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ABSTRACT 
 
Metal-coordination bonds have the capacity to reform after rupture, thereby enabling dynamic, 
tunable, and reversible (self-healing) mechanical properties. Several biological organisms, such 
as marine mussels (Mytilus) and marine worm jaws (Nereis virens), have been found to take 
advantage of these unique properties of metal-coordinated complexes to produce loadbearing 
materials with complex mechanical functions. Inspired by these biological materials, metal-
coordination bonds have been incorporated into synthetic materials to produce a range of 
mechanical properties. However, efforts in engineering such metal-coordinated materials have 
been highly empirical, limiting the full design potential of these bonds. Developing an 
understanding between the microscopic metal-coordination bond properties and resulting 
macroscopic mechanical properties of metal-coordinated materials would enable an a priori 
prediction for optimized utilization of coordination bonds to build materials with advanced 
mechanical functions.  
 
This dissertation systematically characterizes metal-coordinated polymers and proteins with 
the aim of developing a mechanistic understanding of the relationship between microscopic 
bond chemistry and resulting macroscopic dynamic mechanical properties. We begin with a 
well-studied model system using an idealized polymer network where individual metal-
coordination complexes control the macroscopic relaxation dynamics of the network. We use 
metadynamics simulations to show that the free energy landscape of metal-coordination 
bonds can be related to the macroscopic dynamic relaxation of these bonds in ideal polymer 
hydrogels as measured through experimental rheology. We then expand beyond single 
coordination complexes and use single molecule force spectroscopy to show that clusters of 
coordination bonds in model metal-coordinated protein dimers can rupture cooperatively, 
thereby synergistically increasing the rupture strength of the proteins. We resolve this rupture 
behavior mechanistically by using steered molecular dynamics simulations to show that metal-
coordination bond rupture is highly heterogenous and undergoes several rupture pathways, 
even with the same initial conditions. This indicates that metal-coordination bonds may have 
evolved in natural materials for primarily dissipative functions. 
 
The above insights are subsequently evaluated within the context of the Nvjp-1 protein, a 
major component of the Nereis worm jaw with high amounts of metal coordination. We find 
that increasing quantity of metal ions makes the protein more compact, whereas increasing the 
spatial distribution of metal ions is found to increase the protein toughness. We then briefly 
demonstrate how machine learning methods can be developed for similar systems to predict 
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materials properties. The methodology and insights developed in this thesis have important 
implications for understanding the molecular mechanisms of metal-coordination bond-based 
stabilization of proteins and polymers and the a priori design of new metal-coordinated 
materials with desired mechanical properties. 
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Thesis Supervisor: Niels Holten-Andersen 
Title: Associate Professor  
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CHAPTER 1 
 
 
INTRODUCTION—ENGINEERING MATERIALS, TRANSITION METAL 
IONS, AND THESIS OVERVIEW  
 
 
1.1 Engineering materials systems with control 
 
Biology has evolved over millennia to develop materials with remarkable mechanical 
properties. Human bone and deer antlers, just two of many examples, exhibit both high 
stiffness and high resistance to fracture, properties that are often traded off in synthetic 
materials.1,2 Inspired by such materials, scientists and engineers have sought to both uncover 
the wealth of mechanisms underpinning the properties of biological materials and build 
materials that mimic or surpass the properties demonstrated in biology. This rich relationship 
between engineering and biology is not limited to the disciplines of bioengineering or 
biomimicry; it permeates through engineering as a whole. One needs to look no further than 
the wing of an airplane or the porous design of a construction crane to find the vibrant dialogue 
between nature and engineering.3 
 
In large part due to such natural inspiration, the development of new materials technologies 
has skyrocketed in the past decades, revolutionizing industries such as energy, robotics, and 
plastics. New materials in these sectors have traversed the mechanical boundaries between 
strength, stiffness, and toughness, all while achieving the unique electrical or optical properties 
required to make these materials functional for human use, thereby enabling economic and 
technological progress. However, the rapid advancement of materials development has also 
come with a large cost. The fast rate of materials growth has been concomitant with the 
production of waste due to massive resource use and environmentally unfriendly practices. 
The development of materials engineering with a strong focus on sustainable practices is now 
the forefront of materials engineering.  
 
The sustainability of materials engineering can be addressed through several methods. These 
methods can be broadly divided into various stages of a material’s lifetime from sustainable 
sourcing and synthesis, to materials property development, to end-of-life recycling or reuse. 
For example, building materials with more abundant and sustainably harvested constituents 
could reduce the dependence on oil-based chemicals that have large environmental 
consequences. At the back-end, developing effective collection and processing techniques for 
recycling or reusing materials could drastically reduce the initial harvesting of virgin materials. 
The middle ground, between the birth and the rebirth of a material, requires developing 
materials that maintain their desired properties over an extended lifetime. Not only is this 
component critical to materials circularity, but also, this component can be entirely controlled 
by materials scientists and engineers, unlike the birth and rebirth processes that are heavily 
dependent on political or economic infrastructures. 
 
Increasing the lifetime of materials while maintaining their desired properties could address the 
waste or disposal of materials due to the degradation of the material itself or due to defects 
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that cause the material to break. In this thesis, we focus on the latter: improving the structural 
mechanical properties of materials so that they do not fracture and can thus have a longer 
usable period. Engineering materials with prolonged lifetimes through resistance to fracture 
requires harnessing the chemical properties of materials. The key question in the design of 
such materials is understanding how the properties at a microscale influence the macroscale. 
In other words, we are still learning how to control matter from the bottom-up: using chemistry 
to engineer materials with precision and control. This is the key question at the heart of 
materials design. This is the key question at the heart of this thesis.  
 
In order to address the need for harnessing chemistries for improved structural properties, this 
thesis focuses on a broadly emerging class of bioinspired chemistries—metal-coordination 
bonds. Metal-coordination bonds are noncovalent bonds between metal cations and organic 
ligands and have been found in several biological organisms to yield remarkable structural 
mechanical properties such as high toughness or self-healing, due to their capacity to break 
and reform. If metal-coordination bonds could be implemented in a similar manner into 
synthetic materials, we could imagine a future of materials that self-heal structural defects 
without external input and never fracture, dramatically reducing waste from damaged 
materials. Despite the increasing adoption of metal-coordination bonds for mechanical function 
in synthetic materials, most literature to date has been heavily empirical, limiting the full design 
potential of these bonds. The aim of this thesis is twofold. First, we investigate how the 
chemistry of metal-coordination bonds can control the macroscopic properties of metal-
coordinated polymers and proteins. Second, we translate this insight into clear design 
principles of how to use these bonds to achieve desired properties. Using computational and 
experimental approaches, we establish various design criteria to enable the a priori rational 
design of metal-coordinated materials for continued progress in sustainable materials 
development.   
 
1.2 Transition metal ions for tunable properties 

 
Transition metal ions are found in natural organisms, in large part owing to their unique ability 
to catalyze enzymatic processes (Box 1).4–6 Although this catalytic role of metal ions in biology 
has been extensively researched, evidence is accumulating that metal-coordination complexes 
also play a prominent role in determining the mechanical properties of biological materials.7–11 
Several organisms, such as marine mussels and marine worms, have been found to take 
advantage of metal-coordination bonds in the assembly of hierarchical material structures, 
resulting in an exceptional range of strength, elasticity, hardness and other mechanical 
properties.12–16 Two such properties afforded by metal coordination are high stiffness and high 
extensibility, resulting in high toughness.2,17–19 In synthetic materials, there is often a tradeoff 
between these properties.2 For example, increasing the number of crosslinks increases 
stiffness, but also decreases toughness by limiting extensibility.20 Conversely, in biological 
materials, dynamic metal-coordinate bonds contribute to stiffness by acting as additional 
crosslinking points, but can also break and reform over time to enable extensibility and energy 
dissipation.20 Therefore, mimicking natural metal-coordinate crosslinked molecular structures 
and learning from them could enable a wealth of new tough and stiff materials for use in impact 
resistance, self-healing or biomedical applications. 
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Metal ions coordinate with ligands to form metal-coordination bonds that involve the donation 
of two electrons from the ligand to the metal ion (Figure 1-1a). As a result, compared to 
traditional covalent bonds, these non-covalent bonds generally have increased kinetic lability, 
or capacity to break and reform, at the cost of decreased thermodynamic stability. The lability 
of each metal-coordinate bond can be quantified in terms of a bond dissociation rate—the 
frequency at which these bonds are likely to break—which is inversely related to bond 
dissociation time. When incorporated as a stress-bearing crosslink into a polymer network, 
these bonds enable unique dynamic mechanical properties because the repeated breaking and 
reforming of bonds cause the network to continuously flow and remodel. Furthermore, if 
dynamic metal-coordinate bonds are incorporated alongside permanent load-bearing bonds, 
they can act as sacrificial bonds by breaking instead of the permanent bonds that hold the 
polymer network together, thereby increasing the energy required for network failure (Figure 1-
1b).21–23 This dissipation of energy through sacrificial bond breaking can act as a molecular 
mechanism underlying bulk nonlinear mechanical properties such as toughness (Figure 1-1b). 
Because metal-ligand bonds re-associate over time, these hybrid networks also exhibit self-
healing.  
 
In addition to reversibility, metal-coordination bonds have the advantage that their bond 
strength and dissociation rate can be tuned to a greater extent than those of standard covalent 
bonds or other transient bonds such as hydrogen bonds by varying simple parameters (Figure 
1-1c). For example, to change the strength and network dynamics of a traditional covalently 
crosslinked polymer material, one typically needs to synthesize entirely new polymers with 
different molecular weights or architectures to change the polymer network density and 
timescale of any physical entanglements. Transient bonds such as dynamic covalent and 
hydrogen bonds can be tuned by changing the donor or acceptor chemistry, by applying 
strong stimuli (for dynamic covalent bonds) or by changing pH (for hydrogen bonds). In 
contrast, metal-coordination bonds can be more easily tuned by changing the metal ion, metal 
oxidation state or counterion, which changes the coordination state and bond dynamics.24 

BOX 1. Other uses of metal coordination 
 
Metal coordination is an old and deep field with several applications across traditional 
scientific disciplines. Metal coordination has been studied extensively in bioinorganic 
chemistry for enzymatic processes such as in heme metal centers in several proteins in 
which the local protein environment substantially affects metal reactivity,488 or in systems in 
which metal coordination has a role in stabilizing protein structure.489–491 The unique 
electronic properties of metal-coordination bonds have also been used in photochemistry to 
induce metal-to-ligand charge transfer in excited states.492 Applications of metal 
coordination include its use in metal–organic frameworks for hydrogen storage,493 
adsorption with controlled porosity494 and catalysis495. In these systems, metal coordination 
offers a large range of geometries, sizes and functionalities.496 Metal coordination has also 
been used in the field of supramolecular chemistry 497–499 to control the topology of dynamic 
supramolecular polymers,500 assembly of small molecules501,502 and polymers,503,504 and 
activity of enzymes.505 Although metal coordination applied to mechanical properties has 
not been studied as broadly, we encourage readers to explore the inorganic and 
bioinorganic literature to understand the fundamental chemical features of metal-
coordination bonds. In particular, more information about coordination geometry, binding 
constants and other properties of  metal-coordination complexes is found in Refs 111,126,130. 
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Further, unlike hydrogen bonds and dynamic covalent bonds, which are confined to their 
positions by the polymer backbone, metal ions can freely diffuse to find binding partners, but 
can also be easily removed by standard chelators to ‘switch off’ coordination complexes. 
Through these simple levers, the transient nature of the metal-ligand bond enables highly 
dynamic properties that can be controlled over a wide time scale (Figure 1-1c,d). Finally, 
because metal–ligand bonds have different dissociation time scales, different metal ions can 
be used to institute a temporal hierarchy of energy dissipation in a material.25 These properties, 
combined, suggest that metal-coordination bonds may be an emerging class of crosslink 
chemistries to tune static and dynamic mechanical properties in advanced materials.  
 

 
Figure 1-1. Properties enabled by metal-coordinated bonds. a) In covalent bonds, one electron from each hybrid 
orbital is found in the molecular orbitals. In coordination bonds, both electrons from the ligand (L) are donated to the 
metal (M) to form a molecular orbital with a dipole moment. In addition, the d orbitals of the metal ion become 
distorted. b) Metal coordination bonds can form sacrificial crosslinks that break before stronger bonds rupture, 
thereby increasing fracture energy and preventing catastrophic material failure (top). Metal coordination may also be 
used in cohesion, where metal-coordinate complexes bind to each other (bottom). c) Comparison of metal-
coordination bonds with hydrogen bonds and covalent bonds. d) Metal-coordination bonds span a range of 
crosslinking strengths and timescales. Figure from Ref.26 
 
Although substantial progress has been made in the translation and application of bio-inspired 
metal coordination for material function,9,25,27–31 mimicking the complex features of biological 
metal-coordinated molecular materials such as proteins is nontrivial, because the local 
dynamics of their biochemical milieu is typically intimately coupled to a higher-order structural 
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hierarchy.32–34 Further, although substantial work has focused on the relationship between the 
timescale of metal-coordinate bonds and linear mechanical material properties such as stress 
relaxation time, less work has explored how bonds affect non-linear mechanical properties in 
the large-deformation regime to tune properties such as toughness and the ability to self-
heal.35–37 
 
A fundamental understanding of the microscopic origins of the macroscopic behavior of 
materials with metal-coordination bonds, of how such bonds are affected by different local 
chemical environments, how they are structurally organized, and how they consequently affect 
nonlinear mechanical properties is still missing. Further, the remarkable nonlinear mechanical 
properties, including toughness and adhesiveness, of metal-coordinated biological materials 
have only recently started to be explored in synthetic materials. Harnessing the advantages of 
metal coordination to build novel, reversible, dynamic materials necessitates the convergence 
of knowledge on metal coordination, biology and materials science.  
 
In the remainder of the Introduction, we survey metal-coordination bonds with the aim to 
stimulate cross-disciplinary discussion between biologists, chemists, materials scientists and 
engineers to understand and exploit metal coordination to impart new mechanical functions to 
soft materials. To this end, we start by exploring metal-coordination structural design 
strategies found in biological materials. Then, we investigate how natural binding motifs have 
been translated into synthetic contexts and the role of polymer and protein chemistry, physics, 
computation and of the experiment–modeling nexus in that translation.22,38 More specifically, 
we focus on tunable parameters enabled by metal-coordinate chemistry and their relationship 
to material mechanical properties. Last, we briefly review some interesting applications to 
illustrate how these bonds have been creatively employed.  
 
1.1 Metal coordination in biological systems 
 
Several aquatic organisms have been found to use metal coordination with histidine, catechol 
and aspartate residues as ligands to produce hard, unmineralized or tough materials (Box 2).17 
We highlight materials in two organisms with widely differing hydration states to illustrate how 
metal-coordination bonds in specific structures can be used to increase toughness in hydrated 
materials and hardness in hard condensed materials: mussels and Nereis worms.  
 
Aquatic mussel threads: tough and adhesive 
 
Marine mussels (in the genus Mytilus) have been heavily explored as a biological inspiration for 
metal-coordinated underwater adhesives and tough materials.16,39,40 Mussels typically adhere to 
surfaces such as rocks by secreting byssal threads, which have a tough, energy-dissipative 
core protected by a cuticle and a terminal adhesive plague that prevents threads from being 
dislodged by crashing ocean waves (Figure 1-2a).16,41 The byssal thread is divided into two 
mechanically distinct regions: the corrugated, compliant and highly extensible proximal 
region42 and the fibrous, stiff, strong and extensible distal region. 43 The resulting mechanical 
gradient created by the structural fusion of these regions effectively mitigates the mechanical 
mismatch between the rock and the soft mussel tissue44. Specifically, by matching tensile 
experiments with theoretical modeling, a 80:20 stiff (distal) to soft (proximal) material ratio was 
found to effectively dissipate impact energy from wave motion.39,42,43,45  
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Figure 1-2. Hierarchical organization and resulting mechanical properties of mussels and Nereis virens. a) In 
marine mussels, at the molecular level, L-3,4-dihydroxyphenylalanine (DOPA) coordinates with Fe3+; at the tissue 
level, metal coordination occurs in the mussel protective cuticle, byssal thread core and adhesive plaque; at the 
organism level, mussels secrete byssal threads that attach well to surfaces;45 and the resulting mechanical 
properties are illustrated by the characteristic stress–strain curves of a single distal byssal thread. As the thread is 
stretched to increasing strain values (10–70%), yield is followed by a loss of stiffness in the subsequent cycle.46 b) In 
the Nereis worm, at the molecular level, histidines coordinate with Zn2+; at the tissue level, metals organize within 

BOX 2. Examples of coordinating ligands in biological materials  
 
Histidine and aspartate are naturally occurring amino acids, and L-3,4-
dihydroxyphenylalanine (DOPA) is a post-translationally modified amino acid. In addition to 
metal coordination, these amino acids can engage in multiple types of bonding, including 
cation–pi interactions, pi–pi stacking, hydrogen bonding and covalent bonding.58,190,195 
 
Histidine 
Histidine consists of an imidazole functional group in which the electronegative pyridine 
nitrogen functions as the atom coordinating with the metal ion. The alpha amino group and 
carboxyl group have also been shown to coordinate in the free ligand.506 The sensitivity of 
histidine to deprotonation is highly dependent on the anions present and can result in pi–pi 
stacking, as shown in suckerin hydrogels.134 
 
Catechol 
DOPA is synthesized from the naturally occurring amino acid tyrosine, and consists of a 
catechol functional group with two hydroxyl oxygens as metal-coordinating atoms.507,508 
 
Aspartate 
Aspartate consists of a carboxylic acid side chain that is deprotonated under physiological 
conditions.    
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histidine-rich Nereis Nvjp-1 proteins;47 at the organism level, the combination of this structural organization and 
histidine–Zn2+ coordination imparts stiffness to the Nereis worm jaw.48 In terms of properties, the metal 
coordination increases the stiffness of the worm’s jaw: the modulus is higher for the pristine and Zn2+-modified jaw 
than for the jaw with no Zn2+ (which was removed by chelation with ethylenediaminetetraacetic acid, EDTA).14 
Figure from Ref.26 
 
Histidine–Zn2+ interactions within the histidine-rich domains of the collagenous proteins in the 
byssal thread distal region are primarily responsible for the byssal core toughness.46,49–53 This 
energy-dissipative role of histidine derives from both its hierarchical organization in the mussel 
byssal core and its atomistic binding properties, both of which prevent the thread from 
breaking under large deformations. Histidine is hierarchically organized into tightly folded 
partially crystalline protein domains that not only contribute to the stiffness of the natural 
thread but also enable fast, elastic long-range structural recovery and bring into contact 
histidine–Zn2+ sites to facilitate bond reformation.17,54,55 The distribution of zinc in a gradient 
further helps to endow specific regions with different degrees of energy dissipation and 
stiffness, resulting in the mechanical gradient mentioned earlier.8,56 Atomistically, Zn2+ interacts 
in specific coordination spheres with histidine and aspartate. X-ray absorption spectroscopy 
and X-ray absorption near-edge structure studies have shown that upon tensile loading under 
low deformation in the linear regime, zinc coordination crosslinks contribute to initial thread 
stiffness.52 Upon increased deformation, the coordination sphere around the metal ion ruptures 
and dissipates energy, increasing the toughness of the thread.52 However, the bonds reform 
quickly once the load is removed and ligand exchange reactions lead to the recovery of a more 
stable protein configuration over time.52 Thus, histidine–Zn2+ crosslinks and the structural 
organization of the protein underlie the toughness of the byssus core.  
 
Surrounding the byssus core is the byssus cuticle, which is a hard, yet extensible protective 
coating. DOPA–Fe3+ coordination crosslinks strategically organized in the coating material have 
been proposed to be responsible for this unique mechanical behavior, as demonstrated 
through chelation57 and in-situ resonance Raman spectroscopy experiments.28 Specifically, the 
cuticle is organized in a granular composite-like structure, in which densely crosslinked 
granules could provide hardness and less densely crosslinked matrix might provide 
extensibility.28 It was speculated that mussels use DOPA, a post-translationally modified amino 
acid, rather than standard amino acids, despite the increased energy expenditure required to 
biosynthesize them, because of DOPA’s increased affinity for metal ions in certain 
environments.28 The complex role of DOPA in biological and bio-inspired material adhesion has 
been extensively discussed in several reviews, which we refer the readers to for a more 
complete understanding.58–60 
 
Nereis worm jaw: hard and stiff 
 
Polychaetes, including the Nereis and other marine worms, have hard mandibular structures, 
required for biting or cutting, that in part derive their mechanical properties from metal 
coordination crosslinks (Figure 1-2b).15,61,62 Unlike the hydrated byssal threads of marine 
mussels, polychaetes jaws are hard condensed materials and don’t contain as much water. 
Like the marine mussel, Nereis utilizes histidine–Zn2+ binding in a gradient distribution in the 
jaw, with material stiffness and hardness correlating with zinc content.13–15,61,63 To understand 
how Zn2+ contributes to the stiffness of one component of the histidine-rich Nereis jaw, the 
Nvjp-1protein, a multiscale computational and experimental work studied the differences 
between histidine binding with Na+ and Zn2+.47 As expected, Na+ binds weakly to histidine 
because of purely electrostatic interactions and symmetry breaking of histidine’s molecular 
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orbitals, whereas Zn2+ binds strongly because of additional electronic interactions with 
histidine.47 As a result, Nvjp-1 proteins coordinating with Zn2+ become more compact and 
harden.47 In addition to the contribution of metal-coordinate crosslinks to the stiffness of the 
protein networks, the close proximity of glycine residues allows histidine to coordinate with 
Zn2+ without steric penalties imposed by the structural rearrangements required for Zn2+ 
binding.47 Together, the structural organization of the protein and binding of histidine–Zn2+ 
impart stiffness to the Nereis worm jaw. 
 
Less explored organisms 
 
Several other biological organisms are known to use metal coordination to build material 
structures, including spiders (for their fangs)64 and ants and scorpions (for their mandibles),65 as 
well as less studied organisms such as terrestrial slugs (for their mucus-based adhesive 
secretion).66–68 Further, in addition to the select few mentioned above, several other amino 
acids can coordinate with metal ions in vivo, including single hydroxyl-functionalized (serine, 
threonine and tyrosine), carboxylate-functionalized (glutamic acid) and thiol-functionalized 
amino acids (cysteine and methionine). The structural roles of these and other post-
translationally modified amino acids, including phosphoserine, should be further explored.48,69,70 
 
The mussel byssal thread and Nereis worm jaw demonstrate that protein structure and metal-
coordinate crosslinks can cooperate to impart remarkable material mechanical properties. 
Advanced spectroscopic characterization of more metal-coordinated proteins may also help 
elucidate other coordination complex chemistries, rupture mechanisms, and structural 
organizations of crosslinks that contribute to mechanical function. Such biological questions 
are addressed in Ref.17 

 
1.2 Synthetic Translation 
 
Inspired by studies of metal-coordination complexes in biological materials as described 
above, researchers have implemented coordination complexes as loadbearing crosslinks in 
polymer and protein biomimetic networks with resulting mechanical properties that can be 
controlled via the choice of metal ion, coordinating ligands and physical-chemical processing 
conditions. Through such studies it has become increasingly clear that the physical-chemical 
environment in which the metal-coordination bond sits (protein or polymer backbone, pH, 
metal-ligand stoichiometry) strongly influences its local bond dynamics and thereby the bulk 
material mechanics. In this section we focus on hydrogels, not only because they are simple 
model systems to study metal-coordinate bond interactions within, but also because tuning the 
mechanical properties of hydrogels can enable medical applications, such as controlled drug 
release. We start by surveying metal coordination in polymer hydrogel networks, then discuss 
how it has been used in protein-based hydrogel materials, which are structurally more complex 
than polymer systems.  
 
Gelation of coordination polymers 
 
Early experiments with simple copeptides showed that polymers conjugated with metal-
coordinating amino acids can assemble into dynamic materials.71,72 Following on these initial 
demonstrations, seminal work showed that incorporating specific catechol or histidine 
coordination ligands into polymer networks can result in hydrogels with viscoelastic properties 
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that can be easily tuned with simple levers such as pH (Figure 1-3a).910 Despite their simplicity, 
these synthetic polymer mimics of metal-coordinated biological materials already offer a range 
of potential applications due to their relative ease of synthesis, assembly and tunability (Figure 
1-4).  
 

 
Figure 1-3. Mechanical signatures of metal-coordination bonds. a) Rheological frequency sweep of metal-
coordination crosslinked gels demonstrates dynamic properties with relaxation times, τ, that change depending on 
the pH conditions. The relaxation time is the crossover between the two curves, which represent the storage (solid 
lines) and loss modulus (dashed lines) of the network. b) Different metal-to-ligand stoichiometries result in different 
extensibility properties of the network. The graph shows the case of imidazole-Co2+ melts; Mz is bigger than Mx. c) 
Lysine, compared with other amino acids, enhances the adhesive strength of L-3,4-dihydroxyphenylalanine (DOPA) 
in synthetic polymer networks. d) Metal-coordination gels can achieve a higher Young’s modulus and energy 
dissipation than covalently crosslinked gels. Figure from Ref.26 
 
Coordinating ligands can be attached as terminal or pendant ligands on polymer backbones, 
depending on the intended polymer architecture. Telechelic polymers (polymers end-
functionalized with coordinating ligands) have been utilized in efforts to assemble ideal 
networks to isolate the relationship between crosslink dynamics and network mechanics in 
gels. An ideal network is constructed from polymers with well-defined polymer chain lengths 
below the entanglement molecular weight, so that the bulk relaxation time of the network is 
dominated by the kinetic behavior (the bond dissociation time) of the metal-ion crosslinks.73 By 
contrast, polymers with pendant coordinating ligands enable multiple ligands on the backbone 
to coordinate with the same metal ions, increase network stability in water, and prolong the 
relaxation time of the network by increasing the number of coordination sites along the 
backbone.27,37,74 To synthesize polymers functionalized with metal-coordinating ligands, several 
traditional polymerization methods have been used, including ring-opening polymerization,74–76 
grafting77 and reversible addition-fragmentation transfer.78–80  
 
When crosslinking and forming gels or metal-coordinated networks, divalent and trivalent 
transition metal ions and specific pH conditions are needed to ensure that the ligand is in a 
correct protonation state and that enough coordinate crosslinks are formed to percolate and 
form a polymer network. Increasing pH deprotonates coordinating ligands, thereby enabling 
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metal coordination, and changes the type of coordination complexes present in the system.9,31 
For example, increasing pH in Fe3+–catechol systems results in one, two or three bidentate 
ligands coordinated to one metal, forming a ‘mono’, ‘bis’, or ‘tris’ complex respectively.9 For a 
simple bifunctional linear polymer with one catechol coordinating ligand at each end, tris 
complexes are required for forming a fully percolated network. By contrast, for a multiarmed 
polymer backbone both bis and tris complexes contribute to network formation. The amount of 
metal added, or metal-to-ligand stoichiometry, can also change the distribution of mono, bis or 
tris complexes.31 The influence of the coordination number, or number of molecules bound to a 
metal ion, on macroscopic dynamics is discussed in the next section.  
 
 

 
Figure 1-4. Engineering metal-coordinated polymers. Control levers in the synthesis of metal-coordinated 
polymers include coordinating ligands, synthesis polymerization methods (such as reversible addition–fragmentation 
chain-transfer polymerization (RAFT) or ring opening polymerization (ROP)), chain architecture, type of crosslinker 
and form of network, which can be a gel (with solvent) or a melt (without solvent). These levers can also be 
combined with traditional polymer engineering handles, including changing the concentration or molecular weight of 
the polymers. Figure from Ref.26 
 
Understanding how traditional levers of polymer engineering81 and nanostructural topology 
impact metal-coordination dynamics is critical in the development of more complex polymeric 
materials.82,83 Traditional approaches to tune polymer network dynamics include entanglement 
length, volume fraction, molecular weight and crosslink density. For example, increasing the 
polymer volume fraction increases the likelihood that a metal ion finds binding partners to form 
a percolated network; increasing crosslink density increases stiffness; and increasing the 
entanglement reptation time increase the bulk material relaxation time. These traditional 
polymer engineering approaches can also directly affect metal–ligand crosslinks by inducing 
swelling forces.73,84,85 
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Protein-based synthetic materials 
 
Metal-coordination bonds can also be incorporated into protein-based synthetic materials, 
which have more complex secondary and tertiary structures compared to random coil 
polymers. As we discuss here, this additional structural complexity results in gel properties 
different than those of polymers, such as different rheological behavior and formation of 
hierarchical structures.  
 
Although most natural proteins are difficult to extract or express in large quantities, advances 
in protein expression have enabled the fabrication of protein hydrogels with recombinant 
mussel proteins and histidine-rich worm jaw proteins.86–90 Optimized bacterial vectors such as 
E. coli  allow the expression of proteins with tyrosine or histidine.86,89,91 To synthesize post-
translationally modified amino acids, enzymes such as tyrosinase are used to convert tyrosine 
into DOPA.86,89 Solid-phase peptide synthesis has also emerged as a viable technique in the 
synthesis of designer metal-coordinating peptides.92,93 It is still challenging to incorporate 
nonnative ligands, such as multidentate terpyridine, into proteins. Despite these challenges, 
these peptide synthesis methods offer ways to build specific protein sequences and 
structures. 
 
When integrated in polymer and protein gels metal-coordination bonds often result in different 
network mechanical properties because protein structure imparts additional mechanical effects 
on networks. This was demonstrated in protein hydrogels synthesized from consensus 
decapeptides from mussel foot proteins and reversibly crosslinked with Fe3+.90 The protein 
hydrogel has a relaxation time of the same order of magnitude as that of a simple polymer–
catechol–Fe3+ hydrogel (~100  s),9 which indicates the critical role of metal–ligand bonds in 
determining relaxation timescales. However, the gels exhibit more viscous rheological behavior 
in the low-frequency regime where gels flow, because the stiff helical nature of the peptide is 
more complex than the random coil flexible polymer chains, and because additional 
mechanisms, including cation–p and p–p interactions, enhance the charge-transfer interaction 
between metal and ligand.90  
 
Because the protein tertiary structure geometrically constrains the metal–ligand interactions, 
metal ion identity (Zn2+, Cu2+, Ni2+) influence mechanical reinforcement differently in peptide-
based networks than in polymer-only systems.25,94,95 For example, Zn2+ induces a 10-fold 
stiffness increase in histidine-rich b-amyloid films, but Cu2+ has little effect,95 even though Zn2+ 
and Cu2+ have similar relaxation times in histidine–polyethylene glycol networks.25  
 
Protein-based metal-coordinated materials can also be used for creating hierarchical 
structures, because although metal ions are not required for protein structure assembly,94–97 
they can influence their organization.98–101 For example, selectively incorporating carefully 
spaced intermolecular histidine–Zn2+ crosslinks induced the formation of extended assemblies 
of alpha-helical coiled-coil proteins.102  
 
Different ways of influencing dynamic mechanical behavior, such as metal coordination and 
peptide structure, can also be combined to yield materials with two distinct stimuli-responsive 
relaxation modes.94,95,103 Coiled-coil protein hydrogels naturally behave as yield-stress fluids 
due to the intrinsic dissociation time of coiled-coil network crosslinks. However, sequencing 
specific histidine modifications into well-defined coiled-coil proteins induces intermolecular 
histidine–Zn2+ crosslinks that affect the gel relaxation time by over three orders of magnitude.102 
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If the Zn2+ ions are removed via chelation, the hydrogel recovers the characteristic dissociation 
time of the coiled-coil crosslinks.102 If the bonds are incorporated intramolecularly instead of 
intermolecularly, the bonds thermodynamically stabilize the coiled-coil protein by increasing 
the barrier height for dissociation of the coiled-coil domain, which directly increases the 
network’s relaxation time.104 Such modifications are particularly interesting because mutating 
specific residues on proteins to coordinate with metal ions could help control the dynamic 
relaxation properties of protein assemblies.105 
 
The above examples illustrate that metal-coordination bonds can be readily incorporated in 
polymer or protein hydrogels and thereby offer tunable dynamic mechanical properties. 
Substantial research in this field has focused on the development of coordinating polymers due 
to their comparative ease of synthesis and the possibility to isolate the mechanical 
contributions of coordination bonds within the resulting networks. However, incorporating 
these bonds into protein hydrogel materials offers more hierarchical and complex mechanical 
effects that necessitate further exploration. Specifically, studies that attempt to decouple the 
synergistic roles of protein structure and metal ions in the determination of mechanical 
properties and assembly are still nascent.94,95,97 Machine learning may be a suitable way to 
garner additional insights and design de novo proteins to understand the role of metal-
coordinated bonds within a protein sequence.106,107 
 
1.3 Understanding Design Parameters 
 
We next examine how the kinetic properties of metal-coordination bonds depend on local 
physical-chemical aspects such as electronic bonding interactions, coordination geometry, 
ligand exchange pathways, coordination partners, chemical redox potential and water 
coordination (Figure 1-5). Several of these kinetic bond properties are not observed in 
hydrogen or dynamic covalent bonds and we discuss how this affects the bulk material’s 
dynamic mechanical properties in unique ways. We also discuss how new ligand chemistries 
have expanded the range of mechanical properties accessible via metal-coordination 
crosslinking in polymeric materials. Direct connections between the thermodynamic properties 
of metal-coordination bonds and bulk material mechanical properties such as strength and 
Young’s modulus are still poorly understood, thus we only touch upon them briefly.  
 
Physical-chemical influence of coordination complexes on mechanical properties 
 
Specific electronic interactions between metal ions and ligands dictate the mechanistic 
connection between microscopic metal-coordinate bond dynamics (bond dissociation time) 
and macroscopic material mechanics (such as material relaxation time, Figure 1-5a). 
Specifically, an accumulating body of evidence suggests that the activation energy of bond 
dissociation dictates the bulk material relaxation time as characterized through an empirical 
Arrhenius relationship, where higher activation energy scales with slower relaxation (see Box 3 
for more details on the fundamental coupling between bond kinetics and material crosslink 
dynamics). Various classical inorganic chemistry series may start to explain the trends in 
mechanical properties. To explain why Ni2+ (3d8) relaxes more slowly than Cu2+ (3d9) or Zn2+ 
(3d10) in a histidine-based network,25 inorganic chemistry concepts including histidine affinity 
for metal ions (Zn2+ < Ni2+ < Cu2+),108 the Irving–Williams complex stability series (Ni2+ < Cu2+ > 
Zn2+), which is related to ionic radius and second ionization potential,109 the Gibbs monohydrate 
interaction energies calculated through gas-phase density functional theory (Ni2+ < Cu2+ < 
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Zn2+),110 the increase in acidity of histidine in presence of metal ions (Ni2+ < Cu2+ < Zn2+)110 and 
equilibrium binding constants have been used.111 However, in our opinion, these series do not 
adequately explain different relaxation times, and further quantum chemical studies that 
consider the role of water as an active coordination partner and complex bond dissociation 
pathways are needed.112 Though density functional theory has emerged as a useful 
technique,113–117 modeling the local coordination environment of metal ions and the dynamic 
nature of metal–water exchange in aqueous environments requires the application of quantum 
mechanical principles in a manner less computationally intensive than DFT. To this end, the 
reactive force field (ReaxFF), in which empirical interatomic potentials depend on a bond order 
formalism, enables the modelling of systems in which bonds break and form118–120 and has 
already reproduced Cu–water coordination properties121 and metal-organic framework 
stability.122 Hence, this force field could potentially help develop a deeper understanding of the 
specific role of bond electronic properties in determining metal-coordination complex 
dynamics to assist their application in the future engineering of polymer material mechanics. 
 

 
Figure 1-5. Chemical factors influencing the relaxation time of the network. The levers are binding electronics, 
as different numbers of electrons in metals produce different bond lifetimes (panel a); d orbitals of metals (M), which 
result in different preferred coordination geometries of binding (panel b); metal preference for associative or 
dissociative exchange pathways, which determines whether surrounding ligands influence kinetics (panel c); 
coordination with counterions and neighboring ligands, which influences the bond (panel d); multivalency, which 
allows the metal ions to be reduced to form different bond types (panel e); and the hygroscopic water-binding 
nature of metal ions, which is critical for gelation conditions and, potentially, for cohesive properties (panel f). Figure 
from Ref.26 
 
Electronic properties also dictate preferred metal-coordination complex geometries and 
coordination numbers, which affect bulk network relaxation time and strength (Figure 1-5b).123–

125 To minimize repulsion between electrons in the valence shell, Zn2+ generally prefers 
tetrahedral, Cu2+ tetrahedral or square planar, and Ni2+ octahedral ion arrangements.126 These 
coordination geometries may also explain why protein-based hydrogels exhibit different trends 
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in metal-dependent relaxation times compared to polymer networks, because proteins impose 
a coordination geometry that may not be preferred depending on the metal ion. In aqueous 
solutions and hydrogels, metal ions satisfy these preferred coordination geometries by binding 
to different numbers of ligands, for example to one, two or three bidentate ligands to form 
mono, bis or tris complexes. These complexes exhibit different bond dissociation times.9,127 For 
example, rheological experiments show that bis Fe3+–catechol systems have a relaxation time 
of 10-2 s and tris systems of 100 s.9 This trend has been observed for other metals with catechol 
systems; V3+–catechol exhibits a larger degree of tris-complexation and thus an even longer 
relaxation time than Fe3+ gels at the same pH.24  
 

 
 
The dependence of mechanical properties on the coordination number has also been observed 
through single-molecule force spectroscopy. Atomic force spectroscopy experiments coupled 
with first-principles quantum chemical studies demonstrated that different complexes have 
different rupture forces, attributed to their mechanical rupture pathways. For example, bis Fe3+–
catechol complexes require higher forces to rupture than the corresponding tris complexes, 
perhaps surprisingly given that gels with primarily bis Fe3+-catechol relax faster than gels with 
tris Fe3+-catechol.128 In addition, compared to a covalent crosslink, the coordination bond 
features more peaks in its force–distance profile as it is pulled, because of more degrees of 
freedom involved in bond deformation, including bond stretching and bond angle bending.129 

BOX 3. Concepts from transient network physics in the design of coordination 
materials 
 
Throughout this Introduction, we discuss the importance of dynamic mechanical properties 
enabled by metal coordination. Whereas thermodynamic properties (such as the equilibrium 
constant K) determine whether network formation is possible,31 bond kinetics (such as the 
rate constant k) and frequency of crosslinking determine the macroscopic dynamic 
properties and relaxation modes once the network has formed.217,509 Seminal work with 
polymers crosslinked via metal coordination to pincer ligands revealed that ligands with the 
same thermodynamic equilibrium constant and different kinetic constants show 
substantially different dynamic properties measured through viscosity.217 For example, 
bulkier ligands slow ligand-exchange dynamics and increase polymer solution viscosity.217 

 
To understand these kinetic constants, studies of transient bonds in biological systems 
have helped provide quantitative models for how bonds dissociate. For instance, the Bell 
model, based on ligand receptors in biological molecules, describes how the lifetime of a 
transient bond and rate of bond formation are dependent on k−, the dissociation rate 
constant of the bond.335 Although metal-coordination bonds also dissociate due to thermal 
fluctuations, the Evans model proposed that the application of force decreases the 
activation energy barrier required to break the bond.128,510,511 Tuning the activation barrier of 
the dissociation of metal-ligand complexes can substantially affect the frequency of 
dissociation of metal complexes and thus the relaxation time of an ideal bulk network.104 
Though the Bell–Evans model has been successfully applied to transiently bonded systems 
such as hydrogen-bonded alpha helices and beta sheets,326,511,512 these studies have 
focused on ligand placement along a backbone rather than coordination geometry or 
multiple coordination partners in metal binding.103,112,128,513 A greater understanding of 
quantitative models that describe specific kinetic properties of coordination complexes will 
facilitate the design of new molecules for metal coordination. 
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Further experimental and computational studies on how coordination geometries and numbers 
affect bond dissociation rate and strength in aqueous environments are needed.  
 
Coordination complexes break and reform through associative or dissociative pathways,130–132 
which dictate whether other dangling ligands, tethered to a network but not bound to a metal 
complex, can affect bond dynamics (Figure 1-5c). For metals with associative character, to 
which dangling ligands associate before the next ligand dissociates, the presence of additional 
dangling ligands increases the rate of ligand exchange and therefore the kinetics of crosslinker 
remodeling.27 Metal complexes with dissociative character are unaffected by dangling ligands, 
because steric hindrance prevents additional ligands from complexing.133 By contrast, other 
transient bonds such as hydrogen bonds and ion pairs generally exhibit dissociative ligand 
exchange reactions. This may be because metal centers allow more positions for ligands to 
coordinate (for example six sites in an octahedral arrangement that are not always filled with 
ligands), whereas hydrogen bonds normally involve one donor and one acceptor atom. In 
imidazole-functionalized polymer melts, these differences between ligand exchange 
mechanisms explain the observed rheological behavior. Co2+ engages in a dissociative 
mechanism in which the ligand exchange rate is independent from dangling ligand 
concentration. Therefore, increasing the concentration of dangling ligands by decreasing the 
metal-to-ligand (M:L) ratio results in a steady decrease in viscosity as expected because of the 
decrease in the number of crosslinks in the network. By contrast, Zn2+ and Cu2+ engage in 
associative exchange mechanisms in which the ligand exchange rate is directly proportional to 
the concentration of dangling ligands. Increasing the concentration of dangling ligands by 
decreasing M:L in Zn2+ or Cu2+ networks results in a surprising constant, low viscosity because 
dangling ligands rapidly exchange and remodel the network.27 These exchange pathways also 
affect bulk tensile mechanical properties. With increasing M:L ratios, extensibility in Co2+ melts 
was reduced due to increased crosslinking density but Zn2+ and Cu2+ melts maintained their 
extensibility owing to frequent remodeling due to dangling ligands (Figure 1-3b).27 Through an 
understanding of the associative or dissociative mechanism of the metal-ligand coordination 
site, mechanical properties can thus be tuned by changing the number of dangling ligands 
present. 
 
In addition to dangling ligands, counterions and other ligands that do not directly coordinate to 
the metal can also affect the stability and kinetics of metal-coordination complexes (Figure 1-
5d). This has been demonstrated in several biological materials in which counterion impacts 
material properties.15,134 Progressive exposure of synthetic Nereis worm jaw protein hydrogels 
to Zn2+ and different counterions (such as Cl if ZnCl2 salts are used) sclerotized and increased 
the gel’s elastic modulus in a highly counterion-influenced manner.91 In particular, acetate was 
suggested to facilitate the local deprotonation of histidine residues to enable stronger 
coordination with Zn2+. Further, in contrast to chloride ions, which facilitate in coordination 
bonds confined to a local area, acetate ions enabled the diffusion and crosslinking of Zn2+ 
through the entire material.91 The Zn-acetate-containing hydrogel also had a lower equilibrium 
water content than gels with other counterions.91 This same decrease in water content has 
been observed in other histidine– Zn2+ based hydrogels.102 Neighboring residues can have a 
similar effect; lysine synergistically improves DOPA’s wet adhesion by displacing cations to 
enable catechol–metal binding (Figure 1-3c), though it may not directly act as a metal-
coordination partner.135–137 The influence of counterions and neighboring residues emphasizes 
that the local chemical environment of the bonds is critical to their mechanical behavior. 
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The oxidation state of transition metal ions is yet another source of metal-coordinate bond 
state changes. For example, metal ion reduction can enable coordinating ligands to oxidize 
and crosslink via permanent covalent bonds, significantly affecting the material’s mechanical 
properties (Figure 1-5e). In Fe–catechol systems, a catechol–catechol covalent bond is formed 
when Fe is reduced and catechol is oxidized to a quinone under acidic conditions, resulting in 
a permanently crosslinked gel.138,139 Electrochemical potentiometric titration can also transition 
reversible crosslinks from strongly binding Fe3+ to nonbinding Fe2+ in acrylate-sulfonate 
hydrogels.140 By using a range of metal ions with different valency and redox potentials, 
electrochemical cells can control the ratios of coordination: covalent bonds, thereby varying 
the balance of transient to permanent network crosslinks.141 Oxidizing agents such as 
hydrogen peroxide can also be used to manipulate the oxidation state of metal ions.142 In a 
polymer–histidine–cobalt ion network, Co2+ oxidizes to Co3+ upon the addition of hydrogen 
peroxide. As a result, the network transitions from being reversible (with Co2+) to permanently 
crosslinked and swelling resistant (with Co3+).142 We note that the biochemical literature has 
several examples of the mechanical role of different metal ion oxidation states.143,144 We 
encourage readers to refer to this literature to understand further strategies for chemically 
tuning the metal ion oxidation state to modify the bond type and kinetics. 
 
A significantly less understood topic in metal-coordination polymer material design is the role 
of water or other solvent molecules on network mechanical properties (Figure 1-5f).145 
However, evidence of the profound effects of water on metal-coordinated materials is 
abundant. For example, metal has a more pronounced effect on the hydrated Nereis worm jaw 
state than on the dry state: the modulus and hardness of hydrated Nereis proteins increase 
about three times upon the addition of Zn2+, compared to about 1.5 times in dry samples.14 An 
increasing number of studies have started elucidating why the role of solvent is critical in 
metal-coordinate crosslinked polymer systems, apart from the general effect of swelling on 
network density. In fully swollen hydrogel networks, water can both coordinate with the metal 
ion or protonate the ligand146 and thus affect the thermodynamics of the coordination 
complex.131 Modeling the equilibrium constants of different binding events including water self-
ionization, ligand protonation, hydroxide ion competition and metal–ligand reactions in solvated 
metal-coordinated networks revealed that excess amounts of metal can still enable robust 
hydrogel gelation, because competing hydroxide ions in water can buffer excess metal ions 
and thereby protect the gel network from dissolution.31 The insights from this model greatly 
expand the possible metal–ligand stoichiometries and pH conditions required for gelation and 
can be tailored to different hydrogel chemistries by using the equilibrium binding constants of 
relevant ligands.31,111 Furthermore, even in dehydrated hydrogels, small amounts of water 
remain locally bound to metal-coordination complexes.147 Despite increased network density 
and thereby stiffness upon dehydration, these tightly bound water molecules appear to enable 
the metal-coordinate complex to remain dynamic, which significantly increases energy 
dissipation in these dehydrated networks (Figure 1-3d), compared to dehydrated networks 
with permanent crosslinks.147 These studies highlight the important role water plays in metal 
coordination. 
 
A more detailed molecular picture of how microscopic bond properties impact macroscopic 
mechanical properties will undoubtedly help in developing predictive models relating 
coordination bond chemistry to mechanics. One approach to achieve this goal is using 
multiscale simulation methods, which thus far have not been used extensively in metal-
coordinated networks but may reveal important mechanistic insights into their dynamic 
properties. For example, density functional theory can help determine transition state 
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distortions when pulling the metal-coordinate bond129,148 or provide an electronic basis for 
activation energies; molecular dynamics can help solve for the structures of various metal-
coordinated proteins;47 coarse-graining can be used to translate microscopic associative 
interactions into larger network behavior149–151; and continuum mechanics may eventually be 
used to predict overall mechanical properties (Figure 1-6). These simulations may explain 
interchain and intrachain bond dissociation under different mechanical loading conditions152 or 
network percolation and cluster formation.153  
 

 
Figure 1-6. Multiscale modelling of metal-coordinated materials. Multiscale modelling has been underutilized in 
this field but offers significant advantages for materials design, complementing experimental analysis and helping to 
understand interactions in various classes of bonding in materials. Metal-coordinate bonds can be used to engineer 
a new degree of freedom by exploiting their dependence on time. Density functional theory can be used to capture 
the quantum physics of metal-coordinate bond breaking at the atomic level.148 Replica exchange molecular 
dynamics can be used to model the structures of metal-coordinated proteins.47 Coarse-grained non-equilibrium 
molecular dynamics simulations unveil the configurations of multisticker associative polymer solutions.149 Continuum 
methods that map local transient behaviors of metal-coordinate bonds to bulk macroscopic properties such as self-
healing are yet to be developed. Figure from Ref.26 
 
Less explored chemistries 
 
The understanding of chemical interactions between metal and ligand has enabled an 
expanded tunability of metal–ligand thermodynamics and kinetics by employing a growing 
number of variants of naturally occurring amino acids and artificially synthesized ligands 
(Figure 1-7).14,154,155 As an example, a 3-hydroxy-4-pyridinonone (HOPO) ligand (Figure 1-7a) 
can form stable gels at physiological instead of alkaline pH, bind to Al3+, Ga3+ and Cu2+, and 
resist oxidative degradation to a quinone species because the electron-withdrawing ketone 
and hydroxyl functional groups allow the phenol to strongly bind the metal ion.156 As a result, in 
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contrast to a gel assembled with catechol ligands, the resulting gel does not evolve from a 
transiently to a covalently crosslinked gel with time. 
 

 
Figure 1-7. Examples of ligands used for metal coordination with different metal ions. a) 3-Hydroxy-4-
pyridinonone (HOPO) is a catechol analogue used to resist oxidation degradation and maintain the transient nature 
of the HOPO–metal bond.156 b) Gallol is a catechol analogue with three coordinating alcohol groups for coordination 
instead of two.157 c) Carboxamido ligands coordinate weakly with and pyridyl group coordinates strongly with 
Fe3+.11 d) Diiminopyridine derivatives can coordinate well with Zn2+.158 e) Nitrocatechol is a catechol analogue used 
to resist oxidation degradation and maintain the transient nature of the nitrocatechol–metal bond.156 f) Terpyridine is 
a tridentate ligand that provides strong coordination with several transition metal ions.159 Figure from Ref.26 
 
Other biologically inspired ligands are currently under investigation in the context of structural 
materials design.160,161 Gallol, which similarly to catechol coordinates with Fe3+ but contains 
three hydroxyl groups (Figure 1-7b), is naturally found in the tough, flexible bodies of marine 
invertebrates called tunicates. Polymers functionalized with gallol have been synthesized as 
adhesive hydrogels157,162 Combining different types of coordinating ligands can also produce 
interesting properties. For example, an elastomer with two weak carboxamido–iron ligands 
reversibly breaks when a neighboring strong pyridyl-iron ligand localizes the metal ion for faster 
reversible unfolding and refolding of chains (Figure 1-7c).11 This cooperativity of coordination 
properties enables highly stretchable and self-healing elastomeric materials.11 These novel 
chemistries open up previously unattainable tuning of bond strength and dynamics.158,163 
 
In addition to new ligands, different transition metal ions or nanoparticles can also be used to 
tune mechanical properties.24,164 For example, other transition metal ions such as Cu2+, Mn2+ 
and Cd2+, which do not coordinate in the native Nereis worm jaw, can induce hardening of the 
jaw and jaw protein.14,91 Like metal ions, nanoparticles can also be used as crosslinkers in 
metal-coordination systems. Inserting Fe3O4 nanoparticles into catechol gels results in 
strikingly slower relaxation times than with single metal ion crosslinkers, but still produces a 
fully transient, reversible gel.165 Stress relaxation can only occur through the dissociation of all 
the polymer chains attached to the nanoparticle surface, resulting in a slow process.165 
Nanoparticles also offer an avenue for thermal and magnetic actuation.166 Additional research 
is required to elucidate how these less explored metal-ion, nanoparticle and ligand chemistries 
function to enable their potential applications. 
 
Overall, metal-coordination complexes offer exceptional control on the dynamic mechanical 
properties of polymer materials, such as relaxation time and stiffness, through a multitude of 
physical-chemical levers. Increasing experimental and computational efforts are constructing 
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multiscale design principles to connect these organic-inorganic chemical dynamics to the 
resulting material mechanics. These efforts have already paid off for example by using this new 
understanding to develop new ligand chemistries that have been designed to influence specific 
mechanical properties.11,163 Significantly more effort is needed to both solidify the relationship 
between metal-coordinate bond chemistry and mechanics and extend it to nonlinear properties 
such as toughness, which would enable a wealth of new applications. 
 
1.4 Applications in mechanical materials 
 
In this section, we survey how metal-coordination complexes have been applied to build tough 
and tunable materials. The results discussed here serve as good examples for how to use 
these complexes in combination with various materials design principles to tune mechanical 
properties. 
 
Tough self-healing materials for increased material utility 
 
Metal-coordination complexes have been utilized to build tough materials.123,167–170 Fe3+ can be 
used to crosslink catechol-functionalized polyethylene glycol chains in a loosely crosslinked 
amorphous epoxy network to obtain a tough and stiff yet extensible material.169 The catechol 
groups organize into nanoscale ionomeric domains, which enhance stiffness by restricting 
polymer chain movement and distribute stress away from the crack tip.169,171 Upon the addition 
of Fe3+, network toughness, stiffness and strength are amplified beyond what is expected from 
the existence of ionomeric domains alone because metal-coordination bonds contribute 
additional crosslinking points, but also break and reform to dissipate energy.169 
 
The crosslinking and self-healing behavior of metal-coordination bonds can also be used to 
assemble materials that do not easily fracture. Metal-coordination complexes can crosslink silk 
fibroin hydrogels under physiological conditions so that they can flow to fill irregularly shaped 
tissue defects and gel without fragmenting.172 This moldable yet mechanically robust gel 
enables stem cell proliferation and bone regeneration for tissue engineering applications.172 The 
same principle can be applied ex vivo, where light-excitable metal-ligand complexes that 
release heat enable the flow of a polymeric material to fill cracks.173 
 
The properties enabled by metal coordination are being exploited in tough, self-healing 
electronic materials.174 Metal-coordination sites incorporated into a dielectric elastomer 
polydimethylsiloxane polymer resulted in a highly stretchable, tough, self-healing elastomer 
that could be actuated by an electric field.11 Hysteresis could be controlled by changing the 
counterions coordinating with the cation.175 For good electrical and self-healing properties, 
strong interaction with the counterion and lability of the coordination geometry are 
required.11,175  
 
Tunable dynamic actuators 
 
The ease of tunability of metal-ligand bonds has led to the engineering of materials with 
structural or dynamic property changes that can be triggered using simple levers like 
temperature and pH.47,176 For example, Fe3+ ionoprinted onto specific regions of a catechol-
functionalized methacrylamide hydrogel can be actuated using pH.177 Tris complexes induce 
bending deformation and therefore cause a high stress differential despite low catechol 
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concentrations,177 resulting in fast actuation.178 This same tunability enables plasticity and 
shape change in metal-coordinated shape-memory polymers over a wide range of 
temperatures.179 
 
In biomedical applications, metal ions can tune drug-bearing nanoparticles or gel viscoelastic 
properties to produce specific drug release kinetics.180–182 For example, bioengineered mussel 
adhesive protein nanoparticles crosslinked with Fe3+ were filled with doxorubicin and shown to 
be effective for locoregional cancer therapy. In this system, dissolution of the metal-
coordinated networks in the low pH of the cellular environment releases the drug.183,184 This 
same principle can be applied to dissociate Cu2+ crosslinks under low pH in block copolymer 
micelles.185 Applying ultrasound outside of the body can also disintegrate hydrogel networks 
lightly crosslinked with Fe3+–DOPA.186 These tunable dynamic properties are also attractive for 
growing cells on hydrogels, because temporal mechanical cues from the environment dictate 
cell response.187 
 
Adhesives 
 
A discussion of the structural functions of metal coordination is remiss without an 
acknowledgment of the large body of research focused on understanding mechanochemical 
processes in adhesion and designing new metal-coordination adhesive materials.58,59,160,188–196 
As mentioned earlier, Fe3+–DOPA metal coordination enables the strong adhesive behavior of 
the mussel byssal thread adhesive plaque.197 The plaque adhesive behavior can also be 
actuated by changes in pH, which change the adhesion mechanism from surface adhesion to 
cohesion.198 These properties have been practically used, for example, in DOPA–Fe3+ 
hydrogels, which adhere to tissue to arrest bleeding in rats,199 or in phosphonate–Mg2+ 
complexes, which act as in-situ nanoswitches to induce the adhesion of bioactive 
nanostructures that regulate cellular functions in vivo.200 Although adhesion behavior is not the 
focus of this discussion, we would like to highlight the role of structural mechanical properties 
on the performance of metal-coordination adhesives.201 In particular, peak tack stress and 
energy-dissipative volume were found to depend on the elastic plateau modulus and relaxation 
time of metal-coordinated hydrogel networks.201 Through this relationship between tack 
properties and traditional linear viscoelasticity theory, our understanding of metal-coordination 
mechanics may influence our mechanistic understanding of adhesion.201  
 
Other applications 
 
Metal-coordination crosslinks have also been implemented in systems whose mechanical 
properties have still not been thoroughly explored. In ion-conducting polymers, for example, 
metal coordination can be used to decouple polymer viscosity and ion conduction202 because 
of fundamental differences in the mechanisms that dictate polymer diffusion and ionic 
conductivity.76,203 Metal-coordination complexes have also been used in a range of 
applications, including metal ion chelators,204,205 rewritable security displays206–209 and 
phosphate detectors compatible with HeLa cells.210 Although the explicit mechanical properties 
of these devices have not been characterized, it is likely that metal-coordination imparts 
specific mechanical behaviors relevant to these applications. 
 
In summary, initial applications of metal-coordinated materials are promising, as they 
demonstrate improved and tunable mechanical properties such as toughness and adhesion. 
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The diverse properties of metal–ligand coordination also enable a wide range of applications 
that are still being developed.211–213  
 
1.5 Overview of thesis 
 
In this thesis, we will systematically characterize, predict, and design metal-coordinated 
proteins and polymers with desired dynamic mechanical properties. The systematic 
characterization in this work serves as an important foundation in the rational design of metal-
coordinated materials for mechanical function. We start with an ideal polymer network 
crosslinked together with individual metal-coordination complexes in Chapter 2. We use the 
chemical energy landscape of individual coordination complex to predict the macroscopic 
dynamic mechanical properties of the metal-coordinated ideal polymer network. We then shift 
investigate protein systems with multiple coordination bonds in Chapter 3. We characterize the 
dynamic strength of proteins coordinated with multiple metal-ions and show the existence of 
cooperative and heterogeneous rupture. In Chapter 4, we contextualize the insights on the 
mechanical properties of simple metal-coordinated proteins and polymers by studying the 
structural and mechanical properties of metal ions in native biological proteins with high 
amounts of metal-coordination. Finally, in Chapter 5, we show how large-scale computational 
methods can be applied to predict the mechanical properties of biomaterials systems when 
large amounts of data are collected, applying machine learning to collagen mechanical 
properties prediction as one example. We close the thesis with conclusions and outlooks in 
Chapter 6. 
 
Throughout this thesis, we use multiscale simulation methods, including molecular dynamics 
(MD), steered MD, replica exchange MD, coarse grain MD, and metadynamics. We also use 
quantum chemical simulation methods such as density functional theory. These simulation 
efforts excellently complement the experimental data we collect using rheology, atomic force 
microscopy-single molecule force spectroscopy, and isothermal titration calorimetry, to lend 
fundamental mechanistic insight into the properties we observe. 
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CHAPTER 2 
 
 
PREDICTING MACROSCOPIC METAL-COORDINATED 
HYDROGEL DYNAMIC PROPERTIES FROM INDIVIDUAL 
COORDINATION COMPLEXES 
 
 
2.1 Significance Statement 
 
We begin the results part of the thesis by developing a fundamental understanding of the 
dynamic mechanical properties of metal-coordinated ideal polymer networks, as control over 
such properties is one of the key advantages of metal-coordination bonds. A framework to 
effectively predict the mechanical properties of metal-coordinated materials would significantly 
help the rational design and incorporation of metal-coordination bonds in new materials. In this 
chapter, we report how such a framework is built: we relate the fundamental first-principles 
calculations of the metal-coordination bonds to the macroscopic properties of ideal polymer 
networks crosslinked by these bonds. In ideal polymer networks crosslinked by metal-
coordination bonds, the dynamic properties of the network are directly related to the dynamic 
properties of the individual coordination bonds themselves. Therefore, by experimenting on 
such a polymer system, we can extract macroscopic network behavior that derives from the 
microscopic properties of the chemical bond. 
 
Based on this principle, first, we use MD simulations to quantitatively relate the simulated 
energy landscape of metal-coordination bonds in hydrogels to the experimentally measured 
macroscopic relaxation time of metal-coordinated hydrogel networks. We show how this 
relationship can predict the relaxation time of other chemically similar metal-coordinated 
networks. Second, we use quantum chemical density functional theory calculations to show 
how the coordination number of the metal-coordination complexes relates to the viscosity of 
the network. This serves as another strong example of the link between chemical properties of 
the coordination bond and the macroscopic network.  
 
By using idealized metal-coordinated polymer networks and demonstrating several 
relationships between computed fundamental principles and macroscopic mechanical 
properties, this work is a first-of-its-kind critical advance in helping provide new tools for a 
priori design of dynamic materials. 
 
2.2 Introduction 
 
The dynamics of metal-coordination bonds are intimately coupled to their local microscopic 
environment, making their smart incorporation into synthetic materials non-trivial. For example, 
despite the extensive metal-coordination found in both marine mussel threads and marine 
worm jaws, the marine mussel thread is adhesive, soft, and tough, whereas the marine worm 
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jaw is hard, stiff, and fracture resistant, differences in material properties likely caused by 
distinctive protein structures and levels of hydration. A fundamental understanding of the 
microscopic origin of the macroscopic behavior of metal-coordinate crosslinked materials 
would enable better utilization of metal-coordination bonds in the future design of loadbearing 
materials. 
 
Molecular modeling methods offer an opportunity to elucidate the microscopic origin of metal-
coordinate bond behavior. Xu and Vidavsky et al. used first-principles calculations to correlate 
the strength of a coordination complex to the macroscopic stiffness of a metal-coordinated 
polymer network.129,214 Li et. al also used first-principles calculations to compute force-
displacement data to compare against experimental single molecule force spectroscopy data 
on coordination bonds.215 Others have also proposed relationships between bond strength and 
macroscopic material strength.103 However, these approaches have focused primarily on static 
properties, or strength of coordination complexes, rather than dynamic bond properties that 
significantly affect time-dependent macroscopic material properties, which also have important 
effects on toughness, stretchability and self-healing. The computational exploration of metal-
coordination bond dynamics is a new frontier and is especially challenging due to the 
limitations of conventional metal ion force fields and long sampling methods needed to probe 
relevant timescales.   
 
In this chapter, we use several computational techniques coupled with experimental 
rheological experiments on metal-coordinated ideal-network polymers to probe the dynamics 
of metal-coordinated systems. We find that there is an intimate relationship between the 
chemical dynamics of the metal-coordinate bond and the macroscopic properties of a metal-
coordinated network, and that computational modeling efforts can begin to probe this 
relationship to enable a priori design of properties. 
 
2.3 Molecular understanding of Ni2+-nitrogen family metal-

coordinated hydrogel relaxation times using free energy 
landscapes 

 
In this section, we discover the microscopic behavior of metal-coordination bonds using 
simulated free energy landscapes and quantify for the first time how this energy landscape 
relates to dynamic mechanical properties of a bulk metal-coordinate crosslinked material. 
Selecting biologically relevant metal-coordinate complexes imidazole-Ni2+ and histidine-Ni2+ as 
a demonstration model system, we correlate bond lifetimes estimated from simulations of 
coordination complexes with experimentally measured bulk network relaxation times of ideal-
network metal-coordinated gels.25 Through a quantitative empirical relationship, we show how 
the energy landscape of individual coordination bonds can be related to the macroscopic 
viscoelastic behavior of metal-coordinated polymer networks, despite their vastly different time 
and length scales of investigation (Figure 2-1). Specifically, we discuss how key features of the 
metal-coordinate bond energy landscape may contribute to bulk gel relaxation time and we 
use these features to expand the conventional Arrhenius equation to predict the relaxation time 
of other Ni2+-nitrogen-containing metal-coordination chemistries in ideal networks. To our 
knowledge, this is the first study of its kind to empirically relate the energy landscape of metal-
coordinate bonds with the macroscopic dynamic mechanical behavior of metal-coordinated 
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hydrogels and posit a quantitative empirical relationship between bond energy landscape and 
bulk network relaxation time. We anticipate the quantitative relationship presented here to be a 
starting point for the development of more sophisticated models that can predict relaxation 
timescales of materials with programmable viscoelastic properties.  

 
Figure 2-1. Time and length scales in simulation and experiment. The macroscopic network relaxation time (𝜏) of 
the hydrogel can be experimentally measured via a frequency sweep with a rheometer. This network relaxation time 
measurement is an experimental manifestation of the collective dissociation and re-association dynamics of all 
loadbearing metal-coordination bonds within the network. MD simulation calculates the energy landscape of an 
individual metal-coordination bond, through which bond lifetime can be inferred. Figure from Ref.216 

 
2.3.1 Dynamic behavior of Ni2+-nitrogen family hydrogels 
 
As a demonstration model system, we focus on the Ni2+-nitrogen family (imidazole and 
histidine) complexes due to their prevalence in biology and the development of appropriate Ni2+ 
force fields. This focus is also in large part inspired by the original study on histidine-metal 
coordinate crosslinking in hydrogels by Fullenkamp et al., which documented that coordination 
crosslinks involving histidine, but not imidazole, lead to more solid-like hydrogels.10 Both 
histidine and imidazole ligands are nitrogen-containing chelators with similar structures. 
Imidazole consists of a 5-membered heterocycle where the pyridine-like nitrogen coordinates 
in a monodentate interaction to metal ions under basic conditions. Histidine consists of the 
same imidazole heterocycle and an additional amine group which can also coordinate metal 
ions, thereby composing a more stable bidentate interaction (Figure 2-2, inset), as originally 
proposed by Fullenkamp et al. 
 
To isolate the mechanical effect of these stereochemical differences in metal-coordinating 
ligands, we incorporated imidazole and histidine as telechelic ligands in 4-arm-PEG polymers 
and established hydrogel networks crosslinked via Ni2+ ions. To maximize the mechanical 
signal-to-noise ratio of metal-ligand dissociation, we employ nearly ideal polymer networks in a 
regime below entanglements (see calculations in Appendix 2), such that bulk relaxation time of 
the network is dominated by the kinetics of the dynamic metal-ligand crosslinks.25,29,73  
 
As demonstrated in Figure 2-2, 4-arm-PEG-histidine hydrogel networks display a bulk 
relaxation time (τ) of τ ~ 400 s, whereas 4-arm-PEG-imidazole networks display a τ ~ 0.06 s at 
5 °C based on a Maxwell model fit. This observation supports the hypothesis that the 
monodentate imidazole-Ni2+ bond acts as a more labile crosslink whereas bidentate histidine-
Ni2+ bond results in a slower crosslink dissociation rate in synthetic hydrogels. A similar large 
difference in dissociation rates between nearly identical metal-coordinating ligands has been 

Figure 1. Scales in simulation and experiment. The macroscopic network 
relaxation time (!) of the hydrogel can be experimentally measured via a 
frequency sweep with a rheometer. This network relaxation time represents 
the dissociation and re-association of several metal-coordination bonds that 
hold together the network. MD simulation calculates the energy landscape of 
an individual metal-coordination bond, through which bond lifetime can be 
inferred. 
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observed for other stereochemistries,217 but a mechanistic explanation for these differences 
remains speculative. 
 

 
Figure 2-2. 4PEG-histidine gels are slower relaxing than 4PEG-imidazole gels. Time-temperature super-
positioned storage (𝐺′) and loss moduli (𝐺′′) at 5°C from frequency sweeps collected over several temperatures for a) 
1M:2L ratio of Ni2+ –4arm PEG-histidine and b) 1M:2L ratio of Ni2+ –4arm PEG-imidazole at ~pH 8 at ~20% w/v. 
Schematic of dominant coordination complex in each gel based on equilibrium predictions is shown in insets. Each 
gel demonstrates Maxwellian behavior, with imidazole gels deviating in the low frequency regime likely due to the 
broader speciation of coordination complexes present in imidazole gels compared to histidine gels (Figure 2-3). 
Figure from Ref.216 

 
2.3.2. Free energy landscapes of Ni2+-nitrogen coordination 

complexes 
 
To better understand the effect of ligand stereochemistry and local chemical environment on 
dissociation rate, or inversely bond lifetime, of the coordination complexes, the free energy 
landscapes of histidine and imidazole coordinating with Ni2+ ions were characterized via 
metadynamics. Metadynamics enables a computationally efficient evaluation of energy 
landscapes via the addition of bias potentials that overcome local minima.218–220 To ensure a 
relevant comparison between experiment and simulation, we first determined which metal-
coordinate complexes would be dominant in the hydrogels using thermodynamic equilibrium 
predictions that use bond chemistry and hydrogel pH to calculate species distributions of 
coordinate complexes (Figure 2-3).31 Based on these calculations, we proceeded with 
computing the free energy landscapes of the dominant His2Ni1 and Im2Ni1 complexes, 
representing two histidine or imidazole ligands coordinated with one Ni2+, in water solvated 
environments.  
 
The selection of an appropriate reaction coordinate, or collective variable (CV), is critical in 
calculating an energy landscape which captures all relevant reactants, products, and 
intermediate states. For this simulation, the CVs are chosen as distance between Ni2+ and the 
center-of-mass of the coordinating nitrogen atoms on each ligand (Figure 2-4). The CV must 
be selected to enable an efficient exploration of the computational space, while exploring 
“slow” variables that might prevent the full free energy landscape evaluation. The 
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appropriateness of the CV is evaluated by plotting the “COLVAR” file to ensure that the 
collective variables are thoroughly explored.  
 
 

 
Figure 2-3. Modeling studies based on thermodynamic speciation predictions from binding constants enable 
selection of appropriate metal coordination complexes for comparison between simulation and experiment. 
Equilibrium constants allow the estimation of molar concentrations of the different ligand species a) HisnNi2+ or b) 
ImnNi2+ in the 4-arm PEG hydrogels. Speciation curves are computed using the openly available MATLAB program 
from Cazzell and Holten-Andersen with a ligand concentration of 0.08M (equivalent to 20 wt% used in experimental 
gels) at pH 8.31,221 a) Histidine and b) imidazole are plotted at a 1M:2L stoichiometry used in the experimental gels. 
ML2 complexes clearly dominate in histidine gels and ML2 complexes narrowly dominate in imidazole gels. These 
complexes are selected for simulation for appropriate comparison to experiment. While Im1Ni1 is also present at pH 
8, it is not simulated because it does not form crosslinks between polymer chains. These crosslinks preserve the 
mechanical stability of the metal-coordinated network and contribute to the observed relaxation time from rheology 
experiments. Notably, the ML4 imidazole-Ni2+ complexes are not dominant at any metal stoichiometry (not shown) or 
any pH (shown), even though this complex often exists in biological protein metal-coordination sites. This may be 
because in the hydrogel, the competition between ligand and hydroxide binding to the metal ion is too strong. In 
contrast, the protein structure can enable four imidazole ligands to exist in a well-defined binding pocket to favor 
ML4 metal ion binding. Figure from Ref.216 
 
The free energy landscapes are illustrated in Figure 2-3a,b. Note that the key features of the 
free energy landscapes of coordination complexes conjugated to PEG-polymer are preserved 
when compared to the free energy landscapes of coordination complexes alone (Appendix 
S2-1). Thus, the free energy landscapes of the polymer-conjugated coordination complexes 
were not simulated further because their large size requires significantly more simulation time.  
 
Compared to Im2Ni1, His2Ni1 displays a deeper energy well by ~40 kJ/mol indicating stronger 
binding between histidine and Ni2+ than between imidazole and Ni2+, as originally hypothesized 
by Fullenkamp et al. The lowest energy binding state is captured in Figure 2-5a,b and 
represents either 4 nitrogen atoms and 2 nitrogen atoms binding to Ni2+ for histidine and 
imidazole, respectively (Figure 2-4). His2Ni1 also demonstrates a metastable binding state 
where 3 nitrogen atoms coordinate to Ni2+. 
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Figure 2-4. Atomistic representations of binding configurations from free energy landscape in Figure 3 
showing the collective variables (distances between Ni2+ ions and the center of mass of histidine (a-c) and 
imidazole (d,e)). Water molecules not shown for clarity, green atom represents Ni2+ ion. Table shows distance 
between collective variable and Ni2+ ion for each subfigure. The collective variable, or the reaction coordinate, is 
selected to be the distance between the Ni2+ and the center of mass of the coordinating nitrogen atoms on each 
ligand, and is shown in the dotted black line. Figure from Ref.216 
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Figure 2-5. Free energy landscapes of His2Ni1 and Im2Ni1 complexes demonstrate clear differences in 
energies and shape. Free energy landscape of two a) histidine and b) imidazole ligands bound with Ni2+ with the 
collective variables (CV) of the metadynamics simulation plotted as the x and y-axis. His2Ni1 has a narrower and 
deeper well than Im2Ni1, indicating more stable coordination complex binding. Inset demonstrates schematics of the 
binding state of the coordination complexes with the atomistic representations drawn above. Red and black path 
lines are the minimum energy ligand dissociation path from the lowest energy minima (fully bound state) to the next 
energy minima (dissociated state with one ligand dissociated). The minimum energy paths are almost entirely 
parallel with the axes, representing the physical phenomena where one ligand is bound to the metal ion at a 
constant distance while the other dissociates. This ligand dissociation path is also the microscopic event 
hypothesized as the origin of the macroscopic relaxation process of the metal-coordinated network. The minimum 
energy path can be further visualized as 2D energy landscapes for c) His2Ni1 and d) Im2Ni1 where for the legend 
entry “lig1,” lig2 is held constant while lig1 dissociates and “lig2” is vice versa (see inset). The landscape is described 
by 𝐸!, R, and W. c) R is the minimum number of Fourier terms that best fit the metastable well (dashed lines). d) The 
activation energy (𝐸!) is computed as the difference between the minimum energy (blue circle) and highest 
transition energy (blue square) before the bond is broken (blue diamond). W is the Gaussian fitting distance 
(𝑟"#$%%&#')  divided by the distance at break (𝑟()*#+). His2Ni1 has a larger R and 𝑟()*#+ and smaller 𝑟"#$%%&#' than Im2Ni1. 
Figure from Ref.216 
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2.3.3. Predicting macroscopic network dynamics from the 

energy landscape 
 
To compute quantitative parameters on the energy landscape surface, we compute the 
minimum energy path, which is the parametric curve that connects two energy minima on the 
energy landscape surface while using the shallowest ascent to traverse the minimum energy 
barrier between the two minima (Figure 2-5a,b red, black lines). The minima are selected to be 
the fully associated state, where two ligands are bound to one metal ion, and the dissociated 
state, where one ligand is dissociated from the metal-coordinate complex while the other 
ligand remains bound. This minimum energy path from the fully associated to a dissociated 
state represents the microscopic event hypothesized as the origin of the macroscopic 
relaxation process of the metal-coordinated network.52,222 Notably, the minimum energy path 
(Figure 2-5a-d red, black lines) is almost exactly the same as the reaction path where one 
ligand dissociates while the other remains bound to the metal ion at a fixed distance, which 
would be perfectly horizontal or vertical lines on the energy landscape. Along this reaction 
path, we can compute the bond dissociation activation energy (𝐸!) (Figure 2-5d), which plays 
a critical role in determining relaxation time through an Arrhenius dependence. 
 
Crucially we find that despite the large differences in length and time scales probed in 
simulation on an individual metal-coordinate complex and in experiment on a metal-
coordinated hydrogel network, the estimated 𝐸! barriers governing the system dynamics on 
both the micro- and macroscopic scales follow the same ordering when comparing across 
different coordination complexes (Figure 2-4a). Specifically, His2Ni1 has a higher 𝐸! in 
simulation than Im2Ni1 by ~7 kJ/mol. This is consistent with the slower experimentally 
measured bulk relaxation time of histidine-Ni2+ as opposed to imidazole-Ni2+ coordinated 
networks. 
 
However, differences in 𝐸! between His2Ni1 and Im2Ni1 alone are unable to account for the large 
magnitude of difference in relaxation time between the histidine-Ni2+ and imidazole-Ni2+ 
hydrogels (Figure 2-6). Our simulated energy landscapes allow us to access other critical 
parameters along the ligand dissociation pathways that may contribute to the observed 
differences in relaxation timescales. 
 

 
Figure 2-6. Arrhenius prediction of relaxation rates trained on His2Ni1 and Im2Ni1 does not show good 
alignment with MD or experiment activation energies. Arrhenius equation 𝜏 = 𝐴 ∗ exp .,-!
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of His2Ni1 and Im2Ni1 does not predict relaxation times of the coordination complexes reasonably. The fit is poor 
because the prefactor A and magnitude difference between Δ𝐸!,1234526 and Δ𝐸!,784526 are not enough to capture the 
magnitude of time difference between His2Ni1 and Im2Ni1. Circles represent MD data and squares represent 
experimental data. Figure from Ref.216 
 
As such, we propose a simple heuristic relationship using key features of the microscopic 
energy landscape to explain macroscopic network relaxation time. The parameters are 
selected based on key observable differences between the energy landscapes of His2Ni1 and 
Im2Ni1. One parameter selected is the Gaussian width (𝑟"!#$$%!&, as shown in Figure 2-5d) of 
the deepest binding energy well. 𝑟"!#$$%!& serves as a proxy for bond stiffness, where a larger 
𝑟"!#$$%!& implies a less stiff bond. 𝑟"!#$$%!& is normalized by the metal-ligand bond length at 
break (𝑟'()!*, as shown in Figure 2-5d) to result in the dimensionless functional form 𝑊 
representing bond stiffness. 
 

𝑊 =
𝑟+,-../,0
𝑟123,4

 

 
In addition to the large differences in 𝐸! and 𝑊, His2Ni1 has more local minima around the 
deepest binding energy well than Im2Ni1 (Figure 2-5a,b). As we will discuss in the next section, 
these additional minima can be interpreted as metastable binding states which may also 
contribute to the longer bond lifetime of His2Ni1 compared to Im2Ni1. We express these 
additional minima, or ruggedness 𝑅, using the dimensionless number of Fourier terms that fit 
the local minima in the landscape (as shown in Figure 2-5c).  
 
Building on the Arrhenius relationship for τ, we include the above stated 𝑊and 𝑅 to yield the 
following proposed equation for average network relaxation time:  
 
𝜏	~	𝑏5 + 𝑏6 ∗ 	𝑒

7!
*89 +	𝑏: ∗ 𝑊'9 +	𝑏; ∗ 	𝑅':      (2-1) 

 
By fitting the coefficients of this equation using the 𝐸!, 𝑊and 𝑅	of His2Ni1 and Im2Ni1 (Table 2-
1), we find the coefficients listed in Table 2-2. Here the coefficients (b2, b3, b5) represent 
intrinsic times associated with each aspect, 𝐸!, 𝑊, and 𝑅	respectively, of the energy 
landscape. The scaling factors (b1, b4, b6) capture time and length scale differences in MD and 
experiment.  
 
Table 2-1. Table of Ea, W, and R values used in fitting equation 

 𝜟𝑬𝒂 (kJ/mol) W R 
His2Ni1 54 0.4082 4 
Im2Ni1 46 0.2944 0 
His3Ni1 48 0.3622 3 
Tpy2Ni1 75 0.4524 1 
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Table 2-2. Coefficients of fitting equation trained on the Ea, W, and R of His2Ni1 and Im2Ni1. Note that the 
coefficients remain similar when the fitting equation is trained on either His2Ni1 or Im2Ni1 individually, rather than 
His2Ni1 and Im2Ni1 together as presented here. 
 

b1 223.13 

b2 3.15e-09 

b3 -0.72 

b4 -2.92 

b5 8.60 

b6 3.08 

 
τ increases exponentially with 𝐸! as already expected from the Arrhenius equation (Figure 2-
7b). We find that τ has a direct relationship with the number of local minima, likely because 
coordinate complexes such as His2Ni1 with additional local minima have more complex 
dissociation mechanisms, which thereby increase lifetime (Figure 2-7c). Further, we find that τ 
has a direct relationship with 𝑊, indicating that a wider bond potential has a longer bond 
lifetime (Figure 2-7d). Interestingly, τ is more sensitive to changes in 𝑅 than 𝑊 indicating that 
the number of metastable states plays a greater role in controlling relaxation time. Given this 
relationship, we show that for a given activation energy, chosen here as that of His2Ni1, the 
range of relaxation times can vary significantly based on ruggedness and bond stiffness 
(Figure 2-7e). 
 

 
Figure 2-7. Comparison between experiment and simulation show matching qualitative trends and an 
empirical relationship. a) Experimental relaxation time, experimental activation energy, and simulated activation 
energies follow the same qualitative trends. The order of terpyridine (Tpy2Ni1) > His2Ni1 > His3Ni1 > Im2Ni1 kinetic 
stability is preserved in both experiment and simulation, even though experimental observations are made on a 
macroscopic polymer network with coordination complexes and simulation is based on a single coordination 
complex. The triangles represent the relaxation times predicted by the Arrhenius relationship alone (Figure S4), and 
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the stars represent the relaxation times predicted by Equation 1. Note some error bars are very small and difficult to 
visualize. Effects of b) 𝐸!, c) R or d) W on relaxation time (τ) are plotted when the other two independent variables 
(W and R, E# and W, or E# and R of His2Ni1 respectively) are held constant. b) τ increases exponentially with E#. c) τ 
increases with R. d) τ increases asymptotically with W. Plotted points represent the τ given the	E#, W, and R of 
His2Ni1. e) Given a fixed	𝐸! of His2Ni1, τ can be varied significantly with changing width (W) and landscape 
ruggedness (R). Figure from Ref.216 
 
The above empirical relationship enables a more facile a priori prediction of bulk relaxation 
times using the computational techniques demonstrated in this paper. We probed whether we 
could use our characterization of the microscopic His2Ni1 and Im2Ni1 energy landscapes to 
predict the macroscopic behavior of networks crosslinked with other Ni2+-nitrogen-containing 
ligands, such as terpyridine (Tpy), a tridentate ligand, or other metal-ligand stoichiometries, 
such as His3Ni1. Remarkably, we find that Equation 2-1 predicts the relaxation time of a His3Ni1 
network to be τ ~3s and Tpy2Ni1 to be τ ~1 * 105s which is reasonably consistent within the 
same order of magnitude as our experiments (Appendix S2-2, S2-3).  
 
2.3.4. Discussions, Implications, & Conclusions  
 
Selecting Ni2+-nitrogen family coordination complexes as a demonstration model system, we 
have shown how 4-arm-PEG-histidine and imidazole Ni2+-coordinated networks differ in 
macroscopic relaxation times and how that difference is reflected in the energy landscapes of 
the coordination complexes His2Ni1 and Im2Ni1. Though histidine and imidazole differ by one 
coordinating nitrogen, when incorporated as load-bearing crosslinks in ideal polymer networks, 
they produce vastly different network relaxation times by a factor of ~6,000. In our simple 4-
arm-PEG-imidazole hydrogels, imidazole-Ni2+ crosslinks are too labile to produce stable solid-
like networks at room temperature. The lability of imidazole-Ni2+ in hydrogels is surprising 
because imidazole is a key ligand in coordinating with metal ions in proteins where it provides 
greater structural stability.13,17,26,63 In proteins however, higher order protein structure may 
position imidazole ligands to enable stable crosslinks with metal ions. When taken out of this 
molecular context, the additional amine coordination provided by histidine is necessary for 
solid-like gel formation, as demonstrated by Fullenkamp et al.10 
 
Our simulations indicate that this vast difference in histidine and imidazole’s Ni2+-coordinated 
network relaxation times may be correlated to several differences in the microscopic energy 
landscapes of their dominant coordination complexes His2Ni1 and Im2Ni1. First and foremost, as 
originally proposed based on an assumed Arrhenius-dependent relationship between network 
relaxation time and the energy barrier to ligand dissociation, we show that His2Ni1 indeed has a 
much deeper binding well with a higher bond dissociation activation energy than Im2Ni1. 
Further, His2Ni1 has additional metastable states, likely due to a more complex dissociation 
mechanism than Im2Ni1. The existence of metastable states is similar to protein folding energy 
landscapes that have several local minima, which often help guide specific folding pathways or 
regulate folding dynamics.223 Like in these protein systems, the additional metastable minima in 
the polymer hydrogel may help slow relaxation dynamics. Potentially, these metastable wells 
may also enable the ligands to partially dissociate and then re-associate quickly to help in 
recovering the fully bound coordination complex. This hypothesis could be examined further in 
future work as an area of exploration, similar to the relationship between local minima in the 
energy landscape and material recovery suggested in Sun et al.103 
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Using these key energy landscape features that distinguish histidine from imidazole, we 
posited that the relaxation time of the experimental metal-coordinated network can be 
empirically calculated through an expanded Arrhenius equation that not only includes 
activation energy, but also bond stiffness, and number of local minima—all microscopic 
parameters determined from the energy landscape. Each of these microscopic parameters 
lends critical insights into the effect of energy landscape on coordination bond lifetime. As 
already established with the traditional Arrhenius equation, a larger bond dissociation 
activation energy results in a longer lifetime. Further, we find that a less stiff bond results in a 
longer lifetime, which aligns with Kramers’ escape rate theory discussed in the following 
paragraph where a less stiff, or wider bond width, results in a longer time. The additional local 
minima also contribute to extending lifetime by enabling different configurations of the ligand-
metal ion binding. Not only does the empirical relationship developed in this work lend insight 
into how different energy landscape parameters affect bond lifetime, but it also enables a priori 
predictions of relaxation times of other similar metal-coordinated gels. Here, the empirical 
relationship developed from His2Ni1 and Im2Ni1 allow us to predict the network relaxation time 
of His3Ni1 and Tpy2Ni1 reasonably. 
 
We emphasize again that we are proposing an empirical relationship for the microscopic 
energy landscape and macroscopic relaxation time, rather than a physicochemical theory. This 
is in part due to limitations with metal ion force fields that currently do not fully capture details 
of metal-ligand charge transfer.113,224,225 Given this limitation, we focus on the empirical 
relationship here as it serves our intended purpose: to both predict relaxation times for other 
nitrogen-based ligands coordinating with Ni2+ and observe the effects of different landscape 
parameters on bond lifetimes. We also considered other classical rate models,226 such as 
Kramers’ theory about the escape of a particle over an energy potential barrier, as a basis for 
our quantitative relationship. The detailed discussion of theories considered in model 
development is in the 2.3.5 Materials and Methods section below. More simulations, theory 
and improved metal ion force fields are needed to derive a detailed physicochemical 
relationship between energy landscapes and resulting bond lifetimes beyond the empirical 
relationship proposed here.  
 
The microscopic energy landscape of the individual coordination complex is also only one 
critical component in the determination of the macroscopic relaxation time of ideal metal-
coordinated networks. Despite the ideal nature of the hydrogel network, there are still 
heterogeneous structures and defects that contribute to the network relaxation behavior.83 
Though the coefficients and scaling factors in Equation 2-1 capture some of these network-
related dynamics effects, additional mesoscale simulations would be required to include 
network heterogeneity to resemble real hydrogels more closely and probe the resulting range 
of relaxation times over an ensemble of simulations. More detailed quantum chemical 
simulations of these coordination complexes may also further help bridge the differences in 𝐸! 
between MD on the single coordination complexes and experiment on coordination networks 
(Figure 2-7a). 
 
This work dissects an energy landscape of a bond and relate it to experimental macroscopic 
kinetics of a system. The framework developed here opens several areas of exploration for 
designing new materials with a better understanding of how bond chemistries affect dynamic 
macroscopic properties. We strongly believe our approach to the demonstration model system 
of Ni2+-nitrogen family of coordination complexes will be relevant to other coordination bond 
chemistries and more complex chemical environments, such as the metal-coordination bonds 
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within the protein structure of the mussel thread and marine worm jaw, to better characterize 
their natural energy landscapes. Next steps can be taken to explore the relevance of Equation 
2-1 to other coordination bond chemistries with better metal ion force field development. 
Different ligand chemistries can also be tested, particularly those that have a narrower 
speciation like histidine rather than imidazole. Such mechanistic insights hold the potential to 
guide the a priori design of metal-coordinated materials with specific relaxation times towards 
useful biological viscoelastic tissue mimics and self-healing sustainable construction materials.  
 
2.3.5. Materials and Methods 
 
Synthesis of telechelic 4PEG-Histidine hydrogel 
4PEG-His was synthesized using modifications of the procedure by Cazzell et al.31 Briefly, 3 g 
of 4-arm 10 kDa PEG-NH2·HCl (0.25 equiv of PEG, 1.0 equiv of −NH2 groups) (JenKem USA) 
was mixed with Boc-His(Trt)-OH (1.5 equiv) and BOP reagent (1.5 equiv) and dissolved in ∼10 
mL of dichloromethane. N,N-Diisopropylethylamine (DIPEA) (535 equiv) was added, and the 
reaction was allowed to proceed overnight under N2. The product was purified by precipitation 
once in diethyl ether, thrice in methanol at −20°C, and once in diethyl ether. The product was 
then dried under vacuum. Protecting groups were removed by a cleavage cocktail of 95 mL of 
trifluoroacetic acid, 2.5 mL of triisopropylsilane, and 2.5 mL of H2O for 2 h. An equal volume of 
methanol was then added, and the solvent was removed using a rotary evaporator. The final 
product was purified by dissolving it in methanol and precipitation in ether three times and 
vacuum drying. 1H NMR (500 MHz, CDCl3) δ 8.67 (s, 4H), 7.43 (s, 4H), 4.44 (t, 4H), 3.89-3.33 
(m, 848H), 3.29 (t, 8H). Coupling efficiency estimated to be 82%. See Appendix S2-4 for 
characterization data.  
 
Synthesis of 4Peg-Imidazole hydrogel 
4PEG-Im was synthesized using modifications of the procedure by Fullenkamp et al.10 Briefly, 3 
g of 4-arm 10 kDa PEG-NH2·HCl (0.25 equiv of PEG, 1.0 equiv of −NH2 groups) (JenKem USA) 
was mixed with 3-(N-1-Trityl- imidazol-4-yl)propionic acid (0.69 g, 1.8 mmol, Chem-Impex 
International, Inc.) (1.5 equiv) and BOP reagent (1.5 equiv) and dissolved in ∼10 mL of 
dimethylformamide. N,N-Diisopropylethylamine (DIPEA) (535 equiv) was added, and the 
reaction was allowed to proceed overnight under N2. The product was purified by precipitation 
once in diethyl ether, thrice in methanol at −20°C, and once in diethyl ether. The product was 
then dried under vacuum. Protecting groups were removed by a cleavage cocktail of 95 mL of 
trifluoroacetic acid, 2.5 mL of triisopropylsilane, and 2.5 mL of H2O for 2 h. An equal volume of 
methanol was then added, and the solvent was removed using a rotary evaporator. The final 
product was purified by dissolving it in methanol and precipitation in ether three times and 
vacuum drying. 1H NMR (500 MHz, CDCl3) δ 8.61 (s, 4H), 7.76 (s, 4H), 3.89-3.33 (m, 848H), 
3.05 (s, 8H), 2.69 (s, 8H). Coupling efficiency estimated to be 78%. See Appendix S2-4 for 
characterization data. 
 
Hydrogel formation 
Hydrogels were formed by modifying the method described elsewhere.31 4-arm PEG polymer 
was dissolved in 18.2 MΩ cm water at a concentration of 400 mg/mL. 50 μL of this solution 
was dispensed onto Parafilm®. 0.2M nickel (II) chloride hexahydrate was added to achieve the 
appropriate metal-to-ligand stoichiometry. 1M sodium hydroxide was then added to reach the 
final pH and the resulting mixture was then homogenized by mixing with the spatula and by 
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kneading the material by folding the Parafilm®. The final concentration of the gel was ~20 % 
w/v, which is above critical overlap concentration and below the entanglement as confirmed by 
us and others (see Appendix 2 for calculations).29,227 The observed relaxation times are well 
above 𝜏<=!%&.29 
 
Experimental testing of hydrogel 
The resulting hydrogels were measured for their viscoelastic properties and pH. The gels were 
loaded onto an MCR 302 stress-controlled rheometer from Anton Paar and tested using a 10 
mm diameter parallel plate. Frequency sweeps were performed from 100 to 0.1 rad/s at 
temperatures from 0 to 35°C at a strain amplitude of 1%, within the linear viscoelastic regime 
of histidine and imidazole gels. After the 35°C frequency sweep, a strain sweep was performed 
from 0.01% to 1000% strain at a frequency of 1 Hz to confirm the linear viscoelastic regime of 
the gels at 5°C (Appendix S2-5). Time temperature superposition was used to combine the 
frequency sweep results for various temperatures referenced to 5°C. The plateau modulus was 
determined as the maximum value of the storage modulus and the relaxation time was 
determined from the crossover of the storage and loss modulus using a Maxwell fit. The pH of 
the gels was determined using a SoilStik pH meter from FieldScout.  
 
Computational modeling of energy landscapes 
MD simulations implemented in LAMMPS228 are used to investigate the energy landscape of 
imidazole, histidine, and pyridine ligands using the CHARMM22 force field229,230. Ni2+ metal ion 
parameters from Babu and Lim are used as they simultaneously replicate relative hydration free 
energies, first-shell coordination numbers, and average water-ion distances.231 PEG 
parameters from the CHARMM c35r ether force field are used as they replicate persistence 
length, hydrodynamic radii, and scaling of radius of gyration with molecular weight well.232 The 
ligands and metal ion are solvated in a 50Å x 50Å x 50Å water box using TIP3P water 
molecules. Solvated ligands are equilibrated using an NPT ensemble with a constant pressure 
of 1 atm at 300 K for 2 ns followed by equilibration with an NVT ensemble for 1 ns using the 
Nose/Hoover thermostat and barostat. A simulation timestep of 2 fs was chosen with a cutoff 
for nonbonded interactions at 12 Å. The particle-particle-particle-mesh (PPPM) method233 was 
used to compute the long-range columbic interactions and the SHAKE algorithm234 was 
applied to constrain high-frequency dynamics from hydrogen-related energy terms in the water 
molecules. Following equilibration, well-tempered metadynamics was used to study the free 
energy landscape of the ligands. The simulations are performed using a LAMMPS patch with 
the PLUMED v2 package.219,235 The biased collective variables are the distances between the 
center of mass of the coordinating nitrogens on each ligand and the metal ion. Gaussian hills 
with a width of 0.2 Å are added at a rate of 1 kJ/mol for every 500 timesteps to bias the energy 
and a bias factor of 6 is applied. Simulations are run for 200 ns and convergence of the 
landscape is verified (Appendix S2-6). See codes in Appendix 2. 
 
Quantification of free energy landscape parameters 
Binding energy is calculated from the difference between the free energy of the entire 
simulated system (ligands, metal ion, water, counterions) where one ligand is bound and the 
other is dissociated and the lowest well depth in the landscape where all ligands are bound to 
the metal ion. Activation energy is calculated from the highest peak before dissociation of the 
ligand from the metal ion. The breaking distance is defined as the maximum bond length 
between any coordinating nitrogen and Ni2+ is 2.11 Å corresponding to a collective variable 
distance of ~5 Å for histidine and ~4.5 Å for imidazole. Well width is characterized by a fitting 
to a Gaussian equation centered at the deepest well. 
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Alternative approaches to model development 
Existing theories of the relationship between energy landscape and relaxation time were also 
explored as alternatives to the model presented in the main text. We specifically discuss rate 𝑘, 
or the transition rate out of the lowest energy binding well, here as opposed to bond lifetime 𝜏 
used in the main text to better compare to existing theories that normally discuss rates, 
although 𝑘 = 1 𝜏1 . 
 
One of the most important relationships in physical chemistry, the Van’t Hoff Arrhenius 
equation, suggests that the rate of a chemical reaction is exponentially dependent on 
activation energy Δ𝐸!. Here, the rate is modified by a pre-exponential factor 𝐴: 
 
𝑘	 = 	𝐴𝑒>?7</*=8          (2-2) 
 
In rheology of transient networks, the Arrhenius equation (Equation 2-2) is commonly used to 
extract the Δ𝐸! of the relevant relaxation process after probing the rate of relaxation at several 
temperatures to extract 𝐴 and Δ𝐸!. While the Arrhenius equation is used to determine Δ𝐸! from 
rheology experiments conducted at several temperatures, the prefactor 𝐴 is system dependent 
and not universally applicable to all relaxation processes. As such, the prefactor 𝐴 calculated 
for a His2Ni1 system for example cannot be used to calculate the rate of Im2Ni1 dissociation 
even if the Δ𝐸! of Im2Ni1 is known (Figure 2-6). 
 
Transition state theory and Kramers’ theory of reaction rate were also considered as potential 
candidates to describe the relationship between energy landscape and 𝑘. Kramers’ theory in 
particular not only provides a closed form solution for the rate of escape of a Brownian particle 
over a potential energy barrier but also includes features of the energy landscape. Briefly, in 
this theory, a Brownian particle sits in a well in an energy field E(x). As the Brownian particle 
escapes from the well, it experiences a force from the potential gradient -dE/dx and a frictional 
force from the solvent. Kramers’ theory says that the barrier crossing rate that is exponentially, 
or strongly, dependent on the energy barrier (Δ𝐸!), and polynomially, or weakly, dependent on 
the well curvature (𝐸") at the minimum energy position (𝑥A%&) and barrier position (𝑥A!B) and 
solvent friction (𝜉). The classic result for the barrier-crossing rate in high friction regime, which 
applies to our simulations and experiments where water is the solvent 236,237, is as follows:  
 
𝑘	 = C7"(B>?@)|7"(B><A)|	

6IJ
𝑒>?7</*=8        (2-3) 

 
This theory suggests that increasing Δ𝐸! decreases transition rate out of the lowest energy well 
and that a sharper curvature at a fixed Δ𝐸! results in higher transition rates, given that a 
sharper curve generally implies a shorter distance between the well and barrier. More details 
about the development, assumptions, and application of Kramers’ theory can be found in 
226,238,239. 
 
We initially calculated rates from the curvature and energy barriers in our simulated energy 
landscapes from Equation 2-3. However, we were unable to yield sufficient agreement 
between our experimentally determined rates and Kramers’-computed rates. We also modified 
𝜉 in the Kramers’ equation and added an additional rate term to account for the metastable 
wells in the histidine and terpyridine systems. However, these rates also did not agree with our 
experimental relaxation times.  
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Given the lack of agreement between our experimentally determined rates and Kramers’-
computed rates, we further modified Kramer’s equation to account for alternative definitions of 
metastable wells and well curvature. We considered two definitions of metastability defined as 
ruggedness (𝑅):  
 

𝑟𝑢𝑔𝑔𝑒𝑑𝑛𝑒𝑠𝑠 = 	𝑅 = 	𝑁K)LL$ 
 
the number of Fourier terms that make up the wells (𝑁K)LL$) of the energy landscape, the 
definition used in the main text, or  
 

𝑟𝑢𝑔𝑔𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑅 =
𝑑A)M!$M!'L)
𝑑'()!*

+ 1 

 
the distance in Å across the reaction coordinate that the metastable region (𝑑A)M!$M!'L)) 
occupies normalized by the distance required to break the bond (𝑑'()!*). It is offset by 1 to 
account for landscapes in which there are no metastable wells. We then considered two ways 
to incorporate the metastability into the rate equation, either through the multiplication or 
addition of the ruggedness term.  
 
We also modified Kramers’ equation with alternative equations of curvature to better capture 
the anharmonicity of the energy wells, as opposed to the harmonic equations typically used in 
Kramers’ estimations. As such, we fit the binding energy potential well to both the Morse and 
Gaussian potentials to capture the well anharmonicity. We describe these curvatures (𝑈”) using 
a dimensionless parameter 𝑈”	 ∗ 	ξ	 ∗ 𝑏5 where 𝑏5 represents a natural frequency associated 
with the curvature. We also considered a dimensionless parameter K%NM=

N=BC<D
 where the Morse or 

Gaussian curvature width is normalized by the distance required to break the coordination 
bond (𝑑'()!*). 
 
The modified Kramers’ equations accounting for the alternative definition of well curvature and 
ruggedness are presented below:  
 
𝑘 = wO ∗ [𝑈”	 ∗ 	ξ	 ∗ b5]16 ∗ exp G−

7<
4P
I ∗ 𝑅1:       (2-4) 

𝑘 = wO ∗ [𝑈”	 ∗ 	ξ	 ∗ b5]16 ∗ exp G−
7<
4P
I + bQ ∗ 𝑅1;      (2-5) 

k = wO ∗ K
K%NM=
N=BC<D

L
16
∗ exp G− 7<

4P
I ∗ 𝑅1:	       (2-6) 

k = wO ∗ K
K%NM=
N=BC<D

L
16
∗ exp G− 7<

4P
I + bQ ∗ 𝑅1;	      (2-7) 

 
Several of these resulting equations gave us comparable rates to experimentally determined 
rates, with logical coefficients and prefactors. 
 
Note that the above discussion is merely intended to suggest that there could be other logical 
functional forms of the empirical relationship between energy landscape and rate beyond the 
empirical equation presented in the main text. Further simulation and data would be required to 
arrive at a more robust physicochemical theory beyond the empirical relationships proposed 
here. We recommend other work that provides more derivations of Kramers’ theory applied to 
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other model systems 240,241, extensions to multiwell 242, or applications to single molecule force 
spectroscopy experiments 243–245 for consideration. Further, other models besides Kramers’ 
theory, transition state theory, and the Arrhenius equation, can also be considered.246 
 
2.4 Coordination stoichiometry effects on the binding 

hierarchy of histamine and imidazole-M2+ complexes 
 
In the previous section, we focused on the quantitative prediction of dynamic mechanical 
properties of nitrogen-family coordinating ligands (Figure 2-8a) with Ni2+. In this section, we 
extend our analysis to different metal ions including Zn2+ and Cu2+ and the role of these 
chemistries on the corresponding macroscopic properties of the metal-coordinated networks. 
There is an unresolved understanding of the molecular origins of the different dissociation rates 
exhibited by imidazole motifs crosslinked with Ni2+, Zn2+, and Cu2+ ions in these materials. A 
complicating factor in understanding the “hierarchy” of binding between histidine and these 
transition metals is that the hierarchy appears to be strongly system or configuration 
dependent. For instance, the relaxation times of polymer networks crosslinked by coordination 
between histamine (an imidazole group with an additional amine group) and Ni2+, Zn2+, and Cu2+ 
ions follows a hierarchy of Ni2+ > Cu2+ > Zn2+,10,25 and the same order is observed in polymer 
melts crosslinked by acetate ligands and the same metals.247 This behavior is contrasted by the 
mechanical reinforcement of synthetic hydrogels with imidazole-rich protein residues; the 
modulus of these imidazole-rich protein networks crosslinked with transition metal ions show 
Zn2+ > Ni2+ for polymer networks with imidazole-rich coiled-coil cross-linking motifs,102,104 and 
also for acrylamide copolymer networks with imidazole functional groups.248 A similar trend of 
Zn2+ > Ni2+ > Cu2+ is also observed in the case of hydrogels made with imidazole-rich Nvjp-1 
protein found in the jaws of the marine sandworm Nereis.91  
 
A hypothesis to explain the apparent discrepancy in the metal ion hierarchy between 
histamine-containing synthetic materials and imidazole-rich protein residues is that both 
nitrogen atoms in the histamine ligand are available for coordination interactions with M2+ in 
synthetic materials, whereas only one nitrogen atom in the imidazole ligand is available 
coordination interactions in protein systems where the carboxyl and amine groups form the 
backbone of the protein. However, the cumulative binding stability constants of imidazole and 
histamine with M2+ follows a hierarchy of Cu2+ > Ni2+ > Zn2+,111 as does DFT calculation results 
of the interaction between a single imidazole ligand and M2+.249 The Cu2+ > Ni2+ > Zn2+ hierarchy 
is also predicted by the Irving-Williams series, which ranks the stability of octahedral 
complexes of amines and thiols with first-row transition metal ions.109 This relative ordering is in 
contrast with the hierarchy presented above for histamine-rich networks and imidazole-rich 
proteins. In addition, in vitro binding affinities of these transition metals with imidazole-rich Hpn 
proteins and in vivo selectivity of H. pylori which use Hpn proteins to sequester transition metal 
ions show different hierarchies of Cu2+ > Ni2+ > Zn2+ and Ni2+ > Cu2+ > Zn2+, respectively.250 The 
exchange time of H2O with these three transition metals, which is yet another measure of the 
dissociation rates of bound species to the metal ions, follow an order of Ni2+ > Zn2+ > Cu2+. 
Thus, the reported binding hierarchies of imidazole-M2+ interactions are prevalently system-
specific (Figure 2-8b). 
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Figure 2-8. Diverse binding hierarchy between histidine and Ni2+, Cu2+, and Zn2+. a) Structure of histidine and 
its related functional groups histamine and imidazole. These histidine groups form complexes of various 
coordination numbers with first-row transition metals such as Ni2+, Cu2+, and Zn2+. b) Reported binding hierarchy of 
Ni2+, Cu2+, and Zn2+ with histidine-containing materials and related systems. c) Results from this study for the 
binding hierarchy of histamine and imidazole with Ni2+, Cu2+, and Zn2+ at different coordination states. Figure from 
Ref.251 
 
We suggest that developing an understanding of the binding hierarchy of imidazole with M2+ 
ions must begin with an assessment of the kinetics of the imidazole-M2+ interaction in an ideal 
environment in which the coordination interactions are not affected by other features of the 
system. An example of a nonideal environment might be the conformational restrictions on the 
imidazole-M2+ interactions in biological systems due to the structural self-assembly of the 
protein strands. Here we aim to study the binding hierarchy of histidine and imidazole with M2+ 
ions by utilizing a flexible telechelic polymer hydrogel as the model system. In this 
configuration, the telechelic end-groups of the polymers can be functionalized with either 
histamine or imidazole to induce transient cross-linking with Ni2+, Zn2+, and Cu2+ ions. The 
binding affinity between the ligands and the M2+ can thus be studied by monitoring the 
viscoelasticity of the hydrogel network, as the dissociation kinetics of such structures govern 
the relaxation of the hydrogel network.217 Furthermore, this configuration allows control of the 
stoichiometric ratio of histidine and M2+, which provides an easy handle for controlling the 
metal-ligand coordination number (ML1, ML2, ML3, ML4).27,29 
 
Thus, here we characterize the viscoelasticity of transient networks formed with histamine or 
imidazole and Ni2+, Zn2+, and Cu2+ ions under different stoichiometric conditions and 
complement this effort with a density functional theory (DFT) investigation of the overall affinity 
of complexes at different coordination numbers. We show that the hierarchy of Ni2+, Zn2+, and 
Cu2+ binding stability is dramatically affected by the coordination number of the metal-ligand 
interaction (Figure 2-8c), and provide a structural explanation of this hierarchy.  
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2.4.1. Dynamic behavior of Ni2+-nitrogen family hydrogels in 

buffer 
 
The speciation of metal-ligand complexes is driven by the stochiometric quantities of the metal 
ions and ligands in the reaction media. This is illustrated by a speciation analysis of Ni2+ and 
histamine (see 2.4.4 Materials and Methods), which has also been demonstrated in recent 
work29,216 (Figure 2-3, 2-9a). This example analysis shows that the dominant coordination 
number of the metal-ligand complexes in the reaction media is strongly stoichiometry-
dependent, such that the metal-ligand ratio can be adjusted to preferentially form mono, bis, or 
tris coordination complexes. The manipulation of the coordination number via the reaction 
media stoichiometry will in turn significantly affect the structure and stability of the complexes, 
which we aim to characterize in this work.  
 

Figure 2-9. Coordination-number-dependent viscoelasticity of a histamine-functionalized polymer network. 
A) Speciation analysis of histamine with Ni2+. Controlling the stoichiometric ratio of metal ions to ligands changes the 
population of ML1, ML2, and ML3-coordinated species in the system.  B) Structure of 4-PEG-histamine which is 
mixed with M2+ ions under stoichiometrically controlled conditions to design viscoelastic fluids, which are then 
measured on a rheometer. C), D), and E) Small-amplitude oscillatory shear analysis (𝑇 = 5℃) of 4-PEG-histamine 
with Cu2+, Ni2+, and Zn2+ at ML3 and ML2 coordination numbers, and F) its representation in terms of a complex shear 
viscosity. Data below the inertial limit of the rheometer is colored in grey. G) Schematic illustration of the Maxwell 
model of linear viscoelasticity, represented by a spring (with a spring constant 𝐺E) and a dashpot (with a viscosity 𝜂E) 
in series. H) Schematic illustration of the reaction coordinate underlying a spontaneous metal-coordination event. 
Figure from Ref.251  
 
In our study, we investigate the metal-ligand stoichiometry-dependent rheological properties of 
4-PEG-histamine and M2+ networks buffered with MOPS, which is a Good’s buffer at 
physiological pH that shows minimal interaction with transition metals such as Cu2+, Ni2+, and 
Zn2+ and is thus used as standard buffers in binding assays.252–254 This is in contrast to the 
previous study29 in which the gels buffered by phosphate-buffered saline (PBS), where PO4

-
 

groups in PBS can interact significantly with the M2+. The use of PBS can therefore pose 
complications in studying the stability of the resulting coordination complexes, especially since 
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interaction between M2+ and anionic species can cause a change in the coordination number of 
the metal centers.91 
 
The storage modulus 𝐺′(𝜔) and loss modulus 𝐺′′(𝜔) of 4-PEG-histamine-M2+ networks under 
different stoichiometries are shown in Figure 2-9c-e (𝑇 = 5R𝐶). The rheological data exhibits 
Maxwell-like viscoelastic behavior, as expected based on prior results10,25 and as expected of 
transient networks.255,256 In the ML3-coordinated networks with Ni2+, Cu2+, and Zn2+, we observe 
an ordering of the dissociation times of the 4-PEG network, indicated by the cross-over time 
𝜏< = 1/𝜔<, to be Ni2+ > Cu2+ > Zn2+ in agreement with the refs.10,25 However, this trend is 
completely different in a network formed with a ML2 metal-ligand coordination. We find that the 
Ni2+ network completely loses its ability to form a viscoelastic network as indicated by the 
purely viscous response of the network. The Cu2+ network becomes slightly weaker, indicated 
by the slight lowering of the viscoelastic moduli of the network. The Zn2+ network actually 
becomes slightly more viscous, as indicated by an increase in 𝐺′′(𝜔). Comparing just the 
complex shear viscosity 𝜂∗(𝜔) = 𝐺∗(𝜔)/𝜔 of these networks (which is a measure of the zero-
shear viscosity (𝜂T) of the network via the Cox-Merz rule), we find that for ML2 stoichiometric 
conditions, the ordering of dissociation times is Cu2+ > Zn2+ > Ni2+ (Figure 2-9f). 
 
For a system following the Maxwell model of viscoelasticity (Figure 2-9g), the zero-shear 
viscosity 𝜂T of a material is a function of the network elasticity 𝐺T and the characteristic cross-
over time 𝜏<, such that 𝜂T = 𝐺T𝜏<. Here, we can recognize that 𝐺T depends on the density of 
cross-links in the network	(𝜌)257 and that 𝜏< depends both on the dissociation rate (𝑘N)	of the 
cross-links as well as 𝜌.255,256 Thus, we can surmise that 𝜂T in our network is dependent on both 
𝜌 and 𝑘N of the cross-linking interactions. 𝜌 is a quantity related to the static equilibrium 
concentration of the cross-links, and thus related to the stability constant 𝐾, which is a 
measure of the thermodynamic free energy change Δ𝐺T of the forward binding process 
between the metals and the histamine ligands. In contrast, 𝑘N is a measure of the kinetic 
activation energy of the reverse binding process, 𝐸( (Figure 2-9h). 
 
We cannot decouple the contributions of 𝐺T and 𝜏< on the 𝜂T of the material, since the cross-
linker dynamics for the polymer networks (except the Ni2+His3 networks) are too fast for 𝜔< to 
be measurable on the rheometer even at 𝑇 = 5R𝐶. Thus, we are not able to decouple the 
hierarchies of thermodynamic affinity and kinetic stability of the different histamine-M2+ 
complexes which give rise to the different dissociation times. Nevertheless, we hypothesize 
that the observed 𝜂T is dominated by the thermodynamic affinity of the histamine-M2+ 
complexes (i.e. Δ𝐺T in Figure 2-9h). This is because the binding of histamine with these 
transition metals is spontaneous258 and occurs within seconds, evidenced by the rapid gelation 
of the system. Since the forward reaction is rapid, the forward activation energy 𝐸U should be 
small, and thus we expect Δ𝐺T to be similar to the reverse activation energy 𝐸( (or at the very 
least, scale in a similar manner). 
 
Thus, the experimental data indicates that there is a coordination number-dependent hierarchy 
of thermodynamic affinity between histamine and Ni2+, Cu2+, and Zn2+, where the ordering 
follows Ni2+ > Cu2+ > Zn2+ in a ML3 configuration but the ordering changes to Cu2+ > Zn2+ > Ni2+ 

in a ML2 configuration. While these results provide some clarity on the different contexts in 
which Ni2+ and Cu2+ provide the strongest binding to histamine, we recognize that these results 
cannot be easily compared to results from biological systems. This is because the amine group 
of the histamine amino acid is incorporated into the backbone of proteins and peptides, and 
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thus it is rarely involved in metal-coordination interactions in metalloproteins,126 except in a few 
some cases with Cu2+ or Cd2+.126,259,260 When the amine group cannot participate in the metal-
coordination, the binding of histamine groups with M2+ species are likely to be dominated by 
the interaction with coordinating nitrogen atoms on imidazole.126 Thus, a more suitable 
comparison to binding hierarchy exhibited in biological systems may come from studying the 
hierarchy of imidazole-M2+ binding affinity. We thus perform a repeat of our experimental 
characterization of the complex shear viscosity 𝜂∗ with 4-PEG-imidazole-M2+ networks (Figure 
2-10a). We study the dynamics of polymer networks formed under ML2 and ML4 imidazole-M2+ 
coordination stoichiometry, as metalloproteins rarely have more than four coordinated histidine 
amino acids unless there are two metals in the metal binding site.42 For ML4 coordination, a Ni2+ 
> Cu2+ > Zn2+ hierarchy of binding affinity is observed, while for ML2 coordination, a Cu2+ > Ni2+ 
> Zn2+ hierarchy is observed (Figure 2-10b-d). A summary of the experimentally-observed 
binding hierarchies of histamine and imidazole with Ni2+, Cu2+, and Zn2+ are illustrated in Figure 
2-11a-b. 
 

 
Figure 2-10. Coordination-number-dependent viscosity of an imidazole-functionalized polymer network. A) 
Structure of 4-PEG-imidazole. B), C), and D) Complex shear viscosity 𝜂∗ measured via small-amplitude oscillatory 
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shear experiments (𝑇 = 5℃) on polymer networks mixed with Cu2+, Ni2+, and Zn2+ under stoichiometrically controlled 
conditions. Data below the inertial limit of the rheometer is colored in grey. E), F) Complex shear viscosity 𝜂∗ of 
histamine- and imidazole-functionalized polymer networks with different coordination numbers. Figure from Ref.251 

 
2.4.1. Relationship between coordination geometry and 

viscoelastic properties of network 
 
To validate these experimental results, we perform DFT calculations to determine Δ𝐺T of 
ligand-M2+ coordination interaction in stepwise manner beginning with a ML1 binding state (SI 
Methods). Each metal ion starts with binding six explicit water molecules in an octahedral 
arrangement as M(H2O)6. Histamine or imidazole ligands are sequentially added while 
displacing two or one water molecules respectively. The energy for each ML, ML2, ML3, and 
ML4 complex is computed as a sum of the ligand addition steps to reach the required binding 
coordination number. The results of the calculations for histamine (Figure 2-11c) and imidazole 
(Figure 2-11d) for the different M2+ were in good agreement with the hierarchy obtained via 
viscosity measurements (Figure 2-11a-b). For histamine, experiments and computation show 
that ML3 complexes follow a Ni2+ > Cu2+ > Zn2+ hierarchy, and ML2 complexes follow a Cu2+ > 
Zn2+ > Ni2+ hierarchy. For imidazole, experiments and computation show that ML4 complexes 
follow a Ni2+ > Cu2+ > Zn2+ hierarchy, and ML2 complexes follow a Cu2+ > Ni2+ > Zn2+ hierarchy.  
 
The DFT simulations also reveal the geometry of the metal-coordination complexes, which can 
provide insight into the structural origins of the binding hierarchy exhibited by the metals 
(Figure 2-11a). The identified coordination geometries of the complexes are generally in 
agreement with coordination geometries found in other work. For histamine complexes, Cu2+ 
and Zn2+ have been reported to undergo ML2 coordination through square-pyramidal261 and 
tetrahedral262,263 structures, respectively, while Ni2+

 is reported to undergo ML2 and ML3 
coordination with histamine through an octahedral structure.264–266 For imidazole complexes, 
Cu2+ has been reported undergo ML4 or ML6 coordination in square planar or octahedral 
geometries,267–269 and Ni2+ and Zn2+ have been reported to undergo ML4 coordination in a 
tetrahedral structure,117 though the coordination number can be lower in biological protein 
systems due to metal ion interactions with other coordinating amino acids or water.126,261,270 
 
The lowest energy structures from DFT (Figure 2-11a) can lend some insight into how the 
coordination geometries may influence binding hierarchies of the different transition metals. 
Ni2+ is found to preferentially bind in an octahedral geometry, whereas Cu2+ and Zn2+ are shown 
to preferentially bind in square planar or tetrahedral geometries.271,272 These preferential 
bindings may explain the higher stability of histamine with Ni2+ compared to the Cu2+ and Zn2+ 

in the ML3 complex, and the higher stability of histamine with Cu2+ and Zn2+ compared to Ni2+ in 
the ML2 complex. This explanation does not explain the high ML4 stability of imidazole with Ni2+ 
compared to Cu2+ and Zn2+, and high ML2 stability of imidazole with Ni2+ compared to Zn2. In 
our calculations, we find that octahedral coordination is not preferred by imidazole ML4 
complexes due to the steric crowding of imidazole in octahedral geometries in the presence of 
water, and find that imidazole with Ni2+ shows a higher stability than Cu2+ and Zn2+ in the ML4 
complex, even though imidazole ML4 is in a tetrahedral geometry. This might reflect the 
limitations of a purely structural perspective on the binding hierarchies, and the energetics of 
binding may also play a role in the binding hierarchy of the metal ions. For instance, the strong 
preference of imidazole to Ni2+ could be explained using crystal field theory, which evaluates 
the net stabilization of electrons in the d orbitals of metal ions depending on specific ligand 
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field geometry. From Ni2+ (d8 ) to Cu2+ (d9) and Zn2+ (d10), the incremental electrons would 
occupy the T2g orbitals with higher energy, thus destabilizing the coordination compound.273   
 
 

 
Figure 2-11. Density functional theory (DFT) calculations of the binding hierarchy of histamine and imidazole 
with Ni2+, Cu2+, and Zn2+ under different coordination states. A) Equilibrated structures of the histamine and 
imidazole with Ni2+ (green), Cu2+ (orange), and Zn2+ (purple) as computed by DFT. Structures are identified by visual 
observation. B), C) Binding energy calculations for histamine and imidazole with different coordination numbers. The 
results are summarized in Fig. 1C. D) Normalized viscosity 𝜂E

GHH (viscosity values in Fig. 3E and F, normalized by 𝜂E 
of the 4-PEG-histamine and 4-PEG-imidazole polymer solutions without ions) versus the binding energies obtained 
from DFT calculations for histamine in ML3 and ML2 complexes, and imidazole in ML4 and ML2 complexes for Ni2+, 
Cu2+, and Zn2+. The lines (solid for histamine, dashed for imidazole) serve as a guide to the eye. Figure from Ref.251 
  
A more quantitative comparison of the experimental and computational results is shown in 
Figure 2-11d, where 𝜂T

)UU (which is the measured viscosity values normalized by 𝜂T of the 4-
PEG-histamine and 4-PEG-imidazole polymer solutions without ions) is compared with the 
binding energy calculations. As expected, a positive correlation between binding energy (Δ𝐺T) 
and 𝜂T

)UU exists, though the correlation appears to be system-specific. For example, we see 
that the viscosities of the ML4-coordinated 4-PEG-imidazole networks are only marginally 
higher compared to the ML4-coordinated 4-PEG-imidazole networks, despite the substantial 
difference in the binding energies of the two coordination states. The reason for this is not 
immediately clear, although a possible hypothesis for this might be that the weak and dynamic 
coordination between imidazole and M2+ species may not fully prevent the precipitation of 
M(OH)2 species, resulting in an overall lower population of M2+ species especially in the ML2 
state. We also cannot neglect the fact that the simulations do not consider any of the counter-
ions present in the experimental system such as the MOPS buffer, and that some quantitative 
differences may arise as a result. 
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2.4.2. Discussions, Implications, & Conclusions  
 
We summarize our results in Fig. 2-8c. Altogether, these results reveal a strong metal-ligand 
coordination number dependence on the thermodynamic binding affinity of imidazole and 
histamine-M2+ complexes, in which the hierarchy of binding affinities are dictated by the 
coordination number of the complexes formed under different stoichiometric conditions. This 
hierarchy is particularly driven by the tendency of Ni2+ to form ML3 or ML4 complexes with 
histamine and imidazole, respectively, suggesting that Ni2+ binding dictates in systems where 
the formation of complexes with larger coordination numbers is allowed, whereas Cu2+ binding 
dictates in systems where primarily bis complexes are formed. This might provide insight into 
the preferred binding state of histidine-M2+ complexes in biological systems; for instance, the in 
vivo binding of M2+ in H. pylori in which Ni2+ dominates the metal-binding hierarchy may be a 
result of the stoichiometric binding of the transition metals with histamine or imidazole in a ratio 
greater than 2 (i.e., ML3 or higher), whereas the in vitro binding may be dominated by ML2 
complexes in which Cu2+ exhibits the greatest affinity to histamine or imidazole.  
 
Our results are relevant in conditions in which histamine or imidazole ligands freely and 
exclusively bind to the M2+ at a neutral pH, deviations from these predictions can occur in the 
presence of competing species in non-buffered conditions that may compete with the M2+ 
binding, such as counterions91 and hydroxides,31 or in systems that exhibit higher-order self-
assembly (for instance clustering of the metal-ligand complex).102,104 For instance, this higher-
order clustering of the coordination complexes is reported to occur in imidazole-containing 
polymer systems reinforced by Zn2+, which can give rise to multivalent cross-linking and thus a 
slower mode of viscoelastic relaxation in these systems.102 This may explain the substantially 
higher reinforcement of viscoelasticity in imidazole-containing polymers by Zn2+ than other M2+ 
ions. The aggregate formation by Zn2+ is a fascinating behavior—perhaps attributable to the 
formation of well-controlled tetrahedral coordination structures—which warrants future studies. 
 
Overall, our study reports the kinetic stability of histamine-M2+ and imidazole-M2+ complexes in 
their energetically preferred coordination structures, which can provide a starting point for 
understanding the origins of the different binding mechanics in histidine-rich systems observed 
in literature. These results also provide a basis for the rational design of mechanically robust 
histidine-rich metal-coordinate bio-mimetic soft materials. Extending the study to account for 
metal-ligand coordination in more complex scenarios, such as in the presence of competitive 
species, would be a natural extension of the study.  
 
2.4.3. Materials and Methods 
 
Materials 
4-arm poly(ethylene glycol) amine (4-PEG-NH2) (MW = 10 kDa) were purchased from JenKem 
Technology USA, Inc. (Allen, TX). Boc-histidine(trt)-OH (BOC), BOP reagent (BOP), N-N-
diisopropylethylamine (DIPEA), dichloromethane (DCM), trifluoroacetic acid (TFA), 
triisopropylsilane (TIPS), MOPS buffer (MOPS), diethyl ether, and methanol were purchased 
from Milipore Sigma.  
 
Synthesis of 4-PEG-histamine 
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4-PEG-histamine was synthesized following the method in the reference.25 4 g of 4-PEG-NH2, 
1.19 g of Boc-His(Trt)-OH, 1.06 g of BOP were dissolved in 15 mL of DCM in a Schlenk flask 
under continuous nitrogen gas flow. 0.86 mL of DIPEA was added to begin the reaction under 
magnetic stirring, which ran overnight under N2. The product was precipitated in 50 mL of 
ether, purified in 50 mL of methanol three times (by dissolving in methanol, precipitating the 
product in the freezer, and then separating the supernatant via centrifugation), and precipitated 
again in 50 mL of ether. 95 mL of TFA and 2.5 mL of TIPS were added to the solid product, 
and the solution was mixed for 2 h under magnetic stirring. The solvent was removed using a 
roto-vap, and the solid product was precipitated in 50 mL of ether three times, after which the 
final product was vacuum dried. The final product is a white solid, with the histidine residue 
exhibiting 1H-NMR peaks (300 MHz, CDCl3) at ca. 7.45, 8.5, and 8.65,29 allowing us to calculate 
an average coupling efficiency of 88%. 
 
Synthesis of 4-PEG-imidazole 
4-PEG-imidazole was synthesized following modifications to the method in the reference.10 1 g 
of 4-arm 10 kDa PEG-NH2, 0.23 g of 3-(N-1-Trityl- imidazoleazol-4-yl)propionic acid, 0.32 g of 
BOP were dissolved in 10 mL of DMF in a Schlenk flask under continuous nitrogen flow. 0.21 
mL of DIPEA was added to begin the reaction under magnetic stirring, which ran overnight 
under N2. The product was precipitated in 50 mL of ether, purified in 10 mL of methanol three 
times (by dissolving in methanol, precipitating the product in the freezer, and then separating 
the supernatant via centrifugation), and precipitated again in 40 mL of ether. 95 mL of TFA, 2.5 
mL of TIPS, and 2.5 mL of H2O, were added to the solid product and the solution was left 
under magnetic stirring for 2 h. 100 mL of methanol was added, and the solvent was removed 
using a roto-vap. The solid product was precipitated in 10 mL of methanol, and 50 mL of ether 
three times, after which the final product was vacuum dried. The final product is a white solid, 
with the imidazole residue exhibiting 1H-NMR peaks (500 MHz, CDCl3) at ca. 8.61 and 7.76, 
allowing us to calculate the average coupling efficiency of 78%. 
 
Material Synthesis and Rheology 
All 4-PEG-histidine networks were made by a combination of 200 mg/mL 4-PEG-histidine, 0.2 
M solutions of either NiCl2, CuCl2 or ZnCl2 and 1.0 M MOPS buffer. The ratio was adjusted 
such that final viscoelastic fluid consists of 10 wt. % 4-PEG-histidine with a stoichiometric 
amount of the transition metal to the ligand (ML2 or ML3) and with a final buffer concentration of 
0.2 M.  
 
All 4-PEG-imidazole networks were made similarly to 4-PEG-histidine. The ratio was adjusted 
such that final viscoelastic fluid consists of 20 wt. % 4-PEG-imidazole with a stoichiometric 
amount of the transition metal to the ligand (ML2 or ML4) and with a final buffer concentration of 
0.2 M.  
 
The viscoelastic fluid was then transferred to an Anton Paar MCR-302 stress-controlled 
rheometer where all measurements were done on a 10 mm parallel plate geometry. The fluid 
was loaded and then sealed with mineral oil to prevent evaporation. All small-amplitude 
oscillatory shear experiments are performed with a shear stress of 5 Pa to stay within the linear 
viscoelastic regime of the material. Constant shear rate experiments are performed by with a 
logarithmic shear rate sweep from 0.1 rad/s to 100 rad/s. 
 
Speciation Calculations 
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The metal-ligand stoichiometry-dependent equilibrium speciation calculations were performed 
by following the method of the reference.29 Briefly, this method utilizes the Newton-Raphson 
method274 to calculate the equilibrium distribution of metal-ligand species under different 
stoichiometric amounts of metals. Using Ni2+ as an example, we solve for the speciation under 
the chemical equilibria: 

Ni6V + 	His	
WI⇔ 	Ni6VHis 

Ni6V + 	HisNi6V 	
WJ⇔ 	Ni6VHis6 

Ni6V + 	His6Ni6V 	
WK⇔ 	Ni6VHis: 

 
where we use the equilibrium constants K between Ni2+ and the related histamine108 such that 
𝐾5 = 10X.Z	M>5, 𝐾6 = 10;.T;	M>5	and 𝐾: = 10:.56	M>5.  
 
Computational Methods 
All metal coordination complexes were fully optimized using DFT methods as implemented in 
the Gaussion09 quantum chemistry package. The binding energies were estimated by 
employing ωB97xD///6-31G*(lanl2dz for metal) level of theory, followed by a higher level 
optimization using 6-311+G**(SDD for metal).275 Solvation effects were considered employing 
SMD,276 based on charge density of a solute molecule interacting with a continuum description 
of the solvent. The Gibbs free energy correction was obtained by frequency analysis. Gibbs 
free energies for histidine were calculated by computing the energy differences in the following 
equation: 
 
ML(H2O)x + L = ML2(H2O)y + (H2O)z 
 
The metal cation starts as M(H2O)6. As each ligand is added, it displaces one or two water 
molecules if it is imidazole or histamine respectively. The binding energy for each complex is 
computed as the cumulative energies from going from an ML, to ML2, to ML3 complex. 
 
2.5 Coarse-grained viscosity simulations with changing 

crosslinker potential 
 
In the previous sections, we focused on experiments of hydrogels with computational 
simulations of individual coordination complexes. In alignment with previous research,25 we 
found that the dynamic properties of the hydrogels are highly affected by the crosslinker 
coordination bond chemistry and we sought to uncover underlying chemical principles 
explaining this relationship. In this section, we present preliminary simulations expanding on 
our demonstration of the relationship between the energy landscape of individual metal 
coordination bonds with macroscopic mechanical properties of a metal-coordinated network. 
We construct a coarse-grained model of the ideal network hydrogel discussed in 2.3. The 
coarse-grained model allows us to access larger length and time scales to more directly relate 
the effect of the energy landscape of the individual crosslinker chemistry with the dynamic 
mechanical properties of the network, similar to the work done by Balazs et al.277–279 Our 
preliminary simulations demonstrate that the crosslinker chemistry has an important effect on 
the resulting viscosity of the network, and we suggest future directions to continue establishing 
this relationship.   
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2.5.1 Construction of idealized polymer network coarse-
grain model 

 
In the hydrogel, we assume a monodisperse polymer distribution of 10 kDa 4-arm star-PEG 
molecules that are crosslinked by the metal ions. The polymer beads and water molecules are 
coarse-grained such that each polymer bead represents one monomer of PEG, and each water 
bead represents four molecules of water. To describe the chemical interactions of the polymer 
network, we use the force field parameters discussed in Lee et. al,280 as these parameters have 
been validated for the conformation and hydrodynamics of PEG in water. The terminus of each 
of the arms of the PEG polymer is modeled as a second bead type, which represents the 
interaction between the metal ion and coordinating ligand. The bead pairwise interaction 
parameters are tuned to represent that interaction. Note that metal ions are not explicitly 
modeled, but rather are effectively modeled through changing the interaction type of the 
terminus (coordinating ligand) of the PEG star polymers.  
 

 
Figure 2-12. Polymer network and equilibration. a) Schematic showing the design of the simulations where type 1 
atoms (not shown) represent the polymer, type 2 is the crosslinker, and type 3 is the water. The interaction between 
the crosslinker is modeled as a pairwise interaction Lennard Jones potential. b) Image of constructed polymer 
network where blue strands represent polymers, orange circles represent crosslinkers, and cyan lines represent 
water beads. c) Radius of gyration over equilibration time of one representative polymer in network reaches a stable 
value. d) Image of defects in network, where defects represent a crosslinker functionality of above 2 (clusters of 
crosslinkers) or below 2 (representing dangling bonds).  
 
The constructed polymer network is shown in Figure 2-12a,b, where the blue strands 
represent the polymer bead type, and the orange circles represent the crosslinker bead type. 
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The network is then equilibrated under NVT and NPT conditions until it reaches a steady 
pressure, temperature, and energy, and the radius of gyration of the polymers also approaches 
a steady value (Figure 2-12c). No explicit bonded interactions are defined between the 
crosslinker bead types to allow the dynamic breaking and reforming of crosslinks. As such, to 
ensure that the network stably equilibrates while remaining percolated, an artificially high 
potential of 10000 kcal mol-1 between the crosslinker beads is used, before being switched to 
the potentials explored in this study after equilibration. Note that because the crosslinker 
interaction potentials are not explicitly defined as being bonded, there are some network 
defects that emerge even in our ideal network. Such defects are illustrated in Figure 2-12d, 
and to minimize defects, a shorter potential cutoff of 6 Å is used. For the ideal network, the 
totally number of defects is 2%, where there is 1 cluster of 3 bonds, and 9 broken bonds prior 
to shear simulations, and for the non-ideal network, the total number of defects is 30%. Both 
networks remain fully percolated despite the presence of defects, and the defects reported for 
the non-ideal network are slightly higher than other quantifications of defects in literature.281,282 
 
2.5.2 Metal-coordination chemistry landscape effects on 

dynamic mechanical properties 
 
Once the network is equilibrated, the pairwise potential of the crosslinker beads is changed to 
smaller interaction potentials to determine the effect of the interaction potential on the resulting 
viscoelastic properties of the network. The ideal and non-ideal networks were simulated under 
varying shear strain rates and the resulting steady state viscosities of the networks were 
evaluated. Figure 2-13 shows the effect of crosslinker interaction potential on the resulting 
viscosity of the ideal (a) and non-ideal (b) network. Both types of networks demonstrate a 
decrease in viscosity as the shear rate increases. This is consistent with the behavior of a non-
Newtonian shear-thinning hydrogels, where viscosity decreases due to the reversible 
crosslinking mechanisms.283  
 

 
Figure 2-13. Effect of polymer crosslinker chemistry on dynamic mechanical properties of polymer network. 
Effect of depth of polymer energy well in the Lennard Jones interaction on a) ideal network and b) non-ideal network 
as a function of shear rate. 
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In both networks, it is found that increasing the interaction potential of the crosslinker 
increases the viscosity of the network. This difference in viscosity between the different 
interaction potentials increases as the shear rate decreases. This is expected, as the lower 
shear rates probe the zero-shear viscosity, where the hydrogel dynamic properties should be 
dictated by the breaking and reforming of the crosslinker. When the energy barrier between the 
crosslinker is higher, it takes more energy for the bond to break, resulting in a higher viscosity 
of the material. These relationships are less clear in the non-ideal polymer network. In the non-
ideal network, the presence of defects and multifunctional sites seem to have a larger effect on 
the resulting viscosity of the network, which in turn makes it difficult to directly parse out the 
contributions of the crosslinker potential to the network dynamics. Such network defects may 
be why it is more difficult to predict the imidazole network dynamics in Figure 2-7a. 
 
2.5.3 Discussions, Implications, & Conclusions 
 
The goal of this section was to present preliminary simulations on the effect of the crosslinker 
potential on the dynamics of a polymer network. We found that for an ideal network, the energy 
potential of the crosslinker interaction has a strong effect on the resulting viscosity of the 
network, where a stronger interaction potential results in a higher viscosity. For a non-ideal 
network, these differences follow a less consistent trend, likely due to the presence of defects 
in the network. Importantly, these simulations are an initial attempt to directly link the energy 
landscape concepts presented in Section 2.3 of this thesis, with the resulting dynamic 
properties of hydrogel networks. 
 
The simulations presented here are currently being further expanded, and several additional 
steps are required to further validate the relationship between the energy landscape of a metal-
coordination bond and the resulting dynamic mechanical properties of ideal network metal-
coordinated hydrogels. Due to the long simulation runtimes of the shear simulations, only a 
select number of shear-rates were tested. Running simulations at lower speeds will take 
significant computational time, but may start to show a plateau in viscosity to yield a zero-
shear viscosity value. The zero-shear viscosity value can more directly be compared to the 
relaxation time τ measured in the experimental hydrogel networks. An alternative way to 
compute a more directly relatable quantity to experimental hydrogel networks would be to use 
oscillatory shear simulations. The resulting storage and loss modulus, and correspondingly 
relaxation time τ, can be more directly measured through such a simulation. This method was 
not explored in this thesis due to challenges with long simulation times required for appropriate 
results. The potentials explored in this thesis are simple Lennard-Jones type interactions, and 
additional simulations are being conducted to evaluate the effect of changing the shape of the 
potential, such as by adding additional metastable states. Last, given the mechanistic nature of 
these simulations, more detailed analysis can be conducted to analyze how the stress in the 
polymer network is distributed under shear, or how the functionality of the network changes 
over simulation time. Altogether, this section presents preliminary insights on the role the 
crosslinker potential plays on the dynamic viscosity of the hydrogel network, and suggests 
several future directions for study. 
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2.5.4 Materials and Methods 
 
The ideal network polymer hydrogel was created by tessellating 128 4 arm PEG polymers 
based on the crystal structure of an Ag2O tetrahedral crystal 
(https://wiki.aalto.fi/display/SSC/Ag2O). This crystal structure allows a network functionality of 
2, which is required to mimic the functionality of the experimental polymer hydrogel. One single 
polymer is briefly equilibrated under NVT, and then tessellated using the LAMMPS displace 
commands to create the full polymer network. The polymer is composed of all the same beads, 
where each polymer bead represents C-O-O, and 233 atoms comprise of one polymer with a 
molecular weight of 10,000 g mol-1. The beads are described by the potential in Lee et al. who 
developed force field parameters to model the hydrodynamic properties of PEG in water.280 
The water beads represent 4 water molecules per bead and are also described in Lee et al.280 
Generally, the simulations are implemented in LAMMPS and the bond style is harmonic, angle 
style is harmonic, dihedral style is Fourier, and pair style is Lennard Jones/cut. The ends of 
each 4-arm polymer are described by a second type of bead, which is given a different 
Lennard Jones pair-wise potential. To keep the network fully crosslinked without defining 
explicit bonds between the polymers, a high interaction potential of a Lennard Jones with an 
energy of 10,000 kcal mol-1, sigma of 4 Å, and cutoff of 6 Å is used. The network is then 
equilibrated under NVT for 5 ns, and then further equilibrated under NPT for 10 ns until the 
pressure, total energy, and radius of gyration of a selection of polymers reaches a stable value. 
Then, the network is switched to NVT equilibration for ~10 ns at the desired interaction 
potential of crosslinks before undergoing shear simulation. The temperature of 296 K is used 
throughout the simulation, and a timestep of 1 fs is used for equilibration. 
 
For the non-equilibrium molecular dynamics shear simulations, varying shear rates are 
imposed on the equilibrated network under different crosslinker potentials. The NVT integration 
with the SLLOD equations of motion (fix nvt/sllod) are used with the fix deform command to 
generate a velocity gradient with the desired strain rate (fix deform xy ${xyrate} erate remap v). 
The shear is applied in the x-y plane to represent shear stress. A timestep of 2 fs is used for 
the equilibrations with the desired crosslinker potential and the shear simulations. After a brief 
run of 0.5 ns after equilibration, the simulation is run for each strain rate until a steady-state 
viscosity value is reached. The viscosity is calculated by dividing the xy component of the 
pressure tensor by the strain rate (v_srate) and the length of the box ly (-pxy/v_srate/ly).    
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CHAPTER 3 
 

 
ENGINEERING STRENGTH IN METAL-COORDINATED 
PROTEINS THROUGH COOPERATIVE CLUSTERS OF 
COORDINATION BONDS 
 
 
3.1 Significance Statement 
In the previous chapter, we characterized the dynamic mechanical properties afforded by 
metal-coordination bonds, focusing on idealized polymer networks with single metal-
coordination bonds. However, natural metal-coordinated systems have several coordination 
bonds present in various binding arrangements. To more closely replicate the properties of 
natural metal-coordinated systems, in this chapter, we investigate the role of multiple metal-
coordination bonds on the mechanical properties of proteins. Specifically, we test whether 
proteins coordinated by multiple metal-coordination bonds can exhibit cooperativity and high 
rupture strength. We also shift our focus from polymers to proteins in this study, as proteins 
can be designed to have specific secondary structures required to probe our mechanical 
questions of interest. 

Based on this idea, first we conduct a purely computational study to probe the rupture 
behavior of metal-coordinated peptides. We engineer the cooperative rupture of metal-
coordination bonds to increase the rupture strength of metal-coordinated peptide dimers. 
Utilizing all-atom steered MD simulations on idealized bidentate histidine-Ni2+ coordinated 
peptides, we show that histidine-Ni2+ bonds can rupture cooperatively in groups of two to three 
bonds. We find that there is a strength limit, where adding additional coordination bonds does 
not contribute to the additional increase in the protein rupture strength, likely due to the highly 
heterogeneous rupture behavior exhibited by the coordination bonds. Further, we show that 
this coordination bond limit is also found natural metal-coordinated biological proteins. Using 
these insights, we quantitatively suggest how other proteins can be rationally designed with 
dynamic noncovalent interactions to exhibit cooperative bond breaking behavior.  

From this understanding, in the second section of this chapter, we experimentally test the 
strength of the metal-coordinated protein dimers using atomic force microscope (AFM) based-
single molecule force spectroscopy (SMFS). We find that the proteins exhibit cooperative 
rupture, with higher rupture forces than would be expected from a simple addition of multiple 
coordination bonds. We then use steered MD to lend mechanistic insight into these physical 
experiments. Altogether, this work provides a quantitative and mechanistic analysis of the 
cooperativity and intrinsic strength limit for metal-coordination bonds with the aim of 
advancing clear guiding molecular principles for the mechanical design of strong metal-
coordinated materials. 
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3.2 Introduction 
 
Recent studies have incorporated metal-coordination bonds in materials to engineer strength, 
self-healing, and energy absorbing properties.163,284–286 Despite these significant advances, both 
an understanding of the mechanical role of the metal ions in metal-rich proteins and an 
extrapolation beyond biological proteins into synthetic materials is missing. This is in large part 
due to the smaller number of resolved structures of proteins with several metal ion binding 
sites,287 unlike the structural resolution for known hydrogen-bonded alpha helix or beta-sheet 
structures. This lack of structural resolution, coupled with additional challenges around metal-
coordination bonds such as polymorphic binding states and speciation,288 results in an unclear 
understanding of why natural materials have incorporated metal-coordination bonds or how to 
optimize their use in biologically-inspired materials towards mechanical function. 
 
The goal of this current chapter is to uncover critical structural-mechanical principles for metal-
coordination bonds. We ask whether mechanical cooperativity can be engineered in metal-
coordination bonds and to what extent strength and rupture mechanics can be modeled, 
understood, and predicted from fundamental interatomic and chemical principles. While most 
of the understanding of the cooperativity of such metal-coordination bonds has been in the 
context of structure or thermodynamic stability,289–291 with extensive literature discussing the 
effects of multivalent binding,292–294 few systematic studies exist on the cooperative contribution 
of multiple metal-coordination bonds to the mechanical properties of proteins, and broadly bio-
inspired materials engineering.74,103,295 Developing such a systematic understanding would 
enable the rational design of mechanically robust metal-coordinated proteins and polymers, 
complementing the growing experimental work in incorporating multiple metal-coordination 
interactions in bio-inspired proteins or polymers.227,296,297 
 
3.3 Bond clusters control rupture force limit in shear 

loaded histidine-Ni2+ metal-coordinated proteins 
 
To examine the role of multiple metal-coordination bonds on the mechanical properties of 
proteins, we design de novo histidine-rich peptides that coordinate to Ni2+ metal ions in an 
ideal manner and test their mechanical strength using all-atom steered molecular dynamics 
(SMD) simulations. By analyzing the rupture force of the different metal-coordinated peptides, 
we find that multiple rupture pathways exist for these coordinated systems and that a 
maximum of three bonds can rupture at one time. This results in a maximum force limit where 
adding further metal-coordination bonds does not increase the strength of the peptide. As 
such, our findings suggest that histidine-Ni2+ metal-coordination bonds also exhibit bond-
breaking clusters, and that the proposed number of bonds that rupture is the same as the 
prevailing number of coordination bonds in proteins with excess metal ions. Given this, we 
extrapolate our findings to demonstrate how proteins might be tuned with dynamic 
noncovalent bonds more broadly to achieve alternate cooperative bond breaking behavior. 
 
3.3.1 Model Peptide Design 
 
De novo peptides (Figure 3-1c, Appendix S3-1) were designed to test whether metal-
coordination bonds could behave cooperatively to increase to the mechanical strength of a 
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metal-coordinated peptide dimer. To probe this question, the transient bond chemistry, the 
number of coordination bonds, and peptide backbone architecture were specifically 
engineered. Histidine-Ni2+ bonds were selected as the coordination bond because they are a 
strong binding chemistry and have been widely used and characterized in both biological and 
non-biological polymer contexts using both experiment and computation.51,108,298,299 
 

 
Figure 3-1. A set of de novo model peptides are designed to test metal-coordination cooperative rupture 
behavior under mechanical loading. a) SMD on a (histidine)2-Ni2+ complex (shown in inset) at varying pulling rates 
shows that the rupture force decreases as the pulling rate decreases. b) The Griffith fracture theory, modified to 
predict the fracture of hydrogen bonds300, predicts an Ncr for histidine-Ni2+ bonds to be 2-3 bonds based on the 
SMD Bell Model energy of the (histidine)2-Ni2+ complex shown in Figure 3-1a, and 5-6 bonds for a lower bond 
energy calculated in literature. c) Three peptide systems are designed for study—a purely histidine system (Hx), and 
a histidine (H) system with a threonine (T) or asparagine (N) as a spacer residue between the histidine residues. Side 
chains of each amino acid are shown in the inset, Ni2+ atoms are in green, and coordinating nitrogens on the 
histidines are shown as spheres. Explicit water molecules are not shown for clarity. 
 
To inform the number of metal-coordination bonds that should be placed along the peptide 
backbone, we applied an earlier model,300 which predicts the number of hydrogen bonds that 
break simultaneously (denoted as Ncr), to our transient histidine-Ni2+ peptides. The equation is 
rooted in the application of energetic arguments originally proposed in the Griffith fracture 
theory, which dictates that the release of energy during the fracture process is 
counterbalanced by the energy penalty required to create new surfaces.301 The Griffith fracture 
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theory applies to a crack under tensile loading, which mimics the tensile pulling conditions in 
our simulations, and the theory has been applied to nanoscale phenomena in earlier work.302,303 
 
The following parameters are used to determine the Ncr prediction for the histidine-Ni2+ bonds: 
characteristic time scale of 𝜏=0.06 s216 (for reference, 𝜏~0.1s for a 4PEG-His3 polymer in TRIS 
buffer which likely forms only 1 coordination bond)74, applied pulling distance at the moment of 
rupture xb of 2 Å, persistence length lp of 0.4 nm,304–306 and a bond energy of ~11 kcal/mol 
based on the SMD studies done in this work on the (histidine)2-Ni2+ complex (Figure 3-1a). 
These inputs result in an Ncr prediction of 2-3 bonds, given a coordination bond spacing 
distance (Lxo) of 4-7 Å (Figure 3-1b). For comparison, the Ncr of 5-6 bonds is predicted if other 
bond energies suggested in literature are also shown.103,251  
 
To most closely mimic prior research efforts on the cooperativity in hydrogen bonds in beta-
sheets,300,307 and to isolate the mechanical contributions of the metal-coordination bonds from 
the unwinding of a protein backbone,308 we designed peptides with a secondary structure of a 
beta-sheet-like linear protein. Histidine has a neutral propensity towards a beta-sheet, so to 
help drive the beta-sheet formation, two molecules were designed with spacer amino acids (H-
)x of threonine (T) and asparagine (N), which have both shown to have a high propensity for 
producing a flat beta-sheet when in solvent-exposed conditions (Figure 3-1c).309–311 Further, 
though the polarity of threonine and asparagine are required to aid in solvent-exposed beta-
sheet formation, they exhibit a lower propensity for metal-coordination interactions with Ni2+ 
compared to histidine, which indicates that histidine-Ni2+ interactions should dominate the 
coordination binding modes.312,313 The resulting sequences are CGG-(HT)n or CGG-(HN)x. In 
addition, the peptides were designed such that metal-coordination bonds would have a 
dominating effect on the mechanical properties, as opposed to other secondary structure 
elements such as interchain hydrogen bonds (Figure 3-2). 
 

 
Figure 3-2. Minimized interchain hydrogen bonding between peptide chains. Our peptides were designed to 
minimize the number of interchain hydrogen bonds, such that the mechanical properties of the peptide dimers could 
be attributed primarily to metal-coordination bonding. As such, all peptide dimers were analyzed using the 
Hydrogen Bonds tool in VMD to determine if there was interchain or intrachain hydrogen bonding. The VMD tool 
uses a 3 Å and 20 degree angle cutoff between hydrogen bond donors and acceptors to designate the presence of 
a hydrogen bond. ~60% of our peptide dimers were found not to have interchain hydrogen bonding. Only 1 
repetition of H2 had two hydrogen bonds, equivalent to the number of metal-coordination bonds in the protein. All 
other simulations (~97%) had a less than one ratio of number of interchain hydrogen bonds to number of metal-
coordination bonds. Because metal-coordination bonds are stronger than hydrogen bonds, and because in all of our 
peptide simulations, there are more metal-coordination bonds than hydrogen bonds, we attribute the mechanical 
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properties of the dimers to metal-coordination bonding. A few examples of hydrogen bonding are shown: H2 with 2 
interchain backbone hydrogen bonds and 2 interchain metal-coordination bonds; (HT)3 with 2 interchain backbone 
hydrogen bonds and 3 interchain metal-coordination bonds; (HN)3 with 2 intrachain backbone hydrogen bonds and 
3 interchain metal-coordination bonds.  
 
In addition to the de novo beta-sheet-like (H-)x proteins, we also tested derivatives of the 
canonical his-tag system with regards to their cooperative behavior (Figure 3-1c). The his-tag 
is typically composed of 6 histidines, although the number can vary from two to ten histidines, 
and it exhibits a high affinity to Ni2+ in a Ni-NTA column that has enabled the his-tag to be 
widely used in protein purification.314 His-tags have been studied with AFM-SMFS315 and 
significant work has also elucidated the structural stability of the his-tag given histidyl 
mutations.290 Given these prior research efforts, we also test varying numbers of histidine-only 
Hx under applied mechanical force.298 
 
3.3.2 Rupture Force Behavior and Threshold 
 
Generally, we find that increasing the number of coordination bonds in the peptide seems to 
increase the observed RF values to a certain extent. For example, RFH3 > RFH2 and RFHN4 > 
RFHN3, which suggests that adding the additional coordination bonds increases peptide 
strength. An alternative interpretation is that having more coordination bonds along a 
backbone gives more possible opportunities for cooperative binding. However, this increase in 
strength of the peptide is not infinite. All three peptide systems exhibit a rupture force limit, 
indicated by the gray transparent box in Figure 3-3, where increasing the number of 
coordination bonds does not increase the RF of the peptide. This limit occurs around H3/H4 
for the Hx system, HT3/HT4 for the HTx system, and HN4/HN5 for the HNx system. The 
location of the RF limit with respect to the number of coordination bonds on the peptide 
indicates that roughly three to four bonds work together to rupture in these peptide systems. 
This is because having the fourth coordination bond in the case of Hx or HTx, as an example, 
does not increase the RF value of the peptide, implying that three coordination bonds would be 
enough to reach the strength. The value of three to four bonds aligns with the Ncr prediction for 
Figure 3-1b. Note that the canonical his-tag (H6) in a bidentate trans configuration was 
unstable during equilibration after several attempts to ensure binding and was therefore not 
shown in subsequent SMD simulations. 
 
The RF data is normalized to the number of coordination bonds in the system and is plotted in 
Figure 3-3d-f to demonstrate the diminishing-returns effect of adding additional coordination 
bonds to the peptide. This figure is one way to visualize how each coordination bond 
contributes to the rupture of the system, assuming that all coordination bonds equally 
contribute to the strength of the dimer. From this normalized figure, we made two 
observations. First, H2/H3, HT2/HT3, and HN3/HN4 overlap in their normalized RF 
contribution. These normalized threshold values are 1 bond unit below the RF bond threshold 
values from Figure 3-3a-c. Second, each additional bond contributes less to the strength of 
the peptide. If each metal-coordination bond in an (H)x system was to contribute to the 
mechanics of the peptide in the same strength as (H)x-1, we would expect the normalized 
peptide rupture forces in Figure 3-3d-f to be superimposed. This implies that there is an 
optimum value of MC bonds that achieves maximum strength without wasting additional 
resources in the form of extra coordination bonds.  
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Figure 3-3. Simulation rupture force (RF) vs. pulling speed shows that increasing MC increases RF to a 
certain extent. Maximum force of bond rupture shows that the RF increases with increasing metal coordination, but 
only up to a certain extent for the a) Hx, b) HTx, and c) HNx systems. The increase in rupture force approaches a 
limit (gray transparent box) around H3/H4, HT3/HT4, and HN4/HN5. The colored data points indicate the maximum 
number of bonds that are observed to rupture together, and only a maximum of 3 bonds are observed to rupture at 
once even when more metal-coordination bonds are present in the system. H6 was also tested, but is not stable 
under equilibration and therefore not shown. d-f) When the rupture forces are normalized by the number of 
histidines in each system, the contribution of each histidine to the total rupture force of the system decreases, 
indicative of diminishing returns.  
 
To explore this further, and to seek empirical evidence from naturally evolved protein 
structures, we conducted a search of representative metal-coordination sites of biological 
metals using the MetalPDB database.287 We examined representative protein structures with 5-
10 metal sites and analyzed how many of those metal ions were consecutively arranged in the 
protein (Figure 3-4a), where consecutive is defined as separated by a distance of 3 Å but not 
necessarily on the same protein chain (Figure 3-4b,c, Appendix S3-2). We only analyzed 
proteins with 5-10 metal ions to characterize how metal ions were arranged when there is an 
“excess” of metal ions above the ~3-4 cooperative bond threshold discussed above. We found 
that for this set of 143 representative metal sites, the most likely number of consecutive bonds 
observed was three for the biological metal ions. This finding seems to support that in most of 
the cases (63% for biological metal ions) we analyzed, metal ions are organized with 1, 2 or 3 
bonds consecutively. This preliminary analysis can be further expanded by analyzing proteins 
with 2-4 metal ions to understand the spatial distribution of metal ions. Further, we note that 
MetalPDB mostly includes proteins of catalytic functions, but not structural functions. A more 
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refined analysis beyond the scope of this study would include such structures once the protein 
structures have been resolved and would also include dimeric structures such as those 
analyzed in this investigation. Nonetheless, these biological proteins seem to confirm the 
existence of an optimum number of a metal-coordination bonds to maximize properties. 
 

 
Figure 3-4. Biological metals from MetalPDB287 follow trend where structures are more likely to have 1-3 
metal ions consecutively arranged than 4-8. a) Percent of structures with x number of consecutive metal ions 
within the 143 structures analyzed. Gaussian fit with a peak at ~2.6 bonds is also drawn. b) Metal Site ID 2eul_6 with 
3 of the 6 Zn2+ ions consecutively arranged. c) Metal Site ID 3th4_1 with 6 metal ions (5 Ca2+, 1 Mg2+) consecutively 
arranged. 
 
In our simulations, this optimum number manifests itself as the maximum number of 
coordination bonds that rupture together. Throughout all peptide systems, only a maximum of 
three bonds is observed to rupture at once, even when more coordination bonds are present in 
the system (Figure 3-3). The shading of the circle (1, 2, or 3 bonds), is the maximum observed 
bonds that rupture together across all simulation repetitions in a specific peptide at a specific 
speed. These rupture events are highly heterogeneous, where depending on the initial 
conditions or velocities, different combinations of bond breaking clusters occur.  
 
3.3.3 Rupture Force Heterogeneity and Location 

Dependence 
 
To illustrate this heterogeneity in breaking events, Figure 3-5 shows the heterogeneous 
breaking that independent simulations of the H3 peptide undergo at various pulling rates. In 
Figure 3-5a, for example, we observe that three bonds rupture together, but in Figure 3-5c, 
one bond ruptures at a time. Further, even for the same pulling speed, Figure 3-5b and c 
depict different breaking pathways, with two bonds breaking in Figure 3-5b or sequential 
rupture in Figure 3-5c. This surprising heterogeneity can be rationalized; the metal-
coordination bonds here do not have the well-defined binding pocket or geometry that 
hydrogen bonds have in beta-sheets, enabling several mechanisms of rupture. Additional 
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contributions to heterogeneity may also arise from other polymorphic binding states, even 
though only one binding state in a bidentate trans configuration is explored here.  
 

 
Figure 3-5. Representative deformation mechanisms of independent simulations of H3 breaking at different 
speeds show heterogeneous rupture behavior. Rupture force diagrams of H3 and the circles indicate the 
corresponding simulation snapshots with the coordination bond breaking highlighted in the gray oval. Various 
rupture pathways emerge, even at the same pulling speed (b,c).  
 
The heterogenous breaking patterns exhibit breaking events where the coordination bonds 
break simultaneously when directly next to each other, spaced one bond apart, or spaced two 
bonds apart. To better understand how these different positions of bonds may affect the 
mechanical strength of the peptide, we conducted simulations in the H3 and HT3 peptides 
where the coordination bonds are placed in different positions (Figure 3-6). In almost every 
simulation (66% for H3, 77% for HT3), the bond closer to the SMD pulling atom ruptures first. 
However, the resulting rupture forces are only weakly dependent on the position of the bond. 
The “xMM” systems have moderately higher RF values (p value ~0.15 for H3, ~0.25 for HT3) 
compared to the other geometric arrangements because the two coordination bonds are 
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directly next to each other and away from the SMD pulling atom (Figure 3-6a inset). These two 
coordination bonds can directly influence each other’s breaking, and as a result, strengthen the 
peptide system. Surprisingly, the “MxM” system with a coordination bond in the first and third 
site and the “MMx” system with two coordination bonds closer to the SMD pulling atom have 
similar RF values. For “MxM,” the coordination bonds may be too far to influence each other 
without the presence of the coordination bond in the second site. For the “MMx” system, the 
force felt by the first coordination bond near the SMD pulling atom is likely directly felt by the 
second coordination bond in its proximity. The schematic in Figure 3-6c illustrates these 
molecular learnings. The amino acids that are more closely spaced together have a greater 
effect on each other’s conformations. This mechanism, while at a geometrically larger scale, 
may have similar energetic underpinnings as the trans/gauche conformations in polymers that 
are caused by short-range steric interactions.316 
 

 
Figure 3-6. Peptide strength is weakly dependent on the location of the coordination bonds. a) H3 and b) HT3 
rupture forces vary weakly based on the location of the two metal-coordinate bonds at a speed of 25 m/s (Figure 3-
6a, inset). Using a two-tailed, unpaired t-test, the p values of “MxM” versus “MMx” are 0.99 for H3 and 0.63 for 
HT3. The p values for “xMM” versus the other geometric arrangements are ~0.15 for H3 and ~0.25 for HT3. c) The 
trends from the bond position-dependent rupture force behavior in Figure 3-6a,b are conceptualized in the 
schematic. The rupture force is the lowest when the metal-coordinate bond is closest to the atom that is pulled, 
likely because the highest localized force is experienced at this bond. The rupture force is the slightly higher when 
the two coordinate bonds are directly next to each other and away from the atom that is pulled.  
 
3.3.4 Tuning rupture force through metal-coordinated 

peptide design 
 
These mechanistic breaking pathways, the observation of an increase in RF followed by a 
plateau, and the comparison to biological metal-coordinated proteins suggest the presence of 
a critical number of metal-coordination bonds in these peptide systems. Given that this critical 
number for histidine-Ni2+ bonds generally follows the predictions from the Ncr in Figure 3-1b, 
we further parameterize the Ncr prediction to characterize how changing protein parameters 
can affect the cooperative strength or number of bonds that simultaneously rupture in other 
transient systems assuming the Ncr predictions from the Griffith fracture theory are also 
applicable. As in hydrogen bonded beta-sheets,300 only a cluster of transient bonds break at 
once along a linear peptide, even if more bonds are present in the system (Figure 3-7a). This 
may be why several biological materials have evolved to feature an array of noncovalent 
interaction size effects,1 enabling an optimization of properties with limited mass or weight.  
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Figure 3-1b shows that the spacing of the bonds along the backbone (Lxo) and energy of the 
bond (E) have the largest effects on the resulting Ncr. Decreasing the spacing helps the bonds 
more effectively mechanically “communicate” with each other, such that local steric 
interactions are directly affected by neighboring residues. Further, decreasing the energy of the 
bond allows the force to be distributed amongst the bonds of the backbone such that high 
stress or strain is not concentrated at the first bond that the force encounters. Increasing the 𝜏, 
the characteristic time scale of bond rupture, also increases Ncr and various values are plotted 
in Figure 3-7c. This increase is likely due to the idea that increasing 𝜏 increases the residence 
time of the coordination bonds in an area, which would increase their likelihood of rupturing 
together. The Ncr can also be tuned by changing the persistence length (lp), where an increased 
rigidity of the protein backbone, or increased lp, causes a decrease in Ncr (Figure 3-7b). This 
may be because the energy required to compensate the change in a rigid backbone (higher lp) 
upon additional metal-coordination binding penalty is too high, similar to the binding affinity 
decreases observed in Hebel et al.294 Various vertical lines on Figure 3-7b show critical lp 
values discussed in literature317–321 to suggest possible backbones that could be used in further 
experimental or computational studies. Further, the effect of lp is shown with varying xb, or the 
applied pulling distance at the moment of rupture.  
 

 
Figure 3-7. Ncr can be tuned by changing several design parameters with a major influence of energy of the 
bond (E) and Lxo, and a minor influence from lp, xb, 𝜏. a) Adapted from 300, the schematic illustration depicts that 
only Ncr bonds break in a structure, even if more transient bonds are present. To increase the force at rupture, Ncr 
bonds should be placed in parallel. In Figure 3-9b, we show that Ncr is most sensitive to the values of E, the energy 
of the bond and Lx0, or the distance between bonds. Here we characterize other variables that affect the Ncr to show 
how design parameters such as polymer backbone or bond relaxation time can be tuned to change the Ncr. b) Ncr 
increases as a function of 𝜏, the characteristic time scale of bond rupture. This dependence is plotted across 
multiple values of bond energy, which specific E values highlighted as: i) 2.83 kcal/mol for hydrogen bonds300, ii) ~11 
kcal/mol for the metal-coordination bonds in this study, iii) 25 kcal/mol for Zn2+(N-methylacetamide)4-(N-
methylacetamide)322, iv) 64 kcal/mol for HS-SH323, and v) 100 kcal/mol for C-H324. c) Ncr as a function of persistence 
length (lp) demonstrates that as the lp increases, Ncr decreases. We plot this dependence for various xb, or the 
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applied pulling distance at the moment of rupture and include the inset to show how Lx,o and xb are conceptually 
related. Vertical lines are drawn at critical lp values discussed in literature at i) 0.13 nm for myosin fragments317, ii) 0.4 
nm for elastin-like polypeptides or other proteins300,304,305, iii) 2 nm for a single disrupted amino acid chain319, iv) 45 
nm for 1000 base pair DNA318, and v) 100 nm for an alpha helix or worm-like fibrils320,321. Changing the strength of 
the van der Waals potential of the Ni2+ metal ion, equivalent to changing the energy of the bond (E), decreases the 
Ncr and rupture force of H4 (d) and (HT)4 (e,f). 
 
To demonstrate one aspect of this Ncr tunability, we changed the van der Waals interaction 
strength (epsilon) of the Ni2+ ions to directly measure how the energy of the bond (E) affected 
the Ncr of the proteins. We tested this on H4 and (HT)4, as these proteins have the most 
opportunities for cooperative rupture. Our simulations show that as expected, increasing E 
decreases the number of bonds that is likely to rupture together in both H4 (Figure 3-7d) and 
(HT)4 (Figure 3-7e). Interestingly, the trend of Ncr versus the strength of the interaction potential 
follows a pseudo-parabolic shape which was not predicted in the initial Griffith fracture theory. 
Our simulations showed that this is because the low interaction potentials are too weak to 
keep the structure together, resulting in natural dissociation of the bond. As such, fewer bonds 
remain to be pulled for cooperative rupture. These Ncr trends result in a similar parabolic shape 
in the rupture force (Figure 3-7f) because of the changing number of bonds that cooperatively 
rupture. The fact that the rupture force decreases even at high interaction potential, which 
would be expected to require large forces to rupture, shows that the rupture force is highly 
dependent on the number of bonds that rupture together. Together, these parameters suggest 
how de novo proteins may be designed with other protein backbones or dynamic noncovalent 
interactions to tune the cooperative rupture of bond clusters.  
 
3.3.5 Discussions, Implications, & Conclusions 
 
In this study, we sought to engineer the cooperative rupture of metal-coordination bonds to 
increase the strength of coordinated protein structures. Selecting de novo linear histidine-Ni2+ 
coordinated peptides as a model system, we have shown simultaneous rupture and how the 
rupture strength of the peptides can be tuned by adjusting the number of metal-coordination 
bonds in the protein. We designed idealized linear de novo Hx, HTx, and HNx peptide dimers 
in trans bidentate coordination geometries and showed that by increasing the amount of metal-
coordination in the peptides, we could increase the rupture force of the peptides. We found 
that there was a strength limit in these peptides, at around three to four bonds for all three 
systems, where increasing the number of coordination bonds beyond this value did not 
contribute to increased strength of the system. To corroborate this finding, we used 
mechanistic insight into the metal-coordination breaking mechanisms found in simulation to 
show that only a maximum three bonds are observed to rupture in each system, even if there 
are more coordination bonds present in the system. These mechanisms revealed that a 
heterogenous breaking pattern emerged for the metal-coordinated peptides, where even under 
the same pulling conditions, different numbers or combinations bonds may break. 
 
These findings indicate important design insights into the use of metal-coordination bonds in 
natural and synthetic systems. There is a balance between achieving high strength and 
optimizing the resources, such as the number of coordination bonds used, in a protein 
structure. Despite the fact that the cooperative rupture limit in our work is dependent on 
protein structure and microenvironment, similar principles have been found for hydrogen 
bonded structures, where the most effective use of hydrogen bonds towards mechanical 
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strength is when the bonds are clustered in groups of three to four to enable cooperative 
deformation.300,325,326 Further, this optimization results in several design principles, some of 
which are demonstrated here through the Griffith fracture theory if applicable to the system of 
interest, to influence mechanical strength. As such, the mechanistic insights gained here have 
a much larger relevance to the rational design of metal-coordinated or dynamic noncovalent 
material mechanics.  
 
Perhaps most importantly, we find that metal-coordination bonds show extremely 
heterogeneous breaking mechanisms and that designing well-defined binding pockets could 
force specific rupture pathways. Future studies could design alternative protein backbones to 
program these rupture pathways, such as alpha helices where cooperativity has been 
observed in hydrogen bonds.327 Further, the simulations presented here were an idealized 
hydrogen-bonded beta-sheet-like configuration, and additional research should be tested on 
real metal-coordinated proteins systems once structures are characterized. Researchers can 
also apply methodologies similar to the one shown here to predict the cooperative rupture of 
other specific protein structures or bond chemistries. Such selectively engineered proteins can 
later be used to build hydrogels or polymer networks with high strength, toughness, and fast 
recovery for applications in recyclable polymers, self-healing polymers, artificial muscle 
actuators or electronic skin, as shown in early examples in literature with such bonds.11,103,296 
Additional improvements in metal-ion force fields can also help improve these predictions.113 
 
Altogether, this work contributes clear and fundamental molecular design principles for utilizing 
multiple metal-coordination bonds for increasing the strength a metal-coordinated protein 
dimer. These principles help contextualize the structural role of metal ions both within the 
context of natural systems, as well as in bioinspired synthetic proteins and polymers. Broadly, 
the systematic understanding from this work contributes to the rational design of cooperativity 
in metal-coordinated proteins and polymers with mechanical function and expands insights 
into other dynamic noncovalent interactions. 
 
3.3.6 Materials and Methods 
 
The initial structures of the de novo peptide dimers (Figure 3-1, Appendix S3-1) in a parallel 
orientation were first predicted using AlphaFold v2.0.328,329 Three additional amino acids (CGG) 
was attached on either side of the peptide to mimic the cysteine that is often used for 
immobilization in AFM-SMFS experiments and to ensure that the histidine-Ni2+ bonds were not 
directly being pulled. Ni2+ ions were added to the system, such that the histidine nitrogen 
atoms coordinate in a bidentate or tetradentate geometry to the Ni2+ ion. Simulations were 
implemented with Nanoscale Molecular Dynamics (NAMD) and all simulations utilized the 
CHARMM22 force field229 with Ni2+ parameters from Babu et al.231 and a 2 fs timestep. Histidine 
amino acids were modeled in the correct protonation state to match physiological pH and 
experiments where the histidine-Ni2+ dissociation time of 𝜏=0.06 s216 has been measured. The 
Ni2+ ions were balanced with Cl- ions for charge neutrality and the peptide dimer was solvated 
with TIP3P water molecules with a 15Å skin. Periodic boundary conditions are used with the 
Particle Mesh Ewald full system electrostatics method. After careful energy minimization using 
the conjugate gradient algorithm in NAMD, the simulations are equilibrated for 50 ns under 
NPT (1 atm, Nose-Hoover Langevin piston pressure control), followed by 50 ns in NVT 
(Langevin dynamics).  
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Independent simulations under this procedure were carried out for subsequent SMD tests. The 
TIP3P water molecule box was extended by 60Å to account for deformation in the pulling 
direction. The C𝛼 atom on the N-terminus near the cysteine residue was selected as the SMD 
pulling atom, and the C𝛼 atom on the opposite strand C-terminus was selected as the fixed 
atom. The structure was energy minimized for 10000 steps. Then SMD data were collected 
every 1 ps with pulling rates from 0.25 m/s to 250 m/s under an NVT ensemble and 2 fs 
timestep. The simulation was run until the parallel proteins were fully separated and all 
intermolecular metal-coordination bonds fully ruptured. The rupture of a metal-coordinate bond 
was defined as a distance of 3Å or more between the coordinating nitrogen of histidine and the 
Ni2+ ion. The time, distance, force, and type of bond rupture was recorded for each rupture 
event in each simulation. Simultaneous rupture was defined as multiple bond breaking events 
within 1 ps of each other in the visual file with the rupture force peaks that were 
indistinguishable from each other.  
 

 
Figure 3-8. Single peptides equilibrated with metal ions. Single peptides (H4, HT4, HN4) which are the longest in 
their series and have the most likely chance of internal coordination, are equilibrated with explicit water molecules 
(not shown) for 50 ns NVT and 50 ns NPT. The proteins reach a stable root mean square deviation value but do not 
show any internal coordination.  

 
We found that tetradentate structures were not stable during the initial equilibration, and the 
metal-coordination binding sites would quickly dissociate into tridentate, bidentate, or 
monodentate structures during the equilibration process. As a result, we continued SMD tests 
with only bidentate coordination. While this lack of tetradentate stability may be due to 
challenges with the force field modeling for metal ions, speciation models predict a dominance 
of bidentate coordination stoichiometry in aqueous conditions between histidine and 
Ni2+.216,330,331 Further, though the short peptides are equilibrated for a significant amount of time, 
we note that the peptide structures used in this paper are not necessarily the equilibrium 
binding state of the peptide with the metal ion, because the peptide may be trapped in a local 
minima. We also enforce a trans bidentate binding configurations on the metal ions to most 
closely replicate the hydrogen-bonded beta-sheets. Despite these limitations, we proceed with 
our simulations because the goal of this paper is to determine whether cooperativity can exist 
in these bonds under “ideal” conditions, where “ideal” conditions represent the closest 
geometry to hydrogen bonds where cooperativity has been seen in beta-sheets with trans 
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coordination along the backbone. Further, preliminary simulations of a single peptide (H4, (HT)4, 
and (HN)4) show that internal metal-coordination bonds are unlikely (Figure 3-8), likely due to 
an entropic penalty of loop formation.332 
 
3.4 Molecular design of metal-coordinated proteins for 

heterogeneous and cooperative rupture 
 
In the previous section, we presented an exploration of metal-coordination cooperativity and 
rupture in de novo proteins. In this section, we validate these principles using an experimental 
system and gain mechanistic insight using corresponding MD simulations. We rationally design 
a random coil protein template to uncover the heterogeneous and cooperative nature of 
increasing numbers of intermolecular His-Ni2+ bond clusters (Figure 3-9). Using isothermal 
titration calorimetry, atomic force microscope (AFM)-based single-molecule force 
spectroscopy (SMFS), and steered molecular dynamics (SMD) simulations, we show that the 
polypeptides dimerized with three histidine residues display surprisingly more-than-additive 
rupture forces, and we resolve at least two dissociation pathways: the sequential rupture or 
simultaneous cooperative rupture of two-to-three coordination bonds. Further, the simulations 
reveal mechanistic insight into several heterogeneous rupture modes of the coordination bond. 
We posit that biological materials may have incorporated metal-coordination bonds for 
primarily energy dissipative reasons due to their heterogeneous and cooperative nature. The 
methodology and insights developed here have important implications for understanding the 
molecular mechanisms of metal-coordination bond-based stabilization of proteins and the a 
priori design of metal-coordinated materials with desired mechanical properties. 
 

 
Figure 3-9. Schematic of design contributions and key questions explored this work. The goal of this work is to 
uncover how multiple metal-coordination bonds can be designed to yield new materials with high rupture forces 
through higher bond stability, cooperativity, and simultaneous rupture. Experiment and simulation are used to probe 
the underlying physical phenomena of the metal-coordination bond rupture. The methodology and insights 
developed here have important implications for understanding the molecular mechanisms of metal-coordination 
bond-based stabilization of proteins and the a priori design of new metal-coordinated materials with desired 
mechanical properties. 

 
3.4.1 Metal-coordinated polypeptide design for 

cooperative rupture 
 
Polypeptides with an increasing number of metal-coordinating amino acids were rationally 
designed to probe how to induce the cooperative rupture of metal-coordination bonds (Figure 3-
10a). Histidine-Ni2+ was selected as the coordination bond, because it is well characterized in 
biological and non-biological contexts, such as the widely used his tag for protein 
purification.51,290,298 An elastin-like polypeptide (ELP) was used as a disordered polypeptide 
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backbone to provide increased flexibility for the metal-coordination bonds to assemble freely 
and enable potential cooperative structures as compared to the constrained polyproline II 
helices used by Sun et al.103 Using an ELP template also provides a known structure for 
complementary simulation efforts. 
 

 
Figure 3-10. Experimental design of metal-coordinated ELPs to probe cooperative binding. a) Three ELPs 
(ELP-(GHGVP)1-3) are designed with one to three histidine residues (H1 to H3) that define the maximum number of 
metal-coordination bonds possible. When the number of histidine residues increases, more intermolecularly 
crosslinked configurations become possible. b) The Griffith nanoscale rupture theory is applied to predict the 
number of metal-coordination bonds that rupture together (Ncr), given different energies required to rupture a single 
bond (EBell) or spacing (Lx0) of the coordination bonds along the backbone. The following equation is plotted with the 
relevant parameters listed in the text: 𝑁LM =
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(𝛼LM(1 − 𝛼LM)Q4 − (1 − 𝛼LM)Q6 + 2𝛼LM4 − 1.  c) Depending on the number of coordination bonds formed, the 
underlying energy landscape is altered. The energy barrier (𝐸UGPP) and the distance between the bound and transition 
state (𝑥U), as well as the binding energy (𝐸U2VW), is predicted to increase from H1 to H2 to H3. An applied force (𝐹) 
lowers the transition state (TS) to 𝐹 ∗ 𝑥U, allowing the extraction of energy landscape parameters. 
 
To inform the number of metal-coordination bonds that should be placed along the peptide 
backbone, we applied an earlier model300,302,303,333,334 that predicts the cooperativity of hydrogen 
bonds to our histidine-Ni2+ peptides to yield the number of metal-coordination bonds that are 
likely to rupture together (Ncr). The model is rooted in the application of energetic arguments, 
originally proposed in the Griffith rupture theory,301 which shows that the stress at rupture is 
proportional to the internal strength of the chemical bonds of the material.  
 

The following considerations are used to determine an initial estimate of the Ncr of histidine-Ni2+ 
bonds. A bond dissociation time scale 𝜏 (1/koff) of 0.06 s is used,74,216 representing the 
dissociation of histidine-Ni2+ in water. The applied pulling distance at rupture 𝑥U is 3 Å, 
representing the maximum coordination bond distance. The ELP persistence length 𝑙X is 0.4 
nm.304,305 The energy to rupture a single bond (EBell) of 11 kcal mol-1 is based on the SMD of a 
single (histidine)2-Ni2+ complex.333 Despite the number of parameters that tune Ncr, the Ncr 
predictions are most sensitive to EBell and the spacing of the coordination bonds along the 
backbone (Lx0).333 These inputs result in an Ncr prediction of 2-3 bonds (Figure 3-10b), given an 
Lx0 of 8-10 Å along the guest residues of the ELP backbone. 
 
Based on the Ncr prediction, ELPs with a total of 34 to 36 GXGVP repeats are designed for 
experimental analysis, so as to have either one (H1), two (H2), or three (H3) histidine residues 
in the guest positions (X) located at the N-terminus (Appendix Method 3-S1). The metal-
coordinating repeats can dimerize via a maximum of one to three coordination bonds (MC-ELP, 
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Figure 3-10a). Our goal is to induce cooperativity in the thermodynamic, kinetic and/or dynamic 
mechanical stability of the metal-coordination bonds that dimerize these polypeptides. 
Cooperativity is defined as the simultaneous dissociation or rupture of bonds that manifests in 
an apparent bond stability that is more than additive. This cooperative rupture should originate 
from differences in the underlying energy landscape caused by the additional metal-coordination 
bonds. Figure 3-10c schematically illustrates this concept through the phenomenological Bell-
Evans Model,335,336 which is conventionally applied in SMFS experiment to describe force-
induced dissociation. We expect that H3 should have the highest energy barrier (EBell, or 
consequently lowest koff) and widest potential (xB), while H2 and then H1 should have lower 
values. Further, we expect H3 to have a higher thermodynamic stability (EBind) because of the 
presence of additional coordination bonds. 
 

 
Figure 3-11. Structural and thermodynamic properties of the metal-coordinating ELPs. a) CD spectra show 
that there is no change in the conformation of the ELPs upon the addition of Ni2+, indicating that the ELPs retain 
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their intrinsic flexibility. b) UV-Vis spectroscopy indicates that the transition temperature (Tt), even upon the addition 
NiCl2, is above 25ºC. As such, the ELPs remain soluble at room temperature, ensuring that individual molecules are 
probed in SMFS experiments. c) Multiple cooperative binding mechanisms of H2 and H3 are possible, where the 
binding of the first metal ion affects the binding of surrounding metal ions. This is expected to yield a 
thermodynamically more stable conformation, i.e. a higher association constant. ITC of d) H1, e) H2, and f) H3 
shows increasing association constants from H1 to H2 to H3, indicating increasingly stronger binding with Ni2+. A 
one-site model is demonstrated for ease of comparison. All experimental data is collected in the same measurement 
buffer used for SMFS, i.e. non-coordinating 10 mM HEPES/ NaOH pH 7.4, 140 mM NaCl. 
 
The rationally designed MC-ELPs were recombinantly produced in E. coli and purified using the 
inverse transition temperature cycling method (Figure S3-1). They were structurally 
characterized in the absence and presence of Ni2+ to confirm their disordered nature. Circular 
dichroism (CD) spectroscopy confirms that the ELPs retain a disordered conformation in both 
conditions (Figure 3-11a). The large negative band at 200 nm and a small one at 220 nm match 
the spectra of both other ELPs337 and the random coil secondary structure.338 UV-Vis 
spectroscopy demonstrates that all ELPs remain soluble at room temperature (Figure 3-11b). 
These two measurements confirm the flexible, soluble polypeptide structure of the MC-ELPs 
and, consequently, ensure that the thermodynamic, kinetic, and dynamic mechanical properties 
represent metal-coordination bonds between individual MC-ELP dimers and not larger clusters. 
 
As a first test to probe the possible cooperative binding of Ni2+ ions to the MC-ELPs templates, 
ITC experiments were performed. The additional coordination bonds increase the association 
constant Ka by a factor of ~3-4 when moving from H1 to H2 to H3 (Figure 3-11d-f), given a one-
site model to capture the apparent single-term binding constant of the three polypeptides for 
ease of comparison. This indicates that the increase in binding affinity is slightly more than 
additive when increasing the number of metal-coordination sites on the ELP template. As 
several binding modes and dissociation pathways are possible (Figure 3-11c), alternative ITC 
fits are presented in Table S3-1.339 The two-sites binding model indicates that the second site of 
H2 and H3 has a higher Ka than the first coordination site, providing first evidence for the 
cooperativity of binding sites. 
 
Table 3-1. Alternative ITC fits show possible cooperativity based on fit type. Because the exact binding 
mechanism is unknown, alternative ITC fits for H2 and H3 are shown. Several binding models fit the data well, 
although moderately better fits are obtained when the two-sites model is used for H2 and H3 instead of the one-site 
model. The two-sites binding model yields independent binding constants (K) and we refer readers to the manual for 
the comprehensive equations.340 The two-sites binding model indicates that the second site has a higher binding 
constant than the first site. Using a model for independent sites, it is extremely difficult to obtain a unique fit for 
more than two sites, and as such, the fit with the three independent sites model is not shown.340 The 
thermodynamics of metal-coordination bonds have also been probed in other studies.289–291,341,342 The binding 
constants in our experiments are ~1 order of magnitude less than those observed through surface plasmon 
resonance experiments,298 likely due to the different experimental method. At the same time, they are ~1-2 orders of 
magnitude higher than those measured for histidine-Zn2+ coordination.103 This is in line with the higher stability of the 
histidine-Ni2+ bond.111 Significant literature on multivalent binding can also be found in other protein systems for 
comparison.292–294 
 
MC-ELP K1 (M-1) K2 (M-1) K3 (M-1) ITC Fitting Model 
H1 9.39E+03   One-Site 
H2 4.11E+04   One-Site 
H2 2.89E+04 4.24E+05   Two-Sites 
H3 1.25E+05   One-Site 
H3 8.81E+04 2.10E+05   Two-Sites 
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Figure 3-12. SMFS of metal-coordinating ELPs. a) AFM-based SMFS setup. ELPs carry one to three N-terminal 
histidine residues and a C-terminal cysteine for site-specific immobilization. The cysteine is used to covalently 
couple the ELPs (180-190 amino acids) to the cantilever and a glass surface, using a 10 kDa (approx. 60-65 nm 
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long) polyethylene glycol (PEG) linker. b) Representative force-extension curves showing the rupture of H1 (blue), H3 
(pink), and H3 with a high rupture force (red). c) Mean loading rate dependence of the mean rupture forces. The Bell-
Evans model fit is also shown. d) Representative rupture force histograms obtained at retract speeds of 200 nm s-1, 
1000 nm s-1, and 5000 nm s-1. The vertical lines at 1x represent the most probable rupture force of H1 (i.e. one metal 
coordination bond). The lines for 2x H1, and 3x H1 indicate where the rupture forces for H2 and H3 would be 
expected if the bond strength would be additive. The red line highlights the high rupture force peak for H3. All 
experimental data is collected in non-coordinating 10 mM HEPES/ HCl pH 7.4, 140 mM NaCl. 
 
3.4.2 Dual modes of ELP-Hn polypeptide rupture 
 
As ITC averages over all binding configurations and dissociation pathways, the cooperative 
rupture of the MC-ELP dimers was subsequently investigated with SMFS where such 
heterogeneities can be resolved (Figure 3-12a). The MC-ELPs, which have a C-terminal 
cysteine, were covalently coupled to cantilevers and glass surfaces, using a maleimide-
functionalized polyethylene glycol (PEG) linker (Mw = 10,000 g mol-1). The PEG layer effectively 
passivates the surface to reduce nonspecific interactions (Figure 3-13).315,343–346 The cantilever 
approach facilitates ((histidine)2-Ni2+)n complex formation, while retraction results in its complex 
rupture. Figure 3-12b shows representative force-extension curves, each with a clear single-
rupture peak. Even though ELP and PEG chains are connected in series, force-extension 
curves displaying a single-rupture event can be described with the extensible freely jointed 
chain model as their Kuhn lengths are very similar (ELP: 0.8 nm;304,305 PEG: 0.7-0.8 nm347,348). 
Considering the combined length of ELP (65-70 nm) and PEG (60-65 nm)348, only force-
extension curves with a contour length >100 nm were used for further analysis. 
 

 
Figure 3-13. SMFS control experiment to quantify non-specific interactions. A series of control experiments 
was conducted to determine non-specific, metal ion mediated interactions between the maleimide-functionalized 
PEG and ELP linkers (or any other two components) in the experimental setup. Using H3, two different types of 
control experiments were performed. The first experiment includes a fully functionalized coverslip and cantilever 
(“FsFl_EDTA”), where the aminopolycarboxylic acid ethylenediaminetetraacetic acid (EDTA) was added as a chelator 
during the SMFS experiment. For the second experiment, H3 was omitted from either the coverslip (“PsFl") or the 
cantilever ("FsPl”), or from both (“PsPl”). Very little interaction is observed in these experiments with exception of the 
experiment were the H3-functionalized slip was probed against the PEG-only cantilever ("FsPl”). This binding is, 
however, absent when EDTA is added to the experiment (“FsFl_EDTA”). We hypothesize that this nonspecific 
binding may arise from the Ni2+-mediated attachment of the ELP to the cantilever. Data values below each subfigure 

MC Complex

FsPl

PsPlPsFl

PEG

ELP

EDTA

FsFl_EDTA

FsPl PsFl PsPl EDTA

15% 0% 0% 0%

10-15% 0% 0% 0%

23% 0% 0% 1.6% 

0% | 0% | 0% 0% | 0% | 0%

0% | 0% | 1.6% 15% | 10% | 23%

Table 1. Panel experiments were conducted to characterize 

the role of nonspecific binding within the protein system. 

Panel experiments include a fully functionalized slip and 

cantilever with metal chelator EDTA, a functionalized slip and 

PEG-only cantilever, a PEG-only slip and functionalized 

cantilever, and a PEG-only slip and cantilever. Each 

experiment was tested with H3. Almost all panel samples 

demonstrate no binding, as expected. However, the 

functionalized slip with the PEG-only cantilever demonstrates 

some nonspecific binding. We hypothesize that this 

nonspecific binding may arise from Ni2+-mediated 

attachment of the ELP protein to the cantilever. There is no 

trend in Rf or loading rate values to differentiate these 

nonspecific binding events. Data values in the table 

represent percent binding in the panel experiment compared 

to the percent binding observed in a fully functionalized, 

normal experiment.
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represent three independent experiments calculating the percent binding in the panel compared to the percent 
binding observed in a fully functionalized, standard experiment. Raw data for percent binding is presented in Table 
S3-1. In conclusion, this suggests that non-specific binding events constitute a maximum of ~15% of all analyzed 
force-extension curves, e.g. in the H3 data shown in Figure 3-12. 
 
Force-extension curves were measured across several retract speeds, and mean rupture forces 
increase with increasing mean loading rates (Figure 3-12c). H1 demonstrates a narrow force 
distribution across all retract speeds (Figure 3-12d), consistent with the rupture of one metal-
coordination bond. The rupture force histograms for H2 and H3 are significantly broader. This 
again reflects the larger number of possible bound configurations, such as parallel or antiparallel 
alignment of the polypeptide chains, staggered configurations, and variations in the number of 
Ni2+ ions bound (Figure 3-10a, 3-10c). It is notable that the heterogeneity is present despite the 
use of a site-specific immobilization protocol, minimized nonspecific interactions (Figure S3), 
and use of non-coordinating buffers, which were limitations of previous SMFS experiments with 
similar systems.315,344–346 This rupture force histogram heterogeneity is reproduced across 
multiple independent experiments, indicating that deeper physical principles underlie the 
heterogeneous distribution. It should be noted that a single narrow peak is also observed when 
H3 on the cantilever is probed with a H1-functionalized surface. This ultimately confirms that 
single-rupture events are recorded and that aggregation of coordination bonds is absent in our 
SMFS experiments (Figure 3-14). 
 
The Bell-Evans model335,336 fitting (Figure 3-12c) estimates of the mean rupture force data 
yields quantitative energy landscape parameters to contextualize the differences between H1, 
H2, and H3. The parameters for H1 can be accurately determined and are an xB of 4.5 Å and koff 
of 7.03 x 10-1 s-1. For comparison, for the binding of an analogous system his tag-nickel NTA, 
Kienberger et. al previously reported an xb of 1.9 Å and a 𝜏 = 15 s (koff 6 x 10-2 s-1)315 and Friddle 
et. al349 reported an xB of 0.9 Å and koff of 4.3 s-1. Though the exact quantitative determination of 
parameters for H2 and H3 is not possible due to their non-Gaussian histograms, Bell-Evans 
fitting estimates are reported to illustrate the differences between the systems. H2 has an xB of 
3.9 Å and koff of 4.99 x 10-1 s-1, and H3 has an xB of 5.9 Å and koff of 5.29 x 10-4 s-1. H2 has 
similar landscape parameters to H1, but H3 has a koff that is three orders of magnitude smaller 
than H1, reflecting a higher energy barrier and the lack of deformability of the protein.350 The H3 
energy landscape parameters are consistent with the predicted changes to the energy 
landscape in Figure 3-10c.   
 

 
Figure 3-14. SMFS of composite H1-H3 system. Experiments with H1 on the coverslip and H3 on the cantilever 
(inset, gray histograms) demonstrate similar behavior to H1-only (blue histograms), indicating that each H3 
polypeptide on the cantilever only binds to one H1 molecule on the surface. This confirms that the experimental 
setup is at a low concentration to pull on a single molecule rather than cluster of molecules. 
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To better understand cooperative effects, we focus on the heterogeneous distributions of H2 
and H3. While the rupture force histograms of H1 and H2 are similar, clear differences are seen 
in the histograms of H3. These histograms show one peak with similar rupture forces as seen 
for H1 and H2 and a peak with much higher rupture forces (Figure 3-12d). Especially at the 
lower retract speeds of 200 and 1000 nm s-1, the two peaks are clearly separated while they 
move closer at the highest retract speed of 5000 nm s-1, indicating that the two peaks display a 
different loading rate dependence. At the slowest retract speed, the first force peak of H1, H2, 
and H3 is located at ~15 pN for all three MC-ELPs. This suggests that the metal coordination 
bonds break sequentially at slow retract speeds, such that H2 and H3 effectively behave like 
H1. As the retract speed increases, the first peak rupture force for H2 remains the same as H1. 
However, the first peak rupture for H3 deviates from H1. Further, the red dotted line illustrates 
that another peak for H3 is located at ~150-200 pN (Figure 3-12d). The additional peak 
observed for H3 is clearly higher than 2x or 3x the rupture force observed for H1 (black dotted 
lines in Figure 3-12d). These more-than-additive rupture forces indicate synergistic 
contributions of the additional coordination bonds. These high forces are surprisingly on the 
order of titin unfolding351 and indicate that appropriately spaced coordination bonds can increase 
the stability of proteins in a cooperative manner.  
 
3.4.3 Uncovering the heterogeneity of metal-coordination 

rupture 
 
To obtain insights into possible molecular mechanisms of metal-coordination bond rupture, we 
conducted SMD simulations for shortened analogs of the MC-ELPs. Although the exact binding 
geometry of the polypeptides with Ni2+ ions are unknown, speciation calculations of histidine 
with Ni2+ predict a bidentate coordination stoichiometry in aqueous conditions.330,331 Further, 
despite the flexibility of ELPs, intramolecular coordination with higher denticity is unlikely due to 
an entropic penalty of loop formation,332 given that the spacing of histidine residues on the ELP 
backbone is only five amino acids (~1.8 nm). Given these assumptions, we model an “idealized” 
binding scenario where a bidentate trans configuration is imposed. This idealized coordination 
geometry is equilibrated for a long time to confirm its stability prior to SMD pulling studies.  
 
For all SMD simulations of MC-ELPs, the rupture forces increase with the pulling speed (Figure 
5a) with a similar trend as in experiment (Figure 3-12c). Just as in the SMFS experiments 
(Figure 3-12c), the difference between H2 and H3 is larger than the difference between H1 and 
H2. This likely originates from a higher probability of simultaneous coordination bond rupture for 
H3.  
 
To understand the molecular origins of this behavior, rupture events were separated into 
pathways where one, two or three bonds ruptured simultaneously (Figure 3-15b). SMD 
provides mechanistic insights into these rupture pathways, which are otherwise inaccessible in 
the experimental force-extension curves. Considering experimental timescales and thermal 
fluctuations, the distances between the coordination sites are too short (five amino acids, ~1.8 
nm) to distinguish sequential versus simultaneous rupture (Figure 3-12b), but are required for 
cooperative rupture (Figure 3-10b).  
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Figure 3-15. SMD of metal-coordinating ELPs. a) Pulling speed dependence averaged over all rupture events. The 
final rupture force follows a positive linear relationship with pulling speed as expected for all MC-ELPs. H3 has a 
higher rupture force than H2, followed by H1. The colored data points indicate the maximum number of metal 
coordination bonds that rupture simultaneously across all repeats. b) Pulling speed dependence is disaggregated by 
the number of metal-coordination bonds that rupture simultaneously. The cooperative rupture of two bonds has a 
higher rupture force across all pulling speeds. c) Several rupture pathways are possible and examples of simulation 
trajectories of H3, pulled at 2.5 m s-1. The comparison of the two examples shows that the simultaneous rupture of 
two bonds requires more force than what is needed for breaking one bond. d) SMD experiments using different 
initial structures or randomly initialized atomic velocities. These simulations show a range of deformation pathways, 
as illustrated by the average distance between the initial configuration and the configuration at a given time of the 
backbone Cα atoms of the protein chain with the fixed atom. e,f) Simulation snapshots of H3 pulled at 2.5 m s-1. The 
snapshots illustrate this heterogeneity, where bond breaks sequentially (e) or two bonds break simultaneously (f).  
 
The SMD data corroborate that the low-force peak in the SMFS rupture force histograms is 
likely due to the rupture of a single coordination bond. When comparing the rupture of single 
coordination bonds between simulation and experiment, a similar speed-dependent trend is 
observed (Figure 3-15b and Figure 3-16a). The simulations further confirm our initial 
interpretation that the sequential rupture of coordination bonds is more likely at slower pulling 
speeds. The coordination bonds may relax in response to backbone fluctuations, which have a 
larger contribution during longer simulation times at slower pulling speeds (Figure 3-17). 
Interestingly, the speed-dependence of H1, H2, and H3 in both Figure 3-15b and Figure 3-16a 
does not completely overlap even though only one bond is rupturing. This indicates that the 
neighboring binding sites affect each other even though not all of them have a metal bound. 
This observation is also captured in the energy landscapes of only one bond rupturing in H1, 
H2, and H3 (Figure 3-16b). The high-force peak in the SMFS histograms of H3 is thus likely 
due to the cooperative rupture of multiple coordination bonds. Likely, the cooperative rupture of 
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two bonds significantly changes the underlying energy landscape to result in the synergistic high 
rupture forces.  
 

 
Figure 3-16. Loading rate dependence of single-bond rupture events in SMFS experiments and underlying 
energy landscape. a) Assuming that the first peak represents rupture events where only one metal-ligand bond 
breaks, the data was fitted to a Gaussian model with two terms to extract the most probable rupture force value of 
the “one-bond breaking” rupture events. The loading rate dependence shows a similar trend as the pulling-speed 
dependence of “single-bond breaking” events in simulation (Figure 3-15b). The Gaussian fitting is made in MATLAB 
using the following equation:  

𝑦	 = 	J𝑎2𝑒
YQZNQ[(L(

\
)
]

4

2^6

 

and only data points with a fitting R2 value of 0.9 minimum are included. b) Free energy landscapes of one bond 
rupturing in the H1, H2, and H3 show differences due to additional histidine groups present. Using PLUMED, an 
implementation of metadynamics for accelerated sampling, the free energy of H1, H2, and H3 was calculated for a 
protein configuration where only one coordination bond is initially bound and then ruptures (see schematic). This set 
up mimics the one bond rupture events in the AFM. The collective variable, or reaction coordinate, of the free energy 
landscape of the protein systems is the distance between the coordinating nitrogen on the histidine residue and the 
Ni2+ ion. The energy landscape reveals that even though only one bond is bound and ruptures in H1, H2, and H3, the 
energy landscape of H3 is different than that of H1 or H2. This indicates that the additional histidine residues affect 
the coordination bond even though they are not directly participating in a coordination interaction. 
 
Though the two modes of single- and multiple-bond cooperative rupture resolved through SMD 
explain the majority of the results observed in SMFS, other mechanisms are possible. For 
example, H2 has minor differences from H1 in simulation but not in experiment. In experiment, it 
is possible that H2 is only forms one bond, even though two coordination bonds are theoretically 
possible. It is also possible that increasing the number of coordination sites increases the 
probability for rebinding along the rupture pathway, as the coordination bonds are highly 
dynamic. In our simulations however, rebinding did not occur unless a specific metastable 
artificially constrained protein geometry was used (Figure 3-18). Even at the longer timescales 
probed in the SMFS experiment where rebinding may become more likely as the two chains 
remain in proximity for a longer period of time, we still consider rebinding as the less likely 
mechanism. The experimental rupture force histograms that include rebinding events are 
expected to display a wider distribution of forces.352 Here, two distinct peaks are observed in the 
rupture force histograms (Figure 3-12d), suggesting that indeed two distinct rupture pathways 
are probed. 
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Figure 3-17. Backbone fluctuation based on pulling speed in simulations. Decreasing the pulling speed in 
simulation results in increasing fluctuation of the protein backbone atoms. This indicates that slower pulling speeds 
allow greater spatial exploration and relaxation of the backbone. One representative example of H3 at several pulling 
speeds is demonstrated, and the backbone relaxation dependence on speed is observed across all simulations. 
Data is plotted every 10 ps.  
 
Despite imposing idealized binding conditions with a bidentate trans coordination, the SMD 
trajectories demonstrate highly heterogeneous rupture pathways. Several rupture pathways 
emerge (Figure 3-15c, 3-15d), indicating the stochasticity of metal-coordination bond rupture. 
The same polypeptide at the same pulling speed shows different rupture pathways (Figure 3-
15c, 3-15d) under different initial conditions including polypeptide structures or initialized atomic 
velocities. This heterogeneity is also visualized in Figure 3-15e, where bonds break 
sequentially, and in Figure 3-15f, which highlights the simultaneous rupture of two bonds.  
 
Our results imply that metal-coordination bonds can exhibit cooperative rupture, but are highly 
stochastic with significant heterogeneity in rupture pathways even under the same pulling 
conditions. Further, the two-to-three bonds observed to simultaneously rupture aligns with the 
Ncr prediction in Figure 3-10b. Next steps involve investigating the effects additional 
coordination bonds. 
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Figure 3-18. Rebinding events in simulations. When the H3 protein is artificially constrained such that the protein 
backbone is nearly linear, rebinding can be observed under specific pulling conditions. Though the protein is not 
stably equilibrated under this geometry, SMD simulations are still conducted to explore potential rebinding effects. 
Under this constrained geometry at a pulling speed of 25 m s-1, in (a), rebinding can be observed in a nondistinctive 
binding trace at ~600 pN. Notably, rebinding is extremely sensitive, where even changing the randomly initialized 
atomic velocities for the same protein geometry does not show rebinding. b) Snapshots of this rebinding event and 
a schematic illustration of rebinding. c) At slower pulling speeds of 0.25 m s-1, the rebinding event occurs at a lower 
force of ~200 pN. d) Across all simulations tested of the equilibrated H2 and H3 protein structures at varying pulling 
speeds, rebinding is not observed. Traces of the distance between potential rebinding partners at 0.25 m s-1 are 
shown, and the distances do not reach the ~3 Å required to enable rebinding.  

 
3.4.4 Discussions, Implications, & Conclusions 
 
Using a combination of single-molecule force spectroscopy (Figure 3-12) and all-atom steered 
molecular dynamics (SMD) simulations (Figure 3-15), we investigated the contribution of 
multiple metal-coordination bonds to the stability of metal-coordinated polypeptides (Figure 3-
9). We found that metal-coordination bonds exhibit cooperative rupture and resolved at least 
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two dissociation pathways. Along the first pathway, coordination bonds dissociate sequentially. 
At the same time, synergistic rupture of multiple bonds is possible and characterized by more-
than-additive equilibrium binding constants and rupture forces.  
 
Our work has important implications to the characterization and design of proteins with metal-
coordination bonds. It is critical that experimental strategies are developed that ensure single-
molecule specificity for systems with multiple coordination bonds. Our work contributes explicit 
methodology, quantitative rupture force values, and a mechanistic understanding of the nature 
of these bonds—an important insight due to the highly utilized nature of histidine-Ni2+ bonds. 
The principles uncovered in this work likely occur for other metal-coordination systems. In fact, 
evidence for the sequential and simultaneous rupture of ferric-thiolate bonds in an iron-sulfur 
rubredoxin protein was recently discovered.353  
 
Most importantly, this work contributes to an understanding of how biological materials exploit 
weak dynamic noncovalent interactions to build strong and tough materials. We reveal that 
cooperativity for metal-coordination bonds increases protein strength, a concept likely applies 
for most other dynamic noncovalent interactions. The ability of the bonds to rupture 
simultaneously makes metal-crosslinked materials strong at high pulling speeds, e.g. when 
mussel byssal threads are exposed to crashing waves, which can be up to 5 to 15 m s-1,16 or 
upon crushing mandibles. At the same time, the material can dynamically reorganize at rest 
through heterogeneous rupture modes, suggesting the strong energy-dissipative role of metal-
coordination bonds.17,26,55,284,354 Altogether, the presented work provides mechanistic insight into 
the sequential and cooperative rupture modes of increasing numbers of intermolecular metal-
coordination bonds on a protein template, allowing for both the rational design of metal-
coordinated materials with target mechanical properties (toughness, strength) and the 
fundamental understanding of biological exploitation of weak noncovalent interactions. 
 
3.4.5 Materials and Methods 
 
Polypeptide design and expression 
ELPs are a class of intrinsically disordered, flexible polypeptides composed of repeating 
GXGVP motifs, where X, the guest residue, stands for any amino acid except proline.355 The 
MC-ELP design was based on the work of Callahan et al.356 and the bacterial expression on 
Martín-Moldes et al.357 Bioengineered MC-ELP were designed to contain one to three 
histidines, located in the N-terminal guest residues. The MC-ELPs have the general structure 
(GHGVP)n(G-S/T/V-GVP)33-C where “n” represents 1, 2, or 3. The ELP backbone is composed 
of a combination of GXGVP pentapeptides whose guest amino acids are serine, threonine, or 
valine in a 7:3:23 ratio. A cysteine is added at the C-terminus to enable the immobilization of 
the polypeptides for SMFS experiments. The full DNA and amino acid sequence are included in 
Appendix Method 3-S1. 
 
The DNA sequences encoding the MC-ELPs were synthesized by GenScript (Piscataway, NJ, 
USA). The genes, flanked by NheI and SpeI restriction sites, were obtained in a pUC57 vector. 
Using standard molecular biology protocols, the genes were cloned into the expression vector 
pET25b+ (MilliporeSigma, Burlington, MA, USA), using the mentioned restriction sites. The 
correct insertion of the genes was verified with DNA sequencing. All constructs were 
transformed into the E. coli strain BLR(DE3) (Novagen-SigmaAldrich, St. Louis, MO, USA) and 
grown on LB agar plates supplemented with 25 µg mL-1 ampicillin. Using single colonies, seed 
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cultures were started, using 25 mL of Luria-Bertani medium, supplemented with 25 µg mL-1 
ampicillin. The seed cultures were grown overnight at 37°C and 250 rpm. The seed cultures 
were transferred to 1 L of Terrific Broth supplemented with 0.8% (v/v) glycerol and 25 µg mL-1 
ampicillin. The culture was induced with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG; 
(Sigma-Aldrich, St. Louis, MO, USA) at on OD600 ~0.8-1. Bacteria were harvested 5 hours after 
induction by centrifugation at 8000 rpm for 15 min at 20°C. 
 
The MC-ELPs were purified using the inverse transition temperature cycling method.358 Briefly, 
the bacterial pellet was resuspended in phosphate-buffered saline (PBS; 210 mg/L KH2PO4, 
726 mg/L Na2H2PO4-7 H2O, pH 7.4, 9000 mg/L NaCl), using 10 mL of buffer for 1 g of pellet. 
The cells were lysed using sonication while kept in an ice bath. The cell lysate was cleared by 
centrifugation at 9000 rpm and 4°C for 30 minutes. NaCl was added to the supernatant to a 
concentration of 3% (w/v) and the supernatant was incubated at 70°C for 1 h to induce the 
precipitation of the polypeptides. The sample was then centrifuged for 3 min at 9000 rpm at 
30°C. The supernatant was discarded and cold deionized water was added to the remaining 
pellet. The precipitated target polypeptide was dissolved overnight under strong magnetic 
stirring at 5°C. The sample was then centrifuged at 9000 rpm for 15 min at 4°C, the pellet was 
discarded and the supernatant was dialyzed (MWCO 7 kDa, ThermoFisher Scientific, Rockford, 
IL, USA) against deionized water for 3 days. The yield of the MC-ELPs was approximately ~300 
mg L-1 of bacterial culture. The purity of the polypeptides was confirmed via non-reducing 
SDS-PAGE (Appendix Figure S3-1). 
 
Isothermal Titration Calorimetry 
All titrations were performed using a VP-ITC MicroCalorimeter Microcal LLC at 25°C. Solutions 
for titrations were prepared in a non-coordinating HEPES buffer (10 mM HEPES/NaOH pH 7.4, 
140 mM NaCl). A solution of NiCl2 hexahydrate (720 µM) was titrated as the ligand to 24 μM 
H3, 36 μM of H2, or 72 μM of H1 polypeptide solution. Reference titrations, performed by 
adding the NiCl2 solution to HEPES buffer, were subtracted from the corresponding titrations 
to account for the effect of the dilution. The fitting was performed using the Microcal Origin 
Software. The equation for the one site model fitting is: 
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where 𝑄 is the total heat content of the solution in 𝑉R, the active cell volume, 𝑀M is the bulk 
concentration of macromolecule in 𝑉T, 𝑛 is the number of sites, ∆𝐻 is the molar heat of ligand 
binding, and 𝑋M is the bulk concentration of the ligand, and 𝐾! is the association constant. 
𝑛, 𝐾! , ∆𝐻 are iterated using standard Marquardt methods until no significant improvement in fit 
occurs with continued iteration.  
 
CD Spectroscopy 
CD spectra were recorded to investigate the secondary structure of the MC-ELPs in absence 
and presence of excess Ni2+ ions above and below their Tt. MC-ELPs were dissolved in HEPES 
buffer at a final concentration of 15 µM. When present, 300 µM NiCl2 was added in a 10:1 
molar ratio of NiCl2 to the MC-ELP. Spectra were acquired using a Jasco J-815 Circular 
Dichroism Spectrometer (Easton, MD, USA) and a 1 mm cuvette (model 1-Q-1, Spectrecology, 
St. Petersburg, FL). Spectra are the result of accumulating three scans, acquired at a scanning 
speed of 20 nm s-1 and 4 s of Digital Integration Time (DIT), from 280 to 190 nm. The High-
Tension Voltage, HT(V), of the photomultiplier was kept below 600 V.  
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UV/Vis Spectroscopy 
Polypeptides were dissolved HEPES buffer at a final concentration of 30 µM. When present, 
the NiCl2 solution was added in excess at final concentration of 300 μM, in a 10:1 molar ratio of 
NiCl2 to MC-ELP. The turbidity of each sample, with and without NiCl2, was measured in a 
UV/Vis spectrophotometer (Aviv 14DS spectrophotometer equipped with a Peltier temperature 
controller; Aviv Biomedical, Lakewood, NJ) in a 1 mL quartz cuvette. Absorbance of the sample 
was monitored at 350 nm as a function of increasing temperature from 25 to 70°C at a heating 
rate of 2.5ºC min-1. 
 
Preparation of glass coverslips and AFM cantilevers 
The cysteine terminated MC-ELPs were immobilized to cover slips and AFM cantilevers via 
polyethylene glycol (PEG) spacers, using a previously established protocol.359 Briefly, glass 
coverslips (Menzel Glaeser, Braunschweig, Germany) and cantilevers (MLCT, Bruker, 
Camarillo, CA, USA) were cleaned and activated via 10 min UV-ozone treatment, followed by 
silanization with 3-aminopropyl dimethylethoxy silane (ABCR, Karlsruhe, Germany). Both the 
coverslips and cantilevers were treated in parallel. They were incubated in 50 mM sodium 
borate (pH 8.5) for 1 h to increase the fraction of deprotonated amino groups for the 
subsequent coupling of the heterobifunctional NHS-PEG-maleimide spacer (Mw = 10,000 g 
mol-1, Rapp Polymere, Tuebingen, Germany). NHS-PEG-maleimide was dissolved in a 
concentration of 50 mM in sodium borate and incubated on the surfaces for 1 h at room 
temperature. Following incubation, the surfaces were washed with ultrapure water and dried 
under nitrogen flow. The MC-ELPs were dissolved to a concentration of ~100 µM in coupling 
buffer (composition). The polypeptide solutions were added to beads carrying immobilized 
tris(2-carboxyethyl) phosphine (TCEP, Thermo Scientific) to reduce possible disulfide bonds. 
The samples were incubated at 4ºC with shaking. The reduced polypeptide solutions were 
diluted to a final concentration 30 μM and a volume of ~50 μL was pipetted on top of the 
coverslip or cantilever. After incubation for 1 h at 4 ºC, the cantilever and surfaces were rinsed 
multiple times with the HEPES buffer  to remove non-covalently bound polypeptides. 
Coverslips and cantilevers were stored in HEPES buffer until use. 
 
AFM-SMFS 
All SMFS measurements were performed with a ForceRobot® 300 instrument (Bruker Nano, 
Berlin, Germany), using MLCT cantilever C with a nominal spring constant of 0.01 N m-1. The 
measurements were performed at room temperature, using in HEPES buffer with 1 mM NiCl2. 
To obtain measurements over a broad range of loading rates, data was collected at different 
retract velocities, ranging from 200 to 5000 nm s-1. For each retract velocity, ~3000 to 5000 
approach-retract cycles were carried out on a 10 x 10 μm2 grid (Appendix Table S3-1). 
Cantilevers were calibrated for each retract velocity as the cantilever properties changed in the 
NiCl2 solution. The thermal noise method was used,360 applying a correction factor of 0.817 for 
the cantilevers.361 The spring constants determined varied between 0.01 and 0.014 N m-1 and 
the sensitivities varied between from 43.71 and 54.96 nm V-1. Several independent experiments 
were performed, using independently functionalized cantilevers and coverslips. 
 
The obtained data was converted into force-extension curves, using the JPK data analysis 
program (version 6.1.41). PEG represents a well-characterized spacer for SMFS measurements 
and together with the ELP,304 allows the discrimination of specific versus nonspecific 
interactions. Further, the spacer has a characteristic force-extension behavior, which can be 
described by the extensible freely jointed chain (eFJC) model. As PEG and ELP have similar 
Kuhn lengths (values at around 0.8 to 1 nm.304,305,347) a single eFJC fit with one Kuhn length is 
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possible. Force-curves within a pre-defined range of Kuhn lengths and contour lengths were 
selected for further analysis. The range of Kuhn lengths was between 0.4 and 1.6 nm and a 
contour length cut-off of 100 nm was applied. This value exceeds the contour length of one 
chain (which is?) and thus ensures that the chain ruptured includes the polymer spacers on 
both the coverslip and the cantilever. For each force-extension curve, the rupture forces and 
corresponding loading rates were determined using the JPK data analysis program and plotted 
as histograms (Appendix S3: 2-4). Considering the broad rupture force histograms (at least for 
H3), the mean rupture forces were plotted against mean loading rates to obtain a first overview 
of the data. To compare the three MC-ELPs the mean rupture forces and loading rates, the 
data (Figure 3-11c) was further fitted to the Bell-Evans model:335,336 
 

F*=
kbT
xB

ln h
rxB

koffkBTi 

 
where 𝐹∗is the most probable rupture force, 𝑟 is the loading rate, 𝑘[is the Boltzmann constant, 
𝑇 is the temperature, 𝑘RUU is the dissociation rate extrapolated to force-free conditions, and 𝑥[ 
is the potential width. 
 
Steered molecular dynamics 
The ELP-Hn polypeptides (Figure 3-9a) were prepared such that each histidine nitrogen atom 
is coordinated in a bidentate geometry via the Ni2+ ion to the opposite polypeptide chain. 
Simulations were implemented with Nanoscale Molecular Dynamics (NAMD) and all simulations 
utilized the CHARMM22 force field229 with Ni2+ parameters from Babu et al.231 and a 2 fs 
timestep. The Ni2+ ions were balanced with Cl- ions for charge neutrality and the peptide dimer 
was solvated with a 15 Å mesh of TIP3P water molecules.362 Periodic boundary conditions 
were used with the Particle Mesh Ewald full system electrostatics method. After careful energy 
minimization using the conjugate gradient algorithm in NAMD, the simulations were 
equilibrated for 60 ns under NPT (1 atm, Nose-Hoover Langevin piston pressure control), 
followed by 60 ns in NVT (Langevin dynamics).  
 
Independent simulations under this procedure were carried out for subsequent SMD tests. The 
TIP3P water molecule box was extended by 60 Å to account for deformation in the pulling 
direction. The larger water box was briefly equilibrated for 2 ns under NPT and 0.5 ns under 
NVT. The C𝛼 atom on the C-terminus of one polypeptide was selected as the SMD pulling 
atom, and the C𝛼 atom on the opposite strand C-terminus was selected as the fixed atom. 
SMD data were collected every 0.2 ps and pulling speeds from 0.25 m s-1 to 25 m s-1 were 
used. The slowest pulling speed is still significantly faster than the fastest experimental retract 
velocity due to computational limitations. The simulation was run until all intermolecular metal-
coordination bonds fully ruptured. The rupture of a metal-coordinate bond was defined as a 
distance of greater than 3Å between the coordinating nitrogen of histidine and the Ni2+ ion. The 
time, distance, force, and type of bond rupture was recorded for each rupture event in each 
simulation. Simultaneous rupture was defined as multiple bond breaking events within 20 ps of 
each other in the visual file with the rupture force peaks that were indistinguishable from each 
other in the force-distance trace.  
 
We found that tetradentate structures were not stable during initial equilibration, as the metal-
coordination binding sites would quickly dissociate into tridentate, bidentate, or monodentate 
structures during the equilibration process. Given this, we continued SMD tests with only 
bidentate coordination. While this lack of tetradentate stability may be due to challenges with 
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the complex force fields for metal ions, speciation models predict a dominance of bidentate 
coordination stoichiometry in aqueous conditions between histidine and Ni2+.216,330,331 See 
codes in Appendix 3. 
 
 
  



   96 

CHAPTER 4 
 
 
NANOMECHANICS OF HIGHLY METAL-COORDINATED 
PROTEINS 
 
 
4.1 Significance Statement 
 
In this chapter, we apply the principles learned from metal-coordination bonds in model 
systems to metal-coordination bonds for mechanical functions in natural biological proteins. As 
discussed in the first chapter, several biological organisms utilize metal-coordination bonds for 
mechanical function. Here, we use the Nereis virens marine worm jaw to probe the mechanical 
role of metal-ions in their native biological environment. Though the structure of a major 
component of the worm jaw, the Nvjp-1 protein, has recently been resolved, a detailed 
nanostructural understanding of the role of metal ions on the structural and mechanical 
properties of the protein is missing, especially with respect to the localization of metal ions.  
 
In this chapter, replica exchange MD and steered MD were used to explore how the initial 
localization of the Zn2+ ions impacts the structural folding and mechanical properties of Nvjp-1. 
We find that the initial distribution of metal ions for Nvjp-1, and likely for other proteins with 
high amounts of metal-coordination, has important effects on the resulting structure, with 
larger metal ion quantity resulting in a more compact structure. These structural compactness 
trends, however, are independent of the mechanical tensile strength of the protein, which 
increases with greater hydrogen bond content and uniformity of metal ion distribution. Our 
results indicate that different physical principles underlie the structure or mechanics of the 
proteins, with broader implications in the development optimized hard bioinspired materials 
and the modeling of proteins with significant metal ion content.  

 
4.2 Introduction 
 
Nereis virens is a polychaete burrowing marine worm with a hard and stiff jaw used for feeding 
and defense in abrasive environments. The hardness and stiffness of the marine worm jaw is 
remarkable reaching up to ~0.8 GPa, paralleling the hardness of human cortical bone.15,363 
Further, Nereis virens is able to retain its hardness even in a hydrated state.14,364 This behavior 
is especially intriguing, given that its jaw proteins are mostly organic compared to the 
mineralized calcified teeth or hard tissues found in higher level organisms, which have an 
inorganic phase of around 75-95% by mass.15,61,62 Metal ions, and in particular Zn2+, have been 
found to play a structural role in the mechanical properties observed in these polychaete 
worms.14,15,61 
 
The isolation and structural prediction of Nvjp-1, a major component of the Nereis virens distal 
worm jaw extracts, has started to enable a detailed nanostructural understanding of how Zn2+ 
ions may contribute to the mechanical properties of the protein.13 Nvjp-1 is a histidine-rich 
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(over 25 mol%) protein that undergoes significant hydrodynamic changes depending on pH or 
the presence of metal ions.13 In agreement with experiment, our group previously 
computationally predicted the structure of Nvjp-1 and found that the structure becomes more 
compact as the ratio of Zn2+ ions to protein increased.47 Through additional simulations, Bekele 
et al. found that pH also affects the protein structure, where metal binding happens with polar 
residues at low pH and is passed onto carboxylate or imidazole coordination pockets at neutral 
pH.365  

While these research efforts have provided important insights into the role of pH and Zn2+ 
quantity on structural binding and mechanical properties, an understanding of how the location 
or distribution of Zn2+ affects these properties is missing, preventing a detailed understanding 
of how biological organisms use such metal ions for structural function. The larger worm jaw 
itself exhibits a specific metal ion gradient that directly relates with its stiffness and 
hardness,44,61 and a similar distribution could be expected at the nanoscale as well. Further, 
metal ions are known to play a role in protein folding by changing the underlying protein folding 
energy landscape.366,367 For example, in some biological organisms, Zn2+ has been found to 
induce amyloid-like conformations,368,369 including in some marine organisms.13,97 Given these 
observations, it is reasonable that the location of Zn2+ may have a strong effect on Nvjp-1 
protein structure and resulting mechanical properties. Developing such an understanding 
computationally would help clarify additional insights into how Zn2+ may enable the remarkable 
mechanical properties in Nereis virens, especially because the exact localization of Zn2+ ions in 
Nvjp-1 would be hard to ascertain through experiment. Given that few well-characterized 
protein structures with several metal-coordination bonds exist, the example with the Nvjp-1 
protein provides foundational insights that likely applies to other metal-coordinated protein 
structures as well. This broader understanding of the location-dependent metal-ion 
crosslinking effect in proteins would help yield additional design principles for how sclerotized 
proteins could be synthetically designed to create hard structures like biology.91  

In this chapter, we focus on understanding how the localization of Zn2+ impacts the structural 
folding and mechanical properties of Nvjp-1, with the goal of contextualizing such work for 
metal-coordinated proteins largely. Replica exchange MD (REMD) simulations are performed 
with explicit solvent to investigate the formation of the protein structures in various 
coordination environments. Metal ions are initiated in different positions of the Nvjp-1 protein, 
previously determined by REMD in implicit solvent,47 to understand how the protein folds in the 
presence of metal ions. Steered MD (SMD) experiments are conducted on the resulting protein 
structures to reveal how the location of metal-coordination bonds impacts mechanical tensile 
properties. This combination of structural prediction and mechanical properties gives 
information about Nvjp-1 binding with metal ions and will enable its broader use in 
mechanomutable engineering materials.47,91 With this information, optimized bioinspired 
materials could be created for a variety of practical applications, especially those requiring 
hard, sclerotized structures. 
 
4.3 Replica Exchange MD Simulation Convergence 
 
Zn2+ ions are initially distributed in three orientations in the solved REMD structure from Chou 
et al. (Figure 4-2).47 As a baseline case, named “A”, the Zn2+ ions are uniformly distributed 
throughout the protein, a common practice when the exact coordination structures are 
unknown.47,370 In the second condition, named “B” for “beta,” Zn2+ ions are distributed around 
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the small clusters of beta-sheets found in Nvjp-1, to determine whether this placement 
facilitates the formation of amyloid structures as in other proteins.13,97,368,369 The third condition, 
named “C” for compact, localizes Zn2+ ions in the compact, condensed regions of Nvjp-1. 
Such localization may have a reinforcing effect17,371 on the already compact regions of the 
protein through additional coordination bonds. 
 

 
Figure 4-1. REMD simulations are converged. a) The lowest energy cluster for simulations A, B, and C reaches a 
stable energy value by 20 ns. b) The root mean square deviation (RMSD) of the 300K replica reaches a stable value. 
c) The coil and helix secondary structure of the 300K replica reaches a stable value by 20 ns.  
 
The REMD simulation convergence was assessed by several criteria. As shown in Figure 4-1a, 
the average energy of the lowest cluster energy across the simulations approached a stable 
plateau. The root mean square deviation of protein structure at 300K was also analyzed for the 
simulations and remains relatively constant after 10 ns in Figure 4-1b. Last, the coil and helix 
secondary structure are shown as a function of time in Figure 4-1c. This analysis metric also 
reached a plateau around 12-13 ns per replica. While it is always possible to run the REMD 
simulation for longer times for more accurate structural predictions, these several criteria 
together indicate that the REMD simulations have reached a converged state, whereby further 
characterization would yield reasonable results. The initial starting point of a folded protein 
structure also accelerates the convergence of the REMD calculation.  
 
4.4 Lowest energy protein structures 
 
To understand how metal-coordination bonds affect the protein’s folding and thereafter 
mechanical function, three lowest energy representative structures were obtained from the 
REMD simulations, as shown in Figure 4-2. According to our simulations results, the initial 
conditions of the metal ion distribution affected the resulting structure of the Nvjp-1 proteins. 
When the metal ions were uniformly distributed throughout the protein, as is the case for 
simulation A, the protein structure did not deviate significantly from the initial structure. 
Comparing the smaller magnitude of the structural change in simulation A versus B/C suggests 
that the metal ions in the middle turn region of the protein contribute to locking the protein in 
its original structure and providing a higher energy barrier when folding. As these middle turn 
region metal ions are present in A, but not in B/C, less change in structure A was observed. 
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Figure 4-2. Representative protein structures from REMD simulations. Protein structures are initialized with 
different distributions of metal ions; uniformly distributed (simulation “A”), clustered in the β sheet regions (simulation 
“B”), or clustered in the compact regions (simulation “C”). Zn2+ ions are colored in purple. Secondary structures are 
colored as: yellow β sheet, red helix, cyan coil, and iceblue turns. Structures 1-3 shows three representative 
structures from the lowest energy cluster of each converged REMD simulation. a) In simulation A, final protein 
structures do not deviate significantly from the original structure, indicating that the Zn2+ stabilizes the protein 
structure such that β sheets and helices are mostly conserved. b, c) In simulations B and C, the proteins become 
more disordered. The difference in the degree of conserved structure in simulation B/C versus A suggests that the 
uniform distribution of Zn2+ and stabilizing effect of Zn2+ towards the middle of the protein results in additional 
energy barriers during protein folding. 
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Across all three simulation conditions, the converged proteins showed a more dispersed 
distribution of metal ions, with fewer helixes and turns, and the coil secondary structures 
dominates the protein structure (Figure 4-3a, Table 4-1, Figure 4-4). The amount of random 
coil increased across all simulations, where A had the most random coil content, followed by 
B, then C. A had more metal ions clustered towards the C-terminus region of the protein, 
whereas B has more metal ions clustered towards the N-terminus. The metal ions in C were 
more uniformly distributed throughout the protein. The proteins also all had similar radius of 
gyration values within 1 Å of each other, but A and C appeared to have a more spatially 
uniform distribution of amino acids, whereas B had a 10 amino acid random coil connecting 
two compact regions (Figure 4-2). 
 

 
Figure 4-3. Characterization of representative protein structures. To quantify the structure characteristics of 
Figure 4-2, the STRIDE secondary structure assigner in VMD is used. The diagonal hash filling pattern across all 
sub-figures represents an increase in the % change, rather than a decrease. All % changes are evaluated from the 
initial structure “original” in Figure 4-2 compared to the REMD structures. a) All simulations have more random coil 
secondary structure from A>B>C, and the amount of helix structure is the same across the 3 sets. b) Structures 
A,B,C have similar SASA values with an ordering of A~C>B for both the value and % increase from the original 
structure. c) A reorganization of MC bonds is observed, where His and Gly lose several MC bonds, while Asp gains 

Figure 3. Characterization of representative protein structures. a) To quantify the structure 

characteristics of Figure 2, the STRIDE secondary structure assigner in VMD is used; it is found that 

the structures have more coil-secondary structure from A>B>C, and the amount of helix structure is the 

same across the 3 sets. The diagonal hash filling pattern indicates that the amount of coil secondary 

structure is increased from the original to final structures, whereas the amount of helix secondary 

structure is decreased. The diagonal hash filling pattern across all sub-figures represents an increase 

in the % change, rather than a decrease. b) Structures A,B,C have similar SASA values with an 

ordering of A~C>B for both the value and % increase from the original structure. c) A reorganization of 

MC bonds is observed, where His and Gly lose several MC bonds, while Asp gains MC bonds. 

Although Gly does not coordinate with metal ions, it is demonstrated here for comparison as the 

protein is Gly-rich. The wt% of coordinated Zn2+ decreases from 8 wt% in the initial condition to 

4.1±0.08, 4.7±0.08, 4.8±0.17 for A, B, and C respectively. The trend in SASA is the same as the trend 

in the number of MC bonds in the system, where an increased number of MC bonds or coordination 

with Asp or His relates to a lower SASA. All % changes are evaluated from the initial structure 

“original” in Figure 2 compared to the solved structures in Figure 2. d) The number of hydrogen bonds 

and increase in hydrogen bonds in the protein changes from C>B>A and is not directly correlated with 

the SASA or number of MC bonds. 
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MC bonds. Although Gly does not coordinate with metal ions, it is demonstrated here for comparison as the protein 
is Gly-rich. d) The number of hydrogen bonds and increase in hydrogen bonds in the protein changes from C>B>A.  
 
Table 4-1. Secondary Structure Propensity (%) for Figure 4-3a. 

Secondary Structure Initial A B C 
Coil 9.7 42.7 40.2 35.4 
Helix 9.4 5.2 6.7 4.8 

 
Further, there was an increase in solvent accessible surface area (SASA) across all structures 
(Figure 4-3b, Table 4-2), indicating that the proteins are unfolding with the addition of the 
metal ions. While A and C had similar SASA values in terms of both absolute value and percent 
increase, B had the lowest SASA value and percent increase, indicating that it is the most 
compact structure.  
 
Table 4-2. SASA (Å2) for Figure 4-3b. 

A B C 
26095.7 ± 28.1 25371.0 ± 172.5 25984.0 ± 148.1 

 
This increase in the SASA relates directly with the trend observed for metal-coordination bonds 
present in the system. Figure 4-3c (Table 4-3) shows that the aspartate residues gained 
metal-coordination bonds from an increasing to decreasing order of B then A~C, and that the 
histidine residues lost metal-coordination bonds where A and C are similar, but B lost the 
fewest histidine-Zn2+ bonds. Further, the absolute number of metal-coordination bonds follows 
the trend where B has the most coordination bonds, followed by A~C. This, together with the 
SASA indicates that more metal-coordination bonds result in a more compact structure. 
Further, the Zn2+ ions stabilize the beta-sheet clusters in B, as in other proteins,13,97,368,369 even 
though the formation of amyloid-like structures is not observed. The increased coordination 
with Asp is also in agreement with the carboxylate coordination observed in Bekele et al.365 
These increases in carboxylate coordination were observed in the molecular snapshots in 
Figure 4-5b and c, and interestingly, the carboxylate groups also coordinated Zn2+ ions on the 
outer surface of the protein (Figure 4-5c). The aspartate coordination is surprising as aspartate 
is only ~7% of the amino acids in the protein whereas histidine constitutes ~27%.  
 



   102 

 



   103 

Figure 4-4. Contact map showing initial coordination and final coordination geometries of simulations A, B, 
and C. Contact maps for the original starting condition and final representative protein structure after REMD 
simulations are shown. The circles represent the position of the metal ions, and the indices are used to visualize 
where the metal ion stays or moves during the simulation. Metal ions are colored by the coordinating residues in the 
binding pocket. 

 
Figure 4-5. Metal binding pockets observed in REMD folding. Simulation snapshots for structure B showing the 
changing coordination environment before and after the REMD simulations have run. Several changes to the 
coordination environment of the Zn2+ ion (purple) with the protein nitrogen groups (blue) or oxygen groups (red) are 
shown. The coordination site in a) gains coordination partners to convert from a bidentate to tetradentate binding 
arrangement. Aspartate residues are significantly involved in coordination through b) increased coordination bonds 
with the carboxylate groups of the aspartate or c) aspartate involved in bonds that keep the monodentate metal-ion 
coordination without being loadbearing. d) Some coordination bonds convert to hydrogen bonds. 
 
Across all simulations, the loss of histidine-Zn2+ bonds is likely because the protein was initially 
oversaturated with Zn2+ as an initial concentration of 8 wt% was selected to replicate the metal 
ion concentration found in the tip of the Nereis virens worm jaw.13,61,372 Instead, the resulting 
wt% was roughly half of the initial concentration, at 4.1±0.08, 4.7±0.08, 4.8±0.17 for A, B, and 
C respectively (Figure 4-4). Further simulations beyond the scope of the current study could 
experiment with changing the initial concentration of metal ions present, as this is likely has a 
strong effect on the structure and mechanics of the protein.   
 
Table S3. Final Number of MC bonds for Figure 3c. 

Amino Acid A-initial A B-initial B C-initial C 
Asp 3 24±0 3 32±0 3 23±0 
Gly 7 2±0 18 3±0 7 0±0 
His 21 11±0 19 13±0 20 10±0 
Total 
Coordinated 
Amino Acids 

40 42±0 53 56±0 40 40±0 

 
To understand the role of hydrogen bonding in the structure, the absolute and change in the 
number of hydrogen bonds is plotted across the simulations (Figure 4-3d, Table 4-4). C had 
an increase in the number of hydrogen bonds and A and B had a decrease. An example of the 
conversion of a metal-coordination bond to a hydrogen bond in the protein structure is seen in 
Figure 4-5d. The trend in hydrogen bonding does not correspond to the SASA or number of 
metal-coordination bonds in the system. This further leads us to believe that that metal-
coordination bonds are more structurally important than hydrogen bonds in the protein folding 
and compactness of the Nereis proteins. 

a) b)

c) d)
Before After
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Table 4-4. Hydrogen bonds for Figure 4-3d. 

Initial A B C 
47 42.3±4.6 45.3±5.8 48±6.2 

 
4.5 Mechanical tensile properties of protein 
 
We find that the structural compactness of the various Nvjp-1 proteins (B>A~C) is independent 
from its properties under tensile SMD simulations (C>A~B) due to different underlying 
mechanistic principles. In the SMD simulations in Figure 4-6a, we found that C has a higher 
linear elastic modulus and yield strength, followed by B, then A. We attribute this trend to the 
nanostructural features of the protein (location of metal-coordination bonds, hydrogen bonds, 
secondary structure), rather than the measure of global compactness (SASA, number of metal-
coordination bonds) discussed above. Though the exact quantitative influence of each 
nanostructural element cannot be clearly differentiated, three contributing mechanisms explain 
these mechanical differences. First, the trend of strength from C to B to A follows the trend in 
hydrogen bonds in Figure 4-5-3d rather than the metal-coordination bonds. Hydrogen bonds 
are also important for mechanical strength, and there are roughly twice the number of 
hydrogen bonds in the protein as there are metal-coordination bonds, resulting in a large 
influence of the hydrogen bonds on the mechanical properties of the protein. Second, the 
trend of SMD mechanical properties directly follows the trend in the amount of turn structure in 
each of the proteins, which decreases from C to B to A, and indirectly follows the amount of 
coil structure, which increases from A to B to C. Thus, the random coil likely contributes 
minimal mechanical resistance to the pulling, whereas the turn structure stabilizes the Nvjp-1 
protein against mechanical disruption. Last, and of most novel to this work, C has an even 
distribution of load-bearing metal-coordination ions throughout its structure (Figure 4-6b, c, 
S2). This uniform distribution of metal ions plays an important role in providing resistance to 
rupture, especially because the detailed rupture mechanisms of the proteins are 
heterogeneous. As further evidence to this phenomena, Figure 4-6a shows that A and B have 
bonds breaking together towards the end, but C has a more uniform breaking of bonds 
through simulation time. Not only does this uniform distribution result in increased stiffness, 
but it also results in an increased toughness ~25-30% compared to simulation A or B. These 
results together indicate the importance of hydrogen bonding, secondary structure, and the 
distribution of metal ions on the mechanical properties of the Nvjp-1 protein in tension.  
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Figure 4-6. Steered molecular dynamics of Nvjp-1 proteins. a) Force-displacement behavior of Nvjp-1 proteins 
from SMD simulations at 1 m/s shows differences between the various Zn2+ conditions. Inset is an expanded view of 
the force-displacement data. Circles below show when each metal ion breaks coordination bonds to become non-
loading bearing, color-coded by the initial coordinating residue types. b) Contact map of load-bearing bonds in 
simulations A, B, and C shows that C has metal ions that are more uniformly distributed through the protein. c) 
Screenshots of Nvjp-1 proteins show how the protein deforms for simulation C, when the N-terminus is fixed and 
the C-terminus is pulled. 
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Figure 4-7. Steered molecular dynamics of Nvjp-1 proteins. Screenshots of Nvjp-1 proteins show how the 
protein deforms for a) simulation A and b) simulation B. Numbered circles correspond to the deformation snapshots 
in Figure 4-6a. 

 
4.6 Discussions, Implications, & Conclusions 
 
The objective of this work was to understand whether and how the initial spatial distribution of 
Zn2+ ions affects the structure and mechanics of the Nvjp-1 protein from Nereis virens, to 
elucidate why the Nereis virens exhibits high hardness. We found that while a uniform 
distribution of metal ions preserves much of the original structure during REMD simulations, 
Zn2+ ions in the beta regions help make the structure more compact by preserving or 
increasing the number of metal-coordination bonds present in the system in with metal ions 
clustered in the β sheet regions. However, these structural compactness trends are 
independent of the mechanical trends found for these proteins due to different underlying 
mechanisms contributing to each phenomena. While the number of metal-coordination bonds 
helps determine the compactness of the structures, the amount of hydrogen bonding, turn 
secondary structure, and uniform distribution of the metal ions result in the highest elastic 
modulus and toughness. 
 
Our findings indicate that for proteins with high amounts of metal-coordination, the initial 
distribution of metal ions affects the resulting structure, which in turn affects the mechanics of 
proteins by changing the secondary structures and ion distributions present in the protein. 
These metal-ions greatly influence the protein-folding energy landscape, by altering the energy 
barrier the proteins must overcome during the folding. Though the REMD method should 
theoretically be independent of initial conditions, the pivotal role of this large quantity of metal 
ions and the practical computational resource constraints that would require an extremely long 
simulation time to overcome all the energy barriers imposed by the metal ions indicates that 
further simulations of metal ions in highly coordinated proteins must consider initial 

a) b)1 2 3 1 2 3

N-term

C-term

N-term

C-term



   107 

localization. Further, the independence between the structural compactness and the tensile 
mechanical properties of the proteins in this work indicates that the protein folding process 
and mechanical unfolding process have different energy landscapes affected by different 
structural constraints. For the protein folding, the quantity of metal ions makes the structure 
more compact. For the tensile mechanical unfolding, the hydrogen bonding secondary 
structures that dominate the protein structures have a large mechanical effect, with additional 
contributing effects from the distribution of metal ions. This insight was especially surprising, 
but contributes to growing literature suggesting the dissipative as opposed to load-bearing 
nature of the metal-coordination bonds. Understanding the difference between these 
underlying energy landscapes could further present important insight into how metal ions can 
be added in different quantities or in different locations to tune specific folding or rupture 
behavior. 
 
The work presented here likely has broader implications on the role of metal-ion crosslinks on 
the structure and mechanics of proteins. If the exact relationship between the location of the 
metal ions and the structure or mechanics can be derived, we can not only gain insight into the 
biological mechanisms but also design new synthetic materials. While this work has revealed a 
number of initial parameters, such as the role of Zn2+ ions in helping the Nereis worm jaw 
become compact, or the role of the turn secondary structure in increasing the strength of 
Nereis, several future directions emerge to further building our understanding. Specific protein 
structures can be designed to compare the contribution of hydrogen bonds to metal-
coordination bonds, because the large, complex nature of this protein makes it difficult to 
parse the exact contribution of hydrogen bond versus coordination bonds to the strength of 
the protein. Improvements in the force field parameters for metal ions, especially for structures 
where there are a significant number of metal ions such as in Nvjp-1, could enable more 
accurate mechanistic insight. Simulations doing compression tests such as nanoindentation on 
bio-nano composites373–375 may also help reveal insights into the compactness and hardness of 
the structure. 
 
4.7 Materials and Methods 
 
REMD is used to explore the structural effects of metal ion localization on the Nvjp-1 protein. 
REMD enables an efficient computational search for likely protein structures by overcoming 
kinetic trapping in local energy minima during protein folding.376 The starting protein structure is 
derived from Chou et al.,47 who used REMD to fold the primary protein sequence in implicit 
solvent. To simulate the system at pH 8, the protonation states of Nδ1H for histidine (His), 
Oδ2(−) for aspartic acid (Asp), and Oε2(−) for glutamic acid (Glu) were adjusted accordingly. 
Simulations were implemented with Nanoscale Molecular Dynamics (NAMD)377 and all 
simulations utilized the CHARMM22 force field229 with a 2 fs timestep under NVT conditions 
with Langevin dynamics. Zn2+ ions were added to a concentration of 8 wt% to replicate the 
metal ion concentration found in the tip of the Nereis virens worm jaw.13,61,372 Counterions of Cl- 
were added to balance the charge. A TIP3P explicit water box with a 16 Å skin was used, and 
periodic boundary conditions and the Particle Mesh Ewald full system electrostatics method 
were applied.  
 
After a brief energy minimization using NAMD’s conjugate gradient method to avoid bad 
contacts and a 30 ns NPT equilibration to achieve correct pressure of 1 atm, 96 replicas were 



   108 

used for the REMD simulation with a temperature range of 300K – 480K and an exchange time 
of 200 fs to allow for the system relaxation under an NVT ensemble. The simulations were 
collectively run for ~2 μs across all replicas. The REMD simulation in the trajectory at 300K was 
analyzed using the K-means clustering algorithm in the MMTSB toolset.378 This algorithm 
clustered the structures based on conformational similarity based on a root-mean-square 
deviation (RMSD) within 2 Å. Three representative structures within the lowest energy cluster 
were identified for subsequent analysis. The Visual Molecular Dynamics379 STRIDE algorithm380 
was used to quantify the structural characteristics of the representative structures. The protein 
contact map was calculated using the Protein Contact Maps tool, and the metal ions were 
added to the contact map based on visual analysis.381 
 
Representative structures from the lowest energy clusters of the different simulation conditions 
were solvated in an TIP3P explicit water box extended by ~60 Å for SMD simulations to 
account for deformation. After preliminary simulations suggested minor differences between 
the different pulling orientations, the terminal C𝛼 atom on the N-terminus was fixed and the 
terminal C𝛼 atom on the C-terminus was selected as the SMD atom. SMD data were collected 
every 10 ps at a pulling rate of 1 m/s. The simulation was run until the protein was fully 
extended. The coordination bond was defined as broken when the distance between the metal 
ion and coordinating polar atom exceeded 3 Å. 
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CHAPTER 5 
 
 
MACHINE LEARNING APPROACHES TO DESIGNING 
MECHANICAL PROPERTIES IN COLLAGEN 
BIOMATERIALS  
 
 
5.1 Significance Statement 
 
In the previous chapters, we characterized the mechanical properties of metal-coordination 
bonds in polymers and proteins using experiments and simulations. We used multiscale 
simulation methods including density functional theory at the quantum scale, molecular 
dynamics at the atomistic scale, and coarse-graining of monomers at the macroscopic scale. 
These multiscale models allowed us to connect several time and length scales of materials 
chemistry with the resulting macroscopic materials properties. A natural extension of and 
upcoming frontier in these multiscale models is the use of big data approaches to characterize, 
design, and predict the properties of materials. Specifically, machine learning has emerged as 
a frontier across several disciplines to analyze large datasets and develop design principles 
without requiring an underlying knowledge of detailed chemical interactions.107,334,382 In this 
chapter, we explore how machine learning-based computational methods can be applied to 
predict the mechanical properties of biomaterials from basic chemistry.  
 
Machine learning methods require large datasets for model training. As such, in this chapter, 
we will focus on collagen for mechanical function, because there is more available data on 
collagen mechanical properties than on metal-coordination bonds mechanical properties. 
Collagen is the most abundant structural protein in humans and is therefore often used in 
biomedical applications for tissue repair and regeneration. Designing de novo collagen to 
maintain its structural integrity in vivo, important for its mechanical performance and 
subsequent utility, remains a challenge today. In this chapter, we develop a deep learning 
framework to generate new collagen sequences with desired thermal stability and validate our 
deep learning framework using both simulation and experiment. Given this validation, we 
discover key insights into the prevalence of amino acids in collagen triple helices and find a 
mechanistic relationship between our simulations and experiment. We then show that 
alternative machine learning models such as transformers can also be applied to make similar 
predictions.  
 
The frameworks developed here enable researchers to create new collagen sequences with 
desired mechanical stability for biomedical applications using high-throughput machine 
learning methods. Further, these frameworks can be used for other biomaterials fields, such as 
metal-coordination for mechanical function, once large datasets are developed to enable these 
methods.  
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5.2 Introduction 
 
Collagen is the most abundant protein in animals and is found in the extracellular matrix of 
skin, tendons, bone, and vasculature, as well as other tissues. The term “collagen” 
encompasses a family of at least 29 glycoproteins with common features responsible for the 
outstanding properties. Repeat units of glycine-X-Y (GXY) dominate the sequences, where the 
X and Y amino acids are usually occupied by proline (about 28% of the time) and 
hydroxyproline (about 38%).383 These GXY sequences adopt a left-handed polyproline type-II 
helical conformation which, after forming trimers, folds into a triple α-helical structure called 
tropocollagen, the basic structural unit of collagen.384 Tropocollagen is typically 300 nm long 
and 1.5 nm in diameter and assembles into hierarchical collagen structures including fibrils and 
fibers (Figure 5-1a).385–391 This hierarchical structure enables collagen to provide significant 
mechanical capacity under physiological conditions, exhibiting a tensile modulus of 0.2 to 0.86 
GPa, while maintaining elasticity in the human body.392–399 

 
Figure 5-1. Hierarchy of collagen helps maintain its structural integrity. a) Collagen amino acid primary 
sequence, often in the form of G-X-Y repeat triplets, form a larger chain. The three chains come together to form a 
triple helix, characteristic of collagen, which is also known as tropocollagen. The tropocollagen assembles into 
larger fibril and fiber units. b) This work focuses on thermal stability of tropocollagen. Thermal stability is 
characterized by the Tm value, which is midpoint temperature of the denaturation process of the triple helix of 
tropocollagen to a disordered state. Once collagen is not in a triple helix, it no longer contributes to mechanical 
stability of the larger fiber. 
 
Given this remarkable self-assembly process, the resulting mechanical properties, the inherent 
biocompatibility, collagen-based biomaterials are routinely sought for in vivo tissue repairs, 
drug delivery systems, and other biomedical applications.400,401 However, designing collagen to 
assemble in vitro to emulate the structural hierarchy and thermal stability of collagen in vivo 
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remains challenging and limits the widespread use of collagen as biomaterial constructs. 
Therefore, most of the collagen used today has a reduced triple-helix content, and thus 
reduced thermal stability and mechanical properties, which results in rapid degradation in vivo. 
To overcome these challenges, synthetic collagen-based biomaterials are often stabilized via 
chemical crosslinking and related methods,402 which while effective in extending longevity in 
vivo can negatively impact biological responses to collagen and alter the mechanical properties 
of the materials. 
 
Given the importance of collagen’s structural integrity for its mechanical function and thermal 
stability, one useful metric is the melting point (Tm), defined as the midpoint during the 
temperature window in which the collagen triple helix unfolds (Figure 5-1b).403 The thermal 
stability of collagen from different biological species or de novo collagen designs has been 
characterized experimentally.404–409 Computational studies have used molecular dynamics or 
coarse-graining to determine sequence-structure-function thermal and mechanical properties 
in collagen across its different length scales.388,410,411 These prior research efforts have made 
significant progress in understanding how mutations in the primary sequence affect the thermal 
stability of collagen. However, these approaches are computationally expensive and limited in 
the possibility to explore vast variations of sequences and mutations.  
 
5.3 Discovering design principles of collagen molecular 

stability using a genetic algorithm, deep learning, 
and experimental validation  

 
A predictive framework that facilitates the a priori design of collagen sequences with specific 
Tm values without prior knowledge of chemical interactions would enable the efficient design 
and subsequent synthesis of thermally stable collagens for specific applications. Such a 
framework for discovery could significantly propel the field of collagen-based biomaterials 
forward. Towards this goal, equations were developed to predict Tm values of collagen triple 
helices based on local interactions between different amino acid chemistries in collagen 
tripeptides following a GXY triplet ordering.403,412,413 In addition, an algorithm (Scoring function 
for Collagen-Emulating-Peptides’ Temperature of Transition SCEPTTr) was developed to 
predict the registry and Tm values of synthetic collagen-based triple helices.414 Other recent 
approaches have been based on machine learning, which has emerged as a useful tool in the 
analysis of large datasets to help develop design principles for biological materials without 
knowledge of underlying biological interactions.415,416 
 
Here we report the development of a machine learning model to design de novo collagen 
sequences with desired Tm values. We apply a self-evolutionary algorithm, 1D convolution, 
bidirectional long short-term memory (LSTM), and dropout features to predict Tm values of 
existing collagen sequences.417 To demonstrate the predictive power of our approach, we use 
molecular dynamics (MD), circular dichroism (CD) spectroscopy, and differential scanning 
calorimetry (DSC) to verify the Tm values of a few of our de novo collagen sequences. From this 
approach, we are able to derive two new insights. First, our model has the highest predictive 
accuracy for de novo collagen sequences with strong triple helix folding as measured through 
the triple helical quality (ratio of positive to negative peak intensity (RPN)) value extracted from 
CD spectroscopy, and we demonstrate a correlation between hydrogen bonding in the triple 
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helix found through MD and RPN value.418 Second, given the high-throughput nature of our 
work, we identify key collagen triplet amino acid sequences that especially contribute to the 
thermal stability of collagen. These GXY triplet sequences should inform the design of next 
generation thermally stable collagen sequences. The goal of this work is to demonstrate the 
use of this generative algorithm in suggesting de novo collagen sequences with desired Tm 
values, thus contributing to a more efficient method of designing new collagen-based materials 
with tailored properties. 
 
5.3.1 Collagen Dataset 
 
We collected 566 collagen sequences with reported Tm values from a survey of literature (see 
Appendix S5-1). These available melting temperatures were collected from PubMed, Web of 
Science, Scopus, Directory of Open Access Journals (DOAJ) Google Scholar.385,411,413,419–438 
Experimental thermal stability data sets for the observed Tm values (in °C) for the Gly-X-Y 
tripeptide units in triple helical collagens-like peptides are based on host-guest peptides and 
are integrated to produce an algorithm for predicting global melting temperatures. These 
experimental results are expanded further using predictions of Tm values of host-guest 
sequences from Persikov et. al.413 The distribution of the dataset is presented in Figure 5-2 
where sequences have experimentally measured melting temperatures ranging from a few 
degrees C to 70oC with the mean at ~30oC. The data shows a normal distribution which is used 
in the machine learning model (Figure 5-2c). Outliers in the data, specifically the negative Tm 
value sequences, are generally from extrapolated experimental data.439 
 

 
 
Figure 5-2. Distribution of data from literature, based on experimental results. a) Overview of the problem studied 
here, to predict the melting point Tm from the sequence of collagen molecules. b) Experimental melting temperatures 
collected. c) Normalized Tm value distribution. Thermal stability data sets for observed Tm values for Gly-X-Y tripeptide 
units in triple helical collagen-like peptides are integrated here to produce an algorithm for predicting global melting 
temperatures. Data from 385,411,413,419–438. 
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5.3.2 NLP LSTM end-to-end neural network and model 

training 
 
We provide a summary of the deep learning model reported here, as shown in Figure 5-3. This 
model is named ColGen to represent a collagen sequences generator which is capable of 
generating new type I collagen sequences with known Tm values. A natural language 
processing (NLP) model was adopted.440,441  

 
Figure 5-3. Overview of machine learning model. a) We design a deep learning network to discover hidden 
features of collagen sequences by introducing embedding layer. b) The structure of our deep learning model starts 
at an embedding layer, followed by two 1D convolution layers, then we flatten all the features and send them into a 
fully connected layer for regression to determine Tm value. 

Tokenization is used, reflecting a common approach when processing the raw texts or 
sequences of symbols. Tokens can be considered as the fundamental building blocks of our 
data which was represented in single letter code for each amino acid.442,443 Tokenization is first 
applied to the collagen sequences before passing them through the deep learning model. 
Every collagen sequence was first encoded into a series of digital tokens, that is, every amino 
acid is treated as a unique number from 1 to 21 for all the 20 essential amino acids and one 
nonessential amino acid, hydroxyproline, found in collagen.  
 
The tokenized sequences were passed through an embedding layer which is able to recognize 
the relationship between tokens during the training process. After the embedding layer, data 
flows through a 1D convolutional layer to harness the internal features from the input.  The data 
is then routed into bidirectional LSTM layers to learn all hidden features from each collagen 
sequences. Finally, a fully connected neural network - composed by two dense layers – is used 
to ultimately output the predicted Tm value as a scalar value. This information provides an end-
to-end model that relates a sequence of amino acids of varying lengths to its Tm. The neural 
network features a total of 49,041 trainable parameters.  
 
The dataset was randomly split into training dataset testing dataset, where 80% of the data is 
used for training and the other 20% is used for testing to examine the ability of prediction of 
our model. To ensure reproducible output of the exact results, the random seed was set where 
possible (such as using the tf.random.set_seed, train_test_split(X, y, test_size=int, 
random_state=int command). 
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The model is trained on a Xeon workstation with a GTX-3090 GPU, for 200 epochs. It is worth 
noting here, the well-trained model can be deployed in a laptop or desktop computer without 
further requirement of GPUs. 
 
We begin the analysis by training the machine learning model. We find that ColGen 
demonstrates good predictive accuracy of Tm values in the testing set (Figure 5-4a). The data 
shows that testing data is generally well predicted, and a large range of temperatures can be 
predicted by the model. In addition, the training and validation error remain consistent at a 
mean squared error of ~0.2 after 120 epochs (Figure 5-4b). 

 
Figure 5-4. Predictive accuracy of ColGen, and training performance. a) Data comparing training with test set 
demonstrates a 95% confidence interval. Plotting R2 of training / testing / generation. b) Training and validation error 
over epochs demonstrate a well fit model. The validation and training errors reach a plateau around 150 epochs. 
 
5.3.3 Incorporating a genetic algorithm to generate new 

collagen sequences 
 

 
Figure 5-5. Machine learning based genetic algorithm used. Three sequences are randomly selected from a 
randomly generated population based on the dataset collagen sequences. The three sequences undergo 
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tournament mating to identify the two best parents, which undergo further crossover and mutations within their 
sequences to produce children offspring. The resulting children are then evaluated with the ColGen deep learning Tm 
predictor and the best child matching the desired Tm value objective function is output. If elitism is implemented in 
the model, the child is overrepresented in the initial population to help preserve its general sequence features. 
Numbers in bottom left represent number of sequences in each stage.  
 
We next developed generative model, implemented as a genetic algorithm, to generate new 
collagen sequences (Figure 5-5, Figure 5-6).440,444 This model is named ColGen-GA to 
represent a collagen sequence generator, which is capable of generating new homotrimeric 
type I collagen sequences with specific Tm values. ColGen-GA builds on the predictor model 
ColGen discussed above.417 

 
Figure 5-6. Model work flow. Model work flow from data collection, to generation, to prediction, to validation.  
 
Each generated collagen sequence is optimized to meet the objective function of the algorithm, 
which is a Tm value of choice. In this work, the Tm values are selected as 22 ºC or room 
temperature, and 37 ºC or body temperature, as these are the two most relevant temperatures 
for bioengineering applications.  
 

 
Figure 5-7: Effect of mutation rate, crossover rate for different population numbers on solutions to GA. For 
population sizes a) 100, b) 25, c) 200, increased mutation rate and crossover rate increases the range of the Tm 



   116 

values that is generated via the generative algorithm, while resulting in fewer solutions at our desired Tm. In contrast, 
increasing population number increases the number of solutions at our desired Tm value, with a significant downside 
of a longer resulting runtime (4 mins for 100 population, 2 mins for 25 population, 15 mins for 200 population). 
Based on our goals of balancing diversity of solutions, with run time and number of solutions at the target Tm, we 
selected the red line drawn in figure a.  
 
In the genetic algorithm, an initial population is randomly selected from the existing collagen 
dataset. Three parents are further randomly selected from the initial population to undergo 
tournament mating, where the two parents with the closest Tm value to the desired Tm value are 
selected. The Tm value is calculated from the ColGen model above.417 These parents then 
undergo crossover and mutation to produce “children” sequences. The crossover and 
mutation rate are optimized to ensure that there is sufficient sampling of solutions, which 
prevents genetic drift while not leading to a loss of good solutions. This optimization is a 
balance between the number of generations required to reach convergence versus the number 
of unique sequences generated (Figure 5-7). The child with the closest fit to the desired Tm 
value is then selected as the final output. This whole process is repeated over several iterations 
or “generations”, until we reach a converged state around the desired Tm value (Figure 5-8). 
Further, we tested generation methods with “elitism,” which is where the best children are 
overrepresented in the initial population, such that the better traits stay in the genetic pool for 
longer, and “randomness,” which is where the initial population in the next generation is 
unrelated to the children from the previous generation. While elitism helps ensure that the 
quality of the generative algorithm does not decrease over time, it has a disadvantage of 
converging on a local minimum rather than finding the best solution. The selection of 
population sizes, mutations and crossover frequencies, and elitism implementation are critical 
in generating a wide number of sequences without losing the best features found in the 
generations. The specific parameters used in this model are listed in Table 5-1. Due to 
computational modesty, the genetic algorithm model can also easily be deployed on a laptop 
or desktop computer without further requirement of GPUs. 
 
Table 5-1: Parameters in the genetic algorithm model. 

Parameter Value 
Seed value 55 
Crossover Percent 0.6 
Mutation Percent 0.1 
Population Size 100 
Contestants for tournament mating 3 
Number of parents 2 

 
The ColGen-GA model can quickly reach the desired Tm value, and maintain that value over 
several generations. In Figure 5-8, the desired normalized Tm value of 0.9, corresponding to 37 
ºC, is reached almost immediately. The convergence is even faster when elitism is 
implemented. 
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Figure 5-8: Convergence of genetic algorithm around designed Tm values for a) 37 ºC and b) 22 ºC target Tm 
values. c) Using the same parameters as for 37 ºC and 22 ºC, we are also able to generate sequences at a target 
temp of 10 ºC. However, fewer sequences are generated given that 10 ºC is two standard deviations outside of our 
training set. As such, it is difficult for the ColGen algorithm to generate several sequences in this range. The 
standard deviation for the generated sequences at 37 ºC is 0.2 ºC, 37 ºC is 0.15 ºC, and 37 ºC is 0.6 ºC. 
 
5.3.4 Prediction of the effect of collagen mutations on Tm 

values 
 
Because the ColGen model enables fast characterization of the Tm values of different collagen 
sequences, the model was used to understand how mutations and chain length affect Tm 
value. ColGen enables a rapid search of these effects. (GPO)10 was used as a standard 
comparison, referred to here as the “pristine sequence,” as it has the highest known thermal 
stability value in literature 404,430,445,446 due to stereoelectronic effects from hydroxyproline 447–449. 
Mutations were made in either the G, P, or O position, where either the G, P, or O positions 
were replaced with another amino acid, and this process is repeated over all amino acid 
substitutions. The resulting Tm values from each of these calculations are then averaged. 
 

 
Figure 5-9. Characterization of the effects of various types of mutations, predicted by ColGen. a) Tm values of 
mutations in G, P, or O position demonstrates that mutations in the middle of the sequence are the most 
destabilizing for Tm values. Mutations in the G position are the most destabilizing to the peptide. Error bars indicate 
standard deviation of all amino acids that were mutated. b) Thermal stability as a function of collagen sequence 
length, where length is number of repeat units (GOP) demonstrates that there is a critical length at which the Tm can 
no longer be increased significantly. This critical length is consistent with other studies.450 

Based on the GolGen model, mutations in the middle of the pristine collagen sequence have 
the greatest destabilizing effect on collagen Tm values (Figure 5-9a). This suggests the 
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presence of a critical transition location along the length of the sequence, potentially near the 
midpoint of the sequence or at least away from the chain ends depending on overall length, 
that is critical in holding the full chain length together. Further, mutations made along the first 
several residues at the N terminus of the collagen sequence are more destabilized and have a 
lower Tm value than mutations made along the last several residues at the C terminus. This 
indicates a directionality along the sequence and is validated by experimental data which 
shows that the N-terminal regime is required for the trimerization of other triple helical 
collagens.451,452 This is in contrast to other work on fibril-forming procollagens which suggests 
that type 1 collagen molecules in vivo have a C-terminal that is responsible for chain selection 
and trimerization.453–457 This difference between our model and procollagen fibrillar formation 
results is likely because several peptides included in this training data may have been folded in 
N-to-C direction with a nucleation domain at the N terminus.458,459  
 
The effect of chain length on Tm was also measured. As shown in Figure 5-9b, the model 
faithfully captures that Tm values increase upon increasing number of amino acids (triplets) due 
to increasing hydrogen bonding between triplets. However, there is a limit to the increase in 
thermal stability that is also captured by the model. This leveling off is achieved at about 14 
triplet repeats at around 80C and is consistent with experiments and a thermal stability 
prediction algorithm developed by Persikov et. al.413 Similar intrinsic strength limits have been 
found in hydrogen bonded alpha helix and beta sheet structures.460–462 
 

 
Figure 1-10. Characterization of effect of disorder on Tm, as predicted by the model. A) Tm values of disorder 
arranged by G, P, or O position confirm that increasing mutations along the chain decreases thermal stability of the 
triple helix. Error bars indicate standard deviation of all amino acids that were mutated. b) Tm values of disorder in 
the O position demonstrates that initial mutations to polar, positive charged, and negative charged amino acids 
confer the same degree of stability in the molecule. However, upon increasing mutations, polar amino acids are the 
least destabilizing to the triple helix, suggesting that they should be used for bacterial expression of collagen where 
expression of O is not possible.  
 
To quantify how the increasing number of mutations affects the thermal stability of collagen, 
we define the term “disorder parameter” which means the number of repeating triplets with 
mutations in the G, P, or O position compared to the pristine sequence. Thus, increasing 
disorder parameter increases deviation from the pristine sample. As expected, increasing 
disorder decreases the thermal stability of the pristine sequence consistent with experimental 
data (Figure 5-10a).413. Further, disruptions in glycines are the most destabilizing. This is 
consistent with experimental findings that disruptions in glycine severely impact stability and 
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often constitute disease states, though we cannot directly correlate the position of our glycine 
mutations to the position of naturally observed mutations due to the shorter sequence length 
we employ in this study.439,463–465 
 
This model could be useful in informing sequence design of bacterially-produced collagen, 
which enable larger production of tailored collagen sequences.407,424,466 Given that bacteria are 
unable to express hydroxyproline for bacterially-produced collagen, the machine learning 
model developed here could also serve as a tool to predict which amino acids may help as a 
replacement to hydroxyproline. Figure 5-10b demonstrates these results, showing that 
positively charged, negatively charged and polar amino acids are only slightly destabilizing 
compared to (GPO)10 up to a certain extent, but positively charged amino acids (R, H, K) are the 
least destabilizing compared to other types of amino acids if significant mutations are 
introduced in the O position. 
 
5.3.5 De novo sequences with desired Tm values 
 
From the ColGen-GA, we are able to produce several de novo sequences within our desired 
temperature range (Tm values of 22 ºC and 37 ºC). We selected two sequences in each 
temperature for further validation (CP1 and CP3 for 22 ºC, CP2 and CP4 for 37 ºC), as well as 
another de novo sequence generated from a different generative algorithm where the collagen 
primary sequence is not required to be in a G-X-Y order (CP5). Table 5-2 shows strong 
agreement between our initial prediction of the Tm value and the Tm value found using 
experiment within a few degrees centigrade. Temperature sweep experiments revealed that the 
Tm values for the CPs and Type I collagen control as measured by CD and DSC were in good 
agreement with those predicted by ColGen-GA (Table 5-2, Figure 5-11, Figure 5-12). The 
slight difference between CD and DSC is attributed to the higher heating rate in DSC 
experiments.  
 
Table 5-2. De Novo Collagen Sequences. Summary of names, amino acid sequence, and Tm values of samples 
studied listed in order of increasing to decreasing Tm value. 

Name Sequence Method ColGen 
Tm (°C) 
 
MODEL 

CD Tm 

(°C) 
 
EXP  

DSC Tm 
(°C) 
 
EXP 

Tm 
calculator2 
(°C) 
MODEL 

Col. 
Type 1 

Bovine Collagen Control - 40.6 40.9 - 

Std. GPOGPOGPOGPOGPOGP
OGPOGPOGPOGPO 

Reference 62.0 - - 63.8 

CP5 GPOGPOGPOGPOGPOGP
PAGPOGROGRO 

Previous 
algorithm1 

46.6 21.5, 
40.4, 
60.9 

26.5, 
44.9,  
62.8 

22.23 

CP4 GYOGPOGPOGKOGPOGK
OGPOGPOGPHGPM 

Random 37.7 41.2 42.8 40.6 

CP2 GPOGPOGPRGMOGPOGP
OGPOGPO 

Elitism 37.3 35.4  36.4 38.5 

CP3 GPOGPOGDOGATGPOGR
CGPQGPOGPOGPO  

Elitism 22.0 20.8 22.6 21.1 

CP1 GIAGPAGPOGDAGPOGPO
GPOGPO 

Random 22.2 18.6  20.4 25.0 
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CP6 GVMGWGGALGYHGERG
MNGHTGND 

Previous 
algorithm1 

-3.3 Does not form 
stable helix 

-76.2 

CP7 GEIGEVGSHGVNGHEGGF
GYGGMGGG 

Previous 
algorithm1 

-26.6 Does not form 
stable helix 

-83.0 

 
1 These de novo collagen peptides were generated from a previous genetic algorithm not discussed in 
the section. Their Tm values however were predicted from ColGen, and as such, are useful for 
understanding the validation of the ColGen model. 
2 Tm calculator prediction from the work of Persikov et al. 
3 Tm calculator prediction from the work of Persikov et al. is unable to calculate Tm values for 
sequences that do not follow (GXY)n formatting. 
 

 
Figure 5-11. CD temperature scan at 222 nm for collagen peptides demonstrating triple helix structure. a) 22 
°C peptides CP1, CP3, and b) 37 °C peptides CP1, CP3. Scans at 1 °C/min with sampling every 0.1 °C indicate that 
de novo peptides have Tm values within a couple of degrees of the target Tm.  
 

 
Figure 5-12. DSC thermograms of Type I collagen and de novo peptides. DSC temperature scans for a) CP1, b) 
CP2, c) CP3, d) CP4, e) CP5, and f) Type I collagen for reference. DSC temperature scans are consistent with the Tm 
values predicted for the de novo peptides. 
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Figure 5-13. CD wavelength scan at 222nm for collagen peptides demonstrating triple helix structure. a) type I 
collagen as a control at 5 °C and 70 °C, and de novo peptides and b) 5 °C and c) 70 °C. De novo peptides 
demonstrate same characteristic behavior as type I collagen sequence, indicating that they have a triple helical 
structure. Both the type I collagen and de novo peptides denature at 70 °C.  
 
Table 5-3. Ellipticity values of de novo collagen sequences for the maximum and minimum in the 5 ºC scan, the 
absolute value of the RPN and the location of the minimum in the 70 ºC scan for all tested samples. 

SAMPLE Max @5 ºC 
(222nm) 

Min @5 ºC 
(196-8 nm) 

RPN 
(abs. value) 

Min @70 ºC 
(nm) 

Col. Type I 25.79 -193.2 0.133 200.5 
CP1 6.82 -133.70 0.051 201.3 
CP2 8.52 -70.64 0.121 200.4 
CP3 5.31 -51.14 0.104 200.7 
CP4 6.09 -47.2 0.129 201.2 

 
The CD spectra of the de novo CPs show that the CPs are able to form triple helical structures 
(Figure 5-13a,b). The CPs and the control follow a standard CD triple-helix forming collagen 
spectrum. There is a clear positive signal at 222 nm in the 5 ºC wavelength scan (Figure 5-
13a,b), related to the presence of triple-helix, which disappears in the 70 ºC scan at which 
collagen denatures (Figure 5-13a,c). The ratio of positive signal at 222 nm to negative at 196-
198 nm (RPN) serves as a concentration-independent measurement of the quality and quantity 
of triple-helix formation. An RPN value of 0.133 for Type I collagen is the highest compared to 
all the CPs (Table 5-3), indicating that it forms the best triple helix, as expected CP4 exhibited 
the highest RPN ratio (0.129) of all four CPs, followed by CP2 (0.121) and CP3 (0.104), values 
similar to those of Type I collagen. In contrast, CP1 and CP5 exhibited RPN values 61.6% and 
35.3% lower value than the control, reaching values of 0.086 and 0.055, respectively. These 
results indicate that CP2-4 were able to interact cooperatively, developing stable triple-helixes 
in a similar way to Type I collagen. Such interactions were less favorable for CP1 and CP5, as 
seen by the lower RPN ratio. The RPN value follows the order of: Type I collagen control ≈ CP4 
> CP2 > CP3 > CP5 > CP1. This is also consistent with the intended Tm values of the CPs, 
where CP2 and CP4 were designed to have higher Tm values (around 37 ºC) and thus maintain 
a more stable triple helical configuration. Interestingly, CP5 showed a multi-step denaturation 
process with temperature, which was related to the interrupted GXY sequence (Figure 5-14). 
This multi-step behavior hinders the assignment of a single Tm value to CP5.  
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Figure 5-14. CD temperature scan at 222 nm for CP5 has a multistep denaturation process with several Tm values. 

 

 
Figure 5-15. Percent of duplicated sequences given the number of generated sequences. No constraint is 
applied to ColGen-GA to make sure each sequence is unique. The 37 ºC sequences have more duplicates. This is 
likely because fewer triplets have the thermal stability necessary to reach the 37 ºC target compared to the 22 ºC 
target. We select the 1000 generated sequences and remove duplicates for subsequent analysis in the section.  
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Figure 5-16. High-throughput identification of most frequent sequences in de novo collagen peptides. Co-
occurrence matrix of the 1000 generated de novo collagen sequences for 22 ºC (a) and 37 ºC (b) when sorted by 
most frequent triplets shows which triplets occur together in the same sequence. These most frequent triplets from 
22 ºC (c) and 37 ºC (d) are substituted n times into a (GPO)14 ideal standard peptide and their destabilizing effect on 
Tm is evaluated, where ΔTm = Tm(GPO)14 – Tm(sequence). 
 
Given the validation of the model with experiment and MD, we conduct high-throughput 
processing to derive insights into GXY triplets of collagen that are most suitable in achieving 
desired Tm values. After generating 1,000 de novo collagen sequences with Tm values of 22 ºC 
and 37 ºC (Figure 5-15, Appendix S5-2, S5-3), we found the top 1.3% most commonly 
occurring triplets within our generated sequences and determined their co-occurrence 
matrices in Figure 5-16a,b. The co-occurrence matrix helps show which GXY triplets occur 
with other GXY triplets to provide a graphical insight for how to build a larger sequence from a 
combination of triplets. GPO emerges as the most commonly present triplet in the generated 
sequences. This is in agreement with literature because GPO is the canonical triplet in 
increasing the strength of CPs and (GPO)x is often used as a gold standard in collagen mimetic 
peptides for thermal stability.467 Beyond the presence of GPO, we also find a number of other 
triplets that emerge as useful motifs in achieving the desired Tm values. In alignment with 
others who have noted the stabilizing effect of KGE/KGD414,467 lysine, glutamic acid, and 
aspartic acid contribute stability to the collagen peptide, as the residues GPK, GEO, and GDO 
have a minimal decrease in thermal stability compared to other frequently occurring triplets 
(Figure 5-16b). Interestingly, all of these triplets are in a GPY or GXO configuration where 
either P or O are present with the other guest amino acid replaced. Further, these guest amino 
acids do not follow a consistent physicochemical trend and there is a range of hydrophobic, 
polar, or charged residues that contribute to the mechanical stability of the CP. This lack of 
physicochemical consistency is not something we could have inferred from analytical 
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outcomes given that there is no trend in the data. We also note that the demonstrated guest 
amino acids do not follow the same occurrence as amino acids naturally occurring in collagen, 
where basic residues are in the Y position and Glu or hydrophobic residues are in the X 
position.467 Instead, the guest amino acids demonstrated here follow a different occurrence 
given that this is a synthetic set. This provides further justification for using large data 
generation means through machine learning to derive design principles. Further, comparing the 
highest frequency triplets in the 22 ºC (Figure 5-16a) to 37 ºC (Figure 5-16b) data, we find that 
~50% of the most frequent triplets in 22 ºC are also found in the list of most frequent triplets at 
37 ºC. These are likely the triplets that contribute most to the thermal stability of the collagen 
sequence, while the other triplets help achieve the lower target temperature of 22 ºC.  
 
Given these most frequent triplets, we sought to understand which triplets had the greatest 
effect on the Tm values (Figure 5-16c,d). When substituted into the highest stability (GPO)14 
sequence, the top triplets in the 37 ºC sequences induce a lower amount of destabilization of 
Tm value, where the destabilization is measured as ΔTm = Tm(GPO)14 - Tm (de novo sequence), 
compared to the most frequent triplets in the 22 ºC de novo sequences. 
 
5.3.6 Relationship between triple helical quality and Tm 

values  
 

 
Figure 5-17. Relationship between collagen triple helix quality and Tm values using experiment and MD 
simulation. a) There is an inverse relationship between the RPN ratio and the difference in Tm value between the 
experimental CD Tm and ColGen predicted Tm. 	∆𝑇8 = (/*,GNXGM28GV`	bcQ/*,bdPeGVQef)

/*,GNXGM28GV`	bc
 This indicates that ColGen 

algorithm is able to more robustly predict the thermal stability of higher quality triple helices. The RPN also follows a 
direct relationship with Tm value, indicating that more stable triple helices have a higher Tm.  b) MD simulations show 
that the CPs maintain roughly the expected stability, measured by RMSD of the triple helix, as predicted by ColGen. 
c) Hydrogen bonding analysis at 50 ºC in the MD simulation shows a similar correlation as the RPN ratio in figure 
part a. Peptides with more hydrogen bonding generally have a lower deviation from ColGen-predicted Tm values 
compared to experimental Tm values. Further, RPN has a direct relationship with the number of hydrogen bonds in 
the CP, indicating that a higher quality triple helix has more hydrogen bonding.  

Upon experimentally measuring the RPN and the Tm, we found that the higher the RPN value, 
the lower the differences between ColGen-GA predicted and measured Tm values (Figure 5-
17a). This is likely because a higher RPN ratio corresponds to a higher quality triple helix, 
which is more likely present for the high Tm value sequences as discussed.  
 
To further validate the ColGen-GA model and provide support to the CD and DSC experiments, 
MD simulations were also used to simulate experimental heating of the triple helical peptides. 
While exact Tm cannot be extracted from MD due to the faster heating rate used in simulation 
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compared to experiment, MD simulations confirm that the stability ordering of the CPs is 
(GPO)10 > CP4 ~ CP2 > CP3 > CP5 > CP1 (Figure 5-17b), as observed in CD and DSC 
measurements. In MD, (GPO)10 rather than bovine collagen is used as a model collagen peptide 
mimetic with the highest Tm value. The MD results demonstrate that all of the peptides are 
correctly ordered in terms of their thermal stabilities, except for CP5, whose thermal stability in 
MD simulations is predicted to be much less than experimentally measured. This discrepancy 
is likely due to a poorer prediction of triple helical structure for CP5, as it does not follow the 
GXY pattern consistently. 

 
Figure 5-18. Number of hydrogen bonds in CPs as a function of temperature. MD simulations show how the 
number of hydrogen bonds in the CPs decreases as the CPs denature with increasing temperature. 
 
Table 5-4. ML predicted and experimental Tm values. Calculated, literature values, experimental Tm and difference 
between theoretical and experimental values of Tm, expressed as a percentage (%ΔTm), of all collagen samples tested 
in this work. 

 Tm ( ºC)  
SAMPLE ML Calculated CD %ΔTm (CD) 
Col. Type I ≈ 40 40.6 1.48 
CP1 22.16 18.6 -19.35 
CP2 37.3 35.4 -5.37 
CP3 22.0 20.8 -5.77 
CP4 37.6 41.2 8.74 

 
MD simulations also enabled us to further validate the relationship between RPN and Tm values 
and the accuracy of our predictions by developing a mechanistic understanding of the different 
CPs. We evaluated the triple helix quality of the different CPs by measuring the amount of 
hydrogen bonds between the strands as a proxy for triple helix strength and related it with their 
RPN value (Figure 5-18). We found that the CPs with higher RPN present more hydrogen 
bonds in their triple helix structure compared to CPs with lower RPN values (Figure 5-17c, 
Table 5-4). An image of representative hydrogen bonds is provided in Figure 5-19 and we note 
that in our sequences, glycine qualitatively demonstrates the most hydrogen bonding. To our 
best knowledge, this is the first demonstration of the direct relationship between the number of 
hydrogen bonds computed in MD and RPN values experimentally measured with CD. 
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Figure 5-19. Evolution of the collagen structures of CP2 and CP3 over time during thermal treatment. In both 
cases, we observe how the H-bonds present in the middle of the triple helix are those that break later during the 
process. The ends of the triple helix unravel at first, becoming the initiators of the unfolding activity. As also reported 
in Figure 5-17, and clearly noticeable in this Figure, the H-bonds between chains progressively break and those that 
remain at last are only those present between the single chains because of their spatial configuration. Gly 
demonstrates the most hydrogen bonding. 

 
5.3.7 Discussions, Implications, & Conclusions 
 
We developed a platform that uses a deep learning model trained with input sequences from 
literature to generate de novo collagen sequences with desired Tm values. The model, ColGen-
GA, incorporates ColGen, an LSTM-based Tm predictor of collagen sequences and a 
generative genetic algorithm to produce new sequences with specified thermal stability 
behavior. Our model shows good prediction power in extrapolating Tm values of the testing set 
for collagen sequences not included in our training dataset. The trained deep learning model is 
able to predict Tm values within an acceptable error range considering the amount of 
experimental data.  
 
The machine learning algorithm also allows us to quickly determine how specific amino acids 
mutations, the amount of disorder in the sequence, and the sequence length affect the thermal 
stability of collagen. We determined that mutations in the middle of the sequence greatly affect 
stability and that the maximum achievable temperature is already reached at a sequence 
length of 14 repeat units. We then validated our model by selecting some of the generated 
sequences and testing them experimentally with CD and DSC and computationally with MD 
simulations. The CD experiments confirmed that these new collagen mimetic peptides had 
triple helical structure, and together with DSC, the experiments confirmed the predicted Tm 
values of the de novo sequences within a few degrees centigrade. By studying the quality of 
the triple helical formation of the CPs, as measured through its RPN value, we determined that 
higher RPN value CPs have less deviation between the experimental and ColGen-GA predicted 
Tm values. This means that CPs that have a higher quality triple helix, and thus a higher Tm, are 
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likely to have a better Tm prediction than CPs which are less able to form triple helices. These 
experimental results were also further validated by MD simulations, which showed that the de 
novo peptides followed the stability order as predicted. We also showed for the first time, that 
more hydrogen bonds correlate directly with higher RPN values and higher Tm values. Such a 
result is particularly relevant since a mechanistic understanding of the relationship between the 
RPN values and the number of H-bonds promotes a deeper understanding and rationalization 
of the thermal stability of collagen and, more broadly, protein sequences. 
 
Given the validation of the model, we used the large dataset and computational power of the 
machine learning model to discover important triplets in the collagen sequences. ColGen-GA 
enables the fast generation and prediction of Tm values of 1000 new sequences in just 8 hours 
using a laptop, compared to the 10 day per collagen sequence simulation required for MD on 2 
nodes and 32 CPUs. Because of this computational power and speed, we are able to derive 
new insights into important collagen sequences than what our previous modeling or 
experimental capacities enabled. We identified the highest frequency GXY triplets from the de 
novo sequences generated for target Tm values of 22 ºC and 37 ºC. The triplets identified can 
be used by other researchers when designing new collagen sequences with specific Tm values. 
To assess these triplets in the context of a longer sequence, we also provided a co-occurrence 
map to understand how these important triplets work together in longer sequences. These 
triplets would not have been discovered through analytical means, as we find that a consistent 
physicochemical principle, such as hydrophobicity or charge to explain the triplet behavior, is 
not present in the most frequent triplets. We envision that the triplets identified here could be 
used in creating useful collagen sequences. 

 
Figure 5-20. Benchmarking performance of ColGen model. ColGen model has good predictive capacity for 
training and testing data, as expected, and even for validation data for our new experimentally synthesized and 
measured collagen sequences.  
 
While the model enables a quick prediction of Tm values and generation of new sequences 
(Figure 5-20, 5-2b,c), there are some limitations that should be expanded upon in future work. 
These limitations primarily arise from the data set used to train the model, which could be 
further expanded to include a wider range of sequences and sequence lengths. For example, 
the current dataset has a maximum Tm range of 70 ºC. Further, the model is only trained on the 
standard amino acids and hydroxyproline. As such, it would be unable to predict the Tm values 
of other non-native amino acids and this problem too should be resolved by an expanded data 
set. Most of the collagen sequences used in our present dataset were collagen mimetic 
peptides rather than complete collagen sequences. Incorporating longer sequences would help 
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in the design of collagen proteins from bacteria, which often produce longer protein 
sequences.468,469 Further, most of the sequences in the dataset incorporate hydroxyproline (O) 
or a specific subset of guest residues. As such, building new sequences that do not 
incorporate O, which is an especially important limitation to bacterially-produced collagens 
which have no means of producing O, would be challenging with the current data set used. 
Expanding the compositional diversity of the dataset would also help further improve the 
prediction. Another limitation of exploiting GA could be the efficiency. Compared with other 
optimization tools, such as the gradient method, GA has a slow computational speed when 
processing large amounts of initial populations or local minima. The convergence rate for the 
same size of initial population can be modulated by simulated annealing to change the 
probability of crossover and mutation on the fly.470 Finally, manipulating the model itself would 
help with the prediction of heterotrimer sequences beyond the homotrimers presented here 
such that the model is more robust with respect to initial conditions. One way to do so may be 
to incorporate existing fundamental knowledge of collagen directly into the model. 
 
Despite these limitations, the reported approach represents a powerful and efficient tool in the 
design of collagen sequences with specific Tm values. Our approach should lead to the design 
of new collagen biomaterials and tunable properties with a priori desired Tm values. Further, our 
presentation of triplets will help inform how to build mechanically robust collagen sequences at 
desired temperatures into the future, especially given the vast design space of 1021 
combinations of (GXY)10 sequences.  
 
Beyond the generation of new sequences as an engineering tool, our approach contributes to 
an understanding of collagen denaturation rates and how these Tm values correlate to 
structure. Such information is important, for example, in understanding the mechanical 
behavior of specific tissues with impacts on denaturation or biological function in scenarios 
such as thermal treatments for cancer. Further, many collagen-based diseases such as 
Osteogenesis imperfecta, are based on mutations in the primary sequence of collagen. This 
method would help offer insight and perspectives on these disease states in context of thermal 
stability, with implications for future repair routes. Another aspect is collagen degradation by 
matrix metalloproteinases (MMPs), crucial in many physiological processes, such as wound 
healing, tissue remodeling and organ morphogenesis. It is well known that stable triple-helices 
are far more resistant to MMP degradation than denatured collagen, reflective of the structural 
stability of the matrices.471,472 Thus, CPs capable of forming better triple helices are, thus, more 
resistant to MMP degradation. Similarly, a higher mechanical integrity and structural order of 
collagen results in a more robust collagen matrix.471,473 Considering that human mesenchymal 
stem cells proliferate, propagate and differentiate in response to the mechanical properties of 
the matrix they develop in,474 we envision that the ability of designing collagen sequences with 
tailored thermal stability with this deep learning method would allow us to create new 
biomaterials with on-demand MMP degradation rates, mechanical properties, and tailored 
influence on cell behavior. Finally, the role of collagen sequences in the context of 
mineralization in vivo, such as with hydroxyapatite and bone formation, can benefit from these 
new methods related to engineering approaches to modulate organic (collagen) and inorganic 
(e.g., hydroxyapatite) interfaces related to mechanics and bone structure-function.   
 
5.3.8 Materials and Methods 
 
Collagen samples 
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Several de novo sequences from the ColGen-GA model were selected for synthesis and 
experimental validation. These collagen-like peptides (CP) were synthetized by GeneScript 
Biotech (Piscataway, New Jersey, 95% purity and trifluoroacetic acid removal). As the triple-
helix forming control, commercially available bovine Type I collagen was used (PureCol TypeI 
Collagen, AdvancedBiomatrix, Catalog #5005). 

Circular Dichroism 

Spectra were acquired using a Jasco J-815 Circular Dichroism Spectrometer (Easton, MD, 
USA). CPs and bovine collagen Type I were dissolved in PBS at 0.3 mg/mL (final pH 7.1-7.3). 
Samples were kept at 5 ºC for 72 hours before scanning in the far UV (180 to 260 nm) at 5 ºC. 
Ellipticity at 222 nm was monitored as function of temperature, while heating the samples from 
5 to 70 ºC at 1 ºC/min with data collection every 0.1 ºC. For derivatization of the temperature 
scans and calculation of the minimum of the first derivative, the data was smoothed using a 
fast Fourier transform (FTT) filter with a cutoff frequency of 0.342 Hz. Tm values were calculated 
as the minimum of the first derivative of the temperature scans. After reaching 70ºC, the 
temperature was maintained, and samples were scanned from 180 to 260 nm. CD spectra 
included accumulating three scans at a scanning speed of 20 nm/s and 4 seconds of Digital 
Integration Time (DIT). For all plotted data the High-Tension Voltage, HT(V), of the 
photomultiplier was kept below 600V.  

Differential Scanning Calorimetry (DSC) 

Thermograms were acquired using a TA Instruments DSC (TA Instruments Q100 series, New 
Castle, DE, USA). CPs and collagen Type I were dissolved in PBS at 50 mg/mL (final pH 7.1-
7.4) and kept at 5 ºC for 72 hours before measurement. A total of 20 µL of each sample was 
hermetically sealed in an aluminum pan (Hermetic Tzero pans model 901684.901, TA 
Instruments, New Castle, DE, USA) and scanned from 5 ºC to 65 ºC at a rate of 2.5 ºC/min 
using as a reference 20 µL of PBS. The melting temperature was considered as the minimum 
of the endotherm (See Supporting Information).413 

Molecular Dynamics (MD) 

MD simulations were performed using the NAMD code with CHARMM force field, which also 
includes parameters for the hydroxyproline residue. We prepared each peptide topology using 
the triple-helical collagen building script (TheBuScr) based on the primary amino acid 
composition, including the hydroxyproline residue. The protein was solvated with a 2.4 nm 
boundary water box using TIP3P water molecules as the solvent. The total number of atoms in 
the solvated system was approximately 90,000. A 1 fs timestep was used and rigid bonds were 
applied to constrain the bonds of the water molecules. Van der Waals interactions were 
computed using a cutoff for a neighbor list at 1.4 nm, with a switching function from 1.0 to 1.2 
nm. For electrostatic interactions, the particle-mesh Ewald sums (PME) method was used with 
periodic boundary conditions. A preliminary energy minimization was performed using a 
steepest descent algorithm. The systems were then equilibrated at 275 K for 5 ns each under a 
constant atom, volume, and temperature (NVT), then constant pressure (NPT) ensemble. The 
resulting systems were further equilibrated under NVT for 2 ns before beginning the heating 
process to mimic the CD and DSC experiments. The temperature of the simulation was 
increased by 10 K every 10 ns from 275 to 600 K.475 Root mean square deviation of the protein 
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backbone and hydrogen bonding number were determined from the last 6 ns of each 
temperature by using visual molecular dynamics (VMD) plugins on DCD trajectory files that 
were output every 50 ps. Each simulation was repeated 3 times.  
 
5.4 End-to-end transformer model to predict thermal 

stability of collagen triple helices using an NLP 
approach 

 
The key constituent of ColGen is a combination of convolutional layers with long short-term 
memory (LSTM), creating an artificial recurrent neural network. This LSTM model offers one 
manner in which ML methods can learn the underlying physics of collagen molecules, but has 
the downside of being difficult to train due to its requirement for sequential input. The recent 
development and application of transformer ML deep learning models40 presents a new 
solution to this training problem,43 offering faster and more efficient training of the data and the 
model. Briefly, the transformer model adopts self-attention to process data out of order and 
learns the context of each element via positional encoding. This non-sequential method of 
training could be relevant to collagen, where short-range (sequential) and long-range (non-
sequential) interactions play a role in the structure.44,45 The transformer framework has 
increasingly become the model of choice for NLP-type of problems in language and science 
applications and has most recently been used in AlphaFold 2 to predict protein structures.46,47 
While transformer models are powerful, since they can be generalized to a variety of 
applications and modalities (sequence regression problems, sequence to sequence translation 
such as secondary structure prediction, and other needs including field predictions48,49), they 
can also be difficult to train and often require large amounts of data. This has been exemplified 
in recent developments of very large language models based on these architectures, 
sometimes reaching hundreds of billions of parameters.50–52 Further, to our best knowledge, 
while a few very recent examples exist of the application of these transformer models to 
predict the structure or binding properties of some other protein systems,53–57 they have thus 
far not been used to directly predict biophysical properties of proteins.  
 
In this section, we probe whether transformer ML models can be applied to predict the Tm 
values of collagen sequences, given the small dataset size, how this approach compares to our 
previous ColGen NLP model, and whether the predictions agree with available experimental 
data.58–61 We develop two models, a larger ProtBERT-based model 53 and a smaller transformer 
model. We show that the transformer models can be trained on the collagen dataset, even 
though the dataset is very small.53 The small transformer model has an R2 similar to the larger 
ProtBERT model for the test data, but the ProtBERT model outperforms on the validation data. 
We believe this is the first demonstration of the transformer model to a smaller protein dataset 
for the prediction of physical properties, and shows that despite the relatively small size of this 
dataset, the transformer model is able to accurately predict Tm values of collagen sequences.  
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5.4.1 Transformer model training 
 

 
Figure 5-21. Overview of the small and ProtBERT transformer models trained and applied in this section. A) 
Masking is widely used to pretrain natural language processing methods. In this method, a random sample of amino 
acids has been replaced by a mask placeholder. The machine learning model then predicts the masked amino acid. 
This masked language modeling allows the machine learning model to develop a statistical understanding of the 
amino acid sequences, and is used in ProtBERT pretraining, as reported in 53. A) Small transformer model (details in 
Materials and Methods and Table 5-6). A tokenizer is trained to translate amino acid sequences into a list of integer 
numbers, which are then processed by an embedding layer to generate input embeddings. B) Larger transformer 
model based on ProtBERT with a convolutional head for decoding, fine-tuned against our dataset. Both models use 
multilayer perceptron (MLP) blocks, consisting of fully connected dense layers, to yield the final prediction 
dimensionality. In all cases considered in this section, the whole sequence is mapped to a single, scalar value, Tm. 
For the ProtBERT model, we use the pretrained ProtBERT tokenizer. Positional encoding are added within the 
pretrained ProtBERT model.  
 
We train two transformer models to determine performance and appropriate strategies for 
collagen predictions. Transformer models were recently developed for NLP to process 
sequential input data such as sentences all at once, unlike recurrent neural networks which can 
only process the input data in series. Transformer models use attention to determine the 
context of each word (amino acid) within the larger sentence (protein sequence). This allows 
transformer models to be more parallel, thus reducing training times, while also allowing 
relationships throughout the entire sequence to be more accurately discovered. Figure 5-21 
shows a basic overview of the two transformer models in this work. Figure 5-21b depicts a 
small transformer model with a linear head consisting of a multilayer perceptron (MLP), 
featuring fully connected feedforward artificial neural network layers that will be trained from 
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scratch, with the details in 5.4.4 Materials and Methods and Table 5-6. The small transformer 
model is not pretrained. Our dataset, discussed below, is directly input into this small 
transformer model during training to yield a model that can provide Tm outputs based on 
sequence inputs. 
 
Figure 5-21c illustrates the structure of the larger transformer model based on ProtBERT with 
a deep convolution head followed by an MLP, fine-tuned against our dataset.62 The ProtBERT 
model, introduced in 2021, is based on BERT52, which is a Bidirectional Encoder 
Representation for Transformers, introduced by Google in 2018 to understand natural 
language. The ProtBERT model consists of a very large number of transformer blocks, similar 
to the multiple self-attention blocks shown in Figure 5-21b. Our larger transformer model, 
utilizes a pretrained ProtBERT. Pretraining is an attractive strategy for NLP models as it does 
not require labeled data. In this step, conducted in earlier work, 53 the strategy of randomly 
masking part of the input is used; in this case, randomly mask amino acids) and then predict 
the masked amino acids (Figure 5-21a). This process is repeated over a very large number of 
sequences (e.g. Uniref100 with 217 million sequences as is the case for the ProtBERT model 
used in this section).63 Through this training process ProtBERT learns the structure and 
representations of general proteins before being fine-tuned to our specific collagen protein 
dataset. This pretrained ProtBERT effectively acts as an embedding function in our larger 
transformer model that relates input sequences with a very large embedding dimension. The 
resulting tensor is of dimension 64x1024, where 64 amino acids is the maximum sequence 
length considered, and 1024 the embedding dimension produced by the ProtBERT model. The 
maximum length of 64 amino acids was selected as a maximum length as the collagen mimetic 
peptides in our dataset are typically around, or shorter than this length. Any sequence shorter 
than 64 amino acids is padded with zeroes, which does not affect the overall training.   
 
The training data, discussed in the next paragraph, is used to fine-tune the larger ProtBERT 
transformer model together with the head. In this case, the weights of the entire model are 
adjusted based on the new input training data.   
 
The above small and large transformer models are trained with a collagen dataset used for 
ColGen, and discussed below in the 5.4.4. Materials and Methods section. Data 
normalization is important to improve model accuracy, and as such, the Scikit-learn 
StandardScaler model is used here. The StandardScaler model zeroes the mean and scales 
the data to unit variance. We note that the QuantileTransformer could have also been applied 
instead of the StandardScaler to rescale the data. The QuantileTransformer normalizes the 
data such that the data with the most frequent values is more spread out. The 
QuantileTransformer typically results in better transformer performance in regions with a large 
quantity of training data, but yields worse results in the low high Tm regions where there is less 
training data. Conversely, the StandardScaler does not have this same problem. As such, the 
section proceeds with the StandardScaler, but one could conceive of using the 
QuantileTransformer if they were looking to target higher performance in the median Tm range.  
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Figure 5-22: Training performance of the two transformer models. A,C) Training and validation loss over epochs 
shows the both models reach convergence over a reasonable number of epochs. B,D) R2 value over epochs also 
shows convergence. A,B) Results for the small transformer model. C,D) Results for the larger ProtBERT based 
model fine-tuned against the collagen dataset.  
 
To determine whether our transformer models could predict the Tm values of collagen 
sequences, we trained the model using our training set and show the training, testing, and 
validation performance in Figure 5-22. The small transformer model reaches convergence 
around 1300 epochs, whereas the ProtBERT-based model converges much faster around 40 
epochs (Figure 5-22a,c). This convergence speed is unsurprising given that the ProtBERT-
based model has already been pretrained on a larger set of protein sequences. However, the 
~1500 epochs required to train the small transformer model is still within reasonable 
computational requirements especially since training proceeds quickly, and the epochs listed 
for the ProtBERT-based model do not take into account the computational time and cost 
required to train the larger model. 
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Figure 5-23. Prediction vs. ground truth, Tm. A,B) Unscaled training, testing and validation data, temperatures in 
°C. The small transformer model reaches an R2 value of 0.84 and the large model 0.79 for the test dataset. For the 
validation dataset (green points), the R2 values are 0.28 and 0.61, respectively.     
 
Table 5-5: R2 accuracy of models. Summary of R2 accuracy measure, and number of parameters for the 
transformer model trained from scratch and the ProtBERT based model.  

Feature Small Transformer Model ProtBERT, Conv head, and 
finetuning 

R2 accuracy 
(train/test/validation) 

0.88/0.84/0.28 0.97/0.79/0.62 

Number of parameters 108,069 423,079,813 
Epochs until convergence ~1300 ~40 

 
The models reach a convergence R2 value as the number of epochs increases (Figure 5-
22b,d). Despite the speed of convergence of the ProtBERT-based model, the small transformer 
model is able to achieve a reasonable accuracy in prediction compared to ProtBERT-based 
model. Figure 5-23 depicts predictions vs. ground truth of Tm of the unscaled training, testing 
and validation data in °C (a,b), and a summary of the performance of both models is listed in 
Table 5-5. The validation set, also discussed in the 5.4.4 Materials and Methods section, 58–61 
consists of recently published collagen sequences and their Tm values and were not included in 
the training or testing dataset. The small transformer model reaches an R2 value of 0.84 and 
the large model 0.79 for the test dataset. This is surprising given that the small transformer 
model uses only 0.026% of the parameters required in the ProtBERT-based model. Despite 
this good R2 value for the testing data, for the validation dataset, the R2 values are 0.27 and 
0.42 for the small transformer model and ProtBERT-based model, respectively. Given that the 
validation dataset has a slightly different mean and standard deviation than the training 
dataset, we also calculated R2 values using the training dataset as baseline. This calculation 
can be found in the 5.4.4 Materials and Methods section and results in an R2 value of 0.46 for 
the small transformer model and 0.71 for the ProtBERT-based model. We believe this lower R2 
value is due to two factors. First, predicting Tm values of very low temperature sequences is 
challenging due to the lack of a significant quantity of training data at these values. Second, 
the distribution of amino acids in the validation dataset is slightly different than that of the 
training dataset; the validation data has a higher frequency of the amino acid phenylalanine (F), 
which makes an important difference in the R2 values given that that ~20% of the validation 
sequences have F in them.  
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The significant difference between the R2 values for the smaller transformer model versus the 
ProtBERT is likely due to the general relationships between amino acid sequence and protein 
structure that the ProtBERT learned in pretraining and that the small transformer model did not. 
As such, though the R2 values for the testing data are very good for the small transformer, it 
seems that the larger pretrained ProtBERT is more helpful in extrapolating to other collagen 
sequences.  
 
5.4.2 Transformer model Tm prediction 

 
Figure 5-24. Transformer predictions for Tm based on mutation position and disorder parameter. 
Characterization of mutations in positions G, P, or O along the (GPO)10 model peptide triplets for the A) ProtBERT 
and B) small transformer model. Mutation substitutions are made with every amino acid, and values demonstrate the 
mean and standard deviation of these substitutions. 
 
Using the transformer models, we demonstrate the effect of various mutations on Tm values. 
We start with a model (GPO)10 sequence and determine how mutations in either the G, P, or O 
position along the 10 triplets of the peptide affect the resulting Tm values (Figure 5-24a,b). 
Consistent with the earlier ColGen model, we find that there is a greater Tm destabilization if 
there is a mutation towards the middle of the sequence. This indicates that there is a critical 
transition point along the length of the sequence that is critical in maintaining the structural 
stability of the protein. Further, we also find that disruptions in glycines are most destabilizing. 
This is consistent with experimental findings that glycine disruptions impact stability and often 
constitute disease states.64–67 Interestingly, the ProtBERT model predicts a more similar trend 
to our original LSTM-based ColGen model compared to the small transformer model. This is 
likely because the ProtBERT model pretraining is helpful in extrapolating to other collagen 
sequences as discussed above. 
 
We note that the goal of this section was to demonstrate how ML and specifically the 
transformer model can be used to predict the stability of collagen sequences given the small 
dataset. While the transformer models do not have as good of an R2 as the recent physics-
based model by Walker et al. (0.84, 0.79 for the small transformer and ProtBert transformer, 
0.95 for Walker), it is notable that ML model is able to have strong prediction capability without 
having explicit physico-chemical principles guiding the prediction. One benefit to the ML model 
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is that the model evolves as more data points are added, and does not need to be rebuilt to 
find physical laws that guide the new data points. Similarly, when comparing to the excellent 
model by Persikov et al., the ML model here allows the prediction of thermal stability, even for 
sequences which do not follow the traditional Gly-Xaa-Yaa. In addition, the performance of 
both transformer models reported in this section is better than the original LSTM based ColGen 
approach, where the R2 was 0.67 for the test dataset. This improvement is likely because the 
LSTM approach only includes short-range interactions, and has practical limitations with how 
deep the neural network can be built to account for all relevant interactions. In contrast, the 
transformer models have no limitations on the length of their interactions, can provide a more 
accurate description of the sequences, and thus has a larger capacity for training.   
 
5.4.3 Discussions, Implications, & Conclusions 
 
Our analysis showed that we could successfully develop transformer models to predict key 
physical parameters of collagen molecules, here based on Tm. We explored two strategies. One 
was the design of a transformer model from scratch, with relatively few parameters (Figure 5-
22A). The model was able to adequately capture the relationship between sequence and Tm, 
but did not perform as well for very low temperatures (likely due to the lack of significant 
sequences in that range) or for amino acids not well represented in the training set. The second 
model, developed based on a fine-tuning strategy based on the ProtBERT model (Figure 5-
22B)62 achieved adequate accuracy and performed better for the validation dataset. Key 
performance metrics are summarized in Figures 5-23, 5-24 and Table 5-5. 
  
The results show that transformer models can be successfully developed, either from scratch, 
or by using pretraining and fine-tuning. This opens up many exciting possibilities to capture 
other structure-function relationships in biomaterials. While the ProtBERT based model 
performs better for validation, it features a much larger number of parameters and requires 
extensive and expensive pretraining to be developed. It may be most useful when predicting Tm 
values of sequences that do not follow the amino acid distribution of the training data. Notably, 
the small transformer model requires only 0.026% of the number of parameters compared to 
the much larger model, but reaches almost the same accuracy for the test data. Further, even 
though fewer training epochs are needed to fine-tune the large model, a significantly higher 
computational burden was expended on training the original pretrained model. On the other 
hand, the ProtBERT model can be adapted quite easily to meet a variety of downstream tasks, 
as was shown in this section for mechanical properties.  
 
Given that the goal of our work is demonstrate the transformer methodology to the prediction 
of physical properties of small protein datasets, we have included two Jupyter Notebooks on 
the small transformer model and larger ProtBERT model. Our hope is that the Jupyter 
Notebooks (Appendix S5-4, S5-5, GitHub) can serve as a good starting point for others to 
adapt and develop these transformer models further, especially for small protein datasets or 
the prediction of physical properties such as the Tm value demonstrated here. 
 
Given the power of these transformer models to capture relevant properties of small protein 
datasets, one could envision their use in predicting the mechanical behavior of collagen-based 
diseases such as osteogenesis imperfecta, where 90% of diseases are caused by mutations in 
the type I collagen genes. Beyond collagen, the transformer models here can also be applied 
to other protein science and engineering challenges where large datasets are often not easily 
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accessible, such as the design of silk-elastin composites for use as biomaterials with specific 
mechanical properties or predicting the lethality of coronavirus variants given the amino acid 
composition of its spike protein. 
 
5.4.4 Materials and Methods 
 
Data preparation and dataset 
The dataset is identical to the one reported in an earlier publication from this lab Appendix S5-
1.41 The dataset consists primarily of collagen mimetic peptides. The Tm value of collagen is 
affected by the exact specifications of the experiment such as solvent, heating rate, 
instrument, and concentration,68–70 which could cause discrepancies in Tm between the same 
amino acid sequence under different conditions. However, we chose the majority of our 
sequences that collected Tm values under aqueous solvent conditions at pH 7 (water, PBS, 
ammonium acetate), heating rates from 0.1-1 °C/min, using CD spectroscopy. A more refined 
dataset would include Tm measurements from collagen sequences under the same test 
conditions, but this is beyond the scope of this current work. We use Scikit-learn’s Standard 
Scaler model71 to scale the input data by zeroing the mean and scaling to unit variance. The 
whole dataset includes 633 pairings of sequences and Tm. We use a 80% training and 20% 
testing data split. The validation dataset consists of the de novo homotrimeric peptides from 
Walker et al., Mekkat et al, and Kohler et al,58–61 and the experimental and predicted Tm values 
are included in Appendix S5-6. 
 
Table 5-6: Summary of model parameters for the small CollagenTransformer model trained from scratch, built on a 
transformer encoder model. We also summarize parameters for the Adam optimizer.73 The model has a total of 
108,069 parameters.   

Parameter Value 
Batch size 128 
Maximum length 64 amino acids 
Number of tokens 23 
Transformer depth 3 
Number of attention heads 10 
Embedding dimension (AA sequence) 8 
Embedding dimension, positional encoding 
(learnable) 

8 

Learning rate 0.00005 
Beta1, Beta2 0.99, 0.999 

 
We develop a small transformer model43 from scratch, as schematically shown in Figure 5-
22A. Parameters and hyperparameters are summarized in Table 5-6. Trainable position 
encoding is used. To keep the number of parameters small, the transformer only features 3 
layers, to encode the input sequence data into a higher-dimensional space. The input data is 
processed using a tokenizer trained based on the amino acid sequence data in the collagen 
dataset. It is processed by an embedding layer. We use learnable positional encodings, fed to 
the model via an embedding layer. The output from the transformer model is processed using 
an MLP block to yield the desired output dimensionality; which is 1 scalar value for each 
sequence. The model is trained using an Adam optimizer. All parameters for these aspects are 
listed in Table 5-6. All code is written in Python, using PyTorch.72 
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Table 5-7: Key parameters and head design for the pretrained ProtBERT based fine-tuning model. We use three 
convolutional layers, followed by MLP, to process the embeddings predicted by the ProtBERT model.62 The first 
layer takes the 64×1024-dimensional output of the ProtBERT model (sequence length × embedding depth) and 
processes it, ultimately through all convolutional layers and the MLP block to yield a scalar output for each 
sequence input. We use an Adam optimizer73 for fine-tuning, with a relatively small learning rate. 

Parameter Value 
Batch size 12 
Maximum length 64 amino acids 
Learning rate 0.000005 
Beta1, Beta2 0.99, 0.999 
LR decay rate 0.96 
Warmup steps 500 

 
Conv Layer Kernel Size In channels Out channels 
3 (head) 3 512 512 
2 3 512 512 
1 3 1024 512 

 
As comparison and alternative strategy, we built a larger transformer model based on a 
pretrained model using the BERT architecture, as schematically shown in Figure 5-22B. 
Parameters and hyperparameters are summarized in Table 5-7. We use a BERT tokenizer and 
the pretrained model’s processing of embeddings and positional encoding, as reported in 62. 
All code is written in Python, using PyTorch.72 The pretraining was accomplished by randomly 
masking 15% of the amino acids in the input, using all sequences in the UniRef100 dataset 63. 
The pretraining-fine tuning strategy offers the possibility to learn fundamental insights about a 
system of interest, here proteins, from a much larger but unlabeled dataset (UniRef100) and 
then fine-tune the model to be able to solve a particular task, such as predicting Tm for 
collagen sequences, as downstream task.  
 
R2 Calculation for Transformer Models with Training Dataset Baseline 
The mean and standard deviation for the training/testing (μ=29.08°C, σ=9.46°C) and validation 
datasets (μ=34.24°C, σ=8.74°C) are slightly different. Because the model is trained on scaled 
data from the training/testing set, we calculated R2 with respect to this dataset baseline to yield 
the following: 

𝑅! = 1 −
∑#$"#$%&#'%()_'+,'-%$"#$%#'%()_.+/&%0'%()&

1

∑#$"#$%&_'+,'-%	$'+#2)2)3( &1
      (5-1) 
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CHAPTER 6 
 
 
CONCLUSIONS AND OUTLOOK 
 
 
6.1 Major conclusions  
 
The goal of this thesis was to help in the design of sustainable materials that are fracture-
resistant, self-healing, and have exceptional mechanical properties, by looking to biological 
systems for inspiration. In doing so, we also aimed to help elucidate some of the complex 
mechanistic principles underlying biomaterials, which are still not well understood. We focused 
on metal-coordination bonds, which are a promising chemistry for designing materials with 
specific dynamic mechanical properties that ultimately enable fracture-resistance or self-
healing. Their increased kinetic lability compared to standard covalent bonds enables dynamic, 
reversible mechanical properties. More remarkably, metal-coordination bonds can be tuned 
over a wide range of bond strengths and dissociation times using simple levers such as metal 
ions, pH, ligands and counterions. These bonds have opened up new opportunities beyond 
polymer physical structure to engineer time-dependent mechanical properties. In this thesis, 
we advance the ability to engineer metal-coordination bonds into proteins and polymers for 
desired mechanical behavior.  
 
In Chapter 1, we discussed the emergence of metal-coordination bonds as a exceptional 
chemical motif to control the mechanical properties of polymers and proteins.  
 
In Chapter 2, we predicted the macroscopic dynamic mechanical behavior of metal-
coordinated polymers using simulated free energy landscapes of the metal-coordinate 
complex crosslinks. We incorporated metal-coordinate bonds as crosslinkers in ideal polymer 
network hydrogels, such that the experimental relaxation time of the hydrogel was controlled 
by the relaxation of the coordination complex. Using metadynamics implemented in MD 
simulations, we found that the energy landscape of the coordination complexes could be used 
to predict the experimental macroscopic relaxation time of the ideal metal-coordinated network 
using an empirical equation. We then expanded the system by constructing a coarse-grained 
model to show how the dynamic mechanical properties of the network could be controlled by 
the crosslinker chemistry. 
 
In Chapter 3, we examined strength of clusters of metal-coordination bonds, to more closely 
mimic coordination bonds found in natural systems. We sought to probe whether clusters of 
coordination bonds act cooperatively to yield the remarkable stiffness and mechanical 
properties seen in natural materials. We conducted both experiment and simulation on various 
de novo metal-coordinated proteins to probe this question, and found that metal-coordination 
bonds can rupture cooperatively, but have highly heterogeneous deformation behavior. Our 
results suggested that metal-coordination bonds may have been evolved by biology for 
primarily energy dissipative means.  
 
In Chapter 4, we contextualized our insights from model systems by analyzing native biological 
metal-coordinated materials. We characterized the role of metal ions on the structural folding 
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and mechanics of Nvjp-1, the major protein of the Nereis virens worm jaw which uses metal-
coordination to produce a sclerotized, hard jaw. As one of the only highly metal-coordinated 
proteins with a computationally resolved structure, Nvjp-1 offered the opportunity develop a 
detailed nanostructural understanding of the role of metal ions in the native biological 
environment. Using various simulation techniques, we found that the quantity of metal ions 
plays a large role in the structural folding and compactness of the proteins, but that the 
distribution of metal-ions and hydrogen bonds has a large influence on mechanics.  
 
In Chapter 5, we sought to develop machine learning methods to predict the mechanical 
properties of bio and bioinspired materials. We expanded our focus beyond metal-coordination 
systems to the biomaterial collagen, due to the larger amount of available data required for 
machine learning. We showed that by using deep learning, natural language processing, 
generative algorithms, and transformer models, we could effectively predict the thermal 
denaturation mechanical properties of collagen molecules. We experimentally validated our 
natural language processing model and used it to design new collagen sequences with desired 
thermal properties. These important first demonstrations serve as a basis for developing 
machine learning models for other bioinspired materials. Once more data is collected on metal-
coordination bonds, these first demonstrations would help advance the study of metal-
coordinated proteins more broadly using machine learning methods.  
 
Altogether, this thesis made important contributions in the design of biomaterials, and 
specifically metal-coordination bonds and collagen, towards advanced mechanical function 
using both simulation and experiment. 
 
6.2 Immediate future directions of this thesis 
 
Several important future directions emerge from the foundations laid out in this thesis. These 
future directions are primarily related to the experimental or computational validation required 
to strengthen the design principles presented in this work for the rational mechanical use of 
metal-coordination bonds. For example, the hydrogel relaxation time predictions in this thesis 
were for the nitrogen-family ligands with Ni2+. A more universal equation would characterize 
additional metal-coordination complexes and polymers to further validate or improve the 
robustness of the empirical equation presented in Chapter 2. Such an expansion should also 
closely model buffer effects in metal-coordinated materials, as even non metal-coordinating 
buffers have been found to produce different relaxation times in metal-coordinated hydrogels. 
A universal relationship between energy landscape and mechanical properties would have 
resoundingly large consequences on the field of soft matter. This ability to directly relate 
chemical energy landscapes to resulting mechanical properties is still missing despite similar 
relationships in the field of hard condensed matter.302,476 
 
The general concept to expand the applicability of our design principles applies to the 
concepts of rupture strength presented in Chapter 3 as well. Testing additional de novo 
peptides would help indicate how to design proteins for specific rupture and fracture behavior. 
Currently, the largest bottleneck is knowing the protein structure, as the structure is extremely 
critical in characterizing the mechanical properties of metal-coordinated materials. For 
example, advanced structural resolution would allow the clear differentiation between the 
contribution of metal-coordination bonds and hydrogen bonds to the resulting protein 
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mechanics such that materials engineers could select the most appropriate bond type for their 
desired application. While techniques like AlphaFold used in this work offer a good first 
approximation of the structure, they cannot resolve the folding structure of multimers, 
especially in the context of metal ions. Advanced folding techniques that predict structure with 
metal ions present would help make the predictions in this work more robust. Alternatively, 
experimental testing methods with rapid peptide synthesis and high-throughput SMFS could 
also achieve a similar output. 
 
Within the context of native biological materials, only a handful of resolved structures of 
proteins with high amounts of metal-coordination exist, limiting the understanding of 
coordinated biological proteins. Resolving more protein structures through experimental 
techniques such as crystallography or computational techniques such as replica exchange MD 
in the presence of metal ions would enable a clearer nanostructural understanding of the 
mechanical role of metal ions. We can also further increase existing data on metal-coordinated 
proteins for mechanical function by conducting a thorough mechanical characterization of 
proteins in databases such as MetalPDB.287,477 
 
More broadly, increasing the accuracy and efficiency of computational methods would unlock 
the ability to universally predict the properties of metal-coordinated materials. Currently, the 
largest limitation in modeling metal ions is the force field, and the force field is absolutely 
critical to MD. Metal coordination bonds exhibit a number of chemistry challenges, such as 
polarization or charge transfer between the metal and ligand, which are difficult to capture in 
conventional force fields. These challenges are one of the core reasons why this thesis only 
focused on one metal ion chemistry (Ni2+). Developing metal ion parameters is nontrivial,113 and 
advances in metal parameters for mechanical function as well as easy implementation 
methods for widespread adoption, will be required to progress this field. In contrast, machine 
learning can be applied to systems even when the force field is unknown, due to its reliance on 
data rather than underlying physical principles. However, for problems such as the metal-
coordination mechanics in this work, machine learning methods that can train on smaller 
datasets will be required.  

 
6.3 Broader outlook of metal-coordination bonds for 

mechanical function 
 
Continued progress in the understanding and application of metal-coordinate chemistry 
requires biological, materials and engineering research with an emphasis on mechanical 
properties (Error! Reference source not found.6-1). Further exploration at all length and time 
scales is required to realize the notable potential of metal-coordination bonds to enable 
dynamic structural properties, just as in natural systems such as spider webs, in which 
chemistry and web architecture both contribute to deriving variegated functionalities for 
biological survival.22,478–480 To this end, characterization of more metal-coordinating biological 
materials is required to reveal where metal-coordination complexes exist and how they 
function. This understanding can then be translated into a synthetic context to design new 
ligand chemistries and enable the formation of robust networks under multiple environmental 
conditions. Metal ions should also be studied in the context of gradients, well-studied in 
biology, but not well implemented in synthetic systems, to build temporal25 or compositional56 
gradients. Further, positioning of metal-coordinate bonds within proteins or block copolymers 
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may enable even greater control over mechanical properties. This design work must be 
accompanied by simulations and characterizations that directly link chemical bond properties 
with macroscopic mechanical properties or help explain natural biological materials 
designs.214,481 We may even start to answer questions such as where the strength of a bond 
comes from or how it relates to static or nonlinear mechanical properties such as toughness, a 
significantly underexplored area in metal-coordination bonds. With these understandings, it will 
be possible to design metal-coordinated materials that operate over a wider range of tunable 
mechanical properties. 

 
Figure 6-1. Future directions in the study of metal-coordination bonds. Key open questions and future 
milestones in the study of metal-coordination bonds at different length scales, from that of the individual bonds to 
that of the mechanical properties of the macroscopic structures they enable. 
 
The dynamic, tunable nature of metal-coordination bonds allows several futuristic applications. 
For biological tissue-engineering applications, strictly controlling the relaxation times of gels 
would enable specific cell growth and differentiation or allow a precise trigger for drug release 
in vivo. Self-healing bonds may also be incorporated in structural building materials to repair 
cracks or prevent earthquake damage. If metal aggregation in the network can be controlled, 
these materials can potentially grow small metallic structures or minerals for 
biomineralization482–484 in a controlled manner. Finally, it is hypothesized that biological 
organisms prefer metal-coordination motifs to other bonds, such as hydrogen bonds, when 
secreting mechanically robust materials outside of the body in aqueous environments. This 
preference may provide clues for developing materials that require mechanical strength and 
limited susceptibility to water, such as environmentally friendly biomass-based materials that 
are not humidity sensitive or materials for fetal surgeries in liquid environments. Overall, the 
wide range of metal-coordination complex interactions and their tunable parameters will elicit a 
wide variety of new insights and applications.  
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APPENDIX 
 
GLOSSARY  
 
AFM atomic force microscopy 
AlphaFold protein folding tool 
CD circular dichroism spectroscopy 
CGMD coarse grained molecular dynamics 
CHARMM22 chemistry at Harvard Macromolecular Mechanics Force Field 
ColGen developed collagen NLP model 
CV collective variable 
DOPA L-3,4-dihydroxyphenylalanine  
DSC differential scanning calorimetry 
Ea activation energy 
ELP elastin-like polypeptide 
G' storage modulus 
G" loss modulus 
GA generative algorithm 
ITC isothermal titration calorimetry 
lp persistence length 
LSTM long short-term memory 
MD molecular dynamics 
NAMD nanoscale molecular dynamics 
Ncr critical number of bonds that rupture together 
NLP natural language processing 
NPT isothermal- isobaric ensemble 
NVT canonical ensemble 
PDB protein data bank file 
PEG polyethylene glycol 
ProtBERT protein bidirectional encoder representations from transformers 

model 
REMD replica exchange molecular dynamics 
SMD steered molecular dynamics 
SMFS single molecule force spectroscopy 
TIP3P TIP3P water model 
Tm melting point 
UV-Vis UV-Visible spectroscopy 
τ relaxation time / bond dissociation time 
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CHAPTER 2—SUPPORTING INFORMATION 
 
 
Entanglement Fraction 
 
The following section is summarized from the calculations in the supplementary information of 
S. Tang et al.227 Key calculations of from their work relevant to the calculation of entanglement 
fraction are presented here: 
 
The entanglement volume fraction is estimated by classic reptation theory to be: 
 
𝜑) = G\C

\
I
:]>5

= G^C
^
I
:]>5

         (S7) 
 
where 𝑁) is the number of monomers between entanglements in a melt, 𝑁 is the degree of 
polymerization of the polymer, and 𝑣 is the Flory exponent. Correspondingly, 𝑀) is the 
entanglement molecular weight of PEG, which is 1730 g/mol, and 𝑀 is the molecular weight of 
the segment between two crosslinks, or 5000 g/mol. As such, the entanglement volume 
fraction is 0.44.  
 
In our experiment, we use 20% w/v for the histidine and imidazole gels. Volume fraction is 
calculated by  
 

𝜑 =	
Ah

_h9
Ah

_h9 V ì
            (S8) 

 
where p is polymer and s is solvent, m is mass, 𝜌 is density, and V is volume. The density of 4-
arm PEG is 1.128 g/cm3. For a 20% w/v gel, the corresponding volume fraction is 0.151, which 
is less than the entanglement volume fraction. 
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His2Ni1 

Complex 
His2Ni1 -PEG Im2Ni1 

Complex 
Im2Ni1 -PEG 

Eb (kJ/mol) 50.14 66.55  33.76  41.96 
Ea (kJ/mol) 53.96 64.34  47.54  59.66 

Figure S2-1. Energy landscapes of Ni2+-ligand-PEG are similar to Ni2+-ligand landscapes 
with minor quantitative differences. Energy landscapes of a) (His-PEG9)2Ni1 and b) (Im-
PEG9)2Ni1 are qualitatively similar to landscapes with only the metal-coordinate complex 
(Figure 3): the position and shapes of the deepest binding well, metastable states, and 
activation barriers are preserved across the PEG-ligand and ligand-only landscapes. PEG9 is 
used to capture the interaction of PEG with the metal-coordinate complex and water solution 
while being computationally tractable compared to PEG53 (degree of polymerization in the 
experiment). 2D energy landscapes (c,d) are derived from the 3D energy surface where ligx is 
held at a constant distance while the other ligand dissociates (see diagram on c,d). Ea is 
computed as the energy difference between the minimum energy (blue circle) and highest 
transition energy (blue hexagram) before the bond is broken. The van der Waals interaction 
cutoff between the coordinating nitrogen atoms and the metal ion is represented by the blue 
diamond. The table shows how the simulations with PEG and without PEG scale by: EPEG-ligand ~ 
1.2 * Eligand. Figure from Ref.216 
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Figure S2-2. Frequency sweep and energy landscape data for His3Ni1. a) Time-
temperature super-positioned storage (𝐺′) and loss moduli (𝐺′) from frequency sweeps 
collected over several temperatures for a 1M:2L ratio of Ni2+ –4arm PEG-histidine at pH 10. At 
pH 10, the His3Ni1 complex (inset) is expected to be dominant coordination complex. The gel 
demonstrates Maxwellian behavior. b) In the 2D free energy landscape demonstrated lig1 and 
lig2 remain bound to the ligand at a constant distance, corresponding to a state where the 
lowest energy ML2 complex remains intact, while lig3 dissociates. Figure from Ref.216 
 
 

 
Figure S2-3. Frequency sweep for Tpy2Ni1. a) Time-temperature super-positioned storage 
(𝐺′) and loss moduli (𝐺") from frequency sweeps collected over several temperatures for a 
1M:2L ratio of Ni2+ –4arm PEG-terpyridine. Tpy2Ni1 is expected to be dominant coordination 
complex. The gel demonstrates deviation from Maxwellian behavior in the high frequency 
regime. b) 2D free energy landscape of Tpy2Ni1. Figure from Ref.216 
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Figure S2-4. NMR of a) 4PEG-His, b) 4PEG-Imidazole, c) 4PEG-Terpyridine. Figure from 
Ref.216 
 

 
Figure S2-5. Strain sweep. Strain sweep of 1M:2L ratio of Ni2+ – 4-arm PEG-histidine and 
1M:2L ratio of Ni2+ – 4-arm PEG-imidazole at pH ~8 at ~20% w/v at 5 °C confirms that the 1% 
shear strain amplitude used for the frequency sweeps is within the linear elastic regime of the 
hydrogels. Strain sweep at 1 rad/s. Figure from Ref.216 
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Figure S2-6. 2D energy landscapes of the ligand dissociation from the metal-coordination 
complex demonstrate convergence. Evolution of free energy landscape of a) His2Ni1 and b) 
Im2Ni1 as more Gaussian hills are added (grayscale lines). The collective variable (CV) is the 
distance between the center of mass of the coordinating nitrogen atoms of each ligand and 
metal ion. The free energy landscape is considered converged when the addition of more 
Gaussian hills does not change the shape of the resulting energy landscape. Convergence of 
the lowest energy well is reached quickly, while the whole energy landscape is converged once 
~200,000 Gaussian hills have been added. Similar convergence is demonstrated for c) His3Ni1, 
where a representative collective variable d1 is shown, and d) Tpy2Ni1 upon the addition of at 
least 200,000 Gaussian hills. In this paper, energy landscapes are consistently compared at 
200 ns of simulation, to ensure that at least 200,000 Gaussian hills are added. Figure in Ref.216 
 
Codes 
 
PLUMED LAMMPS run file: 

# Created by charmm2lammps.pl ff_name structure_name 
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############################################# 
# POTENTIAL INFORMATION 
bond_style      harmonic 
angle_style     charmm 
dihedral_style  charmm 
improper_style  harmonic 
 
pair_style      lj/charmm/coul/long 10.0 12.0  
kspace_style     pppm 1.0e-4  
pair_modify     mix arithmetic 
 
read_restart    restart.equil2 # read from equilibrated structure 
 
special_bonds   charmm 
 
#################################################### 
timestep 2.0 
thermo  100  
thermo_style  custom step temp pe ke etotal press pxx pyy pzz lx ly lz 
 
group        watH type 3 
fix          fwatH watH shake 0.0001 20 10 t 3       #required for 2 fs timestep 
 
############################################## 
variable temperature equal 300.0 # Simulation temperature in Kelvin 
variable tempDamp equal 100.0 # Relaxation time of thermostat 
variable  pressure equal 1.0 # Pressure of box at 1 atm 
variable  pressDamp equal 1000 # Relaxation time of pressure 
 
fix  therm all nvt temp ${temperature} ${temperature} ${tempDamp} 
 
dump         myDump all dcd 10000 out.dcd 
dump_modify  myDump unwrap yes 
 
reset_timestep  0 
group  his id 1:20 
fix  moment his momentum 1 linear 1 1 1   
fix          plume all plumed plumedfile plumed.dat outfile plumed.out # Use plumed 
   
run             5000000 
unfix  plume 
unfix  moment 
 
PLUMED.dat file: 

# vim:ft=plumed 
 
RESTART 
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COM ATOMS=1,9 LABEL=com1 # desired atoms for collective variable 
COM ATOMS=21,29 LABEL=com2 
d1:  DISTANCE ATOMS=com1,41 
d2:  DISTANCE ATOMS=com2,41 
 
METAD ... 
 LABEL=metad 
 ARG=d1,d2 
 SIGMA=0.02,0.02 
 HEIGHT=1. 
 PACE=500 
 TEMP=300.0 
 BIASFACTOR=6.0 
... METAD 
 
PRINT ARG=d1,d2 STRIDE=500 FILE=COLVAR 
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CHAPTER 3—SUPPORTING INFORMATION 
 
 
Appendix S3-1 ; SI File 1 De Novo PDB strucctures. The set of initial representative de novo PDB 
structures and sample equilibration file, all included in a ZIP file. The PDB files are named 
based on the molecule name (H1.pdb, H2.pdb … HT4.pdb). A sample equilibration file is also 
included for reference. 
 
Appendix S3-2 ; SI File 2 MetalPDB Database. MetalPDB database with the analysis of structures 
with 5-10 biologically-relevant metal ions is included in the Excel file. 
 
Appendix Method 3-S1: DNA and amino acid sequences of the MC-ELP constructs 

H1: H1-ELP-linker-C   (MW 14.78 kDa) 
Encoding gene: 
ATGGCTAGCGGTCATGGTGTTCCAGGTGTTGGTGTTCCAGGTAGCGGTGTGCCTGGTGTTG
GCGTGCCTGGCGTGGGCGTTCCCGGTGTAGGTGTGCCAGGCACCGGTGTTCCTGGCGTTG
GAGTACCAGGTGTCGGAGTTCCTGGTGTCGGTGTACCCGGTAGCGGCGTGCCAGGTGTTGG
TGTACCTGGTGTTGGTGTTCCAGGTAGCGGTGTGCCTGGTGTTGGCGTGCCTGGCGTGGGC
GTTCCCGGTGTAGGTGTGCCAGGCACCGGTGTTCCTGGCGTTGGAGTACCAGGTGTCGGAG
TTCCTGGTGTCGGTGTACCCGGTAGCGGCGTGCCAGGTGTTGGTGTACCTGGTGTTGGTGTT
CCAGGTAGCGGTGTGCCTGGTGTTGGCGTGCCTGGCGTGGGCGTTCCCGGTGTAGGTGTGC
CAGGCACCGGTGTTCCTGGCGTTGGAGTACCAGGTGTCGGAGTTCCTGGTGTCGGTGTACC
CGGTAGCGGCGTGCCAGGTGTTGGTGTACCTGGCCCGGGGGTGGAGGCAGTTGC 
Amino acid sequence: 
MASGHGVPGVGVPGSGVPGVGVPGVGVPGVGVPGTGVPGVGVPGVGVPGVGVPGSGVPGVGV
PGVGVPGSGVPGVGVPGVGVPGVGVPGTGVPGVGVPGVGVPGVGVPGSGVPGVGVPGVGVPG
SGVPGVGVPGVGVPGVGVPGTGVPGVGVPGVGVPGVGVPGSGVPGVGVPGPGGGGSC 
 
H2: H2-ELP-linker-C   (MW 15.22 kDa) 
Encoding gene: 
ATGGCTAGCGGTCATGGTGTTCCAGGTCATGGTGTTCCAGGTGTTCCAGGTGTTGGTGTTC
CAGGTAGCGGTGTGCCTGGTGTTGGCGTGCCTGGCGTGGGCGTTCCCGGTGTAGGTGTGCC
AGGCACCGGTGTTCCTGGCGTTGGAGTACCAGGTGTCGGAGTTCCTGGTGTCGGTGTACCC
GGTAGCGGCGTGCCAGGTGTTGGTGTACCTGGTGTTGGTGTTCCAGGTAGCGGTGTGCCTG
GTGTTGGCGTGCCTGGCGTGGGCGTTCCCGGTGTAGGTGTGCCAGGCACCGGTGTTCCTGG
CGTTGGAGTACCAGGTGTCGGAGTTCCTGGTGTCGGTGTACCCGGTAGCGGCGTGCCAGGT
GTTGGTGTACCTGGTGTTGGTGTTCCAGGTAGCGGTGTGCCTGGTGTTGGCGTGCCTGGCGT
GGGCGTTCCCGGTGTAGGTGTGCCAGGCACCGGTGTTCCTGGCGTTGGAGTACCAGGTGTC
GGAGTTCCTGGTGTCGGTGTACCCGGTAGCGGCGTGCCAGGTGTTGGTGTACCTGGCCCGG
GGGTGGAGGCAGTTGC 
Amino acid sequence: 
MASGHGVPGHGVPGVGVPGSGVPGVGVPGVGVPGVGVPGTGVPGVGVPGVGVPGVGVPGSG
VPGVGVPGVGVPGSGVPGVGVPGVGVPGVGVPGTGVPGVGVPGVGVPGVGVPGSGVPGVGVP
GVGVPGSGVPGVGVPGVGVPGVGVPGTGVPGVGVPGVGVPGVGVPGSGVPGVGVPGPGGGGS
C 
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H3: H3-ELP-linker-C   (MW 15.67 kDa) 
Encoding Gene: 
ATGGCTAGCGGTCATGGTGTTCCAGGTCATGGTGTTCCAGGTCATGGTGTTCCAGGTGTTC
CAGGTGTTGGTGTTCCAGGTAGCGGTGTGCCTGGTGTTGGCGTGCCTGGCGTGGGCGTTCC
CGGTGTAGGTGTGCCAGGCACCGGTGTTCCTGGCGTTGGAGTACCAGGTGTCGGAGTTCCT
GGTGTCGGTGTACCCGGTAGCGGCGTGCCAGGTGTTGGTGTACCTGGTGTTGGTGTTCCAG
GTAGCGGTGTGCCTGGTGTTGGCGTGCCTGGCGTGGGCGTTCCCGGTGTAGGTGTGCCAGG
CACCGGTGTTCCTGGCGTTGGAGTACCAGGTGTCGGAGTTCCTGGTGTCGGTGTACCCGGT
AGCGGCGTGCCAGGTGTTGGTGTACCTGGTGTTGGTGTTCCAGGTAGCGGTGTGCCTGGTG
TTGGCGTGCCTGGCGTGGGCGTTCCCGGTGTAGGTGTGCCAGGCACCGGTGTTCCTGGCGT
TGGAGTACCAGGTGTCGGAGTTCCTGGTGTCGGTGTACCCGGTAGCGGCGTGCCAGGTGTT
GGTGTACCTGGCCCGGGGGTGGAGGCAGTTGC 
Protein sequence: 
MASGHGVPGHGVPGHGVPGVGVPGSGVPGVGVPGVGVPGVGVPGTGVPGVGVPGVGVPGVG
VPGSGVPGVGVPGVGVPGSGVPGVGVPGVGVPGVGVPGTGVPGVGVPGVGVPGVGVPGSGVP
GVGVPGVGVPGSGVPGVGVPGVGVPGVGVPGTGVPGVGVPGVGVPGVGVPGSGVPGVGVPGP
GGGGSC 
 

 
Figure S3-1. Non-reducing SDS-PAGE of purified MC-ELPs. The gel shows two bands for 
each of the MC-ELPs. The band with the lower molecular weight corresponds to the calculated 
molecular weight of H1 to H3. The second band has double the molecular weight and 
corresponds to disulfide-linked dimers. Note that the molecular weights are slightly higher than 
expected. This originates from the high content of hydrophobic amino acids in the MC-ELP 
sequences, which slow the electrophoretic mobility of the polypeptides in the gel.485 
 
Table S3-1 Binding curves collected and analyzed. For each experiment, the total number of 
binding curves meeting the evaluation criteria (Kuhn lengths between 0.4 and 1.6 nm and a 
contour length cut-off of 100 nm), the total number of approach-retract cycles collected for 
each experiment and the binding frequency is listed. 
 
MC-
ELP 

Retract 
Velocity  
(nm s-1) 

Number of Binding 
Curves Meeting 
Criteria 

Total Number of Approach-
Retract Cycles Collected 

Binding 
Frequency 
(%) 

H1 200 335 7320 4.6  
400 172 5924 2.9 

H1 H2 H3

116.0

66.2

45

35

25

18.4

14.4

Protein marker 
Thermo Fisher 
Unstained (kDa)
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1000 114 7907 1.4  
2500 89 6107 1.5  
5000 113 7047 1.6  
200 193 4697 4.1  
400 389 4472 8.7  
1000 301 5010 6.0  
2500 324 5008 6.5  
5000 240 5396 4.4  
200 204 3065 6.7  
400 166 4075 4.1  
1000 268 5178 5.2  
2500 211 5253 4.0  
5000 189 6150 3.1 

H2 200 143 3427 4.2  
400 219  6271 3.5  
1000 233 4064 5.7  
2500 460 4791 9.6  
5000 680 4954 13.7  
200 271 3797 7.1  
400 496 4372 11.3  
1000 424  4793 8.8  
2500 530 5035 10.5  
5000 649 5249 12.4  
200 156 3323 4.7  
400 308 5766 5.3  
1000 322 5100 6.3  
2500 376 5440 6.9  
5000 477 5522 8.6 

H3 200 345 6670 5.2  
400 213 5965 3.6  
1000 134 5968 2.2  
2500 293 5265 5.6  
5000 870 5120 17.0  
200 438 5991 7.3  
400 447 6012 7.4  
1000 536 5965 9.0  
2500 723 5053 14.3  
5000 190 5463 3.5  
200 256 5945 4.3  
400 468 5866 8.0  
1000 308 6528 4.7  
2500 342 6053 5.7  
5000 443 6158 7.2 

H1-H3 200 221 3421 6.5  
400 364 3651 10.0  
1000 550 4431 12.4  
2500 410 4518 9.1 
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5000 445 4379 10.2  
200 208 3166 6.6  
400 356 4199 8.5  
1000 568 4422 12.8  
2500 369 4448 8.3  
5000 466 4230 11.0  
200 316 3303 9.6  
400 249 4039 6.2  
1000 431 4429 9.7  
2500 394 4563 8.6  
5000 428 4260 10.0 

EDTA 1000 0 973 0.0  
1000 0 971 0.0  
1000 3 1036 0.3 

FsPl 1000 45 966 4.7  
1000 19 1289 1.5  
1000 12 966 1.2 

PsFl 1000 0 960 0.0  
1000 6 1059 0.6  
1000 10 1250 0.8 

PsPl 1000 1 1069 0.1  
1000 1 2576  0.0  
1000 2 2061 0.1 

 
Codes 
 
Example NAMD Equilibration File 

############################################################# 
## JOB DESCRIPTION                                         ## 
############################################################# 
 
# Minimization and Equilibration 
 
############################################################# 
## ADJUSTABLE PARAMETERS                                   ## 
############################################################# 
 
structure          solvate.psf 
coordinates        solvate.pdb 
 
set temperature    300 ; #K  
set outputname     outnvt 
 
# Continuing a job from the restart files 
if {0} { 
set inputname      equil3 
binCoordinates     $inputname.restart.coor 
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binVelocities      $inputname.restart.vel  ;# remove the "temperature" entry if you use this! 
extendedSystem    $inputname.restart.xsc 
} 
 
firsttimestep      0 
 
############################################################# 
## SIMULATION PARAMETERS                                   ## 
############################################################# 
 
# Input 
paraTypeCharmm     on 
parameters          par_all27_prot_na_babu.prm 
temperature     $temperature 
 
# Force-Field Parameters 
exclude             scaled1-4 
1-4scaling          1.0 
cutoff              12.0 
switching           on 
switchdist          10.0 
pairlistdist        16.0 
 
# Integrator Parameters 
timestep            2.0  ;# 2fs/step 
rigidBonds          all  ;# needed for 2fs steps 
nonbondedFreq       1 
fullElectFrequency  2 
stepspercycle       10 
 
 
# Constant Temperature Control 
if {1} { 
langevin            on    ;# do langevin dynamics 
langevinDamping     1     ;# damping coefficient (gamma) of 1/ps 
langevinTemp        $temperature 
langevinHydrogen    off    ;# don't couple langevin bath to hydrogens 
} 
 
# PBC 
if {1} { 
cellBasisVector1 90 0 0 
cellBasisVector2 0 50 0 
cellBasisVector3 0 0 50 
} 
cellOrigin 0 0 0 
wrapWater on 
 
# PME (for full-system periodic electrostatics) 
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PME                 yes 
PMEGridSpacing      1.0 
 
# Constant Pressure Control (variable volume) -- for NPT 
if {1} { 
useGroupPressure      yes ;# needed for rigidBonds 
useFlexibleCell       no 
useConstantArea       no 
 
langevinPiston        on 
langevinPistonTarget  1.01325 ;#  in bar -> 1 atm 
langevinPistonPeriod  100.0 
langevinPistonDecay   50.0 
langevinPistonTemp    $temperature 
} 
 
# Output 
outputName          $outputname 
 
restartfreq         1000      
dcdfreq  10000 
xstFreq             1000 
outputEnergies      1000 
outputPressure      1000 
 
minimize 100 
run 3000000 ; #6ns 
 
Example NAMD SMD File 

structure          ionized.psf 
coordinates        ionized.pdb 
 
set temperature    300 ; #room temperature 
set outputname     outsmd 
 
# Continuing a job from the restart files 
if {1} { 
set inputname      outnvt2 
binCoordinates     $inputname.restart.coor 
binVelocities      $inputname.restart.vel  ;# remove the "temperature" entry if you use this! 
extendedSystem $inputname.restart.xsc 
} 
 
firsttimestep      0 
 
############################################################# 
## SIMULATION PARAMETERS                                   ## 
############################################################# 
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# Input 
paraTypeCharmm     on 
parameters          par_all27_prot_na.prm 
 
# Force-Field Parameters 
exclude             scaled1-4 
1-4scaling          1.0 
cutoff              12.0 
switching           on 
switchdist          10.0 
pairlistdist        14.0 
 
# Integrator Parameters 
timestep            2.0  ;# 2fs/step 
rigidBonds          all  ;# needed for 2fs steps 
nonbondedFreq       1 
fullElectFrequency  2 
stepspercycle       10 
 
 
# Constant Temperature Control 
if {1} { 
  langevin            off    ;# do not do langevin dynamics 
  langevinDamping     1     ;# damping coefficient (gamma) of 1/ps 
  langevinTemp        $temperature 
  langevinHydrogen    off    ;# don't couple langevin bath to hydrogens 
} 
 
# Periodic Boundary Conditions 
if {0} { 
cellBasisVector1 61 0 0 
cellBasisVector2 0 82 0 
cellBasisVector3 0 0 107 
cellOrigin 37 -55 -45 
} 
wrapWater on 
 
# PME (for full-system periodic electrostatics) 
PME                 yes 
PMEGridSpacing      1.0 
 
# Constant Pressure Control (variable volume) -- for NPT 
if {0} { 
 useGroupPressure      yes ;# needed for rigidBonds 
 useFlexibleCell       no 
 useConstantArea       no 
 
 langevinPiston        on 
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 langevinPistonTarget  1.01325 ;#  in bar -> 1 atm 
 langevinPistonPeriod  100.0 
 langevinPistonDecay   50.0 
 langevinPistonTemp    $temperature 
} 
 
# Output 
outputName          $outputname 
 
restartfreq         5000     ;# 500steps = every 5ps 
dcdfreq             500     ;# 500steps = every 5ps 
xstFreq             5000 
outputEnergies      5000 
outputPressure      5000 
 
############################################################# 
## EXECUTION SCRIPT                                        ## 
############################################################# 
# Fixed Atoms Constraint (set PDB beta-column to 1) 
if {1} {  
fixedAtoms          on 
fixedAtomsFile      fixed.ref 
fixedAtomsCol       B 
} 
 
SMD on 
SMDFile fixed.ref 
SMDk    7 
SMDVel  0.0005 
SMDDir 0.4050393894904376 -0.8826684563719812 0.2384103376263656 
SMDOutputFreq 100 
 
run 250000  
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CHAPTER 4—SUPPORTING INFORMATION 
 
 

1. Initial PDB structure from Chou et al.47  
2. Lowest energy PDB structures of simulation A, B, C 
3. REMD simulation configuration files: See file from Supplementary Information of Ref 

(Khare, Luo, Buehler. Soft Matter)  
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CHAPTER 5—SUPPORTING INFORMATION 
 
 
Appendix S5-1 ; Collagen dataset for training. Only 100 points included for demonstration purposes. 
See additional sequences in Ref.486,487  
 

Sequences Tm 
GPOGPOGPOGPOGPQGPGGPPGPOGPOGPOGPOGPO 68 
GPOGPOGPOGPOGPOGPOGPOGPOGPO 62 
GPOGPOGPOGPOGPOGPOGPOGPOGPO 58 
GPOGPOGPOGPOGAKGDAGPOGPOGPOGPOGPO 55 
GPOGPOGPOGPOGPVGAAGATGPOGPOGPOGPOGPO 54 
GPOGPOGPKGEOGPOGPOGPO 51 
GPOGPOGPOGPOGPOGPOGPO 50.5 
GPOGPOGPKGSOGPOGPOGPO 49.5 
GPOGPOGPOGQOGLOGLOGPOGPOGPOGPO 48 
GPOGPOGPKGDOGPOGPOGPO 48 
GPOGPOGPOGPOGPOGPOGPOGPO 47.3 
GPOGPOGPOGPOGPOGPOGPOGPO 47.3 
GPOGPOGPOGPOGPOGPOGPOGPO 47.3 
GPOGPOGPOGPRGPOGPOGPOGPO 47.2 
GPOGPOGPOGPRGPOGPOGPOGPO 47.2 
GPOGPOGPOGTOGPOGPOGPO 46.5 
GPOGPOGPOGPOGPOGPOGPOGPO 45.5 
GPOGPOGPOGPAGPOGPOGPOGPO 45.5 
GPOGPOGPOGSOGPOGPOGPO 45.5 
GPOGPOGPOGPPGPOGPOGPOGPO 45.5 
GPOGPOGPOGPOGPQGPGSPPGPOGPOGPOGPOGPO 45 
GPOGPOGPOGPOGPOGPOGPOGPO 44.5 
GPOGPOGPOGPRGPOGPOGPOGPO 44.5 
GPOGPOGPOGPOGPOGPOGPOGPO 44.5 
GPOGPOGPOGPOGPOGPOGPOGPO 44.5 
GPOGPOGPOGGQOGLOGLOGPOPOGPOGPOGGY 44 
GPOGPOGPOGSOGPOGPOGPO 44 
GPOGPOGPOGEOGPOGPOGPOGPO 42.9 
GPOGPOGPOGEOGPOGPOGPOGPO 42.9 
GPOGPOGPOGEOGPOGPOGPOGPO 42.9 
GPOGPOGPOGAKGDAGPOGPAGPOGPOGPOGY 42.8 
GPOGPOGPAGPOGPOGPAGPOGPO 42.8 
GPOGPOGPOGPMGPOGPOGPOGPO 42.6 
GPOGPOGPOGPMGPOGPOGPOGPO 42.6 
GPOGPOGPOGPAGPOGPAGPOGPO 42.2 
GPOGPOGPKGPOGPOGPOGPO 42 
GPOGPOGPOGAOGPOGPOGPOGPO 41.7 
GPOGPOGPOGAOGPOGPOGPOGPO 41.7 
GPOGPOGPOGKOGPOGPOGPOGPO 41.5 
GPOGPOGPOGKOGPOGPOGPOGPO 41.5 
GPOGPOGPOGPIGPOGPOGPOGPO 41.5 
GPOGPOGPOGKOGPOGPOGPOGPO 41.5 
GPOGPOGPOGPIGPOGPOGPOGPO 41.5 
GPOGPOGQOGLOGLOGPOGPOGPOGPO 41.3 
GPOGPOGPOGPQGPOGPOGPOGPO 41.3 
GPOGPOGPOGPQGPOGPOGPOGPO 41.3 
GPOGPOGPOGEPGPOGPOGPOGPO 41.1 
GPOGPOGPOGPAGPOGPOGPOGPO 40.9 
GPOGPOGPOGPAGPOGPOGPOGPO 40.9 
GPOGPOGPOGAOGPOGPOGPOGPO 40.6 
GPOGPOGPOGROGPOGPOGPOGPO 40.6 
GPOGPOGPOGROGPOGPOGPOGPO 40.6 
GPOGPOGPOGROGPOGPOGPOGPO 40.6 
GPOGPOGPOGPOGPAGPAGPOGPO 40.4 
GPOGPOGPOGERGPOGPOGPOGPO 40.4 
GPOGPOGPOGQOGPOGPOGPOGPO 40.4 
GPOGPOGPOGQOGPOGPOGPOGPO 40.4 
GPOGPOGPOGERGPOGPOGPOGPO 40.4 
GPOGPOGPOGDOGPOGPOGPOGPO 40.1 
GPOGPOGPOGDOGPOGPOGPOGPO 40.1 
GPOGPOGPOGDOGPOGPOGPOGPO 40.1 
GPOGPOGPOGPVGPOGPOGPOGPO 40 
GPOGPOGPOGPVGPOGPOGPOGPO 40 
GPOGPOGPOGAOGPOGPOGPOGPO 39.9 
GPOGPOGPOGAOGPOGPOGPOGPO 39.9 
GPOGPOGPOGAOGPOGPOGPOGPO 39.9 
GPOGPOGPOGPEGPOGPOGPOGPO 39.7 
GPOGPOGPOGPEGPOGPOGPOGPO 39.7 
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GPOGPOGPOGPTGPOGPOGPOGPO 39.7 
GPOGPOGPOGKPGPOGPOGPOGPO 39.7 
GPOGPOGPOGPEGPOGPOGPOGPO 39.7 
GPOGPOGPOGPTGPOGPOGPOGPO 39.7 
GPOGPOGPOGTOGPOGPOGPO 39.5 
GPOGPOGPOGQRGPOGPOGPOGPO 39.5 
GPOGPOGPOGKRGPOGPOGPOGPO 39.1 
GPOGPOGPOGLOGPOGPOGPOGPO 39 
GPOGPOGPOGLOGPOGPOGPOGPO 39 
GPOGPOGPOGLOGPOGPOGPOGPO 39 
GPOGPOGPOGVOGPOGPOGPOGPO 38.9 
GPOGPOGPOGVOGPOGPOGPOGPO 38.9 
GPOGPOGPOGKQGPOGPOGPOGPO 38.9 
GPOGPOGPOGRPGPOGPOGPOGPO 38.8 
GPOGPOGPOGMOGPOGPOGPOGPO 38.6 
GPOGPOGPOGMOGPOGPOGPOGPO 38.6 
GPOGPOGPOGQPGPOGPOGPOGPO 38.6 
GPOGPOGPKGTOGPOGPOGPO 38.5 
GLPGPRGEQGPTGPTGPAGPRGLQGLQGLQGERGEQGPTGPAGPRGLPGERGEQGPTGLAGKAGEAGAKGETGPAGPQGPRGEQGPQGLPGKDGEAGAQGPAGP
MGPAGERGEKGEPGTQGAKGDRGETGPVGPRGERGEAGPAGKDGERGPVGPAGKDGQNGQDGLPGKDGKDGQNGKDGPGKDGKDGQNGKDGLPGKDGKDGQD
GKDGLPGKDGKDGLPGKDGKDGQPGKPGKY 38.5 
GPOGPOGPOGIOGPOGPOGPOGPO 38.4 
GPOGPOGPOGIOGPOGPOGPOGPO 38.4 
GPOGPOGPOGPAGPOGPOGPOGPO 38.3 
GPOGPOGPOGPAGPOGPOGPOGPO 38.3 
GPOGPOGPOGNOGPOGPOGPOGPO 38.3 
GPOGPOGPOGNOGPOGPOGPOGPO 38.3 
GPOGPOGPOGDPGPOGPOGPOGPO 38.3 
GPOGPOGPOGSOGPOGPOGPOGPO 38.3 
GLPGPRGEQGPTGPMGPAGPRGLQGLQGLQGERGEQGPTGPAGPRGLPGERGEQGPTGLAGKAGEAGAKGETGPAGPQGPRGEQGPQGLPGKDGEAGAQGPAG
PMGPAGERGEKGEPGTQGAKGDRGETGPVGPRGERGEAGPAGKDGERGPVGPAGKDGQNGQDGLPGKDGKDGQNGKDGPGKDGKDGQNGKDGLPGKDGKDGQ
DGKDGLPGKDGKDGLPGKDGKDGQPGKPGKY 38.3 
GPOGPOGPOGAAGPOGPOGPOGPO 38.2 
GPOGPOGPOGARGPOGPOGPOGPO 38.2 
GPOGPOGPOGEMGPOGPOGPOGPO 38.2 
GPOGPOGPOGSOGPOGPOGPOGPO 38 

 
Appendix S5-2. Dataset of de novo collagen sequences generated for Tm = 22C by ColGen-GA. Only 100 
points included for demonstration purposes. See additional sequences in Ref.487  
 

Generated Sequence Normalized Tm 
GPOGPOGPOGMFGPOGPOGPOGPP -0.7658614 
GPVGLOGPOGGPOGPOGPO -0.7398325 
GPOGAOGPOGGFGLOGPOGPOGPO -0.743013 
GPOGPOGPOGSDGPNGDOGMYGPOGPOGPOGPO -0.7581793 
GERGPOGLAGAOGLRGGYGPOGPOGPOGWOGV -0.7694818 
GQQGPOGPOGNNGPOGPOGEOGLOGPOGPOGSOGPOGY -0.7773197 
GPFGPOGPOGWAGPEGPOGPOGPO -0.7298877 
GPOGPOGPOGSCGEOGPOGPOGPO -0.7610745 
GPOGAKGEOGDAGAKGDAGPOGPOGPOGPOGPO -0.7520819 
GPOGPOGYKGPOGPOGPOGPN -0.7486301 
GDRGETGPAGPAGPVGICGPOGPOGPOGPO -0.7468727 
GPOGPOGPSGDYGPOGPOGPOGPO -0.7524183 
GPOGPOGPOGHNGPOGSPGPOGPOGPOGPO -0.7395569 
GSOGPOGPOGLSGPOGPOGPOGPO -0.7382498 
GPOGPOGPOGGGGPAGPOGHOGPO -0.7456985 
GSOGPOGPOGYIGNOGPOGPOGPO -0.7503122 
GSOGPOGGCGKOGPLGPOGPO -0.7236552 
GPOGPOGYGGPOGPOGPOGPO -0.7756709 
GPOGPOGPVGNTGPOGPOGYOGPO -0.7438831 
GPOGPOGPOGGGGPOGHOGPOGPO -0.7267381 
GPOGIEGPOGSLGPOGPOGPOGPO -0.7613491 
GPOGPOGPOGFGGPOGVFGPOGPVGPOGPO -0.7090974 
GPDGPOGPTGRFGPOGPOGPOGPO -0.7459955 
GPOGPOGPDGIIGPOGPOGPOGPO -0.7658652 
GPOGPOGPCGWWGPOGPOGPCGPO -0.7370111 
GPOGPOGPOGFGGPOGWOGPOGPO -0.7498701 
GPNGPOGPOGWRGPOGOOGPOGPO -0.7538912 
GPOGPOGPOGNTGPOGIOGPOGPO -0.7466145 
GPOGPOGPOGSCGPOGPOGPOGPO -0.7675912 
GPOGLAGAOGLRGGAGROGPOGNOGPOGQOGV -0.7301593 
GPVGHOGPOGYFGPOGPOGPOGKO -0.7654637 
GPOGPOGPOGCFGPMGPOGPOGPO -0.7743458 
GAOGPOGDVGKOGPOGPTGPO -0.7518646 
GPOGPOGPOGSWGPOGPEGPFGPO -0.7490631 
GPOGPOGHOGQTGPOGPOGPOGPO -0.7159497 
GPNGPOGPVGGRGPOGPOGPOGPO -0.7478068 
GPOGPEGPOGHTGPWGPOGPOGPK -0.7320225 
GPOGPOGEOGGFGPOGPOGPOGPO -0.7268328 
GPOGDOGPCGPEGKTGPOGPOGPOGPO -0.7407224 
GDRGETGPAGPFGPVGPAGARGPOGPOGPOGPO -0.7658292 
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GPOGPOGPOGWIGPOGPV -0.7387197 
GEOGQOGPOGMGGPOGPOGPOGPO -0.7432636 
GPOGAKGEOGDAGAKGDAGPOGPOGPOGPOGPO -0.7520819 
GPOGPOGPOGDOGAKADAGPOGPOGPOGPOGPO -0.7369985 
GPOGAOGROGAOGKVAPAGARGPOGPOGPOGPO -0.7922283 
GPOGAKGEOGDAGAKGDAGPOGPOGPOGPOGPO -0.7520819 
GPOGPOGPOGLVGPIGWOGPOGQO -0.7466161 
GPRGPRGPRGORGPRGPRGDRGPR -0.7322026 
GPOGPOGPOGKRGIOGPMGMOGPOGG -0.7468322 
GPOGPOGPOGSHGPHGPOGPPGPO -0.7599311 
GPOGPLGPOGKRGKPGPOGPOGPOGG -0.7446287 
GPOGPFGROGRLGROGPOGPOGPOGG -0.747282 
GAWGPAGPOGPOGCOGPOGPT -0.735636 
GPOGPOGPOGFGGPOGWOGPOGPO -0.7498701 
GPOGPLGPOGFRGPOGPOGPNGPO -0.7777403 
GPPGVOGPOGCNGPOGPOGCOGPY -0.7532425 
GDSGPRGLOGPOGMOGPQGFQGPOGEOGPOGVOGPM -0.7557499 
GPOGPOGPSGDYGPOGPVGPOGPO -0.7760955 
GLAGEOGKOGIOGNEGRAGPOGKRGKOGPOGPOGPOGG -0.7530578 
GPWGPOGPOGQTGPOGPOGPOGPO -0.773415 
GPOGAOGAOGAOGPVATAGARGPOGPOGPOGPO -0.7708261 
GLAGHDGKOGIOGLOGRAGPOGPOGPOGPOGV -0.7546377 
GPOGPOGPOGSKGLMGPOGPOGPO -0.7408754 
GPOGPSGPOGGNGPOGPOGPQGPO -0.7657645 
GEOGPOGTOGNIGPOGPOGPVGPOGPO -0.7136348 

 
Appendix S5-3. Dataset of de novo collagen sequences generated for Tm = 37C by ColGen-GA. Only 100 
points included for demonstration purposes. See additional sequences in Ref.487 
 

Generated Sequence Normalized - Tm 
GPOGPOGPOGTPGPOGKOGKOGPO 0.8976266 
GPLGPOGPOGIOGPOGPOGPDGPOGPO 0.89387107 
GPOGPOGPOGEPGPOGKOGIPGPOGPOGPPGYO 0.9225265 
GPOGPOGPOGHEGQOGPOGPOGPOGPVGPO 0.8924112 
GPOGPOGPOGFOGPOGPOGPOGFO 0.89561224 
GPRGPOGPOGRPGPOGPOGPOGPY 0.91124725 
GPOGEFGPHGLOGPOGPOGPOGPOGPOGPO 0.91380763 
GPOGPSGPOGLAGPDGPOGPOGPOGHEGPOGHOGPOGPO 0.8967152 
GPOGPOGPOGPMGPOGDOGPOGPO 0.8974596 
GPOGPOGPOGPPGPOGPFGPOGPE 0.888 
GPOGOOGPOGELGPOGPOGPOGPO 0.86755306 
GPOGPOGPOGPQGPOGPOGPWGPO 0.94261396 
GPOGPOGPOGCOGPOGPOGPOGPOGVO 0.89037347 
GPOGPOGHOGPOGPOGPOGPO 0.8849506 
GPOGMOGPOGVOGPOGPOGIOGOO 0.8328903 
GPOGPOGPYGPOGPMGOOGPO 0.8727951 
GPOGPOGPOGOPGPOGPOGPOGPH 0.88454163 
GPOGDOGPOGPGPOGPOGPLGOGPO 0.90652144 
GPOGPOGIOGPOGPOGPOGPO 0.9004248 
GPOGPOGPOGVVGPOGPOGPOGPOGPO 0.89499044 
GPOGPOGPOGIOGPOGPOGPOGPOGPOGSOGPEGPOGPO 0.90283203 
GPOGPWGPOGROGPOGPOGPWGPO 0.88049686 
GPOGPOGPSGPOGPOGWQGPOGPHGPOGPO 0.8764247 
GPOGPOGPOGPTGPOGPAGPOGPOGPOGPOGSOGPP 0.93828905 
GPOGPOGPOGPCGPOGPOGQOGPO 0.8695917 
GPOGPOGPOGPVGPOGLYGPOGPO 0.93197936 
GPOGPOGPOGPDGPOGPOGPOGPO 0.90410554 
GPOGPOGPOGKOGPOGPOGPOGRO 0.9120938 
GPYGPOGPOGRHGPOGROGDOGPWGPOGATGPOGPOGPOGPM 0.91180974 
GPRGPOGPOGPVGOOGQOGPOGPO 0.85163856 
GPDGPOGPOGPVGHOGPOGPFGPO 0.8786826 
GPOGPDGPOGAOGPOGPOGPOGPO 0.937035 
GYOGPOGPOGELGPOGPQGPQGPO 0.90398335 
GPOGPOGPOGWVGPOGPOGPO 0.86969304 
GPOGPOGPOGPDGPOGPOGPOGPO 0.90410554 
GPOGAOGPOGDOGPOGPOGPO 0.8907305 
GPOGPOGPOGPAGPRGPOGPOGCOGPO 0.9090091 
GPOGPOGPOGDMGPOGPAGPOGPOGPOGPO 0.8784678 
GPOGPEGPOGROGPOGPOGPOGPO 0.8967092 
GPOGPOGPOGROGPOGPIGWOGPO 0.89294904 
GPOGPOGPOGPOGPOGQHGPOGPOGPOGPO 0.8938109 
GPOGPOGPOGROGPDGPOGPOGTO 0.8918484 
GPOGPOGPOGPYGPOGPOGPOGPW 0.90054035 
GPOGPOGTOGRPGPOGPKGPOGWO 0.87852454 
GPLGPOGPOGPDGPOGWOGPOGPO 0.9125881 
GPNGPOGPOGLOGPOGPOGPRGPO 0.9235561 
GPIGPOGPOGQOGPOGPOGPOGNO 0.86403644 
GPOGPOGPOGIOGPOGPOGPAGPO 0.913179 
GPOGPOGPOGPDGPOGPOGPOGPO 0.90410554 
GPOGPOGPOGELGPOGPOGPOGPV 0.91464484 
GPOGPOGPOGPLGPAGPOGPOGPOGPO 0.9151588 
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GPOGPOGPOGEGPOGMOGPGGPOGPOGPDGQO 0.89381975 
GPOGPOGPOGPEGPOGPOGPOGPO 0.9146085 
GPOGPOGPOGPEGPOGPOGPOGPO 0.91460866 
GPSGPOGPOGIQGPOGPOGKLGPOGPOGPOGPO 0.88644147 
GPOGPOGPOGFEGPOGPOGQOGPTGPOGPOGPF 0.88502705 
GPOGPOGPOGHLGPOGPOGPWGPO 0.8812223 
GPOGPOGPOGPDGPOGPOGPOGPO 0.90410554 
GMOGPSGPOGOOGPOGPYGPOGPO 0.93688023 
GPOGPOGPOGPEGPOGPOGPOGPO 0.91460866 
GPOGPOGPOGPDGPOGPOGPOGPO 0.9041054 
GPOGPOGPOGPDGPOGPOGPOGPO 0.90410554 
GAOGPOGPOGPDGPOGPFGPOGPO 0.9057503 
GROGPOGPOGPAGPOGPOGPOGPO 0.9086806 
GPOGPOGPRGDWGPOGPOGVMGPOGPOGPOGPO 0.9641918 
GPOGPOGPOGPEGPOGPOGPOGPO 0.91460866 
GPTGPOGPOGEPGPOGPOGPOGPO 0.87310445 
GPOGPOGPOGILGPOGPMGPOGPO 0.8078369 
GPOGPOGPOGPRGPOGPOGPOGPO 0.8756664 
GPAGPOGPOGLOGPOGPOGPOGPO 0.91208255 
GPOGPOGPOGPEGPOGPOGPOGPO 0.91460866 
GPOGPOGPOGTVGPOGNOGPO 0.8756932 
GPOGPOGPOGPEGPOGPOGPOGPO 0.91460866 
GPVGPOGPOGERGPOGPQGPOGQFGLOGLOGPOGPOGPOGPO 0.92844445 
GPOGPOGPOGAOGPOGDOGPOGPO 0.90816784 
GPOGPOGHOGPOGPOGPOGPO 0.8849506 
GPOGPOGPOGRPGPOGPOGPOGPO 0.92474985 
GPOGPRGPOGPHGPOGPIGPOGPWGQMGPOGPOGPO 0.9045195 
GSOGPOGPOGCMGPOGPOGPOGPW 0.86980855 
GPOGPOGPOGAOGPOGDOGPOGPO 0.90816784 
GPOGPOGPOGPOGPAGCAGPOGPO 0.8935522 
GPOGPOGPOGPDGPOGPOGPOGPO 0.90410554 
GPOGPOGPOGPDGPOGPOGPOGPO 0.90410554 
GPOGFOGPOGERGPOGPOGFOGPOGPOGPOGPO 0.89464045 
GPOGPOGPOGPLGTOGPOGPWGYOGPO 0.91672325 
GPOGPOGPOGPRGPMGPOGPOGPO 0.8776943 
GPDGPOGPOGPLGPOGDOGPOGPA 0.90623176 
GPOGPOGPOGDOGPOGPOGPOGTO 0.91527426 
GPOGPOGPOGEHGPOGPOGPOGPOGPO 0.8977125 
GPOGPOGPOGEAGPOGPOGHOGPO 0.9273832 
GPOGPOGPOGAOGPOGDOGPOGPO 0.90816784 
GPAGPOGPOGPAGPOGPOGPOGPO 0.9142337 
GPEGPOGPOGPDGPOGPOGPOGPY 0.88918996 
GPOGPOGPOGLKGPFGPOGPOGPOGPWGPFGYOGPOGPO 0.9020096 
GPOGPOGPOGPEGPOGPYGPOGPO 0.8511671 
GPOGAOGPOGLOGPOGPOGPOGPO 0.92471576 
GPOGPOGPOGLHGPOGPOGPOGPW 0.89278805 
GSOGPOGPOGEAGPOGPOGPOGPO 0.894419 
GPOGPOGPOGPEGPOGPOGPOGPO 0.91460866 
GROGPOGPOGMAGPOGTOGPO 0.88845265 

 
Appendix S5-4; Jupyter Notebook Transformer 1. See file from Supplementary Information of Ref.486  
 
Appendix S5-5; Jupyter Notebook Transformer 2. See file from Supplementary Information of Ref.486 
 
Appendix S5-6: Validation Sequences for Transfomer 

 
Sequences Tm 
GPOGPOGPDGPOGKPGPOGPOGPOG 38 
GPOGPOGPDGKOGPOGPOGPOGPOG 46 
GPOGPOGPKGFOGPOGPOGPOG 28.8 
GPOGPOGPKGYOGPOGPOGPOG 28.4 
GPOGPOGPKGWOGPOGPOGPOG 26 
GPOGPOGPRGFOGPOGPOGPOG 41 
GPOGPOGPRGYOGPOGPOGPOG 41.41 
GPOGPOGPRGWOGPOGPOGPOG 39.2 
GPOGPOGPFGROGPOGPOGPOG 21.5 
GPRGPOGPRGPOGPRGPOGPRGPOG 49 
GPOGPOGPOGPOGPOGPOGPOG 49.5 
GPOGPOGPOGDOGPOGPOGPOG 41.5 
GPOGPOGPOGEOGPOGPOGPOG 44.5 
GPOGPOGPOGFOGPOGPOGPOG 37 
GPOGPOGPKGPOGPOGPOGPOG 40 
GPOGPOGPRGPOGPOGPOGPOG 47 
GPOGPOGPOGDKGPOGPOGPOG 32 
GPOGPOGPOGEKGPOGPOGPOG  37 
GPOGPOGPOGFKGPOGPOGPOG 22 
GPOGPOGPOGDRGPOGPOGPOG 38 
GPOGPOGPOGERGPOGPOGPOG 42.5 
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GPOGPOGPOGFRGPOGPOGPOG 29.5 
GPOGPOGPKGDOGPOGPOGPOG 47 
GPOGPOGPKGEOGPOGPOGPOG 44 
GPOGPOGPKGFOGPOGPOGPOG 29.5 
GPOGPOGPRGDOGPOGPOGPOG 42 
GPOGPOGPRGEOGPOGPOGPOG 42.5 
GPOGPOGPRGFOGPOGPOGPOG 41.5 
GPOGPOGPOGDPGPOGPOGPOG  36.5 
GPOGPOGPOGEPGPOGPOGPOG 39.5 
GPOGPOGPOGFPGPOGPOGPOG 31 
GPOGPOGPOGPPGPOGPOGPOG 47 
GPOGPOGPOGWOGPOGPOGPOG 33.5 
GPOGPOGPHGPOGPOGPOGPOG 38 
GPOGPOGWHGPOGPOGPOGPOG 14.5 
GPOGPOGPHGWOGPOGPOGPOG 22.5 
GPOGPOGPOGAOGPOGPOGPOG 45 
GPOGPOGPOGLOGPOGPOGPOG 43.5 
GPOGPOGPOGVOGPOGPOGPOG 41.5 
GPOGPOGPAGPOGPOGPOGPOG 44 
GPOGPOGPFGPOGPOGPOGPOG 31 
GPOGPOGPVGPOGPOGPOGPOG 43.5 
GPOGPOGPLGPOGPOGPOGPOG 36 
GPOGPOGPAGAOGPOGPOGPOG 36.5 
GPOGPOGPAGFOGPOGPOGPOG 29 
GPOGPOGPAGVOGPOGPOGPOG 33.5 
GPOGPOGPAGLOGPOGPOGPOG 34.4 
GPOGPOGPFGAOGPOGPOGPOG 25.6 
GPOGPOGPFGFOGPOGPOGPOG 19.5 
GPOGPOGPFGLOGPOGPOGPOG 23.5 
GPOGPOGPFGVOGPOGPOGPOG 18 
GPOGPOGPLGAOGPOGPOGPOG 29 
GPOGPOGPLGFOGPOGPOGPOG 24 
GPOGPOGPLGLOGPOGPOGPOG 28.5 
GPOGPOGPLGVOGPOGPOGPOG 19.5 
GPOGPOGPVGAOGPOGPOGPOG 37.5 
GPOGPOGPVGFOGPOGPOGPOG 30.1 
GPOGPOGPVGLOGPOGPOGPOG 34.5 
GPOGPOGPVGVOGPOGPOGPOG 30.6 
GPKGFOGPOGFKGFKGPKGPOGFKGPOG 21 
GPOGPOGPOGKDGKDGQPGKPGTPGPQGIAGQRGVVGLPGPRGEQGPTGPTGPOGPOGPO 36 
GPOGPOGPOGKDGKDGQPGKPGTPGPQGLLGAPGILGLPGPRGEQGPTGPTGPOGPOGPO 36 
GPOGPOGPOGKDGKDGQPGKPGPPGPQGLAGQRGIVGLPGPRGEQGPTGPTGPOGPOGPO 36 
GPOGPOGPOGKDGKDGQPGKPGAPGPLGIAGITGARGLAGPRGEQGPTGPTGPOGPOGPO 36 
GPOGPOGPQGPOGPOGPOGPOG 45 
GPOGPOGPNGPOGPOGPOGPOG 34 
GPOGPOGPOGFAGPOGPOGPOG 22.5 
GPOGPOGPOGFQGPOGPOGPOG 24.5 
GPOGPOGPQGFOGPOGPOGPOG 32.5 
GPOGPOGPOGFNGPOGPOGPOG 19.5 
GPOGPOGPNGFOGPOGPOGPOG 21.5 
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