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ABSTRACT

We develop a theory of galleries for double affine hyperplane arrangements. A gallery is
an infinite sequence of chambers, indexed by an ordered set, which is maximal with respect
to a finiteness condition on the multiset of wall-crossings.

We study the possible order types of galleries. We also use galleries to define a dou-
ble affine Bruhat order which generalizes the one introduced by Braverman, Kazhdan, and
Patnaik, and studied by Muthiah and Orr. We prove an analogue of the classical character-
ization of the Bruhat order in terms of subexpressions of reduced expressions, and we define
an analogue of the Demazure product.

We also study tours, which are certain finite sequences of chambers. Using the previous
results, we show that tours form a category which behaves similarly to the category of
generalized galleries defined in the classical setting. We construct a functor from tours to
schemes, whose image consists of double affine analogues of Demazure varieties. We show
that the colimit of this functor recovers the double affine flag variety at the level of sets, but
we do not think that the colimit of schemes is well-behaved. Instead, we describe a different
way of equipping the colimit set with a ringed space structure, and we conjecture that this
ringed space is a scheme.

Our main result is that the category of tours (with fixed start and end chambers, and
subject to certain constraints) is contractible. We call this result ‘homotopical deletion’
because it generalizes the Coxeter deletion lemma.

Thesis supervisor: Roman Bezrukavnikov
Title: Professor of Mathematics



I dedicate this work to my father
who drew circles and lines with me
in an old dairy shop.

The limits of the instrument,
which belonged to my grandfather,
are proved by the same subject
where I have found my own.

The shop and its columns are gone.
Innovation and decay
cannot take the pride from his eyes
nor take what he has given to me.

Let fire burn, machines erase
every true beloved place.
Our circles stand untouched by time:
there is no world as good as mine.
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1. Introduction

1.1. Classical galleries. In the study of Kac–Moody groups, galleries are combinatorial
objects which are useful for answering group-theoretic and topological questions. The goal
of this thesis is to develop a theory of galleries for double loop groups.

In this subsection, we review the classical results which we seek to generalize. For sim-
plicity, let us consider an affine-type Kac–Moody group Gaff . There is an affine hyperplane
arrangement Haff defined by the roots of Gaff . Its chambers correspond to choices of sets
of positive roots, hence to (positive) Borel subgroups containing the torus. A gallery is a
sequence of chambers

([n], C) = (C0, C1, . . . , Cn),

such that Ci−1, Ci are adjacent (and not equal) for all i ∈ [1, n].

LetW aff be the affineWeyl group associated toGaff , and let I be a set of simple reflections.
This choice equips W aff with a length function ℓ(−). The (strong) Bruhat order is a partial
order on W aff , graded by ℓ(−), which admits two equivalent definitions:

(1) It is the transitive closure of the relation defined by w ≺ rw whenever r is a reflection
and ℓ(w) < ℓ(rw).

(2) It is defined by u ⪯ w for all u,w such that, for some (equiv. any) reduced expression
w = s1 · · · sn of simple reflections, we have u = si1 · · · sim for some i1 < · · · < im.

Both of these definitions can be interpreted using chambers and galleries. Let C0 be the
‘fundamental’ chamber corresponding to the set I, and associate each group element w ∈
W aff with the chamber wC0. In (1), we have w ≺ rw if and only if the wall of the reflection r
does not separate wC0 from C0. In (2), the choice of an expression w = s1 · · · sn is equivalent
to the choice of a gallery from C0 to wC0, and the expression is reduced if and only if the
gallery does not double-cross any wall. A subexpression si1 · · · sim corresponds to a folding
of the gallery, where one ‘fold’ occurs for each omitted simple reflection.

Galleries are also useful for studying Gaff . A gallery ([n], C) specifies a Demazure variety

X([n], C) := PC0∧C1

BC1

× PC1∧C2

BC2

× · · ·
BCn−1

× PCn−1∧Cn/BCn

where Ci−1 ∧Ci is the face of Haff along which Ci−1, Ci are adjacent, and each face F gives
a (positive) parabolic subgroup PF whose roots are {α |α(F ) ≥ 0}. (When F is a chamber,
this is a Borel subgroup.) If wC0 = Cn, then we get a resolution of the w Schubert variety:

X([n], C) Gaff/BC0

(p1, . . . , pn) p1 · · · pnwBC0

As observed by Contou-Carrère, we can view the points of X([n], C) as galleries in the Tits
building of Gaff which begin at C0 and are shaped like ([n], C). Under this interpretation,
the above map sends each Tits gallery to its end chamber.

Finally, one can define a category of generalized galleries. This is useful for topological
questions because a gallery is a combinatorial analogue of a path, so a category of galleries
behaves like a path space. A generalized gallery is a sequence of chambers ([n], C) such
that Ci−1, Ci are touching (i.e. Ci−1 ∧ Ci is nonempty). In [TaTr], we defined a category
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of generalized galleries, denoted Rigd, whose morphisms encode deletions of chambers and
unfolding moves. This category is designed so that X(−) enhances to a functor from Rigd

to varieties. Finally, the identification

colim
([n],C)∈Rigd

X([n], C) ≃ Gaff/BC0

is valid in various senses (schemes, constructible sheaves).

This thesis will generalize all of the above constructions and results to double loop groups,
except for the last sentence. This means that we were not able to construct the double affine
flag variety or its category of constructible sheaves. However, we will show that one version
of the double affine flag variety is uniquely determined, see 1.5.

1.2. Double affine galleries. We work with the double affine group G := Gaff(C((t))). Let
T aff ⊂ Gaff be a maximal torus, and consider the action T aff × Gm ↷ G where T aff acts
by conjugation and Gm acts via loop rotation on C((t)). Then the roots of G are given by
the linear functions α+mπ on the real Lie algebra haff ⊕R, where α ∈ haff,∨ is any root of
T aff ↷ Gaff , and π : haff ⊕ R→ R is the projection.

It is natural to replace the vector space haff ⊕ R by the affine subspace haff × {1}, since
an analogous step is used to define the affine hyperplane arrangement of Gaff . Then α+mπ
restricts to the affine function α + m. These affine functions define an arrangement of
(affine) hyperplanes in haff , denoted H. In other words, H is obtained from the Kac–Moody
hyperplane arrangement for Gaff by taking all integer translates of all hyperplanes. The
union of the hyperplanes is dense in haff .

Gaussent and Rousseau [GR] showed that G is governed by H in the following sense:
they created a generalization of the notion of a Tits building, called a hovel or masure, and
G gives rise to a hovel whose apartments look like H.

We will define chambers and galleries inH. A chamber is a compatible system of chambers
in the locally finite subarrangements of H. (This definition can be extracted from [GR, 2.2].
Note that it equips the set of chambers with an ‘inverse limit’ topology.) A gallery is a
sequence of chambers (ci)i∈I , indexed by an ordered set I, such that the following hold:

• The index set I is nonempty and bounded, i.e. it has a maximum and a minimum.

• It is non-stuttering, i.e. it is non-constant on each interval of I of size > 1.

• It crosses each wall only a finite number of times, and it crosses only finitely many
walls more than once.

• It is maximal under refinement, i.e. it is impossible to insert a new chamber without
increasing the multiset of walls which are crossed.

We will prove the following:

• Proposition 3.1.7: a chamber sequence (ci)i∈I is a gallery if and only if I is complete,
c is continuous, and c sends each pair of consecutive elements of I to a pair of
adjacent chambers of H.

• 3.4.6: If (ci)i∈I is a positive gallery, then exactly one of the following holds:
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– I is isomorphic to an ordered set of the form

Z≥0 ⊔ · · · ⊔ Z≥0⏞ ⏟⏟ ⏞
<dimA copies

⊔ S ⊔ Z≤0 ⊔ · · · ⊔ Z≤0⏞ ⏟⏟ ⏞
<dimA copies

,

where S is finite and nonempty.

– I can be obtained from the Cantor set as follows: replace each gap by an ordered
set of the above form. Also, replace the maximal and minimal elements by an
ordered set of the above form.

In 3.4.6, the ‘positivity’ condition is a requirement on the start and end chambers of the
gallery (denoted c0̂, c1̂) which is slightly weaker than the requirement that c1̂ lies at higher
level than c0̂, when viewed as subsets of haff . (As usual, the level is the coordinate on haff

which corresponds to the loop-rotation Gm in the Kac–Moody group Gaff .)

From here on, we implicitly impose positivity. This corresponds to a restriction, which
is standard in the literature, of working inside a certain ‘positive’ subsemigroup G+ ⊂ G,
see [BKP, 1.2.2] and [M1, §1]. As mentioned there, G+ has a Bruhat decomposition but
G does not. For this reason, it is the ‘positive’ combinatorics which should be the most
important for describing the double loop group.

Remark . If Gaff is an affine SL2, then its Cartan algebra is haff = Rαfin,∨⊕Rd⊕RK, where
αfin,∨ is a coroot of the finite-type SL2. The coefficient of d is the level. The Kac–Moody
arrangement consists of 2-dimensional subspaces {span⟨nαfin,∨ + d,K⟩ |n ∈ Z}, and H is
obtained by translating this arrangement by all vectors Zαfin,∨. If we quotient by K, then H

can be visualized as the set of lines in R2 with integer slope and y-intercept, after a 90-degree
rotation. All of our results can be illuminated by visualizing them for this arrangement.

1.3. Bruhat order. By definition, the double affine Weyl group W is generated by orthog-
onal reflections through the walls of H. In contrast to the classical setting, the action of
W on the set of chambers of H is neither free nor transitive. Should we define the Bruhat
order on W or on the set of chambers?

In fact, we can attain maximum generality by defining the Bruhat order on the set of
tethered chambers: after fixing a chamber T , we say that a tethered chamber is a pair (C,w)
such that wT = C. To define the Bruhat order, we fix another chamber C0 and declare that
(C,w) ≺ (rC, rw) for every (C,w) and every reflection r ∈ W such that the reflection wall
does not separate C0 from C. Compare this with the classical definition 1.1(1).

A special case of this was defined in Appendix B of [BKP]. To recover their definition,
take C0 to be a particular chamber which touches 0 ∈ haff , and take T = C0 + nd for some
integer n > 0. The following is known about the Bruhat order in this case:

• It is a partial order, i.e. there are no cycles among the given relations. [M1]

• It is Z-graded by a length function, which is related to the inversion set of a chamber
C, i.e. the (infinite) set of walls which separate C from C0. [MO]

• Every element has finitely many covers (i.e. minimal elements lying strictly above
it) and cocovers (i.e. maximal elements lying strictly below it). [W]

We generalize these results to arbitrary C0, T as follows:
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• Corollary 4.4.8: The first two bullets (above) hold in general.

• Corollary 4.5.8: The third bullet (above) holds when C0 and T are rational-level.

We also prove the following statements relating the Bruhat order to galleries, cf. 1.1(2):

• Theorem 4.7.4: The characterization of the Bruhat order in terms of subexpressions
of an expression generalizes to the current setting.

• Corollary 4.7.5: The characterization of the Demazure product of an expression as
the Bruhat-maximal product of a subexpression generalizes to the current setting.

Recall that, in the classical setting, an ‘expression’ is a sequence of simple reflections. Be-
cause a gallery typically crosses infinitely many walls, we are led to consider infinite ex-
pressions, which are difficult to work with. It is better to work directly with galleries and
foldings, and it turns out that one should restrict to foldings along finitely many walls.

Remark . If we try to define an analogous ‘Bruhat order’ on the set of (non-tethered) cham-
bers, then we do not get a partial order, because there are nontrivial cycles in the relations.
The subgroup ofW which fixes one chamber (equiv. all chambers) is generated by an element
τnK , corresponding to translation by nK, where K ∈ haff is the central vector. For most
choices of C0, T , and (C,w), one can show directly that (C,w) ≺ (C, τnKw) in the Bruhat
order on tethered chambers. This implies that C ≺ C in the Bruhat order on (non-tethered)
chambers, so it cannot be a partial order.

1.4. Demazure varieties. In the double affine setting, is not possible to define an inter-
esting category of galleries, essentially because one cannot change infinitely many chambers
using finitely many chamber-deletion moves. Instead, in Section 5, we define a category of
finite tethered jointed tours, which are triples

(c0, . . . , cn), (f1, . . . , fn), w

where ci are chambers, fi are faces, fi ⪯ ci, and (cn, w) is a tethered chamber. This category

is denoted D and is the correct generalization of Rigd from the classical setting.

In Section 6, we construct a functor X(−) sending D to certain quasicompact schemes
which we call sub-Demazure varieties. This uses a similar formula as before, except the faces
fi are used to specify the relevant parabolic subgroups. (We can no longer use the meets
ci−1 ∧ ci because they can be empty.) To construct a Demazure variety, we fix a gallery g
and take the colimit of X(−) along a sequence of increasingly-fine finite jointed tours which
are refined by g, see 6.6. The colimit is filtered and occurs along open embeddings, so the
result is a (non-quasicompact) scheme.

Thus, there are many interesting maps between sub-Demazure varieties, but no maps
between Demazure varieties.

1.5. Double affine flag variety. The question which initially motivated this thesis is
whether it is reasonable to define the double affine flag variety by

Fℓ := colim
t∈D

X(t).

Since we are focused on answering this question, we do not attempt to study G/BC0
or any

other proposed construction of Fℓ.
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We show that the colimit definition makes sense at the level of sets, i.e. Fℓ decomposes
into the expected Schubert cells (Theorem 7.1.2).

Unfortunately, our method for computing the colimit does not give good results at the
level of topological spaces or schemes. The issue is that maps between sub-Demazure vari-
eties X(t1)→ X(t2) are often non-proper, even if we require t1, t2 to be arbitrarily fine. A
related issue is that X(t)→ Fℓ can be non-proper, so we cannot control the topology of Fℓ
in a straightforward way. (In 7.3, we illustrate this by analyzing a special case where Fℓ is
already known: namely, if C0 and T are touching chambers, then Fℓ is the thick affine flag
variety, which is a scheme.) This issue is why we are not able to construct the double affine
flag variety or its category of constructible sheaves.

We do, however, give a conjectural construction which determines it uniquely. The idea
is inspired by Mathieu’s construction of Kac–Moody flag varieties [Ma1], [Ma2].

To explain this, let us temporarily return to the classical setting and describe the con-
struction which we have in mind.

• For each gallery g, let E(g) be the variant of X(g) obtained by not performing the
final quotient by BCn .

• For each w ∈ W , equip the set Fℓ⪯w with a topology using the following basis of
open sets: A subset U ⊆ Fℓ⪯w belongs to the basis if and only if its preimages
under the available maps E(g) → Fℓ⪯w are cut out by regular functions on the
E(g)’s which are compatible under the maps between the E(g)’s. In other words,
we require that there exists a system of regular functions

(ag)g ∈ lim
g∈Rigd,op⪯w

Γ(E(g),OE(g))

such that, for each gallery g, we have

π−1
g (U) = D(ag)

as subsets of E(g), where πg : E(g) → Fℓ⪯w is an analogue of the Demazure map,
and D(ag) is the locus where ag is nonzero.

• Choose a reduced gallery g which ends at wC0. We turn the topological space Fℓ⪯w

into a ringed space by equipping it with the sheaf of rings πg,∗OE(g).

This gives the correct scheme structure on Fℓ⪯w.

Properness does not play a role in this construction. In fact, the construction remains
correct if, in the last bullet, we replace E(g) by any dense open union of cells which includes
all of the cells which lie over the codimension-one strata Fℓu ⊂ Fℓ⪯w, i.e. ℓ(u) = ℓ(w) − 1.
This follows from the normality of Schubert varieties, because functions on normal varieties
extend across codimension-two subsets.

This, we believe it is reasonable to conjecture that an analogous construction works in
the double affine setting, making Fℓ⪯w a scheme and Fℓ an ind-scheme (7.2). Moreover, we
conjecture that the scheme structure on Fℓ⪯w does not depend on the choice of the tour t
(which replaces the gallery g in the third bullet), as long as E(t) satisfies the ‘codimension-
one’ condition from the previous paragraph. This conjecture uniquely determines the ind-
scheme structure on Fℓ, but we do not know that an ind-scheme structure exists.
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In the classical setting, it is also true that Gaff = colimg E(g). However, in the double
affine setting, we will not discuss the analogous colimit in any serious way or attempt to
relate it to any other version of the double loop group such as G := Gaff(C((t))).

1.6. Homotopical deletion. We now elaborate on the proof of Theorem 7.1.2, which
states that the set

Fℓ := colim
t∈D

X(t)

canonically identifies with the disjoint union of Schubert cells which one would expect in
the double affine flag variety. In the classical setting, the identification between the colimit
and the flag variety also holds at the level of schemes or constructible sheaves, see 1.1.

If t is reduced, then the Demazure map X(t) → Fℓ should map the big cell of X(t)
isomorphically onto a Schubert cell of Fℓ. In other words, the expected Schubert cells in
the colimit should come from these X(t)’s. In order to show that there is no redundancy,
we need to know the following:

(1) Any two reduced finite jointed tethered tours t1, t2 ∈ D are related by a zig-zag of
maps which do not change their end chamber.

(These maps correspond to birational maps of sub-Demazure varieties.)

The classical analogue of this result is the statement that any two reduced expressions for
a Weyl group element are related by a sequence of braid moves.

In addition, we need to show that, when t is non-reduced, X(t) does not contribute to
the colimit. This requires

(2) If t ∈ D is non-reduced, then there are maps

t t′ t′′
zig-zag

where the zig-zag involves only maps which do not change the end chamber, and
the last map decreases the total length of the tour.

(The last map gives a dominant non-birational map of sub-Demazure varieties.)

The classical analogue of this result is the Coxeter deletion lemma, which states that any
non-reduced expression can be modified, by a sequence of braid moves, so that it contains
a repeated pair of simple reflections sisi, which can then be canceled.

These are purely combinatorial statements, so we are not hampered by the geometric
issues described in 1.5. Moreover, we are able to prove stronger versions of (1) and (2)
which state that the required diagrams are unique up to homotopy. (This means that the
set of choices can be viewed as the objects of a category, which is shown to be contractible.)
For technical reasons, we restrict to tours which only involve rational-level chambers. (We
suspect that this restriction can be removed.)

We also strengthen (1) and (2) in another way. In the double affine setting, we are working
with finite tours (rather than galleries), and these can be modified much more flexibly. For
instance, we can prove (1) in a silly way by deleting all chambers of t1 except for the start
and end chambers, and then inserting all chambers of t2. To forbid this, we restrict to tours
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which satisfy a ‘lower bound’ in terms of the refinement relation. We show that (1) and (2)
continue to hold with this restriction.

The full ‘homotopical deletion’ statement is Theorem 8.8.1. We view this result as the
centerpiece of this thesis, since it is the double affine generalization of the main step of
the proof of the identification Fℓ ≃ colimt X(t) at the level of constructible sheaves [TaTr].
Unfortunately, due to the aforementioned geometric issues, we do not know any application
of the full strength of this result.

1.7. Notations. We use the following notations from [TaTr, 1.4]:

• [n] := {0, 1, . . . , n}.

• The simplex category is ∆, and the n-dimensional simplex is ∆n.

• The category of schemes is Sch.

• A functor is initial or final if precomposition by it preserves limits or colimits,
respectively.

• The comma category associated to a pair of functors

C1 D C2
F1 F2

is denoted ⟨F1 ↓ F2⟩ or ⟨C1
D−→ C2⟩. The latter notation is convenient when the

functors are obvious.

• An∞-category is an (∞, 1)-category modeled as a weak Kan complex, as in [HTT].
We do not distinguish between a category and its nerve, so we say that every category
is an ∞-category.

• A categorical equivalence of simplicial sets is a weak equivalence in the Joyal model
structure, while a homotopy equivalence is a weak equivalence in the Kan model
structure. (See [HTT, Def. 1.1.5.14].) When working with ∞-categories, we ab-
breviate ‘categorical equivalence’ as ‘equivalence,’ but the phrase ‘homotopy equiv-
alence’ will never be abbreviated. For us, contractible means ‘weakly contractible’
(i.e. homotopy equivalent to a point).

2. Hyperplane arrangements

2.1. Double affine hyperplane arrangements.

2.1.1. Let A be a finite-dimensional affine space over R.

Let A∗ be the vector space of affine functions on A, and let π ∈ A∗ be the constant
function with value 1. Note that specifying A is equivalent to specifying the pair (A∗, π).

A double affine arrangement in A consists of the following:

• A vertical (a.k.a. level) coordinate δ ∈ A∗ ∖Rπ.

• A collection of roots R ⊂ A∗ such that R = −R and R is a finite union of subsets
of the form α+ Zδ + Zπ.
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From now on, we fix such an arrangement, denoted H. The following definitions pertaining
to H are standard:

• A wall is a subset Hα := {α = 0} ⊂ A for α ∈ R∖Rπ.

• A flat is a nonempty intersection of walls.

• A root half-space is a subset {α ≥ 0} or {α > 0} for α ∈ R∖Rπ.

A subset S ⊂ A is horizontal if δ(S) is a single real number.

2.1.2. Call a root α imaginary if α ∈ Rδ+Rπ and real otherwise. A root is real if and only
if it determines a non-horizontal wall.

A wall H is the zero locus of infinitely many roots if and only if H is horizontal and
rational-level (i.e. δ(H) ∈ Q). If such a wall exists, then there must be imaginary roots.
(The converse is not true.)

2.1.3. The irrelevant space is the vector space of translations of A which preserve each root.
Clearly, taking the quotient of A by these translations does not affect the combinatorics of
H. From now on, we assume that the irrelevant space is {0}, or equivalently spanR = A∗.

2.1.4. Local and induced arrangements. Let B ⊂ A be an affine subspace.

• The induced arrangement H|B has ambient space B, with roots restricted from A.

• The local arrangement HB has ambient space A, with roots {α ∈ R |α(B) = 0}.

These arrangements always belong to one of the four classes defined as follows. (These
criteria pertain to a pair (A∗, π) and a subset R ⊂ A∗.)

• Affine: R is a finite union of sets α+ Zπ.

• Irrational-affine: For some r ∈ R∖Q, the set R is a finite union of sets α+(Z+Zr)π.

• Pre-affine: For some δ ∈ A∗ ∖Rπ, the set R is a finite union of sets α+ Zδ.

• Finite: R is finite.

The five classes of arrangements which we have defined so far are pairwise disjoint, except
for the empty arrangement which belongs to all of them.

Given an affine subspace B ⊂ A, the induced and local arrangements are as follows:

hypothesis induced arr. H|B local arr. HB

B is horizontal, δ(B) is rational affine pre-affine
B is horizontal, δ(B) is irrational irrational-affine finite

B is not horizontal double affine finite

If B is a maximal horizontal subspace (i.e. dimB = dimA− 1), then HB has either one wall
(which is B) or no wall. If it has one wall, then that wall corresponds to a finite set of roots
if δ(B) is irrational and to an infinite set of roots if δ(B) is rational. This distinction was
pointed out in 2.1.2.
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2.2. Faces.

2.2.1. Each subset R′ ⊆ R determines a subarrangement H′ of H whose ambient space is
A. If H′ is locally finite, define Faces(H′) to be the poset of faces, where F1 ⪯ F2 means
F1 ⊆ F2. In this case, we say that F1 is a face of F2.

For any two locally finite subarrangements H′
1 ⊆ H′

2, there is an obvious projection map
Faces(H′

2)→ Faces(H′
1).

2.2.2. Main definition. For any subarrangement H′ of H, consider the limit of posets

Faces(H′) := lim
H′′

Faces(H′′),

where H′′ runs over the locally finite subarrangements of H′. This limit is filtered. The
definition ensures that, if H′

1 ⊆ H′
2 are any two subarrangements, then there is a projection

map Faces(H′
2)→ Faces(H′

1).

For each F ∈ Faces(H), we make the following definitions:

• The support F is the intersection of closures of projections of F to locally finite
subarrangements. This is a nonempty closed subset of A.

• For any subset S ⊂ A, we write F ⊂ S if the projection of F to some locally finite
subarrangement is contained in S. Let us specialize this definition in three ways:

– F is horizontal if F ⊂ δ−1(a) for some real number a.

– spanF is the smallest flat which contains F . Define HF := HspanF .

– If F ⊂ {α > 0}, we write α(F ) > 0. Define R+(F ) := {α ∈ R |α(F ) > 0}, and
define R0(F ), R−(F ) similarly.

• F is a chamber if dim spanF = dimA. Equivalently, every projection of F to a
locally finite subarrangement is a chamber therein. A chamber is never horizontal.

Remark . If we only allowH′′ to run over the finite subarrangements ofH′, then the resulting
limit Facesfin(H′) is strictly larger than Faces(H′), because it may contain faces which ‘escape
to infinity.’ The ‘boundedness’ of faces in Faces(H′) corresponds to (iv) below.

2.2.3. Concrete description. For each F ∈ Faces(H), the sets R+(F ), R0(F ), R−(F ) define
a partition of R with the following properties:

(i) If α ∈ R is a linear combination of vectors in R0(F ), then α ∈ R0(F ).

(ii) If α ∈ R is a positive linear combination of at least one vector in R+(F ) and some
vectors in R0(F ), then α ∈ R+(F ).

(iii) R−(F ) = −R+(F ).

(iv) For each α ∈ R, we have α+ nπ ∈ R+(F ) for sufficiently large n.

Lemma. The set Faces(H) is in bijection with the set of such partitions.

Proof. For any locally finite subarrangement H′, the analogous description of Faces(H′) is
well-known. Now the lemma follows because this description of faces is also well-behaved
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under limits. (For (iv) to make sense, we should require that the subarrangement H′ has
roots R′ which satisfy R′ + Zπ = R′. These subarrangements are cofinal with respect to
inclusion, so this restriction does not affect the limit.) □

2.2.4. Faces of pre-affine subarrangements. Suppose that B ⊂ A is a horizontal rational-
level affine subspace, so that HB is pre-affine (2.1.4). Let δB ∈ A∗ be a positive multiple
of δ − δ(B) such that the roots of HB are a union of finitely many ZδB-cosets. If HB is
nonempty, then each F ∈ Faces(HB) satisfies exactly one of the following:

• F is upward if, for every root α of HB , we have

(α+ n δB)(F ) > 0

for all sufficiently large n.

• F is downward if the same holds with < in place of >.

• F is liminal if neither of the above hold.

Note that a face F ∈ Faces(HB) is liminal if and only if its support F is horizontal. This
holds if F is horizontal, but the converse need not be true.

These definitions are motivated by the idea that HB is a cone over an affine arrangement,
namely HB |δ−1

B (1). The upward faces, the downward faces, and the faces of the affine

arrangement are in bijection with one another. The liminal faces could be thought of as
‘faces at infinity’ of the affine arrangement.

If HB is empty, then there is exactly one face, which we define to be liminal.

If B ⊂ A is a horizontal irrational-level affine subspace, then HB is finite. In this case,
we say that every face is non-liminal, and we do not define ‘upward’ or ‘downward.’

2.3. Tits product.

2.3.1. For each F ∈ Faces(H), define Faces(H)⪰F ⊂ Faces(H) to consist of all faces ⪰ F .

Lemma. The projection map Faces(H)⪰F → Faces(HF ) is a bijection.

Proof. The inverse map sends G ∈ Faces(HF ) to the face G′ ∈ Faces(H)⪰F which is
characterized by

R+(G′) = R+(F ) ⊔R+(G)

R0(G′) = R0(G)

R−(G′) = R−(F ) ⊔R−(G)

using the concrete description of Lemma 2.2.3. Note that R+(G), R0(G), R−(G) are subsets
of R0(F ), because this is the root set of HF . □

2.3.2. For fixed F as above, the Tits product G ↦→ FG is the composition

Faces(H) Faces(HF ) Faces(H)⪰F

of the projection map and the inverse map from the lemma. We also use G ↦→ FG to denote
the first or second map separately; the meaning will always be clear from context.
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The Tits product is associative. (The usual proof still works.)

2.4. Classification of faces.

2.4.1. Classification of supports. Define the following types of subsets of A:

• A rational support set is the closure of a face of H|δ−1(a) for some a ∈ Q.

• An irrational support set is a point p ∈ A with δ(p) /∈ Q.

This terminology is justified by the following lemma.

Lemma. For any F ∈ Faces(H), F is a rational or irrational support set. In the rational
case, exactly one of the following is true:

• F is horizontal.

F ⊂ F , and the projection of F to HspanF equals spanF .

• F is not horizontal. Either dimF < dimA− 1 or HspanF has a horizontal wall.

F ̸⊂ F , and the projection of F to HspanF is non-liminal.

• F is not horizontal, dimF = dimA− 1, and HspanF has no horizontal wall.

F is a chamber, and HspanF is empty.

F ̸⊂ F , and the projection of F to HspanF is liminal.

Proof. We first claim that F is horizontal. If not, then there are points p, q ∈ F at different
levels. For any root α, there exists another root α + nδ + mπ which is positive on p and
negative on q, contradiction.

Now let a = δ(F ). The definition of supports implies that

(∗) F ⊂ δ−1(a) is the intersection of closed root half-spaces {α ≥ 0} or {α ≤ 0} of
H|δ−1(a), with every root appearing at least once.

If a is irrational, then H|δ−1(a) is irrational-affine. Since we have assumed that the

irrelevant space of H equals {0}, (∗) implies that F is a point.

Now assume that a is rational, so that H|δ−1(a) is affine. Statement (∗) implies that F is
the closure of a face of H|δ−1(a). This completes the proof of the first sentence.

For the bullets, the idea is to let P be the closure of the projection of F to any sufficiently
fine locally finite arrangement, so that F ⊂ relintP and P ∩ δ−1(a) = F .

If F is horizontal, then we may choose a locally finite subarrangement so that P is
horizontal. This means that P = P ∩ δ−1(a) = F , so F ⊂ F , and the projection of F to
HspanF equals spanF .

If F is not horizontal, and [dimF < dimA − 1 or HspanF has a horizontal wall], then

we may choose a locally finite subarrangement so that relintP is disjoint from δ−1(a). Now
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F ⊂ relintP implies that F ̸⊂ F , and P ∩ δ−1(a) = F implies that the projection of F to
HspanF is non-liminal.

Lastly, assume that F is not horizontal, dimF = dimA−1, and HspanF has no horizontal
wall. If F is not a chamber, then we may choose a locally finite subarrangement so that
dimP < dimA. Since P is not horizontal, this implies that

dimF = dimP ∩ δ−1(a) ≤ dimP − 1 < dimA− 1,

contradiction. Therefore F must be a chamber, which implies F ̸⊂ F . Since dimF =
dimA − 1, the only possible wall in HspanF is spanF , which is horizontal, so HspanF must
be empty. Therefore the projection of F to HspanF is liminal. □

For any F ∈ Faces(H), define δ(F ) := δ(F ). If this level is rational, we say that F is
upward, downward, or liminal if its projection to HspanF has this property.

Intuitively, for a rational-level face F , the lemma says that it is almost true that the pro-
jection of F to HspanF equals spanF if and only if F is horizontal; otherwise the projection

is non-liminal. (Hence, it is almost true that F is liminal if and only if it is horizontal.) The
only exception is when F is a liminal chamber, i.e. the third bullet holds. Liminal chambers
exist if and only if there is no horizontal wall at some rational level.

2.4.2. Support faces. If S is a support set, then the corresponding support face S̊ ∈ Faces(H)

is defined by R+(S̊) = {α |α(relintS) > 0} and similarly for R0(S̊) and R−(S̊). It is easy
to see that

(rational support faces) = (rational horizontal faces) ⊔ (liminal chambers).

For any F ∈ Faces(H), let us write F̃ instead of F̊ . We have F̃ ⪯ F . Equality holds if and
only if F is a support face. (Remark: This is true if and only if F contains a point of A.)

2.4.3. Theorem. The following map, defined by (S,G) ↦→ SG, is a bijection:{︃
(S,G)

⃓⃓⃓⃓
S is a support face

G ∈ Faces(HspanS) equals spanS or is non-liminal

}︃
→ Faces(H)

The inverse map is F ↦→ (F̃, F̃F ).

Proof. The previous lemma implies that the inverse map is well-defined. In checking that
the two maps are indeed inverse, the only nontrivial point is to show that SG = S. This is
obvious if G = spanS, so we instead assume that G is non-liminal. Since S ⪯ SG, we have
S ⊆ SG. In particular, the two have equal levels. If the level is irrational, then they are
points, so they are equal. If the level is rational, denote it by a. The non-liminality of G gives
an intersection of closed root half-spaces which contains the face SG and whose intersection
with δ−1(a) equals spanS. This proves that SG is no larger than S, as desired. □

We remind the reader that, when S has irrational level, all faces of HspanS are non-liminal
by definition (2.2.4). When S has rational level, each non-liminal face of HspanS is upward
or downward (but not both), and spanS is liminal unless S is a liminal chamber.

Roughly speaking, the theorem says that every double affine face can be specified by
choosing a point p ∈ A and a face of Hp. The issue is that a given double affine face can
be specified in multiple ways. To remove the redundancy, we replace the point p by the
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unique face which contains it (which is necessarily a support face), and we require that the
Hp-chamber is non-liminal.

2.5. Separation and adjacency.

2.5.1. Two chambers are separated by a wall Hα if the root α takes different signs on the
two chambers. Two chambers are adjacent if they are separated by exactly one wall. Given
three chambers C1, C2, C3, we say that C2 is between C1 and C3 if there is no wall separating
C2 from C1 and C3.

2.5.2. Lemma. If C1 and C3 are distinct non-adjacent chambers, then there exists another
chamber C2 which lies between them.

Proof. Let C loc
1 denote the projection of C1 to HC1

, which is non-liminal. For every wall H

of C loc
1 , there exists a unique chamber CH of HC1

which is adjacent to it along H. If any

H separates C3 from C1, then C2 = C̃1CH works. From now on, assume that no such H
exists. This means that the projection of C3 to HC1

equals C loc
1 , i.e. C̃1C3 = C1.

If C1 = C3, then C3 = C̃3C3 = C̃1C3 = C1, contradiction. Thus, C1 ̸= C3.

Suppose that C1, C3 are disjoint. Then we can find another support set S (disjoint from
C1, C3) and distinct collinear points, as shown, with p2 lying between p1 and p3.

p1 ∈ relintC1, p2 ∈ relintS, p3 ∈ relintC3

We claim that C2 = S̊C3 works. First, the collinearity implies that C̃1S̊C̃3 = C̃1C̃3, so

C̃1C2 = C̃1S̊C3 = C̃1S̊C̃3C3 = C̃1C̃3C3 = C̃1C3 = C̃1C1.

Next, suppose for sake of contradiction that a root α is positive on C2 and negative on C1

and C3. Then it is nonnegative on p2 and nonpositive on p1 and p3, so the collinearity
implies that it is zero on p1, hence on C1. Now C̃1C2 = C̃1C1 implies that α(C2) and α(C1)
have the same sign, contradiction.

Lastly, suppose that C1, C3 are not disjoint. Then δ(C1) = δ(C3) = (rational), and we
may assume without loss of generality that C1 ⊊ C3. Since the projection of C3 to HC1

equals C loc
1 , the definition of supports implies that C3 ⊂ spanC1, contradiction. □

2.5.3. Remark. This proof shows that two chambers C1 and C3 are adjacent if and only if
C1 = C3 and their projections to HC1

are adjacent.

2.6. Topology.

2.6.1. Recall that Faces(H) = limFaces(H′) where H′ runs over locally finite subarrange-
ments. Then a similar equality holds for the subsets of chambers, which we denote by
Chambers(−) ⊆ Faces(−). Let us equip Chambers(H) with the inverse limit topology. This
topology is generated by the root half-spaces.
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2.6.2. Lemma. Let H′ be a locally finite subarrangement whose chambers are bounded,
and let p : Chambers(H) → Chambers(H′) be the projection map. The fibers of p are
homeomorphic to the Cantor set, so Chambers(H) is homeomorphic to a countable disjoint
union of Cantor sets.

Proof. For each C ∈ Chambers(H′), the fiber p−1(C) is obtained by taking the limit as C
is increasingly subdivided by the walls of H. Now apply this well-known characterization
of the Cantor set: an inverse limit of finite sets limi∈Z≥0

Si is homeomorphic to the Cantor
set if and only if, for each i and each s ∈ Si, there exists j > i such that the preimage of s
under Sj → Si has size ≥ 2. The condition holds because the walls of H are dense. □

2.6.3. Neighborhood basis. Fix a chamber C and write a = δ(C). A C-wedge is any subset
S ⊂ A constructed as follows. Let C loc be the projection of C to HC .

• Assume a ∈ Q. Choose finitely many affine functions fi on spanC whose nonnegative

half-spaces cut out C, and arbitrarily extend them to f̂i ∈ A∗. If C loc is upward,
then define

S = C loc ∩

(︄⋂︂
i

{︂
f̂i − nδ + naπ ≥ 0

}︂)︄
for any n > 0. If C loc is downward, use +n instead of −n.

• Assume a /∈ Q. Choose a closed ball B such that C ∈ intB, and define

S = C loc ∩B.

Lemma. The chamber sets {C ′ ⊂ S}, where S ranges over C-wedges, determine a neigh-
borhood basis of C.

Proof. An obvious neighborhood basis of C is given as follows: for each finite intersection of
root half-spaces containing C, take the set of chambers contained in the intersection. Thus,
it suffices to show that every such intersection contains a C-wedge, and vice versa.

Fix a finite intersection of root half-spaces containing C. In the definition of S, the first

factor C loc ensures that S is contained in the root half-spaces whose walls contain C. For
all other root half-spaces, the second factor of S can be chosen small enough so that the
intersection contains S, as desired.

Now fix a C-wedge S. Since C loc is non-liminal, C loc is the intersection of finitely many
root half-spaces. It remains to choose a finite intersection of root half-spaces which contains
C and lies in the second factor in the definition of S.

If a ∈ Q, choose finitely many roots α whose restrictions to spanC cut out C. These
roots are positive on C̃ and hence C. Fix n such that na is an integer and replace each α
by α± (nδ−naπ). If n is sufficiently large, the intersection of the resulting root half-spaces
will lie in S.

Now suppose that a /∈ Q. For any root α, integer N > 0, and real number ϵ > 0, there
are infinitely many roots of the form α+ nδ +mπ such that n > N and

α(C) + na+m ∈ (0, ϵ).
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(Proof: Z>N · a + Z is dense in R.) The statement remains true if n > N is replaced by
n < −N . Using this statement, we can find a finite collection of roots which are positive
on C and hence C, such that the intersection of half-spaces is contained in B. (Proof:
Denote the intersection by D. By choosing a set of α’s which spans A∗, we ensure that D
is bounded. By choosing ϵ to be small, we ensure that D ∩ δ−1(a) lies in B. By choosing N
to be large, we ensure that δ(D) is a small interval, and moreover D ⊂ B.) □

2.6.4. Corollary. The map δ : Chambers(H)→ R is continuous.

Proof. For each chamber C and each real interval (a, b) containing δ(C), there exists a
C-wedge S whose closure is contained in δ−1((a, b)). Each chamber C ′ ⊂ S satisfies δ(C ′) ∈
(a, b), as desired. □

3. Galleries

3.1. Tours and galleries.

3.1.1. Ordered sets. Recall the following standard definitions concerning an ordered1 set I.

• A cut is a downwards-closed subset.

• A gap is a pair of elements i < j with no element between them. Equivalently, a
gap is a cut J such that J has a maximal element and I∖J has a minimal element.

• I is bounded if it has a minimal element 0̂ and a maximal element 1̂.

• I is complete if every subset of I has a supremum in I. This implies the same
statement with ‘infimum’ instead of ‘supremum.’ It is equivalent to require that
every cut equals [0̂, i) or [0̂, i] for some i ∈ I.

A map between bounded ordered sets is bound-preserving if it preserves 0̂ and 1̂.

3.1.2. A sequence of chambers is a pair (I, c) where I is an ordered set and c : I →
Chambers(H) is a map. We write ci in place of c(i).

Lemma. A sequence (I, c) converges if and only if it is eventually bounded and, for every
root α, the sequence α(ci) ∈ {−,+} is eventually constant.

Proof. Follows from the definition of the topology on chambers. □

For each wall H, the number of times the sequence crosses H is defined to be m − 1,
where m is the largest possible size of a finite subset J ⊂ I such that the sequence of signs
(α(cj))j∈J is alternating. This number lies in Z≥0 ⊔ {∞}. The sequence is reduced if each
wall is crossed at most once. Let Walls(I, c) be the multiset of walls crossed by the sequence.

The sequence (I, c) stutters if there exists an interval [i1, i2] with i1 < i2 such that the
restriction ([i1, i2], c) is constant.

1For us, an ‘ordered set’ is a linearly or totally ordered set. This is in contrast to a partially ordered set,

which is usually called a poset.
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3.1.3. A tour is a sequence of chambers (I, c) such that

• I is bounded.

• (I, c) is non-stuttering.

• Each wall is crossed only a finite number of times.

• Only finitely many walls are crossed more than once.

The last two conditions ensure that every tour can be (nonuniquely) expressed as the con-
catenation of finitely many reduced tours. The last condition also implies that every tour
has bounded image.

Define Tours(H) to be the category whose objects are tours, and a morphism (I, c) →
(I ′, c′) is a bound-preserving weakly increasing index map φ : I → I ′ satisfying c′φ = c
and Walls(I, c) = Walls(I ′, c′). These morphisms are called refinements. The non-stuttering
condition implies that φ is in fact strictly increasing.

3.1.4. Lemma. Tours(H) is a poset.

Proof. Let (I, c)→ (I ′, c′) be any morphism, with index map φ. The definition of morphisms
implies that, for any i, we have

Walls([0̂, i], c) = Walls([0̂, φ(i)], c′).

The non-stuttering condition implies that the multiset Walls([0̂, i], c) is strictly increasing in
i, and similarly for c′ in place of c. Thus, the displayed equation determines φ uniquely, i.e.
there is at most one morphism between any two objects. □

3.1.5. Fix a chamber C0. The weak Bruhat order centered at C0 is the partial order on
chambers defined as follows: C1 ⪯ C2 means that Walls(C0, C1) ⊆Walls(C0, C2).

2 Reduced
tours starting at C0 are equivalent to chains in the weak Bruhat order starting at C0.

Zorn’s lemma implies that every reduced tour can be refined to a reduced tour which is
maximal under refinement (i.e. a reduced gallery, as defined below). Since every tour can
be expressed as the concatenation of finitely many reduced tours, we can remove the word
‘reduced’ from the previous sentence.

3.1.6. Lemma. Let (I, c) be a chamber sequence which is the concatenation of two tours

([0̂, i], c) and ([i, 1̂], c). If there are only finitely many walls which separate ci from c0̂ and
c1̂, then (I, c) is a tour.

Proof. The only nontrivial point is to show that there are only finitely many walls which
are crossed by both ([0̂, i], c) and ([i, 1̂], c). Since ([0̂, i], c) is a tour, the sets of walls crossed

by ([0̂, i], c) and the two-step tour (c0̂, ci) differ by only finitely many elements. Similarly

for ([i, 1̂], c) and (ci, c1̂). Thus, it suffices to show that only finitely many walls are crossed
by both (c0̂, ci) and (ci, c1̂). This is equivalent to the hypothesis. □

2Here (C0, C1) and (C0, C2) are two-chamber tours. In this case, Walls(−) is a set.
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3.1.7. A gallery is a tour which is maximal under refinement.

Proposition. A tour (I, c) is a gallery if and only if these conditions hold:

(1) I is complete.

(2) c is continuous.

(3) c sends each gap to a pair of adjacent chambers.

Proof. First, suppose that (I, c) is a gallery. We will prove (1), (2), (3).

Proof of (1) and (2). Let J ⊂ I be any cut which has no maximal element. It suffices to

show that J = [0̂, i) for some i and that c is continuous from the left at i. (A symmetrical
argument shows that c is continuous from the right at i.)

The definition of tours implies that the subsequence (J, c) is bounded and crosses each
wall finitely many times. Lemma 3.1.2 implies that the subsequence converges to some
chamber C. Define a refinement (I, c)→ (I ′, c′) by inserting a new index j right after J and
defining c′j = C. This does not change the number of times any wall is crossed. Since (I, c)

is a gallery, (I ′, c′) must fail to be a tour, so it stutters. This implies that I ∖ J = [i, 1̂] for
some i, and c′j = ci, because (I, c) is non-stuttering. This proves the claim.

Proof of (3). Suppose for sake of contradiction that i < j is a gap such that ci and cj are
not adjacent. Use Lemma 2.5.2 to find a chamber C between ci and cj , and refine (I, c) by
inserting C. This contradicts the assumption that (I, c) is a gallery.

Now suppose that (I, c) is a tour but not a gallery. We assume conditions (1) + (2) and
disprove (3).

Since (I, c) is not a gallery, there is a nontrivial refinement (I, c) → (I ′, c′). We may

assume that I ′ = I ∪ {j}. Define J = [0̂, j) so that I ∖ J = (j, 1̂]. Applying (1) shows that
one of the following descriptions is valid, where i, i′ ∈ I:

(A) J < j < [i, 1̂] = I ∖ J , and J has no maximum.

(B) J = [0̂, i] < j < I ∖ J , and I ∖ J has no minimum.

(C) J = [0̂, i] < j < [i′, 1̂] = I ∖ J .

Assume (A). Since (I ′, c′) is non-stuttering, c′j ̸= ci. Let H be any wall which separates
these two chambers. By (2), c is continuous, so there exists k ∈ J such that H does not
separate ck from ci. Then H is crossed more often by (I ′, c′) than by (I, c) contradiction.

A symmetrical argument rules out (B). Thus, (C) holds. Then i < i′ is a gap, but ci and
ci′ cannot be adjacent because c′j lies between them. This disproves (3). □

3.2. Expressions.

3.2.1. Fix a ‘start’ chamber C0. An expression is a sequence of walls (I, h) such that

• The fibers of h : I →Walls(H) are finite, and only finitely many have size ≥ 2.
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• For each cut J ⊂ I, there exists a (unique) chamber chJ such that the following are
equivalent, for each wall H:

– H separates C0 and chJ , i.e. H ∈Walls(C0, c
h
J).

– The number of j ∈ J such that H = hj is odd.

Thus, each expression gives rise to a chamber sequence (Cuts(I), ch).

3.2.2. Theorem. The map (I, h) ↦→ (Cuts(I), ch) gives a bijection from expressions to gal-
leries starting at C0.

The rest of this subsection is devoted to proving the theorem.

3.2.3. Lemma. The chamber sequence (Cuts(I), ch) is a gallery.

Proof. It is clearly a tour. We will check the three conditions of Proposition 3.1.7. The
index set Cuts(I) is complete because the supremum of a collection of cuts is given by their
union.

Next, we show that ch is continuous from the left at J ∈ Cuts(I). (A symmetrical
argument shows continuity from the right.) By Lemma 3.1.2, it suffices to check that ch is
bounded and, for every root α, the sign sequence (α(chJ′))J′⊂J is eventually constant. The
boundedness follows from the fact that ch is a tour. Take J ′ ⊂ J to be large enough so that
Hα /∈ h(J ∖ J ′). Then the sign sequence is constant after J ′, because any two chambers
which occur after J ′ are separated only by walls in h(J ∖ J ′).

Finally, we show that every gap gives a pair of adjacent chambers. In fact, if J ⊂ J ′ is
a gap, then J ′ = J ∪ {i} for some i. By construction, R+(chJ′) differs from R+(chJ) only for
the wall hi, so the two chambers are adjacent along hi. □

3.2.4. Let (I, c) be a gallery. Let Walls′(I, c) be the set of wall-crossing pairs (H,n), where
n is a positive integer and H is a wall which is crossed at least n times. For each pair (H,n),
define a cut of I as follows:

cut(H,n) := {i | ([0̂, i], c) crosses H fewer than n times}.

Intuitively, this cut tells us when (I, c) crosses H for the n-th time.

Lemma.

(i) Each cut(H,n) is the cut of some gap i < j, and ci and cj are adjacent along H.

(ii) The map cut : Walls′(I, c)→ Gaps(I) is a bijection.

Proof. Proof of (i). Since I is complete, cut(H,n) and its complement have a supremum and
an infimum in I. Since c is continuous, these subsets are closed, so they have a maximum
and a minimum. This means that cut(H,n) is the cut of some gap i < j. The definition of
cut(H,n) implies that ci and cj are separated by H.

Proof of (ii). The inverse map sends a gap i < j to (H,n), where H is the adjacency wall

for ci and cj , and n is the number of times ([0̂, j], c) crosses H. □



27

3.2.5. Let I be any ordered set. There is a weakly increasing map

γ : I → Cuts(Gaps(I))

defined by i ↦→ {all gaps lying below i}.

Lemma. If I is complete, and any two elements are separated by a gap, then γ is a bijection.

Proof. If any two elements are separated by a gap, then the above map is strictly increasing,
hence injective. To show that it is surjective, choose any (ia < ja)a∈A ∈ Cuts(Gaps(I)). Take
i = supa∈A ja, which exists because I is complete. We claim that i maps to the chosen cut.
If not, then there is some other gap i′ < j′ which lies above all ia < ja and lies below i. But
then i′ is a strictly smaller upper bound of the ja, contradiction. □

3.2.6. Corollary. If (I, c) is a gallery, then γ is a bijection.

Proof. In view of the previous lemma, it suffices to show that any two elements i < j of
I are separated by a gap. First, suppose that ci ̸= cj . Let H be any wall which separates

these two chambers, and let n be the number of times ([0̂, j], c) crosses H. Then cut(H,n)
contains ci but not cj . By Lemma 3.2.4(i), this cut corresponds to a gap, and it separates
i and j, as desired.

If ci = cj , then the non-stuttering condition gives an index i < k < j with ck ̸= ci. Now
replace i < j by i < k and use the previous argument. □

3.2.7. We now construct the inverse map for Theorem 3.2.2. Given a gallery (I, c), define
an expression (Gaps(I), hc) as follows: for each gap i < j, define hc

i<j to be the wall along
which ci and cj are adjacent.

Lemma. This is an expression whose chamber sequence equals (I, c).

Proof. The previous corollary says that γ : I → Cuts(Gaps(I)) is a bijection. It re-
mains to prove that, for each i ∈ I, the chamber ch

c

γ(i) exists and equals ci. The proof

of Lemma 3.2.4(ii) gives a bijection

Gaps([0̂, i])→Walls′([0̂, i], c),

so ch
c

γ(i) is characterized by the requirement that Walls(C0, c
hc

γ(i)) equals the set of walls which

appear an odd number of times in Walls′([0̂, i], c). The chamber ci satisfies this requirement,
so ch

c

γ(i) exists and equals ci, as desired. □

3.2.8. Lemma. Let (I, h) be an expression. Then (I, h) = (Gaps(Cuts(I)), hch).

Proof. There is a bijection I ≃ Gaps(Cuts(I)) sending i to the gap [0̂, i) ⊂ [0̂, i]. It remains
to prove that

hch

[0̂,i)⊂[0̂,i]
= hi.

By definition, the left hand side is the wall along which ch
[0̂,i)

and ch
[0̂,i]

are adjacent. The

definition of these chambers implies that this wall is hi, as desired. □

We have constructed mutually inverse maps between expressions and galleries starting at
C0. This concludes the proof of Theorem 3.2.2.
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3.3. Positivity.

3.3.1. Positive pairs. Choose a finite subset Rfin ⊂ R such that Rfin+Zδ+Zπ = R. Define a
root αfin+nδ+mπ to be upward if n > 0 and downward if n ≤ 0. For any pair of chambers
(C1, C2), define Roots(C1, C2) := R+(C2) ∖ R+(C1). The pair is positive if Roots(C1, C2)
contains only finitely many downward roots. This does not depend on the choice of Rfin.

Lemma. If (C1, C2) and (C2, C3) are positive, then so is (C1, C3).

Proof. Follows from Roots(C1, C3) ⊆ Roots(C1, C2) ⊔ Roots(C2, C3). □

Remark . In the classical setting, every pair of chambers is positive, because the hyperplane
arrangement is locally finite, and all of the material in this subsection is trivially true.

3.3.2. A tour (I, c) is positive if (c0̂, c1̂) is positive.

Lemma. A concatenation of two positive tours is a positive tour.

Proof. Denote the concatenation by (I, c), with ([0̂, i], c) and ([i, 1̂], c) being the two tours.
Since (c0̂, ci) and (ci, c1̂) are positive, the previous lemma implies that (c0̂, c1̂) is positive. It
remains to show that (I, c) is a tour. By Lemma 3.1.6, it suffices to show that only finitely
many walls separate ci from c0̂ and c1̂. Such a wall gives a downward root in exactly one of
Roots(c0̂, ci) or Roots(ci, c1̂). The positivity of these pairs implies that there are only finitely
many such walls. □

For any finite chamber sequence ([n], c), define its steps to be the pairs (ci−1, ci) for
i ∈ [1, n]. The previous lemma implies that, if each step is positive, then ([n], c) is a positive
tour. The next lemma implies the converse.

3.3.3. Lemma. If (I, c) is a positive tour, then (ci, cj) is positive for every i < j.

Proof. We have

Roots(c0̂, c1̂) =
(︂
Roots(c0̂, ci) ∪ Roots(ci, cj) ∪ Roots(cj , c1̂)

)︂
∖ (canceling pairs)

where the last term consists of pairs {α,−α} for which α and −α come from different
factors in the disjoint union. Suppose for sake of contradiction that Roots(ci, cj) contains
infinitely many downward roots. Since Roots(c0̂, c1̂) contains only finitely many downward
roots, there must be infinitely many canceling pairs. This means that (I, c) double-crosses
infinitely many walls, contradiction. □

3.3.4. Classification of positive pairs.

Proposition. A pair (C1, C2) is positive if and only if one of the following hold:

(i) δ(C1) < δ(C2).

(ii) δ(C1) = δ(C2) /∈ Q and C1 = C2.

(iii) δ(C1) = δ(C2) ∈ Q, and one of the following is true:

• Both chambers are [downward or liminal] and C1 ⊆ C2.

• Both chambers are [upward or liminal] and C1 ⊇ C2.
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• C1 is downward, C2 is upward, and some face of H|δ−1(a) is ⪰ to both supports.
(Here a := δ(C1).)

In particular, if (C1, C2) is positive, then δ(C1) ≤ δ(C2).

Proof. Assume that δ(C1) < δ(C2). If α
fin + nδ +mπ lies in Roots(C1, C2), then

αfin(C1) + nδ(C1) +m ≤ 0

αfin(C2) + nδ(C2) +m ≥ 0,

which implies n
(︁
δ(C2) − δ(C1)

)︁
≥ αfin(C1) − αfin(C2). Only finitely many n ≤ 0 can

satisfy this inequality. Then, for a fixed n, only finitely many m can satisfy both displayed
inequalities. This shows that Roots(C1, C2) contains finitely many downward roots, so
(C1, C2) is positive.

Assume that δ(C1) > δ(C2). For any αfin, we can find infinitely many integers n ≤ 0 and
m such that

αfin(C1) + nδ(C1) +m < 0

αfin(C2) + nδ(C2) +m > 0.

This gives infinitely many downward roots in Roots(C1, C2), so (C1, C2) is not positive.

From now on, assume that δ(C1) = δ(C2) and denote this level by a.

Assume that a /∈ Q and that C1 = C2. Each root in Roots(C1, C2) is zero on the shared
support. Since a /∈ Q, there are finitely many such roots, so (C1, C2) is positive.

Assume that a /∈ Q and that C1 ̸= C2. Choose a root αfin which takes different values
on the supports. As in the proof of Lemma 2.6.3, there exist infinitely many roots of the
form αfin + nδ +mπ, with n ≤ 0, which are negative on C1 and positive on C2. These are
downward roots in Roots(C1, C2), so (C1, C2) is not positive.

From now on, assume that a ∈ Q. There exists an integer N > 0, depending only on C1

and C2, such that any root α = αfin + nδ +mπ with n < −N satisfies the following:

• If C1 is downward, then α(C1) > 0 if and only if α(C̃1) ≥ 0.

• If C1 is upward, then α(C1) > 0 if and only if α(C̃1) > 0.

• Same statements for C2.

It is clear that all but finitely many downward roots in Roots(C1, C2) must be of this form,
so we may restrict attention to downward roots of this form. Now we split into several cases:

• Suppose that both chambers are [downward or liminal].

Then the pair (C1, C2) is positive if and only if there do not exist any α (of the

above form) such that α(C̃1) < 0 and α(C̃2) ≥ 0. (Proof: If there exists one such
root, then there exist infinitely many. Also, a chamber C is liminal if and only if
C = C̃, so it is easy to adapt the above bullets to the liminal case.)

This condition is equivalent to ‘α(C̃2) ≥ 0 implies α(C̃1) ≥ 0,’ which is equivalent
to C1 ⊆ C2.
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• Suppose that both chambers are [upward or liminal].

Then the pair (C1, C2) is positive if and only if there do not exist any α such

that α(C̃1) ≤ 0 and α(C̃2) > 0.

This condition is equivalent to ‘α(C̃1) ≤ 0 implies α(C̃2) ≤ 0,’ which is equivalent
to C1 ⊇ C2.

• Suppose that C1 is downward and C2 is upward.

Then the pair (C1, C2) is positive if and only if there do not exist any α such

that α(C̃1) < 0 and α(C̃2) > 0.

This is equivalent to the condition that some face of H|δ−1(a) is ⪰ to C̃1 and C̃2.

• Suppose that C1 is upward and C2 is downward.

Then the pair (C1, C2) is positive if and only if there do not exist any α such

that α(C̃1) ≤ 0 and α(C̃2) ≥ 0.

This is equivalent to ‘α(C̃2) ≥ 0 implies α(C̃1) > 0.’ This implies that C1 = C2

and both are liminal chambers, but that contradicts the hypothesis of this case. □

3.4. Structure of positive galleries.

3.4.1. Let (I, c) be a positive gallery.

Lemma. The map δc : I → R is weakly increasing, and its image equals [δ(c0̂), δ(c1̂)].

Proof. Since each pair (ci, cj) with i < j is positive, the classification of positive pairs
implies that δ(ci) is weakly increasing. Thus, the image of δc lies in [δ(c0̂), δ(c1̂)]. Recall
that δ and c are continuous (2.6.4, 3.1.7), so δc is continuous. If the image fails to contain
some a ∈ (δ(c0̂), δ(c1̂)), then continuity implies that (δc)−1([δ(c0̂), a]) and (δc)−1([a, δ(c1̂)])
are disjoint closed subsets of I. Since I is complete, these two subsets have a maximum
and minimum element (respectively), and these two elements are a gap i < j. Since ci and
cj are adjacent, Remark 2.5.3 implies that their supports are equal, so δ(ci) = δ(cj). This
contradicts the fact that δ(ci) < a and δ(cj) > a. □

Thus, for any a ∈ [δ(c0̂), δ(c1̂)], the fiber (δc)−1(a) ⊂ I is a nonempty bounded interval.
Let us fix a and study the subgallery ((δc)−1(a), c).

3.4.2. Lemma. If a /∈ Q, then (δc)−1(a) is finite.

Proof. The classification of positive pairs implies that the supports (ci)i∈(δc)−1(a) are con-
stant. Denote this common support by S. Any wall which separates any two of these
chambers must lie in HS . Since HS is finite, (δc)−1(a) must be finite as well; otherwise
some wall in HS would be crossed infinitely often. □

3.4.3. Now assume that a ∈ Q. The classification of positive pairs implies that the sequence
(ci)i∈(δc)−1(a) is unimodal. More precisely, there is a weakly increasing surjective map

φ : (δc)−1(a) → [m], a sequence of support sets ([m], s), and a ‘mode’ index k ∈ [m] such
that the following hold:
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• For all i ∈ (δc)−1(a), we have ci = sφ(i).

• ([0, k], s) is strictly increasing, and ([k,m], s) is strictly decreasing.

• All chambers in the sequence (φ−1([0, k− 1]), c) are downward, and all chambers in
the sequence (φ−1([k + 1,m]), c) are upward.

The second bullet point implies that the sizes of [0, k] and [k,m] are at most dimA.

Lemma. If 0̂, 1̂ /∈ φ−1(k), then dim sk = dimA− 1.

The hypothesis says that φ−1(k) does not occur at the beginning or end of I.

Proof. Suppose for sake of contradiction that dim sk < dimA− 1, so that Hsk is a pre-affine
arrangement with at least one non-horizontal wall (hence infinitely many). This implies
that a sequence of downward chambers in Hsk cannot converge to an upward chamber, and
vice versa. Also, a downward chamber in Hsk cannot be adjacent to an upward chamber.

By construction, every chamber in the gallery (I, c) projects to an upward or downward

(i.e. not liminal) chamber of Hsk . Since 0̂, 1̂ /∈ φ−1(k), the third bullet point above implies
that both upward and downward projections occur. Since (I, c) is positive, the downward
projections must come before the upward projections. Thus, there exists a cut J ⊂ I such
that (J, c) (resp. (I ∖ J, c)) projects to downward (resp. upward) chambers in Hsk , and J
and I ∖ J are both nonempty.

Since projection preserves convergence, the first paragraph of this proof implies that J
has a maximal element, and similarly I ∖ J has a minimal element. These two elements
give a gap of I, denoted i < j. Since (I, c) is a gallery, ci is adjacent to cj , contradicting
the first paragraph. □

Lemma.

(i) φ−1(k) is finite. If dim sk = dimA− 1, then |φ−1(k)| ≤ 2.

(ii) If j ∈ [0, k − 1], then φ−1(j) ≃ Z≥0.

(iii) If j ∈ [k + 1,m], then φ−1(j) ≃ Z≤0.

Proof. First, consider j ∈ [0,m] such that dim sj = dimA− 1. This forces j = k. To prove
that |φ−1(k)| = 1 or 2, we split into two subcases:

• If δ−1(a) is a wall, then Hsk consists of just that wall. There are exactly two
chambers C1, C2 with support sk, and C1 is downward while C2 is upward. The
pair (C2, C1) is not positive (Proposition 3.3.4), so (φ−1(k), c) can only be (C1),
(C2), or (C1, C2).

• If δ−1(a) is not a wall, then Hsk is empty. Then there is exactly one chamber C with
support sk (and C is liminal). The non-stuttering property of the gallery implies
that (φ−1(k), c) = (C), which has length 1.

Next, consider j ∈ [0,m] such that dim sj < dimA − 1. The reasoning of the previous
proof implies that (φ−1(j), c) projects to a gallery in Hsj consisting of all-upward or all-

downward chambers. This implies that the ordered set φ−1(j) is finite or isomorphic to one
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of Z≥0,Z≤0,Z. (If not, then the gallery in Hsj stutters or crosses some wall infinitely often,
contradiction.)

If φ−1(j) has no minimal element, then it does not contain its infimum i. Since the gallery
(I, c) is continuous, (φ−1(j), c) converges (downward) to ci. This implies that sj ⊊ ci.

Similarly, if φ−1(j) has no maximal element, then it does not contain its supremum i′,
which implies that sj ⊊ ci′ .

Suppose that j = k. By definition, sk is the largest level-a support among the chambers
in the gallery. Therefore, it is not possible to have sk ⊊ ci or sk ⊊ ci′ . We conclude that
φ−1(k) is finite.

At this point, we know that φ−1(k) is finite, regardless of whether dim sk = dimA− 1.

Suppose that j < k. Then it is not possible to have sj ⊊ ci, so φ−1(j) must have a
minimal element. If it has a maximal element, then there is a gap consisting of that element
and the minimal element of φ−1(j+1),3 but the two corresponding chambers have different
supports so they cannot be adjacent, contradiction. Thus, φ−1(j) does not have a maximal
element, so it must be isomorphic to Z≥0.

Suppose that j > k. A symmetrical argument shows that φ−1(j) ≃ Z≤0. □

3.4.4. Corollary. The union of supports ∪i∈Ici is closed.

Proof. We fix p ∈ A which does not lie in any support and construct a neighborhood
p ∈ U which is disjoint from the supports. Define a = δ(p). If a /∈ [δ(c0̂), δ(c1̂)], then take
U = δ−1(R∖ [δ(c0̂), δ(c1̂)]). From now on, assume that a ∈ [δ(c0̂), δ(c1̂)].

Decompose I = I<a⊔Ia⊔I>a based on whether δ(ci) is less than a, equal to a, or greater
than a. The union of supports decomposes analogously into three parts:

∪i∈Ici = (∪i∈I<aci) ⊔ (∪i∈Iaci) ⊔ (∪i∈I>aci).

We claim that the middle part is closed. If a /∈ Q, then Lemma 3.4.2 implies that the
middle part is a point. If a ∈ Q, the middle part is a union of closures of faces of the affine
arrangement H|δ−1(a). This is closed because the affine arrangement is locally finite.

Lemma 3.4.1 says that Ia is nonempty. Therefore, the supremum of I<a, denoted i, lies
in I<a or Ia. If i ∈ I<a, then there are no chambers at any level between δ(ci) and a, which
contradicts the fact that the image of δc is a real interval. Thus, i ∈ Ia.

Choose a neighborhood p ∈ U and a ci-wedge S such that U is disjoint from the middle
part and S. Since (I<a, c) converges to ci, Lemma 2.6.3 implies that the supports (I<a, c)
are eventually contained in S, say after some index j ∈ I<a. Shrink U so that it contains no
points at level ≤ δ(cj). Then U is disjoint from the first two parts. A symmetrical argument
allows one to make U disjoint from all three parts. □

Remark . If all supports were points, the corollary would imply that ∪i∈Ici is a continuous
section of δ over [δ(c0̂), δ(c1̂)], i.e. the graph of a continuous ‘function’ on this interval. This
is not true because the rational-level supports can be larger than points. However, 3.4.3

3Why does φ−1(j + 1) have a minimal element? If j + 1 < k, this follows from the previous sentence. If

j + 1 = k, this follows from the previous paragraph.
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tells us that, when a ∈ Q, the level-a subset ∪i∈Iaci equals a face closure of H|δ−1(a). Thus,
the ‘function’ may be discontinuous at any a ∈ Q, but the discontinuities are bounded, and
the bound becomes tighter as the denominator of a increases.

3.4.5. Define the map δgap : Gaps(I)→ R as follows. If i < j is a gap, ci and cj are adjacent,
so their supports agree (2.5.3). Define δgap(i < j) := δ(ci) = δ(cj).

Lemma. The image of δgap is an at-most-countable dense subset [δ(c0̂), δ(c1̂)].

Proof. Since the multiset of walls crossed by (I, c) is at-most-countable, Lemma 3.2.4(ii)
implies that Gaps(I) is at-most-countable, so the image of δgap is at-most-countable as well.
Lemma 3.4.1 says that δc is weakly increasing with image equal to [δ(c0̂), δ(c1̂)], and the
proof of Corollary 3.2.6 implies that every two elements of I are separated by a gap, so the
image of δgap is dense in this interval. □

3.4.6. To conclude this section, let us summarize what we know about the index set of a
positive gallery (I, c) assuming that δ(c0̂) < δ(c1̂). First, we discuss Gaps(I). The image
of δgap is isomorphic to one of the ordered sets Q,Q≤0,Q≥0,Q ∩ [0, 1] by Lemma 3.4.5 and
Cantor’s Isomorphism Theorem. Each fiber of δgap is an ordered set of the form

Z≥0 ⊔ · · · ⊔ Z≥0⏞ ⏟⏟ ⏞
<dimA copies

⊔ S ⊔ Z≤0 ⊔ · · · ⊔ Z≤0⏞ ⏟⏟ ⏞
<dimA copies

,

where S is finite, by 3.4.2 and 3.4.3.

Now we discuss I. It is isomorphic to Cuts(Gaps(I)) by Corollary 3.2.6. A special case of
Lemma 2.6.2 says that Cuts(Q) is isomorphic to the Cantor set K. Similarly, the Cuts(−)
of Q≤0,Q≥0,Q∩ [0, 1] are given by K ⊔ {∗}, {∗} ⊔K, and {∗} ⊔K ⊔ {∗}, respectively. The
previous paragraph implies that Cuts(Gaps(I)) can be obtained by starting with one of these
four sets and replacing each gap with an ordered set of the form

Z≥0 ⊔ · · · ⊔ Z≥0⏞ ⏟⏟ ⏞
<dimA copies

⊔ S′ ⊔ Z≤0 ⊔ · · · ⊔ Z≤0⏞ ⏟⏟ ⏞
<dimA copies

,

where S′ is finite and nonempty.

In fact, 3.4.3 tells us a little bit more. It implies that, when a gap is being replaced by
the above ordered set, and one of the following hold, then |S′| ≤ 2:

• The gap does not involve the element ∗, and there is at least one Z≥0 or Z≤0.

• Z≥0 and Z≤0 both appear.

• There are dimA− 1 copies of Z≥0.

• There are dimA− 1 copies of Z≤0.
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4. Bruhat order

4.1. Double affine Coxeter arrangement.

4.1.1. Affine-type Kac–Moody arrangement. Let Gfin be a simply-connected simple group.

• hfin is the Lie algebra of the torus of Gfin.

• Rfin is the set of roots.

• Rfin,∨ is the set of coroots.

• Λfin,∨ is the coweight lattice.

• W fin is the finite Weyl group.

Next, define

haff = hfin ⊕ Rd⊕ RK

haff,∨ = (hfin)∨ ⊕ Rδ ⊕ RΛ0.

Here δ(d) = 1, Λ0(K) = 1, and all other nonobvious evaluations are zero. The affine-type
Kac–Moody arrangement is given by the real affine roots

Raff = Rfin + Zδ ⊂ haff,∨.

This is a pre-affine arrangement in haff .

• Λaff,∨ = Λfin,∨ ⊕ Zd⊕ ZK is the affine coweight lattice.

• W aff = W fin ⋉ ZRfin,∨ is the affine Weyl group.

This arrangement governs the Kac–Moody group ind-scheme Gaff and its Lie algebra

gaff ≃ gfin[s, s−1]⊕ k d⊕ kK.

The roots of gaff are given by Raff ⊔ Zδ. The roots in Zδ are called imaginary affine.

4.1.2. W aff is a reflection group. Define a symmetric bilinear form on haff as follows:

• On hfin, it is the Killing form.

• On Rd⊕ RK, it satisfies ⟨d, d⟩ = ⟨K,K⟩ = 0 and ⟨d,K⟩ = 1.

• hfin is orthogonal to Rd⊕ RK.

Viewed as a map ν : haff → haff,∨, this form sends d ↦→ Λ0 and K ↦→ δ. For each root
α ∈ Raff , the orthogonal reflection through Hα is denoted rα. (The orthogonal reflection
exists because Raff does not include the imaginary roots.) The reflections rα generate a
group isomorphic to W aff . This gives a representation W aff ↷ haff .

Remark . The preceding material comes from [Kac, §6]. However, we have made the follow-
ing notational replacements:
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Kac us Kac us

h̊ hfin h haff

∆̊ Rfin ∆re Raff

Q̊∨ ZRfin,∨

Λ̊∨ Λfin,∨ Λ∨ Λaff,∨

W̊ W fin W W aff

To deduce the above material from [Kac, §6], it is helpful to note that ‘nontwisted’ means
r = 1. According to §6.1 in [Kac], r = 1 implies a0 = 1, and it is always true that a∨0 = 1.

Also, when r = 1, Proposition 6.5 in [Kac] says that W ≃ W̊ ⋉ Q̊∨, because in that case
(6.5.8) implies that the lattice M identifies with the coroot lattice via ν.

4.1.3. The double affine Coxeter arrangement is given by the roots

R = Raff + Zπ ⊂ (haff)∗

Here haff is treated as an affine space, and π is the constant function with value 1. This
gives a double affine arrangement in haff .

Since Raff includes only the real affine roots, this arrangement has no horizontal walls.

4.1.4. Weyl group. Recall that the action W aff ↷ haff leaves the affine coweight lattice Λaff,∨

invariant. Define the extended double affine Weyl group to be

W̃ := W aff ⋉ Λaff,∨.

It acts faithfully on haff , with Λaff,∨ acting by translations. The double affine Weyl group
W ⊂ W̃ is the subgroup generated by orthogonal reflections across the double affine walls.
The subgroup of central translations is defined to be W ∩ ZK and is finite index in ZK.

For every face F , the local Weyl group WF ⊂ W is the subgroup generated by the
reflections which fix F , or equivalently fix spanF pointwise. Note that WF does not contain
any translations. If F is horizontal, then F is rational-level, the local arrangement HF

is pre-affine (and nonempty), and WF is an affine Coxeter group; otherwise, HF is finite
(possibly empty), and WF is a finite Coxeter group.

Define the Weyl groupoid W as follows: objects are chambers, a morphism C1 → C2

is an element w ∈ W such that wC1 = C2, and composition of morphisms is given by
group multiplication. A morphism is called a reflection arrow if w is a reflection. Since
wC1 = wC1, morphisms preserve levels. The set of morphisms between two fixed chambers
is a torsor for the group of central translations.

4.1.5. Definition of H. The irrelevant space of the aforementioned arrangement is RK. It
will be more convenient to work with the quotient

h = haff/RK = hfin ⊕ Rd
whose irrelevant space is {0}. From now on, let H denote the arrangement in the quotient.

This quotient does not affect the combinatorics of the hyperplane arrangement or the
definition of local Weyl groups. However, the action W ↷ h is not faithful because W
contains translations of the form nK ∈ Λaff,∨.
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4.2. Bruhat category.

4.2.1. A positive pair (C1, C2) is weak if δ(C1) = δ(C2) and strict if δ(C1) < δ(C2).

A wall H is supported for this pair if there exists a (positive) gallery from C1 to C2 which
crosses H. Explicitly, we have

• If the pair is weak, then H is supported if and only if C1 ⊂ H or C2 ⊂ H.

• If the pair is strict, then every wall is supported.

4.2.2. Fix a ‘fundamental’ chamber B. A chamber C is called positive, weak, or strict if
the pair (B,C) has this property.

A reflection arrow C
r−→ rC is oriented away from B if its wall does not separate B from

C. The arrow is supported if C is positive and the reflection wall is supported for (B,C).
This implies that rC is also positive (see Lemma 4.4.1, whose proof is self-contained).

• Let WB ⊂ W be the subcategory whose objects are positive chambers and whose
morphisms are generated by supported reflection arrows oriented away from B. This
is the Bruhat category centered at B.

• Let T be a positive chamber. Then ⟨T W−→ WB⟩ is the Bruhat preorder centered at
B and tethered to T .

We will show that this preorder is a partial order (Corollary 4.4.8), generalizing a theorem
of Muthiah, see [M1, Rmk. 4.26].

4.2.3. The classical case. Suppose that T is a weak chamber such that one of the supports
B or T is contained in the other.

Lemma. For every chamber C contained in ⟨T W−→ WB⟩, one of the supports B or C is
contained in the other.

Proof. Write a = δ(B) = δ(T ) and assume that it is rational, which is the harder case.
Since C = wT for some w ∈W , the supports C and T correspond to faces of the same type
in the affine arrangement H|δ−1(a). Since (B,C) is positive, B and C are both contained

in the closure of some chamber of H|δ−1(a) (Proposition 3.3.4), and similarly for B and T .

Now the desired containment for B and C follows from the analogous statement for B and
T , which we have taken as an assumption. □

With this lemma in mind, it is easy to see that ⟨T W−→ WB⟩ is isomorphic to one of the
following classically-studied partial orders on the Coxeter group WB∩T (which is finite or
affine by 4.1.4):

• The ordinary Bruhat order.

• A semi-infinite Bruhat order, obtained by moving the fundamental chamber to in-
finity in some direction. (This only makes sense when the Coxeter group is affine.)

• The opposite of one of the above partial orders.
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These partial orders satisfy many good properties (see e.g. [BjBr, Ch. 2]), and the goal of
this section is to generalize some of these properties.

4.3. Length.

4.3.1. Fix a supported reflection arrow C
r−→ rC which is oriented away from B. A wall

H lengthens this arrow if H separates B from rB and separates C from rC. The arrow’s
length, denoted ℓB(−), is the number of such walls.

Lemma. The number of lengthening walls is finite.

Proof. Assume that C is strict. (The weak case is an exercise.) Then the sets C ∪ rαC and
B ∪ rαB are bounded and lie at different levels, so there are only finitely many walls which
intersect the convex hulls of both sets. □

The length is an odd positive integer because rH lengthens the arrow if and only if H
does, and the wall of r always lengthens the arrow. The length of a supported reflection
arrow oriented toward B is defined to be the negative of the length of the inverse arrow.

Remark . This definition of length comes from [MO]. As explained in [MO, 4.1], in the
classical setting we have

ℓB(C
rα−→ rαC) = #Walls(B, rC)−#Walls(B,C).

for any reflection arrow oriented away from B. In the double affine setting, both wall sets
are infinite, so we can only work with a suitably-defined difference.

4.3.2. Coplanarity. Here is the key to understanding the definition of ‘lengthening.’

Lemma. Let C
r−→ rC be a supported reflection arrow oriented away from B. There is no

wall which separates B and rC from rB and C.

Proof. We assume that C is strict and leave the weak case as an exercise. Choose points
b ∈ relintB and c ∈ relintC. If a wall H separates B and rC from rB and rC, then one of
its roots α satisfies α(b), α(rc) ≥ 0 and α(c), α(rb) ≤ 0. Since b, c, rc, rb are coplanar points
and form a (possibly degenerate) convex quadrilateral in that order, we conclude that α is
zero on all four points. Hence, H is a wall of the local arrangement Hspan(b,c,rc,rb). We may
now project everything to the local arrangement. Since C is strict, we have δ(b) < δ(c), so
the span of the four points is not horizontal, and the local arrangement is finite. Now choose
points b′ and c′ in the projections of B and C, and repeat the first half of this proof. □

There are 8 unordered partitions of {B, rB,C, rC} into two parts. The lemma says that
the partition {B, rC} ⊔ {rB,C} cannot be realized by a wall. Therefore, a wall lengthens
the arrow if and only if it determines the partition {B,C} ⊔ {rB, rC}.

Remark . By checking all 7 possible partitions, we find that

• If H lengthens the arrow, then H, rH ∈Walls(B, rC)∖Walls(B,C).

• If not, then H ∈Walls(B, rC)∖Walls(B,C) and rH ∈Walls(B,C)∖Walls(B, rC),
or vice versa.

In the classical setting, this proves the equation in the previous remark.
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4.3.3. Rational versus irrational levels. Using the explicit neighborhood basis for chambers
(2.6.3), one can show

Lemma. Fix a reflection r. The map from strict pairs to Z, defined by

(B,C) ↦→ ℓB
(︁
C

rα−→ rαC
)︁
,

is locally constant.

Let us call ⟨T W−→WB⟩ a rational-level Bruhat order if δ(T ) is rational, and similarly for
‘irrational.’ The lemma implies that every finite subposet of an irrational-level Bruhat order
is isomorphic to a subposet of a rational-level Bruhat order, in a way which preserves the
lengths of reflection arrows. (Proof: take a sequence of rational levels qn which converges to
the given irrational level. For each chamber C in the given finite subposet, take a sequence
of level-qn chambers which converges to C.)

We believe that the word ‘finite’ is necessary in this statement. Indeed, we will show
that every element of a rational-level Bruhat order has finitely many cocovers, but we also
believe that, at least when Gfin = SL2, some irrational-level Bruhat orders contain elements
with infinitely many cocovers (Remark 4.5.7). Thus, the statement would fail if we took
an (infinite) subposet of an irrational-level Bruhat order consisting of one minimal element
which is joined to infinitely many other elements by length-1 arrows.

4.4. Foldings.

4.4.1. Main definition. Suppose we are given a positive gallery (I, c) and a finite increasing
subsequence (ik < jk)k∈[1,m] ⊂ Gaps(I). Define a new chamber sequence

(I ′, c′) :=
(︁
[0̂, i1], c

)︁
⋄ · · · ⋄

(︁
[jk−1, ik], (r1 · · · rk−1)c

)︁
⋄ · · · ⋄

(︁
[jm, 1̂], (r1 · · · rm)c

)︁
,

where rk is the reflection across the adjacency wall hk for the chambers cik and cjk , and ⋄
denotes concatenation. The new index set I ′ is obtained from I by identifying ik ∼ jk, so
Gaps(I ′) equals Gaps(I) minus the chosen gaps. The new sequence (I ′, c′) is the folding of
(I, c) along the chosen gaps. The hk are the folding walls. The morphism in W given by

(r1 · · · rm)c
r1···rm−−−−→ c1̂

is the discrepancy of the folding.

Lemma. (I ′, c′) is a positive gallery.

Proof. For every w ∈W , the w-translate of a positive pair is positive. This is true because,
under w-translation, only a finite number of roots change from positive to negative or vice
versa (in the sense of 3.3.1). Thus, each of the ‘factors’ of (I ′, c′) is positive. This implies
that (I ′, c′) is positive, because the concatenation of positive tours is positive (Lemma 3.3.2).
Lastly, since (I, c) is maximal under refinement, so is (I ′, c′). □

Here are two equivalent ways to specify a finite increasing subsequence in Gaps(I):

(1) Give a surjective bound-preserving map I → I ′ with finite fibers such that finitely
many fibers have size ≥ 2.

(2) Give a sequence of wall-crossing pairs (hk, nk) ∈Walls′(I, c).
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For (1), the chosen gaps are the ones which appear in fibers of size ≥ 2. For (2), use
Lemma 3.2.4(ii) to get a bijection between Gaps(I) and Walls′(I, c). In practice, (2) is the
most convenient way. As the notation indicates, the first coordinates of the pairs (hk, nk)
will be the folding walls.

Define the folding category as follows. Its objects are positive galleries. A morphism
(I ′, c′) ↪→ (I, c) is an index map I → I ′ as in (1) such that (I ′, c′) is the corresponding
folding of (I, c). Morphisms compose in the obvious way. Taking the discrepancy gives a
functor from the folding category to W.

4.4.2. Excess. Fix a tour (I, c). For any wall H, define the H-excess e(H, c) as follows:

cross(H, c) := (number of times H is crossed by (I, c))

sep(H, c0̂, c1̂) := (1 if H separates c0̂ from c1̂ and 0 otherwise)

e(H, c) := cross(H, c)− sep(H, c0̂, c1̂)

This number is nonnegative and even, and it is nonzero for only finitely many H. Thus, we
may define the excess of (I, c) to be e(c) :=

∑︁
H e(H, c).

Lemma. For any i, if (c0̂, ci, c1̂) is reduced, then e(I, c) = e([0̂, i], c) + e([i, 1̂], c).

Proof. The cross(H,−) term is always additive. The sep(H,−) term is additive if (c0̂, ci, c1̂)
is reduced. □

4.4.3. Interaction with lengths. Intuitively, we want to write

(number of wall-crossings of (I, c)) = e(c) + (number of walls separating c0̂ from c1̂),

but this does not make sense because both sides are infinite. However, we can get an equality
of integers by subtracting two copies of this equation, as the next lemma shows.

Lemma. Let (I, c) be a positive gallery starting at B. Choose a wall-crossing pair (h, n)
which gives a single-wall folding (I ′, c′) ↪→ (I, c). Then

1 = e(c)− e(c′) + ℓB(c
′
1̂

rh−→ c1̂).

Proof. The result is equivalent to

1− ℓB(rhc1̂
rh−→ c1̂) =

∑︂
H

(︂
cross(H, c)− sep(H,B, c1̂)− cross(H, c′) + sep(H,B, rhc1̂)

)︂
,

because c0̂ = c′
0̂
= B and c′

1̂
= rhc1̂. To evaluate the sum, we pair up the terms for H and

rhH, to obtain

∑︂
{H,rhH}

H ̸=h

[︄
cross(H, c)− cross(H, c′) + cross(rhH, c)− cross(rhH, c′)

−
(︂
sep(H,B, c1̂)− sep(H,B, rhc1̂) + sep(rhH,B, c1̂)− sep(rhH,B, rhc1̂)

)︂ ]︄

+ cross(h, c)− cross(h, c′)−
(︂
sep(h,B, c1̂)− sep(h,B, rhc1̂)

)︂
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This manipulation is safe because all but finitely many summands are zero, as we have
already noted. The result will follow from

cross(H, c)− cross(H, c′) + cross(rhH, c)− cross(rhH, c′) = 0

cross(h, c)− cross(h, c′) = 1

sep(H,B, c1̂)− sep(H,B, rhc1̂)
+ sep(rhH,B, c1̂)− sep(rhH,B, rhc1̂)

=

{︄
±2 if H lengthens rhc1̂

rh−→ c1̂
0 otherwise

sep(h,B, c1̂)− sep(h,B, rhc1̂) = ±1
where the two ± signs are + if the reflection arrow is oriented away from B, and − otherwise.
As before, we assume that H ̸= h.

The first equation holds because reflecting part of (I, c) across h does not change the
combined number of crossings with H and rhH. The second equation holds because the
folding removes the n-th crossing with h. For the third equation, rewrite the LHS as

sep(H,B, c1̂)− sep(H,B, rhc1̂) + sep(H, rhB, rhc1̂)− sep(H, rhB, c1̂).

Then the equation follows by checking all 7 partitions in 4.3.2. The fourth equation follows
from the definition of the phrase ‘oriented away from B’ (4.2.2). □

4.4.4. Corollary. Every gallery (I, c) admits a reduced folding with trivial discrepancy.

Proof. Let us recall the classical ‘deletion’ algorithm. If (I, c) is nonreduced, then some
wall H is crossed at least twice. Use the wall-crossing pairs (H, 1), (H, 2) to get a folding
(I ′, c′) ↪→ (I, c) with trivial discrepancy. Repeat this process until (I ′, c′) is reduced.

In the double affine setting, to prove that this algorithm terminates, it suffices to show
that e(c′) = e(c) − 2, since the excess is a nonnegative integer. To show this, apply the
previous lemma twice, once for (H, 1) and once for (H, 2). (This assumes that (I, c) is a
positive gallery starting at B, so that ℓB(−) of the discrepancy is defined. The general case,
which we will not use, follows from adapting the proof of the previous lemma.) □

4.4.5. A disk in a groupoid is a sequence of arrows whose composite is an identity arrow.

Theorem. [MO, Thm. 3.7] Let C0 be an upward chamber supported at {0}, and let w ∈ W̃
be an element such that δ(wC0) > 0. If K is a disk of reflection arrows in W which contains
wC0, then the sum of ℓC0

(−) along K equals zero.

Proof. It suffices to prove the result for one choice of C0, because any other choice is related
to it by the W -action. For a suitable choice of C0, [MO, Thm. 3.7] asserts that

ℓC0(wC0
r−→ rwC0) = ℓMO(rw)− ℓMO(w),

for any reflection r, where ℓMO : {w | δ(wC0) > 0} → Z is a function defined in [MO, 3.2]
via an explicit formula. Summing along the disk K gives the result. □

4.4.6. Corollary. If K is a disk of supported reflection arrows in W, then the sum of ℓB
along K equals zero.

Proof. Let K = K0
rm−−→ Km−1

rm−1−−−→ · · · r1−→ K0 where rm = (r1 · · · rm−1)
−1. Choose a

gallery (I, c) from B to K0 and a sequence of wall-crossing pairs (h1, n1), . . . , (hm, nm) such
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that the sequence of discrepancy maps of the successive single-wall foldings

(Im, cm) (Im−1, cm−1) · · · (I0, c0) = (I, c)
(hm,nm) (hm−1,nm−1) (h1,n1)

equals K. (This is possible because the reflection arrows are supported. The idea is to
choose (I, c) to be sufficiently wiggly.) Applying Lemma 4.4.3 to each of these foldings gives

(sum of lengths along K) = m+ e(cm)− e(c).

We want to apply the previous theorem. By translating everything and choosing w ∈ W̃
appropriately, we may assume that (C0, B,K0, wC0) is a reduced positive tour. Choose
reduced galleries from C0 to B, and from K0 to wC0, and concatenate them to (I, c) to

obtain a larger gallery (Î , ĉ). Successively fold (Î , ĉ) along the same wall-crossing pairs

(hi, ni) to obtain galleries (Îi, ĉi), and take discrepancy maps to obtain a disk K̂ which
contains wC0. As before, we have

(sum of lengths along K̂) = m+ e(ĉm)− e(ĉ).

The previous theorem says that the left hand side is zero. Additivity of excess under
‘reduced’ concatenation (4.4.2) implies that the right hand side equals n + e(cm) − e(c).
Thus, the sum of lengths along K is also zero. □

4.4.7. Let WB,± ⊂W be the subgroupoid whose objects are positive chambers and whose
morphisms are generated by supported reflection arrows. This differs from WB because we
do not require that the reflection arrows are oriented away from B.

Corollary. There is a unique function ℓB : Arr(WB,±) → Z which is additive under
composition and sends every reflection arrow to its length.

Here Arr(−) denotes the set of arrows of a (small) category.

Proof. ℓB is uniquely determined because the morphisms of WB,± are generated by sup-
ported reflection arrows. The previous corollary guarantees that no contradictions arise. □

4.4.8. Corollary. For any positive chamber T , the preorder ⟨T WB,±

−−−−→WB⟩ is a poset, and
ℓB gives a strictly increasing function from its set of objects to Z.

Proof. Each nonidentity arrow in WB is a composition of reflection arrows oriented away
from B, so ℓB is positive on it. □

As a consequence, each Bruhat preorder ⟨T W−→ WB⟩ is a poset, because each of its

connected components identifies with some ⟨T WB,±

−−−−→WB⟩, possibly for a different T .

4.5. Cocovers.

4.5.1. A dihedral subarrangement of H is one which is generated by reflections through two
distinct walls. It may be finite, affine, or pre-affine.

Lemma. Fix a positive chamber C. Let H1, H2, H3 be three consecutive walls in a dihedral
subarrangement H′ such that

• Each one of H1, H2, H3 separates C from B.
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• The projections of B and C to H′ are not adjacent to H2.

• The reflection r2C
r2−→ C is supported.

After possibly switching H1 and H3, the arrow r2C
r2−→ C admits a nontrivial factorization

in WB which includes the arrow r1C
r1−→ C.

Proof. The projections of r1C and r2C to H′ are separated by exactly two walls, say H4, H5,
as shown in Figure 1. After possibly switching H1 and H3, we may assume that the two

Figure 1. The dihedral arrangement generated by H1, H2, H3 which is
used for factoring r2C → C.

reflection arrows

r2C
r5−→ r5r2C = r4r1C

r4−→ r1C

are oriented away from B. These compose with r1C
r1−→ C to give r2C

r2−→ C.

If C is weak, then the hypothesis that r2C
r2−→ C is supported implies thatH2 contains one

of B or C. Since the projections of B and C are not adjacent toH2, every wall ofH′ contains
one of B or C. Therefore, the reflection arrows discussed above are all supported. □

4.5.2. Corollary. Any non-identity arrow in WB factors into length-1 arrows. Thus, each

Bruhat poset ⟨T WB,±

−−−−→WB⟩ is graded by ℓB.

Proof. It suffices to show that every reflection arrow of length > 1 factors nontrivially into

reflection arrows oriented away from B. If a reflection arrow rαC
rα−→ C has length > 1, then

it is lengthened by some wall H ̸= Hα. Let H′ be the dihedral subarrangement generated
by H and Hα. Let H1 and H2 be the two walls of H′ which are next to Hα. Applying the

previous lemma to H1, Hα, H2 gives the desired factorization of rαC
rα−→ C. □

4.5.3. Assume that Gfin = SL2. In this case, the length-1 arrows were explicitly described
in [W, Prop. 21]. We review this description here.

The ambient space is h = R⊕ Rd, and points inside it will be denoted (x, y). There are
only two roots ±αfin of SL2, so the double affine roots are ±αfin + nδ +mπ. The walls are
in bijection with the roots of the form αn,m := αfin + nδ +mπ, and each wall is a line:

Hαn,m
= {(x, y) |x+ ny +m = 0}.
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We abbreviate Hn,m := Hαn,m and rn,m := rαn,m . For convenience, assume that δ(B) > 0.
(This can always be achieved by translation.)

We now fix a strict chamber C and seek to describe length-1 arrows ending at C. Choose
points (xb, yb) ∈ relintB and (xc, yc) ∈ relintC. Then 0 < yb < yc. Define the sets

S = {(n,m) |Hn,m separates C from B}
S+ = {(n,m) |αn,m is positive on C and negative on B}
S− = {(n,m) |αn,m is negative on C and positive on B}.

Then we have S = S+ ⊔ S− and

S̊+ := {αn,m(xb, yb) < 0 < αn,m(xc, yc)} ⊆ S+ ⊆ {αn,m(xb, yb) ≤ 0 ≤ αn,m(xc, yc)} =: S
+

S̊− := {αn,m(xb, yb) > 0 > αn,m(xc, yc)} ⊆ S− ⊆ {αn,m(xb, yb) ≥ 0 ≥ αn,m(xc, yc)} =: S
−

Explicitly, S
+

is the set of lattice points in a closed ‘sector’ bounded by two rays in the
directions (1,−yb) and (1,−yc), and S̊+ is the set of lattice points in the interior of that
sector. Let RB and RC denote the sets of lattice points on the two rays.

Reflection of roots corresponds to reflection of lattice points:

rn,m(αn′,m′) = −α2n−n′,2m−m′ .

Fix a point (n,m) ∈ S, which gives a positive-length reflection arrow rn,mC
rn,m−−−→ C.

By 4.3.2, a wall Hn′,m′ lengthens this arrow if and only if αn′,m′ is positive on B, rn,mC
and negative on rn,mB,C, or vice versa. Equivalently,

{(n′,m′), (2n− n′, 2m−m′)} ⊂ S+ or {(n′,m′), (2n− n′, 2m−m′)} ⊂ S−.

If (n,m) ∈ S+, then only the containment in S+ is possible. Similarly for S−. Thus, a
point (n,m) ∈ S+ corresponds to a length-1 arrow if and only if

S+ ∩
(︁
(2n, 2m)− S+

)︁
= {(n,m)},

i.e. the reflection of any other point of S+ across (n,m) lies outside of S+. According to [W,
Def. 19], these points are called the corners of S+. From now on, we will just consider S+,
since the analysis for S− is similar.

Fix a point (n0,m0) ∈ S̊+. Then all corners are contained in S+
B ∪ S+

C , where

S+
B := S+ ∩ {αn,m(xb, yb) ≥ 1

2αn0,m0
(xb, yb)}

S+
C := S+ ∩ {αn,m(xc, yc) ≤ 1

2αn0,m0
(xc, yc)}

Indeed, if (n,m) ∈ S+ does not lie in the union of these subsets, then (2n−n0, 2m−m0) ∈
S+, so (n,m) is not a corner. From now on, we will just consider S+

C , since S+
B is similar.

4.5.4. Lemma. If RC ∩ S+ is nonempty, then S+
C contains finitely many corners of S+.

Proof. Because C projects to a non-liminal chamber of H|C , the inclusion RC ∩ S+ ⊂ RC

is finite or cofinite. (For a more precise statement, see [W, Prop. 16].) Thus, there exists a
point (n1,m1) ∈ RC ∩ S+ such that the set of points in RC which are strictly lower than
(n1,m1) is either contained in S+ or disjoint from it. Reflecting (n1,m1) shows that every
corner lies in {αn,m(xb, yb) ≥ 1

2αn1,m1
(xb, yb)} or in the (finite) part of RC which is weakly

higher than (n1,m1). The intersection of the former with S+
C is bounded. □
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Let us remark that, if yc = δ(C) is irrational, then RC contains at most one lattice point,
so the first sentence of the preceding proof is trivial in this case.

4.5.5. Lemma. If δ(C) is rational, then S+
C contains finitely many corners of S+.

Proof. (Following [W, Prop. 23].) Since yc is rational, S+
C is covered by finitely many lines

of slope −yc. We claim that each line contains finitely many corners. For the outermost
line (containing RC), this follows from the previous lemma. For any other line, let (n1,m1)
be the highest point in the intersection of this line with S+. Reflecting (n1,m1) shows that
no lower point on this line can be a corner. □

4.5.6. Lemma. For any ϵ > 0, there exists N such that, if (n,m) ∈ S+
C is a corner of S+

with n > N , then αn,m(xc, yc) <
1+ϵ
n .

Proof. Suppose that (n,m) ∈ S+
C is a corner of S+. We will apply Minkowski’s Theorem to

the parallelogram

P :=

{︄
(n′,m′) ∈ R2

⃓⃓⃓⃓
⃓ 0 < αn′,m′(xc, yc) < 2αn,m(xc, yc)
0 > αn′,m′(xb, yb) > 2αn,m(xb, yb)

}︄

which is symmetric about (n,m). Since every lattice point in P lies in S̊+, and (n,m) is a
corner, P cannot contain any lattice points other than (n,m). Minkowski’s Theorem implies

Area(P ) =
4αn,m(xc, yc)αn,m(xb, yb)

yb − yc
≤ 4.

Note that αn,m(xb, yb) and (yb − yc) are negative and the area formula is positive.

Next, we bound αn,m(xb, yb). Since (n,m) ∈ S+
C , we have αn,m(xc, yc) ≤ 1

2αn0,m0(xc, yc).
This rewrites as

αn,m(xb, yb) ≤ (yb − yc)n+ (xb − xc) +
1
2αn0,m0(xc, yc).

For any ϵ > 0, there exists N such that n > N implies that the right hand side is < (yb−yc)n
1+ϵ .

Combining this with the previous paragraph gives the result. □

4.5.7. Remark. In the previous proof, we saw that, if (n,m) ∈ S+
C is a corner, then P does

not contain any lattice points other than (n,m). The converse holds with P in place of P .
Now let us set xb = yb = xc = 0 and assume that yc > 0 is irrational. Then

P =

{︄
(n′,m′) ∈ R2

⃓⃓⃓⃓
⃓ 0 ≤ (−m′) ≤ 2(−m)
0 ≤ n′− 1

yc
(−m′) ≤ 2

(︁
n− 1

yc
(−m)

)︁}︄.
This definition can be interpreted as follows: if we view n

−m as a one-sided Diophantine

approximation to 1
yc
, meaning that n − 1

yc
(−m) is small and positive, then a lattice point

(n′,m′) belongs to P if and only if n′

−m′ is another one-sided Diophantine approximation

whose denominator (resp. error) is at most twice as large as the denominator (resp. error)
of n

−m . In particular, if no such (n′,m′) exists, then n
−m is a ‘best’ approximation. These

have been studied in [HaTu, §4]. Using those results, it should be possible to show that, for
most irrational values of yc, there are infinitely many corners (n,m).
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4.5.8. Now let Gfin be arbitrary. Then H is the disjoint union of finitely many ‘rank-2’
subarrangements Hαfin := {±αfin + nδ + mπ | (n,m) ∈ Z2}, where αfin ranges over roots

of Gfin. Each length-1 arrow rαC
rα−→ C in H projects to a length-1 arrow in the rank-2

subarrangement containing α. Applying the previous lemmas (4.5.4, 4.5.5, 4.5.6) to the
finitely many rank-2 subarrangements gives the following statement about H.

Define slope(αfin + nδ +mπ) := |n|.

Corollary. Let C be a strict chamber. There exist M,N > 0 such that, if rαC
rα−→ C is

length-1 with slope(α) > N , then at least one of the following is true:

• δ(C) is irrational, and

(distance from C to rαC) <
M

slope(α)
.

• Same statement with B in place of C.

In particular, if δ(B) and δ(C) are rational, then there are finitely many length-1 arrows
ending at C.

If δ(C) is irrational, then C is a point, and the constants M,N can be chosen so as to
depend continuously on this point. Similarly for the second bullet.

4.6. Factorizations of Bruhat arrows.

4.6.1. For any positive gallery (I, c) starting at B, let dis(c) ⊂ ⟨W → c1̂⟩ be the set of
discrepancies of foldings of c.

Lemma. For any reduced positive gallery (I, c) from B to C, we have ⟨WB → C⟩ ⊆ dis(c).

Proof. Choose an object C ′ → C of ⟨WB → C⟩, and factor it as a composite of reflection
arrows oriented away from B:

C ′ = C0 C1 · · · Cn = C
r1 r2 rn

Let Hi be the wall of ri. Because each reflection arrow is oriented away from B, it is possible
to successively fold c along Hn, . . . ,H1 to obtain a sequence of single-wall foldings

c0 ↪→ c1 ↪→ · · · ↪→ cn = c

whose sequence of discrepancies equals the previous sequence. Thus, the chosen object of
⟨WB → C⟩ equals the discrepancy of c0 ↪→ c. □

We will eventually show that the inclusion in the lemma is an equality (Theorem 4.7.4).
This gives an alternative definition of WB : it is the subcategory whose morphisms are
discrepancies of foldings of reduced galleries.

4.6.2. Factorizations versus galleries. Fix a non-identity arrow C ′ → C in WB and a re-
duced positive gallery (I, c) from B to C. We have seen that C ′ → C factors into length-1
arrows (4.5.2), and the proof of the previous lemma tells us how these factorizations interact
with (I, c). Namely, such a factorization is specified by reflections r1, . . . , rn, and succes-
sively folding along the walls Hn, . . . ,H1 gives galleries cn, . . . , c0. Since the reflections are
length-1, the folded galleries cn, . . . , c0 are reduced. Thus, each reflection wall Hk intersects
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ck exactly once, so we must fold along (Hk, 1) ∈Walls′(ck) to get ck−1; this means that the
sequence of foldings is uniquely determined by the factorization. Let (hk, 1) ∈ Walls′(c) be
the pair which corresponds to (Hk, 1) ∈Walls′(ck) via the folding ck ↪→ c.

Define a total order on {h1, . . . , hn} by saying that hk ≤ hm if c crosses hk before hm.
(More formally, each hk gives an element of Gaps(I), and we use the obvious order on gaps.)
For each k, if hk < hk+1, . . . , hn, then hk = Hk.

Remark . Let us say that a factorization is optimal if (h1, . . . , hk) is increasing. In the
classical setting, any non-identity arrow in WB has a unique optimal factorization, and this
fact can be used to show that the two definitions of the Bruhat order agree.4 In the double
affine setting, the proof of uniqueness still works (see below), but we do not think that an
optimal factorization always exists. Instead, we will show that, at irrational levels, there
is a sorting algorithm (4.6.4) which ‘almost’ produces an optimal factorization; this will be
enough to prove that the two definitions of the Bruhat order agree (Theorem 4.7.4).

Lemma. A non-identity arrow in WB has at most one optimal factorization.

Proof. (Following [BjBr, Lem. 2.7.2].) Suppose we are given two optimal factorizations,
which correspond to wall sequences (Hi)i and (H ′

i)i. If H1 = H ′
1, we may cancel the first

reflection and proceed inductively. If H1 ̸= H ′
1, then assume without loss of generality that

c crosses H1 before H ′
1. Since c0 is obtained by folding the reduced gallery c1 across H1,

the wall H1 does not separate c0
1̂
from B. Since c0,′ is reduced and crosses H1, the wall H1

separates c0,′
1̂

from B. But c0
1̂
= C ′ = c0,′

1̂
, contradiction. □

4.6.3. Dihedral cases. Continue to work in the setting of 4.6.2, i.e. C ′ → C is a non-identity
arrow in WB , and (I, c) is a reduced gallery from B to C. Suppose we are given a particular
factorization of C ′ → C into length-1 arrows. Fix an index k ∈ [2, n] and let H′ be the
dihedral subarrangement generated by Hk−1 and Hk. Then the projections of ck, ck−1, ck−2

to H′ are described by exactly one of the four cases shown in Figure 2. First, we explain
the left hand side. The green line is ck. Let us denote the wall numbered i by H(i). By
definition, H(1), H(3), and H(4) are the first, second-to-last, and last walls crossed by ck,
and H(2) is the wall right before H(1). Also, H(4′) := r(1)H(4), where r(1) is the reflection
along H(1).

Next, we explain the right hand side. An arrow labeled i indicates a single-wall folding
along H(i). The four cases are given by the four two-step paths in the diagram, where the
second row gives ck−1 and the third row gives ck−2. To see that these are the only possible
cases, note that Hk must be the first or last wall crossed by ck (otherwise ck−1 would not
be reduced), and similarly for k − 1 in place of k.

We have chosen the number labels to ensure that hk−1 < hk if and only if the number
label of Hk−1 is less than that of Hk. Let us denote the four cases as 21, 4′1, 14, 34.

To convince the reader that this description is always valid, let us discuss some degenerate
situations. First, it is possible that H′ is pre-affine. If the projection of B is liminal,
then there is no first wall crossed by ck, so the only possible case is 34. Similarly, if the

4The first definition (which we have chosen) is that the Bruhat order is generated by reflection arrows,
and the second definition is that two Weyl group elements satisfy u ⪯ w if and only if some (equivalently

every) reduced expression for w admits a subexpression with product u, see [BjBr, Thm. 2.2.2].
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Figure 2. All possible cases for two consecutive foldings of a reduced
gallery, each of which has a length-1 discrepancy.

projection of Ck is liminal, then the only possible case is 21. From now on, assume that
both projections are non-liminal. It is possible that some of the numbered walls coincide,
and all such possibilities are summarized below:

H′-walls ck-length coincidences
>2 2 1 = 3 2 = 4′

2 2 1 = 3 2 = 4 = 4′

3 3 2 = 4 3 = 4′

n ≥ 4 same n 2 = 4

The ‘ck-length’ column shows the number of walls of H′ which are crossed by ck.

Lemma. It is never the case that H(1) = H(4′) or H(2) = H(3).

Proof. This follows from inspecting the previous table. We can also argue directly. Since
ck crosses at least two walls in H′, we have H(1) ̸= H(4) which implies H(1) ̸= H(4′). Next,
we show that H(2) ̸= H(3). If ck does not cross all walls of H′, then ck does not cross H(2),
but it does cross H(3), so these two walls are not equal. If ck does cross all walls of H′, then
one can check directly that H(2) = H(4), which is not equal to H(3) by definition. □

4.6.4. Sorting algorithm. Now assume that δ(C) is irrational.

Let k ∈ [2, n] be any index such that hk−1 > hk. We will describe a move associated
to (hk−1, hk), which modifies the factorization by replacing rk−1, rk by two new reflections
r′k−1, r

′
k so that the opposite inequality holds for the new walls: h′

k−1 < h′
k. (The other

reflections will be unchanged.) Since hk−1 > hk, one of the cases 21 or 4′1 obtains.

(Case 21) Choose the new reflections so that case 34 obtains.

Explicitly, this means that rk−1 = r(2), rk = r(1), and we define r′k−1 = r(3), r′k =

r(4). Note that, since δ(C) is irrational, the projection of C is non-liminal, so H(3)

and H(4) exist.
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(Case 4′1) Choose the new reflections so that case 14 obtains.

Explicitly, this means that rk−1 = r(4
′), rk = r(1), and we define r′k−1 = r(1), r′k =

r(4). Since case 4′1 obtains, H(1) and H(4) exist, so H(4′) exists as well.

The new reflection arrows are oriented away from B, and there is a commutative diagram
(below), so the new reflections give a valid factorization into length-1 arrows.

Ck−2 Ck−1

Ck

C ′
k−2 C ′

k−1

rk−1

rk

r′k−1

r′k

Since 3 < 4 and 1 < 4, the new walls satisfy h′
k−1 < h′

k. More precisely, the new walls are
related to the old ones in the following way:

(Case 21) hk < hk−1 ≤ h′
k−1 < h′

k (because 1 < 2 < 3 < 4)

Also, the wall hm is unchanged if m > k, hm < hk, or hm > h′
k.

(Case 4′1) Swap hk−1, hk to get h′
k−1, h

′
k.

All other walls hm (m ̸= k, k − 1) are unchanged.

This follows from inspecting the gallery (green path) in the picture showing the cases.

Here is the algorithm. At each step, choose an index k ∈ [2, n], ensuring that each index
is chosen infinitely often. If hk−1 > hk, apply the (hk−1, hk) move.

4.6.5. The next lemma says that the algorithm almost sorts (h1, . . . , hn), except for some
walls which converge toward the level δ(C). In this lemma, δ(hk) denotes the level of the
location where c crosses hk. (More precisely, (hk, 1) ∈ Walls′(c) corresponds to a gap i < j
in I, and we define δ(hk) := δ(ci) = δ(cj), where the equality follows from the fact that ci
and cj are adjacent.) This notation will be used throughout the rest of this subsection.

Lemma. Assume that C is strict. As the algorithm runs, each index k ∈ [1, n] satisfies
exactly one of the following statements.

(1) Eventually5 δ(hk) = δ(C) and hk is constant.

(2) Eventually δ(hk) < δ(C) and δ(hk) converges to δ(C).

(3) Eventually δ(hk) < δ(C) and hk is constant.

This implies the following:

• (3)-indices < (2)-indices < (1)-indices.

• For the (1) and (3) indices, the eventual value of hk is increasing with k.

• For all (1)-indices, all (3)-indices, and the largest (2)-index, we have Hk = hk.

5I.e., there exists some step in the algorithm after which the statement is always true.
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Proof. Apply downward induction on k. The base case k = n + 1 is vacuously true. Fix
k ∈ [1, n] and assume that each index in [k + 1, n] satisfies one of (1), (2), (3). Then the
indices in [k + 1, n] also satisfy the bullets.

Suppose that eventually δ(hk) = δ(C). Then all indices in [k+1, n] satisfy (1). Since hk+1

is eventually constant, the move (hk, hk+1) eventually does not occur, so hk is eventually
weakly increasing. Since δ(C) is irrational, c has finitely many wall-crossings at level δ(C),
by Lemma 3.4.2. Thus hk is eventually constant, so k satisfies (1), as desired. From now
on, we may assume that δ(hk) < δ(C) infinitely often.

Suppose that δ(hk) = δ(C) infinitely often. Then there are infinitely many steps at which
δ(hk) goes from < δ(C) to = δ(C) due to a move (hk−1, hk) or (hk, hk+1). Each time this
happens, the number of indices m ∈ [k, n] which satisfy δ(hm) = δ(C) increases by at least
one, and this number never decreases. This gives a contradiction. From now on, we may
assume that eventually δ(hk) < δ(C).

Suppose that hk decreases infinitely often. Since hk can decrease only via the move
(hk, hk+1), this move must occur infinitely often. This move is guaranteed to change hk+1,
so hk+1 does not stabilize. Therefore, the index k + 1 must satisfy (2). Since the move
(hk, hk+1) only occurs when hk > hk+1, we conclude that δ(hk) converges to δ(C), i.e. the
index k satisfies (2), as desired. From now on, we may assume that hk is weakly increasing.

Suppose for sake of contradiction that the index k does not satisfy (2) or (3), i.e. that δ(hk)
does not converge to δ(C), and that hk does not stabilize. Since hk is weakly increasing,
and there are finitely many walls in Walls(c) of any fixed slope,6 the slope of hk diverges
to infinity. Since δ(hk) is weakly increasing but does not converge to δ(C), the indices
m ∈ [k+1, n] which satisfy (1) or (2) eventually also satisfy hk < hm. This implies that hk

and Hk eventually differ only by reflections rhm
for indices m ∈ [k + 1, n] which satisfy (3).

Since these hm are eventually constant, the slope of Hk diverges to infinity as well.

Define the folding dk ↪→ c using the walls hm for all indices m ∈ [k + 1, n] which satisfy
(3). Then dk is eventually constant. We will now give two statements which intuitively
mean that ck ‘converges’ to dk as the algorithm progresses. First, the indices in [k + 1, n]
which are not accounted for in dk must satisfy (1) or (2), and this implies

(CON1) For any i ∈ I with δ(ci) < δ(C), the galleries ck and dk eventually agree prior to i.

Next, let m + 1 ∈ [k + 1, n] be the smallest index which satisfies (1) or (2), and fold
hm+1, . . . , hn to obtain cm ↪→ c. Since cm is reduced, Lemma 4.6.6 (below) tells us that the
endpoint cm

1̂
converges to c1̂. Now fold the indices [k + 1,m] (which satisfy (1)) to get

(CON2) The sequence of points ck
1̂
converges to d

k

1̂ .

Finally, we will show that δ(hk) converges to δ(C), which gives the desired contradiction.
We will fix i ∈ I such that δ(ci) < δ(C) and prove that eventually i < hk. Since Hk is the
wall of a length-1 arrow ending at ck

1̂
, and the slope of Hk diverges to infinity, Corollary 4.5.8

says that the horizontal distance fromHk to ck
1̂
converges to zero.7 Now (CON2) implies that

6Recall from 4.5.8 that slope(αfin + nδ +mπ) := |n|.
7The horizontal distance equals 1

2
∥ck

1̂
−rHk

ck
1̂
∥ because orthogonal reflections are level-preserving. Since

the point ck
1̂

moves during the algorithm, we need to know that the constants in Corollary 4.5.8 depend
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the horizontal distance from Hk to d
k

1̂ also converges to zero. Since the slope of Hk diverges

to infinity, Hk cannot cross ([0̂, i], dk),8 and this eventually equals ([0̂, i], ck) by (CON1).
Since hk is the c-index where Hk crosses ck, we conclude that i < hk, as desired. □

4.6.6. Lemma. Let (I, c) be a gallery from B to a strict chamber C at irrational level. For
any ϵ > 0, there exists i ∈ I such that

• δ(ci) < δ(C).

• For any folding c′ ↪→ c such that c′ is reduced and all folding walls come after i, we
have ∥c′

1̂
− c1̂∥ < ϵ.

Proof. Since δ(C) /∈ Q, the proof of Lemma 2.6.3 gives a finite set of roots α such that

(i) α(B) < 0 and α(C) > 0.

(ii) ∩{α ≥ 0} contains a neighborhood of C.

(iii) (∩{α ≥ 0}) ∩ δ−1(δ(C)) lies in the ϵ-ball centered at C.

Let i be the first index such that ci ∈ ∩{α ≥ 0}. Statement (ii) implies that δ(ci) < δ(C).
Take a folding c′ ↪→ c as in the second bullet. Since all folding walls come after i, statement
(i) implies that c′ crosses each Hα prior to reaching ci. Since c′ is reduced, it cannot cross
any Hα for a second time. This implies that c′

1̂
∈ ∩{α ≥ 0}, so (iii) finishes the proof. □

Now we deduce some consequences of the sorting algorithm.

4.6.7. Lemma. Let (B0, B1, C) be a reduced positive tour such that δ(C) is irrational. Then
⟨WB1 → C⟩ ⊂ ⟨WB0 → C⟩

Proof. We will fix an arrow C ′ → C in WB1 and show that it lies in WB0 . Refine the
tour (B1, C) to a reduced gallery (I, c), and factor the arrow C ′ → C into length-1 arrows
oriented away from B1 (4.5.2). Then run the sorting algorithm. It suffices to show that,
at some step, each length-1 arrow is also oriented away from B0. Equivalently, we want to
ensure that each wall Hk does not separate B0 from B1.

First, suppose that (B1, C) is weak. Since δ(C) is irrational, B1 = C and HC is a finite
arrangement, so the sorting algorithm terminates. Now, since (h1, . . . , hn) is increasing, we
have Hk = hk for all k ∈ [1, n]. Thus Hk crosses c and therefore does not separate B0 from
B1, as desired.

Next, suppose that (B1, C) is strict, so Lemma 4.6.5 applies. If k ∈ [1, n] satisfies (1) or
(3), then Hk = hk, so we may argue as in the previous paragraph. From now on, assume
that k satisfies (2).

Since each index m ∈ [k, n] satisfies (1) or (2), Lemma 4.6.6 implies that each distance

∥cm−1

1̂
− c1̂∥ converges to zero. Since reflection across Hk sends ck

1̂
to ck−1

1̂
, the horizontal

distance from Hk to c1̂ = C converges to zero. This implies that, during the steps where Hk

does not contain C, the slope of Hk diverges to infinity, so Hk eventually does not separate

continuously on it (which is true), and we need to know that the sequence ck
1̂
converges (which is (CON2)).

Also, note that Hk cannot converge toward the start chamber B because hk is weakly increasing.
8This uses the previous sentence and the assumption on i, which implies that δ(dki ) < δ(C).
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B0 from B1. Thus, we are done if we can ensure that there are infinitely many steps such
that none of the Hk contain C.

By refining the tour (B0, B1) and applying induction, we may assume that one of the
following is true:

(i) There is no wall which contains C and separates B0 from B1.

(ii) There is exactly one such wall, and B0 and B1 are adjacent along it.

If (i) holds, then we are done by the previous reasoning.

Now assume that (ii) holds, and let Hbad denote the indicated wall. As suggested above,
we will modify the algorithm to ensure that there are infinitely many steps such that no Hk

equals Hbad. Every so often, the new algorithm will enter a second phase whose goal is to
eliminate every occurrence of Hk = Hbad. The second phase will iterate in increasing order
through the set S(2) ⊆ [1, n] of (2)-indices. After step k, we promise that no index m ≤ k
satisfies Hm = Hbad. At the end, we promise that no m ∈ [1, n] satisfies Hm = Hbad.

• Suppose that we are not at the last step, i.e. k is not the largest element of S(2). If
Hk ̸= Hbad, then do nothing. If Hk = Hbad, then we apply the dihedral cases (4.6.3)
to (hk, hk+1). Since B0 and B1 are adjacent along Hbad, we must have Hbad = H(1)

or H(2). Split into cases accordingly:

(Hbad = H(1)) Case 14 obtains. Perform the reverse (hk, hk+1) move so that case 4′1 obtains.

By Lemma 4.6.3, H(4′) ̸= H(1), so H(4′) ̸= Hbad.

(Hbad = H(2)) Case 21 obtains. Perform the (hk, hk+1) move so that case 34 obtains.

By Lemma 4.6.3, H(3) ̸= H(2), so H(3) ̸= Hbad.

The new Hk is not equal to Hbad, and we have not changed Hm for m /∈ {k, k+1},
so the promise is fulfilled.

• Suppose that we are at the last step, i.e. k is the largest element of S(2). Split into
cases depending on δ(hk):

(δ(hk) < δ(C)) Do nothing.

(δ(hk) = δ(C)) Run the original sorting algorithm on the indices [k, n]. Since all of the crossings
involved occur at level δ(C), which is irrational, the algorithm terminates.

Now the sequence (hk, . . . , hn) is increasing. For each m ∈ [k, n], we have Hm = hm,
which implies that Hm is crossed by c, so Hm does not separate B0 from B1, so
Hm ̸= Hbad. We have not changed Hm for m < k, so the final promise is fulfilled.

If we initiate the second phase infinitely often, then there are infinitely many steps at which
no Hk equals Hbad, as desired.

Each time the second phase ends, we run the old algorithm for a while. This is necessary
for ensuring that the earlier application of Lemma 4.6.6 works, because that relies on the
convergence δ(hk) → δ(C) where k satisfies (1) or (2). After restarting the old algorithm,
the old (3)-indices continue to satisfy (3), while some of the (2)-indices may become (1)-
indices or (3)-indices, which only makes the situation better. The only way in which the
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second phase violates the specifications of the old algorithm is that it sometimes performs
the reverse (hk, hk+1) move when k and k + 1 both satisfy (2), and this only occurs when
the case 14 obtains, so the move merely switches hk and hk+1. This does not affect the
convergence δ(hk) → δ(C) for (2)-indices, provided that we run the old algorithm for long
enough between each occurrence of the second phase. □

4.6.8. Proposition. Let (I, c) be a reduced positive gallery from B to a chamber C at
irrational level. Then ⟨WB → C⟩ = dis(c).

Proof. We have already proved the ⊆ direction in Lemma 4.6.1, so we focus on the ⊇
direction. We will fix a folding c′ ↪→ c and show that the discrepancy c′

1̂
→ C lies in WB .

List the folding walls of c′ ↪→ c in increasing order as h1, . . . , hn ∈ Walls(I, c), and fold
them one-by-one in decreasing order to obtain a sequence of single-wall foldings

c′ = d0 · · · dn−1 dn = c
h1 hn−1 hn

The composition of the discrepancies

d0
1̂

d1
1̂

· · · dn
1̂

r1 r2 rn

equals the discrepancy c′
1̂
→ C. Choose an increasing sequence 0̂ = i0, i1, . . . , in = 1̂ ∈ I

such that ik lies between hk and hk+1, where these walls are viewed as elements of Gaps(I).

We will prove that, for each k ∈ [0, n], the discrepancy dk
1̂
→ C lies in Wcik . The case

k = 0 is the desired result. Apply downward induction on k. The base case k = n is obvious
because dn

1̂
= c1̂ = C. Assume that k < n and that dk+1

1̂
→ C lies in W

cik+1 . Split into

cases depending on whether hk+1 separates dk+1

1̂
from cik .

• Assume that hk+1 separates dk+1

1̂
from cik , so that dk

1̂

rk+1−−−→ dk+1

1̂
is oriented away

from cik . Taking (B0, B1, C) = (cik , cik+1
, C) in Lemma 4.6.7 allows us to replace

W
cik+1 by Wcik in the inductive hypothesis. Now

dk
1̂
→ dk+1

1̂
→ C

is the composite of two maps in Wcik , so it lies in Wcik , as desired.

• Assume that hk+1 does not separate d
k+1

1̂
from cik . This implies that hk+1 separates

dk+1

1̂
from cik+1

, so that dk
1̂

rk+1−−−→ dk+1

1̂
is oriented away from cik+1

. Now

dk
1̂
→ dk+1

1̂
→ C

is the composite of two maps in W
cik+1 , so it lies in W

cik+1 . Finally, applying
Lemma 4.6.7 as before allows us to replace W

cik+1 by Wcik , as desired. □

4.6.9. Theorem. If c1 and c2 are two reduced positive galleries with the same start and end
chambers, then dis(c1) = dis(c2).

Proof. Let the start and end chambers be B and C. Split into three cases.

• Assume that δ(C) is irrational. Then the previous proposition suffices.
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• Assume that δ(C) is rational and (B,C) is strict. We can find reduced positive
galleries as in Figure 3, where unlabeled nodes are irrational-level chambers. Using

Figure 3. Idea for factoring a braid move of galleries with a shared
rational-level end chamber into three braid moves involving irrational-level
start or end chambers.

the previous case, we can move from c1 to c2, passing through two other reduced
galleries, without changing dis(−).

• Assume that δ(C) is rational and (B,C) is weak. This is the easy case, so we merely
sketch an ad hoc argument. We claim that, for any reduced positive gallery (I, c),
the set dis(c) can be explicitly described. Split into subcases:

– Suppose that B and C are both [upward or liminal] or both [downward or
liminal]. Then the classification of positive pairs (Proposition 3.3.4) implies
that one of B or C contains the other. In this case, the Bruhat order is
classical (4.2.3) and the desired result is known. Specifically, c is equivalent to
a gallery in an affine arrangement from one chamber to [another chamber or a
‘chamber at infinity’], and dis(c) is known in either case.

– The only remaining possibility is that B is downward and C is upward. In this
case, the structure of positive galleries (3.4.3) implies that there is a unique
index i ∈ I such that dim ci = dim h − 1. We think of c as the concatenation
([0̂, i], c)⋄([i, 1̂], c). The discrepancies of these two subgalleries are described by
the previous subcase, and dis(c) is the ‘product’ of these two discrepancy sets.

In particular, in the second subcase, dis(c) depends only on ci. A further elementary
computation shows that it also does not depend on ci. □

4.7. Demazure product.

4.7.1. For any nonreduced positive gallery c, a greedy move folds c along the first entry in
Walls′(c) of the form (H, 2), i.e. at the first point where a wall is crossed for the second time.

Lemma. Every positive gallery becomes reduced after a finite number of greedy moves.

Proof. Every gallery can be expressed as the concatenation of n reduced galleries, for some
n. Induct on n. The base case n = 1 is trivial. Assume that n ≥ 2 and that the claim holds
for n− 1. Consider a gallery c which is the concatenation of n reduced galleries c1, . . . , cn,
with start and end chambers as shown:

C0 C1 C2 · · · Cn
c1 c2 c3 cn

The sequence of walls in Walls(c) which are folded by the greedy moves is increasing. Since
c1 is reduced, the greedy moves do not fold any wall of c1. We claim that there are finitely
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many greedy moves which fold walls in c2. These moves give a sequence of successive foldings
(dk)k of the concatenation c1 ⋄ c2, hence a sequence of discrepancy maps

· · · d1
1̂

d0
1̂
= C2

Since c1 ⋄ c2 is a concatenation of two reduced galleries, and this property is preserved by
greedy moves, these reflection arrows are all oriented toward C0. Therefore ℓC0

(dk
1̂
→ C2)

is negative and strictly increases with k. On the other hand, Lemma 4.4.3 implies that

ℓC0
(dk

1̂
→ C2) = k + e(dk)− e(c1 ⋄ c2),

which is bounded below by −e(c1 ⋄ c2). This proves the claim.

The output of the aforementioned greedy moves is a gallery which is the concatenation
of (n− 1) reduced galleries. The inductive hypothesis says that the remaining set of greedy
moves is also finite. This completes the inductive step. □

Remark . The lemma remains valid if greedy moves are generalized in the following way:
if (H, 2) is the first double-crossing, we have the option to fold (H, 1) or {(H, 1), (H, 2)}.
The same proof works. Indeed, during the inductive step, if we make the former choice
infinitely often, then ℓC0

(dk
1̂
→ C2) decreases without bound. If not, then after some point

we only make the latter choice, and this produces a reduced gallery in finitely many steps,
as observed in Corollary 4.4.4.

For any positive gallery c, let cdem ↪→ c be the (reduced) folding obtained by performing
greedy moves. The Demazure product of c is the discrepancy cdem

1̂
→ c1̂.

4.7.2. Let c be a positive gallery. A generalized braid move changes a reduced sub-
gallery of c into another reduced gallery with the same start and end chambers. A deletion
move is a folding along one of two consecutive wall-crossings which involve the same wall:
{(H,n), (H,n + 1)}. It is easy to see that every greedy move can be expressed as the
composite of a generalized braid move, a deletion move, and a generalized braid move.

If c′ is obtained from c via one of these two moves, there is an obvious map φ : c′
1̂
→ c1̂

specified as follows. For a generalized braid move, note that c′
1̂
= c1̂ and take φ to be the

identity. For a deletion move, which is a folding, take φ to be the discrepancy map.

Lemma. Let c′ be obtained from c via a generalized braid move or a deletion move. For
every folding d ↪→ c, there exists another folding d′ ↪→ c′ such that the discrepancies fit into
a commutative diagram

d′
1̂

d1̂

c′
1̂

c1̂
φ

Proof. In the case of a generalized braid move, φ is an identity map. The desired statement
follows from the invariance of dis(c) under generalized braid moves (Theorem 4.6.9). In the
case of a deletion move, φ is the discrepancy of the folding c′ ↪→ c. Given d ↪→ c, define
d′ ↪→ c′ as follows:
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• If d folds at least one of {(H,n), (H,n + 1)}, then we can view d as a folding of c′

and set d′ = d.

• If d does not fold either of {(H,n), (H,n+1)}, then define d′ by additionally folding
both of these wall-crossings.

It is easy to check that this construction of d′ works. □

4.7.3. Corollary. Let c be a positive gallery starting at B, and let c′ be a reduced gallery
obtained from applying a finite sequence of generalized braid and deletion moves to c.

(i) There is an obvious map φ : c′
1̂
→ c1̂ satisfying the conclusion of the previous lemma.

(ii) This map is the unique minimizer of ℓB(−) on the set dis(c).

(iii) This map equals the Demazure product cdem
1̂
→ c1̂.

Proof. Statement (i) follows from the previous lemma applied to each of the chosen gener-
alized braid and deletion moves. For (ii), let d1̂ → c1̂ be any other element of dis(c), which
comes from a folding d ↪→ c. Statement (i) gives a folding d′ ↪→ c′ such that

ℓB(d1̂ → c1̂) = ℓB(d
′
1̂
→ c′

1̂
) + ℓB(c

′
1̂
→ c1̂).

Since c′ is reduced, Lemma 4.4.3 implies that ℓB(d
′
1̂
→ c′

1̂
) ≥ 0 with equality if and only if

d′
1̂
→ c′

1̂
is the identity. For (iii), note that cdem is also a reduced gallery obtained in the

same way as c′. The uniqueness of (ii) implies that the two resulting φ maps are equal. □

Remark . Fix the starting gallery c. The corollary implies that every finite sequence of
generalized braid and deletion moves which ends in a reduced gallery has exactly d(c) :=
e(c) + ℓB(c

dem
1̂
→ c1̂) deletion moves. In fact, the following improvement is true, although

we will not use it: in every (possibly infinite) sequence of such moves, there are at most d(c)
deletion moves, and all galleries which come after the d(c)-th deletion move are reduced.
This follows from a later result (homotopical deletion, 8.8.1) which roughly says that any
two sequences of such moves can be ‘compared,’ meaning that there is a ‘homotopy’ from
one sequence to the other.

4.7.4. Theorem. For any reduced positive gallery (I, c) from B to C, we have ⟨WB →
C⟩ = dis(c).

Proof. We have already proved the ⊆ direction in Lemma 4.6.1, so we focus on the ⊇
direction, i.e. every discrepancy of a reduced positive gallery starting at B lies in WB . (Let
us call these ‘reduced discrepancies’ for short.) The statement is obvious if the discrepancy
has length 1. It suffices to show that every reduced discrepancy of length > 1 factors
nontrivially into reduced discrepancies, because the length of a reduced discrepancy must
be positive (4.4.3).

Fix a reduced discrepancy, which is a map in W. By definition, it can be realized as
c′
1̂
→ c1̂ where c is reduced. Denote the folding walls by h1, . . . , hn ∈ Walls(c). Choose a

realization which minimizes the (positive) number

min
m∈[1,n]

ℓB
(︁
rhmc1̂

rhm−−−→ c1̂
)︁
.
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Then let m be any index which attains the minimum, and let cm ↪→ c be the single-wall
folding for hm. Corollary 4.7.3 gives a diagram

d1̂ c′
1̂

cm,dem

1̂
cm
1̂

c1̂

for some folding d ↪→ cm,dem. This gives a factorization[︁
c′
1̂
→ c1̂

]︁
=
[︁
d1̂ → cm,dem

1̂
→ c1̂

]︁
of the original reduced discrepancy into two reduced discrepancies. If this factorization is
nontrivial, then we are done. If it is trivial, then the first factor must be an identity, i.e. the

original discrepancy equals cm,dem

1̂
→ c1̂.

If cm,dem = cm, then cm is reduced, so the original discrepancy has length 1, and we are
done. If not, then cm,dem is obtained by performing at least one greedy move on cm. The
first greedy move folds the first double-crossing of cm, which we denote (H, 2) ∈Walls′(cm).
The first two H-crossings of cm, denoted (H, 1), (H, 2) ∈ Walls′(cm), correspond to entries
(h, 1), (h′, 1) ∈ Walls′(c), where H = h = rhmh′. Since (H, 2) is the first double-crossing of
cm, the walls h, hm, h′ are consecutive in the dihedral subarrangement which they generate,
and applying Lemma 4.5.1 to the chambers B and c1̂ shows that

ℓB
(︁
rhm

c1̂
rhm−−−→ c1̂

)︁
> ℓB

(︁
rhc1̂

rh−→ c1̂
)︁
or ℓB

(︁
rh′c1̂

rh′−−→ c1̂
)︁
.

Split into cases accordingly.

• Assume that the inequality with h′ holds. Since cm,dem ↪→ c folds h′, the above
inequality contradicts the minimality assumption.

• Assume that the inequality with h holds. Create cm,dem2 ↪→ cm by folding at h and
then doing greedy moves until the gallery is reduced. Since the folding of cm at h
can be realized as the composite of a generalized braid move, a deletion move, and a
generalized braid move (4.7.2), the discrepancy of cm,dem2 ↪→ cm agrees with that of
cm,dem ↪→ cm by Corollary 4.7.3. Now cm,dem2 ↪→ c folds h and realizes the original
discrepancy, so the above inequality contradicts minimality. □

4.7.5. Maximality of the Demazure product.

Corollary. Let c be a positive gallery starting at B. Then cdem
1̂
→ c1̂ is the unique maximal

element of the full subposet of ⟨WB W−→ c1̂⟩ spanned by dis(c).

Proof. Every element of dis(c) is the discrepancy d1̂ → c1̂ of some folding d ↪→ c. By

Corollary 4.7.3(i), this discrepancy factors as d′
1̂
→ cdem

1̂

φ−→ c1̂ for some folding d′ ↪→ cdem.

By the previous theorem, d′
1̂
→ cdem

1̂
lies in WB because cdem is reduced. □
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5. Demazure category

From now on, fix a ‘fundamental’ chamber as in 4.2.2, but call it C0 instead of B. All
tours are positive and start at C0 unless otherwise specified. We also allow tours to stutter
finitely many times. This will not affect any subsequent application of our earlier results on
tours, but note that the category of tours is no longer a poset (Lemma 3.1.4).

In the classical setting, we have constructed, jointly with Roman Travkin, the Demazure
category, which parameterizes Demazure varieties, see [TaTr, §3]. This uses the framework
of rigidly bistratified categories in [TaTr, 2.4]. The advantage of using this framework is that
it implies that colimits indexed by the Demazure category are easy to compute inductively,
as discussed in [TaTr, 3.3.2].

The goal of this section is to construct a double affine analogue of the Demazure category,
using the same framework. In fact, all of the hard work has already been done, since we
have already developed the notion of tours, the Bruhat order, and the Demazure product.
The constructions and proofs which go into the framework are conceptually identical to the
classical case. For this reason, we suggest reading 2.4, 3.1, 3.2 in [TaTr] first.

5.1. Jointed tethered tours. We first define the set of objects of the Demazure category.

5.1.1. Fix a positive chamber T . A tethered chamber is an object of the Bruhat poset

⟨T W−→WC0⟩. A tethered tour ([n], c, w) consists of a tour ([n], c) and a map T
w−→ cn which

makes its end chamber into a tethered chamber. Its length is

ℓ([n], c, w) := ℓC0

(︁
T

w−→ cn) + e(c).

5.1.2. A jointed tour ([n], c, f) consists of a tour ([n], c) and a sequence of joint faces
([1, n], f) such that fi ⪯ ci for all i ∈ [1, n]. We say that the chamber ci is unjointed if
fi = ci. It is sometimes convenient to write a jointed tour as c0 ⋄f1 c1 ⋄f2 · · · ⋄fn cn. We will
omit writing the joint of an unjointed step, i.e. c1 ⋄ c2 := c1 ⋄c2 c2.

The i-th socket chamber is the Tits product fici−1, and these will play a significant role.
The socket tour is the (unjointed) tour (c0, f1c0, c1, f2c1, c2, . . . , cn).

5.1.3. A jointed tour is threadable if it satisfies the following conditions:

• (Opposition.) For i ∈ [1, n], if fi is horizontal, then

– fi = c̃i. (The latter is the support face of ci, see 2.4.2.)

– ci is upward in Hfi .

– fici−1 is downward in Hfi .

• (Support-matching.) If ci and cj are at the same level, then ci ⊆ cj or ci ⊇ cj .

The objects of the Demazure category will be threadable jointed tethered tours. In this
section, the threadability condition will merely be a nuisance, but it will become useful in
subsequent sections (see the remark below). The word ‘threadable’ is motivated in 8.4.9.

Note that support-matching implies the following weaker condition:



58

• (Support-consistency) For each level a which has at least one chamber ci, the inter-
section of supports of all chambers at level a is nonempty.

5.2. Rotations. The first ingredient of [TaTr, 2.4] is a right-cancellable category Embc on

the desired set of objects, and a non-full subcategory Embd ⊂ Embc. The latter will provide
one class of ‘generating morphisms’ for the Demazure category. As in the cited paper, an
Embc-morphism is denoted ↣, and a Domc-morphism is denoted ↪→.

5.2.1. Define the groupoid Embc as follows:

• Its objects are threadable jointed tethered tours.

• A morphism ([n], c, f, w)→ ([n], c′, f ′, w′) is a tuple (wi)i∈[1,n], where wi ∈Wfi and

– For all i ∈ [n], we have c′i = (w1 · · ·wi) · ci.

– w′ = (w1 · · ·wn) · w.

• The composite of ([n], c, f, w)
(wi)i−−−→ ([n], c′, f ′, w′)

(w′
i)i−−−→ ([n], c′′, f ′′, w′′) is the tuple

(w′′
i )i given by

w′′
i = (w1 · · ·wi−1)

−1w′
i(w1 · · ·wi−1)⏞ ⏟⏟ ⏞ · wi.

The brace term lies in Wfi because w′
i ∈Wf ′

i
and f ′

i = (w1 · · ·wi−1) · fi.

Here is the motivation for our definition of morphisms. The element wn specifies a way of
‘rotating’ cn around its joint fn. Similarly, wn−1 specifies a way of ‘rotating’ cn−1 around its
joint fn−1, but this ‘rotation’ should also affect cn. Continuing in this way yields ([n], c′, f ′).

Let Embd ⊂ Embc be the non-full subcategory consisting of those morphisms (wi)i such

that, for each i ∈ [1, n], the arrow ci
wi−→ wici lies in the Bruhat category Wfici−1 .

A morphism in Embc can turn a non-stuttering tour into a stuttering tour. However, this
is not true for a morphism in Embd.

Remarks.

(1) Requiring that ci
wi−→ wici lies in Wfici−1 is equivalent to requiring that it lies in

Wci . This is because wi ∈ Wfi and the chambers fici−1, ci project to the same
chamber in Hfi .

(2) Threadability implies that fici−1 = f i = ci. (Proof: If fi is horizontal, this follows
from opposition. If fi is not horizontal, this follows from fi ⪯ fici−1, ci.) Therefore,

the valid arrows ci
wi−→ wici are governed by a classical Bruhat order (4.2.3).

Moreover, this classical Bruhat order is either the ordinary Bruhat order on
a finite Coxeter group or the opposite of the ordinary Bruhat order on an affine
Coxeter group. This more specific statement follows from opposition, which implies
that, if fi is horizontal, then fici−1 is downward and ci is upward.

In Section 6, the threadability condition will ensure that our Demazure varieties
are twisted products of finite type flag varieties and thick affine flag varieties. (In
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other words, thin affine flag varieties and semi-infinite flag varieties do not arise as
factors.) This is essentially forced by the previous paragraph.

In Section 8, the threadability condition will be useful for a completely unrelated
reason: it ensures that every tour admits a ‘threading path,’ which is helpful for
showing that a category of tours is contractible.

5.2.2. Lemma. For every morphism ([n], c, f, w)
(wi)i−−−→ ([n], c′, f ′, w′) in Embc, we have

ℓ([n], c′, f ′, w′) = ℓ([n], c, f, w) +

n∑︂
i=1

ℓfici−1
(ci

wi−→ wici).

In particular, a non-identity morphism in Embd is strictly length-increasing.

The length ℓ(−) was defined in 5.1.1.

Proof. By factoring and possibly inverting the arrows ci
wi−→ wici, we reduce to the case

in which one such arrow cj
wj−−→ wjcj is a length-1 arrow in Wfjcj−1 and all other arrows

are identities. Then wj is the reflection across some wall H. Refine c′ to a gallery g′. The
subgallery of g′ from ci−1 to ci crosses H exactly once, and folding g′ at this point gives a
gallery g which refines c. Applying Lemma 4.4.3 to g ↪→ g′ shows that

1 = e(c′)− e(c) + ℓC0

(︁
cn

rH−−→ c′n
)︁
.

The definition of morphisms in Embc implies that w′ = rHw, so

ℓC0

(︁
c′n

rH−−→ cn
)︁
= ℓC0

(T
w′

−→ c′n)− ℓC0
(T

w−→ cn),

and the result follows. □

5.3. Coxeter and Demazure categories. The second ingredient of [TaTr, 2.4] is a cate-
gory Domc on the same set of objects. Its morphisms are denoted ↠. We also need Domc

to interact with Embc and Embd in a specified way, see below.

5.3.1. Define the category Domc as follows:

• Its objects are threadable jointed tethered tours.

• A morphism ([n], c, f, w) → ([n′], c′, f ′, w) is a bound-preserving weakly-increasing
map φ : [n′]→ [n] such that

– For each j ∈ [n′], we have c′j = cφ(j).

– For each j ∈ [1, n′], the following Coxeter product conditions are satisfied:

∗ For each i ∈ [φ(j − 1) + 1, φ(j)], we have f ′
j ⊂ spanfi.

∗ f ′
j lies in every wall which is double-crossed by ([φ(j − 1), φ(j)], c).

In other words, ([n′], c′, f ′, w) is obtained from ([n], c, f, w) by deleting or duplicating cham-
bers and shrinking joint faces. Note that, if f ′

j satisfies the Coxeter product conditions, then
so does every face smaller than f ′

j .
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5.3.2. Next, we specify ‘commutation relations’ between the Embc-morphisms and the
Domc-morphisms, as in [TaTr, 2.4.1]. Once this is done, we will be able to define the
Coxeter category to be the category whose objects are jointed tethered tours, and whose
morphisms are generated by the two aforementioned classes of morphisms, subject to the
given commutation relations. The Coxeter category is ‘coarser’ than the desired Demazure
category because it does not know about the Bruhat order or the Demazure product. In
fact, the Demazure category will be a non-full subcategory of the Coxeter category.

The commutation relations are given by an exchange map, which sends a solid diagram
(as below) to a dashed diagram.

([n0], c0, f0, w0) ([n0], c1, f1, w1)

([n2], c3, f3, w0) ([n2], c2, f2, w1)

(wi)i

φ:[n2]→[n0] φ:[n2]→[n0]

(w′
j)j

In our setting, given the solid diagram, we produce the dashed diagram by requiring that
w′

j = wφ(j−1)+1 · · ·wφ(j) for every j ∈ [1, n2]. Everything else is determined by this.

In [TaTr, 2.4.1], we ask that the exchange map satisfies the following axioms:

• If the following two solid diagrams are equal, then the outer diagrams are equal:

x2

x1 • x3

• x4

x2

x1 x3

• x4

The squares come from the exchange map, and the triangles come from composition
in Embc. Also, we impose the analogous axiom for one ↣ and two ↠’s.

• The exchange map interacts with identity morphisms in the obvious way.

In our setting, the axiom with two ↣ arrows holds because the formula for w′
j behaves

well with respect to composition of rotations. The axiom with two ↠ arrows holds because
multiplication in W is associative. The second bullet is obvious.

Since the axioms are satisfied, [TaTr, 2.4.1] produces a category as described above. We
call it the Coxeter category and denote it by C.

Remark . We do not use the notation Rigc from [TaTr], because even in the classical setting
our current category is slightly different from the one defined in the cited paper. Indeed,
the categories in the cited paper impose the requirement that consecutive chambers touch,
i.e. ci−1 ∩ ci is nonempty, see [TaTr, 3.3.3].

5.3.3. Next, [TaTr, 2.4.2] asks that we produce, for each Domc-morphism as shown, an

Embd-morphism as shown. This is called the turning map.

([n], c, f, w) ([n′], c′, f ′, w) ([n′], c′′, f ′′, w′′),
φ:[n′]→[n] (wj)j
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Given the Domc-morphism, we produce the Embd morphism as follows: for each j ∈ [1, n′],
choose any gallery g which refines the subtour ([φ(j−1), φ(j)], c), and require that the arrow

c′j
wj−−→ wjc

′
j equals the inverse of the discrepancy gdem

1̂
→ g1̂ defined in 4.7.1. In particular,

the new chamber wjc
′
j is obtained via the Demazure product.

Let us show that this construction is valid.

Claim. For every j ∈ [1, n′], the following are true:

(i) The inverse-discrepancy g1̂ → gdem
1̂

does not depend on the choice of g.

(ii) The inverse-discrepancy can be expressed as c′j
wj−−→ wjc

′
j for some wj ∈Wf ′

j
.

(iii) The inverse-discrepancy lies in Wf ′
jc

′
j−1 or equivalently Wc′j−1 .

These properties imply that (wi)i gives a morphism in Embd.

Proof. Fix j ∈ [1, n′]. Statement (i) is true because any two choices of g are related by gener-
alized braid moves (4.7.2), and these do not affect the Demazure product (Corollary 4.7.3).

Next, we prove (ii). Consider the tour

calt := (cφ(j−1), f
′
jcφ(j−1), f

′
jcφ(j−1)+1, . . . , f

′
jcφ(j) = cφ(j)).

We claim that the tour ([φ(j − 1), φ(j)], c) is related to calt via the following zig-zag of
refinements: insert f ′

jcφ(j)−1, delete cφ(j)−1, insert f ′
jcφ(j)−2, delete cφ(j)−2, etc. We will

explain the first two of these refinements in detail.

• The first step is to insert f ′
jcφ(j)−1 between the last two chambers cφ(j)−1 and cφ(j)

of ([φ(j − 1), φ(j)], c). To show that this is a refinement, we need to show that the
two-step tour (cφ(j)−1, f

′
jcφ(j)−1, cφ(j)) is reduced, i.e. there does not exist a wall

H which separates f ′
jcφ(j)−1 from the other two chambers. Suppose for sake of

contradiction that such an H exists. Since f ′
jcφ(j)−1 and cφ(j) = c′j both have f ′

j as
a face, and H separates them, we must have f ′

j ⊂ H. This means that H cannot
separate f ′

jcφ(j)−1 from cφ(j)−1, contradiction.

• The second step is to delete the chamber cφ(j)−1. To show that this is a refinement,
we need to show that the two-step tour (cφ(j)−2, cφ(j)−1, f

′
jcφ(j)−1) is reduced, i.e.

there does not exist a wall H which separates cφ(j)−1 from the other two chambers.
Suppose for sake of contradiction that such an H exists. Since it separates cφ(j)−1

from f ′
jcφ(j)−1, it does not contain f ′

j . Thus, it does not separate f ′
jcφ(j)−1 from

cφ(j). This implies that it does separate cφ(j)−1 from cφ(j). It also separates cφ(j)−1

from cφ(j)−2 by assumption. Thus, it is double-crossed by ([φ(j − 1), φ(j)], c). This
contradicts the second Coxeter property, because we have already established that
H does not contain f ′

j .

The rest of the refinements are entirely similar.

Since changing g via generalized braid moves does not affect the Demazure product, we
may replace g by a gallery galt (refining calt) without changing g1̂ → gdem

1̂
. Since cφ(j−1) and

f ′
jcφ(j−1) are two consecutive chambers of calt, the subgallery of galt bounded by these two

chambers is reduced. The remaining chambers of galt all have f ′
j as a face. The definition of
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the Demazure product via greedy moves (4.7.1) implies that the discrepancy galt,dem
1̂

→ galt
1̂

lies in Wf ′
j
. This concludes the proof of (ii).

Lastly, we deduce (iii) from the maximality of the Demazure product (Corollary 4.7.5).
This says that the discrepancy gdem

1̂
→ g1̂ is the unique maximal element of the full subposet

of ⟨Wc′j−1
W−→ g1̂⟩ spanned by dis(g). Clearly, g1̂

id−→ g1̂ is an element of dis(g), so the inverse

discrepancy g1̂ → gdem
1̂

lies in Wc′j−1 , as desired. □

5.3.4. According to [TaTr, 2.4.2], the composite morphisms • ↠ • turn
↪→ • produced by the

turning map constitute a non-full subcategory Domd ⊂ C. Then the Demazure category is
defined by two generating subcategories Domd and Embd, just as the Coxeter category was
defined by Domc and Embc. The exchange map for Domd and Embd is defined using the
exchange map for Domc and Embc, which was given in 5.3.2.

For this to work, [TaTr, 2.4.2] says that we must check the following axioms:

• Suppose we are given a solid diagram as below:

x1

x2 x3

• x4 x5

turn

turn

Fill in the square using the exchange map. Then we require that the turn of the
vertical composite equals the horizontal composite.

• Suppose we are given a solid diagram as below:

x2

x1 x3 •

• •

turn

turn

∃

Fill in the square using the exchange map, and create the horizontal ↪→’s using the
turning map. We require that there exists a dotted arrow in Embd making the lower
square commute. (It is unique by right-cancellability.)

In these axioms, an arrow labeled ‘turn’ is the result of applying the turning map.

Verification of axioms. For the first axiom, let us denote the relevant index sets, chamber
sequences, and index maps as follows. (We omit the joint faces and tethers because they
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are not important for this argument.)

([n1], c1)

([n2], c2) ([n2], c3)

([n4], c6) ([n4], c4) ([n4], c5)

φ2,1:[n2]→[n1]

turn

φ4,2:[n4]→[n2]

turn

Note that some of the index sets are the same because Embc-morphisms do not change the in-
dex sets. The vertical composition is governed by the composed index map φ4,1 := φ2,1◦φ4,2.
Let g be any gallery which refines ([n1], c1) and hence also ([n2], c2) and ([n4], c6). The first
turn is defined by taking the Demazure products of the subgalleries of g corresponding to
([φ2,1(j− 1), φ2,1(j)], c1) for j ∈ [1, n2]. Each of these Demazure products can be computed
via greedy moves, which collectively define a folding g′ ↪→ g. By construction, g′ is a gallery
which refines ([n2], c3) and hence also ([n4], c4). Similarly, the second turn is defined by tak-
ing the Demazure products of the subgalleries of g′ corresponding to ([φ4,2(k−1), φ4,2(k)], c3)
for k ∈ [1, n4], and the same procedure gives a folding g′′ ↪→ g′, where g′′ refines ([n4], c5).

The turn of the vertical composition is defined by taking the Demazure products of the
subgalleries of g corresponding to ([φ4,1(k − 1), φ4,1(k)], c1) for k ∈ [1, n4]. Each such ‘big’
subgallery is a concatenation of some of the ‘small’ subgalleries of g which were used to define
the first turn map. (Specifically, it is the concatenation of the subgalleries which correspond
to intervals [φ2,1(j− 1), φ2,1(j)] for j ∈ [1, n2] which lie in the chosen [φ4,1(k− 1), φ4,1(k)].)
To show that the turn of the vertical composition equals the horizontal composition, it
suffices to show that the Demazure product of the ‘big’ subgallery can be computed by first
folding each ‘small’ subgallery by a maximal sequence of greedy moves, and then folding the
resulting ‘modified big’ gallery by a maximal sequence of greedy moves. This is true because
the Demazure product can be computed using any sequence of moves which terminates in
a reduced gallery (Corollary 4.7.3).

We remark that, in the classical setting, the first axiom is verified using the associativity
of the Demazure product, see [TaTr, 3.1.4]. The ability to compute the Demazure product by
first computing the Demazure product on ‘small’ subgalleries is a version of the associativity
property which makes sense in the double affine setting.

For the second axiom, let us denote the relevant data as follows.

([n1], c2)

([n1], c1) ([n3], c3) ([n3], c4)

([n3], c5) ([n3], c6)

φ3,1:[n3]→[n1]
(wi)i

φ3,1:[n3]→[n1]

turn

turn

∃

The two index maps φ3,1 are the same because of how the exchange map is defined. Let
g be any gallery which refines ([n1], c2) and hence also ([n3], c3). Since the upper diagonal

map belongs to Embd, each ‘rotation’ map c2i
wi−→ wic

2
i lies in Wc2i−1 , so Lemma 4.6.1 gives

a folding g′ ↪→ g such that g′ refines ([n1], c1) and hence also ([n3], c5). The upper turn
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map is defined by taking the Demazure products of the subgalleries of g corresponding to
([φ3,1(j − 1), φ3,1(j)], c2) for j ∈ [1, n3]. Similarly, the lower turn map is defined by taking
the Demazure products of the subgalleries of g′ corresponding to ([φ3,1(j − 1), φ3,1(j)], c1)
for j ∈ [1, n3].

Fix an index j as above. Let γ be the corresponding subgallery of g, and let γ′ ↪→ γ be
the folding induced by g′ ↪→ g. In particular, γ0̂ = c1φ3,1(j−1) = c3j−1 and γ1̂ = c1φ3,1(j) = c3j .

Unwinding the definitions, we reduce to showing that the following diagram in W admits a

(unique) dashed map which lies in Wc3j−1 :

γ1̂ γdem
1̂

γ′
1̂

γ′,dem
1̂

Since W is a groupoid, the dashed map is uniquely determined. To see that it lies in

Wc3j−1 , apply the maximality of the Demazure product (Corollary 4.7.5). The composition

γ′,dem
1̂

→ γ′
1̂
→ γ1̂ lies in dis(γ) because it comes from the folding γ′,dem ↪→ γ′ ↪→ γ. (The

first folding comes from computing the Demazure product of γ′ using greedy moves.) □

Since the axioms are satisfied, [TaTr, 2.4.2] produces a category as described above,
which turns out to be a non-full subcategory of C. It is called the Demazure category and
is denoted by D.

5.3.5. Rank function. Lastly, [TaTr, 2.4.2] asks us to define a map from the set of objects
to some ordered set J , called the rank function. This is needed for the inductive character-
ization of colimits which was mentioned at the start of this section. Roughly speaking, we
want Embd-morphisms to be rank-increasing and Domd-morphisms to be rank-decreasing.
See below for the precise conditions.

Define the subset J ⊂ Z × Obj⟨T → W⟩ to consist of pairs (l, y) such that l ≥ ℓC0
(y).

Choose an arbitrary well-ordering of Obj⟨T →W⟩, and equip J with the lexicographic order.
Note that J is not well-ordered, but its upward intervals J>(l,y) are well-ordered. Define the

rank function ℓ̂ : ObjD→ J by

ℓ̂([n], c, f, w) = (ℓ([n], c, w), w).

Every tethered chamber y ∈ ⟨T → W⟩ gives an element (ℓC0
(y), y) ∈ J . If we are

comparing elements in J , we sometimes just denote this element by y for convenience.

Claim. This is ‘good’ in the sense of [TaTr, 2.4.2], i.e.

(i) ℓ̂ is strictly increasing along Embd, i.e. a non-identity Embd-morphism x1 ↪→ x2

implies ℓ̂(x1) < ℓ̂(x2).

(ii) ℓ̂ is weakly decreasing along Domd, i.e. a Domd-morphism x1 ↠ • turn
↪→ x2 implies

ℓ̂(x1) ≥ ℓ̂(x2).
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(iii) Suppose we are given a morphism in Domd, denoted

([n], c, f, w) ([n′], c′, f ′, w) ([n′], c′′, f ′′, w′′)
φ:[n′]→[n] (wi)i

turn

The following statements are equivalent:

• ℓ̂([n], c, f, w) = ℓ̂([n′], c′, f ′, w)

• ℓ̂([n], c, f, w) = ℓ̂([n′], c′′, f ′′, w′′)

• For each j ∈ [1, n′], the subtour ([φ(j − 1), φ(j)], c) is reduced.

Proof. (i) follows from Lemma 5.2.2. Next, fix a morphism in Domd (as shown above) and
refine c to a gallery g. Performing greedy moves on each subgallery from cφ(i−1) to cφ(i)

gives a folding g′′ ↪→ g which refines c′′. If m greedy moves are performed, then the proof
of Lemma 5.2.2 implies that

ℓ([n′], c′′, f ′′, w′′) = ℓ([n], c, f, w)−m.

If m = 0, then the turning map is an identity, so w = w′′. Then equality holds in (ii) and
all bullets in (iii) are true. On the other hand, if m > 0, then the strict inequality holds in
(ii), and all bullets in (iii) are false. □

In the language of [TaTr, 2.4], we have shown that D is ∞-bistratified with rank function

ℓ̂. In this situation, it is useful to single out the basic level morphisms, which are the

D-morphisms x1 → x2 such that ℓ̂(x1) = ℓ̂(x2) and there does not exist a factorization

x1 → x→ x2 with ℓ̂(x) < ℓ̂(x1), see [TaTr, 2.2]. As explained in [TaTr, 2.4], the basic level
morphisms are precisely the Domc-morphisms

([n], c, f, w)
φ:[n′]→[n]−−−−−−−→ ([n′], c′, f ′, w)

for which the subtours ([φ(j − 1), φ(j)], c) are reduced. These also belong to Domd because
their turning maps are identities.

From now on, we rename ‘basic level morphisms’ to ‘birational morphisms’ because ‘level’
already means something else. The motivation is that these morphisms will correspond to
birational maps between sub-Demazure varieties.

5.4. Special classes of maps.

5.4.1. Braid maps. Suppose we are given a map in Domc, denoted

ϕ : ([n], c, f, w)
φ:[n′]→[n]−−−−−−−→ ([n′], c′, f ′, w).

It is a braid map if it is birational, f ′ = f ◦ φ, and the following holds:

• For all i ∈ [φ(j − 1) + 1, φ(j)− 1], the chamber ci is unjointed and f ′
jci = f ′

jc
′
j−1.

In other words, ([n], c, f, w) is obtained from ([n′], c′, f ′, w) by inserting some unjointed
chambers between each pair of chambers (c′j−1, f

′
jc

′
j−1).

As a special case of this, it is a socket-braid map if, for each j ∈ [1, n′], we have

([φ(j − 1), φ(j)], c, f) = c′j−1 ⋄ f ′
jc

′
j−1 ⋄

f ′
j

c′j .
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In other words, ϕ inserts all socket chambers.

5.4.2. Adherent maps. A chamber C adheres to an affine subspace A ⊂ h if there exists
R ∈ Chambers(H|A) such that R ⪯ C. In this case, we have R = C ∧A, i.e. for any face F ,
F ⪯ C and F ⊂ A implies F ⪯ R.

A jointed tour ([n], c, f) is adherent if, for each i ∈ [1, n], ci−1 adheres to span fi.

The morphism ϕ is adherent if, for each j ∈ [1, n′] and i ∈ [φ(j − 1), φ(j)], ci adheres to
span f ′

j . Furthermore, a morphism in D is adherent if its Domc component is adherent.

The adherent subdiagram is the simplicial subset aD ⊂ D such that a simplex σ : ∆n → D
factors through aD if and only if σ sends all vertices to adherent objects and all arrows to
adherent morphisms.

5.4.3. Joint-only and joint-preserving maps. The morphism ϕ is joint-only if ([n], c) =
([n′], c′) and φ is the identity map. In other words, ϕ merely shrinks the joint faces.

The morphism ϕ is joint-preserving if it is adherent and, for all j ∈ [1, n′] and i ∈
[φ(j − 1) + 1, φ(j)], we have fi = ci ∧ span f ′

j . In this case, threadability implies that, for
each j such that f ′

j is horizontal, we have

([φ(j − 1), φ(j)], c, f) = c′j−1 ⋄
f ′
j

c′j .

Furthermore, a morphism in D is joint-preserving if its Domc component is joint-preserving.

5.4.4. Remarks. We motivate the definition of adherence by making these observations:

(1) If ([n], c, f) is a jointed tour, then ci adheres to span fi, but ci−1 might not adhere to
span fi. If ([n], c, f) is adherent, then ci and ci−1 both adhere to span fi. Intuitively,
the joint face fi appears ‘between’ the chambers ci−1 and ci, and adherence forces
fi to treat these chambers more symmetrically.

(2) If ([n], c, f) is adherent and fi is horizontal, then ci−1 ⪰ fi. (Proof: if ci−1 adheres
to span fi along any H|span fi-chamber other than fi, then the tour is not positive,
contradiction.)

(3) Let us say that a subdiagram of a category is a simplicial subset obtained by con-
straining the objects and morphisms, similarly to aD. To construct a map between
subdiagrams of categories, it suffices to map the objects, map the arrows, and check
compositions of arrows. The higher-dimensional simplices come along for the ride.

(4) For t ∈ aD, the map aDt/ → Dt/ is fully faithful. In particular, aDt/ is a category.

(5) Suppose we are given an adherent Domc-morphism

([n1], c1, f1, w)
φ31:[n3]→[n1]−−−−−−−−−→ ([n3], c3, f3, w)

and a factorization of the index map φ31 into

[n3]
φ32

−−→ [n2]
φ21

−−→ [n1].
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If none of the f3
k are horizontal, then the Domc-morphism factors canonically as

([n1], c1, f1, w)
φ21

−−→ ([n2], c2, f2, w)
φ32

−−→ ([n3], c3, f3, w),

where c2j = c1φ21(j) and f2
j = c2j ∧ span f3

k whenever j ∈ [φ32(k − 1) + 1, φ32(k)].

Furthermore, the second map is joint-preserving.

(6) In (5), if we take φ21 to be the identity, then the first map is joint-only.

There are analogues of (5) and (6) for aD-morphisms, but the notation is more complicated.

In (5) and (6), if some of the f3 joint faces are horizontal, then the tour ([n2], c2, f2, w)
may fail to be threadable. This annoyance can be handled in various ways. In 6.5.3, we
use the factorization as-is and enlarge aD by dropping the opposition condition. In 8.4.1
and 8.8.4, we delete the problematic chambers from c2, namely the chambers indexed by
[φ32(k − 1) + 1, φ32(k)− 1] for all k ∈ [n3] such that f3

k is horizontal.

5.5. Adherence comes for free.

5.5.1. Let E be an ∞-category which admits colimits, and let Funbraid(D,E) ⊂ Fun(D,E) be
the full subcategory consisting of functors which send braid maps to isomorphisms.

Theorem. If F : aD → E sends braid maps to isomorphisms, then LKEaD↪→D F has the
same property. Furthermore, left Kan extension and restriction give a mutually inverse pair
of equivalences

Funbraid(aD,E) ≃ Funbraid(D,E).

Remark . In fact, the proof of the theorem implies a slightly stronger statement: the ∞-
categories obtained from aD and D by inverting the braid maps are equivalent. This will
be useful for constructing the Demazure functor in 6.5. We will explicitly construct the
functor on aD. Then, since it sends braid maps to isomorphisms, it automatically extends
to D. In general, we believe that any ‘meaningful’ functor on aD or D should send braid
maps to isomorphisms. Later, in Section 8, when we study the homotopy types of categories
related to D, it will be useful to know that aD ↪→ D is a homotopy equivalence. This follows
immediately from the theorem.

The rest of the subsection is devoted to proving the theorem.

5.5.2. Let us begin by reformulating the theorem more concretely. Fix ṫ ∈ D, denote
its socket-braid map by ṫsoc → ṫ, and note that ṫsoc ∈ aD. We will show that, for any
F : aD→ E which sends braid maps to isomorphisms, the map

F (ṫsoc)→
(︁
LKEaD↪→D F

)︁
(ṫ)

is an isomorphism. This statement easily implies the theorem.

In addition, we claim that the left Kan extension is computed in the usual way:(︁
LKEaD↪→D F

)︁
(ṫ) = colim

⟨aD
D−→ṫ⟩

F ◦ tail.

This would be immediate if aD were a category. In our setting, it follows from the next
lemma, by taking K = aD and C = D.
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Lemma. Suppose we are given a diagram K
ı−→ K

f−→ C, where K is a simplicial set, K and

C are ∞-categories, and ı is a categorical equivalence. For each c ∈ C, the map K/c
i−→ K/c

is a categorical equivalence.

Proof. The map C/c → C is a right fibration by [HTT, Cor. 2.1.2.2], hence a cartesian
fibration which is fibered in ∞-groupoids. Each vertical map in the following pullback
diagram is also a right fibration:

K/c K/c C/c

K K C

i

ı f

The map i is a categorical equivalence because it is the pullback of a categorical equivalence
along a cartesian fibration, see [HTT, Prop. 3.3.1.3]. □

Let us write ṫ = ([ṅ], ċ, ḟ, ẇ) and assume that ṅ = 1, so that ṫ looks like ċ0 ⋄ḟ1 ċ1. The

general case only requires more bookkeeping, working with each step of ṫ separately.

5.5.3. We will only be concerned with objects in ⟨aD D−→ ṫ⟩. Thus, we often denote an
object by t = ([n], c, f), omitting the map to ṫ for sake of convenience.

For any such object, each chamber of t which has ḟ1 as a face comes after each chamber
which does not. (Proof: Since the last chamber of t has ḟ1 as a face, a counterexample

would imply that t double-crosses some wall which does not contain ḟ1, contradicting the
second Coxeter product condition.) Thus, t has a unique step ci−1 ⋄fi ci such that ci is the

first chamber which has ḟ1 as a face. This is called the contact step.

In particular, if ṫ satisfies ḟ1 ⪯ ċ0, then every chamber of t has ḟ1 as a face. This implies

that idṫ ∈ ⟨aD
D−→ ṫ⟩ is a terminal object, and the desired result follows easily. From now

on, we assume that ḟ1 ⪯ ċ0 does not hold, so the contact step satisfies i ≥ 1.

5.5.4. Define an exhausting sequence of full subdiagrams as follows:

A0 ⊂ B0 ⊂ A1 ⊂ B1 ⊂ · · · ⊂ ⟨aD
D−→ t⟩

• Bk consists of objects t ∈ ⟨aD D−→ ṫ⟩ such that the contact step satisfies i− 1 ≤ k.

• Ak ⊂ Bk is defined by requiring that the contact step also satisfies fi = ci = ḟ1ci−1.

It suffices to show that all of the maps

· · · → colim
Bk−1

F → colim
Ak

F → colim
Bk

F → · · ·

are isomorphisms. Indeed, this implies that

colim
A0

F ≃ colim
⟨aD

D−→ṫ⟩
F,

and the theorem follows because ṫsoc is the terminal object of A0.
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If one partitions Bk into three parts Bk−1 ⊔ (Ak ∖ Bk−1) ⊔ (Bk ∖ Ak), then the maps
which go between different parts can only go in the following directions:

Ak ∖Bk−1

Bk ∖Ak

Bk−1

5.5.5. Lemma. Suppose we are given maps of simplicial sets ı : K ⇄ L : r such that
rı = idK , and a homotopy h : L ×∆1 → L sending ır ⇒ idL, which respects the fibers of r
in the sense that the following diagram commutes:

L×∆1 L

K

h

r◦pr1
r

Let F : L→ E be a functor such that, for each vertex l ∈ L0, the arrow Fh({l} ×∆1) is an
isomorphism. Then the natural map

colimFı→ colimF

is an isomorphism.

Proof. First, we claim that r is final. By Theorem A.3.1, it suffices to show that, for each
simplex σ : ∆m → K, the simplicial set of lifts of σ along r is contractible. This is true
because h deformation retracts all lifts onto the lift ıσ. (This uses the requirement that h
respects the fibers of r.)

Since r is final, we have colimFı ≃ colimFır. By the hypothesis on F , the natural
transformation Fh : Fır ⇒ F is a natural isomorphism, so colimFır ≃ colimF . □

Remarks.

(1) Under the same hypotheses, ı is left anodyne and hence initial, by [HTT, Prop.
2.1.2.11] and [HTT, Prop. 4.1.1.3]. Thus, limFı ≃ limF holds without any as-
sumption on F .

(2) The lemma is motivated by the special case whenK and L are∞-categories and (ı, r)
are adjoint functors. In this case, the assumption on F says that F ⇒ LKEı Resı F
is a natural isomorphism, and the lemma follows from left Kan extension to the
point category. This was used in [TaTr, Lem. 2.4.4]

5.5.6. We now show that colimAk
F → colimBk

F is an isomorphism. Let ı : Ak ↪→ Bk

be the inclusion, and take the domain of F to be Bk, so that the desired statement reads
colimFı

∼−→ colimF . In order to apply the previous lemma, we will define a retraction r of
ı and a homotopy h : Bk ×∆1 → Bk sending ır ⇒ idBk

.

For each object t ∈ Bk, define r(t) ∈ Ak and a Bk-morphism η(t) : r(t) → t as follows.
If t ∈ Ak, then η(t) is the identity, and otherwise η(t) factors the contact step of t into

ci−1 ⋄ ḟ1ci−1 ⋄fi ci. Next, make r into a functor Bk → Ak by requiring that, for every
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morphism t1
ϕ−→ t2 in Bk, the diagram

r(t1) r(t2)

t1 t2

r(ϕ)

η(t1) η(t2)

ϕ

commutes. Finally, define the homotopy h by requiring that h({t} × ∆1) = η(t). The
following remarks explain why these constructions work:

• We only need to check that certain compositions of morphisms lie in aD, such as the
diagonal map r(t1)→ t2 in the diagram above. See 5.4.4(3) for a related remark.

• The ‘factoring step’ of η(t) never affects whether a composition of morphisms lies

in aD. The reason is that any morphism in ⟨aD D−→ ṫ⟩ which affects the contact step
ci−1⋄fi ci will require that ci−1 adheres to a certain affine subspace A ⊂ h containing

ḟ1, and in this case ḟ1ci−1 adheres to A as well.

The construction ensures that h respects the fibers of r. Also, each arrow Fη(t) is an

isomorphism, because η(t) is a braid map. (Proof: Since ḟ1 ⪯ fi, we have fiḟ1ci−1 = fici−1.)
Thus, Lemma 5.5.5 applies, as desired.

5.5.7. It is well-known that a functor between ∞-categories is final if and only if its under-
categories are contractible. We formulate an analogue for arbitrary simplicial sets.

Lemma. Let ϕ : K → L be a map of simplicial sets, and define

M = Hom(∆1, L)×Hom({1},L) K.

If the map π : M → L defined by evaluation at {0} ∈ ∆1 is final, then so is ϕ.

Proof. The criterion for final functors between ∞-categories is [HTT, Thm. 4.1.3.1]. Its
proof implies that ϕ factors as K → M → L where K → M is final, and the lemma
follows. □

5.5.8. We now show that colimBk−1
F → colimAk

F is an isomorphism, by showing that the
embedding ı : Bk−1 ↪→ Ak is final. By the previous lemma, it suffices to show that the
evaluation map π : M → Ak is final, where M is defined with K = Bk−1 and L = Ak. For
this, we apply Theorem A.3.1. Fix a simplex σ : ∆m → Ak. The simplicial set of lifts of σ
along π identifies with the full simplicial subset

C ⊂ Hom(∆m, Ak)σ/

consisting of homotopies H : ∆m × ∆1 → Ak sending σ ⇒ ϕ where ϕ : ∆m → Ak is any
map which factors through Bk−1. In 5.4.4(4), we remarked that each aDt/ is a category,
and this implies that Hom(∆m, Ak)σ/ and C are categories. The rest of the proof is devoted
to showing that C is contractible.

Consider the full subcategory C1 ⊂ C consisting of homotopies such that ϕ is a constant
map. The embedding has a left adjoint which sends a homotopy H to its composition with
ϕ ◦ H∆, where H∆ : ∆m × ∆1 → ∆m is the unique homotopy from id∆m to the constant
map with value {m} ∈ ∆m. Therefore, the embedding is a homotopy equivalence.
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If the image of σ intersects Bk−1, then the homotopy σ ◦H∆ is an initial object of C1, so
C1 is contractible and we are done. From now on, assume that this is not the case.

An object of C1 is uniquely determined by the arrow H({m} × ∆1), which we denote
t → t′, where t := σ(m) and t′ ∈ Bk−1.

9 Consider the full subcategory C2 ⊂ C1 for which

t → t′ lies in Domd. The embedding has a right adjoint, which sends t → t′ to the Domd

part of its functorial factorization into Domd and Embd maps. Therefore, the embedding is
a homotopy equivalence.

Every map t→ t′ in Domd corresponds to a map in Domc, which is specified by deleting
some chambers and shrinking some joint faces of t. The requirement t′ ∈ Bk−1 says that

this map must delete at least one chamber which does not have ḟ1 as a face.

Consider the full subcategory C3 ⊂ C2 consisting of maps t→ t′ which do not delete any
chamber ([i, n], c) and do not shrink any joint face ([i+1, n], f). The embedding has a right
adjoint, which modifies t′ by restoring the aforementioned chambers and joint faces. The
subtlety is that, if ci was deleted in t′, then the newly-restored ci must be equipped with

the joint face f̂i := ci ∧ span f ′
j , where i ∈ [φ(j − 1) + 1, φ(j)] and φ : [n′] → [n] is the

index map for t → t′. (In other words, the restored ci gets its joint face from the step of

t′ which ‘contained’ the deleted ci.) Note that f̂i is not horizontal, so this does not affect

threadability. (Proof: if f̂i is horizontal, then so is f ′
j . Then cφ(j−1) = c′j−1 ⪰ f ′

j ⪰ ḟ1,
where the middle inequality holds because t′ is adherent, see 5.4.4(2). Since φ(j − 1) < i,
this contradicts the definition of i.)

Consider the full subcategory C4 ⊂ C3 consisting of maps t→ t′ which delete the chamber
ci−1. This embedding has a left adjoint, which modifies the map so that it does delete this
chamber. (To show that the modified map still satisfies the Coxeter product conditions,

recall from above that, if ci−1 adheres to an affine subspace A ⊂ h containing ḟ1, then

ḟ1ci−1 adheres to A as well. In the present situation, we have assumed that t ∈ Ak, so

fi = ci = ḟ1ci−1.) Therefore, the embedding is a homotopy equivalence.

Lastly, the poset C4 has an initial object given by the map t→ t′ which deletes only the
chamber ci−1. Therefore, C4 is contractible. This completes the proof of Theorem 5.5.1.

6. Demazure varieties

6.1. Overview.

6.1.1. Main definition. Given a threadable jointed tour t = ([n], c, f), we will define a sub-
Demazure variety using the following formula:

X(t) :=
(︁
Ic0

Ic0∩If1c0

× If1c0
)︁ If1c0

× P(f1c0,c1)

Ic1
× · · ·

· · ·
Ici−1

×
(︁
Ici−1

Ici−1
∩Ifici−1

× Ifici−1

)︁ Ifici−1

× P(fici−1,ci)

Ici
× · · ·

· · ·
Icn−1

×
(︁
Icn−1

Icn−1
∩Ifncn−1

× Ifncn−1

)︁ Ifncn−1

× P(fncn−1,cn)/Icn .

9We emphasize that the remaining simplex vertices σ|∆m−1 are not redundant. They constrain the maps

t → t′ which are allowed in C1.
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The next three subsections are devoted to this. In 6.2 and 6.3, we define the terms in the
formula to be certain group ind-schemes or subschemes thereof. In 6.4, we show that X(t)
is a quasicompact scheme. Geometrically, it is a twisted product of two kinds of factors:

• P(fici−1,ci)/Ici is a Schubert variety in a finite or thick affine flag variety.

• Ici−1
/(Ici−1

∩ Ifici−1
) is isomorphic to some Am or the scheme A∞.

When defining the functoriality of X(t) with respect to t, we will make t tethered as well.
Finally, Demazure varieties are non-quasicompact schemes obtained by taking a colimit of
sub-Demazure varieties along a sequence of open embeddings.

6.1.2. Motivation. In the classical setting, if we are given a Kac–Moody group G and a
chamber sequence t = ([n], c) in the corresponding Coxeter complex, then we can define the
Demazure variety

X(t) = P(c0,c1)

Bc1

× P(c1,c2)

Bc2

× · · ·
Bcn−1

× P(cn−1,cn)/Bcn .

The factors are defined as follows:

• Bci is the Borel subgroup whose roots are positive on ci.

• P(ci−1,ci) is the closure of Bci−1
·Bci in G.

Note that P(ci−1,ci) is a union of cells in the Bruhat decomposition of G into double cosets
with Bci−1

on the left and Bci on the right. From the viewpoint of Contou–Carrère’s thesis,
we may interpret this construction as follows:

• Bci is the stabilizer of ci in the Tits building.

• g ∈ P(ci−1,ci) if and only if the relative position (ci−1, gci) is at most (ci−1, ci).

• The k-points of X(t) are in bijection with chamber sequences in the Tits building
which are ‘bounded above’ by t.

If the meet F = ci−1 ∧ ci exists, then P(ci−1,ci) ⊂ PF , where PF is the parabolic subgroup
associated to the face F . The parabolic subgroup PF is ‘easier’ than G because it can be
constructed as the semidirect product of its Levi subgroup and its radical. Thus, if we
assume that t is a generalized gallery, meaning that each meet ci−1 ∧ ci exists, then X(t)
can be constructed from groups which are ‘easier’ than G.

Unfortunately, in the double affine setting, any strictly positive finite tour cannot be a
generalized gallery, i.e. at least one meet ci−1 ∧ ci fails to exist. In this case, we cannot
construct P(ci−1,ci) as a scheme without already having constructed the double loop group
as a scheme. To circumvent this issue, first observe that, in the classical setting, P(ci−1,ci)

always contains an open subscheme

Bci−1Bci ≃ Bci−1

Bci−1
∩Bci

× Bci .

In the double affine setting, if ci−1∧ci does not exist, we simply replace P(ci−1,ci) by the right
hand side. With this modification, X(t) becomes an open subscheme of the true Demazure
variety, so we call it a sub-Demazure variety. As we refine t by adding more chambers, we
expect X(t) to approximate the true Demazure variety.
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The jointed tours are designed to keep track of two kinds of factors, depending on whether
the meet ci−1 ∧ ci exists. Given a jointed tour t = ([n], c, f), we try to construct the
Demazure variety of its socket tour (5.1.2). For each step of the form (fici−1, ci), the meet
fici−1 ∧ ci exists, so we can define P(fici−1,ci). For each step of the form (ci−1, fici−1), the

meet ci−1 ∧ fici−1 need not exist, so we instead use Bci−1

B∩B
× Bfici−1 .

6.2. Parahoric groups.

6.2.1. Lie algebras and imaginary roots. The affine Lie algebra gaff and the double-affine
roots R = Raff + Zπ were defined in 4.1. The double affine Lie algebra is defined as

g := gaff [t, t−1],

and its roots are given by Rreim := R⊔(Zδ+Zπ). The roots in Zδ+Zπ are called imaginary.

Adding the imaginary walls to H gives a finer hyperplane arrangement Hreim. The projec-
tion p : Faces(Hreim)→ Faces(H) is almost a bijection. If F ∈ Faces(H) is a top-dimensional
support face, then p−1(F ) = {F−, F 0, F+}, where F− is a downward chamber, F+ is an
upward chamber, and they are adjacent along F 0. Otherwise p−1(F ) is a singleton. Thus,
we can define a section s of p by requiring s(F ) = F− in the first case. Let us redefine
R+(F ) := R+(s(F )) ⊂ Rreim, and define R0(−) and R+0(−) similarly.

Remark . In brief, we want to identify Faces(H) with the subset of Faces(Hreim) obtained
by deleting all faces of the form F 0 or F+. This identification is a little unnatural, but it
is motivated by the fact that there is no reflection along the (horizontal) wall spanF 0, i.e.
the deleted faces do not give foldings.

For any closed subset R′ ⊂ Rreim, meaning that R′ + R′ ⊆ R′, we define gR′ ⊂ g to be
the Lie subalgebra spanned by the root spaces indexed by R′.

6.2.2. Our goal is to construct, for each F ∈ Faces(H), a ‘parahoric’ group ind-scheme PF .
Its Lie algebra will be a completion of gR+0(F ), and it will be functorial with respect to F .
Let us assume that δ(F ) is rational. The irrational-level case is similar and easier.

6.2.3. The radical UF when F is not upward. Assume that F is not upward, i.e. it is down-
ward or horizontal. We will construct a group ind-scheme UF whose Lie algebra is a com-
pletion of gR+(F ).

For any point p ∈ h with δ(p) < δ(F ), consider the closed subset R+(F, p) := R+(F ) ∩
R+(p) ⊂ Rreim. As p varies, these subsets form a filtered poset. Since F is not upward, the
union of these subsets equals R+(F ).

If we are given a point p as above, a point q which lies in the relative interior of the
convex hull of p ∪ F , and a positive integer n, then we define A(q, n) to be the subset of
roots α such that α(q) ≥ n. The following statements are easy to check:

(i) R+(F, p) + [R+(F, p) ∩A(q, n)] ⊆ [R+(F, p) ∩A(q, n)].

(ii) R+(F, p)∖A(q, n) is finite.

(iii) For fixed p, as (q, n) varies, the sets R+(F, p) ∩A(q, n) form a cofiltered poset.
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By (i), the quotient gR+(F,p)/gR+(F,p)∩A(q,n) is a Lie algebra. By (ii), it is finite-dimensional.

Since its roots are contained in R+(F, p), it is nilpotent, so it corresponds to a unipotent
algebraic group, which we denote UF,p,q,n. Next, define

UF,p := lim
(q,n)

UF,p,q,n

in the category of schemes. Statement (iii) says that the indexing diagram is cofiltered, and
each UF,p,q,n is affine, so UF,p exists.

In this paragraph, fix p and p′ so that R+(F, p) ⊂ R+(F, p′). For any pair (q′, n′) which
is valid for p′, there exists a pair (q, n) which is valid for p and satisfies R+(F, p)∩A(q, n) ⊂
R+(F, p′) ∩A(q′, n′). This containment implies that the obvious map

UF,p,q,n → UF,p′,q′,n′

of algebraic groups is well-defined. Taking cofiltered limits over (q′, n′) yields a map

UF,p → UF,p′

of group schemes. Comparing root spaces shows that this is a closed embedding. Finally,
we take a filtered colimit in the presheaf category:

UF := colim
p

UF,p.

6.2.4. The group PF when F is downward. Suppose that F is downward. Then gR0(F ) is
the Lie algebra of a reductive group, which we denote LF . The action of gR0(F ) on gR+(F )

respects the previously-defined completion,10 so gR0(F ) acts on UF . Checking integrality of
weights shows that this action integrates to LF ↷ UF . Now define PF := LF ⋉ UF .

6.2.5. The group PF when F is horizontal. Suppose that F is horizontal. Define LF to be
the affine-type Kac–Moody group ind-scheme whose roots are R0(F ), and whose positive
roots are R0(F ) ∩R+(C), where C is any downward chamber in HF . (The group LF does
not depend on the choice of C.) The Lie algebra of LF is a completion of gR0(F ). As before,
we will construct an action LF ↷ UF and define PF := LF ⋉ UF .

Fix C as before, and let E range over the faces of C satisfying E ≻ F . For each E,
the subset R0(F ) ∩ R+0(E) ⊂ R0(F ) determines a parahoric subgroup LPE

F ⊂ LF . The
semidirect product decomposition

gR+0(E) = gR0(F )∩R+0(E) ⋉ gR+(F )

is compatible with the previously-defined completions, so it gives a decomposition

PE = LPE

F ⋉ UF .

In particular, we get an action LPE

F ↷ UF . Checking Lie algebras shows that these actions

are compatible as E varies. Since LF = colimE LPE

F in the category of group ind-schemes,
this gives an action LF ↷ UF , as desired. Checking Lie algebras again shows that this
action does not depend on the choice of C.

10To see this, choose the points p and q so that p, q ∈ spanF . This restriction makes it easy to show that

gR0(F ) respects the subalgebras and quotients in the definition of the completion. This restriction defines a

cofinal subset of the poset of all choices of p and q, so it does not affect the limit or colimit.
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If F is top-dimensional, then R0(F ) = {0}, so LF is a torus. In this case, we call PF an
‘Iwahori’ group and denote it by IF .

6.2.6. The group PF when F is upward. Suppose that F is upward. Since F̃ is horizontal,
we have already constructed

PF̃ = LF̃ ⋉ UF̃ .

The subset R0(F̃ )∩R+0(F ) ⊂ R0(F ) determines a negative-parahoric subgroup LPF

F̃
⊂ LF̃ .

Define

PF := LPF

F̃
⋉ UF̃ .

(The phrase ‘negative-parahoric’ is explained in 6.2.8.)

Remark . If we apply this definition when F is downward or horizontal, then the resulting
group PF agrees with the already-defined group PF . If F is downward, LPF

F̃
⊂ LF̃ is a

parahoric subgroup. If F is horizontal, then F = F̃ and LPF

F̃
= LF̃ .

6.2.7. Functoriality. Fix two faces E ⪯ F . This implies Ẽ ⪯ F̃ . First, suppose that Ẽ = F̃ ,
and let S denote both. In the previous remark, we observed that

PE = LPE

S ⋉ US

PF = LPF

S ⋉ US .

Since E ⪯ F , we have LPE

S ⊇ LPF

S , so PE ⊇ PF , as desired.

Next, suppose that Ẽ ≺ F̃ . Then E ⪯ F implies that E is horizontal, i.e. E = Ẽ. We
may factor the original inequality as E ≺ F̃ ⪯ F , where F̃ ⪯ F falls under the previous
case. Thus, we may replace the original inequality by E ≺ F̃ and thereby assume that F

is also horizontal. For convenience, assume that LE is of untwisted type, i.e. LE = L̂H̊,

where H̊ is a reductive group and L̂(−) denotes the identity component of the Kac–Moody
extension of the algebraic loop space. (The twisted case involves more notation but no new

ideas.) The roots R0(F ) ⊂ R0(E) determine a parabolic subgroup P̊ ⊂ H̊, and we denote

its Levi and radical by L̊ and Ů . Then

PE = LE ⋉ UE

⊃ L̂P̊ ⋉ UE

= (L̂L̊⋉ L̂Ů)⋉ UE

= L̂L̊⋉ (L̂Ů ⋉ UE)

= LF ⋉ UF

= PF ,

as desired. Note that the above identifications correspond to the obvious identifications

gR+0(E) = gR0(E) ⋉ gR+(E)

⊃ gR0(E)∩R+0(F ) ⋉ gR+(E)

= (gR0(F ) ⋉ gR0(E)∩R+(F ))⋉ gR+(E)

= gR0(F ) ⋉ (gR0(E)∩R+(F ) ⋉ gR+(E))

= gR0(F ) ⋉ gR+(F ),
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so the key step is to see that L̂Ů ⋉ UE = UF by checking compatibility with completions.

6.2.8. Two versions of Kac–Moody groups. The main difficulty in working with the groups
PF is to keep track of completions and the presence (or absence) of imaginary root subgroups.
Let us briefly review how this difficulty plays out in the case of Kac–Moody groups.

Let G be a Kac–Moody group over k defined using Tits’s presentation. This means that
G has no root subgroups for any imaginary roots, and it is not the set of k-points of any
reasonable ind-scheme. Mathieu’s construction gives two group ind-schemes Gpmax and Gnmax

whose groups of k-points are ‘completions’ of G:

Gpmax(k)←↩ G ↪→ Gnmax(k).

The group Gpmax has positive (but not negative) imaginary root subgroups, and vice versa for
Gnmax. We always want to work in Gpmax. A choice of positive roots gives a Borel subgroup
Bpmax ⊂ Gpmax which is a pro-solvable group scheme. A choice of negative roots gives a Borel
subgroup B−,nmax ⊂ Gnmax in the same way. Taking the preimage of B−,nmax in G and then
pushing it forward to Gpmax(k) gives the set of k-points of a group ind-scheme B− ⊂ Gpmax

which is of ind-finite-type. We call B− a negative-Borel subgroup of Gpmax, and B−,nmax is
its negative-maximal completion. The geometry of these groups is as follows:

• Gpmax/Bpmax is the thin affine flag variety, which is an ind-scheme of ind-finite type.
The quotient B−/(torus) identifies with an open subset.

• Gpmax/B− is the thick affine flag variety, which is a scheme of infinite type. The
quotient Bpmax/(torus) identifies with an open subset.

In this discussion, one could replace ‘Borel’ with ‘parabolic.’ See [GR, 3.3] for details.

More concrete descriptions are possible if G is of affine extended type. Let Gfin be the
corresponding reductive group. If we neglect Kac–Moody extensions, then

G = Gfin[t, t−1]

Gpmax = Gfin((t))

Bpmax = subgroup of Gfin[[t]]

B− = subgroup of Gfin[t−1]

Gnmax = Gfin((t−1))

B−,nmax = subgroup of Gfin[[t−1]]

Of course, Bpmax is usually called an Iwahori subgroup, and the displayed subgroups are
defined by requiring that a t-residue lies in the Borel Bfin ⊂ Gfin or its opposite.

6.2.9. Levi decompositions. We will use the previous discussion to obtain a decomposition

PF = LF ⋉ UF .

If F is downward or horizontal, this follows from the definition of PF . Assume that F is
upward. Then we have defined

PF := LPF

F̃
⋉ UF̃
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where LPF

F̃
⊂ LF̃ is a negative-parahoric subgroup. Let LF̃ play the role of Gpmax in the

previous discussion, and let Lnmax
F̃

be the group Gnmax. The negative-maximal completion

LPF ,nmax

F̃
⊂ Lnmax

F̃
admits a decomposition

LPF ,nmax

F̃
= LF ⋉ LUF ,nmax

F̃

gR0(F̃ )∩R+0(F ) = gR0(F ) ⋉ gR0(F̃ )∩R+(F )

corresponding to the indicated decomposition of Lie algebras. Pulling back to LF̃ gives a

subgroup LUF

F̃
⊂ LF̃ and a decomposition

LPF

F̃
= LF ⋉ LUF

F̃
.

The desired decomposition for PF comes from defining UF := LUF

F̃
⋉ UF̃ .

Remark . More precisely, if B− ⊂ LF̃ is any negative-Borel subgroup, there is a map B− ↪→
Lnmax
F̃

, and LUF

F̃
is defined to be the preimage of LUF ,nmax

F̃
under this embedding. It does not

depend on the choice of B−. Although B− is generated by its root subgroups, and LUF ,nmax

F̃

is (topologically) generated by its root subgroups, we do not claim that LUF

F̃
is generated

by its root subgroups, which correspond to R0(F̃ )∩R+(F ) with imaginary roots excluded.
The use of negative-maximal completions is inspired by 4) in [GR, 3.3].

6.3. Sub-Demazure varieties.

6.3.1. Fix a threadable jointed tour t. We will construct the red parts of the following
diagram, where hook arrows are closed embeddings:

Ifici−1 P(fici−1,ci) Ici Ici ∩ Ifi+1ci Ifi+1ci

Pfi

Then define X(t) as in 6.1.1, taking the quotients in the Zariski topology or any finer one.

6.3.2. The subgroup Ici ∩Ifi+1ci ⊂ Ici . If F = ci∧fi+1ci exists, then the desired intersection
can be taken inside PF . Assume that F does not exist. Then support-consistency implies
that δ(ci) < δ(fi+1ci). We will directly construct a subgroup of Ici which plays the role of
this intersection. Recall from 6.2.6 that

Ici = L
Ici
c̃i

⋉ Uc̃i

Pc̃i = Lc̃i ⋉ Uc̃i .

Define two subgroups

L
Ifi+1ci

c̃i
⊂ Lc̃i

U
Ifi+1ci

c̃i
⊂ Uc̃i

as follows. The inequality of levels implies that fi+1ci projects to an upward chamber of
Hc̃i , so R0(c̃i) ∩ R+0(fi+1ci) ⊂ R0(c̃i) specifies a negative-Iwahori subgroup of Lc̃i , which

we define to be L
Ifi+1ci

c̃i
. Next, define the sub-ind-scheme U

Ifi+1ci

c̃i
⊂ Uc̃i using the closed

subset of roots R+(c̃i) ∩R+0(fi+1ci) ⊂ R+(c̃i) and the construction of Uc̃i .



78

Now we would like to define

P
Ifi+1ci

c̃i
:= L

Ifi+1ci

c̃i
⋉ U

Ifi+1ci

c̃i
⊂ Pc̃i .

To show that this is valid, it suffices to show that U
Ifi+1ci

c̃i
is invariant under the action of

L
Ifi+1ci

c̃i
. Since we are working with reduced ind-schemes, it suffices to check this at the

level of k-points. A well-known characterization of negative-Iwahori subgroups states that

L
Ifi+1ci

c̃i
(k) is generated by the torus T (k) and the root subgroups indexed by the real roots

in R0(c̃i) ∩ R+0(fi+1ci), i.e. roots α = αfin + nδ + mπ where αfin ̸= 0. Thus, it suffices

to show that U
Ifi+1ci

c̃i
(k) is invariant under the action of each of these root subgroups. By

the Baker–Campbell–Hausdorff formula, this follows from the fact that, for each root β of

U
Ifi+1ci

c̃i
(k), i.e. β ∈ R+(c̃i)∩R+0(fi+1ci), the set (β+Z≥0α)∩R+(c̃i) is finite and contained

in R+(c̃i) ∩R+0(fi+1ci). (The finiteness relies on αfin ̸= 0.)

Lastly, define Ici ∩ Ifi+1ci := Ici ∩ P
Ifi+1ci

c̃i
= (L

Ici
c̃i
∩ L

Ifi+1ci

c̃i
)⋉ U

Ifi+1ci

c̃i
.

6.3.3. The map Ici ∩Ifi+1ci → Ifi+1ci . If F = ci∧fi+1ci exists, then this map is the obvious
embedding. Otherwise, it suffices to construct a map

P
Ifi+1ci

c̃i
→ Ifi+1ci .

Consider the subgroups of Ifi+1ci corresponding to the following subsets of R+0(fi+1ci):

R+0(fi+1ci) ∩R+0(c̃i) R+0(fi+1ci) ∩R0(c̃i) R+0(fi+1ci) ∩R+(c̃i)

I
Pc̃i

fi+1ci
I
Lc̃i

fi+1ci
I
Uc̃i

fi+1ci

These are pro-unipotent group schemes, and there is a semidirect product decomposition

I
Pc̃i

fi+1ci
= I

Lc̃i

fi+1ci
⋉ I

Uc̃i

fi+1ci
.

Let us first construct the maps

L
Ifi+1ci

c̃i
→ I

Lc̃i

fi+1ci

U
Ifi+1ci

c̃i
→ I

Uc̃i

fi+1ci

The first map is just the negative-maximal completion of the negative-Iwahori subgroup

L
Ifi+1ci

c̃i
⊂ Lc̃i , see 6.2.8. For both maps, the Lie algebra of the target naturally identifies

with a completion of the Lie algebra of the domain. This observation suffices for constructing
the second map because its source and target are unipotent. Lastly, checking Lie algebras
shows that these two maps intertwine the actions which define the semidirect products, so
we obtain the desired map

P
Ifi+1ci

c̃i
= L

Ifi+1ci

c̃i
⋉ U

Ifi+1ci

c̃i
→ I

Lc̃i

fi+1ci
⋉ I

Uc̃i

fi+1ci
= I

Pc̃i

fi+1ci
⊂ Ifi+1ci .

6.3.4. The subscheme P(fici−1,ci) ⊂ Pfi . First, suppose that fi is horizontal, so Lfi is of
affine type. Opposition implies that the projections of fici−1 and ci to Hfi are downward
and upward, respectively. Thus, R0(fi)∩R+0(fici−1) ⊂ R0(fi) specifies an Iwahori subgroup



79

L
Ifici−1

fi
⊂ Lfi , and R0(fi) ∩R+0(ci) ⊂ R0(fi) specifies a negative-Iwahori subgroup L

Ici
fi
⊂

Lfi . The desired construction is the fibered product

P(fici−1,ci) Pfi

L
Ifici−1

fi
· LIci

fi
Lfi

where the bar denotes Zariski closure in Lfi . In combinatorial terms, this closure is a
downward-closed union of cells in the Birkhoff decomposition of Lfi into double cosets with

L
Ifici−1

fi
on the left and its opposite negative-Iwahori subgroup on the right.

Next, suppose that fi is not horizontal, so Lfi is of finite type. One repeats the above

construction, noting that L
Ifici−1

fi
, L

Ici
fi
⊂ Lfi are Borel subgroups instead of Iwahori and

negative-Iwahori subgroups.

6.4. Scheme structure.

6.4.1. We claim that X(t) is a scheme. Since it is a twisted product of factors P(fici−1,ci)/Ici
and Ici/[Ici ∩ Ifi+1ci ], it suffices to show that each of these factors is a scheme.

6.4.2. The factor P(fici−1,ci)/Ici . First, assume that fi is horizontal. Opposition implies
that fi = c̃i, so 6.2.6 gives decompositions

Pfi = Lfi ⋉ Ufi

Ici = L
Ici
fi

⋉ Ufi .

Thus Pfi/Ici ≃ Lfi/L
Ici
fi

. Opposition also implies that ci is upward, so L
Ici
fi
⊂ Lfi is a

negative-Iwahori subgroup. Thus, the quotient is the thick affine flag variety of Lfi , which
is a scheme. Replacing Pfi by P(fici−1,ci) gives a Schubert variety therein.

If fi is not horizontal, Lfi is a reductive group, and similar reasoning shows that the
desired factor is a Schubert variety in a finite flag variety.

6.4.3. The factor Ici/[Ici ∩ Ifi+1ci ]. We saw in 6.3.2 that either ci ∧ fi+1ci exists or δ(ci) <
δ(fi+1ci). Let us assume the latter, which is the harder case. By definition, we have

Ici = L
Ici
c̃i

⋉ Uc̃i

Ici ∩ Ifi+1ci = (L
Ici
c̃i
∩ L

Ifi+1ci

c̃i
)⋉ U

Ifi+1ci

c̃i
,

which implies that

Ici/[Ici ∩ Ifi+1ci ] ≃
[︂
L
Ici
c̃i

/(L
Ici
c̃i
∩ L

Ifi+1ci

c̃i
)
]︂
×
[︂
Uc̃i/U

Ifi+1ci

c̃i

]︂
.

Let us show that the second factor is isomorphic to the scheme A∞. By the construction
of Uc̃i , it suffices to show that R+(c̃i) ∖ R+0(fi+1ci) ⊂ R+(c̃i, p) for some point p with
δ(p) < δ(c̃i). The containment holds if we choose p so that c̃i intersects the convex hull of
p ∪ fi+1ci.
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For the first factor, we have already seen that L
Ifi+1ci

c̃i
⊂ Lc̃i is a negative-Iwahori sub-

group. Split into two cases:

• If ci is downward, then L
Ici
c̃i
⊂ Lc̃i is an Iwahori subgroup. The intersection is a

finite-dimensional unipotent subgroup, so the quotient is isomorphic to A∞.

• If ci is upward, then L
Ici
c̃i
⊂ Lc̃i is also a negative-Iwahori subgroup. The quotient

is described by the next lemma.

Lemma. Use the notation of 6.2.8, so Gpmax is a Kac–Moody group ind-scheme. Let
I, J ⊂ Gpmax be two negative-Borel subgroups. Then I/[I ∩ J ] is isomorphic to some Am.

Proof. Consider the following diagram of ‘short exact sequences’:

I ∩ J I I/[I ∩ J ]

Inmax ∩ Jnmax Inmax Inmax/[Inmax ∩ Jnmax]

The left square is defined by viewing I and J as subgroups of Gnmax. We will show that
Inmax/[Inmax ∩ Jnmax] is isomorphic to some Am. We will also show that the right vertical
map is an isomorphism by showing that it induces a bijection on S-points for any test affine
scheme S.

The right vertical map induces an injection on S-points because the left square is fibered,
i.e. I ∩ J is the intersection of Inmax ∩ Jnmax with I.

Let R be the set of roots of Inmax which are not roots of Jnmax. This is called a nilpotent
set of roots; it is finite and closed. Let K ⊂ Inmax is the product of root subgroups indexed
by R. Then K is isomorphic to some Am, it is a subgroup, the map

K → Inmax/[Inmax ∩ Jnmax]

is an isomorphism, and K ⊂ I. Thus, K ↪→ I ↠ I/[I ∩ J ] is a section of the right vertical
map. This shows surjectivity on S-points. □

6.5. Demazure functor.

6.5.1. Coxeter varieties. For this subsection only, let us introduce an enlarged version of
aC, denoted aC′, whose objects are jointed tethered tours which satisfy support-consistency
(5.1.3). We have dropped the opposition condition. All of Section 5 applies to aC′.

Our first goal is to define a functor Xc : aC′ → PreShv (presheaves on affine schemes).
We now define it on objects. For t ∈ aC′, let Xc(t) be the presheaf obtained by replacing
P(fici−1,ci) by Pfi in the definition of X(t). This is valid because the opposition condition
was only used to define P(fici−1,ci) and to show that X(t) is a scheme.

6.5.2. Maps in Embc. Consider any map in Embc, denoted

t′ = ([n], c′, f ′, w′)
(w′

i)i−−−→ ([n], c, f, w) = t
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where w′
i ∈ f ′

i . It will sometimes be more convenient to encode such a map using the
tuple of its inverse map, denoted (wi)i. The two tuples are related as follows: w1 · · ·wi =
(w′

1 · · ·w′
i)

−1, or equivalently w′
i = (w1 · · ·wi−1)w

−1
i (w1 · · ·wi−1)

−1.

We will first define the map Xc(t′) → Xc(t) using language which is familiar in the
classical setting, and then we will explain why the terms still make sense in our setting.
Choose lifts w̃i for wi and perform the following maps on each factor:

• (Construction of Ic′i−1

I∩I
× If ′

ic
′
i−1
→ Ici−1

I∩I
× Ifici−1

.) The desired map is

x ↦→ (w̃1 · · · w̃i−1)
−1 x (w̃1 · · · w̃i−1).

• (Construction of Pf ′
i
→ Pfi .) The desired map is

x ↦→ (w̃1 · · · w̃i−1)
−1 x (w̃1 · · · w̃i−1) w̃i.

To make sense of this in our setting (4.1), let N aff ⊂ Gaff be the normalizer of the torus
of the affine Kac–Moody group, and note that it acts on the affine Kac–Moody algebra
gaff by conjugation. Therefore, N aff [t, t−1] acts on the double affine algebra g := gaff [t, t−1]
(6.2.1). The components of N aff [t, t−1] are indexed by the extended double affine Weyl group

W̃ = W aff ⋉ Λaff,∨ (4.1.4). A lift of an element of W̃ is an element in the corresponding
component of N aff [t, t−1]. Such elements act on g by conjugation.

The maps in the bullets are well-defined because the conjugation by (w̃1 · · · w̃i−1)
−1 sends

the g-subalgebras corresponding to Ic′i−1
, If ′

ic
′
i−1

, Pf ′
i
to the g-subalgebras corresponding to

Ici−1 , Ifici−1 (use f ′
i = (w1 · · ·wi−1) · fi), the conjugation respects the relevant completions,

and w̃i can be interpreted as an element of Pfi .

The resulting map Xc(t′) → Xc(t) does not depend on the choice of lifts because we
can ensure that any two lifts differ by a torus factor. Passing from one lift to another will
change the bullet maps by a torus factor on either side, but these factors cancel due to the
diagonal I-quotients in the definition of Xc(−).

6.5.3. Maps in Domc. Consider any map t ↠ t′ in Domc and factor it as

t tjoint t′
joint-only joint-preserving

which is possible by 5.4.4(6). Next, create a commutative triangle involving the joint-only
map as shown:

t ci−1 ⋄
fi
ci (ci−1, fici−1, ci)

tbraid ci−1 ⋄ f joint
i ci−1 ⋄

fi
ci (ci−1, f

joint
i ci−1, fici−1, ci)

tjoint ci−1 ⋄
f joint
i

ci (ci−1, f
joint
i ci−1, ci)

braid

joint-only

Corresponding steps of t and tjoint are shown in the middle column, and their socket tours
are shown in the right column. Define tbraid by replacing each step of t by the indicated

two-step tour. The braid map deletes the newly added chambers f joint
i ci−1. Although tbraid

and tjoint might not be threadable, we have defined Xc(−) on them.
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The isomorphism Xc(tbraid)
∼−→ Xc(t) is defined using the isomorphisms

Ici−1

I∩I
× Ifici−1

≃ (Ici−1

I∩I
× If joint

i ci−1
)

I
× (If joint

i ci−1

I∩I
× Ifici−1

),

which exist because the roots match up. (Note that (ci−1, f
joint
i ci−1, fici−1) is reduced.)

The map Xc(tbraid)→ Xc(tjoint) is defined using the map

(If joint
i ci−1

I∩I
× Ifici−1

)
I
× Pfi → Pf joint

i

obtained by embedding the two factors on the left hand side into Pf joint
i

and multiplying.

Composing gives a map Xc(t) → Xc(tjoint). It remains to construct Xc(tjoint) → Xc(t′).
Let us simplify the notation by replacing tjoint → t′ by any joint-preserving map, denoted
t→ t′. Furthermore, by factoring this map, we may assume that it involves a single chamber
deletion. For notational simplicity, we assume that c1 is deleted, so the map looks like

c0 ⋄
f1

c1 ⋄
f2

c2 ↦→ c0 ⋄
f2

c2.

The joint-preserving assumption says that span f1 = span f2. The desired map will be

(Ic0
I∩I
× If1c0)

I
× Pf1

I
× (Ic1

I∩I
× If2c1)

I
× Pf2

(Ic0
I∩I
× If1c0)

I
× (If1c0

I∩I
× If2c0)

I
× Pf2

I
× Pf2

(Ic0
I∩I
× If2c0)

I
× Pf2

id×swap×id

braid×mult

The ‘braid’ map is an isomorphism which is defined in the same way as Xc(tbraid)
∼−→ Xc(t)

above. The ‘mult’ map is multiplication in Pf2 .

Now we construct the ‘swap’ map, which will be an isomorphism

Pf1

Ic1
× (Ic1

Ic1∩If2c1

× If2c1) ≃ (If1c0
If1c0

∩If2c0

× If2c0)
If2c0

× Pf2 .

Write A := span f1 = span f2 and LA := Lf1 = Lf2 . If A is horizontal, then positivity of the
tour implies that f1 = f2, so both sides equal Pf1 . Assume that A is not horizontal. Then
the supports of f1, c1, f1c0 are equal, and the supports of f2, f2c0, f2c1 are equal; denote the
support faces by s1 and s2, respectively.

Rewrite the left side as follows:

Pf1

Ic1
× (Ic1

Ic1∩If2c1

× If2c1) = Pf1

Ic1∩If2c1

× If2c1

= (LA ⋉ Uf1)
L

Ic1
A ⋉(L

Uf1
s1

∩L
Uf2
s1

)⋉U
If2c1
s1

× (L
If2c1

A ⋉ Uf2)

= LA × Uf1

(L
Uf1
s1

∩L
Uf2
s1

)⋉U
If2c1
s1

× Uf2 .
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For the second identification, use the Levi decomposition of Pf1 (6.2.9), use

If2c1 := L
If2c1
s2 ⋉ Us2

= L
If2c1

A ⋉ L
Uf2
s2 ⋉ Us2⏞ ⏟⏟ ⏞

Uf2

gR+0(f2c1) = gR0(A)∩R+0(f2c1) ⋉ gR0(s2)∩R+(f2) ⋉ gR+(s2),

and use

Ic1 ∩ If2c1 := (L
Ic1
s1 ∩ L

If2c1
s1 )⋉ U

If2c1
s1

= L
Ic1
A ⋉ (L

Uf1
s1 ∩ L

Uf2
s1 )⋉ U

If2c1
s1

which follows from similar identifications

L
Ic1
s1 = L

Ic1
A ⋉ L

Uf1
s1

L
If2c1
s1 = L

If2c1

A ⋉ L
Uf2
s1

and the observation that L
Ic1
A = L

If2c1

A since any root which vanishes on A must take the

same sign on c1 and f2c1. For the third identification, cancel L
Ic1
A with L

If2c1

A , and note
that the diagonal quotient group now maps into Uf1 .

Similarly, rewrite the right side as follows:

(If1c0
If1c0

∩If2c0

× If2c0)
If2c0

× Pf2 = Uf1

(L
Uf1
s1

∩L
Uf2
s1

)⋉U
If2c0
s1

× Uf2 × LA.

Observe that U
If2c1
s1 = U

If2c0
s1 because any root which takes different signs on f2c1 and f2c0

must be zero on f2 and hence cannot be positive on s1. Thus, the desired isomorphism
takes the form

LA × (factor) ≃ (factor)× LA.

The correct isomorphism uses the conjugation action of LA on (factor), and this action can
be defined first on the level of Lie algebras and then integrated. (Since A is not horizontal,
LA is a reductive group.)

6.5.4. Construction of functors. We have now defined Xc(−) on Embc and Domc. In order
to get a functor Xc(−) : aC′ → Sch, it suffices to check triangles in Embc, triangles in Domc,
and squares coming from the exchange map. This is tedious but straightforward.

Next, restrictXc(−) to the subdiagram aD ⊂ aC′. We claim thatX(−) gives a subfunctor
of this restricted functor. It suffices to check that, for every map t→ t′ in aD, the image of
X(t) under Xc(t)→ Xc(t′) is contained in X(t′). This is also straightforward.11

This gives the functor X(−) : aD→ Sch. It sends braid maps to isomorphisms. Now left
Kan extension (Theorem 5.5.1) produces the desired functor X(−) : D→ Sch, whose values
are defined by the same formula as before.

11The verification boils down to well-known statements about Kac–Moody groups. If t → t′ belongs to
Embd, use the fact that the Bruhat order governs closures of Bruhat cells. If t → t′ belongs to Domd, use

the fact that the Demazure product governs images of Bruhat cells under convolution.
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6.5.5. Fix t ∈ D. Since X(t) is a twisted product of affine spaces and Schubert varieties, the
Schubert stratifications of its factors give a stratification of X(t). Each resulting Schubert

cell of X(t) comes from a map t′ ↪→ t in Embd as follows:

X(t′,unjoint) X(t′) X(t).
open closed

Here t′,unjoint is obtained from t′ by enlarging each joint face f ′
i to equal c′i. The largest

Schubert cell corresponds to t′ = t and is denoted V (t).

Next, let t → t′ be any birational map in Domd or equivalently Domc. We claim that,
in the following diagram, each row gives a partition into a closed subscheme and its open
complement, the squares are cartesian, and the right vertical map is an isomorphism.

colim
s↪→t
strict

X(s) X(t) V (t)

colim
s′↪→t′
strict

X(s′) X(t′) V (t′)

∼

In fact, the claim follows immediately from the partition into Schubert cells discussed above.
To see that the right vertical map is an isomorphism, recall from 5.3.5 that t → t′ is a
birational map if and only if its ‘deletion’ subtours ([φ(j − 1), φ(j)], c) are reduced.

This is not an excision diagram because X(t)→ X(t′) need not be proper.

6.6. Demazure varieties.

6.6.1. A refinement is a span in Domc of the form

t t′ t̂,braid joint-only

where the left arrow is a braid map, and the right arrow does not change the joint of any
chamber which appears in t. We denote the refinement as t ‧‧➡ t̂. Refinements can be
composed via the usual recipe for composing spans:

• t̂′ ˆ̂t

t′ t̂

t

joint-only

braid

joint-only

braid

joint-only

braid

Note that the square can be filled in uniquely. This gives a category Ref whose objects are
threadable jointed tours and whose morphisms are refinements. Since X(−) sends braid
maps to isomorphisms, each refinement as above gives a map X(t) → X(t̂) which is easily
seen to be an open embedding. This gives a functor X(−) : Ref → Sch.

The current definition of ‘refinement’ is compatible with the original definition in 3.1.3.
The proof of Lemma 3.1.4 shows that Ref is a poset.
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6.6.2. A positive tour (I, c) is called a generalized gallery if it satisfies

(1) I is complete.

(2) c is continuous.

(3) For each gap i < j in I, the meet ci ∧ cj exists.

Note that every gallery is a generalized gallery (Proposition 3.1.7) and any strictly positive
generalized gallery is infinite. To every generalized gallery we attach a canonical sequence
of joint faces, namely (I ∖ {0̂}, f) where fj = ci ∧ cj if j has a predecessor i, and fj = cj
otherwise.

Fix a threadable generalized gallery g, and let Ref/g ⊂ Ref be the full subposet consisting
of threadable jointed tours t which are refined by g, such that the joint faces of t and g
agree. Then Ref/g is a filtered poset, and we define

X ind(g) := colim
Ref/g

X(t).

This is the Demazure variety associated to g.

Remarks.

(1) Generalized galleries do not form any interesting category. There is also no ‘dia-
gram of Demazure varieties,’ because that would have to be a functor X ind from
generalized galleries to schemes.

(2) The above colimit is indexed by an uncountable poset Ref/g. It is possible to replace
this by a countable poset without changing the colimit. Simply delete cj from g
whenever j has no predecessor. The resulting tour is countable because g crosses
countably many walls, and the colimit does not change because X(−) sends braid
moves to isomorphisms.

In particular, X ind(g) decomposes into countably many Schubert cells.

7. Flag variety

7.1. The underlying set. In this section, let us modify the Demazure category by requir-
ing that all tours have only rational-level chambers. This assumption is needed in order to
apply homotopical deletion (8.8).

7.1.1. Given a scheme, an underline will denote its underlying set (not just its k-points).

For each tethered chamber y ∈ ⟨T W−→WC0⟩, define

Fℓy := colim
t∈Dy

V (t).

Here Dy := D(ℓC0
(y),y) is the category consisting of reduced tours ending at y and birational

morphisms between them, see 5.3.5. Homotopical deletion (8.8.1) implies that Dy is con-
tractible, and the transition maps are isomorphisms, so the colimit is isomorphic to each
term V (t), hence isomorphic to the scheme A∞. Define Fℓ := ⊔yFℓy. This is the underlying
set of the double affine flag variety, expressed as a disjoint union of Schubert cells.
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7.1.2. The next result implies that our Demazure varieties do in fact map to Fℓ.

Theorem. There is a unique isomorphism π : colimt∈D X(t)
∼−→ Fℓ such that, for all

reduced tours t, the subset V (t) ⊂ X(t) is identified with Fℓy ⊂ Fℓ.

Proof. First, fix j ∈ J . We start with colimt∈D≤j
X(t) as a ‘base case’ and inductively

compute colimt∈D X(t) using homotopical deletion (8.8.1). The technique applies because,

if F = X(−) and E = Set, then each functor F̃ : Domc
≤j′ → Ẽ sends all maps in Domc

j′ to
isomorphisms, thanks to the diagram in 6.5.5. The induction uses the fact that the upward
interval J>j is well-ordered. The result is a canonical isomorphism

colim
t∈D

X(t) ≃ colim
t∈D≤j

X(t) ⊔

(︄⨆︂
z

Fℓz

)︄
,

where z ranges over tethered chambers such that (ℓC0
(z), z) > j in J . Each ‘relevant’ step

contributes a component Fℓz, while the ‘irrelevant’ steps do not contribute anything.

These isomorphisms are compatible as j varies. Taking j to be arbitrarily small yields
an injective map

Fℓ ↪→ colim
t∈D

X(t).

To conclude, we will show that this map is surjective. Equivalently, for every t and every
point x ∈ X(t), we must find a zig-zag in D from t to some reduced tour t′, and a chain of
images and preimages of x along this zig-zag, such that the final point lies in V (t′). Assume
without loss of generality that x ∈ V (t) and apply the following algorithm:

• Choose a gallery (I, g) which refines t.

• Consider the first double-crossing (H, 2) ∈Walls′(g). The first crossing (H, 1) gives
a step (gi, gi+1), and the second crossing (H, 2) gives a later step (gj , gj+1). Let
F = gj ∧ gj+1 be the facet of the second crossing. Consider the gallery(︂

[0̂, i) ⊔ [i+ 1, j] ⊔ [j, 1̂], gbraid
)︂
:= g|[0̂,i) ⋄ rHg|[i+1,j] ⋄ g|[j,1̂]

which is obtained from g by performing a generalized braid move on the [i, j]-
subgallery. Let j′ refer to the first copy of j in the new index set. Then gbraid

crosses H twice, at consecutive steps (gbraidj′ , gbraidj , gbraidj+1 ). Define gdel1, gdel2 ↪→ gbraid

by folding at one or both of these crossings, respectively. Note that gdel1 and gdel2

are the two possible results of applying the move defined in Remark 4.7.1 to g.

• A special case of homotopical deletion says that any two finite reduced jointed tours
with the same start and end chambers are related by a zig-zag of birational maps
in D. Using this, we can find a zig-zag of birational maps from t to another jointed
tour tbraid which is refined by gbraid and contains

gbraidj′ ⋄
F
gbraidj ⋄

F
gbraidj+1 = gj+1 ⋄

F
gj ⋄

F
gj+1

as a subtour. Since x ∈ V (t), taking images and preimages along this zig-zag gives
a unique point xbraid ∈ V (tbraid).
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• Define tours tdel1, tdel2 and maps in D by modifying the above subtour as shown:

tbraid gj+1 ⋄
F
gj ⋄

F
gj+1

gj+1 ⋄
F
gj+1

tdel2 tdel1 gj+1 ⋄
F
gj+1 gj+1 ⋄

F
gj

Domd

Domc

turn

Embd Embd

As the notation suggests, tdel1, tdel2 are refined by gdel1, gdel2, respectively. An SL2

computation shows that

(image of V (tbraid)) = V (tdel1) ⊔ (image of V (tdel2))

as subsets of X(tdel1). Let xdel1 be the image of xbraid and split into cases accordingly:

– If xdel1 ∈ V (tdel1), restart the algorithm with xdel1, tdel1, gdel1 in place of x, t, g.

– If xdel1 lies in the image of V (tdel2), then let xdel2 ∈ V (tdel2) be the unique
preimage. Restart the algorithm with xdel2, tdel2, gdel2 in place of x, t, g.

Remark 4.7.1 guarantees that the algorithm terminates with a reduced tour t′ and a point
in V (t′), as desired. □

7.1.3. Convolution flag varieties. One can easily construct the convolution diagram for dou-
ble affine flag varieties (at the level of sets) using a similar colimit. In addition to requiring
that the end chamber of the tour is tethered, we also require that certain intermediate cham-
bers are tethered. More precisely, suppose we are given a positive tour (C0, T1, . . . , Tm) of
chambers. Then define a variant of the category D in which an object is a finite jointed
tour ([n], c, f) equipped with a (necessarily increasing) map φ : [1,m] → [n] and elements
w1, . . . , wm such that cφ(j) = wjTj for all j ∈ [1,m]. One obtains a ‘convolution’ flag variety
by taking the colimit of X(−) along this category. Finally, the ‘projection’ maps come from
restricting the tour ([n], c, f) to each of the intervals [φ(j − 1), φ(j)] ⊂ [n] for j ∈ [1,m],
where φ(0) := 0. This corresponds to viewing X(−) as a twisted product and projecting
onto a subset of the factors.

7.2. The scheme structure (conjecture). In 1.5, we outlined one construction of Kac–
Moody flag varieties, and we conjectured that it generalizes to the double affine setting. We
spell out the details of this conjecture here, at the risk of repetition.

7.2.1. Lifts of sub-Demazure varieties. For each tour t ∈ D, let E(t) be the variant of the
sub-Demazure variety X(t) obtained by omitting the final Icn -quotient. All of the previous
results apply to E(t) as well as X(t), except E(t) is an ind-scheme rather than a scheme.

For some subgroups J ⊂ Icn , the quotient E(t)/J is a scheme. We define

ΓE(t) := colim
J

Γ(E(t)/J,OE(t)/J)
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as a colimit of sets. Each a ∈ ΓE(t) pulls back to a regular function on each subscheme of
the ind-scheme E(t). Thus, it makes sense to define the subset D(a) ⊆ E(t) to be the locus
where a does not vanish.

7.2.2. Construction of the topology. For each tethered chamber y ∈ ⟨T W−→WC0⟩, we equip
Fℓ⪯y with a topology using the following basis of open sets: A subset U ⊆ Fℓ⪯y belongs to
the basis if and only if there exists a system of elements

(at)t ∈ lim
t∈Dop

⪯y

ΓE(t)

such that, for each tour t, we have

π−1
t (U) = D(at)

as subsets of E(t), where πt is the composition E(t)→ X(t)
m−→ Fℓ⪯y.

7.2.3. The conjecture. Let us say that t ∈ Dy is fine if, for each length-1 arrow y′ → y in

WC0 , there is a (necessarily unique) map t′ → t in Embd such that t′ ends at y′. This is
equivalent to requiring that X(t) → Fℓ⪯y is a bijection over the cells of codimension ≤ 1.
(Note that t ∈ Dy means, by definition, that t is reduced with end chamber y.)

We assumed at the start of this section that C0 and y are rational-level. This implies that
there are finitely many length-1 arrows y′ → y (Corollary 4.5.8), so a fine tour t ∈ Dy exists.
For any such t, we may turn the topological space Fℓ⪯y into a ringed space by equipping it
with the sheaf of rings mt,∗OX(t).

We conjecture that this ringed space is a scheme and does not depend on the choice of t.

We conclude this subsection with some speculative remarks.

7.2.4. Mathieu’s construction. We have already mentioned that the conjecture is inspired by
Mathieu’s construction of Kac–Moody flag varieties. We hope that it is possible to develop
a double affine analogue of Mathieu’s theory, and we believe that this is the best way to
approach the conjecture. The basic idea is to look for a line bundle L on some X(t) such
that the resulting map to projective space factors as

X(t)

Fℓ⪯y P
(︁
Γ(L)∨

)︁m

where the hook arrow is a bijection onto the closure of an IC0
-orbit. This provides one

scheme structure on Fℓ⪯y, and then the ‘correct’ one is obtained by normalization. Work
along these lines has been done for the semi-infinite affine flag variety, see [KaNS, 4.4].

7.2.5. Constructible sheaves and Hecke categories. If the scheme structure on Fℓ⪯y exists,
then we believe that the double affine Hecke category should be constructed as follows.
Recall that the intersection of a Schubert variety with an opposite Schubert variety is called
a Richardson variety. In the double affine setting, the Schubert varieties are the Fℓ⪯y, and
the opposite Schubert variety can be defined as the closure (in Fℓ) of the attracting locus
of a T -invariant point under a certain Gm-action (or infinitesimal deformation thereof).
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We conjecture that these closures are ind-proper. Then we can define the double affine
Hecke category to be the colimit of constructible sheaf categories on an increasing union of
Richardson varieties.

This definition should be compatible with the definition of Kazhdan–Lusztig polynomials
in [M2] because R-polynomials count Fp-points in Richardson varieties. We also hope that
the increasing union of Richardson varieties will be isomorphic to the union of the transversal
slices defined in [BF], and we hope that its set of k-points will be in bijection with the set
of chambers of the hovel (a.k.a. masure) defined in [GR].

7.2.6. New version of the double loop group. In the classical setting, the Kac–Moody group
Gaff can be recovered as colimg E(g). Analogously, in the double affine setting, we would
expect the set

G
C0,T

:= colim
t∈D

E(t)

to be a version of the double loop group.

However, G
C0,T

is not actually a group. Instead, there are multiplication maps

G
T1,T2

× G
T2,T3

→ G
T1,T3

.

for every positive tour (T1, T2, T3). These maps are constructed in the same way as the
convolution flag varieties (7.1.3). In other words, we can define a category whose objects
are chambers and whose morphisms from T1 to T2 are given by G

T1,T2
.

Next, we explain how to get a monoid. The extended double affine Weyl group W̃ acts on
everything discussed so far. We will only use the action of the subgroup ⟨d⟩ ⊂ W̃ generated
by the translation d ∈ Λaff,∨. Fix an upward chamber C0 whose support equals {0}, and
restrict to the components

G
good

:=
⨆︂

n1,n2∈Z
n1≤n2

G
C0+n1d,C0+n2d

.

Take the quotient by ⟨d⟩ to obtain the set

M :=
⨆︂

n∈Z≥0

G
C0,C0+nd

.

It is the set of morphisms of a category with one object, so it is a monoid. The Bruhat
decomposition of each component G

C0,T
gives a decomposition of M .

This monoid is analogous to the ‘positive’ subsemigroup G+ ⊂ G which was mentioned
in 1.2. However, it is different because it has a different set of imaginary root subgroups,
and it is completed differently. Specifically, M contains IC0

by construction, so it has root
subgroups for the imaginary roots (Zδ + Z>0π) ⊔ (Z>0δ + 0π).

We believe that M is the most natural version of the double loop group when seeking to
generalize the Kac–Moody theory, because it ensures that the ‘positive’ Borel subgroup IC0

has as many imaginary root subgroups as possible, while the ‘opposite’ Borel subgroup has
none. Furthermore, we conjecture that M can be made into an ind-scheme (possibly with
affine or quasi-affine strata), in analogy with our previous conjecture about Fℓ. However,
we suspect that different versions of the double loop group will lead to the same Fℓ as long
as they have root subgroups for the imaginary roots Z>0δ + Z>0π.
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7.3. An example of the failure of properness. As mentioned in 1.5, the Demazure
maps X(t)→ Fℓ should be non-proper. It is natural to try to fix this by enlarging X(t) to
the Demazure variety X ind(g) (6.6). Unfortunately, the resulting map X ind(g)→ Fℓ should
still be non-proper. We will consider an example where the correct scheme structure on Fℓ
is already known and show that the map is indeed non-proper.

7.3.1. Let us take Gfin = SL2 and allow only chambers which touch the origin 0 ∈ h. These
chambers are in bijection with the chambers of the local arrangement Haff := H{0}, which
is the affine-type Kac–Moody arrangement. Let us take the fundamental chamber C0 to
be downward, and take the tether chamber to be Cop

0 := −C0. Then the Bruhat poset

⟨Cop
0

W−→ WC0⟩ identifies with W aff equipped with the opposite Bruhat order, i.e. 1 is the
maximal element.

With these choices, we have

Fℓ = X(C0 ⋄{0} Cop
0 ) = Gaff/BCop

0
.

Indeed, the tour C0 ⋄{0} Cop
0 is the terminal object of D (which is defined using our chosen

C0 and T ), while Fℓ can be realized as a colimit along D (Theorem 7.1.2), so the first
equality follows. In the second equality, BCop

0
⊂ Gaff is the ‘negative’ Borel subgroup, and

the equality follows from the definition of X(−). The upshot is that, in this special case, Fℓ
is the thick affine flag variety, which has a well-known scheme structure.

Next, denote the two simple reflections by s and t, and let g be the reduced gallery from
C0 to Cop

0 whose first adjacency (from C0 to the second chamber) has type s. The Demazure
map

m : X ind(g)→ Fℓ

is a map of infinite-type schemes. We will construct a finite-type subvariety of Fℓ over which
m can be completely described. The description will imply that m is not proper.

The whole discussion is a special case of the infinite-dimensional analogue of [E, §3].

7.3.2. Brion’s resolution. Consider the non-reduced gallery ge obtained by concatenating g
with the reduced gallery from Cop

0 to tsCop
0 . In Figure 4, the green path is ge, and g is the

subgallery ending at the blue dot. Let me : X ind(ge) → Fℓ be the Demazure map, and let
X ind(ge)1 be its fiber over 1 ∈ Fℓ. (This is a point in the big cell of Fℓ.)

Lemma. X ind(ge)1 is irreducible and locally smooth of dimension ℓ(ge)− ℓ(g) = 2.

Proof. The finite-dimensional analogue is [E, Thm. 3.3], and the same proof works here.
Since the IC0

-orbit of 1 ∈ Fℓ is a dense open subset, the three properties (irreducibility,
local smoothness, relative dimension) are inherited from the generic fiber. For the first two
properties, simply note that X ind(ge) is irreducible and locally smooth. To compute the
relative dimension, analyze the fibers of deletion maps as in Theorem 7.1.2. □

There is also a ‘truncation’ map τ : X ind(ge)→ X ind(g) defined by forgetting the last two
parahoric factors:

· · ·
I
× P

I
× P

I
× P/I → · · ·

I
× P/I

(. . . , p1, p2, p3) ↦→ (. . . , p1)
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Figure 4. The ‘extended’ gallery ge in the affine-type Kac-Moody arrange-
ment for SL2. Of the two walls which are adjacent to C0, the vertical one
is t and the other one is s.

Its restriction to the fiber X ind(ge)1 fits into a cartesian diagram

X ind(ge)1 X ind(g)

P1×̃P1 Fℓ⪰st Fℓ

τ

µ m

∼

where the opposite Schubert variety Fℓ⪰st is isomorphic to a twisted product of two P1’s.
The birational map µ is an analogue of Brion’s resolution of Richardson varieties, which is
discussed in [E, 3.4].

7.3.3. Toric description. We will describe µ using toric geometry. The torus of Gaff , which
is 3-dimensional, acts on everything in sight. We restrict to the 2-dimensional torus T whose
cocharacter lattice is

Λ∨
T := Zαfin,∨ ⊕ Zd ⊂ h,

where αfin,∨ is a coroot of SL2. (In other words, we drop the central Gm.) The action of
T on X ind(ge)1 has a dense open orbit which is isomorphic to T , so X ind(ge)1 is a (non-
quasicompact) toric variety. Hence it is governed by an infinite fan in Λ∨

T , which we will
describe completely.

The fan is determined by its 2-dimensional ‘sectors.’ By basic toric geometry, each T -
invariant point p ∈ X ind(ge)1 gives a sector

S(p) := {Gm → T |Gm ↷ TpX
ind(ge)1 has no positive weights} ⊂ Λ∨

T .

Geometrically, S(p) is the set of cocharacters whose ‘limit’ in X ind(ge)1 exists and equals p.

The T -invariant points p ∈ X ind(ge)1 are in bijection with foldings ge,′ ↪→ ge. Given such
a folding, we make the following definitions.

• Let I be the index set of ge. For each (i < j) ∈ Gaps(I), we know that the chambers
gei , g

e
j are adjacent along some wall H (Proposition 3.1.7). Let αi<j ∈ R be the root

which vanishes on H and is negative on gej .
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• By the definition of foldings, gej is related to ge,′j by an element of the Weyl group

W . Let α′
i<j be obtained from αi < j via the same element. Thus α′

i<j vanishes on

a wall of the chamber ge,′j .

The important point is that, even if the chambers ge,′i and ge,′j coincide, we still want to

consider the root α′
i<j , which in this case is negative on both chambers.

Given a folding (hence a point p), there is a T -equivariant isomorphism of tangent spaces

TpX
ind(ge) ≃

⎛⎝ ∏︂
(i<j)∈Gaps(I)

kα′
i<j

⎞⎠×
⎛⎝ ∏︂

β∈Rim,+
0 (C0)

kβ

⎞⎠ ,

where kα is a line with T -weight α, and Rim,+
0 (C0) is the set of negative imaginary roots in

Haff , namely Z<0δ. Clearly, me(p) = 1 if and only if ge,′ ends at Cop
0 . If this is the case,

then the map on tangent spaces

dp m
e : TpX

ind(ge)→ T1Fℓ

identifies with the map⎛⎝ ∏︂
(i<j)∈Gaps(I)

kα′
i<j

⎞⎠×
⎛⎝ ∏︂

β∈Rim,+
0 (C0)

kβ

⎞⎠→ ∏︂
α∈Rreim,+

0 (C0)

kα

which is defined as follows: each matrix coefficient kα → kβ is the identity if α = β and is

zero otherwise. (Here Rreim,+
0 (C0) is the set of all roots in Haff , real or imaginary, which are

positive on C0.) As a consequence, the kernel can be described as

ker dp m
e ≃

∏︂
some (i<j)∈Gaps(I)

kα′
i<j

where the product runs over all gaps i < j such that α′
i<j ∈ R−(C0) or [α′

i<j = α′
i′<j′ for

some strictly earlier gap i′ < j′]. Of course, the kernel equals TpX
ind(ge)1, so the product

must be 2-dimensional. In conclusion, the sector of p is

S(p) =
∏︂

some (i<j)∈Gaps(I)

{α ≤ 0}.

It is now straightforward to list all foldings of ge ending at Cop
0 and compute their sectors.

The resulting fan is shown in Figure 5, together with the foldings corresponding to each
sector. The precise meaning of this fan is that every finite subfan specifies a (non-proper)
toric variety, and X ind(ge)1 is the colimit of these toric varieties along open embeddings.

We emphasize that the infinitely small region which opens to the right is not a sector
of the fan. This implies that µ (hence m) is not proper, as desired. More precisely, any
T -translate of the cocharacter αfin,∨ : Gm → T gives a curve in X ind(ge)1 which does not

have a limit but whose image in Fℓ⪰st does have a limit.

The four purple rays give the fan of Fℓ⪰st. This confirms that Fℓ⪰st is a twisted product
P1×̃P1. It also shows that µ is an isomorphism away from the point st ∈ Fℓ⪰st, and its fiber
over this point is a disjoint union of two ind-infinite chains of P1’s, which is ind-proper.
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Figure 5. The infinite fan which determines X ind(ge)1 and the foldings of
ge which correspond to its T -fixed points.

7.3.4. Pro-Demazure varieties. There is a ‘pro’ variant of X ind(g) which allows us to fill
in the missing (infinitely small) sector in the above toric fan. Unfortunately, defining this
variant in general requires that we have already constructed the flag variety Fℓ. We will
only explain how the definition works in the special case considered above.

First, defineX(t) by modifyingX(t) as follows: in 6.1.1, replace each ‘bad’ factor (Ici−1

I∩I
×

Ifici−1
)/Ifici−1

by a ‘good’ factor P(ci−1,fici−1)/Ifici−1
, which is a Schubert variety in the

thick affine flag variety. Next, let g̊e be the chamber sequence obtained from g by deleting
the liminal chamber, and define

Xpro(̊ge) := lim
t∈Ref/g̊e

X(t),

where the limit is ‘formal,’ i.e. this is a pro-object in the category of schemes. This pro-
Demazure variety is related to X ind(ge) by the following diagram, in which all hook arrows
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are open embeddings, and t ‧‧➡ t′ are any two tours refined by g̊e:

X(t) X(t)

X(t′) X(t′)

X ind(ge) Xpro(̊ge)

proper

pro-proper

For X ind(ge), it does not matter whether we use ge or g̊e, because the liminal chamber of
g is not adjacent to any walls. On the other hand, for Xpro(̊ge), it is important that we use
g̊e. This choice ensures that the labeled arrows (in the above diagram) are (pro-)proper. In
addition, each m : X(t)→ Fℓ is proper, so m : Xpro(̊ge)→ Fℓ is pro-proper.

Let us describe the T -invariant points of Xpro(̊ge). First, define a collapse of a tour
t = (I, c) to be another tour which is obtained from t by repeating the following procedure:

• Choose a cut J ⊂ I and an element w ∈ W such that, as j ∈ J increases and

j′ ∈ I ∖ J decreases, it is eventually true that wcj′
w−→ cj′ lies in Wcj . Output the

concatenated tour (J, c) ⋄ (I ∖ J,wc).

Note that a folding is equivalent to a collapse in which all of the cuts J ⊂ I are gaps.
Intuitively, a collapse allows us to ‘fold’ at limit points of I and not just at gaps.

Lemma. The points Xpro(̊ge)T correspond to collapses of g̊e.

Proof. By definition, we have Xpro(̊ge)T = limt X(t)T . It is easy to see that the set X(t)T

identifies with the set of collapses of t. The result follows because the definition of collapses
is well-behaved under the limit along the refinement maps. □

The lemma holds if g̊e is any chamber sequence. In our case, the collapses of g̊e which
end at Cop

0 include the already-discussed foldings and one collapse which is not a folding.
(This collapse uses the cut of I which separates the downward chambers of g from the
upward ones.) The resulting T -invariant point corresponds to the infinitely small sector in
the modified fan, as desired.

Remarks.

(1) Xpro(−) can be defined in general once the scheme structure of the double affine
flag variety is known.

The best way to organize this is to enlarge the Demazure category D by allowing
joint faces to be empty. Then extend the functorX : D→ Sch to this larger category
by sending each step ci−1 ⋄

∅
ci to the version of Fℓ centered at ci−1 and tethered at

ci. The resulting diagram of schemes includes X(t), X(t), and mixtures of the two.
This gives a canonical way to parameterize the schemes X(t), and taking a limit
gives the desired Xpro(−).

(2) For the semi-infinite affine flag variety, both versions X ind(−) and Xpro(−) were

studied in [KaNS, 4.3], where they are denoted QG(i) and Q#
G(i), respectively.
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(3) In our example, what if we use ge instead of g̊e? Combinatorially, the gallery ge has
two non-folding collapses which end at Cop

0 , rather than one. They are shown in
Figure 6, where the red line corresponds to (I ∖ J,wc). Geometrically, this means

Figure 6. The two non-folding collapses of ge.

that Xpro(ge)1 should have two new T -invariant points rather than just one. We
do not know how to make sense of Xpro(ge), which is a limit of twisted products of
two semi-infinite affine flag varieties with some P1’s. We also do not know how to
describe the map m : Xpro(ge)1 → Fℓ⪰st in terms of a fan, and we do not think that
it is pro-proper.

8. Contractibility

8.1. Polytopes in locally finite arrangements. In this subsection, H is a locally finite
arrangement of hyperplanes in an affine space A.

8.1.1. Poset of chambers. For any subset S ⊂ A, let Chambers(S) be the set of chambers
which intersect S. If we assign an orientation to each wall, then Chambers(S) acquires a
poset structure, in which an arrow C1 → C2 exists if and only if (C1, C2) does not cross any
wall in the negative direction. The orientation is consistent if, for every face F , the local
arrangement HF has a unique maximal chamber.

8.1.2. A closed polytope P ⊂ A is a nonempty bounded intersection of finitely many closed
half-spaces, which are not necessarily root half-spaces. Open polytopes are defined similarly.

Lemma. Choose a consistent orientation. If P ⊂ A is an open polytope, then Chambers(P )
is contractible.

Proof. Let B be the poset of nonempty intersections of faces with P , ordered by reverse
closure, i.e. F1 → F2 means that F 1 ⊇ F 2. Since P is contractible, so is B. There is a
functor

max : B→ Chambers(P )

which sends F ∩ P to the chamber FC, where C is the unique maximal chamber of HF .
It suffices to show that max is a homotopy equivalence. In fact, we will show that max is
initial, i.e. ⟨max ↓ C⟩ is contractible for all C ∈ Chambers(P ). Define a smaller open polytope
P⪯C ⊂ P by intersecting P with all of the negative root open half-spaces containing C.
Then ⟨max ↓ C⟩ is the analogue of B for the polytope P⪯C , so it is contractible. □
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Remark . The lemma may fail if the orientation is inconsistent. For example, there is an
inconsistent orientation of the finite root system A2 for which the poset of chambers is
homotopic to a circle.

8.1.3. Corollary. Choose a consistent orientation. For any convex subset S ⊂ A with
nonempty interior, the poset Chambers(S) is contractible.

Proof. It suffices to show that each finite subposet P ⊆ Chambers(S) is contained in a
contractible subposet of Chambers(S). For each such P, one can find an open polytope
P ⊂ S which intersects every chamber in P. Then P ⊆ Chambers(P ), which is contractible
by the previous lemma. □

8.2. Deformations. From now on, (h,H) is a double affine Coxeter arrangement, and we
write Haff := H{0}.

8.2.1. Consider the ordered R-algebra E := R[ϵq | q ∈ Q≥0] which consists of (finite) linear
combinations of symbols ϵq. The order on E is obvious. An element of E is infinitesimal if
its constant term equals zero. A subscript E is shorthand for E ⊗R (−).

• A deformed affine function is a map f : hE → E of the form ξE−c, where ξ : h→ R
is an R-linear function and c ∈ E. It is real if c ∈ R.

• Deformed affine subspaces and deformed polytopes are defined using deformed half-
spaces (e.g. {f ≥ 0}, {f > 0}) in the obvious way.

• The specialization of a subset S ⊂ hE , denoted spS ⊂ h, is the image of S under
the map hE → h defined by ϵ ↦→ 0.

We may view H as an arrangement of deformed hyperplanes in hE . For each deformed
affine subspace A ⊂ hE , the induced arrangement H|A is defined in the obvious way, as an
arrangement of deformed hyperplanes in A.

8.2.2. Remarks. This construction is motivated by the following observations:

(1) If P is a deformed polytope, then its face poset is isomorphic to that of an ordinary
polytope which is constructed as follows. For each t ∈ R>0, let Pt ⊂ h be the
intersection of the half-spaces {ξ ≥ ct}, where the pair (ξ, c) specifies a deformed
half-space defining P , and ct is the evaluation of c at ϵ = t. There exists t1 ∈ R>0

such that the face poset of Pt is constant for t ∈ (0, t1). Each such Pt works. The
polytopes Pt for different values of t are related by translating the defining half-
spaces without changing their slopes. In the literature on polytopes, this is called a
deformation, which motivates our terminology.

(2) The classification of faces (Theorem 2.4.3) implies that every face of H contains an
element of h+ ϵh.

(3) For convenience, we have defined everything inside in the ambient space hE . Here is
a more intrinsic approach. Define a deformed affine space to be a pair (V,A), where
V is a real vector space and A is a torsor for the additive group VE . A deformed
affine map (V1, A1) → (V2, A2) is a map A1 → A2 which is compatible with the
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map V1,E → V2,E induced by some R-linear map V1 → V2. This is called a deformed
affine function if (V2, A2) = (R, E). We will not need this generality.

8.2.3. A set S of deformed half-spaces is bounded if there exists a finite subset of S whose
intersection is a bounded subset of hE .

Lemma. Suppose that S is a bounded set of deformed half-spaces such that all but finitely
many are real. Then the following are equivalent:

(i) S has nonempty intersection.

(ii) Every finite subset of S has nonempty intersection.

Proof. It is clear that (i) implies (ii), so we focus on proving the converse. Choose co-
ordinates x1, . . . , xr for h and hence hE . Viewing S as a system of inequalities, we apply
Fourier–Motzkin elimination along these coordinates, obtaining a set T of inequalities be-
tween elements of E, which are interpreted as upper and lower bounds for xr. The procedure
guarantees that any given finite subset of S has nonempty intersection if and only if the
corresponding finite subset of T is all true. Thus, (ii) implies that T is all true, i.e. the set
of upper and lower bounds for xr is consistent.

We claim that there exists an element xr ∈ E satisfying these bounds. The assumption
that S is bounded implies that these bounds do not diverge to ±∞. The assumption that
all but finitely many deformed half-spaces in S are real implies that finitely many ϵq appear
in T . Now the existence of xr follows from the fact that R is complete and Q≥0 is a dense
linear order.

If we fix xr, then the resulting set of upper and lower bounds for xr−1 is consistent.
Repeating the previous reasoning yields a point (x1, . . . , xr) in the intersection of S. □

8.2.4. Corollary. For every deformed affine subspace A ⊂ hE, each chamber of the induced
arrangement H|A contains a point.

Proof. This follows from the previous lemma because each root is a real affine function, and
A is defined by finitely many deformed affine functions. The hypothesis that S is bounded
corresponds to the boundedness requirement in the definition of chambers, see 2.2.3(iv). □

8.2.5. Lemma. Suppose we are given a deformed affine subspace A ⊂ hE and a finite list
of deformed affine functions (fi)i∈[m] such that

• spA is horizontal and rational (i.e. it is defined over Q).

• Each sp fi has rational slope (i.e. ξ is defined over Q).

Then there exist u ∈ hfin+ϵh and ci ∈ R+ϵR such that any bounded set of half-spaces defined
by a root or some fi has nonempty intersection in A if and only if the set of half-spaces
obtained by replacing each fi by (sp fi) + ci has nonempty intersection in (spA) + u.

Intuitively, the lemma says that we can replace A and (fi)i by ‘combinatorially equivalent’
objects which involve only ϵ1 and no other infinitesimals.
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Proof. First, we will concretely describe the half-spaces which are defined by a root α =
αfin + nδ + mπ or some fi. Let r = dim hfin, s = dimA, and l = δ(spA). The first bullet

implies l ∈ Q. Note that A differs from spA by an infinitesimal translation (ε
(A)
j )j∈[r−s]

(where ε
(A)
j ∈ E), and each fi differs from sp fi by an infinitesimal constant term ε(fi) ∈ E.

In particular, if we choose coordinates x1, . . . , xs on spA, then we also get coordinates on
A by translation. In these coordinates, the root half-space {α ≥ 0} ⊂ A looks like

a1x1 + · · ·+ asxs ≥ c+m+ nl + nε
(A)
0 +

r−s∑︂
j=1

bjε
(A)
j ,

where aj , bj , c ∈ Q depend on αfin. Similarly, {fi ≥ 0} ⊂ A looks like

a1x1 + · · ·+ asxs ≥ c+ ε(fi) +

r−s∑︂
j=0

bjε
(A)
j

where aj , bj ∈ Q and c ∈ R depend on fi. One may replace ≥ by >,≤, <.

Next, applying Fourier–Motzkin elimination to any bounded set S of these half-spaces
gives a set T of inequalities in E, of the form

n1

N
+

n2

N
ε
(A)
0 + d+

r−s∑︂
j=1

djε
(A)
j +

m∑︂
i=1

d′iε
(fi) ≥ 0,

where the positive integer N is fixed, the integers n1 and n2 may vary arbitrarily, the
numbers d ∈ R and dj , d

′
i ∈ Q may vary in a fixed finite subset D ⊂ R, and the inequality

sign may be > instead of ≥. (The restriction involving the finite subset D comes from the
fact that there are finitely many possibilities for αfin and fi.) The proof of Lemma 8.2.3
implies that S has nonempty intersection in A if and only if T is all true.

Thus, it suffices to find new choices of ε
(A)
0 ∈ ϵR and (ε

(A)
j )j∈[1,r−s], (ε

fi)i∈[m] ∈ R + ϵR
which do not alter the validity of any inequality in T . (The new choices are used to define

u and ci.) If we treat ε
(A)
j and ε(fi) as variables, then the inequalities in T come from

as double affine root arrangement (different from H), so the classification of faces in such
arrangements implies that good choices exist (see Remark 8.2.2(2)). □

8.3. Domes. In this subsection, all deformed half-spaces, deformed affine subspaces, and
deformed polytopes are required to have rational specializations.

A vector v ∈ h is upward if δ(v) > 0.

8.3.1. Let A ⊂ hE be a deformed affine subspace. A nonempty bounded subset D ⊂ A is a
dome if one of the following holds:

(1) Assume that A is horizontal and δ(A) ∈ Q. Then D is a deformed open polytope
which intersects exactly one chamber of H|A.

(2) Assume that A is horizontal and δ(A) /∈ Q. Then D is a deformed open polytope.

(3) Assume that A is not horizontal. Then, for some (equivalently any) upward vector
v ∈ h, the subset D ⊂ A equals the intersection of a set of open half-spaces such
that all but finitely many are root half-spaces {α > 0} such that αaff(v) < 0.
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The condition in (3) does not depend on the choice of v because, if v1 and v2 are two upward
vectors, then the set of roots α for which αaff has different signs on v1 and v2 is locally finite.
Note that, in all cases, we have spanD = A.

8.3.2. Poset of chambers. Let D ⊂ A be a dome. Define the subset Chambers(D) ⊂
Chambers(H|A) to consist of chambers which intersect D. In case (1), this set is a sin-
gleton. In the remaining two cases, choose an upward orienting vector v ∈ h as follows:

(2) Using Lemma 8.2.5, we may replace A and D by analogous objects which are defined
using only ϵ0 and ϵ1, without changing Chambers(D). After doing so, we can write

δ(A) = l1 + ϵl2, where the hypothesis of (2) implies l2 ̸= 0. Next, let ˜︁A ⊂ h be the

smallest affine subspace which contains A and spA, and let ˜︁A0 be its translation to
the origin.12

Choose v ∈ ˜︁A0 to lie in a chamber of Haff | ˜︁A0
.

(3) Let A0 be the translation of A to the origin.

Choose v ∈ A0 to lie in a chamber of Haff |A0
.

We say that a root α of H is v-positive, v-negative, or v-zero depending on the sign of
αaff(v). Define a partial order on Chambers(D) as follows: an arrow C1 → C2 exists if and
only if (C1, C2) does not cross into any v-negative root half-space.

Theorem. If v is chosen as above, then the poset Chambers(D) is contractible.

The rest of the subsection is devoted to proving the theorem.

8.3.3. Apply induction on dimA. The base case dimA = 0 is trivial. Assume that dimA > 0
and that the theorem holds for all lower dimensions.

For now, assume that case (3) holds. We will handle case (2) at the end (8.3.10), and
case (1) is obvious.

8.3.4. Bottoms. Perturb v within itsHaff |A0
-chamber so that it is not parallel to any defining

hyperplane of D. This does not change the partial order on Chambers(D).

Let P ⊂ A be any deformed open polytope such that v is not parallel to its polytopal
facets. The bottom of P is defined as follows, where f ranges over deformed affine functions.

Bot(P ) :=

⎡⎢⎢⎣
(︄ ⋂︂

f(P )>0
f(v)>0

{f ≥ 0}

)︄
∩

(︄ ⋂︂
f(P )>0
f(v)<0

{f > 0}

)︄⎤⎥⎥⎦∖ P.

More conceptually, Bot(P ) is the set of points p /∈ P such that, when v is rooted at p, it
points into P . It is clear that Bot(P ) is a union of polytopal faces of P which is open in the
boundary of P .

Define Bot(D) in the same way. Let P be any deformed open polytope obtained as the
intersection of a finite subset S of the defining deformed half-spaces of D. If S includes

12Motivation: A is obtained from spA by translating along an ϵ-multiple of a vector in ˜︁A0.
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all defining deformed half-spaces which are not v-negative root half-spaces, then Bot(D) ⊆
Bot(P ), and increasing S can only decrease Bot(P ). For sufficiently large S, every polytopal
face of Bot(P ) meets Bot(D), and increasing S does not change the partition of Bot(D)
induced by the partition of Bot(P ) into polytopal faces. Define a polytopal face of Bot(D)
to be a component of the induced partition.

The poset of polytopal faces of Bot(D), ordered by closure, is contractible because it is
isomorphic to the analogous poset for some Bot(P ).

For any F ∈ Faces(H|A), let Fmax be the maximal chamber C of H|A such that C ⪰ F ,
i.e. Fmax contains F + cv for small c ∈ E. By construction, if F intersects Bot(D), then
Fmax intersects D.

8.3.5. Fracture. We will refine the ‘polytopal face’ partition of Bot(D) to obtain another
(finite) partition. The new components will be called fracture faces and denoted in Fraktur
font. Each fracture face will be a dome in its affine span. If a fracture face F satisfies (2) or
(3), then our construction will also assign to it an upward vector vF satisfying 8.3.2.

The construction proceeds in stages, numbered from dimA−1 to 1. At stage m, we refine
some of the faces of dimension ≤ m as follows. For each m-dimensional face D′, split into
cases depending on A′ := spanD′:

(1) Assume that A′ is horizontal and δ(A′) ∈ Q. Refine the partition of D′ by slicing
with all walls.

(2) Assume that A′ is horizontal and δ(A′) /∈ Q. Choose a vector v′ by applying 8.3.2(2)
to D′ ⊂ A′.13 Refine the partition of D′ by slicing with the locally finite set of
hyperplanes Hα for which αaff takes different signs on v and v′. Then assign v′ to
each m-dimensional face thus created.

(3) Assume that A′ is not horizontal. Proceed as in the previous case, using 8.3.2(3).

This completes the construction. It is easy to see that the resulting partition has the
properties claimed above.

Let Frac(D) be the poset of fracture faces ordered by reverse closure. It is contractible
because Bot(D) is contractible.

8.3.6. For any F ∈ Faces(H|A) which intersects Bot(D), define p(F ) to be the unique
fracture face which contains the intersection. Define a poset B as follows:

• An object is a face in H|A which satisfies

(objfr) F intersects Bot(D), and dim(F ∩ p(F )) = dim p(F ).

(This set of objects is in bijection with the set of chambers of fracture faces.)

• There is a morphism F1 → F2 if and only if the following hold:

(mormax) Fmax
1 → Fmax

2 is a morphism in Chambers(D).

13In order to apply 8.3.2(2) to D′ ⊂ A′, we need to know that A′ and the half-spaces defining D′ have
rational specializations. This follows from the analogous statements for D ⊂ A, which were assumed at the

beginning, see 8.3.
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(morfr) p(F1) ⪰ p(F2).

By construction, there are functors

Chambers(D) B Frac(D)max p

which sends F ∈ B to Fmax and p(F ), respectively. We will use the next lemma to show
that these functors are homotopy equivalences.

8.3.7. Lemma. Suppose we are given a functor F : C → D between two categories. If
every fiber of F is contractible and, for every solid diagram as shown, the category of lifts
is contractible, then F is final.

{1} C

∆1 D

F

Proof. It suffices to show that ⟨d ↓ F ⟩ is contractible, for each d ∈ D. Since F−1(d) is
contractible by the first hypothesis, it suffices to show that ı : F−1(d) ↪→ ⟨d ↓ F ⟩ is a
homotopy equivalence. For this, it suffices to show that ı is initial, i.e. for each a ∈ ⟨d ↓ F ⟩,
the category ⟨ı ↓ a⟩ is contractible. This follows from the second hypothesis, because a
specifies a solid diagram, and ⟨ı ↓ a⟩ is its category of lifts. □

Remark . The hypothesis implies that, for every simplex σ : ∆n → D, the category of lifts
of σ along F is contractible. (Proof: a lift of σ can be constructed by lifting {n} ∈ ∆n and
then lifting each edge inductively.) Then Theorem A.3.1 implies that F is initial and final.
We will not need this extra strength.

8.3.8. Lemma. p is a homotopy equivalence, so B is contractible.

Proof. We will apply Lemma 8.3.7. First, we must show that the fiber p−1(F) is contractible,
for each F ∈ Frac(D). In fact, p−1(F) ≃ Chambers(F), so the contractibility follows from the
inductive hypothesis because F is a dome of dimension < dimA. The fracture construction
ensures that the partial order on p−1(F), which is defined via (mormax) and v, agrees with
the partial order on Chambers(F), which is defined by vF.

Next, we must show that the category of lifts for every solid diagram

{1} B F1

∆1 Frac(D) F0 F1

p p

⪰

is contractible. A lift is given by F0 ∈ Chambers(F0) such that Fmax
0 → Fmax

1 is an arrow
in Chambers(D). The category of lifts identifies with a p-fiber for a smaller dome D⪯Fmax

1

obtained by intersecting D with every v-negative root half-space which contains Fmax
1 , so it

is contractible by the previous reasoning applied to this smaller dome. Note that D⪯Fmax
1 is

nonempty because F0 ⪰ F1 implies that F0 contains points arbitrarily close to F1. □
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8.3.9. Lemma. max is a homotopy equivalence, so Chambers(D) is contractible.

Proof. We will show that max is initial. For any C ∈ Chambers(D), the overcategory
⟨max ↓ C⟩ is the poset B for a smaller dome D⪯C obtained by intersecting D with every
v-negative root half-space which contains C. This is contractible by the previous lemma. □

This completes the inductive step for case (3).

8.3.10. Now suppose that case (2) holds. Replace A and D as described in 8.3.2(2). Assume

l2 > 0. (If l2 < 0, then reverse the orientations.) Define the subset ˜︁D ⊂ ˜︁A by intersecting
with {f > 0} for all deformed affine functions f satisfying f(D) > 0 and f(spD) ≥ 0. Then˜︁D ⊂ ˜︁A is a (dimA + 1)-dimensional dome which satisfies case (3), and the old orienting

vector v still works. It is easy to see that Chambers(D) ≃ Chambers( ˜︁D), so it suffices to
show that the latter is contractible.

Let us apply the previous discussion to ˜︁D. The fracture faces of Bot( ˜︁D) all satisfy (1)
or (3) and have dimension ≤ dimA, so we have already proven that they are contractible.

Thus, the previous discussion implies that Chambers( ˜︁D) is contractible, which completes
the inductive step for case (2). This concludes the proof of Theorem 8.3.2.

8.4. Precaptive tours. From now on, all tours inH are required to have only rational-level
chambers. This will allow us to apply Theorem 8.3.2.

8.4.1. Here is a notion which bounds from below the ‘fineness’ of a jointed tour. Fix a
locally finite subarrangement Hpre of H, and call it the preclaustral arrangement.

• A jointed tour ([n], c, f) is precaptive if, whenever a step ci−1 ⋄fi ci crosses a pre-
claustral wall H, we have fi ⊂ H.

Let us reformulate this in a more illuminating way. A jointed preclaustral generalized gallery
is a jointed chamber sequence ([n], c, f) for Hpre which satisfies fi ⪯ ci−1, ci for all i ∈ [1, n].

• A jointed tour ([n], c, f) is precaptive if and only if projecting c and f to Hpre gives
a jointed preclaustral generalized gallery.

This projection defines a functor from the Domc-category of precaptive jointed tours to the
category of jointed preclaustral generalized galleries.

8.4.2. Fix a positive pair of chambers (B0, B1) and a nonnegative integer e. Define pre.Domc

to be the full subcategory of Domc consisting of precaptive threadable jointed tours from
B0 to B1 with excess ≤ e. (We can ignore the tether (5.1.1) because maps in Domc do not
change the end chamber of a jointed tour.)

Theorem. pre.Domc is contractible.

The proof of the theorem begins now and lasts until the end of 8.7.

8.4.3. Overview of proof. Let a.pre.Domc ⊂ pre.Domc be the non-full subdiagram consisting
of adherent tours and morphisms. The proof of Theorem 5.5.1 implies that this embedding
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is a homotopy equivalence. Given any finite diagram B → a.pre.Domc, we will construct a
lax-commutative diagram

E cap.Domc

∆op
/B

B a.pre.Domc pre.Domc

∼ ⇒

⇐
π

∼ev0

where the ∼ arrows are homotopy equivalences, and cap.Domc is contractible. This proves
the theorem, because it implies that every sphere in B can be contracted in pre.Domc.

The map ev0 sends a simplex β : ∆s → B to β(0). It is a homotopy equivalence by [C,
Prop. 7.3.15] and [C, Prop. 7.1.10].

We will construct the following:

• A functor bel(−).cap.Domc
: ∆op

/B → Cat whose values are contractible.

• A contractible category cap.Domc and a map π : cap.Domc → pre.Domc.

• For each β ∈∆op
/B, a lax-commutative diagram

bel(β).cap.Domc cap.Domc

pt pre.Domc

⇒
⇐

π

β(0)

Furthermore, these diagrams should be lax-functorial with respect to β.

Once this is done, we will be able to construct the desired diagram as follows. Let E→∆op
/B

be the cocartesian fibration associated to bel(−).cap.Domc
. It is a homotopy equivalence

because each fiber is contractible. The remaining maps and natural transformations come
from the third bullet point.

8.4.4. Belayed tours. In this subsection, we will construct lax-commutative diagrams

bel(β).Domc pre.Domc

pt pre.Domc

⇒
⇐

β(0)

which are lax-functorial with respect to β. We begin by defining bel(β).Domc
.

Fix β : ∆s → B, and abuse notation by viewing it as a map ∆s → pre.Domc.

• For each r ∈ [s], write β(r) = ([nβ(r)], cβ(r), fβ(r)).

• For any r′ > r in [s], let φr′,r : [nβ(r′)]→ [nβ(r)] be the index map of β(r)→ β(r′).

• For each r ∈ [s] and k ∈ [1, nβ(0)], let k′ ∈ [1, nβ(r)] be the unique index such that

k ∈ [φr,0(k′ − 1) + 1, φr,0(k′)], and define Ar
k := span f

β(r)
k′ . As r varies, this gives a
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flag of affine subspaces of h:

Ak = (As
k ⊆ As−1

k ⊆ · · · ⊆ A0
k ⊆ A−1

k = h).

Define mnh(k) ∈ [−1, s] to be the maximal index r such that Ar
k is non-horizontal.

We say that a chamber adheres to Ak if it adheres to each Ar
k.

A belayed tour is a precaptive threadable jointed tour ([n], c, f) equipped with a belay
map bel : [nβ(0)]→ [n] such that the following belay conditions are satisfied:

(B1) For each k ∈ [nβ(0)], we have cbel(k) = c
β(0)
k .

(B2) For each k ∈ [1, nβ(0)], we have

• The chambers ([bel(k − 1), bel(k)], c) adhere to Ak.

• The tour ([bel(k − 1), bel(k)], c ∧A0
k) in H|A0

k
is reduced.

(B3) For each k ∈ [1, nβ(0)], we have

• If f
β(0)
k is horizontal, then ([bel(k − 1), bel(k)], c, f) = c

β(0)
k−1 ⋄fβ(0)

k

c
β(0)
k .

• If f
β(0)
k is non-horizontal, then the faces ([bel(k−1)+1, bel(k)], f) lie in A

mnh(k)
k .

A morphism of belayed tours is a morphism of jointed tours which is compatible with the
belay maps. Let bel(β).Domc

be the category of belayed tours with excess ≤ e.

8.4.5. Here is the motivation for the above definition. Given any belayed tour ([n], c, f, bel),
we can construct a diagram in pre.Domc

β(0) σ̂(0) σ(0)

β(1) σ̂(1) σ(1)

...
...

...

β(s) σ̂(s) σ(s)

joint-preserving joint-only

joint-preserving joint-only

joint-preserving joint-only

as follows. Subject to the ‘joint-preserving’ and ‘joint-only’ requirements, the entire diagram
is determined by the first row and third column.

• For the first row, σ(0) := ([n], c, f), and the index map of β(0)← σ̂(0) is bel.

• For the third column, σ(0)→ σ(r) is defined as follows: for each k ∈ [1, nβ(r)] such

that f
β(r)
k is horizontal, delete the chambers of σ(0) indexed by

[bel(φr,0(k − 1)) + 1, bel(φr,0(k))− 1] ⊂ [n]

and shrink fbel(φr,0(k)) to equal f
β(r)
k .

We leave it as an exercise to check that the belay conditions imply that the diagram can be
filled in. Use (B1) to show that β(0) ← σ̂(0) is a valid map. Use (B2) to check the second
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Coxeter product condition for the maps β(r)← σ̂(0). Use (B3) to show that β(r) and σ(r)
determine a valid jointed tour σ̂(r). This diagram is functorial in ([n], c, f, bel).

We can now construct the lax-commutative diagram which was claimed in 8.4.4. Let the
horizontal map send ([n], c, f, bel) to σ(0), let the diagonal map send it to σ̂(0), and define
the two natural transformations using the maps β(0)← σ̂(0)→ σ(0).

8.4.6. Belay functoriality. Let us show that bel(β).Domc
is functorial with respect to β.

Given a map (β′ ⇒ β) : ∆s′ → ∆s β−→ B, the desired map

bel(β).Domc bel(β′).Dom
c

is defined as follows. Let r be the image of 0 under ∆s′ → ∆s. Then send ([n], c, f, bel) ↦→
(σ(r), bel ◦ φr,0). It is easy to check that the latter satisfies the belay conditions for β′.

It is also easy to equip the diagram in 8.4.4 with lax-functoriality with respect to β.

8.4.7. Sub-belay tours. In the diagram of 8.4.5, the third column can be viewed as a sequence
of successive ‘quotients’ of σ(0). It is reasonable to define its associated graded object to be
the collection of tours given by σ(s) and ker

(︁
σ(r − 1) → σ(r)

)︁
for all r ∈ [1, s], where the

‘kernel’ is the set of all subtours of σ(r − 1) which are deleted by σ(r − 1)→ σ(r). In fact,
σ(0) can be reconstructed from the associated graded object by successively inserting the
kernel subtours back into σ(s). Our next goal is to reformulate the notion of a belayed tour
in terms of associated graded objects.

Remark . From this point onwards, the diagram of 8.4.5 will not be used in the proof of
Theorem 8.4.2. However, it reappears in the proof of Theorem 8.8.1. The discussion there
shows that the notion of a belayed tour is more natural than it may seem at first.

For each r ∈ [s − 1] and k′ ∈ [1, nβ(r+1)] such that f
β(r+1)
k′ is horizontal, define the

sub-belay tour γ(r, k′) as follows:

• Start with the subtour of β(0) indexed by [φr+1,0(k′ − 1), φr+1,0(k′)] ⊂ [nβ(0)], and
shrink all joint faces to match β(r).

• If there exists a (necessarily unique) k ∈ [φr+1,r(k′ − 1) + 1, φr+1,r(k′)] such that

f
β(r)
k is horizontal, then delete all chambers indexed by

[φr,0(k − 1) + 1, φr,0(k)− 1] ⊂ [φr+1,0(k′ − 1), φr+1,0(k′)].

Similarly, define γ(s) as follows:

• Start with β(0), and shrink all joint faces to match β(s).

• For each (not necessarily unique) k ∈ [1, nβ(s)] such that f
β(s)
k is horizontal, delete

all chambers indexed by

[φs,0(k − 1) + 1, φs,0(k)− 1] ⊂ [nβ(0)].

The chamber-deletion steps ensure that γ(r, k′) and γ(s) are threadable.
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Fix a sub-belay tour γ = γ(r, k′) or γ(s), and write γ = ([nγ ], cγ , fγ). If γ = γ(s), set
r = s. Since γ is obtained by deleting chambers from β(0), it comes with an injection
ι : [nγ ] ↪→ [nβ(0)] such that cγ = cβ(0) ◦ ι.

• For each k ∈ [1, nγ ] such that fγ
k is non-horizontal, let Ák be the subflag of Aι(k)

consisting of the non-horizontal affine subspaces. The construction of γ implies that

Ák = (span fγ
k = Ar

ι(k) ⊆ · · · ⊆ A0
ι(k) ⊆ A−1

ι(k) = h).

In particular, r = mnh(ι(k)).

A γ-belayed tour is a jointed tour ([n], c, f) equipped with a γ-belay map bel : [nγ ]→ [n]
such that the following analogues of the belay conditions hold:

(B́1) For each k ∈ [nγ ], we have cbel(k) = cγk .

(B́2) For each k ∈ [1, nγ ], we have

• The chambers ([bel(k − 1), bel(k)], c) adhere to Ák.

• The tour ([bel(k − 1), bel(k)], c ∧ Á0
k) in H|Á0

k
is reduced.

(B́3) For each k ∈ [1, nγ ], we have

• If fγ
k is horizontal, then ([bel(k − 1), bel(k)], c, f) = cγk−1 ⋄fγ

k
cγk .

• If fγ
k is non-horizontal, then the faces ([bel(k − 1) + 1, bel(k)], f) lie in Ár

k.

Let belβ(γ).Dom
c
be the category of γ-belayed tours. Passing to the associated graded

object gives a fully faithful embedding

bel(β).Domc
↪→
∏︂
γ

belβ(γ).Dom
c

onto the subcategory which is defined by the requirement that the total excess is ≤ e.

8.4.8. Sub-belay functoriality. The functoriality of sub-belay tours with respect to β is as

follows. Given a map (β′ ⇒ β) : ∆s′ → ∆s β−→ B, each β′-sub-belay tour γ′ is obtained by
successively inserting some β-sub-belay tours γ̃ into a given β-sub-belay tour γ at horizontal-
jointed steps. The insertion of γ̃ into γ overwrites the horizontal joint face where the insertion
takes place, but it preserves all other joint faces of γ.

8.4.9. Reformulation of threadability. Make the following definitions.

• An E-vector v ∈ hE is upward if its leading term ϵq vq satisfies δ(vq) > 0.

• An E-path is a finite sequence (pi)i in hE of size ≥ 2. It is upward if each pi − pi−1

is upward. Define paths similarly, using h instead of hE .

• An adherent jointed tour ([n], c, f) is threadable if there exists an upward E-path
whose successive vertices are contained in

ci−1, ci−1 ∧ span fi, fi, ci,

cycling through i ∈ [1, n]. This is called a threading E-path.
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It is an exercise to check that this is equivalent to the old definition of threadability in 5.1.3.

8.4.10. Slope bound. The ‘upward’ condition is hard to work with because it cannot be
expressed using a finite set of deformed half-spaces. We now introduce a strictly stronger
condition which does have this property.

• A slope bound is a nonempty open polytope P ⊂ hfin.

Define the open cone P ◁ ⊂ h to be the R>0-span of P × {d} ⊂ h. Define P
◁

similarly, using P × {d}, and note that it also does not contain {0}.

• An E-vector v ∈ hE is slope-bounded by P if v ∈ P ◁
E .

• An E-path (pi)i is slope-bounded by P if each pi − pi−1 is slope-bounded by P .

Every upward E-path is slope-bounded by some P .

Let us choose a slope bound P such that

• P is defined over Q.

• For every β, each sub-belay tour γ admits a slope-bounded threading E-path.

The second bullet can be achieved because B is finite.

We will not consider any other threading E-paths. However, we will often use a variant of
this notion which pertains to claustral galleries rather than jointed tours. We will also want
to ensure that P satisfies a ‘general position’ condition, which will be achieved by scaling P
by a rational number which is close to 1. These points are explained in the next subsection.

8.5. Claustral galleries.

8.5.1. Choose a locally finite subarrangement H ⊂ H, called the claustral arrangement,

which contains Hpre and all walls whose translation to 0 intersects P
◁
. A non-claustral root

half-space is upward if its translation to 0 is positive on P ◁, and downward otherwise. The
chambers of H are also denoted in bold font.

We have already defined jointed preclaustral generalized galleries in 8.4.1. Define jointed
claustral generalized galleries in the same way, using H instead of Hpre. As usual, these form
a Domc-style category, in which a morphism ([m], c, f)→ ([m′], c′, f ′) is a weakly increasing
bound-preserving index map φ : [m′]→ [m] such that

• For all j ∈ [m′], we have c′j = cφ(j).

• For all j ∈ [1,m′] and i ∈ [φ(j − 1) + 1, φ(j)], we have fi ⪰ f ′j .

Let us call these ‘claustral galleries’ as an abbreviation.

8.5.2. General position for the slope bound. Fix an arbitrary point p0 ∈ P . For any rational
number c, define the open polytope c · P by scaling P from p0. We will replace P by c · P
for some c ≥ 1 which is very close to 1, as promised in 8.4.10.
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The following definitions are only interesting when γ contains chambers at different levels.
This forces γ = γ(s).

• Let (ak)k∈[l] be the strictly increasing sequence of levels of chambers of γ.

• For each k ∈ [l], let Sk be the intersection of supports of the chambers at level ak.

An S-belayed claustral gallery is a claustral gallery ([m], c, f) equipped with an increasing
bound-preserving map sbel : [l]→ [m] such that, for each k ∈ [l], we have Sk ⊂ csbel(k).

Fix an S-belayed claustral gallery. A weak threading path is an upward path whose
successive vertices are contained in

Sk−1, f sbel(k−1)+1, . . . , f sbel(k), Sk,

cycling through k ∈ [1, l]. For any i ∈ [1,m], i-partial weak threading paths are defined
similarly, except they end prematurely at f i. The S-belayed claustral gallery determines
the following m+ 1 elements of R≥0 ⊔ {∞}.

• The infimum of the set of rational numbers c such that there exists a weak threading
path which is slope-bounded by c · P .

• For any i ∈ [1,m], the analogous infimum for i-partial weak threading paths.

From now on, we fix an integer st, and restrict attention to claustral galleries which
have excess ≤ e and at most st stutters. Then there are finitely many possibilities for
([m], c, f , sbel). Choose c ≥ 1 such that

• c does not equal any of the aforementioned infima, for any β, γ, and ([m], c, f , sbel).

• If a wall of Haff does not intersect P
◁
, then the same is true with c · P in place of

P .

The second bullet is achieved by taking c sufficiently close to 1. Replace P by c · P .

Here is what the replacement accomplishes. It is now true that, if ([m], c, f , sbel) has a
(i-partial) weak threading path which is slope-bounded by P , then it has a (i-partial) weak
threading path which is slope-bounded by P .

8.5.3. Fix β and a sub-belay tour γ. A γ-belayed claustral gallery is a claustral gallery
([m], c, f) equipped with a weakly-increasing bound-preserving map bel : [nγ ] → [m] such
that the following belay conditions hold:

(B1) For each k ∈ [nγ ], the claustral projection of cγk equals cbel(k).

(B2) For each k ∈ [1, nγ ], we have

• The claustral chambers ([bel(k − 1), bel(k)], c) adhere to Ák.

• The claustral gallery ([bel(k − 1), bel(k)], c ∧ Á0
k) in H|Á0

k
is reduced.

(B3) For each k ∈ [1, nγ ], we have

• If fγ
k is horizontal, then the claustral gallery ([bel(k − 1), bel(k)], c, f) equals

the claustral projection of cγk−1 ⋄fγ
k
cγk .
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• If fγ
k is non-horizontal, then ([bel(k − 1) + 1, bel(k)], f) ⊂ Ár

k.

If a γ-belayed jointed tour is precaptive for H, then projecting it to H gives a γ-belayed
claustral gallery.

We say that a γ-belayed claustral gallery is slope-bounded if it admits a slope-bounded
threading E-path, i.e. a slope-bounded E-path whose successive vertices are contained in

cγk−1, fbel(k−1)+1, . . . , fbel(k), c
γ
k ,

cycling through k ∈ [1, nγ ]. For any i ∈ [1,m], an i-partial E-path is a version of a slope-
bounded threading E-path which ends prematurely at fi.

Let belβ(γ).clausGal be the category of slope-bounded γ-belayed claustral galleries with
excess ≤ e and at most st stutters. (Of course, the morphisms are required to be compatible
with the bel maps.) Next, define the subcategory

bel(β).clausGal ⊂
∏︂
γ

belβ(γ).clausGal

via the requirements that the total excess is ≤ e and the total number of stutters is ≤ st.
The hypothesis on the slope bound P from 8.4.10 implies that bel(β).clausGal is nonempty.

Remark . If we are given a slope-bounded threading E-path in some γ-belayed claustral
gallery, then specializing ϵ ↦→ 0 and deleting repeated vertices gives a weak threading path
in an S-belayed claustral gallery. There is a map from the former claustral gallery to the
latter, but they are not always equal. Similarly, an i-partial E-path gives a j-partial weak
threading path, where j depends on i.

8.5.4. Functoriality. Let us show that bel(β).clausGal is functorial with respect to β.

The functoriality of γ with respect to a map β′ ⇒ β was explained in 8.4.8. Namely, each
γ′ is obtained by successively inserting some γ into a given one. It is clear that a similar
insertion procedure creates a γ′-belayed claustral gallery from a collection of γ-belayed
claustral galleries. Thus, the only nontrivial point is to show that the insertion procedure
preserves slope-boundedness.

Lemma. Suppose that γ̃ and γ are two sub-belay tours for β, where γ̃ is to be inserted into
a horizontal-jointed step of γ. If g̃ (resp. g) is a slope-bounded γ̃-belayed (resp. γ-belayed)
claustral gallery, then the insertion of g̃ into g is also slope-bounded.

Proof. Let (pi)i and (qj)j be slope-bounded threading E-paths for g̃ and g, respectively.
Let j0 be the index such that the vertex qj0 lies in the horizontal joint (claustral) face of
g at which the insertion takes place. Fix an integer N > 0, and consider the new E-path
obtained by replacing the single vertex qj0 by the ‘weighted average’ sequence(︁

ϵN · pi + (1− ϵN ) · qj0
)︁
i
.

For sufficiently large N , this new E-path is slope-bounded, because the slope bound P is
open. Also, its vertices lie in the correct chambers and claustral faces, so it is threading. □

Remark . The whole purpose of introducing sub-belay tours is to make the above proof
work. The more naive approach would have been to fix β and define a β-belayed claustral
gallery to be a claustral gallery ([m], c, f) equipped with a belay map bel : [nβ(0)] → [m]
satisfying similar ‘belay’ conditions. Most things still work. The slope-bounded condition
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can be defined as before. Given a β-belayed claustral gallery g and a map β′ ⇒ β, one
can still obtain a β′-belayed claustral gallery g′, as in Lemma 8.4.6. The issue is that
slope-boundedness for g does not imply slope-boundedness for g′. Indeed, to go from a
slope-bounded threading E-path for g to one for g′, one must delete some vertices and then
add one vertex for each horizontal joint of β′(0), and these vertices cannot always be added
while keeping the E-path slope-bounded.

8.5.5. Proposition. The category bel(β).clausGal is contractible.

The rest of this subsection is devoted to proving the proposition. In fact, we will fix γ
and prove that belβ(γ).clausGal is contractible. The contraction procedure does not increase
the excess or number of stutters, so it implies that bel(β).clausGal is contractible.

8.5.6. Creation of anchors. Fix the following elements of Q≥0, which will be used as expo-
nents of ϵ ∈ E.

0 = qhor0 < qvert0 < · · · < qhordim h−1 < qvertdim h−1

For any chamber C, we will construct its anchor C̆ ⊂ C, which is a deformed open polytope.

• Since h = hfin × Rd, we may write C = S × {δ(C)}. Let r := dimC.

– If r > 0, define S̆ ⊂ hfin by shifting the facets of relintS inwards by ϵq
hor
r .

– If r = 0, define S̆ := S.

• Let C loc be the projection of C to HC , and define

C̆ := C loc ∩
(︂
S̆ ×

(︁
δ(C)− ϵq

vert
r , δ(C) + ϵq

vert
r
)︁)︂

.

We say that a threading E-path for a γ-belayed claustral gallery is anchored if each vertex
which is constrained to lie in a chamber cγk moreover lies in c̆γk .

Lemma. If a γ-belayed claustral gallery has a slope-bounded threading E-path, then it has
an anchored slope-bounded threading E-path.

Proof. Let (pi)i∈I be the given E-path. First, we fix a level a and handle the vertices
which satisfy δ(sp pi) = a. They are indexed by an interval Ia ⊆ I. For each possible
support-dimension r ∈ [dim h− 1], we make the following definitions.

• Define Sa,r := cγk for any chamber cγk at level a such that dim cγk = r.

It is possible that no such cγk exists, in which case we remove the chosen index
r from consideration. Since cγ is a threadable tour, support-matching implies that
the definition of Sa,r does not depend on the choice of cγk .

• The subset Ia,r ⊆ Ia consists of i such that pi ∈ cγk for some k such that cγk = Sa,r.

Also, Sa := ∩r Sa,r. For each i ∈ Ia, define the following elements of Q≥0.

• νverta (pi) is the ϵ-exponent of the leading term of δ(pi)− a.
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• For each r, let νhora,r(pi) be the ϵ-exponent of the leading term of the distance from

pra pi to the boundary of Sa,r. Here pra is the projection of h = hfin × Rd onto the
horizontal slice hfin × {a}.

The significance of these exponents is that, if pi ∈ cγk with cγk = Sa,r, and νhora,r(pi) < qhorr

and νverta (pi) > qvertr , then pi ∈ c̆γk .

We claim that these exponents are related by the following inequalities.

(i) Fix r and i ∈ Ia,r. Then νhora,r(pi) < νverta (pi).

(ii) Fix r and distinct i, j ∈ Ia,r. Then νhora,r(pi) < νverta (pj).

(iii) Fix r < r′, i ∈ Ia,r, and i′ ∈ Ia,r′ . Then νverta (pi) ≤ νhora,r′(pi′).

Indeed, if (i) fails, then pi can only lie in a chamber whose support has dimension < r,
contradicting i ∈ Ia,r. If (ii) fails, then (i) implies that

νhora,r(pj) < νverta (pj) ≤ νhora,r(pi) < νverta (pi),

so the horizontal component of pj − pi is larger than any real multiple of the vertical
component, contradicting the slope-boundedness of (pi)i. If (iii) fails, then we have

νhora,r′(pi′) < νverta (pi), ν
vert
a (pi′),

where the second inequality follows from (i). Since pi lies in a chamber with support Sa,r,
which lies in the boundary of Sa,r′ , we must also have νverta (pi) ≤ νhora,r′(pi). This implies
that the horizontal component of pi′ − pi is larger than any real multiple of the vertical
component, contradicting the slope-boundedness of (pi)i.

Consider the finite sets Qvert
a,r := {νverta (pi) | i ∈ Ia,r} and Qhor

a,r := {νhora,r(pi) | i ∈ Ia,r}. The
above inequalities imply the top row in the following diagram:

· · · Qhor
a,r Qvert

a,r Qhor
a,r+1 Qvert

a,r+1 · · ·

· · · qhorr qvertr qhorr+1 qvertr · · ·

≤ <

∧ ∨

≤ <

∧ ∨

≤

< < < < <

The middle row of ‘vertical’ inequalities can be achieved by modifying all ϵ-exponents of
(pi)i∈Ia using a single order-preserving automorphism of Q≥0. These inequalities imply
that, if pi ∈ cγk , then pi ∈ c̆γk . This modification does not affect the slope-boundedness of
the sub-E-path (pi)i∈Ia .

Let (p′i)i∈I denote the E-path obtained from (pi)i∈I by modifying each sub-E-path
(pi)i∈Ia in this way. If γ = γ(s), then there may be multiple levels a, and each level
requires us to modify the ϵ-exponents using a different automorphism of Q≥0. Thus, (p

′
i)i∈I

may have some steps p′i − p′i−1 which are level-increasing (i.e. δ(sp p′i) > δ(sp p′i−1)) and not
slope-bounded by P . We will fix this by modifying the E-path again:

• Identifying repeated vertices in the path (sp p′i)i∈I = (sp pi)i∈I gives a path (xj)j∈J

and a surjective map σ : I → J which tracks the identifications. In fact, the fibers
of σ are the subsets Ia ⊆ I. As noted in Remark 8.5.3, (xj)j∈J is a weak threading
path for a (possibly different) S-belayed claustral gallery.
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• Since the E-path (pi)i∈I is slope-bounded by P , the path (xj)j∈J is slope-bounded

by P . The last paragraph of 8.5.2 gives a different weak threading path (yj)j∈J

which is slope-bounded by P .

• Define a new E-path (p′′i )i∈I as follows: p′′i := p′i +
1
2 (yσ(i) − xσ(i)). In other words,

we modify the ϵ0-part of p′i by moving it halfway towards the corresponding yj .

We now show that (p′′i )i is an anchored slope-bounded threading E-path.

• Suppose that p′i ∈ c̆γk where cγk = Sa,r. Then xσ(i), yσ(i) ∈ Sa ⊆ Sa,r. Now the
construction of anchors implies that p′′i ∈ c̆γk .

• If p′i − p′i−1 is level-increasing, then we set j := σ(i) and note that j − 1 = σ(i− 1).
The vector

sp(p′′i − p′′i−1) =
1
2

(︁
(xj − xj−1) + (yj − yj−1)

)︁
lies in P ◁ because it is the average of a vector in P

◁
with a vector in P ◁. This

implies that p′′i − p′′i−1 is slope-bounded by P , since P is open.

Otherwise, we have p′′i − p′′i−1 = p′i − p′i−1, and this is slope-bounded by P .

• Suppose that p′i ∈ fı. Then xσ(i), yσ(i) ∈ f ı, which implies p′′i ∈ fı. □

Remark . The whole purpose of introducing S-belayed claustral galleries and weak threading
paths and using them to impose a general position constraint on P (8.5.2) is to make the
last step in the above proof work.

8.5.7. Enlargement of anchors. We want to simplify the notion of slope-bounded γ-belayed
claustral galleries by replacing E-paths by ordinary paths.

For each k ∈ [nγ ], let cγk be the claustral chamber containing cγk . For any choice of open
polytopes ĉγk ⊆ cγk , consider the following condition on γ-belayed claustral galleries:

(S) There exists a slope-bounded path whose successive vertices are contained in

ĉγk−1, fbel(k−1)+1, . . . , fbel(k), ĉ
γ
k ,

cycling through k ∈ [1, nγ ].

Lemma. For some choice of ĉγk, condition (S) is equivalent to slope-boundedness for all
γ-belayed claustral galleries with excess ≤ e and at most st stutters.

Proof. Given a γ-belayed claustral gallery ([m], c, f , bel), let L ⊂ h[n
γ ]⊔[1,n] be the set of

slope-bounded paths whose successive vertices are contained in

cγk−1 = cbel(k−1), fbel(k−1)+1, . . . , fbel(k), cbel(k) = cγk ,

cycling through k ∈ [1, nγ ]. Consider the projection π : h[n
γ ]⊔[1,n] → h[n

γ ] which remembers
only the vertices which are constrained to lie in cγk for some k. Since L is the intersection
of finitely many (closed or open) half-spaces, π(L) has the same property. The set LE ,
obtained from L by extension of scalars, identifies with the set of slope-bounded E-paths
whose successive vertices satisfy the same constraint.

It suffices to choose the ĉγk so that, as ([m], c, f , bel) varies among the belayed claustral
galleries with excess ≤ e and at most st stutters, the intersection π(LE) ∩

∏︁
k∈[nγ ] c̆

γ
k is
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nonempty if and only if π(L) ∩
∏︁

k∈[nγ ] ĉ
γ
k is nonempty. (We have reformulated the usual

slope-bounded condition to include anchors, which is allowed by Lemma 8.5.6.)

Fix t ∈ R>0 and define each ĉγk to be the evaluation of c̆γk at ϵ = t, see Remark 8.2.2(1).
For a fixed γ-belayed claustral gallery, the intersections in the previous paragraph are defined
by finitely many half-spaces, so the ‘if and only if’ statement holds when t is sufficiently
small. The same is true when we consider all γ-belayed claustral galleries with excess ≤ e
and at most st stutters, because there are finitely many of them. □

8.5.8. Next, we remove the adherence condition in (B2). The idea is to work in a different

arrangement whose chambers are in bijection with the chambers of H which adhere to Ák.

For each k ∈ [1, nγ ] such that fγ
k is non-horizontal, define the k-graded arrangement

Hk := H|Ár
k
×

(︄
r∏︂

t=1

(︂
(HÁt

k
)|Át−1

k

)︂
/Át

k

)︄
× (HÁ0

k
)/Á0

k.

The notation (−)/Át
k indicates a quotient by the subspace Át

k ⊂ Át−1
k , which is irrelevant

for the given arrangement. The ambient space of this arrangement is

hk := Ár
k ⊕

(︄
r⨁︂

t=1

Át−1
k /Át

k

)︄
⏞ ⏟⏟ ⏞

Á
0
k

⊕ h/Á0
k,

i.e. the ‘associated graded’ space obtained by viewing Ák as a filtration of h. The chambers
of this arrangement, which are called k-graded chambers and denoted in blackboard font,

are in bijection with the chambers of H which adhere to Ák. Let c
γ,(k)
k−1 and c

γ,(k)
k be the

k-graded chambers corresponding to cγk−1 and cγk .

Remark . Note that Ár
k is a subspace of h and of hk. Thus, anything in h which lies in Ár

k

may be ‘transferred’ into hk. This is our motivation for including, in the belay conditions,
the requirement that joint faces belong to Ár

k.

8.5.9. Slope-bounded total graded galleries. Let k be as above. A k-graded gallery is a jointed
generalized gallery ([m], c, f) in Hk which satisfies the following belay conditions:

(B1) The gallery ([m], c) goes from c
γ,(k)
k−1 to c

γ,(k)
k .

(B2) The gallery ([m], c ∧ Á0
k) in (Hk)|Á0

k
is reduced.

(B3) Each joint face fj lies in Ár
k.

A total graded gallery is a choice of k-graded gallery for each k as above.

A total graded gallery is slope-bounded if there is a slope-bounded path in h consisting
of the following parts, interlaced in the obvious way:

(i) For each k ∈ [1, nγ ] such that fγ
k is non-horizontal, a path whose vertices are in

ĉγk−1, f1, . . . , fm, ĉγk ,

where f indexes the joint faces of the k-graded gallery.
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This is a path in h, where the joint faces fj are interpreted as lying in h using

the above remark. However, the sub-path from f1 to fm lies in Ár
k and thus could

be interpreted as lying in hk.

(ii) For each k ∈ [1, nγ ] such that fγ
k is horizontal, a path whose vertices are in

ĉγk−1, f
γ
k , ĉ

γ
k .

Let gradeGal be the category of slope-bounded total graded galleries. By construction, it is
isomorphic to belβ(γ).clausGal.

8.5.10. A superpath is specified as follows:

(i′) For each k ∈ [1, nγ ] such that fγ
k is non-horizontal, let prk : hk → Ár

k be the
projection onto the first factor. Choose a path in hk such that

• The first vertex p0̂ lies in c
γ,(k)
k−1 , and the last vertex p1̂ lies in c

γ,(k)
k .

• The path is transverse to Hk.

• The prk-image of the path is a slope-bounded path in Ár
k.

Choose slope-bounded segments in h from ĉγk−1 to prk(p0̂), and from prk(p1̂) to ĉγk .

(ii′) For each k ∈ [1, nγ ] such that fγ
k is horizontal, choose a slope-bounded path in h

whose vertices are in ĉγk−1, f
γ
k , ĉ

γ
k .

Of course, we require that these paths are compatible in the sense that, for each k, the two
vertices which are constrained to lie in ĉγk must be equal. We say that a superpath threads
a total graded gallery if the following holds:

• For each k ∈ [1, nγ ] such that fγ
k is non-horizontal, denote the k-graded gallery by

([m], c, f), and require that the vertices of the corresponding (i′)-path lie in

cj−1 , cj−1 ∩ (pr−1
k fj) ∩ cj , cj ,

cycling through j ∈ [1,m].

In other words, each (i′)-path is required to thread the corresponding k-graded gallery in
the usual sense, where the ‘joint faces’ are taken to be cj−1 ∩ (pr−1

k fj) ∩ cj .

Each superpath threads exactly one total graded gallery, which is slope-bounded.14 Con-
versely, each slope-bounded total graded gallery is threaded by a contractible space of su-
perpaths. Thanks to these facts, it is possible to show that gradeGal is contractible by
applying the method of prefix-straightening, which is explained in 3.3.4 to 3.3.7 in [TaTr],
to the space of superpaths. Here are two caveats:

• A superpath consists of several paths which live in different vector spaces hk, so it
does not make sense to say that a superpath is a straight line segment. Instead,
apply prefix-straightening to each path separately.

14This would not be true if we had written fj instead of pr−1
k fj in the bullet point. In that case, there

would be some superpaths which do not thread any total graded gallery, because we required that each joint

face of a k-graded gallery must lie in Ár
k (B3).
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• For the ‘galleries to paths’ direction [TaTr, 3.3.6], we must choose the path ver-
tices pxI so that the resulting paths have slope-bounded prk-images. This is possible
because every slope-bounded total graded gallery is threaded by at least one su-
perpath. Also, note that the linear interpolation step preserves slope-boundedness
because it involves a weighted average and the slope bound P is convex.

Since gradeGal is contractible, so is belβ(γ).clausGal.

As remarked at the start of the proof, prefix-straightening does not increase the excess or
the number of stutters, so applying our argument to all sub-belay tours γ gives a contraction
of bel(β).Domc

. This concludes the proof of Proposition 8.5.5.

8.6. Marked claustral galleries.

8.6.1. From now on, let ν range over all downward non-claustral roots. A pair of faces
(F1, F2) is nc-vertical if ν(F2) ≥ 0 implies ν(F1) > 0. This is a transitive relation. A
sequence of faces ([n], f) is nc-vertical if every pair (fi−1, fi) is nc-vertical. Observe the
following:

• (F1, F2) is nc-vertical if and only if every pair of chambers (C1, C2) satisfying C1 ⪰
F1 and C2 ⪰ F2 is nc-vertical.

• If there exists a slope-bounded E-path from F1 to F2, then (F1, F2) is nc-vertical.

• If a tour ([n], c) is nc-vertical, then it crosses each non-claustral wall at most once.

• (F, F ) is nc-vertical if and only if F lies outside of all non-claustral walls.

In particular, nc-verticality is not a partial order.

Lemma. Let ([m], c, f) be a slope-bounded claustral gallery. For each i ∈ [1,m] and each
face F ⊂ fi, there exists a unique chamber Fmax such that F ⪯ Fmax ⊂ ci and (F, Fmax) is
nc-vertical.

Proof. Choose a slope-bounded threading E-path from ([m], c, f). This gives an E-point
p ∈ fi and a slope-bounded E-vector v ∈ hE which points into ci when rooted at p. Since
the slope bound P is open, we can perturb v to point into ci. If v is rooted at any other
E-point p′ ∈ fi, then it still points into ci. If p′ ∈ F , then v determines a chamber C of
HF . The choice Fmax := FC works. Since v is slope-bounded, (F, Fmax) is nc-vertical. □

8.6.2. Fracture. We will refine the ‘claustral face’ partition of h by emulating 8.3.5. The
resulting partition will still be locally finite, and its components will be called fracture faces.
If a fracture face F is not a claustral chamber and is not horizontal, then our construction
will also assign to it an orienting vector vF satisfying 8.3.2(3) for A = spanF.

The construction proceeds in stages, numbered from dim h−1 to 1. At stage m, we refine
some of the faces of dimension ≤ m as follows. For each m-dimensional face D′, split into
cases depending on A′ := spanD′:

• Assume that A′ is horizontal. Refine the partition of D′ by slicing with all walls.
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• Assume that A′ is not horizontal. Choose a vector v′ which satisfies 8.3.2(3) for
A′. Refine the partition of D′ by slicing with the locally finite set of non-claustral
walls Hα for which αaff takes different signs on P ◁ and v′. Then assign v′ to each
m-dimensional face thus created.

This differs from 8.3.5 in two ways. First, it is impossible for A′ to be horizontal with
δ(A′) /∈ Q, since walls are real (i.e. non-deformed). Second, the non-horizontal case only
uses non-claustral walls, which is why P ◁ can play the role of the vertical vector.

For any face f , let p(f) be the unique fracture face which contains it.

8.6.3. Fix β and a sub-belay tour γ. A marked claustral gallery is a slope-bounded γ-
belayed claustral gallery ([m], c, f , bel) equipped with a sequence of faces ([1,m], f) which
satisfies fj ⊂ fj as well as the following:

(objvert) The sequence of faces defined by

c̆γk−1, fbel(k−1)+1, . . . , fbel(k), c̆
γ
k ,

cycling through k ∈ [1, nγ ], is nc-vertical.

(objfr) For each i ∈ [1,m], we have

– There exists a i-partial E-path ending at fi.

– dim fi = dim p(fi).

Define the category belβ(γ).mark.clausGal by modifying belβ(γ).clausGal as follows. Each
object is now marked, and a morphism

([m], c, f , bel, f)
φ:[m′]→[m]−−−−−−−→ ([m′], c′, f ′, bel′, f ′)

must satisfy the following for every j ∈ [m′] and i ∈ [φ(j − 1) + 1, φ(j)]:

(mormax) ν(f ′
j) > 0 implies ν(fi) > 0.

(morfr) p(fi) ⪰ p(f ′
j). (This implies span fi ⊃ f ′

j .)

Note that (mormax) is equivalent to the nc-verticality of (fmax
i , f ′,max

j ) or (fi, f
′,max
j ). How-

ever, it is weaker than the nc-verticality of (fi, f
′
j).

Define the full subcategory

bel(β).mark.clausGal ⊂
∏︂
γ

belβ(γ).mark.clausGal

via the requirement that the total excess is ≤ e and the total number of stutters is ≤ st.

8.6.4. Functoriality. The functoriality of bel(β).mark.clausGal with respect to β is defined by
insertion, as was the case for bel(β).clausGal. The part of (objfr) which says that “there exists
a j-partial E-path ending at fi” can be handled using the averaging trick of Lemma 8.5.4.

8.6.5. Proposition. The category bel(β).mark.clausGal is contractible.

The rest of this subsection is devoted to proving the proposition.
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8.6.6. Non-belayed analogues. For clarity of exposition, we will only prove a non-belayed
analogue of the desired result. To get the belayed result, it suffices to work in the graded
arrangements which were defined in the proof of Proposition 8.5.5. This adds a layer of
notational complexity but does not use any new insights, so we have omitted it.

We will now define the non-belayed categories. Let clausGal be the category obtained by
taking γ = B0 ⋄B1 in the definition of belβ(γ).clausGal and omitting the second part of (B2)

which says that the claustral gallery c ∧ Á0
k is reduced.15 The proof of Proposition 8.5.5

implies that clausGal is contractible.16

Define the category mark.clausGal by modifying belβ(γ).mark.clausGal in a similar way.
The new condition (objvert) says that the sequence of faces B0, f1, . . . , fm, B1 is nc-vertical.

There is a functor

mark.clausGal
mark.oblv−−−−−→ clausGal

which forgets the mark faces. Since the target is contractible by Proposition 8.5.5, it suffices
to show that this functor is a homotopy equivalence. In fact, we will show that it is final.

8.6.7. Threadable regions. For any fixed ([m], c, f), the i-partial E-path requirement of
(objfr) is equivalent to the following:

• Let Li ⊂ fi be the set of endpoints of i-partial E-paths which start in the anchor
B̆0 ⊂ B0. We require that fi intersects Li.

To see this, it suffices to show that if there exists a i-partial E-path which ends at fi, then
there exists a i-partial E-path which starts in B̆0 and ends at fi. This follows from the
proof of Lemma 8.5.6. (The only reason why the general position condition on P (8.5.2)
includes i-partial weak threading paths is to make this proof work.)

This reformulation is convenient because Li is nice. Since P is an open polytope and B̆0

is a deformed open polytope, Li is a deformed open polytope in fi. Since P is defined over Q,
and B0 is rational-level, Li is defined by deformed half-spaces with rational specializations.

8.6.8. We will use Lemma 8.3.7 to show that mark.clausGal is contractible. First, we fix
([m], c, f) ∈ clausGal and show that the fiber mark.oblv−1([m], c, f) is contractible. Con-
cretely, an object of this fiber is a sequence of mark faces ([1,m], f).

The idea is to build the sequence of mark faces inductively, starting with fm, and to
show that there is a contractible space of choices at each step. To realize this idea, we will
define posets of partially-built face sequences. Fix i ∈ [m] and a ‘postfix’ face sequence
([i+1,m], g) which is assumed to satisfy gj ⊂ fj and suitably truncated versions of (objvert)
and (objfr). Let Pi,g be the poset whose objects are face sequences ([1, i], f) such that the

concatenation f ⋄ g gives an object of mark.oblv−1([m], c, f), and whose maps are defined
using (mormax) and (morfr). In the extreme case i = m, the postfix sequence g is vacuous,
and the resulting poset Pm,∅ equals the fiber mark.oblv−1([m], c, f).

15This is equivalent to dropping (B2) and (B3) entirely, because the jointed tour γ = B0 ⋄B1 has only

one joint face B1, which is full-dimensional, so the flag Ák is just the whole space h. Thus, the conditions

of adhering to Ák or lying in Ár
k are automatically satisfied.

16Use 8.5.6, 8.5.7, and prefix-straightening, but do not use the graded arrangements.
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We use induction on i to prove that Pi,g is contractible. The base case i = 0 is trivial.
Fix i ≥ 1 and assume that the result holds for all smaller i.

8.6.9. Given a postfix sequence g, define the poset B to consist of faces F ⊂ fi such that the
concatenation {F} ⋄ g is a valid postfix sequence for the index i− 1. Morphisms are defined
using (mormax) and (morfr) as before.

Let us reformulate the definition of B more concretely. Define G = B1 if i = m, and
G = gi+1 otherwise. Let D ⊂ h be the intersection of {ν > 0} for every downward non-
claustral root ν satisfying ν(G) ≥ 0. Here is an equivalent definition of B:

• An object of B is a face F ⊂ fi which satisfies

(objfr) F intersects Li ∩D, and dimF = dim p(F ).

• There is a map F1 → F2 if and only if the following hold:

(mormax) (Fmax
1 , Fmax

2 ) is nc-vertical.

(morfr) p(F1) ⪰ p(F2).

The equivalent definition shows that this B is analogous to the poset B defined in 8.3.6. To
further substantiate the analogy, we prove

Lemma. Li ∩D ⊂ fi is a dome.

Proof. It is enough to show that Li ∩ D is nonempty and full-dimensional in fi. Since g
is a valid postfix sequence, the intersection gi+1 ∩ Li+1 is nonempty, so we may choose an
E-point p lying inside it. Let Q ⊂ fi be the set of fi-vertices of (i+1)-partial E-paths ending
at p. Truncating any (i+ 1)-partial E-path at fi gives a i-partial E-path, so Q ⊆ Li. Since
every (i + 1)-partial E-path is slope-bounded (by definition) and reaches G after passing
through fi, we have Q ⊂ D. Since the slope-bound P is an open polytope, Q is an open
deformed polytope in fi, so dimQ = dim fi and hence dimD = dim fi. □

Let Frac(Li ∩D) be the poset whose objects are nonempty intersections of fracture faces
with Li∩D, ordered by reverse closure. Since Li∩D is nonempty and convex, Frac(Li∩D)
is contractible. Define the functors

Pi,g B Frac(Li ∩D)π p

via ([1, i], f) ↦→ fi and F ↦→ p(F ) ∩ Li ∩D, respectively.

8.6.10. Here are two important classes of B-morphisms. Let F1 → F2 denote a B-morphism.

• It is a glide morphism if spanF1 = spanF2. (This implies p(F1) = p(F2).)

• It is a specialization morphism if F1 ⪰ F2.

The Tits product gives a functorial factorization of any B-morphism into a glide morphism
followed by a specialization morphism: F1 → F2F1 → F2.

Lemma. The functor π satisfies the following properties:

• Each glide map F1 → F2 admits a cocartesian lift to any object in π−1(F1).
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• Each specialization map F1 → F2 admits a cartesian lift to any object in π−1(F1).

• Each fiber of π is contractible.

Proof. Suppose we are given a diagram

f

fi F

π

glide

The corresponding cocartesian arrow is f → f ′, where f ′ is obtained from f by replacing
fi with F . The only nontrivial point is to show that f ′ satisfies (objvert). Since f satisfies
(objvert), it suffices to show that ν(F ) ≥ 0 implies ν(fi) ≥ 0. If ν(F ) > 0, then ν(fi) > 0,
because fi → F satisfies (mormax). If ν(F ) = 0, then ν(fi) = 0 because the two faces have
equal spans, by the definition of glide maps.

Suppose we are given a diagram

f

F fi

π

sp

The corresponding cocartesian arrow is f ′ → f , where f ′ is defined as before. Again, we need
to show that f ′ satisfies (objvert), and it suffices to show that ν(F ) ≥ 0 implies ν(fi) ≥ 0.
This follows from F ⪰ fi, which is true by the definition of specialization maps.

The inductive hypothesis says that the fibers π−1(F ) = Pi−1,{F}⋄g are contractible. □

8.6.11. The next lemma completes the inductive step.

Lemma. Let π : E→ B be any functor which satisfies the conclusion of the previous lemma.
Then E is contractible.

Proof. Since we already know that Frac(Li∩D) is contractible, it suffices to prove that p◦π
is a homotopy equivalence. Apply Lemma 8.3.7.

First, we fix an object F ∈ Frac(Li ∩ D) and show that (p ◦ π)−1(F) is contractible.
Restricting π gives a functor

π′ : (p ◦ π)−1(F)→ p−1(F).

Every map in p−1(F) is a glide map, so π′ is cocartesian. Since its fibers are contractible,
π′ is a homotopy equivalence. Thus, it suffices to show that p−1(F) is contractible. In fact,
p−1(F) ≃ Chambers(F), so the contractibility follows from Theorem 8.3.2 because F is a
dome. The fracture construction ensures that the partial order on p−1(F), which is defined
via (mormax), agrees with the partial order on Chambers(F), which is defined via vF.
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Next, we fix a solid diagram (as below) and show that its category of lifts, denoted Lifts,
is contractible.

{1} E E1

B F1

∆1 Frac(Li ∩D) F0 F1

π π

p p

⪰

As the notation indicates, a solid diagram corresponds to a choice of E1 ∈ E and F0 ∈
Frac(Li ∩D) such that F0 ⪰ p(π(E1)). A lift is specified by an object E0 ∈ (p ◦ π)−1(F0)
and a map ϕ : E0 → E1.

Define the full subposet p−1(F0)⪰F1
⊂ p−1(F0) via the requirement that the face is ⪰ F1.

Consider the functor

s : p−1(F0)⪰F1
→ Lifts

which sends a face F to the cartesian lift

sp∗E1 E1

F F1

π π

sp

It has a left adjoint Lifts → p−1(F0)⪰F1
, which sends a lift (E0, ϕ) to the face F1F0, where

F0 := π(E0). The unit map comes from the universal property of cartesian arrows:

E0

sp∗E1 E1

F0 F1F0 F1

ϕ

π

ϵ

π π

glide sp

Thus, s is a homotopy equivalence, so it suffices to show that p−1(F0)⪰F1
is contractible.

Use the fact that F1 lies in the boundary of F0 to show that

p−1(F0)⪰F1 ≃ ChambersHF1
|spanF0

(F0),

where the right hand side consists of chambers in HF1
|spanF0

which intersect F0. The
contractibility follows from Theorem 8.3.2 as before. Although the theorem was stated for
double affine arrangements, the same proof works for the arrangement HF1 |spanF0 , which is
pre-affine or finite. □

8.6.12. Next, fix a solid diagram as shown. We will show that the category of lifts, denoted
Lifts, is contractible.

{1} mark.clausGal ([ṁ], ċ, ḟ , ḟ)

∆1 clausGal ([m], c, f) ([ṁ], ċ, ḟ)

mark.oblv mark.oblv

φ:[ṁ]→[m]
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Concretely, a lift is a sequence ([1,m], f) of mark faces for ([m], c, f) such that φ gives a
map in mark.clausGal. This description shows that Lifts is a poset.

Let Li and L̇j denote the threadable regions of the two claustral galleries, respectively.

8.6.13. The condition (morfr) for φ says that p(fi) ⪰ p(ḟj) for all j ∈ [ṁ] and i ∈ [φ(j −
1) + 1, φ(j)]. This condition is hard to work with because the union of all fracture faces

F ⊂ fi which dominate p(ḟj) can fail to be convex. Our first goal is to replace this condition
with a stronger one which is easier to work with.

Define the full subposet tight.Lifts ⊂ Lifts via the requirement that fi ⪰ ḟj for all i and j
as above. The next lemma reduces us to showing that tight.Lifts is contractible.

Lemma. The embedding tight.Lifts ⊂ Lifts is a right adjoint.

Proof. We claim that the left adjoint is given by f ↦→ fnew, where fnew
i := ḟjfi. Let us show

that fnew is a valid sequence, by showing the following:

(objnewvert) The following pairs are nc-vertical:

• (B0, ḟ1f1).

• (ḟṁfm, B1).

• (ḟjfi, ḟj′fi+1), where i ∈ [1,m− 1] and j′ satisfies i+1 ∈ [φ(j′ − 1) + 1, φ(j′)].

(objnewfr ) ḟjfi intersects Li.

(mornewmax) ν(ḟj) > 0 implies ν(ḟjfi) > 0.

We have omitted the conditions involving fracture faces because they are easy to check.

Proof of (objnewvert). For the first two bullets, use ḟ1f1 ⪰ ḟ1 and ḟṁfm ⪰ fm and (objvert)

for ḟ . For the third bullet, split into two cases.

• Assume j′ > j. Then (ḟj , ḟj′) is nc-vertical by (objvert) for ḟ . If ν(ḟj′fi+1) ≥ 0,

then ν(ḟj′) ≥ 0, so ν(ḟj) > 0 by nc-verticality. This implies ν(ḟjfi) > 0, as desired.

• Assume j′ = j. If ν(ḟj) > 0, then ν is positive on both Tits products. If ν(ḟj) = 0,

then ν(ḟjfi+1) = ν(fi+1) and ν(ḟjfi) = ν(fi). Now apply (objvert) for f .

Also, (mornewmax) follows from ḟjfi ⪰ ḟj .

Proof of (objnewfr ). By (objfr) for f , we know that fi intersects Li. Thus, there exists an

i-partial E-path for ([m], c, f), with vertices (b0) ⊔ (pı)ı∈[1,i], where b0 ∈ B̆0 and pı ∈ fı and

pi ∈ fi. By the same reasoning, since ḟj intersects L̇j , there exists a j-partial E-path for

([ṁ], ċ, ḟ), with vertices (ḃ0)⊔ (ṗȷ)ȷ∈[1,j], where ṗj ∈ ḟj . For any integer N > 0, consider the
weighted average E-path with vertices (bnew0 ) ⊔ (pnewı )ı∈[1,i] defined by

bnew0 := (1− ϵN ) ḃ0 + ϵN b0

pnewı := (1− ϵN ) ṗȷ + ϵN pı,
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where the ȷ in the second line is determined by the requirement ı ∈ [φ(ȷ − 1) + 1, φ(ȷ)].

This is an i-partial E-path because fı ⪰ ḟȷ implies that pnewı ∈ fı, and the convexity of the
slope bound P implies that the E-path is slope-bounded. Hence pnewi ∈ Li. The geometric
definition of the Tits product implies that, if N is sufficiently large, then pnewi ∈ fnew

i , so
fnew
i intersects Li, as desired. □

Remark . The whole purpose of the nc-verticality condition (objvert) in the definition of
marked claustral galleries is to make the first bullet in the “Proof of (objnewvert)” work. Naively,
it would have been more natural to instead impose a weaker condition on the ‘mark’ faces,
that ν(fi+1) > 0 implies ν(fi) > 0. Everything else would still work. In particular, 8.6.10
and 8.6.11 would become much simpler because all maps in B would be cocartesian, so there
would be no need to handle cartesian maps separately. But it is not true that, if the weaker
condition holds for (fi+1, fi) and (ḟj′ , ḟj), then it holds for (ḟj′fi+1, ḟjfi). (It is easy to
give a counterexample for SL2.) The issue is that the weaker condition is not closed under
generization, and by insisting on this we arrive at nc-verticality.

8.6.14. From now on, let ([m], f) be an object of tight.Lifts. Denote the projection of each
fi to the local arrangement Hḟj

by f loc
i . We will reformulate everything in terms of f loc.

First, for each fracture face F ⊂ fi which dominates p(ḟj) (or equivalently ḟj), define
the corresponding local fracture face Floc to be the projection of F to Hḟj

. For every

F ∈ Faces(Hḟj
), let ploc(F ) be the unique local fracture face which contains F .

Recall that the objects of Lifts and hence tight.Lifts are governed by four conditions:
(objvert) and (objvert) applied to f , and (mormax) and (morfr) applied to φ. We claim that
these conditions can be reformulated as follows:

(objlocvert) Suppose that i ∈ [1,m−1] satisfies i+1 ∈ [φ(j−1)+1, φ(j)]. (Equivalently, j′ = j.)

Then [ν(ḟj) = 0 and ν(f loc
i+1) ≥ 0] implies ν(f loc

i ) > 0.

(objlocfr ) f loc
i intersects Li, and dim f loc

i = dim ploc(f loc
i ).

(morlocmax) Always true.

(morlocfr ) Always true.

Proof of equivalence. Equivalence for (objlocvert). The proof of Lemma 8.6.13 implies that, if

fi ⪰ ḟj , and (objvert) holds for ḟ , then the following pairs are nc-vertical:

• (B0, f1).

• (fm, B1).

• (fi, fi+1) if i+ 1 /∈ [φ(j − 1) + 1, φ(j)]. (Equivalently, if j′ > j.)

Since we have assumed that fi ⪰ ḟj , the only part of (objvert) which is not guaranteed
to hold is the nc-verticality of (fi, fi+1) when j′ = j. Thus, it suffices to fix an index
i ∈ [1,m− 1] such that j′ = j and show that the following are equivalent:

• ν(fi+1) ≥ 0 implies ν(fi) > 0.

• [ν(ḟj) = 0 and ν(fi+1) ≥ 0] implies ν(fi) > 0.



123

The equivalence follows from the observation that, if ν(ḟj) > 0, then ν(fi+1) > 0 and

ν(fi) > 0, because fi+1, fi ⪰ ḟj .

Equivalence for (objlocfr ). The averaging trick of Lemma 8.6.13 shows that, if f loc
i intersects

Li, then fi intersects Li. The equivalence for the second part is obvious.

It is easy to show that fi ⪰ ḟj implies (mormax) and (morfr) for φ. □

8.6.15. We will use the inductive strategy of 8.6.8 to show that tight.Lifts is contractible. Fix
i ∈ [m] and a ‘postfix’ sequence of (local) faces ([i+ 1,m], g) which satisfies the following:

• For each ı ∈ [i + 1,m], define ȷ via ı ∈ [φ(ȷ − 1) + 1, φ(ȷ)]. We require that gı is a
face of Hḟȷ

and lies in the projection of fı to this local arrangement.

• Suitably truncated versions of (objlocvert) and (objlocfr ).

Define the poset Ploc
i,g to consist of sequences of (local) faces ([1, i], f loc) which fit with g.

Apply induction on i to prove that Ploc
i,g is contractible, and fix i ≥ 1.

The analogous poset Bloc consists of certain faces of the local arrangement Hḟj
, where

j is defined via i ∈ [φ(j − 1) + 1, φ(j)]. If i satisfies the hypothesis of (objlocvert), i.e. j
′ = j,

then define D ⊂ h to be the intersection of {ν > 0} for every downward non-claustral root ν

satisfying ν(ḟj) = 0 and ν(gi+1) ≥ 0. Otherwise, define D := h. Define analogous functors

Ploc
i,g Bloc Fracloc(Li ∩D),

ploc

where Fracloc(Li ∩D) consists of intersections of local fracture faces with Li ∩D. As before,

Li ∩D is nonempty and convex, so Fracloc(Li ∩D) is contractible.

It is possible to reuse all of the earlier material to show that Ploc
i,g is contractible, which

completes the inductive step. This concludes the proof of Proposition 8.7.4.

8.7. Captive tours.

8.7.1. A γ-belayed captive tour consists of

• ([n], c, f, bel) ∈ belβ(γ).Dom
c
.

• ([m], c, f , beg, ḟ) ∈ belβ(γ).mark.clausGal.

• A weakly-increasing surjective map cap : [n]→ [m].

such that the following conditions are satisfied:

• ([n], c) is nc-vertical.

• For each i ∈ [n], we have ci ⊂ ccap(i).

• beg = cap ◦ bel.

• For each j ∈ [1,m], write cap−1(j) = [cal(j), car(j)].

– ḟ = f ◦ cal.
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– If i is not in the image of cal, then fi = ci.

Note the following consequences:

• ([n], c, f) is precaptive for H.

• ([n], c) and ([m], c) have the same excess.

• Everything is determined by ([n], c, f, bel) and cap : [n]→ [m].

• Let ([n], c, f , bel) be the claustral projection of ([n], c, f, bel). Then cap defines a
map

([m], c, f , beg)
cap:[n]→[m]−−−−−−−→ ([n], c, f , bel)

in belβ(γ).clausGal. The only effect of this map is to create some unjointed stutters.

Define the category belβ(γ).cap.Dom
c
by declaring that an object is a γ-belayed captive

tour, and a morphism is a pair of maps

([n], c, f, bel) ([n′], c′, f ′, bel′)

([m], c, f , beg, ḟ) ([m′], c′, f ′, beg′, ḟ ′)

in belβ(γ).Dom
c
and belβ(γ).mark.clausGal, respectively, which are compatible with the maps

cap and cap′. Define the full subcategory

bel(β).cap.Domc ⊂
∏︂
γ

belβ(γ).cap.Dom
c

via the requirement that the total excess is ≤ e and the total number of stutters in the
claustral galleries is ≤ st.

8.7.2. Functoriality. The functoriality of bel(β).cap.Domc
with respect to β is deduced from

the functoriality of bel(β).Domc
and bel(β).mark.clausGal, see 8.4.6 and 8.6.4 respectively.

8.7.3. Main construction. We can now do the constructions which were promised in 8.4.3.

We have already defined bel(−).cap.Domc
. Let cap.Domc be its non-belayed analogue

in the sense of 8.6.6. We construct the lax-commutative diagram in the third bullet point
of 8.4.3 by constructing a (strongly) commutative diagram

bel(β).cap.Domc cap.Domc

bel(β).Domc pre.Domc

π

oblv

which is lax-functorial with respect to β, and stacking it on top of the diagram in 8.4.4.

• oblv forgets the belay map.

• π forgets everything except for ([n], c, f).

• The upper horizontal map is the composition

bel(β).cap.Domc bel(β(0)).cap.Domc cap.Domc,oblv
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where the first arrow comes from the map of simplices {0} → ∆s β−→ B, and the
second arrow forgets the belay map. (The first arrow assembles a tuple of γ-belayed
captive tours into one β(0)-belayed captive tour.)

• The left vertical map forgets everything except for the γ-belayed tours ([n], c, f) for
each γ. (Recall from 8.4.7 that bel(β).Domc

can be characterized in terms of tuples
of γ-belayed tours.)

This completes the construction. The next result gives the required contractibility.

8.7.4. Proposition.

(i) The category bel(β).cap.Domc
is contractible.

(ii) The category cap.Domc is contractible.

The rest of this subsection is devoted to proving the proposition. In fact, we will only
prove (ii), for the same reasons as in 8.6.6.

8.7.5. There is a functor

cap.Domc c.oblv−−−→ mark.clausGal

which sends
(︁
([n], c, f), ([m], c, f , f ◦ cal), cap

)︁
to ([m], c, f , f ◦ cal). Since the target is con-

tractible by the non-belayed analogue of Proposition 8.6.5, it suffices to show that this
functor is a homotopy equivalence. In fact, we will show that it is initial.

8.7.6. It suffices to fix ([ṁ], ċ, ḟ , ḟ) ∈ mark.clausGal and show that the overcategory

⟨cap.Domc mark.clausGal−−−−−−−−→ ([ṁ], ċ, ḟ , ḟ)⟩

is contractible. Explicitly, an object of the overcategory is specified by an object of cap.Domc,
denoted

(︁
([n], c, f), ([m], c, f , f ◦ cal), cap

)︁
, and a map

([m], c, f , f ◦ cal) φ:[ṁ]→[m]−−−−−−−→ ([ṁ], ċ, ḟ , ḟ).

Define a sequence of full subcategories as follows (cf. 5.5.4):

B0 ⊂ A1 ⊂ B1 ⊂ · · · ⊂ Aṁ ⊂ Bṁ ⊂ Aṁ+1 := ⟨cap.Domc mark.clausGal−−−−−−−−→ ([ṁ], ċ, ḟ , ḟ)⟩

• B0 consists of one object, which is characterized by

([n], c, f) = B0 ⋄̇
f1

ḟmax
1 ⋄̇

f2

· · · ⋄̇
fṁ

ḟmax
ṁ ⋄B1,

so that n− 1 = ṁ, as well as cap(−) = min(−, ṁ) and φ = id[ṁ].

• For each k ∈ [1, ṁ], an object belongs to Bk if the following conditions are satisfied.

– The pair (ccar(φ(k)), ḟ
max
k ) is nc-vertical.

– The maps [car(φ(k)) + 1, n − 1]
cap−−→ [φ(k) + 1,m]

φ←− [k + 1, ṁ] are bijections.
The composition induces isomorphisms of sequences(︁

[car(φ(k)) + 1, n− 1], c
)︁
= ([k + 1, ṁ], ḟmax)(︁

[car(φ(k)) + 1, n− 1], f
)︁
= ([k + 1, ṁ], ḟ).
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• The full subcategory Ak ⊂ Bk is characterized by the condition ccar(φ(k)) = ḟmax
k .

SinceB0 is contractible, it suffices to show that these embeddings are homotopy equivalences.

8.7.7. We claim that Bk−1 ↪→ Ak is a right adjoint, hence a homotopy equivalence. For any
object of Ak denoted as above, the unit map is given by a map of belayed captive tours

([n], c, f) ([n′], c′, f ′)

([m], c, f , f ◦ cal) ([m′], c′, f ′, f ′ ◦ cal′)

η1

η2

which is defined as follows. Let i ∈ [car(φ(k − 1))] be the last index such that (ci, ḟ
max
k−1) is

nc-vertical. In fact, (mormax) for φ implies that i ≥ cal(φ(k − 1)). The map η1 deletes the

chambers
(︁[︁
i + 1, car(φ(k)) − 1

]︁
, c
)︁
and shrinks fcar(φ(k)) to equal ḟk. The map η2 deletes

the claustral chambers
(︁[︁
φ(k − 1) + 1, φ(k) − 1

]︁
, c
)︁
and shrinks fφ(k) to equal ḟk. Let us

check that these maps are valid:

• The map η1 must satisfy the Coxeter product conditions. The first condition follows
from the span containment in (morfr) for φ, and the second condition follows from
the fact that ([n], c) and ([m], c) have the same excess.

• For each j ∈ [1,m′], there must exist a j-partial E-path for ([m′], c′, f ′) ending
at f ′

cal′(j). If j ≤ φ(k − 1), then this follows from (objfr) for ([m], c, f , f ◦ cal).
Otherwise, f ′

cal′(j) = ḟk′ for some k′ for some k′ ≥ k. By (objfr) for ([ṁ], ċ, ḟ , ḟ),

there exists a k′-partial E-path for ([ṁ], ċ, ḟ) ending at ḟk′ . Use the averaging trick
of Lemma 8.5.4 to generize this E-path so that it works for ([m′], c′, f ′).

• For each j ∈ [1,m′ − 1], the pair (f ′
cal′(j), f

′
cal′(j+1)) must be nc-vertical. If j <

φ(k − 1), then this follows from (objvert) for ([m], c, f , f ◦ cal). If j > φ(k − 1),

then this follows from (objvert) for ([ṁ], ċ, ḟ , ḟ). In the remaining case j = φ(k− 1),
combine the following facts:

– (f ′
cal′(j), f

′
cal′(j+1)) = (fcal(φ(k−1)), ḟk).

– (fcal(φ(k−1)), ḟ
max
k−1) is nc-vertical, because φ satisfies (mormax).

– (ḟmax
k−1, ḟk) is nc-vertical, because (ḟk−1, ḟk) is nc-vertical.

The remaining details are left to the reader.

8.7.8. We claim that Ak ↪→ Bk is a left adjoint, hence a homotopy equivalence. For any
object of Bk denoted as above, the counit map is given by a map of belayed captive tours

([n′], c′, f ′) ([n], c, f)

([m], c, f , f ◦ cal) ([m], c, f , f ◦ cal)

ϵ1

ϵ2=id
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which is defined as follows. If ccar(φ(k)) = ḟmax
k , then the map ϵ1 is an identity; otherwise it

inserts ḟmax
k into ([n], c, f) as an unjointed chamber:

· · · ⋄
fcar(φ(k))

ccar(φ(k)) ⋄ ḟmax
k ⋄

ḟk+1

ḟmax
k+1 ⋄

ḟk+2

· · ·

· · · ⋄
fcar(φ(k))

ccar(φ(k)) ⋄
ḟk+1

ḟmax
k+1 ⋄

ḟk+2

· · ·

ϵ1

It is easy to check that this works. This concludes the proof of Proposition 8.7.4 and hence
also the proof of Theorem 8.4.2.

8.8. Homotopical deletion. We remind the reader that, starting in 8.4, all tours were
required to have only rational-level chambers. Thus, the results of this subsection apply to
a variant of the Demazure category which incorporates this requirement.

8.8.1. Fix an element j = (l, w) ∈ J (5.3.5). Let E be an ∞-category which admits

colimits, and fix a functor F : D → E. This gives a functor F̃ : Domc
≤j → Ẽ via [TaTr,

2.4.5].17 Finally, fix a preclaustral arrangement (8.4.1).

Theorem. Assume that F̃ sends braid maps, birational joint-preserving maps, and bira-
tional maps between precaptive tours to isomorphisms. Then, for any precaptive reduced
t ∈ Domc

≤j which ends at (T,w), we have F̃ (t) ≃ colim F̃ .

Let us motivate the theorem, which is the main result of this thesis. Although we do not
know any application of its full strength, we hope that such applications will exist.

The situation we have in mind is that F (t) is some category of constructible sheaves on

X(t). Since X(−) sends braid maps to isomorphisms, so do F and F̃ . Since X(−) sends
joint-preserving maps to proper maps of schemes, the usual excision argument shows that
F̃ sends birational joint-preserving maps to isomorphisms. This is analogous to the classical
setting which was studied in [TaTr]. Thus, the first two hypotheses are reasonable.

Unfortunately, we do not know any version of constructible sheaves on X(t) for which
the third hypothesis would be satisfied. The issue is that X(−) does not send all birational
maps to proper maps of schemes. Imposing a precaptivity condition on t forces X(t) to ‘see’
more Bruhat cells, but the example in 7.3 shows that X(−) can fail to give a proper map
even if it ‘sees’ infinitely many Bruhat cells.

To find an interesting application of this theorem, it may be necessary to take a different
approach to the double affine Hecke category. For example, we can ask whether there exist
‘tamer’ geometries which are governed by locally finite subarrangements H′ ⊂ H. One
might try to apply the theorem to these geometries and then take the limit as H′ increases.

Lastly, let us recall some material from [TaTr]. Roughly speaking, the functor F̃ is given
by F modulo the behavior of F on the strictly lower strata Domc

<j . In other words, it is an
‘associated graded’ piece of F for the ‘filtration’ defined by the rank function r : Domc → J .
This construction guarantees that F̃ |Domc

<j
is constant with value 0̂ (the initial object of

17In the cited paper, we denoted this functor by F̃ c. For notational simplicity, we now write F̃ , because

this will not overlap with any other notation.
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Ẽ), so the hypothesis of the theorem is nontrivial only on the highest stratum Domc
j . The

conclusion of the theorem is useful because it implies that colimits along D can be computed
inductively as follows:

(i) If l = ℓ(w), then, for any precaptive reduced t ∈ Domc
≤j which ends at (T,w),18 the

following is a pushout square in E:

colim

⟨Embd<j

Embd−−−→t⟩

F ◦ tail F (t)

colim
D<j

F colim
D≤j

F

(ii) If l > ℓ(w), then colimD<j
F ≃ colimD≤j

F .

This is analogous to [TaTr, 3.3.2]. For a proof, see [TaTr, 2.3.4].

The proof of the theorem occupies the rest of this section.

8.8.2. Let Domc ⊂ Domc
≤j be the full subcategory consisting of threadable jointed tethered

tours which end at (T,w). Then Domc is isomorphic to the category of threadable jointed

(untethered) tours from C0 to wT , with excess ≤ e := l − ℓC0
(T

w−→ wT ), so this notation
agrees with 8.4.2.

Since maps in Domc
≤j do not change the end chamber of a jointed tour, the aforementioned

subcategory is a connected component. Since its complement goes to 0̂ under F̃ , we have

colim
Domc

≤j

F̃ ≃ colim
Domc

F̃.

Next, let pre.Domc ⊂ Domc be the full subcategory consisting of precaptive threadable
jointed tours. It is contractible by Theorem 8.4.2. Since F̃ sends birational maps between
precaptive tours to isomorphisms, [TaTr, Prop. 2.3.3] implies that

colim
pre.Domc

F̃ ≃ F̃ (t)

for any precaptive reduced t. It remains to show that the Domc-colimit agrees with the
pre.Domc-colimit.

8.8.3. We will compute the Domc-colimit using the following technical lemma.

For any simplicial set K, define the simplicial set lax.∆op
/K as follows.

• A map σ : ∆n →∆op is equivalent to a diagram of functors

σ(0)← σ(1)← · · · ← σ(n),

where each σ(i) is a simplex. Let M(σ) → ∆n be the corresponding cartesian
fibration. There is a canonical section ∆n →M(σ) sending i ∈ ∆n to the vertex of
M(σ) corresponding to the initial vertex 0 ∈ σ(i).

18Note that this implies r(t) = j.
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• By definition, a map σ : ∆n → lax.∆op
/K consists of a map σ1 : ∆n → ∆op and a

map σ2 : M(σ1)→ K.

There is a monomorphism

∆op
/K ↪→ lax.∆op

/K

whose image is characterized by the requirement that the map M(σ1)
σ2

−→ K factors through
the projection map M(σ1)→ σ1(0). There is also a map

lax.∆op
/K

ev0−−→ K

which sends σ = (σ1, σ2) to the composition ∆n → M(σ1)
σ2

−→ K, where the first map is
the canonical section defined in the first bullet.

Next, given a map of simplicial sets K → L, we define rel.lax.∆op
/K using the following

diagram, in which the left square is a fibered product of simplicial sets:

rel.lax.∆op
/K lax.∆op

/K K

∆op
/L lax.∆op

/L L

ev0

ev0

Lemma. The map rel.lax.∆op
/K → K is final.

Proof. By Theorem A.3.1, it suffices to show that, for each η : ∆n → K, the simplicial set
of lifts (as shown below) is contractible.

∆n

rel.lax.∆op
/K K

η
σ

Denote the simplicial set of lifts by Lifts. We will show that there is a vertex x ∈ Lifts and
a homotopy Lifts×∆1 → Lifts from the identity map to the constant map with value x.

Define the lift x = (x1, x2) : ∆n → rel.lax.∆op
/K using the map x1 : ∆n →∆op given by

∆[0,n] ← ∆[1,n] ← · · · ← ∆[n,n],

where the arrows are defined in the obvious way, and the map x2 : M(x1)→ K given by

M(x1)→ x1(0) = ∆[0,n] = ∆n η−→ K,

where the first map is the projection onto the first fiber of the cartesian fibration. For any

other lift σ, define a map of lifts σ
h−→ x, i.e. a map ∆n ×∆1 → rel.lax.∆op

/K , using a map

h1 : ∆n ×∆1 →∆op of the form

σ1(0) σ1(1) · · · σ1(n)

∆[0,n] ∆[1,n] · · · ∆[n,n]

and a map h2 : M(h1)→ K which are defined as follows:
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• To define h1, let the vertical map ∆[i,n] → σ1(i) send j ∈ ∆[i,n] to the image of
0 ∈ σ1(j) under the horizontal map σ1(j)→ σ1(i).

• The map h2 is the composition M(h1) → M(σ1)
σ2

−→ K, where the first map sends
j ∈ ∆[i,n] to the vertex 0 ∈ σ1(j), viewed as a vertex of M(σ1).

This specifies the homotopy on vertices of Lifts. It is easy to generalize the above construction
to accommodate a simplex of lifts σ0 → · · · → σm, so the desired homotopy exists. □

8.8.4. Consider the category of spans in Domc of the form

t1 t2 t3,
joint-preserving joint-only

such that t3 ∈ pre.Domc. Let S be the subdiagram (5.4.4(3)) whose objects satisfy that t1

is adherent, and whose morphisms

t1 t2 t3

t1,′ t2,′ t3,′

joint-preserving joint-only

joint-preserving joint-only

satisfy that the diagonal map t2 → t1,′ is adherent. (This implies that the left square is
adherent. Note that joint-preserving maps are adherent by definition.) There are maps

p1, p2, p3 : S→ Domc,

sending a span to t1, t2, t3, respectively, and p1 lands in a.Domc while t3 lands in pre.Domc.

Lemma. The composite map

colim
S

F̃ p2 → colim
S

F̃ p1 → colim
a.Domc

F̃

induced by the natural transformation p2 ⇒ p1 is an isomorphism.

Proof. According to 8.8.3, the map p1 gives a diagram

rel.lax.∆op
/S S

∆op
/a.Domc a.Domc

ev′0

p′
1

p1

ev0

in which ev′0 is final. Also, ev0 is final by the references in 8.4.3. Thus, the map in question
can be rewritten as

colim
rel.lax.∆op

/S

F̃ ◦ p2 ◦ ev′0 → colim
rel.lax.∆op

/S

F̃ ◦ p1 ◦ ev′0

= colim
rel.lax.∆op

/S

F̃ ◦ ev0 ◦ p′1

→ colim
∆op

/a.Domc

F̃ ◦ ev0.

We will show that the natural transformation

LKEp′
1
F̃ ◦ p2 ◦ ev′0 ⇒ F̃ ◦ ev0

is a natural isomorphism. Then left Kan extension to a point gives the result.
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The construction of S ensures that rel.lax.∆op
/S is a category. Thus p′1 is a functor between

categories, and it is easy to check that it is cocartesian. This implies that the value of the
left Kan extension at any β ∈ ∆op

/a.Domc can be computed by taking the colimit along the

fiber (p′1)
−1(β). Thus, our task reduces to showing that

colim
(p′

1)
−1(β)

F̃ ◦ p2 ◦ ev′0 → F̃ (β(0))

is an isomorphism.

To proceed, we describe the fiber (p′1)
−1(β) in greater detail. Its objects are certain

simplices σ̃ : ∆s → S which correspond to diagrams

β(0) σ̂(0) σ(0)

β(1) σ̂(1) σ(1)

...
...

...

β(s) σ̂(s) σ(s)

joint-preserving joint-only

joint-preserving joint-only

joint-preserving joint-only

This diagram matches up with the one in 8.4.5, so it makes sense to use the notation of 8.4.4.
We write σ(0) = ([n], c, f) and let bel : [nβ(0)]→ [n] be the index map of β(0)← σ̂(0).

Let ιpre : (p′1)
−1(β)pre ↪→ (p′1)

−1(β) be the full subcategory characterized as follows:

• For each r ∈ [s], the map σ(0) → σ(r) must equal the map defined as follows. For

each k ∈ [1, nβ(r)], shrink the following faces of σ(0) by applying (−) ∧ span f
β(r)
k :(︁[︁

bel(φr,0(k − 1)) + 1, bel(φr,0(k))
]︁
, f
)︁
.

Furthermore, if f
β(r)
k is horizontal, delete the chambers of σ(0) indexed by[︁
bel(φr,0(k − 1)) + 1, bel(φr,0(k))− 1

]︁
.

The operation (−) ∧ spanf
β(r)
k is well-defined because the constraint on morphisms in S

forces each map σ̂(0) → β(r) to be adherent. Also, note that an object of (p′1)
−1(β)pre is

completely determined by σ(0) and bel : [nβ(0)]→ [n].

Conceptually, the above bullet says that σ(r) is the closest possible approximation to
σ(0) for which there exist joint-preserving and joint-only maps β(r)← σ̂(r)→ σ(r).

The embedding ιpre has a right adjoint which replaces σ(1), . . . , σ(r) by the tours defined

in the above bullet. Composing the counit of this adjunction with the functor F̃ ◦ p2 ◦
ev′0 gives a natural isomorphism because the latter functor only cares about σ̂(0). Thus,
Remark 5.5.5(2) implies that

colim
(p′

1)
−1(β)pre

F̃ ◦ p2 ◦ ev′0 ◦ ιpre ≃ colim
(p′

1)
−1(β)

F̃ ◦ p2 ◦ ev′0.

Let ιpost : (p′1)
−1(β)post ↪→ (p′1)

−1(β)pre be the full subcategory characterized as follows:
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• For each k ∈ [1, nβ(0)], we must have

– If f
β(0)
k is horizontal, then ([bel(k − 1), bel(k)], c, f) = c

β(0)
k−1 ⋄fβ(0)

k

c
β(0)
k .

– If f
β(0)
k is non-horizontal, then the faces ([bel(k−1)+1, bel(k)], f) lie in A

mnh(k)
k .

The embedding ιpost has a left adjoint which changes σ(0) by deleting chambers and shrinking
joints so that the aforementioned requirement is satisfied.19 Since ιpost is final, we have

colim
(p′

1)
−1(β)post

F̃ ◦ p2 ◦ ev′0 ◦ ιpre ◦ ιpost ≃ colim
(p′

1)
−1(β)pre

F̃ ◦ p2 ◦ ev′0 ◦ ιpre.

We now observe that (p′1)
−1(β)post identifies with the category of β-belayed precaptive

tours bel(β).Domc
defined in 8.4.4. Indeed, an object in this category can be viewed as a

pair (σ(0), bel), where σ(0) is precaptive. Condition (B1) holds by construction. The first
bullet in (B2) follows from the adherence constraint on morphisms in S. The second bullet
in (B2) follows from the Coxeter product condition on the map σ̂(0) → β(0). Condition
(B3) is equivalent to the constraint which defines (p′1)

−1(β)post. Conversely, a β-belayed
precaptive tour gives a valid object of (p′1)

−1(β)post due to the discussion in 8.4.5.

We claim that (p′1)
−1(β)post = bel(β).Domc

is contractible. This follows from modifying
the proof of Theorem 8.4.2, which states that the category of (unbelayed) precaptive tours
is contractible. The modification requires defining twice-belayed captive tours, which depend
on the current β as well as a finer belay simplex which plays the role of ‘β’ in the proof of
Theorem 8.4.2. There are no new ideas, so we have omitted the details.

Lastly, we analyze the functor F̃ ◦ p2 ◦ ev′0 ◦ ιpre ◦ ιpost which is defined on (p′1)
−1(β)post.

For any map σ̃ → σ̃′ in (p′1)
−1(β), the diagram

β(0) σ̂(0)

β(0) σ̂′(0)

joint-preserving

joint-preserving

shows that the right vertical map is joint-preserving. If it is also birational, then F̃ sends
it to an isomorphism, by the hypothesis of the current theorem. Thus, the aforementioned
functor sends every birational map in (p′1)

−1(β)post to an isomorphism. Since (p′1)
−1(β)post

is contractible and its subcategory of tours with excess < e is also contractible (or empty) by
the same argument, [TaTr, Prop. 2.3.3] implies that the colimit of this functor is equivalent
to its value on any object (σ(0), bel) such that the map

β(0) σ̂(0)
joint-preserving

is birational. This value is F̃ (σ̂(0)), which is isomorphic to F̃ (β(0)) since F̃ sends birational
joint-preserving maps to isomorphisms. □

19Shrink each joint by applying (−)∧A
mnh(k)
k for the appropriate choice of k. The resulting jointed tour

may not be threadable, but deleting chambers fixes this issue.
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8.8.5. Next, we want to identify colimS F̃ p2 with colima.pre.Domc F̃ . This is much easier.

Consider the subdiagram of S consisting of spans (and maps between spans) which are
contained in a.Domc. In other words, the objects are required to satisfy that t1, t2, t3 are
adherent, and the morphisms are required to satisfy that every map in the corresponding
diagram of two spans (8.8.4) is adherent. The proof of Theorem 5.5.1 implies that we can

replace S by this subdiagram without changing colimS F̃ p2. Let us perform this replacement
and then denote the subdiagram by S for notational convenience.

Define the full subdiagram ı : S1=2 ↪→ S via the requirement that t1 ← t2 is an isomor-
phism. We will use Lemma 5.5.5 to show that

colim
S1=2

F̃ ◦ p2 ◦ ı ≃ colim
S

F̃ ◦ p2.

The retraction r : S→ S1=2 sends a general span to

t2 t2 t3,

and the behavior of r on morphisms is obvious. The homotopy h sending ır ⇒ idS is defined
using the map of spans

t2 t2 t3

t1 t2 t3

The functor F̃ ◦p2 is constant along this map because t2 does not change. Thus, the lemma
applies and proves the claim.

Define the full subdiagram ȷ : S1=2=3 ↪→ S1=2 via the requirement that both maps in the
span are isomorphisms. We will use an opposite version of the limFı ≃ limF statement in
Remark 5.5.5(1) to show that

colim
S1=2=3

F̃ ◦ p2 ◦ ı ◦ ȷ ≃ colim
S1=2

F̃ ◦ p2 ◦ ı.

The retraction r : S1=2 → S1=2=3 sends a general span to t3 = t3 = t3. The homotopy h
sending idS1=2

⇒ ȷr is defined using the map of spans

t2 t2 t3

t3 t3 t3

The aforementioned statement in Remark 5.5.5(1) does not impose any hypothesis on the
functor, so it applies and proves the claim. Since S1=2=3 = a.pre.Domc, we conclude that

colim
S

F̃ p2 ≃ colim
a.pre.Domc

F̃.

8.8.6. From Lemma 8.8.4 and 8.8.5, we know that

colim
a.Domc

F̃ ≃ colim
S

F̃ p2 ≃ colim
a.pre.Domc

F̃.

The proof of Theorem 5.5.1 implies that we can drop the adherence requirements in a.Domc

and a.pre.Domc without changing the colimits. Thus

colim
Domc

F̃ ≃ colim
pre.Domc

F̃.
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This is what we wanted in 8.8.2, so the proof of Theorem 8.8.1 is complete.

Appendix A. Universal homotopy equivalences of simplicial sets

If a map f : X → Y of topological spaces is nice enough, and the fibers of f are
contractible, then f is a homotopy equivalence, see e.g. [Sm]. Our goal is to prove a statement
like this when f is a map of simplicial sets (Theorem A.3.1). It is not enough to require that
each fiber of f is contractible. We also need to consider ‘generalized fibers’ which correspond
to fibers of |f | over barycenters of simplices in Y .

A.1. Naive criterion.

A.1.1. Given a map of simplicial sets f : K → L and a simplex σ : ∆n → L, we define the
generalized fiber of f over σ to be the category of diagrams

∆m K

∆n L

surj. f

σ

where ∆m is an arbitrary simplex, and the indicated map must be surjective. A morphism
between two such objects, with simplices ∆m1 and ∆m2 , respectively, is a map ∆m1 → ∆m2

which is compatible with the dashed maps.

A.1.2. Proposition. Let f : K → L be a map of simplicial sets. If every generalized fiber
of f is contractible, then f is initial and final.

Proof. We will prove that f is initial. Applying this to fop shows that f is also final.

Consider the diagram

∆/K K

∆/L L

ḟ f

where the horizontal arrows are given by evaluation at the final vertex of a simplex. The
horizontal arrows are initial (and final) by the references in 8.4.3. Thus, it suffices to show

that the left vertical arrow is initial, or equivalently that ⟨ḟ ↓ σ⟩ is contractible for every
simplex σ : ∆n → L. Consider the functor

⟨ḟ ↓ σ⟩ π−→ Faces(∆n)

which sends a diagram

∆m K

∆n L

f ′ f

σ

to the image of the left horizontal map. The functor π is cartesian, so it suffices to show that
each fiber π−1(∆S) is contractible, where S ⊆ [n]. Moreover, replacing σ by the simplex

∆S ↪→ ∆n σ−→ L reduces us to showing that π−1(∆n) is contractible.

But π−1(∆n) is the generalized fiber of f over σ, so it is contractible by hypothesis. □
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A.2. Bar construction for multi-simplicial sets.

A.2.1. Multi-simplicial sets. Fix a simplex ∆n and let ∆surj
/∆n be the category of simplices

equipped with surjective maps to ∆n. For any map of simplicial sets f : K → L and simplex
σ : ∆n → L, the corresponding generalized fiber (A.1.1) is the unstraightening of the functor

F : ∆surj,op
/∆n → Set which sends an object ∆m φ−→ ∆n to the set of ways to fill in the diagram

∆m K

∆n L

φ f

σ

There is an obvious equivalence

∆surj
/∆n ≃∆×(n+1)

which sends ∆m φ−→ ∆n to the tuple of fibers (φ−1(0), . . . , φ−1(n)). Thus, the generalized
fiber may be viewed as a multi-simplicial set.

A.2.2. Subdivision and extension. It would be more convenient to reformulate the criterion
of Proposition A.1.2 in terms of simplicial sets rather than multi-simplicial sets. To this
end, we define a pair of adjoint functors which relate simplicial and multi-simplicial sets:

SSet S(n+1)Set := Fun(∆×(n+1),op,Set)
Sd

Ex

The ‘subdivision’ functor Sd sends a simplicial set X to the generalized fiber of the
projection map pr1 : ∆n ×X → ∆n over the identity simplex id : ∆n → ∆n.

The ‘extension’ functor Ex is the right adjoint of Sd. Explicitly, it sends a multi-simplicial
set Y to the simplicial set

∆m ↦→ HomS(n+1)Set(Sd∆
m, Y ).

A.2.3. Remarks. We call Sd a ‘subdivision’ because it can be geometrically interpreted as
follows: if the domain and target of the geometric realization

|pr1| : |∆n ×X| → |∆n|

are equipped with their canonical CW-complex structures, then the fiber of |pr1| over any
internal point of |∆n| is a CW-complex whose cells identify with (n + 1)-fold products of
simplices (of varying dimensions). This CW-complex structure refines the original one on
|X|, and it identifies with the geometric realization of SdX.

We call the right adjoint Ex in analogy with Kan’s Ex functor, which is right adjoint to
the functor of barycentric subdivision.

These functors are well-studied in simplicial homotopy theory, albeit under different
names. Let + : ∆×(n+1) →∆ be the (n+ 1)-fold ordinal sum, i.e.

(∆m0 , . . . ,∆mn) ↦→ ∆m0+···mn .
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Then Sd corresponds to precomposition by +, and it is called the total décalage functor.
The right adjoint Ex is called the total simplicial set functor, the Artin–Mazur codiagonal,
or the bar construction.20

We also remind the reader that the diagonal functor

diag : S(n+1)Set→ SSet

is a more common way to go from a multi-simplicial set to a simplicial set. It is defined by
precomposition with the diagonal map δ : ∆→∆×(n+1).

Although our notation Sd is non-standard, the composite functor diag ◦ Sd has been called
edgewise subdivision, for example in [BöHM, §1] and [EdGr]. The latter paper includes some
three-dimensional pictures of this subdivision.

A.2.4. Comparison map. For every multi-simplicial set X, there is a canonical monomor-
phism of simplicial sets

diagX ↪→ ExX

defined as follows. Given a map ∆m → diagX, i.e. a map (∆m, . . . ,∆m) → X, we need to
produce a map ∆m → ExX, i.e. a map Sd∆m → X. The desired map is the composition

Sd∆m → (∆m, . . . ,∆m)→ X,

where the second map was given to us, and the first map takes a multi-simplex

(∆k0 , . . . ,∆kn)→ Sd∆m,

i.e. a map ∆k0+···+kn → ∆m, and sends it to the multi-simplex

(∆k0 , . . . ,∆kn)→ (∆m, . . . ,∆m)

which is a product of compositions

∆ki ∆k0+···+kn ∆minsertion

A.2.5. We believe that the above comparison map is a homotopy equivalence. This is true
for bisimplicial sets (n = 1), see [CeRe]. We were not able to find a reference for the general
case, so we will give ad hoc proof for the weaker result which we need:

Lemma. For any multi-simplicial set X, the simplicial set ExX is contractible if and only
if diagX is contractible.

The rest of this subsection is devoted to proving this lemma.

The idea is to relate the homology groups and fundamental groups and then apply the
Hurewicz Theorem. We learned this standard method from the discussion of Kan’s Ex
functor in [GoJ, Cor. 4.4], and our notations are inspired by that exposition.

20We learned this terminology from https://ncatlab.org/nlab/show/bisimplicial+set which has

many useful references.

https://ncatlab.org/nlab/show/bisimplicial+set
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A.2.6. For any map f : K → ∆n of simplicial sets, we have the relative internal Hom
Hom∆n(∆n,K), which is a simplicial set whose m-simplices are commutative diagrams

∆n ×∆m K

∆n

pr1 f

Lemma. There is a canonical isomorphism of simplicial sets

Hom∆n(∆n,K) ≃ Ex(generalized fiber of f over id∆n).

Proof. The following data are equivalent:

• A map ∆m → Hom∆n(∆n,K).

• A commutative diagram as above.

• A map from the generalized fiber of ∆n×∆m to that of K (as multi-simplicial sets).

• A map from Sd∆m to the generalized fiber of K.

• A map ∆m → Ex(generalized fiber of K).

All of these equivalences are tautologies except for the one between the second and third
bullets. For that step, it suffices to note that ∆n ×∆m can be expressed as the colimit of a
diagram of simplices which map surjectively to ∆n. □

A.2.7. Corollary. Each simplicial set Ex Sd∆m is contractible.

Proof. Lemma A.2.6 implies that this simplicial set is isomorphic to Hom∆n(∆n,∆n×∆m),
defined using the projection map pr1 : ∆n × ∆m → ∆n. This relative internal Hom is a
category with an initial object, corresponding to the map

∆n = ∆n × {0} ↪→ ∆n ×∆m,

so it is contractible. □

It is easy to see that Sd∆m is also contractible. This follows from its geometric interpre-
tation as a subdivision of |∆m| (A.2.3) or from a combinatorial argument.

A.2.8. Lemma. The map diagX ↪→ ExX induces an equivalence of fundamental groupoids.

Proof. We take it for granted that the fundamental groupoid of a simplicial set is generated
by 0, 1, and 2-dimensional simplices in the obvious way. The comparison map induces
a bijection of 0-dimensional simplices. We will show that every generating arrow in the
fundamental groupoid of ExX equals an arrow in the fundamental groupoid of diagX, and
similarly for every generating relation.
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A generating arrow in π1(ExX) comes from a map s : ∆1 → ExX. This map corresponds
to a map s′ : Sd∆1 → X by adjunction, so we obtain the following commutative diagram:

diag Sd∆1 diagX

∆1 Ex Sd∆1 ExX

diag s′

unit Ex s′

The tautological arrow α ∈ π1(∆
1) maps to an arrow in π1(Ex Sd∆

1). This lifts to an arrow
in π1(diag Sd∆

1) because diag Sd∆1 and Ex Sd∆1 are contractible and because the vertical
map induces a bijection on 0-dimensional simplices. Thus, the arrow in π1(ExX) coming
from α lies in the image of π1(diagX), as desired.

A generating relation in π1(ExX) comes from a map r : ∆2 → ExX, and a similar
argument shows that every such relation already holds in π1(diagX). (This argument relies
on the observation that the above diagram is functorial in the simplex ∆1.) □

A.2.9. Lemma. The map diagX ↪→ ExX induces an isomorphism on integral homology.

Proof. From Lemma A.2.8, we already know that the map induces an isomorphism on
H0(−). We would like to use the acyclic models theorem to construct the inverse map
H·(ExX)→ H·(diagX).

Let us consider the two functors

S(n+1)Set Ch(Z-mod)
F

G

defined by F (X) := C·(ExX) and G(X) := C·(diagX). Here C·(−) stands for the Moore
complex of a simplicial set. Take the models to be Sd∆m ∈ S(n+1)Set, equipped with the
distinguished cycle

[∆m] ∈ Cm(∆m)→ Cm(Ex Sd∆m) = Fm(Sd∆m)

where the map ∆m → Ex Sd∆m is the unit of the adjunction.

By construction, the abelian group Fm(X) := Cm(ExX) is freely generated by simplices
s : ∆m → ExX. To show that F is free, we must show that each generator is the image of
the distinguished cycle under the map

Cm(Ex Sd∆m)→ Cm(ExX)

induced by some map Sd∆m → X. To see this, define the map s′ : Sd∆m → X by
adjunction from s, and observe (again) that s canonically factors as

∆m Ex Sd∆m ExX.unit Ex s′

To show that G is acyclic, we need to check that H·(diag Sd∆
m) vanishes in positive de-

grees. This follows from the contractibility of Sd∆m which we have already observed (A.2.7).

Now the acyclic models theorem gives the desired map F → G which lifts the given
isomorphism on H0(−).

To show that the induced map on homology is indeed inverse to the map G→ F coming
from the comparison map diagX ↪→ ExX, we need to check the following:
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• The map F → G→ F is homotopic to idF .

• The map G→ F → G is homotopic to idG.

Of course, we use the acyclic models theorem to construct these homotopies. For the
first bullet, to check that F is acyclic, we need to know that Ex Sd∆m is contractible
(Corollary A.2.7). For the second bullet, we instead use the models (∆m, . . . ,∆m). □

At this point, we know that diagX ↪→ ExX induces an equivalence of fundamental
groupoids (Lemma A.2.8) and on integral homology (Lemma A.2.9). If one of them is
contractible, then the other is also contractible by the Hurewicz Theorem. This concludes
the proof of Lemma A.2.5.

A.3. Improved criterion.

A.3.1. We can now rephrase Proposition A.1.2 as follows:

Theorem. If f : K → L is a map of simplicial sets such that, for every simplex σ : ∆n → L,
the relative internal Hom

Hom∆n

(︂
∆n,∆n ×

L
K
)︂

is contractible, then f is initial and final.

Proof. Since we have already proved Proposition A.1.2, we only need to show that, for every
simplex σ, the generalized fiber of f over σ is homotopy equivalent to the relative internal
Hom. This follows from a chain of homotopy equivalences between

• The generalized fiber of f over σ.

• The generalized fiber of ∆n ×L K → ∆n over id∆n .

• Ex(generalized fiber of ∆n ×L K → ∆n over id∆n).

• Hom∆n(∆n,∆n ×L K).

The first equivalence is tautological, the second uses Lemma A.2.5, and the third uses
Lemma A.2.6 (where the relative internal Hom was defined). □

Remark . Let us say that a map of simplicial sets f : K → L is a universal homotopy
equivalence if its base-change along any map L′ → L is a homotopy equivalence to L′. One
can show (using the theorem) that f is such a map if and only if it satisfies the condition in
the theorem or, equivalently, the condition in Proposition A.1.2. In particular, such a map
is always initial and final.
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