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Abstract

In many learning problems, it is desirable to incorporate explicit regularization in the
objective to avoid overfitting the data. Typically, the regularized objective is solved via
weight decay. However, optimizing with weight decay can be challenging because we
cannot tell if the solution has reached a global minimum. Further, weight decay can have
large run-to-run variations and is sensitive to the choice of regularization hyperparameter.
To this end, we propose a new approach to optimize objectives with explicit regularization,
called Regularizer Mirror Descent (RMD). In the overparameterized regime, where the
number of model parameters exceeds the size of data, RMD provably converges to a point
“close” to a minimizer of the regularized objective. Additionally, RMD is computationally
efficient and imposes virtually no overhead to standard gradient descent. We observe that
RMD is remarkably robust and consistent compared to gradient descent with weight decay
despite solving for the same objective. We also illustrate the practical utility of RMD by
applying it to learning problems with corrupted labels, where it can match or outperform
the state-of-the-art methods without requiring additional hyperparameter tuning or ad-hoc
heuristics tailored for this task.
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Chapter 1

Introduction

A key problem in machine learning is to impose some sort of capacity control on the

learned models so that they do not overfit to the training data and perform poorly at test

time. To this end, regularization is a common way to find “simpler” solutions and avoid

overfitting. One straightforward way to achieve this is through explicit regularization, i.e.,

modifying the objective of the optimization problem by adding an explicit penalty term to

it [22, 15, 26].

Over the past few years, regularization has received renewed attention, particularly in

the context of highly overparameterized models in deep learning, i.e., models that have a

large enough capacity to allow them to perfectly (over)fit the training data. Interestingly,

such models sometimes perform well in the absence of any explicit regularization, and

it has been postulated that this is due, at least in part, to the implicit regularization

effects induced by other components such as the learning algorithm (also referred to as

the optimization algorithm) [52, 6, 9, 8, 38, 7]. In particular, it has been argued that

many first-order methods, such as gradient descent and mirror descent, tend to exhibit

implicit bias towards converging to solutions that minimize a penalty while interpolating

the training data [16, 3, 40, 10, 45, 44].

Since implicit regularization would still lead to a solution that perfectly fits the training

data, it may not be sufficient to avoid overfitting in many scenarios, such as when the data

contains a lot of noise or corruption. Therefore, it is often desirable to use explicit regu-

larization to control the strength and properties of the desired regularization directly. For
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Figure 1-1: Comparison of the test accuracies achieved by training with two different initializations
of the ResNet-18 model using SGD with weight decay on the CIFAR-10 dataset with 40%
corrupted labels for a range of regularization strengths denoted by the parameter 𝜆. Both
initializations are centered around the all-zero weight vector and the absolute difference between
the test accuracies achieved are reported for each 𝜆. The asterisk (*) indicates a case where
weight decay failed to converge with one initialization but not the other. These results highlight
the difficulty and inconsistency of training with weight decay.

example, one common form of explicit regularization is ridge (Tikhonov) regularization,

whose objective penalizes the ℓ2-norm of the parameters. For gradient descent and its

variants, ridge regularization is typically implemented via weight decay. However, optimiz-

ing with weight decay can be challenging. For overparameterized models, while achieving

zero loss in the unregularized problem implies convergence to a global minimum, adding

explicit regularization creates uncertainty around the value of the minimum, making it

difficult to verify the convergence of the algorithm. The following case study illustrates

the difficulty of deploying weight decay in practical scenarios.

1.1 Case Study: Weight Decay

Consider training ResNet-18 [20] with weight decay on the CIFAR-10 dataset [25] with

40% of the data points corrupted, i.e., the labels are randomly flipped (see Chapter 6 for

16



details). Fig. 1-1 presents the difference in test accuracy when ResNet-18 is initialized

at two different sets of weight vectors around the all-zero weight vector. Further details

about the experimental setup are discussed in Chapter 6. The results demonstrate that the

training is unstable and highly sensitive to initialization. There are significant discrepancies

in the test accuracy achieved by the two initializations, and weight decay fails to converge

with the second initialization for regularization strength 𝜆 = 0.02, despite successfully

converging with the first.

This experiment highlights the inconsistency of weight decay and its potential to hinder

the search for the best-performing model. To address this issue, in this work, we develop

a novel method for optimization with explicit regularization that comes with guarantees

and more reliable convergence behavior.

1.2 Contributions

1. We introduce a novel approach for training overparameterized models with explicit

regularization, called Regularizer Mirror Descent (RMD). By leveraging the proper-

ties of overparameterization and the implicit regularization of mirror descent (MD)

algorithms, RMD provably converges to a point “close” to the minimizer of the ex-

plicitly regularized cost, i.e., the sum of the empirical loss and the explicit regular-

ization penalty. This makes RMD the first explicit regularization method for highly

overparameterized nonlinear models with theoretical convergence guarantees.

2. Besides the desirable theoretical guarantees, RMD is both computationally and

memory-wise efficient. It incurs virtually no additional overhead compared to gradi-

ent descent and can easily scale to large problem instances. We define a mini-batch

version of RMD that can be used in practice and provide a sample implementa-

tion of RMD that is easy to integrate with little modification to existing training

procedures.

3. Compared to traditional methods such as weight decay, RMD is more versatile

since it can accommodate any strictly convex function of the weights as an explicit

17



regularizer. Furthermore, in the case of ℓ2 (ridge) regularization, we can observe

that RMD is significantly more consistent than weight decay. In particular, RMD is

less sensitive to random initialization and exhibits consistent and predictable changes

as the regularization strength varies.

4. We illustrate the effectiveness of RMD through a case study in learning with cor-

rupted/noisy labels. Our experiments on the CIFAR-10 dataset with varying levels

of corruption show that RMD outperforms or matches the state-of-the-art methods

in the literature. Notably, this achievement is primarily due to the general and prin-

cipled approach of RMD for explicit regularization. Unlike prior methods, RMD does

not require tuning of additional hyperparameters or ad-hoc heuristics tailored to this

specific problem. The simplicity and effectiveness of RMD highlight its potential for

training other overparameterized machine learning models.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 surveys related works that

characterize the current understanding of regularization in machine learning and describes

the state-of-the-art for learning with corrupted labels. Chapters 3 and 4 provide important

background, with general terminology defined in Chapter 3 and a deep dive into mirror

descent and its convergence properties in Chapter 4.

We present our novel algorithm RMD and its various special cases and implementation

in Chapter 5. In Chapter 6, we evaluate the empirical performance of RMD by applying it

to deep neural network (DNN) training, where we show that RMD is a superior alternative

to weight decay and demonstrate its utility in practical applications. Finally, in Chapter 7,

we prove the convergence guarantees of RMD, building on the implicit regularization

properties of mirror descent detailed earlier in Chapter 4.

Chapter 8 concludes this thesis, describing key takeaways and proposing open questions

to be addressed by future work.
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Chapter 2

Related Work

There is an array of regularization techniques that are deployed in conjunction with the

training procedures of models in machine learning [54, 21, 35, 27, 51, 37, 23, 43, 28].

See, e.g., [15, 26] for a survey. Since our work is focused on explicit regularization, which

involves adding a regularization term to the objective of the optimization problem, the

most closely related method to our setting is weight decay [53], which adds an ℓ2-norm

regularizer to the objective. However, RMD is more general, as it can handle any desired

strictly convex regularizer.

There is also the so-called implicit regularization property of various learning algorithms

themselves, which have been extensively studied over the years, e.g., [44, 18, 47, 24, 45,

10]. Even though RMD builds on the recent literature on the implicit regularization

behavior of a family of optimization algorithms called stochastic mirror descent [5], it

significantly differs from the prior work due to its goal. RMD aims to provide explicit

regularization, thus it tackles a fundamentally different problem. To achieve this goal,

it reformulates the explicit regularization objective and turns it into a mirror descent

algorithm which is theoretically guaranteed to converge to model parameters that are

near a global minimizer of the explicitly regularized optimization problem. In Section 3.3

and Chapter 5, we further provide the relevant background on implicit regularization and

how RMD utilizes it, respectively.

One of the key applications of explicit regularization is in the problem of learning with

corrupted labels. There are several methods that have been proposed for tackling this
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problem. In particular, Mixup [54] and label smoothing [46, 31] have been shown to provide

effective denoising against label corruption. Mixup constructs convex combinations of

pairs of training samples, while label smoothing uses a weighted average of dataset labels

and a uniform distribution over labels. Other methods that have been developed to

address the problem of learning with noisy labels are robust early learning (CDR) [49],

the Partially Huberised loss (PHuber) [34], and the T-revision method [50]. The CDR

technique avoids overfitting by pruning parameters that are deemed uncritical, whereas

PHuber is derived from a variant of gradient clipping that improves robustness to label

noise. The T-revision method, on the other hand, builds on importance reweighting [30]

by simultaneously learning the classifier and revising the transition matrix defining the

probabilities of the occurrence of noisy labels. Compared to these methods, RMD does

not require the use of ad-hoc heuristics and additional hyperparameters to tune, and

instead, it achieves robustness via strictly solving an optimization problem designed for

general explicit regularization.
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Chapter 3

Background

In this chapter, we introduce concepts utilized in the remainder of this paper: gradient

descent, explicit regularization, implicit regularization, and the Bregman divergence. Gra-

dient descent is a standard method for optimization that serves as the foundation for

many training procedures in machine learning. We define explicit regularization, a form

of regularization that avoids overfitting to the training data by adding a penalty to the

objective of the optimization. We also describe the implicitly regularizing properties that

some optimization algorithms display, in particular, highlighting the implicit regularization

of gradient descent and its generalization, mirror descent. The Bregman divergence is

a notion of distance generalized to geometries beyond the standard Euclidean geometry

that is important when discussing the convergence properties of learning algorithms.

3.1 Gradient Descent

Suppose we have the training dataset {(𝑥𝑖, 𝑦𝑖) : 𝑖 = 1, . . . , 𝑛} where the inputs are

𝑥𝑖 ∈ R𝑑 and the labels are 𝑦𝑖 ∈ R. Let us define a model by the function 𝑓(𝑥,𝑤) with

weights 𝑤 ∈ R𝑝. Denote the output of the model on data point 𝑖 as 𝑓𝑖(𝑤) := 𝑓(𝑥𝑖, 𝑤).

We can express the total loss on the training set as 𝐿(𝑤) = 1
𝑛

∑︀𝑛
𝑖=1 𝐿𝑖(𝑤), where 𝐿𝑖(𝑤) =

ℓ(𝑦𝑖, 𝑓𝑖(𝑤)) is the nonnegative loss on the 𝑖th data point for a weight vector 𝑤 ∈ R𝑝.

This total loss is typically minimized through gradient descent (GD) or one of its

variants. Denoting the model parameters at the 𝑡-th time step by 𝑤𝑡 ∈ R𝑝, the update
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rule of GD can be simply written as

𝑤𝑡 = 𝑤𝑡−1 − 𝜂∇𝐿(𝑤𝑡−1), 𝑡 ≥ 1, (3.1)

where 𝜂 is the so-called step size or learning rate, 𝑤0 is the initialization of the weights,

and ∇𝐿(·) is the gradient of the total loss 𝐿(𝑤). In the overparameterized regime where

there are many more parameters than the number of data points (𝑝 ≫ 𝑛), applying GD

often can achieve (near) zero training error and “interpolate” the training data [52, 33].

In practice, stochastic gradient descent (SGD) [42], in which only a subset of data

points contribute to the gradient at each iteration, is most often used for its computational

efficiency, and much of what we know about GD also translates well to SGD. Specifically,

we define the "mini-batch" version of GD, whose update is written

𝑤𝑡 = 𝑤𝑡−1 −
𝜂

|𝐵|
∑︁
𝑖∈𝐵

∇𝐿(𝑤𝑡−1), 𝑡 ≥ 1, (3.2)

where 𝐵 denotes the subset of data points selected.

3.2 Explicit Regularization

It is often preferable to find a “simpler” solution instead of (over)fitting the training data

to zero error. One direct way to achieve this goal is explicit regularization, where we

augment the loss function with a strictly convex and differentiable regularizer 𝜓 : R𝑝 → R

that penalizes a solution that is deemed too “complex,” and consider

min
𝑤

𝐿(𝑤) + 𝜆𝜓(𝑤), (3.3)

where 𝜆 ≥ 0 is a hyperparameter that controls the strength of regularization relative to

the loss function. A simple and common choice of regularizer is 𝜓(𝑤) = 1
2
‖𝑤‖2. In this

case, when GD is applied to (3.3), it is commonly referred to as weight decay.

Note that the smaller 𝜆 is, the more effort in the optimization is spent on minimizing
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𝐿(𝑤) = 1
𝑛

∑︀𝑛
𝑖=1 𝐿𝑖(𝑤). Since the losses 𝐿𝑖(·) are non-negative, the lowest these terms

can get is zero. This is attainable in the overparameterized regime. As a result, for highly

overparameterized models and in the limit where 𝜆→ 0, the problem would be equivalent

to the following:

min
𝑤

𝜓(𝑤) s. t. 𝐿𝑖(𝑤) = 0, ∀ 𝑖 = 1, . . . , 𝑛. (3.4)

3.3 Implicit Regularization

In recent analysis of overparameterization, it has been noted in several papers that, even

without imposing any explicit regularization in the objective, i.e., by optimizing only the

loss function 𝐿(𝑤) over a highly overparameterized model, many optimization algorithms

would converge to a minimizer with certain properties [16, 17, 3, 32, 41]. This is referred

to as the implicit regularization of optimization algorithms, as the choice of algorithm

constrains the solution according to its convergence properties, without the use of a

modified objective.

For example, when initialized at the origin, GD with sufficiently small step size tends

to converge to interpolating solutions with minimum ℓ2-norm [14, 16], i.e.,

min
𝑤
‖𝑤‖2 s. t. 𝐿𝑖(𝑤) = 0, ∀ 𝑖 = 1, . . . , 𝑛.

More generally, it has been shown [16, 5] that mirror descent (MD), whose update

rule is defined for a differentiable strictly convex “potential function” 𝜓(·) as

∇𝜓(𝑤𝑡) = ∇𝜓(𝑤𝑡−1)− 𝜂∇𝐿(𝑤𝑡−1),

with proper initialization and a sufficiently small learning rate tends to converge to the

solution of

min
𝑤

𝜓(𝑤) s. t. 𝐿𝑖(𝑤) = 0, ∀ 𝑖 = 1, . . . , 𝑛. (3.5)

Note that this is equivalent to the case of explicit regularization with 𝜆 → 0, i.e., prob-
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lem (3.4). As our proposed method leverages the properties of mirror descent in the

overparameterized regime, we describe both the mirror descent algorithm and this result

more precisely in Chapter 4.

3.4 Bregman Divergence

Before we enter a detailed introduction of mirror descent and its convergence properties,

we define the Bregman divergence [12]. For a strictly convex, differentiable function 𝜓(·),
the Bregman divergence is defined as

𝐷𝜓(𝑥, 𝑦) := 𝜓(𝑥)− 𝜓(𝑦)−∇𝜓(𝑦)𝑇 (𝑥− 𝑦), ∀𝑥, 𝑦 ∈ R𝑝. (3.6)

𝐷𝜓(𝑥, 𝑦) defines a notion of distance with respect to 𝜓(·).
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Chapter 4

Mirror Descent

This chapter introduces mirror descent, a generalization of the popularly-used gradient de-

scent (GD) algorithm, first introduced by Nemirovski and Yudin [39]. Through the choice

of a potential function, which we discuss below, MD is able to exploit different geometries

of the problem to arrive at different solutions. As discussed in Section 3.3, mirror descent

has convergence guarantees that define how it implicitly regularizes overparameterized

models.

4.1 The Mirror Descent Algorithm

Suppose we are in the same problem setting as described in Section 3.1. Given a strictly

convex differentiable function, 𝜓(·) : R𝑝 → R, which we call the potential function, and

step size 𝜂 > 0, the update rule of MD is defined as follows

∇𝜓(𝑤𝑡) = ∇𝜓(𝑤𝑡−1)− 𝜂∇𝐿(𝑤𝑡−1). (4.1)

∇𝜓(·) defines a "mirrored" domain in which we perform updates. Because 𝜓(·) is strictly

convex, we can compute a unique 𝑤𝑡 at each iteration 𝑡:

𝑤𝑡 = ∇𝜓−1 (∇𝜓(𝑤𝑡−1)− 𝜂∇𝐿(𝑤𝑡−1)) .
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Like with gradient descent, because the computation of 𝐿(𝑤) can be unwieldy and

computationally expensive, we can introduce stochastic mirror descent (SMD). In partic-

ular, we write the update rule of mini-batch MD, which is analogous to the mini-batch

update of GD given in (3.2).

∇𝜓(𝑤𝑡) = ∇𝜓(𝑤𝑡−1)−
𝜂

|𝐵|
∑︁
𝑖∈𝐵

∇𝐿𝑖(𝑤𝑡−1), (4.2)

where 𝐵 is the set of data points in the chosen mini-batch. Note that because the loss

is averaged across mini-batch 𝐵, the magnitude of the update at each step is batch size

invariant.

4.2 Convergence Properties of MD

We outline the convergence properties of MD, as presented and proven in [5]. Suppose the

per sample loss function is of the form 𝐿𝑖(𝑤) = ℓ(𝑦𝑖−𝑓𝑖(𝑤)), where ℓ(·) is convex and has

global minimum at 0 (one example is the square loss). Given a highly overparameterized

model 𝑓(𝑥,𝑤), we define the set of interpolating solutions

𝒲 = {𝑤 ∈ R𝑝 | 𝑓𝑖(𝑤) = 𝑦𝑖, 𝑖 = 1, . . . , 𝑛}

= {𝑤 ∈ R𝑝 | 𝐿𝑖(𝑤) = 0, 𝑖 = 1, . . . 𝑛}.

(4.3)

(4.4)

We also define the interpolating solution 𝑤* ∈ 𝒲 that is closest to the initialization 𝑤0

in Bregman divergence

𝑤* = argmin
𝑤∈𝒲

𝐷𝜓(𝑤,𝑤0). (4.5)

Note that when 𝑤 is initialized to 𝑤0 = argmin𝑤 𝜓(𝑤), this reduces to

𝑤* = argmin
𝑤∈𝒲

𝜓(𝑤). (4.6)

Note that (3.5) and (4.6) are equivalent.

26



It has been shown in [3] that for linear models, 𝑓(𝑥,𝑤) = 𝑥𝑇𝑤 initialized at 𝑤0, the

iterates of MD with potential function 𝜓(·), converge to 𝑤*, given that the learning rate 𝜂

is sufficiently small. For nonlinear models, this still holds in the approximate sense, under

certain conditions [5]. More formally, we first define 𝐷𝐿𝑖
(𝑤,𝑤′) := 𝐿𝑖(𝑤) − 𝐿𝑖(𝑤

′) −
∇𝐿𝑖(𝑤′)𝑇 (𝑤 − 𝑤′), which is analogous to the Bregman divergence but defined for loss

functions. However, note that 𝐿𝑖(·) = ℓ(𝑦𝑖 − 𝑓𝑖(𝑤)) does not need to be convex due to

the nonlinearity of 𝑓(·, ·). We also denote the Hessian of 𝑓𝑖(·) by 𝐻𝑓𝑖 .

In determining the convergence properties of MD in the overparameterized regime, [5]

proposes the following assumptions.

Assumption 4.2.1. Denote the initial point by 𝑤0. There exists 𝑤 ∈ 𝒲 and a region

ℬ = {𝑤′ ∈ R𝑑 | 𝐷𝜓(𝑤,𝑤
′) ≤ 𝜖} containing 𝑤0, such that 𝐷𝐿𝑖

(𝑤,𝑤′) ≥ 0, 𝑖 = 1 . . . , 𝑛,

for all 𝑤′ ∈ ℬ.

Assumption 4.2.2. Consider the region ℬ in Assumption 4.2.1. 𝑓𝑖(·) have bounded gra-

dient and Hessian on the convex hull of ℬ, i.e. ||∇𝑓𝑖(𝑤′)|| ≤ 𝛾, and 𝛼 ≤ 𝜆min(𝐻𝑓𝑖(𝑤
′)) ≤

𝜆max(𝐻𝑓𝑖(𝑤
′)) ≤ 𝛽, 𝑖 = 1, . . . , 𝑛, for all 𝑤′ ∈ convℬ.

To summarize in more plain language, Assumption 4.2.1 states that 𝑤0 is close to the

set of global minima 𝒲 , which is a reasonable assumption to make in the overparame-

terized setting [1]. Assumption 4.2.2 states that the first and second derivatives of the

model are locally bounded.

Given that these assumptions hold, [5] proves the following theorem.

Theorem 4.2.3 (Azizan et al. [5]). Consider the set of interpolating solutions𝒲 = {𝑤 ∈
R𝑑 | 𝑓𝑖(𝑤) = 𝑦𝑖, 𝑖 = 1, . . . , 𝑛}, the closest such solution 𝑤* = argmin𝑤∈𝒲 𝐷𝜓(𝑤,𝑤0),

and the MD iterates given in (4.1) initialized at 𝑤0, where every data point is revisited

after some steps. Under Assumptions 4.2.1 and 4.2.2, for sufficiently small step size, i.e.,

for any 𝜂 > 0 for which 𝜓(·)− 𝜂𝐿𝑖(·) is strictly convex on ℬ for all 𝑖, the following holds.

1. The iterates converge to 𝑤∞ ∈ 𝒲 .

2. 𝐷𝜓(𝑤
*, 𝑤∞) = 𝑜(𝜖).
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In other words, MD converges to the interpolating solution that is "close" to 𝑤*,

which is itself the global minimum (among potentially many minima) that minimizes

the Bregman divergence to the initialization. When 𝑤0 = argmin𝑤 𝜓(𝑤), this global

minimum can be described as the "smallest" with respect to the geometry of the problem,

as can be seen in the reduction in (4.6).

4.3 𝑞-norm GD

One important family of mirror descent algorithms is mirror descent with a potential

function of the form 𝜓(·) = 1
𝑞
|| · ||𝑞𝑞, where 𝑞 > 1, i.e., the potential function is chosen to

be the ℓ𝑞-norm. Note that standard gradient descent (GD) is a special case of this class

of MD where 𝜓(·) = 1
2
|| · ||2, or the ℓ2-norm. We will denote these MD algorithms q-norm

GD, or 𝑞-GD, for short.

By substituting this potential function into (4.1), we arrive at the update rule for

𝑞-GD:

𝑤𝑡[𝑗] =
⃒⃒
|𝑤𝑡−1[𝑗]|𝑞−1 sign(𝑤𝑡−1[𝑗])− 𝜂∇𝐿(𝑤𝑡−1)[𝑗]

⃒⃒ 1
𝑞−1 ×

sign
(︀
|𝑤𝑡−1[𝑗]|𝑞−1 sign(𝑤𝑡−1[𝑗])− 𝜂∇𝐿(𝑤𝑡−1)[𝑗]

)︀
, (4.7)

where 𝑤𝑡[𝑗] denotes the 𝑗-th element of 𝑤𝑡, the weight vector at step 𝑡. Similarly,

∇𝐿(𝑤𝑡−1)[𝑗] denotes the 𝑗-th element of the gradient vector at step 𝑡. A stochastic

update rule for 𝑞-GD can also be derived by substituting 𝜓(·) = 1
𝑞
|| · ||𝑞𝑞 into (4.1).

As highlighted in [5], this particular choice of potential for mirror descent is notable

because it leads to an update rule that is separable in coordinates. In other words, only

the 𝑗-th element of 𝑤 and ∇𝐿(𝑤) will factor into the update for the 𝑗-th element of

𝑤. This means that 𝑞-GD can be implemented in a parallel and therefore efficient way,

comparable to the computational overhead of GD.

Implementation

Listing 4.1 provides a sample implementation of 𝑞-GD in PyTorch as a proof-of-concept,

demonstrating that 𝑞-GD is easily implemented. The qnormSGD class is an optimizer that
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Listing 4.1: Sample PyTorch implementation of 𝑞-GD.
1 import torch
2 from torch.optim import Optimizer
3

4 class qnormSGD(Optimizer):
5

6 def __init__(self , params , lr=0.01 , qnorm =2):
7 if not 0.0 <= lr:
8 raise ValueError(f’Invalid learning rate: {lr}’)
9 # q-norm must be strictly greater than 1

10 if not 1.01 <= qnorm:
11 raise ValueError(f’Invalid q-norm: {qnorm}’)
12

13 defaults = dict(lr=lr, qnorm=qnorm)
14 super(qormSGD , self).__init__(params , defaults)
15

16 def __setstate__(self , state):
17 super(qnormSGD , self).__setstate__(state)
18

19 def step(self , closure=None):
20 loss = None
21 if closure is not None:
22 loss = closure ()
23

24 for group in self.param_groups:
25 lr = group[’lr’]
26 qnorm = group[’qnorm’]
27

28 for p in group[’params ’]:
29 if p.grad is None:
30 continue
31 x = p.data
32 dx = p.grad.data
33

34 # q-norm potential function
35 update = torch.pow(torch.abs(x), qnorm -1) * \
36 torch.sign(x) - lr * dx
37 p.data = torch.sign(update) * \
38 torch.pow(torch.abs(update), 1/(qnorm -1))
39

40 return loss

can substitute for any existing PyTorch optimizer, and thus can be easily used with only

very minor changes to existing code. This implementation was used in the remainder of

the experiments in this thesis wherever 𝑞-GD was required (see Chapter 6).
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Computational Overhead

To verify that we can train models with 𝑞-GD efficiently, we ran a simple benchmark of

the runtime of 𝑞-GD against the standard PyTorch implementation of GD (optim.SGD).

We train ResNet-18 [20] on the popular CIFAR-10 [25] dataset with a batch size of 128

and time how long it takes to train 10 and 20 epochs. These experiments were run on a

single Nvidia V100 GPU. While we limit sources of nondeterminism1 as much as possible

to ensure the accuracy of these measurements, we note that these results may not be

entirely precise due to the use of shared computing resources.

Table 4.1: Comparison of the training time of 𝑞-GD, as implemented in Listing 4.1, and the
standard PyTorch implementation of GD (optim.SGD). The mean ± std. dev. of the training
time for 10 and 20 epochs across six trials is reported.

Training Time (seconds)

Algorithm 10 epochs 20 epochs

𝑞 = 1.1 145.8± 3.5 291.7± 7.3
𝑞 = 2 146.9± 3.5 293.8± 7.8
𝑞 = 3 147.5± 5.8 293.0± 9.5
𝑞 = 10 146.2± 4.6 292.1± 8.5

GD 131.1± 3.4 261.3± 6.8

From Table 4.1, it can be observed that 𝑞-GD trains at similar speeds regardless of the

value of 𝑞, which is expected given that the update steps for each value of 𝑞 require the

same number of operations. We also expect that 𝑞-GD should have little computational

overhead over standard GD; although 𝑞-GD requires more arithmetic operations, this

should not significantly affect training times because the computational bottleneck in

training is differentiation. However, Table 4.1 shows us that 𝑞-GD trains approximately

10% slower than PyTorch’s GD implementation, even for 𝑞 = 2. We believe that this

discrepancy is likely due to detailed optimization of the PyTorch implementation, and

that, with similar care given to optimization of 𝑝-GD, this gap can be closed.

1We follow the steps provided in https://pytorch.org/docs/stable/notes/randomness.html
to limit nondeterminism.
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Chapter 5

Proposed Method: Regularizer

Mirror Descent (RMD)

In this section, we propose a novel method for training overparameterized models with

explicit regularization. This method builds upon mirror descent, which is discussed in

detail in Section 4, and is termed Regularizer Mirror Descent (RMD).

5.1 Derivation of RMD

When it is undesirable to reach zero training error, e.g., due to a high amount of noise

in the data, one cannot rely solely on the implicit bias of the optimization algorithm to

avoid overfitting. That is because these algorithms would still converge to a solution

with zero training error and interpolate the noise as well. This suggests the use of explicit

regularization methods, such as weight decay, as defined in (3.3). Unfortunately, as shown

in Figure 1-1, standard explicit regularization methods like weight decay, which simply

employs GD to solve (3.3), have very inconsistent convergence behavior. Motivated by this

issue, we propose a new algorithm called Regularizer Mirror Descent (RMD), which, under

appropriate conditions, provably regularizes the weights for any desired differentiable,

strictly convex regularizer. Specifically, RMD converges to a weight vector close to the

minimizer of (3.3). In the following, we describe the derivation of RMD.

We are interested in solving the explicitly regularized optimization problem (3.3). Let
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us define an auxiliary variable 𝑧 ∈ R𝑛 with elements 𝑧[1], . . . , 𝑧[𝑛]. The optimization

problem (3.3) can be transformed into the following form

min
𝑤,𝑧

1

𝑛

𝑛∑︁
𝑖=1

𝑧2[𝑖]

2
+ 𝜆𝜓(𝑤)

s. t. 𝑧[𝑖] =
√︀

2𝐿𝑖(𝑤), ∀ 𝑖 = 1, . . . , 𝑛.

This can be arranged to the equivalent problem

min
𝑤,𝑧

1

𝜆𝑛

𝑛∑︁
𝑖=1

𝑧2[𝑖]

2
+ 𝜓(𝑤)

s. t. 𝑧[𝑖] =
√︀

2𝐿𝑖(𝑤), ∀ 𝑖 = 1, . . . , 𝑛.

(5.1)

The objective of this optimization problem is a strictly convex function

𝜓̂ (𝑤, 𝑧) = 𝜓(𝑤) +
1

𝜆𝑛
· ‖𝑧‖

2

2
,

and there are 𝑛 equality constraints. We can therefore think of the model that is solved in

this problem as an “augmented” model of 𝑝+𝑛 dimensions, i.e., with two sets of weights:

𝑤 and 𝑧. To enforce the constraints 𝑧[𝑖] =
√︀
2𝐿𝑖(𝑤), we can define a “constraint-

enforcing” loss ℓ̂
(︁
𝑧[𝑖]−

√︀
2𝐿𝑖(𝑤)

)︁
, where ℓ̂(·) is a differentiable convex function with a

unique root at 0 (e.g., the square loss ℓ̂(·) = (·)2
2

). Thus, (5.1) can be rewritten as

min
𝑤,𝑧

𝜓̂(𝑤, 𝑧)

s. t. ℓ̂
(︁
𝑧[𝑖]−

√︀
2𝐿𝑖(𝑤)

)︁
= 0, ∀ 𝑖 = 1, . . . , 𝑛.

(5.2)

Notice that (5.2) matches the implicitly-regularized problem given in in (3.5), which

is solved by MD under certain conditions as seen in Section 4.2. Therefore, we can solve

(5.2) by minimizing ℓ̂ via mirror descent with the potential function 𝜓̂. To do so, we need

to follow the update rule given in (4.1) and compute the gradients of the potential 𝜓̂(·, ·)
as well as the loss ℓ̂

(︁
𝑧[𝑖]−

√︀
2𝐿𝑖(𝑤)

)︁
, with respect to 𝑤 and 𝑧. We omit the details of

this straightforward calculation and simply state the result, which we call the Regularizer
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Algorithm 1 Regularizer Mirror Descent (RMD)

Require: 𝜆, 𝜂, 𝑤0

1: Initialization: 𝑤 ← 𝑤0, 𝑧 ← 0
2: repeat
3: for 𝑖← 1 to𝑛 do
4: 𝑐𝑖 ← 𝜂ℓ̂

′ (︁
𝑧[𝑖]−

√︀
2𝐿𝑖(𝑤)

)︁
5: end for
6: 𝑤 ← ∇𝜓−1

(︂
∇𝜓(𝑤) + 1

𝑛

∑︀𝑛
𝑖=1

𝑐𝑖√
2𝐿𝑖(𝑤)

∇𝐿𝑖(𝑤)
)︂

7: for 𝑖← 1 to𝑛 do
8: 𝑧[𝑖]← 𝑧[𝑖]− 𝜆 · 𝑐𝑖
9: end for

10: until convergence
11: return 𝑤

Mirror Descent (RMD) algorithm.

At time 𝑡, the update rule of RMD can be written as follows:

∇𝜓(𝑤𝑡) = ∇𝜓(𝑤𝑡−1) +
1

𝑛

∑︁𝑛

𝑖=1

𝑐𝑡,𝑖√︀
2𝐿𝑖(𝑤𝑡−1)

∇𝐿𝑖(𝑤𝑡−1),

𝑧𝑡[𝑖] = 𝑧𝑡−1[𝑖]− 𝜆𝑐𝑡,𝑖, ∀ 𝑖 = 1, . . . , 𝑛,

(5.3)

where 𝑐𝑡,𝑖 = 𝜂 · ℓ̂′
(︁
𝑧𝑡−1[𝑖]−

√︀
2𝐿𝑖(𝑤𝑡−1)

)︁
, ℓ̂

′
(·) is the derivative of the constraint-

enforcing loss function, and the weights are initialized with 𝑤0 = argmin𝑤 𝜓(𝑤) (which

is the origin for all norms, for example), and 𝑧0 = 0. Note that because of the strict

convexity of the regularizer 𝜓(·), its gradient ∇𝜓(·) is an invertible function, and the

above update rule is well-defined. Algorithm 1 summarizes the procedure. As will be

shown in Chapter 7, under suitable conditions, RMD provably solves the optimization

problem (3.3).

One can choose the constraint-enforcing loss as ℓ̂(·) = (·)2
2

, which implies ℓ̂
′
(·) = (·),

to simply obtain the same update rule as in (5.3) with 𝑐𝑡,𝑖 = 𝜂(𝑧𝑡−1[𝑖]−
√︀

2𝐿𝑖(𝑤𝑡−1)).

5.1.1 Mini-Batch RMD

As mentioned previously, in practice, gradient updates are computed on mini-batches

instead of the full dataset – we apply this principle to arrive at the mini-batch implemen-
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tation of RMD, which is summarized in Algorithm 2. Like with the mini-batch version of

MD described in Section 4.1, averaging the gradient over the mini-batch in the 𝑤 update

ensures that the magnitude of the update is normalized with respect to the batch size.

Algorithm 2 Mini-batch Regularizer Mirror Descent (RMD)

Require: 𝜆, 𝜂, 𝑤0

1: Initialization: 𝑤 ← 𝑤0, 𝑧 ← 0
2: repeat
3: Take a mini batch 𝐵
4: for 𝑖 ∈ 𝐵 do
5: 𝑐𝑖 ← 𝜂 · ℓ̂′

(︁
𝑧[𝑖]−

√︀
2𝐿𝑖(𝑤)

)︁
6: end for
7: 𝑤 ← ∇𝜓−1

(︂
∇𝜓(𝑤) + 1

|𝐵|
∑︀

𝑖∈𝐵
𝑐𝑖√

2𝐿𝑖(𝑤)
∇𝐿𝑖(𝑤)

)︂
8: for 𝑖 ∈ 𝐵 do
9: 𝑧[𝑖]← 𝑧[𝑖]− 𝜆 · 𝑐𝑖

10: end for
11: until convergence
12: return 𝑤

5.1.2 Reduction of RMD to MD for 𝜆→ 0

For 𝜆 → 0, RMD reduces to the standard MD, which jives with the fact that the opti-

mization problem it solves, i.e., (3.3), for 𝜆→ 0 reduces to the optimization problem that

MD solves, i.e., (3.5).

Note that when 𝜆 → 0 and 𝑧0 = 0, the update rule for 𝑧𝑡 in (5.3) vanishes, and we

have 𝑧𝑡 = 0 for all 𝑡. Therefore, the update becomes

∇𝜓(𝑤𝑡) = ∇𝜓(𝑤𝑡−1) +
𝜂

𝑛

𝑛∑︁
𝑖=1

ℓ̂
′ (︁−√︀2𝐿𝑖(𝑤𝑡−1)

)︁
√︀

2𝐿𝑖(𝑤𝑡−1)
∇𝐿𝑖(𝑤𝑡−1).

For ℓ̂(·) = (·)2
2

, we have ℓ̂
′
(·) = (·), and the update rule further reduces to

∇𝜓(𝑤𝑡) = ∇𝜓(𝑤𝑡−1)−
𝜂

𝑛

𝑛∑︁
𝑖=1

∇𝐿𝑖(𝑤𝑡−1),

which is precisely the update rule for MD. We also note that when the potential is 𝜓(·) =
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1
2
‖·‖22, we further reduce the update rule to standard gradient descent.

5.1.3 Special Case: 𝑞-norm Potential

An important special case of RMD is when the potential function 𝜓(·) is chosen to be the

ℓ𝑞-norm, i.e., 𝜓(𝑤) = 1
𝑞
‖𝑤‖𝑞𝑞 = 1

𝑞

∑︀𝑝
𝑘=1 |𝑤[𝑘]|𝑞, for a real number 𝑞 > 1. Let the current

gradient for each data point 𝑖 be denoted 𝑔𝑖 := ∇𝐿𝑖(𝑤𝑡−1). In this case, the update rule

can be written as
𝑤𝑡[𝑘] =

⃒⃒
𝜉𝑡,𝑖
⃒⃒ 1
𝑞−1 sign

(︀
𝜉𝑡,𝑖
)︀
, ∀ 𝑘

𝑧𝑡[𝑖] = 𝑧𝑡−1[𝑖]− 𝜆𝑐𝑡,𝑖, ∀ 𝑖 = 1, . . . , 𝑛

for 𝜉𝑡,𝑖 = |𝑤𝑡−1[𝑘]|𝑞−1 sign(𝑤𝑡−1[𝑘]) +
1
𝑛

∑︀𝑛
𝑖=1

𝑐𝑡,𝑖√
2𝐿𝑖(𝑤𝑡−1)

𝑔𝑖[𝑘], where 𝑤𝑡[𝑘] denotes the

𝑘-th element of 𝑤𝑡 (the weight vector at time 𝑡) and 𝑔𝑖[𝑘] is the 𝑘-th element of the

current gradient 𝑔𝑖. Note that for this choice of the potential function, the update rule is

coordinate-wise separable, in the sense that the update for the 𝑘-th element of the weight

vector requires only the 𝑘-th element of the weight and gradient vectors. This allows for

efficient parallel implementation of the algorithm, which is crucial for large-scale tasks.

Even among the family of 𝑞-norm RMD algorithms, there can be a wide range of

regularization effects for different values of 𝑞. Some important examples are as follows:

ℓ1-norm regularization promotes sparsity in the weights. Sparsity is often desirable for

reducing the storage and/or computational load, given the massive size of state-of-the-art

DNNs. However, since the ℓ1-norm is neither differentiable nor strictly convex, one may

use 𝜓(𝑤) = 1
1+𝜖
‖𝑤‖1+𝜖1+𝜖 for some small 𝜖 > 0 [2] as a proxy.

ℓ∞-norm regularization promotes a bounded and small range of weights. With this

choice of potential, the weights tend to concentrate around a small interval. This is

often desirable in various implementations of neural networks since it provides a small

dynamic range for quantization of the weights, which reduces the production cost and

computational complexity. However, since ℓ∞ is, again, not differentiable, one can choose

a large value for 𝑞 and use 𝜓(𝑤) = 1
𝑞
‖𝑤‖𝑞𝑞 to achieve the desirable regularization effect

of ℓ∞-norm (𝑞 = 10 is used in [5]).

ℓ2-norm still promotes small weights, similar to ℓ1-norm, but to a lesser extent. The
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update rule is

𝑤𝑡[𝑘] = 𝑤𝑡−1[𝑘] +
1

𝑛

𝑛∑︁
𝑖=1

𝑐𝑡,𝑖√︀
2𝐿𝑖(𝑤𝑡−1)

𝑔𝑖[𝑘], ∀ 𝑘

𝑧𝑡[𝑖] = 𝑧𝑡−1[𝑖]− 𝜆𝑐𝑡,𝑖, ∀ 𝑖 = 1 . . . 𝑛 (5.4)

5.1.4 Special Case: Negative Entropy Potential

One can choose the potential function 𝜓(·) to be the negative entropy, i.e., 𝜓(𝑤) =∑︀𝑝
𝑘=1𝑤[𝑘] log(𝑤[𝑘]). For this particular choice, the associated Bregman divergence [11, 4]

reduces to the Kullback–Leibler divergence. Let the current gradient for each data point

𝑖 be denoted by 𝑔𝑖 := ∇𝐿𝑖(𝑤𝑡−1). The update rule would be

𝑤𝑡[𝑘] = 𝑤𝑡−1[𝑘] exp

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑐𝑡,𝑖√︀
2𝐿𝑖(𝑤𝑡−1)

𝑔[𝑘]

)︃
, ∀ 𝑘

𝑧𝑡[𝑖] = 𝑧𝑡−1[𝑖]− 𝜆𝑐𝑡,𝑖, ∀ 𝑖 = 1, . . . , 𝑛

This update rule requires the weights to be positive. Like in the special case of the

𝑞-norm potential, the update rule for the negative entropy potential is separable and

therefore allows for efficient parallel implementation.

5.2 Implementation of 𝑞-norm RMD

We provide a proof-of-concept implementation of the 𝑞-norm RMD in PyTorch with ℓ̂(·) =
(·)2
2

. An implementation of 𝑞-norm RMD is particularly useful, because of the special case

where 𝑞 = 2. In this case, RMD attempts to solve the same objective as weight decay,

allowing us to perform a direct comparison between the two, which will be carried out in

Chapter 6.

This implementation is not immediately apparent, as RMD requires computations on

the per-sample empirical losses 𝐿𝑖(·) and gradients, as can be seen in Algorithm 1 and

2, whereas PyTorch typically takes a single gradient of the loss averaged or summed over

the batch of data points in each update step. However, we note that the update rule for
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the weights 𝑤 can be rewritten

∇𝜓(𝑤𝑡) = ∇𝜓(𝑤𝑡−1) +
𝜂

𝑛

𝑛∑︁
𝑖=1

𝜕

𝜕𝑤𝑡−1

ℓ̂
(︁
𝑧𝑡−1[𝑖]−

√︀
2𝐿𝑖(𝑤𝑡−1)

)︁
= ∇𝜓(𝑤𝑡−1) + 𝜂

𝜕

𝜕𝑤𝑡−1

(︃
1

𝑛

𝑛∑︁
𝑖=1

ℓ̂
(︁
𝑧𝑡−1[𝑖]−

√︀
2𝐿𝑖(𝑤𝑡−1)

)︁)︃

Thus, to implement RMD, we create a new loss function module which computes the

constraint-enforcing loss ℓ̂
(︁
𝑧[𝑖]−

√︀
2𝐿𝑖(𝑤)

)︁
= 1

2

(︁
𝑧[𝑖]−

√︀
2𝐿𝑖(𝑤)

)︁2
, which is given in

Listing 5.1. The parameters sample_loss and num_samples represent the per-sample

empirical loss function 𝐿𝑖(𝑤) = ℓ(𝑦𝑖, 𝑓𝑖(𝑤)) (for example, cross entropy loss) and the

total number of training samples, respectively.

Listing 5.1: Sample PyTorch implementation of the RMD loss function.
1 import torch
2 import torch.nn as nn
3

4 class RMDLoss(nn.Module):
5 def __init__(self , sample_loss , num_samples , reduction=’mean’):
6 super(RMD_Loss , self).__init__ ()
7 self.sample_loss_func = sample_loss
8 self.z = torch.zeros(num_samples)
9 self.idx = 0

10 self.reduction = reduction
11

12 def set_z_values(self , z, idx):
13 self.z = z
14 self.idx = idx
15

16 def forward(self , predictions , target):
17 sample_loss = self.sample_loss_func(predictions , target)
18 adj_loss = torch.sqrt(2 * sample_loss)
19 sq_loss = 0.5 * torch.square(self.z[self.idx] - adj_loss)
20

21 if self.reduction == ’mean’:
22 return torch.mean(sq_loss)
23 elif self.reduction == ’sum’:
24 return torch.sum(sq_loss)
25 else:
26 return squared_loss

An example training script for one epoch is provided in Listing 5.2. In the case of 𝑞-

norm RMD, the optimizer should be qnormSGD, as given in Listing 4.1. The constraint
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enforcing loss rmd_criterion can be implemented as the RMDLoss module provided in

Listing 5.1, and per_sample_criterion is the corresponding per-sample empirical loss

ℓ(·, ·). The data loader trainloader should provide the indices of each sample in the

batch, along with the data and labels. The auxiliary 𝑧 variables are maintained separately

from the base model as a tensor of length num_samples.

Thus, RMD can easily be substituted into a standard PyTorch training loop with only

a few additional lines of code. This implementation was utilized in the experiments in

Chapter 6, demonstrating that RMD is practically feasible.

Listing 5.2: Sample PyTorch implementation of training RMD for a single epoch.
1 def train_one_epoch ():
2 for data , labels , indexes in trainloader:
3 # Run the forward pass
4 outputs = model(data)
5 # per -sample loss in each batch
6 sample_loss = per_sample_criterion(outputs , labels)
7

8 rmd_criterion.set_z_values(z, idx)
9 rmd_loss = rmd_criterion(outputs , labels)

10

11 # Backprop
12 optimizer.zero_grad ()
13 rmd_loss.backward ()
14 optimizer.step()
15

16 # Compute c_i for batch
17 c_batch = lr * (z[idx] - \
18 torch.sqrt (2* sample_loss.clone().detach ()))
19 c_batch = c_batch.clone ().detach ()
20

21 # Update z-auxiliary variables
22 z[idx] = z[idx] - (lmbda * c_batch)

5.2.1 Computational Overhead

As in Section 4.3, we verify that models can be trained efficiently with RMD by running

a simple benchmark comparing the runtime of RMD (with the ℓ2-norm as the potential)

against the standard PyTorch implementation of weight decay (optim.SGD). We train

ResNet-18 [20] on CIFAR-10 [25] with 20% of the training labels corrupted and a batch
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size of 128 and time how long it takes to train 10 and 20 epochs. See Chapter 6 for details.

These experiments were run on a single Nvidia A30 GPU. We similarly limit sources of

nondeterminisim as in Section 4.3, though we again acknowledge that the results are likely

inprecise due to the use of shared computing resources.

Table 5.1: Comparison of the training time of RMD, as implemented in Listing 5.1 amd 5.2, and
the standard PyTorch implementation of weight decay (optim.SGD). The mean ± std. dev. of
the training time for 10 and 20 epochs across five trials is reported.

Training Time (seconds)

Algorithm 10 epochs 20 epochs

RMD 122.0± 0.4 244.1± 1.2

Weight Decay 101.6± 0.1 203.6± 0.2

From Table 5.1, it can be seen that RMD trains about 20% slower than the PyTorch

implementation of weight decay. We believe that this is in part because RMD inherently

requires more operations per update, but also due to the lack of optimization of our

implementation.

5.2.2 Notes on Implementation

One small but important note about this implementation of RMD is that it is prone to

numerical issues when the regularization parameter 𝜆 is small. This is because the per

sample losses are able to reach near zero when training, resulting in undefined gradients.

While this did not pose an issue for our experiments, since we wanted to observe the

effects of explicit regularization and thus used larger values of 𝜆, this problem remains a

kink in the implementation of RMD that requires more attention in the future.
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Chapter 6

RMD: Experimental Results

In this chapter, we demonstrate the power of RMD with experiments in a practical scenario

where the training labels are corrupted. As mentioned in the introduction, there are many

ways to regularize learned models and improve their generalization performance, including

methods that perform data augmentation, a change to the network architecture, early

stopping, etc. Since this paper is concerned with the effect of learning algorithms for

explicit regularization, we first present a detailed comparison of RMD, with the ℓ2-norm

as the regularizer, with standard weight decay (which also attempts to explicitly regularize

the ℓ2-norm of the weights) and GD (which induces implicit regularization) as a baseline.

To further demonstrate that explicit regularization is a good strategy for learning with

corrupted labels, we also compare RMD against several state-of-the-art methods designed

for this setting.

The code used for the experimental portion of this thesis can be found at https:

//github.com/tiff-toff/RegularizerMirrorDescent.

6.1 Experimental Setup

6.1.1 General Setup

Dataset. To test the ability of different regularization methods in avoiding overfitting,

we need a training set that does not consist entirely of clean data. Thus, we took the
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popular CIFAR-10 dataset [25], which has 10 classes and 𝑛 = 50, 000 training data points,

and created 2 new datasets by corrupting 20% and 40% of the data points via assigning

them random labels. Note that for each of those images, there is a 9/10 chance of being

assigned a wrong label. Therefore, on average, there are about 18% and 36% incorrect

labels in the aforementioned datasets, respectively. To have a standard baseline, we also

run our experiments on the standard CIFAR-10 dataset (i.e., 0% corruption). We apply

random crops and horizontal flips for data augmentation. No corruption is applied on the

test data, i.e., the standard test set of CIFAR-10 is used for evaluating the test accuracies.

Network Architecture. We train a standard ResNet-18 [20] deep neural network, as

implemented in https://github.com/kuangliu/pytorch-cifar, which is commonly

used for the CIFAR-10 dataset. The network has 18 layers, and around 11 million pa-

rameters. Thus, it qualifies as a highly overparameterized model. We do not make any

changes to the network, and we use the same structure in every experiment.

Initialization. The parameters 𝑤 and 𝑧 are initialized randomly around zero. For each

trial, ResNet-18 is initialized with different weights, but the same set of initializations is

used across algorithms.

6.1.2 Explicit Regularization Algorithms

We first consider two explicit regularization strategies, weight decay and RMD, and the

standard SGD. We ran each of the two explicit regularization algorithms on a wide range

of regularization parameter 𝜆.

1. SGD: We use the standard stochastic gradient descent as a baseline. While there

is no explicit regularization, this is still known to induce an implicit regularization,

as discussed in Section 3.3.

2. SGD + Weight decay: We train the network with an ℓ2-norm regularization,

through weight decay.
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3. RMD: We train the network with RMD, which provably regularizes with an ℓ2-norm.

We utilize the mini-batch implementation of RMD as summarized in Algorithm 2

and use the square loss to enforce the constraints, i.e., ℓ̂(·) = 1
2
(·)2.

Mini-Batch. For all three algorithms, we train in mini-batches with a batch size of 128,

which is a common choice for CIFAR-10.

Learning Rate. We used three different fixed learning rates for each of the algorithms:

0.001, 0.01 and 0.1. Among all, 0.1 provided the best convergence behavior for the SGD

and RMD, whereas 0.01 worked the best for the explicit regularization via weight decay.

The reported results are given for the best-performing learning rate choices.

Stopping Criterion. In order to determine the stopping point for each of the algo-

rithms, we use the following stopping criteria.

1. For SGD, we train until the training data is interpolated, i.e., 100% training accuracy,

in a similar matter as [5].

2. Note that it is not feasible to determine the stopping criterion based on the training

accuracies for the explicit regularization via weight decay or RMD. Therefore, for

the explicit regularization via weight decay, we consider the change in the total loss

over the training set. We stop the training if the change in the total loss is less

than 0.01% over 100 consecutive epochs.

3. For RMD, we know that the algorithm eventually interpolates the new manifold

𝒲̂ , i.e., fits the constraints in (5.1). Thus, we can use the total change in the

constraints, i.e.,
𝑛∑︁
𝑖=1

⃒⃒⃒
𝑧[𝑖]−

√︀
2𝐿𝑖(𝑤)

⃒⃒⃒
.

and we stop the training if this summation improves less than 0.01% over 100

consecutive epochs.

We should emphasize that, given our choices for the setup, the only difference between

the experiments on the same corruption level dataset is the optimization algorithm.
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6.1.3 Comparison Methods

To demonstrate the practical utility of RMD, we compare its generalization performance

against several other state-of-the-art methods for learning with noisy labels. Each of the

comparison methods is trained on the same datasets, network architecture, and weight

initialization as described in Section 6.1.1. To best reproduce the performance of these

results, we reuse the choices of hyperparameters as is given in the original papers.

1. CDR: We train the network with CDR [49] by adapting the code used in [49], which

is available at https://github.com/xiaoboxia/CDR. Note that the experiments

in [49] use ResNet-50 [20], whereas we train with ResNet-18. The remaining exper-

imental setup is unchanged from [49].

2. PHuber-CE: We adapt code provided at https://github.com/dmizr/phuber

[36], which is a re-implementation of the experiments run in [34]. We train the

network with the partially Huberised cross entropy loss with hyperparameter 𝜏 set

to 2 [34]. The remaining hyperparameters for training ResNet-18 are provided in

the codebase: 200 epochs, batch size of 128, training with the SGD optimizer with

Nesterov momentum of 0.9 and weight decay of 5× 10−4. The initial learning rate

is 0.1 and decays by 0.2 at epochs 60, 120, and 160.

3. T-revision: We adapt code used in [50] at https://github.com/xiaoboxia/

T-Revision, which employs the importance reweighting method [30] and modifies

the learned transition matrix during training [50]. We modify the number of epochs

used for estimating the transition matrix from 20 to 40. The remaining experimental

setup is unchanged from [50].

4. Label Smoothing: We train with label smoothing directly via Pytorch’s

nn.CrossEntropyLoss [46]. [31] found that the performance of label smoothing

improves as the hyperparameter 𝜖 increases above the corruption rate, so we train

with 𝜖 set to 0.8. We follow the direct training method in [48] for remaining

experimental details: we train for 200 epochs with batch size 128 and used the

SGD optimizer with Nesterov momentum of 0.9 and weight decay 10−4. The initial
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learning rate is set to 0.1, and it decays by 0.1 at the 100-th and 150-th epochs.

Note that the experiments in [48] employ ResNet-34 [20], whereas we used ResNet-

18.

5. Mixup: We train with Mixup [54], adapting the the original code used in [54],

which is provided at https://github.com/facebookresearch/mixup-cifar10.

We set the hyperparameter 𝛼 to 8 and 32 for 20% and 40% corruption levels,

respectively. Note that the original experiments used the PreActivation ResNet-18

network [19], whereas we used vanilla ResNet-18. The remaining experimental setup

is unchanged from [54].

For these experiments, all trials trained with RMD, CDR, or PHuber-CE were per-

formed on a single Nvidia V100 GPU. All trials trained with SGD, weight decay, T-revision,

label smoothing, or Mixup were performed on a single Nvidia A30 GPU.

6.2 Explicit Regularization Results

The results for SGD, weight decay, and RMD are given in Fig. 6-1 and 6-2. Fig. 6-1a

shows the results when 40% of the training data is corrupted, and Fig. 6-1b when the

corrupted level is 20%. As expected, because the network is highly overparameterized, in

all cases, SGD interpolates the training data and achieves 100% training accuracy.

As seen in Fig. 6-1, RMD significantly outperforms both SGD and weight decay on

corrupted datasets. In particular, despite attempting to minimize the same cost function,

RMD and weight decay converge to very different solutions. Further, models trained via

RMD achieve higher test accuracy than those trained with weight decay, even when the

solutions reach similar training accuracy. At its peak, RMD surpasses weight decay’s

peak test accuracy by more than 4% and 6.5%, for when 20% and 40% of the labels are

corrupted, respectively.

Additionally, RMD’s behavior is significantly more consistent. Both training and test

accuracies differ very little between trials. And the test accuracy changes gracefully as we

adjust the regularization strength 𝜆, where it follows a bell-shaped curve. Weight decay,
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(a) CIFAR-10 with 40% data points corrupted.
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(b) CIFAR-10 with 20% data points corrupted.

Figure 6-1: The accuracy (%) of ResNet-18 on CIFAR-10 with 40% (6-1a) and 20% (6-1b) of the
training set corrupted when trained with RMD and weight decay over a range of regularization
strengths 𝜆. For each corruption level, the mean and standard deviation of the training (denoted
in green) and test (denoted in red) accuracies over 5 trials are reported and compared against
the test accuracy achieved by SGD when it fully interpolates the training data (denoted by the
dotted blue line). The standard deviation is denoted by the shaded region. RMD achieves very
small standard deviations, thus these regions are not entirely visible in the RMD plots. RMD is
both more robust and more consistent than weight decay, outperforming weight decay with less
variation between trials.

on the other hand, is highly sensitive to network initialization and regularization strength.

Therefore, compared to weight decay, RMD produces more reliable results and requires

less effort on hyperparameter tuning.

Finally, for the sake of completion, we show the results when training with SGD, weight

decay, and RMD for the uncorrupted (clean) CIFAR-10 dataset in Fig. 6-2. As expected,

since the data is uncorrupted, interpolating the data makes sense, and RMD and weight

decay both demonstrate comparable performance to SGD when 𝜆 is small. Note that this

empirical observation again highlights the fact that as 𝜆 → 0, RMD reduces to mirror

descent as shown in Section 5.1.2. However, RMD again demonstrates more consistent
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performance and slightly better generalization than weight decay.
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Figure 6-2: The accuracy (%) of ResNet-18 on uncorrupted CIFAR-10 when trained with RMD
and weight decay over a range of regularization strengths 𝜆. The mean and standard deviation
(indicated by the shaded region) of the training (denoted in green) and test (denoted in red)
accuracies over 5 trials are reported and compared against the test accuracy achieved by SGD
when it fully interpolates the training data (denoted by the dotted blue line). RMD achieves
higher peak test accuracy compared to SGD and weight decay, and performs more consistently
from trial to trial.

We acknowledge that there is a discrepancy in the scales of 𝜆 used to achieve similar

training accuracy between weight decay and RMD in these experiments. We believe

that this discrepancy occurs because of the distinct convergence behaviors of the two

algorithms and due to the fact that weight decay most likely fails to find a minima in the

training loss.

For a more complete set of results, see Appendix A.

6.2.1 Comparison with Other Methods

Table 6.1 compares RMD against state-of-the-art methods for learning problems with cor-

rupted labels. As can be seen, for 20% corruption, Mixup achieves the best test accuracy,

while RMD closely follows in second place. Further, for the larger 40% corruption, RMD

outperforms all other methods, including Mixup. Additionally, as noted in Section 6.2,

RMD is remarkably consistent and achieves small standard deviations in the test accuracy

across 5 trials, particularly at the 40% corruption level, where the accuracy achieved by

other methods varies more from trial to trial.

We note that some of the above methods are orthogonal to RMD, and can thus likely
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Table 6.1: Comparison of the test accuracy (%) of RMD against methods for learning with
corrupted labels. The mean ± std. dev. across 5 trials is reported. For weight decay and
RMD, we report results for the best-performing value of 𝜆. The method with the best mean test
accuracy for each corruption level is highlighted in boldface.

Method / Corruption level 20% 40%

CDR [49] 89.37± .16 86.14± .50
PHuber-CE [34] 90.26± .27 86.70± .23
T-revision [50] 89.56± .30 86.79± .52
Label Smoothing [46] 89.74± .21 83.75± .36
Mixup [54] 91.71± .22 87.70± .38
SGD 83.88± .18 70.83± .63
Weight Decay 86.38± .49 81.86± 1.67
RMD (ours) 90.60± .24 88.42± .22

be used in combination with RMD to achieve higher performance (e.g., training with RMD

and Mixup together). However, because this paper focuses on the effects of the learning

algorithm and considers the problem of learning with corrupted labels only as an example,

we leave this study to future work.

It is particularly important to note that RMD is able to match or exceed the perfor-

mance of these methods when training on corrupted labels simply by solving the regularized

objective in a principled manner. This is in stark contrast with the methods we compare

against, which introduce additional hyperparameters other than the regularization strength

𝜆 (Mixup, label smoothing, PHuber-CE) or rely on ad-hoc heuristics and stopping con-

ditions tailored to the problem in order to achieve high performance (CDR, PHuber-CE,

T-revision). Table 6.2 demonstrates the effects the hyperparameters and heuristics used

for each method have on the test accuracy when trained on CIFAR-10 with 40% of the

training labels corrupted.

CDR relies heavily on early stopping, as determined by when the validation accuracy is

highest among the 100 training epochs. When we look at the final test accuracy achieved

vs. the test accuracy given by early stopping, we see that there is a severe drop of

nearly 20%. Similarly, for label smoothing, the test accuracy achieved by its last epoch

is significantly worse than its best, indicating that these techniques still overfit to the

corrupted labels.

48



Table 6.2: Demonstration of the effects of hyperparameter tuning and ad-hoc heuristics for
state-of-the-art methods for 40% corruption. The mean ± std. dev. of the test accuracy (%)
across 5 trials is reported for each version of each method. The best performing version of each
method is highlighted in boldface; this is the value reported in Table 6.1. For each method, the
specific hyperparameter setting or heuristics used for stopping conditions has a strong effect on
the resulting test accuracy. RMD achieves higher test accuracy with smaller standard deviation
compared to these methods, without introducing ad-hoc heuristics or new hyperparameters.

Algorithm Test Accuracy

CDR (early stopping) 86.14± .50
CDR (last) 66.31± 1.14

PHuber-CE 86.70± .23
PHuber-CE (extended) 84.32± .61
T-revision (20 epoch est.) 65.37± 5.28
T-revision (40 epoch est.) 86.79± .52
Label Smoothing (𝜖 = 0.2, best) 82.37± .35
Label Smoothing (𝜖 = 0.2, last) 72.36± .42
Label Smoothing (𝜖 = 0.8, best) 83.75± .36
Label Smoothing (𝜖 = 0.8, last) 68.97± .21
Mixup (best) 87.70± .38
Mixup (last) 86.90± .30
RMD (best; ours) 88.42± .22

T-revision is multistage algorithm – its first stage is to estimate a transition matrix.

If we train for 20 epochs in this first stage to obtain our estimate, the resulting test

accuracy is more than 20% lower than if we used 40 epochs to obtain a more accurate

initial estimate. We also note that both T-revision and CDR require estimates of the

noise rate or corruption level (T-revision estimates the transition matrix, CDR explicitly

requires the noise rate in its update rule), and thus have limited practical utility even for

the problem of learning corrupted labels.

For Mixup and PHuber-CE, the heuristic we examine (reporting best vs. last test

accuracy for Mixup, and extending the number of epochs from 200 to 300 for PHuber),

had much more mild effects on the test performance. Similarly, the 𝜖 hyperparameter

of label smoothing has noticeable but relatively small effects on the performance of the

method.

Similar analysis for the 20% corruption level and the uncorrupted dataset can be found
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in Appendix A

These methods all employ weight decay and also introduce new hyperparameters or

ad-hoc heuristics like early stopping. Our experiments show that RMD removes the need

for these new hyperparameters and heuristics and provides well-formulated guarantees on

its behavior. Therefore, RMD is a strong candidate for training overparameterized deep

networks with explicit regularization, including in other applications beyond learning with

corrupted labels where regularization is also desirable.
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Chapter 7

Convergence Properties of RMD

In this section, we provide convergence guarantees for RMD using the implicit regular-

ization properties of mirror descent algorithms [3, 5] described in Chapter 4. In the

following, in parallel with the construction in Section 4.2 for MD, we extend and formalize

the convergence guarantee of RMD.

7.1 RMD Approximately Converges to the Optimal

Explicitly Regularized Solution

As mentioned in Chapter 5, the optimization problem solved by RMD can be defined

over the augmented parameters 𝑤̄ :=

⎡⎣𝑤
𝑧

⎤⎦∈R𝑝+𝑛. Following the definitions above, we

define the learning problem over 𝑤̄ with 𝑓 𝑖(𝑤̄) =
√︀

2𝐿𝑖(𝑤)−𝑧[𝑖], 𝑦𝑖 = 0, and 𝐿̂𝑖 (𝑤̄) =

ℓ̂(𝑦𝑖−𝑓 𝑖 (𝑤̄)) = ℓ̂(𝑧[𝑖]−
√︀
2𝐿𝑖(𝑤)) for 𝑖= 1, . . . , 𝑛. Note that in this new problem, we

now have 𝑝+𝑛 parameters and 𝑛 constraints/data points, and since 𝑝 ≫ 𝑛, we have

𝑝+ 𝑛≫𝑛, and we are still in the highly overparameterized regime (even more so). Thus,

we can also define the set of interpolating solutions for the new problem as

𝒲̂ =
{︁
𝑤̄ ∈ R𝑝+𝑛 | 𝑓 𝑖 (𝑤̄)=𝑦𝑖, 𝑖 = 1, . . . , 𝑛

}︁
. (7.1)

As discussed in Chapter 5, define the new potential function 𝜓̂ (𝑤̄) = 𝜓(𝑤)+ 1
2𝜆𝑛
‖𝑧‖2
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and a corresponding MD update algorithm

∇𝜓̂ (𝑤̄𝑡)=∇𝜓̂ (𝑤̄𝑡−1)−
𝜂

𝑛

∑︁𝑛

𝑖=1
∇𝐿̂𝑖 (𝑤̄𝑡−1) ,

initialized at 𝑤̄0 :=

⎡⎣𝑤0

0

⎤⎦. It is straightforward to verify that this update rule is equivalent

to that of RMD, i.e., (5.3). Moreover, following (4.5), we have

𝑤̂* =argmin
𝑤,𝑧

𝐷𝜓̂ (𝑤̄, 𝑤̄0)

s. t. 𝑓 𝑖 (𝑤̄) = 𝑦𝑖, ∀ 𝑖 = 1, . . . , 𝑛.

(7.2)

Plugging 𝐷𝜓̂ (𝑤̄, 𝑤̄0) = 𝐷𝜓(𝑤,𝑤0) +
1

2𝜆𝑛
‖𝑧‖2 and 𝑓 𝑖 (𝑤̄)=

√︀
2𝐿𝑖(𝑤)−𝑧[𝑖] into (7.2), we

can show that (7.2) is equivalent to (5.1) for 𝑤0 = argmin𝑤 𝜓(𝑤).

Before giving the formal analysis on the convergence guarantee, we have the following

regularity assumptions on the underlying loss landscape and the learning model, which are

standard in the non-convex optimization literature [29, 1, 13].

Assumption 7.1.1. Denote the initial point by

⎡⎣𝑤0

0

⎤⎦. There exists 𝑤̄ ∈ 𝒲̂ and a region

ℬ̂ =

⎧⎨⎩𝑤̄′=

⎡⎣𝑤′

𝑧′

⎤⎦∈R𝑝+𝑛 | 𝐷𝜓̂ (𝑤̄, 𝑤̄
′)≤𝜖

⎫⎬⎭ containing

⎡⎣𝑤0

0

⎤⎦, such that 𝐷𝐿̂𝑖
(𝑤̄, 𝑤̄′) ≥

0, 𝑖=1, . . . , 𝑛, for all 𝑤̄′∈ℬ̂.

Assumption 7.1.2. Consider the region ℬ̂ in Assumption 7.1.1. 𝑓 𝑖(·) have bounded gra-

dient and Hessian on the convex hull of ℬ̂, i.e., ‖∇𝑓 𝑖 (𝑤̄′) ‖≤𝛾, and 𝛼≤𝜆min

(︁
𝐻𝑓 𝑖

(𝑤̄′)
)︁
≤

𝜆max

(︁
𝐻𝑓 𝑖

(𝑤̄′)
)︁
≤𝛽, 𝑖=1, . . . , 𝑛, for all 𝑤̄′ ∈ conv ℬ̂.

In a nutshell, Assumption 7.1.1 states that the initial point

⎡⎣𝑤0

0

⎤⎦ is close to the (new)

(𝑝 + 𝑛)-dimensional manifold 𝒲̂ of global minima. This assumption arguably comes for

free in highly overparameterized settings [1]. Assumption 7.1.2 states that the first and

second derivatives of the augmented learning model are locally bounded. This requirement

is again standard in non-convex optimization literature to have some regularity in the
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learning dynamics. With this assumption in place, we state the convergence guarantees

of RMD.

Theorem 7.1.3. Consider the set of interpolating solutions 𝒲̂ defined in (7.1), the

closest such solution 𝑤̂* defined in (7.2), and the RMD iterates given in (5.3) initialized

at

⎡⎣𝑤0

0

⎤⎦. Under Assumption 7.1.1, for sufficiently small step size, i.e., for any 𝜂 > 0 for

which 𝜓̂(·)− 𝜂𝐿̂𝑖(·) is strictly convex on ℬ̂ for all 𝑖, the following statements hold:

1. The iterates converge to

⎡⎣𝑤∞

𝑧∞

⎤⎦ ∈ 𝒲̂ .

2. 𝐷𝜓̂

⎛⎝𝑤̂*,

⎡⎣𝑤∞

𝑧∞

⎤⎦⎞⎠ = 𝑜(𝜖).

The proof of this result follows from adapting the MD convergence guarantee to the

augmented model of RMD. This result shows that, if RMD starts with an initialization

that is 𝑂(𝜖) away from 𝒲̂ in terms of Bregman divergence 𝐷𝜓̂, it converges to a point⎡⎣𝑤∞

𝑧∞

⎤⎦ ∈ 𝒲̂ that is 𝑜(𝜖) away from 𝑤̂*, again in terms of Bregman divergence. In other

words, the Bregman divergence of this point is 𝑜(𝜖) from the minimum value it can take.

It is important to note that Theorem 7.1.3 requires the step size to be just small

enough to locally guarantee the strict convexity of 𝜓̂(·)− 𝜂𝐿̂𝑖(·) inside ℬ̂, and not glob-

ally. Moreover, we should emphasize that while Theorem 7.1.3 states that RMD converges

to the manifold 𝒲̂ , it does not mean that it is fitting the training data points or achieving

zero training error. That is because 𝒲̂ ∈ R𝑝+𝑛 is a different (much higher-dimensional)

manifold than𝒲 ∈ R𝑝 in (4.3), and interpolating the new problem would result in fitting

the equality constraints defined by the explicitly regularized problem, i.e.,
√︀

2𝐿𝑖(𝑤) = 𝑧[𝑖]

for all 𝑖, which in general may happen when the empirical losses 𝐿𝑖 are nonzero.

7.2 Experimental Validation

Using the results from Chapter 6, we are able to evaluate the theoretical claims of Sec-

tion 7.1. As we have run extensive experiments training with RMD where 𝜓(·) = 1
2
‖·‖2
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Table 7.1: As in Chapter 6, we have used RMD with the ℓ2-norm as regularizer 𝜓(·) to train
ResNet-18 from 5 different initializations on CIFAR-10 with 40% of the labels corrupted for
𝜆 = 0.5. This gives us 5 different solutions in the manifold 𝒲̂ of global minima. The rows
correspond to different initial points, and the column corresponds to the final solutions obtained
when trained from each initialization. Each entry is the distance between the two, measured in
the Bregman divergence relative to the modified potential 𝜓̂(·). As can be seen, the smallest
entry in each row is the one where the initial point and final point match, i.e., RMD has converged
to the point in 𝒲̂ closest to the initialization it began at.

Final 1 Final 2 Final 3 Final 4 Final 5
Initial 1 108.3 1226.1 1222.1 1222.2 1222.3
Initial 2 1216.9 122.3 1222.6 1223.9 1222.7
Initial 3 1217.2 1227.1 115.8 1223.6 1223.3
Initial 4 1216.0 1226.8 1222.5 120.3 1222.4
Initial 5 12173 1227.0 1222.8 1223.4 116.6

for different initializations, we can verify the convergence property presented in Theo-

rem 7.1.3. For a specific corruption level and value of 𝜆, we compute the distance be-

tween each of the five initializations and each model trained by RMD from each initializa-

tion, or more specifically the Bregman divergence 𝐷𝜓̂ (𝑤̄, 𝑤̄0) = 𝐷𝜓(𝑤,𝑤0) +
1

2𝜆𝑛
‖𝑧‖2 =

1
2
||𝑤 − 𝑤0||2 + 1

2𝜆𝑛
‖𝑧‖2.

Table 7.1 shows the value of 𝐷𝜓̂ (𝑤̄, 𝑤̄0) when computed on the solutions RMD ob-

tained when training ResNet-18 from 5 different initializations on CIFAR-10 with a 40%

noise rate in the labels and 𝜆 = 0.5. It can be seen that the smallest entries of each

row lie along the diagonal, indicating that the solution in 𝒲̂ reached by RMD is indeed

the "closest" to the initial point that RMD started at. Thus, the findings in Section 7.1

appear to hold true empirically.
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Chapter 8

Conclusion

We presented Regularizer Mirror Descent (RMD), a novel and efficient algorithm for

training DNNs with any desired strictly convex regularizer. The starting point for RMD

is a standard cost which is the sum of the training loss and a differentiable, strictly

convex regularizer of the network weights. For highly overparameterized models, RMD

provably converges to a point “close” to the minimizer of this cost. The algorithm can

be readily applied to any DNN and enjoys the same parallelization properties as SGD. To

illustrate the utility of RMD, we consider an application in the problem of learning with

corrupted labels. After applying RMD to this problem of learning with corrupted labels,

we demonstrate that RMD not only significantly outperforms and is more consistent than

weight decay, but also surpasses state-of-the-art methods for this problem setting. So we

conclude that RMD is a viable and versatile approach to solving explicit regularization in

practical settings.

8.1 Future Work

Given that RMD enables training any network efficiently with a desired regularizer, it opens

up several new avenues for future research. In particular, an extensive experimental study

of the effect of different regularizers on different datasets and different architectures would

be instrumental to uncovering the role of regularization in modern learning problems.

There are additionally a couple open concerns left to address. While we have a
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hypothesis for the discrepancy in the ranges of 𝜆 used in Chapter 6, a more thorough

investigation would be worthwhile to properly understand the cause. Additionally, as

mentioned in Section 5.2, the current implementation is likely to result in numerical issues

for small values of 𝜆. Thus, fine tuning of the implementation of RMD is needed.
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Appendix A

Full Experimental Results

A.1 Results on the Training Set with 40% of Labels

Corrupted

The training and test accuracies for the two explicitly regularized methods (RMD and

weight decay) with various values of 𝜆 are reported in Table A.1. They are also compared

against the baseline accuracies achieved by SGD.

SGD interpolates the training data due to overparameterization and achieves 100%

training accuracy, but this results in overfitting. Hence, the test accuracy is only around

70%. Weight decay generally does not outperform the interpolating solution found by

standard SGD until 𝜆 is relatively large, i.e., there is a sufficient amount of regularization.

RMD significantly outperforms weight decay for nearly all runs of either method and is

not as sensitive to the value of 𝜆 in the ranges considered. Notably, for the 40% corruption

level, RMD achieves peak test accuracy when the training accuracy is approximately equal

to the fraction of uncorrupted points in the training set, i.e., 64%.
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Table A.1: Comparison of the two explicitly regularized methods, RMD and weight decay, against
the baseline of implicit regularization induced by SGD, for 40% corruption on the labels. The
mean ± std. dev. of the training and test accuracies (%) across 5 trials are reported for each
value of 𝜆. The best performing 𝜆 is for RMD and weight decay highlighted in boldface; this is
the value reported in Table 6.1. Note for 𝜆 = 0.02, weight decay failed to converge in 3 out of
5 trials. Thus only the mean ± std. dev. achieved by the 2 successful trials is reported in gray
and is denoted by *.

Algorithm Lambda Training Accuracy Test Accuracy

SGD N/A 100.00± .00 70.83± .63
RMD (ours) 0.1 89.18± 1.23 80.06± .45

0.2 70.27± .22 85.65± .29
0.3 66.91± .16 87.63± .15
0.4 65.18± .15 88.18± .36
0.5 63.60± .40 88.42± .22
0.6 61.74± .13 87.74± .32
0.7 59.83± .16 86.48± .24
0.8 57.77± .57 84.52± .81
0.9 55.55± 1.39 81.81± 1.98

Weight Decay 0.001 96.83± .39 64.80± 1.66
0.002 94.49± .13 64.09± 1.77
0.003 91.70± .93 62.87± .62
0.004 89.58± 1.06 62.92± 1.72
0.005 89.05± .90 63.69± 1.85
0.007 85.14± .32 62.75± 3.05
0.01 75.55± 2.57 64.076± 1.78
0.013 60.44± .90 81.86± 1.67
0.017 54.52± 1.20 79.62± 1.38
0.02 *50.80± .12 *75.00± .41
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A.2 Results on the Training Set with 20% of Labels

Corrupted

The training and test accuracies for SGD, weight decay, and RMD with various values of 𝜆

for the 20% corruption level are summarized in Table A.2. As mentioned before, because

the network is highly overparameterized, SGD expectedly interpolates the training data

and achieves almost 100% training accuracy. The test accuracy for SGD is around 84%.

RMD again outperforms weight decay at this corruption level and achieves peak test

accuracy when the training accuracy is around 82%, i.e., the fraction of uncorrupted

samples in the training set.

Table A.3 presents results from a similar set of experiments as in Table 6.2, but for

the 20% corruption level. The findings are consistent with those of Table 6.2 but at

a much smaller scale. The choice of heuristic has much less noticeable effects given

the lower corruption rate. Thus, we again see that RMD can be trained to comparable

or superior test accuracies when the training set is corrupted, without introducing new

hyperparameters and ad-hoc heuristics.
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Table A.2: Comparison of the two explicitly regularized methods, RMD and weight decay, against
the baseline of implicit regularization induced by SGD, for 20% corruption on the labels. The
mean ± std. dev. of the training and test accuracies (%) across 5 trials are reported for each
value of 𝜆. The best performing 𝜆 for RMD and weight decay is highlighted in boldface; this
is the value reported in Table 6.1.

Algorithm Lambda Training Accuracy Test Accuracy

SGD N/A 100.00± .00 83.88± .18
RMD 0.1 93.36± .61 87.84± .24

0.2 85.03± .08 89.61± 0.22
0.3 83.18± .06 90.10± .17
0.4 82.05± .20 90.60± .24
0.5 80.74± .12 90.38± .21
0.6 79.39± .20 90.21± .34
0.7 78.22± .43 89.55± .32
0.8 76.59± .36 88.38± .34
0.9 74.99± .42 87.06± .82

Weight Decay 0.001 98.48± .12 80.79± .41
0.002 96.75± .39 80.05± .58
0.003 95.42± .41 78.52± 1.27
0.004 94.26± 1.05 79.26± .44
0.005 93.30± .58 78.45± .58
0.007 91.76± .43 78.73± .61
0.01 87.27± 1.20 79.26± .81
0.013 82.97± 1.46 79.61± .89
0.017 76.99± .44 86.38± .49
0.02 73.68± .65 85.15± .76
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Table A.3: Demonstration of the effects of hyperparameter tuning and ad-hoc heuristics for
state-of-the-art methods for 20% corruption. The mean ± std. dev. of the test accuracy (%)
across 5 trials is reported for each version of each method. The best performing version of each
method is highlighted in boldface; this is the value reported in Table 6.1. For each method, the
specific hyperparameter setting or heuristics used for stopping conditions has a strong effect on
the resulting test accuracy. RMD matches or achieves higher test accuracy compared to these
methods, without introducing ad-hoc heuristics or new hyperparameters.

Algorithm Test Accuracy

CDR (early stopping) 89.37± .16
CDR (last) 81.12± .60
PHuber-CE 90.26± .27
PHuber-CE (extended) 89.95± .23
T-revision (20 epoch est.) 85.24± 3.73
T-revision (40 epoch est.) 89.56± .30
Label smoothing (𝜖 = 0.2, best) 86.35± .28
Label smoothing (𝜖 = 0.2, last) 85.72± .28
Label smoothing (𝜖 = 0.8, best) 89.74± .21
Label smoothing (𝜖 = 0.8, last) 85.37± .50
Mixup (best) 91.71± .22
Mixup (last) 91.44± .23
RMD (best; ours) 90.60± .24
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A.3 Results on the Uncorrupted (Clean) Training

Set

The training and test accuracies for SGD, weight decay, and RMD with various values of

𝜆 for the uncorrupted dataset are presented in Table A.4.

Table A.5 presents results from a similar set of experiments as in Table 6.2, but when

training with uncorrupted CIFAR-10. From the results in Table A.5, we can see that,

when the dataset is uncorrupted, RMD performs similarly to PHuber, but is outperformed

by most other methods in our comparison. However, this is expected given that the other

methods build upon standard SGD to improve performance. We also note that because

we are in the overparameterized regime and because our data is uncorrupted, it is desirable

to train to zero training error. Thus, there is little discrepancy across choices of heuristics

for each of these methods, and RMD does not necessarily achieve superior performance.
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Table A.4: Comparison of the two explicitly regularized methods, RMD and weight decay, against
the baseline of implicit regularization induced by SGD, on the uncorrupted dataset. The mean
± std. dev. of the training and test accuracies (%) across 5 trials are reported for each value of
𝜆. The best performing 𝜆 for RMD and weight decay is highlighted in boldface.

Algorithm Lambda Training Accuracy Test Accuracy

SGD N/A 100± .00 92.42± .15
RMD 0.2 99.95± .01 92.58± .15

0.3 99.50± .04 92.38± .16
0.4 98.53± .10 92.35± .18
0.5 97.17± .14 91.83± .27
0.6 96.15± .23 91.23± .24
0.7 94.99± .38 90.58± .37
0.8 93.57± .55 89.59± .43
0.9 92.12± .37 88.54± .29

Weight Decay 0.001 99.80± .03 92.13± .09
0.002 99.59± .10 92.20± .43
0.003 99.43± .11 92.37± .42
0.004 99.12± .17 91.95± .18
0.005 98.98± .18 92.00± .29
0.007 98.50± .26 91.89± .50
0.01 97.89± .54 91.68± .44
0.013 96.83± .65 91.08± .77
0.017 95.74± .37 90.54± .54
0.02 95.08± .38 90.25± .11
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Table A.5: Demonstration of the effects of hyperparameter tuning and ad-hoc heuristics for state-
of-the-art methods for the uncorrupted dataset. The mean ± std. dev. of the test accuracy
(%) across 5 trials is reported for version of each method. The best performing version of each
method is highlighted in boldface.

Algorithm Test Accuracy

CDR (early stopping) 93.10± .20
CDR (last) 93.11± .17
PHuber-CE 92.63± .19
PHuber-CE (extended) 92.66± .25
T-revision (20 epoch est.) 92.17± .14
T-revision (40 epoch est.) 92.90± .18
Label smoothing (𝜖 = 0.2, best) 93.82± .12
Label smoothing (𝜖 = 0.2, last) 93.67± .10
Label smoothing (𝜖 = 0.8, best) 94.02± .24
Label smoothing (𝜖 = 0.8, last) 93.95± .26
Mixup (best) 94.90± .21
Mixup (last) 94.63± .25
RMD (best; ours) 92.58± .15
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