu-

vers in the time between two observations. Then it generates the spatial probability

distribution for the satellite’s predicted location at the post-maneuver observation

time and plots it according to the viewing angles and constraints determined by the

surveillance scenario. Chapter 4 discusses the potential impact and expansion of this

tool and of the PoL characterization framework described in Chapter 2.
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Chapter 2

SNICT: A tool for isolating Pattern

of Life shifts in the Geosynchronous

regime

Characterizing PoLs for a diverse range of Geosynchronous satellites is essential to

contextualizing historic on-orbit behaviors and cultivating the capabilities to recog-

nize and predict nominal and abnormal satellite behavior. On a general level, this

analysis is preceded by processing extensive amounts of historical data in order to

identify study periods relevant to a specific research objective. The Satellite Node

Identification and Classification Tool - SNICT for short - provides a simple algo-

rithmic approach to identifying shifts in behavioral modes and detecting PoL nodes

from historical geographic positional data. Nodes are characterized by changes to the

satellite’s orbital station or drift and belong to one of three classes: "initiate drift"

(ID), "end drift" (ED), and "adjust drift" (AD). Section 2.1 provides more detailed

descriptions of each type of node and their relation to transitional and stationary

behavioral modes. Section 2.2 explains how the SNICT algorithm was structured

and tested on 18 satellite histories generated from two-line element (TLE) sets, and

Section 2.3 discusses the results of these tests and highlights SNICT’s performance

when applied to several node-dense histories.
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2.1 Pattern of Life Nodes and Behavioral Modes

A satellite’s pattern of life has two fundamental components: nodes and behavioral

modes. A node represents an instantaneous point on a PoL timeline between two

behavioral modes and can be identified by inspecting historical positional data. A

PoL node may occur at a time that a satellite has maneuvered, as is the case for

longitudinal shift maneuvers. However, some nodes occur when no maneuver has been

performed. For example, a satellite may cease North-South station-keeping near the

end of its life-span or stop station-keeping altogether. These events would constitute

a PoL shift, and a node would occur in the absence of a course-altering maneuver.

For this reason, SNICT does not rely on maneuver detection or characterization. In

fact, SNICT uses a very simple algorithm to identify nodes.

There are many types of events beyond end-of-life (EoL) behaviors that can com-

prise shifts in PoL, but at the macro level, the vast majority are identifiable from

a satellite’s geographic positional history [49]. In fact, orbit insertion, changes-in-

station, and retirement maneuvers can all be extrapolated from geographic longitude

without incurring additional complexity from inclined orbits or small variations in

station-keeping cycles. For this reason, SNICT determines ID, ED, and AD nodes

from longitudinal position histories like those shown in Figures 2-1 and 2-2.

The modes that fall between node pairs and can be broadly grouped into transi-

tional modes — preceded by an ID or AD node — or stationary modes — preceded by

an ED node. Stationary modes are periods within which a satellite performed regular

station-keeping maneuvers, or in other words, its periodic motion was centered at a

consistent longitudinal position and did not exceed a longitudinal amplitude larger

than one orbital slot. Since the size of one orbital slot is not currently regulated, this

work assumes a slot width of half of a longitudinal degree. ID nodes occur when a

satellite that has previously been station-keeping at a consistent longitude leaves that

station. They are preceded by a stationary mode and followed by a transitional mode,

such as a longitudinal drift, a libration orbit, or a period of increased eccentricity.

ED nodes follow transitional modes if the satellite has resumed station-keeping at a

26



Figure 2-1: Longitudinal position history for a GEO satellite. Longitudinal
position history for NIMIQ-2 (Satellite ID: 27632).

Figure 2-2: Longitudinal position history for a GEO satellite. Longitudinal
position history for WGS-10 (Satellite ID: 44071).
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Figure 2-3: Examples of ID, ED, and AD nodes. Examples of ID (blue), ED
(red), and AD (orange) node detections from the longitudinal position history of
SHIJIAN-17 (Satellite ID: 41838).

consistent longitude. AD nodes capture behavioral changes that occur between two

transitional modes. For example, an AD node would be detected if a satellite’s drift

rate or direction changed suddenly during a longitudinal shift maneuver or if there

was a sudden change in trajectory during orbit insertion. This allows for more than

one distinct behavioral mode between an ID and an ED node pair and is particularly

important when characterizing PoL for satellites with non-circular orbits that do not

satisfy the criteria for stationary modes.

2.2 Methodology

2.2.1 Algorithm Inputs

The longitude waveforms applied to the SNICT algorithm were generated from histor-

ical two-line elements (TLEs) provided by the United States Space Force’s 18th Space

Control Squadron (18 SpCS) and accessed via Space-Track.org. As demonstrated in

Figure 2-4, TLE-generated data is often noisy due to cross-tagging, outdated orbit-

determination methods, and inconsistent observation schedules, but this source was

chosen in order to demonstrate the PoL characterization system described in Section

1.1.1 on a publicly available source of historical orbital data. However, since SNICT

and this PoL system are only directly dependent on geographic positional data, they

can be used with other data sources, orbit determination methods, and propagation
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Figure 2-4: Example of Longitude Data Generated from TLEs. Exam-
ple of Longitude Data Generated from TLEs provided by the United States Space
Force’s 18th Space Control Squadron for TDRS-1 (Satellite ID: 13969) (left) and
FLTSATCOM-7 (Satellite ID: 17181) (right). Data points are color-coded to indi-
cate the timestamp’s distance in hours from the nearest TLE epoch. There are gaps
and large jumps in the longitude histories due to anomalies in the TLE source data.

models as long as the inputs are properly interpolated.

To account for anomalies in the source data, ID and ED nodes were discarded for

longitude displacements with durations of less than 24 hours. That is, if a potential

transition was detected but the satellite resumed its pre-detection longitude less than

24 hours after the detection, the transition was assumed to be the result of a source

data anomaly. Longitudes were taken from ephemerides converted from the TLE

source data for a study period spanning January 1st, 2010 to December 31st, 2021

[51, 34, 3]. The ephemerides were generated at a timestep of two hours in order

to sufficiently capture the longitude sinusoid observed over the course of one orbital

period.

2.2.2 Node Detection and Filtering

SNICT requires two inputs: an array of sequential longitudes and an array of their

corresponding timestamps. The standard deviation of the longitude is processed

in increments equivalent to one orbital period, starting with the first 24 hours for

geosynchronous orbits, then shifting this 24-hour window forward by one timestep at

a time as shown in Figure 2-5. The standard deviation calculated for each window

is associated with the last timestamp within that window so that each timestamp

corresponds to a value of longitude and the standard deviation of the longitude signal
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Figure 2-5: Window of longitudinal position history used to calculate the
standard deviation. The standard deviation is calculated from all data points
within the window (set against the white background). In the first pane, the calcu-
lated value is associated with step 15. The next step is shown in the second pane,
after which the calculated standard deviation is associated with step 16.

over the previous 24 hours. Every timestamp within the first 24 hours is assigned one

standard deviation value which is taken across this time frame since the calculation

cannot span an entire orbital period until the first data point is at least 24 hours

behind the last timestamp in the current window.

SNICT then steps through each timestamp within the study period, looking for

a standard deviation that is greater than the stationary mode threshold — set to

a value of 0.03 for this study. When found, the timestamp and its meta-data are

archived as a potential ID node, and a flag is set to indicate that the satellite has

entered a transitional mode. As the algorithm continues to step through timestamps,

it can respond in either of two ways:

Case 1: If the standard deviation has fallen below the stationary threshold, SNICT

must confirm that the satellite is actually in a new stationary mode. It does this by

confirming that the satellite’s longitude over the next orbital period does not fluctuate

more than three-tenths of a degree. If this is confirmed, the current timestamp and

its meta-data are archived as a potential ED node, the flag indicating a transitional

mode is toggled off, and the algorithm resumes checking the standard deviation at

each timestamp for a potential ID node. If the new mode is not confirmed, the
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Table 2.1: Comparison of SME Node Analysis and Algorithmic Node De-
tection. Correlated detections are nodes that correspond to specific SME nodes.

algorithm moves on to Case 2.

Case 2: If the standard deviation has risen by more than 110% since the last

timestep, the current timestamp and its meta-data are archived as a potential AD

node. The algorithm then continues stepping through each timestamp checking for

Case 1 or Case 2.

Once the entire satellite history has been processed, SNICT filters the potential

nodes for redundant detections. This includes ID nodes that follow ED nodes by less

than 48 hours and AD nodes that fall within 24 hours of each other. Any ED-ID

node pairs that are filtered out at this stage are replaced by AD nodes, and strings

of redundant AD nodes default to the first detection in the string. Once a potential

detection is confirmed, a node is created from the satellite’s NORAD catalog number,

the detection timestamp, the two-character node type designator, and other optional

meta-data. SNICT was applied to a group of 18 GEO satellites, and the detected

nodes were compared to a database of PoL nodes manually labeled by a subject

matter expert (SME) [3].

2.3 Results

SNICT was demonstrated on the historical longitudinal positional data of 18 satellites

within the study period. This group included satellites from eight different countries

utilizing various chemical, electric, and hybrid propulsion systems and representing

numerous missions including meteorological, communication, and military objectives.
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Figure 2-6: Example of correlated ID, AD, and ED nodes. In this segment of
the longitudinal position history for ASIASAT-7 (Satellite ID: 37933), the ID (blue),
AD (orange), and ED (Red) node detections in the first pane are correlated with the
ID, AD, and ED nodes in the third pane that were recorded during a SME analysis.
The second and fourth rows show the standard deviation during these detections.

32



According to the SME analysis, there are a combined 444 nodes in these 18 histories.

SNICT detected 617, and 369 of those detections were correlated with the SME nodes,

meaning that they shared the same node designation and were timestamped near the

same TLE epoch. Figure 2-6 shows a detection window with three correlated nodes,

one of each node designation.

Many of the uncorrelated detections were timestamped with the same epoch as

SME nodes but had a different designation. For example, some of the nodes typed as

ID and ED in the SME dataset were captured as AD nodes by SNICT. The opposite

also occurred, where the algorithm segmented longer transitional modes from the

SME into smaller sections with additional ED and ID nodes. SNICT seemed to

struggle the most with placing ED nodes when the standard deviation in stationary

modes remained relatively high, as is the case for the satellite history in Figure 2-7.

Despite these inconsistencies in the AD node detections, SNICT was largely suc-

cessful at partitioning transitional modes across node-dense longitude histories. The

histories for NIMIQ-2 (27632), HYLAS-1 (37237), and Luch / Olymp-K (40258)

contained the highest number of SME nodes.

As shown in Figure 2-8, there were some missing and uncorrelated AD node de-

tections for NIMIQ-2. However, every ID and ED node was correlated. There are

several AD nodes that follow ID nodes so closely that the ID nodes are difficult to

distinguish in the plot, but SNICT detected ID and ED nodes within a few hours of

all of the SME nodes of those designations. The results presented in Figure 2-9 for

HYLAS-1 were similar. After orbit insertion, there were seven uncorrelated AD node

detections and one uncorrelated SME-generated AD node. All of the remaining nodes

were correlated. The number of AD detections for Luch / Olymp-K in Figure 2-10

were noticeably less than NIMIQ-2 and HYLAS-1 with only 32 detections compared

to the 42 recorded by the SME. All other nodes were correlated except the first ED

and ID nodes which SNICT designated as AD nodes due to the short stationary mode

between them.

In most cases, SNICT detected significantly more AD nodes than were recorded

by the SME. This outcome is not surprising since AD detections were not filtered to
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Figure 2-7: Example of ID and ED nodes detected as AD nodes. Example
of ED nodes (red) detected as AD nodes (orange) in longitudinal position history for
SJ-20 (Satellite ID: 44910). There are many uncorrelated AD node detections in the
first two panes. Some of these correspond to the four uncorrelated SME nodes in the
bottom two panes.
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Figure 2-8: Comparison of SNICT and SME Analysis Results for NIMIQ-2
(Satellite ID: 27632).
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Figure 2-9: Comparison of SNICT and SME Analysis Results for HYLAS-1
(Satellite ID: 37237).
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Figure 2-10: Comparison of SNICT and SME Analysis Results for Luch /
Olymp-K (Satellite ID: 40258).
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exclude anomalies in the TLE source data while these anomalies were often visually

identifiable and therefore unlabelled during the SME analysis. Additionally, some of

the nodes designated as ID and ED by the SME analysis were captured by SNICT

as AD nodes due to factors such as the algorithm’s higher time resolution and the

aforementioned lack of AD filtering - which particularly influenced ED node designa-

tions. Based on these results, increased source data resolution and accuracy would

likely produce better results by reducing the number of anomalies and extraneous

node detections. However, more than 83% of all SME nodes were directly correlated

with detections, and the histories with the highest node densities detected 89% or

more. These correlation fractions are quite high considering the low resolution and

precision of the input data in the context of SNICT’s simplistic detection algorithm.

In combination with reducing false detections and cross-designated nodes via

higher-quality orbital data, SNICT would benefit from a dynamic detection threshold,

especially for identifying ED nodes. This might be accomplished through machine

learning techniques or additional analysis of standard deviation signals. Further study

of transitional mode end-points will be necessary to gauge the applicability of such

methods. To that end, it would be beneficial to establish explicit guidelines for ED

node placement between transitional and stationary modes so that periods of consis-

tent station-keeping behavior may be reliably isolated for independent study. SNICT

could conceivably be used to quickly parse large satellite histories to identify training

data for prediction models, but its utility is hampered when stationary mode bound-

aries are inflated to include behavioral outliers as this can lead to poor estimates of

optimal maneuver times and ∆𝑉 . Chapter 3 addresses the effects such uncertainties

have on satellite tracking and describes a tool designed to simulate their impact under

various constraints.
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Chapter 3

MAPS: A tool for contextualizing

and evaluating predicted maneuver

models

GEO satellites are subject to perturbations such as non-uniform gravitational effects

and solar radiation pressure that require them to maneuver frequently in order to

maintain consistent Earth-relative stations. As discussed in Chapter 1, GEO satel-

lites have many station-keeping schemes with different frequencies, magnitudes, and

combinations of maneuver objectives. Even individual satellites, between one station-

keeping cycle and the next, may display small changes in the frequency, magnitude,

and direction of their maneuvers without entering into a new behavioral mode. This

diversity of maneuver routines makes generalized maneuver prediction quite difficult

since techniques that perform well for one satellite may perform poorly for many

others. This chapter describes the Maneuver-Aware Probabilistic Simulator (MAPS),

a tool designed to help operators, researchers, and analysts evaluate the efficacy of

maneuver prediction models in context of satellite tracking. Section 3.1 discusses

MAPS’s framework for specifying satellite positions, and Section 3.2 details its code

structure and data flow. Finally, in Section 3.3, the tool’s capabilities are demon-

strated on three generic prediction models applied to a GEO satellite operating in a

close-proximity cluster.
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3.1 Defining Satellite Coordinates

MAPS creates probability distributions of a satellite’s post-maneuver position by

repeatedly propagating its orbit from an initial state to a future observation time

while varying the maneuver parameters. A key component of this analysis involves

knowing the satellite’s true location at the observation time, but these coordinates

cannot be directly defined by the user. Instead, MAPS determines the true location by

propagating the orbit from the initial state and the set of true maneuver parameters.

This is necessary due to the possibility of perturbation model discrepancies between

MAPS and an external data source. Figure 3-1 shows three satellite trajectories

propagated using different perturbation models from the same initial state. After five

days, the position propagated with the Keplerian perturbation model deviates from

the MAPS propagator by approximately 65 km which corresponds to an angular

separation of more than one-tenth of a degree. As discussed in Chapter 1, these

values exceed the maximum operational distance between satellites in tight clusters

like ASTRA 19.2∘E. Using a true location provided by an external propagator may

introduce an offset comparable to the Keplerian model results or no offset at all,

but for consistency, MAPS compares sampled satellite coordinates to an internally-

propagated true location.

MAPS accepts coordinates in different reference frames depending on the target

function. When a three-dimensional reference frame is needed, coordinates are either

defined according to the Geocentric Celestial Reference System (GCRS) or the In-

ternational Terrestrial Reference System (ITRS). Both systems are Earth-centered,

but only ITRS is Earth-fixed [25]. GCRS is derived from the Barycentric Celestial

Reference System (BCRS) and does not rotate with respect to extragalactic objects

[29]. Since it is supported by most Python astronomy packages, MAPS uses GCRS

as its propagation frame and, in some cases, to define the initial state vector. As

an Earth-centered, Earth-fixed (ECEF) reference system, ITRS is useful for defining

locations on or relative to the Earth’s surface. The spherical representation of this

frame consists of geodetic latitude, longitude, and altitude where altitude is measured
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Figure 3-1: Comparison of three perturbation models. MAPS’s perturbation
model accounts for Keplerian accelerations, the J2 perturbation, and the gravitational
effects of the Sun and Moon. The top two subplots include a GEO satellite’s geodetic
(ECEF) longitude (top) and latitude (middle) as derived by MAPS (green) a simple
Keplerian model (red) and SGP4 (blue). The bottom subplot shows the angular offset
of the Keplerian and SGP4 trajectories relative to the one generated by MAPS.
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Figure 3-2: Station-keeping maneuvers in a geographic positional history.
Historic ITRS-formatted positional data derived from TLEs for ASTRA 1N (Satellite
ID: 37775). One East-West maneuver (orange) is marked in the longitudinal position
history, and several North-South maneuvers (blue) are visible in the latitudinal po-
sition history. The North-South maneuver marked by a solid blue line represents a
high-thrust chemical burn, and each dotted blue line indicates a low-thrust Hall-effect
thruster burn [62].

as the distance above sea level. For geostationary satellites that station-keep within

a small region of ground-relative space, ITRS coordinates can also reveal maneuver

objectives. As shown in Figure 3-2, both East-West and North-South station-keeping

are visible and distinguishable in ITRS latitude and longitude element histories.

Understanding a satellite’s position in three dimensions is quite important when

determining and propagating orbits, but some MAPS functions require a two-dimensional

coordinate system. Three-dimensional views do not account for the constraints in-

volved with satellite tracking, especially those introduced by ground-based obser-

vation. Ground-based sensors map satellite positions using only two parameters -

their elevation angle and azimuth angle. A satellite’s distance from a sensor cannot

be determined from a single observation, so plotting position on a two-dimensional

elevation-azimuth projection is more representative of a sensor’s view of its target. As
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Figure 3-3: Diagram of two ground-based sensor views. Observatory 1 and
Observatory 2 use different elevation, azimuth, and separation angles for the same
satellites.
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shown in Figure 3-3, a satellite’s elevation and azimuth angles are measured from a

specific location instead of in an Earth-centered reference frame. Notably, the angular

distance between objects can vary drastically depending on the sensor location, so

defining the observation point is crucial to understanding whether or not a satellite is

actually resolvable from other nearby objects. If the distance between two satellites is

small enough, their two probability distributions can overlap, increasing the risk for

cross-tagging, and if their angular separation is smaller than the angular resolution

of the sensor, then they will appear to be one object. Furthermore, if the probability

distribution of a single satellite extends far beyond or is centered far outside of the

sensor’s field-of-view (FOV), then the prediction model may not be effective for that

specific sensor or satellite. Therefore, the sensor location, resolution, and field-of-view

(FOV) must be known to determine if a prediction model can realistically meet the

accuracy and precision requirements imposed by observation constraints.

To that end, MAPS generates probability distributions that account for the FOV

of ground-based observers. It can also incorporate information about other nearby

objects, such as clustered satellites, and sensor resolution to provide realistic limita-

tions on resolvable positions. This design allows users to test prediction models on

combinations of maneuvers and constraints to evaluate whether the model is likely to

be efficient for a specific use case.

3.2 MAPS Capabilities and Components

When provided with a satellite’s last observed state and a maneuver prediction,

MAPS uses Monte Carlo sampling, a poliastro propagation framework, and Astropy

reference frame transformations to generate a probability distribution function (PDF)

for the satellite’s coordinates at a specified, post-maneuver observation time [6, 4, 5].

Figure 3-4 shows a simplified diagram of this process, the components of which are

explained in more detail in this Section. Sections 3.2.1, 3.2.2, and 3.2.3 describe

the format of each MAPS input, the propagation method, and the available output

formats respectively.

44



Figure 3-4: Diagram of MAPS processes. Diagram of MAPS inputs (purple),
processes (green), and outputs (red).

3.2.1 MAPS Inputs

MAPS requires four inputs: the satellite’s initial state, the simulation run time, a

maneuver profile, and the number of simulations to be run. Some of these inputs

have multiple components and must be instantiated as objects of specific MAPS

classes to ensure they are correctly formatted.

Formatting Time Inputs

MAPS relies on the datetime module and astropy.time module to handle times-

tamps but does not require users to interact with these directly. Instead, all time

inputs are formatted as strings or floating point numbers. The timestamp for the

pre-maneuver observation - the start time - may be given as an ISO-formatted string

[24]. MAPS converts this to an offset-aware datetime object and assumes the times-

tamp to be in the UTC timezone. The user must therefore take care to account for

the timezone of the timestamp they provide and ensure it is converted to UTC time
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if necessary. The remaining time inputs are more simply defined by floating point

numbers corresponding to the number of seconds an event occurs after the start time.

The run time provides MAPS with the time of the post-maneuver observation. It

is the length of time that MAPS will propagate the satellite’s position. The time

components of the true and predicted maneuver models share this format as well.

Defining the Initial State

MAPS currently accepts the satellite’s initial state as a set of orbital elements, as

a TLE, or as position and velocity vectors. Since each of these inputs has several

components, the initial state should be instantiated according to the type of input

as an OE, TLE, or RV class object to ensure that MAPS receives the information in

a consistent format. Instantiating OE objects requires arguments for the start time,

the astropy distance unit associated with the given value of the semi-major axis, the

astropy angle unit associated with the angular orbital elements, and a list of floating

point values containing the orbital parameters. This list must have the order: semi-

major axis, eccentricity, inclination, right ascension of the ascending node, argument

of perigee, and true anomaly. The arguments for instantiating a TLE object are two

strings corresponding to the first and second lines of the satellite’s TLE. This class

does not require an explicitly defined start time like the other two state classes, but

it does require that the two input strings begin with the line number followed by a

space. To generate an initial state from position and velocity vectors, the positions

and velocities should be given as two lists and represented in Cartesian coordinates

in the GCRS reference frame. Following the position and velocity lists, the remaining

arguments for instantiating an RV object are the start time and the astropy distance

unit corresponding to the given state vectors.

Maneuver Profiles

Maneuver profiles are combinations of true and predicted maneuver information.

MAPS uses a single maneuver profile input that is formatted as a maneuver_profile

class with attributes including the true maneuver parameters and their correspond-
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ing probability distributions as defined by a prediction model. The class object must

first be initialized with the true maneuver parameters before the predicted maneuver

model can be incorporated with a particular class method.

The true maneuver parameters include the time that the maneuver occurred and

the ∆𝑉 the satellite experienced during the maneuver. The ∆𝑉 is represented by

three floating point numbers corresponding to the change in velocity in the 𝑥, 𝑦,

and 𝑧 directions in the GCRS reference frame. The user may specify whether these

values are in units of meters per second or kilometers per second by providing the

appropriate astropy distance unit when the maneuver model is initialized. Thus,

the inputs for instantiating a maneuver_profile object are the true maneuver time,

the 𝑥, 𝑦, and 𝑧 components of ∆𝑉 , and, optionally, the unit of distance. If the unit

is not specified, MAPS assumes it to be meters. Regardless of the distance unit, all

velocities should be specified as a distance per second.

The predicted maneuver model encapsulates two lists of four floating point num-

bers. These define the probability distributions generated by a prediction model. In

order, the four elements of each list correspond to the maneuver time, the 𝑥 compo-

nent of ∆𝑉 , the 𝑦 component of ∆𝑉 , and the 𝑧 component of ∆𝑉 . MAPS currently

supports Gaussian probability distributions, so the first list includes the mean value

of each parameter’s distribution, and the second holds the corresponding standard

deviations. These components must be added to the maneuver model using the class

method associated with the distribution type. In this case, the method is gaussian,

and the arguments are the list of means and the list of standard deviations. When

the predicted maneuver model is incorporated into the model, the probability dis-

tribution for each parameter is generated via the random module so that it can be

sampled randomly using a class method such as time or dx.

3.2.2 Orbit Propagation

MAPS propagates the satellite’s orbit using a propagator from the poliastro python

module [11]. Specifically, it uses a numerical propagator based on Cowell’s formula-

tion [27] in which the Keplerian acceleration can be separated from the perturbation
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accelerations, 𝑎𝑝, as seen in Eq. 3.1.

𝑟 = − 𝜇

|𝑟|3
𝑟 + 𝑎𝑝 (3.1)

The poliastro Cowell propagator does not account for non-Keplerian accelera-

tions by default but does accept a user-defined function that can be called at each

time step to generate the accelerations for the second term of Eq. 3.1. This allows

the user to customize the propagator’s perturbation model. The MAPS propagator

accounts for the J2 perturbation as well as the gravitational effects of the Sun and

Moon. The accelerations due to each of these perturbations are calculated separately

using the J2 and three-body models in the poliastro.core.propagation module.

Then they are added together and returned to the Cowell propagator. For each

timestamp the propagator receives, it returns the satellite’s state vectors in Cartesian

GCRS coordinates.

Since poliastro does not support propagation in reference frames other than

GCRS or transformations between coordinate representations, MAPS uses its own

GEOsat_Orbit class to format and catalog information about the satellite’s orbit and

state history that poliastro objects cannot retain. The MAPS propagator is acces-

sible as a GEOsat_Orbit class method so that as an orbit is propagated, the resulting

GCRS state vectors are automatically associated with the orbit from which they were

generated. State vectors are accessible as a class attribute in their original format,

but they are also converted to other reference frames and stored as additional at-

tributes. These transformations are accomplished using astropy coordinates which

support numerous representation and reference frame transformations. Through the

GEOsat_Orbit class, MAPS accesses the satellite’s position as Cartesian GCRS co-

ordinates and as spherical ITRS coordinates that provide the ECEF latitude and

longitude.
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3.2.3 Generating Spatial Probability Distributions

MAPS uses the Probability_at_time function to simulate spatial probability dis-

tributions via Monte Carlo sampling. It accepts a run time, maneuver model, and

initial state, and returns a Probability class object. When executing this function,

MAPS propagates the satellite’s orbit from the same initial state and to the same

observation time for every iteration of the Monte Carlo simulation, but at the be-

ginning of each run the maneuver time and ∆𝑉 components are randomly sampled

from the maneuver_profile input as described in Section 3.2.1. The initial orbit is

propagated to the sampled maneuver time, at which point the velocity components

are added to the most recent state vector, and the new state is propagated to the end

of the simulation window.

MAPS calculates the satellite’s final position in the ITRS frame from the GCRS

coordinates returned by the propagator. Both sets of coordinates are appended to

their respective GEOsat_Orbit attribute arrays. After this is repeated for the specified

number of samples, the two position vector arrays and the final observation times-

tamp are used to instantiate a Probability class object. Finally, the propagator is

called on the set of true maneuver parameters defined in the maneuver_profile to

determine the satellite’s true position at the observation time, and the resulting vec-

tor is instantiated as an attribute of the Probability object which is then returned.

The Probability class has several methods that can be used to plot the posterior

spatial probability distribution as well as the sampled satellite positions in multiple

reference frames and from specific viewpoints.

3.2.4 MAPS Plot Views

Probability Density Functions

Upon its return, a probability object can be used to plot the probability density

function of the satellite’s position at the observation time by calling the class method

plot_PDF. This function calculates the mean and standard deviation of the distance

between the samples and the satellite’s true position. These values are then used to
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calculate and plot the probability of each sample according to a Gaussian distribution

model. If this method is called before a location is assigned to the observation point,

then the resulting distances are calculated from the array of GCRS coordinates and are

given in units of kilometers. Otherwise, distance is given in degrees and corresponds

to an angular separation calculated from ITRS coordinates. Probability density plots

also display the mean value of the distribution as a fraction of its standard deviation.

Spatial Distributions in Two and Three Dimensions

MAPS can display the distribution of predicted satellite positions as a 3D scatter plot

or as a 2D projection. Three-dimensional plots use GCRS coordinates. They do not

require additional specifications beyond those automatically associated with MAPS-

generated Probability objects and can be accessed using the plot_3D method. In

this plot view, the sampled data points are color-coded according to their distance

from the satellite’s true location as shown in Figure 3-5.

Before plotting the Probability class’s two-dimensional projection of a spa-

tial distribution, the location of the observer must be specified so that the satel-

lite’s coordinates can be converted from ITRS to an azimuth angle - which is mea-

sured along the horizon - and an elevation angle - which is measured vertically from

the horizon. The observation point may be instantiated as a class attribute from

its ITRS coordinates using the from_location method or passed directly to the

plot_from_location method which generates the plot view. These functions create

an Astropy EarthLocation object which can then be used to convert GCRS or ITRS

coordinates into the proper viewing frame for its associated location.

Optionally, the user can provide the location of a nearby object at the observa-

tion time using the object_intersection method. This location must be given in

ITRS coordinates, but MAPS calculates its angular distance from the location of the

distribution’s mean. This value may also be set directly using the set_max_degrees

method. To simulate an intersection with another satellite, MAPS flags any sam-

ple separated from the mean position by more than half of this distance as high

risk. This emulates an encroaching second object with a comparable spatial distri-
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Figure 3-5: MAPS 3D GCRS plot view. 3D visualization of a large spatial
distribution for a GEO satellite. Colors indicate the discrepancy between each sample
and the satellite’s true position.
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bution. If the intersection distance is initialized before plotting the 2D projection,

plot_from_location uses a dual color scheme to differentiate the high-risk samples

from the rest of the distribution. Low-risk data is shown in black, and high-risk data

is colored a light gray. This allows users to easily see which portions of the distribu-

tion can be expected to correspond to a high risk of cross-tagging without having to

run another Monte Carlo simulation for a second satellite.

Sensor Field-of-View and Resolution Constraints

To account for additional viewing constraints, users may provide a specific FOV and

resolution for a ground-based sensor located at the observation point. The FOV must

be entered in units of degrees, and resolution is expressed in terms of the pixel scale in

units of arc seconds. These values may be passed to the from_sensor class method

or directly to the plot_from_sensor method that generates the constrained plot

view. These functions isolate the samples that would be visible to a sensor with its

FOV centered at the mean of the spatial distribution. When the plot_from_sensor

method is called, these samples are sorted into a 2D histogram with bins scaled to the

same dimensions as the sensor’s pixels. The resulting plot view is demonstrated in

Figure 3-6 and includes a pixelated representation of the isolated samples with pixel

brightness that increases with a bin’s sample density. In this plot view, it is relevant

to note that the color is scaled relative to the sample density observed within the

FOV only, not the entirety of the distribution.

If the satellite’s true position is within the FOV, its location is marked in the plot

by a red triangle. It is possible that the full spatial distribution is very large or very

small compared to the sensor’s FOV, and that the relative size is not apparent from

either plot view. In this case, the plot_from_location method may be called with

its FOV parameter enabled. By default, this boolean is false, but when enabled, the

plot_from_location view encloses the region displayed by the pixelated FOV in a

green rectangle to provide a reference for scale.
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Figure 3-6: Example of MAPS plot view for sensor FOV and resolution
constraints. The plot is centered at the mean of the spatial distribution and scaled
to the user-defined sensor FOV. MAPS determines pixel size from the provided value
for pixel scale, and pixel brightness is normalized to the maximum sample density
within the FOV.
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3.3 Evaluating Maneuver Predictions for Clustered

Satellites

This section demonstrates how MAPS might be used to evaluate maneuver predictions

for satellites like those in the ASTRA 19.2∘E cluster. Three maneuver profiles for a

single East-West station-keeping maneuver are tested, each with a different maneuver

time accuracy and precision. Section 3.3.6 interprets and compares the results of each

MAPS evaluation.

3.3.1 Simulating Truth Trajectories

For the purposes of this study, a truth trajectory was simulated based on a segment

of ASTRA 1N ’s (Satellite ID: 37775) state history to represent realistic values for

station-keeping ∆𝑉 . As shown in Figure 3-7, the TLE-sourced state history for

the chosen time period included a single East-West station-keeping maneuver and

several North-South maneuvers. Since the North-South maneuvers were executed

very consistently, only the East-West maneuver was implemented in the simulated

trajectory. The simulation and true maneuver parameters for this trajectory may be

found in Table 3.1. Since the ASTRA 19.2∘E cluster is operated by SES, the SES

head office in Luxembourg was designated as the observation point. Then, using the

distances presented in Figure 1-5, the median distance between ASTRA 1M (Satellite

ID: 33436) and ASTRA 1N was set as the risk threshold for cross-tagging.

3.3.2 Simulating Maneuver Profiles

As discussed in Section 3.2.1, MAPS maneuver profiles consist of the maneuver’s true

time and ∆𝑉 components in combination with the mean and standard deviation of

the modeled probability distributions for these four parameters. To simulate multiple

maneuver profiles for the trajectory discussed in Section 3.3.1, the means for the

modeled distributions were generated by adding offsets to the corresponding true

value of each maneuver parameter shown in Table 3.1. The mean maneuver time

54



Figure 3-7: Trajectory simulation for ASTRA 1N (Satellite ID: 37775).
Simulated GEO satellite trajectory (red) based on a TLE-sourced segment of the
geographic positional history for ASTRA 1N (Satellite ID: 37775) (black).

Table 3.1: MAPS truth inputs and static simulation parameters.
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Table 3.2: Prior distribution parameters for MAPS maneuver profile inputs.

offsets were sampled from within the ranges of 15 minutes, one hour, and two hours

for cases 1, 2, and 3 respectively. The standard deviations for the maneuver time

distributions were then randomly sampled from ranges of one hour, 24 hours, and

36 hours to avoid any potential dependencies on orbit symmetry. These values were

chosen to reflect typical variations in maneuver frequency for a few common station-

keeping schemes. The offsets and standard deviations for the ∆𝑉 distributions were

selected to be negligible. In fact, all of the time and maneuver offsets were chosen to

be relatively small so that the true satellite location could be incorporated into the

demonstrations of each plot view. The complete list of maneuver profile components

may be found in Table 3.2.

For clarity, the maneuver profiles may be referenced as high-precision for case

1, moderate-precision for case 2, and low-precision for case 3. These terms refer to

the prior distribution for maneuver time and are meant to distinguish the simulated

prediction models relative to each other. They are not intended to be representative

of a comparative performance to maneuver prediction models in general.
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Figure 3-8: Spatial probability distribution of a high-precision maneuver
prediction. MAPS probability distribution for the angular distance from the satel-
lite’s true position as predicted from a high-precision maneuver profile. The distribu-
tion’s standard deviation is 0.00094∘ which is very low, indicating that the model is
effective for this use case.
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3.3.3 Case 1: Plot Views for a High-precision Model

The mean of the high-precision maneuver time distribution was offset from the true

maneuver time by approximately nine minutes with a standard deviation of around

50 minutes. According to Figure 3-8, the corresponding mean offset in the PDF

was approximately 0.0014∘ or 1.45𝜎 in terms of the distribution’s standard deviation.

The model performs very well for this use case. Figure 3-9 shows that the cluster of

sampled positions at the observation time is constrained to a tight pattern surrounding

the satellite’s true position. In fact, the entire distribution falls within 0.007∘ of this

location which is well below the risk threshold of 0.05∘. Figure 3-10a displays a 0.98∘

FOV for a sensor with a pixel scale of 0.78” [13]. As a result of this prediction model’s

high time precision, the distribution is too small to be visible at the scale of the FOV

plot. The magnified view in Figure 3-10b shows that the entire distribution envelops

no more than a few dozen pixels and that the satellite’s true position falls between two

of the highest-density pixels. This placement indicates that under these conditions,

the sensor would locate the satellite within one pixel of the location derived from the

prediction model.

3.3.4 Case 2: Plot Views for a Moderate-precision Maneuver

Profile

In the moderate-precision maneuver profile, the time distribution’s mean was offset

from the true maneuver time by approximately 35 minutes, and its standard deviation

was 14 hours. As shown in Figure 3-11, this corresponds to a mean offset in the

probability distribution of approximately 24∘ or 0.51𝜎. Spatial distributions that

follow a pattern like the one in Figure 3-12a appear similar to the orbit shape in

Figure 3-5 when viewed in three dimensions. The distribution wraps around the

geostationary belt, looping back on itself, and only the small portion indicated by

Figure 3-12 is captured by the FOV in Figure 3-13a. The enlarged view in Figure 3-

13b shows that a section of the distribution, including the location predicted from the

mean maneuver parameters, intersects the satellite’s true location. In this case, due to
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Figure 3-9: Elevation-Azimuth projection of satellite positions sampled
from a high-precision maneuver prediction model. Two-dimensional, observer-
dependent projection of a tight spatial distribution with a negligible offset from the
true satellite position.

59



(a) (b)

Figure 3-10: Sensor FOV for a high-precision maneuver profile. (a) MAPS-
generated FOV for a distribution derived from a high-precision maneuver profile. The
sensor is centered on the sample generated by the mean maneuver parameters. (b)
Enlarged view of the satellite’s true position within the sensor’s FOV.

the small offset between the mean and true maneuver times, the sensor would be able

to locate the satellite within a few arc seconds of its predicted location. However, due

to its large standard deviation, this model is not suitable for predicting maneuvers

over this timescale, especially not in GEO satellite clusters. As demonstrated by

Figures 3-11 and 3-12, only a minuscule portion of the distribution remains below the

risk threshold for cross-tagging.

3.3.5 Case 3: Plot Views for a Low-precision Model

The mean maneuver time in the low-precision profile was offset from the true maneu-

ver time by approximately 70 minutes, and the respective distribution had a standard

deviation of 22 hours. This translates to a mean distance offset of approximately 32∘

or 0.62𝜎 as shown in Figure 3-14. The corresponding spatial distribution is shown

in Figure 3-15a. Similarly to the moderate-precision model, this distribution trails

the entire GEO belt due to its large standard deviation. Figure 3-15b indicates the
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Figure 3-11: Spatial probability distribution of a moderate-precision maneu-
ver prediction. MAPS-generated PDF for the angular distance from the satellite’s
true position as predicted from a moderate-precision maneuver profile. The standard
deviation of the distribution is 44.71∘, and its angular range is quite large, meaning
that the model is not precise enough for this use case.
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(a) (b)

Figure 3-12: Elevation-Azimuth projection of satellite positions sampled
from a moderate-precision maneuver prediction model. (a) Two-dimensional,
observer-dependent projection of a large spatial distribution. Portions with a high
cross-tag risk are colored gray. (b) A small segment of the full spatial distribution is
enlarged to show the scale and contents of the sensor FOV (green) plotted in Figure
3-13a.
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(a) (b)

Figure 3-13: Sensor FOV for a moderate-precision maneuver profile. (a)
MAPS-generated FOV for a distribution derived from a moderate-precision maneu-
ver profile. The sensor is centered at the sample generated by the mean maneuver
parameters. (b) Enlarged view of the satellite’s true position within the sensor’s FOV.

portion of the distribution captured by the FOV pictured in Figure 3-16a. The 70-

minute offset between mean and true maneuver times does not result in a spatial

offset large enough to exclude the true position from the FOV plot view, but once

again, the standard deviation is too high. The low-precision maneuver profile is not

a suitable prediction model for GEO satellites at this simulation timescale.

3.3.6 Comparing Maneuver Prediction Models

MAPS’s PDF describes the relationship between each of the satellite’s possible loca-

tions and the probability value assigned to those locations by the prediction model.

MAPS is primarily designed to simplify the task of evaluating the accuracy and pre-

cision of prediction models for a specific set of sensor, spatial, and time constraints.

The accuracy of the prediction model depends on the probability that the model as-

signs to the satellite’s true location and on the distance between this location and the

location where the model predicts that the satellite is most likely to be. Instead of
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Figure 3-14: Spatial probability distribution of a low-precision maneuver
prediction. MAPS probability distribution for the angular distance from the satel-
lite’s true position as predicted from a low-precision maneuver profile. The standard
deviation is 50.98∘. This value is far to high to meet the precision requirements for
maneuver detection in the GEO regime.
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(a) (b)

Figure 3-15: Elevation-Azimuth projection of satellite positions sampled
from a low-precision maneuver prediction model. (a) Two-dimensional,
observer-dependent projection of a large spatial distribution. Portions with a high
cross-tag risk are colored gray. (b) Small segment of the full spatial distribution en-
larged to show the scale and contents of the sensor FOV (green) plotted in Figure
3-16a.
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(a) (b)

Figure 3-16: Sensor FOV for a low-precision maneuver profile. (a) MAPS-
generated FOV for a distribution derived from a low-precision maneuver profile. The
sensor is centered at the sample generated by the mean maneuver parameters. (b)
Enlarged view of the satellite’s true position within the sensor’s FOV.

plotting the probability distribution in two or three-dimensional coordinates, MAPS

simply plots the probability as a function of the distance between the satellite’s pos-

sible locations and its true location at the final observation time. This allows the

user to see how confidently the model can predict the satellite’s location and whether

or not this confidence is suitably scaled for the FOV of their sensor. The standard

deviation of this simplified PDF provides a metric for model precision. Incorporat-

ing a secondary object to identify conditions with a higher risk of cross-tagging is

another way to determine whether or not the accuracy and precision of a model are

high enough to accommodate a certain use case.

Out of the three test cases, only the first prediction model was able to predict the

satellite’s location with enough precision to confidently avoid cross-tagging. There

was no apparent risk since the full spatial distribution fell within the FOV and the

intersection distance. The second maneuver profile had a mean time offset almost

four times the offset of the first, and the third distribution’s time offset was double
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the second. Despite this, all three models were spatially centered within the area

of acceptable risk surrounding the satellite’s true location. It was due to their high

standard deviations that the moderate and low-precision profiles resulted in distri-

butions that were not probabilistically focused within the region of acceptable risk.

The standard deviation component of the maneuver profiles had a disproportionately

high impact on the posterior distributions compared to the effects of the varied ma-

neuver time offsets. The standard deviation of the second maneuver time distribution

was 14 times higher than the first, and this resulted in a 4, 756, 300% increase in the

standard deviation of the spatial distribution where offsetting the time distribution

mean only shifted the spatial mean by a few arc-seconds. This is consistent with

the offset relationship demonstrated in Figure 1-4 and is due to the geometry of the

orbit. In these simulations, the time and magnitude offsets were chosen to be very

small for the purpose of retaining a visual reference for the true satellite position in

each of the plot views. However, in such cases where the standard deviations of the

prior distributions are very large, the models generate proportionately low-confidence

predictions.

Since many GEO satellite maneuver schedules contain inconsistencies far beyond

the scope of a single day, the poor performance of the second and third models is a

perfect example of why maneuver prediction is so difficult. Even the distribution gen-

erated from the high-precision maneuver profile does not entirely satisfy the distance

constraints characterized in Chapter 1 for ASTRA 19.2∘E. In fact, its performance

is orders of magnitude short of resolving the minimum operational distance between

ASTRA 1N and ASTRA 1M which spans only four pixels for a sensor with a pixel

scale of 0.78”. ASTRA 19.2∘E is not the only cluster whose satellites operate in

such close proximity, and proximity operations are only one of the many challenges

associated with maneuver prediction and satellite tracking. However, MAPS has the

capability to mitigate some of these challenges. As demonstrated by the results of the

three prediction model analyses, MAPS can provide the context necessary to assess

prediction model accuracy and precision for different satellites, cluster formations,

and sensor specifications. Its PDF function provides a simple plot view of model
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performance, and its spatial distributions and FOV plots help users to visualize the

practical limitations of viewing GEO satellites from ground-based sensors so that

even researchers who are not familiar with instrumentation or raw observations can

contextualize the level of benefit that a prediction model can realistically provide.
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Chapter 4

Conclusion

4.1 Contributions

Understanding GEO satellite behavior and control objectives is a challenging aspect

of SSA, largely due to the variations inherent to GEO station-keeping routines. PoL

characterization across the GEO regime can establish precedent to improve behavior

recognition and prediction capabilities, but this requires analyzing large amounts of

data. Additionally, current research efforts are poorly aligned and literarily discon-

nected due to discrepant jargon. This work introduced two tools designed to support

SSA research in these areas through computationally efficient PoL characterization

and contextualizing maneuver prediction models.

The first tool, SNICT, identifies and classifies nodes according to a versatile PoL

model for the purpose of enabling broader characterization of GEO behavioral modes

and contextualizing new satellite behaviors [52]. SNICT’s simple node-detection al-

gorithm was presented and tested on TLE-derived longitudinal position histories for

a diverse group of 18 GEO satellites. Overall, there was an 83% node correlation be-

tween the algorithmic detections and the truth data and upwards of 89% correlation

for the large, node-dense histories that comprise the algorithm’s ideal use case. This

outcome is promising considering the low level of complexity involved in this node

detection method and the poor quality of the TLE source data.

The second tool, MAPS, simplifies the task of evaluating the accuracy and pre-
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cision of maneuver prediction models for a specific set of sensor, spatial, and time

constraints. Three probabilistic prediction models were tested in a surveillance sce-

nario representative of a realistic FOV, optical sensor resolution, and satellite cluster

behavior. The performance of these predictions was analyzed from MAPS-generated

spatial probability plots, revealing that only one of the three models met the preci-

sion requirements for the scenario’s sensor and inter-satellite distance. The results

demonstrated the practical limitations of ground-based satellite tracking and provided

a simple metric for evaluating the efficacy of each prediction model for this use case.

4.2 Future Work

The PoL model nomenclature proposed in Chapter 2 is generalizable across SSA re-

search objectives and can support expanded analysis of satellite behavioral modes

such as stratification of station-keeping schemes and strategic satellite characteriza-

tion. SNICT demonstrated a consistent ability to correctly isolate behavioral modes

with a relatively high percentage of directly correlated node detections considering

the sparsity and large imperfections in the source data. Additional node detection

filtering would enhance the accuracy and robustness of node classification, especially

in the case of AD nodes. Alternative data sources have not been tested but can be

easily integrated with SNICT since the algorithm only depends on derived longitudi-

nal position histories, not the source-data format. To determine the impact of data

quality, SNICT’s performance should be evaluated for additional data sources and

compared to the results of the TLE-based analysis.

As a more complicated system, MAPS’s functionality has the potential to be

improved in many areas moving forward. In the short term, incorporating support

for additional sensor configurations, reference frames, and maneuver profile formats

would expand the tool’s effective user base. Also, though technically supported by

MAPS’s current infrastructure, simulations for space-based surveillance can be tested

as an alternative to ground-based telescope views [1]. In the long term, MAPS would

benefit from transitioning away from the poliastro propagation framework since it
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imposes limitations on maneuver modeling and coordinate frames. Furthermore, the

impact of both MAPS and SNICT could grow from expansion to other orbital regimes

and integration with larger surveillance frameworks.
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