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ABSTRACT

Kazhdan–Lusztig categorified the affine Hecke algebra H in terms of equivariant coherent
sheaves on the Steinberg variety. Recently, Ben-Zvi–Chen–Helm–Nadler have applied the
formalism of categorical traces to construct a “coherent Springer sheaf” on a moduli stack
of Deligne–Langlands parameters whose endomorphism algebra recovers H. In this the-
sis, we extend these results to Lusztig’s asymptotic affine Hecke algebra J . Using work of
Bezrukavnikov–Ostrik, we construct an “asymptotic coherent Springer sheaf” on an “asymp-
totic” moduli stack of Deligne–Langlands parameters whose endomorphism algebra identi-
fies with J . We show that a certain restriction of the coherent Springer sheaf identifies
with this asymptotic coherent Springer sheaf and induces Lusztig’s homomorphism φ on
endomorphism algebras. Next, following a conjecture of Qiu–Xi, we consider a category of
equivariant coherent sheaves on the square of the Gm-fixed points in a Springer fiber. We
identify its 2-categorical class with a summand of the asymptotic coherent Springer sheaf,
and deduce that it categorifies the corresponding block of J . We then construct a family
of functors from the mixed affine Hecke category categorifying φ. Finally, we show that the
universal trace functor for the mixed affine Hecke category is right t-exact with respect to an
exotic t-structure, and sends monoidal duals of connective objects to coconnective objects.
To this end, we construct an explicit complex computing the 2-categorical class map for
certain monoidal categories over quotient stacks. We then deduce a (co)connectivity state-
ment for the 2-categorical classes associated to Bezrukavnikov–Riche’s braid group action
for the Springer resolution. In particular, we obtain that the coherent Springer sheaf lies
in cohomological degree 0 (i.e., is a sheaf rather than a complex), resolving a conjecture of
Ben-Zvi–Chen–Helm–Nadler and Zhu. As a consequence of the proof, we partially resolve
another conjecture of Qiu–Xi, showing that J embeds in a K-group of equivariant vector
bundles on the square of a finite set.

Thesis supervisor: Roman Bezrukavnikov
Title: Professor of Mathematics





Acknowledgments

Writing this thesis would not have been possible without the generous support of many individuals.
My deepest gratitude is owed to my thesis supervisor, Roman Bezrukavnikov, for his thoughtful listening,
kind encouragement, insightful suggestions, and unflagging patience. This thesis was inspired by one of his
suggestions, and is undeniably permeated with his perspectives. Our conversations over these past five years
have shaped me indelibly as a mathematician; I feel very fortunate to have been his student.

I would like to thank Pavel Etingof and Zhiwei Yun for their careful review of this thesis, and for their
intriguing questions at its defense. Separately, I would like to express my gratitude for their wonderful
teaching throughout my time at MIT, from which I benefited greatly.

I thank David Ben-Zvi, Pablo Boixeda Alvarez, Robert Burklund, Harrison Chen, Gurbir Dhillon, Ben-
jamin Gammage, Dennis Gaitsgory, Do Kien Hoang, George Lusztig, Davesh Maulik, Sam Raskin, James
Tao, and Xinwen Zhu for fruitful and inspiring mathematical conversations. I have learned a tremendous
amount from the mathematical community you have created, and am very grateful for how giving you have
been with your time. I also thank the many mathematicians to whom I did not speak directly, but from
whom I learned much through their edifying and stimulating writing: Pramod Achar, Dima Arinkin, Dario
Beraldo, Joseph Bernstein, Alexander Braverman, Neil Chriss, Stefan Dawydiak, Vladimir Drinfeld, John
Francis, Victor Ginzburg, Daniel Halpern-Leistner, David Helm, David Kazhdan, Ivan Losev, Jacob Lurie,
Ivan Mirković, David Nadler, Viktor Ostrik, Anatoly Preygel, Yannan Qiu, Simon Riche, Nikita Rozenblyum,
Yakov Varshavsky, and Nanhua Xi, among many others.

I thank Ranjan Anantharaman, Sergei Korotkikh, Luis Kumanduri, Roger Van Peski, and Adela Zhang
for their congenial company as officemates and friends throughout my time at MIT.

I would like to express my gratitude to the administrators of the Mathematics Department for all of
their hard work in creating such a hospitable and nurturing work environment; I am sad to leave it. In
particular, I thank Theresa Cummings, Michele Gallarelli, and Barbara Peskin for their warm and copious
academic support throughout my time at MIT. I further acknowledge the Mathematics Endowed Fellowship
Fund and the National Science Foundation∗ for their generous support of this research.

I would like to thank Qin Deng for an incredibly positive teaching experience, as well as all of my students
for their enlivening curiosity and engagement. I especially thank my research mentees, Miles Johnson, Ariana
Park, Natalie Stewart, and Calvin Yost-Wolff; our work was a highlight of my time at MIT, and I learned a
tremendous amount from each of you.

I am also fortunate to have had many meaningful mathematical experiences prior to graduate school.
My gratitude to Sam Raskin is limitless; the impact of his generosity, mentorship, and unique mathematical
perspective can still be felt in my work to this day (and it is likely owed to him that I am in this field).
I thank Hood Chatham, Gil Kalai, Haynes Miller, and Drew Sutherland for their invaluable pedagogy and
mentorship as I began my foray into mathematical research. I would also like to express my gratitude to
Clark Barwick and Andrew Lawrie for their kind academic guidance and generous listening ears. I thank
Li-Mei Lim and Glenn Stevens at Promys for a meaningful and enjoyable summer, and all those I worked
alongside at Primes, long ago, for the early research inspiration they provided. Finally, I thank Brian
Infante and Chris Senhouse for all they did to develop my interest in mathematics.

I am very grateful to Eiji Miura for his incredible vocal pedagogy and personal kindness, as well as for
many enjoyable musical experiences in my first few years of graduate school. I also thank Amir Bitran,
Carles Boix, Bill Cutter, Thao Nguyen, Srini Raghuraman, Piotr Suwara, Liang Yu, and many others for
tremendous fun on the stage and off.

I am profoundly grateful to all my dear friends in the Camberville community for their warm company
and generous hospitality throughout my time here. You are too many to list, but I will miss you all
immensely, and look forward to reaching out in the coming months. I especially thank my roommates,
Ben Chaney, Avraham Penso, Carmi Rothberg, Yedidyah Samuels, and Daniel Yahalom for all the kindness
and merrymaking they brought to our home environment; and similarly, to my friends Elisheva Shuter and
Tamar Grey for their good company throughout the pandemic.

I extend my most heartfelt gratitude to the entire Marbach-Jackson family—Claudia, Daniel, Rachel,
Jackson, Rebecca, and Akiva—for their extraordinary hospitality, kindness, sensitivity, generosity, friendship,

∗This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant
No. 2141064.

4



5

and inspiration in every aspect of life, over many, many years. Thank you for opening your home and hearts
to me, and for all the support you have shown me throughout this chapter in my life.

I thank Ilana Brandes-Krug, Stevie Fine, and Zivi Stern for lovely meetings over the years; I look forward
to our next.

I thank Scot, Sarah, Colin, and Becca for all their support, as well as for lovely visits and holiday
gatherings.

I thank Gil, Hodaya, and Yakir for their companionship throughout the years.
I thank Cooper, for all their care; and John, for all his love.
I thank Akiva, for his remarkable steadfastness, ebullience, and unfailing care; Leah, for her solidarity,

empathy, and wonderful humor; and Naomi, for her unique way of seeing, connecting, and inspiring courage.
Thank you all for your wisdom, support, patience, kindness, and friendship these past five years—and for
always making sure I took time to live beyond this work.

And to Mia, without whom this thesis truly could not have been completed: thank you for all of your
dedication, astonishing hard work, boundless thoughtfulness, abiding company, and for all the patience and
sensitivity you bestowed upon me this past year.

Finally, to anyone I have forgotten—thank you. I am sure there are others beyond this list who have
contributed in meaningful and important ways to this work, and I hope this will not be my last opportunity
to acknowledge you.

This work is dedicated to you all.





Contents

Chapter 1. Introduction 9
1.1. The affine Hecke algebra 9
1.2. Coherent Springer theory 10
1.3. The asymptotic affine Hecke algebra 11
1.4. Asymptotic coherent Springer theory 13
1.5. Asymptotic Kazhdan–Lusztig theory 16
1.6. Bounding the universal trace functor 18
1.7. Overview 19
1.8. Assumptions and notation 20

Chapter 2. The asymptotic coherent Springer sheaf 23
2.1. The Schur multiplier 23
2.2. The noncommutative Springer resolution 30
2.3. A covering group of the reductive centralizer 36
2.4. Centrally extended sets 39

Chapter 3. The trace formalism 43
3.1. Higher categorical traces 43
3.2. Traces of categories of quasicoherent sheaves 48
3.3. Traces of convolution categories 51
3.4. The Block–Getzler sheaf 56

Chapter 4. Bounding the universal trace functor 63
4.1. Resolutions of Koszul algebras with multiple simple modules 63
4.2. The exotic t-structure 64
4.3. Connectivity and coconnectivity criteria 68

Chapter 5. Asymptotic coherent Springer theory 73
5.1. Restricting the coherent Springer sheaf 73
5.2. Homomorphism data 74
5.3. Recovering Lusztig’s homomorphism 77

Chapter 6. Asymptotic Kazhdan–Lusztig theory 85
6.1. Unstable Θ-stratifications 85
6.2. The graded monad 89
6.3. The coherent homomorphism datum 95

Bibliography 101

7





CHAPTER 1

Introduction

1.1. The affine Hecke algebra

Fix a split connected reductive group Ǧ over a nonarchimedean local field F of residual characteristic
qF , and let G be its Langlands dual group over an algebraically closed field k of characteristic 0. The
local Langlands program seeks to classify the irreducible k-linear representations of Ǧ in terms of certain
“Langlands parameters” arising from G. This is a deep and difficult problem, only fully understood for
certain Ǧ.1

The classical theory of cuspidal components makes the problem somewhat more tractable. A well-
known fact, due to Borel and Casselman, states that smooth representations of Ǧ are equivalent to modules
over its Hecke algebra, which is the convolution algebra comprising compactly supported, locally constant
functions on Ǧ [Bor76]. Bernstein showed that this Hecke algebra decomposes into blocks indexed by the
supercuspidal representations of Ǧ and its Levi subgroups [Ber84]. We may therefore parameterize the
irreducible Ǧ-representations one block at a time.

The simplest such block, known as the “Iwahori–Hecke algebra,” corresponds to the trivial representation
of a maximal torus Ť ⊂ Ǧ; we denote this subalgebra by H

q
1/2
F

(for reasons which will soon become clear).
Equivalently, H

q
1/2
F

consists of those functions which are invariant under left or right translations by an

Iwahori subgroup of Ǧ. The simple H
q
1/2
F

-modules are known as the “unramified principal series” of Ǧ, and

are precisely those Ǧ-representations appearing in the parabolic induction of unramified characters of Ť .
These representations admit an elegant geometric classification in the setting of Springer theory owed to
Kazhdan–Lusztig, and later generalized by Reeder [KL87, Ree02].

To state this classification, let g denote the Lie algebra of G, and N ⊂ g its nilpotent cone. We write
B for the flag variety of G, and π : Ñ := T ∗B → N for the Springer resolution, i.e., the moment map of the
cotangent bundle of B. Both Ñ and N carry actions of G by conjugation, and of the multiplicative group
Gm by square inverse dilations. The Springer resolution is then equivariant for the action of G̃ := G×Gm.
In particular, for any (s, q) ∈ G̃, we may consider the “(s, q)-Springer sheaf” π∗kÑ (s,q) , which is a complex
of constructible sheaves on the (s, q)-fixed points N (s,q), equivariant with respect to the centralizer Gs.
When s is semisimple, N (s,q) comprises only finitely many Gs-orbits, and the Beilinson–Bernstein–Deligne
decomposition theorem shows that the (s, q)-Springer sheaf is a sum of shifts of intersection cohomology
sheaves extended from these orbits [BBD82]. These sheaves then classify the simple H

q
1/2
F

-modules:

1.1.1. Theorem ([KL87, Ree02]). The simple H
q
1/2
F

-modules are in bijection with G-conjugacy classes
of qF -commuting pairs of nilpotent and semisimple elements in G, i.e.,

(1.1.1.1) {(e, s) ∈ N ×Gss : ses−1 = qF e}/G,

together with a simple Gs-equivariant local system on the orbit of e ∈ N (s,q
1/2
F ) appearing in the decomposition

of the (s, q
1/2
F )-Springer sheaf.

We refer to such pairs (e, s) as “q1/2
F -Deligne–Langlands parameters.” In fact, this notion makes sense

for any q ∈ Gm in place of q1/2
F . The corresponding deformation of H

q
1/2
F

is known as the “affine Hecke

algebra”; it is a Z[v±1]-algebra H whose specialization at v = q
1/2
F recovers H

q
1/2
F

, and whose specialization

at v = 1 recovers the group ring of the extended affine Weyl group W aff of Ǧ. Theorem 1.1.1 then extends

1For but a few examples, see [Bor79, Vog93, HT01, Hen00, GT11, GT10, Art13].
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10 1. INTRODUCTION

to analogous classification of the simple Hq-modules in terms of q-Deligne–Langlands parameters, for any
q ∈ Gm.

The proof of Kazhdan–Lusztig’s classification relies on a remarkable precursor to geometric Langlands
duality, later generalized by Chriss–Ginzburg, Lusztig, and Ben-Zvi–Chen–Helm–Nadler:

1.1.2. Theorem ([KL87, CG10, Lus98, BZCHN22]). The affine Hecke algebra is isomorphic to the
0th K-group of G̃-equivariant coherent sheaves on the Steinberg variety under convolution, i.e.,

(1.1.2.1) H ∼= K0(Ñ ×g Ñ/G̃).

This algebra isomorphism is moreover compatible with the Bernstein isomorphism

Z(H) ∼= R(G̃)

between the center of H and the representation ring of G̃.

In particular, central characters of H are identified with semisimple (s, q) ∈ G̃. Specializing at such a
character yields the Borel–Moore homology of the (s, q)-fixed points of the Steinberg variety, which by a
simple base-change calculation, identifies with (the cohomology of) the derived endomorphism algebra of the
(s, q)-Springer sheaf:

(1.1.2.2) H(s,q)
∼= HBM

∗ (Ñ (s,q) ×N (s,q) Ñ (s,q)) ∼= H∗ EndN (s,q)(π∗kÑ (s,q))
op.

The simple H(s,q)-modules are then given by the multiplicity spaces of the local systems appearing in the
decomposition of π∗kÑ (s,q) . Moreover, their standard covers and costandard hulls are obtained as indecom-
posable summands of the !- and ∗-fibers of π∗kÑ (s,q) at e, respectively. Equivalently, the former are isotypic
components of HBM

∗ (B(s,q)
e ), which carries commuting actions of (1.1.2.2) and the common centralizer Gs,e;

here Be := Ñ ×g {e} denotes the Springer fiber above e [CG10].

1.2. Coherent Springer theory

Ben-Zvi–Chen–Helm–Nadler have recently “upgraded” Kazhdan–Lusztig’s classification to the entire
derived category of H-modules, i.e., to all unramified principal series representations of Ǧ [BZCHN22].
To do this, we may no longer work one central character at a time; rather, we require a “moduli space”
interpolating between all N (s,q), and a “family of sheaves” interpolating between all (s, q)-Springer sheaves.

The necessary framework is provided by the theory of “higher traces,” as developed by Gaitsgory–
Kazhdan–Rozenblyum–Varshavsky and Campbell–Ponto [GKRV22, CP22]. Namely, to any monoidal
k-linear dg-category A (see §1.8 for our precise assumptions), one may associate two traces. On the one
hand, the Hochschild homology HH(A) is the trace of A in the category of dg-categories, whose symmetric
monoidal structure is provided by the Lurie tensor product. On the other hand, the categorical trace

Tr(A) := A ⊗
A⊗A

A

is the trace of the category of A-modules in the “2-Morita category” comprising module categories over
monoidal dg-categories. The categorical trace is itself a dg-category, and carries a “universal trace functor”

(1.2.0.1) [−] : A→ Tr(A)

coequalizing left and right multiplication in A. In particular, letting 1A denote the monoidal unit of A, we
obtain a distinguished object [1A] ∈ Tr(A). If the monoidal structure on A is furthermore rigid, then the
Hochschild homology of A inherits a k-algebra structure, and we have a canonical algebra isomorphism

(1.2.0.2) HH(A) ' EndTr(A)([1A])op

paralleling (1.1.2.2).
Ben-Zvi et al. apply this framework to the natural categorification of (1.1.2.1), i.e., the mixed affine

Hecke category
Hcoh := QC!(Ñ ×g Ñ/G̃)

consisting of ind-coherent sheaves on the derived Steinberg stack. More specifically, they identify the cate-
gorical trace of Hcoh with ind-coherent sheaves on the derived loop space (i.e., the derived self-intersection
of the diagonal) of the quotient stack g/G̃, supported on the nilpotent cone:

Tr(Hcoh) ' QC!(L(N̂/G̃)).
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At the level of k-points, this loop space is simply the classical inertia

L(N̂/G̃)(k) ∼= {(e, s, q) ∈ N × G̃ : ses−1 = q2e}/G̃,
so it may be regarded as a moduli stack of “all” Deligne–Langlands parameters as in (1.1.1.1). However,
to obtain a good geometric structure, we have had to drop the semisimplicity assumption on s. A clear
candidate for our desired “family of (s, q)-Springer sheaves” is now the coherent Springer sheaf

(1.2.0.3) S := Lπ∗OL(Ñ/G̃) ∈ QC!(L(N̂/G̃)),

that is, the pushforward of the structure sheaf under the loop space-analog of the Springer resolution. Ben-Zvi
et al. confirm this expectation, identifying the universal trace functor (1.2.0.1) with a specific correspondence;
in particular, they show that the trace of the monoidal unit identifies with S. Finally, they show that the
mixed affine Hecke category is rigid, and that its Hochschild homology identifies with the k-linearization Hk
via (1.1.2.1) and the Chern character on K-theory. Combining these results with (1.2.0.2) yields:

1.2.1. Theorem ([BZCHN22]). The k-linearization of H is isomorphic to the endomorphism algebra
of the coherent Springer sheaf, i.e.,

(1.2.1.1) Hk ' HH(Hcoh) ' EndL(N̂/G̃)(S)op,

and all nonzero cohomology groups vanish.

This result is closely reminiscent of (1.1.2.2). In fact, the analogy between the coherent Springer sheaf
and the (s, q)-Springer sheaves can be made precise: the completion of S at any semisimple (s, q) ∈ G̃ is
“Koszul dual” to π∗kÑ (s,q) [Che23].

Finally, Theorem 1.2.1 implies that the category of H-modules identifies with the full subcategory of
QC!(L(N̂/G̃)) generated by S, that is,

(1.2.1.2) Hk -mod ' 〈S〉 ↪→ QC!(L(N̂/G̃)).

The functor exhibits many other desirable properties, such as compatibility with parabolic induction, which
we will not discuss further. More broadly, the embedding (1.2.1.2) realizes the conjectural “categorical local
Langlands correspondence” formulated by Zhu, Hellmann, and Fargues–Scholze for the unramified principal
series of Ǧ [Zhu21, Hel23, FS21].

1.3. The asymptotic affine Hecke algebra

The affine Hecke algebra satisfies a curious property, first observed by Lusztig: namely, ignoring roots
of unity, the set of simple Hq-modules is canonically independent of q. This phenomenon may be seen quite
explicitly at the level of Deligne–Langlands parameters. Given any (e, s, q) ∈ L(N̂/G̃)(k), we may extend
the nilpotent e to an sl2-triple in g by means of the Jacobson–Morozov theorem. This sl2-triple lifts to a
homomorphism ϕe : SL2 → G sending [ 0 1

0 0 ] to the exponential of e, which yields a cocharacter

λ̌e : Gm → G̃

t 7→ (ϕe(
[
t 0
0 t−1

]
), t)

centralizing e. The triple (e, (s, q) · λ̌e(t)) is therefore another point of L(N̂/G̃)(k), and it is not hard to see
that this procedure gives a bijection between q- and qt-Deligne–Langlands parameters.

To explain this phenomenon, Lusztig constructed an asymptotic affine Hecke algebra J , defined over Z,
along with an injective homomorphism

φ : H ↪→ J ⊗Z Z[v±1]

closely relating the two Z[v±1]-algebras [Lus87a, Lus87b, Lus89]. More precisely:
(1) The algebra J is equipped with a distinguished basis indexed by W aff , an analog of the Kazhdan–

Lusztig basis of H. The relations between the basis elements of J are suitable “truncations” of the
relations between the corresponding Kazhdan–Lusztig basis elements. Thus, J may be regarded
as a sort of combinatorial “limit” of Hq as the parameter q tends to 0.

(2) Using these bases, Lusztig defined “completions” of H and J [v±1], and showed that φ induces an
isomorphism between these completions. In particular, elements of J admit power series expressions
in the elements of H.
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(3) The algebra J splits into blocks Je indexed by the G-orbits in N , giving a spectral “refinement”
of Bernstein’s decomposition. Moreover, the simple Je[v±1]-modules are canonically indexed by
Deligne–Langlands parameters with nilpotent e, and restrict along the component φe : H → Je[v±1]
to the corresponding standard modules of H (for q sufficiently generic). Thus, the map φ explicitly
realizes the bijections between sets of simple Hq-modules for varying q.

The algebra J therefore captures much of the structure and representation theory of H, and has found many
applications in its study [HN14, Daw22, BDD22].

Two other perspectives on J have since appeared in the literature. First, Braverman–Kazhdan have
interpreted J in terms of harmonic analysis on Ǧ [BK18]. Given any smooth Ǧ-representation V , the in-
variants of V under an Iwahori subgroup of Ǧ carry an action of the Iwahori–Hecke algebra H

q
1/2
F

(as in §1.1).
Braverman–Kazhdan proved that this H

q
1/2
F

-action extends uniquely to a J -action if V is tempered, and
moreover, if V is parabolically induced from the twist of a tempered representation by a positive character.
Note that such representations generate all finite-length Ǧ-representations by the Langlands classification;
Braverman–Kazhdan’s result thus provides an additional sense in which J captures the representation the-
ory of H [Sil78, BW00]. Finally, Braverman–Kazhdan showed that J arises as the Iwahori bi-invariants
of a larger algebra, intermediate between the Hecke algebra of Ǧ and the convolution algebra of Schwartz
functions on Ǧ.

Second, Lusztig conjectured an algebraic description of J as a direct sum of certain “matrix” algebras.
More precisely, for any e ∈ N , let Ze denote the reductive part of the centralizer Ge. Lusztig conjectured
that there exists a finite Ze-set Be such that Je ∼= K0(Be×Be/Ze) as a based convolution algebra [Lus89].
The latter may be regarded as a kind of “equivariant” matrix algebra over the representation rings R(Zbe),
where b ∈ Be and Zbe denotes its stabilizer; in particular, its specialization to any semisimple s ∈ Ze is a
semisimple algebra. Several computations in the literature have now established this expectation to be false
[QX23, QX22, BDD22]. In general, Bezrukavnikov–Ostrik show that each b ∈ Be must be twisted by a
certain 2-cocycle in the Schur multiplier of Zbe [BO04]. Moreover, Bezrukavnikov–Losev show that the set
Be appears naturally as the “canonical basis” of K0(Be/Gm), whose existence was originally conjectured by
Lusztig; here Gm acts on Be via the cocharacter λ̌e [BL23, Lus99]. Bezrukavnikov–Ostrik’s 2-cocycles then
“measure” the failure of each basis element to be Zbe-equivariant. Most recently, Qiu–Xi have conjectured
that Je may be embedded in a ring of the form conjectured by Lusztig, when Ze is replaced by a certain
finite cover whose identity component has simply-connected derived subgroup [QX22].

However, a spectral geometric perspective on J , like those in Theorems 1.1.2 and 1.2.1, has not yet
emerged. Only in the case e = 0 has there been progress: when G is simple and simply-connected, Xi has
shown that

J0
∼= K0(B × B/G)

as based convolution algebras [Xi16]. Moreover, the homomorphism φ0 agrees (up to a canonical inner
automorphism of J0) with that given by pushforward and pullback along the correspondence

(1.3.0.1) Ñ ×g Ñ/G̃
idÑ ×pÑ−−−−−−→ Ñ × B/G̃ iB×idB←−−−−− B × B/G̃,

where pÑ : Ñ � B : iB denote the natural projection and inclusion. This map was originally used by Chriss–
Ginzburg to prove Theorem 1.1.2 [CG10]. Intriguingly, at the categorical level, this functor is not monoidal;
to this end, Dawydiak has constructed an intermediate monoidal category receiving a monoidal functor from
Hcoh, along with lifts of the distinguished basis of J0 to this category in types A1 and A2 [Daw21]. Finally,
Qiu–Xi have conjectured a generalization of (1.3) to all e, namely

(1.3.0.2) Je ∼= K0(BGme × BGme /Ze).

Here the fixed-point variety BGme is smooth and projective, so we again obtain a well-behaved convolution
product [QX23]. However, it is no longer clear how to generalize Chriss–Ginzburg’s map to this setting.

The main goal of this thesis is to provide just such a perspective on J . In the ensuing sections, we
describe our extension of Theorem 1.2.1 to J . We then “upgrade” this extension to a categorification of J ,
partially resolving (1.3.0.2). Finally, we give an explicit description of the universal trace functor (1.2.0.1)
for Hcoh, and study its relationship to certain t-structures on either category.
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1.4. Asymptotic coherent Springer theory

The asymptotic version of Ben-Zvi–Chen–Helm–Nadler’s theory stems from two elementary observations.
First, in §1.3, we saw a sense in which the moduli stack L(N̂/G̃) of Deligne–Langlands parameters was
“independent of q.” However, this independence only holds set-theoretically, and not in any geometric sense.
In fact, there are two obstructions to the latter:

(1) The sl2-triples provided by the Jacobson–Morozov theorem cannot be made to depend algebraically
on e. In particular, the cocharacter λ̌e may vary discontinuously as e varies between nilpotent orbits.

(2) Even for fixed e ∈ N , a choice of sl2-triple is only determined up to conjugation by the centralizer
Ge. In particular, the cocharacter λ̌e is not necessarily stable under the action of Ge.

Instead, to obtain J , we must “force” L(N̂/G̃) to be geometrically independent of q. The first obstruction
suggests that we must separate L(N̂/G̃) into nilpotent orbits; choosing representatives for these orbits, we
obtain the disjoint union

⊔
e G̃

e/G̃e of adjoint quotient stacks. The second obstruction suggests that we
must replace G̃e by the stabilizer of our choice of sl2-triple, which is isomorphic to Z̃e = Ze ×Gm; here the
latter factor is given by λ̌e (whereas the former factor does not depend on our choice of λ̌e). Altogether, we
obtain the stack

(1.4.0.1)
⊔
e

Z̃e/Z̃e ∼=
⊔
e

Ze/Ze ×Gm/Gm

which we may regard as a “q-independent” or “asymptotic” stack of Deligne–Langlands parameters.
Second, Bezrukavnikov–Ostrik’s result [BO04] immediately implies the existence of an “asymptotic

coherent Springer sheaf” on this stack satisfying the same property as in Theorem 1.2.1. This sheaf admits
an explicit construction, which we now describe. For any algebraic group K, there is a well-known canonical
bijection (in fact, group isomorphism)

{Schur multiplier of K} ←→ {multiplicative line bundles on K}/ ∼=,

originally noted by Elagin [Ela09]. The latter are line bundles C ∈ Pic(K) equipped with an isomorphism
α : C � C ∼= m∗C, where m : K × K → K denotes the group multiplication. We require α to satisfy the
cocycle condition on the triple product K × K × K, and consider these data up to the obvious notion of
isomorphism.

Thus, for each b ∈ Be, we take (Cb, αb) to be the multiplicative line bundle corresponding to the 2-cocycle
of Zbe appearing in the canonical basis. Letting ib : Zbe ↪→ Ze denote the inclusion, we form the coherent sheaf

(1.4.0.2) SBe :=
⊕
b∈Be

ib,∗C∨b

on Ze. The Ze-action on Be then extends to a natural conjugation-equivariant structure on SBe ; that is, SBe
descends to a coherent sheaf on the adjoint quotient stack Ze/Ze. We may then reinterpret Bezrukavnikov–
Ostrik’s result as giving an isomorphism

(1.4.0.3) Je ' EndZe/Ze(S
Be)op.

Moreover, the latter is evidently concentrated in cohomological degree 0, as in Theorem 1.2.1. In particular,
we obtain a fully faithful inclusion

Je,k -mod ' 〈SBe〉 ↪→ QC!(Ze/Ze)

as in (1.2.1.2). We refer to the sheaf SBe as the asymptotic coherent Springer sheaf at e.
We are now almost ready to state our first main result. Let Se ⊂ g denote the Slodowy slice associated

to our choice of sl2-triple; it is a transversal slice to the G-orbit of e (at e), and carries a natural action of
Z̃e. In particular, the action of Gm repels Se from the point e. Consider the diagram

{e}/Z̃e Se/Z̃e g/G̃

ie

pSe iSe
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whose maps are the natural projection and “inclusions.” Taking loop spaces, we obtain a diagram

Z̃e/Z̃e L(Se/Z̃e) L(g/G̃),

Lie

LpSe LiSe

with the first stack as in (1.4.0.1). The following result appears as Proposition 5.1.2 and Corollary 5.3.14 in
the main text:

1.4.1. Theorem. For any e ∈ N , there is a canonical isomorphism

(1.4.1.1) (LpSe,∗Li∗SeS)Gm ' SBe �OGm ,

where the superscript (−)Gm denotes the weight-0 component with respect to the cocharacter λ̌e. The induced
homomorphism

(1.4.1.2) (LpSe,∗Li∗Se)
Gm : EndL(N̂/G̃)(S)op → EndZ̃e/Z̃e(S

Be �OGm)op

then identifies with φe,k via (1.2.1.1) and (1.4.0.3). Finally, the functors of extension and restriction of
scalars along φe,k identify with the sheaf-theoretic operations

(1.4.1.3)

Hk -mod Je,k[v±1] -mod

〈S〉 〈SBe �OGm〉,

∼

Indφe,k

Resφe,k

∼

(LpSe,∗Li
∗
Se

)Gm

prSLie,∗

where prS denotes the right-adjoint to (1.2.1.2).

The weight truncation (−)Gm may be regarded as enforcing the “truncated” relations defining J as in
§1.3; or informally, as further enforcing “q-independence” at the sheaf-theoretic level. Note that in place
of LpSe,∗Li∗Se , we can “almost” write Li∗e. Indeed, we can make rudimentary sense of Li∗e as a functor on
categories of ind-coherent sheaves (even though it does not preserve left t-boundedness), and there is then a
canonical isomorphism (Li∗eS)Gm ' (LpSe,∗Li∗SeS)Gm . However, this functor Li∗e is not in general left-adjoint
to Lie,∗; moreover, the functor LpSe,∗Li∗Se is the one which arises naturally in the course of our proof (as
we shall explain). Nonetheless, when we restrict to the subcategory 〈S〉 ⊂ QC!(L(N̂/G̃)), we do obtain an
adjunction as in (1.4.1.3).

The proof of the remainder of Theorem 1.4.1 relies on three technical tools. The first is an explicit
complex computing the universal trace functor for Hcoh (and in particular, the sheaf S), which we term
the Block–Getzler sheaf. Indeed, it is a natural enhancement of the “Block–Getzler complex” introduced in
[BG94] (and fruitfully applied in [Che20, BZCHN22]) for computing Hochschild homology in equivariant
settings. Here is a special case of our construction; for more precise statements, see Proposition 3.4.11 and
the discussion following Definition 3.4.3.

1.4.2. Proposition. Let X be a derived scheme, let G be a reductive group, and suppose the quotient
stack X/G is perfect2. Let A be a compactly generated rigid monoidal category admitting a central functor
Ψ: QC(X/G)→ A from the category of quasi-coherent sheaves onX/G, and let HomX/G and HomBG denote
the internal Hom spaces of A in the categories QC(X/G) and QC(BG), respectively. For any compact object
a ∈ Ac, consider the simplicial complex of sheaves on (X ×G)/G whose n-simplices are given by⊕

a0,...,an∈Ac
HomBG(a0, a1)⊗k · · · ⊗k HomBG(an−1, an)⊗k HomX/G(an, a0 ⊗ a)�OG,

and whose face maps d0, . . . , dn are the natural extensions of those for the Block–Getzler complex. The to-
talization of this complex can be lifted to an object BGX/G(A, a) ∈ QC(L(X/G)) using an explicit homotopy.
Moreover, we have a natural isomorphism

BGX/G(A, a) ' Tr(Ψ)R([a]),

2In the sense of Ben-Zvi–Francis–Nadler [BZFN10].
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where Tr(Ψ)R is right-adjoint to the natural functor

(1.4.2.1) Tr(Ψ): QC(L(X/G)) ' Tr(QC(X/G))→ Tr(A).

More generally, we allow for the categorical traces (1.4.2.1) to be taken with respect to certain monoidal
endofunctors of QC(X/G) and A, and for [a] to be replaced by the “2-categorical class” of an A-module
category in the sense of [GKRV22]. In particular, regarding S as a quasi-coherent sheaf, we obtain an
expression S ' BGg/G̃(Hcoh,1Hcoh). Better yet, using (1.2.0.3), we obtain the simpler expression

(1.4.2.2) Li∗SeS ' BGSe/Z̃e(QC(S̃e/Z̃e),OS̃e/Z̃e)

for any Slodowy slice Se, where S̃e := Ñ ×g Se denotes its resolution.
Our second technical tool is the “noncommutative Springer resolution” constructed by Bezrukavnikov–

Mirković [BM13]. This is a remarkable tilting vector bundle E ∈ QC(Ñ/G), admitting many desirable
properties. Most saliently, for any Slodowy slice Se, the restriction E|S̃e admits a graded lift (canonical up
to twisting) such that the endomorphism algebra

ASe := EndS̃e/Z̃e(E|S̃e)

is concentrated in non-negative weights. Moreover, the weight-0 component AGm
Se

is semisimple, and its
simple modules identify with the canonical basis of K0(Be/Gm) discussed in §1.3. Combining (1.4.2.2) with
the equivalence

(1.4.2.3) HomS̃e/Z̃e
(E|S̃e ,−) : QC(S̃e/Z̃e)

∼−→ Aop
Se

-modZ̃e

thus yields an explicit complex

(1.4.2.4) · · · → ASe ⊗k ASe ⊗k ASe �OZ̃e
d0−d1+d2−−−−−−→ ASe ⊗k ASe �OZ̃e

d0−d1−−−−→ ASe �OZ̃e
for Li∗SeS, concentrated in non-negative weights. Applying the functor (LpSe,∗)Gm thus yields a complex

· · · → AGm
Se
⊗k AGm

Se
⊗k AGm

Se
⊗k OZ̃e

d0−d1+d2−−−−−−→ AGm
Se
⊗k AGm

Se
⊗k OZ̃e

d0−d1−−−−→ AGm
Se
⊗k OZ̃e ,

and it is not hard to show using (1.4.0.2) that this complex computes SBe �OGm as in (1.4.1.1).
Finally, our third technical tool is a more general notion of “monoidal functor,” which is exactly adapted

for identifying induced homomorphisms such as (1.4.1.2). The following later appears as Definition 5.2.4
(without the compact-generation assumptions):

1.4.3. Definition. Let A and B be compactly generated rigid monoidal categories. A homomorphism
datum from A to B is a triple (M, β, β̌) consisting of a compactly generated right-dualizable (B,A)-bimodule
M, along with left B-module homomorphisms β : B→M and β̌ : M→ B which

(1) preserve compact objects; and
(2) induce inverse equivalences on Hochschild homology.

We say that a homomorphism datum is unital if additionally β̌ ◦ β ' idB.

Given a homomorphism datum (M, β, β̌), we may form the composite functor

(1.4.3.1) F(M,β,β̌) : A
actM−−−→ EndB(M)rev β̌◦−◦β−−−−→ EndB(B)rev ' B,

where the superscript (−)rev denotes the reverse monoidal structure, and actM denotes the right A-action
on M. Explicitly, for a ∈ A, we have

F(M,β,β̌)(a) = β̌(β(1B)⊗ a).

In general, F(M,β,β̌) is not monoidal. However, it preserves the monoidal units if (M, β, β̌) is unital, and it
induces an algebra homomorphism

HH(F(M,β,β̌)) : HH(A)→ HH(B)

provided that HH(A) is concentrated in degree 0 and the k-linearized Chern character K0(A)k → HH0(A)
is surjective (as in Theorem 1.2.1). This closely parallels the structures we saw for Chriss–Ginzburg’s
homomorphism in §1.3. Finally, on categorical traces, we have a composite functor

FTr
(M,β,β̌)

: Tr(A)
Tr(M)−−−−→ Tr(B)

pr[B]−−−→ 〈[1B]〉
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sending [1A] to [1B], and the induced homomorphism

(1.4.3.2) FTr
(M,β,β̌)

: EndTr(A)([1A])op → EndTr(B)([1B])op

identifies with HH(F(M,β,β̌)) via (1.2.0.2).
We may fit (1.4.1.2) into this framework as follows. On the one hand, as shown in [BL23], we have a

monoidal equivalence

(1.4.3.3) HomHcoh(E∨ � E ,−) : Hcoh ∼−→ Ag ⊗O(g) Aop
g -modG̃ren =: Hmod,

where the latter denotes the category of G̃-equivariant Ag-bimodules, “renormalized” so that its compact
objects are cohomologically bounded complexes with finitely generated cohomology (rather than perfect
complexes). This equivalence is moreover compatible with the right module structures on (1.4.2.3). On the
other hand, for a Slodowy slice Se, we may consider the monoidal category

(1.4.3.4) Jmod
e := AGm

Se
⊗k AGm,op

Se
-modZe

of Ze-equivariant AGm
Se

-bimodules. By Bezrukavnikov–Losev’s result in §1.3, its Hochschild homology iden-
tifies canonically with Je; moreover, we show that it is rigid, and that there are natural identifications
Tr(Jmod

e ) ' QC!(Ze/Ze) and [1Jmod
e

] ' SBe , exactly recovering (1.4.0.3). Finally, the triple

(1.4.3.5) Φmod
Se := (AGm

Se
⊗k Aop

Se
-modZ̃e ,− ⊗

AGm
Se

ASe ,− ⊗
ASe
AGm
Se

)

carries a natural structure of unital homomorphism datum fromHmod to Jmod
e ⊗Rep(Gm); here the latter two

functors are given by extension of scalars along the natural inclusion and projection AGm
Se

↪→ ASe � A
Gm
Se

.
It is then straightforward to identify the functor FTr

Φmod
Se

|〈S〉 with (LpSe,∗Li∗Se)
Gm and the homomorphism

HH(FΦmod
Se

) with φe,k. In fact, seminal results of Bezrukavnikov on the structure of the affine Hecke cate-
gory [Bez16] essentially reduce the latter identification to Lusztig’s original definition of φe. Our general
formalism then implies the desired identification of (1.4.1.2).

1.5. Asymptotic Kazhdan–Lusztig theory

We now explain how to upgrade Theorem 1.4.1 to a categorification of Je, as suggested by Qiu–Xi’s
conjecture (1.3.0.2). More broadly, given the expression (1.2.0.3) for S, we might hope that SBe is likewise
obtained by pushing forward the structure sheaf of a “q-independent” analog of the stack L(Ñ/G̃). Qiu–Xi’s
conjecture suggests that this stack should be given by the loop space L(BGme /Ze), according with the general
“asymptotic” philosophy of the previous section. We therefore define

Jcoh
e := QC!(BGme × BGme /Ze)

as in (1.4.3.4). General results of Ben-Zvi–Nadler–Preygel yield Tr(Jcoh
e ) ' QC!(Ze/Ze). Moreover, the

object [1Jcoh
e

] identifies with the pushforward LπGm
e,∗ OL(BGm

e /Ze)
, where πGm

e : BGme /Ze → BZe denotes the
projection [BZNP17a].

In general, the categories Jcoh
e and Jmod

e are inequivalent. However, their categorical traces are equiv-
alent; if we could further identify [1Jcoh

e
] with [1Jmod

e
], then (1.2.0.2) would yield a monoidal identification

HH(Jcoh
e ) ' HH(Jmod

e ). Our strategy is to imitate (1.4.3.5) by endowing the (Jcoh
e ⊗Rep(Gm),Hcoh)-bimodule

QC!(BGme × S̃e/Z̃e) with the structure of a unital homomorphism datum from Hcoh to Jcoh
e ⊗Rep(Gm). This

amounts to constructing a pair of Coh(BZ̃e)-linear functors between the bounded derived categories of co-
herent sheaves

(1.5.0.1) Coh(BGme /Z̃e)→ Coh(S̃e/Z̃e)→ Coh(BGme /Z̃e),

which compose to the identity and induce inverse equivalences on Hochschild homology. One can then use
our general formalism to automatically produce comparison maps between [1Jcoh

e
] and [1Jmod

e
].

For e = 0, Chriss–Ginzburg’s construction (1.3.0.1) suggests the functors p∗
Ñ

and i∗B, respectively. How-
ever, for general e, there is no projection S̃e → BGme . Instead, we are rescued by Halpern-Leistner’s theory of
“derived Θ-stratifications” [HL21]. The repelling Gm-action on S̃e induces a Białynicki-Birula stratification,
which is in particular a derived Θ-stratification of S̃e (with respect to our conventions, which different from
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Halpern-Leistner’s by a sign). Fix a tuple of integers w := (wα)α indexed by these strata (equivalently,
by Ze-orbits of connected components in BGme ). Halpern-Leistner’s “derived Kirwan surjectivity” provides
an infinite semiorthogonal decomposition of Coh(S̃e/Z̃e), depending on w, into subcategories whose sum
is equivalent to Coh(BGme /Z̃e). As for any semiorthogonal decomposition, we obtain inclusion and projec-
tion functors HLw, ȞLw as in (1.5.0.1). These functors manifestly compose to the identity, induce inverse
equivalences on Hochschild homology, and are Coh(BZe)-linear. However, they are not Coh(BGm)-linear
(essentially, because the semiorthogonal decomposition depends on the choice of Gm-weights w).

Nonetheless, we may modify the functors HLw, ȞLw to be Coh(BGm)-linear in a canonical fashion.
Namely, define HLgr

w via the composition

Coh(BGme /Z̃e) Coh(S̃e/Z̃e)

Coh(BGm)⊗ Coh(BGme /Ze) Coh(BGm)⊗ Coh(BGme /Z̃e) Coh(BGm)⊗ Coh(S̃e/Z̃e),

∼

HLgr
w

id⊗inw id⊗HLw

−⊗−

where inw denotes the weight-twist 〈−wα〉 over the connected components in α. This functor is evi-
dently Coh(BZ̃e)-linear. To construct its retraction ȞLgr

w , we establish the following “structure theorem”
for Coh(S̃e/Z̃e):

1.5.1. Proposition. Write HLgr
w for the induced functor QC!(BGme /Z̃e)→ QC!(S̃e/Z̃e), and HLgr,R

w for
its right adjoint. Let

Tw := HLgr,R
w ◦HLgr

w ∈ Alg(EndQC!(BZ̃e)
(QC!(BGme /Z̃e))) ' Alg(Jcoh

e )

denote the QC!(BZ̃e)-linear monad (or equivalently, algebra object of Jcoh
e acting via convolution). Then

there is a canonical equivalence
QC!(S̃e/Z̃e) ' Tw -modQC!(BGm

e ) .

Moreover,
(1) the monad Tw is concentrated in non-negative weights;
(2) the weight-0 component TGm

w is upper-triangular with respect to the standard partial order on
Białynicki-Birula strata; and

(3) the diagonal component of TGm
w is isomorphic to the identity monad (equivalently, the monoidal

unit 1Jcoh
e

).
In particular, there are canonical monad homomorphisms

(1.5.1.1) idQC!(BGm
e /Z̃e)

→ Tw → idQC!(BGm
e /Z̃e)

composing to the identity.

This result appears as Proposition 6.2.8 and Corollary 6.2.10 in the main text. The proof is essentially a
straightforward deduction from Halpern-Leistner’s theory, and applies more generally to suitable derived Θ-
stratifications over the stack BGm. Notably, this proposition gives a precise analogy between the “coherent”
categories QC!(BGme /Z̃e),QC!(S̃e/Z̃e) and the “module” categories AGm,op

Se
-modZ̃e ,Aop

Se
-modZ̃e . Indeed, the

algebra ASe satisfies the same three conditions as Tw with respect to the canonical basis Be; however, unlike
Tw, it has no unipotent tail in weight-0, and it is concentrated in cohomological degree 0. The definition of
Φmod
Se

now suggests taking extension of scalars along the homomorphisms (1.5.1.1). This recovers HLgr
w , and

further produces ȞLgr
w . Finally, we arrive at our second main result, which appears later as Theorem 6.3.5:

1.5.2. Theorem. The unital homomorphism datum

(1.5.2.1) Φcoh
Se,w := (QC!(BGme × S̃e/Z̃e), idQC!(BGm

e /Z̃e)
⊗HLgr

w , idQC!(BGm
e /Z̃e)

⊗ȞLgr
w )

from Hcoh to Jcoh
e ⊗ Rep(Gm) categorifies Theorem 1.4.1. More precisely, the latter functors induce a

canonical isomorphism

(1.5.2.2) [1Jcoh
e ⊗Rep(Gm)] ' SBe �OGm ,
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and the functor FTr
Φcoh
Se,w
|〈S〉 identifies with (LpSe,∗Li∗Se)

Gm . It follows that the algebra homomorphism

HH(FΦcoh
Se,w

) : HH(Hcoh)→ HH(Jcoh
e ⊗ Rep(Gm))

canonically identifies with φe,k (and all nonzero cohomology groups vanish). Finally, the Chern character
induces algebra isomorphisms

(1.5.2.3) Je,k[v±1] ' HH(Jcoh
e ⊗ Rep(Gm)) ' K0(BGme × BGme /Z̃e)k,

depending canonically on the choice of w. In particular, the isomorphisms obtained from two weight-vectors
w and w′ differ by a canonical inner automorphism of Je,k[v±1].

Specializing (1.5.2.3) at any point of Gm now yields an isomorphism of the form conjectured by Qiu–Xi.
The proof of this theorem is straightforward once one establishes (1.5.2.2), which follows from a simple
fiber-dimension counting argument. When e = 0, we essentially recover Chriss–Ginzburg’s construction.
Moreover, by results of Ben-Zvi–Nadler–Preygel, the small analog of the intermediate monoidal category of
(1.4.3.1) recovers a “Koszul-dual” version of Dawydiak’s categorification of J0 [BZNP17b, Daw21]. While
the functor to this category is monoidal, its 0th K-theory is generally not isomorphic to J0.

Finally, the isomorphism (1.5.2.2) can be effectively used to compute the sheaf SBe , and hence the
structure of Je,k, when BGme admits a (suitably equivariant) full exceptional collection. Such a computation
is often considerably more laborious using the presentation of Je by generators and relations. The existence
of such full exceptional collections in many examples suggests existence of a more canonical construction of
Qiu–Xi’s isomorphism (i.e., not depending on a choice of weights w). Unfortunately, such a construction is
not clear from the present work.

1.6. Bounding the universal trace functor

In particular, Theorem 1.5.2 shows that the universal trace [1Jcoh
e

] is concentrated in cohomological
degree 0, i.e., is a sheaf rather than a complex. This may be regarded as a “derived enhancement” of
De Concini–Lusztig–Procesi’s results on the Hodge numbers of BGme and its fixed-point loci [DCLP88].
Given the parallels we have drawn, one might hope that the coherent Springer sheaf satisfies the same
property. Such a statement has been conjectured by Ben-Zvi–Chen–Helm–Nadler and Zhu, and a proof has
independently been announced by the latter and Hemo [BZCHN22, Zhu21].

More generally, we study the relationship between the universal trace functor

(1.6.0.1) [−] : Hcoh → QC!(L(N̂/G̃))

and the t-structures on either category, making essential use of the Block–Getzler sheaf introduced in §1.4.
Recall that the category of ind-coherent sheaves on any locally almost of finite type Artin stack carries
a standard t-structure [Gai13]. However, the mixed affine Hecke category carries an additional “exotic”
t-structure coming from the equivalence Hcoh ' Hmod of (1.4.3.3). Our third main result (Theorem 4.3.2 in
the sequel) gives general conditions for (co)connectivity of a sheaf [F ] in terms of this exotic t-structure:

1.6.1. Theorem. The functor (1.6.0.1) has cohomological amplitude in [− dimN , 0] with respect to the
exotic t-structure on Hcoh and the standard t-structure on QC!(L(N̂/G̃)) (in particular, it is right t-exact).
Moreover, let F be a compact object of Hcoh, and suppose that the right monoidal dual F∨,R is connective
for the exotic t-structure. Then [F ] is coconnective for the standard t-structure.

In fact, the left and right monoidal duals of F are canonically isomorphic; we give an explicit formula
for these duals using Grothendieck–Serre duality in Remark 3.3.7. Before commenting on the proof of this
theorem, we describe some simple consequences. Recall that the category QC(Ñ/G̃) carries a natural weak
action of the affine braid group Baff associated to the extended affine Weyl group W aff [BR12]. Specifically,
the action of any a ∈ Baff is given by a sheaf Ka ∈ Hcoh, which acts on QC(Ñ/G̃) via left convolution. Now,
the canonical projection Baff �W aff admits a section, which sends w ∈W aff to the product of generators of
Baff corresponding to any reduced decomposition of w. We denote by Baff

+ the submonoid of Baff generated
by the image of this section. Moreover, Baff possesses a “translation subgroup” isomorphic to the weight
lattice of G; the corresponding sheaves Ka are simply given by ∆∗OÑ (λ), where ∆: Ñ ↪→ Ñ ×g Ñ denotes
the diagonal map, and OÑ (λ) is the usual G̃-equivariant line bundle on Ñ obtained from the weight λ.
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Finally, Bezrukavnikov–Mirković have shown that Ka is connective for the exotic t-structure on Hcoh

whenever a ∈ Baff
+ [BM13]. Theorem 1.6.1 now immediately implies:

1.6.2. Corollary. For any a ∈ Baff
+ , the sheaf [Ka] is connective, and the sheaf [Ka−1 ] is coconnective.

In particular, for any dominant (resp. anti-dominant) weight λ, the sheaf [∆∗OÑ (λ)] is connective (resp.
coconnective). The coherent Springer sheaf S ' [∆∗OÑ ] therefore lies in the heart Coh(L(N̂/G̃))♥.

This result is Corollary 4.3.4 in the sequel. We now briefly outline the proof of Theorem 1.6.1. The
right t-exactness statement is essentially immediate from Proposition 1.4.2. Indeed, the Block–Getzler sheaf
over g/G̃ yields a complex of the form (1.4.2.4), with the right-most copy of Ag replaced by a connective
Ag-bimodule.

The coconnectivity statement is far more involved. We first reduce coconnectivity of [F ] to coconnectivity
of its local cohomology at each nilpotent orbit, using the usual exact triangle for a complementary open and
closed subscheme. Next, using a standard cotangent complex argument, we reduce to showing that the local
cohomology of Li∗Se [F ] along the closed substack Z̃e/Z̃e ⊂ L(Se/Z̃e) is coconnective, for any Slodowy slice
Se. At this point, we require two additional technical tools. First, we construct a cover of Ze trivializing all
cocycles appearing in the canonical basis:

1.6.3. Proposition. There exists a finite cover Zcov
e � Ze such that for any b ∈ Be, the multiplicative

line bundle (Cb, αb) on Zbe is trivialized after pulling back to Zcov,b
e .

This result appears as Proposition 2.3.2 in the main text; its proof makes use of the general existence
of a Schur covering of Ze, combined with a careful type-by-type analysis of the structure of Ze. Since the
projection Zcov

e � Ze is faithfully flat, we reduce to showing an analogous coconnectivity statement after
pulling back to the stack L(Se/Z̃

cov
e ). This essentially amounts to constructing a bounded model for the

Block–Getzler sheaf (now over Se/Z̃cov
e ) used previously to establish the right t-exactness statement.

To do this, we combine Proposition 1.6.3 with a result of Bezrukavnikov–Mirković (and Kaledin) to
show that ASe is Zcov

e -equivariantly Morita equivalent to a Koszul quadratic algebra Acov
Se

[BM13]. We may
therefore compute the Block–Getzler sheaf using Acov

Se
in place of ASe . As our second technical tool, we

construct a Koszul bimodule resolution of Acov
Se

, which has length dim S̃e by Grothendieck–Serre duality (see
Proposition 4.1.4). This gives the desired bounded model; we conclude by using Grothendieck local duality
and the assumptions on F to bound its local cohomology.

Separately, the existence of the cover Zcov
e allows us to partially resolve the other conjecture of Qiu–Xi

mentioned in §1.3. The following appears as Proposition 2.4.12 and Corollary 2.3.5 in the sequel:

1.6.4. Proposition. For any e ∈ N , there is a based injection of algebras

Je ↪→ K0(Be ×Be/Z
cov
e ).

Moreover,
(1) the latter is finitely generated as a (left or right) Je-module;
(2) the identity component of Zcov

e has simply-connected derived subgroup; and
(3) if all simple factors in G are of classical types, and the identity component of Ze has simply-

connected derived subgroup, then we may take Zcov
e = Ze.

1.7. Overview

We now give a brief overview of the contents of this thesis. Chapter 2 consists of preliminaries on
cocycles, the noncommutative Springer resolution, the canonical basis, the asymptotic affine Hecke algebra,
and Bezrukavnikov–Ostrik’s structure theorem. The only new content is the construction of the covering
group Zcov

e in §2.3, and the partial resolution of Qiu–Xi’s conjecture in §2.4. The latter section also contains
the construction of the asymptotic coherent Springer sheaf, which is of philosophical importance to the rest
of the thesis.

In Chapter 3, we review the formalism of 2-categorical traces from [GKRV22], and recall its application
to symmetric monoidal categories of quasi-coherent sheaves and convolution categories such as Hcoh (as
developed in work of Ben-Zvi, Francis, Nadler, Preygel, and others). Finally, in §3.4, we construct the
Block–Getzler sheaf, and show that it computes the 2-categorical class map (under certain assumptions).
This result is a key technical tool throughout the rest of the text.
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Chapter 4 is dedicated to the results of §1.6. In §4.1, we construct a Koszul resolution for Koszul
quadratic algebras with multiple simple modules, which we later use to construct a bounded model for the
Block–Getzler sheaf. In §4.2, we construct the exotic t-structure on Hcoh (and its analog over a Slodowy
slice) using Preygel’s formalism of “regularization.” Finally, in §4.3, we combine these technical tools with
the Block–Getzler sheaf to prove Theorem 1.6.1. In particular, we deduce the (co)connectivity statement in
Corollary 1.6.2 for the braid group action, and conclude that the coherent Springer sheaf lies in the heart.

Chapter 5 is dedicated to the results of §1.4. In §5.1, we use the Block–Getzler sheaf to show that
the coherent Springer sheaf “restricts” to the asymptotic coherent Springer sheaf. Next, in §5.2, we de-
velop the formalism of homomorphism data (as described in Definition 1.4.3 and the ensuing discussion).
Finally, in §5.3, we construct a homomorphism datum categorifying φe, and apply this formalism to deduce
Theorem 1.4.1.

Chapter 6 corresponds to the content of §1.5. We begin in §6.1 with a review of Halpern-Leistner’s theory
of “derived Θ-stratifications.” The following section (§6.2) is then dedicated to proving Proposition 1.5.1 in
this more general setting: we construct the functor HLgr

w , establish structural results for the “graded monad”
Tw, and deduce existence of the retraction ȞLgr

w . Finally, in §6.3, we use these functors to construct a family
of homomorphism data categorifying φe (as in Theorem 1.5.2), and deduce Qiu–Xi’s K-group conjecture
over the field k. We conclude with an example demonstrating how the asymptotic coherent Springer sheaf
may be computed from a (suitably equivariant) full exceptional collection in Coh(BGme ).

1.8. Assumptions and notation

Notational conventions in this thesis are largely drawn from a combination of [GR17a, GR17b] and
[BZCHN22]. Most of these conventions are explained (or at least indicated) throughout the text, but we
will collect some of the most salient notions here for the reader’s reference.

We work throughout over an algebraically closed field k of characteristic 0. All algebro-geometric objects
(schemes, stacks, etc.) are implicitly defined over k, and we sometimes write ∗ := Spec k for this base scheme.
We will mostly work with k-algebras, aside from the rings H and J , which are defined over Z; we will use
the notation (−)k := − ⊗Z k to denote the k-linearization. Likewise, all dg-categories will be k-linear.
Crucially, unless explicitly stated otherwise, all categories, functors, and Hom-spaces in this thesis are dg-
derived, and all limits and colimits are homotopical. Thus, we will write “(1, 1)-category” for the classical
notion of category, and take cohomology to recover non-derived functors from their derived counterparts. To
this end, all (co)chain complexes in this thesis are cohomologically indexed. Given a category C equipped
with a t-structure, we let C≤0 and C≥0 denote its full subcategories of connective and coconnective objects,
respectively, and C♥ denote its heart. We further denote by ι≤0 a τ≤0 and τ≥0 a ι≥0 the usual inclusion
and truncation functors, and by H∗ the functor of (co)chain cohomology. In particular, we use HH to denote
the Hochschild complex, rather than its cohomology groups H∗HH.

Our conventions for dg-categories follow those of [GR17a, Ch. 1], which will be a sufficient reference
for our purposes. Thus, we will make frequent use of Lurie’s language of ∞-categories and higher algebra,
as in [Lur09, Lur17]. In particular, we let Vectk denote the symmetric monoidal, cocomplete, stable
∞-category of chain complexes of vector spaces (obtained by applying the dg-nerve construction to the
usual pre-triangulated dg-category, see [Lur17, Cons. 1.3.1.6]). We use the term dg-category to mean a
(presentable) cocomplete stable ∞-category equipped with a Vectk-module structure. All functors between
dg-categories will be continuous (i.e., colimit preserving) unless explicitly stated otherwise. The ∞-category
dgCatk of dg-categories (and continuous functors) carries a symmetric monoidal structure given by the
Lurie tensor product, with unit object Vectk. For any dg-category C, we let Cc denote the full subcategory
of compact objects (i.e., those X ∈ C for which HomC(X,−) preserves countable filtered colimits). If C
is compactly generated, then we may recover it as the Ind-completion Ind(Cc). Moreover, given an object
X ∈ C, we write 〈X〉 ⊂ C for the full subcategory weakly generated by X. Finally, given a symmetric
monoidal dg-category C and an algebra object A ∈ Alg(C), we let A -modC denote the category of A-module
objects in C, and A -perfC := A -modcC the full subcategory of A-perfect objects. We omit the subscript C

when C = Vectk. When C = dgCatk, we obtain the notion of monoidal dg-category A, and let A -mod
denote the (∞, 2)-category of A-module categories as in [GKRV22, §3.6] (in fact, the (∞, 2)-structure on
dgCatk ' Vectk -mod will be central to this thesis).
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We work exclusively with the language of derived algebraic geometry, primarily following [GR17a]
(though useful references abound). Here, (1, 1)-functors-of-points from classical commutative rings to sets
are replaced by prestacks, which are ∞-functors from connective commutative dg-k-algebras to simplicial
sets. Unless explicitly specified as “classical,” all schemes, stacks, fiber products, etc., are to be understood
in the derived sense.3 We will denote the operation of classical truncation by (−)cl, reserving the notation
π0 for sets of connected components. Given a prestack X, we will sometimes write x ∈ X to mean “x is a
k-point of X.” We write LX for the cotangent complex of X (if it exists). Given a map f : X→ Y, we write
df : f∗LY → LX for the codifferential, and ∆X/Y : X→ X×Y X for the relative diagonal.

Given a prestack X, we let QC(X) denote the symmetric monoidal dg-category of quasi-coherent sheaves,
defined by right Kan extension from the assignment Spec(A) 7→ A -mod on affine derived schemes; it carries
a canonical t-structure induced from that on A -mod. We let Perf(X) ⊂ QC(X) denote the full subcategory
spanned by dualizable objects, i.e., those sheaves whose pullback to any affine scheme is quasi-isomorphic
to a bounded complex of vector bundles. When X is perfect (see Definition 3.2.9, as well as [BZFN10]),
we have QC(X) ' Ind(Perf(X)). When X is a scheme which is almost of finite type, we let Coh(X)
(resp. Coh−(X),Coh+(X)) denote the full subcategory of QC(X) comprising cohomologically bounded (resp.
bounded above, bounded below) complexes with coherent cohomology; if X is eventually coconnective, we
have Perf(X) ⊂ Coh(X). When the prestack X is locally almost of finite type, we let QC!(X) denote
the dg-category of ind-coherent sheaves, defined by a suitable right Kan extension from the assignment
X 7→ Ind(Coh(X)); if X is furthermore an Artin stack, then QC!(X) carries a canonical t-structure (see
[Gai13, Prop. 11.7.5]). When X is an algebraic stack, we may define a full subcategory Coh(X) ⊂ QC!(X)
via ∗-pullback to a smooth atlas (and similarly for Coh−(X),Coh+(X)); when X is QCA (see Definition 3.3.2,
as well as [DG13]), we have QC!(X) ' Ind(Coh(X)). Finally, when X is smooth, the notions of coherent and
perfect, as well as quasi-coherent and ind-coherent, coincide. We work freely with the six-functor formalism
(lettingHom denote the internal sheaf-Hom), and use the same notations for all categories of sheaves (e.g., for
suitable eventually coconnective f : X→ Y, we write f∗ : QC(Y)→ QC(X) as well as f∗ : QC!(Y)→ QC!(X),
and likewise for the functors f∗, f !).

Regarding representation theory, we allow reductive groups to be disconnected, instead specifying a
group as “connected reductive” when necessary. Given a linear algebraic group G, we let BG = ∗/G denote
its classifying stack, and set Rep(G) := QC(BG). Thus, we use Rep(G)c to denote the full subcategory
of “finite-dimensional” representations. Given A ∈ Alg(Rep(G)), we set A -modG := A -modRep(G) and
A -perfG := A -perfRep(G). If G acts on a set S, we let Gs ⊂ G denote the stabilizer of an element s ∈ S. In
particular, for g ∈ G or x ∈ g, we write Gg and Gx for the corresponding centralizers, i.e., their stabilizers
under the adjoint actions of G. Likewise, given a g-representation V , we let gv ⊂ g denote the annihilator
of v ∈ V ; in particular, for x as above, gx denotes the centralizer. Finally, we use Z(G), Z(g) to denote the
centers of G, g, respectively.

Throughout the text, we set G̃ := G×Gm, and similarly g̃ := g⊕k for its Lie algebra g (where k denotes
the 1-dimensional abelian Lie algebra).4 Equivariance with respect to the group G̃ yields an additional
weight-grading, which is central to this work. Given any Z-graded object V and w ∈ Z, we denote by
Vw, V≥w, V≤w the sum of the components of V lying in weight-w, weights ≥ w, and weights ≤ w (and
likewise for V>w, V<w). We also let 〈−〉 denote the grading “twist” (or “shift”); that is, V 〈w〉 is the Z-graded
object for which (V 〈w〉)w′ = Vw+w′ . The twist 〈n〉 therefore corresponds to the action of the weight −n
character of Gm. Note that we have set Gm to act on g and the fibers of Ñ by weight −2 (i.e., z · x = z−2x
for x ∈ g), and hence on functions by weight 2 (i.e., z · f(−) = z2f(−) for f ∈ g∗). This convention
differs from that of [BZCHN22], but all its results continue to apply after straightforward modifications.
Our convention instead ensures that the Jacobson–Morozov cocharacter of G̃ projects to the tautological
cocharacter of Gm for any e; this in turn agrees with Lusztig’s conventions for the asymptotic affine Hecke
algebra.

3The sole exceptions are the notations XG, Xg for a group G acting on a classical scheme X and g ∈ G; these will denote the
classical fixed points (as for BGme ). We instead use loop space notation as in Definition 3.2.2 or mapping stack notation as in
§6.1 to denote various notions of “derived” fixed points.
4Note that the latter conflicts with our notation for the Grothendieck simultaneous resolution; however, this should not cause
any confusion, as the latter is only briefly mentioned in §2.2.7, and does not play any essential role in this work.





CHAPTER 2

The asymptotic coherent Springer sheaf

2.1. The Schur multiplier

2.1.1. In this section, we collect various results on the Schur multiplier of a linear algebraic group G.
Other discussions of this topic may be found in [Ela09], and in [Ros21] for the case of connected groups.
Most statements in this section are well-known for finite groups; our task is only to show that they carry
over to linear algebraic groups. In particular, we show that G admits a Schur covering, and give various
criteria for computing its Schur multiplier.

We first review some general properties of cocycles5 on G that will be used in the sequel. We begin by
recalling the definition, owed to Elagin:

2.1.2. Definition ([Ela09, Def. 1.4]). Let m : G × G → G denote the multiplication map. A cocycle
on G is the data of a line bundle C on G and an isomorphism α : C � C ' m∗C satisfying the following
associativity condition: the isomorphisms

(2.1.2.1) (id×m)∗α ◦ (id�α), (m× id)∗α ◦ (α� id) : C � C � C ' (m ◦ (id×m))∗C

of line bundles on G × G × G are equal. A morphism of cocycles (C, α) → (C′, α′) is a morphism of line
bundles C → C′ commuting with α, α′.

2.1.3. Notation. We denote the resulting (1, 1)-category of cocycles on G by Coc(G); it carries a natural
rigid symmetric monoidal structure under the tensor product of line bundles. We let M(G) denote the abelian
group of isomorphism classes of Coc(G), and refer to it as the Schur multiplier of G. Moreover, given a group
homomorphism ϕ : G′ → G, we have a natural monoidal functor ϕ∗ : Coc(G)→ Coc(G′) and corresponding
restriction homomorphism ϕ∗ : M(G)→ M(G′).

Finally, we let X∗(G), X∗(G) denote the group of characters (i.e., the Pontryagin dual) and cocharacters
of G, respectively.

2.1.4. We now recall the relationship between Definition 2.1.2 and the classical notion of Schur multiplier:

2.1.5. Proposition. The (1, 1)-category Coc(G) is naturally monoidally equivalent to the 2-group of
central extensions6 of G by Gm (in the category of linear algebraic groups). Moreover, let (C, α) ∈ Coc(G),
and let

(2.1.5.1) 1→ Gm → G(C,α)

p(C,α)−−−−→ G→ 1

be the associated central extension. Then [(C, α)] lies in the kernel of the restriction map

p∗(C,α) : M(G)→ M(G(C,α)).

Finally, if [(C, α)] has finite order, then (2.1.5.1) canonically descends to a central extension

(2.1.5.2) 1→ X∗(〈[(C, α)]〉)→ G(C,α)

p(C,α)−−−−→ G→ 1.

5These are sometimes also referred to as “multiplicative” or “translation-invariant” line bundles.
6Here, morphisms are commutative diagrams of group homomorphisms

1 Gm G′ G 1

1 Gm G′′ G 1,

which are automatically isomorphisms. Moreover, the monoidal structure is provided by the “Baer sum” of extensions, and
monoidal inverses are given by inversion in Gm.

23
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Proof. For the first assertion, we recall the construction, and leave the remaining details (some of
which are carried out in [Ela09, §1]) to the reader. Given a cocycle (C, α) ∈ M(G), we may form the graded
OG-algebra

(2.1.5.3) R(C,α) :=
⊕
n∈Z
C⊗n.

The relative spectrum
G(C,α) := Spec

G
(R(C,α))

p(C,α)−−−−→ G

is then a principal Gm-bundle. Moreover, we may equip G(C,α) with a multiplication via the map of OG-
algebras

m∗R(C,α) → R(C,α) �R(C,α)

generated by (the inverse of) α. The associativity condition (2.1.2.1) now guarantees associativity of this
multiplication, and the remaining properties can be verified similarly. Conversely, given a central extension

1→ Gm → G′ → G→ 1,

the coordinate ring OG′ carries a grading induced by the right-regular representation of Gm, and it is not
difficult to show that the weight-1 component7 yields a cocycle on G.

For the second assertion, note that we have natural R(C,α)-module isomorphisms

p∗(C,α)C ' C ⊗R(C,α) ' R(C,α),

which clearly trivialize p∗(C,α)α.
Finally, for the third assertion, note that when [(C, α)] has finite order d, we also have a Z/dZ-graded

OG-algebra
R(C,α) :=

⊕
0≤n<d

C⊗n

via the isomorphism C⊗d ' OG. It is now straightforward to verify that this yields a central extension
(2.1.5.2) with the desired property. �

2.1.6. In fact, we shall soon see that every cocycle on G has finite order. Regardless, in the situation of
(2.1.5.1), we obtain a canonical decomposition8

(2.1.6.1) Rep(G(C,α)) '
⊕

n∈X∗(Gm)

Rep(G(C,α))n

as Rep(G)-module categories (and similarly for G(C,α)), where we have let n denote the nth power of the
tautological character of Gm. This allows us to “twist” any Rep(G)-module category by a cocycle:

2.1.7. Definition. Let C be a Rep(G)-module category. The (C, α)-twist of C is the Rep(G)-module
category

C(C,α) := C⊗Rep(G) Rep(G(C,α))1.

Likewise, we define the (C, α)-twist of a small category via the corresponding decomposition of Rep(G(C,α))
c.

2.1.8. Equivalently, we may write C(C,α) ' C ⊗Rep(G) Rep(G)(C,α). Note that by Proposition 2.1.5, we
have canonical Rep(G)-linear equivalences

(2.1.8.1) Rep(G)(C,α) ⊗Rep(G) Rep(G)(C′,α′) ' Rep(G)(C,α)·(C′,α′)

for any cocycles (C, α), (C′, α′) ∈ Coc(G) (see also [Ela09, Prop. 1.5]). In particular,

(2.1.8.2) Rep(G(C,α))n ' Rep(G)(C,α)n

for each character n, and similarly for G(C,α). Moreover, given a homomorphism ϕ : G′ → G, the naturality
statement yields a Rep(G)-linear functor

(2.1.8.3) ResGG′ : Rep(G)(C,α) → Rep(G′)ϕ
∗(C,α).

7Alternatively, we may take the weight-(−1) component with respect to the left-regular representation.
8See for instance [BZCHN22, Rem. 2.36].
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Two cases of Definition 2.1.7 will be of especial interest to us. Letting X be a scheme with an action
of G, we refer to the objects of QC(X/G)(C,α) as (C, α)-equivariant sheaves on X, and to the objects of
Rep(G)(C,α) as (C, α)-representations of G.

2.1.9. Remark. An alternative definition of these objects which is less amenable to∞-categorical meth-
ods, though more explicit, was given in [Ela09]; we record it for the reader’s intuition. There, a (C, α)-
equivariant sheaf on X was defined as a sheaf F on X and an isomorphism θ : C � F ' act∗F , satisfying a
cocycle condition given by commutativity of the following diagram:

C � act∗F (act ◦ (id×act))∗F

C � C � F

m∗C � F (act ◦ (m× id))∗F

(id×act)∗θ

id�θ

α�id (m×id)∗θ

In particular, an (OG, id)-equivariant sheaf is just a usual G-equivariant sheaf. Compatibility of these two
notions is shown in [Ela09, Prop. 1.6].

2.1.10. Finally, we record the following general properties of cocycles on G, which we will use in §2.4 to
construct the asymptotic coherent Springer sheaf.

2.1.11. Lemma. Let (C, α) ∈ Coc(G). Then C is canonically equivariant with respect to the adjoint
action of G, and α descends to an isomorphism of G-equivariant sheaves.

Proof. The structure sheaf OG(C,α)
is canonically equivariant with respect to the adjoint action of

G(C,α). This action factors through G, and commutes with the action of Gm on G(C,α) by translations.
Thus, each summand of (2.1.5.3) is canonically G-equivariant, and the conclusion follows. �

2.1.12. Remark. One can construct this equivariance structure more explicitly via α. Specifically,
pulling back (2.1.2.1) along the map

G×G→ G×G×G
(g, g′) 7→ (g, g′, g−1)

gives an isomorphism

(2.1.12.1) (C ⊗ i∗C)� C ' ad∗C,
where i : G → G denotes the inversion map, and ad: G ×G → G denotes the adjoint action. Next, pulling
back α along the map G→ G×G given by g 7→ (g, g−1) gives an isomorphism

(2.1.12.2) C ⊗ i∗C ' OG ⊗k Ce,
where e ∈ G(k) denotes the identity element. Finally, pulling back α to (e, e) gives an isomorphism Ce⊗Ce '
Ce, so tensoring with C∨e yields a canonical isomorphism Ce ' k. Thus, using (2.1.12.1) and (2.1.12.2), we
obtain an isomorphism OG � C ' ad∗C, and one can check using the associativity condition (2.1.2.1) that
this gives a conjugation-equivariant structure on C commuting with α.

2.1.13. Lemma. Let (C, α) ∈ Coc(G), and let V be a compact (C, α)-representation. Then V generates
Rep(G)(C,α) as a Rep(G)-module. Moreover, if G is reductive9, then we have canonical isomorphisms

(2.1.13.1) Γ(G/G, C) ' K0(Rep(G)(C,α))k ∼= R(G)k · [V ] ⊂ R(G(C,α))k,

where the inclusion into the k-linearized representation ring of G(C,α) is via (2.1.6.1).

Proof. Let V ′ ∈ Rep(G)(C,α). Then V ′ ⊗ V ∗ is a G-representation by (2.1.8.1), and V ′ is a summand
of (V ′ ⊗ V ∗)⊗ V as the characteristic of k is 0. The latter assertion is now immediate from the Peter–Weyl
theorem and the proof of Proposition 2.1.5. �

2.1.14. We now give a series of criteria for computing Schur multipliers under various assumptions on G.
We begin by recalling how to compute the Schur multiplier of a connected group (in characteristic 0). This
is a very specific case of the main result of [KN06], or alternatively, an (unpublished) result of Gabber.

9In this thesis, we use “reductive” to mean “linearly reductive”; in particular, G is not assumed to be connected.
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2.1.15. Notation. We let π0(G), π1(G) denote the component group and fundamental group of G,
respectively. Moreover, we let G◦, [G,G] denote its identity component and derived subgroup, as usual.

2.1.16. Proposition ([KN06, Thm. 0.1], [Ros21, Thm. 1.3]). Suppose G is connected. Then

M(G) ∼= X∗(π1([G,G])) ∼= Pic(G),

functorially in G. In particular, it is finite.

2.1.17. From this, we deduce the following finiteness result, which will allow us to construct Schur
coverings in Proposition 2.1.25:

2.1.18. Corollary. The group M(G) is finite.

Proof. Consider the restriction homomorphism

(2.1.18.1) M(G)→ M(G◦).

By Proposition 2.1.16, the latter is finite, so it suffices to show that the kernel of (2.1.18.1) is finite.
Central extensions in the kernel of (2.1.18.1) are in bijection with short exact sequences

(2.1.18.2) 1→ Gm ×G◦ → G′ → π0(G)→ 1

such that the outer action
π0(G)→ Out(Gm ×G◦)

is of the form

(2.1.18.3)
(

constidGm
c

0 ψG

)
,

where ψG is the original outer action of the extension

1→ G◦ → G→ π0(G)→ 1,

and c : π0(G) → X∗(G◦) is a 1-cocycle (the action of π0(G) on X∗(G◦) is given by pullback along ψG).
Moreover, the short exact sequences (2.1.18.2) are considered up to splittings of the extension

1→ Gm → G′◦ → G◦ → 1,

i.e., up to conjugation of (2.1.18.3) by

(2.1.18.4)
(

idGm a
0 idG◦

)
for a ∈ X∗(G◦). This operation corresponds to subtracting the coboundary corresponding to a from c; thus,
such outer actions are classified by the cohomology group

(2.1.18.5) H1(π0(G), X∗(G◦)).

Since π0(G) is finite, (2.1.18.5) is torsion; moreover, X∗(G◦) is a finite-rank lattice, and therefore
(2.1.18.5) is finitely generated, hence finite. Finally, since Gm × G◦ is linear and k is of characteristic
0, the set of short exact sequences (2.1.18.2) corresponding to any element of (2.1.18.5) is finite by [LA17,
Thm. 4.1], and so the kernel of (2.1.18.1) is finite, as desired. �

2.1.19. We now recall several useful criteria for computing the Schur multipliers of products, semidirect
products, and central extensions, respectively. All of these statements are well-known in the case of finite
groups (see for instance [HKY19, §2]).

2.1.20. Notation. Given linear algebraic groups G,H, we let X∗(G,H) denote the group of bimultiplica-
tive morphisms G×H → Gm (which in particular, necessarily factor through the abelianizations Gab×Hab).
Equivalently, we have

Homgp(H,X∗(G)) ∼= X∗(G,H) ∼= Homgp(G,X∗(H)),

i.e., the group of homomorphisms from one group to the Pontryagin dual of the other.
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2.1.21. Lemma. Let G,H be linear algebraic groups. There is a functorial isomorphism

(2.1.21.1) M(G×H) ' M(G)×M(H)×X∗(G,H).

In particular, if |π0(Gab)| and |π0(Hab)| are coprime (e.g., if either G or H is connected), then

M(G×H) ' M(G)×M(H).

Proof. Consider the restriction map

M(G×H)→ M(G)×M(H).

Taking the external tensor product of cocycles immediately impies that it is split surjective. Moreover, a
central extension in the kernel is clearly given by a semidirect product

(2.1.21.2) (Gm ×G) oH

such that the action
H → Aut(Gm ×G)

is of the form

(2.1.21.3)
(

constidGm
c

0 constidG

)
,

where c : H → X∗(G) is a homomorphism. Since the group of homomorphisms of the form (2.1.21.3) is
abelian, quotienting by splittings of the restriction of (2.1.21.2) to G (as in (2.1.18.4)) does nothing. Thus,
we obtain (2.1.21.1).

To show that the latter condition implies that X∗(G,H) is trivial, recall that a commutative linear
algebraic group is the product of its semisimple and unipotent parts. Thus, we may assume that Gab is the
product of a torus and a finite abelian group. Since any homomorphism from H to a free group is trivial, we
may assume that Gab is finite. Thus, it suffices to classify homomorphisms π0(Hab)→ X∗(π0(Gab)), which
are all trivial if |π0(Gab)| and |π0(Hab)| are coprime. �

2.1.22. Lemma. Let GoΓ be a semidirect product, with either Γ finite or X∗(G) trivial. Then we have
an exact sequence

0→ H1(Γ, X∗(G))→ ker
(

M(Go Γ)� M(Γ)
)
→ M(G)Γ → H2(Γ, X∗(G)),

which is suitably functorial in both G and Γ.10

Proof. We begin by showing that the natural restriction map

(2.1.22.1) ker
(

M(Go Γ)� M(Γ)
)
→ M(G)

lands in M(G)Γ. Suppose we have a central extension

(2.1.22.2) 1→ Gm → G′ → Go Γ→ 1

whose pullback to Γ is split. Then the projection G′ → GoΓ→ Γ admits a section, and we obtain an adjoint
action of Γ on G′ lifting that on Go Γ. In particular, this action fixes G′ ×GoΓ G, and so the restriction of
(2.1.22.2) to M(G) is fixed by Γ.

Moreover, as in (2.1.21.2), the kernel of (2.1.22.1) is given by semidirect products

(Gm ×G) o Γ

with outer action as in (2.1.18.3); as in (2.1.18.5), these are classified by the group cohomology H1(Γ, X∗(G)).
To construct the final map, let

(2.1.22.3) 1→ Gm → G′ → G→ 1

be a central extension fixed under the action of Γ, and consider the group A of automorphisms of this central
extensions, i.e., commutative diagrams

1 Gm G′ G 1

1 Gm G′ G 1.

∼ ∼

10In the latter case, we interpret the group cohomology on either end as the trivial group.
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There is an evident exact sequence

(2.1.22.4) 1→ X∗(G)→ A→ Aut(G),

and since Γ fixes (2.1.22.3), pulling back along Γ→ Aut(G) gives a short exact sequence

(2.1.22.5) 1→ X∗(G)→ A×Aut(G) Γ→ Γ→ 1

with the obvious outer action of Γ on X∗(G). Thus, (2.1.22.5) represents a class in H2(Γ, X∗(G)), and it is
straightforward to verify that it depends only on the isomorphism class of (2.1.22.3).

Suppose now that (2.1.22.5) is a semi-direct product, i.e., we have a splitting homomorphism Γ → A.
Then (2.1.22.3) lifts to a central extension

1→ Gm → G′ o Γ→ Go Γ→ 1,

whose restriction to M(Γ) is evidently trivial.
We leave the verification of functoriality for maps G′ → G commuting with the Γ-actions, and for maps

Γ′ → Γ, as an exercise. �

2.1.23. Lemma. Let Z ⊂ G be central. Then we have a functorial exact sequence

0→ X∗([G,G] ∩ Z)→ M(G/Z)→ M(G)→ X∗(G,Z).

Proof. Suppose we are given a central extension

(2.1.23.1) 1→ Gm → G′ → G/Z → 1

whose pullback to G is trivial. Then we have a short exact sequence

1→ Z → Gm ×G→ G′ → 1,

and we see that (2.1.23.1) is determined by an element of X∗(Z). Moreover, two such elements determine
isomorphic central extensions if and only if they differ by an element of the image of X∗(G)→ X∗(Z). The
exact sequence

1→ [G,G] ∩ Z → Z → Gab

of abelian groups then shows that this quotient is isomorphic to X∗([G,G] ∩ Z).
To construct the final map, let

(2.1.23.2) 1→ Gm → G′ → G→ 1

be a central extension, let

(2.1.23.3) 1→ Gm → Z ′ → Z → 1

be its pullback to Z, and let A be as in (2.1.22.4). The action of Z ′ on G′ via inner automorphisms gives a
homomorphism Z ′ → A that is trivial on Gm; moreover, the induced homomorphism Z → Aut(G) is trivial
by assumption, so we obtain a homomorphism Z → X∗(G), i.e., an element of X∗(G,Z). It is easy to see
that this element depends only on the isomorphism class of (2.1.23.2).

Finally, suppose that this element of X∗(G,Z) is trivial. Then Z ′ ⊂ G′ is central, and in particular,
commutative. Since any injective homomorphism from a torus to a commutative linear algebraic group
admits a retract, the extension (2.1.23.3) is split, and so Z lifts to a central subgroup of G′. In particular,
(2.1.23.2) is pulled back from the central extension

1→ Gm → G′/Z → G/Z → 1,

as desired.
We leave the verification of functoriality as an exercise. �

2.1.24. We now turn to the construction of Schur coverings of linear algebraic groups; these are (non-
canonical) central extensions of G by M(G) which trivialize all cocycles of G.

2.1.25. Proposition. The group G admits a Schur covering, i.e., there exists a central extension11

(2.1.25.1) 1→ X∗(M(G))→ Gsch psch−−→ G→ 1

11Note that, unlike some authors, we do not require X∗(M(G)) to be contained in the derived subgroup of Gsch.
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such that the map

(2.1.25.2) M(G)→ M(Gsch)

is trivial. Moreover, we have a canonical Rep(G)-linear decomposition

(2.1.25.3) Rep(Gsch) '
⊕

[(C,α)]∈M(G)

Rep(G)(C,α),

where the summand Rep(G)(C,α) is equivalent to the full subcategory of representations on which X∗(M(G))
acts through the character given by evaluation at [(C, α)].

Proof. Since M(G) is finite abelian by Corollary 2.1.18, we may choose a finite set of generators
[(C1, α1)], . . . , [(Cr, αr)], each of finite order. By Proposition 2.1.5, we have central extensions

1→ X∗(〈[(Ci, αi)]〉)→ G(Ci,αi) → G→ 1.

for each i. Thus, taking fiber products over G gives a central extension

1→ X∗(〈[(C1, α1)]〉)× · · · ×X∗(〈[(Cr, αr)]〉)→ G(C1,α1) ×G · · · ×G G(Cr,αr) → G→ 1,

which is precisely (2.1.25.1). Applying Proposition 2.1.5 to the factorizations

Gsch G(Ci,αi) G
p(Ci,αi)

of psch then gives (2.1.25.2). Finally, applying (2.1.8.1) and (2.1.8.2) to the decomposition

Rep(Gsch) ' Rep(G(C1,α1))⊗Rep(G) · · · ⊗Rep(G) Rep(G(Cr,αr))

yields (2.1.25.3). �

2.1.26. The following lemma allows us to construct “small” (C, α)-representations of connected semisimple
groups, and will be used in §2.2 to remove the simply-connectedness assumption for the noncommutative
Springer resolution.

2.1.27. Lemma. If G is connected and semisimple, then any Schur covering Gsch is isomorphic to the
universal cover of G. Moreover, for each (C, α) ∈ Coc(G), there exists a minuscule weight λ of Gsch such
that the irreducible Gsch-representation L(λ) descends to a (C, α)-representation of G.

Proof. By Proposition 2.1.16, we have X∗(M(G)) ' π1(G), from which the first assertion is immediate.
For the latter, let T ⊂ G be a maximal torus, and recall that

π1(G) ∼= X∗(T )∨/〈Φ∨〉,

where 〈Φ∨〉 denotes the coroot lattice. Thus,

(2.1.27.1) M(G) ∼= X∗(π1(G)) ∼= Λ/X∗(T ),

where Λ denotes the abstract weight lattice (of the root system of G), and for any dominant λ ∈ Λ+, the
character of π1(G) on the Gsch-representation L(λ) is given by the image of λ in (2.1.27.1). Recall that
Λ/〈Φ〉 is canonically isomorphic to the set of minuscule weights, where 〈Φ〉 denotes the root lattice (namely,
take the unique minimal dominant weight lifting any element of the former set). Since Λ/〈Φ〉� Λ/X∗(T ),
it suffices by (2.1.25.3) to choose any lift of [(C, α)] to Λ/〈Φ〉. �

2.1.28. Finally, the following two lemmas will be used in §2.3 to show that a certain covering group has
simply-connected derived subgroup.

2.1.29. Lemma. If G is reductive (resp., connected), then so is any Schur covering Gsch. When both
hold, Gsch has simply-connected derived subgroup.

Proof. The first assertion holds as any extension of reductive groups is reductive. For the second asser-
tion, we first reduce to the case where G is reductive. By [Bor91, Cor. 14.11], the surjection psch : Gsch,◦ � G
induces a surjection psch : RuG

sch,◦ � RuG of unipotent radicals. Since the kernel of this map is finite, it is
an isomorphism. Note that both are normal subgroups; we claim that

Gsch/RuG
sch,◦ → G/RuG
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is a Schur covering. Denote these groups by Gsch,red and Gred, respectively, and consider the commutative
diagram

(2.1.29.1)
M(Gred) M(Gsch,red)

M(G) M(Gsch).0

It suffices to show that the upper horizontal map is trivial. By [Con14, Prop. 5.4.1], we have

[G,G] ∼= Ru([G,G]) o [Gred, Gred],

hence π1([G,G]) ∼= π1([Gred, Gred]) (as the two spaces are related via an affine fibration). Proposition 2.1.16
then implies that the left-most vertical map in (2.1.29.1) is an isomorphism. Moreover, Proposition 2.1.22 and
a further application of [Con14, Prop. 5.4.1] imply that the right-most vertical map is also an isomorphism
(note that M(RuG) is trivial by Proposition 2.1.16). This proves the claim.

So suppose that G is reductive. By the previous assertion, Gsch,◦ is reductive; thus, [Gsch,◦, Gsch,◦] is
connected and semisimple, and its projection to [G,G] is an isogeny. Lemma 2.1.27 therefore gives a unique
factorization

(2.1.29.2)
[G,G]sch [Gsch,◦, Gsch,◦]

[G,G].

Moreover, by Proposition 2.1.16, we have a commutative diagram

M([G,G]) M([Gsch,◦, Gsch,◦])

M(G) M(Gsch).

∼ ∼

0

In particular, the map π1([Gsch,◦, Gsch,◦]) → π1([G,G]) is trivial, so by (2.1.29.2), we have [G,G]sch ∼=
[Gsch,◦, Gsch,◦]. In particular, the kernel of the isogeny (2.1.29.2) has cardinality at least |π1([G,G])| =
|X∗(M(G))|, so the same is true of the kernel of psch|Gsch,◦ , and therefore Gsch ∼= Gsch,◦, as desired. The final
assertion now follows from (2.1.29.2). �

2.1.30. Lemma. Let G,H be linear algebraic groups. Then for any Schur covering (G × H)sch, there
exist Schur coverings Gsch, Hsch and a commutative diagram

(G×H)sch Gsch ×Hsch

G×H.
psch psch×psch

Proof. By Lemma 2.1.21, we have a central extension

1→ X∗(M(G))×X∗(M(H))→ (G×H)sch/X∗(X∗(G,H))→ G×H → 1.

The proof of Proposition 2.1.5 now easily implies that this splits as a product of central extensions (2.1.25.1)
for G and H. �

2.2. The noncommutative Springer resolution

2.2.1. This section consists of recollections on Bezrukavnikov–Mirković’s noncommutative Springer res-
olution and Lusztig’s canonical basis of the K-theory of a Springer fiber. We begin by describing several key
properties of this resolution that will be used throughout the sequel (in particular, the Koszul grading and
braid positivity properties). We then explain how to extend these properties to any reductive group, and
construct the cocycles appearing in the canonical basis.
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2.2.2. We begin by briefly reviewing the constructions of the Springer resolution and of Slodowy slices.
For further details, see [CG10]. Fix a connected reductive group G, and let g denote its Lie algebra. We
henceforth identify g ∼= g∗ via a non-degenerate form 〈−,−〉. Let B denote the flag variety of G. Then (the
total space of) the cotangent bundle Ñ := T ∗B carries a canonical symplectic structure and Hamiltonian
G-action. The moment map π : Ñ → g is then a resolution of singularities of the nilpotent cone N ⊂ g.
Moreover, it is G̃ := G×Gm equivariant, where G acts on g adjointly, and Gm scales g and the fibers of Ñ
by weight −2. We refer to π as the Springer resolution (of N ).

Recall moreover that N is a union of finitely many G-orbits, each of which is a conical symplectic
subvariety, hence even-dimensional. These G-orbits are equipped with a standard partial order via closures;
the unique minimal orbit O0 consists only of the 0 nilpotent, and the unique maximal orbit Oreg consists
of all regular nilpotent elements. Fix a nilpotent element e ∈ N . We denote the fiber of π over e by
Be := Ñ ×g {e}, and refer to it as the (derived) Springer fiber above e. In particular, it carries a G̃e-action,
and its classical truncation is the classical Springer fiber Bcl

e ⊂ B, consisting of all Borel subgroups of G
whose Lie algebra contains e.

Now, recall that by the Jacobson–Morozov theorem, we may extend e (non-uniquely) to an sl2-triple
{e, h, f} in g. Fixing such a choice, the adjoint action of h yields a grading g ∼=

⊕
w∈Z gw, i.e., a decomposition

of g into weight-spaces. This grading is additive with respect to the Lie bracket [−,−], and the actions of
e and f raise and lower the grading by 2, respectively. In particular, the centralizers ge and gf lie in non-
negative and non-positive weights, respectively. Set Se := e+ gf ⊂ g (here and onward, we misuse notation
slightly by only indicating the dependence on e). This is an affine subspace which intersects the orbit G · e
transversally at e (in g); we refer to it as a Slodowy slice at e.

We now wish to modify the Gm-action on Se coming from adh to be repelling. To this end, let ϕe : SL2 →
G be the group homomorphism associated to our choice of sl2-triple, and define a cocharacter λ̌e ∈ X∗(G̃)
via the formula

λ̌e(t) := (ϕe(
[
t 0
0 t−1

]
), t) ∈ G×Gm

for any t ∈ Gm. We refer to this as the Jacobson–Morozov cocharacter of G̃ for e (though it of course
depends on the choice of sl2-triple). In particular, the adjoint action of λ̌e on Se fixes e, and repels Se from
this point (i.e., the vector space underlying Se lies in strictly negative weights; equivalently, the coordinate
ring O(Se) lies in strictly positive weights).

We now extend thisGm-action to an action of a larger reductive subgroup of G̃. Set Ze := Ge,h,f ∼= Ge,red,
i.e., the common centralizer of the sl2-triple {e, h, f}, or equivalently, the reductive part of the centralizer of
e. Then Ze commutes with the cocharacter λ̌e, and we have an action of Z̃e on Se, with Gm acting via λ̌e.
Equivalently, we have Z̃e ∼= G̃sl2 ∼= G̃e,red (i.e., the centralizer of the sl2-subalgebra generated by {e, h, f}),
and G̃e ∼= Ge oGm, with Gm acting on the unipotent radical of Ge via strictly positive weights. We set ze
to be the Lie algebra of Ze, and continue to use the notation z̃e ∼= ze ⊕ k for the Lie algebra of Z̃e.

Finally, transversality yields (derived) pullback squares

(2.2.2.1)
Be/Z̃e S̃e/Z̃e Ñ/G̃

e/Z̃e Se/Z̃e g/G̃,

πe

iBe iS̃e

πSe π

ie iSe

where the variety S̃e is the (classical, smooth) resolution to the Slodowy slice (note that the map iS0
is the

identity). The map πSe is again a symplectic resolution, hence semismall. Moreover, the subvariety Be ⊂ S̃e
is Lagrangian; in particular, we have 2 dimBe = dim S̃e.

2.2.3. Assume for the moment that G is semisimple and simply-connected (we shall remove these hy-
potheses shortly). Then there exists a remarkable G̃-equivariant vector bundle E on Ñ known as the
Bezrukavnikov–Mirković tilting bundle [BM13, BL23]. We recall some of its salient properties in the
following paragraphs.

2.2.4. The pullback of E to the resolution of any Slodowy slice Se is a tilting generator. Thus,

ASe := EndS̃e(i
∗
S̃e
E)
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is an O(Se)-algebra in cohomological degree 0 with a compatible Z̃e-action; we refer to this as the noncom-
mutative resolution to the Slodowy slice, or in the case e = 0, as the noncommutative Springer resolution.12

We therefore have a Rep(Z̃e)-linear equivalence13

(2.2.4.1) HomS̃e
(i∗
S̃e
E ,−) : QC(S̃e/Z̃e)

∼−→ Aop
Se

-modZ̃e ,

and we refer to the t-structure on Coh(S̃e/Z̃e) corresponding to the usual t-structure on the right-hand side
as the exotic t-structure.

2.2.5. Write

(2.2.5.1) {ESeb : b ∈ Be}

for the set of indecomposable summands of i∗
S̃e
E ∈ Coh(S̃e). Then there exists a graded lift of each vector

bundle ESeb to Coh(S̃e/Gm) (unique up to simultaneous twists of (2.2.5.1)) such that the induced grading on

(2.2.5.2) Acov
Se := EndS̃e

( ⊕
b∈Be

ESeb
)

is Koszul (and compatible with the grading on O(Se)).14 That is, for each b, b′ ∈ Be, the vector space
HomS̃e

(ESeb , ESeb′ ) is concentrated in non-negative Gm-weights; moreover, the weight-0 component is spanned
by the identity map if b = b′, and is 0 otherwise.

2.2.6. Let LSeb ∈ Coh(S̃e/Gm) denote the simple object in the heart of the exotic t-structure with
projective cover ESeb , so that

(2.2.6.1) HomS̃e
(ESeb′ ,L

Se
b ) '

{
k〈0〉 if b = b′,

0 otherwise.

In particular, the O(Se) action on (2.2.6.1) factors through the maximal ideal of e, so LSeb is supported on
the Springer fiber Be. The set {[LSeb ] : b ∈ Be} then forms a Z-basis for the equivariant K-theory group
K0(Be/Gm); we refer to it as the canonical basis. We will often misuse terminology slightly and refer to the
set Be itself as “the canonical basis.”

Moreover, as in [BM13, Prop. 5.5], Grothendieck–Serre duality implies that Extn
S̃e

(LSeb′ ,L
Se
b ) is concen-

trated in weight-n (and vanishes for n ≥ dim S̃e); thus, Acov
Se

is in fact a Koszul quadratic algebra, and is
generated over its weight-0 subalgebra ASe,0 in weight-1.

Finally, we let ESeb and LSeb denote the corresponding objects on the right-hand side of (2.2.4.1) (after
forgetting the Ze-equivariance). These are the indecomposable projective and simple right ASe -modules,
respectively. Moreover, we set

(2.2.6.2) ESe,`b := HomS̃e
(ESeb , i∗

S̃e
E) ' HomAop

Se
(ESeb ,ASe)

to be the corresponding indecomposable projective left ASe -modules.

2.2.7. Let Ǧ denote the Langlands dual reductive group of G. Recall that the extended affine Weyl group
of Ǧ is given by the semidirect product

W aff := W nX∗(Ť ) = W nX∗(T ),

where T ⊂ G is a maximal torus, Ť ⊂ Ǧ is the dual torus, and W denotes the finite Weyl group. Then the
category QC(Ñ/G̃) carries a compact object-preserving weak action of the affine braid group Baff associated
to15 W aff , owed to [BR12]. More precisely, recall that the (mixed) affine Hecke category16 Hcoh is the

12Note that this is the opposite algebra to that considered in [BM13], and instead agrees with the algebra of [BL23]. We will
continue to work with right modules in place of left modules, and vice versa.
13See for instance [BZCHN22, Lem. 2.10] for the dg-categorical perspective.
14This is the algebra “Ae” of [BM13, §5.5]; our notation differs in order to emphasize its relation to the Slodowy slice, and its
Morita equivalence to ASe , which can be made equivariant once all cocycles are trivialized as in Corollary 2.3.7.
15More specifically, the non-extended affine Weyl group W n 〈Φ〉 ⊂W aff admits a Coxeter presentation associated to the affine
Dynkin diagram of Ǧ. The group Baff is then the analogous extension of the Artin–Tits braid group associated to this Coxeter
presentation.
16This non-standard notation is intended to distinguish Hcoh from its “module” incarnation, which will be introduced in §4.2.
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category of G̃-equivariant ind-coherent sheaves on the (derived) Steinberg variety, i.e.,

(2.2.7.1) Hcoh := QC!(Ñ ×g Ñ/G̃).

This is a compactly generated monoidal category acting on QC(Ñ/G̃), where the algebra and module
structures are both given by (left) convolution (which we denote by “∗”). The weak action of Baff on
QC(Ñ/G̃) is then given by a “homomorphism” Baff → Hcoh, i.e., by coherent sheaves Ka ∈ Hcoh admitting
isomorphisms Ka ∗ Ka′ ' Kaa′ for each a, a′ ∈ Baff .

Let us give a unique characterization of these sheaves. Given w ∈ W aff , we may consider a minimal
decomposition of w as a product of simple reflections, and take the product of the corresponding generators
of Baff . This product is independent of the choice of decomposition of w, and hence yields a set-theoretic
section of the canonical surjection Baff → W aff , which we denote by w 7→ w̃. We further denote the sub-
monoid of Baff generated by the image of this section by Baff

+ . It suffices to construct the sheaves Kw̃ for
generators w ∈W aff .

First, given λ ∈ X∗(T ), there is an associated G̃-equivariant line bundle OÑ (λ) on Ñ obtained by
pullback along the composition

Ñ/G̃→ B/G̃ ∼= BB̃ → BT.

If λ is dominant, then Kλ̃ ' ∆Ñ/g,∗OÑ (λ) ∈ Hcoh, where ∆Ñ/g : Ñ/G̃ ↪→ Ñ ×g Ñ/G̃ denotes the diagonal
map. More generally, Baff has a “translation subgroup” isomorphic to X∗(T ), which acts by the sheaves
∆Ñ/g,∗OÑ (λ).

Next, for a simple reflection sα ∈ W , recall that the Grothendieck simultaneous resolution πg : g̃ → g
is the variety of pairs (x, b), where x ∈ g and b ∈ B is a Borel subalgebra containing x; the Springer
resolution is the (reduced) closed subvariety of g̃ given by requiring x to be nilpotent. Let h denote the
universal Cartan algebra of g (which carries a natural action of W ), and consider the map g̃ → h given by
(x, b) 7→ x mod [b, b]. The latter induces a resolution of singularities g̃→ g×h//W h, which is an isomorphism
over the open subscheme grs ⊂ g comprising all regular semi-simple elements. In particular, the map πg is
a principal W -torsor over grs, so we may consider the closure of the graph of sα on (g̃×g g̃)×g g

rs, which is
a closed G̃-stable (classical, smooth) subscheme Γg

sα ⊂ g̃ ×g g̃ (note that the latter fiber product is in fact
classical). The classical scheme-theoretic intersection

Γsα :=
(
Γg
sα ×

g̃×gg̃
Ñ ×g Ñ

)cl ⊂ Ñ ×g Ñ

is then a G̃-stable closed subscheme of the Steinberg variety, and Ks̃α ' OΓsα ∈ Hcoh is its structure sheaf.
Finally, we may state the braid positivity property of the noncommutative Springer resolution. Given

any Slodowy slice Se, we have a monoidal category

(2.2.7.2) Hcoh
Se := QC!(S̃e ×Se S̃e/Z̃e)

and a monoidal functor i∗Se : Hcoh → Hcoh
Se

, hence an affine braid group action on QC(S̃e/Z̃e). In particular,
for e = 0, we recover the usual action on QC(Ñ/G̃). The action of any a ∈ Baff

+ on QC(S̃e/Z̃e) is then
right t-exact with respect to the exotic t-structure constructed in (2.2.4.1). We will in fact be interested
in the action of Hcoh

Se
on QC(S̃e/Z̃e) via right convolution. Note that pullback along the “swap” map

σ : S̃e×Se S̃e → S̃e×Se S̃e interchanging the two copies of S̃e intertwines right and left convolution. Moreover,
σ∗ preserves the sheaves ∆Ñ/g,∗OÑ (λ) and OΓsα

, hence induces an anti-involution σ∗ : Baff → Baff,op (which

sends any w̃ to w̃−1). Thus, the braid positivity property also holds for right convolution.

2.2.8. We now aim to remove the assumptions on G; so suppose once again that G is connected and
reductive. We shall need the following lemma:

2.2.9. Lemma. Set G := G/Z(G)◦. Then the functor

(2.2.9.1) ResG[G,G] : Rep(G)→ Rep([G,G])

admits a (non-canonical) Rep(G)-linear section. In particular, applying − ⊗Rep(G) QC(Ñ/G), we obtain a
Rep(G)-linear section of the restriction functor

QC(Ñ/G)→ QC(Ñ/[G,G]).
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Proof. Set Z := Z([G,G]) ∩ Z(G)◦, and recall that we have a short exact sequence

(2.2.9.2) 1→ Z
g 7→(g,g−1)−−−−−−−→ [G,G]× Z(G)◦ → G→ 1.

In particular, we have G ∼= [G,G]/Z. Since Z(G)◦ is a torus, we have Rep(G)-linear decompositions

(2.2.9.3) Rep(G) '
⊕

χ∈X∗(Z(G)◦)

Rep(G)χ, Rep([G,G]) '
⊕

χ∈X∗(Z)

Rep(G)χ,

as in (2.1.6.1). Moreover, the restriction functor (2.2.9.1) is determined by the canonical restriction map

(2.2.9.4) X∗(Z(G)◦)→ X∗(Z),

which is a surjection. Thus, choosing any set-theoretic splitting of (2.2.9.4) yields the result. �

2.2.10. Now, consider the homomorphisms

[G,G]sch � [G,G] ↪→ G.

By Lemma 2.1.27 and the previous discussion, we have a Bezrukavnikov–Mirković tilting bundle E on
N/[G,G]sch. For each nontrivial (C, α) ∈ M([G,G]), choose a minuscule weight λ(C,α) of [G,G]sch as in
Lemma 2.1.27, and set λ(O[G,G],id) := 0.17 Thus, by (2.1.25.3) and Lemma 2.2.9, we have functors

QC(Ñ/[G,G]sch) '
⊕

(C,α)∈M([G,G])

QC(Ñ/[G,G])(C,α)
⊕
L(λ(C,α))

∨⊗−
−−−−−−−−−−−→ QC(Ñ/[G,G])→ QC(Ñ/G).

Misusing notation, we also denote the image of E under this composition by E ; though it is not uniquely
determined, it is evidently also a tilting bundle, and it is a compact generator of QC(Ñ/G) under the action
of QC(BG) by Lemma 2.1.13. Thus, the properties in §2.2.4, §2.2.5, and §2.2.6 also hold for E in this
more general setting, and we carry over all notations from these paragraphs. Moreover, we may extend the
braid group action of §2.2.7 to this setting using the same constructions18, and the braid positivity property
evidently carries over.

2.2.11. Our goal now is to lift the properties in §2.2.5 and §2.2.6 to ASe , i.e., to construct Z̃e-equivariant
analogs of the simple and indecomposable projective Acov,op

Se
-modules satisfying analogous grading properties.

Our first step will be to show that these modules admit equivariance structures with respect to certain
canonical cocycles of their stabilizers in Ze.

2.2.12. Notation. Let Ze := Ze/Z
◦
e · Z(G). The Ze-action on ASe induces a canonical action of Ze on

the set Be of simple modules, which evidently factors through Ze. For each b ∈ Be, let Zbe ⊂ Ze denote the
stabilizer of b. We fix a set Borb

e of orbit representatives for the action of Ze on Be.

2.2.13. Proposition. There exists a canonical cocycle (Cb, αb) ∈ Coc(Zbe) for which the modules LSeb
and ESeb admit canonical (Cb, αb)-equivariant structures, i.e., canonical lifts to Aop

Se
-modZ

b
e ,(Cb,αb).

2.2.14. Note that by [GR17a, Cor. 8.5.7], we may regard Aop
Se

-modZ
b
e ,(Cb,αb) as the category of modules

for the monad (− ⊗ ASe) ∈ End(Rep(Zbe)) on the Rep(Zbe)-module category Rep(Zbe)
(Cb,αb). Thus, it is

equivalent to show that the vector spaces underlying these modules carry compatible (Cb, αb)-representation
structures.

Proof. We begin by showing that LSeb carries a canonical projective representation of Zbe . Since Ze acts
on ASe by k-algebra automorphisms, it preserves the Jacobson radical J(ASe); since the quotient ASe/J(ASe)
is finite-dimensional, it is Artinian, hence semisimple, and

(2.2.14.1) ASe/J(ASe) '
⊕
b∈Be

Endk(LSeb ).

17We do not actually need these weights to be minuscule (in fact, all we really need is to choose nonzero compact objects of
Rep(G)(C,α)). However, this is in a sense the “simplest” way to modify E to be [G,G]-equivariant.
18Note that the de-equivariantized action on QC(Ñ ) factors through the affine braid group for [G,G]sch as in (2.2.9.2). We may
thus regard the de-equivariantized affine braid group action for G as obtained from the pushforward of that for [G,G]sch under
the evident map Ñ ×[g,g] Ñ → Ñ ×g Ñ (which is an isomorphism on classical truncations). Since this gives a monoidal functor
between the de-equivariantized affine Hecke categories, it is now straightforward to deduce the requisite relations between the
sheaves Ka.
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Moreover, the Ze-action preserves the summands corresponding to each Ze-orbit in Be, and Zbe preserves
the summand corresponding to b. Thus, by the Skolem–Noether theorem, Zbe acts by inner automorphisms
of this summand, i.e., via a projective representation

(2.2.14.2) Zbe → Aut(Endk(LSeb )) ' PGL(LSeb ),

where LSeb denotes the underlying vector space of the module LSeb . Pulling back the canonical cocycle of
PGL(LSeb ) (corresponding to the central extension given by GL(LSeb )) then gives a cocycle (Cb, αb) ∈ M(Zbe),
and (2.1.8.3) shows that LSeb admits a (Cb, αb)-equivariant structure.

Next, we claim that we have a decomposition

(2.2.14.3) ASe '
⊕
b∈Be

LSe,∗b ⊗k ESeb

of right ASe -modules, such that Ze permutes the summands according to the Ze-action on Be. By the
argument of [BL23, Rem. 4.6], there exists a Z̃e-stable choice of Koszul grading on ASe (which is not
necessarily the same as that provided by the Gm-action on ASe); choosing such a grading, we obtain a
Z̃e-stable subspace

(2.2.14.4)
⊕
b∈Be

Endk(LSeb ) ⊆ ASe

given by the 0th graded piece. In particular, we obtain a decomposition of the unit element into orthogonal
idempotents eb := idLSeb

, on which Ze acts by permutation according to the Ze-action on Be. Thus, it

suffices to show that ebASe ' L
Se,∗
b ⊗k ESeb . Since the latter is a projective cover of LSe,∗b ⊗k LSeb , the right

ASe -module surjection ebASe � LSe,∗b ⊗k LSeb furnished by (2.2.14.1) shows that it is a direct summand of
ebASe . Moreover, the complementary submodule is contained in J(ASe), hence is trivial.

It follows that the module LSe,∗b ⊗kESeb carries a Zbe-equivariant structure. Moreover, choosing a basis of
LSeb , we obtain a further decomposition of eb into primitive orthogonal idempotents, and these decompositions
are permuted according to the projective action of Zbe on LSeb . It follows that the Zbe-representation L

Se,∗
b ⊗k

ESeb splits as a tensor product of projective representations, i.e., ESeb carries a projective representation of Zbe .
Since LSe,∗b is a (C∨b , α∨b )-representation of Zbe , this must be a (Cb, αb)-representation by (2.1.8.1). Moreover,
it is easy to see that this projective action is compatible with the right ASe -module structure, which yields
the conclusion. �

2.2.15. Note that by §2.1.8, the functor (2.2.4.1) also induces an equivalence

QC(S̃e/Z
b
e)

(Cb,αb) ∼−→ Aop
Se

-modZ
b
e ,(Cb,αb) .

Thus, the sheaves LSeb and ESeb also admit canonical (Cb, αb)-equivariant structures. It follows that the
decomposition (2.2.14.3) also gives rise to a decomposition

(2.2.15.1) i∗
S̃e
E '

⊕
b∈Be

LSe,∗b ⊗k ESeb

of Ze-equivariant vector bundles. Moreover, equipping the left-hand side with the Gm-equivariant structure
arising from that on each ESeb , we obtain a Gm-equivariant structure on i∗

S̃e
E inducing a Koszul grading on

ASe . In particular, the “Koszul dual” algebra EndAop
Se

(ASe,0) has its degree-n cohomology concentrated in
weight −n.

Henceforth, when we refer to i∗
S̃e
E , we implicitly equip it with this particular Z̃e-equivariant structure,

and likewise for ASe . Finally, we set

(2.2.15.2) in0 : ASe,0 ↪→ ASe , pr0 : ASe � ASe,0,

to be the (Z̃e-equivariant) algebra homomorphisms induced by (2.2.14.4) and (2.2.14.1), respectively; the
latter is a retraction of the former.
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2.3. A covering group of the reductive centralizer

2.3.1. In this section, we establish existence of a finite cover of Ze which trivializes all cocycles appearing
in the canonical basis. This will be a key technical tool in the sequel. For instance, it will assist in later
homological computations by allowing us to replace ASe with the Koszul quadratic algebra Acov

Se
.

2.3.2. Proposition. There exists a finite cover pcov : Zcov
e � Zsch

e such that for any b ∈ Be, the class of
(Cb, αb) lies in the kernel of the restriction map

(2.3.2.1) M(Zbe)→ M(Zcov,b
e ).

2.3.3. Remark. In fact, over the course of the proof, we shall show that we may take Zcov
e = Zsch

e ,
unless the adjoint group of G contains either

(1) a simple factor of type E6 for which the corresponding block of e has weighted Dynkin diagram

(2.3.3.1)
0 0 2 0 0;

0

(2) a simple factor of type E8 for which the corresponding block of e has weighted Dynkin diagram

(2.3.3.2)
0 0 0 0 0 0 0.

2

If this occurs, we may take Zcov
e to be a (non-central, non-split) extension of Zsch

e by

(Z/2Z× Z/2Z)n1 × (Z/3Z)n2 ,

where n1, n2 are the multiplicities of the nilpotents (2.3.3.1), (2.3.3.2) in e, respectively.

Proof. Let b ∈ Be. It suffices to show that either [(Cb, αb)] lies in the image of the restriction map

(2.3.3.3) M(Ze)→ M(Zbe),

or there exists a finite cover bZcov
e � Ze such that [(Cb, αb)] lies in the kernel of

(2.3.3.4) M(Zbe)→ M(bZcov
e ).

Indeed, let b1, . . . , br ∈ Be denote those canonical basis elements whose cocycles do not lie in the image of
(2.3.3.3). Consider the fiber square

(2.3.3.5)
Zcov
e Zsch

e

b1Zcov
e ×Ze · · · ×Ze brZcov

e Ze,

and the corresponding diagram of stabilizers of b. If [(Cb, αb)] lies in the image of (2.3.3.3), then it lies in
the kernel of M(Zbe)→ M(Zsch,b

e ), hence in the kernel of (2.3.2.1). Otherwise, since we have a factorization
Zcov,b
e � bZcov,b

e � Zbe for each b ∈ Be, the conclusion follows from (2.3.3.4).
Now, any cocycle of Zbe appearing in the canonical basis is pulled back from a cocycle of Zbe/Z(G), which

is the corresponding stabilizer for the adjoint group G/Z(G). Thus, the commutative square

M(Ze/Z(G)) M(Zbe/Z(G))

M(Ze) M(Zbe)

immediately reduces us to the case where G is semisimple and adjoint (note that a finite cover of Zbe/Z(G)
pulls back to one of Zbe with the corresponding property). In particular, G splits as a product of adjoint
simple groups; the cocycles appearing in Be clearly all split as products over these simple factors, so we may
further assume that G is simple and adjoint. We proceed type by type, using the classification of reductive
centralizers of nilpotent elements, and show that (2.3.3.3) is surjective for any subgroup Zbe which is a union
of connected components, except in the situation of (2.3.3.2), where we obtain a cover satisfying (2.3.3.4).
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In type A, the component group of Ze is always trivial, so there is nothing to check.
In types B, C, and D, recall that Ze can be written as a semidirect product Z◦e o π0(Ze), where Z◦e

is the quotient of a product of symplectic groups and special orthogonal groups by Z(G) ∼= Z/2Z, and
π0(Ze) ∼= (Z/2Z)n, where n is the number of orthogonal factors in Z◦e . Lemma 2.1.22 thus gives an exact
sequence

(2.3.3.6) 0→ H1(π0(Ze), X
∗(Z◦e ))→ ker

(
M(Ze)� M(π0(Ze))

)
→ M(Z◦e )π0(Ze) → H2(π0(Ze), X

∗(Z◦e )).

Note that the action of π0(Ze) on M(Z◦e ) is trivial; moreover, we claim that the final homomorphism is
trivial. Indeed, by Lemma 2.1.21 and functoriality of (2.3.3.6), the final homomorphism splits as a product
over the factors of Z◦e ; thus, we may assume that Z◦e is either a symplectic or special orthogonal group, on
which π0(Ze) acts either trivially, or by projection onto a single factor of Z/2Z, respectively. In the former
case, both M(Z◦e ) and X∗(Z◦e ) are trivial as the symplectic groups are simply-connected and simple. In the
latter case, if Z◦e ∼= SO2

∼= Gm, then M(Z◦e ) is again trivial; otherwise, if Z◦e ∼= SOm for m > 2, then we have
X∗(Z◦e ) ' 0, so the final term in (2.3.3.6) is trivial.

Now, let Γ ⊂ π0(Ze) be a finite subgroup. By functoriality of (2.3.3.6), to show that M(Ze)� M(Z◦eoΓ),
it suffices to show that

H1(π0(Ze), X
∗(Z◦e ))� H1(Γ, X∗(Z◦e )),

M(π0(Ze))� M(Γ).
(2.3.3.7)

The latter is immediate, as any finite subgroup of (Z/2Z)n is a direct summand. For the former, we may
assume as before that X∗(Z◦e ) ∼= Z and that π0(Ze) acts by projection onto a single factor of Z/2Z (via
negation). If Γ acts trivially on Z, then H1(Γ,Z) ∼= Hom(Γ,Z) ' 0, and we are done. Otherwise, let K be
the index-2 subgroup of π0(Ze) fixing Z; the inflation-restriction exact sequence then gives a commutative
diagram

0 H1(Z/2Z,Z) H1(π0(Ze),Z) H1(K,Z)Z/2Z

0 H1(Z/2Z,Z) H1(Γ,Z) H1(Γ ∩K,Z)Z/2Z

∼

with exact rows. Since the right-most terms are trivial, the second vertical map is an isomorphism, and we
are done.

It remains to treat the exceptional types; we use the tables of centralizers of nilpotent elements for
adjoint exceptional groups appearing in [Ale05]. When Ze is connected, the assertion is trivial. We may
further disregard all cases in which π0(Ze) ∼= Z/2Z, and either M(Z◦e ) is trivial or Ze ∼= Z◦e × π0(Ze). In
all other cases, we have Ze ∼= Z◦e o π0(Ze). Moreover, the final map in (2.3.3.6) is again trivial: it is not
hard to check that either M(Z◦e ) or X∗(Z◦e ) is always trivial. As before, the action of π0(Ze) on M(Z◦e )
is trivial, except in the case (2.3.3.4). Here, we have Ze ' PGL3 o Z/2Z, and (2.3.3.6) gives M(Ze) ∼= 0,
whereas M(PGL3) ∼= Z/3Z. However, Ze admits a natural 3-fold cover given by SL3 oZ/2Z, which satisfies
(2.3.3.4) as M(SL3) ∼= 0. Thus, we must verify (2.3.3.7) in each of the remaining examples, for all subgroups
Γ ⊂ π0(Ze).

For the former assertion, we need only check the case in which the symmetric group S3 acts on the
weight lattice Λ ∼= Z3/Z of SL3 by permutation, which appears in the situation of (2.3.3.1). We may assume
that either Γ ∼= 〈(123)〉 or Γ ∼= 〈(12)〉. In the former case, we have

H1(Γ,Λ) ∼= ker((1 + (123) + (132))|Λ)/(1− (123))Λ ∼= Λ/〈Φ〉 ∼= Z/3Z,

with the trivial action of Z/2Z (here Φ denotes the root lattice of SL3). Since ΛΓ ∼= 0, the inflation-restriction
exact sequence implies that H1(S3,Λ) ∼= H1(Γ,Λ), as desired. In the latter case, Λ splits as a Γ-module into
a sum of Z with the trivial Γ-action and Z with Γ acting by negation; thus, H1(〈(12)〉,Λ) ∼= Z/2Z, and the
restriction map is not surjective. To obtain a cover of Ze ∼= T o S3 killing this cocycle (here T ⊂ SL3 is a
maximal torus), consider the S3-equivariant short exact sequence

0→ Λ
2−→ Λ→ Z/2Z× Z/2Z→ 0.
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The endomorphism of H1(〈(12)〉,Λ) induced by the first map is the zero map, so by the following paragraph,
the corresponding surjection

1→ Z/2Z× Z/2Z→ T o S3
(−)2oid−−−−−→ T o S3 → 1

suffices.
For the latter assertion, the only nontrivial component groups which appear are the symmetric groups

S2, S3, S4, S5. The assertion is trivial in the first two cases. For the third case, we need only consider
the restriction maps M(S4) → M(A4), M(S4) → M(D8) (the dihedral subgroup of order 8), M(S4) →
M(Z/2Z× Z/2Z) (the normal Klein four-subgroup) and M(S4) → M(S2 × S2) (the non-normal Klein four-
subgroup). Applying Lemma 2.1.22 to S4

∼= A4 o Z/2Z, and using the well-known identity M(A4) ∼= Z/2Z,
we see that the first map is an isomorphism. For the second map, applying functoriality of Lemma 2.1.22
reduces us to showing that M(A4) � M(Z/2Z × Z/2Z); since A4

∼= (Z/2Z × Z/2Z) o Z/3Z, a further
application of Lemma 2.1.22 gives the result. This also shows that M(S4) � M(Z/2Z × Z/2Z). Finally,
applying functoriality of Lemma 2.1.22 to S2 × S2 ⊂ Z/4Z o S2

∼= D8 shows that the final map is an
isomorphism.

For the fourth case, we need only consider the restriction maps M(S5)→ M(A5), M(S5)→ M(S4), and
M(S5) → M(S3 × S2). The first follows as for A4 ⊂ S4. For the second, functoriality of Lemma 2.1.22
reduces us to showing that M(A5) � M(A4), and it is well-known that the restriction of a Schur cover
of A5 to A4 remains a Schur cover (indeed, the Schur cover of An for n = 4, 5 and n ≥ 8 is constructed
by pulling back the double cover Spinn−1 → SOn−1 along the embedding An ↪→ SOn−1). For the third,
applying functoriality of Lemma 2.1.22 to S3×S2 ⊂ A5 oS2 shows that the restriction map is in fact trivial.
However, consider the “+” and “−” type Schur double covers of S5; it suffices to show that each of their
restrictions to S2×S2 ⊂ S3×S2 kills all elements of M(S2×S2). Indeed, these restrictions are given by the
dihedral group and the quaternion group, respectively, both of which are Schur covers of S2 × S2. �

2.3.4. We note the following consequence of the proof, with a view towards the discussion following
Proposition 2.4.12.

2.3.5. Corollary. The derived subgroup of Zcov,◦
e is simply-connected. Moreover, suppose that all

simple factors of [G,G] are of classical types. In this case, if Z◦e has simply-connected derived subgroup,
then (Cb, αb) is trivial for all b ∈ Be (and thus we may take Zcov

e = Ze).

Proof. We begin with the first assertion. Following the proof of Proposition 2.3.2, we may check this
type-by-type for the adjoint group G/Z(G) by Lemma 2.1.30. In type A, this follows from Lemma 2.1.29.
In types B, C, and D, the discussion following (2.3.3.6) gives a short exact sequence

(2.3.5.1) 0→ M(Z◦e )→ M(Ze)→ M(π0(Ze))→ 0.

The proof of Proposition 2.1.5 then shows that the identity component of Zsch
e /X∗(M(π0(Ze))) is a Schur

cover of Z◦e , so the result again follows by Lemma 2.1.29. Finally, in the exceptional types, Lemma 2.1.29
covers the case where Ze is connected. Likewise, by Proposition 2.1.16 and Lemma 2.1.30, the statement is
clear when either M(Z◦e ) is trivial or Ze ∼= Z◦e × π0(Ze). Otherwise, we always have X∗(Z◦e ) ∼= 0. When the
action of π0(Ze) on M(Z◦e ) is trivial, the statement follows as for types B, C, and D. In the only remaining
case, we have shown that Zcov,◦

e
∼= SL3, which completes the proof.

For the second assertion, it suffices to show that the image of [(Cb, αb)] under M(Zbe/Z(G)) → M(Zbe)
is trivial. We may again reduce to checking this type-by-type. As before, the conclusion is clear whenever
Ze/Z(G) is connected, which proves the claim in type A. In types B, C, and D, note that the universal cover
of G/Z(G) is at most a four-fold cover. Thus, if Z◦e has simply-connected derived subgroup, then at most
one special orthogonal factor appears in (Ze/Z(G))◦. In particular, π0(Ze/Z(G)) is a subgroup of Z/2Z,
and has trivial Schur multiplier. We may therefore assume that Zbe = Ze, and the conclusion follows from
functoriality of (2.3.5.1). �

2.3.6. In principle, one could verify the latter statement for exceptional types via a finite amount of
computation. One must for instance show that the nontrivial cocycles of Ze in the case (2.3.3.1) do not
appear in the canonical basis (as a torus has trivial derived subgroup).

Finally, as for ASe , we obtain equivariant lifts of Acov
Se

and its associated sheaves:



2.4. CENTRALLY EXTENDED SETS 39

2.3.7. Corollary. The sheaves LSeb and ESeb admit lifts to Coh(S̃e/Z̃
cov,b
e ), and the objects

⊕
b′∈Ze·b L

Se
b′

and
⊕

b′∈Ze·b E
Se
b′ admit lifts to Coh(S̃e/Z̃

cov
e ). In particular, we have an equivalence

HomS̃e
(
⊕
b∈Be

ESeb ,−) : QC(S̃e/Z̃
cov
e )

∼−→ Acov,op
Se

-modZ̃
cov
e .

Proof. The first assertion follows from Proposition 2.2.13, (2.1.8.3), and Proposition 2.3.2. For the
second assertion, let

qb : S̃e/Z̃
cov,b
e → S̃e/Z̃

cov
e

be the projection, and simply note that

(qb,∗LSeb )dq '
⊕

b′∈Ze·b

LSeb′ ,

(qb,∗ESeb )dq '
⊕

b′∈Ze·b

ESeb′ .

The final assertion is now immediate from §2.2.5. �

2.4. Centrally extended sets

2.4.1. In this section, we recall an important theorem of Bezrukavnikov, Ostrik, and Losev, which
relates the structure of each block of the asymptotic affine Hecke algebra J to the canonical basis Be and
noncommutative Springer resolution ASe [BO04, BL23]. This further yields an interpretation of each block
of J as the endomorphisms of a certain vector bundle; these “asymptotic coherent Springer sheaves” will
be our main object of study in this thesis. Finally, we comment briefly on (and partially resolve) a recent
conjecture of Qiu–Xi regarding the structure of J [QX22].

2.4.2. We begin by reviewing the properties of the affine and asymptotic affine Hecke algebras which
will be relevant for the present work. References for these facts may be found in the series [Lus85, Lus87a,
Lus87b, Lus89], though see also [Bez04].

Recall that the affine Hecke algebra H is a free Z[v±1]-algebra equipped with a canonical basis {Cw}w∈W aff ,
known as the Kazhdan–Lusztig basis, indexed by the extended affine Weyl group W aff of the Langlands dual
reductive group Ǧ. The group W aff decomposes into subsets c ⊂ W aff known as two-sided cells, which
are equipped with a standard partial order; the unique minimal two-sided cell consists only of the identity
element. Let W aff

≤c :=
⋃
c′≤c c, and likewise for W aff

<c . We set H≤c and H<c to be the Z[v±1]-submodules of H
spanned by the Kazhdan–Lusztig basis elements {Cw}w∈W̃≤c and {Cw}w∈W aff

<c
, respectively. In fact, these are

two-sided ideals of H. We denote the subquotients of the corresponding filtration of H by Hc := H≤c/H<c;
the latter is an H-bimodule with Z[v±1]-basis {Cw}w∈c.

Next, recall that the asymptotic affine Hecke algebra J is a free Z-algebra equipped with a canonical
basis {tw}w∈W aff . For each two-sided cell c, we let Dc ⊂ c denote the (finite) set of Duflo involutions in c.
Then the elements 1Jc :=

∑
d∈Dc

td are pairwise-orthogonal idempotents summing to the identity element
1J . In particular, setting Jc := 1Jc · J · 1Jc , we obtain a decomposition

J ∼=
⊕
c

Jc

into subalgebras, where each Jc has Z-basis {tw}w∈c.
We now recall the construction of Lusztig’s homomorphism φ : H → J [v±1], where we have written

J [v±1] := J ⊗Z Z[v±1]. Set
basc : Hc

∼−→ Jc[v±1]

to be the Z[v±1]-module isomorphism given by Cw 7→ tw for w ∈ c. We transport the H-bimodule structure
on Hc to Jc[v±1] via basc; one can then show that Jc[v±1] carries both (H,Jc[v±1])- and (Jc[v±1],H)-
bimodule structures (via its natural Jc[v±1]-bimodule structure). For each two-sided cell c, we define a
map

φc : H → Jc[v±1],

h 7→ h · 1Jc
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via the left H-module structure on Jc[v±1]. One can show that this is an algebra homomorphism, and we
set φ :=

⊕
c φc. In particular, note that each φc factors through the quotient algebra H/H<c.

Finally, we record two instances of Langlands duality in these structures. First, Lusztig has established a
canonical bijection between the set of nilpotent G-orbits in g and the set of two-sided cells inW aff respecting
the partial orders on either side. Given a nilpotent element e ∈ g, we henceforth misuse notation slightly,
and write the subscript “e” in place of the subscript “c” for the corresponding two-sided cell. For instance,
we write H≤e,Je, φe in place of H≤c,Jc, φc, respectively.

Second, recall that the extended affine Weyl group is given by the semidirect product

W aff := W nX∗(Ť ) = W nX∗(T ),

where T ⊂ G is a maximal torus, Ť ⊂ Ǧ is the dual torus, and W denotes the finite Weyl group. Then the
Bernstein isomorphism identifies the center of H with the commutative ring

Z[v±1]⊗Z Z[X∗(Ť )]W ∼= R(T̃ )W ∼= R(G̃),

such that Z[v±1] identifies with the subalgebra R(Gm).

2.4.3. To state Bezrukavnikov–Ostrik–Losev’s theorem, we will need the following language from [BO04]
(see also [BDD22, §2.4]):

2.4.4. Definition. Let H be a linear algebraic group.
(1) A centrally extended H-set X is the data of

(a) an H-set X;
(b) for each x ∈ X, a cocycle (Cx, αx) of the stabilizer Hx; and
(c) for each h ∈ H, an isomorphism ad∗h(Cx, αx) ∼= (Ch·x, αh·x), where adh : Hx → Hh·x denotes

the conjugation map. We require that these isomorphisms satisfy the cocycle condition, and
moreover, that they agree with those provided by Lemma 2.1.11 for h ∈ Hx.

(2) Let X,Y be two centrally extended H-sets. Their product X×Y is the centrally extended H-set
with underlying set X×Y, cocycles

(2.4.4.1) (C(x,y), α(x,y)) := (Cx, αx)|H(x,y) · (Cy, αy)|H(x,y) ,

and the induced isomorphisms. Similarly, the opposite Xop is the centrally extended H-set obtained
by inverting all cocycles of X.

(3) An H-equivariant vector bundle on X is the data of
(a) for each x ∈ X, a compact object Fx ∈ Rep(Hx)(Cx,αx),♥;
(b) a compatible projective H-equivariant structure on F :=

⊕
x∈X Fx.

We denote the (1, 1)-category of such objects by VectH(X).

2.4.5. Remark. After a choice of orbit representatives Xorb, the data of (1) is nothing more than
the data of a cocycle (Cx, αx) of Hx for each x ∈ Xorb. Moreover, VectH(X) is equivalent to the heart
of
⊕

x∈Xorb Rep(Hx)(Cx,αx),c. The latter thus gives a non-canonical ∞-categorical version of VectH(X); if
we have a covering group Hcov � H trivializing all cocycles appearing in X, we may make it canonical
by taking the corresponding full subcategory of QC(X/Hcov). Alternatively, choosing a compact Vx ∈
Rep(Hx)(Cx,αx),♥ for each x ∈ X, we can take the category of equivariant modules

⊕
x∈X Endk(Vx) -modH .

We will adopt both of these perspectives in the sequel.
For a different ∞-categorical generalization of VectH(X), one can attempt the following construction.

Let X be a scheme with an action of H. Recall that the loop space L(X/H) (see Definition 3.2.2) carries
the canonical structure of a relative group scheme over X/H via the loop evaluation map.19 At the level of
k-points, we have

L(X/H)(k) ' {(x, h) ∈ X(k)×H(k) : h · x = x}/H(k),

and this group structure is given by multiplication in the second coordinate. Note that Definition 2.1.2
evidently makes sense for relative group schemes; thus, we may speak of cocycles on L(X/H). Now, if X
is a finite set, then by Lemma 2.1.11, a cocycle (C, α) on L(X/H) is equivalent to the data of a cocycle
(Cx, αx) on Hx for each x ∈ X, along with descent data for the H-action. If we require the restriction
of these descent data to each Hx to agree with the canonical descent datum for (Cx, αx), then we recover

19In fact, the loop space of any prestack X has the structure of a group object over X, see [GKRV22, Ex. 4.3.3].
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the notion of a centrally extended H-set. It is now straightforward to generalize the notions of “product”
and “opposite.” Moreover, the automorphism group of any x ∈ X in the classifying stack BL(X/H) is
identified with Hx oHx (where the semidirect product is taken via the adjoint action), and we may replace
VectH(X) by the full subcategory of Rep(L(X/H))(C,α) spanned by objects such that the representation of
Hx

(Cx,αx) oHx at any x ∈ X restricts to a weight-1 representation of Hx
(Cx,αx).

20 We shall not need this in
the present work, however.

2.4.6. Given a centrally extendedH-setX, it is not hard to see that the abelian category VectH(X×Xop)
carries a monoidal structure under convolution. We now give a sheaf-theoretic realization of the corresponding
algebra:

2.4.7. Construction. For each x ∈ X, let ix : Hx ↪→ H denote the (clopen) inclusion, and consider the
vector bundle

(2.4.7.1) SX :=
⊕
x∈X

ix,∗C∨x

on H. By Definition 2.4.4(1c), this vector bundle canonically descends to the adjoint quotient stack H/H
(with the action of H permuting the summands according to the H-action on X). Equivalently, letting Xorb

be as in Remark 2.4.5 and ieq
x : Hx/Hx → H/H be the map of adjoint quotient stacks, we have

(2.4.7.2) SX '
⊕

x∈Xorb

ieq
x,∗C∨x ,

where Cx is equipped with its canonical Hx-equivariant structure via Lemma 2.1.11.

2.4.8. Proposition. Suppose H is reductive. Then the dg-algebra of endomorphisms of SX is concen-
trated in degree 0, and

(2.4.8.1) K0 VectH(X×Xop)k ' EndCoh(H/H)(SX)op.

Thus, SX generates a full embedding

(2.4.8.2) K0 VectH(X×Xop)k -mod ' 〈SX〉 ⊂ QC(H/H).

Proof. Let (x, y) ∈ Xorb. We have a base-change diagram

H(x,y)/H(x,y) Hx/Hx

Hy/Hy H/H

ieq
2

ieq
1 ieq

x

ieq
y

with all maps smooth and proper. Thus,

HomH/H(ieq
x,∗C∨x , ieq

y,∗C∨y ) ' HomHx/Hx(C∨x , ieq,!
x ieq

y,∗C∨y )

' HomHx/Hx(C∨x , i
eq
2,∗i

eq,!
1 C∨y )

' HomH(x,y)/H(x,y)(i
eq,∗
2 C∨x , i

eq,!
1 C∨y )

' Γ(H(x,y)/H(x,y), Cx|H(x,y) ⊗ C∨y |H(x,y))

= Γ(H(x,y)/H(x,y), C(x,y))

' K0(Rep(H(x,y))(C(x,y),α(x,y)))k,

where the final isomorphism holds by Lemma 2.1.13. The latter identifies with the (x, y) coordinate of
K0 VectH(X×Xop)k via Remark 2.4.5, so we have an isomorphism (2.4.8.1) of modules over K0 Rep(H)k '
O(H/H). Finally, it is not hard to check that this isomorphism is independent of the choice of Xorb, and
respects the algebra structures on either side; we leave this as an exercise. �

20Note that given any weight-1 representation V of Hx
(Cx,αx)

, the space V ⊗V ∗ carries a natural Hx
(Cx,αx)

oHx-representation
whose restriction to Hx

(Cx,αx)
is again weight-1, and is irreducible if V is.
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2.4.9. In particular, Proposition 2.2.13 shows that Be carries the structure of a centrally extended Ze-set,
so we may form the monoidal (1, 1)-category VectZe(Be × Bop

e ). Let Ag ⊗O(g) Aop
g -modZe,♥,sse denote the

abelian category of semisimple Ze-equivariant Ag-bimodules supported at e; it likewise carries a monoidal
structure via the (underived) tensor product. We may finally state the theorem of Bezrukavnikov–Ostrik–
Losev:

2.4.10. Theorem ([BL23, Prop. 8.25]). For any e ∈ N , there are based algebra isomorphisms

(2.4.10.1) Je ∼= K0 VectZe(Be ×Bop
e ) ∼= K0(Ag ⊗O(g) Aop

g -modZe,♥,sse ).

That is, the basis elements tw correspond to irreducible vector bundles on Be × Bop
e and simple objects of

Ag ⊗O(g) Aop
g -modZe,♥e .

2.4.11. Note that by (2.2.14.1), we may replace Ag ⊗O(g) Aop
g -modZe,♥,sse by the semisimple monoidal

dg-category ASe,0 ⊗k A
op
Se,0

-modZe ; the monoidal structures evidently agree. We refer to the sheaf

(2.4.11.1) SBe ∈ Coh(Ze/Ze)

as the asymptotic coherent Springer sheaf at e. This terminology will be justified in Chapter 5, where we
will also reinterpret Proposition 2.4.8 in terms of the “trace formalism” of [GKRV22].

Finally, pulling back Theorem 2.4.10 along the surjection pcov : Zcov
e � Ze of Proposition 2.3.2 yields:

2.4.12. Proposition. For any e ∈ N , there is a based injection of algebras

Je ↪→ K0 Coh((Be ×Be)/Z
cov
e ).

2.4.13. Remark. This result, along with Corollary 2.3.5, partially resolves the conjecture of Qiu–Xi in
[QX22, §5.6]. There, the authors furthermore conjecture that K0 Coh((Be×Be)/Z

cov
e ) is finitely generated

over Je (as either a left or right module). To this end, it suffices to show that R(Zcov
e ) is finitely generated

as an R(Ze)-module. The fiber square (2.3.3.5) shows that the kernel of pcov is abelian. Thus, we obtain a
Rep(Ze)-linear decomposition of Rep(Zcov

e ) as in (2.1.25.3), and the claim follows by the same argument as
in Lemma 2.1.13. We hope to treat the authors’ conjecture regarding the canonical anti-involution of Je in
a future work.



CHAPTER 3

The trace formalism

3.1. Higher categorical traces

3.1.1. In this section, we recall some facts about the beautiful trace formalism of [GKRV22, §3] that
will be needed in the sequel. This section may mostly be skipped on a first reading.

3.1.2. Let dgCatk denote the (∞, 2)-category with objects given by (presentable) cocomplete stable∞-
categories equipped with a Vectk-module structure (with respect to the Lurie tensor product), 1-morphisms
given by continuous (i.e., colimit-preserving) functors, and 2-morphisms given by natural transformations.
The Lurie tensor product (over Vectk) endows dgCatk with a symmetric monoidal structure with unit object
Vectk. As in §1.8, We refer to objects of dgCatk as “k-linear dg-categories,” or simply “dg-categories.”

3.1.3. We denote by Morita(dgCatk) the (∞, 2)-category whose objects are symbols A -mod, where A

is a monoidal dg-category, and whose 1-morphisms are given by the (∞, 1)-category

MapMorita(dgCatk)(A -mod,B -mod) := B⊗Arev -mod,

where Arev denotes A with the opposite monoidal structure. The composition law is given by the tensor
product of bimodules, and the unit 1-morphism of an object A -mod is given by the regular bimodule A.

Moreover, Morita(dgCatk) carries a symmetric monoidal structure via

A -mod⊗B -mod := A⊗B -mod,

with unit object Vectk -mod. Note that we have a canonical identification

(3.1.3.1) EndMorita(dgCatk)(Vectk -mod) ' dgCatk.

Moreover, any object A -mod of Morita(dgCatk) is dualizable, which dual given by Arev -mod. Indeed, the
unit and counit of this duality are given by

Vectk -mod
A−→ A⊗Arev -mod

A−→ Vectk -mod,

respectively. The dual 1-morphism to any M : A -mod→ B -mod is then given by the same bimodule, i.e.,
by M : Brev -mod→ Arev -mod.

3.1.4. We denote21 by L(Morita(dgCatk))rgd the following (∞, 2)-category:
(1) An object of L(Morita(dgCatk))rgd is a pair (A -mod,P), where

(a) A is a monoidal dg-category; and
(b) P is an A-bimodule.

(2) Given objects (A -mod,P) and (B -mod,Q) of L(Morita(dgCatk))rgd, a 1-morphism

(A -mod,P)→ (B -mod,Q)

in L(Morita(dgCatk))rgd is a pair (M, α), where
(a) M is a right-dualizable (B,A)-bimodule M; and
(b) α : M⊗A P→ Q⊗B M is a (B,A)-linear functor.
The composition law is the evident extension of that for Morita(dgCatk), and the unit 1-morphism
is given by the regular bimodule and canonical equivalence.

(3) Given 1-morphisms (M, α), (N, β) : (A -mod,P)→ (B -mod,Q), a 2-morphism

(M, α)⇒ (N, β)

is a pair (γ, θ), where

21But do not explain the general meaning of these notations; we refer the reader to loc. cit. for the details.

43
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(a) γ : M→ N is a (B,A)-linear functor admitting a continuous (B,A)-linear right adjoint; and
(b) θ : (idQ⊗γ) ◦ α ⇒ β ◦ (γ ⊗ idP) is a natural transformation of functors M ⊗A P → Q ⊗B N,

which we represent diagramatically as

M⊗A P Q⊗B M

N ⊗A P Q⊗B N.

α

γ⊗idP idQ⊗γ
θ

β

The composition law is the evident extension of that for Morita(dgCatk), and the unit 2-morphism
is given by the identity functor and natural transformation.

Moreover, L(Morita(dgCatk))rgd carries a symmetric monoidal structure via

(A -mod,P)⊗ (B -mod,Q) := (A⊗B -mod,P⊗ Q),

with unit object (Vectk -mod,Vectk). There is an evident forgetful symmetric monoidal functor

L(Morita(dgCatk))rgd → Morita(dgCatk).

3.1.5. The (∞, 2)-category L(Morita(dgCatk))rgd is equipped with a canonical symmetric monoidal
functor of (∞, 2)-categories

(3.1.5.1) Tr: L(Morita(dgCatk))rgd → dgCatk,

known as the 2-categorical trace. We recall (some of) its construction. Given an object (A -mod,P) of
L(Morita(dgCatk))rgd, we set Tr(A -mod,P) to be the composition

Vectk -mod
A−→ A⊗Arev -mod

P⊗Arev

−−−−−→ A⊗Arev -mod
A−→ Vectk -mod

in Morita(dgCatk), that is,
Tr(A -mod,P) := A ⊗

A⊗Arev
P ∈ dgCatk.

via (3.1.3.1). Thus, we are simply imitating the usual construction of “trace” in a symmetric monoidal
category, one categorical level higher. As in the case of classical algebras, we adopt the shorthand notation
Tr(A,P) := Tr(A -mod,P), and refer to it as the categorical trace (or categorical Hochschild homology) of P.

Moreover, given a 1-morphism

(M, α) : (A -mod,P)→ (B -mod,Q),

the 1-morphism
Tr(M, α) : Tr(A,P)→ Tr(B,Q)

is given by the composition

(3.1.5.2)

Vectk -mod A⊗Arev -mod A⊗Arev -mod Vectk -mod

Vectk -mod B⊗Brev -mod B⊗Brev -mod Vectk -mod,

A

Vectk

P⊗Arev

M⊗MR
εM

A

M⊗MRα
Vectk

ηM

B Q⊗Brev
B

of 2-morphisms in Morita(dgCatk) (i.e., we obtain a 2-morphism from the outer clockwise circuit to the
outer counterclockwise circuit). Here MR denotes the right-dual to M, and

(3.1.5.3) ηM : A→MR ⊗B M, εM : M⊗A MR → B

are the (A-bilinear) unit and (B-bilinear) counit of this duality, respectively. We refer the reader to
[GKRV22, §3.9] for the description of the 2-categorical trace of a 2-morphism. Finally, we note that
(3.1.5.1) satisfies the usual cyclicity properties for 1- and 2-morphisms; we refer the reader to [GKRV22,
§3.1.4, §3.2.4] for the details.

3.1.6. Given (A -mod,P) ∈ L(Morita(dgCatk))rgd, we define the (∞, 1)-category

(A,P) -mod := MapL(Morita(dgCatk))rgd
((Vectk -mod,Vectk), (A -mod,P)).

The functor Tr of (3.1.5.1) then restricts to an (∞, 1)-functor

(3.1.6.1) [−] : (A,P) -mod→ MapdgCatk
(Vectk,Tr(A,P)) ' Tr(A,P),
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which we term the 2-categorical class map. Let us spell this construction out in more detail.
As in §3.1.4, an object of (A,P) -mod is the same as a right-dualizable (left) A-module category M

equipped with an A-module homomorphism α : M → P ⊗A M. We refer to the resulting object [M, α] ∈
Tr(A, FA) as the 2-categorical class of (M, α). Moreover, given another such pair (N, β), a 1-morphism
(M, α) → (N, β) in (A,P) -mod is the same as an A-linear functor γ : M → N admitting an A-linear right
adjoint, and a natural transformation θ : (idP⊗γ) ◦ α ⇒ β ◦ γ of functors M → P ⊗A N. We denote the
resulting morphism between 2-categorical classes by [γ, θ] : [M, α]→ [N, β].

3.1.7. In particular, for a monoidal category A equipped with a monoidal endofunctor FA, we set

Tr(A, FA) := Tr(A, FA
A) := A ⊗

A⊗Arev
FA

A,

and refer to it simply as the categorical trace of A (with respect to the endofunctor FA). We will sometimes
also write (A -mod, FA) := (A -mod, FA

A). Objects of (A, FA) -mod are now pairs (M, FM) as before; we
refer to the A-module homomorphism FM : M → FA

M as an FA-semilinear endofunctor. When FA or FM

is the identity, we will often omit it from the notation.
Note that we also have a canonical “universal trace” functor

(3.1.7.1) [−] : A→ A ⊗
A⊗Arev

FA
A

given by sending a ∈ A to the image of a ⊗ 1A, where the latter denotes the monoidal unit of A. This
functor factors through (3.1.6.1) as follows: given any a ∈ A, we may define an FA-semilinear endofunctor
FA,a(−) := FA(−) ⊗ a of the regular A-module A. It is then not hard to see that [a] = [A, FA,a] via
(3.1.7.1). In particular, the trace of the monoidal unit agrees with that of the regular representation, that
is, [1A] = [A, FA].

3.1.8. Recall that a monoidal functor Ψ: A→ B is rigid if
(1) the right-adjoint ΨR is continuous and A-bilinear; and
(2) the multiplication map multB : B⊗A B→ B admits a continuous, B-bilinear right adjoint.

In particular, a monoidal category A is rigid if the unit functor unitA : Vectk → A is rigid. If A is compactly
generated, then by [GR17a, Lem. 9.1.5], this is equivalent to requiring

(1) the unit 1A is compact;
(2) the multiplication multA : A⊗A→ A preserves compact objects; and
(3) every compact object of A admits a left and right monoidal dual.

Thus, in this case, we recover a more traditional notion of rigidity. Finally, note that any monoidal functor
between rigid monoidal categories is itself rigid.22.

3.1.9. The notion of rigidity also has an interpretation in terms of dualizability of categories. Given any
monoidal functor Ψ: A→ B, the (B,A)-bimodule IndΨ := BΨ is right-dualizable. Specifically, its right-dual
is given by the analogous (A,B)-bimodule ResΨ := ΨB, with the unit given by

(3.1.9.1) A
Ψ−→ ΨBΨ ' ResΨ⊗B IndΨ

and the counit given by the multiplication map

(3.1.9.2) multB : IndΨ⊗A ResΨ → B.

If Ψ is rigid, then ResΨ is moreover left-dual to IndΨ, via the right-adjoints to (3.1.9.1) and (3.1.9.2).

3.1.10. Given a dualizable dg-category C with an endofunctor FC, the Hochschild homology HH(C, FC)
is the 2-categorical class [C, FC] ∈ Tr(Vectk) ∈ Vectk. Equivalently, by (3.1.5.2), it is the composition

(3.1.10.1) Vectk
ηC−−→ C⊗ C∨

FC⊗idC∨−−−−−−→ C⊗ C∨
εC−→ Vectk,

where ηC, εC are as in (3.1.5.3). Moreover, its functoriality in the pair (C, FC) is as in §3.1.6. This has the
following consequences:

22See [GKRV22, §3.10.3]. In more detail, this follows from [GR17a, Ch. 1, Lem. 9.2.6(b)], and by imitating the proof of
[GR17a, Ch. 1, Prop. 8.7.2].
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(1) For any compact object c ∈ Cc equipped with a morphism θ : c→ FC(c), we obtain a map

[c, θ] : k ' [Vectk, idVectk ]→ [C, FC]

upon interpreting c as a functor Vectk → C and θ as a natural transformation. We likewise
denote the image of the unit under this map by [c, θ] ∈ HH(C, FC), and refer to this element as
the (Hochschild) class of (c, θ) as in (3.1.6.1). In particular, when FC is the identity, we write
[c] := [c, idc].

(2) Let A be a monoidal category equipped with a monoidal endofunctor FA, and suppose that unitA,
multA, and FA all admit continuous right adjoints (for instance, this holds if A is compactly
generated and all preserve Ac). Then the Hochschild homology HH(A, FA) inherits an algebra
structure with unit [1A] (omitting the unit isomorphism of FA). In particular, this holds when A

is rigid, in which case FA is itself automatically rigid as in §3.1.8.
We now state the main result of [GKRV22, §3], and one of our primary technical tools:

3.1.11. Theorem ([GKRV22, Thm. 3.8.5]). Let A be a rigid monoidal category equipped with a monoidal
endofunctor FA. Then there is an equivalence of algebras23

(3.1.11.1) HH(A, FA) ' EndTr(A,FA)([A, FA])op,

which extends to an equivalence of functors

(3.1.11.2) HH(−) ' HomTr(A,FA)([A, FA], [−]) : (A, FA) -mod→ HH(A, FA) -mod .

In particular, if [A, FA] is compact, then the left adjoint to HomTr(A)([A, FA],−) defines a fully-faithful
embedding which preserves compact objects, and whose essential image is the category generated by [A, FA]:

(3.1.11.3)

HH(A, FA) -mod Tr(A, FA)

〈[A, FA]〉.

'

[A,FA]⊗End([A,FA])−

Hom([A,FA],−)

pr[A,FA]

in[A,FA]

3.1.12. Note that ifA is compactly generated, then by [GR17a, Ch. 1, Cor. 8.7.4], the category Tr(A, FA)
is compactly generated by objects of the form [a], where a ∈ Ac. In particular, the object [A, FA] is compact,
and the right adjoint pr[A,FA] is continuous.

3.1.13. Finally, we give two methods for constructing adjunctions between monoidal traces, following
the approach of [GKRV22, §3.10.4].

3.1.14. We begin by discussing the induction-restriction adjunction. Let (A, FA) and (B, FB) be as in
§3.1.7, and suppose that we are given a rigid monoidal functor Ψ: A → B, equipped with an isomorphism
Ψ ◦ FA ' FB ◦Ψ. Then by §3.1.9, we have 1-morphisms

(3.1.14.1) (IndΨ, FB ⊗ idA) : (A -mod, FA
A)� (B -mod, FB

B) : (ResΨ, idB)

in L(Morita(dgCatk))rgd. More precisely, these functors are given by the compositions

BΨ ⊗A FA
A

FB⊗idA−−−−−→ FB
BFB◦Ψ ⊗A FA

A ' FB
BΨ◦FA

⊗A FA
A→ FB

BΨ ⊗A A ' FB
BΨ,

ΨB⊗B FB
B ' FB◦ΨB ' Ψ◦FA

B,

23We comment on the presence of the opposite algebra, which does not appear in the original formulation of [GKRV22].
The algebra isomorphism (3.1.11.1) arises from the adjunction (3.1.14.3) as follows: on the one hand, the monad
Tr(ResunitA ◦ IndunitA ) ∈ Alg(Vectk) identifies with HH(A, FA) as in §3.1.10. On the other hand, by functoriality of (3.1.5.1),
this monad may equivalently be expressed as Tr(ResunitA ) ◦Tr(IndunitA ). Note that by definition, the functor Tr(IndunitA ) is
given by the Vectk-action on [A, FA], and hence its right-adjoint Tr(ResunitA ) is given by HomTr(A,FA)([A, FA],−). It is now
straightforward to verify that the algebra structure on

Tr(ResunitA ) ◦ Tr(IndunitA ) ' HomTr(A,FA)([A, FA], [A, FA])

is the opposite one.
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respectively. We now aim to endow (3.1.14.1) with the structure of an adjunction in L(Morita(dgCatk))rgd,
i.e., to construct unit and counit 2-morphisms

id(A -mod,FA
A) ⇒ (ResΨ, idB) ◦ (IndΨ, FB ⊗ idA),

(IndΨ, FB ⊗ idA) ◦ (ResΨ, idB)⇒ id(B -mod,FB
B),

(3.1.14.2)

satisfying the usual identities. By rigidity, the functors (3.1.9.1) and (3.1.9.2) admit continuous bilinear right
adjoints. Moreover, we take the natural isomorphisms exhibiting commutativity of the evident diagrams

A⊗A FA
A FA

A⊗A A

ΨBΨ ⊗A FA
A FB◦ΨBΨ FA

A⊗A ΨBΨ,

∼

Ψ⊗idA idA⊗Ψ

FB⊗idA ∼

(BΨ ⊗A ΨB)⊗B FB
B BΨ ⊗A Ψ◦FA

B FB
B⊗B (BΨ ⊗A ΨB)

B⊗B FB
B FB

B⊗B B,

∼

multB⊗idB

FB⊗idB

idB⊗multB

∼

or equivalently, the identities

FB(Ψ(a))Ψ(a′) ' Ψ(FA(a)a′),

FB(bb′)b′′ ' FB(b)(FB(b′)b′′)

for a, a′ ∈ A and b, b′, b′′ ∈ B, respectively. It is now straightforward to verify that the resulting 2-morphisms
(3.1.14.2) yield an adjunction. Applying the functor (3.1.5.1) then yields an adjunction

(3.1.14.3) Tr(IndΨ, FB ⊗ idA) : Tr(A, FA)� Tr(B, FB) : Tr(ResΨ, idB),

as desired. We henceforth misuse notation slightly and denote the 1-morphisms of (3.1.14.1) simply by
IndΨ and ResΨ, respectively; the functors of (3.1.14.3) are then denoted by Tr(IndΨ) and Tr(ResΨ) as in
[GKRV22, (3.30)].

For future reference, we note the following explicit description of Tr(IndΨ) (which holds even if Ψ is not
necessarily rigid).

3.1.15. Lemma. The functor

Tr(IndΨ) : Tr(A, FA)→ Tr(B, FB)

is given by the composition

A ⊗
A⊗Arev

FA
A

Ψ⊗Ψ−−−→ ΨBΨ ⊗
A⊗Arev

FB◦ΨBΨ → BΨ ⊗
B⊗Brev

FB
B.

Proof. It follows directly from the definitions (using the duality of §3.1.9) that Tr(IndΨ) is given by
the composition

A ⊗
A⊗Arev

FA
A

Ψ⊗idA−−−−→ ΨBΨ ⊗
A⊗Arev

FA
A

∼−→ B ⊗
B⊗Brev

(ΨB⊗BΨ) ⊗
A⊗Arev

FA
A

∼−→ B ⊗
B⊗Brev

(BΨ ⊗
A

Ψ◦FA
B)

idB⊗(FB⊗idB)−−−−−−−−−−→ B ⊗
B⊗Brev

(FB
BFB◦Ψ ⊗

A
FB◦ΨB)

idB⊗multB−−−−−−−→ B ⊗
B⊗Brev

FB
B.

Tracing the constructions immediately yields the result. �

3.1.16. Next, we discuss adjunctions arising from dualizable objects of the Drinfeld center. Given a
monoidal category B, recall that the Drinfeld center of B is the dg-category

Z(B) := HomB⊗Brev(B,B),
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which carries a natural E2-monoidal structure via composition, and is equipped with a universal central
functor

(3.1.16.1) Z(B)→ B

given by evaluation at 1B. In particular, for any B-bimodule Q, there is a natural Z(B)-module structure
on Tr(B,Q). It follows that for any right-dualizable (equivalently, left-dualizable) object b ∈ Z(B), we have
a natural adjunction

(3.1.16.2) b⊗− : Tr(B,Q)� Tr(B,Q) : b∨,R ⊗−.
In particular, suppose we are given a monoidal functor Ψ: A→ B which admits a central structure, i.e.,

a factorization of Ψ through (3.1.16.1). Then for any a ∈ A, we have a B-bilinear functor −⊗Ψ(a) : Q→ Q,
and hence a 1-morphism

(B,−⊗Ψ(a)) : (B -mod,Q)→ (B -mod,Q)

in L(Morita(dgCatk)). Moreover, if a is left-dualizable24, applying Ψ to the unit and counit maps in A

yields 2-morphisms

(B,−⊗Ψ(a)) ◦ (B,−⊗Ψ(a∨,L)) ' (B,−⊗Ψ(a∨,L ⊗ a))⇒ (B,−⊗Ψ(1A)) ' (B, idQ),

(B, idQ) ' (B,−⊗Ψ(1A))⇒ (B,−⊗Ψ(a⊗ a∨,L)) ' (B,−⊗Ψ(a∨,L)) ◦ (B,−⊗Ψ(a))

in L(Morita(dgCatk)) satisfying the same identities, hence an adjunction

(3.1.16.3) (B,−⊗Ψ(a)) : (B -mod,Q)� (B -mod,Q) : (B,−⊗Ψ(a∨,L))

in L(Morita(dgCatk)). Applying the functor (3.1.5.1) then recovers the adjunction (3.1.16.2) (using the
E2-monoidal structure on Z(B)). Finally, note that given any (N, β) ∈ (B,Q) -mod, we have

(B,−⊗Ψ(a)) ◦ (N, β) ' (N,Ψ(a)⊗ β(−)) ∈ (B,Q) -mod,

so we obtain

(3.1.16.4) Tr(B,−⊗Ψ(a))([N, β]) ' [N,Ψ(a)⊗ β(−)]

on 2-categorical classes.

3.2. Traces of categories of quasicoherent sheaves

3.2.1. In this section, we recall some facts about loop spaces of stacks and traces of categories of quasi-
coherent sheaves that will be needed in the sequel.

3.2.2. Definition. Let X be a (derived) stack equipped with a self-map φX : X → X. The φX-twisted
loop space (or derived φX-fixed points) of X is given by the fiber product

LφX X

X X× X,

ev ΓφX

∆X

where ∆X denotes the diagonal morphism, and ΓφX
= (φX, idX) denotes the graph of φX. We refer to the

morphism ev as the loop evaluation. When φX = idX, we write LX := LφX
X, and refer to it simply as the

loop space of X.

3.2.3. Remark. Alternatively, we have LX ' Map(S1,X), the derived mapping stack from the circle,
which thus carries a natural S1-action. We shall not need this in the present work, however. Note that
in this thesis, we reserve the notation XφX for schemes, in which case it denotes the classical fixed points
(LφX

X)cl.

3.2.4. The formation of twisted loop spaces is functorial in the pair (X, φX), and commutes with fiber
products. More precisely, if Y is another stack equipped with a self-map φY : Y → Y, and p : X → Y is
a morphism intertwining these self-maps, that is, p ◦ φX ' φY ◦ p, then we have an induced morphism
Lp : LφX

X→ LφY
Y.

24A similar construction applies using the left-action of Ψ(a) on Q, in which case it is more natural to take a to be right-
dualizable. However, the right-action on Q agrees more naturally with the left-action on B in the tensor product describing
Tr(B,Q). In either case, the two constructions are related by the E2-monoidal structure on Z(B).
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3.2.5. When X = X/G is a quotient stack, for X a (derived) scheme and G a linear algebraic group,
its loop space admits a more explicit description. Suppose that φX commutes with the natural projection
X → BG, i.e., that φX lifts to an endomorphism φX : X → X commuting with the G-action. Then by
[Che18, Prop. 3.1.6], we have a Cartesian square

(3.2.5.1)
Lφ(X/G) (X ×G)/G

X/G (X ×X)/G,

ev

evG

(φX◦act,pr)

∆X

where act,pr: X × G → X denote the action and projection maps, respectively, and G acts diagonally on
X ×X and X ×G (via the adjoint action on G). In particular, at the level of k-points, we have

Lφ(X/G)(k) ∼= {(x, g) ∈ X(k)×G(k) : φX(g · x) = x}/G(k).

We now record two lemmas translating properties of stacks into properties of their twisted loop spaces:

3.2.6. Lemma. Suppose we are in the setup of §3.2.4.

(1) If p is a closed immersion (resp. proper), then so is Lp.
(2) If p is smooth, then Lp is quasi-smooth.

Proof. (1) Both statements are immediate from the factorization

(3.2.6.1) LφX
X ' X×X×X X

∆X/Y×idX−−−−−−−→ (X×Y X)×X×X X ' X×Y×Y Y
p×idY−−−−→ Y×Y×Y Y ' LφY

Y,

of Lp, as noted in [BZN21, Rem. 4.6] (see also [BZCHN22, Lem. 3.10]). Here ∆X/Y : X→ X×YX denotes
the relative diagonal, and the latter maps X→ X×X and Y→ Y×Y are given by ΓφX

and ΓφY
, respectively.

(2) Suppose that p is smooth, i.e., the cotangent complex Lp is perfect of Tor-amplitude [0, 1]. The
factorization (3.2.6.1) yields an exact triangle

(∆X/Y × idX)∗Lp×idY
→ LLp → L∆X/Y×idX

.

Since Lp×idY
' pr∗1Lp and L∆X/Y×idX

' pr∗1L∆X/Y
by base-change (where we have let pr1,pr2 denote the

respective projections), we reduce to showing that L∆X/Y
is perfect of Tor-amplitude [−1, 1]. The exact

triangle associated to the composition

X
∆X/Y−−−−→ X×Y X

pr2−−→ X

now yields isomorphisms

L∆X/Y
' ∆∗X/YLpr2

[1] ' ∆∗X/Ypr∗1Lp[1] ' Lp[1],

and the conclusion follows. �

3.2.7. Lemma. Let X be a derived scheme equipped with an action of a linear algebraic group G and
with a self-map φ : X → X commuting with the G-action. Let i : Z ↪→ X ←↩ U : j be a complementary
closed and open immersion, respectively, and suppose that Z and U are both G-stable and φ-stable. Then

(3.2.7.1) Li : Lφ(Z/G)→ Lφ(X/G)← Lφ(U/G) : Lj

are a complementary closed and open immersion, respectively.

Proof. The map Li is a closed immersion by Lemma 3.2.6(1). Alternatively, recall that the property
of being a closed immersion depends only on the underlying classical stacks. The diagram (3.2.5.1) implies
that Lφ(Z/G)cl is computed by the classical fiber product

(3.2.7.2) Zcl/G×Xcl/G Lφ(X/G)cl,

from which the conclusion is immediate.
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Next, consider the commutative cube

Lφ(U/G) (U ×G)/G

Lφ(X/G) (X ×G)/G

U/G (U × U)/G

X/G (X ×X)/G.

Lj

(φ◦act,pr)

j×idG

(φ◦act,pr)
∆U

j j×j

∆X

Its front and back faces are cartesian; moreover, its bottom face is cartesian as U ×X U ' U . Thus, by a
standard lemma on cartesian diagrams, the top face is cartesian as well, i.e.,

(3.2.7.3) Lφ(U/G) ' (U ×G)/G×(X×G)/G Lφ(X/G) ' U/G×X/G Lφ(X/G),

which implies the result.
Finally, the expressions (3.2.7.2) and (3.2.7.3) imply that the immersions of (3.2.7.1) are complementary,

as this condition depends only on the underlying topological spaces. �

3.2.8. We now turn to studying the category QC(X) of quasi-coherent sheaves on X and its trace. Recall
that QC(X) carries a symmetric monoidal structure via tensor product. For any stack (even prestack) X,
the dualizable objects of QC(X) are given by the perfect complexes Perf(X) ⊂ QC(X) (i.e., by sheaves
whose pullback to any affine scheme mapping to X is perfect). However, the category QC(X) is not in
general compactly generated, or even rigid. To rectify these problems, we introduce the following conditions,
following [GR17a, Ch. 3, §3.5] and [BZFN10]:

3.2.9. Definition. A stack X is passable if
(1) its diagonal morphism is quasi-affine;
(2) the structure sheaf OX ∈ QC(X) is compact; and
(3) the category QC(X) is dualizable.

It is perfect if its diagonal morphism is furthermore affine, and QC(X) is furthermore compactly generated.

3.2.10. By [GR17a, Ch. 3, Prop. 3.4.2], the category QC(X) is rigid if X is passable, and compactly
generated by Perf(X) if it is moreover perfect. In [BZFN10], it is shown that the class of perfect stacks
includes

(1) quasi-compact schemes with affine diagonal;
(2) quotient stacks X/G, where G is a linear algebraic group and X is a finite-type scheme endowed

with a G-equivariant ample line bundle (for instance, when X is quasi-affine, we may take the
structure sheaf); and

(3) fiber products of perfect stacks.
Finally, using [GR17a, Ch. 3, Prop. 3.5.3] (though see also [BZFN10, Thm. 4.7]), we can compute the
categorical trace of QC(X) with respect to the endofunctor φ∗X:

3.2.11. Proposition. Suppose that X is passable. Then we have a natural identification

(3.2.11.1) Tr(QC(X), φ∗X) ' QC(LφX
X),

with the universal trace functor (3.1.7.1) is given by the loop evaluation

[−] ' ev∗ : QC(X)→ QC(LφX
X).

3.2.12. Note that here, Theorem 3.1.11 yields

(3.2.12.1) HH(QC(X), φ∗X) ' Γ(OLφXX),

which may be checked directly using the duality data for QC(X). Finally, we describe the functoriality of
(3.2.11.1):
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3.2.13. Corollary. Suppose we are in the setup of §3.2.4, and that X,Y are both passable, so that

p∗ : QC(Y)→ QC(X)

is a monoidal functor of rigid monoidal categories intertwining the monoidal endofunctors φ∗Y and φ∗X. Then
under Proposition 3.2.11, the adjoint functors

Tr(Indp∗) : Tr(QC(Y), φ∗Y)� Tr(QC(X), φ∗X) : Tr(Resp∗)

of (3.1.14.3) identify with
Lp∗ : QC(LφY

Y)� QC(LφX
X) : Lp∗.

Proof. The identification Tr(Indp∗) ' Lp∗ is immediate from Lemma 3.1.15 and naturality of [GR17a,
Ch. 3, Prop. 3.5.3]. The identification Tr(Resp∗) ' Lp∗ then follows by adjunction. �

3.3. Traces of convolution categories

3.3.1. In this section, we recall some general results of Ben-Zvi–Chen–Helm–Nadler [BZCHN22] on
traces of convolution categories, and their relationships to the traces of categories of quasi-coherent sheaves
computed in the previous section. We then specialize these results to the case of the affine Hecke category
(and its restriction to a Slodowy slice).

Before proceeding, we will require some technical recollections:

3.3.2. Definition. An algebraic stack is QCA25 if it is quasi-compact, of finite presentation, and has
affine finitely presented diagonal.

3.3.3. For instance, the quotient stack of a finitely presented affine scheme by an affine algebraic group
is QCA. Moreover, it is not hard to see that fiber products (in particular, loop spaces) of QCA stacks
are QCA. As in [DG13, Thm. 4.3.1], any QCA stack is passable. Most saliently for our purposes, the
category of ind-coherent sheaves on a QCA stack X is compactly generated by its coherent subcategory, i.e.,
QC!(X) ' Ind(Coh(X)).

3.3.4. Next, given any quasi-smooth Artin stack X, we may consider its (classical) stack of singularities

Sing(X) := Spec
X

SymOX
H1(L∨X)

as in [AG15], which carries a canonical fiberwise Gm-action. Given any singular support condition Λ, i.e.,
a conical closed subset Λ ⊂ Sing(X), we may define a full subcategory QC!

Λ(X) ⊂ QC!(X) spanning sheaves
whose singular support is contained in Λ. This inclusion then admits a continuous colocalization; we denote
this adjoint pair by

ιΛ : QC!
Λ(X)� QC!(X) : ΓΛ,

In particular, letting {0}X ⊂ Sing(X) denote the 0-section, we have QC!
{0}X(X) ' QC(X). On the other

hand, for the vacuous singular support condition, we have QC!
Sing(X)(X) ' QC!(X). Moreover, for any

closed substack Z ⊂ X, we have QC!
Z×X{0}X(X) ' QCZ(X) and QC!

Z×XSing(X)(X) ' QC!
Z(X), i.e., the full

subcategories of sheaves set-theoretically supported on Z.
Finally, given a map of such stacks p : X→ Y, there is a correspondence

Sing(X)
Sing(p)←−−−− Sing(Y)×Y X

p−→ Sing(Y).

Note that by Lemmas 2.4.3 and 2.4.4 in loc. cit., the “singular codifferential” Sing(p) is closed if p is quasi-
smooth, and an isomorphism if p is smooth. Thus, given singular support conditions ΛX and ΛY for X and
Y, we may define singular support conditions

p∗ΛX := p(Sing(p)−1(ΛX)), p!ΛY := Sing(p)(p−1(ΛY))

for Y and X, respectively. We then have functors

p∗ : QC!
ΛX

(X)→ QC!
p∗ΛX

(Y), p! : QC!
ΛY

(Y)→ QC!
p!ΛY

(X).

If p is moreover quasi-smooth (or more generally, Gorenstein), then the same holds for p∗ in place of p! (as
[Gai13, Prop. 7.3.8] implies that the two differ by a shifted line bundle).

25In the sense of [BZCHN22], rather than in the more general sense of [DG13].
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3.3.5. We may now state the description of the categorical trace of a convolution category given in
[BZCHN22, §3]. Suppose we are in the setup of §3.2.4, and moreover, that

(1) the stacks X,Y are smooth and QCA;
(2) the map p : X→ Y is proper; and
(3) the self-map φX, φY are automorphisms.

Then the fiber product category X×YX is QCA and quasi-smooth (as in Lemma 3.2.6(2)), and the category
QC!(X×YX) is monoidal under the ∗-convolution.26 Moreover, the automorphism φ := φX×φY

φX of X×YX

yields a monoidal endofunctor φ∗ of QC!(X×Y X). We then have:

3.3.6. Proposition. The monoidal category QC!(X×Y X) is rigid. Moreover, we have a natural identi-
fication

Tr(QC!(X×Y X), φ∗) ' QCΛX/Y,φ
(LφY

Y),

where
ΛX/Y,φ := (p× idY)∗pr!

1 Sing(X×Y X) ⊂ Sing(LφY
Y)

is the singular support condition obtained via the “trace correspondence”27

(3.3.6.1) X×Y X (X×Y X)×X×X X ' X×Y×Y Y LφY
Y.

pr1 p×idY

Moreover, the universal trace functor (3.1.7.1) is given by (p× idY)∗pr∗1.

3.3.7. Remark. Let us describe the monoidal duality in QC!(X×Y X) explicitly. Set Z := X×Y X, and
let F ∈ Coh(X×Y X). The proof of [BZCHN22, Thm. 3.25] shows that the right-dual of F is given by

F∨,R ' σ∗(ωZ/X ⊗ DZ(F)⊗ ω∨Z),

where σ : Z → Z is the “swap” map as in §2.2.7, ωZ/X := pr!
1OX is the relative dualizing sheaf with respect

to the first projection, DZ denotes Grothendieck–Serre duality on Z, and ωZ denotes the dualizing sheaf of
Z (which is a shifted line bundle as Z is quasi-smooth).

Now suppose that X is Calabi–Yau, i.e., has trivial canonical bundle. Then we claim that F is pivotal,
that is, its left and right monoidal duals coincide. Indeed, in this case, we have ωZ/X ' ωZ[−dimX], hence
F∨,R ' σ∗DZ(F)[−dimX]. Note that the functors σ∗ and DZ commute. Moreover, σ∗ is clearly involutive,
and DZ is involutive by [DG13, §4.4.3]. It follows that

(F∨,R)∨,R ' σ∗DZ(σ∗DZ(F)[−dimX])[−dimX] ' σ∗DZσ
∗DZ(F) ' F ,

as desired. In particular, this property holds for the “affine Hecke categories” Hcoh
Se

of (2.2.7.2), as

(3.3.7.1) ωS̃e/Z̃e ' OS̃e/Z̃e [dim S̃e − dim Z̃e]〈dim S̃e〉

up to a character of Ze (see for instance [GR17b, Ch. 9, Prop. 7.3.4]), and these twists clearly do not disrupt
the above argument.

3.3.8. Note that by base-change, we have

(3.3.8.1) [∆X/Y,∗OX] ' Lp∗OX ∈ QCΛX/Y,φ
(LφY

Y).

Thus, Theorem 3.1.11 yields an algebra isomorphism

(3.3.8.2) HH(QC!(X×Y X), φ∗) ' EndLφYY(Lp∗OX)op.

In particular, when p is the identity, we recover Proposition 3.2.11 (since the categories of ind-coherent
and quasi-coherent sheaves are equivalent for smooth stacks). We will now relate the two situations more
generally. Observe the category QC(X) is equipped with both (QC!(X×YX),QC(Y ))- and (QC(Y ),QC!(X×Y

X))-bimodule structures via left and right convolution, respectively; we refer to it in either case as the “regular

26Note that our convention differs from that of [BZCHN22], where the !-convolution is instead used. The reason for this
choice will become clear in §5.3.
27Here the middle term is as in (3.2.6.1).
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bimodule.” Note that the action of the subcategory Coh(X ×Y X) preserves compact objects of QC(X) by
[BZNP17b, Thm. 1.1.3]. Assuming right-dualizability, we obtain a diagram

(QC!(Y) -mod, φ∗Y) (QC!(X×Y X) -mod, φ∗)
(QC(X),φ∗X)

(QC(X),φ∗X)

in L(Morita(dgCatk))rgd. The following lemma characterizes the induced functors on categorical traces:

3.3.9. Lemma. The regular (QC!(X ×Y X),QC(Y))-bimodule QC(X) is both left- and right-dual to the
regular (QC(Y),QC!(X×Y X))-bimodule QC(X). Moreover, we have commutative squares

(3.3.9.1)

Tr(QC(Y), φ∗Y) Tr(QC!(X×Y X), φ∗)

QC(LφY
Y) QC!

{0}p(X)
(LφY

Y) QC!
ΛX/Y,φ

(LφY
Y),

Tr(QC(X),φ∗X)

∼ ∼

Tr(QC(X),φ∗X)

Γ{0}p(X)
ι{0}p(X)

ι{0}p(X) Γ{0}p(X)

where the vertical identifications are those of Proposition 3.3.6, and {0}p(X) := ev! p(X) ⊂ {0}LφYY denotes
the pullback of the classical support condition p(X) ⊂ Sing(Y) ' Y.

Proof. Right-duality was established in the proof of [BZCHN22, Prop. 3.32] (it is not difficult to
verify that all results apply in the setting of the ∗-convolution, in addition to the !-convolution). Left-duality
now follows immediately using [Gai12, Cor. 6.4.1] and rigidity of the monoidal categories QC!(X×Y X) and
QC(Y). More explicitly, the functors

(3.3.9.2)
QC(X)⊗QC!(X×YX) QC(X) ' QC!

p(X)(Y)
ιp(X)

↪−−−→ QC!(Y)

QC!(X×Y X)
Γ{0}X×YX−−−−−−−→ QC(X×Y X) ' QC(X)⊗QC(Y) QC(X)

exhibit this left-duality. Note that the counit is evidently QC!(Y)-bilinear and continuous. Moreover, the unit
is the continuous right adjoint to the evident QC!(X ×Y X)-bilinear inclusion, hence QC!(X ×Y X)-bilinear
by [Gai12, Cor. 6.2.4]. The duality identities now follow immediately from the proof of [BZCHN22,
Prop. 3.32] by adjunction.

For the latter assertion, commutativity of the clockwise square was established in [BZCHN22, Prop. 3.32].
The counter-clockwise square follows by an identical argument, using the functors (3.3.9.2). �

3.3.10. We now use this result to give an alternative description of the universal trace functor for the
convolution category QC!(X×Y X):

3.3.11. Corollary. Given F ∈ QC!(X×Y X), we have

[F ]QC := ι{0}p(X)
Γ{0}p(X)

[F ] ' [QC(X), φ∗X(−) ∗ F ] ∈ QC(LφY
Y).

Moreover, if F is coherent, then so is [F ], and the latter is connective (resp. coconnective) if and only if
[QC(X), φ∗X(−) ∗ F ] is connective (resp. coconnective).

Proof. The first two assertions are immediate from (3.3.9.1) and §3.1.12, respectively. The third
assertion then follows from [Gai13, Prop. 11.7.5]. �

3.3.12. Finally, we explain the functoriality of Proposition 3.3.6 as in Corollary 3.2.13. Let Y′ be a
smooth QCA stack equipped with an automorphism φY′ , and let f : Y′ → Y be a morphism intertwining φY′
and φY. Define p′ : X′ := Y′×YX→ Y′ and φX′ := φY′×φY

φX by pullback along f , and set φ′ := φX′×φY′ φX′

as before. Since f is quasi-smooth, it is locally eventually coconnective by [AG15, Cor. 2.2.4], and hence
(misusing notation slightly) we have an adjoint pair

(3.3.12.1) f∗ : QC!(X×Y X)� QC!(X′ ×Y′ X
′) : f∗.

In particular, f∗ is compact object-preserving and monoidal, and it intertwines the monoidal endofunctors
φ∗ and φ′,∗.
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3.3.13. Corollary. Suppose that f is a smooth relative scheme. Then we have

ΛX′/Y′,φ′ = Lf !ΛX/Y,φ, Lf∗ΛX′/Y′,φ′ ⊆ ΛX/Y,φ,

and the adjoint functors

Tr(Indf∗) : Tr(QC!(X×Y X), φ∗)� Tr!(QC(X′ ×Y′ X
′), φ′,∗) : Tr(Resf∗)

of (3.1.14.3) identify with

(3.3.13.1) Lf∗ : QC!
ΛX/Y,φ

(LφY
Y)� QC!

ΛX′/Y′,φ′
(LφY′Y

′) : Lf∗

under Proposition 3.3.6.

Proof. The claims about singular supports are easily checked from the definitions and properties listed
in §3.3.4 (in particular, the second claim follows from the first). Since Lf is quasi-smooth by Lemma 3.2.6(2),
we indeed have an adjoint pair (3.3.13.1) as in (3.3.12.1). It therefore suffices to identify Tr(Indf∗) with
Lf∗ under Proposition 3.3.6. By §3.1.12, we reduce to showing this for images of compact objects under the
universal trace functor. Given F ∈ Coh(X ×Y X), we have Tr(Indf∗)([F ]) ' [f∗F ]. The result now follows
from (3.3.6.1) by noting that the rightmost square in the commutative diagram

X×Y X (X×Y X)×X×X X X×Y×Y Y LφY
Y

X′ ×Y′ X
′ (X′ ×Y′ X

′)×X′×X′ X
′ X′ ×Y′×Y′ Y

′ LφY′Y
′

pr1 ∼ p×idY

f

pr1 ∼ p′×idY′

Lf

is Cartesian; here all vertical arrows are induced by f in the evident manner. �

3.3.14. In particular, we obtain [∆X′/Y′,∗OX′ ] ' Lf∗[∆X/Y,∗OX], which agrees with the base-change
isomorphism coming from (3.3.8.1).

3.3.15. We now turn to the specific case of the affine Hecke category Hcoh and its restriction Hcoh
Se

to a
Slodowy slice Se, as in §2.2.7. Set Se,N := Se ∩N = πSe(S̃e), and let Ŝe,N denote the formal completion of
Se at Se,N . We set

QC!(L(Ŝe,N /Z̃e)) := QC!
Se,N (L(Se/Z̃e)),

i.e., the subcategory of sheaves set-theoretically supported on Se,N (via the loop evaluation). In particular,
for e = 0, we write N̂ := ĝN following [BZCHN22].

3.3.16. We begin by briefly reviewing the “coherent Springer theory” of [BZCHN22]. Define the coherent
Springer sheaf

(3.3.16.1) S := Lπ∗OL(Ñ/G̃) ∈ QC!(L(N̂/G̃)),

which identifies with the 2-categorical class of the monoidal unit ∆Ñ/g,∗OÑ/G̃ ∈ Hcoh as in (3.3.8.1). By
§2 of loc. cit., the Hochschild homology of Hcoh is concentrated in degree 0 and recovers the affine Hecke
algebra of §2.4.2:

(3.3.16.2) HH(Hcoh) ' K0(Hcoh)k ∼= Hk.

Here the first isomorphism arises via the natural Chern character fromK-theory to Hochschild homology (see
§5.2.8), and the latter isomorphism is a generalization (to groups whose derived subgroup is not necessarily
simply-connected) of the celebrated results of Kazhdan–Lusztig and Chriss–Ginzburg (see Theorem 1.1.2).
These isomorphisms are compatible with the Bernstein isomorphism R(G̃)k ∼= Z(H)k in the evident manner.
We then have a canonical algebra isomorphism

Hk ' EndL(N̂/G̃)(S)op,

as in (3.3.8.2), realizing a categorical local Langlands correspondence for the unramified principal series of
Ǧ. These constructions satisfy many other good properties (such as compatibility with parabolic induction),
which we will not need in the sequel.

We now identify the traces of these “affine Hecke categories” more precisely:
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3.3.17. Corollary. We have a natural identification

Tr(Hcoh
Se ) ' QC!(L(Ŝe,N /Z̃e)).

Proof. By Proposition 3.3.6, it suffices to show that the singular support condition ΛS̃e/Se is vacuous;
the proof follows [BZCHN22, Rmk. 4.14]. Identify g ∼= g∗ via a non-degenerate form 〈−,−〉; thus, the
cotangent space to any point in Se may be identified with gf,∗ ∼= g/[f, g] ∼= ge. The singular locus of
L(Ŝe,N /Z̃e) at a k-point (n, g, q) ∈ Se × Z̃e satisfying gng−1 = q2n is then the set

Sing(L(Ŝe/Z̃e))(n,g,q) = {x ∈ ge : gxg−1 = q−2x, [n, x] = 0, 〈n, x〉 = 0}.

Moreover, the singular locus of S̃e×Se S̃e at a k-point (n, b, b′) (where n ∈ Se and b ⊂ g is a Borel subalgebra
containing n) is the set

Sing(S̃e ×Se S̃e)(n,b,b′) = ge ∩ b ∩ b′.

A calculation then shows that

(ΛS̃e/Se)(n,g,q) = {x ∈ Sing(L(Ŝe,N /Z̃e))(n,g,q) : n, x ∈ b for some b ∈ B}.

Since n and x generate a two-dimensional solvable Lie algebra, they are contained in a Borel subalgebra,
and hence ΛS̃e/Se = Sing(L(Ŝe,N /Z̃e)), as desired. �

3.3.18. Finally, we identify the trace of the monoidal functor i∗Se : Hcoh → Hcoh
Se

. To apply Corol-
lary 3.3.13, we must show:

3.3.19. Lemma. The morphism
iSe : Se/Z̃e → g/G̃

is a smooth relative scheme.

Proof. The morphism iSe is clearly schematic; we show that its relative cotangent complex is perfect
of Tor-amplitude [0, 1]. The latter is computed by the complex28

g∗ ⊗OSe/Z̃e
(act∗,in∗)−−−−−−→ (g̃∗ ⊕ gf,∗)⊗OSe/Z̃e

(in∗,act∗)−−−−−−→ z̃∗e ⊗OSe/Z̃e
of (locally) free sheaves, where we have let act, in denote the evident “action” and inclusion maps. Thus,
we wish to show that the first map is injective, and its cokernel is locally free. Dualizing and applying
Nakayama’s lemma reduces us to showing that the dual map is surjective on all fibers. Given x ∈ gf , the
fiber of the dual map at e+ x ∈ Se is computed by

([−, e+ x], 〈−, e+ x〉∗, in) : g⊕ k ⊕ gf → g,

where 〈−,−〉 denotes a non-degenerate form on g (as in the proof of Corollary 3.3.17). It suffices to show
that the composition

(3.3.19.1) [g, f ] ↪→ g
[−,e+x]−−−−−→ g� g/gf

is an isomorphism. Consider the basis of [g, f ] given by weight spaces for the sl2-action associated to Se.
We then have an associated basis of g/gf given by sending each basis vector v to [v, e] (which increases the
weight by 2). But for any basis vector v of weight w, the vector [v, x] lies in the span of weight spaces ≤ w
(as x lies in the span of weight spaces ≤ 0). It follows that the matrix describing (3.3.19.1) with respect to
these bases is upper triangular, with 1’s along the diagonal, hence an isomorphism. �

3.3.20. Corollary. The adjoint pair

Tr(Indi∗Se ) : Tr(Hcoh)� Tr(Hcoh
Se ) : Tr(Resi∗Se )

identifies with
Li∗Se : QC!(L(Ŝe,N /Z̃e))� QC!(L(N̂/G̃)) : LiSe,∗

via Corollary 3.3.17.

28Note that here g̃ denotes the Lie algebra of G̃, rather than the Grothendieck simultaneous resolution.
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3.4. The Block–Getzler sheaf

3.4.1. In this section, we construct our main technical tool: a complex explicitly computing the 2-
categorical class map (3.1.6.1) under certain assumptions on the monoidal category A (which will suffice
for all of our applications). More precisely, we assume that A is compactly generated and rigid, and that
A admits a central functor from the category of quasi-coherent sheaves on a suitable quotient stack. The
“Block–Getzler sheaf” then computes the restriction via (3.1.14.3) of a 2-categorical class to the trace of the
latter category, which identifies with the category of quasi-coherent sheaves on a certain (twisted) loop space
as in Proposition 3.2.11. Our construction is essentially a straightforward extension of the “Block–Getzler
complex” of [BG94] (see also [BZCHN22, §2.1.2] and [Che20, Def. 2.3.4]), which computes Hochschild
homology in the equivariant setting.

3.4.2. Let G be a reductive29 group acting on a scheme X, and suppose that the quotient stack X/G is
perfect as in Definition 3.2.9 (e.g., X is finite-type and quasi-affine). Let φ : X → X be a self-map commuting
with the G-action, and denote by ΓG : QC(X/G) → QC(BG) = Rep(G) the functor of equivariant global
sections (i.e., the pushforward along the natural projection). Finally, let G act diagonally on X × G as in
§3.2.5.

We begin by constructing a precursor to the Block–Getzler sheaf, which we will soon equip with additional
structure in Construction 3.4.7.

3.4.3. Definition. Let C be a compactly generated dg-category enriched in QC(X/G), and let HomC

denote the QC(X/G)-internal Hom. Suppose that C is moreover equipped with a φ∗-semilinear endofunctor
FC preserving compact objects.30 The pre-Block–Getzler sheaf preBGX/G,φ(C, FC) is defined to be the sum
totalization of the simplicial quasicoherent sheaf on (X ×G)/G given by

preBG−nX/G,φ(C, FC) :=
⊕

c0,...,cn∈Cc

(
ΓGHomC(c0, c1)⊗k · · · ⊗k ΓGHomC(cn−1, cn)⊗k HomC(cn, FC(c0))

)
�OG,

where the (OX×G-linear) face maps di : preBG−nX/G,φ(C, FC)→ preBG
−(n−1)
X/G,φ (C, FC) (for i = 0, . . . , n) “compose

morphisms.” More precisely31, we have

d0(f0 ⊗ · · · ⊗ fn � r) = f1 ⊗ · · · ⊗ fn−1 ⊗ ρ(ΓGFC(f0)) ◦ fn � r,
di(f0 ⊗ · · · ⊗ fn � r) = f0 ⊗ · · · ⊗ fi+1 ◦ fi ⊗ · · · ⊗ fn � r, for i = 1, . . . , n,

(3.4.3.1)

where for any V ∈ Rep(G) we (misusing notation) let ρ : V → O(G)⊗V ' V ⊗O(G) denote the left coaction
map.32

3.4.4. We now recall the relationship between the pre-Block–Getzler sheaf and Hochschild homology,
following [BZCHN22, §2.1.2]. Let C be a compactly generated QC(X/G)-module category equipped with a
φ∗-semilinear endofunctor FC preserving compact objects. Then we may consider the de-equivariantization

Cdq := Vectk ⊗Rep(G)C,

which is a QC(X)-module category, and admits a natural “forgetful” functor (−)dq : C → Cdq preserving
compact objects33. Since Vectdq

k ' QC(G), the category Cdq carries a natural QC(G)-module structure
(where the monoidal structure on QC(G) is via convolution). In particular, for any g ∈ G(k), the action of

29But as in Chapter 2, not necessarily connected; we need only that the Peter–Weyl theorem holds for G.
30I.e., for any c, c′ ∈ C, the map FC : HomC(c, c′)→ HomC(F (c), F (c′)) of OX/G-modules is φ∗-semilinear, where φ∗ : OX/G →
OX/G is the induced homomorphism. As in §3.1.6, when FC is the identity, we will often omit it from the notation.
31Note that for any c, c′, c′′ ∈ Cc, we have a composition map ΓGHomC(c, c′) ⊗k HomC(c′, c′′) → HomC(c, c′′) adjoint to ΓG

of the usual composition map HomC(c, c′) → HomX/G(HomC(c′, c′′),HomC(c, c′′)). Taking ΓG, we also obtain a composition
map ΓGHomC(c, c′)⊗k ΓGHomC(c′, c′′)→ ΓGHomC(c, c′′).
32I.e., whose specialization at g ∈ G is given by the map g−1. Note that this convention is opposite to that of [BZCHN22,
Def. 2.12], and arises from our different definition of the face maps di. We will elaborate more on these conventions in footnote 34.
33E.g., by [GR17a, Cor. 9.3.3]. Note that the image of (−)dq also generates Cdq under colimits.
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the skyscraper sheaf at g yields an automorphism g∗ : Cdq → Cdq. We then have a diagram

C Cdq Cdq

C Cdq Cdq,

FC

(−)dq

Fdq
C

g∗

Fdq
C

(−)dq g∗

where the left square is equipped with a canonical commuting structure as FC is canonically Rep(G)-linear,
and the right square is equipped with a canonical commuting structure as F dq

C acquires a canonical QC(G)-
linear structure as before. Note that g∗◦(−)dq ' (−)dq, as the same is true for (−)dq : Rep(G)→ Rep(G)dq '
Vectk (here, given V, V ′ ∈ Rep(G), the functor g∗ acts according to the canonical G-representation on
Homk(V dq, V ′,dq)). In particular, writing F dq

C,g := F dq
C ◦ g∗ ' g∗ ◦ FC for the “g-twisted” endofunctor, we

obtain a 2-morphism of pairs dqg : (C, FC)⇒ (Cdq, F dq
C,g) in L(Morita(dgCatk))rgd, as in §3.1.10.

3.4.5. Lemma. The pair (C, FC) admits a natural QC(X/G)-enrichment (Cenr, F enr
C ), such that F enr

C is
a φ∗-semilinear endofunctor of Cenr in the sense of Definition 3.4.3. The global sections of the pre-Block–
Getzler sheaf and its fibers over G then compute Hochschild homology, i.e., we have a natural commutative
diagram

Γ(preBGX/G,φ(Cenr, F enr
C )) Γ(i∗g

preBGX/G,φ(Cenr, F enr
C ))

HH(C, FC) HH(Cdq, F dq
C,g−1),

∼ ∼
HH(dqg−1 )

where ig : X × {g} → (X ×G)/G denotes the natural map, and the top horizontal arrow is induced by the
unit of the adjunction i∗g a ig,∗.

Proof. For the first assertion, note that by §3.2.10, the category QC(X/G) is compactly generated and
rigid. Thus, for any c ∈ C, the functor actc : QC(X/G) → C given by acting on c has a QC(X/G)-linear
right adjoint actRc by [GR17a, Ch. 1, Lem. 9.3.2] (which is furthermore continuous when c is compact).
Given c, c′ ∈ C, we define HomCenr(c, c′) := actRc (c′), and let F enr

C be adjoint to the composition

(3.4.5.1) actRc (c′)⊗ FC(c)→ φ∗actRc (c′)⊗ FC(c) ' FC(actRc (c′)⊗ c)→ FC(c′),

where the first map is the natural φ∗-semilinear map, and the final map is obtained by applying FC to
the tautological map actRc (c′) ⊗ c → c′ obtained by adjunction. We leave it to the reader to verify the
requisite axioms. Note that taking global sections is right-adjoint to the unit functor Vectk → QC(X/G),
and hence recovers the Hom-spaces in C (and the original functor FC). Similarly, taking ΓG and forgetting
the G-equivariance recovers the Hom-spaces in Cdq.

For the latter assertion, we have

Γ(preBG−nX/G,φ(Cenr, F enr
C ))

'
⊕

c0,...,cn∈Cc

(
ΓGHomC(c0, c1)⊗k · · · ⊗k ΓGHomC(cn−1, cn)⊗k ΓGHomC(cn, FC(c0))⊗k O(G)

)G
,
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so we recover (a corrected version of34) the Block–Getzler complex of [BZCHN22, Def. 2.12]. Likewise, we
have

Γ(i∗g
preBG−nX/G,φ(Cenr, F enr

C ))

'
⊕

c0,...,cn∈Cc
HomCdq(cdq

0 , cdq
1 )⊗k · · · ⊗k HomCdq(cdq

n−1, c
dq
n )⊗k HomCdq(cdq

n , F
dq
C (cdq

0 )),

and specializing the coaction map at g shows that the face map d0 is computed by F dq
C,g−1 in place of ρ(ΓGFC).

Thus, we recover (a similarly modified version of) the specialized Block–Getzler complex of loc. cit., and the
result follows as in [BZCHN22, Prop. 2.13]. �

3.4.6. Remark. Note that, as for the cyclic bar complex, we usually need not consider all of Cc when
computing the pre-Block–Getzler sheaf. Rather, it suffices to restrict c0, . . . , cn to any set of compact objects
of C which generate under the action of Rep(G).

We henceforth omit the notation (−)enr (and write simply preBGX/G,φ(C, FC) as in Definition 3.4.3)
whenever the QC(X/G)-module structure on C is implicit.

3.4.7. Construction. We now return to the setting of Definition 3.4.3, and lift preBGX/G,φ(C, FC) to
a quasicoherent sheaf BGX/G,φ(C, FC) on Lφ(X/G) satisfying

(3.4.7.1) evG,∗ BGX/G,φ(C, FC) ' preBGX/G,φ(C, FC).

By (3.2.5.1), this amounts to giving a homotopy between the two actions

OX ⊗k preBGX/G,φ(C, FC)⇒ preBGX/G,φ(C, FC)

coming from φ ◦ act and pr. For each i = 0, . . . , n, we have “degeneracy maps”

si : OX ⊗k preBG−nX/G,φ(C, FC)→ preBG
−(n+1)
X/G,φ (C, FC)

defined on each summand by

si(f ⊗ f0 ⊗ · · · ⊗ fn � r) = f0 ⊗ · · · ⊗ fi−1 ⊗ f · idci ⊗fi ⊗ · · · ⊗ fn � r.

We claim that the collection of maps

(3.4.7.2) s−n :=

n∑
i=0

(−1)isi : OX ⊗k preBG−nX/G,φ(C, FC)→ preBG
−(n+1)
X/G,φ (C, FC)

assemble into the desired homotopy; we leave this as an exercise.35 We refer to the resulting sheaf

BGX/G,φ(C, FC) ∈ QC(Lφ(X/G))

as the Block–Getzler sheaf of the pair (C, FC).

34Note that as currently stated, the Block–Getzler complex of [BZCHN22, Def. 2.11] does not in general constitute a simplicial
object, as dnsn−1, for an appropriately defined degeneracy map sn−1, is given by applying FC, rather than the identity. To
correct this error, note that the cyclic bar complex of a dg category C is obtained by computing the (derived) tensor product

(3.4.5.2) C∆ ⊗C⊗Cop FC
C∆

of (C,C)-bimodules, i.e., functors C ⊗ Cop → Vectk (see for instance [Kel06, §3] or [GHW22, §2.4, §5.1]). Here the “diagonal
bimodule” C∆ is given by the functor c′ ⊗ c 7→ HomC(c, c′), and FC

C∆ denotes its precomposition with FC ⊗ idCop . This tensor
product may be computed using the usual bar resolution of C∆: an element of the degree-(−n) term of the bar resolution for
c′ ⊗ c ∈ C⊗ Cop is given by

f−1 ⊗ · · · ⊗ fn ∈ HomC(c, c0)⊗k HomC(c0, c1)⊗k · · · ⊗k HomC(cn, c
′)

for some c0, . . . , cn ∈ Cc, and therefore an element of the degree-(−n) term after tensoring with FC
C∆ is given by

f0 ⊗ · · · ⊗ FC(f−1)fn ∈ HomC(c0, c1)⊗k · · · ⊗k HomC(cn, FC(c0)).

It is then straightforward to verify that the usual face maps yield those in (3.4.3.1).
35The only terms of d ◦ s−n + s−(n−1) ◦ d that survive are

(d0s0 − dn+1sn)(f ⊗ f0 ⊗ · · · ⊗ fn � r) = (γ(φ∗(f))− f) · (f0 ⊗ · · · ⊗ fn � r),
using the φ∗-semilinearity of FC.
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3.4.8. We now describe the setting in which the Block–Getzler sheaf computes the 2-categorical class
map. Let A be a compactly generated rigid monoidal category, and let

(3.4.8.1) Ψ: QC(X/G)→ A

be a monoidal functor admitting a central structure, i.e., a factorization through the Drinfeld center of A
as in §3.1.16. Suppose that we are given a monoidal endofunctor FA of A (which automatically preserves
compact objects as in §3.1.10), equipped with an isomorphism FA ◦ Ψ ' Ψ ◦ φ∗. Then as in (3.1.14.3), we
have adjoint functors

(3.4.8.2) Tr(IndΨ) : QC(Lφ(X/G)) ' Tr(QC(X/G), φ∗)� Tr(A, FA) : Tr(ResΨ),

where the first identification follows from Proposition 3.2.11.
Now letM be a compactly generated right-dualizable A-module category equipped with an FA-semilinear

endofunctor FM which preserves compact objects. As in §3.1.6, its 2-categorical class is an object [M, FM] ∈
Tr(A, FA). Our goal is to compute the quasi-coherent sheaf Tr(ResΨ)([M, FM]) on Lφ(X/G)). Note that Ψ
gives QC(X/G)-module structures on both A andM, and that both FA and FM are canonically φ∗-semilinear
with respect to these structures. Thus, the pairs (A, FA) and (M, FM) both admit QC(X/G)-enrichments
by Lemma 3.4.5, and it is not hard to check that these are compatible with the A-module structure on M.

3.4.9. Remark. Note that, in the terminology of [GR17a, Ch. 1, §3.6], the QC(X/G)-enrichments are
given by the relative inner Hom with respect to QC(X/G). In the above setup, both A and M also admit
relative inner Hom spaces with respect to A, which we denote by HomA. We may then define the QC(X/G)-
enrichments by HomAenr(a, a′) := ΨRHomA(a, a′) for a, a′ ∈ A, and similarly for M. Likewise, F enr

A may be
described by the composition

ΨRHomA(a, a′)→ φ∗ΨRHomA(a, a′)→ ΨRF (HomA(a, a′)) ' ΨRHomA(F (a), F (a′)),

where the first map is the natural φ∗-semilinear map, and the second map is the usual adjunction base-change
map. As usual, we omit the superscripts (−)enr elsewhere in this document.

3.4.10. We now state the main result of this section:

3.4.11. Proposition. In the setup of §3.4.8, we have a canonical equivalence

(3.4.11.1) BGX/G,φ(M, FM) ' Tr(ResΨ)([M, FM]).

Proof. As in §3.1.12, it suffices to give a functorial isomorphism

(3.4.11.2) HomLφ(X/G)([F ],BGX/G,φ(M, FM)) ' HomLφ(X/G)([F ],Tr(ResΨ)([M, FM]))

for each F ∈ Perf(X/G). We begin by unwinding the left-hand side. By Proposition 3.2.11, the universal
trace functor is given by

(3.4.11.3) [−] ' ev∗ : QC(X/G)→ QC(Lφ(X/G)).

Thus, adjunction and duality yield

HomLφ(X/G)([F ],BGX/G,φ(M, FM)) ' HomX/G(F , ev∗ BGX/G,φ(M, FM))

' Γ(F∨ ⊗OX ev∗ BGX/G,φ(M, FM))

' Γ(F∨ ⊗OX pr∗
preBGX/G,φ(M, FM))

by (3.2.5.1). Moreover, as in the proof of Lemma 3.4.5, the functor HomM(m,−) is QC(X/G)-linear for any
m ∈M. It follows by construction that

F∨ ⊗OX pr∗
preBGX/G,φ(M, FM) ' pr∗

preBGX/G,φ(M,Ψ(F∨)⊗ FM(−)),

where the latter functor is FA-semilinear by our centrality assumption on Ψ, and preserves compact objects
as X/G is perfect. Finally, Lemma 3.4.5 implies that

(3.4.11.4) Γ(pr∗
preBGX/G,φ(M,Ψ(F∨)⊗ FM(−))) ' HH(M,Ψ(F∨)⊗ FM(−)).

Next, we unwind the right-hand side of (3.4.11.2). By adjunction, we have

HomLφ(X/G)([F ],Tr(ResΨ)([M, FM])) ' HomTr(A,FA)(Tr(IndΨ)([F ]), [M, FM])

' HomTr(A,FA)([Ψ(F)], [M, FM]).
(3.4.11.5)
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Moreover, the adjunction of (3.1.16.3) and the identity (3.1.16.4) yield

(3.4.11.6) HomTr(A,F )([Ψ(F)], [M, FM]) ' HomTr(A,FA)([A, FA], [M,Ψ(F∨)⊗ FM(−)]).

The conclusion now follows from Theorem 3.1.11 and (3.4.11.4). �

3.4.12. Combining this result with (3.1.7) and Corollary 3.2.13, we obtain:

3.4.13. Corollary. Suppose we are in the setup of §3.2.4, and that X,Y are both perfect. Assume
moreover that Y ' Y/G for a scheme Y and reductive group G, and that φY lifts to a G-equivariant self-map
φY : Y → Y . Then:

(1) For any F ∈ Perf(X), we have

Lp∗ ev∗ F ' BGY/G,φY (QC(X), φ∗X(−)⊗F).

In particular, we have

Lp∗OLφXX ' BGY/G,φY (QC(X), φ∗X).

(2) Suppose we are moreover in the setting of Corollary 3.3.11. For any F ∈ Coh(X×Y X), we have

[F ]QC ' BGY/G,φY (QC(X), φ∗X(−) ∗ F).

3.4.14. Remark. We will leave the central structure on the functor (3.4.8.1) implicit throughout this
thesis. However, it can always be described explicitly; for instance, in the setup of Corollary 3.4.13(1), the
Drinfeld center of QC(X) is computed by the functor ev∗ : QC(LX) → QC(X) as in [BZFN10, Cor. 5.2].
Writing iX : X→ LX for the inclusion of the constant loops, we obtain a factorization Lp∗ ' ev∗ ◦(iX,∗Lp∗),
as desired.

3.4.15. Finally, we describe functoriality of the Block–Getzler sheaf in the pair (M, FM). Suppose we are
given another such pair (N, FN), and a morphism (γ, θ) : (M, FM) → (N, FN) in (A, FA) -mod, i.e., an A-
linear functor γ : M→ N admitting an A-linear right adjoint, and a natural transformation θ : γ◦FM ⇒ FN◦γ
of functors FA

M→ FA
N. As in §3.1.6, we obtain a morphism [γ, θ] : [M, FM]→ [N, FN] between 2-categorical

classes in Tr(A, FA).
On the other hand, we can construct a morphism

(3.4.15.1) BGX/G,φ(γ, θ) : BGX/G,φ(M, FM)→ BGX/G,φ(N, FN)

in QC(Lφ(X/G)) associated to the pair (γ, θ). Indeed, for any m,m′ ∈M, we have a natural map

γ : HomM(m,m′)→ HomN(γ(m), γ(m′))

in QC(X/G) (constructed analogously to (3.4.5.1)), hence a composition

HomM(m,FM(m′))
γ−→ HomN(γ(m), γFM(m′))

θ◦−−−→ HomN(γ(m), FNγ(m′)).

It is then not hard to check that the maps
preBG−nX/G,φ(γ, θ) : preBG−nX/G,φ(M, FM)→ preBG−nX/G,φ(N, FN)

f0 ⊗ · · · ⊗ fn−1 ⊗ fn � r 7→ γ(f0)⊗ · · · ⊗ γ(fn−1)⊗ θ ◦ γ(fn)� r

commute with all face maps (3.4.3.1), as well as the homotopy (3.4.7.2), and hence extend to a map as in
(3.4.15.1).

These two constructions are compatible under the identification of Proposition 3.4.11:

3.4.16. Proposition. In the above setup, the diagram

BGX/G,φ(M, FM) BGX/G,φ(N, FN)

Tr(ResΨ)([M, FM]) Tr(ResΨ)([N, FN])

BGX/G,φ(γ,θ)

∼ ∼

Tr(ResΨ)([γ,θ])

commutes (up to a natural isomorphism).
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Proof. Let F ∈ Perf(X/G). As in the proof of Proposition 3.4.11, it suffices to show that each of the
squares

HomLφ(X/G)([F ],BGX/G,φ(M, FM)) HomLφ(X/G)([F ],BGX/G,φ(N, FN))

HH(M,Ψ(F∨)⊗ FM(−)) HH(N,Ψ(F∨)⊗ FN(−))

HomLφ(X/G)([F ],Tr(ResΨ)([M, FM])) HomLφ(X/G)([F ],Tr(ResΨ)([N, FN]))

BGX/G,φ(γ,θ)◦−

∼ ∼

HH(γ,idΨ(F∨)⊗θ)

Tr(ResΨ)([γ,θ])◦−
∼ ∼

commutes. Commutativity of the lower square is immediate from unwinding the adjunctions (3.4.11.5) and
(3.4.11.6). Similarly, as in (3.4.11.4), it suffices to show that the upper square commutes with the top row
replaced by the morphism

Γ(preBGX/G,φ(γ, idΨ(F∨)⊗θ)) : Γ(preBGX/G,φ(M,Ψ(F∨)⊗ FM(−)))→ Γ(preBGX/G,φ(N,Ψ(F∨)⊗ FN(−))).

As in the proofs of Lemma 3.4.5 and [BZCHN22, Prop. 2.13], this amounts to the analogous functoriality
of the cyclic bar complex for a dg-category.36 �

3.4.17. Thus, the complex BGX/G,φ(−) essentially computes the functor

Tr(ResΨ)([−]) : (A, FA) -mod→ QC(Lφ(X/G))

composed from (3.1.6.1) and (3.4.8.2).

3.4.18. Remark. We expect that, when applicable, the S1-equivariant structure on the Block–Getzler
sheaf may be described by an explicit homotopy, analogous to Connes’ boundary operator B on the usual
cyclic bar complex. This will not be needed in the sequel, so we leave the details to a future work.

36This is well-known, though we could not find a precise reference in the literature (see [Kel06, Thm. 5.2(a)] for the case where
the endofunctors and natural transformation θ are trivial). Regardless, one can see this directly by examining the functoriality
of (3.4.5.2) and (3.1.10.1), using the same general pattern as in Lemma 3.1.15.





CHAPTER 4

Bounding the universal trace functor

4.1. Resolutions of Koszul algebras with multiple simple modules

4.1.1. In this section, we construct a Koszul resolution of the regular bimodule for a Koszul algebra
with multiple simple modules. This material is logically independent from the rest of the text, and likely
well-known, but we could find no reference in the literature. We will apply this result in §4.3 to the
noncommutative Springer resolution, to obtain a bounded complex computing the universal trace functor.

4.1.2. Let A be a non-negatively graded classical k-algebra, and write A '
⊕

i∈I Ei for the decompo-
sition of the regular right A-module into indecomposable projectives, where I is some finite indexing set.
Assume that the {Ei} are pairwise nonisomorphic, and let {Li} denote the corresponding simple modules
(concentrated in weight 0). As for any k-algebra, the bar complex Bar•A is the acyclic complex of A-bimodules

· · · → A⊗A⊗A a⊗b⊗c7→ab⊗c−a⊗bc−−−−−−−−−−−−−→ A⊗A a⊗b 7→ab−−−−−→ A→ 0→ 0→ · · ·
concentrated in degrees ≤ 1 (and free in degrees ≤ 0), with differentials given by the usual alternating sum
of face maps. Consider the subcomplex Bar•{Ei} ⊆ Bar•A defined by

(4.1.2.1) Bar−n{Ei} :=
⊕

i0,...,in+2∈I
HomAop(Ei0 , Ei1)⊗k HomAop(Ei1 , Ei2)⊗k · · · ⊗k HomAop(Ein+1 , Ein+2)

for each n ≥ −1, which is evidently preserved under each face map d1, . . . , dn+1. It is a complex of A-
bimodules (each of which is projective in degrees ≤ 0) via the algebra isomorphism A ∼= EndAop(

⊕
i∈I Ei),

and the restriction of the extra degeneracy from Bar•A exhibits it as acyclic.
Now, for each n ≥ −1 and i, j ∈ I, consider the summand i(Bar−n{Ei})j ⊆ Bar−n{Ei} given by setting i0 = i,

in+2 = j, and letting i1, . . . , in+1 ∈ I be arbitrary. Furthermore, let i(Bar−n{Ei})
1,...,1
j ⊆ i(Bar−n{Ei})j be the

subspace spanned by terms whose n+ 2 tensor factors all lie in weight 1.37 Set

i(A
!,∗
n )j :=

n⋂
m=1

ker
(
dm : i(Bar−n+2

{Ei} )1,...,1
j → i(Bar−n+3

{Ei} )j
)
.

for each n ≥ 1; it is clearly a finite-dimensional vector space concentrated in weight n (for instance, we have
i(A

!,∗
1 )j = HomAop(Ei, Ej)1 ⊆ A1). Consider the subcomplex Kos•A ⊆ Bar•{Ei} given by

Kos−nA :=
⊕

i0,i1,in+1,in+2∈I
HomAop(Ei0 , Ei1)⊗

k
i1(A!,∗

n )in+1
⊗
k

HomAop(Ein+1
, Ein+2

)

for each n ≥ 1, and Kos−nA := Bar−n{Ei} otherwise. Equivalently, let E`i be the indecomposable projec-
tive left A-module corresponding to Ei (i.e., generated by the same primitive idempotent), and L`i be the
corresponding simple module. Setting i(A

!,∗
0 )j := HomAop(Ei, Ej)0, we may write

(4.1.2.2) Kos−nA =
⊕
i,j∈I

E`i ⊗
k
i(A

!,∗
n )j ⊗

k
Ej

for each n ≥ 0, which is a projective A-bimodule. Note that the differential on Kos−nA is given by the
restriction of d1 + (−1)ndn+1, whose image is clearly contained in Kos−n+1

A .

4.1.3. Recall that A is Koszul if for any i, j ∈ I and n ≥ 0, the graded vector space ExtnAop(Li, Lj) is
concentrated in weight −n. We may now state the main result of this section:
37Here we depart slightly from our usual convention of placing weights in subscripts, due to space limitations. This notation
will not be used outside of this section.
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4.1.4. Proposition. If A is Koszul, then the complex Kos•A is acyclic.

Proof. It suffices to show that Li ⊗A Kos•A ' 0 for each i ∈ I. Indeed, suppose the complex Kos•A
of projective left A-modules has its highest nonzero cohomology in degree d. Then the convergent spectral
sequence

Es,t2 = Hs(Li ⊗A Ht(Kos•A)) =⇒ Hs+t(Li ⊗A Kos•A) = 0

shows that H0(Li ⊗A Hd(Kos•A)) = 0 for each i ∈ I, and hence Hd(Kos•A) = 0 by the graded version of
Nakayama’s lemma, a contradiction.

Consider the normalized version NBar•Ei of the complex (4.1.2.1) obtained by quotienting by the sub-
spaces generated by the degeneracies of the associated simplicial object. Explicitly, we have

(4.1.4.1) NBar−n{Ei} '
⊕

i1,...,in+1∈I
E`i1 ⊗k HomAop(Ei1 , Ei2)≥1 ⊗k · · · ⊗k HomAop(Ein , Ein+1

)≥1 ⊗k Ein+1

for each n ≥ 0 (where the subscripts denote the strictly positive components), and the natural inclusion
NBar•{Ei} → Bar•{Ei} ' 0 is a quasi-isomorphism. Thus, it suffices to show that the natural map

(4.1.4.2) Li ⊗A Kos•A → Li ⊗A NBar•{Ei}

is a quasi-isomorphism. In fact, it suffices to show that it is a quasi-isomorphism after applying −⊗AL`j , for
any j ∈ I: indeed, the cone of (4.1.4.2) is a complex of projective right A-modules (concentrated in degrees
≤ 0), so we may apply the argument used in our first paragraph.

Let j ∈ I, and observe that

Li ⊗A Kos≤0
A ⊗A L

`
j '

⊕
n≥0

i(A
!,∗
n )∗j [n],

where Kos≤0
A denotes the “naïve” truncation of Kos•A. Since each graded component of NBar•{Ei} is perfect

over k (as NBar−n{Ei} lies in weights ≥ n), and since HomAop(Ej′ , Lj) ' Ej′ ⊗A L`j for any j′ ∈ I, we have

HomAop(Li, Lj) ' HomAop(Li ⊗A NBar≤0
{Ei}, Lj) ' (Li ⊗A NBar≤0

{Ei} ⊗A L
`
j)
∗.

Thus, Koszulity of A implies that the cohomology of Li⊗ANBar≤0
{Ei}⊗AL

`
j lies only in degree −n and weight

n for n ≥ 0. It follows that H−n(Li ⊗A NBar≤0
{Ei} ⊗A L

`
j) is given by the kernel of the usual differential on⊕

i1,...,in+1∈I
HomAop(Ei1 , Ei2)1 ⊗k · · · ⊗k HomAop(Ein , Ein+1)1

for each n ≥ 0. Now, Li ⊗A NBar−n+1
{Ei} ⊗A L

`
j is graded by (n − 1)-tuples of weights; since each face map

lands in a distinct such tuple, this kernel coincides with i(A
!,∗
n )∗j , as desired. �

4.1.5. In particular, we have shown:

4.1.6. Corollary. Suppose A is Koszul. Then for each n ≥ 0 and i, j ∈ I, we have

i(A
!,∗
n )j ' ExtnAop(Li, Lj)

∗.

4.2. The exotic t-structure

4.2.1. We now give an “intrinsic” reformulation of braid positivity using an exotic t-structure on Hcoh

provided by work of Bezrukavnikov–Losev. Intuitively, we would like to identify Hcoh with the category
of G̃-equivariant Aop

g -bimodules as in (2.2.4.1); however, such an identification would not preserve compact
objects (for instance, the regular bimodule is not perfect, just as for the unit sheaf ∆Ñ/g,∗OÑ ), so we must
“renormalize” the latter as for Hcoh. Our presentation follows Preygel’s treatment in [Pre15, §4].

We begin by recalling the basic properties of t-structures that we shall need:

4.2.2. Definition. A t-structure (C≤0,C≥0) on a dg-category C is
(1) accessible if the subcategory C≥0 (or equivalently, C≤0) is compactly generated;
(2) compatible with filtered colimits if C≥0 is closed under filtered colimits in C;
(3) right-complete if the inclusion functors induce an equivalence38 colimn C

≤n → C; and

38Equivalently, by [GR17a, Ch. 1, Prop. 2.5.7], the truncation functors induce an equivalence C→ limn C≤n.
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(4) coherent if it is compatible with filtered colimits, right-complete, and the compact objects C♥,c (in
the classical sense) form a generating abelian subcategory of the heart C♥.

Moreover, suppose that (C≤0,C≥0) is compatible with filtered colimits. We say that an object X ∈ C is
coherent if

(1) X is bounded below, i.e., X ∈ C≥n for some n; and
(2) τ≥nX is a compact object of C≥n for all n.

We denote the full subcategory of coherent objects of C by Coh(C), and refer to the compactly generated
category Cren := Ind(Coh(C)) as the renormalization39 of C. The latter carries a natural t-structure given
by

C≤0
ren := Ind(Coh(C) ∩ C≤0), C≥0

ren := Ind(Coh(C) ∩ C≥0).

4.2.3. We now recall some of Preygel’s general results regarding these constructions. Let C be as in the
latter part of Definition 4.2.2. If (C≤0,C≥0) is coherent, then the subcategory Coh(C) consists of cohomolog-
ically bounded objects whose cohomologies all lie in Coh(C) ∩ C♥ = C♥,c. Moreover, the natural continuous
functor Cren → C obtained by Ind-extension is t-exact, and induces an equivalence on coconnective (or more
generally, bounded below) objects, i.e., C≥0

ren → C≥0. In particular, the t-structure on Cren is again coherent,
and moreover accessible.40

The prototypical example is as follows: if X is a QCA stack, then the standard t-structure on QC(X) is
coherent and accessible, and QC!(X) identifies with the renormalization of QC(X) (moreover, QC(X) is the
“left-completion” of QC!(X), though we shall not need or define this notion).

The following lemma will allow us to compare renormalizations for different t-structures:

4.2.4. Lemma. Let C be a dg-category equipped with t-structures (C≤0,C≥0) and (C≤
′0,C≥

′0) which
are both compatible with filtered colimits. Suppose that there exist a, b ∈ Z such that C≤a ⊂ C≤

′0 ⊂ C≤b

(or equivalently, C≥b ⊂ C≥
′0 ⊂ C≥a). Then the subcategories of coherent objects with respect to each of

these t-structures are identical, i.e., Coh(C) = Coh′(C). In particular, the renormalizations Cren and Cren′

are canonically equivalent.

Proof. We show the inclusion Coh(C) ⊂ Coh′(C); the opposite inclusion follows by symmetry. Suppose
that X ∈ C is coherent with respect to (C≤0,C≥0). Then it is clearly bounded below with respect to
(C≤

′0,C≥
′0). Moreover, given n ∈ Z, we have a diagram

(4.2.4.1)
C≥
′n C≥a+n

C
ι≥
′n

i

ι≥a+n

of fully faithful functors. It suffices to show that i is both continuous and cocontinuous. Indeed, in this
case we have τ≥

′nX ' iLτ≥a+nX, and the left-adjoint iL preserves compact objects. Note that the functors
ι≥
′n, ι≥a+n are both continuous and cocontinuous by assumption. It is now straightforward to check that i

admits left and right adjoints given by τ≥
′nι≥a+n and ι≥

′n,Rι≥a+n, respectively. �

4.2.5. We now note some properties of t-structures on module categories for connective algebras:

4.2.6. Lemma. Let C be a symmetric monoidal dg-category equipped with an accessible t-structure
(C≤0,C≥0). Let A ∈ Alg(C) be an algebra object, let ResA1C

: A -modC → C denote the forgetful functor, and
suppose that the functor A⊗− : C→ C is right t-exact. Then the pair

(4.2.6.1) A -mod≤0
C := (ResA1C

)−1(C≤0), A -mod≥0
C := (ResA1C

)−1(C≥0),

gives a t-structure on A -modC. Moreover, if the t-structure on C is compatible with filtered colimits (resp.
right-complete), then so is that on A -modC.

Finally, suppose that A is a compact object of C, that the tensor product on C preserves compact objects,
and that the t-structure on C is coherent. Then the t-structure on A -mod♥C is coherent.

39In Preygel’s terminology, this is the “regularization” of C; however, we shall not need the notion of regularity in this work.
40In fact, accessibility is automatic for compactly generated categories (see for instance [GR17a, Ch. 4, Lem. 1.2.4]).
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Proof. The first assertion is a well-known construction (see for instance [Pol07, Thm. 2.1.2]). Compat-
ibility with filtered colimits is clear, as ResA1C

is continuous. For right-completeness, consider the commutative
square

colimnA -mod≤nC A -modC

colimn C
≤n C.

colimn ResA1C

colimn ι
≤n

ResA1C

∼

By our assumption on A, there is a functor colimn IndA1C
left-adjoint to colimn ResA1C

; moreover, the monad
colimn ResA1C

IndA1C
acting on colimn C

≤n evidently identifies with ResA1C
IndA1C

under the lower equiva-
lence. Thus, it suffices to show that the functor colimn ResA1C

is “monadic” (in the sense of [GR17a,
Ch. 1, Def. 3.7.5]). Indeed, the functors ResA1C

and colimn ι
≤n are both continuous and conservative (as

each ι≤n is), so the same holds for colimn ResA1C
. The conclusion now follows from the Barr–Beck–Lurie

theorem (see [Lur17, Thm. 4.7.0.3]).
For the final assertion, we first claim that A -mod♥C is compactly generated by objects of the form

τ≥0(A⊗X) for X ∈ C♥,c. To see that these objects are compact, note that as in (4.2.4.1), there are adjoint
pairs

C≤0 A -mod≤0
C A -mod♥C ,

IndA1C τ≥0

ResA1C
ι≥0

where the lower composition is continuous and factors through C♥. To see that they generate, let M ∈
A -mod♥C . The bar construction expresses M as a simplicial colimit of modules of the form A⊗i ⊗ResA1C

M ,
all of which are connective. Applying τ≥0, we obtain an expression forM as a simplicial colimit of modules of
the form τ≥0(A⊗i⊗ResA1C

M), which may be computed in the abelian category A -mod♥C . By the Dold–Kan
correspondence, M is quasi-isomorphic to the associated “alternating face maps” complex; in particular, we
have an exact sequence

(4.2.6.2) τ≥0(A⊗A⊗ ResA1C
M)→ τ≥0(A⊗ ResA1C

M)→M → 0

in A -mod♥C . Since A ⊗ − preserves colimits and compact objects, it suffices to exhibit each ResA1C
M as

a filtered colimit of objects of C♥,c. Such a presentation is immediate from our assumption that C♥ is
compactly generated.

It remains to show that A -mod♥,cC is abelian; we need only establish closure under kernels. So let f : M →
N be a morphism in A -mod♥,cC . Since A is compact, the functor ResA1C

admits a continuous right adjoint
which is left t-exact. Moreover, since the t-structure on C is accessible and compatible with filtered colimits,
the truncation τ≤0 is continuous by [Che18, Prop. 2.2.8]. Thus, the restricted functor ResA1C

: A -mod♥C → C♥

also admits a continuous right adjoint, hence preserves compact objects. In particular, ResA1C
ker(f) '

ker(ResA1C
(f)) is compact. Taking ker(f) in place of M in the exact sequence (4.2.6.2) now immediately

exhibits ker(f) as compact. �

4.2.7. Finally, fix a Slodowy slice Se, and take C := QC(Se/Z̃e) with its standard t-structure. Then the
algebra ASe ⊗O(Se) A

op
Se
∈ Alg(QC(Se/Z̃e)) is connective and compact, so by Lemma 4.2.6 and §4.2.3, we

have a renormalized category

(4.2.7.1) Hmod
Se := ASe ⊗O(Se) A

op
Se

-modZ̃eren .

Note that the unrenormalized category ASe ⊗O(Se) A
op
Se

-modZ̃e is monoidal under the tensor product of
bimodules (but not rigid!). Since the algebra ASe ⊗O(Se)A

op
Se

is eventually coconnective, any perfect module
is coherent. More precisely, we have:

4.2.8. Lemma. (1) The category Coh(ASe ⊗O(Se) A
op
Se

-modZ̃e) is given by cohomologically bounded
complexes whose cohomology is finitely generated over H0(ASe ⊗O(Se) A

op
Se

) (after forgetting the Z̃e-
equivariance).
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(2) The tensor product on ASe ⊗O(Se)A
op
Se

-modZ̃e preserves coherent objects. In particular, it extends to a
monoidal structure on Hmod

Se
.

Proof. (1) By §4.2.3, it suffices to show that an objectM ∈ ASe⊗O(Se)A
op
Se

-modZ̃e,♥ is compact if and
only if it is finitely generated over H0(ASe ⊗O(Se) A

op
Se

). First suppose the latter. Since H0(ASe ⊗O(Se) A
op
Se

)
is Noetherian (as it is a finite O(Se)-algebra), finite generation is equivalent to finite presentation. It
follows that H0Hom(M,−) commutes with (classical) filtered colimits, where we have let Hom denote the
Rep(Z̃e)-internal Hom. Thus, H0 Hom(M,−) ∼= H0Hom(M,−)Z̃e commutes with filtered colimits, as desired.
Conversely, suppose that M is compact. As in the non-equivariant case, we may write M as a direct limit in
ASe ⊗O(Se)A

op
Se

-modZ̃e,♥ of its finitely generated submodules (since its underlying vector space decomposes
as a direct sum of Z̃e-isotypic components). By compactness, the identity map idM factors through some
such submodule, so M is a direct summand of a finitely generated module, hence finitely generated.

(2) Since the algebra ASe has finite homological dimension, the tensor product ⊗ASe preserves co-
homological boundedness. It therefore suffices to show that the tensor product of any finitely generated
H0(ASe ⊗O(Se) A

op
Se

)-modules M,N (in degree 0) has finitely generated cohomology. Since ASe is Noether-
ian, and M,N are in particular finitely generated over ASe , we may resolve N by a complex of finitely
generated free ASe-modules. It follows that the cohomology ofM⊗ASe N is also finitely generated over ASe ,
hence over H0(ASe ⊗O(Se) A

op
Se

), as desired. �

4.2.9. Altogether, we obtain:

4.2.10. Proposition. Let Se be a Slodowy slice. Then the functor

(4.2.10.1) (−)mod := HomHcoh
Se

(E∨|S̃e � E|S̃e ,−) : Hcoh
Se → Hmod

Se

is a left t-exact equivalence of rigid monoidal categories. Moreover, it is compatible with the equivalence
(2.2.4.1) on right module categories, and the analogous equivalence on left module categories.

Proof. By [GR17a, Ch. 1, Prop. 8.5.4; Ch. 3, Prop. 3.5.3] and (2.2.4.1), we have a commutative
diagram

QC(S̃e/Z̃e) ⊗
QC(Se/Z̃e)

QC(S̃e/Z̃e) ASe -modZ̃e ⊗
QC(Se/Z̃e)

Aop
Se

-modZ̃e

QC(S̃e ×Se S̃e/Z̃e) ASe ⊗O(Se) A
op
Se

-modZ̃e ,

�∼

Hom(E∨|S̃e ,−)⊗Hom(E|S̃e ,−)

∼

�∼

Hom(E∨|S̃e�E|S̃e ,−)

whose bottom row is therefore an equivalence. Renormalizing the left- and right-hand sides of this equivalence
yields Hcoh

Se
and Hmod

Se
, respectively, so it suffices to show that the standard t-structures on either side satisfy

the hypotheses of Lemma 4.2.4.
First let F ∈ H

coh,≤0
Se

. By [DG13, Thm. 1.4.2], there exists a fixed b ∈ Z (depending only on S̃e ×Se
S̃e/Z̃e, and using the fact that it is QCA) such that the global sections functor has cohomological amplitude
≤ b. Since the sheaf Hom(E∨|S̃e � E|S̃e ,F) is connective (as E∨|S̃e � E|S̃e is a vector bundle), its global
sections lie in cohomological degrees ≤ b, which gives one inclusion. Now let F ∈ H

coh,≥0
Se

. Since the sheaf
Hom(E∨|S̃e �E|S̃e ,F) is coconnective, its global sections are as well, and we obtain the other inclusion (with
a = 0). In particular, the functor (−)mod is left t-exact.

Finally, monoidality and compatibility with the module structures on (2.2.4.1) hold as in [BL23,
Lem. 4.3] (and are straightforward exercises). �

4.2.11. We refer to the t-structure on Hcoh
Se

transported from that on Hmod
Se

as the exotic t-structure, as
for (2.2.4.1). We may at last state our “intrinsic reformulation” of braid positivity. Namely, right convolution
by F ∈ Hcoh

Se
on QC(S̃e/Z̃e) is right t-exact with respect to the exotic t-structure if and only if the image

Fmod ∈ Hmod
Se

under (4.2.10.1) is connective, i.e., F is connective with respect to the exotic t-structure on
Hcoh
Se

. Indeed, it suffices to show that the convolution E|S̃e ∗F is connective, and this object is exactly given
by the Aop

Se
-module structure on Fmod. In particular, for a ∈ Baff

+ , the sheaf Ka of §2.2.7 is connective for
the exotic t-structure.
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Finally, we denote by i∗Se : Hmod → Hmod
Se

the extension of scalars − ⊗O(g) O(Se). This functor is
evidently intertwined with i∗Se : Hcoh → Hcoh

Se
under Proposition 4.2.10, justifying our duplicate notation.

Note that by Lemma 3.3.19, these functors are both t-exact.

4.3. Connectivity and coconnectivity criteria

4.3.1. In this section, we prove the main result of this chapter, i.e., that the coherent Springer sheaf lies
in cohomological degree 0. In fact, our result is considerably more general: we use the exotic t-structure
of §4.2 to give conditions for the universal trace of a compact object of the affine Hecke category to be
either connective or coconnective. These conditions also apply to the traces of the sheaves Ka giving the
affine braid group action on QC(Ñ/G̃). Our strategy is to use the machinery of Block–Getzler sheaves to
compute these traces and their restrictions to any Slodowy slice in terms of the noncommutative Springer
resolution. Base-changing to BZcov

e for each nilpotent e, we may then use the Koszul resolution of §4.1 to
obtain cohomological bounds.

The precise statement is as follows:

4.3.2. Theorem. Fix a Slodowy slice Se for each e ∈ N .
(1) For any e ∈ N , the universal trace functor

(4.3.2.1) [−] : Hcoh
Se → QC!(L(Ŝe,N /Z̃e))

is right t-exact with respect to the exotic t-structure on the former and the standard t-structure on
the latter.

(2) Let F be a compact object of Hcoh, and suppose that its right monoidal dual F∨,R is connective
for the exotic t-structure. Then [F ] is coconnective for the standard t-structure. In particular, for
e = 0, the functor (4.3.2.1) has cohomological amplitude in [−dimN , 0].

4.3.3. Note that by Remark 3.3.7, we may equivalently consider the left monoidal dual F∨,L in place
of F∨,R. Before commencing the proof, we record some simple consequences. Given λ ∈ X∗(T ), define the
λ-twisted coherent Springer sheaf to be

Sλ := Lπ∗ ev∗OÑ (λ) ' [∆Ñ/g,∗OÑ (λ)] ∈ Coh(L(N̂/G̃)).

As in §2.2.7, these are the classes [Ka] for a contained in the translation subgroup of Baff . The following
corollary contains [BZCHN22, Conj. 4.15] as a special case:

4.3.4. Corollary. (1) For any a ∈ Baff
+ , the class [Ka] is connective, and the class [Ka−1 ] is

coconnective.
(2) Let λ ∈ X∗(T ). If λ is dominant (resp. anti-dominant), then Sλ is connective (resp. coconnective).

In particular, the coherent Springer sheaf S = S0 lies in the abelian category Coh(L(N̂/G̃))♥.

Proof. (1) The first assertion follows from §4.2.11. For the latter, note that Ka and Ka−1 are monoidal
inverses, hence mutually dual.

(2) This follows immediately from the previous statement. �

4.3.5. The proof of our main result will occupy the remainder of this section:

Proof of Theorem 4.3.2. (1) It suffices to establish right t-exactness for compact objects of Hcoh
Se

(see for instance [GR17a, Ch. 4, Lem. 1.2.4(2)]). So let F ∈ H
coh,c
Se

be connective for the exotic t-structure.
By Corollary 3.3.11, we reduce to showing that

(4.3.5.1) [F ]QC ' [QC(S̃e/Z̃e),− ∗ F ] ∈ QC(L(Se/Z̃e))

is connective. By Corollary 3.4.13, we have

[F ]QC ' BGSe/Z̃e(QC(S̃e/Z̃e),− ∗ F),

so by (3.4.7.1), it suffices to show that preBGg/G̃(QC(S̃e/Z̃e),− ∗ F) is connective. As in Remark 3.4.6,
we may compute this pre-Block–Getzler sheaf using only the compact generator E|S̃e (i.e., the regular right
ASe -module under the equivalence (2.2.4.1)), which yields a complex of the form

(4.3.5.2) · · · → ASe ⊗k ASe ⊗k Fmod �OZ̃e
d0−d1+d2−−−−−−→ ASe ⊗k Fmod �OZ̃e

d0−d1−−−−→ Fmod �OZ̃e .
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Indeed, we have
Fmod ' HomS̃e

(E|S̃e , E|S̃e ∗ F)

by definition. The conclusion is now immediate from connectivity of Fmod.
(2) Now let F ∈ Hcoh,c, and suppose that F∨,R is connective for the exotic t-structure. As in (4.3.5.1),

it suffices to show that [F ]QC is coconnective. The proof procedes in several steps.

4.3.6. We begin by reducing to a local cohomology calculation on each nilpotent orbit. Define a strati-
fication of g/G as follows: choose a total order

{0} = O0 ≤ O1 ≤ · · · ≤ Om = Oreg

on the set of nilpotent orbits of g extending the usual partial order of §2.2.2. For each r = 0, . . . ,m+ 1, set
gr := g−

⋃
0≤r′<r Or′ , so that

g = g0 ⊇ g1 ⊇ · · · ⊇ gm+1 = g−N ,
and let

Or/G̃ gr/G̃ gr+1/G̃

g/G̃.

ir

jr

jr+1

be the closed and open inclusions, respectively. These remain closed and open after applying the loop space
functor by Lemma 3.2.7; moreover, the top row remains complementary. We therefore have a distinguished
triangle

ΓL(Or/G̃) → idQC(L(gr/G̃)) → Lj
r+1
∗ Ljr+1,∗

for each r, where the left-most functor is local cohomology with support in L(Or/G̃).41 Since Lj∗m+1[F ]QC ' 0
and each Ljr+1

∗ is left t-exact, it suffices to show that

(4.3.6.1) ΓL(Or/G̃)Lj
∗
r [F ]QC ∈ QCL(Or/G̃)(L(gr/G̃))≥0

for each r.

4.3.7. Next, we reduce (4.3.6.1) to a computation on a Slodowy slice. Let e ∈ Or and let Se be a Slodowy
slice at e. Let Zcov

e � Ze be as in Proposition 2.3.2 (with a view towards applying Corollary 2.3.7). Consider
the diagram42

e/Z̃cov
e Se/Z̃

cov
e

Or/G̃ gr/G̃.

ie

icov iSe

ir

Since Se and Or intersect transversally at e, it is (derived) cartesian, so applying the loop space functor
gives a pullback square

L(e/Z̃cov
e ) L(Se/Z̃

cov
e )

L(Or/G̃) L(gr/G̃).

Lie

Licov LiSe

Lir

In particular, the relative cotangent complexes for the horizontal maps satisfy

(4.3.7.1) Li∗covLLir ' LLie .

41We comment briefly on our conventions for the local cohomology functor. In [GR14], this functor was only defined for
Zariski-closed subsets of derived schemes, rather than for arbitrary closed immersions of stacks. However, we will only be
concerned with closed immersions of the form described in the hypotheses of Lemma 3.2.7; in this setup, we write ΓZ for
ΓZcl (in fact, Z will always be classical in our applications), and the functor ΓZ : QC(X) → QC(X) clearly upgrades to a
functor ΓZ/G : QC(X/G) → QC(X/G) using the same distinguished triangle. Regardless, it suffices to check any claim about
t-structures after forgetting equivariance, so alternatively, we may simply take local cohomology with respect to the derived
scheme underlying each loop space as in (3.2.5.1) (this does not alter any of the arguments).
42Our notation conflicts slightly with that of (2.2.2.1), but this should not pose any confusion.
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Observe that LLir is perfect: indeed, L(Or/G̃) ' G̃e/G̃e is smooth, so it suffices to show that LLir is
coherent; the latter follows from the exact triangle

Li∗rLL(gr/G̃) → LL(Or/G̃) → LLir

and Lemma 3.2.6(2). Thus, by [HL15a, Lem. 5.2], the sheaf ΓL(Or/G̃)Lj
∗
r [F ]QC has a bounded-below

increasing filtration whose associated graded is equivalent to

Lir,∗
(

SymL∨Lir [1]⊗ Li!rOL(gr/G̃) ⊗ Li
∗
rLj∗r [F ]QC

)
.

Since Lir,∗ is left t-exact, it suffices to show that

(4.3.7.2) SymL∨Lir [1]⊗ Li!rOL(gr/G̃) ⊗ Li
∗
rLj∗r [F ]QC ∈ QC(L(Or/G̃))≥0.

We claim that (4.3.7.2) is a direct sum of sheaves lying in Coh−(L(Or/G̃)). Indeed, it suffices to show
that Li!rOL(gr/G̃) and Li∗rLj∗r [F ]QC both lie in Coh−(L(Or/G̃)). For the former, we have

(4.3.7.3) i!rOL(gr/G̃) ' detLLir [rankLLir ]

by [HL15a, Lem. 3.8] and Lemma 3.2.6(2). The latter is clear as [F ]QC is coherent. Thus, the following
lemma reduces us to showing that

(4.3.7.4) Li∗cov

(
SymL∨Lir [1]⊗ Li!rOL(gr/G̃) ⊗ Li

∗
rLj∗r [F ]QC

)
∈ QC(L(e/Z̃e))

≥0.

4.3.8. Lemma. Let G ∈ Coh−(G̃e/G̃e), and suppose that Li∗covG ∈ Coh−(Z̃cov
e /Z̃cov

e ) is coconnective.
Then G is coconnective.

Proof. We have a factorization Z̃cov
e /Z̃cov

e → Z̃e/Z̃e → G̃e/G̃e of Licov; since the first map is faithfully
flat, it suffices to establish the claim with Licov replaced by the latter map.

Recall from §2.2.2 that G̃e ' RuG
e o Z̃e, where RuG

e denotes the unipotent radical of Ge, and the
factor of Gm in Z̃e acts on RuG

e with strictly positive weights. It clearly suffices to verify the claim after
forgetting all but the Gm-equivariance; choosing an isomorphism RuG

e/Gm ' An/Gm for some n ≥ 0, we
reduce to the following claim:
(∗) Let n ≥ 0, and suppose we have an attracting action of Gm on An. Let G ∈ Coh−(Ze × An/Gm), let

i0 : {0} ↪→ An denote the inclusion, and suppose that (id×i0)∗G ∈ Coh−(Ze × BGm) is coconnective.
Then G is coconnective.

We proceed by induction on n. The claim is trivial for n = 0, so suppose n ≥ 1 and the claim holds

for n − 1. Choose a factorization {0}
i′0
↪−→ An−1 i

↪−→ An of i0 through some Gm-stable hyperplane. Since
(id×i0)∗G ' (id×i′0)∗((id×i)∗G), the inductive hypothesis gives (id×i)∗G ∈ Coh(Ze × An−1/Gm)≥0. The
morphism id×i has Tor-dimension ≤ 1, so the convergent spectral sequence

Es,t2 = Hs((id×i)∗Ht(G)) =⇒ Hs+t((id×i)∗G)

degenerates. Thus, it suffices to show that if Ht(G) is nonzero, then so is H0((id×i)∗Ht(G)); this follows
from Nakayama’s lemma and Gm-equivariance of Ht(G). �

4.3.9. To compute (4.3.7.4), we first observe that

Li∗covLi!rOL(gr/G̃) ' detLLie [rankLLie ] ' Li!eOL(Se/Z̃cov
e )

by (4.3.7.1), (4.3.7.3), and the corresponding statement for Lie. It then follows from (4.3.7.1) and perfectness
of the cotangent complexes that

Li∗cov

(
SymL∨Lir [1]⊗ Li!rOL(gr/G̃) ⊗ Li

∗
rLj∗r [F ]QC

)
' SymL∨Lie [1]⊗ Li!eOL(Se/Z̃e)

⊗ Li∗eLi∗Se [F ]QC.

Since Lie is affine, it is equivalent to show that

Lie,∗
(

SymL∨Lie [1]⊗ Li!eOL(Se/Z̃e)
⊗ Li∗eLi∗Se [F ]QC

)
∈ QC(L(Se/Z̃e)

≥0.

But by a further application of [HL15a, Lem. 5.2], this is equivalent to the associated graded of a bounded
below increasing filtration on ΓL(e/Z̃cov

e )Li
∗
Se

[F ]QC, and hence it suffices to show that the latter is coconnec-
tive.
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We make one further reduction: consider the pullback square

L((Se − {e})/Z̃cov
e ) L(Se/Z̃

cov
e )

((Se − {e})× Z̃cov
e )/Z̃cov

e (Se × Z̃cov
e )/Z̃cov

e

Lje

◦
evZ̃cov

e

evZ̃cov
e

je×id

as in (3.2.7.3). It suffices to show that evZ̃cov
e ,∗ ΓL(e/Z̃cov

e )Li
∗
Se

[F ]QC is coconnective. The exact triangle

evZ̃cov
e ,∗ ΓL(e/Z̃cov

e ) → evZ̃cov
e ,∗ → evZ̃cov

e ,∗ Lje,∗Lj
∗
e

and the equivalences

evZ̃cov
e ,∗ Lje,∗Lj

∗
e ' (je × id)∗

◦
evZ̃cov

e ,∗Lj
∗
e ' (je × id)∗(je × id)∗ evZ̃cov

e ,∗

then imply that

(4.3.9.1) evZ̃cov
e ,∗ ΓL(e/Z̃cov

e )Li
∗
Se [F ]QC ' Γ{e}×Z̃cov

e /Z̃cov
e

evZ̃cov
e ,∗ Li

∗
Se [F ]QC,

so we reduce to showing that the latter is coconnective.

4.3.10. We now use our Block–Getzler sheaf to compute (4.3.9.1). By Corollary 3.3.20 (or rather, its
obvious analog for Zcov

e ) and Proposition 3.4.11, we have

evZ̃cov
e ,∗ Li

∗
Se [F ]QC ' evZ̃cov

e ,∗[QC(S̃e/Z̃
cov
e ),− ∗ i∗SeF ]

' evZ̃cov
e ,∗ BGSe/Z̃cov

e
(QC(S̃e/Z̃

cov
e ),− ∗ i∗SeF)

' preBGSe/Z̃cov
e

(QC(S̃e/Z̃
cov
e ),− ∗ i∗SeF).

(4.3.10.1)

Note that by Corollary 2.3.7 and Remark 3.4.6, we may compute this pre-Block–Getzler sheaf using only the
compact generator

⊕
b∈Be E

Se
b (i.e., the regular right Acov

Se
-module), which yields a complex C• of the form

(4.3.10.2) · · · → Acov
Se ⊗kA

cov
Se ⊗ki

∗
SeFmod�OZ̃cov

e

d0−d1+d2−−−−−−→ Acov
Se ⊗ki

∗
SeFmod�OZ̃cov

e

d0−d1−−−−→ i∗SeFmod�OZ̃cov
e

as in (4.3.5.2). Here we misuse notation slightly by writing (−)mod for the equivalence given by
⊕

b∈Be E
Se
b

in place of E|S̃e ; however, the notation i
∗
Se
Fmod is then unambiguous, as i∗Se and (−)mod commute. Our goal

now is to show that Γ{e}×Z̃cov
e /Z̃cov

e
C• is coconnective; we henceforth explicitly forget all Z̃cov

e -equivariance
(see footnote 41).

4.3.11. We begin by using the Koszul property of Acov
Se

to replace (4.3.10.2) with a quasi-isomorphic
bounded complex. Observe that we may write

C• ' Acov
Se ⊗
Acov
Se
⊗
k

(Acov
Se

)op
i∗SeFmod ⊗k O(Z̃cov

e ),

where theAcov
Se

-action on i∗SeFmod⊗kO(Z̃cov
e ) is given by the left-multiplication on i∗SeFmod, and the (Acov

Se
)op-

action is given by the algebra homomorphism ρ : Acov
Se
→ Acov

Se
⊗k O(Z̃cov

e ) and right-multiplication. Thus,
Proposition 4.1.4 and (2.2.5.2) give

(4.3.11.1) C• ' Kos≤0
Acov
Se

⊗
Acov
Se
⊗
k
Acov,op
Se

i∗SeFmod ⊗k O(Z̃cov
e ).

Moreover, Corollary 4.1.6 and §2.2.6 show that the projective bimodule resolution Kos≤0
Acov
Se

has length exactly

dim S̃e.
Note that Γ{e}×Z̃cov

e
has cohomological amplitude [0,dimSe] (using the standard “local Koszul complex”

on a choice of coordinate functions of the affine space Se). Thus, the spectral sequence of the double complex
obtained by applying Γ{e}×Z̃cov

e
term-by-term to (4.3.11.1) reduces us to showing that

(4.3.11.2) Γ{e}×Z̃cov
e

(
Kos−nAcov

Se
⊗

Acov
Se
⊗
k
Acov,op
Se

i∗SeFmod ⊗k O(Z̃cov
e )

)
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is concentrated in degrees ≥ dim S̃e for each 0 ≤ n ≤ dim S̃e. Furthermore, by (4.1.2.2) and (2.2.6.2), it
suffices to show that

(4.3.11.3) ESeb′ ⊗Acov
Se

i∗SeFmod ⊗Acov
Se

ESe,`b ' HomS̃e
(ESeb , ESeb′ ∗ i

∗
SeF)

has this property after applying Γe for each b, b′ ∈ Be. By Grothendieck local duality (see for instance
[Sta18, Thm. 0A84]), the O(Se)-module

ΓeHomS̃e
(ESeb , ESeb′ ∗ i

∗
SeF)

is Matlis dual to

(4.3.11.4) HomSe(HomS̃e
(ESeb , ESeb′ ∗ i

∗
SeF), ωSe),

so it suffices to show that the latter is concentrated in cohomological degrees ≤ −dim S̃e. Finally, since S̃e
is Calabi–Yau as in (3.3.7.1), we have

HomSe(HomS̃e
(ESeb , ESeb′ ∗ i

∗
SeF), ωSe) ' πSe,∗HomS̃e

(HomS̃e
(ESeb , ESeb′ ∗ i

∗
SeF), π!

SeωSe)

' πSe,∗HomS̃e
(HomS̃e

(ESeb , ESeb′ ∗ i
∗
SeF), ωS̃e)

' HomS̃e
(ESeb′ ∗ i

∗
SeF , E

Se
b )[dim S̃e]

' HomS̃e
(ESeb′ , E

Se
b ∗ i

∗
SeF

∨,R)[dim S̃e].

The latter is a direct summand of i∗SeF
∨,R
mod[dim S̃e], which lies in cohomological degrees ≤ − dim S̃e by our

assumption on F∨,R and t-exactness of i∗Se (see §4.2.11). This proves the first statement of (2). The second
statement is immediate from (1) and the claim regarding (4.3.11.2) after noting the inequality dim S̃e ≤
dim Ñ = dimN .

This concludes the proof of Theorem 4.3.2. �

https://stacks.math.columbia.edu/tag/0A84


CHAPTER 5

Asymptotic coherent Springer theory

5.1. Restricting the coherent Springer sheaf

5.1.1. In this short section, we use our Block–Getzler sheaf to deduce the first part of Theorem 1.4.1.
That is, we show that a certain restriction of the coherent Springer sheaf to a nilpotent e recovers the
corresponding asymptotic coherent Springer sheaf of (2.4.11.1). In the process, we prove a useful lemma
computing the 2-categorical class of Rep(G)(C,α) for reductive G.

5.1.2. Proposition. Let e ∈ N , and let Se be a Slodowy slice at e. There is a canonical isomorphism

(LpSe,∗Li∗SeS)0 ' SBe �OGm/Gm .

Proof. Since ASe is concentrated in non-negative weights, the same reasoning as in §4.3.10 implies that
(LpSe,∗Li∗SeS)0 is equivalent to the complex

· · · → ASe,0 ⊗k ASe,0 ⊗k ASe,0 ⊗k OZ̃e
d0−d1+d2−−−−−−→ ASe,0 ⊗k ASe,0 ⊗k OZ̃e

d0−d1−−−−→ ASe,0 ⊗k OZ̃e ,

which is in turn equivalent43 to
BG∗/Ze(A

op
Se,0

-modZe)�OGm/Gm .

Recall from (2.2.15.1) that
ASe,0 ∼=

⊕
b∈Be

Endk(LSe,∗b ),

with the Ze-action coming from the Ze-action on Be and the projective Zbe-representation on each LSeb .
Thus, by Lemma 2.1.13 and [BZCHN22, Lem. 2.11], we have canonical equivalences

(5.1.2.1) Aop
Se,0

-modZe '
⊕
b∈Borb

e

Endk(LSe,∗b )op -modZ
b
e '

⊕
b∈Borb

e

Rep(Zbe)
(Cb,αb)∨ .

Proposition 3.4.11 and Corollary 3.2.13 then imply that

BG∗/Ze(A
op
Se,0

-modZe) '
⊕
b∈Borb

e

BG∗/Ze(Rep(Zbe)
(Cb,αb)∨) '

⊕
b∈Borb

e

ieq
b,∗ BG∗/Zbe (Rep(Zbe)

(Cb,αb)∨),

where ieq
b : Zbe/Z

b
e → Ze/Ze is as in (2.4.7.2). Thus, the following lemma completes the proof. �

5.1.3. Lemma. Let G be a reductive group, and let (C, α) ∈ Coc(G). Then there is a canonical isomor-
phism

BG∗/G(Rep(G)(C,α)) ' C.

Proof. By (2.1.6.1) and Corollary 3.4.13, the sheaf BG∗/G(Rep(G)(C,α)) is a direct summand of

(5.1.3.1) BG∗/G(Rep(G(C,α))) ' p(C,α),∗OG(C,α)/G(C,α)
,

where p(C,α) : G(C,α) → G is as in (2.1.5.2). Observe that the latter is a vector bundle, whose rank is the order
of [(C, α)] ∈ M(G). It follows that BG∗/G(Rep(G)(C,α)) is also a vector bundle concentrated in cohomological
degree 0.

Now let V ∈ Rep(G)(C,α),c,♥ be nonzero. By Lemma 2.1.13 and [BZCHN22, Lem. 2.11], we have an
equivalence

(5.1.3.2) Homk(V,−) : Rep(G)(C,α) ∼−→ Endk(V )op -modG,

43Note that there is no distinction between preBG∗/G and BG∗/G.
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and hence

(5.1.3.3) BG∗/G(Rep(G)(C,α)) ' BG∗/G(Endk(V )op -modG).

By the previous paragraph, it suffices to compute the cokernel of the final map

Endk(V )⊗k Endk(V )⊗k OG → Endk(V )⊗k OG,
f0 ⊗ f1 ⊗ r 7→ (ρ(f0) ◦ f1 − f1 ◦ f0)⊗ r,

(5.1.3.4)

in the complex defining (5.1.3.3). Regard OG and C as subsheaves of OGsch , and consider the map

Endk(V )⊗k OG → C,
f ⊗ r 7→

(
g 7→ tr(f ◦ g|V ) · r(g)

)
,

(5.1.3.5)

given by the Peter–Weyl theorem for Gsch (and extending OG-linearly). Taking the same map for V ∗, C∨ and
dualizing then yields a natural section44 of (5.1.3.5), so this map is surjective. Moreover, it is straightforward
to verify that (5.1.3.5) factors through the cokernel of (5.1.3.4).45 In particular, C is a direct summand of
(5.1.3.3), which is therefore a vector bundle of rank ≥ 1. Since this is true for each element of 〈[(C, α)]〉 ⊂
M(G), it follows from (5.1.3.1) and (2.1.6.1) that (5.1.3.3) is a vector bundle of rank precisely 1, hence
isomorphic to C. Finally, it is not hard to see that these isomorphisms agree with the canonical decomposition
of (5.1.3.1), hence are canonical (i.e., do not depend on the choice of V ). �

5.1.4. In particular, applying Theorem 3.1.11, we recover the first isomorphism in (2.1.13.1).

5.2. Homomorphism data

5.2.1. In this section, we introduce a more general notion of “monoidal functor” within the framework
of §3.1. Here our express purpose is to identify Lusztig’s homomorphism φe,k with the homomorphism

(5.2.1.1) (LpSe,∗Li∗Se)0 : EndL(N̂/G̃)(S)op → EndZ̃e/Z̃e(S
Be �OGm/Gm)op

induced by Proposition 5.1.2. We begin by recalling a non-standard perspective on classical algebra homo-
morphisms, owed to Lusztig:

5.2.2. Proposition. Let A and B be algebras. The datum of a homomorphism φ : A→ B is equivalent
to the data of

(1) an (A,B)-bimodule M ; and
(2) a right B-module isomorphism β : B

∼−→M ;
where two pairs (M,β) and (M,β′) are considered equivalent if there is an (A,B)-module isomorphism
f : M

∼−→M ′ making the diagram
M

B

M ′

f

β

β′

commute. Moreover, given algebras A, B, and C, and pairs (M,β) and (N, γ) for (A,B) and (B,C),
respectively, composition of the corresponding homomorphisms is given by the pair (M ⊗B N, (β ⊗ 1) ◦ γ),
where the latter composition is given by

(5.2.2.1) C
γ−→ N ' B ⊗B N

β⊗idN−−−−→M ⊗B N.

44In formulas, this section is given by

C → Endk(V )⊗k OG,

r 7→ (g 7→ 1
dimV

· r(g) · g−1|V ),

as in (5.1.3.5).
45Explicitly, their composition sends any f0 ⊗ f1 ⊗ r to the function

g 7→ tr
(
(g−1f0gf1 − f1f0) ◦ g|V

)
· r(g)

on Gsch, which clearly vanishes.
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Proof. We give the constructions in either direction; the rest is left as an exercise. Given a homo-
morphism φ : A → B, we may take (M,β) = (φB, idB), where φB is isomorphic to B as a right B-module,
and has left A-module structure given by φ. Conversely, given such a pair (M,β), we may take φ to be the
composition

(5.2.2.2) A→ EndBop(M)
adβ−−→ EndBop(B) ' B,

where the first map is given by the A-action on M . �

5.2.3. We now categorify this notion. In particular, we relax the requirement that β be an equivalence,
as our goal is merely to obtain an algebra homomorphism upon decategorifying, i.e., passing to Hochschild
homology. Moreover, to obtain a functor on categorical traces, we must reverse the A and B actions on M .

5.2.4. Definition. Let A and B be rigid monoidal categories. A homomorphism datum from A to B is
a triple (M, β, β̌) consisting of

(1) a right-dualizable (B,A)-bimodule M;
(2) left B-module homomorphisms β : B→M and β̌ : M→ B, which

(a) admit continuous right adjoints; and
(b) induce inverse equivalences on Hochschild homology.

We say that such a homomorphism datum is unital if additionally β̌ ◦ β ' idB.

5.2.5. Note that the right adjoint βR, β̌R are canonically B-linear by [Gai12, Cor. 6.2.4]. Moreover, the
induced maps

HH(β) : HH(B)� HH(M) : HH(β̌)

are automatically HH(B)-module isomorphisms as in Proposition 5.2.2

5.2.6. Given a homomorphism datum (M, β, β̌), we may imitate (5.2.2.2) by forming the composite
functor

(5.2.6.1) F(M,β,β̌) : A
actM−−−→ EndB(M)rev β̌◦−◦β−−−−→ EndB(B)rev ' B,

where actM denotes the right A-action on M. Explicitly, for a ∈ A, we have

(5.2.6.2) F(M,β,β̌)(a) = β̌(β(1B)⊗ a).

Thus, unitality of (M, β, β̌) implies that F(M,β,β̌) is “unital,” i.e., F(M,β,β̌)(1A) ' 1B. In general, the functor
F(M,β,β̌) is not monoidal. However, by [GR17a, Ch. 1, Lem. 9.3.2] and Definition (5.2.4)(2a), it admits a
continuous right adjoint, and therefore induces a map

HH(F(M,β,β̌)) : HH(A)→ HH(B).

5.2.7. Our next goal is to give conditions under which HH(F(M,β,β̌)) is an algebra homomorphism, and
can be realized on categorical traces via Theorem 3.1.11. Consider the composite functor

FTr
(M,β,β̌)

: Tr(A)
Tr(M)−−−−→ Tr(B)

pr[B]−−−→ 〈[B]〉,

where the functor Tr(M) is as in (3.1.5.1) and the projection pr[B] is as in (3.1.11.3). In particular, we have
Tr(M)([A]) ' [M], and hence FTr

(M,β,β̌)
([A]) ' [B] by Definition 5.2.4(2b) and (3.1.11.2).

5.2.8. Let C be a compactly generated dg-category. Recall that the Chern character is the natural
transformation

ch: K(Cc)→ HH(C)

from the connective K-theory spectrum. We refer the reader to [BZCHN22, §2.1.3] for more detailed
recollections, and shall only require the following basic facts:

(1) Let c ∈ Cc. By naturality, the induced map K0(Cc)→ HH0(C) sends the K-theory class [c] to the
Hochschild class [c] (see §3.1.10).

(2) If Cc is monoidal, then the Chern character is an algebra homomorphism via the lax monoidal
structure of K-theory.

We may now state our main criterion; though fairly restrictive, it will suffice for our purposes (where A is
always the mixed affine Hecke category Hcoh).
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5.2.9. Proposition. Let (M, β, β̌) be a homomorphism datum from A to B. Suppose that
(1) A and M are compactly generated;
(2) HH(A) is concentrated in cohomological degree 0; and
(3) the k-linearized Chern character ch: K0(A)k → HH0(A) is surjective.

Then the induced map

(5.2.9.1) FTr
(M,β,β̌)

: EndTr(A)([A])op → EndTr(A)([B])op

identifies with HH(F(M,β,β̌)) via (3.1.11.1). In particular, the latter is monoidal.

Proof. Let actβ(1B) : A→M denote the functor given by a 7→ β(1B)⊗ a. As for F(M,β,β̌), this functor
admits a continuous right adjoint, and we have F(M,β,β̌) ' β̌ ◦ actβ(1B). Thus, it suffices to show that the
diagram

K0(A)k K0(M)k

HH(A) HH(M) HH(B)

HomTr(A)([A], [A]) HomTr(B)([M], [M]) HomTr(B)([B], [M]) HomTr(B)([B], [B]),

ch

K0(actβ(1B))k

ch

HH(actβ(1B))

∼ (3.1.11.2)

HH(β̌)

∼ (3.1.11.2) ∼ (3.1.11.2)
Tr(M) −◦[β]

pr[B]

[β̌]◦−

commutes. All regions of this diagram clearly commute aside from the rectangle involving Tr(M) and the
triangle involving pr[B].

For the former, our assumptions reduce us to showing that the outer rectangle involving K0(actβ(1B))k
commutes. Given a ∈ Ac, note that (3.1.11.2) factors as the composition
(5.2.9.2)

HH(A) ' HomTr(Vectk)([Vectk], [A])
IndunitA−−−−−→ HomTr(B)([A], [A⊗A])

[multA]◦−−−−−−−−→ HomTr(A)([A], [A])

via (3.1.14.3). Thus, the Chern character sends the class of a to [−⊗ a] ∈ EndTr(A)([A]) by functoriality of
(3.1.5.1). Likewise, we have

Tr(M)([a]) ◦ [β] ' [(idM⊗a)] ◦ [β] ' [β(−)⊗ a] ∈ HomTr(B)([B], [M]).

Finally, the analog of (5.2.9.2) for HomTr(B)([B], [M]) shows that the Chern character sends the class of
β(1B)⊗ a ∈M to

[−⊗ (β(1B)⊗ a)] ' [β(−)⊗ a],

as desired.
We now establish commutativity of the triangle involving pr[B]. Given ϕ ∈ EndTr(B)([M]), the morphism

pr[B](ϕ) ∈ EndTr(B)([B]) is unique subject to commutativity of the diagram

[B] [B]

[M] [M].

[β]

pr[B](ϕ)

[β]

ϕ

By Definition 5.2.4(2b) and (3.1.11.2), we have

(5.2.9.3) [β̌] ◦ [β] ' [β̌ ◦ β] ' id[B],

and therefore pr[B](ϕ) ' [β̌] ◦ ϕ ◦ [β] as desired. �

5.2.10. Note that in particular, [B] is a direct summand of [M] via [β], [β̌]. Moreover, (3.1.11.3) gives a
natural identification

(5.2.10.1) FTr
(M,β,β̌)

|〈[A]〉 ' Ind
HH(B)
HH(A) .
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5.2.11. Example. As in the proof of Proposition 5.2.2, any monoidal functor Ψ: A→ B gives rise to a
unital homomorphism datum (BΨ, idB, idB), where right-dualizability holds as in (3.1.9). Moreover, if C is
another rigid monoidal category, and (N, γ, γ̌) is a homomorphism datum from B to C, then we also have a
“composed” homomorphism datum

(N, γ, γ̌) ◦Ψ := (ΨN, γ, γ̌)

from A to C. By (5.2.6.2) and functoriality of (3.1.5.1), we have

F(N,γ,γ̌)◦Ψ ' F(N,γ,γ̌) ◦Ψ, FTr
(N,γ,γ̌)◦Ψ ' F(N,γ,γ̌) ◦ Tr(IndΨ).

Unlike in Proposition 5.2.2, we do not know which conditions allow homomorphism data to be composed in
general (i.e., that guarantee that the maps HH(β),HH(β̌) remain equivalences).

5.3. Recovering Lusztig’s homomorphism

5.3.1. As in Proposition 5.1.2, we fix a nilpotent e, and let Se be a Slodowy slice at e. In this section, we
construct a homomorphism datum Φmod

Se
categorifying the homomorphism φe,k, and use Proposition 5.2.9 to

identify φe,k with the restriction map (5.2.1.1).

5.3.2. We begin by constructing our categorification of Je,k. As suggested by §2.4.11, we define

Jmod
e := ASe,0 ⊗k A

op
Se,0

-modZe ,

which is a monoidal category under the tensor product of bimodules. To verify that it is rigid (as required
in Definition 5.2.4), we need the following general lemma:

5.3.3. Lemma. Let C be a compactly generated, rigid symmetric monoidal category, and let A ∈ Alg(C).
Suppose that A ∈ Cc, and the regular A-bimodule lies in A ⊗ Aop -modcC. Then the monoidal category
A⊗Aop -modC is rigid.

Proof. Tensoring over A preserves compact objects by the first assumption, and the monoidal unit is
compact by the latter assumption. Thus, as in §3.1.8, it remains to show that compact objects admit left
and right monoidal duals.

We begin with the latter. Given M ∈ A ⊗ Aop -modcC, we wish to show that − ⊗A M admits a right
adjoint of the form −⊗AM∨,R. Since M is a finite colimit of objects of the form A⊗X ⊗A for X ∈ Cc, we
immediately reduce to this case.46 Given L,N ∈ A⊗Aop -modC, we have

HomA⊗Aop(L⊗A (A⊗X ⊗A), N) ' HomA(L⊗X,N) ' HomA(L,N ⊗X∨).

Observe that the dual object A∨ (in C) carries a canonical A-bimodule structure. We claim that

(5.3.3.1) HomA(L,N ⊗X∨) ' HomA⊗Aop(L,N ⊗X∨ ⊗A∨).

Note that this immediately implies that (A⊗X⊗A)∨,R ' A⊗X∨⊗A∨. Moreover, this bimodule is compact:
writing A∨ ' A∨⊗AA, we may resolve the latter copy of A by bimodules of the form A⊗Y ⊗A for Y ∈ Cc,
and so A∨ ∈ Aop -modcC as A∨ ∈ Cc. To show (5.3.3.1), note that we may write L as a colimit of bimodules
A⊗ Z ⊗A for Z ∈ Cc, so we may assume L is of this form. We then have

HomA(A⊗ Z ⊗A,N ⊗X∨) ' HomC(Z ⊗A,N ⊗X∨)

' HomC(Z,N ⊗X∨ ⊗A∨)

' HomA⊗Aop(A⊗ Z ⊗A,N ⊗X∨ ⊗A∨),

as desired.
Finally, to establish existence of left duals, we must construct an M∨,L whose right-dual is M . Observe

that writing A∨ ' A⊗AA∨⊗AA exhibits it as a compact bimodule by the same argument as in the previous
paragraph. Thus, setting

M∨,L := A∨ ⊗A (A∨ ⊗AM)∨,R,

46Recall that, for any compact A ∈ Alg(C), the category A -modC is compactly generated by objects of the form A ⊗ X for
X ∈ Cc. Indeed, HomA(A ⊗X,−) ' HomC(X,−), so such objects are evidently compact, and for any M ∈ C, we may write
M ' A⊗AM and resolve A by its bar complex to obtain a resolution of M by such objects (see also [Lur17, Lem. 5.3.2.12]).
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we obtain an object of A⊗Aop -modcC. To show that its right-dual recovers M , we again reduce to the case
of M ' A⊗X ⊗A, where it is not hard to check that47

M∨,L ' A∨ ⊗A (A⊗X∨ ⊗A) ' A∨ ⊗X∨ ⊗A

and hence
(M∨,L)∨,R ' A⊗X ⊗A 'M

as desired. �

5.3.4. Corollary. The monoidal category Jmod
e is rigid and semisimple.

Proof. Note that ASe,0 is a finite dimensional algebra, and in particular lies in Rep(Ze)
c. Thus, by

Lemma 5.3.3, it suffices to show that the unit object of Jmod
e is compact. To this end, note that Rep(Ze)

is a (Rep(Ze)-linear) direct summand of Rep(Zcov
e ) as in Remark 2.4.13. It follows that Jmod

e is a direct
summand (and subalgebra) of

Rep(Zcov
e )⊗Rep(Ze) J

mod
e ' QC(Be ×Be/Z

cov
e )

as in (5.3.6.2) (which is the categorical analogue of Proposition 2.4.12). It therefore suffices to show that the
unit object of the latter is compact, which is clear. Moreover, the latter is evidently semisimple. �

5.3.5. We now compute the categorical trace48 of Jmod
e and the universal trace of its unit, with a view

towards applying Proposition 5.2.9:

5.3.6. Lemma. We have a natural equivalence

(5.3.6.1) Tr(Jmod
e ) ' QC(Ze/Ze),

under which there is a canonical isomorphism

[Jmod
e ] ' SBe .

Proof. By [Lur17, Rmk. 4.8.5.18], the Rep(Ze)-modules ASe,0 -modZe and Aop
Se,0

-modZe are dual, so
we obtain an adjunction

Aop
Se,0

-modZe ⊗Rep(Ze)− : Rep(Ze) -mod� Rep(Ze) -mod : ASe,0 -modZe ⊗Rep(Ze) − .

We claim that the latter functor is conservative. Indeed, by [GR17a, Ch. 1, Cor. 8.5.7], (5.1.2.1), and
(5.1.3.2), we have equivalences

(5.3.6.2) Rep(Zcov
e )⊗Rep(Ze) ASe,0 -modZe ' ASe,0 -modZ

cov
e ' Acov

Se,0 -modZ
cov
e ' QC(Be/Z

cov
e ),

and the functor QC(Be/Z
cov
e )⊗Rep(Ze)− is conservative by the proof of [BZFN12, Thm. 1.3]. By [GR17a,

Ch. 1, Prop. 8.5.4], there is a natural identification of monads

ASe,0 -modZe ⊗Rep(Ze)(A
op
Se,0

-modZe ⊗Rep(Ze)−) ' Jmod
e ⊗Rep(Ze) −,

so the Barr–Beck–Lurie theorem yields an equivalence

(5.3.6.3) ASe,0 -modZe ⊗Rep(Ze)− : Rep(Ze) -mod→ Jmod
e -mod .

Taking 2-categorical traces then yields (5.3.6.1). Moreover, under this identification, we have

[Jmod
e ] ' BG∗/Ze(A

op
Se,0

-modZe) ' SBe

by Proposition 3.4.11 and the proof of Proposition 5.1.2. �

47Essentially, we have shown that M∨,R ' HomAop (M,A), with the Aop-module structure obtained from the A-module
structure on M , and the A-module structure obtained from that on A.
48We expect such a description to hold more generally, i.e., Tr(A⊗OX

Aop -modQC(X)) ' QC(LX) for a suitable stack X and
faithfully flat A ∈ Alg(QC(X)). In our case, the group Zcov

e exempts us from such generalities.
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5.3.7. In particular, by Theorem 3.1.11 and Proposition 2.4.8, we have natural algebra isomorphisms

(5.3.7.1) HH(Jmod
e ) ' EndZe/Ze(S

Be)op ' Je,k.

Thus, Jmod
e is indeed a categorification of Je,k (note that this fact could also have been obtained more directly

from Corollary 5.3.4 and Theorem 2.4.10). The tensor product Jmod
e ⊗Rep(Gm) is therefore a categorification

of Je,k[v±1], and Lemma 5.3.6 immediately gives identifications

Tr(Jmod
e ⊗ Rep(Gm)) ' Tr(Jmod

e )⊗ Tr(Rep(Gm)) ' QC(Z̃e/Z̃e),

[Jmod
e ⊗ Rep(Gm)] ' [Jmod

e ]⊗ [Rep(Gm)] ' SBe �OGm/Gm .
(5.3.7.2)

We now construct the homomorphism datum Φmod
Se

. Recall the category Hmod
Se

of (4.2.7.1), which is rigid
monoidal by Proposition 4.2.10. Set

Mmod
Se := ASe,0 ⊗k A

op
Se

-modZ̃e ,

which carries an evident (Jmod
e ⊗ Rep(Gm),Hmod

Se
)-bimodule structure via the tensor products ⊗ASe,0 and

⊗ASe , respectively. Consider the functors

Jmod
e

− ⊗
ASe,0

ASe
−−−−−−−→Mmod

Se

− ⊗
ASe
ASe,0

−−−−−−−→ Jmod
e ,

where the tensor products are taken with respect to the homomorphisms in0,pr0 of (2.2.15.2). Finally, set49

Φmod
Se := (Mmod

Se ,− ⊗
ASe,0

ASe ,− ⊗
ASe
ASe,0).

5.3.8. Lemma. The triple Φmod
Se

is a unital homomorphism datum from Hmod
Se

to Jmod
e ⊗ Rep(Gm).

Proof. The functors −⊗ASe,0ASe and −⊗ASe,0ASe are evidently Jmod
e -linear, preserve compact objects,

and compose to the identity. Moreover, applying Lemma 3.4.5 to the generators ASe,0⊗k ASe,0 of Jmod
e and

ASe,0 ⊗k ASe of Mmod
Se

(using the Koszul grading of §2.2.15) immediately shows that these functors induce
inverse equivalences on Hochschild homology.

Thus, it remains to show that the (Jmod
e ⊗Rep(Gm),Hmod

Se
)-bimodule Mmod

Se
is right-dualizable. Consider

the (Hmod
Se

, Jmod
e ⊗ Rep(Gm))-bimodule

M
mod,R
Se

:= ASe ⊗k A
op
Se,0

-modZ̃e .

Note that by [GR17a, Ch. 1, Prop. 8.5.4], the external tensor product gives bimodule equivalences

Mmod
Se ' ASe,0 -modZ̃e ⊗Rep(Z̃e)

Aop
Se

-modZ̃e ,

M
mod,R
Se

' ASe -modZ̃e ⊗Rep(Z̃e)
Aop
Se,0

-modZ̃e .
(5.3.8.1)

Thus, to show that Mcoh
Se

is left-dual to M
coh,R
Se

, it suffices to show that the (Rep(Z̃e),H
mod
Se

)-bimodule

Aop
Se

-modZ̃e is left-dual to the (Hmod
Se

,Rep(Z̃e))-bimodule ASe -modZ̃e , and the (Jmod
e ⊗Rep(Gm),Rep(Z̃e))-

bimodule ASe,0 -modZ̃e is left-dual to the (Rep(Z̃e), J
mod
e ⊗ Rep(Gm))-bimodule Aop

Se,0
-modZ̃e . The former

statement holds by Lemma 3.3.9 (using the equivalences (4.2.10.1) and (2.2.4.1)), and the latter statement
holds as in [GR17a, Ch. 1, Cor. 8.6.3]. �

5.3.9. As in Example 5.2.11, the monoidal functor i∗Se : Hmod → Hmod
Se

gives rise to a composed homo-
morphism datum Φmod

Se
◦ i∗Se from Hmod to Jmod

e ⊗ Rep(Gm). We now show that the functor

FΦmod
Se
◦i∗Se

: Hmod → Jmod
e ⊗ Rep(Gm)

identifies with φe,k on Hochschild homology:

49 We expect that another homomorphism datum Φmod
e may be constructed from the bimodule Mmod

e := ASe,0⊗kA
op
e -modZ̃e ,

where Ae := ASe ⊗O(Se) k is the specialization of ASe at e. Our notation Φmod
Se

is therefore intended to leave room for this
possibility.
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5.3.10. Proposition. There is a natural commutative diagram of (classical) algebra homomorphisms

(5.3.10.1)

Hk (H/H<e)k Je,k[v±1]

HH(Hmod) HH(Hmod
Se

) HH(Jmod
e ⊗ Rep(Gm)).

∼

φe,k

∼

HH(i∗Se ) HH(F
Φmod
Se

)

Proof. The rightmost identification is immediate from (5.3.7.1), and the leftmost identification is that
of [BZCHN22, Thm. 1.4]. For the middle vertical map, note that by [Bez16, Thm. 55], the Kazhdan–
Lusztig basis elements spanning the two-sided ideal H<e are supported on nilpotent orbits in N preceding
the orbit of e. In particular, their support does not intersect Se, so the composite map Hk → HH(Hmod

Se
)

factors through (H/H<e)k. Moreover, applying Lemma 3.4.5 to the generator ASe ⊗O(Se) A
op
Se

of Hmod
Se

, we
immediately obtain an isomorphism (of vector spaces)

(5.3.10.2) HH(Hmod
Se ) ' HH(Jmod

e ⊗ Rep(Gm))

using the Koszul grading of §2.2.15. Thus, HH(Hmod
Se

) is concentrated in cohomological degree 0.
To show commutativity of the outer rectangle in (5.3.10.1), note that i∗Se(−) ' − ⊗Ag ASe , and by

(5.2.6.2), we have

FΦmod
Se

(−) ' (ASe,0 ⊗ASe,0 ASe)⊗ASe −⊗ASe ASe,0 ' ASe,0(−⊗ASe ASe,0).

Thus, by §2.4.2 (and monoidality of the leftmost identification in (5.3.10.1)), it suffices to show that∑
d∈De

Cd ∈ Hk is sent to [ASe,0] ∈ HH(Hmod
Se

), and that we have a commutative diagram

(5.3.10.3)

(H/H<e)k He,k Je,k[v±1]

HH(Hmod
Se

) HH(Hmod
ê ) HH(Jmod

e ⊗ Rep(Gm)).

∼
base,k

∼ ∼

HH(in∗0)

Here we have let Hmod
ê denote the full subcategory of Hmod

Se
consisting of modules supported at e, and

in∗0 denote the restriction of scalars along the inclusion ASe,0 ⊗k A
op
Se,0

↪→ ASe ⊗O(Se) A
op
Se
. In fact, the

latter assertion implies the former, as base(
∑
d∈De

Cd) = 1Je , and in∗0ASe,0 ' 1Jmod
e
〈0〉. As before, applying

Lemma 3.4.5 to the generator ASe,0⊗A
op
Se,0

of Hmod
ê immediately yields the isomorphism HH(in∗0). Moreover,

[Bez16, Thm. 54(c)] implies that the Kazhdan–Lusztig basis elements spanning He are sent to (the classes
of) shifts of simple objects of H

mod,♥
Se

. The identification He,k ' HH(Hmod
ê ) and commutativity of the

leftmost square in (5.3.10.3) are now immediate. Finally, commutativity of the rightmost square follows
from the proof of [BL23, Prop. 8.25].

Lastly, we show that HH(FΦmod
Se

) is injective. By (5.3.10.2) and (2.2.14.3), HH(Hmod
Se

) has an R(Z̃e)-basis

given by the classes [LSe,∗b ⊗k ESeb ⊗O(Se) E
Se,`
b′ ⊗k L

Se
b′ ] for b, b′ ∈ Be. Likewise, the standard R(Z̃e)-basis of

HH(Jmod
e ⊗ Rep(Gm)) (used in [BL23, Prop. 8.25]) is given by the classes [LSe,∗b ⊗k LSeb ⊗k L

Se,`
b′ ⊗k L

Se
b′ ].

Since

HH(FΦmod
Se

)([LSe,∗b ⊗k ESeb ⊗O(Se) E
Se,`
b′ ⊗k LSeb′ ]) = [ASe,0(LSe,∗b ⊗k ESeb ⊗O(Se) k)⊗k LSe,`b′ ⊗k L

Se
b′ ]

≡ [LSe,∗b ⊗k LSeb ⊗k L
Se,`
b′ ⊗k L

Se
b′ ] mod Je,k ⊗k v · k[v],

the matrix describing HH(FΦmod
Se

) with respect to these bases has nonzero determinant, and is therefore
full-rank. �

5.3.11. We now turn to computing the associated functor

FTr
Φmod
Se
◦i∗Se

: Tr(Hmod)→ 〈[Jmod
e ⊗ Rep(Gm)]〉.

on categorical traces.

5.3.12. Lemma. The functor

Tr(Mmod
Se ) : Tr(Hmod

Se )→ Tr(Jmod
e ⊗ Rep(Gm))
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canonically identifies with
LpSe,∗ : QC!(L(Ŝe,N /Z̃e))→ QC!(Z̃e/Z̃e)

via Corollary 3.3.17 and Lemma 5.3.6.

Proof. By (5.3.8.1) and (5.3.6.3), we have a commutative diagram

QC(Se/Z̃e) -mod Hmod
Se

-mod

QC(BZ̃e) -mod Jmod
e ⊗ Rep(Gm) -mod

Resp∗
Se Mmod

Se

Aop
Se

-modZ̃e

ASe,0 -modZ̃e

∼

in L(Morita(dgCatk))rgd (omitting all identity functors from the notation). Taking categorical traces then
yields the commutative diagram

Tr(QC(Se/Z̃e)) Tr(Hmod
Se

)

Tr(QC(BZ̃e)) Tr(Jmod
e ⊗ Rep(Gm)).

Tr(Resp∗
Se

) Tr(Mmod
Se

)

Tr(Aop
Se

-modZ̃e )

Tr(ASe,0 -modZ̃e )

∼

By Lemma 3.3.9, Proposition 4.2.10, and Corollary 3.2.13, this diagram identifies with

(5.3.12.1)

QC(L(Se/Z̃e)) QC!(L(Ŝe,N /Z̃e))

QC(L(BZ̃e)) QC(L(BZ̃e)).

LpSe,∗ Tr(Mmod
Se

)

ι{0}Se,N
◦Γ{0}Se,N

id
∼

The conclusion is now immediate from [DG13, §3.2.12]. �

5.3.13. Finally, we reach the main result of this chapter:

5.3.14. Corollary. The induced homomorphism

(5.3.14.1) (LpSe,∗Li∗Se)0 : EndL(N̂/G̃)(S)op → EndZ̃e/Z̃e(S
Be �OGm/Gm)op

identifies canonically with φe,k via Theorems 1.2.1 and 2.4.10. Moreover, the following squares commute:

Hk -mod Je,k[v±1] -mod

〈S〉 〈SBe �OGm〉.

∼

Indφe,k

Resφe,k

∼

(LpSe,∗◦Li
∗
Se

)0

prS◦Lie,∗

Proof. By Proposition 5.2.9, Example 5.2.11, Proposition 5.3.10, and (5.3.7.2), it suffices to identify
(5.3.14.1) with the homomorphism induced by

(5.3.14.2) FTr
Φmod
Se

' pr[Jmod
e ⊗Rep(Gm)] ◦ Tr(Mmod

Se ) ◦ Tr(i∗Se).

Indeed, the conditions of Proposition 5.2.9 all hold by Theorem 1.2.1. Such an identification is then immediate
from Corollary 3.3.20, Lemma 5.3.12, and Proposition 5.1.2.

The identification of (LpSe,∗Li∗Se)0|〈S〉 with Indφe,k is as in (5.2.10.1). For the identification with Resφe,k ,
let Coh(L(Ŝe,N /Z̃e))≥0 denote the full subcategory of Coh(L(Ŝe,N /Z̃e)) spanned by complexes F such that
all cohomology sheaves of LpSe,∗F lie in non-negative weights, and consider the adjunction

(Li∗e)0 : QC(L(Ŝe,N /Z̃e))� QC(Z̃e/Ze) : Lie,∗in0.
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where we have let in0 denote the inclusion in weight-0. We claim that this restricts to an adjunction between
full subcategories

(5.3.14.3) (Li∗e)0 : Coh(L(Ŝe,N /Z̃e))≥0 � Coh(Z̃e/Ze) : Lie,∗in0.

To see that the latter functor factors through Coh(L(Ŝe,N /Z̃e))≥0, note that Lie,∗ is a closed embedding
by Lemma 3.2.7, and hence preserves coherent sheaves; moreover, LpSe,∗Lie,∗in0 ' in0 lies in weight-0. To
see that the former functor factors through Coh(Z̃e/Ze), let F ∈ Coh(L(Ŝe/Z̃e))≥0, and note that we have
a canonical identification (Li∗eF)0 ' (LpSe,∗F)0. Indeed, using (3.2.5.1) and the Koszul resolution of the
diagonal inside Se × Se, we see that OL(Se/Z̃e)

admits a semi-free resolution over O(Se×Z̃e)/Z̃e generated by
gf,∗〈−2〉[1]. It follows that OZ̃e/Z̃e admits a semi-free resolution over OL(Se/Z̃e)

with all generators in strictly
positive weights. Computing Li∗eF via the latter resolution now yields the desired identification. Note that
LpSe is affine, so LpSe,∗ is t-exact and hence preserves cohomology sheaves. In particular, (LpSe,∗F)0 has
bounded cohomological amplitude, so we reduce to the case where F lies in cohomological degree 0 and
is coherent over L(Se/Z̃e)

cl. The desired factorization through Coh(Z̃e/Ze) is now immediate from the
isomorphism (LpSe,∗OL(Se/Z̃e)cl)≤0 ' OZ̃e/Z̃e .

Ind-completing (5.3.14.3), we obtain an adjunction

(5.3.14.4) Ind((Li∗e)0) : Ind(Coh(L(Ŝe,N /Z̃e)≥0)� QC!(Z̃e/Ze) : Ind(Lie,∗in0).

Note that Ind(Coh(L(Ŝe,N /Z̃e)≥0) is a full subcategory of QC!(L(Ŝe,N /Z̃e)) by [Lur09, Prop. 5.3.5.11].
Thus, Ind(Lie,∗in0) identifies with the usual functor Lie,∗in0, and the previous paragraph identifies Ind((Li∗e)0)
with (the restriction of) (LpSe,∗)0. Finally, observe that the restriction of Li∗Se to 〈S〉 factors through
Ind(Coh(L(Ŝe,N /Z̃e)≥0). Indeed, it suffices to show that Li∗SeS lies in Coh(L(Ŝe,N /Z̃e)≥0. As in (4.3.10.2),

this follows from the isomorphism S ' BGSe/Z̃e(A
op
Se

-modZ̃e)) in QC(L(Ŝe,N /Z̃e)) and the Koszul grading
of ASe . The adjoint pairs

(5.3.14.5) 〈S〉 Ind(Coh(L(Ŝe,N /Z̃e)≥0) QC!(Z̃e/Ze)
Li∗Se inS (LpSe,∗)0

prSLiSe,∗ Lie,∗in0

now yield the result. �

5.3.15. Remark. When G is rank-1 semisimple, this result may be computed explicitly from the de-
scription of S given in [BZCHN22, Ex. 4.21]; we omit the details.

5.3.16. Remark. The proof of Corollary 5.3.14 suggests that we could have simply written (L(ieiSe)
∗)0

in place of (LpSe,∗Li∗Se)0. Indeed, as in (5.3.14.4), we can make sense of this functor on a full subcategory of
QC!(L(Ŝe,N /Z̃e)) containing 〈S〉. Alternatively, if we work with categories of quasi -coherent sheaves, then
it is possible to state an analog of Corollary 5.3.14 with (Li∗e)0 in place of (LpSe,∗Li∗Se)0. However, the
morphism Lie is not generally eventually coconnective, so the functor Li∗e is not defined on categories of
ind-coherent sheaves.50 In any case, as we have seen, the functor LpSe,∗Li∗Se is the one which arises naturally
in the course of our proof.

Still, as always, we do have a functor Li!e on categories of ind-coherent sheaves; we claim that there is a
canonical isomorphism

(L(ieiSe)
!S)0 ' SBe �OGm/Gm

just as in Proposition 5.1.2. First note that by Lemma 3.2.6(1), the map Lie is a closed immersion; moreover,
by Lemma 3.3.19 and [BZCHN22, Lem. 3.12], there is a canonical equivalence Li∗Se ' Li

!
Se
. Thus, for any

F ∈ QC!(Z̃e/Ze), we have a canonical isomorphism

HomZ̃e/Ze
(F , (L(ieiSe)

!S)0) ' HomL(Se/Z̃e)
(Lie,∗in0F ,Li∗SeS).

50We could of course take the composition

QC!(L(Ŝe,N /Z̃e))
Γ{0}−−−→ QC(L(Ŝe,N /Z̃e))

Li∗e−−→ QC(Z̃e/Z̃e),

noting that the stack Z̃e/Z̃e is smooth, but this will not be left-adjoint to the usual functor Lie,∗.
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Next, observe that Li∗SeS is Grothendieck–Serre self-dual: indeed, the base-change diagram (2.2.2.1) gives
an isomorphism

(5.3.16.1) Li∗SeS ' LπSe,∗OL(S̃e/Z̃e)
,

and hence

DL(Se/Z̃e)
(Li∗SeS) ' LπSe,∗HomL(Se/Z̃e)

(OL(S̃e/Z̃e)
,Lπ!

SeωL(Se/Z̃e)
) ' LπSe,∗ωL(S̃e/Z̃e)

' Li∗SeS.

Here we are using the fact that loop spaces of smooth Artin 1-stacks are canonically Calabi–Yau, as shown
in loc. cit. In the same vein, we have

DL(Se/Z̃e)
(Lie,∗in0F) ' Lie,∗in0F∨,

and hence

HomL(Se/Z̃e)
(Lie,∗in0F ,Li∗SeS) ' HomL(Se/Z̃e)

(Li∗SeS,Lie,∗in0F∨)

' HomZ̃e/Ze
((LpSe,∗Li∗SeS)0,F∨)

' HomZ̃e/Ze
(F , (LpSe,∗Li∗SeS)∨0 )

by (5.3.14.5). Altogether, we obtain a canonical isomorphism (L(ieiSe)
!S)0 ' SBe,∨ �OGm/Gm .

Finally, recall that by [BM13, §5.4.2(ℵ.iii)], the functor w̃0 · (−)∨ permutes the indecomposable vector
bundles ESeb ; here w0 ∈W denotes the longest element, and w̃0 ·− denotes the braid group action as in §2.2.7.
It is not hard to see that w̃0 · (ESeb )∨ is (Cb, αb)∨-equivariant for each b ∈ Be; in particular, the corresponding
permutation of line bundles yields a canonical isomorphism SBe,∨ ∼= SBe , as desired. We hope to give an
interpretation of the induced homomorphism

(5.3.16.2) (L(ieiSe)
!)0 : EndL(N̂/G̃)(S)op → EndZ̃e/Z̃e(S

Be �OGm/Gm)op,

as well as of the anti-involutions of Hk and Je,k induced by Grothendieck–Serre duality, in a future work.





CHAPTER 6

Asymptotic Kazhdan–Lusztig theory

6.1. Unstable Θ-stratifications

6.1.1. In this section, we give some brief recollections on Halpern-Leistner’s theory of Θ-stratifications,
following [HL21] (though see also [HL15b, HL18, HL15a, HLP23, HL22]). In particular, we construct
the “ungraded” inclusion and projection functors HLw, ȞLw discussed after (1.5.0.1), for a quasi-compact
and quasi-smooth stack equipped with an unstable Θ-stratification satisfying a certain weight-non-positivity
condition.

6.1.2. Let X be a (derived) algebraic stack which is locally almost of finite presentation and has affine
diagonal.51 Set Θ := A1/Gm with respect to the repelling (i.e., weight −1) Gm-action52, and let

BGm Θ {1}
ι0

$0

ι1

$1

denote the evident inclusions and projections. We therefore have induced maps

Map(BGm,X) Map(Θ,X) X
spl

oblvBGm

gr oblvΘ

of derived mapping stacks.53 By [HLP23, Thm. 5.1.1], each of these stacks is representable and satisfies the
same hypotheses as X.

6.1.3. We now recall some important multiplicative structures. Regard Θ and BGm as monoid stacks
via the usual multiplication maps on A1 and Gm; we set

multΘ : Θ×Θ→ Θ, multBGm : BGm × BGm → BGm,

to be the resulting products, and note that the unit maps are given by ι1 and $1, respectively. The stack
Map(Θ,X) now carries a tautological “weak Θ-action,” i.e., a (unital, associative) monoidal action of Θ in the
homotopy category of stacks (see [HL21, Def. 1.1.1]). Explicitly, the action map Θ×Map(Θ,X)→ Map(Θ,X)
is classified by the composition

(6.1.3.1) Θ×Θ×Map(Θ,X)
multΘ×idMap(Θ,X)−−−−−−−−−−−−→ Θ×Map(Θ,X)

ev−→ X,

where ev denotes the tautological evaluation map. Moreover, by Proposition 1.2.4 of loc. cit., this weak
Θ-action restricts to any union of connected components of Map(Θ,X). Likewise, the stack Map(BGm,X)
carries a canonical weak BGm-action, which restricts to any union of connected components.

Now, for any stack S equipped with a weak Θ-action actS : Θ × S → S, the category QC(S) carries a
canonical “baric structure,” which we now recall. Given w ∈ Z, set QC(S)≥w (resp. QC(S)<w, QC(S)w, etc.)
to be the full subcategory of QC(S) spanning sheaves F such that

(ι0 × idS)∗act∗SF ∈ QC(BGm × S) ' QC(BGm)⊗QC(S)

51In general, one can also work over a base stack B, but here we work over Spec k as usual.
52Here our convention is opposite to that of [HL21]. This ensures that the repelling Gm-action on Se gives rise to a Θ-
stratification of S̃e (see §6.3.2).
53Our notation for these maps arises by regarding Map(BGm,X) and Map(Θ,X) as the stacks of “graded and filtered objects
in X,” respectively; we do not elaborate further on this perspective.
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is concentrated in weights ≥ w (resp. < w, exactly w, etc.). Then we have a family of semiorthogonal de-
compositions 〈QC(S)>w,QC(S)≤w〉 of QC(S), which satisfy many desirable properties (see Proposition 1.1.2
in loc. cit.). We furthermore set Coh(S)≥w := QC(S)≥w∩Coh(S), and similarly for Coh(S)<w, Coh(S)w, etc.

Likewise, for any stack Z equipped with a weak BGm-action actZ : BGm × Z→ Z, we have a canonical
direct sum decomposition

(6.1.3.2) QC(Z) '
⊕
w∈Z

QC(Z)w,

where QC(Z)w denotes the full subcategory of sheaves F for which act∗ZF is concentrated in weight w.
Equivalently, pulling back actZ along p0 gives a weak Θ-action on Z, and the decomposition (6.1.3.2) splits
the associated baric structure on QC(Z) (see Lemma 1.5.3 in loc. cit.).

6.1.4. We now recall the definition of a single Θ-stratum in X:

6.1.5. Definition ([HL21, Def. 1.2.2, 1.5.1]). A (derived) Θ-stratum in X is a union of connected
components S ⊂ Map(Θ,X) such that oblvΘ|S : S → X is a closed immersion. Its center is the union of
connected components Z := spl−1(S) ⊂ Map(BGm,X).

6.1.6. Given a Θ-stratum S with center Z, we set iS := oblvΘ|S : S ↪→ X and iZ := oblvBGm |Z : Z → X

to be the tautological maps. Note that the latter is often not a closed immersion; we shall see an example
of this in (6.2.14.1). We furthermore let

Z
splZ−−−→ S

grS−−→ Z

denote the evident restrictions of spl and gr, which compose to the identity. As in §6.1.3, we have canonical
weak actions

actS : Θ× S→ S, actZ : BGm × Z→ Z,

and it is not hard to see using (6.1.3.1) that the diagram

(6.1.6.1)
BGm × Z Θ× S BGm × Z

Z S Z

actZ

ι0×splZ

actS

$0×grS

actZ

splZ grS

commutes. Equivalently, the maps splZ, grS are Θ-equivariant, and hence preserve the baric structures on
QC(S) and QC(Z).

Moreover, the baric structure on QC(S) extends to one on QCS(X) (see §3.3.4 for this notation).
Namely, let QCS(X)≥w ⊂ QC(X) denote the smallest full stable subcategory containing the essential image
iS,∗(QC(S)≥w) and closed under extensions, filtered colimits, and limits of towers · · · → F2 → F1 → F1 with
τ≥n(Fi) eventually constant for any n. The notations QCS(X)<w, QCS(X)w, CohS(X)≤w, etc., are defined
similarly. We refer the reader to [HL21, Prop. 1.7.2] for further properties of this construction.

6.1.7. Note that there is a bijection between Θ-strata in X and classical Θ-strata in Xcl, which are defined
analogously using the classical mapping stack Map(Θ,X)cl (see Lemma 1.2.3 in loc. cit.). This will be our
primary tool for constructing Θ-strata. In fact, when X is smooth, all Θ-strata and centers are equivalent
to their classical counterparts:

6.1.8. Lemma. If X is smooth, then so are the stacks Map(Θ,X) and Map(BGm,X) (in particular, they
are classical).

Proof. The claim regarding Map(Θ,X) is [HL21, Cor. 1.3.2.1]. For Map(BGm,X), note that by
[HLP23, Prop. 5.1.10], its cotangent complex is given by

(6.1.8.1) LMap(BGm,X) ' pr2,∗ ev∗ LX ' (ev∗ LX)0,

where ev : BGm×Map(BGm,X)→ X denotes the tautological evaluation map and pr2 the second projection.
In particular, if LX is perfect of Tor-amplitude [0, 1], then so is LMap(BGm,X). �

6.1.9. We now give an “instrinsic” criterion for recognizing Θ-strata and their centers (in particular, their
derived structures) in terms of the relative cotangent complex:
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6.1.10. Lemma. (1) Let iS : S ↪→ X be a closed immersion, and suppose S is equipped with a weak Θ-
action actS : Θ× S→ S. Then LS/X ∈ QC(S)<0 if and only if the morphism S→ Map(Θ,X) classifying
iS ◦ actS exhibits S as a Θ-stratum in X.

(2) Let iZ : Z→ X be a morphism, and suppose Z is equipped with a weak BGm-action actZ : BGm×Z→ Z

such that the morphism Z → Map(BGm,X) classifying iZ ◦ actZ is a closed immersion. Then LZ/X ∈
QC(Z) 6=0 if and only if this morphism exhibits Z as a union of connected components of Map(BGm,X).

Proof. The first assertion is Lemma 1.3.2 and Proposition 1.4.1 of [HL21]. Moreover, by (6.1.8.1), we
have LMap(BGm,X) ∈ QC(Map(BGm,X))0 and the map

d(oblvBGm) : oblv∗BGmLX → LMap(BGm,X)

is an isomorphism on weight-0 components. This immediately implies the reverse implication of the second
assertion.

For the forwards implication, letting ιX : Z → Map(BGm,X) be as above, it suffices to show that the
natural map

dιX : ι∗XLMap(BGm,X) → LZ

is an isomorphism. Since ιX is tautologically BGm-equivariant, we have ι∗XLMap(BGm,X) ∈ QC(Z)0. Let
ιZ : Z → Map(BGm,Z) denote the map classified by actZ; as before, we have ι∗ZLMap(BGm,Z) ∈ QC(Z)0.
Since oblvBGm ◦ ιZ ' idZ, the composition

LZ ' ι∗Zoblv∗BGmLZ

ι∗Zd(oblvBGm )−−−−−−−−−→ ι∗ZLMap(BGm,Z)
dιZ−−→ LZ

is the identity, so we also have LZ ∈ QC(Z)0. Finally, since oblvBGm ◦ ιZ ' iZ, the composition

i∗ZLX ' ι∗Xoblv∗BGmLX

ι∗Xd(oblvBGm )−−−−−−−−−→ ι∗XLMap(BGm,X)
dιX−−→ LZ

identifies with diZ. By our assumption that LZ/X ∈ QC(Z)6=0, the map diZ is an isomorphism on weight-0
components. It follows that dιX is an isomorphism on weight-0 components, hence an isomorphism. �

6.1.11. We now define the main notion of this section:

6.1.12. Definition ([HL21, Def. 2.3.1]). A unstable54 Θ-stratification of X indexed by a totally ordered
set I is a collection of open substacks X≤α ⊂ X and Θ-strata Sα in X≤α for each α ∈ I, satisfying

(1) X≤α ⊂ X≤α′ when α < α′;
(2) X≤α \ oblvΘ(Sα) =

⋃
α′<α X≤α′ as topological spaces; and

(3) for every x ∈ X, there is a minimal α ∈ I such that x ∈ X≤α (in particular,
⋃
α∈I X≤α = X).

6.1.13. In certain situations, we may “pull back” unstable Θ-stratifications along morphisms of stacks;
this will later allow us to make functoriality statements for the corresponding infinite semi-orthogonal de-
compositions (though we shall not actually need this notion in our applications).

6.1.14. Definition ([HL21, Def. 1.2.5]). Let f : X′ → X be a morphism of stacks, each satisfying the
hypotheses of §6.1.2, and let S be a Θ-stratum in X. We say that S induces a Θ-stratum in X′ if its preimage
S′ under the canonical map Map(Θ,X′) → Map(Θ,X) is a Θ-stratum, and oblvΘ(S′) = f−1(oblvΘ(S)) as
topological spaces.

Moreover, let {(X≤α, Sα)}α∈I be an unstable Θ-stratification of X, and set X′≤α := X′ ×X X≤α ⊂ X′ for
each α ∈ I. We say that {(X≤α, Sα)}α∈I induces an unstable Θ-stratification of X′ if Sα induces a Θ-stratum
S′α in X′≤α for each α ∈ I, and the collection {(X′≤α, S′α)}α∈I is an unstable Θ-stratification of X′.

6.1.15. We let fS : S′ → S denote the map of Θ-strata obtained in the above situation. Note that the
definition immediately furnishes a canonical map of centers fZ : Z′ → Z, and we have an evident commutative
diagram

(6.1.15.1)
Z′ S′ Z′

Z S Z.

fZ

splZ

fS

grS

fZ

splZ grS

54This adjective refers to our requirement that the Θ-strata Sα cover X; in particular, the “semistable locus” of the Θ-
stratification is trivial.
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We now reach the main result of this section, known as “derived Kirwan surjectivity” (for bounded coherent
sheaves):

6.1.16. Theorem ([HL21, Thm. 2.2.2, 2.3.4, 3.3.1]). Let {(X≤α, Sα)}α∈I be an unstable Θ-stratification
of X, and let w = {wα ∈ Z}α∈I . Suppose that

(a) X is quasi-compact and quasi-smooth; and
(b) H−1(i∗ZαLX) ∈ QC(Zα)≤0 for each α ∈ I.

Then Coh(X) has an infinite semiorthogonal decomposition55 whose pieces are identified with Coh(Zα)w for
each α ∈ I and w ∈ Z. More precisely, writing56 I = {α1 < · · · < αr}, we have

(6.1.16.1)

Coh(X) =
〈
. . . ,Coh(Zαr )wαr+2,Coh(Zαr )wαr+1,

. . . ,

. . . ,Coh(Zα2)wα2
+2,Coh(Zα2)wα2

+1,

. . . ,Coh(Zα1
)wα1

+2,Coh(Zα1
)wα1

+1, Coh(Zα1)wα1
,Coh(Zα1)wα1

−1, . . . ,

Coh(Zα2
)wα2

,Coh(Zα2
)wα2−1, . . . ,

. . . ,

Coh(Zαr )wαr ,Coh(Zαr )wαr−1, . . .
〉
.

Furthermore, suppose X′ is another stack satisfying the same hypotheses as X, and let f : X′ → X be a
morphism such that

(c) f∗ : QC(X) → QC(X′) preserves the subcategories of coherent sheaves (i.e., f is eventually cocon-
nective);

(d) {(X≤α, Sα)}α∈I induces an unstable Θ-stratification of X′ satisfying (b);
(e) for each α ∈ I, the canonical map S′α → Sα ×X≤α X′≤α is an isomorphism;

Then f∗ : Coh(X)→ Coh(X′) preserves all subcategories in the respective semiorthogonal decompositions for
w, and induces the functor f∗Zα : Coh(Zα)w → Coh(Z′α)w for each α ∈ I and w ∈ Z.

Proof. The only thing to prove is the final sentence. By induction, we reduce to the case of a single
Θ-stratum S in X; as in [HL21, Thm. 3.3.1(3)], it suffices to show that the diagram

(6.1.16.2)
Coh(Z)w CohS(X)w

Coh(Z′)w CohS′(X
′)w

f∗Z

iS,∗gr∗S
∼

f∗

iS,∗gr∗S
∼

commutes for any w ∈ Z. The conclusion is now immediate from (6.1.15.1) and base-change via (e). �

6.1.17. In particular, setting ZI :=
⊔
α∈I Zα, we obtain inclusion and projection functors

Coh(ZI)
HLw−−−→ Coh(X)

ȞLw−−−→ Coh(ZI)

which induce inverse equivalences on Hochschild homology, compose to the identity, and are natural with
respect to maps f satisfying the conditions of the theorem. Moreover, the functor HLw satisfies the following
orthogonality property, which is immediate from (6.1.16.1):

6.1.18. Corollary. Let F ∈ Coh(Zα)w and F ′ ∈ Coh(Zα′)w′ . If either α′ < α and w ≤ wα, or α < α′

and w′ > wα′ , then
HomX(HLw(F),HLw(F ′)) ' 0.

6.1.19. Finally, we investigate linearity of the functors HLw, ȞLw:

6.1.20. Lemma. Suppose we are in the situation of Theorem 6.1.16. Let B be a stack satisfying the
hypotheses of §6.1.2, and let p : X → B be a morphism. Suppose that the image of ZI under the canonical
map Map(BGm,X)→ Map(BGm,B) lies in a union of connected components on which the tautological weak

55In the sense that any object lies in a subcategory generated by finitely many semiorthogonal factors.
56Note that since X is quasi-compact, we may assume the unstable Θ-stratification is finite.
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BGm-action is trivial. Then the functors HLw and ȞLw are canonically Perf(B)-linear (with respect to the
actions coming from restriction along p and iZI : ZI → X).

Proof. We claim that the Perf(B)-action preserves each subcategory Coh(Zα)w. Indeed, using [HL21,
Thm. 2.2.2], we may again reduce to the case of a single Θ-stratum S in X; as in (6.1.16.2), we must show
that the subcategory CohS(X)w ⊂ Coh(X) is preserved by the Perf(B)-action. By the definition of this
subcategory (see §6.1.6 or Definition 1.7.1 in loc. cit.), it suffices to show that the subcategory iS,∗(Coh(S)w)
is preserved by the Perf(B)-action, hence (by the projection formula) that Coh(S)w is preserved by the
Perf(B)-action given by restriction along p ◦ iS. By Proposition 1.1.2(5,6) in loc. cit., it suffices to show
that i∗Sp

∗F ∈ QC(S)0 for any F ∈ Perf(B). Equivalently, by Lemma 1.5.4 in loc. cit., we must show that
i∗Zp
∗F ∈ QC(Z)0. Note that by (6.1.6.1), we have a commutative diagram

(6.1.20.1)

BGm × Z Θ× S

Z S X

BGm ×Map(BGm,B) Map(BGm,B) B.

actZ

idBGm ×pZ

ι0×splZ

actS

splZ

pZ
iZ

iS

p

act oblvBGm

By our assumption, this diagram also commutes with act replaced by the projection onto Map(BGm,B),
whence the claim. The same argument shows that the Perf(B)-action on Coh(Z) preserves Coh(Z)w. Finally,
by the proof of Lemma 3.3.7 in loc. cit., the functor gr∗S : Coh(Z)w → Coh(S)w is an equivalence, with
quasi-inverse spl∗Z; it follows that the functor iS,∗gr∗S of (6.1.16.2) commutes with the Perf(B)-actions. The
remaining assertions are now clear. �

6.2. The graded monad

6.2.1. Suppose now that X is equipped with a morphism to BGm. In general, when the hypothesis of
Lemma 6.1.20 is not satisfied, the functors HLw, ȞLw are not Perf(BGm)-linear. Our goal in this section
is to describe a situation in which these functors admit canonical Perf(BGm)-linear modifications satisfying
similar properties. In particular, we prove a version of Proposition 1.5.1 in this more general setting; that
is, we give a description of the category QC!(X) as modules for a graded monad acting on QC!(ZI).

We begin by recording a simple example in which the functors HLw, ȞLw fail to be Perf(BGm)-linear:

6.2.2. Example. Let X := P1/Gm, with Gm again acting by weight −1 (so that the point 0 ∈ P1 is
repelling). As we shall see in §6.2.14, the Białynicki-Birula decomposition P1/Gm := Θ ∪ {∞}/Gm is an
unstable Θ-stratification, with centers given by {0}/Gm and {∞}/Gm, respectively. Let O0,O∞ denote the
structure sheaves of these centers, and for any w,w′ ∈ Z, letOP1(w,w′) denote theGm-equivariant line bundle
on P1 whose weights at the points 0,∞ are given by w,w′, respectively (and whose deequivariantization is
given by OP1(w′−w), see for instance [Che18, Ex. 2.10.6]). Choose weights w0, w∞ ∈ Z. The semiorthogonal
decomposition (6.1.16.1) is then given explicitly by

Coh(P1/Gm) =
〈
. . . ,O∞〈−w∞ − 2〉,O∞〈−w∞ − 1〉,
. . . ,OP1(w0 + 2, w∞),OP1(w0 + 1, w∞),OP1(w0, w∞),OP1(w0 − 1, w∞), . . . ,

O∞〈−w∞〉,O∞〈−w∞ + 1〉, . . .
〉
,

and it is straightforward to verify that there are no nonzero maps from right to left. In particular, we have

HL(w0,w∞)(O0〈−w0 − 1〉) ' OP1(w0 + 1, w∞),

HL(w0,w∞)(O0〈−w0〉)〈−1〉 ' OP1(w0 + 1, w∞ + 1),

which are not isomorphic. Likewise, the sheaves

ȞL(w0,w∞)(OP1(w0, w∞)〈−1〉) ' O0〈−w0 − 1〉 ⊕ O∞〈−w∞ − 1〉,
ȞL(w0,w∞)(OP1(w0, w∞))〈−1〉 ' O0〈−w0 − 1〉,

are not isomorphic. Thus, the functors HL(w0,w∞), ȞL(w0,w∞) are not Perf(BGm)-linear.
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6.2.3. Now suppose we are in the general situation of Theorem 6.1.16, and let p : X → BGm be a
morphism. We begin by studying the interaction between the functors HLw, ȞLw and the Perf(BGm)-actions
on Coh(ZI) and Coh(X). Recall that we have a canonical isomorphism

Map(BGm,BGm) ' Z× BGm,
where the connected component {n}×BGm corresponds to the character (−)n : Gm → Gm (more generally,
see (6.2.14.1)).

6.2.4. Lemma. Let α ∈ I and n ∈ Z.
(1) Let F ∈ Coh(Zα). The sheaf

(6.2.4.1) ȞLw(HLw(F)〈n〉)
is supported on Zα′ with α ≤ α′, and its component in Coh(Zα) is isomorphic to F〈n〉.

(2) Let w ∈ Z and F ∈ Coh(Zα)w. Suppose that the image of ZI under the canonical map

(6.2.4.2) Map(BGm,X)→ Map(BGm,BGm) ' Z× BGm
lies in Z>0×BGm. If n > 0 (resp. n < 0), then the component of (6.2.4.1) in Coh(Zα′)w′ is trivial if
this piece lies non-strictly to the left (resp. right) of Coh(Zα)w in the semiorthogonal decomposition
(6.1.16.1).

(3) Suppose we are in the situation of (2). Let F ∈ Coh(Zα)wα and F ′ ∈ Coh(Zα′)wα′ . Then the
graded inner Hom

HomX(HLw(F),HLw(F ′))
is concentrated in non-negative weights. Moreover, if α′ < α, it is concentrated in positive weights,
and if α = α′, its weight-0 component is isomorphic to HomZα(F ,F ′).

(4) Suppose that the image of ZI under (6.2.4.2) lies in {1} × BGm. Set pZI := p ◦ iZI , and let
Z

dq
I := ZI ×BGm ∗. Then we have a canonical decomposition

ZI ' BGm × Z
dq
I

respecting weak BGm-actions and commuting with projections to BGm.

Proof. (1) The first claim is immediate from the proof of [HL21, Thm. 2.3.4], as the support of
HLw(F)〈n〉 is the same as that of HLw(F), and is therefore contained in

⋃
α≤α′ iSα(Sα). Moreover, restricting

to Coh(X≤α) (i.e., quotienting by the subcategory of sheaves supported on
⋃
α<α′ iSα(Sα)), the same proof

shows that we may assume iSα is a closed immersion. In this case, HLw ' iSα,∗gr∗Sα as in (6.1.16.2), and the
latter is clearly Perf(BGm)-linear as in the proof of Lemma 6.1.20.

(2) Suppose n > 0. We first claim that F〈n〉 ∈ Coh(Zα)<w. The diagram (6.1.20.1) with B :=
BGm immediately implies that OZα〈n〉 ∈ Coh(Zα)<0 (more precisely, over the component {d} × BGm ⊂
Map(BGm,BGm), it lies in Coh(Zα)d·(−n)), so the claim follows from Lemma 1.5.3 in loc. cit. Thus, by (1),
it suffices to show that the component of (6.2.4.1) in Coh(Zα′)>wα′ is trivial for each α

′ > α. By the proof
of Theorem 2.3.4 in loc. cit., this is equivalent to showing that

(6.2.4.3) i∗Zα′ (HLw(F)〈n〉) ∈ Coh(Zα′)≤wα′ .

Since the same is true with n = 0, this is immediate from Perf(BGm)-linearity of i∗Zα′ and the same argument
as in the previous claim. For n > 0, the proof is analogous, except in place of (6.2.4.3), we must show

spl∗Zα′ i
!
Sα′

(HLw(F)〈n〉|X≤α′ ) ∈ Coh(Zα′)>wα′ .

This holds by the same argument.
(3) First suppose α ≤ α′. It suffices to show that

(6.2.4.4) HomX(HLw(F),HLw(F ′)〈n〉) ' 0

for any n < 0. Combining (1) and (2), we see that HLw(F ′)〈n〉 lies non-strictly to the left of Coh(Zα′)wα′+1

in (6.1.16.1), from which (6.2.4.4) is immediate. Likewise, if α′ < α, it suffices to show that

HomX(HLw(F)〈n〉,HLw(F ′)) ' 0

for any n ≥ 0, which follows by an analogous argument. For the final statement, simply note that
HLw|Coh(Zα)wα

is fully faithful.
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(4) Consider the commutative diagram

(6.2.4.5)
ZI BGm ∗

BGm × ZI BGm × BGm BGm,

pZI

(i◦pZI )×idZI
i×idBGm

idBGm ×pZI m

where m : BGm × BGm → BGm denotes the multiplication map and i : BGm → BGm the inversion map.
Both squares are clearly cartesian, so the outer rectangle is as well. Now consider the commutative diagram

(6.2.4.6)

P Z
dq
I ∗

BGm × ZI ZI BGm

BGm × ZI ZI

BGm ∗,

y

actZI

(i◦pr1)×actZI

pZI

pr2

pr1

where P is defined by requiring the top-left square to be cartesian. Note that (i ◦ pr1) × actZI is an
isomorphism; indeed, it is its own inverse. Thus, all squares in (6.2.4.6) are cartesian; in particular, we have
P ' BGm × Z

dq
I . Moreover, our assumption implies that pZI ◦ actZI ' m ◦ (idBGm ×pZI ), so (6.2.4.5) yields

P ' ZI , as desired.
Finally, note that the weak BGm-action on P coming from its isomorphism with ZI is induced by the

trivial weak BGm-actions on Z
dq
I ,ZI , as well as the weak BGm-action on BGm×ZI given by m◦ (i× idBGm)

on the first factor and actZI on the second factor. This action is now easily seen to agree with the weak
BGm-action on BGm × Z

dq
I coming from multiplication on the first factor. Moreover, the projection onto

the first factor agrees with pZI ' i ◦ (i ◦ pZI ) : ZI → BGm, as claimed. �

6.2.5. We now use these results to construct the desired Perf(BGm)-linear modifications of HLw, ȞLw.
Suppose that we are in the situation of Lemma 6.2.4(4). By [AG15, Prop. 8.4.14], the external tensor
product gives a Perf(BGm)-linear equivalence57

(6.2.5.1) � : Perf(BGm)⊗ Coh(Zdq
I )

∼−→ Coh(ZI).

Thus, we may define a functor
inw : Coh(Zdq

I )→ Coh(ZI)

given by placing each coherent sheaf on Zdq
α in weight wα. We now define HLgr

w to be the composition

Coh(ZI) Coh(X)

Perf(BGm)⊗ Coh(Zdq
I ) Perf(BGm)⊗ Coh(ZI) Perf(BGm)⊗ Coh(X),

∼

HLgr
w

id⊗inw id⊗HLw

p∗(−)⊗−

which is evidently Perf(BGm)-linear. We therefore have an adjunction

(6.2.5.2) HLgr
w : QC!(ZI)� QC!(X) : HLgr,R

w

with both functors continuous and QC(BGm)-linear (see [Gai12, Cor. 6.2.4]). In fact, this adjunction is
monadic:

6.2.6. Lemma. The functor HLw,Rgr is conservative.

57We need only note that the stack Z
dq
I is quasi-compact and has affine diagonal. Indeed, the latter holds as in §6.1.2. For the

former, note that each Sα is quasi-compact as X is Noetherian; the surjection grSα : Sα → Zα now exhibits Zα, and hence Z
dq
α ,

as quasi-compact.
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Proof. By [Yan22, Prop. 2.9], it suffices to show that the image of HLgr
w generates QC!(X) under

colimits. In particular, we may work with small categories. Let α ∈ I, w ∈ Z, and F ∈ Coh(Zα)w. By
Lemma 6.2.4(1),

(6.2.6.1) ȞLw(HLgr
w (F)) ' ȞLw(HLw(F〈w − wα〉)〈−w〉)

is supported on Zα′ with α ≤ α′, and its component in Coh(Zα) is isomorphic to F〈−wα〉 ∈ Coh(Zα)w+wα .
The statement is now immediate by induction on α. �

6.2.7. Thus, by the Barr–Beck–Lurie theorem (see [Lur17, Thm. 4.7.0.3]), the functor HLgr,R
w induces

an equivalence

(6.2.7.1) QC!(X) ' Tw -modQC!(ZI),

where we have let

(6.2.7.2) Tw := HLgr,R
w ◦HLgr

w ∈ Alg(EndQC(BGm)(QC!(ZI)))

denote the monad associated to (6.2.5.2). Moreover, the functors HLgr
w and HLgr,R

w are identified with
induction and restriction along the unit morphism idQC!(ZI) → Tw, respectively.

Note that the decomposition QC!(ZI) '
⊕

α∈I QC!(Zα) induces a decomposition

Tw '
⊕
α,α′∈I

Tα,α
′

w ∈
⊕
α,α′∈I

FunQC!(BGm)(QC!(Zα),QC!(Zα′)).

Moreover, by (6.2.5.1), we have

(6.2.7.3) EndQC(BGm)(QC!(ZI)) ' QC(BGm)⊗ End(QC!(Zdq
I )),

so Tw also carries a (compatible) grading. We now establish a key structure theorem for Tw with respect to
this decomposition and grading:

6.2.8. Proposition. The monad Tw is concentrated in non-negative weights with respect to (6.2.7.3).
Moreover, if α < α′, then Tα,α

′

w is concentrated in positive weights, and if α = α′, the unit morphism induces
an isomorphism idQC!(Zα)

∼−→ Tα,αw,0 onto the weight-0 component.

Proof. Let α, α′ ∈ I, and let F ∈ Coh(Zα)0. It suffices to show that for any F ′ ∈ Coh(Zα′)0, the
graded inner Hom

HomZα′
(F ′, Tα,α

′

w (F)) ' HomZα′
(F ′,HLgr,R

w (HLw(F〈−wα〉))) ' HomX(HLw(F ′〈−wα′〉),HLw(F〈−wα〉))

has the claimed properties. These are all immediate from Lemma 6.2.4(3). �

6.2.9. The following corollary will allow us to define the graded retraction ȞLgr
w of HLgr

w :

6.2.10. Corollary. The unit morphism of monads idQC!(ZI) → Tw admits a canonical QC(BGm)-linear
retraction.

Proof. The first statement of Lemma 6.2.8 gives a canonical morphism of monads Tw → Tw,0, i.e., the
projection onto weight-0. The second statement shows that Tw,0 is “upper triangular” with respect to I, so
we have a canonical morphism Tw,0 →

⊕
α∈I T

α,α
w,0 given by projection onto the diagonal. Finally, the third

statement identifies the composition of these two maps with a retraction of the unit morphism. �

6.2.11. Example. Let us compute this monad explicitly in the situation of Example 6.2.2. By definition,
we have

HLgr
(w0,w∞)(O0) ' OP1(w0, w∞),

HLgr
(w0,w∞)(O∞) ' O∞〈−w∞〉,

which clearly generate Coh(P1/Gm) under the Perf(BGm)-action. We may therefore represent T(w0,w∞) by
the 2× 2 matrix

EndP1(OP1(w0, w∞)⊕O∞〈−w∞〉)op '
[

k[0]〈0〉 k[0]〈0〉
k[−1]〈−1〉 Sym k[−1]〈−1〉

]
∈ Alg(QC({0,∞}× {0,∞}/Gm)),



6.2. THE GRADED MONAD 93

with the evident algebra structure.58 In particular, T(w0,w∞) is concentrated in weights [0, 1], and in weight-0,
it is given by the standard upper triangular matrix algebra (whose diagonal recovers the identity monad).

6.2.12. Using Corollary 6.2.10, we obtain a commutative diagram of continuous, QC(BGm)-linear adjoint
pairs

idQC!(ZI) -modQC!(ZI) Tw -modQC!(ZI) idQC!(ZI) -modQC!(ZI)

QC!(ZI) QC!(X) QC!(ZI),

Ind
Tw
id

Indid
Tw

Res
Tw
id

Resid
Tw

HLgr
w

HLgr,R
w

ȞLgr
w

∼ (6.2.7.1)

ȞLgr,R
w

where each horizontal composition identifies with the identity. In particular, we have constructed the
QC(BGm)-linear functor ȞLgr

w , which preserves coherent sheaves and satisfies ȞLgr
w ◦HLgr

w ' idQC!(ZI).
We now verify that the desirable properties of the functors HLw, ȞLw carry over to their graded coun-

terparts HLgr
w , ȞLgr

w :

6.2.13. Lemma. (1) The functors HLgr
w , ȞLgr

w induce inverse equivalences on Hochschild homology.
(2) Let p′ : X′ → BGm satisfy the same hypotheses as p, and let f : X′ → X be as in Theorem 6.1.16. Suppose

that p ' f ◦ p′. Then the lefthand square in the diagram

(6.2.13.1)
Coh(ZI) Coh(X) Coh(ZI)

Coh(Z′I) Coh(X′) Coh(Z′I)

f∗ZI

HLgr
w

f∗

ȞLgr
w

f∗ZI
HL′,gr

w ȞL′,gr
w

commutes. If moreover fZI is an isomorphism, then the righthand square commutes as well.
(3) Let q : X→ B be as in Lemma 6.1.20. Then HLgr

w and ȞLgr
w are Perf(B)-linear.

Proof. (1) It suffices to show that HLgr
w induces an equivalence on Hochschild homology, which is

immediate from (6.2.6.1) and a standard upper-triangular matrix argument.
(2) Lemma 6.2.4(4) and §6.1.17 immediately imply commutativity of the lefthand square. For the latter

assertion, we implicitly identify Coh(ZI) and Coh(Z′I) henceforth via f∗ZI . Let Tw, T
′
w denote the respective

monads for X,X′. Then we have a natural morphism of QC(BGm)-linear monads

(6.2.13.2) Tw = HLgr,R
w ◦HLgr

w → HLgr,R
w ◦ f∗ ◦ f∗ ◦HLgr

w ' HL′,gr,R
w ◦HL′,gr

w = T ′w.

It is not hard to see that this morphism commutes with the respective retractions of the unit morphisms, so
it suffices to show that the diagram

QC!(X) Tw -modQC!(ZI)

QC!(X′) T ′w -modQC!(ZI)

f∗

∼
(6.2.7.1)

Ind
T ′w
Tw

∼
(6.2.7.1)

commutes. Passing to right adjoints, we must show that Res
T ′w
Tw

identifies with f∗. Recall that the horizontal
equivalences are enhanced versions of HLgr,R

w and HL′,gr,R
w , respectively; more precisely, we must show that

the diagram

(HLgr,R
w ◦HLgr

w ) ◦ (HLgr,R
w ◦ f∗) HLgr,R

w ◦ f∗

(HL′,gr,R
w ◦HL′,gr

w ) ◦HL′,gr,R
w HL′,gr,R

w

(6.2.13.2)

id
HL

gr,R
w
◦ε◦idf∗

∼

id
HL
′,gr,R
w

◦ε′

commutes, where we have let ε, ε′ denote the respective counit maps. We leave this as an exercise.

58Note that as in Proposition 1.5.1, we have identified EndQC(BGm)({0,∞}/Gm) with the latter convolution category via the
usual integral transform, see for instance [BZNP17b].
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(3) We claim that qZI := q◦iZI : ZI → B factors through Z
dq
I . By assumption, it factors through a union

of connected components ZB ⊂ Map(BGm,B) on which the canonical weak BGm-action is trivial. Misusing
notation slightly, we write qZI : ZI → ZB for this map as well. We then have a commutative diagram

BGm × Z
dq
I Z

dq
I

BGm × BGm × Z
dq
I BGm × ZB

BGm × Z
dq
I ZB BGm × Z

dq
I .

idBGm ×$1×id
Z

dq
I

id

pr2

$1×id
Z

dq
I

idBGm ×qZI

m×id
Z

dq
I

pr2

qZI qZI

Commutativity of the outer square now gives the desired factorization.
The functor HLgr

w is then clearly Perf(B)-linear, so by [BZFN10, Prop. 3.6] and [Gai12, Cor. 6.2.4], its
right adjoint HLgr,R

w and the monad Tw are as well. Moreover, the Perf(B)-action preserves the decomposition
(6.2.7.2) and the grading (6.2.7.3), so the rest of the arguments go through as before. �

6.2.14. We conclude this section by specializing our constructions to the case of quotient stacks. Let
X be a finite-type (derived) scheme with an action of a reductive group G, and set X := X/G. Given a
cocharacter λ̌ : Gm → G, let

(1) Pλ̌ denote the parabolic subgroup of G associated to the subspace pλ̌ ⊂ g spanning non-positive
weight-spaces for the adjoint action of Gm;

(2) Lλ̌ denote the Levi subgroup of Pλ̌, i.e., the subgroup associated to the subspace lλ̌ ⊂ g spanning
trivial weight-spaces; and

(3) BBλ̌X denote the set of Lλ̌-orbits of connected components of the classical fixed points XGm , where
Gm acts via λ̌.

Finally, for any α ∈ BBλ̌X, let X λ̌,0
α ⊂ X λ̌,−

α ⊂ Xcl denote the corresponding component of XGm and its
repelling locus (i.e., the classical Białynicki-Birula stratum), respectively. Note that BBλ̌X carries a natural

partial order via closures, i.e., α < α′ if X λ̌,−
α′ ⊂ X

λ̌,−
α .

Recall from [HL18, Ex. 2.3] that the classical mapping stacks studied in §6.1.2 admit decompositions

(6.2.14.1) Map(Θ,X)cl =
⊔

λ̌∈X∗(G)/G

α∈BBλ̌X

X λ̌,−
α /Pλ̌, Map(BGm,X)cl =

⊔
λ̌∈X∗(G)/G

α∈BBλ̌X

X λ̌,0
α /Lλ̌,

where G acts on X∗(G) by conjugation. As in §6.1.7, for each such λ̌, α, there are connected components
Xλ̌,−α ⊂ Map(Θ,X) and Xλ̌,0α ⊂ Map(BGm,X) such that Xλ̌,−,cl

α ' X λ̌,−
α /Pλ̌ and Xλ̌,0,cl

α ' X λ̌,0
α /Lλ̌. More-

over, when X is smooth, these stacks have trivial derived structure by Lemma 6.1.8.
Let us now specialize further to the case of a quasi-smooth quotient stack X := X/G̃, for G reductive.

Moreover, fix λ̌ : Gm → G̃ to be the tautological cocharacter, and omit it henceforth from the notation.
Suppose that the Białynicki-Birula strata {X−α }α∈BBX

cover X. Then {(
⋃
α′≤α X

−
α′ ,X

−
α )}α∈BBX

is an un-
stable Θ-stratification of X (which is equivalent to {(

⋃
α′≤αX

−
α′/G̃,X

−
α /G̃)}α∈BBX

when X is smooth). In
particular, as in §6.2.12, we obtain Perf(BGm)-linear functors

Coh(ZBBX
)

HLwgr−−−→ Coh(X)
ȞLwgr−−−→ Coh(ZBBX

)

for any choice of w = {wα}α∈BBX
. Moreover, taking B := BG and p : X/G̃ → BG to be the projection,

Lemma 6.2.13(3) shows that these functors are naturally Perf(BG̃)-linear (since all fixed loci map to the
connected component of Map(BGm,BG) corresponding to the trivial character).

6.2.15. Example. In the final paragraph of §6.2.14, the strata X−α and centers X0
α may not be classical,

even if X is itself classical. For instance, consider the stack X := X/Gm, where X = Spec k[x, y]/xy with
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x, y in weights 1,−1, respectively. Since XGm = {0}, we omit α from the notation, so that X0 = {0} and
X− = Spec k[x]. Observe that LX is computed by the complex

OX · (y dx+ x dy)→ OX · dx⊕OX · dy
(dx,dy)7→(−x,y)−−−−−−−−−−→ OX

in degrees [−1, 1]. It follows from Lemma 6.1.10 that LX0 and LX− are computed by restricting this complex
toX0 andX−, followed by projecting to the subcategories QC(X0/Gm)0 and QC(X−/Gm)≥0, respectively.59
Thus, we have

LX0 '
(
k · (y dx+ x dy)→ 0→ k

)
,

LX− '
(
k[x] · (y dx+ x dy)

0−→ k[x] · dx dx 7→−x−−−−−→ k[x]
)
,

and hence

X0 ' Spec(SymOX0
OX0 [1])/Gm,

X− ' Spec(SymOX− OX− [1])/Gm,

both of which have nontrivial derived structure. For a more general discussion of this phenomenon, see
[HL21, §1.6].

6.3. The coherent homomorphism datum

6.3.1. We now return to the setting of §5.3, with a fixed nilpotent e and Slodowy slice Se. In this section,
we use the results of §6.2 to construct the homomorphism datum Φcoh

Se,w
of (1.5.2.1) and prove Theorem 1.5.2.

In particular, we prove a k-linearized version of Qiu–Xi’s conjecture (1.3.0.2). We conclude by explaining
how (suitably equivariant) full exceptional collections in Coh(BGme ) can be used to compute the asymptotic
coherent Springer sheaf, and give an illustrative example for G = Sp6.

6.3.2. We begin by further specializing §6.2.14 to the case of X = S̃e/Z̃e. Let w ∈ BBS̃e/Z̃e be a weight-

vector. Since the Gm-action on Se is repelling, S̃e/Z̃e is covered by its Białynicki-Birula strata. Using §6.2.14
and Lemma 6.2.13(1), we obtain Perf(BZ̃e)-linear functors

Coh(BGme /Z̃e)
HLgr

w−−−→ Coh(S̃e/Z̃e)
ȞLgr

w−−−→ Coh(BGme /Z̃e).

We now use these functors to construct the homomorphism datum Φcoh
Se,w

. Set

Jcoh
e := QC(BGme × BGme /Ze).

By Proposition 3.3.6, it is a rigid monoidal category. Now let

Mcoh
Se := QC(BGme × S̃e/Z̃e),

which carries an evident (Jcoh
e ⊗ Rep(Gm),Hcoh

Se
)-bimodule structure via the respective convolutions. By

[GR17a, Ch. 3, Prop. 3.5.3], the external tensor product gives bimodule equivalences

Jcoh
e ⊗ Rep(Gm) ' QC(BGme /Z̃e)⊗QC(BZ̃e)

QC(BGme /Z̃e),

Mcoh
Se ' QC(BGme /Z̃e)⊗QC(BZ̃e)

QC(S̃e/Z̃e),
(6.3.2.1)

so by §6.3.2, we have functors

Jcoh
e

id
QC(BGme /Z̃e)

⊗HLgr
w

−−−−−−−−−−−−−→Mcoh
Se

id
QC(BGme /Z̃e)

⊗ȞLgr
w

−−−−−−−−−−−−−→ Jcoh
e .

Finally, set
Φcoh
Se,w := (Mcoh

Se , idQC(BGm
e /Z̃e)

⊗HLgr
w , idQC(BGm

e /Z̃e)
⊗ȞLgr

w ).

6.3.3. Lemma. The triple Φcoh
Se,w

is a unital homomorphism datum from Hcoh
Se

to Jcoh
e ⊗ Rep(Gm).

59For the latter, we use the localization functor provided by the semiorthogonal decomposition

QC(X−/Gm) = 〈QC(X−/Gm)>1,QC(X−/Gm)≤1〉
as in §6.1.3.
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Proof. The same argument as for Lemma 5.3.8 shows thatMcoh
Se

is left-dual to the (Hcoh
Se
, Jcoh
e )-bimodule

M
coh,R
Se

:= QC(S̃e × BGm
e /Z̃e) (using Lemma 3.3.9, (6.3.2.1), and the analogous equivalence for M

coh,R
Se

).
Moreover, the functors id⊗HLgr

w and id⊗ȞLgr
w clearly commute with the Jcoh

e -actions, preserve compact
objects, and satisfy the unitality condition. It remains to show that they induce inverse equivalences on
Hochschild homology. Rather than appeal to Lemma 6.2.13(1), we give a different argument.

First, as in §5.2.10 and (5.3.7.2), the maps

(6.3.3.1) [Jcoh
e ⊗ Rep(Gm)]

[id⊗HLgr
w ]

−−−−−−→ [Mcoh
e ]

[id⊗ȞLgr
w ]

−−−−−−→ [Jcoh
e ⊗ Rep(Gm)]

in the category
Tr(Jcoh

e ⊗ Rep(Gm)) ' Tr(Jcoh
e )⊗QC(Gm/Gm)

compose to the identity. Moreover, under this equivalence, we have

[Jcoh
e ⊗ Rep(Gm)] ' [Jcoh

e ]�OGm/Gm ,

which lies in weight-0. Thus, by Theorem 3.1.11, it suffices to show that the split map

(6.3.3.2) [id⊗HLgr
w ] : [Jcoh

e ⊗ Rep(Gm)]→ [Mcoh
e ]0

is an isomorphism.
Next, by [BZFN12, Thm. 1.3], we have an equivalence

(6.3.3.3) QC(BGme /Ze)⊗QC(BZe) − : QC(BZe) -mod
∼−→ Jcoh

e -mod .

This induces equivalences

(6.3.3.4) Tr(Jcoh
e ) ' Tr(QC(BZe)) ' QC(Ze/Ze),

and an identification of (6.3.3.1) with the maps

(6.3.3.5) [QC(BGme /Z̃e)]
[HLgr

w ]
−−−−→ [QC(S̃e/Z̃e)]

[ȞLgr
w ]

−−−−→ [QC(BGme /Z̃e)]

in the category QC(Z̃e/Z̃e). In particular, by Corollary 3.2.13, (5.3.16.1), and Proposition 5.1.2, we have

(6.3.3.6) [QC(S̃e/Z̃e)]0 ' (LpSe,∗Li∗SeS)0 ' SBe �OGm/Gm .

Thus, [QC(BGme /Z̃e)] is a direct summand of a (finite-dimensional) vector bundle, hence itself a vector
bundle. We may therefore reduce to showing that the dimensions of the fibers of [QC(BGme /Ze)] and SBe at
any point s ∈ Ze agree.

Finally, by Lemma 3.4.5, Proposition 3.4.11, (3.2.12.1), and [Che18, Cor. 1.0.2], we have isomorphisms

(6.3.3.7) [QC(BGme /Ze)]s ' HH(QC(BGme ), s−1
∗ ) ' HH(QC(BGme ), s∗) ' O(Ls(BGme )) ' O(L(BGm,se )).

Likewise, for any q ∈ Gm, we have

[QC(S̃e/Z̃e)](s,q) ' HH(QC(S̃e), (s, q)
∗) ' O(L(s,q)(S̃e)) ' O(L(S̃(s,q)

e )).

But for q suitably generic, we have S̃(s,q)
e ' BGm,se , hence by (6.3.3.6), we have

dimk SBes = [QC(S̃e/Z̃e)]0,(s,q) ≤ dimk[QC(S̃e/Z̃e)](s,q) = dimk[QC(BGme /Ze)]s.

Since the latter is a direct summand of the former, the opposite inequality is clear, and we are done. �

6.3.4. In particular, combining (6.3.3.2), (6.3.3.6), and (5.3.7.2), we have constructed canonical isomor-
phisms

(6.3.4.1) [Jcoh
e ⊗ Rep(Gm)] ' SBe �OGm/Gm ' [Jmod

e ⊗ Rep(Gm)]

for each weight-vector w (under the identification (6.3.3.4)). Theorem 3.1.11 then gives corresponding algebra
isomorphisms

(6.3.4.2) HH(Jcoh
e ⊗ Rep(Gm)) ' EndZ̃e/Z̃e([J

coh
e ⊗ Rep(Gm)]) ' Je,k[v±1].

Note that for any two weight-vectors w,w′, the corresponding isomorphisms differ by a canonical inner
automorphism of Je,k[v±1]. Indeed, the composite isomorphism

SBe �OGm/Gm [Jcoh
e ⊗ Rep(Gm)] SBe �OGm/Gm

[HLw′ ]
−1

∼
[HLw]

∼
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gives an element of AutZ̃e/Z̃e(S
Be � OGm/Gm)op, i.e., a unit in Je,k[v±1]. Conjugating the isomorphism

(6.3.4.2) for w by this unit then recovers the isomorphism for w′.
Combining this discussion with the results of Chapter 5 now yields our main theorem:

6.3.5. Theorem. For each w ∈ BBS̃e/Z̃e , we have a commutative diagram of classical algebra homomor-
phisms

Hk Je,k[v±1]

HH(Hcoh) HH(Jcoh
e ⊗ Rep(Gm))

K0(Hcoh)k K0(Jcoh
e ⊗ Rep(Gm))k.

φe,k

HH(F
Φcoh
Se,w

◦i∗
Se

)

(3.3.16.2) ∼ ∼ (6.3.4.2)

K0(F
Φcoh
Se,w

◦i∗
Se

)k
ch ∼ ch∼

Moreover, for any two weight-vectors w,w′, the homomorphisms K0(FΦcoh
Se,w

◦i∗Se
)k and K0(FΦcoh

Se,w′
◦i∗Se

)k differ

by a canonical inner automorphism in K0(Jcoh
e ⊗ Rep(Gm))k.

Proof. First note that as in Lemma 5.3.12, we have a canonical identification Tr(Mcoh
Se

) ' LpSe,∗.
Indeed, the argument is identical; we need only replace all categories with their coherent counterparts (i.e.,
Aop
Se

-modZ̃e by QC(S̃e/Z̃e), ASe,0 -modZ̃e by QC(BGme /Z̃e), etc.), and the equivalences (5.3.6.3) and (5.3.8.1)
with (6.3.3.3) and (6.3.2.1), respectively. The isomorphisms (6.3.4.1) and (5.3.14.2) now identify the functor

FTr
Φcoh
Se,w

◦i∗Se
' pr[Jcoh

e ⊗Rep(Gm)] ◦ Tr(Mcoh
Se ) ◦ Tr(i∗Se)

with FTr
Φmod
Se
◦i∗Se

, so commutativity of the upper square follows from Corollary 5.3.14 and Proposition 5.2.9.

It remains to show that the Chern character for Jcoh
e ⊗ Rep(Gm) is an isomorphism (note that it is

monoidal by §5.2.8). First, as in §6.1.17 and §6.3.2, we have a functor

HLw : QC(BGme × BGme /Z̃e)→ QC(S̃e × S̃e/Z̃e)

associated to the Białynicki-Birula stratification of S̃e × S̃e obtained from the diagonal Gm-action. This
yields a commutative diagram

(6.3.5.1)

K0(Jcoh
e ⊗ Rep(Gm))k HH(Jcoh

e ⊗ Rep(Gm))

K0(QC(S̃e × S̃e/Z̃e))k HH(QC(S̃e × S̃e/Z̃e))

ch

K0(HLw)k∼ HH(HLw)∼

ch

where both vertical maps are isomorphisms. It therefore suffices to show that the Chern character is an
isomorphism for QC(S̃e × S̃e/Z̃e).

Next, as in (2.2.4.1), the noncommutative Springer resolution gives an equivalence

Hom(E|S̃e � E|S̃e ,−) : QC(S̃e × S̃e/Z̃e)
∼−→ Aop

Se
⊗k Aop

Se
-modZ̃e .

Note that the functor

− ⊗
ASe,0⊗

k
ASe,0

ASe ⊗
k
ASe : Aop

Se,0
⊗k Aop

Se,0
-modZ̃e → Aop

Se
⊗k Aop

Se
-modZ̃e

gives a bijection between isomorphism classes of indecomposable finitely generated projective modules as in
(2.2.14.3), hence induces an equivalence on K0. Moreover, this functor induces an equivalence on Hochschild
homology as in the proof of Lemma 5.3.8. Thus, as in (6.3.5.1), we reduce to showing that the Chern
character is an isomorphism for Aop

Se,0
⊗k Aop

Se,0
-modZ̃e . Since the latter is a semisimple category as in

Corollary 5.3.4, this is clear. �

6.3.6. Finally, specializing the discussion of §6.3.4 and the Chern character isomorphism (6.3.5.1) to any
point of Gm yields a linearized version of Qiu–Xi’s conjecture (1.3.0.2):
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6.3.7. Corollary. For each w ∈ BBS̃e/Z̃e and q ∈ Gm, there is an isomorphism

(6.3.7.1) [Jcoh
e ] ' SBe .

This gives classical algebra isomorphisms

Je,k ' HH(BGme × BGme /Ze) ' K0(BGme × BGme /Ze)k,

where the former depends on the pair (w, q), and the latter is given by the Chern character. Moreover, the
isomorphisms obtained from two pairs (w, q) and (w′, q′) differ by a canonical inner automorphism.

6.3.8. We now make a series of remarks on this corollary:

6.3.9. Remark. Letting πGm
e : BGme /Ze → BZe denote the projection, (3.3.8.1) yields a (non-canonical)

expression
LπGm

e,∗ OL(BGm
e /Ze)

' SBe

for the asymptotic coherent Springer sheaf. This exactly parallels the definition (3.3.16.1) of the coherent
Springer sheaf. Philosophically, we may regard the stack

⊔
e L(BGme /Ze) as an “asymptotic” analogue of

L(Ñ/G̃), just as
⊔
e Ze/Ze is an “asymptotic” analogue of the stack L(N̂/G̃) of Deligne–Langlands parame-

ters.

6.3.10. Remark. Let us explain in more detail why the isomorphism (6.3.7.1) depends on the choice of
q ∈ Gm. By Proposition 3.4.16 and (6.3.3.5), we have a commutative diagram

(6.3.10.1)

BG∗/Z̃e(QC(BGme /Z̃e)) BG∗/Z̃e(QC(S̃e/Z̃e))0

[QC(BGme /Z̃e)] [QC(S̃e/Z̃e)]0

[Jcoh
e ]�OGm/Gm SBe �OGm/Gm .

∼

BG∗/Z̃e (HLgr
w )

∼

∼

[HLgr
w ]

∼
(6.3.4.1)

We wish to understand where in this diagram the “dependence on the choice of specialization” arises.
On the one hand, by Remark 3.4.6 and the proof of Lemma 6.2.6, we may compute each of these Block–

Getzler sheaves using only the compact objects of QC(BGme /Z̃e)0 and their images under HLgr
w , respectively.

By Lemma 6.2.8, all Rep(Z̃e)-enriched Hom-spaces between these images are concentrated in non-negative
weights, so we may compute BG∗/Z̃e(QC(S̃e/Z̃e))0 using only the weight-0 components of these Hom-spaces.
Note that the coaction map for Gm is trivial on weight-0 representations; thus, the sheaf OGm/Gm canonically
splits off as a factor of each of the Block–Getzler sheaves in (6.3.10.1), and the map idOGm/Gm

canonically
splits off as a factor of BG∗/Z̃e(HLgr

w ).

On the other hand, we may compute the Block–Getzler sheaf BG∗/Z̃e(QC(S̃e/Z̃e)) using only the
Bezrukavnikov–Mirković tilting bundle E|S̃e . As we have seen, the resulting complex satisfies a similar
non-negativity property, so the sheaf OGm/Gm again canonically splits off as a factor of its weight-0 compo-
nent. In general, however, these two decompositions of BG∗/Z̃e(QC(S̃e/Z̃e))0 do not agree! Intuitively, this

is because we have chosen two distinct generating subcategories of QC(S̃e/Z̃e). In particular, the decom-
position coming from HLgr

w agrees with that of [Jcoh
e ] � OGm/Gm , and the decomposition coming from E|S̃e

agrees with that of SBe �OGm/Gm .

6.3.11. Remark. When e is subregular, the isomorphism (6.3.7.1) (and its dependence on q) may be
computed explicitly by combining the derived McKay correspondence of [BKR01] with the description of
ASe attached to the Kleinian singularity as in [Bez06, Ex. 2.9]. We omit the details.

6.3.12. Remark. When e = 0, the stack S̃e/Z̃e = Ñ/G̃ is covered by a single Θ-stratum. It follows
that the functors HLgr

w , ȞLgr
w of §6.3.2 are given by p∗

Ñ
〈−w〉, i∗B〈w〉, respectively, where w ∈ Z corresponds

to the unique connected component of B, and the maps pÑ , iB are as in (1.3.0.1). In particular, the functor
FΦcoh

g,w
: Hcoh → Jcoh

e does not depend on the choice of w. Moreover, a straightforward computation shows
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that FΦcoh
g,w

recovers Chriss–Ginzburg’s functor (idB ×iB)∗(pÑ × idÑ )∗, discussed in §1.3. Note that this
differs from the functor (iB × idB)∗(idÑ ×pÑ )∗ appearing in [Xi16]; it follows that the two are related by
an inner automorphism in K0(B ×B/G̃) (in fact, for G = SL2, the two homomorphisms on K0 agree by the
proof of [CG10, Thm 7.5.12] and [Daw21, Lem. 7]).

6.3.13. We now explain how Corollary 6.3.7 can be used to compute the sheaf SBe from the geometry
of BGme . We begin with a general lemma computing the Block–Getzler sheaf for a category equipped with
an “equivariant” full exceptional collection:

6.3.14. Proposition. Let H be a reductive group, and let C be a Rep(H)-module category. Fix a totally
ordered H-set I, and let 〈cx〉x∈I be a full exceptional collection in the de-equivariantization Cdq,c. Suppose
that

(1) the total order on I descends to the set-theoretic quotient I/H;
(2) for any h ∈ H, there exists an isomorphism h∗cx ' ch·x (see §3.4.4 for this notation); and
(3) each cx admits a (Cx, αx)-equivariant structure for some (Cx, αx) ∈ Coc(Hx), i.e., a lift to the twist

(Rep(Hx)⊗Rep(H) C)(Cx,αx).
Let Iorb ⊂ I denote the set of minimal orbit representatives for the H-action. Then there is a canonical
isomorphism

BG∗/H(C) '
⊕
x∈Iorb

ieq
x,∗C∨x ,

where ieq
x : Hx/Hx → H/H denotes the natural map of adjoint quotient stacks.

Proof. Choose a nonzero Vx ∈ Rep(Hx)(Cx,αx),c for each x ∈ Iorb; our third assumption then yields
compact objects

V ∗x ⊗ cx ∈ Rep(Hx)⊗Rep(H) C.

Consider the natural Rep(H)-linear, compact object-preserving adjoint pair

ResHHx : C� Rep(Hx)⊗Rep(H) C : IndHHx .

We claim that the objects IndHHx(V ∗x ⊗ cx) generate C under the Rep(H)-action. Indeed, it suffices to show
that the objects IndHHx(V ∗x ⊗ cx)dq generate Cdq. A standard base-change argument then shows that

(6.3.14.1) IndHHx(V ∗x ⊗ cx)dq '
⊕

[h]∈H/Hx
V ∗,dq
x ⊗ h∗cx

for a choice of coset representatives of H/Hx, so the claim follows from our second assumption. Now, recall
from the proof of Lemma 3.4.5 that the Rep(H)-internal Hom for C identifies with the Hom in Cdq. Using
(6.3.14.1) and our first assumption, we immediately obtain a canonical decomposition

BG∗/H(C) '
⊕
x∈Iorb

BG∗/H(〈IndHHx(V ∗x ⊗ cx)〉) '
⊕
x∈Iorb

BG∗/H
(

EndCdq(IndHHx(V ∗x ⊗ cx)dq)op -modH
)
.

Next, suppose [h], [h′] ∈ H/Hx are distinct coset representatives. Then

HomCdq(h′∗cx, h∗cx) ' HomCdq(h−1
∗ h′∗cx, cx) ' HomCdq(ch−1h′·x, cx) ' 0

by our second assumption and minimality of x. It follows from (6.3.14.1) that

EndCdq(IndHHx(V ∗x ⊗cx)dq)op -modH ' Endk(V ∗x )⊕H/H
x,op -modH ' Endk(V ∗x )op -modH

x

' Rep(Hx)(Cx,αx)∨

as in the proof of Lemma 5.1.3. Moreover, Proposition 3.4.11 and Corollary 3.2.13 now give

BG∗/H(Rep(Hx)(Cx,αx)∨) ' ieq
x,∗ BG∗/Hx(Rep(Hx)(Cx,αx)∨) '

⊕
x∈Iorb

ieq
x,∗C∨x ,

hence the conclusion. �

6.3.15. Example. Let G = Sp6, and take e be the nilpotent corresponding to the partition 2+2+2. We
will use Proposition 6.3.14 and Corollary 6.3.7 to compute the sheaf SBe , recovering the direct combinatorial
computation of [BDD22, Thm. 2]. One computes that

Ze ∼= O3
∼= PGL2 × {±1}.
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In particular, Ze is connected modulo the center of G, so its action on Be is trivial, and its action on Be
factors through SO3

∼= PGL2. Moreover, a computation shows that the variety BGme has three connected
components (see Proposition 1 of loc. cit. for a description of the entire Springer fiber Be):

(1) a component isomorphic to the flag variety BSL3
of SL3, on which Ze acts via the embedding

SO3 ↪→ SL3;
(2) a component isomorphic to P1 × P1, on which Ze acts via the diagonal action of PGL2; and
(3) a component isomorphic to P1, on which Ze acts via the usual action of PGL2.

Note that by Proposition 2.1.16 and Lemma 2.1.21, the Schur multiplier of Ze has order 2; let us write
(C, α) for the nontrivial cocycle (corresponding to the “odd” representations of SL2). We now describe full
exceptional collections on each of the three components of BGme :

(1) The P1-fibration BSL3 → P2 yields a full exceptional collection on BSL3 consisting of 6 line bundles.
Each of these line bundles is SL3-equivariant, hence in particular Ze-equivariant.

(2) The variety P1 × P1 admits a full exceptional collection given by

OP1 �OP1 ,OP1(1)�OP1 ,OP1 �OP1(1),OP1(1)�OP1(1).

The first and last line bundles are Ze-equivariant, whereas the second and third are (C, α)-equivariant.
(3) The variety P1 admits a full exceptional collection given by OP1 ,OP1(1). The former is Ze-

equivariant, whereas the latter is (C, α)-equivariant.
Altogether, we obtain a full exceptional collection on BGme consisting of 9 sheaves, 6 of which are Ze-
equivariant, and 3 of which are (C, α)-equivariant. It follows as in (6.3.10.1) that

SBe ' BG∗/Ze(QC(BGme /Ze)) ' O⊕6
Ze/Ze

⊕ C⊕3,

agreeing with the numerics computed in Theorem 2 of loc. cit. In particular, this example shows that
nontrivial cocycles may appear in Be even when the group G is simply connected.
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