
Fast Parallel Algorithms and Library for Spatial

Clustering and Computational Geometry

by

Yiqiu Wang

B.A., Rice University (2016)
S.M., Rice University (2018)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Yiqiu Wang. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide,

irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Authored by: Yiqiu Wang
Department of Electrical Engineering and Computer Science
May 19, 2023

Certified by: Julian Shun
Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Fast Parallel Algorithms and Library for Spatial Clustering
and Computational Geometry

by
Yiqiu Wang

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis presents novel parallel shared-memory multi-core algorithms, implemen-
tations, and frameworks for efficiently solving large-scale spatial clustering and com-
putational geometry problems. The primary focus is on designing theoretically-
efficient and practical algorithms that can handle the increasing demand for faster
processing speeds in spatial data sets.

In the first part of the thesis, we introduce new parallel algorithms and framework
for spatial clustering. We design new parallel algorithms for exact and approximate
DBSCAN, which match the work complexity of the best sequential algorithms while
maintaining low depth. Extensive experiments demonstrate that our algorithms
achieve massive speedup over existing algorithms and can efficiently process large-
scale data sets. We also present new parallel algorithms for hierarchical DBSCAN
(HDBSCAN) and Euclidean minimum spanning tree (EMST), including several the-
oretical results and practical optimizations. Furthermore, we propose a method to
generate a dendrogram from the minimum spanning tree (MST) of the HDBSCAN
or EMST problem. The EMST also solves single-linkage clustering. Lastly, we also
design a framework for implementing parallel grid-based clustering algorithms.

The second part of the thesis introduces our contributions to parallel algorithms
and a library for computational geometry. We contribute to three problems in com-
putational geometry: a new parallel reservation-based algorithm that can express
both randomized incremental convex hull and quickhull algorithms; a sampling-based
algorithm to reduce work for the smallest enclosing ball problem; and a parallel
batch-dynamic data structure for dynamic closest pair problem. We also introduce
ParGeo, a library for parallel computational geometry that provides various paral-
lel geometric algorithms, data structures, and graph generators. Our experimental
evaluations show significant speedups achieved by our proposed algorithms across

3

different problems.
Overall, this thesis demonstrates that parallel shared-memory multi-core algo-

rithms, implementations, and frameworks can efficiently solve large-scale spatial clus-
tering and computational geometry problems both in theory and practice.

Thesis Supervisor: Julian Shun
Title: Associate Professor of Electrical Engineering and Computer Science

4

Acknowledgments

I am humbled and grateful to express my deepest appreciation for the individuals
who have been instrumental in my PhD journey.

First and foremost, I extend my heartfelt thanks to my thesis advisor, Julian
Shun. He not only admitted me to MIT but also provided me with unwavering
support, guidance, and patience throughout my entire PhD. His research philosophy
and ideas have shaped my thesis, and together we have published research with real-
world impact. Despite the challenges posed by the global pandemic of COVID-19,
he created a supportive lab environment that kept us connected and thriving over
the years.

I am also deeply indebted to my thesis committee members - Yan Gu and
Jonathan Ragan-Kelly - for their invaluable insights, ideas, and direction that helped
shape this thesis. Yan Gu has been an exceptional collaborator whose contributions
have been indispensable in many of our papers. Jonathan Ragan-Kelly’s thought-
provoking questions during my Research Qualification Exam helped guide my re-
search since then.

I am grateful for all of my collaborators who have contributed their time, energy,
and ideas to this project: Laxman Dhulipala for his insightful ideas and visions;
Shangdi Yu for her exchange of ideas and motivation; Rahul Yesantharao and Dev
Chheda for their tireless work on the projects.

I would like to thank all current and past members and students of our lab who
made this experience fun, exciting, and supportive: Changwan Hong, Siddhartha
Jayanti, Junhong Lin, Quanquan C. Liu, Jessica Shi (who organized ParAlg Game
Night), Tom Tseng. I especially remember the many Krunker game nights where we
laughed and had fun together as a team. I would also like to give a special thank
you to our administrative assistant Linda Lynch who has always being caring and
helpful.

I am grateful to Srini Devadas for being my academic advisor and for his time
and wisdom, which have always been motivating. I also want to acknowledge the
MIT Global Language Program for providing classes that enabled me to minor in the
Japanese language and eventually pass the JLPT N3. I would like to thank all my
teachers, Takako Aikawa, Masami Ikeda, Wakana Maekawa, and Emiko O. Rafique.
Throughout my learning journey, I would also like to specially thank Shummei Ekawa,
Lisa Huang, Masato Oono, and Zi Song Yeoh for doing language exchange with me,

5

being my study buddy, and fostering memorable friendships.
My life at MIT has been greatly enriched by many other individuals whom I am

grateful for their presence. I would like to thank the members of the MIT badminton
club with whom I spent three years improving my skills. Additionally, I would like
to express my appreciation for the 70 Amherst dorm community which has been
a central part of my graduate student life. I am also deeply grateful to my peers
at CSAIL who have provided invaluable camaraderie and inspiration throughout
my time at MIT. Their insights and perspectives have challenged me to grow as a
researcher and as a person.

I would like to acknowledge the immense impact that my girlfriend Cathy Chen
has had on my life. Together we have navigated the challenges of the final years
of graduate school and shared many conversations about our passions, beliefs, and
aspirations. Our shared journey has been both challenging and rewarding, and I am
grateful for her unwavering support.

Finally, I want to express my heartfelt gratitude to my parents for their uncondi-
tional love and support throughout my academic journey. Their encouragement and
guidance have been instrumental in helping me pursue my dreams; without them, I
could not have come this far.

6

To my family.

8

Contents

I Introduction 11
1 Introduction . 12

1.1 Motivation . 12
1.2 Parallel Spatial Clustering . 14
1.3 Parallel Computational Geometry 17
1.4 Summary of Contributions . 18

2 Preliminaries and Notation . 21
2.1 Computational Model . 21
2.2 Parallel Primitives . 21
2.3 Relevant Techniques . 23

II Parallel Spatial Clustering 25
3 Introduction . 26

3.1 Problem Definitions . 27
4 Theoretically Efficient and Practical Parallel DBSCAN 32

4.1 Introduction . 32
4.2 DBSCAN Algorithm Overview 34
4.3 Higher-dimensional Exact and Approximate DBSCAN 45
4.4 Range Counting . 45
4.5 Analysis . 47
4.6 Experiments . 52

5 Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and
Hierarchical Spatial Clustering . 62
5.1 Introduction . 62
5.2 Parallel EMST and HDBSCAN* 63
5.3 Dendrogram and Reachability Plot 75
5.4 Parallel EMST and HDBSCAN* in 2D 82
5.5 Subquadratic-work Parallel EMST 83

9

5.6 Parallel Approximate OPTICS 84
5.7 Relationship between EMST and HDBSCAN*MST 86
5.8 Experiments . 87

6 A Framework for Parallel Grid-Based Clustering 97
6.1 Introduction . 97
6.2 Grid Data Structure . 97
6.3 Implementing Clustering Algorithms 100
6.4 Experimental Evaluation . 110

III Algorithms and Libraries for Parallel Computational
Geometry 112

7 Introduction . 113
8 New Parallel Algorithms . 114

8.1 Introduction . 114
8.2 Convex Hull . 114
8.3 Smallest Enclosing Ball . 125
8.4 Parallel Batch-dynamic Closest Pair 130

9 ParGeo: A Library for Parallel Computational Geometry 164
9.1 Introduction . 164
9.2 ParGeo Modules and Problems Studied 165
9.3 Geometric Graph Construction 166
9.4 Performance Evaluation . 167
9.5 An API for Graph Processing on Geometric Data 168

IV Conclusion and Future Work 175
10 Conclusion . 176
11 Future Work . 178

10

Part I

Introduction

11

1 Introduction

1.1 Motivation

Growing Data Sets and Demand In recent years, there has been a growing de-
mand for faster processing speeds for tasks related to spatial clustering and compu-
tational geometry. Data scientists and researchers use spatial clustering to recognize
patterns, analyze images, retrieve information, and perform compression. As spatial
data sets continue to grow in size and complexity with millions and billions of data
points [92, 259, 153, 118, 80], it has become increasingly challenging to process them
efficiently. Spatial clustering algorithms are commonly used for clustering GPS data
from mobile devices or social network data based on geographical proximity, with
social media like Facebook having close to 3 billion users as of 2023. Some of these
algorithms can also be applied to detect anomalies in massive data sets such as credit
card transactions or network traffic logs [200, 158].

In addition, researchers in the computational geometry and graphics community
process spatial data to obtain nearest neighbors, search for neighbors defined by a
range, generate graphs for further data mining, and detect collision among objects.
Algorithms like the closest pair algorithm are widely used for identifying similari-
ties between proteins or DNA sequences in computational biology. As another ex-
ample, the well-separated pair decomposition (WSPD) algorithm is important for
molecular dynamics simulations that identify pairs of particles that are far enough
apart [130, 129]. With these large and growing data sets, efficient processing has
become increasingly challenging.

With such rise of big data, the running time of programs that process these data
sets can significantly impact the costs in terms of money and time. In both research
and industry, reducing the time-to-completion of tasks has been shown to increase
productivity and improve user experience.

Large-Scale Computing Moore’s law is a widely known principle in the field of
computer hardware that predicts the exponential growth of transistor density on a
microchip [175], which has historically led to an increase in clock speeds of single
core machines at a rate of approximately 30% per year since the mid-1970s [156].
This increase in processing power has allowed for significant advancements in com-
puting technology. However, this trend has not continued indefinitely. Around the

12

mid-2000s, Dennard scaling, which refers to the ability to reduce transistor size
while maintaining constant power density [87], stopped due to physical limitations
of hardware. This means that even though we can still fit more transistors onto a
microchip, we cannot continue to increase clock speeds at the same rate as before
without running into issues with power consumption and heat dissipation.

The physical limitations of hardware that led to the end of Dennard scaling have
had a significant impact on the development of modern computing technology. Mean-
while, the explosion of data set sizes calls for greater processing power, and has led to
the emergence of parallel processing, which breaks down a complex task into smaller
sub-tasks than can be executed simultaneously across multiple processors. This ap-
proach leads to parallel processors and machines that achieve faster speed without
relying solely on the increase in clock speed. Examples include distributed clusters,
multi-core central processing units (CPUs), graphics processing units (GPUs), field
programmable gate arrays (FPGAs), and other parallel accelerators.

The shift in processor technology towards multi-core processing has often been
referred to as the “multi-core revolution” [156]. We utilize shared-memory multi-
core machines, where different cores have access to a shared global memory. The
technology has become ubiquitous today with most personal computers and smart
phones. Commodity shared-memory multi-core machines have also become preva-
lent, supporting up to terabytes of memory and providing efficient solutions for many
problems in large-scale computing, and are available at a reasonable price [213]. For
example, Amazon EC2 offers powerful machines like r5.24xlarge with 2 × Intel Xeon
Platinum 8175M (2.50 GHz) CPUs for a total of 48 two-way hyper-threaded cores
and 768 GB of RAM at just about $6 per hour at the time of this writing.1

While general purpose GPUs have emerged as a viable option for parallel com-
puting in recent years, they are designed for workloads that require massive amounts
of parallel processing power. More specifically, they are optimized for workloads
that involve a large amount of data that can be processed using simple operations
independently. Unlike CPUs, which usually have a relatively small number of cores
that are optimized for complicated tasks, GPUs have thousands of cores optimized for
simpler calculations. The GPU architecture has made them more suitable for certain
kind of tasks, such as graphics rendering, and multiplying matrices. However, there
are a few disadvantages of using the GPUs for general purpose computing. Well-
known challenges are that the GPUs are difficult to program, and when compared
with commodity multi-core CPU machines, they also have a smaller main memory.
At the time of this writing, the amount of memory carried by an Nvidia H100 GPU
is 80 GB, which is the largest on the market, whereas shared-memory CPU machines

1https://aws.amazon.com/ec2/pricing/on-demand/

13

https://aws.amazon.com/ec2/pricing/on-demand/

can have terabytes of memory. While it is possible to utilize GPU computing in a
distributed setting, the communication overhead and data partitioning will lead to
new challenges. Therefore, while GPUs offer advantages over CPUs on certain tasks,
multi-core CPUs are more appealing due to their better programmability, and larger
main memory.

Our Approach This thesis argues that shared-memory multi-core machines offer
a sweet spot between programmability and efficiency, which makes them ideal for
solving many problems in spatial data processing, especially those that deal with
a large amount of data. With the growing size of data sets and an increasing de-
mand for faster processing speeds, researchers in spatial data processing have been
exploring new ways to efficiently process spatial data. One of the key motivations
for this thesis is the need to develop efficient parallel shared-memory algorithms and
programming frameworks that continue to deliver performance improvements even
at the end of Moore’s Law. With powerful commodity multi-core shared-memory
machines readily available, this thesis aims to make researchers better equipped to
tackle the computational challenges in spatial clustering and computational geome-
try. The following will be described in the rest of this section.

• In Section 1.2, we describe parallel shared-memory algorithms and program-
ming framework for spatial clustering.

• In Section 1.3, we describe parallel shared-memory algorithms and library for
computational geometry.

• In Section 1.4, we describe a summary of the thesis contribution, the thesis
statement, and a list of included papers.

1.2 Parallel Spatial Clustering

Cluster analysis, commonly known as clustering, is the general task of grouping
similar objects into groups which are known as clusters. It is a common method
of data analysis, and is used in various fields, including pattern recognition, image
analysis, information retrieval, bioinfomatics, data compression, computer graphics
and machine learning. Density-based clustering is an important type of clustering
algorithm, where clusters are identified such that each of them is a contiguous re-
gion of high-density points separated by low-density ones. In this thesis, we study
parallel algorithms for density-based spatial clustering. We study one of the most

14

widely-used density-based spatial clustering methods, which is the density-based spa-
tial clustering of applications with noise (DBSCAN) method by Ester et al. [95].
We also study hierarchical density-based spatial clustering of applications with noise
(HDBSCAN*) [61], which is later developed to enable users to explore clusters at
different scales.

The thesis first studies new parallel algorithms for exact and approximate Eu-
clidean DBSCAN that match the work complexity of the best sequential algorithms
while maintaining low depth.2 The algorithms are designed to bridge the gap between
theory and practice. For exact 2D DBSCAN, we design several parallel algorithms
that use either box or grid construction for partitioning points. Additionally, we use
three parallel procedures to determine connectivity among core points: Delaunay tri-
angulation, unit-spherical emptiness checking with line separation, and bichromatic
closest pairs. For higher-dimensional exact DBSCAN, an algorithm based on solving
the higher-dimensional bichromatic closest pairs problem is provided. Unlike many
existing parallel algorithms, these exact algorithms produce the same results accord-
ing to the standard definition of DBSCAN, without sacrificing clustering quality.
For approximate DBSCAN, a new algorithm is designed that uses parallel quadtree
construction and querying. This algorithm returns the same result as the sequential
approximate algorithm by Gan and Tao [104].

This thesis also studies HDBSCAN*, and its related problem Euclidean min-
imum spanning tree (EMST). We present practical alorithms for these problems
and prove that the theoretical work of the implementations matches their state-of-
the-art counterparts, while having polylogarithmic depth. Several other theoretical
results are presented. An EMST algorithm with subquadratic work and polylog-
arithmic depth is proposed based on a subquadratic-work sequential algorithm by
Callahan and Kosaraju [58]. An HDBSCAN* algorithm for two dimensions with
𝑂(minPts2 · 𝑛 log 𝑛) work is also presented, matching the sequential algorithm by
Berg et al. [85], along with 𝑂(minPts · log2 𝑛) depth. Finally, a work-efficient parallel
algorithm for approximate OPTICS based on the sequential algorithm by Gan and
Tao [105] is proposed.

To solve HDBSCAN*, the thesis also discusses an algorithm to generate a den-
drogram from the MST of the HDBSCAN* or EMST problem. This solves the
single-linkage clustering problem and gives a reachability plot for HDBSCAN*. The
proposed method uses a work-efficient parallel divide-and-conquer approach that
generates an Euler tour on the tree, splits it into multiple subtrees recursively gen-

2We use the work-depth model to analyze parallel algorithms’ theoretical efficiency, where work
refers to the number of operations used and depth is the length of the longest sequence of depen-
dence. We explain the model further in later sections.

15

erates dendrograms for each subtree before gluing them back together. An in-order
traversal of this dendrogram gives us the reachability plot. The parallel dendrogram
algorithm is of independent interest as it can also be applied to generate dendro-
grams for other clustering problems. Finally, optimized parallel implementations of
our EMST and HDBSCAN* algorithms are provided in this thesis. A memory op-
timization technique that avoids computing and materializing many well-separated
decomposition (WSPD) pairs significantly improves our algorithms’ performance (up
to 8x faster and 10x less space).

We conducted a comprehensive experiments on synthetic and real-world datasets,
comparing the performance of our implementations to optimized sequential and ex-
isting parallel algorithms for DBSCAN and HDBSCAN*. Our exact DBSCAN im-
plementations achieved a self-relative speedup of 2-89x (24x on average) and 5-33x
(16x on average) over the fastest sequential implementations, while our approximate
DBSCAN implementations achieved a self-relative speedup of 14-44x (24x on aver-
age). Compared to existing parallel algorithms, our fastest exact implementations
were faster by up to orders of magnitude (16-6102x). For HDBSCAN, our implemen-
tation achieved a speedup of 11.13-46.69x over the fastest sequential implementations
and was at least an order of magnitude faster than existing sequential and parallel
implementations. We also demonstrate that our clustering algorithms can process
very large data sets efficiently just on a single mahcine. We compare the running
times of our fastest exact DBSCAN implementation with the state-of-the-art dis-
tributed implementation rpdbscan on several large-scale data sets. The results in
Figure 1 show that our parallel exact DBSCAN achieves several orders of magni-
tudes of speedup over rpdbscan using the same or fewer number of cores, which is
attributed to lower communication costs in shared-memory and a better algorithm.

Last but not least, grid-based clustering algorithms [205, 238, 16, 258, 117,
19, 248, 253, 65] have emerged as a popular approach for handling large multi-
dimensional point data sets. These algorithms partition the data space into a grid
structure and form clusters directly from the cells within the grid. There has been
little effort to generalize their implementations and enable simple and fast parallel
programming for spatial data sets. In this thesis, we address this gap by developing
a framework for parallel grid-based clustering that provides high-level programming
constructs for implementing various parallel grid-based clustering algorithms effi-
ciently. We show that we can implement multiple grid clustering algorithms with
high parallel speedup using our framework.

16

Figure 1: Comparing the running time (seconds) of our parallel implementation of
DBSCAN with the state-of-the-art rpdbscan under varying 𝜖 parameter. The largest
data set, TeraClickLog, has over 4 billion points and 13 dimensions.

.

1.3 Parallel Computational Geometry

Looking at a broader perspective beyond spatial clustering, computational geom-
etry algorithms have significant applications in various domains such as computer
graphics, robotics, computer vision, and geographic information systems [86, 193].
This thesis describes efficient libraries of computational geometry algorithms that
the users can easily use in their high-level applications. While there are numerous
libraries available for computational geometry, most of them do not support parallel
processing [137, 96]. This thesis introduces the ParGeo library for parallel computa-
tional geometry that provides a rich set of parallel algorithms for geometric problems
and data structures such as 𝑘d-trees, 𝑘-nearest neighbor (𝑘-NN) search, range search,
well-separated pair decomposition, Euclidean minimum spanning tree, spatial sort-
ing and geometric clustering. ParGeo also includes a collection of geometric graph
generators like 𝑘-nearest neighbor graphs and various spatial networks. The algo-
rithms from ParGeo can either run sequentially or using parallel schedulers such as
OpenMP or Cilk.

We also present our contributions to three different problems in computational
geometry. Firstly, we introduce a new parallel reservation-based algorithm that can
express both the randomized incremental convex hull algorithm and the quickhull

17

algorithm. Our algorithm adds multiple points in parallel per round and resolves
conflicts using a reservation technique. Additionally, we propose a sampling-based
algorithm to reduce the work for the smallest enclosing ball problem and provide
the first parallel implementation of Welzl’s classic algorithm. Thirdly, we design
a theoretically-efficient and practical parallel batch-dynamic data structure for dy-
namic closest pair. Our solution is based on efficiently maintaining a sparse partition
of points in parallel and takes a batch update of size 𝑚 to maintain the closest pair in
𝑂(𝑚(1+ log((𝑛+𝑚)/𝑚))) expected work and 𝑂(log(𝑛+𝑚) log*(𝑛+𝑚)) depth whp
Finally, we introduce a new parallel batch-dynamic binary heap that we use in our
data structure for dynamic closest pair, which itself may be of independent interest.

We test our proposed algorithms and library extensively on both synthetic and
real-world data sets. We compared the performance of our parallel implementations
against optimized sequential baselines. The results of our experiments show that our
best convex hull implementation achieves up to 44.7x self-relative speedup and up to
559x speedup against the best existing sequential implementation for R2, and up to
24.9x self-relative speedup and up to 124x speedup against the best existing sequen-
tial implementation for R3. Our sampling-based smallest enclosing ball algorithm
achieves up to 27.1x self-relative speedup and up to 178x speedup against the best
existing sequential implementation for R2 and R3. Across all implementations in
ParGeo, we achieve self-relative parallel speedups of 8.1–46.61x (on average 23.15x).
We summarize the parallel speedups in Figure 2. The ParGeo library is publicly
available,3 and more detailed experimental evaluations are presented in subsequent
sections of this thesis.

1.4 Summary of Contributions

We summarize the contribution of this thesis below with pointers to the respective
sections:

1. We describe new parallel algorithms for exact and approximate DBSCAN. The
algorithms match the work complexity of the best sequential algorithms while
maintaining low depth. We perform an extensive experiments showing our
algorithms achieve massive speedup over the existing algorithms, and is able
to process large-scale data sets efficiently. We describe these algorithms in
Section 4.

2. We describe new parallel algorithms for HDBSCAN* and EMST, including
several theoretical results and pratical optimizations. We also proposes an al-

3https://github.com/ParAlg/ParGeo

18

https://github.com/ParAlg/ParGeo

Figure 2: Parallel speedups on a machine with 36 cores for ParGeo implementations
on uniform hypercube data sets of varying dimensions and 10 million points. We list
the exact running times in Table 11

.

gorithm to generate a dendrogram from the MST of the HDBSCAN* or EMST
problem, which solves the single-linkage clustering problem. We show our algo-
rithms achieve massive parallel speedup over the state-of-the-art. We describe
these algorithms in Section 5.

3. We describe a parallel grid clustering framework with high-level programming
constructs for efficiently implementing various grid-based clustering algorithms.
We describe the framework in Section 6.

4. We describe contributions to three problems in computational geometry. We
introduce a new parallel algorithm that can express both the randomized incre-
mental convex hull algorithm and the quickhull algorithm, propose a sampling-
based algorithm to reduce work for the smallest enclosing ball problem, and
design a parallel batch-dynamic data structure for dynamic closest pair. We
also introduce a new parallel batch-dynamic binary heap that may be of inde-
pendent interest. We describe these algorithms in Section 8.

19

5. We describe the ParGeo library for parallel computational geometry. This li-
brary provides a range of parallel algorithms for geometric problems and data
structures, including 𝑘d-trees, 𝑘-NN search, range search, well-separated pair
decomposition, Euclidean minimum spanning tree, spatial sorting, and geomet-
ric clustering. Additionally, ParGeo includes a collection of geometric graph
generators. We describe ParGeo in Section 9.

Thesis statement Parallel shared-memory multi-core algorithms, implementa-
tions, and frameworks can efficiently process large-scale spatial clustering and com-
putational geometry problems both in theory and practice.

This thesis is the result of a collaborative effort among the following papers:

• Yiqiu Wang, Yan Gu, and Julian Shun. Theoretically-efficient and practical
parallel DBSCAN. In ACM SIGMOD International Conference on Manage-
ment of Data, 2020. ([239], Section 4)

• Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. Fast parallel algorithms for
euclidean minimum spanning tree and hierarchical spatial clustering. In ACM
SIGMOD International Conference on Management of Data, 2021. ([244], Sec-
tion 5)

• Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. A parallel batch-dynamic
data structure for the closest pair problem. In 37th International Symposium
on Computational Geometry (SoCG 2021), 2021. ([243], Section 8)

• Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. Ge-
oGraph: A framework for graph processing on geometric data. In SIGOPS
Oper. Syst. Rev, 2021. ([241], Section 9),

• Yiqiu Wang, Rahul Yesantharao, Shangdi Yu, Laxman Dhulipala, Yan Gu, and
Julian Shun. Pargeo: a library for parallel computational geometry. In 30th
Annual European Symposium on Algorithms (ESA 2022), 2022. ([240, 242],
Section 8, 9)

20

2 Preliminaries and Notation

2.1 Computational Model

We use the work-depth model [138, 79] to analyze the theoretical efficiency of parallel
algorithms. The work of an algorithm is the number of operations used, similar to
the time complexity in the sequential RAM model. The depth is the length of the
longest sequence of dependence. By Brent’s scheduling theorem [55], an algorithm
with work 𝑊 and depth 𝐷 has overall running time 𝑊/𝑃+𝐷, where 𝑃 is the number
of processors available. In practice, the Cilk work-stealing scheduler [48] can be used
to obtain an expected running time of 𝑊/𝑃 +𝑂(𝐷). A parallel algorithm is work-
efficient if its work asymptotically matches that of the best sequential algorithm
for the problem, which is important since in practice the 𝑊/𝑃 term in the running
time often dominates.

2.2 Parallel Primitives

We give an overview of the primitives used in our new parallel algorithms in this
thesis.

Prefix sum takes as input an array 𝐴 of length 𝑛, and returns the array
(0, 𝐴[0], 𝐴[0]+𝐴[1], . . . ,

∑︀𝑛−2
𝑖=0 𝐴[𝑖]) as well as the overall sum,

∑︀𝑛−1
𝑖=0 𝐴[𝑖]. Prefix sum

can be implemented by first adding the odd-indexed elements to the even-indexed
elements in parallel, recursively computing the prefix sum for the even-indexed el-
ements, and finally using the results on the even-indexed elements to update the
odd-indexed elements in parallel. This algorithm takes 𝑂(𝑛) work and 𝑂(log 𝑛)
depth [138].

Filter takes an array 𝐴 of size 𝑛 and a predicate 𝑓 , and returns a new array 𝐴′

containing elements 𝐴[𝑖] for which 𝑓(𝐴[𝑖]) is true, in the same order as in 𝐴. We first
construct an array 𝑃 of size 𝑛 with 𝑃 [𝑖] = 1 if 𝑓(𝐴[𝑖]) is true and 𝑃 [𝑖] = 0 otherwise.
Then we compute the prefix sum of 𝑃 . Finally, for each element 𝐴[𝑖] where 𝑓(𝐴[𝑖])
is true, we write it to the output array 𝐴′ at index 𝑃 [𝑖] (i.e., 𝐴′[𝑃 [𝑖]] = 𝐴[𝑖]). This
algorithm also takes 𝑂(𝑛) work and 𝑂(log 𝑛) depth [138].

Comparison sorting sorts 𝑛 elements based on a comparison function. Parallel
comparison sorting can be done in 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth [138, 75]. We
use a cache-efficient samplesort [44] from PBBS which samples

√
𝑛 pivots on each

21

Work Depth Reference
Prefix sum, Filter 𝑂(𝑛) 𝑂(log 𝑛) [138]
Comparison sort 𝑂(𝑛 log 𝑛) 𝑂(log 𝑛) [138, 75]
Integer sort 𝑂(𝑛) 𝑂(log 𝑛) [234]
Semisort 𝑂(𝑛)† 𝑂(log 𝑛)* [115]
Merge 𝑂(𝑛) 𝑂(log 𝑛) [138]
Hash table 𝑂(𝑛)* 𝑂(log 𝑛)* [109]
2D Delaunay triangulation 𝑂(𝑛 log 𝑛)* 𝑂(log 𝑛)* [198]

Table 1: Work and depth bounds for parallel primitives. † indicates an expected
bound and * indicates a high-probability bound. The integer sort is for a polyloga-
rithmic key range. The cost of the hash table is for 𝑛 insertions or queries.

level of recursion, partitions the keys based on the pivots, and recurses on each
partition in parallel.

Integer sorting sorts integer keys from a polylogarithmic range in 𝑂(𝑛) work
and 𝑂(log 𝑛) depth [234]. The algorithm partitions the keys into sub-arrays and in
parallel across all partitions, builds a histogram on each partition serially. It then
uses a prefix sum on the counts of each key per partition to determine unique offsets
into a global array for each partition. Finally, all partitions write their keys into
unique positions in the global array in parallel.

Semisort takes as input 𝑛 key-value pairs, and groups pairs with the same key
together, but with no guarantee on the relative ordering among pairs with different
keys. Semisort also returns the number of distinct groups. We use the implemen-
tation from [115], which is available in PBBS. The algorithm first hashes the keys,
and then selects a sample of the keys to predict the frequency of each key. Based
on the frequency of keys in the sample, we classify them into “heavy keys” and “light
keys”, and assign appropriately-sized arrays for each heavy key and each range of
light keys. Finally, we insert all keys into random locations in the appropriate array
and sort within the array. This algorithm takes 𝑂(𝑛) expected work and 𝑂(log 𝑛)
depth with high probability.4

Merge takes two sorted arrays, 𝐴 and 𝐵, and merges them into a single sorted
array. If the sum of the lengths of the inputs is 𝑛, this can be done in 𝑂(𝑛) work
and 𝑂(log 𝑛) depth [138]. The algorithm takes equally spaced pivots 𝐴 and does
a binary search for each pivot in 𝐵. Each sub-array between pivots in 𝐴 has a

4We say that a bound holds with high probability (w.h.p.) on an input of size 𝑛 if it holds
with probability at least 1− 1/𝑛𝑐 for a constant 𝑐 > 0.

22

corresponding sub-array between the binary search results in 𝐵. Then it repeats
the above process for each pair, except that equally spaced pivots are taken from the
sub-array from 𝐵 and binary searches are done in the sub-array from 𝐴. This creates
small subproblems each of which can be solved using a serial merge, and the results
are written to a unique range of indices in the final output. All subproblems can be
processed in parallel. It can be implemented in 𝑂(𝑛) work and 𝑂(log 𝑛) depth [138].

Split takes an array 𝐴 and a predicate function 𝑓 , and moves all of the “true”
elements before the “false” elements. Split can be implemented using filter. It can
be implemented in 𝑂(𝑛) work and 𝑂(log 𝑛) depth [138].

List ranking takes a linked list with values on each node and returns for each
node the sum of values from the node to the end of the list. It can be implemented
in 𝑂(𝑛) work and 𝑂(log 𝑛) depth [138].

The Euler tour of a tree takes as input an adjacency list representation of the
tree and returns a directed circuit that traverses every edge of the tree exactly once.
It can be implemented in 𝑂(𝑛) work and 𝑂(log 𝑛) depth [138].

The minimum algorithm computes the minimum of 𝑛 points in 𝑂(𝑛) expected
work and 𝑂(1) depth whp [234].

For parallel hash tables , we can perform 𝑛 insertions or queries taking 𝑂(𝑛)
work and 𝑂(log 𝑛) depth w.h.p. [109]. We use the non-deterministic concurrent linear
probing hash table from [211], which uses an atomic update to insert an element to
an empty location in its probe sequence, and continues probing if the update fails.
For some of the results, we use parallel dictionaries , which support 𝑛 insertions,
deletions, or lookups in 𝑂(𝑛) work and 𝑂(log* 𝑛) depth whp [109].

The Delaunay triangulation on a set of points in 2D contains triangles among
every triple of points 𝑝1, 𝑝2, and 𝑝3 such that there are no other points inside the cir-
cumcircle defined by 𝑝1, 𝑝2, and 𝑝3 [84]. Delaunay triangulation can be computed in
parallel in 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth w.h.p. [198]. We use the randomized
incremental algorithm from PBBS, which inserts points in parallel into the triangula-
tion in rounds, such that the updates to the triangulation in each round by different
points do not conflict [43].

WriteMin is a priority concurrent write that takes as input two arguments,
where the first argument is the location to write to and the second argument is the
value to write; on concurrent writes, the smallest value is written [214].

2.3 Relevant Techniques

𝑘-NN Query A 𝑘-nearest neighbor (𝑘-NN) query takes a point data set 𝒫
and a distance function, and returns for each point in 𝒫 its 𝑘 nearest neighbors

23

(including itself). Callahan and Kosaraju [57] show that 𝑘-NN queries in Euclidean
space for all points can be solved in parallel in 𝑂(𝑘𝑛 log 𝑛) work and 𝑂(log 𝑛) depth.

𝑘d-tree A 𝑘d-tree is a commonly used data structure for 𝑘-NN queries [100]. It is
a binary tree that is constructed recursively: each node in the tree represents a set of
points, which are partitioned between its two children by splitting along one of the
dimensions; this process is recursively applied on each of its two children until a leaf
node is reached (a leaf node is one that contains at most 𝑐 points, for a predetermined
constant 𝑐). It can be constructed in parallel by processing each child in parallel.
A 𝑘-NN query can be answered by traversing nodes in the tree that are close to
the input point, and pruning nodes further away that cannot possibly contain the 𝑘
nearest neighbors.

BCCP and BCCP* Existing algorithms, as well as some of our new algorithms,
use subroutines for solving the bichromatic closest pair (BCCP) problem, which
takes as input two sets of points, 𝐴 and 𝐵, and returns the pair of points 𝑝1 and 𝑝2
with minimum distance between them, where 𝑝1 ∈ 𝐴 and 𝑝2 ∈ 𝐵. We also define a
variant, the BCCP* problem, that finds the pair of points with the minimum mutual
reachability distance, as defined for HDBSCAN*.

Well-Separated Pair Decomposition We use the same definitions and notations
as in Callahan and Kosaraju [60]. Two sets of points, 𝐴 and 𝐵, are well-separated
if 𝐴 and 𝐵 can each be contained in spheres of radius 𝑟, and the minimum distance
between the two spheres is at least 𝑠𝑟, for a separation constant 𝑠 (we use 𝑠 = 2
throughout the thesis). An interaction product of point sets 𝐴 and 𝐵 is defined to
be 𝐴⊗ 𝐵 = {{𝑝, 𝑝′}| 𝑝 ∈ 𝐴, 𝑝′ ∈ 𝐵, 𝑝 ̸= 𝑝′}. The set {{𝐴1, 𝐵1}, . . . , {𝐴𝑘, 𝐵𝑘}} is a
well-separated realization of 𝐴⊗𝐵 if: (1) 𝐴𝑖 ⊆ 𝐴 and 𝐵𝑖 ⊆ 𝐵 for all 𝑖 = 1, ..., 𝑘;
(2) 𝐴𝑖 ∩ 𝐵𝑖 = ∅ for all 𝑖 = 1, ..., 𝑘; (3) (𝐴𝑖 ⊗ 𝐵𝑖)

⋂︀
(𝐴𝑗 ⊗ 𝐵𝑗) = ∅ for all 𝑖, 𝑗 where

1 ≤ 𝑖 < 𝑗 ≤ 𝑘; (4) 𝐴 ⊗ 𝐵 =
⋃︀𝑘

𝑖=1𝐴𝑖 ⊗ 𝐵𝑖; (5) 𝐴𝑖 and 𝐵𝑖 are well-separated for all
𝑖 = 1, ..., 𝑘.

For a point set 𝒫 , a well-separated pair decomposition (WSPD) is a well-
separated realization of 𝒫⊗𝒫 . We discuss how to construct a WSPD using a 𝑘d-tree
in Section 5.2.

24

Part II

Parallel Spatial Clustering

25

3 Introduction

Cluster analysis, also known as clustering, is a common method of data analysis
used in various fields such as pattern recognition, image analysis, bioinformatics, and
machine learning. It involves grouping similar objects into clusters. One important
type of clustering algorithm is density-based clustering, where clusters are identified
based on contiguous regions of high-density points separated by low-density ones.
One of the most widely-used density-based spatial clustering methods is DBSCAN,
which was developed by Ester et al. [95]. It can find good clusters of different shapes
in the presence of noise without requiring prior knowledge of the number of clusters.
DBSCAN has been applied successfully in various domains such as transportation,
biology, and astronomy. However, DBSCAN requires two parameters, 𝜖 and minPts,
which determine what is considered “close” and “dense”, respectively. In practice,
many different values of 𝜖 need to be explored in order to find high-quality clusters.

To avoid repeatedly executing DBSCAN for different values of 𝜖, the OPTICS [22]
and HDBSCAN* [61] algorithms have been proposed for constructing DBSCAN clus-
tering hierarchies. These algorithms generate a minimum spanning tree on the input
points based on a DBSCAN-specific metric known as the core distance, which is
used to determine the density of the points. HDBSCAN* is a popular hierarchical
clustering algorithm that is known to be robust to outliers in the data set.

Density-based clustering has numerous applications in data science, spatial databases
and unsupervised learning. There have been numerous density-based clustering
algorithms proposed over the years, such as DENCLUE [127], STING [238], and
CHAMELEON [147]. In this thesis, we focus on DBSCAN and HDBSCAN*, de-
scribing our parallel algorithms for these problems in Sections 4 and 5 respectively,
as well as for generating the dendrogram in the case of HDBSCAN*.

In this thesis, we introduce new parallel algorithms for exact and approximate
DBSCAN, as well as for HDBSCAN* and EMST, with significant speedup over ex-
isting methods. These algorithms maintain low depth while matching the work com-
plexity of the best sequential counterparts. Additionally, we propose a dendrogram
generation algorithm to solve the single-linkage clustering problem. In Sections 4
and 5, we perform extensive experiments demonstrating the efficiency of these algo-
rithms.

26

𝜖

𝜖
𝜖

(a) 𝜖/ 2

𝜖/ 2

(b) (c) (d)

core border

noise

Figure 3: An example of DBSCAN and basic concepts in two dimensions. Here we
set minPts = 3 and 𝜖 as drawn. In (a), the points are categorized into core points
(circles) in two clusters (red and blue), border points (squares) that belong to the
clusters, and noise points (crosses). Using the grid method for cell construction,
the algorithm constructs cells with side length 𝜖/

√
2 (diagonal length 𝜖), as shown

in (b). The cells with at least minPts points are marked as core cells (solid gray cells
in (c)), while points in other cells try to check if they have minPts points within a
distance of 𝜖. If so, the associated cells are marked as core cells as well (checkered
cells in (c)). To construct the cell graph, we create an edge between two core cells if
the closest pair of points from the two cells is within a distance of 𝜖 (shown in (d)).
Each connected component in the cell graph is a unique cluster. Border points are
assigned to clusters that they are within 𝜖 distance from.

3.1 Problem Definitions

DBSCAN

The DBSCAN (density-based spatial clustering of applications with noise) problem
takes as input 𝑛 points 𝒫 = {𝑝0, . . . , 𝑝𝑛−1}, a distance function 𝑑, and two parameters
𝜖 and minPts [95]. A point 𝑝 is a core point if and only if |{𝑝𝑖 | 𝑝𝑖 ∈ 𝒫 , 𝑑(𝑝, 𝑝𝑖) ≤ 𝜖}| ≥
minPts. We denote the set of core points as 𝒞. DBSCAN computes and outputs sub-
sets of 𝒫 , referred to as clusters . Each point in 𝒞 is in exactly one cluster, and
two points 𝑝, 𝑞 ∈ 𝒞 are in the same cluster if and only if there exists a list of points
�̄�1 = 𝑝, �̄�2, . . . , �̄�𝑘−1, �̄�𝑘 = 𝑞 in 𝒞 such that 𝑑(�̄�𝑖−1, �̄�𝑖) ≤ 𝜖. For all non-core points
𝑝 ∈ 𝒫 ∖𝒞, 𝑝 belongs to cluster 𝐶𝑖 if 𝑑(𝑝, 𝑞) ≤ 𝜖 for at least one point 𝑞 ∈ 𝒞 ∩𝐶𝑖. Note
that a non-core point can belong to multiple clusters. A non-core point belonging
to at least one cluster is called a border point and a non-core point belonging to
no clusters is called a noise point . For a given set of points and parameters 𝜖 and
minPts, the clusters returned are unique. Similar to many previous papers on parallel
DBSCAN, we focus on the Euclidean distance metric in this thesis. See Figure 3(a)
for an illustration of the DBSCAN problem.

27

Gan and Tao [104] define the approximate DBSCAN problem, which in ad-
dition to the DBSCAN inputs, takes a parameter 𝜌. The definition is the same as
DBSCAN, except for the connectivity rule among core points. In particular, core
points within a distance of 𝜖 are still connected, but core points within a distance of
(𝜖, 𝜖(1 + 𝜌)] may or may not be connected. Core points with distance greater than
𝜖(1+𝜌) are still not connected. Due to this relaxation, multiple valid clusterings can
be returned. The relaxation is what enables an asymptotically faster algorithm to
be designed. A variation of this problem was described by Chen et al. [70].

Existing algorithms as well as some of our new algorithms use subroutines for
solving the bichromatic closest pair (BCP) problem, which takes as input two
sets of points 𝑃1 and 𝑃2, finds the closest pair of points 𝑝1 and 𝑝2 such that 𝑝1 ∈ 𝑃1

and 𝑝2 ∈ 𝑃2, and returns the pair and their distance.

HDBSCAN*

EMST The Euclidean Minimum Spanning Tree (EMST) problem takes 𝑛
points 𝒫 = {𝑝1, . . . , 𝑝𝑛} and returns a minimum spanning tree (MST) of the complete
undirected Euclidean graph of 𝒫 .

DBSCAN* The DBSCAN* (density-based spatial clustering of applications with
noise) problem takes as input 𝑛 points 𝒫 = {𝑝1, . . . , 𝑝𝑛}, a distance function 𝑑, and
two parameters 𝜖 and minPts [95, 61]. A point 𝑝 is a core point if and only if
|{𝑝𝑖 | 𝑝𝑖 ∈ 𝒫 , 𝑑(𝑝, 𝑝𝑖) ≤ 𝜖}| ≥ minPts. A point is called a noise point otherwise.
We denote the set of core points as 𝒫core . DBSCAN* computes a partition of 𝒫core ,
where each subset is referred to as a cluster , and also returns the remaining points
as noise points. Two points 𝑝, 𝑞 ∈ 𝒫core are in the same cluster if and only if there
exists a list of points 𝑝 = �̄�1, �̄�2, . . . , �̄�𝑘−1, �̄�𝑘 = 𝑞 in 𝒫core such that 𝑑(�̄�𝑖−1, �̄�𝑖) ≤ 𝜖
for all 1 < 𝑖 ≤ 𝑘. For a given set of points and two parameters 𝜖 and minPts, the
clusters returned are unique.5

HDBSCAN* The HDBSCAN* (hierarchical DBSCAN*) problem [61] takes the
same input as DBSCAN*, but without the 𝜖 parameter, and computes a hierarchy
of DBSCAN* clusters for all possible values of 𝜖. The core distance of a point
𝑝, cd(𝑝), is the distance from 𝑝 to its minPts-nearest neighbor (including 𝑝 itself).
The mutual reachability distance between two points 𝑝 and 𝑞 is defined to be

5The original DBSCAN definition includes the notion of border points, which are non-core
points that are within a distance of 𝜖 to core points [95]. DBSCAN* chooses to omit this to be
more consistent with a statistical interpretation of clusters [61].

28

𝑑𝑚(𝑝, 𝑞) = 𝑚𝑎𝑥{cd(𝑝), cd(𝑞), 𝑑(𝑝, 𝑞)}. The mutual reachability graph 𝐺MR is a
complete undirected graph, where the vertices are the points in 𝒫 , and the edges are
weighted by the mutual reachability distances.6

The HDBSCAN*hierarchy is sequentially computed in two steps [61]. The first
step computes an MST of 𝐺MR and then adds a self-edge to each vertex weighted
by its core distance. An example MST is shown in Figure 4a. We note that the
HDBSCAN*MST with minPts = 1 is equivalent to the EMST, since the mutual
reachability distance at minPts = 1 is equivalent to the Euclidean distance. We
further elaborate on the relationship between HDBSCAN*and EMST in Section 5.7.
A dendrogram representing clusters at different values of 𝜖 is computed by removing
edges from the MST plus self-edges graph in decreasing order of weight. The root of
the dendrogram is a cluster containing all points. Each non-self-edge removal splits
a cluster into two, which become the two children of the cluster in the dendrogram.
The height of the split cluster in the dendrogram is equal to the weight of the removed
edge. If the removed edge is a self-edge, we mark the component (point) as a noise
point. An example of a dendrogram is shown in Figure 4b. If we want to return the
clusters for a particular value of 𝜖, we can horizontally cut the dendrogram at that
value of 𝜖 and return the resulting subtrees below the cut as the clusters or noise
points. This is equivalent to removing edges from the MST of 𝐺MR with weight
greater than 𝜖.

For HDBSCAN*, the reachability plot (OPTICS sequence) [22] contains all points
in 𝒫 in some order {𝑝𝑖| 𝑖 = 1, . . . , 𝑛}, where each point 𝑝𝑖 is represented as a bar
with height min{𝑑𝑚(𝑝𝑖, 𝑝𝑗) | 𝑗 < 𝑖}. For HDBSCAN*, the order of the points is the
order that they are visited in an execution of Prim’s algorithm on the MST of 𝐺MR

starting from an arbitrary point [22]. An example is shown in Figure 4c. Intuitively,
the "valleys" of the reachability plot correspond to clusters [61].

Relationship between HDBSCAN* and EMST We note that the HDBSCAN*

MST with minPts = 1 is equivalent to the Euclidean MST (EMST), since the mutual
reachability distance at minPts = 1 is equivalent to the Euclidean distance. The
EMST problems take as input a set of 𝑛 points in a 𝑑-dimensional space. EMST
computes a minimum spanning tree on a complete graph formed among the 𝑛 points
with edges between two points having the weight equal to their Euclidean distance.
EMST has many applications, including in single-linkage clustering [113], network
placement optimization [237], and approximating the Euclidean traveling salesman
problem [231].

6The related OPTICS problem also generates a hierarchy of clusters but with a definition of
reachability distance that is asymmetric, leading to a directed graph [22].

29

a

d

b

e

4

√10

√10

√17

a d b c e g f h
2

3

4

5

6
d-e

b-c

a-d
b-d

f-g
f-h

e-g
2

3

4

5

6

∞

4

√10

√17

6

√5
2√2

a d b c e g f h

(a)

(b) (c)

c

i

h-i

18 18

i

√346

... ...

6
2

1

√10

√2 g

f

√5

√5

2√2

i √346

h

1 2√2

18

√5

√5

Figure 4: (a) An MST of the HDBSCAN*mutual reachability graph on an example
data set in 2D. The red number next to each point is the core distance of the point
for minPts = 3. The Euclidean distances between points are denoted by grey edges,
whose values are marked in black. For example, 𝑎’s core distance is 4 because 𝑏 is 𝑎’s
third nearest neighbor (including itself) and 𝑑(𝑎, 𝑏) = 4. The edge weight of (𝑎, 𝑑)
is max{4,

√
10,
√
2} = 4. (b) An HDBSCAN*dendrogram for the data set. A point

becomes a noise point when its vertical line becomes red. For example, if we cut the
dendrogram at 𝜖 = 3.5, then we have two clusters {𝑑, 𝑏} and {𝑒, 𝑔, 𝑓, ℎ}, while 𝑎, 𝑐
and 𝑖 are noise points. (c) A reachability plot for the data set starting at point 𝑎.
The two “valleys”, {𝑎, 𝑏, 𝑐, 𝑑} and {𝑒, 𝑓, 𝑔, ℎ}, are the two most obvious clusters.

30

Notation Definition
𝑑(𝑝, 𝑞) Euclidean distance between points 𝑝 and 𝑞.
𝑑𝑚(𝑝, 𝑞) Mutual reachability distance between points 𝑝 and 𝑞.

𝑑(𝐴,𝐵)
Minimum distance between the bounding spheres of
points in tree node 𝐴 and points in tree node 𝐵.

𝑤(𝑢, 𝑣) Weight of edge (𝑢, 𝑣).
𝐴diam Diameter of the bounding sphere of points in tree node 𝐴.

cdmin(𝐴) Minimum core distance of points in tree node 𝐴.
cdmax(𝐴) Maximum core distance of points in tree node 𝐴.

Table 2: Summary of Notation

Notation Table 2 shows notation frequently used in this part of the thesis.

31

4 Theoretically Efficient and Practical Parallel DB-
SCAN

4.1 Introduction

The traditional DBSCAN algorithm [95] and their variants require work quadratic
in the input size in the worst case, which can be prohibitive for the large data
sets that need to be analyzed today. To address this computational bottleneck,
there has been recent work on designing parallel algorithms for DBSCAN and its
variants [54, 251, 24, 141, 140, 49, 250, 133, 77, 183, 184, 186, 185, 245, 161, 102,
83, 21, 121, 150, 125, 102, 69, 112, 78, 162, 257, 132, 23, 131, 218]. However, even
though these solutions achieve scalability and speedup over sequential algorithms, in
the worst-case their number of operations still scale quadratically with the input size.
Therefore, a natural question is whether there exist DBSCAN algorithms that are
faster both in theory and practice, and in both the sequential and parallel settings.

Given the ubiquity of datasets in Euclidean space, there has been work on faster
sequential DBSCAN algorithms in this setting. Gunawan [117] and de Berg et al. [85]
has shown that Euclidean DBSCAN in 2D can be solved sequentially in 𝑂(𝑛 log 𝑛)
work. Gan and Tao [104] provide alternative Euclidean DBSCAN algorithms for two-
dimensions that take 𝑂(𝑛 log 𝑛) work. For higher dimensions, Chen et al. [70] provide
an algorithm that takes 𝑂(𝑛2(1−1/(𝑑+2))polylog(𝑛)) work for 𝑑 dimensions, and Gan
and Tao [104] improve the result with an algorithm that takes 𝑂(𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿)
work for any constant 𝛿 > 0. To further reduce the work complexity, there have been
approximate DBSCAN algorithms proposed. Chen et al. [70] provide an approx-
imate DBSCAN algorithm that takes 𝑂(𝑛 log 𝑛) work for any constant number of
dimensions, and Gan and Tao [104] provide a similar algorithm taking 𝑂(𝑛) expected
work. However, none of the algorithms described above have been parallelized.

This thesis bridges the gap between theory and practice in parallel Euclidean
DBSCAN by providing new parallel algorithms for exact and approximate DBSCAN
with work complexity matching that of best sequential algorithms [117, 85, 104], and
with low depth, which is the gold standard in parallel algorithm design. For exact 2D
DBSCAN, we design several parallel algorithms that use either the box or the grid
construction for partitioning points [117, 85] and one of the following three proce-
dures for determining connectivity among core points: Delaunay triangulation [104],
unit-spherical emptiness checking with line separation [104], and bichromatic closest

32

pairs. For higher-dimensional exact DBSCAN, we provide an algorithm based on
solving the higher-dimensional bichromatic closest pairs problem in parallel. Unlike
many existing parallel algorithms, our exact algorithms produce the same results
according to the standard definition of DBSCAN, and so we do not sacrifice cluster-
ing quality. For approximate DBSCAN, we design an algorithm that uses parallel
quadtree construction and querying. Our approximate algorithm returns the same
result as the sequential approximate algorithm by Gan and Tao [104].

We perform a comprehensive set of experiments on synthetic and real-world
datasets using varying parameters, and compare our performance to optimized se-
quential implementations as well as existing parallel DBSCAN algorithms. On a
36-core machine with two-way hyper-threading, our exact DBSCAN implementa-
tions achieve 2–89x (24x on average) self-relative speedup and 5–33x (16x on av-
erage) speedup over the fastest sequential implementations. Our approximate DB-
SCAN implementations achieve 14–44x (24x on average) self-relative speedup. Com-
pared to existing parallel algorithms, which are scalable but have high overheads
compared to serial implementations, our fastest exact algorithms are faster by up
to orders of magnitude (16–6102x) under correctly chosen parameters. Our al-
gorithms can process the largest dataset that has been used in the literature for
exact DBSCAN, and outperform the state-of-the-art distributed RP-DBSCAN al-
gorithm [218] by 18–577x. We have made our source code publicly available at
https://github.com/wangyiqiu/dbscan.

Related Work

Xu et al. [251] provide the first parallel exact DBSCAN algorithm, called PDBSCAN,
based on a distributed 𝑅*-tree. Arlia and Coppola [24] present a parallel DBSCAN
implementation that replicates a sequential 𝑅*-tree across machines to process points
in parallel. Coppola and Vanneschi [77] design a parallel algorithm using a queue
to store core points, where each core point is processed one at a time but their
neighbors are checked in parallel to see whether they should be placed at the end of
the queue. Januzaj et al. [140, 141] design an approximate DBSCAN algorithm based
on determining representative points on different local processors, and then running
a sequential DBSCAN on the representatives. Brecheisen et al. [54] parallelize a
version of DBSCAN optimized for complex distance functions [53].

Patwary et al. [183] present PDSDBSCAN, a multicore and distributed algorithm
for DBSCAN using a union-find data structure for connecting points. Their union-
find data structure is lock-based whereas ours is lock-free. Patwary et al. [186, 185]
also present distributed DBSCAN algorithms that are approximate but more scalable

33

https://github.com/wangyiqiu/dbscan

than PDSDBSCAN. Hu et al. [132] design PS-DBSCAN, an implementation of DB-
SCAN using a parameter server framework. Gotz et al. [112] present HPDBSCAN,
an algorithm for both shared-memory and distributed-memory based on partitioning
the data among processors, running DBSCAN locally on each partition, and then
merging the clusters together. Very recently, Sarma et al. [204] present a distributed
algorithm, 𝜇DBSCAN, and report a running time of 41 minutes for clustering one
billion 3-dimensional points using a cluster of 32 nodes. Our running times on the
larger 13-dimensional TeraClickLog dataset are significantly faster (under 30 seconds
on 48 cores).

Exact and approximate distributed DBSCAN algorithms have been designed us-
ing MapReduce [250, 83, 125, 102, 150, 257, 23, 131] and Spark [78, 121, 162, 133,
218, 161]. RP-DBSCAN [218], an approximate DBSCAN algorithm, has been shown
to be the state-of-the-art for MapReduce and Spark. GPU implementations of DB-
SCAN have also been designed [49, 21, 245, 69].

In addition to parallel solutions, there have been optimizations proposed to speed
up sequential DBSCAN [53, 152, 165]. DBSCAN has also been generalized to
other definitions of neighborhoods [201]. Furthermore, there have been variants
of DBSCAN proposed in the literature, which do not return the same result as
the standard DBSCAN. IDBSCAN [50], FDBSCAN [159], GF-DBSCAN [227], I-
DBSCAN [236], GNDBSCAN [134], Rough-DBSCAN [235], and DBSCAN++ [139]
use sampling to reduce the number of range queries needed. El-Sonbaty et al. [93]
presents a variation that partitions the dataset, runs DBSCAN within each par-
tition, and merges together dense regions. GriDBSCAN [167] uses a similar idea
with an improved scheme for partitioning and merging. Other partitioning based
algorithms include PACA-DBSCAN [143], APSCAN [72], and AA-DBSCAN [149].
DBSCAN* and H-DBSCAN* are variants of DBSCAN where only core points are
included in clusters [61]. Other variants use approximate neighbor queries to speed
up DBSCAN [249, 124].

OPTICS [22], SUBCLU [144], and GRIDBSCAN [230], are hierarchical versions of
DBSCAN that compute DBSCAN clusters on different parameters, enabling clusters
of different densities to more easily be found. POPTICS [184] is a parallel version of
OPTICS based on concurrent union-find.

4.2 DBSCAN Algorithm Overview

This section reviews the high-level structure of existing sequential DBSCAN algo-
rithms [117, 104, 85] as well as our new parallel algorithms. The high-level structure
is shown in Algorithm 1, and an illustration of the key concepts are shown in Fig-

34

Algorithm 1 DBSCAN Algorithm

Input: A set 𝒫 of points, 𝜖, and minPts
Output: An array clusters of sets of cluster IDs for each point

1: procedure DBSCAN(𝒫, 𝜖, minPts)
2: 𝒢 := Cells(𝒫, 𝜖)
3: coreFlags := MarkCore(𝒫,𝒢, 𝜖,minPts)
4: clusters := ClusterCore(𝒫,𝒢, coreFlags, 𝜖,minPts)
5: ClusterBorder(𝒫,𝒢, coreFlags, clusters, 𝜖,minPts)
6: return clusters

ure 3(b)-(d).
We place the points into disjoint 𝑑-dimensional cells with side-length 𝜖/

√
𝑑 based

on their coordinates (Line 2 and Figure 3(b)). The cells have the property that all
points inside a cell are within a distance of 𝜖 from each other, and will belong to the
same cluster in the end. Then on Line 3 and Figure 3(c), we mark the core points.
On Line 4, we generate the clusters for core points as follows. We create a graph
containing one vertex per core cell (a cell containing at least one core point), and
connect two vertices if the closest pair of core points from the two cells is within
a distance of 𝜖. We refer to this graph as the cell graph . This step is illustrated
in Figure 3(d). We then find the connected components of the cell graph to assign
cluster IDs to points in core cells. On Line 5, we assign cluster IDs for border points.
Finally, we return the cluster labels on Line 6.

All of our algorithms share this common structure. In Section 4.2, we intro-
duce our 2D algorithms, and in Section 4.3, we introduce our algorithms for higher
dimensions. We analyze the complexity of our algorithms in Section 4.5.

2D DBSCAN Algorithms

This section presents our parallel algorithms for implementing each line of Algo-
rithm 1 in two dimensions. The cells can be constructed either using a grid-based
method or a box-based method, which we describe in Sections 4.2 and 4.2, respec-
tively. Section 4.2 presents our algorithm for marking core points. We present several
methods for constructing the cell graph in Section 4.2. Finally, Section 4.2 describes
our algorithm for clustering border points.

35

Grid Computation

In the grid-based method, the points are placed into disjoint cells with side-length
𝜖/
√
2 based on their coordinates, as done in the sequential algorithms by Gunawan [117]

and de Berg et al. [85]. A hash table is used to store only the non-empty cells, and
a serial algorithm simply inserts each point into the cell corresponding to its coordi-
nates.

Parallelization. The challenge in parallelization is in distributing the points to the
cells in parallel while maintaining work-efficiency. While a comparison sort could be
used to sort points by their cell IDs, this approach requires 𝑂(𝑛 log 𝑛) work and is
not work-efficient. We observe that semisort (see Section 2) can be used to solve this
problem work-efficiently. The key insight here is that we only need to group together
points in the same cell, and do not care about the relative ordering of points within
a cell or between different cells. We apply a semisort on an array of length 𝑛 of
key-value pairs, where each key is the cell ID of a point and the value is the ID of
the point. This also returns the number of distinct groups (non-empty cells).

We then create a parallel hash table of size equal to the number of non-empty
cells, where each entry stores the bounding box of a cell as the key, and the number of
points in the cell and a pointer to the start of its points in the semisorted array as the
value. We can determine neighboring cells of a cell 𝑔 with arithmetic computation
based on 𝑔’s bounding box, and then look up each neighboring cell in the hash table,
which returns the information for that cell if it is non-empty.

Box Computation

In the box-based method, we place the points into disjoint 2-dimensional bounding
boxes with side-length at most 𝜖/

√
𝑑, which are the cells.

Existing sequential solutions [117, 85] first sort all points by 𝑥-coordinate, then
scan through the points, grouping them into strips of width 𝜖/

√
2 and starting a

new strip when a scanned point is further than distance 𝜖/
√
2 from the beginning of

the strip. It then repeats this process per strip in the 𝑦-dimension to create cells of
side-length at most 𝜖/

√
2. This step is shown in Figure 5(a). Pointers to neighboring

cells are stored per cell. This is computed for all cells in each 𝑥-dimensional strip
𝑠 by merging 𝑠 with each of strips 𝑠 − 2, 𝑠 − 1, 𝑠 + 1, and 𝑠 + 2, as these are the
only strips that can contain cells with points within distance 𝜖. For each merge, we
compare the bounding boxes of the cells in increasing 𝑦-coordinate, linking any two
cells that may possibly have points within 𝜖 distance.

Parallelization. We now describe the method for assigning points to strips, which

36

(a) (b)

𝜖 /√2

1 1

1

0

0
0

0

0

0

0

0

0

0

The leftmost
point is initialized
as 1, others as 0

s

s

𝜖 /√2 𝜖 /√2

Figure 5: Parallel box method construction. In (a), the gray dashed rectangles
correspond to strips and the brown solid rectangles correspond to box cells. To
compute the strips, we create a pointer from each point to the first point with an
𝑥-coordinate that is more than 𝜖/

√
2 larger. We initialize the leftmost point with a

value of 1 and all other points with a value of 0. As shown in (b), after running pointer
jumping, the points at the beginning of strips have values of 1 and all other points
have values of 0. We apply the same procedure in each strip on the 𝑦-coordinates to
obtain the boxes.

is illustrated in Figure 5(b). Let 𝑝𝑥 be the 𝑥-coordinate of point 𝑝. We create a
linked list where each point is a node. The node for point 𝑝 stores a pointer to the
node for point 𝑞 (we call 𝑞 the parent of 𝑝), where 𝑞 is the point with the smallest
𝑥-coordinate such that 𝑝𝑥 + 𝜖/

√
2 < 𝑞𝑥. Each point can determine its parent in

𝑂(log 𝑛) work and depth by binary searching the sorted list of points.

We then assign a value of 1 to the node with the smallest 𝑥-coordinate, and 0
to all other nodes. We run a pointer jumping routine on the linked list where on
each round, every node passes its value to its parent and updates its pointer to point
to the parent of its parent [138]. The procedure terminates when no more pointers
change in a round. In the end, every node with a value of 1 will correspond to the
point at the beginning of a strip, and all nodes with a value of 0 will belong to the
strip for the closest node to the left with a value of 1. This gives the same strips
as the sequential algorithm, since all nodes marked 1 will correspond to the closest
point farther than 𝜖/

√
2 from the point of the previously marked node. For merging

to determine cells within distance 𝜖, we use the parallel merging algorithm described
in Section 2.

37

Algorithm 2 Parallel MarkCore
1: procedure MarkCore(𝒫,𝒢, 𝜖,minPts)
2: coreFlags := {0, . . . , 0} ◁ Length |𝒫| array
3: par-for each 𝑔 ∈ 𝒢 do
4: if |𝑔| ≥ minPts then ◁ |𝑔| is the number of points in 𝑔
5: par-for each 𝑝 in cell 𝑔 do
6: coreFlags[𝑝] := 1

7: else
8: par-for each 𝑝 in cell 𝑔 do
9: count := |𝑔|

10: for each ℎ ∈ 𝑔.NeighborCells(𝜖) do
11: count := count + RangeCount(𝑝, 𝜖, ℎ)

12: if count ≥ minPts then
13: coreFlags[𝑝] := 1

14: return coreFlags

Mark Core

Illustrated in Figure 3(c), the high-level idea in marking the core points is as follows:
first, if a cell contains at least minPts points then all points in the cell are core points,
as it is guaranteed that all the points inside a cell will be within 𝜖 to any other point
in the same cell; otherwise, each point 𝑝 computes the number of points within its
𝜖-radius by checking its distance to points in all neighboring cells (defined as cells
that could possibly contain points within a distance of 𝜖 to the current cell), and
marking 𝑝 as a core point if the number of such points is at least minPts. For a
constant dimension, only a constant number of neighboring cells need to be checked.

Parallelization. Our parallel algorithm for marking core points is shown in Algo-
rithm 2. We create an array 𝑐𝑜𝑟𝑒𝐹 𝑙𝑎𝑔𝑠 of length 𝑛 that marks which points are core
points. The array is initialized to all 0’s (Line 2). We then loop through all cells in
parallel (Line 3). If a cell contains at least minPts points, we mark all points in the
cell as core points in parallel (Line 4–6). Otherwise, we loop through all points 𝑝 in
the cell in parallel, and for each neighboring cell ℎ we count the number of points
within a distance of 𝜖 to 𝑝, obtained using a RangeCount(𝑝, 𝜖, ℎ) query (Lines
8–11) that reports the number of points in ℎ that are no more than 𝜖 distance from 𝑝.
The RangeCount(𝑝, 𝜖, ℎ) query can be implemented by comparing 𝑝 to all points
in each neighboring cell ℎ in parallel, followed by a parallel prefix sum to obtain
the number of points in the 𝜖-radius. If the total count is at least minPts, then 𝑝 is
marked as a core point (Lines 12–13).

38

Cluster Core

The next step of the algorithm is to generate the cell graph (illustrated in Fig-
ure 3(d)). We present three approaches for determining the connectivity between
cells in the cell graph. After obtaining the cell graph, we run a parallel connected
components algorithm to cluster the core points. For the BCP-based approach,
we describe an optimization that merges the BCP computation with the connected
components computation using a lock-free union-find data structure.

BCP-based Cell Graph. The problem of determining cell connectivity can be
solved by computing the BCP of core points between two cells (recall the definition
in Section 2), and checking whether the distance is at most 𝜖.

Each cell runs a BCP computation with each of its neighboring cells to check if
they should be connected in the cell graph. We execute all BCP calls in parallel, and
furthermore each BCP call can be implemented naively in parallel by computing all
pairwise distances in parallel, writing them into an array containing point pairs and
their distances, and applying a prefix sum on the array to obtain the BCP. We apply
two optimizations to speed up individual BCP calls: (1) we first filter out points
further than 𝜖 from the other cell beforehand as done by Gan and Tao [104], and (2)
we iterate only until finding a pair of points with distance at most 𝜖, at which point
we abort the rest of the BCP computation, and connect the two cells. Filtering points
can be done using a parallel filter. To parallelize the early termination optimization,
it is not efficient to simply parallelize across all the point comparisons as this will
lead to a significant amount of wasted work. Instead, we divide the points in each cell
into fixed-sized blocks, and iterate over all pairs of blocks. For each pair of blocks,
we compute the distances of all pairs of points between the two blocks in parallel
by writing their distances into an array. We then take the minimum distance in the
array using a prefix sum, and return if the minimum is at most 𝜖. This approach
reduces the wasted work over the naive parallelization, while still providing ample
parallelism within each pair of blocks.

Triangulation-based Cell Graph. In two dimensions, Gunawan [117] describes a
special approach using Voronoi diagrams. In particular, we can efficiently determine
whether a core cell should be connected to a neighboring cell by finding the nearest
core point from the neighboring cell to each of the core cell’s core points. Gan and
Tao [104] and de Berg et al. [85] show that a Delaunay triangulation can also be
used to determine connectivity in the cell graph. In particular, if there is an edge
in the Delaunay triangulation between two core cells with distance at most 𝜖, then
those two cells are connected. This process is illustrated in Figure 6. The proof of
correctness is described in [104, 85].

39

Figure 6: Using Delaunay triangulation (DT) to construct the cell graph in 2D.
(Left) We construct the DT for all core points, and an edge in the DT can either be
inside a cell (dark blue), or across cells with length no more than 𝜖 (orange), or with
length more than 𝜖 (gray). (Right) An orange edge will add the associated edge in
the cell graph, and in this example, there are two clusters.

To compute Delaunay triangulation or Voronoi diagram in parallel, Reif and
Sen present a parallel algorithm for constructing Voronoi diagrams and Delaunay
triangulations in two dimensions. We use the parallel Delaunay triangulation imple-
mentation from PBBS [43, 215], as described in Section 2.

Unit-spherical emptiness checking-based (USEC) Cell Graph. Gan and
Tao [104] (who attribute the idea to Bose et al. [51]) describe an algorithm for
solving the unit-spherical emptiness checking (USEC) with line separation problem
when comparing two core cells to determine whether they should be connected in
the cell graph.

In the USEC with line separation problem, we are given a horizontal or vertical
line ℓ and would like to check if any of the 𝜖-radius circles of points on one side of ℓ
contain any points on the other side of ℓ. The problem assumes that the points on
each side of ℓ are sorted by both 𝑥-coordinate and 𝑦-coordinate. This is illustrated
in Figure 7.

To apply the USEC with line separation problem to DBSCAN, the points in each
core cell are first sorted both by 𝑥-coordinate and by 𝑦-coordinate (two copies are
stored). For each cell, we consider its top and left boundaries as ℓ. For each ℓ, we
generate the union of 𝜖-radius circles centered around sorted points in the cell (sorted
by 𝑥-coordinate for a horizontal boundary and 𝑦-coordinate for a vertical boundary)
and keep the outermost arcs of the union of circles lying on the other side of ℓ, which
is called the wavefront. This is illustrated in Figure 7(b). For a cell connectivity
query, we choose ℓ to be one of the boundaries of the two cells that separates the two
cells. Then we scan the points of one cell in sorted order and check if any of them

40

(a) (b)

wavefront

Figure 7: An example of the USEC with line separation problem. In (a), the points
are above the horizontal line while the circles are centered below the line. In this
case, the answer is “yes” since there is a point inside one of the circles. In (b), we
show how this problem relates to DBSCAN. We generate the wavefront of the circles
on the left and top borders of each cell, and check if core points in nearby cells are
within the wavefront. In this example, we show the top wavefront.

are contained in the wavefront of the other cell.
Our algorithm assumes that all points are distinct. Without loss of generality,

assume that we are generating a wavefront above a horizontal line. To generate
the wavefront in parallel, we use divide-and-conquer by constructing the wavefront
for the left half of the points and the right half of the points (in sorted order)
recursively in parallel. Merging two wavefronts is more challenging. The wavefronts
are represented as balanced binary trees supporting split and join operations [17].
We merge two wavefronts by taking the top part of each wavefront and joining them
together. The top part of each wavefront can be obtained by checking where the left
and right wavefronts intersect, and then merging them.

We first prove that the left and right wavefronts intersect at a unique point,
assuming the points are distinct. Consider any three points 𝑎, 𝑏, and 𝑐 from the
same cell, in order of 𝑥-coordinate. We consider the arcs formed by their 𝜖-radius
circles, forming a wavefront on the top border of the cell. We prove that the arc
of 𝑐 can intersect at most one location in the union of arcs formed by 𝑎 and 𝑏.
Suppose that 𝑐’s arc intersects at least two locations in 𝑏’s arc. Take any two of
these locations. They are part of the circle that forms 𝑐’s arc. This is a contradiction
because it implies the circle forming 𝑐’s arc has larger radius than the circle forming
𝑏’s arc, as shown in Figure 8(a). Therefore 𝑐’s arc can intersect at most one location
in 𝑏’s arc. A similar argument shows that 𝑐’s arc can intersect at most one location
in 𝑎’s arc.

Now we need to prove that 𝑐’s arc cannot intersect both 𝑎’s arc and 𝑏’s arc.

41

(a) (b)

b

c cba

Figure 8: (a) shows that, in order for the circle centered at 𝑐 to intersect with the
𝜖-radius circle of 𝑏 at two points, the former must has a radius larger than 𝜖. (b)
shows the circle of 𝑐’s intersection with that of 𝑏, and that the left half of 𝑐’s circle
is below the union of the arcs formed by the circles of 𝑎 and 𝑏 above the horizontal
line.

Without loss of generality, suppose that 𝑐’s arc intersects with 𝑏’s arc. Then, once
𝑐’s arc intersects with 𝑏’s arc, the rest of 𝑐’s arc must be in the interior of 𝑏’s arc,
and thus below the union of 𝑎’s and 𝑏’s arcs above the horizontal line. The rest of
𝑐’s arc must be in the interior of 𝑏’s arc because 𝑐 is to the right of 𝑏, and their arcs
are formed by circles of the same radius. This is shown in Figure 8(b).

Applying the above argument to all possible choices of 𝑎 and 𝑏 in the left wave-
front, and all possible choices of 𝑐 in the right wavefront implies that there can only
be one intersection between the two wavefronts.

Now denote the unique arc in the left wavefront that intersects with the right
wavefront as 𝐴. All the arcs to the right of 𝐴 in the left wavefront lie under the
right wavefront, so they will not form part of the combined wavefront. On the other
hand, all arcs to the left of 𝐴 in the left wavefront forms the left half of the combined
wavefront. We find arc 𝐴 by doing an exponential search in the left wavefront starting
from the rightmost arc. For each arc 𝐴′ visited, we perform a binary search for 𝐴′ in
the right wavefront to find its intersection with the right wavefront. There are three
possible results: (a) 𝐴′ lies completely under the right wavefront (no intersection);
(b) 𝐴′ intersects with the right wavefront; and (c) 𝐴′ lies completely outside the
right wavefront (no intersection). If the result is (a), we continue the exponential
search; if the result is (b), we terminate the search and join the two wavefronts at
the intersection; and if the result is (c), arc 𝐴 must lie between 𝐴′ and the previous
arc visited in the exponential search, and so we continue with a binary search inside
that interval to find arc 𝐴. After the entire wavefront is generated, we write it out
to an array by traversing the binary tree in parallel.

42

Algorithm 3 Parallel ClusterCore
1: procedure ClusterCore(𝒫,𝒢, coreFlags, 𝜖,minPts)
2: uf := UnionFind() ◁ Initialize union-find structure
3: SortBySize(𝒢) ◁ Sort by non-increasing order of size
4: par-for each {𝑔 ∈ 𝒢 : 𝑔 is core} do
5: for each {ℎ ∈ 𝑔.NeighborCells(𝜖) : ℎ is core} do
6: if 𝑔 > ℎ and uf .Find(𝑔) ̸= uf .Find(ℎ) then
7: if Connected(𝑔, ℎ) then ◁ On core points only
8: uf .Link(𝑔, ℎ)

9: clusters := {−1, . . . ,−1} ◁ Length |𝒫| array
10: par-for each {𝑔 ∈ 𝒢 : 𝑔 is core} do
11: par-for each {𝑝 in cell 𝑔 : coreFlags[𝑝] = 1} do
12: clusters[𝑝] := uf .Find(𝑔)

13: return clusters

We can perform a cell connectivity query in parallel by creating sub-problems
using pivots, similar to how parallel merge is implemented (see Section 2). Recall
that we are comparing the sorted points of one cell with the wavefront of the other
cell. We take equally spaced arc intersections as pivots from the wavefront, and
use binary search to find where the pivot fits in the sorted point set. Every set of
arcs between two pivots corresponds to a set of sorted points between two binary
search results. Then we repeat the procedure on each pair by taking equally spaced
pivots in the sorted point set and doing binary search of the pivot in the set of arcs
(which may split an arc into multiple pieces). This gives subproblems containing a
contiguous subset of the sorted points and a contiguous subset of the (possibly split)
arcs of the wavefront. Each subproblem is solved using the sequential USEC with
line separation algorithm of [104]. If any of the subproblems return “yes”, then the
answer to the original USEC with line separation problem is “yes”, and otherwise it
is “no”.

Reducing Cell Connectivity Queries. We now present an optimization that
merges the cell graph construction with the connected components computation using
a parallel lock-free union-find data structure to maintain the connected components
on-the-fly. This technique is used in both the BCP approach and USEC approach
for cell graph construction. The pseudocode is shown in Algorithm 3. The idea is to
only run a cell connectivity query between two cells if they are not yet in the same
component (Line 6), which can reduce the total number of connectivity queries.
For example, assume that cells 𝑎, 𝑏, and 𝑐 belong to the same component. After
connecting 𝑎 with 𝑏 and 𝑏 with 𝑐, we can avoid the connectivity check between 𝑎 and

43

Algorithm 4 Parallel ClusterBorder
1: procedure ClusterBorder(𝒫,𝒢,coreFlags,clusters,𝜖,minPts)
2: par-for each {𝑔 ∈ 𝒢 : |𝑔| < minPts} do
3: par-for each {𝑝 in cell 𝑔 : coreFlags[𝑝] = 0} do
4: for each ℎ ∈ 𝑔 ∪ 𝑔.NeighborCells(𝜖) do
5: par-for each {𝑞 in cell ℎ : coreFlags[𝑞] = 1}do
6: if 𝑑(𝑝, 𝑞) ≤ 𝜖 then
7: clusters[𝑝] := clusters[𝑝] ∪ clusters[𝑞] ◁ In parallel

𝑐 by checking their respective components in the union-find structure beforehand.
This optimization was used by Gan and Tao [104] in the sequential setting, and we
extend it to the parallel setting. We also only check connectivity between two cells
at most once by having the cell with higher ID responsible for checking connectivity
with the cell with a lower ID (Line 6).

When constructing the cell graph and checking connectivity, we use a heuristic to
prioritize the cells based on the number of core points in the cells, and start from the
cells with more points, as shown on Line 3. This is because cells with more points are
more likely to have higher connectivity, hence connecting the nearby cells together
and pruning their connectivity queries. This optimization can be less efficient in
parallel, since a connectivity query could be executed before the corresponding query
that would have pruned it in the sequential execution. To overcome this, we group
the cells into batches, and process each batch in parallel before moving to the next
batch. We refer to this new approach as bucketing , and show experimental results
for it in Section 4.6.

Cluster Border

To assign cluster IDs for border points. We check all points not yet assigned a cluster
ID, and for each point 𝑝, we check all of its neighboring cells and add it to the clusters
of all neighboring cells with a core point within distance 𝜖 to 𝑝.

Parallelization. Our algorithm is shown in Algorithm 4. We loop through all cells
with fewer than minPts points in parallel, and for each such cell we loop over all of
its non-core points 𝑝 in parallel (Lines 2–3). On Lines 4–7, we check all core points
in the current cell 𝑔 and all neighboring cells, and if any are within distance 𝜖 to 𝑝,
we add their clusters to 𝑝’s set of clusters (recall that border points can belong to
multiple clusters).

44

4.3 Higher-dimensional Exact and Approximate DBSCAN

The efficient exact and approximate algorithms for higher-dimensional DBSCAN are
also based on the high-level structure of Algorithm 1, and are extensions of some of
the techniques for two-dimensional DBSCAN described in Section 4.2. They use the
grid-based method for assigning points to cells (Section 4.2). Algorithms 2, 3, and 4
are used for marking core points, clustering core points, and clustering border points,
respectively. However, we use two major optimizations on top of the 2D algorithms:
a 𝑘-d tree for finding neighboring cells and a quadtree for answering range counting
queries.

Finding Neighboring Cells

The number of possible neighboring cells grows exponentially with the dimension 𝑑,
and so enumerating all possible neighboring cells can be inefficient in practice for
higher dimensions (although still constant work in theory). Therefore, instead of
implementing NeighborCells by enumerating all possible neighboring cells, we
first insert all cells into a 𝑘-d tree [38], which enables us to perform range queries
to obtain just the non-empty neighboring cells. The construction of our 𝑘-d tree is
done recursively, and all recursive calls for children nodes are executed in parallel.
We also sort the points at each level in parallel and pass them to the appropriate
child. Queries do not modify the 𝑘-d tree, and can all be performed in parallel. Since
a cell needs to find its neighboring cells multiple times throughout the algorithm, we
cache the result on its first query to avoid repeated computation.

4.4 Range Counting

While RangeCount queries can be implemented theoretically-efficiently in DB-
SCAN by checking all points in the target cell, there is a large overhead for doing
so in practice. In higher-dimensional DBSCAN, we construct a quadtree data struc-
ture for each cell to answer RangeCount queries. The structure of a quadtree
is illustrated in Figure 9. A cell of side-length 𝜖/

√
𝑑 is recursively divided into 2𝑑

sub-cells of the same size until the sub-cell becomes empty. This forms a tree where
each sub-cell is a node and its children are the up to 2𝑑 non-empty sub-cells that
it divides into. Each node of the tree stores the number of points contained in its
corresponding sub-cell. Queries do not modify the quadtrees and are therefore all
executed in parallel. We now describe how to construct the quadtrees in parallel.

Parallel Quadtree Construction. The construction procedure recursively divides
each cell into sub-cells. Each node of the tree has access to the points contained in

45

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

00 01 10 11

00

01

10

11

0 2 3 76

Level 0

Level 1

Level 2

Figure 9: A cell (left) and its corresponding quadtree data structure (right).

its sub-cell in a contiguous subarray that is part of a global array (e.g., by storing a
pointer to the start of its points in the global array as well as the number of points
that it represents). We use an integer sort on keys from the range [0, . . . , 2𝑑 − 1] to
sort the points in the subarray based on which of the 2𝑑 sub-cells it belongs to. Now
the points belonging to each of the child nodes are contiguous, and we can recursively
construct the up to 2𝑑 non-empty child nodes independently in parallel by passing
in the appropriate subarray.

To reduce construction time, we set a threshold for the number of points in a
sub-cell, below which the node becomes a leaf node. This reduces the height of
the tree but makes leaf nodes larger. In addition, we avoid unnecessary tree node
traversal by ensuring that each tree node has at least two non-empty children: when
processing a cell, we repeatedly divide the points until they fall into at least two
different sub-cells.

Range Counting in MarkCore. RangeCount queries are used in marking
core points in Algorithm 2. For each cell, a quadtree containing all of its points is
constructed in parallel. Then the RangeCount(𝑝, 𝜖, ℎ) query reports the number
of points in cell ℎ that are no more than 𝜖 distance from point 𝑝. Instead of naively
looping through all points in ℎ, we initiate a traversal of the quadtree starting from
cell ℎ, and recursively search all children whose sub-cell intersects with the 𝜖-radius
of 𝑝. When reaching a leaf node on a query, we explicitly count the number of points
contained in the 𝜖-radius of the query point.

Exact DBSCAN. For higher-dimensional exact DBSCAN, one of our implementa-
tions uses RangeCount queries when computing BCPs in Algorithm 3. For each
core cell, we build a quadtree on its core points in parallel. Then for each core point
𝑝 in each core cell 𝑔, we issue a RangeCount query to each of its neighboring core

46

cells ℎ and connect 𝑔 and ℎ in the cell graph if the range query returns a non-zero
count of core points. Since we do not need to know the actual count, but only
whether or not it is non-zero, our range query is optimized to terminate once such
a result can be determined. We combine this with the optimization of reducing cell
connectivity queries described in Section 4.2

Approximate DBSCAN. For approximate DBSCAN, the sequential algorithm of
Gan and Tao [104] follows the high-level structure of Algorithm 1 using the grid-
based cell structure. The only difference is in the cell graph construction, which is
done using approximate RangeCount queries.

In the quadtree for approximate RangeCount, each cell of side-length 𝜖/
√
𝑑 is

still recursively divided into 2𝑑 sub-cells of the same size, but until either the sub-cell
becomes empty or has side-length at most 𝜖𝜌/

√
𝑑. The tree has maximum depth

𝑙 = 1 + ⌈log2 1/𝜌⌉. We use a modified version of our parallel quadtree construction
method to parallelize approximate DBSCAN.

An approximate RangeCount(𝑝, 𝜖, ℎ, 𝜌) query takes as input a point 𝑝, and
returns an integer that is between the number of points in the 𝜖-radius and the
number of points in the 𝜖(1 + 𝜌)-radius of 𝑝 that are in ℎ, (when using approximate
RangeCount, all relevant methods takes an additional parameter 𝜌). If the answer
is non-zero, then the core cell containing 𝑝 is connected to core cell ℎ. Our query
implementation starts a traversal of the quadtree from ℎ, and recursively searches all
children whose sub-cell intersects with the 𝜖-radius of 𝑝. As done in exact DBSCAN,
our query is optimized to terminate once a zero count or a non-zero count can be
determined. Once either a leaf node is reached or a node’s sub-cell is completely
contained in the 𝜖(1+ 𝜌)-radius of 𝑝, the search on that path terminates. Queries do
not modify the quadtree and can all be executed in parallel.

4.5 Analysis

This section analyzes the theoretical complexity of our algorithms, showing that they
are work-efficient and have polylogarithmic depth.

2D Algorithms

Grid Computation. In our parallel algorithm presented in Section 4.2, creating 𝑛
key-value pairs can be done in 𝑂(𝑛) work and 𝑂(1) depth in a data-parallel fashion.
Semisorting takes 𝑂(𝑛) expected work and 𝑂(log 𝑛) depth w.h.p. Constructing the
hash table and inserting non-empty cells into it takes 𝑂(𝑛) work and 𝑂(log 𝑛) depth

47

w.h.p. The overall cost of the parallel grid computation is therefore 𝑂(𝑛) work in
expectation and 𝑂(log 𝑛) depth w.h.p.

Box Computation. The serial algorithm [117, 85] uses 𝑂(𝑛 log 𝑛) work, including
sorting, scanning the points to assign them to strips and cells, and merging strips.
However, the span is 𝑂(𝑛) since in the worst case there can be 𝑂(𝑛) strips.

Parallel comparison sorting takes 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth. Therefore,
sorting the points by 𝑥-coordinate, and each strip by 𝑦-coordinate can be done in
𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth overall. Parent finding using binary search for all
points takes 𝑂(𝑛 log 𝑛) work and 𝑂(1) depth. For pointer jumping, the longest path
in the linked list halves on each round, and so the algorithm terminates after 𝑂(log 𝑛)
rounds. We do 𝑂(𝑛) work per round, leading to an overall work of 𝑂(𝑛 log 𝑛). The
depth is 𝑂(1) per round, for a total of 𝑂(log 𝑛) overall. We repeat this process for
the points in each strip, but in the 𝑦-direction, and the work and depth bounds are
the same. For assigning pointers to neighboring cells for each cell, we use a parallel
merging algorithm, which takes 𝑂(𝑛) work and 𝑂(log 𝑛) depth. The pointers are
stored in an array, accessible in constant work and depth.

MarkCore. For cells with at least minPts points, we spend 𝑂(𝑛) work overall
marking their points as core points (Lines 4–6 of Algorithm 2). All cells are processed
in parallel, and all points can be marked in parallel, giving 𝑂(1) depth.

For all cells with fewer than minPts points, each point only needs to execute a
range count query on a constant number of neighboring cells [117, 104]. Range-
Count(𝑝, 𝜖, ℎ) compares 𝑝 to all points in neighboring cell ℎ in parallel. Across all
queries, each cell will only be checked by 𝑂(minPts) many points, and so the overall
work for range counting is 𝑂(𝑛 ·minPts). Therefore, Lines 8–13 of Algorithm 2 takes
𝑂(𝑛 · minPts) work. All points are processed in parallel, and there are a constant
number of RangeCount calls per point, each of which takes 𝑂(log 𝑛) depth for a
parallel prefix sum to obtain the number of points in the 𝜖-radius. Therefore, the
depth for range counting is 𝑂(log 𝑛).

The work for looking up the neighbor cells is 𝑂(𝑛) and depth is 𝑂(log 𝑛) w.h.p.
using the parallel hash table that stores the non-empty cells. Therefore, parallel
MarkCore takes 𝑂(𝑛 ·minPts) work and 𝑂(log 𝑛) depth w.h.p.

Cell Graph Construction. Reif and Sen present a parallel algorithm for construct-
ing Voronoi diagrams and Delaunay triangulations in two dimensions in 𝑂(𝑛 log 𝑛)
work and 𝑂(log 𝑛) depth w.h.p. [198]. For the Voronoi diagram approach, each near-
est neighbor query can be answered in 𝑂(log 𝑛) work, which is used to check whether
two cells should be connected and can be applied in parallel. Each cell will only ex-
ecute a constant number of queries, and so the overall complexity is 𝑂(𝑛 log 𝑛) work

48

and 𝑂(log 𝑛) depth w.h.p. For the Delaunay triangulation approach, we can simply
apply a parallel filter over all of the edges in the triangulation, keeping the edges
between different cells with distance at most 𝜖. The cost of the filter is dominated
by the cost of constructing the Delaunay triangulation.

For the USEC with line separation method, the sorted order of points in each
dimension for each cell can be generated in 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth
overall. To generate a wavefront on 𝑛 points, the exponential search has 𝑂(log 𝑛)
steps per level, and each step involves a binary search which takes 𝑂(log 𝑛) work
and depth. Therefore, the the work and depth for the searches is 𝑂(log2 𝑛) per level.
Splitting and joining the binary trees to generate the new wavefront on each level
takes 𝑂(log 𝑛) work and depth [17]. Thus, for the work, we obtain the recurrence
𝑊 (𝑛) = 2𝑊 (𝑛/2)+𝑂(log2 𝑛), which solves to 𝑂(𝑛). Since we can solve the recursive
subproblems in parallel, for the depth, we obtain the recurrence 𝐷(𝑛) = 𝐷(𝑛/2) +
𝑂(log2 𝑛), which solves to 𝑂(log3 𝑛).

Checking whether the sorted set of points from one cell intersects with a wavefront
from another cell can be done using an algorithm similar to parallel merging, as
described in Section 4.2. In particular, for a wavefront of size 𝑚 and sorted point set
of size 𝑠, we pick 𝑘 = 𝑚/ log(𝑚 + 𝑠) equally spaced pivots from the wavefront, and
use binary search to split the sorted point set into subsets of size 𝑠1, . . . , 𝑠𝑘+1 where∑︀𝑘+1

𝑖=1 𝑠𝑖 = 𝑠. The binary searches take a total of 𝑂(𝑘 log 𝑠) = 𝑂(𝑚) work and 𝑂(log 𝑠)
depth. Then, for the 𝑖’th pair forming a subproblem, we pick 𝑗𝑖 = 𝑠𝑖/ log(𝑚 + 𝑠)
equally spaced pivots from the 𝑖’th subset of points and perform a binary search
into the 𝑖’th subset of arcs of the wavefront to create more subproblems. This
takes a total of

∑︀𝑘+1
𝑖=1 𝑂(𝑗𝑖 log𝑚) = 𝑂(𝑠) work and 𝑂(log𝑚) depth. The subset of

points and subset of arcs for each subproblem are now all guaranteed to be of size
𝑂(log(𝑚+ 𝑠)). In parallel across all subproblems, we run the serial USEC with line
separation algorithm of [104], which takes linear work in the input size. Therefore,
the work for this particular instance of USEC with line separation is 𝑂(𝑚+𝑠) and the
depth is 𝑂(log(𝑚 + 𝑠)). All cell connectivity queries can be performed in parallel,
and so the total work is 𝑂(𝑛) and and depth is 𝑂(log 𝑛). Since the sequential
algorithms for wavefront generation and determining cell connectivity take linear
work, our algorithm is work-efficient. After generating each wavefront, we write it
out to an array by traversing the binary tree in parallel, which takes linear work
and logarithmic depth [17]. Including the preprocessing step of sorting, our parallel
USEC with line separation problem for determining the connectivity of core cells
takes 𝑂(𝑛 log 𝑛) work and 𝑂(log3 𝑛) depth.

Connected Components. After the cell graph that contains 𝑂(𝑛) points and edges
are constructed, we run connected components on the cell graph. This step can be

49

done in parallel in 𝑂(𝑛) work and 𝑂(log 𝑛) depth w.h.p. using parallel connectivity
algorithms [108, 119, 76, 120, 189].

ClusterBorder. Using a similar analysis as done for marking core points, it
can be shown that assigning cluster IDs to border points takes 𝑂(𝑛 · minPts) work
sequentially [117, 85]. In parallel, since there are a constant number of neighboring
cells for each non-core point, and all points in neighboring cells as well as all non-
core points are checked in parallel, the depth is 𝑂(1) for the distance comparisons.
Looking up the neighboring cells can be done in 𝑂(𝑛) work and 𝑂(log 𝑛) depth w.h.p.
using our parallel hash table. Adding cluster IDs to border point’s set of clusters,
while removing duplicates at the same time, can be done using parallel hashing in
linear work and 𝑂(log 𝑛) depth w.h.p. The work is 𝑂(𝑛 · minPts) since we do not
introduce any asymptotic work overhead compared to the sequential algorithm.

Overall, we have the following theorem.

Theorem 1. For a constant value of minPts, 2D Euclidean DBSCAN can be com-
puted in 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth w.h.p.

Higher-dimensional Algorithm

For 𝑑 ≥ 3 dimensions, the BCP problem can be solved either using brute-force check-
ing, which takes quadratic work, or using more theoretically-efficient algorithms that
take sub-quadratic work [13, 68, 73]. This leads to a DBSCAN algorithm that takes
𝑂((𝑛 log 𝑛)4/3) expected work for 𝑑 = 3 and 𝑂(𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿) expected work for
𝑑 ≥ 4 where 𝛿 > 0 is any constant [104]. The theoretically-efficient BCP algorithms
seem too complicated to be practical (we are not aware of any implementations of
these algorithms), and the actual implementation of [104] does not use them. How-
ever, we believe that it is still theoretically interesting to design a sub-quadratic work
parallel BCP algorithm to use in DBSCAN, which is the focus of this section.

The sub-quadratic work BCP algorithms are based on constructing Delaunay
triangulations (DT) in 𝑑 dimensions, which can be used for nearest neighbor search.
However, we cannot afford to construct a DT on all the points, since a 𝑑-dimensional
DT contains up to 𝑂(𝑛⌈𝑑/2⌉) simplices, which is at least quadratic in the worst-case
for 𝑑 ≥ 3.

The idea in the algorithm by Agarwal et al. [13] is to construct multiple DTs,
each for a subset of the points, and a nearest neighbor query then takes the closest
neighbor among queries to all of the DTs. The data structure for nearest neighbor
queries used by Aggarwal et al. is based on the RPO (Randomized Post Office) tree
by Clarkson [73]. The RPO tree contains 𝑂(log 𝑛) levels where each node in the
RPO tree corresponds to the DT of a random subset of the points. Parallel DT

50

for a constant dimension 𝑑 can be computed work-efficiently in expectation and in
𝑂(log 𝑛 log* 𝑛) depth w.h.p. [45]. The children of each node can be determined by
traversing the history graph of the DT, which takes 𝑂(log 𝑛) work and depth. The
RPO tree is constructed recursively for 𝑂(log 𝑛) levels, and so the overall depth is
𝑂(log2 𝑛 log* 𝑛) w.h.p. A query traverses down a path in the RPO tree, querying
each DT along the path, which takes 𝑂(log2 𝑛) work and depth overall. Using this
data structure to solve BCP gives a DBSCAN algorithm with 𝑂(𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿) ex-
pected work and 𝑂(log2 𝑛 log* 𝑛) depth w.h.p. For 𝑑 = 3, an improved data structure
by Agarwal et al. [12] can be used to improve the expected work to 𝑂((𝑛 log 𝑛)4/3).
The data structure is also based on DT, and so similar to before, we can parallelize
the DT construction and obtain the same depth bound.

The overall bounds are summarized in the following theorem.

Theorem 2. For a constant value of minPts, Euclidean DBSCAN can be solved in
𝑂((𝑛 log 𝑛)4/3) expected work for 𝑑 = 3 and 𝑂(𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿) expected work for
any constant 𝛿 > 0 for 𝑑 > 3, and polylogarithmic depth with high probability.

Approximate Algorithm

The algorithms for grid construction, marking core points, connected components,
and clustering border points are the same as the exact algorithms, and so we only
analyze approximate cell graph construction in the approximate algorithm based on
the quadtree introduced in Section 4.4. The quadtree has 𝑙 = 1 + ⌈log2 1/𝜌⌉ levels
and can be constructed in 𝑂(𝑛′𝑙) work sequentially for a cell with 𝑛′ points. A hash
table is used to map non-empty cells to their quadtrees, which takes 𝑂(𝑛) work
w.h.p. to construct. Using a fact from [25], Gan and Tao show that the number of
nodes visited by a query is 𝑂(1 + (1/𝜌)𝑑−1). Therefore, for constant 𝜌 and 𝑑, all of
the quadtrees can be constructed in a total of 𝑂(𝑛) work w.h.p., and queries can be
answered in 𝑂(1) expected work.

All of the quadtrees can be constructed in parallel. To parallelize the construction
of a quadtree for a cell with 𝑛′ points, we sort the points on each level in 𝑂(𝑛′) work
and 𝑂(log 𝑛′) depth using parallel integer sorting [234], since the keys are integers in
a constant range. In total, this gives 𝑂(𝑛′𝑙) work and 𝑂(𝑙 log 𝑛′) depth per quadtree.
We use a parallel hash table to map non-empty cells to their quadtrees, which takes
𝑂(𝑛) work and 𝑂(log 𝑛) depth w.h.p. to construct. To construct the cell graph,
all core points issue a constant number of queries to neighboring cells in parallel.
The 𝑂(𝑛) hash table queries can be done in 𝑂(𝑛) work and 𝑂(log 𝑛) depth w.h.p.
and thus cell graph construction has the same complexity. This gives the following
theorem.

51

Theorem 3. For constant values of minPts and 𝜌, our approximate Euclidean DB-
SCAN algorithm takes 𝑂(𝑛) work and 𝑂(log 𝑛) depth with high probability.

4.6 Experiments

This section presents experiments comparing our exact and approximate algorithms
as well as existing algorithms.

Datasets. We use the synthetic seed spreader (SS) datasets produced by Gan and
Tao’s generator [104]. The generator produces points generated by a random walk
in a local neighborhood, but jumping to a random location with some probability.
SS-simden and SS-varden refer to the datasets with similar-density and variable-
density clusters, respectively. We also use a synthetic dataset called UniformFill
that contains points distributed uniformly at random inside a bounding hypergrid
with side length

√
𝑛, where 𝑛 is the total number of points. The points have double-

precision floating point values, but we scaled them to integers when testing Gan
and Tao’s implementation, which requires integer coordinates. We generated the
synthetic datasets with 10 million points (unless specified otherwise) for dimensions
𝑑 = 2, 3, 5, 7.

In addition, we use the following real-world datasets, which contain points with
double-precision floating point values.

1. Household [92] is a 7-dimensional dataset with 2, 049, 280 points excluding
the date-time information.

2. GeoLife [259] is a 3-dimensional dataset with 24, 876, 978 points. This dataset
contains user location data (longitude, latitude, altitude), and its distribution
is extremely skewed.

3. Cosmo50 [153] is a 3-dimensional dataset with 321, 065, 547 points. We ex-
tracted the 𝑥, 𝑦, and 𝑧 coordinate information to construct the 3-dimensional
dataset.

4. OpenStreetMap [118] is a 2-dimensional dataset with 2, 770, 238, 904 points,
containing GPS location data.

5. TeraClickLog [80] is a 13-dimensional dataset with 4, 373, 472, 329 points con-
taining feature values and click feedback of online advertisements. As far as
we know, TeraClickLog is the largest dataset used in the literature for exact
DBSCAN.

52

We performed a search on 𝜖 and minPts for the synthetic datasets and chose the
default parameters to be those that output a correct clustering. For the SS datasets,
the default parameters that we use are similar to those found by Gan and Tao [104].
For ease of comparison, the default parameters for Household are the same as Gan
and Tao [104] and the default parameters for GeoLife, Cosmo50, OpenStreetMap,
and TeraClickLog are same as RP-DBSCAN [218]. For approximate DBSCAN, we
set 𝜌 = 0.01, unless specified otherwise.

Testing Environment. We perform all of our experiments on Amazon EC2 ma-
chines. We use a c5.18xlarge machine for testing of all datasets other than Cosmo50,
OpenStreetMap, and TeraClickLog. The c5.18xlarge machine has 2× Intel Xeon Plat-
inum 8124M (3.00GHz) CPUs for a total for a total of 36 two-way hyper-threaded
cores, and 144 GB of RAM. We use a r5.24xlarge machine for the three larger datasets
just mentioned. The r5.24xlarge machine has 2 × Intel Xeon Platinum 8175M (2.50
GHz) CPUs for a total of 48 two-way hyper-threaded cores, and 768 GB of RAM. By
default, we use all of the cores with hyper-threading on each machine. We compile
our programs with the g++ compiler (version 7.4) with the -O3 flag, and use Cilk
Plus for parallelism [136].

Algorithms Tested

We implement the different methods for marking core points and BCP computation
in exact and approximate DBSCAN for 𝑑 ≥ 3, and present results for the fastest
versions, which are described below.

• our-exact : This exact implementation implements the RangeCount query
in marking core points by scanning through all points in the neighboring cell
in parallel described in Section 4.2. For determining connectivity in the cell
graph, it uses the BCP method described in Section 4.2.

• our-exact-qt : This exact implementation implements the RangeCount query
supported by the quadtree described in Section 4.4. For determining connec-
tivity in the cell graph, it uses the BCP method described in Section 4.2.

• our-approx : This approximate implementation implements the RangeCount
query in marking core points by scanning through all points in the neighboring
cell in parallel, and uses the quadtree for approximate RangeCount queries
in cell graph construction described in Section 4.4.

53

• our-approx-qt : This approximate implementation is the same as our-approx
except that it uses the RangeCount query supported by the quadtree de-
scribed in Section 4.4 for marking core points.

We append the -bucketing suffix to the names of these implementations when
using the bucketing optimization described in Section 4.2.

For 𝑑 = 2, we have six implementations that differ in whether they use the
grid or the box method to construct cells and whether they use BCP, Delaunay
triangulation, or USEC with line separation to construct the cell graph. We refer to
these as our-2d-grid-bcp, our-2d-grid-usec, our-2d-grid-delaunay , our-2d-
box-bcp, our-2d-box-usec, and our-2d-box-delaunay .

We note that our exact algorithms return the same answer as the standard DB-
SCAN definition, and our approximate algorithms return answers that satisfy Gan
and Tao’s approximate DBSCAN definition (see Section 2).

We compare with the following implementations:

• Gan&Tao-v2 [104] is the state-of-the-art serial implementation for both exact
and approximate DBSCAN. Gan&Tao-v2 only accepts integer values between
0 and 100, 000, and so when running their code we scaled the datasets up into
this integer range and scaled up the 𝜖 value accordingly to achieve a consistent
clustering output with other methods.

• pdsdbscan [184] is the implementation of the parallel disjoint-set exact DB-
SCAN by Patwary et al. compiled with OpenMP.

• hpdbscan [112] is the implementation of parallel exact DBSCAN by Gotz et
al. compiled with OpenMP. We modified the source code to remove the file
output code.

• rpdbscan [218] is the state-of-the-art distributed implementation for DBSCAN
using Apache Spark. We note that their variant does not return the same result
as DBSCAN. We tested rpdbscan on the same machine that we used, and also
report the timings in [218], which were obtained using at least as many cores
as our largest machine.

Experiments for 𝑑 ≥ 3

We first evaluate the performance of the different algorithms for 𝑑 ≥ 3. In the
following plots, data points that did not finish within an hour are not shown.

54

0 1000 2000 3000
epsilon

100

102

tim
e

(s
ec

)
(a) 3D-SS-simden-10M

(minpts:10)

0 1000 2000 3000
epsilon

100

101

102

tim
e

(s
ec

)

(b) 3D-SS-varden-10M
(minpts:100)

0 1000 2000 3000
epsilon

100

101

tim
e

(s
ec

)

(c) 3D-UniformFill-10M
(minpts:10)

0 1000 2000 3000
epsilon

100

101

102

103

tim
e

(s
ec

)

(d) 5D-SS-simden-10M
(minpts:100)

1000 1500 2000 2500 3000
epsilon

100

101

102

tim
e

(s
ec

)

(e) 5D-SS-varden-10M
(minpts:10)

0 1000 2000 3000
epsilon

100

101

102

103

tim
e

(s
ec

)

(f) 5D-UniformFill-10M
(minpts:100)

50 100 150
epsilon

100

101

tim
e

(s
ec

)

(j) 3D-GeoLife-24.9M
(minpts:100)

0 1000 2000 3000
epsilon

100

101

102

tim
e

(s
ec

)

(g) 7D-SS-simden-10M
(minpts:10)

1000 1500 2000 2500 3000
epsilon

101

102

tim
e

(s
ec

)

(h) 7D-SS-varden-10M
(minpts:10)

0 1000 2000 3000
epsilon

100

101

102

tim
e

(s
ec

)

(i) 7D-UniformFill-10M
(minpts:10)

1000 1500 2000 2500 3000
epsilon

101

102

tim
e

(s
ec

)

(k) 7D-Household-2.05M
(minpts:100)

our-exact-qt
our-exact-qt-bucketing
our-exact
our-exact-bucketing
our-approx-qt
our-approx-qt-bucketing
our-approx
our-approx-bucketing
hpdbscan
pdsdbscan

Figure 10: Running time vs. 𝜖 on 36 cores with hyper-threading. The 𝑦-axes are in
log-scale.

Influence of 𝜖 on Parallel Running Time. In this experiment, we fix the default
value of minPts corresponding to the correct clustering, and vary 𝜖 within a range
centered around the default 𝜖 value. Figure 10 shows the parallel running time vs. 𝜖
for the different implementations. In general, both pdsdbscan and hpdbscan becomes
slower with increasing 𝜖. This is because they use pointwise range queries, which get
more expensive with larger 𝜖. Our methods tend to improve with increasing 𝜖 because
there are fewer cells leading to a smaller cell graph, which speeds up computations
on the graph. Our implementations significantly outperform pdsdbscan and hpdbscan
on all of the data points.

We observe a spike in plot Figure 10(f) when 𝜖 = 608. The implementations
that mark core points by scanning through all points in neighboring cells spend
a significant amount of time in that phase; in comparison, the quadtree versions
perform better because of their more optimized range counting. There is also a
spike in Figure 10(j) when 𝜖 = 80. Our exact implementation spends a significant
amount of time in cell graph construction. This is because the GeoLife dataset is
heavily skewed, certain cells could contain significantly more points. When many

55

101 102 103 104

minpts

10 1

100

101

102
tim

e
(s

ec
)

(a) 3D-SS-simden-10M
(eps:1000)

101 102 103 104

minpts

10 1

100

101

102

tim
e

(s
ec

)

(b) 3D-SS-varden-10M
(eps:2000)

101 102 103 104

minpts

2 × 10 1

3 × 10 1

4 × 10 1

tim
e

(s
ec

)

(c) 3D-UniformFill-10M
(eps:2000)

101 102 103 104

minpts

100

101

102

tim
e

(s
ec

)

(d) 5D-SS-simden-10M
(eps:1000)

101 102 103 104

minpts

100

101

102

tim
e

(s
ec

)

(e) 5D-SS-varden-10M
(eps:3000)

101 102 103 104

minpts

100

101

102

103

tim
e

(s
ec

)

(f) 5D-UniformFill-10M
(eps:2000)

101 102 103 104

minpts

100

6 × 10 1

2 × 100

3 × 100

tim
e

(s
ec

)

(j) 3D-GeoLife-24.9M
(eps:40)

101 102 103 104

minpts

100

101

102

tim
e

(s
ec

)

(g) 7D-SS-simden-10M
(eps:2000)

101 102 103 104

minpts

101

102

tim
e

(s
ec

)

(h) 7D-SS-varden-10M
(eps:3000)

101 102 103 104

minpts

101

102

103

104

tim
e

(s
ec

)

(i) 7D-UniformFill-10M
(eps:2000)

101 102 103 104

minpts

101

tim
e

(s
ec

)

(k) 7D-Household-2.05M
(eps:2000)

our-exact-qt
our-exact-qt-bucketing
our-exact
our-exact-bucketing
our-approx-qt
our-approx-qt-bucketing
our-approx
our-approx-bucketing
hpdbscan
pdsdbscan

Figure 11: Running time vs. minPts on 36 cores with hyper-threading. The 𝑦-axes
are in log-scale.

cell connectivity queries involve these cells, the quadratic nature using the BCP
approach in our-exact makes the cost of queries expensive. On the contrary, methods
using the quadtree for cell graph construction (our-exact-qt, our-approx-qt, and our-
approx) tend to have consistent performance across the 𝜖 values. For the spike in
Figure 10(j), it is interesting to see that the bucketing implementations, our-exact-
qt-bucketing and our-exact-bucketing, are significantly faster than our-exact-qt and
our-exact because many of the expensive connectivity queries are pruned.

Influence of minPts on Parallel Running Time. In this experiment, we fix the
default value of 𝜖 for a dataset and vary minPts over a range from 10 to 10, 000.
Figure 11 shows that our implementations have an increasing trend in running time
as minPts increases in most cases. This is consistent with our analysis in Section 4.5
that the overall work for marking core points is 𝑂(𝑛·minPts). In contrast, minPts does
not have much impact on the performance of hpdbscan and pdsdbscan because their
range queries, which dominate the total running times, do not depend on minPts.
Our implementations outperform hpdbscan and pdsdbscan for almost all values of

56

1 4 8 16 24 36 36h
num-threads

0
5

10
15
20

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
-b

uc
ke

t (
1.

47
 se

c)
(a) 3D-SS-simden-10M
(eps:1000,minpts:10)

1 4 8 16 24 36 36h
num-threads

0

10

20

30

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
-q

t (
10

.0
7

se
c)

(b) 3D-SS-varden-10M
(eps:2000,minpts:100)

1 4 8 16 24 36 36h
num-threads

0.0
2.5
5.0
7.5

10.0

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
-b

uc
ke

t (
2.

64
 se

c)

(c) 3D-UniformFill-10M
(eps:2000,minpts:10)

1 4 8 16 24 36 36h
num-threads

0

10

20

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
-q

t-b
uc

ke
t (

24
.6

5
se

c) (d) 5D-SS-simden-10M
(eps:1000,minpts:100)

1 4 8 16 24 36 36h
num-threads

0

10

20

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
-b

uc
ke

t (
28

.3
6

se
c)

(e) 5D-SS-varden-10M
(eps:3000,minpts:10)

1 4 8 16 24 36 36h
num-threads

0

5

10

15

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
-b

uc
ke

t (
4.

39
 se

c)

(f) 5D-UniformFill-10M
(eps:2000,minpts:100)

1 4 8 16 24 36 36h
num-threads

0

1

2

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
 (1

.2
4

se
c)

(j) 3D-GeoLife-24.9M
(eps:40,minpts:100)

1 4 8 16 24 36 36h
num-threads

0

10

20

30

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
-b

uc
ke

t (
21

.9
2

se
c)

(g) 7D-SS-simden-10M
(eps:2000,minpts:10)

1 4 8 16 24 36 36h
num-threads

0

10

20

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
-b

uc
ke

t (
53

.6
1

se
c)

(h) 7D-SS-varden-10M
(eps:3000,minpts:10)

1 4 8 16 24 36 36h
num-threads

0

10

20

30
sp

ee
du

p
ov

er
 se

ria
l-

ou
r-e

xa
ct

-q
t-b

uc
ke

t (
15

4.
21

 se
c) (i) 7D-UniformFill-10M

(eps:2000,minpts:10)

1 4 8 16 24 36 36h
num-threads

0

2

4

6

8

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
 (2

6.
66

 se
c)

(k) 7D-Household-2.05M
(eps:2000,minpts:100)

our-exact-qt
our-exact-qt-bucketing
our-exact
our-exact-bucketing
our-approx-qt
our-approx-qt-bucketing
our-approx
our-approx-bucketing
hpdbscan
pdsdbscan

Figure 12: Speedup of implementations over the best serial baselines vs. thread
count. The best serial baseline and its running time for each dataset is shown on the
𝑦-axis label. “36h” on the 𝑥-axes refers to 36 cores with hyper-threading.

minPts. Figures 11(d) and 11(g) suggests that hpdbscan can surpass our performance
for certain datasets when minPts = 10, 000. However, as suggested by Schubert et
al. [206], the minPts value used in practice is usually much smaller, and based on our
observation, a minPts value of at most 100 usually gives the correct clusters.

Parallel Speedup. To the best of our knowledge, Gan&Tao-v2 is the fastest exist-
ing serial implementation both for exact and approximate DBSCAN. However, we
find that across all of our datasets, our serial implementations are faster than theirs
by an average of 5.18x and 1.52x for exact DBSCAN and approximate DBSCAN,
respectively. In Figure 12, we compare the speedup of the parallel implementations
under different thread counts over the best serial baselines for each dataset and
choice of parameters. We also show the self-relative speedups for one dataset in Fig-
ure 13 and note that the trends are similar on other datasets. For these experiments,
we use parameters that generate the correct clusters. Our implementations obtain
very good speedups on most datasets, achieving speedups of 5–33x (16x on average)

57

1 4 8 16 24 36 36h
num-threads

0

10

20

30

se
lf-

re
la

tiv
e

sp
ee

du
p

3D-SS-varden-10M
(eps:2000,minpts:100) our-exact-qt

our-exact-qt-bucketing
our-exact
our-exact-bucketing
our-approx-qt
our-approx-qt-bucketing
our-approx
our-approx-bucketing
hpdbscan
pdsdbscan

Figure 13: Self-relative speedup of implementations vs. thread count. “36h” on the
𝑥-axis refers to 36 cores with hyper-threading.

over the best serial baselines. Additionally, the self-relative speedups of our exact
and approximate methods are 2–89x (24x on average) and 14-44x (24x on average),
respectively. Although hpdbscan and pdsdbscan achieve good self-relative speedup
(22–31x and 7–20x, respectively), they fail to outperform the serial implementation
on most of the datasets. Compared to hpdbscan and pdsdbscan, we are faster by up
to orders of magnitude (16–6102x).

Our speedup on the GeoLife dataset (Figure 12(j)) is low due to the high skewness
of cell connectivity queries caused by the skewed point distribution, however the
parallel running time is reasonable (less than 1 second). In contrast, hpdbscan and
pdsdbscan did not terminate within an hour.

The bucketing heuristic achieved the best parallel performance for several of the
datasets (Figures 10(f), (g), and (j); Figures 11(c) and (j); and Figures 12(c), (f),
(g), and (j)). In general, the bucketing heuristic greatly reduces the number of
connectivity queries during cell graph construction, but in some cases it can reduce
parallelism and/or increase overhead due to sorting. We also observe a similar trend
on all methods where bucketing is applied.

We also implemented our own parallel baseline based on the original DBSCAN
algorithm [95]. We use a parallel 𝑘-d tree, and all points perform queries in parallel to
find all neighbors in their 𝜖-radius to check if they should be a core point. However,
the baseline was over 10x slower than our fastest parallel implementation for datasets
with the correct parameters, and hence we do not show it in the plots.

Influence of 𝜌 on Parallel Running Time. Figure 14 shows the effect of varying
𝜌 for our two approximate DBSCAN implementations. We also show our best exact
method as a baseline. We only show plots for two datasets as the trend was similar
in other datasets. We observe a small decrease in running time as 𝜌 increases,
but find that the approximate methods are still mostly slower than the best exact
method. On average, for the parameters corresponding to correct clustering, we find

58

10 3 10 2 10 1

rho

0.0

0.5

1.0

1.5

2.0

tim
e

(s
ec

)

(a) 5D-SS-simden-10M
(minpts:100)

10 3 10 2 10 1

rho

0.0

0.5

1.0

1.5

2.0

tim
e

(s
ec

)

(b) 5D-SS-varden-10M
(minpts:10)

our-approx-qt our-approx our-best-exact

Figure 14: Running time vs. 𝜌 on 36 cores with hyper-threading.

that our best exact method is 1.24x and 1.53x faster than our best approximate
method when running in parallel and serially, respectively; this can also be seen
in Figure 12. Schubert et al. [206] also found exact DBSCAN to be faster than
approximate DBSCAN for appropriately-chosen parameters, which is consistent with
our observation.

Large-scale Datasets. In Table 3, we show the running times of our-exact on
large-scale datasets. We compare with the reported numbers for the state-of-the-
art distributed implementation rpdbscan, which use 48 cores distributed across 12
machines [218], as well as numbers for rpdbscan on our machines. The purpose of this
experiment is to show that we are able to efficiently process large datasets using just
a multicore machine. GeoLife was run on the 36 core machine whereas others were
run on the 48 core machine due to their larger memory footprint. We see that our-
exact achieves a 18–577x speedup over rpdbscan using the same or a fewer number of
cores. We believe that this speedup is due to lower communication costs in shared-
memory as well as a better algorithm. Even though TeraClickLog is significantly
larger than the other datasets, our running times are not proportionally larger. This
is because for the parameters chosen by [218], all points fall into one cell. Therefore,
in our implementation all points are core points and are trivially placed into the only
cluster. In contrast, rpdbscan incurs communication costs in partitioning the points
across machines and merging the clusters from different machines together.

Experiments for 𝑑 = 2

In Figure 15, we show the performance of our six 2D algorithms as well as hpdbscan
and pdsdbscan on the synthetic datasets. We show the running time while varying 𝜖,
minPts, number of points, or number of threads. We first note that all of our imple-
mentations are significantly faster than hpdbscan and pdsdbscan. In general, we found

59

0 1000 2000 3000
epsilon

10 1
100
101
102
103

tim
e

(s
ec

)

(a) 2D-SS-simden-10M
(minpts:100)

101 102 103 104

minpts

10 1

100

101

102

tim
e

(s
ec

)

(b) 2D-SS-simden-10M
(eps:400)

105 106 107

num-pts

10 2
10 1
100
101
102

tim
e

(s
ec

)

(c) 2D-SS-simden-NumPts
(various params)

1 4 8 16 24 36 36h
num-threads

0
5

10
15
20

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
-b

uc
ke

t (
1.

17
 se

c)

(d) 2D-SS-simden-10M
(eps:400,minpts:100)

0 1000 2000 3000
epsilon

10 1
100
101
102
103

tim
e

(s
ec

)

(e) 2D-SS-varden-10M
(minpts:100)

101 102 103 104

minpts

10 1

100

101

102

tim
e

(s
ec

)

(f) 2D-SS-varden-10M
(eps:1000)

105 106 107

num-pts

10 1

101

103

tim
e

(s
ec

)
(g) 2D-SS-varden-NumPts

(various params)

1 4 8 16 24 36 36h
num-threads

0
5

10
15
20

sp
ee

du
p

ov
er

 se
ria

l-
ou

r-e
xa

ct
-b

uc
ke

t (
1.

09
 se

c)

(h) 2D-SS-varden-10M
(eps:1000,minpts:100)

our-2d-grid-bcp
our-2d-grid-usec

our-2d-grid-delaunay
our-2d-box-bcp

our-2d-box-usec
our-2d-box-delaunay

hpdbscan
pdsdbscan

Figure 15: Running time vs. 𝜖, minPts, number of points, or thread count for the
2D implementations. In (c) and (g), the parameters are chosen for each input size
such that the algorithm outputs the correct clustering. In (d) and (h), “36h” on the
𝑥–axis refers to 36 cores with hyper-threading. The 𝑦-axes in (a)–(c) and (e)–(g) are
in log-scale.

60

GeoLife Cosmo50
𝜖 20 40 80 160 0.01 0.02 0.04 0.08

our-exact 0.541 0.617 0.535 0.482 41.8 5.51 4.69 3.03
rpdbscan (our machine) 29.13 27.92 32.04 27.81 3750 562.0 576.9 672.6

rpdbscan ([218]) 36 33 28 27 960 504 438 432
OpenStreetMap TeraClickLog

𝜖 0.01 0.02 0.04 0.08 1500 3000 6000 12000
our-exact 41.4 43.2 40 44.5 26.8 26.9 27.0 27.6

rpdbscan (our machine) – – – – – – – –
rpdbscan ([218]) 3000 1720 1200 840 15480 7200 3540 1680

Table 3: Parallel running times (seconds) for our-exact and rpdbscan. The value of
minPts is set to 100. GeoLife was run on the 36 core machine and the other datasets
were run on the 48 core machine. For rpdbscan, we omit timings for experiments
that encountered exceptions or did not complete within 1 hour. We also include the
distributed running times reported in [218] that used as many cores as our machines.

the grid-based implementations to be faster than the box-based implementations due
to the higher cell construction time of the boxed-based implementations. We also
found the Delaunay triangulation-based implementations to be significantly slower
than the BCP and USEC-based methods due to the high overhead of computing the
Delaunay triangulation. The fastest implementation overall was our-2d-grid-bcp.

Comparison with GPU Implementation

While there exists GPU implementation of DBSCAN, we believe our implementations
are much faster than the existing GPU implementations. We first compare with G-
DBSCAN [21], and their implementation takes 74.4 seconds to process a data set
with 0.7 million points on an Nvidia Tesla M2050 with 448 cores. G-DBSCAN first
creates a graph on the data set, where an edge is created between two vertices within
𝜖 to each other, after which a breadth-first search is computed on the graph. The
algorithm may not be work-efficient since the size of the graph can be quadratic
in the size of the input. We also compare with CUDA-DClust+ [191], which takes
15.62 seconds to process a data set with 10 million points using an Nvidia Quadro
GP100 with 3584 cores. In comparison, our implementation takes much less than
1 second in most cases to process data sets with 10 million points as shown by
our experiments described earlier. CUDA-DClust+ reduces the quadratic cost of
𝜖-neighborhood searches using an index structure, which is a similar strategy to our
optimized implementations.

61

5 Fast Parallel Algorithms for Euclidean Minimum
Spanning Tree and Hierarchical Spatial Cluster-
ing

5.1 Introduction

There has been a significant amount of theoretical work on designing fast sequential
EMST algorithms (e.g., [13, 254, 210, 26, 58]). There have also been some practical
implementations of EMST [170, 66, 35, 178], although most of them are sequential
(part of the algorithm by Chatterjee et al. [66] is parallel). The state-of-the-art EMST
implementations are either based on generating a well-separated pair decomposition
(WSPD) [60] and applying Kruskal’s minimum spanning tree (MST) algorithm on
edges produced by the WSPD [66, 178], or dual-tree traversals on 𝑘-d trees integrated
into Boruvka’s MST algorithm [170]. Much less work has been proposed for parallel
HDBSCAN* and OPTICS [184, 203]. In this thesis, we design new algorithms for
EMST, which can also be leveraged to design a fast parallel HDBSCAN* algorithm.

This thesis presents practical parallel in-memory algorithms for HDBSCAN* and
EMST, and proves that the theoretical work of our implementations matches their
state-of-the-art counterparts, while having polylogarithmic depth. Our algorithms
are based on finding a WSPD and then running Kruskal’s algorithm on edges between
pairs in the WSPD. For our HDBSCAN* algorithm, we propose a new notion of well-
separation to include the notion of core distances, which enables us to improve the
space usage and work of our algorithm.

Given the MST from the HDBSCAN* or the EMST problem, we provide an
algorithm to generate a dendrogram, which represents the hierarchy of clusters in
our data set. For EMST, this solves the single-linkage clustering problem [113], and
for HDBSCAN*, this gives us a dendrogram as well as a reachability plot [61]. We
introduce a work-efficient parallel divide-and-conquer algorithm that first generates
an Euler tour on the tree, splits the tree into multiple subtrees, recursively gen-
erates the dendrogram for each subtree, and glues the results back together. An
in-order traversal of the dendrogram gives the reachability plot. Our algorithm takes
𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛 log log 𝑛) depth. Our parallel dendrogram algorithm is
of independent interest, as it can also be applied to generate dendrograms for other
clustering problems.

We also present several additional theoretical results: (1) an EMST algorithm

62

with subquadratic work and polylogarithmic depth based on a subquadratic-work
sequential algorithm by Callahan and Kosaraju [58]; (2) an HDBSCAN*algorithm
for two dimensions with 𝑂(minPts2 ·𝑛 log 𝑛) work, matching the sequential algorithm
by Berg et al. [85], and 𝑂(minPts · log2 𝑛) depth; and (3) a work-efficient parallel
algorithm for approximate OPTICS based on the sequential algorithm by Gan and
Tao [105].

We provide optimized parallel implementations of our EMST and HDBSCAN*

algorithms. We introduce a memory optimization that avoids computing and ma-
terializing many of the WSPD pairs, which significantly improves our algorithm’s
performance (up to 8x faster and 10x less space). We also provide optimized imple-
mentations of 𝑘-d trees, which our algorithms use for spatial queries.

We perform a comprehensive set of experiments on both synthetic and real-world
data sets using varying parameters, and compare the performance of our implemen-
tations to optimized sequential implementations as well as existing parallel imple-
mentations. Compared to existing EMST sequential implementations [170, 171], our
fastest sequential implementation is 0.89–4.17x faster (2.44x on average). On a 48-
core machine with hyper-threading, our EMST implementation achieves 14.61–55.89x
speedup over the fastest sequential implementations. Our HDBSCAN* implemen-
tation achieves 11.13–46.69x speedup over the fastest sequential implementations.
Compared to existing sequential and parallel implementations for HDBSCAN* [105,
171, 203, 184], our implementation is at least an order of magnitude faster. Our
source code is publicly available at https://github.com/wangyiqiu/hdbscan.

5.2 Parallel EMST and HDBSCAN*

In this section, we present our new parallel algorithms for EMST and HDBSCAN*.
We also introduce our new memory optimization to improve space usage and perfor-
mance in practice.

EMST

To solve EMST, Callahan and Kosaraju present an algorithm for constructing a
WSPD that creates an edge between the BCCP of each pair in the WSPD with
weight equal to their distance, and then runs an MST algorithm on these edges.
They show that their algorithm takes 𝑂(𝑇𝑑(𝑛, 𝑛) log 𝑛) work [58], where 𝑇𝑑(𝑛, 𝑛)
refers to the work of computing BCCP on two sets each of size 𝑛.

For our parallel EMST algorithm, we parallelize WSPD construction algorithm,
and then develop a parallel variant of Kruskal’s MST algorithm that runs on the

63

https://github.com/wangyiqiu/hdbscan

Algorithm 5 Well-Separated Pair Decomposition
1: procedure Wspd(𝐴)
2: if |𝐴| > 1 then
3: do in parallel
4: Wspd(𝐴left) ◁ parallel call on the left child of 𝐴
5: Wspd(𝐴right) ◁ parallel call on the right child of 𝐴
6: FindPair(𝐴left , 𝐴right)
7: procedure FindPair(𝑃 , 𝑃 ′)
8: if 𝑃diam < 𝑃 ′

diam then
9: Swap(𝑃 , 𝑃 ′)

10: if WellSeparated(𝑃 , 𝑃 ′) then Record(𝑃 , 𝑃 ′)
11: else
12: do in parallel
13: FindPair(𝑃left , 𝑃 ′) ◁ 𝑃left is the left child of 𝑃
14: FindPair(𝑃right , 𝑃 ′) ◁ 𝑃right is the right child of 𝑃

edges formed by the pairs in the WSPD. We also propose a non-trivial optimization
to make the implementation fast and memory-efficient.

Constructing a WSPD in Parallel. We introduce the basic parallel WSPD in
Algorithm 5. Prior to calling WSPD, we construct a spatial median 𝑘d-tree 𝑇 in
parallel with each leaf containing one point. Then, we call the procedure Wspd on
line 1 and make the root node of 𝑇 its input. In Wspd, we make parallel calls to
FindPair on the two children of all non-leaf nodes by recursively calling Wspd. The
procedure FindPair on line 7 takes as input a pair (𝑃, 𝑃 ′) of nodes in 𝑇 , and checks
whether 𝑃 and 𝑃 ′ are well-separated. If they are well-separated, then the algorithm
records them as a well-separated pair on line 10; otherwise, the algorithm splits the
set with the larger bounding sphere into its two children and makes two recursive
calls in parallel (Lines 13–14). This process is applied recursively until the input
pairs are well-separated. The major difference of Algorithm 1 from the serial version
is the parallel thread-spawning on Lines 3–5 and 12–14. This procedure generates a
WSPD with 𝑂(𝑛) pairs [58].

Parallel GFK Algorithm for EMST. The original algorithm by Callahan and
Kosaraju [58] computes the BCCP between each pair in the WSPD to generate a
graph from which an MST can be computed to obtain the EMST. However, it is not
necessary to compute the BCCP for all pairs, as observed by Chatterjee et al. [66].
Our implementation only computes the BCCP between a pair if their points are not

64

(b,c)
2, 1

(e,h)
2,√17

(e,Q7)

3, 2

(Q4,Q5)

4,√10

 (Q2,Q6)

 7, 8

(a,d)
2, √2

Round 1, β=2, ρhi=d(h,Q7)

Q4 Q5

Q2

a
f g

d b c

e

h

Q6

Q7

Q1

(e,Q2)

3, 6

Color CodeFormat
Sl1 Sl2 Su

(f,g)
2, 1

Q3

 (Q1, i)

 9, 18

(e,h)
2,√17

(h,Q7)

3, √5

(e,Q7)

3, 2

(Q4,Q5)

4,√10

(e,Q2)

3, 6

 (Q2,Q6)

 7, 8
 (Q1, i)

 9, 18

Round 2, β=4, ρhi=d(Q2,Q6)

Round 3, β=8

Q0

 (Q1, i)

 9, 18

i

(h,Q7)

3, √5

(A, B)
|A|+|B|, BCCP

Figure 16: The is an example for both GFK (Algorithm 6) and MemoGFK (Algo-
rithm 7) for EMST corresponding to the data set shown in Figure 4. The red lines
linking tree nodes and the boxes drawn below represent well-separated pairs. The
boxes also show the cardinality and BCCP value of the pair. Their correspondence
with the symbols 𝑆𝑙1, 𝑆𝑙2, and 𝑆𝑢 from the pseudocode are color-coded. The pairs
that generate 𝜌hi are in bold squares, and the pairs filtered out have a red cross.
Using our MemoGFK optimization, only the pairs in 𝑆𝑙1 needs to be materialized,
in contrast to needing to materialize all of the pairs in GFK.

65

Algorithm 6 Parallel GeoFilterKruskal
1: procedure ParallelGFK(WSPD: 𝑆, Edges: 𝐸out , UnionFind: UF)
2: 𝛽 = 2
3: while |𝐸out | < (𝑛− 1) do
4: (𝑆𝑙, 𝑆𝑢) = Split(𝑆, 𝑓𝛽) ◁ For a pair (𝐴,𝐵), 𝑓𝛽 checks if |𝐴|+ |𝐵| ≤ 𝛽
5: 𝜌hi = min(𝐴,𝐵)∈𝑆𝑢 𝑑(𝐴,𝐵)
6: (𝑆𝑙1, 𝑆𝑙2) = Split(𝑆𝑙, 𝑓𝜌hi) ◁ For a pair (𝐴,𝐵), 𝑓𝜌hi checks if

BCCP(𝐴,𝐵) ≤ 𝜌hi
7: 𝐸𝑙1 = GetEdges(𝑆𝑙1) ◁ Retrieves edges associated with pairs in 𝑆𝑙1

8: ParallelKruskal(𝐸𝑙1, 𝐸out , UF)
9: 𝑆 = Filter(𝑆𝑙2 ∪ 𝑆𝑢, 𝑓diff) ◁ For a pair (𝐴,𝐵), 𝑓diff checks points in 𝐴 are

in different component from 𝐵 in UF
10: 𝛽 = 𝛽 × 2

yet connected in the spanning forest generated so far. This optimization reduces
the total number of BCCP calls. Furthermore, we propose a memory optimization
that avoids materializing all of the pairs in the WSPD. We will first describe how we
obtain the EMST from the WSPD, and then give details of our memory optimization.

The original Kruskal’s algorithm is an MST algorithm that takes input edges
sorted by non-decreasing weight, and processes the edges in order, using a union-find
data structure to join components for edges with endpoints in different components.
Our implementation is inspired by a variant of Kruskal’s algorithm, GeoFilterKruskal
(GFK). This algorithm was used for sequential EMST by Chatterjee et al. [66], and
for MST in general graphs by Osipov et al. [180]. It improves Kruskal’s algorithm
by avoiding the BCCP computation between pairs unless needed, and prioritizing
BCCPs between pairs with smaller cardinalities, which are cheaper, with the goal of
pruning more expensive BCCP computations.

We propose a parallel GFK algorithm as shown in Algorithm 6. It uses Kruskal’s
MST algorithm as a subroutine by passing it batches of edges, where each batch
has edges with weights no less than those of edges in previous batches, and the
union-find structure is shared across multiple invocations of Kruskal’s algorithm.
ParallelGFK takes as input the WSPD pairs 𝑆, an array 𝐸out to store the MST
edges, and a union-find structure UF . On each round, given a constant 𝛽, we only
consider node pairs in the WSPD with cardinality (sum of sizes) at most 𝛽 because
it is cheaper to compute their BCCPs. To do so, the set of pairs 𝑆 is partitioned into
𝑆𝑙, containing pairs with cardinality at most 𝛽, and 𝑆𝑢, containing the remaining
pairs (line 4). However, it is only correct to consider pairs in 𝑆𝑙 that produce edges

66

lighter than any of the pairs in 𝑆𝑢. On line 5, we compute an upper bound 𝜌hi for
the edges in 𝑆𝑙 by setting 𝜌hi equal to the minimum 𝑑(𝐴,𝐵) for all (𝐴,𝐵) ∈ 𝑆𝑢

(this is a lower bound on the edges weights formed by these pairs). In the example
shown in Figure 16, in the first round, with 𝛽 = 2, the set 𝑆𝑙 contains (𝑎, 𝑑), (𝑏, 𝑐),
(𝑓, 𝑔), and (𝑒, ℎ), and the set 𝑆𝑢 contains (ℎ,𝑄7), (𝑒,𝑄7), (𝑒,𝑄2), (𝑄4, 𝑄5), (𝑄2, 𝑄6),
and (𝑄1, 𝑖). 𝜌hi corresponds to (𝑒,𝑄7) on Line 5. Then, we compute the BCCP
of all elements of set 𝑆𝑙, and split it into 𝑆𝑙1 and 𝑆𝑙2, where 𝑆𝑙1 has edges with
weight at most 𝜌hi (line 6). On Line 6, 𝑆𝑙1 contains (𝑎, 𝑑), (𝑏, 𝑐) and (𝑓, 𝑔), as their
BCCP distances are smaller than 𝜌hi = 𝑑(𝑒,𝑄7), and 𝑆𝑙2 contains (𝑒, ℎ) . After that,
𝐸𝑙1, the edges corresponding to 𝑆𝑙1, are passed to Kruskal’s algorithm (Lines 7–
8). The remaining pairs 𝑆𝑙2 ∪ 𝑆𝑢 are then filtered based on the result of Kruskal’s
algorithm (Line 9)—in particular, pairs that are connected in the union-find structure
of Kruskal’s algorithm can be discarded, and for many of these pairs we never have
to compute their BCCP. In Figure 16, the second round processes (𝑒, ℎ), (ℎ,𝑄7),
(𝑒,𝑄7), (𝑒,𝑄2), (𝑄4, 𝑄5), (𝑄2, 𝑄6), and (𝑄1, 𝑖), and works similarly to Round 1.
However, (𝑄2, 𝑄6) gets filtered out during the second round, and we never have to
compute its BCCP, leading to less work compared to a naive algorithm. Finally, the
subsequent rounds process a single pair (𝑄1, 𝑖). At the end of each round, we double
the value of 𝛽 to ensure that there are logarithmic number of rounds and hence
better depth (in contrast, the sequential algorithm of Chatterjee et al. [66] increases
𝛽 by 1 every round). Throughout the algorithm, we cache the BCCP results of pairs
to avoid repeated computations. Overall, the main difference between Algorithm 2
and sequential algorithm is the use of parallel primitives on nearly every line of the
pseudocode, and the exponentially increasing value of 𝛽 on Line 11, which is crucial
for achieving a low depth bound.

The following theorem summarizes the bounds of our algorithm.

Theorem 4. We can compute the EMST on a set of 𝑛 points in constant dimensions
in 𝑂(𝑛2) work and 𝑂(log2 𝑛) depth.

Proof. Callahan [57] shows that a WSPD with 𝑂(𝑛) well-separated pairs can be
computed in 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth, which we use for our analysis. Our
parallel GeoFilterKruskal algorithm for EMST proceeds in rounds, and processes the
well-separated pairs in an increasing order of cardinality. Since 𝛽 doubles on each
round, there can be at most 𝑂(log 𝑛) rounds since the largest pair can contain 𝑛
points. Within each round, the Split on Line 4 and Filter on Line 9 both take
𝑂(𝑛) work and 𝑂(log 𝑛) depth. We can compute the BCCP for each pair on Line 6
by computing all possible point distances between the pair, and using WriteMin
to obtain the minimum distance. Since the BCCP of each pair will only be computed

67

once and is cached, the total work of BCCP on Line 6 is
∑︀

𝐴,𝐵∈𝑆 |𝐴||𝐵| = 𝑂(𝑛2)
work since the WSPD is an exact set cover for all distinct pairs. Therefore, Line 6
takes 𝑂(𝑛2) work across all rounds and 𝑂(1) depth for each round. Given 𝑛 edges,
the MST computation on Line 8 can be done in 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth
using existing parallel algorithms [138]. Therefore, the overall work is 𝑂(𝑛2). Since
each round takes 𝑂(log 𝑛) depth, and there are 𝑂(log 𝑛) rounds, the overall depth is
𝑂(log2 𝑛).

We note that there exist subquadratic work BCCP algorithms [13], which result
in a subquadratic work EMST algorithm. Although the algorithm is impractical and
no implementations exist, for theoretical interest we give a work-efficient parallel
algorithm with polylogarithmic depth in Section 5.5 of the Appendix.

We implemented our own sequential and parallel versions of the GFK algorithm
as a baseline based on Algorithm 6, which we found to be faster than the imple-
mentation of Chatterjee et al. [66] in our experiments. In addition, because the
original GFK algorithm requires materializing the full WSPD, its memory consump-
tion can be excessive, limiting the algorithm’s practicality. This issue worsens as the
dimensionality of the points increases, as the number of pairs in the WSPD increases
exponentially with the dimension. While Chatterjee et al. [66] show that their GFK
algorithm is efficient, they consider much smaller data sets than the ones in this
thesis.

The MemoGFK Optimization. To tackle the memory consumption issue, we
propose an optimization to the GFK algorithm, which reduces its space usage and
improves its running time in practice. We call the resulting algorithm MemoGFK
(memory-optimized GFK). The basic idea is that, rather than materializing the
full WSPD at the beginning, we partially traverse the 𝑘d-tree on each round and
retrieve only the pairs that are needed. The pseudocode for our algorithm is shown
in Algorithm 7, where ParallelMemoGFK takes in the root 𝑅 of a 𝑘d-tree, an
array 𝐸out to store the MST edges, and a union-find structure UF .

The algorithm proceeds in rounds similar to parallel GeoFilterKruskal, and main-
tains lower and upper bounds (𝜌lo and 𝜌hi) on the weight of edges to be considered
each round. On each round, it first computes 𝜌hi based on 𝛽 by a single 𝑘d-tree
traversal, which will be elaborated below (line 4). Then, together with 𝜌lo from the
previous round (𝜌lo = 0 on the first round), the algorithm retrieves pairs with BCCP
distance in the range [𝜌lo , 𝜌hi) via a second 𝑘d-tree traversal on line 5. The edges
corresponding to these pairs are then passed to Kruskal’s algorithm on line 7. An
example of the first round of the algorithm with MemoGFK is illustrated in Fig-
ure 16. Without the optimization, the GFK algorithm needs to first materialize all

68

Algorithm 7 Parallel MemoGFK
1: procedure ParallelMemoGFK(𝑘d-tree root: 𝑅, Edges: 𝐸out , UnionFind:

UF)
2: 𝛽 = 2, 𝜌lo = 0
3: while |𝐸out | < (𝑛− 1) do
4: 𝜌hi = GetRho(𝑅, 𝛽)
5: 𝑆𝑙1 = GetPairs(𝑅, 𝛽, 𝜌lo , 𝜌hi , UF)
6: 𝐸𝑙1 = GetEdges(𝑆𝑙1) ◁ Retrieves edges associated with pairs in 𝑆𝑙1

7: ParallelKruskal(𝐸𝑙1, 𝐸out , UF)
8: 𝛽 = 𝛽 × 2, 𝜌lo = 𝜌hi

of the pairs in Round 1. With MemoGFK, 𝜌hi = 𝑑(𝑒,𝑄7) is computed via a tree
traversal on Line 4, after which only the pairs in the set 𝑆𝑙1 = {(𝑎, 𝑑), (𝑏, 𝑐), (𝑓, 𝑔)}
are retrieved and materialized on Line 5 via a second tree traversal. Retrieving pairs
only as needed reduces memory usage and improves performance. The correctness of
the algorithm follows from the fact that each round considers non-overlapping ranges
of edge weights in increasing order until all edges are considered, or when MST is
completed.

Now we discuss the implementation details of the two-pass tree traversal on
Line 4–5. The GetRho subroutine, which computes 𝜌hi , does so by finding the
lower bound on the minimum separation of pairs whose cardinality is greater than
𝛽 and are not yet connected in the MST. We traverse the 𝑘d-tree starting at the
root, in a similar way as when computing the WSPD in algorithm 5. During the
process, we update a global copy of 𝜌hi using WriteMin whenever we encounter
a well-separated pair in FindPair, with cardinality greater than 𝛽. We can prune
the traversal once |𝐴| + |𝐵| ≤ 𝛽, as all pairs that originate from (𝐴,𝐵) will have
cardinality at most 𝛽. We also prune the traversal when the two children of a tree
node are already connected in the union-find structure, as these edges will not need
to be considered by Kruskal’s algorithm. In addition, we prune the traversal when
the distance between the bounding spheres of 𝐴 and 𝐵, 𝑑(𝐴,𝐵), is larger than 𝜌hi ,
as its descendants cannot produce a smaller distance.

The GetPairs subroutine then retrieves all pairs whose points are not yet con-
nected in the union-find structure and have BCCP distances in the range [𝜌lo , 𝜌hi). It
does so also via a pruned traversal on the 𝑘d-tree starting from the root, similarly to
algorithm 5, but only retrieves the useful pairs. For a pair of nodes encountered in
the FindPair subroutine, we estimate the minimum and maximum possible BCCP
between the pair using bounding sphere calculations, an example of which is shown

69

A B

Representing pair (A,B)
 below as a range

x

x

ρ
lo

ρ
hi

x

x x

x

x

x

(a) (b)

BCCP(A,B)

d
s
(A,B)

d
s,max

(A,B)

d
s
(A,B)

BCCP(A,B)
d

s,max
(A,B)

Figure 17: (a) shows a representation of a well-separated pair (𝐴,𝐵) as a line seg-
ment, based on the values of its 𝑑(𝐴,𝐵) and 𝑑max(𝐴,𝐵), which serve as the lower and
upper bounds, respectively, for their BCCP and the BCCP of their descendants. The
"x"’s on the line marks the value of the BCCP. (b) shows an example of tree node
pairs encountered during a pruned tree traversal on Line 5 of Algorithm 7, where
the pairs are represented the same way as in (a). The pairs in solid green lines, if
well-separated, will be retrieved and materialized because their BCCPs are within
the [𝜌lo , 𝜌hi) range, whereas those in solid black lines will not as their BCCPs are out
of range (although their BCCPs will still be computed, since their lower and upper
bounds do not immediately put them out of range). The traversal will be pruned
when encountering a pair represented by dotted lines as their BCCP and the BCCP
of their descendants will be out of range.

in Figure 17a. We prune the traversal when 𝑑max(𝐴,𝐵) < 𝜌lo , or when 𝑑(𝐴,𝐵) ≥ 𝜌hi ,
in which case BCCP(𝐴,𝐵) (as well as those of its recursive calls on descendant nodes)
will be outside of the range. An example is shown in Figure 17b. In addition, we
also prune the traversal if 𝐴 and 𝐵 are already connected in the MST, as an edge
between 𝐴 and 𝐵 will not be part of the MST.

We evaluate MemoGFK in Section 5.8. We also use the memory optimization for
HDBSCAN*, which will be described next.

HDBSCAN*

Baseline. Inspired by a sequential approximate algorithm to solve the OPTICS
problem by Gan and Tao [105], we modified and parallelized their algorithm to
compute the exact HDBSCAN*as our baseline. First, we perform 𝑘-NN queries using
Euclidean distance with 𝑘 = minPts to compute the core distances. Gan and Tao’s

70

original algorithm creates a mutual reachability graph of size 𝑂(𝑛 ·minPts2), using an
approximate notion of BCCP between each WSPD pair, and then computes its MST
using Prim’s algorithm. Our exact algorithm parallelizes their algorithm, and instead
uses the exact BCCP* computations based on the mutual reachability distance to
form the mutual reachability graph. In addition, we also compute the MST on the
generated edges using the MemoGFK optimization described in Section 5.2. Summed
across all well-separated pairs, the BCCP computations take quadratic work and
constant depth. Therefore, our baseline algorithm takes 𝑂(𝑛2) work and 𝑂(log2 𝑛)
depth, and computes the exact HDBSCAN*. In Section 5.6 of the Appendix, we also
describe a work-efficient parallel approximate algorithm based on [105].

Improved Algorithm. We present a more space-efficient algorithm that is faster in
practice by using a new definition of well-separation for the WSPD for HDBSCAN*.
We denote the maximum and minimum core distances of the points in node 𝐴 as
cdmax(𝐴) and cdmin(𝐴), respectively. Consider a pair (𝐴,𝐵) in the WSPD. We de-
fine 𝐴 and 𝐵 to be geometrically-separated if 𝑑(𝐴,𝐵) ≥ max{𝐴diam, 𝐵diam} and
mutually-unreachable if max{𝑑(𝐴,𝐵), cdmin(𝐴), cdmin(𝐵)} ≥ max{𝐴diam, 𝐵diam, cdmax(𝐴),
cdmax(𝐵)}. We consider 𝐴 and 𝐵 to be well-separated if they are geometrically-
separated, mutually-unreachable, or both. The original definition of well-separation
only includes the first condition.

This leads to space savings because in algorithm 5, recursive calls to procedure
FindPair(𝐴,𝐵) on line 7 will not terminate until 𝐴 and 𝐵 are well-separated. Since
our new definition is a disjunction between mutual-unreachability and geometric-
separation, the calls to FindPair can terminate earlier, leading to fewer pairs gener-
ated. When constructing the mutual reachability subgraph to pass to MST, we add
only a single edge between the BCCP* (BCCP with respect to mutual reachability
distance) of each well-separated pair. With our new definition, the total number of
edges generated is upper bounded by the size of the WSPD, which is 𝑂(𝑛) [60]. In
contrast, Gan and Tao’s approach generates 𝑂(𝑛 ·minPts2) edges.

Theorem 5. Under the new definition of well-separation, our algorithm computes
an MST of the mutual reachability graph.

Proof. Under our new definition, well-separation is defined as the disjunction between
being geometrically-separated and mutually-unreachable. We connect an edge be-
tween each well-separated pair (𝐴,𝐵) with the mutual-reachability distance max{𝑑(𝑢*, 𝑣*),
cd(𝑢*), cd(𝑣*)} as the edge weight, where 𝑢* ∈ 𝐴, 𝑣* ∈ 𝐵, and (𝑢*, 𝑣*) is the
BCCP* of (𝐴,𝐵). We overload the notation BCCP*(𝐴,𝐵) to also denote the mutual-
reachability distance of (𝑢*, 𝑣*).

71

Consider the point set 𝑃root, which is contained in the root node of the tree
associated with its WSPD. Let 𝑇 be the MST of the full mutual reachability graph
𝐺𝑀𝑅. Let 𝑇 ′ be the MST of the mutual reachability subgraph 𝐺′

𝑀𝑅, computed by
connecting the BCCP* of each well-separated pair. To ensure that 𝑇 ′ produces the
correct HDBSCAN*clustering, we prove that it has the same weight as 𝑇—in other
words, 𝑇 ′ is a valid MST of 𝐺𝑀𝑅.

We prove the optimality of 𝑇 ′ by induction on each tree node 𝑃 . Since the WSPD
is hierarchical, each node 𝑃 also has a valid WSPD consisting of a subset of pairs of
the WSPD of 𝑃root. Let (𝑢, 𝑣) be an edge in 𝑇 . There exists an edge (𝑢′, 𝑣′) ∈ 𝑇 ′

that connects the same two components as in 𝑇 if we were to remove (𝑢, 𝑣). We
call (𝑢′, 𝑣′) the replacement of (𝑢, 𝑣), which is optimal if 𝑤(𝑢′, 𝑣′) = 𝑤(𝑢, 𝑣). Let
𝑇𝑃 and 𝑇 ′

𝑃 be subgraphs of 𝑇 and 𝑇 ′, respectively, containing points in 𝑃 , but not
necessarily spanning 𝑃 . We inductively hypothesize that all edges of 𝑇 ′

𝑃 are optimal.
In the base case, a singleton tree node 𝑃 satisfies the hypothesis by having no edges.

Now consider any node 𝑃 and edge (𝑢, 𝑣) ∈ 𝑇𝑃 . The children of 𝑃 are optimal by
our inductive hypothesis. We prove that the edges connecting the children of 𝑃 are
optimal. Points 𝑢 and 𝑣 must be from a well-separated pair (𝐴,𝐵), where 𝐴 and 𝐵
are children of 𝑃 in the WSPD hierarchy. Let 𝑈 and 𝑉 be a partition of 𝑃 formed
by a cut in 𝑇𝑃 that separates point pair (𝑢, 𝑣), where 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 . We want to
prove that the replacement of (𝑢, 𝑣) in 𝑇 ′

𝑃 is optimal.
We now discuss the first scenario of the proof, shown in Figure 18a, where the

replacement edge between 𝑈 and 𝑉 is (𝑢′, 𝑣′) = BCCP*(𝐴,𝐵) = (𝑢*, 𝑣*), and we
assume without loss of generality that 𝑢′ ∈ 𝐴 ∩ 𝑈 and 𝑣′ ∈ 𝐵 ∩ 𝑉 . Since (𝑢, 𝑣)
is the closest pair of points connecting 𝑈 and 𝑉 by the cut property, then (𝑢′, 𝑣′),
the BCCP* of (𝐴,𝐵), must be optimal; otherwise, (𝑢, 𝑣) has smaller weight than
BCCP*(𝐴,𝐵), which is a contradiction. This scenario easily generalizes to the case
where 𝐴 and 𝐵 happen to be completely within 𝑈 and 𝑉 , respectively.

We now discuss the second scenario, shown in Figure 18b, where BCCP*(𝐴,𝐵) =
(𝑢*, 𝑣*) is internal to either 𝑈 or 𝑉 . We assume without loss of generality that
𝑢* ∈ 𝐴 ∩ 𝑉 and 𝑣* ∈ 𝐵 ∩ 𝑉 , and that 𝑈 and 𝑉 are connected by some intra-node
edge (𝑢′, 𝑣′) of 𝐴 in 𝑇 ′

𝑃 . We want to prove that (𝑢′, 𝑣′) is an optimal replacement
edge. We consider two cases based on the relationship between 𝐴 and 𝐵 under our
new definition of well-separation.

Case 1. Nodes 𝐴 and 𝐵 are mutually-unreachable, and may or may not be geometrically-
separated. The weight of (𝑢′, 𝑣′) is max{𝑑(𝑢′, 𝑣′), cd(𝑢′), cd(𝑣′)} ≤ max{𝐴diam, cdmax(𝐴)}.
Consider the BCCP* pair (𝑢*, 𝑣*) between 𝐴 and 𝐵. Based on the fact that 𝐴 and

72

U V

u

v

u’(u*)

v’(v*)

A

B

u

v

u*

v*

A

B

U V

(a) (b)

u’ v’

Figure 18: In this figure, we show the two proof cases for HDBSCAN*. We use an
oval to represent each node in the WSPD, and solid black dots to represent data
points. We represent the partition of the space to 𝑈 and 𝑉 using a cut represented
by a dotted line.

𝐵 are mutually-unreachable, we have

BCCP*(𝐴,𝐵) = max{𝑑(𝑢*, 𝑣*), cd(𝑢*), cd(𝑣*)}
≥ max{𝑑(𝐴,𝐵), cdmin(𝐴), cdmin(𝐵)}
≥ max{𝐴diam, 𝐵diam, cdmax(𝐴), cdmax(𝐵)}
≥ max{𝐴diam, cdmax(𝐴)},

where the inequality from the second to the third line above comes from the definition
of mutual-unreachability. Therefore, 𝑤(𝑢′, 𝑣′) is not larger than BCCP*(𝐴,𝐵) =
𝑤(𝑢*, 𝑣*), and by definition of BCCP*, 𝑤(𝑢*, 𝑣*) is not larger than 𝑤(𝑢, 𝑣). Hence,
𝑤(𝑢′, 𝑣′) is not larger than 𝑤(𝑢, 𝑣). On the other hand, 𝑤(𝑢′, 𝑣′) is not smaller than
𝑤(𝑢, 𝑣), since otherwise we could form a spanning tree with a smaller weight than
𝑇𝑃 , contradicting the fact that it is an MST. Thus, (𝑢′, 𝑣′) is optimal.

Case 2. Nodes 𝐴 and 𝐵 are geometrically-separated and not mutually-unreachable.
By the definition of BCCP*, we know that 𝑤(𝑢*, 𝑣*) ≤ 𝑤(𝑢, 𝑣), which implies

max{cd(𝑢*), cd(𝑣*), 𝑑(𝑢*, 𝑣*)} ≤ max{cd(𝑢), cd(𝑣), 𝑑(𝑢, 𝑣)}
max{cd(𝑢*), cd(𝑢), 𝑑(𝑢, 𝑢*)} ≤ max{cd(𝑢), cd(𝑣), 𝑑(𝑢, 𝑣)}.

To obtain the second inequality above from the first, we replace cd(𝑣*) on the left-
hand side with cd(𝑢), since cd(𝑢) is also on the right-hand side; we also replace
𝑑(𝑢*, 𝑣*) with 𝑑(𝑢, 𝑢*) because of the geometric separation of 𝐴 and 𝐵. Since (𝑢′, 𝑣′)
is the lightest BCCP* edge of some well-separated pair in 𝐴, max{cd(𝑢′), cd(𝑣′),

73

𝑑(𝑢′, 𝑣′)} ≤ max{cd(𝑢), cd(𝑢*), 𝑑(𝑢, 𝑢*)}. We then have

max{cd(𝑢′), cd(𝑣′), 𝑑(𝑢′, 𝑣′)} ≤ max{cd(𝑢), cd(𝑣), 𝑑(𝑢, 𝑣)}.

This implies that 𝑤(𝑢′, 𝑣′) is not larger than 𝑤(𝑢, 𝑣). Since (𝑢, 𝑣) is an edge of MST
𝑇𝑃 , the weight of the replacement edge 𝑤(𝑢′, 𝑣′) is also not smaller than 𝑤(𝑢, 𝑣), and
hence (𝑢′, 𝑣′) is optimal.

Case 1 and 2 combined prove the optimality of replacement edges in the second
scenario. Considering both scenarios, we have shown that each replacement edge in
𝑇 ′
𝑝 connecting the children of 𝑃 is optimal, which proves the inductive hypothesis.

Applying the inductive hypothesis to 𝑃root completes the proof.

Our algorithm achieves the following bounds.

Theorem 6. Given a set of 𝑛 points, we can compute the MST on the mutual
reachability graph in 𝑂(𝑛2) work, 𝑂(log2 𝑛) depth, and 𝑂(𝑛 ·minPts) space.

Proof. Compared to the cost of GFK for EMST, GFK for HDBSCAN*has the ad-
ditional cost of computing the core distances, which takes 𝑂(minPts · 𝑛 log 𝑛) work
and 𝑂(log 𝑛) depth using 𝑘-NN [57]. With our new definition of well-separation, the
WSPD computation will only terminate earlier than in the original definition, and
so the bounds that we showed for EMST above still hold. The new WSPD definition
also gives an 𝑂(𝑛) space bound for the well-separated pairs. The space usage of the
𝑘-NN computation is 𝑂(𝑛 ·minPts), which dominates the space usage. Overall, this
gives 𝑂(𝑛2) work, 𝑂(log2 𝑛) depth, and 𝑂(𝑛 ·minPts) space.

Our algorithm gives a clear improvement in space usage over the naive approach
of computing an MST from the mutual reachability graph, which takes 𝑂(𝑛2) space,
and our parallelization of the exact version of Gan and Tao’s algorithm, which takes
𝑂(𝑛 · minPts2) space. We will also see that the smaller memory footprint of this
algorithm leads to better performance in practice.

Implementation. We implement three algorithms for HDBSCAN*: a parallel ver-
sion of the approximate algorithm based on Gan and Tao [105], a parallel exact
algorithm based on Gan and Tao, and our space-efficient algorithm from Section 5.2.
Our implementations all use Kruskal’s algorithm for MST and use the memory opti-
mization introduced for MemoGFK in Section 5.2. For our space-efficient algorithm,
we modify the WSPD and MemoGFK algorithm to use our new definition of well-
separation.

74

5.3 Dendrogram and Reachability Plot

We present a new parallel algorithm for generating a dendrogram and reachability
plot, given an unrooted tree with edge weights. Our algorithm can be used for single-
linkage clustering [113] by passing the EMST as input, as well as for generating the
HDBSCAN*dendrogram and reachability plot (refer to Section 3.1 for definitions). In
addition, our dendrogram algorithm can be used in efficiently generating hierarchical
clusters using other linkage criteria (e.g., [256, 252, 179]).

Sequentially, the dendrogram can be generated in a bottom-up (agglomerative)
fashion by sorting the edges by weight and processing the edges in increasing order
of weight [171, 85, 176, 113, 126]. Initially, all points are assigned their own clusters.
Each edge merges the clusters of its two endpoints, if they are in different clusters,
using a union-find data structure. The order of the merges forms a tree structure,
which is the dendrogram. This takes 𝑂(𝑛 log 𝑛) work, but has little parallelism since
the edges need to be processed one at a time. For HDBSCAN*, we can generate
the reachability plot directly from the input tree by running Prim’s algorithm on
the tree edges starting from an arbitrary vertex [22]. This approach takes 𝑂(𝑛 log 𝑛)
work and is also hard to parallelize efficiently, since Prim’s algorithm is inherently
sequential.

Our new parallel algorithm uses a top-down approach to generate the dendrogram
and reachability plot given a weighted tree. Our algorithm takes 𝑂(𝑛 log 𝑛) expected
work and 𝑂(log2 𝑛 log log 𝑛) depth with high probability, and hence is work-efficient.

Ordered Dendrogram

We discuss the relationship between the dendrogram and reachability plot, which are
both used in HDBSCAN*. It is known [202] that a reachability plot can be converted
into a dendrogram using a linear-work algorithm for Cartesian tree construction [103],
which can be parallelized [212]. However, converting in the other direction, which
is what we need, is more challenging because the children in dendrogram nodes
are unordered, and can correspond to many possible sequences, only one of which
corresponds to the traversal order in Prim’s algorithm that defines the reachability
plot.

Therefore, for a specific starting point 𝑠, we define the ordered dendrogram of
𝑠, which is a dendrogram where its in-order traversal corresponds to the reachability
plot starting at point 𝑠. With this definition, there is a one-to-one correspondence
between a ordered dendrogram and a reachability plot, and there are a total of 𝑛
possible ordered dendrograms and reachability plots for an input of size 𝑛. Then, a
reachability plot is just the in-order traversal of the leaves of an ordered dendrogram,

75

and an ordered dendrogram is the corresponding Cartesian tree for the reachability
plot.

A Novel Top-Down Algorithm

We introduce a novel work-efficient parallel algorithm to compute a dendrogram,
which can be modified to compute an ordered dendrogram and its corresponding
reachability plot.

Warm-up. We first propose a simple top-down algorithm for constructing the den-
drogram, which does not quite give us the desired work and depth bounds. We first
generate an Euler tour on the input tree [138]. Then, we delete the heaviest edge,
which can be found in linear work and 𝑂(1) depth by checking all edges. By defini-
tion, this edge will be the root of the dendrogram, and removing this edge partitions
the tree into two subtrees corresponding to the two children of the root. We then
convert our original Euler tour into two Euler tours, one for each subtree, which can
be done in constant work and depth by updating a few pointers. Next, we partition
our list of edges into two lists, one for each subproblem. This can be done by ap-
plying list ranking on each Euler tour to determine appropriate offsets for each edge
in a new array associated with its subproblem. This step takes linear work and has
𝑂(log 𝑛) depth [138]. Finally, we solve the two subproblems recursively.

Although the algorithm is simple, there is no guarantee that the subproblems
are of equal size. In the worst case, one of the subproblems could contain all but
one edges (e.g., if the tree is a path with edge weights in increasing order), and the
algorithm would require 𝑂(𝑛) levels of recursion. The total work would then be
𝑂(𝑛2) and depth would be 𝑂(𝑛 log 𝑛), which is clearly undesirable.

An algorithm with 𝑂(log 𝑛) levels of recursion. We now describe a top-down
approach that guarantees 𝑂(log 𝑛) levels of recursion. We define the heavy edges of
a tree with 𝑛 edges to be the 𝑛/2 (or any constant fraction of 𝑛) heaviest edges and
the light edges of a tree to be the remaining edges. Rather than using a single edge
to partition the tree, we use the 𝑛/2 heaviest edges to partition the tree. The heavy
edges correspond to the part of the dendrogram closer to the root, which we refer to
as the top part of the dendrogram, and the light edges correspond to subtrees of the
top part of the dendrogram. Therefore, we can recursively construct the dendrogram
on the heavy edges and the dendrograms on the light edges in parallel. Then, we
insert the roots of the dendrograms for the light edges into the leaf nodes of the
heavy-edge dendrogram. The base case is when there is a single edge, from which
we can trivially generate a dendrogram.

76

sa

d

b

c

e g

f

i

h

b-c

d-e

s b-d

a-d

b c

a

d b

i

h-i

e-gs b-d

a-d
c h

a

d b e g

f

(a) (b) (c)

e-g
f-g

e g

f

f-h

he
b-c

d-e i

h-i

f-h

f-g

Figure 19: An example of the dendrogram construction algorithm on the tree from
fig. 4. The input tree is shown in (a). The 4 heavy edges are in bold. We have three
subproblems—one for the heavy edges and two for the light edges. The dendrograms
for the subproblems are generated recursively, as shown in (b). The edge labeled
on an internal node is the edge whose removal splits a cluster into the two clusters
represented by its children. As shown in (c), we insert the roots of the dendrograms
for the light edges at the corresponding leaf nodes of the heavy-edge dendrogram.
For the ordered dendrogram, the in-order traversal of the leaves corresponds to the
reachability plot shown in fig. 4 when the starting point 𝑠 = 𝑎.

An example is shown in Figure 19. We first construct the Euler tour of the input
tree (Figure 19a). Then, we find the median edge based on edge weight, separate
the heavy and light edges and compact them into a heavy-edge subproblem and
multiple light-edge subproblems. For the subproblems, we construct their Euler
tours by adjusting pointers, and mark the position of each light-edge subproblem in
the heavy-edge subproblem where it is detached. Then, recursively and in parallel,
we compute the dendrograms for each subproblem (Figure 19b). After that, we
insert the roots of the light-edge dendrograms to the appropriate leaf nodes in the
heavy-edge dendrogram, as marked earlier (Figure 19c).

fig. 19 shows how this algorithm applies to the input in fig. 4 with source vertex
𝑎. The four heaviest edges (𝑏, 𝑐), (𝑑, 𝑒), (𝑓, ℎ), and (ℎ, 𝑖) divide the tree into two light
subproblems, consisting of {(𝑎, 𝑑), (𝑑, 𝑏)} and {(𝑒, 𝑔), (𝑔, 𝑓)}. The heavy edges form
another subproblem. We mark vertices 𝑏 and 𝑒, where the light subproblems are
detached. After constructing the dendrogram for the three subproblems, we insert
the light dendrograms at leaf nodes 𝑏 and 𝑒, as shown in Figure 19b. It forms the
correct dendrogram in Figure 19c.

We now describe the details of the steps to separate the subproblems and re-insert
them into the final dendrogram.

Subproblem Finding. To find the position in the heavy-edge dendrogram to insert

77

a light-edge dendrogram at, every light-edge subproblem will be associated with a
unique heavy edge. The dendrogram of the light-edge subproblem will eventually
connect to the corresponding leaf node in the heavy-edge dendrogram associated
with it. We first explain how to separate the heavy-edge subproblem and the light-
edge subproblems.

First, we compute the unweighted distance from every point to the starting point
𝑠 in the tree, and we refer to them as the vertex distances . For the ordered
dendrogram, 𝑠 is the starting point of the reachability plot, whereas 𝑠 can be an
arbitrary vertex if the ordering property is not needed. We compute the vertex
distances by performing list ranking on the tree’s Euler tour rooted at 𝑠. These
distances can be computed by labeling each downward edge (away from 𝑠) in the
tree with a value of 1 and each upward edge (towards 𝑠) in the tree with a value of
−1, and running list ranking on the edges. The vertex distances are computed only
once.

We then identify the light-edge subproblems in parallel by using the vertex dis-
tances. For each light edge (𝑢, 𝑣), we find an adjacent edge (𝑤, 𝑢) such that 𝑤 has
smaller vertex distance than both 𝑢 and 𝑣. We call (𝑤, 𝑢) the predecessor edge
of (𝑢, 𝑣). Each edge can only have one predecessor edge (an edge adjacent to 𝑠 will
choose itself as the predecessor). In a light-edge subproblem not containing the start-
ing vertex 𝑠, the predecessor of each light edge will either be a light edge in the same
light-edge subproblem, or a heavy edge. The edges in each light-edge subproblem
will form a subtree based on the pointers to predecessor edges. We can obtain the
Euler tour of each light-edge subproblem by adjusting pointers of the original Euler
tour. The next step is to run list ranking to propagate a unique label (the root’s
label of the subproblem subtree) of each light-edge subproblem to all edges in the
same subproblem. To create the Euler tour for the heavy subproblem, we contract
the subtrees for the light-edge subproblems: for each light-edge subproblem, we map
its leaves to its root using a parallel hash table. Now each heavy edge adjacent to a
light-edge subproblem leaf can connect to the heavy edge adjacent to the light-edge
subproblem root by looking it up in the hash table. The Euler tour for the heavy-
edge subproblem can now be constructed by adjusting pointers. We assign the label
of the heavy-edge subproblem root to all of the heavy edges in parallel. Then, we
semisort the labeled edges to group edges of the same light-edge subproblems and
the heavy-edge subproblem. Finally, we recursively compute the dendrograms on
the light-edge subproblems and the heavy-edge subproblem. In the end, we connect
the light-edge dendrogram for each subproblem to the heavy-edge dendrogram leaf
node corresponding to the shared endpoint between the light-edge subproblem and
its unique heavy predecessor edge. For the light-edge subproblem containing the

78

starting point 𝑠, we simply insert its light-edge dendrogram into the left-most leaf
node of the heavy-edge dendrogram.

Consider Figure 19a. The heavy-edge subproblem contains edges {(𝑏, 𝑐), (𝑑, 𝑒), (𝑓, ℎ), (ℎ, 𝑖)},
and its dendrogram is shown in Figure 19b. For the light-edge subproblem {(𝑒, 𝑔), (𝑔, 𝑓)},
(𝑒, 𝑔) has heavy predecessor edge (𝑑, 𝑒), and (𝑔, 𝑓) has light predecessor edge (𝑒, 𝑔).
The unique heavy edge associated with the light-edge subproblem is hence (𝑑, 𝑒), with
which it shares vertex 𝑒. Hence, we insert the light-edge dendrogram for the sub-
problem into leaf node 𝑒 in the heavy-edge dendrogram, as shown in Figure 19b. The
light-edge subproblem containing {(𝑎, 𝑑), (𝑑, 𝑏)} contains the starting point 𝑠 = 𝑎,
and so we insert its dendrogram into the leftmost leaf node 𝑏 of the heavy-edge
dendrogram, as shown in Figure 19b.

We first show that our algorithm correctly computes a dendrogram, and ana-
lyze its cost bounds (Theorem 7). Then, we describe and analyze additional steps
needed to generate an ordered dendrogram and obtain a reachability plot from it
(Theorem 8).

Theorem 7. Given a weighted spanning tree with 𝑛 vertices, we can compute a
dendrogram in 𝑂(𝑛 log 𝑛) expected work and 𝑂(log2 𝑛 log log 𝑛) depth with high prob-
ability.

Proof. We first prove that our algorithm correctly produces a dendrogram. In the
base case, we have one edge (𝑢, 𝑣), and the algorithm produces a tree with a root
representing (𝑢, 𝑣), and with 𝑢 and 𝑣 as children of the root, which is trivially a
dendrogram. We now inductively hypothesize that recursive calls to our algorithm
correctly produce dendrograms. The heavy subproblem recursively computes a top
dendrogram consisting of all of the heavy edges, and the light subproblems form
dendrograms consisting of light edges. We replace the leaf vertices in the top den-
drogram associated with light subproblems by the roots of the dendrograms on light
edges. Since the edges in the heavy subproblem are heavier than all edges in light
subproblems, and are also ancestors of the light edges in the resulting tree, this gives
a valid dendrogram.

We now analyze the cost of the algorithm. To generate the Euler tour at the
beginning, we first sort the edges and create an adjacency list representation, which
takes 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth [75]. Next, we root the tree, which can
be done by list ranking on the Euler tour of the tree. Then, we compute the vertex
distances to 𝑠 using another round of list ranking based on the rooted tree.

There are 𝑂(log 𝑛) recursive levels since the subproblem sizes are at most half of
the original problem. We now show that each recursive level takes linear expected
work and polylogarithmic depth with high probability. Note that we cannot afford

79

to sort the edges on every recursive level, since that would take 𝑂(𝑛 log 𝑛) work
per level. However, we only need to know which edges are heavy and which are
light, and so we can use parallel selection [138] to find the median and partition the
edges into two sets. This takes 𝑂(𝑛) work and 𝑂(log 𝑛 log log 𝑛) depth. Identifying
predecessor edges takes a total of 𝑂(𝑛) work and 𝑂(1) depth: we find and record
for each vertex its edge where the other endpoint has a smaller vertex distance than
it (using WriteMin); then, the predecessor of each edge is found by checking the
recorded edge for its endpoint with smaller vertex distance. We then use list ranking
to assign labels to each subproblem, which takes 𝑂(𝑛) work and 𝑂(log 𝑛) depth [138].
The hash table operations to contract and look up the light-edge subproblems cost
𝑂(𝑛) work and 𝑂(log 𝑛) depth with high probability. The semisort to group the
subproblems takes 𝑂(𝑛) expected work and 𝑂(log 𝑛) depth with high probability.
Attaching the light-edge dendrograms to the heavy-edge dendrogram takes 𝑂(𝑛)
work and 𝑂(1) depth across all subproblems. Multiplying the bounds by the number
of levels of recursion proves the theorem.

Theorem 8. Given a starting vertex 𝑠, we can generate an ordered dendrogram and
reachability plot in the same cost bounds as in Theorem 7.

Proof. We have computed the vertex distances of all vertices from 𝑠. When generat-
ing the ordered dendrogram and constructing each internal node of the dendrogram
corresponding to an edge (𝑢, 𝑣), and without loss of generality let 𝑢 have a smaller
vertex distance than 𝑣, our algorithm puts the result of the subproblem attached to
𝑢 in the left subtree, and that of 𝑣 in the right subtree. This additional comparison
does not increase the work and depth of our algorithm.

Our algorithm recursively builds ordered dendrograms on the heavy-edge sub-
problem and on each of the light-edge subproblems, which we assume to be correct
by induction. The base case is a single edge (𝑢, 𝑣), and without loss of generality let
𝑢 have a smaller vertex distance than 𝑣. Then, the dendrogram will contain a root
node representing edge (𝑢, 𝑣), with 𝑢 as its left child and 𝑣 as its right child. Prim’s
algorithm would visit 𝑢 before 𝑣, and so is the in-order traversal of the dendrogram,
so it is an ordered dendrogram.

We now argue that the way that light-edge dendrograms are attached to the
leaves of the heavy-edge dendrogram correctly produces an ordered dendrogram.
First, consider a light-edge subproblem that contains the source vertex 𝑠. In this
case, its dendrogram is attached as the leftmost leaf of the heavy-edge dendrogram,
and will be the first to be traversed in the in-order traversal. The vertices in the
light-edge subproblem form a connected component 𝐴. They will be traversed before

80

any other vertices in Prim’s algorithm because all incident edges that leave 𝐴 are
heavy edges, and thus are heavier than any edge in 𝐴. Therefore, vertices outside
of 𝐴 can only be visited after all vertices in 𝐴 have been visited, which correctly
corresponds to the in-order traversal.

Next, we consider the case where the light-edge subproblem does not contain
𝑠. Let (𝑢, 𝑣) be the predecessor edge of the light-edge subproblem, and let 𝐴 be
the component containing the edges in the light-edge subproblem (𝑣 is a vertex in
𝐴). Now, consider a different light-edge subproblem that does not contain 𝑠, whose
predecessor edge is (𝑥, 𝑦), and let 𝐵 be the component containing the edges in this
subproblem (𝑦 is a vertex in 𝐵). By construction, we know that 𝐴 is in the right
subtree of the dendrogram node corresponding to edge (𝑢, 𝑣) and 𝐵 is in the right
subtree of node corresponding to (𝑥, 𝑦). The ordering between 𝐴 and 𝐵 is correct as
long as they are on different sides of either node (𝑢, 𝑣) or node (𝑥, 𝑦). For example,
if 𝐵 is in the left subtree of node (𝑢, 𝑣), then its vertices appear before 𝐴 in the
in-order traversal of the dendrogram. By the inductive hypothesis on the heavy-edge
subproblem, in Prim’s order, 𝐵 will be traversed before (𝑢, 𝑣), and (𝑢, 𝑣) is traversed
before 𝐴. We can apply a similar argument to all other cases where 𝐴 and 𝐵 are on
different sides of either node (𝑢, 𝑣) or node (𝑥, 𝑦).

We are concerned with the case where 𝐴 and 𝐵 are both in the right subtrees
of the nodes representing their predecessor edges. We prove by contradiction that
this cannot happen. Without loss of generality, suppose node (𝑥, 𝑦) is in the right
subtree of node (𝑢, 𝑣), and let both 𝐴 and 𝐵 be in the right subtree of (𝑥, 𝑦). There
exists a lowest common ancestor (LCA) node (𝑥′, 𝑦′) of 𝐴 and 𝐵. (𝑥′, 𝑦′) must be a
heavy edge in the right subtree of (𝑥, 𝑦). By properties of the LCA, 𝐴 and 𝐵 are
in different subtrees of node (𝑥′, 𝑦′). Without loss of generality, let 𝐴 be in the left
subtree. Now consider edge (𝑥′, 𝑦′) in the tree. By the inductive hypothesis on the
heavy-edge dendrogram, in Prim’s traversal order, we must first visit the leaf that 𝐴
attaches to (and hence 𝐴) before visiting (𝑥′, 𝑦′), which must be visited before the
leaf that 𝐵 attaches to (and hence 𝐵). On the other hand, edge (𝑥, 𝑦) is also along
the same path since it is the predecessor of 𝐵. Thus, we must either have (𝑥′, 𝑦′)
in (𝑥, 𝑦)’s left subtree or (𝑥, 𝑦) in (𝑥′, 𝑦′)’s right subtree, which is a contradiction to
(𝑥′, 𝑦′) being in the right subtree of (𝑥, 𝑦).

We have shown that given any two light-edge subproblems, their relative ordering
after being attached to the heavy-edge dendrogram is correct. Since the heavy-edge
dendrogram is an ordered dendrogram by induction, the order in which the light-
edge subproblems are traversed is correct. Furthermore, each light-edge subproblem
generates an ordered dendrogram by induction. Therefore, the overall dendrogram
is an ordered dendrogram.

81

Once the ordered dendrogram is computed, we use list ranking to perform an
in-order traversal on the Euler tour of the dendrogram to give each node a rank,
and write them out in order. We then filter out the non-leaf nodes to to obtain
the reachability plot. Both list ranking and filtering take 𝑂(𝑛) work and 𝑂(log 𝑛)
depth.

Implementation. In our implementation, we simplify the process of finding the
subproblems by using a sequential procedure rather than performing parallel list
ranking, because in most cases parallelizing over the different subproblems already
provides sufficient parallelism. We set the number of heavy edges to 𝑛/10, which
we found to give better performance in practice, and also preserves the theoretical
bounds. We switch to the sequential dendrogram construction algorithm when the
problem size falls below 𝑛/2.

5.4 Parallel EMST and HDBSCAN* in 2D

Parallel EMST in 2D

The Delaunay triangulation on a set of points in 2D contains triangles among
every triple of points 𝑝1, 𝑝2, and 𝑝3 such that there are no other points inside the
circumcircle defined by 𝑝1, 𝑝2, and 𝑝3 [84].

In two dimensions, Shamos and Hoey [210] show that the EMST can be com-
puted by computing an MST on the Delaunay triangulation of the points. Parallel
Delauny triangulation can be computed in 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth [198],
and has 𝑂(𝑛) edges, and so the MST computation requires the same work and depth.
We provide an implemenation of this algorithm using the parallel Delaunay triangu-
lation and parallel implementation of Kruskal’s algorithm from the Problem Based
Benchmark Suite [43].

Parallel HDBSCAN*in 2D

The ordinary Voronoi diagram is a planar subdivision of a space where points
in each cell share the same nearest neighbor. The 𝑘-order Voronoi Diagram is a
generalization of the ordinary Voronoi diagram, where points in each cell share the
same 𝑘-nearest neighbors [29]. A 𝑘-order edge is a closely related concept, and
defined to be an edge where there exists a circle through the two edge endpoints,
such that there are at most 𝑘 points inside the circle [116].

De Berg et al. [85] show that in two dimensions, the MST on the mutual reacha-
bility graph can be computed in 𝑂(𝑛 log 𝑛) work. Their algorithm computes an MST

82

on a graph containing the 𝑘-order edges, where 𝑘 = minPts− 3, and where the edges
are weighted by the mutual reachability distances between the two endpoints. They
prove that the MST returned is an MST on the mutual reachability graph. In this
section, we extend their result to the parallel setting.

To parallelize the algorithm, we need to compute the 𝑘-order edges of the points
in parallel. This can be done by first computing the (𝑘 + 1)-order Voronoi diagram,
and then converting the edges in the Voronoi diagram to 𝑘-order edges, as shown by
Gudmundsson et al. [116]. Specifically, we convert each Voronoi edge into a 𝑘-order
edge by connecting the two points that induce the two cells sharing the Voronoi edge.

Meyerhenke [173] shows that the family of the order-𝑗 Voronoi diagrams for all
1 ≤ 𝑗 ≤ 𝑘 can be computed in 𝑂(𝑘2𝑛 log 𝑛) work and 𝑂(𝑘 log2 𝑛) depth. The
algorithm works by first computing the ordinary Voronoi diagram on the input points.
Then for each Voronoi cell, it computes the ordinary Voronoi diagram again on the
points that induce the neighboring cells. This ordinary Voronoi diagram divides the
Voronoi cell into multiple subcells, each of which corresponds to a cell in the Voronoi
diagram of one higher order. This process is repeated until obtaining the order-𝑘
Voronoi diagram. Lee [155] proves that the number of 𝑘-order edges is 𝑂(𝑛𝑘), and
so we can run parallel MST on these edges in 𝑂(𝑛𝑘 log 𝑛) work and 𝑂(log 𝑛) depth.
This gives us the following theorem.

Theorem 9. Given a set of 𝑛 points in two dimensions, we can compute the MST
on the mutual reachability graph in 𝑂(minPts2 · 𝑛 log 𝑛) work and 𝑂(minPts · log2 𝑛)
depth.

For computing the ordinary Voronoi diagrams on each step of Meyerhenke’s algo-
rithm, we use the parallel Delaunay triangulation implementation from the Problem
Based Benchmark Suite [43] and take the dual of the resulting triangulation. How-
ever, we found it to be significantly slower than our other methods due to high work
of the Voronoi diagram computations.

5.5 Subquadratic-work Parallel EMST

Callahan and Kosaraju’s algorithm [58] first constructs a fair-split tree 𝑇 and its
associated WSPD in 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) depth [57], which is improved
from a previous version with 𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛) depth [60]. Then, the
algorithm runs Boruvka’s steps for ⌈log2 𝑛⌉ rounds. In particular, in each round, the
algorithm finds the lightest outgoing edges only for the components with size at most
2𝑖+1, and merges the components connected by these edges. To do so, the algorithm
constructs for every component a set of candidate points that contains the nearest

83

point outside the component. The algorithm searches for the candidates top-down
on 𝑇 , and maintains for each node in the tree, a list of all the component s that can
have candidates in the subtree of that node. They ensure the size of each list is 𝑂(1)
using the WSPD in a manner identical to the all-nearest-neighbors algorithm of [60].
In this process, they push the lists down to the leaves of 𝑇 , so that the candidates
corresponding to a component will be the leaves that contain that component in
their lists.

Let 𝑃𝑗 be the set of candidates for the 𝑗’th component. 𝑃𝑗 is split into ⌈|𝑃𝑗|/2𝑖+1⌉
subsets of size at most 2𝑖+1 each, and the BCCP is found between each subset and
the 𝑗’th component. At round 𝑖, there are 𝑛/2𝑖 components, and the BCCP routine
is invoked

∑︀𝑛/2𝑖

𝑗=1 ⌈|𝑃𝑗|/2𝑖+1⌉ = 𝑂(𝑛/2𝑖) times, each with size at most 2𝑖+1. Therefore,
the work for BCCP on each round is 𝑂((𝑛/2𝑖)𝑇𝑑(2

𝑖+1, 2𝑖+1)). Since 𝑇𝑑 is at least linear,
this dominates the work for each phase. The total work for BCCP computations is
𝑂(𝑇𝑑(𝑛, 𝑛) log 𝑛).

In our parallel algorithm, on each round, we perform both the candidate listing
step and BCCP computations in parallel. Listing candidates for all components can
be computed in parallel given a WSPD. In particular, this uses the top-down compu-
tation used for the all-nearest-neighbor search, parallelized using rake and compress
operations [60], and takes logarithmic depth. Wang et al. [239] show that BCCP can
be computed in parallel in 𝑂(𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿) expected work and 𝑂(log2 𝑛 log* 𝑛)
depth whp. Both the work and depth at each round is therefore dominated by com-
puting the BCCPs. With 𝑂(log 𝑛) rounds, this results in 𝑂(𝑇𝑑(𝑛, 𝑛) log 𝑛) expected
work and 𝑂(log3 𝑛 log* 𝑛) depth whp, where 𝑇𝑑(𝑛, 𝑛) = 𝑂(𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿). This is
also the work and depth of the overall EMST algorithm, as WSPD construction only
contributes lower-order terms to the complexity.

Theorem 10. We can compute the EMST on a set of 𝑛 points in 𝑑 dimensions in
𝑂(𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿 log 𝑛) expected work and polylogarithmic depth whp.

5.6 Parallel Approximate OPTICS

Parallel Algorithm. Gan and Tao [105] propose a sequential algorithm to solve
the approximate OPTICS problem, defined in Lemma 4.2 of their paper [105] (this
also gives an approximation to HDBSCAN*). The algorithm takes in an additional
parameter 𝜌 ≥ 0, which is related to the approximation factor. The algorithm
makes use of the WSPD and uses 𝑂(𝑛 ·minPts2) space, with the separation constant
𝑠 =

√︀
8/𝜌. They construct a base graph by adding 𝑂(minPts2) edges between

each well-separated pair, and then compute an MST on the resulting graph. Their

84

algorithm takes 𝑂(𝑛 log 𝑛) work (where the dominant cost is computing the WSPD).
We observe that their algorithm can be parallelized by plugging in parallel WSPD
and MST routines, resulting in an 𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛) depth algorithm.

In parallel for all well-separated pairs, we compute an approximation to the BCCP
for each pair. The algorithm uses the rake-and-compress algorithm of Callahan and
Kosaraju [60] to obtain a set of coordinates used for approximation for every subset
of the decomposition tree, taking 𝑂(𝑛) work and 𝑂(log 𝑛) depth. Then, for every
pair in parallel, our algorithm computes the approximate BCCP in constant work
and depth, similar to the sequential algorithm described in [58]. Overall, this step
takes linear work and 𝑂(log 𝑛) depth [58, 57].

Similarly to Gan and Tao, we call the pair of points in the approximate BCCP
of each pair the representative points . For each well-separated pair (𝐴,𝐵), there
are four cases for generating edges between 𝐴 and 𝐵: (a) if |𝐴| < minPts and |𝐵| <
minPts, then all pairs of points between 𝐴 and 𝐵 are connected; (b) if |𝐴| ≥ minPts
and |𝐵| < minPts, then the representative point of 𝐴 is connected to all points in
𝐵; (c) if |𝐴| < minPts and |𝐵| ≥ minPts, then the representative point of 𝐵 is
connected to all points in 𝐴; and (d) if |𝐴| ≥ minPts and |𝐵| ≥ minPts, then only
the representative points are connected. The weight of the edges are

𝑤(𝑢, 𝑣) = max{cd(𝑢), cd(𝑣), 𝑑(𝑢, 𝑣)
1 + 𝜌

}

given representative points 𝑢 and 𝑣. In our implementation, we simplify the approxi-
mate BCCP by simply picking a random pair of points from each well-separated pair,
and also use the parallel MST algorithm introduced in Section 5.2, which computes
the approximate BCCP on the fly for well-separated pairs that are not yet connected.
This will take 𝑂(minPts2 · 𝑛) work due to 𝑂(minPts2) edges produced for each pair,
and 𝑂(log2 𝑛) depth. This gives us theorem 11.

Theorem 11. Given a set of 𝑛 points, we can compute the MST required for ap-
proximate OPTICS in 𝑂(𝑛 log 𝑛) work, 𝑂(log2 𝑛) depth, and 𝑂(𝑛 ·minPts2) space.

Experimental Results. We study the performance of our parallel implementation
for the approximate OPTICS problem, which we call OPTICS-GanTaoApprox .
It uses the MemoGFK optimization described in Section 5.2. We found that when run
with a reasonable parameter of 𝜌 that leads to good clusters, OPTICS-GanTaoApprox
is usually slower than our exact version of the algorithm (HDBSCAN*-GanTao, de-
scribed in Section 5.2). The primary reason is that a reasonable 𝜌 value requires a
high separation constant in the WSPD, which produces a very large number of well-
separated pairs, leading to poor performance. In contrast, in the exact algorithm,

85

1 24 48 48h
num-threads

0

5

10

15

20

sp
ee

d
u

p
o

ve
r

1
th

re
a

d
-

H
D

B
*

-M
em

o
G

F
K

(9
3

.2
3

s)

(a) 7D-Household-2.05M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
ee

d
u

p
o

ve
r

1
th

re
a

d
-

H
D

B
*

-M
em

o
G

F
K

(1
1

6
5

.2
0

s)

(b) 16D-CHEM-4.2M
(eps:inf,minpts:10)

HDBSCAN*-MemoGFK

HDBSCAN*-GanTao

OPTICS-GaoTaoApprox

Figure 20: Speedup of HDBSCAN*MST implementations over the best serial base-
lines vs. thread count. The best serial baseline and its running time for each data
set is shown on the 𝑦-axis label. “48h” on the 𝑥-axis refers to 48 cores with hyper-
threading.

a small separation constant (𝑠 = 2) is sufficient for correctness. Figure 20 shows
the speedups on two data sets for OPTICS-GanTaoApprox with 𝜌 = 0.125 (corre-
sponding to a separation constant of 8) compared with other methods. Across all
of the data sets, we found OPTICS-GanTaoApprox to be slower than HDBSCAN*-
GanTao by a factor of 1.00–1.96x, and slower than HDBSCAN*-MemoGFK by a
factor of 1.72–7.48x.

5.7 Relationship between EMST and HDBSCAN*MST

We now show that for minPts ≤ 3, the EMST is always an MST of the HDBSCAN*base
graph by having the same set of edges, but for higher values of minPtsit is possible
that this is not the case. For example, fig. 21 gives an example where EMST is not
an MST of the HDBSCAN*base graph when minPts = 4.

Theorem 12. An EMST is always an MST for the HDBSCAN*mutual reachability
graph when minPts ≤ 3.

Proof. For minPts ≤ 2, all edges in the HDBSCAN*mutual reachability graph have
edge weights defined by Euclidean distances, and so the edge weights are identical.
We now discuss the case when minPts = 3.

Let 𝑇 be an EMST, and 𝑇 ′ ̸= 𝑇 be an MST in 𝐺𝑀𝑅. We show that we can
convert 𝑇 ′ to 𝑇 without changing the total weight. Consider any edge (𝑢, 𝑣) ∈ 𝑇 ,
but not in 𝑇 ′. If we add (𝑢, 𝑣) to 𝑇 ′, then we get a cycle 𝐶.

First, we show that (𝑢, 𝑣) cannot be the unique heaviest edge in 𝐶 under 𝑑𝑚. Re-
call that cd(𝑝) is the core distance of a point 𝑝 and 𝑑𝑚(𝑝, 𝑞) = max{cd(𝑝), cd(𝑞), 𝑑(𝑝, 𝑞)}.
Assume by contradiction that (𝑢, 𝑣) is the unique heaviest edge in 𝐶 under 𝑑𝑚.

86

If 𝑑𝑚(𝑢, 𝑣) = 𝑑(𝑢, 𝑣), then (𝑢, 𝑣) is also the unique heaviest edge in 𝐶 in the
Euclidean complete graph, and so it cannot be in 𝑇 , which is the EMST. This is a
contradiction.

Now we consider the case where 𝑑𝑚(𝑢, 𝑣) > 𝑑(𝑢, 𝑣). Without loss of generality,
suppose that 𝑑𝑚(𝑢, 𝑣) = cd(𝑢). Then 𝑣 must be 𝑢’s unique nearest neighbor; oth-
erwise, 𝑑𝑚(𝑢, 𝑣) = cd(𝑢) = 𝑑(𝑢, 𝑣) because we have minPts = 3. However, then all
other points have larger distance to 𝑢 than 𝑑(𝑢, 𝑣), and 𝑢 must have an edge to one
of these other points in the cycle 𝐶. Thus, (𝑢, 𝑣) cannot be the unique heaviest edge
in 𝐶. This is a contradiction.

Now, given that (𝑢, 𝑣) is not the unique heaviest edge in 𝐶, we can replace one
of the heaviest edges 𝑒 that is in 𝐶, but not in 𝑇 , with (𝑢, 𝑣), and obtain another
MST in 𝐺𝑀𝑅 with the same weight.

Below we show that there is always such an edge 𝑒 in 𝐶. We first argue that there
must be some heaviest edge in 𝐶 that has its Euclidean distance as its weight in 𝐺𝑀𝑅.
Consider a heaviest edge (𝑎, 𝑏) in 𝐶, and without loss of generality, suppose that
𝑑𝑚(𝑎, 𝑏) = cd(𝑎). If (𝑎, 𝑏) does not have its Euclidean distance as its edge weight, then
𝑏 must be 𝑎’s unique nearest neighbor. Besides (𝑎, 𝑏), 𝑎 must be incident to another
edge in 𝐶, which we denote as (𝑎, 𝑐). 𝑑𝑚(𝑎, 𝑐) must equal 𝑑𝑚(𝑎, 𝑏): we have 𝑑𝑚(𝑎, 𝑐) ≥
cd(𝑎) = 𝑑𝑚(𝑎, 𝑏) because 𝑏 is 𝑎’s unique nearest neighbor, but we also have 𝑑𝑚(𝑎, 𝑐) ≤
𝑑𝑚(𝑎, 𝑏) because (𝑎, 𝑏) is a heaviest edge in 𝐶. Therefore, 𝑑𝑚(𝑎, 𝑐) = 𝑑𝑚(𝑎, 𝑏), and
(𝑎, 𝑐) is one of the heaviest edges in 𝐶 under 𝑑𝑚. Furthermore, 𝑑𝑚(𝑎, 𝑐) = 𝑑(𝑎, 𝑐)
because 𝑑(𝑎, 𝑐) ≤ 𝑑𝑚(𝑎, 𝑐) by definition and 𝑑(𝑎, 𝑐) ≥ cd(𝑎) = 𝑑𝑚(𝑎, 𝑏) = 𝑑𝑚(𝑎, 𝑐)
because minPts = 3 and 𝑏 ̸= 𝑐 is 𝑎’s unique nearest neighbor. Thus, we have shown
that (𝑎, 𝑐) is a heaviest edge in 𝐶 that has its Euclidean distance as its weight in
𝐺𝑀𝑅.

All heaviest edges that have the Euclidean distance as their weight must also be
the heaviest edges in 𝐶 in the Euclidean complete graph, and thus they cannot all
be in the EMST 𝑇 . Therefore, there must exist some heaviest edge 𝑒 ∈ 𝐶 that is in
𝑇 ′ but not in 𝑇 . We can always find such an edge in 𝑇 ′ and swap it with the edge
(𝑢, 𝑣) in 𝑇 to make 𝑇 ′ share more edges with 𝑇 , without changing the total weight
of 𝑇 ′ in 𝐺𝑀𝑅, as both edges are heaviest edges in 𝐶 under 𝑑𝑚. We can repeat this
process until we obtain 𝑇 . Therefore, 𝑇 is also an MST in 𝐺𝑀𝑅.

5.8 Experiments

Environment. We perform experiments on an Amazon EC2 instance with 2 × Intel
Xeon Platinum 8275CL (3.00GHz) CPUs for a total of 48 cores with two-way hyper-

87

!"

!#

$

!# %#

$

!&

%#

!#

!#

!" !&

$

$

a b

c

d e

f

g

Figure 21: An example where the EMST is not an MST of HDBSCAN*base graph
(call it MST*), when minPts = 4. The blue values are core distances of the points.
The yellow values are weights of edges according to their mutual reachability dis-
tances. The solid edges form MST*. Both edge (𝑓, 𝑔) and (𝑒, 𝑓) are in the EMST,
but cannot both be in MST* because they are the heaviest edges in the 𝑔-𝑏-𝑐-𝑑-𝑒-𝑓 -𝑔
cycle.

threading, and 192 GB of RAM. By default, we use all cores with hyper-threading.
We use g++ compiler (version 7.4) with -O3 flag, and use Cilk for parallelism [136].
We do not report times for tests that exceed 3 hours.

We test the following implementations for EMST (note that the EMST problem
does not include dendrogram generation):

• EMST-Naive : The method of creating a graph with the BCCP edges from
all well-separated pairs and then running MST on it.

• EMST-GFK : The parallel GeoFilterKruskal algorithm described in Section 5.2
(Algorithm 6).

• EMST-MemoGFK : The parallel GeoFilterKruskal algorithm with the mem-
ory optimization described in Section 5.2 (Algorithm 7).

• EMST-Delaunay : The method of computing an MST on a Delaunay trian-
gulation for 2D data sets described in section 5.4.

We test the following implementations for HDBSCAN*:

• HDBSCAN*-GanTao: The modified algorithm of Gan and Tao for exact
HDBSCAN*described in Section 5.2.

• HDBSCAN*-MemoGFK : The HDBSCAN*algorithm using our new defini-
tion of well-separation described in Section 5.2.

88

Both HDBSCAN*-GanTao and HDBSCAN*-MemoGFK use the memory
optimization described in Section 5.2. All HDBSCAN*running times include con-
structing an MST of the mutual reachability graph and computing the ordered den-
drogram. We use a default value of minPts = 10 (unless specified otherwise), which
is also adopted in previous work [61, 171, 105].

Our algorithms are designed for multicores, as we found that multicores are able
to process the largest data sets in the literature for these problems (machines with
several terabytes of RAM can be rented at reasonable costs on the cloud). Our mul-
ticore implementations achieve significant speedups over existing implementations in
both the multicore and distributed memory contexts.

Data Sets. We use the synthetic seed spreader data sets produced by the generator
in [104]. It produces points generated by a random walk in a local neighborhood
(SS-varden). We also use UniformFill that contains points distributed uniformly
at random inside a bounding hypergrid with side length

√
𝑛 where 𝑛 is the total

number of points. We generated the synthetic data sets with 10 million points
(unless specified otherwise) for dimensions 𝑑 = 2, 3, 5, 7.

We use the following real-world data sets. GeoLife [259, 3] is a 3-dimensional
data set with 24, 876, 978 data points. This data set contains user location data, and
is extremely skewed. Household [92, 6] is a 7-dimensional data set with 2, 049, 280
points representing electricity consumption measurements in households. HT [135,
7] is a 10-dimensional data set with 928, 991 data points containing home sensor data.
CHEM [97, 2] is a 16-dimensional data set with 4, 208, 261 data points containing
chemical sensor data. All of the data sets fit in the RAM of our machine.

Comparison with Previous Implementations. For EMST, we tested the se-
quential Dual-Tree Boruvka algorithm of March et al. [170] (part of mlpack), and
our single-threaded EMST-MemoGFK times are 0.89–4.17 (2.44 on average) times
faster. Raw running times for mlpack are presented in Table 4. We also tested
McInnes and Healy’s sequential HDBSCAN*implementation which is based on Dual-
Tree Boruvka [171]. We were unable to run their code on our data sets with 10
million points in a reasonable amount of time. On a smaller data set with 1 mil-
lion points (2D-SS-varden-1M), their code takes around 90 seconds to compute the
MST and dendrogram, which is 10 times slower than our HDBSCAN*-MemoGFK
implementation on a single thread, due to their code using Python and having fewer
optimizations. We observed a similar trend on other data sets for McInnes and
Healy’s implementation.

The GFK algorithm implementation for EMST of [66] in the Stann library sup-
ports multicore execution using OpenMP. We found that, in parallel, their GFK

89

1 24 48 48h
num-threads

0

5

10

15

20

25
sp

ee
d

u
p

o
ve

r
1

-t
h

re
ad

E
M

S
T

-M
em

o
G

F
K

(3
1

.5
4

s) (a) 2D-UniformFill-10M

1 24 48 48h
num-threads

0

10

20

30

40

sp
ee

d
u

p
o

ve
r

1
-t

h
re

ad
E

M
S

T
-M

em
o

G
F

K
(2

3
0

.9
3

s) (c) 5D-UniformFill-10M

1 24 48 48h
num-threads

0

5

10

15

sp
ee

d
u

p
o

ve
r

1
-t

h
re

ad
E

M
S

T
-M

em
o

G
F

K
(2

7
.4

8
s) (e) 2D-SS-varden-10M

1 24 48 48h
num-threads

0

10

20

30

sp
ee

d
u

p
o

ve
r

1
-t

h
re

ad
E

M
S

T
-M

em
o

G
F

K
(9

6
.1

9
s) (g) 5D-SS-varden-10M

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
ee

d
u

p
o

ve
r

1
-t

h
re

ad
E

M
S

T
-M

em
o

G
F

K
(1

1
7

.3
1

s) (i) 3D-GeoLife-24.9M

1 24 48 48h
num-threads

0

5

10

15

sp
ee

d
u

p
o

ve
r

1
-t

h
re

ad
E

M
S

T
-M

em
o

G
F

K
(5

.1
7

s) (k) 10D-HT-0.93M

1 24 48 48h
num-threads

0

10

20

30

sp
ee

d
u

p
o

ve
r

1
-t

h
re

ad
E

M
S

T
-M

em
o

G
F

K
(6

7
.8

0
s) (b) 3D-UniformFill-10M

1 24 48 48h
num-threads

0

20

40
sp

ee
d

u
p

o
ve

r
1

-t
h

re
ad

E
M

S
T

-M
em

o
G

F
K

(1
5

8
5

.6
5

s)

(d) 7D-UniformFill-10M

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
ee

d
u

p
o

ve
r

1
-t

h
re

ad
E

M
S

T
-M

em
o

G
F

K
(4

8
.7

2
s) (f) 3D-SS-varden-10M

1 24 48 48h
num-threads

0

10

20

30

sp
ee

d
u

p
o

ve
r

1
-t

h
re

ad
E

M
S

T
-M

em
o

G
F

K
(2

0
5

.1
5

s) (h) 7D-SS-varden-10M

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
ee

d
u

p
o

ve
r

1
-t

h
re

ad
E

M
S

T
-M

em
o

G
F

K
(3

7
.6

0
s) (j) 7D-Household-2.05M

1 24 48 48h
num-threads

0

10

20

30

40

sp
ee

d
u

p
o

ve
r

1
-t

h
re

ad
E

M
S

T
-M

em
o

G
F

K
(8

2
1

.8
1

s) (l) 16D-CHEM-4.2M

EMST-Naive EMST-GFK EMST-MemoGFK EMST-Delaunay

Figure 22: Speedup of EMST implementations over the best serial baselines vs. thread
count. The best serial baseline and its running time for each data set is shown on
the 𝑦-axis label. “48h” on the 𝑥-axis refers to 48 cores with hyper-threading.

implementation always runs much slower when using all 48 cores than running se-
quentially, and so we do not include their parallel running times in our experiments.
In addition, our own sequential implementation of the same algorithm is 0.79–2.43x
(1.23x on average) faster than theirs, and so we parallelize our own version as a
baseline. We also tested the multicore implementation of the parallel OPTICS al-
gorithm in [184] using all 48 cores on our machine. Their code exceeded our 3-hour
time limit for our data sets with 10 million points. On a smaller data set of 1 mil-
lion points (2D-SS-varden-1M), their code took 7988.52 seconds, whereas our fastest
parallel implementations take only a few seconds. We also compared with the par-
allel HDBSCAN*code by Santos et al. [203], which mainly focuses on approximate
HDBSCAN*in distributed memory. As reported in their paper, for the HT data
set with minPts = 30, their code on 60 cores takes 42.54 and 31450.89 minutes to
build the approximate and exact MST, respectively, and 124.82 minutes to build the
dendrogram. In contrast, our fastest implementation using 48 cores builds the MST
in under 3 seconds, and the dendrogram in under a second.

Overall, we found the fastest sequential methods for EMST and HDBSCAN*to be
our EMST-MemoGFK and HDBSCAN*-MemoGFK methods running on 1 thread.
Therefore, we also based our parallel implementations on these methods.

Performance of Our Implementations. Raw running times for our implementa-
tions are presented in Tables 5 and 6 in the Appendix. Table 7 shows the self-relative
speedups and speedups over the fastest sequential time of our parallel implementa-
tions on 48 cores. Figures 22 and 23 show the parallel speedup as a function of
thread count for our implementations of EMST and HDBSCAN*with minPts = 10,

90

1 24 48 48h
num-threads

0

5

10

15

20

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(1
9

7
.5

5
s)

(a) 2D-UniformFill-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(1
2

1
7

.8
7

s)

(c) 5D-UniformFill-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(1
0

3
.7

3
s)

(e) 2D-SS-varden-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(7
1

6
.8

1
s)

(g) 5D-SS-varden-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(6
8

7
.7

5
s)

(i) 3D-GeoLife-24.9M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0.0

2.5

5.0

7.5

10.0

12.5

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(1
5

.7
4

s)

(k) 10D-HT-0.93M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

20

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(3
2

1
.9

7
s)

(b) 3D-UniformFill-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(7
4

8
7

.9
5

s)

(d) 7D-UniformFill-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

20

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(1
5

4
.3

1
s)

(f) 3D-SS-varden-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

40

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(2
2

5
3

.3
8

s)

(h) 7D-SS-varden-10M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

5

10

15

20

25

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(9
3

.2
3

s)

(j) 7D-Household-2.05M
(eps:inf,minpts:10)

1 24 48 48h
num-threads

0

10

20

30

sp
e
e
d

u
p

o
v
e
r

1
-t

h
re

a
d

H
D

B
*

-M
e
m

o
G

F
K

(1
1

6
5

.2
0

s)

(l) 16D-CHEM-4.2M
(eps:inf,minpts:10)

HDBSCAN*-MemoGFK HDBSCAN*-GanTao

Figure 23: Speedup of HDBSCAN*implementations (minPts = 10) over the best
serial baselines vs. thread count. The best serial baseline and its running time for
each data set is shown on the 𝑦-axis label. “48h” on the 𝑥-axis refers to 48 cores with
hyper-threading.

mlpack (1 thread)
2D-UniformFill-10M 90.09
3D-UniformFill-10M 211.04
5D-UniformFill-10M 964.13
7D-UniformFill-10M 4777.29
2D-SS-varden-10M 84.79
3D-SS-varden-10M 139.18
5D-SS-varden-10M 184.08
7D-SS-varden-10M 233.28
3D-GeoLife-10M 211.37

7D-Household-2.05M 59.15
10D-HT-0.93M 14.85

16D-CHEM-4.2M 732.6

Table 4: Table of running times in seconds for the sequential EMST implementation
from mlpack.

respectively, against the fastest sequential times. For most data sets, we see addi-
tional speedups from using hyper-threading compared to just using a single thread
per core. A decomposition of parallel timings for our implementations on several data
sets is presented in Figure 24. In addition, table 5 shows the running times of our

91

Figure 24: Decomposition of running times for constructing the EMST and
HDBSCAN*MST on various data sets using all 48 cores with hyper-threading.
minPts = 10 for HDBSCAN*. In the legend, "dendrogram" refers to computing
the ordered dendrogram; "delaunay" refers to computing the Delaunay triangula-
tion; "kruskal" refers to Kruskal’s MST algorithm; "wspd" refers to computing the
WSPD, or the sum of WSPD tree traversal times across rounds; "core-dist" refers to
computing core distances of all points; and "build-tree" refers to building a 𝑘d-tree
on all points.

92

EMST
EMST-Naive EMST-GFK EMST-MemoGFK Delaunay

1 thread 48 cores 1 thread 48 cores 1 thread 48 cores 1 thread 48 cores
2D-UniformFill-10M 62.51 3.64 57.93 6.11 31.54 1.20 65.46 1.90
3D-UniformFill-10M 400.57 19.30 218.02 26.07 67.80 2.24 – –
5D-UniformFill-10M – – – – 230.93 5.03 – –
7D-UniformFill-10M – – – – 1585.65 28.37 – –
2D-SS-varden-10M 57.84 3.45 60.64 6.90 27.48 1.60 64.42 1.95
3D-SS-varden-10M 240.24 12.13 189.52 23.37 48.72 1.85 – –
5D-SS-varden-10M 478.40 19.41 278.10 31.19 96.19 3.04 – –
7D-SS-varden-10M 626.78 21.10 336.62 29.26 205.15 6.18 – –
3D-GeoLife-10M 271.95 10.97 328.76 36.31 117.31 4.77 – –

7D-Household-2.05M 280.28 8.37 214.08 24.77 37.60 1.40 – –
10D-HT-0.93M 19.28 0.64 12.36 1.40 5.17 0.35 – –

16D-CHEM-4.2M – – – – 821.81 19.11 – –

Table 5: Table of running times in seconds for EMST. The fastest parallel time for
each data set is in bold. The tests that do not complete within 3 hours or that run
out of memory are shown as “–". The data sets with dimensionality greater than 2
are not applicable to Delaunay, and also shown as “–”.

HDBSCAN*(minPts = 10)
HDBSCAN*-MemoGFK HDBSCAN*-GanTao
1 thread 48 cores 1 thread 48 cores

2D-UniformFill-10M 197.55 10.34 298.03 18.71

3D-UniformFill-10M 321.97 14.66 517.71 24.04

5D-UniformFill-10M 1217.87 38.41 2395.68 68.54

7D-UniformFill-10M 7487.95 289.27 – –
2D-SS-varden-10M 103.73 6.07 163.37 15.66

3D-SS-varden-10M 154.31 7.56 253.06 15.44

5D-SS-varden-10M 716.81 22.20 885.92 34.51

7D-SS-varden-10M 2253.38 48.26 2585.83 64.13

3D-GeoLife-10M 687.75 22.70 1320.15 160.48

7D-Household-2.05M 93.23 3.54 204.75 13.51

10D-HT-0.93M 15.74 1.41 29.75 3.21

16D-CHEM-4.2M 1165.20 35.77 1820.61 55.52

Table 6: Table of running times in seconds for HDBSCAN*with minPts = 10. The
fastest parallel time for each data set is in bold. The tests that do not complete
within 3 hours, or that run out of memory are shown as “–”.

93

Speedup over Best Sequential Self-relative Speedup
Method Range Average Range Average

EMST-Naive 3.51-10.69x 6.90x 16.79-33.47x 24.15x
EMST-GFK 1.52-7.01x 3.60x 8.11-11.51x 9.08x
EMST-MemoGFK 14.61-55.89x 31.31x 14.61-55.89x 31.31x
Delaunay 14.12-16.64x 15.38x 33.11-34.54x 33.82x
HDBSCAN*-MemoGFK 11.13-46.69x 26.29x 11.13-46.69x 26.29x
HDBSCAN*-GanTao 4.29-35.14x 13.76x 8.23-40.32x 20.97x

Table 7: Speedup over the best sequential algorithm as well as the self-relative
speedup on 48 cores.

implementations for EMST. table 6 shows the running times of our implementations
for HDBSCAN*.

EMST Results. In Figure 22, we see that our fastest EMST implementations
(EMST-MemoGFK) achieve good speedups over the best sequential times, ranging
from 14.61–55.89x on 48 cores with hyper-threading. On the lower end, 10D-HT-
0.93M has a speedup of 14.61x (Figure 22k), because for a small data set, the total
work done is small and the parallelization overhead becomes prominent.

EMST-MemoGFK significantly outperforms EMST-GFK and EMST-Naive by
up to 17.69x and 8.63x, respectively, due to its memory optimization, which reduces
memory traffic. We note that EMST-GFK does not get good speedup, and is slower
than EMST-Naive in all subplots of Figure 22. This is because the WSPD input
to EMST-GFK (𝑆 in Algorithm 6) needs to store references to the well-separated
pair as well as the BCCP points and distances, whereas EMST-Naive only needs to
store the BCCP points and distances. This leads to increased memory traffic for
EMST-GFK for operations on 𝑆 and its subarrays, which outweighs its advantage of
computing fewer BCCPs. This is evident from Figure 24, which shows that EMST-
GFK spends more time in WSPD, but less time in Kruskal compared to EMST-Naive.
EMST-MemoGFK spends the least amount of time in WSPD due to its pruning
optimizations, while spending a similar amount of time in Kruskal as EMST-GFK.
Finally, the EMST-Delaunay implementation performs reasonably well, being only
slightly (1.22–1.57x) slower than EMST-MemoGFK; however, it is only applicable
for 2D data sets.

HDBSCAN*Results. In Figure 23, we see that our HDBSCAN*-MemoGFK method
achieves good speedups over the best sequential times, ranging from 11.13–46.69x on
48 cores. Similar to EMST, we observe a similar lower speedup for 10D-HT-0.93M
due to its small size, and observe higher speedups for larger data sets. The dendro-
gram construction takes at least 50% of the total time for Figures 7a, b, and e–h,

94

and hence has a large impact on the overall scalability. We discuss the dendrogram
scalability separately.

We find that HDBSCAN*-MemoGFK consistently outperforms HDBSCAN*-GanTao
due to having a fewer number of well-separated pairs (2.5–10.29x fewer) using the
new definition of well-separation. This is also evident in Figure 24, where we see
that HDBSCAN*-MemoGFK spends much less time than HDBSCAN*-GanTao in
WSPD computation.

We tried varying minPts over a range from 10 to 50 for our HDBSCAN*implementations
and found just a moderate increase in the running time for increasing minPts.

MemoGFK Memory Usage. Overall, the MemoGFK method for both EMST
and HDBSCAN*reduces memory usage by up to 10x compared to materializing all
WSPD pairs.

Dendrogram Results. We separately report the performance of our parallel den-
drogram algorithm in Figure 25, which shows the speedups and running times on all
of our data sets. We see that the parallel speedup ranges from 5.69–49.74x (with an
average of 17.93x) for the HDBSCAN*MST with minPts=10, and 5.35–52.58x (with
an average 20.64x) for single-linkage clustering, which is solved by generating a den-
drogram on the EMST. Dendrogram construction for single-linkage clustering shows
higher scalability because the heavy edges are more uniformly distributed in space,
which creates a larger number of light-edge subproblems and increases parallelism.
In contrast, for HDBSCAN*, which has a higher value of minPts, the sparse regions in
the space tend to have clusters of edges with large weights even if some of them have
small Euclidean distances, since these edges have high mutual reachability distances.
Therefore, these heavy edges are less likely to divide up the edges into a uniform
distribution of subproblems in the space, leading to lower parallelism. On the other
hand, we observe that across all data sets, the dendrogram for single-linkage cluster-
ing takes an average of 16.44 seconds, whereas the dendrogram for HDBSCAN*takes
an average of 9.27 seconds. This is because the single-linkage clustering generates
more light-edge subproblems and hence requires more work. While it is possible to
tune the fraction of heavy edges for different values of minPts, we found that using
𝑛/10 heavy edges works reasonably well in all cases.

95

0 10 20 30 40 50

Self-Relative Speedup

16D-CHEM-4.2M

10D-HT-0.93M

7D-HouseHold-2M

3D-GeoLife-24.9M

7D-SS-varden-10M

5D-SS-varden-10M

3D-SS-varden-10M

2D-SS-varden-10M

7D-UniformFill-10M

5D-UniformFill-10M

3D-UniformFill-10M

2D-UniformFill-10M

16.24x, 3.35s

5.69x, 0.53s

12.38x, 0.56s

27.73x, 9.39s

49.74x, 40.33s

32.78x, 16.41s

10.93x, 3.93s

10.25x, 3.65s

14.26x, 8.22s

12.85x, 8.60s

10.99x, 9.01s

11.35x, 7.26s

25.02x, 15.42s

7.57x, 1.23s

5.35x, 2.96s

32.83x, 40.24s

52.58x, 53.01s

40.23x, 34.24s

11.48x, 5.73s

13.38x, 13.39s

10.27x, 5.46s

7.93x, 5.96s

14.30x, 5.84s

26.76x, 13.75s

Dendrogram Speedup and Running Time (s)

Single-Linkage
Clustering

HDBSCAN*
(minPts=10)

Figure 25: Self-relative speedups and times for ordered dendrogram computation for
single-linkage clustering and HDBSCAN*(minPts = 10). The 𝑥-axis indicates the
self-relative speedup on 48 cores with hyper-threading. The speedup and time is
shown at the end of each bar.

96

6 A Framework for Parallel Grid-Based Clustering

6.1 Introduction

Grid-based clustering algorithms is a significant class of clustering algorithms, known
for their efficiency in processing large multi-dimensional point data sets. These al-
gorithms, such as GRIDCLUS [205], STING [238], CLIQUE [16], and WaveClus-
ter [258], grid-based DBSCAN [117], approximate DPC [19], NSGC [248], GDILC [253],
and ASGC [65], generally follow a similar approach by partitioning each dimension
of the data space into intervals, forming a grid structure where data points belong to
cells. Clusters are then formed directly from these cells. Despite the common grid
structure used across these algorithms, there has been little effort in generalizing
their implementations.

In this thesis, we aim to develop a framework for parallel grid-based clustering
by creating high-level programming constructs that can be used to implement vari-
ous parallel grid-based clustering algorithms efficiently. Our goal is to enable simple
and fast parallel programming for spatial data sets. We identify several core con-
structs necessary for many of these algorithms, such as one that takes a cell and
range as input and applies a user-defined function to all cells within the specified
neighborhood, and another that traverses all cells in a user-defined order while ap-
plying a user-defined function. We implement both sequential and parallel versions
of these constructs, and use them to implement several algorithms including density-
based spatial clustering of applications with noise (DBSCAN) [95], the grid-based
density-isoline clustering algorithm (GDILC) [253], the new shifting grid clustering
algorithm (NSGC) [163], density peak clustering (DPC) [199, 19], grid clustering
(GRIDCLUS) [205], and an axis-shifted grid-clustering algorithm (ASGC) [65]. We
describe the grid data structure and its primitives in Section 6.2, the implementation
of various grid clustering algorithms using the data structure in Section 6.3, and an
experimental evaluation in Section 6.4.

6.2 Grid Data Structure

In this section, we describe the grid data structure implementation, and the defi-
nition and usage of the primitives that we propose. The grid data structure is a
commonly used data structure in grid clustering algorithms. However, implementing
and optimizing a grid data structure can be complex, time-consuming, and prone to

97

errors. To address this issue, we introduce a grid object that encapsulates the de-
tails and supports several parallel programming constructs. This approach simplifies
programming for grid clustering algorithms by hiding implementation details.

At a high level, the grid data structure takes a multi-dimensional point data set
as input and organizes it into an axis-aligned grid structure with a specified side
length, denoted as G. Each partition of the grid is a hypercube, referred to as a cell ,
and each point within the cell is called an object .

Programming Constructs

We describe several fundamental parallel constructs that form the core of all grid-
based clustering algorithms. These constructs serve as the primary interface through
which programmers interact with the grid structure and are implemented as subrou-
tines of the grid.

BuildGrid

BuildGrid(objects P, object origin, float d)

The BuildGrid construct takes in a set of data points 𝑃 , an separate object
called the origin, whose coordinate represents that of the “lower left” of the grid data
structure. The third parameter 𝑑 represents the length of each side of the cells in
the grid.

CellMap

CellMap(lambda (cell c, int id): { ... })

The CellMap construct iterates through all cells in 𝐺 sequentially and performs
computations on each cell. It takes a lambda function as input; this function receives
references to both a cell and its ID number. The computations are implemented
within the lambda function. For example, CellMap can be used to count the total
number of objects in 𝐺 using the following code:

// Example: accumulate total number of objects in numObj
CellMap(lambda (cell c, int id): { numObj += c.size })

We also implement a ParallelCellMap construct that iterates through cells in
parallel. Consequently, the computation within the lambda function must be thread-
safe. The example below demonstrates how to compute the total number of objects
in parallel using atomic addition.

98

// Example: accumulate total number of objects in numObj in parallel
ParallelCellMap(lambda (cell c, int id): { AtomicAdd(numObj, c.size) })

Some of the algorithms require the cells to be processed in some order. We
use a bucketing scheme, where the cells are divided into buckets. We call such a
construct ParallelOrderedCellMap. In this construct, all element of a bucket will
be processed in parallel, whereas different buckets are processed sequentially.

NeighborCellMap

NeighborCellMap(cell c, lambda (cell ngh, int id): { ... })

The NeighborCellMap construct iterates through and performs computations
on each cell within the neighborhood of a given cell 𝑐. It takes a cell whose neighbor-
hood is to be traversed and a lambda function as input. The lambda function receives
references to a neighboring cell and its ID number. Operations on the neighborhood
are implemented within the lambda function. This primitive supports multiple ways
of defining neighborhoods, such as spherical or rectangular shapes. The type and size
of the neighborhood are given as optional parameters to the primitive. By default,
the neighborhood is defined as the cells that are adjacent to 𝑐.

Additionally, each cell has a primitives for iterating through objects. The exam-
ple below demonstrates computing the average density of cells in a neighborhood
surrounding cell 𝑐.

// Example: average neighborhood density
numNgh = sum = 0
NeighborCellMap(c, lambda (cell ngh, int id): {

numNgh ++
sum += ngh.size

})
sum /= numNgh

We also propose a parallel variant of NeighborCellMap, called NeighborOb-
jectMap. In this variant, instead of traversing the neighboring cells, objects inside
the neighboring cells are traversed instead.

In addition, we also propose parallel variants of the mapping functions, Paral-
lelNeighborCellMap and ParallelObjectMap, where the neighboring cells and
objects are iterated in parallel.

99

6.3 Implementing Clustering Algorithms

DBSCAN

We refer the readers to Section 4 for the definition of DBSCAN clustering. We
describe the algorithm that computes the DBSCAN using our grid framework in
Algorithm 8. From Line 3 to Line 6, we use a ParallelCellMap to mark points
whose cell with higher than 𝑚𝑖𝑛𝑃𝑡𝑠 number of points as core. From Line 7 to Line 13,
we call NeighborObjMap on every unmarked point in parallel to accumulate the
number of nearby points, and determine whether they are core points. From Line 15
to 19, we again use NeighborObjMap on every unclustered point in parallel to
check if they border any clusters.

Algorithm 8 Implementing DBSCAN
1: Input: a data set 𝑃 of dimension dim, 𝜖, 𝑚𝑖𝑛𝑃𝑡𝑠
2: 𝐺← BuildGrid(𝑃 , 𝑜𝑟𝑖𝑔𝑖𝑛, 𝜖/

√
𝑑𝑖𝑚) ◁ 𝑜𝑟𝑖𝑔𝑖𝑛: coordinate with lowest value in

each dimension
3: 𝐺.ParallelCellMap(cell 𝑐: { ◁ Mark core points
4: if 𝑐.size ≥ 𝑚𝑖𝑛𝑃𝑡𝑠 then
5: Mark all points in 𝑐 as core
6: })
7: par-for unmarked 𝑝 ∈ 𝑃 do ◁ Mark remaining core points
8: 𝑐𝑜𝑢𝑛𝑡← 0
9: 𝐺.NeighborObjMap(𝑝, obj 𝑞: {

10: if 𝑝.dist(𝑞) ≤ 𝜖 then
11: 𝑐𝑜𝑢𝑛𝑡← 𝑐𝑜𝑢𝑛𝑡+ 1

12: })
13: Mark 𝑝 as core point if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑚𝑖𝑛𝑃𝑡𝑠

14: Compute connected components on the cells, propagate labels to core points,
and form clustering 𝐶, where 𝐶[𝑝] = −1 if 𝑝 ∈ 𝑃 is non-core

15: par-for non-core 𝑝 ∈ 𝑃 do ◁ Cluster border points
16: 𝐺.NeighborObjMap(𝑝, obj 𝑞: {
17: if 𝑞 is core and if 𝑝.dist(𝑞) ≤ 𝜖 then
18: 𝐶[𝑝]← 𝐶[𝑞]

19: })
20: return 𝐶

100

Approximate DPC

The density-peak clustering (DPC) algorithm is proposed by Rodriguez and Laio [199].
The algorithm computes, for each point from the input, the local density, defined
as the number of points whose distance to the point is less a user-defined threshold;
and dependent distance, defined as the point’s nearest neighbor with a higher local
density. The algorithm then identifies cluster centers whose dependent distances are
above a user-defined threshold.

The approximate DPC (Approx-DPC) algorithm is proposed by Amagata and
Hara [19]. It is a grid-based clustering method that improves the efficiency of lo-
cal density and dependent point computation in clustering tasks when compared
with the exact algorithm. The algorithm employs a uniform grid, which consists of
non-empty cells with each cell being a hypercube. Each cell in the grid maintains
information about the points covered by the cell. The algorithm first computes the
local density, the number of points within a radius of input parameter dcut . Approx-
DPC conducts an improved range search in each cell of the grid called a joint range
search. It involves computing the center point of each cell, obtaining its range search
result through a single query on a prebuilt spatial tree, and scanning this result
to compute exact local densities for each point in the cell. This joint range search
reduces unnecessary tree traversal and improves performance compared to existing
methods. This process is repeated for every cell.

The algorithm then computes the dependent points, defined as the closest neigh-
bor with a higher local density. Approx-DPC allows approximate computation based
on information maintained in each cell while still ensuring clustering accuracy. For
approximate dependent point computation, Approx-DPC follows specific rules de-
pending on whether a point is equal to or different from the maximum local density
point within its cell. If a dependent point cannot be determined through these rules,
Approx-DPC computes it using the exact dependent point computation.

We describe the algorithm that computes the Approximate Density Peak Clus-
tering using our grid framework in Algorithm 9. From Line 3 to Line 6, we use a
ParallelCellMap to compute local density for each point in 𝑃 using range search
within distance (𝑑𝑀𝑎𝑥+𝑑𝐶𝑢𝑡) from each cell. From Line 7 to Line 9, we use another
ParallelCellMap to find 𝜌min and 𝑝* for each cell. From Line 10 to Line 16, we
again use ParallelCellMap to assign 𝑝* as dependent points for points in each cell,
and then check neighboring cells’ 𝜌-min values to find additional dependent points.
We then resolve remaining dependent points using exact computations. Finally, the
dependency can be converted to clustering by forming connected components and
discarding dependency edges with weights higher than a user-defined threshold.

101

Algorithm 9 Implementing Approx-DPC
1: Input: a data set 𝑃 of dimension 𝑑𝑖𝑚, 𝑑𝐶𝑢𝑡
2: 𝐺←BuildGrid(𝑃 , 𝑜𝑟𝑖𝑔𝑖𝑛, 𝑑𝐶𝑢𝑡/

√
𝑑𝑖𝑚) ◁ 𝑜𝑟𝑖𝑔𝑖𝑛: coordinate with lowest

value in each dimension
3: 𝐺.ParallelCellMap(cell 𝑐: { ◁ Compute local density
4: Perform range search on points within distance (𝑑𝑀𝑎𝑥+ 𝑑𝐶𝑢𝑡) from 𝑐
5: Compute local density for each point 𝑝 in 𝑐 using the range search result
6: })
7: 𝐺.ParallelCellMap(cell 𝑐: {
8: Find minimum local density 𝜌min and local max-density point 𝑝* for 𝑐

9: })
10: 𝐺.ParallelCellMap(cell 𝑐: { ◁ Compute approximate dependent points
11: Assign 𝑝* as dependent points for points in 𝑐
12: 𝐺.NeighborCellMap(𝑝*, cell 𝑛𝑔ℎ: {
13: if 𝑛𝑔ℎ.𝜌min ≥ 𝑝*’s local density then:
14: Assign 𝑝*’ of 𝑛𝑔ℎ as 𝑝*’s dependent point
15: })
16: })
17: Resolve remaining dependent points using exact computations
18: Compute connected components 𝐶 based on the dependency while discarding

dependency edges with weights higher than a user-defined threshold
19: Return 𝐶

102

NSGC

The new shifting grid clustering algorithm (NSGC) [248] divides the data space
into a grid with cells. The number of intervals, which determines the number of
cells in the data space, is set to be 2𝑚, where 𝑚 is the number of iterations of
the algorithm. To improve performance in cases where data points are distributed
evenly throughout the data space, the shifting grid structure uses density profiles
from nearest neighborhood cells rather than only considering the density of a single
cell. This is achieved by shifting the grid by a half-cell size in each dimension,
allowing for a more accurate assessment of local densities. Group assignments are
made to non-empty cells based on density profiles, with neighbor cells being checked
during assignment to ensure proper grouping. The order of group assignment is
performed according to density profiles, starting with high-density cells and moving
towards lower-density ones. The algorithm iterates until a stopping criteria is met.
Specifically, if the difference between results from previous and current iterations is
less than or equal to an acceptable error, then the current result is recognized as
final.

We describe the new shifting grid clustering algorithm using our grid framework
in Algorithm 10. The input is a data set 𝑃 of dimension 𝑑𝑖𝑚. We first normalize the
data set to values in [0, 1]. Then, we run a loop from 𝑚 = 0 to 𝑚𝑎𝑥𝐼𝑡𝑒𝑟−1. In each
iteration, we create a grid 𝐺 on 𝑃 with side length 𝑔𝑟𝑖𝑑𝑆𝑖𝑧𝑒 = 1/𝑚. From Line 6
to Line 12, we use a NeighborObjectMap to compute the density of each cell in
parallel. We order the cells by decreasing density and update their group assignment
based on neighbor cluster IDs from Lines 13– 16. We repeat this process until the
difference between clusterings is small enough and break out of the loop on Line 17.
Finally, we return the clustering.

GDILC

The grid-based density-isoline clustering (GDILC) algorithm [253] is a novel approach
to clustering data samples based on their densities and distance thresholds. The first
step in the algorithm is to calculate the density of each data sample based on the
number of other samples within a certain distance threshold. This density value is
then used to form a density-isoline figure, which is essentially a contour figure of
density. Isolines are chosen based on a certain value, and regions circumscribed by
those isolines are considered as clusters. Different isoline values can result in different
clusters.

To determine which pairs of samples should be considered for clustering, a dis-
tance threshold 𝑅𝑇 is derived from the distances between each pair of data samples.

103

Algorithm 10 Implementing NSGC
1: Input: a data set 𝑃 of dimension 𝑑𝑖𝑚
2: Normalize the data set to values in [0, 1]
3: for 𝑚← 0 to 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 − 1 do
4: gridSize ← 1/𝑚
5: 𝐺←BuildGrid(𝑃 , 𝑜𝑟𝑖𝑔𝑖𝑛, 𝑔𝑟𝑖𝑑𝑆𝑖𝑧𝑒) ◁ 𝑜𝑟𝑖𝑔𝑖𝑛: coordinate with lowest value

in each dimension
6: par-for cell 𝑐 ∈ 𝐺 do ◁ Compute cell densities
7: 𝑐.density ← 0
8: 𝐺.NeighborObjectMap(𝑐, obj 𝑛𝑔ℎ: {
9: for 𝑑← 0 to 𝑑𝑖𝑚 do

10: if abs(𝑛𝑔ℎ[𝑑] - 𝑐.center[𝑑]) ≤ 𝑔𝑟𝑖𝑑𝑆𝑖𝑧𝑒/2 then
11: 𝑐.density ← 𝑐.𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 1

12: })
13: 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 ← order cells by decreasing density
14: G.CellMapOrdered(𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔, cell 𝑐: {
15: Check neighbor cluster IDs and generate a cluster ID to form clustering 𝐶

16: })
17: Stop if the clustering difference is small enough
18: Return 𝐶

104

Similarly, a density threshold 𝐷𝑇 is obtained from the densities of samples to deter-
mine which pairs of samples should be combined into clusters. To reduce time and
space requirements, a grid-based approach is employed to check only those pairs of
samples within each cell in a grid whose centers are closer than 𝑅𝑇 . For each pair of
data samples whose densities exceed 𝐷𝑇 and whose distances are less than 𝑅𝑇 , the
two clusters to which they belong are combined into one cluster. This process contin-
ues until all pairs of samples have been checked. We describe the GDILC algorithm
using our grid framework in Algorithm 11. We first normalize the input data set to
values in [0, 1], and then build a grid on it with a user-defined side length. Next, we
estimate the radius threshold (𝑅𝑇) and density threshold (𝐷𝑇) for clustering. From
Line 4 to Line 10, we use NeighborObjectMap to calculate the average distance of
each point to its neighbors, and then compute 𝑅𝑇 as the average of these distances
over all points. From Line 12 to Line 17, we use NeighborObjectMap again to
count the number of neighbors within 𝑅𝑇 for each point, and then compute 𝐷𝑇
based on their mean density. Finally, from Line 20 to Line 25, we use NeighborOb-
jectMap one more time to link points whose density is higher than DT within RT
using a union-find data structure, and generate cluster labels accordingly.

ASGC

The Axis-Shifted Grid-Clustering (ASGC) algorithm [65] is a grid-based clustering
method that aims to reduce the influence of the border of predefined grids and in-
crease the selection of size and density threshold of significant cells. The algorithm
works by generating two grid structures, identifying significant cells, grouping nearby
significant cells into clusters, transforming the grid structure, generating new clus-
ters using the transformed grid structure, revising original clusters using a cluster
modified function, and generating the final clustering result. In the first step, a grid
structure is generated by dividing the n-dimensional data space into a predefined
number of non-overlapping cells. The density of each cell is then calculated to iden-
tify significant cells whose densities exceed a predefined threshold. Nearby significant
cells are grouped into clusters to generate a set of clusters denoted as 𝑆1. The coor-
dinate origin is then shifted by half the grid cell size in each dimension to generate
a new grid structure used to generate another set of clusters denoted as 𝑆2. The
originally obtained clusters are revised using the newly obtained ones using a merg-
ing algorithm and form a final set of clusters. We describe the merging procedure
in Algorithm 12 and Algorithm 13. The ASGC cluster merging algorithm involves
revising the original clusters obtained from two different grid structures. The first
step is to find each overlapped cluster in the second grid structure for each cluster in

105

Algorithm 11 Implementing GDILC
1: Input: a data set 𝑃 of dimension dim
2: Normalize the data set to values in [0, 1]
3: 𝐺←BuildGrid(𝑃 , 𝑜𝑟𝑖𝑔𝑖𝑛, 𝑔𝑟𝑖𝑑𝑆𝑖𝑧𝑒) ◁ 𝑜𝑟𝑖𝑔𝑖𝑛: coordinate with lowest value in

each dimension; gridSize: user-defined
4: par-for point 𝑝 ∈ 𝑃 do ◁ Estimate RT
5: 𝑝.𝑡𝑜𝑡𝑎𝑙← 0
6: 𝑝.𝑐𝑜𝑢𝑛𝑡← 0
7: 𝐺.NeighborObjectMap(𝑝, obj 𝑛𝑔ℎ:
8: 𝑝.𝑡𝑜𝑡𝑎𝑙← 𝑝.𝑡𝑜𝑡𝑎𝑙 + 𝑛𝑔ℎ.𝑑𝑖𝑠𝑡(𝑝)
9: 𝑝.𝑐𝑜𝑢𝑛𝑡← 𝑝.𝑐𝑜𝑢𝑛𝑡+ 1

)
10: 𝑝.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝑝.𝑡𝑜𝑡𝑎𝑙/𝑝.𝑐𝑜𝑢𝑛𝑡

11: 𝑅𝑇 ← 𝑠𝑢𝑚(𝑝.𝑡𝑜𝑡𝑎𝑙/𝑝.𝑐𝑜𝑢𝑛𝑡 for 𝑝 ∈ 𝑃)/𝑃.𝑠𝑖𝑧𝑒
12: par-for point 𝑝 ∈ 𝑃 do ◁ Estimate DT
13: 𝑝.𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ← 0
14: 𝐺.NeighborObjectMap(𝑝, obj 𝑛𝑔ℎ: {
15: if 𝑑𝑖𝑠𝑡(𝑝, 𝑛𝑔ℎ) ≤ 𝑅𝑇 then
16: 𝑝.𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ← 𝑝.𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 1

17: })
18: 𝑚𝑒𝑎𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ← sum(𝑝.𝑑𝑒𝑛𝑠𝑖𝑡𝑦 for 𝑝 ∈ 𝑃)/𝑃.𝑠𝑖𝑧𝑒
19: 𝐷𝑇 ← based on mean density
20: par-for point 𝑝 ∈ 𝑃 do ◁ Generate clusters
21: Initialize a union-find data structure 𝑢𝑓 for 𝑝 if its density is greater than 𝐷𝑇
22: 𝐺.NeighborObjectMap(𝑝, obj 𝑛𝑔ℎ: {
23: if 𝑝.𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝐷𝑇 and 𝑑𝑖𝑠𝑡(𝑝, 𝑛𝑔ℎ) ≤ 𝑅𝑇 then
24: Link 𝑝 and 𝑛𝑔ℎ in 𝑢𝑓

25: })
26: Generate cluster labels 𝐶 based on 𝑢𝑓 for each 𝑝 with 𝑝.𝑑𝑒𝑛𝑠𝑖𝑡𝑦 > 𝐷𝑇
27: Return 𝐶

106

the first grid structure and vice versa. This generates a set of rules denoted as 𝑅0,
which indicate overlapping clusters between the two structures. Then, each cluster
in the first grid structure is revised using a cluster revised function 𝐶𝑀() described
in Algorithm 13. Finally, the revised clusters from both structures are merged to
generate the final clustering result.

Algorithm 12 ASGC Rule Generation
1: procedure RuleGeneration(𝑆1, 𝑆2)
2: for 𝐶1𝑖 ∈ 𝑆1 do
3: for 𝐶2𝑗 ∈ 𝑆2 such that 𝐶1𝑖 ∩ 𝐶2𝑗 ̸= ∅ do
4: Generate the rule 𝐶1𝑖 → 𝐶2𝑗

5: for 𝐶2𝑗 ∈ 𝑆2 do
6: for 𝐶1𝑖 ∈ 𝑆1 such that 𝐶2𝑗 ∩ 𝐶1𝑖 ̸= ∅ do
7: Generate the rule 𝐶2𝑗 → 𝐶1𝑖

8: 𝑅0 = {𝐶1𝑖 → 𝐶2𝑗|𝐶1𝑖 ∩ 𝐶2𝑗 ̸= ∅} ∪ {𝐶2𝑗 → 𝐶1𝑖|𝐶2𝑗 ∩ 𝐶1𝑖 ̸= ∅}
9: Revise clusters in 𝑆1 using the cluster revised function CM()

Algorithm 13 ASGC Cluster Merging
1: procedure CM(𝑆1, 𝑆2, 𝑅0)
2: for 𝐶1𝑖 ∈ 𝑆1 do
3: Let 𝑋 ′ ← 𝑋
4: repeat
5: 𝑜𝑙𝑑𝑋 ′ ← 𝑋 ′

6: for each 𝑌 → 𝑍 in 𝑅0 do
7: if 𝑌 ⊆ 𝑋 ′ then
8: 𝑋 ′ ← 𝑋 ′ ∪ 𝑍
9: if 𝑍 ∈ 𝑆1 then

10: 𝑆1 ← 𝑆1 − 𝑍
11: else
12: 𝑆2 ← 𝑆2 − 𝑍

13: until 𝑜𝑙𝑑𝑋 ′ = 𝑋 ′

14: 𝐶1𝑖 ← 𝑋 ′

15: 𝑆1 ← 𝑆1 ∪ 𝑆2

We propose a substantially simpler implementation of the algorithm that returns
the same clustering result, by making use of a parallel union-find data structure,

107

as shown in Algorithm 14. The input is a data set 𝑃 of dimension 𝑑𝑖𝑚. We first
normalize the data set to values in [0, 1]. We then construct two grids 𝑆1 and 𝑆2

on 𝑃 with side length 𝑑 and shifted by 𝑑/2 relative to 𝑆1, respectively. We initialize
a union-find structure uf. From Line 6 to Line 12, we use a ParallelCellMap on
cells of grid 𝑆1 to link neighboring cells whose size is greater than the threshold.
We repeat this process for cells in grid 𝑆2. From Line 14 to Line 18, we again use
ParallelCellMap on cells of grid 𝑆1 to link neighboring cells whose overlapping area
contains shared data points.

Our new implementation obtains the same result as the original algorithm. As
shown in the original rule generation (Algorithm 12), a rule is generated if two
cells from 𝑆1 and 𝑆2 share overlapping points. In Algorithm 13, these two cells are
merged based on the set of rules in an iterative manner. In our implementation
(Algorithm 14), from Line 14 to Line 18, in parallel for each cell in 𝑆1, we check the
overlapping cells in 𝑆2, and connect them into the same cluster in the union-find. We
show that any two cells that are placed in the same cluster in the original algorithms
are also placed in the same cluster in our implementation. Let 𝐶1𝑖 be a cluster in
𝑆1 and 𝐶2𝑗 be a cluster in 𝑆2 such that 𝐶1𝑖 ∩ 𝐶2𝑗 ̸= ∅. According to Algorithm 12,
a rule is generated 𝐶1𝑖 → 𝐶2𝑗. By the merging process in Algorithm 13, if two
cells share overlapping points, they are placed in the same cluster. Therefore, any
cell in 𝐶1𝑖 that overlaps with a cell in 𝐶2𝑗 must be placed in the same cluster as
that cell. In our implementation (Algorithm 14), we connect each cell in 𝐶1𝑖 to its
overlapping cells in 𝑆2 using a parallel union-find data structure (Line 14-18). This
ensures that any cell in 𝐶1𝑖 that overlaps with a cell in 𝐶2𝑗 is connected to it and
placed in the same cluster. Therefore, all cells that are placed in the same cluster
as 𝐶1𝑖 according to Algorithm 13 are also placed in the same cluster as it according
to our implementation. By repeating this process for all cells, we can conclude that
our new implementation obtains the same result as the original algorithm.

GRIDCLUS

The GRIDCLUS algorithm [205] is a grid-based clustering algorithm that generates
a hierarchy of clusters. The algorithm works by first constructing an axis-aligned
grid structure on the data set, then iteratively processing all cells, and then using a
recursive procedure to assign the cells of existing clusters.

The algorithm first creates the grid structure, and calculates the cell density
based on the number of points in each cell. The cells are then sorted to generate
a sequence in the order of highest to lowest density. Then the algorithm enters an
iterative process. In each iteration, the cells with a next-higher density are treated as

108

Algorithm 14 Implementing ASGC
1: Input: a data set 𝑃 of dimension 𝑑𝑖𝑚
2: Normalize the data set to values in [0, 1]
3: 𝑆1 ←BuildGrid(𝑃 , 𝑜𝑟𝑖𝑔𝑖𝑛1, 𝑑)
4: 𝑆2 ←BuildGrid(𝑃 , 𝑜𝑟𝑖𝑔𝑖𝑛2, 𝑑) ◁ 𝑜𝑟𝑖𝑔𝑖𝑛2 is shifted by 𝑑/2 relative to 𝑜𝑟𝑖𝑔𝑖𝑛1
5: Initialize union-find 𝑢𝑓
6: 𝑆1.ParallelCellMap(cell 𝑐: {
7: if 𝑐.size > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
8: G1.NeighborCellMap(𝑐, cell 𝑛𝑔ℎ: {
9: if 𝑛𝑔ℎ.size > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

10: 𝑢𝑓 .link(𝑐, 𝑛𝑔ℎ)
11: })
12: })
13: Repeat the same process for cells in 𝑆2

14: 𝑆1.ParallelCellMap(cell 𝑐: {
15: for each 𝑆2 cell 𝑛𝑔ℎ that overlaps with 𝑐 do
16: if 𝑐 and 𝑛𝑔ℎ have shared data points then
17: 𝑢𝑓 .link(𝑐, 𝑛𝑔ℎ)
18: })

109

being active and ready to be clustered. Then connected components are recomputed
on all the cells that are active, forming the clustering of that iteration. The algorithm
proceeds until all the cells are active.

We describe the GRIDCLUS algorithm in Algorithm 15. Given a data set 𝑃
of dimension 𝑑𝑖𝑚 and grid size 𝜖, we construct a grid 𝐺 on 𝑃 with side length
𝜖. We then sort the cells in 𝐺 based on cell density. From Line 5 to Line 10, we
use a ParallelCellMapOrdered to compute connected components of all active
cells, where active cells are those from index 𝑠 to index 𝑒. We record the connected
components as one level of cluster. We output all the levels as the final clustering
result.

Algorithm 15 Implementing GRIDCLUS
1: Input: a data set 𝑃 of dimension 𝑑𝑖𝑚, grid size 𝜖
2: 𝐺←BuildGrid(𝑃 , 𝑜𝑟𝑖𝑔𝑖𝑛, 𝜖) ◁ 𝑜𝑟𝑖𝑔𝑖𝑛: coordinate with lowest value in each

dimension
3: Sort cells in 𝐺 based on cell density
4: 𝑙← 0
5: 𝐺.ParallelCellMapOrdered(cell 𝑐, int 𝑠, int 𝑒: { ◁ Compute connected

components of active cells
6: Mark cells from 𝑠 to 𝑒 as active
7: Compute connected components of all the active cells
8: Record the connected components as one level of cluster 𝐶𝑙

9: 𝑙← 𝑙 + 1

10: })
11: Return 𝐶𝑖 for 𝑖 ∈ [0, 𝑙)

6.4 Experimental Evaluation

We implemented the framework using C++ and used the ParlayLib [41] for par-
allel primitives and a work-stealing scheduler. We compile the code with the g++
compiler (version 11.3) with the −O3 flag. We benchmark all the grid clustering
algorithms on an Amazon EC2 machine. We use a c5.18xlarge instance with 2 ×
Intel Xeon Platinum 8124M (3.00GHz) CPUs for a total for a total of 36 two-way
hyper-threaded cores, and 144 GB of RAM. We test the parallel performance of
all the implementations on two data sets each with 1 million data points. We test
both the sequential and parallel performance and reporting the self-relative paral-
lel speedup. The data set 2d-uniform-1m is a uniformly distributed data set in 2

110

2d-uniform-1m 2d-varden-1m
1t time 36h time speedup 1t time 36h time speedup

DBSCAN 0.822 0.0505 15.2x 0.413 0.0358 11.5
Approx-DPC 261 5.74 45.5x 53.6 2.75 19.5

NSGC 8.83 0.602 14.6x 3.90 0.584 6.68
GDILC 11.3 1.21 9.34x 116 15.7 7.36
ASGC 1.30 0.117 11.1x 0.672 0.179 3.74

GRIDCLUS 0.773 0.0505 15.3x 0.420 0.0519 8.11

Table 8: Sequential running time (1t, seconds), parallel running time on 36 cores
with hyper-threading (36h, seconds), and parallel self-relative parallel speedups of
our implementations of the grid clustering algorithms using the framework.

dimensions, and 2d-varden-1m is a clustered data set with varying density in 2 di-
mensions. We benchmark all of the implementations and present their self-relative
parallel speedups using all the cores of the machine in Table 8.

We observe that the grid clustering implementations achieve better running time
when running on 2d-uniform-1m compared with running on 2d-varden-1m. This is
because when a data set is uniformly distributed, the data points fall more evenly
into the grid cells created, and it creates a higher number of grid cells, which can
be parallelized more easily. In addition, the more even distribution of points also
results in better load balancing. Among the methods, GDILC has relatively lower
parallel speedups on both data sets, because in earlier iterations of the algorithm,
the number of grid cells is small, and the parallelism only comes from processing
different grid cells in parallel.

111

Part III

Algorithms and Libraries for Parallel
Computational Geometry

112

7 Introduction

Computational geometry has a wide range of applications across various domains,
including computer graphics, robotics, simulation, optimization, and games. This
thesis presents three new parallel algorithms that we developed for convex hull,
smallest enclosing ball, and parallel batch-dynamic closest pair. We also describe
the ParGeo library and the GeoGraph library for parallel computational geometry
and geometric graph generation. For convex hull in both R2 and R3, we introduce
a reservation technique to enable parallel modifications to the hull. For smallest
enclosing ball, we propose a new sampling-based algorithm based on Larsson et
al.’s [154] approach to quickly reduce the size of the data set. For closest pair, we
develop a new parallel algorithm based on Golin’s dynamic data structure [111]. We
consolidate the implementation of these algorithms and others into unified libraries
to make them more user-friendly. ParGeo is a library of parallel computational
geometry algorithms that offers efficient and user-friendly solutions for geometric
problems and data structures. Unlike existing libraries, ParGeo includes a wide range
of problems specifically designed for parallel processing. Additionally, it includes a
module that generates geometric graphs from spatial data sets to enable users to
take advantage of graph algorithms to gain insights into their data. We summarize
our contributions below.

• Optimized parallel randomized incremental and quickhull algorithms using the
reservation technique, as well as a divide-and-conquer algorithm, for convex
hull in R2 and R3. (Section 8.2)

• A parallel sampling-based algorithm for the smallest enclosing ball problem,
and the first parallel implementation of the classic randomized incremental
algorithm. (Section 8.3)

• A new parallel batch dynamic data structure for the closest pair problem, that
is both theoretically-efficient and practical. (Section 8.4)

• The ParGeo library for parallel computing in computational geometry and
graph generation. (Section 9)

113

8 New Parallel Algorithms

8.1 Introduction

We present three new parallel algorithms that we developed for convex hull, smallest
enclosing ball, and parallel batch-dynamic closest pair. We also describe the ParGeo
library and the GeoGraph library for parallel computational geometry and geometric
graph generation. For convex hull in both R2 and R3, we introduce a reservation
technique to enable parallel modifications to the hull. For smallest enclosing ball, we
propose a new sampling-based algorithm based on Larsson et al.’s [154] approach to
quickly reduce the size of the data set. We also provide the first parallel implemen-
tation of the classic randomized incremental algorithm. For closest pair, we develop
a new parallel algorithm based on Golin’s dynamic data structure [111] called the
sparse partition to support batch-dynamic updates. We describe these algorithms in
Sections 8.2, 8.3, and 8.4, respectively.

8.2 Convex Hull

The convex hull of a set of points 𝑃 in R𝑑 is the smallest convex polyhedron containing
𝑃 (in this thesis, we assume the dimensionality 𝑑 is a constant). It is common to
represent the convex hull using a set of facets . The boundary of two facets is a
ridge . For example, in R3, assuming the points are in general position (no four
points are on the same plane), each facet is a triangle, and each ridge is a line that
borders two facets (see Figure 41(a)).

The randomized incremental algorithm and the quickhull algorithm are the most
widely used algorithms for solving convex hull in practice. The randomized incremen-
tal algorithm for R𝑑 was proposed by Clarkson and Shor [74]. Given a point data set
𝑃 in R𝑑, the randomized incremental algorithm first constructs a 𝑑-simplex, a gen-
eralization of a tetrahedron in 𝑑-dimensions as the initial hull. Then, the algorithm
adds the points to the polyhedron in a random order, updating the hull if neces-
sary. In practice, the quickhull algorithm [114, 31], another incremental algorithm,
is often used. Unlike the randomized algorithm, the quickhull algorithm processes
a point that is furthest from a facet, which enables the hull to be expanded more
quickly. The quickhull algorithm is by far one of the most common implementations
for convex hull due to its simplicity and efficiency [5, 8, 9, 1, 4, 96]. There have
also been works that study parallel implementations of quickhull, but they are either

114

limited to R2 [177, 219], or do not return the exact convex hull for R3 [220, 229].
Recently, Blelloch et al. [46] proposed a new randomized incremental algorithm that
is highly parallel in theory. However, the algorithm does not seem to be practical
due to numerous data structures required for bookkeeping.

In this section, we describe our new parallel reservation-based algorithm. Our
algorithm is able to express both the randomized incremental convex hull algorithm
and the quickhull algorithm. Specifically, unlike a sequential incremental algorithm
that adds one point per round, we add multiple points in parallel per round. We
resolve conflicts caused by the parallel insertion using a reservation technique. We
also apply a general parallelization technique based on divide-and-conquer, which in
combination with our parallel incremental algorithm, leads to faster implementations
in practice.

Parallel Reservation-Based Algorithm

Our parallel reservation-based algorithm can be implemented as either a randomized
incremental algorithm or a quickhull algorithm. We will first introduce the overall
structure of the algorithm. Then, we will describe the details with respect to the im-
plementations, and compare with existing approaches. We will base our description
in the context of R3 for the sake of clarity, but the algorithm can be extended to R𝑑

for any constant integer 𝑑 ≥ 2.
We first give a high-level overview of the algorithm. Given an ordered set of

points 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, we let 𝑃𝑟 = {𝑝1, 𝑝2, . . . , 𝑝𝑟} be the prefix of 𝑃 of size 𝑟,
and 𝐶𝐻(𝑃𝑟) be the convex hull on 𝑃𝑟. We start the construction by first arbitrarily
selecting four points from 𝑃 that do not lie on the same plane, forming a tetrahedron.
We then make these four points the first four in 𝑃 , and denote the tetrahedron as
𝐶𝐻(𝑃4). Then, the algorithm proceeds iteratively, but on each round, rather than
inserting just 𝑝𝑟 to form 𝐶𝐻(𝑃𝑟), we process a batch of points in parallel. On each
round, let each point outside of 𝐶𝐻(𝑃𝑟−1) be called a visible point . We first select
a batch of visible points, and try to add them to 𝐶𝐻(𝑃𝑟−1) in parallel in the same
round.

The key challenge of this approach is that some of these points cannot be pro-
cessed in parallel due to concurrent modifications on the shared structures of the
convex polyhedron. We use a reservation algorithm to resolve these conflicts, such
that we only process the points that modify disjoint facets of the polyhedron. Specif-
ically, each point will perform a priority concurrent write with its ID to reserve all
of its visible facets. Points that have its ID written to all of its visible facets are
successful. We then process the successful points in parallel by enabling them to

115

make concurrent modifications to 𝐶𝐻(𝑃𝑟−1). At the end of the round, in parallel,
we to filter out points that are no longer visible. The algorithm will terminate when
there are no more visible points.

Our reservation-based algorithm can be used to implement the parallel random-
ized incremental algorithm or the quickhull algorithm for convex hull. For the ran-
domized incremental algorithm, we randomly permute the input points at the be-
ginning, and on each round attempt to add a prefix of the permuted points to the
convex hull. For the quickhull algorithm, on each round, we instead select a set of
points furthest from a subset of facets.

Detailed Algorithm for the Convex Hull

Overview We first give a high-level overview of the algorithm, whose pseudocode
is shown in Figure 17. Given an ordered set of points 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, we
let 𝑃𝑟 = {𝑝1, 𝑝2, . . . , 𝑝𝑟} be the prefix of 𝑃 of size 𝑟, and 𝐶𝐻(𝑃𝑟) be the convex
hull on 𝑃𝑟. We start the construction by first selecting four points from 𝑃 that do
not lie on the same plane, forming a tetrahedron (Line 1). We then make these
four points the first four in 𝑃 , and denote the tetrahedron as 𝐶𝐻(𝑃4). Then, the
algorithm proceeds iteratively, but on each round, rather than inserting just 𝑝𝑟 to
form 𝐶𝐻(𝑃𝑟), we process a batch of points in parallel. On each round, let each point
outside of 𝐶𝐻(𝑃𝑟−1) be called a visible point . We first select a batch of visible
points (Line 3), and try to add them to 𝐶𝐻(𝑃𝑟−1) in parallel in the same round.

The key challenge of this approach is that some of these points cannot be pro-
cessed in parallel due to concurrent modifications on the shared structures of the
convex polyhedron. We use a reservation algorithm to resolve these conflicts, such
that we only process the points that modify disjoint facets of the polyhedron (Lines 4–
9). Specifically, each point will perform a WriteMin with its ID to reserve all of its
visible facets (Lines 4–6). Points that have its id written to all of its visible facets are
successful (Lines 7–9). We then process the successful points in parallel by enabling
them to make concurrent modifications to 𝐶𝐻(𝑃𝑟−1) (Line 10–14). At the end of
the round, we run a ParallelPack to filter out points that are no longer visible
(Line 15). The algorithm will terminate when there are no more visible points.

Detailed Algorithm Next, we describe the algorithm in greater detail. Figure 26
illustrates the processing of a single visible point 𝑝𝑟. We denote a facet as a visible
facet of 𝑝𝑟 if point 𝑝𝑟 is in the half space away from the center of the convex hull.
We first retrieve the set of visible facets of 𝑝𝑟 via facets stored in the visible point.
The visible facets of 𝑝𝑟 form a closed region, whose boundary is a set of ridges known

116

Algorithm 17 Pseudocode for the parallel reservation-based convex hull algorithm
(which includes the randomized incremental algorithm and the quickhull algorithm).
Require: 𝑃 : 3-dimensional points, 𝑟: batch size
Ensure: 3-dimensional convex hull
1: CH ← initialize with 4 points
2: while 𝑃 is not empty do
3: Q ← a batch of size 𝑟 of visible points in 𝑃
4: for all 𝑞 ∈ 𝑄 do ◁ Reservation (parallel loop)
5: for all 𝑓 ∈ 𝑞.𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐹𝑎𝑐𝑒𝑡𝑠 do
6: WriteMin(&𝑓 .reservation, 𝑞.id)
7: for all 𝑞 ∈ 𝑄 do ◁ Check Reservation (parallel loop)
8: for all 𝑓 ∈ 𝑞.𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐹𝑎𝑐𝑒𝑡𝑠 do
9: 𝑞.𝑠𝑢𝑐𝑐𝑒𝑠𝑠← 𝑞.𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ∧ (𝑓.𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑞.𝑖𝑑)

10: for all 𝑞 ∈ 𝑄 do ◁ Process Successful Points (parallel loop)
11: if 𝑞.𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
12: delete 𝑞’s visible facets
13: create new facets of 𝑞
14: update CH
15: 𝑃 ← Pack(𝑃 , visible)

117

pr

horizon(pr)

pr

(a) (b)

Figure 26: Illustration of adding a visible point 𝑝𝑟 to the convex hull. (a) shows the
convex hull prior to the addition of 𝑝𝑟. The visible facets are in white, while the
non-visible facets are in gray. The thicker line segments correspond to the horizon.
(b) shows the convex hull after adding 𝑝𝑟 with newly created facets.

as the horizon . We delete the visible facets from 𝐶𝐻(𝑃𝑟−1), and add new facets,
where each new facet is formed by adding two ridges from a horizon ridge to 𝑝𝑟.

Because of the structural changes to the convex hull that occur when adding a
visible point, concurrent structural changes can cause data races, which need to be
avoided. We show an example of the conflict in Figure 27, where we are attempting
to add two visible points 𝑝𝑟 and 𝑝𝑟+1 in parallel. As shown in the figure, the closed
region formed by the visible facets of each visible point overlap with each other
in three facets, which are highlighted in yellow. Should the two visible points be
processed in parallel, the resulting polyhedron may not be well-defined due to data
races. When processed sequentially, 𝑝𝑟+1’s visible facets would have been different,
involving newly created facets by 𝑝𝑟.

Our reservation algorithm only allows a subset of the visible points that update
disjoint facets of the convex hull to be processed in parallel in each round. At a high
level, we use the lexicographical order of the visible points to determine the priority
in processing a facet (a smaller ID has higher priority). In the example shown in
Figure 27, since 𝑝𝑟 has a smaller ID than 𝑝𝑟+1, the three conflicting facets can only
be processed by 𝑝𝑟 in that round. In the pseudocode in Figure 17, we allocate an
extra data field in each facet for performing reservations (Lines 4–6). For each visible
point in parallel, we iterate through its visible facets and use a parallel WriteMin to
write its ID to the facets’ “reservation” fields. Then on Lines 7–9, we determine which
visible points successfully reserved all of its facets. Again, in parallel for each visible
point, we check each of its visible facets for a successful reservation by comparing
the value of the reservation field with its token. The reservation of a visible point is

118

pr

pr+1

horizon(pr)

horizon(pr+1)

Figure 27: This figure illustrates the attempt to add 𝑝𝑟 and 𝑝𝑟+1 in parallel. The
visible points and horizons of 𝑝𝑟 and 𝑝𝑟+1 are in red and blue, respectively. The
visible facets to either visible points are in white/yellow, while the other facets are
in gray. The overlap of the three visible facets between the 𝑝𝑟 and 𝑝𝑟+1 is in yellow.

only successful if its ID is stored in all of its visible facets. Then, on Lines 10–14,
we process the visible points whose reservations are successful, adding them to the
hull and updating the appropriate data structures. Finally, on Line 15, we process
the points in 𝑃 such that those remaining as visible points are packed to replace the
original 𝑃 , and the non-visible points are discarded. Note that the visible points
that succeeded in the reservation are no longer visible points because they are now
part of the convex hull. Some of the remaining points will also no longer be visible
points due to the growth of the convex hull.

We use a simple and fast data structure to keep track of the visibility relationship
between the visible points and the facets. At each step of the algorithm, when
a visible point is processed, it needs to identify the set of visible facets. On the
other hand, for the facets undergoing structural changes, they need to identify and
redistribute their visible points to new facets. To find the set of visible facets of
𝑝𝑟, it is inefficient to iterate through all the facets of 𝐶𝐻(𝑃𝑟−1). While existing
approaches [86] keep track of the visibility between visible points and all of their
visible facets, we found such an approach to be slow. The reason is that each vertex
is associated with multiple facets, making the cost of storing and updating the data
structure high. We only store the reference of an arbitrary visible facet to each visible
point, from which we use a local breadth-first search to retrieve all the visible facets
only when needed. For storing the visible points in the facets, we simply assign each
point to one of its visible facets. During point redistribution, we gather the points
stored in each visible facet into an array, and in parallel we distribute each point to
a new visible facet replacing the original visible facet. Each such point also stores a
reference to this visible facet.

119

Randomized Incremental Algorithm Our reservation-based algorithm can be
used to implement the parallel randomized incremental algorithm. At the start of the
algorithm, we randomly permute 𝑃 . Line 3 will then take a prefix of the remaining
points in 𝑃 to process. On each round, we choose a prefix of 𝑐·𝑛𝑢𝑚𝑃𝑟𝑜𝑐 visible points
to perform the reservation, where 𝑐 is a small constant and 𝑛𝑢𝑚𝑃𝑟𝑜𝑐 is the number
of processors. Compared with the existing parallelization approach by Blelloch et
al. [46], our approach is much simple because we avoid the use of complicated data
structures.

Quickhull Algorithm Our reservation-based algorithm also applies to the quick-
hull algorithm. Specifically, on Line 3 of the algorithm, we select a set of visible
points that are furthest from their respective visible facets. The number of visible
points that we choose to process on each round is again 𝑐 · 𝑛𝑢𝑚𝑃𝑟𝑜𝑐.

The 3-dimensional quickhull algorithm is one of the most widely used convex
hull algorithms in practice, and so we compare with some of the existing approaches
based on quickhull. Since concurrent insertions of visible points creates data races,
existing 3 dimensional implementations compromise either correctness or scalability.
For Stein et al.’s CudaHull algorithm [220], on each round, the algorithm chooses the
furthest point for each facet, and replaces each facet with three new facets, which
is done in parallel on the GPU. However, such an approach does not produce a
convex polyhedron. Therefore, the implementation uses the CPU to fix the concave
artifacts produced via ridge rotation at the end of each round. However, Gao et
al. [106] pointed out that certain artifacts cannot be fixed by Stein et al.’s algorithm,
leaving concavities in the final polyhedron. Tang et al.’s GPU-based heuristic for
convex hull [224]. It first generates a “pseudohull” polyhedron using a quickhull-like
algorithm, in which the points are removed. The convex hull is then computed on
the remaining points sequentially on the CPU. A clear drawback is that the last
phase of the algorithm is not parallel, causing a scalability bottleneck for certain
data sets. In comparison, our approach computes a correct convex hull while also
achieving high parallel scalability. The correctness is because for each visible point,
our algorithm considers all the visible facets and replaces them with new facets.
Meanwhile, Stein et al.’s algorithm only considers one visible facet for each visible
point, and replaces it directly with three facets, giving rise to concavities during the
process.

120

3D-IS-10M 3D-IC-10M
Data Set

0

5000

10000

15000

#p
oi

nt
s

(a) Number of Conflict Points Touched
Method

no-reservation
reservation

3D-IS-10M 3D-IC-10M
Data Set

0

20000

40000

60000

#f
ac

et
s

(b) Number of Visible Facets Touched
Method

no-reservation
reservation

3D-IS-10M 3D-IC-10M
Data Set

0

2000

4000

6000

Ti
m

e
(m

s)

(c) Single-thread Time
Method

no-reservation
reservation

Figure 28: The plots show the overhead of reservation compared with without reser-
vation. (a) and (b) show the number of visible points and facets touched by the
algorithms, respectively. (c) shows the single-thread running time of the algorithms.

Overhead of Reservation

Our parallel algorithms are work-efficient since it does the same amount of asymp-
totic work as the sequential counterparts for both the randomized incremental and
quickhull algorithms. In addition, given that the expected number of visible facets
associated with each visible point is constant [86], the amount of extra work done
to perform the reservations on Lines 3–9 is a constant multiplicative factor in each
round. When the number of facets is low, instead of using reservations, we process
only a single point per round, and we choose the point from the facet that is visible
to the most visible points, which maximizes the volume increase of the convex hull.

Figure 28 shows an empirical comparison on the amount of overhead incurred by
the reservation algorithm. Specifically, the comparison is between the reservation-
based quickhull algorithm and our optimized sequential quickhull algorithm, both
running on one thread, for data sets containing 10 million points in 3 dimensions
(described in Section 8.2). The purpose of running on one thread is to measure the
amount of work without parallelism. The comparison is based on the number of
visible points and facets touched during the algorithm as well as the running time.
As we can see from Figures 28(a) and (b), the reservation-based algorithm does
not necessarily cause more points or facets to be touched during the algorithm as a
majority of the reservations succeed. For example, for the 3D-IS-10M data set, the
number of visible points and facets touched is similar to that of the non-reservation
algorithm. For the 3D-IC-10M data set, the reservation-based approach actually
touches fewer visible points and facets, due to the different order in which the visible
points are selected between the two algorithms. For both data sets, the reservation
algorithm incurs some overhead in doing the work of reservations, as shown by the
single-threaded running times in Figure 28(c); however the increase in running time
is modest. This overhead is reasonable since it enables parallelism, as we will show
in our experiments.

121

Point Culling via Pseudohull Computation

We also implement a multicore variant of Tang et al.’s pseudohull heuristic [224],
originally proposed for the GPU. Starting from an initial tetrahedra, we recursively
grow each facet into three new facets, using the furthest point from the facet, similar
to the quickhull algorithm. The visible points associated with the facet are redis-
tributed to the new facets. This results in a polyhedron, and the points in the interior
of the polyhedron will not be part of the convex hull. Therefore, we can prune away
the points inside the polyhedron and compute the convex hull on the rest of the
points.

There are several differences in our implementation from Tang et al.’s algo-
rithm. Our implementation executes the recursive calls on different facets in parallel,
whereas Tang et al.’s implementation maps the algorithm to the GPU architecture
by pre-allocating space for the facets and visible points, and runs the algorithm in an
iterative manner in lock-step. Specifically, successively generated facets and points
points associated them are updated by multiple threads in parallel in each iteration.
We use a parallel maximum-finding routine to find the furthest point of each facet in
each call. Rather than growing the pseudohull until there are no more visible points
as done by Tang et al., we set a threshold on the number of points associated with a
facet, below which we stop growing the pseudohull. This prevents stack overflow on
large and skewed data sets due to too many recursive calls, and the extra unpruned
points do not contribute significantly to the work of the final computation of the
convex hull. At the end of pruning, we use our parallel reservation-based quickhull
algorithm to compute the final hull on the remaining points, whereas Tang et al.uses
a sequential implementation.

Parallel Divide-and-Conquer

We adopt a common parallelization strategy using divide-and-conquer, which calls
our reservation-based algorithm as a subroutine. Some early convex hull algo-
rithms are based on divide-and-conquer, notably, the algorithm by Preparata and
Hong [192]. The algorithm splits the input into two spatially disjoint subsets by a
mid-point along one of the axis, recursively computes the convex hull on each sub-
set, and then merges the results together. Later work [15, 82, 20] extended this
approach to the parallel setting. However, most of these approaches rely on compli-
cated subroutines to merge convex hulls, which are not practical and have not been
implemented, to the best of our knowledge.

We implement a practical divide-and-conquer algorithm by partitioning the input
into 𝑐 · 𝑛𝑢𝑚𝑃𝑟𝑜𝑐 equal subsets, where 𝑐 is a small constant and 𝑛𝑢𝑚𝑃𝑟𝑜𝑐 is the

122

number of processors. For each subset, the convex hull of the subset is computed
by a single processor using the sequential quickhull algorithm, but run in parallel
across the different subsets. Then, the vertices of the outputs of the subproblems are
collected to form a new input, from which the final convex hull is computed using
our reservation-based parallel algorithm described in Section 8.2.

Experimental Evaluation

Data Sets We use four types of synthetic data sets. The first is Uniform (U),
consisting of points distributed uniformly at random inside a hypercube with side
length

√
𝑛, where 𝑛 is the number of points. The second type UniformSphere

(US) is similar to the first, but the points are distributed in a hypersphere instead.
We also generate OnSphere (OS) and OnCube (OC) data sets, where points are
uniformly distributed on the surface of a hypersphere and a hypercube, respectively.
The surfaces have a thickness equal to 0.1 times the diameter or side length of the
sphere or cube. The last type is VisualVar (V), a clustered data set with variable
density, produced by Gan and Tao’s generator [104]. The generator produces points
by performing a random walk in a local region, but jumping to random locations
with some probability. For each of these two types, we generate them in 2, 3, 5, and
7 dimensions, and for up to 1 billion points. We name the data sets in the format of
Dimension-Name-Size.

We also use the following real-world data sets from the Stanford 3D Scanning
Repository [10]: 3D-Thai-5M is a 3-dimensional point data set of size 4999996
from a scanned thai-statue; and 3D-Dragon-3.6M is a 3-dimensional point data
set of size 3609600 from a scanned statue of a dragon.

Testing Environment The experiments are run on an AWS c5.18xlarge instance
with 2 Intel Xeon Platinum 8124M CPUs (3.00 GHz), for a total of 36 two-way hyper-
threaded cores and 144 GB RAM. Our experiments use all hyper-threads unless
specified otherwise. We compile our benchmarks with the g++ compiler (version
9.3.0) with the -O3 flag, and use ParlayLib [41] for parallelism.

We test the following implementations for convex hull (our new implementations
are underlined). All implementations are for both R2 and R3, unless stated otherwise.

• CGAL: sequential C++ implementation of quickhull in CGAL [96].

• Qhull : sequential C++ implementation of quickhull [8] by Barber et al. [31].

• RandInc: our implementation of the parallel randomized incremental algo-
rithm described in Section 8.2.

123

102

104

tim
e

(m
s)

(a) 2D-IS-10M

102

104

tim
e

(m
s)

(b) 2D-OS-10M

102

104

tim
e

(m
s)

(c) 2D-IC-10M

102

104

tim
e

(m
s)

(d) 2D-OC-10M

102

104

tim
e

(m
s)

(e) 2D-OS-100M

102

104

tim
e

(m
s)

(f) 2D-OC-100M

2D Convex Hull Running Times
CGAL Qhull RandInc QuickHull DivideConquer

Figure 29: Running times of implementations across different data sets for 2-
dimensional convex hull on 36 cores with 2-way hyper-threading.

103

105

tim
e

(m
s)

(a) 3D-IS-10M

103

105
tim

e
(m

s)

(b) 3D-OS-10M

103

105

tim
e

(m
s)

(c) 3D-IC-10M

103

105

tim
e

(m
s)

(d) 3D-OC-10M

103

105

tim
e

(m
s)

(e) 3D-Thai-5M

103

105

tim
e

(m
s)

(f) 3D-Dragon-3.6M

103

105

tim
e

(m
s)

(g) 3D-OS-100M

103

105

tim
e

(m
s)

(h) 3D-OC-100M

3D Convex Hull Running Times
CGAL Qhull RandInc QuickHull DivideConquer Pseudo

Figure 30: Running times of implementations across different data sets for 3-
dimensional convex hull on 36 cores with 2-way hyper-threading.

• QuickHull : for R2, it is a simple recursive parallel algorithm [40], and we
use the implementation in PBBS [215]; for R3, we use our parallel quickhull
algorithm described in Section 8.2.

• Pseudo: our implementation of the pseudoHull heuristic proposed by Tang et
al. [224] for 3-dimensional convex hull described in Section 8.2. The final stage
of the computation uses our quickHull algorithm for R3.

• DivideConquer : our divide-and-conquer algorithm described in Section 8.2.

We show a comparison of running times across methods using 36 cores with
two-way hyper-threading in Figures 29 and 30. Our implementations achieve signifi-
cant speedup compared to existing sequential implementations. Our fastest parallel
implementations achieve speedups of 190–559x (325x on average) over CGAL for 2-
dimensional convex hull, and speedups of 10.5–124x (61.4x on average) over CGAL
for 3-dimensional convex hull. Our fastest parallel implementations have speedups of
147–1673x (605x on average) over 2-dimensional Qhull, and speedups of 5.68–43.8x

124

(19.9x on average) over 3-dimensional Qhull. When run using a single thread, our
parallel implementations achieve speedups of 3.26–12.4x and 1.31–5.05x over CGAL
for 2 and 3 dimensions, respectively; and 3.39–47.6x and 0.99–2.06x speedups over
Qhull for 2 and 3 dimensions, respectively.

For R2, DivideConquer is always the fastest method due to having high scalability
from processing many independent subproblems in parallel. For R3, the fastest two
methods are DivideConquer and Pseudo. We observe that on data sets with a larger
output size, Pseudo is slower than DivideConquer (Figures 30(a), (b), and (g)).
This is because the final computation after pruning takes longer given that there
are a higher number of remaining points after pruning. For instance, the number
of remaining points for 3D-IS-10M and 3D-IC-10M after pruning are 83669 and
2316, respectively, and Pseudo is relatively slower on the former. We observe that
RandInc and QuickHull take relative longer compared with the fastest methods for
data sets with a smaller output size (Figures 30(c)–(e) and (h)). This is caused by
higher contention during the reservation of facets, since there are fewer facets on the
intermediate hull. For example, for 3D-IS-10M and 3D-IC-10M, the output sizes
are 14163 and 423, respectively. During the computation, 3D-IC-10M exposes fewer
facets for reservation, leading to a lower success rate during the reservations.

DivideConquer achieves the best parallel speedup (42.78x and 16.55x on average
for R2 and R3, respectively). This is because the bulk of the running time is spent
in computing independent convex hulls across different threads. On the other hand,
the incremental algorithms, RandInc and QuickHull, demonstrate lower scalability
because of load-imbalance caused by the different amounts of work to process each
conflict point being processed in parallel.

We also compare with the performance of GPU-based algorithms. Specifically,
we compare with CudaHull proposed by Stein et al. [220]. The CudaHull algorithm
incrementally adds batches of points in parallel, and after every batch, fixes the
concavities on the polyhedron to form the convex hull. On a data set with 10 million
points and 3 dimensions, Stein et al. reported that their implementation takes 89 ms
on an Nvidia GeForce GTX 580 with 512 cores, where there is also a small fraction of
time being spent on the CPU. Our best implementations, DivideConquer and Pseudo
take 113 and 93 ms, respectively on a data set of the same size and dimension on
multi-core CPUs.

8.3 Smallest Enclosing Ball

The smallest enclosing ball of 𝑃 in R𝑑 is the smallest 𝑑-sphere containing 𝑃 . It is
well-known that the smallest enclosing ball is unique and defined by a support set

125

of 𝑑+ 1 points on the surface of the ball (see Figure 41(b)).
Welzl [246] showed that by using a randomized incremental algorithm, the small-

est enclosing ball can be computed in 𝑂(𝑛) time in expectation for constant 𝑑. The
algorithm iteratively expands the support set of the ball by adding points in a ran-
dom order until the ball contains all of the points. The algorithm was later improved
by Gartner [107] with practical optimizations for speed and robustness. Larsson et
al. [154] proposed practical parallel algorithms that uses a new method for expanding
the support set, and the implementation works on both CPUs and GPUs. Later,
Blelloch et al. [45] proposed a parallel algorithm based on Welzl’s algorithm, but
without any implementations.

In this section, we describe our new algorithms for the smallest enclosing ball
problem based on Larsson et al.’s approach [154]. We propose a sampling-based
algorithm to quickly reduce the size of the data set. We also provide the first parallel
implementation of Welzl’s classic algorithm.

Sampling-Based Algorithm

Given a ball 𝐵, we define visible points to be points that lie outside of 𝐵. Existing
approaches for computing the smallest enclosing ball focus on expanding the support
set in an iterative manner, and output the enclosing ball when there are no more
visible points. Welzl’s algorithm expands the support set by adding points in a
random order [246]. In comparison, Larsson et al.’s approach scans the input to
search for good support sets in a round-based manner. In R3, Larsson’s algorithm
divides the space into eight orthants centered at the center of 𝐵. On each round,
the input is scanned to find the furthest visible points in each orthant. 𝐵 is then
updated to the next intermediate solution using the existing support set of 𝐵 and
the new visible points found during the scan. The algorithm iterates until there are
no more visible points. It is parallelized within each round by performing the scan
on the input in parallel.

We find each iteration in Larsson et al.’s algorithm to be unnecessarily expensive
due to having to scan the entire data set on every round. Our approach is to use a
sampling heuristic to first obtain a good initial ball, inspired by Welzl’s randomized
algorithm. Specifically, we use small random samples to obtain good estimates of
the support set at a negligible cost.

We show the pseudocode of our algorithm in Figure 19. At a high level, our
sampling-based algorithm consists of two phases: the sampling phase (Line 2–9)
and the final compute phase (Line 10–15). First, we initialize the ball using a few
arbitrary points (Line 1). Then, we iterate through a random permutation of the

126

input to take multiple samples (Line 2–9). On each iteration, we scan through a
constant-sized segment of the input, which is effectively equivalent to a random sam-
ple. We perform an orthant scan similar to Larsson’s approach. Our implementation
of orthant scan will return a new estimate of the support set based on the sample,
and a boolean hasOutlier indicating whether the sample contains visible points with
respect to the current smallest enclosing ball 𝐵 (Line 4). We recompute 𝐵 using the
new support set. If there are visible points in the current sample, we will continue
the sampling process with our new 𝐵. If there are no visible points in the sample,
the support set likely contains most of the points, and so we terminate sampling
and move on to the next phase. Now, with a good estimate of the optimal smallest
enclosing ball, we run Larsson’s orthant scan to compute the final smallest enclos-
ing ball (Line 10–15). The sampling phase allows us to generate good support sets
without having to scan the entire input.

Algorithm 19 Pseudocode for the parallel sampling-based algorithm for smallest
enclosing ball.
Require: 𝑃 : 𝑑-dimensional points, 𝑐 : batch size
Ensure: 𝐵 : 𝑑-dimensional smallest enclosing ball
1: 𝐵 ← ball()
2: 𝑠𝑐𝑎𝑛𝑛𝑒𝑑← 0
3: while 𝑠𝑐𝑎𝑛𝑛𝑒𝑑 < 𝑛 do
4: (hasOutlier, support)← orthantScan(𝑃 [𝑠𝑐𝑎𝑛𝑛𝑒𝑑 : min(𝑠𝑐𝑎𝑛𝑛𝑒𝑑+ 𝑐, 𝑛)− 1], 𝐵)

5: 𝑠𝑐𝑎𝑛𝑛𝑒𝑑← 𝑠𝑐𝑎𝑛𝑛𝑒𝑑+ 𝑐
6: if not hasOutlier then
7: break ◁ current sample does not violate 𝐵
8: else
9: 𝐵 ← constructBall(support)

10: while hasOutlier do
11: (hasOutlier, support)← orthantScan(𝑃,𝐵)
12: if not hasOutlier then
13: return 𝐵
14: else
15: 𝐵 ← constructBall(support)

We parallelize the orthant scan, which is the most expensive operation of the
algorithm. Specifically, we divide the input array to orthant scan into blocks, and
processed each block sequentially, but in parallel across different blocks. Afterward,

127

the extrema for the orthants obtained from the blocks are merged, and a new support
set is computed on these points and the existing support set of 𝐵.

Parallel Welzl’s Algorithm and Optimizations

We also implemented and optimized the parallel version of Welzl’s algorithm de-
scribed by Blelloch et al. [45]. Welzl’s sequential algorithm uses a random permuta-
tion of the input 𝑃 and processes the points one by one. If the algorithm encounters
a visible point 𝑝𝑖 with respect to the current bounding ball 𝐵, 𝐵 is recomputed on
𝑃𝑖, the prefix of points up until 𝑝𝑖, using recursive calls to the algorithm. Blelloch et
al.’s parallel algorithm also uses a random permutation of 𝑃 . Across iterations, the
algorithm processes prefixes of 𝑃 of exponentially increasing size. If the prefix con-
tains at least one visible point, the earliest visible point 𝑝𝑖 is identified, and 𝐵 is
recomputed on prefix 𝑃𝑖 by recursively calling the parallel algorithm. Each prefix is
processed in parallel.

We implement the algorithm with some practical optimizations. When there
are numerous visible points in the prefix, the work of the parallel algorithm will
increase significantly, because each time a visible point is discovered, the points after
the visible point in the same prefix will have to be reprocessed in the next round.
Therefore, given that there will be more visible points in the initial rounds when
the prefix size is small (< 500000), we process these prefixes sequentially by calling
Welzl’s sequential algorithm. This also reduces the amount of overhead from parallel
primitives, since there is limited parallelism for small prefixes.

In addition, we extend existing optimizations of Welzl’s sequential algorithm to
the parallel setting. We implement the move-to-front heuristic [246], which upon
encountering a visible point, moves the visible point to the front of 𝑃 , so that it
will be processed earlier in recursive calls, reducing the number of subsequent visible
points. We also parallelize the pivoting heuristic proposed by Gartner [107]. In this
heuristic, upon encountering a visible point, rather than processing the visible point
directly, we search 𝑃 for a pivot point furthest away from the center of the current
𝐵, and use the pivot point to compute the new 𝐵 instead of the visible point. We
use a parallel maximum-finding algorithm to identify the pivot point.

Experimental Evaluation

For the smallest enclosing ball, we use the same experimental setup and data sets
as in Section 8.2. We test the following implementations for smallest enclosing ball
(our new implementations are underlined). All implementations are for both R2 and
R3.

128

102

104

tim
e

(m
s)

(a) 2D-IS-10M

102

104

tim
e

(m
s)

(b) 2D-OS-10M

102

104

tim
e

(m
s)

(c) 3D-IS-10M

102

104

tim
e

(m
s)

(d) 3D-OS-10M

102

104

tim
e

(m
s)

(e) 2D-IC-10M

102

104

tim
e

(m
s)

(f) 2D-OC-10M

102

104

tim
e

(m
s)

(g) 3D-IC-10M

102

104

tim
e

(m
s)

(h) 3D-OC-10M

102

104

tim
e

(m
s)

(i) 3D-Thai-5M

102

104

tim
e

(m
s)

(j) 3D-Dragon-3.6M

102

104

tim
e

(m
s)

(k) 2D-OS-100M

102

104

tim
e

(m
s)

(l) 3D-OS-100M

Smallest Enclosing Ball Running Times
CGAL Welzl WelzlMtf WelzlMtfPivot Scan Sampling

Figure 31: Running times of implementations across different data sets for smallest
enclosing ball on 36 cores with 2-way hyper-threading.

• CGAL: sequential C++ implementation of Welzl’s algorithm in CGAL [96].

• Orthant-scan : our implementation of Larsson et al. [154]’s orthant-scan al-
gorithm.

• Sampling : our parallel sampling algorithm described in Section 8.3.

• Welzl : our parallel implementation of Welzl’s algorithm described in Sec-
tion 8.3.

• WelzlMtf : the same as Welzl, but with the move-to-front heuristic [15].

• WelzlMtfPivot : the same as Welzl, but with both the move-to-front and the
pivoting heuristic [107].

For smallest enclosing ball, we show the comparison across implementations using
36 cores with two-way hyper-threading in Figure 31. Our fastest parallel implemen-
tations have speedups of 70–178x (109x on average) over CGAL. On one thread,
our fastest implementations achieve speedup of 2.81–7.05x (4.96x on average) over
CGAL.

Our sampling-based method is the fastest for eight out of the twelve data sets,
whereas Orthant-scan without sampling is the fastest for the other four. We ob-
serve that the sampling phase on average scans only about 5% of the data set, and
results in up to 2.55x (1.47x on average) speedup compared to just running Orthant-
scan. Comparing across different implementations of Welzl’s algorithms, we see that
the move-to-front, and the pivoting heuristic implemented in parallel consistently
improve the running times. Specifically, WelzlMtf is 2.09–13.9x faster than Welzl,

129

and WelzlMtfPivot is 3.4–58.6x faster than Welzl. We also see that Sampling and
Orthant-scan are 4.63–34.8x and 2.96–40.3x faster than WelzlMtfPivot, respectively.

We also compare with existing GPU implementation of the smallest enclosing
ball by Kallberg and Larsson [145]. According to Kallberg and Larsson. Their
algorithm is based on repeated farthest-point queries. Their implementation on an
Nvidia Quadro K4000M GPU with 960 cores takes 13 ms to process a data set with
5 million points and 3 dimensions, whereas our Sampling implementation takes 4.95
ms to process a data set with 10 million points and 3 dimensions.

8.4 Parallel Batch-dynamic Closest Pair

We consider a metric space (𝑆, 𝑑) where 𝑆 contains 𝑛 points in R𝑘, and 𝑑 is the 𝐿𝑡-
metric where 1 ≤ 𝑡 ≤ ∞. The static closest pair problem computes and returns
the closest pair distance 𝛿(𝑆) = min{𝑑(𝑝, 𝑞) | 𝑝, 𝑞 ∈ 𝑆, 𝑝 ̸= 𝑞}, and the closest pair
(𝑝, 𝑞). The dynamic closest pair problem computes the closest pair of 𝑆, and also
maintains the closest pair upon insertions and deletions of points. A parallel batch-
dynamic data structure processes batches of insertions and deletions of points of
size 𝑚 in parallel. In this thesis, we propose a new parallel batch-dynamic data
structure for closest pair on (𝑆, 𝑑).

There is a rich literature on sequential dynamic closest pair algorithms [181, 223,
207, 216, 217, 208, 59, 146, 39, 111, 14]. However, as far as we know, none of the
existing dynamic algorithms have been implemented and none of them are parallel.
The main contribution of the thesis is the design of a theoretically-efficient and
practical parallel batch-dynamic data structure for dynamic closest pair, along with
a comprehensive experimental study showing that it performs well in practice. Our
solution is inspired by the sequential solution of Golin et al. [111], which takes 𝑂(𝑛)
space to maintain 𝑂(𝑛) points and supports 𝑂(log 𝑛) time updates, and is the fastest
existing sequential algorithm for the 𝐿𝑡-metric. Our parallel solution takes a batch
update of size 𝑚 and maintains the closest pair in 𝑂(𝑚(1+log((𝑛+𝑚)/𝑚))) expected
work and 𝑂(log(𝑛+𝑚) log*(𝑛+𝑚)) depth (parallel time) with high probability (whp
holds with probability at least 1−1/𝑛𝑐 for an input of size 𝑛 and some constant 𝑐 > 0).
Compared to the sequential algorithm of Golin et al., our algorithm is work-efficient
(i.e., matches the work of the sequential algorithm) for single updates, and has better
depth for multiple updates since we process a batch of updates in parallel. Our data
structure is based on efficiently maintaining a sparse partition of the points (a data
structure used by Golin et al. [111]) in parallel. This requires carefully organizing
the computation to minimize the work and depth, as well as using a new parallel
batch-dynamic binary heap that we design. This is the first parallel batch-dynamic

130

binary heap in the literature, and may be of independent interest.
We implement our data structure with optimizations to improve performance.

In particular, we combine the multiple heaps needed in our theoretically-efficient
algorithm into a single heap, which reduces overheads. We also implement a par-
allel batch-dynamic 𝑘d-tree to speed up neighborhood queries. We evaluate our
algorithm on both real-world and synthetic data sets. On 48 cores with two-way
hyper-threading, we achieve self-relative parallel speedups of up to 38.57x across
various batch sizes. Our algorithm achieves throughputs of up to 1.35 × 107 and
1.06× 107 updates per second for insertions and deletions, respectively.

In addition, we implement and evaluate four parallel algorithms for the static
closest pair problem. There has been significant work on sequential [210, 195, 37,
98, 36, 128, 110, 148, 90, 63, 30] and parallel [27, 164, 157, 47, 45] static algorithms
for the closest pair. As far as we know, none of the existing parallel algorithms have
been evaluated and compared empirically. We implement a divide-and-conquer al-
gorithm [47], a variant of Rabin’s randomized algorithm [195], our parallelization of
the sequential sieve algorithm [148], and a randomized incremental algorithm [45].
On 48 cores with two-way hyper-threading, our algorithms achieve self-relative par-
allel speedups of up to 51.45x.7 Our evaluation of the static algorithms shows that
Rabin’s algorithm is on average 7.63x faster than the rest of the static algorithms.
Finally, we compare our parallel batch-dynamic algorithm with the static algorithms
and find that it can be advantageous to use the batch-dynamic algorithm for batches
containing up to 20% of the data set. Our source code is publicly available at
https://github.com/wangyiqiu/closest-pair.

Related Work

Static Closest Pair. The problem of finding the closest pair of points under the 𝐿𝑡

metric has been a long-studied problem in computational geometry. There have been
several deterministic sequential algorithms [210, 37, 36, 128] that solve the problem
optimally in 𝑂(𝑛 log 𝑛) time under the standard algebraic decision tree model. Under
a different model where the floor function is allowed with unit-cost, Rabin [195]
solved the problem in 𝑂(𝑛) expected time. Fortune and Hopcroft [98] presented
a deterministic algorithm with 𝑂(𝑛 log log 𝑛) running time under the same model.
Later, Khuller and Matias [148] came up with a simple randomized algorithm that
takes 𝑂(𝑛) expected time using a sieve data structure. Golin et al. [110] described a
randomized incremental algorithm for the problem that takes 𝑂(𝑛) expected time.

7With hyper-threading, the parallel speedup can be more than the total core count.

131

https://github.com/wangyiqiu/closest-pair

Later, Dietzfelbinger et al. [90] filled in some details for Rabin’s algorithm con-
cerning hashing and duplicate grouping. Banyassady and Mulzer [30] gave a simpler
analysis for Rabin’s algorithm. Chan [63] gave an algorithm that takes 𝑂(𝑛) expected
time in a randomized optimization framework. Maheshwari et al. [166] designed a
new algorithm for closest pair in the doubling-metric space in expected 𝑂(𝑛 log 𝑛)
time.

For parallel algorithms, Atallah and Goodrich [27] came up with the first parallel
algorithm for closest pair using multi-way divide-and-conquer. The algorithm takes
𝑂(𝑛 log 𝑛 log log 𝑛) work and 𝑂(log 𝑛 log log 𝑛) depth. MacKenzie and Stout [164]
designed a parallel algorithm inspired by Rabin [195] that takes 𝑂(𝑛) work and 𝑂(1)
depth in expectation. Blelloch and Maggs [47] parallelized the divide-and-conquer
approach in [37, 36], and their algorithm takes 𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛) depth.
Recently, Blelloch et al. [45] designed a randomized incremental algorithm for the
problem that takes 𝑂(𝑛) expected work and 𝑂(log 𝑛 log* 𝑛) depth whp Lenhof and
Smid [157] solved a close variant, the 𝐾-closest pair problem for the 𝐿𝑡-metric, in
𝑂(𝑛 log 𝑛 log log 𝑛 +𝐾) work and 𝑂(log2 𝑛 log log 𝑛) depth, where 𝐾 is the number
of closest pairs to return.

Dynamic Closest Pair. For the sequential dynamic closest pair problem, there
have been semi-dynamic algorithms that focus on only insertions or only deletions.
For the deletion-only case, Supowit [223] gave an algorithm that maintains the min-
imal Euclidean distance for points in 𝑘 dimensions in 𝑂(log𝑘 𝑛) amortized time per
deletion. The method uses 𝑂(𝑛 log𝑘−1 𝑛) space. For the insertion-only case, Schwarz
and Smid [207] designed a data structure for the 𝐿𝑡-metric space that takes 𝑂(𝑛)
space and handles each insertion in 𝑂(log 𝑛 log log 𝑛) time. Schwarz et al. [208] de-
signed an optimal data structure taking 𝑂(𝑛) space and 𝑂(log 𝑛) time per insertion
for the same problem.

For sequential fully-dynamic closest pair algorithms supporting both insertions
and deletions, Overmars [181] gave an 𝑂(𝑛) time update algorithm. Smid [216] gave
a dynamic data structure of size 𝑂(𝑛), that maintains closest pair of 𝑘-dimensional
points in the 𝐿𝑡-metric space, in 𝑂(𝑛2/3 log 𝑛) time per update.

Later work improved the sequential running time to polylogarithmic time per
update. Smid [217] used a data structure of size 𝑂(𝑛 log𝑘 𝑛) that maintains the closest
pair in the 𝐿𝑡-metric in 𝑂(log𝑘 𝑛 log log 𝑛) amortized time per update. Callahan and
Kosaraju [59] presented a general technique for dynamizing problems in Euclidean-
space that make use of the well-separated pair decomposition [60]. For dynamic
closest pair, their algorithm requires 𝑂(𝑛) space and 𝑂(log2 𝑛) time per update.
Kapoor and Smid [146] proposed new dynamic data structures that solve the problem
in the 𝐿𝑡-metric using 𝑂(𝑛) space and deterministic 𝑂(log𝑘−1 𝑛 log log 𝑛) update time.

132

Bespamyatnikh [39] described a closest pair data structure for the 𝐿𝑡-metric space
that takes 𝑂(𝑛) space, and has 𝑂(log 𝑛) deterministic update time. The main idea is
to dynamically maintain a fair-split tree and a heap of neighbor pairs. The algorithm
does not currently seem to be practical. Golin et al. [111] described a randomized
data structure for the problem in the 𝐿𝑡-metric space, which takes 𝑂(𝑛) expected
space and supports insertions and deletions in 𝑂(log 𝑛) expected time. Our work is
inspired by Golin et al. [111], and is the first to parallelize dynamic batch-updates
for the closest pair problem.

In addition, there has been related work on similar problems. Agarwal et al. [14]
proposed a kinetic and dynamic data structure for 2-dimensional all-nearest-neighbors
as well as the closest pair, which uses 𝑂(𝑛 log 𝑛) space and processes each update
in 𝑂(log3 𝑛) time. Eppstein [94] solved a stronger version of the dynamic closest
pair problem by supporting arbitrary distance functions. The algorithm maintains
the closest pair in 𝑂(𝑛 log 𝑛) time per insertion and 𝑂(𝑛 log2 𝑛) amortized time per
deletion using 𝑂(𝑛) space. Cardinal and Eppstein [62] later designed a more prac-
tical version of this algorithm. Chan [64] presented a modification of Eppstein’s
algorithm [94], which improves the amortized update time to 𝑂(𝑛).

Review of the Sparse Partition Data Structure

We give an overview of the sequential dynamic closest pair data structure proposed
by Golin et al. [111], which is based on the serial static closest pair algorithm by
Khuller and Matias [148]. Our new parallel algorithm also uses this data structure,
which is referred to as the sparse partition of an input set.

Sparse Partition For a set 𝑆 with 𝑛 points, a sparse partition [111] is defined
as a sequence of 5-tuples (𝑆𝑖, 𝑆

′
𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖) with size 𝐿 (1 ≤ 𝑖 ≤ 𝐿), such that (1)

𝑆1 = 𝑆; (2) 𝑆 ′
𝑖 ⊆ 𝑆𝑖 ⊆ 𝑆; (3) If |𝑆𝑖| > 1, 𝑝𝑖 is drawn uniformly at random from 𝑆𝑖,

and we compute the distance 𝑑𝑖 = 𝑑(𝑝𝑖, 𝑞𝑖), to 𝑝𝑖’s closest point 𝑞𝑖 in 𝑆𝑖; (4) For all
𝑥 ∈ 𝑆𝑖: a) if the closest point of 𝑥 in 𝑆𝑖 (denoted as 𝑑(𝑥, 𝑆𝑖)) is larger than 𝑑𝑖/3,
then 𝑥 ∈ 𝑆 ′

𝑖; b) if 𝑑(𝑥, 𝑆𝑖) ≤ 𝑑𝑖/6𝑘 then 𝑥 /∈ 𝑆 ′
𝑖; and c) if 𝑥 ∈ 𝑆𝑖+1, there is a point

𝑦 ∈ 𝑆𝑖 such that 𝑑(𝑥, 𝑦) ≤ 𝑑𝑖/3 and 𝑦 ∈ 𝑆𝑖+1; (5) 𝑆𝑖+1 = 𝑆𝑖 ∖ 𝑆 ′
𝑖.

The sparse partition is constructed using these rules until 𝑆𝐿+1 = ∅. It contains
𝑂(log 𝑛) levels in expectation, as |𝑆𝑖| decreases geometrically. The expected sum of
all |𝑆𝑖| is linear [111]. We call 𝑝𝑖 the pivot for partition 𝑖. At a high level, 𝑆 ′

𝑖 contains
points that are far enough from each other, and the threshold 𝑑𝑖 that defines whether
points are "far enough" decreases for increasing 𝑖. In particular, for any 1 ≤ 𝑖 < 𝐿,
𝑑𝑖+1 ≤ 𝑑𝑖/3 as shown in Golin et al. [111]. Hence, the closest pair will likely show up

133

in deeper levels that do not contain many points. Based on the definition, each 𝑆 ′
𝑖 is

non-empty, and {𝑆 ′
1, . . . , 𝑆

′
𝐿} is a partition of 𝑆.

A Grid-Based Implementation of Sparse Partition We now describe Golin et
al.’s implementation of the sparse partition. There are 𝐿 levels of the sparse partition,
and we refer to each as level 𝑖 for 1 ≤ 𝑖 ≤ 𝐿. We maintain each level using a grid
data structure, similar to many closest pair algorithms (e.g., [195, 110, 148, 111]).

To represent 𝑆𝑖, we place the points into a grid 𝐺𝑖 with equally-sized axis-aligned
grid boxes with side length 𝑑𝑖/6𝑘, where 𝑘 is the dimension, and 𝑑𝑖 is the closest pair
distance of the randomly chosen pivot 𝑝𝑖. This can be done using hashing. Denote
the neighborhood of a point 𝑝 in 𝐺𝑖 relative to 𝑆 by 𝑁𝑖(𝑝, 𝑆), which refers to the
set of points in 𝑆 ∖ {𝑝} contained in the collection of 3𝑘 − 1 boxes bordering the
box containing 𝑝, as well as 𝑝’s box. We say that point 𝑝 is sparse in 𝐺𝑖 relative
to 𝑆 if 𝑁𝑖(𝑝, 𝑆) = ∅. We use this notion of sparsity to compute 𝑆 ′

𝑖 = {𝑝 ∈ 𝑆𝑖 :
𝑝 is sparse in 𝐺𝑖 relative to 𝑆𝑖}, which satisfies definition (4) of the sparse partition.
The points in 𝑆 ′

𝑖 are stored in a separate grid.
An example of the grid structure in two dimensions is shown in Figure 32. We

illustrate the grid 𝐺𝑖 for the 𝑆𝑖 of each level, as well as the pivot 𝑝𝑖 and its clos-
est neighbor 𝑞𝑖. The grid size is set to 𝑑𝑖/6𝑘 = 𝑑(𝑝𝑖, 𝑞𝑖)/12. The sparse points,
represented by the hollow blue circles, have empty neighborhoods, and do not have
another point within a distance of 𝑑𝑖/3. The solid black circles, representing the
non-sparse points, are copied to the grid 𝐺𝑖+1 for 𝑆𝑖+1. In 𝑆3, all points are sparse.

To construct a sparse partition, the sequential algorithm proceeds in rounds. On
round 𝑖, the 𝑖’th level is constructed. We start with 𝑖 = 1 where 𝑆1 = 𝑆, and
iteratively determine the side length of grid 𝐺𝑖 based on a random pivot, and place
𝑆𝑖 into 𝐺𝑖. Then, we compute 𝑆 ′

𝑖 based on the definition of sparsity above, and
set 𝑆𝑖+1 = 𝑆𝑖 ∖ 𝑆 ′

𝑖. The algorithm proceeds until 𝑆𝑖 = 𝑆 ′
𝑖 (i.e., 𝑆𝑖+1 = ∅). The

expected work for construction is 𝑂(𝑛) since |𝑆𝑖| decreases geometrically [111]. A
single insertion of point 𝑞 starts from 𝑆1, and proceeds level by level. When 𝑞 is
non-sparse in 𝑆𝑖, it will be added to 𝑆𝑖+1, and can promote points from 𝑆 ′

𝑖 to 𝑆 ′
𝑖+1 if

𝑞 falls within their neighborhood. The insertion of 𝑞 will stop if it becomes sparse at
some level, at which point the insertion algorithm finishes. A deletion works in the
opposite direction, starting from the last level where the deleted point exists, and
working its way back to level 1. Each insertion or deletion takes 𝑂(log 𝑛) expected
work.

Obtaining the Closest Pair As observed by both Khuller and Matias [148] and
Golin et al. [111], although the grid data structure rejects far pairs, and becomes

134

p1

q1

d1

y x

q2

p2

d2

y x

q3

p3

d3

y
S1

S2

S3

d1/12

Figure 32: This figure contains an example of 14 points in R2, for which a grid-based
sparse partition (𝑆𝑖, 𝑆

′
𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖) for 1 ≤ 𝑖 ≤ 3 is constructed. On each level, we use a

dotted line to indicate 𝑑𝑖, the Euclidean distance between the pivot 𝑝𝑖 and its closest
neighbor 𝑞𝑖, and we set the grid size to be 𝑑𝑖/6𝑘 = 𝑑𝑖/12. We denote non-sparse
points as solid black circles and sparse points as hollow blue circles. The 𝑆 ′

𝑖 sets are
represented implicitly by the set of hollow blue circles in each 𝑆𝑖. We denote the true
closest pair by letters 𝑥 and 𝑦.

more fine-grained with a larger 𝑖, the grid at the last (𝐿’th) level does not necessarily
contain the closest pair. For example, as illustrated in Figure 32, 𝑆3 for the last level
does not contain the closest pair (𝑥, 𝑦), as 𝑥 is sparse on level 2 and not included in
𝑆3. Therefore, we need to check more than just the last level.

The restricted distance 𝑑*𝑖 (𝑝) [111] is the closest pair distance from point 𝑝 to
any point in

⋃︀
0≤𝑗≤𝑘 𝑆

′
𝑖−𝑗, and defined as 𝑑*𝑖 (𝑝) := min{𝑑𝑖, 𝑑(𝑝, 𝑆 ′

𝑖−𝑘∪𝑆 ′
𝑖−𝑘+1∪. . .∪𝑆 ′

𝑖)},
where 𝑝 ∈ 𝑆 ′

𝑖. Golin et al. show that 𝛿(𝑆) = min𝐿−𝑘≤𝑖≤𝐿min𝑝∈𝑆′
𝑖
𝑑*𝑖 (𝑝), meaning

that the closest pair can be found by taking the minimum among the restricted
distance pairs for all points in last 𝑘 + 1 levels of 𝑆 ′

𝑖. For completeness, we present
the following lemmas and theorem from Golin et al. [111] to show that 𝛿(𝑆) =
min𝐿−𝑘≤𝑖≤𝐿 min𝑝∈𝑆′

𝑖
𝑑*𝑖 (𝑝).

Lemma 1. 𝑑*𝑖 (𝑝) > 𝑑𝑖/6𝑘 for 𝑝 ∈ 𝑆𝑖.

Proof. Let 1 ≤ 𝑗 ≤ 𝑖 and let 𝑞 ∈ 𝑆 ′
𝑗, where 𝑞 is an arbitrary point. Since 𝑝 ∈ 𝑆𝑗, it

135

follows from properties of the sparse partition (section 8.4) that 𝑑(𝑝, 𝑞) ≥ 𝑑(𝑞, 𝑆𝑗) >
𝑑𝑗/6𝑘 ≥ 𝑑𝑖/6𝑘. Therefore the distance from 𝑝 to its closest pair 𝑑*𝑖 (𝑝) > 𝑑𝑖/6𝑘.

Lemma 2. 𝑑𝐿/6𝑘 < 𝛿(𝑆) ≤ 𝑑𝐿.

Proof. Let 𝛿(𝑆) = 𝑑(𝑝, 𝑞) for some 𝑝 ∈ 𝑆 ′
𝑖 and 𝑞 ∈ 𝑆 ′

𝑗, and without loss of generality
𝑖 ≤ 𝑗. It follows from the definition of the sparse partition that 𝑝, 𝑞 ∈ 𝑆𝑖, and we
have 𝑑(𝑝, 𝑞) = 𝑑(𝑝, 𝑆𝑖) > 𝑑𝑖/6𝑘, hence 𝑑(𝑝, 𝑞) > 𝑑𝐿/6𝑘.

𝛿(𝑆) ≤ 𝑑𝐿 obviously holds since 𝑑𝐿 is the distance between two points.

Theorem 13. 𝛿(𝑆) = min𝐿−𝑘≤𝑖≤𝐿min𝑝∈𝑆′
𝑖
𝑑*𝑖 (𝑝).

Proof. Since the restricted distance is the distance between two points, we have
that 𝛿(𝑆) ≤ min1≤𝑖≤𝐿 min𝑝∈𝑆′

𝑖
𝑑*𝑖 (𝑝). Let 𝛿(𝑆) = 𝑑(𝑝, 𝑞) for some 𝑝 ∈ 𝑆 ′

𝑖 and 𝑞 ∈
𝑆 ′
𝑗. Assume without loss of generality that 𝑗 ≤ 𝑖, and it is obvious that 𝑑(𝑝, 𝑞) =

𝑑(𝑝,
⋃︀

ℎ≤𝑖 𝑆
′
ℎ) ≥ 𝑑*𝑖 (𝑝). Therefore 𝛿(𝑆) ≥ min1≤𝑖≤𝐿min𝑝∈𝑆′

𝑖
𝑑*𝑖 (𝑝), and hence 𝛿(𝑆) =

min1≤𝑖≤𝐿 min𝑝∈𝑆′
𝑖
𝑑*𝑖 (𝑝).

We now prove that 𝑖 cannot be less than 𝐿−𝑘. By Lemma 1, we have min𝑝∈𝑆′
𝑖
𝑑*𝑖 (𝑝) >

𝑑𝑖/6𝑘. We also know from Lemma 2, and from the properties of the sparse partition
(𝑑𝑖+1 ≤ 𝑑𝑖/3), that for 𝑖 < 𝐿− 𝑘, 𝑑𝑖/6𝑘 ≥ 𝑑𝐿−𝑘−1/6𝑘 ≥ (3𝑘+1/6𝑘) · 𝑑𝐿 > 𝑑𝐿 ≥ 𝛿(𝑆).
Therefore, 𝛿(𝑆) ≥ min𝐿−𝑘≤𝑖≤𝐿 min𝑝∈𝑆′

𝑖
𝑑*𝑖 (𝑝).

The sequential algorithm [111] computes the restricted distance for each point in
𝑆 ′
𝑖, and stores them in min-heaps 𝐻𝑖, for 1 ≤ 𝑖 ≤ 𝐿. To obtain the closest pair, we

simply read the minimum in 𝐻𝑖 for 𝐿− 𝑘 ≤ 𝑖 ≤ 𝐿 to obtain 𝑘 + 1 values, and then
take the overall minimum. This takes 𝑂(1) work and depth.

We summarize all notations used in Table 9.

Parallel Batch-Dynamic Data Structure

For our batch-dynamic data structure, we assume that the updates are independent
of the random choices made in our data structure.

Parallel Construction In this section, we introduce our parallel batch-dynamic
algorithm, including the construction of the sparse partition (defined in Section 8.4)
and how to handle batch updates.

As shown in Algorithm 20, we start with an initial point set 𝑆, on which we
construct a grid structure recursively level by level, until all points become sparse.
Starting with 𝑆𝑖 = 𝑆, the algorithm works on point set 𝑆𝑖 for level 𝑖. We first pick
a pivot point 𝑝𝑖 ∈ 𝑆𝑖 and obtain its closest pair by computing distances to all other

136

Notation Definition
𝑘 Dimensionality of the data set.
𝑆 Point data set {𝑝1, 𝑝2, . . . , 𝑝𝑛} in R𝑘.
𝑛 Size of 𝑆 (|𝑆|).
𝑚 Size of a batch update.

𝑑(𝑝, 𝑞) Distance between points 𝑝, 𝑞 ∈ 𝑆.
𝛿(𝑆) min{𝑑(𝑝, 𝑞) : 𝑝, 𝑞 ∈ 𝑆, 𝑝 ̸= 𝑞}, i.e., the distance of

the closest pair in set 𝑆.
𝑑(𝑝, 𝑆) min{𝑑(𝑝, 𝑞) : 𝑞 ∈ 𝑆 ∖ 𝑝}, i.e., the distance of 𝑝 to

its nearest neighbor in set 𝑆.
𝑑*𝑖 (𝑝) The restricted distance of point 𝑝, 𝑑*𝑖 (𝑝) :=

𝑑(𝑝, 𝑆 ′
𝑖−𝑘 ∪ 𝑆 ′

𝑖−𝑘+1 ∪ . . . ∪ 𝑆 ′
𝑖).

(𝑆𝑖, 𝑆
′
𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖) The 5-tuple representing each level of the sparse

partition data structure, where 𝑆𝑖 and 𝑆 ′
𝑖 are point

sets, 𝑝𝑖 is the pivot point, 𝑞𝑖 is the closest point to
𝑝𝑖 in 𝑆𝑖, and 𝑑𝑖 := 𝑑(𝑝𝑖, 𝑞𝑖).

𝐺𝑖 The grid structure with box side length 𝑑𝑖/6𝑘 at
level 𝑖 of the sparse partition.

𝐻𝑖 The parallel heap associated with level 𝑖 of the
sparse partition.

𝐿 The number of levels in the sparse partition.
𝑏𝑖(𝑝) The box containing 𝑝 on level 𝑖.
𝑏𝜎𝑖 (𝑝) The box with a offset of 𝜎 relative to 𝑏𝑖(𝑝). 𝜎 is a

𝑘-tuple over {−1, 0, 1}, where the 𝑗’th component
indicates the relative offset in the 𝑗’th dimension.

𝐵𝑁𝑖(𝑝) The box neighborhood of 𝑝, i.e., the collection of
the 3𝑘 boxes bordering and including the box con-
taining 𝑝 on level 𝑖.

𝐵𝑁𝜎
𝑖 (𝑝) The partial box neighborhood of 𝑝, i.e., the in-

tersection of 𝑁𝑖(𝑝) with the boxes bordering and
including 𝑏𝜎𝑖 (𝑝).

𝑁𝑖(𝑝, 𝑆) The neighborhood of 𝑝 in set 𝑆, i.e., the set of
points in 𝑆 ∖ 𝑝 contained in 𝑁𝑖(𝑝).

Table 9: Summary of Notation.

137

Algorithm 20 Construction
Require: Point set 𝑆.
Ensure: A sparse partition and its associated heaps.
1: procedure Main
2: Build(𝑆, 1) ◁ Initially, 𝑆𝑖 := 𝑆

3: procedure Build(𝑆𝑖, 𝑖)
4: Choose a random point 𝑝𝑖 ∈ 𝑆𝑖.
5: Calculate 𝑑𝑖 := 𝑑(𝑝𝑖, 𝑆𝑖), set the grid side length to 𝑑𝑖/6𝑘, and store 𝑝𝑖’s nearest

neighbor as 𝑞𝑖.
6: Create a parallel dictionary 𝑆dict

𝑖 to store points in 𝑆𝑖 keyed by box ID.
7: In parallel, compute the box ID of each point in 𝑆𝑖 based on the grid size, and

store the point in the box keyed by the box ID in 𝑆dict
𝑖 .

8: Create a parallel dictionary 𝑆 ′
𝑖
dict to store points in 𝑆 ′

𝑖 keyed by box ID.
9: In parallel, determine if each point 𝑥 in 𝑆𝑖 is sparse by checking 𝑁𝑖(𝑞, 𝑆𝑖) (using

𝑆dict
𝑖). Store the sparse points in 𝑆 ′

𝑖 and 𝑆 ′
𝑖
dict, and the remaining points in a new

point set represented by an array 𝑆𝑖+1.
10: In parallel for each point 𝑥 ∈ 𝑆 ′

𝑖, compute 𝑑*𝑖 (𝑥) by checking its neighborhoods
(using 𝑆 ′

𝑗
dict) in 𝑆 ′

𝑗 where 𝑖− 𝑘 ≤ 𝑗 ≤ 𝑖.
11: fork Create a heap for {𝑑*𝑖 (𝑥) : 𝑥 ∈ 𝑆 ′

𝑖}.
12: if 𝑆𝑖+1 is not empty then
13: Build(𝑆𝑖+1, 𝑖+ 1)
14: join

points in parallel, followed by computing the minimum to determine the side length
of the grid boxes, which we use a parallel dictionary [109] to store (Lines 5–7). We
check the sparsity of each point 𝑥 in parallel by looking up neighboring boxes using
the dictionary, and store the sparse points 𝑆 ′

𝑖 in a new parallel dictionary and the
remaining points in a new point set array 𝑆𝑖+1 (Line 9). Then, we compute the
restricted distances of all points in 𝑆 ′

𝑖 in parallel (Line 10), and spawn a thread to
asynchronously construct the heap 𝐻𝑖 to store the restricted distances (Line 11). We
recursively call the construction procedure on 𝑆𝑖+1 to construct the next level until
all points in a level are sparse (Line 13).

We now present the analysis for the parallel construction algorithm. For each
call to Build, given 𝑂(|𝑆𝑖|) points, insertions to the parallel dictionary take 𝑂(|𝑆𝑖|)
work and 𝑂(log* |𝑆𝑖|) depth whp Line 5 computes the distance of 𝑝𝑖 to each 𝑞 ∈ 𝑆𝑖,
taking 𝑂(|𝑆𝑖|) work and 𝑂(1) depth. Then we obtain 𝑞𝑖 via a parallel minimum
computation in the same work and depth. Checking the sparsity of points takes

138

𝑂(|𝑆𝑖|) work and 𝑂(1) depth, since each point checks 3𝑘 boxes to see whether any
are non-empty (Line 7). Therefore, except for the cost of Line 11 and the recursive
call on Line 13, each call to Build takes 𝑂(|𝑆𝑖|) expected work and 𝑂(log* |𝑆𝑖|) depth
whp. Line 11 creates a parallel heap with 𝑂(|𝑆 ′

𝑖|) entries, which takes 𝑂(|𝑆 ′
𝑖|) work

and 𝑂(log |𝑆 ′
𝑖|) depth, which we prove in section 8.4. Since

∑︀
|𝑆𝑖| = 𝑂(𝑛) [111], the

total work across all calls to Build is hence 𝑂(𝑛) in expectation. Since our heap is
of linear size, the total space usage of our data structure is also 𝑂(𝑛) in expectation.

We now prove that the algorithm has polylogarithmic depth by first showing
Lemma 3.

Lemma 3. Algorithm 20 makes 𝑂(log 𝑛) calls to Build whp and the sparse partition
has 𝑂(log 𝑛) levels whp

Proof. We show that with at least 1/2 probability, |𝑆𝑖+1| ≤ |𝑆𝑖|/2. Consider rela-
beling the points in 𝑆𝑖 = {𝑟1, 𝑟2, . . . , 𝑟|𝑆𝑖|} such that 𝑑(𝑟1, 𝑆𝑖) ≤ 𝑑(𝑟2, 𝑆𝑖) ≤ . . . ≤
𝑑(𝑟|𝑆𝑖|, 𝑆𝑖). If we pick the pivot 𝑝𝑖 = 𝑟𝑗, then for every 𝑟𝑘 with 𝑘 > 𝑗, we have
𝑑(𝑟𝑗, 𝑆𝑖) ≤ 𝑑(𝑟𝑘, 𝑆𝑖), and so 𝑟𝑘 is not in 𝑆𝑖+1. Since the pivot is chosen randomly, it
can be any 𝑟𝑘 with equal probability, and with 1/2 probability 𝑘 ≤ |𝑆𝑖|/2, implying
that |𝑆𝑖+1| ≤ |𝑆𝑖|/2.

By definition, we have at most log2 𝑛 levels where the set size decreases by at
least a half. We define such levels as good levels. We want to analyze the number
of pivots needed to be chosen until we have log2 𝑛 good levels, at which point there
are no additional levels in the data structure. Let 𝑋 be a random variable denoting
the number of levels needed until we see log2 𝑛 good levels. 𝑋 follows a negative
binomial distribution with parameters 𝑘 = log2 𝑛 successes, and 𝑝 = 1/2 probability
of success.

Since pivots are chosen independently across the levels, we can use the following
form of the Chernoff bound for variables following a negative binomial distribu-
tion [122]:

Pr[𝑋 > 𝐿] ≤ 𝑒−𝛿2𝑘/(2(1−𝛿)), where 0 < 𝛿 < 1 and 𝐿 =
𝑘

(1− 𝛿)𝑝
.

If we set 𝛿 = 7/8, we have 𝐿 = 16 log2 𝑛 and

Pr[𝑋 > 16 log2 𝑛] ≤ 𝑒−(7/8)2 log2 𝑛/(2(1−7/8)) = 𝑒−(49/16) log2 𝑛 < 𝑛−3.

This means that the sparse partition has no more than 16 log2 𝑛 = 𝑂(log 𝑛) levels
whp which also bounds the number of recursive calls to Build in Algorithm 20.

139

Grid S1 Grid S2 Grid S1 Grid S2

a

b

c d

g

f

e

c d
f

Heap H1 = {
 (a, e)1
 (e, a)1
 (b, a)1→(b, g)1
 (g, b)1 }

Heap H2 = {
 (a, f)2
 (e, f)2
 (c, d)2→(c,f)2
 (f, c)2
 (d, c)2 }

Heap H2 = {
 (a, f)2
 (e, f)2
 (c, f)2→(c,d)2
 (f, c)2
 (d, c)2 }

Heap H1 = {
 (a, e)1
 (e, a)1
 (b, g)1→(b, a)1
 (g, b)1 }

a

b

c d

g

f

e

c d
f

Batch Insert { f, g }
to { a, b, c, d, e }

a e a e

Batch Delete { f, g }
from { a, b, c, d, e, f, g }

Existing non-sparse point
Existing sparse point
Inserted non-sparse point
Inserted sparse point
Deleted point
Moved sparse point

(b, c)i

A qualified close point

Restricted
distance di

*(b)

Figure 33: The figure illustrates the interaction between our parallel batch-dynamic
insertion (left) and deletion (right) algorithms with the data structure. For ease of
illustration, we do not show all the points in the data set. We show the data structure
with two levels, and explicitly show 𝑆𝑖 and 𝐻𝑖 for each level. The grid structure in
the upper half of the figures determines the sparsity of points. We represent different
types of points as defined in the middle legend. In the lower half of the figures,
we show the heaps with the restricted distances that they store. We show the pair
defining the restricted distance of a sparse point 𝑥 on level 𝑖 as (x, 𝑦) if another point
𝑦 is the closest sparse point to 𝑥 in levels 𝑖− 𝑗 where 0 ≤ 𝑗 ≤ 2. For both insertion
and deletion, we annotate the direction of the update between grids using large bold
arrows (i.e., insertion starts with 𝑆1 and deletion starts with 𝑆2). We indicate the
movement of points and heap entries using dotted arrows.

As mentioned earlier, the depth of each call to Build is 𝑂(log* 𝑛) whp excluding
the cost for heap construction and the recursive call. Since the heap insertions are
asynchronous, they take a total of 𝑂(log 𝑛) depth. Therefore, the total depth of
Algorithm 20 is 𝑂(log 𝑛 log* 𝑛) whp

Theorem 14. We can construct a data structure that maintains the closest pair con-
taining 𝑛 points in 𝑂(𝑛) expected work, 𝑂(log 𝑛 log* 𝑛) depth whp and 𝑂(𝑛) expected
space.

140

Algorithm 21 Batch Insert
Require: (𝑆𝑖, 𝑆

′
𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖) and 𝐻𝑖 for 1 ≤ 𝑖 ≤ 𝐿; a batch 𝑄 to be inserted.

1: procedure Main
2: Insert(𝑄, ∅, 1)
3: procedure Insert(𝑄𝑖, down 𝑖, 𝑖)
4: (𝑄𝑖+1, down 𝑖+1) := GridInsert(𝑄𝑖, down 𝑖, 𝑖))
5: HeapUpdate(𝑖)
6: if (𝑄𝑖+1 ∪ down 𝑖+1) ̸= ∅ then
7: Insert(𝑄𝑖+1, down 𝑖+1, 𝑖+ 1)
8: procedure GridInsert(𝑄𝑖, down 𝑖, 𝑖)
9: Determine if 𝑝𝑖, 𝑞𝑖, and 𝑑𝑖 should change when inserting 𝑄𝑖 and 𝑑𝑜𝑤𝑛𝑖, which

happens with probability (|𝑄𝑖|+ |𝑑𝑜𝑤𝑛𝑖|)/(|𝑄𝑖|+ |𝑑𝑜𝑤𝑛𝑖|+ |𝑆𝑖|), or if a new point
is closer to 𝑝𝑖 than the previously closest point 𝑞𝑖.

10: If 𝑝𝑖, 𝑞𝑖, or 𝑑𝑖 change on Line 9, or if 𝑖 > 𝐿, call Build(𝑄𝑖 ∪ down 𝑖 ∪ 𝑆𝑖, 𝑖) to
rebuild subsequent levels, and terminate the batch insertion.

11: Insert each point in down 𝑖 and 𝑄𝑖 into the dictionary of 𝑆𝑖 in parallel.
12: For each point 𝑥 in 𝑄𝑖 in parallel, check if it is sparse in 𝑆𝑖. If so, insert 𝑥 into

the dictionary of 𝑆 ′
𝑖, and otherwise, insert 𝑥 into 𝑄𝑖+1.

13: For each point 𝑥 in down 𝑖 in parallel, check if it is sparse in 𝑆𝑖. If so, insert 𝑥
into the dictionary of 𝑆 ′

𝑖, and otherwise, insert 𝑥 into down 𝑖+1.
14: In parallel, for each point 𝑥 in 𝑄𝑖, and for each point 𝑟 in the neighborhood

𝑁(𝑥, 𝑆 ′
𝑖), delete 𝑟 from 𝑆 ′

𝑖, and insert 𝑟 into down 𝑖+1.
15: return (𝑄𝑖+1, down 𝑖+1);

Parallel Insertion Next, we present our parallel algorithm that processes a batch
𝑄 of 𝑚 insertions or deletions. For 𝑚 ≥ 𝑛, we can simply rebuild the data structure
on all of the points using theorem 14 to obtain the desired bounds. We now describe
the case for 𝑚 < 𝑛. For batch updates, there are two main tasks: updating the
grid and updating the heap. We first describe updating the grid. We let 𝑄𝑖 be the
subset of points in 𝑄 that are inserted at level 𝑖, and down 𝑖 be the set of points
that move from level 𝑖 − 1 to level 𝑖 due to the insertion of 𝑄𝑖. We start with a
simple example of an insertion in fig. 33 (left), which originally contains five points
{𝑎, 𝑏, 𝑐, 𝑑, 𝑒}. For simplicity, we assume that the pivot remains unchanged and also
omits 𝑆 ′

𝑖. 𝑄1 = {𝑓, 𝑔} is the set of points inserted into the grid at level 1. We first
update 𝑆1 to include 𝑓 and 𝑔, and then update 𝑆2 to include 𝑄2 = {𝑓} but not 𝑔,
since 𝑔 is already sparse in 𝑆1. In the example, the insertion of 𝑄1 triggers further
point movements of {𝑎, 𝑒} from level 1 to level 2, as the sparse points 𝑎 and 𝑒 in 𝑆1

141

become non-sparse due to the insertion of 𝑓 .
As shown in Algorithm 21, the update proceeds recursively level by level (Lines 3–

7). Each call to the procedure Insert(𝑄𝑖, down 𝑖, 𝑖) updates (𝑆𝑖, 𝑆
′
𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖) and 𝐻𝑖.

Initially, 𝑄1 = 𝑄 and down1 is empty, as shown on Line 2. For each level 𝑖, we update
the pivot and rebuild the level with probability (|𝑄𝑖|+ |𝑑𝑜𝑤𝑛𝑖|)/(|𝑄𝑖|+ |𝑑𝑜𝑤𝑛𝑖|+ |𝑆𝑖|)
to ensure that the pivot is still selected uniformly at random among the points in 𝑆𝑖,
and we also update the pivot if a new point is closer to 𝑝𝑖 than the previous closest
point 𝑞𝑖 (Lines 9–10). Otherwise, we insert the points in both down 𝑖 and 𝑄𝑖 into the
dictionary representing 𝑆𝑖. We then check if the points that we inserted are sparse,
and insert the sparse ones into the dictionary representing 𝑆 ′

𝑖. The points that are
not sparse will be added to sets down 𝑖+1 and 𝑄𝑖+1 and passed on to the next level
(Lines 11–13). We then determine additional elements of down 𝑖+1 by including the
points in the neighborhood of 𝑄𝑖 in 𝑆 ′

𝑖 (Line 14). In general, down 𝑖+1 is computed
by down 𝑖+1 = {𝑥 | 𝑥 ∈ 𝑁𝑖(𝑞, 𝑆

′
𝑖 ∪ down 𝑖) for some 𝑞 ∈ 𝑄𝑖}. If 𝑄𝑖+1 and down 𝑖+1

are empty, nothing further needs to be done for subsequent levels, and the tuples
(𝑆𝑙, 𝑆

′
𝑙, 𝑝𝑙, 𝑞𝑙, 𝑑𝑙) for 𝑖 < 𝑙 ≤ 𝐿 remain unchanged.

We now argue that the algorithm is correct. Consider a round 𝑖 that inserts a
non-empty 𝑄𝑖 ∪ down 𝑖. After the insertion, the pivot is still chosen uniformly at
random, since on Line 9, we choose 𝑝𝑖 such that each point in 𝑆𝑖∪𝑄𝑖∪down 𝑖 has the
same probability of being chosen. All sparse points in 𝑄𝑖 and down 𝑖 inserted into 𝑆𝑖

are included in 𝑆 ′
𝑖 (Lines 12–13). Line 14 additionally ensures that all points that

were originally sparse in 𝑆 ′
𝑖, but are no longer sparse after the insertion, are removed

from 𝑆 ′
𝑖. Given that the non-sparse points in the original 𝑆𝑖 will not become sparse

due to the batch insertion, 𝑆 ′
𝑖 must contain exactly all of the sparse points of the

updated 𝑆𝑖.

Analysis. In our algorithm, each point can be moved across multiple levels as a
result of a batch insertion.

Lemma 4. |
⋃︀

1≤𝑖≤𝐿 down 𝑖| ≤ 𝑚 · 3𝑘 = 𝑂(𝑚)

Proof. We want to prove that the number of points moved across sparse partitions
for the insertion of 𝑄 with 𝑚 points is 𝑂(𝑚), i.e., |

⋃︀
1≤𝑖≤𝐿 down 𝑖| ≤ 𝑚 · 3𝑘 = 𝑂(𝑚).

Our proof shares some notation with Golin et al. [111]. For a level 𝑖 and a point
𝑞 ∈ 𝑄, we let down 𝑖(𝑞) = down 𝑖 ∩ 𝑁𝑖(𝑞, 𝑆

′
𝑖). Let 𝑏𝑖(𝑞) denote the box that contains

point 𝑞. Let the box neighborhood of 𝑞 in 𝐺𝑖, denoted by 𝐵𝑁𝑖(𝑞), consist of 𝑏𝑖(𝑞)
itself and the collection of 3𝑘 − 1 boxes bordering 𝑏𝑖(𝑞). We number the 3𝑘 boxes in
𝐵𝑁𝑖(𝑞) as a 𝑘-tuple over values {−1, 0, 1}, where the 𝑗’th component indicates the
relative offset of the box with respect to 𝑏𝑖(𝑞) in the 𝑗’th dimension. We denote the
box with a relative offset of 𝜎 with respect to 𝑏𝑖(𝑞) as 𝑏𝜎𝑖 (𝑞), where 𝜎 is the 𝑘-tuple

142

(-1,1) (0,1) (1,1)

(-1,0) (0,0) (1,0)

(-1,-1) (0,-1) (1,-1)

q

BNj
(1,1)(q)(a)

bj
(1,1)(q)

BNj
(1,1)(q)

bj+1
(1,1)(q)

(b)

Figure 34: (a) shows 𝐵𝑁𝑗(𝑞), the box neighborhood of point 𝑞. Box 𝑏
(1,1)
𝑗 (𝑞) is

marked in red. The partial box neighborhood 𝐵𝑁
(1,1)
𝑗 (𝑞) is shaded. (b) shows that

𝑏
(1,1)
𝑗+1 (𝑞) is spatially contained in 𝐵𝑁

(1,1)
𝑗 (𝑞).

(see fig. 34a). We further define the partial box neighborhood of a point 𝑞, denoted
by 𝐵𝑁𝜎

𝑖 (𝑞), as the set of boxes in 𝐵𝑁𝑖(𝑞) that intersect with the boxes bordering on
and including 𝑏𝜎𝑖 (𝑞) (see fig. 34a).

We first show that
∑︀

𝑙>𝑗 |down 𝑙(𝑞)| ≤ 3𝑘 for a single insertion 𝑞 with respect
to level 𝑗. Let 𝑥 ∈ down𝑗+1(𝑞) for some level 𝑗. By definition, 𝑥 is in a box of
𝐵𝑁𝑗(𝑞) for some 𝑞 ∈ 𝑄 and 𝑁𝑗(𝑥, 𝑆) = ∅. Therefore, the boxes in the partial box
neighborhood 𝐵𝑁𝜎

𝑗 (𝑞) contain no points other than 𝑥 itself. Suppose 𝑥 is in the box
𝑏𝜎𝑗 (𝑞). Now consider the box neighborhood of 𝑥 in level 𝑙 where 𝑙 > 𝑗, and for the sake
of contradiction, suppose there is some other point 𝑦 ∈ 𝑏𝜎𝑙 (𝑞). Since 𝑑𝑙 ≤ 𝑑𝑗+1 ≤ 𝑑𝑗/3
by properties of the sparse partition, 𝑏𝜎𝑙 (𝑞) is spatially contained in 𝐵𝑁𝜎

𝑗 (𝑞), and
hence we have 𝑦 ∈ 𝐵𝑁𝜎

𝑗 (𝑞), which is a contradiction (see fig. 34b). Therefore, for
any level 𝑙 > 𝑗, there cannot be any point in down 𝑙(𝑞) with signature 𝜎 except for
𝑥. For any 𝑞 ∈ 𝑄, since the number of partial box neighborhoods 𝐵𝑁𝜎

𝑙 (𝑞) across all
value of 𝜎 that do not share any points with each other is at most 3𝑘, we have that∑︀

𝑙>𝑗 |down 𝑙(𝑞)| ≤ 3𝑘.
We have shown that the number of points moved by a single insertion across

levels is at most 3𝑘, and now we extend the argument to batch insertion. Consider
another point 𝑝 ∈ 𝑄 inserted in the same batch as 𝑞. If 𝐵𝑁𝑗(𝑝) and 𝐵𝑁𝑗(𝑞) do not
share any boxes, then the argument above holds for 𝑝 and 𝑞 independently. We are
concerned with the case where 𝐵𝑁𝑗(𝑝) and 𝐵𝑁𝑗(𝑞) overlap. However, analyzing 𝑝
and 𝑞 separately can only overcount the point 𝑥 in the above argument if it appears
in the partial box neighborhoods of both 𝐵𝑁𝜎′

𝑗 (𝑝) and 𝐵𝑁𝜎
𝑗 (𝑞) for some 𝜎 and 𝜎′.

This argument can be extended to an arbitrary subset of 𝑄 beyond 𝑝 and 𝑞 in a
similar manner. Therefore, we can analyze each point separately to get an upper

143

bound of
∑︀

𝑞∈𝑄,1≤𝑖≤𝐿 |down 𝑖(𝑞)| ≤ 𝑚 · 3𝑘 = 𝑂(𝑚).

Lemma 5.
∑︀

1≤𝑖≤𝐿 𝐸[|𝑄𝑖|] = 𝑂(𝑚)

Proof. Consider points 𝑟 in 𝑄𝑖 in an increasing order of 𝑑(𝑟, 𝑆𝑖 ∪𝑄𝑖). There is a 1/2
chance that the pivot 𝑝𝑖 is chosen such that 𝑑(𝑝𝑖, 𝑆𝑖 ∪𝑄𝑖) is not larger than that of
at least half of the points in 𝑄𝑖, making them sparse and not in 𝑄𝑖+1. Therefore
|𝑄𝑖+1| ≤ |𝑄𝑖|/2 in expectation. Given that |𝑄1| = 𝑂(𝑚), we know

∑︀
1≤𝑖≤𝐿 𝐸[|𝑄𝑖|] =

𝑂(𝑚).

We obtain Lemmas 6 and 9.

Lemma 6. We can maintain a sparse partition for a batch of 𝑚 insertions in 𝑂(𝑚)
amortized work in expectation and 𝑂(log(𝑛+𝑚) log*(𝑛+𝑚)) depth whp

Proof. The expected cost of rebuilding on Line 10 summed across all rounds is pro-
portional to the batch size. First, we re-select the pivot and rebuild with prob-
ability (|𝑄𝑖| + |down 𝑖|)/(|𝑆𝑖| + |𝑄𝑖| + |down 𝑖|). When the pivot 𝑝𝑖 is unchanged,
it may update its closest point to 𝑞*𝑖 from 𝑄𝑖 ∪ down 𝑖. It is easy to show that
𝑞*𝑖 can be the nearest neighbor of at most 3𝑘 − 1 points in 𝑆𝑖. Hence, consider-
ing all candidates 𝑄𝑖 ∪ down 𝑖, it follows that they can be the nearest neighbors to
𝑂(3𝑘 · (|𝑄𝑖| + |down 𝑖|)) points in 𝑆𝑖. Therefore, the pivot distance changes with
probability at most 3𝑘 · (|𝑄𝑖| + |down 𝑖|)/|𝑆𝑖|, in which case we rebuild the sparse
partition. The expected work of rebuilding at level 𝑖 is 𝑂((|𝑆𝑖| + |𝑄𝑖| + |down 𝑖|) ·
((|𝑄𝑖|+ |down 𝑖|)/(|𝑆𝑖|+ |𝑄𝑖|+ |down 𝑖|) + 3𝑘 · (|𝑄𝑖|+ |down 𝑖|)/|𝑆𝑖|)) = 𝑂(𝑚). As we
terminate the insertion algorithm when a rebuild occurs, the rebuild can occur at
most once for each batch, which contributes 𝑂(𝑚) in expectation to the work and
𝑂(log(𝑛+𝑚) log*(𝑛+𝑚)) whp to the depth by Theorem 14.

For the rest of the algorithm, in terms of work, Line 11–13 does work proportional
to 𝑂(

∑︀
𝑖(|𝑄𝑖| + |𝑑𝑜𝑤𝑛𝑖|)) = 𝑂(𝑚) across all the levels due to Lemmas 4 and 5. On

Line 14, the number of points in the neighborhood 𝑁𝑖(𝑥, 𝑆
′
𝑖) of each 𝑥 is upper

bounded by 3𝑘 since the points in 𝑆 ′
𝑖 are sparse, therefore it takes 𝑂(3𝑘 · 𝑚) =

𝑂(𝑚) expected work. Note that the work is amortized due to resizing the parallel
dictionary when necessary. In terms of depth, looking up and inserting points takes
𝑂(log*(𝑛 + 𝑚)) depth using the parallel dictionary. Therefore, all operations in
Lines 11–14 takes 𝑂(log*(𝑛+𝑚)) depth, and across all 𝑂(log(𝑛+𝑚)) whp rounds,
the total depth is 𝑂(log(𝑛+𝑚) log*(𝑛+𝑚)) whp.

144

Algorithm 22 Batch Delete
Require: (𝑆𝑖, 𝑆

′
𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖) and 𝐻𝑖 for 1 ≤ 𝑖 ≤ 𝐿; a batch 𝑄 to be deleted.

1: function Main
2: Determine 𝑄𝑖 for all 1 ≤ 𝑖 ≤ 𝐿. Specifically, for each level from 𝐿 to 1, compute

𝑄𝑖 = 𝑄 ∩ 𝑆𝑖.
3: Delete(∅, 𝐿).
4: Rebuild from the level with the smallest 𝑖 that needed a rebuild. Specifically,

call Build(𝑆𝑖, 𝑖).
5: procedure Delete(up𝑖, 𝑖)
6: up𝑖−1 := GridDelete(up𝑖, 𝑖).
7: HeapUpdate(𝑖).
8: if 𝑖− 1 ≥ 1 then
9: Delete(up𝑖−1, 𝑖− 1).

10: procedure GridDelete(up𝑖, 𝑖)
11: Determine if 𝑝𝑖, 𝑞𝑖, or 𝑑𝑖 should change after deleting 𝑄𝑖, which happens if at

least one of 𝑝𝑖 or 𝑞𝑖 is in 𝑄𝑖. If so, mark level 𝑖 for rebuild.
12: Insert each point in up𝑖 into the dictionary of 𝑆 ′

𝑖 in parallel.
13: For each point 𝑥 in 𝑄𝑖 in parallel, delete 𝑥 from 𝑆𝑖 and 𝑆 ′

𝑖.
14: For each point 𝑟 in 𝑁𝑖(𝑥, 𝑆𝑖) where 𝑥 ∈ 𝑄𝑖, check 𝑁𝑖−1(𝑟, 𝑆𝑖−1). If

𝑁𝑖−1(𝑟, 𝑆𝑖−1) ⊆ 𝑄𝑖−1, then delete 𝑟 from 𝑆𝑖 and 𝑆 ′
𝑖, and insert 𝑟 into the set

up𝑖−1.
15: return up𝑖−1

Parallel Deletion Deletions work similarly in the reverse direction as shown in
Figure 33 (right). The pseudocode for our batch deletion algorithm is shown in
Algorithm 22. It takes as input (𝑆𝑖, 𝑆

′
𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖) and 𝐻𝑖 for 1 ≤ 𝑖 ≤ 𝐿, and a batch

of points 𝑄 to be deleted. We update the data structure level by level similar to the
insertion algorithm, but in the opposite direction, starting at the last level 𝐿. We
define 𝑄𝑖 for level 𝑖 as 𝑄 ∩ 𝑆𝑖. From the property of the sparse partition, we have
𝑄𝑗 ⊆ 𝑄𝑖 for all 𝑖 < 𝑗 ≤ 𝐿. At each level, we delete each point in 𝑄𝑖 from 𝑆𝑖, and
also from 𝑆 ′

𝑖 if it exists.
While the insertion algorithm moves sets of points down 𝑖 from level 𝑖− 1 to level

𝑖, the deletion algorithm moves points in the opposite direction, from level 𝑖 + 1 to
𝑖. We define up𝑖 to be the set of points that move from level 𝑖 + 1 to level 𝑖, i.e.,
up𝑖 = {𝑥 ∈ 𝑆𝑖+1 : 𝑁𝑖(𝑥, 𝑆𝑖) ⊆ 𝑄𝑖}. They are the points 𝑥 in 𝑆𝑖+1 that only contain
points from 𝑄𝑖 in their neighborhoods 𝑁𝑖(𝑥, 𝑆𝑖) in level 𝑖; when 𝑄𝑖 is deleted, they
will become sparse in 𝑆𝑖, and will no longer be in 𝑆𝑖+1. Eventually, the points in

145

up𝑖 ∖ up𝑖−1 are added to both 𝑆𝑖 and 𝑆 ′
𝑖.

Initially, we determine 𝑄𝑖 for all levels via a backward pass starting from level 𝐿
(Line 2). Given 𝑄𝑖 ⊆ 𝑄𝑗 for 𝑖 > 𝑗, when a point is added to 𝑄𝑖, it will be added
to all 𝑄𝑗 where 𝑗 < 𝑖. We pass an empty up𝐿 to procedure Delete (Line 3). In
the procedure Delete (Line 5), the algorithm performs the deletion from the grid
at level 𝑖 (Line 6), updates the heap (Line 7), and then recursively calls Delete
on level 𝑖 − 1 until deletion is complete on level 1 (Line 9). Like in the insertion
algorithm, we determine whether to rebuild at each level, but unlike insertion we
delay the rebuild until the end of the algorithm (Line 4). We call rebuild just once,
on the level with the smallest 𝑖 that needs a rebuild (as this will also rebuild all levels
greater than 𝑖).

In the procedure GridDelete(𝑢𝑝𝑖, 𝑖), we determine if the pivot needs to change
based on whether at least one of 𝑝𝑖 and 𝑞𝑖 are in 𝑄𝑖. If so, we mark level 𝑖 for
rebuilding (Line 11). We then insert up𝑖 into 𝑆 ′

𝑖 and delete the points in 𝑄𝑖 from 𝑆𝑖

and 𝑆 ′
𝑖 if they exist (Lines 12–13).

We determine up𝑖−1 by finding the points that will become sparse in level 𝑖 − 1
(Line 14). Since the movement of up𝑖−1 from level 𝑖 to 𝑖 − 1 is due to the deletion
of 𝑄𝑖, we enumerate the candidates for up𝑖−1 from 𝑁𝑖(𝑥, 𝑆𝑖) where 𝑥 ∈ 𝑄𝑖. Then,
for each candidate 𝑟, we check if 𝑁𝑖−1(𝑟, 𝑆𝑖−1) only consists of points in 𝑄𝑖−1, which
are to be deleted in 𝑖− 1. If so, 𝑟 will move up to a level less than or equal to 𝑖− 1,
and so we add 𝑟 to up𝑖−1. A few details need to be noted to make the computation
of up𝑖−1 take 𝑂(𝑚) work. First, when checking the neighborhood 𝑁𝑖(𝑥, 𝑆𝑖) for the
candidates 𝑟, we should only check a neighboring box if it contains at most one point,
since otherwise the candidate would not be sparse in 𝑆𝑖−1. This bounds the work of
enumerating candidates to 𝑂(3𝑘 ·𝑚). We next describe the process for checking for
each candidate 𝑟 whether 𝑁𝑖−1(𝑟, 𝑆𝑖−1) contains only points in 𝑄𝑖−1. Naively checking
all of the points in the neighborhoods of each candidate could lead to quadratic work.
In our algorithm, we use a parallel dictionary to implement a temporary, empty grid
structure with grid size equal to that of 𝑆𝑖−1. We insert points in 𝑄𝑖−1 into this grid
in parallel. This takes 𝑂(|𝑄𝑖|) work and 𝑂(log*𝑚) depth per level. Now for each
candidate 𝑟, we compare the number of points in each box of 𝑁𝑖−1(𝑟, 𝑆𝑖−1) to the
corresponding box in the temporary grid, and if they are equal, then we know that
the box only contains points in 𝑄𝑖−1.

Analysis. Since the probability of a rebuild at each level 𝑖 is |𝑄 ∩ 𝑆𝑖|/|𝑆𝑖| and
the work for the rebuild is 𝑂(|𝑆𝑖|), the expected work of rebuilding at level 𝑖 is
𝑂(|𝑄|) = 𝑂(𝑚). Since we do at most one rebuild across all levels, it contributes
𝑂(𝑚) in expectation to the work and 𝑂(log(𝑛+𝑚) log*(𝑛+𝑚)) whp to the depth.

The total size of 𝑄𝑖 and 𝑢𝑝𝑖 across all of the levels is proportional to the batch

146

size. Since the point movement is the exact opposite of that of batch insertion, the
proof is very similar. We omit the proof and just present the lemmas below.

Lemma 7. |
⋃︀

1≤𝑖≤𝐿 up𝑖| ≤ 𝑚 · 3𝑘 = 𝑂(𝑚)

Lemma 8.
∑︀

1≤𝑖≤𝐿 𝐸[|𝑄𝑖|] = 𝑂(𝑚)

For the rest of the algorithm, not including the rebuild and heap update, it follows
from Lemmas 7 and 8 and a similar analysis to the insertion algorithm that Lines 12–
14 take 𝑂(𝑚) amortized work in expectation and 𝑂(log(𝑛 +𝑚) log*(𝑛 +𝑚)) depth
across all levels. Therefore, we can maintain a sparse partition under a batch of
𝑚 deletions in 𝑂(𝑚) amortized work in expectation and 𝑂(log(𝑛+𝑚) log*(𝑛+𝑚))
depth whp, as stated in Lemma 9. We describe the cost of the heap update in
Appendix 8.4.

Lemma 9. We can maintain a sparse partition for a batch of 𝑚 deletions in 𝑂(𝑚)
amortized work in expectation and 𝑂(log(𝑛+𝑚) log*(𝑛+𝑚)) depth whp

Maintaining the Heaps 𝐻𝑖 Now we describe the parallel updates of min-heaps
𝐻𝑖 associated with each level 𝑖 of the sparse partition. Recall that 𝐻𝑖 contains the
restricted distances 𝑑*𝑖 (𝑞) for 𝑞 ∈ 𝑆 ′

𝑖. By definition, 𝑑*𝑖 (𝑞) is the closest distance of 𝑞 to
another point in 𝑆 ′

𝑖−𝑙 where 0 ≤ 𝑙 ≤ 𝑘 (𝑘 is the dimensionality). Therefore, following
an update on 𝑆 ′

𝑖, we need to update the 𝑑*𝑖 (𝑞)’s in 𝐻𝑖+𝑙 for 0 ≤ 𝑙 ≤ 𝑘, and 𝑞 ∈ 𝑆 ′
𝑖+𝑙.

We use same example in Figure 33 (left), where we denote the restricted distance
of point 𝑥 as (x, 𝑦)𝑖 = 𝑑*𝑖 (𝑥) = 𝑑(𝑥, 𝑦), where 𝑦 ∈

⋃︀
0≤𝑗≤𝑘 𝑆

′
𝑖−𝑗 is another point that

defines 𝑥’s closest distance. As shown in Figure 33 (left), due to the insertion of the
sparse point 𝑔 to 𝑆1, entry (g, 𝑏)1 is added to 𝐻1. Some entries in 𝐻1 are moved due
to the point movements, e.g., (a, 𝑒)1 from 𝐻1 is moved and updated to (a, 𝑓)2 in 𝐻2

because 𝑎 has moved from 𝑆1 to 𝑆2, and 𝑓 is now closer. Some entries are updated,
e.g., (c, 𝑑)2 is updated to (c, 𝑓)2 in 𝐻2 since the new point 𝑓 is closer to 𝑐 than 𝑑.

On each level 𝑖, we maintain a parallel min-heap 𝐻𝑖 storing the restricted distances
for each point in 𝑆 ′

𝑖. In this section, we elaborate on the HeapUpdate procedure on
Line 5 of Algorithm 21 and Line 7 of Algorithm 22. Each call to HeapUpdate(𝑖)
updates 𝐻𝑖+𝑙 for 0 ≤ 𝑙 ≤ 𝑘 so that they contain the updated restricted distances in
level 𝑖.

Definitions. Here we define some terms that we use in the algorithm description
and analysis. During a batch insertion, we process each level 𝑖 with inputs 𝑄𝑖 and
down 𝑖 (Algorithm 21). By definition, down 𝑖 contains the points moved from level
𝑖 − 1 to levels 𝑖 and greater. We say that point 𝑥 starts moving at level 𝑖 if 𝑥 ∈

147

Algorithm 23 Naive Heap Update
Require: (𝑆𝑖, 𝑆

′
𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖) and 𝐻𝑖 with updated grids; point set 𝑀1 that start moving

at level 𝑖 and point set 𝑀2 that stop moving at level 𝑖.
1: procedure HeapUpdate-Naive(𝑖)
2: Batch delete 𝑑𝑖(𝑝) ∀𝑝 ∈𝑀1 from 𝐻𝑖.
3: for 0 ≤ 𝑙 ≤ 𝑘 do
4: Batch delete 𝑑𝑖+𝑙(𝑞) from 𝐻𝑖+𝑙 such that 𝑑𝑖+𝑙(𝑞) = 𝑑(𝑞, 𝑝) for some 𝑝 ∈𝑀1.
5: In parallel, recompute 𝑑𝑖+ 𝑙(𝑞) using the grid of 𝑆𝑖+ 𝑙 for all 𝑞 whose old

𝑑𝑖+ 𝑙(𝑞) was just deleted.
6: Batch insert new 𝑑𝑖+𝑙(𝑞) for all 𝑞 into 𝐻𝑖+𝑙.
7: Compute and batch insert 𝑑𝑖(𝑝) ∀𝑝 ∈𝑀2 into 𝐻𝑖.
8: for 0 ≤ 𝑙 ≤ 𝑘 do
9: Batch delete from 𝐻𝑖 the 𝑑𝑖+𝑙(𝑞) for each point 𝑞 ∈ 𝑆𝑖+ 𝑙′, if 𝑑(𝑞, 𝑝) < 𝑑𝑖+𝑙(𝑞)

for some 𝑝 ∈𝑀2.
10: Batch insert into 𝐻𝑖 the new 𝑑𝑖+𝑙(𝑞) := 𝑑(𝑞, 𝑝) for each aforementioned point

𝑞 on the previous line.

down 𝑖+1∖down 𝑖. We say that point 𝑥 stops moving at level 𝑖 if 𝑥 ∈ down 𝑖∖down 𝑖+1,
or if point 𝑥 ∈ 𝑄𝑖 ∖ 𝑄𝑖+1, i.e., 𝑥 is sparse and stays in 𝑆 ′

𝑖. Finally, point 𝑥 moves
through level 𝑖 if it is in down 𝑖 ∩ down 𝑖+1.

During a batch deletion, we process each level 𝑖 with input up𝑖, and delete points
in 𝑄 from the level if they exist (Algorithm 22). Similar to insertion, 𝑢𝑝𝑖 contains
the points moved from level 𝑖 + 1 to levels 𝑖 and less. We say that point 𝑥 starts
moving at level 𝑖 if 𝑥 ∈ 𝑢𝑝𝑖−1 ∖ 𝑢𝑝𝑖; or if 𝑥 ∈ 𝑄 is deleted from 𝑆 ′

𝑖. We say that
point 𝑥 stops moving at level 𝑖 if 𝑥 ∈ 𝑢𝑝𝑖 ∖ 𝑢𝑝𝑖−1. Finally, we say that point 𝑥 moves
through level 𝑖 if it is in 𝑢𝑝𝑖 ∩ 𝑢𝑝𝑖−1.

Parallel Update. The heap 𝐻𝑖 contains the restricted distance 𝑑*𝑖 (𝑞) for 𝑞 ∈ 𝑆 ′
𝑖. By

definition, 𝑑*𝑖 (𝑞) is the closest distance of 𝑞 to another point in 𝑆 ′
𝑖−𝑙 where 0 ≤ 𝑙 ≤ 𝑘

(𝑘 is the dimension of the data set). Therefore, following an update on 𝑆 ′
𝑖, we need

to update the 𝑑*𝑖 (𝑞) in 𝐻𝑖+𝑙 for 0 ≤ 𝑙 ≤ 𝑘, and 𝑞 ∈ 𝑆 ′
𝑖+𝑙. Specifically, the update

happens when 𝑑*𝑖 (𝑞) = 𝑑(𝑞, 𝑝), but 𝑝 starts moving at level 𝑖; or when 𝑝 stops moving
at level 𝑖 and 𝑑(𝑞, 𝑝) < 𝑑*𝑖 (𝑞). Since the update of 𝑆 ′

𝑖 initiates the update on some
heap 𝐻𝑖+𝑙 for 0 ≤ 𝑙 ≤ 𝑘, we call level 𝑖 the initiator and each heap 𝐻𝑖+𝑙 a receptor
of the initiator.

We first start with a more intuitive but less parallel algorithm, which is shown in
Algorithm 23. It takes as input the updated sparse partition (𝑆𝑖, 𝑆

′
𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖), the set

of points 𝑀1 that start moving at level 𝑖, and a set of points 𝑀2 that stop moving

148

1 5

3 4

6

7

8

2

i=1 i=2 i=3 i=4

9

10

11

(a) Naive insertion.

1 2

3 4

4

5

6

2

i=1 i=2 i=3 i=4

3

7

6

(b) Parallel insertion.

8 4

10 11

5

6

7

9

i=1 i=2 i=3 i=4

1

2

3

(c) Naive deletion.

3 2

5 6

3

4

5

4

i=1 i=2 i=3 i=4

1

2

3

(d) Parallel deletion.

Figure 35: This figure shows examples of how heap updates work during insertion
and deletion. Calls to GridInsert and GridDelete are shown by the boxes. Calls
to HeapUpdate are shown by the arrows, whereas the actual heaps 𝐻𝑖 are shown by
the triangles. The example considers dimension 𝑘 = 2 and shows 𝐻𝑖 for 𝑖 = 1, 2, 3, 4,
but considers only updating levels 𝑖 = 1, 2, 3. We number the calls by the order that
they happen, and two calls have the same number if they can be done in parallel.
For clarity, we annotate the operations associated with different levels in different
colors and line-styles.

at level 𝑖. Lines 2–6 process the set of points 𝑀1. We first batch delete 𝑑*𝑖 (𝑝) from
𝐻𝑖 for all 𝑝 in 𝑀1, since they start moving at level 𝑖 (Line 2). We then update each
receptor heap if it stores some 𝑑*𝑖 (𝑞) that is generated by a deleted point 𝑝 ∈ 𝑀1.
To know each potential point 𝑞, we iterate over the neighborhood of each 𝑝 in 𝑀1

and then check if 𝑑*𝑖 (𝑞) needs to be updated (Lines 3–6). Lines 7–10 process 𝑀2. We
compute new restricted distances and batch insert the points in 𝑀2 into 𝐻𝑖, since
they stop moving at level 𝑖 (Line 7). We then update the receptor heaps when a
heap contains the restricted distance of point 𝑞, but 𝑞 has a smaller distance to a
newly inserted 𝑝 ∈𝑀2 than to its previous closest point (Lines 8–10).

Using our batch-parallel binary heap, which we will describe in detail in Sec-
tion 8.4, each batch update of the heap takes 𝑂(log(𝑛+𝑚)) depth. The computation
of the new restricted distances takes 𝑂(1) depth. Therefore, the naive heap update
algorithm takes 𝑂(log(𝑛 + 𝑚)) depth per call. For the batch insertion algorithm
in Algorithm 21, GridInsert on level 𝑖 + 1 is blocked by HeapUpdate-Naive

149

of level 𝑖, to prevent multiple initiators updating the same receptor simultaneously.
Figure 35a illustrates four levels of the data structure. The updates of level 2 shown
in blue dashed lines are blocked until the completion of level 1 shown in red solid
lines, and similarly for the remaining levels. Since there are 𝑂(log(𝑛 + 𝑚)) levels
whp, this leads to a overall depth of 𝑂(log2(𝑛 + 𝑚)) whp for the heap updates. A
similar argument applies for the batch deletion algorithm, except that the order that
the levels are updated proceeds in descending value of 𝑖 starting with 𝐿, as shown in
Figure 35c.

We improve the depth of the heap update to 𝑂(log(𝑛 + 𝑚)) whp by pipelining
the heap updates. For insertion, a crucial observation is that the grid update of
level 𝑖 + 1 can start right after that of 𝑖. Meanwhile, we run the heap updates in
lock-step in parallel with the grid updates, as illustrated in Figure 35b—for each
heap, the update from level 𝑖 + 1 can start right after that of level 𝑖 is completed.
For example, the update on 𝐻2 initiated by level 2 (blue dashed arrow with a value
of 4) can start right after the update initiated by level 1 (red arrow with a value of
3). Like insertion, deletion follows similar strategy in the reverse order, as illustrated
in Figure 35d.

Analysis. All updates on the heaps in our data structure are a result of points that
start or stop moving at some level. First, we are concerned with those added to or
deleted from 𝑆 ′

𝑖, and hence 𝐻𝑖. Since the 𝑆 ′
𝑖 for 1 ≤ 𝑖 ≤ 𝐿 are disjoint sets, 𝑂(𝑚)

points from 𝑄 are inserted or deleted from 𝐻𝑖 across all 1 ≤ 𝑖 ≤ 𝐿. Second, points
in down 𝑖 and up𝑖 for 1 ≤ 𝑖 ≤ 𝐿 also cause heap updates, and the total number
of heap updates from these points is 𝑂(𝑚) by Lemmas 4 and 7. Therefore, across
all levels, there are 𝑂(𝑚) updates to the heap. For all 𝑝 that start or stop moving
across all levels, finding and recomputing 𝑑*𝑖+𝑙(𝑞) for 0 ≤ 𝑙 ≤ 𝑘 takes 𝑂(𝑚) work and
𝑂(1) depth. This is because the cost associated with each 𝑞 whose 𝑑*(𝑞) depends on
𝑝 involves searching the constant number of boxes surrounding 𝑞 and 𝑝 in 𝑘 sparse
sets, where 𝑘 is constant, as shown by Golin et al. [111]. In section 8.4, we will show
that batch insertions and deletions on a heap take 𝑂(log(𝑛 +𝑚)) depth. Since the
heap updates are performed in parallel with the grid updates, they are not on the
critical path of the computation. The total depth is dominated by the grid updates,
which is 𝑂(log(𝑛+𝑚) log*(𝑛+𝑚)) whp.

This leads to our overall bounds of amortized 𝑂(𝑚(1+log((𝑛+𝑚)/𝑚))) work and
𝑂(log(𝑛+𝑚) log*(𝑛+𝑚)) depth whp for an update of size 𝑚, where the amortization
comes from resizing the parallel dictionaries.

Theorem 15. Updating our data structure for a batch of 𝑚 insertions/deletions takes
amortized 𝑂(𝑚(1 + log((𝑛+𝑚)/𝑚))) expected work and 𝑂(log(𝑛+𝑚) log*(𝑛+𝑚))

150

depth whp

Obtaining the closest pair from our data structure takes 𝑂(1) work and depth.
We simply call find-min on 𝐻𝑖 for 𝐿−𝑘 ≤ 𝑖 ≤ 𝐿, and then take the overall minimum.

Parallel Batch-Dynamic Binary Heap

One of the key components in parallelizing our closest pair algorithm is a parallel
binary heap that supports batch updates (inserts and deletes) and find-min efficiently.
This heap allows us to perform the parallel construction in linear work and perform
updates with low depth. Our data structure may be of independent interest, since
to the best of our knowledge, the only existing work on parallelizing a binary heap
is on individual inserts or deletes [190].

A binary heap is a complete binary tree, where each node contains a key that is
smaller than or equal to the keys of its children. Sequentially, the construction of a
binary heap takes linear work, and each insert and delete takes 𝑂(log 𝑛) work [79].
The heap is represented as an array, and uses relative positions within the array to
represent child-parent relationships. Sequentially, each insertion adds a new node
at the end of the heap and runs Up-Heap to propagate the node up to the correct
position in the heap. A deletion first swaps the node to delete with the node to the
end of the heap, reduces the heap size by one, and then runs Up-Heap followed
by Down-Heap (to propagate a node down to its correct position) for the node
swapped to the middle of the heap.

Our parallel heap that supports batch updates (inserts and deletes) and finding
the minimum element (find-min) efficiently is crucial to our data structure for the
closest pair. Although we could implement a parallel heap using a parallel binary
search tree, which supports a batch of 𝑚 updates to a set of 𝑛 elements in 𝑂(𝑚 log(𝑛+
𝑚)) work and 𝑂(log(𝑛+𝑚)) depth [79], it supports more functionality (i.e., returning
the minimum 𝐾 elements) than we need. In fact, the 𝑂(𝑚 log(𝑛+𝑚)) work bound
is tight for a binary search tree, since we can use it for comparison sorting.

Our batch-dynamic heap only needs to support the find-min operation rather
than maintaining the full ordering, and hence it has a better work bound of 𝑂(𝑚(1+
log((𝑛 + 𝑚)/𝑚))). Furthermore, it allows us to construct the initial heap in linear
work (by setting 𝑚 to the number of points and 𝑛 = 0 in the work bound), as needed
for Theorem 14. The pseudocode of our algorithm is shown in algorithm 24, and its
discussion is in Section 8.4. We present the analysis in this section.

Central to our parallel batch-dynamic binary heap is a new parallel Heapify
algorithm, that takes 𝑚 updates from a valid heap of 𝑛 elements, and returns another
valid heap (the pseudocode can be found in algorithm 24). It runs in two phases:

151

Algorithm 24 Parallel Heapify Algorithm
Require: A binary min-heap of size 𝑛 with 𝑚 updates, each of which is a triple

(𝑣𝑖, 𝑘𝑖, 𝑘
′
𝑖), indicating to update key 𝑘𝑖 to 𝑘′

𝑖 on node 𝑣𝑖.
Ensure: An updated binary heap.
1: procedure Heapify
2: Let 𝑆+ be the set of nodes with keys to be increased.
3: Use integer sort to group the nodes in 𝑆+ to 𝑆+

𝑙 by the level 𝑙 in the heap (the
root has level 0).

4: for 𝑙← ⌊log2 𝑛⌋ − 1 to 0 do
5: for each 𝑣𝑖 ∈ 𝑆+

𝑙 in parallel do
6: Down-Heap(𝑣𝑖)
7: Let 𝑆− be the set of nodes with keys to be decreased.
8: Use integer sort to group the nodes in 𝑆− to 𝑆−

𝑙 by the level 𝑙 in the heap.
9: for 𝑙← 1 to ⌊log2 𝑛⌋ do

10: for each 𝑣𝑖 ∈ 𝑆−
𝑙 in parallel do

11: Up-Heap(𝑣𝑖)

the first phase works on increase-key updates, and the second phase on decrease-key
updates. In both phases, we first use parallel integer sorting [197, 234] to categorize
all updates based on the level where the update belongs. Simply running the Up-
Heap and Down-Heap calls for the different updates in parallel does not achieve
work-efficiency and low depth, and also leads to potential data races. Therefore,
we pipeline each level of the Up-Heap and Down-Heap procedure. Specifically,
in the first phase, once the first swap for the Down-Heap in level 𝑖 is finished, we
can immediately start the Down-Heap on level 𝑖 − 1, instead of waiting for the
Down-Heap in level 𝑖 to completely finish (the root is at level 0, and level numbers
increase going down). The swaps in the Down-Heap calls from level 𝑖−1 will never
catch up with the swaps from level 𝑖. Pipelining the second phase with Up-Heap
is more complicated. Our parallel Up-Heap is run in a level-synchronous manner
from the top level down to the bottom level. For each node on each level, both of
its children may want to swap with the parent for having a larger value. In the
parallel algorithm, we only make the child with the smaller value swap with the
parent and continue its update to the upper levels, while the update for the other
child terminates. We prove in section 8.4 that our parallel Heapify algorithm takes
𝑂(𝑚(1 + log(𝑛/𝑚))) work and 𝑂(log 𝑛) depth.

We now explain how to perform batch insertions and deletions. A batch of 𝑚
insertions to a binary heap of size 𝑛 can be implemented using decrease-keys. We first

152

add the 𝑚 elements to end of the heap with keys of ∞. Then, we decrease the keys
of these 𝑚 elements to their true values and run the parallel Heapify algorithm. A
batch of 𝑚 deletions can be processed similarly, but the deletions will generate “holes”
in the tree structure, and so we need an additional step to fill these holes first. We
pack the last 𝑚 elements in the heap based on whether they are deleted. Then, we
use them to fill the rest of the empty slots by deletions, and run the parallel Heapify
algorithm. Hence, batch insertions and deletions take 𝑂(𝑚(1 + log((𝑛 + 𝑚)/𝑚)))
work and 𝑂(log(𝑛+𝑚)) depth.

Analysis of the Heapify Algorithm Correctness. The correctness can be shown
inductively on subtrees of increasing height. For the base case, all leaf nodes are valid
binary heap subtrees, each containing one node. Then on the first iteration, we run
Down-Heap for updated keys on the second to last level. If the increased keys
violate the heap property, then Down-Heap will heapify this subtree, which has
two levels. Similarly, for each node 𝑣 with increased keys on level 𝑖, both of 𝑣’s
childrens’ subtrees are valid binary heap subtrees, and so after Down-Heap, the
subtree rooted at 𝑣 is a valid binary heap subtree. The correctness for Up-Heap
can be shown symmetrically. The main difference is that in Up-Heap, the update
paths can overlap, but the correctness is guaranteed since it is implemented in a
round-synchronous manner. In addition, when both children are updating a parent,
we only allow the smaller child to continue its update path, while terminating that
of the larger child, thereby satisfying the heap property.

Work. We now consider the work of this algorithm. Let ℎ be the height of the binary
heap. For the worst case analysis, we always assume that Down-Heap pushes a node
to the leaf and that Up-Heap pushes a node to the root. The case for Down-Heap
is simple—for 𝑚 = 2𝑟 − 1 increase-keys, the worst case is when they are in the top
𝑟 levels. Each Down-Heap is independent and the total work is

𝑟∑︁
𝑖=0

2𝑖(ℎ− 𝑖) = 𝑂(𝑚(ℎ− 𝑟 + 1)) = 𝑂
(︁
𝑚
(︁
1 + log

(︁ 𝑛

𝑚

)︁)︁)︁
.

The work for Up-Heap is more involved. Let 𝑚𝑖 be the number of increase-keys
on level 𝑖. We know that 𝑚𝑖 ≤ 2𝑖 and

∑︀
𝑚𝑖 ≤ 𝑚. For level 𝑖, the work for all calls

to Up-Heap is upper bounded by the number of nodes on the path from the root
to all updated nodes in level 𝑖. It can be shown that the number of such nodes is
𝑂
(︁
𝑚𝑖

(︁
1 + log 𝑛

2ℎ−𝑖𝑚𝑖

)︁)︁
(Theorem 6 in [42]). Hence, the overall work for all levels is

𝑊 = 𝑂
(︁∑︀log2 𝑛

𝑖=0 𝑚𝑖

(︁
1 + log 𝑛

2ℎ−𝑖𝑚𝑖

)︁)︁
. Let 𝑚′ =

∑︀
𝑖 𝑚𝑖, and we know that 𝑚′ ≤ 𝑚.

153

To bound the work, we consider the maximum value of 𝑊 for any given 𝑚′. We can
use the method of Lagrange multipliers, and compute the partial derivative of 𝑚𝑖

(without the big-𝑂), which solves to

𝜕

𝜕𝑚𝑖

𝑊 =
𝜕

𝜕𝑚𝑖

(︂
𝑚𝑖

(︂
1− log2

2ℎ−𝑖𝑚𝑖

𝑛

)︂)︂
= log2

𝑛

2ℎ−𝑖𝑚𝑖

− 1

ln 2
+ 1.

Since the constraint for
∑︀

𝑚𝑖 is linear, 𝑊 is maximized when 𝜕
𝜕𝑚𝑖

𝑊 = 𝜕
𝜕𝑚𝑗

𝑊 for
all levels 0 ≤ 𝑖, 𝑗 ≤ ℎ, which solves to 𝑚𝑖 = 𝑐𝑚′/2ℎ−𝑖+1 for some value of 𝑐 such that
𝑚′ =

∑︀
𝑚𝑖. Note that 1 < 𝑐 < 2. Plugging this in gives

𝑊 = 𝑂

(︃
log2 𝑛∑︁
𝑖=0

𝑚′

2ℎ−𝑖+1

(︂
1 + log

𝑛

2ℎ−𝑖(𝑐𝑚′/2ℎ−𝑖+1)

)︂)︃

= 𝑂

(︃(︃
log2 𝑛∑︁
𝑖=0

𝑚′

2ℎ−𝑖+1

)︃(︁
1 + log

(︁ 𝑛

𝑚′

)︁)︁)︃
= 𝑂

(︁
𝑚
(︁
1 + log

(︁ 𝑛

𝑚

)︁)︁)︁
.

In addition to Down-Heap and Up-Heap, we also need to integer sort the
updates on Lines 3 and 8, which takes 𝑂(𝑚) work. Hence, the total work for algo-
rithm 24 is 𝑂

(︀
𝑚
(︀
1 + log

(︀
𝑛
𝑚

)︀)︀)︀
.

Depth. The integer sort on Lines 3 and 8 takes 𝑂(log𝑚) depth. Directly running
algorithm 24 gives 𝑂(log2 𝑛) depth—there are 𝑂(log 𝑛) tree levels, and on each level,
Up-Heap or Down-Heap requires 𝑂(log 𝑛) depth. We can improve the depth
bound to 𝑂(log 𝑛) using pipelining, as discussed in section 8.4. The Up-Heap and
Down-Heap calls at all levels will have begun by the 𝑖’th round, and each call takes
𝑂(log 𝑛) rounds to finish. Each round takes 𝑂(1) depth, and so the overall depth is
𝑂(log 𝑛). The pipelining does not increase the work.

Theorem 16. For a batch-parallel binary heap of size 𝑛 and a batch update (a mix
of inserts, deletes, and increase/decrease-keys) of size 𝑚, updating the heap takes
𝑂(𝑚(1 + log((𝑛+𝑚)/𝑚))) work and 𝑂(log(𝑛+𝑚)) depth, and find-min takes 𝑂(1)
work.

Implementations

Simplified Data Structure. While the sparse partition maintains (𝑆𝑖, 𝑆
′
𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖)

and 𝐻𝑖 for each level 1 ≤ 𝑖 ≤ 𝐿, we found that implementing 𝑆 ′
𝑖 and its associated

154

p

q

2√k gL-1

gL-1

Figure 36: Illustration for the proof of Lemma 10: Let 𝛿(𝑆) be 𝑝 and 𝑞. Suppose by
contradiction, 𝑑(𝑝, 𝑞) > 2

√
𝑘𝑔𝐿−1, where 𝑘 = 2 in this example. Then 𝑝 and 𝑞 will

be sparse in level 𝐿− 1, hence all the points will be sparse in level 𝐿− 1.

heap 𝐻𝑖 on every level was inefficient in practice. We found it more efficient to
only maintain (𝑆𝑖, 𝑝𝑖, 𝑞𝑖, 𝑑𝑖) for 1 ≤ 𝑖 ≤ 𝐿, and one heap 𝐻* that stores the closest
neighbor distances for all 𝑞 in 𝑆𝑗, where 𝑗 = 𝐿 − ⌈log3 2

√
𝑘⌉. When 𝐿 changes due

to insertion or deletion, we recompute 𝑗 and rebuild 𝐻* if necessary.
We now prove that 𝐻* contains the closest pair. Specifically, we prove that any

point pair (𝑎, 𝑏) where 𝑎, 𝑏 ∈ 𝑆 ∖ 𝑆𝑗, ∀𝑗 ≤ 𝐿 − ⌈log3 2
√
𝑘⌉ cannot give rise to the

closest pair distance, which we denote as 𝛿(𝑆).

Lemma 10. 𝛿(𝑆) < 𝑑(𝑎, 𝑏) for any 𝑎, 𝑏 ∈ 𝑆 ∖ 𝑆𝑗,∀𝑗 ≤ 𝐿− ⌈log3 2
√
𝑘⌉.

Proof. The side length of the grid 𝐺𝑖 at level 𝑖 is 𝑔𝑖 = 𝑑𝑖/6𝑘, as defined earlier.
Without loss of generality, consider level 𝑗, and let 𝑎 and 𝑏 be two points such that
𝑎, 𝑏 ∈ 𝑆𝑗−1 ∖ 𝑆𝑗 (this can easily be generalized to 𝑎 and 𝑏 being sparse on different
levels that are both < 𝑗). We know 𝑑(𝑎, 𝑏) > 𝑔𝑗−1 ≥ 3𝑔𝑗 by properties of the sparse
partition (Section 8.4). On the other hand, we also know that 𝛿(𝑆) ≤ 2

√
𝑘𝑔𝐿−1 , since

otherwise, the pair that defines 𝛿(𝑆) would have been sparse in level 𝐿−1, and the last
level 𝐿 would not have existed, which is a contradiction (see Figure 36). Given the
property of the sparse partition, we have 3𝑔𝑗 ≥ 2

√
𝑘𝑔𝐿−1 for all 𝑗 ≤ 𝐿− ⌈log3 2

√
𝑘⌉.

We can verify that this is true as 3·𝑔𝐿−⌈log3 2
√
𝑘⌉ ≥ 3·3⌈log3 2

√
𝑘⌉ ·𝑔𝐿 ≥ 3⌈log3 2

√
𝑘⌉ ·𝑔𝐿−1 ≥

2
√
𝑘 · 𝑔𝐿−1. Therefore, 𝑑(𝑎, 𝑏) > 𝛿(𝑆).

Since 𝑎 and 𝑏 satisfying Lemma 10 are both sparse in some 𝑆ℎ where ℎ < 𝐿 −
⌈log3 2

√
𝑘⌉, it follows that 𝑑(𝑎, 𝑞) > 𝑑(𝑞, 𝑆𝐿−⌈log3 2

√
𝑘⌉) and 𝑑(𝑏, 𝑞) > 𝑑(𝑞, 𝑆𝐿−⌈log3 2

√
𝑘⌉)

for any 𝑞 ∈ 𝑆𝐿−⌈log3 2
√
𝑘⌉. Therefore, the closest pair distance 𝛿(𝑆) = 𝑑(𝑝, 𝑞) for some

𝑝, 𝑞 ∈ 𝑆𝐿−⌈log3 2
√
𝑘⌉, and will not involve 𝑎 or 𝑏.

Our implementation uses the parallel heap from [222]. Additionally, we compute
𝑆 ′
𝑖 from 𝑆𝑖 on the fly when needed.

155

Neighborhood Search. Some of the work bounds are exponential in the dimension-
ality 𝑘, e.g., a grid’s box neighborhood is of size 3𝑘. For 𝑘 ≥ 5, the straightforward
implementation is inefficient due to a large constant overhead in the work. Hence, we
implement a parallel batch-dynamic 𝑘d-tree for 𝑘 ≥ 5. This is because performing
a range query on the tree works better in practice, as it only needs to traverse the
non-empty boxes in the neighborhood instead of all boxes. Our dynamic 𝑘d-tree is
a standard spatial median 𝑘d-tree [38], augmented with the capability for parallel
batch updates. Each internal node maintains metadata on the points in its subtree,
which are partitioned by a spatial median along the widest dimension. The points
are only stored at leaf nodes. We flatten a subtree to a single leaf node when it
contains at most 16 points.

The tree supports batch insertion by first adding the batch to the root, and then
traversing down multiple branches of the tree in parallel. At each internal node, we
partition the inserted batch by the spatial median stored at the node, and modify its
metadata, such as the point count and the coordinates of its bounding box. At each
leaf node, we directly modify the metadata and store the points. The tree supports
batch deletions by modifying the metadata, and marking the deleted points at the
leaves as invalid. We manage the memory periodically to free up the invalid entries.

Static Algorithms. In addition to our batch-dynamic closest pair algorithm, we
implement several sequential and parallel algorithms for the static closest pair prob-
lem. As far as we know, this thesis presents the first experimental study of parallel
algorithms for static closest pair. We implement a parallel divide-and-conquer al-
gorithm by Blelloch and Maggs [47], a simplified and parallel version of Rabin’s
algorithm [195] that we designed, a parallel version of Khuller and Matias’s [148]
sieve algorithm that we designed, and a parallel randomized incremental algorithm
by Blelloch et al. [45]. We explain more details about these static algorithms and
their implementations in section 8.4.

Static Algorithms and Implementations

In addition to our batch-dynamic closest pair algorithm, we implement several par-
allel algorithms for the static closest pair problem, which we describe in this section.
We evaluate all of them against each other, and compare them to our parallel batch-
dynamic algorithm in Section 8.4. As far as we know, this thesis presents the first
experimental study of parallel algorithms for the static closest pair problem.

Divide-and-Conquer Algorithm The first divide-and-conquer algorithm for closest-
pair was introduced by Bentley [37], and has 𝑂(𝑛 log 𝑛) work and is optimal in the

156

algebraic decision tree model. Blelloch and Maggs [47] parallelize this algorithm, and
their algorithm takes 𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛) depth. Atallah and Goodrich [27]
present another parallel algorithm based on multi-way divide-and-conquer, which
takes 𝑂(𝑛 log 𝑛 log log 𝑛) work and 𝑂(log 𝑛 log log 𝑛) depth.

We implement the divide-and-conquer algorithm by Blelloch and Maggs [47]. The
main idea of the algorithm is to divide the space containing all the points 𝑆 along an
axis-aligned hyperplane by the median point along a dimension fixed throughout the
algorithm, to form left and right subproblems. We then recursively find the closest
pair in each of the two subproblems in parallel to obtain results 𝛿𝐿 and 𝛿𝑅. Then, we
merge the two subproblems, and consider the points near the median point, which
are the points within a distance of min{𝛿𝐿, 𝛿𝑅} from the median point. We call the
set of such points a central slab, and use an efficient “boundary merging” technique
to obtain 𝛿𝑀 . The closest pair will have distance 𝛿(𝑆) = min{𝛿𝐿, 𝛿𝑅, 𝛿𝑀}. Finding
the median and performing the merge can be done using standard parallel primitives.

Blelloch and Maggs’ [47] parallel algorithm requires the central slab to be sorted in
a dimension 𝑑 different from the dimension that is used to divide the problem. Their
algorithm orders the points along 𝑑 by performing recursive partitioning and merging
at each level of the divide-and-conquer algorithm. Since the central slab can be linear
in size, the merging algorithm is efficient in theory. However, we find that the central
slab is very small for inputs that arise in practice. Therefore, in our algorithm, we
simply use comparison sorting to sort the central slab when needed without using
partitioning and merging, which results in better performance in practice. We also
coarsen the base case, and switch to a quadratic-work brute-force algorithm when
the subproblem size is sufficiently small.

Rabin’s Algorithm Rabin’s algorithm [195] is the first randomized sequential
algorithm for the problem. Assuming a unit-cost floor function, Rabin’s algorithm
has 𝑂(𝑛) expected work. MacKenzie and Stout [164] design a parallel algorithm
based on Rabin’s algorithm, and achieve 𝑂(𝑛) work and 𝑂(1) depth in expectation.
Specifically, the algorithm first takes a random sample of 𝑛0.9 points, and finds the
closest pair on this sample recursively. Then it forms a grid structure with side length
equal to the closest pair distance. Each box along with its points are classified into
sparse or dense based its point count. The pairwise distances of the dense points
(fewer than 𝑛0.4) are computed using a quadratic work algorithm, after which the
minimum is taken. Then, all points find their closest sparse points by checking
neighboring sparse boxes in parallel, after which the minimum of these distances
are taken. The algorithm uses some parallel primitives with high constant factor
overheads, and are unlikely to be practical.

157

We design a simpler parallel version of Rabin’s algorithm. Our algorithm takes
a sample of 𝑛𝑐 points where 𝑐 < 1, and recursively computes the closest distance 𝛿′

of the sample. Then, we construct a grid structure on all of the points 𝑆 using a
parallel dictionary, where the box size is set to 𝛿′. For each point 𝑥 ∈ 𝑆, we find its
closest point by exploring 𝑁(𝑥, 𝑆), and then take the minimum among that of all 𝑥
to obtain 𝛿(𝑆). In terms of work, MacKenzie and Stout [164] showed by recursively
finding the closest pair on a sample of size 𝑛𝑐, the total work is 𝑂(𝑛) in expectation.
We find 𝑐 = 0.8 to work well in practice. In terms of depth, our implementation
has 𝑂(log 𝑛) levels of recursion, each taking 𝑂(log* 𝑛) depth whp, which includes
parallel dictionary operations and finding the minimum in parallel. The total depth
is 𝑂(log 𝑛 log* 𝑛) whp. In the recursion, we coarsen the base case by switching to a
brute-force algorithm when the problem is sufficiently small.

Sieve Algorithm Khuller and Matias [148] propose a simple sequential algorithm
called the sieve algorithm that takes 𝑂(𝑛) expected work (the dynamic algorithm
by Golin et al. [111] is based on the sieve algorithm). The algorithm proceeds in
rounds, where in round 𝑖, it chooses a random point 𝑥 from the point set 𝑆𝑖 (where
𝑆1 = 𝑆) and computes 𝑑𝑖(𝑥), the distance to its closest neighbor. Then, the algorithm
constructs a grid structure on 𝑆𝑖, where each box has a side length of 𝑑𝑖(𝑥). It then
moves the points that are sparse in 𝑆𝑖 into a new set 𝑆𝑖+1, and proceeds to the next
round, until 𝑆𝑖+1 is empty. Finally, the algorithm constructs a grid structure on 𝑆
with boxes of size equal to the smallest box computed during the algorithm. For each
point 𝑥 ∈ 𝑆, we compute its closest neighbor using the grid by traversing its own
box and the boxes bordering on it. Finally, we take the minimum among distances
obtained by all the points to obtain 𝛿(𝑆).

The sequential algorithm takes 𝑂(𝑛) expected work as the number of points
decreases geometrically from one level to the next. We obtain a parallel sieve al-
gorithm by using our parallel construction for the sparse partition in Algorithm 20,
but without the heap. Our parallel sieve algorithm takes 𝑂(𝑛) expected work and
𝑂(log 𝑛 log* 𝑛) depth whp

Incremental Algorithm Golin et al. [110] present a sequential incremental algo-
rithm for closest pair with 𝑂(𝑛) expected work. Blelloch et al. [45] present a parallel
version of this incremental algorithm, which we implement. The parallel algorithm
works by maintaining a grid using a dictionary, and inserting the points in a ran-
domized order in batches of exponentially increasing size. The side length of the grid
box is the current closest pair distance, which is initialized to the distance between
the first two points in the randomized ordering. For the 𝑖’th point inserted, the

158

algorithm will check its neighborhood for a neighbor with distance smaller than the
current grid side length. When such a neighbor is found, the algorithm rebuilds the
grid for the first 𝑖 points using the new side length, and continues with the insertion.
Since the parallel algorithm inserts points in batches, for each batch we find the ear-
liest point 𝑖 remaining in the batch that causes a grid rebuild, perform the rebuild
on all points up to and including 𝑖, remove these points from the batch, and repeat
until the batch is empty. After all batches are processed, the pair whose distance
gives rise to the final grid side length is the closest pair. The algorithm takes 𝑂(𝑛)
expected work and 𝑂(log 𝑛 log* 𝑛) depth whp

Experiments

Algorithms Evaluated. We evaluate our parallel batch-dynamic algorithm by
benchmarking its performance on batch insertions (dynamic-insert) and batch
deletions (dynamic-delete). We also evaluate the four static implementations de-
scribed in Section 8.4, which we refer to as divide-conquer , rabin , sieve , and
incremental . In addition, we implement and evaluate sequential versions of all of
our algorithms that do not have the overheads of parallelism. Our implementations
use the Euclidean metric (𝐿2-metric).

Data Sets. We use the synthetic seed spreader (SS) data sets produced by the
generator in [104]. It produces points generated by a random walk in a local neigh-
borhood, but jumping to a random location with some probability. SS-varden
refers to the data sets with variable-density clusters. We also use a synthetic data
set called Uniform , in which points are distributed uniformly at random inside a
bounding hyper-cube with side length

√
𝑛, where 𝑛 is the total number of points.

The points have double-precision floating-point values. We generated the synthetic
data sets with 10 million points for dimensions 𝑘 = 2, 3, 5, 7. We name the data
sets in the format of Dimension-Name-Size . We also use the following real-world
data sets: 7D-Household-2M [92] is a 7-dimensional data set containing household
sensor data with 2, 049, 280 points excluding the date-time information; 16D-Chem-
4M [97, 2] is a 16-dimensional data set with 4, 208, 261 points containing chemical
sensor data; and 3D-Cosmo-298M [153] is a 3-dimensional astronomy data set
with 298, 246, 465 points.

Testing Environment. Our experiments are run on an r5.24xlarge instance on
Amazon EC2. The machine has 2 × Intel Xeon Platinum 8259CL CPU (2.50 GHz)
CPUs for a total of 48 cores with two-way hyper-threading, and 768 GB of RAM.
By default, we use all cores with hyper-threading. We use the g++ compiler (version

159

102 103 104 105 106 107

Batch Size

104

105

106

107
Th

ro
ug

hp
ut

 (#
pt

s/
se

c)

5D-Uniform-10M
dynamic-insert-48h
dynamic-delete-48h

dynamic-insert-1t
dynamic-delete-1t

102 103 104 105 106 107 108

Batch Size

105

106

Th
ro

ug
hp

ut
 (#

pt
s/

se
c)

3D-Cosmo-298M
dynamic-insert-48h dynamic-delete-48h

Figure 37: Plots of throughput vs. batch size in log-log scale for our parallel batch-
dynamic algorithm on 5D-Uniform-10M and 3D-Cosmo-298M. The algorithm on 48-
cores with hyper-threading and 1 thread has a suffix of "48h" and "1t", respectively.
For 3D-Cosmo-298M, we omit the 1-thread times as the experiments exceeded our
time limit.

7.5) with the -O3 flag, and use Cilk Plus for parallelism [136]. We use the -48h and
-1t suffixes in our algorithm names to denote the 48-core with hyper-threading and
single-threaded times, respectively. We allocate a maximum of 2 hours for each test,
and do not report times for tests that exceed this limit.

Influence of Batch Size on Throughput. In this experiment, we evaluate our
batch-dynamic algorithm by measuring their throughput as a function of the batch
size. For insertions, we insert batches of the same size until the entire data set is
inserted. For deletions, we start with the entire data set and delete batches of the
same size until the entire data set is deleted. We compute throughput by the number
of points processed per second. We vary the batch size from 100 points to the size of
the entire data set. Our parallel batch-dynamic algorithm achieves a throughput of
up to 1.35×107 points per second for insertion, and up to 1.06×107 for deletion, under
the largest batch size. On average, it achieves 1.75× 106 for insertion and 1.94× 106

for deletion across all batch sizes. We show plots of throughput vs. batch size for
5D-Uniform-10M and 3D-Cosmo-298M in Figure 37. We see that the throughput
increases with larger batch sizes because of a lower relative overhead of traversing
the sparse partition data structure, and the availability of more parallelism.

Efficiency of Batch Insertions. We evaluate the performance of dynamic batch
insertion vs. using a static algorithm to recompute the closest pair. Specifically, we
simulate a scenario where given the data structure storing the closest pair among 𝑐
data points, we perform an insertion of 𝑏 additional points. We compare the time

160

105 106

Size of Update

10 1

100

Ti
m

e
(s

ec
)

5D-Uniform-10M

dynamic-insert-48h
divide-conquer-48h
rabin-48h
sieve-48h
incremental-48h

106 107

Size of Update

100

101

Ti
m

e
(s

ec
)

3D-Cosmo-298M

dynamic-insert-48h
divide-conquer-48h
rabin-48h
sieve-48h
incremental-48h

Figure 38: Plots of running time (in seconds) vs. insertion batch size for the dynamic
and static methods using 48 cores with hyper-threading on 5D-Uniform-10M and 3D-
Cosmo-298M. The plots are in log-log scale.

taken by the dynamic algorithm to process one batch insertion of size 𝑏, vs. that
of a static algorithm for recomputing the closest pair for all 𝑐 + 𝑏 points. We set
𝑐 to contain 40% of the data set and vary 𝑏. Figure 38 shows the running time
as a function of 𝑏 for 5D-Uniform-10M and 3D-Cosmo-298M. For 5D-Uniform-10M,
we see that our batch-dynamic algorithm outperforms the fastest among the static
algorithms when the insertion batch size is smaller than 500,000. For 3D-Cosmo-
298M, we see that the dynamic method outperforms the fastest static algorithm
when the insertion batch is smaller than 10 million. In general, both the static and
dynamic algorithms require more time to process the updates when the batch size
is larger. The dynamic algorithm is much more advantageous for small to moderate
batch sizes.

Efficiency of Batch Deletions. We evaluate the performance of dynamic batch
deletion vs. using a static algorithm to recompute the closest pair. In this exper-
iment, we are given the closest pair of all 𝑛 points in the data set, and perform
a deletion of 𝑏 points. We compare the time taken for the dynamic algorithm to
process one batch deletion of size 𝑏, vs. that of a static algorithm for recomputing
the closest pair for the 𝑛− 𝑏 remaining points. Figure 39 shows the running time vs.
deletion batch size for 5D-Uniform-10M and 3D-Cosmo-298M. For 5D-Uniform-10M,
the dynamic algorithm outperforms the fastest static algorithm when the batch size
is less than 3 million. For 3D-Cosmo-298M, the dynamic algorithm outperforms the
static algorithm when the batch size is less than 60 million. In general, our dynamic
algorithm requires more time to process the update when the batch size is larger,
while the converse is true for the static algorithms.

161

105 106

Size of Update

10 1

100

Ti
m

e
(s

ec
)

5D-Uniform-10M

dynamic-delete-48h
divide-conquer-48h
rabin-48h
sieve-48h
incremental-48h

107 108

Size of Update

100

101

102

Ti
m

e
(s

ec
)

3D-Cosmo-298M

dynamic-delete-48h
divide-conquer-48h
rabin-48h
sieve-48h
incremental-48h

Figure 39: Plots of running time (in seconds) vs. deletion batch size for the dynamic
and static methods using 48 cores with hyper-threading on 5D-Uniform-10M and
3D-Cosmo-298M. The plots are in log-log scale.

Compared to the fastest static algorithms on our data sets, we find that it is
faster to use our dynamic algorithm for batch sizes of up to 20% of the data set.

Static Methods. We evaluate and compare the static algorithms and present all
detailed running times in Table 10. Among the four parallel static algorithms, Ra-
bin’s algorithm is on average 7.63x faster than the rest of the algorithms across all
data sets. The divide-and-conquer, sieve, and the incremental algorithms are on
average 17.86x, 2.29x, and 2.73x slower than Rabin’s algorithm, respectively. The
divide-and-conquer algorithm actually achieves the fastest parallel running time on
7 out of the 11 data sets. However, it is significantly slower for most of the higher
dimensional data sets, due to its higher complexity with increased dimensionality.
The sieve algorithm and the incremental algorithm, though doing the same amount
of work in theory as Rabin’s algorithm, have higher constant factor overheads.

Parallel Speedup and Work-Efficiency. We measure the parallel speedups
of our implementations by dividing the 1-thread time by the 48-core with hyper-
threading time. Our parallel batch-dynamic algorithm achieves up to 38.57x self-
relative speedup (15.10x on average across all batch sizes), averaging over both inser-
tions and deletions. Our static implementations achieve up to 51.45x speedup (29.42x
on average). Specifically, the divide-and-conquer algorithm, Rabin’s algorithm, the
sieve algorithm, and the incremental algorithm achieve average self-relative speedups
of 35.17x, 33.84x, 29.22x, and 19.45x, respectively; in addition, they achieve an aver-
age speedup of 19.10x, 23.56x, 10.56x, and 9.23x, respectively, over the fastest serial
algorithm for each data set.

Our parallel implementations when run on one thread demonstrate modest over-

162

Divide-Conquer Rabin Sieve Incremental
Seq 1t 48h Seq 1t 48h Seq 1t 48h Seq 1t 48h

2D-Uniform-10M 9.54 9.62 0.24 11.2 11.6 0.28 23.3 24.5 0.81 22.1 17.7 1.02
3D-Uniform-10M 24.9 25.2 0.66 28.4 30.5 0.78 60.3 60.6 1.82 50.5 46.2 2.50
5D-Uniform-10M 101 136 3.04 25.3 28.4 1.28 56.7 60.6 2.63 49.2 50.3 2.40
7D-Uniform-10M 561 618 14.7 81.7 82.8 1.70 124 135 4.24 93.7 106 4.58

2D-SS-varden-10M 7.58 8.95 0.23 10.5 11.2 0.26 22.2 22.8 0.94 23.4 17.5 1.11
3D-SS-varden-10M 17.3 19.1 0.51 28.4 29.1 0.77 58.4 58.3 1.68 48.7 43.1 1.97
5D-SS-varden-10M 24.9 33.4 0.82 22.6 26.1 1.43 47.2 49.3 2.58 40.4 41.7 2.44
7D-SS-varden-10M 43.1 50.3 1.33 33.1 34.0 1.61 64.4 70.9 3.00 43.4 48.0 2.53
7D-Household-2M 342 392 13.4 7.23 7.70 0.40 15.9 18.1 0.73 13.8 15.7 0.94

16D-Chem-4M 315 499 202 38.3 39.8 1.38 88.2 96.7 2.68 59.1 70.8 3.91
3D-Cosmo-298M 750 747 20.7 1243 1625 31.6 3383 2819 70.6 3456 2629 104

Table 10: Running times (in seconds) of static algorithms. "Seq" denotes the se-
quential implementation. "1t" and "48h" denote the parallel implementation run on
1 thread and 48 cores with hyper-threading, respectively.

heads over their sequential counterparts. Our parallel batch-dynamic algorithm run-
ning on 1 thread has only 1.13x lower throughput on average over our sequential
implementation of the algorithm. For the static algorithms, the parallel divide-and-
conquer, Rabin’s, sieve, and incremental algorithms running on 1 thread are only
1.18x, 1.08x, 1.04x, and 1.00x slower on average, respectively, than their correspond-
ing sequential algorithms.

163

9 ParGeo: A Library for Parallel Computational
Geometry

9.1 Introduction

In this thesis, we present the ParGeo library for parallel computational geometry,
which includes a rich set of parallel algorithms for geometric problems and data
structures, including 𝑘d-trees, 𝑘-nearest neighbor search, range search, well-separated
pair decomposition, Euclidean minimum spanning tree, spatial sorting, and geometric
clustering. ParGeo also contains a collection of geometric graph generators, including
𝑘-nearest neighbor graphs and various spatial networks. Algorithms from ParGeo
can either run sequentially, or run using parallel schedulers such as OpenMP or Cilk.

While there exist numerous libraries for computational geometry, most of them
are not designed for parallel processing. For example, Libigl [137] is a library that
specializes in the construction of discrete differential geometry operators and finite-
element matrices. However, only some aspects of Libigl take advantage of parallelism.
In comparison, the algorithms and implementations of ParGeo are designed for par-
allelism, and target a different set of problems. CGAL (Computational Geometry
Algorithms Library) [96] is a well known library of computational geometry algo-
rithms that includes a wide range of packages, but most implementations are not
parallel. Batista et al. [34] targeted a few important algorithms, including spatial
sorting, box intersection, and Delaunay triangulation for shared-memory parallel
processing, with code in CGAL. In comparison, ParGeo targets similar classes of
problems as CGAL, but all of our implementations are highly parallel.

In addition to its other features, ParGeo includes a module for generating ge-
ometric graphs from spatial datasets. When combined with GeoGraph, a sister
framework with a user-friendly interface, users can easily access powerful parallel ge-
ometric graph generators. Graphs are a powerful tool for representing relationships in
data, with applications ranging from social network analysis to transportation plan-
ning. However, analyzing large graphs efficiently requires high-performance parallel
programs, which can be challenging for non-experts in high-performance computing.
Fortunately, there exist programming frameworks that provide highly-optimized par-
allel implementations of graph processing functions.

164

Static and Dynamic kd-Tree (1)

● K-NN Search
● Range Search
● Parallel Batch-Dynamic kd-Tree

Spatial Graph Generator (3)

● K-NN Graph
● Beta-Skeleton
● Euclidean Minimum Spanning Tree (EMST)
● T-Spanner
● Delaunay Graph

Computational Geometry (2)

● Well-Separated Pair Decomposition (WSPD)
● Bichromatic Closest Pair
● Closest Pair
● Convex Hull
● Smallest Enclosing Ball (SEB)
● Morton Sort

Data Generator (4)

● Uniform Data Generator
● Synthetic Seed Spreader

Figure 40: The figure shows an overview of modules in ParGeo. An arrow indicates
that a component is used inside another component. In this thesis, we present new
algorithms and techniques for the modules highlighted in green.

9.2 ParGeo Modules and Problems Studied

We present an overview of the modules of ParGeo in Figure 40, highlighting how the
modules interact with each other.

ParGeo contains efficient multicore implementations of static and dynamic 𝑘d-
trees and related algorithms (Module (1)). The code supports 𝑘d-tree based spatial
search, including 𝑘-nearest neighbor and range search. Our code is optimized for fast
𝑘d-tree construction by performing the split in parallel (either by spatial median or by
object median), and the queries themselves are data-parallel. ParGeo also includes a
new cache-oblivious algorithm for 𝑘d-tree construction and a parallel-batch dynamic
𝑘d-tree using the logarithmic method described by Yesantharao et al. [255].

ParGeo contains a module for parallel computational geometry algorithms (Mod-
ule (2)). Our 𝑘d-tree can be used to generate a well-separated pair decomposition [60]
(WSPD), which can in turn be used to compute the hierarchical DBSCAN [244], Par-
Geo contains parallel implementations for the bichromatic closest pair, closest pair,
convex hull, smallest enclosing ball, and Morton sorting.

165

support set
ridgefacet

(a) (b)

Figure 41: (a) A facet and a ridge of a convex hull in R3. (b) The support of smallest
enclosing ball in R2.

In addition, ParGeo contains a collection of geometric graph generators (Module
(3)) for point data sets. Our 𝑘d-tree’s 𝑘-NN search is used to generate the 𝑘-NN
graph, and the range search is used to generate the 𝛽-skeleton. Our WSPD generated
from the 𝑘d-tree can also be used to compute the Euclidean minimum spanning
tree [58, 244], and spanners [60]. ParGeo also generates the Delaunay graph.

In previous sections, we covered the algorithms and implementation for compu-
tational geometry. In this section, we will shift our focus to parallel graph generators
and experimental evaluations.

9.3 Geometric Graph Construction

We now describe the geometric graph construction algorithms that are currently
provided by GeoGraph.

𝑘-Nearest Neighbor Graphs Our framework supports computing the 𝑘-nearest
neighbor (𝑘-NN) graph of a point data set. 𝑘-NN graphs have a variety of applica-
tions, such as graph clustering [168, 99, 56, 160, 147], manifold learning [225], outlier
detection [123], and proximity search [182, 67, 209]. The 𝑘-NN graph is a directed
graph on a set of 𝑃 points in a metric space, such that 𝑃 represents the vertex set,
and a directed edge exists from vertex 𝑝 to vertex 𝑞 if the distance between 𝑝 and
𝑞 is among the 𝑘 smallest distances from 𝑝 to points in 𝑃 ∖ {𝑝}. We compute the
𝑘-NN by traversing a 𝑘d-tree, a binary tree data structure commonly used for 𝑘-NN
queries [100]. A 𝑘d-tree traversal to compute 𝑘-NNs will first visit subtrees close
to the input point, and prune farther tree nodes that cannot possibly contain the
𝑘-NNs. We first construct a 𝑘d-tree, then apply 𝑘-NN queries for all of the points in

166

𝑃 , and finally generate 𝑘-NN graph based on the query results. To build the tree, we
use a parallel splitting algorithm to split the points across the two children subtrees,
and recursively construct each subtree in parallel. The queries are run in parallel in
a data-parallel fashion.

Spatial Network Graphs Spatial network graphs are a class of geometric graphs
on which various graph metrics are often computed [32, 33]. We discuss the spatial
network graphs in the context of point data sets in the Euclidean plane, which usually
arise from geographic coordinates. The Delaunay graph is directed related to the
Delaunay triangulation of a point set [84], where each edge of the triangulation is
treated as an undirected edge with weight equal to the Euclidean distance between
the two endpoints. The Delaunay graph is useful because its edges are a superset of
that of other graphs, such as the Euclidean minimum spanning tree and 𝛽-skeleton
graphs [151], both of which have a variety of real-world applications [237, 247, 194,
196, 232, 18, 226, 142]. We use the parallel incremental Delaunay triangulation
implementation from the Problem Based Benchmark Suite [215].

The 𝛽-skeleton is defined for a point set 𝑃 in the Euclidean plane, where each
point in 𝑃 is a vertex of the graph. There is an undirected edge between a pair
of points 𝑝 and 𝑞 if for any other point 𝑟, the angle 𝑝𝑟𝑞 is smaller than a threshold
derived from parameter 𝛽. The 𝛽-skeleton shares the same vertex set as the Delaunay
graph, but only contains a subset of the Delaunay edges [232]. We use the 𝑘d-tree
to construct the 𝛽-skeleton graph efficiently in parallel. Specifically, for each edge of
the Delaunay graph in parallel, we determine whether to keep the edge by checking
whether there exists a third point in a region defined by the edge and the parameter
𝛽. The check can be reduced to several range searches in a 𝑘d-tree. The 𝛽-skeleton
generalizes other well known spatial network graphs, such as the Gabriel graph and
the relative neighborhood graph [151, 142].

ParGeo contains a point data generator module (Module (4)) for which can gener-
ate uniformly distributed data sets, and clustered data sets of varying densities [104].
These data sets are used for benchmarking of the other modules.

9.4 Performance Evaluation

To demonstrate the efficiency of our proposed algorithms and library, we perform a
comprehensive set of experiments on synthetic and real-world geometric data sets,
and compare the performance across our parallel implementations as well as op-
timized sequential baselines. On 36 cores with two-way hyper-threading, our best
convex hull implementation achieves up to 44.7x self-relative speedup and up to 559x

167

Implementation T1 T36h Speedup
𝑘d-tree Build (2d) 5.51 0.43 12.70x
𝑘d-tree Build (5d) 8.39 0.89 9.40x
𝑘d-tree 𝑘-NN (2d) 31.45 0.68 46.34x
𝑘d-tree Range Search (2d) 17.14 0.37 46.61x
Dynamic 𝑘d-tree Construction (5d) 6.70 0.60 10.70x
Dynamic 𝑘d-tree Insert (5d) 8.80 1.10 8.10x
Dynamic 𝑘d-tree Delete (5d) 29.20 1.20 23.90x
WSPD (2d) 6.72 0.24 27.63x
EMST (2d) 33.02 1.58 20.86x
Convex Hull (2d) 0.38 0.0088 43.13x
Convex Hull (3d) 2.36 0.097 24.36x
Smallest Enclosing Ball (2d) 0.053 0.0033 16.30x
Smallest Enclosing Ball (5d) 0.13 0.014 9.54x
Closest Pair (2d) 10.35 0.52 19.90x
Closest Pair (3d) 28.00 2.32 12.07x
𝑘-NN Graph (2d) 37.89 1.46 25.99x
Delaunay Graph (2d) 55.91 2.03 27.53x
Gabriel Graph (2d) 59.61 1.99 29.99x
𝛽-skeleton Graph (2d) 113.27 3.20 35.37x
Spanner (2d) 27.19 2.15 12.67x

Table 11: Runtimes (seconds) and parallel speedups (𝑇1/𝑇36ℎ) for ParGeo implemen-
tations on uniform hypercube data sets of varying dimensions and 10 million points.
𝑇1 and 𝑇36ℎ denote the single-threaded and the 36-core hyper-threaded times, respec-
tively. For dynamic 𝑘d-tree updates, each batch contains 10% of the data set.

speedup against the best existing sequential implementation for R2, and up to 24.9x
self-relative speedup and up to 124x speedup against the best existing sequential im-
plementation for R3. Our sampling-based smallest enclosing ball algorithm achieves
up to 27.1x self-relative speedup and up to 178x speedup against the best existing
sequential implementation for R2 and R3. Finally, across all implementations in
ParGeo, we achieve self-relative parallel speedup of 8.1–46.61x (on average 23.15x).
As shown in Table 11, on a machine with 36 cores with two-way hyper-threading,
ParGeo achieves self-relative parallel speedups of 8.1–46.61x (on average 23.15x) on
a uniformly distributed data set, across all the benchmarks.

9.5 An API for Graph Processing on Geometric Data

With most existing graph processing frameworks today, a user who wishes to process
data that is not given in graph format is responsible for writing or using another

168

tool to convert their data into a graph format that is compatible with the graph
framework that they are using. To ensure that the end-to-end running time is fast,
the user needs to write or use efficient algorithms for data conversion, which can be
non-trivial. This process often involves using routines from computational geometry,
such as the Delaunay triangulation, nearest-neighbor searches, range searches, well-
separated pair decompositions, and visibility tests. While there exists various parallel
libraries that support graph generation from geometric data [187, 81, 28, 96], they
do not have an interface with existing graph processing frameworks. Linking these
libraries with graph frameworks significantly increases the burden on the user. Fur-
thermore, even if the user is able perform the data conversion efficiently, the process
will still perform unnecessary disk I/O’s because existing graph frameworks often
assume that the input data is stored on disk. These extra disk accesses can become
a performance bottleneck if the rest of the application is running in memory. To
improve programmability and performance, it is therefore important to have a uni-
fying framework that supports both graph algorithms and computational geometry
routines, with efficient methods for data conversion between the graph and geomet-
ric data formats. Such a framework can also benefit geometric algorithms that use
graph algorithms as subroutines, such as density-based spatial clustering [239, 244]
and motion planning [84].

This thesis introduces our ongoing work on designing a high-performance frame-
work, called GeoGraph, that bridges the gap between parallel graph processing and
parallel computational geometry routines that are used for graph construction. Geo-
Graph is currently implemented for shared-memory multicore machines. GeoGraph
is a C++ library with a Python interface, consisting of parallel algorithms for geo-
metric graph generation and graph processing, as well as functions for reading and
writing data. It combines geometric graph construction algorithms currently being
developed within the ParGeo computational geometry library [11] with graph algo-
rithms and data formats from the Graph Based Benchmark Suite [88, 89]. Users
of GeoGraph will be able to generate a variety of common geometric graphs, con-
struct efficient graph data structures, and run graph algorithms seamlessly within
one Python session.

We demonstrate how to use GeoGraph API to write four examples of applica-
tions that combine geometric graph construction with graph algorithms: connected
components on a filtered 𝑘-NN graph, hierarchical clustering on a 𝑘-NN graph, Eu-
clidean minimum spanning tree using a Delaunay triangulation, and shortest paths
on a 𝛽-skeleton graph. Experimentally, we show that running these algorithms
completely in memory using GeoGraph is 3.72–7.35x faster than that of having
to write the graph to disk and load it back into memory, which represents what

169

0 2 4 6 8 10
0

2

4

6

8

10

Figure 42: Example of running connected components on the 3-NN graph of a 2-
dimensional point data set, where edges with weight greater than 3.2 are filtered out.
The vertices of each color correspond to a connected component.

users would have to do with existing tools. We also compare with Higra [188], an
existing library that supports graph algorithms and geometric graph construction
using SciPy [233] and scikit-learn [187]. Higra focuses on hierarchical clustering, and
therefore supports a narrower set of algorithms than GeoGraph. We show that Ge-
oGraph achieves 7.5–94.57x speedups over Higra. Our code is publicly available at
https://github.com/ParAlg/GeoGraph.

Examples of using the API

In this section, we illustrate some examples of using GeoGraph to run graph algo-
rithms on graphs constructed from a geometric data set. We present some visualiza-
tions of the outputs on a small data set.

A good example is to consider applying graph clustering algorithms to geometric
graphs. For example, consider computing the 𝑘-NN graph of a point set, generating
the symmetrized (undirected) graph by making each directed edge bi-directional, and
then applying a parallel connected components algorithm to this graph. To remove
noise and produce more meaningful clusters, we can filter edges with weight larger
than a certain value. The following code shows how to run connected components
on a 3-NN graph that filters the edges with weight greater than 3.2. We construct
a symmetrized graph data structure based on the 𝑘-NN edges, and then run the
connected components algorithm, which returns the component ID of the vertices.
A visualization of the components on a small data set is shown in Figure 42.

We also consider applying hierarchical graph clustering algorithms to an input
weighted graph. The output of these algorithms is usually a dendrogram representing

170

https://github.com/ParAlg/GeoGraph

0

1

2

3

4

Figure 43: Example of running complete-linkage clustering on the 3-NN graph of a
2-dimensional point data set. We show the output, a corresponding dendrogram.

the arrangement of clusters. Although efficient spatial hierarchical clustering algo-
rithms exist, an important advantage of using a graph-based hierarchical clustering
method is that the graph-based method can be run on a sparse geometric graph, like
a 𝑘-NN graph with a small value of 𝑘 or any of the spatial network graphs described
in section 9.3. By using an efficient graph-based hierarchical clustering method, like
a hierarchical version of the SCAN algorithm [228], or a graph-based agglomerative
clustering algorithm, we can potentially significantly outperform classic approaches
that only use the input point set [174, 147]. The following code shows how to run
complete-linkage clustering on a 3-NN graph. We construct a symmetric graph based
on the 𝑘-NN edges, and then run the clustering algorithm on the graph, which re-
turns a hierarchy corresponding to a dendrogram. A visualization of the dendrogram
is shown in Figure 43.

A Euclidean minimum spanning tree (EMST) on a point data set has various
applications, including being used in single-linkage clustering [113], network place-
ment optimization [237], and approximating the Euclidean traveling salesman prob-
lem [231]. A well-known fact is that the EMST is a subset of the Delaunay trian-
gulation of a graph [142]. We consider generating a graph containing edges of the
Delaunay triangulation, and then passing the graph to a minimum spanning tree
algorithm in GBBS, which is shown in the following code. A visualization of the
minimum spanning tree on a small data set is shown in Figure 44.

Finally, computing shortest paths on transportation and infrastructure networks
is commonly used for planning [32]. These networks can be generated by constructing
spatial networks on geometric data. We consider running the ∆-stepping single-
source shortest paths algorithm [172] on the 𝛽-skeleton of a point set. The following
code shows running the ∆-stepping algorithm with source vertex 0 and ∆ = 0.01 on

171

0 2 4 6 8 10
0

2

4

6

8

10

Figure 44: Example of running minimum spanning tree on the Delaunay triangula-
tion graph of a 2-dimensional point data set. The edges of the minimum spanning
tree are shown in red.

a 𝛽-skeleton graph with 𝛽 = 2 (the relative neighborhood graph).

Benchmarking

In this section, we benchmark the performance of GeoGraph on the four examples in
section 9.5. Our implementations are all parallel, except for complete-linkage clus-
tering, whose parallelization is a work in progress. We compare with Higra [188]
(version 0.6.4) for computing a hierarchical clustering on a 𝑘-NN graph and min-
imum spanning tree on the Delaunay graph (they do not support the other two
examples). The Higra framework has a Python interface, and calls the SciPy [233]
and scikit-learn [187] libraries serially to construct geometric graphs. In addition,
to demonstrate the advantage of running graph generation and graph algorithms in
memory without transferring intermediate data to and from disk, we compare with
a version of GeoGraph where the edges generated are first written to disk and then
loaded back into memory (GeoGraph-Disk).

We perform all of our experiments on a c5.18xlarge instance on Amazon EC2.
The instance has 2 × Intel Xeon Platinum 8124M (3.00GHz) CPUs for a total of 36
cores with two-way hyper-threading, and 144 GB of RAM. The storage uses Amazon
EBS with a General Purpose SSD. We use two synthetic 2-dimensional data sets,
each with 10 million points. We generate the blobs data set using scikit-learn’s [187]
generator, which produces samples from isotropic Gaussian blobs with varying vari-
ances. We also use a uniform data set consisting of data points generated uniformly
at random in a square of side length 10.

In Figure 45, we show the running times of the methods on the four examples.

172

KNN+CC KNN+CLINK Delaunay+MST Skeleton+SSSP

101

102

103

R
u

n
n

in
g

T
im

es
(S

ec
o

n
d

s)

555

107 117 129 100

46.3 42.4 41.7
66.9 76.6 88 69.8

6.3 5.87
9.32

(Data set: blobs - 10 million) Values on top of bars display running times in seconds.

Higra

GeoGraph-Disk(T1)

GeoGraph-Disk(T36h)

GeoGraph(T1)

GeoGraph(T36h)

KNN+CC KNN+CLINK Delaunay+MST Skeleton+SSSP

101

102

103

R
u

n
n

in
g

T
im

es
(S

ec
o

n
d

s)

531

105 115 122 101

38.2 41.6
29.7

64.4 73.6 86.4 68.6

5.6 5.98
7.99

(Data set: uniform - 10 million) Values on top of bars display running times in seconds.

Higra

GeoGraph-Disk(T1)

GeoGraph-Disk(T36h)

GeoGraph(T1)

GeoGraph(T36h)

Figure 45: Comparison between GeoGraph, GeoGraph with disk I/O, and Higra.
T1 corresponds to the serial time and T36h corresponds to the parallel time on 36
cores with hyper-threading. KNN+CC is connected components on the 3-NN graph;
KNN+CLINK is complete-linkage clustering on the 3-NN graph; Delaunay+MST
is minimum spanning tree on the Delaunay graph; and Skeleton+SSSP is Delta-
stepping on the 2-skeleton with Delta set to 0.01. The running time in seconds is
displayed at the top of each bar.

Using 36-cores with hyper-threading, GeoGraph achieves 7.49x–14.99x self-relative
speedup. Compared with the baseline that writes the graph to disk and loads it back
into memory, GeoGraph achieves 3.72–7.35x speedup.8

Compared to Higra, our minimum spanning tree computation on the Delaunay
graph is 104–112x faster. This is due to GeoGraph supporting faster graph generation
and a more optimized minimum spanning tree algorithm. We encountered internal
errors in Higra when computing the 𝑘-NN graph and complete-linkage clustering on
the data sets with 10 million points. Therefore, we also tested Higra on smaller
data sets with 100 thousand points, drawn from the same distributions. On 36 cores
with hyper-threading, Higra takes 1.53 and 1.58 seconds for the blobs and uniform
data sets, respectively, while GeoGraph takes 0.204 and 0.207 seconds. Overall, our
graph generation is 11.4–112.9x faster than Higra while our graph algorithms are
6.63–13.69x faster. While Higra generates graphs by calling the Python libraries

8The disk I/O times varied across runs, likely due to the nondeterminism of Amazon EBS.

173

SciPy for the Delaunay graph and scikit-learn for the 𝑘-NN graph serially, we use
optimized parallel C++ implementations to convert geometric data sets to graphs.
Overall, GeoGraph is 7.5–94.57x faster than Higra.

174

Part IV

Conclusion and Future Work

175

10 Conclusion

This thesis has demonstrated the effectiveness of parallel shared-memory multi-core
algorithms, implementations, and frameworks in efficiently processing large-scale spa-
tial clustering and computational geometry problems both in theory and practice.
We have designed and implemented a variety of parallel algorithms for spatial cluster-
ing, including exact and approximate DBSCAN as well as HDBSCAN* and EMST.
Our experimental results showed that our proposed algorithms achieve significant
speedup over existing sequential and parallel algorithms, enabling efficient process-
ing of large-scale datasets.

In addition to spatial clustering, we have also contributed to several computa-
tional geometry problems, such as convex hull, smallest enclosing ball, and dynamic
closest pair. These contributions further showcased the potential for parallel shared-
memory multi-core algorithms to improve performance in various areas of computa-
tional geometry.

Through working on this thesis, we encountered challenges associated with bridg-
ing the gap between the theory and practice. In our proposed algorithms, oftentimes
the algorithm derived from theory suffers from sub-optimal performance in practice.
To address this, we proposed practical optimizations to improve these algorithms’
speed and memory efficiency. While we found that theoretical analysis does not al-
ways capture all the complexities of a real machine, it pointed us in the right direction
where we were able to derive efficient implementations.

In addition to algorithms, we have introduced the ParGeo library for parallel
computational geometry. This library provides a comprehensive set of parallel algo-
rithms for geometric problems and data structures, along with a collection of geomet-
ric graph generators. ParGeo serves as a valuable resource for researchers working
with geometric data across various domains. We have also introduced a parallel grid
clustering framework, which enables efficient implementation of various grid-based
clustering algorithms.

In conclusion, this thesis has demonstrated that parallel shared-memory multi-
core machines offer an ideal balance between programmability and efficiency for
tackling large-scale spatial data processing challenges in both spatial clustering and
computational geometry domains. The presented algorithms, implementations, and
frameworks can significantly improve computational performance while maintaining
theoretical efficiency. As the demand for faster processing speeds continues to grow

176

alongside increasing data set sizes, our work provides valuable insights into harnessing
the power of parallel shared-memory multi-core machines to address these challenges
effectively.

177

11 Future Work

This thesis has demonstrated the effectiveness of parallel shared-memory multi-core
algorithms, implementations, and frameworks in efficiently processing large-scale spa-
tial clustering and computational geometry problems. However, there remain several
avenues for future work to further enhance the capabilities of these systems.

First, due to the diverse range of computing resources available today with vary-
ing performance characteristics, it is crucial for future systems to support efficient
processing on different types of hardware, including multicore CPUs, GPUs, dis-
tributed clusters, disks, and domain-specific accelerators. In particular, there are
many opportunities in implementing the algorithms proposed in this thesis on gen-
eral purpose GPUs.

Second, dynamic updates to input data sets (point insertions, deletions, or mod-
ifications) also presents opportunities for future work. Systems should be able to
efficiently update associated data structures and algorithm outputs in parallel.

Third, we are interested in using our geometric graph processing framework to
study algorithms and applications in geometry that can benefit from efficient graph
algorithms internally. Examples include motion planning algorithms that require
computing the shortest path on a visibility graph [84], and geometric clustering
algorithms like DBSCAN [95, 239] and hierarchical spatial clustering [61, 244], which
rely on underlying connected components or minimum spanning tree algorithms.
Investigating the interaction between geometric data processing and graph processing
within these applications highlights the need for a unified framework.

Fourth, designing efficient graph construction algorithms for high-dimensional
datasets is an important research direction. Approximate 𝑘-NN graph construction
methods have applications in data mining and information retrieval [71, 52, 221, 101,
169, 91]. Studying how different graph construction methods affect the quality of
downstream tasks will provide valuable insights.

Finally, there is a challenge in developing efficient visualization techniques that
present both the input point set and geometric graph realizations while illustrating
algorithm outputs on both. Future systems should support parallel visualization
techniques that scale to large data sets.

178

Bibliography

[1] C++ implementation of the 3d quickhull algorithm. https://github.com/
akuukka/quickhull.

[2] Chem dataset. https://archive.ics.uci.edu/ml/datasets/Gas+sensor+
array+under+dynamic+gas+mixtures.

[3] Geolife dataset. https://www.microsoft.com/en-us/research/
publication/geolife-gps-trajectory-dataset-user-guide/.

[4] Header only 3d quickhull in c99. https://github.com/karimnaaji/
3d-quickhull.

[5] A header-only c implementation of the quickhull algorithm for building
n-dimensional convex hulls and delaunay meshes. https://github.com/
leomccormack/convhull_3d.

[6] Household dataset. https://archive.ics.uci.edu/ml/datasets/
individual+household+electric+power+consumption.

[7] Ht dataset. https://archive.ics.uci.edu/ml/datasets/Gas+sensors+
for+home+activity+monitoring.

[8] Qhull. http://www.qhull.org/.

[9] Quickhull3d: A robust 3d convex hull algorithm in java. https://www.cs.
ubc.ca/~lloyd/java/quickhull3d.html.

[10] The stanford 3d scanning repository. http://graphics.stanford.edu/data/
3Dscanrep/.

[11] Pargeo, an open source library for parallel algorithms in computational geom-
etry. https://github.com/wangyiqiu/pargeo, 2021.

179

https://github.com/akuukka/quickhull
https://github.com/akuukka/quickhull
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://github.com/karimnaaji/3d-quickhull
https://github.com/karimnaaji/3d-quickhull
https://github.com/leomccormack/convhull_3d
https://github.com/leomccormack/convhull_3d
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
https://archive.ics.uci.edu/ml/datasets/Gas+sensors+for+home+activity+monitoring
http://www.qhull.org/
https://www.cs.ubc.ca/~lloyd/java/quickhull3d.html
https://www.cs.ubc.ca/~lloyd/java/quickhull3d.html
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://github.com/wangyiqiu/pargeo

[12] Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo
Welzl. Euclidean minimum spanning trees and bichromatic closest pairs. In
Annual Symposium on Computational Geometry, pages 203–210, 1990.

[13] Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo
Welzl. Euclidean minimum spanning trees and bichromatic closest pairs. Dis-
crete & Computational Geometry, 6(3):407–422, September 1991.

[14] Pankaj K. Agarwal, Haim Kaplan, and Micha Sharir. Kinetic and dynamic
data structures for closest pair and all nearest neighbors. ACM Transactions
on Algorithms (TALG), 5(1):1–37, 2008.

[15] A. Aggarwal, B. Chazelle, L. Guibas, C. Ó’Dúnlaing, and C. Yap. Parallel
computational geometry. Algorithmica, 3(1):293–327, March 1988.

[16] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. Automatic subspace clustering of high dimensional data for data
mining applications. In Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’98, page 94–105, New York,
NY, USA, 1998. Association for Computing Machinery.

[17] Y. Akhremtsev and P. Sanders. Fast parallel operations on search trees.
In IEEE International Conference on High Performance Computing (HiPC),
pages 291–300, 2016.

[18] David J. Aldous and Julian Shun. Connected Spatial Networks over Random
Points and a Route-Length Statistic. Statistical Science, 25(3):275–288, 2010.

[19] Daichi Amagata and Takahiro Hara. Fast density-peaks clustering: multicore-
based parallelization approach. In Proceedings of the 2021 International Con-
ference on Management of Data, pages 49–61, 2021.

[20] Nancy M Amato and Franco P Preparata. The parallel 3d convex hull problem
revisited. International Journal of Computational Geometry & Applications,
2(02):163–173, 1992.

[21] Guilherme Andrade, Gabriel Ramos, Daniel Madeira, Rafael Sachetto, Renato
Ferreira, and Leonardo Rocha. G-DBSCAN: A GPU accelerated algorithm for
density-based clustering. Procedia Computer Science, 18:369 – 378, 2013.

180

[22] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander.
OPTICS: Ordering points to identify the clustering structure. In ACM Inter-
national Conference on Management of Data (SIGMOD), pages 49–60, 1999.

[23] Antonio Cavalcante Araujo Neto, Ticiana Linhares Coelho da Silva, Victor
Aguiar Evangelista de Farias, José Antonio F. Macêdo, and Javam de Cas-
tro Machado. G2P: A partitioning approach for processing DBSCAN with
MapReduce. In Web and Wireless Geographical Information Systems, pages
191–202, 2015.

[24] Domenica Arlia and Massimo Coppola. Experiments in parallel clustering with
dbscan. In European Conference on Parallel Processing (Euro-Par), pages 326–
331, 2001.

[25] Sunil Arya and David M. Mount. Approximate range searching. Computational
Geometry, 17(3):135 – 152, 2000.

[26] Sunil Arya and David M. Mount. A fast and simple algorithm for computing
approximate euclidean minimum spanning trees. In ACM-SIAM Symposium
on Discrete Algorithms, page 1220–1233, 2016.

[27] Mikhail J. Atallah and Michael T. Goodrich. Efficient parallel solutions to some
geometric problems. Journal of Parallel and Distributed Computing, 3(4):492–
507, 1986.

[28] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. ANN-
benchmarks: A benchmarking tool for approximate nearest neighbor algo-
rithms. Information Systems, 87:101374, 2020.

[29] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric
data structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

[30] Bahareh Banyassady and Wolfgang Mulzer. A simple analysis of Rabin’s algo-
rithm for finding closest pairs. European Workshop on Computational Geometry
(EuroCG), 2007.

[31] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull
algorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469–483, Decem-
ber 1996.

[32] Marc Barthelemy. Spatial networks. Physics Reports, 499(1-3):1–101, February
2011.

181

[33] Marc Barthelemy. January 2018.

[34] Vicente H.F. Batista, David L. Millman, Sylvain Pion, and Johannes Singler.
Parallel geometric algorithms for multi-core computers. Computational Geom-
etry, 43(8):663–677, 2010.

[35] Bentley and Friedman. Fast algorithms for constructing minimal spanning
trees in coordinate spaces. IEEE Transactions on Computers, C-27(2):97–105,
February 1978.

[36] Jon L. Bentley. Multidimensional divide-and-conquer. Commun. ACM,
23(4):214–229, 1980.

[37] Jon L. Bentley and Michael I. Shamos. Divide-and-conquer in multidimensional
space. In ACM Symposium on Theory of Computing (STOC), pages 220–230,
1976.

[38] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, September 1975.

[39] Sergei N. Bespamyatnikh. An optimal algorithm for closest-pair maintenance.
Discrete & Computational Geometry, 19(2):175–195, 1998.

[40] Guy E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press,
1990.

[41] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. ParlayLib - a toolkit
for parallel algorithms on shared-memory multicore machines. In ACM Sym-
posium on Parallelism in Algorithms and Architectures, page 507–509, 2020.

[42] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel or-
dered sets. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 253–264, 2016.

[43] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun.
Internally deterministic parallel algorithms can be fast. In ACM SIGPLAN
Symposium on Proceedings of Principles and Practice of Parallel Programming
(PPoPP), pages 181–192, 2012.

[44] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. Low-depth
cache oblivious algorithms. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 189–199, 2010.

182

[45] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in random-
ized incremental algorithms. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 467–478, 2016.

[46] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Randomized incremen-
tal convex hull is highly parallel. In Proceedings of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures, page 103–115, 2020.

[47] Guy E. Blelloch and Bruce M. Maggs. Parallel algorithms. In The Computer
Science and Engineering Handbook, pages 277–315. 1997.

[48] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded com-
putations by work stealing. Journal of the ACM, 46(5):720–748, September
1999.

[49] Christian Böhm, Robert Noll, Claudia Plant, and Bianca Wackersreuther.
Density-based clustering using graphics processors. In ACM Conference on
Information and Knowledge Management, pages 661–670, 2009.

[50] B. Borah and D. K. Bhattacharyya. An improved sampling-based DBSCAN
for large spatial databases. In International Conference on Intelligent Sensing
and Information Processing, pages 92–96, 2004.

[51] Prosenjit Bose, Anil Maheshwari, Pat Morin, Jason Morrison, Michiel Smid,
and Jan Vahrenhold. Space-efficient geometric divide-and-conquer algorithms.
Computational Geometry, 37(3):209 – 227, 2007.

[52] Antoine Boutet, Anne-Marie Kermarrec, Nupur Mittal, and François Taïani.
Being prepared in a sparse world: the case of KNN graph construction. In
IEEE International Conference on Data Engineering, pages 241–252, 2016.

[53] S. Brecheisen, H. Kriegel, and M. Pfeifle. Efficient density-based clustering of
complex objects. In IEEE International Conference on Data Mining (ICDM),
pages 43–50, 2004.

[54] Stefan Brecheisen, Hans-Peter Kriegel, and Martin Pfeifle. Parallel density-
based clustering of complex objects. In Advances in Knowledge Discovery and
Data Mining (PAKDD), pages 179–188, 2006.

[55] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J.
ACM, 21(2):201–206, April 1974.

183

[56] Maria R. Brito, Edgar L. Chávez, Adolfo J. Quiroz, and Joseph E. Yukich.
Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier
detection. Statistics & Probability Letters, 35(1):33–42, 1997.

[57] Paul B Callahan. Optimal parallel all-nearest-neighbors using the well-
separated pair decomposition. In IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 332–340, 1993.

[58] Paul B. Callahan and S. Rao Kosaraju. Faster algorithms for some geometric
graph problems in higher dimensions. In ACM-SIAM Symposium on Discrete
Algorithms, pages 291–300, 1993.

[59] Paul B. Callahan and S. Rao Kosaraju. Algorithms for dynamic closest pair
and n-body potential fields. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), page 263–272, 1995.

[60] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential fields.
J. ACM, 42(1):67–90, 1995.

[61] Ricardo Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. Hierar-
chical density estimates for data clustering, visualization, and outlier detection.
ACM Trans. Knowl. Discov. Data, 10(1):5:1–5:51, July 2015.

[62] Jean Cardinal and David Eppstein. Lazy algorithms for dynamic closest pair
with arbitary distance measures. In Algorithm Engineering and Experiments
(ALENEX), 2004.

[63] Timothy M. Chan. Geometric applications of a randomized optimization tech-
nique. Discrete & Computational Geometry, 22(4):547–567, 1999.

[64] Timothy M. Chan. Dynamic generalized closest pair: Revisiting Eppstein’s
technique. In Symposium on Simplicity in Algorithms, pages 33–37, 2020.

[65] Chung-I Chang, Nancy P Lin, Nien-Yi Jan, et al. An axis-shifted grid-
clustering algorithm. Journal of Applied Science and Engineering, 12(2):183–
192, 2009.

[66] Samidh Chatterjee, Michael Connor, and Piyush Kumar. Geometric minimum
spanning trees with GeoFilterKruskal. In International Symposium on Exper-
imental Algorithms (SEA), volume 6049, pages 486–500, 2010.

184

[67] Edgar Chávez and Eric Sadit Tellez. Navigating k-nearest neighbor graphs
to solve nearest neighbor searches. In Advances in Pattern Recognition, pages
270–280, 2010.

[68] Bernard Chazelle. How to search in history. Information and control, 64(1-
3):77–99, 1985.

[69] Chun-Chieh Chen and Ming-Syan Chen. HiClus: Highly scalable density-based
clustering with heterogeneous cloud. Procedia Computer Science, 53:149 – 157,
2015.

[70] Danny Z Chen, Michiel Smid, and Bin Xu. Geometric algorithms for density-
based data clustering. International Journal of Computational Geometry &
Applications, 15(03):239–260, 2005.

[71] Jie Chen, Haw-ren Fang, and Yousef Saad. Fast approximate kNN graph
construction for high dimensional data via recursive Lanczos bisection. Journal
of Machine Learning Research, 10(9), 2009.

[72] Xiaoming Chen, Wanquan Liu, Huining Qiu, and Jianhuang Lai. APSCAN: A
parameter free algorithm for clustering. Pattern Recognition Letters, 32(7):973
– 986, 2011.

[73] Kenneth L Clarkson. A randomized algorithm for closest-point queries. SIAM
Journal on Computing, 17(4):830–847, 1988.

[74] Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in
computational geometry, ii. Discrete Comput. Geom, 4:387–421, 1989.

[75] Richard Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785, August
1988.

[76] Richard Cole, Philip N. Klein, and Robert E. Tarjan. Finding minimum span-
ning forests in logarithmic time and linear work using random sampling. In
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 243–
250, 1996.

[77] Massimo Coppola and Marco Vanneschi. High-performance data mining with
skeleton-based structured parallel programming. Parallel Comput., 28(5):793–
813, May 2002.

185

[78] I. Cordova and T. Moh. DBSCAN on resilient distributed datasets. In In-
ternational Conference on High Performance Computing Simulation (HPCS),
pages 531–540, 2015.

[79] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[80] CriteoLabs. Terabyte click logs, 2013.

[81] Ryan R. Curtin, Marcus Edel, Mikhail Lozhnikov, Yannis Mentekidis, Sumedh
Ghaisas, and Shangtong Zhang. mlpack 3: a fast, flexible machine learning
library. Journal of Open Source Software, 3:726, 2018.

[82] N. Dadoun and D.G. Kirkpatrick. Parallel construction of subdivision hierar-
chies. Journal of Computer and System Sciences, 39(2):153–165, 1989.

[83] B. Dai and I. Lin. Efficient map/reduce-based DBSCAN algorithm with opti-
mized data partition. In IEEE International Conference on Cloud Computing,
pages 59–66, 2012.

[84] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Com-
putational Geometry: Algorithms and Applications. Springer-Verlag, 2008.

[85] Mark de Berg, Ade Gunawan, and Marcel Roeloffzen. Faster DB-scan and
HDB-scan in low-dimensional euclidean spaces. In International Symposium
on Algorithms and Computation (ISAAC), pages 25:1–25:13, 2017.

[86] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-Verlag, sec-
ond edition, 2000.

[87] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest
Bassous, and Andre R LeBlanc. Design of ion-implanted mosfet’s with very
small physical dimensions. IEEE Journal of solid-state circuits, 9(5):256–268,
1974.

[88] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient
parallel graph algorithms can be fast and scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 293–304, 2018.

186

[89] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun.
The graph based benchmark suite (GBBS). In Proceedings of the 3rd Joint
International Workshop on Graph Data Management Experiences & Systems
and Network Data Analytics, 2020.

[90] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Pentto-
nen. A reliable randomized algorithm for the closest-pair problem. J. Algo-
rithms, 25(1):19–51, 1997.

[91] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph
construction for generic similarity measures. In International Conference on
World Wide Web, page 577–586, 2011.

[92] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[93] Y. El-Sonbaty, M. A. Ismail, and M. Farouk. An efficient density based cluster-
ing algorithm for large databases. In IEEE International Conference on Tools
with Artificial Intelligence, pages 673–677, 2004.

[94] David Eppstein. Fast hierarchical clustering and other applications of dynamic
closest pairs. J. Experimental Algorithmics, 5:1–es, 2000.

[95] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters a density-based algorithm for discover-
ing clusters in large spatial databases with noise. In International Conference
on Knowledge Discovery and Data Mining (KDD), pages 226–231, 1996.

[96] Efi Fogel and Monique Teillaud. The computational geometry algorithms li-
brary CGAL. ACM Commun. Comput. Algebra, 49(1):10–12, June 2015.

[97] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco. Reservoir
computing compensates slow response of chemosensor arrays exposed to fast
varying gas concentrations in continuous monitoring. Sensors and Actuators
B: Chemical, 215:618–629, 2015.

[98] Steve Fortune and John Hopcroft. A note on rabin’s nearest-neighbor algo-
rithm. Information Processing Letters, 8(1):20–23, 1979.

[99] Pasi Franti, Olli Virmajoki, and Ville Hautamaki. Fast agglomerative clustering
using a k-nearest neighbor graph. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(11):1875–1881, 2006.

187

[100] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM Transactions on
Mathematical Software, 3(3):209–226, July 1976.

[101] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate near-
est neighbor search with the navigating spreading-out graph. Proc. VLDB
Endow., 12(5):461–474, January 2019.

[102] Xiufen Fu, Yaguang Wang, Yanna Ge, Peiwen Chen, and Shaohua Teng. Re-
search and application of dbscan algorithm based on hadoop platform. In
Pervasive Computing and the Networked World, pages 73–87, 2014.

[103] H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geom-
etry problems. In ACM Symposium on Theory of Computing (STOC), pages
135–143, 1984.

[104] Junhao Gan and Yufei Tao. On the hardness and approximation of euclidean
DBSCAN. ACM Trans. Database Syst., 42(3):14:1–14:45, 2017.

[105] Junhao Gan and Yufei Tao. Fast Euclidean OPTICS with bounded precision
in low dimensional space. In ACM SIGMOD International Conference on
Management of Data, pages 1067–1082, 2018.

[106] Mingcen Gao, Thanh-Tung Cao, Ashwin Nanjappa, Tiow-Seng Tan, and Zhiy-
ong Huang. Ghull: A gpu algorithm for 3d convex hull. ACM Trans. Math.
Softw., 40(1), October 2013.

[107] B. Gärtner. Fast and robust smallest enclosing balls. In ESA, 1999.

[108] Hillel Gazit. An optimal randomized parallel algorithm for finding connected
components in a graph. SIAM J. Comput., 20(6):1046–1067, December 1991.

[109] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time
parallel algorithms. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 698–710, 1991.

[110] Mordecai Golin, Rajeev Raman, Christian Schwarz, and Michiel Smid. Simple
randomized algorithms for closest pair problems. Nordic J. of Computing,
2(1):3–27, March 1995.

[111] Mordecai Golin, Rajeev Raman, Christian Schwarz, and Michiel Smid. Ran-
domized data structures for the dynamic closest-pair problem. SIAM J. on
Computing, 27(4):1036–1072, 1998.

188

[112] Markus Götz, Christian Bodenstein, and Morris Riedel. HPDBSCAN: Highly
parallel DBSCAN. In Workshop on Machine Learning in High-Performance
Computing Environments, pages 2:1–2:10, 2015.

[113] John C. Gower and Gavin J. S. Ross. Minimum spanning trees and single
linkage cluster analysis. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 18(1):54–64, 1969.

[114] Jonathan S. Greenfield. A proof for a quickhull algorithm. 1990.

[115] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. A top-down parallel
semisort. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 24–34, 2015.

[116] Joachim Gudmundsson, Mikael Hammar, and Marc van Kreveld. Higher order
delaunay triangulations. Computational Geometry, 23(1):85–98, 2002.

[117] Ade Gunawan. A faster algorithm for DBSCAN, 2013. Master’s thesis, Eind-
hoven University of Technology.

[118] M. Haklay and P. Weber. OpenStreetMap: User-generated street maps. IEEE
Pervasive Computing, 7(4):12–18, October 2008.

[119] Shay Halperin and Uri Zwick. An optimal randomized logarithmic time con-
nectivity algorithm for the EREW PRAM (extended abstract). In ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA), pages 1–10, 1994.

[120] Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms
for finding spanning forests. Journal of Algorithms, 39(1):1 – 46, 2001.

[121] D. Han, A. Agrawal, W. Liao, and A. Choudhary. A novel scalable DBSCAN
algorithm with Spark. In IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW), pages 1393–1402, 2016.

[122] Nick Harvey. CPSC 536N: Randomized Algorithms, Lecture 4. University of
British Columbia, 2015.

[123] Ville Hautamaki, Ismo Karkkainen, and Pasi Franti. Outlier detection using k-
nearest neighbour graph. In International Conference on Pattern Recognition,
volume 3, 2004.

189

[124] Qing He, Hai Xia Gu, Qin Wei, and Xu Wang. A novel DBSCAN based on
binary local sensitive hashing and binary-KNN representation. Adv. in MM,
2017:3695323:1–3695323:9, 2017.

[125] Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan.
MR-DBSCAN: a scalable mapreduce-based DBSCAN algorithm for heavily
skewed data. Frontiers of Computer Science, 8(1):83–99, February 2014.

[126] William Hendrix, Md Mostofa Ali Patwary, Ankit Agrawal, Wei-keng Liao, and
Alok Choudhary. Parallel hierarchical clustering on shared memory platforms.
In International Conference on High Performance Computing, pages 1–9, 2012.

[127] Alexander Hinneburg and Daniel A. Keim. An efficient approach to clustering
in large multimedia databases with noise. In Proceedings of the Fourth Inter-
national Conference on Knowledge Discovery and Data Mining, KDD’98, page
58–65. AAAI Press, 1998.

[128] Klaus Hinrichs, Jurg Nievergelt, and Peter Schorn. Plane-sweep solves the
closest pair problem elegantly. Information Processing Letters, 26(5):255–261,
1988.

[129] Qi Hu, Nail A Gumerov, and Ramani Duraiswami. Scalable fast multipole
methods on distributed heterogeneous architectures. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 1–12, 2011.

[130] Qi Hu, Nail A Gumerov, and Ramani Duraiswami. Gpu accelerated fast multi-
pole methods for vortex particle simulation. Computers & Fluids, 88:857–865,
2013.

[131] Xiaojuan Hu, Lei Liu, Ningjia Qiu, Di Yang, and Meng Li. A MapReduce-based
improvement algorithm for DBSCAN. Journal of Algorithms & Computational
Technology, 12(1):53–61, 2018.

[132] Xu Hu, Jun Huang, and Minghui Qiu. A communication efficient parallel
DBSCAN algorithm based on parameter server. In ACM on Conference on
Information and Knowledge Management (CIKM), pages 2107–2110, 2017.

[133] Fang Huang, Qiang Zhu, Ji Zhou, Jian Tao, Xiaocheng Zhou, Du Jin, Xicheng
Tan, and Lizhe Wang. Research on the parallelization of the DBSCAN clus-
tering algorithm for spatial data mining based on the Spark platform. Remote
Sensing, 9(12), 2017.

190

[134] M. Huang and F. Bian. A grid and density based fast spatial clustering al-
gorithm. In International Conference on Artificial Intelligence and Computa-
tional Intelligence, volume 4, pages 260–263, 2009.

[135] Ramón Huerta, Thiago Schiavo Mosqueiro, Jordi Fonollosa, Nikolai F. Rulkov,
and Irene Rodríguez-Luján. Online humidity and temperature decorrelation of
chemical sensors for continuous monitoring. volume 157, pages 169–176, 2016.

[136] Intel. Cilk++ programming language, 2010. http://software.intel.com/
en-us/articles/intel-cilk.

[137] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++ geometry pro-
cessing library, 2018. https://libigl.github.io/.

[138] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley Professional,
1992.

[139] Jennifer Jang and Heinrich Jiang. DBSCAN++: Towards fast and scalable
density clustering. In International Conference on Machine Learning (ICML),
volume 97, pages 3019–3029, 2019.

[140] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. Dbdc: Density based
distributed clustering. In International Conference on Extending Database
Technology (EDBT), pages 88–105, 2004.

[141] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. Scalable density-based
distributed clustering. In European Conference on Principles and Practice of
Knowledge Discovery in Databases, pages 231–244, 2004.

[142] Jerzy W. Jaromczyk and Godfried T. Toussaint. Relative neighborhood graphs
and their relatives. Proceedings of the IEEE, 80(9):1502–1517, 1992.

[143] Hua Jiang, Jing Li, Shenghe Yi, Xiangyang Wang, and Xin Hu. A new hy-
brid method based on partitioning-based DBSCAN and ant clustering. Expert
Systems with Applications, 38(8):9373 – 9381, 2011.

[144] Karin Kailing, Hans-Peter Kriegel, and Peer Kröger. Density-connected sub-
space clustering for high-dimensional data. In SIAM International Conference
on Data Mining, pages 246–256, 2004.

191

http://software.intel.com/en-us/articles/intel-cilk
http://software.intel.com/en-us/articles/intel-cilk

[145] Linus Källberg and Thomas Larsson. Accelerated computation of minimum
enclosing balls by gpu parallelization and distance filtering. In Proceedings
of SIGRAD 2014, Visual Computing, June 12-13, 2014, Göteborg, Sweden,
number 106, pages 57–65. Linköping University Electronic Press, 2014.

[146] Sanjiv Kapoor and Michiel Smid. New techniques for exact and approximate
dynamic closest-point problems. SIAM J. on Computing, 25(4):775–796, 1996.

[147] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierarchical
clustering using dynamic modeling. Computer, 32(8):68–75, 1999.

[148] Samir Khuller and Yossi Matias. A simple randomized sieve algorithm for the
closest-pair problem. Information and Computation, 118(1):34–37, April 1995.

[149] Jeong-Hun Kim, Jong-Hyeok Choi, Kwan-Hee Yoo, and Aziz Nasridinov. AA-
DBSCAN: an approximate adaptive DBSCAN for finding clusters with varying
densities. The Journal of Supercomputing, 75(1):142–169, January 2019.

[150] Younghoon Kim, Kyuseok Shim, Min-Soeng Kim, and June Sup Lee.
DBCURE-MR: An efficient density-based clustering algorithm for large data
using mapreduce. Information Systems, 42:15 – 35, 2014.

[151] David G. Kirkpatrick and John D. Radke. A framework for computational
morphology. In Computational Geometry, volume 2 of Machine Intelligence
and Pattern Recognition, pages 217–248. 1985.

[152] Marzena Kryszkiewicz and Piotr Lasek. TI-DBSCAN: Clustering with DB-
SCAN by means of the triangle inequality. In Rough Sets and Current Trends
in Computing, pages 60–69, 2010.

[153] YongChul Kwon, Dylan Nunley, Jeffrey P. Gardner, Magdalena Balazinska,
Bill Howe, and Sarah Loebman. Scalable clustering algorithm for N-body
simulations in a shared-nothing cluster. In Scientific and Statistical Database
Management, pages 132–150, 2010.

[154] Thomas Larsson, Gabriele Capannini, and Linus Källberg. Parallel computa-
tion of optimal enclosing balls by iterative orthant scan. Computers & Graph-
ics, 56:1–10, 2016.

[155] Der-Tsai Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE
Transactions on Computers, 100(6):478–487, 1982.

192

[156] Charles E Leiserson and Ilya B Mirman. How to survive the multicore software
revolution (or at least survive the hype). Cilk Arts, 1:11, 2008.

[157] Hans-Peter Lenhof and Michiel Smid. Sequential and parallel algorithms for
the 𝑘 closest pairs problem. International J. of Computational Geometry &
Applications, 5(03):273–288, 1995.

[158] Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in
network intrusion detection using clusters. In Proceedings of the Twenty-eighth
Australasian conference on Computer Science-Volume 38, pages 333–342, 2005.

[159] B. Liu. A fast density-based clustering algorithm for large databases. In In-
ternational Conference on Machine Learning and Cybernetics, pages 996–1000,
2006.

[160] Małgorzata Lucińska and Sławomir T. Wierzchoń. Spectral clustering based
on k-nearest neighbor graph. In Computer Information Systems and Industrial
Management, pages 254–265, 2012.

[161] Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi, and Laura Ricci. NG-
DBSCAN: Scalable density-based clustering for arbitrary data. Proc. VLDB
Endow., 10(3):157–168, November 2016.

[162] G. Luo, X. Luo, T. F. Gooch, L. Tian, and K. Qin. A parallel DBSCAN
algorithm based on Spark. In IEEE International Conferences on Big Data
and Cloud Computing, pages 548–553, 2016.

[163] Eden WM Ma and Tommy WS Chow. A new shifting grid clustering algorithm.
Pattern recognition, 37(3):503–514, 2004.

[164] Philip D. MacKenzie and Quentin F. Stout. Ultrafast expected time parallel
algorithms. J. Algorithms, 26(1):1–33, 1998.

[165] K. Mahesh Kumar and A. Rama Mohan Reddy. A fast DBSCAN clustering
algorithm by accelerating neighbor searching using groups method. Pattern
Recogn., 58(C):39–48, October 2016.

[166] Anil Maheshwari, Wolfgang Mulzer, and Michiel Smid. A simple random-
ized 𝑂(𝑛 log 𝑛)–time closest-pair algorithm in doubling metrics. arXiv preprint
arXiv:2004.05883, 2020.

193

[167] S. Mahran and K. Mahar. Using grid for accelerating density-based clustering.
In IEEE International Conference on Computer and Information Technology,
pages 35–40, July 2008.

[168] Markus Maier, Matthias Hein, and Ulrike von Luxburg. Optimal construc-
tion of k-nearest-neighbor graphs for identifying noisy clusters. Theoretical
Computer Science, 410(19):1749–1764, 2009.

[169] Yury A. Malkov and Dmitry A. Yashunin. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 42(4):824–836,
2020.

[170] William March, Parikshit Ram, and Alexander Gray. Fast Euclidean mini-
mum spanning tree: Algorithm, analysis, and applications. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 603–612, 2010.

[171] Leland McInnes and John Healy. Accelerated hierarchical density clustering.
arXiv preprint arXiv:1705.07321, 2017.

[172] Ulrich Meyer and Peter Sanders. ∆-stepping: a parallelizable shortest path
algorithm. J. Algorithms, 49(1):114–152, 2003.

[173] Henning Meyerhenke. Constructing higher-order Voronoi diagrams in parallel.
In European Workshop on Computational Geometry, pages 123–126, 2005.

[174] Nicholas Monath, Avinava Dubey, Guru Guruganesh, Manzil Zaheer, Amr
Ahmed, Andrew McCallum, Gokhan Mergen, Marc Najork, Mert Terzihan,
Bryon Tjanaka, Yuan Wang, and Yuchen Wu. Scalable bottom-up hierarchical
clustering. arXiv preprint arXiv:2010.11821, 2020.

[175] Gordon E Moore. Cramming more components onto integrated circuits. Pro-
ceedings of the IEEE, 86(1):82–85, 1998.

[176] Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms,
2011.

[177] S. Näher and Daniel Schmitt. A framework for multi-core implementations of
divide and conquer algorithms and its application to the convex hull problem.
In CCCG, 2008.

194

[178] Giri Narasimhan and Martin Zachariasen. Geometric minimum spanning trees
via well-separated pair decompositions. ACM Journal of Experimental Algo-
rithmics, 6:6, 2001.

[179] Clark F. Olson. Parallel algorithms for hierarchical clustering. Parallel Com-
puting, 21(8):1313 – 1325, 1995.

[180] Vitaly Osipov, Peter Sanders, and Johannes Singler. The Filter-Kruskal min-
imum spanning tree algorithm. In Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 52–61, 2009.

[181] Mark H. Overmars. Dynamization of order decomposable set problems. J.
Algorithms, 2(3):245–260, 1981.

[182] Rodrigo Paredes and Edgar Chávez. Using the k-nearest neighbor graph for
proximity searching in metric spaces. In String Processing and Information
Retrieval, pages 127–138, 2005.

[183] M. M. A. Patwary, D. Palsetia, A. Agrawal, W. k. Liao, F. Manne, and
A. Choudhary. A new scalable parallel DBSCAN algorithm using the disjoint-
set data structure. In ACM/IEEE International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pages 62:1–62:11,
2012.

[184] M. M. A. Patwary, D. Palsetia, A. Agrawal, W. K. Liao, F. Manne, and
A. Choudhary. Scalable parallel OPTICS data clustering using graph algo-
rithmic techniques. In ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pages 49:1–49:12,
2013.

[185] Md. Mostofa Ali Patwary, Suren Byna, Nadathur Rajagopalan Satish,
Narayanan Sundaram, Zarija Lukić, Vadim Roytershteyn, Michael J. Ander-
son, Yushu Yao, Prabhat, and Pradeep Dubey. BD-CATS: Big data clustering
at trillion particle scale. In ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC), pages 6:1–6:12,
2015.

[186] Md. Mostofa Ali Patwary, Nadathur Satish, Narayanan Sundaram, Fredrik
Manne, Salman Habib, and Pradeep Dubey. PARDICLE: Parallel approximate
density-based clustering. In ACM/IEEE International Conference for High

195

Performance Computing, Networking, Storage and Analysis (SC), pages 560–
571, 2014.

[187] Fabian Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[188] Benjamin Perret, Giovanni Chierchia, Jean Cousty, Silvio J. Guimaraes, Yukiko
Kenmochi, and Laurent Najman. Higra: Hierarchical graph analysis. Soft-
wareX, 10:100335, 2019.

[189] Seth Pettie and Vijaya Ramachandran. A randomized time-work optimal par-
allel algorithm for finding a minimum spanning forest. SIAM J. Comput.,
31(6):1879–1895, 2002.

[190] Maria Cristina Pinotti and Geppino Pucci. Parallel algorithms for priority
queue operations. Theoretical Computer Science (TCS), 148(1):171–180, 1995.

[191] Madhav Poudel and Michael Gowanlock. Cuda-dclust+: Revisiting early gpu-
accelerated dbscan clustering designs. In 2021 IEEE 28th International Con-
ference on High Performance Computing, Data, and Analytics (HiPC), pages
354–363. IEEE, 2021.

[192] F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and
three dimensions. Commun. ACM, 20(2):87–93, February 1977.

[193] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, 1985.

[194] Franco P. Preparata and Michael I. Shamos. Computational Geometry.
Springer, 1990.

[195] Michael O. Rabin. Probabilistic algorithms. 1976.

[196] John Radke and Anders Flodmark. The use of spatial decompositions for
constructing street centerlines. Geographic Information Sciences, 5(1):15–23,
1999.

[197] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized
parallel sorting algorithms. SIAM J. Comput., 18(3):594–607, 1989.

[198] John H. Reif and Sandeep Sen. Optimal randomized parallel algorithms for
computational geometry. Algorithmica, 7(1):91–117, June 1992.

196

[199] Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of
density peaks. science, 344(6191):1492–1496, 2014.

[200] Andrei Sorin Sabau. Survey of clustering based financial fraud detection re-
search. Informatica Economica, 16(1):110, 2012.

[201] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. Density-based
clustering in spatial databases: The algorithm gdbscan and its applications.
Data Mining and Knowledge Discovery, 2(2):169–194, June 1998.

[202] Jörg Sander, Xuejie Qin, Zhiyong Lu, Nan Niu, and Alex Kovarsky. Automatic
extraction of clusters from hierarchical clustering representations. In Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pages 75–87, 2003.

[203] J. Santos, T. Syed, M. Coelho Naldi, R. J. G. B. Campello, and J. Sander.
Hierarchical density-based clustering using mapreduce. IEEE Transactions on
Big Data, 2019.

[204] A. Sarma, P. Goyal, S. Kumari, A. Wani, J. S. Challa, S. Islam, and N. Goyal.
𝜇dbscan: An exact scalable dbscan algorithm for big data exploiting spatial lo-
cality. In IEEE International Conference on Cluster Computing (CLUSTER),
pages 1–11, 2019.

[205] E. Schikuta. Grid-clustering: an efficient hierarchical clustering method for
very large data sets. In Proceedings of 13th International Conference on Pattern
Recognition, volume 2, pages 101–105 vol.2, 1996.

[206] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei
Xu. DBSCAN revisited, revisited: Why and how you should (still) use DB-
SCAN. ACM Trans. Database Syst., 42(3):19:1–19:21, July 2017.

[207] Christian Schwarz and Michiel Smid. An 𝑂(𝑛 log 𝑛 log log 𝑛) algorithm for the
on-line closest pair problem. In ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), SODA ’92, page 280–285, USA, 1992. Society for Industrial
and Applied Mathematics.

[208] Christian Schwarz, Michiel Smid, and Jack Snoeyink. An optimal algorithm
for the on-line closest-pair problem. Algorithmica, 12(1):18–29, 1994.

[209] Thomas B. Sebastian and Benjamin B. Kimia. Metric-based shape retrieval
in large databases. In Proceedings of the International Conference on Pattern
Recognition (ICPR), 2002.

197

[210] Michael Ian Shamos and Dan Hoey. Closest-point problems. In IEEE Sympo-
sium on Foundations of Computer Science, page 151–162, 1975.

[211] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for determinism.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 96–107, 2014.

[212] J. Shun and G. E. Blelloch. A simple parallel cartesian tree algorithm and its
application to parallel suffix tree construction. ACM Transactions on Parallel
Computing, 1(1):8:1–8:20, October 2014.

[213] Julian Shun. Shared-memory parallelism can be simple, fast, and scalable.
Morgan & Claypool, 2017.

[214] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons.
Reducing contention through priority updates. In ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages 152–163, 2013.

[215] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo
Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief announce-
ment: the Problem Based Benchmark Suite. In ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages 68–70, 2012.

[216] Michiel Smid. Maintaining the minimal distance of a point set in less than
linear time. In Algorithms Rev., pages 33–44, 1991.

[217] Michiel Smid. Maintaining the minimal distance of a point set in polylogarith-
mic time. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1–6, 1991.

[218] Hwanjun Song and Jae-Gil Lee. RP-DBSCAN: A superfast parallel DBSCAN
algorithm based on random partitioning. In ACM International Conference on
Management of Data (SIGMOD), pages 1173–1187, 2018.

[219] D Srikanth, Kishore Kothapalli, R Govindarajulu, and P Narayanan. Paral-
lelizing two dimensional convex hull on nvidia gpu and cell be. In International
Conference on High Performance Computing (HiPC), pages 1–5, 2009.

[220] Ayal Stein, Eran Geva, and Jihad El-Sana. Cudahull: Fast parallel 3d convex
hull on the gpu. Computers & Graphics, 36(4):265–271, 2012. Applications of
Geometry Processing.

198

[221] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravis-
hankar Krishnawamy, and Rohan Kadekodi. Rand-NSG: Fast accurate billion-
point nearest neighbor search on a single node. In Conference on Neural In-
formation Processing Systems, pages 13748–13758, 2019.

[222] Yihan Sun and Guy E. Blelloch. Parallel range, segment and rectangle queries
with augmented maps. In Algorithm Engineering and Experiments (ALENEX),
pages 159–173, 2019.

[223] Kenneth J. Supowit. New techniques for some dynamic closest-point and
farthest-point problems. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 84–90, 1990.

[224] Min Tang, Jie yi Zhao, Ruo feng Tong, and Dinesh Manocha. Gpu accelerated
convex hull computation. Computers & Graphics, 36(5):498–506, 2012.

[225] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319–
2323, 2000.

[226] Godfried T. Toussaint and Constantin Berzan. Proximity-graph instance-based
learning, support vector machines, and high dimensionality: An empirical com-
parison. In Machine Learning and Data Mining in Pattern Recognition, pages
222–236, 2012.

[227] Cheng-Fa Tsai and Chien-Tsung Wu. GF-DBSCAN: A new efficient and ef-
fective data clustering technique for large databases. In WSEAS International
Conference on Multimedia Systems & Signal Processing, pages 231–236, 2009.

[228] Tom Tseng, Laxman Dhulipala, and Julian Shun. Parallel index-based struc-
tural graph clustering and its approximation. In ACM SIGMOD International
Conference on Management of Data, 2021.

[229] Stanley Tzeng and John D Owens. Finding convex hulls using quickhull on the
gpu. arXiv preprint arXiv:1201.2936, 2012.

[230] O. Uncu, W. A. Gruver, D. B. Kotak, D. Sabaz, Z. Alibhai, and C. Ng. GRIDB-
SCAN: Grid density-based spatial clustering of applications with noise. In
IEEE International Conference on Systems, Man and Cybernetics, volume 4,
pages 2976–2981, 2006.

199

[231] Vijay V. Vazirani. Approximation Algorithms. Springer Publishing Company,
Incorporated, 2010.

[232] Remco C. Veltkamp. The 𝛾-neighborhood graph. Computational Geometry,
1(4):227–246, 1992.

[233] Pauli Virtanen et al. SciPy 1.0: fundamental algorithms for scientific comput-
ing in Python. Nature Methods, 17(3):261–272, 2020.

[234] Uzi Vishkin. Thinking in parallel: Some basic data-parallel algorithms and
techniques, 2010.

[235] P. Viswanath and V. Suresh Babu. Rough-DBSCAN: A fast hybrid den-
sity based clustering method for large data sets. Pattern Recognition Letters,
30(16):1477 – 1488, 2009.

[236] P. Viswanath and R. Pinkesh. l-DBSCAN : A fast hybrid density based clus-
tering method. In International Conference on Pattern Recognition (ICPR),
volume 1, pages 912–915, 2006.

[237] Peng-Jun Wan, Grucia Călinescu, Xiang-Yang Li, and Ophir Frieder.
Minimum-energy broadcasting in static ad hoc wireless networks. Wireless
Networks, 8(6):607–617, 2002.

[238] Wei Wang, Jiong Yang, and Richard R. Muntz. Sting: A statistical information
grid approach to spatial data mining. In Proceedings of the 23rd International
Conference on Very Large Data Bases, VLDB ’97, page 186–195, San Francisco,
CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[239] Yiqiu Wang, Yan Gu, and Julian Shun. Theoretically-efficient and practical
parallel DBSCAN. In ACM SIGMOD International Conference on Manage-
ment of Data, page 2555–2571, 2020.

[240] Yiqiu Wang, Rahul Yesantharao, Shangdi Yu, Laxman Dhulipala, Yan Gu, and
Julian Shun. ParGeo: A Library for Parallel Computational Geometry. In Shiri
Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th
Annual European Symposium on Algorithms (ESA 2022), volume 244 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 88:1–88:19, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

200

[241] Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. Ge-
ograph: A framework for graph processing on geometric data. SIGOPS Oper.
Syst. Rev., 55(1):38–46, June 2021.

[242] Yiqiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun. Par-
geo: a library for parallel computational geometry. In Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 450–452, 2022.

[243] Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. A Parallel Batch-Dynamic
Data Structure for the Closest Pair Problem. In Kevin Buchin and Éric Colin de
Verdière, editors, 37th International Symposium on Computational Geometry
(SoCG 2021), volume 189 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 60:1–60:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[244] Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. Fast parallel algorithms
for euclidean minimum spanning tree and hierarchical spatial clustering. In
ACM SIGMOD International Conference on Management of Data, 2021.

[245] Benjamin Welton, Evan Samanas, and Barton P. Miller. Mr. scan: Extreme
scale density-based clustering using a tree-based network of GPGPU nodes. In
ACM/IEEE International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC), pages 84:1–84:11, 2013.

[246] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results and
New Trends in Computer Science, pages 359–370, 1991.

[247] Peter Willett. Recent trends in hierarchic document clustering: A critical
review. Information Processing & Management, 24(5):577–597, 1988.

[248] Eden W.M. Ma and Tommy W.S. Chow. A new shifting grid clustering algo-
rithm. Pattern Recognition, 37(3):503–514, 2004.

[249] Yi-Pu Wu, Jin-Jiang Guo, and Xue-Jie Zhang. A linear DBSCAN algorithm
based on LSH. In International Conference on Machine Learning and Cyber-
netics, volume 5, pages 2608–2614, August 2007.

[250] Yan Xiang Fu, Wei Zhong Zhao, and Huifang Ma. Research on parallel DB-
SCAN algorithm design based on MapReduce. Advanced Materials Research,
301-303:1133–1138, July 2011.

201

[251] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. A fast parallel clustering
algorithm for large spatial databases. Data Mining and Knowledge Discovery,
3(3):263–290, September 1999.

[252] Ying Xu, Victor Olman, and Dong Xu. Minimum spanning trees for gene
expression data clustering. Genome Informatics, 12:24–33, February 2001.

[253] Zhao Yanchang and Song Junde. Gdilc: a grid-based density-isoline cluster-
ing algorithm. In 2001 International Conferences on Info-Tech and Info-Net.
Proceedings (Cat. No.01EX479), volume 3, pages 140–145 vol.3, 2001.

[254] Andrew Chi-Chih. Yao. On constructing minimum spanning trees in 𝑘-
dimensional spaces and related problems. SIAM Journal on Computing,
11(4):721–736, 1982.

[255] Rahul Yesantharao, Yiqiu Wang, Laxman Dhulipala, and Julian Shun. Parallel
batch-dynamic 𝑘 d-trees. arXiv preprint arXiv:2112.06188, 2021.

[256] Meichen Yu, Arjan Hillebrand, Prejaas Tewarie, Jil Meier, Bob van Dijk, Piet
Van Mieghem, and Cornelis Jan Stam. Hierarchical clustering in minimum
spanning trees. Chaos: An Interdisciplinary Journal of Nonlinear Science,
25(2):023107, 2015.

[257] Yanwei Yu, Jindong Zhao, Xiaodong Wang, Qin Wang, and Yonggang Zhang.
Cludoop: An efficient distributed density-based clustering for big data using
Hadoop. Int. J. Distrib. Sen. Netw., 2015:2:2–2:2, January 2015.

[258] Mingwei Zhao, Yang Liu, and Rongan Jiang. Research of wavecluster algorithm
in intrusion detection system. In 2008 International Conference on Computa-
tional Intelligence and Security, volume 1, pages 259–263, 2008.

[259] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. Learning transportation
mode from raw gps data for geographic applications on the web. In Interna-
tional Conference on World Wide Web, pages 247–256, 2008.

202

	I Introduction
	Introduction
	Motivation
	Parallel Spatial Clustering
	Parallel Computational Geometry
	Summary of Contributions

	Preliminaries and Notation
	Computational Model
	Parallel Primitives
	Relevant Techniques

	II Parallel Spatial Clustering
	Introduction
	Problem Definitions
	Theoretically Efficient and Practical Parallel DBSCAN
	Introduction
	DBSCAN Algorithm Overview
	Higher-dimensional Exact and Approximate DBSCAN
	Range Counting
	Analysis
	Experiments

	Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and Hierarchical Spatial Clustering
	Introduction
	Parallel EMST and HDBSCAN*
	Dendrogram and Reachability Plot
	Parallel EMST and HDBSCAN* in 2D
	Subquadratic-work Parallel EMST
	Parallel Approximate OPTICS
	Relationship between EMST and HDBSCAN*MST
	Experiments

	A Framework for Parallel Grid-Based Clustering
	Introduction
	Grid Data Structure
	Implementing Clustering Algorithms
	Experimental Evaluation

	III Algorithms and Libraries for Parallel Computational Geometry
	Introduction
	New Parallel Algorithms
	Introduction
	Convex Hull
	Smallest Enclosing Ball
	Parallel Batch-dynamic Closest Pair

	ParGeo: A Library for Parallel Computational Geometry
	Introduction
	ParGeo Modules and Problems Studied
	Geometric Graph Construction
	Performance Evaluation
	An API for Graph Processing on Geometric Data

	IV Conclusion and Future Work
	Conclusion
	Future Work

