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Abstract

This paper presents a novel methodology that uses surrogate models in the form of
neural networks to reduce the computation time of simulation-based optimization of
a reference trajectory. Simulation-based optimization is necessary when there is no
analytical form of the system accessible, only input-output data that can be used
to create a surrogate model of the simulation. Like many high-fidelity simulations,
this trajectory planning simulation is very nonlinear and computationally expensive,
making it challenging to optimize iteratively. Through gradient descent optimization,
our approach finds the optimal reference trajectory for landing a hypersonic vehicle.
In contrast to the large datasets used to create the surrogate models in the prior
literature, our methodology is specifically designed to minimize the number of simu-
lation executions required by the gradient descent optimizer. We demonstrated this
methodology be more efficient than the standard practice of hand-tuning the inputs
through trial-and-error or randomly sampling the input parameter space. Due to
the intelligently selected input values to the simulation, our approach yields better
simulation outcomes that are achieved more rapidly and to a higher degree of accu-
racy. Optimizing the hypersonic vehicle’s reference trajectory is very challenging due
to the simulation’s extreme nonlinearity, but even so, this novel approach found a
74% better performing reference trajectory compared to nominal, and the numerical
results clearly show a substantial reduction in computation time for designing future
trajectories.
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Chapter 1

Introduction

1.1 Motivation

High-fidelity simulations are used to analyze the dynamics of complex systems in
many engineering and scientific disciplines. For most of these applications, there is
some desired system outcome, such as the curvature of an airfoil or the path planned
for a robot but, lacking a closed-form model, the simulation must be used in the
design process. Here arises the need for simulation-based optimization, as opposed to
traditional optimization with analytical models, generally with the goal of optimizing
the simulation inputs values to achieve the desired outputs.

There are many methods of simulation-based optimization [1,2] applied across
disciplines. A key issue in these approaches is that the execution of such simulations
often requires a large amount of computational power and/or processing time. When
the simulation itself is too computationally expensive, surrogate models are needed
to minimize the number of queries to the simulation. This minimizes the total com-
putation time needed to reach an optimal set of inputs. The surrogate model is
designed to imitate the input-output behavior of the simulation. Input-output data
is required from the simulation to create this surrogate model, so efficiency in creat-
ing that model is a key concern [3|. The methodology presented herein uses neural
networks as surrogate models and provides a novel sampling strategy to reduce the

number of simulation runs [4]. Minimizing number of simulation runs is a crucial con-
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cern when each run of the simulation takes several minutes, and optimization might

require hundreds, if not thousands [5], of simulation runs.

The use case simulation for this methodology is an Approach and Landing (A /L)
simulation for hypersonic vehicles (HV) combined with the reference trajectory cal-
culation [6]. The HV simulation includes high-fidelity models for flex, slosh, engine
thrust, aerodynamics, and full flight software in addition to the trajectory planning
algorithm which propagates the vehicle down many possible trajectories. This com-
bined trajectory planning algorithm and A /L simulation takes 3-4 minutes to execute.
The relationship between inputs and outputs is highly nonlinear due to the series of
high-fidelity models listed. The system inputs are the 13 trajectory design parame-
ters and the three outputs are the most important performance metrics of the vehicle

during approach and landing.

Hence, finding the set of trajectory design parameters that provides the best land-
ing trajectory for the HV is typically done by manually tuning the various input pa-
rameters, running the full simulation, and evaluating the performance outputs. Then,
iteratively changing the input parameters values intuitively through trial-and-error.
Requiring a human-in-loop means many inefficient best guesses at the trajectory de-
sign parameters and no deterministic way to evaluate the results, meaning the final
trajectory isn’t optimal but merely “good enough”. Instead, a Monte Carlo approach
could be implemented by randomly selecting hundred or thousands of input values
until a sufficiently good reference trajectory is found. However, this is incredibly
computationally expensive due the high number of simulation queries that must be
run until a solution is randomly found. Finding a sufficiently good A/L reference
trajectory using either of these approaches is a very time-consuming iterative pro-
cess that requires extensive domain knowledge to either understand the complicated
input-output mapping or to accurately evaluate the performance outcomes.

The algorithm outlined in this paper offers a novel simulation-based optimization
approach that eliminates the need for hand-tuning input parameters and significantly
reduces the overall computation time. The main contributions of this methodology

are:
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e Novel algorithm using neural network gradients to intelligently select simulation

input values that improves desired simulation outcome by 74%.

e Computationally efficient methodology for optimizing general black-box sim-
ulations with desired outputs shown to be six times faster than Monte Carlo

approach;

e New automated optimal trajectory planning tool for hypersonic vehicles that

takes hours as opposed to days.

1.2 Related Work

This paper aims to improve upon two categories of research: simulation-based opti-

mization via surrogate models and optimal trajectory planning.

1.2.1 Simulation-based Optimization via Surrogate Models

There are many simulation-based optimization algorithms, and their suitability relies
heavily on the specific application. Whether the system is continuous or discrete,
cheap or expensive to evaluate, and deterministic or stochastic all must be considered
[2]. This makes various simulation-based optimization methods very challenging to
compare. In literature, these methods are often divided into four categories: statistical
selection, surrogate models (metamodels), stochastic gradient estimation, and global
search [1]. Surrogate models reduce the computational burden of optimizing the
simulation outputs by creating a simpler, less-expensive model of the simulation to
use instead of the simulation itself.

For this purpose of this paper, only simulation-based optimization via surrogate
models will be analyzed because the chosen application is continuous and very ex-
pensive to run, making surrogate modeling the ideal type of algorithm to use [1].
There have been many kinds of surrogate models applied across various fields. Most

notable include algebraic models [3], kriging [7], polynomial response surfaces [8|, and
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radial basis functions |9]. However, with the proliferation of machine learning in re-
cent decades, surrogate models have more recently been created using support-vector

machines [10] and neural networks [11].

Once the surrogate model has been fitted to the data, it is integrated with an
optimizer to find the optimal set of inputs that achieve the desired output to the
simulation. Neural networks are exceptional for surrogate modeling as they are very
good at fitting data. The applications where neural networks have been applied as
surrogate models are very diverse, such as fluids systems [12-14] and airfoil design
[15,16]. Instead of taking advantage of the gradient information available from the
neural network, previous methods generally have relied on gradient-free optimization,
such as genetic algorithms [13-15|, particle swarm optimization [16], and the grey wolf

optimizer [12].

Ref. [17] uses the gradients of a neural network in combination with the IPOPT
software library to optimize a topology. However, the simulation was simple enough
that only a single-layer feedforward neural network was necessary which meant the
derivatives had to be calculated analytically and fed into the optimizer. Ref. [5] uses
a similar method of gradient-based optimization using multi-layer neural networks
combined with the SNOPT software library to optimize airfoils. Both methods rely
on creating a highly accurate surrogate model that only needs to be trained once to be
used by the optimizer. Ref. [17] does this through a complicated training procedure
using the Sobolov error and [5] does this through collecting tens of thousands of data

points.

In the method proposed in this paper, the algorithm collects more data from the
actual simulation iteratively in areas of interest suggested by the surrogate model
to reduce total number of queries. Reducing the total number of queries is done by
requiring less initial training data for the surrogate neural network and then increasing
it’s fidelity in only promising regions of the input parameter space in order to save

on computation cost.
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1.2.2 Optimal Trajectory Planning

Reference trajectory optimization is a very challenging process that requires formulat-
ing a nonlinear optimal control problem with multiple constraints and solving, directly
or indirectly [18|. In general, reference trajectories are calculated offline and stored
in the HV’s computer although some algorithms work to reduce computation time in
order to be calculated during flight [19]. For comparison, only offline algorithms will

be considered in this review.

Ref. [20] proposes a methodology for HV trajectory optimization by combining
particle swarm optimization and non-intrusive polynomial chaos. This method works
to minimize the flight time of the HV over the course of the trajectory while being
robust to physical uncertainties. While a time-based objective function works for the
re-entry phase of hypersonic flight, it does not allow for optimizing specific properties
at phase completion. Furthermore, this is a direct numerical method which requires
access to the dynamical functions, which is not the case in the application of the
algorithm proposed in this paper. The same is true for the generalized polynomial
chaos algorithm proposed by [21] to optimize landing trajectories of airplanes and the

mapped Chebyshev pseudospectral method presented by [22].

Few optimal trajectory planning algorithms take advantage of recent advances
in machine learning. For example, [23| generates 6-degree-of-freedom optimal tra-
jectories for hypersonic vehicle reentry through traditional dynamical equations and
only leverages deep neural networks to create feedback control during flight. Simi-
larly, [8] uses a reinforcement learning framework to generate commands for control

of an aircraft but not for the initial generation of an optimal trajectory.

These optimal trajectory planning methods require a closed-form solution accu-
rately describing vehicle dynamics and the generation of numerical inequality and
equality constraints. Currently, there are no methods of optimal trajectory planning

that use neural networks as surrogate models for simulation-based optimization.
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1.3 Contributions

As stated above, this methodology expands upon several areas of existing work. While
there are other methods that leverage the gradients of surrogate neural networks, none
of them use iteration to intelligently improve the surrogate model. Starting with a
smaller training data set and using the surrogate model to query the model in only
promising regions of the input parameter space means computation time is not wasted
querying the model in areas that are known to produce sub-optimal results. Through
the iterative querying process, this methodology is designed to find better simulation
results faster.

When tested on two different hypersonic vehicle trajectory planning simulations,
this methodology improved the desired simulation outcomes by 74% and 100%. The
efficiency of this algorithm is shown through comparison to the Monte Carlo approach
or random sampling of the input parameter space. When compared to randomly
selected queries to the simulation, the intelligently selected queries improve simulation
outcomes six times faster.

Furthermore this algorithm provides Draper with an automated tool to planning
optimal reference trajectories for hypersonic vehicles. Previously, a guidance, nav-
igation, and control (GNC) engineer would have to enter the initial best guess at
the 13 trajectory design parameters, wait for the trajectory planning algorithm to
execute, transfer the calculated trajectory into the A/L digital twin simulation, and
wait for that simulation to execute. A single iteration of this process takes about 5
minutes. The GNC engineer must now evaluate the simulation outputs and attempt
to discern which of the 13 trajectory design parameters to tune to improve the next
iteration’s outcome. Every time an parameter in the simulation changes, a new refer-
ence trajectory must be found that produces a good landing of the hypersonic vehicle.
Depending on the number of parameters that are changed and how much that varia-
tion is, finding the new reference trajectory can take weeks. With the implementation
of this new automated tool, calculating optimal trajectories for hypersonic vehicles

takes hours.
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Chapter 2

Preliminaries

2.1 A/L Trajectory Planning Simulation

Throughout this thesis, the application of the algorithm is referred to as a ‘trajectory
planning simulation’. In more detail, the trajectory planning simulation is actually a
a trajectory planning algorithm integrated with an approach and landing trajectory
simulation. The resultant reference trajectory calculated by the planning algorithm is
tested by the high-fidelity simulation to measure the success of landing the hypersonic
vehicle. These two scripts were integrated together in MATLAB to eliminate the need
to manually transfer the trajectory from one script to the next and create a ‘black-
box’ simulation. Combined they take 3-4 minutes to run depending on the initial
design parameters input to the trajectory planning algorithm. A poor initial guess
for the initial design parameters means the planning algorithm will take longer to

converge.

2.1.1 Reference Trajectory Planning Algorithm

Designing the approach and landing trajectory for a hypersonic vehicle is very chal-
lenging due to the vehicle’s lack of thrusters and large complex physical uncertain-
ties. The hypersonic vehicles must use a speed brake system to ensure they maintain

enough energy to reach the runway without overshooting it. The process is so compu-
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Figure 2-1: Defined geometric segments of reference trajectory for approach and
landing of hypersonic vehicle calculated by the Autolanding I-Load Program.

tationally expensive that the nominal trajectory is calculated offline and then stored
in an onboard computer for the guidance and control system to follow using speed
brakes and unboosted maneuvers.

Our simulation uses the Autolanding I-load Program (ALIP) [6] to calculate the
A /L reference trajectory for the HV. The A/L of the vehicle typically starts at an
altitude of 10,000 ft and ends at touchdown on the runway [6]. This program has
legacy from Orbital Science’s X-34 and NASA’s Shuttle Program [24]. ALIP relies on
initializing the parameters defining the geometric segments of the trajectory with an
accurate prediction and then optimizes those parameters to achieve the desired dy-
namic pressure on the vehicle at touchdown. Various physical constraints are applied
to reduce the trajectory design problem to a two-point boundary value problem [6].

There are 13 input parameters to Autolanding I-Load Program that define the
initial trajectory that all must be optimized to result in a successful landing of the
HV. Slight changes in the input values will affect not only the resultant reference tra-
jectory but also computation time to varying degrees. These parameters are defined
in Table 2.1. Fig. 2-1 shows an example reference trajectory broken into its geometric

segments.
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Table 2.1: Input Parameters to Trajectory Planning Algorithm (ALIP)

Parameter Name Init. Value | Description

gbar _steep 25 psf Dynamic pressure at start of steep glide slope
land _vel 50 knots Desired velocity at touchdown

XAIMPT 250 ft Shallow glide slope x-intercept with runway
FLARE MAX 1.5g Value of max g’s during radius circular flare
GAMMA REF 2|1 deg Flight path angle on shallow glide slope
HDECAY 15 ft Start of exponential decay altitude

GAM _FF 1.0 deg Flight path angle at touchdown

H TFP 1 1.5 ft Altitude to start terminal flight path maneuver
H TFP_F 6 ft Altitude to end terminal flight path maneuver
dbl, db2, db3, db4 | 0.5 Speed brake position

There are four geometric segments: steep glideslope, circular flare, exponential
flare decay, and shallow glideslope (terminal path). Altering any of the 13 trajectory
design parameters into ALIP will result in a different geometric segments defining the
reference trajectory. Once ideal dynamic pressure is achieved, the geometry defining
the reference trajectory can be tested through a high-fidelity simulation for verifica-

tion.

2.1.2 A/L Digital Twin Simulation

Once a reference trajectory has been defined using ALIP, that trajectory is tested
through a digital twin simulation. The digital twin simulation is a high-fidelity 6-
degree-of-freedom model includes a rotating, oblate earth, sensor models, actuator
models, and actual Draper guidance, navigation, and control flight software in loop.
The simulation also includes models for flex, slosh, engine thrust, atmosphere density;,
wind, aerodynamics, and 18x18 spherical harmonic gravity.

This simulation outputs certain metrics which quantify the success of the HV
touchdown. Specifically, there is an ideal rate at which the vehicle loses altitude (sink
rate), distance from start of the runway where landing happens (downrange position),

and horizontal velocity of the HV at touchdown as shown in Table 2.2. The digital
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Table 2.2: Target Outputs from A /L Simulation

Parameter Name Target Value | Description

Sink Rate 2 ft/s Rate at which vehicle loses altitude
Horizontal Velocity | 54 knots Vehicle’s horizontal velocity at touchdown
Downrange Position | 400 ft Landing distance from runway threshold

twin simulation is executed using physical parameters from a proprietary hypersonic

vehicle.

All inputs parameters to ALIP and all output parameters from the landing simu-
lation have been standardized and selectively scaled to protect any proprietary infor-

mation.

2.2 Neural Networks as Surrogate Models

Neural networks (NNs) are very good at modeling complex relationships between
inputs and outputs. In fact, multilayer feedforward networks can approximate any
measurable function to any degree of accuracy, provided enough training data [25].
Neural networks are capable of "mapping" any deterministic function and are there-
fore universal approximators. Multilayer NNs can find intricate structures in high-
dimensional data and learn hierarchical feature representations with multiple levels

of abstraction [26].

Furthermore, neural networks can simultaneously estimate the derivatives of an
approximated function, even if the function does not have classically differentiable
functions [25]. This makes them a perfect choice for surrogate models. Most com-
monly, the derivatives of the neural network, referred to as gradients, are used to
backpropagate error through the neural network to train them on an initial dataset.
These gradients can also be used for sensitivity analysis [17] or for gradient-based

optimization as in this proposed method.
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2.3 Objective Function with Constraints

For all simulations, there must be m-dimensional inputs (xz € R™) into the simulation
f(z) and n-dimensional outputs (y € R"). Furthermore, there are m-dimensional
minimum and maximum bounds (Zmin, Tmax € R™) for each input as well as a n-

dimensional desired set of outputs (Yiarget € R").

Using an initial training dataset, a neural network is trained to be a surrogate
model f(z) for the real simulation f(z). The surrogate model f(z) is needed be-
cause it is impossible to obtain an analytical representation of the actual simulation
f(z). This surrogate model is able to predict n-dimensional outputs based on real

m-~dimensional inputs

i = fx) (2.1)

where 7 is the predicted outputs from the surrogate model. This surrogate model is
then used to minimize the loss between the desired outputs and the predicted outputs

from the surrogate model. This loss is evaluated by the objective function

g (3}7 ytarget ) . (22)

The objective function could easily be altered to minimize or maximize certain
outputs instead of targeting certain output values. Note that the parameters being
optimized are not the predicted output from the surrogate model, but the inputs to

the surrogate model, making the objective a function of z:

g (f(x)a Yearget ) (2.3)

Further note that this is a constrained optimization problem because the inputs
must be bounded within the initial training data range or else the surrogate model
will not be able to accurately predict the input’s respective output. The inputs are

bounded in the physically feasible range by the inequality conditions:
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c1(x) x> Ty (2.4)

c2(x) & < Tppax (2.5)

These constraints could be implemented in several different ways such as Lagrange
multipliers or linear programming. They could also be added to the objective function
as a soft constraint. Similarly, equality conditions can be added to the objective
function as well. Theoretically, infinite constraints could be added to the objective
function and weighted appropriately by how important they are to the application.
However, it is important to note the objective function should be continuous and
differentiable for gradient-based optimization.

Because the objective function is a function of the inputs, its gradients can be used
to optimize the inputs to minimize the objective loss. The gradient of the objective

function with respect to the inputs, ignoring any additional constraints, is

— |9F@)] = g (F@)} (@), (2.6

This derivation shows the need for the surrogate model and its gradients for op-
timizing the inputs to minimize the objective function. While other methods of
gradient-free optimization are possible, gradient-based optimization tend to converge

faster on smooth functions.

2.4 Black-box Optimization with Surrogate Models

Simulation-based optimization is part of a larger area of research called ‘black-box
optimization’. For many real-world problems, black-boxes are computationally ex-
pensive, multi-constrained, and high-dimensional [27]. This had led to an increased
interest in surrogate modeling to assist in the optimization process. However, opti-
mization via surrogate modeling has competing goals. The short-term goal of such

algorithms is to exploit the current knowledge of the black-box system to find the best
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possible solution. The long-term goal of such algorithms is the increase the surrogate
models understanding of the system through exploration to find better solutions later
on. Finding a balance between exploration and exploitation is a common issue in
machine learning and especially reinforcement learning. There are many techniques
to balance these goals that generally require much fine-tuning and supervision [28|.
In adversarial machine learning, such techniques are crucial for ‘black-box attacks’.
Here, algorithms work to find vulnerabilities in neural networks used for applications
such as image classification and object detection. Less queries to the black-box gen-
erally mean the attack is more efficient due to more queries leading to higher cost
or adversarial detection. Ref. [29] uses natural gradient descent to train their neural
networks and update the input parameters for the attack to reduce total number of
queries. Similar to the application of this methodology, the goal of adversarial attacks
is to create an input to the black-box system to achieve a desired output. And in

doing so, reduce total number of queries to actual system.
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Chapter 3

Approach

This chapter details the general methodology for using surrogate neural networks to
optimize a black-box simulation, as shown in Algorithm 1. The following sections

detail how to apply the methodology to a specific trajectory planning simulation.

Algorithm 1

1: Query the black-box simulation f(z) to obtain an initial dataset D = {x € R™}
from a quasi-random sample. [3.1]

2: Train a neural network surrogate model }"(x) on D to approximate black-box
simulation f(x). [3.2]

3: Initialize set of quasi-randomly distributed input parameters zj,; across initial
dataset.

4: Using stochastic gradient descent on zj,;; to find the set ), that locally mini-
mizes the objective function g(}'(x), Ytarget)- |3-3]

5: Select the input zpes that produces minimum objective loss according to objective

A

function g(f(2), Yrarget)- [3-5]
Intelligently query the simulation f(z) with the selected xpest. [3.6]
if stopping criteria = True then
Take Tpest and Ybest = f(xbest)-
else
10: Add zpest and ypest to the training dataset D.
11: Iterate from Step 2. [3.7]
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3.1 Initial Data Collection

Each input to the simulation is bounded by physical constraints inside the trajectory
planning simulation. These bounds can be adjusted based on historical knowledge of
the simulation to reduce the size of the input parameter space. In this application,
the 13-dimensional input parameters are bounded around a known set of nominal
inputs that produce an acceptable landing of the hypersonic vehicle. The bounds can
be increased or decreased depending on the vehicle requirements and the success of

searching different areas of the input parameter space.

To create sufficient coverage of the high-dimensional input parameter space, the
initial input values were sampled using a Sobol sequence [30]. Sobol sequences are low-
discrepancy, quasi-random sequences that provide a more uniform distribution than
compared to other quasi-random sampling methods such as Latin hypercube [31].
Low-discrepancy sequences use a measure of uniformity to minimize the difference
between the percentage of samples falling in a certain region of the input parameter
space and the percentage of volume occupied by this space. Sobol sequences have

been proven to be effective for initial sampling for surrogate models [32].

Enough data samples from the simulation must be collected to sufficiently train
the neural network. Too few samples will lead to the surrogate model being a poor
representation of the actual simulation and too many samples lead to an unnecessarily
high computation cost and time. This methodology aims to reduce the total number

of queries to the simulation while balancing exploration and exploitation.

Although the input parameter space is large, the number of samples can be reduced
because the surrogate model only needs to understand the gradients of the predicted
outputs based on the inputs. Then with each successive iteration and simulation
query, the surrogate model’s fidelity will improve in the most promising regions of
the input parameter space. An initial sample size of 400 points was chosen to collect
input-output mapping for training the surrogate neural network. Increasing the size of
the training data past 400 points leads to diminishing improvements to the surrogate’s

model accuracy as shown in Fig. 3-2.
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Figure 3-2: Normalized surrogate validation losses from surrogate neural network
depending on size of training data set. Diminishing returns on minimizing validation
loss after 400 data points.

3.2 Surrogate Model Training

Once the initial sampling is done, the data must be standardized for training a neural
network to be the best possible surrogate model to accurately represent the simu-
lation. The neural network is trained to minimize the mean absolute error (MAE)
between the outputs predicted by the network and the outputs from the training
data using the Adam optimizer in PyTorch. The weights of the network are tuned to
reduce the MAE using a variant of stochastic gradient descent with backpropagated
gradients. The model can be further improved by tuning the hyperparameters defin-
ing the neural network’s numbers of layers, number of nodes per layer, batch size,
and learning rate. The hyperparameters were optimized using the Optuna software
library [33] integrated with PyTorch.

Ideally, the neural network would be able to perfectly predict the three outputs of
the simulation based on the same set of inputs. Due to the highly nonlinear nature
of the simulation and the limited size of the training data, this is not possible. A

comparison of the predicted versus actual outputs is shown in Fig. 3-3 for all three
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Figure 3-3: Predicted outputs from surrogate neural network versus actual outputs
from simulation. Ideally, these outputs would be perfectly correlated but the neural
network is able to mostly accurately predict all three outputs with a few outliers.
Sink rate is the most challenging output to predict.

outputs of the simulation. If the surrogate neural network was a perfect model, all the
points would fall exactly on the diagonal black line. In Fig. 3-3, it is clear sink rate is
the hardest of the three outputs to predict accurately due to the larger distribution
away from the diagonal line. This is further exemplified in Fig. 3-4 by sink rate
loss converging to a slightly higher validation MAE (surrogate loss) than horizontal
velocity and downrange position loss.

Fig. 3-5 shows the validation MAE for each output as it converges over epochs.
The scale of this validation loss varies based on the outputs feasible range in their
physical units. For example, the possible range for sink rate only varies between 0
and 5 ft/s, so the surrogate model predicting to an accuracy under 0.2 ft/s is quite

good. Similarly, when the feasible range of physical values for downrange position is

0 to 500 feet, predicting within 10 feet is good.

3.3 Custom Objective Function

The objective of this constrained optimization problem is to minimize the distance
between desired and predicted outputs. For this application, the objective function
to be minimized evaluates the mean absolute error between the desired outputs and

the predicted outputs from the surrogate model. MAE calculates the average of
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the absolute distance between all the predicted and desired outputs. MAE is more
robust to outliers and ensure stable gradients with the different terms in the objective

function. This makes the objective function

g(@) = |ytarget - @| . (31)

However, the parameters being optimized are not the three predicted outputs
from the surrogate model ¢, but the 13 inputs to the surrogate model x, making the

objective function

9(z) = |tharget — f ()] (3.2)

Furthermore, each of the desired outputs can be weighted based on domain knowl-
edge of the simulation. In this application, sink rate is more important to a successful
landing than either horizontal velocity or downrange position. Therefore, the MAE
or objective loss of predicted versus target sink rate is scaled by a factor of two. And
the desired downrange position is too high to be realistically achievable by any com-
bination of input values, so its MAE is reduced by a factor of 10 to ensure it does not

overpower the other two terms.

To constrain the inputs to the physically feasible parameter space as well as the
training data limits, the inequality constraints are added directly to the objective
function as a soft penalty. When either the upper or lower bounds are violated, these

penalties are triggered as

9(2) = |Yrarget — f(@)| + @ max (0, Zpin — )
(3.3)

+amax (0,2 — Tpax)

where a = 1, but can be tuned depending on the scale of the other components of the
objective function. These penalties contribute to the objective loss and act to steer
the inputs being optimized to stay in the constrained input parameter space through

gradient descent. The gradients of the objective function with respect to the inputs
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are used to optimize the inputs to minimize the objective function. The gradient of
the objective function with respect to the inputs when the input bounds are violated
is

_ J}’(x) f(m) — ytzirget +a (34)
Ytarget — f(l‘)

99
ox

As defined in Table 2.2, the outputs are sink rate, downrange position from the
start of the runway, and horizontal velocity of the HV at touchdown. The target values
for each of the outputs is determined by domain knowledge and vehicle requirements.
It is important to note that the number of desired outputs as well as their values
could be changed, and this novel algorithm would still work. For example, if the
requirement for sink rate was lowered 1 ft/s, the objective function can be adjusted
to produce a new optimal reference trajectory. The constraints could be adjusted as

well with no loss of functionality to the algorithm.

3.4 Sensitivity Analysis and Objective Loss Land-
scape Visualization

It is impossible to easily visualize the gradients of the objective function with respect
to all 13 inputs. While it would be possible to do a dimensional reduction to two
dimensions, because these inputs have real meanings the two most important inputs
can simply be identified. A sensitivity analysis was conducted to identify the two
most important inputs, meaning the two inputs that most affect the output of the
simulation. This was done by excluding one input at a time from the NN training and
evaluating which input increased the mean surrogate loss the most, therefore most
effecting the neural network’s ability to accurately predict the outputs. In Fig. 3-
6, the two most important inputs for predicting the outputs are shown to be the
landing velocity of the HV and the circular flare radius. When either of those inputs
are excluded from the neural network training data, the neural network struggles to

accurately predict the simulation outputs therefore leading to higher validation loss.
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Figure 3-6: Results from sensitivity analysis. Landing velocity and flare radius inputs
have the most significant impact on the accuracy of the surrogate model.

With the two most important inputs identified, how varying the inputs affect the
objective function can be visualized. While not necessary for optimization, these vi-
sualizations are to better understand and validate this methodology. Linearly spaced
samples across the input range for landing velocity and flare radius were selected
while all other inputs were frozen to their nominal values. Each combination of land-
ing velocity and flare radius was fed through the trained surrogate neural network,
and the corresponding output was evaluated by the objective function to calculate
loss. This objective loss landscape in Fig. 3-7 shows how the loss from the objective
function varies across the two most important inputs, as predicted by the surrogate

model.

It is evident that the surrogate neural network has identified regions in the input
parameter space as more promising for minimizing the objective function than others.
Specifically, a trough in the middle where both variables increase proportionally and
a section of low flare radius and high landing velocity. To validate the surrogate
model, the true loss landscape can be calculated by taking the same combinations of

landing velocity and flare radius and querying the simulation. The resultant true loss
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landscape is shown in Fig. 3-8. The predicted objective loss landscape very closely
resembles the true objective loss landscape, showing the same promising trough in
the middle and to the bottom right. The minimum objective loss shown in predicted
loss landscape is 0.18, compared to the true loss landscape minimum of 0.27. This
means the surrogate model is more optimistic about how optimal of a trajectory it

can achieve.

3.5 Input Optimization

With the initial surrogate model trained, the 13 inputs can now be optimized to
minimize the objective function using gradient-based descent. Similar to how the
gradients of the neural network are used to optimize the weights during the initial
training to minimize surrogate loss, the gradients are used to optimize the inputs to
the simulation to minimize the objective function loss (3.3).

One of the issues with gradient-based optimization is the convergence to local
minima or maxima. To mitigate this concern, many input vectors are optimized.
These input vectors are quasi-randomly distributed across the input parameter space
using a Sobol sequence. Even if some of the inputs become stuck at local minima or
plateaus, at least one of the vectors will find the global minimum.

Through trial-and-error, the best optimizer was found to be stochastic gradient
descent with added momentum. Because the many inputs are optimized in batches,
this process is extremely rapid compared to the time it takes to query the simulation,
seconds as opposed to minutes. This means it is computationally cheap to initialize
hundreds of inputs and optimize over many steps to ensure convergence. In the
methodology proposed in this paper, 100 input vectors are optimized over 500 steps.

This process is visualized in Fig. 3-9 using the same predicted objective loss land-
scape from the previous section. Again, the inputs are limited to the two most
important parameters, landing velocity and flare radius, so the optimization corre-
sponds to the objective loss landscape background. Only 10 of the 100 input vectors

are shown, their initial and final points shown in red and green, respectively. The
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Figure 3-7: Objective loss landscape as predicted by surrogate neural network. Re-
sembles the true loss landscape shown below very closely as the surrogate neural
network identified the same regions of the input parameter space to minimize objec-
tive loss. The predicted objective loss landscape is more optimistic about minimizing
loss than the actual simulation.
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Figure 3-8: Objective loss landscape from real outputs of the trajectory planning
simulation. The combinations of landing velocity and flare radius that created the
best outcomes from the simulation are reflected in the gradients of the predicted
objective loss landscape above.
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Figure 3-9: Optimization of inputs across objective loss landscape for a single algo-
rithm iteration. The input vectors are optimized from places with higher loss to areas
that, according to the surrogate model, will reduce the loss from objective function.

input vector that finds the global minimum has its path in white instead of black.
The input vectors clearly travel down the gradient from places with higher esti-
mated loss to places with lower estimated loss over optimization. It is also shown that
the input vectors are successfully constrained within the bounds of the inputs. This
visualization represents the optimization step of a single iteration of this algorithm,

not the overall simulation-based optimization of the trajectory planning algorithm.

3.6 Intelligent Querying

The input vector that found the global minimum of the objective loss landscape is
now sent to the actual simulation. While there are many input vectors that show
promising results for minimizing the objective function according to the surrogate
model, only the best is sent to the trajectory planning simulation. The input selected
to query the simulation is intelligently selected instead of being randomly selected
or intuitively chosen by an engineer. This reduces the overall computational cost of

optimizing the simulation and finding an exceptional reference trajectory for the HV.
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3.7 Iteration

Each query to the simulation take 3-4 minutes to execute which dominates the major-
ity of the time to run a full iteration of this algorithm. Training each neural network
and optimizing the inputs to minimize objective loss takes less than 1 minute. This
algorithm will iteratively train a new neural network, optimize the objective function,
and intelligently query the simulation until the stopping criteria is met. The stopping

criteria for this application checks for three conditions every iteration:
1. If the goal criteria for the outputs been met
2. If the algorithm converged on a solution outside of the goal criteria
3. If the maximum number of iterations been met

Each iteration of the algorithm allows the surrogate model to improve its repre-
sentation of the actual system and increase its fidelity in areas that appear promising
for minimizing objective loss. Without initializing and training a new neural network
each time, the algorithm would always search around the same global minimum.
Instead, the random weight initialization for each iteration’s surrogate model means
each neural network will be slightly different. Furthermore, having only one surrogate
model does not capture any ‘model uncertainty’. Creating a new model every time is
more similar to ensemble learning and is shown to be more robust to outliers [34]. This
encourages more exploration during optimization instead of continually exploiting the
same promising regions.

The first iteration’s objective loss landscape can be compared to the last iteration’s
objective loss landscape in Fig. 3-10 and Fig. 3-11, respectively. Over 50 iterations,
the objective loss landscape learns different areas of the input parameter space are
more promising for optimization and the lowest predicted objective loss decreases
from 0.21 to 0.15. These two objective loss landscapes can be compared by mapping
the difference of predicted loss from the first iteration to the 50th, as shown in Fig. 3-
12. This comparative objective loss landscape shows the areas of the input parameter

space where the model changed its predicted objective loss. The areas that appeared
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promising in the first iteration decreased in predicted objective loss while the areas

that didn’t increased in objective loss.
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Figure 3-10: Initial objective loss landscape predicted by surrogate neural network

from only training data before any intelligent queries added. Predicted lowest objec-
tive loss is 0.21.
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Figure 3-11: Final objective loss landscape after 50 new intelligent queries to the
simulation added to the training data. The loss landscape is more refined in promising
areas of the input parameter space and the surrogate neural network is now predicting
the lowest possible objective loss is 0.15.
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It is important to note that these objective loss landscapes demonstrate the ability
of the algorithm to generate optimal reference trajectories by only tuning the two most
important inputs, leaving the other 11 at their nominal values. Because of this, the
lowest possible objective loss predicted by this surrogate neural network is higher

than objective losses possible if all 13 inputs are tuned over successive iterations.
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Figure 3-12: Comparison between first and last iteration’s objective loss landscape.
Areas of the input parameter space that appeared promising initially decreased in

predicted objective loss while the areas that didn’t increased in objective loss.
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Chapter 4

Numerical Results

4.1 Optimal Reference Trajectory

This section demonstrates the success of this algorithm when applied to optimizing
the reference trajectory for a proprietary hypersonic vehicle. This algorithm found
a new reference trajectory for approach and landing that outperformed the existing
nominal solution. The new reference trajectory produced a 74% decrease in loss from

the objective function when compared to the nominal solution as shown in Table 4.1.

Table 4.1: First Reference Trajectory Comparison

Performance Results of Trajectories

Sink Rate

Horizontal

Downrange

(ft/s) Velocity (knots) | Position (ft) Loss
Target 2.00 54.0 400.0 0.00
Nominal 1.48 69.9 193.2 0.24
New 2.00 53.8 378.4 0.11

The algorithm is very successful at finding values for the 13 simulation inputs that
result in values for sink rate and horizontal velocity almost exactly at their target val-
ues. Sink rate is the most important of the outputs to achieve and was weighted more
heavily in the objective function so achieving a sink rate of 2.00 ft/s demonstrates

the effectiveness of this algorithm in finding optimal reference trajectories. However,
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downrange position is harder to achieve due to internal simulation constraints. The
algorithm is essentially trying to maximize downrange position without compromising

the results for sink rate and horizontal velocity.

This new optimal reference trajectory was obtained by training the surrogate
neural network on an initial dataset of 400 points quasi-randomly selected across the
input parameter space. The set of input parameter values that produced this optimal
reference trajectory were found after only 10 queries to the actual simulation. The
optimal set of input parameters to the simulation are compared to their nominal
(prior best solution) in Table 4.2. Several of the inputs needed to be adjusted by
over 100% in order to achieve the optimal landing of the hypersonic vehicle. These
changes demonstrate the ability of this tool to generate significantly better reference

trajectories as compared to hand-tuning.

Each iteration of the algorithm attempts to reduce the objective loss as much as
possible. An increase in objective loss in iterations is due to the surrogate model
predicting a certain set of inputs could achieve a lower loss than is actually feasible
from the simulation. This could demonstrate exploration of the input parameter
space. The objective loss of the true outputs from the simulation is shown over those
10 iterations until the end condition of reaching desired values is satisfied in Fig. 4-1.
The target objective loss is not 0.0 due to simulation’s inability to achieve a perfect
downrange position due to physical constraints of the vehicle.

Furthermore, the three outputs of the simulation are shown over those 10 iterations
converging to their target outputs in Fig. 4-2. Over 10 iterations, the surrogate neural
network is learning a better understanding of the promising regions of the input
parameter space. This can be shown through the reduction of difference between the
predicted and actual outputs. For example, the initial percent difference between
predicted and actual sink rate is 8.9% from the first iteration. By the 10th iteration,
that difference has decreased to only 0.3%. It is also interesting to note that the
surrogate model believes it can achieve the target horizontal velocity immediately

while it takes four iterations to believe it can achieve the target sink rate.

Additionally, the inequality constraints in the objective function can be validated
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Figure 4-1: Objective loss over algorithm iterations until successful simulation outputs
are achieved. Loss varies from iteration to iteration as algorithm searches for optimal
input parameter values. Over 10 iterations objective loss decreases by over 50%.

Table 4.2: First HV Input Parameters Comparison

Parameter Name Nominal Value | Optimal Value | Percent Difference
gbar steep 75 psf 50 psf 40%
land _vel 50 knots 8.7 knots 140%
XAIMPT 250 ft 470 ft 61%
FLARE MAX 1.5¢g 030 g 130%
GAMMA REF 2 1.0 deg 0.8 deg 21%
HDECAY 15 ft 2.9 ft 135%
GAM_FF 1.0 deg 1.9 deg 64%
H TFP 1 12.5 ft 16.2 ft 26%
H TFP _F 6.0 ft 8.4 ft 33%
dbl 0.50 0.77 43%
db2 0.50 0.46 8%
db3 0.50 0.86 53%
db3 0.50 0.49 2%

over the algorithm iterations. This can be done by tracking the predicted best inputs
over each iteration and comparing them to the input parameter upper and lower
bounds as shown in Fig. 4-3. Over 50 iterations, none of the 13 inputs are optimized

outside of the bounds. This ensures the neural network optimization stays within the
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Figure 4-2: True outputs from simulation compared to predicted outputs from sur-
rogate neural network over 10 algorithm iterations. Ideally, over each iteration both
predicted and actual outputs would converge to the target output. The algorithm
believes from the very first iteration it can achieve ideal horizontal velocity while it
takes four iterations to believe it can achieve ideal sink rate. By the 10th iteration,
the actual simulation outputs for sink rate and horizontal velocity have converged to
their target values.
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training data and the queries to the simulation are constrained to the physical range.
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Figure 4-3: Three inputs over algorithm iterations to validate they stay within their
constraints. The inputs that minimize the objective loss every iteration stay within
the constraints imposed on them in the objective function through loss penalties.
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4.2 Second Optimal Reference Trajectory

The values for simulation outputs targeted in Section 4.1 were determined by domain
knowledge and vehicle requirements. Specifically, sink rate and horizontal velocity
values are typically limited by the performance of the landing gear, meaning they
ensure the HV does not hit the runway to hard or too fast. The desired sink rate
balances a soft touchdown while allowing for vehicles with higher lift to touchdown
on the runway. Similarly, the desired horizontal velocity balances a slow touchdown
without going so slow that the vehicle loses lift.

If the vehicle properties or landing requirements change, the desired values for
sink rate, horizontal velocity, and downrange position may change as well. For ex-
ample, if the landing gear requires a softer touchdown the target values for sink rate
and horizontal velocity must be reduced. To test this algorithm’s ability to adapt to
different simulation outcomes, the values for sink rate, horizontal velocity, and down-
range position are all reduced to 1.5 ft/s, 46 knots, and 300 ft, respectively. This
change can easily be implemented due to the flexibility of the objective function.

Once the target values are changed, the objective loss landscape according to the
surrogate neural network will change also. The surrogate neural network now under-
stands other areas of the input parameter space are better for minimizing objective
loss and optimizing simulation outputs. The new objective loss landscape is shown
in Fig. 4-4.

This methodology finds a new set of input parameters to optimize the simulation
outcomes in 28 queries. As shown in Table 4.3, this methodology achieves the exact
target values for sink rate and horizontal velocity. The target value for downrange

position of 300 ft was not feasible for this simulation to achieve.

4.3 Monte Carlo Comparison

Although this methodology has proved its ability to optimize the trajectory plan-

ning simulation, the true motivation of this algorithm is in its timesaving. It is able
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Figure 4-4: Objective loss landscape as predicted by surrogate neural network with
lowered target output values. New areas of the input parameter space have been
identified to minimize loss from the objective function due to lowered values for sink
rate, horizontal velocity, and downrange position..

Table 4.3: Second Reference Trajectory Comparison

Performance Results of Trajectories
Sink Rate Horizontal Downrange Loss
(ft/s) Velocity (knots) | Position (ft)
Target 1.50 46.0 300.0 0.00
New 1.50 46.0 406.4 0.08

to intelligently and efficiently search to the input parameter space to find an opti-
mal solution faster than tuning by hand or through a Monte Carlo random search

approach.

This can further be proved by tracking the lowest objective loss found so far by
the quasi-random sampling and this intelligent algorithm. Over 50 iterations, this

approach consistently finds better solutions faster and with less variation than quasi-
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Figure 4-5: Lowest objective loss from intelligent queries compared to quasi-random
queries over 50 algorithm iterations with 0.50 shaded, averaged over five trials. The
intelligent queries result in lower losses quicker than quasi-random queries.

random sampling. Fig. 4-5 shows the loss from the best solution found so far by this

algorithm as compared to the quasi-random search, averaged over five trials.

Evidently, this algorithm finds inputs that minimize the objective function much
faster than a quasi-random search can. The quasi-random search takes 30 simulation
queries to reduce the objective loss from 0.16 to 0.13, while the intelligent search
reduces the same loss in the first five queries, making this method six times faster.
Furthermore, it consistently reaches a lower objective loss, meaning it finds a better
reference trajectory. Similarly, Fig. 4-6 shows how the algorithm will converge to the

desired output values faster than the quasi-random search.

Quasi-random search over 50 algorithms is unable to find a set of input values
that result in a sink rate of the desired 2.0 ft/s. Compared to the intelligent queries,
which finds a sink rate of 2.0 ft/s in 10 queries, this is incredibly inefficient.
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Figure 4-6: Best outputs found by intelligent queries compared to Monte Carlo quasi-
random search. The intelligent queries converge much faster to the ideal outputs than
the quasi-random search.

4.4 Second Hypersonic Vehicle Simulation

All the results so far show the optimization of an A /L reference trajectory based on a
simulation of a proprietary hypersonic vehicle. If the underlying physical parameters
of the vehicle change, a new reference trajectory will need to be calculated to meet the
new set of requirements. For example, if additional wind tunnel testing results in an
update to the vehicle aerodynamic model. This methodology can quickly be applied
to calculate a new optimal reference trajectory, negating the need for an engineer to

spend copious time hand-tuning the input variables.

To test this, the existing HV’s aerodynamic properties were perturbed randomly
within a range of 30. Specifically, the drag was increased by 11%, the lift was reduced
by 1% and the pitch moment coefficient was increased by 13%. In practice, the set of
inputs found in Section 4.1 are now the nominal results to test and compare further
trajectories against. However, the set of inputs that resulted in a high-performing
landing for the first hypersonic vehicle, no longer do so for this perturbed vehicle.
That set of inputs result in a very low sink rate and therefore a poor landing of the

HV. When applied, this methodology finds a better performing reference trajectory
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that decreases loss by 100% compared to the inputs from Section 4.1, as shown in

Table 4.4.
Table 4.4: Second Hypersonic Vehicle Comparison
Performance Results of Trajectories

Sink Rate Horizontal Downrange Loss

(ft/s) Velocity (knots) | Position (ft)
Target 2.00 54.0 400.0 0.00
Previous 1.21 52.5 365.8 0.51
New 1.76 53.4 354.0 0.17

To find the input values that would result in a high-performing landing of the
perturbed hypersonic vehicle, this algorithm had to tune all 13 input values, which is
very challenging to do intuitively. Furthermore, many of the inputs had to be changed

from their nominal value, some by up to 177% as shown in Table 4.5.

Table 4.5: Second HV Input Parameters Comparison

Parameter Name Nominal Value | Optimal Value | Percent Difference
gbar steep 50 psf 34 psf 38%
land vel 8.7 knots 35.9 knots 122%
XAIMPT 470 ft 81 ft 141%
FLARE MAX 0.30 g 22 ¢ 152%
GAMMA REF 2 0.8 deg 1.2 deg 40%
HDECAY 2.9 ft 2.2 ft 27%
GAM_FF 1.9 deg 1.5 deg 23%
H TFP 1 16.2 ft 11.9 ft 31%
H TFP F 8.4 ft 1.4 ft 143%
dbl 0.77 0.80 4%
db2 0.46 0.53 14%
db3 0.86 0.99 14%
db3 0.49 0.03 177%

This methodology successfully decreased the objective loss however the sink rate
is not as close to the target value of 2.00 ft/s as in Section 4.1. This is because
the aerodynamic changes are not reflected in the vehicle’s control system, meaning

tracking the reference trajectory is much more challenging for the HV. However, the
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Figure 4-7: Objective loss over algorithm iterations until optimal trajectory is
achieved for the aerodynamically altered hypersonic vehicle. Over 37 iterations, the
objective loss is decreased by over 70%.

objective loss is significantly reduced from 0.38 to 0.17 as shown in Fig. 4-7, meaning

this methodology is finding the best possible trajectory this vehicle can achieve.

As demonstrated in Section 4.3 for the first hypersonic vehicle, this algorithm once
again proves to be significantly better at minimizing objective loss. The average loss
from the intelligently queries is reduced to a lower value in far few iterations than
through a quasi-random selection of input parameter values, as shown in Fig. 4-8.
Averaged over three trials, the intelligent queries reduce objective loss from 0.30 to
0.15 over 50 algorithm iterations. In comparison, the quasi-random search is unable
to select input values that create a simulation output with loss lower than 0.28 on

average.

Similarly, the output values from the simulation converge to their target values
much faster through intelligent queries than through quasi-random search, as shown
in Fig. 4-9. The quasi-random search over 50 iterations finds the best possible sink
rate to be 1.35 ft/s while the intelligent queries are able to achieve a sink rate of 1.76

ft/s, much closer to the target sink rate of 2 ft/s. Over those same 50 iterations,
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Figure 4-8: Lowest loss from intelligent queries compared to quasi-random queries over
50 algorithm iterations with 0.50 shaded for the second hypersonic vehicle, averaged
over three trials. The intelligent queries result in lower losses quicker than quasi-
random queries.
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the quasi-random search is unable to achieve a horizontal velocity close to the target
value of 54 ft/s. The intelligent queries in comparison converge to the target value in

less than 20 iterations.
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Chapter 5

Conclusions and Future Work

This paper presents a novel simulation-based optimization algorithm that uses sur-
rogate neural networks and their ability to produce gradients to drastically reduce
computation time. The novelty of this algorithm is that it uses neural network sur-
rogate models to intelligently select queries to the simulation. By doing so, the total
number of simulation runs can be reduced while simultaneously finding the optimal
reference trajectory. Furthermore, no current optimal trajectory planning algorithms
make use of neural networks as surrogate models, their efficiency, and their ability to
produce gradients.

When applied to a highly nonlinear approach and landing reference trajectory
planning simulation for hypersonic vehicles, this algorithm rapidly optimized the 13
input parameters to produce the best possible result for landing the hypersonic ve-
hicle. It was able to find a reference trajectory that resulted in the target sink rate
exactly, the most important metric for determining the performance of landing on
the runway. When the value for target sink rate was lowered, this algorithm was
similarly able to achieve a high-performing landing of the same hypersonic vehicle.
Furthermore, when this algorithm was applied to a different hypersonic vehicle it
found a solution that improved the landing of the vehicle by 100% as compared to
the previous solution.

Compared to quasi-random search, this algorithm works six times faster to find

the optimal output of the simulation by intelligently querying areas that minimize
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loss from the objective function as predicted by the surrogate model. Compared to
hand-tuning by an engineer, this algorithm reduces time to find an optimal reference
trajectory from days to hours. Not only is this algorithm faster, it also finds areas
of the input parameter space that lead to simulation outcomes with significantly less

objective loss as compared to quasi-random search.

This generalized methodology has been shown to work for different hypersonic
vehicles simulations. However, future work includes testing this methodology in an
entirely different field. This methodology should be able to accommodate any black-
box simulation with any number of inputs and outputs and constraints. Ideally, the
simulation should be computationally expensive as to take advantage of the efficiency
of this methodology in reducing total simulation queries and therefore total compu-

tation time.

Furthermore, total number of queries could be reduced by eliminating the initial
quasi-random training dataset so that all queries are intelligently selected by the
surrogate model. Initially, the surrogate neural network would have such a poor
understanding of the actual simulation due to lack of training data that the initial
queries selected to the send to the simulation would essentially be random. Or every
other query could be selected at random until a certain level of fidelity is reached
with the surrogate model. Eventually, the surrogate neural network would be able
to replicate the simulation well enough to start only intelligently selecting queries in
promising areas of the input parameter space.

It would also be interesting to explicitly incorporate the epistemic uncertainty of
the neural network to better balance and understand exploration versus exploitation.
Currently, all uncertainty is innate to the surrogate model’s imperfect representation
of the actual simulation and the random weight initialization of each iteration’s neu-
ral network. Instead of training a single neural network every algorithm iteration,
an ensemble of models could be trained, all initialized with random weights. This
ensemble could be used to quantify what areas of the input parameter space have

more uncertainty, meaning the amount of entropy between neural networks.

This novel algorithm was shown to produce exceptional reference trajectories for
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two different optimal sets of landing requirements and on two different hypersonic
vehicles. It negates the need for any hand-tuning of input parameters and produces
better trajectories than were previously thought possible. The application of this
methodology will enable much more rapid calculation of optimal approach and landing

reference trajectories for hypersonic vehicles.
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