Parailel Algorithms and Architectures for Solving
-Elliptic Partial Differential Equations

by
Chung-Chieh Kuo
B.S.E.E., National Taiwan University
(1980)

SUBMITTED TO THE
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 1985

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1985

Signature of Author: . B

Department of Electrical Engincering and Computer Science

January 30, 1985

Certified by: /

Associate Prof. Bernard C. Lépy, Thesis Supervisor
Certified by:

Assistant Prof. Bruce R. Musicus, Thesis Supervisor
Accepted by:__

Prof. Arthur C. Smith,
Chairman, Departmental Committee on Graduate Students

-2.

Parallel Algoritims and Architectures for Solving
Elliptic Partial Differential Equations

by
Chung-Chieh Kuo

Submitted to the Department of Electrical Engineering and Computer Science on Junuary 30, 1985
in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

ABSTRACT

Two parallel numerical iterative algorithms for solving linear elliptic partial dif-
ferential equations (PDEs) suitable for VLSI implementation are proposed. They
are the locally accelerated successive over-relaxation (LASOR) and concurrent mul-
tigrid (CMG) methods. The supporting architectures for these parallel algorithms
are also discussed.

This thesis first examines the implementation of traditional numerical PDE
algorithms with mesh-connected processor arrays. The main difficulty of these
implementations is that the determination of acceleration factors requires global
communication at each iteration. The high communication cost increases the com-
putation time per iteration significantly. Therefore, a new algorithm - the locally
accelerated successive over-relaxation (LASOR) algorithm - is proposed to achieve
the acceleration effect with very little global communication.

The LASOR scheme requires the broadcasting of one or two elements of glo-
bal information at the loading stage, then it uses only nearest-neighborhood com-
munication at each iteration. The convergence rate of the LASOR method is
shown analytically to be the same as the SOR method in solving the constant-
~ coefficient PDEs. However, computer simulation indicates that the performance of

the LASOR method is superior to that of the SOR method for PDEs with space-
varying coefficients.

Another algorithm, the CMG method, combines the LASOR algorithm, the
multigrid concept, and two dimensional filter design to achieve highly paraliel com-
putation. Its supporting architecture has either a pyramidal structure or a structure
based on multiple mesh-connected processors.

Thesis Supervisor : Bernard C. Levy
- Title : Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor : Bruce R. Musicus

Title : Assistant Professor of Electrical Engineering and Computer Science

Dedicated to

My Grandmother and Parents

Acknowledgements

I would like to thank Professor Bernard Levy, my advisor, for introduc-
ing me to this interesting topic, spending a large amount of time on improv-
‘ing my research skills, and giving much helpful advice throughout my work. I
also wish to thank Professor Bruce Musicus, my other advisor, for his unfail-
ing enthusiasm and insight and for being a great teacher as well as a good
friend. Their friendship and willingness to allow me to pursue my ideas
helped to make my master program enjoyable.

Thanks also go to many of my friends in the Laboratory of Information

and Decision Systems (LIDS) and in the Digital Signal Processing Group
- (DSPG) of the Research Laboratory of Electronics (RLE) for their helpful
discussions and friendship. In particular, I want to thank Wei-Kang Kevin
Tsai, my good friend and officemate, for his encouragement and help in my

work and life.

Finally, no amount of gratitude can adequately repay my family for their
continuous support and sacrifice during the past years. To them I am truly
indebted.

This work has been supported in part by the Army Research Office
‘under Grant No. DAAG29-84-K-0005, and in part by the Advanced
Research Projects Agency monitored by ONR under Contract N00014-81-K-
0742, and by the AFOSR Contract F49620-84-C-0004.

.5.

Table of Contents

Abstract ... 2
’ Acknowlcdgements f e ettt et il
»Table Of CONLENES - - rrrrrrrrrrrrrrr et 5
Chapter 1: Introducﬁon LR PP 8

1.1 Problem Statement .. 8
1.2 OULHNE - v v eeet ittt ittt e e e 13

Chapter 2: Implementing Traditional Numerical PDE Algorithms

with Mesh-connected Processor Arrays 15
2.1 INtroduCtion -« rrrrrrrrrrrr e 15 :
2.2 Direct MethodS - -« -+ v rrrrrmerermnrii i - 16
2.3 Iterative Methods - -rrrrrrrmrrrmr e 18

Chapter 3: Locally Accelerated Successive Over-Relaxation (LASOR)

- algorithm in Mesh-connected Processor Array "« e 3
3.1 INtrOdUCHION -+ -« c v rerrrermrmroe e, 34

3.2 Admissible Error Function Space and Its Lowest Fourier
Component .. 39
3.3 Local Relaxation Operator and Its Properties ---------"" " 12
3.4 LASOR AlOrithm -+« +«+cvvvvvrevnaennaennennaenenes e 16
Chapter 4: Performance Analysis of LASOR Algorithm =~ -« ==« 56
4.1 Introduction ..-......... P R EEEETR R PP PTRRTR PR 56
4.2 Communication Complexity «---«--«----eeneeo. e 56
4. 3 Convergence Property -« «---cceeosrrsesee s 57

4.4 Convergence Rate Analysis - Linear Constant Coefﬁcnent
2) 62

4.5 Computer Simulation e 65

Chapter 5: Concurrent Multigrid (CMG) Method and Supportmg

AICthectures ... 69
5.1 Introductlon e eereeeeneaea e e 69
5.2 Concurrent Multigrid (CMG) Method -« ---voevoeionenn 72
5.2.1 Analysis and Synthesis of Grid Transfer Operators:* 3
5.2.2 Motivation for the CMG method - 1-D case =" """ """ 87
5.2.3 Overview of the CMG method - 2-D case ---------- 95
5.3 Computer Architectures for the CMG method ------------ 103
Chapter 6: Extensions and Conclusion ~=cccttttrrtrrittrrreiettc .. 108
6.1 Exfe_nsions .. e iees 108
6.2 Conclusion - :--«<----- 110

REFETEIICES - - - - - -« v v e e e e e e e e e e e e e e e e et e e 113

-7.

Table of Figures
Figure 2.1 : 1-D Gauss-Seidel Relaxation with Red/Black Partitioning -<------ 23
Figure 2.2 : 2-D Red/Black Partitioning and Grouping ------ R RERTETVERC
Figure31 RootLociofp.()WithFixed)t '50
Figure 4.1.a : Computer Simulation Result for Given Problem with s
11 X 11 Grid - verrrseesresresmesbomnss e et 7
Figure 4.1.b : Computer Simulation Result for Given Problem with
31 X 31 GHd - cvvvmeernnrmrnnnernnaennnaaeenai 68
Figure 5.1 : Frequency Response Function of the Full-weighting ‘ ¢
Projection Omrator ... 7
Figure 5.2 : Frequency Bands of the m — 1th, m th, and m + 1th
‘]_gve]s .. 79
Figure 5.3.a : Frequency Bands of Multiple Levels Represented in the q
Kl 1 — K2 1 Plane - - vttt 0
Figure 5.3.b : Frequency Bands of Multiple Levels Repr&sented in the ,
Kl,m K2,m Plane - --cccvrrrereriee st 81
Figure 5;4 . Speciﬁmtion of 2-DLow Pass Filter - vcvcreorrrroerencneencss 83
Figure 5.5 : Grid Points for Different Interpolation Operators «« - -« * <" 85

Figure 5.6 : Diagram of a Simple 2-D Concurrent Multigrid (CMG) %6
&heme ---

Figure 5.7 : Pyramid Multi-processor AITAy - oo 104

Figure 5.8 : Embedding Pyramid Architecture in 2-D Mesh-connected
Prmr Array ... 107

-8-
Chapter 1. Introduction

1.1 Problem statement

Many physical sysfems can be described by partial differential equations (PDEs).

It is usually very difficult to get analyric solutions of these PDEs because of the irregu-

lar geometry of the problem domain and of other reasons. Therefore, the numerical
solution of PDEs plays an important role in understanding and simulating these sys-
tems. Since the late 40’s, the introduction of high speed computing machines4 has made
the field of numerical solutioris of PDEs grow very rapidly [1]. The progress in com-
puter technology and numerical algorithms has helped us to solve My complex PDEs;
however, there are still many PDEs that cannot be adequately solved using today’s
most powerful compﬁters. The examples include computational aerodynamics and
hydrodynamics, weather foreéasting, plasma simulation, structure analysis, and tﬁr—
bulence modeling. How to solve them efficiently is one of the most challenging goals
for the next generation of computers.

In order to get high throughput performance, the algorithms and architectures of
tomorrow’s computer must emphasize parallelism. In fact, parallel computation has
been studied intensively for a long time. Several parallel computing machines, such as
Cray-1, Cyber 205, llliac IV, and C.mmp, have been built to speed up large scale com-
putation problems. ‘

Although some kinds of parallelism are adopted in all these machines, the design

principles are not the same. This is due to the fact that parallelism can be introduced

-9.

at several levels and m many different ways. Roughly speaking, we may categorize the
parallelism into two levels - circuit level, such as parallel adders and multipliers, and
functional level, such as multiprocessor arrays. The functional level parallelism can be
further classified into several subclasses. For examples, Cray-1 and Cyber 205 belohg
to the SIMD (single-instruction-multiple-data) vector pipelining class, Illiac IV fzlls into
the SIMD array class, and C.mmp is an example of MIMD (multiple-instruction-

multiple-data) machine. More examples can be found in [2].

To use these parallel machines successfully, good parallel algorithms are needed;
therefore, some parallel numerical algorithms have been developed for this purpose.

Heller [3] contains a good review of these studies.

A majority of parallel numerical PDE algorithms are direct methods which use the
fact that LU decomposition (Gauss elimination method) or QR decomposition
(Given’s transformation method) of a tridiagonal matrix can be done fast. So, instead
of solving a tridiagonal matrix equation, we solve two triangular linear systems, which
can be done quickiy. Therefore, if a system A x = b can be decomposed into many
independent smaller-dimensional tridiagonal subsystems, the solution of all these sub-

systems can be done in parallel and very efficiently [4].

These direct methods are powerful for some special class of problems; however,
they cannot be applied in more general cases such as for problems with irregular
domain, or problems in three dimensions, where the system decomposition becomes

very difficult. In contrast, the iterative methods are suitable for general problems.

-10 -

Besides, they.aISO allow high degrees of parallelism. In this thesis, I will concentrate on
parallel iterative algorithms. |

The hardware implementation of the conventional parallel machines uses SSI
(small scale integration) and MSI (median scale integration) technology. However, IC
techndlogy has progressed so quickly that VLSI (very large scale integration) chips will

become the main building blocks of tomorrow’s parallel computers. With VLSI tech-
| nology, we may put millions of transistors on a single chip, which provides new possi-
bilities as well as challenges, and affects the design of future computers in the following
ways.

It is feasible to fabriéate many powerful special purpose chips and to use them as
peripheral devices to a host computer. As a consequence, one interesting phenomenon
is the mergiﬁg of algorithms and ﬁrchit’ectures, the ability to implement different algo-
ﬁthms on different hardware designs customized to support the algorithms in the most
| efficient way. The close relationship between applications, algorithms, and architec-
tures is really one of the most important features of computers implemented with VLSI

technology.

At the same time, VLSI introduces new difficulties, which were not so critical in
SSI or MS : high system complexity, limited /O pins, and high communication cost
within a chip. In order to manage system complexity, regularity and modularity are
two important design principles. The number of I/O pins of a VLSI chip is quite small

compared to the number of components within it (currently O (102) v.s.

-11 -

0 (106%) and probably O (10°) vs. O (107) in the future). Therefore, if
computaﬁon requires a lot of data transfer among chips or between chips and the host,
the /O problems may become a bottleneck, and will slow down the processing speed.
Parallel computation often introduces communication problems among different proces-
sors. Communication cost, which is seldom mentioned for a single processor system, is
no longer negligible in a multi-processor environment. The problem becomes crucial
when VLSI technoldgy is used to implement the hardware, because long range com-
munications not only cost a lot of area and energy but also result in time delays in a
VLSI chip. A good algorithm‘ for VLSI systems should be computationally as well as

communicationally economical.

The first algorithms which took advantage of VLSI technology as well as consider
its constraints were the systolic algorithms proposed by Kung and Leiserson in 1978
[5]. Since then, many algorithms and special purpose supporting architectures have
been studied [6]. All these designs are based on the principles of regularity, modular-
ity, and local communication. However, /O problems, which were not considered
carefully in all two dimensional systolic array algorithm and architecture designs, turn

out to be a major hindrance to making these designs work at present.

The objective of the research described in this thesis is to combine VLSI technol-
ogy with numerical analysis algorithms for PDEs in order to obtain special purpose
PDE solvers. This combination promises to achieve better performance with lower cost,

compared with the traditional parallel computing machines without VLSI;,

-12 -

However, the implementation of traditional numerical algorithms in a VLSI
environment encounters serious communication problems of such a magnitude that the
acceleration effect is cancelled out by communication cost. In order to solve the com-
munication problem, this thesis proposes two parallel iterative algorithms that can

achieve the acceleration effect using only local communication at each iteration.

Both algorithms can be run on a square mesh-connected processor array. This
kind of multiprocessor architecture has many advantages. It satisfies the regularity and
modularity requirements of VLSI. If we discretize the problem domain of PDE with a
square grid, there is a natural correspondence between processors and grid points.
Therefore, some relaiation schemes can be performed using only nearest-neighbérhood
information. In addition, the I/O bottleneck is removed, since communication between

fast PDE solvers and the host only occurs in the loading and unloading stages.

PDEs can be broadly classified into two types - the more-or-less hyperbolic type
and the more-or-less elliptic type to which the parabolic type is closely related. It has
been stated that if an architecture could deal with these two types, it would have
almost universal applications [7]. The algorithms of this thesis are mairly directed to
linear elliptic type problems. The linear elliptic PDE can usually be discretized into a
matrix equation A x = b, where A is a symmetric and positive definite matrix. (See '
[15], p. 189). Instead of starting from the differential equations and discussing dif-
ferent discretization schemes, we will focus on the discretized equation aﬁd consider

how to solve this matrix equation using parallel algorithms and computer architectures.

-13-

1.2 Outline
This thesis is organized as follows.

Chapter 2 surveys the traditional iterative methods for solving PDEs and discusses
the difficulties of implementing them in a multiprocessor VLSI chip. The central issue |
is that to obtain the acceleration effect, by which faster convergence rate can be
achieved, requires global communication. However, global communication increases
computation time per iteration enormously in a multiprocessor environment such that

the acceleration effect is cancelled out by communication cost.

Therefore, a new approach known as locally accelerated successive relaxation
(LASOR) method is presented in Chapter 3. This method, which is applicable to both
linear constant-coefficient PDEs and linear varying-coefficient PDEs, increases the con-
vergence rate with very low communication cost. This algorithm is analyzed by local
Fourier analysis and the optimal local relaxation factors are determined by the coeffi-

cients of local operators.

The communication complexity, convergence property, and convergence rate
analysis and simulation of the LASOR algorithm are shown in Chapter 4. The conver-
gence rate of LASOR is the same as that of SOR in solving linear constant-coefficient
PDEs analytically. The computer simulation results indicate that the convergence rate

~of LASOR is Superior to that of SOR in solving linear varying coefficient PDEs.

Chapter 5 proposes another parallel algorithm - concurrent multigrid method

(CMG). This method combines the concepts of multigrid discretization, 2-D filtering

-14 -

and local acceleration. Supporting architectures, pyramidal multi-processor arrays and

mesh-connected processor arrays, are also discussed.

Some further extensions and conclusions are mentioned in Chapter 6.

- 15 -

Chapter 2. Implementing Traditional Numerical PDE Algorithms
with Mesh-Connected Processor Arrays |

2.1 Introduction

In this chapter, we will focus on the issue of implementing different traditional
numerical PDE algorithms in one specific type parallel computer architecture: mesh-
connected processor arrays. The mesh-connected processor array has many advan-
tages. First, The interconnection between processors is simple and regular. Secondly,
it has 2-D planer structure which is appropriate for VLSI implementation. Thirdly,
there is a good correspondence between the discretized 2-D space points and the pro-
cessors in this array so that we may take advantage of this structure to obtain parallel

computation.

The conventional way to solve PDEs numerically can be divided into two stages:
forming a system of equations by some discretization scheme, and solving the system of

equations.

Two commOnly used discretization approaches are the finite-difference and finite-
element methods [8]. The finite-difference methods always give mesh-connected rec-
tangular grids. We may assign each node to one processor, so that there exists a |
natural mapping between grid points and computational elements. However, this fact
does not apply to finite-element methods directly, since both triangular and quadrila-
teral elements are allowed and each node may have an arbitrary number of connections

with ‘othcr‘ nodes. This flexibility makes the finite-element method more powerful in

- 16 -

fitting general boundary shapes, but also introduces more irregularities. Therefore, the
mapping from the nodes to the processors is not trivial. In order to make the mapping
simpler, we should choose a subclass of general finite-element schemes. One possible
choice is to assume that all elements are quadrilateral and that each inner node has
exactly four connections with other nodes. For simplicity, we will only consider the
finite-difference discretization scheme in this thesis. Most of the results presented can

be generalized to the subclass of finite-element methods mentioned above.

Discretizing a linear PDE problem, we get a sparse matrix equation,
Ax=b, (2.1)
where A is an N X N sparse matrix, and x and b are two N dimensional vectors.

Then, the remaining question is how to solve this matrix equation.

The solution of the linear system A x = & has received a large amount of atten-
tion over the years. Generally speaking, it can be solved by either direct or iterative
methods. In the following, we will survey these methods briefly and, more importantly,
discuss their implementation. This serves two purposes. First, we want to show how
the parallel processing concept can be applied at the node level, not at the subsystem
level such as for the decomposed tridiagonal matrix equations mentioned in Chapter 1.
Secondly, we will point out the shortcomings of these implementations.

2.2 l_)irect methods

The direct methods include the Gaussian elimination, Givens transformation,

Householder transformation, Gram-Schmidt transformation methods, and a variety of

-17 -

other orthogonalization procedures [9]. If the matrix A has some special properties
such as symmetry or a Toeplitz structure, then more efficient algorithms are available
such as the Cholesky decomposition, or the Levinson, and fast Cholesky recursions

[10].

Many researchers have proposed VLSI array processor architectures to implement
these algorithms. Kung and Leiserson [5] used a hexagonal systolic array to factor the
matrix A into lower and upper triangular matrices L and U, and then solved two tri-
angular linear systems , L y= b and U x =y, with a linear systolic array. Kung [11]
suggested another structure called a wavefront array processor which can implement
the Gaussian elimination method with pivoting as well as without pivoting. The cordic
array processors proposed by Ahmed, Delosme, and Morf [12] made use of Givens’
algorithm which seems more efficient than the Gaussian elimination method with
pivoting in a parallel computing environment. If A is a Toeplitz matrix, Kung and Hu
[13] designed a fast Toeplitz solver which can solve the equation quickly. Similar
results can also be found in [12]. In terms of computational cost, for a general N X N
matrix A, we need O (N2) processors to solve the equations in O (N) time. In con-

trast, for an N x N Toeplitz matrix, only O (N) processors are required.

One difficulty with using the above mentioned systems to solve the sparse matrix
equations arising from PDE problems is that too many processors are needed. For a
general PDE problem, A is not a symmetric matrix, because of the discretization of the

irregular shaped boundary. It is indeed very hard to find any special structure in the

-18 -

matrix A for an arbitrary given problem. Therefore, in order to handle the general
situation, we have to view A as an ordinary (though sparse) N by N matrix. For a
practical real world problem, N is a very large number, say, O (10*). The systolic
schemes would require O (103) processors, which seems unacceptable even if modern
VLSI technology is used. Schemes for using small systolic arrays to solve large linear
equation problems have been proposed, but they are quite complicated. These
schemes also involve unnecessary waste since most processors are idle during the pro-

cessing, due to the sparsity of the matrix A.

Another difficulty is due to the fact that A x = b is not necessarily a good approx-
imation of the original PDE, so that further grid size refinements may be needed. If
direct methods are used, then the solutions of previous runs are totally useless for the
current run. Iterative algorithms, on the other hand, are able to use old solutions from
an old discretization efficiently to solve linear equations for the new discretization.

2.3 Iterative methods

Iterative solutions of the linear system A x= b rely on two different principles -
relaxation and minimization.

By appropriately decomposing the matrix A and rearranging, we may form various

iterative relations, which are known as relaxation methods [14]. For example, we can

express A as the matrix sum

A=D—-E-F, (2.2)
where D is a diagonal matrix, and E and F are respectively strictly lower and upper tri-

-19 -

angular matrices. Rearranging equation (2.1), we get two different forms equivalent to
the original equation,
x=DWE+F)x+D'p, (2.3)
x=(D-E)'Fx+(D-E)'lb, (2.9
therefore, we can define the following two iterative equations,
0D =p1(E+F)x®W+D B n=0, (2.5)

D= (D -E)YW¥Fx™+(D-E)Wb n=0. (2.6)
Equations (2.5) and (2.6) are called the Jacobi and Gauss-Seidel relaxations respec-

tively, and D "Y(E+F) and (D —E)~'F are the corresponding relaxation matrices.
Other examples include successive overrelaxation (SOR), Chebyshev semi-iteration

(CSI), and alternating-direction implicit iteration (ADI).

The design and analysis of these relaxation schemes heavily depends on the eigen-
structure of the relaxation matrix. If the spectral radius of the relaxation matrix is less
than 1, then the algorithm converges. In addition, the smaller the spectral radius is,
the faster the convergence rate is. In order to improve the convergence rate, we may
introduce some acceleration parameters to reduce the spectral radius. 'I‘heoretic#lly,’
these optimal parameters can be determined by a formula which uses the knowledge of
the eigen-structure of the relaxation matrix. Unfortunately, in practice, this informa-
tion is not available. Therefore, some adaptive parameter estimation schemes have

been derived to overcome these difficulties [15].

We may also view A x= b as the result of a minimization problem. If we assume

that the matrix A is symmetric positive definite (SPD), to solve A x = b is equivalent

-20 -

to minimizing the following quadratic form

F(x) = wxTAx-bTx . 2.7
This can be done by the steepest descent or conjugate direction (CD) method, of
which the conjugate gradient (CG) method is a special case [15]. For an ill-
conditioned matrix A, the steepest descent method may be very slow, but for the CD
or CG methods, we need at most N steps to find the solution in the absence of round-
ing errors. In this sense, the CD or CG methods act like direct methods. With the
rounding errors, it is still possible to form some iterative relation and, thus, we get

another important class of iterative algorithms.

The implementation of these algorithms on a sequential machine involves dnly
coding. The analysis described above helps us to understand the performance of algo-
rithms implemented in this way. However, the same analysis does not contain enough
information for us to evaluate the performance of these algorithms when they are
implemented on a VLSI multiprocessor chip, because it ignores an important factor -

communication among processors.

Computation time for an iterative algorithm equals the product of the number of
iterations and time per iteration. In a sequential machine, time per iteration is deter-
mined by operation counts, especially, by the number of floating point operations
required. If this quantity is almost constant, then the total computational time can be
thought tb be proportional to the number of iterations only. However, time per itera-

tion may change a lot for different algorithms in a multiprocessor environment. Con-

-21-

sider a mesh-cohnected processor arrays. Algorithms using local communication take
O (1) communication time, while those using global communication require
0 (V'N) communication time per iteration (O (V'N) describes the number of
processors across the array). Given this observation, we have to consider both factors
together, i.e. we seek algorithms with larger convergence rate and shorter time per

iteration for a given computer architecture.

In order to clarify the following discussion, we will focus on the Poisson equation
with Dirichlet boundary conditions defined on the closed unit square. We will call this

the model problem. Mathematically, we solve for u (x; , x5) satisfying

azu (xl ’12) + aZu (Il ,12)

axf axf

=f (xl,xz) 0<xl,12< 1. (2.8.8.)

and

u(xy,x3)=g(x1,x2) (x,x3) €T . (2.8.b)
where I' denotes the set of points on the boundary of the square.

For a uniform square grid with spacing k, by using a finite-difference discretiza-
tion, we obtain

Qujj— Uit~ Ui, U 1~ U j1= — hifij (2.9

for each inner node, which is called the local equation. The local equation describes

the local behavior of the physical system that we are trying to solve. In terms of imple-

mentation, the local equation is more informative than the matrix equation. For

analysis purposes, researchers are accustomed to the matrix formulation, but it will be

shown in Chapters 3 and 5 that analysis from a local point of view is possible.

-22.

Starting from equation (2.9), we can discuss the details of implementing different
iterative algorithms with a mesh-connected processor array.

(1) basic relaxation methods : the Jacobi method and the Gauss-Seidel method

The Jacobi method assumes the following iterative relation

1
utih = 2 ¢ WPt u®y+u® +u®g - k2F5) a = 02.10)
Let M +1= %, then there are N = M2 inner grid points. Assuming that we use

an M X M mesh-connected square processor array, we have a one to one mapping
between inner grid points and processors. According to equation (2.10), in the Jacobi
relaxation each processor takes the values of its nearest neighbors at the previous itera-
tion to update its value at the current iteration. The time for each iteration is constant, |

because both communication time and computation time are constant.

If we call the grid point (i , j) a red point, when i + j is even, and a black
point, when i + j is odd, the Jacobi method can be viewed in space and time as con-
sisting of two interleaved, and totally independent, computational waves alternating
between red and black points. Figure 2.1 illustrates these waves for the one dimen-
sional case. In fact, these two waves result in unnecessary redundancy. We need only
one wave to get the answer, since both waves converge to the same final values. If we
delete one computation wave, the utilization of the processors becomes one half, i.e.,.
évery processor works only half of the time. Therefore, we may group one red point
and one black point together and assign them to a single processor. This saves half of

the hardware cost without loss of computational efficiency.

x-coordinate

Fig 2.1 1-D Gauss-Seidel Relaxation with Red/Black Partitioning

..

olojolololo
olojolololo

..

..

olojolololo
olojolololo

--

..

0 @ 0 @ 0 @

..

x-coordinate

y-coordinate

Fig 2.2 2-D Red/Black Partitioning and Grouping

-25-

We present one possible grouping scheme in Figure 2.2. It turns out that Figure
2.2 is the impleméntation of a popular Gauss-Seidel relaxation scheme - red/black point
partitioning. We can write the local equation as follows

red points (i + jis even) :

ufyV = % (@ +u@®yj+ulog +ul - k2 ;) =0 (2119

~ black points (i + jisodd) :

WD = ¢ D+ 4w CI +u G - k2 hy) m =0 @1
There are many ways to choose Gauss-Seidel relaxation schemes; however, the
red/black partitioning is usually preferred, because of its efficiency and simplicity.
Note that the difference between the Jacobi and the Gauss-Seidel relaxation methods is
that the Jacobi method hpdates the values of all nodes at one iteration while the
Gauss-Seidel méthod updates the values of one half of these nodes at one iteration and
updates the other half at the following iteration, based on the previously updated

information. We still can give a simple explanation of why Gauss-Seidel relaxation is |

superior to Jacobi relaxation without any spectral analysis.

The chief shortcoming of the Jacobi or Gauss-Seidel iterative methods lies in their
slow convergence rate. It usually happens that the spectral radius of the relaxation

matrix is very close to 1, which causes the convergence rate to be extremely slow. The

number of iterations needed is proportional to O (%) in this example.

(2) accelerated relaxation methods : CSI acceleration and SOR acceleration

-26 -

Different acceleration methods may be combined with different basic relaxation

methods resulting in numerous possible algorithms. We choose two typical examples to
| illustrate the general situations - the Chebyshev semi-iterative (CSI) method applied to
Jacobi relaxation and the successive over-relaxation (SOR) method applied to Gauss-

Seidel relaxation with red/black partitioning.

The acceleration schemes use carefully chosen relaxation parameters to reduce the
spectral radii of the iterative matrices so that the iterative algorithms converge faster.
The relaxation parameter for the SOR algorithm, denoted by w, is introduced to
accelerate the two-step Gauss-Seidel relaxation while the relaxation parameter for the
CSI algorithm, denoted by w,, is introduced to minimize the spectral radius of a

matrix polynomial. The details of these two algorithms are discussed in [14].

In general, CSI acceleration requires a knowledge of the largest and smallest
eigenvalues of the basic relaxation matrix. However, if these two quantities are approx-
imately equal in the absolute value, which is the case in the model problem, there

exists a simpler version requiring the knowledge of spectral radius only [14].

Let T, (x) denote the Chebyshev polynomial with parameter n, i.e.,

cos(ncos'lx) -1=x=1,n=0
Tu (x) = cosh(mcosh™1x) x=1,n=0
and let p be the spectral radius of Jacobi relaxation matrix. Then the local equation for

(2.12)

the Jacobi method with CSI acceleration can be written as

" 9:;:1) =(1- ©y41)u 9:;1) (2.13.a)

-27-

Wp +1
+ "4+ ("?'-)l,j + u?‘h,; + "?:)1—1 +u®yy - h2fi;) n=1
where
1
Tn-l(_) ,
w..+1=1+——'1’— n=1, =1 . (2.13.b)
Tn+l(;)

On the other hand, the local equation for the SOR accelerated Gauss-Seidel method

with red/black partitioning is

red points (i + jis even) :

uPiD = (1-0)y9 (2.14.a)
+ %("E"—’l.j +u @+ + uPi —k2f;) n=0

black pbints (i+ jisodd):

w0 = (1-0)u® (2.14.b)
o D D+ w G w0 K25) mzo0

where

0= —— 7 . (2.14.0)
and p is still the spectral radius of the Jacobi relaxation matrix.

For a given mesh-connected processor array, if we know p a priori and broadcast
it to all processors in the loading stage, then each processor can compute the accelera-
tion parameters 0,1 (CSI) or ® (SOR) on its own without additional communication
cost. In this case, although the accelerated schemes (2.13) and (2.14), require more

computation and memory than the basic schemes, (2.10) and (2.11), they present some

-28 -
significant advantages. The reason is that the number of iterations needed is reduced
tremendously, becoming O (%) for both acceleration schemes. However, we do not

know p in advance in most cases and have to estimate it by some adaptive procedure.
To our knowledge, all the estimation procedures developed require the knowledge of
the norms of some global vectors. Therefore, global communication cannot be

avoided. This means that communication cost for a single iteration becomes O (M)

or, equivalently, O (%) ! The total running time is proportional to O (%) again.

Comparing this result with that of the basic relaxation methods, it seems that we
do not benefit from acceleration schemes in parallel implementation of iterative algo-
rithms. This can be easily explained by noting the fact that in a single processor, there
is no distinction between local and global communications, since all data are fetched
from the same memory, while for a multiprocessor, long range communication costs
much more than short range communication.

(3) minimization iterative methods : the CD method and the CG method

To minimize the quadratic function
F(x) = %xTAx—bTx (2.15)
by the CD or CG method, we have to know a set of conjugate vectors of matrix A.
Two vectors p,q are called mutually A-conjugate, if pTAg=0. Let vectors
p@p®, . ,p@®-D be nonzero and mutually A-conjugate and x©@ be the initial
guess. Since A is SPD, the set {p®) ,0 < n <N -1} is also linearly independent.

Because {p(),0=<n <N-1} spans the whole space, there exists constants

-29.
€0C1,c2,..cn such that the minimum point x can be represented as

x = x(°)+c0p(°)+c1p(l)+...+c~-|p(N_l) R (2.16.a)

and

_ 0™ p-4xO)
, (™, Ap™)
which is the CD method. The set of vectors {p(") ,0=n =N—11} can be chosen in

Cn

(2.16.b)

many different ways and if we choose

p(") = r(n) if n = 0 9 (2.17)

(r(") y Ap(" —1))

(n) = ,(n) _
p r @D, ap(-D)

p®-D fn>0 |,

where
r® =p — A
then the CD method becomes the CG method.

If we write down the local equation for the CD or CG methods explicitly, then it
is easy to see that A x®) and A p(*) can be computed in parallel locally. The main
obstacle to localizability comes from the inner product operation. To see this, note that
for any set {p™) ,0 = n <N -1}, some of the vectors p(*) must be global vectors,
i.e., almost all of their entries are nonzero. Therefore, computing the innei product
operation requires global communication. We encounter therefore the same difficulties
for accelerated relaxation methods.

(4) Block iterative methods

Block iterative schemes are commonly used in practice in single processor compu-

tations. The idea is as follows. We may partition the grid points into several groups

-30-

and divide the computation into two levels - inter-block level and intra-block level. The
inter-block level usually adopts some accelerated relaxation method while the intra-
block level may take advantage of the special structure of the submatrices, say, diago-
nal or tridiagonal matrices, and invert them directly. Two popular partitioning schemes
are line partitioning and red/black partitioning, because they result in tridiagonal and
diagonal submatrices respectively in most cases. The main advantage of block iterative

methods is that global block relaxation converges faster than point relaxation.

In a mesh-connected processor array, line partitioning does not seem very useful;
however, red/black partitioning is still attractive. In fact, we may prefer rectangular
partitioning, of ’which red/black partitioning is a special case, i.e., 2 X 1 points per
block. Using the rectangular partitioning, we can assign the nodes within the same
rectangle to a single processor. The mapping is very simple because the geometry
resulting from the partitioning matches the computer architecture very well. The rec-
tangular block iterativ?e methods not only increase the convergence rate but aiso pro-
vide an approach to solve a commonly encountered problem i.e., the number of grid
points is usually larger than the number of processors available. Since the submatrices
arising from rectangular regions have no special structure, we cannot solve them effec-
tively using direct methods. Neverthless, we may choose some accelerated iterative

methods in this case.

The two level computation concept seems a natural extension from one- processor

computation to multiprocessor computation. Locally, by solving a smaller problem

-31-

within a single' processor as before, we can apply all kinds of acceleration schemes
without worrying about communication cost. Globally, we come back to the same issue
again - global information cost is high. So we may choose simple relaxation schemes

without acceleration, say, Jacobi relaxation and Gauss-Seidel relaxation.

Given a problem with 100 x 100 discretized space points, we may group 10 x 10
points together and assign them to a single processor. Then, a 10 X 10 mesh-connected
processor array is needed. The SOR, CSI, and CG algorithms can be used within each
block and the optimal acceleration parameters are determined based on the 10 x 10
local information, which means it does not have any information contained in other
processors except for the updated values of the points surrounding the block needed
for next-step iterations. Similarly, if the block size becomes smaller, say, 5 X 5 points
per block, then 20 x 20 processors are needed and the acceleration parameters will be
‘determined based on the 5 x S local information, which should be different from the

10 x 10 points per block case.

Consider the intra-block accelerations (SOR, CSI, and CG methods) for a special
case where each block only contains a single point (or a pair of points in the Gauss-

Seidel relaxation case). It is known that p, the spectral radius of the Jacobi relaxation

ul
M+1

matrix for a square grid with M X M inner grid points, is cos () for the model

problem. Therefore, p comes close to 0 as M approaches 1. Applying the result to

equations (2.13.b) and (2.14.c), we have

-32-

1
Tp-1 (=) _
imwyey=tm |1+ —L— | =1 n=1, (2.18)
p-0 p-0 T _1_
n+l() '
1]
lim o = lim 2 =1 2.19
=0 p0 1+ V1-p2 ' (219)

Thus, the CSI accelerated block Jacobi method, (2.13.a) is reduced to the ordinary
Jacobi method (2.10), and the SOR accelerated block Gauss-Seidel method (2.14.a), is

reduced to the Gauss-Seidel method (2.11).

As to the CD or CG accelerated block Jacobi method, the intra-block computa-

tion, equation (2.15), should be interpreted as

ediae (- L _ 1 _1 1
A = diag (e , 1, 2’ 4) (2.20.a)
where "diag"” means a § X § diagonal matrix, '
x = (Ui, Uit Ui Uy j-1s 8 1) (2.20.b)
b=(0,0,-h%f;,;,0,0) (2.20.c)

and only one vector 2O has to be determined in (2.16.a), which assumes the form
p®=(0,0,1,0,0)" . (2.20.d)
If we let x®) denote (“S"—)l,j , U ?')1.1 , u?:)_,- , u?:)j_l , U ?:)jﬂ)T, the equation

(2.16.a) can be written as

© — (n)
1) (P, -A ™) @
x(F) = x() 4 ® .4 ,0) p® . (2.21)

Substituting (2.20) into (2.21) and simplifying it, we obtain the same result as Jacobi

| relaxation (2.10) again.

-33-

It seems natural that when the rectangular blocks become smaller and smaller, the
behavior of the two-level computation scheme comes closer and closer to that of inter-
block computational algorithms and the acceleration effect within a block becomes less
important. The above examples tell us that we cannot get the acceleration effect using
only local information. Therefore, the goal in Chapter 3 is to find some acceleration

schemes using as little global information as possible.

-34.

Chapter 3. Locally Accelerated Successive Over-relaxation
(LASOR) Algorithm in Mesh-connected Processor Arrays

3.1 Introduction

In this chapter, I will introduce an accelerated relaxation scheme called locally
accelerated relaxation (LASOR) method, which differs from the SOR method men-
tioned in Chapter 2 in that it does not require global communication in every relaxa-

tion step.

If we compare the relaxation and minimization principles for iterative methods
based on a local communication criterion, relaxation methods seem more attractive
than conjugate gradient (CG) minimization methods. Relaxation methods without
acceleration can be executed locally. However, CG minimization methods need to use

all intermediate results to compute new search directions for the minimum.

The minimization approach may be modified in such a way that the new direc-
tions to be searched are restricted to a small subregion. Information exchange between
these subregions is through their interfaces. This is equivalent to the two level compu-
tation strategy mentioned in Chapter 2, i. e., the block iterative methods which com-
bine a global relaxation scheme with a local minimization scheme. Therefore, we con-
clude that relaxation methods provides a better choice for global level computation

with VLSI implementations due to their local information exchange property.

Although block relaxation methods are promising in practice, for simplicity, we

will focus on point relaxation methods. From a conceptual point of view, point

-35.

rehxaﬁon methods are not very different from block relaxation methods. Consider a
small subregion assigned to a processor. If there is no further discretization withiti it,
we call this subregion a point; in contrast, if there is some inner structure, i.e. more
discretized points, we call it a block. The intra-block level computation is the same as
thé traditional sinéle processor computation problem, which is not our major concern.
What we are really interested in is inter-block computation, the communication
requirements between blocks and the time required to solve the problem. Internal
block structure will not strongly effect these issues, and thus we will primarily focus on
problems in which the block is just a single point. The results obtained for the analysis

of point relaxation methods are also applicable to block relaxation.

In summary, this chapter attempts to find a good parallel computation algorithm
under the following assumptions: (1) The computer architecture is a mesh-connected
processor array, and each processor corresponds to one discretized node. (2) Commun-
ication only occurs between the neighboring processors. (3) Computation of the new
value at a single node is based on its own last state (previous value at the same node)

and the up-to-date values of neighboring nodes.

We‘ restrict the problem domain to be the unit squarc. That is
Q=(0,1)x(0,1), with the boundaries Fy={(x,x)|x,=0,0<x,<1},
F={(xy,x)|x=0,0<x,<1}, Fy={(x1,x) |x=1,0<x,<1}, and
F4={(x1,x)|x;=1,0<x,<1}. This constraint not only simplifies the ahalysis

but also has a practical reason. The processor array has usually a regular shape such as

- 36 -

a square. In order to utilize all processors effectively, the irregular problem domain has
to be mapped into this regular region [16]. Such a mapping is not trivial and usually
introduces some edge effects which make the solution near the edges rather compli-
cated. However, these issues will not be discussed here. Let us just assume such a
mapping is possible and that after this mapping the linear property of the original PDE

is still preserved.

Our approach to analyze distributed numerical PDE algorithms can be stated as

follows.

Consider a linear second order partial differential operator L, four linear first

order boundary condition operators B;, and the functions u, f and g;’s satisfying

Lu=f defined on () (3.1.a)

B,u =g defined on T, i=1,2,3,4 (3.1.b)
Applying a discretization scheme to (3.1.a), we get

Ly uy, = fi defined on (1, 3.2)
where L, is the discretized operator of L, 1, and f, are discretized functions of ¥ and

f, and Q, is the set of discretized space points in (2.

There are two ways to look at equation (3.2). We may view L, as a matrix and u),
and f, as vectors composed of the values of the functions at discretized space points.
This is the central computation point of view. Alternately, we may interpret L, as a
group of operators distributed on (2, and u, and f, as input and output waveforms.

This approach constitutes the distributed computation point of view.

-37-

To analyze a distributed numerical PDE algorithm, the waveform interpretation is
convenient, because it relates all space points in the problem domain as a whole. In
contrast, matrix iterative analysis [14] provides us with a loosely coupled large scale sys-
tem. This system is very difficult to understand and manipulate locally, because subre-

gions far apart interact with each other in an indirect way.

One essential part of the PDE operator analysis is to find a set of good basis func-
tions so that we may simplify the analytic procedure. The spectral theory of operators
gives us many results in this respect [16]. Generally speaking, the best choice of basis
functions are the eigenfunctions £, of the global operator L satisfying the boundary
conditions, because they form a complete orthogonal set with respect to the operator L
and the boundary conditions. Thus, we have L &, = A, £,, where A\, are the eigen-
values of L. The ‘orthogonality implies that the inner product (¢, ,L &,) = 0 when
m # n, and the complete property means that any function ¥ which satisfies the same
boundary conditions can always be represented as a linear combination of £,’s, i.e., we

can find a set of coefficients a,’s such that u = En a, &,.

In distributed computation, we ask the same question - how to choose a set of
good basis functions. Suppose we discretize a linear constant-coefficient difference
operator within a local region. The eigenfunctions of a linear constant-coefficient
operator are the sinusoidal functions, denoted by s,. Suppose we use the sinusoidal
functions as our basis functions. They form a complete set with respect to the boundary

conditions. However, for constant-coefficient PDEs, they are orthogonal with respect

-38 -

to the giobal operator L, i.e., the inner product (s, ,L s,) = 0 when m # n, but
not with respect to the local operators L,;;, i.c., the inner product
(SnpsLnijSmp) = SapL Smp # 0 when m # n, where s, is the discretized
functions of s,. For varying-coefficient PDEs, they are not orthogonal with respect to

either the global operator L or the local operators Ly, ; ;.

Fortunately, the orthogonal property is not relevant to the analysis of relaxation
methods. The relaxation procedure in numerical PDE algorithms can be interpreted as
a low-pass filtering process. The completeness of a basis is important, because the basis
should be able to represent any error functions allowed in the problem domain. But
since we do not intend to decompose the error function into components of the basis,

the orthogonality is not useful.

In fact, the error is totally unknown during the relaxation procedure; as a conse-
quence, there is no way to figure out the weighting of each basis function, whatever
basis we choose. All we can do is to concentrate on the algorithm itself without consid-
ering what the error could be. Asymptotically, only the lowest frequency component
remains due to the low-pass filtering property. The asymptotic assumption provides a
common base to compare the convergence rates of different algorithms, which are
called the asymprotic convergence rates.

Since we are only interested in the lowest frequency, the remaining question is
which lowest frequency is more appropriate for our purpose - the smallest eigenvalue of

the global operator L or that of the local operator L, ; ;. The former requires some

-39 -

global information and a complicated computation procedure. The latter only needs
informétion about the boundary conditions and a simple computation, discussed in

- next Sections.
3.2 Admissible Error Function Space and Its Lowest Fourier Component

It is more convenient to analyze the relaxation in the error function space rather
than the solution space, because the error equations are homogeneous equations. The

error space formulation can be obtained as follows. Let u be the actual solution, then

Lu-=f defined on S} , (3.3.a)

B,' u = 8i deﬁned on Fg i = 1, 2, 3, 4 . (33.b)
Substracting (3.3.a), (3.3.b) from (3.1.a), (3.1.b) respectively, we obtain the homo-

geneous PDE in the error space.

Le=0 ~ defined on) R (3.4.3)
Bie =0 defined on T; i =1,2,3,4 . (3.4.b)

The functions defined on the unit square and satisfying the homogeneous boun-
dary condiﬁons (3.4.b) are called the admissible error functions. All admissible error
functions form the admissible error function space. The sinusoidal functions in the
admissible error function space can be chosen as a basis of this space. The goal of this

section is to find in this basis the sinusoidal functions with the lowest frequency.
For simplicity, we assume that all B;’s are constant-coefficient operators. Under
this assumption, B; and B3 are independen: of the xj-direction, B, and B4 are

independent of the xq-direction, and since the problem domain is square, the admissi-

-40 -

ble Fourier components can be written in the separable form as sy (xy) 53 (x3),
where s¢ (-) and s (-) are two 1-D sinusoidal functions. The boundary condition

on I'y becomes

Bysi(x1)s3(x2) = s2(x2)Bysy(x1)=0 , (3.5.)

Bls1(x1) =0 . (3.5.b)
Similarly, we simplify the boundary conditions on I'y, I';, and T'4, then decompose the

2-D problem into two independent 1-D problems.

(I)Bys1(x1)=0 whenxi=0 B3si(x3;)=0 when x;=1,(3.6.a)
(IIYB3s2(x2) =0 whenx3=0 B4sy(x3)=0 when x5 =1 £3.6.b)
From (3.6.a) and (3.6.b), we can determine the lowest frequencies k; and ks
‘separately. We only show how to get £; from (7); then £, can be obtained from (/) in

the same way.

Consider the mixed type boundary conditions,
Bl=b1+bzd— when x4 = 0 and B3=b3+b4L— when x1 = 1(3.7)
d x d xq 1 :
The Fourier component of frequency k1, s (k1 , x1), can be written as a linear com-

i k| Xy -1 kl xq

bination of two complex sinusoids e and e ,1. e.,

s(kyxi)=c(ky)e'm+ c(—ky)e tlm | (3.8)
Substituting (3.8) into (3.7), we obtain

(br+ibyky)c (k) + (by—ibrki)c(—k)=0
(b3 + i bgky) e B ¥ic (ky) + (b3 —ibski)e ‘MFc(—k)=0
In order to get nonzero values for ¢ (ky) and ¢ (— k;), the determinant of the 2 X

(39

-41 -

2 coefficient matrix should equal zero, or equivalently,

gi2h o (b1t ibaki)(bs—ibsky)
(b1 —ibaky) (b3t ibsky)

Therefore, we conclude that the frequency k4 of any admissible 1-D sinusoidal function

(3.10)

with‘respect to the boundary conditions (3.7) must satisfy equation (3.10).

Let us look at two examples. If both I’y and I'; are Dirichlet type boundary condi-
tions, which means b, and b, are zeros, then (3.10) becomes
P2k _ . . _

e =1 or cos2k;+isin2k;=1 . (3.11)

The solutions are ky = n w, n =0, 1, +2,.... However, it is easy to see that the

zero frequency (d.c. error) cannot be allowed. Thus, the lowest Fourier frequency k4

'~ in the admissible error space is . If we change the boundary condition on I'; to be of

Neumann type, i. e., b3 = 0 but b4 # 0, then (3.10) becomes

e2M = _ | or cos2k;+isin2k;=-1 . (3.12)
k1l

The solutions are k; = % n w, n isoddand the lowest frequency £ is >

The same procedure applies to other boundary conditions such as periodic boun-
dary condition. Notice that the determination of the lowest Fourier components of a
given PDE is only related to its boundary conditions and the geometry of the problem
domain. The procedure has nothing to do with the PDE operator L itself! The lowest
frequencies k1, k, are important for determining the spectral radius of a local operator

Ly ;, as shown in the following section.

-42 -
3.3 Local Relaxation Operator and Its Properties

We use the model problem mentioned in Chapter 2 as an illustrative example.

We rewrite equation (2.8) as

a? , o2 ,
u::; x3) s u;:;z x3) =f(x1,%3) (x1,%2) € Q (3.13.3)

u(xy,x2)=g (x1,x2) (x1,x2) €T, (3.13.b)
where '

| r=ryyroyrsyrs
The discretized function u (xq , x5) is represented as a 2-D space sequence and
u; j. An element of this sequence is defined at the node (i , j), or on the space point
(ih,jh),as

wg=uCih,jh) , h=are, (i,J) €0y or (i) €Ty 314

where

Qu:{(i,j)li:l,z,.,.u’ j=1,2,"°M.]

Ty = [(i,j)|i=OarM+l, or j=OorM+l}
f (x1,x2) and g (x1,x3), can be discretized similary, except that the 2-D
sequence data element f; ; is defined when (i , j) € £}y and the 1-D sequence data
element g; ; is defined when (i , j) € ['y.

2 2
The partial operator aa p and aa p are discretized by performing the following
x x

substitution

-43-

a2 Ei-2+E{! a2 Ey -2+ E;! 315
ax¢ h2 9 x h2) (3.15)
where £ and E;! (E; and E; 1) are called x1 - direction { x5 - direction) forward-

shifting and backward-shifting operators separately. Their definitions are

Eyvij = vin, Ei’ viy = Vi-1y (3.16)
Ezvij = vij+1 Es'viy=v .

These shifting operators are an indispensable tool in the representation of the
discrete local operators. Here, let us digress a while to discuss some of their properties.
If P and Q are shifting operators, then their sum and product can be defined as

(P+Q)f=Pf+Qf and PQf=P(QFf) (3.17)
Based on these shifting operators, a general discrete linear local operator at a node can

be represented as

P =3 a(ry,r;)Ef EF
nrn
where r, and r; are integers, as long as the grid spacing is uniform and the domain of
the operator is within). It can be shown rigorously that all possible discrete local
operators defined above with the addition and multiplication operation form a ring

[17]. Since they have such nice properties, it is convenient to use these operators to

understand the behavior of distributed numerical computation problems.
Usually, one-step local operators contain only several low order terms, say, the
%(El + E{! + E; + E51), which means that only neighboring nodes interact.

However, multi-step operators, which are composed of several one-step local operators,

usually contain high order terms, indicating that as time increases more and more

- 44 -
nodes interact. For example, an m-step operator can be formed by repeating the
- above one-step operator m times, and denoted by [% (E{ + E{! + Eo + E; 1),

We call this phenomenon the propagation of local operators, which has no counterpart
from a central oomputétion point of view and is believed to be an important issue for

distributed computation. We will briefly touch on this problem in Chapter 4.

The discretized form of equation (3.13) is

Lyijuj=fiy (i,j)ey , (3.18.a)
uj = 8ij (i,j)ely . (3.18.b)
Ei+E{\ +E,+E;! — 4

“where L, Jj = is called the local discretized differen-

h2

tial operator at node (i, j). The Jacobi relaxation at a local node can be written as

WO =g @ -R2f; m=0,1,2, -+ (i,j)) €0y (3.19)
- , E{+E{' +E,+ E;!
where J; ;, the local Jacobi rela.:ation operator, is 2 .
From the error space point of view, we get
BV =g e m=0,1,2 - (i,§) € Oy (3.20)

The low pass ﬁltering property of the local relaxation operator J; ; can easily be

understood if we assume that the input is the complex sinusoid e’ ** 4% which is

coskh + coskoh

2 The

an eigenfunction of J; ; with eigenvalue A; ; (ky, k2) =

- eigenvalue function \; ; (kq, k2) is usually called the frequency response in signal pro-
~cessing [18] and the relaxation operator can be thought of as a filtering process in the

coskih + coskyh
2

frequency domain. The frequency response function , in fact, .

- 45 -

represents a 2-D notch filter instead of a low pass filter. However, we have to consider
another constraint arising from the discretization procedure. The easiest way to explain
the discretization comes from the Taylor’s series approximation of a function f (x),

i. e.,

: — 2
S =f) G mx0) 7 (o) + 0l gy 4

Supposing f (x) = ¢’ and x = xq + h, the high order terms are negligible only if
the product kk is reasonably smali, say, less than 1. That means that as long as the |
magnitude of wavevector k is bounded we can always fine a discretization spacing &,
which is fine enough so that the dimensionless frequencies 6; = k{ h and 0, = k,
are always within the unit circle in the (8; , 6,) plane. In this region, the notch filter

indeed behaves like a low pass filter.

If | \;; (k1,k2) | <1 for all admissible frequencies, then the local relaxation
‘operator is said to be convergent. A distributed numerical algorithm is said to be con-

vergent if all local operators are convergent.

The low pass filtering property makes the error at higher frequencies converge to
zero faster than that at lower frequencies. The eigenvalue with the largest magnitude,
occurring in the lowest frequency, is the dominant factor in the asymptotic conver-
gence rate analysis. We call this magnitude the spectral radius of the local operator.
In order to determine the spectral radius relaxation operator, we only have to know
the lowest admissible Fourier component corresponding to the given boundary condi-

tions, discussed in Section 3.2, and then to compute \; ; (k; , K3).

- 46 -

In the model problem example, we know that the lowest Fourier frequency
allowed by the Dirichlet boundary conditions is (ky,k2) = (w ,), so that the

_ Ei+ E{' +E;+ E;!
spectral radius of the operator J;; = 2 is

% (cosmh + cosmh).

Finally, we want to discuss the symmetric and Hermitian properties of the local
operator, because they will be used in the analysis of the LASOR algorithm. We say
that a linear local operator P is symmetricif P (Ey ,E2) =P (E{! ,E;!)and P
is Hermitian if P (E{ ,E») = P (E{! ,E;'), where P means taking the complex
conjugate of all coefﬁcientsvof the various shifting operators. It can be proved easily

that the eigenvalues of a local Hermitian operator are real.
3.4 LASOR Algorithm

From the above discussion, we know how to determine the spectral radius of a
local relaxation operator, which not only gives us some knowledge of the local conver-
gence rate but also provides the information required for computing the local optimal
relaxation factor, discussed below.

The LASOR method can be applied to any local region where the Jacobi relaxa-
tion operator J; ; is convergent, Hermitian and smooth. The convergent and Henhi-
tian assumptions guarantee that all eigenvalues of J; ; are real and less than 1. How-

ever, the smoothness property needs some explanations.

-47-

We divide the problem domain into red and black points and update one color at
each time. Suppose we start with the relaxation of the red points as

e,-(";"'l) =1-wy)e,-(:,') +ow;;diy e,-(j) itjiseven , n =20 . (3.22)
The next step is to relax the neighboring black points,

e,-("}ﬂ) = (1 - Wy)e,-(j) + ; ; J,J C,'(j"'l) i+j is odd s B = 0. (3.23)
If all J; ;s are approximately the sa:ne within that small region, then we can combine
(3.22) with (3.23) and rewrite equation (3.23) to be

G = (1w ;) e+ 0y (1~ w5) iy 6D+ 0 12 6® (3.24)

itjisodd ,n =0.
The smoothness assumption is appropriate for regions where the coefficients of the dif-

ferential operator are continuous.

Now, equations (3.22) and (3.23) can be written in the following form

A"V =(-w)ef)+o ;0 e ,n=0, (3.25.2)

efr) = (1 - ;g) ed™ + ;5 Ji g eV [n=zo0, (3.25.b)
where ep and e represent the errors at the red and black points around the node

(i, j) separately. Notice that equation (3.25) describes, in fact, the relation of two
waves - the red and black waves in that local subregion around the node (i , j).
Rearranging and simplifying (3.25), we obtain the following iteration relationship

between two successive steps,

"n+l) 1- ®;.j W;.j "l,j e n)
=0(3.
GJ'H-I) wl,j (1 - ‘01,])"i,} 1- (I),'J + (l.),-ZJ J,-ZJ CJ") " (26)

where the 2 X 2 matrix operator, denoted by G; ; (o, ; , J; J), is called the local

- 48 -
LASOR operator with relaxation factor w; ; at node (i , j).

Assuming that an eigenfunction of the LASOR operator G;; has the form

(Clel(‘h-"l*‘k:xz)’ ei(kll’l"“kzl’:))T

c3 and that the corresponding eigenvalue is
Wi J? we may write

‘ 1 ei(hl’l"’kzxz) clei(kl-':"'&zl’z)
GiJ (wi,j yJij) [czei(k,x, +k,x,)] = Py [czel(klx, +k,x,)] .(3.27)
The equation (3.27) can be further simplified because of the assumption that the local
- operator J; ; is approximately constant in the region around the node (i . j) and has

the eigenvalue A; ; for this complex sinusoid e!k13+ k2x2) e obtain

c C
Gij(wr;,My) [c;] = Wi j [c;] . (3.28)
Note that the eigenvalues of the operator matrix G; ; (w; j ,J; ;) are the same as

thoseofthematrixG,J (“’i,j ,h,,j).
Furthermore, from (3.28), we know that \; ; (k1 ,k3) and p; ; (k1 , k3) can

be related via

Gij(oij,hij) — I |=0 (3.29)

or, equivalently,

p.,zd—(Z—ZmiJ+w,2,])\,-2‘j)p.u+(l—mu)2=0 . (3-30)
Therefore, we get

2. 22
ATV
Kij = 1 - W; j + —i%'—Jt‘VTK (3.31)

where A=4(l—w;J)m,2JR,2J+m,“JAfJ

-49 -

Let us consider the special case, w; ; = 1, which corresponds to the Gauss-Seidel
relaxation method. The eigenvectors of the 2 x 2 matrix G, J (“’i,j » A j) are
(1,0)T and (1,);;)" and the corresponding eigenvalues are 0 and A?;. This
means that if we start with two sinusoidal waveforms at the same frequency but with
different amplitudes, one of them, the red wave represented by the vector (1,0),
disappears in one step. Only the other wave remains and alternates between the red
and black points thereafter, as mentioned in Chapter 2. The ratio of the updated
wave and the old wave is equal to the constant \; j» so that the amplitude is reduced
by a factor of A? j per cycle.

The purpose of introducing the relaxation parameter w; ; is to make the eigen-
value of the new voperator Gij>i. e, w;; (ky,kp, w; ;), smaller than that of the
old operator J; ;, i. €., \; ; (k1 , k2). For a fixed real A;,j (ky,k3), the relation-
ship between p. and w, ; can be described by the root locus technique described in Fig-
ure 3.1.

When 0 < ; ; < 2, the magnitude of . is less than one, and the local LASOR
operator G; ; converges. In addition, when A = 0, the two eigenvalues p; and p,
coincide and the largest possible magnitude of these two eigenvalues, p.; Jm = max
(lwijal,|mijz2l),is minimized. This w; ;, called the optimal relaxation factor

with respect to a specific \; ;, and denoted by w; ; ope { Nij), can be found by solving |

4(1-w;)of Ay +olirt;=0 and 0<o ;<2 . (3.32)

Im[p(0)]
A

Fig 3.1 Root Loci of . (@) with Fixed A

-51-

The solution is

2
A = .
O j.ope (Nij) 1+ V1 _ﬂ—‘)\u (3.33)
The general relation between p; ; ,, and «; ; can be derived in a straightforward way

from equation (3.31) and is given by

Pijm = @ — 1 Wi jop (Nij) = ;<2 , (3.34.a)

2
Cdeighigr Vel +4(w; - 1)
ijm = 2

0<w;;= 0o (3.34.b)
The minimum value of all possible p; ; »’s is, therefore, @; ; oy (N; ;) — 1.

Since \; ; is a function of frequency, equation (3.33) implies that differing fre-
‘quencies require different optimal relaxation factors. However, we are allowed to
choose only one w; ;, so we have to consider the overall performance, i.z., o; ,j has to
be selected so that the spectral radius of the LASOR operator G; ; (w; ; ,J;;) is
minimized over all frequencies. Let p; ,j be the spectral radius of the local operator
J;j and Xu be an another arbitrary eigenvalue of J; ;. By definition, | \; ; | < p; ;,
- so we know that o; ; o (A ;) < w; i, (pi,;) from (3.33). Using the relation in
(3.34), we reason as follows. If we choose w; ; = 0 iom (Nij)s p.,-;,-,,,, (Nij)is
minimized to be ;o (A j) -1 while p;;, (pi,j) is greater than
®; jope (Pi,j) — 1. On the other hand, if w; j.ope (i j) is chosen to be the relaxa-
tion factor, both p; ; » (X ;) and p; ;. (pi;) are equal to @; j o (p; ;) —1.
Comparing these two cases, the latter choice is the best scheme to minimize the spec-
tral radius of G; ; (®; j , J; j). This optimal w; ; for overall consideration is denoted

as wi.,j’ and

-52-

2
1-pf

0 = Oigom (Pig) = T7 Y (3.35)

We summarize the above result in the following theorem.

Theorem 3.1 :

Let J; ; be a local Jacobi relaxation operator defined at the node (i , j), which is
smooth, convergent, and Hermitian in the neighborhood of the node (i , j). In addi-
tion, the region is partitioned into red and black points and the grid points of the same
color cannot be coupled through J; ;. Then, the LASOR algorithm at the node
(i, j) can be described by the two successive relaxations

e,-(:;”)=(l—m,-,j)ei(’_’,f)+w,-JJ,Je,-(",5) i+jis even (red points) , n =0 ,

e,-(:,!H) =(1-wi;) e,-("}) + 0 jJdij e,-(:,!”) i+j is odd (black points) , n =0

Equivalently, the LASOR matrix operator can be represented as
| 1- ; w; j Jij
Gi,j (@ij,dij)= 0 j(l-w;); 1- 0 +w,-2JJ,-2J
Then the spectral radius p; ; (G; ;) of G; ; is minimized if and only if

. 2
O T 0N T Ty V1-p%(diy)

where p; ; (J; ;) is the spectral radius of J; ;. And the minimum spectral radius
satisfies

0<PiJ(Gi,j)=‘°i.,j_l<l

The above theorem applies to general linear second order elliptic PDEs without

2

d . .
the crossover term YT because the crossover term mixes in the red and black
19 X2

points. However, if we have a crossover term, it is still possible to use the above '

analysis. In the following, we consider the simple case mentioned in [19].

Let the linear partial differential operator L be

-53-

82 () a2
L=——+a(x;,x
dxt 1°727 9%, 0%,

2 .
+ :xf where |0(11712)|<z3-.36)
The condition | @ (x1,x2) | < 2 is required to guarantee that L is an elliptic opera-
tor. We also assume a (xq,x3) is sufficiently smooth so that it can be viewed

approximately as a constant locally. The following discretization schemes are used

32 Eq - 2+E1-1 FY Ey - 2+E2_1 (3.37)
axt h? * ax$ K2 ’)
% E\Ey + E{' E' — E{' E; - E\E;!
dx10x, 4 p2

The local Jacobi relaxation operator J; ; can be decomposed into two parts J; j,1 and

J;J'z, i. ec.,
Jiyg =Jij1tJia (3.38.a)
where
Ey+E{! + E; + E5’!
Jiga= —————p 2_ (3.38.b)
Eq Ez"" E{'E;! —E{VE, - E\E;!
J,'J,z = a 16 , (3.38.(:)
and
a=a(ih,jh) . (3.38.d)

The J; ,j,2 operator couples the nodes of the same color together. It has been pro-
posed to use a multi-color scheme to achieve decoupling [19]. However, a multi-color is
not necessary in our distributed computation approach and, in fact, makes the analysis
more complicated. Here, we still choose the red/black partition and show that it really

makes little difference from the previous decoupled LASOR algorithm.

-54 .-

First, we write the coupled LASOR algorithm for the error in the local region as

ef" TV =(1-w;;)ef) + w;y [Ji,J,l e + J; jo d")] » n =20 ,(3.39.2)

ef" D = (1 -0 ;) ef) + oy ["i,j.l "™V + 4y, ‘t‘")] » n = 0(3.39.b)
or, equivalently,

e

n+1)
[:én+l)] =Giy(wij,dij1:71,j2) [Cn(")] n=0 |, (3.40)

where

Gij(wij,Jija,dij2)=

1—0)',] +mi,j"i,j,2 ml,j"i,j,l
wi,j(l'—wu).l +"’i2,j‘,i,j,l‘,l,j,2 l—m;J+wiJJ,J’2+mi2,jJ;2:i,1

N1 (kiyk2), N ja(ky,kp), and N ; (ky, k3), the eigenvalues of J; ; 4,
Jl,j,Zv and.lu-, are
M,j,l(kl,kz)-‘-%(coshh +coskyh) (3.41.a)

M2 (ki ky) = g lcos(ky+ ka) h — cos(ky — kz) b]

- a

4

sin kg h sin k, h (3.41.b)

a
4
It is enough to consider the frequency response within the unit circle of the (8, , 0,)

Ny (kyokg) = -%-(cosklh +ooskph)— Lsink hsinkyh (3.41.)
planc. In this region, J; ; 1 is a low pass filter while J; ; 5 is a high pass filter. J; Jis
similar to J; ; | in the very low frequency range, because \; j 2 is almost zero for the
very low frequencies. In this case, we can view J; .j,2 s a perturbation. Note that J; ;,

still a low pass ﬁlter, has better filtering capability than J; ; ; for all frequencies within

-55-

the unit circle. Its spectral radius p; ; (J; ;) is determined by the lowest admissible
frequency as before.

Following the procedure used in deriving the decoupled LASOR algorithm, we
find that the optimal local relaxation factor for (3.39) is

. 2 2
w; ; = ~ —
R R V() Er T TRV s R
where € = M,j,2(’£1 ,k3) = 0 and where Pi,j,1» the spectral radius of J; ; ,, is

X; i1 (K1, k). The spectral radius of the LASOR operator G; j for this problem is

Rij (Gij (i, hija1,dij2)) =0l -1+ oljezw; -1 . (3.43)

- 56 -
Chapter 4. Performance Analysis of LASOR Algorithm

4.1 Introduction

The previous chapter described how to form the LASOR operator and how to
choose vthe optimal local acceleration factor. This chapter is a continuation of Chapter

3 and will focus on the performance of the LASOR method.

The performance of a numerical iterative algorithm depends on two factors - time
per iteration and number of iterations. As discussed in Chapter 2, time per iteration is
primarily detérmined by communication cost in a multiprocessor environment. There-
fore, oomniunication complexity will be considered first in Section 4.2. Then, before
going to a convergence rate analysis, I will prove the convergence of the LASOR algo-
rithm in Section 4.3, and show tﬁat it holds not only for synchronous computation but ’
also for asynchronous computation. Finally, Sections 4.4 and 4.5 present analytic and

simulated results of the convergence rate of the LASOR method separately.
4.2 Communication Complexity
In order to understand the communication complexity of the LASOR method,

rewrite equations (3.22) and (3.23) in the solution domain as follows,

“i(.'l!ﬂ) =(1-a;;) “i(,'}) + w;; (Ui u,-("}) - hzfu) i+jis even, (4.1.a)
ll,'(:;fl) = (1 - (D;J)u,-(";) + (D,-J (JgJ ll,-(:’ﬁ'l) - ’lzfgd) !'+j is odd . (4.l.b)
Then, the optimal local relaxation factor w, ; is

. 2
mi = W; = === ’ 4.2
A TRVAR TN “2)

-57-
where p (J; ;) is the spectral radius of J; ;

o (Jij)=N(Jij . Ky, k) . (4.3)
Communication cost required by the LASOR method is almost the same as for
the Jacobi or Gauss-Seidel methods except that the admissible lowest frequencies £,
and k5 need to be broadcast to all local processors in the loading stage. In the constant
coefficient case, we may do even better. Because all local operators have the same
spectral radii, the optimal local relaxation factors must be the same also. Thus, we only
have to broadcast the unique optimal relaxation factor w*, instead of the lowest fre-

quencies ky and k. |
After the loading operation, communications for each iteration are only local, and

have nothing to do with the size of the processor array. The time per iteration is,
therefore, a constant, and not of the order O (%), as is the case of SOR imple-
mented in a VLSI mesh-connected processor array.

4.3 Convergence Property

The convergence of the LASOR algorithm depends on the spectral radii of the
local relaxation operators. If the spectral radii of all local Jacobi operators are less than
one, it can be shown that LASOR converges in either synchronous or asynchronous

computation.

4.3.1 Synchronous Case

-58-

First, let us consider the synchronous case. The convergence property can be

stated as the following theorem.

Theorem 4.1 (Convergence Theorem of the Synchronous LASOR Algorithm) :

If all local Jacobi relaxation operators are smooth, convergent, and Hermitian and all
local relaxation factors are between 0 and 2, then the synchronous LASOR algorithms
converges.

proof:

In order to prove the convergence of the LASOR algorithm, we use an iterative
matrix formulation. Starting from the linear system of equations, A x = b , where A
isan N X N symmetric positive definite matrix, we may rewrite A to be

A=D-E-F=D(I-L-U),and LT=vU, 4.9
where I, D, E and F represent identity, diagonal, lower and upper triangular matrices
accordingly, and L = D 1E U = D~ F. Let W be the diagona! matrix formed by
the local relaxation parameters, i.e., W = diag (®w1,®3, ..., oy). Then, the
LASOR algorithm can be written in matrix iterative form as

D= (1 -wL)NU-W)+WUIx®D+ (I -WL)'D'wb.(4S5)

The matrix iterative equation in the error space becomes

) = (1 —WLYI (T -W)Y+WU]e® =G (W)e® . (4.6)
We use G (W), an explicit function of the matrix W, to represent the iterative
operator of the LASOR algorithm. If we can show that p [G (W)], the spectral
radius of the iterative operator, is less than 1 wunder the condition

0<w; <2,1=i = N, then the theorem is proved.

-59-
Let A\ be an arbitrary eigenvalue of G (W) with the eigenvector u, then
G (W) p = A g, or, equivalently,

((I-w)+WwWU]p=AN(I-WL)p. 4.7
Premultiplying by n” W ~1 on both sides, we obtain

(p,Wlp)—(p,p)+(n, Up)=2(p,Wlp)-r(n,Lp). (48

-1
Defining z = 1—(%})1 and < = (“ELW““) and using the property

(b, Up)=((UTp,p)=(Lp,p)=(pn,Lyp), 4.9
the above equation can be simplified as

L g+r=2_a:, (4.10)
w (O]
or, equivalently,
_1l-wtoz
A= - o> . (4.11)

Letz = r e/ ® then

w(2-w)(1-—2rcosd)
(1 - wrcos0)? + w?r?sin?0
We know that | A |2 is always positive. If we can show that the second term in the

IN[2=AK=1-

(4.12)

above expression is also positive, then we can conclude that | A | is less than 1. The
denominator of the second term of equaticn (4.12) is positive, so we only have to con-

sider the numerator.

- = _(p,Lp) (p,Up)
2rcos@=2Re(z)=2z +z TS + TS

=1_£_E'_AI"_);<1 , (4.13)
(p,n)
where the inequality is due to the fact that A is positive definite with eigenvalues less

- 60 -

than 1. Therefore, we know that 1 — 2 r cos 8 > 0. Now, consider the range of the
parameter o. Given W l=diag (o;',0;',..., of!) and assuming that all
relaxation factors are positive, we have
-1
1 _(p,Wp) 1 _ 1

©max (n,n) ©® Omi

where wpy,, and oy, are the largest and smallest eigenvalues of the matrix W. Furth-

s (4.14)

ermore, if we set 0 < Wpin =< Omax < 2, then

0< Omin SO S Oy <2 . (4.15)
Under this condition, the second term in equation (4.12) is always positive, so that,

the eigenvalues of the matrix G (W) are all less than 1 and the LASOR algorithm
converges.
Q.E.D.

4.3.2 Asynchronous Case

Next, let us consider the asynchronous case. Our analysis is based on a general
theorem for the distributed asynchronous computation of fixed points proposed by
Bertsekas [20]. In his paper, he gave several special cases which fit this general theorem
and, therefore, can be shown to converge in an asynchronous and distributed way.
There is one special case called contraction mapping with respect to sup-norms to which
the LASOR operator belongs. As a consequence, the asynchronous convergence of the

LASOR algorithm can be derived.

The convergence of distributed asynchronous computation of contraction map-

pings with respect to sup-norms can be stated as follows.

-61 -

Lemma 4.2 (Convergence Theorem of Contraction Mappings with Respect to Sup-
Norms) :

Consider a mapping f: R" - R" which has a fixed point x°. Let x; and f; denote the
coordinates of x and f, and define the sup-norm as

||x || =Sup a; | x;, | forall i (4.16)

where a;’s are nonnegative scalars. Assume that f is a contraction mapping with
respect to the norm (4.16) in the sense that, for some p < 1 we have

Hf(x)=F)l spllx-y]|l x,yc€eRr". (4.17)
Then the asynchronous distributed iterative computation algorithm '
I,'m= fi (Idd) forall i

converges to the fixed point x°. Above, x4 denotes the data available at the time of
updating and x"" means the updated value after one iteration.

proof: See [20], p. 116

Based on the above lemma, we can derive the following theorem.

Theorem 4.3 (Convergence Theorem of the Asynchronous LASOR Algorithm) :

If all local Jacobi relaxation operators are smooth, convergent, and Hermitian and the
local relaxation factor is between 0 a:d 2, i. e., 0 < w; J < 2, then the spectral radii
of all local LASOR operators

Pij[Gij(wij,d;)]1<1, (4.18)

and the asynchronous LASOR algorithm converges.

proof:
As a consequence of Theorem 3.1, we know that the spectral radii of all local

LASOR operators are less than 1. All we have to prove here is convergence.

-62 -
Define

| Pmax = n;gx(m) (4.19)
then since all spectral radii are less than 1, pp.., is also less than 1. Let us choose the

sup-norm as

llx|l=1|x| foralli |, (4.20)
which is a special case of equation (4.16), i.e., a; = 1. We need to check whether

the global LASOR operator given in equation (4.5) satisfies the condition (4.17). It is
easy to see that

L (x®) =7 (y®) [= || x®*D - (D

= -wL)T [-W)+wUl(z® - y®) ||

< pmax || x® = y@® || = [| 2@ - y®) || . (4.21)
Thus, the LASOR algorithm satisfies the condition of Lemma 4.2 and, therefore, it

converges if implemented asynchronously.
Q.E.D.

4.4 Convergence Rate Analysis - Lizear Constant Coefficient PDEs

In addition to the above convergence property, it is possible to discuss the conver-
gence rate under stronger assumptions. First, assume that the relaxation is synchro-
nous, Which means that within some fixed time interval At, all processors have to com-
plete one relaxation step and that the values at all nodes are updated at the end of this
time interval. The second assumption is that the local relaxation operator is very
smooth so that the eigenvalues of these operators are almost the same for the whole

problem domain.

- 63 -

We have briefly discussed the smoothness issue in Chapter 3, where one-step
LASOR is, in fact, composed of two Jacobi relaxation steps. The relationship between
the multiple-step relaxation operator and the one-step relaxation operator can be
explained using the concept of propagation of local operators. Assume that the local
relaxation operators J; ; and G; ,j are space-invariant and the grid is uniform and
extends to infinity. Then, by mathematical induction, the p-step relaxation operators

J,-({,’-) and G,-‘f}) at any node can be found to be

J;(’}-) = Jl,j and Ji‘g) = Jr,] » P=1 | (4.22.8)
GP=6,; and G®=6F;, , p=1, (4.22.b)

where the p-step relaxation operators J,-(f,’-) and G,-(g) are defined as
WGP =@ u® p=1 and p=1 , (4.23.2)

[:ﬁ::;] = G,-(g) [:ﬁ:;] n=1 and p=1 . (4.23.b)
However, once we set up the boundary conditions, and, furthermore, allow the local
operator to be a function of space, the determination of the local p-step relaxation
operator becomes nontrivial. The smoothness assumption of the local operator can
help us to simplify the analysis if the propagation only occurs within a small area, i.e.,
if p is a small number. But for large p, we have to consider the boundary effect, which
is still very complicated. This kind of approach to analyze the local relaxation behavior

is called pure local analysis.

In stead of using pure local analysis, we may adopt a simpler point of view to

interpret multiple-step relaxation phenomena. For example, consider the model prob-

- 64 -

lem mentiéncd in Chapter 2. We know that the global eigenfunctions and the local
eigenfunctions are the same in this case. So, if the input waveform is an admissible
sinusoidal function and all processors perform the relaxation once, then the output
waveform should have the same shape but with a smaller amplitude. Since the eigen-
value of every local operator is the same as that of the global operator, the local spec-
tral radius, equal to the global spectral radius, provides us the information of global
convergence rate. The asymptotic convergence rate of a global iterative operator J,
denoted by R (J) , is defined as

Re(J)=-lnp(J). (4.24)
Under the condition A (J) = A (J; ;), the asymptotic convergence rate is given by

Re(J)=—-lnp(J;;). (4.25)
Therefore, the global asymptotic convergence rate of the Jacobi relaxation can be com-

puted as

Rac(-’)': —lnp(J,-J)= —Incosw h

e—_m(l_%ﬂzhz):§w2hz : (4.26)

Similarly, the asymptotic convergence rates of the Gauss-Seidel and the LASOR

methods can be found to be

Re[G(1,J)] = -lnp[Giy(1,4;)]=-lncos’wh
T _2m(1- %thz)gnzhz : (4.27)

and

-65 -

R=[(G (W*,7)]= —np[(Giy (o 4iy)]= - In(fo2mh
=-In(1-2«h) =2nh . (4.28)

We call this approach a semi-global analysis. The difference between pure local
analysis and semi-global analysis is that the former tries to build the multiple-step
operator based on one-step local operators while the latter discusses how each global

waveform is modified in multiple steps.
4.5 Computer Simulation

In this section, a simple numerical example is used to illustrate the convergence
rate of the LASOR algorithm. The convergence rates of the SOR and CG methods are
also shown for the purpose of comparison, For the SOR and CG methods, I use the

ellpack software package [31].

The example chosen is

Pu | du du 1
xy + — + eV y — — e x — .29,
e > x e 5 e yax e xay 1 F +yu (4.29.a)
=e®sin(wx)sin(mwy)
in the unit square with the boundary conditions
u(x,y)=0, x=00rx=1ory =00ry=1. (4.29.b)

For this test problem, two 5-point discretization schemes are used: one with grid spac-
ing TI(T’ another with spacing % Starting from the initial guess u@ (x ,y)=20

for all grid points, the maximum value of each iteration is plotted in Figures 4.1. The

results indicate that the convergence rate of the LASOR algorithm is better than that

-66 -

of SOR algorithm, but worse than the CG algorithm. We also note that when the grid
spacing is smaller, the convergence rate also becomes slower. This is consistent with

our analysis before.

[.5

1.0 = /

0-5 -

v, -
0 /0 20 30

Fig 4.1.a Computer simulation result for the given example with
11 X 11 Grid. The x-axis is the number of iterations and the
y-axis is the maximum value at each iteration,

1.5

1.0

0.5

(ASOR

OR

Fig 4.1.b Computer simulation result for the given example with
31 X 31 Grid. The x-axis is the number of iterations and the
y-axis is the maximum value at each iteration,

-69 -

Chapter 5. Concurrent Multigrid Method (CMG)
and Supporting Architectures
5.1 Introduction
Multigrid methods (MG) have been studied intensively over the past ten years.
The original idea dates back to Fedorenko and Bakhvalov[21](22]. But it is Brandt [23]
who really recognized the actual efficiency of these methods and formulated them in a

systematic way. MG methods can be simply described as follows. First, we start relaxa-

tion on a very fine grid level. When the relaxation on this grid level becomes ineffi- |

cient, which implies that the error is very smooth, we transfer the information to a
coarser grid and apply a new relaxation scheme. The procedure iterates back and forth
between various grid spacings until the final error is within some predetermined small

number.

The success of MG methods comes from several reasons. MG methods utilize the
concept of splitting low and high frequencies approximated by coarse and fine grids
separately and take advantage of the fact that different frequency bands have different
optimal relaxation schemes. Combining these two features and applying them in a

nested and iterative fashion lead to very efficient algorithms.
In other words, the three basic components of MG methods are :
(1) error smoothing by relaxation

(2) finer/coarser (or coarser/finer) grid transfer

-70 -

(3) nested iteration

Because the last component implies repeating the first two steps iteratively, the
real computational procedures needed in MG methods are relaxation and grid transfer.
These two types of computation are both space distributed. In addition, they only
require local information exchange. As a consequence, it seems obvious that MG

methods can be implemented in parallel.

However, from the current literature on MG methods, it appears that relaxation
operations for different grid layers cannot be performed simultaneously. If this
shortcoming can be overcome, then more parallelism will be achieved. That means we

can not only obtain parallelism in the space domain but also in the frequency domain.

In this Chapter, I shall propose a new multigrid scheme, called the concurrent
multigrid method (CMG), which achieves the above mentioned goal. Before discussing
the CMG method, it is useful to explain why MG methods do not allow parallelism on

different grid levels.

Usually, there are two ways to analyze MG methods : model problem analysis
and local Fourier analysis [24]. Unfortunately, both have their own disadvantages.
The model problem analysis, although rigorous, can be applied directly to a limited
class of problems. The local Fourier analysis, based on idealized assumptions, is more
intuitive but not as rigorous. Undoubtedly, there is still a gap between the theoretical
and experimental aspects of MG methods. More formalism is required and further

theoretical explorations need to be made. In the following, the local Fourier analysis

-71 -
approach will be adopted.
Local Fourier analysis was used by Brandt [23] to analyze the property of the local

relaxation operator. Consider one example - Jacobi relaxation of the model problem in

the error space,

iD= 4 (et eyt ey +eu) nz0 .)

As in Chapter 3, the local relaxation operator is

Ei+E{! + E;+ E;!
,=11422, (5.2)

We may choose the sinusoidal functions ¢! &) of the basis functions, whefe

e Em1¥kxD) oo the eigenfunction of the local relaxation operator J with eigenvalue

cosk1h + coskyh
2

. Therefore, the Jacobi relaxation procedure is equivalent to a low

~ pass filtering operation on the error. In fact, the analytic procedure of the LASOR

algorithm in Chapter 3 is another example of local Fourier analysis.

In Chapter 3, we assumed the grid size & was fixed, so that the error smoothing
rate was determined by k; and k; only. Now, we allow different grid sizes, i. e., h
becomes a variable, so that the error smoothing rate is determined by the products of
kyh and kp h. This additional degree of freedom helps us in getting faster conver-
gence rates. For very small k; and &, i.e., low frequency components, coarser grids
can be used such that the products of k1 A and k; A become larger and the spectral

radius is reduced while the discretization error remains the same.

<72 -

However, we should not neglect that both low and high frequency error com-
ponents occur. Uniess there is some splitting scheme which separates these into dif-
ferent frequency bands, the multigrid idea cannot work properly. One way to do the
separation is very straightforward. Since high frequency errors are smoothed much fas-
ter than low frequency errors, we may perform relaxation several times on a fine grid
until the convergence rate is slowed, which implies that the low frequencies become
dominant. Then, a simple grid transfer is applied, say, by directly mapping the values

from the finer grid to the coarser grid.

In a centralized sequential computing machine, this seems to be a very simple and
effective choice, since it does not require too much overhead except the testing pro-
cedure, which examines whether the grid transfer criterion has been met. However, in
parallel computing machines, this kind of splitting scheme wastes a lot of time in wﬁt-
ing for the results of relaxation on one specific grid. Therefore, other splitting schemes

are needed, which will make the CMG method different from other MG methods.

In addition to the separation of low and high frequencies, there is another issue
worth our attention. That is, the relaxation scheme may become more effective when
the error function to be smoothed is confined to a small frequency band. This will be
discussed in detail in Section 5.2.3.

5.2 Concurrent Multigrid Method (CMG)

The concurrent multigrid method {CMG), like other MG methods, consists of

three components: error smoothing, grid transfer, and iteration between different grid

-73 -

levels. The most distinctive feature of the CMG method is that the grid transfer opera-
tor should be carefully chosen such that it may separate the low and high frequencies
as much as possible.

5.2.1 Analysis and Synthesis of Grid Transfer Operator

There are two kinds of grid transfer operations: the finer grid can be transferred
to the coarser grid and the coarser grid can be transferred to the finer grid. The

former is called projection and the latter is called interpolation .

There are many ways to construct the multiple grid levels. Two important parame-
ters are the grid. size and the grid orientation. For example, let the spacing of the
finest grid, also called the first level, be A, then the grid size of second level may be 2A
or 3h, the grid size of the third level may be 44 or 94, and so on. The second level
may have the same orientation as the first level or may be rotated by some angle with
respect to the first level. In order to simplify the following discussion, I only choose a
simple, but typical, case here: the grid size of the mth level is 2" ~1 and the orienta-
tion of all grid levels is the same. In addition, the coarser grid points coincide with grid
points of the finer level, i. e., there is no shifting between any two levels. If we denote
the set of all grid points of the mth level by G-1,, then it is easy to sce that

Gy DGy DG4 D - DGomp D -

Since the grid transfer between the grids G, and G, has the same structure as
that between G j«-1, and Gy, , we may concentrate on the grid transfer between G,

and Gy,. The projection operator will be discussed first, and then the interpolation

-74 -

operator.

The projection from G, to Gy, denoted by 2% : G, - G, can be defined as

upm(x1,x2) = I up (%) |y g, (5.3)
= > a(ty,ta) up(xy+esh xath)
» -P S‘l,lzsp
where (x1,x3) € G, P is a positive integer, and u;, (x;,x2) and uqy (x1, x3)

are grid functions defined on G, and G, separately. Take an example, if P = 1, the

projection operator /;2* can be conveniently represented by a 2-D coefficient matrix

| a(-1,1) a(0,1) a(1,1) |*
;" = a(_19 0) a(0,0) a(1, 0) ’ (5.4)
a(_l’_l) a(ov_l) a(ls—l) h
or in difference operator form
L# = a(0,0) +a(10)E + a(-1,00E{! + a(0,1) E; + a(0,-1) E5! (5.5)
+a(-1L,1)E{ Ey+ a(L1) E1Ex+ a(-1,-1)E{'E;! + a(1,-1) E; E5 ! .

The properties of the projection operator I;2* are completely determined by the
coefficients @ (£, ,¢7)’s. The question of choosing a set of coefficients to separate
the low and high frequency components is equivalent to a 2-D low pass FIR (finite
impulse response) filter design [25]. Since 2-D FIR filter design has been studied for a
long time in the digital signal processing field, we may apply the results of this investi-
gation to our work directly.

Before going into the design problem, let us first concentrate on the analysis

aspect. Fourier analysis is a convenient tool to analyze the the projection operator ,2*.

We still use the complex sinusoidal function e’®***#*? a5 input and find out the

-75 -

corresponding eigenvalue of the projection operator. That is

Ihﬂn ef(km"'h‘z) = S a (11,00 e‘[h(’l""l")"'kz(lzﬂz")]

=P =t,,t,<P

(5-6)

= S a (t1,t) ei(kl'lh+k1‘2h)] e‘(‘o’l’-’t"'hxz)
—P =<t 1,<P

?

and therefore the eigenvalue of 72" associated to e’ **1¥%d ¢

S a (ty,e) ' ER IR ghich is also known as the frequency response of the
—P=<t,1,<P

operator I,2*. In most cases, there are some other constraints on the integer P and the
coefficients a (¢1,¢)’s so that the eigenvalue can be simplified. For example, assuming

that P = 1 and the coefficients are symmetric, i.e.,

a(0,0)=a |, (5.7.a)

a(1,0)=a(—1,0)=%, a(0,1)=a(0,-1)= <, (57)

a(1,1)=a(1,—1)=a(—1,l)=a(—1,—1)=% . (5.1.0)
and using (5.7.a) - (5.7.c), the equation (5.6) can be rewritten as

12 ¢! it _ 14 4 b cosk h +ccoskoh +dcosk hooskoh | e &) (58)
and the eigenvalue becomes a + b cosk 1h + ¢ coskh +d cosk 1h coskyh .

One commonly used projection operator in MG methods is the full weighting

(FW) projection, defined as

, [r2 2k
Iy = 16 |242 , (5.9)
1211},
and from (5.7) and (5.8) we know the cigenvalue of /2, associated to e *1+42 j

Apw (kpk) = %[l+oosk1h +coskoh +cos(kh) cos(kzh)] . (5.10)

« 76 -

#,h

Fig 5.1 Frequency Response Function of the Full-Weighting Projection Operator

-77 -

The full weighting projection has a low pass filtering characteristic, and the frequency
response function Az (kq,k7) is drawn in Figure 5.1. However, this projection opera-
tor is not necessarily the best choice for the purpose of separating the low and high fre-
quencies. To find a filter with better characteristics, we now discuss the filter design

problem.
The first step in filter design is the filter specification. In Chapter 3, it has been
shown that the relaxation operation behaves like a notch filter which filters out the

middle error frequencies most effectively. Therefore, the projection operator at the

mth level, IZK, : G-y, ~ Goep, should be designed such that the low frequency
components are projected to the coarser (m +1) th level, while the middle frequency

components remain at the m th level.

To state it more rigorously, let us use ky and k; to represent the spatial frequen-
cies without discretization and K, , and K;,, to represent the spatial frequencies at
the mth level, corresponding to a spacing 2™ ~'h. Then, the relation between K mr
K and kq, k3 can be shown [18] to be

Kim=ki2"'h , - w=<Kyp=w,m=1,2,3,..., M ,(511.a)

Kym=k22"'h , —m<sKypp<smwm ,m=1,2,3,..., M ,(511b)
where M is the index of the highest level. We also know that X, ,, and K;,, are

periodic functions with periods 2« for all m’s. I'rom (5.11), it is easy to find the rela-

tion satisfied by frequencies at two successive levels,

Kim+1=ki2"h =2Ky,, m=1,2, .- M-1, (512.3)

-78 -

Kym+i1=k22"h =2K9p, m=1,2, - M—-1. (5.12.a)
Define K, to be the radius from the origin in the X ,,-K> ,, plane, then we have

VEEy +K3n, m=1,2,3,....M. (5.13)

As a consequence of equations (5.12) and (5.13), the circular region 0 < K,, < % in

Kom

the Ky -K2,, plane is equivalent to the larger circular region 0 < K, 11 = 7 in the
Ky m+1-K2,m+1 plane.

If we choose our ideal low pass filter at the m th level to be

AN(Ky)=1 O0=K,=—,
(5.19)

AN(Ky)=0 elsewhere , m=1,2,3,...,M-1,

then at the mth level, only the error frequency components in the region 0 < K,, < =«

can be provided from the (m —1)th level by the projection operator /%:*. And,

o

> should be projected to the (m +1)th

furthermore, the lower frequencies 0 < K,, =<

level by the projection operator 122.'-’!,.. Therefore, the remaining portion at the mth

level is the donut-shaped region % = K,, < w, which can be filtered out very effi-

ciently using the m th level relaxation operator.

In summary, assume every mth level projection operator has the ideal low pass
filtering characteristic as indicated in equation (5.14), then we may cascade all projec-
tion operators together as shown in Figure 5.2 and separate the frequencies in the

finest grid, K; 1's and K3 1’s, into several frequency bands. That is,

Fig 5.2 Frequency Bands of the m —1th, mth, and m + 1th Levels

Fig 5.3.a Frequency Bands of Multiple Levels Represented in the Ky ; — K5 | Plane (M = 4)

- 81 -

Fig 5.3.b Frequency Bands of Multiple Levels Represented in the Xy ,,

- Kz’m Plane

e

%sKl and —~w=K;,;,K1== band : 1, (5.15.a)
TSKIS 2”'_1 bands:2,3.....M—1, (S,IS.b)
K= 2;_1 band : M . (5.15.c)

These different bands can be mapped into Ky, — K3, plane. It appears that they
are lying in the regions which can be easily smoothed out with relaxation in these dif-

ferent grids, i.e.,

™

> =Ky and - v=K;;,K1=7 m=1, (5.16.a)
%SKMST[m=2,3,...,M—-1, (5.16.b)
K, =m= m=M. (5.16.c)

Equations (5.15) and (5.16) are illustrated in Figures 5.3.a and 5.3.b.

Although the characteristic of an ideal low pass filter is given by equation (5.14),
in practice, we are not able to construct such a filter. Instead, the following specifica-

tions are used to approximate the low pass property,

1-8,=N(Kp)=1+3, 05K, =0, pass band
8 =N (K,)=1-98, o, =K, <o, wansition band |, (5.17)
-8 =N(K,) =3 w, = K, stop band

which is shown in Figure 5.4. For a fixed set of parameters ,, 5,, w,, and w,, the

task of finding a corresponding P and a(ty,27)’s is known as a 2-D FIR filter design

mentioned before. The details of the design are described in [25].

/

-—}

I
Passband : l Transition band
| |
[
L
|
|
| |
| I
I+ 5p :
1-3§, !
|
|
5, I \
w, W '

Fig 5.4 Specification of 2-D Low Pass Filter

-84 -

Here, I would like to point out that the performance of the designed filter heavily
depends on its size, (2P +1) X (2P +1) as well as suitable coefficients. A better low
pass filter usually requires larger P, which increases the communication cost in per-
forming the projection operation. However, this constraint is not very severe for two
reasons. First, the projection only happens when a grid transfer is required, which
occurs less frequently than basic relaxation steps. Secondly, usually P = 4 or 5 gives a
satisfactory result, so that the communication cost in this case is only a constant multi-

ple (four or five times) of that of the nearest neighborhood communication scheme.

After the discussion of the projection operator, we come to the second grid
transfer operation : interpolation. The main issue here is how to preserve the low fre-
quencies obtained in the coarser grid faithfully in the finer grid. Once this has been
done, these low frequency components can be combined with the high frequency com-

ponents obtained in the finer grid level to provide a more complete solution.

The interpolation operators from G, to Gy, represented by 1%, : G5, - Gy, , can
be classified into four classes. As shown in Figure 5.5, the grid points are partitioned
into four groups: A, B, C, and D. In position A, the coarse grid points coincide with

the finer grid points, so we have

position A interpolation

up (x1,%2) l(xy.00) €6y = inn unn (£) | €G, = U2n (x1,x2) .(5.18)

OO

OO 6

ONORONONO

OO

@

© ©
ONONORONO

oo

ONONO

rpolation

- 86 -

The interpolation 1%, A is in fact the identity operator with the eigenvalue one for all
~ frequencies, so it behaves like an all pass filter, which certainly preserves the low fre-

quency components.

In positions B and C, let the interpolations be defined as

position B interpolation :
up (x1+ B ,%2) l(xy.xs) €6y = Pohp uan (£) |, Gy (5.19)
=a(1,0) upy (x1,x2) +a(—1,0)uy, (x1 + 24 ,x;) ,
position C interpolation :
up (21,224 8) |(x;,5)cGa = Dnc 42 (£) |y g, (5.20)
L= a(O,—l) uzy (x1,x2+2h)+ a(0,1) ugy (x1,x3)
If we choose a(1,0) = a(~1,0) = a(0,1) = a(0,~1) = % and use Fourier analysis
again, it is easy to find that the eigenvalues of 7%, B and I#,,,C are cos(kih) and
cos (kzh) separately. This tells us that these two simple interpolation operators indeed
do not influence the low frequency components too much. Of course, better low pass
performance can be achieved if we increase the size of the interpolation operator and

pay higher communication cost.
Last, assume the interpolation in position D is

position D interpolation :
up (x1+h 22+ 8) l(x,,0) €60 = Tap U2 (£) lg g, (5:20)
=a(l,-Duy (x1—h,xa2+h)+a(—1,-1Duy (xy+h ,x3+h)

+a(-1,)uy (xy+h ,x2—h)+a(l,)uy (xi—h ,x3—h)
A good choice for these coefficients is

-87-

a(1,-1) = a(-1,-1) = a(-1,1) = a(1,1) = % : (5.22)
Under the assumptions of (5.21) and (5.22), the eigenvalue of 7%, is

cos(kih) + cos(kah)
2

; therefore, I%, 1, looks like a low pass filter.

There is a simplified notation to represent these four operations together, i.e.,

T o]
a(-1,1) a(0,1) a(L,[* |4 2 4
B = |a(-1,0) a(0,0) a(1,0)| = % 1 % (5.23)
a(—1,-1) a(0,-1) a(1,-1) |2 11 1
4 2 4|,

~

which means the weighted contributions from u, 2 x1 , x2) to its neighboring points.
This 3 X 3 interpolation operator is usvally used in most current MG methods. As in
the projection case, more general (2P +1) X (2P +1) interpolation operators can be
designed such that the low frequency components of the coarser grid can be less influ-

enced by the interpolation operation, at the expense of increased communication cost.
5.2.2 Motivation for the Concurrent Multigrid Methods (CMG) - 1-D case
Consider a discretized equation on a single grid with spacing &,

l:h,i,j ﬁh,i,j =-fh,i,j (lh ,]h)(Gh (5.24.3)

B.’l,l',j ﬁ’,’,‘,j = g",,’,-J (ih ’]h) € P,, (5.24.b)
The goal of the CMG method is to obtain a system of discretized equations on multiple

grids with spacings 2™\ ,m =1,2,..., M-1,

Lya-tpjjupm-tpig = fomyp;; (b, jh) € Gomyy, (5.25.2)

-88-

BZ'"h,i,j uzl—thJ = gz-—lh’i’j (ih ’ jh) € rz-—lh ’ (5,25,b)
so that these equations can be solved simultaneously and the low and high frequencies

are separated in different grids. We also require that the solutions on different grids |
should be able to be combined in an easy way to become the single grid solution i,

ie.,

ﬁh =C (u,, s U2 5 coee Upu-1p) ’ (5.26)
where C represents some kind of combination.

For a given multigrid structure, i.e., for a fixed number M of grids, fixed

G p=-1,’s, and I'ya-1,’s, the CMG includes three parts:
v(l) how to choose the operators Lya-1 ; ;, Bya-y, ; ; and the driving functions
St 31‘"h,iJ for each grid,
(2) how to get the solution u -1, ; ; on each grid,
(3) how to combine these solutions together.

In order to understand these issues, let us use a simple 1-D problem to illustrate the

basic idea of the CMG method.

Consider a 1-D second order ordinary differential equation (ODE) with homo-

geneous boundary conditions in the region {0, 1],
2 ‘
a(I)d—;_fzﬂ+b(x)d—ﬁ£)-+c(x)u(x)=d(x), (5.27.a)

u(0=0, u'(1)=0. (5.27.b)
We may use Fourier series to expand all functions given above and get

-89 -

2 aneiZ‘mu:] [n u elZ'rm.r] + 2 bneiz-lmx] 2 i21rnu,,ei2""']
n=-—x

n=—ox n=—ox n=-—x
121mr - i2nax | _— i d i2nnx
E Cn€ 2 upe 2 dae (5.28.a)
An=—= n=-—o n=—x
and the boundary conditions become
S u =0, S i2nnu,ei?™ =0, (5.28.b)
n=-—0C n=—a

Comparing the coefficients of (5.28.a), we obtain

i —41:2(n—q)2aqu,,_q + i i211(n—q)bqun_q

q:—@ q=—¢

+ 3 Cqln—q = dy ,n=0,x1,+2,. . (5.29)

q=—x
The equations (5.28.b) and (5.29) constitute an infinite dimensional system which
needs to be solved for the infinite number of unknowns u,. At a first glance, the

transformation of the original space domain problem into a new frequency domain

problem does not appear to be helpful. But this is not true.

We may rewrite equations (5.29) and (5.28.b) as

P —4n%(n—q)%a qUn—q + X i2m(n—q)bjuy—g + 3 coup—g

g |=P lq|=P lg|=P
+ 3 —4ni(n—q)agup_g + 3 i2m(n—q)byus_, + 2 Sa'n-a (5.30.a)
lq|>P lg |>P

and

Sut Xu=0, 3 qut 3 qu=0, (5.30.b)
lg =0 le1>Q lgl=Q lg1>0Q

where P and Q are some positive integers. It will be shown below that the equations

-90 -
(5.30.2) and (5.30.b) can be simplified under some assumptions.

Alihough Fourier series may contain an infinite number of terms, the high fre- |
quency components are usually so small that we may neglect them and still obtain some
reasonably good approximations. If the coefficient functions a (x), b (x), and ¢ (x)
are smooth, their frequency bands should be quite narrow so that beyond some range,
say |q |>P, thé Fourier components of these functions become negligible. Therefore,
we may separate the convolution terms in equation (5.29) into two parts, shown in
equation (5.30.a), and considet the second part very small compared with the first
part. Similaily, the equations of boundary conditions can also be separated into two
parts and the sedond part is negligible. Notice that since the coeiﬁciént functions are

usually more smooth than the solution function, we have P < Q.

Therefore, we may approximate equations (5.30) by

> —4m2(n¥q)2aqu,-q + Y i2n(n—q)bju,—4 +
l

lg =P q|=P
lqlzspcqun_q = du B = O,I 1,x2,..., (531.8)
and
S u =0, 2 qu =0, (5315)
lg =@ lgi=Q N

under the assumptions a; = by =c, =0, |qg|>P and u,=0,]|q|>Q.
Because there are (20 + 1) unknowns u,’s in the above system, we need (2Q + 1)
equations to obtain a set of unique solutions. There are already two constraints for the

boundary conditions, and we can have (2Q — 1) more equations by choosing the

-91 -
equations (5.31.a) with the index n , [n|=Q — 1. The assumption that
u, =0, |q| > Q@ can be interpreted as boundary conditions in the frequency domain.
- The equations (5.31.a) originally include 2(Q +P)+1 variables, u, for |q|<Q + P.
Therefore, the boundary conditions required in the transformed domain are u, =0

forg <|q|l=Q +P .

In summary, we have the following system in the frequency domain,

> —4w2(n—q)zaqu,,_q + 3 i2n(n—q)bju,—4 +

lq|sP lg =P
Iqlzspcqun_q =d, ,n = 0,x 1,12,...,1(Q—1), (5.323)
2 u =0, 2 qu,=0, (5.32.b)
lg |=Q lg|=Q

with the frequency domain boundary conditions

u, =0 ,0<|q|=Q+P . (5.32.0)
In all previous Chapters, we are focused on parallel algorithms for solving systems of
eqﬁations arising from space domain discretization. Now, given the above equations in
the frequency domain, it seems interesting to look for a parallel algorithm for solving
them too. If equations (5.32) are written in matrix form, the matrix is almost a
banded matrix with bandwidth (2P + 1) except for the last two rows, which represent

the space domain boundary conditions.

As mentioned before, for a smooth operator, the coefficient functions contains
only very few significant Fourier expansion terms, so it becomes a narrow band matrix.
In an extreme case, where the PDE operator has constant coefficients, equation

(5.32.a) can be reduced to be

-92.
—4n2q2aqu, + i2mwqbouy + couy = dy ,n =0,x£1,+2, +(Q—-1). (5.33)
The band matrix becomes a diagonal matrix. Since there is no coupling between the

different frequencies, they can be solved in parallel and the solutions are

dn
—4n2n2ag + i2wnbg + cg ’
Finally, up and u_g can be determined by solving (5.31.b). One feature of the above

u, = n=0x1%2,..,*+(Q-1). (5.34)
system is that these frequency components, indicated in (5.34), are not a function of
Q. They are exactly the same as those found without cutting out any high frequency

components. If we let Q go larger and larger, we will be able to calculate all possible

u,’s, which converges to zero as O (Lz). As a consequence, the space domain
n

boundary condition equations (5.32.b) are not important any longer. Since the Fourier
analysis approach separates the coupling of different frequencies entirely, it is com-
monly used in solving 1-D linear constant coefficient PDEs with homogeneous boun-
dary conditions, and in analyzing the linear time-invariant or space-invariant systems.
On the other hand, because of the coupling effect shown in (5.32.a), the result is not
as simple for varying coefficient PDEs. In order to get a parallel computational algo-
rithm for the general system (5.32), we can try the following system decomposition

scheme. Then, let each system be solved by a single computer. Find a sequence of

positive integers @, 0»,...,Qp , Which satisfy

Ql < Qz< I QM = Q,andP < | Qi+1 - Q‘ I i= 1,2,...,M—1. (5.35)
Then we may decompose the system of equations in (5.32) as

-93.

System 1: 3 —hz(n—q)zaqu,,_q + Y i2n(n—q)byuy—,4

lg =P lq |=P
+ I cqup—g =d, , In] =0,:-1,
lg|=P
> u =0, 2 qug =0, (5.36.2)
lg |=Q lgl=Q@

with boundary conditions u, = uq(o) »21<|¢|=Q, and with unknown variables u, ,

0=|q|=Q,

System 2: 3 —%z(n—q)zaqu,,_q + 3 i2n(n—q)bgup—4

lg =P lg |=P
+ Y Cqp—g =dy , 0:1<|n| =051,
lg|=P
> u =0, 2 qug =0, (5.36.b)
lg |=Q lg1=Q

with boundary conditions u, = uq(o)’lq |=Q;0r 05 < |g| = @, and with unknown

variables u,, 01+1 < [q| =03

System M : —41:2(n—q)2aqu,,_q + Y i2n(n—q)bgup—g

lg =P lq |sP
L cqun—q=dn ’ Om-1 < In] < Qy-—-1,
lg |=P
S uy=0, 2 qu =0, (5.36.¢)
lgl=0Q lel=Q

with boundary conditions u, = %(0) , |9 1=Qu-1, and with unknown variables u,,

Ou-1+t1<|q|=0y =0

-94 -

Since the above M systems are independent of each other, they can be solved in
parallel. The initial boundary conditions can be chosen arbitrarily. For given boundary
conditions, each system obtains a unique set of solutions, which can be used as the new
‘boundary conditions of the other systems for the next iteration. We may repeat the
same procedure until the solutions converge to some final values. This iterative algo-
rithm is similar to the block relaxation method in the space domain, except that con-
straints arising from the space domain boundary conditions makes a!l systems coupled
together. We can see that the coupling in the space domain depends on the order of
the differenﬁal operators and the discretization scheme we choose for the operator

d'l

while the coupling in the frequency domain depends on the the property of the

coefficient functions as well as on the space domain boundary conditions.

Of course, the system decomposition may be done in some other ways. For exam-
ple, two adjacent systems may have an overlapping region. After each iteration, the
values of the frequency components in the overlapping region can be obtained as a
convex combination of the solutions provided by these two systems, which is called

overlapping block relaxation in the frequency domain.

Although the above parallel algorithm in the frequency domain is interesting,
there is an important difficulty associated with this method. It is that the
problem formulation in the frequency domain, i.e., equation (5.32), for real world
problems is not realistic. For a general 2-D problem, the geometry of the problem

domain may be irregular. This property makes the Fourier transforms of the

-95.

coefficient functions a (x), b (x), ¢ (x) and d (x) extremely difficult, if not impossi-
ble. In addition, the space domain boundary conditions, homogeneous or nonhomo-
geneous, mix all frequency components together and, therefore, increase the complex-
ity of applying the frequency domain approach. So, it is necessary to go back to prob-
lems formulated in the space domain.

The CMG method is basically a space domain iterative algorithm. However, the
concept of decomposing a system according to its frequency bands’ structure suggests a
new methodology to achieve the same effect in the space domain. That is, in order to
allow good convergence in all frequency bands, we may use a multigrid discretization
scheme, in which each grid solves for a limited band of frequency components for the
solution. In addition to getting parallel computation, there is another advantage in the
multigrid concept. Since different frequency components can be discretized by grids of
different sizes, the smoothing of the low frequency errors, performed by the coarser

grid, turns out to be much faster than the smoothing of them with a single fine grid.
5.2.3 Overview of the Concurrent Multigrid Methods (CMG) - 2-D case

To analyze and design a CMG algorithm, we need the help of frequency domain
analysis, or Fourier analysis. The above simple example gives us an idea of how to
choose reasonable operators and driving functions in different grids requiréd by the
CMG mgthod. The overview of the CMG method is shown in Figure 5.6. The details

will be explained below.

.......... 1243

- -2,
14 13 S 123} 13!

Fig 5.6 Diagram of a Simple Concurrent Multigrid (CMG) Scheme

-97 -

(1) How to choose the operators Loys-v, ; i, Bya-1,; ; and the driving functions
fZ'"hJJ' 82-1h Jor each grid
For a linear constant coefficient PDE, it is quite natural that operators at all grid

levels should have the same form. For example, the discretized Laplacian operator at

all grid levels should be

E{+E{'+E+E;!
Lz--lh,i,j= 1 1 4 2 2 ,m=1’2,u-.,M, (5.37.3)

and a Dirichlet type boundary operator should be
B2""h,i,j=1’ m=1,2,"' ,M. (5.37.b)
Note that although these operators are in the same difference forms, the difference

operators for different grids operate on different grid points.

For a linear varying coefficient PDE, the situation becomes more difficult. The
linear varying coefficient PDEs are so broad that it is not easy tov give a precise rule to
generate the coarser grid operators which is applicable for all cases. Instead of giving a
concrete method, I will explain the motivation for getting coarser grid operators, then
propose a general methodology to obtain the object we want. The main purpose of
discretization and computation with coarser grids is to provide us the low frequency
components of the solution more economically. So, we would like to neglect the
unnecessay details contained in the finer grid driving functions and operators, as long
as the crude operators and driving functions can give us good low frequency approxi-

mations of the solution.

- 98-

A reasonable choice for a crude operator at some space point in the coarser grid is
the average of this operator near the same point in the finer grid. Here, to average an
operator can be interpreted as averaging its coefficients. This is equivalent to letﬁng
the coarser grid contain only low frequency components of the coefficient functions
while the finer grid contains both low and high frequency components of the coeffi-

cient functions.

As regards the driving function, we may use the projection operator mentioned in
Section 5.2.1 to separate the driving functions between different grid levels. The justifi-

cation of this splitting is well explairied by the above simple example.

Although the coarse grid cannot even provide us a very accurate problem formula-
tion of the low frequency bands, because it neglects the coupling between the low fre-
quency bands of the solution and the high frequency bands of coefficient functions, it
gives us a good initial approximation to the low frequency modes and saves us lots of
computations at finer grid levels. More refinement can be obtained by feeding this ini-

tial approximation to a finer level.

(2) How to get the solution uza-y, ; ; on each grid

The error smoothing procedure can be enhanced by using more effective relaxa-
tion schemes such as the LASOR algorithm proposed in Chapter 3. However, the
lowest frequency components for different grid layers are no longer the same. As a
6onsequence, the optimal relaxation factor w is not only a function of space but also a

function of the grid level.

-99 .-

Let us first summarize the LASOR result with one-grid discretization. In Chapter

3, it has been shown that given a local Jacobi relaxation operator J; ;, the optimal

relaxation factor with respect to a single frequency ! hxi + kaxd) 4

2
. k- = ——— ’
®; j opt (Ni j) 1+ \/1 —)‘iZJ(Ji,,i) (5.38)

where \; ; is the eigenvalue of J; ; with the input frequency ! Em T br) pupher.
more, if only one grid level is allowed, the optimal relaxation factor w;”; for all fre-

quencies becomes

. 2
w. . =
Y+ V- el0)
where p; ; is the spectral radius of J; ;. And, p; ;, the spectral radius of the one-grid

, (5.39)

LASOR operator G; ; is
ki j(Gij(0;,Jij)) = of;j -1 . (5.40)
Now, since a multiple-level discretization scheme is used, the optimal relaxation
factor of node (i ,j) and grid level m, ;" », is given by

* 2
m- . —
Y14 VL - o mUigm)
where J; , is the Jacobi relaxation operator in the mth grid and p; j m(J; j m) is the

: (5.41)

spectral radius of J; ; ,,. Finally, p; ; », the spectral radius of the LASOR operator
Gi.jm» can be derived as

Rijm(Gijm(@ijm Jdijm)) =0ijm—1 . (5.42)

In the following, I will use the model problem as an example to illustrate the

difference between one-grid and multi-grid LASOR methods. From the result of

- 100 -
Chapter 3, we know
OOS(k.lh) + COS(k.zh)
piy (Jij) = 3 , (5.43)

where k; and £, are the lowest frequencies in the x; and x, directions. Now, in the

multi-grid case, the spectral radius of the m th level is

cos (kq 2™ ~1h) + cos (k, ™ ~1h)
, 2 i
under the constraint that k1 and k, appear at the mth level. From (5.11) and (5.16), we

Pi,jm = max (5.44)

know that the above expression is equivalent to

V2 V2
coS Ky, + cOSKy, c:os(T-:r)+coscos(—4)

Pi,jm = max

%s\/xl’, +K3.<m 2 2

= 0.444016 form =23,.. M-1, (5.45.a)

and the spectral radius is

2
L et —1=
Wijom = Oi.jom 1+ V1 - (0.444016)2

= 0.054842 form =23,.M—1 . (5.45.b)
For the finest level (m = 1), although the constraint given by equation (5.16.a)

%S \/Kﬁ1+xf,l and —nwv=K,;,Kr1=<m , (5.46)

we still have to consider another constrain arising from the fact that the discretization

error should not be too large. As a consequence, the relaxation performed in the finest

- 101 -

level is not aimed at smoothing such high frequency components. The function of the
relaxation in the finest grid is to further refine the solution, when the solutions of dif-
ferent levels are combined together and transferred to the finest grid. This point will

be mentioned in (3). For the coarsest level (m = M), we have

cos (k1 24 71p) + cos (ky M~ 1h)

PijM = 3 (5-47)

Based on (5.43) and (5.47), we may compare the convergence rates of the one-
grid/LASOR algorithm and the M-grid/LASOR algorithm with respect to the lowest
frequencies ky = k5 = w, under the assumption 1r 2M -1} is much less than 1.
one-grid/LASOR algorithm :

2 _1-—-sinmwh _

s . = - 1 - . - 1 - 2 h . -
Ml ™ 14 V1 - co? (m h) 1 + sin wh T (5-48.2)
Relpijl=-ln(wij)=2nh (5.48.b)
and
M-grid/LASOR algorithm :
2
iJM = -1 =1-2n2M"1p 49.
HidM = 18 V1 - cof? (w24 1) T (5.49.a)

Relmijul=-In(piju)=2n24"1h (5.49.b)

Lastly, we list a table to compare the spectral radii and convergence rates of dif-
ferent relaxation methods combined with one-grid and multi-grid discretization

schemes.

-102 -

JACOBI G-S LASOR
1 B2
p=1- = 252 =
2 p=1-a%h p=1-2wh
ONE-GRID R - w2 h2 R = 1‘.2"2 R=27nh
' 2
=1_M
-GRID P 2 p=1-a2@M 142 | p=1-2m2M14
) g = T 7h)? R =m2(@QM-14) R=2a24"%
2

The M-grid/LASOR algorithm converges faster than the one-grid/LASOR by a factor
2M-1 while the M-grid/Jacobi method or the M-grid/G-S method converges faster than
the one-grid/Jacobi or the one-grid/G-S method by a factor 4¥~1. We may also note
that the advantage of the LASOR method over the Jacobi and Gauss-Seidel methods
will be more substantial for the finer grids than with coarser grids. However, as long as
2¥-1p is much less than 1, the LASOR algorithm is still preferred no matter what kind

of discretization scheme is used.
(3) How to combine these solutions together

In stage} (2), we separated the problem into different frequency bands, neglected
the coupling ‘effects among these bands, and obtained the solutions for different fre-
quency bands by relaxation in different grids. In order to get a correct final solution,
we need schemes to combine the solutions of different bands together and to refine the

combined solution so that the coupling effect can be added back.

An easy combination scheme is to transfer the coarser grid solution to the finer
grid and add the transferred solution (low frequency components) to the solution

already in the finer grid (high frequency components), then perform several

- 103 -

relaxation steps in the combined solution to obtain the refinement effect. On the other
hand, if the convergence rate of the relaxation for the combined solution is too slow,
we may separate thé low and high frequency components again, transfer the low fre-
quency components to the coarser grid, and perform relaxation for these split solutions.
The splitting and recombination procedures can occur between any pair of levels and in
any reasonable sequence. However, these procedures should not be too complicated,
because they require extra control signals and mechanisms to coordinate all processors

in the same grid to do the same thing.

A straightforward splitting and recombination scheme is shown in Figure 5.6
where the splitting occurs at the beginning stage of the sequence from the finest grid to
the coarsest grid and the recombination occurs at the final stage of the sequence from

the coarsest grid to the finest grid.
5.3 Computer Architectures for Concurrent Multigrid Methods

The supporting computer architectures for multigrid methods have been studied
and proposed by Brandt [26] and Gannon [27]. The most intuitive and ideal parallel
architecture for the concurrent multigrid method described above is the pyramid
multi-processor array, which has also been studied in other contexts such as parallel
computing machines for image processing [28]. Other possible alternatives are embed-
ding the concurrent multigrid method in some fixed computer architectures, say,

mesh-connected array, mesh-shuffle connected system, and so on [27].

- 104 -

Fig 5.7 Pyramid Multi-processor Array

- 105 -

Generally speaking, the area of parallel computer architectures is still an active
research field and many questions remain. In addition, it is not easy to consider all‘
possible details without implementing a real system. So, instead of giviiig a perfect solu-
tion, I would like to mention results discussed by others and give some my own opin-

ions to make this Chapter complete.

The interconnection of a pyramid multi-processor array is shown in Figure 5.7.
These processors are configured into M levels where the i _th level is a (2"~ *1 + 1)
x (2" ~'*1 + 1) square grid. Each processor is connected to its 8 or 4 nearest neigh-

boring processors at the same level. In addition, the processor (p , ¢) at the ith level

is connected to the processor (’;2——1 ,_q;_I) at the (i + 1)th level.

There are two different classes of operators in the CMG algorithm : the grid
transfer operators, including the projection and the interpolation operators, and the
relaxation operator. The grid transfer operators require the data to flow between two
adjacent processors in different layers while the relaxation operator requires the data to
flow between the nearest neighbor processors in the same layer. Both of them satisfy
the local communication constraint. Consequently, communication cost is lowest if the
CMG algorithm is implemented by this architecture. Another advantage of the
pyramid structure is that the architecture reflects the data flow pattern required by the

algorithm, and it is, therefore, easier to program each processor.

Although the pyramid structure is promising, there are still issues remaining. It

has been shown that relaxation can be performed in an asynchronous way so that we

- 106 -

do th have to coordinate all processors to do one relaxation step at the same time.
| However, the grid transfer operation needs synchonization. In order to coordinate all
‘processors to perform the projection or interpolation, extra control signals and global
communication at one level are necessary. Another difficulty arises when we try to
implement adaptive projection or interpolation schemes, by which we mean controlling
the grid transfer operator based on the current convergence rate of the iterative solu-
tions. It usually requires global information to judge whether the convergence rate is
slow or fast. Therefore, there is a tradeoff between efficiency and implementation com-
plexity.

The pyramid structure can be composed of many small processors each of which is
integratgd in a chip. However, it also seems possible to implement many processors in
a single chip using the wafer scale integration (WSI) technology. Although the WSI
technology is not quite mature at present, we may still be interested in embedding the
3-D pyramid structure in a 2-D plane. This problem has been studied by Gannon [27]
where several possibilities are mentioned: mesh-connected array, mesh-shuffle con-
nected system, permutation network, and direct VLSI embedding. One way to imple-

ment the pyramid structure in the mesh-connected array is illustrated by Figure 5.8.

-107 -

00000000 O
m.o..m 000000 .c."
"ooooooooo"
“ooooooooo“
"oo.ooooooo"
J0 000 00O O o
o 0ooo0o0000o0!
“ooooooooo"
00000000 o
12909 9000 0
0000000000
oooomm-m.m.m.o."
0 000j000O0 O
"qm..w.wa.omooooo"

[R
,"ooo"o“ooooo
[]

'
]
12.2.9,010.9.90.9 qJ

0000000O0O

-connected

Fig 5.8 Embedding a Pyramidal Architecture in a 2-D Mesh

Processor Array

- 108 -
Chapter 6. Extensions and Conclusion

In this thesis, two distributed and parallel numerical PDE algorithms have been
proposed. The LASOR (Locally Accelerated Successive Over-Relaxation) algorithm
and its performance were discussed in Chapters 3 and 4 while the CMG (Concurrent
Multi-Grid) algorithm was presented in Chapter 5. This last chapter will describe some

extensions of research along these two directions and will present some conclusions.
6.1 Extensions

The LASOR algorithm includes two important steps. The first is to determine the
admissible lowest frequencies using boundary condition information. The second is to
approximate the PDE operator by a linear constant coefficient difference operator
locally, divide the nodes into red and black points, and form a locally accelerated suc-
cessive over-relaxation (LASOR) operator. In previous discussions, some ideal
assumptions were made so that the analysis and design of the LASOR algorithm
become very simple. However, we may encounter several difficulties in applying the

LASOR method to solving real world problems directly.

Under the assumption that the problem domain is a unit square and that the
boundary} condition operator is constant along each edge, the procedure for determin-
- ing the lowest admissible frequencies is straightforward. These assumptions make the
basis functions separable and easy to analyze. However, in practice, the above assump-
tions may not hold. The problem domain is usually of irregular shape and the boun-

dary condition operators may have space-varying coefficients. As a consequence, to

-109 -
find the lowest frequency component is not an easy task as shown before.

The second difficulty is related to the construction of the LASOR operator. If the

coefficients of a PDE operator have some discontinuities in some region, the Jacobi
- relaxation operator is not smooth over the region with discontinuous coefficients.

Then, how to determine the local optimal relaxation factors based on these abruptly
changing operators is still an open question.

It has been mentioned that to map the irregular domain problem into a regular
processor domain is important in practice. In addition, we also need some schemes to
partition the grid points evenly between all processors, when the number of grid points
is larger than that of processors. The mapping and partitioning problems have been stu-

died recently [29] [30], but not too many results are known.

It also seems interesting and challenging to see whether the local acceleration con-
cept can be generalized to PDE problems of other types, such as hyperbolic PDEs and

nonlinear PDEs, and other discretization schemes, say, the finite-element method.

The discussion of the CMG method in Chapter 5 can be applied to smooth PDE
operators with simple boundary conditions and square problem domain. However, if
we have irregular problem domains, complicated boundary conditions, and PDE opera-
tors with discontinuous coefficients, then there are some difficulties in applying the
CMG method directly. How to adapt the CMG method to these more general situa-
tions is an important topic for further research. The data transfer among grids close to

boundary regions and discontinuous-coefficient regions requires more careful

- 110 -

considerations.

The performance of the CMG method highly depends on the supporting architec-
tures and should be studied further either by some analytical approach or by computer

simulation.

I also look forward to seeing how the CMG method can be adapted to more gen-

eral PDE:s including the parabolic, hyperbolic, and nonlinear PDEs.
6.2 Conclusion

We may note that distributed computational PDE algorithms (LASOR) are dif-

ferent from traditional central computational methods (SOR) in several ways.

First, distributed computation provides a natural way to achieve highly parallelism.
Second, distributed algorithms suggest a space-adaptive acceleration scheme, which ‘is
not feasible in central computation. Third, although global information is required in
determining the local optimal acceleration factors, it scems that only very little globﬂ
information is relevant. Last, we benefit a lot in designing the local acceleration algo-
rithm from the simple structure of the local operator and the minimum global informa-
tion while the determination of the central acceleration factor is very complicated and
time-consuming.

These nice properties are believed to be closely related to the special structure of
PDE. Partial differential equations are formulated to describe local interactions in the
~ physical world. As a consequence, no interaction can happen between two different

space points without influencing the region between these points. The locality property

- 111 -

is very similar to the local communication constraint imposed by VLSI computation.
Therefore, although this constraint is critical for other types of problems, it is not as

severe in numerical PDE problems.

The thesis has also demonstrated the use of the local Fourier analysis approach, or
frequency domain approach, to analyze both the LASOR algorithm and the CMG
algorithm. This methodology sets a bridge between numerical analysis for solving PDEs
and digital signal processing. This new method seems more informative than traditional
matrix iterative methods, which usually hide information in a huge matrix through ord-
ering. In addition, the local Fourier analysis approach provides a way to analyze distri-
buted numerical algorithms while matrix iterative methods only can be applied to cen-
tral numerical algorithnis. A closer relationship between numerical analysis techniques

and Fourier analysis is expected in the future.

What we have done is only the beginning of a new field, combining VLSI technol-
ogy, local Fourier analysis, numerical analysis, and distributed computation. If VLSI
- processor arrays become available in the near future and parallel distributed numerical
algorithms can be better understood and explored, then it is likely that the traditional
central numerical algorithms will be revolutionized in such a way that parallel and dis-
tributed numerical algorithms will become the main approach to solve large-scale scien-
tific problems aﬁﬁng from PDEs. Due to the revolution both in hardware technology
(VLSI) and in parallel and distributed algorithms, it is not surprising that the comput-

ers of next generation will be hundreds of times faster than today’s most powerful com-

- 112 -

puters.

-« 113 -

References ,
1. G. Birkhoff, “Solving Elliptic Problems : 1930-1980,” in Elliptic Problem

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Slovers, ed. M. H. Schultz, pp. 17-38, Academic Press, Inc., New York, N.
Y., 1981.

T. L. Jordan, “A Guide To Parallel Computation and Some Cray-1 Experi-
ences,” in Parallel Computations, ed. G. Rodrigue, pp. 1-50, Academic Press,
Inc., New York, N. Y., 1982.

D. Heller, “A Survey of Parallel Algorithms in Numerical Linear Algebra,”
SIAM Review, vol. 20, no. 4, pp. 740-777, Oct. 1978.

A. H. Sameh and D. J. Kuck, “On Stable Parallel Linear System Solvers,”
Journal of ACM, vol. 25, no. 1, pp. 81-91, Jun. 1978.

H. T. Kung and C. E. Leiserson, “Systolic Array (for VLSI),” in Sparse
Matrix Proc. 1978, pp. 256-282, SIAM, 1979.

H. T. Kung, “Why Systolic Architectures?,” Computer, vol. 15, ro. 1, pp- 37-
46, Jan. 1982.

L. S. Haynes, R. L. Lau, D. P. Siewiorek, and D. W. Mizell, “A Survey of
Highly parallel Computing,” Computer, vol. 15, no. 1, pp. 9-24, Jan. 1982.

R. Vichnevetsky, Computer Methods for Partial Differential Equations, Vol. 1,
Elliptic Equations and the Finite-Element Method, Prentice-Hall, Inc. , Engle-
wood Cliffs, N.J. , 1981.

D. k. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra,
W. H. Freeman and Company , San Francisco, CA , 1963.

B. R. Musicus , “Levinson and Fast Choleski Algorithms for Toeplitz and
almost Toeplitz Matrices,” MIT Technical Report, 1982.

S. Y. Kung, K. S. Arun, R. J. Gal-ezer, and D. V. Bhaskar Rao, “Wavefront
Array Processor: Language, Architecture, and Applications,” IEEE Trans. on
Computer, vol. 31, no. 11, pp. 1054-1066, Nov. 1982.

H. M. Ahmed , J. Delosme , and M. Morf , “Highly Concurrent Computing
Structures for Matrix Arithmetic and Signal Processing,” Computer, vol. 15 ,
no. 1, pp. 65-82.

S. Y. Kung and Y. H. Hu, “A Highly Concurrent Algorithm and Pipelined
Architecture for Solving Toeplitz Systems,”” IEEE Trans. on ASSP, vol. 31 , no.
1, Feb. 1983.

R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Inc. , Englewood Cliffs,
N.J. , 1962.

L. A. Hageman and D. M. Young, Applied Iterative Methods, Academic
Press, Inc. , New York, N.Y. , 1981.

B. Friedman, Principles and Techniques of Applied mathematics, John Wiley &
Sons, Inc., New York, N.Y. , 1956.

G. Dahiquist, A. Bjorck, and N. Anderson, Numerical Methods, Prentice-Hall,
Inc. , Englewood Cliffs, N.J. , 1974.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall,
Inc. , Englewood Cliffs, N.J. , 1975.

L. Adams and J. M. Ortega, “A Multi-Color SOR Method for Parallel Com-
putation,” ICASE report, 82-9, Apr. 1982.

20.
21.

22.

24.

26.

27.

29.

30.

31.

=114 -

D. P. Bertsekas , “Distributed Asynchronous Computation of Fixed Points,”
Mathematical Programming, vol. 27, pp. 107-120, 1983.

R. P. Fedorenko, “The Speed of Convergence of an Iterative Process,”
U.S.S.R. Comp. Math. and Math. Phys., vol. 4 , no. 3 , pp. 227-235 , 1964.

N. S. Bakhvalov , “On the Convergence of a Relaxation Method with Natural
Constraints on the Elliptic Operator,” U.S.S.R. Comp. Math. and Math. Phys.,
vol. 6 , no. 5, pp. 101-135, 1966.

A. Brandt , “Multi-level Adaptive Solutions to Boundary-value Problems,”
Math. of Comp., vol. 31, no. 138, pp. 333-390, Apr. 1977.

K. Stuben and U. Trottenberg, “Multigrid Methods : Fundamental Algo-
rithms, Model Problem Analysis, and Applications,” in Multigrid Methods, ed.
U. Trottenberg, Springer-Verlag, Berlin Heidelberg New York, 1982.

D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Pro-
cessing, Prentice-Hall, INC., Englewood Cliffs, New Jersey, 1984.

A. Brandt, “Multigrid Solvers on Parallel Computers,” in Elliptic Problem
Slovers, ed. M. H. Schultz, pp. 39-83, Academic Press, Inc., New York, N.
Y., 1981.

D. Gannon and J. V. Rosendale, “Highly Parallel Multigrid Solvers for Ellip-
tic PDEs: An Experimental Analysis,” ICASE Report 82-36, 1982.

L. Uhr, “Pyramid Multi-computer Structures and Augumented Pyramids,” in
Computing Structures for Image Processing, ed. M.J.B. Duff, pp. 95-112,
Academic Press, London, 1983.

D. Gannon, “On Mapping Non-uniform PDE Structures and Algorithms onto
Uniform Array Architectures,” in Proceeding of International Conference on
Parallel Processing, 1981.

S. H. Bokhari, “On the Mapping Problem,” IEEE trans. on Computers, vol.
C-30, no. 3, pp.- 207-214, Mar. 1981.

J. R. Rice, “ELLPACK : Progress and Plans,” in Elliptic Problem Slovers, ed.
M. H. Schultz, pp. 135-162, Academic Press, Inc., New York, N. Y., 1981.

