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Abstract

Large language models (LLMs) are growing highly adept at language-guided pro-
gram synthesis : translating natural language specifications into code to solve pro-
gramming tasks. Nevertheless, current approaches require searching through a vast
space of strings, often needing thousands of guesses to discover solutions to difficult
tasks at inference time. In contrast, human programmers learn to solve problems
on-the-fly by building up hierarchical libraries of abstractions : symbolic expressions
that encapsulate reusable functionality. In this work, we draw on models of library
learning from the programming languages (PL) literature, enriching them with the
ability to perform search and abstraction learning with LLMs. We introduce Lilo, a
neurosymbolic framework for Library Induction from Language Observations,
which consists of three components: an LLM synthesizer, a symbolic compression
module, and an auto-documentation (AutoDoc) procedure. Drawing on human lan-
guage as a source of commonsense knowledge, Lilo learns abstractions that would
be intractable to discover with traditional enumerative search. In our evaluations
against DreamCoder, a state-of-the-art library learning algorithm, we find that Lilo
solves more tasks while achieving faster search times and comparable computational
costs. A central aspect of Lilo is a neurosymbolic integration between the LLM
synthesizer and Stitch, a high-performance program compression algorithm that
identifies useful abstractions in lambda calculus expressions. Lilo augments Stitch
with AutoDoc, which generates human-readable names and docstrings for abstrac-
tions using an LLM. In addition to improving interpretability, we find that AutoDoc
crucially assists Lilo’s synthesizer to infer the semantics of abstractions. In sum,
Lilo offers an optimistic “better together” vision where human programmers work
in tandem with LLMs and PL tools, building up shared libraries of abstractions to
enable creative solutions to complex software problems.

Code for this work is available at: github.com/gabegrand/lilo.
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Chapter 1

Introduction

A longstanding goal of AI is to build systems that are guided by natural language :

following instructions (Branavan et al., 2009; Artzi and Zettlemoyer, 2013; Fried et al.,

2018; Sharma et al., 2021), answering queries (Johnson et al., 2017; Andreas et al.,

2020; Zellers et al., 2021), engaging in dialogue (Lewis et al., 2017; Paranjape and

Manning, 2021), and interacting with existing data and software (Nakano et al.,

2022; Schick et al., 2023; OpenAI, 2023). At the heart of these efforts is a translation

problem: how can we convert human language (i.e., words) into machine language

(i.e., symbolic programs) to communicate our intentions and facilitate downstream

computations?

Recent years have seen a renaissance in language-to-code translation sparked by

advances in large language models (LLMs). Trained on vast corpora of internet text—

which typically include terabytes of computer code from sources like GitHub—these

transformer-based neural architectures (Vaswani et al., 2017) are capable of auto-

completing function implementations, generating documentation, and engaging in

back-and-forth dialogues with human programmers (Chen et al., 2021; Austin et al.,

2021; Wang et al., 2021; Nijkamp et al., 2022; Fried et al., 2022; Chowdhery et al.,

2022). Code-trained LLMs are even beginning to solve competition-level program-

ming puzzles (Li et al., 2022; Chen et al., 2021; Hendrycks et al., 2021; Haluptzok

et al., 2022) that are considered challenging for human experts.

Despite these advances, the general task of language-guided program synthesis
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poses a daunting search problem. Current state-of-the-art approaches achieve solution

rates in the 10-40% accuracy range (Li et al., 2022; Haluptzok et al., 2022) (though

in many cases, humans also struggle with these problems). Moreover, these LLM-

based approaches often require sampling thousands to millions of candidate programs,

discovering solutions only when allowed to make many guesses (i.e., pass@𝑘 for 𝑘-

large; Kulal et al., 2019; Chen et al., 2021). Where LLMs achieve stronger few-shot

performance, it is often the case that significant portions of the benchmarks were

leaked into their training data (OpenAI, 2023).

How do human programmers navigate this combinatorial search space, quickly

becoming language and domain experts who only need a few guesses—as opposed

to thousands—to develop a working solution? In part, the answer lies in our ability

to write and use abstractions : functions that factor out common program logic and

facilitate compositional reuse (Ellis et al., 2021; Wong et al., 2022; Bowers et al., 2023).

These abstractions form the fabric of libraries : hierarchical collections of abstractions

that build on one another to provide simplified interfaces to complex computations.

Entire communities of human programmers form around treasured libraries, like the

Unix kernel (Lions, 1977) or NumPy (Harris et al., 2020), building out new functionality

while painstakingly trying to maintain clean and well-documented code. Pioneering

programmers staking out a new research direction typically undergird their efforts

by writing new libraries; this is how we have tools like TensorFlow (Abadi et al.,

2015) and PyTorch (Paszke et al., 2019), which have pivotally enabled contemporary

breakthroughs in LLMs.

Compared to the dynamic processes that characterize human software library

development, current LLM approaches to program synthesis are quite static. Models

are typically pre-trained once; at inference time, preset prompts (perhaps, with some

amount of templating) are fed in to produce downstream outputs. How might we draw

insights from human software development—in particular, the process of composing

abstractions to form libraries—in order to bootstrap learning?

A line of work in inductive program synthesis proposes models that learn to write

programs from examples of inputs and outputs (Gulwani et al., 2017; Balog et al.,
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2016; Devlin et al., 2017; Polozov and Gulwani, 2015; Parisotto et al., 2016; Nye et al.,

2019). Within this space, a common approach is to gradually build up an explicit

library of symbolic abstractions that capture shared structure in the domain (Hinton

et al., 1995; Liang et al., 2010; Dechter et al., 2013; Lake et al., 2015; Shin et al.,

2019; Ellis et al., 2020, 2021; Wong et al., 2021). Such models are capable of making

stronger compositional generalizations than neural models while training on far less

data than contemporary LLMs.

In this work, we draw particular inspiration from DreamCoder (Ellis et al.,

2020, 2021), a wake-sleep Bayesian program learning algorithm that learns to solve

programming tasks by iteratively searching for solutions (wake phase) and refactoring

shared abstractions into a library (sleep phase) that in turn helps to bootstrap search.1

One of DreamCoder’s strengths is its generality: starting with a minimal set of prim-

itives in a domain-specific language (DSL), DreamCoder discovers useful libraries of

abstractions in diverse domains ranging from classical list processing tasks to inverse

graphics to scientific equation discovery. Unlike the internal representations of large

neural models, which are difficult to decode even with specialized tooling, libraries

learned by DreamCoder afford a high degree of interpretability, allowing anyone with

domain familiarity to inspect the concepts learned by the model.

While library learning is attractive for its data efficiency and interpretability,

current approaches often face a “chicken-and-egg” bootstrapping problem: solving

new tasks requires having the right library abstractions, but these abstractions may

not be discoverable from data alone. For instance, suppose a user interfacing with a

program synthesis system for string editing inputs the following instruction: If there

is a vowel, replace that with 's'. Unless the system has been pre-programmed

with the concept of a vowel, such an instruction poses a combinatorially intractable

search problem. For instance, in a regular expression DSL (§ 4.1.1), the concept of a

vowel might be expressed as (or 'a' (or 'e' (or 'i' (or 'o' 'u')))). For an

enumerative search algorithm that has no prior knowledge of which letter primitives

belong together, vowel is a needle in a haystack that contains roughly 265 possible

1We describe DreamCoder in more depth in §2.2 and provide additional technical details in §3.1.
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combinations.2 Moreover, discovering the concept of vowel is a critical stepping stone

to solving more complex problems in the domain, like checking if the first letter is a

vowel, or replacing consonants.

Another challenge for library learning systems like DreamCoder concerns the com-

putational cost of program search. DreamCoder follows in a line of neurally-guided

program synthesis models (Gulwani et al., 2017; Balog et al., 2016; Devlin et al., 2017)

that train a neural search policy in-the-loop to steer search towards expressions that

are more likely to solve a particular task. However, because undiscovered abstractions

may differ structurally from existing program solutions, even with neural guidance,

such enumerative search procedures are extremely computationally expensive: a typ-

ical DreamCoder experiment takes more than two CPU-months just to learn a single

domain (Ellis et al., 2021; and see §3.3). Much of this search time is spent “getting off

the ground”: discovering a basic set of abstractions that human programmers typi-

cally already know, or might be able to grok quickly based on having solved problems

in other domains.

How can we imbue program synthesis systems with this kind of commonsense

knowledge—like the concept of a vowel—without having to encode a laundry list of

primitives for each domain? In this work, we integrate large language models and

library learning, demonstrating how the two approaches complement one another.

We propose a general framework for Library Induction from Language Observations

(Lilo), in which LLMs play multiple interconnected roles in facilitating language-

guided program synthesis.

First, in Lilo, we use LLMs as a modern, fast, and generalizable alternative

to traditional enumerative search. We find that LLMs are surprisingly adept at

composing novel expressions in esoteric lambda calculus DSLs when prompted with

just a handful of few-shot examples. We observe that LLMs are able to leveraging

rich priors learned from pretraining in order make zero-shot generalizations to task

descriptions that invoke new constructs, such as the vowel concept.

2The size of the search space is actually more like 425, if we consider the other primitives like or,
if, append, etc. that are needed to sequence programs in our string editing domain.
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A. Language-annotated program synthesis domains

B. LILO: Library induction with language observations

metal

rubber

There is another thing that is the same color as the 
large rubber thing; what is it made of?

CLEVR scene reasoning

followers → follwowersw
privater → prwivater

add a w whenever a consonant is 
followed by another consonant

pavings → pavings
enterprises → bnterprises

if the word begins with a vowel 
replace that with b

REGEX string editing

N-sided snowflake with small n-gon as arms

N small pentagons in a row

LOGO turtle graphics

N-stepped staircase

snowflake_with_rotating_arms
:: turtle -> int -> int -> turtle

Draws a snowflake shape with given number of 
arms, each made up of a line of specified 
length that is rotated at a specific angle.

staircase 
:: turtle -> int -> turtle

Creates a staircase pattern by 
repeatedly moving the turtle 
forward and rotating it at a 
specific angle.

draw_pentagon_spiral
:: turtle -> int -> turtle

Creates a spiral of pentagons by 
repeatedly drawing a pentagon. The 
number of pentagons in the spiral 
is determined by the function 
argument.

Stitch compression & LILO autodocumentationLILO program search with large language models

You are an expert programmer working in a language
based on λ-calculus. Here are some example programs:

-- a small 8 gon
(λ (for 6 (λ (λ (move_pen_forward_rotate…
-- a vertical short line
(λ (move_pen_forward_rotate zero_line…

Please write a program to solve 
the following task:

-- 8 sided snowflake with a small 
triangle as arms 
(λ (snowflake_with_rotating_arms $0 3 8))

Figure 1-1: Introducing Lilo: Library induction with language observations.
(A) We evaluate Lilo on three language-annotated program synthesis domains: string
editing with regular expressions, scene reasoning on the CLEVR dataset, and graph-
ics composition in the 2D Logo turtle graphics language. (B, left) Lilo performs
language-guided program search with LLMs, which provide a modern, fast, and gen-
eralizable alternative to traditional enumerative search. (B, right) Lilo integrates a
symbolic compression algorithm, Stitch, with LLM-generated autodocumentation
to produce interpretable library abstractions that facilitate synthesis.

While we show that LLMs perform well in the role of a classic programming lan-

guages search algorithm, we also explore whether techniques from PL—in particular,

the concept of library learning—can assist in LLM-guided program synthesis. In this

spirit, in addition to using LLMs as solvers, we also use them to build up interpretable

libraries of abstractions. To facilitate library learning, we put Lilo in dialogue with

Stitch (Bowers et al., 2023), a state-of-the-art abstraction learning algorithm for

lambda calculus programs. There are many advantages to using an external sym-

bolic module to perform compression: Stitch is purpose-built to solve the difficult

optimization problem of factoring out recurring subtrees in a corpus of lambda cal-
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culus programs, and has been performance-engineered to achieve approximately 3-4

orders of magnitude faster runtimes and smaller memory footprints as compared to

the original compression algorithm from DreamCoder (Bowers et al., 2023).

Because Stitch compresses chunks of useful code into a short string expression,

we hypothesize that providing an LLM with access to these abstractions should im-

prove its ability to synthesize complex programs. However, a key challenge with this

setup is getting the Lilo solver to correctly infer the semantics of the abstractions

so as to be able to deploy them effectively during generation. In particular, tra-

ditional program compression algorithms produce anonymous function names, like

fn_42 (for the 42nd function in the DSL), that have the effect of obfuscating the

underlying semantics. Consequently, as part of Lilo, we introduce an LLM-backed

auto-documentation (AutoDoc) module that takes as input in-context example us-

ages of anonymous abstractions and generates human-readable function names and

docstrings. In addition to producing learned libraries that are significantly more

interpretable, we show that AutoDoc improves Lilo’s overall synthesis performance.

We evaluate Lilo against DreamCoder on three language-annotated program

synthesis domains: string editing with regular expressions, scene reasoning on the

CLEVR dataset, and graphics composition in the 2D Logo turtle graphics language

(see §4.1 for an overview of the domains). We find that Lilo solves more tasks than a

language-guided DreamCoder variant on all three domains—in particular, achieving

much higher solve rates on string editing—thanks to its ability to learn abstractions

that encode human-like commonsense knowledge.

Contrary to conventional wisdom about the insurmountable speed of enumerative

search, we find that we are able to achieve faster overall wall clock runtimes with LLM-

based search due to orders of magnitude better sample efficiency. Indeed, in terms of

dollar cost, we estimate that one round of Lilo search is equivalent to 48 CPU-hours

of traditional enumerative search (see § 4.2.5). Of course, LLM-based and enumerative

search are not mutually-exclusive: we present a Lilo variant that integrates both of

these procedures and achieves the highest solve rates of all conditions we evaluated.

As software and hardware ecosystems around LLMs continue to mature, our findings
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make a strong case that LLMs can effectively amortize search in many program

synthesis domains, reducing the need for exhaustive traditional search.

In contrast to predictions that LLMs will subsume all formal accounts of pro-

gramming languages, Lilo offers an optimistic “better together” vision for integrating

LLMs and traditional program synthesis techniques. For search, we find that LLMs

can broadly amortize a computationally intensive step of classical synthesis, while

also benefiting from additional symbolic search. Meanwhile, for library learning, we

find that integrating LLMs with symbolic PL tools like Stitch can lead to more in-

terpretable and useful abstractions. Ultimately, we hope this research will serve as a

first step towards a world where AI and human programmers work in tandem, build-

ing up libraries of shared abstractions and conventions to enable creative solutions to

complex software problems.

In the rest of this thesis, we will present formalisms, data, and qualitative anal-

yses in an effort to make good on this narrative. In §2, we give a purpose-directed

background primer, building up key concepts to arrive at language-guided program

synthesis. In §3, we delve further into the relevant technical components of Dream-

Coder and GPT language models and how they are integrated into the LLM Solver

and AutoDoc modules that form the basis of Lilo. §4 begins with an overview of

our synthesis domains, followed by a presentation of our experimental results, which

are grouped into three areas: empirical results on synthesis performance, qualitative

analysis of learned libraries, and a computational efficiency comparison. Finally, in

§5, we present several future avenues for research based on the many ideas developed

though our work on Lilo.
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Chapter 2

Background and Related Work

2.1 Inductive program synthesis

In inductive program synthesis, we are given a specification of a task 𝑡 in the form of

a set of input-output pairs {(𝐼𝑖, 𝑂𝑖)}𝑖. The goal is to find a program 𝜌 in a language

ℒ such that 𝜌 is consistent with the specification of 𝑡, denoted 𝜌 ⊢ 𝑡. One way of

formalizing this computation is to frame it as solving the optimization problem

𝜌 = argmax
𝜌∈ℒ*

P[𝜌 | ℒ, 𝑡] ∝ P[𝑡 | 𝜌] · P[𝜌 | ℒ] (2.1)

where the likelihood P[𝑡 | 𝜌] ≜ 1𝜌 ⊢ 𝑡 checks whether the program correctly maps all

inputs to outputs. This formulation makes obvious the key challenge involved: ℒ*,

being the set of all strings of symbols over the language ℒ, is intractable to compute

for nontrivial languages.

Historically, program synthesis has dealt with this challenge in one of three ways:

• By defining a restricted space 𝑆 (with |𝑆| ≪ |ℒ*|) of programs to consider; e.g.,

using type-driven synthesis (Polikarpova et al., 2016).

• By solving the optimization problem approximately; e.g., using Monte Carlo

methods (Liang et al., 2010; Shin et al., 2019).

• By exhaustively enumerating all possible programs in descending order of prob-
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ability and hoping that one within a reasonable amount of time encounters a

program that is consistent with the task.

The last of these approaches is typically referred to as enumerative search, and is

traditionally accomplished by defining a program prior P[𝜌 | ℒ], where each 𝑤𝑖 below

is a primitive in the language ℒ:

P[𝜌 | ℒ] = P[𝑤1, 𝑤2, ..., 𝑤𝑛 | ℒ] =
𝑛∏︁

𝑖=1

P[𝑤𝑖|𝑤1, 𝑤2, ..., 𝑤𝑖−1,ℒ] (2.2)

If ℒ is a (probabilistic) context-free grammar (Chomsky, 1956; Johnson, 1998; Hopcroft

et al., 2001), then it is easy to enumerate programs in decreasing order of likelihood

simply by considering longer and longer programs in accordance with the probabilities

of the grammar’s production rules. However, this blind search procedure does not

make any use of the specification of the task. In more recent years, it has therefore

become popular to use a neural network to guide the search by training it to approxi-

mate the posterior P[𝜌 | ℒ, 𝑡] (Gulwani et al., 2015; Balog et al., 2016; Parisotto et al.,

2016; Devlin et al., 2017; Nye et al., 2019; Ellis et al., 2021). Either way, combinato-

rially many programs must typically be considered before one that is consistent with

the specification is found.

One issue with enumerative approaches is that the longer a program is, the harder

it is to find it during search. This is evident in Eq. (2.2), since each factor 𝑤𝑗 ≤ 1 in

the right hand side. This issue is often dealt with by performing search in a favorable

domain-specific language (DSL) which can express the desired computation succinctly.

Unfortunately, designing a DSL is a laborious, potentially error-prone process. Failing

to provide a necessary component will place complex tasks out of reach of the search

procedure. Moreover, providing spurious components can also hinder performance,

since increasing the number of possible primitive tokens in the DSL increases the

width of the combinatorial search space. Thus, in program synthesis systems based

on enumerative approaches, the DSL forms the primary source of inductive bias for the

learning procedure. However, the optimal inductive bias may vary by task, requiring

the DSL author to anticipate the structure and common patterns within all tasks.
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2.2 Library learning

Recently, library learning has emerged as a powerful alternative to the problem of

DSL design. In library learning, the language ℒ is learned alongside the search

mechanism. From the point of view of developing agents with human-like adaptability

and intelligence, this is an attractive approach since it allows us to explicitly encode

acquisition of skills and expertise (Rule et al., 2020).

One way to put this problem into probabilistic terms is to re-frame it as performing

joint inference on both the programs and the DSL itself over a hierarchical Bayesian

model (Liang et al., 2010; Lake et al., 2015). Defining the set of all tasks as 𝒯 ≜ {𝑡𝑖}𝑁𝑖=1

and the set of all programs as 𝜋 = {𝜌𝑗}𝑁𝑗=1 yields the following joint objective:

ℒ̂, 𝜋̂ = argmax
ℒ,𝜋⊆ℒ̂*

P[𝜋,ℒ | 𝒯 ] ∝ P[𝒯 | 𝜋,ℒ] · P[𝜋,ℒ] (2.3)

This optimization objective is, of course, even less friendly than the one from

Eq. (2.1). The state-of-the-art library learning system DreamCoder (Ellis et al.,

2020, 2021) tackles the intractability of the problem by making two simplifications.

Firstly, they decouple the optimization of the program and that of the library, yielding

the two optimization problems:

𝜋̂ = argmax
𝜋⊆ℒ̂*

P[𝜋 | 𝒯 , ℒ̂]

∝ P[𝒯 | 𝜋] · P[𝜋 | ℒ̂]

∝
∏︁

𝑡∈𝒯

∏︁

𝜌∈𝜋⊢𝑡
P[𝑡 | 𝜌] · P[𝜌 | ℒ̂]

(2.4)

ℒ̂ = argmax
ℒ

P[ℒ | 𝒯 , 𝜋̂]

∝ P[ℒ] · P[𝒯 | 𝜋̂] · P[𝜋̂ | ℒ]

∝ P[ℒ]
∏︁

𝑡∈𝒯

∏︁

𝜌∈𝜋⊢𝑡
P[𝑡 | 𝜌] · P[𝜌 | ℒ]

(2.5)
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DreamCoder alternates between optimizing these two objectives through a cyclical

Wake-Sleep learning paradigm. During the Wake phase, a guided search is performed

under a fixed library ℒ̂ to find programs that jointly solve tasks and also achieve

high probability under the library. This P[𝜋 | ℒ̂] term (Eq. 2.4) is computed via

description length : the number of primitives, lambda-abstractions and applications

necessary to describe the program. In turn, during the Sleep phase, the set of program

solutions found during search 𝜋̂ is held fixed and the library itself is optimized. Again,

description length plays a key role: the library is chosen to maximize P[𝜋̂ | ℒ] (Eq.

2.5); in other words, the library that minimizes the length of the existing solutions.

We now turn to the problem of finding such optimal libraries, approximating this

search via compression.

2.3 Lambda calculus program compression

A program compression algorithm implements two key operations. The first operation

is rewrite, which re-expresses a set of programs {𝑝𝑡} more concisely in terms of new

abstraction 𝛼:

{𝑝𝑡} = rewrite({𝑝𝑡}, 𝛼) (2.6)

The second operation is compress, which chooses the optimal abstraction to add

to the library, such that the extended library allows for expressing a set of programs as

concisely as possible, where size(·) returns the description length of a set of programs:

𝛼̂ = compress({𝑝𝑡}) = argmin
𝛼

size(rewrite({𝑝𝑡}, 𝛼)) (2.7)

ℒ̂ ← ℒ ∪ {𝛼̂} (2.8)

Intuitively, compress finds an abstraction that captures the largest and most fre-

quent shared structure in the set of programs. The processes of compressing-and-

rewriting can be repeated to add multiple abstractions to the library.

In this work we use an open-source implementation of the Stitch program com-

pression algorithm from Bowers et al. (2023), which offers approximately 3-4 orders
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of magnitude time and memory improvements over the original DreamCoder algo-

rithm while producing abstractions of matching or better compressivity (see § 3.1.3

for more details). However, even with a highly-efficient abstraction learning algo-

rithm, discovering programs to compress still requires searching in a combinatorially

large space of possible programs, which motivates our use of language-guidance.

2.4 Language-guided library learning

A common theme in the preceding sections is the difficulty of the underlying optimiza-

tion problems and the need to approximate them by means of search. These search

procedures often rely on heuristics, leading to suboptimality both in the solutions

obtained and in the time spent obtaining them. One promising approach that has re-

cently gained some traction is to use annotations written in natural language to guide

synthesis. This approach is motivated by the insight that natural language captures

structure and compositionality amongst objects and actions, which correlates well

with the structure and compositionality present in programs. Recent work by Wong

et al. (2021) extends the DreamCoder framework to use natural language annota-

tions both during the search phase (Wake) as well as the library learning phase dur-

ing (Sleep). Their method, LAPS (Language for Abstractions and Program Search),

yields both improved downstream performance and qualitatively richer libraries.

Nevertheless, because LAPS requires learning a language-to-program translation

model from scratch, it faces a version of the bootstrapping issue discussed in the

previous sections: early in training, this translation model must induce alignments

between language and programs from only a handful of paired examples of programs

and their descriptions. In LAPS, this data scarcity constraint necessitates the use of a

class of simple statistical machine translation models (Brown et al., 1993) that make

strict token-to-token decomposition assumptions. In our work, the use of pre-trained

models allows us to overcome these issues. Rather than attempt to learn a translation

model from small data, we start out with a model that already has strong priors over

the joint distribution of language and programs and further condition that model on
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small numbers of available examples, drawing on recent advances in large language

models.

2.5 Large language models for code

In recent years, large language models (LLMs) have become an important tool in

program synthesis research. These methods, which originated in the natural language

processing (NLP) literature (Vaswani et al., 2017; Devlin et al., 2018; Radford et al.,

2018), have opened up the doors for a more liberal use of natural language annotations

within program synthesis. Since these models are typically trained on large corpora

of text from the internet, and because source code is prevalent within these corpora,

pre-trained LLMs often demonstrate fluency in various programming languages.

A key development for LLM-driven program synthesis was the introduction of

Codex (Chen et al., 2021), an LLM based on GPT-3 (Brown et al., 2020) but fine-tuned

on GitHub. Chen et al. find that Codex is capable of solving 4-25% of introductory

code problems from the APPS dataset (Hendrycks et al., 2021) depending on how

many samples are drawn. Excitingly, this was achieved without any fine-tuning;

instead, the authors relied on few-shot learning, where the pre-trained model is fed a

prompt consisting of a handful of solutions to task-specific problems and then asked to

complete the solution for a new one. In our work, we make similar use of the few-shot

capabilities of code LLMs, showing that they are able to produce syntactically-valid

and—in many cases, semantically-correct—lambda calculus programs, given just a

few in-context examples.

In the next chapter (§3), we lay out a general blueprint for slotting code LLMs into

a program synthesis framework. Starting with a technical overview of DreamCoder

and GPT language models, we demonstrate how they are integrated into the LLM

Solver and AutoDoc methods that form the basis of Lilo.
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Chapter 3

Methods

3.1 DreamCoder

The framework we propose in this work offers several general patterns for augmenting

inductive program synthesis systems with LLMs. However, our work is motivated by

and builds directly on the DreamCoder algorithm (Ellis et al., 2020, 2021). Here, we

present a brief technical overview.1

DreamCoder is an iterative algorithm that jointly learns to solve inductive pro-

gram synthesis tasks (§2.1) and to express these solutions in terms of a learned library

of abstractions (§2.2). DreamCoder is initialized with a base library ℒ0 of starting

primitives and a dataset of training tasks 𝒯 . It returns a learned final library ℒ𝑓 aug-

mented with program abstractions and a learned neural search model 𝑄(𝜌 | 𝑡,ℒ) that

predicts high probability programs conditioned on the task examples. As discussed

in §2.2, DreamCoder is a wake-sleep algorithm (Hinton et al., 1995), meaning that

it alternately searches for solution programs to the training tasks (given a current

library ℒ𝑖 and search model 𝑄𝑖) and updates the library and search model based on

new solved tasks.

Though the overall system is complex, DreamCoder can be broken down into three

main modules (Fig. 3-1): a probabilistic context-free grammar (PCFG), a neural search

1Portions of the DreamCoder overview in this section are adapted with permission from Wong
et al. (2021).
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module, and a symbolic compression algorithm. We describe each of these components

briefly in order to delineate the role that LLMs will play in amortizing and augmenting

the basic framework.

Objective: For each task x in X, find best program ρx solving x under current library L

Neurally guided search
Propose programs ρ in
decreasing order under Q(·|x)
until timeout

Library L
f1(x) =(+ x 1)

f2(z) =(fold cons

(cons z nil))

· · · · · · · · ·

Task x
[7 2 3]→[4 3 8]

[3 8]→[9 4]

[4 3 2]→[3 4 5]

Recognition

Model Q(·|x)

Best program ρx for task x
(map f1 (fold f2 nil x))

Choose ρx that maximizes:
P [ρ|x, L] ∝ P [x|ρ]P [ρ|L]

Wake

Objective: Grow library L to compress
programs found during waking

program for task 1
(cons (+ 1 1))

program for task 2
(+ (car z) 1)

+ 11

cons
+ 1

car z

Refactoring
Propose new library routines from
subtrees of refactorings of programs

New library L
w/ routine

(+ x 1)

+ 1

Expand L w/
the routine that
maximizes:

P[L]
∏
x∈X max

ρ: refactorings of ρx
P [x|ρ]P [ρ|L]

Sleep: Abstraction

Objective: Train recognition model Q(ρ|x)
to predict best programs ρx for typical
tasks x and current library L

Fantasies

2. set task x
to output of
executing ρ

1. draw
programs
ρ from

library L

sam
p
le

Replays

2. set program
ρ to retrieved
solution ρx

1. recall
tasks x
solved in
waking

sam
p
le

Train network on x,ρ pairs

Task
x

Program
ρ

Gradient step in parameters of Q
to maximize logQ(ρ|x)

Sleep: Dreaming

Repeat
until no
increase
in score

Train
until

converged

Library

prog

task

prog

task

prog

task

is

Figure 3-1: Overview of DreamCoder architecutre. DreamCoder performs ap-
proximate Bayesian inference for the graphical model in the middle: inputting syn-
thesis tasks, which it explains with latent programs, and infers a latent library cap-
turing cross-program regularities. A neural net, called the recognition model (red
arrows) is trained to infer programs with high posterior probability. Waking (top)
infers programs while holding the library and recognition model fixed. Abstraction
(left) updates the library while holding the programs fixed by refactoring programs
found during waking and abstracting out common components (highlighted in or-
ange). Dreaming (right) trains the recognition model on ‘Fantasies’ (programs sam-
pled from library) & ‘Replays’ (programs found during waking). (Figure and caption
reproduced from Ellis et al., 2021).
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3.1.1 Probabilistic context-free grammars

DreamCoder defines the prior over programs as a probabilistic context free grammar

(PFCG; Johnson 1998) for programs generated as productions from a library ℒ of

functions 𝑙 ∈ ℒ.2 Formally, DreamCoder assigns a real-valued weight 𝜃ℒ𝑖 to each

library function, which is normalized to yield a production probability P[𝑙 | ℒ, 𝜃ℒ].
The prior probability of a program 𝜌 is given by the weighted product of probabilities

of all of its constituent library functions:

P[𝜌 | ℒ, 𝜃ℒ] =
∏︁

𝑙∈𝜌
P[𝑙 | ℒ, 𝜃ℒ] (3.1)

As all P[𝑙 | ℒ, 𝜃ℒ] < 1, this is equivalent to a description length prior over programs:

longer programs (with more constitutent elements) will have lower prior probability

under Eq. (3.1) since P[𝑙 | ℒ, 𝜃ℒ] monotonically decreases as |𝜌| = |{𝑙 ∈ 𝜌}| increases.

3.1.2 Neurally-guided program search

The prior in Eq. (3.1) defines a generative model of programs that can be efficiently

sampled in order of its prior probability, by enumerating programs in length order

ranked by the weight vector 𝜃ℒ. During learning, unconditional forward search from

the prior plays an important role in the distant supervision setting—in the absence of

ground truth programs or a pre-defined search heuristic, the model acquires learning

signal by enumerating programs until it finds ones that solve at least a few training

tasks from which it can learn. At subsequent iterations, as the model updates both

the library ℒ𝑖 and its parameters 𝜃ℒ that define the prior, forward sampling should

ideally only become more effective at discovering additional learning signal.

To guide the search procedure to areas of program space that are more likely

to solve tasks, DreamCoder trains a neural search heuristic 𝑄𝑖(𝜌 | 𝑡,ℒ𝑖) at each

iteration to approximate the inverse conditional model. The heuristic uses a neural

2Note that a library is a natural extension of what we termed a language in §2: the library defines
the set of functions in the DSL. For this reason, we use the same notation ℒ to refer to libraries
going forward.

33



model trained to predict programs written in the current library ℒ𝑖 according to the

posterior:

𝑄𝑖(𝜌 | 𝑡,ℒ𝑖) ≈ P[𝜌 | 𝑡, (ℒ𝑖, 𝜃ℒ𝑖)] ∝ P[𝑡 | 𝜌] · P[𝜌 | (ℒ𝑖, 𝜃ℒ𝑖)] (3.2)

conditioned on an encoding of the training examples. This model is trained in the

distant supervision setting (which begins with no supervised program data) by lever-

aging the forward generative model: sampling programs from the prior, executing

them to produce observed tasks, and then minimizing 𝑄(𝜌 | 𝑡,ℒ) in Eq. (3.2) on the

sampled programs, conditioned on their executions. This generative training proce-

dure is generally applicable to any neural implementation of 𝑄(𝜌 | 𝑡,ℒ).

In the original framing, the neural recognition model is conditioned on modality-

dependent task embeddings (images are encoded by a convolutional neural network,

while text-based tasks are encoded by a recurrent neural network). Wong et al. (2021)

extend this framework to the language-guided program synthesis (§2.4) setting, where

each task is accompanied by a language description 𝑑𝑡 that defines a joint prior

P[𝜌, 𝑑𝑡 | 𝐽, 𝜃𝐽 ]. In turn, they extend the neural recognition model to condition on the

description using a translation model 𝑇 as follows:

𝑄(𝜌 | 𝑡, 𝑑𝑡, 𝐽𝑖) ≈ P[𝜌 | 𝑡, 𝑑𝑡, 𝐽, 𝜃𝐽 ]

∝ P[𝑡 | 𝜌] · P[𝜌, 𝑑𝑡 | 𝐽, 𝜃𝐽 ]

∝ P[𝑡 | 𝜌]P[𝑑𝑡 | 𝜌] · P[𝜌 | ℒ, 𝜃ℒ]

≈ P[𝑡 | 𝜌] · 𝑇 (𝑑𝑡 | 𝜌,ℒ) · P[𝜌 | ℒ, 𝜃ℒ]

(3.3)

In practice, 𝑑𝑡 is encoded using a RNN trained on task descriptions to condition

the neural recognition model jointly with the task encoding. We use this language-

conditional recognition model in our DreamCoder baseline condition in our experi-

ments (§4).

34



3.1.3 Abstraction learning via program compression

At each iteration, DreamCoder updates the library (ℒ𝑖, 𝜃ℒ𝑖
) to approximately opti-

mize the likelihood of the inferred latent programs:

ℒ̂, 𝜃ℒ̂ = argmax
ℒ,𝜃ℒ

P(ℒ, 𝜃ℒ) (3.4)

Ellis et al. (2021) leverage equivalence to a compression problem defined over pro-

grams and the library. As discussed in § 3.1.1, the PCFG program prior is equivalent

to a description length prior over programs. Ellis et al. (2021) place an additional

Dirichlet prior over the library description length:

P [ℒ] ∝ exp

(︃
−𝜆
∑︁

𝜌∈ℒ
size(𝜌)

)︃
(3.5)

Estimating the optimal library then becomes the problem of inferring new library

abstractions which can jointly compress the latent training programs (rewritten under

the new library ℒ̂) and the description length |ℒ̂| of the updated library (to optimize

for shared abstractions across programs).

DreamCoder’s program compression objective requires inference over all possible

ways of refactoring the latent programs under the updated library, which is naively

intractable. To approximate this inference, a lambda calculus compression algorithm

based on version space algebras and E-graph matching is introduced (see Ellis et al.,

2021, for a technical review). Because this compression scheme can consider millions

of possible rewrites, it balloons to daunting memory and search requirements as the

corpus scales in size and complexity. For instance, Bowers et al. (2023) find that

DreamCoder was unable to discover even a single abstraction when run directly on

any of the datasets from Wong et al. (2022), despite being given hours of runtime

and 256GB of RAM.

To address these tractability issues and improve performance, we replace the orig-

inal DreamCoder compression algorithm with Stitch: a top-down search algorithm

that was designed and performance-engineered to improve efficiency of abstraction
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Figure 3-2: Visualization of Stitch library learning on a compositional graphics
domain (Wong et al., 2022). (A) From the base DSL primitives (top row), Stitch
iteratively discovers a series of abstractions that compress programs in the domain.
Arrows demonstrate how abstractions from selected iterations build on one another
to achieve increasingly higher-level behaviors. (B) Rewriting a single item from the
domain with the cumulative benefit of discovered abstractions yields increasingly com-
pact expressions. Colors indicate correspondence between object parts and program
fragments: orange = outer octagon, green = ring of six circles, purple =
inner circle. (Figure reproduced from Bowers et al. 2023.)

learning over datasets of lambda calculus programs (Bowers et al., 2023). For a rep-

resentative subset of program synthesis benchmarks, Stitch is 3-4 orders of magnitude

faster and uses 2-3 orders of magnitude less memory than DreamCoder compression

(Fig. 3-3).3 Moreover, as Bowers et al. (2023) demonstrate, Stitch discovers ab-

stractions that match or achieve better compression ratios than those produced by

DreamCoder compression. Nevertheless, prior analyses were limited to standalone

compression experiments; in this work, we integrate Stitch into the DreamCoder

loop and report on the first experiments using Stitch in a full program synthesis

setting. Though not the main focus of our analysis, we find that Stitch dramati-

cally reduces the computational cost of abstraction learning, running in seconds on

a single CPU on a typical iteration. These performance improvements reduce a key

3https://stitch-bindings.readthedocs.io/en/stable/
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Figure 3-3: Program compression performance comparison. Stitch is orders
of magnitude more efficient than the program compression algorithm used in (Ellis
et al., 2021). Left: Peak RAM usage of Stitch and DreamCoder while running on
the five domains considered in Bowers et al. (2023). Right: Wall-clock time required
to find (and rewrite under) one abstraction, averaged over all benchmarks. Lower is
better; black lines indicate ± one standard deviation. Note the logarithmic y-axis.
(Figure reproduced from Bowers et al. 2023.)

computational bottleneck in the DreamCoder pipeline, enabling us to iterate more

rapidly in our experiments.

3.2 GPT language models

In this work, we explore multiple distinct roles that LLMs might play in an inductive

program synthesis framework: synthesizing solutions to tasks based on language de-

scriptions (§3.3), and writing human-readable names and documentation for function

abstractions (§3.4).

For the experiments presented in this work, we leverage the GPT family of lan-

guage models from OpenAI (Brown et al., 2020; Chen et al., 2021; OpenAI, 2023).

Our decision to use GPT in this work was motivated by several technical and practi-

cal factors. LLMs are notoriously expensive to train from scratch, which is why much

research in the field over the past several years has used off-the-shelf models. Start-

ing in late 2021, when we started these experiments, OpenAI began offering Codex

model access to academic researchers via a free private beta program.4 Codex (Chen

4https://openai.com/blog/openai-codex. At the time of writing, the Codex private beta
was still active. However, OpenAI have announced plans to discontinue this program in 2023 and
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et al., 2021) is based on the GPT-3 architecture (Brown et al., 2020) and is finetuned

on a vast corpus of code from GitHub and other sources. At the time of its release,

Codex represented a major advance in code-trained language models—and remains

one of the strongest-performing off-the-shelf code LLMs to date. Since we began this

work, OpenAI has released several other LLMs with coding capabilities—most no-

tably, ChatGPT5 and GPT-4 (OpenAI, 2023). Conveniently, all of these models are

accessible via OpenAI’s API, meaning that it has been relatively straightforward to

integrate the latest advances in LLMs into our experimental framework.

In this work, we experiment with three different GPT-family models: Codex

(code-davinci-002), ChatGPT (gpt-3.5-turbo-0301), and GPT-4 (gpt-4-0314).

Where possible, we use snapshot versions of these models (i.e., gpt-3.5-turbo-0301

is a snapshot of ChatGPT from March 1, 2023) to ensure consistency in our exper-

iments and avoid the possibility that behind-the-scenes updates affect our results.

Nevertheless, many aspects of OpenAI’s LLMs have not been made public, and the

black box nature of this technology has only increased as OpenAI have moved towards

productizing their offerings and providing LLMs as a paid service (OpenAI, 2023).

One key aspect of ChatGPT and GPT-4 that remains murky concerns the use

of instruction tuning. In response to the many concerns surrounding AI safety and

alignment, various methods have been developed to align LLM outputs to human

preferences (Ouyang et al., 2022; Wei et al., 2022; Bakker et al., 2022). These methods

have proven effective at encouraging LLMs to follow instructions provided in prompts

and avoiding outputs that are considered harmful. However, the use of instruction-

tuning means that—unlike Codex—these newer GPT iterations can no longer be

considered “pure” models of joint distributions of language and code. For this reason

(and because queries to Codex were free under the research private beta), we tend

to prefer Codex for tasks that involve generating a large number of samples from

this joint distribution (§3.3). Meanwhile, for tasks that require closely following a

particular instruction set or output format, such as abstraction naming (§3.4), we

transition future Codex access to Microsoft’s Azure platform, which powers GitHub Copilot.
5https://openai.com/blog/chatgpt
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find that ChatGPT and GPT-4 produce higher quality generations.

Of course, the methods we introduce in the rest of this section are general tech-

niques that can be implemented with any number of off-the-shelf LLMs. Excitingly,

since we began this work, a number of code LLMs have been released as open source

software (Fried et al., 2022; Nijkamp et al., 2022; Wang et al., 2021; Taori et al.,

2023)—many in just the last few weeks.6 While a comparative analysis of the capa-

bilities of this growing zoo of LLMs is out of scope for this work, we are optimistic

about the roles that open-source code-trained models might play in our program

synthesis framework.

3.3 Lilo: Amortized synthesis

The search procedure of DreamCoder relies heavily on exhaustive enumeration to

discover program solutions. Even with neural guidance, this search is extremely

computationally intensive: Ellis et al. run experiments on 20, 64, and 96 CPU

machines and report typical runtimes of one day (see Ellis et al., 2021, Appendix

J), with the longest experiment running for five days on a 64-CPU machine.7 While

Wong et al. (2021) introduce language-guided program search techniques that are

shown to improve search efficiency, they similarly report thousands of CPU hours

consumed in their experiments. Though proposed as a model of human-like learning,

at its core, this exhaustive search is one aspect of the DreamCoder algorithm that

deviates significantly from intuitions about how people approach inductive reasoning

tasks given limited time and working memory.

In this work, we consider LLMs as an alternative model of program search—one

that leverages strong inductive biases learned through large-scale pre-training so as

to evaluate many orders of magnitude fewer programs during search. In terms of
6E.g., StarCoder (https://huggingface.co/blog/starcoder), replit-code-v1-3b (https://hugg

ingface.co/replit/replit-code-v1-3b), Dolly 2.0 (https://huggingface.co/databricks/doll
y-v2-12b) and others have all been released post-April 2023.

7In the five-day experiment, DreamCoder was tasked with solving classical functional program-
ming problems, starting just from basic Lisp primitives. It was shown to re-discover “origami pro-
gramming” — first reinventing fold, then unfold, and then defining a library of functional program-
ming idioms including map, zip, length, etc. in terms of folding and unfolding.

39

https://huggingface.co/blog/starcoder
https://huggingface.co/replit/replit-code-v1-3b
https://huggingface.co/replit/replit-code-v1-3b
https://huggingface.co/databricks/dolly-v2-12b
https://huggingface.co/databricks/dolly-v2-12b


computational efficiency, the use of LLMs as “foundation models” trades off expen-

sive upfront pre-training for fast and efficient inference (Bommasani et al., 2022).

Nevertheless, unlike traditional program search in a PCFG, where all possible can-

didates are constrained to be valid programs, LLMs generate outputs in string space

and are not guaranteed to produce syntactically-valid programs. Moreover, programs

in DreamCoder domains are expressed in bespoke domain specific languages (DSLs)

that are not likely to be represented in standard LLM pre-training corpora. While

constrained decoding methods for LLMs do exist (Poesia et al., 2022), these ap-

proaches typically require access to output logits, which are not currently available

via API for models like ChatGPT and GPT-4, and necessitate multiple LLM queries

per generation, thus significantly increasing the cost and time to generate programs.

Here, we utilize GPT LLMs in an off-the-shelf manner to ask whether they can

effectively “amortize” tranditional enumerative synthesis approaches in lambda cal-

culus DSLs. Our approach takes advantage of the in-context learning capabilities of

modern LLMs (Brown et al., 2020), which we briefly formalize here. The standard

formal treatment of (unidirectional) language models considers them to approximate

the distribution of the next word in a fixed-length sequence (Eisenstein, 2018).

LLM(𝑤𝑁+1) ≈ P[𝑤𝑁+1 | 𝑤1, . . . , 𝑤𝑁 ] (3.6)

A growing line of work in NLP demonstrates that neural language models accurately

capture hierarchical structure (Wilcox et al., 2019; Tenney et al., 2019; Belinkov and

Glass, 2019); and that their ability to represent higher-order structure improves with

model scale (Brown et al., 2020; Chowdhery et al., 2022; Zhang et al., 2022). In this

work, we therefore “lift” our formal treatment of LLMs to consider them as conditional

models over a distribution of entire programs :

LLM(𝜌𝑁+1) ≈ P[𝜌𝑁+1 | {𝜌𝑖}𝑁𝑖=1] (3.7)

As discussed, in this work, we operate in the language-guided program synthesis

setting, in which programs are accompanied by natural language descriptions. Ac-
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cordingly, we extend Eq. (3.7) to condition on program-description pairs {𝜌𝑖, 𝑑𝑖}𝑁𝑖=1,

where the goal is to produce a program for some unsolved description 𝑑𝑁+1:

LLM(𝜌𝑁+1) ≈ P[𝜌𝑁+1 | 𝑑𝑁+1, {𝜌𝑖, 𝑑𝑖}𝑁𝑖=1] (3.8)

One advantage of using LLMs as synthesizers is that very little extra work is re-

quired to approximate the conditional distribution in Eq. (3.8). We take advantage of

LLM’s strong in-context learning abilities to procedurally construct few-shot prompts

designed to elicit programs that solve target tasks. Fig. 3-4 illustrates the contents of

a typical prompt in the LOGO domain. The prompt consists of a static header de-

scribing the domain at a high level and the available library functions in the DSL. The

header is followed by a dynamically populated list of (𝑑𝑡, 𝜌𝑡) pairs randomly sampled

from the set of solved tasks. The final line of the prompt contains a task description

for an unsolved task. Because the set of few-shot examples is randomly-sampled,

some prompts may contain more task-relevant information than others. Accordingly,

for each target task, we construct 𝑛prompts_per_task = 4 prompts; in turn, for each

prompt, we query the LLM for 𝑛samples_per_prompt = 4 completions, for a total of 16

candidate completions per task. For each completion, we perform a series of syntax

and type-checking procedures. Programs that form syntactically valid programs with

type signatures that adhere to the task specification are then evaluated on the I/O

examples. Those that satisfy the specification are then added to the solution set.

One of the main challenges of inductive synthesis with library learning is “getting

off the ground”; i.e., finding an initial set of program solutions to bootstrap down-

stream library learning and synthesis. In prior work (Ellis et al., 2021; Wong et al.,

2021), this is accomplished through brute-force search in a uniform grammar until

enough task solutions have been encountered to train the neural recognition model.

In this work, we reproduce a DreamCoder baseline for each domain and initialize

the LLM solver with the set of programs that was discovered during the initial search

(typically on the order of tens of task solutions). In our experiments, we run 3 random

seeds for each condition, including the baseline; accordingly, to facilitate fair compar-
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You are an expert programmer working in a language based on λ calculus. Your goal is to
write programs that accomplish the tasks specified by the user. This is a domain-specific
language for Logo turtle graphics. Write programs using the available functions:

logo_unit_angle :: tangle 
logo_unit_line :: tlength
logo_zero_angle :: tangle 
logo_zero_line :: tlength
logo_divide_angle :: tangle -> int -> tangle 
logo_multiply_angle :: tangle -> int -> tangle 
logo_divide_line :: tlength -> int -> tlength
logo_multiply_line :: tlength -> int -> tlength
logo_add_angles :: tangle -> tangle -> tangle 
logo_subtract_angles :: tangle -> tangle -> tangle 
logo_lift_pen :: (turtle -> turtle) -> turtle -> turtle 
logo_move_pen_forward_rotate :: tlength -> tangle -> turtle -> turtle 
logo_get_set_function_pen :: (turtle -> turtle) -> turtle -> turtle 
logo_IFTY :: int 
logo_epsilon_angle :: tangle 
logo_epsilon_line :: tlength
logo_for_loop :: int -> (int -> turtle -> turtle) -> turtle -> turtle 

Here are some example programs:

-- a small 8 gon
(λ (logo_for_loop 9 (λ (λ (logo_move_pen_forward_rotate logo_unit_line (logo_divide_angle
logo_unit_angle 8) $0))) $0)) 

-- a medium 6 gon (λ (logo_for_loop 6 (λ (λ (logo_move_pen_forward_rotate
(logo_multiply_line logo_unit_line 2) (logo_divide_angle logo_unit_angle 6) $0))) $0)) 

-- 5 small squares in a row
(λ (logo_for_loop 5 (λ (λ (logo_move_pen_forward_rotate logo_zero_line (logo_divide_angle
logo_unit_angle 4) (logo_for_loop 7 (λ (λ (logo_move_pen_forward_rotate logo_unit_line
(logo_divide_angle logo_unit_angle 4) $0))) $0)))) $0)) 

-- a vertical short line
(λ (logo_move_pen_forward_rotate logo_zero_line (logo_divide_angle logo_unit_angle 4)
(logo_move_pen_forward_rotate logo_unit_line logo_epsilon_angle $0))) 

-- a small 9 gon
(λ (logo_for_loop logo_IFTY (λ (λ (logo_move_pen_forward_rotate logo_unit_line
(logo_divide_angle logo_unit_angle 9) $0))) $0))

<additional examples to fill context window>

-- 5 small triangles in a row

❎ (λ (logo_for_loop 7 (λ (λ (logo_move_pen_forward_rotate logo_zero_line
(logo_divide_angle logo_unit_angle 3) (logo_for_loop 3 (λ (λ (logo_move_pen_forward_rotate
logo_unit_line (logo_divide_angle logo_unit_angle 3) $0))) $0)))) $0))

❌ (λ (logo_for_loop 5 (λ (λ (logo_for_loop 7 (λ (λ (logo_move_pen_forward_rotate
logo_unit_line (logo_divide_angle logo_unit_angle 3) $0))) $0)))) $0))

🏆 (λ (logo_for_loop 5 (λ (λ (logo_move_pen_forward_rotate logo_zero_line
(logo_divide_angle logo_unit_angle 3) (logo_for_loop 5 (λ (λ (logo_move_pen_forward_rotate
logo_unit_line (logo_divide_angle logo_unit_angle 3) $0))) $0)))) $0))

❎ (λ (logo_for_loop 5 (λ (λ (logo_move_pen_forward_rotate logo_zero_line
(logo_divide_angle logo_unit_angle 4) (logo_for_loop 7 (λ (λ (logo_move_pen_forward_rotate
logo_unit_line (logo_divide_angle logo_unit_angle 3) $0))) $0)))) $0))

Domain 
header & 
library 
functions

Example 
task / 
program 
pairs 
(sampled from 
solved tasks)

LLM 
completions

🏆 = solution
❎ = valid
❌ = invalid

Task 
description
(unsolved)

A

B

C

D

Figure 3-4: Anatomy of an LLM solver prompt. (A) Each prompt begins with
a short domain description followed by an autogenerated list of the DSL primitives
and their type signatures. (B) We randomly sample task solutions and their language
descriptions to construct the prompt body. (C) The final line of the prompt contains
a target task description for an unsolved task. (D) We sample and parse 𝑁 = 4
completions from the LLM, filter out invalid programs, and check for task solutions.
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isons, we match each run of an LLM solver condition to the DreamCoder baseline

run of the corresponding seed. We view this initialization method as the closest com-

parison to the experimental settings of the prior work, which can be thought of as

testing a model’s ability to learn a new DSL from scratch. An alternative evaluation

setting would be to define for each domain some minimal set of pedagogically-relevant

example solutions. As it seems ecologically implausible that one might encounter a

novel programming language in the wild for which there are no known examples of

written programs, such an approach might make for a more naturalistic evaluation

setting for future inductive program synthesis work.

3.4 Lilo: Library auto-documentation

Beyond facilitating search, how might LLMs be integrated into a program synthe-

sis framework? One of the main lessons of DreamCoder is that compression can

bootstrap learning by constraining the search space. Might the same approach be

applicable in an LLM-guided program search?

Indeed, even though beam search in LLMs and enumerative search in Dream-

Coder traverse vastly different spaces, program compression techniques like Stitch

can be thought of as general compression algorithms, reducing not only the size of

the program AST, but also the description length in string space. Because library

abstractions are effectively entire blocks of code that can be deployed in a single to-

ken, it is natural to hypothesize that providing an LLM with access to these functions

should improve its ability to synthesize complex programs.

In our experiments, we ask exactly this question: how does putting an LLM

in “dialogue” with a compression algorithm like Stitch affect its performance on

synthesis tasks? And can LLMs in turn contribute to the efficacy of library learning,

by introducing useful semantic constructs that form new library functions?

A critical observation from these experiments—which informs our methodological

approach—is that unlike traditional methods from PL, language models care what

functions are called: having trained on terabytes of text data, they have learned to
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draw meaningful inferences about the semantics of functions from their names and

documentation. Unfortunately, automatic abstraction learning algorithms are typi-

cally not equipped to write human-readable function names—indeed, algorithms like

Stitch are a broad swath of PL methods that do not reason at all about the seman-

tics of programs, deriving all their power and utility through sensitivity to syntax.

Recently, the idea of using LLMs for code deobfuscation has received a small, but

notable, amount of interest. A core observation is that LLMs appear to be especially

well-suited to writing descriptive, human-readable function names (Lachaux et al.,

2021; Sharma et al., 2021; Cambronero et al., 2023). Conversely, neural language

models have been shown to be susceptible to adversarial attacks that obfuscate nam-

ing schemes while preserving functionality (Srikant et al., 2021; Zeng et al., 2022).

In our experiments, we observed that naively providing LLMs access to anony-

mous lambda abstractions from Stitch did not improve synthesis efficacy. In fact,

introducing new abstractions and rewriting the few-shot program examples in terms

of anonymous function names like fn_42 worked as a form of code obfuscation and

significantly hurt performance.

Motivated by these findings, as part of Lilo, we introduce a library auto-documentation

(AutoDoc) procedure that writes descriptive names and docstrings for library func-

tions proposed by Stitch. Fig. 3-5 gives an overview of this pipeline (the full

prompting scheme is reproduced in Appendix A.3). In this prototypical example

in the REGEX domain, the LLM has solved some problems that require vowel sub-

stitutions by writing the expression (regex_or 'a' (regex_or 'e' (regex_or 'i'

(regex_or 'o' 'u')))). Subsequently, Stitch has pulled out this expression for

occurring regularly in the solution set (indeed, in the library shown, this function is

the most compressive one) and has defined it as an arity-0 function (i.e., a constant).

The AutoDoc procedure is prompted to write a human-readable name and docstring

for this expression based on examples of its usage in the solution set, and produces

the following piece of documentation:
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You are writing software documentation. Your goal 
is to write human-readable names for the 
following library functions:

fn_42 :: tsubstr
(regex_or 'a' (regex_or 'e' (regex_or 'i'
(regex_or 'o' 'u'))))

fn_43 :: tfullstr -> tsubstr -> tsubstr -> 
tfullstr
(λ (λ (λ (regex_flatten (regex_map (λ (regex_if
(regex_match $2 $0) $1 $0)) (regex_split $1
$2))))))

fn_44 :: tfullstr -> tsubstr -> tsubstr -> 
tfullstr
(λ (λ (λ (regex_if (regex_match $0 (regex_car
(regex_cdr (regex_split empty_string $2)))) 
(regex_flatten (regex_cons $1 (regex_cdr
(regex_cdr (regex_split empty_string $2))))) 
$2))))

...

fn_51 :: tfullstr -> tsubstr -> tfullstr
(λ (λ (regex_flatten (regex_append $0
(regex_reverse_cdr (regex_reverse_cdr (fn_46 
$1)))))))

(fn_42) vowel_or :: tsubstr
(regex_or 'a' (regex_or 'e' (regex_or 'i' (regex_or 'o' 'u'))))
Returns a regular expression that matches any vowel character 
('a', 'e', 'i', 'o', or 'u') using 'regex_or' function. Used for 
identifying vowels in strings.

(fn_43) replace_with_condition :: tfullstr -> tsubstr -> tsubstr
-> tfullstr
(λ (λ (λ (regex_flatten (regex_map (λ (regex_if (regex_match $2 
$0) $1 $0)) (regex_split $1 $2))))))
Given a full string $0 and two substrings $1 and $2, returns a 
full string where all occurrences of $1 in $0 are replaced with 
$2 if the condition in the regular expression created by 
splitting $0 by $1 and applying a lambda function that returns 
$1 if the split element matches $2 and $0 otherwise is 
satisfied.

(fn_44) replace_substr_with_another

(fn_45) replace_starting_consonant

(fn_46) string_to_substring_list

(fn_47) replace_word_end_with_substring_if_ends_with_e

(fn_48) split_string_and_prepend

(fn_49) add_before_match

(fn_50) replace_substring_if_starts_with

(fn_51) prepend_last_two_substrings_reversed :: tfullstr -> 
tsubstr -> tfullstr
(λ (λ (regex_flatten (regex_append $0 (regex_reverse_cdr
(regex_reverse_cdr (string_to_substring_list $1)))))))
Given a full string $0 and a substring $1, returns a full string 
where the last two substrings in the string (if they exist) are 
reversed and prepended to the original string. The string is 
split into substrings using 'string_to_substring_list' function.

Please write a human-readable name and 
description for `fn_42`. Here are some examples 
of its usage:

-- if there is vowel replace that with s
(λ (fn_43 $0 's' fn_42))
-- if there is consonant add s after that
(λ (fn_49 's' (regex_not fn_42) $0))
-- if the word starts with vowel replace that 
with u c
(λ (fn_46 $0 (fn_44 $0 'c' 'u') fn_42))

Please write a human-readable name and 
description for `fn_43`. Here are some examples 
of its usage:

-- if there is d replace that with y
(λ (fn_43 $0 'y' 'd'))
-- if there is i replace that with k t
(λ (fn_43 $0 (regex_concat 'k' 't') 'i'))
-- if there is consonant replace that with p
(λ (fn_43 $0 'p' (regex_not vowel_or)))

Please write a human-readable name and 
description for `fn_51`. Here are some examples 
of its usage:

(A) Library containing anonymous, 
undocumented functions

(B) Function-specific prompts with 
usage examples

(C) Human-readable names and docstrings 
generated by LLM

Library auto-documentation pipeline

(D) Downstream benefits of library 
auto-documentation

LLM-guided synthesis

λ

Human inspection and 
interpretation

λ

Figure 3-5: Overview of Lilo library auto-documentation pipeline with
REGEX as an example domain. The figure illustrates our AutoDoc prompt-
ing workflow that writes human-readable names and docstrings for abstractions. (A)
Library proposed by Stitch containing anonymous lambda abstractions, serving as
the header for a prompt. (B) For each abstraction, we query an instruction-tuned
LLM to produce a human-readable name and description, given examples of usage
from solved tasks. As abstractions are named in serial, names are inlined into sub-
sequent prompts (e.g., after being named, vowel_or is invoked in one of the usage
examples for fn_43). (C) After auto-documentation, the abstraction library is both
(D) more easily interpretable by humans and more amenable to LLM-guided program
synthesis. The full AutoDoc prompt text is reproduced in Appendix A.3.

(fn_42) vowel_or :: tsubstr

(regex_or 'a' (regex_or 'e' (regex_or 'i' (regex_or 'o' 'u'))))

{- Returns a regular expression that matches any vowel character ('a', 'e', 'i', 'o',

or 'u') using 'regex_or' function. Used for identifying vowels in strings. -}

{- Example usages -}

--if the word ends with vowel consonant add g after that

(𝜆 (regex_if (regex_match vowel_or (regex_tail (regex_reverse_cdr

(string_to_substring_list $0)))) (regex_flatten (regex_append 'g'

(string_to_substring_list $0))) $0))

--if there is consonant consonant add d before that

(𝜆 (add_before_match (regex_split (regex_concat (regex_not vowel_or) (regex_not

vowel_or)) $0) 'd' (regex_concat (regex_not vowel_or) (regex_not vowel_or))))

--if there is vowel add h before that

(𝜆 (add_before_match (string_to_substring_list $0) 'h' vowel_or))
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In Lilo, just as in DreamCoder, the various modules contribute recursively to learning

by talking to one another. In this case, existing programs that invoke fn_42 are

rewritten to refer to vowel_or. Moreover, the above documentation is added to the

LLM Solver prompt on the next learning iteration, allowing the solver to deploy an

entire chunk of useful code by invoking a single, readable abstraction.

For AutoDoc, we encountered difficulties in coaxing Codex to perform the task:

the resulting function names were variable in quality, did not reliably capture the

function semantics, and were embedded in generations that did not always adhere to

the desired output specification. Instead, we take advantage of OpenAI’s instruction-

tuned gpt-3.5-turbo and gpt-4 models, which we find adhere to the desired output

JSON schema 100% of the time. Moreover, as we explore in § 4.2.4, they tend to

produce plausible, descriptive abstraction names and docstrings. All of this behavior

is zero-shot ; unlike for search, we do not provide any few-shot examples of the desired

transformations, making AutoDoc an extremely domain-general technique that is easy

to implement across a variety of settings.

In our analysis in § 4.2.1, we explore how AutoDoc benefits both downstream syn-

thesis performance, leading to better quality and more human-interpretable libraries.

3.5 Implementation

We provide a brief summary of key implementation details relevant to the experiments

reported in §4. We ran all experiments on AWS EC2 instances with machine specs

tailored to suit the computational workload of each experiment.

For experiments involving DreamCoder enumerative search, which is an embar-

rassingly parallel workload that scales linearly with the number of available CPUs, we

ran on 96-CPU c5.24xlarge instances. These machines have the highest CPU count

in the c5 machine class. To take maximal advantage of the CPU parallelism, we set

batch_size=96 for these experiments (i.e., each DreamCoder iteration searches for

solutions for a subset of 96 tasks). A convenient consequence of this implementation

choice is that each task is allocated to a single, dedicated CPU, so the overall wall
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clock runtime of a single search iteration is equal to the per-task enumeration time

budget. We set the enumeration budget on a per-domain basis using the timeouts

from Wong et al. (2021) (REGEX = 1000s, CLEVR = 600s, LOGO = 1800s). We

ran DreamCoder until convergence on all domains. For CLEVR and LOGO, we per-

formed 10 iterations of search, while for REGEX, we observed that the solve rate

was still increasing at iteration 10, so we used a higher search budget of 16 iterations

for this domain. Following Wong et al. (2021) and based on a common practice in

machine learning, we limited evaluation of the test set to every 3 iterations due to

the computational cost of enumerative search.

For experiments in which GPT LLMs perform program search, the bulk of the

computational workload is effectively offloaded to OpenAI’s servers. Locally, the only

requirements are that our machine is able to make API queries, process the results,

and run compression. Accordingly, these experiments are run on 8-CPU c5.2xlarge

machines. (For experiments involving combinations of GPT queries and DreamCoder

search, we use the larger c5.24xlarge machines.) To ensure comparability in solver

performance between LLM-based and enumerative search-based experiments, we also

run the LLM experiments with batch_size=96 so that the learning timelines are

aligned.

For experiments involving compression, we make use of the Stitch Python bind-

ings, which interface with a fast backend written in Rust. Stitch exposes various

hyperparameters, the most important of which are iterations, which governs the

number of abstractions produced, and max-arity, which governs the maximum num-

ber of arguments that each abstraction can take. For all experiments, we set these to

a constant iterations=10 and max-arity=3. We note that Stitch will only produce

an abstraction if it is compressive ; i.e., it appears in multiple programs, and rewriting

the corpus in terms of the abstraction reduces the overall description length. For this

reason, in rare cases early on in learning, when only a handful of solved programs

are available, the actual library size can be smaller than iterations. This behavior

is beneficial in that it avoids introducing abstractions that have no utility and that

might potentially negatively affect the performance of an LLM solver.
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A summary of hyperparameters can be found in Appendix A.5. For further im-

plementation details, we refer to our codebase: github.com/gabegrand/lilo.
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Chapter 4

Experiments

4.1 Domains

We evaluate our approach on three inductive program synthesis domains: REGEX

string editing, CLEVR scene reasoning, and LOGO compositional graphics. These

three domains were introduced in LAPS (Wong et al., 2021) as more complex exten-

sions of the kinds of tasks evaluated in DreamCoder (Ellis et al., 2020, 2021). Each

domain is split into train and test tasks; we reproduce the exact task splits used in

Wong et al. (2021). Table 4.1 contains a summary of the domains showing the relative

numbers of tasks in each split and summary statistics that indicate the complexity

of the underlying programs, as measured by description and string length.

#Tasks Description length String length

Domain Train Test Train Test Train Test

REGEX 491 500 38.95± 26.11 41.03± 27.02 276.47± 179.92 262.74± 172.69
CLEVR 191 103 32.95± 15.78 30.82± 15.49 361.62± 182.06 387.44± 184.19
LOGO 200 111 24.65± 8.71 27.79± 8.19 250.98± 92.75 287.17± 89.65

Table 4.1: Summary statistics for the domains used in this work. Description
length is the number of terminals, lambda-abstractions and applications necessary to
uniquely describe the ground truth program for each task; string length is the length
of each program in terms of characters. Both are reported as the mean over the entire
dataset plus/minus one standard deviation.
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4.1.1 REGEX: String editing

As an entree into this work, we evaluate on a domain of structured string transfor-

mation problems–a classic task in inductive program synthesis (Lau and Weld, 1998).

The dataset, originally introduced in Andreas et al. (2017), contains procedurally-

generated regular expressions that implement transformations on strings (e.g., if the

word ends with a consonant followed by “s”, replace that with b). Task examples

consist of input/output pairs where the inputs are strings randomly sampled from

an English dictionary and the outputs are the result of applying a particular string

transformation. Following prior work (Ellis et al., 2021; Wong et al., 2021), the base

DSL in this domain contains functional various programming primitives for string

manipulation (map, fold, cons, car, cdr, length, index) and character constants.

Each example comes with a synthetic language description of the task, which was

generated by template based on human annotations (Andreas et al., 2017).

4.1.2 CLEVR: Scene reasoning

We extend our approach to a visual question answering (VQA) task based on the

CLEVR dataset (Johnson et al., 2017). Following successful efforts in modeling VQA

as program synthesis (Andreas et al., 2016; Hu et al., 2017), each synthesis problem

is specified by a structured input scene and a natural language question. Outputs can

be one of several types, including a number (how many red rubber things are there? ),

a boolean value (are there more blue things than green? ), or another scene (what if

all of the red things turned blue? ). The dataset, designed by Wong et al. (2021), uses

a modified subset of the original CLEVR tasks and introduces new task types that

require imagining or generating new scenes (e.g., how many metal things would be left

if all the blue cylinders were removed? ) that require learning new abstractions in or-

der to solve. The base DSL includes functional programming primitives similar to the

regular expression domain, with domain-specific query functions and constants (e.g.,

get_color(x); get_shape(x); blue; cube). Input scenes are specified symbolically

as scene graphs consisting of an array of structured objects defined as a dictionary
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of their attributes, and programs are designed to manipulate these structured ar-

rays. Synthetic language annotations are generated based on the original high-level

templates in Johnson et al. (2017).

4.1.3 LOGO: Compositional graphics

Following in a long tradition of modeling vision as inverse graphics, (Kersten and

Yuille, 1996; Kersten et al., 2004; Yuille and Kersten, 2006; Lee and Mumford, 2003;

Wu et al., 2015; Yildirim et al., 2020; Wu et al., 2017; Yi et al., 2018; Gothoskar

et al., 2021) we evaluate on a domain of compositional drawing problems. The dataset,

originally introduced in (Wong et al., 2021) and based on a simpler dataset from (Ellis

et al., 2021), contains programs that generate shapes and designs in a vector graphics

language. The DSL is based on Logo Turtle graphics (Abelson and diSessa, 1986),

which originated from early symbolic AI research. Program expressions control the

movement and direction of a pen (classically represented as a Turtle) on a canvas and

can involve complex symmetries and recursions (e.g., a seven sided snowflake with

a short line and a small triangle as arms; a small triangle connected by a big space

from a small circle). The base DSL includes for loops, a stack for saving/restoring

the pen state, and arithmetic on angles and distances (Ellis et al., 2021). Synthetic

language annotations (Wong et al., 2021) are generated with high-level templates over

the objects and relations in each task.

4.2 Results

4.2.1 Synthesis efficacy

LLMs facilitate effective search over lambda calculus programs. Our first

question is whether the LLM-based search procedure introduced in §3.3 can effectively

amortize enumerative DreamCoder search. In terms of the overall percentage of test

tasks solved per domain, we find that the LLM Solver performs comparably to the

DreamCoder baseline on LOGO (𝜇LLM = 32.13% vs. 𝜇DC = 28.53%), slightly worse
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than DreamCoder on CLEVR (𝜇LLM = 88.67% vs. 𝜇DC = 94.50%), and significantly

better than DreamCoder on REGEX (𝜇LLM = 76.13% vs. 𝜇DC = 43.93%) (see

Table 4.2 for a full summary of task solution rates). The improvements on REGEX

are primarily attributable to LLMs’ ability to generate expressions for concepts like

vowel and consonant that invoke human commonsense prior knowledge.
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Figure 4-1: Comparison of learning curves across synthesis experiments.
Results are organized by domain (row) and model (column). Within each plot, the
x-axis is the experiment iteration and the y-axis shows the percent of tasks solved.
Each plot contains two lines: train (∙) and test (⋆), where test is evaluated every 3
iterations. Error bars show standard deviation across 3 randomly-seeded runs. Each
run starts at iteration = 0, which corresponds to searching in the base DSL.

Naive integration of LLM Solver and compression hurts performance.

Early experiments interfacing the LLM Solver with Stitch (Table 4.2, LLM Solver

(+ Stitch)) revealed a puzzling finding: providing the LLM with higher-level ab-

stractions from Stitch, which are designed by construction to provide useful function-

ality, did not help—and in some cases, actually hurt—downstream synthesis perfor-

mance. Relative to the LLM Solver baseline, we observed mean solution rate decreases

of −30.60% (REGEX), −2.91% (CLEVR), and −11.11% (LOGO) after introducing

Stitch compression. Qualitative inspection found that GPT was struggling to de-
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Tasks solved in language-guided synthesis (%)

REGEX CLEVR LOGO

Model 𝑚𝑎𝑥 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑 𝑚𝑎𝑥 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑 𝑚𝑎𝑥 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑

DreamCoder 45.60 43.93 1.53 97.09 94.50 2.44 36.94 28.53 13.79
LLM Solver 90.00 76.13 12.04 90.29 88.67 1.48 41.44 32.13 8.07
LLM Solver (+ Stitch) 59.40 53.20 5.38 93.20 85.76 9.72 45.05 21.02 20.88
LILO 63.80 62.93 1.50 94.17 88.03 8.26 30.63 21.02 9.46
LILO (+ Hybrid DSL) 69.60 64.53 7.76 94.17 90.94 3.41 40.54 32.43 7.04
LILO (+ Search) 93.20 77.07 14.14 99.03 96.76 3.12 73.87 48.95 22.15

Table 4.2: Task solution rates for primary synthesis experiments. We report
final solve rates for the best (max ), average (mean), and standard deviation (std)
across the runs in each condition. Performance on these domains is directly compa-
rable to results from Wong et al. (2021) (see Appendix A.4).

ploy the abstractions and compose them in contextually-appropriate ways. One key

insight was that Stitch returns abstractions using anonymous function names (i.e.,

fn_42, where the number refers to the ordering of the function in the PCFG, and

where abstractions are always numbered after the existing DSL primitives). As we

explore further in § 4.2.4, there are certain cases in which high-level abstractions can

obfuscate the underlying DSL semantics. These observations motivate the introduc-

tion of auto-documentation procedure in Lilo (§3.4), which we evaluate below.

Lilo aids the LLM Solver in contextual deployment of library abstractions.

After introducing AutoDoc, we see mean improvements of +9.73% (REGEX) and

+2.27% (CLEVR) over the LLM Solver (+ Stitch) condition (Table 4.2, LILO; we do

not observe any change in mean performance on LOGO). We also introduce a variant,

LILO (+ Hybrid DSL), where we start by prompting the LLM with the full library

as in the base LILO condition. If the task is not solved after some heuristic fraction

of the budgeted 𝑛prompts_per_task (here, we use 50%), we remove the abstractions and

revert to prompting in the Base DSL. With this hybrid DSL prompting technique, we

observe mean improvements of +10.20% (REGEX), +5.18% (CLEVR), and +11.41%

(LOGO) absolute accuracy over LLM Solver (+ Stitch). Note that this variation

does not consume any more resources than base Lilo; both are given the same total

prompt budget.
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Integrating Lilo and search achieves the strongest performance on all

domains. We tested a variant of Lilo that combines LLM prompting with Dream-

Coder enumerative search: at each iteration, we run the LLM Solver, followed by

a round of DreamCoder search. Across all domains, we observe that this ensem-

bled search model achieves the best performance of the conditions we tested. This

model improves on both the DreamCoder baseline by +33.14% (REGEX), +2.26%

(CLEVR), +20.42% (LOGO) and the LLM Solver baseline by +3.20% (REGEX),

+8.09% (CLEVR), +16.82% (LOGO). However, unlike the LILO (+ Hybrid DSL)

condition, LILO (+ Search) does consume more resources than base Lilo as it

performs an enumerative search in addition to running the LLM Solver. A further

analysis of computational tradeoffs is included in § 4.2.5.

4.2.2 Benchmark comparison to prior work

The results from our three domains are directly comparable to those from Wong

et al. (2021). The primary results from that work are reproduced in Appendix A.4,

where Strings corresponds to REGEX, Graphics corresponds to LOGO, and Scenes

corresponds to CLEVR. The DreamCoder baseline from our work, which uses the

language-conditioned recognition model from Wong et al., is comparable to the “LAPS

in neural search” condition in Table A.1, with the key difference being that we do

not use the IBM translation model component. (We also run on larger batch sizes to

take full advantage of the available CPU parallelism on our cloud hardware.)

On REGEX (Strings), with the use of LLMs for search, our LLM Solver and Lilo

conditions perform significantly better (93.2% best vs. 57.00% best) than this prior

work, even without explicitly computing language/program alignment. On CLEVR

(Scenes), our models perform comparably to LAPS: the DreamCoder baseline already

solves almost all of the tasks in the test set (97.09% best). Adding in Lilo (+ Search)

brings the best solve rate up to 99.03%.

Finally, on LOGO (Graphics), our models generally underperform with respect

to the results reported in LAPS. Moreover, even matching the 1800𝑠 search time, we

were unable to obtain a DreamCoder run that matches their equivalent baseline on
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this domain (36.94% LILO best vs. 92.79% LAPS best). It is worth noting that the

best run from LAPS on this domain appears to be an outlier (see Fig. A-3, LAPS in

neural search), so a comparison of average results (28.93% LILO mean vs. 52.93%

LAPS mean) may be more appropriate. Only in the LILO (+ Search) condition are

our results (73.87% best, 48.95% mean) comparable to the LOGO baseline reported in

LAPS. This finding suggests that the LOGO domain is particularly well-suited to the

token-to-token assumptions made by the IBM translation model from Wong et al.. It

is also worth noting that only the DreamCoder and LILO (+ Search) conditions, which

train a CNN-guided neural recognition model as part of enumerative search, have the

ability to condition on the LOGO drawings. In particular, the four conditions that

rely exclusively on LLM-guided search must infer what to draw solely based on the

task descriptions; an exceedingly difficult generalization task.

4.2.3 Quantitative evaluation of library abstractions

The goal of library learning is not just to solve synthesis tasks, but also to discover

useful, generalizable abstractions. One way to measure the quality of a library is

to evaluate its performance in unconditional search. In other words, if a library is

useful, then we should be able to use it to solve many tasks relatively quickly. An

advantage of this evaluation is that it is entirely self-contained; holding the parameters

of the search fixed, downstream performance depends entirely on the utility of the

abstractions in the library.

To operationalize this evaluation, we initialize a PCFG with the final library ℒ𝑓

from each model run. We then perform unconditional search in this PCFG for a

fixed test time budget equal to the search time allocated to each test iteration on a

per-domain basis (c.f. §3.5). We choose unconditional search, as opposed to neurally-

guided search, for this evaluation because this provides a more direct comparison of

libraries: whereas neurally-guided search requires training a recognition network on

a run-dependent set of tasks and descriptions, unconditional search depends only on

the primitives and abstractions in ℒ𝑓 and the prior probabilities they are assigned

under 𝜃ℒ𝑓
.
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Figure 4-2: Evaluating library quality by synthesizing with the final library.
We initialize a weighted PCFG with the final library ℒ𝑓 from each model run. We
perform unconditional search (no neural guidance) in this PCFG for a per-domain
fixed test time budget (note the log-scale on the x-axis). With search parameters
identical across conditions except for the initial PCFG, higher performance (y-axis)
indicates more useful, generalizable libraries.
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Tasks solved in unconditional synthesis (%)

REGEX CLEVR LOGO

Model 𝑚𝑎𝑥 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑 𝑚𝑎𝑥 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑 𝑚𝑎𝑥 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑

Base DSL 22.00 22.00 0.00 29.13 29.13 0.00 0.90 0.90 0.00
DreamCoder 42.00 41.60 0.40 94.17 91.59 2.97 36.04 30.63 7.85
LLM Solver (+ Stitch) 60.80 50.73 8.85 95.15 93.85 2.24 51.35 30.63 18.22
LILO 57.60 56.20 2.25 96.12 95.79 0.56 28.83 26.13 3.25
LILO (+ Hybrid DSL) 62.40 58.47 5.18 95.15 93.53 1.48 35.14 26.13 7.85
LILO (+ Search) 71.40 64.27 6.31 96.12 92.56 6.17 50.45 41.14 8.66

Table 4.3: Task solution rates for unconditional synthesis experiments with
final libraries. We report final solve rates for the best (max ), average (mean), and
standard deviation (std) across the runs in each condition.

Fig. 4-2 and Table 4.3 show the results of these unconditional search evaluations.

In each domain, we measure synthesis performance in the base DSL (dark blue line),

which serves as a baseline for this experiment. As expected, we can significantly

outperform this baseline using library learning: DreamCoder (green) improves abso-

lutely on the Base DSL solve rates by +19.6% (REGEX), +62.46% (CLEVR), and

+29.73% (LOGO). Moreover, in each domain, the best Lilo conditions improve fur-

ther on DreamCoder, showing, on average, absolute solution rate gains of +42.27%

(REGEX), +63.43% (CLEVR), and +43.24% (LOGO) over the base DSL perfor-

mance. As these quantitative results demonstrate, Lilo learns high-quality libraries

that generalize well to downstream synthesis tasks, outperforming DreamCoder on

all three domains.

4.2.4 Qualitative inspection of library abstractions

We generated graphical visualizations of the libraries learned by the best Lilo model

for each domain (LILO (+ Search)). Each graph includes the DSL primitives, the

named abstractions, and a random sample of 3 solved tasks that invoke each abstrac-

tion. Arrows indicate direction of reference; i.e., fn_1 -> fn_2 indicates that fn_1

invokes fn_2, and analogously for the tasks.

Fig. 4-3 shows the library map for the CLEVR library (the maps for REGEX and

LOGO libraries are included in Appendix A.1). We choose CLEVR as a showcase
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because Lilo solves > 99% of the domain’s test tasks using this library (Table 4.2), so

it is a useful success case study. The final library contains two layers of abstractions.

The lower layer implements filter operations over size, color, shape, and material

attributes, which constitute the main axes of variation in the domain. These abstrac-

tions form the building blocks for a layer of higher-level abstractions that implement

more specialized operations, like count_remaining_objects_by_color_and_shape and

filter_objects_by_rubber_material. The library auto-documentation (reproduced

in full in Appendix A.2.2) provides userful insight into the mechanics of these func-

tions. For instance:

(fn_61) count_remaining_objects_by_color_and_shape :: list(tclevrobject) ->
tclevrcolor -> tclevrshape -> int
(𝜆 (𝜆 (𝜆 (clevr_count (clevr_difference (filter_objects_by_shape $0 $2)
(filter_objects_by_color $1 $2))))))
{- Counts the number of objects that remain after removing objects of a specified
color and shape from the input list of objects. -}

{- Example usages -}
--if you removed the brown thing s how many sphere s would be left
(𝜆 (count_remaining_objects_by_color_and_shape $0 clevr_brown clevr_sphere))
--if you removed the red cube s how many cube s would be left
(𝜆 (count_remaining_objects_by_color_and_shape $0 clevr_red clevr_cube))
--if you removed the cyan cylinder s how many cylinder s would be left
(𝜆 (count_remaining_objects_by_color_and_shape $0 clevr_cyan clevr_cylinder))

Libraries in the other domains also exhibit examples of compositional and hier-

archical reuse. For instance, in REGEX (Fig. A-1), the most compressive library

abstracion is the vowel_or expression highlighted in §3.4. This abstraction is invoked

by the higher-level replace_starting_consonant abstraction, which makes use of

the fact that consonant is the set-complement of vowel :

(fn_45) replace_starting_consonant :: tfullstr -> tsubstr -> tsubstr -> tfullstr
(𝜆 (𝜆 (𝜆 (regex_if (regex_match (regex_not vowel_or) (regex_car (regex_split
empty_string $2))) (regex_flatten (regex_cons $0 (regex_cons $1 (regex_cdr
(regex_split empty_string $2))))) $2))))
{- Given a full string $0 and two substrings $1 and $2, returns a full string where
the first letter of each word starting with a consonant in $0 is replaced with $1$2.
Vowels are determined using `$vowel_or` regular expression. -}

{- Example usages -}
--if the word starts with consonant replace that with r p
(𝜆 (replace_starting_consonant $0 'p' 'r'))
--if the word starts with consonant replace that with q
(𝜆 (replace_starting_consonant $0 'q' empty_string))

58



CLEVR Library

Primitives
clevr_relate

clevr_query_color

clevr_query_size

clevr_query_material

clevr_query_shape

clevr_eq_color
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clevr_eq_shape

clevr_union

clevr_intersect

clevr_difference

clevr_count

clevr_gt?

clevr_lt?

clevr_car

clevr_if

clevr_empty

clevr_fold

clevr_add

clevr_gray

clevr_red

clevr_blue

clevr_green

clevr_brown

clevr_purple

clevr_cyan

clevr_yellow

clevr_small

clevr_large

clevr_rubber

clevr_metal

clevr_cube

clevr_sphere

clevr_cylinder

clevr_left

clevr_right

clevr_behind

clevr_front
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clevr_map

clevr_transform_color

clevr_transform_material

clevr_transform_size

clevr_transform_shape

filter_by_size

filter_by_color

filter_by_material

filter_objects_by_shape

filter_objects_by_color

filter_objects_by_small_size

filter_objects_by_material

count_remaining_objects_by_color_and_shape

filter_objects_by_rubber_material

filter_large_objects_by_size

what color is the small metal thing behind the small purple metal thing

what is the size of the gray thing

how many thing s are red thing s or large green thing s

find the cube s

find the rubber cube

if you removed the cylinder s how many large thing s would be left

find the gray rubber thing

what is the thing that is front the brown thing made of

what number of small objects are either metal cube s or red rubber thing s

find the small red thing

find the small thing s

what number of small objects are either blue metal thing s or rubber thing s

there is a metal cylinder right the small purple metal thing what is its size

what if you removed all of the blue metal thing s

find the small metal cylinder

if you removed the brown thing s how many sphere s would be left

if you removed the gray sphere s how many sphere s would be left

if you removed the blue thing s how many sphere s would be left

what number of sphere s are small cyan metal thing s or small rubber thing s

what number of rubber objects are purple thing s or cylinder s

what number of cylinder s are either large rubber thing s or small blue rubber thing s

find the large metal sphere

there is a large thing front the small metal cube what is its shape

what number of cylinder s are either large rubber thing s or small blue rubber thing s

Figure 4-3: Graphical map of CLEVR library learned by Lilo.
Named abstractions (turquoise) are hierarchically composed of other abstrac-
tions and ground out in the base DSL primitives (gray box). For in-
stance, filter_objects_by_rubber_material invokes the lower-level abstraction
filter_by_material, as well as the primitive constant clevr_rubber. Solved tasks
(red) are shown with their language descriptions and the set of library functions uti-
lized in the solution. Graphical maps for REGEX and LOGO libraries are included
in Appendix A.1. 59



--if the word starts with consonant replace that with e n
(𝜆 (replace_starting_consonant $0 'n' 'e'))

Similarly, in LOGO, the most compressive abstraction, turtle_loop_move_rotate,

is a general method for drawing n-gons that is invoked by several higher-level library

abstractions; e.g., for drawing snowflakes and for making n-gons with double-length

sides. The ability to bootstrap hierarchies of learned concepts while jointly learn-

ing to solve programming tasks has traditionally been one of the selling points of

DreamCoder. The examples above showcase how Lilo builds on these hallmarks,

facilitating discovery of abstractions like vowel_or that require human-like priors

knowledge, while also improving the interpretability of the learned libraries through

auto-documentation.

Having highlighted some of the success cases of Lilo, we now turn to some failure

modes. One common issue is the presence of semantic errors in abstraction nam-

ing and documentation. While instruct-tuned GPT models do a remarkable job at

inferring program semantics from the prompts, we observe various cases where they

produce unhelpful or even misleading outputs. For instance, in the LOGO domain

(Fig. 4-4), turtle_loop_move_rotate (fn_27) is a rather uninformative name for

what is actually a function that generates polygons. Because Lilo names libraries

iteratively, passing in the existing names at each step, there is a tendency for naming

schemes to propagate to higher-level abstractions. While naming consistency is gen-

erally a desirable property, iterative naming can also create situations where the LLM

“doubles down” on prior issues, causing semantic errors to compound. For instance,

double_length_loop_move_rotate (fn_34) is a decidedly ambiguous name for a

function that produces n-gons of fixed side length 2. Moreover, the documentation

(Fig. 4-4) makes clear that GPT appears to misunderstand the function’s semantics,

incorrectly stating that each iteration doubles the length of the turtle’s movement.

Such a misinterpretation may have been influenced by a similar semantic error that

the LLM had previously made for (fn_31), where the documentation falsely states

that “the angle by which the lines are rotated increases with each iteration of the loop.”

In Lilo, this documentation becomes part of the library and is passed to the LLM
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(fn_27) turtle_loop_move_rotate :: turtle -> int -> tlength -> turtle
(λ (λ (λ (logo_for_loop $1 (λ (λ (logo_move_pen_forward_rotate $2 
(logo_divide_angle logo_unit_angle $3) $0))) $2))))

{- Repeatedly move the turtle forward and rotate it by a specified angle, creating 
a loop of a specific number of sides with a given line length. -}

{- Example usages -}
--a short line
(λ (turtle_loop_move_rotate $0 1 logo_unit_line))
--a small square
(λ (turtle_loop_move_rotate $0 4 logo_unit_line))
--a small 7 gon
(λ (turtle_loop_move_rotate $0 7 logo_unit_line))

(fn_31) turtle_snowflake_with_arms :: turtle -> int -> int -> turtle
(λ (λ (λ (logo_for_loop $0 (λ (λ (turtle_loop_move_rotate
(logo_move_pen_forward_rotate logo_zero_line (logo_divide_angle logo_unit_angle $2) 
$0) $3 (logo_multiply_line logo_unit_line 2)))) $2))))

{- Draws a snowflake shape with given number of arms, each made up of a line of 
specified length that is rotated at a specific angle. The angle by which the lines 
are rotated increases with each iteration of the loop, creating an intricate 
snowflake pattern. -}

{- Example usages -}
--6 sided snowflake with a medium triangle as arms
(λ (turtle_snowflake_with_arms $0 3 6))
--7 sided snowflake with a medium triangle as arms
(λ (turtle_snowflake_with_arms $0 3 7))
--7 sided snowflake with a medium 5 gon as arms
(λ (turtle_snowflake_with_arms $0 5 7))

(A) Example abstraction usages (B) Auto-documented library with semantic errors

M
ost-to-least com

pressive

(fn_34) double_length_loop_move_rotate :: int -> turtle -> turtle
(λ (λ (turtle_loop_move_rotate $0 $1 (logo_multiply_line logo_unit_line 2))))

{- Moves and rotates the turtle in a loop, with each iteration doubling the length 
of the turtle's movement. -}

{- Example usages -}
--a medium triangle
(λ (double_length_loop_move_rotate 3 $0))
--a medium 5 gon
(λ (double_length_loop_move_rotate 5 $0))
--a medium 8 gon
(λ (double_length_loop_move_rotate 8 $0))

Figure 4-4: Qualitative inspection of LOGO library. (A) Rendered examples
of usages of each abstraction in the final library learned by Lilo. Above each ren-
der is the set of arguments that the abstraction was invoked with, where $0 refers
to the canvas object. Abstractions are ordered top-down from most-to-least com-
pressive. For instance, the top abstraction, turtle_loop_move_rotate (fn_27), is a
general method for drawing n-gons that is invoked by several other library abstrac-
tions (arrows, left side). (B) Excerpts from the auto-documentation of three selected
abstraction, with semantic errors highlighted in red. For instance, the documentation
for double_length_loop_move_rotate (fn_34) incorrectly states that each iteration
doubles the length of the turtle’s movement. In actuality, fn_34 invokes fn_27 to
produce n-gons of fixed side length 2. AutoDoc errors such as these may uninten-
tionally obfuscate library semantics, inversely affecting the LLM Solver’s ability to
deploy abstractions in context.

Solver at search time. Therefore, these kinds of semantic errors do not merely affect

human interpretability; they also have the potential to adversely impact downstream

solution rates.
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4.2.5 Computational efficiency

Given that program search is the most computationally expensive component of syn-

thesis, we would like to be able to quantify and compare the compute costs of LLM-

based and traditional enumerative search. However, performing an apples-to-apples

comparison is non-trivial because the source of these costs is different between the two

cases. As discussed in §3.5, enumerative search requires a high degree of CPU paral-

lelism, so the primary cost associated with running DreamCoder in our experiments

is the on-demand CPU-hour cost of renting suitably large machines from AWS. In

contrast, LLM search is GPU-intensive, and (in our implementation) is performed on

external servers for which we do not have access to exact specifications or cost met-

rics. In practice, “LLM-as-a-service” models, such as OpenAI’s API, charge a fixed

price per text token, so the primary costs of Lilo-style program search arise from

the number of LLM queries, the length of the prompts, and the desired completion

length.

In this section, we compare the computational efficiency of the two search ap-

proaches across three fronts. First, we consider wall clock time, which—in addition to

being an informative metric in its own right—also allows us to compute a cost basis

for enumerative search. Next, we consider token usage, which allows us to compute

a cost basis for LLM search methods. These analysis culminate in a dollar-to-dollar

comparison that, while dependent on pricing schemes of third-parties and the markets

more generally, nevertheless offers the closest means of direct comparison.

We start by analyzing observed (a.k.a. “wall clock”) runtimes of our different

models. Fig. 4-5 breaks these down by domain, where the x-axis corresponds to the

average time to perform a single search iteration during training and test.1 Overall, we

observe that even with network latency from interfacing with OpenAI servers, a round

1Note that in Fig. 4-5, despite appearances, for a given model on a given domain, the per-
task search times between train and test splits are approximately equal. Any apparent within-
condition discrepancies between train and test are due to the fact that during training, we search
on minibatches of 96 tasks, whereas during test, we search on the entire test set. Thus, for domains
where the number of tasks is many multiples of the batch size (e.g., REGEX), there is a larger
discrepancy betweeen train and test search times.
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Figure 4-5: Comparison of wall clock runtimes across search procedures and
domains. Each bar shows average runtime for a single iteration of train/test program
search (error bars indicate 95% confidence intervals). Even with network latency
from interfacing with OpenAI servers, LLM search (top row), typically requires less
execution time than enumerative search (bottom row), which runs locally on a 96-
CPU machine.

of LLM search typically runs more quickly than an equivalent round of enumerative

search. This difference is especially pronounced on LOGO, which requires longer

search times (the enumeration budget for the DreamCoder baseline is set on a per-

domain basis using the timeouts from Wong et al. (2021); see §3.5 for more details).

We do not observe major differences in runtimes within the different LLM Solver

conditions, though it is worth noting that the LILO (+ Search) model requires

approximately 2x more total runtime than the other Lilo models because it performs

both LLM-based and enumerative search on each iteration.

Next, we consider the token usage of the LLM solver conditions. Fig. 4-6 breaks

these down by domain and model. A typical training iteration uses on the order of

0.8M-1.2M GPT tokens between the prompt and the completion. For completeness,

all models are shown separately, but we do not note any clear trends in token usage

by model; all models empirically use similar token counts. This may be because token
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Figure 4-6: GPT token usage per training iteration. Token usage provides a
useful metric for assessing the computational costs of LLM-based program search. A
typical training iteration uses on the order of 0.8M-1.2M GPT tokens between the
prompt and the completion. (Note the y-axis measures millions of tokens.) Boxes
indicate quartiles of the distribution and whiskers extend to 1.5 inter-quartile ranges,
with outliers shown as individual points.

usage is influenced by a complex interplay of several factors. Better-performing mod-

els will require fewer queries per task to discover a solution, so they should use fewer

tokens. (In practice, however, we cap 𝑛prompts_per_task = 4, and all conditions must

make at least one query per task, so the number of queries is bounded fairly tightly.)

Models that use Stitch for compression (i.e., everything except LLM Solver) will

also tend to benefit from shorter program description lengths per task. In particu-

lar, the LLM Solver (+ Stitch) condition, which uses anonymous function names

(e.g., fn_42), tends to use the fewest tokens per task. However, because we “pack

the prompt” with as many examples as can fit, per-task description length does not

directly influence token usage; though, as we discuss throughout, too much compres-

sion could affect token usage indirectly by obfuscating program semantics, therefore

making the LLM solver require more queries to solve new tasks.

Finally, in the spirit of providing an apples-to-apples compute cost comparison, we
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REGEX CLEVR LOGO
𝑚𝑒𝑎𝑛 𝑠𝑡𝑑 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑 𝑚𝑒𝑎𝑛 𝑠𝑡𝑑

LLM
Search

LLM Solver $1.65 $0.35 $1.66 $0.44 $2.19 $0.32
LLM Solver (+ Stitch) $2.04 $0.39 $1.66 $0.47 $1.59 $0.24
LILO $1.86 $0.30 $1.70 $0.52 $2.03 $0.31
LILO (+ Hybrid DSL) $1.78 $0.30 $1.78 $0.43 $2.12 $0.29
LILO (+ Search) $1.77 $0.38 $1.87 $0.42 $2.01 $0.30

Enumerative
Search

DreamCoder $1.16 $0.01 $0.71 $0.01 $2.07 $0.01
LILO (+ Search) $1.16 $0.00 $0.71 $0.00 $2.07 $0.00

Table 4.4: Dollar cost comparison between LLM-based and enumerative
search. Each entry is the cost of running one training iteration of search, estimated
based on measured wall-clock time (for enumerative search) or token usage (for LLM
search). As a rough heuristic, we find that one iteration of Lilo’s LLM-amortized
search scheme is approximately equivalent to an 1800-second enumerative search on
96 CPUs—or, about 48 CPU-hours—in terms of compute cost.

combine our time cost and token cost analyses to estimate a dollar cost for each model

per training iteration. For conditions that perform enumerative search, we compute

CPU cost using the on-demand AWS EC2 instance price for a c5.24xlarge machine

in us-east-2, currently priced at $4.08 / hr. Meanwhile, for conditions that involve

LLM search (everything except DreamCoder), we compute LLM inference cost using

OpenAI’s current API pricing. As discussed in §3.3, the LLM Solver experiments

reported here took advantage of OpenAI’s Codex model private beta for academic

researchers—in other words, they were effectively free. Accordingly, we estimate

the cost of our queries using OpenAI’s more recent gpt-3.5-turbo model, which is

available to the public and priced at $0.002 per 1K tokens. For the LLM solver cost

analysis, we choose not to factor in the cost of running a “head node” to issue API

queries, as this machine is an order of magnitude cheaper than the c5.24xlarge, has

no specific spec requirements, and could be arbitrarily downscaled or even replaced

with a laptop.

Table 4.4 summarizes the results of this analysis. Remarkably, despite the fact

that LLM-based and enumerative searches use very different compute platforms with

prices set by two different third-party companies, the dollar costs per training iteration

come out to within the same order of magnitude—indeed, they are approximately

comparable. In general, we find the tradeoff between LLM and enumerative search
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to be closely tied to the search time budget: domains with shorter enumeration

timeouts (e.g., CLEVR) cost 2-2.5x less than LLM search, while domains with longer

enumeration timeouts (e.g., LOGO) cost about the same. Therefore, as a rough

heuristic, we can say that one iteration of Lilo’s LLM-amortized search scheme is

approximately equivalent to an 1800-second enumerative search on 96 CPUs—or,

about 48 CPU-hours—in terms of compute cost.

Of course, this cost analysis is heavily tied to market factors that are subject to

change—in particular, the hardware, electricity, and logistics costs that Amazon and

OpenAI face in operating their compute platforms, as well as the profit margins that

their pricing schemes bake in. Nevertheless, we find it noteworthy that it is currently

possible to implement a search scheme like Lilo—which requires thousands of LLM

queries over millions of tokens per training iteration—while generally achieving better

solution rates, faster wall clock runtimes, and comparable dollar costs to enumerative

search. Moreover, we note that general-purpose cloud compute platforms like AWS

have been available for many years; especially as Moore’s Law is believed to be reach-

ing its tail end (Theis and Wong, 2017), we are unlikely to see significant reductions

in the cost of large-scale CPU compute. In constrast, the LLM-as-a-service model is

a recent innovation; with increased scale, hardware optimizations, product matura-

tion, and growing market competition, we are likely to see the costs of LLM inference

decrease dramatically in the coming years. Moreover, as discussed in §3.2, we are

particularly excited about the growing diversity of open source LLM packages, which

should make it possible to implement Lilo in an even more cost efficient manner and

with increased visibility into performance considerations.

4.3 Discussion

We conclude the presentation of our experiments with several discussion points situ-

ating our findings in the broader landscape of program synthesis research.
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4.3.1 Transformer self-attention as implicit library learning

While we set out in this work to tell a story about library learning, one of the most

striking findings from our experiments is the strong performance of the LLM-only

baseline relative to both DreamCoder and Lilo. Our experiments show that even

without the explicit ability to compress solutions into symbolic abstractions, LLMs

nevertheless appear able to identify, reuse, and repurpose existing program struc-

tures to solve new tasks. Partly, this is due to the synthetic nature of our domains,

which often have stereotyped correspondences between task descriptions and solved

programs: given solutions to find the small metal cylinder and find the large

metal sphere, even an RNN encoder-decoder networks can generalize to find the

large metal cylinder (Andreas et al., 2016, 2017).

What makes these generalizations notable in transformers is that—unlike prior

RNN-based approaches—there is no updating of network parameters. In this sense,

LLMs can be seen as implementing a form of implicit library learning, where the

solution set is itself the library.

How far can we scale this idea? In theory, transformer self-attention is limited

both by model depth (number of layers) and witdh (size of context window) (Hahn,

2020). Nevertheless, since the invention of the transformer architecture, researchers

have been investigating ways to achieve longer-range attention (see Tay et al., 2022,

2021 for a review). Various approaches have drawn on truncated backpropagation

through time (Dai et al., 2019; Rae et al., 2020) and continuous-space attention

(Martins et al., 2022) to achieve compressive memory with longer or even infinite

context width. Other approaches use retrieval from external knowledge sources (Guu

et al., 2020; Lewis et al., 2020; Fan et al., 2021), augmenting transformers with vast

and typically lossless memory capacity. Recent work in this line explicitly envisions

LLMs capable of ingesting and immediately acquiring new knowledge at inference

time through memorization (Wu et al., 2022). In the near term, leveraging these

advances, we can start to imagine systems that can both solve programming tasks

on-the-fly and cache them for later retrieval; using analogy to prior experience to
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inform the solution of new problems.

4.3.2 Measuring and trading off costs of compression

Sooner or later, any library learning system must confront the following question: How

many abstractions should be in the library? In this work, we offload this question to

Stitch, which internally computes a utility for each abstraction based on the amount

it compresses the corpus (Bowers et al., 2023). To avoid the computationally thorny

problem of jointly estimating this utility for all library abstractions, Stitch instead

builds up libraries in a greedy manner, adding in abstractions one-by-one and stopping

when no further compression can be achieved.

However, for any moderately-size program corpus, there is a long tail of marginally-

compressive abstractions. Naively adding all of these to the library will have an ad-

verse effect on program search, both in the enumerative and LLM-driven settings. For

enumerative algorithms, the library size |ℒ| defines the branching factor of the search,

so each additional abstraction causes the search space to scale accordingly. Mean-

while, for Lilo-style LLM search, each additional abstraction definition consumes

space in the prompt (Fig. 3-4 A), reducing the space available for in-context exam-

ples. Thus, there is an imperative to keep the library relatively modest in size—but

how can we quantify these tradeoffs?

This is one area where DreamCoder offers a more principled answer than Stitch—

albeit, one that comes with performance costs. Because DreamCoder compression

represents many possible rewrites of candidate programs simultaneously via version

space algebras, it is able to perform a beam search to approximately recover a large

number of candidate libraries (in practice, the top 106 libraries are considered). This

beam search is one factor that makes DreamCoder many orders of magnitude more

time and memory intensive than Stitch. However, in the absence of such a search

over libraries, it is difficult to know when to stop growing the library. In practice,

we use a relatively low heuristic cutoff: each library can have a maximum of 10 ab-

stractions. However, even with this cutoff, we observe some instances of overfitting:

our final libraries contain abstractions like filter_objects_by_rubber_material (Ap-
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pendix A.2.2) and replace_word_end_with_substring_if_ends_with_e (Appendix A.2.1)

that are clearly overspecified. For this reason, an important next step will be to

dynamically adapt the library size based on some more formal notion of utility.

Returning to insights from prior work, one approach is to explicitly formalize the

tradeoff between the description length of a candidate library and the description

length of the corpus of programs under that library. For instance, Wong et al. (2022)

compute a combined representational cost 𝐶ℒ𝑖
= |ℒ𝑖| + 1

𝑁

∑︀
𝜌 |𝜌ℒ𝑖

|, where ℒ𝑖 is the

candidate library and 𝑁 is the cardinality of the set of programs to be expressed

under ℒ𝑖. (DreamCoder also computes a version of this cost via its library prior in

Eq. (3.5).) Such a notion of combined representational cost may offer a cognitively-

grounded way of approaching the library size problem. Indeed, human language usage

empirically supports the hypothesis that people favor a lexicon that allows concise

item-wise descriptions, while also minimizing the size of the lexicon itself (Wong et al.,

2022). Integrating such a utility function into Stitch therefore might offer a more

principled way of determining the ideal library size throughout the course of learning.

4.3.3 Connections to dual-system accounts of problem-solving

How can we think about the relationship between LLM-based and enumerative search

in a broader cognitive framework? Dual-process theories of cognition posit that rea-

soning emerges from an interplay between a more intuitive and associative “System

1” and a more deliberative and logical “System 2.” (Sloman, 1996; Stanovich, 1999;

Evans, 2003; Kahneman, 2011) Under the dual-process framework, System 1 drives

automatic responses based on pattern-recognition, while System 2 is engaged for more

deliberative, multi-step reasoning tasks. Recent work suggests that adopting such a

dual-process framing for LLMs—integrating them with symbolic reasoning modules—

has the potential to improve coherence and consistency in LLM generations (Nye

et al., 2021; Huang et al., 2022).

Inspired by this work, two aspects of Lilo can be framed in terms of dual-system

theories. First, the integration with Stitch, an external, symbolic compressor, is

comparable to interfaces with other symbolic modules, like logic engines. As we
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argued in §1, Stitch is purpose-built to solve a difficult refactoring problem that

falls squarely into traditional System 2 territory (though in §5.3, we explore the

possibility LLMs might productively amortize compression as well). Moreover, as we

saw in our experiments, LLMs and enumerative search are not mututally exclusive.

Indeed, the LILO (+ Search) model—which was explicitly designed with a dual-

system hypothesis in mind—achieves the best solve rates on all domains (though, as

currently implemented, it comes with higher computational costs from performing

both forms of program search).

An operative challenge for future work, then, is to build more tightly integrated

neurosymbolic systems—specifically, to allow an LLM in the role of System 1 to de-

termine when to call out to a symbolic compression or search routine in the role

of System 2. A growing line of work in the LLM literature explores precisely this

question: interfacing LLMs with external computational tools designed for more sys-

tematic reasoning, including calculators (Cobbe et al., 2021), logic engines (Weir and

Van Durme, 2022), external databases (Borgeaud et al., 2022; Thoppilan et al., 2022;

Alon et al., 2022; Izacard et al., 2022), web browsers (Nakano et al., 2022), AI plan-

ners (Collins et al., 2022), physics simulators (Liu et al., 2022), or bundled APIs over

several of these modules (Karpas et al., 2022; Schick et al., 2023; OpenAI, 2023).

As LLMs begin to interact with increasingly large libraries of tools, we believe that

these models will benefit from automatic procedures—such as the ones introduced

in Lilo—for growing these libraries with useful, interpretable, and well-documented

abstractions.
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Chapter 5

Future Directions

In this work, we have explored how LLMs can productively be combined with ideas

from program synthesis, focusing concretely on two main areas: guiding search via

language and improving library quality and interpretability. However, these experi-

ments only scratch the surface of a much broader set of research opportunities and

questions. Here, we outline several further directions in which this line of work might

be extended.

5.1 Example-guided synthesis with LLMs

Classically, inductive program synthesis techniques make heavy use of input-output

examples, not just to compute program likelihoods (i.e., in Eq. 2.1), but also to

constrain the search (Winston, 1970; Summers, 1976; Lau and Weld, 1999; Singh

and Gulwani, 2012; Solar-Lezama et al., 2006; Solar-Lezama, 2008; Solar-Lezama,

2013; Ellis et al., 2015, 2018). One notable limitation of the LLM-amortized search

we introduced in §3.3 is that it does not directly condition on these I/O examples,

instead focusing on inferring patterns in description-solution pairs (𝑑𝑡, 𝜌).

Conditioning on task descriptions makes sense as a starting point for LLM-guided

search, as we desire a relatively concise specification modality that can fit in the

prompt window. In contrast, I/O examples may not necessarily be easily serializable

into an LLM prompt. For instance, in the LOGO domain, examples are specified
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by pixel arrays specifying a rendered target image that the program should produce.

Even in non-visual domains, the I/O examples may be too unwieldy to include in the

prompt: in our CLEVR domain, the inputs for each task consist of multiple scene

graphs, each containing arrays of JSON objects specifying various attributes of the

objects in the scene. While it might be possible to fit a few such scene graphs in the

prompt, doing so would significantly limit the total number of examples that can be

included.

Recent developments in LLMs offer an exciting and practical avenue for extending

our amortized synthesis to condition on examples. Promisingly, we are starting to

see numerous multimodal large language models (MLLMs) (Driess et al., 2023; Huang

et al., 2023; Girdhar et al., 2023) that are able to condition jointly on text, images, and

often include capabilities for other modalities such as audio, depth images, video, and

robotic control. Such MMLMs offer a unified way to encode task specifications across

different domains. However, problem-solving in these models is typically performed

in unstructured text space (i.e., via chain-of-thought prompting; Wei et al. 2023;

Kojima et al. 2022). As the complexity of problems scales, adapting a more explicit

program synthesis may unlock new forms of multi-step problem solving in MMLMs.

Moreover, taking a library learning approach, where models write reusable functions

in the service of solving tasks, could help to make such models more generalizable

and robust.

5.2 Resource-rational inferences

Humans are incredibly flexible thinkers. How might we incorporate understanding

of human problem-solving into program synthesis models? Indeed, DreamCoder is

sometimes positioned as a model of human-like concept learning in its ability to boot-

strap new concepts during learning. However, as discussed in §3.3, the enumerative

search that forms the core of this approach is computationally expensive to a degree

that calls into question the cognitive plausibility of such a learning procedure.

One way of understanding cognitive plausibility is to view human cognition as

72



making the optimal use of limited computational resources (Lieder and Griffiths, 2020;

Gershman et al., 2015). In this work, the use of LLMs to amortize program search is,

in part, intended as a step in the direction of a more resource rational allocation of

computational costs. In particular, rather than enumerating and checking millions of

programs, Lilo leverages LLMs as fast, neural pattern-recognizers to perform a kind

of syntactic bootstrapping (Gleitman, 1990)—inferring the meaning of novel program

expressions from a mixture of context that includes language descriptions, descriptive

naming, and documentation.

Nevertheless, in practice, there is still much ground to cover before LLMs can be

considered approximations of human learning from a resource rational perspective. In

§ 4.2.5, we discussed some of the technical tradeoffs that our current implementation

faces in terms of computational efficiency. Motivated by theories of resource ratio-

nality, there are several explorations that are applicable and practicable with current

language models.

We might begin by taking a resource rational perspective on memory (Gershman

and Goodman, 2014; Dasgupta and Gershman, 2021), using the LLM context window

as a loose model of human working memory. In this work, to construct prompts for

the LLM Solver, we cram as many examples of solved tasks as we can into the con-

text window, with the goal of maximizing the solution rate. Yet, as LLMs continue

to scale to larger context windows—the largest GPT-4 model currently accommo-

dates 32K tokens, or approximately 23,000 words (OpenAI, 2023), while Anthropic’s

Claude model now accommodates 100K tokens1—they become increasingly implausi-

ble as models of human working memory. Accordingly, one interesting experimental

direction is to scale in the opposite direction, by trying to maximize the number of

program solutions one can derive through a limited number of in-context examples.

Comparing task solution rates at progressively restricted token budgets would offer

a direct means of evaluating Lilo-style search in terms of resource efficiency. Given

that compression algorithms like Stitch directly reduce the string length of program

expressions, making it easier to do more with a finite token budget, we expect that

1https://www.anthropic.com/index/100k-context-windows
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such an evaluation would tend to favor library learning over LLM-only approaches.

A resource rational evaluation also suggests new modeling directions for Lilo.

Under a strict token budget, selecting the right examples to put in the prompt be-

comes critical. In this work, we adopt a naive strategy of randomly sampling examples

from the set of solved tasks. However, it would be straightfoward to use one of vari-

ous example retrieval strategies (Poesia et al., 2022) to select task-relevant examples

for the LLM Solver prompt. Similar approaches might also benefit Lilo’s auto-

documentation procedure, addressing some of the semantic errors observed in § 4.2.4

and leading to more accurate and readable function names and docstrings. Because

the costs of LLM inference scale with prompt length, adopting a resource-rational

might body dramatically reduce the computational costs associated with Lilo, al-

lowing learning to run for more iterations and potentially boosting overall library

quality.

5.3 Program compression with LLMs

A key part of our approach in Lilo was to explore the consequences of amortiz-

ing a particular module of DreamCoder—in this case, program search—with LLMs.

Counter to our initial expectations when we began the project (though perhaps less

surprisingly in light of the recent explosion in demonstrations of LLM capabilities), we

found that LLMs are highly adept at solving tasks in niche domain-specific languages

expressed in esoteric variations of lambda calculus. A core part of the story is that

such substitution of rigid PCFG search for a softer, pre-trained string search allows us

to incorporate commonsense priors learned through natural language—for instance,

the concepts of “vowel” and “consonant”—that would otherwise be combinatorially

difficult to discover.

In light of these findings, a natural next step is to ask whether we can simi-

larly amortize compression via LLMs. Concretely, we might devise a variant of the

AutoDoc scheme from §3.4 that prompts an LLM to write the abstractions themselves

in addition to producing names and documentation. Analogous to search, an LLM
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compressor could bring in prior knowledge learned from pre-training to implement

functions that it believes could be relevant to the domain. Unlike symbolic com-

pressors like Stitch, which are limited to pulling out common expressions in the

input data, an LLM compressor would be free to propose abstractions that are un-

derrepresented or even completely missing from the current set of solved programs.

As in the search case, natural language, such as descriptions of unsolved tasks, or

even meta-descriptions of the search domain, could be used to condition abstraction

learning.
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Chapter 6

Conclusion: The Ship of Synthesis

In the Introduction (§1), we began our journey with DreamCoder. We set out to

apply contemporary advancements to this system, swapping out architectural ele-

ments piece-by-piece. First, we replaced DreamCoder’s compressor with Stitch in

order to attain multiple orders of magnitude improvements in efficiency while main-

taining the ability to learn high-quality abstractions. Next, we asked whether it is

possible to amortize DreamCoder’s search algorithm with a large language model and

found the answer to be “yes.” We showed that when prompted appropriately with a

handful of seed programs and task descriptions, LLMs can bootstrap syntactically-

valid, semantically-accurate lambda calculus programs, matching DreamCoder’s solve

rates—and in some cases, significantly exceeding them—on real program synthesis

domains. Finally, in introducing Lilo’s AutoDoc procedure, we took initial steps

towards LLM-driven abstraction learning, which led us to hypothesize above that

LLM’s might productively replace compression as well.

The odyssey we have just completed is reminiscent of an Ancient Greek thought

experiment recorded by Plutarch and debated by philosophers over the centuries

(Dryden et al., 1859; Hobbes, 1656; Brown, 2005). The “Ship of Theseus” paradox

goes as follows: Imagine a battle-worn Athenian ship that has been sailing for many

years. Over time, as parts of the ship become worn out or damaged, they are replaced

with new parts. Eventually, a day comes when every single part of the ship has been

interchanged. The question then arises: Is it still the same ship? If we consider the
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ship as a whole, it appears to be the same ship because it retains its original form and

function. However, if we focus on the individual parts, none of the original elements

remain. So, is it the arrangement of parts that defines the identity of the ship, or is

it something else?

We hold that, even after deconstructing and reconstructing every piece of our “Ship

of Synthesis,” the spirit of DreamCoder still stands. The essence of this spirit can be

summarized as an architectural imperative for modularity. Even with all the symbolic

pieces replaced by neural machinery, there is something fundamental about the in-

terplay between search and compression—or wake and sleep—that the DreamCoder

algorithm captures, and that we should seek to imbue in future systems. In partic-

ular, even if transformer context windows can be scaled to epic proportions, models

that cannot form new abstractions will face strict limitations that arise from having

to redo many computations—re-deriving semantics and re-inferring prior inferences—

every time they are invoked.

In this light, abstraction learning is an essential piece in our understanding of how

people program. Since the inception of the automatic computer, human program-

mers have formed collaborative communities that have prioritized well-factored code

and clear documentation. Accordingly, we believe the near-term future of program

synthesis is an evolution following naturally from these longstanding traditions, in

which human and AI programmers work in tandem to build up shared libraries of

abstractions, enabling creative solutions to new generations of software problems.
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Appendix

A.1 Graphical maps of learned libraries

We generated graphical visualizations of the libraries learned by the best Lilo model

for each domain (LILO (+ Search); c.f., § 4.2.1). Each graph includes the DSL

primitives, the learned and named abstractions, and a random sample of 3 solved

tasks that invoke each abstraction. Arrows indicate direction of reference; i.e., fn_1

-> fn_2 indicates that fn_1 invokes fn_2, and analogously for the tasks. Here, we

include graphical maps for the REGEX and LOGO domains; the map for the CLEVR

library is provided in Fig. 4-3.
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REGEX Library

Primitives

'.'

empty_string

'a'

'b'

'c'

'd'

'e'

'f'

'g'

'h'

'i'

'j'

'k'

'l'

'm'

'n'

'o'

'p'

'q'

'r'

's'

't'

'u'

'v'

'w'

'x'

'y'

'z'

regex_not

regex_or

regex_concat

regex_match

regex_split

regex_flatten

regex_tail

regex_append

regex_reverse_cdr

regex_if

regex_cons

regex_car

regex_cdr

regex_map

vowel_or

replace_with_condition

replace_substr_with_another

replace_starting_consonant

string_to_substring_list

replace_word_end_with_substring_if_ends_with_e

split_string_and_prepend

add_before_match

replace_substring_if_starts_with

prepend_last_two_substrings_reversed

if the word ends with vowel consonant add g after that

if there is consonant consonant add d before that

if there is vowel add h before that

if there is a replace that with u c

if there is consonant r replace that with h

if there is consonant replace that with p x

if the word starts with any letter any letter replace that with l n

if the word starts with consonant vowel replace that with v j

if the word starts with any letter consonant replace that with l a

if the word starts with consonant replace that with r p

if the word starts with consonant replace that with q

if the word starts with consonant replace that with e n

if there is r replace that with v a

if the word ends with consonant replace that with r

if the word starts with any letter add d after that

if the word ends with consonant replace that with o y

if the word ends with consonant replace that with b a

if the word ends with consonant any letter replace that with j g

if the word starts with any letter replace that with g b

if the word starts with vowel replace that with q h

if the word starts with consonant any letter replace that with r d

if there is vowel consonant add a before that

if there is any letter vowel add i before that

if there is vowel add d before that

if the word starts with consonant add x after that

if the word starts with consonant any letter replace that with r d

if the word starts with vowel any letter replace that with w

if the word ends with any letter consonant replace that with x

if the word ends with consonant consonant replace that with d u

if the word ends with any letter consonant replace that with v

Figure A-1: Graphical map of REGEX library learned by Lilo. Named
abstractions (turquoise) are hierarchically composed of other abstractions and ground
out in the base DSL primitives (gray box).
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LOGO Library

Primitives

logo_unit_angle

logo_unit_line

logo_zero_angle

logo_zero_line

logo_divide_angle

logo_multiply_angle

logo_divide_line

logo_multiply_line

logo_add_angles

logo_subtract_angles

logo_lift_pen

logo_move_pen_forward_rotate

logo_get_set_function_pen

logo_IFTY

logo_epsilon_angle

logo_epsilon_line

logo_for_loop

0

1

2

3

4

5

6

7

8

9

turtle_loop_move_rotate

turtle_staircase

turtle_loop_draw_pentagon_spiral

turtle_square_row

turtle_snowflake_with_arms

turtle_small_line_circle

snowflake_with_rotating_arms

double_length_loop_move_rotate

turtle_draw_short_lines

pen_forward_rotate_move_pen_forward_rotate a small square

a small 7 gon

a short line

a 4 stepped staircase

a 7 stepped staircase

4 small 5 gon s in a row

3 small 5 gon s in a row

6 small 5 gon s in a row

4 small square s in a row

6 small square s in a row

5 small square s in a row

7 sided snowflake with a medium 5 gon as arms

6 sided snowflake with a medium triangle as arms

7 sided snowflake with a medium triangle as arms

a small circle

a big semicircle

a big circle

7 sided snowflake with a small 9 gon as arms

6 sided snowflake with a small 7 gon as arms

8 sided snowflake with a small triangle as arms

a medium 5 gon

a medium triangle

a medium 8 gon

5 short line s in a row

4 short line s in a row

3 short line s in a row

a vertical short line

a short line

6 sided snowflake with a short line as arms

Figure A-2: Graphical map of REGEX library learned by Lilo. Named
abstractions (turquoise) are hierarchically composed of other abstractions and ground
out in the base DSL primitives (gray box).
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A.2 Auto-documentation of learned libraries

A.2.1 Library for REGEX

(fn_42) vowel_or :: tsubstr
(regex_or 'a' (regex_or 'e' (regex_or 'i' (regex_or 'o' 'u'))))
{- Returns a regular expression that matches any vowel character ('a', 'e', 'i', 'o',
or 'u') using 'regex_or' function. Used for identifying vowels in strings. -}

{- Example usages -}
--if the word ends with vowel consonant add g after that
(𝜆 (regex_if (regex_match vowel_or (regex_tail (regex_reverse_cdr
(string_to_substring_list $0)))) (regex_flatten (regex_append 'g'
(string_to_substring_list $0))) $0))
--if there is consonant consonant add d before that
(𝜆 (add_before_match (regex_split (regex_concat (regex_not vowel_or) (regex_not
vowel_or)) $0) 'd' (regex_concat (regex_not vowel_or) (regex_not vowel_or))))
--if there is vowel add h before that
(𝜆 (add_before_match (string_to_substring_list $0) 'h' vowel_or))

(fn_43) replace_with_condition :: tfullstr -> tsubstr -> tsubstr -> tfullstr
(𝜆 (𝜆 (𝜆 (regex_flatten (regex_map (𝜆 (regex_if (regex_match $2 $0) $1 $0))
(regex_split $1 $2))))))
{- Given a full string $0 and two substrings $1 and $2, returns a full string where
all occurrences of $1 in $0 are replaced with $2 if the condition in the regular
expression created by splitting $0 by $1 and applying a lambda function that returns
$1 if the split element matches $2 and $0 otherwise is satisfied. -}

{- Example usages -}
--if there is a replace that with u c
(𝜆 (replace_with_condition $0 'a' (regex_concat 'u' 'c')))
--if there is consonant r replace that with h
(𝜆 (replace_with_condition $0 (regex_concat (regex_not vowel_or) 'r') 'h'))
--if there is consonant replace that with p x
(𝜆 (replace_with_condition $0 (regex_not vowel_or) (regex_concat 'p' 'x')))

(fn_44) replace_substr_with_another :: tfullstr -> tsubstr -> tsubstr -> tfullstr
(𝜆 (𝜆 (𝜆 (regex_if (regex_match $0 (regex_car (regex_cdr (regex_split empty_string
$2)))) (regex_flatten (regex_cons $1 (regex_cdr (regex_cdr (regex_split empty_string
$2))))) $2))))
{- Given a full string $0 and two substrings $1 and $2, returns a full string where
all occurrences of $1 in $0 are replaced with $2 if $1 appears as a word. The match is
performed using regular expressions. -}

{- Example usages -}
--if the word starts with any letter any letter replace that with l n
(𝜆 (replace_substr_with_another $0 (regex_concat 'l' 'n') '.'))
--if the word starts with consonant vowel replace that with v j
(𝜆 (replace_substr_with_another $0 (regex_concat 'v' 'j') vowel_or))
--if the word starts with any letter consonant replace that with l a
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(𝜆 (replace_substr_with_another $0 (regex_concat 'l' 'a') (regex_not vowel_or)))

(fn_45) replace_starting_consonant :: tfullstr -> tsubstr -> tsubstr -> tfullstr
(𝜆 (𝜆 (𝜆 (regex_if (regex_match (regex_not vowel_or) (regex_car (regex_split
empty_string $2))) (regex_flatten (regex_cons $0 (regex_cons $1 (regex_cdr
(regex_split empty_string $2))))) $2))))
{- Given a full string $0 and two substrings $1 and $2, returns a full string where
the first letter of each word starting with a consonant in $0 is replaced with $1$2.
Vowels are determined using `$vowel_or` regular expression. -}

{- Example usages -}
--if the word starts with consonant replace that with r p
(𝜆 (replace_starting_consonant $0 'p' 'r'))
--if the word starts with consonant replace that with q
(𝜆 (replace_starting_consonant $0 'q' empty_string))
--if the word starts with consonant replace that with e n
(𝜆 (replace_starting_consonant $0 'n' 'e'))

(fn_46) string_to_substring_list :: tfullstr -> list(tsubstr)
(𝜆 (regex_split empty_string $0))
{- Given a full string, returns a list of substrings where each substring is a word in
the original string. -}

{- Example usages -}
--if there is r replace that with v a
(𝜆 (replace_with_condition (regex_flatten (string_to_substring_list $0)) 'r'
(regex_concat 'v' 'a')))
--if the word ends with consonant replace that with r
(𝜆 (replace_word_end_with_substring_if_ends_with_e (regex_flatten
(string_to_substring_list $0)) empty_string 'r'))
--if the word starts with any letter add d after that
(𝜆 (split_string_and_prepend $0 'd' (regex_car (string_to_substring_list $0))))

(fn_47) replace_word_end_with_substring_if_ends_with_e :: tfullstr -> tsubstr ->
tsubstr -> tfullstr
(𝜆 (𝜆 (𝜆 (regex_if (regex_match 'e' (regex_tail (string_to_substring_list $2))) $2
(regex_flatten (regex_append (regex_concat $0 $1) (regex_reverse_cdr (regex_split '.'
$2))))))))
{- Given a full string $0, a substring $1 and another substring $2, returns a new full
string where the last character of each word in $0 is replaced with $2 if the word
ends with the character 'e' or concatenated with $1 if it doesn't. -}

{- Example usages -}
--if the word ends with consonant replace that with o y
(𝜆 (replace_word_end_with_substring_if_ends_with_e $0 'y' 'o'))
--if the word ends with consonant replace that with b a
(𝜆 (replace_word_end_with_substring_if_ends_with_e $0 'a' 'b'))
--if the word ends with consonant any letter replace that with j g
(𝜆 (regex_if (regex_match vowel_or (regex_tail (regex_reverse_cdr
(string_to_substring_list $0)))) $0 (replace_word_end_with_substring_if_ends_with_e
(prepend_last_two_substrings_reversed $0 'j') 'g' 'j')))

(fn_48) split_string_and_prepend :: tfullstr -> tsubstr -> tsubstr -> tfullstr

93



(𝜆 (𝜆 (𝜆 (regex_flatten (regex_cons $0 (regex_cons $1 (regex_cdr
(string_to_substring_list $2))))))))
{- Given a full string $0 and two substrings $1 and $2, splits $0 into a list of
substrings and prepends $1 and $2 to the first two substrings respectively, then
flattens the resulting list into a new full string. -}

{- Example usages -}
--if the word starts with any letter replace that with g b
(𝜆 (split_string_and_prepend $0 'b' 'g'))
--if the word starts with vowel replace that with q h
(𝜆 (replace_substring_if_starts_with $0 (split_string_and_prepend $0 'h' 'q')
vowel_or))
--if the word starts with consonant any letter replace that with r d
(𝜆 (replace_substring_if_starts_with $0 (split_string_and_prepend (regex_flatten
(regex_cdr (string_to_substring_list $0))) 'd' 'r') (regex_not vowel_or)))

(fn_49) add_before_match :: list(tsubstr) -> tsubstr -> tsubstr -> tfullstr
(𝜆 (𝜆 (𝜆 (regex_flatten (regex_map (𝜆 (regex_if (regex_match $1 $0) (regex_concat $2
$0) $0)) $2)))))
{- Given a list of substrings $0 and two substrings $1 and $2, returns a new full
string where $1 is added before any substring in $0 that matches $2. The match is
performed using regular expressions with 'regex_match', and the new substring is
obtained by concatenating $1 and the matched substring with 'regex_concat' -}

{- Example usages -}
--if there is vowel consonant add a before that
(𝜆 (add_before_match (regex_split (regex_concat vowel_or (regex_not vowel_or)) $0)
'a' (regex_concat vowel_or (regex_not vowel_or))))
--if there is any letter vowel add i before that
(𝜆 (add_before_match (regex_split (regex_concat '.' vowel_or) $0) 'i' (regex_concat
'.' vowel_or)))
--if there is vowel add d before that
(𝜆 (add_before_match (string_to_substring_list $0) 'd' vowel_or))

(fn_50) replace_substring_if_starts_with :: tfullstr -> tfullstr -> tsubstr ->
tfullstr
(𝜆 (𝜆 (𝜆 (regex_if (regex_match $0 (regex_car (string_to_substring_list $2))) $1
$2))))
{- Given a full string $0, a replacement string $1, and a regular expression substring
$2, returns a new full string where any substring in $0 that matches $2 is replaced
with $1 at the beginning of the substring. -}

{- Example usages -}
--if the word starts with consonant add x after that
(𝜆 (replace_substring_if_starts_with (split_string_and_prepend $0 'x' (regex_car
(string_to_substring_list $0))) $0 vowel_or))
--if the word starts with consonant any letter replace that with r d
(𝜆 (replace_substring_if_starts_with $0 (split_string_and_prepend (regex_flatten
(regex_cdr (string_to_substring_list $0))) 'd' 'r') (regex_not vowel_or)))
--if the word starts with vowel any letter replace that with w
(𝜆 (replace_substring_if_starts_with $0 (replace_substr_with_another $0 'w' '.')
vowel_or))
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(fn_51) prepend_last_two_substrings_reversed :: tfullstr -> tsubstr -> tfullstr
(𝜆 (𝜆 (regex_flatten (regex_append $0 (regex_reverse_cdr (regex_reverse_cdr
(string_to_substring_list $1)))))))
{- Given a full string $0 and a substring $1, returns a full string where the last two
substrings in the string (if they exist) are reversed and prepended to the original
string. The string is split into substrings using 'string_to_substring_list' function.
-}

{- Example usages -}
--if the word ends with any letter consonant replace that with x
(𝜆 (regex_if (regex_match vowel_or (regex_tail (string_to_substring_list $0))) $0
(prepend_last_two_substrings_reversed $0 'x')))
--if the word ends with consonant consonant replace that with d u
(𝜆 (regex_if (regex_match '.' (regex_tail (regex_split vowel_or $0))) $0
(prepend_last_two_substrings_reversed $0 (regex_concat 'd' 'u'))))
--if the word ends with any letter consonant replace that with v
(𝜆 (regex_if (regex_match (regex_not vowel_or) (regex_tail (string_to_substring_list
$0))) (prepend_last_two_substrings_reversed $0 'v') $0))

A.2.2 Library for CLEVR

(fn_54) filter_by_size :: tclevrsize -> list(tclevrobject) -> list(tclevrobject)
(𝜆 (𝜆 (clevr_fold $0 $0 (𝜆 (𝜆 (clevr_map (𝜆 (clevr_if (clevr_eq_size
(clevr_query_size $0) $4) $0 $2)) $0))))))
{- Returns a list of objects in the input list that have the specified size. -}

{- Example usages -}

(fn_55) filter_by_color :: tclevrcolor -> list(tclevrobject) -> list(tclevrobject)
(𝜆 (𝜆 (clevr_fold $0 clevr_empty (𝜆 (𝜆 (clevr_if (clevr_eq_color (clevr_query_color
$1) $3) (clevr_add $1 $0) $0))))))
{- Returns a list of objects in the input list that have the specified color. -}

{- Example usages -}
--what color is the small metal thing behind the small purple metal thing
(𝜆 (clevr_query_color (clevr_car (filter_objects_by_material
(filter_objects_by_small_size (clevr_relate (clevr_car (filter_by_color clevr_purple
(filter_objects_by_material (filter_objects_by_small_size $0)))) clevr_behind $0))))))
--what is the size of the gray thing
(𝜆 (clevr_query_size (clevr_car (filter_by_color clevr_gray $0))))
--how many thing s are red thing s or large green thing s
(𝜆 (clevr_count (clevr_union (filter_by_color clevr_red $0)
(filter_large_objects_by_size (filter_by_color clevr_green $0)))))

(fn_56) filter_by_material :: tclevrmaterial -> list(tclevrobject) ->
list(tclevrobject)
(𝜆 (𝜆 (clevr_fold $0 clevr_empty (𝜆 (𝜆 (clevr_if (clevr_eq_material
(clevr_query_material $1) $3) (clevr_add $1 $0) $0))))))
{- Returns a list of objects in the input list that have the specified material. -}
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{- Example usages -}

(fn_57) filter_objects_by_shape :: tclevrshape -> list(tclevrobject) ->
list(tclevrobject)
(𝜆 (𝜆 (clevr_fold $0 clevr_empty (𝜆 (𝜆 (clevr_if (clevr_eq_shape (clevr_query_shape
$1) $3) (clevr_add $1 $0) $0))))))
{- Filters a list of objects to include only those with the specified shape. -}

{- Example usages -}
--find the cube s
(𝜆 (filter_objects_by_shape clevr_cube $0))
--find the rubber cube
(𝜆 (filter_objects_by_rubber_material (filter_objects_by_shape clevr_cube $0)))
--if you removed the cylinder s how many large thing s would be left
(𝜆 (clevr_count (clevr_difference (filter_large_objects_by_size $0)
(filter_objects_by_shape clevr_cylinder $0))))

(fn_58) filter_objects_by_color :: tclevrcolor -> list(tclevrobject) ->
list(tclevrobject)
(𝜆 (𝜆 (clevr_fold $0 $0 (𝜆 (𝜆 (clevr_map (𝜆 (clevr_if (clevr_eq_color
(clevr_query_color $0) $4) $0 $2)) $0))))))
{- Returns a list of objects in the input list that have the specified color. -}

{- Example usages -}
--find the gray rubber thing
(𝜆 (filter_objects_by_rubber_material (filter_objects_by_color clevr_gray $0)))
--what is the thing that is front the brown thing made of
(𝜆 (clevr_query_material (clevr_car (clevr_relate (clevr_car (filter_objects_by_color
clevr_brown $0)) clevr_front $0))))
--what number of small objects are either metal cube s or red rubber thing s
(𝜆 (clevr_count (filter_objects_by_small_size (clevr_union
(filter_objects_by_material (filter_objects_by_shape clevr_cube $0))
(filter_objects_by_rubber_material (filter_objects_by_color clevr_red $0))))))

(fn_59) filter_objects_by_small_size :: list(tclevrobject) -> list(tclevrobject)
(𝜆 (filter_by_size clevr_small $0))
{- Returns a list of objects in the input list that are small in size. -}

{- Example usages -}
--find the small red thing
(𝜆 (filter_objects_by_small_size (filter_objects_by_color clevr_red $0)))
--find the small thing s
(𝜆 (filter_objects_by_small_size $0))
--what number of small objects are either blue metal thing s or rubber thing s
(𝜆 (clevr_count (filter_objects_by_small_size (clevr_union
(filter_objects_by_rubber_material $0) (filter_objects_by_material
(filter_objects_by_color clevr_blue $0))))))

(fn_60) filter_objects_by_material :: list(tclevrobject) -> list(tclevrobject)
(𝜆 (filter_by_material clevr_metal $0))
{- Returns a list of objects in the input list that have the specified material. -}
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{- Example usages -}
--there is a metal cylinder right the small purple metal thing what is its size
(𝜆 (clevr_if (clevr_eq_shape clevr_cube (clevr_query_shape (clevr_car (clevr_relate
(clevr_car (clevr_union $0 (filter_objects_by_material $0))) clevr_right $0))))
clevr_small clevr_large))
--what if you removed all of the blue metal thing s
(𝜆 (clevr_difference $0 (filter_objects_by_color clevr_blue
(filter_objects_by_material $0))))
--find the small metal cylinder
(𝜆 (filter_objects_by_small_size (filter_objects_by_material (filter_objects_by_shape
clevr_cylinder $0))))

(fn_61) count_remaining_objects_by_color_and_shape :: list(tclevrobject) ->
tclevrcolor -> tclevrshape -> int
(𝜆 (𝜆 (𝜆 (clevr_count (clevr_difference (filter_objects_by_shape $0 $2)
(filter_objects_by_color $1 $2))))))
{- Counts the number of objects that remain after removing objects of a specified
color and shape from the input list of objects. -}

{- Example usages -}
--if you removed the brown thing s how many sphere s would be left
(𝜆 (count_remaining_objects_by_color_and_shape $0 clevr_brown clevr_sphere))
--if you removed the red cube s how many cube s would be left
(𝜆 (count_remaining_objects_by_color_and_shape $0 clevr_red clevr_cube))
--if you removed the cyan cylinder s how many cylinder s would be left
(𝜆 (count_remaining_objects_by_color_and_shape $0 clevr_cyan clevr_cylinder))

(fn_62) filter_objects_by_rubber_material :: list(tclevrobject) -> list(tclevrobject)
(𝜆 (filter_by_material clevr_rubber $0))
{- Returns a list of objects in the input list that have rubber as their material. -}

{- Example usages -}
--what number of sphere s are small cyan metal thing s or small rubber thing s
(𝜆 (clevr_count (clevr_union (filter_objects_by_material
(filter_objects_by_small_size (filter_by_color clevr_cyan (filter_objects_by_shape
clevr_sphere $0)))) (filter_objects_by_rubber_material (filter_objects_by_small_size
(filter_objects_by_shape clevr_sphere $0))))))
--what number of rubber objects are purple thing s or cylinder s
(𝜆 (clevr_count (filter_objects_by_rubber_material (clevr_union
(filter_objects_by_shape clevr_cylinder $0) (filter_objects_by_color clevr_purple
$0)))))
--what number of cylinder s are either large rubber thing s or small blue rubber thing
s
(𝜆 (clevr_count (clevr_intersect (filter_objects_by_rubber_material $0)
(filter_objects_by_shape clevr_cylinder $0))))

(fn_63) filter_large_objects_by_size :: list(tclevrobject) -> list(tclevrobject)
(𝜆 (filter_by_size clevr_large $0))
{- Returns a list of objects in the input list that are large in size. -}

{- Example usages -}
--find the large metal sphere
(𝜆 (filter_large_objects_by_size (filter_objects_by_material (filter_objects_by_shape
clevr_sphere $0))))
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--there is a large thing front the small metal cube what is its shape
(𝜆 (clevr_query_shape (clevr_car (filter_large_objects_by_size (clevr_relate
(clevr_car (filter_objects_by_small_size (filter_objects_by_material
(filter_objects_by_shape clevr_cube $0)))) clevr_front $0)))))
--what number of cylinder s are either large rubber thing s or small blue rubber thing
s
(𝜆 (clevr_count (filter_objects_by_shape clevr_cylinder (clevr_union
(filter_objects_by_rubber_material (filter_large_objects_by_size $0))
(filter_objects_by_small_size (filter_by_color clevr_blue
(filter_objects_by_rubber_material $0)))))))

A.2.3 Library for LOGO

(fn_27) turtle_loop_move_rotate :: turtle -> int -> tlength -> turtle
(𝜆 (𝜆 (𝜆 (logo_for_loop $1 (𝜆 (𝜆 (logo_move_pen_forward_rotate $2 (logo_divide_angle
logo_unit_angle $3) $0))) $2))))
{- Repeatedly move the turtle forward and rotate it by a specified angle, creating a
loop of a specific number of sides with a given line length. -}

{- Example usages -}
--a small square
(𝜆 (turtle_loop_move_rotate $0 4 logo_unit_line))
--a small 7 gon
(𝜆 (turtle_loop_move_rotate $0 7 logo_unit_line))
--a short line
(𝜆 (turtle_loop_move_rotate $0 1 logo_unit_line))

(fn_28) turtle_staircase :: turtle -> int -> turtle
(𝜆 (𝜆 (logo_for_loop $0 (𝜆 (𝜆 (logo_move_pen_forward_rotate logo_unit_line
(logo_divide_angle logo_unit_angle 4) (logo_move_pen_forward_rotate logo_unit_line
(logo_subtract_angles logo_unit_angle (logo_divide_angle logo_unit_angle 4)) $0))))
$1)))
{- Creates a staircase pattern by repeatedly moving the turtle forward and rotating it
at a specific angle. The number of steps in the staircase is determined by the
function argument. -}

{- Example usages -}
--a 4 stepped staircase
(𝜆 (turtle_staircase $0 4))
--a 7 stepped staircase
(𝜆 (turtle_staircase $0 7))
--a 4 stepped staircase
(𝜆 (turtle_staircase $0 4))

(fn_29) turtle_loop_draw_pentagon_spiral :: turtle -> int -> turtle
(𝜆 (𝜆 (logo_for_loop $0 (𝜆 (𝜆 (logo_move_pen_forward_rotate logo_zero_line
(logo_multiply_angle logo_epsilon_angle 8) (logo_for_loop 9 (𝜆 (𝜆
(logo_move_pen_forward_rotate logo_unit_line (logo_multiply_angle logo_epsilon_angle
8) $0))) $0)))) $1)))
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{- Creates a spiral of pentagons by repeatedly drawing a pentagon and incrementing the
angle of each side on each iteration. The number of pentagons in the spiral is
determined by the function argument. -}

{- Example usages -}
--4 small 5 gon s in a row
(𝜆 (turtle_loop_draw_pentagon_spiral $0 4))
--3 small 5 gon s in a row
(𝜆 (turtle_loop_draw_pentagon_spiral $0 3))
--6 small 5 gon s in a row
(𝜆 (turtle_loop_draw_pentagon_spiral $0 6))

(fn_30) turtle_square_row :: turtle -> int -> turtle
(𝜆 (𝜆 (logo_for_loop $0 (𝜆 (𝜆 (logo_move_pen_forward_rotate logo_zero_line
(logo_divide_angle logo_unit_angle 4) (logo_for_loop 7 (𝜆 (𝜆
(logo_move_pen_forward_rotate logo_unit_line (logo_divide_angle logo_unit_angle 4)
$0))) $0)))) $1)))
{- Draws a row of small squares using repeated forward motion and rotation. The number
of squares in the row is determined by the function argument. -}

{- Example usages -}
--4 small square s in a row
(𝜆 (turtle_square_row $0 4))
--6 small square s in a row
(𝜆 (turtle_square_row $0 6))
--5 small square s in a row
(𝜆 (turtle_square_row $0 5))

(fn_31) turtle_snowflake_with_arms :: turtle -> int -> int -> turtle
(𝜆 (𝜆 (𝜆 (logo_for_loop $0 (𝜆 (𝜆 (turtle_loop_move_rotate
(logo_move_pen_forward_rotate logo_zero_line (logo_divide_angle logo_unit_angle $2)
$0) $3 (logo_multiply_line logo_unit_line 2)))) $2))))
{- Draws a snowflake shape with given number of arms, each made up of a line of
specified length that is rotated at a specific angle. The angle by which the lines are
rotated increases with each iteration of the loop, creating an intricate snowflake
pattern. -}

{- Example usages -}
--7 sided snowflake with a medium 5 gon as arms
(𝜆 (turtle_snowflake_with_arms $0 5 7))
--6 sided snowflake with a medium triangle as arms
(𝜆 (turtle_snowflake_with_arms $0 3 6))
--7 sided snowflake with a medium triangle as arms
(𝜆 (turtle_snowflake_with_arms $0 3 7))

(fn_32) turtle_small_line_circle :: turtle -> int -> turtle
(𝜆 (𝜆 (logo_for_loop logo_IFTY (𝜆 (𝜆 (logo_move_pen_forward_rotate
(logo_multiply_line logo_epsilon_line $2) logo_epsilon_angle $0))) $1)))
{- Moves the turtle forward and rotates it repeatedly to draw a small circle with a
given line length. The number of iterations is determined by the function argument. -}

{- Example usages -}
--a small circle
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(𝜆 (logo_for_loop 7 (𝜆 (𝜆 (turtle_small_line_circle $0 1))) $0))
--a big semicircle
(𝜆 (turtle_small_line_circle $0 5))
--a big circle
(𝜆 (logo_for_loop 7 (𝜆 (𝜆 (turtle_small_line_circle $0 5))) $0))

(fn_33) snowflake_with_rotating_arms :: turtle -> int -> int -> turtle
(𝜆 (𝜆 (𝜆 (logo_for_loop $0 (𝜆 (𝜆 (turtle_loop_move_rotate
(logo_move_pen_forward_rotate logo_zero_line (logo_divide_angle logo_unit_angle $2)
$0) $3 logo_unit_line))) $2))))
{- Draws a snowflake shape with given number of arms, each made up of a line of
specified length that is rotated at a specific angle. The angle by which the lines are
rotated increases with each iteration of the loop, creating an intricate snowflake
pattern. -}

{- Example usages -}
--7 sided snowflake with a small 9 gon as arms
(𝜆 (snowflake_with_rotating_arms $0 9 7))
--6 sided snowflake with a small 7 gon as arms
(𝜆 (snowflake_with_rotating_arms $0 7 6))
--8 sided snowflake with a small triangle as arms
(𝜆 (snowflake_with_rotating_arms $0 3 8))

(fn_34) double_length_loop_move_rotate :: int -> turtle -> turtle
(𝜆 (𝜆 (turtle_loop_move_rotate $0 $1 (logo_multiply_line logo_unit_line 2))))
{- Moves and rotates the turtle in a loop, with each iteration doubling the length of
the turtle's movement. -}

{- Example usages -}
--a medium 5 gon
(𝜆 (double_length_loop_move_rotate 5 $0))
--a medium triangle
(𝜆 (double_length_loop_move_rotate 3 $0))
--a medium 8 gon
(𝜆 (double_length_loop_move_rotate 8 $0))

(fn_35) turtle_draw_short_lines :: turtle -> int -> turtle
(𝜆 (𝜆 (logo_for_loop $0 (𝜆 (𝜆 (logo_move_pen_forward_rotate logo_unit_line
logo_unit_angle $0))) $1)))
{- Draws a specified number of short lines in a row using repeated forward motion and
rotation. -}

{- Example usages -}
--5 short line s in a row
(𝜆 (turtle_draw_short_lines $0 5))
--4 short line s in a row
(𝜆 (turtle_draw_short_lines $0 4))
--3 short line s in a row
(𝜆 (turtle_draw_short_lines $0 3))

(fn_36) pen_forward_rotate_move_pen_forward_rotate :: turtle -> int -> tlength ->
turtle
(𝜆 (𝜆 (𝜆 (logo_move_pen_forward_rotate $0 (logo_divide_angle logo_unit_angle $1)
(logo_move_pen_forward_rotate logo_unit_line (logo_divide_angle logo_unit_angle 2)
$2)))))
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{- Moves the turtle forward and rotates it at a given angle. Then moves the turtle
forward again and rotates it at half the angle, creating a pivot point for the turtle
to change direction. The distance the turtle moves each time is determined by a given
length parameter. -}

{- Example usages -}
--a vertical short line
(𝜆 (pen_forward_rotate_move_pen_forward_rotate $0 4 logo_zero_line))
--a short line
(𝜆 (pen_forward_rotate_move_pen_forward_rotate $0 2 logo_unit_line))
--6 sided snowflake with a short line as arms
(𝜆 (logo_for_loop 7 (𝜆 (𝜆 (pen_forward_rotate_move_pen_forward_rotate $0 3
logo_unit_line))) $0))
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A.3 Auto-documentation prompt

To encourage reputability, we provide an example of the full text of an AutoDoc

prompt sequence for the REGEX domain below. The prompt is composed of multiple

pieces that are sent in serial as messages to the ChatGPT interface. The sequence

begins with a header message describing the DSL. For pedagogical clarity, we consider

the case where every abstraction except the final one have already assigned names.

Thus, the header contains a mostly-documented library with the final fn_51 remaining

anonymous.

You are writing software documentation. Your goal is to write human-readable names for
the following library functions:

vowel_or :: tsubstr
(regex_or 'a' (regex_or 'e' (regex_or 'i' (regex_or 'o' 'u'))))
{- Matches any single vowel character ('a', 'e', 'i', 'o', 'u') using 'regex_or'
function. -}

replace_and_flatten :: tfullstr -> tsubstr -> tsubstr -> tfullstr
(lambda (lambda (lambda (regex_flatten (regex_map (lambda (regex_if (regex_match $2
$0) $1 $0)) (regex_split $1 $2))))))
{- Replaces all instances of a given substring with another substring, and returns the
resulting string flattened into one string. The first argument is the input string,
the second argument is the substring to be replaced, and the third argument is the
substring to use instead of the replaced substring. -}

... <fn_44 - fn_50 omitted for concision> ...

fn_51 :: tfullstr -> tsubstr -> tsubstr -> tfullstr
(lambda (lambda (lambda (regex_flatten (regex_cons $0 (regex_cons $1 (regex_cdr
(split_string_into_list $2))))))))

We then send a message prompting the LLM to document fn_51. At the end of the

message, we request that the LLM encode the reply into a particular JSON format

to facilitate downstream parsing.

Consider the following anonymous function:

fn_51 :: tfullstr -> tsubstr -> tsubstr -> tfullstr
(lambda (lambda (lambda (regex_flatten (regex_cons $0 (regex_cons $1 (regex_cdr
(split_string_into_list $2))))))))

Here are some examples of its usage:

-- if the word starts with consonant any letter replace that with v d
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(lambda (regex_if (regex_match (regex_not vowel_or) (regex_car (split_string_into_list
$0))) (fn_51 (regex_flatten (regex_cdr (split_string_into_list $0))) 'd' 'v') $0))

-- if the word starts with any letter vowel add q before that
(lambda (regex_if (regex_match vowel_or (regex_car (regex_cdr (split_string_into_list
$0)))) (fn_51 $0 (regex_car (split_string_into_list $0)) 'q') $0))

-- if the word starts with vowel replace that with u c
(lambda (regex_if (regex_match vowel_or (regex_car (split_string_into_list $0)))
(fn_51 (regex_flatten (split_string_into_list $0)) 'c' 'u') $0))

... <additional usage examples omitted for concision> ...

Please write a human-readable name and description for `fn_51` in the JSON format
shown below.
Your `readable_name` should be underscore-separated and should not contain any spaces.
It should also be unique (not existing in the function library above).
If you cannot come up with a good name, please set `readable_name` to `null`.

{
"anonymous_name": "fn_51",
"readable_name": TODO,
"description": TODO

}

In practice, we find that OpenAI’s instruction-tuned ChatGPT models adhered to this

JSON specification 100% of the time and never chose to return null for readable_name.

We experimented with both gpt-3.5-turbo and gpt-4 for AutoDoc and found

both resulted in comparable synthesis performance on REGEX. However, GPT-4 was

significantly slower: whereas gpt-3.5-turbo averaged 10-20 seconds for one iteration

of AutoDoc, gpt-4 averaged upwards of 2 minutes per iteration. We therefore chose

to use gpt-3.5-turbo in the experiments reported in §4.
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A.4 Results from LAPS experiments

Language Model Strings (n𝑡𝑒𝑠𝑡 = 500) Graphics (n𝑡𝑒𝑠𝑡 = 111) Scenes (n𝑡𝑒𝑠𝑡 = 115)

% Solved % Solved (Best) % Solved (Mean) % Solved (Curric.) % Solved (Mean.)

Synth train/test DreamCoder (no language) 33.4 49.55 42. 64 67.80 73.9
Synth train/test Multimodal (no generative translation model) 46.00 26.12 23.20 76.50 49.5

Synth train/test LAPS in neural search 52.20 92.79 52.93 95.6 88.1
Synth train/test LAPS + mutual exclusivity 57.00 86.49 80.18 96.5 82.3
Synth train/test LAPS + ME + language-program compression 54.60 98.19 81.98 95.6 95.9

Synth train/human test LAPS + ME + language-program compression 54.60 89.20 – 97.4 –
Human train/human test LAPS + ME + language-program compression 48.60 58.55 – 95.6 –

No language at test

No language on train/test Original DSL; Enumerative 0.06 0.00 – 27.8 –
No language on train/test DreamCoder (best library): Enumerative 27.2 41.44 – 53.6 –
No lang at test LAPS (best library): Enumerative 33.2 62.16 – 93.04 –
No lang at test LAPS (best library): example-only neural synthesis 52.4 91.0 – 95.6 –

Table A.1: Percent held-out test-tasks solved for LAPS. textitBest reports the
best model across replications; Mean averages across replications. (Reproduced from
Wong et al., 2021.)
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Figure A-3: Learning curves comparing baselines and LAPS models in Table A.1,
showing % heldout tasks solved on the graphics domain over random training task
orderings. (Reproduced from Wong et al., 2021.)

104



A.5 Hyperparameters

We provide a summary of all key hyperparameters used in each component of Lilo.

DreamCoder

Batch size: 96 tasks

Global iterations: 10 (CLEVR, LOGO), 16 (REGEX)

Search timeouts: 600s (CLEVR), 1000s (REGEX), 1800s (LOGO)

Neural recognition model: 10K training steps / iteration

Stitch

Max iterations: 10 (Controls max library size)

Max arity: 3 (Controls max arity of abstractions)

Lilo: LLM synthesizer

Prompts per task: 4

Samples per prompt: 4

Base DSL prompts: 50% (LILO + Hybrid DSL only)

GPT Model: code-davinci-002

Temperature: 0.90

Max completion tokens 𝛽: 4.0x (Multiplier w/r/t the final prompt program.)

Lilo: AutoDoc

Max usage examples: 10

GPT Model: gpt-3.5-turbo-0301 / gpt-4-0314

Top-P: 0.10

Max completion tokens: 256
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Some of the graphical assets that appear in this work were generated by Midjourney,
a third-party service provider. Subject to the Midjourney Terms of Service for Paid
Users, all assets created with the services are owned by the author to the extent pos-
sible under current law. The author acknowledges and respects the copyrights and
trademarks held by the Walt Disney Company. Any likeness to characters or proper-
ties trademarked by Disney is considered Fair Use under US Transformative Use laws,
which provide broad protections for commentary, criticism, parody, satire, education,
research, and other forms of creative expression.
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