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Abstract

Conformal prediction is a popular line of research in uncertainty quantification. Con-
formal predictors output sets of predictions accompanied by a guarantee that the set
contains the true label. Conformal prediction is particularly promising because it
makes no distributional assumptions and requires only a black-box classifier to pro-
duce sets with this type of guarantee. Unfortunately, existing conformal predictions
can produce uninformatively large prediction sets for certain examples, which limits
their applications to real-world contexts. In this thesis, we explore the impact of data
augmentation, a popular computer vision technique, on the performance of conformal
predictors. In particular, we present multiple ways of combining data augmentation
with conformal prediction by introducing five methods of test-time-augmentation-
enhanced conformal prediction (TTA-CP). We find that certain TTA-CP methods
can improve upon the size and stability of prediction sets created by traditional con-
formal prediction. Using ImageNet and Fitzpatrick 17k, two datasets differing in
size, complexity, and balance, we reveal dataset-dependent decisions that are key to
improving performance in conformal prediction.
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Chapter 1

Introduction

The deployment of machine learning models in high-stakes applications (including

healthcare, finance, and sustainability) requires faithful estimates of a model’s confi-

dence in a particular prediction. Research on uncertainty quantification in machine

learning focuses on this problem and aims to develop models that “know what they

do not know.” A naive approach is to train a probabilistic classifier and use the

outputted probability. For instance, consider a dermatology classifier meant to dis-

tinguish between skin images of atopic dermatitis (i.e., eczema) and images of other

skin conditions. If the classifier outputs a probability of 0.8 that atopic dermatitis

is depicted in an image, one is tempted to interpret this as the model being 80%

confident that the image is of atopic dermatitis. Unfortunately, neural networks are

known, however, to produce overconfident predictions that cannot be interpreted as

true probabilities [15] [34] [29]. Such classifiers also lack comprehensive statistical

guarantees on prediction accuracy [38]. Without guarantees, it is difficult to ensure

the reliability of a classifier’s predictions in important applications.

Conformal prediction (CP) is an emerging area of research that provides these

types of guarantees about the correctness of a model’s output. CP methods do so by

reframing the problem: instead of returning a single prediction, conformal prediction

algorithms output a set of predicted classes, accompanied by a probabilistic guaran-

tee for how often the set contains the true class. This set is termed the prediction

set, and this probabilistic guarantee is called the coverage guarantee. The cover-
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Figure 1-1: Example of a prediction set created by the APS conformal
predictor with a coverage guarantee of 90% (i.e., 𝛼 = 0.1) on an image
labeled "saxophone" from the ImageNet validation set. Conformal predictor
did not use randomization nor allowed empty prediction sets. 1000 images were used
at calibration

['accordion', 'bassoon', 'cornet', 'flute', 'French horn', 'microphone', 'oboe',
'saxophone', 'stage', 'trombone']

age guarantee is defined as 1 − 𝛼, where 𝛼 is a user-provided acceptable error rate.

Figure 1-1 depicts an example of a prediction set. To output these prediction sets,

the conformal prediction pipeline involves two stages: calibration and inference. At

calibration, a threshold is determined based on the classifier’s predicted probabilities

on each sample. This threshold is then applied at inference to determine which classes

will be included in a sample’s prediction set. Large prediction sets can be interpreted

as a form of uncertainty; when the model is uncertain, the prediction set contains

many classes in order to adhere to the pre-specified guarantee.

How might this be used in practice? Consider, for instance, clinical diagnosis.

When predicting the true diagnosis on an unseen patient presenting with chest pain,

a traditional classification model might yield a diagnosis of heartburn with 90% prob-
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ability. More useful, however, is a set of predictions that rules in other potential

diagnoses, such as cardiac arrest or pulmonary embolism, for a physician to con-

sider. Knowing that the true diagnosis is contained in the set with 90% probability, a

physician could use this set of predictions to order additional diagnostic tests–such as

an upper gastrointestinal endoscopy, an electrocardiogram, and a chest X-ray in this

example–to perform a differential diagnosis and confirm the true diagnosis. CP allows

us to realize the second scenario. By creating prediction sets tailored to a user-defined

confidence level, CP provides guarantees not found typically in other machine learn-

ing classifiers. CP is also more robust than other uncertainty quantification methods,

which also make assumptions to achieve guarantees. CP is model-agnostic, making

no assumptions about the structure or training procedure of the underlying classifier.

CP is also distribution-free. It does not require knowledge about the probability dis-

tribution of the data and assumes only that the train, calibration, and test sets are

independent and identically distributed.

There is a catch: CP methods achieve high coverage guarantees at the cost of

larger prediction set sizes. This presents a significant challenge in practice because

a prediction set with many classes is less informative than a prediction set with few

classes. We can always achieve high coverage by naively outputting prediction sets

that contain all possible classes. Although the true class is guaranteed to be in the

prediction set, this outcome is not useful because it does not provide any information

about what the true class could be. Existing CP approaches today, while more

advanced than this naive approach, run into a similar issue. Figure 1-2 displays the

distribution of prediction set size when running the adaptive prediction sets (APS)

CP algorithm developed by Angelopoulos et. al. [1] on the ImageNet validation set.

Achieving a coverage guarantee of 90% results in 48.59% of prediction sets containing

100 or more of the 1000 possible classes. While variants of APS exist, we explore

the interaction between data augmentation and the basic principles of conformal

prediction. Further work can explore how data augmentation interacts with other

modifications (e.g., regularization [1]).

While current CP approaches are able to achieve high coverage guarantees, they

17



Figure 1-2: Prediction sets created with APS conformal prediction on Im-
ageNet validation set are large, with a mean size of 214.04 and a median
size of 41.0 when 𝛼 = 0.1. ImageNet validation set contains 1000 unique classes.
Prediction sets created without randomization and without empty prediction sets.
1000 samples used for calibration.

often do so at the cost of prediction sets that are large and thus lacking in meaningful

insight into the true class. Smaller prediction sets provide more information about

the true class, but are challenging to attain while meeting the coverage guarantee.

The difficulty of achieving smaller prediction sets is, in part, due to the limited

availability of data across the conformal prediction pipeline, during calibration and

inference. In this work, we explore how data augmentation, a common and

successful technique in machine learning for generating additional data

points, can be used in conformal prediction to achieve smaller prediction

sets and thus improve the real-world applicability of conformal prediction.

We examine the relative benefits of data augmentation at different stages

of the conformal prediction pipeline. Our main contributions are:

18



• We present five test-time-augmentation-enhanced-conformal prediction (TTA-

CP) methods and apply them to two datasets differing in size, distribution,

and difficulty: ImageNet [?] and Fitzpatrick 17k-8 (a modification of the Fitz-

patrick 17k dataset [12]). We show that the stage (calibration or prediction set

creation), augmentation policy, and aggregation function (when augmenting at

prediction set creation) affect achieved coverage. We find that, conditional

on prediction set size,

• We study how randomization and allowing empty prediction sets affected achieved

coverage on Fitzpatrick 17k-8. We explain why randomization should not be

used when applying a conformal predictor to a poor-performing classifier, and

why empty prediction sets should not be allowed.

Chapter 2 reviews related work on conformal prediction and data augmentation.

In Chapter 3, we present our methods of applying data augmentation to conformal

prediction and outline our experimental approach to understanding the effects of these

methods. Chapter 4 presents our findings on the overall effect of data augmentation

in reducing the size of generated prediction sets. Chapter 5 examines these effects

at a class-specific level to determine the utility of data augmentation in conformal

prediction on underrepresented classes. In Chapter 6, we pivot to understanding how

data augmentation can improve efficiency of calibration. We summarize our findings

and present areas for further exploration in Chapter 7.

19
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Chapter 2

Related Works

2.1 Conformal Prediction

Vovk et al. [42, 41] created the framework of conformal prediction (at the time, called

"transductive confidence machine (TCM)"), in which outputted prediction sets were

accompanied by a probabilistic guarantee (i.e., coverage guarantee) that the outputted

set contains the true label. This framework required only that data used at train

and test time be independent and identically distributed. They showed empirically

that this framework maintained the coverage guarantee in an online setting, using

each sample of the test set as part of the learning process to improve calibration.

By design, TCM is "statistically efficient". It can achieve the coverage guarantee

with a limited amount of labeled training data and an unlabeled test dataset. This

statistical efficiency, however, comes at the cost of computational inefficiency. TCM

achieves coverage guarantee by calibrating on the labeled training data and then

performing a nearest neighbor search for each sample in the test set. The iterations of

nearest neighbor search are computationally inefficient, especially with large training

sets. Today, TCM is known as full conformal prediction or transductive conformal

prediction.

To address the computational inefficiency of full conformal prediction, Papadopou-

los et al. [23] introduced split conformal prediction. Split conformal prediction op-

erates in an offline setting but relies on the same assumptions as full conformal pre-
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diction (i.e., independent and identically distributed train and test sets) and outputs

prediction sets that meet the coverage guarantee. Split conformal prediction is more

efficient, however, because it performs calibration on a smaller subset of the train

data (i.e., calibration set). This splitting allows the remaining train data to be used

to train a classifier that can generate predictions on the test set, eliminating the need

to run nearest neighbor search for each sample in the test set. Papadoupolos et al.

showed empirically that, at the cost of slightly larger prediction set sizes, split confor-

mal prediction maintains the coverage guarantee while being more computationally

efficient than full conformal prediction [23]. For this reason, split conformal predic-

tion is much more suited for practical deployment. Today, most research in conformal

prediction uses some version of split conformal prediction [1, 2, 11, 27, 28, 7, 40].

While we require computational efficiency for conformal predictors to be fit for

practical deployment, we also require informative prediction set outputs to consider

these predictors useful. One metric for how “informative" a prediction set is prediction

set size (i.e. a prediction set with 3 classes is more informatiove than a prediction set

with 10 classes). Angelopoulos et al. [1, 2] propose two split conformal predictors,

Adaptive Prediction Sets (APS) and Regularized Adaptive Prediction Sets (RAPS),

that use prediction set size as a proxy for classification difficulty. Larger prediction

sets outputted from APS and RAPS imply a more challenging sample to classify,

whereas smaller predictive sets imply an easier sample. In our work, we use APS and

describe notation and implementation in more detail in 3.1.

One line of research in conformal prediction is centered around the coverage guar-

antee. The conformal prediction approaches we covered earlier guarantee coverage

over the entire dataset. There may exist contexts, however, in which we want to

achieve coverage guarantee for each class. Derhacobian et al. [11] introduced a confor-

mal predictor, CCAPS, that achieves class-conditional coverage guarantee. Another

modification to the original coverage guarantee focuses on conditional coverage. An-

gelopoulos et al. [1, 2] introduce the concept of conditional coverage, where coverage

is guaranteed for every input. This definition of coverage is much stronger than the

marginal coverage guarantee of conformal prediction and often impossible to achieve
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[?]. Romano et al. [27, 28], Cauchois et al. [7], and Tibshirani et al. [40] present

conformal predictors that attempt to approximately meet conditional coverage guar-

antee.

Conformal prediction is not limited to classification. Recent work has explored

conformal methods in quantile regression [27] and outlier detection [6, 19, 14, 13].

Angelopoulos et al. also present adaptations of conformal prediction to achieve guar-

antees on risk control metrics other than accuracy, such as false discovery rate [4, 3].

In our work, we focus on conformal prediction in classification.

2.2 Data Augmentation

Data augmentation–the expanding of a dataset by generating new transformed data

points from existing ones–is a technique commonly used in image classification. Tradi-

tionally used at training time, data augmentation can prevent overfitting and improve

generalization [25, 31, 44]. Recent work has also begun exploring data augmentation

at test-time. By aggregating predictions across transformed versions of a test in-

put, test-time augmentation (TTA) has been shown to improve model robustness

[26, 35, 10], accuracy [18, 37, 32, 22, 30], and uncertainty estimates [22, 33, 5, 43].

TTA has become popular because these benefits can be realized using off-the-shelf

libraries [9, 24], without requiring resource-intensive retraining or additional data.

TTA in the context of conformal prediction, however, has yet to be considered rigor-

ously. In our work, we investigate if data augmentation may confer similar benefits

for conformal predictors as we’ve seen with other image classifiers.

Current questions of interest in data augmentation research center around design.

What is the best way to aggregate predictions generated from augmented and original

test samples? How should we decide which augmentations should be used? Further,

data augmentation Advances in these directions of research are complementary to the

work I present here and can be readily combined with our work.
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Chapter 3

Experimental Setup

In this chapter, we describe our test-time augmented conformal prediction methods

and the experiments we ran to evaluate their performance. We outline the datasets,

models, and augmentations that we use in our work.

3.1 Conformal Prediction Algorithms and Notation

In our work, we focus on the adaptive prediction sets (APS) conformal predictor pre-

sented by Angelopoulos et al. [1, 2]. We considered using the regularized adaptive

prediction sets (RAPS) algorithm introduced by Angelopoulos et al., which produced

smaller prediction sets than APS on ImageNet without sacrificing coverage [1]. How-

ever, we chose to use APS for two reasons: simplicity and widespread adoption. APS

requires minimal finetuning, with only one hyperparameter: the size of the calibration

set. RAPS, on the other hand, requires finetuning two additional hyperparameters

in order to achieve smaller prediction sets than APS [1]. Moreover, other confor-

mal predictors, including RAPS [1], are built on the APS algorithm [11, 45]. These

predictors would also benefit from improvements to the performance of APS.

We borrow terminology and notation from Angelopoulos et al. [1, 2]. Formally,

there are three inputs to the APS algorithm:

• A pre-trained black-box classifier 𝑓 : 𝑋 → [0, 1]𝐾 that maps inputs to a vector of

class probabilities, where 𝑋 is the input domain and 𝐾 is the number of classes.
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(Note: while APS can be applied to regression problems with continuous output,

we focus on discrete classification.)

• A user-specified error rate 𝛼 ∈ [0, 1] that defines the coverage guarantee, which

ensures that the correct class exists in the outputted prediction set with prob-

ability 1− 𝛼.

• A calibration set 𝐶 of 𝑛𝐶 held-out inputs 𝑋𝐶 = 𝑥1, . . . , 𝑥𝑛 and their associated

labels 𝑌𝐶 = 𝑦1, . . . , 𝑦𝑛, where 𝑦𝑖 ∈ 1, ..., 𝐾. We assume this set is independent

of and identically distributed with respect to data drawn from the the train and

test domain.

The APS procedure improves upon conformal prediction. In addition to main-

taining coverage guarantee, APS enforces that prediction set sizes reveal information

about instance-wise model uncertainty. The adaptiveness of prediction sets is not ex-

plicitly guaranteed with other conformal predictors. To achieve adaptive prediction

sets, APS operates in the following manner. First, the classifier is used to obtain

class probabilities across all C classes for each sample in the calibration set. Next,

a score function is defined and applied to each sample of the calibration set. The

score function can be any function that ranks inputs from lowest to highest magni-

tude of model error (i.e., larger scores encode worse agreement between an input x

and a label y). In our work, we use the score function 𝑠(𝑥, 𝑦) =
∑︀𝑘

𝑗=1 𝑓(𝑥)𝜋𝑗(𝑥), where

𝑦 = 𝜋𝑘(𝑥) and 𝑝𝑖𝑘(𝑥) is the permutation of 1, ..., 𝐾 that sorts the class probabilities in

descending order. In other words, for each sample, the score is the minimum running

sum of class probabilities sorted in descending order that includes the true label of

the sample. To concretize our explanation, we will use a running example in which

we apply a classifier to an input, and it outputs the probability that the input is in

one of three classes (i.e., 𝐾 = 3). Imagine our input 𝑥𝑖 has a true label 𝑦𝑖 = 3 and the

classifier outputs probabilities [0.25, 0.4, 0.35] corresponding to classes [1, 2, 3]. Sorted

in descending order, the class probabilities are [0.4, 0.35, 0.25] and correspond to per-

mutation 𝜋𝑘(𝑥𝑖) = [2, 3, 1]. We sum the class probabilities up to and including the

true class 3 to obtain the score 𝑠(𝑥𝑖, 𝑦𝑖) = 0.75.
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Once the score of each calibration sample is calculated, we find the (𝑛𝐶+1)(1−𝛼)
𝑛𝐶

quantile 𝑞. Here, 𝑞 is roughly the (1− 𝛼) quantile of the scores (with a small adjust-

ment of (𝑛𝐶+1)
𝑛𝐶

to account for the sample size of the calibration set). In other words,

𝛼 of the scores lie above 𝑞.

The quantile 𝑞 is then used to generate prediction sets at test-time. Given a

test set 𝑇 of 𝑛𝑇 held-out inputs 𝑋𝑇 and associated labels 𝑌𝑇 = 𝑦1, . . . , 𝑦𝑡 where

𝑦𝑖 ∈ 1, ..., 𝐾, we apply 𝑓 to 𝑋𝑇 and obtain class probabilities for each sample. For

each sample, we again sort the class probabilities in descending order and calculate

the running sum. Each class whose probability is included in the greatest running sum

less than quantile 𝑞 is included as part of the output prediction set for the test sample.

Returning to our earlier example of a three-class setting, imagine we determined 𝑞

to be 0.85 at calibration and we have a test sample 𝑥𝑗 for which classifier 𝑓 returns

class probabilities of [0.25, 0.4, 0.35] for classes 1, 2, and 3 respectively. Sorted in

descending order, the class probabilities [0.4, 0.35, 0.25] correspond to a running sum

vector of [0.4, 0.75, 1.0] and a 𝜋𝑘(𝑥𝑖) = [2, 3, 1]. We find the greatest running sum less

than or equal to quantile 𝑞 to be 0.75, and thus include only classes 2 and 3 in our

prediction set for sample 𝑥𝑗. Following this procedure, the prediction sets created

by APS achieve an average coverage that maintains the promised coverage guarantee

while communicating instance-wide uncertainty via size.

In our work, we use a variation of the APS procedure: randomized APS. Random-

ized APS achieves smaller prediction sets than those generated by the APS procedure

by adjusting calibration sample scores with randomization. For each sample, we be-

gin by sorting the class probabilities and calculating the running sum. If we were to

follow the APS calibration procedure without randomization, the score for a calibra-

tion sample is the minimum running sum that includes the true label of the sample.

With randomization, however, we set the score to be a random value between 𝑎 and

𝑏. 𝑎 is the maximum running sum excluding the true class (or 0, if the model cor-

rectly classified the calibration sample) and 𝑏 is the minimum running sum including

the true class. Recalling our three-class setting at calibration, classifier 𝑓 outputted

class probabilities [0.25, 0.4, 0.35] corresponding to classes [1, 2, 3] for our calibration
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sample 𝑥𝑖 belonging to class 3. Sorted in descending order, the class probabilities

[0.4, 0.35, 0.25] corresponded to permutation 𝜋𝑘(𝑥𝑖) = [2, 3, 1]. As in APS, we find the

cumulative sum vector of [0.4, 0.75, 1.0]. Here, randomized APS deviates from APS.

Whereas APS defined the score 𝑠(𝑥𝑖, 𝑦𝑖) to be 0.75 (the minimum cumulative sum of

sorted class probabilities that includes the true class), randomized APS defines the

score to be a random value between 0.4 (the maximum cumulative sum of sorted class

probabilities up until the true class) and 0.75. Empirically, research has found that

introducing randomization in this way on ImageNet produces dramatically smaller

prediction sets while maintaining the coverage guarantee [1, 28].

APS and Randomized APS include a flag for controlling whether or not the algo-

rithm is allowed to create empty prediction sets. We evaluate the effect of allowing

and not allowing empty prediction sets in Section 4.1

3.2 Test-Time Data Augmentation

In the following experiments, we investigate the effects of data augmentation at each

stage of the (randomized) APS conformal prediction pipeline: calibration and predic-

tion set formation. We denote data augmentation at calibration as a form of test-time

augmentation because the augmentation occurs after a model has been trained and

made its predictions. We add two inputs to the conformal prediction pipeline:

• Augmentation policy 𝐴 which consists of 𝑀 augmentation functions 𝑎𝑚 : 𝑋 →

𝑋, and always includes an identity transform. As a result, augmentation policy

𝐴(𝑥𝑖) maps sample 𝑥𝑖 to a set of inputs: the original image and 𝑎𝑚(𝑥𝑖) for each

of the remaining 𝑀 − 1 augmentations.

• Aggregation function 𝑔 which maps a set of prediction sets to a single prediction

set.

We consider five plausible test-time-augmentation-enhanced conformal prediction

(TTA-CP) methods. We investigate the impact of data augmentation at each stage

alone, and then in combination.
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• TTA-Cal: In TTA-Cal, we augment only the calibration set 𝐶. We apply

augmentation policy 𝐴, consisting of 𝑀 augmentation functions, to each of the

𝑛𝐶 samples in 𝐶, obtaining a new set 𝐶 ′ of 𝑀𝑛 samples. We use 𝐶 ′ as the new

calibration set for determining quantile threshold 𝑞 in the conformal prediction

pipeline. The test set remains unaugmented.

• TTA-Set-Intersection: In TTA-Set-Intersection, we augment only the test

set 𝑇 . We used the unaugmented calibration set 𝐶 to determine the quantile

threshold 𝑞. We apply augmentation policy 𝐴, consisting of 𝑀 augmentation

functions, to each of the 𝑛𝑇 samples in 𝑇 , such that each sample in 𝑋𝑇 is now

mapped to 𝑀 augmented samples. An intermediate prediction set is created

for each of the 𝑀𝑡 samples in T’. For TTA-Set-Intersection, we define the ag-

gregation function 𝑔 to be the set intersection of the M intermediate prediction

sets created for each original test sample, and apply 𝑔 to obtain our final 𝑛𝑇

prediction sets.

• TTA-Set-Majority: In TTA-Set-Majority, we again augment only the test set

𝑇 . We follow the same procedure as outlined in TTA-Set-Intersection, except

that we define aggregation function 𝑔 to contain only classes 1, . . . , 𝐾 that

appear in more than half of the intermediate prediction sets.

• TTA-Cal-Set-Intersection: In TTA-Cal-Set-Intersection, both the calibra-

tion and test sets are augmented. We generate an augmented calibration set 𝐶 ′

from applying augmentation policy 𝐴, to each sample in 𝐶 and determine the

quantile threshold 𝑞 from 𝐶 ′. We then use 𝑞 to form intermediate prediction

sets on each of the samples in the augmented prediction set 𝑇 ′, and form the

final prediction sets by applying set intersection as defined by 𝑔.

• TTA-Cal-Set-Majority: In TTA-Cal-Set-Majority, both the calibration and

test sets are augmented. We follow the same procedure as defined in TTA-Cal-

Set-Intersection, except that we define 𝑔 to aggregate the intermediate predic-

tion sets by applying the set majority procedure outlined in TTA-Set-Majority.
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The augmentation policies A we apply consist of a subset of augmentations seen

at train-time. Of course, this augmentation policy is not the only policy that could

be considered. We leave this exploration to future work, and mean our augmentation

policy to represent the salient case of augmentation policies drawn from train-time

augmentations (as outlined in Section 3.3.2).

We compare the performance achieved by these TTA-CP methods against those

of the standard and randomized APS procedures, which we designate as Vanilla-CP

and Randomized-Vanilla-CP.

3.3 Experimental Setup

We conduct three experiments to understand how test-time augmentation affects the

performance of conformal prediction. First, we compare the five TTA-CP methods

on achieved coverage and average prediction set size, the two primary metrics for

conformal prediction performance. We describe these results in Chapter 4. In our

second experiment, we disaggregate these results to be class-specific, analyzing how

TTA-CP methods affect performance on underrepresented classes. The findings of

this experiment are presented in Chapter 5. Finally, we narrow in on TTA-Cal in

Chapter 6 and explore its potential in improving conformal prediction in contexts

with limited labeled data available for calibration.

3.3.1 Datasets

We report our findings on two datasets: ImageNet and Fitzpatrick 17k. We chose

these two datasets for their differences in size, class balance, and difficulty.

The ImageNet dataset, a widely-used dataset for image classification in computer

vision, consists of over 1.2 million training images and 50,000 validation images across

1000 classes. Unlike the training set, the validation set is balanced, with 50 images

per class. We reserve 50% of the validation set (25,000 images) for calibration, and

generate prediction sets on the other half.

The Fitzpatrick 17k dataset is a dermatology dataset put forth by Groh. et al.
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[12]. Each of the 16,577 clinical images is annotated for one of 114 dermatological

conditions. These 114 labels are part of a hierarchy of skin conditions, which groups

them into 9 medium-level labels and 3 high-level labels. Groh et. al. annotated each

image with a score from the Fitzpatrick six-point scale [12], which is a widely-used

proxy for skin tone. The dataset is imbalanced at the class-level and skin-tone-level.

We chose to focus on the nine-class level of classification. With the three-class level

of classification, prediction sets would contain at most 3 classes, limiting our study of

the adaptivity and reduction of prediction set sizes. On the other hand, the 114-class

level of classification has few examples per class and low accuracy with state-of-the-

art models [12], limiting our ability to test for sensitivity to calibration set size in

Chapter 6.

For the nine-way classification problem, the training data is skewed towards the

“inflammatory” class, as shown in Figure 3-1. We use a common resampling technique

of removing the majority class for improving classification accuracy among minority

classes to mitigate against potential prediction bias [39, 17, 16, 8]. After removing

images labeled “inflammatory” from the Fitzpatrick dataset, we reduce the task to

an eight-way classification problem. We subsequently refer to this dataset as Fitz-

patrick 17k-8. We reserved 10% of the dataset for testing, of which 50% was used for

calibration and 50% for evaluating performance.

3.3.2 Model Architecture and Performance

We use a ResNet-152 classifier when predicting on the ImageNet dataset and a VGG-

16 classifier when predicting on the Fitzpatrick 17k-8 dataset. We normalize images

prior to training and inference, in line with past work.

In all ImageNet experiments, we use the PyTorch ResNet-152 classifier pretrained

on ImageNet. This classifier applies random crop, random horizontal flip, and resize

augmentations at training time, and achieves a top-1 classification accuracy of 82.28%

on the validation set.

For Fitzpatrick 17k-8 experiments, we trained our own VGG-16 classifier to pre-

dict one of the eight classes. We used a 60/20/20 split of the dataset for training,
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Figure 3-1: Distribution of observations across nine classes in the Fitzpatrick 17k
dataset created by Groh. et al. [12]
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validation, and testing, and applied five augmentations at training time: color jitter,

random crop, random rotation, random horizontal flip, and center crop augmenta-

tions. The classifier achieves a top-1 accuracy of 56.06% on the training set and

48.06% on the test set.

We chose random crop and horizontal flip–the intersection of train-time augmen-

tations used by both classifiers–in addition to the identity augmentation function to

form our augmentation policy.
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Chapter 4

Impact of TTA-CP on Coverage and

Prediction Set Size

In this chapter, we present our findings on how TTA-CP methods compare to existing

approaches in conformal prediction.

4.1 Achieved vs. Theoretical Coverage

We begin by examining the effect of test-time augmentation on the primary objective

of conformal prediction: the probability that the true label appears in the outputted

prediction set. It is important to note, however, that a trade-off can occur between

maintaining the coverage guarantee and reducing prediction set size. We explore this

tradeoff in Section 4.2.

In Figure 4-1, we compare the coverage achieved by the five TTA-CP methods

proposed in Chapter 3 (TTA-Cal, TTA-Set-Intersection, TTA-Set-Majority, TTA-

Cal-Set-Intersection, and TTA-Cal-Set-Majority) with the theoretical coverage guar-

anteed for both ImageNet and Fitzpatrick 17k-8. Augmentation at calibration time

alone (TTA-Cal, in blue) achieves the same coverage as that of Vanilla-CP for all levels

of 𝛼. Coverage achieved when augmenting at the prediction set creation phase, how-

ever, is more complex. TTA-Set-Majority (in black) matches the coverage achieved

by Vanilla-CP. Meanwhile, TTA-Set-Intersection (in green) causes a drop in achieved
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Figure 4-1: Augmentation at calibration alone matches Vanilla-CP in
achieved coverage. The performance of augmentation at prediction set
creation (with and without augmentation at calibration) depends on the
aggregation function used. Achieved vs. theoretical coverage is compared across
ImageNet and Fitzpatrick17k-8 datasets for all TTA-CP methods and Vanilla-CP.
Achieved coverage results are averaged across 10 runs. Randomization is applied to
all TTA-CP methods and to Vanilla-CP (in yellow). TTA-Cal (in blue), TTA-Set-
Majority (in black), and TTA-Cal-Set-Majority (in red) trendlines lie under Vanilla-
CP line for both datasets.
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coverage from Vanilla-CP. These results indicate that the dominant factor deter-

mining achieved coverage of an augmented conformal predictor are the aggregation

strategies used during prediction set creation. TTA-Set-Intersection uses a stricter

aggregation function 𝑔 than TTA-Set-Majority. For the true class to appear in the

prediction set outputted by TTA-Set-Intersection, the class must appear in every pre-

diction set outputted after applying the augmentation policy. TTA-Set-Intersection

achieves lower coverage when there is disagreement among the prediction sets created

for each augmented sample than when there is strong agreement.

The augmentation policy is one factor contributing to the degree of agreement

across augmented prediction sets. As seen in Figure 4-2, TTA-Set-Intersection pro-

duces an achieved coverage that approximates that of Vanilla-CP and TTA-Set-

Majority with augmentation policy of horizontal flip and random crop. These two

augmentations are seen at train-time for ImageNet. When we switch the augmenta-

tion policy to instead include augmentations not seen in training for ImageNet (i.e.

color jitter and random rotation), TTA-Set-Intersection produces a coverage much

worse than that of TTA-Set-Majority. Intuitively, augmentations seen in training

time will create more overlapping prediction sets than those not seen in training.

Applying test-time augmentation to conformal prediction at prediction set cre-

ation has a larger impact on coverage than at calibration. In Figure 4-1, TTA-Cal-

Set-Majority (in red) achieves the same coverage as TTA-Set-Majority, and TTA-Cal-

Set-Intersection (in purple) performs similarly to TTA-Set-Intersection. Introduction

of augmentation during calibration time has only a marginal effect on improving

achieved coverage. The negative effects of TTA-Set-Intersection, however, drive TTA-

Cal-Set-Intersection to achieve lower coverage than Vanilla-CP.

The relative effects of TTA-CP are consistent across both ImageNet and Fitz-

patrick 17k-8 (Figure 4-1). However, it might be surprising that with Fitzpatrick

17k-8, all methods–including Randomized-Vanilla-CP–fail to achieve the coverage

guarantee at 𝛼 <= 0.6. We explore this behavior in the following section.
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Figure 4-2: TTA-Set-Intersection is more affected by augmentation policy
that TTA-Set-Majority, even producing coverage below guaranteed levels
when augmentation policy uses augmentations not see at train time. Com-
parison of how achieved coverage (with respect to theoretical coverage) changes for
TTA-Set-Intersection and TTA-Set-Majority between augmentations seen and not-
seen in training. Coverage is reported for ImageNet prediction sets. Achieved coverage
results are averaged across 10 runs. Randomization is applied to TTA-Set-Intersection
and TTA-Set-Majority.
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Randomization and Empty Prediction Sets in APS. Performing conformal

prediction relies on many choices that can have a large impact on the achieved cov-

erage and mean prediction set size of a conformal predictor. Two of these choices

relate to the existence of empty sets (allowed vs. not allowed) and the choice of

threshold (randomized vs. non-randomized). Using Fitzpatrick 17k-8, we analyze the

decision to allow empty prediction sets and use randomization. We report results on

Fitzpatrick 17k-8, since ImageNet prediction sets become prohibitively large without

randomization.

Prior work in conformal prediction [1] allows empty prediction sets to ensure

an exact coverage guarantee. However, in a machine learning classification setting,

empty prediction sets artificially handicap conformal predictors when the coverage

guarantee is less than the model accuracy. If a classifier, for example, has a top-1

accuracy of 95% but the desired theoretical coverage is 49% (i.e., 𝛼 = 0.1), empty

prediction sets are needed to achieve an achieved coverage of exactly 90%, capping

the potential achieved coverage. We empirically show this effect on achieved coverage

in Figure 4-3, where prohibiting empty prediction sets improves achieved coverage for

all levels of theoretical coverage on Fitzpatrick 17k-8. For this reason, it is almost

always preferable to output sets of at least size one, including the class with the

highest predicted probability in every outputted set. In all subsequent experiments,

we prohibit the creation of empty prediction sets, ensuring that prediction sets.

Angelopoulos et al. [1] use randomization to achieve, on average, smaller predic-

tion sets with ImageNet while maintaining the coverage guarantee. As described in

Section 3.1, randomization is the adjustment of calibration scores to be a random

value between the running sum of sorted class probabilities before including the true

label and the running sum of sorted class probabilities after including the true label.

We find, however, that randomization breaks the coverage guarantee with Fitzpatrick

17k-8. As shown in Figure 4-3, randomization worsens achieved coverage for all lev-

els of theoretical coverage. This drop off can largely be attributed to examples for

which the classifier is incorrect. By definition, when a classifier correctly predicts

the class for a test sample, the prediction/true class will always be included in the
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prediction set. A drop off in coverage with randomization, therefore, must stem from

the creation of prediction sets in which the classifier incorrectly predicts the class.

Let’s illustrate this by revisiting the example presented in Section 3.1. We work

in a three-class setting (i.e., 𝐾 = 3) in which the classifier 𝑓 is applied to a calibra-

tion sample 𝑥𝑖 and outputs class probabilities [0.25, 0.4, 0.35] corresponding to classes

[1, 2, 3]. Sorted in descending order, the class probabilities are [0.4, 0.35, 0.25] and

the cumulative sum array is [0.4, 0.75, 1.0], corresponding to permutation 𝜋𝑘(𝑥𝑖) =

[2, 3, 1]. Suppose the true class for sample 𝑥𝑖 is 𝑦𝑖 = 2. Here, the classifier correctly

classifies sample 𝑥𝑖, and randomized APS will set the score 𝑠(𝑥𝑖, 𝑦𝑖) to be a random

value between 0 and 0.4, the minimum cumulative sum of class probabilities in de-

scending order that includes the true class. Now suppose the true class for sample 𝑥𝑖

is not 𝑦𝑖 = 2, but 𝑦𝑖 = 3. In this case, classifier incorrectly classifies sample 𝑥𝑖. With

randomized APS, the score 𝑠(𝑥𝑖, 𝑦𝑖) is defined to be a random value between 0.4, the

maximum cumulative sum of descending class probabilities excluding the true label,

and 0.75, the minimum cumulative sum of descending class probabilities including the

true label. With a sufficiently-accurate classifier, this process of randomization would

reduce scores of calibration samples, consequently lowering the quantile threshold and

reducing the size of prediction sets at test time while maintaining coverage guarantee.

Angelopoulos et al. [1] makes this observation with ImageNet. We do not, however,

observe this phenomenon with Fitzpatrick 17k-8.

We hypothesize that the poor performance of the Fitzpatrick 17k-8 classifier con-

tributes to the dropoff in coverage with randomization that we do not observe with

ImageNet. The Fitzpatrick 17k-8 classifier (with top-1 accuracy of 48.06% and top-2

accuracy of 63.13% on the test set) is more frequently incorrect than the ImageNet

classifier (with top-1 accuracy of 82.28% and top-2 accuracy of 91.03% on the valida-

tion set). We conclude that randomization is not wise with classifiers that achieve low

accuracy, even if those classifiers perform significantly better than random classifiers.

For this reason, we switch randomization off for all Fitzpatrick 17k-8 experiments.

We keep randomization on for ImageNet, since prediction sets become prohibitively

large without randomization.
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Figure 4-3: Using randomization and allowing empty prediction sets con-
sistently worsen achieved coverage on Fitzpatrick 17k-8 for all methods.
Effects of applying randomization and accommodating empty prediction sets on
achieved coverage for Vanilla-CP, TTA-Cal, and TTA-Set-Intersection methods shown
for Fitpatrick 17k-8. Theoretical coverage is defined as 1 − 𝛼. Achieved coverage
results are averaged across 10 runs. Augmentations used in TTA-Cal and TTA-Set-
Intersection are horizontal flip and random crop.
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4.2 Prediction Set Size vs. Achieved Coverage

Having examined how the proposed TTA-CP methods affect achieved coverage, we

now study the tradeoff between achieved coverage and prediction set size. We compare

this tradeoff among Vanilla-CP, TTA-Cal, and TTA-Set-Intersection in ImageNet

(Figure 4-4) and Fitzpatrick 17k-8 (Figure 4-5).

For ImageNet, we observe that TTA-Cal (in blue) falls roughly along the Vanilla-

CP trend (in yellow) (Figure 4-4). This indicates that the tradeoff in achieved cover-

age and prediction set size for TTA-Cal is the same as that of Vanilla-CP.

For TTA-Set-Intersection, the tradeoff in achieved coverage and prediction set size

relative to that of Vanilla-CP depends on 𝛼. At lower 𝛼 values (i.e. higher theoret-

ical coverage), TTA-Set-Intersection (in green) lies along the Vanilla-CP trendline.

At higher 𝛼 values (i.e. lower theoretical coverage), however, TTA-Set-Intersection

produces lower actual coverage than Vanilla-CP when conditioned on prediction set

size.

For Fitzpatrick 17k-8 (Figure 4-5), TTA-Cal exhibits a different tradeoff than

Vanilla-CP, as demonstrated by a slight left translation of TTA-Cal with respect to

Vanilla-CP (Figure 4-5). This indicates that, conditional on prediction set size, TTA-

Cal achieves a higher coverage than Vanilla-CP. We hypothesize this phenomenon

occurs because calibration plays a greater role in conformal prediction on Fitzpatrick

17k-8 than it does in ImageNet. There are many factors that could increase the

importance of calibration for Fitzpatrick 17k-8 conformal prediction. These two tasks

vary in classification difficulty, randomization, and number of samples. In particular,

Fitzpatrick 17k-8 has a smaller calibration set and a worse classifier than ImageNet.

These two factors could contribute to the importance of calibration in conformal

prediction, explaining why TTA-Cal improves the tradeoff between achieved coverage

and prediction set size compared to Vanilla-CP.

On the other hand, it is hard to reason if TTA-Set-Intersection improves the

tradeoff of achieved coverage and prediction set size. TTA-Set-Intersection (in green)

departs from the tradeoff of Vanilla-CP. We again observe a translation to the left
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of the Vanilla-CP tradeoff, indicating that, conditional on prediction set size, TTA-

Set-Intersection achieves a higher coverage. We also note, however, that TTA-Set-

Intersection produces an overall worse coverage than Vanilla-CP.

4.3 Summary

In this chapter, we determine that TTA-Cal, TTA-Set-Majority, and TTA-Cal-Set-

Majority maintain the coverage guarantee, while the achieved coverage produced by

TTA-Set-Intersection is dependent on augmentation policy. TTA-Set-Intersection

can produce a better tradeoff between set size and achieved coverage, but TTA-

Cal produces negligible differences across both datasets. There are a number of

reasons this could be true - the datasets, models, or augmentations we look at -

and future work should examine how our results depend on these factors. We build

intuition as to why classifier performance causes randomization to worsen coverage

for Fitzpatrick 17k-8, and provide evidence supporting the theoretical expectation

that allowing empty prediction sets consistently worsens achieved coverage.
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Figure 4-4: For ImageNet, TTA-Cal preserves the tradeoff made by
Vanilla-CP between achieved coverage and prediction set size. TTA-Set-
Intesection does the same at low 𝑎𝑙𝑝ℎ𝑎 (i.e. high theoretical coverage),
but produces worse coverage conditional on prediction set size at higher 𝛼
Achieved coverage results were averaged across 10 runs. Average prediction set size
is calculated as the median of mean prediction set sizes for 10 runs. Augmentations
used in TTA-Cal and TTA-Set-Intersection are horizontal flip and random crop. 𝛼
values plotted range from 0.05 to 0.95, at increments of 0.05.
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Figure 4-5: For Fitzpatrick 17k-8, TTA-Cal produces a slightly more favor-
able tradeoff than Vanilla-CP between achieved coverage and prediction
set size. Conditional on prediction set size, TTA-Set-Intersection achieves
higher coverage than Vanilla-CP. Achieved coverage results were averaged across
10 runs. Average prediction set size is calculated as the median of mean prediction set
sizes for 10 runs. Augmentations used in TTA-Cal and TTA-Set-Intersection are hor-
izontal flip and random crop. 𝛼 values plotted range from 0.05 to 0.95, at increments
of 0.05.
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Chapter 5

Class-Level Effects of TTA-CP on

Coverage and Prediction Set Size

In this chapter, we analyze class-specific performance of each conformal prediction

method we study. We focus on the Fitzpatrick 17k-8 dataset to understand how class

imbalance and class accuracy affects the performance of TTA-CP methods.

5.1 Fitzpatrick 17k-8 Class-Level Analysis

For Fitzpatrick 17k-8, we consider two class-related characteristics: prevalence in

training data and model accuracy. In Chapter 3, we described the class imbalance

found in the original Fitzpatrick dataset [12], motivating our decision to remove the

"inflammatory" class to create the Fitzpatrick 17k-8 dataset. Even without the "in-

flammatory" class, Fitzpatrick 17k-8 demonstrates class imbalance (Figure 5-1). The

classifier’s performance on each class also differs greatly – from 81.08% on malignant

cutaneous lymphoma to 31.46% on benign dermal (Table 5.1).

We find no notable difference in method performance trends when we break per-

formance down by class, as shown in Figure 5-2. We hypothesize that the classifier’s

performance on augmented images is why we observe similarity between how TTA-

CP methods affect prediction set size at a class-level and at the aggregate-level.

Performance of TTA-CP methods depends primarily on the classifier’s accuracy on
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Figure 5-1: Fitzpatrick 17k-8 dataset is imbalanced across the eight rep-
resented classes. Count of samples across each of the eight classes in the entire
Fitzpatrick 17k-8 dataset is shown in descending order. 60% of the samples were
used for the train set, 20% for the validation set, and 20% for the test set.
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Table 5.1: Fitzpatrick 17k-8 classifier achieves different class-specific accu-
racy across the eight classes. Class-specific model accuracy ranges from 31.46%
(benign dermal) to 81.08% (malignant cutaneous lymphoma).

label accuracy
malignant cutaneous lymphoma 0.810811
benign melanocyte 0.595745
malignant epidermal 0.566667
malignant dermal 0.516129
malignant melanoma 0.504348
genodermatoses 0.481172
benign epidermal 0.424731
benign dermal 0.314554
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Figure 5-2: TTA-Set-Intersection reduces prediction set size uniformly
across classes, regardless of model class accuracy. TTA-Cal produces a
marginal reduction in prediction set size across all classes. Average predic-
tion set size calculated over 10 runs.
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augmented images.

5.2 Summary

We find that the performance of TTA-CP methods at the class-level and dataset-

level are consistent on the Fitzpatrick 17k-8 dataset. We recommend replicating this

study on datasets with better-performing classifiers, such as ImageNet, to determine

whether this pattern is an artifact of classifier accuracy.

49



50



Chapter 6

Applications of TTA-Cal in

Decreasing Variance of Achieved

Coverage

In this chapter, we investigate the performance of TTA-Cal in the presence of small

calibration sets, which are known to increase the variance of coverage achieved by

conformal prediction [2].

As defined in conformal prediction, the coverage guarantee ensures that the true

class appears in the prediction set for a particular example with probability 1 − 𝛼.

This guarantee is conditional on the calibration set. In other words, if we were to run

conformal prediction multiple times using a different calibration set (drawn from the

same distribution) each time, the coverage achieved on the same test sets for each

run would on average satisfy the coverage guarantee. If 𝛼 = 0.1, two different runs

might yield a coverage of 0.88 and a coverage of 0.92. On average, the runs meet the

coverage guarantee, but produce different achieved coverage values while doing so.

This variance in achieved coverage results from different thresholds being calculated

from the calibration sets. Since the threshold used for creating prediction sets at test

time relies on the samples seen at calibration, calibration sets composed of different

samples will result in different threshold values.

The size of a calibration set will affect variance of achieved coverage, since we use
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the finite calibration set to approximate a "true" threshold 𝑞 for a particular 𝛼. For

this reason, Angelopoulos et al. [2] investigate how calibration set size affects stability

of achieved coverage and conclude that a calibration set of size 1000 is sufficient for

most purposes. In our work, however, the TTA-CP method of TTA-Cal increases the

size of the calibration set by treating each augmented version of an original calibration

sample as a new calibration sample. Hence, we set out to understand if TTA-Cal can

increase stability (i.e., reduce variance) in achieved coverage across subsamples of the

same original calibration set.

In Chapters 4 and 5, we split the original test set 50/50 for calibration/test.

To determine how modifications to the calibration set size affect achieved coverage

on the test set, we resampled (with replacement) the calibration set of one 50/50

calibration/test split to create smaller calibration sets. We perform this resampling on

on both ImageNet and Fitzpatrick 17k-8. For ImageNet, we examined calibration sets

of size 5,000 and 10,000. Since the ImageNet validation set is uniformly distributed

across 1,000 classes, this translates into approximately 5 calibration samples per class

and 10 calibration samples per class, respectively. For Fitzpatrick 17k-8, we examined

calibration sets of size 20, 50, 100, and 500. Since 𝛼 ranges from 0 to 1, we select a

low, intermediary, and high value of 𝛼 (0.1, 0.5, and 0.9, respectively) and compare

the mean and variance in achieved coverage by TTA-Cal and Vanilla-CP under these

settings.

First, we examine ImageNet. Table 6.1 compares the mean and variance of cover-

age achieved by TTA-Cal and Vanilla-CP on ImageNet across 10 subsamples. We find

that TTA-Cal causes a statistically significant decrease in achieved coverage for all

considered calibration set sizes for 𝛼 values of 0.1, 0.3, 0.5, and 0.7. At 𝛼 = 0.9 (i.e.

coverage guarantee is 0.1), however, TTA-Cal and Vanilla-CP consistently achieve the

same coverage regardless of calibration set size. We also observe that on ImageNet,

TTA-Cal produces a statistically significant reduction in variance only when 𝛼 = 0.5

and the calibration set is of size 5000. At all other values of 𝛼 and calibration set

sizes considered for ImageNet, there is no statistically significant change in variance

of achieved coverage.
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Table 6.1: On ImageNet, relative to Vanilla-CP TTA-Cal produces a statis-
tically significant reduction in achieved coverage for high levels of coverage
(i.e., 𝛼 < 0.9) across all calibration set sizes. For most combinations of cal-
ibration set size and 𝛼, TTA-Cal does not improve variance of achieved
coverage. 10 subsamples of the original calibration set are used to calculate mean
and standard deviation. Statistical significance was calculated using a pairwise t-test
for mean and Levnene’s test for variance.

calibration set size 5000.0 10000.0 Original
mean std mean std mean std

𝛼 method
0.1 TTA-Cal 0.907**** 0.001 0.907**** 0.001 0.907**** 0.001

Vanilla-CP 0.926 0.001 0.926 0.001 0.926 0.000
0.3 TTA-Cal 0.851**** 0.001 0.851**** 0.000 0.851**** 0.000

Vanilla-CP 0.868 0.001 0.867 0.001 0.867 0.000
0.5 TTA-Cal 0.832**** 0.000*** 0.832**** 0.000 0.832**** 0.000

Vanilla-CP 0.839 0.001 0.839 0.000 0.839 0.000
0.7 TTA-Cal 0.825**** 0.000 0.825**** 0.000 0.825**** 0.000

Vanilla-CP 0.827 0.000 0.827 0.000 0.827 0.000
0.9 TTA-Cal 0.825 0.000 0.825 0.000 0.825 0.000

Vanilla-CP 0.825 0.000 0.825 0.000 0.825 0.000

Table 6.2: On Fitzpatrick 17k-8, relative to Vanilla-CP TTA-Cal produces
a statistically significant reduction in achieved coverage for high levels
of coverage (i.e., 𝛼 < 0.7) across all calibration set sizes. For non-extreme
values of 𝛼 (i.e. 0.3, 0.5 and 0.7), TTA-Cal produces statistically-significant
decreases in achieved coverage variance across all calibraion set sizes. 100
subsamples of the original calibration set are used to calculate mean and standard
deviation. Statistical significance was calculated using a pairwise t-test for mean and
Levnene’s test for variance.

calibration set size 20.0 50.0 100.0 500.0 Original
mean std mean std mean std mean std mean std

𝛼 method
0.1 TTA-Cal 0.933**** 0.041* 0.927**** 0.030 0.925**** 0.022 0.924**** 0.010* 0.900 0.0

Vanilla-CP 0.965 0.031 0.942 0.027 0.939 0.020 0.933 0.009 0.916 0.0
0.3 TTA-Cal 0.757**** 0.072* 0.739**** 0.046* 0.738**** 0.032 0.736**** 0.018* 0.719 0.0

Vanilla-CP 0.812 0.082 0.772 0.065 0.759 0.041 0.756 0.015 0.735 0.0
0.5 TTA-Cal 0.590**** 0.064* 0.575**** 0.042*** 0.568**** 0.027**** 0.563**** 0.013*** 0.566 0.0

Vanilla-CP 0.639 0.089 0.602 0.061 0.589 0.042 0.580 0.023 0.582 0.0
0.7 TTA-Cal 0.463**** 0.039**** 0.450*** 0.021**** 0.446 0.011*** 0.444 0.003*** 0.443 0.0

Vanilla-CP 0.497 0.069 0.463 0.041 0.448 0.023 0.444 0.005 0.443 0.0
0.9 TTA-Cal 0.395**** 0.010**** 0.391*** 0.001** 0.391* 0.001* 0.390 0.001 0.385 0.0

Vanilla-CP 0.409 0.025 0.394 0.008 0.391 0.002 0.390 0.001 0.385 0.0
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We conduct the same comparison for Fitzpatrick 17k-8. Table 6.2 compares the

mean and variance of coverage achieved by TTA-Cal and Vanilla-CP on Fitzpatrick

17k-8. We find that, for 𝛼 values of 0.3, 0.5, and 0.9, TTA-Cal frequently reduces

(or matches) the variance in achieved coverage produced by Vanilla-CP. This trend

is consistent across most calibration set sizes considered for Fitzpatrick 17k-8.

For a constant calibration set size, Vanilla-CP yields the lowest variance in achieved

coverage at extreme values of 𝛼 (i.e., 0.1 and 0.9). Variance is highest at 𝛼 = 0.3 at

each calibration set size. Based on this observation, we hypothesize that TTA-Cal

produces the most extreme reductions in variance at intermediary levels of 𝛼. In-

tuitively, TTA-Cal will not produce significant changes to prediction sets (and thus,

to achieved coverage) at low or high values of 𝛼. For instance, when 𝛼 = 0.9, the

coverage guarantee of 0.1 yields small prediction sets, many of which will be of size 1

because of our decision to not allow empty prediction sets. With this naturally tighter

achieved coverage, there is little improvement that TTA-Cal can provide. However,

the reason behind the insignificant reduction in variance at 𝛼 = 0.1 is less clear.

Future work should examine the mechanisms affecting this observation.

We also find that the variance in achieved coverage is consistently higher for Fitz-

patrick 17k-8 compared to ImageNet. Several factors may contribute to this variance,

such as the larger calibration set sizes used for ImageNet; the smaller, more imbal-

anced nature of the Fitzpatrick 17k-8 dataset; and the use of randomization for Ima-

geNet (but not Fitzpatrick 17k-8). Since Fitzpatrick 17k-8 is small and imbalanced,

there are fewer representative samples per class in the calibration set. ImageNet

calibration sets, on the other hand, have 5 images per class in our smallest setting,

providing more information over which to form the quantile threshold used to create

prediction sets.

6.1 Summary

From these results, we conclude that, when the calibration set is small, TTA-Cal may

be useful in reducing the variance of achieved coverage at 𝛼 values between 0.1 (high
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coverage) and 0.9 (low coverage). We find that TTA-Cal provides stability while

still preserving the coverage guarantee, despite a statistically significant reduction

in achieved coverage. These findings imply that in settings where available data for

calibration is limited, TTA-Cal could be used to produce levels of coverage variance

closer to that produced by Vanilla-CP on larger calibration sets.
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Chapter 7

Discussion and Future Work

In this thesis, we presented five methods of test-time augmentation-enhanced con-

formal prediction (TTA-CP) and investigated their performance on two classification

tasks. In Chapter 4, we studied how test-time augmentation at the calibration and

prediction set creation stages of APS conformal prediction affect achieved coverage

and prediction set size. We found that there are many factors contributing to the per-

formance of TTA-CP, such as task difficulty, dataset size, and augmentation policy.

Since aggregate metrics can hide important class-specific behavior, we conducted a

class-specifc analysis of TTA-CP in Chapter 5. We found no notable differences from

the aggregate trends established in Chapter 4. In Chapter 6 of this work, we con-

sidered a different metric for conformal prediction performance: variance in achieved

coverage. We found that, at 𝛼 values between 0.1 (high coverage) and 0.9 (low cov-

erage) and with reduced calibration set sizes, augmentation at the calibration stage

(TTA-Cal) proves most useful in reducing the variance of achieved coverage. These

results hold implications for using conformal predictors on datasets where obtaining

a large calibration set is impossible.

Our learnings contribute to the conformal prediction field of research an under-

standing of how TTA might be used with CP and opens up avenues for future research.

In our work, we found preliminary results indicating augmentation policy design to

be a key factor in TTA-CP performance. A key decision is how to design a success-

ful test-time augmentation policy; how many augmentations do optimal policies use?
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How do the optimal augmentations relate to those used during training? Addition-

ally, future work should explore designing optimal aggregation functions for test-time

augmentation at the prediction set creation stage. Set-Intersection and Set-Majority,

the two aggregation functions we used, are strongly affected by augmentations that

are not label-preserving and create disagreement among prediction sets. An aggrega-

tion function that might mitigate this effect could be one that is learned and weighted

based on class invariances, as studied by Shanmugam et al. [30]. With these changes

to augmentation policy and aggregation function, the results may be different from

what we present in Chapters 5 and 6. It is also possible that varying the choice of

augmentation policy and aggregation function would reveal different behavior from

what we describe for class-specific performance and reduction in achieved coverage

variance.

Additional work includes exploring if other benefits from data augmentation trans-

late to TTA-CP. Research has shown TTA to be useful in natural language classifica-

tion too [21], and future work should consider how our results generalize to conformal

prediction tasks in that domain. Data augmentation at train time is known to im-

prove robustness in neural networks [26, 10, 36] and address covariate shift [20], an

area of active conformal prediction research.

While in our work we focus on using conformal prediction to perform classification

with certainty guarantees, conformal predictors have also been extended to other

tasks, such as quantile regression [27], outlier detection [6, 19, 14, 13], and risk control

metrics beyond accuracy [4, 3]. Future work includes the generalization of TTA-CP

methods to these conformal prediction variants.
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