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Abstract

This thesis is in two parts. The first part of the thesis, “Essays in Behavioral Macroe-
conomics,” is motivated by the simple observation that the macroeconomy is com-
plicated; many households and firms interact across myriad markets in ways that
change over time. This part of the thesis studies, empirically and theoretically, the
microeconomic foundations and macroeconomic implications of hypotheses inspired
by these complications: that people adopt simplified and misspecified narratives to
understand the world; and that people will only pay attention to the macroeconomy
when it is important to them.

In the first chapter, “The Macroeconomics of Narratives” (coauthored with Karthik
A. Sastry), we study the macroeconomic implications of narratives, or beliefs about
the economy that affect decisions and spread contagiously. Empirically, we use
natural-language-processing methods to measure textual proxies for narratives in US
public firms’ end-of-year reports (Forms 10-K). We find that: (i) firms’ hiring deci-
sions respond strongly to narratives, (ii) narratives spread contagiously among firms,
and (iii) this spread is responsive to macroeconomic conditions. To understand the
macroeconomic implications of these forces, we embed a contagious optimistic nar-
rative in a business-cycle model. We characterize, in terms of the decision-relevance
and contagiousness of narratives, when the unique equilibrium features: (i) non-
fundamental business cycles, (ii) non-linear belief dynamics (narratives “going viral”)
that generate multiple stable steady states (hysteresis), and (iii) the coexistence of
hump-shaped responses to small shocks with regime-shifting behavior in response to
large shocks. Our empirical estimates discipline both the static, general equilibrium
effect of narratives on output and their dynamics. In the calibrated model, we find
that contagious optimism explains 32% and 18% of the output reductions over the
early 2000s recession and Great Recession, respectively, as well as 19% of the uncondi-
tional variance in output. We find that overall optimism is not sufficiently contagious
to generate hysteresis, but other, more granular narratives are.

In the second chapter, “Attention Cycles” (coauthored with Karthik A. Sastry), we
document that, in aggregate downturns, US public firms’ attention to macroeconomic
conditions rises and the size of their input-choice mistakes falls. We explain these phe-
nomena with a business-cycle model in which firms face a cognitive cost of making
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precise decisions. Because firms are owned by risk-averse households, there are greater
incentives to deliver profits by making smaller input-choice mistakes when aggregate
consumption is low. In the data, consistent with our model, financial markets punish
mistakes more in downturns and macroeconomically attentive firms make smaller mis-
takes. Quantitatively, attention cycles generate asymmetric, state-dependent shock
propagation and stochastic volatility of output growth.

In the third chapter, “Strategic Mistakes” (coauthored with Karthik A. Sastry),
to study the equilibrium implications of decision frictions, we introduce a new class of
control costs in continuum-player, continuum-action games in which agents interact
via an aggregate of the actions of others. The costs that we study accommodate a
rich class of decision frictions, including ex post misoptimization, imperfect ex ante
planning, cognitive constraints that depend endogenously on the behavior of others,
and consideration sets. We provide primitive conditions such that equilibria exist,
are unique, are efficient, and feature monotone comparative statics for action distri-
butions, aggregates, and the size of agents’ mistakes. We apply the model to make
robust equilibrium predictions in a monetary business-cycle model of price-setting
with planning frictions and a model of consumption and savings during a liquidity
trap when endogenous stress worsens decisions.

The second part of this thesis, “Essays in Mechanism Design,” studies two con-
tentious issues in the allocation of resources in the modern economy: How should
we account for diversity when we allocate resources in two-sided matching markets?
How should digital goods and information be priced and regulated?

In the fourth chapter, “Priority Design in Centralized Matching Markets” (coau-
thored with Oğuzhan Çelebi), we observe that in many centralized matching markets,
agents’ property rights over objects are derived from a coarse transformation of an
underlying score. Prominent examples include the distance-based system employed
by Boston Public Schools, where students who lived within a certain radius of each
school were prioritized over all others, and the income-based system used in New
York public housing allocation, where eligibility is determined by a sharp income cut-
off. Motivated by this, we study how to optimally coarsen an underlying score. Our
main result is that, for any continuous objective function and under stable match-
ing mechanisms, the optimal design can be attained by splitting agents into at most
three indifference classes for each object. We provide insights into this design prob-
lem in three applications: distance-based scores in Boston Public Schools, test-based
scores for Chicago exam schools, and income-based scores in New York public housing
allocation.

In the fifth chapter, “Adaptive Priority Mechanisms” (coauthored with Oğuzhan
Çelebi), we ask how authorities that care about match quality and diversity should
allocate resources when they are uncertain of the market they face? Such a question
appears in many contexts, including the allocation of school seats to students from
various socioeconomic groups with differing exam scores. We propose a new class
of adaptive priority mechanisms (APM) that prioritize agents as a function of both
scores that reflect match quality and the number of assigned agents with the same
socioeconomic characteristics. When there is a single authority and preferences over
scores and diversity are separable, we derive an APM that is optimal, generates
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a unique outcome, and can be specified solely in terms of the preferences of the
authority. By contrast, the ubiquitous priority and quota mechanisms are optimal
if and only if the authority is risk-neutral or extremely risk-averse over diversity,
respectively. When there are many authorities, it is dominant for each of them to
use the optimal APM, and each so doing implements the unique stable matching.
However, this is generally inefficient for the authorities. A centralized allocation
mechanism that first uses an aggregate APM and then implements authority-specific
quotas restores efficiency. Using data from Chicago Public Schools, we estimate that
the gains from adopting APM are considerable.

In the sixth and final chapter, “Nonlinear Pricing with Under-Utilization: A The-
ory of Multi-Part Tariffs” (coauthored with Roberto Corrao and Karthik A. Sastry),
we study the nonlinear pricing of goods whose usage generates revenue for the seller
and of which buyers can freely dispose. The optimal price schedule is a multi-part
tariff, featuring tiers within which buyers pay a marginal price of zero. We apply our
model to digital goods, for which advertising, data generation, and network effects
make usage valuable, but monitoring legitimate usage is infeasible. Our results ra-
tionalize common pricing schemes including free products, free trials, and unlimited
subscriptions. The possibility of free disposal harms producer and consumer welfare
and makes both less sensitive to changes in usage-based revenue and demand.

Thesis Supervisor: Daron Acemoglu
Title: Institute Professor

Thesis Supervisor: George-Marios Angeletos
Title: Professor of Economics

Thesis Supervisor: Stephen Morris
Title: Peter A. Diamond Professor of Economics
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Chapter 1

The Macroeconomics of Narratives

This chapter is jointly authored with Karthik A. Sastry.

1.1 Introduction
At least since Keynes (1936), economists have hypothesized that waves of “spon-
taneous optimism” generate business cycles. But what drives these fluctuations in
beliefs and how much do they matter? The Narrative Economics of Shiller (2017,
2020) postulates that contagious stories and worldviews, or “narratives,” induce such
movements in beliefs and underlie macroeconomic events. However, the business-cycle
relevance of economic narratives, and even their precise meaning, remain unclear.

In this paper, we study how movements in narratives drive aggregate fluctuations
in beliefs and output. We first develop a conceptual framework in which we define
narratives as subjective models of the macroeconomy that are potentially incorrect.
By altering beliefs, narratives influence economic actions like hiring and investment
(they are decision-relevant). Moreover, narratives can feed into themselves and gain
or lose prevalence over time, in two distinct but complementary ways: direct feed-
back from their prevalence (they are contagious), as in as in epidemiological models,
and indirect feedback from the economic activity that narratives induce (they are
associative), as in models of learning.

We next introduce empirical strategies to test narratives’ decision-relevance, con-
tagiousness, and associativeness at the microeconomic level. We apply several natural-
language-processing methods to measure textual proxies for narratives in the universe
of 10-K regulatory filings, in which all US public firms discuss “perspectives on [their]
business results and what is driving them” (SEC, 2011). We find that measured nar-
ratives predict hiring and investment and that their spread depends on both narrative
prevalence and economic outcomes at the aggregate and industry level. Moreover, we
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find that measured narrative optimism predicts over-optimism in sales forecasts and
does not correlate positively with future firm productivity growth, stock returns, or
earnings growth. Thus, we interpret textual optimism as a narrative that shifts beliefs
while being unrelated to future fundamentals.

To understand the importance of these results, we adopt a “micro-to-macro” ap-
proach by embedding narratives in a business-cycle model and quantifying its the-
oretical predictions by using our empirical estimates. We show theoretically that
optimistic narratives can lead to non-fundamentally driven boom-bust cycles and
hysteresis. Conditional on calibrating standard preference and technological param-
eters, our empirical estimates point-identify the dynamic macroeconomic effects of
narratives. Quantitatively, we find that aggregate fluctuations in narrative optimism
account for approximately 32% and 18% of the output reductions over the early 2000s
recession and Great Recession, respectively. We therefore argue that contagious nar-
ratives may be a first-order determinant of the business cycle.

Measuring Narratives We first empirically evaluate the two premises of our
framework: narratives’ decision-relevance and their contagiousness and associative-
ness. To this end, we combine data on US public firms’ adoption of textual narratives,
using firms’ 10-K filings and earnings call transcripts, and their decisions, using data
from Compustat.

Our first method for measuring textual proxies for narratives computes the inten-
sity of positive and negative sentiment using the 10-K-specific dictionary introduced
by Loughran and McDonald (2011a). We interpret this measure as capturing over-
all optimism. This measure, which will be our main focus, connects our work to a
large literature that studies waves of optimism and pessimism at the aggregate level,
without measuring how optimism shapes economic decisions or spreads at the mi-
croeconomic level (see e.g., Beaudry and Portier, 2006; Lorenzoni, 2009; Angeletos
and La’O, 2013; Benhabib, Wang, and Wen, 2015).

To complement our study of narrative optimism, we apply two other techniques
to measure more granular narratives. Our first such technique computes the similar-
ity between firms’ language and the language that best characterizes the Perennial
Economic Narratives introduced by Shiller (2020) using a method that has also been
applied in Hassan, Hollander, Van Lent, and Tahoun (2019) and Flynn and Sastry
(2022a). These “narratively identified narratives” are motivated by the historical evi-
dence of relevance and contagiousness provided by Shiller (2020). Our second granular
technique estimates a Latent Dirichlet Allocation (LDA) model (Blei, Ng, and Jor-
dan, 2003), which extracts an underlying set of topics, probability distributions over
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words, based on the frequency with which certain words co-occur within documents.
Since we recover these “topic narratives” via an unsupervised method, they allow
the data to speak flexibly about what narratives are prevalent among firms without
restricting the issues to which narratives may pertain.

Empirical Results We first provide descriptive evidence about our estimated nar-
ratives. Across the three methods, almost all of our estimated narratives are per-
sistent and cyclical. However, it is difficult to ascertain the relationship between
narrative and macroeconomic dynamics from the time series alone. This is because
narratives potentially serve dual roles of describing true economic fundamentals and
encoding non-fundamental beliefs. This challenge for time-series analysis motivates
our strategy of testing the two premises of narrative macroeconomics—that narra-
tives are decision-relevant and that they spread contagiously and associatively—at
the microeconomic level.

Using our panel data, we first test the decision-relevance of our measured narra-
tives. We focus initially on optimism. We find that optimistic firms, defined as firms
with above-median sentiment, hire 3.6 percentage points more than pessimistic firms
in a given year, net of firm and sector-time fixed effects. This finding is robust to ac-
counting for firm-level productivity and financial conditions. Moreover, we find that
optimism is uncorrelated with future productivity growth and negatively correlated
with future stock returns and profitability. These findings are inconsistent with the
hypothesis that optimism predicts hiring only because it captures positive firm-level
fundamentals (or news thereof). Further, we show using managerial guidance data
from IBES that optimism in language predicts negative errors in sales forecasts, or
over-optimistic beliefs.

We therefore interpret the association of textual optimism with hiring as aris-
ing from non-fundamental, narratively driven, and optimistic beliefs. To underscore
this interpretation, we show that changes in optimism driven by plausibly exogenous
changes in CEOs (i.e., those caused by death, illness, personal issues, or voluntary
retirement of an incumbent CEO, as coded by Gentry, Harrison, Quigley, and Boivie,
2021) lead to quantitatively similar effects on hiring. Finally, we study the relevance
of the Perennial Economic Narratives and our estimated topics. Because these nar-
ratives are high-dimensional and may not be relevant for firm decisions, we use the
Rigorous LASSO method of Belloni, Chernozhukov, Hansen, and Kozbur (2016) for
estimating their effects on hiring. We find that two of the nine Perennial Economic
Narratives and eleven of the one hundred topics are relevant for hiring.

Second, we study how our measured narratives spread across firms over time.

15



Focusing on optimism, we find that greater aggregate optimism and higher aggregate
real GDP growth are associated with a greater probability that a firm is optimistic in
the following year—that is, in our language, optimism is contagious and associative.
We also find evidence of contagiousness and associativeness at the industry level when
we control for aggregate conditions with time fixed effects. Moreover, both these
aggregate and industry-level results are robust to controlling for future idiosyncratic
and aggregate economic conditions. This finding is inconsistent with the explanation
that aggregate optimism drives future optimism through its correlation with omitted
positive news about measured economic conditions.

By using lagged aggregate optimism in a panel setting, our estimates are not
threatened by the reflection problem of Manski (1993). Nevertheless, common shocks
that are not spanned by measured aggregate and industry-level conditions may gen-
erate omitted variables bias. To address this concern, we employ strategies based
on using idiosyncratic shocks to large firms (the granular IV approach of Gabaix
and Koijen, 2020) and the aforementioned plausibly exogenous changes in CEOs as
instruments for aggregate and industry-level optimism. We find qualitatively con-
sistent effects. Finally, we perform similar analyses for the other decision-relevant
narratively-identified and topic narratives. We find that almost all of them are con-
tagious and that many are associative.

Model Having provided microeconomic evidence about narratives’ decision-relevance,
contagiousness, and associativeness, we now study their macroeconomic implications.
To do this, we embed narratives in an otherwise standard Neoclassical business-cycle
model with dispersed information à la Angeletos and La’O (2010, 2013). The con-
sumption, production, and labor supply side of the model is a real variant of the
standard Neoclassical model of Woodford (2003b) and Galí (2008). In particular,
the model features aggregate demand externalities (Blanchard and Kiyotaki, 1987),
which generate a motive among firms to co-ordinate the levels of their production.
Unlike the aforementioned models, in which firms have correctly specified and ra-
tional expectations, our model features narratives that generate heterogeneous and
incorrect prior beliefs about the state of aggregate productivity. In our main analysis,
we specialize to a case with two narratives: optimism and pessimism. The evolution
of narratives is governed by the probabilities that optimists and pessimists remain
and become optimistic, respectively, as a function of aggregate output (associative-
ness) and the fraction of optimists in the population (contagiousness). This allows
the model to accommodate the narrative dynamics that we estimated in the data.
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Theoretical Results We next derive analytical results that characterize how nar-
ratives can generate non-fundamental fluctuations in aggregate output, hysteresis,
and boom-bust cycles. We first establish that there is a unique equilibrium in which
aggregate output is log-linear in aggregate productivity and a non-linear function
of the fraction of optimists in the population. In the case of unanimous optimism,
the contribution of optimism equals the partial-equilibrium effect of optimism on
one firm’s hiring, as we measured empirically, times a general-equilibrium multiplier.
This is because optimism matters both directly for firms and indirectly through ag-
gregate demand externalities. In this way, movements in aggregate optimism lead to
non-fundamental fluctuations in aggregate output.

We next describe the dynamics of narratives and output. For a fixed level of
aggregate productivity, while there always exists a steady-state level of optimism
and equilibrium is unique, there may nevertheless be multiple steady-state levels of
optimism. We provide a necessary and sufficient condition for a particularly extreme
type of this steady-state multiplicity: if the decision-relevance, contagiousness, and
associativeness of narratives are sufficiently strong, then unanimous optimism and
unanimous pessimism are both stable steady states. Moreover, depending on the
initial fraction of optimists, the economy is (almost everywhere) globally attracted to
one of these extreme steady states. In this way, narratives can generate hysteresis:
depending on how many optimists there are initially, optimism can either catch on
forever (“go viral”) or die out entirely.

We finally study how the economy evolves in response to shocks. Responses to
unanticipated “MIT shocks” can fall into three qualitative regimes. If a shock is
small, it has a fully transitory impact on aggregate output, because it fails to seed a
new narrative. If a shock is medium-sized, it has potentially hump-shaped effects on
aggregate output, because it seeds a new narrative that briefly persists before dying
out. If a shock is large, it has a permanent effect on aggregate output, because it
makes a narrative “go viral.” Studying stochastic behavior, we show that the economy
oscillates between extreme optimism and pessimism and provide analytical upper
bounds on the expected period of these oscillations. Both the possibility of these
effects and their quantitative magnitudes depend on key measurable parameters: the
decision-relevance, associativeness, and contagiousness of narratives.

Quantification In the final part of the paper, we calibrate our model to quantify
the extent to which fluctuations in narrative optimism explain historical business
cycle fluctuations and understand the extent to which narrative dynamics generate
hysteresis. In point-identifying the model, we leverage the fact that our empirical
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estimates identify both the partial equilibrium effects of narratives on hiring and the
nature of narrative diffusion.

We first study the extent to which narratives generate non-fundamental fluctua-
tions in output. We find that measured aggregate movements in optimism account
for 32% of output loss during the early 2000s recession and 18% during the Great
Recession. More systematically, we find that optimism accounts for 19% of output
variance, and 34% of the short-run (one-year) and 81% of the medium-run (two-year)
autocovariance in output.1

We next study the potential for narratively driven hysteresis. For optimism, we
quantitatively reject the theoretical condition required for hysteresis in both optimism
and output dynamics. But we do not reject this condition for other narratives, im-
plying that it is possible for these narratives either to die out or “go viral” depending
on initial conditions.

Finally, we study a variant model which allows multiple latent narratives to form a
basis for overall optimism, to evaluate Shiller’s (2020) hypothesis that many narratives
may be mutually reinforcing. We find that the interaction of many simultaneously
evolving, granular, and highly contagious narratives can underlie stable fluctuations
in aggregate optimism.

Related Literature We relate to an empirical literature that measures narratives
following Carroll (2001) and Shiller (2017).2 Of most relevance, Andre, Haaland,
Roth, and Wohlfart (2022) use surveys to understand narratives underlying inflation,
Goetzmann, Kim, and Shiller (2022) analyze narratives about financial crashes in
news media, Macaulay and Song (2022) study how news coverage of specific narratives
affects sentiment on social media, and Bybee, Kelly, Manela, and Xiu (2021a) apply
LDA to the full text of Wall Street Journal articles to extract narrative time series.
Our approach differs in its use of text data about the cross-section of firms to extract
narratives, uncover their effects on decision-making, and study their spread. Our
empirical analysis therefore relates to a literature studying the relationship between
firm-level outcomes and their language (Loughran and McDonald, 2011a; Hassan,
Hollander, Van Lent, and Tahoun, 2019; Hassan, Schreger, Schwedeler, and Tahoun,
2021; Handley and Li, 2020). In contrast to these papers, we calibrate a model to

1Normatively, we show that contagious optimism can be welfare-improving even if it is unfounded.
Quantitatively, we find that optimism is welfare-improving and welfare-equivalent to a 1.3% produc-
tion subsidy.

2See Carroll and Wang (2022) for a review of the literature on “epidemiological” models of ex-
pectations formation that are centered around social interactions.
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match our firm-level findings and study their general-equilibrium consequences.3

Our work relates to a literature that studies business cycles through time variation
in agents’ beliefs. First, our work relates to papers which postulate that the economy
undergoes exogenous shocks to demand via news, noise, sentiment, or extrapolation,
in theory (Lorenzoni, 2009; Angeletos and La’O, 2010, 2013; Benhabib, Wang, and
Wen, 2015; Benhima, 2019; Caballero and Simsek, 2020) and in quantitative appli-
cations (Beaudry and Portier, 2006; Christiano, Ilut, Motto, and Rostagno, 2008;
Angeletos, Collard, and Dellas, 2018; Bhandari, Borovička, and Ho, 2019; Maxted,
2020; Huo and Takayama, 2022).4 Our work micro-founds such shocks via the en-
dogenous evolution of narratives and corresponding degree of optimism, develops
methods to measure agent-level sentiment via textual analysis, and shows how to use
microeconomic evidence to quantify their macroeconomic implications.

Second, our modeling of narratives and their spread relates to the work of Carroll
(2001), Burnside, Eichenbaum, and Rebelo (2016), and Shiller (2017), in which beliefs
spread contagiously between agents. At the same time, our approach differs as we
explicitly model narratives and provide microeconomic evidence about narratives’
decision-relevance and spread.5

Finally, in studying the dynamics of misspecified models, we relate to a large
macroeconomics and theory literature on model misspecification and learning (see
e.g., Marcet and Sargent, 1989a,b; Brock and Hommes, 1997; Esponda and Pouzo,
2016; Acemoglu, Chernozhukov, and Yildiz, 2016; Adam, Marcet, and Beutel, 2017;
Molavi, 2019; Bohren and Hauser, 2021). This literature primarily characterizes the
limit points of agents’ models. Instead, we study short-run fluctuations and time
variation in the models held by agents. This approach is similar to that of Kozlowski,
Veldkamp, and Venkateswaran (2020), but we differ in our non-Bayesian and analyt-
ical, rather than computational, approach.

Outline The rest of the paper proceeds as follows. In Section 1.2, we develop
our general framework. In Section 1.3, we describe our data and measurement. In
Section 1.4, we detail our empirical strategy and results. In Section 1.5, we introduce
our macroeconomic model with contagious narratives. In Section 1.6, we provide
theoretical results on macroeconomic dynamics. In Section 1.7, we quantify the role

3Flynn and Sastry (2022a) and Song and Stern (2021a) share this approach of contextualizing
the effect of language-based variables on firm-level outcomes in a macroeconomic model.

4Bordalo, Gennaioli, Shleifer, and Terry (2021) and Bordalo, Gennaioli, Kwon, and Shleifer (2021)
respectively study how extrapolation can generate credit cycles and speculative bubbles.

5Thus, our model also differs from recent theoretical work in which models correspond to like-
lihoods (Schwartzstein and Sunderam, 2021) or directed acyclic graphs (Spiegler, 2016; Eliaz and
Spiegler, 2020).
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of narratives. Section 1.8 concludes.

1.2 Narratives: A Conceptual Framework
We first describe a conceptual framework that formalizes the two premises of the
macroeconomics of narratives: that narratives are decision-relevant and that nar-
ratives spread contagiously and associatively. We embed these two premises in an
abstract game in which narratives form the building blocks of agents’ beliefs and
agents care about their own actions, fundamentals, and aggregates of other agents’
actions. This game nests our later macroeconomic model in Section 1.5. We then
derive two regression equations that allow us to test the decision-relevance, conta-
giousness, and associativeness of narratives. We bring these regressions to the data in
Section 1.4 and show that they obtain exactly in our macroeconomic model in Section
1.6.

1.2.1 Narratives and Beliefs

We begin by formally defining narratives and how they map into agents’ beliefs.
There are random aggregate fundamentals 𝜃 ∈ Θ. For example, these fundamentals
might represent aggregate productivity or the strength of demand. An individual
narrative is a model of fundamentals. We describe each narrative, indexed by 𝑘 ∈ 𝒦,
as a probability distribution 𝑁𝑘 ∈ ∆(Θ) within the set of narratives 𝒩 = {𝑁𝑘}𝑘∈𝒦.
For example, if the fundamental 𝜃 describes the strength of productivity, then a pes-
simistic narrative 𝑁𝑃 might correspond to the view that “productivity in the economy
is low,” while an optimistic narrative 𝑁𝑂 may represent the view that “productivity
in the economy is high.”

Agents combine narratives to form priors about the fundamental by placing a
vector of weights 𝜆 = {𝜆𝑘}𝑘∈𝒦 ∈ Λ ⊆ ∆(𝒦) on each narrative.6 An agent with
narrative weights 𝜆 has an induced prior distribution over fundamentals given by the
following linear combination of distributions in 𝒩 :

𝜋𝜆(𝜃) =
∑︁
𝑘∈𝒦

𝜆𝑘𝑁𝑘(𝜃) (1)

Continuing the example, an agent who is fully pessimistic might place weight 𝜆𝑃 = 1

6The management and organizational literature also views narratives as forming a common set of
stories that underpin beliefs (see, e.g., Isabella, 1990; Maitlis, 2005; Loewenstein, Ocasio, and Jones,
2012; Vaara, Sonenshein, and Boje, 2016). Relatedly, Acemoglu and Robinson (2021) postulate that
culture arises from the combination of latent cultural attributes. By microfounding the process by
which cultural attributes combine, our analysis could be applied to this context.
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on the pessimistic narrative and complementary weight 𝜆𝑂 = 0 on the optimistic
narrative, so their subjective probabilities for each state 𝜃 are 𝜋(𝜃) = 𝑁𝑃 (𝜃). An
agent who has been convinced by neither narrative might take a middle ground and
consider both equally likely, which we would represent with (𝜆𝑃 , 𝜆𝑂) = (1

2
, 1
2
) or beliefs

𝜋(𝜃) = 1
2
𝑁𝑂(𝜃) +

1
2
𝑁𝑃 (𝜃).

1.2.2 Premise I: Narratives are Decision-Relevant

The first premise of the macroeconomics of narratives is that narratives are decision-
relevant. To model this, we introduce a continuum of agents indexed by 𝑖 ∈ [0, 1]

whose beliefs are formed from narratives, as described above, and who make decisions
at a sequence of time periods 𝑡 ∈ N.

These agents care about their own actions 𝑥𝑖𝑡 ∈ 𝒳 , aggregate outcomes 𝑌𝑡 ∈ 𝒴 ,
the fundamental state 𝜃𝑡 ∈ Θ, and an idiosyncratic preference shifter 𝜔𝑖 ∈ Ω. They
have utility functions 𝑢 : 𝒳 × 𝒴 × Θ× Ω → R and information sets ℐ𝑖𝑡. Given their
information sets, agents update each narrative belief by applying Bayes’ rule and
then form their posterior by placing their narrative weights on the updated narrative
beliefs. Given a conjecture about the mapping from fundamental states to aggregates
𝑌𝑡 : Θ → 𝒴 , the agents maximize their expected utility given narrative weights 𝜆𝑖𝑡
and information ℐ𝑖𝑡:

max
𝑥𝑖𝑡∈𝒳

E𝜋𝜆𝑖𝑡
[︁
𝑢(𝑥𝑖𝑡, 𝑌𝑡(𝜃𝑡), 𝜃𝑡, 𝜔𝑖) | ℐ𝑖𝑡

]︁
(2)

We linearize these best replies to obtain the following regression equation that al-
lows us to test for the decision-relevance of narratives (see Proposition 25 in Appendix
A.1.1 for the formal arguments):7

𝑥𝑖𝑡 = 𝛾𝑖 + 𝜒𝑡 +
∑︁
𝑘∈𝒦

𝛿𝑘𝜆𝑘,𝑖𝑡 + 𝜀𝑖𝑡 (3)

In this equation, 𝛾𝑖 captures time-invariant factors (preference shifters), 𝜒𝑡 captures
time-varying aggregate variables such as fundamentals or the overall prevalence of
narratives, the 𝛿𝑘 correspond to the appropriately normalized expectation of both
fundamentals and endogenous aggregate outcomes under narrative 𝑘, and 𝜀𝑖𝑡 corre-
sponds to noise around these expectations caused by differences in the information
sets across agents. The hypothesis that narratives are decision-relevant is that 𝛿𝑘 ̸= 0

for some 𝑘 ∈ 𝒦. To test this hypothesis in panel data on firms, we will use firm hiring

7There we also provide assumptions sufficient to guarantee a quadratic misspecification bound
and show that 𝜀𝑖𝑡 is mean zero and independent from 𝛾𝑖, 𝜒𝑡, and 𝜆𝑖𝑡. This latter point implies that,
modulo issues of misspecification, the 𝛿𝑘 can be estimated consistently via OLS.
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as the relevant outcome and textual measures of narrative adoption as proxies for
𝜆𝑘,𝑖𝑡, the belief weights in the model. An analog of this equation will hold in equilib-
rium without approximation in our theoretical model in Section 1.5, facilitating the
use of our estimates for model calibration.

1.2.3 Premise II: Narrative Spread Is Contagious and Asso-

ciative

We now formalize the second premise: that narratives spread contagiously and asso-
ciatively. The extent of narrative penetration is summarized by the cross-sectional
distribution of narratives in the population, 𝑄 ∈ ∆(Λ). This represents the distribu-
tion of agents’ distributions of narrative weights. For example, in an economy popu-
lated by only optimists 𝜆𝑂 = (0, 1), pessimists 𝜆𝑃 = (1, 0) and moderates 𝜆𝑀 = (1

2
, 1
2
),

we would have that 𝑄 = (𝑄𝑂, 𝑄𝑃 , 𝑄𝑀) corresponds to the fraction of the population
with each combination of weights over optimism and pessimism.

The evolution of the distribution of narratives over time is described by an updat-
ing rule 𝑃 : Λ×𝒴×∆(Λ) → ∆(Λ), which returns the probabilities {𝑃𝜆′(𝜆, 𝑌,𝑄)}𝜆′∈Λ
that an agent with narrative weights 𝜆 changes their weights to 𝜆′ when the endoge-
nous state is 𝑌 and the distribution of narratives in the population is 𝑄.8 Hence,
conditional on a distribution of narratives at time 𝑡 given by 𝑄𝑡 and realized endoge-
nous outcomes given by 𝑌𝑡, the next period’s distribution of narratives is:

𝑄𝑡+1,𝜆′ =
∑︁
𝜆∈Λ

𝑄𝑡,𝜆𝑃𝜆′(𝜆, 𝑌𝑡, 𝑄𝑡) (4)

At this level of generality, the updating function can capture Bayesian updating
by agents given some latent information structure. However, we can also model
behavioral phenomena such as associative learning where agents associate certain
states of the economy with certain models (e.g., “aggregate output is high, therefore
productivity is high”), and contagiousness, wherein the distribution of narratives itself
affects updating.

We linearize the narrative updating equations to obtain the following system of
linear probability models (see Proposition 26 in Appendix A.1.1 for the formal argu-
ments):

P[𝜆𝑖𝑡 = 𝜆 | 𝜆𝑖,𝑡−1, 𝑌𝑡−1, 𝑄𝑡−1] = 𝜁𝜆 +
∑︁
𝜆′∈Λ

𝑢𝜆′,𝜆I[𝜆𝑖,𝑡−1 = 𝜆′] + 𝑟′𝜆𝑌𝑡−1 + 𝑠′𝜆𝑄𝑡−1 (5)

8In Appendix A.2.6, we extend this setting to allow for idiosyncratic fundamentals and updating
that depends on their realizations.
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Here, 𝑢 captures agents’ stubbornness in updating (i.e., their proclivity not to up-
date), 𝑟 captures associativeness in updating (i.e., their association of outcomes with
a direction of updating), and 𝑠 captures contagiousness in updating (i.e., the direct
influence of peers’ narrative weights). The hypotheses that narratives are contagious
and associative correspond, respectively, to 𝑠𝜆 ̸= 0 and 𝑟𝜆 ̸= 0 for some 𝜆 ∈ Λ. Again,
we will use panel data on textual narrative adoption to test these hypotheses. Equa-
tion 5 is generated without approximation in the special case of our theoretical model
in Section 1.5 that we study quantitatively.

1.3 Data, Measurement, and Descriptive Statistics
We now describe how we develop a panel dataset on firms’ narrative loadings and
decisions. We measure textual proxies for narratives by applying several natural-
language-processing techniques to two corpora of language: the universe of public
firms’ SEC Forms 10-K and a large sample of earnings calls. We combine these
measures of narratives with data on firm fundamentals and choices. Finally, we
provide descriptive facts regarding the time-series and cross-sectional properties of
narratives.

1.3.1 Data

Text Our main source of firm-level textual data is SEC Form 10-K. Each publicly
traded firm in the US submits an annual 10-K to the SEC. These forms provide “a
detailed picture of a company’s business, the risks it faces, and the operating and
financial results of the fiscal year.” Moreover, “company management also discusses
its perspective on the business results and what is driving them” (SEC, 2011). This
description is consistent with our notion that agents’ narratives constitute a view of
the world and its rationalization via some model.

We download the universe of SEC forms 10-K from the SEC Edgar database from
1995 to 2019. This yields a corpus of 182,259 html files comprising the underlying
text of the 10-K, various formatting information, and tables. We describe our exact
method for processing the text data in Appendix A.3.1. The three key steps are
pre-processing the raw text data to isolate English-language words, associating words
with their common roots via lemmatization, and fitting a bigram model that groups
together co-occurring two-word phrases. We then count the occurrences of all words,
including bigrams, in all documents to obtain the bag-of-words representation (i.e.,
a vector of word counts) for each document.9 Our final sample consists of 100,936

9Other machine-learning approaches use, as input, the entire document instead of its bag-of-words
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firm-by-year observations from 1995 to 2018.
As an alternative source of text data, we use public firms’ sales and earnings

conference calls. Our initial sample consists of 158,810 documents from 2002 to 2014.
We apply the same natural-language-processing techniques that we employ for the 10-
Ks to this corpus. We average variables over the periods between successive 10-Ks to
obtain a firm-by-fiscal-year dataset. Our final sample consists of 25,589 firm-by-year
observations. We describe more details in Appendix A.3.2.

Firm Fundamentals and Choices We compile our dataset of firm fundamentals
and choices using Compustat Annual Fundamentals from 1995 to 2018. This dataset
includes information from firms’ financial statements on employment, sales, input
expenses, capital, and other financial variables. We apply standard selection criteria
to screen out firms that are very small, report incomplete information, or were likely
involved in an acquisition. We also ignore firms in the financial and utilities sectors
due to their markedly different production and/or market structure. More details
about our sample selection are in Appendix A.4.1.

We organize firms into 44 industries, which are defined at the NAICS 2-digit level,
but for Manufacturing (31-33) and Information (51), which we split into the 3-digit
level. To study narrative transmission at a finer level, we also define peer sets for the
subset of firms traded on the New York Stock Exchange using the method of Kaustia
and Rantala (2021). These authors exploit common equity analyst coverage to define
peers for each firm.10

To measure total factor productivity, we estimate a constant-returns-to-scale,
Cobb-Douglas, two-factor production function in materials and capital, for each in-
dustry. We estimate the output elasticities using the ratio of materials expenditures to
total sales and an assumed revenue returns-to-scale of 0.75. More details are provided
in Appendix A.4.2. We denote our estimated log-TFP variable as log 𝜃𝑖𝑡.

Manager and Analyst Beliefs We collect data from IBES (the International
Brokers’ Estimate System) on quantitative sales forecasts by companies and their
equity analysts. Specifically, we use the IBES Guidance dataset which records, for
specific variables, both (i) a numerical management expectation recorded from press

representation. Examples include Doc2Vec, as recently employed by Goetzmann, Kim, and Shiller
(2022) to study crash narratives, and RELATIO, which was recently developed by Ash, Gauthier,
and Widmer (2021). We view integrating these methods into our analysis as an interesting avenue
for future study.

10Firm 𝑗 is a peer of firm 𝑖 at time 𝑡 if they have more than 𝐶 common analysts, where 𝐶 is
chosen so that the probability of having 𝐶 or more common analysts by chance is less than 1% when
analysts following firm 𝑖 randomly choose the firms they follow among all firms with analysts in
period 𝑡.
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releases or transcripts of corporate events and (ii) a contemporaneous consensus value
from equity analysts. We restrict to the first recorded forecast per fiscal year of that
year’s sales. When managers’ guidance is reported as a range, we code a point-
estimate forecast as the range’s midpoint. We construct two variables from these
data at the level of firms 𝑖 and fiscal years 𝑡. The first, GuidanceOptExAnte𝑖𝑡, is
an indicator of managers’ guidance exceeding the analyst consensus. The second,
GuidanceOptExPost𝑖𝑡, is an indicator of managers’ guidance minus the realization
(both in log units) exceeding the sample median.11

1.3.2 Measurement: Recovering Narratives from Language

We employ three techniques to measure textual narratives at different levels of gran-
ularity.

Sentiment Narratives We first measure firms’ narrative sentiment. We catego-
rize individual words as either positive or negative using the dictionaries constructed
by Loughran and McDonald (2011a). These dictionaries adjust standard tools for
sentiment analysis to more precisely score financial communications, in which certain
words (e.g., the leading example “liability”) have specific definitions.12 We first define
𝒲𝑃 as the set of positive words and 𝒲𝑁 as the set of negative words. For reference,
we print the 20 most common words in each set in Appendix Table A.1. We calculate
positive and negative sentiment as:

pos𝑖𝑡 =
∑︁
𝑤∈𝒲𝑃

tf(𝑤)𝑖𝑡 neg𝑖𝑡 =
∑︁
𝑤∈𝒲𝑁

tf(𝑤)𝑖𝑡 (6)

where tf(𝑤)𝑖𝑡 is the term frequency of all bigrams including word 𝑤 in the time-𝑡 10-K
of firm 𝑖. We then construct a one-dimensional measure of net sentiment, sentiment𝑖𝑡,
by computing the across-sample 𝑧-scores of both positive and negative sentiment and
taking their difference. Finally, we define a firm 𝑖 as being optimistic at time 𝑡 if its
sentiment is above the entire-sample median:

opt𝑖𝑡 = I [sentiment𝑖𝑡 ≥ med (sentiment𝑖𝑡)] (7)

11This method corrects for the fact that, in more than half of our observations, guidance is lower
than the realized value, presumably due to asymmetric incentives.

12Loughran and McDonald (2011a) generate the dictionaries based on human inspection of the
most common words in the 10-Ks and their usage in context. We describe more details of our
document scoring methodology in Appendix A.3.3.
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This variable has a simple interpretation in capturing optimistic narratives, but nec-
essarily collapses more fine-grained discussion of specific topics.

Narrative Identification of Narratives To measure more specific narratives en-
tertained by firms, we next consider a supervised strategy based on narratively iden-
tifying a set of narratives using the text of Shiller’s Narrative Economics. Shiller
identifies a set of nine Perennial Economic Narratives : Panic versus Confidence;
Frugality versus Conspicuous Consumption; The Gold Standard versus Bimetallism;
Labor-Saving Machines Replace Many Jobs; Automation and Artificial Intelligence
Replace Almost All Jobs; Real Estate Booms and Busts; Stock Market Bubbles; Boy-
cotts, Profiteers, and Evil Businesses; and The Wage-Price Spiral and Evil Labor
Unions. Each of these narratives and its history is described in its own chapter in
Narrative Economics. We measure narrative adoption by computing the similarity
between each 10-K filing and the relevant chapter of the book.

Formally, we use a method related to prior work by Hassan, Hollander, Van Lent,
and Tahoun (2019) and our own implementation in Flynn and Sastry (2022a). For
each narrative 𝑘, we first compute the term-frequency-inverse-document-frequency
(tf-idf) score to obtain a set of words most indicative of that narrative:

tf-idf(𝑤)𝑘 = tf(𝑤)𝑘 × log

(︂
1

df(𝑤)

)︂
(8)

where tf(𝑤)𝑘 is the number of times that word 𝑤 appears in the chapter corresponding
to narrative 𝑘 in Narrative Economics and df(𝑤) is the fraction of 10-K documents
containing the word. Intuitively, if a word has a higher tf-idf score, it is common in
Shiller’s description of a narrative but relatively uncommon in 10-K filings. We define
the set of 100 words with the highest tf-idf score for narrative 𝑘 as 𝒲𝑘. For reference,
we print the twenty most common words in each set 𝒲𝑘 in Appendix Table A.2.

Finally, we score document (𝑖, 𝑡) for narrative 𝑘 by the total frequency of narrative
words:

Ŝhiller
𝑘

𝑖𝑡 =
∑︁
𝑤∈𝒲𝑘

tf(𝑤)𝑖𝑡 (9)

We compute loadings on each narrative, Shiller𝑘𝑖𝑡, by taking the 𝑧-score. These vari-
ables measure a set of more specific topics, but rely on Shiller’s specific wording of
narratives.

Unsupervised Recovery of Narratives Finally, to identify narratives without
relying on any external references, we use Latent Dirichlet Allocation (LDA), a hierar-
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chical Bayesian model in which documents are constructed by combining a latent set
of topic narratives (Blei, Ng, and Jordan, 2003). More specifically, given our corpus of
10-Ks with𝑀 documents, we postulate that there are𝐾 = 100 topics. First, the num-
ber of words in each document is drawn from a Poisson distribution with parameter
𝜉. Second, the distribution of topics in each document is given by 𝜗 = (𝜗1, . . . , 𝜗𝑀),
over which we impose a Dirichlet prior with parameter 𝛼 = {𝛼𝑘}𝑘∈𝒦, where 𝛼𝑘 rep-
resents the prior weight that topic 𝑘 is in any document. Third, the distribution of
words across topics is given by 𝜑 = (𝜑1, . . . , 𝜑𝐾), over which we impose a Dirichlet
prior with parameter 𝛽 = {𝛽𝑗𝑘}𝑘∈𝒦, where 𝛽𝑗𝑘 is the prior weight that word 𝑗 is in
topic 𝑘. Finally, we assume that individual words in each document 𝑑 are generated
by first drawing a topic 𝑧 from a multinomial distribution with parameter 𝜗, and
then selecting a word from that topic by drawing a word from a multinomial distri-
bution with parameter 𝜑𝑧. Intuitively, in an LDA, the set of documents is formed of
a low-dimensional space of narratives of co-occurring words.

To estimate the LDA, we use the Gensim implementation of the variational Bayes
algorithm of Hoffman, Bach, and Blei (2010), which makes estimation of LDA on our
large dataset feasible, when standard Markov Chain Monte Carlo methods would be
slow.13 Given the estimated LDA, we construct the document-level narrative score
as the posterior probability of that topic in the estimated document-specific topic
distribution 𝑝:

topic𝑘𝑖𝑡 = 𝑝(𝑘|𝑑𝑖𝑡) (10)

For each of the eleven topics that our subsequent analysis identifies as relevant for
hiring (see Section 1.4.1), we print the ten highest-weight bigrams and their weights
in Appendix Table A.3. These topics are qualitatively different from the word sets
used by our sentiment scoring (Appendix Table A.1) and Shiller narratives (Appendix
Table A.2).

1.3.3 Descriptive Analysis of Narratives

Before our main empirical analysis, we first describe the time-series and cross-sectional
structure of our measured narratives.

Time-Series Properties In Figure 1-1, we show the time path of six selected
measured narratives: optimism, “Labor-Saving Machines” and “Stock Bubbles” from
Shiller’s perennial narratives, and three topics whose three most common terms are

13For computational reasons, we estimate the model using all available documents from a randomly
sampled 10,000 of our 37,684 unique possible firms. We score all documents with this estimated
model.
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Figure 1-1: Aggregate Time Series for Six Selected Narratives
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Notes: Optimism is measured as the fraction of optimistic firms. The other five time
series are cross-sectional averages of z-score transformed variables (zero mean, unit standard
deviation).

“Advertising, Retail, Brand”; “Reorganization, Bankruptcy, Plan”; and “Technology,
Revenue, Development.” Our choices among the Shiller chapters and unsupervised
topics are among the set that our later analysis suggests is particularly important for
explaining hiring in the cross-section. At a glance, all of these narratives are highly
persistent and feature business-cycle fluctuations, and some have notable trends and
breaks.14 In Appendix Table A.4, we report summary statistics for all narratives’
autocorrelation and correlation with unemployment. Almost all measured narratives
are persistent, and several among the Shiller and topic sets are pro- or counter-cyclical.
This observation is consistent with existing evidence in the literature on the cyclicality
of aggregate text-based measures of narratives (e.g., Shiller, 2020) and news coverage
(e.g., Baker, Bloom, and Davis, 2016; Bybee, Kelly, Manela, and Xiu, 2021a).

However, our framework implies that it is challenging to interpret these basic
time-series facts for two reasons. First, it is difficult to disentangle the dual roles of
narratives in driving behavior versus describing fundamentals. In the next section,

14In the Appendix, we report the time-series plot for Positive Sentiment, Negative Sentiment, and
their difference (Figure A-1); all nine Shiller (2020) Perennial Economic Narratives (Figure A-2);
and all eleven LDA topics that our later analysis identifies as relevant for hiring (Figure A-3).
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we will use cross-sectional variation in narratives to isolate the impact on behavior.15

Second, without an understanding of how narratives affect decisions and how deci-
sions aggregate, it is difficult to understand the macroeconomic implications of even
desirable time-series variation in optimism. We will later combine our macroeco-
nomic model with our microeconomic evidence to evaluate the business-cycle impact
of aggregate variation in narratives quantitatively.

Cross-Sectional Properties Our firm-level panel allows us to explore variation
that is more fine-grained than the time-series variation of Figure 1-1. We perform a
variance decomposition of each narrative variable by comparing the total variance of
each variable with the variance after removing means at the time, industry, industry-
by-time, and firm levels. In Appendix Table A.5, we present the results in units
of the fraction of variance explained by each level of fixed effects, relative to the
total. Time-series variation constitutes a very small percentage of the total variation
in our variables—only 1.1% for optimism, 0.2% for the median Shiller narrative,
and 3.5% for the median topic narrative. Adding industry-specific trends increases
these percentages, respectively, to only 6.7%, 8.7%, and 9.9%. The vast majority of
variation is therefore at the firm level.

1.4 Empirical Results
Moving beyond descriptive evidence, we now use our dataset of firm-level outcomes
and narrative loadings to test the two premises that narratives are decision-relevant
and that narrative spread is contagious and associative.

1.4.1 Testing Premise I: Narratives Are Decision-Relevant

Empirical Strategy From the conceptual framework in Section 1.2 (see Equation
3 and Proposition 25 in Appendix A.1.1), we have that firm hiring ∆ log𝐿𝑖𝑡 can be
described to first order by the following regression equation:

∆ log𝐿𝑖𝑡 =
∑︁
𝑘∈𝒦

𝛿𝑘𝜆𝑘,𝑖𝑡 + 𝛾𝑖 + 𝜒𝑡 + 𝜀𝑖𝑡 (11)

where the 𝜆𝑘,𝑖𝑡 are firm-specific loadings on narratives indexed by 𝑘, 𝛾𝑖 is a fixed effect
spanning static firm characteristics, 𝜒𝑡 is a fixed effect spanning aggregate conditions
(including both fundamentals and the distribution of narratives), and 𝜀𝑖𝑡 is a residual
term arising from idiosyncratic noise in individuals’ signals.

15In Table A.28 we show that failing to control for aggregate time-series variation leads to an
upward bias in the impact of optimism on firms’ hiring, as predicted by the theory.
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We first operationalize this by estimating the following regression equation relating
hiring to our optimism variable constructed in the 10-Ks:

∆ log𝐿𝑖𝑡 = 𝛿𝑂𝑃opt𝑖𝑡 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜏 ′𝑋𝑖𝑡 + 𝜀𝑖𝑡 (12)

Hiring and optimism are constructed as described in Section 1.3, at the level of firms
and fiscal years. We augment our theoretically implied specification (Equation 11)
with controls, including industry-by-time fixed effects and a suite of firm-level time-
varying controls 𝑋𝑖𝑡 (current and past TFP, lagged labor, and financial variables). We
later estimate analogs of Equation 12 with other estimated narratives as independent
variables.

Main Result: Optimism Drives Decisions We present our estimates of Equa-
tion 12 in Table 1.1. We first estimate the model with no additional controls beyond
fixed effects and find a point estimate of 𝛿𝑂𝑃 = 0.0355 with a standard error of 0.0030
(column 1). In column 2, we add controls for current and lagged TFP, and lagged
labor (log 𝜃𝑖𝑡, log 𝜃𝑖,𝑡−1, log𝐿𝑖,𝑡−1). These controls proxy both for time-varying firm
fundamentals and, to first order, the presence of adjustment costs in labor.16 Our
point estimate 𝛿𝑂𝑃 = 0.0305 (SE: 0.0030) is quantitatively comparable to our uncon-
trolled estimate. To formalize this, in Appendix A.5.1 we report the robustness of
our estimate to selection on unobservables using the method of Oster (2019). We find
that our finding of a positive effect of optimism on hiring is robust by the benchmark
suggested by Oster (2019) (see Table A.6).

In column 3, we add measures of firms’ financial characteristics, the (log) book-to-
market ratio, last fiscal year’s log stock return (inclusive of dividends), and leverage
(total debt over total assets). These controls proxy for both Tobin’s 𝑞 and firm-level
financial frictions. These controls are conservative in that they may absorb variation
in both omitted firm fundamentals and optimism itself. The point estimate remains
positive and quantitatively similar. In column 4, we estimate a specification with the
controls from column 2 but no firm fixed effects to guard against small-sample bias
from strict exogeneity violations (Nickell, 1981) and find similar results.17

To test if optimism predicts (and does not merely describe) hiring, we finally

16In Appendix A.2.9, we show that the controls capture the impact of adjustment costs, to first
order, for a forward-looking firm that observes current productivity. This notwithstanding, to eval-
uate robustness to the presence of richer adjustment dynamics, in Table A.7, we control for up to
three lags of productivity and labor and our financial controls and continue to find a significant
impact of optimism on hiring.

17In Table A.8, we report standard errors for the estimates of Table 1.1 under alternative schemes
for clustering standard errors.
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Table 1.1: Narrative Optimism Predicts Hiring

(1) (2) (3) (4) (5)
Outcome is

∆ log𝐿𝑖𝑡 ∆ log𝐿𝑖,𝑡+1

opt𝑖𝑡 0.0355 0.0305 0.0250 0.0322 0.0216
(0.0030) (0.0030) (0.0032) (0.0028) (0.0037)

Firm FE ✓ ✓ ✓ ✓
Industry-by-time FE ✓ ✓ ✓ ✓ ✓
Lag labor ✓ ✓ ✓ ✓
Current and lag TFP ✓ ✓ ✓ ✓
Log Book to Market ✓
Stock Return ✓
Leverage ✓
𝑁 71,161 39,298 33,589 40,580 38,402
𝑅2 0.259 0.401 0.419 0.142 0.398

Notes: For columns 1-4, the regression model is Equation 12 and the outcome is the log
change in firms’ employment from year 𝑡− 1 to 𝑡. The main regressor is a binary indicator
for the optimistic narrative, defined in Section 1.3.2. In all specifications, we trim the 1%
and 99% tails of the outcome variable. In column 5, the regression model is Equation 13, the
outcome is the log change in firms’ employment from year 𝑡 to 𝑡 + 1, and control variables
are dated 𝑡+ 1. Standard errors are two-way clustered by firm ID and industry-year.
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estimate a specification in which the outcome and control variables are time-shifted
one year in advance:

∆ log𝐿𝑖,𝑡+1 = 𝛿𝑂𝑃−1 opt𝑖𝑡 + 𝜏 ′𝑋𝑖,𝑡+1 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡+1 + 𝜀𝑖,𝑡+1 (13)

where 𝛿𝑂𝑃−1 is the effect of lagged optimism on hiring and the (time-shifted) control
variables 𝑋𝑖,𝑡+1 are those studied in column 2. In this specification, hiring takes place
in fiscal year 𝑡 + 1 after the filing of the 10-K at the end of fiscal year 𝑡. Our point
estimate in column 5 is similar in magnitude to our comparable baseline estimate
(column 2).18

Robustness As an alternative strategy to isolate plausibly exogenous variation
in the narratives considered by firms, we study the effects on hiring of changes in
narratives induced by plausibly exogenous CEO turnover. We provide the details in
Appendix A.5.2. Specifically, we estimate a variant of Equation 12 over firm-year
observations corresponding to the death, illness, or voluntary retirement of a CEO,
as measured by Gentry, Harrison, Quigley, and Boivie (2021). We find quantitatively
similar effects of narrative optimism on hiring as those reported in Table 1.1.

In the Appendix, we also report several additional results that probe the robust-
ness of our main specification. We summarize them briefly here. First, Figure A-4
shows estimates of a variant of our baseline regression interacting optimism with
quartiles of firm characteristics. We find that the effect of optimism is decreasing in
capital intensity, essentially flat in market capitalization, and U-shaped in the book-
to-market ratio (i.e., high for both growth firms and value firms). Second, Table A.10
repeats the analysis of Table 1.1 with our conference-call-based optimism measure,
and finds similar results. Third, Table A.11 repeats our main analysis for different
measured inputs—employment (the baseline), total variable input expenditure, and
investment—and demonstrates a positive and comparably sized effect of optimism on
all three. Thus, optimism expands operations uniformly across inputs. Finally, we
have so far studied the impact of binary optimism on hiring. To check if this construc-
tion drives our results, in Figure A-5 we re-create the regression models of the first
three columns of Table 1.1 with indicators for each decile of the continuous sentiment
measure. We find monotonically increasing associations of hiring with higher bins
of sentiment, implying that our binary construction is not masking non-monotone

18In Table A.9, we report results from our baseline regression Equation 12, using opt𝑖,𝑡−1 as an
instrument for opt𝑖𝑡. This is robust to any identification concern arising from the simultaneous
determination of opt𝑖𝑡 and Δ log𝐿𝑖𝑡, but estimates the original parameter 𝛿𝑂𝑃 rather than 𝛿𝑂𝑃

−1 .
Our estimates are positive, statistically significant, and larger than our baseline estimates.
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effects of the continuous measure.19

Inspecting the Mechanism: Narrative Optimism Does Not Predict Future
Productivity Growth, Predicts Negative Stock Returns and Profitability
The coefficient of interest, 𝛿𝑂𝑃 , measures the impact of optimism on hiring if opti-
mism is uncorrelated with any omitted fundamental factors that affect hiring. We
have already demonstrated that controlling for firm-level productivity, current la-
bor employed, and financial variables has minimal impact on the estimated value of
𝛿𝑂𝑃 . Thus, any correlation between measured optimism and measured contempora-
neous and lagged fundamentals does not generate quantitatively significant omitted
variables bias. But we have not yet systematically investigated those correlations,
or more formally explored whether measured optimism captures news about future
fundamentals.

To investigate these issues, we estimate projection regressions of firm-fundamentals
𝑍𝑖𝑡, either TFP growth ∆ log 𝜃𝑖𝑡, log stock returns 𝑅𝑖𝑡, or changes in profitability ∆𝜋𝑖𝑡,
on optimism at leads and lags 𝑘:20

𝑍𝑖𝑡 = 𝛽𝑘 opt𝑖,𝑡−𝑘 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜀𝑖𝑡 (14)

For negative 𝑘, 𝛽𝑘 measures the relationship of current fundamentals with future
optimism. For positive 𝑘, 𝛽𝑘 measures the relationship of current fundamentals with
past optimism.

We show our findings graphically in Figure 1-2, in which each point is a coefficient
from a separate estimation of Equation 14 and the error bars are 95% confidence in-
tervals. For 𝑘 < 0, and all three outcome variables, we find evidence of 𝛽𝑘 > 0—that
is, a firm doing well today in terms of TFP growth, stock-market returns, and/or
profitability is likely to become optimistic in the future. However, for 𝑘 > 0, and all
three outcome variables, we find no positive association—that is, a firm doing well
today was not on average optimistic yesterday, or a firm that is optimistic today does
not on average do better tomorrow. This is consistent with our required exclusion
restriction that our narrative measure of optimism is non-fundamental, and it is in-
consistent with a story in which optimism is driven by news about fundamentals.21

19In Appendix A.5.4, we also check whether the effects of narrative optimism depend on the past
level of narrative optimism. We find that there are larger marginal effects on average for recently
pessimistic firms, but that this heterogeneity is quantitatively small.

20We measure profitability as earnings before interest and taxes (EBIT) divided by the previous
fiscal year’s total variable costs (cost of goods sold (COGS) plus selling, general, and administrative
expense (SGA), minus depreciation).

21To further investigate the effects on stock prices, we also estimate the correlation of optimism
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Figure 1-2: Dynamic Relationship of Optimism with Firm Fundamentals
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Notes: The regression model is Equation 14, and each coefficient estimate is from a different
regression. The outcomes are (a) the log change in TFP, calculated as described in Appendix
A.4.2, (b) the log stock return inclusive of dividends, and (c) changes in profitability, defined
as earnings before interest and taxes (EBIT) as a fraction of the previous fiscal year’s variable
costs. In all specifications, we trim the 1% and 99% tails of the outcome variables. Error bars
are 95% confidence intervals, based on standard errors clustered at the firm and industry-
year level.
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Table 1.2: Narrative Optimism Predicts Over-Optimistic Forecasts

(1) (2) (3) (4)
Outcome is

GuidanceOptExPost𝑖,𝑡+1 GuidanceOptExAnte𝑖,𝑡+1

opt𝑖𝑡 0.0354 0.0561 0.0267 -0.000272
(0.0184) (0.0257) (0.0231) (0.0353)

Ind.-by-time FE ✓ ✓ ✓ ✓
Lag labor ✓ ✓
Current and lag TFP ✓ ✓

𝑁 3,817 2,159 3,044 1,718
𝑅2 0.173 0.193 0.161 0.192

Notes: The regression model is Equation 15. The outcomes are binary indicators for whether
sales guidance was high relative to realized sales (columns 1 and 2) or high relative to
contemporaneous analyst forecasts (columns 3 and 4), as defined in Section 1.3.1. Standard
errors are two-way clustered by firm ID and industry-year.

We find, in sharp contrast, that optimistic firms have negative stock returns and
decreasing profitability in the future. This is consistent with our finding that opti-
mistic firms persistently increase input expenditure (column 5 of Table 1.1), but see
no increase in productivity (panel (a) of Figure 1-2). Figures A-6 and A-7 replicate
this analysis with conference-call-based optimism and the continuous measure of net
sentiment, respectively, and find similar results.22

This analysis focuses on real, rather than financial, fundamentals. In Figure A-
8, we investigate the relationship between narrative optimism, leverage, the capital
structure, and payout policy. We find that narrative optimism predicts higher leverage
and higher borrowing and has no effect on both equity issuance and payouts. Taken
together, this provides evidence that narrative optimism is associated with tighter,
instead of looser, future financial conditions. This is again inconsistent with a view
that narrative optimism drives increases in hiring because it is correlated with positive
news about future firm-level financial conditions.

Inspecting the Mechanism: Narrative Optimism Predicts Optimistic Be-
liefs In our theoretical framework, optimistic narratives increase hiring by increasing

with stock returns near the 10-K filing date (Appendix Table A.12). We find essentially no evidence
of stock response on or before the filing day, and weak evidence of positive returns (about 15-25
basis points) in the four days after. The latter finding is consistent with those in Loughran and
McDonald (2011a).

22Jiang, Lee, Martin, and Zhou (2019) relatedly find that positive textual sentiment in firm dis-
closures, by their own measure, predicts negative excess returns over the subsequent year.
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firms’ expectations about fundamentals. To test this mechanism, we investigate the
relationship between narrative optimism and the extent to which firms make more
optimistic forecasts. As described in Section 1.3.1, we define GuidanceOptExPost𝑖,𝑡+1

and GuidanceOptExAnte𝑖,𝑡+1 to indicate firms’ optimism at the beginning of fiscal
year 𝑡 + 1 relative to realized sales and contemporaneous sales forecasts of equity
analysts, respectively. For each variable GuidanceOpt𝑖,𝑡+1, we estimate the following
regression model:

GuidanceOpt𝑖,𝑡+1 = 𝛽 opt𝑖𝑡 + 𝜏 ′𝑋𝑖𝑡 + 𝜒𝑗(𝑖),𝑡 + 𝜀𝑖𝑡 (15)

The control variables 𝑋𝑖𝑡 are current and lagged TFP and lagged labor, all in log
units. As we have guidance data for only a small subset of firms, we do not include
firm fixed effects.

Our findings are reported in Table 1.2. For optimism relative to realizations, we
find a positive correlation that increases when we add the aforementioned control
variables (columns 1 and 2). This is consistent with the notion that firms producing
an optimistic 10-K truly hold optimistic views about firm performance. For optimism
relative to analysts, we find an imprecise positive effect in an uncontrolled model and
a zero effect in the controlled model. These findings are consistent with a story
in which optimism is shared between management and investors, potentially due to
persuasion in communications.23,24

Given that we have found that guidance correlates with narrative optimism, it
is natural to ask if narrative optimism affects firm decisions conditional on guidance
(and vice versa). In Appendix A.5.3, we find that narrative optimism and measured
expectations each have predictive power conditional on the other for explaining hiring
and capital investment. These results suggest that textual optimism captures aspects
of managers’ latent beliefs that are not represented in traditional measurement of
expectations (here, in guidance data).

The Narratives that Matter for Decisions We now study the decision-relevance
of the measured Shiller (2020) and topic narratives. Specifically, for each of the two
sets of narratives, we estimate the regression equation implied by our theoretical

23In Table A.13, we re-estimate this relationship with alternative measurement schemes. We
find a positive relationship between ex post optimism and continuous sentiment, and an insignificant
relationship between binary or continuous narrative sentiment with the continuous difference between
guidance and realized sales.

24Loughran and McDonald (2011a) similarly find that, in Fama-MacBeth predictive regressions
of standardized unexpected earnings, 10-K negativity predicts higher earnings surprises in the sub-
sequent quarter.
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Table 1.3: Narratives Selected as Relevant for Hiring by LASSO

Shiller (2020) Chapters Topics
1. Labor-Saving Machines 1. Lease, Tenant, Landlord
2. Stock Bubbles 2. Business, Public, Combination

3. Value, Fair, Loss
4. Advertising, Retail, Brand
5. Financial, Control, Internal
6. Stock, Compensation, Tax
7. Gaming, Service, Network
8. Debt, Credit, Facility
9. Reorganization, Bankruptcy, Plan
10. Court, Settlement, District
11. Technology, Revenue, Development

Notes: Each column lists the narrative variables chosen as relevant regressors in a Rigor-
ous Square-Root LASSO (Belloni, Chernozhukov, Hansen, and Kozbur, 2016) estimation of
Equation 16, with the baseline controls as unpenalized regressors. The Shiller (2020) chap-
ters are named for the title of the corresponding book chapter. The topics are named after
the three highest-weight bigrams. The corresponding post-LASSO estimates are reported
in Table A.14.

framework:
∆ log𝐿𝑖𝑡 =

∑︁
𝑘∈𝒦

𝛿𝑘�̂�𝑘,𝑖𝑡 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜏 ′𝑋𝑖𝑡 + 𝜀𝑖𝑡 (16)

We use our baseline controls, current and lagged TFP and lagged labor. Because we
have many candidate narratives (9 and 100, respectively), and we expect only a few to
matter for decisions, we apply the Rigorous Square-Root LASSO method of Belloni,
Chen, Chernozhukov, and Hansen (2012) and Belloni, Chernozhukov, Hansen, and
Kozbur (2016) to estimate the subset of hiring-relevant narratives. In Table 1.3, we
list the selected Shiller (2020) and topic narratives. In Appendix Table A.14, we
report the post-LASSO OLS estimates of Equation 16 with the selected variables.

Among the Shiller (2020) Perennial Economic Narratives, the LASSO methodol-
ogy selects two of nine as quantitatively relevant for hiring: “Labor-Saving Machines”
and “Stock Bubbles.” Among the unsupervised topics, the LASSO methodology se-
lects eleven variables out of 100. In Table A.14, we present these topics in the (es-
sentially random) order they come out of our LDA exercise and identify them by
their three highest-weight bigrams (in all cases, single words).25 Ex post, based on
their word combinations, we identify two as relating to demand conditions (Topics 4

25Appendix Table A.3 prints the top ten words per topic and their numerical weights.
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and 7); two related to legal proceedings (Topics 9 and 10); one related to technology
development (Topic 11); one related to real estate (Topic 1); and the remaining five
related to financial conditions.

Are these selected narratives reasonable? For the Perennial Economic Narratives,
we observe that “The Gold Standard” and “Boycotts and Evil Businesses” describe
episodes in history that are unlikely to be relevant over our sample. Our results are
therefore consistent with this “placebo test.” There are no analogous tests for the top-
ics, which pertain to the sample period by construction. Instead, we test if topics that
seem to describe specific decisions are relevant for those decisions. Concretely, using
analogs of Equation 12 to predict other firm-level decisions, we find that the “Adver-
tising, Retail, Brand” narrative predicts SG&A expenditure growth (𝛿 = 0.0076, SE:
0.0022) and that the “Technology, Revenue, Development” narrative predicts growth
in R&D spending (𝛿 = 0.0402, SE: 0.0044).

Going further, we examine the relationship of the selected Shiller and topic narra-
tives with narrative optimism in two ways. First, we study if optimism has different
effects when it coincides with more intense discussion of other narratives. To do this,
for each of the thirteen hiring-relevant Shiller and topic narratives, we take our base-
line regression (Equation 12) with controls for lagged labor and current and lagged
TFP and add both the non-optimism narrative and its interaction with optimism.
Out of our thirteen estimated regressions, the smallest 𝑝-value for an interaction co-
efficient that is different from zero is 0.039. Applying a Bonferroni correction for
multiple hypothesis testing, we would not reject the null that all interactions are zero
at any significance level less than 50%. Thus, we find limited evidence that optimism
acts differently when it interacts with other, more specific narratives.

Given the irrelevance of the interaction between optimism and more specific narra-
tives, we next consider the possibility that these narratives form a basis for narrative
optimism: that is, emergent overall optimism is driven by discussion of more specific
narratives. We estimate the following system of equations in which we treat optimism
as an endogenous variable and the LASSO-selected Shiller and topic narratives (in
sets 𝒦*

𝑆 and 𝒦*
𝑇 ) as instruments:

∆ log𝐿𝑖𝑡 = 𝛿𝑂𝑃opt𝑖𝑡 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜏 ′𝑋𝑖𝑡 + 𝜀𝑖𝑡

opt𝑖𝑡 =
∑︁
𝑘∈𝒦*

𝑆

𝛿𝑆𝑘Shiller𝑘𝑖𝑡 +
∑︁
𝑘∈𝒦*

𝑇

𝛿𝑇𝑘topic𝑘𝑖𝑡 + 𝛾𝑖 + �̃�𝑗(𝑖),𝑡 + 𝜏 ′�̃�𝑖𝑡 + 𝜀𝑖𝑡
(17)

where 𝑋𝑖𝑡 are, again, our baseline controls. We provide coefficient estimates for
Equation 17 in column 4 of Appendix Table A.14. The Shiller and topic narratives
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strongly predict optimism (𝐹 = 189), and our IV estimate of a 0.0597 log-point effect
of optimism on hiring is larger than our baseline estimate of 0.0305.

1.4.2 Testing Premise II: Contagious and Associative Spread

Empirical Strategy From the conceptual framework in Section 1.2 (see Equation 5
and Proposition 26 in Appendix A.1.1), we have that narrative updating is described
by a system of linear probability models that depend on agents’ previous narrative
weights, the previous narrative weights of the population, and economic outcomes.

To operationalize this idea in the context of our measured binary optimism, we
first estimate the following model:

opt𝑖𝑡 = 𝑢 opt𝑖,𝑡−1 + 𝑠 opt𝑡−1 + 𝑟 ∆ log 𝑌𝑡−1 + 𝛾𝑖 + 𝜀𝑖𝑡 (18)

where opt𝑡−1 is average optimism in the previous period, ∆ log 𝑌𝑡−1 is US real GDP
growth, and 𝛾𝑖 is an individual fixed effect. Following our earlier interpretation, 𝑢
measures stubbornness, 𝑠 measures contagiousness, and 𝑟 measures associativeness.

Main Result: Optimism Spreads Contagiously and Associatively In col-
umn 1 of Table 1.4, we show our estimates. We find strong evidence of 𝑢 > 0, 𝑠 > 0,
and 𝑟 > 0—that is, firms are significantly more likely to be optimistic in year 𝑡 if,
in the previous year, they were optimistic, if other firms were optimistic, and if the
economy grew.

Our estimation of Equation 18 levers only the time-series variation over our studied
23-year period. We therefore also study a model that allows for contagiousness and
associativeness at the finer levels of our 44 industries and our firm-specific peer groups.
Specifically, we estimate the equation:

opt𝑖𝑡 = 𝑢ind opt𝑖,𝑡−1+𝑠ind opt𝑗(𝑖),𝑡−1+𝑠peer opt𝑝(𝑖),𝑡−1+𝑟ind ∆ log 𝑌𝑗(𝑖),𝑡−1+𝛾𝑖+𝜒𝑡+𝜀𝑖𝑡

(19)
where opt𝑗(𝑖),𝑡−1 and opt𝑝(𝑖),𝑡−1 are (leave-one-out) means of optimism among a firm’s
industry and peer set, respectively, and ∆ log 𝑌𝑗(𝑖),𝑡−1 is the growth of sectoral value-
added measured by linking Bureau of Economic Analysis (BEA) sector-level data to
our NAICS-based classification.26 The time fixed effect 𝜒𝑡 absorbs aggregate conta-
giousness and associativeness.

We show the results in columns 2 and 3 of Table 1.4. First, using just the industry-
level data, we find strong evidence for contagiousness and weaker evidence for associa-

26These data are available only from 1997.
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Table 1.4: Narrative Optimism is Contagious and Associative

(1) (2) (3)
Outcome is opt𝑖𝑡

Own lag, opt𝑖,𝑡−1 0.209 0.214 0.135
(0.0071) (0.0080) (0.0166)

Aggregate lag, opt𝑡−1 0.290
(0.0578)

Real GDP growth, ∆ log 𝑌𝑡−1 0.804
(0.2204)

Industry lag, opt𝑗(𝑖),𝑡−1 0.276 0.207
(0.0396) (0.0733)

Industry output growth, ∆ log 𝑌𝑗(𝑖),𝑡−1 0.0560 0.0549
(0.0309) (0.0632)

Peer lag, opt𝑝(𝑖),𝑡−1 0.0356
(0.0225)

Firm FE ✓ ✓ ✓
Time FE ✓ ✓
𝑁 64,948 52,258 8,514
𝑅2 0.481 0.501 0.501

Notes: The regression model is Equation 18 for column 1, and Equation 19 for columns 2 and
3. Aggregate, industry, and peer average optimism are averages of the narrative optimism
variable over the respective sets of firms. Industry output growth is the log difference
in sectoral value-added calculated from BEA data, linked to two-digit NAICS industries.
Standard errors are two-way clustered by firm ID and industry-year.

tiveness within industries. Second, including the peer set optimism and restricting to
the much smaller number of NYSE-listed firms, we find both a quantitatively similar
industry-level effect and an independent peer-set effect. Moreover, the sum of coeffi-
cients 𝑠ind + 𝑠peer, the marginal effect of optimism in both the industry and peer set,
is positive and strongly significant (estimate 0.243, standard error 0.075). In Table
A.16, we report evidence of stubbornness, contagiousness, and associativeness with
the continuous measure of sentiment and find consistent results, suggesting that our
qualitative findings are not unduly sensitive to variable construction.27

Inspecting the Mechanism: Spillovers are Not Driven by Common Shocks
The coefficients of interest, 𝑢, 𝑟, and 𝑠 identify stubbornness, contagiousness, and
associativeness, when idiosyncratic optimism, aggregate optimism, and GDP are un-
related to other factors that affect changes in optimistic sentiment at the firm level.

27In Table A.15, we report standard errors for Table 1.4 under alternative clustering.

40



By using lagged aggregate optimism, our estimates are not threatened by the reflec-
tion problem of Manski (1993). Nevertheless, our estimates may be contaminated by
omitted variables bias because aggregate optimism is correlated with common shocks
to the economy that are in the error term.

To test for this possibility, we augment our previous regressions to include controls
for past and future fundamentals in the form of two leads and lags of real value-
added growth at the aggregate and sectoral levels as well as firm-level TFP growth.
Specifically, we estimate

opt𝑖𝑡 = 𝑢 opt𝑖,𝑡−1 + 𝑠 opt𝑡−1 + 𝛾𝑖+

+
2∑︁

𝑘=−2

(︀
𝜂agg
𝑘 ∆ log 𝑌𝑡+𝑘 + 𝜂ind

𝑘 ∆ log 𝑌𝑗(𝑖),𝑡+𝑘 + 𝜂firm
𝑘 ∆ log 𝜃𝑖,𝑡+𝑘

)︀
+ 𝜀𝑖𝑡

(20)

We estimate an analogous specification at the industry level, but with the aggregate
leads and lags absorbed. If common positive shocks to the economy and sectors were
driving some or all of the estimated spillovers, we would expect to find a severely
attenuated estimate of the contagiousness coefficient 𝑠. Even under our interpretation,
future output growth could be a “bad control” that is caused by optimism and absorbs
some of its effect.

We report our estimates of the contagiousness coefficients in Table 1.5, adding
the “bad controls” one at a time. In column 2 we find that instead of attenuating
𝑠, controlling for past and future aggregate fundamentals in fact slightly increases
the original point estimate reported in column 1 (within one standard error of the
original value). In columns 3 and 4, when we additionally control for sectoral-level
value-added growth and firm-level TFP growth, the point estimates drop slightly
while standard errors increase significantly. Similarly, for our industry-level estimates,
we find no statistically significant evidence of coefficient attenuation as additional
controls are added (columns 5 to 7). In Table A.17, we report analogous estimates
with the continuous sentiment variable and find similar results. Taken together, these
estimates build confidence that our baseline contagiousness results are not driven by
omitted aggregate shocks.

To further test whether our measure of contagiousness captures spillovers, and not
omitted common shocks, we pursue two additional instrumental variables strategies.
First, in Appendix A.5.2, we use spillovers from the same plausibly exogenous CEO
changes to construct instruments for industry and peer-set optimism. We find similar
point estimates as in our main analysis. Second, in Appendix A.5.5, we use size-
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Table 1.5: Narrative Optimism is Contagious, Controlling for Past and Future Out-
comes

(1) (2) (3) (4) (5) (6) (7)
Outcome is opt𝑖𝑡

Aggregate lag, opt𝑡−1 0.290 0.339 0.235 0.222
(0.0578) (0.0763) (0.1278) (0.2044)

Ind. lag, opt𝑗(𝑖),𝑡−1 0.276 0.241 0.262
(0.0396) (0.0434) (0.0705)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓
Own lag, opt𝑖,𝑡−1 ✓ ✓ ✓ ✓ ✓ ✓ ✓
(Δ log 𝑌𝑡+𝑘)

2
𝑘=−2 ✓ ✓ ✓

(Δ log 𝑌𝑗(𝑖),𝑡+𝑘)
2
𝑘=−2 ✓ ✓ ✓ ✓

(Δ log 𝜃𝑖,𝑡+𝑘)
2
𝑘=−2 ✓ ✓

𝑁 64,948 49,631 38,132 13,272 52,258 38,132 13,272
𝑅2 0.481 0.484 0.497 0.543 0.501 0.498 0.545

Notes: The regression model is Equation 20 for columns 1-4, and an analogous industry-level
specification for columns 5-7 (i.e., Equation 19 with past and future controls). Columns 1
and 5 are “baseline estimates” corresponding, respectively, with columns 1 and 3 of Table
1.4. The added control variables are two leads, two lags, and the contemporaneous value of:
real GDP growth (columns 2-4), industry-level output growth (columns 3-4 and 6-7), and
firm-level TFP growth (columns 4 and 7). Standard errors are two-way clustered by firm
ID and industry-year.

weighted idiosyncratic shocks to firm-level optimism as an instrument for aggregate
size-weighted optimism (a granular IV à la Gabaix and Koijen, 2020). While not
comparable to our main estimates as the measure of spillovers is different, we recover
a statistically significant contagiousness effect.

The Spread of Hiring-Relevant Narratives We repeat the estimation of our
equation measuring aggregate associativeness and contagiousness, Equation 18, for
the other thirteen narratives that are selected by our LASSO procedure as relevant
for hiring. To allow for the greatest comparability with our estimates for optimism,
we transform these narrative loadings into binary indicators for being above the sam-
ple median. We present our estimates of 𝑢, 𝑟, and 𝑠 in the three panels of Appendix
Figure A-9. We find significant evidence of stubbornness, or 𝑢 > 0, in each case and
significant evidence of contagiousness, or 𝑠 > 0, in all but two cases. We find some
evidence of associativeness (𝑟 ̸= 0) for certain narratives, with “Lease, Tenant, Land-
lord” (relating to real estate), “Debt, Credit, Facility” (relating to financial conditions
and leverage), and “Reorganization, Bankruptcy, Plan” (relating to firm restructur-
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ing) having 𝑟 < 0, and “Court, Settlement, District” (relating to legal proceedings),
“Business, Public, Combination” (relating to firm origination), and “Technology, Rev-
enue, Development” (relating to R&D) having 𝑟 > 0. In Appendix Table A.18, we
instrument for optimism with the other 13 hiring-relevant narratives in the estimation
of Equations 18 and 19. We find similar point estimates to our baseline analysis that
are suggestive of increased contagiousness.

To assess whether these findings are consistent with our earlier findings about
decision relevance, we can test whether the sign and magnitude of associativeness
line up across narratives with the sign and magnitude of the hiring effect. That
is, do narratives that increase firm hiring also spread more when the economy is
growing? While our theory does not impose such a restriction, it might be a natural
consequence of the unmodeled process by which narratives pick up associations with
aggregate outcomes. In Figure A-10, we plot the associativeness coefficients for each
narrative (including optimism) against the effect of the corresponding binary variable
on hiring. Consistent with our hypothesis, the relationship is upward-sloping, with
optimism itself in the top-right corner (with the second-highest hiring effect and
highest associativeness).

1.5 A Narrative Business-Cycle Model
To study the implications of narratives for macroeconomic dynamics, we now spe-
cialize our abstract framework and develop a microfounded business-cycle model that
embeds the decision-relevance, contagiousness, and associativeness of narratives.

1.5.1 Technology and Preferences

The consumption, production, and labor supply side of the model is intentionally
standard and is a purely real variant of the models described in Woodford (2003b)
and Galí (2008). Time is discrete and infinite, indexed by 𝑡 ∈ N. There is a continuum
of monopolistically competitive intermediate goods firms of unit measure, indexed by
𝑖, and uniformly distributed on the interval [0, 1]. Intermediate goods firms have
idiosyncratic (Hicks-neutral) productivity 𝜃𝑖𝑡. They hire labor 𝐿𝑖𝑡 monopsonistically
at wage 𝑤𝑖𝑡 to produce a differentiated variety in quantity 𝑥𝑖𝑡 that they sell at price
𝑝𝑖𝑡 according to the production function:

𝑥𝑖𝑡 = 𝜃𝑖𝑡𝐿
𝛼
𝑖𝑡 (21)

where 𝛼 ∈ (0, 1] describes returns-to-scale in production.
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A final goods firm competitively produces aggregate output 𝑌𝑡 by using a constant
elasticity of substitution (CES) production function:

𝑌𝑡 =

(︂∫︁
[0,1]

𝑥
𝜖−1
𝜖

𝑖𝑡 d𝑖

)︂ 𝜖
𝜖−1

(22)

where 𝜖 > 1 is the elasticity of substitution between varieties.
A representative household consumes final goods 𝐶𝑡 and supplies labor {𝐿𝑖𝑡}𝑖∈[0,1]

to the intermediate goods firms with isoelastic, separable, expected discounted utility
preferences:

𝒰
(︀
{𝐶𝑡, {𝐿𝑖𝑡}𝑖∈[0,1]}𝑡∈N

)︀
= E0

[︃ ∞∑︁
𝑡=0

𝛽𝑡

(︃
𝐶1−𝛾
𝑡

1− 𝛾
−
∫︁
[0,1]

𝐿1+𝜓
𝑖𝑡

1 + 𝜓
d𝑖

)︃]︃
(23)

where 𝛾 ∈ R+ indexes the size of income effects in the household’s supply of labor
and 𝜓 ∈ R+ indexes their inverse Frisch labor supply elasticity to each firm.

Finally, we define the composite parameter:

𝜔 =
1
𝜖
− 𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

(24)

which indexes the strength of strategic complementarity. So that complementarity is
positive but not so extreme that the model features multiple equilibria, we assume
that 𝜔 ∈ [0, 1). This requires that income effects in labor supply do not overwhelm
aggregate demand externalities and that these externalities are not too large.

1.5.2 Narratives and Beliefs

Firm productivity 𝜃𝑖𝑡 is comprised of a common, aggregate component 𝜃𝑡, an idiosyn-
cratic time-invariant component 𝛾𝑖, and an idiosyncratic time-varying component 𝜃𝑖𝑡:

𝜃𝑖𝑡 = 𝜃𝑖𝑡𝛾𝑖𝜃𝑡 (25)

Firms know that log 𝛾𝑖 ∼ 𝑁(𝜇𝛾, 𝜎
2
𝛾), know their own value of 𝛾𝑖, and believe that

log 𝜃𝑖𝑡 ∼ 𝑁(0, 𝜎2
𝜃
) and independently and identically distributed (IID) across firms and

time. As in Angeletos and La’O (2010, 2013), firms receive idiosyncratic Gaussian
signals about log 𝜃𝑡 with noise 𝑒𝑖𝑡 ∼ 𝑁(0, 𝜎2

𝑒) that is IID across firms and time:
𝑠𝑖𝑡 = log 𝜃𝑡 + 𝑒𝑖𝑡.

As in the conceptual framework from Section 1.2, and unlike in previous work,
narratives form a common factor structure of agents’ prior beliefs about the aggregate
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component of productivity 𝜃𝑡. To best fit our main empirical analysis, we suppose
that there are two competing narratives: an optimistic narrative and a pessimistic
narrative. According to each narrative, the aggregate component of productivity
follows:

log 𝜃𝑡 ∼ 𝑁(𝜇, 𝜎2) (26)

where 𝜇 = 𝜇𝑃 under the pessimistic narrative and 𝜇 = 𝜇𝑂 > 𝜇𝑃 under the optimistic
narrative. Both of these narratives are potentially misspecified, and the true distri-
bution for fundamentals is given by 𝐻. In Appendix A.2.4, we study a variant model
in which narratives pertain to beliefs about idiosyncratic productivity and show that
our analysis is unchanged.

Firms either believe the optimistic narrative or the pessimistic narrative. Hence,
each firm’s prior belief regarding the fundamental can be described as:

𝜋𝑖𝑡(𝜆𝑖𝑡) = 𝑁
(︀
𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 , 𝜎

2
)︀

(27)

where 𝜆𝑖𝑡 ∈ {0, 1}, 𝜆𝑖𝑡 = 1 corresponds to a firm believing in the optimistic narrative,
and 𝜆𝑖𝑡 = 0 corresponds to a firm believing in the pessimistic narrative. We let
𝑄𝑡 =

∫︀
[0,1]

𝜆𝑖𝑡 d𝑖 correspond to the fraction of optimists in the population, which
agents observe each period.

1.5.3 Narrative Evolution

To describe the evolution of narratives, we need to describe the probability that opti-
mists remain optimistic, 𝑃𝑂, and the probability that pessimists become optimistic,
𝑃𝑃 . We specify that both probabilities depend on aggregate output 𝑌𝑡, the fraction of
optimists in the population 𝑄𝑡, and an aggregate narrative shock to how agents up-
date 𝜀𝑡, which has distribution 𝐺. Hence, the fraction of optimists evolves according
to:

𝑄𝑡+1 = 𝑄𝑡𝑃𝑂(log 𝑌𝑡, 𝑄𝑡, 𝜀𝑡) + (1−𝑄𝑡)𝑃𝑃 (log 𝑌𝑡, 𝑄𝑡, 𝜀𝑡) (28)

This aggregates the behavior of individual firms’ narrative updating. As we found
that narratives spread associatively and contagiously (Section 1.4.2), we assume that
𝑃𝑂 and 𝑃𝑃 are both increasing functions. As we found that firms are stubborn, or that
optimism is persistent at the firm level, we assume that 𝑃𝑂 ≥ 𝑃𝑃 . As associativeness
and contagiousness do not explain all narrative updating, we add narrative shocks to
the probabilities that optimists and pessimists update. Finally, for technical reasons,
we assume that 𝑃𝑂 and 𝑃𝑃 are continuous and almost everywhere differentiable.

These conditions, motivated by the data, rule out some models for how individ-
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ual firms update their beliefs. An important such model that is ruled out is one in
which firms observe aggregate variables log 𝑌𝑡 and 𝑄𝑡 and use Bayes’ rule to update
their beliefs over models. As we formalize in Appendix A.2.1, this “Bayesian bench-
mark” rules out dependence of firms’ updating on 𝑄𝑡 and 𝜀𝑡 conditional on log 𝑌𝑡

(respectively, contagiousness and shocks). Moreover, this “Bayesian benchmark” pre-
dicts that agents converge to holding the better-fitting empirical model exponentially
quickly, which is at odds with our finding of cyclical dynamics for aggregate optimism
(Figure 1-1). However, richer Bayesian models that are consistent with our empirical
results can be nested by our reduced-form updating probabilities.

To illustrate our results, obtain closed-form expressions, and exactly match our
regressions and quantitative model, we will study the following updating probabilities
throughout:

Main Case (Linear-Associative-Contagious Updating Probabilities). The linear-associative-
contagious (LAC) specification for updating probabilities sets:

𝑃𝑂(log 𝑌,𝑄, 𝜀) =
[︁𝑢
2
+ 𝑟 log 𝑌 + 𝑠𝑄+ 𝜀

]︁1
0

𝑃𝑃 (log 𝑌,𝑄, 𝜀) =
[︁
−𝑢
2
+ 𝑟 log 𝑌 + 𝑠𝑄+ 𝜀

]︁1
0

(29)

where [𝑧]10 = max{min{𝑧, 1}, 0}, 𝑢 ≥ 0 indexes stubbornness, 𝑟 ≥ 0 indexes associa-
tiveness, and 𝑠 ≥ 0 indexes contagiousness. △

1.5.4 Equilibrium

An equilibrium is a path for all variables:

ℰ =
{︁
𝑌𝑡, 𝐶𝑡, 𝑄𝑡, 𝜃𝑡, 𝜀𝑡, {𝐿𝑖𝑡, 𝑥𝑖𝑡, 𝑝𝑖𝑡, 𝑤𝑖𝑡, 𝜆𝑖𝑡, 𝑠𝑖𝑡, 𝜃𝑖𝑡}𝑖∈[0,1]

}︁
𝑡∈N

(30)

such that (i) narrative weights 𝜆𝑖𝑡 follow a Markov process consistent with Equation
28 given 𝑄𝑡 and 𝑌𝑡, (ii) 𝑥𝑖𝑡 maximizes intermediate goods firms’ expected profits given
their narrative weights 𝜆𝑖𝑡, signal 𝑠𝑖𝑡, and knowledge of ℰ , (iii) 𝐿𝑖𝑡 is consistent with
production technology (Equation 21) given 𝑥𝑖𝑡 and 𝜃𝑖𝑡, (iv) prices 𝑝𝑖𝑡 are consistent
with profit maximization by the final goods firm, (v) wages 𝑤𝑖𝑡 clear the labor market
for each firm, (vi) 𝑌𝑡 aggregates intermediate good production according to Equation
22, (vii) 𝐶𝑡 satisfies goods market clearing, 𝐶𝑡 = 𝑌𝑡, and (viii) 𝑄𝑡 evolves according
to Equation 28.
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1.6 Theoretical Results

We now study the equilibrium dynamics of narratives and output. We find that
narratives induce non-fundamental fluctuations in the economy and have the potential
to generate hysteresis. Moreover, we show that our empirical estimates identify the
model. We use this mapping to the data to quantify and test the model’s predictions
in Section 1.7.

1.6.1 Characterizing Equilibrium Dynamics

To solve for equilibrium production, it suffices to solve for intermediates goods produc-
tion. These firms maximize expected profits, as priced by the representative house-
hold:

Π𝑖𝑡 = E𝑖𝑡[𝐶−𝛾
𝑡 (𝑝𝑖𝑡𝑥𝑖𝑡 − 𝑤𝑖𝑡𝐿𝑖𝑡)] (31)

where 𝐶−𝛾
𝑡 is the (unnormalized) stochastic discount factor that converts the profits

of the firm into their marginal value to the household. The intermediate goods firm
acts as a monopolist in the product market and a monopsonist in the labor market.

We first solve for the demand curve faced by the intermediates goods firms. The
final goods firm maximizes profits taking as given the prices set by intermediates
goods firms. This implies the following constant-price-elasticity demand curve:

𝑝𝑖𝑡 = 𝑌
1
𝜖
𝑡 𝑥

− 1
𝜖

𝑖𝑡 (32)

Increases in aggregate output shift out this demand curve via aggregate demand
externalities. Second, we solve for the wage schedule faced by the intermediate goods
firm. When facing a wage 𝑤𝑖𝑡, the intratemporal Euler equation of the representative
household implies that labor supply is given by:

𝐿𝜓𝑖𝑡 = 𝑤𝑖𝑡𝐶
−𝛾
𝑡 (33)

Third, given the production technology of the firm, when it commits to producing
𝑥𝑖𝑡, its implied labor input is given by:

𝐿𝑖𝑡 = 𝜃
− 1
𝛼

𝑖𝑡 𝑥
1
𝛼
𝑖𝑡 (34)

Finally, by imposing goods market clearing 𝐶𝑡 = 𝑌𝑡 and substituting Equations 32,
33, and 34 into Equation 31, we obtain that the intermediates goods firms solve the
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following profit maximization problems:

max
𝑥𝑖𝑡

E𝑖𝑡
[︂
𝑌 −𝛾
𝑡

(︂
𝑌

1
𝜖
𝑡 𝑥

1− 1
𝜖

𝑖𝑡 − 𝑌 𝛾
𝑡 𝜃

− 1+𝜓
𝛼

𝑖𝑡 𝑥
1+𝜓
𝛼

𝑖𝑡

)︂]︂
(35)

By the first-order condition of this program, we have that optimal production
solves: (︂

1− 1

𝜖

)︂
E𝑖𝑡
[︁
𝑌

1
𝜖
−𝛾

𝑡

]︁
𝑥
− 1
𝜖

𝑖𝑡 =
1 + 𝜓

𝛼
E𝑖𝑡
[︂
𝜃
− 1+𝜓

𝛼
𝑖𝑡

]︂
𝑥

1+𝜓−𝛼
𝛼

𝑖𝑡 (36)

where the left-hand side is the marginal expected revenue of the firm from expanding
production and the right-hand side is the marginal expected cost of this expansion. In
this equation, a given firm’s narrative affects their expected marginal costs of produc-
tion, via the expectation of idiosyncratic productivity, and their expected marginal
benefits of production, via the expectation of aggregate output (which encompasses
aggregate demand externalities, asset pricing forces, and wage pressure). Moreover,
in equilibrium, the distribution of narratives in the population affects the level of
aggregate output and agents’ expectations thereof.

We now take logarithms of all variables, and substitute this best reply into the
production function of the final goods firm. From this, we obtain that the static
equilibrium of the model is characterized by the solution to the following fixed-point
equation:

log 𝑌𝑡 =
𝜖

𝜖− 1
logE𝑡

[︃
exp

{︃
𝜖−1
𝜖

1+𝜓−𝛼
𝛼

+ 1
𝜖

(︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃

− logE𝑖𝑡
[︂
exp

{︂
−1 + 𝜓

𝛼
log 𝜃𝑖𝑡

}︂]︂
+ logE𝑖𝑡

[︂
exp

{︂(︂
1

𝜖
− 𝛾

)︂
log 𝑌𝑡

}︂]︂)︃}︃]︃
(37)

where the outer expectation operator integrates over the realizations of productivity
shocks (𝜃𝑖𝑡, 𝛾𝑖), narrative loadings 𝜆𝑖𝑡, and signals 𝑠𝑖𝑡.

By employing a functional guess-and-verify argument, we obtain that the model
has a unique quasi-linear equilibrium in which log output depends linearly on log
aggregate productivity and non-linearly, but separably, on the fraction of optimists
in the population:

Proposition 1 (Equilibrium Characterization). There exists a unique equilibrium
such that:

log 𝑌 (log 𝜃𝑡, 𝑄𝑡) = 𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑓(𝑄𝑡) (38)
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for some coefficients 𝑎0 and 𝑎1 > 0, and a strictly increasing function 𝑓 .

Proof. See Appendix A.1.2

Remark 1. This result claims uniqueness only within the quasi-linear class. As best
replies and aggregation are non-linear and the spaces of actions and fundamentals
are not compact, one cannot use classical arguments to ensure that the fixed point
operator implicit in Equation 37 is a contraction. Nevertheless, in Appendix A.1.2,
we show that there is a unique equilibrium when fundamentals are restricted to lie
in a compact set (Lemma 7). Moreover, the claimed quasi-linear equilibrium is an
𝜀−equilibrium for any 𝜀 > 0 for some sufficiently large support for fundamentals
(Lemma 8). Hence, the quasi-linear equilibrium we study is the limit of the unique
equilibrium with bounded fundamentals as the bound becomes large. This justifies
our restriction in analyzing this class of equilibrium. △

Narratives Drive Non-Fundamental Fluctuations in Aggregate Output The
coefficient 𝑎1 and function 𝑓 respectively describe how fundamentals and optimism
drive aggregate output. In the proof of Proposition 1, we derive these objects as
functions of the macroeconomic parameters (𝜖, 𝜓, 𝛾, 𝛼), the signal-to-noise ratio of
agents’ signals about productivity 𝜅, and the extent of mean differences in the pri-
ors of optimists and pessimists 𝜇𝑂 − 𝜇𝑃 . The effect on output from going from full
pessimism to full optimism is given by

𝑓(1) =
𝛼𝛿𝑂𝑃

1− 𝜔
(39)

where 𝛿𝑂𝑃 is the average partial equilibrium effect of a firm being optimistic on hiring,
the returns-to-scale parameter 𝛼 converts this into the effect on production, and 1

1−𝜔
is the general equilibrium multiplier of this effect.

The role of optimism in equilibrium has two subtle properties. First, the effect
of optimism on output, 𝑓(𝑄), is non-linear. The non-linearity arises from the fact
that firms’ heterogeneous priors induce heterogeneity in production conditional on
productivity and hence also misallocation. Second, there is an equilibrium multiplier
for optimism due to demand externalities. In particular, even a pessimistic firm will
produce more if a large fraction of other firms is optimistic, as this optimism increases
aggregate demand.

Identification of Model Parameters We now show how our empirical strategy
identifies the aggregate behavior of output and optimism.
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Corollary 1 (Identification of Model Parameters). In equilibrium, firms’ hiring de-
cisions obey the following equation:

∆ log𝐿𝑖𝑡 = 𝑐0,𝑖 + 𝑐1 log 𝜃𝑡 + 𝑐2𝑓(𝑄𝑡) + 𝑐3 log 𝜃𝑖𝑡 + 𝑐4 log𝐿𝑖,𝑡−1 + 𝛿𝑂𝑃𝜆𝑖𝑡 + 𝜁𝑖𝑡 (40)

where 𝜁𝑖𝑡 is an IID normal random variable with zero mean. Thus, conditional on
(𝛼, 𝜖, 𝛾, 𝜓), 𝛿𝑂𝑃 uniquely identifies 𝑓 , the equilibrium effect of optimism on aggregate
output.

Proof. See Appendix A.1.4.

This clarifies the exact interpretation of our regression model for hiring, Equation
12, in the model. The general-equilibrium effect of optimism on hiring, 𝑐2𝑓(𝑄𝑡), was
absorbed in the regression equation as a time fixed effect. As we previously discussed,
aggregate fundamentals also appear in the time fixed effect of the regression. These
facts highlight formally the necessity of combining cross-sectional variation and some
structural model for general-equilibrium interaction to identify the effect of optimism
on economic outcomes.

The Dynamics of Optimism Finally, using Proposition 1, we express the dy-
namics of the economy as a first-order nonlinear stochastic difference equation for
aggregate optimism:

Corollary 2 (Characterization of Dynamics). Optimism evolves according to the
following stochastic, nonlinear first-order difference equation 𝑄𝑡+1 = 𝑇 (𝑄𝑡, 𝜈𝑡), where
𝜈𝑡 = (log 𝜃𝑡, 𝜀𝑡) and

𝑇 (𝑄𝑡, 𝜈𝑡) = 𝑄𝑡𝑃𝑂(𝑎0+𝑎1 log 𝜃𝑡+𝑓(𝑄𝑡), 𝑄𝑡, 𝜀𝑡)+(1−𝑄𝑡)𝑃𝑃 (𝑎0+𝑎1 log 𝜃𝑡+𝑓(𝑄𝑡), 𝑄𝑡, 𝜀𝑡)

(41)

Proof. See Appendix A.1.5

1.6.2 Dynamics: Steady-State Multiplicity and Hysteresis

We next characterize the steady states of optimism and their stability, for fixed ag-
gregate fundamentals. This analysis highlights how associative, contagious optimism
affects dynamics even in the absence of shocks.

Steady-State Characterization Let 𝑇 be the equilibrium transition map from
Corollary 2 and 𝑇𝜃(𝑄) = 𝑇 (𝑄, 𝜃, 0) be the map for a fixed value of aggregate pro-
ductivity when there is no narrative shock. A level of optimism 𝑄*

𝜃 is a deterministic
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steady state for level of productivity 𝜃 if it is a fixed point of the corresponding map,
𝑇𝜃(𝑄

*
𝜃) = 𝑄*

𝜃. The following result establishes that a deterministic steady state al-
ways exists and provides necessary and sufficient conditions for extreme optimism
and pessimism to be (stable) steady states.

Proposition 2 (Steady State Existence, Multiplicity, and Stability). The following
statements are true:

1. There exists a deterministic steady-state level of optimism for every 𝜃 ∈ Θ

2. There exist thresholds 𝜃𝑃 and 𝜃𝑂 such that: 𝑄 = 0 is a deterministic steady
state for 𝜃 if and only if 𝜃 ≤ 𝜃𝑃 and 𝑄 = 1 is a deterministic steady state for 𝜃
if and only if 𝜃 ≥ 𝜃𝑂. Moreover, these thresholds are given by:

𝜃𝑃 = exp

{︂
𝑃−1
𝑃 (0; 0)− 𝑎0

𝑎1

}︂
and 𝜃𝑂 = exp

{︂
𝑃−1
𝑂 (1; 1)− 𝑎0 − 𝑓(1)

𝑎1

}︂
(42)

where 𝑃−1
𝑃 (𝑥;𝑄) = sup{𝑌 : 𝑃𝑃 (𝑌,𝑄, 0) = 𝑥} and 𝑃−1

𝑂 (𝑥;𝑄) = inf{𝑌 : 𝑃𝑂(𝑌,𝑄, 0) =

𝑥}.28

3. Extreme pessimism is stable if 𝜃 < 𝜃𝑃 and 𝑃𝑂(𝑃−1
𝑃 (0; 0), 0, 0) < 1 and extreme

optimism is stable if 𝜃 > 𝜃𝑂 and 𝑃𝑃 (𝑃−1
𝑂 (1; 1), 1, 0) > 0.

Proof. See Appendix A.1.6.

This result establishes conditions under which extreme optimism and pessimism
can be stable steady states. These conditions can be checked with only a few pa-
rameters: the responsiveness of output to productivity 𝑎1, its baseline level 𝑎0, the
impact of all agents being optimistic on output 𝑓(1), the highest level of output such
that all pessimists remain pessimistic when everyone is a pessimist 𝑃−1

𝑃 (0; 0), and the
lowest level of output such that all optimists remain optimistic when all other agents
are optimists 𝑃−1

𝑂 (1; 1).

Hysteresis Proposition 2 demonstrates the possibility for hysteresis: multiple steady
states of optimism that are entirely self-fulfilling. Thus, differing initial conditions
of narratives in the population can lead to differing steady-state levels of narrative
penetration and therefore output. The following corollary characterizes exactly when
this can happen:

28With the convention that the infimum of an empty set is +∞ and the supremum of an empty
set is −∞.
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Corollary 3 (Characterization of Extremal Multiplicity). Extreme optimism and
pessimism are simultaneously deterministic steady states for 𝜃 if and only if 𝜃 ∈
[𝜃𝑂, 𝜃𝑃 ], which is non-empty if and only if

𝑃−1
𝑂 (1; 1)− 𝑃−1

𝑃 (0; 0) ≤ 𝑓(1) (43)

Proof. See Appendix A.1.7

To gain intuition for these results, and to derive a parametric condition for hystere-
sis that we will later empirically assess, we compute these conditions in our running
LAC model:

Main Case (continuing from p. 46). In the LAC special case, we can compute the
sufficient statistics for narrative updating analytically. In particular, we have that
extreme optimism and pessimism can coexist if and only if:

𝑀 = 𝑢+ 𝑠+ 𝑟𝑓(1)− 1 ≥ 0 (44)

which is to say that stubbornness, associativeness, contagiousness, and the equilib-
rium impact of optimism on output are sufficiently large. In Section 1.7.3, we will em-
pirically assess this condition and its quantitative implications in our calibration. △

To say more, we restrict attention to two important subclasses of updating rules
that satisfy a natural single-crossing condition. We say that 𝑇 is strictly single-
crossing from above (SSC-A) if for all 𝜃 ∈ Θ there exists �̂�𝜃 ∈ [0, 1] such that
𝑇𝜃(𝑄) > 𝑄 for all 𝑄 ∈ (0, �̂�𝜃) and 𝑇𝜃(𝑄) < 𝑄 for all 𝑄 ∈ (�̂�𝜃, 1). We say that 𝑇
is strictly single-crossing from below (SSC-B) if for all 𝜃 ∈ Θ there exists �̂�𝜃 ∈ [0, 1]

such that 𝑇𝜃(𝑄) > 𝑄 for all 𝑄 ∈ (�̂�𝜃, 1) and 𝑇𝜃(𝑄) < 𝑄 for all 𝑄 ∈ (0, �̂�𝜃). If 𝑇 is
either SSC-A or SSC-B, we say that it is SSC. The left and right panels of Figure 1-3
illustrate examples of SSC-A and SSC-B transition maps as black solid lines.

Lemma 1 (Steady States under the SSC Property). If 𝑇𝜃 is SSC, then there exist at
most three deterministic steady states. These correspond to extreme pessimism 𝑄 = 0,
extreme optimism 𝑄 = 1, and intermediate optimism 𝑄 = �̂�𝜃. Moreover, when 𝑇𝜃 is
SSC-A: intermediate optimism is stable with a basin of attraction that includes (0, 1);
and whenever extreme optimism or extreme pessimism are steady states that do not
coincide with �̂�𝜃, they are unstable with respective basins of attraction {0} and {1}.
When 𝑇𝜃 is SSC-B: whenever extreme optimism is a steady state, it is stable with
basin of attraction (�̂�𝜃, 1]; whenever extreme pessimism is a steady state it is stable
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Figure 1-3: Illustration of Steady States and Dynamics Under the SSC Property

0 �̂�𝜃
1

1

𝑄𝑡−1

𝑄𝑡

SSC-A

0 �̂�𝜃
1

1

𝑄𝑡−1

𝑄𝑡

SSC-B

Notes: In each subfigure, the solid line is an example transition map 𝑇𝜃, the dashed line is
the 45-degree line, the dotted vertical line indicates the interior steady state �̂�𝜃, and the
red arrows indicate the dynamics. The subfigures respectively correspond to SSC-A (“strict
single crossing from above”) and SSC-B (“strict single crossing from below”), as defined in
the text.

with basin of attraction [0, �̂�𝜃); and intermediate optimism is always unstable with
basin of attraction {�̂�𝜃}.

Proof. See Appendix A.1.8

In the SSC-A case there is a unique, (almost) globally stable steady state (left
panel of Figure 1-3). In the SSC-B class, there exists a state-dependent criticality
threshold �̂�𝜃 ∈ [0, 1], below which the economy converges to extreme, self-fulfilling
pessimism and above which the economy converges to extreme, self-fulfilling opti-
mism (right panel of Figure 1-3). These two classes delineate two qualitatively dif-
ferent regimes for narrative dynamics: one with stable narrative convergence around
a long-run steady state (SSC-A) and one with a strong role for initial conditions and
hysteresis (SSC-B).

To understand the determinants of this criticality threshold, we study our LAC
model:

Main Case (continuing from p. 46). The LAC model satisfies SSC-B if 𝑢, 𝑟, and 𝑠
are sufficiently large and 𝜃 ∈ (𝜃𝑂, 𝜃𝑃 ). Moreover, in the SSC-B case, the criticality
threshold is given by the unique solution to the equation:

�̂�𝜃 =
𝑢

2
(2�̂�𝜃 − 1) + 𝑠�̂�𝜃 + 𝑟(𝑎0 + 𝑎1 log 𝜃 + 𝑓(�̂�𝜃)) (45)
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Thus, under the approximation that 𝑓(𝑄) ≈ 𝑘𝑄, we have that:

�̂�𝜃 ≈
𝑢
2
− 𝑟(𝑎0 + 𝑎1 log 𝜃)

𝑢+ 𝑠+ 𝑟𝑘 − 1
(46)

Hence, greater contagiousness, associativeness, and decision relevance make the criti-
cality threshold lower and therefore make it easier for an epidemic of extreme optimism
to take hold. △

1.6.3 Impulse Responses and Stochastic Fluctuations

Having characterized narrative dynamics with fixed fundamentals, we now study how
the economy responds to deterministic and stochastic fundamental and narrative
shocks. For this analysis, we restrict attention to the SSC class, noting that this is
an assumption solely on primitives.29

Hump-Shaped and Discontinuous Impulse Responses We consider the re-
sponses of aggregate output and optimism in the economy to a one-time positive
shock to fundamentals from a steady state corresponding to 𝜃 = 1:

𝜃𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑡 = 0,

𝜃, 𝑡 = 1,

1, 𝑡 ≥ 2.

(47)

where 𝜃 > 1. We would like to understand when the impulse response to a one-time
shock is hump-shaped, meaning that there exists a 𝑡 ≥ 2 such that 𝑌𝑡 is increasing
for 𝑡 ≤ 𝑡 and decreasing thereafter. Moreover, we would like to understand how
big a shock needs to be to send the economy from one steady state to another, as
manifested as a discontinuity in the IRFs in the shock size 𝜃.

In the SSC-A case, IRFs are continuous in the shock but can nevertheless display
hump-shaped dynamics as a result of the endogenous evolution of optimism.

Proposition 3 (SSC-A Impulse Response Functions). In the SSC-A case, suppose

29This is without a substantive loss of generality as we can always represent any non-SSC 𝑇𝜃 as the
concatenation of a set of restricted functions that are SSC on their respective domains. Concretely,
whenever 𝑇𝜃 is not SSC, we can represent its domain [0, 1] as a collection of intervals {𝐼𝑗}𝑗∈𝒥 such
that ∪𝑗∈𝒥 𝐼𝑗 = [0, 1] and the restricted functions 𝑇𝜃,𝑗 : 𝐼𝑗 → [0, 1] defined by the property that
𝑇𝜃,𝑗(𝑄) = 𝑇𝜃(𝑄) for all 𝑄 ∈ 𝐼𝑗 are either SSC-A or SSC-B for all 𝑗 ∈ 𝒥 . Thus, applying our results
to these restricted functions, we have a complete description of the global dynamics.
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that 𝑄0 = �̂�1 ∈ (0, 1). The impulse response of the economy is given by:

log 𝑌𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎0 + 𝑓(�̂�1), 𝑡 = 0,

𝑎0 + 𝑎1 log 𝜃 + 𝑓(�̂�1), 𝑡 = 1,

𝑎0 + 𝑓(𝑄𝑡), 𝑡 ≥ 2

𝑄𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̂�1, 𝑡 ≤ 1,

𝑄2, 𝑡 = 2,

𝑇1(𝑄𝑡−1), 𝑡 ≥ 3.

(48)

Moreover, 𝑄2 = �̂�1𝑃𝑂(𝑎0 + 𝑎1 log 𝜃 + 𝑓(�̂�1), �̂�1, 0) + (1 − �̂�1)𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃 +

𝑓(�̂�1), �̂�1, 0) > �̂�1, 𝑄𝑡 is monotonically declining for all 𝑡 ≥ 2, and 𝑄𝑡 → �̂�1.
The IRF is hump-shaped if and only if 𝜃 < exp{(𝑓(𝑄2)− 𝑓(�̂�1))/𝑎1}.

Proof. See Appendix A.1.9

All persistence in the IRF of output derives from persistence in the IRF of op-
timism. There is a hump in the IRF for output if the boom induced by optimism
exceeds the direct effect of the shock. This contrasts with the SSC-B case, wherein
impulse responses can be discontinuous in the shock size. The following proposition
characterizes the IRFs from the pessimistic steady state; those from the optimistic
steady state are analogous.

Proposition 4 (SSC-B Impulse Response Functions). In the SSC-B case, suppose
that 𝜃𝑂 < 1 < 𝜃𝑃 and that 𝑄0 = 0. The impulse response of the economy is given by:

log 𝑌𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎0, 𝑡 = 0,

𝑎0 + 𝑎1 log 𝜃, 𝑡 = 1,

𝑎0 + 𝑓(𝑄𝑡), 𝑡 ≥ 2

𝑄𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 𝑡 ≤ 1,

𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃, 0, 0), 𝑡 = 2,

𝑇1(𝑄𝑡−1), 𝑡 ≥ 3.

(49)

These impulse responses fall into the following four exhaustive cases:

1. 𝜃 ≤ 𝜃𝑃 , No Lift-Off: 𝑄𝑡 = 0 for all 𝑡 ∈ N.

2. 𝜃 ∈ (𝜃𝑃 , 𝜃
*), Transitory Impact: 𝑄𝑡 is monotonically declining for all 𝑡 ≥ 2 and

𝑄𝑡 → 0.

3. 𝜃 = 𝜃*, Permanent (Knife-edge) Impact: 𝑄𝑡 = �̂�1 for all 𝑡 ≥ 1

4. 𝜃 > 𝜃*, Permanent Impact: 𝑄𝑡 is monotonically increasing for all 𝑡 ≥ 2 and
𝑄𝑡 → 1

where the critical shock threshold is 𝜃* = exp{(𝑃−1
𝑃 (�̂�1; 0)− 𝑎0)/𝑎1} > 𝜃𝑃 . In the

transitory case, the output IRF is hump-shaped if and only if 𝜃 < exp{𝑓(𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃, 0, 0))/𝑎1}.
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Figure 1-4: Illustration of IRFs in an SSC-B Case
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Notes: The plots show the deterministic impulse responses of 𝑄𝑡 and log 𝑌𝑡 in a model
calibration with LAC updating. The four initial conditions correspond to the four cases of
Proposition 4.

Proof. See Appendix A.1.10.

To understand this result, we first inspect the IRFs. At time 𝑡 = 0, the economy
lies at a steady state of extreme pessimism with log 𝜃0 = 0 and so log 𝑌0 = 𝑎0. At
time 𝑡 = 1, the one-time productivity shock takes place and output jumps up to
log 𝑌1 = 𝑎0 + 𝑎1 log 𝜃 as everyone remains pessimistic. At time 𝑡 = 2, agents observe
that output rose in the previous period. As a result, a fraction 𝑃𝑃 (log 𝑌1, 0) of the
population becomes optimistic. For output, the one-time productivity shock has
dissipated, so output is now given by its unshocked baseline 𝑎0 plus the equilibrium
output effect of optimism 𝑓(𝑄2). From this point, the IRF evolves deterministically
and its long-run behavior depends solely on whether the fraction that became initially
optimistic exceeds the criticality threshold �̂�1 that delineates the basins of attraction
of the steady states of extreme optimism and extreme pessimism.

As a result, productivity shocks have the potential for the following four qual-
itatively distinct effects, described in Proposition 4 and illustrated numerically in
Figure 1-4. First, if a shock is small and no agent is moved toward optimism, the
shock has a one-period impact on aggregate output. Second, if some agents are moved
to optimism by the transitory boost to output but this fraction lies below the critical-
ity threshold, then output steadily declines back to its pessimistic steady-state level
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as optimism was not sufficiently great to be self-fulfilling. Third, in the knife-edge
case, optimism moves to a new (unstable) steady state and permanently increases
output. Fourth, when enough agents are moved to optimism by the initial boost to
output, then the economy converges to the fully optimistic steady state and optimism
is completely self-fulfilling.

The impulse responses to narrative shocks are identical to those described above.
One can take the formulas in Propositions 3 and 4 from 𝑡 ≥ 2 and set 𝑄2 equal
to the value of 𝑄 that obtains following the narrative shock 𝜀. It follows that the
qualitative nature of the impulse response to a narrative shock is identical to that of
a fundamental shock.

Stochastic Boom-Bust Cycles Having characterized the deterministic impulse
propagation mechanisms at work in the economy, we now turn to understand the
stochastic properties of the path of the economy as it is hit by fundamental and
narrative shocks.

To this end, we analytically study the period of boom and bust cycles: the ex-
pected time that it takes for the economy to move from a state of extreme pessimism
to a state of extreme optimism, and vice versa. Formally, define these expected
stopping times as:

𝑇𝑃𝑂 = E [min{𝜏 ∈ N : 𝑄𝜏 = 1}|𝑄0 = 0] , 𝑇𝑂𝑃 = E [min{𝜏 ∈ N : 𝑄𝜏 = 0}|𝑄0 = 1]

(50)
where the expectation is taken under the true data generating process for the aggre-
gate component of productivity 𝐻, which may or may not coincide with one of the
narratives under consideration, and that of the narrative shocks 𝐺.

The following result provides sharp upper bounds, in the sense that they are
attained for some (𝐻,𝐺), on these stopping times as a function of deep structural
parameters:

Proposition 5 (Period of Boom-Bust Cycles). The expected regime-switching times
satisfy the following inequalities:

𝑇𝑃𝑂 ≤ 1

1− E𝐺
[︁
𝐻
(︁
exp

{︁
𝑃 †
𝑃 (1;0,𝜀)−𝑎0

𝑎1

}︁)︁]︁
𝑇𝑂𝑃 ≤ 1

E𝐺
[︁
𝐻
(︁
exp

{︁
𝑃 †
𝑂(0;1,𝜀)−𝑎0−𝑓(1)

𝑎1

}︁)︁]︁ (51)

where 𝑃 †
𝑃 (𝑥;𝑄, 𝜀) = inf{𝑌 : 𝑃𝑃 (𝑌,𝑄, 𝜀) = 𝑥} and 𝑃 †

𝑂(𝑥;𝑄, 𝜀) = sup{𝑌 : 𝑃𝑂(𝑌,𝑄, 𝜀) =
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𝑥}. Moreover, when 𝑃 †
𝑂(0; 1, 0) − 𝑃 †

𝑃 (1; 0, 0) ≤ 𝑓(1), these bounds are tight in the
sense that they are attained for some processes for fundamentals and narrative shocks
(𝐻,𝐺).

Proof. See Appendix A.1.11

This result establishes that the economy regularly oscillates between times of
booms and busts. We establish this result by postulating fictitious processes for op-
timism and showing that they bound, path-by-path, the true optimism process. This
enables us to construct stopping times that dominate the true stopping times in the
sense of first-order stochastic dominance and have expectations that can be computed
analytically, thus providing the claimed bounds. We establish that these bounds are
tight by constructing a family of distributions (𝐻,𝐺) such that the fictitious processes
coincide always with the true processes.30

We can provide insights into the determinants of the period of boom-bust cycles
from these analytical bounds. Concretely, consider the bound on the expected time to
reach a bust from a boom. This bound is small when the quantity E𝐺

[︁
𝐻
(︁
exp

{︁
𝑃 †
𝑃 (1;0,𝜀)−𝑎0

𝑎1

}︁)︁]︁
is large, which happens when there is a fat left tail of fundamentals, when it is rel-
atively easier for optimists to switch to pessimism as measured by 𝑃 †

𝑂(0; 1, 𝜀
𝑃 ), and

when co-ordination motives are weak as measured by 𝑓(1).

1.6.4 Additional Results and Extensions

Before proceeding to our quantification of the model, we briefly summarize additional
results and extensions contained within the Appendix.

Welfare Implications So far, we have studied the positive implications of fluc-
tuations in optimism. In Appendix A.2.2, we study the normative implications of
optimism and provide conditions under which its presence is welfare improving, de-
spite it being misspecified. Intuitively, optimism acts as an ad valorem price subsidy
for firms, which induces firms to hire more and can undo distortions caused by market
power.

Continuous Optimism Our baseline model featured, as in our main empirical
specifications, only two narratives. In Appendix A.2.3, we generalize the setting
studied in this section to feature a continuum of models. We show that very similar

30We moreover show that elements of this family can be attained by taking the limit of normal
mixtures with sufficiently dispersed means. Thus, for sufficiently dispersed 𝜇𝑂 and 𝜇𝑃 , we can
therefore construct (𝐻,𝐺) for which the bound is attained by taking weighted averages of the
optimistic and pessimistic narratives, making the uncertainty under each sufficiently small, and
eliminating narrative shocks.
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dynamics for both real output and narratives obtain in this specification of the model
and the condition for extremal multiplicity is almost identical. Thus, the qualitative
and quantitative features of the baseline model carry over to this richer setting.

Multi-dimensional Narratives and Persistent Fundamentals In the concep-
tual framework and our measurement, we allowed for a general set of narratives.
However, in our main theoretical analysis, we restricted attention to two different
narratives where agents differ only in their optimism. In Appendix A.2.5, we extend
the baseline model to allow for arbitrarily many narratives regarding the mean, per-
sistence, and volatility of fundamentals, which is essentially exhaustive within the
Gaussian class. We characterize quasi-linear equilibrium in this richer setting and
show how qualitatively similar dynamics obtain.

Persistent Idiosyncratic Shocks and Narrative Updating Empirically, we
found that firms that experience positive idiosyncratic shocks are more likely to be-
come optimistic. In Appendix A.2.6, we extend the multi-dimensional narrative equi-
librium characterization when we allow for persistent idiosyncratic states and updat-
ing that depends on realized idiosyncratic states. When idiosyncratic shocks are fully
transitory, this is of no consequence and our equilibrium characterization is identical.
However, when idiosyncratic shocks are persistent, the fact that narrative updating
depends on idiosyncratic shock realizations induces dependence between an agent’s
narrative and their idiosyncratic productivity state. This matters for equilibrium
output only insofar as it induces a time-varying covariance between and optimism
and productivity. We find no empirical evidence for cyclicality of this covariance. We
therefore abstract from this channel in our quantitative analysis.

Contrarianism, Endogenous Cycles, and Chaos While this model generates
narratively driven fluctuations, it cannot generate fully endogenous cycles and chaotic
dynamics. In Appendix A.2.7, we extend this model to allow for contrarianism and
the possibility that pessimists may be more likely to become optimists than optimists
are to remain optimists. Allowing for these features generates the possibility of en-
dogenous cycles of arbitrary period and topological chaos (sensitivity to arbitrarily
small changes in initial conditions). This model also admits a structural test for the
presence of cycles and chaos that we bring directly to the data and reject at the 95%
confidence level that either cycles or chaos obtain.

Narratives in Games and the Role of Higher-Order Beliefs We have studied
narratively driven fluctuations in a business-cycle model, but our insights apply to
co-ordination games much more generally. In Appendix A.2.8, we study contagious
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narratives in beauty contests Morris and Shin (2002), in which agents’ best replies
are a linear function of their expectations of fundamentals and the average actions
of others. Many models of aggregative games in macroeconomics and finance can
be recast as such games when (log-)linearized (for a review, see Angeletos and Lian,
2016). We characterize equilibrium in this context and show how optimism percolates
through the hierarchy of higher-order beliefs about fundamentals.

1.7 Quantifying the Impact of Narratives
We now combine our model and empirical results to gauge the quantitative effects of
narratives on business cycles and their qualitative properties. First, combining our
narrative optimism time series with our calibration of partial- and general-equilibrium
effects of optimism, we find that optimism explains 32% of the reduction in GDP over
the early 2000s recession, 18% over the Great Recession. Next, calibrating the dy-
namics of optimism to match our empirical results, we find that narrative optimism
generates 19% of the variance in output. Finally, we study the macroeconomic con-
sequences of all of the decision-relevant narratives together. We reject the condition
for extremal multiplicity and hysteresis for optimism, but fail to reject it for other
decision-relevant narratives. We then show in an extended model how multiple latent
narratives may co-evolve and drive emergent optimism. Taken together, we therefore
find that contagious narratives may explain a significant fraction of the US business
cycle.

1.7.1 Calibrating the Model

To obtain numerical predictions from the model, we need to know (i) the static
relationship between output and optimism; (ii) the data-generating process for fun-
damental shocks; and (iii) the updating process for optimists and pessimists. We
provide the model calibration in Table 1.6 and additional details in Appendix A.6.

First, we have shown in Section 1.6 that, to identify the static relationship be-
tween output and optimism, we need to estimate 𝑓 . In turn, 𝑓 requires knowledge
of: 𝛿𝑂𝑃 , the partial-equilibrium effect of optimism on hiring; 𝛼, the returns-to-scale
parameter; 𝜖, the elasticity of substitution between varieties; and 𝜔, the extent of
complementarity (which itself depends on 𝛾, indexing income effects in labor supply,
and 𝜓, the inverse Frisch elasticity of labor supply). In our main analysis, we com-
bine our baseline regression estimate of 𝛿𝑂𝑃 = 0.0355 (see Table 1.1) with an external
calibration of 𝛼, 𝜖, 𝛾, and 𝜓, which together also pin down 𝜔. In Section 1.7.2, we
study the sensitivity of our results to this external calibration, and we introduce two
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Table 1.6: Model Calibration

Fixed

𝜖 Elasticity of substitution 2.6
𝛾 Income effects in labor supply 0
𝜓 Inverse Frisch elasticity 0.4
𝛼 Returns-to-scale 1

Calibrated

𝜇𝑂 − 𝜇𝑃 Belief effect of optimism 0.028
𝜅 Signal-to-noise ratio 0.344
𝜌 Persistence of productivity 0.086
𝜎 Std. dev. of the productivity innovation 0.011
𝑢 Stubbornness 0.208
𝑟 Associativeness 0.804
𝑠 Contagiousness 0.290
𝜎𝜀 Std. dev. of the optimism shock 0.044

Notes: “Fixed” parameters are externally set. “Calibrated” parameters are chosen to hit
various moments. Our specific calibration methods are described in Section 1.7.1.

other calibration strategies for complementarity: using estimates of demand multipli-
ers from the literature and inferring a demand multiplier for optimism using our own
firm-level regressions.

For the external calibration, we impose that intermediate goods firms have con-
stant returns-to-scale or 𝛼 = 1, which has been argued by Basu and Fernald (1997),
Foster, Haltiwanger, and Syverson (2008), and Flynn, Traina, and Gandhi (2019)
to be a reasonable assumption for large US firms. Second, as noted by Angeletos
and La’O (2010), 𝛾 indexes wealth effects in labor supply, which are empirically very
small (Cesarini, Lindqvist, Notowidigdo, and Östling, 2017). Hence, we set 𝛾 = 0 for
our benchmark calibration. Third, we calibrate the inverse Frisch elasticity of labor
supply at 𝜓 = 0.4, which is within the range of standard macroeconomic estimates
(Peterman, 2016). Finally, we calibrate the elasticity of substitution to match esti-
mated markups from De Loecker, Eeckhout, and Unger (2020) of 60%, which implies
that 𝜖 = 2.6. Hence, altogether, this calibration implies an aggregate degree of strate-
gic complementarity of 𝜔 = 0.49. Finally, we observe that the calibration of 𝛿𝑂𝑃 puts
only one restriction on the parameters 𝜅 and 𝜇𝑂−𝜇𝑃 , respectively the signal-to-noise
ratio and the impact of optimism on agents’ prior means.

Second, we calibrate the process for fundamentals. To allow for persistence in
both fundamentals as well as any unmodelled factors, we calibrate a case of the model
with persistent fundamentals based on the analysis in Appendix A.2.5. Concretely, we
suppose that log 𝜃𝑡 is a Gaussian AR(1) process with persistence 𝜌 and IID innovations
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𝑢𝑡 ∼ 𝑁(0, 𝜎2):
log 𝜃𝑡 = 𝜌 log 𝜃𝑡−1 + 𝑢𝑡 (52)

To obtain the law of motion of aggregate output, we require three parameters (𝜌, 𝜎, 𝜅).
We calibrate these to match the properties of fundamental output, defined as

log 𝑌 𝑓
𝑡 = log 𝑌𝑡 − 𝑓(𝑄𝑡) (53)

In Appendix A.6, we show that log 𝑌 𝑓
𝑡 follows an ARMA(1, 1) with white noise process

𝜁𝑡. To calculate log 𝑌 𝑓
𝑡 in the data, we take log 𝑌𝑡 as band-pass filtered US real GDP

(Baxter and King, 1999), 𝑄𝑡 as our measured time series of aggregate optimism (see
Figure 1-1), and 𝑓 as our calibrated function.31 We estimate by maximum-likelihood
the ARMA(1,1) process for 𝑌 𝑓

𝑡 and then set (𝜌, 𝜎, 𝜅) to exactly match the three
estimated ARMA parameters. Upon obtaining 𝜅, the restriction on 𝜅 and 𝜇𝑂 − 𝜇𝑃

imposed by 𝛿𝑂𝑃 yields the value of 𝜇𝑂 − 𝜇𝑃 .
Third, we calibrate the process for updating probabilities. We use our regression

estimates of the LAC form (see Equation 29) which corresponds to the linear prob-
ability model (see Table 1.4).32 This yields values of 𝑢 = 0.208 for stubbornness,
𝑟 = 0.804 for associativeness, and 𝑠 = 0.290 for contagiousness. We finally calibrate
a shock process for 𝜀𝑡, the aggregate shocks for proclivity toward optimism. In par-
ticular, we assume that 𝜀𝑡 ∼ 𝑁(0, 𝜎2

𝜀). Conditional on the rest of the calibration, we
set 𝜎2

𝜀 to match the time-series variance of optimism.

1.7.2 How Does Optimism Shape the Business Cycle?

Using the calibrated model, we now study the effects of optimism on the business
cycle via two complementary approaches: (i) gauging the historical effect of swings
in business optimism on US GDP and (ii) exploring the full dynamic implications of
contagious and associative optimism in simulations.

The Effects of Optimism on US GDP In our empirical exercise, which leveraged
cross-sectional data on US firms’ optimism, the general-equilibrium effect of optimism
on total production was the unidentified “missing intercept.” Now, equipped with the
model calibration of general-equilibrium forces, we can return to the question of how

31We apply the Baxter and King (1999) band-pass filter to post-war quarterly US real GDP data
(Q1 1947 to Q1 2022). We use a lead-lag length of 12 quarters, a low period of 6 quarters, and a
high period of 32 quarters. We then average these data to the annual level.

32While the linear probability model does not necessarily yield probabilities between zero and one,
our estimates of 𝑢, 𝑟 and 𝑠 imply updating probabilities that are always between zero and one so long
as output does not deviate by more than 30% (holding fixed 𝜀) or there is a five-standard-deviation
optimism shock (holding fixed output at steady state).
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Figure 1-5: The Effect of Optimism on Historical US GDP
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Notes: The “Real GDP Cycle” is calculated from a Baxter and King (1999) band-pass
filter capturing periods between 6 and 32 quarters. The “Contribution of Optimism” is the
model-implied effect of optimism on log output. The 95% confidence interval incorporates
uncertainty from the calibration of 𝛿𝑂𝑃 using the delta method.

changes in optimism have historically affected the US business cycle. Concretely,
we calculate the time series of 𝑓(𝑄𝑡), where 𝑓 is the calibrated function mapping
aggregate optimism to aggregate output, which depends on the partial-equilibrium
effect of optimism on hiring, returns-to-scale, and the demand multiplier, and 𝑄𝑡

observed annual time series for business optimism, originally reported in Figure 1-1.
We take the observed time path of aggregate optimism as given, and therefore use
the estimated dynamics of optimism only to determine the shocks that rationalize
this observed path.

Figure 1-5 illustrates our findings by plotting the cyclical component of real GDP
(dashed line) and the contribution of measured optimism toward output according
to our model (solid line with grey 95% confidence interval). We observe that cyclical
optimism explains a meaningful portion of fluctuations, particularly the booms of the
mid-1990s and the mid-2000s and the busts of 2000-2002 and 2007-2009.

We next zoom in on the contribution of optimism toward macroeconomic crashes
in 2000-02 and 2007-09. Over each of these two downturns, we calculate the percent-
age of output reduction explained by the dynamics of optimism as

% Explained(𝑡0, 𝑡1) = 100 · 𝑓(𝑄𝑡1)− 𝑓(𝑄𝑡0)

log 𝑌𝑡1 − log 𝑌𝑡0
(54)
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Table 1.7: The Effect of Optimism on US Recessions

Change (%)
Period Detrended GDP Optimism Component 𝑓(𝑄𝑡) % Explained

2000-2002 -2.91 -0.92 31.65
(0.08) (2.68)

2007-2009 -4.13 -0.75 18.06
(0.06) (1.53)

Notes: The first column gives the change in detrended, annualized real GDP over the stated
periods. The second column gives the component of this change attributed to the change
in aggregate optimism by the model. The third column is the fraction of the real GDP
change explained by optimism, defined in Equation 54. Standard errors for columns 2 and
3 incorporate uncertainty from estimating 𝛿𝑂𝑃 and are calculated using the delta method.

where 𝑄 is measured optimism, log 𝑌 is the measured cyclical component of log real
GDP, and (𝑡0, 𝑡1) are the endpoints. We report these results in Table 1.7. The decline
in the optimism component of GDP explains 31.65% of the output loss between 2000
and 2002, and 18.06% of the output loss between 2007 and 2009.

To more systematically gauge the model-implied causes of the historical business
cycle, we plot the sequence of fundamental output and optimism shocks that our
model requires to match the realized optimism and output time series in Figure A-
11. Our model accounts for the early 2000s recession with a large negative optimism
shock—𝜀2001 = −0.08, or -1.8 standard deviations in our calibration—and a moderate-
sized shock to fundamental output. For the Great Recession, our model implies a
larger shock to fundamentals along with a smaller optimism shock —𝜀2008 = −0.06 or
-1.4 standard deviations. The larger contribution of, and shock to, optimism at the
outset of the early 2000s recession is consistent with a story that a break in confidence,
associated with the “dot com” crash in the stock market, spurred a recession despite
sound economic fundamentals. This is further consistent with independent textual
evidence that “crash narratives” in financial news were especially rampant in this
period (Goetzmann, Kim, and Shiller, 2022).

Contagious Narratives and Economic Fluctuations: Simulation Results
To more fully describe the role of narrative dynamics in shaping the business cycle,
we turn to model simulations which incorporate the fully calibrated process for how
optimism spreads.

To produce a summary statistic for the contribution of optimism toward the co-
variance structure of output, we observe that the covariance of output at lag ℓ ≥ 0

64



Figure 1-6: The Contribution of Optimism to Output Variance
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Notes: The left panel plots the fraction of variance, one-year autocovariance, and two-year
autocovariance explained by endogenous optimism in model simulations. The right panel
plots the total non-fundamental autocovariance. Both quantities are defined in Equation 56.
In each figure, we plot results under three model scenarios: the baseline model with optimism
shocks and optimism dynamics (blue), a variant model with no shocks, or 𝜎2𝜀 = 0 (orange),
and a variant model with shocks but no dynamics for narrative spread, or 𝑢 = 𝑟 = 𝑠 = 0
(green).

can be decomposed into four terms:

Cov[log 𝑌𝑡, log 𝑌𝑡−ℓ] = Cov[log 𝑌 𝑓
𝑡 , log 𝑌

𝑓
𝑡−ℓ] + Cov[𝑓(𝑄𝑡), 𝑓(𝑄𝑡−ℓ)]

+ Cov[𝑓(𝑄𝑡), 𝑌𝑡−ℓ] + Cov[𝑓(𝑄𝑡−ℓ), 𝑌𝑡]
(55)

The first term captures the volatility and persistence of exogenous fundamentals (i.e.,
the driving productivity shocks). The second term captures the volatility and persis-
tence of the non-fundamental component of output. The last two terms capture the
relationship of optimism with past and future fundamentals, which arises from the
co-evolution of narratives with economic outcomes.

We therefore define non-fundamental variance as the total autocovariance arising
from endogenous optimism as the sum of the last three terms, as well as its fraction
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of total variance, at each lag ℓ:

Non-Fundamental Autocovarianceℓ = Cov[log 𝑌𝑡, log 𝑌𝑡−ℓ]− Cov[log 𝑌 𝑓
𝑡 , log 𝑌

𝑓
𝑡−ℓ]

Share of Variance Explainedℓ =
Non-Fundamental Autocovarianceℓ

Cov[log 𝑌𝑡, log 𝑌𝑡−ℓ]
(56)

We calculate these statistics at horizons ℓ ∈ {0, 1, 2} and under three model variants:
the baseline model with shocks, a variant model which turns off the shocks (or sets
𝜎2
𝜖 = 0), and a variant model that keeps the shocks but turns off the endogenous

evolution of narratives (by setting 𝑢 = 𝑟 = 𝑠 = 0).33

We report our findings in Figure 1-6. Optimism explains 19% of contemporary
variance (ℓ = 0), and this fraction increases with the lag. At one-year and two-year
lags, optimism explains 34% and 81% of output autocovariance, respectively. Thus,
most medium-frequency (two-year) dynamics are produced by contagious optimism
instead of fundamentals. The model without endogenous dynameics of optimism
explains only 4% of output variance and, as optimism shocks are IID, 0% of output
auto-covariance. Moreover, while the model without optimism shocks matches only
5% of output variance, it accounts for 17% and 61% of one-year and two-year output
autocovariance. Interestingly, the separate contributions to output variance of shocks
and endogenous dynamics sum to less than one half of their joint explanatory power.
This result establishes that the contagiousness and associativeness of narratives are
amplifying propagation mechanisms for exogenous sentiment shocks.

Parametric Sensitivity Analysis In Table A.19, we report sensitivity analysis of
the conclusions above to different calibrations for the macroeconomic parameters. We
first focus on the calibration of macroeconomic complementarity and, by extension,
the demand multiplier. Recall that 𝑓(𝑄) ≈ 𝛼𝛿𝑂𝑃

1−𝜔 𝑄, where 1
1−𝜔 is the general equilib-

rium demand multiplier in our economy, 𝛼 indexes the returns-to-scale, and 𝛿𝑂𝑃 is
the partial equilibrium effect of optimism on hiring. Our baseline calibration implies
a multiplier of 1

1−𝜔 = 1.96. In rows 1, 2, 3, and 4 we vary the multiplier by: (i) adjust-
ing the inverse-Frisch elasticity 2.5 to match micro estimates (Peterman, 2016), (ii)
allowing for greater income effects in labor supply 𝛾 = 1, (iii) matching the empirical
estimates of the demand multiplier of 1.33 from Flynn, Patterson, and Sturm (2021),
and (iv) estimating the general equilibrium multiplier by optimism semi-structurally
by using the extent of omitted variables bias from omitting a time fixed effect in the
regression of hiring on optimism (see Appendix A.6.3 for the details). Our numer-

33As discussed in Appendix A.6, we always add a constant to LAC updating so 0.5 is the interior
steady-state when output is at its steady state. Thus, the “no dynamics” variant sets 𝑄𝑡+1 = 0.5+𝜖𝑡.
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ical results from adjusting the multiplier, holding fixed (𝛿𝑂𝑃 , 𝛼, 𝜖), convey that the
contribution of optimism is increasing in this number. We finally consider sensitivity
to the calibrations of the elasticity of substitution 𝜖 (row 5 of Table A.19) and the
returns-to-scale 𝛼 (row 6 of Table A.19) holding fixed the multiplier (via adjustment
in 𝜓). Changing 𝜖 has close to no effect on our results, due to the aforementioned
near-linearity of 𝑓 . Reducing 𝛼, or assuming decreasing returns to scale, dampens
the effect of optimism on output because it implies a smaller production effect of our
estimated effect of optimism on hiring.

1.7.3 Can Contagious Optimism Generate Hysteresis?

We have shown that the dynamics of optimism generate quantitatively significant
business cycles. However, we have not yet explored the implications of narratives
for hysteresis and long-run movements in output. Our theoretical analysis delimited
two qualitatively different regimes for macroeconomic dynamics with contagious op-
timism: one with stochastic fluctuations around a stable steady state, and one with
hysteresis and (almost) global convergence to extreme steady states. In which regime
do the estimated dynamics lie?

For the LAC case which we have taken to the data, the necessary and sufficient
condition for extremal multiplicity is given by Equation 44. We compute the empirical
analog of this condition as:

�̂� = �̂�+ 𝑠+ 𝑟𝑓(1)− 1 (57)

If �̂� > 0, the calibrated model features hysteresis in the dynamics of optimism and
output; if �̂� < 0, the model features oscillations around a stable steady state. We
find �̂� = −0.44 < 0 with a standard error of 0.052, implying stable oscillations
and ruling out hysteresis dynamics. This reflects the fact that decision-relevance,
stubbornness, contagiousness, and associativeness are sufficiently small for narrative
optimism.

While we find that the model of narrative optimism is consistent with stable
fluctuations, this conclusion could be overturned with higher stubbornness or higher
contagiousness. Both parameters were somewhat imprecisely estimated in our empir-
ical analysis. Moreover, we might suspect that they vary over time. For example, the
rise of the internet and the corresponding increase in the speed with which ideas can
spread may have increased contagiousness.

Therefore, we explore more carefully the sensitivity of our conclusions regarding
optimism’s role for the business cycle to the calibration of these parameters. In
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Figure 1-7: Variance Decomposition for Different Values of Stubbornness and Con-
tagiousness

Notes: Calculations vary 𝑢 and 𝑠, holding fixed all other parameters at their calibrated
values. The shading corresponds to the fraction of variance explained by optimism, or
Share of Variance Explained0 defined in Equation 56. The plus is our calibrated value from
Table 1.6, and the dotted line is the boundary of a 95% confidence set. The dots are
calibrated values for other narratives from Figure A-9. The dashed line is the condition of
extremal multiplicity from Corollary 3 and Equation 44.

Figure 1-7, we plot our point estimate of contagiousness and stubbornness as a plus
and its 95% confidence interval as a dotted ellipse. We also plot, as a dashed line,
the condition for 𝑀 = 0; to the left of this line, 𝑀 < 0, and to the right of this
line, 𝑀 > 0. To gauge whether optimism is an “outlier” among narratives in being
so far from this line, we compare its estimates to those corresponding to our other
thirteen decision-relevant narratives (Table 1.3). The associated point estimates of
(𝑠, 𝑢) for the other nraratives are green dots in Figure 1-7. Several of the thirteen
plotted points are close to the condition for extremal multiplicity. Two are across
the threshold. Thus, if optimism were to have the stubbornness and contagiousness
of either of these two narratives, the joint dynamics of optimism and output would
feature hysteresis.34

34The narratives across the line are Topic 3 (Value, Fair, Loss) and Topic 6 (Stock, Compensation,
Tax).
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How does extremal multiplicity interact with our model’s predictions for non-
fundamental volatility? To isolate the role of endogenous propagation, our theoreti-
cal discussion of extremal multiplicity considered paths of the economy with shocks
to neither fundamentals nor narratives. In the quantitative model, the economy is
constantly buffeted with shocks that move optimism away from its steady state(s).
To measure how this shapes macroeconomic dynamics, we also shade in Figure 1-7
the fraction of variance explained by non-fundamental optimism. In our baseline cal-
ibration, indicated by the plus, this is 19%. This figure is stable near the confidence
interval associated with our calibration, suggesting that statistical uncertainty about
narrative propagation does not overly influence our results.

Near the condition for extremal multiplicity, non-fundamental variance reaches
essentially 100% of total variance. This is because even small shocks have the potential
to “go viral,” and the force pulling the economy toward an interior steady state (i.e.,
balanced optimism and pessimism) is weak. If optimism were to have the propagation
of some of our other observed narratives, which lie close to this line, it could induce
such violent fluctuations.35

Finally, far to the right of the extremal multiplicity condition, contagious optimism
explains little output variance. This is because the economy quickly settles into an
extreme steady state, fully optimistic or fully pessimistic, and moves quickly back
to this steady-state in response to shocks. Figure A-13 shows this quantitatively
by plotting, against the same (𝑠, 𝑢) grid, the fraction of time that the optimistic
fraction 𝑄𝑡 lies outside of [0.25, 0.75]—this is 0% at the baseline calibration, and
essentially 100% in the calibrations featuring extremal multiplicity. In this region,
while sentiment does not greatly affect output dynamics, it does affect the static
level of output—moreover, path dependence in the early history of our simulation
determines whether output is permanently high (optimism goes viral) or permanently
low (pessimism goes viral). Thus, even in a stochastic economy, 𝑀 remains a highly
predictive statistic for the nature of the dynamics of the economy.

35Due to the presence of shocks to optimism, this prediction is symmetric around the extremal
multiplicity threshold; in the variant model which turns off optimism shocks, which is closer to what
we studied in the theory, the extremal multiplicity condition sharply delineates the regime in which
optimism fluctuations contribute to output variance from the regime in which there is complete
hysteresis (Figure A-12).
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1.7.4 Multi-Dimensional Narratives: Hysteresis, Confluence,

and Constellations

Our quantitative analysis thus far has focused on the overall dynamics of optimism
and pessimism and their macroeconomic effects. In this final subsection, we study
how multiple, more granular narratives may evolve, interact, and shape macroeco-
nomic dynamics. To do this, we calibrate versions of the quantitative model to match
the estimated properties of Shiller’s Perennial Economic Narratives and our unsuper-
vised Latent Dirichlet Allocation estimation. While this analysis is necessarily more
speculative, due to the richness of possible interactions between these narratives and
the number of parameters required to discipline these interactions, we highlight two
overall findings: (i) the more granular narratives have a higher tendency toward hys-
teresis and unstable dynamics, and (ii) “constellations” of more granular narratives,
with qualitatively different evolution, may underlie the overall dynamics of sentiment
in the economy.

Hysteresis We first perform tests for the possibility of hysteresis for the other
decision-relevant narratives. To do this, we estimate �̂�𝑘 (Equation 57) using the es-
timated stubbornness, associativeness, contagiousness, and partial equilibrium effects
on hiring of the other thirteen narratives indexed by 𝑘. In models in which each of
these narratives existed in isolation, the condition 𝑀𝑘 > 0 would be necessary and
sufficient for extremal multiplicity. We plot our estimates along with 95% confidence
intervals in Figure 1-8. We find that many of our narratives have values for 𝑀 that
are close to zero, while one narrative’s 95% confidence interval for 𝑀 contains zero.
Thus, while we can reject that optimism features hysteresis dynamics, we cannot do
so for all of the narratives that we consider. Heuristically, this finding matches up
with the corresponding time series (see Figures 1-1, A-2, A-3): while optimism ap-
pears to fluctuate in a stable fashion, other narratives have time series that appear
to undergo regime shifts, with many notably happening around the Great Recession.

Confluence and Constellations in an Enriched Model Shiller (2020) argues
that constellations of many smaller and semantically related narratives may reinforce
one another to create strong economic and social effects, and that the confluence
of seemingly unrelated narratives may explain business-cycle fluctuations. In our
empirical analysis, we found two pieces of evidence suggesting that the thirteen more
granular narratives discussed above behave like a constellation. First, we found that
more specific narratives significantly predict movements in optimism. Second, we
found that optimism about any specific narrative affects hiring no differently than
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Figure 1-8: Evaluating Potential for Hysteresis for All Decision-Relevant Narratives
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Notes: For the binary construction of each narrative, we estimate the parameters of the
updating rule (see Figure A-9) and the partial-equilibrium effect on hiring via a variant of
Equation 12 (see Figure A-10). We then calculate �̂�𝑘 = �̂�𝑘+𝑠𝑘+𝑟𝑘𝑓𝑘(1)−1. We report our
point estimates for each narrative along with 95% confidence intervals error bars, calculated
using the delta method.

optimism alone.
To understand how this constellation structure for optimism may affect our macroe-

conomic predictions, we calibrate a modified quantitative model in which the granular
narratives drive emergent optimism. In this model, there is a latent space of 𝐾 narra-
tives, in which agents either believe or do not believe: 𝜆𝑖𝑡 = (𝜆1,𝑖𝑡, . . . , 𝜆𝐾,𝑖𝑡) ∈ {0, 1}𝐾 .
Based on a vector of constellation weights 𝛽 = (𝛽1, . . . , 𝛽𝐾), the probability that an
agent is optimistic is given by 𝛽′𝜆𝑖𝑡. Thus, the aggregate level of emergent optimism
is given by 𝑄𝑡 = 𝛽′𝑄𝑘,𝑡, where 𝑄𝑘,𝑡 =

∫︀
[0,1]

𝜆𝑘,𝑖𝑡 d𝑖 is the fraction of agents that believe
in narrative 𝑘. Each narrative 𝑘 evolves according to LAC updating probabilities
with stubbornness 𝑢𝑘, associativeness 𝑟𝑘, and contagiousness 𝑠𝑘, with Gaussian nar-
rative shocks that are IID across 𝑘 with common variance 𝜎2

𝜀 . The rest of the model
is the same as the baseline. Thus, while dynamics are the same conditional on the
process for optimism, the process for emergent optimism through the latent evolution
of narratives may differ.36

36A caveat to our approach is that we do not allow for any complementarity or substitutability
in how contagious each narrative is. However, this does not mean that each narrative spreads
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To calibrate the new parameters, we proceed in three steps. First, we run a
firm-level regression of optimism on the loadings for the other narratives to estimate
the 𝛽𝑘. We normalize the sign of each narrative such that its corresponding 𝛽𝑘 is
positive, for comparability. Second, we use our estimated stubbornness, associative-
ness, and contagiousness parameters for each decision-relevant narrative and specify
an LAC updating process for each given these parameters (see Figure A-9). Finally,
we calibrate the variance of the narrative shocks to match the time series variance
of optimism. We describe the full details of this calibration approach in Appendix
A.6.2.

We find that optimism explains 17% of total output variance, comparable to our
baseline finding of 19%. In this sense, the “reduced-form” model of the entire opti-
mism constellation delivers similar macroeconomic predictions to the more granular
model. This implies that the evolution of multiple narratives can be captured through
reduced-form sentiment, conditional on correctly specifying the process by which this
sentiment spreads.

However, this similarity belies significant heterogeneity in how the granular nar-
ratives spread, which is in turn related to each narrative’s tendency to “go viral.” To
illustrate this, observe that the variance in emergent optimism can be decomposed
into components arising from each narrative’s variance, Var[𝑄𝑘,𝑡], as well as a remain-
der arising from their covariance, which is quantitatively negligible (it equals -0.016).
We find that the Var[𝑄𝑘,𝑡] are considerably different across narratives. In Figure A-14,
we report a scatterplot of the individual Var[𝑄𝑘,𝑡] against the calculated �̂�𝑘 statis-
tics. Narratives with high �̂�𝑘 have markedly higher variance contributions, reflecting
their more mercurial dynamics, as predicted by the theory. Practically speaking, this
means that a few narratives with a great proclivity toward dramatic swings may be
significant drivers of emergent optimism. Thus, notwithstanding the fact that it is
sufficient to study emergent sentiment if one wishes to understand macroeconomic dy-
namics, modeling more granular narratives is essential for understanding the process
by which sentiment emerges.

1.8 Conclusion
This paper studies the macroeconomic implications of contagious, belief-altering nar-
ratives. We develop a conceptual framework in which narratives form building blocks

independently. As each narrative affects decisions and decisions affect output, associativeness links
the dynamics of the full set of narratives. Moreover, even in the absence of associativeness, optimism
that emerges from the combination of separate nonlinear processes for narrative evolution could
feature different dynamics.
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of agents’ beliefs, affect agents’ decisions, and spread contagiously and associatively
between agents. We measure proxies for narratives among US firms and find ev-
idence that narratives are decision-relevant, contagious, and associative. We find
that a contagious, associative, and decision-relevant optimism narrative reflects a
non-fundamental shifter of beliefs, corresponding to over-optimism about economic
conditions. We develop a business-cycle model that embeds these findings and find
that narratives can generate non-fundamentally driven boom-bust cycles, hystere-
sis, and impulse responses that are hump-shaped over time and discontinuous in the
sizes of shocks. When we calibrate the model to match the data, we find that the
business-cycle implications of narratives are quantitatively significant: we estimate
that measured declines in optimism account for approximately 32% of the peak-
to-trough decline in output over the early 2000s recession and 18% over the Great
Recession.

An important issue that our analysis leaves unexplored is what “makes a narrative
a narrative”—that is, in the language of our model, what microfounds the set of
narratives and their contagiousness? A richer study of these issues would be essential
to study policy issues, including both the interaction of standard macroeconomic
policies with narratives and the potential effects of directly “managing narratives” via
communication. Moreover, probing these deeper origins of narratives could further
enrich the study of narrative constellations beyond our suggestive analysis, to account
for the full economic, semantic, and psychological interactions among narratives in a
complex world.
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Chapter 2

Attention Cycles

This chapter is jointly authored with Karthik A. Sastry.

2.1 Introduction
Firms often make decisions which, from an observer’s ex post perspective, are in-
consistent with profit maximization. An influential explanation for this behavior,
prominently articulated by Simon (1947), is that firms’ managers face constraints on
their attention and decisionmaking capacity. Under this view, changing microeco-
nomic and macroeconomic conditions shape firm-level incentives in the allocation of
both physical and cognitive resources. A direct implication is that the state of the
economy as a whole may be central for determining the extent of firms’ apparent
“bounded rationality.”

In this paper, we study the joint determination of business cycles, aggregate fluc-
tuations in economic production, and attention cycles, aggregate fluctuations in cog-
nitive effort and mistakes. Our analysis has three parts. First, we introduce two
strategies to measure the attention cycle, which capture attention to the macroecon-
omy in “what firms say” and precision in “what firms do.” We find that firms speak
more about the macroeconomy and make smaller input-choice mistakes, defined rel-
ative to a model benchmark, in downturns. Second, to interpret this evidence, we
develop a macroeconomic model in which firms face a cognitive cost of making pre-
cise decisions. Because firms are owned by risk-averse investors, incentives for precise
profit maximization are higher when aggregate consumption is low. This risk-pricing
channel rationalizes our finding of smaller mistakes during downturns. Third, we com-
bine our model and evidence to quantify the effects of attention cycles on the dynamic
properties of aggregate output and labor productivity. We find that state-dependent
attention explains a quantitatively significant fraction of the observed asymmetry and
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state-dependence in the responses of these macroeconomic aggregates to shocks.

Motivating Evidence To establish the premise that firms’ allocation of attention
varies with the business cycle, we begin our analysis with a model-free measurement
of attention to the macroeconomy in firms’ language. Our dataset is the full text
of all US public firms’ end-of-quarter and end-of-year financial performance reports
(Forms 10-Q and 10-K) from 1995-2017. We measure each filing’s attention to macroe-
conomic developments using a natural-language-processing technique that compares
the filing’s word choice to that of macroeconomics references, which we take to be in-
troductory college-level textbooks. We find that aggregate macroeconomic attention
in language is counter-cyclical. This finding suggests that firms pay more attention to
external conditions during downturns, but could also reflect a greater importance of
the macroeconomy during downturns and/or usage of macroeconomic conditions as
an excuse for poor performance. Later, to allow for a more precise interpretation of
these findings, we relate our measure of attention in firms’ language with a measure
of mistakes in firms’ input choices. To build toward that goal, we first introduce a
model of firms’ state-dependent attention, production and “mistake-making.”

Theoretical Analysis Our model describes firms’ state-dependent choices of at-
tention and production in equilibrium. Firms face a cognitive cost in making their
input choices contingent on the microeconomic and macroeconomic state, or “steady-
ing their hand” to precisely respond to shocks in productivity, demand, or input
prices. They choose state-contingent, and potentially imperfect, plans to maximize
risk-adjusted profits net of this cognitive cost. Both the premise of costly planning
and the emphasis on state-dependence contrasts our approach with that of the exist-
ing macroeconomic literature on decision frictions (e.g., Woodford, 2003a; Maćkowiak
and Wiederholt, 2009; Angeletos and La’O, 2010; Gabaix, 2016). The environment
is Neoclassical, with aggregate demand externalities (Blanchard and Kiyotaki, 1987)
and an aggregate shock that shifts the productivity distribution to generate a business
cycle. We show that equilibrium analysis in this setting is well-posed and tractable,
proving equilibrium existence, uniqueness, and monotonicity of output in the aggre-
gate shock. This allows us to study the causes and consequences of attention cycles
in the model’s unique equilibrium.

In partial equilibrium, firms pay more attention, measured by the extent of their
cognitive effort, and make smaller mistakes, measured by the variance of their actions
around the ex post ideal point, when the cost of making mistakes is high. We show
that the correct metric for such costs is the curvature of agents’ objective functions in

76



their own action. When firms choose production to maximize risk-adjusted profits, the
aforementioned curvature is the product of two terms. The first term is the curvature
of firms’ dollar profits, which is highest when aggregate output and firm-specific
productivity are low in standard parameterizations. We refer to this relationship as
the profit-curvature channel. The second term is the stochastic discount factor (SDF),
which is highest when aggregate consumption is low because risk-averse households
own the firms. We refer to this relationship as the risk-pricing channel, as it indexes
the relative value of profits across states of the world.

In general equilibrium, the cyclicality of these incentives is determined by house-
hold risk aversion, the extent of aggregate demand externalities, and the elasticity of
wages to real output. When household relative risk aversion exceeds an empirically
modest lower bound of one plus the elasticity of real wages to output and wages are
sufficiently rigid, equilibrium cognitive effort decreases in output and the average size
of agents’ mistakes increases in output. Put differently, market incentives push firms
toward paying more attention to decisions and precisely maximizing current profits
when the aggregate economy is doing poorly.

We next use the model to study the macroeconomic consequences of this mech-
anism. We show that output is the product of the counterfactual output under
the full-attention benchmark with an attention wedge that is less than one. The
wedge arises because inattentive, stochastic choices translate into dispersion of value
marginal products (“misallocation”) across firms and reduced aggregate total factor
productivity (TFP). Due to counter-cyclical attention, the wedge widens when the
economy is booming and firms optimize less precisely. Thus, misallocation across
firms in the model is endogenously higher in booms than recessions. We show that
the amplification of negative shocks via increased attention leads to asymmetric,
state-dependent shock propagation and endogenous stochastic volatility.

Testing the Theory: The Misoptimization Cycle Our model’s predictions for
misoptimization in input choices can be taken directly to the data. In the next part of
the paper, we develop and implement tests of these predictions. We use data on firm
production and input choices from public firms’ financial statements from 1986-2018,
collected in Compustat Annual Fundamentals. We estimate firm-level TFP using
conventional methods and estimate empirical policy functions for labor choice con-
ditional on these TFP estimates, firm fixed effects, and sector-by-time fixed effects.
We show in our model that the empirical policy function estimates the counterfactual
“unconstrained optimal” input choice of firms and that its residuals estimate the ex
post misoptimizations. Consistent with our interpretation, we find in the data that
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both positive and negative residuals have negative effects on firms’ contemporaneous
stock returns and profitability and that these contemporaneous negative effects do
not predict higher future productivity, stock returns, or profitability. Moreover, to
build confidence that our results are not driven by unmodeled features of firm be-
havior or by measurement error, we replicate all our empirical results for alternative
constructions of misoptimizations based on richer empirical models of firm behav-
ior (e.g., with adjustment costs or financial frictions) and alternative measurement
schemes for productivity.

Our main aggregate-level finding is that the variance of firms’ misoptimizations
is pro-cyclical, as predicted by the main case of our model. In a linear regression of
our Misoptimization Dispersion measure on the unemployment rate, a five percentage
point increase in the latter predicts a 53% decrease in the former. The finding of pro-
cyclical misoptimization holds using the aforementioned alternative constructions of
misoptimizations, alternative aggregation across firms that adjusts for compositional
bias, and alternative choices for the studied time period. Moreover, while the pro-
cyclicality of Misoptimization Dispersion contrasts with existing evidence that firm
fundamentals like TFP have counter-cyclical variance (e.g., Kehrig, 2015; Bloom,
Floetotto, Jaimovich, Saporta-Eksten, and Terry, 2018), we underscore that our find-
ing is empirically and theoretically compatible with a story in which dispersion around
fundamentals decreases in downturns while the fundamentals themselves become more
volatile.

We next test the main model mechanism for counter-cyclical attention, mar-
kets’ greater punishment of mistakes during downturns. Specifically, we investigate
whether the negative relationship of misoptimizations with stock returns and prof-
itability steepens in recessions. We find strong evidence in the case of returns and
weak evidence in the case of profitability—that is, markets particularly reward firms
for avoiding mistakes in recessions, while the profit cost of mistakes is close to con-
stant. Interpreted via the model, this evidence points to the primacy of the risk-
pricing channel (an increasing SDF) driving counter-cyclical incentives, and therefore
counter-cyclical attention, relative to the profit-curvature channel (changing sensitiv-
ity of dollar profits to mistakes).

We also link back to our motivating evidence and document that macroeconomic
attention in language is associated with smaller misoptimizations at the firm level.
This result suggests that our initial, model-free finding of counter-cyclical “macroe-
conomic attention” is closely related to our subsequent, model-implied finding of
pro-cyclical misoptimization.
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Quantification We finally assess our findings’ quantitative importance in a nu-
merical calibration of the model. We calibrate the cognitive friction and coefficient
of relative risk aversion to match the level and cyclicality of misoptimizations in the
data, and use external calibrations for the substitutability between goods and elas-
ticity of real wages to output. This approach lets the data speak directly toward
our model’s novel mechanism, while using standard calibrations to discipline that
mechanism’s interaction with other forces.

We find that negative productivity shocks have larger effects than equal-sized
positive ones; all shocks have larger effects when the aggregate state is low; and
macroeconomic volatility is highest in low states. In the model, negative productivity
shocks have a 7% larger effect on aggregate output (5% larger on employment) than
positive shocks of the same size. This amounts to 25% of the asymmetry estimated
by Ilut, Kehrig, and Schneider (2018) using industry-level data on productivity and
employment. Similarly, in the model, a shock that replicates a 5% peak-to-trough
reduction in output, comparable to what was experienced during the Great Recession,
generates also an 11% increase in the conditional volatility of output. This is 19% of
the increase in statistical uncertainty about output growth between the trough of the
Great Recession and the preceding peak as measured by Jurado, Ludvigson, and Ng
(2015). Our model therefore explains an economically significant fraction of observed
non-linearities and state-dependence of macroeconomic dynamics as consequences of
state-dependent attention.

Related Literature Our study contributes to a large literature on cognitive fric-
tions and behavioral inattention in macroeconomics.1 Most such models (e.g., Wood-
ford, 2003a; Maćkowiak and Wiederholt, 2009; Angeletos and La’O, 2010; Gabaix,
2016) have ignored both state-dependence of attention and its equilibrium conse-
quences.2 Sims (2003) and Gabaix (2014) show, in different models sharing a “rational
attention” premise, that optimal costly attention should be tuned to the most payoff-
relevant attributes of the decision problem. In this vein, Mäkinen and Ohl (2015),
Chiang (2021), and Benhabib, Liu, and Wang (2016) share our focus on the cyclicality

1We model cognitive frictions via stochastic choice. The equilibrium implications of stochastic
choice are discussed on a more theoretical level in Morris and Yang (2019) and Flynn and Sastry
(2021). Costain and Nakov (2015, 2019) use stochastic choice models to study price-setting.

2Studies of costly adjustment of prices, including Gorodnichenko (2008) and Alvarez,
Lippi, and Paciello (2011), or of costly adjustment of investment portfolios, includ-
ing Abel, Eberly, and Panageas (2013) and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016),
draw on mechanisms operating through the curvature of payoffs in different contexts.
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of attention due to firms’ changing incentives.3 We, in contrast to all three studies,
motivate our analysis with and quantitatively benchmark our findings against empir-
ical evidence on cyclical misoptimization and risk-pricing incentives. Our approach
of modeling stochastic choice also allows us to develop this mapping to the data
and to study macroeconomic implications for state-dependent dynamics. Ilut and
Valchev (2020) model cognitive constraints as costly learning of policy rules, focusing
on different applications and using numerical analysis of aggregative equilibrium.

In contemporaneous work, Song and Stern (2021b) develop a similar text-based
measure of firms’ attention to macroeconomic news and use this measure to test a
different hypothesis. Specifically, Song and Stern (2021b) show that more attentive
firms, according to their text-based measure, gain more market value from expan-
sionary monetary policy shocks and lose less value from contractionary shocks. They
interpret how this heterogeneous responsiveness can drive monetary non-neutrality.
Together, the two papers validate that textual measures can capture aspects of “at-
tention” that are consistent with economic models. Our findings with textual data
also relate to a literature documenting that language in regulatory filings and earnings
calls contains relevant information about firm sentiment (Loughran and McDonald,
2011b) and risk exposures (Hassan, Hollander, Van Lent, and Tahoun, 2019; Hassan,
Hollander, van Lent, Schwedeler, and Tahoun, 2020).

Our empirical findings relate to a literature studying the cyclicality of microe-
conomic dispersion. Our finding of pro-cyclical misoptimization is consistent with
work by Kehrig (2015) and Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry
(2018) documenting that dispersion in firm-level productivity rises in recessions in the
US manufacturing sector. Concretely, we show that fundamentals are more volatile
in downturns, while misoptimizations around them are less volatile.4 Our focus on
cognitive frictions and misallocation dynamics builds on prior work studying this
statically (David, Hopenhayn, and Venkateswaran, 2016; David and Venkateswaran,

3In Mäkinen and Ohl (2015), decreasing returns to scale lead firms to demand more information
when aggregate productivity is low, while we emphasize a novel risk-pricing mechanism. Contem-
poraneous work by Chiang (2021) has considered a complementary mechanism in the context of
a model where firms acquire Gaussian signals about the state. Benhabib, Liu, and Wang (2016)
predict that firms should have less demand for information during recessions, a prediction at odds
with our empirical findings.

4Our findings are also consistent with Eisfeldt and Rampini (2006) and Bachmann and Bayer
(2014), who document pro-cyclical investment-rate dispersion; Dew-Becker and Giglio (2020), who
document acyclicality of implied volatility in the cross-section of firm returns; Ilut, Kehrig, and
Schneider (2018), who document larger response of employment to negative versus positive pro-
ductivity shocks; and Berger and Vavra (2019), who document counter-cyclical responsiveness of
price-setters to nominal shocks. Macaulay (2020) similarly treats choice dispersion as evidence of
misoptimization in households’ cyclical attention toward savings choices.
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2019; Ma, Ropele, Sraer, and Thesmar, 2020; Barrero, 2022).

Overview The rest of the paper proceeds as follows. In Section 2.2, we present
our motivating evidence. In Section 2.3, we introduce our model. In Section 2.4,
we present our theoretical results. In Section 2.5, we build our empirical measure
of misoptimizations and test the model’s predictions. In Section 2.6, we calibrate
our model and analyze the impact of attention cycles on macroeconomic dynamics.
Section 2.7 concludes.

2.2 Motivation: The Macroeconomic Attention Cy-

cle
In this section, we describe our strategy to measure macroeconomic attention in firms’
language and present our finding that firms discuss macroeconomic topics more in
downturns.

2.2.1 Data and Measurement

Our data source is the full text of the quarterly 10-Q and annual 10-K reports sub-
mitted by all US public firms to the Securities and Exchange Commission (SEC).5

We use data from 1995 to 2018 in our main analysis.6 Our total sample consists of
479,403 individual documents, or about 5,000 per quarter, which we index by their
date of filing.

The key challenge for identifying attention toward macroeconomic risks is to dif-
ferentiate characteristic language of macroeconomics from the intrinsically economic
and financial vocabulary of standard firm activities (e.g., “credit” and “costs”). To
address this, we apply a simple natural language processing technique that identifies
specific documents as “attentive to the macroeconomy” if their word choice is both
different from the standard word choice in regulatory filings and similar to the word
choice of macroeconomics-focused references. Following the method introduced by
Hassan, Hollander, Van Lent, and Tahoun (2019) to study firm attention to political

5To give an example, the automaker General Motors in its summary report for 2009 highlighted
the threats of the ongoing Great Recession to its business:“[The] deteriorating economic and market
conditions that have driven the drop in vehicle sales, including declines in real estate and equity
values, rising unemployment, tightened credit markets, depressed consumer confidence and weak
housing markets, may not improve significantly during 2010 and may continue past 2010 and could
deteriorate further.”

6The relevant digitized documents are hosted by the Security and Exchange Commission’s
EDGAR (Electronic Data Gathering, Analysis, and Retrieval), which began operation in 1994.
We choose 1995 as a starting point at which a nearly comprehensive sample of firms’ reports are
available in the system.
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risks, we use introductory college-level textbooks: Macroeconomics and Principles of
Macroeconomics by N. Gregory Mankiw and Macroeconomics: Principles and Policy
by William J. Baumol and Alan S. Blinder.7 This choice balances our considera-
tions of keeping the relevant macroeconomic vocabulary mostly non-technical (e.g.,
“unemployment” instead of “tightness”), but still specific (e.g., “inflation” instead of
“price”).

To operationalize this method, we first define tf(𝑤)𝑖𝑡 as the term frequency for
a word 𝑤 in the communication of firm 𝑖 at time 𝑡, measured as the proportion
of total English-language words; and df(𝑤) as the document frequency of a given
word 𝑤 among all observed (𝑖, 𝑡) regulatory filings, measured as a proportion of total
documents that use the word at least once. We define the “term frequency inverse
document frequency,” or tf-idf, as:

tf-idf(𝑤)𝑖𝑡 := tf(𝑤)𝑖𝑡 · log
(︂

1

df(𝑤)

)︂
(58)

The log functional form is a heuristic in natural language processing for scaling the
relative importance of each term, and it is bounded below by 0 when a word appears
in all documents.

For each word that appears in the 10-Q and 10-K corpus, we calculate the tf-
idf using term frequencies in each of the three textbooks and (inverse) document
frequencies among regulatory filings. We rank the top 200 words by this metric
in each textbook, and take the intersection among the three books as a final set
of 89 words.8 Appendix Figure B-1 prints these words in alphabetical order, and
plots their time-series frequency. Many of the words relate to common macro indica-
tors (“unemployment”,“inflation”); some to the topic or profession itself (“macroeco-
nomics”,“economist”); and some to policy (“Fed,” “multiplier”). There are also “false
positive” words that are related to pedagogy, like “question” and “equation.” To allow
the method to be fully devoid of direct researcher manipulation, we do not remove
such words from the main analysis. We then use our set of macroeconomic words,
denoted by 𝒲𝑀 , to calculate our firm-by-time measures of attention as the sum of

7We use electronic copies of the 7th, 3rd, and 12th editions of these books, respectively.
8Taking the intersection helps guard against the idiosyncratic language of certain books. For

instance, in Principles of Macroeconomics by N. Gregory Mankiw, a parable about supply and
demand for “ice cream” is used often enough to make “ice” and “cream” high tf-idf words in our
procedure.
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the (idf-weighted) macroeconomic word frequency:

MacroAttention𝑖𝑡 =
∑︁

𝑤∈𝒲𝑀

tf-idf(𝑤)𝑖𝑡 (59)

To generate an measure MacroAttention𝑡, we average MacroAttention𝑖𝑡 across firms.
In our main aggregate results, we remove seasonal trends modeled as quarter-of-the-
year means.

2.2.2 Attention to the Macroeconomy is Counter-Cyclical

Figure 2-1 plots the time series of our (log) macroeconomic attention metric, at the
quarterly frequency and net of seasonal trends, against two macroeconomic time se-
ries: the US unemployment rate (Unemployment𝑡) and the linearly detrended log
price of the S&P 500 (log SPDetrend𝑡). We find that macroeconomic attention per-
sistently rises when the macroeconomy and financial market are distressed.

To measure the cyclicality of MacroAttention, we estimate a linear regression of
MacroAttention on each macroeconomic variable, or

logMacroAttention𝑡 = 𝛼 + 𝛽𝑍 · 𝑍𝑡 + 𝜖𝑡 (60)

for 𝑍𝑡 ∈ {Unemployment𝑡/100, log SPDetrend𝑡}. Our coefficient estimates are, re-
spectively, 1.529 (SE: 0.405) and -0.104 (SE: 0.029), with 𝑅2 values of 0.180 and
0.237. The former estimate conveys that a five percentage point swing in unem-
ployment from peak to trough of the business cycle predicts an approximately 7.6%
increase in macroeconomic attention.

To measure the persistence of Macro Attention, we estimate an AR(1) model with
coefficient 𝜌. We find 𝜌 = 0.820 (SE: 0.050), implying a shock half-life of 3.5 quarters.

2.2.3 Discussion

We interpret the above findings as suggestive evidence that firms’ attention allocation
varies with the business cycle and, in particular, focuses more intensely on macroeco-
nomic risks during downturns. But, by itself and without a model interpretation, the
evidence above does not directly demonstrate any change in the process or outcome
of firm decisionmaking over the business cycle. In Sections 2.3 and 2.4, we will write
a macroeconomic model that structures the translation from “attention” to “actions,”
describes the macroeconomic causes and consequences of a model-consistent “atten-
tion cycle,” and generates predictions that can be directly tested in firm decisions.
Before proceeding, we briefly summarize robustness checks and additional exercises
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Figure 2-1: Macro Attention is Counter-Cyclical
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Notes: The top two panels plot log Macro Attention (blue line, left axis) along with, respec-
tively, unemployment and the linearly detrended S&P 500 price (black dashed lines, right
axis). The bottom two panels are scatterplots of log Macro Attention versus the correspond-
ing macroeconomic aggregate. The black solid line is the linear regression fit. The standard
errors are HAC robust based on a Bartlett kernel with a four-quarter bandwidth.

based on our Macro Attention measure.

Comparison with the News In Appendix Figure B-3, we compare our Macro
Attention series at the quarterly frequency with the News Index of Baker, Bloom,
and Davis (2016), which captures newspaper discussion of economic policy, and the
“macroeconomic” sub-topics of Bybee, Kelly, Manela, and Xiu (2021b), who use ma-
chine learning to flexibly categorize the text of Wall Street Journal by topic. Macro
Attention has, respectively, correlations of 0.21 and 0.17 with each. The news se-
ries are much more sharply peaked around turning points, while the firm attention
measure is considerably more persistent. Thus, firm-level attention requires a substan-
tially different theoretical interpretation which emphasizes more persistent incentives
for attention.
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Industry-Level Patterns We might expect the cyclicality of macroeconomic at-
tention to differ across differently cyclical industries. To study this heterogeneity,
we partition our sample into 44 different industries.9 For each industry, we calcu-
late “output cyclicality” as the correlation between sectoral GDP growth, calculated
using quarterly BEA data since 2005 linked appropriately to NAICS-definition sec-
tors, with aggregate nominal GDP growth. In Appendix Figure B-4, we plot in the
cross-section of industries the relationship between this output cyclicality and the
coefficient of sector-level Macro Attention on the US unemployment rate. Of the
42 industries, 36 feature counter-cyclical macroeconomic attention. The extent of
counter-cyclicality increases with the industry’s output cyclicality, but almost acycli-
cal industries also have counter-cyclical attention. The model, consistent with this
observation, will focus on a risk-pricing mechanism that gives firms a uniform incen-
tive to concentrate attention in aggregate downturns regardless of the cyclicality of
firms’ demand.

Alternative Data Construction Appendix Figure B-1 plots the time-series be-
havior of each word-level component at the quarterly frequency. In our sample, 61 of
the 89 words have a positive quarterly correlation with the unemployment series (Ap-
pendix Figure B-2). Appendix B.6.1 describes how we replicate our procedure using
the full text of US Public Firms’ sales and earnings conference calls as an alternative
dataset. This produces a similar counter-cyclical pattern over a smaller time period
(2004-2013). Appendix B.6.2 describes an alternative procedure for analyzing the
10-Q/Ks which uses the frequency of algorithmically determined word stems rather
than full words to build our word set 𝒲𝑀 . This yields essentially identical results to
our main procedure.

2.3 Model
We now describe our model, a Neoclassical Real Business Cycle model with a stochas-
tic choice friction for intermediate goods firms that captures attention and mistake
making.

2.3.1 Consumers and Final Goods

Time periods are indexed by 𝑡 ∈ N. A representative household has constant relative
risk-aversion preferences over final-good consumption 𝐶𝑡 and labor 𝐿𝑡. Their payoffs

9These classifications are based primarily on NAICS2 codes, but we separate manufacturing
(NAICS 31-33) and information (NAICS 51) into three-digit categories to maintain comparable
numbers of firms in each bin. The industry categorization is reviewed in more detail in Appendix
B.3.1, in the context of our empirical analysis in Section 2.5.
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are:

𝒰({𝐶𝑡+𝑗, 𝐿𝑡+𝑗}𝑗∈N) = E𝑡
∞∑︁
𝑗=0

𝛽𝑗

(︃
𝐶1−𝛾
𝑡+𝑗

1− 𝛾
− 𝑣(𝐿𝑡+𝑗)

)︃
(61)

where 𝛽 ∈ [0, 1) is the discount factor, 𝑣 is an increasing and convex labor disutil-
ity, and 𝛾 > 0 is the coefficient of relative risk aversion. The aggregate final good
is produced from a continuum of intermediate goods, indexed by 𝑖 ∈ [0, 1], by a
representative, perfectly competitive firm using a constant-elasticity-of-substitution
production function

𝑋𝑡 = 𝑋({𝑥𝑖𝑡}𝑖∈[0,1]) =
(︂∫︁

[0,1]

𝑥
𝜖−1
𝜖

𝑖𝑡 d𝑖

)︂ 𝜖
𝜖−1

(62)

where 𝜖 > 1 is the elasticity of substitution. This firm buys inputs at prices {𝑞𝑖𝑡}𝑖∈[0,1]
and sells its output at a normalized price of one. The household owns equity in firms
that produce intermediate goods, receiving profits {𝜋𝑖𝑡}𝑖∈[0,1].

Wages are determined by the following wage rule:

𝑤𝑡 = �̄� ·
(︂
𝑋𝑡

�̄�

)︂𝜒
(63)

where �̄� > 0 and �̄� > 0 are constants, and 𝜒 ≥ 0 measures the extent of real
wage rigidity. Households supply sufficient labor to meet firms’ labor demand at the
wages from Equation 63. Describing wage dynamics via a reduced-form wage rule
is for technical simplicity as it allows us to study the economy via a scalar fixed-
point equation that is simple to characterize.10 Moreover, it allows our model to
parsimoniously match the empirical acyclicality of real wages (Solon, Barsky, and
Parker, 1994; Grigsby, Hurst, and Yildirmaz, 2019). In Appendix B.2, we micro-
found this wage rule when households have Greenwood, Hercowitz, and Huffman
(1988) preferences and markets clear in the standard fashion. We show in Appendix
B.5.1 that the quantitative results of Section 2.6 are robust to considering wages set
in this manner.

2.3.2 Intermediate Goods Firms and Productivity Shocks

Each intermediate goods firm 𝑖 is a monopoly producer of its own variety and faces
a demand curve 𝑑(𝑥𝑖𝑡, 𝑋𝑡) = 𝑋

1
𝜖
𝑡 𝑥

− 1
𝜖

𝑖𝑡 from the final goods producer. They hire a
labor quantity 𝐿𝑖𝑡, pay wage 𝑤𝑡 per worker, and produce with the following linear

10Blanchard and Galí (2010) and Alves, Kaplan, Moll, and Violante (2020) use similar wage-rule
formulations.
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technology:
𝑥𝑖𝑡 = 𝜃𝑖𝑡𝐿𝑖𝑡 (64)

where 𝜃𝑖𝑡 is a firm-level shifter of productivity, which lies in a set Θ ⊂ R+.
We parameterize the stochastic process for firm-level productivity in the following

way that captures “aggregate productivity shocks” while allowing for rich cross-firm
heterogeneity. There is an aggregate productivity state 𝜃𝑡 ∈ Θ, which follows a first-
order Markov process with transition density given by ℎ(𝜃𝑡 | 𝜃𝑡−1). The cross-sectional
productivity distribution is given in state Θ by the mapping 𝐺 : Θ → ∆(Θ), where we
denote the productivity distribution in any state 𝜃𝑡 by 𝐺𝑡 = 𝐺(𝜃𝑡) with corresponding
density 𝑔𝑡. To give the parameter 𝜃𝑡 an interpretation as “aggregate productivity,”
we assume that the total order on 𝜃𝑡 ranks distributions 𝐺𝑡 by first-order stochastic
dominance, or 𝜃 ≥ 𝜃′ implies 𝐺(𝜃) ≿𝐹𝑂𝑆𝐷 𝐺(𝜃′). This can accommodate rich dynam-
ics for all moments of the productivity distribution (e.g., state-dependent variance
measured by Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry, 2018).

We proceed in the rest of our main analysis under this “Real Business Cycle”
case with productivity shocks. But we will emphasize when presenting results why
neither the “supply-side” view of economic dynamics nor the specific structure for pro-
ductivity dynamics is essential for our main conclusions or proposed macroeconomic
propagation mechanism.

2.3.3 Attention and Mistake Making

We now describe our model for attention and mistake-making by intermediate goods
firms. We define the firm-level decision state 𝑧𝑖𝑡 = (𝜃𝑖𝑡, 𝑋𝑡, 𝑤𝑡) ∈ 𝒵 as the concatena-
tion of all decision-relevant variables that the firm takes as given.11 All firms believe
that the vector 𝑧𝑖𝑡 follows a first-order Markov process with transition densities de-
scribed by 𝑓 : 𝒵 → ∆(𝒵), with 𝑓(𝑧𝑖𝑡|𝑧𝑖,𝑡−1) being the density of 𝑧𝑖𝑡 conditional on
last period’s state being 𝑧𝑖,𝑡−1. We denote the corresponding set of possible transition
densities by ℱ . At time 𝑡, each firm 𝑖 knows the sequence of previous {𝑧𝑖𝑠}𝑠<𝑡 but
not the contemporaneous value 𝑧𝑖𝑡.

The Cost of Attention Intermediate goods firms choose a production level 𝑥𝑖𝑡 in
the feasible set 𝒳 . But, due to cognitive constraints, they struggle to match that
choice to the state 𝑧𝑖𝑡 = (𝜃𝑖𝑡, 𝑋𝑡, 𝑤𝑡) without making idiosyncratic mistakes. We
model this by having them choose stochastic choice rules at a cost.

Formally, each firm chooses a stochastic choice rule 𝑝 : 𝒵 → ∆(𝒳 ) in set 𝒫 , or a
11As will become clear, 𝒵 = Θ × 𝒳 × 𝒲, where 𝒳 is feasible set of production, and 𝒲 is the

image of 𝒳 via the wage rule (63).
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mapping from states of the world to distributions of actions described by probability
density (mass) function 𝑝(· | 𝑧𝑖𝑡) when the firm-level state is 𝑧𝑖𝑡. A firm using rule 𝑝
commits to delivering the realized quantity 𝑥𝑖𝑡 ∈ 𝒳 to the market, selling it at the
(maximum) price 𝑞𝑖𝑡 = 𝑑(𝑥𝑖𝑡, 𝑋𝑡) at which the final goods firm is willing to buy, and
hiring sufficient labor in production. Helpfully, it is fully equivalent to interpret firms’
choices as committing to hire 𝐿𝑖𝑡 = 𝑥𝑖𝑡

𝜃𝑖𝑡
workers at wage 𝑤𝑡, producing the maximum

level 𝑥𝑖𝑡 = 𝜃𝑖𝑡𝐿𝑖𝑡, and selling at price 𝑞𝑖𝑡 = 𝑑(𝑥𝑖𝑡, 𝑋𝑡).
We model the cost of attention via the cost functional 𝑐 : 𝒫 × Λ × 𝒵 × ℱ → R

which returns how costly any given stochastic choice rule is to implement in units of
utility. The cost can depend on a firm-specific type 𝜆𝑖 ∈ Λ ⊆ R+, by assumption
independent from the decision state and distributed in the cross-section as 𝐿 ∈ ∆(Λ),
and the previous value of the decision state 𝑧𝑖,𝑡−1, which under the Markov assumption
summarizes the transition probabilities for 𝑧𝑖𝑡. The basic idea that we wish to embody,
consistent with our motivation of studying costly cognition and mistake making, is
that playing actions that are more precise in any given state is more costly.

To make this tension more clear, and also to make the analysis more tractable, we
specialize to the following cost functional, which equals the negative expected entropy
of the action distribution multiplied by a scaling 𝜆𝑖 > 0:

𝑐(𝑝, 𝜆𝑖, 𝑧𝑖,𝑡−1, 𝑓) = 𝜆𝑖

∫︁
𝒵

∫︁
𝒳
𝑝(𝑥 | 𝑧𝑖𝑡) log(𝑝(𝑥 | 𝑧𝑖𝑡)) d𝑥 𝑓(𝑧𝑖𝑡 | 𝑧𝑖,𝑡−1) d𝑧𝑖𝑡 (65)

This cost functional captures the idea that it is costly for agents to avoid “mistakes”
or misoptimizations, relative to an unrestricted (costless) optimal choice.12 In Sec-
tion 2.4.5, we discuss the robustness of our results to considering alternative cost
functionals that represent costly information acquisition and stochastic-choice costs
denominated in units of final output.

The Firm’s Problem Intermediate goods firms are owned by the representative
household and maximize the product of their dollar profit, which we write as 𝜋(𝑥𝑖𝑡, 𝑧𝑖𝑡),
and the household’s marginal utility, which we write as 𝑀(𝑋𝑡). We define “risk-
adjusted profits” as the product of these terms:

Π(𝑥𝑖𝑡, 𝑧𝑖𝑡) = 𝜋(𝑥𝑖𝑡, 𝑧𝑖𝑡) ·𝑀(𝑋𝑡) (66)
12This is an example of a likelihood-separable cost functional as discussed in more detail in Flynn

and Sastry (2021). Also, as formalized by Fudenberg, Iijima, and Strzalecki (2015), a formulation
with likelihood-separable stochastic choice is often equivalent to an additive random utility model.
The formulation (65) is exactly isomorphic to a “logit demand model,” or additive random utility
model with Gumbel distributed perturbations, and embodies the familiar associated axioms including
independence of irrelevant alternatives (IIA).
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Under our assumed structure for the firms’ cost and revenue structure and the house-
hold’s utility function, the profit function and marginal utility are respectively

𝜋(𝑥𝑖𝑡, 𝑧𝑖𝑡) := 𝑥𝑖𝑡

(︂
𝑥
− 1
𝜖

𝑖𝑡 𝑋
1
𝜖
𝑡 − 𝑤𝑡

𝜃𝑖𝑡

)︂
𝑀(𝑋𝑡) = 𝑋−𝛾

𝑡 (67)

Because decisions are separable across time, and 𝑧𝑖,𝑡−1 is an observed sufficient
statistic for the history of state realizations, the firm can be thought to solve a series
of one-shot problems of choosing a stochastic choice rule in period 𝑡, conditional on
the realization 𝑧𝑖,𝑡−1. The firm has a conjecture for how aggregate output and wages
move over time, as embedded in their subjective prior distribution 𝑓(𝑧𝑖𝑡 | 𝑧𝑖,𝑡−1).
Given this conjecture, they play a best reply by solving the following program:

max
𝑝∈𝒫

{︂∫︁
𝒵

∫︁
𝒳
Π(𝑥, 𝑧𝑖𝑡) 𝑝(𝑥 | 𝑧𝑖𝑡) d𝑥 𝑓(𝑧𝑖𝑡 | 𝑧𝑖,𝑡−1) d𝑧𝑖𝑡 − 𝑐 (𝑝, 𝜆𝑖, 𝑧𝑖,𝑡−1, 𝑓)

}︂
(68)

which is maximization of expected utility, averaged over risk in the state 𝑧𝑖 and
stochastic action 𝑥, net of the utility cost of the chosen stochastic choice rule.

2.3.4 Linear-Quadratic Approximation and Equilibrium

To tractably study equilibrium, we simplify the intermediate goods firms’ objective
and the final goods firm’s production with quadratic approximations. Both approxi-
mations are derived in Appendix B.1.7.

Toward simplifying the intermediate goods firms’ objective, we first define an
intermediate firm’s ex post optimal production level

𝑥*(𝑧𝑖) := argmax
𝑥∈𝒳

Π(𝑥, 𝑧𝑖) (69)

We next define Π̄(𝑧𝑖) as risk-adjusted profits evaluated at (𝑥*(𝑧𝑖), 𝑧𝑖) and Π𝑥𝑥(𝑧𝑖) as
the function’s second derivative in 𝑥 evaluated at the same point. The latter measures
the state-dependent cost of misoptimizations relative to 𝑥*(𝑧𝑖) and will be central to
our analysis. The objective of the intermediate goods firm is, to the second order:

Π̃(𝑥, 𝑧𝑖) := Π̄(𝑧𝑖) +
1

2
Π𝑥𝑥(𝑧𝑖)(𝑥− 𝑥*(𝑧𝑖))

2 (70)

So that this is globally defined, we will also apply the simplifying assumption that
𝒳 = R.

Next, we approximate the final goods firm’s production function (62) around the
ex post optimal production levels 𝑥*(𝑧𝑖) to the second order. We first define the
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aggregate of the ex post optimal production levels as

𝑋* =

(︂∫︁ 1

0

𝑥*(𝑧𝑖)
1− 1

𝜖 d𝑖

)︂ 𝜖
𝜖−1

(71)

We then write the approximate production function as

𝑋 = 𝑋* − 1

2𝜖

∫︁ 1

0

(𝑥𝑖 − 𝑥*(𝑧𝑖))2

(𝑋*)−
1
𝜖 (𝑥*(𝑧𝑖))1+

1
𝜖

d𝑖 (72)

We now define equilibrium, up to these approximations, in terms of the stochastic
choices of intermediate goods firms 𝑝, and the transition density 𝑓 :13

Definition 1 (Equilibrium). An equilibrium is a stochastic choice rule 𝑝 ∈ 𝒫 and a
transition density 𝑓 ∈ ℱ such that:

1. Intermediate goods firms’ stochastic choice rules 𝑝 solve program (68) given 𝑓 ,
with Π̃, defined in (70), replacing Π.

2. The transition density 𝑓 is consistent with 𝑝 in the sense that: the marginal
distribution of firm-level productivity is given by 𝐺; aggregate output is given by
the aggregator (72) evaluated in the cross-sectional distribution of production
implied by 𝑝 and 𝐺; and the wage is derived from the wage rule (63) evaluated
at aggregate output.

2.4 Theoretical Results
We now present our main theoretical results, in four parts. First, we characterize
firms’ attention and misoptimization in partial equilibrium. These results show how
firms’ attention choice is shaped by two critical mechanisms, a profit-curvature chan-
nel related to the dollar cost of misoptimization and a risk-pricing channel related
to the utility translation or risk adjustment of these costs. Second, we derive two
conditions—a restriction to aggregate strategic complementarity and a lower bound
on risk aversion—under which attention is counter-cyclical (and misoptimization pro-
cyclical) in general equilibrium. We argue these conditions are ex ante reasonable
based on existing macro-financial evidence. Third, we characterize equilibrium out-
put in the economy as the product of the full-attention, frictionless benchmark and an
attention wedge that is smaller than one and decreasing in the underlying productiv-
ity of the economy. This attention wedge reflects the cyclical nature of misallocation

13This embeds our notion of rational expectations equilibrium (REE) by requiring that firms’
subjective prior about endogenous variables is “correct.”
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in our economy: when productivity is lower, firms optimize more precisely and pro-
ductivity is closer to the frictionless benchmark. Finally, we show how endogenous
variation in misallocation drives asymmetric and state-dependent shock propagation,
and endogenous stochastic volatility of output growth.

2.4.1 Attention and Misoptimization in Partial Equilibrium

We begin by describing the stochastic choice behavior of firms. We observe that, un-
der the entropic cost, firms’ costly control problem is linearly separable across state
realizations 𝑧𝑖𝑡. This implies that firms’ optimal policies will be independent of the
prior distribution 𝑓 . In this way, consistent with our motivation, our model isolates
firms’ difficulties in making state-contingent plans. Leveraging this observation, the
following result describes the solution to the firm’s problem and allows us to charac-
terize its comparative statics:

Proposition 6 (Firms’ Optimal Stochastic Choice Rules). The production of a type-
𝜆𝑖 firm, conditional on realized state 𝑧𝑖 = (𝜃𝑖, 𝑋, 𝑤), can be written as

𝑥𝑖 = 𝑥*(𝑧𝑖) +

√︃
𝜆𝑖

|𝜋𝑥𝑥(𝑧𝑖)|𝑀(𝑋)
· 𝑣𝑖

where 𝑥*(𝑧𝑖) is the unconstrained optimal action, |𝜋𝑥𝑥(𝑧𝑖)| is the magnitude of curva-
ture for the firms’ profit function, 𝑀(𝑋) is the household’s marginal utility, and 𝑣𝑖 is
an idiosyncratic, standard Normal random variable.

Proof. See Appendix B.1.1.

Economically, Proposition 6 says that firms center their action around the full-
attention optimum 𝑥*(𝑧𝑖) but, due to costly control, make an idiosyncratic misopti-
mization. The variance of the misoptimization increases if the marginal cost of preci-
sion increases (higher 𝜆𝑖), and decreases if either of two components of the marginal
benefits of precision increases.

The first component of this marginal benefit is the state-dependent curvature of
the firms’ dollar profit function, |𝜋𝑥𝑥(𝑧𝑖)|, which translates small misoptimizations
into their dollar cost near the optimal production level. How this |𝜋𝑥𝑥| moves as
a function of the aggregate business cycle hinges on the specific assumed structure
of firms’ demand curves and cost structure. We will refer to this phenomenon as a
profit-curvature channel affecting the extent of misoptimizations.

The second component of this marginal benefit is the household’s marginal utility,
𝑀(𝑋). This translates dollar losses into utility losses, which can be directly compared
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to the utility cost of cognition. When households are risk-averse, this marginal utility
is a decreasing function of 𝑋: the representative household is “hungrier” for a given
firm’s dollar profits, in utility terms, when the aggregate economy is doing poorly,
and therefore less tolerant of misoptimizations. We will refer to this phenomenon as
a risk-pricing channel affecting the extent of misoptimizations. We moreover observe
that this channel relies on the (conventional) denomination of cognitive costs in utility,
rather than final-good, units—we discuss the implications of the opposite assumption
in Section 2.4.5.

The previous argument used only the structure of the cost functional and the
assumption of a “Neoclassical firm” owned by a representative household. We can use
the specific structure of our model to re-state the comparative statics in the discussion
above in terms of firms’ productivity 𝜃𝑖 and aggregate output 𝑋, after substituting
in wages as a function of output via the wage rule. In particular, the curvature terms
of interest can be written in the following way:14

|𝜋𝑥𝑥(𝑧𝑖)| := 𝑣𝜋(𝜖, 𝜒, �̄�, �̄�) · 𝜃−1−𝜖
𝑖 𝑋𝜒(1+𝜖)−1 𝑀(𝑋) = 𝑋−𝛾 (73)

where 𝑣𝜋(𝜖, 𝜒, �̄�, �̄�) > 0. We observe also that the variance of production conditional
on the realized decision state, or E[(𝑥𝑖 − 𝑥*(𝑧𝑖))2 | 𝑧𝑖], is a summary statistic for
both misoptimization and “attention” measured by realized cognitive costs, which are
decreasing in this variance. We summarize the comparative statics of this conditional
variance, and by extension of attention and misoptimization, under the assumed
payoff structure in the following result:

Corollary 4 (Comparative Statics for Mistakes). Consider a type-𝜆𝑖 firm in state
𝑧𝑖 = (𝜃𝑖, 𝑋, 𝑤(𝑋)). The extent of misoptimization, E[(𝑥𝑖 − 𝑥*(𝑧𝑖))2 | 𝑧𝑖], increases in
𝜃𝑖. Moreover, E[(𝑥𝑖−𝑥*(𝑧𝑖))2 | 𝑧𝑖] strictly increases in 𝑋 if and only if 𝛾 > 𝜒(1+𝜖)−1.

Proof. Immediate from combining Proposition 6 with Equation 73.

The (absolute) curvature of the profit function always increases in marginal costs,
and therefore decreases in 𝜃𝑖. The monotonicity of curvature in aggregate output
depends jointly on the cyclicality of wages, which contributes a term with exponent
𝜒(1 + 𝜖); the aggregate demand externality, which contributes a term with exponent
−1; and marginal utility, which contributes an exponent −𝛾. In particular, an econ-
omy with sufficiently cyclical wages would have misoptimization decrease in aggregate

14The first expression, and the associated constant, are derived in Appendix B.1.7.
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output due to the profit-curvature channel, while an economy with sufficient risk aver-
sion or sufficiently cyclical marginal utility would have misoptimization increase in
aggregate output due to the risk-pricing channel. We will discuss the interpretation of
this parameter condition “horse race” in the context of our general-equilibrium result
in the next subsection.

2.4.2 Attention and Misoptimization Cycles in Equilibrium

We now translate the partial equilibrium behavior of the firm into general equilibrium.
We first provide conditions under which equilibrium analysis is well-posed and output
is a uniquely determined, monotone function of the underlying productivity state:

Proposition 7 (Existence, Uniqueness, and Monotonicity). For any 𝜒 > 0, an equi-
librium in the sense of Definition 1 exists. If 𝜒𝜖 < 1 and 𝛾 > 𝜒+1, there is a unique
equilibrium. In this equilibrium, output can be expressed via a function 𝑋 : Θ → R
that is strictly positive and strictly increasing.

Proof. See Appendix B.1.2.

To establish these properties, we derive a representation of equilibrium as a fixed
point for aggregate output 𝑋 as a function of the aggregate state 𝜃. To establish
uniqueness and monotonicity, we derive conditions under which the fixed-point equa-
tion is a contraction map that depends positively on productivity. The condition
𝜒𝜖 < 1 ensures that firms’ production plans are on average an increasing function
of aggregate output, by bounding wage pressure relative to the aggregate demand
externality. The condition 𝛾 > 𝜒 + 1 bounds the variance of actions around this
optimum and ensures that, even in the presence of endogenous dispersion, there is
positive but bounded complementarity.

The latter condition 𝛾 > 𝜒 + 1 is both conservative in the model, as it ensures
uniqueness and monotonicity for any possible distribution of 𝜆𝑖, and highly plausible
in practice. The elasticity of detrended real wages to GDP in (detrended) US data
since 1987 is 0.095, and micro-level studies find similarly severe wage rigidity (Solon,
Barsky, and Parker, 1994; Grigsby, Hurst, and Yildirmaz, 2019).15 Moreover, to be
consistent with the restrictions 𝜒𝜖 < 1 (upward-sloping best responses) and 𝜖 > 1

(substitutable goods), 𝜒 cannot exceed one. The corresponding conditions 𝛾 > 1.095

or 𝛾 > 2 are likely both slack by one or two orders of magnitude, given abundant

15This calculation uses quarterly-frequency, seasonally-adjusted data on real GDP and median,
CPI-adjusted wages of all full-time employed wage and salary workers. Both series are linearly
detrended.
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evidence in financial economics about the high cyclicality of the stochastic discount
factor (e.g., Hansen and Jagannathan, 1991).

We now demonstrate conditions under which this economy exhibits aggregate
attention and misoptimization cycles. We say that all firms “pay more attention” in a
state if, averaging over idiosyncratic states (𝜃𝑖, 𝜆𝑖), they pay a greater attention cost
conditional on that state being realized. We say that firms “misoptimize less” in a
state if, again averaging over idiosyncratic states (𝜃𝑖, 𝜆𝑖), they have a lower expected
mean-squared error around the ex post optimal action 𝑥*(𝑧𝑖).16 We now show that,
under the stated assumptions for tractable equilibrium analysis, the model features
counter-cyclical attention and pro-cyclical misoptimization:

Proposition 8 (Attention and Misoptimization Cycles). Assume 𝜒𝜖 < 1 and 𝛾 >

𝜒 + 1. Intermediate goods firms pay more attention and misoptimize less in lower-
productivity, lower-output states.

Proof. See Appendix B.1.3.

The proof of this result verifies that the stated conditions are sufficient for output
𝑋 to be monotone increasing in 𝜃, via Proposition 7; observes that the same conditions
are sufficient for the idiosyncratic variance of choices to be monotone increasing in 𝜃𝑖
and 𝑋, via Corollary 4; and translates these into predictions for cross-firm averages.

Economically, Proposition 8 says that a calibration of the model that is consistent
with existing evidence about wage rigidity and the stochastic discount factor predicts
that firms should pay more attention to their decisions and make smaller misoptimiza-
tions, conditional on stochastic fundamentals, in downturns. The model’s prediction
about aggregate attention is qualitatively consistent with our motivating evidence
on macroeconomic attention in language, with the caveat that the language-based
measurement has no direct analogue in the model. The prediction about aggregate
misoptimizations is a testable prediction on firm choices, which we will map to the
data in Section 2.5. We will also, in the same section, develop and conduct tests that
can distinguish the microeconomic mechanisms underlying this phenomenon (i.e., the
risk-pricing and profit-curvature channels).

2.4.3 Misoptimization, Output, and Productivity

Having provided model conditions that generate attention and misoptimization cy-
cles, we now study the effects of these phenomena on output and production. Despite

16Mathematical definitions of both notions are included in the proof of Proposition 8 in Appendix
B.1.3.
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unrestricted heterogeneity in the cross-sectional distributions of productivity and at-
tention costs, we find that there are scalar sufficient statistics in equilibrium for each
distribution. The cross-sectional distribution of productivity is summarized by quasi-
arithmetic mean 𝜃(𝐺) =

(︀
E𝐺[𝜃𝜖−1

𝑖 ]
)︀ 1
𝜖−1 .17 We therefore, without loss of generality,

write 𝜃𝑡 = 𝜃(𝐺𝑡) for the remainder of the analysis. The cross-sectional distribution of
attention costs is summarized by the mean 𝜆 := E[𝜆𝑖].

We define log𝑋(log 𝜃) as a mapping from the log productivity state to log output
in the economy, holding fixed all other parameters. The following result describes
output in log units as the sum of an “RBC core” factor and an attention wedge
log𝑊 (log 𝜃):

Proposition 9 (Equilibrium Output Characterization). Equilibrium output follows:

log𝑋(log 𝜃) = 𝑋0 + 𝜒−1 log 𝜃 + log𝑊 (log 𝜃) (74)

where 𝑋0 is a constant and log𝑊 (log 𝜃) ≤ 0, with equality if and only if 𝜆 = 0. When
𝜒𝜖 < 1, 𝛾 > 𝜒+ 1, and 𝜆 > 0, the wedge has the following properties:

1. 𝜕 log𝑊
𝜕𝜆

< 0, or the wedge widens with the average cost of attention.

2. 𝜕 log𝑊
𝜕 log 𝜃

< 0, or the wedge widens as the state increases.

Proof. See Appendix B.1.4.

Absent inattention, output is log-linear in aggregate productivity. With inatten-
tion and under our stated conditions from Propositions 7 and 8, output is depressed by
the presence of stochastic choice. The magnitude of this force increases in the extent of
inattention 𝜆 and in aggregate productivity 𝜃. Both results have a partial-equilibrium
and general-equilibrium component. In partial equilibrium, both increasing 𝜆 and in-
creasing 𝜃 make firms play more dispersed actions, as shown in Propositions 6, and
this dispersion has a cost to output when the aggregate production function is con-
cave. In general equilibrium, we iterate this logic until convergence; our comparative
statics results verify that this fixed-point operation converges on a lower value of
output.

To better understand this wedge, we can re-cast it in terms of labor productivity:

17Intuitively, heterogeneity in productivity is mediated by the elasticity of substitution: when
goods are highly substitutable, this index converges to the maximum productivity; when goods are
highly complementary, it converges to the minimum productivity.
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Corollary 5 (The Productivity Wedge). Equilibrium labor productivity 𝐴 := 𝑋
𝐿

fol-
lows:

log𝐴(log 𝜃) = log 𝜃 + 𝜒𝜖 log𝑊 (log 𝜃) (75)

Proof. See Appendix B.1.5.

The productivity wedge representation allows for three useful parallels between
our paper’s mechanism and classic arguments in the macroeconomics literature. The
first relates to a literature on the cleansing effect of recessions following Caballero and
Hammour (1994). Our mechanism is like an attentional, intensive margin version of
the same effect: conditional on a given firm operating, it is more focused on making
precise and accurate choices in recessions, and this on average reduces the wedge and
raises aggregate labor productivity.

The second relates to an empirical literature studying the dynamics of labor pro-
ductivity in the United States, and in particular highlighting its unstable and of-
ten negative cyclicality (e.g., Galí and Gambetti, 2009; Barnichon, 2010; Galí and
Van Rens, 2021). Our model accommodates a non-monotone relationship between
aggregate labor productivity and aggregate output, due to the competing forces of
increased productivity with increased misallocation. In fact, our quantitative analysis
of Section 2.6 will generate such a non-monotone relationship.

The third relates to the literature on the aggregate effects of resource misallocation
across firms, pioneered by Hsieh and Klenow (2009) and Restuccia and Rogerson
(2008), and related to informational and cognitive frictions by David, Hopenhayn,
and Venkateswaran (2016), David and Venkateswaran (2019), Ma, Ropele, Sraer, and
Thesmar (2020), and Barrero (2022). The mechanism whereby dispersion in firm-
level value marginal products depresses aggregate productivity is shared with these
analyses. What is new is our prediction about the cyclicality of this force, driven
by changing incentives for (in)attention, and the implications of that cyclicality for
business cycles.

2.4.4 Shock Propagation and Volatility

The fact that agents are differentially attentive to shocks across states of the world
makes the economy differentially sensitive to shocks. This observation is formalized in
the following Corollary, which shows how the model generates endogenous stochastic
volatility, state-dependent propagation of shocks and asymmetric shock propagation,
features which are all absent in the benchmark with fully attentive firms or 𝜆 = 0:
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Corollary 6 (Endogenous Stochastic Volatility, State-Dependent Propagation, and
Asymmetric Propagation). Suppose that aggregate productivity follows the process
log 𝜃𝑡 = 𝜌𝜃 log 𝜃𝑡−1 + (1 − 𝜌𝜃) log 𝜃 + 𝜈𝑡 where Var[𝜈𝑡] = 𝜎2

𝜃 . The model generates
the following properties:

1. Endogenous stochastic volatility: to a first-order approximation in 𝜈𝑡, the vari-
ance of output conditional on last period’s productivity 𝜃𝑡−1 is given by

V[log𝑋𝑡|𝜃𝑡−1] =

(︃
𝜒−1 +

𝜕 log𝑊 (log 𝜃)

𝜕 log 𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

)︃2

𝜎2
𝜃 (76)

2. State-dependent shock propagation: the impact on output from a small shock 𝜈𝑡
in state 𝜃𝑡−1 is given by:

𝜕 log𝑋(log 𝜃)

𝜕 log 𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

= 𝜒−1 +
𝜕 log𝑊 (log 𝜃)

𝜕 log 𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

(77)

3. Asymmetric shock propagation: the impact of a shock to second-order in 𝜈𝑡 in
state 𝜃𝑡−1 is given by

𝜕 log𝑋(log 𝜃)

𝜕 log 𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

= 𝜒−1+
𝜕 log𝑊 (log 𝜃)

𝜕 log 𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

+

(︃
𝜕2 log𝑊 (log 𝜃)

𝜕 log 𝜃2

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

)︃
𝜈𝑡

(78)
where the sign of the wedge’s second derivative determines the direction of asym-
metry.

Proof. See Appendix B.1.6.

To understand this result, note that the sensitivity of the economy to shocks is
simply the sum of the frictionless economy’s response to shocks, which is always 𝜒−1,
and the response of the attention wedge to shocks. This latter response is always
negative in the case studied by Proposition 9, so the economy is mechanically less
responsive to shocks than the full attention benchmark. This dampened response
is a familiar prediction in the literature with cognitively constrained agents (e.g.,
Sims, 1998, 2003; Gabaix, 2014), drawn out here in a general equilibrium context.
More specific to our analysis is the fact that this dampening from the attention
wedge can depend on the state, or the fact that the attention wedge need not be
linear in log 𝜃. This is a direct consequence of modeling state-dependent attention
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and accommodating attention cycles. This fact may generate the asymmetry, state-
dependence, and stochastic volatility indicated in Corollary 6.

The ultimate macroeconomic implications of this result hinge on the concavity
or convexity of the attention wedge in the state. When the attention wedge is con-
cave (respectively, convex), the economy generates greater (smaller) volatility in low
states, a larger (smaller) impact of shocks in low states, and features larger (smaller)
impact of negative than positive shocks from any initial state. Owing to the intuition
that when 𝜃 is very small, it is as-if the economy is operating in its “full pass-through”
RBC core, the natural case appears to be a concave wedge. While we cannot estab-
lish theoretically that the wedge is globally concave, it cannot be globally convex
and therefore must be concave in at least some part of the parameter space. Our
quantitative analysis in Section 2.6 will feature a concave wedge. In that section we
will review the implications of this finding.

2.4.5 Extensions

In the next parts of the paper, we will directly test the micro and macro predictions
of the model (Section 2.5) and numerically examine the implications of a model that
matches the empirical facts (Section 2.6). Before proceeding, we describe extensions
of our main analysis.

Wage-Rule Shocks Our main analysis considered supply shocks operating through
the shifts in the productivity distribution. Consider instead an economy with fixed
productivities but stochastic �̄�, the level term in the wage rule. Shocks to �̄� can
be interpreted as a labor wedge shock or demand shock with the appropriate micro-
foundation. Inspection of the formulas in Proposition 6, reveals that �̄� is tantamount
to an aggregate shifter of firms’ revenue productivity. Propositions 7 and 8 provide
conditions for output to be monotone decreasing in �̄� and for counter-cyclical atten-
tion (pro-cyclical misoptimization) in a labor-wedge driven economy: when the labor
wedge is high, and the economy is in a recession, attention is high. Proposition 9 and
Corollary 6 hold as written, with �̄�−1 replacing 𝜃.

Decision Costs in Dollar Units Motivated by the nature of cognitive costs, we
have denominated the cost of precise planning in utility units. An alternative choice
is to specify these costs in units of final output or numeraire “dollars,” which is natural
if overcoming decision frictions requires investing in inputs (e.g., employees focused
on planning). Since relative risk aversion enters our analysis only in translating dollar
costs to utility costs, the assumption of dollar-denominated cognitive costs is nested
by setting 𝛾 = 0. Proposition 6 and Corollary 4, concerning misoptimization in partial
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equilibrium, hold as written. The latter’s condition for misoptimization to strictly
increase in 𝑋 is that 1 > 𝜒(1 + 𝜖). Under the assumption that output is monotone
in productivity, the model can feature equilibrium attention cycles under the same
condition. This demonstrates that the profit-curvature channel, by itself, can induce
attention cycles if wages are sufficiently rigid, a condition likely to hold based on our
earlier discussion.

However, our empirical and quantitative analysis will support a strong role for
the risk-pricing channel. First, we will find weak evidence of differential sensitivity
of dollar profits to misoptimizations over the business cycle (Section 2.5.3). Second,
we will find strong procyclicality of misoptimization variance. Thus, to rationalize
these facts, our quantitative model requires a strong risk-pricing channel (𝛾 = 11.5),
rejecting the dollar-cost model nested with 𝛾 = 0 (Section 2.6.1).

Alternative Cognitive Costs We have used an entropic formulation for cognitive
costs. This formulation has been axiomatized by Mattsson and Weibull (2002) as
an effort disutility of controlling mistakes. Nevertheless, our main results are not
sensitive to this modelling choice. In Flynn and Sastry (2021), we establish more
general analogs of Propositions 7 and 8 in abstract games rather than business cycle
models and allow for a more general class of likelihood-separable costs of stochastic
choice (that includes the quadratic costs introduced by Harsanyi, 1973). The core of
the argument remains the monotonicity of objective-function curvature in both the
state and output.18 In Appendix B.4.1, we further show how our results translate
in a variant of our model that accommodates cognitive inertia and persistence of
misoptimizations. This extension is useful in matching the patterns we uncover in
the data in the next section.

We also study the robustness of our results to information-acquisition costs by
examining our model with Gaussian signal extraction with costly precision (B.4.2)
and mutual-information costs as studied by Sims (2003) (B.4.3). In both cases we
provide conditions under which a greater cost of making mistakes, for instance due
to the risk-pricing mechanism we highlight, leads to firms making smaller mistakes.
We therefore argue that the conclusions of this section are robust to considering in-
formation acquisition. We do, however, note that application of unrestricted rational
inattention to the model we study is not analytically possible using any known tech-

18Our analysis in that paper also clarifies the exact kind of supermodularity (macroeconomic com-
plementarity) and discounting (concavity of the aggregate production function) required to achieve
monotone precision in a game’s unique equilibrium. A generalized version of Propositions 7 and
8 that dispenses with the approximated CES aggregator could be proven exactly using the main
results of Flynn and Sastry (2021).
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niques as our firms’ have non-Gaussian priors and non-quadratic payoff functions,
and aggregation is non-linear.

Multiple Inputs and Classical Labor Supply In Appendix B.2, we extend
the model to allow for intermediate inputs, separate capital owners and laborers,
and market-clearing wages rather than a wage rule. The first two features will be
useful in mapping the model to the data in Section 2.5, while the third enables a
more Neoclassical micro-foundation. We show under general conditions how the main
results derived in this section, regarding the cyclicality of attention of misoptimization
and the effects on output, continue to hold so long as the extent of the cognitive
friction is not too large. Together, these extensions demonstrate the stability of our
main model insights to a richer macroeconomic environment.

2.5 Testing the Model: The Misoptimization Cycle
In this section, we develop and implement tests of the model’s main predictions
using empirical proxies for “misoptimizations” by firms. We verify the two major
predictions of the model’s main case: firms on average make smaller misoptimizations
in downturns, and firms face sharper market incentives to do so in the same states.
We finally show that greater macroeconomic attention in language predicts lower
misoptimizations at the firm level.

2.5.1 Measuring Misoptimizations

Data Our dataset for public firms’ production and input choices is Compustat An-
nual Fundamentals. Compustat compiles information from firms’ financial statements
on sales, employment, variable input expenses, and capital measured via net and gross
values of plants, property and equipment (PPE). It also provides a historically con-
sistent industry classification, based on firms’ main operational NAICS codes. We
organize firms into 44 industries, which are defined at the NAICS 2-digit level but for
Manufacturing (31-33) and Information (51), which we split into the 3-digit level.19

We use a sample period from 1986 to 2018, to focus on the modern macroeco-
nomic regime after the Volcker disinflation. We view this relative stability in the
macroeconomic environment as important for measuring externally valid patterns in
macroeconomic attention and its relationship with firm-level decisionmaking. We ap-
ply standard filters to remove firms that are based outside the US, are insufficiently
large, are likely to have been involved in a merger or acquisition, or do not report one

19We drop financial firms and utilities due to their markedly different production functions and
profit structures.
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or more important pieces of data. These filters yield a final sample of 68,198 firm-
year observations, or about 2,200 per year. Appendix B.3.1 describes the procedure
in detail.

From Theory to Estimation As emphasized in our discussion of Section 2.4.1,
testing our main model mechanism requires data either on cognitive effort, in pay-
off units, or choice misoptimization. The former is at best imperfectly proxied by
observable variables like the textual attention from Section 2.2. The latter, by con-
trast, can be constructed from standard firm-level data, and moreover maps directly
to our economic predictions for cyclical misallocation and shock propagation. Thus,
our main goal in this section is to derive an empirical proxy for “misoptimizations” in
production or input-choice relative to an ex post optimal level. Our overall strategy
is to measure residuals in firms’ choices relative to empirically estimated production
and policy functions.

We assume that each firm 𝑖 at time 𝑡, within sector 𝑗(𝑖), operates a sector-specific,
constant-returns-to-scale, Cobb-Douglas production technology over labor, materials,
and capital, with total factor productivity 𝜃𝑖𝑡:

log 𝑥𝑖𝑡 = log 𝜃𝑖𝑡 + 𝛼𝐿,𝑗(𝑖) log𝐿𝑖𝑡 + 𝛼𝑀,𝑗(𝑖) log𝑀𝑖𝑡 + 𝛼𝐾,𝑗(𝑖) log𝐾𝑖𝑡 (79)

with the restriction, in each sector, that 𝛼𝐿,𝑗(𝑖)+𝛼𝑀,𝑗(𝑖)+𝛼𝐾,𝑗(𝑖) = 1.20 This generalizes
our model from Section 2.3, with a bundle of inputs replacing the single theoretical
factor of production and heterogeneity in technology across industries, as in Appendix
B.2. Next, we assume that input choice follows a policy function that is log-linear in
individual firm characteristics, industry-by-time trends, individual productivity, and
a residual 𝑚𝑖𝑡:

log𝐿𝑖𝑡 = 𝜂𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝛽 log 𝜃𝑖𝑡 +𝑚𝑖𝑡 (80)

This is a generalization of the optimal policy in our model from Section 2.3, with
input costs and demand varying at the industry-by-time and firm level. Appendix
B.3.3 derives Equation 80 exactly in such an extended model, provided that firms
cost-minimize over input bundles. In this mapping to the model, we can interpret
the residual as the firm’s percentage misoptimization from the counterfactual ex post

20The Cobb-Douglas assumption is a convenient and common step to enable production function
estimation via input-cost shares (e.g., Foster, Haltiwanger, and Krizan, 2001; Foster, Haltiwanger,
and Syverson, 2008; Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry, 2018). Moreover, a
number of studies including Basu and Fernald (1997), Foster, Haltiwanger, and Syverson (2008),
and Flynn, Traina, and Gandhi (2019) argue that constant returns to scale in physical terms is a
reasonable approximation for large, US-based firms.
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optimal level 𝐿*
𝑖𝑡, or 𝑚𝑖𝑡 ≈ 𝐿𝑖𝑡−𝐿*

𝑖𝑡

𝐿*
𝑖𝑡

. As observed in Appendix B.3.3, and readily
apparent in our main theoretical model, these are approximately equal to percentage
misoptimizations in production, or 𝐿𝑖𝑡−𝐿*

𝑖𝑡

𝐿*
𝑖𝑡

≈ 𝑥𝑖𝑡−𝑥*𝑖𝑡
𝑥*𝑖𝑡

.
In the data, for myriad reasons unmodeled in our main analysis, these residuals

are likely to be persistent. To capture this, we assume that the 𝑚𝑖𝑡 are determined
by an AR(1) process with persistence 𝜌 ∈ (0, 1) and scaled innovations 𝑢𝑖𝑡, or

𝑚𝑖𝑡 = 𝜌𝑚𝑖,𝑡−1 +
(︁√︀

1− 𝜌2
)︁
𝑢𝑖𝑡 (81)

The innovations 𝑢𝑖𝑡 are mean zero and have a variance E[𝑢2𝑖𝑡 | 𝑖, 𝑍𝑡] which varies as
a function of fixed individual characteristics and all aggregate state variables 𝑍𝑡. We
provide a formal micro-foundation for this AR(1) structure of mistakes in Appendix
B.4.1.21

Of course, the procedure described is exactly only in a stylized model of the
firm, and additional unmodeled elements like adjustment costs and financial frictions
would also manifest in the residual 𝑚𝑖𝑡 of Equation 80. While we focus on this
model interpretation and associated data construction in our main analysis, we also
estimate richer firm-level policy functions and conduct all our empirical analysis with
their implied misoptimization measures. We will return to this point when discussing
our results.

Estimation Procedure To empirically estimate our model, we proceed as follows.
First, we estimate productivity as the residual of the production function, Equation
79, after estimating input elasticities using revenue shares in each sector. Because
we model decreasing returns to scale in revenue from the product demand functions,
our measure corresponds in our model to physical-quantity TFP or “TFPQ.” We use
the standard input definitions of Keller and Yeaple (2009) and provide more details
in Appendix B.3.22

Given estimates of productivity, we estimate the system of Equations 80 and
81. We first estimate Equation 80 via ordinary least squares (OLS) and obtain a

21As long as E[𝑢2𝑖𝑡 | 𝑖, 𝑍𝑡] is sufficiently persistent, E[𝑚2
𝑖𝑡 | 𝑍𝑡] ≈ E[𝑢2𝑖𝑡 | 𝑍𝑡], where both expecta-

tions average over fixed individual characteristics indexed by 𝑖. We will use this approximation in
practice, as the one-step-ahead variance of Equation 81 is easier to measure with a relatively short
sample than the stationary variance.

22We treat labor expenditures as the product of reported employees and a sector-specific wage
calculated from the US County Business Patterns; materials expenditures as the sum of variable
costs and administrative expenses (COGS + XSGA) net of depreciation and labor expenditures;
and the capital stock as the initial gross level of plant, property, and equipment plus net investment.
Instead of imputing rental rates for capital, we impose constant returns to scale and a fixed profit
share of 0.75 (e.g., in the model, 𝜖 = 4).
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preliminary estimate �̂�0
𝑖𝑡 of the residual. We next estimate Equation 81 using �̂�0

𝑖𝑡 to
obtain an estimate 𝜌 of the residual persistence (in our main procedure, 0.70). We
next estimate via OLS the “quasi-differenced” equation for labor choice:23

log𝐿𝑖𝑡 − 𝜌 log𝐿𝑖,𝑡−1 = 𝜂𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝛽0 log 𝜃𝑖𝑡 + 𝛽1 log 𝜃𝑖,𝑡−1 + 𝜈𝑖𝑡 (82)

with residual 𝜈𝑖𝑡 = 𝑚𝑖𝑡−𝜌𝑚𝑖,𝑡−1. When 𝜌 = 𝜌, using Equation 81, 𝜈𝑖𝑡 =
(︁√︀

1− 𝜌2
)︁
𝑢𝑖𝑡.

We therefore obtain an estimate of 𝑢𝑖𝑡 as �̂�𝑖𝑡 = 𝜈𝑖𝑡√
1−𝜌2

.

Our measure of aggregate “Misoptimization Dispersion” is an estimate of the vari-
ance E[𝑚2

𝑖𝑡 | 𝑍𝑡] with weights 𝑠*𝑖𝑡 proportional to firms’ predicted sales based on fun-
damentals:24

MisoptimizationDispersion𝑡 =
∑︀

𝑖∈ℐ𝑡 𝑠
*
𝑖𝑡 · �̂�2𝑖𝑡∑︀

𝑖∈ℐ𝑡 𝑠
*
𝑖𝑡

(83)

The weights are the appropriate ones for mapping average misoptimization to misal-
location in the theory, and will aid in our subsequent structural interpretation of our
findings. In a nutshell, these weights give higher influence to larger, more productive
firms while not “double-counting” misoptimizations in both input choice and total
production. In Appendix B.1.7, we show that pro-cyclical MisoptimizationDispersion
by our empirical definition is sufficient for pro-cyclical misoptimization as defined in
Proposition 8, and thus constitutes a more stringent test of that model prediction.

Validating the Measure: Mistakes are Bad for Returns and Profitability
Before proceeding to the microeconomic and macroeconomic tests of our theory, we
first check that our measured “misoptimizations” are, as required by the theory, bad
for firm performance. We proxy for firm performance with two measures. The first is
firms’ log stock returns 𝑅𝑖𝑡. The second is firms’ “profitability” 𝜋𝑖𝑡, or earnings before
interest and taxes (EBIT), or income net of variable costs, divided by the last year’s
total variable costs.25 We examine the non-parametric binned scatter relationship of
each of these measures 𝑋𝑖𝑡 ∈ {𝑅𝑖𝑡, 𝜋𝑖𝑡} with measured misoptimization (residuals) �̂�𝑖𝑡,

23Appendix Table B.9 contains our estimates of Equations 81 and 82 under the baseline procedure
outlined in this section, along with several alternative choices used in robustness checks. In all
estimations, we drop the top and bottom 1% tails of the TFP distribution to limit the effects of
outliers. Results are quantitatively highly similar without this trimming.

24In particular, the weights are the exponentiated fitted values exp(𝛽 log 𝜃𝑖𝑡) from the following
regression equation: log Sales𝑖𝑡 = 𝛽 log 𝜃𝑖𝑡 + 𝜂𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜖𝑖𝑡.

25Variable costs, by our definition, are cost of goods sold (COGS) plus administrative expenses
(XSGA) net of depreciation (DP). In other words, they are the sum of what we term “materials” and
labor expenses in the production function. Normalization by lagged costs, rather than current costs,
limits mechanical denominator bias related to the current period’s mistakes. Results are similar
when normalizing by total sales or costs in the current or previous period.
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Figure 2-2: Binned Scatter Plots of Misoptimization and Firm Performance
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Notes: Both panels are binned scatter plots. The outcome variables are log stock returns
(Panel A) and profitability (Panel B). Dots represent means of the corresponding outcome
conditional on ventiles of the 𝑥-axis variable, �̂�𝑖𝑡, and industry-by-time fixed effects. The
construction of �̂�𝑖𝑡 is described in Section 2.5.1.

net of industry-by-time fixed effects 𝜒𝑗(𝑖),𝑡:

𝑋𝑖𝑡 = 𝑓(�̂�𝑖𝑡) + 𝜒𝑗(𝑖),𝑡 + 𝜖𝑖𝑡 (84)

where 𝑓 is a piecewise-constant function defined over ventiles of �̂�𝑖𝑡. Figure 2-2
shows this binned scatterplot relationship for each variable. Misoptimizations in
both directions (i.e., under- or over-hiring labor) hurt firm performance, measured in
each way.26

There are two potential threats to this interpretation. First, misoptimization vari-
ance could correlate with current or future productivity growth, and only through
this channel affect firm performance. Second, misoptimizations may harm profitabil-
ity and returns on impact in return for future improved performance. To investigate
these hypotheses, we estimate projection regressions of productivity growth, prof-

26In Appendix Table B.1, we show that the result of a negative relationship between �̂�2𝑖𝑡 and
{𝑅𝑖𝑡, 𝜋𝑖𝑡} is robust to different choices of control variables.
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itability and returns on �̂�2𝑖𝑡, net of industry-by-time fixed effects:27

𝑋𝑖,𝑡+𝑘 = 𝛽𝑋,𝑘 · �̂�2𝑖𝑡 + 𝜒𝑗(𝑖),𝑡 + 𝜖𝑖𝑡 (85)

for 𝑋𝑖,𝑡+𝑘 ∈ {∆ log 𝜃𝑖,𝑡+𝑘, 𝜋𝑖,𝑡+𝑘, 𝑅𝑖,𝑡+𝑘} and 𝑘 ∈ {0, 1, 2}.28 We find no evidence of a
quantitatively large effect on current and future TFP growth (Appendix Table B.2).
We also find strong evidence of persistent negative effects on profitability and stock
returns. These results rule out the possibility that the observed negative effect of
�̂�2𝑖𝑡 operates through a channel related to current or future productivity or dynamic
trade-offs between poor performance today and improved future performance.

2.5.2 Misoptimizations Rise in Booms and Fall in Downturns

We now study the model’s macroeconomic prediction for the behavior of aggregate
misoptimizations. Figure 2-3 plots aggregate Misoptimization Dispersion, measured
at the annual frequency, against the annual average unemployment rate and (de-
trended) end-of-year S&P 500 price. Misoptimization Dispersion rises when the real
economy and financial markets are doing well (e.g., the late 1990s), falls during reces-
sionary or financial crisis periods (e.g., 1990, 2001, and 2008), and is approximately
as persistent as the overall business cycle.

We benchmark the slope of this relationship with the business cycle by estimating
a linear regression of Misoptimization Dispersion on each macroeconomic variable.
Specifically, we estimate

MisoptimizationDispersion𝑡 = 𝛼 + 𝛽𝑍 · 𝑍𝑡 + 𝜖𝑡 (86)

for 𝑍𝑡 ∈ {Unemployment𝑡/100, log SPDetrend𝑡}, over our 31 annual observations. We
estimate a slope of -0.841 (SE: 0.341, 𝑝 = 0.02) with respect to unemployment and
0.064 (SE: 0.017, 𝑝 = 0.001) with respect to the detrended S&P 500. The respective
correlations are -0.493 and 0.689. The regression on unemployment implies that
a five percentage point swing in unemployment is associated with an increase of
Misoptimization Dispersion by 0.042 log points, or 53% of its sample mean value.
Appendix Figure B-5 shows that the same pro-cyclical pattern is apparent in other

27For this and all subsequent panel regressions, we drop observations in the 1% tail of both the
outcome and main regressor to limit the effect of outliers, which are likely driven in this context by
measurement errors (both sides for symmetric variables; only the upper tail for positive variables).

28While misoptimizations were constructed to be orthogonal to measured total factor productiv-
ity, their squared values do not necessarily have this property; moreover, there is no mechanical
relationship between misoptimizations today and productivity tomorrow.
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Figure 2-3: Misoptimization Dispersion is Pro-Cyclical
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Notes: The top two panels plot Misoptimization Dispersion (blue line, left axis) along with,
respectively, unemployment and the linearly detrended S&P 500 price (black dashed lines,
right axis). The bottom two panels are scatterplots of Misoptimization Dispersion versus
the corresponding macroeconomic aggregate. The black solid line is the linear regression fit.
The standard errors are HAC robust based on a Bartlett kernel with a three-year bandwidth.

measures of dispersion, the (weighted) mean of |�̂�𝑖𝑡| and inter-quartile range of �̂�𝑖𝑡.

These findings are consistent with the model prediction for attention and misop-
timization in Proposition 8. Of course, outside of our model, any time-varying mis-
specification of our model for production and policy functions could also generate
the observed pattern, while demanding a different economic interpretation. Before
proceeding to a direct test of our model’s proposed microeconomic mechanism, we
review evidence that supports our “attention cycles” interpretation of the finding in
favor of other economic mechanisms for misoptimization or mismeasurement.

Robustness to Incorporating Other Frictions If firms pay significant physi-
cal costs to adjust ostensibly “variable” inputs like labor (e.g., as in Hopenhayn and
Rogerson, 1993), then “misoptimizations” by our measure may pick up frictional ad-
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justment and their corresponding effect on firms’ optimality conditions. To capture
such adjustment costs in reduced form, we add the first lag of labor choice to the
policy function (80):

log𝐿𝑖𝑡 = 𝜂𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝛽 log 𝜃𝑖𝑡 + 𝜏 log𝐿𝑖,𝑡−1 +𝑚𝑖𝑡 (87)

If Equation 87 were the true model of input choice, and we had instead estimated
our main model Equation 80, then variation in 𝜏 log𝐿𝑖,𝑡−1 not spanned by current
productivity (or the absorbed effects) would be part of the misoptimization 𝑚𝑖𝑡. Some
of this variation would be truly spanned by previous productivity shocks and be mis-
represented as a cognitive error, while the remainder of the variation would be a “bad
control” spanned by persistent lagged cognitive errors. With these caveats in mind,
we recalculate Misoptimization Dispersion using the same methods described above
starting with the policy function Equation 87.29

We find that new, more adjustment-cost robust measure of Misoptimization Dis-
persion is strongly pro-cyclical. The regression coefficient of this version of Misopti-
mization Dispersion on unemployment is -0.439 (SE: 0.196), attenuated relative to our
baseline estimate (-0.841) but statistically indistinguishable from it. Moreover, the
new measure has an almost identical correlation with unemployment (-0.468) as our
baseline does (-0.493), suggesting that the aforementioned attenuation comes from
the smaller scale of the alternatively measured mistakes and not from a diminished
cyclicality in normalized units.

A second prediction of a model with costly adjustment is that firms might trade-off
misoptimizations today to ensure better performance in the future (e.g., by smoothing
response to productivity news). This hypothesis is inconsistent with the already
presented evidence that misoptimizations had persistent negative effects on firm stock
returns and profitability, instead of mean-reverting effects (Table B.2).

We next consider financial frictions, broadly defined as state-dependent constraints
or costs of financing input purchases. To capture financial frictions, we add a direct
control for leverage (total debt over total assets), as constructed by Ottonello and
Winberry (2020), and its interaction with TFP, in the policy function (80):

log𝐿𝑖𝑡 = 𝜂𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝛽 log 𝜃𝑖𝑡 + 𝜏Lev𝑖𝑡 + 𝜑 · (Lev𝑖𝑡 × log 𝜃𝑖𝑡) +𝑚𝑖𝑡 (88)

29The residuals from Equation 87 have negligable autocorrelation (AR(1) coefficient 0.016, as
reported in Table B.9), and imply a lower misoptimization variance than our baseline measure (a
mean of 0.036 across years, compared to 0.080 for the baseline).
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This specification allows for more levered firms to face, effectively, a “TFP adjustment”
(direct effect) and have different responsiveness to TFP shocks (interactive effect).
If Equation 88 were the true model of input choice, and we had instead estimated
the main model Equation 80, then both the direct effect and changing responsiveness
to TFP (if not spanned by fixed effects) would be erroneously attributed to the
cognitive friction. When Misoptimization Dispersion is recalculated with the leverage-
augmented policy function, its regression coefficient on unemployment is -0.841 (SE:
0.341), almost identical to that of our main model. This suggests, consistent also with
the standard narrative that financial frictions create wedges primarily in recessions,
that time-varying financial frictions do not explain our results.

Robustness to Alternative Measurement Strategies To investigate the possi-
bility that time-varying mismeasurement explains our findings, we consider the follow-
ing set of alternative econometric strategies in estimating the policy and production
functions: (i) estimating sector-specific policy functions, to combat against different
market conditions and/or measurement error in TFP; (ii) allowing firm responsive-
ness to TFP to vary by year, to capture time variation in the same;30 (iii) allowing for
TFP to affect the policy function non-linearly, to capture asymmetric hiring and firing
rules as found by Ilut, Kehrig, and Schneider (2018); (iv) allowing output elasticities
to change over time, to capture changes in production technology like automation;
(v) estimating production functions and policy functions in a pre-sample, while esti-
mating misoptimization in a post sample, to avoid mechanical over-fitting; (vi) and
calculating productivity using the proxy-variable method of Olley and Pakes (1996),
to guard against over-reliance on cost shares and the necessary imputation of returns
to scale. We finally consider two alternative specifications of the main regression,
the first with linear and quadratic time-trend controls, which can absorb confounding
low-frequency trends, and the second restricting to the manufacturing sector, which
has been the focus of much of the literature on misallocation (e.g., Hsieh and Klenow,
2009; Kehrig, 2015). Appendix Table B.3 demonstrates the stability of our main
finding, pro-cyclical misoptimization, under each scenario.

Robustness to Compositional Adjustment One issue affecting the interpre-
tation of volatility time-series among US public firms is the large change in these
firms’ composition. In particular, previous research suggests that US public firms be-
came more volatile in sales growth, employment growth, and stock returns over time,

30Decker, Haltiwanger, Jarmin, and Miranda (2020), in particular, note a secular pattern of “de-
clining business dynamism” or declining responsiveness to TFP, which in principle could contaminate
our results.
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and that these trends can be statistically explained by cohort-of-entry (Davis, Halti-
wanger, Jarmin, Miranda, Foote, and Nagypal, 2006) and/or firm-specific (Brown
and Kapadia, 2007) effects. To guard against the possibility that these compositional
trends spuriously drive our findings, we calculate a variant of macroeconomic atten-
tion based on the component of misoptimizations residualized from firm fixed effects,
or �̂�2𝑖𝑡,⊥ defined below

�̂�2𝑖𝑡 = 𝛾𝑖 + �̂�2𝑖𝑡,⊥ (89)

The new measure of Misoptimization Dispersion, calculated from 𝑢2𝑖𝑡,⊥, has correlation
0.91 with our original version. This measure’s regression slopes against unemployment
and the detrended level of the S&P 500 are -0.520 (SE: 0.206) and 0.040 (SE: 0.009),
of the same sign as and of comparable magnitude to our baseline estimates.

Robustness to Studied Time Period Our main analysis uses firm data from
1986 to 2018. Our choice has two motivations. First, the compositional changes and
associated drift in firm-level volatility among public firms is more pronounced earlier
in the sample (Davis, Haltiwanger, Jarmin, Miranda, Foote, and Nagypal, 2006).
Second, macroeconomic policy and therefore dynamics differ markedly before and
after the Volcker disinflation. Nevertheless, we can extend our analysis to measure
Misoptimization Dispersion for the entire Compustat sample from 1950 to 2018.31 To
allay the concerns about composition, we use the compositional adjustment strategy
described in Equation 89. We plot our resulting Misoptimization Dispersion series in
Figure B-6. We continue to find strong evidence of pro-cyclicality. Replicating the
regressions against the unemployment rate and detrended S&P 500 price, we obtain
coefficients of -0.571 (SE: 0.197) and 0.052 (SE: 0.014). Both estimates are within
one standard error of our baseline estimates.

Misoptimization in Other Input Choices We focused on misoptimization in
labor choice because it is the only input or output measured in quantity units in our
dataset. The model implied that we could measure misoptimization in any variable
input choice. As a robustness exercise, we recalculate misoptimizations and Misop-
timization Dispersion using as the choice variable total variable cost expenditures
(i.e., materials plus labor) and investment rates (i.e., log growth rates of the capital
stock). We plot the resulting variations of Misoptimization Dispersion in Appendix
Figure B-7. We find broadly similar patterns, particularly in the spike of the mid-
1990s and falls in the 2002 and 2009-10 downturns. The result with investment rates

31One minor difference in the calculation is that, due to lack of sectoral wage data, we calculate
TFP with two factors, materials (inclusive of labor) and capital.
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echoes findings by Eisfeldt and Rampini (2006) and Bachmann and Bayer (2014),
using comparable data on US public firms, that investment rates are more dispersed
in booms than in downturns. Our model’s explanation, complementary to that of the
literature, is that much of the apparent “reallocation” of capital in booms is unrelated
to fundamentals and therefore a cause of misallocation, whereas the less dispersed
investments in downturns are more related to fundamentals and therefore a cause of
better allocation.

2.5.3 Misoptimization is More Costly in Bad States

We have established that, by our measure, firms make smaller misoptimizations in
downturns. We now investigate the extent to which this is explained by our model
mechanism: that firms have higher financial incentives to avoid misoptimization in
downturns. We will also investigate, more specifically, the extent to which such incen-
tives are separately driven by the model’s risk-pricing and profit-curvature channels.

Markets Punish Mistakes More When Aggregate Returns Are Low We
first test whether misoptimizations have a state-dependent effect on stock returns—
heuristically, whether the relationship between misoptimizations and stock returns
(Figure 2-2) steepens in bad states. Specifically, we relate a firm’s log stock return
𝑅𝑖𝑡 with the firm’s squared misoptimization innovation over that year interacted with
the log aggregate (S&P 500) stock return 𝑅𝑡:32

𝑅𝑖𝑡 = 𝛽 · �̂�2𝑖𝑡 + 𝜑 ·
(︀
�̂�2𝑖𝑡 ×𝑅𝑡

)︀
+ 𝜒𝑗(𝑖),𝑡 + Γ′𝑋𝑖𝑡 + 𝜖𝑖𝑡 (90)

Sector-by-time fixed effects partial out industry trends. The vector of control variables
𝑋𝑖𝑡 can include firm fixed effects and the growth rate of firm-level TFP, to partial
out other important determinants of returns. As we have shown, the marginal effect
of misoptimization on the stock price is negative. The hypothesis that the market
punishes misoptimization more severely in times of distress, or low 𝑅𝑡, is captured
by 𝜑 > 0. In the expanded model of Appendix B.2, we directly derive the regression
equation and the prediction 𝜑 ≥ 0, with equality only if investors are risk-neutral
(there is no risk-pricing channel) and profit sensitivity to mistakes is state-independent
(there is no profit-curvature channel).

Table 2.1 shows our estimates. In all four specifications, with and without firm
fixed effects and productivity controls, we verify that 𝜑 > 0: misoptimization is priced

32To be consistent with our earlier analysis, we run this regression using re-scaled mistake inno-
vations �̂�𝑖𝑡. In Appendix Table B.4, we replicate the analysis using our (first-stage) estimates of the
mistake “level” �̂�𝑖𝑡 and find qualitatively similar results.
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Table 2.1: Markets Punish Misoptimization Harder in Low-Return States

(1) (2) (3) (4)
Outcome: 𝑅𝑖𝑡

�̂�2𝑖𝑡 -0.268 -0.262 -0.097 -0.087
(0.025) (0.023) (0.034) (0.033)

�̂�2𝑖𝑡 ×𝑅𝑡 0.376 0.376 0.443 0.431
(0.123) (0.124) (0.171) (0.167)

Sector x Time FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓

TFP Control ✓ ✓

𝑁 41,578 41,578 41,206 41,206
𝑅2 0.239 0.261 0.385 0.403

Notes: 𝑅𝑖𝑡 is the firm-level log stock return. �̂�2𝑖𝑡 is the squared firm-level misoptimization
residual, constructed using the methods described in Section 2.5.1. 𝑅𝑡 is the log return of
the S&P 500. Standard errors are double-clustered at the year and firm level.

more severely in states of low aggregate returns.33 Our estimates in column (3), in
particular, suggest that mistakes have a zero price if the S&P return is 22%, close to
its value in the late 1990s or the height of the dot com bubble. By contrast, in the
trough of 2008 (𝑅𝑡 = −0.52), the model implies that pricing is 6.2 times more severe
than in the “usual” states of 𝑅𝑡 ≈ 0.10.

In the Appendix, we report a number of robustness exercises. First, Appendix
Table B.5 shows the stability of our main finding of 𝜑 > 0 to the alternative data-
construction approaches highlighted in the previous subsection. Second, Appendix
Figure B-8 reports the estimates of the effect of misoptimizations on returns for every
year in our sample. The effects are negative in every year and, in line with our result
from the continuous-interaction regression, visibly greatest when the S&P 500 return
is low. Third, in Appendix Table B.6, we show that our finding of 𝜑 > 0 is robust
to controlling for other plausible heterogeneities in the effects of misoptimizations
on stock returns. In particular, we control for the level and �̂�2𝑖𝑡-interaction of TFP,
lagged stock returns, and financial leverage to control for the observed tendencies
for negative-return firms to have higher volatility (the leverage effect) and binding
financial constraints; and we control for interactions of �̂�2𝑖𝑡 with industry and firm
fixed effects to model heterogeneous exposure to aggregates.

33Similar results are obtained using mistake “levels” as discussed in Footnote 32 (columns 3-6 of
Appendix Table B.4)
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Table 2.2: Misoptimization, Profits, and Pricing

(1) (2) (3) (4)
Outcome: 𝜋𝑖𝑡 Outcome: 𝑅𝑖𝑡

�̂�2𝑖𝑡 -0.114 -0.021
(0.020) (0.032)

�̂�2𝑖𝑡 ×𝑅𝑡 0.112
(0.089)

𝜋𝑖𝑡 0.400 0.421 0.690
(0.028) (0.034) (0.305)

𝜋𝑖𝑡 ×𝑅𝑡 -0.303 -1.642
(0.166) (0.632)

Firm FE ✓ ✓ ✓ ✓
Sector x Time FE ✓ ✓ ✓ ✓

𝑁 50,966 40,879 40,879 40,879
𝑅2 0.663 0.402 0.402

First-stage 𝐹 17.80

Notes: 𝜋𝑖𝑡 is firm-level profitability and 𝑅𝑖𝑡 is the firm-level log stock return. �̂�2𝑖𝑡 is the
squared firm-level misoptimization residual, constructed using the methods described in
Section 2.5.1. 𝑅𝑡 is the log return of the S&P 500. Standard errors are double-clustered at
the year and firm level.

Unpacking the Mechanism: Profitability vs. Returns Interpreted via our
model, the result in Table 2.1 implies that at least one of the risk-pricing or profit-
curvature channels drive changes in the cost of mistakes.

To differentiate these explanations, we now explore the extent to which profitabil-
ity is more sensitive to mistakes during downturns. To this end, we define profitability
𝜋𝑖𝑡, as before, as this year’s EBIT divided by the last year’s total variable costs. We
study the state-dependent effects of misoptimizations on profitability using the fol-
lowing regression model that mirrors our previous analysis of stock returns:

𝜋𝑖𝑡 = 𝛽𝜋 · �̂�2𝑖𝑡 + 𝜑𝜋 ·
(︀
�̂�2𝑖𝑡 ×𝑅𝑡

)︀
+ 𝜒𝑗(𝑖),𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡 (91)

Heuristically, 𝜑𝜋 > 0 isolates the dollar-profit-curvature channel of Proposition 6 and
Corollary 4. In the expanded model of Appendix B.2, we derive the prediction 𝜑𝜋 ≥ 0

with equality if the profits function, in dollars, has state-independent curvature.

We report the results in the first column of Table 2.2: a positive, but small
and statistically insignificant, 𝜑𝜋. Thus misoptimizations have a constant effect on
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firms’ dollar income up to statistical precision. This suggests that the mechanism for
our earlier finding of state-dependent market punishment relates specifically to the
market’s greater reaction to fixed profit effects of misoptimizations.

We next estimate a sequence of models that explore the joint effects of misop-
timizations and profitability on stock returns. Our first model regresses firm stock
returns on �̂�2𝑖𝑡 and 𝜋𝑖𝑡 conditional on firm and sector by time fixed effects. We find
that, conditional on profitability, misoptimizations have a severely attenuated, and
statistically indistinguishable from zero, effect on stock returns (column 2 of Table
2.2). This is consistent with the model interpretation that misoptimizations matter
for prices by reducing current profits.

We next explore the market response to profit anomalies, relative to fixed firm
profitability and industry trends, without taking a stand structurally on how those
anomalies arise. Our estimating equation is the mirror of Equation 90 with profitabil-
ity in place of misoptimizations:

𝑅𝑖𝑡 = 𝛽𝜋→𝑃 · 𝜋𝑖𝑡 + 𝜑𝜋→𝑃 · (𝜋𝑖𝑡 ×𝑅𝑡) + 𝜒𝑗(𝑖),𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡 (92)

again estimated with firm fixed effects as the control variables. We recover the pat-
tern that the market prices more aggressively respond to profitability when aggregate
returns are low, or an estimate of 𝜑𝜋→𝑃 < 0 (column 3 of Table 2.2). This val-
idates, without any intermediate structural estimation of production functions or
misoptimization, the idea that the market values “firm performance” more acutely in
low-return environments.

We finally present an instrumental variables (IV) estimate of cyclical market re-
sponse to directly quantify the pathway from misoptimizations to state-dependently-
priced profitability to stock returns. Specifically, defining 𝑍𝑖𝑡 as the vector of regres-
sors (𝜋𝑖𝑡, 𝜋𝑖𝑡 × 𝑅𝑡) and 𝑊𝑖𝑡 as the vector of instruments (�̂�2𝑖𝑡, �̂�

2
𝑖𝑡 × 𝑅𝑡), we augment

the now “second-stage” Equation 92 with a “first-stage” equation

𝑍𝑖𝑡 = 𝑊 ′
𝑖𝑡𝐴+ 𝜒𝑗(𝑖),𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡 (93)

The first stage 𝐹 -statistic is 17.8, owing to the strong relationship between misopti-
mizations and profitability. Our IV estimates of (𝛽𝜋→𝑃 , 𝜋𝜋→𝑃 ), while not very pre-
cisely estimated, suggest if anything a greater state-dependence of the market re-
sponse to misoptimization compared to the market response to other determinants
of profits (column 4 of Table 2.2). We interpret this result, along with the others in
this subsection, as empirical validation of the model’s microeconomic mechanism for
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Table 2.3: Macro-Attentive Firms Make Smaller Misoptimizations

(1) (2) (3) (4)
Outcome: �̂�2𝑖𝑡

logMacroAttention𝑖𝑡 -0.0081 -0.0052 -0.0058 -0.0056
(0.0028) (0.0029) (0.0044) (0.0038)

Sector x Time FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓

TFP, Return Controls ✓ ✓

𝑁 28,279 24,392 27,875 23,930
𝑅2 0.053 0.067 0.383 0.384

Notes: �̂�2𝑖𝑡 is the squared firm-level misoptimization residual, constructed using the methods
described in Section 2.5.1. logMacroAttention𝑖𝑡 is the measure of firm-level macroeconomic
attention, constructed using the methods described in Section 2.2.1. Standard errors are
double-clustered at the year and firm level.

state-dependent attention and misoptimization.

2.5.4 Macro Attention Predicts Smaller Misoptimizations

We finally investigate the relationship between misoptimization, which we could link
directly to the model, and Macroeconomic Attention from Section 2.2, which moti-
vated our analysis but did not have a formal analogue in the model. To this end,
we estimate the following empirical model of �̂�2𝑖𝑡, the squared innovation of the firm’s
model-implied misoptimization, and the log of measured firm-level attention:

�̂�2𝑖𝑡 = 𝛽𝑎 · logMacroAttention𝑖𝑡 + 𝜒𝑗(𝑖),𝑡 + Γ′𝑋𝑖𝑡 + 𝜖𝑖𝑡 (94)

Absorbed effects at the sector-by-time level partial out all trends, including the cycli-
cal patterns studied earlier. Additional controls 𝑋𝑖𝑡 can include individual fixed
effects, to isolate variation at the firm level; and log stock returns and TFP growth,
to help further isolate variation in attention unrelated to firm-level fundamentals.

We find that 𝛽𝑎 < 0: higher macroeconomic attention corresponds with smaller
production misoptimization (Table 2.3). The main specification in column (1) finds
a strongly statistically significant effect (𝑝 <0.01). The more controlled specifications
in columns (2) to (4) estimate negative, similarly sized effects, but with considerably
less precision.

Appendix Table B.7 explores the timing of this relationship. We find only weak
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evidence of anticipatory effects, or high attention preceding years of low misoptimiza-
tions, and strong evidence of persistent effects, or high attention following years of
low misoptimizations. Appendix Table B.8 shows that results are similar using our
conference-call-based measure of attention as well as all considered alternative models
for the misoptimizations.

2.5.5 Discussion and Relationship with the Literature

Before proceeding, we first show our findings are consistent with those from the
literature on uncertainty and productivity over the business cycle. Second, we relate
our model’s predictions to the cyclicality of forecast and backcast errors and the
demand for information.

Dispersion in Fundamentals Versus Misoptimizations Bloom, Floetotto, Jaimovich,
Saporta-Eksten, and Terry (2018), using micro-data in the manufacturing sector, es-
timate that the variance in total factor productivity rises in recessions or periods
of negative growth.34 Our analysis, by contrast, studies variance in input choices
conditional on productivity, the variance of which varies over time.

To demonstrate the empirical consistency of these sets of findings, we follow
Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018) and estimate a first-
order autoregressive model for TFP with firm and sector-by-time fixed effects:

log 𝜃𝑖𝑡 = 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜌𝜃 log 𝜃𝑖,𝑡−1 + 𝜖𝑖𝑡 (95)

We estimate “TFP Innovation Variance” as the weighted average, E[𝑠*𝑖𝑡𝜖2𝑖𝑡]/E[𝑠*𝑖𝑡].
Based on the model interpretation of our TFP measurement, this corresponds to
the variance of TFPQ.

Appendix Figure B-9 plots our estimate of TFP Innovation Variance against
the unemployment rate and detrended stock price. TFP Innovation Variance spikes
markedly in the 2002 and 2007-09 recessions, as well as in the 1990s boom. Our mea-
sure is weakly and insignificantly counter-cyclical by our measure, with a regression
coefficient of 0.051 (SE: 0.153) on unemployment; and it is weakly and insignificantly
higher in US recessions, with a regression coefficient on an NBER recession indicator
of 0.010 (SE: 0.009).

Our measure of TFP dispersion has a correlation of 0.39 with the equivalent mea-

34Kehrig (2015) reports that dispersion in levels of TFPR, or the marginal value product of all
inputs under a Cobb-Douglas assumption, is counter-cyclical. In Appendix B.6.3, we study how this
object, as well as the related calculation for the value marginal product of labor, behaves in our
data.
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sure from Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018) over a
common sample, and this correlation increases to 0.47 if we restrict in our data to
the manufacturing sector.35 This suggests that our measurement of TFP stochastic-
ity among US public firms is consistent with the measurement of Bloom, Floetotto,
Jaimovich, Saporta-Eksten, and Terry (2018) using Census data in the manufacturing
sector. The Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018) measure
is weakly and insignificantly pro-cyclical based on its regression coefficient on un-
employment (coefficient: -0.309, SE: 1.209) and, as reported by Bloom, Floetotto,
Jaimovich, Saporta-Eksten, and Terry (2018), larger in recessions (coefficient: 0.098,
SE: 0.022).

Forecast Errors and Backcast Errors Our model made no specific prediction
about the accuracy of firm-level forecasts over the business cycle. To illustrate this,
consider a firm’s expectation in period 𝑡 of its production in period 𝑡 + 𝑘, for 𝑘 > 0,
conditional on the observed history of the decision state 𝑧𝑖𝑡 (firm-level TFP, aggregate
output, and aggregate wages). Writing E𝑖𝑡[·] as a shorthand for the firms’ expectation
conditional on this history and applying Proposition 6, we can write the firm’s realized
forecast error as

𝑥𝑖,𝑡+𝑘 − E𝑖𝑡 [𝑥𝑖,𝑡+𝑘] =
(︀
𝑥*𝑖,𝑡+𝑘(𝑧𝑖𝑡)− E𝑖𝑡

[︀
𝑥*𝑖,𝑡+𝑘(𝑧𝑖,𝑡+𝑘)

]︀)︀
+ 𝜎𝑖(𝑧𝑖,𝑡+𝑘) · 𝑣𝑖,𝑡+𝑘 (96)

The first term is the forecast error about the optimal level of production, 𝑥*𝑖,𝑡+𝑘,
which itself depends on unknown firm-level productivity, aggregate output, and ag-
gregate wages. The second term is the firms’ future misoptimization, the product of
state-dependent volatility 𝜎𝑖(𝑧𝑖,𝑡+𝑘) and the idiosyncratic noise 𝑣𝑖,𝑡+𝑘. As the noise is
uncorrelated with 𝑥*, the variance of these errors decomposes into two terms which
we label below

E
[︀
(𝑥𝑖,𝑡+𝑘 − E𝑖𝑡 [𝑥𝑖,𝑡+𝑘])2

]︀
= E

[︁(︀
𝑥*𝑖,𝑡+𝑘(𝑧𝑖,𝑡+𝑘 − E𝑖𝑡

[︀
𝑥*𝑖,𝑡+𝑘

]︀)︀2]︁⏟  ⏞  
Fundamental Risk

+ (𝜎𝑖(𝑧𝑖,𝑡+𝑘))
2⏟  ⏞  

Misoptimization Risk

(97)

Our main aggregate empirical finding was that the second term, on average across
firms, is high in booms and low in downturns. The finding of both prior work in the
literature (Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry, 2018), and our

35The common sample for comparing our measure with the one in Bloom, Floetotto, Jaimovich,
Saporta-Eksten, and Terry (2018) is 1987-2010. The measure from Bloom, Floetotto, Jaimovich,
Saporta-Eksten, and Terry (2018) that we study is the variance (square of standard deviation) of
TFP innovations on the sample of establishments that are in the Bloom, Floetotto, Jaimovich,
Saporta-Eksten, and Terry (2018) data for 25 years.
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own reconstruction of these findings above, is that the first term is high in downturns
and low in booms. Because of these countervailing forces, our main hypotheses about
misoptimizations cannot be tested by evaluating the cyclicality of forecast errors.36

By contrast, firm-level backcasts of specific state variables, like external macroe-
conomic conditions, may have a more direct interpretation as “attentiveness.” In
Appendix B.7, we show two pieces of evidence consistent with our analysis in the
survey of firms in New Zealand conducted by Coibion, Gorodnichenko, and Kumar
(2018a). First, firms that report a higher sensitivity of firm profits to their own
choices (in this case, posted prices), demonstrate higher awareness of macroeconomic
aggregates. This is consistent with the profit curvature case of our model. Second,
firms report that they would be significantly more likely to seek out news about the
macroeconomy if there were an aggregate negative shock. This is consistent with the
sign of our Attention and Misoptimization Cycles.

2.6 Quantifying the Consequences of Attention Cy-

cles
The previous section verified the model’s microeconomic and macroeconomic predic-
tions for misoptimization, which governed the model’s implications for output and
productivity dynamics. In this section, we quantify the consequences of attention
cycles in a numerical calibration of our model. Our strategy is to match the aggre-
gate level and cyclicality of misoptimization-induced dispersion in production, which
control the size and dynamics of the attention wedge. We find that attention cycles
generate: asymmetrically large amplification of negative shocks; greater amplification
of shocks when output is low; and endogenously higher volatility when output is low.
Each of these features arises from the endogenous adjustment of attention, and would
be missing in the full-attention model benchmark.

2.6.1 Calibration

In our calibration, as in our theoretical results of Section 2.4, the aggregate state vari-
able 𝜃𝑡 =

(︀
E𝐺𝑡 [𝜃𝜖−1

𝑖𝑡 ]
)︀ 1
𝜖−1 is a one-dimensional sufficient statistic for the productivity

distribution. We assume that log 𝜃𝑡 follows a zero-mean, Gaussian AR(1) process:

log 𝜃𝑡 = 𝜌𝜃 log 𝜃𝑡−1 + 𝜈𝑡 (98)

36See Charoenwong, Kimura, Kwan, and Tan (2021) for an analysis of cyclicality in forecast error
variance.
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where 𝜈𝑡 ∼𝐼𝐼𝐷 𝑁(0, 𝜎2
𝜃). Note that, in this formulation, the shocks 𝜈𝑡 may reflect

changes to any moment of the productivity distribution that induce changes in the
aggregate 𝜃𝑡, such as a standard shock to average productivity or an “uncertainty
shock” to productivity dispersion as studied by Bloom, Floetotto, Jaimovich, Saporta-
Eksten, and Terry (2018). Since we will study purely macroeconomic phenomena, we
can therefore be agnostic about what shocks to the productivity distribution induce
the dynamics of Equation 98.

The model has six parameters.37 We calibrate two to standard values and match
four to measured moments, as reviewed in Table 2.4 and explained below.

The first calibrated parameter is the elasticity of substitution between products.
We set 𝜖 = 4, which implies an optimal average markup of 𝜖

𝜖−1
= 4

3
. This is conser-

vative relative to estimates by De Loecker, Eeckhout, and Unger (2020) (1.60) and
Demirer (2020) (1.45) for modern markups for US public firms, and slightly larger
than the estimate by Edmond, Midrigan, and Xu (2018) on the same dataset (1.25).
The elasticity of substitution controls the translation of misoptimization into out-
put and productivity, with a lower value translating a fixed level of dispersion of
production levels around ex post optimal levels into a larger penalty for output and
productivity. We next set the persistence of the productivity shock, at the quarterly
frequency, to a standard value of 𝜌 = 0.95.38

The four remaining free parameters are the elasticity of real wages to output 𝜒, the
average attention cost 𝜆, the coefficient of relative risk aversion 𝛾, and the volatility
of the productivity process 𝜎2

𝜃 . We set these four parameters in the model to match
four simulated moments with exact analogues in the data, as described in Table 2.4,
and fit the model exactly up to machine precision.

Two of these parameters, 𝜒 and 𝜎2
𝜃 , have a relatively simple interpretation. For the

first, we match directly an OLS regression of linearly detrended real wages on linearly
detrended GDP, at the quarterly frequency over our studied period 1987-2018.39 Our
estimate of 0.095 lines up with recent evidence on the “flattening” of the wage Phillips
curve (Galí and Gambetti, 2019). For the second, we match the variance of quarterly

37The constants �̄� and �̄� in the wage rule scale overall production in equilibrium, but are otherwise
irrelevant (see Proposition 6). We set �̄� and �̄� to match the wage and output prevailing in a
frictionless market economy with Greenwood, Hercowitz, and Huffman (1988) preferences over labor
and leisure and elasticity of labor supply 𝜑 = 1, evaluated at state log 𝜃 = 0.

38We study quarterly dynamics to compare our predictions to standard results about business-
cycle asymmetries, although our measurement was annual. As our measurement is based on the
long-run, cross-sectional variance of misoptimizations, the frequency of calibration is immaterial.

39Our real wage series is the median weekly real earnings for wage and salary workers over the
age of 16, as reported by the US BLS.
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Table 2.4: Parameters for Calibration

Fixed 𝜖 Elasticity of substitution 4
Parameters 𝜌𝜃 Persistence of productivity 0.95

𝜒 Elasticity of real wages to output 0.095
Free 𝜆 Average weight on entropy penalty 0.406

Parameters 𝛾 Coefficient of relative risk aversion 11.5
𝜎2
𝜃 Variance of the productivity innovation 4.82× 10−7

𝛽𝑈 Slope of Misopt. Dispersion on -Unemployment
100

0.841
Matched �̄�2

𝑀 Average level of Misopt. Dispersion 0.080
Moments 𝜒 Regression of detrended real wages on detrended output 0.095

𝜎2
𝑌 Variance of quarterly output growth 0.337

Notes: “Fixed Parameters” are externally set. “Free Parameters” are chosen to fit the
“Matched Moments,” which are calculated from the data and matched exactly by the model.

real GDP growth over our sample period by scaling the shock variance 𝜎2
𝜃 .

The key properties of inattention and misallocation are controlled by the remain-
ing two moments. In the model, we calculate the average level of Misoptimization
Dispersion, or optimal-sales-weighted dispersion in 𝐿𝑖𝑡−𝐿*

𝑖𝑡

𝐿*
𝑖𝑡

, and the population regres-
sion coefficient of Misoptimization Dispersion on log employment.40 We match these
moments respectively to the time-series average of Misoptimization Dispersion, 0.080,
and the (negative) slope of Misoptimization Dispersion in unemployment, 0.841. In-
tuitively, these moments identify the level of misoptimization and the extent of its
cyclicality. In the model, conditional on all other parameters, they identify the aver-
age cost of attention 𝜆, itself a sufficient statistic for the cross-sectional distribution,
and the coefficient of relative risk aversion 𝛾, which controls the risk-pricing incentive
that drives cyclical misoptimization.

Our estimates of 𝛾 are thus based entirely on fitting a stochastic discount factor
that justifies the observed pattern of misoptimization in our model, rather than incor-
porating an informed prior from external evidence in financial economics as discussed
in Section 2.4.2. Our finding of 𝛾 = 11.5 (Table 2.4) is, if anything, slightly con-
servative relative to the modern asset-pricing literature that estimates, in variations
of the consumption capital asset pricing (CCAPM) model, 𝛾 of about 15-20 with

40We calculate the “regression coefficient” in the model using numerical integration over the sta-
tionary distribution of states. Appendix B.1.7 shows the exact in-model formula for aggregate
Misoptimization Dispersion, calculated with optimal-sales-weights, which depends only on the suf-
ficient statistics (𝜃, 𝜆) of the cross-sectional type distribution.
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statistically “unfiltered” measures of consumption (Savov, 2011; Kroencke, 2017) or
long-run variation in consumption growth (Parker and Julliard, 2005). As previously
discussed, our finding of 𝛾 > 0 suggests that the risk-pricing channel is necessary to
explain misoptimization dynamics.

2.6.2 Output, Productivity, and the Attention Wedge

Figure 2-4 shows log output, the log attention wedge (as defined in Proposition 9), and
log labor productivity in our calibration. In each case, we compare to the predictions
of an otherwise identical “pure RBC model” with full attentiveness, or 𝜆 = 0, plotted
as a dashed line. As implied by Proposition 9 and Corollary 5, inattention reduces
output and productivity relative to the fully attentive counterfactual, and this effect
grows in larger states. In the mean state, the attention wedge reduces output by 2.6%
relative to the fully attentive counterfactual, labor productivity by 𝜒𝜖×2.6% = 1.0%,
and employment by (1− 𝜒𝜖)× 2.6% = 1.6%.

To highlight the importance of studying misoptimization incentives in general
equilibrium, we calculate also a “partial equilibrium” attention wedge based on firms’
inattentive best-responses to the counterfactual RBC dynamics (Appendix Figure B-
10). In the mean state, the “partial equilibrium” attention wedge is 1.3% in terms of
output, implying that general-equilibrium interactions account for 1/2 of the losses
from inattention.

We observe two further properties of output and productivity dynamics which
were not immediately clear from the theoretical results and depend on the numerical
calibration. First, labor productivity is non-monotone in productivity 𝜃 (rightmost
panel) and hence also in aggregate output. As we mentioned in the discussion follow-
ing Corollary 5, this property results from the dueling forces of productivity shocks
and induced misallocation.

Second, we find that the attention wedge is concave (Appendix Figure B-10 shows
this concavity directly and provides also a partial-vs.-general-equilibrium decompo-
sition of the finding). Corollary 6 showed how the concavity or convexity of the
attention wedge leads to business cycle asymmetries. The finding of a concave at-
tention wedge implies that, fixing shock sizes, negative shocks have a larger effect
on output than positive shocks, and that overall shock responses and volatility are
higher in low-output states. We explore these predictions quantitatively in the next
subsection.
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Figure 2-4: Output, Attention Wedge, and Labor Productivity
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2.6.3 State-Dependence, Asymmetry, Stochastic Volatility

Figure 2-5 plots the marginal sensitivity of output to percentage productivity shocks
and the standard deviation of output growth as a function of the initial quantile of
the stationary distribution for productivity or output. As suggested by the discussion
of the concave attention wedge above, both model objects are decreasing functions of
the state.

One way to benchmark the extent of asymmetry and state-dependence in shock
responses is to consider an “impulse response” thought experiment of a fixed size.
Let log 𝜃 be the fundamental shock that induces a 3% change in output from steady
state, or solves log𝑋(log 𝜃)−log𝑋(0) = 0.03. We compare the effect of this “Positive”
shock to the effect of a “Negative” shock from log 𝜃0 = 0 to log 𝜃1 = − log 𝜃, and a
“Double Dip” shock from log 𝜃0 = − log 𝜃 to log 𝜃1 = −2 · log 𝜃. We find that the
negative shock has a 7% larger effect on output than the positive shock, and the
double dip shock has a 14% larger effect on output than the positive shock. The
same results for the response of total labor are 5% and 8%, respectively. Empirically,
Ilut, Kehrig, and Schneider (2018) estimate that US industries have on average a 20%
larger response to negative aggregate productivity shocks than positive shocks.41 In
comparison to this benchmark, our model explains 25% of the shock response via
the endogenous reallocation of attention. More generally, to the extent that linear
macroeconomic models like our RBC benchmark are plagued with the descriptively

41This calculation is based on comparing the “data” estimates in columns 6 and 7 of Table 9 in
that paper.
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Figure 2-5: Asymmetric Shock Response and Stochastic Volatility
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undesirable result of left-tailed shock distributions, which cannot even be explained
by symmetric, exogenous stochastic volatility, the attention-cycles mechanism offers
a partial solution.

To benchmark the extent of stochastic volatility, we observe that a transition from
the 90th-percentile to the 10th-percentile productivity state reduces output by 4.7%
and increases the conditional standard deviation of output growth by 10.6%. The
peak-to-trough fall of output during the Great Recession (e.g., from early 2007 to
early 2009) is comparable to this level change. Empirically, Jurado, Ludvigson, and
Ng (2015) estimate that the forward-looking volatility of industrial production growth
increased by 57% over three-month horizons during this episode.42 The endogenous
re-allocation of attention in our model can explain about 19% of this movement,
without recourse to underlying stochastic volatility in fundamentals.

2.6.4 Parameter Robustness and Counterfactual Scenarios

In Appendix B.5, we provide additional results from our numerical exercise. We first
explore the robustness of our main findings to different external calibrations of wage
rigidity 𝜒 and substitutability 𝜖 and to introducing classical labor markets using the
preferences of Greenwood, Hercowitz, and Huffman (1988). We also study the ef-
fects of calibrated attention cycles on macroeconomic dynamics under counterfactual
scenarios by altering structural parameters without recalibrating the model. To sum-

42This calculation compares the 3-month “macro uncertainty index,” as available at https://www.
sydneyludvigson.com/macro-and-financial-uncertainty-indexes, from a low point in April
2007 to a high point in October 2008.
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marize, we find that attention cycles generate more pronounced differences from the
log-linear, RBC core in regimes with larger markups, greater wage rigidity, and higher
attention costs.

2.7 Conclusion
This paper studies attention cycles as both a cause and consequence of macroeco-
nomic dynamics. We develop new measures of firms’ attention to the macroeconomy
and misoptimization in decision making. We document that macroeconomic atten-
tion is counter-cyclical, that the extent of misoptimization is pro-cyclical, that more
macroeconomically attentive firms make smaller misoptimizations, and that the mar-
ket financially punishes firms for misoptimizations more in downturns. We build a
macroeconomic theory to understand why cyclical attention should manifest in both
partial and general equilibrium by embedding state-dependent stochastic choice in
a business cycle model. We derive empirically reasonable conditions under which
attention is highest in downturns owing to the higher stakes for making correct deci-
sions, or higher curvature of firms’ objectives as a function of choices, in these states.
Consistent with our empirical findings, the main contributing macroeconomic force
is risk-pricing or higher marginal utility in low-production states of the world. Cal-
ibrating the model to match our evidence on cyclical misoptimization, we uncover a
quantitatively important role for attention cycles in driving macroeconomic dynamics.
Attention cycles cause asymmetrically larger propagation of negative shocks, larger
propagation of all shocks in low-output states and endogenously higher volatility in
low-output states.
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Chapter 3

Strategic Mistakes

This chapter is jointly authored with Karthik A. Sastry.

3.1 Introduction
People commonly make mistakes that affect others. Consider a monopolistically com-
petitive firm choosing its price to maximize profits, taking into account projected
demand and competitors’ prices. The complexity of firms’ decision-making processes
makes clear that even though the problem is well-defined and an ideal solution surely
exists, determining that solution is difficult. Thus, firms may fail to set the optimal
price. Such a deviation from the ideal price may affect all other competitors’ bene-
fits from setting the right price—for instance, by altering the residual demand that
they face. Moreover, the pricing of other firms may directly influence the costs of
setting the right price—for instance, if tough competition induces managerial stress
that contributes to worse decision-making. Thus, observed pricing arises from a pro-
cess of strategic mistakes : the combination of imperfect optimization and strategic
interaction that may affect both the benefits and the costs of precise decision-making.

To study such strategic mistakes, this paper introduces a model of non-parametric,
state-dependent stochastic choice in continuum-player games with a continuum of
actions. Agents’ payoffs depend on their own action, an exogenous state and a one-
dimensional aggregate of the cross-sectional distribution of others’ actions. Such a
setting is ubiquitous in macroeconomic models of price-setting (Woodford, 2003a;
Maćkowiak and Wiederholt, 2009; Costain and Nakov, 2019), production (Angeletos
and La’O, 2010, 2013; Benhabib, Wang, and Wen, 2015; Chahrour and Ulbricht,
2023), and beauty-contest games more generally (Morris and Shin, 2002; Angeletos
and Pavan, 2007; Bergemann and Morris, 2013; Huo and Pedroni, 2020).

Agents face a problem of costly control : conditional on their conjecture for fun-
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damentals and others’ actions, they pick a stochastic choice pattern that trades off
playing the best actions with a cost that penalizes playing too precisely. We intro-
duce a new family of control cost functionals that are state-separable, i.e, total control
costs are additive over states. These costs allow us to model several kinds of decision
frictions that have not previously been jointly studied. The first is ex post misop-
timization, as in the literatures on control costs (Stahl, 1990; Van Damme, 1991)
and quantal response equilibrium (McKelvey and Palfrey, 1995; Goeree, Palfrey, and
Holt, 2016), in which agents’ imprecise play responds to strategic incentives within a
given state of the world. The second is ex ante planning frictions, as in the literature
on costly information acquisition in games (see e.g., Yang, 2015; Morris and Yang,
2019; Hébert and La’O, 2022; Denti, 2023), whereby agents must weigh the benefits
of precise planning for a state with the cost of that state never being realized. The
third is exogenous and endogenous state-dependence in control costs, as in Hébert
and La’O (2022) and Angeletos and Sastry (2023). The fourth is equilibrium deter-
mination of agents’ consideration sets, i.e, the subset of actions that they play, as in
Matějka (2015) and Stevens (2019).

We show that, despite the rich behavioral patterns that our model accommodates,
equilibrium analysis remains tractable. Concretely, we provide four theoretical results
that provide conditions for equilibrium existence, uniqueness, efficiency, and mono-
tone comparative statics for actions, aggregates, and the size of agents’ mistakes.

Toward establishing the existence and uniqueness of equilibrium, we first char-
acterize equilibrium as a functional fixed-point equation for the cross-sectional dis-
tribution of actions and provide primitive conditions under which this equilibrium
fixed-point operator is a contraction. This result follows from showing first that
agents’ state-dependent stochastic choice rules are monotone, i.e., they are increas-
ing in the sense of first-order stochastic dominance when aggregate actions are higher,
and discounted, i.e., increasing aggregate outcomes has a less than one-for-one effect
on agents’ stochastic best replies. This requires three primitive conditions: (i) that
agents’ actions and aggregates are jointly complementary for physical payoffs and
the psychological costs of precise optimization; (ii) that this complementarity is dom-
inated by the concavity of agents’ physical payoffs relative to their psychological costs;
and (iii) a technical restriction on the shape of agents’ cost functionals that allows
us to translate dominance in payoff units into first-order stochastic dominance in the
space of stochastic choice rules. Moreover, we show that the last of these assumptions
is satisfied under the two leading cost functions in the control costs literature: entropic
and quadratic costs. Second, we show that, if the equilibrium aggregator is (i) increas-
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ing in agents’ actions and (ii) such that level shifts of the action distribution have less
than one-for-one effects on aggregates, then the equilibrium fixed-point operator is
a contraction. These assumptions on aggregation are satisfied under common aggre-
gators, such as those that take the mean or the median of the cross-sectional action
distribution. Finally, since the equilibrium operator is a contraction, the existence
and uniqueness of equilibrium (Theorem 1) follows.

We next study equilibrium comparative statics. First, if actions, aggregates, and
the state are jointly complementary for agents’ physical payoffs and psychological
costs, then the unique equilibrium action distribution and aggregate are monotone in
the state (Theorem 2). Under a further condition that payoffs depend only on the
distance between one’s own action and some optimal action, we show that the size
of agents’ mistakes is monotone in the state when the ratio between the stakes of
misoptimization and the cost of precise optimization is monotone in endogenous and
exogenous states (Theorem 3).

Turning to normative analysis, we provide a necessary condition for the efficiency
of the unique equilibrium: the average marginal physical benefit of increasing the
aggregate action must equal the average marginal psychological cost of so doing (The-
orem 4).

We finally employ our results in two macroeconomic applications. The first appli-
cation is to price-setting in a monetary economy à la Woodford (2003a) and Hellwig
and Venkateswaran (2009), but where firms face ex ante planning frictions: firms must
plan for what prices to set across contingencies for the realized level of the money sup-
ply and inflation. We derive and interpret conditions under which the aggregate price
level, the distribution of prices, and the dispersion of prices are monotone increasing
in an exogenous shock to the money supply in the unique equilibrium. We use these
results to give a costly-planning explanation for the empirical finding that there is a
positive relationship between price dispersion and aggregate inflation at rare and high,
but not common and low, levels of inflation (Alvarez, Beraja, Gonzalez-Rozada, and
Neumeyer, 2019; Nakamura, Steinsson, Sun, and Villar, 2018). The key mechanism is
that firms set more dispersed prices in rare, highly inflationary states, because they
did not invest many resources into forming precise plans for these unlikely states.

The second application is to consumption and savings in a liquidity trap, in which
agents’ incomes directly influence cognitive function. This is motivated by the ex-
perimental finding that individuals make worse decisions when they are poor (Mani,
Mullainathan, Shafir, and Zhao, 2013) and the survey finding that individuals re-
port being significantly distracted when near financial constraints (Sergeyev, Lian,
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and Gorodnichenko, 2022). We derive and interpret conditions under which the
unique equilibrium features aggregate output and a consumption distribution that
is monotone increasing in aggregate demand, while consumption dispersion decreases
in aggregate demand as agents become less cognitively constrained. We show that
this economy features a novel externality: when aggregate output is lower, agents’
decision costs are higher, and they make larger consumption and savings mistakes.
This mechanism provides a new explanation for the finding that consumption disper-
sion rises in downturns (Berger, Bocola, and Dovis, 2023), in our case because of the
equilibrium effect of low income causing stress that worsens decisionmaking.

We discuss two extensions of our analysis in the Appendix. First, in Appendix
C.2, we provide a detailed comparison of our model with the mutual information
model of Sims (2003). Using a numerical example of a linear beauty contest (Mor-
ris and Shin, 2002), we observe that the mutual information model does not imply
monotone and discounted stochastic choice rules and therefore opens the door to
multiple equilibria defined by coordination on specific support points for the action
distribution. This analysis provides a direct counter-example to the possibility that
equilibrium analysis similar to ours is possible in workhorse models of unrestricted
information acquisition and illustrates the tractability advantage that our model may
have for specific applications. Second, in Appendix C.3, we study strategic mistakes
in binary-action coordination games, which are also ubiquitous in macroeconomics
and finance (Angeletos and Lian, 2016). We derive sufficient conditions on cognitive
costs and payoffs to ensure unique and monotone equilibria and illustrate our results
in a canonical investment game with linear payoffs (as in Yang, 2015).

Related Literature The main contribution of our paper is to provide a unified
equilibrium analysis of a wide variety of decision frictions—including ex post misop-
timization, imperfect ex ante planning, endogenous cognitive constraints, and en-
dogenous consideration sets—in aggregative games of the kind that are common in
macroeconomics and finance (see Angeletos and Lian, 2016, for a review). To our
knowledge, comparable results on uniqueness, efficiency, and monotone comparative
statics for these games do not exist in the literatures on the two most comparable
decision frictions, random utility and costly information acquisition. We detail our
connection to these literatures below.

An influential model of equilibrium with non-vanishing “mistakes” induced by
random utility is the Quantal Response Equilibrium (QRE) of McKelvey and Palfrey
(1995). These authors add type-I extreme value noise to agents’ utility functions
to smooth best responses into “better responses” (see the review by Goeree, Palfrey,
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and Holt, 2016). Subsequent work generalizes this analysis by allowing for different
noise distributions that imply different shapes of best-replies (see e.g., Melo, 2022;
Fosgerau, Melo, De Palma, and Shum, 2020; Allen and Rehbeck, 2021). Most related
to us, Melo (2022) studies games with a finite number of players and actions and
general noise distributions and, using convex analysis techniques, shows that QRE
are unique if agents’ payoffs are sufficiently concave relative to the extent of strategic
complementarity. Our analysis differs from this literature’s in four important ways.
First, we consider games with a continuum of agents and actions. This is important
because such games are common in macroeconomics and finance and, outside of Melo’s
(2022) analysis with discrete actions and players, little remains understood about the
uniqueness of QRE in games with a large number of players and/or actions (Goeree,
Palfrey, and Holt, 2016). Second, we provide monotone comparative statics results for
action distributions, in terms of both first-order stochastic dominance and dispersion.
We are not aware of any analogous results in the random-utility literature for the class
of games that we study. Third, we can accommodate additional decision frictions
which are not well captured by fixed payoff noise—for instance, costly ex ante planning
and endogenous cognitive constraints. Finally, our analysis has meaningfully different
normative properties because we model control costs.

With unrestricted costly information acquisition, we are aware of few equilibrium
results that apply to our setting. Hébert and La’O (2022) provide sufficient conditions
for equilibrium existence and efficiency in a setting with costly information acquisi-
tion under restrictions, relative to our set-up, to consider only mean-critical payoff
functions and only the mean aggregator. Hébert and La’O (2022) provide an equi-
librium uniqueness result only when equilibria are efficient, while our result applies
to both efficient and inefficient equilibria under appropriate restrictions on comple-
mentarity arising from both payoffs and endogenous cognitive costs. Yang (2015) and
Morris and Yang (2019) study equilibrium existence and uniqueness in binary-action
settings, to which we extend our analysis in Appendix C.3. To our knowledge, no
references study monotone comparative statics at our level of generality.

Our paper contributes to the theoretical literature on aggregative games (see
Jensen, 2018, for a review) by studying these games under general decision fric-
tions. Our analysis also relates to a large literature on uniqueness in games with
strategic complementarity (e.g., Morris and Shin, 1998, 2002; Weinstein and Yildiz,
2007; Yang, 2015). Our proof strategy is most closely related to Frankel, Morris, and
Pauzner (2003) and Mathevet (2010), in that we use contraction-mapping techniques,
but differs in our use of variational techniques to derive necessary conditions for best
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responses that imply monotonicity and discounting. Our results on comparative stat-
ics are similar in spirit to those of Van Zandt and Vives (2007), but differ in that
we study different games, with decision frictions, and provide comparative statics for
action distributions.

Finally, our paper contributes to the literature on control costs and stochastic
choice by proposing a new class of state-separable cost functionals and applying
them in games. This builds upon the analysis of Harsanyi (1973), Stahl (1990),
and Van Damme (1991) who introduce specific control cost functionals that penal-
ize the playing of sharply peaked stochastic choice rules, and Mattsson and Weibull
(2002), who axiomatize entropic costs. Most relatedly, in decision problems, Fuden-
berg, Iijima, and Strzalecki (2015) axiomatize the class of additive perturbed utility
cost (APU) functionals which penalize the expected utility of a mixed action with
any convex function of the distribution of the mixed action. Our cost function is a
weighted sum of APU cost functionals over states, with a weighting function that
can depend arbitrarily on both exogenous and exogenous states. Concretely, with
weights given by the agents’ priors, our cost functional reduces to a state-by-state
APU control cost functional that models ex post misoptimization. With uniform
weights across states, our cost functional captures ex ante planning, as control costs
must be incurred ex ante, while the benefits of plans only realize with probabilities
given by the agents’ priors. With state-dependent weights, our cost functional allows
for exogenous and endogenous state-dependence in the difficulty of choosing precise
stochastic choice rules. As we later argue (see Section 3.2.3), capturing this broad
range of behavior enables our class of cost functions to be consistent with the empir-
ical regularities from the psychometrics literature (see Woodford, 2020, for a review),
the literature on stress and decision-making (Mani, Mullainathan, Shafir, and Zhao,
2013; Sergeyev, Lian, and Gorodnichenko, 2022), and the perceptual tests performed
by Dean and Neligh (2022).

Outline Section 3.2 introduces the model. Section 3.3 presents our main results
on equilibrium properties. Section 3.4 discusses applications of our main results.
Section 3.5 briefly discusses two extensions, a detailed comparison of state-separable
and mutual information costs and an analysis of binary-action games. Section 3.6
concludes.
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3.2 Model

3.2.1 Basic Set-up: Aggregative Games with Stochastic Choice

A continuum of identical agents is indexed by 𝑖 ∈ [0, 1]. They take actions 𝑥𝑖 ∈ 𝒳 =

[𝑥, 𝑥] ⊂ R. Cross-sectional distributions of actions are aggregated by an aggregator
functional 𝑋 : ∆(𝒳 ) → R. There is an underlying and payoff-relevant state of the
world 𝜃 ∈ Θ ⊂ R. The state space Θ is a finite set, over which the agent has full-
support prior 𝜋 ∈ ∆(Θ). Agents have identical utility functions 𝑢 : 𝒳 ×R×Θ → R,
where 𝑢(𝑥,𝑋, 𝜃) is an agent’s utility from playing 𝑥 when the aggregate is 𝑋 and the
state is 𝜃. We assume that 𝑢 and 𝑋 are continuous and bounded.1

Given a conjecture that the aggregate follows a law of motion �̃� : Θ → R,
which lies in the space of bounded functions ℬ = {�̃�|�̃� : Θ → R}, each agent
chooses a stochastic choice rule 𝑃 : Θ → ∆(𝒳 ) with 𝑃 (𝑥|𝜃) describing the cumulative
distribution of actions 𝑥 taken by the agent in state 𝜃. When this admits a density
function, we denote a stochastic choice rule by 𝑝(𝑥|𝜃). We call the set of measurable
stochastic choice rules 𝒫 . We model the cost of “controlling mistakes” via a cost
functional 𝑐 : 𝒫 × ℬ → R. This cost may depend on both the conjectured mapping
from states to aggregates (as indicated) and on the prior for the state of nature
(suppressed, as this prior is fixed in our analysis). In the next subsection, we specialize
these costs to a specific class for our analysis.

The agent maximizes expected utility net of the control cost given their conjecture
for how aggregate outcomes depend on the state. This is summarized in the following
program:

max
𝑃∈𝒫

∑︁
Θ

∫︁
𝒳
𝑢(𝑥, �̃�(𝜃), 𝜃) d𝑃 (𝑥|𝜃) 𝜋(𝜃)− 𝑐(𝑃, �̃�) (99)

An equilibrium in this context is a Nash equilibrium: agents’ play is optimal given
aggregate outcomes, and aggregate outcomes are those that are implied by agents’
play.2

Definition 2 (Equilibrium). An equilibrium is a collection of stochastic choice rules
{𝑃 *

𝑖 }𝑖∈[0,1] and an equilibrium law of motion for aggregates �̂� : Θ → R such that:

1. All agents solve Program 99 under the conjecture that �̃�(𝜃) = �̂�(𝜃) for all

1Throughout, our notion of continuity for functionals is the sup norm.
2Methodologically, our setup recasts the game with incomplete information in the interim as an

ex ante game with complete information and a strategy space sufficiently rich to embed all profiles of
state-dependent mixed strategies. Morris and Yang (2019) use this approach to study binary-action
games, as we also do in Appendix C.3.
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𝜃 ∈ Θ

2. The equilibrium law of motion is consistent with agents’ play, or �̂� = 𝑋 ∘∫︀
[0,1]

𝑃 *
𝑖 d𝑖

An equilibrium is symmetric if 𝑃 *
𝑖 = 𝑃 * for all 𝑖 ∈ [0, 1].

3.2.2 State-Separable Cost Functionals

We now specialize to a new class of cost functionals that we introduce:

Definition 3 (State-Separable Cost Functional). A cost functional 𝑐 has a state-
separable representation if there exists a strictly convex function 𝜑 : R+ → R and a
weighting function 𝜆 : R×Θ → R++ such that for any stochastic choice rule 𝑃 with
density 𝑝:

𝑐(𝑃, �̃�) =
∑︁
Θ

𝜆(�̃�(𝜃), 𝜃)𝜋(𝜃)

∫︁
𝒳
𝜑(𝑝(𝑥|𝜃)) d𝑥 (100)

with the convention that the cost is ∞ if 𝑃 does not have a density.

Formally, state-separable cost functionals are a weighted sum across states of
the APU cost functionals of Fudenberg, Iijima, and Strzalecki (2015). Informally,
state-separable cost functionals capture the idea that it is costly for agents to control
“mistakes.” The costs of controlling mistakes in different states potentially depend
on both the identity of the states and the endogenous outcomes predicted for those
states via the weighting function 𝜆(𝑋, 𝜃).

In the remainder of this subsection, we give four specific examples of state-
separable costs that capture ex post misoptimization, ex ante planning frictions,
endogenous cognitive constraints, and endogenous consideration sets. In the next
subsection, we discuss how these costs are consistent with empirical evidence on de-
cision frictions.

Ex Post Misoptimization with Entropy Costs As a first example, we consider
a case in which 𝜑(𝑝) = 𝑝 log 𝑝 and 𝜆(𝑋, 𝜃) ≡ �̄� > 0. These costs equal the expectation
of the negative entropy of the conditional action distributions. Expected entropy
costs encode that precise choice is costly and, therefore, that agents will ex post
misoptimize. The expected entropy cost model is often applied in macroeconomics
to study ex post misoptimization (e.g., Costain and Nakov, 2019; Macaulay, 2020;
Flynn and Sastry, 2022b). Expected entropy costs imply optimal action distributions
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of the following “logit” form:

𝑝(𝑥|𝜃) =
exp
(︁
�̄�−1𝑢(𝑥, �̃�(𝜃), 𝜃)

)︁
∫︀
𝒳 exp

(︁
�̄�−1𝑢(𝑧, �̃�(𝜃), 𝜃)

)︁
d𝑧

(101)

When the set of actions is discrete, these choice patterns are identical to those
generated in the model of McFadden (1973) in which agents perceive the perturbed
utility function �̃�(𝑥,𝑋, 𝜃) = 𝑢(𝑥,𝑋, 𝜃) + 𝜀𝑥, where 𝜀𝑥 is distributed type-I extreme
value and IID across agents and actions. This model is ubiquitous for modeling
consumer demand in industrial organization (see, e.g., Berry and Haile, 2021). The
same model for choice is applied in game theory by McKelvey and Palfrey (1995) to
define Quantal Response Equilibrium. However, our entropy-cost case differs from
what is studied in these references in two key ways. First, actions in our model
are continuous. Second, our model’s normative analysis is much different. Control
costs model the fact that avoiding mistakes has real costs, while random utility treats
random choices as ex post optimal.

Finally, Matějka and McKay (2015) show that logit choice can be obtained as a
limit case of a model of information acquisition with mutual information costs plus a
restriction that all actions are ex ante exchangeable. We revisit this last connection
in Appendix C.2, which studies the difference between our model and the mutual
information model.

Prior-Dependence and Imperfect Ex Ante Planning As a second example,
consider an arbitrary kernel, but now set 𝜆(𝜃) = 𝜋(𝜃)−1�̄�. In this case, the agent’s
cost functional is given by:

𝑐(𝑃 ) = �̄�
∑︁
Θ

∫︁
𝒳
𝜑(𝑝(𝑥|𝜃)) d𝑥 (102)

This captures costly planning, where the agent plans for each state in advance, and
then implements these plans when states realize. Thus, costs of planning actions are
incurred ex ante, and are therefore proportional to the number of required plans (i.e.,
states contemplated) and not their likelihood of occurring. Under the entropy kernel,
this process generates the following choice probabilities:

𝑝(𝑥|𝜃) =
exp
(︁
�̄�−1𝜋(𝜃)𝑢(𝑥, �̃�(𝜃), 𝜃)

)︁
∫︀
𝒳 exp

(︁
�̄�−1𝜋(𝜃)𝑢(𝑧, �̃�(𝜃), 𝜃)

)︁
d𝑧

(103)
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The agent optimally chooses to form better plans in states that they believe to be
more likely. Concretely, the agent trades off the benefits of precise planning in a
state against the cost that the state will not be realized and the plan will be useless.
This allows us to capture the idea that agents rationally may prepare for very rare
events, even if actions during those events is very important (an idea also proposed
by Maćkowiak and Wiederholt, 2018). In Section 3.4.1, we apply this model to
study equilibrium price-setting by monopolistically competitive firms in a monetary
macroeconomic model.

Endogenous Cognitive Constraints We next consider an example that sets
𝜆(𝑋, 𝜃) = �̃�(𝑋), for some decreasing function of 𝑋. Combined with the normal-
ization that 𝑢 is monotone in 𝑋, this embodies the possibility that more favorable
aggregate outcomes decrease decision costs while less favorable aggregate outcomes
increase decision costs. A leading example studied by Mani, Mullainathan, Shafir, and
Zhao (2013) and Mullainathan and Shafir (2013) is that poverty impedes cognitive
ability and induces mistakes in decisions. Our framework can model the possibility
that this force is endogenous to others’ actions and/or mistakes, insofar as income is
determined in equilibrium. Under the entropy kernel, choice probabilities follow:

𝑝(𝑥|𝜃) =
exp
(︁
�̃�(�̃�(𝜃))−1𝑢(𝑥, �̃�(𝜃), 𝜃)

)︁
∫︀
𝒳 exp

(︁
�̃�(�̃�(𝜃))−1𝑢(𝑧, �̃�(𝜃), 𝜃)

)︁
d𝑧

(104)

In states with low weights �̃�(𝑋), when aggregate outcomes are good and stress is low,
choices are more precisely concentrated on high-payoff choices; in states with high
weights �̃�(𝑋), when aggregate outcomes are bad and stress is high, the opposite is
true. Thus, in both cases, the characteristics of aggregate states and their psycho-
logical effects shape choice in ways that are not summarized by physical payoffs. In
Section 3.4.2, we study a macroeconomic model in which endogenous stress shapes
the determination of aggregate demand and income.

Consideration Sets with Quadratic Costs We now consider the quadratic ker-
nel 𝜑(𝑝) = �̄�𝑝

2

2
studied by Rosenthal (1989). Like the entropy kernel, the quadratic

kernel penalizes action distributions that are more sharply peaked and rewards those
that are more thinly spread. Unlike the entropy kernel, the quadratic kernel allows
for agents to put exactly zero probability on certain actions. In the marketing liter-
ature, this phenomenon of agents playing only a strict subset of possible actions is
sometimes referred to as a “consideration set” (e.g., Hauser and Wernerfelt, 1990).
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In the context of rational inattention models, Jung, Kim, Matějka, and Sims (2019),
Caplin, Dean, and Leahy (2019), and Fosgerau, Melo, De Palma, and Shum (2020)
study this phenomenon.

We now illustrate how consideration sets emerge. Choice probabilities follow:

𝑝(𝑥|𝜃) = 1

�̄�
(𝑢(𝑥, �̃�(𝜃), 𝜃)− �̄�(�̃�(𝜃), 𝜃)) · I[𝑢(𝑥, �̃�(𝜃), 𝜃) ≥ �̄�(�̃�(𝜃), 𝜃)] (105)

where I[·] is the indicator function and �̄�(�̃�(𝜃), 𝜃) is defined such that
∫︀
𝒳 𝑝(𝑥|𝜃) d𝑥 =

1. The consideration set of actions in state 𝜃 is therefore given by:

𝒳 (𝜃, �̃�) = {𝑥 ∈ 𝒳 : 𝑢(𝑥, �̃�(𝜃), 𝜃) ≥ �̄�(�̃�(𝜃), 𝜃)} (106)

If �̄�(�̃�(𝜃), 𝜃) > min𝒳 𝑢(𝑥, �̂�(𝜃), 𝜃), then a strictly positive (Lebesgue) measure of
actions is chosen with zero probability in state 𝜃. In general, without further assump-
tions, this set can contain many disjoint intervals. However, if 𝑢 is quasiconcave in 𝑥,
then 𝒳 (𝜃; �̂�) is a closed interval. Finally, observe that these consideration sets are
endogenous to equilibrium outcomes as they depend on the equilibrium aggregate.

More generally, away from the quadratic kernel, consideration sets can obtain
when 𝜑 does not satisfy an Inada condition, i.e, when lim𝑝→0 𝜑

′(𝑝) > −∞.

3.2.3 Experimental Evidence and Comparisons to the Litera-

ture

Having illustrated the model’s capacity to generate a rich set of decision frictions,
we now assess the model’s ability to match experimental evidence. We compare and
contrast this with the ability of random utility and costly information acquisition
models to do the same. We organize this discussion around five key stylized facts
that emerge from the classic literature in experimental economics and experimental
psychology surveyed by Woodford (2020), the state-of-the-art perceptual study by
Dean and Neligh (2022), and the cognitive experiments of Mani, Mullainathan, Shafir,
and Zhao (2013).

Fact 1: Choice is Random People make inaccurate and random judgments in de-
cision problems. These imperfect random choices are often measured in experiments
that ask participants to pick which of two stimuli is larger (i.e., which noise is louder)
and summarized as psychometric functions that plot the probability of choosing the
correct option against objective differences in the stimuli that are varied across ex-
periments. These typically reveal a smooth, monotone relationship that is interior
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to (0, 1) (see e.g., Figure 1 of Woodford, 2020, and each of the experiments in Dean
and Neligh, 2022). The state-separable, random utility, and information acquisition
models all rationalize random choice. The state-separable model does so by making
precise optimization costly.

Fact 2: Choice Responds to Incentives People make more accurate and precise
choices when the payoffs from doing so are higher. In perceptual tasks, error rates
decrease in rewards (see, e.g., Figure 2b of Woodford, 2020, and Experiment 2 in
Dean and Neligh, 2022). The state-separable and rational inattention model this as
a rational response to higher returns to cognitive effort; the random utility model
generates a similar prediction because larger payoff differences drown out fixed payoff
noise.

Fact 3: Choice Depends on Prior Beliefs People’s random choice responds
to the probabilities of states, in repeated experiments where it may be reasonable
to interpret these as prior beliefs. In repeated perceptual tasks, average error rates
are lower in states that recur more often (see, e.g., Figure 2a of Woodford, 2020,
and Experiment 3 of Dean and Neligh, 2022). This is consistent with state-separable
costs that capture ex ante planning, as agents have incentives to exert more effort to
prepare for more likely states. This result is also natural in many models of costly
information acquisition. However, this result cannot be understood through the lens
of random utility models (or, in games, QRE), as they embody no notion of ex ante
planning and agents’ priors are irrelevant.

Fact 4: Choice Depends on Decision Context The accuracy and precision of
choice vary with the “context” of decision problems, such as the action space and the
state space.

First, Dean and Neligh (2022) show the importance of the action space. In Ex-
periment 1, the authors first ask participants to pick between two options. The
authors then introduce a third choice (i.e., expand the action space). They find that
this increases the probability of one of the initial actions. This is consistent with
state-separable costs exactly when different action spaces affect the difficulty of mak-
ing choices (modeled through a change in the value of the weighting function). As
observed by Dean and Neligh (2022), this is also consistent with models of costly in-
formation acquisition, but inconsistent with models of random utility, which predict
that larger action spaces decrease the probabilities that all actions are played.

Second, three examples demonstrate the impact of changes in the state space.
Experiment 4 in Dean and Neligh (2022) shows that choice probabilities are more
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inaccurate when participants are asked to distinguish states that look more similar.
Woodford (2020) surveys two related results in the psychometric literature. First,
when laboratory participants are asked to reproduce a set of unknown distances from
memory, they overestimate the shorter distances and underestimate the longer dis-
tances on average (Figure 4 of Woodford, 2020). Second, the extent of bias can
depend systematically on the scale of stimuli (Figure 5 of Woodford, 2020). All of
these results are consistent with the state-separable model where the weighting func-
tion depends on the state space, capturing the idea that some problems are easier
to solve than others. These results are also consistent with information acquisition
models that emphasize that the topology of the state space matters (e.g., Hébert and
Woodford, 2020). However, they are inconsistent with information acquisition mod-
els that satisfy the Invariance Under Compression Axiom (Caplin, Dean, and Leahy,
2022), such as the canonical mutual information cost proposed by Sims (2003).

Fact 5: Choice Depends on Decision-Irrelevant Context The accuracy and
precision of decisions can also depend on context that is not decision relevant. For
example, Mani, Mullainathan, Shafir, and Zhao (2013) show that performance on
abstract cognitive tasks declines when individuals are reminded of the difficulty of
making financial decisions under poverty or, for predictable reasons, have higher or
lower income from a seasonal cycle. In each case, except for the interaction with
the (small) financial incentives, income could be viewed as irrelevant for the decision
problem solved.

As mentioned earlier, our state-separable model can embody this property directly
via appropriate specification of how the weighting function depends on endogenous
states in a game (see Equation 104). This directly embodies the idea expressed in
the title of the Mani, Mullainathan, Shafir, and Zhao (2013) that “Poverty Impedes
Cognitive Function,” no matter what decision problem agents are solving (i.e., what
are their payoffs, action space, or state space).

A model of costly information acquisition has the flexibility to explain this sort
of finding, mathematically speaking. But this has an important caveat. The ability
of this model to generate more “mistakes” in a poverty state relies on the premise
of imperfect observation of income, or a heightened inability to determine income
when it is low overall.3 But this would be hard to square with the findings of Mani,
Mullainathan, Shafir, and Zhao (2013) in tasks for which income is (almost) decision-

3Concretely, one could apply a variant of the Hébert and Woodford (2020) neighborhood-based
cost or the Pomatto, Strack, and Tamuz (2023) log-likelihood-ratio cost in which states corresponding
to poverty are harder to distinguish from others.
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irrelevant. More broadly, the notion that imprecise choice must arise through im-
perfect learning places significant restrictions on how decision frictions vary across
contexts.

Summary State-separable costs are consistent with Facts 1 to 5. Random utility
models can explain only Facts 1 and 2. All models of costly information acquisition
can explain Facts 1, 2, and 3; some models can be consistent with Fact 4 (but not
mutual information); but none could easily explain Fact 5. On the basis of this,
we argue that state-separable costs provide a flexible way of modeling a variety of
decision frictions in a way that is consistent with our best experimental evidence.

However, there are potentially testable implications of information acquisition
models which with state-separable costs would not be consistent. In particular, in-
formation acquisition models make predictions for the joint properties of beliefs and
actions. This notwithstanding, it has been customary in the decision-theoretic lit-
erature to ignore these predictions, and instead to focus entirely on predictions for
choice, under the premise that internal mental states are unobservable (e.g., Caplin
and Dean, 2015; Caplin, Dean, and Leahy, 2022). Moreover, existing tests of infor-
mation acquisition models derived from the analysis of Caplin and Dean (2015) and
Caplin and Martin (2015) and performed by Dean and Neligh (2022) are one-sided:
they reveal that information acquisition is consistent with the data, but not that
non-informational models are inconsistent with the data.

3.3 Main Results
We now prove existence, uniqueness, efficiency and equilibrium monotone compara-
tive statics for both the aggregate and the cross-sectional action distribution. Our
approach will be to establish that the correct notion of a “best response function” for
the aggregate action 𝑋 is a contraction map that satisfies certain properties.

3.3.1 Assumptions: Payoffs and Aggregator

We first identify conditions on payoffs, aggregators and stochastic choice functionals
sufficient to guarantee uniqueness. For payoffs, we first require complementarities
in the underlying game in the form of supermodularity in cost-normalized payoffs
between an agent’s own action and the aggregate. Second, we require that these
complementarities are not too strong in the sense that payoffs are sufficiently concave
to outweigh them:

Assumption 1 (Supermodularity and Sufficient Concavity). The payoff function 𝑢

and weighting function 𝜆 are such that the following holds for all 𝑥′ ≥ 𝑥,𝑋 ′ ≥ 𝑋, and
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𝜃:
𝑢(𝑥′, 𝑋 ′, 𝜃)− 𝑢(𝑥,𝑋 ′, 𝜃)

𝜆(𝑋 ′, 𝜃)
≥ 𝑢(𝑥′, 𝑋, 𝜃)− 𝑢(𝑥,𝑋, 𝜃)

𝜆(𝑋, 𝜃)
(107)

Moreover, for all 𝛼 ∈ R+, 𝑥′ ≥ 𝑥, 𝑋, and 𝜃, the following holds:4

𝑢(𝑥′ − 𝛼,𝑋, 𝜃)− 𝑢(𝑥− 𝛼,𝑋, 𝜃)

𝜆(𝑋, 𝜃)
≥ 𝑢(𝑥′, 𝑋 + 𝛼, 𝜃)− 𝑢(𝑥,𝑋 + 𝛼, 𝜃)

𝜆(𝑋 + 𝛼, 𝜃)
(108)

Informally, the former part of the assumption ensures that when aggregate actions
go up, agents have an incentive to increase their own action. The latter part of the
assumption ensures that agents’ actions are less than one-for-one sensitive to the
aggregate.

To gain a stronger intuition for the role of this assumption, and to provide easily
verifiable conditions under which it holds, we characterize it with twice continuously
differentiable payoffs 𝑢 and weighting functions 𝜆:

Lemma 2. When 𝑢(·, 𝜃) is twice continuously differentiable in (𝑥,𝑋) and 𝜆(·, 𝜃) is
twice continuously differentiable in 𝑋 for all 𝜃, Assumption 1 is equivalent to the
following:

0 ≤ 𝑢𝑥𝑋(𝑥,𝑋, 𝜃)− 𝑢𝑥(𝑥,𝑋, 𝜃)
𝜆𝑋(𝑋, 𝜃)

𝜆(𝑋, 𝜃)
≤ −𝑢𝑥𝑥(𝑥,𝑋, 𝜃) (109)

for all 𝑥, 𝑋 and 𝜃.

Proof. See Appendix C.1.1.

When cognitive constraints are exogenous, this condition reduces to the require-
ment that 0 ≤ 𝑢𝑥𝑋 ≤ −𝑢𝑥𝑥, which is a standard condition for unique equilibrium in
supermodular games (see e.g., Weinstein and Yildiz, 2007). Intuitively, this condition
requires that the slope of agents’ optimal actions to changes in aggregate actions are
bounded between zero and one.

When cognitive costs are endogenous, strategic complementarity now has both a
physical payoff complementarities component 𝑢𝑥𝑋 and a cognitive complementarities
component −𝑢𝑥 𝜆𝑋𝜆 . To understand why cognitive complementarities take this form,
suppose that aggregate actions increase and this raises cognitive costs by 𝜆𝑋

𝜆
percent.

This gives the agent an incentive to spread out their actions around any locally opti-
mal action. If the agent is playing an action greater than any locally optimal action,
their marginal utility from increasing their own action is negative (𝑢𝑥 < 0). How-
ever, as cognitive costs have gone up, the agent is now more willing to accept such a

4In stating this assumption, we are implicitly extending the domain of 𝑢 so that it is well-defined
under such translations.
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negative marginal payoff, and so has incentives to further increase the likelihood that
their action lies further from the locally optimal point. Thus, when 𝑢𝑥 is negative,
when cognitive costs increase, the agent has an incentive to play higher actions and
there is strategic complementarity, i.e., −𝑢𝑥 𝜆𝑋𝜆 > 0. When 𝑢𝑥 is positive, the reverse
logic is true, and increased cognitive costs make actions strategic substitutes. Thus,
with cognitive strategic externalities, we require that (i) any strategic substitutabil-
ity through cognitive costs never outweighs strategic complementarities in physical
payoffs, and (ii) agents’ payoff functions are sufficiently concave to outweigh both
physical payoff complementarities and cognitive complementarities.

Having identified conditions on payoffs, we now turn to the aggregator. To re-
tain the ordering between actions and aggregates, we assume that the aggregator is
monotone in the sense of first-order stochastic dominance. We further assume that
the aggregator satisfies discounting, which is to say that it is sub-linear in level shifts
of the cross-sectional action distribution (see Cerreia-Vioglio, Corrao, and Lanzani,
2020, for a discussion of monotone and (sub-)linear aggregators):

Assumption 2 (Monotone and Discounted Aggregator). For all 𝑔, 𝑔′ ∈ ∆(𝒳 ):

𝑔′ ⪰𝐹𝑂𝑆𝐷 𝑔 =⇒ 𝑋(𝑔′) ≥ 𝑋(𝑔) (110)

Moreover, there exists 𝛽 ∈ (0, 1) such that for any distribution 𝑔 ∈ ∆(𝒳 ) and any
𝛼 ∈ R+:

𝑋({𝑔(𝑥− 𝛼)}𝑥∈𝒳 ) ≤ 𝑋({𝑔(𝑥)}𝑥∈𝒳 ) + 𝛽𝛼 (111)

We moreover, note that the assumption that 𝛽 < 1 can be relaxed to allow 𝛽 = 1 if
the second inequality in Assumption 1 (Equation 108) is made strict. In the interests
of concreteness, the following Lemma (the proof of which is immediate, and therefore
omitted) provides several important and natural aggregator functions that satisfy
Assumption 2.

Lemma 3. The following aggregators satisfy Assumption 2:

1. Linear aggregators:

𝑋(𝑔) = 𝛽

∫︁
𝒳
𝑓(𝑥)𝑔(𝑥) d𝑥 (112)

where 𝛽 ∈ [0, 1) is a parameter controlling discounting and 𝑓 : 𝑋 → R is a
differentiable function such that 𝑓 ′ ∈ [0, 1].

2. Quantile aggregators:
𝑋(𝑔) = 𝛽𝐺−1(𝑙) (113)
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where 𝛽 ∈ [0, 1) is a parameter controlling discounting, 𝐺(𝑥) =
∫︀ 𝑥
𝑥
𝑔(�̃�) d�̃� is

the CDF of the cross-sectional action distribution, 𝐺−1 is its left-inverse, and
𝑙 ∈ (0, 1).

Linear aggregators with polynomial kernels 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥+ . . .+ 𝑎𝑙𝑥
𝑙 (subject

to the monotonicity and discounting constraints that 𝑓 ′(𝑥) ∈ [0, 1] on [𝑥, 𝑥]) allow
the aggregator to depend on all moments of the cross-sectional distribution of ac-
tions. The mean aggregator, 𝑋(𝑔) = 𝛽

∫︀
𝒳 𝑥𝑔(𝑥) d𝑥, is a special case of this class

when 𝑙 = 1. Thus, our analysis nests the common assumption in macroeconomics
that interactions take place through the mean action (see Angeletos and Lian, 2016,
for a review). Moreover, the polynomial sub-class allows for higher moments of the
action distribution to enter agents’ payoffs. This allows the dispersion 𝑙 = 2, skewness
𝑙 = 3, and kurtosis 𝑙 = 4 of other agents’ actions to matter for agents’ strategic incen-
tives. Such aggregators also have natural macroeconomic applications. For example,
in Flynn and Sastry (2022b), the fact that dispersion reduces aggregate outcomes
generates important general equilibrium forces. Quantile aggregators include the me-
dian when 𝑙 = 1

2
. Such aggregators are relevant when agents care about what an

average agent does, rather than what other agents do on average.
Assumption 2 rules out aggregators that do not preserve the monotonicity of

actions, e.g., linear aggregators with a negative slope, or those that are more than
one-for-one sensitive to translations of actions, e.g, linear aggregators with a slope
greater than one. Intuitively, such aggregators break either strategic complementarity
or sufficient concavity.

3.3.2 Intermediate Result: Properties of Stochastic Choice

Assumption 2 suggests a path toward ensuring that equilibrium is described by a
contraction map if, in response to level shifts in the aggregate, the optimal stochastic
choice pattern increases in the sense of first-order stochastic dominance (monotonic-
ity) but remains dominated by the level shift itself (discounting). These are intuitive
properties given the supermodularity and concavity of payoffs, which encode that level
shifts in the (conjectured) aggregate globally increase the attractiveness of playing
higher 𝑥, but in a way that is less than one-for-one. We now show an interpretable suf-
ficient condition within the state-separable class which guarantees that monotonicity
and discounting translate appropriately to stochastic choice.

We first define a new property of a function that we label quasi-monotone-likelihood-
ratio-property (quasi-MLRP). This condition allows us to relate the underlying cost
functional to the distribution of actions induced by optimality.
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Definition 4 (Quasi-MLRP). A function 𝑓 : R+ → R satisfies quasi-MLRP if for
any two distributions 𝑔′, 𝑔 ∈ ∆(𝒳 ):(︁

𝑓(𝑔′(𝑥′))− 𝑓(𝑔′(𝑥)) ≥ 𝑓(𝑔(𝑥′))− 𝑓(𝑔(𝑥)) ∀𝑥′ ≥ 𝑥
)︁

=⇒ 𝑔′ ⪰𝐹𝑂𝑆𝐷 𝑔 (114)

With this definition in hand, we can now state our final technical assumption on
stochastic choice functionals, which ensures that we can always translate dominance
in payoff units to dominance in terms of distributions:

Assumption 3 (Quasi-MLRP Kernel). Costs have a differentiable kernel 𝜑 such that
𝜑′ satisfies quasi-MLRP.

It is important to note that the two workhouse kernels in the literature on control
costs satisfy this assumption:

Lemma 4. The entropy kernel 𝜑(𝑝) = 𝑝 log 𝑝 and the quadratic kernel 𝜑(𝑝) = 1
2
𝑝2

satisfy Assumption 3.

Proof. See Appendix C.1.2.

We can now state a Lemma using this assumption and our earlier assumptions
on payoffs to establish monotonicity and discounting of the solution of the stochastic
choice problem:

Proposition 10 (Monotone and Discounted Stochastic Choice). Consider the stochas-
tic choice program with payoffs satisfying Assumption 1 and cost functional satisfying
Assumption 3. Then,

1. The optimal stochastic choice rule 𝑝* is weakly increasing in the sense that if
�̂� ′ ≥ �̂� then 𝑝*(𝜃; �̂� ′) ⪰𝐹𝑂𝑆𝐷 𝑝*(𝜃; �̂�) for all 𝜃 ∈ Θ.

2. The optimal choice profile is discounted in the sense that when �̂� and �̂� ′ =

�̂�+𝛼 for 𝛼 ∈ R+, we have that 𝑝*−𝛼(𝜃; �̂�) ⪰𝐹𝑂𝑆𝐷 𝑝*(𝜃; �̂� ′) for all 𝜃 ∈ Θ, where
𝑝*−𝛼 denotes the translation of 𝑝* to the right by 𝛼.

Proof. See Appendix C.1.3.

The key to both parts is that quasi-MLRP allows us to “invert” dominance rela-
tionships in payoffs to obtain dominance relationships between distributions. For the
first part, we show that the dominance of payoffs for playing higher 𝑥 from supermod-
ularity implies dominance of distributions under quasi-MLRP. For the second part,
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we use the property off payoffs from (108) that concavity of utility exceeds strate-
gic complementarity, to show the optimal stochastic choice rule is dominated by the
claimed level shift in the rule.

Proposition 10 is the core of our environment’s tractability. It is in principle the
ingredient that might be replaced in an alternative model of stochastic choice, like
a form of unrestricted information acquisition. But, to our knowledge, such mono-
tonicity and discounting results do not exist for any form of information acquisition
in general environments. Moreover, this is not merely a technical glitch. A very
relevant mechanism, anchoring toward frequently played actions, fights such mono-
tonicity and discounting in information acquisition models. In a numerical example
with the mutual-information cost (Sims, 2003) in Appendix C.2, we show that viola-
tions of monotonicity and discounting obtain in the single-agent problem and how this
leads to non-uniqueness and non-monotone comparative statics in the equilibrium of
an example game.

3.3.3 Existence and Uniqueness

We can now state our main existence and uniqueness result:

Theorem 1 (Existence, Uniqueness, and Symmetry). Under Assumptions 1, 2 and
3, there exists a unique equilibrium. The unique equilibrium is symmetric.

Proof. See Appendix C.1.4.

As alluded to above, we show this result by defining an equilibrium operator
that maps the law of motion of the aggregate in the state to the resulting optimal
stochastic choice rule and then maps this back to a law of motion of the aggregate,
and then determining that said operator is a contraction map. More formally, let
ℬ = {�̂�|�̂� : Θ → R} be a space of (bounded) functions endowed with the sup norm.
We define the operator 𝑇 : ℬ → ℬ:

𝑇�̂� = 𝑋 ∘ 𝑝*(�̂�) (115)

To show uniqueness of the equilibrium law of motion of aggregates, it then suffices
to prove that 𝑇 is a contraction map. We prove this by showing that, under the
given assumptions, 𝑇 satisfies both of Blackwell’s conditions of monotonicity and
discounting. Given the unique equilibrium-consistent law of motion which satisfies
𝑇�̂� = �̂�, the equilibrium stochastic choice rule is then the unique solution of the
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stochastic choice problem given that law of motion, or 𝑝*(�̂�). This extends classic
uniqueness results to the realm of stochastic choice.5

3.3.4 Monotone Comparative Statics

Once we lie in the realm of unique equilibria, it is well-posed to consider compar-
ative statics in equilibrium. We provide two such results, showing when the action
distribution and aggregate action are monotone in the state and when the precision
of agents actions is monotone in the state.

Monotonicity of Action Distributions

To show monotonicity of distributions and aggregates, we require a stronger super-
modularity assumption that not only are individual actions and aggregate actions
complements, but so too is the underlying state itself a complement to both individ-
ual actions and aggregates in cost-adjusted payoffs:

Assumption 4. The payoff function 𝑢 and weighting function 𝜆 are such that the
following holds for all 𝜃′ ≥ 𝜃,𝑋 ′ ≥ 𝑋, 𝑥′ ≥ 𝑥:

𝑢(𝑥′, 𝑋 ′, 𝜃′)− 𝑢(𝑥,𝑋 ′, 𝜃′)

𝜆(𝑋 ′, 𝜃′)
≥ 𝑢(𝑥′, 𝑋, 𝜃)− 𝑢(𝑥,𝑋, 𝜃)

𝜆(𝑋, 𝜃)
(116)

As before, to gain a stronger intuition and provide an easily verifiable condition,
we characterize this assumption when 𝑢 and 𝜆 are twice continuous differentiable:

Lemma 5. When 𝑢 is twice continuously differentiable in (𝑥,𝑋, 𝜃) and 𝜆 is twice
continuously differentiable in (𝑋, 𝜃), Assumption 4 is equivalent to

𝑢𝑥𝑋(𝑥,𝑋, 𝜃)− 𝑢𝑥(𝑥,𝑋, 𝜃)
𝜆𝑋(𝑋, 𝜃)

𝜆(𝑋, 𝜃)
≥ 0 and 𝑢𝑥𝜃(𝑥,𝑋, 𝜃)− 𝑢𝑥(𝑥,𝑋, 𝜃)

𝜆𝜃(𝑋, 𝜃)

𝜆(𝑋, 𝜃)
≥ 0

(117)
for all 𝑥, 𝑋 and 𝜃.

The proof follows from the same steps as in the proof of Lemma 2, simply rela-
belling 𝑋 as 𝜃, and is therefore omitted. The first inequality (“complementarity with
𝑋”) is identical to that in Lemma 2, and the second is its mirror image for “comple-
mentarity with 𝜃”. When cognitive costs do not depend on exogenous states 𝜆𝜃 = 0,
this second condition reduces to 𝑢𝑥𝜃 ≥ 0. When cognitive costs depend on exogenous
states, the intuition for the additional term echoes the discussion of complementarity

5One could dispense with Assumptions 1, 2, and 3 and prove existence in our setting only by
applying the Schauder fixed-point theorem. We omit this result as it is simple, and because our
analysis will proceed afterward under Assumptions 1, 2, and 3.
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with 𝑋. The presence of this additional term underscores the fact that state-varying
control costs affect agents’ incentives to shift their entire distribution of stochastic
choice upward in higher states.

Under this assumption, we show the following result:

Theorem 2 (Monotone Actions and Aggregates). Under Assumptions 1, 2, 3, and
4, the unique equilibrium action distribution is monotone increasing in the sense of
FOSD and the law of motion of the aggregate is increasing in the underlying state.

Proof. See Appendix C.1.5.

The intuition for this result is simple: higher 𝜃 makes higher actions more desirable
so that the distribution of actions in higher states dominates the distribution in lower
states. This is complicated by the fact that agents may face higher cognitive costs
in higher states. Hence, the relevant notion of complementarity is complementarity
in cost-adjusted payoffs. The proof strategy makes use of the contraction mapping
property used in the uniqueness proof. In particular, it shows that monotonicity is
preserved by the fixed point operator and therefore that the fixed point must itself
be monotone.

This result has the following immediate implication for the supports of action
distributions:

Corollary 7 (Monotone Consideration Sets). Under the conditions of Theorem 2, in
the unique equilibrim agents’ consideration sets 𝒳 (𝜃) = cl𝒳{𝑥 ∈ 𝒳 : 𝑝*(𝑥|𝜃, �̂�(𝜃)) >

0} are increasing in the strong set order.6

As optimal distributions increase in the sense of first-order stochastic dominance,
the supports must move in the sense of the strong set order. The result is vacuous
if the cost kernel satisfies an Inada condition and 𝒳 (𝜃) = 𝒳 for all 𝜃. The result
has bite if agents, for example, have costs with the quadratic kernel, which does not
satisfy an Inada condition and may result in agents’ optimally playing only a subset
of available actions. In this case, the result puts structure on the endogeneity of
consideration sets—agents consider larger actions in higher states in equilibrium.

Monotonicity of Action Precision

We now turn to establishing when the precision of, or extent of mistakes in, agents’
actions is monotone in the state in equilibrium. To this end, in our context with
flexible stochastic choice, we first need a non-parametric notion of precision:

6Where cl𝒳𝐴 denotes the closure of set 𝐴 within 𝒳 .
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Definition 5 (Precision). Fix an ℎ : R → R. A symmetric distribution 𝑔 is more
precise about a point 𝑥* than 𝑔′ about 𝑥*′ under ℎ if ℎ∘𝑔(|𝑥−𝑥*|) is faster decreasing
in |𝑥− 𝑥*| than is ℎ ∘ 𝑔′(|𝑥′ − 𝑥*

′|) in |𝑥′ − 𝑥*
′|.7

Informally, this definition requires that a distribution is more precise than another
if its density is more rapidly decreasing away from the point about which precision is
being considered. This definition generalizes the property that Gaussian distributions
are more precise about their mean when they have a lower standard deviation to cases
with non-Gaussian densities by exactly capturing the idea that a distribution is more
precise if its tails decay faster from the point about which a distribution is centered.8

Having defined precision, we now state sufficient assumptions on payoffs for pre-
cision to be monotone. To show this result, we specialize to a distance-based payoff
environment, which we refer to throughout as generalized beauty contest payoffs:

Assumption 5 (Generalized Beauty Contests). The utility function is given by:

𝑢(𝑥,𝑋, 𝜃) = 𝛼(𝑋, 𝜃)− 𝛽(𝑋, 𝜃)Γ(|𝑥− 𝛾(𝑋, 𝜃)|) (119)

where Γ is monotone increasing and such that Γ(0) = 0, 𝛾(𝑋, 𝜃) is monotonically
increasing in (𝑋, 𝜃), and 𝛽(𝑋, 𝜃) is positive, for every (𝑋, 𝜃).

Under distance-based payoffs with distance function Γ, an agent cares only about
how far their action is from an optimal action conditional on others’ play 𝑋 and the
state 𝜃, 𝛾(𝑋, 𝜃). The extent to which they care is governed by 𝛽(𝑋, 𝜃), with larger
values inducing greater losses from failing to match the optimal action.

We note that this formulation nests the quadratic payoff functions, which can be
justified via a second-order approximation of any smooth, concave utility function
around its maximum value 𝛾(𝑋, 𝜃):

7On an asymmetric support, we call a distribution 𝑔 symmetric if 𝑔(𝑥) = 𝑔(−𝑥) whenever both
𝑔(𝑥) and 𝑔(−𝑥) are defined. For any symmetric functions 𝜉, 𝜉 : 𝐴 → R, we say that 𝜉 is faster
decreasing than 𝜉 in their arguments if 𝜉(0)− 𝜉(|𝑥|) ≥ 𝜉(0)− 𝜉(|𝑥|) for all 𝑥 ∈ 𝐴.

8To see this, recall that a Gaussian random variable with mean 𝜇 and standard deviation 𝜎 has
pdf:

𝑔(𝑥) =
1√
2𝜋𝜎2

exp

{︃
−1

2

(︂
𝑥− 𝜇

𝜎

)︂2
}︃

(118)

Thus, for two Gaussian distributions with means 𝜇, 𝜇′ and standard deviations 𝜎, 𝜎′ such that 𝜎 < 𝜎′,
we have that ℎ ∘ 𝑔(|𝑥− 𝜇|) is faster decreasing than ℎ ∘ 𝑔′(|𝑥− 𝜇′|) whenever ℎ is monotone. Thus,
under monotone ℎ, we have that Gaussian distributions with lower standard deviations are more
precise about their mean under our definition of precision.
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Lemma 6. Consider a payoff function 𝑢 : 𝒳 × R × Θ that is twice differentiable,
strictly concave in its first argument, and maximized for every (𝑋, 𝜃) ∈ R × Θ at
some 𝑥*(𝑋, 𝜃) ∈ 𝒳 . Then, up to a term that is on the order of |𝑥 − 𝑥*(𝑋, 𝜃)|3,
payoffs conditional on each (𝑋, 𝜃) take the form of Equation 119 with 𝛼(𝑋, 𝜃) =

𝑢(𝑥*(𝑋, 𝜃), 𝑋, 𝜃), 𝛽(𝑋, 𝜃) = 1
2
|𝑢𝑥𝑥(𝑥*(𝑋, 𝜃), 𝑋, 𝜃)|, 𝛾(𝑋, 𝜃) = 𝑥*(𝑋, 𝜃), and Γ(𝑥) =

𝑥2.

This result follows immediately from taking a Taylor expansion of 𝑢 around its
optimal value in each state, observing that the first-order term is zero because of
the first-order condition for optimality, and using Taylor’s Theorem to describe the
residual error. In this interpretation, 𝛾(𝑋, 𝜃) is the optimal action conditional on
(𝑋, 𝜃) and 𝛽(𝑋, 𝜃) measures the curvature of payoffs, or second-order loss of mis-
optimization, around that point.

We now state the result, which encapsulates the idea that precision is higher when
the losses from mis-optimization are higher for endogenous or exogenous reasons:

Theorem 3 (Monotone Precision). Under Assumptions 1, 2, 3, 4, and 5, 𝑝*(𝜃) ∈
∆(𝒳 ) is more precise about 𝛾(�̂�(𝜃), 𝜃) than 𝑝*(𝜃′) about 𝛾(�̂�(𝜃′), 𝜃′) under 𝜑′

1. For any 𝜃 ≤ 𝜃′ if 𝛽(𝑋,𝜃)
𝜆(𝑋,𝜃)

is monotone decreasing in both arguments.

2. For any 𝜃 ≥ 𝜃′ if 𝛽(𝑋,𝜃)
𝜆(𝑋,𝜃)

is monotone increasing in both arguments.

Proof. See Appendix C.1.6.

The proof of this result shows that the agents’ incentives to transfer probability
mass from the ideal point 𝛾(�̂�(𝜃), 𝜃) to any other 𝑥 ∈ 𝒳 are strictly lower when 𝛽(𝑋,𝜃)

𝜆(𝑋,𝜃)

is larger, which translates directly to our notion of precision. Note that this combines
the incentives for precision from the curvature in the utility function, 𝛽, and from the
scaling of the cost function, 𝜆. This calculation relies on the symmetry of distance-
based payoffs around 𝛾(�̂�(𝜃), 𝜃). It then leverages the fact that �̂� is monotone in
𝜃 in equilibrium, because of Theorem 2, which in turn implies monotonicity of the
mapping 𝜃 ↦→ 𝛽(�̂�(𝜃),𝜃)

𝜆(�̂�(𝜃),𝜃)
, decreasing in case 1 and increasing in case 2. Put differently,

the “endogenous” and “exogenous” stakes of making good choices both move in the
same direction in equilibrium. Thus, precision is monotone in the state.9

This result has the following immediate implication for the size of agents’ equilib-
rium consideration sets:

9Unsurprisingly, we cannot state a general result when 𝛽(𝑋,𝜃)
𝜆(𝑋,𝜃) is not strictly monotone in its two

arguments; but we could of course still use part of the previous argument to compare precision in
any two states (𝜃, �̂�(𝜃)),(𝜃′, �̂�(𝜃′)) after solving for equilibrium.
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Corollary 8 (Monotone Size of Consideration Sets). Under the conditions of Theo-
rem 3, if 1. (resp. 2.) holds, then the Lebesgue measure of 𝒳 (𝜃) is increasing (resp.
decreasing) in 𝜃.

Thus, as is intuitive, in states where agents’ cost-adjusted states are higher, agents
choose from smaller consideration sets.

3.3.5 Efficiency

A further question of interest is when equilibria of our model are efficient. As our
agents are symmetric, ex-ante Pareto efficiency and utilitarian efficiency are equiva-
lent. We therefore say that a stochastic choice rule is efficient if it maximizes utili-
tarian welfare:

Definition 6. A stochastic choice rule 𝑃𝐸 ∈ 𝒫 is efficient if it solves the following
program:

𝑃𝐸 ∈ argmax
𝑃∈𝒫

∑︁
Θ

∫︁
𝒳
𝑢 (𝑥,𝑋(𝑃 (𝜃)), 𝜃) d𝑃 (𝑥|𝜃) 𝜋(𝜃)− 𝑐(𝑃,𝑋(𝑃 )) (120)

An efficient stochastic choice rule both fully internalizes the effect choices have on
aggregates and the costs of stochastic choice. Moreover, this notion of efficiency takes
seriously that agents do incur the cognitive cost of constraining their mistakes. We
now ask, when will equilibrium be efficient? The following result relates the answer
to this question to the balancing of aggregate externalities in physical and payoffs. To
derive a variational necessary condition, we make technical assumptions sufficient to
guarantee differentiability:

Assumption 6 (Regularity Conditions for Efficient Program). Suppose that the plan-
ner’s objective in Equation 120 is strictly concave in 𝑃 , 𝑢 is differentiable in its second
argument 𝑋, 𝜆 is differentiable in its first argument 𝑋, and the aggregator is linear:

𝑋(𝑔) =

∫︁
𝒳
𝑓(𝑥) d𝐺(𝑥) (121)

for some nowhere-constant function 𝑓 .

Theorem 4. Under Assumption 6, a necessary condition for efficiency of an equilib-
rium stochastic choice rule 𝑝* is that:∫︁

𝒳
𝑢𝑋(�̃�, 𝑋(𝑝*(𝜃)), 𝜃)𝑝*(�̃�|𝜃) d�̃� = 𝜆𝑋(𝑋(𝑝*(𝜃)), 𝜃)

∫︁
𝒳
𝜑(𝑝*(�̃�|𝜃)) d�̃� (122)
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for all 𝜃 ∈ Θ.

Proof. See Appendix C.1.7.

To understand this result, we first consider the case in which there are no payoff
externalities in costs or 𝜆𝑋 = 0. In this case, the condition requires that the average
externality of increasing the aggregate is zero. This condition is evaluated at the
equilibrium stochastic choice pattern, but does not depend directly on the structure
of cognitive costs. Thus, to evaluate such a condition (under the assumption that
𝜆𝑋 = 0), an observer needs only to know about payoff externalities and the observed
distribution of choices.

We next consider the case in which 𝜆𝑋 ̸= 0. In this case, efficiency obtains
when the aforementioned payoff externality balances with a cognitive externality, to
use the language of Angeletos and Sastry (2023), operating directly through costs.
Consider our recurring example of cognitive costs that decrease with the value of
𝑋 because of poverty-induced stress (𝜆𝑋 < 0) and assume that the utility costs
of cognition are positive in all states.10 The cognitive externality is that increasing
𝑋 directly decreases every agent’s cognitive cost. A non-paternalistic planner, who
takes cognitive costs into account, considers also this externality. Thus, an optimal
allocation (if it exists) tolerates a negative marginal payoff externality to achieve a
positive marginal cognitive externality. We return to this specific point in a concrete
example in Section 3.4.2 and Corollary 10.

Relative to the literature, our analysis therefore identifies a new channel through
which rational decision frictions can create equilibrium externalities and induce in-
efficiency. This supplements the findings of Hébert and La’O (2022) for aggrega-
tive games with information acquisition and Angeletos and Sastry (2023) for Arrow-
Debreu economies with information acquisition. Relative to the related results in
those papers, our Theorem 4 has three substantial differences. First, it clarifies how
cognitive externalities can operate outside of information acquisition models. Sec-
ond, it sheds light on the nature of inefficiency—in particular, the direction in which
a social planner would want to perturb aggregates—in inefficient equilibrium. By con-
trast, due to the intractable structure of general cognitive externalities in information-
acquisition models, Hébert and La’O (2022) and Angeletos and Sastry (2023) can say

10Note, of course, that in our model these costs need not be positive. The following more perverse
model would also be consistent with empirical evidence that scarcity reduces decision quality (e.g.,
Mani, Mullainathan, Shafir, and Zhao, 2013): low 𝑋 increases the scale of cognitive costs, reducing
relative incentives for precise optimization, but has a positive level effect on welfare. In this case,
our intuition for why there is a role of cognitive externalities would be the same, and Theorem 4
would still hold; but the intuition for the sign of effects would flip.
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relatively little about the same in their settings. Third, leveraging our state-separable
structure, it provides a testable condition to compare the extent of these externalities
with “standard” payoff externalities to gauge efficiency.

3.4 Applications
We now apply our model to make equilibrium predictions in two macroeconomic set-
tings. We first study price-setting by monopolistic firms, a cornerstone of the “supply
block” of modern macroeconomic models. In our model, firms imperfectly price their
goods because of ex ante planning frictions. We show how to make equilibrium pre-
dictions for the aggregate price level and price dispersion that take into account the
aggregate consequences of “pricing mistakes” and firms’ differential incentives to rein
in these mistakes in different aggregate states. We next study consumption and sav-
ings decisions in a liquidity trap, a cornerstone of the “demand block” of modern
macroeconomic models. In our model, consumption plans are imperfect because of
costly control. Moreover, these costs increase when households have low income, cap-
turing the possibility that psychological stress impairs decisionmaking in these states.
We show how to make predictions for aggregate income and consumption inequality
and characterize a novel equilibrium externality that arises because one agent’s lack
of consumption increases others’ costly stress.

3.4.1 Price-Setting with Planning Frictions

Set-up Each agent 𝑖 ∈ [0, 1] is a firm that produces a differentiated variety in
quantity 𝑞𝑖 at price 𝑝𝑖 ∈ [𝑝, 𝑝] with 𝑝 > 0. These firms use intermediate goods 𝑧𝑖,
with marginal cost 𝑘, to produce according to the production technology 𝑞𝑖 = 𝑧𝑖. The
outputs of these firms are consumed by a representative household, with constant
elasticity of substitution (CES) consumption bundle:

𝐶 =

(︂∫︁ 1

0

𝑞
𝜂−1
𝜂

𝑖 d𝑖

)︂ 𝜂
𝜂−1

(123)

where 𝜂 > 1. As is standard (see e.g., Hellwig and Venkateswaran, 2009), the house-
hold’s preferences over consumption and real money balances 𝑀

𝑃
are given by:

𝑉

(︂
𝐶,
𝑀

𝑃

)︂
=
𝐶1−𝜎

1− 𝜎
+ ln

𝑀

𝑃
(124)

where 𝜎 ≥ 0. The money supply is an exogenous shock in the discrete set ℳ with
minimal and maximal elements 𝑀 and 𝑀 , such that 𝑀 > 𝑝 and 𝑀 < 𝑝. Moreover,
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we make the standard simplifying assumption (Alves, Kaplan, Moll, and Violante,
2020; Flynn and Sastry, 2022b) that real marginal costs are a log-linear function of
aggregate output:

𝑘

𝑃
= 𝐶𝜒 (125)

where 𝜒 > 0 represents “factor price pressure”, i.e., the extent to which real marginal
costs are increasing in the level of output in the economy.

To study how planning frictions matter, we subject the firm to a state-separable
cost function with any kernel satisfying Assumption 3 (e.g., the entropy kernel 𝜑(𝑝) =
𝑝 log 𝑝) and a weighting function inversely proportional to how likely the firm thinks
each realization of the money supply 𝜋(𝑀) is, i.e., 𝜆(𝑀) = 1

𝜋(𝑀)
. This captures a

situation in which firms must plan for contingencies (realizations of the money supply)
in advance and then implement these plans when the state is realized. Moreover, we
assume that 𝜋(𝑀) ∝𝑀 𝛿, where 𝛿 > 0 corresponds to high money supply states being
more likely and 𝛿 < 0 means that low money supply states are more likely.

Recasting the Economy as a Game Given the CES aggregator, the firm faces
an isoelastic demand curve:

𝑞𝑖 =
(︁𝑝𝑖
𝑃

)︁−𝜂
𝐶 (126)

where 𝑃 is the ideal price index under CES production:

𝑃 =

(︂∫︁ 1

0

𝑝1−𝜂𝑖 d𝑖

)︂ 1
1−𝜂

(127)

The firms’ profits are moreover priced according to the real stochastic discount factor
(the household’s marginal utility from consumption) 𝐶−𝜎. Thus, the firm’s objective
function is:

𝜋(𝑝𝑖, 𝑃, 𝐶, 𝜃) = 𝐶−𝜎 𝑝𝑖 − 𝑘

𝑃

(︁𝑝𝑖
𝑃

)︁−𝜂
𝐶 = 𝐶1−𝜎𝑃 𝜂−1(𝑝𝑖 − 𝑘)𝑝−𝜂𝑖 (128)

Substituting in the equilibrium conditions that 𝑘 = 𝑃𝐶𝜒 (factor supply) and 𝐶 =(︀
𝑀
𝑃

)︀ 1
𝜎 (money demand), we obtain that the firm’s payoff function is:

𝑢(𝑝𝑖, 𝑃,𝑀) =𝑀
1−𝜎
𝜎 𝑃 𝜂− 1

𝜎

(︁
𝑝𝑖 −𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎

)︁
𝑝−𝜂𝑖 (129)

To apply all of our results, we perform the standard approximation (as per Lemma
6) of the firm’s objective function to second-order around the optimal price in each

151



state. This yields the payoff function:

𝑢(𝑝𝑖, 𝑃,𝑀) = 𝛼(𝑃,𝑀)− 𝛽(𝑃,𝑀)(𝑝𝑖 − 𝛾(𝑃,𝑀))2 (130)

where:

𝛼(𝑃,𝑀) =
1

𝜂 − 1

(︂
𝜂

𝜂 − 1

)︂−𝜂
𝑀

1−𝜎+𝜒(1−𝜂)
𝜎 𝑃 𝜂− 1

𝜎
+(1−𝜂)(1−𝜒

𝜎
)

𝛽(𝑃,𝑀) =
𝜂

2

(︂
𝜂

𝜂 − 1

)︂−(𝜂+2)

𝑀
1−𝜎−𝜒(𝜂+1)

𝜎 𝑃 (𝜂+1)𝜒
𝜎
− 1
𝜎
−1

𝛾(𝑃,𝑀) =
𝜂

𝜂 − 1
𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎

(131)

and we impose that this game has complementarity in optimal actions by assuming
factor price pressure is weaker than income effects in money demand, or 𝜒 < 𝜎.
Finally, as is also standard, we approximate the aggregator to first order as:

𝑃 =

∫︁ 1

0

𝑝𝑖 d𝑖 (132)

which simply says that the aggregate price-level is the average price set by firms.

Results and Interpretation To build intuition, we first characterize equilibrium
in this model in the absence of ex ante planning frictions. In this case, the optimal
price that a firm sets is given by:

𝑝 =
𝜂

𝜂 − 1
𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎 (133)

which is a constant markup over marginal cost. Thus, we observe that there is a
unique equilibrium in which all firms set the same price (there is no price dispersion)
and the aggregate price level is given by:

𝑃 =
𝜂

𝜂 − 1
𝑀 (134)

In this equilibrium, the elasticity of prices to the money supply is one, i.e., a 1%
increase in the money supply leads to a 1% increase in the price level.

We now apply our general results to this economy when firms face ex ante planning
frictions. Specifically, we ask when this price-setting economy has a unique equilib-
rium, when the aggregate price level is increasing in money, when the distribution
of prices is increasing (in the sense of FOSD) in money, and when the dispersion in
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prices is highest when inflation is high.

Corollary 9. There is a unique equilibrium if, for all 𝑝, 𝑃 ∈ [𝑝, 𝑝] and 𝑀 ∈ ℳ:

−
(︃

𝑃

𝛾(𝑃,𝑀)
(︀
1− 𝜒

𝜎

)︀ − 1

)︃
<

−1− 1
𝜎
+ (𝜂 + 1)𝜒

𝜎(︀
1− 𝜒

𝜎

)︀ (︂
𝑝

𝛾(𝑃,𝑀)
− 1

)︂
< 1 (135)

The unique aggregate price level and distribution of prices are both increasing in the
money supply if, in addition:

1− 𝜎 − 𝜒(𝜂 + 1) + 𝛿𝜎

𝜒

(︂
𝑝

𝛾(𝑃,𝑀)
− 1

)︂
< 1 (136)

Moreover, price precision is decreasing in the money supply and the price level if, in
addition:

𝜒(𝜂 + 1) ∈ (1 + 𝜎(𝛿 − 1), 1 + 𝜎) (137)

Proof. See Appendix C.1.9.

To understand this result, we go through each condition in turn. The uniqueness
condition (Equation 135) comprises two inequalities. The inequality on the right
ensures that the game is one of complementarities. The inequality on the left ensures
that utility has sufficient concavity relative to complementarity. In the special case
where the losses from mispricing do not depend on the aggregate price level ((1+𝜂)𝜒

𝜎
−

1
𝜎
−1 = 0), the middle term is equal to zero and the complementarity condition always

holds. This is because we have assumed that factor price pressure is weaker than
income effects (𝜒 < 𝜎), which makes the optimal price increase in the aggregate price.
When the losses from mispricing are instead endogenous ((1+𝜂)𝜒

𝜎
− 1

𝜎
−1 ̸= 0), there is

a new effect that must be accounted for. Intuitively, suppose without loss of generality
that an agent is setting a price that is less than the optimal price and an increase in
the aggregate price-level increases (decreases) the losses from misspricing, then the
agent now has a greater (lesser) incentive to reduce the magnitude of this mistake and
increase (decrease) their price. In the former case, this endogeneity of the costs of
misspricing induces greater strategic complementarity. In the latter case, it induces
strategic substitutability. The exact inequality we derive disciplines the magnitudes
of these effects in a verifiable way that ensures that strategic complementarity always
obtains.

The sufficient concavity condition similarly has a “simple” and “complex” interpre-
tation. When the losses from mispricing are exogenous, the condition requires that
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the optimal price has a slope less than one in the aggregate price level. This condition
that “best responses have a slope less than one” is familiar from games without deci-
sion frictions. More generally, when the aggregate price matters for the losses from
mispricing, the “slope” that needs to be bounded depends directly on the deviation
of the price from the optimal price and the considerations described above.

The monotonicity condition (Equation 136) requires that higher levels of the
money supply are complementary with higher prices for firms. When the losses from
misspricing do not depend on the money supply 1−𝜎−𝜒(𝜂+1)

𝜎
+ 𝛿 = 0, this condition

always holds as factor price pressure from higher money supply (which increases de-
mand, which increases production, which increases marginal costs) makes optimal
prices higher. More generally, as above for the endogenous price-level, the mono-
tonicity condition ensures complementarity between pricing and the exogenous money
supply when the losses from mispricing depend on the money supply.

Finally, the condition for monotone precision (Equation 137) conveys, in terms of
deep parameters, when price-setters optimally respond to lower money and prices by
making more precise decisions. To understand this, it is useful to first turn off factor
price pressure or set 𝜒 = 0. In this case, the condition corresponds to 𝛿 +

(︀
1
𝜎
− 1
)︀
<

0. The first term isolates the role of costly planning—when high-money states are
less likely (𝛿 < 0), firms optimally put in less effort to plan for them, and their
pricing decisions in these states are less precise. The second term conveys the roles of
aggregate demand externalities, which have elasticity 1/𝜎 with respect to the money
supply, and the stochastic discount factor, which has elasticity −1 with respect to
the money supply. The demand externality pushes toward high precision in high-
demand states, because any price mistake leads to more lost sales. The stochastic
discount factor pushes toward high precision in low-demand states, since profits are
more valuable in these states (Flynn and Sastry, 2022b). Finally, when factor price
pressures are re-introduced, they loosen the constraint corresponding to incentives
from the money supply and tighten the constraint corresponding to incentives from
aggregate prices.

Economic Lessons Our finding can be used to rationalize empirical findings on the
cyclicality of price dispersion. Empirically, Alvarez, Beraja, Gonzalez-Rozada, and
Neumeyer (2019) find that price dispersion among firms in Argentina has an elasticity
of about 1/3 to the inflation rate in high-inflation periods (e.g., an annual rate above
50%) and an elasticity that is positive, but close to zero, in low-inflation periods.
Nakamura, Steinsson, Sun, and Villar (2018) find limited evidence that the dispersion
of US prices increased in the “Great Inflation” of the 1970s and 1980s, during which
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annual US inflation was regularly between 5% and 10%. This evidence is consistent
with the costly planning mechanism, if firms believe that hyperinflation states (in
Argentina and in the US) are relatively unlikely (𝛿 < 0) and are far in the tail of
the distribution for 𝑀 . Intuitively, this allows the possibility that price dispersion is
especially high in hyperinflations precisely because firms have not precisely formulated
plans for these unlikely states.

3.4.2 Consumption and Savings with a Stress Externality

Set-up Each agent is a consumer that lives for infinite periods, indexed by 𝑡 ∈ N.
They choose consumption levels 𝑐𝑖𝑡 ∈ R and labor levels 𝑛𝑖𝑡 ∈ R and have quadratic
payoffs. They maximize expected discounted utility:

𝑈({𝑐𝑖𝑡, 𝑛𝑖𝑡}∞𝑡=0, 𝜃𝑑) = (1 + 𝜃𝑑)𝑐𝑖𝑡 −
𝑐2𝑖𝑡
2

− 𝜒
𝑛2
𝑖𝑡

2
+

∞∑︁
𝑡=1

𝛿𝑡
(︂
𝑐𝑖𝑡 −

𝑐2𝑖𝑡
2

− 𝜒
𝑛2
𝑖𝑡

2

)︂
(138)

where 𝛿 ∈ (0, 1) is a discount factor, 𝜒 is a parameter controlling the labor-leisure
trade-off, and 𝜃𝑑 is a demand shock in a discrete set Θ𝑑, with maximum element
𝜃𝑑 ≤ 0 and minimal element 𝜃𝑑 > −1, that reduces the household’s relative preference
to consume in period 0. Each agent can save in a risk-free bond with interest rate
𝑅 = 1/𝛿, fixed and unresponsive to demand as in a small open economy. Each agent
receives income 𝑤𝑡𝑛𝑖𝑡 in each period, where 𝑤𝑡 ∈ R+ is a wage and 𝑛𝑖𝑡 ∈ R is the
amount that agent 𝑖 works. Therefore, for each period 𝑡, the agent faces a budget
constraint 𝑐𝑖𝑡 + 𝑏𝑖𝑡 ≤ 𝑤𝑡𝑛𝑖𝑡 +𝑅𝑏𝑖,𝑡−1, where 𝑏𝑖𝑡 is savings and 𝑏𝑖,−1 = 0 for all agents.

Goods are produced by a representative firm, at which all of the agents work.
The firm produces output via a linear production technology, 𝑦𝑡 =

∫︀
[0,1]

𝑛𝑖𝑡 d𝑖. In
all periods, the output market clears as 𝑦𝑡 =

∫︀
[0,1]

𝑐𝑖𝑡 d𝑖 = 𝑦𝑡 and the bond market
clears as 0 =

∫︀
[0,1]

𝑏𝑖𝑡 d𝑖. At 𝑡 = 0, given the fixed interest rate, these conditions
would be incompatible with equilibrium in the labor market. We therefore make the
conventional assumption that, in this period, the firm commits to satisfying demand
at the (fixed) price, households lie off their labor supply curve, and households all
work an equal amount. We refer to this period as a liquidity trap, since the market
failure is caused by the inability of interest rates to adjust downward to accommodate
the negative demand shock.

We are interested in how equilibrium at 𝑡 = 0 is affected by demand shocks, under
the assumptions that households imperfectly optimize and that their cost is affected
by financial stress. To simplify our analysis, we assume that all choices for 𝑡 ≥ 1, after
the economy exits the liquidity trap, are made frictionlessly. At 𝑡 = 0, households
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choose 𝑐𝑖0 ∈ [𝑐, 𝑐], where 𝑐 < 𝛿
1−𝛿 , to maximize expected utility net of cognitive costs,

given rational expectations about future aggregates and their future behavior.11

We introduce the idea that stress may lead to lower-quality decisions in low-
income states via the cost functional. This idea is motivated by the experimental
findings of Mani, Mullainathan, Shafir, and Zhao (2013) suggesting that poverty,
transitory or persistent, reduces performance in cognitive tasks. Mullainathan and
Shafir (2013) hypothesize that involuntary capture of attention toward contemplating
negative outcomes in these states reduces the available bandwidth to make decisions,
and therefore makes people more prone to “forgetfulness” and “cognitive slips” (p.
14). We model this by letting 𝜆(𝑦, 𝜃𝑑) = 𝑦−𝜏 , where 𝑦 is consumers’ period-0 income
and 𝜏 ≥ 0 is a parameter controlling how quickly decision costs increase when income
is low. This cost may capture in reduced-form the distraction of cognitive resources
away from the decision of interest for consumption and savings, and hence the scarcity
of attention available for the decision problem of interest.12 We let the cost-functional
kernel be any 𝜑 that satisfies Assumption 3.

Recasting the Economy as a Game We now analyze the consumer’s problem to
reduce the equilibrium determination of first-period consumption to a game to which
our results can be applied. It is simple to show that, for 𝑡 ≥ 1, aggregate output is
fixed at a level 𝑦 > 0 and each agents’ consumption is fixed at a specific level which
depends on their period 0 savings. This exact consumption result smoothing follows
from the intertemporal Euler equation and the simplifying assumption that 𝛿𝑅 = 1

(see, e.g., Hall, 1978). Next, because the payoff for 𝑡 ≥ 1 is always increasing in period
0 savings, the agent saves all unspent income at 𝑡 = 0: 𝑏𝑖0 = 𝑦0 − 𝑐𝑖0. Using these
observations, and defining 𝑐𝑖 = 𝑐𝑖0 and 𝑦 =

∫︀
[0,1]

𝑐𝑖 d𝑖, we can re-write the objective as

𝑢(𝑐, 𝑦, 𝜃𝑑) = 𝛼(𝑦, 𝜃𝑑)− 𝛽(𝑦, 𝜃𝑑)(𝑐− 𝛾(𝑦, 𝜃𝑑))
2 (139)

where13

𝛾(𝑦, 𝜃𝑑) = (1−𝑚)(𝜃𝑑 + 𝑦) +𝑚𝑦

𝛽(𝑦, 𝜃𝑑) =
1

2(1−𝑚)

(140)

11The condition 𝑐 < 𝛿
1−𝛿 ensures that consumption in periods 𝑡 ≥ 1 does not exceed the bliss

point.
12As a different, and complementary formalization that is consistent with their novel survey ev-

idence, Sergeyev, Lian, and Gorodnichenko (2022) formalize the Mullainathan and Shafir (2013)
hypothesis as an involuntary use of time that could otherwise be allocated to labor or leisure.

13A more cumbersome expression for 𝛼(𝑦, 𝜃𝑑) is given in Appendix C.1.10.
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and 𝑚 = 𝜒(1−𝛿)
𝜒+𝛿

∈ (0, 1) is the agent’s marginal propensity to consume (MPC), which
itself depends positively on labor disutility 𝜒 and negatively on the discount factor 𝛿.
In the limit where labor supply is inelastic, or 𝜒→ ∞, then 𝑚→ 1− 𝛿 as is familiar
from the permanent income hypothesis. Finally, note that the payoff representation
is exact, not approximate, since the original payoffs were quadratic.

Results and Interpretation Applying our general results, we can provide con-
ditions under which a generalized beauty contest has a unique equilibrium with a
number of economically relevant properties:

Corollary 10. If the following condition holds for all 𝑐, 𝑦 ∈ [𝑐, 𝑐] and 𝜃𝑑 ∈ Θ𝑑:

0 < 𝑚− 𝜏

𝑦
(𝑐− (1−𝑚) (𝑦 + 𝜃𝑑)−𝑚𝑦) < 1 (141)

then there exists a unique equilibrium in which (i) the distribution of consumption and
aggregate output are monotone increasing in the demand shock 𝜃𝑑 and (ii) the precision
of consumption is monotone decreasing in the demand shock 𝜃𝑑 and in aggregate output
𝑦. Moreover, if the planner’s problem is strictly concave, a necessary condition for
the efficiency of the unique equilibrium is that:

𝑦 = 𝑦 +
𝜏

𝜒
𝑦−𝜏−1

∫︁ 𝑐

𝑐

𝜑(𝑝*(𝑐 | 𝜃𝑑)) d𝑐 (142)

Thus, whenever cognitive costs are positive, an efficient allocation in an economy with
𝜏 > 0 has higher output than an efficient allocation in an economy with 𝜏 = 0.

Proof. See Appendix C.1.10.

The conditions in Equation 141 follow from the calculation in Lemmas 2 and
5. These conditions are trivially satisfied if 𝜏 = 0 as higher demand increases in-
come which increases consumption (as 𝑚 > 0), but less than one-for-one since the
household discounts the future and therefore has an MPC strictly less than one (as
𝑚 < 1). If 𝜏 > 0, then there are potentially countervailing forces that affect strate-
gic complementarity. Concretely, when aggregate output increases, stress decreases,
and agents’ costs of precise optimization fall. If an agent is consuming more than
the optimal level, this makes them prone to consume closer to the optimal level and
lower their consumption, inducing strategic substitutability. Conversely, if an agent
is consuming less than the optimal level, this makes them prone to consume more
and induces additional strategic complementarity. The condition provides the precise
conditions under which these concerns do not upset total strategic complementarity
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(consumption increases when income increases) and sufficient concavity (consump-
tion increases less than one-for-one). Under these conditions, we know that higher
demand increases aggregate output (point (i)); that higher demand shifts the entire
distribution of consumption upward of first-order stochastic dominance (point (ii));
and that agents’ actions are more precise in high states, due to their experiencing
lower stress and, therefore, (endogenously) lower costs of attention in these states.

The second result, the necessary condition for efficiency, conveys that the intro-
duction of the stress mechanism increases the optimal level of output. The reason is
that the stress mechanism creates an externality operating through cognitive costs:
if one agent consumes more, increasing aggregate demand and output, they reduce
stress (cognitive costs) for all other agents. The extent of this externality in state 𝜃𝑑
is proportional to the cognitive cost paid ex post in that state. Thus, the externality
would disappear were there no cost of cognition. And the extent of cognitive costs
would not affect the optimal allocation were there no stress and, by implication, no
externality operating purely through cognition.

Economic Lessons Our prediction for endogenous precision, or higher consump-
tion “mistakes” in low output states, is consistent with the evidence from Berger,
Bocola, and Dovis (2023) that the cross-sectional distribution of US consumption
becomes more dispersed in recessions. In our case, this result arises because of the
equilibrium effect of low income causing stress that worsens decisionmaking. Our
psychological explanation complements mechanisms studied in the literature related
to cyclicality of income risk and the role of financial constraints.14

In the emerging literature on how household stress affects decisionmaking, our
results complement those in the study of Sergeyev, Lian, and Gorodnichenko (2022),
who use original survey evidence to measure the extent of financial stress among US
households and to calibrate a macroeconomic model in which financial stress distracts
from productive labor supply. Our mechanism is different (stress reducing decision
quality) and makes a different prediction, potentially in line with the data, about
consumption dispersion.

Our normative results clarify how the stress channel may translate into inefficiency
at the macro level. In particular, our results rationalize a “paradox of scarcity” logic:
by not spending, households contribute toward lower overall output, which induces
further financial stress for others and has psychological costs. This mechanism relies

14Moreover, Sergeyev, Lian, and Gorodnichenko (2022) find in their original survey that liquidity
constraints exacerbate reported psychological stress related to making economic decisions. Therefore,
in practice, the psychological and liquidity-constraint channels may reinforce one another in a richer
model that accommodates both.
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crucially on the endogeneity of income, and hence stress, to others’ decisions.

Finally, we note that our analysis contrasts from abstract results in examples
studied by Hébert and La’O (2022) and Angeletos and Sastry (2023) in two ways.
First, we isolate a cognitive externality that may be difficult to formalize in a model
of costly information acquisition (see the discussion of Fact 5 in Section 3.2.3). Sec-
ond, we can precisely characterize equilibrium, its comparative statics properties, the
equilibrium externality, and the optimal direction of policy response in an inefficient
setting.

3.5 Extensions

3.5.1 State-Separable vs. Mutual Information Costs

Although its foundations are in information theory, the mutual information model
of Sims (2003) also makes predictions for stochastic choice or “imperfect optimiza-
tion.” Decision-theoretic work by Caplin, Dean, and Leahy (2022) characterizes these
behavioral predictions, and Woodford (2012) and Dean and Neligh (2022) discuss
how they match some, but not all, features of imperfect perception and choice in
the lab. Moreover, in many applications in macroeconomics in finance, information
choice is unobserved and/or not the focus of predictions per se. Instead, the focus is
on the aforementioned predictions for imperfect optimization and how they play out
in equilibrium.

In Appendix C.2, we contrast the predictions of state-separable and mutual infor-
mation costs as alternative models of stochastic choice in large games. First, extending
a result in Matějka and McKay (2015), we give abstract conditions under which the
predictions of a version of the strategic mistakes model with logit costs gives iden-
tical predictions to a twin model with mutual information costs and a restriction of
agents’ (subjective) priors. Relaxing this condition isolates the key difference between
the models—the mutual information model naturally allows agents to anchor toward
commonly played actions as if they were “default points.”

Next, we numerically explore a linear beauty contest game (Morris and Shin, 2002;
Angeletos and Pavan, 2007) under both state-separable and mutual information costs.
The model with state-separable costs predicts a unique equilibrium in which aggregate
quantities are monotone in a driving shock, consistent with our abstract results. The
mutual information model opens the door to multiple equilibria, via coordination on
specific support points of action distributions. We show how the equilibrium operator
in the mutual information model is not a contraction map, thus providing an explicit
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counterexample to the possibility of using this paper’s analytical tools to show similar
results in a mutual-information setting.

We conclude that, while the information-acquisition underpinning and “anchor-
ing” observation may be realistic for individual behavior in some applications, these
components of the mutual information model open up the door to somewhat patholog-
ical equilibrium predictions and preclude sensible comparative statics analysis. Thus,
in situations where researchers are concerned primarily with stochastic choice, the
strategic mistakes model may be a tractable alternative that is still behaviorally rich
enough to capture important, experimentally verified features of behavior (see Section
3.2.3).

3.5.2 State-Separable Costs in Binary-Action Games

In Appendix C.3, we study strategic mistakes in binary-action games, which are
used in many applications to capture an extensive margin of adjustment and/or to
simplify analysis.15 We derive sufficient conditions on cognitive costs and payoffs to
ensure unique and monotone equilibria and illustrate our results in the context of a
simple investment game with linear payoffs (as in Yang, 2015). Unlike the continuous-
action games studied in our main analysis, binary-action supermodular games may
have multiple equilibria with small stochastic choice frictions. This result hinges on
agents’ ability to waver between options that have similar payoffs, but are far apart
in the action space and induce very different equilibrium externalities. This result
offers the following insight for researchers interested in well-posed comparative statics
and not multiplicity per se: a “more complex” continuous-action model, by smoothing
out aggregate best-response functions, may admit simpler analysis than a comparable
binary-action model.

3.6 Conclusion
This paper introduces a new class of state-separable control costs in large games. We
show how these costs accommodate a rich class of decision frictions. We provide re-
sults on equilibrium existence, uniqueness, efficiency, and monotonicity of equilibrium
distributions, aggregates and mistakes. We apply these results to make robust equi-
librium predictions in two macroeconomic applications, respectively to price-setting
in a monetary economy and consumption and savings in a liquidity trap.

This paper’s analysis of decision frictions in large games may be applicable to
many additional settings in macroeconomics and finance. In Section 3.4, we show

15See Angeletos and Lian (2016) (in particular, Section 5) for a review of this literature.
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how to recast price-setting in a monetary economy and consumption-savings choice
in a liquidity trap as games with common payoff-relevant states (the money supply
or aggregate demand shock) and strategic complementarity summarized in payoffs by
an aggregator (the price level or real GDP). Angeletos and Lian (2016) surveys other
settings in macroeconomics and finance with similar characteristics, including asset
pricing and strategic firm investment.

The following “practical guide” generalizes the steps of Section 3.4 and may be
useful to researchers in macroeconomics and finance who want to make general equi-
librium statements about the properties of economies that feature decision frictions.
First, micro-found payoffs and aggregation in the setting of interest. Second, based
on an understanding of how imperfect optimization varies across states, specify an
appropriate weighting function 𝜆 (or a class of plausible candidates, whose predic-
tions one wants to contrast). Third, algebraically verify the conditions underlying
our main results for equilibrium existence, equilibrium uniqueness, monotone com-
parative statics, and equilibrium efficiency. Fourth, use these conditions to generate
theoretically robust and, potentially, empirically testable predictions.
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Part II

Essays in Mechanism Design
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Chapter 4

Priority Design in Centralized
Matching Markets

This chapter is jointly authored with Oğuzhan Çelebi and has been published in The
Review of Economic Studies as Çelebi and Flynn (2022).

4.1 Introduction
In recent years, across countries such as the US, England and Chile, ever more school
districts, national university admissions boards and public authorities have adopted
centralized matching mechanisms to allocate objects to agents. In many such markets,
the property rights that agents receive over such objects are given by priorities derived
from various criteria such as academic attainment, income or distance. Informed by
the extensive academic literature on matching, these authorities have often introduced
stable matching mechanisms.1 Stable mechanisms respect these priorities in a natural
sense by guaranteeing that no given agent strictly prefers the assigned object of
another agent with lower priority.2 This makes priorities (and the property rights
they encode) critical to the realized distribution of outcomes in these markets across
race, socioeconomic group, and space.

In this context, a large matching literature takes priorities as primitive and studies
the design of the allocation mechanism (Roth, 2002). However, priorities often appear
to be designed by the relevant authorities as a function of some other, underlying
score.

1See, for example, Balinski and Sönmez (1999), Abdulkadiroğlu and Sönmez (2003), Roth, Sön-
mez, and Ünver (2004), and Abdulkadiroğlu, Pathak, and Roth (2005).

2In the context of student assignment, stable mechanisms are both individually rational and
eliminate justified envy.
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Prominently, Boston Public Schools (BPS) wished to ensure that students were
able to attend schools close to their own homes in order to both reduce transportation
costs and improve community cohesion (Dur, Kominers, Pathak, and Sönmez, 2018).
However, they did not introduce a priority that ranked students strictly according
to their distance from each school. Instead, in the walk-zone assignment system
employed by BPS until 2013, at each school students were partitioned into two groups:
walk-zone students who lived within a certain radius of the school and the others who
did not. Moreover, the New York City Housing Authority (NYCHA) has the goal of
providing public housing to those who cannot afford adequate housing in the absence
of assistance (Collinson, Ellen, and Ludwig, 2015; Arnosti and Shi, 2017). However,
agents’ priorities are not strictly decreasing in their income. Instead, a household is
only eligible for public housing if its income is less than a certain fraction of New
York’s Area Median Income (AMI).3 Similar design concerns that trade off diversity
and admitting the most academically qualified students are present in the Chicago
Public Schools (CPS) system which uses scores derived from the academic merit of
students.4

From these examples, it is clear that these authorities not only design priorities,
but also choose coarse priority structures that do not reverse an underlying score.
However, there exists little theoretical work that approaches the problem of optimal
priority design.5 Therefore, we study the problem of a mechanism designer that is
faced with an underlying score (such as distance, income or academic achievement in
our running examples) and has the power to design priorities. Following the priority
designs we see in our applications, we restrict attention to priority designs that do
not reverse the given underlying score.6 We call such designs priority coarsenings, as

3In both BPS and NYCHA, the mechanism used during the matching process requires a strict
priority order. In both markets, this strict order is obtained by assigning a random tie-breaker
number for the agents and prioritizing according to the random tie-breaker number within each
priority class.

4To balance these competing objectives, CPS chose a policy that divided students into four
socioeconomic tiers, reserved 70% of the capacity at exam schools for these tiers in equal proportion
and left the remaining 30% open to students from all groups (Ellison and Pathak, 2016).

5Exceptions to this include the work by Echenique and Yenmez (2015) and Erdil and Kumano
(2019a) who discuss issues related to substitutable priorities. Relatedly, Hafalir, Yenmez, and
Yildirim (2013) and Ehlers, Hafalir, Yenmez, and Yildirim (2014) study the design of reserves as
implemented through the use of differing priorities in different slots and affirmative action policies
with upper and lower bounds, while Dur, Pathak, and Sönmez (2020) study the design of precedence
orders over these slots in the CPS context.

6Beyond the relevance in our applications of restricting attention to priority coarsenings, in certain
contexts such as CPS where the underlying score is derived from academic performance, reversing
scores may give rise to incentive compatibility issues whereby students intentionally perform worse on
exams. Sönmez (2013) documents a case in the US Military Academy and Reserve Officer Training
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they result in a coarser ordering of students relative to the initial scores. Our main
results show that, under any stable matching mechanism, the set of implementable
allocations can be attained by designs that split agents into at most three object-
specific indifference classes (Theorem 5). Moreover, when the mechanism designer has
a continuous objective function, an optimal design exists (Theorem 6) and therefore
requires only three indifference classes.

Concretely, we establish a general continuum matching market framework in the
spirit of Abdulkadiroğlu, Che, and Yasuda (2015) and Azevedo and Leshno (2016)
for assessing the question of optimal priority design. In the ex-ante stage of the
model, the mechanism designer knows the joint distribution of agents’ preferences
and rankings according to an underlying score and chooses a rule that coarsens the
underlying score to maximize some arbitrary, continuous objective function. Types
are then realized and in the interim stage agents are matched to objects according to a
stable matching mechanism. Our framework features a unique stable matching, which
makes it possible to express the type-contingent probability of assignment without
reference to the specific stable mechanism under consideration.7 This object functions
as an allocation in the ex-ante stage, specifying the probability that each type of agent
is assigned to each object as a function of the coarsening chosen by the designer.

Using this framework, we establish our main theoretical contribution that the
optimal design can be attained by partitioning agents into at most three indifference
classes at each object. The intuition for this result depends crucially on specific
types of equivalence classes that emerge following the selection of a coarsening, lottery
classes. Lottery classes have the property that some agents within them have positive
probability of receiving that object and an object they rank lower in their preferences.
Therefore, some agents in a lottery class have probability of being assigned to that
object strictly between zero and one. We show that under a stable mechanism, there
can be at most one lottery class of agents per object. This result holds for the
following simple reason: if there is more than one lottery class, there will be at least
two equivalence classes with interior probabilities of assignment and it must be that
some agents in a lower equivalence class will be assigned the object while some agents
in the higher class will not, violating stability (see the example below for a simple
demonstration of this in the discrete context). Furthermore, all agents in higher

Corps where having a lower score might be more advantageous for the graduates. As a result, cadets
tried to intentionally lower their scores to get assigned to a more preferred army branch.

7We obtain a unique stable matching through the assumption that there is full support of all
student types in our economy. We show that our results are robust to relaxation of this assumption
in Appendix D.6.
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priority classes are guaranteed to receive the object if they prefer it, and all agents
in lower priority classes never receive the object. Thus, all classes above and below
the lottery class can be merged without affecting the allocation, so the outcome of
any coarsening can be replicated by a coarsening that splits agents into at most three
indifference classes.8

We leverage the simplifying power of our theoretical results in our applications.
First, we study the design of distance-based priorities in the BPS system. The follow-
ing discrete example provides a simple illustration of the trinary optimality result and
explores how the trade-off between diversity and distance travelled shapes the opti-
mal policy in this context. Assume there are four students, 𝑖1, 𝑖2, 𝑖3, 𝑖4, and one school
with two slots. Each student 𝑖𝑛 lives 𝑛 miles away from the school and 𝑖3 belongs to
an underrepresented group of society. The mechanism designer gains 𝛼 ∈ [0, 1] utility
from admitting the student from the underrepresented group, 𝑖3, and loses utility
equal to 1− 𝛼 times the total distance that admitted students travel. Mirroring the
coarse walk-zone priorities in BPS, the mechanism designer decides how to coarsen
students’ distance to maximize this objective.

Owing to Theorem 5, it is without loss of optimality to consider priority coars-
enings that divide students into at most three groups. In this particular example,
it can be shown that an optimal policy is one of three such coarsenings: a two-zone
priority with a cut-off at 2.5 miles, a two-zone priority with a cut-off at 3.5 miles and
a three-zone priority with cut-offs at 1.5 and 3.5 miles. The first option guarantees
that 𝑖1 and 𝑖2 are admitted for sure, the second option assigns 𝑖1, 𝑖2, and 𝑖3 to the
school with probability 2/3 each and the third option assigns 𝑖1 with unit probability
and 𝑖2 and 𝑖3 with probability half.

When are each of these optimal? A quick calculation shows that for 𝛼 ≤ 1/2,
the first option is optimal. This is intuitive as the first option guarantees 𝑖1 and 𝑖2

are admitted and for low values of 𝛼, minimizing distance travelled is much more
important than diversity. For 𝛼 ≥ 3/4, the second option is optimal as it maximizes
the probability that the underrepresented student 𝑖3 is admitted. This is also intuitive
as in this case the mechanism designer values diversity much more than distance. For
𝛼 ∈ (1/2, 3/4), the third option is optimal. Here, the mechanism designer wants to
have a diverse student body but also cares about distance travelled, and hence entails
a strong preference for admitting 𝑖1.

8It is clear that this construction requires knowledge of the structure of the economy on the part
of the planner. We discuss the validity of this assumption in our applications and robustness of our
results to aggregate uncertainty in Section 4.3.4 and Appendix D.3.
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While we here provided a discrete example for simplicity and to exemplify our
theoretical results, in our BPS application we employ the continuum framework to
provide analytical results on the optimality of various walk-zone policies. In partic-
ular, we argue that the pursued policy of two zones is compatible with a planner
who places a large weight on neighborhood assignment. However, were diversity con-
cerns to dominate, there remains additional policy latitude for a planner to adopt a
three-zone policy – which our trinary optimality result ensures is the only potential
welfare-improving deviation from a simple two-zone policy.

Second, we study how priority design could be used in the design of exams in the
CPS system. We show how coarser grading can increase the admissions of minority
groups who score less well on exams and show how the trade-off between diversity
and admitting the best scoring students shapes the structure of the optimal exam
design. In particular, we show that when diversity concerns are sufficiently strong,
pooling students’ exam scores in up to three groups constitutes optimal policy.

Finally, we study the design of income-based priorities in public housing allocation
by NYCHA. Relative to the other applications, this features complications as we
must consider the dynamic nature of public housing allocation. Nevertheless, in the
steady state of the dynamic matching model we develop, our Theorems 5 and 6 apply
directly: the planner need only introduce two income cutoffs. We show how the
trade-off between widening eligibility for public housing and targeting the allocation
to the most needy shapes the optimal policy. In particular, when there is a sufficiently
strong relationship between income and outside options, the optimal policy excludes
the richer agents from eligibility for public housing – rationalizing the policy pursued
by NYCHA. However, we also show a three-tiered system may improve welfare in the
case of sufficient heterogeneity in outside options.

Related Literature The theory and design of matching markets was pioneered
by Gale and Shapley (1962). Balinski and Sönmez (1999) and Abdulkadiroğlu and
Sönmez (2003) introduced the problems of student assignment and school choice, re-
spectively. Much of the literature following these seminal papers focused on allocation
mechanisms that take property rights (encoded in priorities) as given. While there
is a small literature that studies the effects of certain classes of priorities on certain
mechanisms (Erdil and Kumano, 2019a; Echenique and Yenmez, 2015),9 this paper

9In particular, Erdil and Kumano (2019a) study substitutable priorities with ties and propose
an algorithm to improve the widely used Deferred Acceptance algorithm from an efficiency point of
view. Echenique and Yenmez (2015) emphasize that substitutability is in conflict with schools’ pref-
erences for diversity and study different rules for incorporating such preferences into the assignment
mechanism.
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develops the novel idea that priorities can be viewed as choice objects.

Our analysis is closely related to the rapidly growing literature on matching in the
presence of distributional constraints and affirmative action. Kojima (2012) studies
the widely used majority quotas and shows that such policies can harm all minority
students. Hafalir, Yenmez, and Yildirim (2013) approach this question from a mecha-
nism design perspective and introduce minority reserves to overcome the shortcomings
of quota policies. Ehlers, Hafalir, Yenmez, and Yildirim (2014) generalize these re-
serves to incorporate multiple priority levels and accommodate further policies used
in practice, such as floors and ceilings, and develop new mechanisms for hard or soft
floors and ceilings. Reserve policies have also been generalized by Kominers and Sön-
mez (2016), who introduce and study matching with slot-specific priorities.10 In an
alternative approach to the literature with quotas and reserves, Kamada and Kojima
(2017, 2018) and Goto, Kojima, Kurata, Tamura, and Yokoo (2017) study stability
and efficiency in matching-with-constraints models. Finally, Çelebi and Flynn (2021)
study the trade-offs between using minority quotas (and reserves) and score subsidies
in affirmative action.

The common approach of papers studying priority structures, distributional con-
straints and affirmative action in their respective contexts is to take the priority
structure as given and analyze the properties of different mechanisms. The key dif-
ference between our paper and these literatures is our introduction of, and focus on,
priority coarsenings that introduce indifferences into underlying scores as a tool to
design priorities.11 In this context, in contrast to the existing literature, we com-
pare different priority structures for a fixed stable mechanism and investigate the
relationship between the allocation, welfare and the priority structure.

We apply our general results regarding the design of priorities to three differ-
ent settings, which have themselves been the subject of previous research that fixes
priorities and compares different mechanisms in specific contexts. First, we study
distance-based priorities and the design of walk-zones with reference to BPS, a set-

10Further papers that analyze reserve-like policies include Doğan (2016), who proposes an assign-
ment rule that never harms all minority students. Fragiadakis and Troyan (2017) propose a dynamic
quota mechanism to improve allocations under hard bounds.

11As the main policy tool available to the designer in our paper is the “coarseness" of the priorities
to be used in the mechanism, our paper is implicitly related to the literature that studies matching
markets under indifferences. Following our applications, we require stability with respect to the
tie-broken priorities and abstract away from the issues studied in that literature such as alternative
stability criteria (Kesten and Ünver, 2015), computation of stable and efficient matchings (Erdil
and Ergin, 2008, 2017), correlated lotteries (Ashlagi and Shi, 2014), random assignments under
constraints (Budish, Che, Kojima, and Milgrom, 2013), and efficiency improving lottery mechanisms
(Kesten, Kurino, and Nesterov, 2017).
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ting that has been studied prominently by Dur, Kominers, Pathak, and Sönmez
(2018). Second, motivated by the CPS assignment system outlined in Dur, Pathak,
and Sönmez (2020), we study how diversity considerations in an environment with
priorities based upon student achievement affect optimal priority design. Finally,
we study income-based priorities and the allocation of public housing in NYCHA, a
context studied by Arnosti and Shi (2017) in their analysis of the design of lotteries
and waitlists under fixed priorities.12 Furthermore, while not explicitly featured as
applications in this paper, the design concerns we highlight are not unique to the
US context. For example, Sönmez and Yenmez (2021, 2020a,b) and Aygun and Bó
(2021) study affirmative action policies in India and Brazil, respectively, and propose
mechanisms for each context. In all of these contexts, priority coarsenings offer a new
policy lever that could be useful in cases where current policies, such as quotas in
affirmative action, are controversial.

Outline The rest of the paper proceeds as follows. Section 4.2 introduces the
matching model and priority coarsening. Section 4.3 studies optimal priority design
and provides our main results (Theorems 5 and 6). Motivated by the BPS context,
Section 4.4 applies our results in the case of distance-based scores and considers
optimal walk-zone design. Section 4.5 uses our results to study priority design with
test-based scores, as in CPS. In Section 4.6, we augment our framework to analyze
the design of income-based scores and the allocation of public housing in a dynamic
matching model. Section 4.7 concludes.

4.2 Model
In this section, we develop a model of a matching market with a continuum of students
as in Abdulkadiroğlu, Che, and Yasuda (2015) and Azevedo and Leshno (2016) to
study how and when priority design can affect the allocation of objects and welfare.
We proceed with the standard matching literature language of matching students and
schools. However, as we later show, our analysis is of relevance beyond this context. In
the ex-ante stage, the mechanism designer has a prior over the distribution of student
types (that comprise preferences over schools, underlying scores at each school, and
other identifying information) in the population and chooses a rule that coarsens the
underlying scores of students into the priorities they will hold in the interim stage. In

12Relatedly, Leshno (2017) and Bloch and Cantala (2017) study models of dynamic waitlists and
argue that randomized assignments will improve welfare. Geyer and Sieg (2013), Waldinger (2018)
and Sieg and Yoon (2020) estimate empirical models of public housing allocations and compare
different mechanisms.
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the interim stage, types are realized, and students submit their preferences to a stable
matching mechanism that uses these priorities. Finally, the students are matched to
the schools and payoffs are realized. The model timeline is shown in Figure 4-1.

4.2.1 Ex-ante Stage and Priority Coarsening

There are a finite set of schools, denoted by 𝒞 = {𝑐0, 𝑐1, . . . , 𝑐𝑛} where 𝑐0 is a dummy
school that corresponds to a student going unmatched, and a unit measure of students.
Let 𝜃 = ({𝑢𝜃𝑐 , 𝑠𝜃𝑐}𝑐∈𝒞, 𝜅) denote the type of a student whose utility from going to school
𝑐 is 𝑢𝜃𝑐 , who has score 𝑠𝜃𝑐 ∈ 𝑆𝑐 = [0, 1] in school 𝑐, where 𝑆𝑐 denotes the set of possible
scores at school 𝑐. For example, 𝑆𝑐 could contain possible distances from a school,
or students’ scores in an exam. Finally, 𝜅 denotes any other information about the
socio-economic situation or minority status of the student.13 We use 𝑢𝜃, 𝑠𝜃 and 𝜅𝜃

to, respectively, denote the utility profile, score profile and additional information of
a student with type 𝜃. The set of student types is denoted by Θ, over which there is
a probability measure 𝐹 . 𝑄 = (𝑄0, . . . , 𝑄𝑛) denotes the capacities of schools.14 The
economy can therefore be summarized by the triple Ω = (𝐹,𝑄,Θ).

In the ex-ante stage, the designer transforms the students’ scores into the priorities
that will be used in the matching mechanism. Formally, a priority design at school
𝑐 ∈ 𝒞 is a function Ξ𝑐 : 𝑆𝑐 → 𝑃𝑐 that maps students’ scores 𝑠𝑐 ∈ 𝑆𝑐 into their
priority Ξ𝑐(𝑠𝑐) ∈ 𝑃𝑐, where 𝑃𝑐 ⊆ 𝑆𝑐 = [0, 1]. A priority design is then a function that
collects each school’s design Ξ(𝑠) ≡ (Ξ1(𝑠1), . . . ,Ξ𝑛(𝑠𝑛)), with corresponding domain
𝑆 =

∏︀𝑛
𝑐=1 𝑆𝑐 and range 𝑃 =

∏︀𝑛
𝑐=1 𝑃𝑐. As we have motivated, we will restrict attention

to coarsening rules: priority designs that coarsen, but do not reverse students’ scores.

Definition 7. A coarsening rule is a priority design Ξ : 𝑆 → 𝑃 such that for all
𝑐 ∈ 𝒞 and all 𝑠, 𝑠′ ∈ 𝑆 such that 𝑠𝑐 ≥ 𝑠′𝑐, we have that Ξ𝑐(𝑠𝑐) ≥ Ξ𝑐(𝑠

′
𝑐). Moreover, for

each 𝑐 ∈ 𝒞, 𝑃𝑐 is either finite or Ξ𝑐 is the identity function.

The final condition that either the set of priorities at each school 𝑃𝑐 is finite or the
priority design leaves scores unchanged is a technical one that ensures ties resulting
from coarse priorities can be broken while maintaining a well-defined economy. A
natural example of coarsening that many will be familiar with is the conversion of
fine numerical exam scores (ranging from 1 to 100) into letter grades (ranging from F
to A). Example 1 demonstrates a coarsening from strict scores over [0, 1] to a priority

13We will suppress 𝜅 until the applications sections, as it is irrelevant for allocations.
14As school 𝑐0 is a dummy school representing outside options, it is without loss of generality to

set 𝑄0 = 1.
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structure with three indifference classes, while Example 2 shows the planner may
choose to use the scores as priorities without transforming them.

Example 1. There is one school, |𝒞| = 1, scores lie in 𝑆 = [0, 1], and we coarsen
these strict scores into three indifference classes 𝑃 = {1

3
, 2
3
, 1} according to the rule:

Ξ(𝑠) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
3
, 𝑠 ∈ [0, 1/3),

2
3
, 𝑠 ∈ [1/3, 2/3),

1, 𝑠 ∈ [2/3, 1].

(143)

Specifically, Ξ takes any student who had an initial score lower than 1/3 and gives
them a priority of 1

3
, students with initial score between 1/3 and 2/3 are given priority

2
3
, and students with initial score greater than 2/3 are given priority 1.

Example 2. Let 𝑆 = 𝑃 and Ξ𝑐 be the identity function for all 𝑐 ∈ 𝒞. Then for any
𝑠, Ξ𝑐(𝑠) = 𝑠, i.e. the priorities are identical to the scores.

We argue that non-reversal is a relevant and natural property to demand from a
priority design in our setting. From a practical perspective, such interventions seem
feasible from a political economy point-of-view and have occurred in markets with an
established score structure, such as distance-based priorities (as in BPS) and priorities
that depend on a measurable statistic such as income (as in NYCHA).15 Beyond the
main applications of this paper, coarse priorities have also been advocated for in the
2018 US Centers for Disease Control Vaccine Allocation Guideline, which divides the
general population into four tiers based on their age (CDC, 2018). Furthermore, many
states in the US have recently adopted priority systems in the allocation of ventilators
based on the Sequential Organ Failure Assessments (SOFA) score (Piscitello, Kapania,
Miller, Rojas, Siegler, and Parker, 2020; Pathak, Sönmez, Unver, and Yenmez, 2021),
which maps continuous measures of patient health to a discrete set of values for six
organ systems. Moreover, when scores are based on achievement (as in CPS) or
can otherwise be gamed, a transformation that does not satisfy non-reversal may
incentivize students to obtain lower scores, which is clearly undesirable.16

We argue that requiring stability with respect to the designed priorities is reason-
able for three reasons. First, if students only know the coarsened scores, a student
within a given priority class would not be able to block a match between a stu-
dent in the same priority class and a school. This lack of knowledge seems natural,

15See Sections 4.4 and 4.6 and the references therein for more detail on these contexts.
16As discussed in Footnote 6, Sönmez (2013) provides a concrete example of such incentive com-

patibility issues in the context of the US Military Academy.
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𝜃 ∈ Θ with measure 𝐹

Ex-ante Stage

Designer chooses Ξ
𝜃Ξ ∈ Θ̃Ξ receive tie-breaking score 𝜏

Interim Stage

and submit ≻𝜃Ξ to stable mechanism 𝜑

(𝜃Ξ, 𝜏) and 𝑐 matched

Match Realized

Figure 4-1: Model Timeline

for instance, in the exam schools context where two students who receive the same
grade do not have access the underlying raw score from which their grades were con-
structed. Moreover, school boards in centralized matching markets have the ability
to enforce matches and prevent schools and students from matching outside of the
system. Second, if we interpret stability as encoding procedural fairness and pre-
venting legal challenge, then stability with respect to coarsened scores retains these
properties. Finally, as our examples in the introduction from BPS, CPS and NYCHA
attest, authorities do in fact engage in the design of priorities and employ matching
mechanisms that yield stable outcomes.

4.2.2 The Interim Stage: Matching Model

We now study how to map the choice of coarsening by the designer Ξ to a matching
in the interim stage. To do this, we first construct from our economy in the ex-
ante stage an ordinal economy that transforms utility values of the agents to ordinal
preferences for the matching stage. To this end, for any type 𝜃 = (𝑢𝜃, 𝑠𝜃), we de-
fine the corresponding ordinal type 𝜃 = (≻𝜃, 𝑠𝜃) by computing their induced ordinal
preferences by ranking the schools in decreasing order according to 𝑢𝜃𝑐 and imposing
that 𝑠𝜃 = 𝑠𝜃.17 Defining 𝑅 as the set of ordinal preference relations over 𝒞, we see
that the set of induced types has product structure Θ̃ = 𝑅 × 𝑆. The distinction
between a type and an induced type is subtle. As we consider an ex-ante stage for
the purposes of performing welfare calculations in our later analysis, types refer to
both a student’s v.N-M preferences and their scores, while a student’s induced type
refers to the student’s induced ordinal preferences and their scores.18 An economy
Ω = (𝐹,𝑄,Θ) thereby results in an ordinal economy Ω̃ = (𝐹 ,𝑄, Θ̃), where 𝐹 is the
probability measure over Θ̃ induced by 𝐹 .19 We further make the following technical

17For example, if 𝑢𝜃𝑐1 = 1, 𝑢𝜃𝑐2 = 2 and 𝑢𝜃𝑐3 = 3, the ordinal preferences are ≻𝜃= 𝑐3, 𝑐2, 𝑐1. If
𝑢𝜃𝑐 = 𝑢𝜃𝑐′ for 𝑐 ̸= 𝑐′, then students break the ties randomly.

18Despite being irrelevant for allocations, the cardinal utility will later matter for the welfare
analysis we perform in our applications.

19To obtain 𝐹 from 𝐹 , for each induced type 𝜃 = (≻𝜃, 𝑠𝜃) ∈ Θ̃, simply compute the measure of
types 𝜃 = (𝑢𝜃, 𝑠𝜃) ∈ Θ such that 𝑢𝜃 induces the ordinal preferences ≻𝜃.
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assumption that 𝐹 admits a density 𝑓 that has full support and has no mass points:20

Assumption 7. The density of all ordinal types 𝑓 is well-defined and 𝑓(𝜃) > 0 for
all 𝜃 ∈ Θ̃.

Second, we now show how the planner’s choice of coarsening Ξ affects the ordinal
economy in the interim stage. This transforms each ordinal type 𝜃 = (≻𝜃, 𝑠𝜃) ∈ Θ̃ into
a new ordinal type 𝜃Ξ = (≻𝜃,Ξ(𝑠𝜃)) ∈ Θ̃Ξ by replacing the score vector 𝑠𝜃 with the
priority 𝑠𝜃Ξ ≡ Ξ(𝑠𝜃), and changes the set of students from Θ̃ to Θ̃Ξ and the probability
measure from 𝐹 to 𝐹Ξ.21 Priority coarsening introduces indifferences, the existence
of which necessitates tie-breaking to compute matchings. To this end, we augment
the model with tie-breakers. Each student 𝜃Ξ, in addition to her ordinal preferences
and priority, receives a tie-breaker number 𝜏 ∈ [0, 1], where 𝜏 ∼ 𝑈 [0, 1]. Thus, the
distribution over types in the economy with tie-breakers 𝐹 𝜏

Ξ on Θ̃𝜏
Ξ = Θ̃Ξ × [0, 1] is

almost surely such that 𝑓 𝜏Ξ(𝜃Ξ, 𝜏) = 𝑓Ξ(𝜃Ξ) for all 𝜏 ∈ [0, 1].22 This results in the
coarsened ordinal economy with tie-breakers Ω̃𝜏

Ξ = (𝐹 𝜏
Ξ , 𝑄, Θ̃

𝜏
Ξ), which lies in the set

of all strict ordinal economies 𝒪.
We are now ready to define the matching mechanism that applies in the coarsened

ordinal economy with tie-breakers. A matching in this environment is a function
𝜇 : 𝒞 ∪ Θ̃𝜏

Ξ → 2Θ̃
𝜏
Ξ ∪ 𝒞, where 𝜇(𝜃Ξ, 𝜏) ∈ 𝒞 is the school that any ordinal type 𝜃Ξ with

tie-breaker 𝜏 is assigned and 𝜇(𝑐) ⊆ Θ̃𝜏
Ξ is the set of students assigned to school 𝑐.23

Let ℳ be the set of all matchings. A matching mechanism 𝜑 is a function 𝜑 : 𝒪 → ℳ
that assigns a matching to each ordinal economy. Blocking and stability are defined
as follows. A student-school pair (𝜃Ξ, 𝜏, 𝑐) blocks a matching 𝜇 if the student prefers
𝑐 to her match under 𝜇 and either the school 𝑐 does not fill its capacity or the school
𝑐 is matched to another student who has strictly lower score than (𝜃Ξ, 𝜏). Formally,
(𝜃Ξ, 𝜏, 𝑐) blocks 𝜇 if 𝑐 ≻𝜃Ξ 𝜇(𝜃Ξ, 𝜏) and either (i) 𝐹 𝜏

Ξ(𝜇(𝑐)) < 𝑄𝑐, or (ii) there exists
(𝜃′Ξ, 𝜏

′) ∈ 𝜇(𝑐) with (a) 𝑠𝜃Ξ𝑐 > 𝑠
𝜃′Ξ
𝑐 , or (b) 𝑠𝜃Ξ𝑐 = 𝑠

𝜃′Ξ
𝑐 and 𝜏 > 𝜏 ′. A matching 𝜇 is stable

20See Footnote 19 to see how this condition can be easily translated to a primitive condition on
𝐹 .

21See that Θ̃Ξ = 𝑅 × 𝑃 , where 𝑃 is the range of Ξ. To construct 𝐹Ξ from 𝐹 , for all types
𝜃Ξ = (≻𝜃Ξ , 𝑠𝜃Ξ) ∈ Θ̃Ξ, we compute the measure under 𝐹 of all types 𝜃 ∈ Θ̃ such that ≻𝜃=≻𝜃Ξ and
Ξ(𝑠𝜃) = 𝑠𝜃Ξ .

22See Lemma 17 in Appendix D.2 for a formal statement and proof. Also note that whenever a
coarsening is not the identity, 𝑓Ξ is a probability mass function.

23The mathematical definition of a matching for the strict continuum economy we study (with
ordinal types Θ̃𝜏

Ξ) follows Azevedo and Leshno (2016) and requires that 𝜇 satisfies the following four
properties: (i) 𝜇(𝜃Ξ, 𝜏) ∈ 𝒞,∀(𝜃Ξ, 𝜏) ∈ Θ̃𝜏

Ξ; (ii) 𝜇(𝑐) ⊆ Θ̃𝜏
Ξ is measurable, 𝐹 𝜏

Ξ(𝜇(𝑐)) ≤ 𝑄𝑐,∀𝑐 ∈ 𝒞;
(iii) 𝑐 = 𝜇(𝜃Ξ, 𝜏) ⇐⇒ (𝜃Ξ, 𝜏) ∈ 𝜇(𝑐) ; (iv) {(𝜃Ξ, 𝜏) ∈ Θ̃𝜏

Ξ : 𝑐 ≻𝜃Ξ 𝜇(𝜃Ξ, 𝜏)} is open ∀𝑐 ∈ 𝒞 ∖ {𝑐0}.
This last requirement imposes that the set of students that prefer their match to any given school
(excluding the outside option) is open.
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if there are no blocking pairs. A mechanism 𝜑 is stable if it returns a stable matching
for all economies.

In this environment, any coarsening Ξ and the matching mechanism 𝜑 together
induce a probability distribution for each student type over the school that they are
ultimately assigned. We call this distribution an allocation 𝑔(Ξ,𝜑) : Θ×𝒞 → [0, 1], with
the probability that type 𝜃 is assigned to school 𝑐 given by 𝑔(Ξ,𝜑)(𝑐|𝜃).24 We denote the
set of potential allocations by 𝒢.25 We construct this allocation from the matching
and distribution of tie-breakers by taking, for each tie-breaker realization of each
student, the match the student receives and then integrating this over the uniform
distribution of tie-breakers (see Lemma 18 in Appendix D.2.1). These steps ensure
that 𝑔(Ξ,𝜑) is a well-defined distribution and respects the constraints imposed by the
mechanism, including that no school is over capacity and no student has probability
exceeding one of attending all potential schools.

Throughout the paper, as we have motivated, we will assume the matching mech-
anism is stable.

Assumption 8. The matching mechanism 𝜑 is stable.

The importance of Assumptions 7 and 8 for our analysis is that Assumption 7
implies that there is a unique stable matching. Thus, after the planner fixes the
coarsening in the ex-ante stage, Assumption 8 pins down the matching in the interim
economy uniquely (see Lemma 17 in Appendix D.2.1). Therefore, it is not important
for us to specify which stable matching mechanism 𝜑 is. We will correspondingly
suppress dependence on 𝜑 for the remainder of the analysis and write allocations
as 𝑔Ξ. A strong justification for these assumptions (which rule out multiple stable
matchings) is that, empirically, the set of stable matchings has been found to be very
small in large markets, including BPS.26 Nevertheless, in Appendix D.6, we relax
this full-support assumption and allow multiple stable matchings to exist and we
summarize the robustness of our main results to relaxing Assumption 7 in Section
4.3.5.

24Abdulkadiroğlu, Angrist, Narita, and Pathak (2017) use a similar representation to obtain the
propensity score that any student is matched to a school to estimate treatment effects, albeit not as
a function of any design tool of the policymaker.

25Allocations will lie in (a subset of) the space of measurable functions with finite integral, so
that 𝒢 ⊂ 𝐿1(Θ×𝒞). See Appendix D.2.2 for details on the measure space with respect to which we
demand that 𝑔 is measurable.

26See Roth and Peranson (1999) for evidence from National Resident Matching Program and
Pathak and Sönmez (2008) for evidence from BPS. In particular, in BPS for school years 2005-2006
and 2006-2007, there is only one stable matching for either year.
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4.3 Priority Design
Having established a framework for the analysis and justified our restriction of the
policy space of the designer to be that of priority coarsenings, we can now prove our
main results (Theorems 5 and 6) and establish the existence of an optimal trinary
coarsening. These results are stark as they reduce the complexity of finding the op-
timal coarsening from an infinite-dimensional problem to a 2|𝒞|-dimensional problem
and place a simple structure on optimal policies. We later leverage these results di-
rectly in applications to provide concrete insight into a number of important problems
in market design.

4.3.1 Trinary Replication

We now turn to proving the main result of the paper: any allocation achievable via a
coarsening can be replicated with a trinary coarsening. Formally, we define a trinary
coarsening as a coarsening such that the priority structure at each school features at
most three equivalence classes of students.

Definition 8. A coarsening Ξ : 𝑆 → 𝑃 is trinary if |𝑃𝑐| ≤ 3 for all schools 𝑐 ∈ 𝒞.

Our main implementation result is stated formally as Theorem 1.

Theorem 5. Suppose that a coarsening Ξ induces the allocation 𝑔Ξ. There exists a
trinary coarsening Ξ′ that induces 𝑔Ξ.

Proof. See Appendix D.1.1.

The basic intuition for this result and why it follows from stability is easily seen
in the following example. Consider a model with an outside option and a school
that all students prefer to the outside option. There is positive density of all scores
between zero and one (in view of Assumption 7) at the school and the scores are
coarsened into finitely many indifference classes. The matching mechanism is stable
(by Assumption 8). Thus, if there is a positive probability that a student with
lower priority is admitted to the school, then the higher priority student must not
be allocated to the outside option, as that will violate stability. As a result, under
any coarsening, there is at most one class of students (the lottery class) who have
probability strictly between zero and one of being admitted. All students in higher
priority classes are admitted with probability one while all students in lower priority
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classes are admitted with probability zero.27 Thus, there can exist at most one lottery
class, and the combination of stability and full support of ordinal types (Assumptions
8 and 7, respectively) pins down this uniqueness. The outcome of the coarsening can
then be generated by an alternative coarsening that preserves the lottery class from
the first coarsening, maps all students above this class into one class, and maps
all students below the lottery class into another class. Hence, the outcome of any
coarsening can be replicated by another coarsening with at most three indifferences
classes at each school.

4.3.2 The Planner’s Objective

To discuss optimal priority design, it is necessary to have an objective function for the
planner. We assume that the planner has a complete and transitive preference over
allocations 𝑔 in the set of all potential allocations 𝒢 represented by a utility function
𝑍 : 𝒢 → R.28 Moreover, we make the technical assumption that the utility function
of the planner is continuous:

Assumption 9. The social planner’s objective function 𝑍 : 𝒢 → R is continuous in
𝑔.29

In the interests of clarity, we now discuss three natural specifications of planner
utility that satisfy this assumption and will be used later in our applications: a
utilitarian planner; a planner who cares about student utility with some penalty
for deviating from the underlying score; and a planner who has affirmative action
concerns.

1. A utilitarian social planner has utility function given by:

𝑍(𝑔) =

∫︁
Θ

∑︁
𝑐∈𝒞

𝜆(𝜃)𝑢𝜃𝑐𝑔(𝑐|𝜃)𝑑𝐹 (𝜃) (144)

27For concreteness, suppose instead that there were two equivalence classes 𝐴 and 𝐵, where
students in both have interior probabilities of assignment – so that there are two lottery classes
– and students in 𝐴 have higher priority than those in 𝐵. As these probabilities are interior,
necessarily some students in 𝐴 will not be allocated the school, while some students in 𝐵 are. As
there is full support of ordinal types, some students in 𝐴 who are not admitted most prefer the given
school. Moreover, they have higher priority than all assigned students from 𝐵. Thus, the outcome
is unstable, as these rejected students in 𝐴 and the school form a blocking pair. As the mechanism
is assumed to be stable, this is a contradiction.

28Note that this rules out preferences that depend non-instrumentally on the coarsening itself.
Namely, this rules out a preference for ‘simple’ policies. We argue that this restriction is unimportant
given the fact that optimal policies will be simple insofar as they are trinary in any case.

29Recall from Footnote 25 that 𝒢 ⊂ 𝐿1(Θ × 𝒞), so continuity is here meant with respect to the
associated 𝐿1−norm. See Appendix D.2.2 for more details.
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for some function yielding welfare weights 𝜆 : Θ → R+.

2. A priority-augmented social planner has utility function given by:

𝑍(𝑔) =

∫︁
Θ

∑︁
𝑐∈𝒞

[︀
𝑢𝜃𝑐 + 𝜆(𝜃)ℎ(𝑠𝜃𝑐)

]︀
𝑔(𝑐|𝜃)𝑑𝐹 (𝜃) (145)

where ℎ : [0, 1] → R is a monotonically increasing function that determines the
base cost of the score not being met and 𝜆 : Θ → R is the weight of that loss
for each underlying type 𝜃.

3. An affirmative-action-concerned social planner has utility function given by:

𝑍(𝑔) =

∫︁
Θ

∑︁
𝑐∈𝒞

𝑢𝜃𝑐𝑔(𝑐|𝜃)𝑑𝐹 (𝜃) + ℎ
(︁∫︁

Θ

1{𝜅𝜃 ∈ 𝐷}𝑔(𝑐|𝜃)𝑑𝐹 (𝜃)
)︁

(146)

where 𝜅𝜃 ∈ 𝐷 means that type 𝜃 is a student in the group which the planner
wishes to ensure is more represented (recall that 𝜅𝜃 corresponds to any non-
preference or score information corresponding to a student), 𝑐 is some given
school, and ℎ is a continuous and monotonically increasing function. This spec-
ification therefore rewards the planner for admitting more students in group 𝐷
to the particular school 𝑐. In practice, one might imagine that 𝑐 is a high-quality
school and 𝐷 is an underrepresented minority group.

Given this structure, the planner’s problem is to choose a coarsening such that the
induced allocation maximizes the planner’s utility function over the set of potential
coarsening rules. By Theorem 5, it is without loss of optimality for the planner to
restrict attention to trinary coarsenings. That is, they can simply select two cutoff
values for each school 𝑣 = {𝑃 𝑐, 𝑃 𝑐}𝑐∈𝒞 where 𝑣 ∈ 𝒱 = {𝑣 ∈ [0, 1]2|𝒞||𝑃 𝑐 ≥ 𝑃 𝑐,∀ 𝑐 ∈ 𝒞}.
In this representation, the 𝑃 𝑐 represent the score cutoffs for membership of the highest
priority class and the 𝑃 𝑐 represent the score cutoffs for membership of the middle
indifference class.30 Hence, coarsening rules reduce simply to points in a closed subset
of the unit hypercube, 𝒱 . Thus, the planner’s problem can be stated as:

𝒱* = argmax
𝑣∈𝒱

𝑍(𝑔𝑣) (147)

30Following Azevedo and Leshno (2016), one can gain an interpretation of these thresholds in
terms of the budget sets of students. If a student’s score at a school exceeds 𝑃 𝑐 then that school is
in their budget set with certainty. If a student’s score lies between 𝑃 𝑐 and 𝑃 𝑐, then the school is
in their budget set with some probability between zero and one. If a student’s score lies below 𝑃 𝑐,
then the school never lies in their budget set.
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where 𝑔𝑣 is the allocation induced by cutoff vector 𝑣 ∈ 𝒱 .

4.3.3 Optimal Priority Design

Having established that any coarsening requires only three equivalence classes per
school and set up the problem of the planner, we now show that there exists an
optimal coarsening. First, we prove that 𝑔𝑣 is continuous in 𝑣 (Lemma 19 in Appendix
D.2). In view of the fact that the domain 𝒱 is compact, and the objective function is
continuous in 𝑔 (Assumption 9), it follows that an optimal coarsening exists. This is
formalized as Theorem 6 below.

Theorem 6. 𝒱* is non-empty. That is, there exists a trinary coarsening that is
optimal.

Proof. See Appendix D.1.2.

The implications of Theorem 2 are significant. In particular, it reduces the di-
mensionality involved in finding the optimal coarsening from an infinite-dimensional
problem to a 2|𝒞|-dimensional problem, as now we only need to choose two numbers
per school to attain any optimum. This is interesting as it not only implies that prob-
lems of priority design for school districts are substantially simpler than one might
expect but also facilitates simple computation of the value of a given policy even in
cases with a large number of schools. We later leverage this result to provide insights
into the structure of the optimal priority design in each of our three leading appli-
cations: design of walk-zone policies under distance-based priorities in BPS; design
of diversity policies under achievement-based priorities in CPS; and the allocation of
affordable housing under income-based priorities by NYCHA.

4.3.4 The Impact of Aggregate Uncertainty

In our analysis, we have assumed that the planner both knows the distribution of
student types and that there is a continuum of students. In view of these assumptions,
there is no aggregate uncertainty in the market and the planner knows that their
choice of coarsening will lead to a particular, deterministic allocation. As most of
the markets we study (BPS, CPS, and NYCHA) are large, have used centralized
assignment mechanisms for a number of years, and are arguably likely to have similar
distributions of types from year to year (they are stationary), we argue that this is a
reasonable assumption.31

31In particular, from 2010-15 in CPS, we compute that the admissions cutoff for any school in
the merit slots is within 3% of that school’s average merit slot cutoff over this time period 96% of
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Nevertheless, to investigate the robustness of our results to aggregate uncertainty,
in Appendix D.3 we study the same problem considered in the main text augmented
with uncertainty on the part of the planner regarding the distribution of student
types in the population. Formally, we suppose that there is a finite set of probability
measures ℱ that the planner entertains as possible. In this context, Theorems 5
and 6 can be extended to show that an optimal coarsening still exists but that it
may involve up to 2|ℱ| cutoffs at each school (Proposition 45 in Appendix D.3).
As a result, the presence of uncertainty can substantially complicate the problem
of priority design and give rise to a less coarse priority structure (see Example 7 in
Appendix D.3 for an explicit example of this). We can further characterize when
uncertainty causes a welfare loss to the planner relative to the benchmark without
aggregate uncertainty. In particular, uncertainty induces no welfare loss if and only if
the ex post optimal lottery classes either coincide or never overlap across all states of
the world (Proposition 46 in Appendix D.3). Intuitively, it is exactly when aggregate
uncertainty makes it impossible for the planner to target the same optimal lottery
class across states of the world that this uncertainty has bite.

While we maintain that the assumption of no aggregate uncertainty is appropriate
for our applications, these results suggest that our main results may have less bite in
settings with appreciable aggregate uncertainty, as might be the case when markets
change a great deal from year to year, or one is designing priorities in an unfamiliar
market.

4.3.5 Extensions: Homogeneous Coarsenings and Multiple Sta-

ble Matchings

In Appendix D.4, we study an extension of the general analysis in this section where
a planner is constrained to use the same coarsening at every school. We prove that
suitably revised versions of Theorems 5 and 6 continue to hold in this setting, but
now the designer needs to potentially specify up to 2|𝒞| cutoffs that are the same for
each school (Proposition 47 in Appendix D.4). We characterize when the imposition
of homogeneity leads to a loss in welfare: there is no resulting loss in welfare when the
cutoffs for the lottery classes of each school either coincide exactly or do not overlap
at all (Proposition 48 in Appendix D.4). Intuitively, as students who always or never
gain admission to a school can receive the same allocation under homogeneity, the
imposition of homogeneity leads to losses insofar as it makes it impossible to have

the time, providing strong evidence of approximate stationarity in this market. Cutoff score data is
publicly available from CPS.
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the same regions of students (the lottery classes) who have fractional assignment
probability to each school.

On the technical side, we proved our theoretical results under the condition that
there is full support of ordinal types. When this assumption fails, there can be
multiple stable matchings and one must address a number of technical details. To this
end, in Appendix D.6, we relax this condition and show that suitably modified versions
of Theorems 5 and 6 continue to hold when the mechanism-designer optimal selection
from the set of stable matchings is used (Theorems 13 and 14 in Appendix D.6) and
that Theorem 5 continues to hold under the student-optimal selection (Theorem 15
in Appendix D.6). However, the student-optimal selection can cause the mechanism
designer’s objective to jump down, and so optima can fail to exist. Thus, Theorem 6
fails to hold under the student-optimal selection (see Example 9 in Appendix D.6).

4.4 Application: Distance-Based Priorities and Walk-

Zone Design
In many school districts, such as Boston, San Francisco, Denver and much of the UK,
the distance between students and schools plays an important role in the assignment
process. One widely studied example, which provides the concrete motivation for the
theoretical exercise in this section, is the walk-zone assignment system Boston Public
Schools (BPS) utilized until 2013. Under this policy, students were partitioned into
two sets at all schools: the walk-zone students who live sufficiently close to the school
and the others who do not.32 In the language of our model, this corresponds closely
to a situation where the underlying score is distance and the pursued policy is a
coarsening that splits students into two groups.33

The main issue for BPS in designing its school admissions policy was the trade-off
between two competing desires. On the one hand, it is desirable to have students
attend schools that are closer to their homes on grounds of decreasing transportation
costs for the school district and improving community cohesion. Indeed, Landsmark
(2009) notes the costs of school transportation are very large for the district, at
around $70 million.34 On the other hand, it is also desirable to ensure that schools

32See Dur, Kominers, Pathak, and Sönmez (2018) for a more detailed account of this setting.
33To account for additional dimensions such as sibling-based priorities, one need only construct a

composite underlying score comprising distance and sibling status. All of our analysis then applies
to the model with this composite score.

34Moreover, Mayor Menino stated that (Goldstein, 2012): “Pick any street. A dozen children
probably attend a dozen different schools... Parents might not know each other; children might not
play together. They can’t carpool, or study for the same tests.”
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have a diverse student body and for families to have greater choice over the schools
they are able to attend. This concern is particularly relevant in communities that
are socioeconomically segregated, such as those in Boston.35 That this problem of
conflicting objectives is at the heart of the design problem is attested to by Daley
(1999), who notes that the walk-zone policy was created with the aim of “striking
an uneasy compromise between neighborhood school advocates and those who want
choice."

Thus motivated, we study the optimal distance-based priority design from the
perspective of a mechanism designer who cares both about assigning students to
schools they prefer and the distance students have to travel to their school. Our main
results, Theorems 5 and 6, apply directly in this environment and imply that the
optimal design can be attained via the use of at most three zones per school. We also
show how the trade-off between distance and diversity shapes the structure of the
desirable walk-zone policy and show when a simple walk-zone policy, corresponding
to that pursued by BPS, is optimal.

4.4.1 Model

There is one school 𝐺 with capacity 𝑄 ∈ (0, 1) and an outside option 𝐵. There is a
unit measure of students who have bounded and positive Bernoulli utility 𝑢 ∈ 𝒰 from
attending school 𝐺. The utility from attending 𝐵 is normalized to zero. Students
have underlying score 𝑠 ∈ [0, 1] at school 𝐺. Students are indexed by their type
𝜃 = (𝑢, 𝑠) and there is a joint distribution over the set of types Θ = 𝒰 × [0, 1] given
by 𝑓(𝜃) such that there is a uniform distribution of underlying scores.36 There is
a continuous cost of students of score 𝑠 attending 𝐺 given by 𝐶(𝑠). This function
can be interpreted as capturing transport costs, community cohesion or fairness costs
associated with a student of score 𝑠 attending school 𝐺. Finally, for this section, we
assume that the school board is utilitarian and has no distributional preferences:

𝑍(𝑔) =

∫︁ 1

0

∫︁
𝒰

(︀
𝑢− 𝐶(𝑠)

)︀
𝑔(𝑠)𝑑𝐹 (𝑢, 𝑠) (148)

where 𝑔 is the probability that a student with score 𝑠 attends school 𝐺.

We denote a priority coarsening as a vector of cutoffs 𝑣 = (𝑣1, . . . , 𝑣𝑛) where

35Indeed, Levinson, Noonan, Fay, Mantil, Buttimer, and Mehta (2012) note that increasing the
priority of students who live closer to a school, as was the case under the walk-zone system, re-
duced the quality of schools certain socioeconomic groups could attend, making the assignment less
equitable.

36This is without loss in this environment as it simply redefines the scores over students.
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0 ≡ 𝑣0 ≤ 𝑣1 ≤ · · · ≤ 𝑣𝑛 ≤ 𝑣𝑛+1 ≡ 1. Students with 𝑠 ∈ [𝑣𝑖, 𝑣𝑖+1) for 𝑖 < 𝑛 or
𝑠 ∈ [𝑣𝑛, 𝑣𝑛+1] have the same priority at school 𝐺 as all other students with scores
within the same interval prior to tie-breaking. We label the set of such vectors for a
given natural number 𝑛 as 𝒱𝑛. We further denote the probability that a student with
𝑠 ∈ [𝑣𝑖, 𝑣𝑖+1) goes to 𝐺 under uniform tie-breaking by 𝑔𝑣𝑖 . It is further useful to define
the expected contribution to social welfare of a student with score 𝑠 being assigned
to school 𝐺:

𝑊 (𝑠) = E[𝑢|𝑠]− 𝐶(𝑠) ≡ 𝐵(𝑠)− 𝐶(𝑠) (149)

where 𝐵(𝑠) captures the benefit to social welfare of student with score 𝑠 attending
𝐺 which we assume to be continuous and 𝐶(𝑠) is the cost. Using this notation, the
school district’s value from a policy (𝑛, 𝑣) is:

𝑍(𝑛, 𝑣) =
𝑛∑︁
𝑖=1

𝑔𝑣𝑖

∫︁ 𝑣𝑖+1

𝑣𝑖

𝑊 (𝑠)𝑑𝑠 (150)

Thus, the school district faces the problem:

𝑍* = max
𝑛,𝑣∈𝒱𝑛

𝑍(𝑛, 𝑣) (151)

It is important to note that this problem remains non-trivial as the choice object is
of arbitrarily high-dimension. Our Theorems 5 and 6 makes this problem tractable:

Corollary 11. Under any stable mechanism, 𝑍* exists and there exists an optimal
policy (𝑛*, 𝑣*) such that 𝑛* = 2.

Proof. See Appendix D.1.3.

With Corollary 11 in hand, we can restrict attention to considering coarsening
rules 𝑣 = (𝑣1, 𝑣2) ∈ 𝒱2. We now apply this result to solve the problem of the school
district.

4.4.2 Solving the School District’s Problem

In view of Corollary 11, one notes that there are three types of regions that can arise
depending on the priorities used. The first is an acceptance region, where students are
assigned to the school with probability one (𝑠 ≥ 𝑣2). The second is a lottery region,
where students are assigned to the school if they have a high enough lottery number
(𝑠 ∈ [𝑣1, 𝑣2)). The third is a rejection region, where students are never assigned to
the school (𝑠 < 𝑣1). Depending on the existence of such regions or not, there are five
possible types of priorities that can be optimal:
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i. A ‘double walk-zone’: an interior case where all three regions exist

ii. A ‘small walk-zone’: a semi-interior case with an acceptance region and lottery
region

iii. A ‘large walk-zone’: a semi-interior case with a lottery region and rejection
region

iv. ‘full coarsening’: a corner case with just a lottery region

v. ‘no coarsening’: a corner case with an acceptance region and a rejection region

Moreover, in any of the (semi-)interior cases (i.e. any case excluding no coarsening
or full coarsening), the optimality condition for the cutoffs is simple:

𝑊 (𝑣1) = 𝑊 (𝑣2) =
1

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠 (152)

That is to say, whenever a cutoff is on the interior, the cutoff is simply set to equalize
the marginal contribution to social welfare of the student at the cutoff to the average
contribution of all students in the lottery zone. As a result, under differentiability of
𝑊 each optimal cutoff either satisfies Equation 152 or it is on the boundary.37

Proposition 11. Any solution to the school district’s problem (Equation 151) 𝑣* =

(𝑣*1, 𝑣
*
2) must satisfy one of the following conditions for each 𝑣*𝑖 :

1. The cutoff is an interior optimum:

𝑊 (𝑣*𝑖 ) =
1

𝑣*2 − 𝑣*1

∫︁ 𝑣*2

𝑣*1

𝑊 (𝑠)𝑑𝑠 (153)

Moreover, the above equation is sufficient for 𝑣* to be a local optimum whenever
𝑊 ′(𝑣*𝑖 ) > 0 for each cutoff to which this condition pertains.

2. The cutoff is on a boundary of the relevant constraint set:

𝑣*1 ∈ {0, 1−𝑄}, 𝑣*2 ∈ {1−𝑄, 1} (154)

Proof. See Appendix D.1.4.

37Differentiability of 𝑊 can be ensured by mild assumptions on primitives.
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This proposition shows which policies can be optimal and how to compute optima
given a parametric environment, but it is otherwise silent on the forces that govern
the structure of the optimum. In the next section, we study these questions in a more
specialized environment.

4.4.3 Optimal Walk-Zones in a Parametric Environment

To study the key trade-off faced by BPS policymakers between assigning students
to schools close to where they live and ensuring both choice and diversity, we now
examine how the structure of a simple parametric environment with these features
determines the optimal walk-zone structure. We further assume that there are two
utility types of students 𝑢 ∈ {𝑢𝑅, 𝑢𝑃}. Moreover, we assume that conditional on these
utility types, there is a higher density of 𝑢𝑅 types with higher scores. Specifically, we
assume that score and utility have following joint distribution:

𝑓(𝑢𝑅, 𝑠) = 𝑠 𝑓(𝑢𝑃 , 𝑠) = 1− 𝑠 (155)

Typically, we will take 𝑢𝑅 < 𝑢𝑃 and interpret this environment as one where poor
students derive greater benefit from attending the good school relative to their outside
option and the school is located in a neighborhood primarily featuring rich students.
The average marginal benefit to social welfare of students with score 𝑠 is therefore
given by:

𝐵(𝑠) = E[𝑢|𝑠] = 𝑢𝑅𝑠+ 𝑢𝑃 (1− 𝑠) (156)

On the cost side, we specify a parametric cost function of admitting a student of
score 𝑠 given by:

𝐶(𝑠) =
𝛼

1 + 𝛿 exp{𝜀(𝑠− 𝑠)} + I[𝑠 ≤ 𝑠]𝛽(𝑠− 𝑠)𝛾 (157)

where 𝛼, 𝛽, 𝛿, 𝜀 ≥ 0, 𝑠 ∈ (1 − 𝑄, 1) and 𝛾 ≥ 1. See that this function accommodates
the following two features. First, there is a score 𝑠 below which there is a ‘sharp’
increase in the cost of a student attending the school, whenever 𝜀 is large. This can
be thought of as there being a distance 1−𝑠 within which students can walk to school,
beyond which walking becomes infeasible for students and transportation is required.
Second, there are steadily increasing and perhaps convex costs of students having a
low score, with 𝛽 controlling the slope and 𝛾 the normalized convexity. This captures
increasing costs of transportation and potentially fairness and community cohesion
costs associated with admitting students who live far from the school.

184



0.0 0.2 0.4 0.6 0.8 1.0
Score

0

1

2

3

4

5

6 W
C
B

Figure 4-2: The 𝑊 , 𝐵 and 𝐶 Functions With an Optimal ‘Double’ Walk-zone

As in the general analysis, the key object of interest for computing the optimal
score cutoffs is the function:

𝑊 (𝑠) = 𝐵(𝑠)− 𝐶(𝑠) (158)

which captures the overall contribution to social welfare of a student who has under-
lying score of 𝑠. Moreover, given the parametric structure of 𝐵 and 𝐶, 𝑊 features the
following trade-off: admitting poorer students increases the quality of the assignment
but is more costly as those poorer students live further away.

To understand how these objects vary with the score in this parametric environ-
ment, Figure 4-2 plots the 𝑊,𝐵 and 𝐶 functions for a case where:

1. Students who live further away derive higher utility from attending the school
𝑢𝑃 > 𝑢𝑅. This can be seen in the figure as the downward sloping benefit line.

2. Students who live beyond 𝑠 = 0.8 have rapidly increasing transport costs (large
𝜀).

3. There is a convex cost of students beyond 𝑠 attending the school, 𝛾 > 1.

Despite the parametric structure, this model is still sufficiently rich to demonstrate
each of the five classes of walk-zone policy This is stated formally in Proposition 12:

Proposition 12. For each of the five classes of policy, there exist open sets of
(𝛼, 𝛽, 𝑢𝑃 , 𝑢𝑅) such that each class of policy is uniquely optimal for these parameters.

Proof. See Appendix D.1.5.

Guided by this result, we now provide an intuitive discussion of when each of these
classes of policy is optimal. First, we consider the double walk-zone case and refer
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Figure 4-3: No coarsening (top-left pane), full coarsening (top-right pane), a ‘small’
walk-zone (bottom-left Pane) and a ‘large’ walk-zone (bottom-right pane)

the reader back to Figure 4-2, wherein the dashed grey lines in represent the optimal
score cutoffs. See that in this example, the upper cutoff is close to 𝑠 = 0.8 and the
lower cutoff is below the school’s capacity. As a result, there is an acceptance region,
a lottery region and a rejection region. Intuitively, the fixed cost being sufficiently
large incentivizes the creation of the acceptance zone. Moreover, having a variable
cost that is sufficiently large but not too large creates a region after 𝑠 where the benefit
increases more rapidly than cost, inducing coarsening. Finally, the convexity of cost
eventually implies that cost exceeds benefit and it is optimal to create a rejection
zone. Intuitively, the optimum simply balances the benefit of there being a higher
average utility from students who are further from the school with the increasing cost
of these students.

Second, we demonstrate the two corner cases that feature full coarsening and no
coarsening. A simple case in which the designer will pursue full coarsening is a case
where 𝑢𝑃 > 𝑢𝑅 and there is no cost of students who live further away attending the
school 𝛼 = 𝛽 = 0. On the other hand, no coarsening will obtain in any case where
𝑢𝑃 < 𝑢𝑅 or 𝛼 and 𝛽 are sufficiently large as it is optimal to simply admit all students
who live as close to the school as is possible. The corner policies in these cases are
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shown in Figure 4-3.
Finally, the two simple walk-zone cases are also intuitive. When there is a very

large fixed cost of students below 𝑠, the mechanism designer wants to admit students
who are sufficiently close with certainty. Moreover, when 𝑢𝑃 > 𝑢𝑅 and 𝛽 is sufficiently
small, the mechanism designer wants to coarsen the remaining priority below 𝑠 as
much as possible. This is because the students who are furthest away contribute the
most to social welfare as 𝑢𝑃 types are relatively most dense. The case for a large
walk-zone is similar. When the fixed cost is small but the cost of being further away
is large, it is optimal to coarsen up to the point where the cost of being further away
becomes too large. The simple walk-zone policies in these cases are shown in Figure
4-3.

Having shown how each policy can obtain depending on the strength of the trade-
off between match quality and neighborhood assignment, we supplement this analysis
by deriving comparative statics in the optimal cutoffs as the relative strength of these
motives changes. Concretely, we see how, in the case of an optimal double walk-zone,
changes in transportation costs and relative utilities of students move the optimal
cutoffs:

Proposition 13. Suppose that the solution to the planner’s problem is interior and
unique. The following comparative statics hold:

1. An increase in transportation costs enlarges the acceptance region and shrinks
the lottery region:

𝜕𝑣*1
𝜕𝛽

> 0,
𝜕𝑣*2
𝜕𝛽

< 0 (159)

2. An increase in relative utility of students who live farther away shrinks the
acceptance region and enlarges the lottery region:

𝜕𝑣*1
𝜕𝑢𝑃

< 0,
𝜕𝑣*2
𝜕𝑢𝑃

> 0 (160)

Proof. See Appendix D.1.6.

The first of these results shows how increasing transportation costs for students
who live furthest from the school will disincentivize the admission of poorer students.
On the contrary, when the benefits of admitting poorer students increase, the reverse
is true. Even though we do not explicitly model a preference for diversity here, this
increase can be thought as a preference for such students from the perspective of
mechanism designer. If one interprets the mechanism designer as embodying the
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aggregate preferences of society, an increase in 𝑢𝑃 may represent an improvement in
the political organization of such parents or an increase in public pressure they exert.
As one would expect, our comparative statics suggest that such an improvement will
increase their representation in higher quality schools.

4.5 Application: Designing Exams for Diversity
In our second application, we study how to optimally design exams in an environ-
ment where a planner cares about both admitting higher quality students and the
diversity of the student body in a competitive exam school. Concretely, our analysis
is motivated by exam schools in the Chicago Public Schools (CPS) system, where the
district uses student achievement in entrance exams as the basis for its priorities but
also has a long history of controversial diversity-based affirmative action policies.38

The key trade-off faced by CPS is admitting the students with the highest aca-
demic qualifications while having racially and socioeconomically diverse student bod-
ies.39 Presently, CPS uses a strict ranking based on a composite academic score,
which we take as the underlying score. In our model, the mechanism designer can
also construct a coarser ranking that partitions students into different achievement
levels, without releasing the strict ranking they obtained in the exam. A coarser rank-
ing may help students with lower scores, who are potentially from less-advantaged
socioeconomic backgrounds. However, this comes at the cost of admitting students
with lower levels of achievement in the entrance exam. In this section, we employ
Theorem 5 to characterize when such a coarse grading policy can be used to improve
the allocation. We therefore explore the possibility of using priority coarsening to in-
crease diversity without any other explicit affirmative action policies, thereby adding
an additional policy lever for bodies such as CPS to consider.

4.5.1 Model

There is one school with capacity 𝑄, to be interpreted as a desirable exam school.
The exam school gives all students common utility 𝑢, which exceeds the utility they
receive at their outside option. Students have exam scores 𝑠 ∈ [0, 1]. There are two
different socioeconomic groups of equal size, 𝜅1 (the underrepresented group) and 𝜅2,
where the vector (𝑠, 𝜅) summarizes the type of any given student. The score densities

38For more detail on the institutional setting of exam schools in the CPS system, we refer the
reader to Dur, Pathak, and Sönmez (2020) and Ellison and Pathak (2016).

39This is attested to by the Blue Ribbon Commission (BRC), which was appointed to review
CPS’s policy remarks (Dur, Pathak, and Sönmez, 2020): “The BRC wants these programs, [exam
schools], to maintain their academic strength and excellent record of achievement, but also believes
that diversity is an important part of the historical success of these programs."
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of each type of students are given by 𝑓𝜅1(𝑠) and 𝑓𝜅2(𝑠), where 𝑓𝜅1(𝑠) + 𝑓𝜅2(𝑠) = 1.
Motivated by affirmative action concerns of CPS, we assume the mechanism designer
has the following utility function:

𝑍(𝑔) =
∑︁
𝜅𝑖

∫︁ 1

0

𝑠𝑔(𝑐|𝑠, 𝜅𝑖)𝑑𝐹𝜅𝑖(𝑠) + ℎ
(︁∫︁ 1

0

𝑔(𝑐|𝑠, 𝜅1)𝑑𝐹𝜅1(𝑠)
)︁

(161)

where ℎ is a strictly increasing function. The first term represents the benefit to the
mechanism designer from assigning students with higher scores to the school. The
second term represents the benefit of assigning students from the underrepresented
socioeconomic group.

4.5.2 Optimal Exam Design

We now study when designing the exam leads to welfare improvements. In this
context, an exam design takes the form of score cutoffs 0 ≡ 𝑣0 ≤ 𝑣1 ≤ · · · ≤ 𝑣𝑛 ≤
𝑣𝑛+1 ≡ 1 such that students with 𝑠 ∈ [𝑣𝑖, 𝑣𝑖+1) for 𝑖 < 𝑛 or 𝑠 ∈ [𝑣𝑛, 𝑣𝑛+1] have the
same priority as all other students with scores within the same interval prior to tie-
breaking. It is natural to interpret such a design as providing a coarse grading of an
entrance exam rather than simply ranking the students. Owing to Theorem 1, we
can restrict attention to trinary coarsenings. Hence it is without loss of generality to
assume the mechanism designer picks two numbers 𝑣1 < 𝑟 and 𝑣2 ≥ 𝑟 as score cut-offs
where 𝑟 ≡ 1−𝑄. Under a grading policy (𝑣1, 𝑣2), we have that the allocation is given
by:

𝑔(𝑐|𝑠, 𝜅𝑖) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑠 ≥ 𝑣2

𝑝𝐿(𝑣1, 𝑣2) if 𝑠 ∈ [𝑣1, 𝑣2)

0 if 𝑠 < 𝑣1

(162)

where 𝑝𝐿(𝑣1, 𝑣2) = 𝑣2−𝑟
𝑣2−𝑣1 . The utility of the mechanism designer under any coarsening

(𝑣1, 𝑣2) is then given by:

𝑍(𝑣1, 𝑣2) =
∑︁
𝜅𝑖

(︂∫︁ 1

𝑣2

𝑠𝑑𝐹𝜅𝑖(𝑠) + 𝑝𝐿(𝑣1, 𝑣2)

∫︁ 𝑣2

𝑣1

𝑠𝑑𝐹𝜅𝑖(𝑠)

)︂
+ ℎ

(︂∫︁ 1

𝑣2

𝑑𝐹𝜅1(𝑠) + 𝑝𝐿(𝑣1, 𝑣2)

∫︁ 𝑣2

𝑣1

𝑑𝐹𝜅1(𝑠)

)︂ (163)

We can now ask when exam design leads to welfare improvements. Formally, we
say that exam design leads to welfare improvements if there exists a pair (𝑣1, 𝑣2)

such that 𝑍(𝑣1, 𝑣2) > 𝑍𝑁𝐶 , where 𝑍𝑁𝐶 is the utility the planner receives from not
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coarsening exam scores.40 Using the structure of payoffs, one can achieve the following
characterization of when exam design leads to welfare improvements:

Proposition 14. Exam design leads to welfare improvements if and only if there
exists a pair (𝑣1, 𝑣2) where 𝑣2 > 𝑟 and 𝑣1 < 𝑟 such that:

1

2
[(𝑣2 − 𝑟)(𝑟− 𝑣1)] < ℎ

(︁1
2
−𝐹𝜅1(𝑣2) + (𝐹𝜅1(𝑣2)−𝐹𝜅1(𝑣1))𝑝𝐿(𝑣1, 𝑣2)

)︁
− ℎ
(︁1
2
−𝐹𝜅1(𝑟)

)︁
(164)

Moreover, if ℎ is linear with slope 𝛼 > 0, this inequality reduces to:

(𝑟 − 𝑣1) < 2𝛼
(︁𝐹𝜅1(𝑣2)− 𝐹𝜅1(𝑣1)

𝑣2 − 𝑣1
− 𝐹𝜅1(𝑣2)− 𝐹𝜅1(𝑟)

𝑣2 − 𝑟

)︁
(165)

Proof. See Appendix D.1.7.

This condition simply compares the loss from having students with lower scores
to the benefit of (potentially) increasing the diversity of the student body through
admitting a different composition of students. A simple sufficient condition for a pri-
ority coarsening to increase diversity is that the majority score distribution dominates
the minority score distribution in the sense of first-order stochastic dominance. The
trade-off between student exam scores and affirmative action is clear in the case with
linear ℎ. As 𝑣1 decreases, students with lower scores gain admission, reducing the
overall student quality. However, there is a benefit from increasing diversity if the
ratio of underrepresented students with scores in [𝑣1, 𝑣2) is larger than the ratio in
[𝑟, 𝑣2). The total benefit from diversity then depends the difference of these ratios and
the preference for diversity, which is measured by 𝛼. In particular, the mechanism
designer is more likely to improve the allocation via exam design if there are more
underrepresented students that are close to the no-affirmative-action cut-off 𝑟 or she
has a stronger preference for diversity.

4.6 Application: Income-Based Priorities and the

Allocation of Public Housing
With more than 1 million housing units, and 1.6 million households on waiting lists,
public housing programs in United States are very important for the welfare of low
income households (Collinson, Ellen, and Ludwig, 2015). Because of this, many
housing authorities employ various restrictions on the eligibility of applicants and

40The allocation in this case is such that students are allocated the school if their score exceeds
𝑟, and not otherwise. Plugging this allocation into Equation 161 yields 𝑍𝑁𝐶 .
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then allocate the units via lotteries to those deemed eligible. Concretely, to be eligible
for public housing provided by the New York City Housing Authority (NYCHA), a
household must have income less than a certain fraction of New York’s Area Median
Income (AMI).41

As in our previous applications, determining eligibility requirements for housing
assistance is a contentious topic. The main trade-off for policymakers appears to be
between making a larger part of society eligible and targeting households that will
gain most from the assistance – those with the worst outside housing options. That it
is desirable to ensure wide eligibility in this context is reflected in the words of NYC
Mayor Bill de Blasio:42

“Affordable housing initiatives cannot just be for the lowest income folks,
... There has to be a place for work force housing and middle-class housing
as well.”

However, the targeting of those with low outside options that would cause them to
have inadequate housing in the absence of intervention is also extremely important.
To this end, NYC officials have recently been developing laws that would reserve 15%
of affordable-housing projects for the homeless (Stewart, Mays, and Haag, 2019).

Thus motivated, we study the problem of a designer who determines the priority of
households as a function of their income. To model this market requires a significant
departure from the previous analysis: we must consider the dynamic nature of public
housing allocation. To this end, we develop a dynamic matching model to study how
these trade-offs affect priority design in the allocation of public housing. We leverage
our general results (Theorems 5 and 6) to place a simple three-income-tier structure
on the optimal policy and deliver insights regarding the optimal design.

4.6.1 Model

There is a continuum of agents 𝑖 ∈ [0, 1] that differ in their income 𝑠 ∈ [0, 1], where
𝑠 = 1 is the lowest level of income and 𝑠 = 0 is the highest level of income, and their
outside options 𝜅 ∈ 𝒦. Income and outside options have joint distribution 𝐹 (𝜅, 𝑠)

such that the marginal distribution of incomes is uniform. Time is discrete and infinite
𝑡 ∈ N. Agents have discount factors 𝛽 and die at rate (1 − 𝛿). Each period (1 − 𝛿)

41This fraction differs from development to development. Moreover, as Waldinger (2018) and
Arnosti and Shi (2017) note, in some markets, there is also a minimum income level that applicants
must clear. The reason for this is to make sure the applicant can pay the rent, which is a feasibility
constraint rather than a policy with distributional motives. We abstract away from such issues in
the present analysis.

42Stewart, Mays, and Haag (2019)
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new agents are born from distribution 𝐹 so that the population of agents always has
unit measure.

A priority design is a vector 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) such that 0 ≡ 𝑣0 ≤ 𝑣1 ≤ · · · ≤
𝑣𝑛 ≤ 𝑣𝑛+1 ≡ 1. Agents with 𝑠 ∈ [𝑣𝑖, 𝑣𝑖+1) for 𝑖 < 𝑛 or 𝑠 ∈ [𝑣𝑛, 𝑣𝑛+1] have the same
priority as all other agents with incomes within the same interval prior to tie-breaking.
A stock of measure 𝑄 of ex-ante identical houses are available. Agents are allocated
to houses via a stable mechanism with tie-breaking within any tier to determine the
order. When an agent is allocated a house, they receive 𝑣 ∼ Λ per period they inhabit
that house, where 𝑣 ∈ [𝑣min, 𝑣max]. Once an agent accepts a house, they inhabit that
house until their death. Each period an agent goes unmatched, they receive their
outside option.

Upon birth, agents are not allocated to public housing. Hence, their expected
lifetime utility at birth is given by their value function when unmatched 𝑉 (𝜅, 𝑠, 𝑣).
We suppose that the social planner has inequality-averse preferences given by the
function:

𝑍(𝑣) =

∫︁
𝒦

∫︁ 1

0

(︂
𝑉 (𝜅, 𝑠, 𝑣)

1− 𝛾

)︂1−𝛾
𝑑𝐹 (𝜅, 𝑠) (166)

where 𝛾 indexes the degree of inequality aversion. Of particular interest is the Rawl-
sian limit 𝛾 → ∞ where the planner seeks to maximize the welfare of worst-off agent.

In Appendix D.5, we characterize the steady state of this dynamic matching model
and derive a simple expression for the welfare of any priority design in terms of the
steady state reservation values of each type (Proposition 49). Importantly, we can
apply Theorems 5 and 6 directly in this steady state to show the following Corollary:

Corollary 12. In the steady state of the dynamic matching model, there exists an
optimal priority design with two cutoffs 𝑣* = (𝑣*1, 𝑣

*
2).

Proof. See Appendix D.1.8.

This result greatly simplifies the analysis as we know that we need to specify at
most two income cutoffs to find the optimal design.

4.6.2 Optimal Priority Design

Having understood the structure of the model, we now explore the problem of priority
design from the perspective of the social planner. Given the nature of the fixed
point equations for the equilibrium density of unmatched agents, finding an analytical
characterization of the optimal cutoffs is challenging. Nevertheless, one can still
establish interesting properties of the optimum and the trade-offs involved in the
construction of optimal policy.
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Given the system employed by NYCHA and elsewhere, it is of particular interest
to study when we can rationalize a policy with the following feature: an income
threshold below which agents have some probability of being allocated a house and
above which they are ineligible. To this end, we show that when outside options
are sufficiently increasing in income and the planner is sufficiently inequality averse
that the richer agents are optimally excluded entirely from public housing (as in
NYCHA). Conversely, if outside options are sufficiently similar across income groups,
a sufficiently inequality averse social planner would like to give all agents positive
probability of receiving public housing. Proposition 15 formalizes these statements:

Proposition 15. Suppose that agents have outside options given by a decreasing and
differentiable function of their underlying score, i.e. a strictly increasing function of
their income, 𝜅 = ℎ(𝑠). In the limit of 𝛾 → ∞:43

1. If ℎ is sufficiently steep, then an optimal policy features a threshold of income
above which agents have zero probability of receiving public housing

2. If ℎ is sufficiently flat, then an optimal policy gives all agents a positive proba-
bility of receiving public housing

Proof. See Appendix D.1.9.

This result highlights the key trade-off facing the planner between effective tar-
geting and eligibility and shows how the strength of the relationship between outside
options and incomes governs this trade-off. In particular, when ℎ is very steep, those
agents with the highest incomes also have relatively relatively high outside options.
In this case, the poorest agents, even if they were to receive public housing in each
period with certainty would have lower welfare than the richer agents. As a result, the
targeting motive dominates the eligibility motive and the richer agents are excluded
entirely from public housing. On the other other hand, when ℎ is very flat, all agents
have very similar outside options and excluding any agent from receiving public hous-
ing will give rise to them being worse off than all agents who have some chance at

43We say that a statement is true if ℎ is sufficiently steep if there exists 𝛼 < 0 such that the
statement is true whenever:

ℎ′(𝑠) < 𝛼 ∀𝑠 ∈ (0, 1) (167)

Likewise, we say that a statement is true if ℎ is sufficiently flat if there exists 𝛼 ≤ 0 such that the
statement is true whenever:

ℎ′(𝑠) ≥ 𝛼 ∀𝑠 ∈ (0, 1) (168)
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public housing. To a sufficiently inequality-averse planner, this is unacceptable, and
so the eligibility motive dominates the targeting motive.

The model moreover suggests that such an eligibility cutoff in income is optimal for
similar reasons to those given by advocates in the New York public housing debate:
the richest are sufficiently well off that we should reserve housing only for those
who are needy. However, as Theorems 5 and 6 showed, the planner has additional
latitude to introduce a tiered system with three tiers: one with unit probability of
assignment, one with interior probability of assignment and one with zero probability
of assignment. In Example 8 in Appendix D.5.1, we construct an explicit example of
when this is desirable with three groups of agents: rich, middle class and poor agents.
If poor agents have sufficiently low outside options relative to middle class agents
who have sufficiently low outside options relative to rich agents, three priority tiers
are strictly optimal. Intuitively, it is optimal to assign poor agents as soon as they
are unmatched as their outside option is so bad (they may be homeless), while we
wish to exclude rich agents from assignment altogether as in Proposition 15. Thus,
when there are enough homes relative to poor agents, it is optimal to allocate the
remaining homes via lottery to middle class agents.

4.7 Conclusion
Motivated by the clear design of priorities in centralized matching markets, we intro-
duce and study the problem of optimal priority design subject to a constraint that an
underlying score cannot be reversed. In our main results, we show that it is without
loss of optimality for a mechanism designer to split agents into at most three indiffer-
ence classes for each object (Theorem 5) and that an optimal policy exists (Theorem
6).

We apply these results and our framework to provide concrete insight into a num-
ber of important and widely studied centralized matching markets: BPS, CPS and
NYCHA. In each case, we study the trade-offs highlighted by the relevant policymak-
ers and provide normative insights as to the nature of optimal priority structures and
positive rationalizations of the policies pursued in practice.
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Chapter 5

Adaptive Priority Mechanisms

This chapter is jointly authored with Oğuzhan Çelebi.

5.1 Introduction
Authorities that allocate resources such as school seats, university places, and medical
supplies often face conflicting objectives. On the one hand, they want to maximize
match quality or appear fair by allocating resources to the highest-scoring agents
according to various criteria such as academic attainment, mortality risk, or distance.
On the other hand, they want to achieve diversity across a range of socioeconomic
attributes including race, religion, and gender. Resolving this conflict is complicated,
especially in new markets, due to uncertainty regarding the distribution of individuals’
scores, characteristics, and preferences.

To balance these trade-offs, when the use of prices is seen as infeasible or uneth-
ical, authorities have broadly used two classes of policies: quotas,1 where a certain
portion of the resource is set aside for given groups; and priorities, where individ-
uals in given groups receive higher scores. These policies have been applied across
many different markets in many different countries, for example: the Indian gov-
ernment reserves some government jobs for disadvantaged groups; Chicago Public
Schools employs quotas for students from different socioeconomic groups at its com-
petitive exam schools; the University of California, Davis instituted a quota system
for minority students; many countries gave differential priority to healthcare workers
in the receipt of Covid-19 vaccines; church-run schools in the UK give explicit priority
points to students from various religious groups; and the University of Michigan and
the University of Texas have used different priority scales for minority students.

1We use quota as a general term that includes the widely used reserve policies (see Definition 12).
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But what mechanism should such an authority use? Despite its revealed practical
importance, we currently possess no formal understanding of this question. Thus, we
do not know if (and under what circumstances) an authority should use a priority
mechanism, a quota mechanism, or something else entirely.

In this paper, we formulate and solve the optimal mechanism design problem of an
authority that allocates a resource to agents who are heterogeneous in their individual
scores and belong to different groups. The authority cares about individuals’ scores,
through some aggregate index, and diversity, through the numbers of agents from
different groups who are allocated the resource.2 Moreover, they are uncertain about
the market they face and have some beliefs about the joint distribution of scores and
groups in the population.

We propose a new class of adaptive priority mechanisms (APM) that adjust agents’
scores as a function of the number of assigned agents with the same characteristics
and that allocate the resource to the set of agents with the highest adjusted scores.
With a single authority, we derive an APM that is optimal, implements a unique
outcome, and can be specified solely in terms of the preferences of the authority
(i.e., it is optimal regardless of their beliefs). By contrast, we show that priorities
and quotas are optimal if and only if risk aversion over diversity is extremely low
or high, respectively. Moreover, optimally set priority and quota policies depend
on both the preferences and beliefs of the authority. Thus, the optimal APM both
improves outcomes and requires less information. When there are many authorities,
it is dominant for each of them to implement this APM and this leads to the unique
stable outcome but generates inefficiency. To remedy this, we propose a centralized
allocation mechanism, an adaptive priority mechanism with quotas (APM-Q), that
restores efficiency. Finally, we benchmark the quantitative gains from APM using
data from Chicago Public Schools and find that they are substantial.

Single-Authority Model We begin our analysis by studying a setting with a
single authority that has some amount of a homogeneous resource (e.g., seats at a
school, medical resources) that it can allocate to a continuum of agents.3 Agents

2This diversity preference can be interpreted more generally as encoding a preference of the au-
thority over the composition of assigned agents across a range of attributes, e.g., when allocating
medical resources, the authority may care about ensuring that frontline medical workers are treated.
Moreover, when scores represent individuals’ property rights over objects (e.g., higher-scoring stu-
dents deserve better schools), we can interpret the preference for higher scores as a preference for
procedural fairness. Whenever a lower-scoring agent obtains the resource while a higher-scoring
agent does not, the latter agent has justified envy towards the former. In the two-sided matching
literature, justified envy is often seen as inimical to fairness (see e.g., Balinski and Sönmez, 1999).

3In Appendix E.3, we generalize our analysis and results to a setting with discrete agents.
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differ in their scores (e.g., exam score, clinical need) and discrete attributes (e.g.,
socioeconomic status, if they are a frontline health worker). The authority cares
separably about some index of the score distribution (e.g., the average score) of those
to whom it allocates the resource and the numbers of agents from different groups. As
a result, the preferences of the authority over agents depend on the joint distribution
of agents’ scores and groups. We assume that this distribution is potentially unknown
and varies arbitrarily across states of the world. The authority’s problem is to design
an allocation mechanism that is optimal regardless of their beliefs, a property that
we call first-best optimality.

Adaptive Priority Mechanisms To this end, we introduce the class of adaptive
priority mechanisms (APM), which proceed in two steps. First, each agent is given
an adaptive priority that is a function of their own score and the number of agents
from the same group to whom the resource is assigned. Second, APM allocate the re-
source to agents in order of adaptive priorities, subject to fully allocating the available
amount. This class of mechanisms allows the implicit preference for agents from dif-
ferent groups to depend upon the ultimate allocation. The allocation under an APM
is defined as the fixed point of the above operation: an allocation is implemented by
APM if the adaptive priority of all agents who are allocated the resource (evaluated
at the allocation) is higher than those who are not allocated the resource. When an
agent’s adaptive priority is increasing in their own score and decreasing in the number
of agents with the same attributes that are assigned the resource – a property we call
monotonicity – the APM implements a unique allocation. Moreover, this allocation
can be computed greedily by prioritizing agents according to their adaptive priority,
evaluated at the number of higher-scoring agents in their group.

Most importantly, we derive a particular, monotone APM that is first-best opti-
mal. Under this optimal APM, an agent’s priority is equal to the contribution of their
own score plus their marginal contribution to diversity utility. Intuitively, this mech-
anism equates the benefits and costs of allocating to the marginal agent, regardless of
the ultimate joint distribution of agents’ scores and groups. Moreover, this APM can
be described solely as a function of the authority’s preferences, without any reference
to its beliefs.

(Sub)Optimality of Priorities and Quotas We next establish that priority and
quota mechanisms are generally dominated by APM. We do so by characterizing the
conditions on the preferences of the authority such that priorities and quotas attain
first-best optimality. Concretely, we find that priorities and quotas are first-best
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optimal if and only if (i) the authority is risk-neutral over diversity, in which case
priorities are optimal, or (ii) the authority is extremely risk-averse over diversity, in
which case quotas are optimal. Hence, outside of extreme cases, APM deliver strict
improvements relative to the status quo.

A Price-Theoretic Intuition To both illustrate and develop the intuition behind
these results, we study a detailed example that allows for a closed-form comparison
of priorities, quotas, and the optimal adaptive priority mechanism. We do this in the
spirit of the seminal analysis of Weitzman (1974), who compares price and quantity
regulation in product markets. In the example, the resource corresponds to seats at
a school and there are two groups of students (minority and majority students). The
authority is uncertain over the relative scores of minority and majority students, and
has linear-quadratic preferences over the scores of admitted students and the number
of minority students admitted to the school.

The preference of the authority between priority and quota mechanisms is gov-
erned by its risk aversion over the number of admitted minority students: there is a
cutoff value such that quotas are preferred when risk aversion exceeds this threshold
and priorities are otherwise preferred. On the one hand, by mandating a minimal
level of minority admissions, quotas guarantee a level of diversity. On the other hand,
as relatively more minority students receive the resource in the states in which they
have relatively higher scores, priorities positively select minority students. Adaptive
priority mechanisms optimally exploit the guarantee effects of quotas and the positive
selection effects of priorities, and are always optimal.

Dominance and Stability with Multiple Authorities While the single-authority
model is relevant for studying settings with a single resource, in many markets there
are multiple authorities who control heterogeneous resources (e.g., school seats) over
which agents have heterogeneous preferences. We generalize our analysis to this set-
ting and show that APM arise under both cooperative (stability) and non-cooperative
(dominant-strategy equilibrium) solution concepts. Concretely, we show that there
is a unique stable allocation and a mechanism is consistent with stability if and only
if it coincides with the single-authority-optimal APM. Moreover, when authorities
sequentially admit agents, each authority using its single-authority-optimal APM is
a dominant strategy and implements the unique stable matching. Thus, one could
advise authorities to use APMs with confidence that outcomes will be stable and that
they could do no better under any alternative mechanism.
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Inefficiency of APM and an Efficient Multi-Authority Mechanism How-
ever, decentralized outcomes under APMs are generally inefficient for the authorities.
This is because authorities do not internalize the “pecuniary externalities” they gen-
erate by over-admitting agents that have a preference for them but that the other
authorities value more. To remedy this, we propose a centralized allocation mech-
anism, an Adaptive Priority Mechanism with Quotas (APM-Q). An APM-Q first
constructs a fictitious aggregate authority, decides the aggregate levels of admissions
of each group according to an optimal APM, and then allocates these groups across
authorities according to optimally set quotas. This mechanism fixes the pecuniary
externalities by creating a pseudo-market in which each group has a “price” and au-
thorities are assigned agents only if they would be willing to “pay” for them.

Benchmarking the Gains from APM in Chicago Exam Schools Finally,
we benchmark the improvements from APM using application and admission data
from 2013-2017 on the selective exam schools of Chicago Public Schools (CPS), a
setting also empirically studied by Angrist, Pathak, and Zárate (2019) and Ellison
and Pathak (2021). CPS uses a reserve system to increase the admissions of un-
derrepresented groups. In this system, as we later detail, academic scores and the
socioeconomic tiers of the census tracts in which students live determine the schools
that students can attend. Estimating preference parameters to best rationalize the
pursued reserve policy, we find that the gains from using the optimal APM are equiv-
alent to eliminating 37.5% of the loss to CPS’ payoffs from failing to admit a diverse
class of students. This gain is 2.3 times larger than the estimated gain from a 2012
policy change that increased the size of all reserves. This exercise shows both that
APM could be practically implemented and that the gains from so doing may be
considerable.

Related Literature The market design literature has largely studied the compar-
ative statics and axiomatic foundations of mechanisms. In this context, our paper
relates to the literature on matching with affirmative action concerns initiated by
Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu (2005). For example, in
the study of quotas, Kojima (2012) shows how affirmative action policies that place
an upper bound on the enrollment of non-minority students may hurt all students,
Hafalir, Yenmez, and Yildirim (2013) introduce the alternative and more efficient
minority reserve policies, Ehlers, Hafalir, Yenmez, and Yildirim (2014) generalize re-
serves to accommodate policies that have floors and ceilings for minority admissions,
and Doğan (2016) shows that stronger affirmative action can (weakly) harm all mi-
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nority students under reserve policies and proposes a new rule that fixes this issue.
The quota policies studied in this paper are a special case of the slot-specific priori-
ties introduced in Kominers and Sönmez (2016). Further related papers study quota
policies in university admissions in India (Aygün and Turhan, 2020; Sönmez and Yen-
mez, 2022a,b), in Germany (Westkamp, 2013) and in Brazil (Aygun and Bó, 2021).
Kamada and Kojima (2017, 2018) and Goto, Kojima, Kurata, Tamura, and Yokoo
(2017) study stability and efficiency in more general matching-with-constraints mod-
els. Echenique and Yenmez (2015) characterize a class of substitutable choice rules
under diversity preferences and Erdil and Kumano (2019b) study tie-breaking rules
under substitutable priorities under stable matching mechanisms and distributional
constraints. Çelebi (2022) studies when affirmative action policies, including quota
policies, can be rationalized by diversity preferences.

In this paper, we instead pursue the methodological approach of mechanism de-
sign and welfare economics by analyzing optimal mechanisms from the perspective of
an authority with some given preferences over allocations. Chan and Eyster (2003)
share this perspective in their analysis of the costs and benefits of banning affirmative
action.4 In this vein, we have previously analyzed the narrower problem of how to op-
timally coarsen agents’ scores into priorities (Çelebi and Flynn, 2022) in a continuum
matching market framework in the style of Abdulkadiroğlu, Che, and Yasuda (2015)
and Azevedo and Leshno (2016). This analysis nevertheless restricted authorities to
use a priority mechanism that does not consider agents’ characteristics and imple-
ment only allocations that are stable with respect to these priorities. Thus, our focus
on comparing priorities, quotas, and optimal mechanisms distinguishes our analysis
from our prior work and the previous literature, which study the properties of each
policy in isolation and without an explicit treatment of uncertainty.

Outline Section 5.2 exemplifies our main results. Section 5.3 studies optimal mech-
anisms with a single authority. Section 5.4 studies equilibrium mechanisms with many
authorities. Section 5.5 analyzes efficient mechanisms with multiple authorities. Sec-
tion 5.6 quantifies the gains from APM using data from Chicago Public Schools.
Section 5.7 concludes.

5.2 Comparing Mechanisms: An Example
The Setting A single school has capacity 𝑞. Students are of unit total measure,
have scores in [0, 1], and are either minority or majority students. The authority has

4Other analyses of this issue include Epple, Romano, and Sieg (2008) and Temnyalov (2021).
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linear-quadratic preferences 𝜉 : R2 → R over students’ total scores 𝑠 and the measure
of admitted minority students 𝑥:

𝜉(𝑠, 𝑥) = 𝑠+ 𝛾

(︂
𝑥− 𝛽

2
𝑥2
)︂

(169)

where 𝛾 ≥ 0 indexes their general concern for admitting minority students relative
to ensuring high scores and 𝛽 ≥ 0 indexes the degree of risk aversion regarding the
measure of admitted minority students.

The minority students are of measure 𝜅 and have scores that are uniform over
[0, 1]. The majority students are of measure 1 − 𝜅 and all have common underlying
score 𝜔 ∈ [𝜔, 𝜔] ⊆ [0, 1] with distribution Λ. The score of the majority students, 𝜔,
parameterizes how well the majority students score relative to the minority students.
Finally, we assume that the affirmative action preference is neither too small nor too
large with the following: min{𝜅, 𝑞} > 1+𝛾−𝜔

1
𝜅
+𝛾𝛽

+ 𝜅(𝜔 − 𝜔), 𝜅(1 − 𝜔) < 1+𝛾−𝜔
1
𝜅
+𝛾𝛽

. These
conditions ensure that optimal affirmative action policies will neither be so large as
to award all slots to minority students in some states nor so small that there is no
affirmative action in some states.

The authority can implement an APM, a priority mechanism, or a quota mecha-
nism. An APM awards a score boost of 𝐴(𝑦) to a minority student when measure 𝑦
other minority students are admitted, and allocates the seats to the highest-scoring
minority students who have transformed scores higher than 𝜔.5 An (additive) pri-
ority mechanism 𝛼 ∈ R+ increases uniformly the scores of minority students: the
score used in admissions becomes uniform over [𝛼, 1+𝛼]. The authority then admits
the highest-scoring measure 𝑞 students. A quota policy 𝑄 ∈ [0,min{𝜅, 𝑞}] sets aside
measure 𝑄 of the capacity for the minority students. The measure 𝑄 highest-scoring
minority students are first allocated to quota slots, and all other agents are then
admitted to the residual 𝑞 −𝑄 places according to the underlying score.6

We illustrate how these three policies prioritize minority students in Figure 5-1.
Priority mechanisms award a constant score boost of 𝛼. Quota mechanisms give
enough points to always ensure admission until measure 𝑄 is reached and then give
no advantage. APM allow any pattern of prioritization as a function of minority
admissions (we plot only the optimal APM, which turns out to be linear in this
context).

5Formally, this happens when 𝑠(𝑥(𝜔)) + 𝐴(𝑥(𝜔)) = 𝜔, where 𝑠(𝑥(𝜔)) denotes the score of the
marginal minority student when the highest-scoring 𝑥(𝜔) minority students are admitted.

6This corresponds to a precedence order that processes quota slots first. We discuss the impor-
tance of precedence orders in Section 5.2.1 and in Appendix E.2.3.
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Figure 5-1: How Priorities, Quotas, and APM Prioritize Minority Students
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Notes: Illustration of the equivalent priority given to a minority student as a function of
the measure of admitted minority students under: the optimal APM (see Proposition 16),
a priority mechanism 𝛼, and a quota mechanism 𝑄.

Comparing Mechanisms Let the authority’s expected utility be 𝑉 * under any
optimal (expected utility maximizing) mechanism, 𝑉𝐴 under an optimal adaptive pri-
ority mechanism, 𝑉𝑃 under an optimal priority mechanism, and 𝑉𝑄 under an optimal
quota mechanism. The following proposition characterizes the relationships between
these mechanisms:

Proposition 16. The following statements are true:

1. The APM 𝐴(𝑦) = 𝛾(1− 𝛽𝑦) is optimal, 𝑉 * = 𝑉𝐴

2. The comparative advantage of priorities over quotas is given by:

∆ ≡ 𝑉𝑃 − 𝑉𝑄 =
𝜅

2
(1− 𝜅𝛾𝛽)Var[𝜔] (170)

3. The comparative advantage of APM over priorities and quotas is given by:

∆* ≡ min{𝑉 * − 𝑉𝑃 , 𝑉
* − 𝑉𝑄} =

⎧⎨⎩1
2
(𝜅𝛾𝛽)2 𝜅Var[𝜔]

1+𝜅𝛾𝛽
, 𝜅𝛾𝛽 ≤ 1,

1
2
𝜅Var[𝜔]
1+𝜅𝛾𝛽

, 𝜅𝛾𝛽 > 1.
(171)

The proofs of all results are in Appendix E.1. We now develop intuition for the
comparative advantage of priorities over quotas. First, observe that a quota of 𝑄
admits measure 𝑄 minority students in all states of the world under our assumptions.
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Figure 5-2: Comparative Statics for the Positive Selection and Guarantee Effects
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Notes: Illustration of the comparative statics for the trade-offs between priority and quota
mechanisms. Positive Selection plots the positive selection effect, 𝜅Var[𝜔], and Guarantee
plots the guarantee effect, 𝜅

2 (1 + 𝜅𝛾𝛽)Var[𝜔]. As per Equation 170 in Proposition 16,
priorities dominate quotas if and only if 1 ≥ 𝜅𝛾𝛽, where the point of indifference is denoted
by the dashed grey line.

However, a priority policy induces variability in the measure of admitted minority
students across states of the world. We call the gain to quota policies in eliminat-
ing this variation the guarantee effect and find mathematically that it is equal to
𝜅
2
(1 + 𝜅𝛾𝛽)Var[𝜔] in payoff terms.

Second, the optimal priority policy admits more minority students when minority
students score relatively well and fewer when minority students score relatively poorly.
To demonstrate this, we show that minority admissions in state 𝜔 under the optimal
priority policy are 𝑥(𝛼, 𝜔) = �̄�(𝛼) + 𝜀(𝜔) where �̄�(𝛼) = 𝜅(1 + 𝛼 − E[𝜔]) and 𝜀(𝜔) =

𝜅 (E[𝜔]− 𝜔). Thus, in the states where minority students score relatively better
(𝜔 < E[𝜔]), we have that 𝜀(𝜔) > 0 and 𝑥(𝛼, 𝜔) > �̄�(𝛼). We call this effect the positive
selection effect and find that this benefits a priority policy by −Cov[𝜔, 𝜀(𝜔)] = 𝜅Var[𝜔]
in payoff terms.

The ultimate preference between priority and quota mechanisms is determined by
which of the guarantee and positive selection effects dominates. This is itself deter-
mined by the extent to which the authority values diversity 𝛾, the risk preferences
of the authority 𝛽, and the measure of minority students 𝜅. We illustrate how risk
aversion and the measure of minority students affect the sizes of the positive selection
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Figure 5-3: Comparative Statics for the Losses from Priorities and Quotas
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Notes: Illustration of the comparative statics for the losses from optimal priority and quota
policies relative to the optimal APM (as presented in Equation 171 in Proposition 16). The
lower envelope of the losses, Δ*, corresponds to the comparative advantage of the optimal
APM over priorities and quotas. The point of indifference between priorities and quotas is
denoted by the dashed grey line.

and guarantee effects in Figure 5-2. If the authority is close enough to risk-neutral
(i.e., 1

𝜅𝛾
> 𝛽), then priorities are strictly preferred as positive selection dominates

guarantees. If the authority is sufficiently risk-averse (i.e., 1
𝜅𝛾
< 𝛽), then quotas are

strictly preferred as the guarantee effects dominate positive selection. The threshold
for risk aversion scales inversely with the measure of minority students 𝜅. Because
minority students’ scores are uniform, 𝜅 corresponds to the density of minority stu-
dents’ scores. Hence, the change in minority admissions from a small change in their
priority equals 𝜅. Thus, 𝜅 indexes the sensitivity of minority admissions to the state
under priority policies. As a result, higher 𝜅 favors quota policies by increasing the
magnitude of the guarantee effect relative to the positive selection effect. Finally,
the extent of uncertainty Var[𝜔] may intensify an underlying preference but never
determines which regime is preferred.

An APM is optimal and overcomes the limitations posed by both priorities and
quotas. In this case, the optimal APM is linear in the measure of admitted minority
students, with slope given by the authority’s risk aversion over minority admissions,
awarding each minority student a subsidy equivalent to their marginal contribution
to the diversity preferences of the authority. This allows the adaptive priorities to
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optimally balance the positive selection and guarantee effects, and implement the
first-best allocation in every state. In Figure 5-3, we illustrate how the losses from
priority mechanisms and quota mechanisms vary with risk aversion and sensitivity.
As risk aversion moves, the loss from priority and quota policies relative to the opti-
mum is greatest when the authority is indifferent between the two regimes. The loss
from restricting to priority or quota policies is zero when the authority is risk-neutral
or there is no uncertainty regarding relative scores, and decreases as the authority be-
comes extremely risk-averse. As sensitivity increases, the scope for affirmative action
increases and so the gains from APM also increase. Thus, we should expect there
to be large gains from switching to APM precisely when authorities have interme-
diate levels of risk aversion and/or the scope for implementing affirmative action is
significant.

Finally, optimal APM have an advantage with respect to priority and quota mech-
anisms that we have not yet highlighted: they depend only on the authority’s pref-
erences, 𝛾 and 𝛽, and not their beliefs about 𝜔, Λ. This contrasts with the optimal
priority and quota policies, which depend on Λ.7 As a result, APM improve outcomes
while using less information.

5.2.1 Discussion

Before moving to the general analysis, we discuss three additional findings that em-
phasize the broader economics and scope of these results.

A Price-Theoretic Intuition This comparison of priorities vs. quotas echoes the
comparison of prices vs. quantitities by Weitzman (1974). We show in Appendix
E.2.1 that there is a formal mapping between the two.8 Intuitively, the positive se-
lection effect is equivalent to the effect that price regulation gives rise to the greatest
production in states where the firm’s marginal cost is lowest. Moreover, the guar-
antee effect is equivalent to the ability of quantity regulation to stabilize the level
of production. An APM corresponds in the Weitzman (1974) setting to a regulator
setting neither a price nor a quantity, but completely specifying the optimal demand
curve. As in Weitzman’s analysis, this allows the authority to implement the optimal
allocation, regardless of the firm’s realized marginal costs. Thus, in this context, the
comparison of mechanisms for allocating goods without prices boils down to similar

7The optimal quota policy is given by 𝑄* = 1+𝛾−E[𝜔]
1
𝜅+𝛾𝛽

, while the optimal priority policy sets the
expected measure of minorities to 𝑄*. The policies depend on Λ through E[𝜔].

8Mapping Weitzman’s curvature of production costs 𝐶 ′′−1 ↦→ 𝜅, curvature of benefits to con-
sumers 𝐵′′ ↦→ −𝛾𝛽𝑚, and uncertainty over marginal costs Var[𝛼(𝜃)] ↦→ Var[𝜔], we have that Weitz-
man’s Δ coincides with our own. See Appendix E.2.1 for more details.
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trade-offs between well-understood price-based mechanisms for goods allocation.

Medical Resource Allocation In Appendix E.2.2, we apply this model to under-
stand the trade-offs between priority and quotas in the context of medical resource
allocation. This topic received enormous attention during the Covid-19 pandemic (see
e.g., Pathak, Sönmez, Unver, and Yenmez, 2021). Our analysis provides a formal jus-
tification for the idea that priorities may lose out relative to quotas from ignoring some
groups or ethical values in the allocation of scarce resources (the guarantee effect).
However, we also uncover a benefit of priorities that was not previously understood:
they induce positive selection. Thus, if we care mostly about treating the neediest (𝛽
is low), priorities may yet be optimal.9

Optimal Precedence Orders Thus far we have modelled quotas by first allocating
minority students to quota slots and then allocating all remaining students according
to the underlying score. However, we could have done the opposite. The orders in
which quotas are processed are called precedence orders in the matching literature and
their importance has been the subject of a growing literature (see e.g., Dur, Kominers,
Pathak, and Sönmez, 2018; Dur, Pathak, and Sönmez, 2020; Pathak, Rees-Jones, and
Sönmez, 2020). In Corollary 17 in Appendix E.2.3, we show that processing quotas
second is equivalent to using a priority policy in this setting. Thus, processing quotas
first is better than processing them second if and only if 1 ≤ 𝜅𝛾𝛽. We emphasize
that this equivalence merely illustrates the similarity between priority policies and
processing quotas second and does not hold in the more general model we study in
the remainder of the paper. This notwithstanding, the main aspect of this conclusion
is robust: in Theorem 8, we show that for any quota policy to be optimal in the
presence of uncertainty, it must process quotas first. In the absence of uncertainty,
in Appendix E.5, we show that every quota mechanism is equivalent to a priority
mechanism (and vice versa) and use this fact to quantify the impact of changes in
precedence orders for US H1-B visa allocation.

5.3 Optimal Mechanisms with a Single Authority
We begin our general analysis by studying the resource allocation problem of a single
authority. In this context, we define APM and derive an optimal APM that attains the

9Inspired by the uncertainty over the number of medical professionals and the general population
who were expected to need scarce medical resources at the onset of the Covid-19 pandemic, we
consider an extension where there is also uncertainty over the number of medical professionals who
get sick, 𝜅. We show that an increase in the uncertainty regarding the need of frontline workers
Var[𝜅] leads to a greater preference for quotas. This can be seen diagrammatically in Figure 5-2 as
the guarantee effect is convex in 𝜅.
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first-best. We moreover provide necessary and sufficient conditions for the optimality
of the ubiquitous priority and quota mechanisms and find that they are extremely
restrictive, implying that there are likely gains from switching to APM.

5.3.1 Model

An authority allocates a single resource of measure 𝑞 ∈ (0, 1) to a unit measure
of agents. Agents differ in their type 𝜃 ∈ Θ = [0, 1] × ℳ comprising their scores
𝑠 ∈ [0, 1] and the group to which they belong, 𝑚 ∈ ℳ, where their score denotes
their suitability for the resource and ℳ is a finite set comprising potential attributes
such as race, gender, or socioeconomic status. We denote the score and group of any
type 𝜃 by 𝑠(𝜃) and 𝑚(𝜃), respectively. The true distribution of types is unknown to
the authority. The authority’s uncertainty is parameterized by 𝜔 ∈ Ω, where Ω is the
set of all distributions over Θ that admit a density. The authority believes that 𝜔
has distribution Λ ∈ ∆(Ω). In state of the world 𝜔, we denote the type distribution
by 𝐹𝜔 with density 𝑓𝜔.10 In Appendix E.3, we generalize our analysis and results to
the discrete context.

An allocation 𝜇 : Θ → {0, 1} specifies for any type 𝜃 ∈ Θ whether they are
assigned to the resource.11 Two allocations 𝜇 and 𝜇′ are essentially the same if they
coincide up to a measure zero set. The set of possible allocations is 𝒰 . An allocation
is feasible if it allocates no more than measure 𝑞 of the resource. A mechanism is a
function 𝜑 : Ω → 𝒰 that returns a feasible allocation for any possible distribution of
types. A mechanism 𝜑 implements an essentially unique allocation if all allocations
implemented by 𝜑 are essentially the same.

As motivated, authorities often have preferences over scores and diversity. To
model this, we define the aggregate score index of any allocation as:

𝑠ℎ(𝜇, 𝜔) =

∫︁
Θ

𝜇(𝑠,𝑚)ℎ(𝑠)d𝐹𝜔(𝑠,𝑚) (172)

for some continuous, strictly increasing function ℎ : [0, 1] → R+, which determines the
extent to which the authority values agents with higher scores. To capture diversity,
we compute the measure of agents of each group allocated the resource 𝑥(𝜇, 𝜔) =

{𝑥𝑚(𝜇, 𝜔)}𝑚∈ℳ as:

𝑥𝑚(𝜇, 𝜔) =

∫︁
[0,1]

𝜇(𝑠,𝑚)𝑓𝜔(𝑠,𝑚)d𝑠 (173)

10Formally, we mean that 𝑓𝜔(𝑠,𝑚) = 𝜕
𝜕𝑠𝐹𝜔(𝑠,𝑚) exists for all 𝑠 ∈ [0, 1] and 𝑚 ∈ ℳ.

11Formally, 𝜇 is a measurable function with respect to the Borel 𝜎−algebra of the product topology
in Θ.
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To separate the roles of scores and diversity, we impose that their utility function
over these dimensions 𝜉 : R|ℳ|+1 → R satisfies the following separability assump-
tion:12

Assumption 10. The authority’s utility function can be represented as:

𝜉 (𝑠ℎ, 𝑥) ≡ 𝑔

(︃
𝑠ℎ +

∑︁
𝑚∈ℳ

𝑢𝑚(𝑥𝑚)

)︃
(174)

for some continuous, strictly increasing function 𝑔 : R → R and differentiable and
concave functions 𝑢𝑚 : R → R for all 𝑚 ∈ ℳ.

We also assume that the authority always prefers to allocate the entire resource.13

The preference of the authority is a monotone transformation of a quasi-linear utility
index comprised of scores and a diversity preference. Intuitively, 𝑢𝑚 determines the
preference for assigned agents of group 𝑚, with its concavity following from a prefer-
ence for diversity.14 The function 𝑔 determines their risk preferences over their utility
over scores and diversity across states of the world.

As we later show, this assumption allows for particularly simple functional forms
for optimal mechanisms. We explore the robustness of our results to relaxing this as-
sumption in Appendix E.4. We show that our results are essentially unchanged when
preferences are non-separable over diversity, i.e., when

∑︀
𝑚∈ℳ 𝑢𝑚(𝑥𝑚) is replaced

with 𝑢(𝑥). The essential assumption for our results is the separability of diversity
and score preferences. When this fails, it is no longer possible to specify optimal
mechanisms without explicitly conditioning the allocation on the realized distribu-
tion of agents. As a result, our analysis will not apply to situations in which there is
complementarity or substitutability in preferences over match quality and diversity.

We define the value of a mechanism 𝜑 under distribution Λ as the authority’s

12The assumption of separable preferences over scores and diversity is common in the literature
on affirmative action concerns (see e.g., Athey, Avery, and Zemsky, 2000; Chan and Eyster, 2003;
Ellison and Pathak, 2021).

13A necessary and sufficient condition for this is: ℎ(0)+𝑢′𝑚(𝑞) ≥ 0 for all 𝑚 ∈ ℳ. This condition
is clearly sufficient, the lowest utility the authority can get from allocating the resource is always
positive. It is also necessary: if ℎ(0) + 𝑢′𝑚(𝑞) < 0 for some 𝑚, in the state of the world where there
are only measure 𝑞 of group 𝑚 agents with uniform score distribution, the authority would prefer
not to allocate a portion of the resource to the lowest-scoring agents.

14Note that 𝑢𝑚 depends on 𝑚, so our specification allows the designer to have different preferences
for allocating the resource to agents from different groups. For example, this allows for a designer
with affirmative action motives who prefers to assign the resource to some particular group 𝑚:
𝑢′𝑚(𝑥) > 𝑢′𝑚′(𝑥) for all 𝑥 or a designer who prefers a balanced composition of allocated agents:
𝑢′𝑚(𝑥) = 𝑢′𝑚′(𝑥) for all 𝑚 ∈ ℳ.
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expected utility of the allocations induced by that mechanism:

Ξ(𝜑,Λ) =

∫︁
Ω

𝜉(𝑠ℎ(𝜑(𝜔), 𝜔), 𝑥(𝜑(𝜔), 𝜔))dΛ(𝜔) (175)

We say that a mechanism is first-best optimal if it maximizes the authority’s expected
utility for all possible distributions of distributions of agents’ characteristics.

Definition 9 (First-Best Optimality). A mechanism 𝜑* is first-best optimal if:

Ξ(𝜑*,Λ) = sup
𝜑

Ξ(𝜑,Λ) (176)

for all Λ ∈ ∆(Ω).

This is a demanding property for a mechanism to possess. Indeed, as the exam-
ple from Section 5.2 shows, priority and quota mechanisms can fail to be first-best
optimal while APM can attain first-best optimality. In the remainder of this section,
we formally define APM, show that (when suitably designed) they are first-best opti-
mal, and characterize the conditions under which priorities and quotas are first-best
optimal.

5.3.2 Adaptive Priority Mechanisms

Toward deriving a first-best optimal mechanism, we introduce APMs. To this end, we
first introduce an adaptive priority policy 𝐴 = {𝐴𝑚}𝑚∈ℳ, where 𝐴𝑚 : R× [0, 1] → R.
The adaptive priority policy assigns priority 𝐴𝑚(𝑦𝑚, 𝑠) to an agent with score 𝑠 in
group 𝑚 when measure 𝑦𝑚 of agents of the same group is allocated the object. Given
an adaptive priority policy, an APM implements allocations in the following way:

Definition 10 (Adaptive Priority Mechanism). An adaptive priority mechanism, in-
duced by an adaptive priority 𝐴, implements an allocation 𝜇 in state 𝜔 if the following
are satisfied:

1. Allocations are in order of priorities: 𝜇(𝜃) = 1 if and only if for all 𝜃′ with
𝜇(𝜃′) = 0, we have that:

𝐴𝑚(𝜃)(𝑥𝑚(𝜃)(𝜇, 𝜔), 𝑠(𝜃)) > 𝐴𝑚(𝜃′)(𝑥𝑚(𝜃′)(𝜇, 𝜔), 𝑠(𝜃
′)) (177)

2. The resource is fully allocated: ∑︁
𝑚∈ℳ

𝑥𝑚(𝜇, 𝜔) = 𝑞 (178)
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With some abuse of terminology, we will often refer to an APM as the adaptive
priority 𝐴 that induces it. By way of illustration, we provide a simple example of the
flexibility of APM to act like a hybrid of priority and quota policies.

Example 3. Let ℳ = {𝑚,𝑛}. Both groups have measure 0.5 and capacity is 𝑞 = 0.5.
We consider the adaptive priority policy 𝐴 = {𝐴𝑚, 𝐴𝑛} given by:

𝐴𝑚(𝑥, 𝑠) = 𝑠, 𝐴𝑛(𝑥, 𝑠) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠+ 1 if 𝑥 ≤ 0.1

𝑠+ 0.1 if 𝑥 ∈ (0.1, 0.25)

𝑠 if 𝑥 ≥ 0.25

(179)

This leaves the score of group 𝑚 agents unchanged and gives agents of group 𝑛 a score
boost of: 1 if less than measure 0.1 group 𝑛 agents is assigned, 0.1 if between measure
0.1 and 0.25 group 𝑛 agents is assigned, and no score boost at all if measure greater
than 0.25 group 𝑛 agents is assigned.

To understand the properties of this adaptive priority policy, observe that the
highest-scoring measure 0.1 group 𝑛 agents is guaranteed the resource, even in states
where they score badly. Therefore, 𝐴𝑛 practically embeds a quota of 0.1. For admis-
sions levels between 0.1 and 0.25, the APM acts like a priority policy and boosts the
scores of group 𝑛 agents by 0.1, increasing the admissions of group 𝑛 when group 𝑛

agents score moderately well. For admissions levels beyond 0.25, group 𝑛 agents are
given no further advantage. Thus, when diversity is attained, this APM “phases out”
and no longer advantages any group.

At this point, we have not established that a given APM implements any allocation
at all, or that it implements a unique allocation. However, there is a natural subclass
of APM that do implement a unique allocation: those that are monotone. An APM
𝐴 is monotone when (i) 𝐴𝑚(·, 𝑠) is a decreasing function for all 𝑚 ∈ ℳ, 𝑠 ∈ [0, 1] and
(ii) 𝐴𝑚(𝑦𝑚, ·) is a strictly increasing function for all 𝑚 ∈ ℳ, 𝑦𝑚 ∈ R.15

Proposition 17. Any Monotone APM 𝐴 implements an essentially unique alloca-
tion.

Moreover, the unique outcome of a monotone APM can be implemented “greedily:”

Algorithm 1 (Greedy Algorithm for Implementation of APM). The greedy APM
algorithm proceeds in the following four steps:

15Observe that monotone adaptive priority mechanisms are fair in the sense that they preserve
the ranking of agents within any group and assign higher priority to an agent whenever there are
fewer agents from her group who are allocated the resource.
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1. For each 𝜃, define

𝑥(𝜃) =

∫︁ 1

𝑠(𝜃)

𝑓𝜔(𝑠,𝑚(𝜃))d𝑠 (180)

as the measure of agents who have higher scores than 𝜃 and belong to same
group.

2. Construct a ranking of the agents as

𝑅(𝜃) = 𝐴𝑚(𝜃)(𝑥(𝜃), 𝑠(𝜃)) (181)

3. Define the cutoff ranking for the agents as 𝑅 by∫︁
Θ

I{𝑅(𝜃) ≥ 𝑅}d𝐹𝜔(𝜃) = 𝑞 (182)

4. Allocate the resource to all 𝜃 with 𝑅(𝜃) ≥ 𝑅.

Intuitively, this algorithm works by ranking all agents by their score within each
group 𝑚 and assigning agents in order of their transformed scores evaluated at the
measure of already assigned agents of the same group, conditional on their admission.
Informally, the algorithm greedily moves down the ranking of agents until the resource
is exhausted.

5.3.3 Adaptive Priority Mechanisms Achieve the First-Best

Having shown that monotone APM implement a unique allocation and provided an
algorithm to compute this allocation, we now show that a certain, monotone APM is
first-best optimal:

Theorem 7. The following APM is monotone and first-best-optimal:

𝐴*
𝑚(𝑦𝑚, 𝑠) ≡ ℎ−1(ℎ(𝑠) + 𝑢′𝑚(𝑦𝑚)) (183)

Moreover, if a mechanism is first-best-optimal, then it implements essentially the same
allocations as 𝐴*.

Observe that 𝐴* is not only uniquely first-best optimal, it also requires only that
the authority knows its preferences over scores ℎ and diversity 𝑢𝑚. Importantly, it
need have no knowledge of the underlying distribution of agents and can be fully spec-
ified even without any knowledge of the nature or extent of uncertainty, Λ. Moreover,
this mechanism does not depend at all on the authority’s across-state risk preferences,
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𝑔. This is because it achieves the ex post optimal allocation in all states and so there
is no need to trade-off gains and losses across states (the preferences over which are
exactly determined by 𝑔).

To gain intuition for the form of this mechanism, suppose that the authority has
linear utility over scores ℎ(𝑠) ≡ 𝑠. In this case, 𝐴*

𝑚(𝑦𝑚, 𝑠) = 𝑠+ 𝑢′𝑚(𝑦𝑚), so an agent
in group 𝑚 is awarded a boost of 𝑢′𝑚(𝑦𝑚) when there are 𝑦𝑚 higher-scoring agents
of the same group, their direct marginal contribution to the diversity preferences of
the authority. This is optimal because this boost precisely trades off the marginal
benefit of additional diversity with the marginal costs of reduced scores. Moreover,
failing to award this precise level of boost would result in a suboptimal allocation.
Thus, any optimal mechanisms must be essentially identical to the optimal APM we
have characterized. To generalize this beyond linear utility of scores, consider the
following observation: we can map agents’ scores from 𝑠 to ℎ(𝑠), and consider the
optimal boost in this space. As ℎ is monotone, this preserves the ordinal structure
of the optimal allocation, and the authority has linear preferences over ℎ(𝑠). Thus,
in this transformed space, the optimal boost remains additive and given by 𝑢′𝑚(𝑦𝑚).
To find the optimal transformed score in the original space, we simply invert the
transformation ℎ and apply it to the optimal score in the transformed space, yielding
the formula for the optimal mechanism in Theorem 7.

5.3.4 (Sub)Optimality of Priorities and Quotas

We have shown that APM are optimal. However, the primary classes of mechanisms
that have been used in practice are priority and quota mechanisms. Therefore, it
is important to understand whether (and when) these mechanisms are also optimal.
We now establish that APM generally provide a strict improvement over priority and
quota mechanisms.

We first formally define priority and quota mechanisms. A priority policy 𝑃 :

Θ → [0, 1] awards an agent of type 𝜃 ∈ Θ a priority 𝑃 (𝜃).

Definition 11 (Priority Mechanisms). A priority mechanism, induced by a priority
policy 𝑃 , allocates the resource in order of priorities until measure 𝑞 has been allocated,
with ties broken uniformly and at random.

We define a quota policy as (𝑄,𝐷), where 𝑄 = {𝑄𝑚}𝑚∈ℳ and 𝐷 : ℳ∪ {𝑅} →
{1, 2, . . . , |ℳ|+ 1} is a bijection. The vector 𝑄 reserves measure of the capacity 𝑄𝑚

for agents in group 𝑚, with residual capacity 𝑄𝑅 = 𝑞−∑︀𝑚∈ℳ𝑄𝑚 open to agents of
all types. The bijection 𝐷 (often called the precedence order) determines the order
in which the groups are processed.
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Definition 12 (Quota Mechanisms). A quota mechanism, induced by a quota policy
(𝑄,𝐷), proceeds by allocating the measure 𝑄𝐷−1(𝑘) agents from group 𝐷−1(𝑘) (if there
are sufficient agents from this group) to the resource in ascending order of 𝑘, and in
descending order of score within each 𝑘. If there are insufficiently many agents of any
group to fill the quota, the residual capacity is allocated to a final round in which all
agents are eligible.

We now characterize when priority and quota mechanisms are (sub)optimal by
providing simple necessary and sufficient conditions on the preferences of the authority
that allow us to characterize the optimality of priority and quota mechanisms. To do
this, we first provide some definitions. Authority preferences are non-trivial if for all
𝑚,𝑛 ∈ ℳ, we have that:

ℎ(1) + 𝑢′𝑛(0) > ℎ(0) + 𝑢′𝑚(𝑞) (184)

Intuitively, the authority’s preferences are non-trivial when their concerns for repre-
sentation of certain groups do not always outweigh the consideration of scores.16 The
authority is risk-neutral over diversity if for all 𝑚 ∈ ℳ, 𝑢′𝑚 : [0, 𝑞] → R is constant,
i.e., there are constant marginal returns to admitting more agents from all groups.
If there are decreasing marginal returns, then the authority’s preferences feature risk
aversion. To define extremely risk-averse preferences, let �̃�, ℎ̃ and {𝑥tar

𝑚 }𝑚∈ℳ be as
follows: (i) �̃�′𝑚(𝑥𝑚) = 0 for all 𝑥𝑚 > 𝑥tar

𝑚 (ii) �̃�′𝑚(𝑥𝑚) ≥ ℎ̃(1)− ℎ̃(0) for 𝑥𝑚 ≤ 𝑥tar
𝑚 and

(iii)
∑︀

𝑚∈ℳ 𝑥tar
𝑚 ≤ 𝑞. Intuitively, an authority whose preferences are represented by

�̃� and ℎ̃ is very risk-averse as the condition that �̃�′𝑚(𝑥𝑚) ≥ ℎ̃(1) − ℎ̃(0) implies that
the loss from being below the target level for a group 𝑥tar

𝑚 dominates any benefit from
increased scores. Thus, they are infinitely risk-averse to failing to meet this target.
We say that the authority is extremely risk-averse if the authority’s preferences over
the optimal allocations can be represented by (�̃�, ℎ̃).17

Theorem 8. Suppose that the authority has non-trivial preferences. The following
statements are true:

1. There exists a first-best optimal priority mechanism if and only if the authority
is risk-neutral. Moreover, this mechanism is given by 𝑃 (𝑠,𝑚) = ℎ−1(ℎ(𝑠)+𝑢′𝑚).

16Note that failure of non-triviality means there exists 𝑚 and 𝑛 such that ℎ(1)+𝑢′𝑛(0) ≤ +ℎ(0)+
𝑢′𝑚(𝑞), i.e., a group 𝑛 agent with the maximum score is less preferred than a group 𝑚 agent with
the minimum score even when all of the entire capacity is allocated to group 𝑚 agents.

17More formally, this means that (𝑢, ℎ) are such that the optimal allocation under (𝑢, ℎ) is also
optimal under (�̃�, ℎ̃) for all 𝜔 ∈ Ω.
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2. There exists a first-best optimal quota mechanism if and only if the authority
is extremely risk-averse. Moreover, this mechanism is given by 𝑄𝑚 = 𝑥tar

𝑚 and
𝐷(𝑅) = |ℳ|+ 1.

Theorem 8 provides precise conditions on preferences such that the inability of
priorities and quotas to adapt to the state is not problematic. That risk-neutrality and
high risk aversion are sufficient for the optimality of priority and quota mechanisms is
intuitive. On the one hand, if the authority is risk-neutral over the measure of agents
from different groups, then they can perfectly balance their score and diversity goals
without regard for the state of the world. This is because, under risk-neutrality, there
is a constant “exchange rate” between the two: how the authority compares any two
agents does not depend on the final allocation and thus can be specified ex ante by a
priority policy. On the other hand, if the authority is extremely risk-averse as to the
prospect of failing to assign 𝑥tar

𝑚 agents from group 𝑚, then a quota allows them to
always achieve this target level of allocation in all states of the world while minimally
sacrificing scores. It is less obvious that risk-neutrality and high risk aversion are
necessary. We prove this result by constructing certain adversarial distributions of
agents that render any priority or quota mechanism suboptimal unless the authority is
risk-neutral or extremely risk-averse, respectively. Importantly, this result also shows
that the only optimal quota mechanisms are those that process open slots last.

This result highlights the fragility of priority mechanisms to uncertainty absent
the strong assumption of risk-neutrality over diversity. Intuitively, this is because
they feature no guarantees as to how many agents of different groups will be assigned.
Indeed, the unfortunate interaction between priority mechanisms and unforeseen mar-
ket realizations has led to public backlash against priority mechanisms. For example,
in the Vietnamese university admissions system, which combines exam scores with
priority boosts for students from disadvantaged groups, a year of unexpectedly easy
exams led to “top-scoring students missing out on the opportunity to attend their uni-
versity of choice” and generated backlash against the system (Tuoi Tre News, 2017).
Moreover, in the Boston Public Schools system, a priority policy that is set to award
students bonus points for high school admissions based on the level of disadvantage
of their middle school has made it impossible for students from certain middle schools
to get into certain high schools, no matter their grades. This led the Boston Herald
(2022) to write that “in Boston, hard work and good grades will only set your child
back.” As APM dynamically adjust priorities, they have the potential to remedy
these practical deficiencies of priority mechanisms.

Moreover, our result highlights that quota mechanisms similarly fail to achieve

214



the first-best away from high levels of risk aversion as they do not take advantage of
the potential for positive selection. Our quantitative analysis in Section 5.6 in the
context of quota mechanisms in Chicago Public Schools suggests that the substantial
variation in the distribution of characteristics across years generates economically
meaningful welfare gains from switching to APM.

To formalize the connection between uncertainty and the importance of the adapt-
ability of APM, we consider a setting with no uncertainty, where Λ is a Dirac measure.
In this context, we say that a mechanism is optimal without uncertainty if it is a utility
maximizer.

Proposition 18. If there is no uncertainty, then there exist optimal priority and
quota mechanisms.

This result shows that if an authority is certain about the market, then appropri-
ately constructed priority and quota mechanisms would be optimal. This formalizes
the idea that the suboptimality of priority and quota mechanisms stems from their in-
ability to adapt to the state. Of course, in practice, an authority is always somewhat
uncertain of the market they face. Thus, absent the strong conditions on authority
preferences that we have characterized in Theorem 8, APM dominate priority and
quota mechanisms.

5.4 Equilibrium Mechanisms with Multiple Author-

ities
The single-authority model is relevant for many resource allocation contexts, such
as the medical resource allocation problem of a hospital. However, in other settings
such as school or university admissions, multiple authorities must decide upon their
admissions policies and rules. In this section, we generalize our single authority model
to a setting with multiple authorities. We define stability in this setting and show
that there is a unique stable allocation. Moreover, we show that a mechanism is
consistent with stability if and only if it coincides with the single-authority-optimal
APM. We then consider a model where agents sequentially apply to the authorities,
who decide which agents to admit. We show that the optimal APM is a dominant
strategy. Moreover, we show that in any equilibrium in which authorities use the
optimal APM, the resulting allocation corresponds to the unique stable matching of
the economy. Taken together, our results provide cooperative (stability) and non-
cooperative (dominance) foundations for recommending the use of APM in multi-
authority settings.
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5.4.1 The Multi-Authority Model

There are authorities 𝑐 ∈ 𝒞 = 𝑐0 ∪ 𝒞 = {𝑐0, 𝑐1, . . . , 𝑐|𝒞|−1} with capacities 𝑞𝑐, where
𝑐0 is a dummy authority that corresponds to an agent going unmatched. The agents
differ in their authority-specific scores, the group to which they belong, and their
preferences over the authorities, ≻. We index agents by their type 𝜃 = (𝑠,𝑚,≻) ∈
[0, 1]|𝒞|×ℳ×ℛ = Θ, where ℛ is set of all complete, transitive, and strict preference
relations over 𝒞 such that 𝑐0 is less preferred than all 𝑐 ∈ 𝒞. For each type 𝜃, 𝑠𝑐(𝜃)
denotes the score of 𝜃 at authority 𝑐 and 𝑚(𝜃) denotes the group of 𝜃. From now, to
economize on notation, we suppress indexing states by 𝜔 ∈ Ω and let the measure of
types be 𝐹 , with density 𝑓 .18 We assume that 𝑓 has full support over Θ (i.e., 𝑓 > 0)
and that the capacity of 𝑐0 is greater 𝐹 (Θ).

Each authority has preferences over the agents they are assigned of the form
introduced in the previous section:

𝜉𝑐(𝑠ℎ𝑐 , 𝑥𝑐) = 𝑔𝑐

(︃
𝑠ℎ𝑐 +

∑︁
𝑚∈ℳ

𝑢𝑚,𝑐(𝑥𝑚,𝑐)

)︃
(185)

where the extent to which they care about risk 𝑔𝑐, scores ℎ𝑐, and diversity {𝑢𝑚,𝑐}𝑚∈ℳ

are potentially specific to each authority.
A matching is a function 𝜇 : 𝒞 ∪ Θ → 2Θ ∪ 𝒞 where 𝜇(𝜃) ∈ 𝒞 is the authority

any type 𝜃 is assigned and 𝜇(𝑐) ⊆ Θ is the set of agents assigned to authority 𝑐.19

Given a matching 𝜇, 𝑠ℎ𝑐,𝑐(𝜇) and 𝑥𝑐(𝜇) = {𝑥𝑚,𝑐(𝜇)}𝑚∈ℳ denote the score indices and
measures of agents from different groups matched to 𝑐 at 𝜇. We say that 𝑐 prefers 𝜇
to 𝜇′, which we denote by 𝜇 ≻𝑐 𝜇

′, if 𝜉𝑐(𝑠ℎ𝑐,𝑐(𝜇), 𝑥𝑐(𝜇)) > 𝜉𝑐(𝑠ℎ𝑐,𝑐(𝜇
′), 𝑥𝑐(𝜇′)).

Definition 13. A matching 𝜇 is a cutoff matching if there exist cutoffs 𝑆 = {𝑆𝑚,𝑐}𝑚∈ℳ,𝑐∈𝒞

such that 𝜇(𝜃) = 𝑐 if (i) 𝑠𝑐(𝜃) ≥ 𝑆𝑚(𝜃),𝑐 and (ii) for all 𝑐′ with 𝑐′ ≻𝜃 𝑐, 𝑠𝑐′(𝜃) < 𝑆𝑚(𝜃),𝑐′.

Given 𝑆, the demand of an agent 𝜃 is their favorite authority among those for
which they clear the cutoff:

𝐷𝜃(𝑆) = {𝑐 : 𝑠𝑐(𝜃) ≥ 𝑆𝑚(𝜃),𝑐 and 𝑐 ⪰𝜃 𝑐
′ for all 𝑐′ with 𝑠𝑐′(𝜃) ≥ 𝑆𝑚(𝜃),𝑐′)} (186)

The aggregate demand for authority 𝑐 is the set of agents who demand it 𝐷𝑐(𝑆) =

18Formally, this density is given by 𝑓(𝑠,𝑚,≻) = 𝜕
𝜕𝑠𝐹 (𝑠,𝑚,≻).

19The mathematical definition of a matching for the continuum economy we study follows Azevedo
and Leshno (2016) and requires that 𝜇 satisfies the following four properties: (i) for all 𝜃 ∈ Θ,
𝜇(𝜃) ∈ 𝒞; (ii) for all 𝑐 ∈ 𝒞, 𝜇(𝑐) ⊆ Θ is measurable and 𝐹 (𝜇(𝑐)) ≤ 𝑞𝑐; (iii) 𝑐 = 𝜇(𝜃) iff 𝜃 ∈ 𝜇(𝑐); (iv)
(open on the right) for any 𝑐 ∈ 𝒞, the set {𝜃 ∈ Θ : 𝑐 ≻𝜃 𝜇(𝜃)} is open.
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{𝜃 : 𝐷𝜃(𝑆) = 𝑐}, while �̃�𝑐(𝑆−𝑐) = 𝐷𝑐((0, . . . , 0), 𝑆−𝑐) returns the set of all agents
who would demand 𝑐 if offered admission admission when other authorities’ cutoffs
are 𝑆−𝑐.

5.4.2 Characterization of Stable Allocations

We first characterize the set of stable allocations. Our context presents two challenges
in this regard. First, the priorities which are typically used to define stability are not
primitives of our model. Therefore, to define stability, we will use the preferences
of the authorities induced by Equation 185. Second, unlike discrete models, a single
agent does affect the preferences of an authority. Therefore, we need to consider a
positive mass of agents to define blocking.

For each matching 𝜇, authority 𝑐 ̸= 𝑐0, and two sets of agents Θ̃ and Θ̂, we let
�̂�(Θ̂,Θ̃,𝑐,𝜇) denote the matching that maps Θ̂ to 𝑐 and Θ̃ to 𝑐0 and otherwise coincides
with 𝜇.20 A set of agents Θ̂ blocks matching 𝜇 at authority 𝑐 by Θ̃ if (i) for all
𝜃 ∈ Θ̂, 𝑐 ≻𝜃 𝜇(𝜃), (ii) Θ̃ ⊆ 𝜇(𝑐), (iii) 𝐹 (Θ̃) = 𝐹 (Θ̂), and (iv) �̂�(Θ̂,Θ̃,𝑐,𝜇) ≻𝑐 𝜇.
A matching 𝜇 is not blocked if there does not exist such a (Θ̂, Θ̃, 𝑐). A matching
𝜇 satisfies within-group fairness if for all 𝜃, 𝜃′ ∈ Θ such that 𝑚(𝜃′) = 𝑚(𝜃) and
𝑠𝜇(𝜃)(𝜃

′) > 𝑠𝜇(𝜃)(𝜃), it holds that 𝜇(𝜃′) ⪰𝜃′ 𝜇(𝜃).21 A matching 𝜇 is stable if it satisfies
within-group fairness, is not blocked, and all non-dummy authorities fill their capacity.
The following result establishes that there exists a unique stable matching and that
this is a cutoff matching.

Theorem 9. There is a unique stable matching. This matching is a cutoff matching.

This result extends Theorem 1.1 of Azevedo and Leshno (2016) to our setting in
which the preferences of authorities are not exogenously fixed and rather depend on
the composition of the admitted agents. The stable allocation is characterized by
cutoffs 𝑆, where each agent 𝜃 is matched to 𝐷𝜃(𝑆).

To gain intuition for this result, first imagine that there is only one group of agents
|ℳ| = 1, so that authorities’ preferences are determined by the scores of the agents.
Given a set of cutoffs 𝑆−𝑐, a cutoff 𝑡𝑐 clears the market for 𝑐 if 𝐹 (𝐷𝑐(𝑡𝑐, 𝑆−𝑐)) = 𝑞𝑐.

20Formally,

�̂�(Θ̂,Θ̃,𝑐,𝜇)(𝜃) =

⎧⎪⎨⎪⎩
𝑐0 if 𝜃 ∈ Θ̃

𝑐 if 𝜃 ∈ Θ̂

𝜇(𝜃) otherwise
(187)

21Within-group fairness simply requires an authority not to reject a agent if it is admitting a agent
from the same group with lower score. Under our assumption that authorities prefer higher scores
(ℎ𝑐 is strictly increasing), within-group fairness is satisfied if there is no blocking in discrete models.
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When |ℳ| = 1, for a given 𝑆−𝑐, there is a unique 𝑡𝑐 that clears the market since a
smaller cutoff will exceed the capacity while a larger one will leave a positive measure
of the capacity empty. Define 𝑇 = {𝑇𝑐}𝑐∈𝒞, where 𝑇𝑐(𝑆) is the function that maps each
𝑆 to the market-clearing cutoff 𝑡𝑐 under 𝑆−𝑐. The result then follows from (i) showing
the fixed points of 𝑇 correspond to market-clearing cutoffs of stable matchings, (ii)
establishing that 𝑇 is monotone, (iii) applying Tarski’s fixed point theorem to show
that the set of market-clearing cutoffs is a lattice, and (iv) showing that there can
only be one market-clearing cutoff as, if there were two, one would strictly exceed the
capacities of at least one authority.

When |ℳ| > 1, there is a potential continuum of cutoffs that would clear the
market for authority 𝑐. A selection from this set is provided by the cutoffs induced
by the optimal APM, 𝐴*

𝑚,𝑐(𝑦𝑚, 𝑠) ≡ ℎ−1
𝑐 (ℎ𝑐(𝑠) + 𝑢′𝑚,𝑐(𝑦𝑚)). We show that the APM

cutoffs are unique among the market-clearing cutoffs in being compatible with sta-
bility. This is because, for any other 𝑡′𝑐, there is a set Θ̂ of agents (with positive
measure) who have scores lower than the cutoff for their group and a set Θ̃ of agents
(with positive measure) who have scores higher than the cutoff for their group, but
the authority is strictly better of by admitting Θ̂ and rejecting Θ̃. We define 𝑇𝑐(𝑆) as
the market-clearing cutoffs induced by the optimal APM, show that the fixed points
of 𝑇𝑐 correspond to market-clearing cutoffs of stable matchings, and follow the same
steps as above to demonstrate uniqueness.

This hints at a connection between the stable allocation and the allocation induced
by all authorities pursuing the optimal APM, which we now make explicit. The
demand set of 𝑐 at 𝜇, 𝐷𝑐(𝜇), is the set of agents who prefer 𝑐 to their allocation
under 𝜇. A mechanism is consistent with stability if for all 𝐹 with stable matching
𝜇𝐹 , it chooses 𝜇𝐹 (𝑐) from 𝐷𝑐(𝜇𝐹 ). In other words, evaluated at the set of agents
who demand an authority, this mechanism chooses the set of agents with which the
authority is already matched. Moreover, we say that a mechanism 𝜑 is equivalent to
𝜑′ if it chooses the same agents under all full support distributions. We now establish
that single-authority-optimal APMs (and equivalent mechanisms) comprise the full
set of mechanisms that are consistent with stability.

Theorem 10. A mechanism 𝜑 is consistent with stability if and only if it is equivalent
to 𝐴*

𝑐.

Thus, not only is the optimal APM 𝐴* inherent to the structure of stable alloca-
tions, but it also characterizes stability in this setting in the sense that any deviation
from 𝐴* would result in a violation of stability.
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5.4.3 APM Are Dominant Under Decentralized Admissions

We now consider a model where the agents apply to the authorities sequentially, who
decide which agents to admit. We index the stage of the game by 𝑡 ∈ 𝒯 = {1, . . . , |𝒞|−
1}. Each stage corresponds to a (non-dummy) authority 𝐼(𝑡), where 𝐼 : 𝒯 → 𝒯 . At
each stage 𝑡, any unmatched agents choose whether to apply to authority 𝐼(𝑡). Given
the set of applicants, authority 𝐼(𝑡) chooses to admit a subset of these agents, who are
then matched to the authority. Given this, histories are indexed by the path of the
measure of agents who have not yet matched, ℎ𝑡−1 = (𝐹, 𝐹1, . . . , 𝐹𝑡−1) ∈ ℋ𝑡−1. Given
each history ℎ𝑡−1 and set of applicants Θ𝐴

𝑐 ⊆ Θ, a strategy for an authority returns a
set of agents Θ𝐺

𝑐 ⊆ Θ whom they will admit such that Θ𝐺
𝑐 ⊆ Θ𝐴

𝑐 and 𝐹𝑡(Θ𝐺
𝑐 ) ≤ 𝑞𝑐 for

each time at which they could move 𝑡 ∈ 𝒯 , 𝑎𝑐,𝑡 : ℋ𝑡−1×𝒫(Θ) → 𝒫(Θ), where 𝒫(Θ) is
the power set over Θ.22 A strategy for an agent returns a choice of whether to apply
to authorities at each history and time for all agent types 𝜃 ∈ Θ, 𝜎𝜃,𝑡 : ℋ𝑡−1 → [0, 1].

Within this context, our notion of equilibrium is that of subgame perfect equilib-
rium:

Definition 14 (Equilibrium). A strategy profile Σ = {{𝑎𝑐,𝑡}𝑐∈𝒞, {𝜎𝜃,𝑡}𝜃∈Θ}𝑡∈𝒯 is a
subgame perfect equilibrium if 𝑎𝑐,𝑡 maximizes authority utility given Σ for all 𝑐 ∈ 𝒞
and 𝑡 ∈ 𝒯 and 𝜎𝜃,𝑡 is maximal according to agent preferences for all 𝜃 ∈ Θ and 𝑡 ∈ 𝒯 .

We moreover say that a strategy 𝑎𝑐,𝑡 for an authority 𝑐 at time 𝑡 is dominant
if it maximizes authority utility regardless of the strategies of all other authorities
and agents, {{𝑎𝑐,𝑡}𝑐∈𝒞∖{𝑐}, {𝜎𝜃,𝑡}𝜃∈Θ}𝑡∈𝒯 , and the order in which authorities admit
agents, 𝐼. Moreover, an equilibrium Σ is in dominant strategies if 𝑎𝑐,𝑡 is dominant
for all 𝑐 ∈ 𝒞 and 𝑡 ∈ 𝒯 . We denote the unique probabilistic allocation of agents
to authorities induced by Σ as 𝜇Σ : Θ → ∆(𝒞). A probabilistic allocation 𝜇Σ is
deterministic if 𝜇Σ(𝜃) is a Dirac measure on some authority 𝑐 ∈ 𝒞 for all 𝜃 ∈ Θ. A
deterministic allocation 𝜇Σ corresponds to a matching 𝜇 if 𝜇Σ(𝜃) is a Dirac measure
on 𝜇(𝜃) for all 𝜃 ∈ Θ.

We now establish that the single-authority optimal APM characterizes dominance.

Theorem 11. A mechanism implements a dominant strategy for an authority if and
only if it implements essentially the same allocations as 𝐴*

𝑐.

The intuition behind this result is that each authority takes as given the set of
agents that will accept it. Thus, given this measure of agents, they can do no better

22Formally, so that 𝐹𝑡(Θ
𝐺
𝑐 ) is well defined, we require that authorities’ strategies be measurable

in the Borel sigma algebra over Θ.
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than to employ the same APM that a single authority would, which is 𝐴*
𝑐 by Theorem

7.
Theorem 11 provides a powerful rationale for focusing on APMs in decentralized

markets at both positive and normative levels. Normatively, this result allows an
analyst to advise an authority regarding how it should conduct its admissions. This
is important because any policy that does not coincide with the APM we derive —
such as the popular priority and quota mechanisms outside of the cases delimited by
Theorem 8 — will disadvantage an authority. Positively, this result allows a sharp
prediction that the equilibrium matching between agents and authorities will be the
unique stable matching (as per Theorem 9):

Proposition 19. For all equilibria Σ* where authorities use 𝐴*, the allocation 𝜇Σ*

is deterministic and corresponds to the unique stable matching of this economy.

The intuition for this result is that if an equilibrium matching under 𝐴* was not
the unique stable matching, then it must be that some agents are applying subop-
timally and failing to select the best authority they can attend (according to their
preferences), which contradicts that the outcome is an equilibrium.

5.5 Efficient Mechanisms with Multiple Authorities
We have so far characterized the decentralized outcome, but two natural questions
remain. First, is the decentralized outcome, which corresponds to the stable allo-
cation, efficient? Second, if not, what kind of centralized solution can remedy any
inefficiency? We show that the decentralized outcome is generally inefficient and that
a modified, centralized APM mechanism restores efficiency.

5.5.1 Inefficiency of the Decentralized Outcome

The notion of efficiency that we will consider is utilitarian efficiency over authorities.
A mechanism in the multi-authority setting is a function 𝜑 : Ω → 𝒰 , where 𝒰 is the
set of matchings (which, by definition, encodes feasibility requirement imposed in the
single authority setting). We define the total authority value Ξ𝑇 of a mechanism 𝜑

under distribution Λ ∈ ∆(Ω) as the total expected utility of the allocations induced
by that mechanism:

Ξ𝑇 (𝜑,Λ) =
∑︁
𝑐∈𝒞

Ξ𝑐(𝜑,Λ) (188)

A mechanism is efficient if it maximizes total authority value for all possible distri-
butions:
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Definition 15 (Efficiency). A mechanism 𝜑* is efficient if:

Ξ𝑇 (𝜑
*,Λ) = sup

𝜑
Ξ𝑇 (𝜑,Λ) (189)

for all Λ ∈ ∆(Ω).

For the remainder of the paper, so that scores are directly comparable across
authorities and allocations are interior, we impose the following assumption:

Assumption 11. Scores and preferences are such that 𝑠𝑐(𝜃) = 𝑠𝑐′(𝜃), ℎ𝑐 = ℎ and
𝑔𝑐 = Id, where Id is the identity function, for all 𝑐, 𝑐′ ∈ 𝒞 and 𝜃 ∈ Θ. Moreover,
lim𝑥→+0 𝑢

′
𝑚,𝑐(𝑥) = ∞ and 𝑢𝑚,𝑐 is strictly concave for all 𝑚 ∈ ℳ and 𝑐 ∈ 𝒞.

Assumption 11 makes scores a common numeraire across authorities and is akin
to the standard quasi-linearity assumption in mechanism design. For example, it may
be suitable in settings where the score is derived from a common index of academic
attainment, such as in Chicago Public Schools. This assumption does not impose
that all authorities have common marginal rates of substitution between scores and
diversity, as they are allowed unrestricted heterogeneity in diversity preferences. We
add the Inada condition for analytical tractability. We argue that it is also reasonable
to assume that failing to admit any individuals from a given group is intolerable for
authorities.

With the efficiency benchmark defined, we can now demonstrate that the decen-
tralized equilibrium outcome can fail to be efficient.

Proposition 20 (Equilibrium Inefficiency). All authorities using the privately opti-
mal APMs {𝐴*

𝑐}𝑐∈𝒞 is not necessarily efficient.

We prove this result via an explicit example with two authorities, 𝑐 and 𝑐′ of
capacity 1

4
, and two groups of agents, 𝑚 and 𝑚′ of measure 1

2
. All agents in group 𝑚

prefer 𝑐′ to 𝑐 and all agents in group 𝑚′ prefer 𝑐 to 𝑐′. Authority 𝑐 values admitting
group 𝑚 agents more on the margin than group 𝑚′ agents, and authority 𝑐′ values
admitting group 𝑚′ agents more on the margin than group 𝑚 agents. Using the
optimal APMs, both authorities admit more agents of the group whose admissions
they value relatively less than the efficient benchmark. The intuition for this is that
both authorities “steal” the high-scoring agents of the group whom they relatively less
value from the other authority, an externality that they do not internalize.
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5.5.2 An Efficient Centralized Mechanism

The inefficiency of each authority using a decentralized APM stems from the implicit
incompleteness of markets: if we added the ability for authorities to pay each other
for agents in the equilibrium allocation, then they would have willingness-to-pay to
do so. A centralized mechanism can remedy this issue by ensuring the cross-sectional
allocation of agents to authorities is optimal.

We propose the following augmentation of an APM to solve this problem, an adap-
tive priority mechanism with quotas (APM-Q). The idea behind this hybrid mech-
anism is to use aggregate, market-level priorities with authority-specific quotas. To
this end, an APM-Q comprises an aggregate non-separable APM 𝐴 = {𝐴𝑚}𝑚∈ℳ with
𝐴𝑚 : R|ℳ| × [0, 1] → R and a profile of quota functions 𝑄 = {𝑄𝑚,𝑐}𝑚,𝑐∈ℳ with with
𝑄𝑚,𝑐 : R|ℳ| → R+. Intuitively, the aggregate APM pins down the aggregate measures
of allocations of each group to any authority {𝑥𝑚}𝑚∈ℳ, where 𝑥𝑚 =

∑︀
𝑐∈𝒞 𝑥𝑚,𝑐. The

non-separability of this APM simply means that the measures of all groups matter
for the adaptive priority of any agent. Given the aggregate measure of allocation for
group 𝑚, the quota function for authority 𝑐 assigns 𝑄𝑚,𝑐({𝑥𝑚}𝑚∈ℳ) agents of type
𝑚 to authority 𝑐.

Definition 16 (Adaptive Priority Mechanism with Quotas). An adaptive priority
mechanism with quotas (𝐴,𝑄) comprises a non-separable APM 𝐴 and a quota func-
tion 𝑄. An APM-Q implements allocation 𝜇 if the following are satisfied:

1. Aggregate allocations are in order or priorities: 𝜇(𝜃) ∈ 𝒞 if and only if for all
𝜃′ with 𝜇(𝜃′) = 𝑐0, we have that:

𝐴𝑚(𝜃)({𝑥𝑚(𝜇)}𝑚∈ℳ, 𝑠(𝜃)) > 𝐴𝑚(𝜃′)({𝑥𝑚(𝜇)}𝑚∈ℳ, 𝑠(𝜃′)) (190)

2. Authority-level allocations are given by the corresponding quota functions:

𝑥𝑚,𝑐(𝜇) = 𝑄𝑚,𝑐({𝑥𝑚(𝜇)}𝑚∈ℳ) (191)

3. The resources are fully allocated:∑︁
𝑚∈ℳ

𝑥𝑚,𝑐(𝜇) = 𝑞𝑐 (192)

By appropriate choice of the APM and quota functions, we can derive an APM-Q
that is efficient. To this end, define the optimally-allocated aggregate utility from
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diversity:

�̃�({𝑥𝑚}𝑚∈ℳ) = max
{𝑥𝑚,𝑐}𝑐∈𝒞

∑︁
𝑐∈𝒞

∑︁
𝑚∈ℳ

𝑢𝑚,𝑐(𝑥𝑚,𝑐)

s.t.
∑︁
𝑐∈𝒞

𝑥𝑚,𝑐 ≤ 𝑥𝑚,
∑︁
𝑚∈ℳ

𝑥𝑚,𝑐 ≤ 𝑞𝑐, ∀𝑚 ∈ ℳ, 𝑐 ∈ 𝒞
(193)

Moreover, define the marginal value of aggregate group 𝑚 admissions �̃�(𝑚)(𝑦) =
𝜕

𝜕𝑦𝑚
�̃�(𝑦) and the marginal value of authority capacity �̃�𝑞𝑐(𝑦) = 𝜕

𝜕𝑞𝑐
�̃�(𝑦). Using these

marginal values, we can design an efficient APM-Q that combines market-level APMs
with authority-level quotas:

Theorem 12 (Efficient APM-Q). Every allocation induced by the following APM-Q
(𝐴,𝑄) is efficient:

1. The non-separable APM is given by 𝐴𝑚(𝑦, 𝑠) = ℎ−1
(︀
ℎ(𝑠) + �̃�(𝑚)(𝑦)

)︀
2. The quota functions are given by 𝑄𝑚,𝑐(𝑦) =

(︀
𝑢

′
𝑚,𝑐

)︀−1 (︀
�̃�(𝑚)(𝑦) + �̃�𝑞𝑐(𝑦)

)︀
The proof of this result constructs a fictitious aggregate authority in our single

object setting. The claimed APM is optimal for this aggregate authority by a non-
separable adaptation of Theorem 7. The substantial step in this proof establishes that
�̃� is increasing, concave, and differentiable by employing the restrictions provided by
Assumption 11. Then, given the allocation induced by this APM, we construct the
quota function to optimally allocate the level of aggregate admissions induced by the
APM.

Intuitively, this mechanism remedies inefficiency by “completing markets.” There
is a common “market price” for each group given by 𝒫𝑚 = �̃�(𝑚)(𝑥) and an authority-
level “shadow price of admissions” 𝒫𝑐 = �̃�𝑞𝑐(𝑥). Authorities are allocated agents so
that the marginal benefit of additional agents equals the sum of the market price and
shadow price of admissions 𝑢′𝑚,𝑐(𝑥𝑚,𝑐) = 𝒫𝑚 + 𝒫𝑐. Hence, through the completion
of markets, a centralized planner can allocate agents efficiently and internalize the
externalities that prevented efficiency under the decentralized outcome. Notice that
this market involves relatively few prices as it involves only |ℳ|+ |𝒞| shadow prices
rather than the full set of |ℳ| × |𝒞| marginal values.

5.6 Benchmarking the Quantitative Gains from APM
We have so far shown theoretically that APM outperform conventional priority and
quota mechanisms. In this section, we attempt to benchmark the magnitude of the

223



gains from implementing APM relative to the reserve system employed by Chicago
Public Schools (CPS). To do this, we use application and admission data from CPS for
the 2013-2017 academic years. Estimating preference parameters to best rationalize
the pursued reserve policy, we find that the gains from using the optimal APM are
equivalent to removing 37.5% of the loss to CPS’ payoffs from failing to admit a
diverse class of students. Our analysis therefore suggests that the gains from APM
are considerable.

5.6.1 Institutional Detail on Chicago Public Schools

We first describe the institutional context of CPS. Under current policy, CPS admits
students to its selective exam schools based on two criteria. First, CPS ranks students
according to a composite score which combines the results of a specialized entrance
exam, prior standardized test scores, and grades in prior coursework. This composite
score ranges from 0 to 900 and higher-scoring students are admitted before lower-
scoring ones, reflecting CPS’s desire to allocate seats in exam schools to the students
with the best academic standing. In our model, these are the students’ scores. Second,
CPS divides the census tracts in the city into four tiers based on socioeconomic
characteristics.23 Tier 1 tracts are the most disadvantaged, while Tier 4 tracts are
the most advantaged. This is reflected in the composite scores of students from Tier
1, who represent 25% of the city’s population but comprise relatively few of the high-
scoring students (Ellison and Pathak, 2021). As a result, Tier 1 students would have
a very small share in the city’s top exam schools without affirmative action. To ensure
more equal representation across socioeconomic status in these schools, between 2013-
2017 CPS implemented a quota policy that reserves 17.5% of the seats for each tier,
yielding a total of 70% reserve seats and 30% merit slots that are open to students
from all tiers. CPS allocates the seats by first assigning the highest-scoring students
(regardless of their tier) to the merit slots and then the highest-scoring students from
each tier to the 17.5% reserve seats.

We focus on the most selective CPS school, Walter Payton College Preparatory
High School (Payton), which has the highest cutoffs for each tier in each year in our

23Concretely, 800 census tracts are divided into four tiers based on six characteristics of each
census tract: (i) median family income, (ii) percentage of single-parent households, (iii) percentage
of households where English is not the first language, (iv) percentage of homes occupied by the
homeowner, (v) adult educational attainment, and (vi) average Illinois Standards Achievement Test
scores for attendance-area schools. These characteristics are then combined to construct the socioe-
conomic score for the tract. Finally, the tracts are ranked according to socioeconomic scores and
partitioned into 4 tiers with approximately the same number of school-age children. See Ellison and
Pathak (2021) for a more detailed account of the CPS system.
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Table 5.1: Admissions Cutoff Scores for Payton

Cutoff Score 2013 2014 2015 2016 2017

Tier 1 801 838 784 769 771
Tier 2 845 840 831 826 846
Tier 3 871 883 877 853 875
Tier 4 892 896 891 890 894

Notes: The table reports the score of the lowest-scoring student that was admitted to Payton
in each of the four tiers and five years.

data and would have very few tier 1 students without affirmative action.24 Table 5.1
presents the cutoff scores of each tier (i.e., the composite score of the last admitted
student from each tier).

We make two observations. First, the cutoff students from less advantageous tiers
face is lower than the cutoff for students from more advantageous tiers. Therefore,
CPS has a revealed preference (and not merely a stated preference) for a diverse stu-
dent body. Second, cutoff scores vary across years. This implies that the distribution
of applicant characteristics varies from year to year. Given this uncertainty and the
fact that CPS uses a policy that processes quotas after open slots, we know by The-
orem 8 that CPS’ baseline policy cannot be rationalized as optimal (even if they are
extremely risk-averse). Nevertheless, it is always possible that the gains from APM
could be small.

5.6.2 Preferences and Estimation Methodology

We perform our analysis in two steps: establishing a parametric framework for eval-
uating welfare gains and losses and then estimating its parameters.

Preferences We assume a parametric form for CPS’s preferences to evaluate the
gains from APM. In particular, we impose that the preferences of CPS over the scores
and diversity of the student body are represented by the following parametric utility

24This approach follows the analysis in Ellison and Pathak (2021), who focus on the two most
competitive schools, Northside College Preparatory High School (Northside) alongside Payton. In
the years we study, the cutoff scores for Northside are below some other schools frequently, which is
why we restrict attention to Payton.
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function25

𝜉(𝑠, 𝑥; 𝛽, 𝛾) = 𝑠+
4∑︁
𝑡=1

𝛽|𝑥𝑡 − 0.25|𝛾 (194)

where 𝑠 is the average score of admitted students, 𝑥𝑡 is the percentage of tier 𝑡
students. Motivated by CPS’ desire to allocate the highest-scoring students, 𝜉 is
increasing in 𝑠. To model the diversity preferences of CPS, we assume that CPS loses
as the gap from equal representation in each tier increases. We do this through the
functional form 𝛽|𝑥𝑡− 0.25|𝛾. The parameters 𝛽 and 𝛾 index the slope and curvature
of utility in losses from unequal representation and are the two free parameters of our
framework.

Estimation We estimate 𝛽 and 𝛾 to best rationalize the choice of 17.5% reserves
for each tier as optimal. We believe this to be a reasonable approach, as the size
of the reserves is an important issue that is decided only after much deliberation.26

Moreover, CPS has used the size of the reserves as a policy tool, increasing them from
15% to 17.5% in 2012 and is currently deliberating another change that would further
boost the representation of tier 1 and tier 2 students (Chicago Public Schools, 2022).

Given our functional form, the optimality of the chosen reserve sizes yields moment
conditions that we use to estimate the parameters 𝛽 and 𝛾. Formally, we index reserve
mechanisms by the reserve sizes of the four socioeconomic tiers 𝑟 = (𝑟1, 𝑟2, 𝑟3, 𝑟4). We
let 𝑠(𝑟, 𝑦) and 𝑥(𝑟, 𝑦) denote the average scores and tier percentages that would be
obtained in year 𝑦, with distribution 𝐹𝑦, under reserve policy 𝑟. The payoff of the
policymaker under reserve policy 𝑟 is given by Ξ(𝑟,Λ; 𝛽, 𝛾), as per Equation 175:

Ξ(𝑟,Λ; 𝛽, 𝛾) = EΛ[𝜉(𝑠(𝑟, 𝑦), 𝑥(𝑟, 𝑦); 𝛽, 𝛾)] (195)

where the expectation is taken over distributions of agents’ characteristics 𝐹𝑦 un-
der the subjective probability measure Λ. Define the expected marginal benefit of

25In Appendix E.6.2, we consider two other parametric utility functions that estimate separate
coefficients for underrepresented and overrepresented tiers and only considers loss from underrepre-
sented tiers.

26These points are emphasized in Dur, Pathak, and Sönmez (2020): “This change was made
at the urging of a Blue Ribbon Commission (BRC, 2011), which examined the racial makeup of
schools under the 60% reservation compared to the old Chicago’s old system of racial quotas. They
advocated for the increase in tier reservations on the basis it would be “improving the chances for
students in neighborhoods with low performing schools, increasing diversity, and complementing the
other variables.”
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increasing reserve 𝑖 and decreasing reserve 𝑗 as:

𝐺𝑖𝑗(𝑟,Λ; 𝛽, 𝛾) =
𝜕

𝜕𝑟𝑖
Ξ(𝑟,Λ; 𝛽, 𝛾)− 𝜕

𝜕𝑟𝑗
Ξ(𝑟,Λ; 𝛽, 𝛾) (196)

Any (interior) optimal reserve policy 𝑟* must equate the expected marginal benefit
of increasing reserve 𝑖 and decreasing reserve 𝑗 at 𝑟* to zero for all (𝑖, 𝑗) pairs, i.e.,
𝐺𝑖𝑗(𝑟

*,Λ; 𝛽, 𝛾) = 0 for all {𝑖, 𝑗} ⊂ {1, 2, 3, 4} such that 𝑗 > 𝑖. These six first-order
conditions yield six moments.

We take empirical analogs of the theoretical moments and estimate preference
parameters by minimizing the sum of squared deviations of these moments from zero.
We take CPS’ pursued reserve policy as optimal, 𝑟* = (0.175, 0.175, 0.175, 0.175). We
estimate the empirical joint distribution of students’ scores and tiers in CPS in each
year 𝐹𝑦 for 𝑦 ∈ {2013, 2014, 2015, 2016, 2017} and estimate Λ̂ as a distribution that
places equal probability on each of these five measured distributions. We plug these
sample estimates into the theoretical moment functions. This yields six empirical mo-
ment functions that depend only on the preference parameters, 𝐺𝑖𝑗(𝑟

*, Λ̂; 𝛽, 𝛾). Mo-
tivated by the theoretical necessity of 𝐺𝑖𝑗(𝑟

*,Λ; 𝛽, 𝛾) = 0, we estimate the preference
parameters by minimizing the sum of squared deviations of the empirical moments
from zero:

(𝛽*, 𝛾*) ∈ argmin
𝛽,𝛾

4∑︁
𝑖=1

∑︁
𝑗>𝑖

𝐺𝑖𝑗(𝑟
*, Λ̂; 𝛽, 𝛾)2 (197)

Performing this estimation yields estimated parameter values of 𝛽* = −209.5 and
𝛾* = 2.11.

5.6.3 The Estimated Gains from APM

We now use our estimated model to quantify the welfare gains from using APM. To
do this, we compare the empirical payoff Ξ(𝜑, Λ̂, 𝛽*, 𝛾*) under two mechanisms: the
pursued quota policy, 𝑟*, and the optimal APM from Theorem 7, 𝐴*. In Figure 5-
4, we illustrate how the estimated optimal APM changes students’ scores to arrive
at their ultimate priorities. In accordance with the preferences we have assumed,
students receive a score boost when their tier is underrepresented and a score penalty
when their tier is overrepresented. As we found 𝛾* = 2.11, the estimated diversity
preference is very close to quadratic. Thus, the optimal APM is very close to linear.
From Theorems 7 and 8, we know that this APM achieves the first-best allocation in
each year while the implemented quota policy does not. However, our theorems do
not guarantee that the gains from APM are economically meaningful.
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Figure 5-4: The Estimated Optimal APM
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Notes: This figure plots the change in a student’s score when fraction 𝑦 of students in their
own tier has already been admitted under the estimated optimal APM, 𝐴*. At 𝑦 = 0.25 (the
vertical dashed black line), the score in unchanged. For 𝑦 < 0.25, students receive a score
boost. For 𝑦 > 0.25, students receive a score penalty. The range of the x-axis, [0.1, 0.45], is
chosen to cover the full range of fractions of admitted students under both the optimal and
the CPS reserve policy from all tiers in all years of our sample (see Figure 5-5).
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The empirical payoff under APM is 876.9, while it is 874.8 under the CPS reserve
policy. Thus, the gains from APM are equivalent to increasing average scores by 2.1,
holding diversity fixed. To benchmark the size of the gains, we require units in which
they can be meaningfully expressed. We define the loss from underrepresentation as
the payoff lost by CPS under its baseline policy from not admitting a fully balanced
class, while holding fixed the average score of the class. This is equal to 5.6 points
under our estimated parameters. Thus, the gains from APM are equal to 37.5% of
the loss from underrepresentation incurred under the CPS policy.27 We define score
cost of diversity as the difference between the average scores of admitted students
without any affirmative action (893.8) and the average score under the CPS policy
(880.5). Thus, the gains from APM are equal to 15.7% of the score cost of diversity.
Finally, we can compare the gains from switching to the optimal APM to the gains
from the 2012 (the year before our sample) CPS reform, which increased the size of
all reserves from 15% to 17.5%. Under the estimated preferences, the empirical payoff
under the 15% reserve rule is 873.9, and so the gains from the reform are equivalent
to increasing average scores by 0.9. Thus, the gains from switching to the optimal
APM are 2.3 times larger than the gains from this recent reform.

These estimates suggest that the gains from APM are economically meaningful.
These gains stem from the variation across years in the joint distribution of student
scores and tiers. This can be seen in Table 5.1, which shows the variability in the
scores of the marginally admitted students from tiers 1, 2 and 3. More systematically,
we visualize the difference in outcomes under CPS’ reserves and the optimal APM by
plotting the average scores and fraction admitted for each tier for each year under both
mechanisms in Figure 5-5. There are two main differences between the allocations.
First, the APM allocates systematically fewer tier 1 and tier 4 students and more tier
3 students. Second, the APM admits a greater fraction of students from each tier
(especially tiers 1 and 3) in the years in which that tier scores well. This positive
selection generates the welfare gains.

Robustness We now explore the robustness of APM to the three core assumptions
of our analysis: (i) that CPS has the correct beliefs about the distribution of distri-
butions of students, (ii) that CPS has preferences that lie in the assumed parametric
family, and (iii) that CPS separately optimizes the sizes of all four tiers.

Our baseline analysis took the beliefs of CPS to be the true empirical distribution
27This is equivalent to increasing the percentage of students from tier 1 from 0.179 to 0.21 and

decreasing the percentage of students from tier 4 from 0.407 to 0.378. This corresponds to swapping
8.7 students from the most overrepresented group (tier 4) for the most underrepresented group (tier
1) each year.
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Figure 5-5: Comparing Admissions under the Optimal APM and the CPS Policy
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Notes: Each point corresponds to one of the four tiers of students in one of the five years
under either the optimal APM or the CPS policy. The x-axis corresponds to the average
score of those admitted from that tier in that year under that policy. The y-axis corresponds
to the fraction of admitted students from that tier in that tier under that policy.

of student distributions over years. To test robustness to this assumption, we take Λ̂

as a Dirac distribution on the realized distribution for each of the five years of our data
and re-estimate the preference parameters. In Figure 5-6, we plot the difference in
welfare under the optimal APM and CPS reserve policies over the full range of these
re-estimated parameters (i.e., we take the minimum and maximum of the estimated
parameters across years as the ranges for the axes). We find that the gains from APM
range from 2.0 to 3.5, while our baseline estimate was 2.1. Thus, the point estimate
of our welfare gains from APM appears to be conservative by this metric.

To gauge robustness to the functional form we have assumed for CPS’ preferences,
in Appendix E.6.2, we estimate two different parametric specifications of utility. First,
we consider a utility function that includes a loss term only for underrepresented tiers
(and does not penalize overrepresentation of any tier). Second, we allow for CPS to
care differentially about underrepresentation and overrepresentation by considering
a utility function with separate coefficients for underrepresented and overrepresented
tiers. We find that under these specifications, the improvement from APM corre-
sponds to 9.7% and 8.7% of the loss from underrepresentation, which is attenuated
relative to our baseline, but remains considerable.

To study the robustness of our findings to the assumption that CPS separately
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Figure 5-6: Robustness of the Gains from APM
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the numerical value of the gains from APM, ranging from 2.0 to 3.5. The black ‘+’ indicates
our baseline parameter values. The ranges for the axes are obtained by estimating 𝛽 and
𝛾 separately for each year of our data and separately taking the minimum and maximum
estimated values of each set of estimated parameters.
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optimizes the size of all four tiers, in Appendix E.6.1 we consider a setting where CPS
sets a single reserve size for all tiers. As we now have only one moment condition, we
vary 𝛾 over the interval [1,10], estimate 𝛽*(𝛾) as the exact solution to the moment
condition, and compute the gains from APM as a function of 𝛾. The minimum gain
from APM over the estimated range is 1.98 points, which corresponds to 26.2% of the
loss from underrepresentation under that parameterization. This is slightly smaller
than our baseline estimate but still considerable.

Limitations Finally, we state some limitations of our analysis. First, even though
we argue that our functional form assumptions are reasonable and parsimonious in
this setting, there are possibly many other parametric utility functions that might rep-
resent the preferences of CPS. Unfortunately, with the available data, richer methods
of preference estimation that allow for higher dimensionality of preference parameters
are severely limited. This is because admissions rules are only set once and we can
therefore use only six first-order conditions. Richer data in which we observe choices
of students from different applicant sets (either in practice or in hypothetical choice
settings) would allow for a more detailed analysis. Second, one of the main aims of
the tier system employed by CPS is to increase racial diversity in the prestigious exam
schools. Indeed, the pursued tier system is a race-neutral alternative that replaced
the previous race-based system following two Supreme Court Rulings in 2003 and
2007 (see Ellison and Pathak, 2021, for a summary). Because of this, CPS uses tiers
based on socioeconomic status instead of race and so we estimate their preferences
over tiers. This notwithstanding, if admission rules could depend on race, then one
could perform a similar analysis in which APM simply prioritize based on race rather
than tier.

5.7 Conclusion
Motivated by the use of priority and quota policies in resource allocation settings
with diversity concerns, we consider an authority that has separable preferences over
scores and diversity. We introduce Adaptive Priority Mechanisms (APM) and char-
acterize an APM that is both optimal and can be specified solely in terms of the
preferences of the authority. We also study the priority and quota policies that are
used in practice and show that they are optimal if and only if the authority is either
risk-neutral or extremely risk-averse over diversity. Analyzing a setting with multiple
authorities that dynamically admit agents, we show that the optimal APM is a dom-
inant strategy. Thus, one could potentially advise authorities to follow an optimal
APM with confidence (under our maintained assumptions on preferences) that they
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could do no better. Moreover, all authorities following the optimal APM implements
the unique stable allocation. This notwithstanding, the stable allocation can fail to
be efficient for the authorities. We propose a centralized adaptive priority mechanism
with quotas to remedy this.

Our analysis has potential implications for improving the design of real-world
allocation mechanisms. First, we show that while both priorities and quotas can be
better than one another (depending on the risk preferences of the authority), they
are generally suboptimal. Second, we show how to improve upon these mechanisms
using APM that harness the strengths of these policies: APM benefit both from the
guarantee effect of quotas in ensuring certain levels of admissions from various groups
and the positive selection effect of priorities in expanding affirmative action when
it is least costly. Our quantitative analysis using CPS data suggests that the use
of APM can yield considerable welfare gains over the status quo. On the basis of
our analysis, we conclude that APM may have a real-world use in delivering more
desirable allocations of resources. Moreover, by virtue of their generality, APM could
be applied in many settings, including the allocation of seats at schools, places at
universities, and medical resources to patients.
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Chapter 6

Nonlinear Pricing with
Under-Utilization: A Theory of
Multi-Part Tariffs

This chapter is jointly authored with Roberto Corrao and Karthik A. Sastry and
has been published in the American Economic Review as Corrao, Flynn, and Sastry
(2023).

6.1 Introduction
Digital goods often feature tiers of service within which marginal prices are zero.
That is, they are sold according to multi-part tariffs. For example, making Google
searches or browsing Facebook posts is always free; streaming certain movies from
Amazon Prime’s library is free after paying for a subscription, while additional movies
can be streamed for a price; and reading Wall Street Journal articles is free on the
margin for anyone up to a trial limit, and free for paid subscribers in unlimited
quantities. A common theme in each of these cases is that the seller can monetize the
buyer’s time and attention via other channels, like serving advertisements, collecting
valuable data, generating network effects, or addicting users. This indirect revenue
is big business for the internet’s largest players—for example, Google, Facebook, and
Amazon respectively made 98%, 108%, and 60% of their net profit in 2020 from
advertisement.1

But the fact that indirect revenue can make zero-marginal-price units profitable
does not explain why they are optimal. The classical theory of nonlinear pricing as

1Net advertisement revenue figures are analyst estimates by eMarketer (eMarketer Insider Intel-
ligence, 2020), and net income is from financial statements as collected by the Wall Street Journal.
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screening (Mussa and Rosen, 1978; Maskin and Riley, 1984; Wilson, 1993) predicts
that sellers should use smoothly varying marginal prices, instead of tiers of zero
marginal prices, to extract maximal profits.2 Understanding multi-part tariffs requires
an alternative economic mechanism.

In this paper, we introduce a nonlinear pricing model with the following form of
non-contractibility: once the buyer purchases the right to use a good, the seller cannot
fully enforce the good’s utilization. The scope for under-utilizing digital goods—
and its potential influence on digital markets—is perhaps best illustrated by the
historical failure of “pay-to-click” businesses that try to incentivize valuable usage
(e.g., to pay people to see advertisements), only to be defrauded by users’ simple
cheating strategies (e.g., having a computer script click through a website).3 Our
model captures this key issue: providers cannot contract upon legitimate, valuable
usage, or otherwise prevent fraudulent, valueless usage.

Our main result is that the optimal price schedule in the presence of under-
utilization and usage-derived revenue is a multi-part tariff. Intuitively, non-contractibility
of usage prevents sellers from charging negative marginal prices, which they would
like to do to encourage valuable usage. Thus, they instead charge a price of zero on
the margin. The remainder of our analysis explores the structure of multi-part tariffs
and their welfare implications.

Model As in the classical nonlinear pricing framework, buyers differ in their de-
mand for the product, represented by a scalar, privately known type, and have quasi-
linear utility in money. Higher types correspond with higher demand for the product,
embedded in the familiar assumptions that preferences are convex and satisfy strict
single-crossing. The seller values transfers as well as usage-derived revenues from
advertisement, data generation, network effects, and/or user addiction. To model
non-contractibility of usage, we give buyers the ability to use less than they are
allocated—for instance, if a buyer purchases the right to spend 𝑦 hours on an online
platform, they may choose to spend 𝑥 ≤ 𝑦 hours.

The seller chooses an arbitrary price schedule that assigns a price to each level of

2As we clarify in Section 6.3, pooling of many buyer types, as is standard under “ironed solutions,”
is unrelated to the issue of zero marginal pricing: under pooling, many buyers purchase the same
amount of the good for the same price, but additional units of the good still have a strictly positive
marginal price. Models with discrete buyer types or bang-bang solutions can also generate weakly
optimal multi-part tariffs, but make the counterfactual prediction that no buyer ever consumes in
the region with zero marginal prices.

3In Section 6.2.2, we discuss the case study of the pay-to-click AllAdvantage.com, and how
modern legal infrastructure is designed to prevent platforms from compelling users to engage with
advertisements.
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purchases. Buyers first decide how much to purchase, and then what to use, within
the scope of what is permitted by the contract. We study the problem of how to
design the price schedule optimally, taking both of the buyers’ decisions into account.

Optimal Pricing We characterize the seller’s optimal pricing when buyers can
freely dispose of what they purchase. The induced levels of buyer usage in the opti-
mum cap the seller’s preferred usage (i.e., what the seller would sell were usage fully
contractible) with buyers’ bliss points (i.e., what buyers would use were the product
free).4 The corresponding price schedule is flat whenever buyers consume their bliss
points, since the marginal value of additional usage to the buyer is zero. Thus, sellers
price according to multi-part tariffs.

We next explore the structure of multi-part tariffs. We show zero marginal pricing
applies to more units of the good when there are greater marginal revenues from
usage (e.g., from advertising) and smaller marginal information rents, or costs of
screening. Intuitively, usage-derived revenue makes higher usage more attractive,
while information rents distort down the amount of usage for all but the highest
type.

The shape of these competing effects determines where in the price schedule zero-
marginal-price regions emerge. Figure 6-1 previews four of the pricing schemes that
our model can generate. Free pricing, in which all units have zero marginal price
(e.g., Google search or Facebook), occurs when marginal revenues from usage globally
dominate marginal information rents. Freemium pricing or free trial pricing, in which
initial units of the good have zero marginal price and all subsequent “add-on” units
have positive marginal price (e.g., the mobile game “Candy Crush Saga”), occurs
when usage-derived revenues are highly concave (e.g., because unique users generate
valuable data) and overwhelm information rents for only low-usage buyers. Premium
pricing, in which initial units of the good are sold for a strictly positive marginal price
and subsequent units are sold for zero marginal price (e.g., Amazon Prime Video),
occurs when usage-derived revenue dominates information rents for only high-usage
buyers. Indeed, as information rents vanish for the highest-usage buyers, globally
positive marginal revenue from usage always generates a “premium tier.” Thus, hybrid
pricing schemes like the combination of a free trial and premium plan (e.g., The
Wall Street Journal) can occur with sufficiently concave and increasing revenues from
usage.

4Formally, we show this under the technical conditions that virtual surplus is strictly single-
crossing in usage and agents’ types, and that virtual surplus is strictly quasiconcave in usage. In
Appendix F.2.1, we relax the first of these assumptions.
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Figure 6-1: Example multi-part tariffs, which are derived in Section 6.4.

Welfare Implications We finally use our results to understand the effects on buyer
welfare of both contractible usage and changes in the structure of demand and revenue.
First, while non-contractibility improves buyer welfare under a fixed price schedule,
all buyers would obtain greater welfare with perfectly contractible usage under the
corresponding optimal price schedule. The intuition for this result is that the lack
of contractibility of usage, which enables buyers to escape being forced to use the
good, also prevents them from being paid compensating differentials for usage, which
leads to forgone gains from trade. Second, in the absence of contractible usage, buyer
welfare is less sensitive to changes in marginal usage-derived revenue. These results
echo popular claims, made especially about social media products, that users are not
fairly remunerated for “being the product, not the consumer.”5

Related Literature The closest theoretical analysis to ours is by Grubb (2009),
who demonstrates the optimality of three-part tariffs when selling to over-confident
consumers who can freely dispose of the purchased good.6 In Appendix F.3.3, we show
how the setting of Grubb (2009) can be mapped to our framework, with overconfidence
mapping to a particular kind of external revenue function. By considering a richer
class of external revenue functions, our analysis endogenizes a richer set of pricing
schemes and is applicable to a greater number of settings.

Our analysis relates to a literature on pricing under various constraints. Sun-
dararajan (2004) studies non-linear pricing of information goods when the seller faces
a “transaction cost” of measuring provision of the good, and derives an optimal tiered
pricing schedule. Our analysis, by contrast, endogenizes multi-part tariffs as an op-

5As one example, Apple co-founder Steve Wozniak had the following to say about why he deleted
his personal Facebook account: “[Facebook’s] profits are all based on the user’s info, but the users
get none of the profits back [. . . .] As they say, with Facebook, you are the product” (Guynn and
McCoy, 2018).

6Free disposal is also relevant for the sale of information goods, where agents may choose to
optimally disregard information (see, e.g., Bergemann, Bonatti, and Smolin, 2018).
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timal strategy in light of under-utilization. Amelio and Jullien (2012) and Choi and
Jeon (2021) study markets with constraints for non-negative linear pricing and how
bundling products across markets can effectively subvert such constraints. We com-
plement this line of research by studying the non-linear pricing problem, albeit in a
single market. Sartori (2021) studies the provision of goods that can be freely dupli-
cated and damaged by the seller (as opposed to being freely disposed by the buyers).
The optimal allocation in this setting exhibits inefficient bunching of types, without
generating multi-part tariffs.

Our results fit into a theoretical literature on mechanism design with ex post
moral hazard (e.g., Laffont and Tirole, 1986; Carbajal and Ely, 2013; Strausz, 2017;
Gershkov, Moldovanu, Strack, and Zhang, 2021; Yang, 2022). However, given its
focus on the possibility of under-utilization, our model of ex post moral hazard has a
specific structure that admits tractable analysis and, at the same time, has previously
not been analyzed.

Outline The rest of the paper proceeds as follows. Section 6.2 introduces our
model. Section 6.3 solves for optimal contracts with free disposal. Section 6.4 studies
the occurrence and structure of optimal multi-part tariffs. Section 6.5 studies the
welfare implications of non-contractible usage. Section 6.6 concludes.

6.2 Model

6.2.1 Consumer Demand

There is a single good that can be bought and consumed in amounts 𝑥 ∈ 𝑋 = [0, 𝑥].
There is a unit measure of consumers with privately known type 𝜃 ∈ Θ = [0, 1] that
parameterizes their demand. The type distribution 𝐹 ∈ ∆(Θ) admits a density 𝑓

that is bounded away from zero on Θ. For example, 𝑥 might be the time that an
agent spends on an online platform, and 𝜃 shifts how much they enjoy this activity.

Consumers’ type-specific preferences over consumption are represented by a twice
continuously differentiable utility function 𝑢 : 𝑋 × Θ → R. We assume that higher
types value consumption more and that all types have single-peaked preferences over
consumption with the following three conditions: (i) 𝑢 satisfies strict single-crossing
in (𝑥, 𝜃);7 (ii) for each 𝑥 ∈ 𝑋, 𝑢(𝑥, ·) is monotone increasing over Θ; and (iii) for
each 𝜃 ∈ Θ, 𝑢(·, 𝜃) is strictly quasiconcave over 𝑋. All consumer types value zero
consumption the same as their outside option payoff, which we normalize to zero, or

7For avoidance of ambiguity, we mean that 𝑢𝑥𝜃 > 0, as per, for example, Nöldeke and Samuelson
(2007).
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𝑢(0, 𝜃) = 0 for all types 𝜃 ∈ Θ. Agents have quasilinear preferences over consumption
and money 𝑡 ∈ R, so their total payoff is 𝑢(𝑥, 𝜃)− 𝑡.

6.2.2 Under-Utilization

The primary departure of our analysis from traditional non-linear pricing is the ability
of consumers to under-utilize what they buy at zero cost. A consumer buying 𝑦 can
consume any 𝑥 ∈ [0, 𝑦]. That is, they can freely dispose of purchased goods.

We argue that free disposal describes feasible contracting in digital goods markets,
our primary application. For example, the Wall Street Journal can measure if a given
consumer loads an article, but not if they actually read it. Likewise, Google can
register that a search has been made, but not that this is done by a human as opposed
to a bot.

Perhaps the most direct evidence for the non-contractibility of consumption is
provided by the failure of “pay-to-click” internet businesses. One case study is the
rise and fall of AllAdvantage.com, a venture that paid users to view a permanent
banner ad when browsing the internet. The New York Times, who interviewed the
company’s founder as well as eager customers, asked “Can it Pay to Surf the Web?” in
a July 1, 1999, headline (Guernsey, 1999). But AllAdvantage.com was quickly bogged
down by users’ finding simple ways to automate web surfing. This was concisely
summarized in the headline of a Wired magazine article from July 10, 2000, which
(unintentionally) answers the Times ’ original question: “It Pays to Cheat, Not to
Surf” (Kang, 2000). In our model’s language, consumers could purchase 𝑦 hours of
time browsing the internet with the AllAdvantage banner, but then under-utilize to
consume 𝑥 ≤ 𝑦 hours, with the residual 𝑦 − 𝑥 hours handled by bots.

6.2.3 Production and Revenues

The seller’s revenue derives from two sources. The first is the total transfer from all
buyers to the seller. The second is revenue that derives from consumers’ usage of the
good, net of production costs. This is represented by a continuously differentiable
𝜋 : 𝑋×Θ → R.8 The seller values zero consumption the same as their outside option
revenue from not selling the product at all, which we normalize to zero, or 𝜋(0, 𝜃) = 0

for all 𝜃 ∈ Θ.
We have four primary justifications for usage-dependent revenue 𝜋 for digital

8It may be reasonable to assume that production costs depend on the allocation rather than
consumption of the good. But if costs are monotone, it is straightforward to argue that the seller
will never produce more than is consumed and “waste” the product, leading to a representation of
costs in terms of usage.
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goods.

Advertisement Digital goods are commonly bundled with revenue-generating ad-
vertisements. For example, Google search results, Facebook social feeds, and Wall
Street Journal articles all include advertisements. In these and other online settings,
advertisers can directly measure both the number of times an advertisement is loaded
(impressions) and the number of times an advertisement is clicked. Payments from
the advertiser to the platform commonly depend ex post on both impressions and
clicks per impression (click through rate).

We model these payments via our 𝜋 as functions of platform consumption 𝑥,
rather than purchases 𝑦—a Wall Street Journal user must load the article containing
an advertisement, and perhaps click on it, to register a payment. We argue that the
metaphor also applies when human and automated usage of online platforms may be
substituted for one another. The aforementioned AllAdvantage failed because adver-
tisers refused to pay out for inauthentic, bot-derived clicks. Modern advertisement
contracts, having internalized the mistakes of the AllAdvantage era, tie payouts ex-
plicitly to “valid,” human-derived clicks and impressions. As one example, the terms
and conditions of Google AdSense, a popular service for adding advertisements to a
webpage, define invalid activity as that “solicited or generated by payment of money,
false representation, or requests for end-users to click on Ads or take other actions”
(Google AdSense, 2020). For the erstwhile AllAdvantage.com, or any modern website
monetized via AdSense, only human consumption 𝑥 translates into revenue, while any
bot-derived residual 𝑦 − 𝑥 does not.

The function 𝜋 is a possibly type-dependent mapping from usage to advertisement
revenue. This subsumes details of consumer behavior and the advertisement contract,
such as the rate with which consumers click advertisements and the payment per click.

Data Collection A trend in digital advertising over the last decade is the rise of
targeted advertisements tuned toward individuals’ interests as revealed by their online
activity.9 This phenomenon has helped open up a “data economy” in which producers
profit from collecting information about consumers, either directly via selling data to
marketing intermediaries or indirectly via applying data toward internal advertise-
ment. As in the advertisement case, we use the function 𝜋 to model the reduced-form
“usage to revenue” schedule subsuming the translation of usage into data and the
valuation of that data.

9A report by IHS Markit estimated that, in Europe, advertising that used behavioral data com-
prised 86% of all programmatic digital advertising (IHS Markit, 2017)
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Network Effects Social media platforms, matching and networking services (e.g.,
Tinder and LinkedIn), online games (e.g., Fortnite and Candy Crush Saga), and
content-streaming platforms with social rating systems (e.g., Netflix and Hulu) rely
on active use to boost the appeal of their product. In Appendix F.3.1, we describe how
a simple model in which platform externalities generate network effects can micro-
found an external revenue function 𝜋 by affecting all agents’ willingness to pay to
participate in the platform. The framework can accommodate locally positive social
externalities, as suggested by the previous examples, as well as negative externalities,
due for instance to crowd-out or congestion.

Addiction Conventional wisdom and recent empirical evidence (Allcott, Gentzkow,
and Song, 2022) suggest that addicted users are a major source of demand for phone
apps and social media services. In particular, assume that the quantity 𝑥′ ∈ 𝑋

purchased tomorrow by each consumer is increasing in their “addictive” consumption
today 𝑥 ∈ 𝑋, establishing an indirect link between current consumption 𝑥 and future
payments 𝑡′. Our revenue function 𝜋 captures this effect in reduced form. In Appendix
F.3.2, we illustrate how selling to myopic consumers with habit formation gives rise
to an identical nonlinear pricing problem to the one we study, where 𝜋 is the future
revenue obtained by addicting agents today.10

6.2.4 The Nonlinear Pricing Problem

The seller’s problem is to design a total revenue maximizing price schedule 𝑇 : 𝑋 →
R,11 where 𝑇 (𝑦) is the payment from a consumer purchasing 𝑦 ∈ 𝑋. Following the
choice of 𝑇 , each type 𝜃 ∈ Θ chooses whether to buy anything, how much to purchase
𝜉(𝜃) ∈ 𝑋, and how much to ultimately consume 𝜑(𝜃) ∈ [0, 𝜉(𝜃)]. As is standard, we
assume that the purchase and consumption functions 𝜉 : Θ → 𝑋 and 𝜑 : Θ → 𝑋 are
the revenue-maximizing selections from the buyers’ demand correspondence. Hence,
the seller’s problem can be formulated as:

sup
𝜑,𝜉,𝑇

∫︁
Θ

(𝜋(𝜑(𝜃), 𝜃) + 𝑇 (𝜉(𝜃))) d𝐹 (𝜃)

s.t. 𝜑(𝜃) ∈ arg max
𝑥∈[0,𝜉(𝜃)]

𝑢(𝑥, 𝜃) for all 𝜃 ∈ Θ (O)

𝜉(𝜃) ∈ argmax
𝑦∈𝑋

{︂
max
𝑥∈[0,𝑦]

𝑢(𝑥, 𝜃)− 𝑇 (𝑦)

}︂
for all 𝜃 ∈ Θ (IC)

𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜉(𝜃)) ≥ 0 for all 𝜃 ∈ Θ (IR)

(198)

10Our interpretations of our welfare results do not hold in this case, as 𝜋 captures future con-
sumption.

11We use R to mean R ∪ {−∞,∞}.
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The first constraint (O), or Obedience, establishes that each consumer 𝜃 chooses their
optimal level of consumption 𝜑(𝜃) by optimally under-utilizing their initial purchase
𝜉(𝜃). The second constraint (IC), or Incentive Compatibility, embodies the consumers’
optimal purchase 𝜉(𝜃), taking into account their subsequent ability to under-utilize.
The final constraint (IR), or Individual Rationality, ensures that all consumers are
willing to participate.12

6.3 Optimal Pricing
We first characterize the solutions of the seller’s pricing problem (Equation 198). We
then use a simple closed-form example, inspired by our digital goods applications, to
both illustrate this result and show that it can imply the optimality of a multi-part
tariff, a price schedule featuring units sold for a marginal price of zero.

6.3.1 Characterization of Optimal Pricing

We first define some important objects in which the optimal pricing schedule will be
expressed. We define the consumer-optimal consumption of type 𝜃 as the function
𝜑𝐴 : Θ → 𝑋:

𝜑𝐴(𝜃) = argmax
𝑥∈𝑋

𝑢(𝑥, 𝜃) (199)

This is unique and increasing because of the strict quasiconcavity of 𝑢(·, 𝜃) in 𝑥 for all
𝜃 ∈ Θ and strict single-crossing of 𝑢 in (𝑥, 𝜃). In a digital-platform example, 𝜑𝐴(𝜃) is
the amount of time that type 𝜃 would optimally spend on the platform were it freely
available.

Second, we define the virtual surplus function 𝐽 : 𝑋 ×Θ → R:

𝐽(𝑥, 𝜃) = 𝜋(𝑥, 𝜃) + 𝑢(𝑥, 𝜃)− 1− 𝐹 (𝜃)

𝑓(𝜃)
𝑢𝜃(𝑥, 𝜃) (200)

This is the total surplus 𝜋 + 𝑢, net of the information rents required to ensure local
incentive compatibility. For the remaining analysis, we will assume that the function
𝐽 satisfies strict single-crossing in (𝑥, 𝜃) and is strictly quasiconcave in 𝑥. These
standard technical assumptions guarantee that virtual surplus has a unique maximum
and is maximized pointwise under the optimal contract, thereby ruling out cases with
bunching, or multiple agent types’ consuming the same bundle.13 Therefore, there is

12Ensuring participation of all types is without loss of optimality for the seller owing to their
ability to sell nothing and charge a price of zero, given the outside option of zero.

13In Appendix F.2.1, we relax the single-crossing assumption on 𝐽 , strengthen strict quasiconcavity
to strict concavity, and show how to adapt our analysis to settings which feature canonical bunching.
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a unique, increasing producer-optimal consumption level 𝜑𝑃 : Θ → 𝑋:

𝜑𝑃 (𝜃) = argmax
𝑥∈𝑋

𝐽(𝑥, 𝜃) (201)

Continuing our example, a revenue-maximizing seller would induce a type-𝜃 consumer
to spend 𝜑𝑃 (𝜃) time on the platform were usage perfectly contractible.

With these definitions in hand, we state our result describing optimal pricing:

Proposition 21 (Optimal Pricing). In any optimal contract, consumption is given
by:

𝜑* = min{𝜑𝑃 , 𝜑𝐴} (202)

The optimal price schedule for all 𝑥 ∈ [𝜑*(0), 𝜑*(1)] is uniquely given by:14

𝑇 *(𝑥) = 𝑢(𝜑*(0), 0) +

∫︁ 𝑥

𝜑*(0)
𝑢𝑥(𝑧, 𝜑

*−1

(𝑧)) d𝑧 (203)

Moreover, purchases are part of an optimal contract if and only if they are a selection
from the correspondence Ξ𝜑* : Θ ⇒ 𝑋:15

Ξ𝜑*(𝜃) =

⎧⎨⎩{𝜑*(𝜃)} if 𝜑*(𝜃) < 𝜑𝐴(𝜃)[︀
𝜑𝐴(𝜃), inf𝜃′∈[𝜃,1]

{︀
𝜑*(𝜃′) : 𝜑*(𝜃′) < 𝜑𝐴(𝜃′)

}︀]︀
if 𝜑*(𝜃) = 𝜑𝐴(𝜃)

(204)

The proofs of this and all other results are in the Appendix. The first part of
this result says that consumption in any optimal contract is the producer-optimal
consumption level capped by the consumer-optimal consumption level. To understand
this result, first observe that forcing a buyer to consume beyond their bliss-point level
violates Obedience—they would avail of free disposal to consume less and reach their
bliss point—and is therefore impossible. It is therefore necessary that 𝜑 ≤ 𝜑𝐴. We
moreover show that 𝜑 ≤ 𝜑𝐴, combined with monotonicity of eventual consumption
(also necessary for incentive compatibility by standard arguments), is sufficient for
Obedience and Incentive Compatibility. Strict quasiconcavity of virtual surplus then
implies that simply capping the optimum in the absence of free disposal with the bliss
point is optimal.

14We define the inverse of a continuous consumption function 𝜑 : Θ → 𝑋 on [𝜑*(0), 𝜑*(1)]
as the standard inverse on (𝜑*(0), 𝜑*(1)), extended to the boundaries with 𝜑−1(𝜑*(0)) =
lim𝑥→+𝜑*(0) 𝜑

−1(𝑥) and 𝜑−1(𝜑*(1)) = lim𝑥→−𝜑*(1) 𝜑
−1(𝑥). When 𝜑*(0) = 𝜑*(1), we set

𝜑−1(𝜑*(0)) = 0.
15With the convention that if the set over which the infimum is taken is empty, then the infimum

is equal to the supremum of the codomain of the relevant objective function. For example, ∞ for R,
and 1 for [0, 1].
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Our argument generalizes and formalizes the following scenario. A digital platform
like Twitter might want users to spend all 24 hours of the day reading content and
seeing advertisements. But no contract could support this outcome—users would
always prefer to use cheating software to mimic 24-hour usage, while reducing their
actual consumption to their bliss point. This was exactly the problem that led to
the downfall of AllAdvantage.com. A natural next choice is to design incentives to
induce a feasible level of Twitter consumption (i.e., 𝜑 ≤ 𝜑𝐴) that maximizes revenue
as well as possible given this constraint. When revenue is hump-shaped (i.e., strictly
quasiconcave), this is achieved by enveloping over the bliss points 𝜑𝐴 and the revenue-
maximizing points 𝜑𝑃 . This is what the optimal contract specifies.

The second part of the result derives an optimal price schedule that supports
the optimum, using standard arguments that invoke the necessity of local Incentive
Compatibility constraints. This price schedule is uniquely pinned down on the space
of consumed amounts, 𝑋* = [𝜑*(0), 𝜑*(1)], the image of Θ under the optimal con-
sumption function. Away from this interval, there are many available options. For
example, the seller can always offer a monotone price schedule by charging 𝑇 (𝜑*(0))

for all 𝑥 < 𝜑*(0) and setting an infinite price for all 𝑥 > 𝜑*(1).16 For the remainder of
the analysis, we restrict attention to 𝑇 * : 𝑋* → R and study its properties in detail.

The third part of the result characterizes the set of type-specific purchases that
support the optimum. This always includes simply setting purchases equal to con-
sumption. However, when the constraint of free disposal binds, there are many possi-
ble levels of purchases which support the optimal allocation and yield the same total
revenue for the seller. More precisely, for any interval of types for whom the con-
straint of under-utilization is binding, it is possible to have each type purchase any
amount between their own bliss-point and the bliss-point of the highest type in that
interval. An important implication of this multiplicity is that the seller may find it
optimal not to offer every level of purchases. Concretely, a possible optimal solution
for the seller is to offer only the maximum level of purchases for all types. Under this
solution, the seller offers a tiered menu, which features discrete levels of provision, a
property we explore in more detail in Section 6.4.

6.3.2 A Digital Pricing Example

We provide a more specialized intuition for the form of the optimal contract and
foreshadow its pricing implications in a closed-form example.

16In Section 6.4.3, we also give sufficient conditions for optimal price schedules to be flat for
𝑥 ≥ 𝜑*(1), capturing the idea of unlimited subscriptions.
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Example 4 (Digital Platform with Advertisement). A digital platform sells access
time 𝑥 ∈ [0, 1]. Consumers have quadratic payoffs

𝑢(𝑥, 𝜃) = 𝜃𝑥− 𝑥2

2
(205)

where 𝜃 is uniformly distributed on [0, 1]. A consumer who spends time 𝑥 on the
platform clicks on 𝑥(𝑘−ℎ𝑥) advertisements, for 𝑘 > 0 and ℎ ∈ [0, 𝑘]. The assumption
ℎ ≥ 0 embodies user fatigue from seeing the same advertisements repeatedly, and
ℎ ≤ 𝑘 ensures that total clicks remain positive. Each click yields revenue 𝑝 > 0 for
the seller. Moreover, serving time 𝑥 to the consumer has a constant marginal cost 𝑐.
The seller’s revenue function is therefore

𝜋(𝑥, 𝜃) =

(︂
Revenue
Click

· Clicks
Time

− Cost
Time

)︂
· Time = 𝛼𝑥− 𝛽

2
𝑥2 (206)

where we define 𝛼 = 𝑝𝑘 − 𝑐 and 𝛽 = 2𝑝ℎ.

We can use Proposition 21 to solve for the seller’s optimal pricing in this set-
ting. The consumer-optimal and seller-optimal consumption levels, which respectively
maximize payoffs 𝑢 and virtual surplus 𝐽 , are

𝜑𝐴(𝜃) = 𝜃 and 𝜑𝑃 (𝜃) = max

{︂
0,min

{︂
1,
𝛼 + 2𝜃 − 1

𝛽 + 1

}︂}︂
(207)

There are two possibilities for the shape of 𝜑* = min{𝜑𝐴, 𝜑𝑃}. If 𝛽 ≥ 1, corresponding
to high concavity of the revenue function (e.g., high user fatigue ℎ), 𝜑𝐴 is optimal for
sufficiently low types (if any). If 𝛽 < 1, corresponding to low concavity of the revenue
function (e.g., low user fatigue ℎ), 𝜑𝐴 is optimal for sufficiently high types (if any).
To most simply illustrate the result and its implications, we restrict attention to when
𝛼 ≤ 1 and 𝛽 < 1, in which case optimal consumption is

𝜑*(𝜃) = min
{︀
𝜑𝐴(𝜃), 𝜑𝑃 (𝜃)

}︀
=

⎧⎨⎩𝜑𝑃 (𝜃) if 𝜃 < 1−𝛼
1−𝛽

𝜑𝐴(𝜃) if 𝜃 ≥ 1−𝛼
1−𝛽

(208)

To derive the optimal price schedule, we use the integral expression for prices (Equa-
tion 203) and simplify to obtain:

𝑇 *(𝑥) =

⎧⎨⎩1−𝛼
2
𝑥− 1−𝛽

4
𝑥2 if 𝑥 < 1−𝛼

1−𝛽
(1−𝛼)2
4(1−𝛽) if 𝑥 ≥ 1−𝛼

1−𝛽

(209)
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Figure 6-2: Optimal contracts with and without free disposal in Example 4.

We illustrate the properties of this optimal price schedule in Figure 6-2 when 𝛼 = 1
2

and 𝛽 = 0. We show 𝜑*(𝜃) in the leftmost panel and 𝑇 *(𝑥) in the right-most panel with
a solid line. In the middle panel, we illustrate the purchase correspondence defined in
Equation 204 as the shaded region. Under the optimal contract, the good is sold for a
strictly positive marginal price until 𝑥 = 1

2
, after which it is sold at a marginal price

of zero. As a result, it is as if the seller offers buyers an unlimited subscription for
the good at a fixed price, but allows them to buy less than this unlimited level for a
discount.

We now contrast these predictions with those in a variant setting with the same
demand and external revenues, but no potential for free disposal (i.e., the legitimate
time spent on the platform is perfectly contractible). The seller optimally sets 𝜑*(𝜃) =

𝜑𝑃 (𝜃). We illustrate, in the same case of 𝛼 = 1
2

and 𝛽 = 0, the consumption,
purchases, and prices in the dashed lines of Figure 6-2. In this case, optimal prices
are non-monotone. Starkly, 𝑥 = 0 and 𝑥 = 1 are both sold for free. This demonstrates
the incentives for sellers in digital markets to use negative prices to induce valuable
usage, which would be enforceable absent free disposal.

6.4 The Occurrence and Structure of Multi-Part Tar-

iffs
Having shown that multi-part tariffs can be optimal in an example, we now provide
general conditions under which the optimal price schedule is a multi-part tariff. These
conditions imply that the price schedule must be a multi-part tariff whenever marginal
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revenues from usage are strictly positive. We further provide sufficient conditions for
optimal pricing to reduce to the freemium, premium and fixed cost pricing plans often
observed in practice, and argue that these conditions realistically describe products
with these pricing schemes.

6.4.1 The Occurrence of Multi-Part Tariffs

We first generally characterize when the optimal price schedule is a multi-part tariff.
To this end, we now formally define flatness of price schedules and multi-part tariffs.
A price schedule 𝑇 is flat at 𝑥 if there exists a neighborhood 𝑂(𝑥) such that 𝑇 is
constant on 𝑂(𝑥).17 A price schedule 𝑇 is a multi-part tariff if it is flat at some 𝑥. This
definition builds on the conventional definition of a three-part tariff in which there
is a fixed cost, an initial allotment of zero-marginal-price goods, and then additional
units with positive marginal price.18 Our more general definition can account for
zero-marginal-pricing in multiple separate tiers and/or away from the “bottom.”

To characterize the optimality of multi-part tariffs, we define the constrained
marginal revenue function 𝐻 : 𝑋* → R that maps outcomes to the marginal revenue
of the seller for the type who most prefers that outcome:

𝐻(𝑥) = 𝐽𝑥
(︀
𝑥, (𝜑𝐴)−1(𝑥)

)︀
(210)

To interpret 𝐻, imagine that the seller had to offer the product for free. The sign
of 𝐻(𝑥) determines whether the seller would profit from more (𝐻(𝑥) > 0) or less
(𝐻(𝑥) < 0) consumption from the type whose favorite consumption is 𝑥. The follow-
ing result links flat pricing with this trade off.19

Proposition 22 (Multi-Part Tariffs). If 𝐻(𝑥) > 0, then the optimal price schedule
𝑇 * is flat at 𝑥 and, therefore, a multi-part tariff. Conversely, if the optimal price
schedule 𝑇 * is a multi-part tariff that is flat at 𝑥, then 𝐻(𝑥) ≥ 0.

To understand the intuition for this result, it is useful to re-write the sufficient
17Flatness of prices is more demanding than zero slope, or 𝑇 ′(𝑥) = 0 wherever 𝑇 ′ is defined,

as it must apply on a neighborhood around 𝑥. Thus, zero marginal transfers or tariffs “at the
top,” meaning a specific maximal point in the type or action space, do not imply flatness by our
definition—no unit of size 𝜀 > 0 is sold for zero price.

18A two-part tariff, via the conventional definition, combines fixed costs with positive marginal
costs. This of course can be accommodated in the conventional non-linear pricing framework, with
zero tiers, as the “intercept” of the tariff is a free parameter.

19Recall the definition of the inverse of a continuous consumption function from Footnote 14 in
defining

(︀
𝜑𝐴
)︀−1 on 𝑋*. Moreover, it is not possible to strengthen the claim that if optimal price

schedule 𝑇 is flat at 𝑥 ∈ 𝑋*, then 𝐻(𝑥) ≥ 0 and make the inequality strict. The proof of Proposition
22 provides an explicit counterexample.
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condition for flat pricing (𝐻(𝑥) > 0) as a comparison of two dueling economic forces:

𝑓(𝜃) 𝜋𝑥(𝑥, 𝜃)⏟  ⏞  
marginal revenue

> (1− 𝐹 (𝜃))𝑢𝑥𝜃(𝑥, 𝜃)⏟  ⏞  
marginal information rent

(211)

where 𝜃 = (𝜑𝐴)−1(𝑥). The first force (on the left-hand side) is the total marginal
revenue from additional usage. Increasing 𝜋𝑥 (e.g., from more intensive advertising)
boosts this force. The second force (on the right-hand side) is the total marginal
information rent paid to all higher-type consumers. Increasing complementarity or
decreasing 𝐹 in the hazard rate order enlarges these information rents.

When marginal revenue dominates marginal information rents, the seller would
like to charge a negative marginal price to induce valuable usage. However, the
constraint of free disposal makes this impossible. Thus, they do the next best thing
and charge a price of zero on the margin. Conversely, under the opposite inequality,
or 𝐻(𝑥) < 0, marginal information rents dominate marginal revenues and the seller
wishes for the buyer to consume less than their satiation point. Thus, free disposal
poses no constraint, and they charge a positive marginal price to extract the buyer’s
(strictly positive) willingness-to-pay.

This result has two immediate implications for the possibility of multi-part tariffs.
First, if marginal revenues from usage are everywhere negative (𝜋𝑥 ≤ 0), multi-part
tariffs are impossible. Thus, in situations with large production costs (e.g., physical
goods), multi-part tariffs are unlikely to arise. Second, if marginal revenues from usage
are everywhere strictly positive (𝜋𝑥 > 0), then the optimal price schedule must be a
multi-part tariff. This claim follows because marginal information rents necessarily
vanish for the highest types of agents, while marginal revenues (by assumption) are
always strictly positive. Thus, in settings with low (marginal) production costs and
valuable revenue from usage (e.g., digital goods), multi-part tariffs are likely to be
optimal.

In the next section, we investigate the structure of multi-part tariffs. Before so
doing, we first concretely illustrate why zero marginal pricing obtained in the case
of Example 4 plotted in Figure 6-2. We also highlight how standard models cannot
generate multi-part tariffs in two remarks.

Example 4 (continuing from p. 245). The constrained marginal revenue function is
𝐻(𝑥) = (𝛼−𝛽𝑥)−(1−𝑥), where the first term is the marginal revenue from additional
usage and the second is the marginal increase of information rents. The presence of
zero marginal pricing therefore relies on there being sufficiently high marginal adver-
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tising revenues (high 𝛼 and low 𝛽), which derives in the underlying advertising model
from a higher revenue per click or lower user fatigue. In the case plotted in Figure
6-2, we set 𝛼 = 1

2
and 𝛽 = 0. Thus, zero marginal pricing held when 𝐻(𝑥) > 0 or

𝑥 > 1
2
.

Remark 2 (Standard models do not generate multi-part tariffs). Strictly optimal
multi-part tariffs are not possible in the canonical Mussa and Rosen (1978) and Wilson
(1993) screening models with a (convex) continuum of agent types.20 A weakly optimal
multi-part tariff is possible, for instance, in a specialization with a discrete number of
types, by extending the domain of the offered menu with a constant price schedule.
But we argue this is not economically meaningful, or relevant for our applications, for
three reasons. First, no type would ever consume any outcome in the extended menu
that does not lie in the initial menu, therefore ruling out variability of consumption
within a pricing tier. This is clearly counterfactual—within the single tier of a zero-
price product like Facebook, there is large variability in time spent on the platform.
Second, there would be as many parts to the price schedule as unique consumer types,
which is an arbitrary choice of the modeler. This prevents meaningful comparative
statics for the number of observed tiers as a function of primitives. Third, there is
no principled reason for arguing that the multi-part tariff is the “right” selection from
the set of optimal price schedules which are extended off-menu.

Remark 3 (Bunching is unrelated to multi-part tariffs). Optimal bunching in stan-
dard screening models is a different phenomenon from optimal multi-part tariffs.
Intuitively, bunching is a feature that occurs in the type space Θ, where many dif-
ferent types buy the same amount. However, all units of the good are still sold at
a strictly positive marginal price and so the optimal price schedule is never flat. In
Appendix F.2.1, we solve for the optimal contract with bunching when 𝐽 does not
satisfy single-crossing in (𝑥, 𝜃) and is strictly concave in 𝑥 by adapting the method
of Nöldeke and Samuelson (2007). Example 4 provides an explicit illustration of how
bunching is unrelated to the issue of zero marginal pricing: multiple buyers bunch
on buying nothing, but there are still strictly positive marginal prices for the first
marginal units of the good (see Figure 6-2).

6.4.2 Rationalizing Simple Pricing Schemes

We now leverage our characterization of multi-part tariffs to make theoretical predic-
tions about the structure of pricing in various applications. We moreover argue that

20Even if the virtual surplus is not strictly concave and a multi-part tariff is weakly optimal, the
same argument of this remark would apply.
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these predictions line up with various forms of pricing that we observe in practice.
We first define four common pricing schemes:

1. Regular pricing, in which all units of the good have strictly positive marginal
price.

2. Fixed pricing, in which all units have the same price.

3. Premium-tier pricing, in which initial units have positive price until some point,
after which all subsequent units have zero marginal price

4. Introductory-offer pricing, in which initial units have zero price and subsequent
units have positive price

The last three of these are difficult to understand through the classical lens of non-
linear pricing (see Remark 2). We now provide sufficient conditions, based solely on
the case of our model where 𝐻 crosses zero at most once, that delineate these pricing
schemes in our model. They all immediately follow from Proposition 22.

Corollary 13 (Simple Pricing Schemes). The following statements are true:

1. If 𝐻(𝑥) < 0 for all 𝑥 ∈ 𝑋*, then optimal pricing is regular.

2. If 𝐻(𝑥) ≥ 0 for all 𝑥 ∈ 𝑋*, then optimal pricing is fixed.

3. If 𝐻(𝑥) < 0 if and only if 𝑥 < �̂� ∈ int(𝑋*), then optimal pricing is of the
premium-tier form, with threshold for strictly positive marginal prices given by
�̂�.

4. If 𝐻(𝑥) ≥ 0 if and only if 𝑥 ≤ �̂� ∈ int(𝑋*), then optimal pricing is of the
introductory-offer form, with threshold for zero marginal prices given by �̂�.

In several applications of this result, we now describe the model’s theoretical
predictions for pricing schemes based on plausible structures of external revenues.
In each case, we argue that the model’s predicted pricing scheme lines up with that
which we observe in practice.

Case 1: Regular Pricing for Physical Goods Physical goods typically have
significant production and/or transportation costs that swamp potential usage-based
revenues (e.g., from word-of-mouth advertising). Seen through the lens of our model,
this corresponds to a case with 𝜋𝑥 < 0 and implies that 𝐻 < 0. As per Corollary 13,
our model therefore predicts that physical goods should feature regular pricing. This
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case is studied in the classical nonlinear pricing literature (Mussa and Rosen, 1978;
Wilson, 1993) and of course matches the reality of how the majority of physical goods
are priced.

Case 2: Fixed Pricing for Search Engines and Social Media Search engines
and social media platforms, as we have motivated, derive large revenues from adver-
tisement and data collection. Advertisement, in particular, often appears at a uniform
rate during regular usage (e.g., sponsored search results in Google) and derives rev-
enue per impression or click (i.e., marginal usage). Mapped to our model, 𝜋𝑥 > 0 for
all levels of usage and user types. Our model predicts that, if these revenues globally
dominate information rents, then 𝐻 > 0 and optimal pricing is fixed. Moreover,
under the assumption that the lowest-type consumers would most prefer to consume
nothing (e.g., make zero Google searches or spend zero minutes on Facebook), this
fixed price is zero. This matches, of course, the observed pricing scheme of products
like Google, Facebook, Twitter, and Instagram.

Case 3: Premium-Tier Pricing for Content-Streaming Content-streaming
platforms, such as Amazon Prime, do not run external advertisements but instead
use consumer data to fine-tune within-platform content recommendations. We might
conjecture that the indirect revenues derived from this model are positive, but smaller
than the sum of direct revenues earned by search engines and social media platforms
from serving advertisements and selling data. Under our model, this corresponds
to a case where 𝜋𝑥 > 0, so 𝐻(𝑥) > 0 for high levels of usage (where information
rents are necessarily small, as we will formally clarify in Corollary 14), but 𝐻(𝑥) < 0

for low levels of usage (where standard screening concerns dominate). Our model
therefore predicts that marginal prices should initially be positive and free, in un-
limited quantities, for high enough usage. This prediction matches Amazon Prime’s
streaming-library pricing, in which users can buy individual movies or shows for fixed
prices or purchase the unlimited Prime subscription.

Case 4: Introductory-Offer Pricing for Cloud Storage, Mobile Games, and
Networking Services A diverse class of goods derive a disproportionate amount of
revenue from initial usage. For example, cloud storage platforms such as Dropbox and
iCloud may benefit from a network externality, whereby all users find the product
more valuable when they can share files with a larger number of unique people.
A similar force is present for networking services platforms, such as LinkedIn. As
a further example, mobile games (e.g., “Candy Crush Saga”) can directly generate
revenue from merely being opened, as they can scrape data points like the user’s
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Figure 6-3: Cut-off price schedules in Example 4.

location and sell them to advertising firms. They are also likely to be addictive and
feature diminishing marginal effects of past usage on future willingness-to-pay (i.e.,
the first minute of the game hooks the user more than the hundredth).21 These
settings can be represented in our model with marginal revenues that are diminishing
(𝜋𝑥𝑥 < 0), and potentially negative for high levels of usage. Because of this, 𝐻(𝑥) > 0

is likely for low levels of usage (when marginal revenues are especially high) and
𝐻(𝑥) < 0 is likely for high levels of usage (when marginal revenues are diminished).
Thus, our model predicts an introductory offer of marginally free units. Moreover, if
the lowest-type buyers would most prefer to consume nothing, then the introductory
offer has no fixed cost either (i.e., it is a free trial). Dropbox features a free trial with
limited space allotment, which can be increased with paid upgrades; LinkedIn has a
free base version, which can be upgraded to a Premium mode with more features; and
Candy Crush Saga gives the player a free allotment of lives, which can be replenished
at a cost.

A Numerical Example We finally use Example 4 to illustrate these four pricing
cases numerically, under different assumptions for the shape of the revenue function:

Example 4 (continuing from p. 245). The constrained marginal revenue function is
𝐻(𝑥) = (𝛼−𝛽𝑥)− (1−𝑥), which crosses zero at most once. The four cases of Corol-

21Allcott, Gentzkow, and Song (2022) show that a model of total demand for popular phone
apps, calibrated to empirical evidence, is consistent with habit formation, myopia, and diminishing
returns.
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lary 13 therefore summarize the possibilities for pricing. In Figure 6-3, we illustrate
each of these cases. We plot the profit functions 𝜋(𝑥), constrained marginal revenue
functions 𝐻(𝑥), and tariffs 𝑇 (𝑥). Case 1 arises when marginal revenues from usage
are sufficiently low or negative (𝛼 ≤ 1 and 𝛼 ≤ 𝛽) as in our physical goods applica-
tion. Case 2 occurs when marginal revenues from usage are always sufficiently high
(𝛼 > 1 and 𝛼 > 𝛽), as in our search engine and social media platforms applications.
Case 3 obtains when marginal revenues from usage are intermediate and are dom-
inated by information rents for low levels of usage (𝛼 ≤ 1 and 𝛼 > 𝛽), as in our
content-streaming platforms applications. Case 4 occurs when there are initial high
revenues from usage that then diminish sharply (𝛼 > 1 and 𝛼 ≤ 𝛽), as in our cloud
storage, mobile games, and networking services applications.

6.4.3 More General Pricing Schemes: Unlimited Subscrip-

tions, Trials, and Arbitrary-Part Tariffs

Our model also allows for richer pricing schemes that feature multiple regions of
zero-marginal-pricing for various levels of usage. We first establish general sufficient
conditions for the occurrence of zero-marginal-pricing at the bottom and top of the
pricing schedule and link this to the co-occurrence of free trials and unlimited sub-
scriptions for many goods. Finally, we illustrate in a stylized example how the model
can be used to rationalize any number of regions of zero-marginal-pricing.

Unlimited Subscriptions and Trials A price schedule 𝑇 features an unlimited
subscription if it is flat at 𝜑*(1), the highest level of consumption under the optimal
contract, and a trial if it is flat at 𝜑*(0), the lowest level of consumption under the
optimal contract. These features were respectively present under the premium-tier
pricing and introductory-offer pricing introduced in the previous subsection. We now
derive general conditions under which unlimited subscriptions and trials are obtained
in more general, possibly multi-tier pricing schedules:

Corollary 14 (Unlimited Subscriptions and Trials). The price schedule features an
unlimited subscription if

𝜋𝑥(𝜑
𝐴(1), 1) > 0 (212)

The price schedule features a trial if

𝑓(0)𝜋𝑥(𝜑
𝐴(0), 0) > 𝑢𝑥𝜃(𝜑

𝐴(0), 0) (213)

The first part shows that an unlimited subscription is optimal whenever marginal
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Figure 6-4: Hybrid price schedules in Example 5.

revenues from usage are positive when the highest type uses at their bliss-point level.
As we previously discussed, a more demanding sufficient condition for this is that
marginal revenues from usage are globally positive, as in our search engines, social
media platforms, and content streaming applications. The lack of a countervailing
force from marginal information rents reflects the fact that the seller does not distort
allocations of the highest-type agents away from the first-best, surplus-maximizing
allocation.

The second part shows that trial tiers are optimal whenever total marginal rev-
enues from usage when the lowest type uses at their bliss-point level exceed the
marginal information rent paid to all higher types. As we have highlighted, with
zero or negative marginal revenues, this condition would never hold. Otherwise, it is
more likely to hold in environments with high marginal revenues stemming from low
levels of usage, as in our previous application to cloud storage, mobile games, and
networking services.

These two conditions are mutually compatible. Thus, Corollary 14 opens the
door to pricing schemes that feature both trials and unlimited subscriptions. We now
provide a concrete example of this possibility and apply it to understand the pricing
of online newspapers, such as the Wall Street Journal (wsj.com).

Example 5 (Optimal Pricing with Unlimited Subscriptions and Trials). Consumer
preferences, the outcome space, and the type distribution are identical to those in
Example 4. Advertisements are served at a constant rate, normalized to one. Con-
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sumers notice an advertisement according to an exponential process with hazard rate
𝜆 > 0, click on the first advertisement they notice, and ignore all subsequent adver-
tisements. The seller earns 𝛼 per click. The seller therefore receives the following
payoff in expectation:

𝜋(𝑥, 𝜃) =
Revenue
Click

· Expected Clicks = 𝛼(1− 𝑒−𝜆𝑥) (214)

Thus, 𝐻(𝑥) = 𝜆𝛼𝑒−𝜆𝑥 − (1 − 𝑥), which has, depending on the values of (𝜆, 𝛼), ei-
ther zero, one, or two tiers. The last case features both a trial and an unlimited
subscription. In Figure 6-4, we illustrate all three possibilities.

The two-tier example, plotted with 𝜆 = 2.5 and 𝛼 = 0.5, satisfies both conditions
in Corollary 14. First, the fact that marginal revenues remain positive for all lev-
els of consumption guarantees an unlimited subscription, as this force dominates the
vanishing information rents. Second, marginal revenues are high for low consumption
because these agents are least likely to have already clicked an advertisement. In the
two-tier calibration, this force dominates the marginal information rents that need to
be paid to all higher-type agents. Moreover, because the lowest type most prefers zero
consumption, the trial tier has zero price, and is therefore a “free trial.”

This combination of a trial and an unlimited subscription is characteristic of online
newspaper and content streaming platforms. For example, the Wall Street Journal
features an initial allowance of free articles before charging a subscription fee for
access to unlimited numbers of articles. This can be understood through the lens of
our example as the optimal selling response to a situation in which readers’ clicks
generate revenue, but readers are unlikely to continue to click on advertisements
multiple times.

Arbitrary-Part Tariffs In general, our results can be used to rationalize tariffs
with an arbitrarily large number of flat regions. That is, if we define an 𝑁 + 2-part
tariff as a price schedule with 𝑁 flat-pricing intervals (in analogy with the definition
of a three-part tariff as having one tier), our model can generate any 𝑁 +2-part tariff
for 𝑁 ∈ N.22 To do this, one may simply construct a constrained marginal revenue
function 𝐻 that crosses zero the desired number of times. We show this constructively
in the following (intentionally contrived) example:

Example 6 (Multi-Part Tariffs Can Have Arbitrarily Many Parts). Consumer pref-
erences, the outcome space, and the type distribution are identical to those in Example

22Formally speaking, we refer to a flat-pricing interval as a maximal interval 𝐼 ⊂ 𝑋* such the
price schedule is flat at all 𝑥 ∈ 𝐼.
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Figure 6-5: Arbitrary multi-part tariffs in Example 6.

4. The seller has a revenue function that increases in the usage of each type in propor-
tion to how low that agent’s type is (e.g., they derive particular value from targeting
an advertisement at the most marginal users). Moreover, the value of attention paid
by all types slightly oscillates over time. We capture this with the profit function:

𝜋(𝑥, 𝜃) = 𝑥(1− 𝜃)− 𝑘

2𝜋𝜔
(cos(2𝜋𝜔𝑥)− 1) (215)

for some 𝜔 ∈ N and 0 < 𝑘 < 1
2𝜋𝜔

.23 While the functional form of the cosine is
intentionally ad hoc, observe in the left-most pane of Figure 6-5 that this revenue
function only slightly deviates (for small 𝑘) from the linear baseline in inducing
mild oscillations in revenue over time. The constrained marginal revenue function
is 𝐻(𝑥) = 𝑘 sin(2𝜋𝜔𝑥), which crosses zero from above 𝜔 times, generating an 𝜔 + 2-
part tariff. In Figure 6-5, we plot 𝐻 and the optimal tariff 𝑇 for 𝜔 ∈ {1, 2, 3} and
𝑘 = 0.04 < 1

6𝜋
. The tariffs respectively have one, two, and three plat-pricing intervals;

these correspond to three-, four-, and five-part tariffs.

6.5 Welfare Under Multi-Part Tariffs
Having studied the positive implications of under-utilization for pricing, we now study
its welfare consequences. First, we study the effect of introducing under-utilization,
or removing perfect contractibility, on consumer and producer welfare. Second, we

23Under this condition, it is immediate to verify that the induced virtual surplus function 𝐽
satisfies our running assumptions: it is strictly concave and satisfies strict single-crossing.
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study how the possibility for under-utilization mediates the welfare effects of changes
in the structure of revenue. We apply these results to understand welfare in digital
goods markets.

6.5.1 The Impact of Under-Utilization on Welfare

For an arbitrary price schedule 𝑇 , we define consumer welfare under free disposal for
each type 𝜃 as:

𝑉 (𝜃;𝑇 ) = sup
𝑦∈𝑋,𝑥∈[0,𝑦]

{𝑢(𝑥, 𝜃)− 𝑇 (𝑦)} (216)

which is the payoff corresponding to an optimal purchase. We define producer welfare
with free disposal for each purchasing type 𝜃, Π(𝜃;𝑇 ), as

Π(𝜃, 𝑇 ) = 𝜋(𝜑(𝜃;𝑇 ), 𝜃) + 𝑇 (𝜉(𝜃;𝑇 )) (217)

which is simply total revenue (i.e., the integrand in the objective in Problem 198),
evaluated at a fixed 𝑇 and the buyers’ optimally chosen consumption 𝜑(𝜃;𝑇 ) and
purchases 𝜉(𝜃;𝑇 ). We define 𝑉 *(𝜃) and Π*(𝜃) as the corresponding equilibrium welfare
quantities evaluated at the optimal price schedule, 𝑇 *. We finally define analogous
quantities under no free disposal, or perfect contractibility, as 𝑉𝑁(𝜃;𝑇 ), Π𝑁(𝜃;𝑇 ),
𝑉 *
𝑁(𝜃), and Π*

𝑁(𝜃).
The following result summarizes how consumer and producer surplus are affected

by the possibility of under-utilization of consumption.

Proposition 23 (Contractibility and Welfare). For any price schedule 𝑇 , 𝑉 (𝜃;𝑇 ) ≥
𝑉𝑁(𝜃;𝑇 ) for all 𝜃 ∈ Θ. However, under the optimal price schedules, 𝑉 *(𝜃) ≤ 𝑉 *

𝑁(𝜃)

and Π*(𝜃) ≤ Π*
𝑁(𝜃) for all 𝜃 ∈ Θ.

All consumers lose out from increased contractibility for any given pricing pol-
icy, as the scope for payoff-increasing actions declines; but all consumers gain from
increased contractibility under the seller’s reoptimized price schedule. Intuitively,
consumers would like to commit ex ante to avoid the possibility of moral hazard and
have the seller pay them to take certain actions; increasing contractibility provides
exactly this commitment device. Sellers gain from increased contractibility (from
selling to all types and, therefore, in total across types) for the simple reason that it
increases the set of implementable allocations.

This result contextualizes the claim that users, particularly of social media plat-
forms, are not fairly remunerated, given the fact that their time and data are the
sources of these platforms’ revenues. This idea is exemplified by Apple co-founder
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Steve Wozniak’s stated rationale for why he deleted his personal Facebook account
(Guynn and McCoy, 2018):

Users provide every detail of their life to Facebook and [. . . ] Facebook
makes a lot of advertising money off this. [. . . ] The profits are all based
on the user’s info, but the users get none of the profits back. [. . . ] As
they say, with Facebook, you are the product.

This quote can be understood through the lens of our model. In light of the inherent
non-contractibility of usage of social media platforms, consumers cannot be paid on
the margin. In this context, Proposition 23 implies that consumers would be better
off were their usage perfectly contractible and revenue-generative usage remunerated.
However, our rationalization highlights that this issue is fundamentally technological:
even if Facebook wished to pay users, they would not be able to do so without being
exploited in the manner that led to the downfall of AllAdvantage.

6.5.2 Comparative Statics for Welfare

We next study how the presence of free disposal mediates the welfare effects of changes
in usage-based revenues 𝜋 and demand 𝐹 . Changes in revenue may be driven by
underlying changes in advertisement and data-collection technology while changes in
demand may be driven by changes in demographics and the quality of goods.

We say that �̃� exhibits more profitability of usage than 𝜋 if every unit of usage
generates more revenue, that is, �̃�𝑥 ≥ 𝜋𝑥. We say that 𝐹 exhibits weaker demand than
𝐹 if 𝐹 dominates 𝐹 in the hazard-rate order.24 We write consumer and producer
equilibrium welfare as functions of these arguments. We now show how these two
comparative statics affect welfare, with and without free disposal:

Proposition 24 (Comparative Statics for Welfare). If �̃� exhibits more profitability
of usage than 𝜋 and 𝐹 exhibits weaker demand than 𝐹 , then, for all 𝜃 ∈ Θ:

0 ≤ 𝑉 *(𝜃; �̃�, 𝐹 )− 𝑉 *(𝜃; 𝜋, 𝐹 ) ≤ 𝑉 *
𝑁(𝜃; �̃�, 𝐹 )− 𝑉 *

𝑁(𝜃; 𝜋, 𝐹 ) (218)

0 ≤ Π*(𝜃; �̃�, 𝐹 )− Π*(𝜃; 𝜋, 𝐹 ) ≤ Π*
𝑁(𝜃; �̃�, 𝐹 )− Π*

𝑁(𝜃; 𝜋, 𝐹 ) (219)

This shows that both consumer and producer welfare increase, but less so than
under perfect contractibility. In this sense, free disposal erodes the potential welfare

24Our nomenclature reflects the fact the hazard-rate order implies first-order stochastic domi-
nance (See Theorem 1.B.1 in Shaked and Shanthikumar, 2007) and is therefore a (strong) notion of
decreasing demand.
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gains for both buyer and seller relative to a counterfactual perfect-contractibility
world.

The intuition for this result is that, with higher marginal revenue from consump-
tion for the seller or lower demand types (implying smaller distortions from informa-
tion rents), the seller-optimal consumption is larger. This increases consumer and
producer welfare, with and without free disposal. However, with free disposal, there
are more types who consume their bliss point. Thus, both buyers and sellers have
greater welfare gains under perfect contractibility of usage than under free disposal.
This further underscores the sense in which perfect contractibility simulates com-
mitment. Proposition 23 shows how this commitment increases welfare in levels ;
Proposition 24 shows how this commitment increases the sensitivity of welfare gains
from changes in external revenue and demand.

This result allows us to shed light on the welfare effects of changes in advertising
technology, such as the past decade’s advent of more valuable targeted advertisements
based on user data. We can capture this phenomenon as an increase in the profitability
of usage for both platforms serving advertisements and platforms profiting from data
sales. Through the lens of our model, any marginal increase in profitability, including
the introduction of advertisement- or data-based revenue to a previously zero-revenue
(𝜋 = 0) service, increases welfare for all consumers. These increases could be larger,
however, if digital goods’ usage were fully contractible. The reason is precisely the
fact that users cannot be paid on the margin for their clicks and data. Moreover,
even if only a subset of users are paid for their clicks and data, all users benefit due
to changes in the overall price schedule.

This analysis has two potentially relevant implications for policy discussion about
digital-goods regulation. First, government regulations that may diminish marginal
advertising revenues, like the European Union’s General Data Privacy Regulation,
may weakly reduce consumer surplus. But the extent of these reductions, and their
distributional consequences, depends on whether sellers are far on the interior of the
zero marginal pricing constraint. That is, if marginal units are already free (e.g.,
for all units of Google or Facebook), then consumer surplus is unaffected and any
(here, unmodeled) gains from the instrumental value of privacy lead to net consumer
benefits.

Second, our focus on contractibility contrasts with an influential perspective in
the literature that focuses instead on the lack of collective bargaining for users of
online products (Posner and Weyl, 2018). Taken to the extreme, our results imply a
thorny “privacy paradox” for consumers—the only way to properly reap the benefits
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of the surplus generated by targeted advertising is to surrender additional privacy by
enabling tools to more precisely monitor usage and attention.

6.6 Conclusion and Summary of Extensions
We study optimal nonlinear pricing in environments with feasible under-utilization
and usage-derived revenue, features that are ubiquitous in the digital goods context.
We show how the combination of these two forces rationalizes the occurrence of multi-
part tariffs, or price schedules that include at least one tier of zero marginal prices.
The key mechanism is that sellers have an incentive to pay users on the margin,
due to usage-derived revenue (e.g., from advertisement or data collection), but non-
contractibility prevents such arrangements from being enforceable. More succinctly,
zero marginal pricing is the sellers’ constrained optimum in a world in which “pay to
click” is impossible.

We apply these results to study positive and normative features of digital goods
markets. We show how different structures of external revenue translate into different
familiar pricing schemes like free trials, unlimited subscriptions, and free products.
We moreover show that the scope for under-utilization reduces buyers’ welfare and
dampens the ability of buyers to reap the rewards from the revenue they generate.

We finally discuss additional analyses contained within the Appendix and ongoing
work.

Optimal Bunching We assumed that virtual surplus was strictly single-crossing
to rule out the possibility that multiple buyer types optimally bunch on the same
level of consumption. In Appendix F.2.1, we relax this assumption, adapt the as-
signment approach of Nöldeke and Samuelson (2007), and characterize the optimal
contract when bunching is a possibility. Analogously to Proposition 21, the optimal
consumption function maximizes the suitable transformation of virtual surplus in this
setting, subject to the constraint that no agent consumes more than their bliss point.
Under this solution and as per our main analysis (Proposition 22), the price schedule
is flat whenever this constraint binds and the optimal price schedule is a multi-part
tariff.25

Under-Utilization with (Perfect) Competition It is of course natural to ask
how our analysis in a monopoly setting would extend to markets with competition.
In Appendix F.2.2, we solve for the equilibrium outcome of our screening model when

25In this setting, we cannot develop a similar characterization to that of Proposition 22 by com-
paring the marginal benefits and costs of additional consumption for the seller as the objective is no
longer quasiconcave and global properties determine whether the constraint binds.
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the monopolist faces a perfectly competitive fringe of potential entrants. Specifically,
we model this free entry by adding an additional constraint imposing zero profits for
the monopolist (i.e., total external revenues plus transfers). The equilibrium price
schedule under perfect competition features zero marginal pricing more often than
under monopoly pricing (Corollary 18 in Appendix F.2.2). The reason is that the
perfect competition, modeled this way, leads firms to maximize total surplus instead
of virtual surplus—put differently, competition ensures that all profits from screening
and distorting down consumption are competed away. Total surplus is maximized
by a higher level of consumption owing to the absence of information rents, and so
the constraint of under-utilization is more often binding. As a result, our model
implies that multi-part tariffs are likely to be more prevalent in scenarios with fierce
competition between sellers than under monopoly.26

Pricing with Partially Contractible Usage In ongoing work, we study the
effects of partial contractibility of usage on optimal nonlinear pricing. This allows
us to capture further settings in which some levels of utilization are contractible
(e.g., usage by high-end users) while others are not. In this model, agents switch
endogenously from being consumers, who either pay for a good or receive it for free,
to being workers, who are paid for their usage of a platform. This model can be used,
for example, to capture the pricing of YouTube and TikTok, where low-end content
creators use the platforms for free, while high-end content creators are paid.

26Another setting that features the same pricing implications as perfect competition, yet with a
single monopolistic seller, is one in which buyers commit to participate before learning their types.
This structure corresponds to the ex ante contracting setting of Grubb (2009).
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Appendix A

Appendix to The Macroeconomics of
Narratives

A.1 Omitted Derivations and Proofs

A.1.1 Derivation of Equations 3 and 5

We first provide two assumptions under which Equation 3 holds as a linear approx-
imation with a quadratic error bound. In what follows, we impose the technical
requirements that 𝒳 is convex, compact subset of R, 𝒴 is a convex, compact subset
of R𝑛, Θ is a convex, compact subset of R𝑚, and Ω is a convex, compact subset of R𝑟.
We first assume regularity conditions on payoffs to ensure the sufficiency of first-order
conditions for optimality:

Assumption 12. The utility function 𝑢 is strictly concave and twice continuously
differentiable. The conjectured aggregate outcome function 𝑌 is continuously differ-
entiable.

We next assume that agents’ information about the random fundamentals is gener-
ated by location experiments that are conditionally independent of the fundamental,
agents’ preference shifters, and the narratives held by agents. We moreover assume
that all narratives are equally sensitive to information.

Assumption 13. The agents’ information sets are generated by location experiments,
i.e., 𝑠𝑖𝑡 = 𝜃𝑡 + 𝜈𝑖𝑡, where 𝜈𝑖𝑡 is a zero-mean random variable that is independent of
𝜃𝑡, 𝜔𝑖, and 𝜆𝑖𝑡. Moreover, conditional on the signal, the conditional expectation of 𝜃𝑡
under each narrative 𝑘 is given by E𝑘[𝜃𝑡|𝑠𝑖𝑡] = 𝜅𝑠𝑖𝑡 + (1− 𝜅)E𝑘[𝜃𝑡] +𝑂(||𝑠𝑖𝑡||2).
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A sufficient condition for this assumption to hold with no approximation error is
that all fundamentals and signals are Gaussian and the signal-to-noise ratio of the
signal is constant across all narratives. Under these two assumptions, we can derive
the form of the regression equation and that, modulo any misspecification error, the
conditional expectation function is linear.

Proposition 25. Under Assumptions 12 and 13, we have that:

𝑥𝑖𝑡 = 𝛾𝑖 + 𝜒𝑡 +
∑︁
𝑘∈𝒦

𝛿𝑘𝜆𝑘,𝑖𝑡 + 𝜀𝑖𝑡 +𝑂(||(𝑥𝑖𝑡, 𝑌𝑡, 𝜃𝑡, 𝑄𝑡, 𝜔𝑖, 𝜈𝑖𝑡, 𝜆𝑖𝑡)||2) (220)

where 𝜀𝑖𝑡 is a zero mean random variable that is uncorrelated with 𝛾𝑖, 𝜒𝑡 and 𝜆𝑖𝑡.
Thus, net of the misspecification error, the conditional expectation function is given
by:

E[𝑥𝑖𝑡|𝑖, 𝑡, 𝜆𝑖𝑡] = 𝛾𝑖 + 𝜒𝑡 +
∑︁
𝑘∈𝒦

𝛿𝑘𝜆𝑘,𝑖𝑡 (221)

Proof. By Assumption 12, from the agents’ problems (Equation 2), their best replies
must solve the following first-order condition (where we suppress all individual and
time subscripts):

E𝜋𝜆
[︁
𝑢𝑥(𝑥, 𝑌 (𝜃), 𝜃, 𝜔)|𝑠

]︁
= 0 (222)

We linearize this first-order condition in (𝑥, 𝑌, 𝜃, 𝜔) around values (�̄�, 𝑌 , 𝜃, �̄�) which
satisfy 𝑢𝑥(�̄�, 𝑌 , 𝜃, �̄�) = 0. This gives

E𝜋𝜆
[︀
𝑢𝑥𝑥(𝑥− �̄�) + 𝑢′𝑥𝑌 (𝑌 − 𝑌 ) + 𝑢′𝑥𝜃(𝜃 − 𝜃) + 𝑢′𝑥𝜔(𝜔 − �̄�)|𝑠

]︀
+𝑅 = 0 (223)

where (𝑢𝑥𝑥, 𝑢𝑥𝑌 , 𝑢𝑥,𝜃, 𝑢𝑥𝜔) are constants equal to the corresponding derivatives evalu-
ated at (�̄�, 𝑌 , 𝜃, �̄�), the remainder 𝑅 is 𝑂(||(𝑥, 𝑌, 𝜃, 𝜔, 𝜈, 𝜆)||2). We can rearrange the
above, and use the fact that 𝜔 is known to the agent, to write:

𝑥 = �̄�+
1

|𝑢𝑥𝑥|
𝑢′𝑥𝜔(𝜔 − �̄�) +

1

|𝑢𝑥𝑥|
E𝜋𝜆

[︀
𝑢′𝑥𝑌 (𝑌 − 𝑌 ) + 𝑢′𝑥𝜃(𝜃 − 𝜃)|𝑠

]︀
+

1

|𝑢𝑥𝑥|
𝑅 (224)

Moreover, we know that 𝑌 = 𝑌 (𝑄, 𝜃). Thus, assuming that 𝑌 is continuously differ-
entiable, we may linearize 𝑌 = 𝑌 + 𝑌 ′

𝑄(𝑄− �̄�) + 𝑌 ′
𝜃 (𝜃 − 𝜃) + �̂�, where 𝑌 = 𝑌 (�̄�, 𝜃)

and �̂� is the error induced by the approximation of 𝑌 , which is 𝑂(||𝑌,𝑄, 𝜃||2). Sub-
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stituting this approximation into Equation 224 gives

𝑥 = �̄�+
1

|𝑢𝑥𝑥|
𝑢′𝑥𝜔(𝜔 − �̄�) +

1

|𝑢𝑥𝑥|
E𝜋𝜆

[︀
𝑢′𝑥𝑌 (𝑌

′
𝑄(𝑄− �̄�) + 𝑌 ′

𝜃 (𝜃 − 𝜃)) + 𝑢′𝑥𝜃(𝜃 − 𝜃)|𝑠
]︀
+ �̃�

= 𝛾 + �̃�+ E𝜋𝜆
[︁
𝜃|𝑠
]︁
+ �̃�

(225)

where 𝛾 = �̄� + 1
|𝑢𝑥𝑥|𝑢

′
𝑥𝜔(𝜔 − �̄�) − 1

|𝑢𝑥𝑥|𝑢
′
𝑥𝑌 (𝑌

′
𝑄�̄� + 𝑌 ′

𝜃𝜃) − 1
|𝑢𝑥𝑥|𝑢

′
𝑥𝜃𝜃, �̃� = 1

|𝑢𝑥𝑥|𝑢
′
𝑥𝑌 𝑌

′
𝑄𝑄,

and 𝜃 = 1
|𝑢𝑥𝑥| (𝑢

′
𝑥𝑌 𝑌

′
𝜃 + 𝑢′𝑥𝜃) 𝜃, �̃� = 1

|𝑢𝑥𝑥|𝑅 + �̂�.
We next re-write the conditional expectation of 𝜃 as linear in two arguments, the

signal 𝑠 and prior mean E𝜋𝜆 [𝜃]. Using first the linearity of the expectation operator
and the linearity of forming beliefs from narratives, and second Assumption 13 to
re-write each narrative-specific conditional expectation in terms of the signal and the
prior, we write

E𝜋𝜆
[︁
𝜃|𝑠
]︁
=
∑︁
𝑘∈𝒦

𝜆𝑘E𝑘[𝜃|𝑠] = 𝜅𝑠+ (1− 𝜅)E𝜋𝜆 [𝜃] + �̌� (226)

where E𝜋𝜆 [𝜃] =
∑︀

𝑘∈𝒦 𝜆𝑘E𝑘[𝜃] is the average prior mean across narratives, �̌� is the
error induced by the approximation and is 𝑂(||(𝜃, 𝜈, 𝜆)||2), and the transformed signal
is 𝑠 = 1

|𝑢𝑥𝑥| (𝑢
′
𝑥𝑌 𝑌

′
𝜃 + 𝑢′𝑥𝜃) 𝑠 = 𝜃 + 𝜈, with 𝜈 = 1

|𝑢𝑥𝑥| (𝑢
′
𝑥𝑌 𝑌

′
𝜃 + 𝑢′𝑥𝜃) 𝜈 independent of 𝜃

and of mean zero by Assumption 13. Defining 𝜒 = �̃� + 𝜅𝜃, 𝜀 = 𝜅𝜈 and 𝛿𝑘 =

(1− 𝛼)E𝑘[𝜃], we may write:

𝑥 = 𝛾 + 𝜒+
∑︁
𝑘∈𝒦

𝛿𝑘𝜆𝑘 + 𝜀+ �̄� (227)

where �̄� = �̃� + �̌� = 𝑂(||(𝑥, 𝑌, 𝜃,𝑄, 𝜔, 𝜈, 𝜆)||2). Re-introducing subscripts, we have
𝜔𝑖, 𝑄𝑡, 𝜃𝑡, 𝜆𝑘,𝑖𝑡 and 𝜀𝑖𝑡. Thus, we have the claimed regression equation:

𝑥𝑖𝑡 = 𝛾𝑖 + 𝜒𝑡 +
∑︁
𝑘∈𝒦

𝛿𝑘𝜆𝑘,𝑖𝑡 + 𝜀𝑖𝑡 +𝑂(||(𝑥𝑖𝑡, 𝑌𝑡, 𝜃𝑡, 𝑄𝑡, 𝜔𝑖, 𝜈𝑖𝑡, 𝜆𝑖𝑡)||2) (228)

As 𝜀𝑖𝑡 has zero mean and is uncorrelated with 𝛾𝑖, 𝜒𝑡 and 𝜆𝑖𝑡, the claimed formula for
the conditional expectation function follows.

We now turn to the narrative updating rule. We impose the following assumption:

Assumption 14. The updating rule 𝑃 is continuously differentiable.

We finally derive Equation 5 under this condition:
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Proposition 26. Under Assumption 14, we have that:

P[𝜆𝑖𝑡 = 𝜆|𝜆𝑖,𝑡−1, 𝑌𝑡−1, 𝑄𝑡−1] = 𝜁𝜆+𝑢
′
𝜆𝜆𝑖,𝑡−1+𝑟

′
𝜆𝑌𝑡−1+𝑠

′
𝜆𝑄𝑡−1+𝑂(||(𝜆𝑖,𝑡−1, 𝑌𝑡−1, 𝑄𝑡−1)||2)

(229)

Proof. By definition we have that P[𝜆𝑖𝑡 = 𝜆|𝜆𝑖,𝑡−1, 𝑌𝑡−1, 𝑄𝑡−1] = 𝑃𝜆(𝜆𝑖,𝑡−1, 𝑌𝑡−1, 𝑄𝑡−1).
Linearizing this expression under Assumption 14, we immediately have:

P[𝜆𝑖𝑡 = 𝜆|𝜆𝑖,𝑡−1 = 𝜆′, 𝑌𝑡−1, 𝑄𝑡−1] = 𝜁𝜆+𝑢𝜆,𝜆′+𝑟
′
𝜆𝑌𝑡−1+𝑠

′
𝜆𝑄𝑡−1+𝑂(||(𝜆𝑖,𝑡−1, 𝑌𝑡−1, 𝑄𝑡−1)||2)

(230)
Completing the proof.

A.1.2 Proof of Proposition 1

Proof. We guess and verify that there exists a unique quasi-linear equilibrium. That
is, there exists a unique equilibrium of the following form for some parameters 𝑎0, 𝑎1 ∈
R and function 𝑓 : [0, 1] → R:

log 𝑌 (𝜃,𝑄) = 𝑎0 + 𝑎1 log 𝜃 + 𝑓(𝑄) (231)

To verify this conjecture, we need to compute best replies under this conjecture and
show that when we aggregate these best replies that the conjecture is consistent and,
moreover, that it is consistent for a unique triple (𝑎0, 𝑎1, 𝑓).

From the arguments in the main text, we need to compute two objects: logE𝑖𝑡
[︂
𝜃
− 1+𝜓

𝛼
𝑖𝑡

]︂
and logE𝑖𝑡

[︁
𝑌

1
𝜖
−𝛾

𝑡

]︁
. We can compute the first object directly. Conditional on a sig-

nal 𝑠𝑖𝑡 and a narrative weight 𝜆𝑖𝑡, we have that the distribution of the aggregate
component of productivity is:

log 𝜃𝑡|𝑠𝑖𝑡, 𝜆𝑖𝑡 ∼ 𝑁
(︀
𝜅𝑠𝑖𝑡 + (1− 𝜅)(𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 ), 𝜎

2
𝜃|𝑠
)︀

(232)

by the standard formula for the conditional distribution of jointly normal random
variables, where:

𝜅 =
1

1 + 𝜎2
𝑒

𝜎2
𝜃

and 𝜎2
𝜃|𝑠 =

1
1
𝜎2
𝜃
+ 1

𝜎2
𝑒

(233)

with 𝜅 being the signal-to-noise ratio and 𝜎2
𝜃|𝑠 the variance of fundamentals conditional

on the signal. Thus, idiosyncratic productivity has conditional distribution given by:

log 𝜃𝑖𝑡|𝑠𝑖𝑡, 𝜆𝑖𝑡 ∼ 𝑁
(︀
log 𝛾𝑖 + 𝜅𝑠𝑖𝑡 + (1− 𝜅)(𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 ), 𝜎

2
𝜃|𝑠 + 𝜎2

𝜃

)︀
(234)
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where we will denote the above mean by 𝜇𝑖𝑡 and variance by 𝜂2. Hence, rewriting and
using the moment generating function of a normal random variable, we have that:

logE𝑖𝑡
[︂
𝜃
− 1+𝜓

𝛼
𝑖𝑡

]︂
= logE𝑖𝑡

[︂
exp

{︂
−1 + 𝜓

𝛼
log 𝜃𝑖𝑡

}︂]︂
= −1 + 𝜓

𝛼
𝜇𝑖𝑡 +

1

2

(︂
1 + 𝜓

𝛼

)︂2

𝜂2
(235)

Under our conjecture (Equation 231), we can moreover compute:

logE𝑖𝑡
[︁
𝑌

1
𝜖
−𝛾

𝑡

]︁
= logE𝑖𝑡

[︂
exp

{︂(︂
1

𝜖
− 𝛾

)︂
(𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑓(𝑄𝑡)

}︂]︂
=

(︂
1

𝜖
− 𝛾

)︂
[𝑎0 + 𝑎1(𝜇𝑖𝑡 − log 𝛾𝑖) + 𝑓(𝑄𝑡)] +

1

2
𝑎21

(︂
1

𝜖
− 𝛾

)︂2 [︀
𝜂2 − 𝜎2

𝜃

]︀
(236)

Thus, we have that best replies under our conjecture are given by:

log 𝑥𝑖𝑡 =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃
+

1 + 𝜓

𝛼
𝜇𝑖𝑡 −

1

2

(︂
1 + 𝜓

𝛼

)︂2

𝜂2

+

(︂
1

𝜖
− 𝛾

)︂
[𝑎0 + 𝑎1(𝜇𝑖𝑡 − log 𝛾𝑖) + 𝑓(𝑄𝑡)] +

1

2
𝑎21

(︂
1

𝜖
− 𝛾

)︂2 [︀
𝜂2 − 𝜎2

𝜃

]︀ ]︃
(237)

To confirm the conjecture, we must now aggregate these levels of production and
show that they are consistent with the conjecture. Performing this aggregation we
have that:

log 𝑌𝑡 = log

[︃(︂∫︁
[0,1]

𝑥
𝜖−1
𝜖

𝑖𝑡

)︂ 𝜖
𝜖−1

]︃

=
𝜖

𝜖− 1
logE𝑡

[︂
exp

{︂
𝜖− 1

𝜖
log 𝑥𝑖𝑡

}︂]︂
=

𝜖

𝜖− 1
logE𝑡

[︂
E𝑡
[︂
exp

{︂
𝜖− 1

𝜖
log 𝑥𝑖𝑡

}︂
|𝜆𝑖𝑡
]︂]︂ (238)
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Moreover, expanding the terms in Equation 237, we have that:

log 𝑥𝑖𝑡 =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃
+

1 + 𝜓

𝛼
[log 𝛾𝑖 + 𝜅𝑠𝑖𝑡 + (1− 𝜅) [𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 ]]

− 1

2

(︂
1 + 𝜓

𝛼

)︂2 (︀
𝜎2
𝜃|𝑠 + 𝜎2

𝜃

)︀
+

(︂
1

𝜖
− 𝛾

)︂
[𝑎0 + 𝑎1 (𝜅𝑠𝑖𝑡 + (1− 𝜅) [𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 ]) + 𝑓(𝑄𝑡)]

+
1

2
𝑎21

(︂
1

𝜖
− 𝛾

)︂2

𝜎2
𝜃|𝑠

]︃
(239)

which is, conditional on 𝜆𝑖𝑡, normally distributed as both log 𝛾𝑖 and 𝑠𝑖𝑡 are both
normal. Hence, we write log 𝑥𝑖𝑡|𝜆𝑖𝑡 ∼ 𝑁(𝛿𝑡(𝜆𝑖𝑡), �̂�

2), where:

𝛿𝑡(𝜆𝑖𝑡) =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃
+

1 + 𝜓

𝛼
[𝜇𝛾 + 𝜅 log 𝜃𝑡 + (1− 𝜅) [𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 ]]

− 1

2

(︂
1 + 𝜓

𝛼

)︂2 (︀
𝜎2
𝜃|𝑠 + 𝜎2

𝜃

)︀
+

(︂
1

𝜖
− 𝛾

)︂
[𝑎0 + 𝑎1 (𝜅 log 𝜃𝑡 + (1− 𝜅) [𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 ]) + 𝑓(𝑄𝑡)]

+
1

2
𝑎21

(︂
1

𝜖
− 𝛾

)︂2

𝜎2
𝜃|𝑠

]︃
(240)

and:

�̂�2 =

(︃
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

)︃2 [︃(︂
1 + 𝜓

𝛼

)︂2

𝜎2
𝛾 + 𝜅2

[︂
1 + 𝜓

𝛼
+ 𝑎1

(︂
1

𝜖
− 𝛾

)︂]︂2
𝜎2
𝑒

]︃
(241)

Thus, we have that:

E𝑡
[︂
exp

{︂
𝜖− 1

𝜖
log 𝑥𝑖𝑡

}︂
|𝜆𝑖𝑡
]︂
= exp

{︃
𝜖− 1

𝜀
𝛿𝑡(𝜆𝑖𝑡) +

1

2

(︂
𝜖− 1

𝜀

)︂2

�̂�2

}︃
(242)
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and so:

E𝑡
[︂
E𝑡
[︂
exp

{︂
𝜖− 1

𝜖
log 𝑥𝑖𝑡

}︂
|𝜆𝑖𝑡
]︂]︂

= 𝑄𝑡 exp

{︃
𝜖− 1

𝜀
𝛿𝑡(1) +

1

2

(︂
𝜖− 1

𝜀

)︂2

�̂�2

}︃

+ (1−𝑄𝑡) exp

{︃
𝜖− 1

𝜀
𝛿𝑡(0) +

1

2

(︂
𝜖− 1

𝜀

)︂2

�̂�2

}︃

=

[︂
𝑄𝑡 exp

{︂
𝜖− 1

𝜖
(𝛿𝑡(1)− 𝛿𝑡(0))

}︂
+ (1−𝑄𝑡)

]︂
exp

{︃
𝜖− 1

𝜖
𝛿𝑡(0) +

1

2

(︂
𝜖− 1

𝜀

)︂2

�̂�2

}︃
(243)

Yielding:

log 𝑌𝑡 = 𝛿𝑡(0) +
1

2

𝜖− 1

𝜖
�̂�2 +

𝜖

𝜖− 1
log

(︂
𝑄𝑡 exp

{︂
𝜖− 1

𝜖
(𝛿𝑡(1)− 𝛿𝑡(0))

}︂
+ (1−𝑄𝑡)

)︂
(244)

where we define 𝛼𝛿𝑂𝑃 = 𝛿𝑡(1)− 𝛿𝑡(0) and compute:

𝛿𝑡(1)− 𝛿𝑡(0) =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

(︂
1 + 𝜓

𝛼
+ 𝑎1

(︂
1

𝜖
− 𝛾

)︂)︂
(1− 𝜅)(𝜇𝑂 − 𝜇𝑃 ) = 𝛼𝛿𝑂𝑃 (245)

and note that this is a constant. Finally, we see that 𝛿𝑡(0) is given by:

𝛿𝑡(0) =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃
+

1 + 𝜓

𝛼
(𝜇𝛾 + (1− 𝜅)𝜇𝑃 )−

1

2

(︂
1 + 𝜓

𝛼

)︂2 (︀
𝜎2
𝜃|𝑠 + 𝜎2

𝜃

)︀
+

(︂
1

𝜖
− 𝛾

)︂
(𝑎0 + 𝑎1(1− 𝜅)𝜇𝑃 ) +

1

2
𝑎21

(︂
1

𝜖
− 𝛾

)︂2

𝜎2
𝜃|𝑠

+

[︂
1 + 𝜓

𝛼
+ 𝑎1

(︂
1

𝜖
− 𝛾

)︂]︂
𝜅 log 𝜃𝑡 +

(︂
1

𝜖
− 𝛾

)︂
𝑓(𝑄𝑡)

]︃
(246)

By matching coefficients between Equations 244 and Equation 231, we obtain 𝑎0, 𝑎1,
and 𝑓 .

We first match coefficients on log 𝜃𝑡 to obtain an equation for 𝑎1:

𝑎1 =

[︀
1+𝜓
𝛼

+ 𝑎1
(︀
1
𝜖
− 𝛾
)︀]︀
𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

(247)

Under our maintained assumption that
1
𝜖
−𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

∈ [0, 1), as 𝜅 ∈ [0, 1], we have that
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this has a unique solution:

𝑎1 =

1+𝜓
𝛼
𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

1− ( 1
𝜖
−𝛾)𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

(248)

It is moreover positive.

Second, by collecting terms with 𝑄𝑡 we obtain an equation for 𝑓 :

𝑓(𝑄) =
1
𝜖
− 𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

𝑓(𝑄) +
𝜖

𝜖− 1
log

(︂
1 +𝑄

[︂
exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

}︂
− 1

]︂)︂
(249)

which has a unique solution as
1
𝜖
−𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

∈ [0, 1) and can be solved to yield:

𝑓(𝑄) =
𝜖
𝜖−1

1−
1
𝜖
−𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

log

(︂
1 +𝑄

[︂
exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

}︂
− 1

]︂)︂
(250)

where we observe that 𝛿𝑂𝑃 depends only on primitive parameters and 𝑎1, for which
we have already solved. Finally, by collecting constants, we obtain an equation for
𝑎0:

𝑎0 =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃
+

1 + 𝜓

𝛼
(𝜇𝛾 + (1− 𝜅)𝜇𝑃 )−

1

2

(︂
1 + 𝜓

𝛼

)︂2 (︀
𝜎2
𝜃|𝑠 + 𝜎2

𝜃

)︀
+

(︂
1

𝜖
− 𝛾

)︂
(𝑎0 + 𝑎1(1− 𝜅)𝜇𝑃 ) +

1

2
𝑎21

(︂
1

𝜖
− 𝛾

)︂2

𝜎2
𝜃|𝑠

]︃
+

1

2

𝜖− 1

𝜖
�̂�2

(251)

Solving this equation yields:

𝑎0 =
1

1−
1
𝜖
−𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︃
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃
+

1 + 𝜓

𝛼
(𝜇𝛾 + (1− 𝜅)𝜇𝑃 )−

1

2

(︂
1 + 𝜓

𝛼

)︂2 (︀
𝜎2
𝜃|𝑠 + 𝜎2

𝜃

)︀

+

(︂
1

𝜖
− 𝛾

)︂
𝑎1(1− 𝜅)𝜇𝑃 +

1

2
𝑎21

(︂
1

𝜖
− 𝛾

)︂2

𝜎2
𝜃|𝑠

]︃
+

1

2

𝜖− 1

𝜖
�̂�2

]︃
(252)

which we observe depends only on parameters, 𝑎1, and �̂�2. Moreover, �̂�2 depends only
on parameters and 𝑎1. Thus, given that we have solved for 𝑎1, we have now recovered
𝑎0, 𝑎1, and 𝑓 uniquely and verified that there exists a unique quasi-linear equilibrium.
Finally, to obtain the formula for the best reply of agents, simply substitute 𝑎0, 𝑎1,
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and 𝑓 into Equation 239 and label the coefficients as in the claim.

A.1.3 Proof of the Claims in Remark 1

We now prove the claims made in Remark 1. We have already shown that there exists
a unique quasi-linear equilibrium. More generally, we seek to rule out an equilibrium
of any other form. To do so, we show that there is a unique equilibrium when
fundamentals are bounded by some 𝑀 ∈ R, log 𝜃𝑡 ∈ [−𝑀,𝑀 ], log 𝛾𝑖 ∈ [−𝑀,𝑀 ],
log 𝜃𝑖𝑡 ∈ [−𝑀,𝑀 ], and 𝑒𝑖𝑡 ∈ [−𝑀,𝑀 ].

Lemma 7. When fundamentals are bounded, there exists a unique equilibrium

Proof. To this end, we can recast any equilibrium function log 𝑌 (𝜃, 𝑞) as one that
solves the fixed point in Equation 37. In the case where fundamentals are bounded,
this can be accomplished by demonstrating that the implied fixed-point operator is
a contraction by verifying Blackwell’s sufficient conditions. More formally, consider
the space of bounded, real-valued functions 𝒞 under the 𝐿∞-norm and consider the
operator 𝑉𝑀 : 𝒞 → 𝒞 given by:

𝑉𝑀(𝑔)(𝜃,𝑄) =
𝜖

𝜖− 1
logE(𝜃,𝑄)

[︃
exp

{︃
𝜖−1
𝜖

1+𝜓−𝛼
𝛼

+ 1
𝜖

(︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃

− logE(𝑠,𝑄)

[︂
exp

{︂
−1 + 𝜓

𝛼
log 𝜃𝑖𝑡

}︂]︂
+ logE(𝑠,𝑄)

[︂
exp

{︂(︂
1

𝜖
− 𝛾

)︂
𝑔

}︂]︂)︃}︃]︃
(253)

The following two conditions are sufficient for this operator to be a contraction: (i)
monotonicity: for all 𝑔, ℎ ∈ 𝒞 such that 𝑔 ≥ ℎ, we have that 𝑉𝑀(𝑔) ≥ 𝑉𝑀(ℎ) (ii)
discounting: there exists a parameter 𝑐 ∈ [0, 1) such that for all 𝑔 ∈ 𝒞 and 𝑎 ∈ R+

and 𝑉𝑀(𝑔+𝑎) ≤ 𝑉𝑀(𝑔)+ 𝑐𝑎. Thus, as the space of bounded functions under the 𝐿∞-
norm is a complete metric space, if Blackwell’s conditions hold, then by the Banach
fixed-point theorem, there exists a unique fixed point of the operator 𝑉𝑀 .

To complete this argument, we now verify (i) and (ii). To show monotonicity,
observe that 1

𝜖
− 𝛾 ≥ 0 as 𝜔 ≥ 0 and recall that 𝜖 > 1. Thus, we have that:

logE(𝑠,𝑄)

[︂
exp

{︂(︂
1

𝜖
− 𝛾

)︂
𝑔

}︂]︂
≥ logE(𝑠,𝑄)

[︂
exp

{︂(︂
1

𝜖
− 𝛾

)︂
ℎ

}︂]︂
(254)

for all (𝑠,𝑄). And so 𝑉𝑀(𝑔)(𝜃,𝑄) ≥ 𝑉𝑀(ℎ)(𝜃,𝑄) for all (𝜃,𝑄). To show discounting,
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observe that:

logE(𝑠,𝑄)

[︂
exp

{︂(︂
1

𝜖
− 𝛾

)︂
(𝑔 + 𝑎)

}︂]︂
= logE(𝑠,𝑄)

[︂
exp

{︂(︂
1

𝜖
− 𝛾

)︂
𝑔

}︂]︂
+

(︂
1

𝜖
− 𝛾

)︂
𝑎

(255)
And so:

𝑉𝑀(𝑔 + 𝑎)(𝜃,𝑄) =
𝜖

𝜖− 1
logE(𝜃,𝑄)

[︃
exp

{︃
𝜖−1
𝜖

1+𝜓−𝛼
𝛼

+ 1
𝜖

(︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃

− logE(𝑠,𝑄)

[︂
exp

{︂
−1 + 𝜓

𝛼
log 𝜃𝑖𝑡

}︂]︂
+ logE(𝑠,𝑄)

[︂
exp

{︂(︂
1

𝜖
− 𝛾

)︂
𝑔

}︂]︂
+

(︂
1

𝜖
− 𝛾

)︂
𝑎

)︃}︃]︃
= 𝑉𝑀(𝑔)(𝜃,𝑄) + 𝜔𝑎

(256)

where 𝜔 ∈ [0, 1) by assumption. Note that the modulus of contraction 𝜔 is pre-
cisely the claimed strategic complementarity parameter in Equation 24. This verifies
equilibrium uniqueness.

Away from the case with bounded fundamentals, the above strategy cannot be
used to demonstrate uniqueness. Even though the fixed-point operator still satisfies
Blackwell’s conditions, the relevant function space now becomes any 𝐿𝑝-space for
𝑝 ∈ (1,∞) and the sup-norm over such spaces can be infinite, making Blackwell’s
conditions insufficient for 𝑉 to be a contraction. In this case, we show that the unique
quasi-linear equilibrium in the unbounded fundamentals case is an appropriately-
defined 𝜀-equilibrium for any 𝜀 > 0. Let the unique quasi-linear equilibrium we have
guessed and verified be log 𝑌 *. We say that 𝑔 is a 𝜀-equilibrium if

||𝑔 − 𝑉𝑀(𝑔)||𝑝 < 𝜀 (257)

where || · ||𝑝 is the 𝐿𝑝-norm. In words, 𝑔 is a 𝜀-equilibrium if its distance from being a
fixed point is at most 𝜀. The following Lemma establishes that 𝑌 * is a 𝜀-equilibrium
for bounded fundamentals for any 𝜀 > 0 for some bound 𝑀 :

Lemma 8. For every 𝜀 > 0, there exists an 𝑀 ∈ N such that log 𝑌 * is a 𝜀-equilibrium.

Proof. Now extend from 𝒞, 𝑉𝑀 : 𝐿𝑝(R) → 𝐿𝑝(R) as in Equation 253. We ob-
serve that 𝑉𝑀 is continuous in the limit in 𝑀 in the sense that 𝑉𝑀(𝑔) → 𝑉 (𝑔)

as 𝑀 → ∞ for all 𝑔 ∈ 𝐿𝑝(R). This observation follows from noting that both
logE(𝑠,𝑄)

[︀
exp

{︀
−1+𝜓

𝛼
log 𝜃𝑖𝑡

}︀]︀
and logE(𝑠,𝑄)

[︀
exp

{︀(︀
1
𝜖
− 𝛾
)︀
𝑔
}︀]︀

are convergent point-
wise for 𝑀 → ∞ for all (𝑠,𝑄). In Proposition 1, we showed that 𝑉 (log 𝑌 *) = log 𝑌 *.
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Thus, we have that: 𝑉𝑀(log 𝑌 *) → 𝑉 (log 𝑌 *) = log 𝑌 *, which implies that:

lim
𝑀→∞

|| log 𝑌 * − 𝑉𝑀(log 𝑌 *)||𝑝 = 0 (258)

which implies that for every 𝜀 > 0, there exists a �̄� ∈ N such that:

|| log 𝑌 * − 𝑉𝑀(log 𝑌 *)||𝑝 < 𝜀 ∀𝑀 ∈ N :𝑀 > �̄� (259)

Completing the proof.

A.1.4 Proof of Corollary 1

Proof. From Equation 239, we may express:

log 𝑥𝑖𝑡 = cons + 𝑏3𝑓(𝑄𝑡) +
1 + 𝜓

𝛼
(log 𝛾𝑖 + 𝜅𝑠𝑖𝑡) +

(︂
1

𝜖
− 𝛾

)︂ 1+𝜓
𝛼
𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

1− ( 1
𝜖
−𝛾)𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

𝜅𝑠𝑖𝑡

1
1+𝜓−𝛼

𝛼
+ 1

𝜖

⎡⎢⎣1 + 𝜓

𝛼
+

(︂
1

𝜖
− 𝛾

)︂ 1+𝜓
𝛼
𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

1− ( 1
𝜖
−𝛾)𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

⎤⎥⎦ (1− 𝜅)(𝜇𝑂 − 𝜇𝑃 )𝜆𝑖𝑡

(260)

We substitute this expression into log𝐿𝑖𝑡 =
1
𝛼
(log 𝑥𝑖𝑡 − log 𝜃𝑖𝑡) to write

log𝐿𝑖𝑡 = − 1

𝛼
log 𝜃𝑖𝑡 + cons + 𝑐4𝑓(𝑄𝑡) + cons𝑖

+
1

𝛼

⎡⎢⎣1 + 𝜓

𝛼
+

(︂
1

𝜖
− 𝛾

)︂ 1+𝜓
𝛼
𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

1− ( 1
𝜖
−𝛾)𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

⎤⎥⎦𝜅 log 𝜃𝑡
+

1

𝛼

1
1+𝜓−𝛼

𝛼
+ 1

𝜖

⎡⎢⎣1 + 𝜓

𝛼
+

(︂
1

𝜖
− 𝛾

)︂ 1+𝜓
𝛼
𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

1− ( 1
𝜖
−𝛾)𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

⎤⎥⎦ (1− 𝜅)(𝜇𝑂 − 𝜇𝑃 )𝜆𝑖𝑡

+ 𝜉′𝑖𝑡

(261)

where 𝜉′𝑖𝑡 ∼ 𝑁(0, 𝜎2
𝜉 ) and IID. Comparing the above with the definition of 𝛼𝛿𝑂𝑃

in Equation 245, we see that the coefficient on 𝜆𝑖𝑡 in the above expression is 𝛿𝑂𝑃 .
Subtracting lagged labor from both sides gives the claimed regression equation. We
finally observe from Equation 250 that 𝑓(𝑄) depends on (𝜖, 𝛾, 𝜓, 𝛼) and 𝛿𝑂𝑃 . Hence,
given (𝜖, 𝛾, 𝜓, 𝛼), 𝑓 is identified uniquely from the studied regression estimate.
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A.1.5 Proof of Corollary 2

Proof. This is immediate by substituting Equation 38 into Equation 28.

A.1.6 Proof of Proposition 2

Proof. We prove the three claims in sequence.

(1) The map 𝑇𝜃 : [0, 1] → [0, 1] is continuous for all 𝜃 ∈ Θ as 𝑓 , 𝑃𝑂 and 𝑃𝑃 are
continuous functions. Moreover, it maps a convex and compact set to itself. Thus,
by Brouwer’s fixed point theorem, there exists a 𝑄*

𝜃 such that 𝑄*
𝜃 = 𝑇𝜃(𝑄

*
𝜃) for all

𝜃 ∈ Θ.

(2) To characterize the existence of extremal steady states, observe that 𝑄 = 1

is a steady state for 𝜃 if and only if 𝑇𝜃(1) = 𝑃𝑂(𝑎𝑜 + 𝑎1 log 𝜃 + 𝑓(1), 1, 0) = 1 and
𝑄 = 0 is a steady state for 𝜃 if and only if 𝑇𝜃(0) = 𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃, 0, 0) = 0. Thus,
𝑄 = 1 is a steady state if and only if 𝑃−1

𝑂 (1; 1) ≤ 𝑎0 + 𝑎1 log 𝜃 + 𝑓(1) and 𝑄 = 0 is
a steady state if and only if 𝑃−1

𝑃 (0; 0) ≥ 𝑎0 + 𝑎1 log 𝜃. To obtain the result as stated,
we re-arrange these inequalities in terms of log 𝜃 and exponentiate.

(3) To analyze the stability of the extremal steady states, observe that if 𝑇 ′
𝜃(𝑄

*) <

1 at a steady state 𝑄*, then 𝑄* is stable. When it exists (which it does almost
everywhere), we have that:

𝑇 ′
𝜃(𝑄) = 𝑃𝑂(𝑎0 + 𝑎1 log 𝜃 + 𝑓(𝑄), 𝑄, 0)− 𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃 + 𝑓(𝑄), 𝑄, 0)

+𝑄
d

d𝑄
𝑃𝑂(𝑎0 + 𝑎1 log 𝜃 + 𝑓(𝑄), 𝑄, 0) + (1−𝑄)

d

d𝑄
𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃 + 𝑓(𝑄), 𝑄, 0)

(262)

Thus, for 𝜃 < 𝜃𝑃 and 𝑄 = 0:

𝑇 ′
𝜃(0) = 𝑃𝑂(𝑎0 + 𝑎1 log 𝜃, 0, 0)− 𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃, 0, 0)

+
d

d𝑄
𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃 + 𝑓(𝑄), 𝑄, 0) |𝑄=0

= 𝑃𝑂(𝑎0 + 𝑎1 log 𝜃, 0, 0)

(263)

where the second equality follows by observing that all of 𝑃𝑃 , 𝜕𝑃𝑃
𝜕 log 𝑌

, and 𝜕𝑃𝑃
𝜕𝑄

are
zero for 𝜃 < 𝜃𝑃 . Thus, we have that 𝑇 ′

𝜃(0) < 1 when 𝑃𝑂(𝑎0 + 𝑎1 log 𝜃, 0, 0) < 1.
Moreover, for 𝜃 < 𝜃𝑃 , we have that: 𝑃𝑂(𝑎0+ 𝑎1 log 𝜃, 0, 0) ≤ 𝑃𝑂(𝑎0+ 𝑎1 log 𝜃𝑃 , 0, 0) =

𝑃𝑂(𝑃
−1
𝑃 (0; 0), 0, 0). Thus, a sufficient condition for 𝑇 ′

𝜃(0) < 1 for 𝜃 < 𝜃𝑃 is that
𝑃𝑂(𝑃

−1
𝑃 (0; 0), 0, 0) < 1.
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For 𝜃 > 𝜃𝑂 and 𝑄 = 1, we have that:

𝑇 ′
𝜃(1) = 𝑃𝑂(𝑎0 + 𝑎1 log 𝜃 + 𝑓(1), 1, 0)− 𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃 + 𝑓(1), 1, 0)

+
d

d𝑄
𝑃𝑂(𝑎0 + 𝑎1 log 𝜃 + 𝑓(1), 1, 0) |𝑄=1

= 1− 𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃 + 𝑓(1), 1, 0)

(264)

where the second equality follows again by observing that 𝑃𝑂 = 1 and both 𝜕𝑃𝑂
𝜕 log 𝑌

𝜕𝑃𝑂
𝜕𝑄

are zero for 𝜃 > 𝜃𝑂. Hence, we have that 𝑇 ′
𝜃(1) < 1 when 𝑃𝑃 (𝑎0+𝑎1 log 𝜃+𝑓(1), 1, 0) >

0. For 𝜃 > 𝜃𝑂 we have that 𝑃𝑃 (𝑎0+𝑎1 log 𝜃+𝑓(1), 1, 0) ≥ 𝑃𝑃 (𝑎0+𝑎1 log 𝜃𝑂+𝑓(1), 1) =

𝑃𝑃 (𝑃
−1
𝑂 (1, 1), 1, 0). Thus, a sufficient condition for 𝑇 ′

𝜃(1) < 1 for 𝜃 > 𝜃𝑂 is that
𝑃𝑃 (𝑃

−1
𝑂 (1, 1), 1, 0) > 0.

A.1.7 Proof of Corollary 3

Proof. By Proposition 2, the extremal steady states coexist if and only if 𝜃 ∈ [𝜃𝑂, 𝜃𝑃 ],
which is non-empty if and only if 𝜃𝑂 ≤ 𝜃𝑃 which is equivalent to 𝑃−1

𝑂 (1; 1)−𝑃−1
𝑃 (0; 0) ≤

𝑓(1).

A.1.8 Proof of Lemma 1

Proof. Fix 𝜃 ∈ Θ. We first study the SSC-A case. By SSC-A of 𝑇 we have that
there exists �̂�𝜃 ∈ [0, 1] such that 𝑇𝜃(𝑄) > 𝑄 for all 𝑄 ∈ (0, �̂�𝜃) and 𝑇𝜃(𝑄) < 𝑄

for all 𝑄 ∈ (�̂�𝜃, 1). As 𝑇𝜃 is continuous we have that 𝑇𝜃(�̂�𝜃) = �̂�𝜃. Consider now
some 𝑄0 ∈ (0, 1) such that 𝑄0 ̸= �̂�𝜃. We have that 𝑇𝜃(𝑄0) > �̂�𝜃 if 𝑄0 < �̂�𝜃 and
𝑇𝜃(𝑄0) < �̂�𝜃 if 𝑄0 > �̂�𝜃. Hence, there exists at most one 𝑄* ∈ (0, 1) such that
𝑇𝜃(𝑄

*) = 𝑄*. Thus, there exist at most three steady states 𝑄* = 0, 𝑄* = �̂�𝜃, and
𝑄* = 1.

To find the basins of attraction of these steady states, fix 𝑄0 ∈ (0, 1) and consider
the sequence {𝑇 𝑛𝜃 (𝑄0)}𝑛∈N. For a steady state 𝑄*, its basin of attraction is:

ℬ𝜃(𝑄*) =
{︁
𝑄0 ∈ [0, 1] : lim

𝑛→∞
𝑇 𝑛𝜃 (𝑄0) = 𝑄*

}︁
(265)

First, consider 𝑄0 ∈ (0, �̂�𝜃). We now show by induction that 𝑇 𝑛𝜃 (𝑄0) ≥ 𝑇 𝑛−1
𝜃 (𝑄0)

for all 𝑛 ∈ N. Consider 𝑛 = 1. We have that 𝑇𝜃(𝑄0) > 𝑄0 as 𝑇 is SSC-A and
𝑄0 < �̂�𝜃. Suppose now that 𝑇 𝑛𝜃 (𝑄0) ≥ 𝑇 𝑛−1

𝜃 (𝑄0). We have that:

𝑇 𝑛+1
𝜃 (𝑄0) = 𝑇𝜃 ∘ 𝑇 𝑛𝜃 (𝑄0) ≥ 𝑇𝜃 ∘ 𝑇 𝑛−1

𝜃 (𝑄0) = 𝑇 𝑛𝜃 (𝑄0) (266)
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by monotonicity of 𝑇𝜃, which proves the inductive hypothesis. Observe moreover that
the sequence {𝑇 𝑛𝜃 (𝑄0)}𝑛∈N is bounded as 𝑇 𝑛𝜃 (𝑄0) ∈ [0, 1] for all 𝑛 ∈ N. Hence, by
the monotone convergence theorem, lim𝑛→∞ 𝑇 𝑛𝜃 (𝑄0) exists. Toward a contradiction,
suppose that 𝑄∞

0 = lim𝑛→∞ 𝑇 𝑛𝜃 (𝑄0) > �̂�𝜃. By SSC-A of 𝑇 we have that 𝑇𝜃(𝑄∞
0 ) >

𝑄∞
0 , but this contradicts that 𝑄∞

0 = lim𝑛→∞ 𝑇 𝑛𝜃 (𝑄0). Thus, we have that 𝑄∞
0 = �̂�𝜃.

Hence, (0, �̂�𝜃) ⊆ ℬ𝜃(�̂�𝜃). Second, consider 𝑄0 = �̂�𝜃. We have that 𝑇𝜃(�̂�𝜃) = �̂�𝜃.
Thus, 𝑄∞

0 = �̂�𝜃. Hence, �̂�𝜃 ∈ ℬ𝜃(�̂�𝜃). Third, consider 𝑄0 ∈ (�̂�𝜃, 1). Following the
arguments of the first part, we have that (�̂�𝜃, 1) ⊆ ℬ𝜃(�̂�𝜃). Thus, (0, 1) ⊆ ℬ𝜃(�̂�𝜃).
Moreover, if 𝑄 = 0 or 𝑄 = 1 are steady states, they can only have basins of attraction
in [0, 1] ∖ ℬ𝜃(�̂�𝜃), which implies that they are unstable and can only have basins of
attraction {0} and {1}.

The analysis of the SSC-B case follows similarly. By SSC-B of 𝑇 we have that
there exists �̂�𝜃 ∈ [0, 1] such that 𝑇𝜃(𝑄) > 𝑄 for all 𝑄 ∈ (�̂�𝜃, 1) and 𝑇𝜃(𝑄) < 𝑄

for all 𝑄 ∈ (0, �̂�𝜃). As 𝑇𝜃 is continuous, we have that 𝑇𝜃(�̂�𝜃) = �̂�𝜃. Consider now
some 𝑄0 ∈ (0, 1) such that 𝑄0 ̸= �̂�𝜃. Observe that 𝑇𝜃(𝑄0) < �̂�𝜃 if 𝑄0 < �̂�𝜃 and
𝑇𝜃(𝑄0) > �̂�𝜃 if 𝑄0 > �̂�𝜃. Hence, there exists at most one 𝑄* ∈ (0, 1) such that
𝑇𝜃(𝑄

*) = 𝑄*. Thus, there exist at most three steady states 𝑄* = 0, 𝑄* = �̂�𝜃, and
𝑄* = 1.

To find the basins of attraction of these steady states, first consider 𝑄0 ∈ (0, �̂�𝜃).
We now show by induction that 𝑇 𝑛𝜃 (𝑄0) ≤ 𝑇 𝑛−1

𝜃 (𝑄0) for all 𝑛 ∈ N. Consider 𝑛 = 1.
We have that 𝑇𝜃(𝑄0) < 𝑄0 as 𝑇 is SSC-B and 𝑄0 < �̂�𝜃. Suppose now that 𝑇 𝑛𝜃 (𝑄0) ≤
𝑇 𝑛−1
𝜃 (𝑄0). We have that:

𝑇 𝑛+1
𝜃 (𝑄0) = 𝑇𝜃 ∘ 𝑇 𝑛𝜃 (𝑄0) ≤ 𝑇𝜃 ∘ 𝑇 𝑛−1

𝜃 (𝑄0) = 𝑇 𝑛𝜃 (𝑄0) (267)

by monotonicity of 𝑇𝜃, which proves the inductive hypothesis. Observe moreover
that the sequence {𝑇 𝑛𝜃 (𝑄0)}𝑛∈N is bounded as 𝑇 𝑛𝜃 (𝑄0) ∈ [0, 1] for all 𝑛 ∈ N. Hence,
by the monotone convergence theorem, lim𝑛→∞ 𝑇 𝑛𝜃 (𝑄0) exists. Finally, toward a
contradiction, suppose that 𝑄∞

0 = lim𝑛→∞ 𝑇 𝑛𝜃 (𝑄0) > 0. By SSC-B of 𝑇 we have
that 𝑇𝜃(𝑄∞

0 ) < 𝑄∞
0 , but this contradicts that 𝑄∞

0 = lim𝑛→∞ 𝑇 𝑛𝜃 (𝑄0). Thus, we have
that 𝑄∞

0 = 0. Hence, [0, �̂�𝜃) ⊆ ℬ𝜃(0). Second, consider 𝑄0 = �̂�𝜃. We have that
𝑇𝜃(�̂�𝜃) = �̂�𝜃. Thus, 𝑄∞

0 = �̂�𝜃. Hence �̂�𝜃 ∈ ℬ𝜃(�̂�𝜃). Third, consider 𝑄0 ∈ (�̂�𝜃, 1].
By the exact arguments of the first part, we have that (�̂�𝜃, 1] ⊆ ℬ𝜃(1). Observing
ℬ𝜃(0), ℬ𝜃(�̂�𝜃), and ℬ𝜃(1) are disjoint completes the proof.
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A.1.9 Proof of Proposition 3

Proof. By Proposition 1 and substituting the form of the shock process from Equation
47, we obtain the formula for the output IRF. For the fraction of optimists, we see
that:

𝑄2 = �̂�1𝑃𝑂(𝑎0 + 𝑎1 log 𝜃 + 𝑓(�̂�1), �̂�1, 0) + (1− �̂�1)𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃 + 𝑓(�̂�1), �̂�1, 0)

> �̂�1𝑃𝑂(𝑎0 + 𝑓(�̂�1), �̂�1, 0) + (1− �̂�1)𝑃𝑃 (𝑎0 + 𝑓(�̂�1), �̂�1, 0) = �̂�1

(268)

and 𝑄𝑡 = 𝑇1(log 𝑌𝑡−1, 𝑄𝑡−1) for 𝑡 ≥ 3 by iterating forward. That 𝑄𝑡 monotonically
declines to �̂�1 follows from Lemma 1 as we are in the SSC-A case. The hump shape
is obtained if log 𝑌1 ≤ log 𝑌2. This corresponds to

log 𝑌1 = 𝑎0 + 𝑎1 log 𝜃 + 𝑓(�̂�1) ≤ 𝑎0 + 𝑓(𝑄2) = log 𝑌2 (269)

which rearranges to the desired expression.

A.1.10 Proof of Proposition 4

Proof. We first derive the IRF functions. The formula for the output IRF follows
Proposition 3. For the IRF for the fraction of optimists, we simply observe that
𝑄0 = 𝑄1 = 0 and 𝑄2 = 𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃, 0, 0), and that 𝑄𝑡 = 𝑇1(𝑄𝑡−1) for 𝑡 ≥ 3 by
iterating forward.

We now describe the properties of the IRFs as a function of the size of the initial
shock 𝜃. First, observe that 𝑄2 = 𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃, 0, 0). Thus, we have that 𝑄2 = 0

if and only if 𝑃−1
𝑃 (0; 0) ≥ 𝑎0 + 𝑎1 log 𝜃 which holds if and only if 𝜃 ≤ 𝜃𝑃 . For any

𝜃 > 𝜃𝑃 it follows that 𝑄2 > 0. As we lie in the SSC class, by Lemma 1, we have
that the steady states 𝑄 = 0, 𝑄 = 1, and 𝑄 = �̂�1 have basins of attraction given by
[0, �̂�1), (�̂�1, 1], {�̂�1}. Thus, if 𝑄2 < �̂�1, we have monotone convergence of 𝑄𝑡 to 0.
If 𝑄2 = �̂�1, then 𝑄𝑡 = �̂�𝑡 for all 𝑡 ∈ N. If 𝑄2 > �̂�1, we have monotone convergence
of 𝑄𝑡 to 1. Moreover, the threshold for 𝜃 such that 𝑄2 = �̂�* is exp

{︁
𝑃−1
𝑃 (�̂�1;0)−𝑎0

𝑎1

}︁
.

Finally, to find the condition such that the IRF is hump-shaped, we observe that
this occurs if and only if 𝑓(𝑄2) > 𝑎1 log 𝜃 as 𝑄𝑡 is monotonically decreasing for 𝑡 ≥ 2,
which is precisely the claimed condition.

A.1.11 Proof of Proposition 5

Proof. We prove this result by first constructing fictitious processes for optimism
that bound above and below the true optimism process for all realizations of {𝜃𝑡}𝑡∈N
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before the stopping time. We can then use this to bound the stopping times’ distri-
butions in the sense of first-order stochastic dominance and use this fact to bound
the expectations.

First, consider the case where we seek to bound 𝜏𝑃𝑂 = min{𝑡 ∈ N : 𝑄𝑡 = 1, 𝑄0 =

0}. In the model, we have that 𝑄𝑡+1 = 𝑇 (𝑄𝑡, 𝜈𝑡). Fix a path of fundamentals and
narrative shocks {𝜈𝑡}𝑡∈N = {𝜃𝑡, 𝜀𝑡}𝑡∈N and define the fictitious 𝑄 process as:

𝑄𝑡+1 = I[𝑇 (𝑄𝑡, 𝜈𝑡) = 1] (270)

with 𝑄0 = 0. We prove by induction that 𝑄𝑡 ≤ 𝑄𝑡 for all 𝑡 ∈ N. Consider first the
base case that 𝑡 = 1:

𝑄1 = I[𝑇 (0, 𝜈0) = 1] ≤ 𝑇 (0, 𝜈0) = 𝑄1 (271)

Toward the inductive hypothesis, suppose that 𝑄𝑡−1 ≤ 𝑄𝑡−1. Then we have that:

𝑄𝑡 = I[𝑇 (𝑄𝑡−1, 𝜈𝑡−1) = 1] ≤ I[𝑇 (𝑄𝑡−1, 𝜈𝑡−1) = 1] ≤ 𝑇 (𝑄𝑡−1, 𝜈𝑡−1) = 𝑄𝑡 (272)

where the first inequality follows by the property that 𝑇 (·, 𝜈) is a monotone increasing
function.

As 𝑄𝑡 ≤ 𝑄𝑡 for all 𝑡 ∈ N, we have that:

𝜏𝑃𝑂 = min{𝑡 ∈ N : 𝑄𝑡 = 1, 𝑄0 = 0} ≥ min{𝑡 ∈ N : 𝑄𝑡 = 1, 𝑄0 = 0} = 𝜏𝑃𝑂 (273)

Else, we would have at 𝜏𝑃𝑂 that 𝑄𝜏𝑃𝑂 < 𝑄𝜏𝑃𝑂
, which is a contradiction.

We now have a pathwise upper bound on 𝜏𝑃𝑂. We now characterize the distribu-
tion of the bound. Observe that the possible sample paths for {𝑄𝑡}𝑡∈N until stopping
are given by the set:

𝒢𝑃𝑂 = {(0(𝑛−1), 1)} : 𝑛 ≥ 1} (274)

Moreover, conditional on 𝑄𝑡−1 = 0, the distribution of 𝑄𝑡 is independent of {𝜈𝑠}𝑠≤𝑡−1.
Thus, the fictitious stopping time 𝜏𝑃𝑂 has a geometric distribution with parameter
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given by P[𝑄𝑡+1 = 1|𝑄𝑡 = 0]. This parameter is given by:

P[𝑄𝑡+1 = 1|𝑄𝑡 = 0] = P [𝑃𝑃 (𝑎0 + 𝑎1 log 𝜃𝑡, 0, 𝜀𝑡) = 1]

= P

[︃
𝜃𝑡 ≥ exp

{︃
𝑃 †
𝑃 (1; 0, 𝜀𝑡)− 𝑎0

𝑎1

}︃]︃

= 1− E𝐺

[︃
𝐻

(︃
exp

{︃
𝑃 †
𝑃 (1; 0, 𝜀)− 𝑎0

𝑎1

}︃)︃]︃ (275)

Thus, we have established a stronger result and provided a distributional bound on
the stopping time:

𝜏𝑃𝑂 ≺𝐹𝑂𝑆𝐷 𝜏𝑃𝑂 ∼ Geo

(︃
1− E𝐺

[︃
𝐻

(︃
exp

{︃
𝑃 †
𝑃 (1; 0, 𝜀)− 𝑎0

𝑎1

}︃)︃]︃)︃
(276)

An immediate corollary is that:

𝑇𝑃𝑂 = E[𝜏𝑃𝑂] ≤ E[𝜏𝑃𝑂] =
1

1− E𝐺
[︁
𝐻
(︁
exp

{︁
𝑃 †
𝑃 (1;0,𝜀)−𝑎0

𝑎1

}︁)︁]︁ (277)

We can apply appropriately adapted arguments for the other case, where we now
define:

𝑄
𝑡+1

= I[𝑇 (𝑄
𝑡
, 𝜈𝑡) ̸= 0] (278)

with 𝑄
0
= 1. In this case, by an analogous induction have that 𝑄

𝑡
≥ 𝑄𝑡 for all 𝑡 ∈ N

for all sequences {𝜈𝑡}𝑡∈N. And so, we have that if 𝑄
𝑡

has reached 0 then so too has
𝑄𝑡. The possible sample paths in this case are:

𝒢𝑂𝑃 = {(1(𝑛−1), 0)} : 𝑛 ≥ 1} (279)

So again the stopping time has a geometric distribution, this time with parameter:

P[𝑄𝑡+1 = 0|𝑄𝑡 = 1] = P

[︃
𝜃𝑡 ≤ exp

{︃
𝑃 †
𝑂(0; 1, 𝜀𝑡)− 𝑎0 − 𝑓(1)

𝑎1

}︃]︃

= E𝐺

[︃
𝐻

(︃
exp

{︃
𝑃 †
𝑂(0; 1, 𝜀)− 𝑎0 − 𝑓(1)

𝑎1

}︃)︃]︃ (280)

And so we have:
𝑇𝑂𝑃 ≤ 1

E𝐺
[︁
𝐻
(︁
exp

{︁
𝑃 †
𝑂(0;1,𝜀)−𝑎0−𝑓(1)

𝑎1

}︁)︁]︁ (281)

281



It remains to show that these bounds are tight. To do so, we derive a law 𝐻 such
that 𝑄𝑡 = 𝑄𝑡 = 𝑄

𝑡
for all 𝑡 ∈ N. Concretely, define the set:

Θ* =

(︃
−∞, exp

{︃
𝑃 †
𝑂(0; 1, 0)− 𝑎0 − 𝑓(1)

𝑎1

}︃]︃
∪
[︃
exp

{︃
𝑃 †
𝑃 (1; 0, 0)− 𝑎0

𝑎1

}︃
,∞
)︃

(282)

and suppose that 𝜃 takes values only in this set, where the two sub-intervals are
disjoint as 𝑃 †

𝑂(0; 1, 0) − 𝑃 †
𝑃 (1; 0, 0) ≤ 𝑓(1). Moreover, suppose that narrative shocks

equal zero with probability one. In this case, starting from 𝑄𝑡 = 1, the only possible
values for 𝑄𝑡+1 are zero and one. Moreover, starting from 𝑄𝑡 = 0, the only possible
values for 𝑄𝑡+1 are zero and one. Thus, in either case, 𝑄𝑡 = 𝑄𝑡 = 𝑄

𝑡
pathwise and

𝑇𝑂𝑃 = 𝑇 *
𝑂𝑃 and 𝑇𝑃𝑂 = 𝑇 *

𝑃𝑂. It is worth noting that such a distribution can be
obtained by considering a limit of normal-mixture distributions. Concretely, suppose
that 𝐻 is derived as a mixture of two normal distributions 𝑁(𝜇𝐴, 𝜎

2) and 𝑁(𝜇𝐵, 𝜎
2)

for 𝜇𝐴 < exp
{︁
𝑃 †
𝑂(0;1,0)−𝑎0−𝑓(1)

𝑎1

}︁
and 𝜇𝐵 > exp

{︁
𝑃 †
𝑃 (1;0,0)−𝑎0

𝑎1

}︁
. Taking the limit as

𝜎 → 0, the support of 𝐻 converges to being contained within Θ*.
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A.2 Model Extensions
This appendix covers several model extensions. First, we study equilibrium dynamics
under a benchmark model of Bayesian model updating and contrast these predictions
with those obtained in our main analysis (A.2.1). Second, we theoretically character-
ize and quantify the normative implications of narrative fluctuations (A.2.2). Third,
fourth, fifth, and sixth we extend the baseline model to respectively incorporate a
continuum of different levels of optimism (A.2.3), narratives about idiosyncratic fun-
damentals (A.2.4), multi-dimensional narratives and persistent fundamentals (A.2.5),
and narrative updating that depends on idiosyncratic fundamentals (A.2.6). In each
case, we characterize equilibrium dynamics and show how our main theoretical in-
sights extend. Seventh, we show how endogenous cycles and chaotic dynamics can
obtain when agents are contrarian and implement an empirical test for their presence
(A.2.7). Eighth, we highlight the role of higher-order beliefs and show how our analy-
sis could generalize to other settings by deriving a similar law of motion for optimism
in abstract, linear beauty contest games à la Morris and Shin (2002) (A.2.8). Finally,
we sketch an extension of our abstract framework to allow for persistent idiosyncratic
states and adjustment costs and discuss the implications for our measurement (A.2.9).

A.2.1 Comparison to the Bayesian Benchmark

Consider an alternative model in which each agent 𝑖 initially believes the optimistic
model is correct with probability 𝜆𝑖0 ∈ (0, 1), and subsequently updates this prob-
ability by observing aggregate output and aggregate optimism and applying Bayes’
rule under rational expectations. Formally, this corresponds to the following law of
motion for 𝑄𝑡:

𝑄𝑡+1 =

∫︁
[0,1]

P𝑖[𝜇 = 𝜇𝑂|{log 𝑌𝑗, 𝑄𝑗}𝑡𝑗=0] d𝑖 (283)

where P𝑖[𝜇 = 𝜇0|∅] = 𝜆𝑖0 for some 𝜆𝑖0 ∈ (0, 1) for all 𝑖 ∈ [0, 1], and conditional prob-
abilities are computed under rational expectations with knowledge of {𝜆𝑖0}𝑖∈[0,1]. We
define the log-odds ratio of an agent’s belief as Ω𝑖𝑡 = log 𝜆𝑖𝑡

1−𝜆𝑖𝑡 . The following Propo-
sition characterizes the dynamics of agents’ subjective models under the Bayesian
benchmark:

Proposition 27 (Dynamics under the Bayesian Benchmark). Each agent’s log-odds
ratio follows a random walk with drift, or Ω𝑖,𝑡+1 = Ω𝑖𝑡+𝑎+𝜉𝑡, where 𝑎 = E𝐻

[︁
(log 𝜃𝑡−𝜇𝑃 )2−(log 𝜃𝑡−𝜇𝑂)2

𝜎2

]︁
and 𝜉𝑡 is an IID, mean-zero random variable. The economy converges almost surely
to either extreme optimism (𝑎 > 0) or extreme pessimism (𝑎 < 0). The dynamics of
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the economy are asymptotically described by:

log 𝑌𝑡 =

⎧⎨⎩𝑎0 + 𝑎1 log 𝜃𝑡 if 𝑎 < 0,

𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑓(1) if 𝑎 > 0.
(284)

Thus, the economy does not feature steady state multiplicity, hump-shaped or discon-
tinuous IRFs, or the possibility for boom-bust cycles.

Proof. The equilibrium Characterization of Proposition 1 still holds. Moreover, 𝑄0

is known to all agents. Thus, they can identify 𝜃0 as:

𝜃0 =
log 𝑌0 − 𝑎0 − 𝑓(𝑄0)

𝑎1
(285)

Thus, we have that 𝜆𝑖1 = P[𝜇 = 𝜇𝑂|𝜃0, 𝜆𝑖0]. Moreover, all agents know that 𝑄1 =∫︀
[0,1]

𝜆𝑖1 d𝑖. Thus, agents can sequentially identify 𝜃𝑡 by observing only {𝑌𝑗}𝑗≤𝑡 (and
not {𝑄𝑗}𝑗≤𝑡) by computing:

𝜃𝑡 =
log 𝑌𝑡 − 𝑎0 − 𝑓(𝑄𝑡)

𝑎1
(286)

Thus, we can describe the evolution of agents’ beliefs by computing:

𝜆𝑖,𝑡+1 = P𝑖[𝜇 = 𝜇𝑂|{𝜃𝑗}𝑡𝑗=1] = 𝜆𝑖,𝑡+1 = P𝑖[𝜇 = 𝜇𝑂|{𝑌𝑗}𝑡𝑗=1] (287)

By application of Bayes rule, we obtain:

𝜆𝑖,𝑡+1 = P[𝜇 = 𝜇𝑂|𝜃𝑡, 𝜆𝑖,𝑡] =
𝑓𝑂(𝜃𝑡)𝜆𝑖,𝑡

𝑓𝑂(𝜃𝑡)𝜆𝑖,𝑡 + 𝑓𝑃 (𝜃𝑡)(1− 𝜆𝑖,𝑡)
(288)

which implies that:

𝜆𝑖,𝑡+1

1− 𝜆𝑖,𝑡+1

=
𝑓(log 𝜃𝑡|𝜇 = 𝜇𝑂)

𝑓(log 𝜃𝑡|𝜇 = 𝜇𝑃 )

𝜆𝑖,𝑡
1− 𝜆𝑖,𝑡

= exp

{︂
(log 𝜃𝑡 − 𝜇𝑃 )

2 − (log 𝜃𝑡 − 𝜇𝑂)
2

𝜎2

}︂
𝜆𝑖,𝑡

1− 𝜆𝑖,𝑡

(289)

Defining Ω𝑖𝑡 = log
𝜆𝑖,𝑡

1−𝜆𝑖,𝑡 and 𝑎 = E𝐻
[︁
(log 𝜃𝑡−𝜇𝑃 )2−(log 𝜃𝑡−𝜇𝑂)2

𝜎2

]︁
and 𝜉𝑡 = (log 𝜃𝑡−𝜇𝑃 )2−(log 𝜃𝑡−𝜇𝑂)2

𝜎2 −
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𝑎, we then have that:

Ω𝑖,𝑡+1 = Ω𝑖,𝑡 +
(log 𝜃𝑡 − 𝜇𝑃 )

2 − (log 𝜃𝑡 − 𝜇𝑂)
2

𝜎2

= Ω𝑖𝑡 + 𝑎+ 𝜉𝑡

(290)

which is a random walk with drift, with the drift and stochastic increment claimed
in the statement. Iterating, dividing by 𝑡, and applying the law of large numbers, we
obtain:

Ω𝑖,𝑡

𝑡
=

1

𝑡
Ω𝑖,0 +

𝑡− 1

𝑡
𝑎+

1

𝑡

𝑡∑︁
𝑖=1

𝜉𝑖 →𝑎.𝑠. 𝑎 (291)

Hence, almost surely, we have that 𝑄𝑡 → 1 if 𝑎 > 0 and 𝑄𝑡 → 0 if 𝑎 < 0.

Hence, the dynamics are asymptotically described by Proposition 1 with 𝑄𝑡 = 1

if 𝑎 > 0 and 𝑄𝑡 = 0 if 𝑎 < 0. The resulting properties for output follow immediately
from combining this characterization for 𝑄𝑡 with the characterization in our main
analysis of equilibrium output conditional on optimism and fundamentals (Proposi-
tion 1), which continues to hold in the model of this appendix.

The optimist fraction 𝑄 converges to either 0 or 1 in the long run because one
model is unambiguously better-fitting, and this will be revealed with infinite data.
Moreover, the log-odds ratio converges linearly and so the odds ratio in favor of the
better fitting model converges exponentially quickly. Thus the Bayesian benchmark
model makes a prediction that is at odds with our finding of cyclical dynamics for
aggregate optimism (Figure 1-1), and moreover, in the long run, rules out the features
of macroeconomic dynamics that we derive in Section 1.6 as consequences of the
endogenous evolution of narrative optimism.

A.2.2 Welfare Implications

In this appendix, we derive the normative implications of narratives for the economy.

Theory The following result characterizes welfare along any path for the fraction of
optimists in the population and the conditions under which a steady state of extreme
optimism is preferred to one of extreme pessimism:

Proposition 28 (Narratives and Welfare). For any path of aggregate optimism Q =
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{𝑄𝑡}∞𝑡=0, aggregate welfare is given by

𝒰(Q) = 𝑈*
𝐶

∞∑︁
𝑡=0

𝛽𝑡 exp {(1− 𝛾)𝑓(𝑄𝑡)}

− 𝑈*
𝐿

∞∑︁
𝑡=0

𝛽𝑡 (𝑄𝑡 exp{(1 + 𝜓)𝑑2}+ (1−𝑄𝑡)) exp {(1 + 𝜓)𝑑3𝑓(𝑄𝑡)}
(292)

for some positive constants 𝑈*
𝐶, 𝑈*

𝐿, 𝑑2 and 𝑑3 that are provided in the proof of the
result. Thus, there is higher welfare in an optimistic steady state than in a pessimistic
steady state if and only if

𝑈*
𝐶

𝑈*
𝐿

× exp {(1− 𝛾)𝑓(1)} − 1

exp {(1 + 𝜓)(𝑑2 + 𝑑3𝑓(1))} − 1
> 1 (293)

Moreover, when the pessimistic narrative is correctly specified, extreme optimism is
welfare-equivalent to an ad valorem price subsidy for intermediate goods producers of:

𝜏 * = exp

{︂
(1− 𝜔)

(︂
1 + 𝜓 − 𝛼

𝛼
+

1

𝜖

)︂
𝑓(1)

}︂
− 1 (294)

Proof. We have that welfare for any path of optimism Q = {𝑄𝑡}𝑡∈N is given by:

𝒰(Q) =
∞∑︁
𝑡=0

𝛽𝑡
(︂
E𝐻
[︂
𝐶𝑡(𝑄𝑡, 𝜃𝑡)

1−𝛾

1− 𝛾

]︂
− E𝐻

[︂∫︁
[0,1]

𝐿𝑖𝑡(𝛾𝑖, 𝑠𝑖𝑡, 𝑄𝑡)
1+𝜓

1 + 𝜓
d𝑖

]︂)︂
(295)

By market clearing, we have that 𝐶𝑡 = 𝑌𝑡 for all 𝑡. Thus, using the formula for
equilibrium aggregate output from Proposition 1 and our assumption that log 𝜃𝑡 is
Gaussian under 𝐻, we have that the consumption component of welfare is given by:

E𝐻
[︂
𝐶1−𝛾
𝑡 (𝑄𝑡, 𝜃𝑡)

1− 𝛾

]︂
= E𝐻

[︂
1

1− 𝛾
exp {(1− 𝛾) log 𝑌 (𝑄𝑡, 𝜃)}

]︂
= E𝐻

[︂
1

1− 𝛾
exp {(1− 𝛾) (𝑎0 + 𝑎1 log 𝜃 + 𝑓(𝑄𝑡))}

]︂
=

1

1− 𝛾
exp

{︂
(1− 𝛾) (𝑎0 + 𝑎1𝜇𝐻 + 𝑓(𝑄𝑡)) +

1

2
𝑎21𝜎

2
𝐻

}︂
=

1

1− 𝛾
exp

{︂
(1− 𝛾) (𝑎0 + 𝑎1𝜇𝐻) +

1

2
𝑎21𝜎

2
𝐻

}︂
exp {(1− 𝛾)𝑓(𝑄𝑡)}

= 𝑈*
𝐶 exp {(1− 𝛾)𝑓(𝑄𝑡)}

(296)
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From Proposition 1, we moreover have that labor employed by each firm can be
written as:

𝐿𝑖𝑡 = 𝑑1 log 𝜃𝑡 + 𝑑2𝜆𝑖𝑡 + 𝑑3𝑓(𝑄𝑡) + 𝑣𝑖𝑡 (297)

where 𝑣𝑖𝑡 is Gaussian and IID over 𝑖. Hence given 𝜃 and 𝑄𝑡:∫︁
[0,1]

𝐿𝑖𝑡(𝛾𝑖, 𝑠𝑖𝑡, 𝑄𝑡)
1+𝜓

1 + 𝜓
d𝑖

=
1

1 + 𝜓
(𝑄𝑡 exp{(1 + 𝜓)𝑑2}+ (1−𝑄𝑡))

× exp

{︂
(1 + 𝜓)(𝑑1 log 𝜃 + 𝜇𝑣 + 𝑑3𝑓(𝑄𝑡)) +

1

2
(1 + 𝜓)2𝜎2

𝑣

}︂ (298)

Hence, the expectation over 𝜃 is given by:

E𝐻
[︂∫︁

[0,1]

𝐿𝑖𝑡(𝛾𝑖, 𝑠𝑖𝑡, 𝑄𝑡)
1+𝜓

1 + 𝜓
d𝑖

]︂
=

1

1 + 𝜓
(𝑄𝑡 exp{(1 + 𝜓)𝑑2}+ (1−𝑄𝑡))

× exp {(1 + 𝜓)𝑑3𝑓(𝑄𝑡)} exp
{︂
(1 + 𝜓)(𝑑1𝜇𝐻 + 𝜇𝑣) +

1

2
(1 + 𝜓)2(𝜎2

𝑣 + 𝑑21𝜎
2
𝐻)

}︂
= 𝑈*

𝐿 (𝑄𝑡 exp{(1 + 𝜓)𝑑2}+ (1−𝑄𝑡)) exp {(1 + 𝜓)𝑑3𝑓(𝑄𝑡)}
(299)

And so total welfare under narrative path Q is given by:

𝒰(Q) = 𝑈*
𝐶

∞∑︁
𝑡=0

𝛽𝑡 exp {(1− 𝛾)𝑓(𝑄𝑡)}

− 𝑈*
𝐿

∞∑︁
𝑡=0

𝛽𝑡 (𝑄𝑡 exp{(1 + 𝜓)𝑑2}+ (1−𝑄𝑡)) exp {(1 + 𝜓)𝑑3𝑓(𝑄𝑡)}
(300)

The final inequality follows by noting that 𝑓(0) = 0 and rearranging this expression.

Now consider the benchmark model but where, without loss of generality, all
agents are pessimistic 𝑄𝑡 = 0 and a planner levies an ad valorem subsidy. That
is, when the consumer price is 𝑝𝐶𝑖𝑡 = 𝑌

1
𝜀
𝑡 𝑥

− 1
𝜀

𝑖𝑡 , the price received by the producer is
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𝑝𝑃𝑖𝑡 = (1 + 𝜏)𝑝𝐶𝑖𝑡 . Under this subsidy, each producer’s first-order condition is:

log 𝑥𝑖𝑡 =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

(︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃
− logE𝑖𝑡

[︂
exp

{︂
−1 + 𝜓

𝛼
log 𝜃𝑖𝑡

}︂]︂

+ logE𝑖𝑡
[︂
exp

{︂(︂
1

𝜖
− 𝛾

)︂
log 𝑌𝑡

}︂]︂)︃
+ Ξ(𝜏)

(301)

where Ξ(𝜏) = 1
1+𝜓−𝛼

𝛼
+ 1
𝜖

log(1 + 𝜏). By identical arguments to Proposition 1, we have
that there is a unique quasi-linear equilibrium, where:

log 𝑌 (𝜃, 𝜏) = 𝑎0 + 𝑎1 log 𝜃 +
1

1− 𝜔
Ξ(𝜏) (302)

and 𝑎0 and 𝑎1 are as in Proposition 1. Hence, in this equilibrium we have that:

log 𝑥𝑖𝑡(𝜏) = log 𝑥𝑖𝑡(0) +
1

1− 𝜔
Ξ(𝜏) (303)

Which implies that:

log𝐿𝑖𝑡(𝜏) = log𝐿𝑖𝑡(0) +
1

𝛼

1

1− 𝜔
Ξ(𝜏) (304)

And so, welfare under the subsidy 𝜏 is given by:

𝒰(𝜏) = 𝑈*
𝐶

∞∑︁
𝑡=0

𝛽𝑡 exp

{︂
(1− 𝛾)

1

1− 𝜔
Ξ(𝜏)

}︂
− 𝑈*

𝐿

∞∑︁
𝑡=0

𝛽𝑡 exp

{︂
(1 + 𝜓)𝑑3

1

1− 𝜔
Ξ(𝜏)

}︂ (305)

as 𝑑3 = 1
𝛼
. Hence:

𝒰(1) = 𝒰(𝜏 *) (306)

where 𝜏 * is such that 1
1−𝜔Ξ(𝜏

*) = 𝑓(1). Hence:

𝜏 * = exp

{︂
(1− 𝜔)

(︂
1 + 𝜓 − 𝛼

𝛼
+

1

𝜖

)︂
𝑓(1)

}︂
− 1 (307)

Completing the proof.

This result sheds light on the potential for non-fundamental optimism to increase
aggregate welfare. In the presence of the product market monopoly and labor market
monopsony distortions, intermediates goods firms under-hire labor and under-produce

288



goods. As a result, if irrational optimism causes them to produce more output, but not
so much that the household over-supplies labor, then it has the potential to be welfare
improving. The final part of the proposition then reduces this question to assessing
if the implied optimism-equivalent subsidy is less than the welfare-optimal subsidy.
Thus, optimism in the economy can serve the role of undoing monopoly frictions and
thereby has the potential to be welfare-improving, even when misspecified.

Quantification Proposition 28 can be directly applied in our numerical calibration
from Section 1.7 to calculate the welfare effects of narrative optimism without ap-
proximation. We calculate the average payoff of the representative household under
three scenarios. The first corresponds to the calibrated narrative dynamics in simu-
lation, under the assumption that the pessimistic model is correctly specified.1 The
second is a counterfactual scenario with permanent extreme optimism, or 𝑄𝑡 ≡ 1 for
all 𝑡. The third is a counterfactual scenario with permanent extreme pessimism, or
𝑄𝑡 ≡ 0 for all 𝑡, and an ad valorem subsidy of 𝜏 to all producers. We use the third
scenario to translate the first and second into payoff-equivalent subsidies. We find
that both contagious and extreme optimism are welfare-increasing relative to extreme
pessimism in autarky (i.e, 𝜏 = 0). In payoff units, they correspond respectively to
equivalent subsidies of 1.33% and 2.59%. Our finding of an overall positive welfare
effect for contagious optimism suggests that, in our macroeconomic calibration, losses
from inducing misallocation are more than compensated by level increases in output.

A.2.3 Continuous Narratives

Our main analysis featured two levels of optimism. However, much of our analysis
generalizes to a setting with a continuum of levels of optimism. For simplicity, in
this section we abstract from optimism shocks. The model is as in Section 1.5, but
now 𝜇 ∈ [𝜇𝑃 , 𝜇𝑂] and the distribution of narratives is given by 𝑄𝑡 ∈ ∆([𝜇𝑃 , 𝜇𝑂]).
The probabilistic transition between models is now given by a Markov kernel 𝑃 :

[𝜇𝑃 , 𝜇𝑂] × 𝒴 × ∆2([𝜇𝑃 , 𝜇𝑂]) → ∆([𝜇𝑃 , 𝜇𝑂]) where 𝑃𝜇′(𝜇, log 𝑌,𝑄) is the density of
agents who have model 𝜇 who switch to 𝜇′ when aggregate output is 𝑌 and the
distribution of narratives is 𝑄.

Characterizing Equilibrium Output By modifying the guess-and-verify argu-
ments that underlie Proposition 1, we can obtain an almost identical representation
of equilibrium aggregate output:

1Relative to the positive analysis, the normative analysis requires two additional model parame-
ters. We set the idiosyncratic component of productivity to have unit mean and zero variance.

289



Proposition 29 (Equilibrium Characterization with Continuous Narratives). There
exists a quasi-linear equilibrium:

log 𝑌 (log 𝜃𝑡, 𝑄𝑡) = 𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑓(𝑄𝑡) (308)

Moreover, the density of narratives evolves according to the following difference equa-
tion:

d𝑄𝑡+1(𝜇
′) =

∫︁ 𝜇𝑂

𝜇𝑃

𝑃𝜇′(𝜇, 𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑓(𝑄𝑡), 𝑄𝑡)d𝑄𝑡(𝜇) (309)

Proof. By appropriately modifying the steps of the proof of Proposition 1, the result
follows. Throughout, simply replace 𝜆𝑖𝑡𝜇𝑂 + (1 − 𝜆𝑖𝑡)𝜇𝑃 with �̃�𝑖𝑡 ∼ 𝑄𝑡 and 𝜆𝑖𝑡 with
�̃�𝑖𝑡 as appropriate. The proof follows as written until the aggregation step. At this
point, we instead obtain:

log 𝑌𝑡 = 𝛿𝑡(𝜇𝑃 ) +
1

2

𝜖− 1

𝜖
�̂�2 +

𝜖

𝜖− 1
log

(︂∫︁ 𝜇𝑂

𝜇𝑃

exp

{︂
𝜖− 1

𝜖
(𝛿𝑡(�̃�)− 𝛿𝑡(𝜇𝑃 ))

}︂
d𝑄𝑡(�̃�)

)︂
(310)

where 𝛿𝑡(𝜇𝑃 ) = 𝛿𝑡(0) and 𝛿𝑡(�̃�) − 𝛿𝑡(𝜇𝑃 ) = 𝛼𝛿𝑂𝑃 �̃�−𝜇𝑃
𝜇𝑂−𝜇𝑃 . Hence, we have that 𝑎0 and

𝑎1 are as in Proposition 1 and 𝑓 is instead given by:

𝑓(𝑄) =
𝜖
𝜖−1

1−
1
𝜖
−𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

log

(︂∫︁ 𝜇𝑂

𝜇𝑃

exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

�̃�− 𝜇𝑃
𝜇𝑂 − 𝜇𝑃

}︂
d𝑄(�̃�)

)︂
(311)

Completing the proof.

Importantly, observe that we still obtain a marginal representation in terms of the
partial equilibrium effect of going from full pessimism to full optimism on hiring 𝛿𝑂𝑃 ,
as we have empirically estimated.

Equilibrium Dynamics We have seen that a continuum of models poses no dif-
ficulty for the static analysis. The challenge for the dynamic analysis is that the
state variable, the evolution of which is fully characterized by Proposition 29, is now
infinite-dimensional. This notwithstanding, by use of approximation arguments, we
can reduce the dynamics to an essentially identical form to that which we have studied
in the main text.

To this end, define the cumulant generating function (CGF) of the cross-sectional
distribution of narratives as:

𝐾𝑄(𝜏) = log (E𝑄[exp{𝜏 �̃�}]) (312)
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We therefore have that log (E𝑄[exp{𝜏(�̃�− 𝑧)}]) = 𝐾𝑄(𝜏)−𝜏𝑧. It follows by Equation
311 that:

𝑓(𝑄) =
𝜖
𝜖−1

1− 𝜔

[︂
𝐾𝑄

(︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

1

𝜇𝑂 − 𝜇𝑃

)︂
− 𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

𝜇𝑃
𝜇𝑂 − 𝜇𝑃

]︂
(313)

By Maclaurin series expansion, we can express the CGF to first-order as:

𝐾𝑄(𝜏) = 𝜇𝑄𝜏 +𝑂(𝜏 2) (314)

We therefore have that:

𝑓(𝑄) =
1

1− 𝜔
𝛼𝛿𝑂𝑃

𝜇𝑄 − 𝜇𝑃
𝜇𝑂 − 𝜇𝑃

+𝑂

(︃(︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

1

𝜇𝑂 − 𝜇𝑃

)︂2
)︃

(315)

We now can express the static, general equilibrium effects in terms of mean of the
narrative distribution. With some abuse of notation, we now write 𝑓(𝜇𝑄) = 𝑓(𝑄).
Of course, this CGF-based approach would allow one to consider higher-order effects
through the variance, skewness, kurtosis, and higher cumulants as desired.

In the next steps, we provide conditions on updating that allow us to express
the dynamics solely in terms of the mean of the narrative distribution. To do this,
we assume that 𝑃𝜇′(𝜇, log 𝑌,𝑄) = 𝑃𝜇′(𝜇

′′, log 𝑌, 𝜇𝑄) for all 𝑄 ∈ ∆2([𝜇𝑃 , 𝜇𝑂]) and
all 𝜇, 𝜇′, 𝜇′′ ∈ [𝜇𝑃 , 𝜇𝑂]. This is tantamount to assuming no stubbornness (all agents
update the same regardless of the model they start with) and that contagiousness only
matters via the mean. Under this assumption, we can write 𝑃𝜇′(log 𝑌 (log 𝜃, 𝜇𝑄), 𝜇𝑄)

and express the difference equation as:

d𝑄𝑡+1(𝜇
′) =

∫︁ 𝜇𝑂

𝜇𝑃

𝑃𝜇′(𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑓(𝜇𝑄,𝑡), 𝜇𝑄,𝑡)d𝑄𝑡(𝜇)

= 𝑃𝜇′(𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑓(𝜇𝑄,𝑡), 𝜇𝑄,𝑡)

(316)

It then suffices to take the mean of 𝑄𝑡+1 to express the system in terms of the one-
dimensional state variable 𝜇𝑄,𝑡:

𝜇𝑄,𝑡+1 = 𝑇 (𝜇𝑄,𝑡, 𝜃𝑡) =

∫︁ 𝜇𝑂

𝜇𝑃

𝜇′𝑃𝜇′(𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑓(𝜇𝑄,𝑡), 𝜇𝑄,𝑡)d𝜇
′ (317)

Which is simply a continuous state analog of the difference equation expressed in
Corollary 2 expressed in terms of average beliefs.
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Steady State Multiplicity We now obtain the analogous characterization of ex-
tremal steady state multiplicity in this setting, i.e., when it is possible that all agents
being maximally pessimistic and all agents being maximally optimistic are simulta-
neously deterministic steady states. To this end, define the following two inverses:

𝑃−1(𝑥;𝜇𝑄) = sup{𝑌 : 𝑃 (𝑌,𝑄) = 𝛿𝑥}
𝑃−1(𝑥;𝜇𝑄) = inf{𝑌 : 𝑃 (𝑌,𝑄) = 𝛿𝑥}

(318)

where 𝛿𝑥 denotes the Dirac delta function on 𝑥. We define analogous objects to the
previous 𝜃𝑂 and 𝜃𝑃 :

𝜃𝑂 = exp

{︂
𝑃−1(𝜇𝑂;𝜇𝑂)− 𝑎0 − 𝑓(1)

𝑎1

}︂
, 𝜃𝑃 = exp

{︃
𝑃−1(𝜇𝑃 ;𝜇𝑃 )− 𝑎0 − 𝑓(1)

𝑎1

}︃
(319)

The following result establishes that these thresholds characterize extremal multiplic-
ity:

Proposition 30 (Steady State Multiplicity with Continuous States). Extreme opti-
mism and pessimism are simultaneously deterministic steady states for 𝜃 if and only
if 𝜃 ∈ [𝜃𝑂, 𝜃𝑃 ], which is non-empty if and only if

𝑃−1(𝜇𝑂;𝜇𝑂)− 𝑃−1(𝜇𝑃 ;𝜇𝑃 ) ≤ 𝑓(1) (320)

Proof. This follows exactly the same steps as the proofs of Proposition 2 and Corollary
3, replacing the appropriate inverses defined above.

Thus, the same conditions that give rise to multiplicity with binary narratives
obtain with a continuum of levels of optimism. Indeed, observe that restricting to
first-order approximations above was unnecessary. We could have considered an arbi-
trary order, say 𝑘, of approximation of the CGF and obtained a system of difference
equations for the first 𝑘 cumulants. Proposition 30 would still hold as written, as
under the extremal steady states, all higher cumulants are identically zero and re-
main so under the provided condition. Naturally, however, the general dynamics only
reduce to those resembling the simple model under the first-order approximation.
Nevertheless, we observe that this is a first-order approximation to the exact equilib-
rium dynamics and not simply an approximation of the dynamics of an approximate
equilibrium.
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A.2.4 Narratives About Idiosyncratic Fundamentals

In the main analysis, we assumed that narratives described properties of aggregate
fundamentals. In this section, we characterize equilibrium dynamics when narratives
describe properties of idiosyncratic fundamentals. Concretely, we now instead sup-
pose that all agents believe that log 𝜃𝑡 ∼ 𝑁(0, 𝜎2), or agree about the distribution of
aggregate productivity. Moreover, as in the baseline, all agents believe that others’
idiosyncratic productivity follows log 𝜃𝑗𝑡 ∼ 𝑁(0, 𝜎2

𝜃
) for all 𝑗 ̸= 𝑖. However, agents

disagree about the mean of their own idiosyncratic productivity: optimistic agents be-
lieve that log 𝜃𝑖𝑡 ∼ 𝑁(𝜇𝑂, 𝜎

2
𝜃
) while pessimistic agents believe that log 𝜃𝑖𝑡 ∼ 𝑁(𝜇𝑃 , 𝜎

2
𝜃
).

The rest of the model is identical.

In this context, dynamics are identical conditional on the static relationship be-
tween output and narratives. Moreover, the static relationship between output and
narratives is now identical (up to a constant) conditional on estimating the partial
equilibrium effect of optimism on hiring. This is formalized by the following result:

Proposition 31 (Equilibrium Characterization with Narratives About Idiosyncratic
Fundamentals). There exists a unique equilibrium such that:

log 𝑌 (log 𝜃𝑡, 𝑄𝑡) = �̃�0 + 𝑎1 log 𝜃𝑡 + 𝑓(𝑄𝑡) (321)

for coefficients �̃�0 and 𝑎1 > 0, and a strictly increasing function 𝑓 , where 𝑎1 is identical
to that from Proposition 1 and

𝑓(𝑄) =
𝜖
𝜖−1

1−
1
𝜖
−𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

log

(︂
1 +𝑄

[︂
exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

}︂
− 1

]︂)︂
(322)

where 𝛿𝑂𝑃 is defined in Equation 323.

Proof. The proof follows exactly the steps of the proof of Proposition 1 where the
aggregate narrative is replaced with an idiosyncratic one. To be concrete, the compu-

tation of logE𝑖𝑡
[︂
𝜃
− 1+𝜓

𝛼
𝑖𝑡

]︂
and the method of aggregation are identical to those in the

proof of Proposition 1. The only difference is in the computation of logE𝑖𝑡
[︁
𝑌

1
𝜖
−𝛾

𝑡

]︁
.

Now, Equation 236 differs in that 𝜇𝑖𝑡 = log 𝛾𝑖 + 𝜅𝑠𝑖𝑡. Tracking this through to Equa-
tion 240, lines 1, 2, 3, and 5 are identical and line 4 differs only in that the term
(1− 𝜅)[𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 ] is now set equal to zero. The analysis then follows up to
Equation 245, at which point we have that the exact formula for 𝛿𝑂𝑃 changes and is
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now given by:

𝛼𝛿𝑂𝑃 =
1+𝜓
𝛼

1+𝜓−𝛼
𝛼

+ 1
𝜖

(1− 𝜅)(𝜇𝑂 − 𝜇𝑃 ) (323)

The formula for 𝛿𝑡(0) is identical except for in the second line where the term 𝑎1(1−
𝜅)𝜇𝑃 is now equal to zero. The formula for 𝑎1 remains the same. Conditional on 𝛿𝑂𝑃 ,
the formula for 𝑓 remains the same. The formula for 𝑎0 is identical except for the
second line where the term (1/𝜖− 𝛾)𝑎1(1− 𝜅)𝜇𝑃 is now equal to zero.

This Proposition makes clear that output differs in this case only up to an intercept
and in changing the mapping from structural parameters to the partial-equilibrium
effect of optimism on hiring. Nonetheless, interpreted via the model above, our empir-
ical exercise directly identifies the now-relevant parameter 𝛿𝑂𝑃 . As a result, neither
our theoretical nor quantitative analysis is sensitive to making narratives be about
idiosyncratic conditions. The only difference is that the point calibrations for 𝜅 and
(𝜇𝑂 − 𝜇𝑃 ) would change, while the aggregate dynamics would remain identical.

A.2.5 Multi-Dimensional Narratives and Persistent States

Our baseline model featured two narratives regarding the mean of fundamentals and
transitory fundamentals, but we live in a world of many competing narratives re-
garding many aspects of reality and potentially persistent fundamentals. In this
extension, we broaden our analysis to study a class of three-dimensional narratives,
which is essentially exhaustive within the Gaussian class. For simplicity, we abstract
from narrative shocks in this analysis. Concretely, suppose that agents believe that
the aggregate component of fundamentals follows:

log 𝜃𝑡 = (1− 𝜌)𝜇+ 𝜌 log 𝜃𝑡−1 + 𝜎𝜈𝑡 (324)

with 𝜈𝑡 ∼ 𝑁(0, 1) and IID. Narratives now correspond to a vector of (𝜇, 𝜌, 𝜎), index-
ing the mean, persistence and variance of the process for fundamentals. The set of
narratives can therefore be represented by {(𝜇𝑘, 𝜌𝑘, 𝜎𝑘)}𝑘∈𝒦. We restrict that agents
place Dirac weights on this set, so that they only ever believe one narrative at a
time, and let 𝑄𝑡,𝑘 be the fraction of agents who believe narrative (𝜇𝑘, 𝜌𝑘, 𝜎𝑘) at time
𝑡. Finally, we assume that agents face the same signal-to-noise ratio 𝜅, regardless
of the narrative that they hold.2 Together, these assumptions ensure that agents’
posteriors are normal and place a common weight on narratives when agents form

2Formally, this means that the variance of the noise in agents’ signals satisfies 𝜎2
𝜀,𝑘 ∝ 𝜎2

𝑘 across
narratives.
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their expectations of fundamentals.

By modifying the functional guess-and-verify arguments from Proposition 1, we
characterize equilibrium output in this setting in the following result:

Proposition 32 (Equilibrium Characterization with Multi-Dimensional Narratives
and Persistence). There exists a quasi-linear equilibrium:

log 𝑌 (log 𝜃𝑡, log 𝜃𝑡−1, 𝑄𝑡) = 𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑎2 log 𝜃𝑡−1 + 𝑓(𝑄𝑡, 𝜃𝑡−1) (325)

for some 𝑎1 > 0, 𝑎2 ≥ 0, and 𝑓 . In this equilibrium, the distribution of narratives in
the population evolves according to:

𝑄𝑡+1,𝑘 =
∑︁
𝑘′∈𝒦

𝑄𝑡,𝑘′𝑃𝑘′(𝑘, 𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑎2 log 𝜃𝑡−1 + 𝑓(𝑄𝑡, 𝜃𝑡−1), 𝑄𝑡) (326)

Proof. We follow the same steps as in the proof of Proposition 1, appropriately
adapted to this richer setting. First, we guess an equilibrium of the form:

log 𝑌 (log 𝜃𝑡, log 𝜃𝑡−1, 𝑄𝑡) = 𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑎2 log 𝜃𝑡−1 + 𝑓(𝑄𝑡, 𝜃𝑡−1) (327)

To verify that this is an equilibrium, we need to compute agents’ best replies under
this conjecture, aggregate them, and show that they are consistent with this guess
once aggregated.

We first find agents’ posterior beliefs given narrative weights. Let 𝐸 denote the
standard basis for R𝐾 with 𝑘-th basis vector denoted by

𝑒𝑘 = {0, . . . , 0⏟  ⏞  
𝑘−1

, 1, 0, . . . , 0⏟  ⏞  
𝐾−𝑘

} (328)

We have that 𝜆𝑖𝑡 = 𝑒𝑘 for some 𝑘 ≤ 𝐾. Under this narrative loading, we have that
agent’s posteriors are given by:

log 𝜃𝑖𝑡|𝜆𝑖𝑡, 𝑠𝑖𝑡 ∼ 𝑁
(︀
log 𝛾𝑖 + 𝜅𝑠𝑖𝑡 + (1− 𝜅)𝜇(𝜆𝑖𝑡, 𝜃𝑡−1), 𝜎

2
𝜃|𝑠(𝜆𝑖𝑡) + 𝜎2

𝜃

)︀
(329)

with:

𝜇(𝑒𝑘, 𝜃𝑡−1) = (1− 𝜌𝑘)𝜇𝑘 + 𝜌𝑘 log 𝜃𝑡−1

𝜎2
𝜃|𝑠(𝑒𝑘) =

1
1
𝜎2
𝑘
+ 1

𝜎2
𝜖,𝑘

𝜅 =
1

1 +
𝜎2
𝜀,𝑘

𝜎2
𝑘

(330)
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for all 𝑘 ≤ 𝐾,where 𝜅 does not depend on 𝑘 as 𝜎2
𝜀,𝑘 ∝ 𝜎2

𝑘. Hence, we can compute
agents’ best replies by evaluating:

logE𝑖𝑡
[︂
𝜃
− 1+𝜓

𝛼
𝑖𝑡

]︂
= −1 + 𝜓

𝛼
(log 𝛾𝑖 + 𝜅𝑠𝑖𝑡 + (1− 𝜅)𝜇(𝜆𝑖𝑡, 𝜃𝑡−1)) +

1

2

(︂
1 + 𝜓

𝛼

)︂2 (︀
𝜎2
𝜃|𝑠(𝜆𝑖𝑡) + 𝜎2

𝜃

)︀
(331)

logE𝑖𝑡
[︁
𝑌

1
𝜖
−𝛾

𝑡

]︁
=

(︂
1

𝜖
− 𝛾

)︂
(𝑎0 + 𝑎1 (𝜅𝑠𝑖𝑡 + (1− 𝜅)𝜇(𝜆𝑖𝑡, 𝜃𝑡−1)) + 𝑎2 log 𝜃𝑡−1 + 𝑓(𝑄𝑡, 𝜃𝑡−1))

+
1

2

(︂
1

𝜖
− 𝛾

)︂2

𝑎21𝜎
2
𝜃|𝑠(𝜆𝑖𝑡)

(332)

By substituting this into agents’ best replies, we obtain:

log 𝑥𝑖𝑡 =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃
+

1 + 𝜓

𝛼
[log 𝛾𝑖 + 𝜅𝑠𝑖𝑡 + (1− 𝜅)𝜇(𝜆𝑖𝑡, 𝜃𝑡−1)]

− 1

2

(︂
1 + 𝜓

𝛼

)︂2 (︀
𝜎2
𝜃|𝑠(𝜆𝑖𝑡) + 𝜎2

𝜃

)︀
+

(︂
1

𝜖
− 𝛾

)︂
[𝑎0 + 𝑎1 (𝜅𝑠𝑖𝑡 + (1− 𝜅)𝜇(𝜆𝑖𝑡, 𝜃𝑡−1)) + 𝑎2 log 𝜃𝑡−1 + 𝑓(𝑄𝑡, 𝜃𝑡−1)]

+
1

2
𝑎21

(︂
1

𝜖
− 𝛾

)︂2

𝜎2
𝜃|𝑠(𝜆𝑖𝑡)

]︃
(333)

which we observe is conditional normally distributed as log 𝑥𝑖𝑡|𝜆𝑖𝑡 ∼ 𝑁(𝛿𝑡(𝜆𝑖𝑡), �̂�
2)

with �̂�2 as in Equation 241 and:

𝛿𝑡(𝑒𝑘) =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃
+

1 + 𝜓

𝛼
[log 𝛾𝑖 + 𝜅 log 𝜃𝑡 + (1− 𝜅)𝜇(𝑒𝑘, 𝜃𝑡−1)]

− 1

2

(︂
1 + 𝜓

𝛼

)︂2 (︀
𝜎2
𝜃|𝑠(𝑒𝑘) + 𝜎2

𝜃

)︀
+

(︂
1

𝜖
− 𝛾

)︂
[𝑎0 + 𝑎1 (𝜅 log 𝜃𝑡 + (1− 𝜅)𝜇(𝑒𝑘, 𝜃𝑡−1)) + 𝑎2 log 𝜃𝑡−1 + 𝑓(𝑄𝑡, 𝜃𝑡−1)]

+
1

2
𝑎21

(︂
1

𝜖
− 𝛾

)︂2

𝜎2
𝜃|𝑠(𝑒𝑘)

]︃
(334)
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for all 𝑘 ≤ 𝐾. Aggregating these best replies, using Equation 242, we obtain that:

log 𝑌𝑡 =
𝜖

𝜖− 1
logE𝑡

[︂
E𝑡
[︂
exp

{︂
𝜖− 1

𝜖
log 𝑥𝑖𝑡

}︂
|𝜆𝑖𝑡
]︂]︂

=
𝜖

𝜖− 1
log

(︃∑︁
𝑘

𝑄𝑡,𝑘 exp

{︃
𝜖− 1

𝜀
𝛿𝑡(𝑒𝑘) +

1

2

(︂
𝜖− 1

𝜀

)︂2

�̂�2

}︃)︃

= 𝛿𝑡(𝑒1) +
1

2

𝜖− 1

𝜖
�̂�2 +

𝜖

𝜖− 1
log

(︃∑︁
𝑘

𝑄𝑡,𝑘 exp

{︂
𝜖− 1

𝜖
(𝛿𝑡(𝑒𝑘)− 𝛿𝑡(𝑒1))

}︂)︃
(335)

where �̂�2 is a constant, 𝛿𝑡(𝑒1) depends linearly on log 𝜃𝑡 and log 𝜃𝑡−1 and 𝛿𝑡(𝑒𝑘)−𝛿𝑡(𝑒1)
does not depend on log 𝜃𝑡 for all 𝑘 ≤ 𝐾 and can therefore be written as 𝛿𝑘1(𝜃𝑡−1).
Moreover, by matching coefficients, we obtain that 𝑎1 is the same as in the proof of
Proposition 1. And we find that 𝑓 must satisfy:

𝑓(𝑄, 𝜃𝑡−1) =
1
𝜖
− 𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

𝑓(𝑄, 𝜃𝑡−1) +
𝜖

𝜖− 1
log

(︃∑︁
𝑘

𝑄𝑡,𝑘 exp

{︂
𝜖− 1

𝜖
𝛿𝑘1(𝜃𝑡−1)

}︂)︃
(336)

and so:

𝑓(𝑄, 𝜃𝑡−1) =
𝜖
𝜖−1

1−
1
𝜖
−𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

log

(︃∑︁
𝑘

𝑄𝑡,𝑘 exp

{︂
𝜖− 1

𝜖
𝛿𝑘1(𝜃𝑡−1)

}︂)︃
(337)

Completing the proof.

In the multidimensional narrative case with persistence, the past value of fun-
damentals interacts non-linearly with the cross-sectional narrative distribution in af-
fecting aggregate output. However, without more structure, the properties of the
dynamics generated by this multi-dimensional system are essentially unrestricted.

A.2.6 Persistent Idiosyncratic Shocks and Belief Updating

We now extend the analysis from Section A.2.5 to the case where agents’ idiosyncratic
states drive narrative updating and are persistent. Concretely, in that setting, we let
𝑃𝑘′ depend on (𝑌𝑡, 𝑄𝑡, 𝜃𝑖𝑡) and idiosyncratic productivity shocks evolve according to
an AR(1) process:

log 𝜃𝑖𝑡 = 𝜌𝜃 log 𝜃𝑖,𝑡−1 + 𝜁𝑖𝑡 (338)

where 0 < 𝜌𝜃 < 1 and 𝜁𝑖𝑡 ∼ 𝑁(0, 𝜎2
𝜁 ). We let 𝐹𝜃 denote the stationary distribution of

𝜃𝑖𝑡, which coincides with the cross-sectional marginal distribution of 𝜃𝑖𝑡 for all 𝑡 ∈ N.
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The additional theoretical complication these two changes induce is that the
marginal distribution of narratives 𝑄𝑡 is now insufficient for describing aggregate out-
put. This is because narratives 𝜆𝑖𝑡 and idiosyncratic fundamentals 𝜃𝑖𝑡 are no longer
independent as 𝜆𝑖𝑡 and 𝜃𝑖𝑡 both depend on 𝜃𝑖𝑡−1. The relevant state variable is now
the joint distribution of narratives and idiosyncratic productivity �̌�𝑡 ∈ ∆(Λ × R).
We denote the marginals as 𝑄𝑡 and 𝐹𝜃, and the conditional distribution of narratives
given 𝜃 as �̌�𝑡,𝑘|𝜃 =

�̌�𝑡,𝑘(𝜃)

𝑓𝜃(𝜃)
.

Proposition 33 (Equilibrium Characterization with Multi-Dimensional Narratives,
Aggregate and Idiosyncratic Persistence, and Idiosyncratic Narrative Updating). There
exists a quasi-linear equilibrium:

log 𝑌 (log 𝜃𝑡, log 𝜃𝑡−1, �̌�𝑡) = 𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑎2 log 𝜃𝑡−1 + 𝑓(�̌�𝑡, 𝜃𝑡−1) (339)

for some 𝑎1 > 0, 𝑎2 ≥ 0, and 𝑓 .

Proof. This proof follows closely that of Proposition 32. Under narrative loading 𝜆𝑖𝑡,
we have that the agent’s posterior regarding log 𝜃𝑖𝑡 is given by:

log 𝜃𝑖𝑡|𝜃𝑖𝑡−1, 𝜆𝑖𝑡, 𝑠𝑖𝑡 ∼ 𝑁
(︁
log 𝛾𝑖 + 𝜌𝜃 log 𝜃𝑖𝑡−1 + 𝜅𝑠𝑖𝑡 + (1− 𝜅)𝜇(𝜆𝑖𝑡, 𝜃𝑡−1), 𝜎

2
𝜃|𝑠(𝜆𝑖𝑡) + 𝜎2

𝜉

)︁
(340)

where 𝜇(𝜆𝑖𝑡, 𝜃𝑡−1), 𝜅, and 𝜎2
𝜃|𝑠(𝜆𝑖𝑡) are as in Proposition 32. Then substitute log 𝛾𝑖 +

𝜌𝜃𝜃𝑖𝑡−1 for log 𝛾𝑖 and follow the Proof of Proposition 32 until the aggregation step
(Equation 335). We now instead have that:

log 𝑌𝑡 =
𝜖

𝜖− 1
logE𝑡

[︂
E𝑡
[︂
exp

{︂
𝜖− 1

𝜖
log 𝑥𝑖𝑡

}︂
|𝜃𝑖𝑡−1, 𝜆𝑖𝑡

]︂]︂
=

𝜖

𝜖− 1
logE𝑡

[︃
exp

{︃
𝜖− 1

𝜖
𝛿𝑡(𝑒𝑘, 𝜃𝑖𝑡−1) +

1

2

(︂
𝜖− 1

𝜖

)︂2

�̂�2

}︃]︃

=
𝜖

𝜖− 1
log

(︃∫︁ ∑︁
𝑘

�̌�𝑡,𝑘|𝜃 exp

{︃
𝜖− 1

𝜀
𝛿𝑡(𝑒𝑘, 𝜃) +

1

2

(︂
𝜖− 1

𝜀

)︂2

�̂�2

}︃
d𝐹𝜃(𝜃)

)︃
= 𝛿𝑡(𝑒1, 1) +

1

2

𝜖− 1

𝜖
�̂�2

+
𝜖

𝜖− 1
log

(︃∫︁ ∑︁
𝑘

�̌�𝑡,𝑘|𝜃 exp

{︂
𝜖− 1

𝜖

(︁
𝛿𝑡(𝑒𝑘, 𝜃)− 𝛿𝑡(𝑒1, 1)

)︁}︂
d𝐹𝜃(𝜃)

)︃
(341)

Again, �̂�2 is a constant and 𝛿𝑡(𝑒1, 0) depends linearly on log 𝜃𝑡 and log 𝜃𝑡−1 and
𝛿𝑡(𝑒𝑘, 𝜃) − 𝛿𝑡(𝑒1, 1) does not depend on log 𝜃𝑡 for all 𝑘 ≤ 𝐾. Thus, we may write
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it as 𝛿𝑘1(𝜃𝑡−1, 𝜃). Again, 𝑎1 is the same as in Proposition 1. By the same steps as in
Proposition 32, we then have that:

𝑓(�̌�, 𝜃𝑡−1) =
𝜖
𝜖−1

1−
1
𝜖
−𝛾

1+𝜓−𝛼
𝛼

+ 1
𝜖

log

(︃∫︁ ∑︁
𝑘

�̌�𝑡,𝑘|𝜃 exp

{︂
𝜖− 1

𝜖
𝛿𝑘1(𝜃𝑡−1, 𝜃)

}︂
d𝐹𝜃(𝜃)

)︃
(342)

Completing the proof.

We can use this result to study the additional effects induced by persistent id-
iosyncratic fundamentals. To do this, we restrict to the case of our main analysis
with optimism and pessimism. In this context, we have that:

𝑓(�̌�) =
𝜖
𝜖−1

1− 𝜔
log

(︂
E𝜃

[︂
�̌�𝑡|𝜃 exp

{︂
𝜖− 1

𝜖
𝛿𝑂𝑃 (𝜃)

}︂
+ (1− �̌�𝑡|𝜃) exp

{︂
𝜖− 1

𝜖
𝛿𝑃𝑃 (𝜃)

}︂]︂)︂
(343)

where:

𝛿𝑂𝑃 (𝜃) = 𝛼𝛿𝑂𝑃 +
1+𝜓
𝛼

1+𝜓−𝛼
𝛼

+ 1
𝜖

𝜌𝜃 log 𝜃

𝛿𝑃𝑃 (𝜃) =
1+𝜓
𝛼

1+𝜓−𝛼
𝛼

+ 1
𝜖

𝜌𝜃 log 𝜃

(344)

We define 𝜉 =
1+𝜓
𝛼

1+𝜓−𝛼
𝛼

+ 1
𝜖

𝜌𝜃 and observe that we can write:

�̌�𝑡|𝜃 exp

{︂
𝜖− 1

𝜖
𝛿𝑂𝑃 (𝜃)

}︂
+ (1− �̌�𝑡|𝜃) exp

{︂
𝜖− 1

𝜖
𝛿𝑃𝑃 (𝜃)

}︂
= 𝑄𝑡|𝜃 exp

{︂
𝜖− 1

𝜖

(︁
𝛼𝛿𝑂𝑃 + 𝜉 log 𝜃

)︁}︂
+ (1−𝑄𝑡|𝜃) exp

{︂
𝜖− 1

𝜖
𝜉 log 𝜃

}︂
= 𝑄𝑡|𝜃 exp

{︂
𝜖− 1

𝜖
𝜉 log 𝜃

}︂[︂
exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

}︂
− 1

]︂
+ exp

{︂
𝜖− 1

𝜖
𝜉 log 𝜃

}︂ (345)

Taking the expectation of the relevant terms, we obtain:

E𝜃

[︂
�̌�𝑡|𝜃 exp

{︂
𝜖− 1

𝜖
𝛿𝑂𝑃 (𝜃)

}︂
+ (1− �̌�𝑡|𝜃) exp

{︂
𝜖− 1

𝜖
𝛿𝑃𝑃 (𝜃)

}︂]︂
=

[︂
exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

}︂
− 1

]︂
exp

{︃
1

2

(︂
𝜖− 1

𝜖
𝜉

)︂2 𝜎2
𝜁

1− 𝜌2
𝜃

}︃
𝑄𝑡

+ Cov𝑡
(︁
𝑄𝑡|𝜃, 𝜃

𝜖−1
𝜖
𝜉
)︁
+ exp

{︃
1

2

(︂
𝜖− 1

𝜖
𝜉

)︂2 𝜎2
𝜁

1− 𝜌2
𝜃

}︃ (346)
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Thus, we have that the contribution of optimism to output is given by:

𝑓(�̌�𝑡) =
𝜖
𝜖−1

1− 𝜔
log

(︃[︂
exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

}︂
− 1

]︂
exp

{︃
1

2

(︂
𝜖− 1

𝜖
𝜉

)︂2 𝜎2
𝜁

1− 𝜌2
𝜃

}︃
𝑄𝑡

+ Cov𝑡
(︁
𝑄𝑡|𝜃, 𝜃

𝜖−1
𝜖
𝜉
)︁
+ exp

{︃
1

2

(︂
𝜖− 1

𝜖
𝜉

)︂2 𝜎2
𝜁

1− 𝜌2
𝜃

}︃)︃ (347)

We observe that the first term is almost identical to that in our main analysis.
This term is now intermediated by the effect of heterogeneity in previous productivity
(to see this, observe that this vanishes when 𝜌𝜃 = 0). Second, there is a new effect
stemming from the covariance of optimism and productivity. Intuitively, when more
optimistic firms are also more productive, they increase their production by more and
this increases output. Finally, there is a level effect of heterogeneous productivity.

Thus, the sole new qualitative force is the covariance effect. To the extent that
this does not vary with time, it can have no effect on dynamics. We investigate this
in the data by estimating the regression model

log 𝜃𝑖𝑡 =
2019∑︁

𝜏=1995

𝛽𝜏 · (opt𝑖𝜏 · I[𝜏 = 𝑡]) + 𝜒𝑗(𝑖),𝑡 + 𝛾𝑖 + 𝜀𝑖𝑡 (348)

where (𝜒𝑗(𝑖),𝑡, 𝛾𝑖) are industry-by-time and firm fixed effects, and 𝛽𝑠 measures the
(within-industry, within-firm) difference in mean log TFP for optimistic and pes-
simistic firms in each year. If the 𝛽𝑠 vary systematically with the business cycle,
then the shifting productivity composition of optimists over the business cycle is an
important component of business-cycle dynamics.

We plot our coefficient estimates 𝛽𝜏 in Figure A-15. The estimates are generally
positive, but economically small relative to the large observed variation in TFP, log 𝜃𝑖𝑡,
which has an in-sample standard deviation of 0.84. Outside of the first two years and
last year of the sample, we find limited evidence of time variation. Moreover, the
variation that exists is not obviously correlated with the business cycle. This suggests
that the compositional effect for optimists driven by narrative updating in response
to idiosyncratic conditions is not, at least in our data, quantitatively significant.

A.2.7 Contrarianism, Endogenous Cycles, and Chaos

The baseline model can generate neither endogenous cycles nor chaotic dynamics
without extrinsic shocks to fundamentals (as made formal by Lemma 1). This is
because the probability that agents become optimistic is always increasing in the
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fraction of optimists in equilibrium.
In this appendix, we relax this assumption and delineate precise, testable condi-

tions under which cyclical and chaotic dynamics occur in the absence of fundamental
and aggregate shocks. We do so in a model with “contrarian” agents whose updating
contradicts recent data and/or consensus. Our analysis of endogenous narratives with
contrarianism therefore complements the literature on endogenous cycles in macroe-
conomic models (see, e.g., Boldrin and Woodford, 1990; Beaudry, Galizia, and Portier,
2020) by providing a further potential micro-foundation for the existence of endoge-
nous cycles.

We begin by defining cycles and chaos. There exists a cycle of period 𝑘 ∈ N if
𝑄 = 𝑇 𝑘(𝑄) and all elements of {𝑄, 𝑇 (𝑄), . . . , 𝑇 𝑘−1(𝑄)} are non-equal. We will say
that there are chaotic dynamics if there exists an uncountable set of points 𝑆 ⊂ [0, 1]

such that (i) for every 𝑄,𝑄′ ∈ 𝑆 such that 𝑄 ̸= 𝑄′, we have that lim sup𝑡→∞ |𝑇 𝑡(𝑄)−
𝑇 𝑡(𝑄′)| > 0 and lim inf𝑡→∞ |𝑇 𝑡(𝑄)−𝑇 𝑡(𝑄′)| = 0 and (ii) for every 𝑄 ∈ 𝑆 and periodic
point 𝑄′ ∈ [0, 1], lim sup𝑡→∞ |𝑇 𝑡(𝑄) − 𝑇 𝑡(𝑄′)| > 0. This definition of chaos is due
to Li and Yorke (1975) and can be understood as saying that there is a large set of
points such that the iterated dynamics starting from any two points in this set get
both far apart and vanishingly close.

A Variant Model with the Potential for Cycles and Chaos We will study
the issue of cycles and chaos under the simplifying assumption that,3 in equilibrium,
the induced probabilities that optimists and pessimists respectively become optimists
are quadratic and given by:4

𝑃𝑂(𝑄) = 𝑎𝑂 + 𝑏𝑂𝑄− 𝑐𝑄2 , 𝑃𝑃 (𝑄) = 𝑎𝑃 + 𝑏𝑃𝑄− 𝑐𝑄2 (349)

with parameters (𝑎𝑂, 𝑎𝑃 , 𝑏𝑂, 𝑏𝑃 , 𝑐) ∈ R5 such that 𝑃𝑂([0, 1]), 𝑃𝑃 ([0, 1]) ⊆ [0, 1]. The
parameters 𝑎𝑂 and 𝑎𝑃 index stubbornness, 𝑏𝑂 and 𝑏𝑃 capture both contagiousness
and associativeness (through the subsumed equilibrium map), and 𝑐 captures any
non-linearity.

The following result describes the potential dynamics:

3This simplifying assumption is without any qualitative loss as this model can demonstrate the
full range of potential cyclical and chaotic dynamics.

4This can be microfounded in a generalization our earlier LAC model by taking 𝑃𝑖(log 𝑌,𝑄) =

𝑢𝑖 + 𝑟𝑖 log 𝑌 + 𝑠𝑖𝑄− 𝑐𝑄2 for 𝑖 ∈ {𝑂,𝑃} and approximating 𝑓(𝑄) ≈ 𝛼𝛿𝑂𝑃

1−𝜔 𝑄. In this case:

𝑃𝑖(𝑄) = (𝑢𝑖 + 𝑟𝑖𝑎0 + 𝑟𝑖𝑎1 log 𝜃) +

(︂
𝑟𝑖
𝛼𝛿𝑂𝑃

1− 𝜔
+ 𝑠𝑖

)︂
𝑄− 𝑐𝑄2
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Proposition 34. The following statements are true:

1. When 𝑃𝑂 ≥ 𝑃𝑃 and both are monotone, there are neither cycles of any period
nor chaotic dynamics.

2. When 𝑃𝑂 and 𝑃𝑃 are linear, cycles of period 2 are possible, cycles of any period
𝑘 > 2 are not possible, and chaotic dynamics are not possible.

3. Without further restrictions on 𝑃𝑂 and 𝑃𝑃 , cycles of any period 𝑘 ∈ N and
chaotic dynamics are possible.

Proof. The dynamics of optimism are characterized by the transition map

𝑇 (𝑄) = 𝑄(𝑎𝑂 + 𝑏𝑂𝑄− 𝑐𝑄2) + (1−𝑄)(𝑎𝑃 + 𝑏𝑃𝑄− 𝑐𝑄2)

= 𝑎𝑃 + (𝑎𝑂 − 𝑎𝑃 + 𝑏𝑃 )𝑄− (𝑐+ 𝑏𝑃 − 𝑏𝑂)𝑄
2

(350)

where we define 𝜔0 = 𝑎𝑃 , 𝜔1 = (𝑎𝑂 − 𝑎𝑃 + 𝑏𝑃 ), 𝜔2 = (𝑐+ 𝑏𝑃 − 𝑏𝑂) for simplicity. We
first show that the dynamics described by 𝑇 are topologically conjugate to those of
the logistic map 𝑇 (𝑥) = 𝜂𝑥(1− 𝑥) with

𝜂 = 1 +
√︀

(𝑎𝑂 − 𝑎𝑃 + 𝑏𝑃 − 1)2 + 4𝑎𝑃 (𝑐+ 𝑏𝑃 − 𝑏𝑂) (351)

Two maps 𝑇 : [0, 1] → [0, 1] and 𝑇 ′ : [0, 1] → [0, 1] are topologically conjugate if there
exists a continuous, invertible function ℎ : [0, 1] → [0, 1] such that 𝑇 ′ ∘ ℎ = ℎ ∘ 𝑇 . If
𝑇 is topologically conjugate to 𝑇 ′ and we know the orbit of 𝑇 ′, we can compute the
orbit of 𝑇 via the formula:

𝑇 𝑘(𝑄) =
(︁
ℎ−1 ∘ 𝑇 ′𝑘 ∘ ℎ

)︁
(𝑄) (352)

Hence, we can prove the properties of interest using known properties of the map 𝑇

as well as the mapping from the deeper parameters of 𝑇 to the parameters of 𝑇 .

To show the topological conjugacy of 𝑇 and 𝑇 , we proceed in three steps:

1. 𝑇 is topically topologically conjugate to the quadratic map 𝑇 (𝑄) = 𝑄2 + 𝑘 for
appropriate choice of 𝑘. We guess the following homeomorphism ℎ̂(𝑄) = �̂�+𝛽𝑄.
Plugging ℎ̂ in 𝑇 , we have that:

𝑇 (ℎ̂(𝑄)) = (𝑘 + �̂�2) + 2�̂�𝛽𝑄+ 𝛽2𝑄2 (353)
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Inverting ℎ̂ and applying it to this expression yields:

ℎ̂−1(𝑇 (ℎ̂(𝑄))) =
𝑘 + �̂�(�̂�− 1)

𝛽
+ 2�̂�𝑄+ 𝛽𝑄2 (354)

To verify topological conjugacy, we need to show that 𝑇 (𝑄) = ℎ̂−1(𝑇 (ℎ̂(𝑄))).
Matching coefficients, this is the case if and only if:

𝜔0 =
𝑘 + �̂�(�̂�− 1)

𝛽
, 𝜔1 = 2�̂�, 𝜔2 = −𝛽 (355)

We therefore have that:

𝑘 = 𝛽𝜔0 + �̂�(1− �̂�) = −𝜔2𝜔0 +
𝜔1

2

(︁
1− 𝜔1

2

)︁
(356)

with ℎ̂(𝑄) = 𝜔1

2
− 𝜔2𝑄.

2. 𝑇 is topologically conjugate to 𝑇 for appropriate choice of 𝜂. We guess the
following homeomorphism ℎ̌(𝑄) = �̌� + 𝛽𝑄. Plugging ℎ̌ in 𝑇 , we obtain:

𝑇 (ℎ̌(𝑄)) = 𝜂
(︀
�̌�(1− �̌�) + 𝛽(1− 2�̌�)𝑄− 𝛽2𝑄2

)︀
(357)

Inverting ℎ̌ and applying it, we obtain:

ℎ̌−1(𝑇 (ℎ̌(𝑄))) =
𝜂�̌�(1− �̌�)− �̌�

𝛽
+ 𝜂(1− 2�̌�)𝑄− 𝜂𝛽𝑄2 (358)

Matching coefficients, we find:

𝑘 =
𝜂�̌�(1− �̌�)− �̌�

𝛽
, 0 = 𝜂(1− 2�̌�), 1 = −𝜂𝛽 (359)

We therefore obtain that:

𝑘 = 𝜂(�̌�− 𝜂(1− �̌�)) =
𝜂

2

(︁
1− 𝜂

2

)︁
(360)

which implies that 𝜂 = 1 +
√
1− 4𝑘 with ℎ̌(𝑄) = 1

2
− 1

1+
√
1−4𝑘

𝑄.

3. 𝑇 is topologically conjugate to 𝑇 for appropriate choice of 𝜂. We now compose
the mappings proved in steps 1 and 2 to show

𝑇 = ℎ̂−1 ∘ ℎ̌−1 ∘ 𝑇 ∘ ℎ̌ ∘ ℎ̂ (361)
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with

𝜂 = 1 +

√︂
1− 4

(︁
−𝜔2𝜔0 +

𝜔1

2

(︁
1− 𝜔1

2

)︁)︁
= 1 +

√︀
(𝜔1 − 1)2 + 4𝜔2𝜔0

= 1 +
√︀
(𝑎𝑂 − 𝑎𝑃 + 𝑏𝑃 − 1)2 + 4𝑎𝑃 (𝑐+ 𝑏𝑃 − 𝑏𝑂)

(362)

and therefore that 𝑇 is topologically conjugate to 𝑇 .

Having shown the conjugacy of 𝑇 to 𝑇 , we now find bounds on 𝜂 implied by each
case and use this conjugacy to derive the implications for possible dynamics. The
following points prove each claim 1-3 in the original Proposition.

1. 𝑃𝑂 ≥ 𝑃𝑃 and both are monotone. Thus, 𝑇 is increasing and there cannot be
cycles or chaos. This implies that 𝜂 < 3 (see Weisstein, 2001, for reference).

2. 𝑃𝑂 and 𝑃𝑃 are linear. It suffices to show that we can attain 𝜂 > 3 but that
𝜂 must be less than 1 +

√
6 (see Weisstein, 2001, for reference). In this case,

𝑐 = 0. This is in addition to the requirements that max𝑄∈[0,1] 𝑃𝑖(𝑄) ≤ 1 and
min𝑄∈[0,1] 𝑃𝑖(𝑄) ≥ 0 for 𝑖 ∈ {𝑂,𝑃}, which can be expressed as:

max
𝑄∈[0,1]

𝑃𝑖(𝑄) = max

{︂
𝑎𝑖, 𝑎𝑖 + 𝑏𝑖 − 𝑐,

(︂
𝑎𝑖 +

𝑏2𝑖
4𝑐

)︂
I[0 ≤ 𝑏𝑖 ≤ 2𝑐]

}︂
≤ 1

min
𝑄∈[0,1]

𝑃𝑖(𝑄) = min{𝑎𝑖, 𝑎𝑖 + 𝑏𝑖 − 𝑐} ≥ 0
(363)

The maximal value of 𝜂 consistent with these restrictions can therefore be ob-
tained by solving the following program:

max
(𝑎𝑂,𝑎𝑃 ,𝑏𝑂,𝑏𝑃 )∈R4

(𝑎𝑂 − 𝑎𝑃 + 𝑏𝑃 − 1)2 + 4𝑎𝑃 (𝑏𝑃 − 𝑏𝑂)

s.t.max {𝑎𝑂, 𝑎𝑂 + 𝑏𝑂} ≤ 1,max {𝑎𝑃 , 𝑎𝑃 + 𝑏𝑃} ≤ 1

min{𝑎𝑂, 𝑎𝑂 + 𝑏𝑂} ≥ 0,min{𝑎𝑃 , 𝑎𝑃 + 𝑏𝑃} ≥ 0

(364)

Exact solution of this program via Mathematica yields that the maximum value
is 5. This implies that the maximum value of 𝜂 is 1 +

√
5 ≈ 3.23, which is

greater than 3 but less than 1 +
√
6. Moreover, this maximum is attained at

𝑎𝑂 = 0, 𝑎𝑃 = 1, 𝑏𝑂 = 0, 𝑏𝑃 = −1.

3. No further restrictions on 𝑃𝑂 and 𝑃𝑃 . We can attain 𝜂 = 4 by setting 𝑎0 =

𝑎𝑃 = 0, 𝑏𝑂 = 𝑏𝑃 = 4, 𝑐 = 4. Thus, cycles of any period 𝑘 ∈ N and chaotic
dynamics can occur (see Weisstein, 2001, for reference).
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The proof of this result follows a classic approach of recasting a quadratic dif-
ference equation as a logistic difference equation via topological conjugacy (see, e.g.,
Battaglini, 2021; Deng, Khan, and Mitra, 2022). The restrictions on structural pa-
rameters implied by the hypotheses of the proposition then yield upper bounds on
the possible logistic maps and allow us to characterize the possible dynamics using
known results.

To understand this result, observe in our baseline case in which 𝑇 is monotone
that cycles and chaos are not possible. This is because there is no potential for
optimism to sufficiently overshoot its steady state. By contrast, when 𝑃𝑂 and 𝑃𝑃

are either non-monotone or non-ranked, two-period cycles can take place where the
economy undergoes endogenous boom-bust cycles with periods of high optimism and
high output ushering in periods of low optimism and low output (and vice versa) as
contrarians switch positions and consistently overshoot the (unstable) steady state.
Finally, when 𝑃𝑂 and 𝑃𝑃 are non-linear and non-monotone, essentially any richness
of dynamics can be achieved via erratic movements in optimism that are extremely
sensitive to initial conditions.

An Empirical Test for Cycles and Chaos Proposition 34 shows how to translate
an updating rule of the form of Equation 349 into predictions about the potential for
cycles and chaos. We now estimate this updating rule in the data to test these
predictions empirically. Concretely, in our panel dataset of firms, we estimate the
regression model

opt𝑖𝑡 = 𝛼1 opt𝑖,𝑡−1 + 𝛽1opt𝑖,𝑡−1 · opt𝑖,𝑡−1+

𝛽2(1− opt𝑖,𝑡−1) · opt𝑖,𝑡−1 + 𝜏 (opt𝑖,𝑡−1)
2 + 𝛾𝑖 + 𝜀𝑖𝑡

(365)

where 𝛾𝑖 is a firm fixed effect. This model allows the effects of contagiousness to
depend on agents’ previous state. In the mapping to Equation 349, 𝛼 = 𝑎𝑃 , 𝛼1 =

𝑎𝑂 − 𝑎𝑃 , 𝛽1 = 𝑏𝑂, 𝛽2 = 𝑏𝑃 , and 𝜏 = 𝑐. With estimates of each regression parameter,
denoted by a hat, we also obtain an estimate of the logistic map parameter 𝜂 defined
in Equation 351:

𝜂 = 1 +

√︁
(�̂�1 + 𝛽2 − 1)2 + 4�̂�1(𝜏 + 𝛽2 − 𝛽1) (366)

Since 𝜂 is a nonlinear function of estimated parameters in the regression, we can
conduct inference on 𝜂 using the delta method. Moreover, this constitutes a test
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for the possibility of cycles and chaos in the model by the logic of Proposition 34.
Specifically, as described in the proof of that result, there are two main cases. First,
if 𝜂 < 3, then case 1 of the result obtains: there are neither cycles of any period nor
chaotic dynamics. Second, if 𝜂 ≥ 3, there can be cycles of period 2 or more and/or
chaos. Moreover, if 𝜂 > 3.57, chaotic dynamic obtain.

Our estimates are presented in Table A.20. Our point estimate of 𝜂 is 1.443
and the 95% confidence interval is (0.076, 2.810). This rules out, at the 5% level,
the presence of cycles and/or chaos. The 99% confidence interval is (−0.354, 3.240),
which does not rule out cycles. The 𝑝-value for the chaotic dynamics threshold is
0.001. Thus, our results provide strong evidence against the possibility of chaos due
to contagious optimism, and marginally weaker evidence against the possibility of
cycles. This test complements the literature on endogenous cycles in macroeconomic
models (see, e.g., Boldrin and Woodford, 1990; Beaudry, Galizia, and Portier, 2020)
by providing a micro-founded test within a structural economic model, which may
ameliorate challenges associated with interpreting pure time-series evidence (see, e.g.,
Werning, 2017).

A.2.8 Narratives in Games and the Role of Higher-Order Be-

liefs

We have studied a micro-founded business-cycle model, but the basic insights extend
much more generally to abstract, linear beauty contest games. Importantly, these set-
tings provide us with an ability to disentangle the dual roles of narratives in affecting
both agents’ first-order and higher-order beliefs about fundamentals.

Concretely, suppose that agents’ best replies are given by the following beauty
contest form (see, e.g., Morris and Shin, 2002):

𝑥𝑖𝑡 = 𝛼E𝑖𝑡[𝜃𝑡] + 𝛽E𝑖𝑡[𝑌𝑡] (367)

where 𝛼 > 0 and 𝛽 ∈ [0, 1). This linear form for best replies is commonly justified by
(log-)linearization of some underlying best response function (see, e.g., Angeletos and
Pavan, 2007). For example, log-linearization of the agents’ best replies in the baseline
model of this section yields such an equation with 𝛽 = 𝜔 and all variables above
standing in for their log-counterparts. Moreover, suppose that aggregation is linear
so that 𝑌𝑡 =

∫︀
[0,1]

𝑥𝑖𝑡d𝑖. This can similarly be justified via an appropriate first-order
expansion of non-linear aggregators. Finally, we let the structure of narratives be as
before.
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Toward characterizing equilibrium, we define the average expectations operator:

E𝑡[𝜃𝑡] =
∫︁
[0,1]

E𝑖𝑡 [𝜃𝑡] d𝑖 (368)

and the higher-order average expectations operator for 𝑘 ∈ N as:

E𝑘𝑡 [𝜃𝑡] =
∫︁
[0,1]

E𝑖𝑡
[︁
E𝑘−1

𝑡 [𝜃𝑡]
]︁
d𝑖 (369)

Moreover, we observe by recursive substitution that equilibrium aggregate output is
given by:

𝑌𝑡 = 𝛼

∞∑︁
𝑘=1

𝛽𝑘−1E𝑡
𝑘
[𝜃𝑡] (370)

We can therefore solve for the unique equilibrium by computing the hierarchy of
higher-order expectations. We can do this in closed-form by observing that agents’
idiosyncratic first-order beliefs are given by:

E𝑡[𝜃𝑡|𝑠𝑖𝑡, 𝜆𝑖𝑡] = 𝜅𝑠𝑖𝑡 + (1− 𝜅) (𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 ) (371)

which allows us to compute average first-order expectations of fundamentals as:

E𝑡[𝜃𝑡] = 𝜅𝜃𝑡 + (1− 𝜅)(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 ) (372)

which is a weighted average between true fundamentals and the average impact of
narratives on agents’ priors. By taking agents’ expectations over this object and
averaging, we compute higher-order average expectations as:

E𝑘𝑡 [𝜃𝑡] = 𝜅𝑘𝜃𝑡 + (1− 𝜅𝑘)(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 ) (373)

which is again a weighted average between the state and agents’ priors, but now with
a geometrically increasing weight on narratives as we consider higher-order average
beliefs.

The following result characterizes aggregate output and agents’ best replies in the
unique equilibrium:

Proposition 35 (Narratives and Higher-Order Beliefs). There exists a unique equi-
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librium. In this unique equilibrium, aggregate output is given by:

𝑌𝑡 =
𝛼

1− 𝛽

(︂
(1− 𝛽)𝜅

1− 𝛽𝜅
𝜃𝑡 +

1− 𝜅

1− 𝛽𝜅
(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )

)︂
(374)

Moreover, agents’ actions follow:

𝑥𝑖𝑡 = 𝛼
1

1− 𝛽𝜅
[𝜅𝜃𝑡 + 𝜅𝑒𝑖𝑡 + (1− 𝜅) (𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 )]

+ 𝛽
𝛼

1− 𝛽

1− 𝜅

1− 𝛽𝜅
(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )

(375)

Proof. To substantiate the arguments in the main text, by aggregating Equation 367,
we obtain that:

𝑌𝑡 = 𝛼𝐸𝑡[𝜃𝑡] + 𝛽𝐸𝑡[𝑌𝑡] (376)

Thus, by recursive substitution 𝑘 times we obtain that:

𝑌𝑡 = 𝛼
𝑘∑︁
𝑗=1

𝛽𝑗−1𝐸
𝑗

𝑡 [𝜃𝑡] + 𝛽𝑘𝐸
𝑘

𝑡 [𝑌𝑡] (377)

Moreover, we have that:

E𝑗𝑡 [𝜃𝑡] = 𝜅𝑗𝜃𝑡 + (1− 𝜅𝑗)(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 ) (378)

and thus that:

𝛼
𝑘∑︁
𝑗=1

𝛽𝑗−1𝐸
𝑗

𝑡 [𝜃𝑡] = 𝛼
𝑘∑︁
𝑗=1

𝛽𝑗−1
(︀
𝜅𝑗𝜃𝑡 + (1− 𝜅𝑗)(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )

)︀
= 𝛼

𝑘∑︁
𝑗=1

𝛽𝑗−1(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 ) + 𝛼𝛽−1

𝑘∑︁
𝑗=1

(𝛽𝜅)𝑗 [𝜃𝑡 − (𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )]

(379)

Hence:

lim
𝑘→∞

𝛼

𝑘∑︁
𝑗=1

𝛽𝑗−1𝐸
𝑗

𝑡 [𝜃𝑡] =
𝛼

1− 𝛽
(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )+

𝛼𝜅

1− 𝛽𝜅
[𝜃𝑡 − (𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )]

(380)

We therefore have that there is a unique equilibrium if lim𝑘→∞ 𝛽𝑘𝐸
𝑘

𝑡 [𝑌𝑡] = 0. Hellwig
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and Veldkamp (2009) show in Proposition 1 of their supplementary material that all
equilibria differ on a most a measure zero set of fundamentals. In this setting, this
implies that lim𝑘→∞ 𝛽𝑘𝐸

𝑘

𝑡 [𝑌𝑡] = 𝑐 for some 𝑐 ∈ R for almost all 𝜃 ∈ Θ. Hence, the
equilibrium is given by:

𝑌𝑡 =
𝛼

1− 𝛽
(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 ) +

𝛼𝜅

1− 𝛽𝜅
[𝜃𝑡 − (𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )] + 𝑐

=
𝛼

1− 𝛽

(︂
(1− 𝛽)𝜅

1− 𝛽𝜅
𝜃𝑡 +

1− 𝜅

1− 𝛽𝜅
(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )

)︂
+ 𝑐

(381)

But then we have that 𝑐 = 0 by computing lim𝑘→∞ 𝛽𝑘𝐸
𝑘

𝑡 [𝑌𝑡] = 0 under this equilib-
rium.

Finally, to solve for individual actions under this equilibrium, we compute:

𝑥𝑖𝑡 = 𝛼E𝑖𝑡[𝜃𝑡] + 𝛽E𝑖𝑡[𝑌𝑡]

= 𝛼E𝑖𝑡[𝜃𝑡] + 𝛽E𝑖𝑡
[︂

𝛼

1− 𝛽

(︂
(1− 𝛽)𝜅

1− 𝛽𝜅
𝜃𝑡 +

1− 𝜅

1− 𝛽𝜅
(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )

)︂]︂
=

(︂
𝛼 + 𝛽

𝛼

1− 𝛽

(1− 𝛽)𝜅

1− 𝛽𝜅

)︂
E𝑖𝑡[𝜃𝑡] + 𝛽

𝛼

1− 𝛽

1− 𝜅

1− 𝛽𝜅
(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )

= 𝛼
1

1− 𝛽𝜅
(𝜅𝑠𝑖𝑡 + (1− 𝜅) (𝜆𝑖𝑡𝜇𝑂 + (1− 𝜆𝑖𝑡)𝜇𝑃 ))

+ 𝛽
𝛼

1− 𝛽

1− 𝜅

1− 𝛽𝜅
(𝑄𝑡𝜇𝑂 + (1−𝑄𝑡)𝜇𝑃 )

(382)

Completing the proof.

This result allows us to see how narratives affect output by propagating up through
the hierarchy of higher-order beliefs. Concretely, we have that the static impulse
response of output to a contemporaneous shock to the fraction of optimists in the
population is given by:

𝜕𝑌𝑡
𝜕𝑄𝑡

=
𝛼

1− 𝛽

1− 𝜅

1− 𝛽𝜅
(𝜇𝑂 − 𝜇𝑃 ) = 𝛼

∞∑︁
𝑗=1

𝛽𝑗−1(1− 𝜅𝑗)(𝜇𝑂 − 𝜇𝑃 ) (383)

The first expression is composed of the relative importance of fundamentals 𝛼
1−𝛽 , the

impact of prior beliefs on the entire hierarchy of higher-order beliefs about exogenous
and endogenous outcomes 1−𝜅

1−𝛽𝜅 and the difference between the two narratives 𝜇𝑂−𝜇𝑃 .
The second expression re-expands the heirarchy of beliefs, to highlight how fraction

𝛽𝑗−1(1− 𝜅𝑗)
1

1−𝛽
1−𝜅
1−𝛽𝜅

(384)
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of the total effect is driven by beliefs of order 𝑗. These weights decline more slowly if
complementarity 𝛽 or prior weights 1− 𝜅 are high.

Finally, our result shows how the regression equation relating individual actions
with narrative weights, estimated in our main analysis, holds in equilibrium in the
linearized beauty contest. Thus, our empirical strategy is compatible with the inter-
pretation that the macroeconomy is best described by a linear beauty contest, and
moreover can be ported to other settings where this modeling assumption may be
appropriate, such as that of financial speculation (see e.g., Allen, Morris, and Shin,
2006).

A.2.9 Model with Firm Dynamics

We now sketch an augmentation of our baseline conceptual model of the firm from
which we derived our earlier estimating equations (see Appendix A.1.1) to allow for
persistent idiosyncratic states and adjustment costs. This allows us to more formally
justify why controlling for firm productivity and lagged labor is sufficient to account
for the presence of adjustment costs to first-order.

In every period 𝑡, each firm 𝑖 still takes an action 𝑥𝑖𝑡 ∈ 𝒳 . Their objective function
still takes as an input their action, aggregate outcomes 𝑌𝑡 ∈ 𝒴 , and aggregate funda-
mentals 𝜃𝑡 (which in analogy to the previous appendix sections, we allow to follow a
first-order (continuous) Markov process). However, they now have idiosyncratic fun-
damentals 𝜃𝑖𝑡, which follow a first-order (continuous) Markov process. Moreover, their
actions are subject to adjustment costs Φ : R → R+ equal to Φ(𝑥− 𝑥−1) when their
last action was 𝑥−1. Thus, we let their flow utility be 𝑢(𝑥, 𝑌, 𝜃, 𝜃)−Φ(𝑥− 𝑥−1). The
firm discounts the future at rate 𝛽𝑖 ∈ [0, 1). The aggregate state variables in period 𝑡
are the distribution of 𝑥𝑖𝑡−1 in the population 𝐹 𝑥

𝑡−1, the distribution of narratives in the
population 𝑄𝑡, and the level of current and past aggregate fundamentals 𝜃𝑡 and 𝜃𝑡−1.
Thus, equilibrium aggregate output is described by some function 𝑌 (𝐹 𝑥

𝑡−1, 𝑄𝑡, 𝜃𝑡, 𝜃𝑡−1).
Moreover, observe at time 𝑡 that the following are the state variables for a firm: (i)
the level of idiosyncratic productivity in the previous period 𝜃𝑖𝑡−1 (ii) the level of ag-
gregate productivity in the previous period 𝜃𝑡−1 (iii) the firm’s action in the previous
period 𝑥𝑖𝑡−1 (iv) the narrative entertained by the agent 𝜆𝑖𝑡 (v) their current signal
about fundamentals 𝑠𝑖𝑡, and (vi) the additional aggregate states (𝐹 𝑥

𝑡−1, 𝑄𝑡).

We can therefore represent any firm policy function as:

𝑥𝑖𝑡 = 𝑔(𝑥𝑖𝑡−1, 𝜃𝑡−1, 𝜃𝑖𝑡−1, 𝐹
𝑥
𝑡−1, 𝑄𝑡, 𝜆𝑖𝑡, 𝑠𝑖𝑡) (385)
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If this is differentiable, we may linearize it to obtain:

𝑥𝑖𝑡 ≈ 𝛾𝑖 + 𝜒𝑡 +
𝐾∑︁
𝑘=1

𝛿𝑘𝜆𝑘,𝑖𝑡 + 𝛾𝜃𝑖𝑡−1 + 𝜔𝑥𝑖𝑡−1 + 𝜀𝑖𝑡 (386)

where the aggregate fixed effect now absorbs (𝐹 𝑥
𝑡−1, 𝑄𝑡, 𝜃𝑡, 𝜃𝑡−1), 𝜃𝑖𝑡−1 capture agents’

idiosyncratic expectations of future fundamentals, and 𝑥𝑖𝑡−1 captures their adjustment
costs.
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A.3 Additional Details on Textual Data

A.3.1 Obtaining and Processing 10-Ks

Here, we describe our methodology for obtaining and processing raw data on 10-K
filings. We start with raw html files downloaded directly from the SEC’s EDGAR
(Electronic Data Gathering, Analysis, and Retrieval) system. Each of these files
corresponds to a single 10-K filing. Each file is identified by its unique accession
number. In its heading, each file also contains the end-date for the period the report
concerns (e.g., 12/31/2018 for a FY 2018 ending in December), and a CIK (Central
Index Key) firm identifier from the SEC. We use standard linking software provided
by Wharton Research Data Services (WRDS) to link CIK numbers and fiscal years
to the alternative firm identifiers used in data on firm fundamentals and stock prices.
We have, in our original dataset, 182,259 files.

We follow the following steps to turn each document, now identified by firm and
year, into a bag-of-words representation:

1. Cleaning raw text. We first translate the document into unformatted text.
Specifically, we follow the following steps in order:

(a) Removing hyperlinks and other web addresses

(b) Removing html formatting tags encased in the brackets <>

(c) Making all text lowercase

(d) Removing extra spaces, tabs, and new lines.

(e) Removing punctuation

(f) Removing non-alphabetical characters

2. Removing stop words. Following standard practice, we remove “stop words”
which are common in English but do not convey specific meaning in our anal-
ysis. We use the default English stop word list in the nltk Python package.
Example stopwords include articles (“a”,“the”), pronouns (“I”,“my”), prepositions
(“in”,“on”), and conjunctions (“and”,“while”).

3. Lemmatizing documents. Again following standard practice, we use lemmati-
zation software to reduce words to their common roots. We use the default
English-language lemmatizer of the spacy Python package. The lemmatizer
uses both the word’s identity and its content to transform sentences. For in-
stance, when each is used as a verb, “meet,” “met,” and “meeting” are commonly
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lemmatized to “meet.” But if the software predicts that “meeting” is used as a
noun, it will be lemmatized as the noun “meeting.”

4. Estimating a bigram model. We estimate a bigram model to group together
commonly co-occurring words as single two-word phrases. We use the phrases

function of the gensim package. The bigram modeler groups together words
that are almost always used together. For instance, if our original text data
set were the 10-Ks of public firms Nestlé and General Mills, the model may
determine that “ice” and “cream,” which almost always appear together, are
part of a bigram “ice_cream.”

5. Computing the bag of words representation. Having now expressed each doc-
ument as a vector of clean words (i.e., single words and bigrams), we simply
collapse these data to frequencies.

Finally, note that our procedure uses all of the non-formatting text in the 10K.
This includes all sections of the documents, and does not limit to the Management
Discussion and Analysis (MD&A) section. This is motivated by the fact that manage-
ment’s discussion is not limited to one section SEC (2011). Moreover, prior literature
has found that textual analysis of the entire 10-K versus the MD&A section tends
to closely agree, and that limiting scope to the MD&A section has limited practical
benefits due to the trade-off of limiting the amount of text per document (Loughran
and McDonald, 2011a).

A.3.2 Obtaining and Processing Conference Call Text

We obtain the full text of sales and earnings conference calls from 2002 to 2014
from the Fair Disclosure (FD) Wire service. The original sample includes 261,034
documents, formatted as raw text. We next subset to documents that have reported
firm names and stock tickers, which are automatically associated with documents by
Lexis Nexis. When matches are probabilistic, we use the first (highest probability)
match.5 We finally restrict to firms that are listed on one of three US stock exchanges:
the NYSE, the NASDAQ, or the NYSE-MKT (Small Cap). We finally connect tickers
to the firm identifiers in our fundamentals data using the master cross-walk available
on Wharton Research Data Services (WRDS). These operations together reduce the
sample size to 158,810 calls. We clean these data by conducting steps 1-3 described

5In the essentially zero-measure cases in which there is a tie, we take the alphabetically first
ticker.
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above in Appendix A.3.1. We then calculate positive word counts, negative word
counts, and optimism exactly as described in the main text for the 10-K data.

A.3.3 Measuring Positive and Negative Words

To calculate sets of positive and negative 10K words, we use the updated dictionary
available online at McDonald (2021) as of June 2020. This dictionary includes sub-
stantial updates relative to the dictionaries associated with the original Loughran
and McDonald (2011a) publication. These changes are reviewed in the Documenta-
tion available at McDonald (2021).

The Loughran-McDonald dictionary includes 2345 negative words and 347 positive
words. The dictionary is constructed to include multiple forms of each relevant word.
For instance, the first negative root “abandon” is listed as: “abandon,” “abandoned,”
“abandoning,” “abandonment,” “abandonments,” and “abandons.” To ensure consis-
tency with our own lemmatization procedure, we first map each unique word to all
of its possible lemmas using the getAllLemmas function of the lemminflect Python
package, which is an extension to the spacy package we use for lemmatization. We
then construct a new list of negative words by combining the original list of negative
words with all new, unique lemmas to which a negative word mapped (and similarly
for positive words). This procedure results in new lists of 2411 negative words and
366 positive words, which map exactly to the words that appear in our cleaned bag of
words representation. We list the top ten most common positive and negative words
from this cleaned set in Table A.1. In particular, to make the table most legible, we
first associate words with their lemmas, then count the sum of document frequencies
for each associated word (which may exceed one), and then print the most common
word associated with the lemma.

314



A.4 Additional Details on Firm Fundamentals Data

A.4.1 Compustat: Data Selection

Our data selection criteria and variable definitions are identical to those used in Flynn
and Sastry (2022a). In this Appendix, we review essential points. We refer the reader
to the Appendix material of Flynn and Sastry (2022a) for certain details.

Our dataset is Compustat Annual Fundamentals. Our main variables of inter-
est are defined in Appendix Table A.21. We restrict the sample to firms based in
the United States, reporting statistics in US Dollars, and present in the “Industrial”
dataset. We exclude firms whose 2-digit NAICS is 52 (Finance and Insurance) or 22
(Utilities). This filter eliminates firms in two industries that, respectively, may have
highly non-standard production technology and non-standard market structure.

We summarize our definitions of major “input and output” variables in Appendix
Table A.21. For labor choice, we measure the number of employees. For materials
expenditure, we measure the sum of reported variable costs (cogs) and sales and
administrative expense (xsga) net of depreciation (dp).6 As in Ottonello and Win-
berry (2020) and Flynn and Sastry (2022a), we use a perpetual inventory method
to calculate the value of the capital stock. We start with the first reported obser-
vation of gross value of plant, property, and equipment and add net investment or
the differences in net value of plant, property, and equipment. Note that, because all
subsequent analysis is conditional on industry-by-time fixed effects, it is redundant at
this stage to deflate materials and capital expenditures by industry-specific deflators.

We categorize the data into 44 sectors. These are defined at the 2-digit NAICS
level, but for the Manufacturing (31-33) and Information (51) sectors, which we clas-
sify at the 3-digit level to achieve a better balance of sector size. More summary
information about these industries is provided in Appendix F of Flynn and Sastry
(2022a).

A.4.2 Compustat: Calculation of TFP

When calculating firms’ Total Factor Productivity, we restrict attention to a subset
of our sample that fulfils the following inclusion criteria:

1. Sales, material expenditures, and capital stock are strictly positive;

2. Employees exceed 10;
6A small difference from Flynn and Sastry (2022a) is that, in assessing the firms’ costs and later

calculating TFP, we do not “unbundle” materials expenditures on labor and non-labor inputs using
supplemental data on annual wages.
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3. Acquisitions as a proportion of assets (aqc over at) does not exceed 0.05.

The first ensures that all companies meaningfully report all variables of interest for
our production function estimation; the second applies a stricter cut-off to eliminate
firms that are very small, and lead to outlier estimates of productivity and choices.
The third is a simple screening device for large acquisitions which may spuriously
show up as large innovations in firm choices and/or productivity.

Our method for recovering total factor productivity is based on cost shares. In
brief, we use cost shares for materials to back out production elasticities, and treat
the elasticity of capital as the implied “residual” given an assumed mark-up 𝜇 > 1 (in
our baseline, 𝜇 = 4/3) and constant physical returns-to-scale. The exact procedure
is the following:

1. For all firms in industry 𝑗, calculate the estimated materials share:

Share𝑀,𝑗′ =

∑︀
𝑖:𝑗(𝑖)=𝑗′

∑︀
𝑡 MaterialExpenditure𝑖𝑡∑︀

𝑖:𝑗(𝑖)=𝑗′
∑︀

𝑡 Sales𝑖𝑡
(387)

2. If Share𝑀,𝑗′ ≤ 𝜇−1, then set

𝛼𝑀,𝑗′ = 𝜇 · Share𝑀,𝑗′

𝛼𝐾,𝑗′ = 1− 𝛼𝑀,𝑗′
(388)

3. Otherwise, adjust shares to match the assumed returns-to-scale, or set

𝛼𝑀,𝑗′ = 1

𝛼𝐾,𝑗′ = 0
(389)

To translate our production function estimates into productivity, we calculate a
“Sales Solow Residual” 𝜃𝑖𝑡 of the following form:

log 𝜃𝑖𝑡 = log Sales𝑖𝑡 −
1

𝜇

(︀
𝛼𝑀,𝑗(𝑖) · logMatExp𝑖𝑡 + 𝛼𝐾,𝑗(𝑖) · logCapStock𝑖𝑡

)︀
(390)

We finally define our estimate log 𝜃 as the previous net of industry-by-time fixed
effects

log 𝜃𝑖𝑡 = log 𝜃𝑖𝑡 − 𝜒𝑗(𝑖),𝑡 (391)

Theoretical Interpretation The aforementioned method recovers physical pro-
ductivity (“TFPQ”) under the assumptions, consistent with our quantitative model,
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that firms operate constant returns-to-scale technology and face an isoleastic, downward-
sloping demand curve of known elasticity (equivalently, they charge a known markup).
The idea is that, given the known markup, we can impute firms’ (model-consistent)
costs as a fixed fraction of sales and then calculate the theoretically desired cost
shares. Here, we describe the simple mathematics.

There is a single firm 𝑖 operating in industry 𝑗 with technology

𝑌𝑖 = 𝜃𝑖𝑀
𝛼𝑗
𝑖 𝐾

1−𝛼𝑗
𝑖 (392)

They act as a monopolist facing the demand curve

𝑝𝑖 = 𝑌
− 1
𝜖

𝑖 (393)

for some inverse elasticity 𝜖 > 1. Observe that this is, up to scale, the demand
function faced by monopolistically competitive intermediate goods producers in our
model. The firm’s revenue is therefore 𝑝𝑖𝑌𝑖 = 𝑌

1− 1
𝜖

𝑖 . Finally, the firm can buy
materials at industry-specific price 𝑞𝑗 and rent capital at rate 𝑟𝑗. The firm’s program
for profit maximization is therefore

max
𝑀𝑖,𝐾𝑖

{︁
(𝜃𝑖𝑀

𝛼𝑗
𝑖 𝐾

1−𝛼𝑗
𝑖 )1−

1
𝜖 − 𝑞𝑗𝑀𝑖 − 𝑟𝑗𝐾𝑖

}︁
(394)

We first justify our formulas for the input shares (Equation 388). To do this,
we solve for the firm’s optimal input choices. This is a concave problem, in which
first-order conditions are necessary and sufficient. These conditions are

𝑞𝑗 =𝑀−1
𝑖 𝛼𝑗

(︂
1− 1

𝜖

)︂
(𝜃𝑖𝑀

𝛼𝑗
𝑖 𝐾

1−𝛼𝑗
𝑖 )1−

1
𝜖

𝑟𝑗 = 𝐾−1
𝑖 (1− 𝛼𝑗)

(︂
1− 1

𝜖

)︂
(𝜃𝑖𝑀

𝛼𝑗
𝑖 𝐾

1−𝛼𝑗
𝑖 )1−

1
𝜖

(395)

Re-arranging, and substituting in 𝑝𝑖 = 𝑌
− 1
𝜖

𝑖 , we derive

𝛼𝑗 =
𝜖

𝜖− 1

𝑞𝑗𝑀𝑖

𝑝𝑖𝑌𝑖

1− 𝛼𝑗 =
𝜖

𝜖− 1

𝑟𝑗𝐾𝑖

𝑝𝑖𝑌𝑖

(396)

Or, in words, that the materials elasticity is 𝜖
𝜖−1

times the ratio of materials input ex-
penditures to sales. Observe also that, by re-arranging the two first-order conditions,
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we can write expressions for production and the price

𝑌 =

(︃(︂
𝜖− 1

𝜖

)︂
𝜃𝑖

(︂
𝛼𝑗
𝑞𝑗

)︂𝛼(︂
1− 𝛼𝑗
𝑟𝑗

)︂1−𝛼𝑗
)︃𝜖

⇒ 𝑝 =

(︂
𝜖

𝜖− 1

)︂
𝜃−1
𝑖

(︂
𝑞𝑗
𝛼𝑗

)︂𝛼𝑗 (︂ 𝑟𝑗
1− 𝛼𝑗

)︂1−𝛼𝑗

(397)

and observe that 𝜃−1
𝑖

(︁
𝑞𝑗
𝛼𝑗

)︁𝛼𝑗 (︁ 𝑟𝑗
1−𝛼𝑗

)︁1−𝛼𝑗
is the firm’s marginal cost. Hence, we can

define 𝜇 = 𝜖
𝜖−1

> 1 as the firm’s markup and write the shares as required:

𝛼 = 𝜇
𝑞𝑗𝑀𝑖

𝑝𝑖𝑌𝑖
(398)

Finally, we now apply Equations 390 and 391 to calculate productivity. Assume
that we observe materials expenditure 𝑞𝑗𝑀𝑖 and capital value 𝑝𝐾,𝑗𝐾𝑖, where 𝑝𝐾,𝑗 is
an (unobserved) price of capital. We find

log 𝜃𝑖 =

(︂
1− 1

𝜖

)︂
(log 𝜃𝑖 − 𝛼 log 𝑞𝑗 − (1− 𝛼) log 𝑝𝐾,𝑗) (399)

We finally observe that the industry-level means are

𝜒𝑗 =

(︂
1− 1

𝜖

)︂(︀
log 𝜃𝑗 − 𝛼 log 𝑞𝑗 − (1− 𝛼) log 𝑝𝐾,𝑗

)︀
(400)

where log 𝜃𝑗 is the mean of log 𝜃𝑖 over the industry. Hence,

log 𝜃𝑖 =

(︂
1− 1

𝜖

)︂
(log 𝜃𝑖) (401)

or our measurement captures physical TFP, up to scale.
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A.5 Additional Empirical Results

A.5.1 A Test for Coefficient Stability

Here, we study the bias that may arise from omitted variables in our estimation of the
effect of narrative optimism on hiring, or 𝛿𝑂𝑃 in Section 1.4.1, Equation 12, and Table
1.1. In particular, we apply the method of Oster (2019) to bound bias in the estimate
of 𝛿𝑂𝑃 under external assumptions about selection on unobservable variables and to
calculate an extent of unobservable selection that could be consistent with a point
estimate 𝛿𝑂𝑃 = 0 that corresponds to our null hypothesis (i.e., “narrative optimism
is irrelevant for hiring”). We find that our results are highly robust by this criterion.

Set-up and Review of Methods To review, our estimating equation is

∆ log𝐿𝑖𝑡 = 𝛿𝑂𝑃opt𝑖𝑡 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜏 ′𝑋𝑖𝑡 + 𝜀𝑖𝑡 (402)

Hiring and optimism are constructed as described in Section 1.3, at the level of
firms and fiscal years. We treat firm and industry-by-time fixed effects as base-
line controls that are necessary for interpreting the regression.7 As our main “dis-
cretionary” controls, we consider current and past TFP and lagged labor—that is,
𝑋𝑖𝑡 = {log 𝜃𝑖𝑡, log 𝜃𝑖,𝑡−1, log𝐿𝑖,𝑡−1}. Under our baseline model, these controls help
increase precision, as they are in principle observable variables that explain hiring
(Corollary 1). Thus, in this Appendix, we will study the regression model in which
the fixed effects are partialed out of both the outcome, main regression, and controls,
as indicated below with the ⊥ superscript:

∆ log𝐿⊥
𝑖𝑡 = 𝛿𝑂𝑃opt⊥𝑖𝑡 + 𝜏 ′𝑋⊥

𝑖𝑡 + 𝜀⊥𝑖𝑡 (403)

The essence of the method proposed by Oster (2019), who builds on the approach
of Altonji, Elder, and Taber (2005), is to extrapolate the change in the coefficient in
interest upon the addition of control variables, taking into account the better fit (i.e.,
additional 𝑅2) from adding the new regressors. To exemplify the logic, consider a
case in which we first estimated Equation 403 without controls, obtaining a coefficient
estimate of 𝛿𝑂𝑃𝑁𝐶 and an 𝑅2 of �̂�2

𝑁𝐶 , and then estimated the same equation with
controls, obtaining a coefficient estimate of 𝛿𝑂𝑃𝐶 and an 𝑅2 of �̂�2

𝐶 . Both estimates are
restricted to a common sample, for comparability. If �̂�2

𝐶 = 1, then (up to estimation
7The latter, in particular, controls for the effect of fundamentals on hiring in our macroeconomic

model. We leverage this interpretation of the biased estimate of 𝛿𝑂𝑃 from a regression lacking this
fixed effect in Appendix A.6.3.
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error) we might presume that 𝛿𝑂𝑃𝐶 − 𝛿𝑂𝑃𝑁𝐶 estimates the entirety of the theoretically
possible omitted variables bias, as there is no remaining unmodeled variation in hiring.
If �̂�2

𝐶 < 1 and �̂�2
𝐶 − �̂�2

𝑁𝐶 is small (i.e., the controls did not greatly improve fit), then
we might presume that the residual still contains unobserved variables that could
contribute toward more bias—in other words, the observed omitted variables bias
𝛿𝑂𝑃𝐶 − 𝛿𝑂𝑃𝑁𝐶 is only a small fraction of what is possible.

To formalize this idea, Oster (2019) introduces two auxiliary parameters: 𝜆 (the
proportional degree of selection, called 𝛿 in the original paper), which controls the rel-
ative effect of observed and unobserved controls on the outcome, and �̄�2, which is the
maximum achievable fit of the regression with all (possibly bias-inducing) controls,
presumed in the example above to be 1. Conditional on �̄�2, Oster (2019) proposes an
intuitively reasonable (and, in special cases and under specific asymptotic arguments,
consistent) estimator for the degree of selection required to induce a zero coefficient,
�̂�*. Conditional on both �̄�2 and 𝜆, Oster (2019) also proposes a bias-corrected coef-
ficient estimator, which is 𝛿*𝑂𝑃 in our language.

The key parameter that the researcher has to specify for the first calculation is �̄�2:
the proportion of variance in the outcome variable (hiring, net of firm and sector-by-
time fixed effects) that can be explained by factors that correlate with the variable of
interest (optimism) and explain the outcome variable. As the main source of omitted
variation that could influence optimism and hiring is news about fundamentals, we
benchmark ˆ̄𝑅2 by estimating a regression in which we include our base control set
𝑋𝑖𝑡 = {log 𝜃𝑖𝑡, log 𝜃𝑖,𝑡−1, log𝐿𝑖,𝑡−1} and control for two years of future fundamentals
and labor choice, or

𝑍𝑖𝑡 = {log 𝜃𝑖,𝑡+1, log 𝜃𝑖,𝑡+2, log𝐿𝑖,𝑡+1, log𝐿𝑖,𝑡+2}

This yields ˆ̄𝑅2 = 0.459. Oster (2019) also suggests as a benchmark that �̄�2 could be
taken as three times the 𝑅2 in the controlled regression. We also report robustness to
�̄�2

Π = 0.387, three times the value of 𝑅2 = 0.129 that we find in the controlled regres-
sion. Thus, our baseline value of ˆ̄𝑅2 = 0.459 is more demanding than that suggested
by Oster (2019). We finally construct the bias-corrected coefficients assuming 𝜆 = 1,
or equal selection on unobservables and observables, for both values of �̄�2.

Results We report the results of this exercise in Table A.6. Under our baseline
value of ˆ̄𝑅2 = 0.459, we find that the degree of selection required to induced a zero
coefficient is �̂�* = 1.69. This is well above the value of �̂�* = 1 that Oster (2019)
suggests is likely to be conservative. Under the “three times 𝑅2” benchmark, we
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obtain that �̂�* = 2.15. In both cases, we are robust to there being more selection on
unobservables than on observables. According to Oster (2019), approximately 50%
of the published top-journal articles in their sample are not robust to this extent of
selection.

A.5.2 Alternative Empirical Strategy: CEO Change Event

Studies

To further isolate variation in the narratives held by firms that is unrelated to funda-
mentals, we study the effects on hiring of changes in narratives induced by plausibly
exogenous managerial turnover.

Data To obtain plausibly exogenous variation in narratives held at the firm level,
we will examine the year-to-year change in firm-level narratives stemming from plau-
sibly exogenous CEO changes. To do this, we use the dataset of categorized CEO
exits compiled by Gentry, Harrison, Quigley, and Boivie (2021). These data com-
prise 9,390 CEO turnover events categorized by the reason for the CEO exit. The
categorization was performed using primary sources (e.g., press releases, newspaper
articles, and regulatory filings) by undergraduate students in a computer lab, super-
vised by graduate students, with the final dataset checked by both a data outsourcing
company and an additional student. We restrict attention to CEO exists caused by
death, illness, personal issues, and voluntary retirements. Importantly, we exclude all
CEO exits caused by inadequate job performance, quits, and forced retirement.

The Effect of Optimism on Hiring We first revisit our empirical strategy for
measuring the effect of optimism on firms’ hiring, using the CEO change event studies.
For all firms 𝑖 and years 𝑡 such that 𝑖’s CEO leaves because of death, illness, personal
issues or voluntary retirements, we estimate the regression equation

∆ log𝐿𝑖𝑡 = 𝛿𝐶𝐸𝑂opt𝑖𝑡 + 𝜓 opt𝑖,𝑡−1 + 𝜏 ′𝑋𝑖𝑡 + 𝜒𝑗(𝑖),𝑡 + 𝜀𝑖𝑡 (404)

This differs from our baseline Equation 12 by including parametric controls for lagged
values of the narrative loadings, but removing a persistent firm fixed effect.8 If the
studied CEO changes are truly exogenous, as we have suggested, then the narrative
loadings of the new CEO are, conditional on the narrative loadings of the previous
CEO, solely due to the differences in worldview across these two senior executives.
Of course, CEO exits may be disruptive and reduce firm activity. Any time- and

8With a firm fixed effect, the regression coefficients of interest would be identified only from firms
with multiple plausibly exogenous CEO exits.
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industry-varying effects of CEO exits via disruption are controlled for by the inter-
cept of the regression 𝜒𝑗(𝑖),𝑡, since the equation is estimated only on the exit events.
Moreover, any within-industry, time-varying, and idiosyncratic disruption is captured
through our maintained productivity control. Under this interpretation, the coeffi-
cient of interest 𝛿𝐶𝐸𝑂 isolates the effect of optimism on hiring purely via the channel
of changing managements’ narratives.

We present our results in Table A.22. We obtain estimates of 𝛿𝐶𝐸𝑂 that are
quantitatively similar to our estimates of 𝛿𝑂𝑃 in Table 1.1 (columns 1, 2, and 3).
In column 4, we estimate a regression equation on the full sample that measures the
direct effect of CEO changes and its interaction with the new management’s optimism.
Specifically, we estimate

∆ log𝐿𝑖𝑡 = 𝛿NoChangeopt𝑖𝑡 + 𝛿Change(opt𝑖𝑡 × ChangeCEO𝑖𝑡) + 𝛼ChangeChangeCEO𝑖𝑡

+ 𝜓 opt𝑖,𝑡−1 + 𝜏 ′𝑋𝑖𝑡 + 𝜒𝑗(𝑖),𝑡 + 𝜀𝑖𝑡
(405)

where ChangeCEO𝑖𝑡 is an indicator for our plausibly exogenous CEO change events.
We find that CEO changes in isolation reduce hiring (𝛼Change < 0) but also that the
effect of optimism is magnified when it accompanies a CEO change (𝛿Change > 0).
This is further inconsistent with a story under which omitted fundamentals lead us
to overestimate the effect of optimism on hiring.

Contagiousness from CEO Change Spillovers We next leverage changes in
within-sector and peer-set optimism induced by plausibly exogenous CEO changes as
instruments for the level of optimism within these groups. Concretely, we construct
an instrument equal to the contribution toward optimism from firms whose CEOs
changed for a plausibly exogenous reason, or

optceo
𝑗(𝑖),𝑡−1 =

1

|𝑀𝑗(𝑖),𝑡|
∑︁

𝑘∈𝑀𝑐
𝑗(𝑖),𝑡

opt𝑘,𝑡−1 (406)

where 𝑀𝑗(𝑖),𝑡 is the set of firms in industry 𝑗(𝑖) at time 𝑡, and 𝑀 𝑐
𝑗(𝑖),𝑡 is the subset

that had plausibly exogenous CEO changes. We construct the peer-set instrument
optceo

𝑝(𝑖),𝑡−1 analogously. We use (optceo
𝑗(𝑖),𝑡−1, optceo

𝑝(𝑖),𝑡−1) as instruments for (opt𝑗(𝑖),𝑡−1, opt𝑝(𝑖),𝑡−1)

in the estimation of Equation 19. We present the corresponding estimates in Table
A.23. We find similar point estimates under IV and OLS, although the IV estimates
are significantly noisier.
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A.5.3 Narrative Optimism, Beliefs, and Hiring

In this appendix, we study whether narrative optimism, measured using text-analysis
methods, matters for firm decisions conditional on firm-manager beliefs, measured
from recorded managerial guidance. We find that narrative optimism and measured
expectations each have predictive power conditional on the other for explaining hiring
and capital investment. These results suggest that textual optimism captures aspects
of managers’ latent beliefs not captured in traditional measurement of expectations
(here, in guidance data).

Data We collect data from IBES (the International Brokers’ Estimate System) on
quantitative forecasts by company managers for three statistics: sales, capital expen-
ditures (CAPX), and earnings per share (EPS). As described in Section 1.3.1, we
restrict to the first recorded forecast per fiscal year of that year’s variable. When
managers’ guidance is reported as a range, we code a point-estimate forecast as the
range’s midpoint. For each variable 𝑍 ∈ {Sales,Capx,Eps}, we calculated the man-
ager’s predicted growth for fiscal year 𝑡 as

ForecastGrowthZ𝑖𝑡 = logGuidanceForX𝑖𝑡 − log𝑍𝑖,𝑡−1 (407)

For example, GuidanceForSales𝑖𝑡 is the manager’s earliest recorded guidance within
fiscal year 𝑡 for fiscal-year 𝑡 sales, and Sales𝑖,𝑡−1 are recorded sales from fiscal year
𝑡− 1. Textual narrative optimism opt𝑖𝑡 is measured as in our main analysis.

Empirical Strategy We re-create our main regression model, predicting hiring by
opt𝑖𝑡 conditional on firm fixed effects and industry-by-time fixed effects. We now
include, as control variables, each of the ForecastGrowthZ𝑖𝑡 variables:

∆ log𝐿𝑖𝑡 = 𝛿𝑂𝑃opt𝑖𝑡 + 𝛿𝑍 ForecastGrowthZ𝑖𝑡 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜀𝑖𝑡 (408)

The coefficient 𝛿𝑂𝑃 measures the difference in hiring between textually optimistic
and non-optimistic firms, holding fixed forecasted growth about variable 𝑍 (and the
fixed effects). The coefficient 𝛿𝑍 measures the marginal effect of forecasted growth, in
variable 𝑍, on hiring, holding fixed whether the firm is optimistic or pessimistic (and
the fixed effects). We also estimate a variance with net investment, or ∆ log𝐾𝑖𝑡, on
the left-hand side.

Results Table A.24 shows the results when hiring is the outcome. We find that
forecasted sales, CAPX, and earnings growth have positive effects of hiring, the first
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two of which are statistically significant (columns 2-4). Nonetheless, conditional on
these variables, optimism has a positive effect on hiring of comparable magnitude to
the baseline (column 1). The effect is statistically significant conditional on forecasted
sales and CAPX growth (respectively, 𝑡 = 1.80 and 𝑡 = 4.54). Both optimism and
forecasted EPS growth are insignificant predictors of hiring on the small (𝑁 = 1290)
sample for which we can obtain EPS growth forecasts.

To compare the magnitudes of effects, we can calculate standardized coefficients.
These have units of the effect of a one-standard-deviation change in the regressor on
standard deviations of the outcome. For column 2, the standardized coefficient on
textual optimism is 0.057 (SE: 0.0030) and the coefficient on predicted sales growth
is 0.213 (SE: 0.0329). In this sense, predicted sales growth, for the subset of firms for
which it is available, explains larger variations in hiring than textual optimism; but
nonetheless, textual optimism has a statistically and economically significant effect.

Table A.25 shows analogous results when net capital investment is the outcome.
As with hiring, we verify that predicted sales and CAPX growth have statistically
significant, positive effects on capital investment, and that optimism has a positive
effect conditional on these variables. Effects on the sub-sample with earnings guidance
are noisy, for both the effects of optimism and the effects of forecasts.

Discussion We interpret our results in a model in which textual optimism, opt𝑖𝑡, is
one measurement of a non-fundamental shifter in firm managers’ beliefs. We validate
this interpretation in the paper by showing that opt𝑖𝑡: (i) predicts hiring, as reviewed
above in this note; (ii) does not predict future positive firm performance; and (iii)
does correlate with optimistic manager forecasts, when measured in a variety of ways.
We interpret managerial forecasts, about a variety of firm-specific variables, as alter-
native possible measurements of beliefs and their non-fundamental component. We
are agnostic, more or less, about which of these measures explains more variation in
firm actions or does so more precisely.

More broadly, while forecasts are quantitative, and provide hard information
about managers’ beliefs, they also capture at best only one or two moments of a
probability distribution. By contrast, our measures of text all us to capture informa-
tion about managers’ beliefs that they do not express numerically, i.e., we capture soft
information about managers’ beliefs (Liberti and Petersen, 2019). We find that this
soft aspect of managers’ beliefs is important for explaining their decisions conditional
on hard information. This is consistent with extensive economic and psychological
evidence that humans do not naturally think probabilistically (see e.g., Tversky and
Kahneman, 1973). Language may reflect nuances not present in the forecasts. These
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nuances are actually what we want to map to economic models, where we (economists)
introduce statistical beliefs to model sentiment. This is the sense in which language
might measure aspects of beliefs that are not captured in “measured beliefs.” In this
way, our results relate to a literature focusing on the decision-relevance of measured
beliefs (Gennaioli, Ma, and Shleifer, 2016). They are moreover consistent with the
literature focusing on the decision-relevance of textually measured firm-level vari-
ables including reported risks (Hassan, Hollander, Van Lent, and Tahoun, 2019) and
reported uncertainty (Handley and Li, 2020).

A.5.4 State-Dependent Effects of Sentiment

Our main empirical framework assumes that the effect of narrative sentiment on hiring
does not depend on previous sentiment. As one concrete example, this rules out the
possibility that switching from relative optimism to relative pessimism has a larger
effect than remaining equally pessimistic for two consecutive periods. To test for such
state-dependent effects, we estimate augmented regression equations of the form:

∆ log𝐿𝑖𝑡 = 𝛿0sentiment𝑖𝑡 + 𝛿1sentiment𝑖,𝑡−1+

𝛿2(sentiment𝑖𝑡 × sentiment𝑖,𝑡−1) + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜏 ′𝑋𝑖𝑡 + 𝜀𝑖𝑡
(409)

where sentiment𝑖𝑡 is our continuous measure of firm sentiment in language, (𝛾𝑖, 𝜒𝑗(𝑖),𝑡)
are fixed effects at the firm and industry-by-time levels, and 𝑋𝑖𝑡 is a vector of controls.
This model allows for the marginal effect of this fiscal year’s sentiment to depend
on the level of the previous fiscal year’s sentiment. In particular, if 𝛿2 > 0, and
the marginal effect of sentiment is positive, then this marginal effect is higher for a
previously positive firm; if 𝛿2 < 0, and the marginal effect of sentiment is positive,
then this marginal is lower for a previously positive firm.

Table A.26 shows our results, for different choices of controls. We find significant
evidence of positive marginal effects for sentiment𝑖𝑡 and 𝛿2 < 0, or larger marginal ef-
fects when lagged sentiment is low. This asymmetry is quantitatively small, however,
in the following sense. The standard deviation of sentiment𝑖,𝑡−1 is 1.14. Using the
estimates of column 1, a one-standard-deviation increase in sentiment, starting from
sentiment𝑖,𝑡−1 = 0, decreases the marginal effect of sentiment𝑖𝑡 from 0.022 to 0.016.

A.5.5 Measuring Contagiousness via Granular Instrumental

Variables

As an alternative strategy to estimate contagiousness, we apply the methods of Gabaix
and Koijen (2020) to construct “granular variables” that aggregate idiosyncratic vari-
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ation in large firms’ narrative loadings. We find evidence that the idiosyncratic opti-
mistic updating of large firms induces optimistic updating, a form of contagiousness.

Constructing the Granular Measures We construct our granular instruments
via the following algorithm. We first estimate a firm-level updating regression that
controls non-parametrically for aggregate trends and parametrically for firm-level
conditions. Specifically, we estimate

opt𝑖𝑡 = 𝜏 ′𝑋𝑖𝑡 + 𝜒𝑗(𝑖),𝑡 + 𝛾𝑖 + 𝑢𝑖𝑡 (410)

where 𝜒𝑗(𝑖),𝑡 is an industry-by-time fixed effect (sweeping out industry-specific aggre-
gate shocks), 𝛾𝑖 is a firm fixed effect (sweeping out compositional effects), and 𝑋𝑖𝑡

is the largest vector of controls used in the analysis of Section 1.4.1, consisting of:
lagged log employment, current and lagged log TFP, log stock returns, the log book
to market ratio, and leverage. We construct the empirical residuals �̂�𝑖𝑡. To construct
the aggregate granular variable, opt𝑔,𝑠𝑤𝑡 , we take a sales-weighted average of these
residuals:

opt𝑔,𝑠𝑤𝑡 =
∑︁
𝑖

sales𝑖𝑡∑︀
𝑖 sales𝑖𝑡

�̂�𝑖𝑡 (411)

To construct an industry-level granular variable, opt𝑔,𝑠𝑤𝑗(𝑖),𝑡, we take the leave-one-out
sales-weighted average of the �̂�𝑖𝑡:

opt𝑔,𝑠𝑤𝑡 =
∑︁

𝑖′:𝑗(𝑖)=𝑗(𝑖′),𝑖′ ̸=𝑖

sales𝑖′𝑡∑︀
𝑖 sales𝑖′𝑡

�̂�𝑖′𝑡 (412)

We also construct agggregate and industry (leave-one-out) averages of opt𝑖𝑡 for com-
parison. We denote these variables as opt𝑠𝑤𝑡 and opt𝑠𝑤𝑗(𝑖),𝑡, respectively.

Empirical Strategy At the aggregate level, we first consider a variant of our main
model Equation 18, but with one of the sales-weighted variables 𝑍𝑡 ∈ {opt𝑠𝑤𝑡 , opt𝑔,𝑠𝑤𝑡 }:

opt𝑖𝑡 = 𝑢 opt𝑖,𝑡−1 + 𝑠 𝑍𝑡−1 + 𝑟 ∆ log 𝑌𝑡−1 + 𝛾𝑖 + 𝜀𝑖𝑡 (413)

The coefficient 𝑠 measures contagiousness with respect to the sales-weighted measures
of optimism. We estimate Equation 413 by OLS, and also estimate a version in which
the granular variable opt𝑔,𝑠𝑤𝑡 is an instrumental variable for the raw sales-weighted
average opt𝑠𝑤𝑡 .
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Similarly, at the industry level, we estimate the model

opt𝑖𝑡 = 𝑢ind opt𝑖,𝑡−1 + 𝑠ind 𝑍𝑗(𝑖),𝑡−1 + 𝑟ind ∆ log 𝑌𝑗(𝑖),𝑡−1 + 𝛾𝑖 + 𝜒𝑡 + 𝜀𝑖𝑡 (414)

for 𝑍𝑗(𝑖),𝑡 ∈ {opt𝑠𝑤𝑗(𝑖),𝑡, opt𝑔,𝑠𝑤𝑗(𝑖),𝑡}. As above, we estimate this first via OLS for each
outcome variable, and then via IV where the granular variable opt𝑔,𝑠𝑤𝑗(𝑖),𝑡 is an instrument
for the raw sales-weighted average opt𝑠𝑤𝑗(𝑖),𝑡.

Results We present our results in Table A.27. First, studying aggregate contagious-
ness, we find strong evidence that 𝑠 > 0 when measured with the raw sales-weighted
average or its granular component (columns 1 and 2). We moreover find significant
evidence of 𝑠 > 0 in the IV estimation (column 3). Our IV point estimate of 𝑠 = 0.308

greatly exceeds the OLS estimate of 𝑠 = 0.0847.
At the industry level, we find strong evidence of contagiousness via the sales-

weighted measure (column 4). We find imprecise estimates, centered around 0, for
contagiousness measured with the granular variable (column 5) or via the granular
IV (column 6). However, the granular IV estimate is noisily estimated and is not
significantly different from the point estimate of column 4.
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A.6 Additional Details on Model Quantification

A.6.1 Solution of Model With Persistent Fundamentals

We first provide the exact solution of the model when fundamentals follow an AR(1)

process. We build on the analysis of Appendix A.2.5, which allows for (among other
features) persistent fundamentals.

Law of Motion for Output Log aggregate productivity follows the process

log 𝜃𝑡 = (1− 𝜌)𝜇+ 𝜌 log 𝜃𝑡−1 + 𝜎𝜁𝑡 (415)

with 𝜁𝑡 ∼ 𝑁(0, 1) IID. We continue to assume, as in our main analysis, that there
are two narratives associated with high and low values of 𝜇, 𝜇𝑂 > 𝜇𝑃 , while the true
value is 𝜇 = 0. Proposition 32 establishes that equilibrium can be written as (𝑓 does
not depend on 𝜃𝑡−1 here as all agents believe persistence is 𝜌)

log 𝑌𝑡 = 𝑎0 + 𝑎1 log 𝜃𝑡 + 𝑎2 log 𝜃𝑡−1 + 𝑓(𝑄𝑡) (416)

where we normalize 𝑎0 = 0. We define the fundamental component of output as
log 𝑌𝑡 − 𝑓(𝑄𝑡):

log 𝑌 𝑓
𝑡 = 𝑎1 log 𝜃𝑡 + 𝑎2 log 𝜃𝑡−1 (417)

Subtracting 𝜌 log 𝑌 𝑓
𝑡−1 from both sides, the above becomes an ARMA(1, 1) process:

log 𝑌 𝑓
𝑡 − 𝜌 log 𝑌 𝑓

𝑡−1 = 𝑎1𝜎𝜁𝑡 + 𝑎2𝜎𝜈𝑡−1 (418)

It remains to solve for the coefficients (𝑎1, 𝑎2). In particular, Equations 334 and 335
give the fixed-point equations which these coefficients must solve. We can simplify
these fixed point equations considerably in the case with optimism and pessimism
about means and compute 𝛿𝑡,𝑘 for 𝑘 ∈ {𝑂,𝑃}:

𝛿𝑡,𝑘 =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︃
log

(︃
1− 1

𝜖
1+𝜓
𝛼

)︃
+

1 + 𝜓

𝛼
[log 𝛾𝑖 + 𝜅 log 𝜃𝑡 + (1− 𝜅)((1− 𝜌)𝜇𝑘 + 𝜌 log 𝜃𝑡−1)]

− 1

2

(︂
1 + 𝜓

𝛼

)︂2 (︀
𝜎2
𝜃|𝑠 + 𝜎2

𝜃

)︀
+

1

2
𝑎21

(︂
1

𝜖
− 𝛾

)︂2

𝜎2
𝜃|𝑠

+

(︂
1

𝜖
− 𝛾

)︂
[𝑎0 + 𝑎1 (𝜅 log 𝜃𝑡 + (1− 𝜅)((1− 𝜌)𝜇𝑘 + 𝜌 log 𝜃𝑡−1)) + 𝑎2 log 𝜃𝑡−1 + 𝑓(𝑄𝑡)]

]︃
(419)
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Here, we have used the fact that posterior variances and perceived persistence are
the same for the two narratives, and the fact that 𝜇(𝑒𝑘, 𝜃𝑡−1) = (1− 𝜌)𝜇𝑘 + 𝜌 log 𝜃𝑡−1.
Therefore,

𝛼𝛿𝑂𝑃 := 𝛿𝑡,𝑂 − 𝛿𝑡,𝑃 =
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

(︂
1 + 𝜓

𝛼
+

(︂
1

𝜖
− 𝛾

)︂
𝑎1

)︂
(1− 𝜅)(1− 𝜌)(𝜇𝑂 − 𝜇𝑃 )

(420)
is the (time-invariant) average difference in actions between optimists and pessimists,
as we identify in the data.

Next, taking 𝛿𝑡(𝑒1) = 𝛿𝑡,𝑃 and 𝑄𝑡 as the fraction of optimists, we write Equation
335 as

log 𝑌𝑡 = 𝛿𝑡,𝑃 +
1

2

𝜖− 1

𝜖
�̂�2 +

𝜖

𝜖− 1
log

(︂
𝑄𝑡 exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

}︂)︂
(421)

Substituting in the expression for 𝛿𝑡,𝑃 , we can write the above up to a constant 𝐶
that does not depend on (log 𝜃𝑡, log 𝜃𝑡−1, 𝑄𝑡) as

log 𝑌𝑡 = 𝐶 +
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︂
1 + 𝜓

𝛼
𝜅+

(︂
1

𝜖
− 𝛾

)︂
𝑎1𝜅

]︂
log 𝜃𝑡

+
1

1+𝜓−𝛼
𝛼

+ 1
𝜖

[︂
1 + 𝜓

𝛼
(1− 𝜅)𝜌+

(︂
1

𝜖
− 𝛾

)︂
(𝑎1(1− 𝜅)𝜌+ 𝑎2)

]︂
log 𝜃𝑡−1

+
𝜖

𝜖− 1
log

(︂
𝑄𝑡 exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

}︂)︂ (422)

To obtain the coefficients in our desired representation, first note that we can write

𝑓(𝑄𝑡) =
𝜖

𝜖− 1
log

(︂
𝑄𝑡 exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

}︂)︂
− 𝜖

𝜖− 1
log

(︂
1

2
exp

{︂
𝜖− 1

𝜖
𝛼𝛿𝑂𝑃

}︂)︂
(423)

This is the same form as our main analysis, with a normalization such that 𝑓(1/2) = 0.
Next, from matching coefficients, and noting the definition of 𝜔 = (1/𝜖 − 𝛾)/((1 +

𝜓 − 𝛼)/𝛼 + 1/𝜖),

𝑎1 =
1

1− 𝜅𝜔

1+𝜓
𝛼
𝜅

1+𝜓−𝛼
𝛼

+ 1
𝜖

(424)

Finally, from matching coefficients for 𝑎2,

𝑎2 =
1

1− 𝜔

1
1+𝜓−𝛼

𝛼
+ 1

𝜖

[︂
1 + 𝜓

𝛼
+

(︂
1

𝜖
− 𝛾

)︂
𝑎1

]︂
(1− 𝜅)𝜌 (425)

Updating Rule We use the Linear-Associative-Contagious Updating rule intro-
duced as the Main Case (Equation 29), with a normalization. More specifically, we
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assume transition probabilities

𝑃𝐻
𝑂 (log 𝑌,𝑄, 𝜀) = [𝑢+ 𝑟 log 𝑌 + 𝑠𝑄+ 𝐶𝑃 + 𝜀]10

𝑃𝐻
𝑃 (log 𝑌,𝑄, 𝜀) = [−𝑢+ 𝑟 log 𝑌 + 𝑠𝑄+ 𝐶𝑃 + 𝜀]10

(426)

We choose 𝐶𝑃 such that an economy with neutral fundamentals (log 𝜃𝑡 = log 𝜃𝑡−1 = 0),
equal optimists and pessimists (𝑄 = 1/2), and no narrative shocks (𝜀 = 0) continues
to have equal optimists and pessimists. Specifically, this implies 𝐶𝑃 = 1−𝑠

2
.

A.6.2 Calibration Methodology

To calibrate the model, we proceed in four steps.

1. Setting macro parameters. We first set (𝜖, 𝛾, 𝜓, 𝛼). In Section 1.7.1 and Ta-
ble 1.6, we describe our baseline method based on matching estimates of the
deep parameters from the literature. We also consider two other strategies as
robustness checks. First, to target estimated fiscal multipliers in the literature,
we use the same external calibration of 𝛼 (returns to scale) and 𝜖 (elasticity of
substitution), and set (𝛾, 𝜓) to match the desired multiplier. Since the exact
choice of these parameters is arbitrary subject to obtain the correct multiplier,
we normalize 𝛾 = 0 and vary only 𝜓. Second, we match an estimate of the mul-
tiplier implied by our own data and an exact formula for the omitted variable
bias incurred in estimating the effect of optimism on hiring without controlling
for general-equilibrium effects via a time fixed effect. We outline that strategy
for estimating the multiplier in Section A.6.3 below, and we map this to deep
parameters exactly as described in our method for matching the literature’s
estimated multiplier.

2. Calibrating the effect of optimism on output. We observe that, conditional
on (𝜖, 𝛾, 𝜓, 𝛼) and an estimate of 𝛿𝑂𝑃 , we have identified 𝑓(𝑄𝑡) as defined in
Equation 423. We take our estimate of 𝛿𝑂𝑃 from column 1 in Table 1.1. This
regression identifies 𝛿𝑂𝑃 for the reasons described in Corollary 1.

3. Calibrating the statistical properties of fundamentals (𝜅, 𝜌, 𝜎).

(a) Computing fundamental output. We construct a cyclical component of
output, log 𝑌𝑡, as band-pass filtered US real GDP (Baxter and King, 1999).9

9Specifically, we filter to post-war quarterly US real GDP data (Q1 1947 to Q1 2022). We use a
lead-lag length of 12 quarters, a low period of 6 quarters, and a high period of 32 quarters. We then
average these data to the annual level.
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We apply our estimated function 𝑓 to our measured time series of optimism
(see Figure 1-1) to get an estimated optimism component of output. we
then calculate

log 𝑌 𝑓
𝑡 = log 𝑌𝑡 − 𝑓(�̂�𝑡) (427)

(b) Estimating the ARMA representation. Using our 24 annual observations
of log 𝑌 𝑓

𝑡 , we estimate a Gaussian-errors ARMA(1,1) model via maximum
likelihood. Our point estimates are

log 𝑌 𝑓
𝑡 − 0.086 log 𝑌 𝑓

𝑡 = .0078(𝜁𝑡 + .32 𝜈𝑡−1) (428)

This implies 𝜌 = 0.086, 𝑎1𝜎 = .0078, and 𝑎2𝜎 = .32. 𝜌 is therefore identi-
fied immediately.

(c) Calibrating (𝜅, 𝜎). We search non-linearly for values of (𝜅, 𝜎) that satisfy
𝑎1𝜎 = 0.0078 and 𝑎2𝜎 = 0.32. There is a unique such pair, reported
in Table 1.6, which also is therefore the maximum likelihood estimate of
(𝜅, 𝜎).

4. Calibrating the updating rule (𝑢, 𝑟, 𝑠, 𝜎2
𝜀). The coefficients of the LAC updating

model are estimated in column 1 of Table 1.4. Conditional on the previous
calibration, we set 𝜎2

𝜀 so that within model 𝑄𝑡 has the same standard deviation
as the aggregate optimism time series, which is 0.0533.

To calibrate the variant model with multi-dimensional narratives, we follow steps
1-3 exactly as above combined with a different procedure for step 4 described below:

4′. Calibrating the multi-dimensional updating rule ((𝛽𝑘, 𝑢𝑘, 𝑟𝑘, 𝑠𝑘)𝐾𝑘=1, 𝜎
2
𝜀). To map

theory to data, we first transform each continuous narrative loading variable
�̂�𝑘,𝑖𝑡 (indexed by narrative identifier 𝑘, firm 𝑖, and time period 𝑡) into a binary
indicator for being above the sample median,

�̂�𝑏𝑘,𝑖𝑡 = I
[︁
�̂�𝑘,𝑖𝑡 ≥ med

(︁
�̂�𝑘,𝑖𝑡

)︁]︁
∈ {0, 1}

We study the 2 decision-relevant Shiller (2020) narratives and 11 decision-
relevant topic narratives indicated in Table 1.3. We let 𝑘 ∈ {1, . . . , 13} index
these narratives below.

(a) Calibrating the constellation weights 𝛽. To estimate the constellation
weights, we first regress optimism at the firm level on the binary indicators
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for each of the selected narratives, conditional on firm and industry-by-time
fixed effects:

opt𝑖𝑡 =
13∑︁
𝑘=1

𝜏 𝑘�̂�𝑏𝑘,𝑖𝑡 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜈𝑖𝑡 (429)

For all 𝑘 such that 𝜏 𝑘 < 0, we re-normalize the narrative to 1− �̂�𝑏𝑘,𝑖𝑡 (i.e.,
an indicator for being below-median), such that all narratives positively
contribute toward the probability of being optimistic. We finally construct
an estimator of 𝛽𝑘 which re-normalizes the regression coefficients above to
sum to one,

𝛽𝑘 =
|𝜏 𝑘|∑︀13
𝑗=1 |𝜏 𝑗|

(430)

(b) Calibrating the updating parameters (𝑢𝑘, 𝑟𝑘, 𝑠𝑘) and 𝜎2
𝜀 . To estimate the

updating rule paramaters, we take the 𝑢𝑘, 𝑟𝑘, and 𝑠𝑘 parameters from
Figure A-9, flipping the sign of associativeness if we flipped 𝜏 𝑘 in step
4’(a). Conditional on the previous calibration, we set 𝜎2

𝜀 so that within
model 𝑄𝑡 has the same standard deviation as the aggregate optimism time
series, which is 0.0533.

A.6.3 Estimating a Demand Multiplier in Our Empirical Set-

ting

Here, we describe a method for estimating a demand multiplier in our data on op-
timism and firm hiring. This circumvents the step of external calibration for the
multiplier, but relies on correct specification of the time-series correlates of aggregate
optimism. Reassuringly, this method yields a general-equilibrium demand multiplier
that is comparable to our baseline calibration and our literature-derived calibration.

Mapping the Model to Data Extending Corollary 1 with the calculations of
Appendix A.2.5 and Appendix A.6.1, we first observe that firms’ hiring can be written
in equilibrium as

∆ log𝐿𝑖𝑡 = 𝑐0,𝑖+𝑐10 log 𝜃𝑡+𝑐11 log 𝜃𝑡−1+𝑐2𝑓(𝑄𝑡)+𝑐3 log 𝜃𝑖𝑡+𝑐4 log𝐿𝑖,𝑡−1+𝛿
𝑂𝑃𝜆𝑖𝑡+𝜁𝑖𝑡

(431)
where 𝜁𝑖𝑡 is an IID normal random variable with zero mean and 𝜆𝑖𝑡 is the indicator
for having adopted the optimistic narrative.

In the data, our estimating equation without control variables had the following
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form
∆ log𝐿𝑖𝑡 = 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝛿𝑂𝑃opt𝑖𝑡 + 𝑧𝑖𝑡 (432)

This maps to the structural model with 𝛾𝑖 = 𝑐0,𝑖, 𝜒𝑗(𝑖),𝑡 = 𝑐10 log 𝜃𝑡 + 𝑐11 log 𝜃𝑡−1 +

𝑐2𝑓(𝑄𝑡), and 𝑧𝑖𝑡 = 𝜁𝑖𝑡+𝑐3 log 𝜃𝑖𝑡+𝑐4 log𝐿𝑖,𝑡−1. Under the hypothesis that E[𝑧𝑖𝑡opt𝑖𝑡] =
0, then the OLS regression of ∆ log𝐿𝑖𝑡 on opt𝑖𝑡, conditional on the indicated fixed
effects, identifies 𝛿𝑂𝑃 .

We consider now an alternative regression equation which is a variant of the above
specification without the time fixed effect and with parametric controls for aggregate
TFP:

∆ log𝐿𝑖𝑡 = 𝛾𝑖 + 𝛿𝑂𝑃opt𝑖𝑡 + 𝑐10 log 𝜃𝑡 + 𝑐11 log 𝜃𝑡−1 + 𝑧𝑖𝑡 (433)

Observe that the new residual, relative to the old residual, is contaminated by the
equilibrium effect of optimism. That is, 𝑧𝑖𝑡 = 𝑧𝑖𝑡+ 𝑐2𝑓(𝑄𝑡). To refine this further, we
apply the linear approximation 𝑓(𝑄𝑡) ≈ 𝛼𝛿𝑂𝑃

1−𝜔 𝑄𝑡 and the observation that 𝑐2 = 𝜔, so
we can write 𝑧𝑖𝑡 = 𝑧𝑖𝑡 +

𝛼𝜔
1−𝜔𝛿

𝑂𝑃𝑄𝑡.

We now derive a formula for omitted variables bias in the estimate of 𝛿𝑂𝑃 from
an OLS estimation of Equation 433. Let 𝑋 denote a finite-dimensional matrix of
data on opt𝑖𝑡, firm-level indicators (i.e., the regressors corresponding to the firm
fixed effects), and current and lagged aggregate TFP. Similarly, let 𝑌 be a finite-
dimensional matrix of data on ∆ log𝐿𝑖𝑡. The OLS regression coefficient in this finite
sample is 𝛿 = ((𝑋 ′𝑋)−1𝑋 ′𝑌 )1. Using the standard formula for omitted variables bias:

E[𝛿|𝑋] = 𝛿𝑂𝑃 +

(︂
(𝑋 ′𝑋)−1E[𝑋 ′𝑄|𝑋]

𝛼𝜔

1− 𝜔
𝛿𝑂𝑃

)︂
1

= 𝛿𝑂𝑃
(︂
1 +

𝛼𝜔

1− 𝜔

(︀
(𝑋 ′𝑋)−1E[𝑋 ′𝑄|𝑋]

)︀
1

)︂ (434)

where 𝑄 is the vector of observations of 𝑄𝑡. We can then observe that:

(𝑋 ′𝑋)−1E[𝑋 ′𝑄|𝑋] = E
[︀
(𝑋 ′𝑋)−1𝑋 ′𝑄|𝑋

]︀
(435)

Which is the (expected) OLS estimate of 𝛽 in the following regression:

𝑄𝑡 = 𝛾𝑖 + 𝛽𝑄𝑂opt𝑖𝑡 + 𝛽𝑄𝜃 log 𝜃𝑡 + 𝛽𝑄𝜃−1
log 𝜃𝑡−1 + 𝜀𝑡 (436)

But we observe that, averaging both sides, that 𝛾𝑖 = 𝛽𝑄𝜃 = 𝛽𝑄𝜃−1
= 0 and 𝛽𝑄𝑂 = 1.
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Thus, ((𝑋 ′𝑋)−1E[𝑋 ′𝑄|𝑋])1 = 1. We therefore obtain that:

E[𝛿 | 𝑋] = 𝛿𝑂𝑃
(︂
1 +

𝛼𝜔

1− 𝜔

)︂
(437)

Hence, given a population estimate of the biased OLS estimate and an external cali-
bration of 𝛼, we can pin down the complementarity 𝜔 and the multiplier 1

1−𝜔 . Natu-
rally this strategy relies on correctly measuring aggregate TFP as measurement error
in that variable would contaminate this estimation. Moreover, it requires us to as-
sume that all variation in aggregate output that is not due to TFP is due to optimism
or forces entirely orthogonal to optimism; in view of our running assumption that the
spread of optimism is associative, these other forces therefore also have to be com-
pletely transitory, lest they be incorporated into current optimism via associative
updating in a previous period. These assumptions are strong and are why we do
not adopt this strategy for our main quantitative analysis. Nevertheless, we will find
similar results, as we now describe.

Empirical Application and Results To operationalize this in practice, we com-
pare estimates of Equation 432 and 433. For the latter, we proxy TFP using the
cyclical component of both capacity adjusted and capacity un-adjusted TFP using
the data of Fernald (2014).10 We moreover maintain the assumption of 𝛼 = 1, or
constant returns to scale, to map our estimates back to implied multipliers.

Our results are reported in Table A.28, along with the associated values of comple-
mentarity 𝜔 and the multiplier 1

1−𝜔 . Using capacity-adjusted and unadjusted TFP, we
respectively obtain estimates of 1.46 and 1.37 for the multiplier. These are lower than
our baseline estimate, but comparable to our estimates based on structural modeling
in the literature. Both estimates are below our baseline calibration of 1.96 but above
our multiplier-literature calibration of 1.33. In Table A.19, we report our quantita-
tive results under the assumed multiplier of 1.46. We find that, as expected, these
estimates imply an role for optimism that is an intermediate between the baseline
and multiplier-literature calibrations.

10Mirroring our filtering of US real GDP, we apply the Baxter and King (1999) band-pass filter
to post-war quarterly data using a lead-lag length of 12 quarters, a low period of 6 quarters, and a
high period of 32 quarters. We then average these data to the annual level.
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A.7 Our Analysis and Shiller’s Narrative Economics
Shiller (2017, 2020) introduces the notion of narrative economics and identifies “Seven
Propositions of Narrative Economics” as a basis for the theoretical and empirical in-
vestigation of narratives. In this section, we discuss our work, how our modeling of
narratives relates to Shiller’s ideas, and the relationship of our modeling, measure-
ment, and results with these propositions. In the process, we highlight how these
propositions have informed our analysis, discuss how our analysis contributes new
insights, and propose avenues for future work to more fully understand narratives
and the macroeconomy.

A.7.1 The modeling of Narratives

We first describe how our modeling and measurement of narratives are designed to
capture the salient features of narratives that Shiller (2020) introduces in the preface:

In using the term narrative economics, I focus on two elements: (1) the
word-of-mouth contagion of ideas in the form of stories and (2) the efforts
that people make to generate new contagious stories or to make stories
more contagious. First and foremost, I want to examine how narrative
contagion affects economic events. The word narrative is often synony-
mous with story. But my use of the term reflects a particular modern
meaning given in the Oxford English Dictionary: “a story or represen-
tation used to give an explanatory or justificatory account of a society,
period, etc.” Expanding on this definition, I would add that stories are
not limited to simple chronologies of human events. A story may also be
a song, joke, theory, explanation, or plan that has emotional resonance
and that can easily be conveyed in casual conversation.

To map this verbal definition to our framework (see Section 1.2 for the formal
details and notation), consider the following simple verbal rationale for our modeling
approach. There is a latent space of economic fundamentals (demand for goods) and
endogenous outcomes (aggregate output). An agent has some beliefs about economic
fundamentals and corresponding endogenous outcomes (𝜋). They are told the fol-
lowing simple story by another agent about the economy: “I didn’t hire (𝑥) because
aggregate output (𝑌 ) will be low because demand (𝜃) is weak.” This might cause
the agent to believe this story that demand is weak and adopt this narrative (placing
weight 𝜆 on the implied distribution of fundamentals). Moreover, if many of their
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friends tell them the story, they might be more positively inclined to believe it. Of
course, the agent doesn’t listen to the story blindly: they can see if demand was
previously low (and might even have information about demand from their personal
economic activities ℐ) and might regard such a story is fanciful if their own experience
contradicts this claim. At the end of this process of contemplation, they update their
own weight on the narrative (via 𝑃 ) and arrive at their new belief (𝜋′).

Of course, the actual realization of output depends on the circulation of narratives
in the population (𝑄). If an agent believes the “demand is weak” narrative, then they
will curtail their hiring. Knowing this, other agents—even if they do not believe
that latent demand is weak—will believe that others will curtail their hiring, so that
realized demand will be weak. Then, knowing this, all agents further cut hiring. This
paradox of thrift induces a hierarchy of higher-order expectations regarding realized
demand induced by the distribution of narratives. This converges to a fixed point
(𝑌 *(𝑄) : Θ → 𝒴) describing the mapping of demand into aggregate output under the
prevailing circulation of narratives.

Thus, while the primitive narrative began as a story about the strength of demand,
in equilibrium it takes on a meaning as not only describing exogenous economic
outcomes, but also endogenous economic outcomes. Concretely, given an equilibrium
mapping, the narrative endogenously induces the joint belief 𝑁* ∈ ∆(Θ × 𝒴) given
by 𝑁*(𝜃, 𝑌 ) = 𝑁(𝜃) × I[𝑌 = 𝑌 *(𝜃)]. Importantly, the distribution of narratives 𝑄
and endogenous outcomes 𝑌 then shape the distribution of narratives tomorrow 𝑄′.
The resulting joint dynamics of narratives and endogenous outcomes are the subject
of the theoretical and quantitative analysis of this paper.

To ensure that we measure narratives, trace their impact on decisions and study
their spread, we operationalize this empirically by measuring narratives in agents’
use of language by employing natural language processing methods that we have
described in Section 1.3.1. This allows us to use our framework to test if these text-
based proxies for narratives shape actions and spread across agents. As described in
Section 1.4, we find strong evidence of these premises.

We are, however, essentially silent about the more fundamental determinants of
how something comes to be a narrative or what makes a narrative contagious. As
a result, we do not speak to the issue of narrative generation suggested by Shiller.
We do have one empirical result that hints that firms use narratives to persuade
financial analysts. In our IBES strategy, we found that optimistic firms significantly
overestimate their sales relative to pessimistic firms. However, we found much weaker
evidence that analysts believe that firms are performing this overestimation. As a
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result, we take this as tentative evidence that firms manage to persuade analysts of
their predictions. We view further exploration of this issue as an interesting angle for
future work.

A.7.2 Our Work and Shiller’s Seven Propositions

Proposition 1: Epidemics Can Be Fast or Slow, Big or Small The model
developed in this paper allows for various speeds of narrative dynamics as well as
their size and economic impact. Shiller, drawing on the epidemiology literature,
identifies two parameters as particularly important in determining these features:
the contagion rate and the recovery rate. Viewed through this lens, our structural
model from Section 1.5 postulates a recovery rate of 1−𝑃𝑂(log 𝑌𝑡, 𝑄𝑡) and a contagion
rate of 𝑃𝑃 (log 𝑌𝑡, 𝑄𝑡). Thus, the fundamental parameters determining stubbornness
𝑢, associativeness 𝑟 and contagiousness 𝑠 are key determinants of the speed and size
of narrative epidemics within our model.

Yet further, by moving beyond a purely epidemiological model and studying the
two-way feedback between narratives and endogenous outcomes, we endogenize these
rates as equilibrium outcomes by characterizing the equilibrium map 𝑄𝑡, 𝜃𝑡 ↦→ 𝑌𝑡.
Thus, the parameters of 𝑃𝑂 and 𝑃𝑃 as well as those determining the information and
strategic interaction in the economy affect the contagion and recovery rates in ways
that we have characterized. Most interestingly, beyond affecting the quantitative
features of narrative dynamics (such as speed and size), accounting for the dynamic
complementarity of narratives affects their qualitative features. Concretely, these
same parameters delineate whether the economy is stable, has a unique steady state,
features hysteresis, or hump-shaped and discontinuous impulse responses.

Moreover, we have used our measurement and empirical strategies to place empiri-
cal discipline on these parameters. By so doing, we have been able to provide ballpark
figures for the likely quantitative importance of the narratives we have uncovered in
our data. Future work may lever alternative data sources and identification strategies
to study different narratives or more precisely estimate the parameters that we have
studied.

Proposition 2: Important Economic Narratives May Comprise a Very
Small Percentage of Popular Talk Our empirical analysis found that very little
of the total variation in narrative discussion is at the aggregate level (See Appendix
Table A.5). For example, only 1% of the variation in optimism is captured in the
aggregate time series. Indeed, even for the 75% percentile of our estimated topic nar-
ratives, the fraction of variance explained by the time series is less than 10%. Thus,
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movements in the intensity with which narratives are discussed appear to be largely
a cross-sectional phenomenon. As we have shown, this does not at all mean that
aggregate movements are unimportant: measured movements in aggregate optimism
can account for between 1/6 and 1/3 of GDP movements over significant economic
events. Thus, just as idiosyncratic income risk is much larger than aggregate GDP
risk, idiosyncratic narrative variation is much larger than aggregate narrative varia-
tion.

This echoes the observational account of Shiller that important economic narra-
tives may not feature prominently in popular talk and underlines the conclusion that
even if movements in aggregate narratives are not a large fraction of what agents think
or discuss, they can nevertheless be critical for understanding economic fluctuations.

Proposition 3: Narrative Constellations Have More Impact Than Any One
Narrative A central concept in Shiller’s analysis is that of the narrative constel-
lation: a grouping of narratives around some basic idea that reinforces contagion.
This is a concept about which we are theoretically silent. However, our empirical
analysis is designed to allow for the possibility of narrative constellations. Take our
analysis of optimism, for example. Our measure does not necessarily capture one
coherent economic narrative regarding the strength of the outlook of the economy.
What it instead captures is the total sentiment expressed by firms, averaging across
the various underlying narratives that they may be adopting at any one instant. We
investigate formally the extent to which our data support this by using our more
granular narratives as instruments for optimism (see Appendix Table A.14, columns
4) and find similar results to our baseline analysis. Moreover, in our quantitative anal-
ysis, we studied how many co-evolving latent narratives can manifest as aggregate,
sentiment-driven fluctuations in the economy.

Moreover, our analysis of Shiller’s narratives allows us to pick up narrative constel-
lations to the precise extent that Shiller discusses the words comprising the underlying
narratives in these constellations in his own analysis. Finally, our topic analysis allows
us to pick up narrative constellations to the extent that narratives are used jointly in
individual documents. Thus„ we do account for the existence of contellations in our
measurement and empirical exercises. We view further analysis of this hypothesis as
an interesting avenue for future work.

Proposition 4: The Economic Impact of Narratives May Change Through
Time Shiller suggests that the impact of economic narratives has the potential to
change through time. First, we evaluate this hypothesis in the context of our study
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in Section 1.4.1 of how measured optimism affects hiring. Specifically, we consider
our baseline regression model

∆ log𝐿𝑖𝑡 = 𝛿𝑂𝑃opt𝑖𝑡 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜀𝑖𝑡 (438)

Our baseline estimate, in column 1 of Table 1.1, is 𝛿𝑂𝑃 = 0.0355. We now consider
a variant in which the coefficient 𝛿𝑂𝑃 varies for each year 1996 ≤ 𝜏 ≤ 2019 in our
sample:11

∆ log𝐿𝑖𝑡 =
2019∑︁

𝜏=1996

𝛿𝑂𝑃𝜏 (opt𝑖𝑡 × I[𝑡 = 𝜏 ]) + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜀𝑖𝑡 (439)

We show the coefficient series of 𝛿𝑂𝑃𝜏 graphically in Figure A-16. We observe no strong
pattern of a trend or business cycle in the coefficient estimates. We interpret this as
evidence that the main narrative studied in our empirical analysis has relatively stable
effects on decisions over time.

Second, we evaluate whether the contagiousness of optimism has changed through
time. One plausible hypothesis is that the rise of the internet and other information
technology may have contributed to a more connected knowledge-economy in which
there is a faster diffusion of narratives. To do this, we now estimate a variant of
our basic regression equation for estimating industry-level contagiousness in which
we allow the coefficients, 𝑢, 𝑟, and 𝑠 to vary for each year 1996 ≤ 𝜏 ≤ 2019 in our
sample:

opt𝑖𝑡 =
2019∑︁

𝜏=1996

(︀
𝑢𝜏 opt𝑖,𝑡−1 + 𝑠𝜏 opt𝑗(𝑖),𝑡−1 + 𝑟𝜏 ∆ log 𝑌𝑗(𝑖),𝑡−1

)︀
I[𝑡 = 𝜏 ] + 𝛾𝑖 + 𝜒𝑡 + 𝜀𝑖𝑡

(440)
We can identify time-specific effects only in the industry-specific setting—the corre-
sponding aggregate level regression with time-specific effects is not point identified.
We plot the estimated coefficient series of 𝑢𝜏 , 𝑟𝜏 , and 𝑠𝜏 in Figure A-17. We find that
stubbornness and contagiousness increase over time, while associativeness is close to
flat. This is despite the fact that, as we just showed, the effects of narrative optimism
on hiring are stable through time.

Viewed through the lens of our model, these findings—increased contagiousness
and stubbornness combined with stable effects on actions—suggests that narrative
optimism’s potential to “go viral” and induce dynamic hysteresis in the US economy
is increasing over time (see, e.g., Section 1.7.3). Exploring the macroeconomic impli-

11The number of firms with data reported for 2019 is very small, so our sample essentially ends
in 2018.
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cations of this finding may be an interesting avenue for future work. Moreover, this
macroeconomic finding underscores the importance of directly testing the hypothesis
that the internet and information technology are culpable for the increase in conta-
giousness and stubbornness; insofar as these changes to narrative propagation could
have large effects on macroeconomic dynamics.

Proposition 5: Truth Is Not Enough to Stop False Narratives Shiller em-
phasizes that narrative epidemics can take place even when patently divorced from
fundamentals. Our theoretical analysis shares this feature. Namely, when the con-
tagiousness of a narrative is high, this can swamp any adverse effects on contagion
stemming from outcomes that do not fit the narrative. This is made especially clear
by our Proposition 2, in which multiple steady states of narrative penetration can
coexist even when one narrative (or even both narratives) are false.

Proposition 6: Contagion of Economic Narratives Builds on Opportunities
for Repetition Increased exposure to a narrative is likely to cause agents to pick
it up. We find evidence that agents are both more likely to retain a narrative they
currently have and that exposure to others holding the same narrative increases the
chance that an agent both picks up and retains a narrative. These findings are
consistent with Shiller’s hypothesis that oft-repeated narratives are more likely to
result in epidemics. However, we do not explore the idea that repeated exposure
through time is likely to increase the persistence or contagiousness of a narrative. We
view this as an interesting avenue for future work.

Proposition 7: Narratives Thrive on Attachment: Human Interest, Iden-
tity, and Patriotism We do not investigate the idea that more interesting nar-
ratives are more likely to be contagious in this paper. Studying this idea requires a
deeper model for the origins of the stubbornness, associativeness and contagiousness
of narratives, which we do not attempt to provide. We merely measure these param-
eters and take them as given. Of course, this renders our analysis vulnerable to a
form of the Lucas critique: if a policymaker attempted to use our estimates as a guide
for how they could affect the economy via manipulating narratives, these coefficients
could change if they fail to mimic the human interest, identity, or patriotism that
drove attachment to the narrative. While this issue is unimportant for our positive
analysis, an understanding of the deeper origins of narrative success is an interesting
avenue for future work—especially if a policymaker were to seek to guide narratives
to achieve certain economic outcomes.
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A.7.3 The Perennial Economic Narratives: Our Empirical Find-

ings

Shiller (2020) identifies nine perennial economic narratives based on historical anal-
ysis. These narratives correspond to:

1. Panic versus Confidence

2. Frugality versus Conspicuous Consumption

3. The Gold Standard versus Bimetallism

4. Labor-Saving Machines Replace Many Jobs

5. Automation and Artificial Intelligence Replace Almost All Jobs

6. Real Estate Booms and Busts

7. Stock Market Bubbles

8. Boycotts, Profiteers, and Evil Businesses

9. The Wage-Price Spiral and Evil Labor Unions

We have measured the presence of these narratives in firm language and studied which
of these matters for firm decision-making. Under our baseline LASSO specification, we
found that two of these narratives are relevant for firm hiring: Labor-Saving Machines
Replace Many Jobs and Stock Market Bubbles. Discussion of both is positively
associated with firm hiring (see column 1 of Appendix Table A.14). Moreover, we find
evidence of contagiousness and stubbornness in firms holding onto these narratives
(see Appendix Figure A-9).
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Figure A-1: Time-Series for Positive, Negative, and Their Difference
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Notes: Negative and Positive term frequency (first two panels) are cross-sectional averages of
z-score transformed variables. The third panel is the cross-sectional average of the difference
between the two, or sentiment𝑖𝑡.

A.8 Additional Figures and Tables
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Figure A-2: Time-Series for Shiller’s Perennial Economic Narratives
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Notes: Each panel plots the time-series average of the narrative variable defined for the
corresponding chapter of Shiller (2020)’s Narrative Economics. The units are cross-sectional
averages of z-score transformed variables.
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Figure A-3: Time-Series for the Selected LDA Topics
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Notes: Each panel plots the time-series average of scores for the corresponding topics,
identified by their three most common bigrams. The 11 topics are selected by the LASSO
estimation described in Section 1.4.1, and estimates of which are reported in Table A.14.
The units in each panel are cross-sectional averages of z-score transformed variables.
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Figure A-4: Heterogeneous Effects of Optimism on Hiring
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Notes: In each panel, we show estimates from the regression Δ log𝐿𝑖𝑡 =
∑︀𝑟

𝑞=1 𝛽𝑞 · (opt𝑖𝑡 ×
𝑋𝑞𝑖𝑡)+𝛾𝑖+𝜒𝑗(𝑖),𝑡+𝜖𝑖𝑡, where 𝑋𝑞𝑖𝑡 indicates quartile 𝑞 of the studied variable: one minus the
variable cost share of sales, market capitalization, or book-to-market ratio. In all specifica-
tions, we trim the 1% and 99% tails of the outcome variable. Error bars are 95% confidence
intervals. Standard errors are double-clustered by firm ID and industry-year.
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Figure A-5: Net Sentiment and Hiring
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Notes: In each panel, we show estimates from the regression Δ log𝐿𝑖𝑡 =
∑︀10

𝑞=1 𝛽𝑞 ·
(sentiment𝑖𝑞𝑡) + 𝜏 ′𝑋𝑖𝑡 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜖𝑖𝑡, where sentiment𝑖𝑞𝑡 indicates decile 𝑞 of the con-
tinuous sentiment variable. Panel (a) estimates this equation without controls (like column
1 of Table 1.1); panel (b) adds controls for lagged labor and current and lagged log TFP
(like column 2 of Table 1.1); and panel (c) adds controls for the log book to market ratio,
log stock return, and leverage (like column 3 of Table 1.1). The excluded category in each
regression is the first decile of sentiment𝑖𝑡. In all specifications, we trim the 1% and 99%
tails of the outcome variable. Error bars are 95% confidence intervals. Standard errors are
double-clustered by firm ID and industry-year.
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Figure A-6: Dynamic Relationship between Optimism and Firm Fundamentals,
Conference-Call Measurement
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Notes: The regression model is Equation 14 (as in Figure 1-2), but measuring optimism from
sales and earnings conference calls. Each coefficient is estimated from a separate projection
regression. The outcomes are (a) the log change in TFP, calculated as described in Appendix
A.4.2, (b) the log stock return inclusive of dividends, and (c) changes in profitability, defined
as earnings before interest and taxes (EBIT) as a fraction of the previous fiscal year’s variable
costs. In all specifications, we trim the 1% and 99% tails of the outcome variable. Each
coefficient is estimated from a separate projection regression. Error bars are 95% confidence
intervals.
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Figure A-7: Dynamic Relationship between Optimism and Firm Fundamentals,
Continuous Sentiment Measurement
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Notes: The regression model is Equation 14 (as in Figure 1-2), but using the continuous
variable sentiment𝑖𝑡. Each coefficient is estimated from a separate projection regression.
The outcomes are (a) the log change in TFP, calculated as described in Appendix A.4.2,
(b) the log stock return inclusive of dividends, and (c) changes in profitability, defined as
earnings before interest and taxes (EBIT) as a fraction of the previous fiscal year’s variable
costs. In all specifications, we trim the 1% and 99% tails of the outcome variable. In all
specifications, we trim the 1% and 99% tails of the outcome variable. Error bars are 95%
confidence intervals. Standard errors are two-way clustered by firm ID and industry-year.
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Figure A-8: Dynamic Relationship Between Optimism and Financial Variables
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Notes: The regression model is Equation 14 (as in Figure 1-2), but with financial funda-
mentals as outcomes. Each coefficient is estimated from a separate projection regression.
The outcome variables are: (a) the fiscal-year-to-fiscal-year difference in leverage, which is
total debt (short-term debt plus long-term debt); (b) sale of common and preferred stock
minus buybacks, normalized by the total equity outstanding in the previous fiscal year; (c)
short-term debt plus long-term debt issuance, normalized by the total debt in the previous
fiscal year; and (d) total dividends divided by earnings before interest and taxes (EBIT). In
all specifications, we trim the 1% and 99% tails of the outcome variable. Error bars are 95%
confidence intervals. Standard errors are two-way clustered by firm ID and industry-year.
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Figure A-9: The Contagiousness and Associativeness of Other Identified Narratives
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Notes: For each narrative, we estimate the analog of Equation 18. We first transform each
continuous narrative loading variable �̂�𝑘,𝑖𝑡 (indexed by narrative identifier 𝑘, firm 𝑖, and
time period 𝑡) into a binary indicator for being above the sample median,

�̂�𝑏𝑘,𝑖𝑡 = I
[︁
�̂�𝑘,𝑖𝑡 ≥ med

(︁
�̂�𝑘,𝑖𝑡

)︁]︁
∈ {0, 1}

We then estimate

�̂�𝑏𝑘,𝑖𝑡 = 𝑢𝑘 �̂�
𝑏
𝑘,𝑖,𝑡−1 + 𝑠𝑘 �̂�𝑏𝑘,𝑖𝑡 + 𝑟𝑘 Δ log 𝑌𝑡−1 + 𝛾𝑖 + 𝜀𝑖𝑡

where �̂�𝑏𝑘,𝑖𝑡 denotes an aggregate average of the binary variable. The three panels respec-
tively show our estimates, for each narrative 𝑘, of (𝑢𝑘, 𝑠𝑘, 𝑟𝑘). The error bars are 95%
confidence intervals based on double-clustered (firm and industry-year) standard errors.
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Figure A-10: Comparing the Hiring Effects and Associativeness of Narratives
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Notes: For each narrative, we estimate the analog of Equation 12 with �̂�𝑏𝑘,𝑖𝑡, a binary
indicator for the narrative weight 𝑘 being above the sample median (for firm 𝑖 at time 𝑡), in
place of opt𝑖𝑡 (see the notes for Figure A-9 for details about constructing these variables).
The 𝑥-axis of this figure shows the estimated hiring coefficients 𝛿𝑘 and the 𝑦-axis shows
the estimated associativeness coefficients 𝑟𝑘 (see Figure A-9). Each point is labeled by its
running short name, and the solid line is a best-fit trend based on these fourteen points.
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Figure A-11: Fundamental and Optimism Shocks That Explain US GDP
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Notes: This figure shows the shocks that rationalize movements in optimism and detrended
real GDP in recent US history, as analyzed in Section 1.7.2. The solid line is the exogenous
process for fundamental output and the dashed line is the sequence of shocks in narrative
evolution. The dashed line is rescaled by 𝛿𝑂𝑃 (1−𝜔)−1 to be, up to linear approximation of
𝑓 , in units of output.
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Figure A-12: Variance Decomposition for Different Values of Stubbornness and
Contagiousness, No Optimism Shocks

Notes: This Figure replicates Figure A-12, with a different color bar scale, in the variant
model with no exogenous shocks to optimism. Calculations vary 𝑢 and 𝑠, holding fixed
all other parameters at their calibrated values. The shading corresponds to the fraction of
variance explained by optimism, or Share of Variance Explained0 defined in Equation 56.
The plus is our calibrated value of (𝑢, 𝑠), corresponding to a variance share 4.7%, and the
dotted line is the boundary of a 95% confidence set. The dots are calibrated values for other
narratives from Figure A-9. The dashed line is the condition of extremal multiplicity from
Corollary 3 and Equation 44.
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Figure A-13: Tendency Toward Extremal Optimism

Notes: This Figure plots, in color, the fraction of time that optimism 𝑄𝑡 lies outside of the
range [0.25, 0.75] and therefore concentrates at extreme values. Calculations vary 𝑢 and 𝑠,
holding fixed all other parameters at their calibrated values. The plus is our calibrated value
of (𝑢, 𝑠), corresponding to an extremal share of 0%, and the dotted line is the boundary of
a 95% confidence set. The dots are calibrated values for other narratives from Figure A-9.
The dashed line is the condition of extremal multiplicity from Corollary 3 and Equation 44.
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Figure A-14: Variance Contributions Toward Emergent Optimism
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Notes: This Figure plots each granular narrative’s contribution toward the variance of emer-
gent optimism in the constellations model (Section 1.7.4) against the condition number for
extremal multiplicity (Equation 57). Each dot corresponds to one of the thirteen granular
narratives.

Figure A-15: Time-Varying Relationship Between Optimism and TFP
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Notes: Each dot is a coefficient 𝛽𝜏 estimated from Equation 348, corresponding to a year-
specific effect of binary optimism (opt𝑖𝑡) on log TFP (log 𝜃𝑖𝑡). The outcome variable is firm-
level log TFP, log 𝜃𝑖𝑡, and the regressors are indicators for binary optimism interacted with
year dummies. In the regression, we trim the 1% and 99% tails of the outcome variable.
Error bars are 95% confidence intervals, based on standard errors clustered by firm and
industry-time.
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Figure A-16: Time-Varying Effects of Narrative Optimism on Hiring
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Notes: Each dot is a coefficient 𝛿𝑂𝑃𝜏 estimated from Equation 439, capturing a year-specific
effect of binary optimism (opt𝑖𝑡) on hiring (Δ log𝐿𝑖𝑡). Error bars are 95% confidence inter-
vals, based on standard errors clustered by firm and industry-year.

Figure A-17: Time-Varying Stubbornness, Contagiousness, and Associativeness of
Narrative Optimism
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Notes: Each dot is a coefficient estimated from Equation 440, and error bars are 95% con-
fidence intervals, based on standard errors clustered by firm and industry-year. Panel (a)
plots the stubbornness coefficients on opt𝑖,𝑡−1, 𝑢𝜏 ; panel (b) plots the contagiousness coeffi-
cients on opt𝑗(𝑖),𝑡−1, 𝑠𝜏 ; and panel (c) plots the associativeness coefficients on Δ log 𝑌𝑗(𝑖),𝑡−1,
𝑟𝜏 .
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Table A.1: The Twenty Most Common Positive and Negative Words

Positive Negative
well loss
good decline

benefit disclose
high subject
gain terminate

advance omit
achieve defer
improve claim

improvement concern
opportunity default

satisfy limitation
lead delay

enhance deficiency
enable fail
able losses
best damage
gains weakness

improvements adversely
opportunities against

resolve impairment

Notes: The twenty most common lemmatized words among the 230 positive words and 1354
negative words. They are listed in the order of their document frequency. The words are
taken from the Loughran and McDonald (2011a) dictionary, as described in Section 1.3.2.
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Table A.2: The Twenty Most Common Words for Each Shiller Chapter

Panic Frugality Gold Standard Labor-Saving Machines Automation and AI Real Estate Stock Market Boycotts Wage-Price Spiral
bank help standard replac replac price chapter price countri

consum hous book produc appear appear peopl profit labor
appear buy money technolog show real specul good union
show home run appear question find drop consum ask

forecast famili paper book suggest hous play start wage
economi lost peopl power labor estat depress fall inflat
suggest display metal save ask buy warn buy strong

run job depress problem run home peak wage world
concept peopl eastern labor worker citi great inflat mile
peopl explain almost innov vacat land today world peopl
grew phrase depositor run autom movement get cut happen

around depress young wage human world decad shop depress
weather postpon today worker univers tend reaction peopl war

figur car want electr world peopl newspap explain tri
confid justifi went mechan machin never news campaign wrote
wall cultur decad human job search storm play peak

happen fashion idea world peopl specul saw depress great
depress unemploy man machin answer explain memori behavior recess

tri great newspap job around popul interview postpon went
unemploy fault popular invent figur phrase watch war get

Notes: The twenty most common lemmatized words among the 100 words that typify each Shiller (2020) narrative. Our selection
procedure is described in Section 1.3.2.
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Table A.3: The Ten Most Common Words for Each Selected Topic

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
Lem. Word Weight Lem. Word Weight Lem. Word Weight Lem. Word Weight Lem. Word Weight Lem. Word Weight
lease 0.047 business 0.052 value 0.088 advertising 0.029 financial 0.051 stock 0.049
tenant 0.042 public 0.025 fair 0.082 retail 0.028 control 0.02 compensation 0.039
landlord 0.03 combination 0.024 loss 0.024 brand 0.018 internal 0.019 tax 0.039
lessee 0.017 merger 0.023 investment 0.024 credit 0.018 material 0.013 share 0.028
rent 0.016 class 0.015 asset 0.022 consumer 0.017 affect 0.012 income 0.023
lessor 0.014 offer 0.014 debt 0.02 distribution 0.016 officer 0.011 average 0.019
property 0.012 share 0.013 gain 0.019 card 0.015 base 0.01 expense 0.018
term 0.011 account 0.011 credit 0.019 marketing 0.015 information 0.01 asset 0.016
day 0.009 ordinary 0.01 level 0.017 food 0.013 make 0.01 outstanding 0.016
provide 0.008 private 0.01 financial 0.016 store 0.013 business 0.01 weight 0.015

Topic 7 Topic 8 Topic 9 Topic 10 Topic 11
Lem. Word Weight Lem. Word Weight Lem. Word Weight Lem. Word Weight Lem. Word Weight
gaming 0.035 debt 0.039 reorganization 0.048 court 0.038 technology 0.018
service 0.029 credit 0.039 bankruptcy 0.047 settlement 0.027 revenue 0.017
network 0.022 facility 0.037 plan 0.044 district 0.021 development 0.015
wireless 0.021 senior 0.028 predecessor 0.036 certain 0.019 business 0.013
local 0.019 interest 0.026 successor 0.027 litigation 0.016 customer 0.012
cable 0.015 agreement 0.021 chapter 0.021 action 0.016 stock 0.012
provide 0.014 cash 0.019 asset 0.019 complaint 0.012 product 0.012
equipment 0.013 rate 0.016 court 0.018 damage 0.011 support 0.009
access 0.013 term 0.016 cash 0.016 approximately 0.011 market 0.009
video 0.012 certain 0.014 certain 0.014 case 0.01 service 0.008

Notes: The ten most common words (lemmatized bigrams) in each topic estimated by LDA and selected by our LASSO procedure as
relevant for hiring (see Section 1.4.1). Weights correspond to relative importance for scoring the document. The LDA model and our
estimation procedure are described in Section 1.3.2.
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Table A.4: Persistence and Cyclicality of Narratives

Correlation with
Narrative 𝑁𝑡 𝑁𝑡−1 𝑢𝑡−1 𝑢𝑡 𝑢𝑡+1

Optimism 0.754 -0.283 -0.368 -0.287
Topic Narratives (25th) 0.810 -0.430 -0.307 -0.210
Topic Narratives (median) 0.935 0.003 -0.143 -0.092
Topic Narratives (75th) 0.965 0.339 0.252 0.077
Shiller Narratives (25th) 0.792 -0.379 -0.379 -0.367
Shiller Narratives (median) 0.805 0.043 0.088 -0.034
Shiller Narratives (75th) 0.884 0.541 0.422 0.246

Notes: Calculated with annual data from 1995 to 2019 for optimism and the topics, and
1995 to 2017 for the Shiller Narratives. 𝑢𝑡 is the US unemployment rate. The quantiles for
Shiller Narratives and Topic Narratives are the quantiles of the distribution of the variable
in that column within each set of narratives.

Table A.5: Variance Decomposition of Narratives

Fraction Variance Explained By Means
Narrative 𝑁𝑖𝑡 𝑡 Ind. Ind. x 𝑡 Firm All

Net Sentiment 0.014 0.053 0.082 0.511 0.530
Optimism 0.011 0.041 0.067 0.427 0.444
Shiller Narratives (25th) 0.002 0.050 0.062 0.758 0.761
Shiller Narratives (median) 0.002 0.071 0.087 0.763 0.770
Shiller Narratives (75th) 0.003 0.095 0.109 0.793 0.794
Topic Narratives (25th) 0.010 0.003 0.049 0.252 0.306
Topic Narratives (median) 0.035 0.014 0.099 0.420 0.575
Topic Narratives (75th) 0.087 0.071 0.237 0.645 0.735

Notes: Each cell is 1−Var[𝑁⊥
𝑖𝑡 ]/Var[𝑁𝑖𝑡], where 𝑁𝑖𝑡 is the narrative intensity and 𝑁⊥

𝑖𝑡 is the
same after projecting out means at the indicated level. The last column (“All”) partials out
industry-by-time means and firm means.
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Table A.6: Robustness to Assumptions About Unobserved Selection When Esti-
mating the Effect of Narrative Optimism on Hiring

Panel A: Regression Estimates
(1) (2)
Outcome is ∆𝐿⊥

𝑖𝑡

opt⊥𝑖𝑡 0.0373 0.0305
Controls ✓

𝑁 39,298 39,298
𝑅2 0.005 0.129

Panel B: Oster (2019) Statistics
(1) (2)

�̄�2 is
ˆ̄𝑅2 = 0.459 �̄�2

Π = 0.387
𝜆* (𝛿𝑂𝑃 = 0) 1.691 2.151
𝛿*𝑂𝑃 (𝜆 = 1) 0.0126 0.0165

Notes: This table summarizes the coefficient stability test described in Appendix A.5.1.
Panel A shows estimates of Equation 403, with and without controls for current and lagged
log TFP and lagged log labor. The estimate in column 1 differs from that in column 1
of Table 1.1 due to restricting to a common sample in columns 1 and 2. The 𝑅2 values
are for the model after partialing out fixed effects, and hence correspond with unreported
“within-𝑅2” values in Table 1.1. Panel B prints the two statistics of Oster (2019). In column
1, we set �̄�2 equal to our estimated value of 0.459, calculated as described in the text
from an “over-controlled” regression of current hiring on lagged controls and future hiring
and productivity. In column 2, we use �̄�2 given by three times the 𝑅2 in the controlled
hiring regression. The first row (𝜆* (𝛿𝑂𝑃 = 0) reports the degree of proportional selection
that would generate a null coefficient. The second row (𝛿*𝑂𝑃 (𝜆 = 1)) is the bias corrected
effect assuming that unobservable controls have the same proportional effect as observable
controls.
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Table A.7: Narrative Optimism Predicts Hiring, With More Adjustment-Cost Con-
trols

(1) (2) (3) (4)
Outcome is ∆ log𝐿𝑖𝑡

opt𝑖𝑡 0.0305 0.0257 0.0235 0.0184
(0.0030) (0.0034) (0.0037) (0.0039)

Firm FE ✓ ✓ ✓ ✓
Industry-by-time FE ✓ ✓ ✓ ✓
log𝐿𝑖,𝑡−1 ✓ ✓ ✓ ✓
(log 𝜃𝑖𝑡, log 𝜃𝑖,𝑡−1) ✓ ✓ ✓ ✓
(log𝐿𝑖,𝑡−2, log 𝜃𝑖,𝑡−2) ✓ ✓ ✓
(log𝐿𝑖,𝑡−3, log 𝜃𝑖,𝑡−3) ✓ ✓
Log Book to Market ✓
Stock Return ✓
Leverage ✓
𝑁 39,298 31,236 25,156 21,913
𝑅2 0.401 0.395 0.396 0.415

Notes: The regression model is Equation 12. Column 1 replicates column 2 of Table 1.1.
Columns 2 and 3 add more lags of firm-level log employment and firm-level log TFP, and
column 4 introduces the baseline financial controls (i.e., those in column 3 of Table 1.1). In
all specifications, we trim the 1% and 99% tails of the outcome variable. Standard errors
are two-way clustered by firm ID and industry-year.
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Table A.8: Narrative Optimism Predicts Hiring, Alternative Standard Errors

(1) (2) (3) (4) (5)
Outcome is

∆ log𝐿𝑖𝑡 ∆ log𝐿𝑖,𝑡+1

opt𝑖𝑡 0.0355 0.0305 0.0250 0.0322 0.0216
(0.0030) (0.0030) (0.0032) (0.0028) (0.0037)
[0.0031] [0.0026] [0.0031] [0.0040] [0.0034]
{0.0035} {0.0026} {0.0025} {0.0043} {0.0036}

Firm FE ✓ ✓ ✓ ✓
Industry-by-time FE ✓ ✓ ✓ ✓ ✓
Lag labor ✓ ✓ ✓ ✓
Current and lag TFP ✓ ✓ ✓ ✓
Log Book to Market ✓
Stock Return ✓
Leverage ✓
𝑁 71,161 39,298 33,589 40,580 38,402
𝑅2 0.259 0.401 0.419 0.142 0.398

Notes: This Table replicates the analysis of Table 1.1 with alternative standard error con-
structions. Standard errors in parentheses are two-way clustered by firm ID and industry-
year; those in square brackets are two-way clustered by firm ID and year; and those in
braces are two-way clustered by industry and year. For columns 1-4, the regression model
is Equation 12 and the outcome is the log change in firms’ employment from year 𝑡 − 1 to
𝑡. The main regressor is a binary indicator for the optimistic narrative, defined in Section
1.3.2. In all specifications, we trim the 1% and 99% tails of the outcome variable. In column
5, the regression model is Equation 13, the outcome is the log change in firms’ employment
from year 𝑡 to 𝑡+ 1, and control variables are dated 𝑡+ 1.
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Table A.9: Narrative Optimism Predicts Hiring, Instrumenting With Lag

(1) (2) (3) (4)
Outcome is ∆ log𝐿𝑖𝑡

opt𝑖𝑡 0.0925 0.106 0.102 0.0470
(0.0130) (0.0160) (0.0168) (0.0053)

Firm FE ✓ ✓ ✓
Industry-by-time FE ✓ ✓ ✓ ✓
Lag labor ✓ ✓ ✓
Current and lag TFP ✓ ✓ ✓
Log Book to Market ✓
Stock Return ✓
Leverage ✓
𝑁 63,302 35,768 31,071 36,953
First-stage 𝐹 773 478 366 3,597

Notes: All columns come from a two-stage-least-squares (2SLS) estimate of Equation 12,
using opt𝑖,𝑡−1 as an instrument for opt𝑖𝑡. Specifically, the structural equation is

Δ log𝐿𝑖𝑡 = 𝛿𝑂𝑃 · opt𝑖𝑡 + 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝜏 ′𝑋𝑖𝑡 + 𝜀𝑖𝑡

the endogenous variable is opt𝑖𝑡 and the excluded instrument is opt𝑖,𝑡−1. In the last row,
we report the first-stage 𝐹 statistic associated with this equation. In all specifications, we
trim the 1% and 99% tails of the outcome variable. Standard errors are two-way clustered
by firm ID and industry-year.
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Table A.10: Narrative Optimism Predicts Hiring, Conference-Call Measurement

(1) (2) (3) (4) (5)
Outcome is
∆ log𝐿𝑖𝑡 ∆ log𝐿𝑖,𝑡+1

optCC𝑖𝑡 0.0277 0.0173 0.0121 0.0237 0.0123
(0.0038) (0.0040) (0.0038) (0.0038) (0.0044)

Industry-by-time FE ✓ ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓
Lag labor ✓ ✓ ✓ ✓
Current and lag TFP ✓ ✓ ✓ ✓
Log Book to Market ✓
Stock Return ✓
Leverage ✓
𝑁 19,625 11,565 10,851 11,919 11,416
𝑅2 0.300 0.461 0.467 0.172 0.429

Notes: The regression models are identical to those reported in Table 1.1, but using the
measurement of optimism from sales and earnings conference calls. In all specifications, we
trim the 1% and 99% tails of the outcome variable. Standard errors are two-way clustered
by firm ID and industry-year. In column 5, control variables are dated 𝑡+ 1.

Table A.11: The Effect of Narrative Optimism on All Inputs

(1) (2) (3) (4) (5) (6)
Outcome is

∆ log𝐿𝑖𝑡 ∆ log𝑀𝑖𝑡 ∆ log𝐾𝑖𝑡

opt𝑖𝑡 0.0355 0.0305 0.0397 0.0193 0.0370 0.0273
(0.0030) (0.0030) (0.0034) (0.0033) (0.0034) (0.0036)

Industry-by-time FE ✓ ✓ ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Lag input ✓ ✓ ✓
Current and lag TFP ✓ ✓ ✓
𝑁 71,161 39,298 66,574 39,366 68,864 36,005
𝑅2 0.259 0.401 0.298 0.418 0.276 0.383

Notes: Δ log𝑀𝑡 is the log difference of all variable cost expenditures (“materials”), the
sum of cost of goods sold (COGS) and sales, general, and administrative expenses (SGA).
Δ log𝐾𝑡 is the value of the capital stock is the log difference level of net plant, property,
and equipment (PPE) between balance-sheet years 𝑡−1 and 𝑡. In all specifications, we trim
the 1% and 99% tails of the outcome variable. Standard errors are two-way clustered by
firm ID and industry-year.
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Table A.12: The Effect of Narrative Optimism on Stock Prices, High-Frequency
Analysis

(1) (2) (3) (4) (5) (6)
Outcome is stock return on

Filing Day Prior Four Days Next Four Days
opt𝑖𝑡 0.000145 -0.000142 0.00106 0.000963 0.00173 0.00249

(0.0007) (0.0007) (0.0011) (0.0014) (0.0012) (0.0016)
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Industry-by-FY FE ✓ ✓ ✓ ✓ ✓ ✓
Industry-FF3 inter. ✓ ✓ ✓
𝑁 39,457 39,457 39,396 17,710 39,346 19,708
𝑅2 0.189 0.246 0.190 0.345 0.206 0.317

Notes: The regression equation for columns (1), (3), and (5) is 𝑅𝑖,𝑤(𝑡) = 𝛽opt𝑖𝑡 + 𝛾𝑖 +
𝜒𝑗(𝑖),𝑦(𝑖,𝑡) + 𝜀𝑖𝑡 where 𝑖 indexes firms, 𝑡 is the 10K filing day, 𝑤(𝑡) is a window around the
day (the same day, the prior four days, or the next four days), and 𝑦(𝑖, 𝑡) is the fiscal
year associated with the specific 10-K. In columns (2), (4), and (6), we add interactions of
industry codes with the filing day’s (i) the market minus risk-free rate, (ii) high-minus-low
return, and (iii) small-minus-big return. Standard errors are two-way clustered by firm ID
and industry-year.

Table A.13: Textual Optimism and Optimistic Forecasts, Alternative Measurement

(1) (2) (3) (4)
GuidanceOptExPost𝑖,𝑡+1 GuidanceOptExPostC𝑖,𝑡+1

opt𝑖𝑡 0.0354 -0.000169
(0.0184) (0.0049)

sentiment𝑖𝑡 0.0152 -0.000219
(0.0095) (0.0025)

𝑁 3,817 3,780 3,754 3,719
𝑅2 0.173 0.174 0.139 0.141

Notes: The regression model is Equation 15. The outcome in columns 1 and 2 is a binary
indicator for ex post optimism in guidance, and the outcome in columns 3 and 4 is the
difference between the log guidance value and the log realized sales. opt𝑖𝑡 is the binary
measure of narrative optimism, and sentiment𝑖𝑡 is the underlying continuous measure from
which opt𝑖𝑡 is constructed. In all specifications, we trim the 1% and 99% tails of the outcome
variable. Standard errors are two-way clustered by firm ID and industry-year.
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Table A.14: The Effects of All Selected Narratives on Hiring

(1) (2) (3) (4)
Outcome is ∆ log𝐿𝑖𝑡

OLS OLS OLS IV
Shiller: Labor-Saving Machines 0.0106

(0.0028)
Shiller: Stock Bubbles 0.00968

(0.0031)
Topic 1: Lease, Tenant, Landlord... 0.0109

(0.0017)
Topic 2: Business, Public, Combination... 0.0266

(0.0045)
Topic 3: Value, Fair, Loss... -0.00383

(0.0016)
Topic 4: Advertising, Retail, Brand... 0.00864

(0.0024)
Topic 5: Financial, Control, Internal... -0.000655

(0.0025)
Topic 6: Stock, Compensation, Tax... 0.0135

(0.0019)
Topic 7: Gaming, Service, Network... 0.0146

(0.0040)
Topic 8: Debt, Credit, Facility... -0.00584

(0.0022)
Topic 8: Reorganization, Bankruptcy, Plan... -0.00842

(0.0018)
Topic 10: Court, Settlement, District... -0.00749

(0.0019)
Topic 11: Technology, Revenue, Development... 0.0259

(0.0040)
opt𝑖𝑡 0.0305 0.0597

(0.0030) (0.0099)
Industry-by-time FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓
Lag labor ✓ ✓ ✓ ✓
Current and lag TFP ✓ ✓ ✓ ✓
𝑁 37,462 39,298 39,298 34,106
𝑅2 0.413 0.405 0.401 0.130
First-stage 𝐹 — — — 189.0

Notes: The first-stage equation for column 4 is described in Equation 17. In all specifica-
tions, we trim the 1% and 99% tails of the outcome variable. Standard errors are two-way
clustered by firm ID and industry-year.
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Table A.15: Narrative Optimism is Contagious and Associative, Alternative Stan-
dard Errors

(1) (2) (3)
Outcome is opt𝑖𝑡

Own lag, opt𝑖,𝑡−1 0.209 0.214 0.135
(0.0071) (0.0080) (0.0166)
[0.0214] [0.0220] [0.0281]
{0.0218} {0.0221} {0.0273}

Aggregate lag, opt𝑡−1 0.290
(0.0578)
[0.180]
{0.179}

Real GDP growth, ∆ log 𝑌𝑡−1 0.804
(0.2204)
[0.635]
{0.627}

Industry lag, opt𝑗(𝑖),𝑡−1 0.276 0.207
(0.0396) (0.0733)
[0.0434] [0.0563]
{0.0496} {0.0656}

Industry output growth, ∆ log 𝑌𝑗(𝑖),𝑡−1 0.0560 0.0549
(0.0309) (0.0632)
[0.0328] [0.0668]
{0.0428} {0.0772}

Peer lag, opt𝑝(𝑖),𝑡−1 0.0356
(0.0225)
[0.0259]
{0.0329}

Firm FE ✓ ✓ ✓
Time FE ✓ ✓
𝑁 64,948 52,258 8,514
𝑅2 0.481 0.501 0.501

Notes: This Table replicates the analysis of Table 1.4 with alternative standard error con-
structions. Standard errors in parentheses are two-way clustered by firm ID and industry-
year; those in square brackets are two-way clustered by firm ID and year; and those in
braces are two-way clustered by industry and year. Aggregate, industry, and peer average
optimism are averages of the narrative optimism variable over the respective sets of firms.
Industry output growth is the log difference in sectoral value-added calculated from BEA
data, linked to two-digit NAICS industries.
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Table A.16: Narrative Sentiment is Contagious and Associative

(1) (2) (3)
Outcome is sentiment𝑖𝑡

Own lag, sentiment𝑖,𝑡−1 0.259 0.279 0.226
(0.0091) (0.0106) (0.0166)

Aggregate lag, sentiment𝑡−1 0.253
(0.0519)

Real GDP growth, ∆ log 𝑌𝑡−1 2.632
(0.5305)

Industry lag, sentiment𝑗(𝑖),𝑡−1 0.175 0.108
(0.0360) (0.0763)

Industry output growth, ∆ log 𝑌𝑗(𝑖),𝑡−1 0.108 0.142
(0.0522) (0.1312)

Peer lag, sentiment𝑝(𝑖),𝑡−1 0.0234
(0.0188)

Firm FE ✓ ✓ ✓
Time FE ✓ ✓
𝑁 63,881 51,555 8,338
𝑅2 0.568 0.599 0.602

Notes: The regression model is a variant of Equation 18 for column 1, and a variant of
Equation 19 for columns 2 and 3, with the continuous variable sentiment𝑖𝑡 (and averages
thereof) substituted for binary optimism. Aggregate, industry, and peer average sentiment
are averages of the narrative sentiment variable over the respective sets of firms. Indus-
try output growth is the log difference in sectoral value-added calculated from BEA data,
linked to two-digit NAICS industries. In all specifications, we trim the 1% and 99% tails of
sentiment𝑖𝑡. Standard errors are two-way clustered by firm ID and industry-year.
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Table A.17: Narrative Sentiment is Contagious and Associative, Controlling for
Past and Future Outcomes

(1) (2) (3) (4) (5) (6) (7)
Outcome is sentiment𝑖𝑡

Aggregate lag, sentiment𝑡−1 0.253 0.385 0.410 0.340
(0.0519) (0.0651) (0.1103) (0.1785)

Ind. lag, sentiment𝑗(𝑖),𝑡−1 0.175 0.151 0.213
(0.0360) (0.0409) (0.0654)

Time FE ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Own lag, opt𝑖,𝑡−1 ✓ ✓ ✓ ✓ ✓ ✓ ✓
(Δ log 𝑌𝑡+𝑘)

2
𝑘=−2 ✓ ✓ ✓

(Δ log 𝑌𝑗(𝑖),𝑡+𝑘)
2
𝑘=−2 ✓ ✓ ✓ ✓

(Δ log 𝜃𝑖,𝑡+𝑘)
2
𝑘=−2 ✓ ✓

𝑁 63,881 48,889 37,643 13,112 51,555 37,643 13,112
𝑅2 0.568 0.578 0.599 0.640 0.599 0.601 0.642

Notes: The regression model is a variant of Equation 20 for column 1-4, and an analogous
variant of industry-level specification for columns 5-7 (i.e., Equation 19 with past and future
controls), with the continuous variable sentiment𝑖𝑡 (and averages thereof) substituted for
binary optimism. Columns 1 and 5 are “baseline estimates” corresponding, respectively, with
columns 1 and 3 of Table A.16. The added control variables are two leads, two lags, and the
contemporaneous value of: real GDP growth (columns 2-4), industry-level output growth
(columns 3-4 and 6-7), and firm-level TFP growth (columns 4 and 7). In all specifications,
we trim the 1% and 99% tails of sentiment𝑖𝑡. Standard errors are two-way clustered by firm
ID and industry-year.
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Table A.18: Narrative Optimism and Contagious and Associative, Instrumented
With Other Narratives

(1) (2) (3) (4)
Outcome is opt𝑖𝑡

OLS IV OLS IV
Own lag, opt𝑖,𝑡−1 0.209 0.207 0.214 0.200

(0.0071) (0.0072) (0.0080) (0.0084)
Aggregate lag, opt𝑡−1 0.290 0.393

(0.0578) (0.0597)
Real GDP growth, ∆ log 𝑌𝑡−1 0.804 0.672

(0.2204) (0.2153)
Ind. lag, opt𝑗(𝑖),𝑡−1 0.276 0.437

(0.0396) (0.0748)
Ind. output growth, ∆ log 𝑌𝑗(𝑖),𝑡−1 0.0560 0.0390

(0.0309) (0.0342)
Firm FE ✓ ✓ ✓ ✓
Time FE ✓ ✓
𝑁 64,948 64,569 52,258 47,536
𝑅2 0.481 0.050 0.501 0.047
First-stage 𝐹 — 795.3 — 19.8

Notes: In column 2, the endogenous variable is opt𝑡−1 and the instruments are
(Shiller𝑘𝑡−1)

𝐾*
𝑆

𝑘=1 and (topic𝑘𝑡−1)
𝐾*
𝑇

𝑘=1 where the sums are over the LASSO-selected narratives
(see Table 1.3). In column 4, the endogenous variable is opt𝑗(𝑖),𝑡−1 and the instruments are

(Shiller𝑘𝑗(𝑖),𝑡−1)
𝐾*
𝑆

𝑘=1 and (topic𝑘𝑗(𝑖),𝑡−1)
𝐾*
𝑇

𝑘=1. Standard errors are two-way clustered by firm ID
and industry-year.
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Table A.19: Sensitivity Analysis for the Quantitative Analysis

Parameters Results
𝛼 𝛾 𝜓 𝜖 𝜔 1

1−𝜔 𝑐𝑄(0) 𝑐𝑄(1) 2000-02 2007-09

Baseline 1.0 0.0 0.4 2.6 0.490 1.962 0.192 0.335 0.316 0.181
High 𝜓 1.0 0.0 2.5 2.6 0.133 1.154 0.175 0.359 0.186 0.106
High 𝛾 1.0 1.0 0.4 2.6 -0.784 0.560 0.041 0.184 0.090 0.052
Empirical Multiplier 1.0 0.0 1.15 2.6 0.250 1.333 0.167 0.329 0.215 0.123
Calibrated Multiplier 1.0 0.0 0.845 2.6 0.313 1.455 0.168 0.324 0.235 0.134
High 𝜖 1.0 0.0 0.21 5.0 0.490 1.962 0.109 0.240 0.317 0.181
Decreasing RtS 0.75 0.0 0.05 2.6 0.490 1.962 0.125 0.238 0.237 0.135

Notes: This table summarizes the quantitative results under alternative calibrations of the
macroeconomic parameters, which we report along side their implied complementarity 𝜔 and
demand multiplier 1

1−𝜔 . We report four statistics as the “results” in the last four columns.
The first two are the fraction of output variance explained statically, 𝑐𝑄(0), and at a one-year
horizon, 𝑐𝑄(1), by optimism. The second two are the fraction of output losses in the 2000-02
downturn and 2007-09 downturn explained by fluctuations in narrative optimism. Baseline
corresponds to our main calibration. High 𝜓 increases the inverse Frisch elasticity to 2.5, or
decreases the Frisch elasticity to 0.4. High 𝛾 increases the curvature of consumption utility
(indexing income effects in labor supply) from 0.0 to 1.0. Empirical Multiplier adjusts 𝜓
to match an output multiplier in line with estimates from Flynn, Patterson, and Sturm
(2021). Calibrated multiplier adjusts 𝜓 to match our own calculation of the multiplier in
our setting in Appendix A.6.3. High 𝜖 increases the elasticity of substitution from 2.6 to 5.0,
with 𝜓 adjusting to hold fixed the multiplier. Decreasing RtS reduces the returns-to-scale
parameter 𝛼 from 1.0 to 0.75, with 𝜓 adjusting to hold fixed the multiplier.
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Table A.20: An Empirical Test for Cycles and Chaos

(1)
Outcome is opt𝑖𝑡

𝛼: Constant -0.051
(0.244)

𝛼1: opt𝑖,𝑡−1 0.655
(0.062)

𝛽1: opt𝑖,𝑡−1 · opt𝑖,𝑡−1 0.052
(1.021)

𝛽2: (1− opt𝑖,𝑡−1) · opt𝑖,𝑡−1 0.952
(1.006)

𝜏 : (opt𝑖,𝑡−1)
2 -0.062

(1.034)
𝜂: Logistic parameter 1.443

(0.698)
Firm FE ✓
𝑁 67,648
𝑅2 0.480

Notes: The regression model is Equation 365. 𝜂 is a function of the regression coefficients
defined in Equation 366, and interpretable in the model of cycles and chaos in Appendix
A.2.7. Standard errors are two-way clustered by firm ID and industry-year. The standard
error for 𝜂 is calculated using the delta method.

Table A.21: Data Definitions in Compustat

Quantity Expenditure
Production, 𝑥𝑖𝑡 — sale

Employment, 𝐿𝑖𝑡 emp emp × industry wage
Materials, 𝑀𝑖𝑡 — cogs+ xsga− dp
Capital, 𝐾𝑖𝑡 ppegt plus net investment —
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Table A.22: The Effect of Optimism on Hiring, CEO Change Strategy

(1) (2) (3) (4)
Outcome is ∆ log𝐿𝑖𝑡

opt𝑖𝑡 0.0253 0.0404 0.0362 0.0253
(0.0131) (0.0131) (0.0132) (0.0029)

opt𝑖𝑡 × ChangeCEO𝑖𝑡 0.0220
(0.0099)

ChangeCEO𝑖𝑡 -0.0232
(0.0088)

Industry-by-time FE ✓ ✓ ✓ ✓
Lag optimism ✓ ✓ ✓ ✓
Lag labor ✓ ✓ ✓
Current and lag TFP ✓ ✓ ✓
Log Book to Market ✓
Stock Return ✓
Leverage ✓
𝑁 1,725 982 905 36,953
𝑅2 0.243 0.375 0.375 0.134

Notes: The regression model is Equation 404 for columns 1-3, and Equation 405 for column
4. The outcome is the log change in firms’ employment. opt𝑖𝑡 is a binary indicator for the
optimistic narrative, defined in Section 1.3.2. ChangeCEO𝑖𝑡 is a binary indicator for whether
firm 𝑖 changed CEO in fiscal year 𝑡 due to death, illness, personal issues or voluntary
retirement. In all specifications, we trim the 1% and 99% tails of the outcome variable.
Standard errors are two-way clustered by firm ID and industry-year.
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Table A.23: The Contagiousness of Optimism, CEO Change Strategy

(1) (2) (3) (4)
Outcome is opt𝑖𝑡

OLS IV OLS IV
Industry lag, opt𝑗(𝑖),𝑡−1 0.275 0.260 0.195 0.272

(0.0407) (0.2035) (0.0760) (0.5270)
Peer lag, opt𝑝(𝑖),𝑡−1 0.0437 0.129

(0.0236) (0.1677)
Firm FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
Industry output growth, ∆ log 𝑌𝑗(𝑖),𝑡−1 ✓ ✓ ✓ ✓

𝑁 50,604 50,604 7,873 7,873
𝑅2 0.503 0.051 0.508 0.020
First-stage 𝐹 — 29.7 — 36.8

Notes: The IV strategies instrument the industry and/or peer lag with the CEO-change
variation in those averages. Standard errors are two-way clustered by firm ID and industry-
year.

Table A.24: Narrative Optimism Predicts Hiring, Conditional on Measured Beliefs

(1) (2) (3) (4)
Outcome is ∆ log𝐿𝑖𝑡

opt𝑖𝑡 0.0355 0.0232 0.0311 0.0203
(0.0030) (0.0129) (0.0068) (0.0164)

ForecastGrowthSales𝑖𝑡 0.157
(0.0329)

ForecastGrowthCapx𝑖𝑡 0.0564
(0.0062)

ForecastGrowthEps𝑖𝑡 0.000961
(0.0104)

Ind.-by-time FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓
𝑁 71,161 2,908 7,312 1,290
𝑅2 0.259 0.506 0.425 0.638

Notes: opt𝑖𝑡 is textual optimism from the 10-K for fiscal year 𝑡. ForecastGrowthZ𝑖𝑡 is defined
in the text as the log difference between manager guidance about statistic 𝑍, for fiscal year
𝑡, with last fiscal year’s realized value. In all specifications, we trim the 1% and 99% tails of
the outcome variable. Standard errors are two-way clustered by firm ID and industry-year.
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Table A.25: Narrative Optimism Predicts Investment, Conditional on Measured
Beliefs

(1) (2) (3) (4)
Outcome is ∆ log𝐾𝑖𝑡

opt𝑖𝑡 0.0370 0.0238 0.0251 0.00503
(0.0034) (0.0177) (0.0072) (0.0193)

ForecastGrowthSales𝑖𝑡 0.172
(0.0423)

ForecastGrowthCapx𝑖𝑡 0.0943
(0.0079)

ForecastGrowthEps𝑖𝑡 -0.0147
(0.0102)

Ind.-by-time FE ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓
𝑁 68,864 2,748 7,048 1,245
𝑅2 0.276 0.496 0.472 0.661

Notes: This table is identical to Table A.24, but has net capital investment Δ𝐾𝑖𝑡 as the
outcome. opt𝑖𝑡 is textual optimism from the 10-K for fiscal year 𝑡. ForecastGrowthZ𝑖𝑡 is
defined in the text as the log difference between manager guidance about statistic 𝑍, for
fiscal year 𝑡, with last fiscal year’s realized value. In all specifications, we trim the 1% and
99% tails of the outcome variable. Standard errors are two-way clustered by firm ID and
industry-year.
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Table A.26: State-Dependent Effects of Sentiment on Hiring

(1) (2) (3)
Outcome is ∆ log𝐿𝑖𝑡

sentiment𝑖𝑡 0.0218 0.0172 0.0130
(0.0017) (0.0018) (0.0020)

sentiment𝑖,𝑡−1 0.00605 0.00877 0.00830
(0.0015) (0.0016) (0.0016)

sentiment𝑖𝑡 × sentiment𝑖,𝑡−1 -0.00497 -0.00501 -0.00404
(0.0008) (0.0008) (0.0008)

𝑁 63,302 35,768 31,071
𝑅2 0.257 0.394 0.416
Ind.-by-time FE ✓ ✓ ✓
Firm FE ✓ ✓ ✓
Lag labor ✓ ✓
Current and lag TFP ✓ ✓
Log Book to Market ✓
Stock Return ✓
Leverage ✓

Notes: This table reports estimates from Equation 409 with our baseline sets of controls.
In all specifications, we trim the 1% and 99% tails of the outcome variable. Standard errors
are two-way clustered by firm ID and industry-year.
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Table A.27: Optimism is Contagious and Associative, Granular IV Strategy

(1) (2) (3) (4) (5) (6)
Outcome is opt𝑖𝑡

OLS OLS IV OLS OLS IV
Own lag, opt𝑖,𝑡−1 0.212 0.213 0.210 0.219 0.220 0.219

(0.0071) (0.0071) (0.0073) (0.0080) (0.0081) (0.0081)
Agg. sales-wt. lag, opt𝑠𝑤𝑡−1 0.0847 0.308

(0.0421) (0.1044)
Real GDP growth, Δ log 𝑌𝑡−1 1.058 1.104 0.768

(0.2205) (0.2110) (0.2607)
Agg. sales-wt. granular lag, opt𝑔,𝑠𝑤𝑡−1 0.150

(0.0506)
Ind. sales-wt. lag, opt𝑠𝑤𝑗(𝑖),𝑡−1 0.0728 0.0195

(0.0209) (0.0459)
Ind. output growth, Δ log 𝑌𝑗(𝑖),𝑡−1 0.0851 0.0903 0.0886

(0.0325) (0.0336) (0.0333)
Ind. sales-wt. granular lag, opt𝑔,𝑠𝑤𝑗(𝑖),𝑡−1 0.00913

(0.0216)
Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓
𝑁 64,948 64,948 64,948 52,258 50,842 50,842
𝑅2 0.481 0.481 0.049 0.500 0.503 0.051
First-stage 𝐹 — — 99.1 — — 262.3

Notes: This table estimates Equations 18 and 19, respectively modeling the spread of op-
timism at the aggregate and industry level, using granular identification of spillovers (con-
tagiousness). opt𝑠𝑤𝑡−1 and opt𝑠𝑤𝑗(𝑖),𝑡−1 are sales-weighted averages of aggregate and industry
optimism, respectively. opt𝑔,𝑠𝑤𝑡−1 and opt𝑔,𝑠𝑤𝑗(𝑖),𝑡−1 are (lagged) sales-weighted averages of the
non-fundamentally-predictable components of firm-level optimism in the aggregate and in
the industry, respectively, as explained in Appendix A.5.5. In columns 3 and 6, we use the
granular variables as instruments for the raw sales-weighted averages. Standard errors are
two-way clustered by firm ID and industry-year.
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Table A.28: Multiplier Calibrations via Under-Controlled Regressions of Hiring on
Optimism

(1) (2) (3)
Outcome is ∆𝐿𝑖𝑡

opt𝑖𝑡 0.0355 0.0516 0.0486
(0.0030) (0.0034) (0.0033)

Complementarity 𝜔 — 0.313 0.270
Multiplier 1

1−𝜔 — 1.455 1.370
Industry-by-time FE ✓
Firm FE ✓ ✓ ✓
Current and lagged adjusted TFP ✓
Current and lagged unadjusted TFP ✓
𝑁 71,161 65,508 65,508
𝑅2 0.259 0.207 0.216

Notes: The regression models are introduced in Appendix A.6.3. The first column replicates
Column 1 of Table 1.1. The second two columns remove the industry-by-time FE and control
for the contemporaneous and lagged value of seasonally adjusted log TFP, respectively with
and without capacity utilization adjustment, as reported by the updated data series of
Fernald (2014). The sample size is lower in columns 2 and 3 due to the band-pass filtering
being impossible for the last part of the sample. The remaining rows give the implied
complementarity 𝜔 and demand multiplier 1

1−𝜔 , by comparing the coefficients with that of
column 1 and applying the formula in Equation 437. Standard errors are double-clustered
by industry-year and firm ID.
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Appendix B

Appendix to Attention Cycles

B.1 Omitted Proofs

B.1.1 Proof of Proposition 6

Proof. Consider a firm of type 𝜆𝑖, with a payoff 𝑢 : 𝒳 × 𝒵 → R and prior density
𝜋 ∈ ∆(𝒵). The firm’s stochastic choice problem can be written as

max
𝑝∈𝒫

∫︁
𝒳

∫︁
𝒵
𝑢(𝑥, 𝑧)𝑝(𝑥|𝑧) d𝑥 𝜋(𝑧) d𝑧 − 𝜆𝑖

∫︁
𝒳

∫︁
𝒵
𝑝(𝑥|𝑧) log 𝑝(𝑥|𝑧) d𝑥 𝜋(𝑧) d𝑧 (441)

We can formulate this problem as constrained optimization for choosing 𝑝(𝑥|𝑧) point-
wise, with constraints embodying non-negativity and the restriction that conditional
distributions integrate to one. We can then write a Lagrangian for this problem,
giving these constraints multipliers 𝜅(𝑥, 𝑧) and 𝛾(𝑧), respectively:

ℒ({𝑝(𝑥|𝑧), 𝜅(𝑥, 𝑧)}, {𝛾(𝑧)}) =
∫︁
𝒵

∫︁
𝒳
𝑢(𝑥, 𝑧)𝑝(𝑥|𝑧) d𝑥 𝜋(𝑧) d𝑧

− 𝜆𝑖

∫︁
𝒵

∫︁
𝒳
𝑝(𝑥|𝑧) log 𝑝(𝑥|𝑧) d𝑥 𝜋(𝑧) d𝑧

+

∫︁
𝒵

∫︁
𝒳
𝜅(𝑥, 𝑧)𝑝(𝑥|𝑧) d𝑥 𝜋(𝑧) d𝑧

+

∫︁
𝒵
𝛾(𝑧)

(︂∫︁
𝒳
𝑝(𝑥|𝑧) d𝑥− 1

)︂
𝜋(𝑧) d𝑧

(442)

The Lagrangian is concave in the collection {𝑝(𝑥 | 𝑧)}, since the expected utility term
and the two constraint terms are linear in these variables, and the control-cost term
is convex in these variables. Taking the first-order condition of the Lagrangian with
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respect to 𝑝(𝑥|𝑧) yields the necessary first-order condition

𝑢(𝑥, 𝑧)− 𝜆𝑖(log 𝑝(𝑥|𝑧) + 1) + 𝜅(𝑥, 𝑧) + 𝛾(𝑧) = 0 (443)

Re-arranging this expression and applying the normalization that the density inte-
grates to one, we get the solution

𝑝(𝑥|𝑧) = exp
(︀
𝜆−1
𝑖 𝑢(𝑥, 𝑧)

)︀∫︀
𝒳 exp

(︀
𝜆−1
𝑖 𝑢(𝑥′, 𝑧)

)︀
d𝑥′

(444)

This solution is invariant to the prior distribution 𝜋(𝑧), and hence can be indexed
solely by the ex post realized state 𝑧.

To solve our firm’s problem, we replace 𝑢 in the above with Π̃ and 𝑧 with 𝑧𝑖.
Performing this substitution, and ignoring the normalizing constant, we get

𝑝(𝑥|𝑧𝑖) ∝ exp

(︃
− (𝑥− 𝑥*(𝑧𝑖))

2

2𝜆𝑖|Π𝑧𝑧(𝑧𝑖)|−1

)︃
(445)

Taking 𝒳 = R, it is then immediate that 𝑝(𝑥|𝑧𝑖) is a Gaussian random variable with
mean 𝑥*(𝑧𝑖) and variance 𝜆𝑖|Π𝑥𝑥(𝑧𝑖)|−1. Observing that |Π𝑥𝑥(𝑧𝑖)| = |𝜋𝑥𝑥(𝑧𝑖)|𝑀(𝑋),
we can re-write the variance as 𝜆𝑖(|𝜋𝑥𝑥(𝑧𝑖)|𝑀(𝑋))−1. Finally, we observe that the
stochasticity in each firm’s action conditional on 𝑧𝑖 is independent from 𝑧𝑖 and/or
any other firm’s action. Thus:

𝑥𝑖 = 𝑥*(𝑧𝑖) +

√︃
𝜆𝑖

|𝜋𝑥𝑥(𝑧𝑖)|𝑀(𝑋)
· 𝑣𝑖, 𝑣𝑖 ∼ Normal(0, 1) (446)

B.1.2 Proof of Proposition 7

Proof. We first re-define the state variable as the 𝜖− 1 quasi-arithmetic mean of 𝜃𝑖

𝜃 :=
(︀
E𝜃𝑖 [𝜃𝜖−1

𝑖 | 𝜃]
)︀ 1
𝜖−1 (447)

The expectation is taken over the distribution 𝐺(𝜃), which is by assumption increas-
ing in 𝜃 via first-order stochastic dominance. Because this redefinition of the state
preserves the strict ordering of realizations of 𝜃, and lies within the domain Θ, it is
without loss of generality.

To prove existence, we first study the problem of a single firm 𝑖 who is best replying
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to the conjecture that the law of motion of the aggregate is 𝑋 : Θ → R. In particular,
they believe that output is given by 𝑋(𝜃) in each state 𝜃.

As established by Proposition 6, the firm’s best-response is invariant to the firm’s
prior state 𝑧𝑖,𝑡−1 and described by the following random variable conditional on each
realization of 𝑧𝑖𝑡:

𝑥𝑖𝑡 = 𝑥*(𝑧𝑖𝑡) +

√︃
𝜆𝑖

|Π𝑥𝑥(𝑧𝑖𝑡)|
· 𝑣𝑖𝑡, 𝑣𝑖𝑡 ∼ Normal(0, 1) (448)

As derived in Appendix B.1.7, the mean and variance scalings are the following, after
substituting in the equilibrium conjecture 𝑋𝑡 = 𝑋(𝜃𝑡):

𝑥*(𝑧𝑖𝑡) = 𝑣𝑥(𝜖, 𝜒, �̄�, �̄�) ·𝑋(𝜃𝑡)
1−𝜒𝜖𝜃𝜖𝑖𝑡

|Π𝑥𝑥(𝑧𝑖𝑡)| = 𝑣Π(𝜖, 𝜒, �̄�, �̄�) ·𝑋(𝜃𝑡)
−1−𝛾+𝜒(1+𝜖)𝜃−1−𝜖

𝑖𝑡

(449)

for constants 𝑣𝑥, 𝑣Π > 0 given by:

𝑣𝑥 := 𝜖−𝜖 (𝜖− 1)𝜖 �̄�−𝜖�̄�𝜒𝜖

𝑣Π := (𝜖− 1)−𝜖𝜖𝜖−1�̄�1+𝜖�̄�−𝜒(1+𝜖) (450)

Conditional on the realization of any state 𝜃, aggregate output must solve the
fixed point equation defined by combining the aggregate-good production function
(72) and the firms’ best responses. Applying the law of iterated expectations, we can
re-write the aggregate-good production function as

𝑋 = 𝑋* − 1

2𝜖(𝑋*)−
1
𝜖

E𝜃𝑖
[︁
(𝑥*(𝑧𝑖))

−1− 1
𝜖E𝜆𝑖,𝑣𝑖

[︀
(𝑥𝑖 − 𝑥*(𝑧𝑖))

2 | 𝜃𝑖, 𝜃
]︀
| 𝜃
]︁

(451)

where
𝑋* =

(︁
E𝜃𝑖 [𝑥*(𝑧𝑖)1−

1
𝜖 | 𝜃]

)︁ 𝜖
𝜖−1 (452)

We now specialize the expressions above using the structure of the best response
in Equations 448, 449, and 450. We first compute 𝑋* as

𝑋* = 𝑣𝑥𝑋
1−𝜒𝜖𝜃𝜖 (453)

where 𝜃 is the transformation defined in Equation 447. We next calculate the the
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second, “variance” term. We start with the “misoptimization variance”

E𝜆𝑖,𝑣𝑖
[︀
(𝑥𝑖 − 𝑥*(𝑧𝑖))

2
]︀
=

𝜆

𝑣Π
𝑋1+𝛾−𝜒(1+𝜖)𝜃1+𝜖𝑖 (454)

and then calculate the full term

(𝑋*)
1
𝜖E𝜃𝑖

[︁
(𝑥*(𝑧𝑖))

−1− 1
𝜖E𝜆𝑖,𝑣𝑖

[︀
(𝑥𝑖 − 𝑥*(𝑧𝑖))

2
]︀]︁

=
𝜆

𝑣Π𝑣𝑥
𝑋𝛾−𝜒𝜃 (455)

Substituting in Equations 453 and 455, we derive that equilibrium output solves:

𝑋(𝜃) = 𝑣𝑥𝑋(𝜃)1−𝜒𝜖𝜃𝜖 − 𝜆

2𝜖𝑣𝑥𝑣Π
𝑋(𝜃)𝛾−𝜒𝜃 (456)

There is always a trivial equilibrium 𝑋 = 0 arising from our approximations. Toward
proving existence and uniqueness of a non-trivial equilibrium, define:

𝑔(𝑋, 𝜃) = 𝑎0𝑋
1−𝜒𝜖𝜃𝜖 − 𝑎1𝑋

𝛾−𝜒𝜃 (457)

where 𝑎0 = 𝑣𝑥 > 0 and 𝑎1 =
𝜆

2𝜖𝑣𝑥𝑣Π
> 0. We now compute this function’s derivatives

in 𝑋:

𝑔𝑋(𝑋, 𝜃) = 𝑎0(1− 𝜒𝜖)𝑋−𝜒𝜖𝜃𝜖 − 𝑎1(𝛾 − 𝜒)𝑋𝛾−𝜒−1𝜃

𝑔𝑋𝑋(𝑋, 𝜃) = −𝑎0(1− 𝜒𝜖)𝜒𝜖𝑋−𝜒𝜖−1𝜃𝜖 − 𝑎1(𝛾 − 𝜒)(𝛾 − 𝜒− 1)𝑋𝛾−𝜒−2𝜃
(458)

If 1− 𝜒𝜖 > 0 and 𝛾 > 1 + 𝜒, then

lim
𝑋→0

𝑔𝑋(𝑋, 𝜃) = +∞ lim
𝑋→∞

𝑔𝑋(𝑋, 𝜃) = −∞ (459)

Moreover, if 𝛾 > 𝜒+1 we have that 𝑔𝑋𝑋(𝑋, 𝜃) < 0 on (0,∞). Thus, when 𝛾 > 𝜒+1

and 𝜒𝜖 < 1, 𝑔(𝑋, 𝜃) crosses 𝑋 from above and there exists a unique, positive fixed
point for each 𝜃. Iterated for all states 𝜃 ∈ Θ, this reasoning shows the existence of
a unique, positive equilibrium mapping 𝑋 : Θ → R+.

We now show monotonicity of the fixed point. To this end, we implicitly differen-
tiate the fixed point condition:

d𝑋(𝜃)

d𝜃
=
[︀
𝑎0(1− 𝜒𝜖)𝑋(𝜃)−𝜒𝜖𝜃𝜖 − 𝑎1(𝛾 − 𝜒)𝑋(𝜃)𝛾−𝜒−1𝜃

]︀ d𝑋(𝜃)

d𝜃

+
[︀
𝑎0𝜖𝑋(𝜃)1−𝜒𝜖𝜃𝜖−1 − 𝑎1𝑋(𝜃)𝛾−𝜒

]︀ (460)
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Yielding:

d𝑋(𝜃)

d𝜃
=

𝑎0𝜖𝑋(𝜃)1−𝜒𝜖𝜃𝜖−1 − 𝑎1𝑋(𝜃)𝛾−𝜒

1− [𝑎0(1− 𝜒𝜖)𝑋(𝜃)−𝜒𝜖𝜃𝜖 − 𝑎1(𝛾 − 𝜒)𝑋(𝜃)𝛾−𝜒−1𝜃]
(461)

Multiplying both sides by a factor of 𝜃
𝑋

:

d log𝑋(𝜃)

d log 𝜃
=

𝑎0𝜖𝑋(𝜃)1−𝜒𝜖𝜃𝜖 − 𝑎1𝑋(𝜃)𝛾−𝜒𝜃

𝑋(𝜃)− [𝑎0(1− 𝜒𝜖)𝑋(𝜃)1−𝜒𝜖𝜃𝜖 − 𝑎1(𝛾 − 𝜒)𝑋(𝜃)𝛾−𝜒𝜃]
(462)

We first show that the numerator is positive

𝑎0𝜖𝑋(𝜃)1−𝜒𝜖𝜃𝜖 − 𝑎1𝑋(𝜃)𝛾−𝜒𝜃 = 𝑎0(𝜖− 1)𝑋(𝜃)1−𝜒𝜖𝜃𝜖 +𝑋(𝜃)

> 0
(463)

The first equality substitutes in the original fixed-point equation. The second follows
from observing that 𝜖 > 1, 𝑎0 > 0, 𝑋(𝜃) > 0, and 𝜃 > 0. To show d log𝑋(𝜃)

d log 𝜃
> 0 it

now suffices to show that the denominator is positive, which follows from 𝜒𝜖 < 1 and
𝛾 > 𝜒+ 1 > 𝜒:

𝑋(𝜃) = 𝑎0𝑋(𝜃)1−𝜒𝜖𝜃𝜖 − 𝑎1𝑋(𝜃)𝛾−𝜒𝜃

≥ 𝑎0 (1− 𝜒𝜖)⏟  ⏞  
𝜒𝜖<1

𝑋(𝜃)1−𝜒𝜖𝜃𝜖 − 𝑎1 (𝛾 − 𝜒)⏟  ⏞  
𝛾−𝜒>1

𝑋(𝜃)𝛾−𝜒𝜃 (464)

This shows that d log𝑋(𝜃)
d log 𝜃

> 0 and implies that 𝑋(𝜃) is an increasing function.

B.1.3 Proof of Proposition 8

Proof. Building on the discussion in the main text, we first provide a formal definition
of how to rank average attention and misoptimization:

Definition 17 (Aggregate Attention and Misoptimization). Fix equilibrium laws of
motion {𝑋(𝜃), 𝑤(𝜃)}. Firms’ aggregate attention in state 𝜃, 𝑎(𝜃), is their average
realized cognitive cost

𝑎(𝜃) := E𝜃𝑖,𝜆𝑖,𝑣𝑖 [𝜆𝑖𝑝*(𝑥|𝑧𝑖(𝜃);𝜆𝑖) log 𝑝*(𝑥|𝑧𝑖(𝜃);𝜆𝑖) | 𝜃] (465)

where 𝑧𝑖(𝜃) = (𝜃𝑖, 𝑋(𝜃), 𝑤(𝜃)) and 𝑝*(· | 𝑧𝑖;𝜆𝑖) is the uniquely optimal state-contingent
plan of a type-𝜆𝑖 firm contingent on realized state 𝑧𝑖. Firms aggregate misoptimization
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is their average mean-squared-error around the ex post optimal action, or

𝑚(𝜃) := E𝜃𝑖,𝜆𝑖,𝑣𝑖
[︀
(𝑥𝑖 − 𝑥*(𝑧𝑖(𝜃)))

2 | 𝜃
]︀

(466)

We now prove the result, starting with the monotonicity of misoptimization. Using
the result of Proposition 6, and the substitution of (𝑥*(𝑧𝑖), |Π𝑥𝑥(𝑧𝑖)|) as in the proof
of Proposition 7, we show that the average “misoptimization variance” of actions
conditional on (𝑧𝑖, 𝜆𝑖) is

𝑚(𝑧𝑖, 𝜆𝑖, 𝜃) := E𝑣𝑖
[︀
(𝑥𝑖 − 𝑥*(𝑧𝑖(𝜃)))

2 | 𝑧𝑖, 𝜆𝑖, 𝜃
]︀
=
𝜆𝑖𝑋(𝜃)1+𝛾−𝜒(1+𝜖)𝜃1+𝜖𝑖

𝑣Π(𝜖, 𝜒, �̄�,𝑋)
(467)

where 𝑣Π > 0 is defined in Equation 450. Using the law of iterated expectations, we
can write 𝑚(𝜃) = E𝜃𝑖,𝜆𝑖 [𝑚(𝑧𝑖, 𝜆𝑖, 𝜃)]. Assessing this outer expectation, we derive

𝑚(𝜃) =
𝜆

𝑣Π(𝜖, 𝜒, �̄�, �̄�)
·𝑋(𝜃)1+𝛾−𝜒(1+𝜖) · E𝜃𝑖 [𝜃1+𝜖𝑖 | 𝜃] (468)

We observe that E𝜃𝑖 [𝜃1+𝜖𝑖 | 𝜃] increases in 𝜃, as 𝑦 ↦→ 𝑦1+𝜖 is an increasing function
and 𝜃′ > 𝜃 =⇒ 𝐺(𝜃′) ≿𝐹𝑂𝑆𝐷 𝐺(𝜃). We next observe that 𝑋(𝜃)1+𝛾−𝜒(1+𝜖) increases
in 𝑋 if 𝛾 > 𝜒(1 + 𝜖) − 1. This condition is guaranteed by 𝛾 > 𝜒 + 1 and 𝜒𝜖 < 1.
Moreover, by Proposition 7, the stated conditions ensure that 𝑋(𝜃) is an increasing
function. This proves that 𝑚(𝜃) increases in 𝜃, or misoptimization is higher in the
higher-productivity, higher-output state.

We next consider the monotonicity of attention. The entropy of a Gaussian ran-
dom variable with variance 𝜎2 is proportional, up to scaling and constants, to log(𝜎2).
We therefore derive, up to scaling and constants,

𝑎(𝜃) = (−1− 𝛾 + 𝜒(1 + 𝜖)) log𝑋(𝜃)− (1 + 𝜖)E𝜃𝑖 [log 𝜃𝑖 | 𝜃] (469)

This is monotone decreasing in 𝑋 if 𝛾 > 𝜒(1 + 𝜖) − 1, as desired. It is monotone
decreasing in 𝜃 if E𝜃𝑖 [log 𝜃𝑖 | 𝜃] increases 𝜃. This is true because 𝑦 ↦→ log 𝑦 is an
increasing function and 𝜃′ > 𝜃 → 𝐺(𝜃′) ≿𝐹𝑂𝑆𝐷 𝐺(𝜃). Thus 𝑎(𝜃) is a decreasing
function of 𝜃, and attention is lower in the higher-productivity, higher-output states.

B.1.4 Proof of Proposition 9

Proof. We first derive output in the fully attentive 𝜆 = 0 limit, which we define
by some mapping 𝑋0 : Θ → R. Recall the fixed-point equation for output from
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Proposition 7:
𝑋(𝜃) = 𝑎0𝑋(𝜃)1−𝜒𝜖𝜃𝜖 − 𝑎1𝑋(𝜃)𝛾−𝜒𝜃 (470)

When 𝜆 = 0, we have that 𝑎1 = 0. Thus,

𝑋0(𝜃) = 𝑎0𝑋0(𝜃)
1−𝜒𝜖𝜃𝜖 (471)

Or simply:
𝑋0(𝜃) = 𝑎

1
𝜒𝜖

0 𝜃
1
𝜒 (472)

We now define the proportional wedge between equilibrium output and output
without the attention friction as:

𝑊 (𝜃;𝜆) :=
𝑋(𝜃)

𝑋0(𝜃)
=

𝑋(𝜃)

𝑎
1
𝜒𝜖

0 𝜃
1
𝜒

(473)

Via this definition, we re-write output in the form claimed in the Proposition.

log𝑋(log 𝜃) = 𝑋0 + 𝜒−1 log 𝜃 + log𝑊 (log 𝜃) (474)

where 𝑋0 :=
1
𝜒𝜖
log 𝑎0.

We next prove that the wedge is positive. To prove this and other properties, we
write a fixed-point equation for 𝑊 (𝜃). Combining the definition of the wedge with
Equation 470, we obtain

𝑊 (𝜃) = 𝑊 (𝜃)1−𝜒𝜖 − 𝑎1(𝜆)𝑎
𝛾−𝜒−1
𝜒𝜖

0 𝑊 (𝜃)𝛾−𝜒𝜃
𝛾−1
𝜒 (475)

Based on identical arguments to those in the proof of Proposition 7, the wedge is
positive and unique under the exact same conditions that 𝑋(𝜃) is positive and unique:
𝜒𝜖 < 1 and 𝛾 > 𝜒 + 1. Moreover, 𝑊 (𝜃) crosses the 45 degree line from above. To
show that 𝑊 (𝜃) ≤ 1, it then suffices to show that the right-hand-side of the fixed
point equation is less than unity when evaluated at 𝑊 (𝜃) = 1. As 𝑎1, 𝑎0 > 0, this
is immediate. Thus log𝑊 (𝜃) ≤ 0, as claimed. Moreover, given that 𝜕𝑎1

𝜕𝜆
> 1, it is

immediate to show 𝜕𝑊
𝜕𝜆

< 0.

Toward the final claim, we show that log𝑊 (𝜃) is monotone decreasing in 𝜃. First,
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we implicitly differentiate the fixed point condition:

d𝑊

d𝜃
=

[︂
(1− 𝜒𝜖)𝑊 (𝜃)−𝜒𝜖 − 𝑎1𝑎

𝛾−𝜒−1
𝜒𝜖

0 (𝛾 − 𝜒)𝑊 (𝜃)𝛾−𝜒−1𝜃
𝛾−1
𝜒

]︂
d𝑊

d𝜃

− 𝑎1𝑎
𝛾−𝜒−1
𝜒𝜖

0

𝛾 − 1

𝜒
𝑊 (𝜃)𝛾−𝜒𝜃

𝛾−𝜒−1
𝜒

(476)

or:

d𝑊

d𝜃
=

−𝑎1𝑎
𝛾−𝜒−1
𝜒𝜖

0
𝛾−1
𝜒
𝑊 (𝜃)𝛾−𝜒𝜃

𝛾−𝜒−1
𝜒

1−
[︂
(1− 𝜒𝜖)𝑊 (𝜃)−𝜒𝜖 − 𝑎1𝑎

𝛾−𝜒−1
𝜒𝜖

0 (𝛾 − 𝜒)𝑊 (𝜃)𝛾−𝜒−1𝜃
𝛾−1
𝜒

]︂ (477)

which we can rewrite as, after multiplying by 𝜃
𝑊

, as

d log𝑊

d log 𝜃
=

−𝑎1𝑎
𝛾−𝜒−1
𝜒𝜖

0
𝛾−1
𝜒
𝑊 (𝜃)𝛾−𝜒𝜃

𝛾−1
𝜒

𝑊 (𝜃)−
[︂
(1− 𝜒𝜖)𝑊 (𝜃)1−𝜒𝜖 − 𝑎1𝑎

𝛾−𝜒−1
𝜒𝜖

0 (𝛾 − 𝜒)𝑊 (𝜃)𝛾−𝜒𝜃
𝛾−1
𝜒

]︂ (478)

By positivity of 𝑎1 and 𝑎0 and the assumption that 𝛾 > 𝜒+ 1, the numerator of this
expression is negative. To show that the wedge is monotone decreasing, we need to
show that the denominator is positive. To this end, we see that:

𝑊 (𝜃) = 𝑊 (𝜃)1−𝜒𝜖 − 𝑎1𝑎
𝛾−𝜒−1
𝜒𝜖

0 𝑊 (𝜃)𝛾−𝜒𝜃
𝛾−1
𝜒

≥ (1− 𝜒𝜖)⏟  ⏞  
𝜒𝜖<1

𝑊 (𝜃)1−𝜒𝜖 − 𝑎1𝑎
𝛾−𝜒−1
𝜒𝜖

0 (𝛾 − 𝜒)⏟  ⏞  
𝛾>𝜒+1

𝑊 (𝜃)𝛾−𝜒𝜃
𝛾−1
𝜒

(479)

This completes the proof.

B.1.5 Proof of Corollary 5

Proof. The labor demand of any given firm 𝑖 is given by 𝐿𝑖 = 𝑥𝑖
𝜃𝑖

. Total labor demand
in the economy is then given by:

𝐿 =

∫︁
[0,1]

𝐿𝑖 d𝑖 (480)

Using Proposition 6, the definition of 𝑥*(𝑧𝑖) in the proof of Proposition 7, and the
equilibrium law of motion 𝑋(𝜃), we write the production of each firm as

𝑥𝑖 = 𝑥*(𝑧𝑖) + 𝑣𝑖 = 𝑣𝑥𝑋(𝜃)1−𝜒𝜖𝜃𝜖𝑖 + 𝑣𝑖 (481)
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where 𝑣𝑖 is the misoptimization scaled by its endogenous standard deviation. Plugging
this into the expression for 𝐿, we derive

𝐿 = 𝑣𝑥𝑋(𝜃)1−𝜒𝜖
∫︁ 1

0

𝜃𝜖−1
𝑖 d𝑖 (482)

Simplifying and applying a law of large numbers, we write this as

𝐿𝑡 = 𝐿(𝜃) = 𝑣𝑥𝑋(𝜃)1−𝜒𝜖𝜃𝜖−1 (483)

where we define, as in the main text, 𝜃 :=
(︀
E𝜃𝑖 [𝜃𝜖−1

𝑖 | 𝜃]
)︀ 1
𝜖−1 .

Combining the definition log𝐴(𝜃) = log𝑋(𝜃) − log𝐿(𝜃) with Equation 483, we
derive

log𝐴(𝜃) = − log 𝑣𝑥 + 𝜒𝜖 log𝑋(𝜃)− (𝜖− 1) log 𝜃 (484)

Using our representation of aggregate output from Proposition 9, we obtain:

log𝐴(𝜃) = (𝜒𝜖𝑋0 − log 𝑣𝑥) + log 𝜃 + 𝜒𝜖 log𝑊 (𝜃) (485)

where 𝑊 (·) inherits all of the properties proved in Proposition 9. We finally observe
that 𝑋0 =

log 𝑣𝑥
𝜒𝜖

, as defined in the proof of Proposition 9, so 𝜒𝜖𝑋0 − log 𝑣𝑥 = 0. This
completes the proof.

B.1.6 Proof of Corollary 6

Proof. From Proposition 9, the expression for output is

log𝑋(log 𝜃) = 𝑋0 + 𝜒−1 log 𝜃 + log𝑊 (log 𝜃) (486)

Moreover, if 𝜆 = 0, then log𝑊 (log 𝜃) = 0.

First, consider the response of output to a small shock 𝜈𝑡 starting from 𝜃𝑡−1. We
have immediately that:

𝜕 log𝑋(log 𝜃)

𝜕 log 𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

= 𝜒−1 +
𝜕 log𝑊 (log 𝜃)

𝜕 log 𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

(487)

When 𝜆 = 0, then log𝑊 ≡ 0 according to Proposition 9. Thus 𝜕 log𝑋(log 𝜃)
𝜕 log 𝜃

≡ 𝜒−1 in
all states, if inattention is removed from the model. If instead 𝜆 > 0 then 𝜕 log𝑊 (log 𝜃)

𝜕 log 𝜃
|𝜃
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is a non-linear function of 𝜃 which satisfies

d log𝑊

d log 𝜃
=

−𝑎1𝑎
𝛾−𝜒−1
𝜒𝜖

0
𝛾−1
𝜒
𝑊 (𝜃)𝛾−𝜒𝜃

𝛾−1
𝜒

𝑊 (𝜃)−
[︂
(1− 𝜒𝜖)𝑊 (𝜃)1−𝜒𝜖 − 𝑎1𝑎

𝛾−𝜒−1
𝜒𝜖

0 (𝛾 − 𝜒)𝑊 (𝜃)𝛾−𝜒𝜃
𝛾−1
𝜒

]︂ (488)

Toward showing endogenous stochastic volatility, we approximate log𝑋 to the first
order in the shock 𝜈𝑡:

log𝑋(𝜈𝑡; 𝜃𝑡−1) ≈ log𝑋(𝜃𝑡−1) +
𝜕 log𝑋(log 𝜃)

𝜕 log 𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

𝜈𝑡 (489)

By the same logic above, this is state independent if 𝜆 = 0 and log𝑊 ≡ 0. Taking
the variance of this expression conditional on 𝜃𝑡−1 yields:

Var[log𝑋𝑡 | 𝜃𝑡−1] =

(︃
𝜒−1 +

𝜕 log𝑊 (log 𝜃)

𝜕 log 𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

)︃2

𝜎2
𝜃 (490)

Taking a second-order approximation in 𝜈𝑡 and differentiating yields the asymmetric
shock propagation equation:

𝜕 log𝑋(log 𝜃)

𝜕 log 𝜃

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

= 𝜒−1 +
𝜕 log𝑊 (log 𝜃)

𝜕 log 𝜃
|𝜃=𝜃𝑡−1 +

(︃
𝜕2 log𝑊 (log 𝜃)

𝜕 log 𝜃2

⃒⃒⃒⃒
𝜃=𝜃𝑡−1

)︃
𝜈𝑡

(491)
Again, this is state independent if 𝜆 = 0 and log𝑊 ≡ 0.

B.1.7 Additional Calculations

Quadratic Approximation of Risk-Adjusted Profits

Using the expressions for dollar profits and marginal utility in Equation 67, we can
write firms’ risk-adjusted profits as the following:

Π(𝑥, 𝑧𝑖) := 𝑋−𝛾
(︂
𝑥1−

1
𝜖𝑋

1
𝜖 − 𝑥

𝑤

𝜃𝑖

)︂
(492)

where, as throughout, we define the decision state vector 𝑧𝑖 = (𝜃𝑖, 𝑋, 𝑤). The optimal
action in the absence of stochastic choice solves the first-order condition(︂

1− 1

𝜖

)︂
𝑥*

− 1
𝜖𝑋

1
𝜖 =

𝑤

𝜃𝑖
(493)
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which can be re-arranged to define

𝑥*(𝑧𝑖) =

(︂
1− 1

𝜖

)︂𝜖
𝑋

(︂
𝑤

𝜃𝑖

)︂−𝜖
(494)

We now approximate the firm’s profit function to second order in 𝑥 around 𝑥*(𝑧𝑖):

Π(𝑥, 𝑧𝑖) = Π(𝑥*(𝑧𝑖), 𝑧𝑖) + Π𝑥(𝑧𝑖)(𝑥− 𝑥*(𝑧𝑖)) +
1

2
Π𝑥𝑥(𝑧𝑖)(𝑥− 𝑥*(𝑧𝑖))

2 +𝑂3(𝑥)

=: Π̃(𝑥, 𝑧𝑖) +𝑂3(𝑥)
(495)

where Π𝑥(𝑧𝑖) := Π𝑥(𝑥, 𝑧𝑖)|𝑥=𝑥*(𝑧𝑖) and Π𝑥𝑥(𝑧𝑖) := Π𝑥𝑥(𝑥, 𝑧𝑖)|𝑥=𝑥*(𝑧𝑖). By the enve-
lope theorem, Π𝑥(𝑧𝑖) = 0. Thus, our approximation reduces to the quadratic utility
function in the Linear-Quadratic equilibrium:

Π̃(𝑥, 𝑧𝑖) = Π(𝑥*(𝑧𝑖), 𝑧𝑖) +
1

2
Π𝑥𝑥(𝑧𝑖)(𝑥− 𝑥*(𝑧𝑖))

2 (496)

It remains to characterize the intercept and curvature. We first derive the inter-
cept:

Π(𝑥*(𝑧𝑖), 𝑧𝑖) = 𝑋−𝛾
(︃
𝑋

(︂
𝑤

𝜃𝑖

)︂1−𝜖
)︃(︃[︂

1− 1

𝜖

]︂𝜖(1− 1
𝜖 )

−
[︂
1− 1

𝜖

]︂𝜖)︃

= 𝑋−𝛾
(︃
𝑋

(︂
𝑤

𝜃𝑖

)︂1−𝜖
)︃
𝜖−𝜖 (𝜖− 1)𝜖−1

(497)

We now characterize the curvature, which is the product of marginal utility with the
curvature of the dollar-profit function:

Π𝑥𝑥(𝑧𝑖) = 𝑋−𝛾 · 𝜋𝑥𝑥(𝑧𝑖) (498)

We calculate, using the form of the profit function from Equation 67, the dollar profit

391



function’s second derivative:1

𝜋𝑥𝑥(𝑥
*(𝑧𝑖), 𝑋) = −1

𝜖

(︂
1− 1

𝜖

)︂
(𝑥*(𝑧𝑖))

−1− 1
𝜖𝑋

1
𝜖

= −1

𝜖

(︂
1− 1

𝜖

)︂(︂
1− 1

𝜖

)︂−(1+ 1
𝜖 )𝜖
𝑋−1− 1

𝜖𝑋
1
𝜖

(︂
𝑤

𝜃𝑖

)︂𝜖(1+ 1
𝜖 )

= −𝜖𝜖−1(𝜖− 1)−𝜖𝑋−1

(︂
𝑤

𝜃𝑖

)︂1+𝜖

(499)

We substitute in the wage rule, Equation 63, to derive

𝜋𝑥𝑥(𝑧𝑖) = −𝑣𝜋(𝜖, 𝜒, �̄�, �̄�) · 𝜃−1−𝜖
𝑖 𝑋𝜒(1+𝜖)−1 (500)

as in Equation 73, where the constant is

𝑣𝜋(𝜖, 𝜒, �̄�, �̄�) := (𝜖− 1)−𝜖𝜖𝜖−1�̄�1+𝜖�̄�−𝜒(1+𝜖) > 0 (501)

Quadratic Approximation of Final-Goods Technology

We now consider the second-order approximation of the aggregator, which is re-
printed below

𝑋({𝑥𝑖}𝑖∈[0,1]) =
(︂∫︁ 1

0

𝑥
𝜖−1
𝜖

𝑖 d𝑖

)︂ 𝜖
𝜖−1

(502)

Technically speaking, we take a quadratic approximation of a discretized version of
this aggregator, and then take consider the limit of this approximation. First, we
suppose that there are 𝐾 × 𝐾 ′ × 𝐾 ′′ discrete firms. Define the firm-level state for
any firm 𝑘𝑘′𝑘′′ as 𝜔𝑘𝑘′𝑘′′ = (𝜃𝑘, 𝜆𝑘′ , 𝑣𝑘′′) with corresponding production level 𝑥(𝜔𝑘𝑘′𝑘′′).
Define the CES aggregator in this economy as:

𝑋𝐾𝐾′𝐾′′({𝑥𝑘𝑘′𝑘′′}) =
(︃

1

𝐾

𝐾∑︁
𝑘=1

1

𝐾 ′

𝐾′∑︁
𝑘′=1

1

𝐾 ′′

𝐾′′∑︁
𝑘′′=1

𝑥(𝜔𝑘𝑘′𝑘′′)
1− 1

𝜖

)︃ 𝜖
𝜖−1

(503)

1Because marginal costs are constant, this curvature arises purely from the curvature of the
revenue function.
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Second, we take a quadratic approximation of this function around the firm-level
optimal production points 𝑥𝑘𝑘′𝑘′′ = 𝑥*(𝜃𝑘):

𝑋𝐾𝐾′𝐾′′ = 𝑋*
𝐾 +

1

𝐾

𝐾∑︁
𝑘=1

1

𝐾 ′

𝐾′∑︁
𝑘′=1

1

𝐾 ′′

𝐾′′∑︁
𝑘′′=1

𝐷𝑘(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘))

+
1

𝐾

𝐾∑︁
𝑘=1

1

𝐾 ′

𝐾′∑︁
𝑘′=1

1

𝐾 ′′

𝐾′′∑︁
𝑘′′=1

1

𝐾

𝐾∑︁
𝑘=1

1

𝐾 ′

𝐾′∑︁
𝑘′=1

1

𝐾 ′′

𝐾′′∑︁
𝑘′′=1

1

2
𝐷2
𝑘𝑘
(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘))(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘))

(504)

where:

𝑋*
𝐾 =

(︃
1

𝐾

𝐾∑︁
𝑘=1

𝑥*(𝜃𝑘)
1− 1

𝜖

)︃ 𝜖
𝜖−1

(505)

and:
𝐷𝑘 = (𝑋*

𝐾)
1
𝜖𝑥*(𝜃𝑘)

− 1
𝜖 (506)

and:

𝐷2
𝑘𝑘

=

⎧⎨⎩−𝐾𝐾 ′𝐾 ′′ 1
𝜖
𝑥*(𝜃𝑘)−

1
𝜖
−1(𝑋*

𝐾)
1
𝜖 + 1

𝜖

𝜕𝑋*
𝐾

𝜕𝑥𝑘𝑘′𝑘′′
(𝑋*

𝐾)
1
𝜖
−1𝑥*(𝜃𝑘)−

1
𝜖 if 𝑘𝑘′𝑘′′ = 𝑘𝑘′𝑘′′

1
𝜖
(𝑋*

𝐾)
1
𝜖
−1(𝑥*(𝜃𝑘))−

1
𝜖 (𝑥*(𝜃𝑘))

− 1
𝜖 if 𝑘𝑘′𝑘′′ ̸= 𝑘𝑘′𝑘′′.

(507)

We now take limits of this approximation in the following order. We first send
𝐾 ′′ → ∞. Observe that, for fixed 𝑘, 𝑘′, we have that each 𝑘′′ firm by Proposition
6 has action distributed as 𝑁(𝑥*(𝜃𝑘), 𝜎2

𝑘𝑘′). Thus, as 𝐾 ′′ → ∞, by the law of large
numbers:

1

𝐾 ′′

𝐾′′∑︁
𝑘′′=1

𝐷𝑘(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘)) →𝑎.𝑠 0 (508)

Thus, the second term in the quadratic expansion above is zero almost surely in the
large firm limit.

We can perform the same exercise for the third term in the quadratic expansion,
which we can write as:

𝑄 =
1

𝐾

𝐾∑︁
𝑘=1

1

𝐾 ′

𝐾′∑︁
𝑘′=1

1

𝐾

𝐾∑︁
𝑘=1

1

𝐾 ′

𝐾′∑︁
𝑘′=1

⎛⎝ 1

𝐾 ′′2

𝐾′′∑︁
𝑘′′=1

𝐾′′∑︁
𝑘′′=1

1

2
𝐷2
𝑘𝑘
(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘))(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘))

⎞⎠
=

1

𝐾

𝐾∑︁
𝑘=1

1

𝐾 ′

𝐾′∑︁
𝑘′=1

1

𝐾

𝐾∑︁
𝑘=1

1

𝐾 ′

𝐾′∑︁
𝑘′=1

1

2
𝐷2
𝑘𝑘

⎛⎝ 1

𝐾 ′′2

𝐾′′∑︁
𝑘′′=1

𝐾′′∑︁
𝑘′′=1

(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘))(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘))

⎞⎠
(509)
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Fix 𝑘 = 𝑘, 𝑘′ = 𝑘′ and consider the summation in brackets. This has two terms.
First, for 𝑘′′ = 𝑘′′, the summand is simply (𝑥(𝜔𝑘𝑘′𝑘′′)−𝑥*(𝜃𝑘))2. Second, 𝑘′′ ̸= 𝑘′′, the
summand is the product of two independent normal random variables with common
distribution distribution 𝑁(0, 𝜎2

𝑘𝑘′). Thus, in the 𝐾 ′′ → ∞ limit we have that:

1

𝐾 ′′2

𝐾′′∑︁
𝑘′′=1

𝐾′′∑︁
𝑘′′ ̸=𝑘′′

(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘))(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘)) →𝑎.𝑠 0 (510)

and:
1

𝐾 ′′

𝐾′′∑︁
𝑘′′=1

(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘))(𝑥(𝜔𝑘𝑘′𝑘′′)− 𝑥*(𝜃𝑘)) →𝑎.𝑠 𝜎2
𝑘𝑘′ (511)

Thus, using the observation that lim𝐾′′→∞
𝜕𝑋*

𝐾

𝜕𝑥𝑘𝑘′𝑘′′
= 0, we substitute in 𝐷2

𝑘𝑘 to obtain:

𝑄 = − 1

2𝜖

1

𝐾

𝐾∑︁
𝑘=1

1

𝐾 ′

𝐾′∑︁
𝑘′=1

𝜎2
𝑘𝑘′

𝑥*(𝜃𝑘)1+
1
𝜖 (𝑋*

𝐾)
− 1
𝜖

(512)

We now observe that 𝜎2
𝑘𝑘′ =

𝜆𝑘′
𝜆
𝜎2
𝑘. Thus, taking the 𝐾 ′ → ∞ limit we have that:

𝑄→𝑎.𝑠. − 1

2𝜖

1

𝐾

𝐾∑︁
𝑘=1

𝜆𝜎2
𝑘

𝑥*(𝜃𝑘)1+
1
𝜖 (𝑋*

𝐾)
− 1
𝜖

(513)

Now taking the limit as 𝐾 → ∞, we can express this as:

𝑄→𝑎.𝑠 − 1

2𝜖
E

[︃
𝜆𝜎2

𝑘

𝑥*(𝜃𝑘)1+
1
𝜖 (𝑋*

𝐾)
− 1
𝜖

]︃
(514)

Moreover, in the same limit, by applying the law of large numbers and the continuous
mapping theorem we have that:

𝑋*
𝐾 →𝑎.𝑠.

(︁
E[𝑥*(𝜃𝑘)1−

1
𝜖 ]
)︁ 𝜖
𝜖−1 (515)

Combining all of the above, we have shown that, in the limit, almost surely:

𝑋 ≈
(︁
E[(𝑥*(𝜃𝑘))1−

1
𝜖 ]
)︁ 𝜖
𝜖−1 − 1

2𝜖
E

[︃
𝜆𝜎2

𝑘

𝑥*(𝜃𝑘)1+
1
𝜖 (𝑋*

𝐾)
− 1
𝜖

]︃
(516)

Which we denote by the (somewhat imprecise, but standard) integral form over
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agents:

𝑋 =

(︂∫︁ 1

0

𝑥*(𝑧𝑖)
1− 1

𝜖 d𝑖

)︂ 𝜖
𝜖−1

− 1

2𝜖

∫︁ 1

0

(𝑥𝑖 − 𝑥*(𝑧𝑖))2

(𝑋*)−
1
𝜖 (𝑥*(𝑧𝑖))1+

1
𝜖

d𝑖 (517)

Mapping Misoptimization Dispersion to the Model

Here, we explicitly calculate the within-model analogue to Misoptimization Disper-
sion. We show that monotone misoptimization dispersion implies our within-model
measure of misoptimization is monotone and therefore confirms the misoptimization
cycles prediction.

Recall from Definition 17 the definition of aggregate misoptimization,

𝑚(𝜃) := E𝜃𝑖,𝜆𝑖,𝑣𝑖
[︀
(𝑥𝑖 − 𝑥*(𝑧𝑖(𝜃)))

2 | 𝜃
]︀

(518)

which, as derived in the proof of Proposition 8, had expression

𝑚(𝜃) =
𝜆

𝑣Π(𝜖, 𝜒, �̄�, �̄�)
·𝑋(𝜃)1+𝛾−𝜒(1+𝜖) · E𝜃𝑖 [𝜃1+𝜖𝑖 | 𝜃] (519)

Misoptimization Dispersion is the optimal-sales-weighted population average of the
normalized mean-squared error of actions. Let us define this model object as

�̃�(𝜃) = E𝜃𝑖,𝜆𝑖,𝑣𝑖

[︃
𝑠*(𝜃𝑖)

(︂
(𝑥𝑖 − 𝑥*(𝑧𝑖(𝜃)))

𝑥*(𝑧𝑖)

)︂2

| 𝜃
]︃

(520)

where 𝑠*(𝜃𝑖) are sales weights evaluated at the optimal production levels. We can use
the model’s structure to simplify these weights:

𝑠*(𝜃𝑖) :=
𝑞*(𝑧𝑖)𝑥*(𝑧𝑖)

E𝜃𝑖 [𝑞*(𝑧𝑖)𝑥*(𝑧𝑖)]
=

𝑋
1
𝜖 (𝑣𝑥𝑋

1−𝜒𝜖𝜃𝜖𝑖)
1− 1

𝜖

E𝜃𝑖 [𝑋
1
𝜖 (𝑣𝑥𝑋1−𝜒𝜖𝜃𝜖𝑖)

1− 1
𝜖 ]

=
𝜃𝜖−1
𝑖

𝜃𝜖−1
(521)

where, as throughout, 𝜃 =
(︀
E𝜃𝑖 [𝜃𝜖−1

𝑖 ]
)︀ 1
𝜖−1 . We can therefore write the expected vari-

ance of normalized misoptimizations, conditioning on a specific firm, as

�̃�(𝑧𝑖, 𝜆𝑖, 𝜃) := E𝑣𝑖

[︃
𝑠*(𝜃𝑖)

(︂
𝑥𝑖 − 𝑥*(𝑧𝑖(𝜃))

𝑥*(𝑧𝑖)

)︂2

| 𝑧𝑖, 𝜆𝑖, 𝜃
]︃
=
𝜆𝑖𝑋(𝜃)𝛾+𝜒(𝜖−1)−1𝜃1−𝜖

𝑣Π𝑣2𝑥
(522)

where 𝑣Π, 𝑣𝑋 > 0 are defined in Equation 450. It is trivial to integrate over (𝜃𝑖, 𝜆𝑖) to
derive

�̃�(𝜃) =
𝜆𝑋(𝜃)𝛾+𝜒(𝜖−1)−1𝜃1−𝜖

𝑣Π𝑣2𝑥
(523)
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We can relate this to 𝑚(𝜃) by writing

𝑚(𝜃)

�̃�(𝜃)
= 𝑣2𝑥𝜃

𝜖−1E𝜃𝑖 [𝜃1+𝜖𝑖 | 𝜃]𝑋2(1−𝜒𝜖) (524)

See that, given 𝜖 > 1 and 𝜒𝜖 < 1, this is an increasing function of both 𝜃 and 𝑋.
Therefore, if �̃�(𝜃) is monotone increasing in 𝜃 in an equilibrium with monotone 𝑋(𝜃),
then 𝑚(𝜃) is also monotone increasing in 𝜃.

B.2 Extended Model
In this appendix, we formally develop the extension of the baseline model from Section
2.3 to include multiple inputs and market clearing wages. In the process, we will
provide more direct model micro-foundations for the wage rule and the stock return
regression analysis in Section 2.5.3.

B.2.1 Set-up

Time is discrete, and indexed by 𝑡 ∈ N. There are three kinds of firms: perfectly
competitive materials firms who use labor to produce materials; intermediate goods
producers who differ in their productivity and who use labor and materials to pro-
duce a monopolistic variety indexed by 𝑖 ∈ [0, 1]; and final goods firms who produce
consumption goods as a constant elasticity of substitution aggregate of intermediate
goods. There are two types of households: capitalists who own the firms in the econ-
omy, do not work and have constant relative risk aversion (CRRA) preferences over
consumption; workers who supply labor, are hand-to-mouth (consuming all of their
labor income in each period), and have Greenwood, Hercowitz, and Huffman (1988)
(GHH) preferences over consumption and labor. Finally, as in our baseline model,
the stochastic choice friction is embedded in the production of intermediate goods:
intermediate goods producers perfectly cost-minimize but find it hard to produce the
optimal amount.

Firms

Materials are produced by perfectly competitive firms with linear production tech-
nology in labor so that aggregate production of materials 𝑀𝑡 is given by:

𝑀𝑡 = 𝜃𝑀𝑡 𝐿
𝑀
𝑡 (525)

where 𝜃𝑀𝑡 is the productivity of the materials sector and 𝐿𝑀𝑡 is its labor input.
Intermediate goods producers of variety 𝑖 are the monopoly producers of that
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variety. They have firm-specific productivity 𝜃𝑖𝑡 and use materials 𝑚𝑖𝑡 and labor 𝐿𝑖𝑡
to produce output 𝑥𝑖𝑡 with Cobb-Douglas production technology:

𝑥𝑖𝑡 = 𝜃𝑖𝑡𝐿
𝛼
𝑖𝑡𝑚

1−𝛼
𝑖𝑡 (526)

where 𝛼 ∈ (0, 1). To the extent that other intermediate goods (e.g. capital) exist and
are combined in a CRS Cobb-Douglas production function with labor, this is fully
general.

The stochastic process of productivity is exactly as described in Section 2.3.2.
There is an aggregate productivity state 𝜃𝑡 ∈ Θ, which follows a first-order Markov
process with transition density given by ℎ(𝜃𝑡 | 𝜃𝑡−1). The cross-sectional productivity
distribution is given in state Θ by the mapping 𝐺 : Θ → ∆(Θ), where we denote the
productivity distribution in any state 𝜃𝑡 by 𝐺𝑡 = 𝐺(𝜃𝑡) with corresponding density 𝑔𝑡.
We assume that the total order on 𝜃𝑡 ranks distributions 𝐺𝑡 by first-order stochastic
dominance, or 𝜃 ≥ 𝜃′ implies 𝐺(𝜃) ≿𝐹𝑂𝑆𝐷 𝐺(𝜃′). Finally, materials productivity 𝜃𝑀𝑡
is determined as an increasing function of the overall productivity state 𝜃𝑡.

Intermediate goods producers perfectly cost-minimize facing wages 𝑤𝑡 and in-
termediate goods prices 𝑝𝑀𝑡 . That is, for given production level 𝑥𝑖𝑡, they always
choose the cost-minimizing input bundle. We define the firm-level decision state
𝑧𝑖𝑡 = (𝜃𝑖𝑡, 𝑋𝑡, 𝑤𝑡, 𝑝

𝑀
𝑡 ) ∈ 𝒵 as the concatenation of all decision-relevant variables that

the firm takes as given; unlike in the baseline model, this definition includes the ma-
terials price. All firms believe that the vector 𝑧𝑖𝑡 follows a first-order Markov process
with transition densities described by 𝑓 : 𝒵 → ∆(𝒵), with 𝑓(𝑧𝑖𝑡|𝑧𝑖,𝑡−1) being the
density of 𝑧𝑖𝑡 conditional on last period’s state being 𝑧𝑖,𝑡−1. At time 𝑡, each firm 𝑖

knows the sequence of previous {𝑧𝑖𝑠}𝑠<𝑡 but not the contemporaneous value 𝑧𝑖𝑡.
Given this firms have risk-adjusted profits given by Π(𝑥𝑖𝑡, 𝑧𝑖𝑡). They then choose

stochastic choice rules to maximize expected profits net of control costs, as captured
by the following program which is identical to Equation 68 in the main model, with
a different definition of the decision state and profits function:

max
𝑝∈𝒫

∫︁
𝒵

∫︁
𝒳
Π(𝑥, 𝑧𝑖𝑡) 𝑝(𝑥 | 𝑧𝑖𝑡) d𝑥 𝑓(𝑧𝑖𝑡 | 𝑧𝑖,𝑡−1) d𝑧 − 𝑐 (𝑝, 𝜆𝑖, 𝑧𝑖,𝑡−1, 𝑓) (527)

Intermediate goods firms generate profits in units of consumption goods given by
𝜋𝑖𝑡. The firms store these consumption goods and pay them out as dividends 𝑑𝑖𝑡 to
their owners in the following period:

𝑑𝑖𝑡+1 = 𝜋𝑖𝑡 (528)
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A unit supply of stock in the firm, which confers the right to the dividend stream, is
available at price 𝑃𝑖𝑡.

The output of intermediate goods firms is combined to produce consumption goods
with a CES production technology. Thus, if the intermediate producers produce
{𝑥𝑖𝑡}𝑖∈[0,1], then the aggregate supply of consumption goods is:

𝑋𝑡 = 𝑋({𝑥𝑖𝑡}𝑖∈[0,1]) =
(︂∫︁

[0,1]

𝑥
𝜖−1
𝜖

𝑖𝑡

)︂ 𝜖
𝜖−1

(529)

Households

There are two types of households: capitalists and workers. Capitalists own all firms
in the economy and workers are hand-to-mouth. Capitalists have preferences over
streams of consumption {𝐶𝑡+𝑗}𝑗∈N given by:

𝒰𝐶({𝐶𝑡+𝑗}𝑗∈N) = E𝑡
∞∑︁
𝑗=0

𝛽𝑗𝐶
𝐶1−𝛾
𝑡+𝑗

1− 𝛾
(530)

where 𝛽𝐶 ∈ [0, 1), 𝛾 ≥ 0. The dynamic budget constraint of capitalists is given by:

𝐶𝑡 + 𝐴𝑡+1 +

∫︁
[0,1]

𝑃𝑖𝑡𝑆𝑖𝑡+1 d𝑖 ≤
∫︁
[0,1]

𝑑𝑖𝑡𝑆𝑖𝑡 d𝑖+ (1 + 𝑟𝑡)𝐴𝑡 +

∫︁
[0,1]

𝑃𝑖𝑡𝑆𝑖𝑡 d𝑖 (531)

where 𝑆𝑖𝑡 is their stock-holding in intermediate firm 𝑖 at time 𝑡 and 𝐴𝑡 is their bond-
holding at time 𝑡.

Workers have preferences over streams of consumption and labor {𝐶𝑊
𝑡+𝑗, 𝐿𝑡+𝑗}𝑗∈N

given by:

𝒰𝑊 ({𝐶𝑊
𝑡+𝑗, 𝐿𝑡+𝑗}𝑗∈N) = E𝑡

∞∑︁
𝑗=0

𝛽𝑗𝑊𝑈

(︃
𝐶𝑊
𝑡 −

𝐿1+𝜓
𝑡+𝑗

1 + 𝜓

)︃
(532)

where 𝑈 ′ > 0, 𝑈 ′′ < 0, 𝜓 > 0, 𝛽𝑊 ∈ [0, 1). Workers are hand-to-mouth and they
supply labor 𝐿𝑡 at wage 𝑤𝑡, meaning that they consume:

𝐶𝑊
𝑡 = 𝑤𝑡𝐿𝑡 (533)

Equilibrium

An equilibrium is simply a set of all endogenous variables:

{𝐿𝑀𝑡 ,𝑀𝑡, 𝑝
𝑀
𝑡 , 𝑝

*
𝑡 , 𝑤𝑡, {𝑥𝑖𝑡, 𝐿𝑖𝑡,𝑚𝑖𝑡, 𝜋𝑖𝑡, 𝑑𝑖𝑡, 𝑃𝑖𝑡, 𝑆𝑖𝑡}𝑖∈[0,1], 𝑋𝑡, 𝐿𝑡, 𝐶𝑡, 𝐴𝑡} (534)
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such that all agents optimize as described above and markets clear given the exogenous
process {𝜃𝑡, 𝜃𝑀𝑡 , {𝜃𝑖𝑡}𝑖∈[0,1]}𝑡∈N.

We will primarily be interested, as in the main text, in linear-quadratic equi-
libria where Π is approximated around its optimal level and the CES aggregator is
approximated as described in Section 2.3.4.

B.2.2 Characterizing Equilibrium

We now reduce the description of equilibrium to a scalar fixed-point equation that
can equivalently be formulated in terms of total production or capitalist consumption.
This simplifies the analysis of the model and allows us to establish some equilibrium
properties.

Production by Intermediate Goods Firms

Owing to CES aggregation, intermediate goods firms face the following iso-elastic
demand curve:

𝑞𝑖𝑡 = 𝑋
1
𝜖
𝑡 𝑥

− 1
𝜖

𝑖𝑡 (535)

They moreover perfectly cost-minimize. As a result, given production level 𝑥𝑖𝑡 their
unit input choices solve the following program:

min
𝐿𝑖𝑡,𝑚𝑖𝑡

𝑤𝑡𝐿𝑖𝑡 + 𝑝𝑀𝑡 𝑚𝑖𝑡 s.t. 𝑥𝑖𝑡 = 𝜃𝑖𝑡𝐿
𝛼
𝑖𝑡𝑚

1−𝛼
𝑖𝑡 (536)

Taking the ratio of the two FOCs and rearranging:

𝑚𝑖𝑡 =
1− 𝛼

𝛼

𝑤𝑡
𝑝𝑀𝑡

𝐿𝑖𝑡 (537)

Thus, given 𝑥𝑖𝑡, the optimal labor and materials choices are given by:

𝐿𝑖𝑡 =
1

𝜃𝑖𝑡

(︂
𝛼

1− 𝛼

)︂1−𝛼(︂
𝑝𝑀𝑡
𝑤𝑡

)︂1−𝛼
𝑥𝑖𝑡

𝑚𝑖𝑡 =
1

𝜃𝑖𝑡

(︂
𝛼

1− 𝛼

)︂−𝛼(︂
𝑝𝑀𝑡
𝑤𝑡

)︂−𝛼
𝑥𝑖𝑡

(538)

It follows that the cost of producing 𝑥𝑖𝑡 is given by:

𝑤𝑡𝐿𝑖𝑡 + 𝑝𝑀𝑡 𝑚𝑖𝑡 =
𝑞𝑡
𝜃𝑖𝑡
𝑥𝑖𝑡 (539)
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where we define the unit marginal cost up to constant 𝑐𝛼 > 0:

𝑞𝑡 :=

[︃(︂
𝛼

1− 𝛼

)︂−𝛼
1

1− 𝛼

]︃
𝑤𝛼𝑡 (𝑝

𝑀
𝑡 )1−𝛼 = 𝑐𝛼𝑤

𝛼
𝑡 (𝑝

𝑀
𝑡 )1−𝛼 (540)

We now turn to solving the firm’s stochastic choice problem. From the above,
firm dollar profits are given by:

𝜋𝑖𝑡 = 𝑋
1
𝜖
𝑡 𝑥

1− 1
𝜖

𝑖𝑡 − 𝑞𝑡
𝜃𝑖𝑡
𝑥𝑖𝑡 (541)

Recall that this is paid out as a dividend at period 𝑡+ 1, 𝑑𝑖𝑡+1 = 𝜋𝑖𝑡. Note moreover
in equilibrium by market clearing that 𝐴𝑡 = 0 and 𝑆𝑖𝑡 = 1 for all 𝑖 ∈ [0, 1] and 𝑡 ∈ N.
Thus, 𝐶𝑡+1 =

∫︀
[0,1]

𝑑𝑖𝑡+1 d𝑖 =
∫︀
[0,1]

𝜋𝑖𝑡 d𝑖. The firm’s risk-adjusted profit is then given
by:

Π𝑖𝑡 = 𝐶−𝛾
𝑡+1𝜋𝑖𝑡 (542)

where the firm takes 𝐶𝑡+1 as given.

As in the main text, we define the optimal production level 𝑥*(Λ, 𝜃) which solves:

𝑥*(Λ, 𝜃𝑖𝑡) := argmax
𝑥∈𝒳

Π(𝑥; Λ, 𝜃𝑖𝑡) (543)

and Π̄(Λ, 𝜃𝑖𝑡) as the maximized objective. Now let Π𝑥𝑥(Λ, 𝜃𝑖𝑡) denote the second
derivative of the profits function in 𝑥, evaluated at 𝑥*:

Π𝑥𝑥(Λ, 𝜃𝑖𝑡) :=
𝜕2Π

𝜕𝑥2

⃒⃒⃒⃒
𝑥*(Λ,𝜃𝑖𝑡);Λ,𝜃

(544)

The approximate objective of the intermediate goods firm is:

Π̃(𝑥; Λ, 𝜃𝑖𝑡) := Π̄(Λ, 𝜃𝑖𝑡) +
1

2
Π𝑥𝑥(Λ, 𝜃𝑖𝑡)(𝑥− 𝑥*(Λ, 𝜃𝑖𝑡))

2 (545)

Under this approximate objective, it follows by a slight algebraic variation of the
arguments in Proposition 6 that optimal choices follow:

𝑥𝑖𝑡 ∼ 𝑁

(︂
𝑥*𝑖𝑡,

𝜆

|Π𝑥𝑥,𝑖𝑡|

)︂
(546)
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where:

𝑥*𝑖𝑡 =

(︂
1− 1

𝜖

)︂𝜖
𝑋𝑡𝜃

𝜖
𝑖𝑡𝑞

−𝜖
𝑡

|Π𝑥𝑥,𝑖𝑡| = (𝜖− 1)−𝜖𝜖𝜖−1𝐶−𝛾
𝑡+1𝑋

−1
𝑡 𝜃−1−𝜖

𝑖𝑡 𝑞1+𝜖𝑡

(547)

These expressions mirror those in the main model, with 𝐶−𝛾
𝑡+1 replacing 𝑋−𝛾

𝑡 as the
marginal utility and 𝑞𝑡 replacing 𝑤𝑡 as the marginal cost.

Finding Materials Prices and Wages

Materials producers maximize profits:

𝑝𝑀𝑡 𝜃
𝑀
𝑡 𝐿

𝑀
𝑡 − 𝑤𝑡𝐿

𝑀
𝑡 (548)

Thus, in equilibrium, it follows that:

𝑝𝑀𝑡 =
1

𝜃𝑀𝑡
𝑤𝑡 (549)

The workers’ labor supply condition is given by their Euler equation:

𝑤𝑡 = 𝐿𝜓𝑡 (550)

Moreover, we know that aggregate labor is equal to the sum of labor used to produce
intermediates and materials:

𝐿𝑡 =

∫︁
[0,1]

𝐿𝑖𝑡d𝑖+ 𝐿𝑀𝑡 =

∫︁
[0,1]

𝐿𝑖𝑡d𝑖+
1

𝜃𝑀𝑡

∫︁
[0,1]

𝑚𝑖𝑡d𝑖 (551)

where the second equality follows by market clearing for intermediates as
∫︀
[0,1]

𝑚𝑖𝑡d𝑖 =

𝑀𝑡 = 𝜃𝑀𝑡 𝐿
𝑀
𝑡 . We next substitute our expression of materials demand as a function

of labor demand for intermediate goods firms to simplify the labor supply condition
further:

𝐿𝑡 =

∫︁
[0,1]

𝐿𝑖𝑡𝑑𝑖+
1

𝜃𝑀𝑡

∫︁
[0,1]

𝑚𝑖𝑡𝑑𝑖

=

∫︁
[0,1]

𝐿𝑖𝑡 d𝑖+
1

𝜃𝑀𝑡

∫︁
[0,1]

1− 𝛼

𝛼

𝑤𝑡
𝑝𝑀𝑡

𝐿𝑖𝑡 d𝑖

=

(︂
1 +

1

𝜃𝑀𝑡

1− 𝛼

𝛼

𝑤𝑡
𝑝𝑀𝑡

)︂∫︁
[0,1]

𝐿𝑖𝑡 d𝑖

(552)
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We finally substitute in the fact that the material input is priced at marginal cost to
simplify further

𝐿𝑡 =

(︂
1 +

1− 𝛼

𝛼

)︂∫︁
[0,1]

𝐿𝑖𝑡d𝑖

=
1

𝛼

∫︁
[0,1]

𝐿𝑖𝑡d𝑖

(553)

We now write this in terms of prices and output choices by substituting in, from the

intermediate goods firm’s cost-minimization, 𝐿𝑖𝑡 = 1
𝜃𝑖𝑡

(︀
𝛼

1−𝛼
)︀1−𝛼 (︁𝑝𝑀𝑡

𝑤𝑡

)︁1−𝛼
𝑥𝑖𝑡. Thus:

𝐿𝑡 =
1

𝛼

(︂
𝛼

1− 𝛼

)︂1−𝛼(︂
𝑝𝑀𝑡
𝑤𝑡

)︂1−𝛼 ∫︁
[0,1]

𝑥𝑖𝑡
𝜃𝑖𝑡

d𝑖 (554)

We can then use our earlier characterization of the solution to the intermediate goods
producers’ stochastic choice problem to compute:∫︁

[0,1]

𝑥𝑖𝑡
𝜃𝑖𝑡

d𝑖 = E
[︂
𝑥𝑖𝑡
𝜃𝑖𝑡

]︂
= E

[︂
E
[︂
𝑥𝑖𝑡
𝜃𝑖𝑡

|𝜃𝑖𝑡
]︂]︂

= E
[︂
1

𝜃𝑖𝑡
𝑥*𝑖𝑡

]︂
= E

[︂
1

𝜃𝑖𝑡

(︂
1− 1

𝜖

)︂𝜖
𝑋𝑡𝑞

−𝜖
𝑡 𝜃𝜖𝑖𝑡

]︂
=

(︂
1− 1

𝜖

)︂𝜖
𝑋𝑡𝑞

−𝜖
𝑡 𝜃𝜖−1

(555)

where we use the definition 𝜃 =
(︀
E𝜃𝑖 [𝜃𝜖−1

𝑖 | 𝜃]
)︀ 1
𝜖−1 . By combining the previous two

equations, we derive that total labor demand is given by:

𝐿𝑡 =
1

𝛼

(︂
𝛼

1− 𝛼

)︂1−𝛼(︂
𝑝𝑀𝑡
𝑤𝑡

)︂1−𝛼(︂
1− 1

𝜖

)︂𝜖
𝑋𝑡𝑞

−𝜖
𝑡 𝜃𝜖−1 (556)
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Substituting this into the workers’ intratemporal Euler equation, and using Equation
540 to write the marginal cost in terms of materials prices and wages, we obtain:

𝑤
1
𝜓

𝑡 =
1

𝛼

(︂
𝛼

1− 𝛼

)︂1−𝛼(︂
1

𝜃𝑀𝑡

)︂1−𝛼(︂
1− 1

𝜖

)︂𝜖
𝜃𝜖−1
𝑡 𝑐−𝜖𝛼 𝑋𝑡

(︃
𝑤𝑡

(︂
𝑝𝑀𝑡
𝑤𝑡

)︂1−𝛼)︃−𝜖

=
1

𝛼

(︂
𝛼

1− 𝛼

)︂1−𝛼 (︀
𝜃𝑀𝑡
)︀(𝜖−1)(1−𝛼)

(︂
1− 1

𝜖

)︂𝜖
𝜃𝜖−1𝑐−𝜖𝛼 𝑋𝑡𝑤

−𝜖
𝑡

(557)

Moreover, we can write the marginal cost for the firm as

𝑞𝑡 = 𝑐𝛼𝑤
𝛼
𝑡 (𝑝

𝑀
𝑡 )1−𝛼 = 𝑞𝑡𝑋

𝜒
𝑡 (558)

where we define coefficient 𝜒 = 𝜓
1+𝜖𝜓

and intercept

𝑞𝑡 =

[︃(︂
𝛼

1− 𝛼

)︂−𝛼
1

1− 𝛼

]︃1−𝛼(︃
1

𝛼

(︂
𝛼

1− 𝛼

)︂1−𝛼 (︀
𝜃𝑀𝑡
)︀(𝜖−1)(1−𝛼)

(︂
1− 1

𝜖

)︂𝜖
𝜃𝜖−1𝑐−𝜖𝛼

)︃𝜒

(𝜃𝑀𝑡 )−1+𝛼

(559)
Marginal costs, holding fixed productivity, increase in output due to upward-sloping
labor supply or convex disutilty of effort. The intercept of this “cost rule” varies as
a function of productivity in the intermediate-goods and materials sectors. Observe
that Equation 558 is the “fully Neoclassical” analogue to our wage rule Equation 63;
indeed, when 𝛼 = 1 or there is no materials factor, it reduces to a wage rule

𝑤𝑡 = �̄�𝑡𝑋
𝛼
𝑡 (560)

where �̄�𝑡 = 𝑞𝑡|𝛼=1. This verifies our claim in the main text that the wage rule can be
(essentially) micro-founded in the simple model. Indeed, in a model with materials
or 𝛼 < 1, we obtain exactly the wage rule studied in the main text if 𝜃𝑀𝑡 = 𝜃𝛽𝑡 where
𝛽 = 𝜒(𝜖−1)

(1−𝜒(𝜖−1))(1−𝛼) > 0, thereby canceling out the direct effect of productivity on the
intercept of the wage rule.

Finding Equilibrium Output

We have characterized all endogenous objects in period 𝑡 in terms of output 𝑋𝑡 and
capitalists’ consumption 𝐶𝑡+1. It remains only to characterize these variables.

To this end, we approximate as we have throughout:

𝑋 =

(︂∫︁ 1

0

𝑥*(𝑧𝑖)
1− 1

𝜖 d𝑖

)︂ 𝜖
𝜖−1

− 1

2𝜖

∫︁ 1

0

(𝑥𝑖 − 𝑥*(𝑧𝑖))2

(𝑋*)−
1
𝜖 (𝑥*(𝑧𝑖))1+

1
𝜖

d𝑖 (561)
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where the mean and variance are taken over the realizations of 𝜃𝑖𝑡, conditional on the
aggregate state 𝜃𝑡. Substituting in Equation 547, this provides one equation in terms
of (𝑋𝑡, 𝐶𝑡+1). Consider first the computation of 𝑋*

𝑡 . Observe that we can write:

𝑥*𝑖𝑡 = 𝛿𝑡𝑋
1−𝜒𝜖
𝑡 𝜃𝜖𝑖𝑡 (562)

where:

𝛿𝑡 =

(︂
1− 1

𝜖

)︂𝜖(︃
𝑐𝛼�̄�𝑡

(︂
1

𝜃𝑀𝑡

)︂1−𝛼
)︃−𝜖

(563)

Substituting this into the expression for 𝑋*
𝑡 , we obtain:

𝑋*
𝑡 =

(︁
𝛿
𝜖−1
𝜖

𝑡 𝑋
𝜖−1
𝜖

(1−𝜒𝜖)
𝑡 𝜃𝜖−1

𝑡

)︁ 𝜖
𝜖−1

= 𝛿𝑡𝑋
1−𝜒𝜖
𝑡 𝜃𝜖𝑡 (564)

Now consider the computation of the dispersion term. See that we can write:

E

[︃
(𝑥𝑖𝑡 − 𝑥*(𝑧𝑖))2

(𝑋*)−
1
𝜖 (𝑥*(𝑧𝑖))1+

1
𝜖

]︃
= (𝑋*

𝑡 )
1
𝜖E
[︁
𝑥*(𝑧𝑖𝑡)

−1− 1
𝜖E[(𝑥𝑖𝑡 − 𝑥*(𝑧𝑖𝑡))

2|𝑧𝑖𝑡]
]︁

= (𝑋*
𝑡 )

1
𝜖E
[︂
𝑥*(𝑧𝑖𝑡)

−1− 1
𝜖

𝜆

|Π𝑥𝑥,𝑖𝑡|

]︂ (565)

To simplify this, observe that we can write:

1

|Π𝑥𝑥,𝑖𝑡|
= 𝜁−1

𝑡 𝐶𝛾
𝑡+1𝑋

1−𝜒(𝜖+1)
𝑡 𝜃1+𝜖𝑖𝑡 (566)

where:

𝜁𝑡 = (𝜖− 1)−𝜖𝜖𝜖−1

(︃
𝑐𝛼�̄�𝑡

(︂
1

𝜃𝑀𝑡

)︂1−𝛼
)︃1+𝜖

(567)

So we may express:

E

[︃
(𝑥𝑖𝑡 − 𝑥*(𝑧𝑖))2

(𝑋*)−
1
𝜖 (𝑥*(𝑧𝑖))1+

1
𝜖

]︃
= (𝑋*

𝑡 )
1
𝜖E
[︁
𝛿
−1− 1

𝜖
𝑡 𝑋

−(1+ 1
𝜖
)(1−𝜒𝜖)

𝑡 𝜃−1−𝜖
𝑖𝑡 𝜆𝜁−1

𝑡 𝐶𝛾
𝑡+1𝑋

1−𝜒(𝜖+1)
𝑡 𝜃1+𝜖𝑖𝑡

]︁
= 𝜆𝜁−1

𝑡 𝛿−1
𝑡 𝐶𝛾

𝑡+1𝑋
−𝜒
𝑡

(568)

Putting all of the above together we have that:

𝑋𝑡 = 𝛿𝑡𝑋
1−𝜒𝜖
𝑡 𝜃𝜖𝑡 −

𝜆

2𝜖
𝜁−1
𝑡 𝛿−1

𝑡 𝐶𝛾
𝑡+1𝑋

−𝜒
𝑡 𝜃𝑡 (569)
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The final equation we require comes from equating capitalists’ consumption with
the previous period’s dividends, which is implied by market clearing in the securities
market and the fact that workers are hand-to-mouth. Thus:

𝐶𝑡+1 =

∫︁
[0,1]

𝜋𝑖𝑡 d𝑖 (570)

Using our running approximation:

𝜋𝑖𝑡 = 𝜋𝑖𝑡(𝑥
*
𝑖𝑡) +

1

2
𝜋𝑥𝑥,𝑖𝑡(𝑥𝑖𝑡 − 𝑥*𝑖𝑡)

2 (571)

we obtain:

𝐶𝑡+1 =

∫︁
[0,1]

𝜋𝑖𝑡𝑑𝑖

= E
[︂
E
[︂
𝜋𝑖𝑡(𝑥

*
𝑖𝑡) +

1

2
𝜋𝑥𝑥,𝑖𝑡(𝑥

*
𝑖𝑡)(𝑥𝑖𝑡 − 𝑥*𝑖𝑡)

2 | 𝑥*𝑖𝑡
]︂
| 𝛿𝑡, 𝜃𝑡

]︂
= E

[︂
E
[︂
𝜋𝑖𝑡(𝑥

*
𝑖𝑡) +

1

2
𝜋𝑥𝑥,𝑖𝑡(𝑥

*
𝑖𝑡)

𝜆

|Π𝑥𝑥,𝑖𝑡|
| 𝑥*𝑖𝑡

]︂
| 𝛿𝑡, 𝜃𝑡

]︂
= E [𝜋𝑖𝑡(𝑥

*
𝑖𝑡) | 𝛿𝑡, 𝜃𝑡]−

𝜆

2
𝐶𝛾
𝑡+1

= (𝜖− 1)−1𝛿𝑡𝜃
𝜖−1
𝑡 𝑋

1−𝜒(𝜖−1)
𝑡 − 𝜆

2
𝐶𝛾
𝑡+1

(572)

We can therefore solve for 𝑋𝑡 as a function of 𝐶𝑡+1:

𝑋𝑡 =

(︃
𝐶𝑡+1 +

𝜆
2
𝐶𝛾
𝑡+1

(𝜖− 1)−1𝛿𝑡𝜃
𝜖−1
𝑡

)︃ 1
1−𝜒(𝜖−1)

(573)

Plugging this into the scalar fixed point equation for output then boils down the
equilibrium of the model to a scalar fixed-point equation for the consumption of
capitalists:

(︃
𝐶𝑡+1 +

𝜆
2
𝐶𝛾
𝑡+1

(𝜖− 1)−1𝛿𝑡𝜃
𝜖−1
𝑡

)︃ 1
1−𝜒(𝜖−1)

= 𝛿𝑡

(︃
𝐶𝑡+1 +

𝜆
2
𝐶𝛾
𝑡+1

(𝜖− 1)−1𝛿𝑡𝜃
𝜖−1
𝑡

)︃ 1−𝜒𝜖
1−𝜒(𝜖−1)

𝜃𝜖𝑡

− 𝜆

2𝜖
𝜁−1
𝑡 𝛿−1

𝑡 𝐶𝛾
𝑡+1

(︃
𝐶𝑡+1 +

𝜆
2
𝐶𝛾
𝑡+1

(𝜖− 1)−1𝛿𝑡𝜃
𝜖−1
𝑡

)︃ −𝜒
1−𝜒(𝜖−1)

𝜃𝑡

(574)

The above can be summarized in the following result:

Proposition 36. Equilibria of the model are characterized by the solutions to Equa-
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tion 574.

B.2.3 Existence, Uniqueness, and Monotonicity of Equilib-

rium

To establish existence of equilibrium, all we require is that the above equation has
a solution. As there is always a trivial equilibrium with 𝐶𝑡+1 = 0, we will focus on
when there exists an equilibrium with positive output, when it is unique, and when it
is monotone. In this more general setting, we show that so long as cognitive frictions
are not too large, these properties apply.

Proposition 37. Suppose 𝜒(𝜖 − 1) < 1. There exists �̄� > 0 such that there exists
a unique equilibrium with positive output whenever 𝜆 < �̄�. Moreover, equilibrium
output is monotone increasing in aggregate productivity 𝜃.

Proof. Following Equation 574, define:

𝑔𝜆(𝐶) =

(︃
𝐶 + 𝜆

2
𝐶𝛾

(𝜖− 1)−1𝛿𝜃𝜖−1

)︃ 1
1−𝜒(𝜖−1)

−
[︃
𝛿

(︃
𝐶 + 𝜆

2
𝐶𝛾

(𝜖− 1)−1𝛿𝜃𝜖−1

)︃ 1−𝜒𝜖
1−𝜒(𝜖−1)

𝜃𝜖

− 𝜆

2𝜖
𝜁−1𝛿−1𝐶𝛾

(︃
𝐶 + 𝜆

2
𝐶𝛾

(𝜖− 1)−1𝛿𝜃𝜖−1

)︃ −𝜒
1−𝜒(𝜖−1)

𝜃

]︃ (575)

Observe that 𝑔𝜆 is continuous in 𝜆 in the sup-norm. Thus, if we can show that there
is a unique value of 𝐶 ∈ R++ such that 𝑔0(𝐶) = 0 and 𝑔′0(𝐶) ̸= 0, then there exists 𝜆
such that for all 𝜆 < �̄� there will be a unique 𝐶 ′ ∈ R++ such that 𝑔𝜆(𝐶 ′) = 0.

To prove the result, it remains to show that there is a unique value of 𝐶 ∈ R++ such
that 𝑔0(𝐶) = 0 and 𝑔′0(𝐶) ̸= 0 when 𝜒(𝜖− 1) < 1. To this end, define 𝐶 = 𝐶

(𝜖−1)−1𝛿𝜃𝜖−1

and see that:
𝑔0(𝐶) = 𝐶

1
1−𝜒(𝜖−1) − 𝑏𝐶𝐶

1−𝜒𝜖
1−𝜒(𝜖−1) (576)

where 𝑏𝐶 = 𝛿𝜃𝜖. We can then compute:

𝑔′0(𝐶) =
1

1− 𝜒(𝜖− 1)
𝐶

𝜒(𝜖−1)
1−𝜒(𝜖−1) − 𝑏𝐶

1− 𝜒𝜖

1− 𝜒(𝜖− 1)
𝐶

−𝜒
1−𝜒(𝜖−1)

𝑔′′0(𝐶) =
𝜒(𝜖− 1)

(1− 𝜒(𝜖− 1))2
𝐶

𝜒(𝜖−1)
1−𝜒(𝜖−1)

−1 + 𝑏𝐶
𝜒(1− 𝜒𝜖)

(1− 𝜒(𝜖− 1))2
𝐶

−𝜒
1−𝜒(𝜖−1)

−1
(577)

From which we observe the following when 𝜒(𝜖− 1) < 1:

lim
𝐶→0

𝑔′0(𝐶) = −∞ lim
𝐶→∞

𝑔′0(𝐶) = ∞ 𝑔′′0(𝐶) > 0 for all𝐶 ∈ R++ (578)
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We now establish monotonicity. If we can show that the unique value of 𝐶 ∈ R++

such that 𝑔0(𝐶) = 0 and 𝑔′0(𝐶) ̸= 0 is monotone increasing in 𝜃, then there exists
�̄� such that for all 𝜆 < �̄� the same will be true of the unique 𝐶 ′ ∈ R++ such that
𝑔𝜆(𝐶

′) = 0.
To this end, see that the solution when 𝜆 = 0 is given by:

ln𝐶 =
(1− 𝜒(𝜖− 1))

𝜒𝜖
ln 𝑏𝐶 (579)

We also know that ln𝐶 = ln𝐶 + ln(𝜖− 1)− ln 𝛿 − (𝜖− 1) ln 𝜃. Thus, we have that:

ln𝐶 =
(1− 𝜒(𝜖− 1))

𝜒𝜖
(ln 𝛿 + 𝜖 ln 𝜃)− ln(𝜖− 1) + ln 𝛿 + (𝜖− 1) ln 𝜃 (580)

As 𝜖 > 1 and 1 > 𝜒(𝜖−1) by hypothesis, and 𝛿 is increasing in 𝜃, the result follows.

B.2.4 Attention and Misoptimization Cycles in the Extended

Model

Having shown that equilibrium output is monotone and increasing in the extended
model, we now provide conditions under which the analogue of Proposition 8 that
establishes monotonicity of attention and mistakes holds in this setting:

Proposition 38. Assume 𝜒𝜖 < 1 and 1 > 𝜒(𝜖 + 1). There exists �̄� such that when
𝜆 < �̄�, intermediate goods firms pay more attention and misoptimize less in lower-
productivity, lower-output states.

Proof. Recall that:

𝑚(𝑧𝑖𝑡) =
𝜆𝑖

|Π𝑥𝑥,𝑖𝑡|
= 𝜆𝑖𝜁

−1
𝑡 𝐶𝛾

𝑡+1𝑋
1−𝜒(𝜖+1)
𝑡 𝜃1+𝜖𝑖𝑡 (581)

Thus, the average extent of misoptimization in aggregate state 𝜃 is:

𝑚(𝜃) = 𝜆𝜁(𝜃)−1𝐶(𝜃)𝛾𝑋(𝜃)1−𝜒(𝜖+1)E[𝜃1+𝜖𝑖𝑡 | 𝜃] (582)

See that 1 > 𝜒(𝜖 + 1) implies 1 > 𝜒(𝜖 − 1). As we assumed 𝜒𝜖 < 1, Proposition 37
implies that 𝐶 and 𝑋 are both increasing in 𝜃. By the assumed FOSD ordering on 𝜃,
we have that E[𝜃1+𝜖𝑖𝑡 | 𝜃] is monotone increasing in 𝜃. We moreover have that 𝜉 ∝ 𝛿−

1+𝜖
𝜖 .

Thus, as 𝛿 is increasing in 𝜃, we have that 𝜉−1 is increasing in 𝜃. This establishes
that 𝑚(𝜃) is increasing in 𝜃, and therefore that intermediate goods firms misoptimize
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less in lower productivity and lower output states. By the same arguments as in
Proposition 8, it is immediate that the opposite pattern holds for attention.

B.2.5 Macroeconomic Dynamics in the Extended Model

We can moreover derive an analogous representation of the impact of inattention on
macroeconomic dynamics through an attention wedge that depresses output relative
to the fully-attentive benchmark. Formally:

Proposition 39. Output can be written in the following way:

log𝑋(log 𝜃, 𝜆) =
1

𝜒
log 𝜃 + log𝑊 (log 𝜃, 𝜆) (583)

where 𝜃 = 𝜃𝛿
1
𝜖 and log𝑊 (log 𝜃, 0) = 0 for all 𝜃 ∈ Θ.

Proof. The representation follows immediately by combining Equations 579 and 573.
That the wedge is 0 when 𝜆 = 0 follows immediately from the same equations.

This formula differs from Proposition 9 only in so far as 𝜃 is replaced by 𝜃 which
captures the effect of the inclusion of other factors of production and the endogenous
labor supply of agents. Note that this result does not establish any properties of the
wedge in this case, as the fixed point equation is challenging to manipulate. The
nature of the wedge is then a quantitative question. Similarly to the main text,
a concave attention wedge implies higher shock responsiveness in low states, greater
responsiveness to negative than positive shocks, and volatility of output that is greater
in low states.

B.2.6 Micro-foundation and Interpretation of the Stock Re-

turn Regressions

In Section 2.5.3, we showed that mistakes of the same size by firms lead to more
adverse impacts on stock returns when the aggregate stock market return is low. We
interpreted this as direct evidence in favor of our mechanism that risk-pricing is a key
determinant of attention cycles. The simple model of Section 2.3 is too stylized to
formally map to this regression. However, in the extended model developed in this
section, we can derive exactly the regression we run from the theory and show how
the estimated regression coefficients map to the risk-pricing channel in the theory.

First, from the Euler equation of capitalists, the equilibrium price of firm 𝑖 at time
𝑡, 𝑃𝑖𝑡 is given by:

𝑢′(𝐶𝑡)𝑃𝑖𝑡 = E𝑡[𝛽𝑢′(𝐶𝑡+1)(𝑃𝑖𝑡+1 + 𝑑𝑖𝑡+1)] (584)
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where 𝑑𝑖𝑡+1 = 𝜋𝑖𝑡. Thus we may write:

𝑢′(𝜋𝑡−1)𝑃𝑖𝑡 = 𝛽𝑢′(𝜋𝑡)𝜋𝑖𝑡 + 𝛽𝑢′(𝜋𝑡)E𝑡[𝑃𝑖𝑡+1] (585)

where 𝜋𝑡 =
∫︀
[0,1]

𝜋𝑖𝑡 d𝑖. It follows that:

𝑃𝑖𝑡 = 𝛽
𝑢′(𝜋𝑡)

𝑢′(𝜋𝑡−1)
𝜋𝑖𝑡 + 𝛽

𝑢′(𝜋𝑡)

𝑢′(𝜋𝑡−1)
E𝑡[𝑃𝑖𝑡+1] (586)

A production mistake 𝑚𝑖𝑡 ≡ 𝑥𝑖𝑡 − 𝑥*𝑖𝑡 leads to profits (under our running quadratic
approximation) of:

𝜋𝑖𝑡 = 𝜋𝑖𝑡(𝑥
*
𝑖𝑡) + 𝜋𝑥𝑥,𝑖𝑡𝑚

2
𝑖𝑡 (587)

Thus, the firm’s stock price follows:

𝑃𝑖𝑡 = 𝛽
𝑢′(𝜋𝑡)

𝑢′(𝜋𝑡−1)

(︀
𝜋𝑖𝑡(𝑥

*
𝑖𝑡) + 𝜋𝑥𝑥,𝑖𝑡𝑚

2
𝑖𝑡

)︀
+ 𝛽

𝑢′(𝜋𝑡)

𝑢′(𝜋𝑡−1)
E𝑡[𝑃𝑖𝑡+1] (588)

Thus:
𝜕𝑃𝑖𝑡
𝜕𝑚2

𝑖𝑡

= 𝛽
𝑢′(𝜋𝑡)

𝑢′(𝜋𝑡−1)
𝜋𝑥𝑥,𝑖𝑡 (589)

and:
𝜕𝑃𝑖𝑡
𝜕𝜋𝑖𝑡

= 𝛽
𝑢′(𝜋𝑡)

𝑢′(𝜋𝑡−1)
(590)

To simplify this further, observe by the Euler equation for trading an equally weighted
portfolio of all intermediate goods firms must satisfy, where 𝑃𝑡 is the price of this
portfolio (the stock market):

𝑢′(𝐶𝑡)𝑃𝑡 = E𝑡[𝛽𝑢′(𝐶𝑡+1)(𝑃𝑡+1 + 𝜋𝑡)] (591)

Or:
𝛽
𝑢′(𝜋𝑡)

𝑢′(𝜋𝑡−1)
=

𝑃𝑡
E𝑡[𝑃𝑡+1] +𝐷𝑡+1

=
1

𝑅𝑡

(592)

Which is the inverse aggregate return on equity between period 𝑡 and period 𝑡 + 1,
𝑅𝑡. We therefore have that:

Proposition 40. The equilibrium effect of mistakes on stock returns is given by:

𝜕𝑃𝑖𝑡
𝜕𝑚2

𝑖𝑡

= − 1

𝑅𝑡

|𝜋𝑥𝑥,𝑖𝑡| (593)

If a mistake is measured in terms of its impact in profit units, then one obtains the
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simpler:
𝜕𝑃𝑖𝑡
𝜕𝜋𝑖𝑡

= − 1

𝑅𝑡

(594)

Proof. Given in the text above.

Of course, it is trivial to reformulate the above comparative statics in terms of
firm level returns as 𝑃𝑖𝑡−1 is invariant to innovations in 𝑚𝑖𝑡.

When equity returns are high, mistakes should (all else equal) have a lower price
impact. Mapping this slightly more formally to our exact regression analysis: when
we instrument for profits with mistakes, we should obtain a negative and significant
coefficient on the interaction between profits and the aggregate stock market return.
This is exactly what we find. The OLS regressions of returns on mistakes retain a
similar structure but are intermediated by the curvature of dollar profits across firms.
These regression models therefore provide a less sharp test of the risk-pricing channel,
although empirically they produce entirely consistent results.

B.3 Measuring Productivity and Misoptimization
This appendix describes in greater detail our data construction and empirical method-
ologies for our firm-level analysis of production and misoptimization. It serves in
particular as a companion for Section 2.5.1 of the paper.

B.3.1 Sample Selection and Data Construction

Our main dataset is Compustat Annual Fundamentals, which compiles detailed in-
formation from public firms’ financial statements. Table B.10 summarizes the main
sample variables that we use and their definitions. Production, in value terms, is
defined as reported sales. Employment in Compustat is reported as the number of
employees. To calculate a wage bill, we multiply this by the average industry wage
calculated from the Census Bureau’s County Business Patterns dataset in the same
year, as the sector’s total national wage bill divided by the number of employees.
From 1998 onward, we use the 2- or 3-digit NAICS classification that is consistent
with our main analysis. Prior to 1997, and the introduction of NAICS codes in the
CBP data, we use 2-digit SIC industries. For materials expenditure, we measure the
sum of reported variable costs (cogs) and sales and administrative expense (xsga) net
of depreciation (dp) and the aforementioned wage bill. To measure the capital stock,
we use a perpetual inventory method as in Ottonello and Winberry (2020) starting
with the first reported observation of gross value of plant, property, and equipment
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and adding net investment or the differences in net value of plant, property, and
equipment.2

We restrict the sample to firms based in the United States, reporting statistics in
US Dollars, and present in the “Industrial” dataset. Within this sample, we apply the
following additional filters:

1. Sales, material expenditures, and capital stock are strictly positive;

2. Employees exceed 10;

3. 2-digit NAICS is not 52 (Finance and Insurance) or 22 (Utilities);

4. Acquisitions as a proportion of assets (aqc over at) does not exceed 0.05.

The first two ensure that all companies meaningfully report all variables of interest for
our production function estimation; the second applies a stricter cut-off to eliminate
firms that are very small, and lead to outlier estimates of productivity and choices.
The third filter eliminates firms in two industries that, respectively, may have highly
non-standard production technology and non-standard market structure. The fourth
is a simple screening device for large acquisitions which may spuriously show up as
large innovations in firm choices and/or productivity. We finally restrict attention to
firms operating on a fiscal calendar that ends in December, for more straightforward
calculations of aggregate time trends.

We categorize the data into 44 sectors. These are defined at the 2-digit NAICS
level, but for the Manufacturing (31-33) and Information (51) sectors, which we clas-
sify at the 3-digit level to achieve better balance of sector size. Table B.13 lists the
sectors along with summary statistics for their relative size, in terms of sales and em-
ployment, in cross-sections corresponding to 1990 and 2010, in the full (not selected)
Compustat sample. Overall, the full dataset covers between 15-20% of US employ-
ment and 60-80% of US output, modulo the clarification that not all Compustat sales
necessarily occur in the United States.

B.3.2 Production Function and Productivity Estimation

Our primary method for estimating production functions, and thereby recovering total
factor productivity, is a cost share approach. In brief, we use cost shares for materials
and labor to back out production elasticities, and treat the elasticity of capital as the

2Note that, because of our later usage of fixed effects and lack of direct calculations using capital
“expenditures” evaluated at an imputed rental rate, it is inessential to deflate the value of the capital
stock.
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implied “residual” given an assumed mark-up 𝜇 > 1 (in our baseline, 𝜇 = 4/3) and
constant returns to scale. We validate, in subsection B.3.3 of this Appendix and in
particular Lemma 11, that this method is consistent in sample up to an essentially
negligible correction term, due to the underlying logic that input choices are “right
on average” even in the presence of mistakes. The exact procedure is the following:

1. For all firms in industry 𝑗, calculate the estimated materials and labor shares:

Share𝑀,𝑗′ =

∑︀
𝑖:𝑗(𝑖)=𝑗′

∑︀
𝑡 MaterialExpenditure𝑖𝑡∑︀

𝑖:𝑗(𝑖)=𝑗′
∑︀

𝑡 Sales𝑖𝑡

Share𝐿,𝑗′ =

∑︀
𝑖:𝑗(𝑖)=𝑗′

∑︀
𝑡 WageBill𝑖𝑡∑︀

𝑖:𝑗(𝑖)=𝑗′
∑︀

𝑡 Sales𝑖𝑡

(595)

2. If Share𝑀,𝑗′ + Share𝐿,𝑗′ ≤ 𝜇−1, then set

𝛼𝑀,𝑗′ = 𝜇 · Share𝑀,𝑗′

𝛼𝐿,𝑗′ = 𝜇 · Share𝐿,𝑗′

𝛼𝐾,𝑗′ = 1− 𝛼𝑀,𝑗′ − 𝛼𝐿,𝑗′

(596)

3. Otherwise, adjust shares to match the assumed returns to scale, or set

𝛼𝑀,𝑗′ =
Share𝑀,𝑗′

Share𝑀,𝑗′ + Share𝐿,𝑗′

𝛼𝐿,𝑗′ =
Share𝐿,𝑗′

Share𝑀,𝑗′ + Share𝐿,𝑗′

𝛼𝐾,𝑗′ = 0

(597)

A more flexible method for production function estimation might allow for the re-
turns to scale and/or markups to vary across sectors. We opt not to make such a
method a baseline because uniform returns to scale and markups are consistent with
our subsequent empirical calibration of the model. In robustness checks, we have
experimented in particular with extracting production function parameters under
different assumed markups and found overall stable results for the empirical behavior
of production misoptimizations.

To translate our production function estimates into productivity, we first calculate
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a “Sales Solow Residual” 𝜃𝑖𝑡 of the following form:

log 𝜃𝑖𝑡 = log Sales𝑖𝑡−
1

𝜇

(︀
𝛼𝑀,𝑗(𝑖) · logMatExp𝑖𝑡 − 𝛼𝐿,𝑗(𝑖) · logEmpl𝑖𝑡 − 𝛼𝐾,𝑗(𝑖) · logCapStock𝑖𝑡

)︀
(598)

where we intentionally use the “literal” accounting notation to highlight the fact that
not all variables are specified in economically meaningful quantity units. To alleviate
this issue in a conservative way, we define our final estimate of TFP as the residual of
the previous from industry-by-time fixed effects. This procedure, under our presumed
model of industry-level variation in factor prices, identifies (log) TFP rescaled by 𝜇−1.
The rescaling is immaterial for our analysis. The exact mapping from theory to data
is shown in Section B.3.3.

As a robustness check, we also calculate TFP using the method of Olley and Pakes
(1996), applied separately to estimate the production function of each industry.3 The
methodology of Olley and Pakes (1996) aims, in particular, to correct the bias in
standard least-squares estimates that under-states the output elasticity to capital,
since that input is likely pre-determined and therefore mechanically less responsive
to productivity. Since the underlying timing assumptions of Olley and Pakes (1996)
are not directly compatible with our specifically assumed structure, we do not prefer
it as a main estimate. But we are re-assured by these estimates’ “upstream” and
“downstream” similarity to our baseline estimates. To the first point, Table B.14
shows the results from regressing the two TFP measures on one another in a common
sample, including various levels of fixed effects. In each case, the slope is close to one
and the within-𝑅2, or goodness of fit net of fixed effects, exceeds 0.6. To the second
point, the relevant columns of Tables B.3, B.5, and B.8 demonstrate how our main
aggregate and firm-level results replicate under the alternative measurement scheme,
with similar quantitative and qualitative take-aways.

B.3.3 Theory to Data: Micro-foundations

In this subsection, we outline more exactly the mapping from our model to our pro-
duction function estimation via cost shares and our log-linear estimating equations.

Firms are monopolists within their unique products. We assume that this demand
curve has a constant elasticity of substitution form, so prices 𝑞𝑖𝑡 lie on the demand
curve log 𝑞𝑖𝑡 = 𝛾𝑖 − 1

𝜖
(log 𝑥𝑖𝑡 − log𝑋𝑡) for some inverse elasticity 𝜖 > 1 and aggregate

3In particular, we use the implementation by Yasar, Raciborski, and Poi (2008) of the opreg
package in Stata. We use log investment as the proxy variable and year dummies as additional
controls. We throw out estimates that imply individual elasticities that are negative or greater than
1, but do not otherwise enforce any returns to scale normalization.
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output 𝑋𝑡.4 Finally, firms face sector-specific input prices (𝑞𝑗(𝑖),𝐿,𝑡, 𝑞𝑗(𝑖),𝑀,𝑡, 𝑞𝑗(𝑖),𝐾,𝑡)

for the three inputs, respectively.
We model firm (mis-) optimization in the following way that is uniform across

inputs. Conditional on any chosen level of production, firms cost minimize over their
input bundle conditional on observed input prices. Let 𝑞𝑖,𝑇,𝑡 denote the associated
“Total” input cost per unit of produced output, and 𝑥*(𝑞𝑇 , 𝑋) denote the uncondi-
tionally profit-maximizing level of production. Firms choose a production level which
differs from this level by a misoptimization 𝑚𝑖𝑡:

log 𝑥𝑖𝑡 = log 𝑥*(𝑞𝑖,𝑇,𝑡, 𝑋𝑡) +𝑚𝑖𝑡 (599)

And the dynamics of the misoptimization, as given in the main text’s Equation 81
and re-printed here, are described by an AR(1) process:

𝑚𝑖𝑡 = 𝜌𝑚𝑖,𝑡−1 +
(︁√︀

1− 𝜌2
)︁
𝑢𝑖𝑡 (600)

in which innovations 𝑢𝑖𝑡 are mean zero with variance 𝜎2
𝑖𝑡.

First, we characterize the firm’s optimal production level 𝑥* as the total input
price (which itself will depend on productivity) and aggregate demand:

Lemma 9 (Optimal Output Choice). The firm’s optimal output choice is

log 𝑥*(𝜃, 𝑞𝑇 , 𝑋) = 𝜖 log

(︂
1− 1

𝜖

)︂
+ 𝜖𝛾𝑖 + log𝑋 − 𝜖 log 𝑞𝑇 (601)

Proof. Immediate from the first-order conditions of the program

𝑥*(𝜃, 𝑞𝑇 , 𝑋) = argmax
𝑥

{︁
𝑥
(︁
𝑒𝛾𝑖𝑥−

1
𝜖𝑋

1
𝜖 − 𝑞𝑇

)︁}︁
(602)

We next characterize the optimal choice of each input, based on cost-minimization
and the expression for chosen output as a function of optimal output and the misop-
timization (Equation 599):

Lemma 10 (Input Choice). For any input 𝑍 ∈ {𝐿,𝑀,𝐾},

log𝑍𝑖𝑡 = 𝜂𝑖 + 𝜒𝑗(𝑖),𝑍,𝑡 + (𝜖− 1) log 𝜃𝑖𝑡 +𝑚𝑖𝑡 (603)

4It is straightforward, and consistent with our modeling approach, also to allow substitution
within more narrowly defined industries.
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where
𝜂𝑖 = 𝜖𝛾𝑖 + 𝜖 log

(︂
1− 1

𝜖

)︂
(604)

and

𝜒𝑗(𝑖),𝑍,𝑡 = log𝛼𝑍.𝑗(𝑖) − log 𝑞𝑗(𝑖),𝑍,𝑡 + log𝑋𝑡 + (1− 𝜖)
∑︁
𝑍

𝛼𝑍,𝑗(𝑖)(log 𝑞𝑗(𝑖),𝑍,𝑡 − log𝛼𝑍,𝑗(𝑖))

(605)

Proof. In the cost minimization step, for any planned output choice 𝑄, the firm solves

min
𝐿𝑖𝑡,𝑀𝑖𝑡,𝐾𝑖𝑡

∑︁
𝑧∈{𝐿,𝑀,𝐾}

𝑞𝑗(𝑖),𝑍,𝑡𝑍𝑖𝑡 s.t. 𝜃𝑖𝑡𝐿
𝛼𝐿,𝑗(𝑖)
𝑖𝑡 𝑀

𝛼𝑀,𝑗(𝑖)
𝑖𝑡 𝐾

𝛼𝐾,𝑗(𝑖)
𝑖𝑡 ≥ 𝑄 (606)

Standard first-order methods yield the solution, for each input,

log𝑍𝑖𝑡 = log 𝑞𝑖,𝑇,𝑡 + log𝑄+ log𝛼𝑍,𝑗(𝑖) − log 𝑞𝑗(𝑖),𝑍,𝑡 (607)

where the price index 𝑞𝑖,𝑇,𝑡, which is also the Lagrange multiplier on the constraint,
is

log 𝑞𝑖,𝑇,𝑡 =
∑︁
𝑍

𝛼𝑍,𝑗(𝑖)(log 𝑞𝑗(𝑖),𝑍,𝑡 − log𝛼𝑍,𝑗(𝑖))− log 𝜃𝑖𝑡 (608)

The desired expression comes from substituting in Equations 599 and 602 into the
above, for 𝑄.

This calculation validates our log-linear regression model Equation 80. It also has
the same loading on the misoptimization 𝑚𝑖𝑡 and log productivity log 𝜃𝑖𝑡 for all inputs
𝑍. Thus, all separate inputs, as well as total production in physical units, inherit the
“optimal choice plus error” structure.

We finally describe and validate our method for recovering production function
parameters from a cost shares approach. The following result shows how cost shares
are recovered at the firm level, if all data were observed without noise:

Lemma 11 (Production Function Estimation). For any input 𝑍 ∈ {𝐿,𝑀,𝐾}, and
firm 𝑖,

𝛼𝑗(𝑖),𝑍 =

(︂
1− 1

𝜖

)︂−1 𝑞𝑗(𝑖),𝑍,𝑡𝑍𝑖𝑡
𝑞𝑖𝑡𝑥𝑖𝑡

exp
(︁
−𝑚𝑖𝑡

𝜖

)︁
(609)

Proof. This can be calculated directly using the results of Lemmas 9 and 10. We
work backwards starting from the result and substitute input demand from Equation
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607 and calculate.

𝛼𝑗(𝑖),𝑍 =

(︂
1− 1

𝜖

)︂−1 𝑞𝑗(𝑖),𝑍,𝑡𝑍𝑖𝑡
𝑞𝑖𝑡𝑥𝑖𝑡

exp
(︁
−𝑚𝑖𝑡

𝜖

)︁
=

(︂
1− 1

𝜖

)︂−1 exp
(︀
log 𝑞𝑖,𝑇,𝑡 + log 𝑥𝑖𝑡 + log𝛼𝑗(𝑖),𝑍,𝑡

)︀
exp (log 𝑞𝑖𝑡 + log 𝑥𝑖𝑡)

exp
(︁
−𝑚𝑖𝑡

𝜖

)︁
=

(︂
1− 1

𝜖

)︂−1

exp
(︁
log 𝑞𝑖,𝑇,𝑡 − log 𝑞𝑖𝑡 + log𝛼𝑗(𝑖),𝑍,𝑡 −

𝑚𝑖𝑡

𝜖

)︁
(610)

where the third line cancels out 𝑥𝑖𝑡 in the fraction. We take the demand curve log 𝑞𝑖𝑡 =
𝛾𝑖 − 1

𝜖
(log 𝑥𝑖𝑡 − log𝑋𝑡) and observe that, using the expression for the unconstrained

optimal output in Equation 601 and the fact that log 𝑥𝑖𝑡 = log 𝑥*𝑖𝑡 +𝑚𝑖𝑡:

log 𝑞𝑖𝑡 = 𝛾𝑖 +
1

𝜖
log𝑋𝑡 −

1

𝜖

(︂
𝜖 log

(︂
1− 1

𝜖

)︂
+ 𝜖𝛾𝑖 + log𝑋𝑡 − 𝜖 log 𝑞𝑖,𝑇,𝑡 + log𝑚𝑖𝑡

)︂
= − log

(︂
1− 1

𝜖

)︂
+ log 𝑞𝑖,𝑇,𝑡 −

𝑚𝑖𝑡

𝜖
(611)

We then substitute the above back into Equation 610 to get

𝛼𝑗(𝑖),𝑍 =

(︂
1− 1

𝜖

)︂−1

exp

(︂
log 𝑞𝑖,𝑇,𝑡 −

(︂
− log

(︂
1− 1

𝜖

)︂
+ log 𝑞𝑖,𝑇,𝑡 −

𝑚𝑖𝑡

𝜖

)︂
+ log𝛼𝑗(𝑖),𝑍 − 𝑚𝑖𝑡

𝜖

)︂
=

(︂
1− 1

𝜖

)︂−1

exp

(︂
(log 𝑞𝑖,𝑇,𝑡 − log 𝑞𝑖,𝑇,𝑡) + log

(︂
1− 1

𝜖

)︂
+ log𝛼𝑗(𝑖),𝑍 +

(︁𝑚𝑖𝑡

𝜖
− 𝑚𝑖𝑡

𝜖

)︁)︂
= 𝛼𝑗(𝑖),𝑍

(612)
as desired.

In words, this result says that the ratio of expenditures on input 𝑍 to total sales,
multiplied by the markup and a correction factor related to the mistake, equals the
production elasticity. In principle, we could simultaneously estimate the production
function and the statistical properties of mistakes to correct for the fact that the
term exp

(︀
−𝑚𝑖𝑡

𝜖

)︀
is not zero on average. In practice, our mistakes are zero mean

by construction and have a variance of about 0.08 in sample. Using a log-linear
calculation, and our standard value of 𝜖 = 4, this implies an average correction factor
of exp

(︀
1

2·42 · 0.08
)︀
= 1.0025 which is essentially negligible.

We finally show, in the theory, how the calculation of Equation 598, net of fixed
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effects, recovers a re-scaling of TFP. In this subsection’s language, that calculation is

log 𝜃𝑖𝑡 = log 𝑥𝑖𝑡 + log 𝑞𝑖𝑡 −
1

𝜇

(︃∑︁
𝑍

𝛼𝑍,𝑗(𝑖)(log 𝑞𝑗(𝑖),𝑍,𝑡 + log𝑍𝑖𝑡)

)︃
(613)

Substituting in the demand curve log 𝑞𝑖𝑡 = 𝛾𝑖 − 1
𝜖
(log 𝑥𝑖𝑡 − log𝑋𝑡)

log 𝜃𝑖𝑡 =

(︂
1− 1

𝜖

)︂
log 𝑥𝑖𝑡+𝛾𝑖+

1

𝜖
log𝑋𝑡−

1

𝜇

(︃∑︁
𝑍

𝛼𝑍,𝑗(𝑖)(log 𝑞𝑗(𝑖),𝑍,𝑡 + log𝑍𝑖𝑡)

)︃
(614)

We next observe that 𝜇 = 1− 1
𝜖

and that log 𝜃𝑖𝑡 = log 𝑥𝑖𝑡−
(︀∑︀

𝑍 𝛼𝑍,𝑗(𝑖) log𝑍𝑖𝑡
)︀
. Thus,

log 𝜃𝑖𝑡 =
1

𝜇
log 𝜃𝑖𝑡 + 𝛾𝑖 +

1

𝜖
log𝑋𝑡 −

1

𝜇

(︃∑︁
𝑍

𝛼𝑍,𝑗(𝑖) log 𝑞𝑗(𝑖),𝑍,𝑡

)︃
(615)

Grouping terms into fixed effects, this is

log 𝜃𝑖𝑡 =
1

𝜇
log 𝜃𝑖𝑡 + 𝜏𝑗(𝑖),𝑡 + 𝛾𝑖 (616)

where 𝜏𝑗(𝑖),𝑡 = 1
𝜖
log𝑋𝑡 − 1

𝜇

(︀∑︀
𝑍 𝛼𝑍,𝑗(𝑖) log 𝑞𝑗(𝑖),𝑍,𝑡

)︀
is the industry-by-time fixed effect

capturing aggregate demand and factor prices. and 𝛾𝑖 is the firm fixed effect from the
demand curve. Thus, net of fixed effects, we recover 1

𝜇
log 𝜃𝑖𝑡.

B.4 Alternative Specifications of Stochastic Choice

In this section, we extend our basic class of cost function to allow for persistent mis-
takes as in the empirical analysis. In particular, we micro-found the AR(1) structure
of mistakes that we uncovered in the data but abstracted from in the simple model.
Further, we show how the core logic of attention cycles carries over to settings with
alternative foundations for stochastic choice in terms of information acquisition of two
forms: Gaussian signal extraction, and optimal signal processing with mutual infor-
mation costs. Concretely, we will provide simple sufficient conditions under which an
increase in the stakes of making mistakes—the curvature of intermediate goods firms’
profits—leads to increased attention and smaller mistakes. In our baseline model,
this corresponds to firms making smaller mistakes when market risk pricing is more
severe and leads to an attention cycle.
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B.4.1 Persistent Mistakes

In our empirical work we showed that firms’ mistakes are persistent. The basic
model we have developed, however, places no restrictions on the auto-correlation of
mistakes across time within a firm. In this section, we introduce a more general class
of cost functional that allows us to place restrictions on the within-firm correlation of
mistakes across time and, in particular, to derive the AR(1) formulation of mistakes
that we use in the empirical analysis.

We have so far considered likelihood-separable cost functions 𝑐 : 𝒫 × 𝒵 → R of
the form:

𝑐(𝑝; 𝜃𝑡−1) =

∫︁
Θ

∫︁
𝒳
𝜑(𝑝(𝑥|𝜃)) d𝑥 𝑓(𝑧|𝑧𝑡−1) d𝑧 (617)

for some convex 𝜑 that we take to be 𝜑(𝑦) = 𝑦 log 𝑦. To allow for persistent mistakes
we now allow the cost functional to depend on the previous period’s mistake 𝑣𝑡−1 and
today’s optimal action 𝑐 : 𝒫 × 𝒵 × R → R of the form:

𝑐(𝑝; 𝑧𝑡−1, 𝑣𝑡−1) =

∫︁
Θ

∫︁
𝒳
𝜑(𝑝(𝑥|𝜃); 𝑣𝑡−1, 𝑥

*, 𝑥) d𝑥 𝑓(𝑧|𝑧𝑡−1) d𝑧 (618)

for 𝜑 convex in its first argument. In this formulation, the full non-parametric distri-
bution of mistakes now depends on the previous period’s mistake and today’s optimal
action.

To derive the Gaussian AR(1) formulation of mistakes, we now suppose that:

𝜑(𝑦;𝑚,𝑥*, 𝑥) = 𝜆𝑦 log 𝑦 + 𝜔𝑦((𝑥− 𝑥*)−𝑚)2 (619)

Concretely, this leads to the following cost functional:

𝑐(𝑝; 𝑧𝑡−1, 𝑣𝑡−1) =

∫︁
Θ

[︃
𝜆

∫︁
𝒳
𝑝(𝑥|𝜃) log 𝑝(𝑥|𝜃) d𝑥

+ 𝜔

∫︁
𝒳
((𝑥− 𝑥*(𝜃))− 𝑣𝑡−1)

2𝑝(𝑥|𝜃) d𝑥
]︃
𝑓(𝑧|𝑧𝑡−1) d𝑧

(620)

which penalizes sharply peaked distributions and those where average mistakes differ
greatly from the previous period’s mistake. If we moreover suppose that firm risk-
adjusted profits are of their quadratic form:

Π̃(𝑥, 𝑧) := Π̄(𝑧) +
1

2
Π𝑥𝑥(𝑧)(𝑥− 𝑥*(𝑧))2 (621)

418



and we suppose that firms solve the problem:

max
𝑝∈𝒫

∫︁
Θ

∫︁
𝒳
Π(𝑥, 𝑧) 𝑝(𝑥 | 𝜃) d𝑥 𝑓(𝑧|𝑧𝑡−1) d𝑧 − 𝑐 (𝑝; 𝑧𝑡−1, 𝑣𝑡−1) (622)

Solving this problem yields the AR(1) structure for mistakes, with Gaussian in-
novations.

Proposition 41. The optimal stochastic choice pattern is given by:

𝑥 = 𝑥*(𝑧) + 𝑣 (623)

where:
𝑣 = 𝜌𝑣𝑡−1 + 𝑢 (624)

and
𝜌 = 𝜌(𝑧) =

𝜔
1
2
|Π𝑥𝑥(𝑧)|+ 𝜔

(625)

and
𝑢 ∼ 𝑁

(︂
0,

2𝜆
1
2
|Π𝑥𝑥(𝑧)|+ 𝜔

)︂
(626)

Proof. We will denote 𝑥*(𝑧) by 𝛾 and 1
2
|Π𝑥𝑥(𝑧)| by 𝛽 to simplify notation. We observe

that the FOC characterizing optimal stochastic choice is given by:

−𝛽(𝑥− 𝛾)2 − 𝜆 [1 + log 𝑝(𝑥|𝑧)]− 𝜔(𝑥− 𝛾 −𝑚)2 + 𝜇(𝑧) + 𝜅(𝑥, 𝑧) = 0 (627)

where 𝜇(𝑧) is the Lagrange multiplier on the constraint that 𝑝(𝑥|𝑧) integrates to
unity and 𝜅(𝑥, 𝑧) is the Lagrange multiplier on the non-negativity constraint that
𝑝(𝑥|𝑧) ≥ 0. We can then observe that this has solution:

𝑝(𝑥|𝑧) =
exp
(︁
−𝛽(𝑥− 𝑧)2

)︁
∫︀
𝒳 exp

(︁
−𝛽(𝑥′ − 𝑧)2

)︁
d𝑥′

(628)

where 𝛽 = 𝛽+𝜔
𝜆

and 𝛾 = 𝛾 + 𝜔
𝛽+𝜔

𝑣𝑡−1. It follows that:

𝑥|𝑧 ∼ 𝑁

(︂
𝛾 +

𝜔

𝛽 + 𝜔
𝑣𝑡−1,

2𝜆

𝛽 + 𝜔

)︂
(629)

Putting this in more explicit terms, and substituting for 𝛾 and 𝛽, we obtain the
desired representation.
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B.4.2 Transformed Gaussian Signal Extraction

In this section, we analyze attention cycles in a setting with Gaussian signal extraction
and show how the basic logic of our main model carries over to this setting. For
notational simplicity, we describe this alternative model under the assumption that
there is a common, scalar state variable 𝜃, which represents each firm’s productivity.

Set-up

When the state of the world is 𝜃, the previous state is 𝜃−1, agents have priors 𝜋𝜃−1 ∈
∆(Θ), and the equilibrium level of output is 𝑋(𝜃, 𝜃−1), intermediates goods firms
have payoffs given by:

Π̃(𝑥,𝑋(𝜃, 𝜃−1), 𝜃) = 𝛼(𝑋(𝜃, 𝜃−1), 𝜃)− 𝛽(𝑋(𝜃, 𝜃−1), 𝜃)(𝑥− 𝛾(𝑋(𝜃, 𝜃−1), 𝜃))
2 (630)

where we will write 𝛽(𝜃, 𝜃−1) = 𝛽(𝑋(𝜃, 𝜃−1), 𝜃) and similarly for 𝛼 and 𝛾, and as we
micro-found via a second-order approximation of their true profit functions around
the unconditionally optimal level of production in the main text.

Suppose moreover that agents receive a private Gaussian signal regarding their
stakes-adjusted optimal action given by:

𝑠𝑖 =
𝛽(𝜃, 𝜃−1)∫︀

Θ
𝛽(𝜃, 𝜃−1)d𝜋(𝜃|𝜃−1)

𝛾(𝜃, 𝜃−1) +
1

𝜏(𝜃−1)
𝜀𝑖 (631)

where 𝜀𝑖 is a 𝑁(0, 1) variable that is independent across agents and time periods;
𝜏(𝜃−1) is the (soon-to-be endogenized) square-root precision; and the agents’ prior
𝜋𝜃−1 is such that:

𝛽(𝜃, 𝜃−1)∫︀
Θ
𝛽(𝜃, 𝜃−1)d𝜋(𝜃|𝜃−1)

𝛾(𝜃, 𝜃−1) ∼ 𝑁
(︀
𝜇(𝜃−1), 𝜎

2(𝜃−1)
)︀

(632)

This model incorporates the tractability of linear signal extraction into our non-
quadratic tracking problem.

Conditional on such a signal 𝑠, the best reply of any firm is equal to the conditional
expectation of the stakes-adjusted optimal action:

𝑥(𝑠) = E𝜋𝜃−1

[︂
𝛽(𝜃, 𝜃−1)∫︀

Θ
𝛽(𝜃, 𝜃−1)d𝜋(𝜃|𝜃−1)

𝛾(𝜃, 𝜃−1)|𝑠
]︂

= 𝜆(𝜃−1)𝑠+ (1− 𝜆(𝜃−1))𝜇(𝜃−1)

(633)
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where 𝜆(𝜃−1) = 𝜏2(𝜃−1)

𝜏2(𝜃−1)+
1

𝜎2(𝜃−1)

is the appropriate signal-to-noise ratio. Thus, the

cross-sectional distribution of actions is given by:

𝑥|𝜃, 𝜃−1 ∼ 𝑁

(︃
𝜆(𝜃−1)

𝛽(𝜃, 𝜃−1)∫︀
Θ
𝛽(𝜃, 𝜃−1)d𝜋(𝜃|𝜃−1)

𝛾(𝜃, 𝜃−1)

+ (1− 𝜆(𝜃−1))E𝜋𝜃−1

[︂
𝛽(𝜃, 𝜃−1)∫︀

Θ
𝛽(𝜃, 𝜃−1)d𝜋(𝜃|𝜃−1)

𝛾(𝜃, 𝜃−1)

]︂
,
𝜆2(𝜃−1)

𝜏 2(𝜃−1)

)︃
(634)

Say we empirically estimate an equation of the form:

𝑥𝑖𝑡 = 𝛾𝑖 + 𝜒𝑗(𝑖),𝑡 + 𝑓𝑡(𝜃𝑖𝑡, 𝜃𝑖,𝑡−1) + 𝜀𝑖𝑡 (635)

which differs from our baseline specification in controlling flexibly for observed and
lagged productivity.5 The fitted values span E[𝑥 | 𝜃, 𝜃−1] and capture state-dependent
anchoring toward the prior mean. The residual 𝜀𝑖𝑡 captures the noise in the firm’s
action coming from the noise in the signal. The fact that the average action is no
longer the unconditionally optimal action is an important departure from our baseline
models in Section 2.3 and Appendix B.2. In the signal extraction model, the behavior
of the stochastic residual captures some, but not all, of the effects of the “cognitive
friction,” since it does not directly speak to anchoring.

Interpreting Monotone Misoptimization

We now discuss the interpretation of our empirical exercise of studying stochastic
volatility in 𝜀𝑖𝑡. The variance of the residual is given in this model by:

V𝑡[𝜀𝑖𝑡] =
𝜆2(𝜃𝑡−1)

𝜏 2(𝜃𝑡−1)
=

𝜏 2(𝜃𝑡−1)(︁
𝜏 2(𝜃𝑡−1) +

1
𝜎2(𝜃𝑡−1)

)︁2 (636)

5In our main analysis, we consider some specifications with time-varying responsiveness to the
fundamental shock. We have also considered specifications which depend more flexibly on lagged
TFP and found broadly similar results to our baseline, but do not print these in the paper for
brevity.
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Our empirical findings are consistent with 𝜃𝑡−1 ↦→ V𝑡[𝜀𝑖𝑡] being an increasing function.6

This holds in this model exactly when:

𝜕𝜏 2(𝜃−1)

𝜕𝜃−1

(︂
1

2𝜆(𝜃−1)
− 1

)︂
>
𝜕 1
𝜎2(𝜃−1)

𝜕𝜃−1

(637)

for all 𝜃−1 ∈ Θ. Our own regression analysis in Section 2.5.5, as well as comprehensive
studies of manufacturing establishments by Bloom, Floetotto, Jaimovich, Saporta-
Eksten, and Terry (2018) and Kehrig (2015), suggests that there is less fundamental
dispersion in higher aggregate productivity states of the world. As a result, the RHS
of this expression condition must be positive. Thus, there are two potential conditions
under which this variant of our model is consistent with pro-cyclical misoptimization
and counter-cyclical fundamentals dispersion:

1. Firms acquire sufficiently less precise signals in higher states 𝜕𝜏2(𝜃−1)
𝜕𝜃−1

< 0 and
the signal to noise ratio is always such that 𝜆(𝜃−1) >

1
2

2. Firms acquire sufficiently more precise signals in lower states 𝜕𝜏2(𝜃−1)
𝜕𝜃−1

> 0 and
the signal to noise ratio is always 𝜆(𝜃−1) <

1
2

In the former case, “high attention” measured by high signal precision correlates
with low residual variance. In the latter case, “low attention” measured by low pre-
cision correlates with low residual variance. An important difference between the
signal-extraction model from our baseline, then, is that additional information is re-
quired to separately identify patterns in attention and residual variance. In both
models, “misoptimization” in payoff terms and attention are perfectly correlated by
construction. But residual variance is monotone in misoptimization in our baseline
model, but not in the signal extraction model due to the role of anchoring.

We interpret our finding that firms discuss macroeconomic developments more
during recessions as qualitatively inconsistent with model case 2, and therefore an
identifying piece of evidence for case 1. Elsewhere in the literature, Coibion, Gorod-
nichenko, and Kumar (2018a) find that firms have higher demand for information
when presented with bad macroeconomic news. Chiang (2021) also finds evidence
of higher attention (interpreted as precision of signals) in downturns. Thus, our
preferred interpretation of the model is one in which residual variance inherits the
monotonicity of signal precision and attention.

6Our specific empirical specification measured the correlation between contemporaneous output
and contemporaneous dispersion of 𝜖𝑖𝑡. If output is monotone in the state of nature and, along with
the state of nature, very persistent, the translation to 𝜕V𝑡[𝜀𝑖𝑡]/𝜕𝜃𝑡−1 ≥ 0 is immediate.
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Monotone Endogenous Precision

We now extend the model to include endogenous choice of signal precision and derive
conditions under which firms obtain less precise signals in high productivity states in
the model. To this end, suppose that after 𝜃−1 is realized, but before 𝜃 is realized, that
the agent can pay a cost 𝜑(𝜏 2) to achieve signal precision of 𝜏 2, and where 𝜑′, 𝜑′′ > 0.
Concretely, the optimal 𝜏 2(𝜃−1) solves:

max
𝜏2(𝜃−1)∈R+

E𝜋𝜃−1

[︁
−𝛽(𝜃, 𝜃−1)

(︀
𝑥*(𝑠, 𝜏 2(𝜃−1))− 𝛾(𝜃, 𝜃−1)

)︀2]︁− 𝜑(𝜏 2(𝜃−1)) (638)

We moreover parameterize the scaling of quadratic losses by writing 𝛽(𝜃, 𝜃−1) =

𝜅𝛽(𝜃, 𝜃−1) for all (𝜃, 𝜃−1) and some 𝜅 ≥ 1. Our first goal will be to derive conditions
under which the optimally chosen 𝜏 2 in Program 638 is monotone increasing in 𝜅.
This demonstrates the natural incentives for firms to choose more precise information
when the utility cost of a fixed posterior variance about the stakes-adjusted optimal
action is higher.

Toward this end, we first simplify the agent’s objective function. Using the dis-
tribution of optimal actions condition on 𝜏 2 from in Equation 634, we write

E𝜋𝜃−1

[︁
−𝛽(𝜃, 𝜃−1)

(︀
𝑥*(𝑠, 𝜏 2(𝜃−1))− 𝛾(𝜃, 𝜃−1)

)︀2]︁
= E𝜋𝜃−1

[︁
E
[︁
−𝛽(𝜃, 𝜃−1)

(︀
𝑥*(𝑠, 𝜏 2(𝜃−1))− 𝛾(𝜃, 𝜃−1)

)︀2 |𝜃]︁]︁
= E𝜋𝜃−1

[︁
E
[︁
−𝛽(𝜃, 𝜃−1)

(︀
𝑥*(𝑠, 𝜏 2(𝜃−1))− �̄�(𝜃, 𝜃−1) + �̄�(𝜃, 𝜃−1)− 𝛾(𝜃, 𝜃−1)

)︀2 |𝜃]︁]︁
= E𝜋𝜃−1

[︁
−𝛽(𝜃, 𝜃−1)E

[︁(︀
𝑥*(𝑠, 𝜏 2(𝜃−1))− �̄�(𝜃, 𝜃−1)

)︀2
+ (�̄�(𝜃, 𝜃−1)− 𝛾(𝜃, 𝜃−1))

2 |𝜃
]︁]︁

= E𝜋𝜃−1

[︃
−𝛽(𝜃, 𝜃−1)

(︃
𝜆2(𝜃−1)

𝜏 2(𝜃−1)
+

[︂
𝜆(𝜃−1)

𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
𝛾(𝜃, 𝜃−1) + (1− 𝜆(𝜃−1))𝜇(𝜃−1)− 𝛾(𝜃, 𝜃−1)

]︂2)︃]︃
(639)

where �̄�(𝜃, 𝜃−1) is the mean of the distribution in Equation 634 and 𝛽(𝜃−1) =
∫︀
Θ
𝛽(𝜃, 𝜃−1)d𝜋(𝜃|𝜃−1).

Observe moreover that we simplify the second term as the following:

E𝜋𝜃−1

[︃
−𝛽(𝜃, 𝜃−1)

(︂
𝜆(𝜃−1)

𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
𝛾(𝜃, 𝜃−1) + (1− 𝜆(𝜃−1))𝜇(𝜃−1)− 𝛾(𝜃, 𝜃−1)

)︂2
]︃

= E𝜋𝜃−1

[︃
−𝛽(𝜃, 𝜃−1)

(︂
(1− 𝜆(𝜃−1))

(︂
𝜇(𝜃−1)−

𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
𝛾(𝜃, 𝜃−1)

)︂
+

(︂
𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
− 1

)︂
𝛾(𝜃, 𝜃−1)

)︂2
]︃

(640)

423



A necessary condition for an interior and optimal 𝜏 2(𝜃−1) is then the following
first-order condition:

𝜑′(𝜏 2(𝜃−1)) = −𝛽(𝜃−1)
𝜕

𝜕𝜏 2(𝜃−1)

[︂
𝜆2(𝜃−1)

𝜏 2(𝜃−1)

]︂
+ 2(1− 𝜆(𝜃−1))

𝜕𝜆(𝜃−1)

𝜕𝜏 2(𝜃−1)
E𝜋𝜃−1

[︃
𝛽(𝜃, 𝜃−1)

(︂
𝜇(𝜃−1)−

𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
𝛾(𝜃, 𝜃−1)

)︂2
]︃

+ 2
𝜕𝜆(𝜃−1)

𝜕𝜏 2(𝜃−1)
E𝜋𝜃−1

[︂
𝛽(𝜃, 𝜃−1)

(︂
𝜇(𝜃−1)−

𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
𝛾(𝜃, 𝜃−1)

)︂(︂
𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
− 1

)︂
𝛾(𝜃, 𝜃−1)

]︂
(641)

which reduces to:

𝜑′(𝜏 2(𝜃−1)) = −𝛽(𝜃−1)

1
𝜎2(𝜃−1)

− 𝜏 2(︁
𝜏 2 + 1

𝜎2(𝜃−1)

)︁3
+ 2

1
𝜎2(𝜃−1)

𝜏 2 + 1
𝜎2(𝜃−1)

1
𝜎2(𝜃−1)(︁

𝜏 2 + 1
𝜎2(𝜃−1)

)︁2E𝜋𝜃−1

[︃
𝛽(𝜃, 𝜃−1)

(︂
𝜇(𝜃−1)−

𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
𝛾(𝜃, 𝜃−1)

)︂2
]︃

+ 2

1
𝜎2(𝜃−1)(︁

𝜏 2 + 1
𝜎2(𝜃−1)

)︁2E𝜋𝜃−1

[︂
𝛽(𝜃, 𝜃−1)

(︂
𝜇(𝜃−1)−

𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
𝛾(𝜃, 𝜃−1)

)︂(︂
𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
− 1

)︂
𝛾(𝜃, 𝜃−1)

]︂
(642)

We can now ask how 𝜏 2(𝜃−1) moves with 𝜅. In particular, see that we can write:

𝜑′(𝜏 2(𝜃−1)) = 𝜉(𝜏 2(𝜃−1))𝜅 (643)

where:

𝜉(𝜏 2(𝜃−1)) =
1(︁

𝜏 2 + 1
𝜎2(𝜃−1)

)︁3
[︃
− 𝛽(𝜃−1)

(︂
1

𝜎2(𝜃−1)
− 𝜏 2

)︂

+ 2

(︂
1

𝜎2(𝜃−1)

)︂2

𝜉1(𝜃−1) + 2
1

𝜎2(𝜃−1)

(︂
𝜏 2(𝜃−1) +

1

𝜎2(𝜃−1)

)︂
𝜉2(𝜃−1)

]︃

𝜉1(𝜃−1) = E𝜋𝜃−1

[︃
𝛽(𝜃, 𝜃−1)

(︂
𝜇(𝜃−1)−

𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
𝛾(𝜃, 𝜃−1)

)︂2
]︃

𝜉2(𝜃−1) = E𝜋𝜃−1

[︂
𝛽(𝜃, 𝜃−1)

(︂
𝜇(𝜃−1)−

𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
𝛾(𝜃, 𝜃−1)

)︂(︂
𝛽(𝜃, 𝜃−1)

𝛽(𝜃−1)
− 1

)︂
𝛾(𝜃, 𝜃−1)

]︂
(644)
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Applying the implicit function theorem we then have that:

𝜕𝜏 2(𝜃−1)

𝜕𝜅
=

𝜉(𝜏 2(𝜃−1))

𝜑′′(𝜏 2(𝜃−1))− 𝜉′(𝜏 2(𝜃−1))
=

𝜑′(𝜏 2(𝜃−1))

𝜑′′(𝜏 2(𝜃−1))− 𝜉′(𝜏 2(𝜃−1))
(645)

where the denominator is positive as the marginal cost of precision is always positive.
Thus, we have that:

𝜕𝜏 2(𝜃−1)

𝜕𝜅
> 0 ⇐⇒ 𝜑′′(𝜏 2(𝜃−1)) > 𝜉′(𝜏 2(𝜃−1)) (646)

A sufficient condition for 𝜕𝜏2(𝜃−1)
𝜕𝜅

> 0, therefore, by convexity of the costs of precision
is that 𝜉′(𝜏 2(𝜃−1)) < 0 for all 𝜏 2(𝜃−1). In words, if the benefit of precision is a concave
function, then optimally set precision is increasing in 𝜅.

Having shown the desired general comparative static, we now return to the context
of our macroeconomic model. Recall that the curvature of firms profits is given by:

𝛽(𝜃, 𝜃−1) = 𝑣Π𝑋(𝜃, 𝜃−1)
−1−𝛾+𝜒(1+𝜖)𝜃−1−𝜖 (647)

Thus:
𝛽(𝜃−1) = E𝜋𝜃−1

[𝑣Π𝑋(𝜃, 𝜃−1)
−1−𝛾+𝜒(1+𝜖)𝜃−1−𝜖] (648)

Thus, whenever aggregate output is monotonically increasing in both 𝜃 and 𝜃−1 and
the prior 𝜋𝜃−1 is monotone increasing in the FOSD order and 𝛾 > 𝜒(1+𝜖)−1, we have
that 𝛽(𝜃−1) is monotone decreasing in 𝜃−1. It then follows that 𝜏 2(𝜃−1) is monotone
decreasing in 𝜃−1 in equilibrium whenever 𝜉′ < 0. Thus, the core logic of our baseline
model translates exactly over to this setting with Gaussian signal extraction.

B.4.3 Rational Inattention

We now extend our results to the case of mutual information cost. As in the previous
subsection, for notational simplicity, we describe this alternative model under the
assumption that there is a uniform, scalar state variable 𝜃, which represents each
firm’s productivity.

We first introduce the class of posterior-separable cost functionals. Denti (2018)
provides this formulation as a representation theorem in stochastic choice space of
the usual posterior-based definition of Caplin and Dean (2013):

Definition 18 (Posterior-Separable Cost Functionals). A cost functional 𝑐 has a
posterior-separable representation if and only if there exists a convex and continuous
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𝜑 such that:

𝑐(𝑝) =

∫︁
𝒳
𝜑({𝑝(𝑥|𝜃)}𝜃∈Θ) d𝑥 (649)

where:
𝜑({𝑝(𝑥|𝜃)}𝜃∈Θ) = 𝑝(𝑥)𝜑

(︂{︂
𝑝(𝑥|𝜃)𝜋(𝜃)

𝑝(𝑥)

}︂
𝜃∈Θ

)︂
(650)

whenever 𝑝(𝑥) > 0 and 𝜑 = 0 otherwise.

Intuitively, such a cost functional considers the cost to the agent of arriving at
any given posterior and adds that up over the distribution of posteriors that are
realized. Important cost functionals such as the mutual information cost functional
considered in the literature on rational inattention are members of this class. Indeed,
mutual information is the special case of the above where 𝜑 returns the entropy of
the distribution that is its argument.

The mathematical structure of posterior-separable cost functionals does not admit
the same prior-independence property as likelihood-separable cost functionals. As a
result, we will not be able to carry all of our results over to this setting. Nevertheless,
as we will argue, the key qualitative forces apply.

In the setting with likelihood separable choice in the single-agent context, we
showed that greater curvature of payoffs leads to more precise actions (Proposition
6). With posterior-separable choice, the above result does not hold in general. This
is because the prior also influences the states in which the agent would like to learn
precisely. In particular, even if a state features high curvature, if it is unlikely to arise,
the agent may not care to acquire precise information in that state. A particular
case where this complication can be bypassed is when costs are given by mutual
information and all actions are exchangeable in the prior in the sense that all actions
are ex ante equally attractive (Matějka and McKay, 2015). This is a natural case
to consider and yields a particularly revealing structure to the optimal policy: the
agent’s actions in state 𝜃 are given by a normal distribution centered on the objective
optimum and with variance inversely proportional to the curvature of their objective
in that state – a normal mixture model.

Proposition 42. Suppose that 𝑢(𝑥, 𝜃) = 𝛼(𝜃)−𝛽(𝜃)(𝑥−𝛾(𝜃))2 and costs are posterior
separable with entropy kernel 𝜆𝜑(·) for some 𝜆 > 0. If all actions are exchangeable
in the prior, then in the limit of the support of the action set to infinity, �̂� → ∞ for
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𝑥 = −𝑥 = �̂�, the optimal stochastic choice rule is given by:7

𝑝(𝑥|𝜃) = 1√︁
𝜋𝜆
𝛽(𝜃)

exp

⎧⎨⎩−1

2

⎛⎝𝑥− 𝛾(𝜃)√︁
𝜆

2𝛽(𝜃)

⎞⎠2⎫⎬⎭ (652)

Which is to say that the agent’s actions follow a normal mixture model with condi-
tional action density given by:

𝑥|𝜃 ∼ 𝑁

(︂
𝛾(𝜃),

𝜆

2𝛽(𝜃)

)︂
(653)

Proof. We first show that mutual information can be written in the claimed stochastic
choice form. These arguments follow closely Matějka and McKay (2015) and Denti
(2018). The agent can design an arbitrary signal space 𝒮 and choose a joint distri-
bution between signals and states 𝑔 ∈ ∆(𝒮 × Θ). As in Sims (2003), the mutual
information is the reduction in entropy from having access to this signal relative to
the prior:

𝐼(𝑔) =

∫︁
𝒮

∫︁
Θ

𝑔(𝑠, 𝜃) log

(︃
𝑔(𝑠, 𝜃)

𝜋(𝜃)
∫︀
Θ
𝑔(𝑠, 𝜃) d𝜃

)︃
d𝜃 d𝑠 (654)

We now argue that it is without loss to consider a choice over stochastic choice rules
𝑝 : Θ → ∆(𝒳 ). Suppose 𝑥 is an optimal action conditional on receiving any 𝑠 ∈ 𝑆𝑥.
Suppose that there exist 𝑆1

𝑥, 𝑆
2
𝑥 ∈ 𝑆𝑥 of positive measure such that 𝑔(𝜃|𝑠1) ̸= 𝑔(𝜃|𝑠2)

for all 𝑠1 ∈ 𝑆1
𝑥, 𝑠2 ∈ 𝑆2

𝑥. Now generate a new signal structure 𝑔′ such 𝑠 ∈ 𝑆1
𝑥 ∪ 𝑆2

𝑥 is
sent whenever any 𝑠 ∈ 𝑆1

𝑥 ∪ 𝑆2
𝑥 was sent under 𝑔. Clearly, 𝑥 is optimal conditional

on receiving 𝑠. Thus, expected payoffs under 𝑔′ are the same as those under 𝑔.
Moreover, 𝑔′ is simply a garbling of 𝑔 in the sense of Blackwell. Thus 𝐶(𝑔′) < 𝐶(𝑔)

for any convex cost functional 𝐶. As 𝐼 is convex, this is a contradiction. Thus,
there must be at most one posterior (realized with positive density) associated with
each action. As 𝑔(𝑠, 𝜃) = 𝑔(𝑠|𝜃)𝜋(𝜃), the choice of 𝑔(𝑠, 𝜃) ∈ ∆(𝒮 × Θ) is a choice
over 𝑔(·|·) : Θ → ∆(𝑆). Moreover, there is a unique posterior 𝜇(𝜃|𝑠) associated with
each (non-dominated) action which is determined exactly by 𝑔(·|·). Hence, the agent
directly chooses a mapping 𝑝(·|·) : Θ → ∆(𝒳 ). The agent’s problem can then be

7Formally, all actions are exchangeable in the prior if:∫︁
Θ

exp{𝛽(𝜃)𝜆−1(𝑥− 𝛾(𝜃))2}∫︀
𝒳 exp{𝛽(𝜃)𝜆−1(�̃�− 𝛾(𝜃))2}𝑑�̃�𝜋(𝜃)𝑑𝜃 = 1 ∀𝑥 ∈ 𝒳 (651)
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directly re-written in the claimed stochastic choice form for some 𝑐𝐼 :

max
𝑃∈𝒫

∫︁
Θ

∫︁
𝒳
𝑢(𝑥, 𝜃) d𝑃 (𝑥|𝜃) d𝜋(𝜃)− 𝑐𝐼(𝑃 ) (655)

Moreover, separating terms, one achieves the following representation of 𝑐𝐼 :

𝑐𝐼(𝑝) =

∫︁
Θ

∫︁
𝒳
𝑝(𝑥|𝜃) log 𝑝(𝑥|𝜃) d𝑥 d𝜋(𝜃)−

∫︁
𝒳
𝑝(𝑥) log 𝑝(𝑥) d𝑥 (656)

where:
𝑝(𝑥) =

∫︁
Θ

𝑝(𝑥|𝜃) d𝜋(𝜃) (657)

The stochastic choice problem can now be expressed by the Lagrangian: (𝜅(𝑥, 𝜃) are
the non-negativity constraints and 𝛾(𝜃) are the constraints that all action distributions
integrate to unity)

ℒ({𝑝(𝑥|𝜃), 𝜅(𝑥, 𝜃)}𝑥∈𝒳 ,𝜃∈Θ, {𝛾(𝜃)}𝜃∈Θ) =
∫︁
Θ

∫︁
𝒳
𝑢(𝑥, 𝜃)𝑝(𝑥|𝜃) d𝑥 d𝜋(𝜃)

− 𝜆

(︂
−
∫︁
𝒳
𝑝(𝑥) log 𝑝(𝑥) d𝑥+

∫︁
Θ

∫︁
𝒳
𝑝(𝑥|𝜃) log 𝑝(𝑥|𝜃) d𝑥 d𝜋(𝜃)

)︂
+ 𝜅(𝑥, 𝜃)𝑝(𝑥|𝜃) + 𝛾(𝜃)

(︂∫︁
𝒳
𝑝(𝑥|𝜃) d𝑥− 1

)︂ (658)

Any time that 𝑝(𝑥|𝜃) > 0, taking the FOC pointwise with respect to 𝑝(𝑥|𝜃) and
rearranging we have that:

𝑝(𝑥|𝜃) = 𝑝(𝑥) exp{𝑢(𝑥, 𝜃)}∫︀
𝒳 𝑝(�̃�) exp{𝑢(�̃�, 𝜃)} d�̃�

(659)

Moreover, we can plug the above back into the general problem and take the FOC.
Re-arranging we have that for all 𝑥 such that 𝑝(𝑥) > 0:∫︁

Θ

exp{𝑢(𝑥, 𝜃)}∫︀
𝒳 𝑝(�̃�) exp{𝑢(�̃�, 𝜃)} d�̃�

d𝜋(𝜃) = 1 (660)

Up to now we have applied standard techniques from Matějka and McKay (2015).
We now use our utility function and exchangeability assumption to derive our result.
In particular, we take the utility function as:

𝑢(𝑥, 𝜃) = 𝛼(𝜃)− 𝛽(𝜃)(𝑥− 𝛾(𝜃))2 (661)
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And assume exchangeability in the prior such that all actions are ex-ante equally
attractive in the limit:∫︁

Θ

exp{−𝛽(𝜃)𝜆−1(𝑥− 𝛾(𝜃))2}∫︀
𝒳 exp{−𝛽(𝜃)𝜆−1(�̃�− 𝛾(𝜃))2} d�̃�𝜋(𝜃) d𝜃 = 1 ∀𝑥 ∈ 𝒳 (662)

Under this condition, in the limit of the support to infinity, the unconditional
action distribution converges to the improper uniform distribution 𝑝(𝑥) = 𝑝(𝑥′) for
all 𝑥 ∈ 𝒳 . The conditional action distribution then becomes:

𝑝(𝑥|𝜃) = exp{−𝛽(𝜃)𝜆−1(𝑥− 𝛾(𝜃))2}∫︀
𝒳 exp{−𝛽(𝜃)𝜆−1(�̃�− 𝛾(𝜃))2} d�̃� (663)

The denominator of this expression can be computed:

∫︁
𝒳
exp{−𝛽(𝜃)𝜆−1(𝑥− 𝛾(𝜃))2} d𝑥 =

∫︁
𝒳

√︁
2𝜋 𝜆

2𝛽(𝜃)√︁
2𝜋 𝜆

2𝛽(𝜃)

exp

⎧⎨⎩−1

2

⎛⎝𝑥− 𝛾(𝜃)√︁
𝜆

2𝛽(𝜃)

⎞⎠2⎫⎬⎭ d𝑥

=

√︃
2𝜋

𝜆

2𝛽(𝜃)

∫︁
𝒳

1√︁
2𝜋 𝜆

2𝛽(𝜃)

exp

⎧⎨⎩−1

2

⎛⎝𝑥− 𝛾(𝜃)√︁
𝜆

2𝛽(𝜃)

⎞⎠2⎫⎬⎭
=

√︃
2𝜋

𝜆

2𝛽(𝜃)

(664)

It follows that:

𝑝(𝑥|𝜃) = 1√︁
𝜋𝜆
𝛽(𝜃)

exp

⎧⎨⎩−1

2

⎛⎝𝑥− 𝛾(𝜃)√︁
𝜆

2𝛽(𝜃)

⎞⎠2⎫⎬⎭ (665)

Which is to say that 𝑋|𝜃 is a Gaussian random variable with mean 𝛾(𝜃) and variance
𝜆

2𝛽(𝜃)
.

This result extends the known results on Gaussian optimality of stochastic choice
with mutual information (Sims, 2003) to a domain with a stochastic weight on the
deviation from optimality. For our purposes, the novel and interesting feature is that
the variance of the action distribution in any given state is inversely-proportional to
curvature. It follows that if all actions are exchangeable in the prior when:

𝛾(𝜃) = 𝑥*(𝑋(𝜃), 𝜃)

𝛽(𝜃) =
1

2
|Π𝑥𝑥(𝑋(𝜃), 𝜃)|

(666)
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where 𝑋(𝜃) is the unique equilibrium level of aggregate production, then the model
with mutual information is exactly equivalent to the model with entropic likelihood-
separable cost that we studied. All results from Section 2.4 then carry directly.

B.5 Additional Numerical Results
In this Appendix, we discuss robustness of our numerical findings as well as how the
macroeconomic implications of attention cycles change under counterfactual scenar-
ios.

B.5.1 Sensitivity of Main Results

Parameter Choice

To probe robustness to our choice of elasticity of substitution 𝜖 and the wage rule slope
𝜒, we re-calibrate the model for alternative choices. For brevity, we summarize these
experiments by considering “high” and “low” deviations for each parameter, holding
fixed the others at baseline values, and present the proportional difference from the
baseline in three summary statistics introduced in Section 2.6.3:

1. The relative output effect of negative and positive shocks, normalized in log 𝜃

units such that the latter increases output by 3%;

2. The relative output effect of a “double dip” versus positive shock, holding fixed
the size of the shock to productivity as above;

3. The ratio of output-growth volatility from the 10th to the 90th percentile of the
output distribution.

We present our results in Figure B-13. Lowering the elasticity of substitution
or increasing the implied average markups can have ambiguous effects because it si-
multaneously increases the bite of a fixed level of misoptimization on misallocation,
productivity, and output, while decreasing the bite of the profit-curvature channel to-
ward cyclical attention. We find numerically that increasing markups or decreasing 𝜖,
toward the level implied by De Loecker, Eeckhout, and Unger (2020), significantly in-
creases the extent of our predicted asymmetries (≈ 1.75x), while decreasing markups
or increasing 𝜖, toward the level implied by Edmond, Midrigan, and Xu (2018), mod-
estly increases the extent of our predicted asymmetries.

Increasing the slope of the wage rule dampens our predictions, due to its dampen-
ing the economy’s Keynesian-cross feedback. Decreasing the slope increases the bite
of our predictions substantially by amplifying the same general-equilibrium effects.
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Classical Labor Markets

For tractability in the theoretical section we equipped our model with a reduced-
form wage rule rather than a micro-founded labor supply curve. As an alternative,
we use the preferences of Greenwood, Hercowitz, and Huffman (1988) which replace
Equation 61 with the following:

𝒰({𝐶𝑡+𝑗, 𝐿𝑡+𝑗}𝑗∈N) = E𝑡
∞∑︁
𝑗=0

𝛽𝑗

(︁
𝐶𝑡+𝑗 − 𝐿𝑡+𝑗

1+𝜑

1+𝜑

)︁1−𝛾
1− 𝛾

(667)

and remove the wage rule, Equation 63. These preferences generate a labor supply
curve 𝑤𝑡 = 𝐿𝜑𝑡 which closely resembles our reduced-form wage rule, but also takes
seriously the implications for risk-pricing by making marginal utility a function of
hours worked. We choose a parameterization of 𝜑 = 𝜒

1−𝜒𝜖 = 0.153, where 𝜒 and 𝜖

take our benchmark values indicated in Table 2.4. As indicated in the richer model
of Appendix B.2, this calibration replicates an elasticity of 𝜒 = 0.095 between real
wages and real output.

Figure B-14 is this model’s analogue to Figure 2-4, showing output, the attention
wedge, and labor productivity. We find comparable behavior of the attention wedge
and losses from misoptimization and inattention. Figure B-15 is this model’s analogue
to Figure 2-5, showing state-dependent shock response and stochastic volatility. Our
results are quantitatively similar to our baseline calibration. These results demon-
strate that classical labor markets do not undermine our main results in calibrations
that are consistent with our calibrated wage rigidity.

B.5.2 Attention Cycles Under Counterfactual Scenarios

Because the main amplification mechanism in our model, the reallocation of atten-
tion, is endogenous to economic conditions, we can use our framework to study how
attention cycles and all associated macro phenomena would behave under counter-
factual conditions. In this subsection, we explore the interaction of our findings with
recent trends in product mark-ups; the decreasing pro-cyclicality of real wages; and
external uncertainty shocks.

The Rise of Markups, via Lower Substitutability

An extensive recent literature documents a secular increase in markups charged by
US public firms over the last half century (see, e.g., De Loecker, Eeckhout, and
Unger, 2020; Edmond, Midrigan, and Xu, 2018; Demirer, 2020). In our empirical
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calibration, we targeted “modern” average mark-ups as informed by this literature.
Our framework would interpret any trends in aggregate mark-ups as arising from
changes in the elasticity of substitution 𝜖 between products, which would need to
have been higher in the previous, low-markup era than it is today. In our model, a
lower elasticity of substitution or higher markup increases the output cost of a fixed
amount of misoptimization dispersion, as it intuitively makes each individual product
more “essential” to the consumed good; and it has a priori ambiguous effects on the
extent of equilibrium attention cycles.

In our model, we run the following simple experiment. First, we adjust 𝜖 upward
to simulate a 15 percentage point decrease in the aggregate markup, to match the
estimate of Demirer (2020) for markups since the 1960s; and second, we adjust 𝜖
downward to match a 15 percentage point increase. We find that lower markups
correspond to more severe effects of attention cycles on business cycles, as summarized
by the asymmetry and state-dependence of dynamics (second and third panel of
Figure B-16). These results provide only speculative clues about the future, owing
to both uncertainty about the true “cause” of rising markups and the plausibility of
the trend continuing. But, regardless of their precision, they highlight a potentially
important pathway linking market structure, firm decisionmaking, and the aggregate
cost of misallocation.

More Rigid Real Wages

The inverse relationship between wage inflation and real conditions has proved elusive
in modern data, particularly since the financial crisis (see, e.g., Galí and Gambetti,
2019). Our baseline estimate of slope 0.095 between (detrended) real output and
real wages since 1987 reflects this reality. In our model, more rigid real wages corre-
sponded to a steeper Keynesian cross, and a steeper incentive toward high attention
in low states of the world. For this reason, we may expect that the growing discon-
nect between factor prices and real conditions contributes toward the severity of our
estimated macro effects.

In parallel to the previous experiment, we simulate both a “calibrated past” and
“extrapolated future.” For the former, we plug in the estimate of Galí and Gambetti
(2019) that the wage Phillips curve has flattened by a factor of 1.9 over the last half
century; for the latter, we extrapolate the same multiplicative trend as additional
flattening.8 We find, as shown in panels four and five of Figure B-16, stronger ef-
fects of attention cycles in the regime with more rigid wages. This underscores the

8In particular, we use the ratio of the 1964-2007 estimate and 2007-2017 estimates in Table 3A
of Galí and Gambetti (2019).
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complementarity between attention cycles and the steepness of the Keynesian cross,
and suggests a novel pathway by which factor price rigidity can influence patterns of
macroeconomic volatility.

Elevated Uncertainty

Spikes in uncertainty around exceptional economic and political events have large doc-
umented effects on financial markets and firm decisionmaking (Bloom, 2009). More-
over, large, disorienting shocks are often either a natural consequence of poor economic
performance (e.g., policy surprises during the 2007-2009 financial crisis) or their root
cause (e.g., the Covid-19 pandemic). For this reason it is natural to study how changes
in the “level of uncertainty,” formalized in our model as variation in the attention cost
𝜆, might interact with our main business cycle predictions. Proposition 9 showed that
increases in uncertainty depress output in our model. These shocks also, according to
the results of Proposition 6, increase the sensitivity of dispersion to macroeconomic
conditions and hence, based on extrapolation of this partial-equilibrium logic, may
amplify the extent of misoptimization cycles. For this reason, we might predict that
elevated uncertainty is also complementary to the asymmetry and state-dependence
generated at the macro level.

We explore this relationship by solving for the model equilibrium under scenarios
with depressed and elevated attention costs, and numerically verify the predicted
complementarity (panels six and seven of Figure B-16). Thus our theory predicts that
business cycles caused and/or amplified by background uncertainty-inducing events
may induce sharper fluctuations in aggregate volatility due to endogenous reallocation
of attention.

B.6 Additional Empirical Results

B.6.1 Macro Attention With Conference Calls

In this Appendix, we describe an alternative construction of our textual Macro At-
tention measure using sales and earnings conference calls as an alternative source of
information about firms’ relative attention to different risks and events. This analysis
mirrors and supplements our main analysis of forms 10-K and 10-Q.

Data and Measurement We obtain data from the Fair Disclosure (FD) Wire
service, which records transcripts of sales and earnings conference calls for public
companies around the world. We obtain an initial sample of 294,900 calls which
cover 2003 to 2014. We next subset to documents that have reported firm names
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and stock tickers, which are automatically associated with documents by Lexis Nexis.
When matches are probabilistic, we use the first (highest probability) match.9 We
finally restrict to firms that are listed on one of three US stock exchanges: the NYSE,
the NASDAQ, or the NYSE-MKT (Small Cap). We finally connect tickers to firm
identifiers (GVKEY) using the master cross-walk available on Wharton Research Data
Services (WRDS). These operations together reduce the sample size to 164,805 calls.

We finally restrict to conference calls that are sales or earnings reports. This
further reduces the sample to 158,810 total observations, by removing conference calls
related to other activities (e.g., mergers). All in all, this sample is about 3,600 firm
observations per quarter, or about 60% of the per-quarter observations we obtained
via the SEC filings.

To tabulate histograms of words within documents, we use the CountVectorizer
function in the FeatureExtraction module of the standard Python package Scikit
Learn. We then replicate the exact methodology of Section 2.2.1, generating a new
list of 73 macroeconomic words. Like the main list of words, they are a combination
of very interpretable choices (“government,” “unemployment,” “monetary”) and false
positives related to structure and pedagogy (“theory,” “chapter”).

Results Figure B-11 plots the conference-call-derived measure, in log units and with
quarterly fixed effects taken out, alongside the US unemployment rate. Conference-
call-derived macro attention, like our main measure derived from forms 10-Q/K, is
cyclical and persistent. To benchmark these facts in the same way we did in the main
text, we first run linear regressions of the form

logMacroAttentionCC𝑡 = 𝛼 + 𝛽𝑍 · 𝑍𝑡 + 𝜖𝑡 (668)

for 𝑍𝑡 ∈ {Unemployment𝑡/100, log SPDetrend𝑡}. The first two columns of Table B.11
show the coefficients, which are slightly larger in absolute value than their equivalents
with our 10K/Q measure (1.529 and -0.104, respectively). The third column gives
our estimate of an AR(1) process, which is close to a unit root.

Casual comparison of Figure B-11 and Figure 2-1 in the main text suggests that,
while our two measures of attention have similar cyclical patterns, they do not closely
track each other at the aggregate level. Conference-call-derived attention is more
sharply peaked around the onset of the Great Recession while 10-K/Q-derived atten-
tion remains elevated for several subsequent years. The correlation between the two

9In the essentially zero-measure cases in which there is a tie, we take the alphabetically first
ticker.
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measures on a common sample is a (statistically insignificant) 0.091. The relation-
ship is closer, however, at the firm level. Columns 4-6 of Table B.11 show the results
of regressing the conference-call-derived measure 10K/Q-derived measure at the firm
level, with increasingly more stringent fixed effects. The correlation is consistently
positive, though strongest in terms of cross-firm differences as opposed to within-firm
differences. Moreover, as indicated in column 1 of Table B.8, our finding linking firm-
level misoptimization with firm-level attention is stable based on the conference call
measure.

B.6.2 Macro Attention With Word Stemming

Measurement Our main method for constructing Macro Attention treats individ-
ual words as the unit of measurement. For this reason, words like “unemployment” and
“unemployed” are counted separately despite likely communicating the same meaning
in all contexts. This method, while appealingly simple, may systematically under-
count words that have a number of different forms or tenses, while allowing the
multiple forms of certain ubiquitous words to crowd out other distinct concepts.

As an alternative method, which allays some of these concerns, we re-do our
calculation of macroeconomic language using word stems. For each word 𝑤 in the
macroeconomics references and/or regulatory filings, we use the Porter Stemmer im-
plemented in Python’s nltk software to determine a stem 𝑠(𝑤). Stemming is an
algorithmic and imperfect process. In examples relevant to our context, the Porter
Stemmer associates “unemployment” and “unemployed” with the common stem “un-
employ.” But it also, employing the same logic, associates “nominal” with “nomin,”
a stem which may match to words less often used to describe aggregate prices (e.g.,
“nominate”).

We adapt our tf-idf calculation to the stem level by calculating, for each stem 𝑠

that appears in the regulatory filings,

tf-idf(𝑠)𝑖𝑡 := tf(𝑠)𝑖𝑡 · log
(︂

1

df(𝑠)

)︂
(669)

where tf(𝑠) is the total term frequency of all words mapped to stem 𝑠, and df(𝑠) is the
minimum document frequency among words associated with the stem.10 We calculate
the top macro stems using the approach described in the main text (Section 2.2.1);
construct the set of macro words 𝒲𝑀 as the set of all words associated with a macro

10We use the minimum instead of the overall frequency due to a data limitation of having document
frequencies at the word, not stem, level. We expect either method to produce broadly similar results.

435



stem; and proceed in the standard way to calculate firm-level and aggregate macro
attention.

Results Table B.12, in analogy to Table B.11, presents a summary of the cyclical
patterns of the stemmed Macro Attention measure as well as its relationship to our
main measure. The two measures behave very similarly in the time series and are
tightly connected at the firm level. Moreover, when we replicate our main model
linking firm-level Macro Attention to firm-level misoptimization as in Table B.8, we
estimate a coefficient of -0.020 (SE: 0.004), which is comparable within error bars to
our baseline estimate of -0.009 (SE 0.003).

B.6.3 Dispersion in TFPR and Value Marginal Products

In this Appendix, we review theoretically and empirically the behavior of revenue-
TFP (TFPR) dispersion in our analysis. This analysis builds a bridge between
our findings and those of Kehrig (2015), who shows that cross-firm variance in rev-
enue total-factor-productivity, or the product of prices and physical productivity, is
counter-cyclical for the US durable manufacturing sector between 1972 and 2007.

Definitions and Theoretical Context In our model, with a three-input produc-
tion function, log physical TFP is defined as

log 𝜃𝑖𝑡 = log 𝑥𝑖𝑡 − (𝛼𝑗(𝑖),𝑀 log𝑀𝑖𝑡 + 𝛼𝑗(𝑖),𝐾 log𝐾𝑖𝑡 + 𝛼𝑗(𝑖),𝐿 log𝐿𝑖𝑡) (670)

where 𝑥𝑖𝑡 is physical sales, in quantity units; (𝑀𝑖𝑡, 𝐾𝑖𝑡, 𝐿𝑖𝑡) are materials, capital,
and labor; and (𝛼𝑗(𝑖),𝑀 , 𝛼𝑗(𝑖),𝐾 , 𝛼𝑗(𝑖),𝐿) are (industry-specific) weights on these inputs,
which sum to one. Prices are defined by the demand curves log 𝑝𝑖𝑡 = 1

𝜖
(log𝑋𝑡−log 𝑥𝑖𝑡)

and revenue-based TFP is therefore

log 𝜃𝑅𝑖𝑡 = log 𝜃𝑖𝑡 + 𝑝𝑖𝑡 = log Sales𝑖𝑡 − (𝛼𝑗(𝑖),𝑀 log𝑀𝑖𝑡 + 𝛼𝑗(𝑖),𝐾 log𝐾𝑖𝑡 + 𝛼𝑗(𝑖),𝐿 log𝐿𝑖𝑡)

(671)
where Sales𝑖𝑡 = 𝑝𝑖𝑡𝑥𝑖𝑡. We can calculate exactly what TFPR is in our empirical model
with inattentive firms, introduced in Appendix B.3.3, by combining this definition
with the input-choice policy functions derived in Lemma 10:

Lemma 12. TFPR in our model is given by

log 𝜃𝑅𝑖𝑡 = 𝛾𝑖 + Ξ𝑗(𝑖),𝑡 −
1

𝜖
𝑚𝑖𝑡 (672)

where 𝛾𝑖 is a constant at the firm level and Ξ𝑗(𝑖),𝑡 is a constant that varies at the
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industry-by-time level.

Thus, the only sources of within-industry variation in revenue-based TFP in our
model are the firm fixed effects and misoptimizations. This is another way of stating
our theoretical result that misoptimizations matter for aggregate output and pro-
ductivity via their effects on “misallocation,” as TFPR measures the value marginal
product of the (minimal cost) input bundle. A simple corollary, under our assumption
of cost minimization, is that the value marginal product log 𝜃𝑍𝑖𝑡 = log Sales𝑖𝑡

𝑍𝑖𝑡
, for any

of the three inputs, can also be written as log 𝜃𝑍𝑖𝑡 = 𝛾𝑍,𝑖 + Ξ𝑗(𝑖),𝑍,𝑡 − 1
𝜖
𝑚𝑖𝑡 with now

input-specific fixed effects (firm-level and industry-by-time level).
In our model, therefore, the presence of TFPR dispersion or value-marginal-

product dispersion indicates that there is non-zero misoptimization. The monotonic-
ity of TFPR or value-marginal-product dispersion over the business cycle, once we
project out firm and industry-by-time fixed effects, therefore provides an alternative
test of the model’s prediction of procyclical misoptimization dispersion.

TFPR Dispersion and VMPL Dispersion We calculate log TFPR in our data
by first calculating

log 𝜃𝑅𝑖𝑡 = log Sales𝑖𝑡−
(︀
𝛼𝑀,𝑗(𝑖) · logMatExp𝑖𝑡 − 𝛼𝐿,𝑗(𝑖) · logEmpl𝑖𝑡 − 𝛼𝐾,𝑗(𝑖) · logCapStock𝑖𝑡

)︀
(673)

where variable definitions follow the convention of Appendix B.3. We then remove
industry-by-time fixed effects and firm fixed effects to remove factor prices, as sug-
gested by Lemma 12, to generate the variable log 𝜃𝑅𝑖𝑡 .11 We also calculate the log value
marginal product of labor (VMPL) by first calculating

log 𝜃𝐿𝑖𝑡 = log Sales𝑖𝑡 − log𝐿𝑖𝑡 (674)

and similarly removing industry-by-time and firm fixed effects to generate the final
measure log 𝜃𝐿𝑖𝑡.

Appendix Figure B-12 shows the cyclical behavior of TFPR dispersion, the vari-
ance of log 𝜃𝑅𝑖𝑡 , and VMPL dispersion, the variance of log 𝜃𝐿𝑖𝑡. In line with our earlier
results, VMPL dispersion is markedly pro-cyclical with respect to both the unem-
ployment rate and the return on the S&P500. TFPR dispersion has no significant
relationship with either unemployment or the S&P500. Taken together, these exer-
cises suggest that value-marginal-product-based measures of misallocation give results

11Compare with Equation 598, which resembles Equation 673 but for deflating the input shares
by the mark-up. This is exactly the within-model adjustment for prices 𝑝𝑖𝑡.
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consistent with our main finding of pro-cyclical misoptimization.

B.7 State-Dependent Attention in Survey Data
In this Appendix, we test our interpretation of attention and misoptimization cycles
using the dataset of Coibion, Gorodnichenko, and Kumar (2018a) (henceforth, CGK),
one of the most comprehensive datasets of firm-level operations and macro backcasts
in an advanced economy. These data were assembled from a detailed survey of the
general managers of a representative panel of firms in New Zealand from 2013 to 2016.
The final subsection of this appendix, B.7.3, contains more details about the survey
questions and data.

B.7.1 Reported Attention and the Business Cycle

Although the CGK survey took place during relatively tranquil times for the New
Zealand economy, it did ask two hypothetical questions directly revealing of the
premise for this paper. Each concerned firm’s desire to collect information on the
macroeconomy conditional on either good (or poor) conditions:

Suppose that you hear on TV that the economy is doing well [or poorly].
Would it make you more likely to look for more information?

Table B.15 reports the percentage of answers in each of five bins, given the conditions
of the economy doing “well” or “poorly.” This self-reported demand for information
increases in the context of bad news about the macroeconomy and, if anything, con-
tracts with good news of the macroeconomy. This is consistent with our hypothesis
that bad conditions increase the stakes for firms’ decisions and hence make keen at-
tention to macroeconomic conditions more important, while good news does not have
a symmetric effect.

B.7.2 Reported Profit Function Curvature and Attention

A second test possible in the CGK data relates to our more specific prediction that
higher curvature of the firm’s objective, as a function of decision variables, should
increase attentiveness to decision-relevant variables including macroeconomic aggre-
gates. The CGK survey indirectly elicits information on this shifter via questions
about purely hypothetical price changes and revenue increases to an “optimal point.”
In Section B.7.3 at the end of this appendix, we show exactly how one can use a pair
of linked questions about firms’ hypothetical optimal reset price, and the hypothetical
percentage increase in profits that would be associated with that change, to develop
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an elicited measure of firm profit curvature in non-risk-adjusted units.12

As outcomes for macro attention, we can turn to two sources. The first is the
absolute-value error in firms’ one-year back-casts for three macro variables: inflation,
output growth, and unemployment. The second is firm managers’ reported (binary)
interest in tracking one of the aforementioned variables.

For each of the aforementioned firm-level outcomes 𝑌𝑖𝑡, we run the following regres-
sion on the firm-level profit curvature variable ProfitCurv𝑖𝑡 and a vector of controls
𝑍𝑖𝑡:

𝑌𝑖𝑡 = 𝛼 + 𝛽 · ProfitCurv𝑖𝑡 + 𝛾′𝑍𝑖𝑡 + 𝜖𝑖𝑡 (675)

Our prediction that profit curvature drives stakes for attention corresponds to 𝛽 < 0

for back-cast errors and 𝛽 > 0 for reported attention. We control for five bins in the
firms’ total reported output and the firms’ 3-digit ANZ-SIC code industries. Finally,
we cluster all standard errors by 3-digit industry.

Table B.16 shows the results. For inflation we find strong evidence that higher-
curvature firms make smaller errors, with some of the effect being absorbed by control
variables when added. For GDP growth we find estimates that are much less precise
but have the same signs; and for unemployment, results that are further imprecise
and have the wrong signs. We take this as further suggestive evidence for the mech-
anism that our theory proposes: that the differential stakes of making mistakes is a
contributing factor to macro attention.

B.7.3 Details of Data Construction

In this final subsection, we describe more precisely how we use the raw survey results of
Coibion, Gorodnichenko, and Kumar (2018a) in our empirical analysis. We make use
of the full dataset contained in the replication files posted on the article’s page hosted
by the American Economic Review and OpenICPSR (Coibion, Gorodnichenko, and
Kumar, 2018b). All direct references to survey questions by wave or number match
the “Appendix 5: Selected Survey Questions” in the online appendix available at the
same link.

Profit Function Curvature

We draw our measure of profit function curvature from the answers to two survey
questions about hypothetical price changes. These are jointly asked as Question 17
of Wave 5, Part B:

12Table B.17 shows that this curvature measure is higher for smaller firms with more within-
industry competitors, though these patterns are immaterial for our reduced-form verification of our
prediction.
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If this firm was free to change its price (i.e. suppose there was no cost
to renegotiating contracts with clients, no costs of reprinting catalogues,
etc.) right now, by how much would it change its price? Please provide a
percentage answer. By how much do you think profits would change as a
share of revenues? Please provide a numerical answer in percent.

Denote the answer for prices as ∆𝑝𝑖 and the answer for profits as ∆Π𝑖. Under the
assumption that the following second-order approximation holds for the deviation of
profits from their frictionless optimum (e.g., a version of (70), in percentage units for
the outcome and the choice variable), the following relationship holds between the
measurable quantities and the profit function curvature ProfitCurv𝑖:

∆Π𝑖 = ProfitCurv𝑖 ·∆𝑝2𝑖 (676)

We use this expression to calculate an empirical analogue of profit curvature. The
top panel of Table B.17 provides summary statistics of measured profit curvatures
among the 3,153 firms for which we can measure it. The median reported curvature
is 0.12, which means that a one-percentage-point deviation from the optimal price for
such a firm corresponds to a 0.12-percentage-point deviation from optimal profits as
a fraction of revenue.

The bottom panel of Figure B.17 shows firm and manager-level correlates for our
measure in the CGK data. The table reports coefficients of the following regression:

̂ProfitCurv𝑖 = 𝛽 · �̂�𝑖 + 𝑒𝑖𝑡 (677)

where the hat denotes that both variables have been normalized to z-score units (i.e.,
with means subtracted and standard deviation divided out), so the coefficient 𝛽 is a
“normalized” metric of the standard-deviation-to-standard-deviation effect. We find
strong evidence that the firms with higher profit function curvature are smaller and
have more competitors. There is only weaker evidence that the associated managers
are more skilled and/or better rewarded. We interpret this cautiously as evidence that
likely confounds via manager skill and firm sophistication (i.e., better managers grow
firms larger, and make better forecasts) are going the “wrong direction” to explain
our reduced-form correlations between profit curvature and forecasting accuracy.

Outcomes: Back-cast Errors

For back-cast errors, we use the following questions that are split among waves of the
survey. In survey wave 1, firms are asked the following question:
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During the last twelve months, by how much do you think prices changed
overall in the economy?

Although the wording of the question is not entirely clear about what indicator is
being referred to, we follow CGK and interpret this as the annual percent change
in CPI, with realized value 1.6%. Firms are asked a similar question in wave 4, but
we prefer the wave 1 version because the sample size is slightly larger. Table B.18
recreates Table B.16 from the main text, first for the wave 1 back-cast of inflation
(reported for the main text) and next for the wave 4 back-cast of inflation (not
reported in the main text, but quantitatively very similar).

For GDP growth, we use the following question from wave 4:

What do you think the real GDP growth rate has been in New Zealand
during the last 12 months? Please provide a precise quantitative answer
in percentage terms.

and compare with a realized value of 2.5%. Finally, for unemployment, we use the
following question also from wave 4:

What do you think the unemployment rate currently is in New Zealand?
Please provide a precise quantitative answer in percentage terms.

and compare with a realized value of 5.7%. All realized values are taken from the
replication files of CGK, to deal with any ambiguity about statistical releases, and
ensure comparability with that study.

Outcomes: Tracking Indicators

We finally use, for the lower panel of Table B.16, the following questions from wave
4 about tracking different variables:

Which macroeconomic variables do you keep track of? Check each variable
that you keep track of.

1. Unemployment rate

2. GDP

3. Inflation

4. None of these is important to my decisions

We code for each variable a binary indicator of whether the firm lists the variable of in-
terest. We combine GDP in this question (by implication, in levels) with quantitative
forecasts of GDP Growth in Table B.16.
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Table B.1: Misoptimization and Firm Performance

(1) (2) (3) (4) (5) (6) (7) (8)
Outcome: 𝑅𝑖𝑡 Outcome: 𝜋𝑖𝑡

�̂�2𝑖𝑡 -0.236 -0.230 -0.060 -0.051 -0.316 -0.316 -0.106 -0.105
(0.026) (0.026) (0.032) (0.032) (0.024) (0.024) (0.018) (0.017)

Sector x Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓

TFP Control ✓ ✓ ✓ ✓

𝑁 41,578 41,578 41,206 41,206 51,015 51,015 50,966 50,996
𝑅2 0.238 0.261 0.384 0.403 0.117 0.131 0.663 0.681

Notes: 𝑅𝑖𝑡 is the firm-level log stock return and 𝜋𝑖𝑡 is firm-level profitability. �̂�2𝑖𝑡 is the
squared firm-level misoptimization residual, constructed using the methods described in
Section 2.5.1. Standard errors are double-clustered at the year and firm level.

B.8 Supplemental Tables and Figures
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Table B.2: Dynamic Effects of Misoptimization

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Outcome:

Δ log 𝜃𝑖,𝑡+𝑘 𝑅𝑖,𝑡+𝑘 𝜋𝑖,𝑡+𝑘

Horizon 𝑘 0 1 2 0 1 2 0 1 2

�̂�2𝑖𝑡 -0.009 0.014 -0.007 -0.236 -0.252 -0.251 -0.316 -0.286 -0.265
(0.007) (0.008) (0.010) (0.026) (0.027) (0.038) (0.024) (0.018) (0.019)

Sector x Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝑁 50,455 40,671 32,362 41,578 34,643 28,103 51,015 42,014 33,934
𝑅2 0.231 0.245 0.263 0.238 0.241 0.248 0.117 0.123 0.126

Notes: Each column is the estimate of a separate projection regression. The outcomes are
TFP growth Δ log 𝜃𝑖𝑡 (first three columns), log stock returns 𝑅𝑖𝑡 (second three columns),
and profitability 𝜋𝑖𝑡 (last three columns). �̂�2𝑖𝑡 is the squared firm-level misoptimization
residual, constructed using the methods described in Section 2.5.1. Standard errors are
double-clustered at the year and firm level.
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Table B.3: Cyclicality of Misoptimization, with Alternative Measurement Schemes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Outcome: MisoptimizationDispersion𝑡

Unemployment𝑡/100 -0.841 -0.439 -0.822 -0.749 -0.501 -0.695 -0.802 -0.813 -0.605 -0.812 -1.034
(0.341) (0.196) (0.336) (0.292) (0.159) (0.280) (0.337) (0.330) (0.293) (0.335) (0.549)

Correlation -0.493 -0.468 -0.485 -0.466 -0.546 -0.505 -0.479 -0.489 -0.494 -0.462 -0.379

Baseline ✓
Adj. Control ✓

Leverage Control ✓
𝑡, 𝑡2 Control ✓

Manufacturing ✓
Sector Policy Fn. ✓
𝑡-varying Policy Fn. ✓
Quadratic Policy Fn. ✓

Pre-Period TFP ✓
𝑡-varying Prod. Fn. ✓

OP (96) TFP ✓

𝑁 31 31 31 31 31 31 31 31 20 31 31
𝑅2 0.243 0.219 0.235 0.326 0.298 0.255 0.230 0.239 0.244 0.213 0.144

Notes: The first row reports the coefficient from the regression of MisoptimizationDispersion𝑡 on Unemployment𝑡/100, with standard
errors that are HAC-robust with a 3-year Bartlett Kernel. The following row reports the correlation of these variables (in column 4,
conditional on projecting out controls). The “Adjustment Cost” and “Leverage” controls are described in the main text. The “Sector
Policy Fn.” estimates the policy function separately for each sector. The “𝑡-varying Policy Fn.” model interacts all coefficients in the
policy function with time fixed effects. The “Quadratic Policy Fn.” allows for quadratic dependence on TFP. The “Pre-Period TFP”
model uses cost shares from before 1997 to construct the production function, and data after 1998 to estimate the policy function and
misoptimizations. The “𝑡-varying Prod. Fn.” model estimates the Solow residual using industry-by-year-specific cost shares. The “OP
(96)” model estimates productivity using the proxy-variable strategy of Olley and Pakes (1996), as detailed in Appendix B.3.2.
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Table B.4: The Effects of Misoptimization in Levels

(1) (2) (3) (4) (5) (6)
Outcome:

𝑅𝑖𝑡 𝜋𝑖𝑡 �̂�2
𝑖𝑡

�̂�2
𝑖𝑡 -0.042 -0.076 -0.021 -0.025

(0.028) (0.033) (0.010) (0.011)
�̂�2
𝑖𝑡 ×𝑅𝑡 0.177 0.038

(0.078) (0.053)
logMacroAttention𝑖𝑡 -0.010 -0.020

(0.006) (0.007)

Firm FE ✓ ✓ ✓ ✓ ✓
Sector x Time FE ✓ ✓ ✓ ✓ ✓ ✓

𝑁 41,247 41,247 57,646 57,646 34,421 33,841
𝑅2 0.385 0.385 0.656 0.656 0.053 0.488

Notes: �̂�𝑖𝑡 is the firm-level misoptimization, constructed using the methods described in
Section 2.5.1 These specifications replicate results in Tables 2.1, 2.2, 2.3, and B.1 with with
�̂�𝑖𝑡 in place of �̂�𝑖𝑡. Standard errors are double-clustered at the year and firm level.
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Table B.5: Pricing of Misoptimization, with Alternative Measurement Schemes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Outcome: 𝑅𝑖𝑡

𝑢2𝑖𝑡 -0.097 -0.239 -0.101 -0.168 -0.090 -0.099 -0.109 -0.062 -0.057 -0.096
(0.034) (0.941) (0.035) (0.045) (0.036) (0.035) (0.034) (0.028) (0.021) (0.034)

𝑢2𝑖𝑡 ×𝑅𝑡 0.443 0.941 0.415 0.680 0.420 0.330 0.447 0.227 0.231 0.417
(0.171) (0.370) (0.169) (0.182) (0.156) (0.163) (0.163) (0.130) (0.098) (0.168)

Sector x Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Baseline ✓
Adj. Control ✓

Leverage Control ✓
Manufacturing ✓

Sector Policy Fn. ✓
𝑡-varying Policy Fn. ✓
Quadratic Policy Fn. ✓

Pre-Period TFP ✓
𝑡-varying Prod. Fn. ✓

OP (96) TFP ✓

𝑁 41,206 35,388 41,016 22,902 41,197 41,203 41,203 26,206 40.078 41,166
𝑅2 0.385 0.387 0.385 0.367 0.385 0.384 0.385 0.429 0.382 0.385

Notes: 𝑅𝑖𝑡 is the firm-level log stock return. 𝑢𝑖𝑡 is the firm-level misoptimization residual, constructed using the methods described in
Section 2.5.1 and the indicated variants described in the main text and the notes of Table B.3. 𝑅𝑡 is the log return of the S&P 500.
Standard errors are double-clustered at the year and firm level. The scenarios are described in the main text and the notes of Table B.3.
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Table B.6: Markets Punish Misoptimizations Harder in Low States, Additional
Controls

(1) (2) (3) (4) (5) (6)
Outcome: 𝑅𝑖𝑡

�̂�2𝑖𝑡 ×𝑅𝑡 0.376 0.378 0.345 0.321 0.330 0.489
(0.123) (0.109) (0.118) (0.173) (0.094) (0.296)

Sector x Time FE ✓ ✓ ✓ ✓ ✓ ✓
�̂�2𝑖𝑡 ✓ ✓ ✓ ✓ ✓ ✓

TFP and Interaction ✓
Leverage and Interaction ✓

Lag Return and Interaction ✓
Industry FE and Interaction ✓

Firm FE and Interaction ✓

𝑁 41,578 41,578 41,429 34,805 41,206 41,206
𝑅2 0.239 0.261 0.246 0.239 0.379 0.498

Notes: 𝑅𝑖𝑡 is the firm-level log stock return. �̂�𝑖𝑡 is the firm-level misoptimization residual,
constructed using the methods described in Section 2.5.1. 𝑅𝑡 is the log return of the S&P
500. Column 1 reports the baseline estimate, Column 1 of Table 2.1. Columns 2-6 add
additional variables and their interaction with �̂�2𝑖𝑡. These variables are: the level of log firm
TFP, log 𝜃𝑖𝑡; leverage, Lev𝑖𝑡; the previous year’s stock return, 𝑅𝑖,𝑡−1; an industry fixed effect
𝜒𝑗(𝑖); and a firm fixed effect 𝛾𝑖. Standard errors are double-clustered at the year and firm
level.
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Table B.7: Alternative Timing for Relationship Between Attention and Misopti-
mization

(1) (2) (3) (4) (5) (6)
Outcome: �̂�2𝑖𝑡

logMacroAttention𝑖,𝑡−1 -0.0031 -0.0010 0.0060 0.0079
(0.0034) (0.0045) (0.0048) (0.0045)

logMacroAttention𝑖𝑡 -0.0006 -0.0058
(0.0048) (0.0042)

logMacroAttention𝑖,𝑡+1 -0.0064 -0.0052 -0.012 -0.0067
(0.0030) (0.0039) (0.004) (0.0048)

Joint 𝐹 -statistic 4.17 2.41
Joint 𝑝-value 0.019 0.097

Sector x Time FE ✓ ✓ ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓

𝑁 25,657 25,122 24,094 23,312 19,330 18,649
𝑅2 0.054 0.375 0.062 0.382 0.065 0.383

Notes: �̂�2𝑖𝑡 is the squared firm-level misoptimization residual, constructed using the methods
described in Section 2.5.1. logMacroAttention𝑖𝑡 is the measure of firm-level macroeconomic
attention, constructed using the methods described in Section 2.2.1. Standard errors are
double-clustered at the year and firm level.
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Table B.8: Attention and Misoptimization, with Alternative Measurement Schemes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Outcome: 𝑢2𝑖𝑡

logMacroAttention𝑖𝑡 -0.0081 -0.0163 -0.0035 -0.0076 -0.0127 -0.0107 -0.0084 -0.0062 -0.0140 -0.0080 -0.0140
(0.0028) (0.0066) (0.0015) (0.0028) (0.0037) (0.0028) (0.0028) (0.0026) (0.0042) (0.0028) (0.0042)

Sector x Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Baseline ✓
Conf. Call ✓

Adj. Control ✓
Leverage Control ✓
Manufacturing ✓

Sector Policy Fn. ✓
𝑡-varying Policy Fn. ✓
Quadratic Policy Fn. ✓

Pre-Period TFP ✓
𝑡-varying Prod. Fn. ✓

OP (96) TFP ✓

𝑁 28,279 5,997 24,024 28,133 14,891 28,283 28,275 28,275 24,785 28,266 24,785
𝑅2 0.053 0.072 0.060 0.053 0.041 0.054 0.051 0.056 0.046 0.053 0.046

Notes: 𝑢2𝑖𝑡 is the squared firm-level misoptimization residual, constructed using the methods described in Section 2.5.1 and the indicated
variants described in the main text and the notes of Table B.3. logMacroAttention𝑖𝑡 is the measure of firm-level macroeconomic attention,
constructed using the methods described in Section 2.2.1 and Appendix B.6.1. Standard errors are double-clustered at the year and firm
level. The scenarios are described in the main text and the notes of Table B.3.
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Table B.9: Policy Function Estimation

Baseline Adj. Cost Leverage Quadratic

Panel A: Persistence of Misoptimization
Outcome: �̂�0

𝑖𝑡

�̂�0
𝑖,𝑡−1 0.696 0.016 0.696 0.683

(0.021) (0.005) (0.003) (0.003)

Panel B: Quasi-Differenced Policy Function
Outcome: log𝐿𝑖𝑡 − 𝜌 log𝐿𝑖,𝑡−1

log 𝜃𝑖𝑡 0.418 0.381 0.419 0.463
(0.024) (0.026) (0.025) (0.029)

log 𝜃𝑖,𝑡−1 -0.031 -0.090 -0.026 0.006
(0.018) (0.015) (0.019) (0.020)

log 𝜃𝑖𝑡 × Lev𝑖𝑡 -0.008
(0.003)

log 𝜃𝑖,𝑡−1 × Lev𝑖,𝑡−1 -0.025
0.006

Lev𝑖𝑡 -0.020
(0.005)

Lev𝑖,𝑡−1 -0.050
(0.011)

(log 𝜃𝑖𝑡)
2 0.045

(0.008)
(log 𝜃𝑖,𝑡−1)

2 0.031
(0.006)

log𝐿𝑖,𝑡−1 0.811
(0.012)

log𝐿𝑖,𝑡−2 -0.041
(0.010)

𝑁 51,891 44,051 51,664 51,891
𝑅2 0.896 0.990 0.896 0.904

Notes: The four columns correspond to four of our policy-function estimation methods, as
described in the main text. The coefficient on �̂�0

𝑖,𝑡−1 in panel A corresponds in the model
to parameter 𝜌. Standard errors are double clustered by firm and year.
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Table B.10: Data Definitions in Compustat

Quantity Expenditure

Production, 𝑥𝑖𝑡 — sale
Employment, 𝐿𝑖𝑡 emp emp × industry wage
Materials, 𝑀𝑖𝑡 — cogs+ xsga− dp− wage bill
Capital, 𝐾𝑖𝑡 ppegt plus net investment —

Table B.11: Time-Series and Cross-Sectional Properties of Conference-Call Atten-
tion

(1) (2) (3) (4) (5) (6)
Outcome:

logMacroAttnCC𝑡 logMacroAttnCC𝑖𝑡

Unemployment𝑡
100

2.481
(0.596)

log SPDetrend𝑡 -0.270
(0.056)

logMacroAttnCC𝑡−1 0.949
(0.068)

logMacroAttn10K𝑖𝑡 0.463 0.372 0.121
(0.034) (0.036) (0.028)

Firm FE ✓
Sector x Time FE ✓ ✓

𝑁 46 46 45 8,023 7,994 7,670
𝑅2 0.376 0.593 0.873 0.123 0.308 0.804

Notes: The “CC” MacroAttention is constructed using the methods described in Appendix
B.6.1. The “10K” MacroAttention is our baseline measure from Section 2.2. In the first
three columns, standard errors are HAC robust with a bandwidth (Bartlett kernel) of four
quarters. In the second three columns, standard errors are double-clustered by year and
firm ID.

451



Table B.12: Time-Series and Cross-Sectional Properties of Word-Stemmed Atten-
tion

(1) (2) (3) (4) (5) (6)
Outcome:

logMacroAttnStem𝑡 logMacroAttnStem𝑖𝑡

Unemployment𝑡
100

0.994
(0.330)

log SPDetrend𝑡 -0.062
(0.031)

logMacroAttnStem𝑡−1 0.811
(0.057)

logMacroAttn10K𝑖𝑡 0.553 0.542 0.518
(0.010) (0.010) (0.008)

Firm FE ✓
Sector x Time FE ✓ ✓

𝑁 92 92 92 46,612 46,590 45,458
𝑅2 0.118 0.140 0.675 0.561 0.639 0.867

Notes: The “Stem” MacroAttention is constructed using the methods described in Appendix
B.6.2. The “10K” MacroAttention is our baseline measure from Section 2.2. In the first
three columns, standard errors are HAC robust with a bandwidth (Bartlett kernel) of four
quarters. In the second three columns, standard errors are double-clustered by year and
firm ID.
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Table B.13: Selected Summary Statistics of Firm Micro-Data

1990 2010 1990 2010

Code Name Sales Employees Sales Employees Code Name Sales Employees Sales Employees

millions share thousands share millions share thousands share millions share thousands share millions share thousands share

11 7935.69 0.22 117.03 0.54 16028.05 0.13 157.12 0.49 322 Paper Manufacturing 80736.02 2.22 485.96 2.26 137924.31 1.11 366.40 1.14

21 143716.64 3.95 557.43 2.59 728283.11 5.88 1020.34 3.18 323 6959.89 0.19 64.35 0.30 17960.41 0.14 98.55 0.31

23 Construction 20221.05 0.56 79.43 0.37 76357.58 0.62 249.05 0.78 324 707106.33 19.44 1054.61 4.90 2666606.41 21.53 1718.55 5.35

42 Wholesale Trade 92141.14 2.53 316.32 1.47 220566.67 1.78 286.52 0.89 325 Chemical Manufacturing 376182.22 10.34 2146.13 9.98 1234732.55 9.97 2362.52 7.36

44 Retail Trade (I) 90746.30 2.49 697.08 3.24 755083.01 6.10 1802.16 5.61 326 23886.12 0.66 206.51 0.96 35081.57 0.28 139.19 0.43

45 Retail Trade (II) 71844.36 1.98 606.25 2.82 103823.53 0.84 393.61 1.23 327 22485.57 0.62 190.56 0.89 72492.53 0.59 242.54 0.76

48 202207.84 5.56 1278.65 5.94 490525.14 3.96 1484.93 4.62 331 Primary Metal Manufacturing 81200.98 2.23 438.98 2.04 308524.32 2.49 883.98 2.75

49 22033.22 0.61 337.61 1.57 60473.08 0.49 505.72 1.57 332 34872.77 0.96 296.50 1.38 51755.70 0.42 172.89 0.54

53 29186.20 0.80 335.31 1.56 97644.47 0.79 414.75 1.29 333 Machinery Manufacturing 126838.80 3.49 823.90 3.83 303757.26 2.45 1060.24 3.30

54 39096.89 1.07 367.54 1.71 142888.17 1.15 878.65 2.74 334 169692.71 4.66 1377.51 6.40 575557.43 4.65 1976.28 6.15

56 30757.47 0.85 1055.62 4.91 97139.76 0.78 1432.94 4.46 335 48369.82 1.33 447.71 2.08 96056.38 0.78 394.72 1.23

61 Educational Services 2830.78 0.08 21.45 0.10 12350.02 0.10 93.87 0.29 336 553821.60 15.22 3359.30 15.62 1210603.25 9.77 3201.16 9.97

62 14676.48 0.40 278.49 1.29 113475.92 0.92 874.35 2.72 337 2516.33 0.07 23.81 0.11 15259.16 0.12 68.65 0.21

71 4299.00 0.12 77.61 0.36 14592.82 0.12 140.96 0.44 339 Miscellaneous Manufacturing 16722.13 0.46 143.46 0.67 63225.24 0.51 259.74 0.81

72 28474.41 0.78 741.09 3.45 126452.99 1.02 1949.83 6.07 511 18829.43 0.52 149.15 0.69 42552.96 0.34 170.81 0.53

81 818.90 0.02 13.61 0.06 6028.48 0.05 71.80 0.22 512 13821.56 0.38 53.44 0.25 36968.97 0.30 112.21 0.35

99 Nonclassifiable Establishments 72587.03 2.00 402.04 1.87 337554.38 2.73 957.49 2.98 515 Broadcasting (except Internet) 23400.47 0.64 187.74 0.87 189150.10 1.53 435.67 1.36

311 Food Manufacturing 89888.93 2.47 393.90 1.83 280503.94 2.26 773.89 2.41 517 Telecommunications 158686.32 4.36 1045.88 4.86 1107220.16 8.94 3041.71 9.47

312 81514.55 2.24 527.06 2.45 323117.33 2.61 1128.77 3.51 518 1032.31 0.03 9.77 0.05 74483.99 0.60 273.40 0.85

313 Textile Mills 8281.43 0.23 109.85 0.51 1698.84 0.01 14.17 0.04 519 Other Information Services 77053.51 2.12 384.84 1.79 45026.66 0.36 168.24 0.52

314 Textile Product Mills 1642.40 0.05 15.52 0.07 6512.22 0.05 31.62 0.10 Total 3637612 100 21512 100 12386570 100 32120 100

315 Apparel Manufacturing 18195.52 0.50 179.87 0.84 50193.90 0.41 204.02 0.64

316 3220.64 0.09 18.56 0.09 8007.68 0.06 26.47 0.08 USA 5963000 125840 14990000 153890

321 Wood Product Manufacturing 17079.99 0.47 94.34 0.44 32329.60 0.26 79.89 0.25 Compustat share of USA 61.00 17.09 82.63 20.87

Agriculture, Forestry, Fishing 
and Hunting
Mining, Quarrying, and Oil and 
Gas Extraction

Printing and Related Support 
Activities
Petroleum and Coal Products 
Manufacturing

Plastics and Rubber Products 
Manufacturing
Nonmetallic Mineral Product 
Manufacturing

Transportation and 
Warehousing (I)
Transportation and 
Warehousing (II)

Fabricated Metal Product 
Manufacturing

Real Estate and Rental and 
Leasing
Professional, Scientific, and 
Technical Services

Computer and Electronic 
Product Manufacturing

Administrative and Support 
and Waste Management and 
Remediation Services

Electrical Equipment, 
Appliance, and Component 
Manufacturing

Transportation Equipment 
Manufacturing

Health Care and Social 
Assistance

Furniture and Related Product 
Manufacturing

Arts, Entertainment, and 
Recreation

Accommodation and Food 
Services

Publishing Industries (except 
Internet)

Other Services (except Public 
Administration)

Motion Picture and Sound 
Recording Industries

Beverage and Tobacco Product 
Manufacturing

Data Processing, Hosting, and 
Related Services

Leather and Allied Product 
Manufacturing
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Table B.14: Comparison of TFP Measures

(1) (2) (3)
Outcome: Cost-Share TFP

OP TFP 1.117 1.141 1.025
(0.009) (0.008) (0.006)

Firm FE ✓ ✓
Sector x Time FE ✓

𝑁 68,825 68,821 67,395
𝑅2 0.649 0.721 0.977

Notes: “Cost-Share TFP” is our baseline measure of log 𝜃𝑖𝑡 used in the main analysis. “OP
TFP” is the alternative measure based on the method of Olley and Pakes (1996). Standard
errors are double-clustered by year and firm ID.

Table B.15: Changing Macro Attention in Response to News

Response Poorly Well

Much more likely 44.96 9.77
Somewhat more likely 30.91 19.42
No change 12.56 8.67
Somewhat less likely 7.16 53.35
Much less likely 4.40 8.79

Total 100.00 100.00

Notes: Data are from the Coibion, Gorodnichenko, and Kumar (2018a) survey, as described
in Appendix B.7.
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Table B.16: Profit-Function Curvature and Attention to Macro Variables

Panel 1: Back-cast Error (Absolute Value)
Variable Inflation GDP Growth Unemployment

ProfitCurv𝑖𝑡 -1.172 -0.328 -0.072 -0.042 0.075 0.121
(0.195) (0.091) (0.041) (0.041) (0.072) (0.077)

Controls ✓ ✓ ✓

𝑅2 0.024 0.457 0.001 0.006 0.001 0.032
𝑁 3,153 3,145 1,257 1,237 1,257 1,256

Panel 2: Keeping Track
Variable Inflation GDP Growth Unemployment

ProfitCurv𝑖𝑡 0.170 0.050 0.015 0.019 -0.005 -0.022
(0.039) (0.029) (0.022) (0.028) (0.035) (0.081)

Controls ✓ ✓ ✓

𝑅2 0.032 0.332 0.000 0.074 0.000 0.065
𝑁 1,255 1,235 1,255 1,235 1,255 1,235

Notes: Standard errors are clustered by three-digit industry. Data are from the Coibion,
Gorodnichenko, and Kumar (2018a) survey, as described in Appendix B.7.
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Table B.17: Profit Curvature in the Data

Summary Statistics
Mean Quantiles

5 25 50 75 95

0.280 0.020 0.05 0.12 0.28 1.00

Correlates

Variable Norm. coef. 𝑡-stat 𝑅2

Firm

Frequency of price review -0.106 -7.80 0.011
log output -0.066 -9.43 0.015
Firm age -0.117 -10.17 0.014

Employment -0.122 -7.19 0.015
Labor share -0.138 -7.98 0.020

Number of competitors 0.130 6.81 0.017

Manager

log income 0.015 0.55 0.000
Some or more college 0.043 1.87 0.002

Tenure at firm -0.117 -5.73 0.014
Tenure in industry -0.058 -2.33 0.003

Manager age -0.091 -3.25 0.008

Notes: The top panel gives summary statistics. The bottom panel gives normalized regres-
sion coefficients for a number of possible correlates. Standard errors, used to calculate the
𝑡-statistics, are clustered by three-digit industry.

Table B.18: Curvature and Inflation BCE in Waves 1 versus 4

Outcome: absolute Inflation BCE
Wave 1 4

ProfitCurv𝑖𝑡 -1.172 -0.328 -0.884 -0.330
(0.195) (0.091) (0.181) (0.126)

Controls ✓ ✓

𝑅2 0.024 0.457 0.033 0.268
𝑁 3,153 3,145 1,257 1,256

Notes: Standard errors are clustered by three-digit industry.
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Figure B-1: Frequency over Time of Each Word in MacroAttention (Part I)

1995 2000 2005 2010 2015

Aggregate

1995 2000 2005 2010 2015

Answer

1995 2000 2005 2010 2015

Argue

1995 2000 2005 2010 2015

Budget

1995 2000 2005 2010 2015

Buy

1995 2000 2005 2010 2015

Called

1995 2000 2005 2010 2015

Chapter

1995 2000 2005 2010 2015

Chapters

1995 2000 2005 2010 2015

Con

1995 2000 2005 2010 2015

Consumer

1995 2000 2005 2010 2015

Consumers

1995 2000 2005 2010 2015

Consumption

1995 2000 2005 2010 2015

Countries

1995 2000 2005 2010 2015

Country

1995 2000 2005 2010 2015

Curve

1995 2000 2005 2010 2015

Cut

1995 2000 2005 2010 2015

Debate

1995 2000 2005 2010 2015

Demand

1995 2000 2005 2010 2015

Demanded

1995 2000 2005 2010 2015

Determinants

1995 2000 2005 2010 2015

Economics

1995 2000 2005 2010 2015

Economist

1995 2000 2005 2010 2015

Economists

1995 2000 2005 2010 2015

Economy

1995 2000 2005 2010 2015

Equation

1995 2000 2005 2010 2015

Equilibrium

1995 2000 2005 2010 2015

Example

1995 2000 2005 2010 2015

Explain

1995 2000 2005 2010 2015

Exports

1995 2000 2005 2010 2015

Fall

1995 2000 2005 2010 2015

Falls

1995 2000 2005 2010 2015

Fed

1995 2000 2005 2010 2015

Figure

1995 2000 2005 2010 2015

Firms

1995 2000 2005 2010 2015

Get

1995 2000 2005 2010 2015

Goods

1995 2000 2005 2010 2015

Government

1995 2000 2005 2010 2015

Happens

1995 2000 2005 2010 2015

Imagine

1995 2000 2005 2010 2015

Inflation

1995 2000 2005 2010 2015

Labor

1995 2000 2005 2010 2015

Leads

1995 2000 2005 2010 2015

Let

1995 2000 2005 2010 2015

Macroeconomic

2000 2005 2010 2015

Macroeconomics

457



Figure B-1: Frequency over Time of Each Word in MacroAttention (Part II)
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Figure B-2: Correlations with Unemployment by Word
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Notes: Correlations are calculated at the quarterly frequency.
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Figure B-3: Relationship of Macro Attention to News Indices
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Notes: The blue line, measured by the left axis of each plot, is the log of Macro Attention.
The left panel is the news index of Baker, Bloom, and Davis (2016). The right panel is the
sum of five macroeconomic topics from the Bybee, Kelly, Manela, and Xiu (2021b) Structure
of News dataset: “economic growth,” “Federal Reserve,” “financial crisis”, “recession,” and
“macroeconomic data.”
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Figure B-4: Industry-Specific Cyclicality of Macro Attention
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Notes: The horizontal axis is the correlation of sectoral and aggregate nominal GDP, cal-
culated as described in Section 2.2.3 of the main text. The vertical axis is the regression
coefficient of log sectoral macro attention, net of quarterly fixed effects, on the US unem-
ployment rate. The dashed orange line is the estimate of the same using aggregate Macro
Attention. The dots are sized based on quartiles of total sales in Compustat in 2015. The
blue solid line is a cross-industry linear regression line.
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Figure B-5: Relationship of Misoptimization Dispersion with Other Statistics
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as defined in Section 2.5. The black dashed line on the left is the (optimal-sale-weighted)
interquartile range of the distribution of �̂�𝑖𝑡. The black dashed line on the right is the
(optimal-sale-weighted) average of |�̂�𝑖𝑡|.
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Figure B-6: Misoptimization Dispersion is Pro-Cyclical, Long Sample
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Notes: This Figure replicates Figure 2-3 using our long-sample (1950-2018) calculation of
Misoptimization Dispersion, described in Section 2.5.2 (“Robustness to Studied Time Pe-
riod.”). The top two panels plot Misoptimization Dispersion (blue line, left axis) along with,
respectively, unemployment and the linearly detrended S&P 500 price (black dashed lines,
right axis). Because of the composition adjustment, the metric can be negative. The bot-
tom two panels are scatterplots of Misoptimization Dispersion versus each macroeconomic
aggregate. The black solid line is the linear regression fit. The standard errors are HAC
robust based on a Bartlett kernel with a three-year bandwidth.
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Figure B-7: Relationship of Misoptimization Dispersion Across Inputs
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Figure B-8: Time-Varying Punishments of Misoptimizations
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Notes: This Figure shows the estimates 𝛽𝑦 from the following model of year-specific effects
of misoptimizations on stock returns:

𝑅𝑖𝑡 =
∑︁
𝑦

𝛽𝑦 · �̂�2𝑖𝑡 · I[𝑡 = 𝑦] + 𝜒𝑗(𝑖),𝑡 + 𝜖𝑖𝑡

The blue squares are the point estimates 𝛽𝑦 and the shaded bands are 95% confidence
intervals (based on standard errors clustered by firm and year). The orange shading indicates
years in which the S&P 500 return was less than 5%.
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Figure B-9: Relationship of TFP Innovation Variance with Macro Variables
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Notes: “TFP Innovations” are the residuals from an AR(1) model for log 𝜃𝑖𝑡 with firm and
sector-by-time fixed effects, as described in Section 2.5.5 of the main text. We calculate
their average, consistent with our main calculations of Misoptimization Dispersion, using
optimal-sales-weights.

Figure B-10: The Attention Wedge and Its Derivatives
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log attention wedge in the log state. The “Partial Equilibrium” thought experiment, plotted
in each figure as a dotted line, is for firms to best-reply to the output and wages of the
counterfactual RBC equilibrium.
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Figure B-11: Conference-Call Macro Attention and Unemployment
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Notes: The left axis and blue line show our estimate of Macro Attention based on conference-
call data, in log units net of seasonal trends. The right axis and orange line show the US
unemployment rate.

466



Figure B-12: The Cyclical Behavior of TFPR and VMPL Dispersion
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Notes: Each half of this Figure replicates Figure 2-3 using our measures of TFPR Dispersion
(top) and VMPL Dispresion (bottom). Variable construction is defined in Appendix B.6.3.
Because of the composition adjustment, the variance metrics can be negative. The standard
errors for the linear fits are HAC robust baesd on a Bartlett kernel with a three-year band-
width.
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Figure B-13: Robustness of Numerical Results to Parameter Choices
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Notes: We re-calibrate the model under each indicated parameter choice. The outcomes
and their interpretation are described in Appendix B.5.1.

Figure B-14: Output, Wedge, and Labor Productivity with GHH Preferences
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Notes: This recreates Figure 2-4 from the main analysis in the variant model with Green-
wood, Hercowitz, and Huffman (1988) preferences, described in Appendix B.5.
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Figure B-15: Asymmetric Shock Response and Stochastic Volatility with GHH
Preferences
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Notes: This recreates Figure 2-5 from the main analysis in the variant model with Green-
wood, Hercowitz, and Huffman (1988) preferences, described in Appendix B.5.

Figure B-16: Predictions in Counterfactual Scenarios
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Notes: The scenarios are described in the main text. The outcomes are the same as in
Figure B-13, and are described in Appendix B.5.1.
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Appendix C

Appendix to Strategic Mistakes

C.1 Omitted Proofs

C.1.1 Proof of Lemma 2

Proof. Define �̃� = 𝑢
𝜆
. Inequality 107 can be re-expressed as:

�̃�(𝑥′, 𝑋 ′, 𝜃) + �̃�(𝑥,𝑋, 𝜃) ≥ �̃�(𝑥′, 𝑋, 𝜃) + �̃�(𝑥,𝑋 ′, 𝜃) (678)

which is the statement that �̃� is a supermodular function in (𝑥,𝑋). By Topkis’ Char-
acterization Theorem (see e.g, Milgrom and Roberts, 1990), when �̃� is twice continu-
ously differentiable in (𝑥,𝑋), this is equivalent to the statement that �̃�𝑥𝑋(𝑥,𝑋, 𝜃) ≥ 0.
As we have assumed that 𝑢 and 𝜆 are both twice continuously differentiable in (𝑥,𝑋),
Inequality 107 is equivalent to:

�̃�𝑥𝑋(𝑥,𝑋, 𝜃) =
𝑢𝑥𝑋(𝑥,𝑋, 𝜃)− 𝑢𝑥(𝑥,𝑋, 𝜃)

𝜆𝑋(𝑋,𝜃)
𝜆(𝑋,𝜃)

𝜆(𝑋, 𝜃)
≥ 0 (679)

Inequality 108 can be re-expressed as:

�̃�(𝑥′, 𝑋 + 𝛼, 𝜃) + �̃�(𝑥− 𝛼,𝑋, 𝜃) ≤ �̃�(𝑥,𝑋 + 𝛼, 𝜃) + �̃�(𝑥′ − 𝛼,𝑋, 𝜃) (680)

Define 𝑓(𝑦, 𝛾; 𝜃,𝑋) = �̃�(𝑦+𝛾,𝑋+𝛾, 𝜃). Set 𝑦′ = 𝑥′−𝛼, 𝑦 = 𝑥−𝛼, 𝛾′ = 𝛼 and 𝛾 = 0

and observe that 𝑦′ ≥ 𝑦 and 𝛾′ ≥ 𝛾. Inequality 680 is equivalent to:

𝑓(𝑦′, 𝛾′; 𝜃,𝑋) + 𝑓(𝑦, 𝛾; 𝜃,𝑋) ≤ 𝑓(𝑦, 𝛾′; 𝜃,𝑋) + 𝑓(𝑦′, 𝛾; 𝜃,𝑋) (681)

Which is equivalent to submodularity of 𝑓(· ; 𝜃,𝑋) in (𝑦, 𝛾). Again by Topkis’ Char-
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acterization Theorem, and by twice continuous differentiability of 𝑓 in (𝑦, 𝛾), this is
equivalent to:

𝑓𝑦𝛾(𝑦, 𝛾; 𝜃,𝑋) = �̃�𝑥𝑥(𝑦 + 𝛾,𝑋 + 𝛾, 𝜃) + �̃�𝑥𝑋(𝑦 + 𝛾,𝑋 + 𝛾, 𝜃) ≤ 0 (682)

Moreover, �̃�𝑥𝑥 = 𝑢𝑥𝑥
𝜆

. Thus, Inequality 108 is equivalent to:

−𝑢𝑥𝑥(𝑥,𝑋, 𝜃)
𝜆(𝑋, 𝜃)

≥ �̃�𝑥𝑋(𝑥,𝑋, 𝜃) =
𝑢𝑥𝑋(𝑥,𝑋, 𝜃)− 𝑢𝑥(𝑥,𝑋, 𝜃)

𝜆𝑋(𝑋,𝜃)
𝜆(𝑋,𝜃)

𝜆(𝑋, 𝜃)
(683)

Combining Inequalities 679 and 683 and multiplying by 𝜆 > 0, we obtain the claimed
result.

C.1.2 Proof of Lemma 4

To establish the result, as the entropy kernel has derivative 𝜑′(𝑥) = 1 + log 𝑥 and
𝜑′(𝑥) = 𝑥, it is sufficient to show the following:

Lemma 13. ℱ , the class of functions satisfying quasi-MLRP, contains {log(·), Id(·)}.

Proof. To see that quasi-MLRP is satisfied for 𝑓(𝑥) = log 𝑥 (and 1 + log 𝑥), the
required condition (Equation 114) becomes:

(︁ 𝑔′(𝑥′)

𝑔′(𝑥)
≥ 𝑔(𝑥′)

𝑔(𝑥)
∀𝑥′ ≥ 𝑥

)︁
=⇒ 𝑔′ ⪰𝐹𝑂𝑆𝐷 𝑔 (684)

The left-hand side of this implication is simply the MLRP property. Moreover, MLRP
implies FOSD. We now prove that 𝑓(𝑥) = 𝑥 satisfies quasi-MLRP. This requires us
to prove that for any two distributions 𝑔′, 𝑔 ∈ ∆(𝒳 ):(︁

𝑔′(𝑥′)− 𝑔′(𝑥) ≥ 𝑔(𝑥′)− 𝑔(𝑥) ∀𝑥′ ≥ 𝑥
)︁

=⇒ 𝑔′ ⪰𝐹𝑂𝑆𝐷 𝑔 (685)

To do this, we first prove a technical lemma, which may be of future use for charac-
terizing other functions that satisfy quasi-MLRP:

Lemma 14. For any two distributions 𝑔′, 𝑔 ∈ ∆(𝒳 ), the following holds:(︁
𝑓(𝑔′(𝑥′))− 𝑓(𝑔′(𝑥)) ≥ 𝑓(𝑔(𝑥′))− 𝑓(𝑔(𝑥)) ∀𝑥′ ≥ 𝑥

)︁
=⇒(︃∫︀ 𝑥

𝑥
[𝑓(𝑔′(�̃�))− 𝑓(𝑔(�̃�))] d�̃�

𝑥− 𝑥
≥
∫︀ 𝑥
𝑥
[𝑓(𝑔′(�̃�))− 𝑓(𝑔(�̃�))] d�̃�

𝑥− 𝑥
∀𝑥 ∈ 𝒳

)︃
(686)
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Proof. To prove the required implication, we begin with the hypothesis:

𝑓(𝑔′(𝑥′))− 𝑓(𝑔′(𝑥)) ≥ 𝑓(𝑔(𝑥′))− 𝑓(𝑔(𝑥)) ∀𝑥′ ≥ 𝑥 (687)

Which can be rewritten as:

𝑓(𝑔′(𝑥′)) + 𝑓(𝑔(𝑥)) ≥ 𝑓(𝑔(𝑥′)) + 𝑓(𝑔′(𝑥)) ∀𝑥′ ≥ 𝑥 (688)

We now integrate from 𝑥 to 𝑥′ with respect to 𝑥 to obtain the inequality:

(𝑥′ − 𝑥)𝑓(𝑔′(𝑥′)) +

∫︁ 𝑥′

𝑥

𝑓(𝑔(𝑥)) d𝑥 ≥ (𝑥′ − 𝑥)𝑓(𝑔(𝑥′)) +

∫︁ 𝑥′

𝑥

𝑓(𝑔′(𝑥)) d𝑥 (689)

Imposing 𝑥′ = 𝑥 we obtain:

(𝑥− 𝑥) [𝑓(𝑔′(𝑥))− 𝑓(𝑔(𝑥))] ≥
∫︁ 𝑥

𝑥

[𝑓(𝑔′(�̃�))− 𝑓(𝑔(�̃�))] d�̃� (690)

Applying the same procedure but this time integrating from 𝑥 to 𝑥 with respect to
𝑥′ and evaluate at 𝑥′ = 𝑥 to obtain this inequality:∫︁ 𝑥

𝑥

[𝑓(𝑔′(�̃�))− 𝑓(𝑔(�̃�))] d�̃� ≥ (𝑥− 𝑥) [𝑓(𝑔′(𝑥))− 𝑓(𝑔(𝑥))] (691)

Combining our two inequalities we obtain the required one:∫︀ 𝑥
𝑥
[𝑓(𝑔′(�̃�))− 𝑓(𝑔(�̃�))] d�̃�

𝑥− 𝑥
≥
∫︀ 𝑥
𝑥
[𝑓(𝑔′(�̃�))− 𝑓(𝑔(�̃�))] d�̃�

𝑥− 𝑥
∀𝑥 ∈ 𝒳 (692)

Which completes the proof.

Thus, if it can be established that:(︃∫︀ 𝑥
𝑥
[𝑓(𝑔′(�̃�))− 𝑓(𝑔(�̃�))] d�̃�

𝑥− 𝑥
≥
∫︀ 𝑥
𝑥
[𝑓(𝑔′(�̃�))− 𝑓(𝑔(�̃�))] d�̃�

𝑥− 𝑥
∀𝑥 ∈ 𝒳

)︃
=⇒ 𝑔′ ⪰𝐹𝑂𝑆𝐷 𝑔

(693)

then we will have established that function 𝑓 satisfies quasi-MLRP.

We now use this to prove that 𝑓(𝑥) = 𝑥 satisfies quasi-MLRP. Plugging in to the
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derived integral condition, we obtain:

𝐺(𝑥)−𝐺′(𝑥)

𝑥− 𝑥
≥ 𝐺′(𝑥)−𝐺(𝑥)

𝑥− 𝑥
∀𝑥 ∈ 𝒳 (694)

Re-arranging this:
𝐺(𝑥) ≥ 𝐺′(𝑥) ∀𝑥 ∈ 𝒳 (695)

which is the definition that 𝑔′ ⪰𝐹𝑂𝑆𝐷 𝑔. This completes the proof and establishes
that quasi-MLRP is a strict weakening of MLRP.

C.1.3 Proof of Proposition 10

Proof. This follows immediately from the step proving the monotonicity and dis-
counting conditions in Theorem 1. Note that this invokes only Assumptions 1 and
3.

C.1.4 Proof of Theorem 1

Proof. We first study the problem of a single agent 𝑖 who is best replying to the
conjecture that the law of motion of the aggregate is �̂� : Θ → R. See that this agent
faces the problem:

𝒫*(�̂�) = argmax
𝑃∈𝒫

∑︁
Θ

∫︁
𝒳
𝑢(𝑥, �̂�(𝜃), 𝜃) d𝑃 (𝑥|𝜃) 𝜋(𝜃)− 𝑐(𝑃, �̂�) (696)

First, let us examine the set of stochastic choice rules:

𝒫 = {𝑃 : Θ → ∆(𝒳 )} =
∏︁
𝜃∈Θ

∆(𝒳 ) (697)

See that ∆(𝒳 ) is compact as 𝒳 is compact. It therefore follows by finiteness of Θ
that 𝒫 is compact.

Define 𝑘 : 𝒫 × ℬ → R̄, where ℬ = {�̂� : Θ → R} as:

𝑘(𝑃, �̂�) =
∑︁
Θ

∫︁
𝒳
𝑢(𝑥, �̂�(𝜃), 𝜃) d𝑃 (𝑥|𝜃) 𝜋(𝜃)− 𝑐(𝑃, �̂�) (698)

As 𝜑 is strictly convex and 𝑢 is bounded, it is without loss of optimality to restrict to
optimizing over the set of stochastic choice rules with density bounded above by some
𝑀 ∈ R, 𝒫𝑀 . This is a closed set, which is a subset of a compact set 𝒫 , and therefore
also compact. Moreover, 𝑘 is continuous in 𝑃 , by continuity of 𝑢 and continuity
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of 𝑐 over 𝒫𝑀 for any 𝑀 . Thus, by Weierstrass’ theorem, there exists a maximum.
Moreover, by strict convexity of 𝑘(·, �̂�), it is unique. It immediately follows that
in any equilibrium 𝑃 *

𝑖 = 𝑃 * = 𝒫*(�̂�) for all 𝑖 and thus that there cannot exist
asymmetric equilibria.

To show existence of an equilibrium it suffices to show that there exists a �̂� such
that:

�̂� = 𝑋 ∘ 𝒫*(�̂�) (699)

To this end define the operator 𝑇 : ℬ → ℬ such that:

𝑇 (�̂�) = 𝑋 ∘ 𝒫*(�̂�) (700)

We wish to show that 𝑇 has a fixed point. We will moreover prove that this fixed
point is unique as under the stated assumptions we can prove that 𝑇 is a contraction
map. To this end, we wish to apply Blackwell’s sufficient conditions for an operator to
be a contraction. More specifically, if 𝑇 operates on the space of bounded functions
and is endowed with the sup norm, then the following are sufficient for 𝑇 to be a
contraction:

1. Monotonicity: �̂� ′ ≥ �̂� =⇒ 𝑇 (�̂� ′) ≥ 𝑇 (�̂�) for any �̂� ′, �̂� ∈ ℬ

2. Discounting: there exists 𝛽 ∈ (0, 1) such that 𝑇 (�̂� + 𝛼) ≤ 𝑇 (�̂�) + 𝛽𝛼 for all
𝛼 ∈ R+ and any �̂� ∈ ℬ

Toward proving these properties, we first derive some necessary conditions for
optimal stochastic choice. To this end, see that the stochastic choice program under
an equilibrium conjecture �̂� is given by:

max
𝑝∈𝒫

∑︁
Θ

∫︁
𝒳
𝑢(𝑥, �̂�(𝜃), 𝜃) d𝑃 (𝑥|𝜃) 𝜋(𝜃)−

∑︁
Θ

∫︁
𝒳
𝜑(𝑝(𝑥|𝜃)) d𝑥 𝜋(𝜃)𝜆(�̂�(𝜃), 𝜃) (701)

Take the optimal policy 𝑝 and now consider a family or perturbations of 𝑝 around
actions 𝑥, 𝑥′ ∈ 𝒳 in state 𝜃 ∈ Θ such that 𝑝(𝑥|𝜃; �̂�), 𝑝(𝑥′|𝜃; �̂�) > 0 by 𝜀 > 0 and
𝛿 ≥ 0 such that:

𝑝(�̃�|𝜃; �̂�) = 𝑝(�̃�|𝜃; �̂�) + 𝜀, �̃� ∈ [𝑥′, 𝑥′ − 𝛿]

𝑝(�̃�|𝜃; �̂�) = 𝑝(�̃�|𝜃; �̂�)− 𝜀, �̃� ∈ [𝑥, 𝑥− 𝛿]
(702)

For 𝑝 that has full support on [𝑥′, 𝑥′− 𝛿], [𝑥, 𝑥− 𝛿], we have that 𝑝 ∈ 𝒫 . Moreover, as
𝑢 is continuous, if 𝛿 is sufficiently small, such a full-support perturbation is possible
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by the property that 𝑝(𝑥|𝜃; �̂�), 𝑝(𝑥′|𝜃; �̂�) > 0 and the fact that 𝑝 is optimal.

Taking the derivative of the value of 𝑝 in 𝜀 and evaluating at 𝜀 = 0, we obtain the
necessary optimality condition:∫︁ 𝑥′

𝑥′−𝛿

[︁
𝑢(�̃�, �̂�(𝜃), 𝜃)𝜋(𝜃)− 𝜑′(𝑝(�̃�|𝜃; �̂�))𝜋(𝜃)𝜆(�̂�(𝜃), 𝜃)

]︁
d�̃�

=

∫︁ 𝑥

𝑥−𝛿

[︁
𝑢(�̃�, �̂�(𝜃), 𝜃)𝜋(𝜃)− 𝜑′(𝑝(�̃�|𝜃; �̂�))𝜋(𝜃)𝜆(�̂�(𝜃), 𝜃)

]︁
d�̃�

(703)

Normalizing both sides by 𝛿 > 0, we obtain:∫︀ 𝑥′
𝑥′−𝛿

[︁
𝑢(�̃�, �̂�(𝜃), 𝜃)𝜋(𝜃)− 𝜑′(𝑝(�̃�|𝜃; �̂�))𝜋(𝜃)𝜆(�̂�(𝜃), 𝜃)

]︁
d�̃�

𝛿

=

∫︀ 𝑥
𝑥−𝛿

[︁
𝑢(�̃�, �̂�(𝜃), 𝜃)𝜋(𝜃)− 𝜑′(𝑝(�̃�|𝜃; �̂�))𝜋(𝜃)𝜆(�̂�(𝜃), 𝜃)

]︁
d�̃�

𝛿

(704)

Taking the limit of both sides as 𝛿 → 0, applying L’Hôpital’s rule and Leibniz’s rule
we obtain:

𝑢(𝑥′, �̂�(𝜃), 𝜃)− 𝜆(�̂�(𝜃), 𝜃)𝜑′(𝑝(𝑥′|𝜃; �̂�)) = 𝑢(𝑥, �̂�(𝜃), 𝜃)− 𝜆(�̂�(𝜃), 𝜃)𝜑′(𝑝(𝑥|𝜃; �̂�))

(705)
This condition is necessary for all 𝑥, 𝑥′ ∈ 𝒳 that have a positive density in state 𝜃.

By the previous necessary condition and the supermodularity assumption (As-
sumption 1) we have that, for all 𝑥′ ≥ 𝑥 in the support of both stochastic choice
rules, all 𝜃, and any conjectures �̂� and �̂� ′ such that �̂� ′ ≥ �̂�:

𝜑′(𝑝(𝑥′|𝜃; �̂� ′))− 𝜑′(𝑝(𝑥|𝜃; �̂� ′)) =
𝑢(𝑥′, �̂� ′(𝜃), 𝜃)

𝜆(�̂� ′(𝜃), 𝜃)
− 𝑢(𝑥, �̂� ′(𝜃), 𝜃)

𝜆(�̂� ′(𝜃), 𝜃)

≥ 𝑢(𝑥′, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)
− 𝑢(𝑥, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)

= 𝜑′(𝑝(𝑥′|𝜃; �̂�))− 𝜑′(𝑝(𝑥|𝜃; �̂�))

(706)

We now need to check the cases where the stochastic choice rules do not have full
support. Define the support in state 𝜃 under law of motion �̂� as 𝒳 (𝜃, �̂�) = cl𝒳{𝑥 ∈
𝒳 : 𝑝*(𝑥|𝜃,𝒳 ) > 0}. Let �̂� ∈ 𝒳 (𝜃, �̂�), �̃� ∈ 𝒳 (𝜃, �̂� ′) and define 𝑥′ = max{�̂�, �̃�},
𝑥 = min{�̂�, �̃�}. We proceed to show that 𝒳 (𝜃, �̂�) is monotone in the strong set
order in �̂�. That is, for �̂� ′ ≥ �̂�, we have that 𝑥′ ∈ 𝒳 (𝜃, �̂� ′) and 𝑥 ∈ 𝒳 (𝜃, �̂�). By
Assumption 1, 𝑢 is a concave function of 𝑥. This implies that 𝒳 (𝜃, �̂�) is an interval.
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We will denote its lower end-point by 𝑥(𝜃, �̂�) and its upper end-point by 𝑥(𝜃, �̂�). We
also note that 𝑝(𝑥(𝜃, �̂�)|𝜃, �̂�) = 𝑝(𝑥(𝜃, �̂�)|𝜃, �̂�) = 0. Showing that 𝑥 ∈ 𝒳 (𝜃, �̂�) is
increasing in the strong set order therefore reduces to showing that 𝑥(𝜃, �̂�) ≤ 𝑥(𝜃, �̂� ′)

and 𝑥(𝜃, �̂�) ≤ 𝑥(𝜃, �̂� ′). Without loss of generality (the other case follows by identical
arguments), we will show that 𝑥(𝜃, �̂�) ≤ 𝑥(𝜃, �̂� ′).

Toward a contradiction, suppose that 𝑥(𝜃, �̂�) > 𝑥(𝜃, �̂� ′). There are two cases
to consider: the case in which the supports strictly overlap 𝑥(𝜃, �̂�) < 𝑥(𝜃, �̂� ′),
and the case in which they do not 𝑥(𝜃, �̂�) ≥ 𝑥(𝜃, �̂� ′). First, consider the case
in which 𝑥(𝜃, �̂�) < 𝑥(𝜃, �̂� ′). By continuity of 𝑝(·|𝜃, �̂� ′) and 𝑝(·|𝜃, �̂�), the fact
that 0 = 𝑝(𝑥(𝜃, �̂�)|𝜃, �̂�) < 𝑝(𝑥(𝜃, �̂�)|𝜃, �̂� ′), and the fact that 𝑝(𝑥|𝜃, �̂�) > 0 for
𝑥 ∈ (𝑥(𝜃, �̂�), 𝑥(𝜃, �̂� ′)), there exists an 𝑥 ∈ (𝑥(𝜃, �̂�), 𝑥(𝜃, �̂� ′)) such that 𝑝(𝑥|𝜃, �̂� ′) >

𝑝(𝑥|𝜃, �̂�). Fix also any 𝑥′ ∈ (𝑥(𝜃, �̂� ′), 𝑥(𝜃, �̂�)). Consider a perturbation, as per
Equation 702 that moves density from (a neighborhood of) 𝑥 to (a neighborhood of)
𝑥′ in state 𝜃 under conjecture �̂� ′. We have that the following holds:

𝜑′(0)− 𝜑′(𝑝(𝑥|𝜃, �̂� ′)) < 𝜑′(𝑝(𝑥′|𝜃, �̂�))− 𝜑′(𝑝(𝑥|𝜃, �̂�))

=
𝑢(𝑥′, 𝜃, �̂�(𝜃))

𝜆(�̂�(𝜃), 𝜃)
− 𝑢(𝑥, 𝜃, �̂�(𝜃))

𝜆(�̂�(𝜃), 𝜃)

≤ 𝑢(𝑥′, 𝜃, �̂� ′(𝜃))

𝜆(�̂� ′(𝜃), 𝜃)
− 𝑢(𝑥, 𝜃, �̂� ′(𝜃))

𝜆(�̂� ′(𝜃), 𝜃)

(707)

where the first line follows from the strict convexity of 𝜑, the fact that 𝑝(𝑥′|𝜃, �̂�) > 0,
and the fact that 𝑝(𝑥|𝜃, �̂� ′) > 𝑝(𝑥|𝜃, �̂�). The second line follows from the optimality
of 𝑝(·|𝜃, �̂�). The third line follows by Assumption 1. However, Equation 707 implies
that the considered perturbation provides a strict gain relative to 𝑝(·|𝜃, �̂� ′), which
contradicts the optimality of 𝑝(·|𝜃, �̂� ′).

Consider now the case in which 𝑥(𝜃, �̂�) ≥ 𝑥(𝜃, �̂� ′). By the fact that 𝑝(·|𝜃, �̂�) is
strictly preferred to 𝑝(·|𝜃, �̂� ′) when the aggregate follows �̂�, we have that:

∫︁ 𝑥(𝜃;�̂�)

𝑥(𝜃;�̂�)

𝑢(𝑥, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)
𝑝(𝑥|𝜃, �̂�) d𝑥−

∫︁ 𝑥(𝜃;�̂�′)

𝑥(𝜃;�̂�′)

𝑢(𝑥, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)
𝑝(𝑥|𝜃, �̂� ′) d𝑥

>

∫︁ 𝑥(𝜃;�̂�)

𝑥(𝜃;�̂�)

𝜑(𝑝(𝑥|𝜃, �̂�)) d𝑥−
∫︁ 𝑥(𝜃;�̂�′)

𝑥(𝜃;�̂�′)
𝜑(𝑝(𝑥|𝜃, �̂� ′)) d𝑥

(708)
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Moreover, as 𝑥(𝜃, �̂�) > 𝑥(𝜃, �̂� ′), we have by Assumption 1 that:

∫︁ 𝑥(𝜃;�̂�)

𝑥(𝜃;�̂�)

𝑢(𝑥, �̂� ′(𝜃), 𝜃)

𝜆(�̂� ′(𝜃), 𝜃)
𝑝(𝑥|𝜃, �̂�) d𝑥−

∫︁ 𝑥(𝜃;�̂�′)

𝑥(𝜃;�̂�′)

𝑢(𝑥, �̂� ′(𝜃), 𝜃)

𝜆(�̂� ′(𝜃), 𝜃)
𝑝(𝑥|𝜃, �̂� ′) d𝑥

≥
∫︁ 𝑥(𝜃;�̂�)

𝑥(𝜃;�̂�)

𝑢(𝑥, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)
𝑝(𝑥|𝜃, �̂�) d𝑥−

∫︁ 𝑥(𝜃;�̂�′)

𝑥(𝜃;�̂�′)

𝑢(𝑥, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)
𝑝(𝑥|𝜃, �̂� ′) d𝑥

(709)

Combining these inequalities, we obtain that:

∫︁ 𝑥(𝜃;�̂�)

𝑥(𝜃;�̂�)

𝑢(𝑥, �̂� ′(𝜃), 𝜃)𝑝(𝑥|𝜃, �̂�) d𝑥− 𝜆(�̂� ′(𝜃), 𝜃)

∫︁ 𝑥(𝜃;�̂�)

𝑥(𝜃;�̂�)

𝜑(𝑝(𝑥|𝜃, �̂�)) d𝑥 >∫︁ 𝑥(𝜃;�̂�′)

𝑥(𝜃;�̂�′)
𝑢(𝑥, �̂� ′(𝜃), 𝜃)𝑝(𝑥|𝜃, �̂� ′) d𝑥− 𝜆(�̂� ′(𝜃), 𝜃)

∫︁ 𝑥(𝜃;�̂�′)

𝑥(𝜃;�̂�′)
𝜑(𝑝(𝑥|𝜃, �̂� ′)) d𝑥

(710)

which implies that 𝑝(·|𝜃, �̂�) is strictly better than 𝑝(·|𝜃, �̂� ′) when the aggregate follows
�̂� ′, which contradicts the optimality of 𝑝(·|𝜃, �̂� ′).

Thus, we have shown that 𝒳 (𝜃, �̂�) is monotone in the strong set order in �̂� and
we have derived (by Equation 705) that:

𝜑′(𝑝(𝑥′|𝜃; �̂� ′))− 𝜑′(𝑝(𝑥|𝜃; �̂� ′)) ≥ 𝜑′(𝑝(𝑥′|𝜃; �̂�))− 𝜑′(𝑝(𝑥|𝜃; �̂�)) (711)

for all 𝑥′ ≥ 𝑥 such that 𝑥′, 𝑥 ∈ 𝒳 (𝜃, �̂�) ∩ 𝒳 (𝜃, �̂� ′). Thus, if 𝜑′ satisfies quasi-MLRP
(Assumption 3), then we have that 𝑝(𝜃; �̂� ′) ⪰𝐹𝑂𝑆𝐷 𝑝(𝜃; �̂�) for all 𝜃. It then follows
by the monotonicity property of the aggregator (Assumption 2) that 𝑋(𝑝(𝜃; �̂� ′)) ≥
𝑋(𝑝(𝜃; �̂�)) for all 𝜃 and therefore that 𝑇 (�̂� ′) ≥ 𝑇 (�̂�), which establishes the required
monotonicity property of the equilibrium operator.

We now prove discounting. To this end, we will show that when we take �̂� ′ = �̂�+𝛼

for 𝛼 ∈ R+ that the resulting stochastic choice is dominated by an 𝛼 right translation
of the original stochastic choice under �̂�. Under this transformation, observe by the
necessary condition for optimality and the sufficient concavity condition on utility
(Assumption 1), we can apply the same arguments as above to derive that for all
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𝑥′ ≥ 𝑥 such that 𝑥′, 𝑥 ∈ 𝒳 (𝜃, �̂�) ∩ 𝒳 (𝜃, �̂� + 𝛼):

𝜑′(𝑝−𝛼(𝑥
′|𝜃; �̂�))− 𝜑′(𝑝−𝛼(𝑥|𝜃, �̂�)) =

𝑢(𝑥′ − 𝛼, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)
− 𝑢(𝑥− 𝛼, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)

≥ 𝑢(𝑥′, �̂�(𝜃) + 𝛼, 𝜃)

𝜆(�̂�(𝜃) + 𝛼, 𝜃)
− 𝑢(𝑥, �̂�(𝜃) + 𝛼, 𝜃)

𝜆(�̂�(𝜃) + 𝛼, 𝜃)

= 𝜑′(𝑝(𝑥′|𝜃; �̂� + 𝛼))− 𝜑′(𝑝(𝑥|𝜃; �̂� + 𝛼))

(712)

We now show that 𝑥(𝜃, �̂�)+𝛼 ≥ 𝑥(𝜃, �̂�+𝛼) and 𝑥(𝜃, �̂�)+𝛼 ≥ 𝑥(𝜃, �̂�+𝛼). Without
loss of generality (the other case follows by identical arguments), we will show that
𝑥(𝜃, �̂�) + 𝛼 ≥ 𝑥(𝜃, �̂� + 𝛼). Toward a contradiction, suppose that 𝑥(𝜃, �̂�) + 𝛼 <

𝑥(𝜃, �̂�+𝛼). As in the previous argument, there are two cases to consider, the case in
which the supports strictly overlap 𝑥(𝜃, �̂�) + 𝛼 > 𝑥(𝜃, �̂� + 𝛼) and the case in which
the supports are disjoint 𝑥(𝜃, �̂�)+𝛼 ≤ 𝑥(𝜃, �̂� +𝛼). In the overlapping support case,
fix an 𝑥 ∈ (𝑥(𝜃, �̂� + 𝛼), 𝑥(𝜃, �̂�) + 𝛼) such that 𝑝−𝛼(𝑥|𝜃, �̂�) > 𝑝(𝑥|𝜃, �̂� + 𝛼) > 0

(which is possible by the same arguments used in the first part of the proof). Fix
next a point 𝑥′ ∈ (𝑥(𝜃, �̂�)+𝛼, 𝑥(𝜃, �̂� +𝛼)). And consider a perturbation that moves
density from 𝑥− 𝛼 to 𝑥′ − 𝛼 in state 𝜃 under conjecture �̂�. The following holds:

𝜑′(0)− 𝜑′(𝑝−𝛼(𝑥|𝜃, �̂�)) < 𝜑′(𝑝(𝑥′|𝜃, �̂� + 𝛼))− 𝜑′(𝑝(𝑥|𝜃, �̂� + 𝛼))

=
𝑢(𝑥′, �̂�(𝜃) + 𝛼, 𝜃)

𝜆(�̂�(𝜃) + 𝛼, 𝜃)
− 𝑢(𝑥, �̂�(𝜃) + 𝛼, 𝜃)

𝜆(�̂�(𝜃) + 𝛼, 𝜃)

≤ 𝑢(𝑥′ − 𝛼, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)
− 𝑢(𝑥− 𝛼, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)

(713)

where the first inequality follows by construction, the second by optimality, and the
third by Assumption 1. This contradicts the optimality of 𝑝(·|𝜃, �̂�). In the non-
overlapping case, we can follow the same steps as the first part of the proof, adapted
in the obvious way (using the sufficient concavity inequality in place of the super-
modularity inequality).

Thus, by quasi-MLRP of 𝜑′ (Assumption 3), we have that 𝑝−𝛼(𝜃, �̂�) ⪰𝐹𝑂𝑆𝐷

𝑝(𝜃, �̂� + 𝛼) where 𝑝−𝛼 is the described right translation by 𝛼 of 𝑝. Moreover, by
the discounting property of the aggregator (Assumption 2), we then have that:

𝑇 (�̂� + 𝛼) ≤ 𝑋 ∘ 𝑝−𝛼(�̂�) ≤ 𝑇 (�̂�) + 𝛽𝛼 (714)

which establishes the discounting property of 𝑇 . We have now shown that 𝑇 satisfies
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Blackwell’s sufficient conditions and is a contraction map. By the Banach fixed point
theorem, there then exists a unique equilibrium Ω.

C.1.5 Proof of Theorem 2

Proof. To show that the unique equilibrium aggregate law of motion of monotone in
𝜃, we use Corollary 1 from Chapter 3 of Stokey, Lucas, and Prescott (1989).

Define the set of monotone increasing and bounded functions ℳ = {�̂� ∈ ℬ|�̂�(𝜃′) ≥
�̂�(𝜃) ∀𝜃, 𝜃′ ∈ Θ : 𝜃′ ≥ 𝜃}. See that this set is closed. If we can show that 𝑇 (�̂�) ∈ ℳ
for any �̂� ∈ ℳ, then we know that the unique fixed point of 𝑇 is in ℳ and therefore
that the unique equilibrium law of motion is in ℳ according to Corollary 1 of Stokey,
Lucas, and Prescott (1989). To this end, we wish to show that:

�̂�(𝜃′) ≥ �̂�(𝜃) ∀𝜃, 𝜃′ ∈ Θ : 𝜃′ ≥ 𝜃 =⇒ 𝑇 (�̂�)(𝜃′) ≥ 𝑇 (�̂�)(𝜃) ∀𝜃, 𝜃′ ∈ Θ : 𝜃′ ≥ 𝜃

(715)
This follows immediately from the necessary condition used in the proof of Theorem 1.
More precisely, by the necessary optimality condition (Equation 705) from the proof of
Theorem 1 and Assumption 4, we have that for all 𝑥′ ≥ 𝑥 such that 𝑥′, 𝑥 ∈ 𝒳 (𝜃)∩𝒳 (𝜃′)

𝜑′(𝑝(𝑥′|𝜃′, �̂�))− 𝜑′(𝑝(𝑥|𝜃′, �̂�)) ≥ 𝑢(𝑥′, �̂�(𝜃′), 𝜃′)

𝜆(�̂�(𝜃′), 𝜃′)
− 𝑢(𝑥, �̂�(𝜃′), 𝜃′)

𝜆(�̂�(𝜃′), 𝜃′)

≥ 𝑢(𝑥′, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)
− 𝑢(𝑥, �̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)

= 𝜑′(𝑝(𝑥′|𝜃, �̂�))− 𝜑′(𝑝(𝑥|𝜃, �̂�))

(716)

In the case where optimal action distributions do not have full support, the same
arguments for the monotonicity of 𝒳 (𝜃, �̂�) imply monotonicity of 𝒳 (𝜃) = 𝒳 (𝜃, �̂�(𝜃))

in the strong set order when �̂� is montotone increasing. Thus, by the quasi-MLRP
property of 𝜑′ (Assumption 3) we then have that 𝑝(𝜃′; �̂�) ⪰𝐹𝑂𝑆𝐷 𝑝(𝜃; �̂�) and thus by
the monotonicity of the aggregator (Assumption 2) that 𝑇 (�̂�)(𝜃′) ≥ 𝑇 (�̂�)(𝜃).

C.1.6 Proof of Theorem 3

Proof. Recall also by Theorem 1, that the unique symmetric stochastic choice rule
consistent with the unique equilibrium �̂� solves the following program:

𝑝 ∈ argmax
𝑝∈𝒫

∑︁
Θ

∫︁
𝒳
𝑢(𝑥, �̂�(𝜃), 𝜃) d𝑃 (𝑥|𝜃) 𝜋(𝜃)−

∑︁
Θ

∫︁
𝒳
𝜑(𝑝(𝑥|𝜃))d𝑥 𝜋(𝜃)𝜆(�̂�(𝜃), 𝜃)

(717)
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where we will suppress the dependence of the optimal policy on �̂� as it is unique.
Applying the necessary optimal condition from the proof of Theorem 1 (Equation
705), for a given 𝑥 such that 𝑝(𝑥|𝜃) > 0, we have that:

𝑢(𝛾(�̂�(𝜃), 𝜃), �̂�(𝜃), 𝜃)− 𝑢(𝑥, �̂�(𝜃), 𝜃) = 𝜆(�̂�(𝜃), 𝜃)
(︁
𝜑′(𝑝(𝛾(�̂�(𝜃), 𝜃)|𝜃))− 𝜑′(𝑝(𝑥|𝜃))

)︁
(718)

Under Assumption 5, we moreover have that

𝑢(𝑥,𝑋, 𝜃) = 𝛼(𝑋, 𝜃)− 𝛽(𝑋, 𝜃)Γ(|𝑥− 𝛾(𝑋, 𝜃)|) (719)

Thus our necessary condition simplifies to:

𝛽(�̂�(𝜃), 𝜃)

𝜆(�̂�(𝜃), 𝜃)
Γ(|𝑥− 𝛾(�̂�(𝜃), 𝜃)|) = 𝜑′(𝑝(𝛾(�̂�(𝜃), 𝜃)|𝜃))− 𝜑′(𝑝(𝑥|𝜃)) (720)

Now consider any 𝜃, 𝜃′ such that 𝛽(𝜃′, �̂�(𝜃′)) ≥ 𝛽(𝜃, �̂�(𝜃)) (where 𝛽 = 𝛽
𝜆
). Note

that, by Theorem 2, the aggregate �̂� is monotone increasing in the state 𝜃. Thus if
𝛽(𝜃,𝑋) is decreasing in both arguments, the stated case corresponds to 𝜃′ ≤ 𝜃. If
instead 𝛽(𝜃,𝑋) is increasing in both arguments, the stated case corresponds to 𝜃′ ≥ 𝜃.
Therefore, to verify the desired result, we now prove that the action distribution in
state 𝜃′ is more precise about 𝛾(𝜃′, �̂�(𝜃′)) than the action distribution in state 𝜃 is
about 𝛾(𝜃, �̂�(𝜃)), with respect to 𝜑′.

To that end, we take 𝑥, 𝑥′ such that:

|𝑥− 𝛾(�̂�(𝜃), 𝜃)| = |𝑥′ − 𝛾(�̂�(𝜃′), 𝜃′)| (721)

It follows that:

𝜑′(𝑝(𝛾(�̂�(𝜃), 𝜃)|𝜃))− 𝜑′(𝑝(𝑥|𝜃)) = 𝛽(�̂�(𝜃), 𝜃)Γ(|𝑥− 𝛾(�̂�(𝜃), 𝜃)|)
≥ 𝛽(�̂�(𝜃′), 𝜃′)Γ(|𝑥′ − 𝛾(�̂�(𝜃′), 𝜃′)|)
= 𝜑′(𝑝(𝛾(�̂�(𝜃′), 𝜃′)|𝜃′))− 𝜑′(𝑝(𝑥′|𝜃))

(722)

We now take care of those points that have no density. To this end consider the
first-order condition for 𝑝(𝑥|𝜃):

𝑢(𝑥, �̂�(𝜃), 𝜃)− 𝜑′(𝑝(𝑥|𝜃))− 𝜆(𝜃)− 𝜅(𝑥, 𝜃) = 0 (723)

where 𝜆(𝜃) is the Lagrange multiplier on the constraint that
∫︀
𝒳 𝑝(𝑥|𝜃) = 1 and 𝜅(𝑥, 𝜃)
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is the Lagrange multiplier on the constraint that 𝑝(𝑥|𝜃) ≥ 0. When 𝑝(𝑥|𝜃) = 0, we
have that 𝜅(𝑥, 𝜃) ≤ 0. Given our assumption on utility, this is given by:

𝜅(𝑥, 𝜃) = −𝛽(�̂�(𝜃), 𝜃)Γ(|𝑥− 𝛾(�̂�(𝜃), 𝜃)|) + 𝛼(�̂�(𝜃), 𝜃)− 𝜆(𝜃) (724)

which is monotonically decreasing in |𝑥 − 𝛾(�̂�(𝜃), 𝜃)|. Thus, if there is an 𝑥 such
that 𝑝(𝑥|𝜃) = 0, then there exists an �̄�(𝜃) such that 𝑝(𝑥|𝜃) = 0 if and only if
|𝑥 − 𝛾(�̂�(𝜃), 𝜃)| ≥ |�̄�(𝜃) − 𝛾(�̂�(𝜃), 𝜃)|. Moreover, by monotonicity of 𝛽(�̂�(𝜃), 𝜃)

in 𝜃, we have that |�̄�(𝜃) − 𝛾(�̂�(𝜃), 𝜃)| ≤ |�̄�(𝜃′) − 𝛾(�̂�(𝜃′), 𝜃′)|. Hence, so long as
𝑥 ∈ [𝛾(�̂�(𝜃), 𝜃) − �̄�(𝜃), 𝛾(�̂�(𝜃), 𝜃) + �̄�(𝜃)], we always have that 𝑥′ ∈ [𝛾(�̂�(𝜃′), 𝜃′) −
�̄�(𝜃′), 𝛾(�̂�(𝜃′), 𝜃′) + �̄�(𝜃′)]. Thus, every element of the support of 𝑝(𝜃) satisfies:

𝜑′(𝑝(𝛾(�̂�(𝜃), 𝜃)|𝜃))− 𝜑′(𝑝(𝑥|𝜃)) ≥ 𝜑′(𝑝(𝛾(�̂�(𝜃′), 𝜃′)|𝜃′))− 𝜑′(𝑝(𝑥′|𝜃)) (725)

It follows then by the definition of precision that 𝑝(𝜃) is more precise about 𝛾(�̂�(𝜃), 𝜃)

than 𝑝(𝜃′) about 𝛾(�̂�(𝜃′), 𝜃′) under 𝜑′.

C.1.7 Proof of Theorem 4

Proof. By Assumption 6, there is a unique efficient stochastic choice rule 𝑃𝐸. More-
over, for any 𝑥, 𝑥′ ∈ 𝒳 and 𝜃 ∈ Θ such that 𝑝𝐸(𝑥|𝜃) > 0 and 𝑝𝐸(𝑥′|𝜃) > 0, by the
same variational arguments used in the Proof of Theorem 1, and exploiting linearity
of the aggregator we have that:

𝑢(𝑥′, 𝑋(𝑝𝐸(𝜃)), 𝜃)− 𝑢(𝑥,𝑋(𝑝𝐸(𝜃)), 𝜃) + [𝑓(𝑥′)− 𝑓(𝑥)]

∫︁
𝒳
𝑢𝑋(�̃�, 𝑋(𝑝𝐸(𝜃)), 𝜃)𝑝𝐸(�̃�|𝜃) d�̃�

= 𝜆(𝑋(𝑝𝐸(𝜃)), 𝜃)
(︀
𝜑′(𝑝𝐸(𝑥′|𝜃))− 𝜑′(𝑝𝐸(𝑥|𝜃))

)︀
+ [𝑓(𝑥′)− 𝑓(𝑥)]𝜆𝑋(𝑋(𝑝𝐸(𝜃)), 𝜃)

∫︁
𝒳
𝜑(𝑝𝐸(�̃�|𝜃)) d�̃�

(726)

is necessary for optimality of 𝑝𝐸. Moreover, if the efficient stochastic choice rule
obtains in equilibrium, we have that (by Equation 705):

𝑢(𝑥′, 𝑋(𝑝𝐸(𝜃)), 𝜃)− 𝑢(𝑥,𝑋(𝑝𝐸(𝜃)), 𝜃) = 𝜆(𝑋(𝑝𝐸(𝜃)), 𝜃)
(︀
𝜑′(𝑝𝐸(𝑥′|𝜃))− 𝜑′(𝑝𝐸(𝑥|𝜃))

)︀
(727)

These conditions coincide if and only if:

[𝑓(𝑥′)−𝑓(𝑥)]
∫︁
𝒳
𝑢𝑋(�̃�, 𝑋(𝑝𝐸(𝜃)), 𝜃)𝑝𝐸(�̃�|𝜃) d�̃� = [𝑓(𝑥′)−𝑓(𝑥)]𝜆𝑋(𝑋(𝑝𝐸(𝜃)), 𝜃)

∫︁
𝒳
𝜑(𝑝𝐸(�̃�|𝜃)) d�̃�

(728)
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As 𝑓 is nowhere-constant, 𝑓(𝑥′) ̸= 𝑓(𝑥), and this condition reduces to:∫︁
𝒳
𝑢𝑋(�̃�, 𝑋(𝑝𝐸(𝜃)), 𝜃)𝑝𝐸(�̃�|𝜃) d�̃� = 𝜆𝑋(𝑋(𝑝𝐸(𝜃)), 𝜃)

∫︁
𝒳
𝜑(𝑝𝐸(�̃�|𝜃)) d�̃� (729)

Substituting in 𝑝𝐸 = 𝑝*, we obtain the statement in the claim.

C.1.8 Statement and Proof of Lemma 15

In this appendix, we state and prove a Lemma that specializes several of main results
to the case with quadratic payoffs of the form

𝑢(𝑥,𝑋, 𝜃) = 𝛼(𝑋, 𝜃)− 𝛽(𝑋, 𝜃)(𝑥− 𝛾(𝑋, 𝜃))2 (730)

In the statement below, we use the definition 𝛽(𝑋, 𝜃) = 𝛽(𝑋, 𝜃)/𝜆(𝑋, 𝜃). We also
define the bias and dispersion of a stochastic choice rule 𝑃 in state 𝜃 around optimal
point 𝛾(𝑋(𝑃 ), 𝜃) as

Bias[𝑃, 𝜃] ≡
∫︁
𝒳
(𝑥− 𝛾(𝑋(𝑃 ), 𝜃)) d𝑃 (𝑥|𝜃)

Disp[𝑃, 𝜃] ≡
(︂∫︁

𝒳
(𝑥− 𝛾(𝑋(𝑃 ), 𝜃))2 d𝑃 (𝑥|𝜃)

)︂ 1
2

(731)

Lemma 15. Suppose that Assumptions 2 and 3 hold and that payoffs are given by
Equation 730. The following properties hold under the additional stated conditions.

1. Uniqueness. There exists a unique equilibrium if the following holds for all
𝑥 ∈ 𝒳 , 𝑋 ∈ 𝒳 and 𝜃 ∈ Θ:

−(1− 𝛾𝑋(𝑋, 𝜃)) <
𝛽𝑋(𝑋, 𝜃)

𝛽(𝑋, 𝜃)
(𝑥− 𝛾(𝑋, 𝜃)) < 𝛾𝑋(𝑋, 𝜃) (732)

2. Monotone actions. The cross-sectional distribution of actions and the aggre-
gate action 𝑋 are monotone in the fundamental if, in addition to the condition
(732), the following holds for all 𝑋 ∈ 𝒳 , 𝑥 ∈ 𝒳 , and 𝜃 ∈ Θ:1

𝛽𝜃(𝑋, 𝜃)

𝛽(𝑋, 𝜃)
(𝑥− 𝛾(𝑋, 𝜃)) < 𝛾𝜃(𝑋, 𝜃) (733)

1Where, for simplicity, we allow 𝛽 to be defined for all states in a closed interval that contains
Θ, and assume it is differentiable in its second argument.
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3. Monotone precision. The precision of actions about the optimal action 𝛾

under 𝜑′ is increasing (decreasing) in the strength of fundamentals if, in addition
to (732) and (733), 𝛽 is monotone decreasing (increasing) in both arguments.

4. Efficiency. A necessary condition for efficiency of the stochastic choice rule
𝑃 * under Assumption 6 is that, for all 𝜃,

𝜆𝑋(𝑋(𝑃 *(𝜃)), 𝜃)

∫︁
𝒳
𝜑(𝑝*(𝑥 | 𝜃)) d𝑥

=𝛼𝑋(𝑋(𝑃 *(𝜃)), 𝜃)− 𝛽𝑋(𝑋(𝑃 *(𝜃)), 𝜃)(Disp[𝑃 *(𝜃), 𝜃])2

+ 2 𝛾𝑋(𝑋(𝑃 *(𝜃)), 𝜃) 𝛽(𝑋(𝑃 *(𝜃)), 𝜃)Bias[𝑃 *(𝜃), 𝜃]

(734)

Proof. We have directly assumed that Assumptions 2, 3 and 5 hold. The first claim
follows so long as condition 732 implies Assumption 1, Supermodularity and Sufficient
Concavity, for the outcome-equivalent game with payoff curvature 𝛽 and associated
payoff �̃�.

For supermodularity, it is sufficient to show that �̃�𝑥𝑋(𝑥,𝑋, 𝜃) > 0. We observe
that �̃�𝑥𝑋 = −2𝛽𝑋(𝑋, 𝜃)(𝑥− 𝛾(𝑋, 𝜃)) + 2𝛾𝑋(𝑋, 𝜃)𝛽(𝑋, 𝜃) This condition simplifies to
𝛾𝑋(𝑋, 𝜃) >

𝛽𝑋(𝑋,𝜃)

𝛽(𝑋,𝜃)
(𝑥− 𝛾(𝑋, 𝜃)), which is the second inequality of Equation 732.

For sufficient concavity, it is sufficient to show that |�̃�𝑥𝑥(𝑋, 𝜃)| > �̃�𝑥𝑋(𝑥,𝑋, 𝜃).
Observe that |�̃�𝑥𝑥(𝑋, 𝜃)| = 2𝛽(𝑋, 𝜃). The condition

2𝛽(𝑋, 𝜃) > �̃�𝑥𝑋 = −2𝛽𝑋(𝑋, 𝜃)(𝑥− 𝛾(𝑋, 𝜃)) + 2𝛾𝑋(𝑋, 𝜃)𝛽(𝑋, 𝜃) (735)

simplifies to the first inequality of Equation 732: −(1−𝛾𝑋(𝑋, 𝜃)) < 𝛽𝑋(𝑋,𝜃)

𝛽(𝑋,𝜃)
(𝑥− 𝛾(𝑋, 𝜃)).

The second claim of the Lemma follows so long as condition 733 implies Assump-
tion 4. To see this, as we have already that �̃�𝑥𝑋(𝑥,𝑋, 𝜃) > 0 for all 𝑥,𝑋, 𝜃, it is
sufficient to check that �̃�𝑥𝜃(𝑥,𝑋, 𝜃) > 0 for all 𝑥,𝑋, 𝜃. We note that �̃�𝑥𝜃(𝑥,𝑋, 𝜃) =
−2𝛽𝜃(𝑋, 𝜃)(𝑥− 𝛾(𝑋, 𝜃)) + 2𝛾𝜃(𝑋, 𝜃)𝛽(𝑋, 𝜃) and re-arrange to the desired expression.

The third claim follows directly by Theorem 3 as the payoffs in Equation 730
satisfy Assumption 5.

The fourth claims follows by Theorem 4. Recall from Theorem 4 that a necessary
condition for efficiency of an equilibrium 𝑃 * under Assumption 6 is that:∫︁

𝒳
𝑢𝑋(�̃�, 𝑋(𝑃 *(𝜃)), 𝜃) d𝑃 *(�̃�|𝜃) = 𝜆𝑋(𝑋, 𝜃)

∫︁
𝒳
𝜑(𝑝*(𝑥 | 𝜃)) d𝑥 (736)
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for all 𝜃 ∈ Θ. Using the payoff function, we calculate:

𝑢𝑋(𝑥,𝑋, 𝜃) = 𝛼𝑋(𝑋, 𝜃)− 𝛽𝑋(𝑋, 𝜃)(𝑥− 𝛾(𝑋, 𝜃))2 + 2𝛾𝑋(𝑋, 𝜃)𝛽(𝑋, 𝜃)(𝑥− 𝛾(𝑋, 𝜃))

(737)
Plugging this into the necessary condition and evaluating at the equilibrium aggregate
�̂�(𝜃) = 𝑋(𝑃 *(𝜃)), we obtain:∫︁

𝒳
𝑢𝑋(�̃�, 𝑋(𝑃 *(𝜃)), 𝜃) d𝑃 *(�̃�|𝜃)

=

∫︁
𝒳

[︁
𝛼𝑋(𝑋(𝑃 *(𝜃)), 𝜃)− 𝛽𝑋(𝑋(𝑃 *(𝜃)), 𝜃)(�̃�− 𝛾(𝑋(𝑃 *(𝜃)), 𝜃))2

+ 2𝛾𝑋(𝑋(𝑃 *(𝜃)), 𝜃)𝛽(𝑋(𝑃 *(𝜃)), 𝜃)(�̃�− 𝛾(𝑋(𝑃 *(𝜃)), 𝜃))
]︁
d𝑃 *(�̃�|𝜃)

(738)

Which can be rewritten in terms of the equilibrium bias and variance with respect to
𝛾 as: ∫︁

𝒳
𝑢𝑋(�̃�, 𝑋(𝑃 *(𝜃)), 𝜃) d𝑃 *(�̃�|𝜃)

=𝛼𝑋(𝑋(𝑃 *(𝜃)), 𝜃)− 𝛽𝑋(𝑋(𝑃 *(𝜃)), 𝜃) (Disp[𝑃 *(𝜃), 𝜃])2

+ 2𝛾𝑋(𝑋(𝑃 *(𝜃)), 𝜃)𝛽(𝑋(𝑃 *(𝜃)), 𝜃)Bias[𝑃 *(𝜃), 𝜃]

(739)

as desired.

C.1.9 Proof of Corollary 9

We first derive the payoff representation of Equation 130. This is a second-order
approximation of the payoff function in Equation 129, reprinted here:

𝑢(𝑝𝑖, 𝑃,𝑀) =𝑀
1−𝜎
𝜎 𝑃 𝜂− 1

𝜎

(︁
𝑝𝑖 −𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎

)︁
𝑝−𝜂𝑖 (740)

We first calculate

𝑢𝑝(𝑝𝑖, 𝑃,𝑀) =𝑀
1−𝜎
𝜎 𝑃 𝜂− 1

𝜎

(︁
(−𝜂 + 1)𝑝−𝜂𝑖 + 𝜂𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎 𝑝−𝜂−1
𝑖

)︁
𝑢𝑝𝑝(𝑝𝑖, 𝑃,𝑀) =𝑀

1−𝜎
𝜎 𝑃 𝜂− 1

𝜎

(︁
𝜂(𝜂 − 1)𝑝−𝜂−1

𝑖 − 𝜂(𝜂 + 1)𝑀
𝜒
𝜎𝑃 1−𝜒

𝜎 𝑝−𝜂−2
𝑖

)︁ (741)

We define 𝛾(𝑃,𝑀) as the (unique) solution to 𝑢𝑝(𝑝𝑖, 𝑃,𝑀)|𝑝𝑖=𝛾(𝑃,𝑀) = 0. Re-
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arranging:

0 =𝑀
1−𝜎
𝜎 𝑃 𝜂− 1

𝜎

(︁
(−𝜂 + 1)𝛾(𝑃,𝑀)−𝜂 + 𝜂𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎 𝛾(𝑃,𝑀)−𝜂−1
)︁

0 =
(︁
(−𝜂 + 1) + 𝜂𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎 𝛾(𝑃,𝑀)−1
)︁

𝛾(𝑃,𝑀) =
𝜂

𝜂 − 1
𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎

(742)

We define 𝛼(𝑃,𝑀) = 𝑢(𝛾(𝑃,𝑀), 𝑃,𝑀). We first observe that

𝛾(𝑃,𝑀)−𝑀
𝜒
𝜎𝑃 1−𝜒

𝜎 =
1

𝜂 − 1
𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎 (743)

Then, by direct calculation,

𝛼(𝑃,𝑀) =𝑀
1−𝜎
𝜎 𝑃 𝜂− 1

𝜎

(︂
1

𝜂 − 1
𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎

)︂(︂
𝜂

𝜂 − 1

)︂−𝜂
𝑀−𝜂 𝜒

𝜎𝑃−𝜂+𝜂 𝜒
𝜎

=
1

𝜂 − 1

(︂
𝜂

𝜂 − 1

)︂−𝜂
𝑀

1−𝜎+𝜒(1−𝜂)
𝜎 𝑃 𝜂− 1

𝜎
+(1−𝜂)(1−𝜒

𝜎
)

(744)

as desired

We define 𝛽(𝑃,𝑀) = −1
2
𝑢𝑝𝑝(𝑝𝑖, 𝑃,𝑀)|𝑝=𝛾(𝑃,𝑀). We first observe that

(𝜂 − 1)𝛾(𝑃,𝑀)− (𝜂 + 1)𝑀
𝜒
𝜎𝑃 1−𝜒

𝜎 = −𝑀 𝜒
𝜎𝑃 1−𝜒

𝜎 (745)

Then, by direct calculation,

𝛽(𝑃,𝑀) = −1

2

(︁
𝑀

1−𝜎
𝜎 𝑃 𝜂− 1

𝜎 𝜂𝛾(𝑃,𝑀)−𝜂−2
(︁
(𝜂 − 1)𝛾(𝑀,𝑃 )− (𝜂 + 1)𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎

)︁)︁
=

1

2

(︁
𝑀

1−𝜎
𝜎 𝑃 𝜂− 1

𝜎 𝜂𝛾(𝑃,𝑀)−𝜂−2𝑀
𝜒
𝜎𝑃 1−𝜒

𝜎

)︁
=

1

2

(︃
𝑀

1−𝜎
𝜎 𝑃 𝜂− 1

𝜎 𝜂

(︂
𝜂

𝜂 − 1
𝑀

𝜒
𝜎𝑃 1−𝜒

𝜎

)︂−𝜂−2

𝑀
𝜒
𝜎𝑃 1−𝜒

𝜎

)︃

=
𝜂

2

(︂
𝜂

𝜂 − 1

)︂−(𝜂+2)

𝑀
1−𝜎−𝜒(𝜂+1)

𝜎 𝑃−1− 1
𝜎
+(𝜂+1)𝜒

𝜎

(746)
as required. We finally observe that, since 𝜆(𝑀) = 1

𝜋(𝑀)
= 𝐾𝑀−𝛿 (where 𝐾 is a

normalizing constant), we have

𝛽(𝑃,𝑀) =
𝛽(𝑃,𝑀)

𝜆(𝑃,𝑀)
=
𝜂

2

(︂
𝜂

𝜂 − 1

)︂−(𝜂+2)

𝑀
1−𝜎−𝜒(𝜂+1)

𝜎
+𝛿𝑃−1− 1

𝜎
+(𝜂+1)𝜒

𝜎 (747)
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We now apply the conditions of Lemma 15 to prove the stated result. We first
calculate that

𝛾𝑃 (𝑃,𝑀) =
(︁
1− 𝜒

𝜎

)︁ 𝛾(𝑃,𝑀)

𝑃

𝛽𝑃 (𝑃,𝑀)

𝛽(𝑃,𝑀)
= 𝑃−1

(︂
−1− 1

𝜎
+ (𝜂 + 1)

𝜒

𝜎

)︂
(748)

Applying the condition of Equation 732, we get

−(1−
(︁
1− 𝜒

𝜎

)︁ 𝛾(𝑃,𝑀)

𝑃
) < 𝑃−1

(︂
−1− 1

𝜎
+ (𝜂 + 1)

𝜒

𝜎

)︂
(𝑝−𝛾(𝑃,𝑀)) <

(︁
1− 𝜒

𝜎

)︁ 𝛾(𝑃,𝑀)

𝑃
(749)

Since 𝜒/𝜎 < 1, we divide all three expressions by
(︀
1− 𝜒

𝜎

)︀
𝛾(𝑃,𝑀)/𝑃 to get

−
(︃

𝑃

𝛾(𝑃,𝑀)
(︀
1− 𝜒

𝜎

)︀ − 1

)︃
<

−1− 1
𝜎
+ (𝜂 + 1)𝜒

𝜎(︀
1− 𝜒

𝜎

)︀ (︂
𝑝

𝛾(𝑃,𝑀)
− 1

)︂
< 1 (750)

as desired.

We next verify a condition for monotone aggregates. We first calculate:

𝛾𝑃 (𝑃,𝑀) =
𝜒

𝜎

𝛾(𝑃,𝑀)

𝑀
,

𝛽𝑀(𝑃,𝑀)

𝛽(𝑃,𝑀)
=𝑀−1

(︂
1− 𝜎 − 𝜒(𝜂 + 1)

𝜎
+ 𝛿

)︂
(751)

We then apply Equation 733:

𝑀−1

(︂
1− 𝜎 − 𝜒(𝜂 + 1)

𝜎
+ 𝛿

)︂
(𝑝− 𝛾(𝑃,𝑀)) <

𝜒

𝜎

𝛾(𝑃,𝑀)

𝑀
(752)

Dividing both sides by 𝛾(𝑃,𝑀)𝜎/(𝑀𝜒), this becomes

1− 𝜎 − 𝜒(𝜂 + 1) + 𝛿𝜎

𝜒

(︂
𝑝

𝛾(𝑃,𝑀)
− 1

)︂
< 1 (753)

We finally derive a condition for monotone precision. For this, we need 𝛽 to
decrease in both 𝑀 and 𝑃 . This respectively requires:

0 >
1− 𝜎 − 𝜒(𝜂 + 1)

𝜎
+ 𝛿

0 > −1− 1

𝜎
+ (𝜂 + 1)

𝜒

𝜎

(754)

Re-arranging these inequalities gives the desired condition,

𝜒(𝜂 + 1) ∈ (1 + 𝛾(𝛿 − 1), 1 + 𝛾) (755)
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C.1.10 Proof of Corollary 10

Proof. We first derive the payoff representation of Equations 139 and 140. To this
end, we begin by deriving the consumer’s choices at 𝑡 ≥ 1. At 𝑡 = 1, given savings
𝑏𝑖0 from the first period, each consumer 𝑖 solves the following program at 𝑡 = 1:

max
{𝑐𝑖𝑡,𝑛𝑖𝑡}∞𝑡=1

∞∑︁
𝑡=1

𝛿𝑡
(︂
𝑐𝑖𝑡 −

𝑐2𝑖𝑡
2

− 𝜒
𝑛2
𝑖𝑡

2

)︂
∞∑︁
𝑡=1

𝑐𝑖𝑡
𝑅𝑡

≤ 𝑏𝑖0 +
∞∑︁
𝑡=1

𝑤𝑡𝑛𝑖𝑡
𝑅𝑡

(756)

where 𝑏𝑖0 = 𝑦0 − 𝑐𝑖0 is the agent’s savings from 𝑡 = 0. This problem is concave in
all arguments. Letting 𝜅 denote the Lagrange multiplier in the constraint, we find
first-order conditions 𝛿𝑡(1− 𝑐𝑖𝑡) = 𝜅𝑅−𝑡 for each 𝑐𝑖𝑡 and 𝛿𝑡𝜒𝑛𝑖𝑡 = 𝑤𝑡𝜅𝑅

−𝑡 for each 𝑛𝑖𝑡.
Using 𝛿𝑅 = 1, we transform the former into 𝜅 = 1 − 𝑐𝑖𝑡 for all 𝑡. This implies that
consumption is constant. Plugging this into the labor-supply condition, we derive
𝑛𝑖𝑡 =

1
𝜒
𝑤𝑡(1− 𝑐𝑖𝑡). This is also constant, if consumption is constant.

We next prove that output is identically equal to 𝑦𝑡 = 𝑦 for 𝑡 ≥ 1 and solve for 𝑦.
Profit maximization for the firm implies that the firm elastically demands labor at the
wage 𝑤𝑡 = 1. Evaluated at this wage, labor demand for each agent 𝑖 is 𝑛𝑖𝑡 = 1

𝜒
(1−𝑐𝑖𝑡).

Integrating both sides over 𝑖, we get 𝑛𝑡 = 1
𝜒
(1 − 𝑐𝑡). Substituting in the production

function and market clearing, this becomes 𝑦𝑡 = 1
𝜒
(1− 𝑦𝑡). Therefore, 𝑦𝑡 = 𝑦 = 1

1+𝜒
.

To derive the household’s consumption and labor supply, we return to the bud-
get constraint and simplify it by plugging in constant consumption 𝑐𝑖𝑡 = 𝑐𝑖1, labor
demand, and 𝑤𝑡 = 1, and by simplifying the sums:

1

1−𝑅−1
𝑐𝑖1 ≤ 𝑅𝑏𝑖0 +

1

1−𝑅−1

1

𝜒
(1− 𝑐𝑖1) (757)

Rearranging, we write

𝑐𝑖1 ≤
𝜒

1 + 𝜒

1− 𝛿

𝛿
𝑏𝑖0 + 𝑦 (758)

This holds at equality if the right-hand-side is less than 1 (the agent’s bliss point).
This is guaranteed under the maintained assumption that 𝑏𝑖0 ≤ 𝑐 < 𝛿/(1 − 𝛿). We
finally write the value function from Equation 756 as 𝑉 (𝑏𝑖0). And we observe from
the envelope theorem that

𝑉 ′(𝑏𝑖0) = 𝜅 = 1− 𝜒

1 + 𝜒

1− 𝛿

𝛿
𝑏𝑖0 − 𝑦 (759)
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We now return to the payoff of the consumer at time 0, who chooses consump-
tion given rational expectations about this future equilibrium path and their future
choices. For notational simplicity, we let 𝑐𝑖0 = 𝑐 and 𝑦0 = 𝑦. The agent’s payoff is

𝑈(𝑐, 𝑦, 𝜃𝑑) = (1 + 𝜃𝑑)𝑐−
𝑐2

2
− 𝜒

𝑦2

2
+ 𝑉 (𝑦 − 𝑐) (760)

Note that all agents are off their labor supply curve and work 𝑦 labor hours.

We now derive the form in Equation 139. We first observe that 𝑈𝑐(𝑐, 𝑦, 𝜃𝑑)|𝑐=𝛾(𝑦,𝜃𝑑) =
0. Taking the first derivative,

𝑈𝑐(𝑐, 𝑦, 𝜃𝑑) = (1 + 𝜃𝑑)− 𝑐− 𝑉 ′(𝑦 − 𝑐)

= (1 + 𝜃𝑑)− 𝑐−
(︂
1− 𝜒

1 + 𝜒

1− 𝛿

𝛿
(𝑦 − 𝑐)− 𝑦

)︂ (761)

We next use 𝑈𝑐(𝑐, 𝑦, 𝜃𝑑)|𝑐=𝛾(𝑦,𝜃𝑑) = 0 and rearrange to write

𝛾(𝑦, 𝜃𝑑) = (1−𝑚)(𝜃𝑑 + 𝑦) +𝑚𝑦 (762)

where 𝑚 = 𝜒(1−𝛿)
𝜒+𝛿

is the marginal propensity to consume

We next observe that −𝑈𝑐𝑐(𝑐, 𝑦, 𝜃𝑑) = 2𝛽(𝑦, 𝜃𝑑). We calculate, from above,

𝑈𝑐𝑐 = − 1

1−𝑚
, 𝛽(𝑦, 𝜃𝑑) =

1

2(1−𝑚)
(763)

Moreover, we have 𝛽(𝑦, 𝜃𝑑) = 𝛽(𝑦, 𝜃𝑑)/𝜆(𝑦, 𝜃𝑑) =
1

2(1−𝑚)
𝑦𝜏 .

We finally observe that 𝑈(𝑐, 𝑦, 𝜃𝑑)|𝑐=𝛾(𝑦,𝜃𝑑) = 𝛼(𝑦, 𝜃𝑑). We therefore define

𝛼(𝑦, 𝜃𝑑) = (1 + 𝜃𝑑)𝛾(𝑦, 𝜃𝑑)−
𝛾(𝑦, 𝜃𝑑)

2

2
− 𝜒

𝑦2

2
+ 𝑉 (𝑦 − 𝛾(𝑦, 𝜃𝑑)) (764)

Having verified the payoff representation, we now prove the claim by applying
Lemma 15. First, to show uniqueness, we specialize the condition in Equation 732.
We note that

𝛾𝑦(𝑦, 𝜃𝑑) = 𝑚

𝛽𝑦(𝑦, 𝜃𝑑)

𝛽(𝑦, 𝜃𝑑)
= 𝜏𝑦−1

(765)

Using these expressions, we derive the condition that, for all 𝑦, 𝑐 ∈ [𝑐, 𝑐] and 𝜃𝑑 ∈ Θ𝑑,

−(1−𝑚) <
𝜏

𝑦
(𝑐− (1−𝑚) (𝑦 + 𝜃𝑑)−𝑚𝑦) < 𝑚 (766)
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We re-arrange this algebraically to

0 < 𝑚− 𝜏

𝑦
(𝑐− (1−𝑚) (𝑦 + 𝜃𝑑)−𝑚𝑦) < 1 (767)

Next, to show monotonicity, we observe that 𝛽𝜃𝑑(𝑦, 𝜃𝑑) = 0, and hence Equation 733
reduces to 𝛾𝜃𝑑(𝑦, 𝜃𝑑) > 0, which is by assumption when 𝛿 > 0 and 𝜒 > 0.

Next, to show monotone precision, we observe that 𝛽(𝑋, 𝜃𝑑) = 𝑋𝜏

𝛿
is monotone

decreasing in 𝑋, which from Lemma 15 implies that precision in increasing in funda-
mentals.

Finally, to show efficiency, we plug directly into Equation 734. We first use the
definition of 𝛼 and the envelope theorem to observe that

𝛼𝑦(𝑦, 𝜃𝑑) = 𝑈𝑦(𝑐, 𝑦, 𝜃𝑑)|𝑐=𝛾(𝑦,𝜃𝑑) + 𝛾𝑐(𝑦, 𝜃𝑑)𝑈𝑐(𝑐, 𝑦, 𝜃𝑑)|𝑐=𝛾(𝑦,𝜃𝑑) = 𝑈𝑦(𝑐, 𝑦, 𝜃𝑑)|𝑐=𝛾(𝑦,𝜃𝑑)
(768)

We then calculate

𝑈𝑦(𝑐, 𝑦, 𝜃𝑑) = −𝜒𝑦 + 𝑉 ′(𝑦 − 𝑐)

= −𝜒𝑦 + 1− 𝜒

1 + 𝜒

1− 𝛿

𝛿
(𝑦 − 𝑐)− 𝑦

= −𝜒𝑦 + 1− 𝑚

1−𝑚
(𝑦 − 𝑐)− 𝑦

(769)

where in the last line we use the definition of 𝑚.

We next observe that

𝜆𝑦(𝑦, 𝜃𝑑) = −𝜏𝑦−𝜏−1 𝛾𝑦(𝑦, 𝜃𝑑) = 𝑚 𝛽(𝑦, 𝜃𝑑) =
1

2(1−𝑚)
(770)

Finally, because of linear aggregation,

Bias[𝑃, 𝜃𝑑] =
∫︁
𝒳
(𝑥− 𝛾(𝑦(𝑃 ), 𝜃𝑑)) d𝑃 (𝑥|𝜃𝑑) = 𝑦 − 𝛾(𝑦, 𝜃𝑑) (771)

Using all of this, we re-write the condition for efficiency (Equation 734) as

−𝜏𝑦−𝜏−1

∫︁
𝒳
𝜑(𝑝*(𝑥 | 𝜃𝑑)) d𝑥 = −𝜒𝑦 + 1− 𝑚

1−𝑚
(𝑦 − 𝛾(𝑦, 𝜃𝑑))− 𝑦 +

𝑚

1−𝑚
(𝑦 − 𝛾(𝑦, 𝜃𝑑))

= −𝜒𝑦 + 1− 𝑦

(772)
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This re-arranges to

𝑦 = 𝑦 +
𝜏

𝜒
𝑦−𝜏−1

∫︁
𝒳
𝜑(𝑝*(𝑥 | 𝜃𝑑)) d𝑥 (773)

When 𝜏 = 0, the solution to the fixed-point equation is 𝑦 = 𝑦. When 𝜏 > 0, then

𝑦 − 𝑦 =
𝜏

𝜒
𝑦−𝜏−1

∫︁
𝒳
𝜑(𝑝*(𝑥 | 𝜃𝑑)) d𝑥 (774)

The right-hand side is weakly positive under the assumption that cognitive costs in
each state are positive. Moreover, an optimal 𝑦 that solves this condition exists due
to Assumption 6 being satisfied. Thus, the introduction of stress weakly increases the
optimal level of output.

C.2 State-Separable vs. Mutual Information Costs

In this Appendix, we compare the strategic mistakes model with the rational inatten-
tion model of Sims (2003). In Sims’ rational inattention model, agents flexibly collect
signals about an unknown state subject to a continuous cost or hard constraint mono-
tone in the Shannon mutual information between the signal and the state, and then
take actions measurable in this signal. Commonly, researchers assume that agents’
information choice is unobserved and restrict focus to testing the model’s predictions
for behavior. This perspective is apparent in the early applications of Sims (2003,
2006), in the decision-theoretic analysis of Caplin, Dean, and Leahy (2019, 2022),
and in many of the applications surveyed by Maćkowiak, Matejka, and Wiederholt
(2020). From this perspective, despite their very different motivations—ours from
the perspective of costly planning, and Sims (2003)’s from the perspective of costly
information acquisition—the strategic mistakes and mutual information models may
be each be comparable “candidates” for studying imperfect optimization in a specific
equilibrium setting.

We study the similarities and differences between the two models both in the-
ory and practice. We first present an abstract equivalence result which underscores
how the models may be equivalent for matching observed data (aggregate and cross-
sectional) when the prior distribution is unknown. We then exemplify these differences
in a numerical example of a beauty contest, in which the strategic mistakes model has
unique predictions and monotone comparative statics while the rational inattention
model does not.
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C.2.1 Definitions and an Equivalence Result

We first provide abstract conditions under which a version of the strategic mistakes
model makes identical equilibrium predictions to the mutual information model, to
build intuition about the comparability and differences of the two approaches.

All information acquisition models that have a posterior separable representation,
including mutual information, can be recast as a choice over stochastic choice rules
in 𝒫 subject to some convex cost functional 𝑐 (Denti, 2018). The mutual information
cost of a stochastic choice rule 𝑃 ∈ 𝒫 can be decomposed into two terms which we
label below:2

𝑐𝑀𝐼(𝑃 ) =
∑︁
Θ

∫︁
𝒳
𝑝(𝑥|𝜃) log 𝑝(𝑥|𝜃) d𝑥 𝜋(𝜃)⏟  ⏞  
State-Separable Term

−
∫︁
𝒳
𝑝(𝑥) log 𝑝(𝑥) d𝑥⏟  ⏞  

Cross-State Interactions

(775)

The first term is in fact identical to the state-separable representation (100) with
the (quasi-MLRP) kernel 𝜑(𝑝) = 𝑝 log 𝑝. We label the resulting cost function 𝑐𝐿𝑆𝑀 ,
or logit strategic mistakes. In a stochastic choice interpretation, this term encodes
the agent’s desire to increase the entropy of the conditional action distributions or
play randomly. The second term equals the entropy of the unconditional action
distribution and encodes the agents’ desire to, on average, anchor toward commonly
played actions. This force is absent in the logit strategic mistakes model, and therefore
characterizes 𝑐𝑀𝐼 model compared to its “strategic mistakes cousin” 𝑐𝐿𝑆𝑀 . Moreover,
this decomposition makes clear that there is no conceptual difference in modelling
any stochastic choice game with mutual information versus entropic stochastic choice
other than that agents have different cost functions, and therefore preferences.

Matějka and McKay (2015) show that the second term (“anchoring”) has marginally
zero influence on actions when agents’ actions are ex ante exchangeable, or agents
play each action 𝑥 with equal unconditional probability. From the analyst’s perspec-
tive, the key free parameter for engineering such exchangeability is the prior 𝜋(·). We
extend this result to show, constructively, that an analyst free to specify the prior
can re-construct the equilibrium of a logit strategic mistakes model as an equilibrium
of an equivalent game with a mutual information friction provided that a technical
condition on payoffs, which ensures that all actions can be made ex ante equally
attractive, holds:

Lemma 16 (Equilibrium Equivalence). Suppose that the action space 𝒳 is finite. Let

2In this expression, we use the definition of the marginal distribution 𝑝(𝑥) =
∑︀

Θ 𝑝(𝑥|𝜃)𝜋(𝜃).
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Ω = (𝑃 *, �̂�) be a symmetric equilibrium for the game 𝒢LSM = (𝑢(·), 𝜆𝑐LSM(·), 𝑋(·), 𝜋′(·),Θ,𝒳 ).
There exists some 𝜋′(·) ∈ △(Θ) such that Ω is an equilibrium of 𝒢𝐿𝑆𝑀 and 𝒢MI =

(𝑢(·), 𝜆𝑐MI(·),
𝑋(·), 𝜋′(·),Θ,𝒳 ) if and only if the following linear system has a solution for 𝜋′ ∈
∆(Θ):

�̃�𝜋′ =
1

|𝒳 | (776)

where 1 is a |Θ| length vector, and �̃� is a |𝒳 | × |Θ| matrix with entries:

�̃�𝑥𝑖,𝜃𝑗 =
exp{𝑢(𝑥𝑖, �̂�(𝜃𝑗), 𝜃𝑗)/𝜆}∑︀

𝑥𝑘∈𝒳 exp{𝑢(𝑥𝑘, �̂�(𝜃𝑗), 𝜃𝑗)/𝜆}
(777)

Proof. To establish that Ω is an equilibrium of the mutual information model, it is
sufficient to establish that 𝑃 * solves each individual’s optimization problem when
they take �̂� as given. By Corollary 2 in Matějka and McKay (2015), all interior
unconditional choice probabilities 𝑝(𝑥) =

∑︀
𝜃∈Θ 𝑝(𝑥|𝜃)𝜋(𝜃) in the mutual information

model satisfy the following first-order condition:

𝑝(𝑥 | 𝜃) = 𝑝(𝑥) exp{𝑢(𝑥, �̂�(𝜃), 𝜃)/𝜆}∑︀
�̃�∈𝒳 𝑝(�̃�) exp{𝑢(�̃�, �̂�(𝜃), 𝜃)/𝜆}

(778)

and the following additional constraint:

∑︁
𝜃∈Θ

exp{𝑢(𝑥, �̂�(𝜃), 𝜃)/𝜆}∑︀
�̃�∈𝒳 𝑝(�̃�) exp{𝑢(�̃�, �̂�(𝜃), 𝜃)/𝜆}

𝜋′(𝜃) = 1 (779)

Observe that, if and only if 𝑝(𝑥) = 𝑝(𝑥′) for all 𝑥, 𝑥′ ∈ 𝒳 , then the choice probabilities
that solve (778) are

𝑝(𝑥 | 𝜃) = exp{𝑢(𝑥, �̂�(𝜃), 𝜃)/𝜆}∑︀
�̃�∈𝒳 exp{𝑢(�̃�, �̂�(𝜃), 𝜃)/𝜆}

(780)

This would verify that the stochastic choice rule 𝑃 * is a unique, interior solution to
agents’ choice problem. Hence it remains only to verify that 𝑝(𝑥) = 𝑝(𝑥′) for all
𝑥, 𝑥′ ∈ 𝒳 , or exchangeability, in the agent’s optimal program.

It is straightforward to derive such a condition using (779). Stacking equation
(779) over all interior 𝑥 ∈ 𝒳 , we obtain the system:

�̃�({𝑝(𝑥)}𝑥∈𝒳 )𝜋′ = 1 (781)
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where:

�̃�𝑥𝑖,𝜃𝑗({𝑝(𝑥)}𝑥∈𝒳 ) =
exp{𝑢(𝑥𝑖, �̂�(𝜃𝑗), 𝜃𝑗)/𝜆}∑︀

𝑥𝑘∈𝒳 𝑝(𝑥𝑘) exp{𝑢(𝑥𝑘, �̂�(𝜃𝑗), 𝜃𝑗)/𝜆}
(782)

and 1 is a |Θ| length vector. Thus, there exists a prior consistent with uniform
unconditional choice 𝑝(𝑥) = 1

|𝒳 | if and only if the following linear system has a solution
probability vector 𝜋′ ∈ ∆(Θ):

�̃�𝜋′ = |𝒳 |−11 (783)

where 1 is a |Θ| length vector, and �̃� is as stated in the result. This completes the
proof, with 𝜋′ solving the given system supporting the equilibrium under the mutual
information model.

The proof establishes from first-order conditions that (776) corresponds with a
flat unconditional distribution over actions. The condition ensures that there exists a
prior such that all actions yield ex-ante equal payoffs. Heuristically, it is likely to fail
if some actions in 𝒳 are unappealing regardless of the state or the state space does not
have many realizations. The intuition for the first idea is clearest in the extreme case
in which some actions are dominated by others for all values of 𝑋 and 𝜃. In this case,
there is nothing that an agent could believe that would ever rationalize playing these
actions; and the bridge between the control-cost model and the rational-inattention
model cannot be crossed. The intuition for the second relates to the fact that our
construction varies the prior to make all actions ex ante equally plausible. If, for
instance, there are only two states but 𝑁 > 2 actions with very different payoffs from
one another in each state, then there is likely no belief that will make all of the actions
seem equally appealing.

This result has two practical implications. First, an analyst who is unsure of
the physical prior distribution can think of the logit strategic mistakes model as a
selection criterion for the mutual information model, across games indexed by different
priors and, within each prior, a potentially non-singleton set of equilibria. This is a
general-equilibrium analogue of the Matějka and McKay (2015) insight about the
relationship between logit and mutual-information models for individual choice: the
former approximates the latter when the analyst does not take a specific stand on
anchoring toward defaults. Second, comparative statics in the strategic mistakes
model which perturb payoffs 𝑢(·) or compare across states 𝜃 ∈ Θ may be interpreted,
under the conditions of Lemma 16, as comparative statics in a mutual information
model jointly across the aforementioned features and the physical prior and given a
specific equilibrium selection rule.
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C.2.2 Numerically Revisiting The Beauty Contest

We now return to the beauty contest model to illustrate the differences between the
strategic mistakes and mutual information models in a practical scenario that maps
to the applications of Section 3.4. Because closed-form solutions are not available
for equilibrium action profiles under the mutual information cost, we instead make
a feasible approximation of the model on a gridded action space.3 We will show in
this context sharp differences between the predictions of the logit strategic mistakes
and mutual information models regarding equilibrium multiplicity and comparative
statics, and that these stem from the cross-state interactions embedded in the mutual
information cost functional.4

Environment and Solution Method

For the simplest exposition and comparison to existing work, we use a version of our
model that reduces to the linear beauty contest. We study quadratic payoffs of the
form,

𝑢(𝑥,𝑋, 𝜃) = 𝛼(𝑋, 𝜃)− 𝛽(𝑋, 𝜃)(𝑥− 𝛾(𝑋, 𝜃))2 (784)

and set 𝛼(𝑋, 𝜃) ≡ 0, eliminating the pure externality; 𝛽(𝑋, 𝜃) ≡ 1, giving constant
costs of misoptimization; and 𝛾(𝑋, 𝜃) = (1−𝑟)𝜃+𝑟𝑋 with 𝑟 = 0.85.5 The aggregator
is the mean. The state space has two points of support, Θ = {𝜃0, 𝜃1} = {1.0, 2.0}.
The action space 𝒳 is approximated with a 40-point grid between lower endpoint
𝑥 = 0 and upper endpoint 𝑥 = 3. We use a flat prior with 𝜋(𝜃0) = 𝜋(𝜃1) =

1
2
. And

we scale both logit and mutual information costs by 𝜆 = 0.25.
Let 𝑝*(�̂�) ∈ ∆(𝒳 )2 return each agent’s (unique) optimal stochastic choice rule,

expressed as pair of probability mass functions, when they conjecture the equilibrium
law of motion �̂� =

(︁
�̂�(𝜃0), �̂�(𝜃1)

)︁
.6 As in the proof of our main results, let us

3This is due to two reasons, in our application with quadratic preferences: the lack of a Gaussian
prior and the bounded action space. Moreover, if we had numerically solved a generalized beauty
contest with state-dependent costs of mis-optimization, the non-quadratic payoffs would preclude a
closed-form mutual-information solution even with a Gaussian prior and unbounded state space.

4Note that using logit strategic mistakes will imply that all actions are played with positive
probability. To obtain endogenous consideration sets in the strategic mistakes model, we could have
instead used a quadratic kernel.

5Hellwig and Veldkamp (2009) remark that, for dynamic beauty contests meant to mimic price-
setting in New Keynesian models, that 𝑟 = 0.85 is “commonly used.” Finally, observe that these
payoffs are jointly supermodular in (𝑥,𝑋, 𝜃) but feature bounded complementarity based on the
conditions established in the previous section, provided that 𝑟 ∈ (0, 1).

6For the logit strategic mistakes model, the optimal action profile is known in closed form. For the
mutual information model, we apply the Blahut-Arimoto algorithm as described in Caplin, Dean,
and Leahy (2019) which iterates over the first-order condition for optimal stochastic choice and
updates the marginal distribution over actions until convergence.
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Figure C-1: Equilibria in the Beauty Contest
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Notes: Each plot is a 2-D histogram of ||𝑇�̂�−�̂�||, where || · || indicates the Euclidean norm.
Whiter colors indicate smaller values, and hence “closeness to equilibrium.” The cross marks
represent equilibria, defined such that ||𝑇�̂� − �̂�|| < 10−6.

define the operator 𝑇 : R2 → R2 which constructs essentially the “best response” of
aggregates to aggregates by composing the best response with the aggregator:

𝑇�̂� =
(︁
𝑋 ∘ 𝑝*(𝜃0; �̂�), 𝑋 ∘ 𝑝*(𝜃1; �̂�)

)︁
(785)

We define equilibria by first searching over a grid covering [𝑥, 𝑥]2 for approximate
fixed points �̂�, or low ||𝑇�̂� − �̂�||, and then using a numerical fixed-point solving
algorithm with fine tolerance to confirm equilibria.

Equilibrium Uniqueness and the Contraction Map

Figure C-1 plots the accuracy of the equilibrium conjecture, ||𝑇�̂�−�̂�||, in a heat map
or two-dimensional histogram over the grid of candidate conjectures. Whiter areas
denote that the equilibrium conjecture is closer to the aggregate best response, bluer
areas indicate the opposite, and crosses identify equilibria. The strategic mistakes
model, on the left, features a single-peaked surface and a single equilibrium. This is
consistent with our theoretical results, and with the fixed-point condition (785) being
a contraction. The mutual information model, on the right, features a non-monotone
surface and 18 confirmed equilibria.
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Figure C-2: Partial Equilibrium Comparative Statics With Mutual Information
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Notes: These plots show aggregate best response 𝑇�̂� in state 𝜃0 (left pane) and 𝜃1 (right
pane) along the path (786) for the equilibrium conjecture.

We now deconstruct further the failure of the contraction map argument for the
mutual information model. Recall, in our proof of Theorem 1, that establishing
monotonicity and discounting for the equilibrium operator 𝑇 required first showing
monotone and smooth comparative statics for the single-agent decision problem. To
“test” this in the mutual information model, we parameterize a path that increases
the equilibrium conjecture of �̂� from (0, 0) to one of its equilibrium values.7 Formally,
if we label this chosen equilibrium as 𝑋*

𝑀𝐼 = (𝑋*
MI(𝜃0), 𝑋

*
MI(𝜃1)), we consider points

indexed by 𝑞 ∈ [0, 1]:
�̂�(𝑞) = (𝑞 ·𝑋*

MI(𝜃0), 𝑞 ·𝑋*
MI(𝜃1)) (786)

and the aggregate best response 𝑇�̂�(𝑞). Figure C-2 shows each element of 𝑇�̂�(𝑞) as
a function of 𝑞. The first element, plotted in the left panel, is (i) non-monotone and
(ii) discontinuous in the equilibrium conjecture. In the language of the price-setting
application, the mutual information model does not predict that expecting a higher
price level increases one’s own price, even though the payoff to setting a higher price
has globally increased; and when prices increase, they may jump suddenly.

To better understand the agent’s behavior along this path, we show in Figure C-3
a two-dimensional histogram of the stochastic choice patterns conditional on each
conjecture indexed by 𝑞. Equilibrium strategies are mostly supported on either one

7We pick the equilibrium with the largest value of �̂�(𝜃1)− �̂�(𝜃0).
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Figure C-3: Stochastic Choice Strategies With Mutual Information
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Notes: Each slice on the the vertical axis (𝑞) gives the probability distribution of actions in
state 0 (left) or 1 (right), represented via a “heat map” (scale on the right). The path of the
equilibrium conjecture corresponds to the same in Figure C-2.

or two points. This sparsity of support is formally described by ? and Caplin, Dean,
and Leahy (2019) in discrete- and continuous-action variants of the mutual informa-
tion model as a natural consequence of the lowered marginal costs (or, more loosely,
“increasing returns to scale”) of allocating probability mass to frequently played ac-
tions. Sparse behavior is a characteristic feature of the optimal policy in price-setting
applications studied by Matějka (2015) and Stevens (2019). In our example, the op-
timal policy switches between one and two support points around 𝑞 = 0.45. Matějka
(2015) refers to such behavior as a bifurcation in the optimal policy. As 𝑞 increases
after the bifurcation point, the optimal policy in Figure C-3 pushes the larger and
smaller support points away from one another. This violates monotonicity in the
sense of first-order stochastic dominance, and therefore can lead to a non-monotone
aggregate with respect to some admissible aggregators. Under our chosen aggregator,
this behavior causes 𝑋(𝜃0) to decrease, as evident in the left panel of Figure C-2.

Our observation is that this force can support multiple equilibria in coordination
games because it breaks the contractive properties of the equilibrium map. These
multiple equilibria are not, in our reading, very easily interpretable given that choices
have an ordinal interpretation, payoffs leverage this interpretation in their definition
of complementarity, and agents have a continuum of possible options. This reasoning
is quite stark in the price-setting application which Matějka (2015) and Stevens (2019)
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Figure C-4: Equilibrium Comparative Statics in the Beauty Contest
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Notes: Each cross mark is an equilibrium, under the strategic mistakes (left) and mutual
information (right) models, for different values of 𝜃1. Note the different axis scales in each
figure.

study with mutual information. While it is quite reasonable that a single firm wavers
between charging $1.99 and $2.99 for its product, and indeed Stevens (2019) provides
direct evidence for such behavior, it is a much stronger prediction that an entire
(symmetric) economy of firms switches between a coordinated equilibrium of charging
($1.99, $2.99), respectively in each of two states of nature, to a different equilibrium
of charging ($1.98, $3.00).

Equilibrium Comparative Statics

A point emphasized in our theory, and in particular the transition from Theorem 1
(existence and uniqueness) to Theorem 2 and Theorem 3 (monotone aggregates and
precision), was that the contraction map structure goes hand-in-hand with proving
equilibrium comparative statics. We now illustrate the contrast between comparative
statics with strategic mistakes and information acquisition in our model. We vary the
value of the higher state 𝜃1 on the grid {1.90, 2.00, 2.10} and re-solve for all equilibria
of each model. Our main results for the strategic mistakes model suggest that 𝑋*(𝜃1)

should monotonically increase in that model while 𝑋*(𝜃0) stays constant, owing to
the separability of decisions by state. For the mutual information model, there are
no equivalent theoretical results.

Figure C-4 plots the equilibria of each model as a function of the chosen 𝜃1. In the
strategic mistakes model, we verify the predicted comparative statics across unique
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equilibria. In the mutual information model, we observe non-monotone comparative
statics as equilibria move in and out of the set. Thus, while a mutual-information
model may be an appealing laboratory to study specific behaviors like discrete pricing,
it may not lend itself to straightforward comparative statics analysis conditional on
this feature outside of specific numerical calibrations.8

C.3 State-Separable Costs in Binary-Action Games
In this Appendix, we adapt our analysis to study binary-action games, which are also
common for modeling coordination phenomena in macroeconomics and finance. We
first provide results ensuring existence, uniqueness and monotone comparative statics.
We next apply our results to study the “investment game,” introduced by Carlsson and
Van Damme (1993) and studied recently by Yang (2015) and Morris and Yang (2019).
Bridging our continuous-action and binary-action analyses, we finally discuss how the
the action space can have a large bearing on our model’s uniqueness predictions. This
may be an important consideration for researchers when the choice of action space
is primarily based on analytical convenience and not descriptive realism regarding
adjustment on an extensive margin.

C.3.1 Existence, Uniqueness, and Comparative Statics

We now study the same environment as Section 3.2 with the sole change that agents
now have a binary action set 𝒳 = {0, 1}.9 Let 𝑝(𝜃) denote the probability that a
given agent plays action 1 in state 𝜃. It is without loss of generality to restrict to the
aggregator 𝑋(𝑝(𝜃)) = 𝑝(𝜃), since transformations of this aggregate can be applied
within payoffs, and we adopt this convention throughout. Given a conjecture for the
law of motion of the aggregate 𝑝 and state 𝜃 ∈ Θ, we define the cost-adjusted benefit
of playing action 1 over action 0 as:

∆�̃�(𝑝(𝜃), 𝜃) ≡ 𝑢(1, 𝑝(𝜃), 𝜃)− 𝑢(0, 𝑝(𝜃), 𝜃)

𝜆(𝑝(𝜃), 𝜃)
(787)

We let ∆�̃�𝑋 denote this function’s derivative in the first argument.

8Of course whether this is a “bug” or instead a “feature,” reflecting the unstable coordina-
tional nature of activities like price-setting, is an open question that merits additional research.
Stevens (2019), for instance, uses a model of coarse pricing with mutual-information costs to match
micro-level evidence on pricing strategies and macroeconomic dynamics for aggregates. The micro-
economic calibration builds the case that non-uniqueness and ambiguous comparative statics may
indeed be features of the “correct” descriptive model of this setting.

9Naturally, all integrals are now replaced with summations and density functions by mass func-
tions.
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We now provide an existence and uniqueness result. To do so, we place the
following regularity condition on the stochastic choice functional:10

Assumption 15. The kernel of the cost functional satisfies the Inada condition
lim𝑥→0 𝜑

′(𝑥) = −∞. Moreover, 𝜑′′ is globally strictly convex.11

This rules out stochastic choice rule’s being concentrated on only one of the two
actions in any state. The result follows:12

Proposition 43. Suppose that 𝜑 satisfies assumption 15 and ∆𝑢(𝑝, 𝜃) is continuously
differentiable in its first argument. There exists an equilibrium. All equilibria are
symmetric. A sufficient condition for there to be a unique 𝑝*(𝜃) is that:

max
𝑝∈[0,1]

∆�̃�𝑋(𝑝, 𝜃) < 2𝜑′′
(︂
1

2

)︂
(788)

A sufficient condition for there to be a unique 𝑝* is that (788) holds for all 𝜃 ∈ Θ.

Proof. Under Assumption 15, for any 𝜃, we have that 𝑝*(𝜃) ∈ (0, 1). Thus equilibrium
is characterized by the first-order condition obtained by moving probability of playing
zero to playing one. Thus, the condition characterizing equilibrium is given by:

∆𝑢(𝑝*(𝜃), 𝜃) = 𝜆(𝑝*(𝜃)) (𝜑′(𝑝*(𝜃))− 𝜑′(1− 𝑝*(𝜃))) (789)

To prove uniqueness for a given 𝜃 it is sufficient to prove that the minimal slope of
the RHS exceeds the maximal slope of the LHS:

max
𝑝∈[0,1]

∆�̃�𝑋(𝑝, 𝜃) < min
𝑝∈[0,1]

𝜑′′(𝑝) + 𝜑′′(1− 𝑝) (790)

If 𝜑′′ is strictly convex, then the problem is solved by solving the FOC:

𝜑′′′(𝑝) = 𝜑′′′(1− 𝑝) (791)

As 𝜑′′ is strictly convex, 𝜑′′′ is strictly increasing and is therefore invertible. Thus the
unique solution is 𝑝 = 1

2
and the minimized value is 2𝜑′′(1

2
). Applying this argument

state by state yields the global condition.
10For existence, this can be weakened in the obvious way: the objective need only be continuous.

We present results with this stronger assumption for brevity.
11Note that, in view of the Inada condition, it is impossible for 𝜑′′ to be globally strictly concave.
12One can extend this result in the obvious way beyond the differentiability assumption to allow

for Lipschitz continuous Δ𝑢(𝑝, 𝜃). Naturally, the key property being ruled out is a sudden threshold
around which the gains from playing action 1 change discontinuously.

501



Condition (788) checks the maximum value of complementarity (left-hand-side)
against the lowest value for the slope of the marginal cognitive cost of investing (right-
hand-side), which is realized at 𝑝 = 1

2
.13 We will provide a simple graphical intuition

for this condition in the upcoming example.
It is moreover simple to establish when the aggregate 𝑝*(𝜃) increases in 𝜃. As in

our main analysis, this simply requires supermodularity of payoffs in (𝑥, 𝑝, 𝜃), or that
higher actions by others and states are complementary with playing 𝑥 = 1:

Assumption 16 (Joint Supermodularity). The cost-adjusted benefit of playing action
1 over action 0 satisfies, for all 𝑝′ ≥ 𝑝, 𝜃′ ≥ 𝜃:

∆�̃�(𝑝′, 𝜃′) ≥ ∆�̃�(𝑝, 𝜃) (792)

Proposition 44. Suppose that Assumptions 15 and 16 hold, and that the inequality
in Equation 788 holds for all 𝜃 ∈ Θ so that there is a unique equilibrium 𝑝*. The
unique equilibrium 𝑝*(𝜃) is monotone increasing in 𝜃.

Proof. Under Assumption 15, the equilibrium is characterized by Equation 789. Un-
der the assumption that the inequality in Equation 788 holds, there is a unique
solution 𝑝*(𝜃) for all 𝜃 ∈ Θ. Note that that this unique equilibrium occurs when
∆�̃�(𝑝, 𝜃) intersects 𝜑′(𝑝) − 𝜑′(1 − 𝑝) from above. Moreover, by Assumption 16 we
know that ∆�̃�(𝑝, 𝜃) is increasing in (𝑝, 𝜃). Thus, when we take 𝜃′ ≥ 𝜃, we know that
the unique intersection occurs for 𝑝*(𝜃′) ≥ 𝑝*(𝜃).

Analogous results with general information acquisition or stochastic choice, by
contrast, require more extensive analysis (see, e.g., Yang, 2015; Morris and Yang,
2019).

C.3.2 Application: The Investment Game

We now apply these results in a variant of the binary-action investment game intro-
duced by Carlsson and Van Damme (1993), which models coordination motives in
financial speculation. Each agent chooses an action 𝑥 ∈ {0, 1}, or “not invest” and
“invest.” The state of nature 𝜃 ∈ Θ ⊆ R scales the desirability of investing indepen-
dent of other conditions. Agents’ payoffs depend on the action, the total fraction of
investing agents, and the state of nature separably and linearly:

𝑢(𝑥, 𝑝, 𝜃) = 𝑥(𝜃 − 𝑟(1− 𝑝)) (793)
13That 𝑝 = 1

2 is such a point can be derived by noting the symmetry of the state-separable cost
around 𝑝 = 1

2 and the convexity of 𝜑.
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where 𝑟 ≥ 0 scales the degree of strategic complementarity between investment deci-
sions.

It is straightforward to derive the following fixed-point equation that describes the
equilibria of the model when 𝜑 satisfies the Inada condition in Assumption 15 and
𝜆(𝑝, 𝜃) ≡ 1:

𝜃 + 𝑟𝑝(𝜃)− 𝑟 = 𝜑′(𝑝(𝜃))− 𝜑′(1− 𝑝(𝜃)) (794)

Equilibrium is guaranteed to be unique by Proposition 44 provided that the following
condition holds relating strategic complementarity 𝑟 with the second derivative of the
kernel 𝜑:

𝑟 < 2𝜑′′
(︂
1

2

)︂
(795)

This condition is independent of the state space Θ or the prior. But it does depend
on the scale and character of cognitive costs through 𝜑′′ (︀1

2

)︀
.

Condition (795) admits the following interpretation about uniqueness with van-
ishing costs under arbitrary functional forms. For any positive (but arbitrarily small)
level of strategic complementarity, and with a sufficiently rich state space, there will
be multiple equilibria for a sufficiently small cost of stochastic choice:

Corollary 15. Consider a family of investment games {𝒢𝜆 : 𝜆 ∈ (0, 𝐿]} with fixed
payoffs, action space, and state space, each with the re-scaled cost functional for some
common 𝜑 that satisfies Assumption 15, i.e., 𝜑𝜆 = 𝜆𝜑. Then, for all

𝜆 > 𝐿* :=
𝑟

2𝜑′′
(︀
1
2

)︀ (796)

game 𝒢𝜆 has a unique action profile (𝑝*(𝜃))𝜃∈Θ. Conversely, when 𝜆 < 𝐿*, there exists
at least some 𝜃* ∈ R such that the equilibrium of 𝒢𝜆 is not unique if 𝜃* ∈ Θ.

Proof. Recall that for any 𝜑𝜆 (owing to 𝜑 satisfying Assumption 15), we have that:

𝜃 + 𝑟𝑝*(𝜃)− 𝑟 = 𝜑′
𝜆(𝑝

*(𝜃))− 𝜑′
𝜆(1− 𝑝*(𝜃)) (797)

Consider state 𝜃* = 𝑟
2
. In this state, we have that 𝑝*(𝜃*) = 1

2
is an equilibrium.

Moreover, see that the slope of the LHS in 𝑝 is given by 𝑟 and the slope of the RHS in
𝑝 at 𝑝 = 1

2
is given by 2𝜆𝜑′′(1

2
). Hence, when 𝜆 < 𝑟

2𝜑′′( 1
2
)
, we have that the slope of the

LHS exceeds the slope of the RHS. But we know that the RHS is continuous on (0, 1)

and that lim𝑝→1 𝜑
′(𝑝)−𝜑′(𝑝) = ∞. Thus, the RHS must intersect the LHS from below

for some other 𝑝 ∈ (1
2
, 1). Thus, in state 𝜃*, if 𝜆 < 𝑟

2𝜑′′( 1
2
)

there are multiple 𝑝*(𝜃)
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Figure C-5: Multiplicity in the Investment Game
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Notes: The dotted line is the marginal benefits of investing more often as a function of
others’ investment probability, or the right-hand side of (794). The blue and orange lines
are the marginal costs of investing more often under respectively more and less severe costs
of stochastic choice. Each intersection is an equilibrium.

that can arise in equilibrium. Consequently, if 𝜃* ∈ Θ and 𝜆 < 𝑟

2𝜑′′( 1
2
)
, we have that

equilibrium is not globally unique. The final claim that we have global uniqueness
for 𝜆 > 𝑟

2𝜑′′( 1
2
)

follows immediately from Theorem 43.

The result contrasts with Corollary 1 which showed limit uniqueness in the gen-
eralized beauty contest. We will further discuss this issue in Section C.3.4.

To illustrate the uniqueness result, we consider a specialization of the model in
which the kernel function is 𝜑(𝑥) = 𝑥 log 𝑥. In this case, 𝜑′′(0.5) = 2 and the cost
threshold for uniqueness is 𝐿* = 𝑟

4
.14 Figure C-5 illustrates the scope for multiplicity

in a benchmark parameter case of this logit model. We fix 𝑟 = 0.50, and 𝜃 = 0.25,
the state such that a 50% aggregate investment corresponds with zero payoff. The
dotted black line is the “Marginal Benefit,” which corresponds with the left-hand-side
of (794). The blue and orange lines are the the “Marginal Cost” of increasing the
investing probability, or the right-hand-side of (794), with respectively higher and
lower values of 𝜆 or costs of attention. By construction, there is an equilibrium with
𝑝 = 1

2
for any value of 𝜆. Whether or not there are additional equilibria corresponding

to more “confident” play, or 𝑝 closer to 0 or 1, depends on the slope of these marginal
costs. When 𝜆 is high (blue line), it is costly to play more certainly and hence there
is only one intersection with the dotted line. When 𝜆 is low (orange line), marginal

14This is exactly the condition obtained by Yang (2015) for this game with information acquisition
costs proportional to mutual information. This foreshadows a deeper connection which we will
explore in the next subsection.
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costs cross marginal benefits from above at 𝑝 = 0.5. This visualizes a violation of
the condition in Proposition 43. As a result there are two more “confident” equilibria
near 𝑝 = 0 and 𝑝 = 1.

The right-hand-side of the confident-wavering condition (795) is a well-defined
moment which researchers may try to calibrate via laboratory experiments and could
interpret in our model without taking a stand on the entire 𝜑 function. In this way,
(795) can be read as a sufficient statistic gauge of the potential for multiplicity and
fragility that relies only on one informative aspect of the underlying stochastic choice
model.

C.3.3 State-Separable vs. Mutual Information Costs

In the vein of our main analysis’ comparison of beauty contests with strategic mistakes
and mutual information, we now compare the investment game under logit strategic
mistakes with the equivalent game under mutual information, as studied by Yang
(2015). Observe first that the mutual information model does not always admit
an interior solution. Intuitively, if agents place an arbitrarily high prior weight on
fundamentals always being very high or very low, they may decide to unconditionally
invest or dis-invest without learning anything. These scenarios are ruled out by
respectively assuming E𝜋 [exp{𝜆−1𝜃}] > exp{𝜆−1𝑟} and E𝜋 [exp{−𝜆−1𝜃}] > 1. No
analogue of either is possible in the strategic mistakes model with logistic choice
which always features positive probability of playing both actions in all states, so
these conditions a fortiori rule out an application of Lemma 16. Nonetheless, after
ruling out these cases, we can show the following:

Corollary 16. Compare identical investment games 𝒢LSM and 𝒢MI, distinguished by
their costs of stochastic choice, scaled by a common scalar 𝜆. Assume

1. (Interiority) E𝜋 [exp{𝜆−1𝜃}] > exp{𝜆−1𝑟} and E𝜋 [exp{−𝜆−1𝜃}] > 1

2. (Global uniqueness) 𝑟 < 4𝜆

Each game has a unique equilibrium (𝑝LSM(·), 𝑝MI(·)). Moreover,⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝LSM(𝜃) = 𝑝MI(𝜃),∀𝜃 if

∑︀
Θ 𝑝

MI(𝜃) 𝜋(𝜃) = 1/2,

𝑝LSM(𝜃) < 𝑝MI(𝜃),∀𝜃 if
∑︀

Θ 𝑝
MI(𝜃) 𝜋(𝜃) > 1/2,

𝑝LSM(𝜃) > 𝑝MI(𝜃),∀𝜃 if
∑︀

Θ 𝑝
MI(𝜃) 𝜋(𝜃) < 1/2.

(798)

Proof. It follows from Proposition 2 of Yang (2015), that when E𝜋 [exp{𝜆−1𝜃}] >
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exp{𝜆−1𝑟} and E𝜋 [exp{−𝜆−1𝜃}] > 1, the equilibria of the game with mutual infor-
mation cost are characterized by:

𝜃 + 𝑟𝑝MI(𝜃)− 𝑟 = 𝜆

[︂
ln

(︂
𝑝MI(𝜃)

1− 𝑝MI(𝜃)

)︂
− ln

(︂
𝑝MI

1− 𝑝MI

)︂]︂
(799)

for all 𝜃 ∈ Θ where 𝑝MI =
∑︀

Θ 𝑝
MI(𝜃)𝜋(𝜃). It moreover follows from Proposition 3

of Yang (2015) that when 𝑟 < 4𝜆, this model features a unique equilibrium. Recall
that when 𝑟 < 4𝜆 our model with entropic stochastic choice also features a unique
equilibrium and this is characterized by:

𝜃 + 𝑟𝑝𝐿(𝜃)− 𝑟 = 𝜆

[︂
ln

(︂
𝑝𝐿(𝜃)

1− 𝑝𝐿(𝜃)

)︂]︂
(800)

Moreover, when 𝑝MI > 1
2
, we have that ln

(︁
𝑝MI

1−𝑝MI

)︁
> 0, when 𝑝MI = 1

2
, we have that

ln
(︁

𝑝MI

1−𝑝MI

)︁
= 0 and when 𝑝MI < 1

2
, we have that ln

(︁
𝑝MI

1−𝑝MI

)︁
< 0. It is then immediate

that 𝑝𝐿(𝜃) < 𝑝MI(𝜃) when 𝑝MI > 1
2
, 𝑝𝐿(𝜃) = 𝑝MI(𝜃) when 𝑝MI = 1

2
, and 𝑝𝐿(𝜃) > 𝑝MI(𝜃)

when 𝑝MI < 1
2
.

Conditional on interiority, anchoring in the mutual information model distorts the
choice probabilities but perhaps more surprisingly is completely separable from the
game’s uniqueness properties. More formally, in binary-action games with mutual
information, the only difference between the strategic mistakes model with entropy
is that log-odds ratio log

(︁
𝑝(𝜃)

1−𝑝(𝜃)

)︁
in state 𝜃 ∈ Θ differs across the models by a state-

independent additive constant. In our earlier graphical analysis, this can be seen as
a vertical shift of the marginal cost curve. Thus, our confident wavering argument
applies directly to the mutual information model and offers an alternative window
into the main result of Yang (2015). This separability of anchoring from uniqueness
properties with binary actions may be an independently useful insight in other models
with mutual information cost.

C.3.4 Discussion: Global vs. Local Mistakes

Binary-action settings are sometimes used as a convenient metaphor for underlying
environments with many possible actions—for instance, simplifying financial spec-
ulation as the choice between extremes of investing and dis-investing instead of a
continuous portfolio choice. Our analysis reveals that, in models of stochastic choice,
the restriction to two extreme actions may significantly change the character of the
game because it removes the possibility of local substitution of actions. The binary-
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action game allows for “global mistakes,” like fully investing when fully disinvesting is
instead optimal, that impose discontinuously different externalities and can support
multiple equilibria. Our benchmark continuous-action model implies by contrast that
agents make “local mistakes” like substituting an optimal action with an alternative
that is sub-optimal but nearby in the action space. Whether an analyst should use the
binary-action or continuous-action model then depends on the problem at hand and
how seriously they take the prediction of global substitution relative to the potential
loss in tractability.

Our results also contrast with those in the global games literature in which there
is, instead of stochastic choice, vanishing private measurement error in observing
the fundamental (Carlsson and Van Damme, 1993; Morris, Rob, and Shin, 1995;
Frankel, Morris, and Pauzner, 2003). When combined with the earlier observation
linking strategic mistakes with cross-sectional heterogeneity in payoff functions (Sec-
tion 3.2.1), our results draw a sharp distinction between measurement errors for pay-
offs (studied here, which do not yield limit uniqueness) and measurement errors for
fundamentals (studied in the aforementioned literature, which do yield limit unique-
ness). One way of thinking about the difference is that the “contagion” argument
formalized in the above references, which shows that having dominant actions in spe-
cific states iteratively implies unique rationalizable actions in neighboring states, has
no analogue in the present model with no interim beliefs or cross-state reasoning. A
different interpretation is that the mere observation that agents have trembling hands
is not sufficient to imply the sharp and specific predictions of canonical global games,
a point also made by Yang (2015) and Morris and Yang (2019).

507



508



Appendix D

Appendix to Priority Design in
Centralized Matching Markets

D.1 Omitted Proofs

D.1.1 Proof of Theorem 5

Proof. Fix an arbitrary coarsening Ξ. Divide the schools to two subsets: 𝑐 ∈ 𝒞 if Ξ𝑐
is finite and 𝑐 ∈ 𝒞 if Ξ𝑐 is the identity function. In what follows, we will construct
an alternative coarsening Ξ′ that has three indifference classes in some school 𝑐 and
induces the same allocation. Since 𝑐 was arbitrary, replicating this for all 𝑐 will yield
a trinary coarsening Ξ′.

For any school 𝑐 ∈ 𝒞, the coarsening Ξ takes any student with score 𝑠𝜃𝑐 to an
equivalence class, hence Ξ𝑐(𝑠

𝜃
𝑐) ∈ {𝑃 𝑐

1 , 𝑃
𝑐
2 , . . . , 𝑃

𝑐
𝑁} with 𝑃 𝑐

1 < 𝑃 𝑐
2 < . . . < 𝑃 𝑐

𝑁 for
some 𝑁 . By Lemma 17 in Appendix D.2, there exists a matching �̃� in the coarsened
ordinal economy with tie-breakers Ω̃𝜏

Ξ such that for all (𝜃Ξ, 𝜏) ∈ Θ̃𝜏
Ξ, its matching is

uniquely given by �̃�(𝜃Ξ, 𝜏). Moreover, by Lemma 18 in Appendix D.2, any type 𝜃 ∈ Θ

whose coarsened ordinal type is given by 𝜃Ξ has assignment probability at each school
𝑐, 𝑔Ξ(𝑐|𝜃), that is obtained by integrating �̃�(𝜃Ξ, 𝜏) over 𝜏 .

We will construct an alternative coarsening Ξ′ that has only 3 indifference classes
for school 𝑐 and induces the same allocation as Ξ, i.e. 𝑔Ξ(𝑐|𝜃) = 𝑔Ξ′(𝑐|𝜃) for all 𝜃 ∈ Θ

and 𝑐 ∈ 𝒞. Let 𝑃 𝑐
𝑥 be the lowest indifference class that has a student placed in school

𝑐, i.e. �̃�(𝜃Ξ, 𝜏) = 𝑐 for some (𝜃Ξ, 𝜏) with 𝑠𝜃Ξ𝑐 = 𝑃 𝑐
𝑥 and �̃�(𝜃Ξ, 𝜏) ̸= 𝑐 for all (𝜃Ξ, 𝜏) with

𝑠𝜃Ξ𝑐 = 𝑃 𝑐
𝑦 where 𝑦 < 𝑥.1 Now, define Ξ′ by merging all indifference classes above and

1Note that this allows 𝑥 = 1 and 𝑥 = 𝑁 , i.e. this class can be the lowest indifference class or the
highest indifference class.
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below 𝑥 for school 𝑐:

Ξ′
𝑐(𝑠

𝜃
𝑐) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃 𝑐
1 , if Ξ𝑐(𝑠

𝜃
𝑐) = 𝑃 𝑐

𝑧 , 𝑧 < 𝑥,

𝑃 𝑐
𝑥 , if Ξ𝑐(𝑠

𝜃
𝑐) = 𝑃 𝑐

𝑥 ,

𝑃 𝑐
𝑁 , if Ξ𝑐(𝑠

𝜃
𝑐) = 𝑃 𝑐

𝑧 , 𝑧 > 𝑥.

(801)

And Ξ′
𝑐′ = Ξ𝑐′ for all 𝑐′ ̸= 𝑐. To see that �̃� is stable under Ξ′, assume (ordinal)

student pair 𝑖, 𝑗 (with scores 𝑠𝑖𝑐′ and 𝑠𝑗𝑐′ and tie-breakers 𝜏𝑖 and 𝜏𝑗) and school 𝑐′ blocks
�̃�. Then, 𝑐′ ≻𝑖 �̃�(𝑖), �̃�(𝑗) = 𝑐′ and either Ξ′

𝑐′(𝑠
𝑖
𝑐′) > Ξ′

𝑐′(𝑠
𝑗
𝑐′) or Ξ′

𝑐′(𝑠
𝑖
𝑐′) = Ξ′

𝑐′(𝑠
𝑗
𝑐′) and

𝜏𝑖 > 𝜏𝑗.2 First, if 𝑐′ ̸= 𝑐, as the priority for school 𝑐′ is same under both Ξ and Ξ′,
(𝑖, 𝑗, 𝑐′) block �̃� under Ξ, which is a contradiction. If 𝑐 = 𝑐′, Ξ′

𝑐′(𝑠
𝑖
𝑐′) > Ξ′

𝑐′(𝑠
𝑗
𝑐′) implies

that Ξ𝑐′(𝑠
𝑖
𝑐′) > Ξ𝑐′(𝑠

𝑗
𝑐′) and (𝑖, 𝑗, 𝑐′) again block �̃� under Ξ, which is a contradiction.

Next, suppose Ξ′
𝑐′(𝑠

𝑖
𝑐′) = Ξ′

𝑐′(𝑠
𝑗
𝑐′) and 𝜏𝑖 > 𝜏𝑗. As �̃�(𝑗) = 𝑐′ and Ξ′

𝑐′(𝑠
𝑖
𝑐′) = Ξ′

𝑐′(𝑠
𝑗
𝑐′), we

have that Ξ𝑐′(𝑠
𝑖
𝑐′) ≥ 𝑃 𝑐′

𝑥 . There are two cases, either Ξ𝑐′(𝑠
𝑖
𝑐′) > 𝑃 𝑐′

𝑥 or Ξ𝑐′(𝑠
𝑖
𝑐′) = 𝑃 𝑐′

𝑥 .
In the first case, from the definition of 𝑃 𝑐′

𝑥 , there exists 𝑘 such that �̃�(𝑘) = 𝑐′,
Ξ𝑐′(𝑠

𝑘
𝑐′) = 𝑃 𝑐′

𝑥 . Then, Ξ𝑐′(𝑠
𝑖
𝑐′) > Ξ𝑐′(𝑠

𝑘
𝑐′), 𝑐′ ≻𝑖 �̃�(𝑖) and �̃�(𝑘) = 𝑐′, which means

that (𝑖, 𝑘, 𝑐′) block �̃� under Ξ, a contradiction. In the second case, Ξ𝑐′(𝑠
𝑖
𝑐′) = 𝑃 𝑐′

𝑥

and Ξ′
𝑐′(𝑠

𝑖
𝑐′) = Ξ′

𝑐′(𝑠
𝑗
𝑐′) imply Ξ𝑐′(𝑠

𝑗
𝑐′) = 𝑃 𝑐′

𝑥 . However, this violates the stability of
�̃� under Ξ as 𝜏𝑖 > 𝜏𝑗, which is a contradiction. Hence �̃� is stable under both Ξ

and Ξ′. Moreover, the economy under Ξ′ with tie-breakers retains the full support
property, so there still is a unique stable matching for both economies (see Lemma
17 in Appendix D.2.1). As the stable matching is unique in both economies, we use
the same matching in the construction of 𝑔Ξ and 𝑔Ξ′ , so 𝑔Ξ = 𝑔Ξ′ (applying Lemma
18 in Appendix D.2.1).

Next, take 𝑐 ∈ 𝒞. Let �̃� denote the unique stable matching under Ξ. For any
school 𝑐, let 𝑡𝑐 denote the threshold that the students must clear in order to gain
admission to that school. Formally,

𝑡𝑐 = inf{𝑠𝜃𝑐 : �̃�(𝜃) = 𝑐} (802)

Next, define Ξ′ in the following way:

Ξ′
𝑐(𝑠

𝜃
𝑐) =

⎧⎨⎩0 , if 𝑠𝜃𝑐 < 𝑡𝑐,

1 , if 𝑠𝜃𝑐 ≥ 𝑡𝑐.
(803)

2We abuse notation slightly by evaluating �̃� under Ξ′ as the set of types changes under Ξ′.
However, this is not an issue as we explicitly refer to the uncoarsened ordinal types of students 𝑖
and 𝑗.
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Note that from the stability of �̃� and the definition of matching (in particular,
property (iv) from Footnote 23), there cannot be a student 𝑘 such that 𝑐′ ≻𝑘 �̃�(𝑘)

and 𝑠𝑘𝑐′ ≥ 𝑡𝑐′ . To see that �̃� is stable under Ξ′, assume that student pair 𝑖, 𝑗 (with
scores 𝑠𝑖𝑐′ and 𝑠𝑗𝑐′) blocks it in school 𝑐′. Then we have 𝑐′ ≻𝑖 �̃�(𝑖), �̃�(𝑗) = 𝑐′ and
Ξ′
𝑐′(𝑖) ≥ Ξ′

𝑐′(𝑗). As �̃�(𝑗) = 𝑐′, we have Ξ′
𝑐′(𝑖) = Ξ′

𝑐′(𝑗) = 1. But then this implies
that 𝑠𝑖𝑐′ ≥ 𝑡𝑐′ , which contradicts the stability of �̃� under Ξ as 𝑐′ ≻𝑖 �̃�(𝑖). By the same
argument as in the first case, it follows that 𝑔Ξ = 𝑔Ξ′ .

Applying this argument for all 𝑐 ∈ 𝒞 then yields a trinary coarsening Ξ′ that
replicates Ξ in the sense that 𝑔Ξ = 𝑔Ξ′ .

D.1.2 Proof of Theorem 6

Proof. First, by Theorem 5, we parameterize coarsenings Ξ by the outcome equivalent
𝑣 ∈ 𝒱 , where we note that 𝒱 is compact. Second, define 𝑔 : 𝒱 → 𝒢 such that
𝑔(𝑣) = 𝑔𝑣. By Lemma 19 in Appendix D.2.2, we have that 𝑔 is continuous under the
appropriate 𝐿1-norm on 𝒢. Third, define 𝑍 : 𝒱 → R as 𝑍 = 𝑍 ∘ 𝑔. By Assumption
19 that 𝑍 is continuous under the 𝐿1-norm and the fact that 𝑔 is continuous, it then
follows that 𝑍 is continuous. Fourth, observe that we can write Equation 147 as:

max
𝑣∈𝒱

𝑍(𝑣) (804)

Finally, by the extreme value theorem as 𝒱 is compact and 𝑍 is continuous, it follows
that 𝒱* is non-empty. Thus, an optimal trinary coarsening exists.

D.1.3 Proof of Corollary 11

Proof. This result follows from Theorem 5 specialized to an environment with two
schools. However, in this case there is an alternative, simpler proof that we provide
below for completeness.

In the first part of the proof, we show that under any stable mechanism, the
allocation takes the following form:

𝑔𝑣𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑣 ≥ 𝑣,

𝑝𝐿, 𝑣 ∈ [𝑣, 𝑣),

0, 𝑣 < 𝑣.

(805)

for 0 ≤ 𝑣 ≤ 𝑣 ≤ 1 and 𝑝𝐿 ∈ [0, 1]. To see this, consider priority classes defined by:
𝑖 ∈ 𝑃𝑗 ⇐⇒ 𝑠𝑖 ∈ [𝑣𝑗−1, 𝑣𝑗) for 𝑗 ≤ 𝑛 and 𝑖 ∈ 𝑃𝑛+1 ⇐⇒ 𝑠𝑖 ∈ [𝑣𝑛, 𝑣𝑛+1]. Now suppose
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that ∃𝑖 ∈ 𝑃𝑗 and 𝑘 ∈ 𝑃𝑙 for 𝑙 < 𝑗 such that 𝑔𝑣𝑘 > 0. If 𝑔𝑣𝑗 < 1, then a positive measure
of students in 𝑃𝑗 will not be assigned to 𝐺 and a positive measure of students in
𝑃𝑘 will be assigned to 𝐺. This violates stability. Hence, 𝑔𝑣𝑗 = 1. Now suppose that
∃𝑖 ∈ 𝑃𝑗 and 𝑘 ∈ 𝑃𝑙 for 𝑙 < 𝑗 such that 𝑔𝑣𝑗 < 1. By an identical argument, it must
be that 𝑔𝑣𝑘 = 0. By the above two conclusions, it must be that if there is any 𝑙 such
that 𝑔𝑣𝑙 ∈ (0, 1) there is a unique 𝑃𝑗 such that 𝑔𝑣𝑗 ∈ (0, 1) and that 𝑔𝑣𝑘 = 1 for 𝑘 > 𝑗

and 𝑔𝑣𝑘 = 0 for 𝑘 < 𝑗. Taking 𝑣 = 𝑣𝑗 and 𝑣 = 𝑣𝑗−1 thereby proves that the allocation
takes the form given in Equation 805.

Given this claim, we can take a (𝑣, 𝑛) that induces 𝑔𝑣 and construct a (𝑣′, 2) that
also induces 𝑔𝑣. If there is no 𝑗 such that 𝑔𝑣𝑗 ∈ (0, 1), then we can simply take the
lowest class 𝑘 for which 𝑔𝑣𝑘 = 1 and set 𝑣′1 = 0 and 𝑣′2 = 𝑣𝑘−1. If there is a 𝑗 such that
𝑔𝑣𝑗 ∈ (0, 1), then we can take 𝑣′1 = 𝑣𝑗−1 and 𝑣′2 = 𝑣𝑗. See that 𝑣′ induces the same
allocation as 𝑣 in both cases.

Having now established that we can replicate any (𝑣, 𝑛) with (𝑣′, 2), it remains to
show that there exists an optimum to establish the result. See that the optimization
problem by the replication result can be rewritten as:3

max
𝑣1,𝑣2

𝑄− (1− 𝑣2)

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠+

∫︁ 1

𝑣2

𝑊 (𝑠)𝑑𝑠

s.t. 0 ≤ 𝑣1 ≤ 1−𝑄 ≤ 𝑣2 ≤ 1

(806)

If the function 𝑊 (𝑠) is continuous, then there must exist a solution by the Weierstrass
Extreme Value Theorem as we are simply maximizing a continuous function over a
compact domain. As 𝐵 and 𝐶 are continuous, then so too is 𝑊 , so a solution exists.
This completes the proof.

D.1.4 Proof of Proposition 11

Proof. The school district’s problem is given by:

max
𝑛,𝑣∈𝒱𝑛

𝑛∑︁
𝑖=1

𝑔𝑣𝑖

∫︁ 𝑣𝑖+1

𝑣𝑖

𝑊 (𝑠)𝑑𝑠 (807)

Applying the replication argument in Corollary 11, it is without loss of optimality to
impose 𝑛 = 2 and to have one class with a zero probability of assignment [0, 𝑣1), one
class [𝑣1, 𝑣2) which faces a lottery of being assigned with probability 0 ≤ 𝑝𝐿(𝑣1, 𝑣2) ≤ 1

and one class [𝑣2, 1] with a unit probability of assignment. As the planner has measure

3See Proposition 2 for the full argument.
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𝑄 seats to assign, it must be that:

(1− 𝑣2) + (𝑣2 − 𝑣1)𝑝𝐿(𝑣1, 𝑣2) = 𝑄 (808)

Or:
𝑝𝐿(𝑣1, 𝑣2) =

𝑄− (1− 𝑣2)

𝑣2 − 𝑣1
(809)

Thus the objective becomes:

𝑉 (𝑣1, 𝑣2) =
𝑄− (1− 𝑣2)

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠+

∫︁ 1

𝑣2

𝑊 (𝑠)𝑑𝑠 (810)

We require that 𝑣1 ≥ 0, 𝑣2 ≤ 1, 𝑝𝐿(𝑣1, 𝑣2) ∈ [0, 1]. These requirements reduce to:

0 ≤ 𝑣1 ≤ 1−𝑄 ≤ 𝑣2 ≤ 1 (811)

Thus the planner’s problem is:

max
𝑣1,𝑣2

𝑄− (1− 𝑣2)

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠+

∫︁ 1

𝑣2

𝑊 (𝑠)𝑑𝑠

s.t. 0 ≤ 𝑣1 ≤ 1−𝑄 ≤ 𝑣2 ≤ 1

(812)

From the form of the problem, the Lagrangian can be stated as:

ℒ(𝑣1, 𝑣2, 𝜆1, 𝜆2, 𝜇1, 𝜇2) =
𝑄− (1− 𝑣2)

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠+

∫︁ 1

𝑣2

𝑊 (𝑠)𝑑𝑠− 𝜆1
(︀
(𝑣1 − (1−𝑄)

)︀
− 𝜆2

(︀
(1−𝑄)− 𝑣2

)︀
+ 𝜇1𝑣1 + 𝜇2(1− 𝑣2)

(813)

where the 𝜆𝑖 are the Lagrange multipliers on the constraints that the probability in
the lottery zone does not exceed unity or become negative and the 𝜇𝑖 are Lagrange
multipliers on the constraints that the cutoffs remain in the unit interval. See that
there are five cases of interest.

1. Both 𝑣1 and 𝑣2 are unconstrained: 𝜆1 = 𝜆2 = 𝜇1 = 𝜇2 = 0. In this case, the
Lagrangian becomes:

ℒ(𝑣1, 𝑣2) =
𝑄− (1− 𝑣2)

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠+

∫︁ 1

𝑣2

𝑊 (𝑠)𝑑𝑠 (814)
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Taking FOCs:

𝑝𝐿(𝑣1, 𝑣2)𝑊 (𝑣1) = 𝑝𝐿𝑣1(𝑣1, 𝑣2)

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠

(1− 𝑝𝐿(𝑣1, 𝑣2))𝑊 (𝑣2) = 𝑝𝐿𝑣2(𝑣1, 𝑣2)

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠

(815)

Noting that:

𝑝𝐿𝑣1 =
𝑝𝐿(𝑣1, 𝑣2)

𝑣2 − 𝑣1

𝑝𝐿𝑣2 =
1− 𝑝𝐿(𝑣1, 𝑣2)

𝑣2 − 𝑣1

(816)

Plugging these relations into the FOCs yields:

𝑊 (𝑣1) =
1

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠

𝑊 (𝑣2) =
1

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠

(817)

Thus, when either FOC holds, it must be the case that the marginal contribution
to social welfare is equal to average utility within the lottery zone. It further
follows that when both FOCs hold that:

𝑊 (𝑣1) = 𝑊 (𝑣2) (818)

This reveals that an interior optimum, it must be that the marginal lottery zone
student on average contributes as much to welfare as the marginal student in
the zone that gets in with probability one.

However, for the above to hold, we must ensure that the SOCs hold. To this end,
it is sufficient to show that the Hessian of the Lagrangian is negative definite.
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Taking second derivatives and re-arranging:

ℒ𝑣1𝑣1(𝑣1, 𝑣2) =
2𝑝𝐿(𝑣1, 𝑣2)

𝑣2 − 𝑣1

[︁ 1

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠−𝑊 (𝑣1)
]︁
− 𝑝𝐿(𝑣1, 𝑣2)𝑊

′(𝑣1)

ℒ𝑣1𝑣2(𝑣1, 𝑣2) =
1− 𝑝𝐿(𝑣1, 𝑣2)

𝑣2 − 𝑣1

[︁ 1

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠−𝑊 (𝑣1)
]︁

− 𝑝𝐿(𝑣1, 𝑣2)

𝑣2 − 𝑣1

[︁ 1

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑊 (𝑠)𝑑𝑠−𝑊 (𝑣2)
]︁

ℒ𝑣2𝑣2(𝑣1, 𝑣2) =
2(1− 𝑝𝐿(𝑣1, 𝑣2))

𝑣2 − 𝑣1

[︁
𝑊 (𝑣2)−

∫︀ 𝑣2
𝑣1
𝑊 (𝑠)𝑑𝑠

𝑣2 − 𝑣1

]︁
− (1− 𝑝𝐿(𝑣1, 𝑣2))𝑊

′(𝑣2)

(819)

To show that the Hessian of the Lagrangian is negative (semi-)definite, it suffices
to show that ℒ𝑣1𝑣1(𝑣1, 𝑣2),ℒ𝑣2𝑣2(𝑣1, 𝑣2) ≤ 0 with one equality strict at a point
satisfying the FOCs. See that if the FOC for 𝑣1 holds that:

ℒ𝑣1𝑣1(𝑣1, 𝑣2) = −𝑝𝐿(𝑣1, 𝑣2)𝑊 ′(𝑣1) (820)

And if the FOC for 𝑣2 holds:

ℒ𝑣2𝑣2(𝑣1, 𝑣2) = −(1− 𝑝𝐿(𝑣1, 𝑣2))𝑊
′(𝑣2) (821)

Thus, if both FOCs are satisfied at (𝑣1, 𝑣2), it suffices that 𝑊 ′(𝑣1),𝑊 ′(𝑣2) ≥ 0

(with one strict) for (𝑣1, 𝑣2) to be a local optimum.

2. The lottery probability is equal to unity or zero: 𝜇1 = 𝜇2 = 𝜆𝑖 = 0 for one and
only one 𝑖. In this case, there is an acceptance zone and a rejection zone. As a
result, the objective takes the value:

𝑉 =

∫︁ 1

1−𝑄
𝑊 (𝑠)𝑑𝑠 (822)

which is simply the total value of all students living closest to the school.

3. Only the lower cutoff is zero: 𝜇2 = 𝜆1 = 𝜆2 = 0 and 𝜇1 > 0. In this case
𝑣2 > 1−𝑄 and 𝑣1 = 0. Thus, the Lagrangian is:

ℒ(𝑣2) =
𝑄− (1− 𝑣2)

𝑣2

∫︁ 𝑣2

0

𝑊 (𝑠)𝑑𝑠+

∫︁ 1

𝑣2

𝑊 (𝑠)𝑑𝑠 (823)

515



Taking the FOC with respect to 𝑣2 as in the first case yields:

𝑊 (𝑣2) =
1

𝑣2

∫︁ 𝑣2

0

𝑊 (𝑠)𝑑𝑠 (824)

which reveals that the marginal student who gets in for sure should contribute
as much to social welfare as the average student in the lottery zone. The SOC
for this to be an optimum is:

−(1− 𝑝𝐿(0, 𝑣2))𝑊
′(𝑣2) ≤ 0 (825)

Or simply:
𝑊 ′(𝑣2) ≥ 0 (826)

4. Only the upper cutoff is zero: 𝜇1 = 𝜆1 = 𝜆2 = 0 and 𝜇2 > 0. Following the
same approach as for the lower cutoff being zero. The Lagrangian is:

ℒ(𝑣1) =
𝑄

1− 𝑣1

∫︁ 1

𝑣1

𝑊 (𝑠)𝑑𝑠 (827)

Taking the FOC with respect to 𝑣1 yields:

𝑊 (𝑣1) =
1

1− 𝑣1

∫︁ 1

𝑣1

𝑊 (𝑠)𝑑𝑠 (828)

again yielding the insight that the marginal student in the lottery zone should
contribute as much to social welfare as the average student in the walk-zone.

The SOC for this to be an optimum is given by:

−𝑝𝐿(𝑣1, 1)𝑊 ′(𝑣1) ≤ 0 (829)

Or simply:
𝑊 ′(𝑣1) ≥ 0 (830)

5. Both the upper and lower cutoff are one and zero, respectively: 𝜆1 = 𝜆2 = 0

and 𝜇1, 𝜇2 > 0. In this case, the value is simply given by:

𝑉 = 𝑄

∫︁ 1

0

𝑊 (𝑠)𝑑𝑠 (831)

so value is simply the total utility of all students, weighted by the probability
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that they are admitted to the school.

From the above analysis, it follows that whenever a cutoff is interior and 𝑊 is differ-
entiable, the following two conditions are necessary and sufficient for a local optimum:

𝑊 (𝑣*𝑖 ) =
1

𝑣*2 − 𝑣*1

∫︁ 𝑣*2

𝑣*1

𝑊 (𝑠)𝑑𝑠

𝑊 ′(𝑣*𝑖 ) > 0

(832)

As a result, an optimal cutoff either satisfies the above conditions, lies on the boundary
of the constraint set, or lies at a point of non-differentiability of 𝑊 . This concludes
the proof.

D.1.5 Proof of Proposition 12

Proof. We explicitly provide sufficient conditions on the parameters such that each
class of policy is optimal:

1. Full coarsening: if 𝑢𝑃 > 𝑢𝑅, then there exist �̄�, 𝛽 such that when 𝛼 < �̄� and
𝛽 < 𝛽, 𝑣*1 = 0 and 𝑣*2 = 1. To show this, we want to prove in the case that
𝑢𝑝 > 𝑢𝑅 that there exist �̄�, 𝛽 > 0 such that when 𝛼 < �̄� and 𝛽 < 𝛽 the optimum
is 𝑣*1 = 0 and 𝑣*2 = 1. To this end, it is sufficient to show that for 𝛼 < �̄� and
𝛽 < 𝛽, 𝑊 (𝑠) is strictly decreasing on [0, 1]. See that 𝑊 (𝑠) is given by:

𝑊 (𝑠) = 𝑢𝑃 + 𝑠(𝑢𝑅 − 𝑢𝑃 )− 𝛼

1 + 𝛿 exp{𝜀(𝑠− 𝑠)} − I[𝑠 ≤ 𝑠]𝛽(𝑠− 𝑠)𝛾 (833)

As 𝑢𝑅 > 𝑢𝑃 , this is clearly the case so long as 𝛼, 𝛽 are sufficiently small.

2. No coarsening: if 𝑢𝑃 < 𝑢𝑅 then 𝑣*1 ≤ 1 − 𝑄, 𝑣*2 = 1 − 𝑄. Alternatively, if
𝑢𝑃 > 𝑢𝑅 there exists 𝛼, 𝛽 such that when 𝛼 < 𝛼 and 𝛽 < 𝛽, 𝑣*1 ≤ 1 − 𝑄 and
𝑣*2 = 1−𝑄. In this case, it is sufficient to show that 𝑊 (𝑠) is strictly increasing.
This is transparently the case when 𝑢𝑃 < 𝑢𝑅. Moreover, whenever 𝑠 > 1 − 𝑄,
when 𝑢𝑃 > 𝑢𝑅 and 𝛼, 𝛽 are sufficiently large, then for 𝑠 < 𝑠, W(s) is strictly
increasing and it is optimal to set 𝑣*2 = 1−𝑄 and 𝑣*1 < 1−𝑄.

3. ‘Small’ walk-zone: if 𝑢𝑃 > 𝑢𝑅, 𝛾 > 1 and 𝜀→ ∞ then there exist 𝛽 and 𝛼 such
that when 𝛽 < 𝛽 and 𝛼 > 𝛼, 𝑣*1 = 0 and 𝑣*2 ∈ (1 − 𝑄, 1). In this case, it is
sufficient to show that W(s) is strictly decreasing for 𝑠 < 𝑠 and 𝑊 (𝑠) < 𝑊 (𝑠′)

for all 𝑠 < 𝑠 < 𝑠′. This is clearly the case for 𝛽 sufficiently small and 𝛼

sufficiently large.
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4. ‘Large’ walk-zone: it is sufficient to show that there is a 𝑠 < 1−𝑄 such that for
𝑠 < 𝑠, W(s) is increasing and for 𝑠 > 𝑠, W(s) is decreasing and that 𝑊 (0) <

𝑊 (1). In this case, it follows that 𝑣*1 ∈ (0, 1− 𝑄) and 𝑣*2 = 1. If 𝑢𝑃 > 𝑢𝑅 and
𝛾 > 1 then there exist 𝛽, 𝛽 and �̄� such that when 𝛽 < 𝛽 < 𝛽 and 𝛼 < �̄�, the
above is true.

5. ‘Double’ walk-zone: if 𝑢𝑃 > 𝑢𝑅 and 𝛾 > 1 and 𝜀→ ∞ then there exist 𝛽, 𝛽, 𝛼 >
0 such that when 𝛽 < 𝛽 < 𝛽 and 𝛼 < 𝛼, 𝑣*1 ∈ (0, 1−𝑄) and 𝑣*2 ∈ (1−𝑄, 1). In
this case, it is sufficient to show that for 𝑊 (𝑠) < 𝑊 (𝑠′) for all 𝑠 < 𝑠 < 𝑠′ and
there is a 𝑠 < 1−𝑄 such that 𝑊 (𝑠) is increasing for 𝑠 < 𝑠 and decreasing over
𝑠 > 𝑠 > 𝑠 and 𝑊 (0) < 𝑊 (𝑠). The first condition is satisfied for 𝛼 sufficiently
large. The second is satisfied so long as 𝛽 is neither too small nor too large.

D.1.6 Proof of Proposition 13

Proof. We first show that for any parameter 𝜆 in which 𝑊 is differentiable that:

𝜕𝑣*𝑖
𝜕𝜆

≶ 0 ⇐⇒
∫︁ 𝑣*2

𝑣*1

(𝑊𝜆(𝑠)−𝑊𝜆(𝑣
*
𝑖 )) 𝑑𝑠 ≶ 0 (834)

for 𝑖 ∈ {1, 2}. This result allows one to find comparative statics in any parametric
environment and is perhaps of independent interest.

First, note that from optimality and interiority of (𝑣*1, 𝑣*2) and from Proposition
11, we have that

𝑊 (𝑣*2) = 𝑊 (𝑣*1) =
1

𝑣*2 − 𝑣*1

∫︁ 𝑣*2

𝑣*1

𝑊 (𝑠)𝑑𝑠 (835)

Differentiating (𝑣*2 − 𝑣*1)𝑊 (𝑣*𝑖 ) =
∫︀ 𝑣*2
𝑣*1
𝑊 (𝑠)𝑑𝑠 implicitly with respect to 𝜆, we obtain

(︂
𝜕𝑣*2
𝜕𝜆

− 𝜕𝑣*1
𝜕𝜆

)︂
𝑊 (𝑣*𝑖 ) + (𝑣*2 − 𝑣*1)

(︂
𝑊𝜆(𝑣

*
𝑖 ) +

𝜕𝑣*𝑖
𝜕𝜆

𝑊 ′(𝑣*𝑖 )

)︂
=

𝜕𝑣*2
𝜕𝜆

𝑊 (𝑣*2)−
𝜕𝑣*1
𝜕𝜆

𝑊 (𝑣*1) +

∫︁ 𝑣*2

𝑣*1

𝑊𝜆(𝑠)𝑑𝑠

(836)
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Plugging in 𝑊 (𝑣*2) = 𝑊 (𝑣*1) = 𝑊 (𝑣*𝑖 ) to the RHS of this equation, we obtain(︂
𝜕𝑣*2
𝜕𝜆

− 𝜕𝑣*1
𝜕𝜆

)︂
𝑊 (𝑣*𝑖 ) + (𝑣*2 − 𝑣*1)

(︂
𝑊𝜆(𝑣

*
𝑖 ) +

𝜕𝑣*𝑖
𝜕𝜆

𝑊 ′(𝑣*𝑖 )

)︂
=(︂

𝜕𝑣*2
𝜕𝜆

− 𝜕𝑣*1
𝜕𝜆

)︂
𝑊 (𝑣*𝑖 ) +

∫︁ 𝑣*2

𝑣*1

𝑊𝜆(𝑠)𝑑𝑠

(837)

Cancelling the terms and rearranging, we obtain

(𝑣*2 − 𝑣*1)𝑊
′(𝑣*𝑖 )

𝜕𝑣*𝑖
𝜕𝜆

=

∫︁ 𝑣*2

𝑣*1

𝑊𝜆(𝑠)𝑑𝑠− (𝑣*2 − 𝑣*1)𝑊𝜆(𝑣
*
𝑖 )

=

∫︁ 𝑣*2

𝑣*1

(𝑊𝜆(𝑠)−𝑊𝜆(𝑣
*
𝑖 )) 𝑑𝑠

(838)

As the solution is interior, we have 1 > 𝑣*2 > 1−𝑄 > 𝑣*1 > 0 and from Proposition
11, 𝑊 ′(𝑣*𝑖 ) > 0, which proves that 𝜕𝑣*𝑖

𝜕𝜆
and

∫︀ 𝑣*2
𝑣*1

(𝑊𝜆(𝑠)−𝑊𝜆(𝑣
*
𝑖 )) 𝑑𝑠 have the same

sign for 𝑖 ∈ {1, 2}.

To prove the first part of the proposition, note that 𝑊𝛽(𝑠) = −I[𝑠 ≤ 𝑠](𝑠 − 𝑠)𝛾,
which is increasing in 𝑠. Moreover, as 𝑠 > 1−𝑄, in an interior solution, 𝑣*1 < 𝑠. Then
for any 𝑠 ∈ (𝑣*1, 𝑣

*
2), 𝑊𝛽(𝑣

*
1) < 𝑊𝛽(𝑠) ≤ 𝑊𝛽(𝑣

*
2). Thus:∫︁ 𝑣*2

𝑣*1

(𝑊𝛽(𝑠)−𝑊𝛽(𝑣
*
1)) 𝑑𝑠 > 0 >

∫︁ 𝑣*2

𝑣*1

(𝑊𝛽(𝑠)−𝑊𝛽(𝑣
*
2)) 𝑑𝑠 (839)

So 𝜕𝑣*1
𝜕𝛽

> 0 and 𝜕𝑣*2
𝜕𝛽

< 0 obtains by equation 834.

To prove the second part of the proposition, note that 𝑊𝑢𝑝(𝑠) = 1−𝑠 is decreasing
in 𝑠. Then for any 𝑠 ∈ (𝑣*1, 𝑣

*
2), 𝑊𝑢𝑝(𝑣

*
1) > 𝑊𝑢𝑝(𝑠) > 𝑊𝑢𝑝(𝑣

*
2). Thus

∫︁ 𝑣*2

𝑣*1

(︀
𝑊𝑢𝑝(𝑠)−𝑊𝑢𝑝(𝑣

*
1)
)︀
𝑑𝑠 < 0 <

∫︁ 𝑣*2

𝑣*1

(︀
𝑊𝑢𝑝(𝑠)−𝑊𝑢𝑝(𝑣

*
2)
)︀
𝑑𝑠 (840)

As a result, from equation 834 we have 𝜕𝑣*1
𝜕𝑢𝑃

< 0 and 𝜕𝑣*2
𝜕𝑢𝑃

> 0. Other comparative
statics can be derived in a similar fashion.
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D.1.7 Proof of Proposition 14

Proof. The utility with cut-offs 𝑣1, 𝑣2 is given by:

𝑍(𝑣1, 𝑣2) =
∑︁
𝜅𝑖

∫︁ 1

𝑣2

𝑠𝑑𝐹𝜅𝑖(𝑠) +
𝑣2 − 𝑟

𝑣2 − 𝑣1

∑︁
𝜅𝑖

∫︁ 𝑣2

𝑣1

𝑠𝑑𝐹𝜅𝑖(𝑠)

+ ℎ
(︁∫︁ 1

𝑣2

𝑑𝐹𝜅1(𝑠) +
𝑣2 − 𝑟

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑑𝐹𝜅1(𝑠)
)︁ (841)

As 𝑓𝜅1(𝑠) + 𝑓𝜅2(𝑠) = 1, by computing the score integrals and rearranging, we have
that:

𝑍(𝑣1, 𝑣2) =
1

2

[︁
1− 𝑣22 + (𝑣2 + 𝑣1)(𝑣2 − 𝑟)

]︁
+ ℎ
(︁∫︁ 1

𝑣2

𝑑𝐹𝜅1(𝑠) +
𝑣2 − 𝑟

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑑𝐹𝜅1(𝑠)
)︁

(842)

Similarly, utility without coarsening is given by:

𝑍𝑁𝐶 =
∑︁
𝜅𝑖

∫︁ 1

𝑟

𝑠𝑑𝐹𝜅𝑖(𝑠) + ℎ
(︁∫︁ 1

𝑟

𝑑𝐹𝜅1(𝑠)
)︁
=

1

2
(1− 𝑟2) + ℎ

(︁∫︁ 1

𝑟

𝑑𝐹𝜅1(𝑠)
)︁

(843)

Thus:

𝑍(𝑣1, 𝑣2)− 𝑍𝑁𝐶 =
1

2
[(𝑣2 − 𝑟)(𝑣1 − 𝑟)]

+ ℎ
(︁∫︁ 1

𝑣2

𝑑𝐹𝜅1(𝑠) +
𝑣2 − 𝑟

𝑣2 − 𝑣1

∫︁ 𝑣2

𝑣1

𝑑𝐹𝜅1(𝑠)
)︁
− ℎ
(︁∫︁ 1

𝑟

𝑑𝐹𝜅1(𝑠)
)︁ (844)

For 𝑍(𝑣1, 𝑣2) > 𝑍𝑁𝐶 to hold, it must be that:

1

2
[(𝑣2−𝑟)(𝑟−𝑣1)] < ℎ

(︁1
2
−𝐹𝜅1(𝑣2)+(𝐹𝜅1(𝑣2)−𝐹𝜅1(𝑣1))

𝑣2 − 𝑟

𝑣2 − 𝑣1

)︁
−ℎ
(︁1
2
−𝐹𝜅1(𝑟)

)︁
(845)

Which proves the first part of the result. Plugging in ℎ(𝑥) = 𝛼𝑥, we have:

[(𝑣2 − 𝑟)(𝑟 − 𝑣1)] < 2𝛼
(︁
𝐹𝜅1(𝑟)− 𝐹𝜅1(𝑣2) + (𝐹𝜅1(𝑣2)− 𝐹𝜅1(𝑣1))

𝑣2 − 𝑟

𝑣2 − 𝑣1

)︁
(846)

Dividing both sides by (𝑣2 − 𝑟):

(𝑟 − 𝑣1) < 2𝛼
(︁𝐹𝜅1(𝑣2)− 𝐹𝜅1(𝑣1)

𝑣2 − 𝑣1
− 𝐹𝜅1(𝑣2)− 𝐹𝜅1(𝑟)

𝑣2 − 𝑟

)︁
(847)

Yielding the second part of the result.
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D.1.8 Proof of Corollary 12

Proof. This is an immediate consequence of Proposition 49 in Appendix D.5.

D.1.9 Proof of Proposition 15

Proof. First, let us compute social welfare function under the induced trinary coars-
ening of any policy, 𝑣. In the 𝛾 → ∞ limit, we have that social welfare is given by
(up to constant of proportionality that we omit):

𝑍(𝑣) = min
𝜅∈𝒦,𝑠∈[0,1]

𝑣(𝜅, 𝑃 (𝑠, 𝑣)) (848)

Note that agents have outside options given by 𝜅 = ℎ(𝑠) where ℎ is decreasing. Thus,
within any equivalence class, the agent with the lowest expected utility is the agent at
the upper threshold for each equivalence class. Moreover, we know that the allocation
probabilities for these agents are given by 0, 𝑝𝐿(𝑣) and 1, respectively. Thus:

𝑍(𝑣) = min {𝑣(ℎ(𝑣1), 0), 𝑣(ℎ(𝑣2), 𝑝𝐿(𝑣)), 𝑣(ℎ(1), 1)} (849)

We now prove both parts of the proposition. In the first case, suppose that all agents
have positive assignment probability. It follows that the coarsening is given by a
single number 𝑣 = 𝑣2. Under this policy, welfare is given by:4

𝑍(𝑣) = min {𝑣(ℎ(𝑣2), 𝑝𝐿(𝑣)), 𝑣(ℎ(1), 1)} (850)

Now consider an alternative policy 𝑣′ = (𝜀, 𝑣2) for 0 < 𝜀 < 𝑣2. Under this policy,
welfare is given by:

𝑍(𝑣′) = min {𝑣(ℎ(𝜀), 0), 𝑣(ℎ(𝑣2), 𝑝𝐿(𝑣′)), 𝑣(ℎ(1), 1)} (851)

If ℎ is sufficiently steep, then 𝑣(ℎ(𝜀), 0) > 𝑣(ℎ(𝑣2), 1). Moreover, 𝑝𝐿(𝑣′) > 𝑝𝐿(𝑣).
Thus, 𝑍(𝑣′) ≥ 𝑍(𝑣). Thus an optimal coarsening features a lower cutoff and conse-
quently some agents who have zero assignment probability.

For the second part of the proposition, simply take ℎ to be the constant function.
The optimal policy is 𝑣 = (0, 1) and all agents have interior assignment probability.
This completes the proof.

4In the knife-edge case with full coarsening, 𝑍(𝑣) = 𝑣(ℎ(1), 𝑝𝐿(𝑣)). The steps below still follow.
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D.2 Additional Technical Results
In this Appendix we collect technical results that are necessary for the proofs of our
main results but that have been omitted from the main text for clarity and brevity.

D.2.1 Construction of the Allocation

In this section, we establish that we can characterize the allocation of students to
schools under a coarsening Ξ as a conditional probability mass function 𝑔Ξ(𝑐|𝜃) that
assigns each type 𝜃 a probability of being assigned to each school 𝑐. This allocation
will serve as the object over which the planner has preferences and its construction
and properties are important for the analysis.

Under a coarsening Ξ, a school prioritizes student 𝑖 to student 𝑗 if 𝑖 is in a higher
indifference class than 𝑗 or 𝑖 and 𝑗 are in the same indifference class and 𝑖 has higher
tie-breaker. Hence the priorities of school 𝑐 become lexicographic with order (𝑝, 𝜏),
where 𝑝 = Ξ(𝑠) for some score 𝑠. By Definition 7, any admissible coarsening map
partitions students into a finite number of partitions or retains a strict priority struc-
ture. Moreover, there is no aggregate uncertainty in the economy: the same measure
of students of each type is assigned to each school with probability one. This is
stated rigorously in Lemma 17, which also establishes that the coarsened economy
after tie-breaking inherits the full support condition that we assumed for the initial
economy.

Lemma 17. Let Ξ be a coarsening and 𝐹 𝜏*
Ξ the distribution of students corresponding

to a strict ordinal economy for a given realized distribution of tiebreakers.

1. 𝐹 𝜏*
Ξ = 𝐹 𝜏

Ξ almost surely where 𝐹 𝜏
Ξ is given by 𝑓 𝜏Ξ(𝜃Ξ, 𝜏) = 𝑓Ξ(𝜃Ξ) for all 𝜃Ξ ∈

Θ̃Ξ, 𝜏 ∈ [0, 1]. Moreover, 𝐹 𝜏
Ξ has full support.

2. In the coarsened ordinal economy with tie-breakers Ω̃𝜏
Ξ = (𝐹 𝜏

Ξ , 𝑄, Θ̃
𝜏
Ξ), for any

student of any induced type 𝜃Ξ = (≻𝜃Ξ
, 𝑠𝜃Ξ𝑐 ) ∈ Θ̃Ξ, there is a unique mapping

�̃�𝜃Ξ : [0, 1] → 𝒞 that determines the assignment of that student as a function of
her realized tie-breaker.

Proof. Part 1 : Each induced type, 𝜃Ξ = (≻𝜃Ξ
, 𝑠𝜃Ξ𝑐 ), draws a random number from

𝑈 [0, 1], by the law of large numbers, for any type 𝜃Ξ, the distribution of realized
tie-breakers 𝐹 𝜏*

Ξ (𝜏 |𝜃Ξ) is 𝑈 [0, 1] almost surely, which gives a unique strict economy
type space almost surely.5 As the interim economy (with induced types) before tie-

5This unique economy can be constructed by the following method: for any school, let the number
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breaking Θ̃ has full support by Assumption 7, and 𝑓 𝜏Ξ(𝜃Ξ, 𝜏) = 𝑓Ξ(𝜃Ξ), it follows that
(𝐹 𝜏

Ξ , 𝑄, Θ̃
𝜏
Ξ) has full support.

Part 2 : As Ω̃𝜏
Ξ has full support, it has a unique stable matching (see Theorem 1 in

Azevedo and Leshno (2016)), denoted by �̃�. Thus for any type 𝜃Ξ its assigned school
is determined directly as a function of its tie-breaking number 𝜏 , 𝜇(𝜃Ξ, 𝜏). Now define
�̃�𝜃Ξ : [0, 1] → 𝒞 so that �̃�𝜃Ξ(𝜏) = 𝜇(𝜃Ξ, 𝜏).

Using this fact, under any coarsening Ξ one can construct the allocation 𝑔Ξ :

Θ × 𝒞 → [0, 1], with the probability that type 𝜃 is assigned to school 𝑐 given by
𝑔Ξ(𝑐|𝜃). This is stated formally in Lemma 18.

Lemma 18. For any coarsening Ξ the probability that any student of type 𝜃 ∈ Θ

is assigned to a school 𝑐 ∈ 𝒞 is well-defined and can be represented by a conditional
probability mass function 𝑔Ξ(𝑐|𝜃), which is given by:

𝑔Ξ(𝑐|𝜃) =
∫︁ 1

0

I
[︁
�̃�𝜃Ξ(𝜃)(𝜏) = 𝑐

]︁
𝑑𝜏 (852)

where 𝜃Ξ(𝜃) is the induced ordinal type of type 𝜃 ∈ Θ under the coarsening Ξ, and �̃�𝜃Ξ
is the constructed mapping from Lemma 17 for the coarsened ordinal economy with
tie-breakers Ω̃𝜏

Ξ corresponding to Ξ.

Proof. As a result of Lemma 17, in the coarsened ordinal economy with tie-breakers
Ω̃𝜏

Ξ corresponding to Ξ, for any ordinal type 𝜃Ξ ∈ Θ̃Ξ we know that their assigned
school is uniquely determined by their tie-breaker 𝜏 according to �̃�𝜃Ξ(𝜏). The proba-
bility that type 𝜃Ξ is matched to a school 𝑐 is then:

𝜇Ξ(𝑐|𝜃Ξ) =
∫︁ 1

0

I
[︀
�̃�𝜃Ξ(𝜏) = 𝑐

]︀
𝑑𝜏 (853)

Moreover, given a type 𝜃 = (𝑢𝜃, 𝑠𝜃), we can deduce their induced type under a coarsen-
ing Ξ, or 𝜃Ξ(𝜃) = (≻𝜃Ξ(𝜃), 𝑠𝜃Ξ(𝜃)) by taking the ordinal representation of their cardinal
utility and coarsening their priority according to Ξ. Thus, for a type 𝜃, the probability

of equivalence classes that the school has be 𝑘 and enumerate them in increasing priority, so the 𝑖’th
class has measure 𝑚(𝑖). Divide the interval [0, 1] to 𝑘 ordered sub intervals (where the intervals are
[𝑎0, 𝑎1), [𝑎1, 𝑎2), . . . , [𝑎𝑘−1, 𝑎𝑘] with 𝑎0 = 0 and 𝑎𝑘 = 1) with each having measure 𝑚(𝑖) and score
distribution 𝑈 [𝑎𝑖, 𝑎𝑖+1] (in other words, with density 𝑚(𝑖)/(𝑎𝑖−𝑎𝑖−1)). In the unique economy after
tie-breaking, any student who is in priority class 𝑖 has a uniform probability of having a priority of
any number in the 𝑖’th sub interval. So long as the initial economy has full support, the economy
after coarsening and tie-breakers also has full support.
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that they are assigned to school 𝑐 is simply 𝜇Ξ(𝑐|𝜃Ξ(𝜃)). Consequently, we can define:

𝑔Ξ(𝑐|𝜃) = 𝜇Ξ(𝑐|𝜃Ξ(𝜃)) (854)

or, as claimed in the Lemma:

𝑔Ξ(𝑐|𝜃) =
∫︁ 1

0

I
[︁
�̃�𝜃Ξ(𝜃)(𝜏) = 𝑐

]︁
𝑑𝜏 (855)

If the coarsening map is the identity function, then there is no need for tie breaking
and the economy has full support, so �̃�(𝜃, 𝜏) = 𝑐 is still unique. As a result, an
analogous argument yields the result.

This construction simply takes the function �̃� for any student from Lemma 17 and
averages over the distribution of tie-breakers to compute the assignment probabilities.

D.2.2 Continuity of Allocations

To establish the existence of an optimum, we show that allocations are continuous in
the cutoff vectors corresponding to coarsenings. We first use Theorem 5 to represent
coarsenings as vectors 𝑣 ∈ 𝒱 . We refer to 𝑔𝑣 : Θ × 𝒞 → [0, 1] as the corresponding
allocation. As highlighted in Footnote 25, the set of potential allocations 𝒢 is a subset
of the space 𝐿1(Θ × 𝒞) of functions measurable in the measure space (Θ × 𝒞,Σ, 𝐹 ),
where Σ is is the Borel 𝜎-algebra generated by the product topology on Θ×𝒞 and 𝐹
extends the domain of the measure 𝐹 from Θ to Θ×𝒞 by stacking |𝒞| copies of 𝐹 . We
now prove that 𝑔𝑣 is continuous in 𝑣 in the sense that for any sequence {𝑣𝑛}𝑛∈N ⊂ 𝒱
such that 𝑣𝑛 → 𝑣, we have that 𝑔𝑣𝑛 → 𝑔𝑣 in the 𝐿1-norm.

Lemma 19. 𝑔𝑣 is continuous in 𝑣 in the 𝐿1-norm.

Proof. As shown in Lemma 18, we may represent:

𝑔𝑣(𝑐|𝜃) =
∫︁ 1

0

I
[︁
�̃�𝜃𝑣(𝜃)(𝜏) = 𝑐

]︁
𝑑𝜏 (856)

Fix any sequence {𝑣𝑛}𝑛∈N ⊂ 𝒱 such that 𝑣𝑛 → 𝑣. If 𝑔𝑣𝑛(𝑐|𝜃) → 𝑔𝑣(𝑐|𝜃) for any
such sequence for 𝐹 -almost all (𝑐, 𝜃), then 𝑔𝑣 is continuous in 𝑣 in the 𝐿1-norm. By
the dominated convergence theorem, this is equivalent to showing the following for
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𝐹 -almost all (𝑐, 𝜃) (as 𝐿1(Θ× 𝒞) is complete):

0 = lim
𝑛→∞

[︀
𝑔(𝑣𝑛)(𝑐|𝜃)− 𝑔𝑣(𝑐|𝜃)

]︀
= lim

𝑛→∞

∫︁ 1

0

[︁
I
[︁
�̃�𝜃𝑣𝑛 (𝜃)(𝜏) = 𝑐

]︁
− I
[︁
�̃�𝜃𝑣(𝜃)(𝜏) = 𝑐

]︁]︁
𝑑𝜏

(857)
Now fix (𝑐, 𝜃), to show the above, once again by the dominated convergence theorem,
it is sufficient to show that:

lim
𝑛→∞

[︁
I
[︁
�̃�𝜃𝑣𝑛 (𝜃)(𝜏) = 𝑐

]︁
− I
[︁
�̃�𝜃𝑣(𝜃)(𝜏) = 𝑐

]︁]︁
= 0, for almost all 𝜏 ∈ [0, 1] (858)

Now fix a 𝜏 ∈ [0, 1] and consider the sequence of economies with the priority structures
induced by 𝑣𝑛. As 𝑣𝑛 → 𝑣, the priority structures converge pointwise. By Lemma 17,
the full support assumption in the ex-ante economy implies that interim economy has
full support for all 𝑛, hence the interim economy has a unique stable matching for all
𝑣𝑛. Thus, by Theorem 2.3 of Azevedo and Leshno (2016), we know that the stable
matching is continuous in the induced economy with coarsening vector 𝑣 ∈ 𝒱 within
the set of economies 𝒪. Thus, for each 𝜃𝑣(𝜃) and almost all 𝜏 , there must exist an 𝑁
such that for all 𝑛 > 𝑁 , we have that I

[︁
�̃�𝜃𝑣𝑛 (𝜃)(𝜏) = 𝑐

]︁
= I

[︁
�̃�𝜃𝑣(𝜃)(𝜏) = 𝑐

]︁
for almost

all 𝜃 ∈ Θ and 𝜏 ∈ [0, 1]. Thus, we have shown that Equation 857 holds for 𝐹 -almost
all (𝑐, 𝜃) and completed the proof.
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D.3 Priority Design with Aggregate Uncertainty
In the main text we assumed that the mechanism designer knows the distribution of
students’ types. We start with a simple discrete example that shows this is necessary
for the optimality of trinary coarsenings.

Example 7. There are six students, Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6} and one school with
capacity 2, 𝒞 = {𝑐} and 𝑄𝑐 = 2. The scores of the students are given by their index
number, i.e. 𝑠𝜃𝑖𝑐 = 𝑖. The designer prefers to admit 𝜃6, 𝜃4 and to a lesser extent, 𝜃2
and has the following utility function:

𝑍(𝜇) =
∑︁
𝑖∈{4,6}

I{𝜃𝑖 ∈ 𝜇(𝑐)}+ 1

2
I{𝜃2 ∈ 𝜇(𝑐)} (859)

There are two states denoted by 𝛾 and 𝛾′ and both states have strictly positive prob-
ability. The ordinal preferences of student 𝜃𝑖 in state 𝑗 ∈ {𝛾, 𝛾′} is denoted by ≻𝑖

𝑗.
The preferences are given by:

• ≻𝑖
𝑗= 𝑐, 𝜃𝑖 for 𝑖 ∈ {1, 2, 3, 6} and 𝑗 = {𝛾, 𝛾′}.

• ≻𝑖
𝛾= 𝑐, 𝜃𝑖 and ≻𝑖

𝛾′= 𝜃𝑖, 𝑐 for 𝑖 ∈ {4, 5}.

Under state 𝛾, the unique optimal trinary coarsening is given by:

Ξ𝛾(𝑖) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3, 𝑖 = 6

2, 𝑖 ∈ {4, 5}
1, 𝑖 ∈ {1, 2, 3}

(860)

This coarsening admits 6 with probability 1 and maximizes the probability of ad-
mission for 4. Note that any other trinary coarsening will result in a strictly lower
utility for the designer. Under state 𝛾′, Ξ𝛾 is not optimal as it admits 6 with prob-
ability 1 but admits 2 with probability 1/3. As Ξ𝛾 is the unique trinary coarsening
that is optimal under 𝛾, no trinary coarsening can attain the optimum under both
realizations of uncertainty. Moreover, the following is an optimal trinary coarsening
under 𝛾′:

Ξ𝛾′(𝑖) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3, 𝑖 = 6

2, 𝑖 ∈ {2, 3, 4, 5}
1, 𝑖 ∈ {1}

(861)
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Ξ𝛾′ admits 6 with probability 1 and admits 2 with probability 1/2, and thus per-
forms strictly better than Ξ𝛾. However, there exists a coarsening with 4 indifference
classes that attains the optimum under both states:

Ξ*(𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

4, 𝑖 = 6

3, 𝑖 ∈ {4, 5}
2, 𝑖 ∈ {2, 3}
1, 𝑖 ∈ {1}

(862)

Ξ* replicates Ξ𝛾 under 𝛾 and Ξ𝛾′ under 𝛾′, and thus attains the optimal allocation
in both cases. This example shows that trinary coarsenings are not without loss of
optimality under uncertainty.

We now depart from that assumption by considering a mechanism designer who
believes finitely many distributions are possible and has a prior belief over those
probability distributions. Formally, let ℱ denote the set of finitely many possible
distributions with a particular element 𝑓 . Let 𝑝(𝑓) denote the probability measure
over this finite set and 𝑔𝑓 denote the allocation under 𝑓 . In this environment, we
introduce a new assumption (in place of Assumption 9) on the objective function
of the planner that they are a subjective expected utility maximizer with respect to
their prior as to the market they face:

Assumption 17. Under uncertainty, the social planner has subjective V.N-M utility
𝑍 with a Bernoulli utility function 𝑧 : 𝒢 → R that is continuous in 𝑔𝑓 .

Notice that in any realization of the student distribution, the same coarsening
rule must be applied. Hence schools must use the same priority structure across
realizations of different market structures. This draws a parallel between uncertainty
and our analysis of homogeneous coarsening in Appendix D.4: under homogeneity
multiple schools must use the same coarsening rule; under uncertainty, the same rule
must be used across multiple states.

First, and analogously to the previous analysis, we provide a result on the maxi-
mum number of partitions needed to achieve an optimal coarsening under uncertainty.
This is stated as Proposition 45:

Proposition 45. There exists an optimal coarsening Ξ with at most 2|ℱ| cutoffs at
every school.
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Proof. Fix an arbitrary coarsening Ξ. Divide the schools to two subsets: 𝑐 ∈ 𝒞 if Ξ𝑐
is finite and 𝑐 ∈ 𝒞 if Ξ𝑐 is the identity function. Take 𝑐 ∈ 𝒞, the coarsening Ξ takes
any student with score 𝑠𝜃𝑐 to an equivalence class, hence Ξ𝑐(𝑠

𝜃
𝑐) ∈ {𝑃 𝑐

1 , 𝑃
𝑐
2 , . . . , 𝑃

𝑐
𝑛}

with 𝑃 𝑐
1 < 𝑃 𝑐

2 , . . . , < 𝑃 𝑐
𝑛. By Theorem 5, for any 𝑓𝑖 ∈ ℱ , there can be at most one

lottery region for school 𝑐 and denote that region by 𝑃 𝑐
𝑓𝑖

and enumerate 𝑓𝑖 in a way
that 𝑃 𝑐

𝑓𝑖
is increasing in 𝑖. Let 𝑃𝑛 < 𝑃𝑛+1 < . . . < 𝑃𝑚 denote the indifference classes

that are between two consecutive lottery regions 𝑃 𝑐
𝑓𝑖

and 𝑃 𝑐
𝑓𝑖+1

. Define Ξ′ by merging
𝑃𝑛 < 𝑃𝑛+1 < . . . < 𝑃𝑚.6 Note that the allocation under Ξ and Ξ′ are the same under
any 𝑓𝑖.7 Repeating this for all schools 𝑐 ∈ 𝒞 and lottery regions results in a coarsening
rule Ξ′ that induces same allocation as the arbitrary coarsening Ξ. Moreover, there
is only 1 partition between any two lottery regions for a schools in 𝒞, hence there are
at most 2|ℱ| cut-offs and 2|ℱ|+ 1 partitions per schools in 𝒞 under Ξ′.

Next, take 𝑐 ∈ 𝒞, so Ξ𝑐 is the identity function. As the economy has full support,
there is a unique stable matching under any 𝑓𝑖 ∈ ℱ . Let 𝜇𝑖 denote this stable
matching. For any school 𝑐 and distribution 𝑓𝑖, let 𝑡𝑖𝑐 denote the threshold that the
students must clear in order to gain admission to that school under 𝑓𝑖. Formally,

𝑡𝑖𝑐 = min{𝑠𝜃𝑐 : 𝜇𝑖(𝜃) = 𝑐} (863)

Let 𝑇𝑐 = ∪𝑖≤|ℱ|{𝑡𝑖𝑐}. Next, define Ξ′ in the following way:

Ξ′
𝑐(𝑠

𝜃
𝑐) = max{𝑡𝑖𝑐 ∈ 𝑇𝑐 : 𝑠

𝜃
𝑐 ≥ 𝑡𝑖𝑐} (864)

Note that from the stability of 𝜇𝑖 under the distribution 𝑓𝑖 and the definition of
matching (in particular, property (iv) from Footnote 23)) there cannot be a student
𝑘 such that 𝑐′ ≻𝑘 𝜇𝑖(𝑘) and 𝑠𝑘𝑐′ ≥ 𝑡𝑖𝑐′ . To see that 𝜇𝑖 is stable under Ξ′, assume
that student pair 𝑙, 𝑗 (with scores 𝑠𝑙𝑐′ and 𝑠𝑗𝑐′) blocks it in school 𝑐′. Then we have
𝑐′ ≻𝑙 𝜇𝑖(𝑙), 𝜇𝑖(𝑗) = 𝑐′ and Ξ′

𝑐′(𝑙) ≥ Ξ′
𝑐′(𝑗). As 𝜇𝑖(𝑗) = 𝑐′, we have Ξ′

𝑐′(𝑗) ≥ 𝑡𝑖𝑐. As
Ξ′
𝑐′(𝑙) ≥ Ξ′

𝑐′(𝑗) and Ξ′
𝑐′(𝑗) ≥ 𝑡𝑖𝑐, we have that 𝑠𝑙𝑐′ ≥ 𝑡𝑖𝑐′ , which contradicts the stability

of 𝜇𝑖 under Ξ as 𝑐′ ≻𝑙 𝜇𝑖(𝑙). By the same argument as in the first case, it follows that
𝑔Ξ = 𝑔Ξ′ . Then non-emptiness follows from the same argument in Theorem 6 under
Assumption 17.

This result generalizes Theorems 5 and 6 to the case with aggregate uncertainty.
Instead of an optimum being attainable with at most 2 cutoffs at each school, now
up to 2|ℱ| cutoffs are required: 2 for each state of the world. This demonstrates

6This can be done by setting Ξ′(𝑃𝑛) = . . . = Ξ′(𝑃𝑚) = Ξ(𝑃𝑛).
7The argument for this is exactly same as the one made in the proof of Theorem 5.
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how the presence of aggregate uncertainty can substantially complicate the problem
of priority design.

To understand the normative implications of aggregate uncertainty, we character-
ize when the presence of uncertainty induces a welfare loss to the planner. We denote
the lottery region cut-offs of school 𝑐 under distribution 𝑓 by [𝑃 𝑐

𝑓 , 𝑃
𝑐
𝑓 ]. We can define

a no-overlap condition in the case with uncertainty:

Definition 19. For any problem, the set of distributions {𝑓1, 𝑓2, . . . , 𝑓𝑛} = ℱ satisfies
no overlap across distributions if for any 𝑓𝑖, there exists coarsenings:

Ξ𝑖 = [𝑃 1
𝑖 , . . . , 𝑃

|𝒞|
𝑖 |𝑃 1

𝑖 , . . . , 𝑃
|𝒞|
𝑖 ] (865)

such that Ξ𝑖 is optimal under 𝑓𝑖 and for all 𝑐, 𝑘 and 𝑗, [𝑃 𝑐
𝑘 , 𝑃

𝑐
𝑘 ] ∩ [𝑃 𝑐

𝑗 , 𝑃
𝑐
𝑗 ] = ∅ or

[𝑃 𝑐
𝑘 , 𝑃

𝑐
𝑘 ] = [𝑃 𝑐

𝑗 , 𝑃
𝑐
𝑗 ].

We can now prove that there is a loss from uncertainty if and only if the no-overlap
condition is not satisfied. This is stated as Proposition 46:

Proposition 46. There is no welfare loss from uncertainty if and only if ℱ satisfies
no overlap across distributions.

Proof. Assume that the problem satisfies no overlap across distributions and fix
optimal trinary coarsenings Ξ𝑓𝑖 that satisfy no overlap across distributions. Let
|ℱ| = 𝑛. For any school 𝑐, Ξ𝑓𝑖 has two cut-offs 𝑣𝑓𝑖 : denote them by 𝐿𝑐𝑓𝑖 and 𝑈 𝑐

𝑓𝑖

with 𝐿𝑐𝑓𝑖 < 𝑈 𝑐
𝑓𝑖
. As the trinary coarsening satisfies no overlap across distributions, we

can enumerate them as 𝐿𝑐𝑓1 < 𝑈 𝑐
𝑓1
< . . . < 𝐿𝑐𝑓𝑛 < 𝑈 𝑐

𝑓𝑛
. Define a new set of cut-offs

𝑤𝑐 = 𝐿𝑐𝑓1 , 𝑈
𝑐
𝑓1
, . . . , 𝐿𝑐𝑓𝑛 , 𝑈

𝑐
𝑓𝑛

. Define a new coarsening 𝑣′ by setting the cut-offs as 𝑤𝑐

for all 𝑐. Notice that for any realization of 𝑓𝑖, the coarsenings 𝑣𝑓𝑖 and 𝑣′ induce the
same allocation.8 Hence the coarsening 𝑣′ induces the same allocation as 𝑣𝑓𝑖 for any
𝑓𝑖. As each 𝑣𝑓𝑖 maximizes the mechanism designer’s utility under 𝑓𝑖, the maximum
utility can be replicated by using 𝑣′ for any 𝑓𝑖 and there is no loss from uncertainty.

For the converse result, fix an arbitrary coarsening 𝑤 and suppose that the problem
does not satisfy the no overlap across distributions condition. Consider the set of
coarsenings that uses 𝑣𝑓 = 𝑤 for all 𝑓 ∈ ℱ . Notice that this set trivially has no
overlap. Clearly, 𝑤 and {𝑣𝑓} attain the same utility value for the mechanism designer.
As the problem does not satisfy the no overlap across distributions assumption, there

8To see why this is true, notice that 𝑣𝑓𝑖 can be obtained from 𝑣′ by merging indifference classes
that are above and below each lottery class for any school, using the construction in the proof of
Theorem 5.

529



must be a set of coarsenings {𝑣′𝑓} that attains a strictly higher expected utility than
{𝑣𝑓} and 𝑤. As 𝑤 is arbitrary, there is welfare loss from uncertainty regardless of its
choice.

As no overlap is a very strenuous condition, the above result clarifies that generally
uncertainty will lead to welfare losses for the planner. It moreover makes clear that
this loss in welfare stems from the inability of the planner to preserve the lottery
classes from the optimal ex post designs in each state.
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D.4 Priority Design with Homogeneous Coarsening
In many applications, the assumption that the policymaker can set a school-specific
coarsening may be unrealistic. For example, in cases where the underlying score
represents exam scores or some measure of student achievement, it is possible that
the schools are constrained to use the same grading criteria. Hence, in this section,
we examine optimal coarsenings when the coarsening rule is constrained to be the
same across all schools. Formally, we find the optimal coarsening in the set ℋ of
homogeneous coarsenings:

Definition 20. A homogeneous coarsening rule Ξ is a coarsening rule such that

Ξ(𝑠) = (Ξ1(𝑠1), . . . ,Ξ1(𝑠𝑛)) (866)

Let the set of all homogeneous coarsening maps be ℬℎ. When only homogeneous
coarsenings are allowed, the planner faces the general problem that satisfies Assump-
tion 9:

ℬ*
ℎ = argmax

Ξ∈ℬℎ
𝑍(𝑔Ξ) (867)

where 𝑔Ξ is the allocation induced by Ξ. We first prove a proposition which shows
that appropriately revised versions of Theorems 5 and 6 continue to hold in this
environment:

Proposition 47. ℬ*
ℎ is non-empty. There exists a homogeneous coarsening with 2|𝒞|

cutoffs such that Ξ ∈ ℬ*
ℎ.

Proof. Fix an arbitrary finite homogeneous coarsening Ξ. The coarsening Ξ takes
any student with score 𝑠𝜃𝑐 to a partition, hence Ξ𝑐(𝑠

𝜃
𝑐) ∈ {𝑃 𝑐

1 , 𝑃
𝑐
2 , . . . , 𝑃

𝑐
𝑛} with 𝑃 𝑐

1 <

𝑃 𝑐
2 < . . . < 𝑃 𝑐

𝑛 for all 𝜃 ∈ Θ̃. By Theorem 5, for any 𝑐 ∈ 𝒞, there can be at most one
lottery class.

Without loss of generality, assume the lottery regions are enumerated as 𝑃𝑥(1) <
𝑃𝑥(2) < . . . < 𝑃𝑥(|𝒞|). Let 𝑃𝑛 < 𝑃𝑛+1 < . . . < 𝑃𝑚 denote the indifference classes that
are between two consecutive lottery regions 𝑃𝑥(𝑧) and 𝑃𝑥(𝑧+1). Define Ξ′ by merging
𝑃𝑛 < 𝑃𝑛+1 < . . . < 𝑃𝑚.9 Note that 𝑔Ξ(𝑐|𝜃) = 𝑔Ξ(𝑐|𝜃) for all 𝜃 ∈ Θ.10 This process can
be repeated for all consecutive lottery regions without changing the allocation. This
results in a coarsening rule Ξ′ where there is only 1 partition between any two lottery

9This can be done by setting Ξ′
𝑐(𝑃𝑛) = . . . = Ξ′

𝑐(𝑃𝑚) = Ξ𝑐(𝑃𝑛).
10The argument for this is exactly same as the one made in the proof of Theorem 5.
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regions for all 𝑐 ∈ 𝒞. Hence the total number of partitions are at most 2|𝒞| + 1 and
cut-offs are 2|𝒞| for all 𝑐 ∈ 𝒞.

Next, assume the homogeneous coarsening is the identity function, in other words,
there is no coarsening.11 As the economy has full support, there is a unique stable
matching. Let 𝜇 denote this stable matching. For any school 𝑐 and distribution, let
𝑡𝑐 denote the threshold that the students must clear in order to gain admission to
that school. Formally,

𝑡𝑐 = min{𝑠𝜃𝑐 : 𝜇(𝜃) = 𝑐} (868)

Let 𝑇 = ∪𝑐∈𝒞𝑡𝑐. Next, define Ξ′ in the following way:

Ξ′
𝑐(𝑠

𝜃
𝑐) = max{𝑡 ∈ 𝑇 : 𝑠𝜃𝑐 ≥ 𝑡} (869)

Note that from the stability of 𝜇 and the definition of matching (in particular,
property (iv) from Footnote 23)) there cannot be a student 𝑘 such that 𝑐′ ≻𝑘 𝜇𝑖(𝑘)

and 𝑠𝑘𝑐′ ≥ 𝑡𝑐′ . To see that 𝜇 is stable under Ξ′, assume that student pair 𝑙, 𝑗 (with
scores 𝑠𝑙𝑐′ and 𝑠𝑗𝑐′) blocks it in school 𝑐′. Then we have 𝑐′ ≻𝑙 𝜇(𝑙), 𝜇(𝑗) = 𝑐′ and
Ξ′
𝑐′(𝑙) ≥ Ξ′

𝑐′(𝑗). As 𝜇(𝑗) = 𝑐′, we have Ξ′
𝑐′(𝑗) ≥ 𝑡𝑖𝑐. As Ξ′

𝑐′(𝑙) ≥ Ξ′
𝑐′(𝑗) and Ξ′

𝑐′(𝑗) ≥ 𝑡𝑖𝑐,
we have that 𝑠𝑙𝑐′ ≥ 𝑡𝑖𝑐′ , which contradicts the stability of 𝜇 under Ξ as 𝑐′ ≻𝑙 𝜇(𝑙).
By the same argument as in the first case, it follows that 𝑔Ξ = 𝑔Ξ′ . This shows
that a homogeneous coarsening Ξ′ with |𝒞| cut-offs attains the same allocation as no
coarsening.

Then any homogeneous coarsening Ξ can be represented by a vector of cut-offs 𝑣 =

𝑃1, 𝑃2, . . . , 𝑃|2𝒞|. The existence of an optimum then follows from the same argument
as in Theorem 6.

Like Theorems 5 and 6, Proposition 47 reduces a possibly infinite dimensional
problem to a 2|𝒞|-dimensional problem and allows us to compute optimal homoge-
neous coarsenings.

We next study the welfare implications of imposing homogeneity in coarsenings.
We show that there is a loss from imposing homogeneity whenever in the optimal
trinary coarsening the lottery regions of two schools intersect without being equal.
To this end, we define a subclass of problems:

11Note that the case where some schools have a finite coarsening while others have no coarsening
is ruled out by assuming the coarsening must be homogeneous.
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Definition 21. A problem satisfies no overlap across schools if there exists an optimal
coarsening such that for all lottery regions 𝑃 𝑐 and 𝑃 𝑐′ either [𝑃 𝑐, 𝑃 𝑐] ∩ [𝑃 𝑐′ , 𝑃 𝑐′ ] = ∅
or [𝑃 𝑐, 𝑃 𝑐] = [𝑃 𝑐′ , 𝑃 𝑐′ ].

We can now characterize exactly the case when imposing homogeneity results in
a welfare loss. This is stated formally in Proposition 48:

Proposition 48. There is no loss from imposing homogeneity if and only if the
problem satisfies no overlap across schools.

Proof. In this environment we can define an object similar to the vector we defined
earlier to represent the coarsenings as a vector when there are 𝑛𝑖 cut-offs for each
school 𝑖:

𝑤 = [𝑃 1
1 , 𝑃

1
2 , . . . , 𝑃

1
𝑛1
|𝑃 2

1 , . . . , 𝑃
2
𝑛2
| . . . |𝑃 |𝒞|

1 , . . . , 𝑃 |𝒞|
𝑛|𝒞| ]

s.t. 𝑤 ∈ 𝒲 = {𝑤 ∈ [0, 1]
∑︀
𝑖 𝑛𝑖 , 𝑃 𝑐

𝑗 > 𝑃 𝑐
𝑙 ,∀𝑐, 𝑗 > 𝑙}

(870)

Let 𝑣 be an optimal (i.e. non homogeneous) trinary coarsening that satisfies no
overlap across schools. As above, 𝑣 is of the form 𝑣 = {𝑣11, 𝑣12| . . . |𝑣|𝒞|2 , 𝑣

|𝒞|
2 } as 𝑣 is a

trinary coarsening. Enumerate the 2|𝒞| elements of 𝑣 in increasing order and let 𝑧
be the vector obtained by doing this, hence 𝑧 = {𝑧1, . . . , 𝑧2|𝒞|} and it is increasing.
Therefore it is a well-defined set of coarsening cut-offs. Now, form the alternative
coarsening 𝑣′ by using the cut-offs in 𝑧 for all schools:

𝑣′ = [𝑧1, . . . , 𝑧2|𝒞|| . . . |𝑧1, . . . , 𝑧2|𝒞|] (871)

𝑣′ is a homogeneous coarsening as it uses the same cut-offs. Furthermore, 𝑣 and
𝑣′ induce the same allocation.12 Hence there is a homogeneous coarsening 𝑣′ that
induces the same allocation as the optimal trinary coarsening 𝑣 and there is no loss
from imposing homogeneity.

For the converse result, fix an arbitrary coarsening 𝑤 and suppose that the prob-
lem does not satisfy the no overlap across schools condition. Consider the set of
coarsenings that uses 𝑣𝑐 = 𝑤 for all 𝑐 ∈ 𝒞. Notice that this set trivially has no over-
lap. Clearly, 𝑤 and {𝑣𝑐} attain the same utility value for the mechanism designer. As
the problem does not satisfy the no overlap across schools assumption, there must be
a set of coarsenings {𝑣′𝑐} that attains a strictly higher utility than {𝑣𝑐} and 𝑤. As 𝑤
is arbitrary, there is welfare loss from homogeneity regardless of its choice.

12To see why this is true, notice that 𝑣 can be obtained from 𝑣′ by merging indifference classes
that are above and below each lottery class for any school, using the construction in the proof of
Theorem 5.

533



As no-overlap is an extremely strenuous condition, Proposition 48 would seem
to indicate that in practical contexts, there will very likely be a welfare loss from
imposing homogeneity. As a result, rationalizing the observed homogeneity of many
systems is challenging in this environment. Indeed, it may be the case that one has
to appeal to concerns for simplicity in order to understand observed homogeneity.
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D.5 Solving the Dynamic Model of Housing Assign-

ment
In this Appendix, we provide the prerequisites for determining the structure of the
optimal priority design by first solving the dynamic matching model. Relative to the
static matching models we have so far considered, this features two complications.
First, we have to determine the agents’ optimal stopping rule for when to accept
a given house as a function of their individual characteristics and the allocation.
Second, we have to find the steady-state distribution of agents who are unmatched
(which is endogenous to the stopping rule) to find the steady-state allocation.

We first fix an allocation and solve for the agent’s optimal stopping policy. Denot-
ing by 𝑃 (𝑠, 𝑣) the steady-state probability that an agent with income 𝑠 is matched to
a house in any given period given a priority design 𝑣, we have that the value function
of an unmatched agent is given by:

𝑉 (𝜅, 𝑃 (𝑠, 𝑣)) = 𝜅+ 𝛽𝛿𝑃 (𝑠, 𝑣)E𝑣
[︂
max

{︂
𝑣

1− 𝛽𝛿
, 𝑉 (𝜅, 𝑃 (𝑠, 𝑣))

}︂]︂
+ 𝛽𝛿(1− 𝑃 (𝑠, 𝑣))𝑉 (𝜅, 𝑃 (𝑠, 𝑣))

(872)

where the first term is simply the agents value of going unmatched this period: their
outside option. The second term is the discounted expected value of being matched
to a house, weighted by the chance that that the agent is matched. The final term
simply says that if the agent goes unmatched, they receive their discounted value of
being unmatched.

The agent’s optimal stopping rule is a threshold strategy indexed by 𝑣(𝜅, 𝑃 (𝑠, 𝑣))
such that agents accept any house with 𝑣 ≥ 𝑣(𝜅, 𝑃 (𝑠, 𝑣)) and reject otherwise. It
follows that this reservation value is the unique solution to the following equation:

𝑣(𝜅, 𝑃 (𝑠, 𝑣)) = (1− 𝛽𝛿)𝜅

+ 𝛽𝛿𝑃 (𝑠, 𝑣)

[︂
𝑣(𝜅, 𝑃 (𝑠, 𝑣))Λ(𝑣(𝜅, 𝑃 (𝑠, 𝑣))) +

∫︁ 𝑣max

𝑣(𝜅,𝑃 (𝑠,𝑣))

𝑣𝑑Λ(𝑣)

]︂
+ 𝛽𝛿(1− 𝑃 (𝑠, 𝑣))𝑣(𝜅, 𝑃 (𝑠, 𝑣))

(873)

In general this cannot be solved in closed form.13 However, it is simple to see that
𝑣(𝜅, 𝑃 (𝑠, 𝑣)) features the following comparative statics: it is increasing in the agent’s

13One exception to this is the case where 𝑣 ∼ 𝑈 [𝑣min, 𝑣max]. In this case, Equation 873 becomes
quadratic in 𝑣(𝜅, 𝑃 (𝑠, 𝑣)) and can be solved analytically.
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outside option 𝜅; it is increasing in the agent’s patience 𝛽; and it is increasing in the
probability that an agent is matched to a house in any given period 𝑃 (𝑠, 𝑣).

Having solved for the agent’s optimal stopping rule as a function of the assignment
probability, it remains to solve for the assignment probability as a function of a given
stopping rule. To do this, one first needs to find the steady-state distribution of
unmatched agents and the steady state measure of occupied housing. To this end,
define the steady-state measure of unmatched agents as the joint density 𝑘(𝜅, 𝑠; 𝑣)

with marginal cumulative measure over incomes given by 𝐾𝑠(𝑠; 𝑣) and let 𝑀(𝑣) be
the steady-state measure of matched agents.

Using our more general analysis, we can once again greatly simplify the problem:
Theorem 5 directly applies to any steady state of this model. We can therefore restrict
to priority designs 𝑣 = (𝑣1, 𝑣2) that feature three tiers. Given a CDF of incomes in the
population in the steady state, the allocation probability for an agent with income 𝑠
is given by:

𝑃 (𝑠, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑠 ≥ 𝑣2,

(𝑄−𝛿𝑀(𝑣))−(1−𝐾𝑠(𝑣2;𝑣))
𝐾𝑠(𝑣2;𝑣)−𝐾𝑠(𝑣1;𝑣) , 𝑠 ∈ [𝑣1, 𝑣2),

0, 𝑠 < 𝑣1

(874)

Moreover, the stationary joint distribution at the end of a period 𝑘𝑙(𝜅, 𝑠; 𝑣) solves the
following fixed point equation which balances inflows of new agents and outflows of
agents due to accepting a house and death.

(1− 𝛿)𝑓(𝜅, 𝑠) = (1− 𝛿)𝑘𝑙(𝜅, 𝑠; 𝑣)

+ (1− Λ(𝑣(𝜅, 𝑃 (𝑠, 𝑣))))𝑃 (𝑠, 𝑣)
(︀
𝛿𝑘𝑙(𝜅, 𝑠; 𝑣) + (1− 𝛿)𝑓(𝜅, 𝑠)

)︀ (875)

Thus, the stationary joint distribution of agents at the time of matching is given by:

𝑘(𝜅, 𝑠; 𝑣) = 𝛿𝑘𝑙(𝜅, 𝑠; 𝑣) + (1− 𝛿)𝑓(𝜅, 𝑠) (876)

Finally, the stationary measure of matched agents is given by:

(1− 𝛿)𝑀(𝑣) = (1− Λ(𝑣(𝜅, 𝑃 (𝑠, 𝑣))))𝑃 (𝑠, 𝑣)
(︀
𝛿𝑘𝑙(𝜅, 𝑠; 𝑣) + (1− 𝛿)𝑓(𝜅, 𝑠)

)︀
(877)

Having now solved the stopping rule as a function of the allocation and the alloca-
tion as a function of the stopping rule, we have characterized the matching of agents
to houses in this economy. From the steady-state policy function it is moreover simple
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to compute welfare from the relationship:

𝑉 (𝜅, 𝑃 (𝑠, 𝑣)) =
𝑣(𝜅, 𝑃 (𝑠, 𝑣))

1− 𝛽𝛿
(878)

This discussion is formalized in Proposition 49:

Proposition 49. For any coarsening policy 𝑣′, there exists a 𝑣 = (𝑣1, 𝑣2) that is
outcome equivalent. Moreover, under this 𝑣, welfare is given by:

𝑍(𝑣) =

∫︁
𝒰

∫︁ 1

0

(︃
𝑣(𝜅,𝑃 (𝑠,𝑣))

1−𝛽𝛿
1− 𝛾

)︃1−𝛾

𝑑𝐹 (𝜅, 𝑠) (879)

where the reservation value policy solves Equation 873, the allocation is given by
Equation 874, the stationary measure of unmatched agents of each type is given by
Equations 875 and 876 and the stationary measure of matched agents is given by
Equation 877.

Proof. In a steady state of the model, there is a time-invariant assignment probability
as a function of the policy 𝑣 and one’s score 𝑠, 𝑃 (𝑠, 𝑣). Given this, the agent has
Bellman equation given by:

𝑉 (𝜅, 𝑃 (𝑠, 𝑣)) = 𝜅+ 𝛽𝛿𝑃 (𝑠, 𝑣)E𝑣
[︂
max

{︂
𝑣

1− 𝛽𝛿
, 𝑉 (𝜅, 𝑃 (𝑠, 𝑣))

}︂]︂
+ 𝛽𝛿(1− 𝑃 (𝑠, 𝑣))𝑉 (𝜅, 𝑃 (𝑠, 𝑣))

(880)

The first claim is that the optimal stopping solution, where 1 corresponds to accepting
a house and 0 to rejecting is given by:

𝑥*(𝜅, 𝑣, 𝑃 (𝑠, 𝑣)) =

⎧⎨⎩1, 𝑣 ≥ 𝑣(𝜅, 𝑃 (𝑠, 𝑣)),

0, 𝑣 < 𝑣(𝜅, 𝑃 (𝑠, 𝑣)),
(881)

for some function 𝑣(𝜅, 𝑃 (𝑠, 𝑣)). This is immediate: suppose an agent accepts 𝑣 and
rejects 𝑣′ > 𝑣. As 𝑣′ > 𝑣, either accepting 𝑣 or rejecting 𝑣′ must be suboptimal.
Moreover, we know that at this reservation value 𝑣(𝜅, 𝑃 (𝑠, 𝑣)), the agent must be
indifferent between accepting and rejecting. It follows that:

𝑉 (𝜅, 𝑃 (𝑠, 𝑣)) =
𝑣(𝜅, 𝑃 (𝑠, 𝑣))

1− 𝛽𝛿
(882)
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Combining Equations 880 and 882, we obtain:

𝑣(𝜅, 𝑃 (𝑠, 𝑣))

1− 𝛽𝛿
= 𝜅+ 𝛽𝛿𝑃 (𝑠, 𝑣)E𝑣

[︂
max

{︂
𝑣

1− 𝛽𝛿
,
𝑣(𝜅, 𝑃 (𝑠, 𝑣))

1− 𝛽𝛿

}︂]︂
+ 𝛽𝛿(1− 𝑃 (𝑠, 𝑣))

𝑣(𝜅, 𝑃 (𝑠, 𝑣))

1− 𝛽𝛿

(883)

Re-arranging this equation yields:

𝑣(𝜅, 𝑃 (𝑠, 𝑣)) = (1− 𝛽𝛿)𝜅+ 𝛽𝛿𝑃 (𝑠, 𝑣)E𝑣 [max {𝑣, 𝑣(𝜅, 𝑃 (𝑠, 𝑣))}]
+ 𝛽𝛿(1− 𝑃 (𝑠, 𝑣))𝑣(𝜅, 𝑃 (𝑠, 𝑣))

(884)

where:

E𝑣 [max {𝑣, 𝑣(𝜅, 𝑃 (𝑠, 𝑣))}] = 𝑣(𝜅, 𝑃 (𝑠, 𝑣))Λ(𝑣(𝜅, 𝑃 (𝑠, 𝑣))) +

∫︁ 𝑣max

𝑣(𝜅,𝑃 (𝑠,𝑣))

𝑣𝑑Λ(𝑣) (885)

yielding the claimed equation for the reservation value function:

𝑣(𝜅, 𝑃 (𝑠, 𝑣)) = (1− 𝛽𝛿)𝜅+ 𝛽𝛿𝑃 (𝑠, 𝑣)

[︂
𝑣(𝜅, 𝑃 (𝑠, 𝑣))Λ(𝑣(𝜅, 𝑃 (𝑠, 𝑣))) +

∫︁ 𝑣max

𝑣(𝜅,𝑃 (𝑠,𝑣))

𝑣𝑑Λ(𝑣)

]︂
+ 𝛽𝛿(1− 𝑃 (𝑠, 𝑣))𝑣(𝜅, 𝑃 (𝑠, 𝑣))

(886)

As was claimed in the text, this has a unique solution. To see this simply observe
that the slope of the RHS of Equation 886 is given by (suppressing all constants):

𝑅𝐻𝑆 ′(𝑣) = 𝛽𝛿 [1− 𝑃 (1− Λ(𝑣))] < 1 (887)

while the slope of the LHS is 1, and 𝑅𝐻𝑆(0) > 𝐿𝐻𝑆(0) = 0. We additionally claimed
in the text that the case with 𝑣 ∼ 𝑈 [𝑣min, 𝑣max] has a closed form solution for Equation
886. To this end, see that we have:

𝑣(𝜅, 𝑃 (𝑠, 𝑣)) = (1− 𝛽𝛿)𝜅+ 𝛽𝛿𝑃 (𝑠, 𝑣)

[︂
𝑣(𝜅, 𝑃 (𝑠, 𝑣))

𝑣(𝜅, 𝑃 (𝑠, 𝑣))− 𝑣min

𝑣max − 𝑣min

+
𝑣2max − 𝑣(𝜅, 𝑃 (𝑠, 𝑣))2

2(𝑣max − 𝑣min)

]︂
+ 𝛽𝛿(1− 𝑃 (𝑠, 𝑣))𝑣(𝜅, 𝑃 (𝑠, 𝑣))

(888)

which can be rewritten as a quadratic in 𝑣(𝜅, 𝑃 (𝑠, 𝑣)):

0 = 𝑎𝑣(𝜅, 𝑃 (𝑠, 𝑣))2 + 𝑏𝑣(𝜅, 𝑃 (𝑠, 𝑣)) + 𝑐 (889)

538



where:

𝑎 =
𝛽𝛿𝑃 (𝑠, 𝑣)

2(𝑣max − 𝑣min)

𝑏 = −1 + 𝛽𝛿(1− 𝑃 (𝑠, 𝑣))− 𝛽𝛿𝑃 (𝑠, 𝑣)
𝑣min

𝑣max − 𝑣min

𝑐 = (1− 𝛽𝛿)𝜅+ 𝛽𝛿𝑃 (𝑠, 𝑣)
𝑣2max

2(𝑣max − 𝑣min)

(890)

yielding the standard solution of a quadratic for 𝑣(𝜅, 𝑃 (𝑠, 𝑣)).

As a function of the steady-state assignment probability, we have solved the agents’
optimal stopping problems. We now solve for the steady-state assignment probability
as a function of the agents’ optimal stopping problems. To this end, observe that the
joint density of agents at the end of a period must match the inflow of agents to the
outflow of agents:

(1− 𝛿)𝑓(𝜅, 𝑠)⏟  ⏞  
New Agents

= (1− 𝛿)𝑘𝑙(𝜅, 𝑠; 𝑣)⏟  ⏞  
Dead Agents

+ (1− Λ(𝑣(𝜅, 𝑃 (𝑠, 𝑣))))𝑃 (𝑠, 𝑣)⏟  ⏞  
Agents Who Stop

(︀
𝛿𝑘𝑙(𝜅, 𝑠; 𝑣) + (1− 𝛿)𝑓(𝜅, 𝑠)

)︀⏟  ⏞  
Agents Available to Match This Period

(891)

While the joint density of agents at the time of matching is given by:

𝑘(𝜅, 𝑠; 𝑣) = 𝛿𝑘𝑙(𝜅, 𝑠; 𝑣) + (1− 𝛿)𝑓(𝜅, 𝑠) (892)

Moreover, the steady state measure of occupied housing balances outflows from death
and inflows from new matches:

(1− 𝛿)𝑀(𝑣)⏟  ⏞  
Death of Old Matches

= (1− Λ(𝑣(𝜅, 𝑃 (𝑠, 𝑣))))𝑃 (𝑠, 𝑣)
(︀
𝛿𝑘𝑙(𝜅, 𝑠; 𝑣) + (1− 𝛿)𝑓(𝜅, 𝑠)

)︀⏟  ⏞  
New Matches

(893)

Given these equations, each period there are 𝑄− 𝛿𝑀(𝑣) houses available. Given
the policy 𝑣, agents are allocated houses tier by tier until the first tier such that not
all agents can be allocated housing. Let the first such tier be 𝑙 where agents are in
𝑙 if 𝑠 ∈ [𝑣𝑙−1, 𝑣𝑙). Clearly all agents with 𝑠 < 𝑣𝑙−1 have zero assignment probability
and all agents with 𝑠 ≥ 𝑣𝑙 have unit assignment probability. In the steady state
there is a mass 1 − 𝐾𝑠(𝑣𝑙; 𝑣) of agents with priority above 𝑣𝑙. Moreover, there is a
mass 𝐾𝑠(𝑣𝑙; 𝑣) − 𝐾𝑠(𝑣𝑙−1; 𝑣) who have score 𝑠 ∈ [𝑣𝑙−1, 𝑣𝑙). Thus agents with scores
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𝑠 ∈ [𝑣𝑙−1, 𝑣𝑙) are allocated a house with probability given by:

𝑝𝐿(𝑣) =
(𝑄− 𝛿𝑀(𝑣))− (1−𝐾𝑠(𝑣𝑙; 𝑣))

𝐾𝑠(𝑣𝑙; 𝑣)−𝐾𝑠(𝑣𝑙−1; 𝑣)
(894)

It follows that the allocation is given by:

𝑃 (𝑠, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑠 ≥ 𝑣𝑙,

𝑝𝐿(𝑣), 𝑠 ∈ [𝑣𝑙−1, 𝑣𝑙),

0, 𝑠 < 𝑣𝑙−1

(895)

Consider now a new coarsening policy 𝑣 = (𝑣𝑙−1, 𝑣𝑙). The allocations induced by 𝑣 and
𝑣 are equivalent. Thus all other equations describing the steady state are equivalent
under the two policies. This proves the claim that for any 𝑣 there exists a 𝑣′ = (𝑣1, 𝑣2)

that is outcome equivalent. Indeed, this is given by 𝑣′ = 𝑣. We have now proved all
claims in the proposition.

This highlights again the usefulness of Theorem 5 in providing a revealing structure
to the optimal design: one can employ a tiered design, but it need contain at most
three tiers.

D.5.1 An Example with Two Income Cutoffs

The main text uses the above result to explore the optimal design, giving sufficient
conditions for there to be at least two income tiers in the optimum. Here, we addi-
tionally provide an explicit example that shows how three income tiers can be optimal
when there is sufficient heterogeneity in outside options.

Example 8. Suppose that there are three levels of outside option 𝜅𝑃 , 𝜅𝑀 and 𝜅𝑅

where an agent with score 𝑠 (or equivalently income 1 − 𝑠) has outside option given
by:

𝜅 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜅𝑅, 𝑠 < 𝑠1,

𝜅𝑀 , 𝑠 ∈ [𝑠1, 𝑠2),

𝜅𝑃 , 𝑠 ≥ 𝑠2.

(896)

where 𝑠1 < 𝑠2. Moreover, we suppose that outside options are such that:

𝑣(𝜅𝑅, 0) > 𝑣(𝜅𝑀 , 1)

𝑣(𝜅𝑀 , 0) > 𝑣(𝜅𝑃 , 1)
(897)
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That is to say, an agent with a better outside option who is never assigned public
housing still has higher welfare than an agent with a lower outside option when they
are certain of receiving public housing each period. Such an environment is perhaps
natural when the extremely poor have much worse outside options than the moderately
poor and the wealthy have very good outside options.

For intermediate values of 𝑄,14 in the 𝛾 → ∞ limit the optimal policy is such
that:

𝑣*1 = 𝑠1, 𝑣*2 = 𝑠2 (898)

Moreover, agents with score 𝑒 < 𝑠1 have zero probability of assignment, agents with
score 𝑠 ∈ [𝑠1, 𝑠2) have intermediate probability of assignment and agents with score
𝑠 ≥ 𝑠2 are assigned with certainty. This is optimal because assigning agents below
𝑠1 is always welfare reducing as they are the richest agents with the best outside op-
tions. Similarly, the planner must give agents above 𝑠2 unit probability of assignment.
Finally, they assign the remaining houses uniformly among those with intermediate
incomes by virtue of the egalitarian motive.

14Formally, we require 𝐻 is such that in the steady state corresponding to the described optimum,
there are fewer than 𝑄− 𝛿𝑀 agents with score above 𝑠1 in the stationary distribution of searching
agents and there are more than 𝑄− 𝛿𝑀 agents with score above 𝑠2 in the stationary distribution of
searching agents, where 𝑀 is the stationary measure of matched agents.
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D.6 Relaxing the Full Support Assumption
Despite being a fairly weak condition, it is interesting to consider the implications for
our analysis when the full support assumption (Assumption 7) fails. In particular, in
this Appendix, we proceed under the assumption only that there are no mass points
in the distribution of students.15

In this case, the interim economy after tie-breaking may have multiple stable
matchings.16 Thus, restricting the mechanism designer to use a stable matching
mechanism does not pin down the allocation as there is a one-to-one correspondence
between stable matchings and allocations. In general, under a stable mechanism, the
selected matching may depend on the entire priority structure, i.e. a mechanism can
even return two different stable matchings for two different priority structures even
if the set of stable matchings is the same under those two priority structures.

To deal with these issues, we focus on two different selection rules: one is a selection
rule that selects the optimal stable matching with respect to the preferences of the
mechanism designer and the other is the student optimal stable matching for any
given economy. We show that with mechanism-designer optimal selection, suitably
modified versions of Theorems 5 and 6 continue to hold and that with student-optimal
selection, Theorem 1 continues to hold but Theorem 6 fails.

D.6.1 The Mechanism Designer Optimal Selection

In this section, we assume whenever multiple stable matchings exist, the mechanism
will implement the best matching with respect to the preferences of the mechanism
designer. We show that suitably modified versions of Theorems 5 and 6 continue
to hold without a full support assumption. First, we prove a modified version of
Theorem 5:17

Theorem 13. For any coarsening Ξ with allocation 𝑔Ξ corresponding to the mecha-
nism designer optimal stable matching, there is an alternative trinary coarsening Ξ′

with allocation 𝑔Ξ′ corresponding to the mechanism designer optimal stable matching
such that 𝑍(𝑔Ξ′) ≥ 𝑍(𝑔Ξ).

Proof. For any Ξ and matching 𝜇 that is selected by the mechanism designer optimal
selection, construct a trinary coarsening Ξ′(𝜇) as in the proof of Theorem 5. Notice
that the matching 𝜇 is still stable under Ξ′(𝜇). Hence the mechanism designer optimal

15We give an example that shows the necessity of the no mass points assumption in this section.
16See Azevedo and Leshno (2016) for examples.
17Recall that 𝑍 is the objective function of the mechanism designer.
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selection picks a matching that is weakly better than 𝜇 under the coarsening Ξ′(𝜇),
thus 𝑍(𝑔Ξ′) ≥ 𝑍(𝑔Ξ).

Hence, even if it is not possible to replicate each allocation via a trinary coarsening,
there always exists an alternative trinary coarsening that is preferred by the mech-
anism designer under the mechanism designer optimal selection. Thus, restricting
attention to trinary coarsenings is without loss of optimality.

The following result states that under mechanism designer optimal selection, an
optimal coarsening exists, so Theorem 6 holds under this selection.

Theorem 14. Under a stable matching mechanism with mechanism designer optimal
selection, there exists an optimal trinary coarsening Ξ.

Proof. From Theorem 13, we can restrict attention to trinary coarsenings, which
we continue to represent by the coarsenings 𝑣 ∈ 𝒱 , which is a compact set. Let
𝜓 : 𝒱 ⇒ R be the correspondence mapping each coarsening to the set of utility values
of the mechanism designer under stable selections. We prove first that 𝜓 is upper
hemicontinuous (UHC) and then that it is closed-valued; establishing existence of
an upper semi-continuous maximum selection ℋ(𝑣) = max𝜓(𝑣). It then follows by
compactness of 𝒱 that an optimum exists.

Denoting the set of stable matchings (hence the possible allocations) under coars-
ening 𝑣 by 𝒮(𝑣), we can write 𝜓 = 𝑍∘𝒮(𝑣). Azevedo and Leshno (2016) prove that the
set of stable matchings has a cut-off structure and is an upper hemicontinuous func-
tion of the economy (Proposition B1 in the appendix of Azevedo and Leshno (2016)).
Moreover, by Assumption 9, 𝑍 is a continuous function of the allocation (which is
the stable matching selected by the mechanism), hence 𝜓 is a UHC correspondence
of a coarsening as it is a continuous function of a UHC correspondence.18

We now establish that 𝜓 is closed valued. To this end, fix a coarsening 𝑣. Now
consider the set of market clearing cutoffs 𝒫 that correspond to the set of stable
matchings under 𝑣. Consider a sequence {𝑧𝑛} such that 𝑧𝑛 ∈ 𝜓(𝑣) for all 𝑛 that
converges to some 𝑧*. We wish to prove that 𝑧* ∈ 𝜓(𝑣). For any 𝑧𝑛, the utility
value from an admissible stable matching under 𝑣, there must exist a corresponding
vector of market clearing cutoffs 𝑃𝑛 ∈ R|𝒞|. Then we can find a subsequence 𝑃𝑛𝑘
that is element-wise monotone in R|𝒞|. As the set of market clearing cut-offs forms a
complete lattice (see Azevedo and Leshno (2016) Theorem A1), lim𝑛𝑘 𝑃𝑛𝑘 = 𝑃 * and
𝑃 * ∈ 𝒫 . Define 𝜈𝑛 as the measure of students whose assignment is different under

18See Border (1989) for a proof.
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𝑃𝑛 to 𝑃 *. In the coarsened economy, there are no mass points in the distribution of
students. Thus, for any 𝜀 > 0 there exists an 𝑁 such that 𝜈𝑛𝑘 < 𝜀 for all 𝑛𝑘 > 𝑁 .
Hence, as 𝑃𝑛𝑘 → 𝑃 *, we have 𝑍(𝑃𝑛𝑘) → 𝑍(𝑃 *) = 𝑧*. Thus, as 𝑃 * ∈ 𝒫 , we have
shown that 𝑧* ∈ 𝜓(𝑣). Hence, 𝜓 is closed-valued.

Finally, as 𝜓 is closed-valued, ℋ(𝜓(𝑣)) = max𝜓(𝑣) is well-defined. Moreover,
ℋ(𝑣) corresponds to the utility value of the mechanism designer under the mechanism
designer optimal selection. By the UHC property of 𝜓, ℋ is upper-semicontinuous.
Thus, as 𝒱 is a compact set, by the extreme value theorem it follows that max𝑣∈𝒱 ℋ(𝜓(𝑣))

exists.

D.6.2 The Student Optimal Selection

In this section we assume whenever multiple stable matchings exist, the mechanism
will implement the student optimal selection. In this case, while it is without loss of
optimality to restrict attention to trinary coarsenings (Theorem 5 continues to hold),
we show via an example that an optimum can fail to exist in the absence of the full
support assumption (Theorem 6 does not hold). First, we prove that Theorem 5 holds
under the student optimal stable selection whether or not the full support assumption
holds:

Theorem 15. Under a stable matching mechanism with student optimal selection,
for any coarsening Ξ that induces the allocation 𝑔Ξ, there is an alternative trinary
coarsening Ξ′ such that 𝑔Ξ′ = 𝑔Ξ.

Proof. Fix an arbitrary coarsening Ξ. Divide the schools to two subsets: 𝑐 ∈ 𝒞 if
Ξ𝑐 is finite and 𝑐 ∈ 𝒞 if Ξ𝑐 is the identity function. For any school 𝑐 ∈ 𝒞, the
coarsening Ξ takes any student with score 𝑠𝜃𝑐 to an equivalence class, hence Ξ(𝑠𝜃𝑐) ∈
{𝑃 𝑐

1 , 𝑃
𝑐
2 , . . . , 𝑃

𝑐
𝑁} with 𝑃 𝑐

1 < 𝑃 𝑐
2 < . . . < 𝑃 𝑐

𝑁 for some 𝑁 .
Let �̃� denote the student optimal stable matching and 𝑃 𝑐

𝑥 be the lowest indifference
class that has a student placed in school 𝑐, i.e. �̃�(𝜃Ξ, 𝜏) = 𝑐 for some (𝜃Ξ, 𝜏) with
𝑠𝜃Ξ𝑐 = 𝑃 𝑐

𝑥 and �̃�(𝜃Ξ, 𝜏) ̸= 𝑐 for all (𝜃Ξ, 𝜏) with 𝑠𝜃Ξ𝑐 = 𝑃 𝑐
𝑦 where 𝑦 < 𝑥. For all 𝑐 ∈ 𝒞,

define Ξ′
𝑐 as in the proof of Theorem 5,

Ξ′
𝑐(𝑠

𝜃
𝑐) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑃 𝑐
1 , if Ξ𝑐(𝑠

𝜃
𝑐) = 𝑃 𝑐

𝑧 , 𝑧 < 𝑥,

𝑃 𝑐
𝑥 , if Ξ𝑐(𝑠

𝜃
𝑐) = 𝑃 𝑐

𝑥 ,

𝑃 𝑐
𝑁 , if Ξ𝑐(𝑠

𝜃
𝑐) = 𝑃 𝑐

𝑧 , 𝑧 > 𝑥.

(899)

Next, for all 𝑐 ∈ 𝒞, as we did in the proof of Theorem 5, let 𝑡𝑐 denote the threshold
that the students must clear in order to gain admission to that school. Formally,
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𝑡𝑐 = inf{𝑠𝜃𝑐 : �̃�(𝜃) = 𝑐} (900)

Then, for all 𝑐 ∈ 𝒞, define Ξ′
𝑐 in the following way,

Ξ′
𝑐(𝑠

𝜃
𝑐) =

⎧⎨⎩0 , if 𝑠𝜃𝑐 < 𝑡𝑐,

1 , if 𝑠𝜃𝑐 ≥ 𝑡𝑐.
(901)

Note that Ξ′ is a trinary coarsening. The stability of �̃� under Ξ′ follows exactly
the same arguments in Theorem 1 and is therefore omitted.

Let 𝜇′ denote the student optimal stable matching under Ξ′. To see why 𝜇′ is
stable under Ξ, assume student pair 𝑖, 𝑗 (with scores 𝑠𝑖𝑐 and 𝑠𝑗𝑐 and tie-breakers 𝜏𝑖
and 𝜏𝑗) blocks it in school 𝑐′, i.e. 𝑐′ ≻𝑖 𝜇

′(𝑖), 𝜇′(𝑗) = 𝑐′ and Ξ𝑐′(𝑠
𝑖
𝑐′) > Ξ𝑐′(𝑠

𝑗
𝑐′) or

Ξ𝑐′(𝑠
𝑖
𝑐′) = Ξ𝑐′(𝑠

𝑗
𝑐′) and 𝜏𝑖 > 𝜏𝑗.

First, assume 𝑐′ ∈ 𝒞 and Ξ𝑐′(𝑠
𝑖
𝑐′) > Ξ𝑐′(𝑠

𝑗
𝑐′). Then 𝜇′(𝑗) = 𝑐′ and Ξ𝑐′(𝑠

𝑖
𝑐′) > Ξ𝑐′(𝑠

𝑗
𝑐′)

imply that Ξ′
𝑐′(𝑠

𝑖
𝑐′) = 𝑃 𝑐′

𝑁 , which means that 𝑖 belongs to a class strictly higher than
𝑃 𝑐′
𝑥 . From the definition of 𝑃 𝑐′

𝑥 , we know that there exists 𝑘 such that Ξ′
𝑐′(𝑘) = 𝑃 𝑐′

𝑥

and 𝜇′(𝑘) = 𝑐′, which is a contradiction as 𝑖 and 𝑐′ will block 𝜇′ under Ξ′.
Next, assume 𝑐′ ∈ 𝒞, Ξ𝑐′(𝑠𝑖𝑐′) = Ξ𝑐′(𝑠

𝑗
𝑐′) and 𝜏𝑖 > 𝜏𝑗. There are two cases, either

Ξ′
𝑐′(𝑠

𝑖
𝑐′) > 𝑃 𝑐′

𝑥 or Ξ′
𝑐′(𝑠

𝑖
𝑐′) = 𝑃 𝑐′

𝑥 . In the first case, from the definition of 𝑃 𝑐′
𝑥 , there

exists 𝑘 such that �̃�(𝑘) = 𝑐′ and Ξ′
𝑐′(𝑠

𝑘
𝑐′) = 𝑃 𝑐′

𝑥 , which is a contradiction as 𝑖 and 𝑐′

will block 𝜇′ under Ξ′. In the second case, as the lottery classes are same under Ξ

and Ξ′, Ξ′
𝑐′(𝑠

𝑖
𝑐′) = 𝑃 𝑐′

𝑥 and Ξ𝑐′(𝑠
𝑖
𝑐′) = Ξ𝑐′(𝑠

𝑗
𝑐′) imply that Ξ′

𝑐′(𝑠
𝑗
𝑐′) = 𝑃 𝑐′

𝑥 . However, as
𝜏𝑖 > 𝜏𝑗, this is a contradiction: 𝑖 and 𝑐′ will block 𝜇′ under Ξ′.

Finally, if 𝑐′ ∈ 𝒞, then Ξ is the identity function. There are two cases, 𝑠𝑖𝑐′ = 𝑠𝑗𝑐′

and 𝜏𝑖 > 𝜏𝑗 or 𝑠𝑖𝑐′ > 𝑠𝑗𝑐′ . In the first, case, 𝜇′(𝑗) = 𝑐′ implies that 𝑠𝑖𝑐′ = 𝑠𝑗𝑐′ ≥ 𝑡𝑐′ , which
implies Ξ′

𝑐′(𝑠
𝑖
𝑐′) = Ξ′

𝑐′(𝑠
𝑗
𝑐′) = 1. As 𝜏𝑖 > 𝜏𝑗 and 𝑐′ ≻𝑖 𝜇

′(𝑖), this contradicts the stability
of 𝜇′ under Ξ′. In the second case, as 𝑠𝑖𝑐′ > 𝑡𝑐′ , it must be that �̃�(𝑖) ⪰𝑖 𝑐

′ (where 𝑐 ⪰𝑖 𝑐
′

if 𝑐 ≻𝑖 𝑐
′ or 𝑐 = 𝑐′), as otherwise �̃� will not be stable under Ξ. Moreover, we know

that �̃� is stable under Ξ′. As 𝜇′ is the student optimal stable matching under Ξ′, all
students must weakly prefer their matching under 𝜇′ to �̃� which is a contradiction as
�̃�(𝑖) ⪰𝑖 𝑐

′ ≻𝑖 𝜇
′(𝑖). Thus, 𝜇′ is stable under Ξ.

As 𝜇′ is stable under Ξ, �̃� is stable under Ξ′ and both are student optimal stable
matchings, they must be equivalent. Thus the same matching is used in the construc-
tion of 𝑔Ξ and 𝑔Ξ′ under the student optimal selection and 𝑔Ξ = 𝑔Ξ′ . This proves the
result as Ξ′ is a trinary coarsening.

This result implies that even without the full support assumption, if the student
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optimal stable mechanism is used to compute the stable matching in the interim
economy, then it is still without loss of optimality to restrict attention to trinary
coarsenings.

However, in the absence of the full support assumption, an optimal coarsening can
fail to exist. The intuition for why this is true is that in the limit as the mechanism
designer changes the coarsening thresholds, there can exist multiple stable matchings
and the student optimal selection from the limit set of stable matchings may be
worse from the mechanism designer’s perspective than the matchings attained with
arbitrarily close coarsening thresholds. Example 9 provides a concrete example of
this phenomenon.

Example 9. There are four schools 𝒞 = {𝑐0, 𝑐1, 𝑐2, 𝑐3}, capacities 𝑄 = (4, 1, 1, 1),
and four ordinal types of students, each of measure one, with preferences:

≻𝑡1 : 𝑐1, 𝑐2, 𝑐0

≻𝑡2 : 𝑐2, 𝑐1, 𝑐0

≻𝑡3 : 𝑐3, 𝑐1, 𝑐0

≻𝑡4 : 𝑐3, 𝑐0

(902)

The marginal score distributions in the acceptable schools are given by:

𝑠𝑐1(𝑡2) ∼ 𝑈 [2, 3], 𝑠𝑐1(𝑡3) ∼ 𝑈 [1, 2], 𝑠𝑐1(𝑡1) ∼ 𝑈 [0, 1]

𝑠𝑐2(𝑡1) ∼ 𝑈 [1, 2], 𝑠𝑐2(𝑡2) ∼ 𝑈 [0, 1]

𝑠𝑐3(𝑡3) ∼ 𝑈 [1, 2], 𝑠𝑐3(𝑡4) ∼ 𝑈 [0, 1]

(903)

Assume the mechanism designer maximizes the following utility function:

𝑍(𝑔) =
∑︁
𝑡

∑︁
𝑐∈{𝑐1,𝑐2,𝑐3}

𝑢𝑡(𝑐)𝑔(𝑐|𝑡) (904)

with:

𝑢𝑡1(𝑐𝑖) =

⎧⎨⎩1 if 𝑖 = 2

0 if 𝑖 = 1
(905)

𝑢𝑡2(𝑐𝑖) =

⎧⎨⎩1 if 𝑖 = 1

0 if 𝑖 = 2
(906)

𝑢𝑡3(𝑐𝑖) = 0 for 𝑖 = 1, 3 (907)
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𝑢𝑡4(𝑐3) = −1 (908)

This utility function assumes that the designer prefers assigning type 𝑡1 students
to school 𝑐2 and type 𝑡2 students to the school 𝑐1, while assigning the minimal amount
of type 𝑡4 students to school 𝑐3. The first best outcome for the designer is to match all
𝑡1 students to 𝑐2, all 𝑡2 students to 𝑐1 and all 𝑡3 students to 𝑐3. This yields a payoff
of 𝑍𝐹𝐵 = 2. Note that without priority design, the student optimal stable matching
assigns all students of types 𝑡1 to 𝑐1, 𝑡2 to 𝑐2, 𝑡3 to 𝑐3, and 𝑡4 to 𝑐0. The yields a
payoff of 𝑍𝑆𝑂𝑆𝑀 = 0.

We note that the first-best matching is not attainable as the student-optimal stable
matching under any coarsening. To match all 𝑡1 students to 𝑐2 and all 𝑡2 students
to 𝑐1 in a stable matching, a necessary and sufficient condition is to reject a positive
measure of 𝑡3 students from school 𝑐3 (and assign a positive measure of type 𝑡4 students
to 𝑐3). But this necessarily leads to a payoff strictly smaller than 2 as some positive
measure 𝑡4 students are assigned to 𝑐3.

However, the payoff from the first-best matching can be arbitrarily well approxi-
mated through coarsening. Define for any 𝜖 ≥ 0, the coarsening:

Ξ𝑐3(𝑠𝑐3 ; 𝜖) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 𝑠𝑐3 < 1− 𝜖

1, 𝑠𝑐3 ∈ [1− 𝜖, 1 + 𝜖),

2, 𝑠𝑐3 ≥ 1 + 𝜖

(909)

and Ξ𝑐(𝑠𝑐; 𝜖) = 𝑠𝑐 for all 𝑐 ̸= 𝑐3.

Under this coarsening for 𝜖 > 0, the unique stable matching assigns 𝜖
2

measure
type 𝑡4 students are assigned to 𝑐3. Thus, 𝜖

2
measure 𝑡3 students are assigned to either

𝑐1 or 𝑐0. Given that 𝑡2 types have the highest priority at 𝑐1 and 𝑡1 types have the
highest priority at 𝑐2, it is not possible under any stable matching that any type 𝑡1 or
𝑡2 student is assigned to 𝑐0. Therefore, 𝜖

2
type 𝑡3 students are assigned to 𝑐0. Hence,

it is not possible that any 𝑡1 student is assigned to 𝑐1 or 𝑐1 and any 𝑡3 type would
form a blocking pair, as 𝑡3 students have higher priority at 𝑐1. Thus, in the unique
stable matching, all 𝑡1 types are assigned to 𝑐2, all 𝑡2 types are assigned to 𝑐1, and
measure 𝜖

2
of 𝑡4 types are assigned to 𝑐3. For 𝜖 = 0, the outcome is the outcome

without coarsening. Thus, the payoff of the mechanism designer is given by:

𝑍(𝜖) =

⎧⎨⎩2− 𝜖
2
, 𝜖 > 0,

0, 𝜖 = 0.
(910)
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To conclude, the first-best is not attainable but can be arbitrarily well approximated
by coarsening. Thus, the problem of the designer is not upper semi-continuous and
an optimum does not exist under the student-optimal selection.

As a result, an optimum can cease to exist in the absence of full support under the
student optimal stable matching. This notwithstanding, given the earlier results, it
remains true that if the mechanism-designer optimal and student optimal selections
coincide, then Theorem 6 holds. This is, for instance, true in the natural case with a
utilitarian mechanism designer.

D.6.3 The Necessity of the No Mass Points Assumption for

Existence of an Optimum

While we relaxed the full support assumption in this appendix, we retained the no
mass points assumption. To see the necessity of the no mass points assumption for
the existence of an optimum, we introduce the following example. Intuitively, with
mass points, changing the coarsening cutoffs by an arbitrarily small amount can alter
the allocation of students to schools in a way that adversely impacts the objective
function of the mechanism designer.

Example 10. Suppose that there is one school 𝑐 with capacity of unit measure and
an outside option. Suppose all students prefer 𝑐 to the outside option. There are three
types of students, each of unit measure. Students with score 𝑠 ∈ [0.5, 1] who give the
mechanism designer utility of 1 when they are assigned to the school (Type 1), those
with score 𝑠 ∈ [0, 0.5), who give the mechanism designer utility of 2 (Type 2), and
those with score 𝑠 = 0 who give utility -M to the mechanism designer (Type 3). The
first two types are uniformly distributed over their respective domains. See that there
is a mass point of students with score zero.

It is clear here that under any coarsening, if there exists another coarsening such
that more type 2 students attend the school while no type 3 students are admitted,
then that initial coarsening must not be optimal. In particular, suppose that those
with scores 𝑠 ≥ 𝑣 > 0 are coarsened into the same indifference class. The mechanism
designer’s utility is:

𝑈(𝑣) =
0.5

1− 𝑣
× 1 +

0.5− 𝑣

1− 𝑣
× 2 =

1.5− 2𝑣

1− 𝑣
, 𝑣 ∈ (0, 1] (911)

which is decreasing in 𝑣 for all 𝑣 > 0 so no 𝑣 > 0 can be optimal. Now suppose that
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the mechanism designer fully coarsens the students so that 𝑣 = 0. Their utility is:

𝑈(0) =
1

3
× 1 +

1

3
× 2− 1

3
𝑀 (912)

Hence, a sufficient condition that there will not exist an optimal coarsening is that
setting 𝑣 = 0.5 (i.e. not coarsening) is better than full coarsening. That is:

𝑈(0) = 1− 1

3
𝑀 < 1 = 𝑈(0.5) (913)

which is satisfied for any 𝑀 > 0. Hence, whenever 𝑀 > 0, there does not exist an
optimal coarsening.
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Appendix E

Appendix to Adaptive Priority
Mechanisms

E.1 Omitted Proofs

E.1.1 Proof of Proposition 16

Proof. Part (i): In state 𝜔 the payoff from admitting the highest-scoring minority
students of measure 𝑥(𝜔) is:

𝑞𝜔 + (1 + 𝛾 − 𝜔)𝑥(𝜔)− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
𝑥(𝜔)2 (914)

Thus, the 𝑥(𝜔) that solves the FOC is given by:

𝑥(𝜔) =
𝜅(1 + 𝛾 − 𝜔)

1 + 𝜅𝛾𝛽
(915)

Under our maintained assumptions, we have that:

𝑥(𝜔) =
𝜅(1 + 𝛾 − 𝜔)

1 + 𝜅𝛾𝛽
≤ 1 + 𝛾 − 𝜔

1
𝜅
+ 𝛾𝛽

+ 𝜅(𝜔 − 𝜔) < min{𝜅, 𝑞} (916)

and:
𝑥(𝜔) =

𝜅(1 + 𝛾 − 𝜔)

1 + 𝜅𝛾𝛽
≥ 1 + 𝛾 − 𝜔

1
𝜅
+ 𝛾𝛽

> 𝜅(1− 𝜔) ≥ 0 (917)

Thus, this level of minority admissions is feasible. Substituting, we have that:

𝑉 * = 𝑞E[𝜔] +
1

2

E[𝜅(1 + 𝛾 − 𝜔)2]

1 + 𝜅𝛾𝛽
(918)
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Consider now the APM 𝐴(𝑦) = 𝛾(1− 𝛽𝑦). Agents are allocated the resource if their
modified scores exceed 𝜔, with a uniform lottery over students with score exactly 𝜔.
Thus, in state 𝜔, this policy admits measure 𝑦(𝜔) minorities that solve the fixed point
equation:

𝑦(𝜔) = min

{︂
𝜅

∫︁ 1

0

I[𝑠+ 𝐴(𝑦(𝜔)) ≥ 𝜔]d𝑠, 𝑞

}︂
= min{𝜅 (1−max{𝜔 − 𝐴(𝑦(𝜔)), 0}) , 𝑞}

(919)
Denote the RHS of this fixed point equation by the function RHS(𝑦, 𝜔), which is con-
tinuous and decreasing in 𝑦. Moreover, RHS(0, 𝜔) = min{𝜅(1−max{𝜔−𝛾, 0}), 𝑞} > 0

and RHS(min{𝜅, 𝑞}, 𝜔) < min{𝜅, 𝑞}. The second of these inequalities is true because
the condition 𝜔 > 𝛾(1 − 𝛽min{𝑞, 𝜅}) follows from our assumption that min{𝜅, 𝑞} >
1+𝛾−𝜔
1
𝜅
+𝛾𝛽

+ 𝜅(𝜔 − 𝜔). Thus, there exists a unique 𝑦(𝜔) implemented by the APM.
Moreover, let 𝑦𝐴(𝜔) denote the unique solution to the equation 919, which gives the
measure of admitted minority students under APM 𝐴 at state 𝜔.

𝑦𝐴(𝜔) = 𝜅(1− (𝜔 − 𝛾(1− 𝛽𝑦𝐴(𝜔))))

= 𝜅(1− 𝜔 + 𝛾)− 𝜅𝛾𝛽𝑦𝐴(𝜔)

=
𝜅(1− 𝜔 + 𝛾)

1 + 𝜅𝛾𝛽

(920)

Thus, 𝐴 implements the optimal level of minority admissions characterized in equation
915 and 𝑉𝐴 = 𝑉 *.

Part (ii): First, if we admit all minority students over some threshold 𝑠, the total
score of admitted minority students is 𝜅

∫︀ 1

𝑠
𝑠d𝑠. Moreover, when we admit measure

𝑥 minority students where 𝑥 ≤ min{𝜅, 𝑞}, this admissions threshold is defined by
𝑥 = 𝜅

∫︀ 1

𝑠
d𝑠 = 𝜅(1− 𝑠). Thus, we have that 𝑠 = 1− 𝑥

𝜅
. Finally, the residual measure

𝑞 − 𝑥 admitted majority students all score 𝜔. Thus, the total score is given by
𝑠 = 𝑞𝜔 + (1− 𝜔)𝑥− 1

2𝜅
𝑥2 for 0 ≤ 𝑥 ≤ min{𝜅, 𝑞}. As both quota and priority policies

always admit the highest-scoring minority students, the authority’s utility is given
by:

𝒰 = 𝑞E[𝜔] + E[(1 + 𝛾 − 𝜔)𝑥]− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
E[𝑥2] (921)

We now derive the admitted measure of minority students. In the absence of a
priority or quota policy, 𝛼 = 0 or 𝑄 = 0, we have that 𝑥 = 𝜅(1−𝜔) measure minority
students is admitted. Thus, under a quota policy 𝑄, measure 𝑥 = max{𝑄, 𝜅(1− 𝜔)}
minority students are admitted. Under a priority policy, the measure of admitted
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minority students is 𝑥 = 𝜅
∫︀ 1

𝜔−𝛼 d𝑥 = 𝜅(1 + 𝛼 − 𝜔). In each case 𝑥 is capped by
min{𝜅, 𝑞} and floored by 0.

The expected utility function over quotas is given by one of four cases. First,
𝑄 > min{𝜅, 𝑞} and:

𝒰𝑄(𝑄) = 𝑞E[𝜔] + (1 + 𝛾 − E[𝜔])min{𝜅, 𝑞} − 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
min{𝜅, 𝑞}2 (922)

Second, 𝑄 ∈ [𝜅(1− 𝜔),min{𝜅, 𝑞}) and:1

𝒰𝑄(𝑄) = 𝑞E[𝜔] + (1 + 𝛾 − E[𝜔])𝑄− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
𝑄2 (923)

Third, 𝑄 ∈ (𝜅(1− 𝜔), 𝜅(1− 𝜔)) and:

𝒰𝑄(𝑄) = 𝑞E[𝜔] +
∫︁ 𝜔

1−𝑄
𝜅

(︂
(1 + 𝛾 − 𝜔)𝑄− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
𝑄2

)︂
dΛ(𝜔)

+

∫︁ 1−𝑄
𝜅

𝜔

(︂
(1 + 𝛾 − 𝜔)𝜅(1− 𝜔)− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
(𝜅(1− 𝜔))2

)︂
dΛ(𝜔)

(924)

Finally, 𝑄 ≤ 𝜅(1− 𝜔) and:

𝒰𝑄(𝑄) = 𝑞E[𝜔] + E [(1 + 𝛾 − 𝜔)𝜅(1− 𝜔)]− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
E
[︀
(𝜅(1− 𝜔))2

]︀
(925)

We claim that the optimum lies in the second case. See that in case two the strict
maximum is attained at 𝑄* = 1+𝛾−E[𝜔]

1
𝜅
+𝛾𝛽

∈ (𝜅(1 − 𝜔),min{𝜅, 𝑞}), by our assumptions

that min{𝜅, 𝑞} > 1+𝛾−𝜔
1
𝜅
+𝛾𝛽

+ 𝜅(𝜔 − 𝜔) and 𝜅(1 − 𝜔) < 1+𝛾−𝜔
1
𝜅
+𝛾𝛽

. Moreover, in case three,
the first derivative of the payoff is given by:

𝒰 ′
𝑄(𝑄) =

∫︁ 𝜔

1−𝑄
𝜅

(︂
(1 + 𝛾 − 𝜔)−

(︂
1

𝜅
+ 𝛾𝛽

)︂
𝑄

)︂
dΛ(𝜔) (926)

Thus, checking that the sign of this is positive amounts to verifying that for all
𝑄 ∈ (𝜅(1− 𝜔), 𝜅(1− 𝜔)), we have that:

𝑄 <
1 + 𝛾 − E[𝜔|𝜔 ≥ 1− 𝑄

𝜅
]

1
𝜅
+ 𝛾𝛽

(927)

1By our maintained assumptions we have that this interval has non-empty interior.
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As the RHS is an increasing function of 𝑄, it suffices to show that:

𝜅(1− 𝜔) <
1 + 𝛾 − 𝜔

1
𝜅
+ 𝛾𝛽

(928)

which we have assumed. Moreover, the expected utility in the first case equals
𝒰𝑄(𝜅(1 − 𝜔)), thus is lower than the optimum of the second case. The expected
utility in the fourth case equals 𝒰𝑄(𝜅(1− 𝜔)), thus is lower than the optimum of the
third case. We therefore have that:

𝑉𝑄 = 𝑞E[𝜔] + (1 + 𝛾 − E[𝜔])𝑄* − 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
𝑄*2 (929)

We now turn to characterizing the value of priorities. There are three cases to con-
sider. First, when 𝜅(1 + 𝛼− 𝜔) ≥ min{𝜅, 𝑞} we have that 𝑥 = min{𝜅, 𝑞} and:

𝒰𝑃 (𝛼) = 𝑞E[𝜔] + (1 + 𝛾 − E[𝜔])min{𝜅, 𝑞} − 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
min{𝜅, 𝑞}2 (930)

Second, when 𝜅(1 + 𝛼− 𝜔) ≥ min{𝜅, 𝑞} ≥ 𝜅(1 + 𝛼− 𝜔) we have that:

𝒰𝑃 (𝛼) = 𝑞E[𝜔] +
∫︁ 1+𝛼−min{ 𝑞

𝜅
,1}

𝜔

(︂
(1 + 𝛾 − 𝜔)min{𝜅, 𝑞} − 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
min{𝜅, 𝑞}2

)︂
dΛ(𝜔)

+

∫︁ 𝜔

1+𝛼−min{ 𝑞
𝜅
,1}

(︂
(1 + 𝛾 − 𝜔)𝜅(1 + 𝛼− 𝜔)− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
[𝜅(1 + 𝛼− 𝜔)]2

)︂
dΛ(𝜔)

(931)

Finally, when min{𝜅, 𝑞} ≥ 𝜅(1 + 𝛼− 𝜔), we have that:

𝒰𝑃 (𝛼) = 𝑞E[𝜔]+E[(1+𝛾−𝜔)𝜅(1+𝛼−𝜔)]− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
E[(𝜅(1 + 𝛼− 𝜔))2] (932)

We claim that the optimum under our assumptions lies only in the third case. First,
we argue that there is a unique local maximum in the third case. Second, we show
the value in the second case is decreasing in 𝛼. By continuity, the unique optimum
then lies in the third case.

First, it is helpful to write �̄�(𝛼) = 𝜅(1 + 𝛼 − E[𝜔]) and 𝜀 = 𝜅 (E[𝜔]− 𝜔). The
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value in the third case can then be re-expressed as:

𝒰𝑃 (𝛼) = 𝑞E[𝜔] + E[(1 + 𝛾 − 𝜔) (�̄�(𝛼) + 𝜀)]− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
E[(�̄�(𝛼) + 𝜀)2]

= 𝑞E[𝜔] + (1 + 𝛾 − E[𝜔])�̄�(𝛼)− E[𝜔𝜀]− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
�̄�(𝛼)2 − 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
E[𝜀2]

(933)

Finally, we have that E[𝜀2] = 𝜅2Var[𝜔] and E[𝜔𝜀] = Cov[𝜔, 𝜀] = −𝜅Var[𝜔]. Thus:

𝒰𝑃 (𝛼) = 𝑞E[𝜔]+(1+𝛾−E[𝜔])�̄�(𝛼)− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
�̄�(𝛼)2+

𝜅

2
(1− 𝜅𝛾𝛽)Var[𝜔] (934)

We then see that the optimal 𝛼* in this range sets �̄�(𝛼*) = 𝑄* < min{𝜅, 𝑞}. It remains
only to check that this optimal 𝛼* indeed lies within this case, or equivalently that
𝜅(1 + 𝛼* − 𝜔) ≤ min{𝜅, 𝑞}. To this end, see that 𝜅(1 + 𝛼* − E[𝜔]) = 𝑄*, and:

𝜅(1 + 𝛼* − 𝜔) = 𝑄* + 𝜅(E[𝜔]− 𝜔) ≤ 𝑄* + 𝜅(𝜔 − 𝜔)

≤ 1 + 𝛾 − 𝜔
1
𝜅
+ 𝛾𝛽

+ 𝜅(𝜔 − 𝜔) < min{𝜅, 𝑞}
(935)

where the final inequality follows by our assumption that min{𝜅, 𝑞} > 1+𝛾−𝜔
1
𝜅
+𝛾𝛽

+𝜅(𝜔−
𝜔).

Second, in the second case we have that the first derivative of the payoff in 𝛼 is
given by:

𝒰 ′
𝑃 (𝛼) =

∫︁ 𝜔

1+𝛼−min{ 𝑞
𝜅
,1}

𝑑

𝑑𝛼

(︂
(1 + 𝛾 − 𝜔)𝜅(1 + 𝛼− 𝜔)− 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
[𝜅(1 + 𝛼− 𝜔)]2

)︂
dΛ(𝜔)

= 𝜅

∫︁ 𝜔

1+𝛼−min{ 𝑞
𝜅
,1}

(︂
(1 + 𝛾 − 𝜔)−

(︂
1

𝜅
+ 𝛾𝛽

)︂
(�̄�(𝛼) + 𝜀(𝜔))

)︂
dΛ(𝜔)

(936)

Checking that the sign of this is negative for all 𝛼 such that 𝜅(1+𝛼−𝜔) ≥ min{𝜅, 𝑞} ≥
𝜅(1 + 𝛼− 𝜔) then amounts to checking that:

�̄�(𝛼) >
1 + 𝛾 − E[𝜔|𝜔 ≥ 1 + 𝛼−min{ 𝑞

𝜅
, 1}]

1
𝜅
+ 𝛾𝛽

− E
[︁
𝜀(𝜔)|𝜔 ≥ 1 + 𝛼−min{ 𝑞

𝜅
, 1}
]︁

(937)
for all �̄�(𝛼) ∈ [min{𝜅, 𝑞} − 𝜅(E[𝜔] − 𝜔),min{𝜅, 𝑞} − 𝜅(E[𝜔] − 𝜔)]. So it suffices to
check that the minimal possible value of the LHS exceeds the maximal possible value
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of the RHS. A sufficient condition for this is that:

min{𝜅, 𝑞} − 𝜅(E[𝜔]− 𝜔) >
1 + 𝛾 − 𝜔

1
𝜅
+ 𝛾𝛽

− 𝜅(E[𝜔]− 𝜔) (938)

Which holds as we assumed that min{𝜅, 𝑞} > 1+𝛾−𝜔
1
𝜅
+𝛾𝛽

+ 𝜅(𝜔 − 𝜔). Substituting the
optimal priority policy �̄�(𝛼) = 𝑄* in equation 932, we obtain

𝑉𝑃 = 𝑞E[𝜔] + (1 + 𝛾 − E[𝜔])𝑄* − 1

2

(︂
1

𝜅
+ 𝛾𝛽

)︂
𝑄*2 +

𝜅

2
(1− 𝜅𝛾𝛽)Var[𝜔] (939)

We have now established that:

∆ = 𝑉𝑃 − 𝑉𝑄 =
𝜅

2
(1− 𝜅𝛾𝛽)Var[𝜔] (940)

Part (iii): We have 𝑉 *, 𝑉𝑄, 𝑉𝑃 . Thus, we can compute the loss from restricting to
quota policies:

ℒ𝑄 =
1

2

𝜅Var[𝜔]
1 + 𝜅𝛾𝛽

(941)

To find the loss from restricting to priority policies, we compute:

ℒ𝑃 = ℒ𝑄 −∆ =
1

2
(𝜅𝛾𝛽)2

𝜅Var[𝜔]
1 + 𝜅𝛾𝛽

(942)

Enveloping over these losses yields the claimed formula.

E.1.2 Proof of Proposition 17

Proof. Adapting Definition 13 to single object setting, we say that a matching 𝜇

admits a cutoff structure if there exists 𝑆(𝜔) = {𝑆𝑚(𝜔)}𝑚∈ℳ such that 𝜇(𝑠,𝑚;𝜔) = 1

if and only if 𝑠 ≥ 𝑆𝑚(𝜔). A mechanism admits a cutoff structure if it admits a cutoff
structure at every 𝜔. We will first prove that any monotone APM admits a cutoff
structure.

Lemma 20. A monotone APM admits a cutoff structure.

Proof. For a contradiction, assume it does not. Then there exists 𝜔 and matching 𝜇
implemented by the monotone APM such that for some𝑚 ∈ ℳ, 𝑠 > 𝑠′, 𝜇(𝑠,𝑚;𝜔) = 0

but 𝜇(𝑠′,𝑚;𝜔) = 1. Let 𝑥𝑚 denote the measure of group 𝑚 agents allocated the
resource at 𝜇. Since 𝐴 is a monotone APM and 𝑠 > 𝑠′, we have that 𝐴(𝑥𝑚, 𝑠) >
𝐴(𝑥𝑚, 𝑠

′), which contradicts that 𝐴 implements 𝜇.
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We now use Lemma 20 to show that a monotone APM implements a unique
allocation. Assume for a contradiction that 𝐴𝑚(𝑦𝑚, 𝑠) is monotone and implements
two different allocations, 𝜇 and 𝜇′. Let 𝑥𝑚 and 𝑥′𝑚 denote the measure of type 𝑚
students assigned the resource at 𝜇 and 𝜇′. First, we prove that if 𝜇 and 𝜇′ admit
the same measure of students from each group, i.e., 𝑥𝑚 = 𝑥′𝑚 for all 𝑚, then the
average score of admitted students are the same. Let 𝑠𝑚 and 𝑠′𝑚 denote the score of
the lowest-scoring type 𝑚 students assigned the resource at 𝜇 and 𝜇′.

Claim 1. If 𝑥𝑚 = 𝑥′𝑚 for all 𝑚 ∈ ℳ, then 𝑠ℎ(𝜇, 𝜔) = 𝑠ℎ(𝜇
′, 𝜔)

Proof. Fix an 𝑚. Without loss of generality, let 𝑠𝑚 ≥ 𝑠′𝑚. First, since APM has
cutoff structure and 𝑥𝑚 = 𝑥′𝑚, we have that∫︁

Θ

I{𝑠(𝜃) ∈ [𝑠′𝑚, 𝑠𝑚],𝑚(𝜃) = 𝑚}d𝐹𝜔(𝑠,𝑚) = 0 (943)

Note that this holds regardless of 𝑚′ ∈ ℳ and whether 𝑠𝑚 ≥ 𝑠′𝑚 or 𝑠′𝑚 ≥ 𝑠𝑚.
Therefore,

𝑠ℎ(𝜇, 𝜔) =

∫︁
Θ

𝜇(𝑠,𝑚)ℎ(𝑠)d𝐹𝜔(𝑠,𝑚)

=
∑︁
𝑚∈ℳ

∫︁
Θ

I{𝑠(𝜃) ≥ 𝑠𝑚,𝑚(𝜃) = 𝑚}ℎ(𝑠(𝜃))d𝐹𝜔(𝑠,𝑚)

=
∑︁
𝑚∈ℳ

∫︁
Θ

I{𝑠(𝜃) ≥ 𝑠′𝑚,𝑚(𝜃) = 𝑚}ℎ(𝑠(𝜃))d𝐹𝜔(𝑠,𝑚)

=

∫︁
Θ

𝜇(𝑠,𝑚)ℎ(𝑠)d𝐹𝜔(𝑠,𝑚)

= 𝑠ℎ(𝜇
′, 𝜔)

(944)

where line equation holds from Equation 943 and all others are by definition. This
finishes the proof of the claim.

Therefore, if 𝜇 and 𝜇′ do not yield identical measures, then there are 𝑚 and 𝑛 such
that 𝑥𝑚 > 𝑥′𝑚 and 𝑥′𝑛 > 𝑥𝑛. Since 𝑥𝑚 > 𝑥′𝑚, it follows that 𝑠′𝑚 > 𝑠𝑚. Likewise 𝑥′𝑛 > 𝑥𝑛

implies that 𝑠𝑛 > 𝑠′𝑛. Note that these imply: (i) 𝜇′(𝑠′𝑛, 𝑛) = 1 while 𝜇′(𝑠′𝑚, 𝑛) = 0 and
(ii) 𝜇(𝑠𝑚,𝑚) = 1 while 𝜇(𝑠′𝑛, 𝑛) = 0. Thus, the following inequalities hold:

𝐴𝑛(𝑠
′
𝑛, 𝑥

′
𝑛) > 𝐴𝑚(𝑠

′
𝑚, 𝑥

′
𝑚) ≥ 𝐴𝑚(𝑠𝑚, 𝑥𝑚) > 𝐴𝑛(𝑠

′
𝑛, 𝑥𝑛) ≥ 𝐴𝑛(𝑠

′
𝑛, 𝑥

′
𝑛) (945)
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where the first inequality follows from (i), the second inequality follows from the
fact that 𝑥′𝑚 < 𝑥𝑚 and 𝐴 is monotone, the third inequality follows from (ii) and the
fourth inequality follows from the fact that 𝑥𝑛 < 𝑥′𝑛 and 𝐴 is monotone. This equation
yields 𝐴𝑛(𝑠′𝑛, 𝑥′𝑛) > 𝐴𝑛(𝑠

′
𝑛, 𝑥

′
𝑛), which is a contradiction. Therefore, all allocations

implemented by 𝐴 yield the same 𝑥. Thus, from Lemma 20, if a monotone APM 𝐴

implements 𝜇 and 𝜇′, both allocations admit the highest-scoring measure 𝑥𝑚 agents
from group 𝑚 and can differ (at most) on a measure 0 set, proving the essential
uniqueness of 𝐴.

E.1.3 Proof of Theorem 7

Proof. We characterize the optimal allocation for each 𝜔 ∈ Ω and show that the
claimed adaptive priority mechanism implements the same allocation. Fix an 𝜔 ∈ Ω

and suppress the dependence of 𝐹𝜔 and 𝑓𝜔 thereon, and define the utility index of a
score as 𝑠 = ℎ(𝑠) with induced densities over 𝑠 given by 𝑓𝑚 for all 𝑚 ∈ ℳ. Let the
measure of agents from any group 𝑚 ∈ ℳ that is allocated the resource be 𝑥𝑚 ∈
[0, �̄�𝑚] where �̄�𝑚 =

∫︀ ℎ(1)
ℎ(0)

𝑓𝑚(𝑠)d𝑠. Observe that, conditional on fixing the measures
of agents from each group that are allocated the resource 𝑥 = {𝑥𝑚}𝑚∈ℳ, there is a
unique optimal allocation (i.e., 𝜉-maximal 𝜇 up to measure zero transformations). In
particular, as 𝑔 and ℎ are continuous and strictly increasing, the optimal allocation
conditional on 𝑥 satisfies 𝜇*(𝑠,𝑚;𝑥) = 1 ⇐⇒ 𝑠 ≥ 𝑠𝑚(𝑥𝑚) for some thresholds
{𝑠𝑚(𝑥𝑚)}𝑚∈ℳ that solve: ∫︁ ℎ(1)

𝑠𝑚(𝑥𝑚)

𝑓𝑚(𝑠)d𝑠 = 𝑥𝑚 (946)

We can then express the problem of choosing the optimal 𝑥 = {𝑥𝑚}𝑚∈ℳ as:

max
𝑥𝑚∈[0,�̄�𝑚], ∀𝑚∈ℳ

∑︁
𝑚∈ℳ

∫︁ ℎ(1)

𝑠𝑚(𝑥𝑚)

𝑠𝑓𝑚(𝑠)d𝑠+
∑︁
𝑚∈ℳ

𝑢𝑚(𝑥𝑚) s.t.
∑︁
𝑚∈ℳ

𝑥𝑚 ≤ 𝑞 (947)

where a solution exists by compactness of the constraint sets and continuity of the
objective. We can derive necessary and sufficient conditions on the solution(s) to this
problem by considering the Lagrangian:

ℒ(𝑥, 𝜆, 𝜅, 𝜅) =
∑︁
𝑚∈ℳ

∫︁ ℎ(1)

𝑠𝑚(𝑥𝑚)

𝑠𝑓𝑚(𝑠)d𝑠+
∑︁
𝑚∈ℳ

𝑢𝑚(𝑥𝑚)

+ 𝜆

(︃
𝑞 −

∑︁
𝑚∈ℳ

𝑥𝑚

)︃
+
∑︁
𝑚∈ℳ

𝜅𝑚(�̄�𝑚 − 𝑥𝑚) +
∑︁
𝑚∈ℳ

𝜅𝑚𝑥𝑚

(948)
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The first-order necessary conditions to this program are given by:

𝜕ℒ
𝜕𝑥𝑚

= −𝑠′𝑚(𝑥𝑚)𝑠𝑚(𝑥𝑚)𝑓𝑚(𝑠𝑚(𝑥𝑚)) + 𝑢′𝑚(𝑥𝑚)− 𝜆− 𝜅𝑚 + 𝜅𝑚 = 0 (949)

𝜆
𝜕ℒ
𝜕𝜆

= 𝜆

(︃
𝑞 −

∑︁
𝑚∈ℳ

𝑥𝑚

)︃
= 0 (950)

𝜅𝑚
𝜕ℒ
𝜕𝜅𝑚

= 𝜅𝑚(�̄�𝑚 − 𝑥𝑚) = 0 (951)

𝜅𝑚
𝜕ℒ
𝜕𝜅𝑚

= 𝜅𝑚𝑥𝑚 = 0 (952)

for all 𝑚 ∈ ℳ. By implicitly differentiating Equation 946, we obtain that:

−𝑠′𝑚(𝑥𝑚)𝑓𝑚(𝑠𝑚(𝑥𝑚)) = 1 (953)

Thus, we can simplify Equation 949 to:

𝜕ℒ
𝜕𝑥𝑚

= 𝑠𝑚(𝑥𝑚) + 𝑢′𝑚(𝑥𝑚)− 𝜆− 𝜅𝑚 + 𝜅𝑚 = 0 (954)

Observe that all constraints are linear. Thus, if the objective function is strictly
concave, the first-order conditions are also sufficient. Observe by Equation 953 that
𝑠𝑚(𝑥𝑚) is a strictly decreasing function of 𝑥𝑚, and all cross-partial derivatives are
zero. Therefore, the first summation is strictly concave. Moreover 𝑢′𝑚 is a decreasing
function of 𝑥𝑚 by virtue of the assumption that 𝑢𝑚 is concave for all 𝑚 ∈ ℳ.
Therefore, the second summation is concave. Thus, the objective function is strictly
concave and the optimal allocation is unique.

Thus, to verify that our claimed adaptive priority mechanism is a first-best mech-
anism, it suffices to show that the allocation it implements satisfies Equations 949
to 952. The adaptive priority mechanism 𝐴𝑚(𝑦𝑚, 𝑠) = ℎ−1 (ℎ(𝑠) + 𝑢′𝑚(𝑦𝑚))) in the
transformed score space yields transformed scores ℎ (𝐴𝑚(𝑦𝑚, 𝑠)) = 𝑠+𝑢′𝑚(𝑦𝑚). Define
𝑥𝑚 as the admitted measure of agents from group 𝑚 under this mechanism. Agents
in group 𝑚 ∈ ℳ are allocated the resource if and only if 𝑠 + 𝑢′𝑚(𝑥𝑚) ≥ 𝑠𝐶 for some
threshold 𝑠𝐶 that solves:

∑︁
𝑚∈ℳ

∫︁ ℎ(1)

max{min{𝑠𝐶−𝑢′𝑚(𝑥𝑚),ℎ(1)},ℎ(0)}
𝑓𝑚(𝑠)d𝑠 = 𝑞 (955)

We can therefore partition ℳ into three sets that are uniquely defined: (i) interior
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ℳ𝐼 = {𝑚 ∈ ℳ|𝑠𝐶 − 𝑢′𝑚(𝑥𝑚) ∈ (ℎ(0), ℎ(1))}; (ii) no allocation ℳ0 = {𝑚 ∈ ℳ|𝑠𝐶 −
𝑢′𝑚(𝑥𝑚) ≥ ℎ(1)}; (iii) full allocation ℳ1 = {𝑚 ∈ ℳ|𝑠𝐶 − 𝑢′𝑚(𝑥𝑚) ≤ ℎ(0)}. For all
𝑚 ∈ ℳ0, we implement 𝑥𝑚 = 0. For all 𝑚 ∈ ℳ1, we implement 𝑥𝑚 = �̄�𝑚. For all
𝑚 ∈ ℳ𝐼 , we implement 𝑥𝑚 ∈ (0, �̄�𝑚). For any 𝑚 ∈ ℳ𝐼 , the allocation threshold is
𝑠𝑚(𝑥𝑚) = 𝑠𝐶 − 𝑢′𝑚(𝑥𝑚). For any 𝑚 ∈ ℳ0, the allocation threshold is ℎ(1). For any
𝑚 ∈ ℳ1, the allocation threshold is ℎ(0).

We now verify that this outcome satisfies the established necessary and sufficient
conditions. For all 𝑚 ∈ ℳ𝐼 , by the complementary slackness conditions we have that
𝜅𝑚 = 𝜅𝑚 = 0. Substituting the above into Equation 949 for all 𝑚 ∈ ℳ𝐼 we obtain
that:

𝑠𝐶 − 𝜆 = 0 (956)

which is satisfied for 𝜆 = 𝑠𝐶 . As 𝑞 =
∑︀

𝑚∈ℳ 𝑥𝑚, the complementary slackness
condition for 𝜆 is then satisfied. For all 𝑚 ∈ ℳ0, by complementary slackness we
have that 𝜅𝑚 = 0 and Equation 949 is satisfied by:

𝜅𝑚 = 𝜆− ℎ(1)− 𝑢′𝑚(0) (957)

For all 𝑚 ∈ ℳ1, by complementary slackness we have that 𝜅𝑚 = 0 and Equation 949
is satisfied by:

𝜅𝑚 = ℎ(0) + 𝑢′𝑚(�̄�𝑚)− 𝜆 (958)

This completes the proof of first-best optimality of 𝐴*. Moreover, as the optimal
allocation is unique for all 𝜔, any allocation that differs from the allocation imple-
mented by the optimal APM at any 𝜔 would not be first-best optimal. Therefore,
any first-best-optimal mechanism must implement essentially the same allocation as
𝐴*.

E.1.4 Proof of Theorem 8

Proof. First, we prove the if parts of the results.
Part (i): When 𝑢𝑚 is linear, 𝑢′𝑚 is constant and the first-best optimal adaptive

priority mechanism is a priority mechanism 𝑃 (𝑠,𝑚) = ℎ−1(ℎ(𝑠) + 𝑢′𝑚). Part (ii):
When �̃�′𝑚(𝑥𝑚) ≥ 𝑘 for 𝑥𝑚 ≤ 𝑥tar

𝑚 and �̃�′𝑚(𝑥𝑚) = 0 for 𝑥𝑚 > 𝑥tar
𝑚 and

∑︀
𝑚∈ℳ 𝑥tar

𝑚 < 𝑞,
observe that the optimal mechanism admits 𝑥𝑚 ≥ 𝑥tar

𝑚 for all 𝑚 ∈ ℳ in all states of
the world, but conditional on 𝑥𝑚 ≥ 𝑥tar

𝑚 for all 𝑚 ∈ ℳ admits the highest-scoring
set of agents. A quota 𝑄𝑚 = 𝑥tar

𝑚 and 𝑄𝑅 = 𝑞 −∑︀𝑚∈ℳ 𝑥tar
𝑚 , with 𝐷(𝑅) = |ℳ| + 1

implements this allocation and is first-best optimal for any authority that is extremely
risk-averse.
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Second, we prove the only if parts of the results.
Part (i): Assume the utility functions are not linear and let 𝑚 denote a group

where 𝑢′𝑚 is not constant in [0, 𝑞]. We say that a state 𝜔 has full support if 𝑓𝑤 has full
support. A state 𝜔 has full support in 𝑚 and 𝑛 if 𝑓𝑤(·,𝑚) > 0 and 𝑓𝑤(·, 𝑛) > 0 for
some 𝑚 and 𝑛 and positive measures of only 𝑚 and 𝑛. Let 𝜔 be a state that has full
support in 𝑚 and 𝑛. Moreover, assume both groups have a measure 𝑞 of agents. We
first establish that in any optimal allocation, agents from both groups are allocated
the resource.

Claim 2. If preferences are non-trivial, then the optimal allocation has 𝑥𝑛, 𝑥𝑚 > 0.

Proof. Toward a contradiction, suppose without loss of generality that 𝑥𝑛 = 0. This
implies that 𝑥𝑚 = 𝑞. By the necessary first-order condition from Theorem 7 (combing
Equations 949 and 952), we have that:

𝑢′𝑚(𝑞) + ℎ(0) = 𝑢′𝑛(0) + ℎ(1) + 𝜅𝑛 ≥ 𝑢′𝑛(0) + ℎ(1) (959)

where the inequality follows as 𝜅𝑛 ≥ 0. Thus, we have that:

𝑢′𝑚(𝑞)− 𝑢′𝑛(0) ≥ ℎ(1)− ℎ(0) > 𝑢′𝑚(𝑞)− 𝑢′𝑛(0) (960)

where the first inequality follows by rearranging Equation 959 and the second follows
by the definition of non-triviality of preferences. This is a contradiction, thus 𝑥𝑛, 𝑥𝑚 >

0 in any optimal allocation.

We now establish an equation relating 𝑥𝑛 and 𝑥𝑚 that will be useful in the steps
to come.

Claim 3. Let 𝜔 have full support in 𝑚 and 𝑛, 𝜇 denote a cutoff matching with cutoffs
𝑠𝑚 and 𝑠𝑛. Let 𝑥𝑚 and 𝑥𝑛 denote the measures of agents who are allocated the object
at 𝜇. 𝜇 is optimal if and only if 𝑢′𝑚(𝑥𝑚) + ℎ(𝑠𝑚) = 𝑢′𝑛(𝑥𝑛) + ℎ(𝑠𝑛) and 𝑥𝑛 + 𝑥𝑚 = 𝑞.

Proof. By the necessary and sufficient first-order conditions from Theorem 7, we again
have that:

𝑢′𝑚(𝑥𝑚) + ℎ(𝑠𝑚)− 𝜅𝑚 + 𝜅𝑚 = 𝑢′𝑛(𝑥𝑛) + ℎ(𝑠𝑛)− 𝜅𝑛 + 𝜅𝑛 (961)

By Claim 2, we have 𝑥𝑚, 𝑥𝑛 > 0. Thus, by the complementary slackness conditions
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(Equations 951 and 952), we have that 𝜅𝑚 = 𝜅𝑚 = 𝜅𝑛 = 𝜅𝑛 = 0. Thus, we obtain:

𝑢′𝑚(𝑥𝑚) + ℎ(𝑠𝑚) = 𝑢′𝑛(𝑥𝑛) + ℎ(𝑠𝑛) (962)

together with 𝑥𝑛 + 𝑥𝑚 = 𝑞, we have characterized the optimal allocation as claimed.

Continue to let 𝑥𝑚 and 𝑥𝑛 denote the measures of group 𝑚 and 𝑛 agents at the
optimal allocation under 𝜔, and 𝑠𝑚 and 𝑠𝑛 denote the cutoff scores for admission.
There are now two cases to consider: (i) 𝑢′𝑚(𝑥𝑚) and 𝑢′𝑛(𝑥𝑛) are locally constant. (ii)
𝑢′𝑚(𝑥𝑚) or 𝑢′𝑛(𝑥𝑛) are not locally constant. If we are in case (i), we will construct an
𝜔′ with a unique optimal allocation 𝑥′𝑚 and 𝑥′𝑛 where 𝑢′𝑚(𝑥′𝑚) or 𝑢′𝑛(𝑥′𝑛) is not locally
constant, and then show jointly how we arrive at a contradiction in both cases (i)
and (ii).

To this end, suppose that we are in case (i). Let 𝑥*𝑚 and 𝑥*𝑛 denote the measures
that are closest to 𝑥𝑚 and 𝑥𝑛 such that 𝑢′𝑚(𝑥𝑚) and 𝑢′𝑛(𝑥𝑛) are not locally constant,
i.e.,:

𝑥*𝑘 = argmin
𝑥′𝑘

{︃
|𝑥𝑘 − 𝑥′𝑘|

⃒⃒⃒
𝑢′𝑘(𝑥𝑘) = 𝑢′𝑘(𝑥

′
𝑘) and for all 𝜀 > 0

either 𝑢′𝑘(𝑥
′
𝑘 − 𝜀) > 𝑢′𝑘(𝑥𝑘) or 𝑢′𝑘(𝑥

′
𝑘 + 𝜀) > 𝑢′𝑘(𝑥𝑘)

}︃ (963)

As 𝑢′𝑘 is continuous, this minimum is attained and 𝑥*𝑘 is well-defined. Without loss of
generality, assume |𝑥𝑚 − 𝑥*𝑚| ≤ |𝑥𝑛 − 𝑥*𝑛| and define both �̂�𝑚 = 𝑥*𝑚 and �̂�𝑛 = 𝑞− 𝑥*𝑚.
We now construct a state 𝜔′ such that �̂� is optimal:

Claim 4. Define 𝜔′ where 𝐹𝑚(1) − 𝐹𝑚(𝑠𝑚) = �̂�𝑚, 𝐹𝑛(1) − 𝐹𝑛(𝑠𝑛) = �̂�𝑛 and 𝜔′ has
full support in 𝑚 and 𝑛. The allocation that admits the highest-scoring �̂�𝑚 group 𝑚
agents and the highest-scoring �̂�𝑛 group 𝑛 agents is the unique optimal allocation.

Proof. By Claim 3, as �̂�𝑚+�̂�𝑛 = 𝑞 by construction, �̂� is optimal if and only if Equation
962 holds. To this end, observe that if we admit �̂�, then the cutoff scores are the
same as under 𝑥 as 𝐹𝑚(1)−𝐹𝑚(𝑠𝑚) = �̂�𝑚 and 𝐹𝑛(1)−𝐹𝑛(𝑠𝑛) = �̂�𝑛, by construction.
Thus, we have that:

𝑢′𝑚(�̂�𝑚) + ℎ(𝑠𝑚) = 𝑢′𝑚(𝑥𝑚) + ℎ(𝑠𝑚)

= 𝑢′𝑛(𝑥𝑛) + ℎ(𝑠𝑛)

= 𝑢′𝑛(�̂�𝑛) + ℎ(𝑠𝑛)

(964)
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where the first equality holds by construction as �̂�𝑚 = 𝑥*𝑚 and 𝑢′𝑚(𝑥*𝑚) = 𝑢′𝑚(𝑥𝑚), the
second equality holds by optimality of 𝑥, and the third equality holds as |𝑥𝑚−𝑥*𝑚| ≤
|𝑥𝑛 − 𝑥*𝑛|, which implies that 𝑢′𝑛(�̂�𝑛) = 𝑢′𝑛(𝑥

*
𝑛). Thus, Equation 962 holds, and �̂� is

optimal, as claimed.

Observe that this construction also applies trivially in case (ii) with 𝑥*𝑚 = 𝑥𝑚.
Thus, using this construction, we can now study cases (i) and (ii) together. In state
𝜔′, to implement this optimal allocation, we must have that 𝑃 (𝑠,𝑚) < 𝑃 (𝑠𝑛, 𝑛) for
all but a measure zero set of 𝑠 such that 𝑠 < 𝑠𝑚. We will now construct another state
𝜔′′ such that any priority mechanism with this property is suboptimal.

First, suppose that 𝑥*𝑚 ≤ 𝑥𝑚 and fix some 𝜀 ∈ (0, 𝑥*𝑚). Define 𝑠𝑚 as solving the
following equation:

𝑢′𝑚(�̂�𝑚 − 𝜀) + ℎ(𝑠𝑚) = 𝑢′𝑛(�̂�𝑛 + 𝜀) + ℎ(𝑠𝑛) (965)

We then have that:

𝑠𝑚 = ℎ−1 (ℎ(𝑠𝑛) + 𝑢′𝑛(�̂�𝑛 + 𝜀)− 𝑢′𝑚(�̂�𝑚 − 𝜀))

< ℎ−1 (ℎ(𝑠𝑛) + 𝑢′𝑛(�̂�𝑛)− 𝑢′𝑚(�̂�𝑚))

= 𝑠𝑚

(966)

where the first equality rearranges Equation 965 and the second inequality uses the
facts that 𝑢′𝑛(�̂�𝑛) ≤ 𝑢′𝑛(�̂�𝑛 + 𝜀) and 𝑢′𝑚(�̂�𝑚) < 𝑢′𝑚(�̂�𝑚 − 𝜀). We now construct a state
𝜔′′ such that (�̂�𝑚 − 𝜀, �̂�𝑛 + 𝜀) is optimal.

Claim 5. Define 𝜔′′ where 1−𝐹𝑚(𝑠𝑚) = �̂�𝑚−𝜀, 1−𝐹𝑛(𝑠𝑛) = �̂�𝑛+𝜀 with full support
in 𝑚 and 𝑛. The allocation that admits the highest-scoring (�̂�𝑚 − 𝜀, �̂�𝑛 + 𝜀) agents is
the unique optimal allocation.

Proof. Following the same steps as Claim 4, and the fact that Equation 965 holds by
construction, we have that the claim holds.

Observe that to implement this optimal allocation a priority mechanism must
set 𝑃 (𝑠,𝑚) ≥ 𝑃 (𝑠𝑛, 𝑛) for all but zero measure 𝑠 > 𝑠𝑚. However, since 𝑠𝑚 < 𝑠𝑚,
this contradicts the optimality condition for state 𝜔′ that 𝑃 (𝑠,𝑚) < 𝑃 (𝑠𝑛, 𝑛). This is
because for all but measure zero 𝑠 ∈ (𝑠𝑚, 𝑠𝑚), which we have established is non-empty,
we have that:

𝑃 (𝑠,𝑚) ≥ 𝑃 (𝑠𝑛, 𝑛) > 𝑃 (𝑠,𝑚) (967)
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which is a contradiction. To complete the proof, we need only consider the case
that 𝑥*𝑚 > 𝑥𝑚. In this case, we can apply essentially the same steps and the result
follows. Concretely, instead increasing �̂�𝑚 by 𝜀 and following the same steps yields
the required contradiction.

We have now constructed three states 𝜔, 𝜔′, 𝜔′′ such that no priority mechanism
can be optimal in each state when the authority is not risk-neural, completing the
proof.

Part (ii): Assume that a quota policy is optimal, we now show that the authority’s
preferences must be extremely risk-averse. For each group 𝑚 ∈ ℳ, let 𝑐𝑚 ∈ [0, 1]

and 𝑐𝑚 ̸= 𝑐𝑛 if 𝑚 ̸= 𝑛. Let 𝜔 be such that the scores of agents from each group 𝑚

are uniformly distributed between [𝑐𝑚, 𝑐𝑚 + 𝜖], where 𝜖 is chosen to be small so that
there is no overlap of these supports and each group has measure 𝑞 agents. Let 𝑚𝜔

denote the group with the highest 𝑐𝑚 at 𝜔. Now, compute the optimal allocation at 𝜔
and denote the measure of admitted agents from each group at the optimal allocation
by {𝑥*𝑚(𝜔)}𝑚∈ℳ. We first show that under any optimal quota policy, the level of
the quotas must be set equal to the optimal allocation for all but the highest-scoring
group:

Claim 6. If a quota policy 𝑄 attains the optimal allocation, then for each 𝑚 ̸= 𝑚𝜔,
𝑄𝑚 = 𝑥*𝑚(𝜔).

Proof. If 𝑄𝑚 > 𝑥*𝑚(𝜔), then we admit 𝑥𝑚 ≥ 𝑄𝑚 > 𝑥*𝑚(𝜔), which is suboptimal as
there is a unique optimal allocation by Theorem 7. If 𝑄𝑚 < 𝑥*𝑚(𝜔) and 𝑚 ̸= 𝑚𝜔,
then 𝑥𝑚 = 𝑄𝑚 as 𝑐𝑚𝜔 > 𝑐𝑚 + 𝜀 and no agent from group 𝑚 can claim a merit slot.
This is suboptimal. Thus, 𝑄𝑚 = 𝑥*𝑚(𝜔) for all 𝑚 ̸= 𝑚𝜔.

Next, create 𝜔′ by changing the highest-scoring group, i.e.,𝑚𝜔 ̸= 𝑚𝜔′ . Let 𝑥*𝑚𝜔(𝜔
′)

denote the measure of admitted agents from group 𝑚𝜔 under 𝜔′. Applying Claim 6,
If 𝑄 attains the optimal allocation, then it must be that 𝑄𝑚𝜔 = 𝑥*𝑚𝜔(𝜔

′). Define 𝑄*
𝑚

by 𝑄*
𝑚 = 𝑥*𝑚 for all 𝑚 ∈ ℳ ∖ {𝑚𝜔} and 𝑄*

𝑚𝜔 = 𝑥*𝑚𝜔(𝜔
′).

Now, we have proved that if 𝑄 is an optimal policy, then 𝑄𝑚 = 𝑄*
𝑚 for all

𝑚 ∈ ℳ∖{𝑚𝜔} and 𝑄𝑚𝜔 = 𝑄*
𝑚𝜔 . We now establish that merit slots must be processed

after any positive measure quota slots if the merit slots are of positive measure:

Claim 7. If there is a quota policy that attains the first-best, 𝑄, then 𝑄𝑚 = 𝑄*
𝑚 and

either
∑︀

𝑚∈ℳ𝑄*
𝑚 = 𝑞, i.e., there are no merit slots (thus the order of processing the

merit slots does not matter), or
∑︀

𝑚∈ℳ𝑄*
𝑚 < 𝑞 and merit slots are processed after

any positive measure quota slots.
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Proof. We have already proved 𝑄𝑚 = 𝑄*
𝑚. If

∑︀
𝑚∈ℳ𝑄*

𝑚 = 𝑞, there are no merit slots
and any processing order yields the same result. If

∑︀
𝑚∈ℳ𝑄*

𝑚 < 𝑞, for a contradiction,
assume merit slots are processed before quota slots for group 𝑚 and 𝑄*

𝑚 > 0. There
are two cases, 𝑚 ̸= 𝑚𝜔 and 𝑚 = 𝑚𝜔. We start with the first case. Note that there is a
cutoff 𝑠𝑚 for group 𝑚 with 𝑠𝑚 < 𝑐𝑚+ 𝜖 and all agents from group 𝑚 who score above
𝑠𝑚 are allocated the resource. Create 𝜔′′ by taking measure 𝑥𝑚/2 of these agents
who are allocated the resource and give them scores above 𝑐𝑚𝜔 (the highest-scoring
group at 𝜔). The scores of the remaining 𝑥𝑚/2 agents are distributed uniformly at
[𝑐𝑚, 𝑐𝑚 + 𝜖].

We now observe that the optimal allocations at 𝜔 and 𝜔′′ are the same. This is
because increasing the scores of already admitted agents does not change the pref-
erences of the authority of whom to admit. Moreover, the optimal allocation at 𝜔′′

cannot be attained if the quota slots for group 𝑚 are processed after the merit slots.
This follows as, if merit slots are processed before quota slots for group 𝑚, a strictly
positive measure of them would go to group 𝑚 agents at 𝜔′′ since now they have a
measure of agents with the highest scores, which violates optimality.

This proves the claim for 𝑚 ̸= 𝑚𝜔. To prove the result for 𝑚 = 𝑚𝜔, replicate the
above steps with 𝜔′ where 𝑚𝜔 is not the highest-scoring group.

We now use these claims to establish that if quotas are first-best optimal, then
(𝑢, ℎ) must agree with (�̃�, ℎ̃) on optimal allocations.

Claim 8. The quota first policy with 𝑄𝑚 = 𝑥𝑡𝑎𝑟𝑚 maximizes the utility with respect to
�̃�, ℎ̃.

Proof. This is clear since for �̃�, ℎ̃, diversity utility dominates until 𝑥𝑡𝑎𝑟𝑚 and has no
effect after.

This proves the result since if there exists a first-best optimal quota policy, then
it is rationalized by (�̃�, ℎ̃) with 𝑥𝑡𝑎𝑟𝑚 = 𝑄*

𝑚. Hence, if there is a first-best quota
mechanism, the authority is extremely risk-averse.

E.1.5 Proof of Proposition 18

Let 𝑥*𝑚 denote the measure of group 𝑚 agents in the optimal allocation, with 𝑥* =

{𝑥*𝑚}𝑚∈ℳ. A priority policy 𝑃 (𝑠,𝑚) = ℎ−1(ℎ(𝑠) + 𝑢′𝑚(𝑥
*
𝑚)) = 𝐴𝑚(𝑥

*
𝑚, 𝑠) implements

the same allocation as the optimal adaptive priority mechanism and by Theorem 7,
is optimal. A quota mechanism with (𝑄,𝐷) where 𝑄𝑚 = 𝑥*𝑚 implements 𝑥* for all
𝐷, and is therefore optimal.
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E.1.6 Proof of Theorem 9

Proof. We first prove the following lemma.

Lemma 21. Any stable matching is a cutoff matching.

Proof. Assume that 𝜇 is a stable matching. Let 𝑆𝑚,𝑐 = inf𝜃{𝑠𝑐(𝜃) : 𝑚(𝜃) = 𝑚,𝜇(𝜃) =

𝑐}. Since 𝜇 satisfies within-group fairness, for all 𝑚 and 𝑠′ > 𝑆𝑚,𝑐, if 𝑚(𝜃) = 𝑚 and
𝑠𝑐(𝜃) = 𝑠′, 𝜇(𝜃) ⪰𝜃 𝑐. Moreover, from part (iv) of the definition of matching, this
extends to the case where 𝑠′ = 𝑆𝑚,𝑐. Concretely, suppose that 𝜇(𝜃) ̸= 𝑐, 𝑐 ≻𝜃 𝜇(𝜃)

and 𝑠𝑐(𝜃) = 𝑆𝑚,𝑐. Consider a sequence of types {𝜃𝑘}𝑘∈N with common group 𝑚 and
scores {𝑠𝑐(𝜃𝑘)}𝑘∈N such that 𝑠𝑐(𝜃𝑘) > 𝑆𝑚,𝑐 for all 𝑘 ∈ N and 𝑠𝑘(𝜃) → 𝑆𝑚,𝑐. Define
the set Θ𝐸 = {𝜃 ∈ Θ : 𝑐 ≻ 𝜇(𝜃)}, which must be open by part (iv) of the definition
of a matching. We have that 𝜃𝑘 ̸∈ Θ𝐸 for all 𝑘 ∈ N but lim𝑘→∞ 𝜃𝑘 ∈ Θ𝐸, which
contradicts that Θ𝐸 is open. Thus, if 𝜇 is stable, then it is also a cutoff matching.

Therefore, to characterize stable matchings, it is enough to characterize cutoffs
that induce a stable matching, which we call stable cutoffs.

Definition 22. A vector 𝑆 is a market-clearing cutoff if it satisfies the following:

1. 𝐷𝑐(𝑆) ≤ 𝑞𝑐 for all 𝑐.

2. 𝐷𝑐(𝑆) = 𝑞𝑐 if 𝑆𝑚,𝑐 > 0 for some 𝑚 ∈ ℳ.

Since an authority can admit different measures of agents from different groups,
there is a continuum of cutoffs that clear the market given 𝑆−𝑐, as long as {(0, . . . , 0)}
is not the only market-clearing cutoff. Let 𝐼(𝑆−𝑐) denote the set of market-clearing
cutoffs. Let 𝐼*(𝑆−𝑐) ⊆ 𝐼(𝑆−𝑐) denote the unique (by Lemma 20) cutoffs that im-
plement the outcome under APM 𝐴*

𝑐 when the authority faces the induced type
distribution over the set �̃�𝑐(𝑆−𝑐). Define the map 𝑇𝑐 : [0, 1]|ℳ|×|𝒞| → [0, 1]|ℳ| as
𝑇𝑐(𝑆) = 𝐼*𝑐 (𝑆−𝑐) with 𝑇 : [0, 1]|ℳ|×|𝒞| → [0, 1]|ℳ|×|𝒞| given by 𝑇 = {𝑇𝑐}𝑐∈𝒞. We first
show that the set of fixed points of 𝑇 equals the set of stable cutoffs:

Claim 9. The set of fixed points of 𝑇 equals the set of stable cutoffs.

Proof. If 𝑆*, with corresponding matching 𝜇* (by Lemma 21), is a fixed point of
𝑇 , then each 𝑐 ̸= 𝑐0 admits their most preferred measure 𝑞𝑐 agents in �̃�𝑐(𝑆

*
−𝑐) (by

Theorem 7). Note that any Θ̂ that can block the matching must prefer 𝑐 to their
allocation at 𝜇* and therefore Θ̂ ⊂ �̃�𝑐(𝑆

*
−𝑐). Then there cannot be a Θ̂ that blocks

𝜇* at 𝑐 since 𝑐 already attains the first-best utility under �̃�𝑐(𝑆
*
−𝑐) from the definition

of 𝑇𝑐(𝑆) and Theorem 7. Conversely, if 𝑆*, with corresponding matching 𝜇*, is a not
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fixed point of 𝑇 , then there exists 𝑐 such that 𝑇𝑐(𝑆*) ̸= 𝑆*
𝑐 . Let Θ̂ denote the set

of agents who are not matched to 𝑐 at 𝜇* but have scores greater than 𝑇𝑐(𝑆
*), and

Θ̃ denote the set of agents who are matched to 𝑐 at 𝜇* but have scores lower than
𝑇𝑐(𝑆

*). From optimality of 𝐴*
𝑐 (by Theorem 7), Θ̂ blocks 𝜇* at 𝑐 with Θ̃.

We now show that 𝑇 is increasing.

Claim 10. 𝑇 is increasing.

Proof. Fix an arbitrary 𝑐 ∈ 𝒞 and suppose that 𝑆 ′
−𝑐 ≥ 𝑆−𝑐. Toward a contradiction

suppose that there exists 𝑚 ∈ ℳ such that 𝑡′𝑐,𝑚 = 𝑇𝑐,𝑚(𝑆
′) = 𝐼*𝑐 (𝑆

′
−𝑐) < 𝐼*𝑐 (𝑆−𝑐) =

𝑇𝑐,𝑚(𝑆) = 𝑡𝑐,𝑚, i.e., the admissions threshold for group 𝑚 at authority 𝑐 goes down.
Let 𝑓 and 𝑓 ′ be the induced joint densities of agents over scores at 𝑐 and groups by
the sets �̃�𝑐(𝑆−𝑐) and �̃�𝑐(𝑆

′
−𝑐), respectively. Let {𝑥𝑚,𝑐}𝑚∈ℳ and {𝑥′𝑚,𝑐}𝑚∈ℳ denote

the measure agents who score above 𝑡𝑚,𝑐 for their group (i.e., admitted under 𝐴*
𝑐)

under �̃�𝑐(𝑆−𝑐) and �̃�𝑐(𝑆
′
−𝑐), respectively. As 𝑆 ′

−𝑐 ≥ 𝑆−𝑐, we have that 𝐷𝑐(𝑆−𝑐, 𝑆𝑐) ⊆
𝐷𝑐(𝑆 ′

−𝑐, 𝑆𝑐) for all 𝑆𝑐 ∈ [0, 1]|ℳ|. It follows that 𝑓 ′(𝜃𝑐) ≥ 𝑓(𝜃𝑐) > 0 for all 𝜃𝑐 =

(𝑠𝑐,𝑚𝑐) ∈ [0, 1] × ℳ. As 𝑡′𝑐,𝑚 < 𝑡𝑐,𝑚, 𝑓 ′ has full support, and 𝑓 ′ ≥ 𝑓 , we have
that the measure of admitted group 𝑚 agents under increases 𝑥′𝑐,𝑚 > 𝑥𝑐,𝑚. But
as
∑︀

𝑘∈ℳ 𝑥′𝑘 =
∑︀

𝑘∈ℳ 𝑥𝑘 = 𝑞, we know that there exists an 𝑚′ ∈ ℳ such that
𝑥′𝑐,𝑚′ < 𝑥𝑐,𝑚′ . It follows that 𝑡′𝑐,𝑚′ > 𝑡𝑐,𝑚′ , otherwise, if 𝑡′𝑐,𝑚′ ≤ 𝑡𝑐,𝑚′ , then 𝑥′𝑐,𝑚′ ≥ 𝑥𝑐,𝑚′ .
But now we have shown the following:

ℎ𝑐(𝑡
′
𝑐,𝑚′)+𝑢′𝑚′,𝑐(𝑥

′
𝑐,𝑚′) > ℎ𝑐(𝑡𝑐,𝑚′)+𝑢′𝑚′,𝑐(𝑥𝑐,𝑚′) ≥ ℎ𝑐(𝑡𝑐,𝑚)+𝑢

′
𝑚,𝑐(𝑥𝑐,𝑚) > ℎ𝑐(𝑡

′
𝑐,𝑚)+𝑢

′
𝑚,𝑐(𝑥

′
𝑐,𝑚)

(968)
where the first inequality follows by 𝑡𝑐,𝑚′ < 𝑡′𝑐,𝑚′ , 𝑥𝑐,𝑚′ > 𝑥′𝑐,𝑚′ , concavity of 𝑢𝑚 and
strictly increasing ℎ𝑐. The second inequality follows by optimality. This is because
the facts that 𝑡𝑐,𝑚 > 0 and 𝑡′𝑐,𝑚′ < 1 imply that 𝜅𝑚 = 𝜅𝑚′ = 0 and so Equation 954
implies that:

ℎ𝑐(𝑡𝑐,𝑚′) + 𝑢′𝑚′,𝑐(𝑥𝑐,𝑚′)− 𝜅𝑚′ = ℎ𝑐(𝑡𝑐,𝑚) + 𝑢′𝑚,𝑐(𝑥𝑐,𝑚) + 𝜅𝑚 (969)

with 𝜅𝑚′ , 𝜅𝑚 ≥ 0. The final inequality follows as 𝑡′𝑐,𝑚 < 𝑡𝑐,𝑚 and 𝑥′𝑐,𝑚 > 𝑥𝑐,𝑚. But
this contradicts the optimality condition for APM (Theorem 7), which implies that
𝑇𝑐 ̸= 𝐼*𝑐 , which is a contradiction. Hence, for all 𝑐 and 𝑚 ∈ ℳ, 𝑇𝑐,𝑚 is an increasing
function.

As 𝑇 : [0, 1]|ℳ|×|𝒞| → [0, 1]|ℳ|×|𝒞| is monotone and [0, 1]|ℳ|×|𝒞| is a lattice under
the elementwise order ≥, Tarski’s fixed point theorem implies that the set of stable
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matching cutoffs is a non-empty lattice.
Finally, we use the fact that the set of stable cutoffs is a complete lattice to argue

that there is a unique cutoff consistent with stability.

Claim 11. The stable matching cutoffs are unique.

Proof. Assume that there are multiple stable cutoffs. As the set of stable cutoffs is a
lattice, there exists a largest (𝑆+) and smallest (𝑆−) stable cutoffs, where 𝑆+ ≥ 𝑆−,
with strict inequality for some 𝑚 ∈ ℳ, 𝑐 ∈ 𝒞 as 𝑆+ ̸= 𝑆−. But then, as there is full
support of agent types and authority 𝑐 fills the capacity under stable cutoffs 𝑆+, it
must exceed its capacity under 𝑆−, which is a contradiction. Hence, we have shown
that there exists a unique stable matching cutoff.

The combination of Lemma 21 and Claim 11 completes the proof.

E.1.7 Proof of Theorem 10

Proof. If 𝜑 is equivalent to 𝐴*
𝑐 , Claim 9 implies that 𝜑 is consistent with stability.

We prove consistency with stability implies that 𝜑 is equivalent to 𝐴*
𝑐 by the

contrapositive. To this end, suppose that 𝜑 is not equivalent to 𝐴*
𝑐 . It follows that

there exists a full-support density {𝑓(𝑠𝑐,𝑚)}𝑠𝑐∈[0,1],𝑚∈ℳ such that 𝜑 yields a different
allocation than 𝐴*

𝑐 under 𝑓 . The rest of the proof constructs a full-support measure
𝐹 with unique stable matching 𝜇𝐹 such that 𝑓 is the induced density of scores and
groups of the agents who demand authority 𝑐 at 𝜇𝐹 . Given such an 𝐹 , we will have
that 𝜑 cannot be consistent with stability as it yields a different allocation than 𝐴*

𝑐 ,
which itself yields 𝜇𝐹 (𝑐), the set of students 𝑐 is matched to in the unique stable
matching.

We first define some notation. Given a density 𝑓 , for any set of types Θ̌ ⊆ Θ, we
define the marginal density of agents with score 𝑠𝑐 ∈ [0, 1] at authority 𝑐 in group
𝑚 ∈ ℳ as:

𝑓marg(Θ̌)(𝑠𝑐,𝑚) =

∫︁
Θ̌

I[𝑠𝑐(𝜃) = 𝑠𝑐,𝑚(𝜃) = 𝑚] d𝐹 (𝜃) (970)

To construct such an 𝐹 , we proceed in three steps.

1. Take a full-support density 𝑓 0 that satisfies the following two conditions: i)
Define 𝑆𝑐 ∈ [0, 1]|ℳ| as the cutoff vector that obtains by applying 𝐴*

𝑐 to 𝑓 .2

We assume that 𝑓 0 is such that authority 𝑐’s cutoff vector that is consistent
with the unique stable matching, 𝜇𝐹0 , coincides with 𝑆𝑐; ii) for all 𝑚 ∈ ℳ and

2Which exists as any monotone APM admits a cutoff structure (Lemma 21) and the optimal
APM is monotone (Theorem 7).
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𝑠𝑐 < 𝑆𝑚,𝑐, 𝑓 0
marg(Θ)(𝑠,𝑚) < 𝑓(𝑠,𝑚); and iii) all authorities have strictly positive

cutoffs for all groups at the unique stable matching.

2. We transform 𝑓 0 into a new density 𝑓 1 that differs from 𝑓 0 on the set of types
that is matched with 𝑐 under 𝜇𝐹0 , which we call Θ𝑐.3 We define the scaling
factor 𝜄1(𝑠𝑐,𝑚) as:

𝜄1(𝑠𝑐,𝑚) =
𝑓(𝑠𝑐,𝑚)

𝑓 0
marg(Θ𝑐)(𝑠𝑐,𝑚)

(971)

Given this scaling factor, we define:

𝑓 1(𝜃) =

⎧⎨⎩𝑓 0(𝜃)𝜄1(𝑠𝑐(𝜃),𝑚(𝜃)) if 𝜃 ∈ Θ𝑐,

𝑓 0(𝜃) otherwise.
(972)

Observe that this changes the scores of the types who are allocated to 𝑐 under
𝜇𝐹 0 but it does not change their total measure, their composition, or their
scores at any other authority. Thus, the unique stable matching under 𝑓 1, 𝜇𝐹 1 ,
coincides with 𝜇𝐹 0 . Moreover, by assumption i) in the construction of 𝑓 0 in step
1, we have that 𝑓 1

marg(Θ𝑐)(𝑠𝑐,𝑚) = 𝑓(𝑠𝑐,𝑚) for all 𝑚 and 𝑠𝑐 ≥ 𝑆𝑚,𝑐.

3. We transform 𝑓 1 into a new density 𝑓 2 that differs on the set of unmatched
agents under 𝑓 0 (and also therefore 𝑓 1 by step 2), Θ̃.4 Define the set of types
who strictly prefer 𝑐 to their assignment under 𝜇𝐹 0 (and also therefore 𝜇𝐹 1 by
step 2), Θ̂𝑐.5 We define a new scaling factor 𝜄2(𝑠𝑐,𝑚) as:

𝜄2(𝑠𝑐,𝑚) =
𝑓(𝑠𝑐,𝑚)− 𝑓marg(Θ̂𝑐)(𝑠𝑐,𝑚)

𝑓marg(Θ̃)(𝑠𝑐,𝑚)
(973)

which is strictly positive by assumption ii) of step 1. We then define 𝑓 2 as:

𝑓 2(𝜃) =

⎧⎨⎩𝑓 1(𝜃)(1 + 𝜄2(𝑠𝑐(𝜃),𝑚(𝜃))) if 𝜃 ∈ Θ̃,

𝑓 1(𝜃) otherwise.
(974)

By construction, 𝑓 2
marg(Θ̂𝑐)

(𝑠𝑐,𝑚) = 𝑓(𝑠𝑐,𝑚) for all 𝑚 and 𝑠𝑐 < 𝑆𝑚,𝑐. Moreover,

𝜇𝐹 2 = 𝜇𝐹 1 = 𝜇𝐹 0 as all 𝜃 ∈ Θ̃ remain unmatched.

3Formally, Θ𝑐 = {𝜃 : 𝜃 ∈ 𝐷𝑐(𝜇𝐹 0), 𝑠𝑐(𝜃) ≥ 𝑆𝑚(𝜃),𝑐)}.
4Formally, Θ̃ = {𝜃 : 𝜃 ∈ 𝐷𝑐(𝜇𝐹 1), 𝑠𝑐(𝜃) < 𝑆𝑚(𝜃),𝑐, 𝑠𝑐′(𝜃) < 𝑆

𝜇𝐹1

𝑚(𝜃),𝑐′ for all 𝑐′ ̸= 𝑐}, where 𝑆𝜇𝐹1

𝑚,𝑐′

denotes the group 𝑚 cutoff at school 𝑐′ at the stable matching 𝜇𝐹 1 , which is strictly positive by
assumption iii) of step 2.

5Formally, Θ̂𝑐 = {𝜃 : 𝜃 ∈ 𝐷𝑐(𝜇𝐹 1), 𝑠𝑐(𝜃) < 𝑆𝑚(𝜃),𝑐}.
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We have now constructed a full-support density 𝑓 2 with unique stable matching
𝜇𝐹 2 (by Theorem 9) such that the density over 𝐷𝑐(𝜇𝐹 2) coincides with 𝑓 . Moreover,
by Claim 9, 𝐴*

𝑐 selects 𝜇𝐹 2(𝑐) from 𝐷𝑐(𝜇𝐹 2). As 𝜑 selects a different allocation from
𝐷𝑐(𝜇𝐹 2) (as it has density of types 𝑓), it is inconsistent with stability.

E.1.8 Proof of Theorem 11

Proof. We prove that APM 𝐴*
𝑐 implements a dominant strategy for all authorities

in all stages by backward induction. Consider the terminal time 𝑡 = |𝒞| − 1. Some
measure of agents 𝜆 applies to the authority. Regardless of the measure 𝜆, by Theorem
7 we have that the APM 𝐴*

𝑐 is first-best optimal (to see this more concretely, simply
index 𝜆 by an arbitrary 𝜔 ∈ Ω and apply Theorem 7). Thus, 𝐴*

𝑐 is dominant.
Moreover, from Theorem 7, any strategy that differs from 𝐴*

𝑐 on a strictly positive
measure set cannot be optimal. Thus any dominant strategy implements essentially
the same allocation as 𝐴*

𝑐 . Consider now any time 𝑡 < |𝒞| − 1, precisely the same
argument applies and 𝐴*

𝑐 is (essentially uniquely) dominant.

E.1.9 Proof of Proposition 19

Proof. We first prove the following claim.

Claim 12. 𝜇Σ* is (almost surely) a deterministic allocation that corresponds to a
cutoff matching 𝜇*.

Proof. Since there is a continuum of agents, under any Σ*, with probability 1, any
authority 𝑐 faces a given set of agents who apply Θ𝐴,Σ*

𝑐 with induced measure 𝜆Σ*
𝑐 .

As 𝑐 uses APM 𝐴*
𝑐 , with probability 1, any agent 𝜃 is admitted to an authority if and

only if 𝑠𝑐(𝜃) ≥ 𝑆Σ*
𝑚,𝑐, where 𝑆Σ*

𝑚,𝑐 denotes the cutoffs when APM 𝐴*
𝑐 is applied to agent

measure 𝜆Σ*
𝑐 . Since the agents have strict preferences, in any equilibrium, each agent

applies to the ⪰𝜃 −maximal authority in {𝑐 : 𝑠𝑐(𝜃) ≥ 𝑆Σ*
𝑚,𝑐}, and is admitted, which

establishes that 𝜇Σ* is (almost surely) deterministic allocation that corresponds to a
cutoff matching with cutoffs 𝑆Σ*

𝑚,𝑐.

We now establish that 𝜇Σ* is the unique stable matching of the economy.

Claim 13. 𝜇* is the unique stable matching of this economy.

Proof. For a contradiction, assume 𝜇Σ* is not stable. Let 𝑆 denote the unique cutoffs
associated with 𝜇Σ* . Since 𝜇Σ* is not stable, by Claim 9, 𝑆 is not a fixed point of
𝑇 . Let 𝑡𝑐 = 𝑇𝑐(𝑆). Since 𝑆 is not a fixed point of 𝑇 , there exists 𝑚 ∈ ℳ and 𝑐 ∈ 𝒞
such that 𝑡𝑚,𝑐 ̸= 𝑆𝑚,𝑐. Moreover, let {𝑥𝑡𝑚,𝑐}𝑚∈ℳ and {𝑥𝑠𝑚,𝑐}𝑚∈ℳ denote the measure
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of agents in �̃�𝑐(𝑆−𝑐) who are above the admission thresholds for authority 𝑐 under 𝑡𝑐
and 𝑆𝑐. As in Claim 10, note that if there exists 𝑚, 𝑐 such that 𝑡𝑚,𝑐 > 𝑆𝑚,𝑐, then from
full support, we have that 𝑥𝑠𝑚,𝑐 > 𝑥𝑡𝑚,𝑐. Since the authority fills its capacity in both
cases, there must exists 𝑚′ such that 𝑥𝑡𝑚′,𝑐 > 𝑥𝑠𝑚′,𝑐 which is only possible if 𝑆𝑚,𝑐 > 𝑡𝑚,𝑐.
By an identical argument, if there is 𝑚, 𝑐 such that 𝑡𝑚,𝑐 < 𝑆𝑚,𝑐, then there exists 𝑚′

𝑆𝑚′,𝑐 < 𝑡𝑚′,𝑐. Therefore, whenever 𝑡𝑚,𝑐 ̸= 𝑆𝑚,𝑐, there exists 𝑐 and 𝑚,𝑚′ such that
𝑡𝑚,𝑐 > 𝑆𝑚,𝑐 and 𝑆𝑚′,𝑐 > 𝑡𝑚′,𝑐. But now we have shown the following:

ℎ𝑐(𝑆𝑐,𝑚′)+𝑢𝑚′(𝑥𝑠𝑐,𝑚′) > ℎ𝑐(𝑡𝑐,𝑚′)+𝑢𝑚′(𝑥𝑡𝑐,𝑚′) ≥ ℎ𝑐(𝑡𝑐,𝑚)+𝑢𝑚(𝑥
𝑡
𝑐,𝑚) > ℎ𝑐(𝑆𝑐,𝑚)+𝑢𝑚(𝑥

𝑠
𝑐,𝑚)

where the first inequality follows by 𝑡𝑐,𝑚′ < 𝑆𝑐,𝑚′ , 𝑥𝑠𝑐,𝑚′ < 𝑥𝑡𝑐,𝑚′ , and concavity of
𝑢𝑚. The second inequality follows by optimality. This is because the facts that
𝑡𝑐,𝑚 > 0 and 𝑡′𝑐,𝑚′ < 1 imply that the Lagrange multipliers in the proof of Theorem
7 𝜅𝑚 = 𝜅𝑚′ = 0 . The final inequality follows since 𝑡𝑚,𝑐 > 𝑆𝑚,𝑐 and 𝑥𝑡𝑚,𝑐 < 𝑥𝑠𝑚,𝑐.
However, this is a contradiction since ℎ𝑐(𝑆𝑐,𝑚′) + 𝑢𝑚′(𝑥𝑠𝑐,𝑚′) > ℎ𝑐(𝑆𝑐,𝑚) + 𝑢𝑚(𝑥

𝑠
𝑐,𝑚)

implies that there exists 𝜀 > 0, an agent 𝜃 with score 𝑠𝑐(𝜃) = 𝑆𝑐,𝑚′ − 𝜖 and type
𝑚(𝜃) = 𝑚 has higher score under 𝐴* than the agent 𝜃′ with score 𝑠𝑐(𝜃′) = 𝑆𝑐,𝑚 and
type 𝑚(𝜃′) = 𝑚. Since 𝜃′ is admitted to 𝑐, 𝜃 would be if it applied to 𝑐. Moreover,
from full support, there is such 𝜃 whose top choice is 𝑐 and the strategy of this agent
is not a best response, which is a contradiction.

The combination of Claims 12 and 13 completes the proof.

E.1.10 Proof of Proposition 20

Proof. We prove the result by explicitly constructing an economy in which the optimal
APMs lead to inefficiency. There are two authorities, 𝑐 and 𝑐′, both with capacity
1/2 and two groups of agents, 𝑚 and 𝑚′. Both agent groups have a measure of 1
and their scores are uniformly distributed in [1/2, 1]. Authorities’ utility functions
are given by

𝜉𝑐 (𝑠ℎ, 𝑥) ≡ 𝑠ℎ +
1

4

√
𝑥𝑚 +

1

8

√
𝑥𝑚′ (975)

𝜉𝑐′ (𝑠ℎ, 𝑥) ≡ 𝑠ℎ +
1

4

√
𝑥𝑚′ +

1

8

√
𝑥𝑚 (976)

with ℎ(𝑥) ≡ 𝑥 while all agents of type 𝑚 prefer authority 𝑐′ to 𝑐 while all agents of
type 𝑚′ prefer authority 𝑐 to 𝑐′.6

6This assumption on the preferences and the distribution of scores violate our full support as-
sumption, but adding an arbitrarily small full support density to all types makes arbitrarily small
changes in the utility under the stable matching and optimal allocation but complicates the calcu-
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We will now derive the stable outcome of this economy, which is (up to measure
zero transformation) the unique outcome implemented when the authorities use the
optimal APM. Let 𝑥𝑐𝑚 denote the measure of type 𝑚 agents at authority 𝑐. First, note
that higher-scoring agents from the same group go to the more preferred authority.
To see why this is true, note that if 𝑚(𝜃) = 𝑚(𝜃′) = 𝑚, 𝑠(𝜃) > 𝑠(𝜃′) and 𝜇(𝜃) = 𝑐

while 𝜇(𝜃′) = 𝑐′, 𝑐 and 𝜃 would violate within group fairness since 𝜃 has higher priority
at 𝑐 than 𝜃′ regardless of the allocation. As a result, in any stable allocation 𝜇, the
highest-scoring 𝑥𝑐𝑚′ type 𝑚′ agents are assigned to 𝑐 and the next highest-scoring 𝑥𝑐′𝑚′

agents are assigned to authority 𝑐′, while rest of the type 𝑚′ agents are not assigned to
any authority. The allocation for type 𝑚 agents is analogous. Moreover, since 𝑞 = 1/2

for both authorities, 𝑥𝑐′𝑚′=1/2-𝑥𝑐𝑚′ and 𝑥𝑐𝑚=1/2-𝑥𝑐′𝑚 and the allocation is completely
determined by the measures 𝑥𝑐𝑚′ and 𝑥𝑐′𝑚.

Next, note that at 𝜇, the adaptive priority of the lowest-scoring type 𝑚 and 𝑚′

agents must be equal at both authorities. To see why this is true, take authority
𝑐 without loss of generality. Let 𝑠𝑐𝑚′ = 1 − 𝑥𝑐𝑚′ and 𝑠𝑐𝑚 = 1 − 𝑥𝑐𝑚′ − 𝑥𝑐𝑚 denote
the scores of the lowest-scoring type 𝑚 and 𝑚′ agents and 𝐴𝑚 denote the optimal
APM. For a contradiction, assume 𝐴𝑚(𝑥

𝑐
𝑚, 𝑠

𝑐
𝑚) > 𝐴𝑚′(𝑥𝑐𝑚′ , 𝑠𝑐𝑚′). Since agents of

type 𝑚′ with scores lower than 𝑠𝑐𝑚 are unassigned at 𝜇, for small enough 𝜖, a type
𝑚 agent with score 𝑠𝑐𝑚 − 𝜖 and authority 𝑐 blocks the matching. Similarly, assume
𝐴𝑚(𝑥

𝑐
𝑚, 𝑠

𝑐
𝑚) < 𝐴𝑚′(𝑥𝑐𝑚′ , 𝑠𝑐𝑚′). Since agents of type 𝑚′ with scores lower than 𝑠𝑐

′
𝑚 are

assigned to authority 𝑐 or unmatched at 𝜇, a type 𝑚′ agent with score 𝑠𝑐𝑚′ − 𝜖 and
authority 𝑐 blocks the matching 𝜇. Thus, the following equations must be satisfied:

𝐴𝑚(𝑥
𝑐
𝑚, 𝑠

𝑐
𝑚) = 𝐴𝑚′(𝑥𝑐𝑚′ , 𝑠𝑐𝑚′) and 𝐴𝑚(𝑥𝑐

′
𝑚, 𝑠

𝑐′
𝑚) = 𝐴𝑚′(𝑥𝑐

′
𝑚′ , 𝑠𝑐

′
𝑚′) (977)

As the optimal APM in this setting is given by:

𝐴*
�̂�,𝑐(𝑦�̂�, 𝑠) ≡ 𝑠+ 𝑢′�̂�,𝑐(𝑦�̂�) (978)

for all �̂� ∈ {𝑚,𝑚′} and 𝑐 ∈ {𝑐, 𝑐′}, we have that:

1− 𝑥𝑐𝑚′ +
1

8

1√︀
𝑥𝑐𝑚′

= 1− 𝑥𝑐𝑚′ − 𝑥𝑐𝑚 +
1

4

1√︀
1/2− 𝑥𝑐𝑚′

(979)

and:
1− 𝑥𝑐

′
𝑚 +

1

8

1√︀
𝑥𝑐′𝑚

= 1− 𝑥𝑐
′
𝑚 − 𝑥𝑐

′
𝑚′ +

1

4

1√︀
1/2− 𝑥𝑐′𝑚

(980)

lation, so we omit it for expositional clarity.
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These equations are identical up to relabelling and so 𝑥𝑐𝑚′ = 𝑥𝑐
′
𝑚′ = 𝑥* for some

𝑥*. Thus, we need to find the solution to the following single equation to characterize
the allocation:

1− 𝑥* +
1

8

1√
𝑥*

=
1

2
+

1

4

1√︀
1/2− 𝑥*

(981)

Observe that this equation can be rewritten as the fixed point equation:

𝑥* =
1

2
+

1

8

1√
𝑥*

− 1

4

1√︀
1/2− 𝑥*

(982)

We observe that the RHS satisfies the following properties: (i) lim𝑥*→0 RHS(𝑥*) = ∞,
(ii) lim𝑥*→ 1

2
RHS(𝑥*) = −∞, and (iii) RHS′(𝑥*) < 0 for all 𝑥* ∈ (0, 1

2
). Thus, there

exists a unique solution. Moreover, we can guess-and-verify that this solution is
𝑥* = 1

4
.

In summary, if both authorities use the optimal APM, then the outcome is

𝜇(𝜃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑐 if 𝑚(𝜃) = 𝑚, 𝑠(𝜃) ∈ [1/2, 3/4) or 𝑚(𝜃) = 𝑚′, 𝑠(𝜃) ∈ [3/4, 1]

𝑐′ if 𝑚(𝜃) = 𝑚′, 𝑠(𝜃) ∈ [1/2, 3/4) or 𝑚(𝜃) = 𝑚, 𝑠(𝜃) ∈ [3/4, 1]

𝜃 otherwise

(983)

In this outcome, both authorities have an average score of 3/4 and admit measure
1/4 agents from both groups, giving them a utility of 15/16. Thus, total utilitarian
welfare is 15/8 under the decentralized outcome.

We now show that this does not attain the efficient benchmark. A necessary
condition for the (utilitarian) efficient outcome is that for 𝑐:

1

4

1√
𝑥𝑐𝑚

=
1

8

1√︀
1/2− 𝑥𝑐𝑚

(984)

and for 𝑐′:
1

4

1√︀
𝑥𝑐

′
𝑚′

=
1

8

1√︀
1/2− 𝑥𝑐

′
𝑚′

(985)

This implies that 𝑥𝑐𝑚 = 𝑥𝑐
′
𝑚′ = 4/10 and 𝑥𝑐𝑚′ = 𝑥𝑐

′
𝑚 = 1/10. In this case, the same

set of agents is admitted overall, so the score contribution to utility remains 3/4 on
average across the authorities. Total utilitarian welfare is now:

3/2 + 1/2×
√︀

4/10 + 1/4×
√︀

1/10 ≈ 1.895 > 1.875 = 15/16 (986)

Completing the proof.
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E.1.11 Proof of Theorem 12

Proof. First, we define a fictitious composite authority with utility function defined
over vectors of total scores 𝑠ℎ = {𝑠𝑐ℎ}𝑐∈𝒞, and aggregate allocation to each group
𝑥 = {𝑥𝑚}𝑚∈ℳ. To do this, we define:

�̃�({𝑥𝑚}𝑚∈ℳ) = max
{𝑥𝑚,𝑐}𝑐∈𝒞

∑︁
𝑐∈𝒞

∑︁
𝑚∈ℳ

𝑢𝑚,𝑐(𝑥𝑚,𝑐)

s.t.
∑︁
𝑐∈𝒞

𝑥𝑚,𝑐 ≤ 𝑥𝑚,
∑︁
𝑚∈ℳ

𝑥𝑚,𝑐 ≤ 𝑞𝑐, ∀𝑚 ∈ ℳ, 𝑐 ∈ 𝒞
(987)

and ˜̄𝑠ℎ =
∑︀

𝑐∈𝒞 𝑠
𝑐
ℎ. We write the utility function of this composite authority as

𝜉 (˜̄𝑠ℎ, 𝑥) = ˜̄𝑠ℎ + �̃�(𝑥) (988)

We first establish that �̃� satisfies the properties necessary to invoke Proposition
50, which establishes the optimality of the claimed APM for the fictitious authority.

Claim 14. The function �̃� is concave and partially differentiable in each argument.

Proof. First, we establish concavity. That is, for all 𝜆 ∈ [0, 1] and 𝑥, 𝑥′ ∈ R|ℳ|
+ ,

we have that �̃�(𝜆𝑥′ + (1 − 𝜆)𝑥) ≥ 𝜆�̃�(𝑥′) + (1 − 𝜆)�̃�(𝑥). Let {𝑥*𝑚,𝑐}𝑚∈ℳ,𝑐∈𝒞 and
{𝑥*′𝑚,𝑐}𝑚∈ℳ,𝑐∈𝒞 correspond to optimal values under 𝑥 and 𝑥′. Under �̃� = 𝜆𝑥′+(1−𝜆)𝑥,
we have that 𝜆𝑥*′𝑚,𝑐 + (1− 𝜆)𝑥*𝑚,𝑐 is feasible for all 𝑚 ∈ ℳ and 𝑐 ∈ 𝒞. Thus, we have
that:

�̃�(�̃�) ≥
∑︁
𝑚∈ℳ

∑︁
𝑐∈𝒞

𝑢𝑚,𝑐(𝜆𝑥
*′
𝑚,𝑐 + (1− 𝜆)𝑥*𝑚,𝑐)

≥
∑︁
𝑚∈ℳ

∑︁
𝑐∈𝒞

𝜆𝑢𝑚,𝑐(𝑥
*′
𝑚,𝑐) + (1− 𝜆)𝑢𝑚,𝑐(𝑥

*
𝑚,𝑐)

= 𝜆�̃�(𝑥′) + (1− 𝜆)�̃�(𝑥)

(989)

where the second inequality is by concavity of 𝑢𝑚,𝑐 for all 𝑚 ∈ ℳ, 𝑐 ∈ 𝒞.
Second, we establish partial differentiability in each argument. That is, for all

𝑥 ∈ R|ℳ|
++ , 𝜕

𝜕𝑥𝑚
�̃�(𝑥) = �̃�(𝑚)(𝑥) exists. This follows by Corollary 5 in Milgrom and

Segal (2002). Concretely, the domain of optimization can be taken to be a compact
and convex subset of a normed vector space – a sufficiently large cube in R|ℳ|×|𝒞|

+

equipped with the Euclidean norm, for example. The objective function does not
depend on 𝑥, and constraints are linear in 𝑥 (and therefore both continuous and
continuously differentiable). Moreover, as 𝑥 ≫ 0, there exists a {𝑥𝑚,𝑐} that satisfies
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all constraints with strict inequality.

It follows that the objective function of the composite authority satisfies Assump-
tion 18, and so Proposition 50 implies that the non-separable APM 𝐴𝑚(𝑦, 𝑠) =

ℎ−1
(︀
ℎ(𝑠) + �̃�(𝑚)(𝑦)

)︀
uniquely implements the first-best optimal allocation for the

composite authority.
It remains to establish that the quota functions implement the optimal allocation

{𝑥𝑚,𝑐} conditional on {𝑥𝑚}. Let 𝜆𝑚 be the Lagrange multiplier on the 𝑥𝑚 constraint,
𝛾𝑐 be the Lagrange multiplier on the 𝑞𝑐 constraint and 𝜅𝑚,𝑐 be the Lagrange multiplier
on the positivity constraint. Under our maintained Inada condition, we have that
𝜅𝑚,𝑐 = 0. Moreover, by Corollary 5 in Milgrom and Segal (2002), we have that
�̃�(𝑚)(𝑥) = 𝜆𝑚, �̃�𝑞𝑐(𝑥) = 𝛾𝑐, and 𝑢′𝑚,𝑐(𝑥*𝑚,𝑐) = 𝜆𝑚 + 𝛾𝑐 − 𝜅𝑚,𝑐. Hence, we obtain that:

𝑥*𝑚,𝑐 =
(︁
𝑢

′
𝑚,𝑐

)︁−1 (︀
�̃�(𝑚)(𝑥) + �̃�𝑞𝑐(𝑥)

)︀
(990)

Thus, the following profile of quota functions implements the optimal cross-sectional
allocation:

𝑄𝑚,𝑐(𝑥) =
(︁
𝑢

′
𝑚,𝑐

)︁−1 (︀
�̃�(𝑚)(𝑥) + �̃�𝑞𝑐(𝑥)

)︀
(991)

Completing the proof.
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E.2 Additional Results for the Example (Section 5.2)

E.2.1 Formal Equivalence Between Prices vs. Quantities and

Priorities vs. Quotas

The structure of the comparative advantage of priorities over quotas from Section 5.2
hints at a more formal relationship between our analysis of affirmative action policies
and Weitzman’s analysis of price and quantity regulation. In Weitzman’s model,
there is a single firm producing a quantity of a single good 𝑥 ∈ R with production
costs 𝐶(𝑥, 𝜁) and benefits 𝐵(𝑥, 𝜁 ′):

𝐶(𝑥, 𝜁) = 𝑎0(𝜁) + (𝐶 ′ + 𝑎1(𝜁))(𝑥− �̂�) +
𝐶 ′′

2
(𝑥− �̂�)2

𝐵(𝑥, 𝜁 ′) = 𝑏0(𝜁
′) + (𝐵′ + 𝑏1(𝜁

′))(𝑥− �̂�) +
𝐵′′

2
(𝑥− �̂�)2

(992)

where 𝐵′, 𝐶 ′, 𝐶 ′′ > 0, 𝐵′′ < 0, and 𝜁 and 𝜁 ′ are random variables. The regulator can
either set a price that the firm must charge (after which the firm chooses its optimal
production quantity) or mandate the production of a given quantity. The comparative
advantage of prices over quantities ∆Weitzman is then defined as the difference between
expected benefits net of costs under the optimal price regime minus the corresponding
net benefits under the optimal quantity regime. This comparative advantage is given
by:

∆Weitzman =
𝐶 ′′−1

2

(︀
1 + 𝐶 ′′−1𝐵′′)︀Var[𝑎1(𝜁)] (993)

The intuition for this formula is that when benefits are more curved than costs
|𝐵′′| > 𝐶 ′′, reducing variability in production is more valuable than the gain of having
producers minimize costs. Thus, quantities are preferred. On the other hand, when
costs are more curved than benefits, prices are preferred as there is greater production
when producers have the lowest marginal costs of production.

These trade-offs are, in a certain sense, formally analogous to those that we
have highlighted between priorities and quotas. In particular, under the mapping
𝐶 ′′−1 ↦→ 𝜅, 𝐵′′ ↦→ −𝛾𝛽, Var[𝜔] ↦→ Var[𝑎1(𝜁)], we have that ∆Weitzman = ∆. The
intuition for this is that 𝐶 ′′−1 in the Weitzman framework determines how sensitive
production is to changes in marginal cost, while 𝜅 in our framework determines how
sensitive the admitted measure of minority students is to the relative scores. More-
over, 𝐵′′ corresponds to curvature in the benefits of production while 𝛾𝛽 corresponds
to curvature in the benefits of admitting more minority students. Finally, Var[𝑎1(𝜁)]
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corresponds to the authority’s uncertainty in the level of marginal costs of production
while Var[𝜔] corresponds to the authority’s uncertainty regarding the marginal cost
of admitting more minority students in terms of lost total score. Thus, the positive
selection effect whereby priorities admit more minority students in the states of the
world where they score highest is directly analogous to the effect that price regulation
gives rise to the greatest production in states where the firm’s marginal cost is low-
est. Moreover, the guarantee effect whereby quotas prevent variation in the measure
of admitted minority students across states of the world is analogous to the ability
of quantity regulation to stabilize the level of production. Importantly, our results
therefore allow one to apply established price-theoretic intuition for the benefits of
price vs quantity choice to matching markets without an explicit price mechanism.

E.2.2 Beyond Affirmative Action: Medical Resource Alloca-

tion

The lessons of this paper apply not only to affirmative action in academic admissions,
but also more broadly to settings in which centralized authorities must allocate re-
sources to various groups. One prominent such context is the allocation of medical
resources during the Covid-19 pandemic. An important issue faced by hospitals is
how to prioritize health workers (doctors, nurses and other staff) in the receipt of
scarce medical resources: hospitals wish to both treat patients according to clinical
need and ensure the health of the frontline workers needed to fight the pandemic. To
map this setting to our example, suppose that the score 𝑠 is an index of clinical need
for a scarce medical resource available in amount 𝑞, the measure of frontline health
workers is 𝜅, and 𝜔 indexes the level of clinical need in the patients currently (or soon
to be) treated by the hospital, which is unknown. The risk aversion of the authority
𝛾𝛽 corresponds to both a fear of not treating sufficiently many frontline workers and
excluding too many clinically needy members of the general population.

In practice, both priority systems and quota policies have been used, as detailed
extensively by Pathak, Sönmez, Unver, and Yenmez (2021).7 The primary concern
that has been voiced is that if a priority system is used, some groups (or character-
istics) may be completely shut out of allocation of the scarce resource and that this
is unethical, so quotas should be preferred. Our framework can be used to under-
stand this argument: if there is an unusually high draw of 𝜔, a priority system would
lead to the allocation of very few resources to frontline workers, and vice-versa. Our

7Some other papers that study the allocation of scarce medical resources are Akbarpour, Budish,
Dworczak, and Kominers (2021), Grigoryan (2021) and Dur, Thayer, and Phan (2022).

577



Proposition 16 implies that if the authority is very averse to such outcomes (𝛾𝛽 is
high), quotas will be preferred and for exactly the reasons suggested. However, we
also highlight a fundamental benefit of priority systems in inducing positive selection
in allocation: when 𝜔 is high, it is beneficial that fewer resources go to the less sick
medical workers and more to the relatively sicker general population. More generally,
we argue that an adaptive priority mechanism that awards frontline workers a score
subsidy that depends on the number of more clinically needy frontline workers could
further improve outcomes.

An important additional consideration in this context arises if the hospital or
authority must select a regime (priorities or quotas) before it understands the clinical
need of its frontline workers 𝜅, after which it can decide exactly how to prioritize
these workers or set quotas, but before ultimate demand for medical resources 𝜔 is
known. It follows from Proposition 16 that the comparative advantage of priorities
over quotas is:

E[∆] =
1

2

(︀
E[𝜅]− (Var[𝜅] + E2[𝜅])𝛾𝛽

)︀
Var[𝜔] (994)

Thus, an increase in uncertainty Var[𝜅] regarding the need of frontline workers leads
to a greater preference for quotas. This highlights a further advantage of quotas
in settings where a clinical framework must be adopted in the face of uncertainty
regarding the clinical needs of frontline workers, as was the case at the onset of the
Covid-19 pandemic.

E.2.3 Optimal Precedence Orders

Thus far we have modelled quotas by first allocating minority students to quota
slots and then allocating all remaining students according to the underlying score.
However, we could have instead allocated 𝑞 −𝑄 places to all agents according to the
underlying score and then allocated the remaining 𝑄 places to minority students. The
order in which quotas are processed is called the precedence order in the matching
literature and their importance for driving outcomes has been the subject of a growing
literature (see e.g., Dur, Kominers, Pathak, and Sönmez, 2018; Dur, Pathak, and
Sönmez, 2020; Pathak, Rees-Jones, and Sönmez, 2020). Our framework can be used
to understand which precedence order is optimal, a question that has not yet been
addressed.

In this example, the same factors that determine whether one should prefer prior-
ities or quotas determine whether one should prefer processing quotas second or first.
By virtue of uniformity of scores, it can be shown in the relevant parameter range that
a priority subsidy of 𝛼 is equivalent to a quota policy of 𝜅𝛼 when quotas are processed

578



second. Thus, the comparative advantage of priorities over quotas is exactly equal
to the comparative advantage of processing quotas second over first. The intuition
is analogous: processing quotas second allows for positive selection while processing
quotas first fixes the number of admitted minority students. Thus, on the one hand,
when the authority is more risk-averse, they should process quota slots first to reduce
the variability in the admitted measure of minority students. On the other hand,
when they are less risk-averse, they should process quotas second to take advantage
of the positive selection effect such policies induce.

Corollary 17. The optimal quota-second policy achieves the same value as the op-
timal priority policy; quota-second policies are preferred to quota-first policies if and
only if 1

𝜅
≥ 𝛾𝛽.

Proof. We show that a quota-second policy 𝑄 is equivalent to a priority subsidy
of 𝛼(𝑄) = 𝑄

𝜅
. A quota-second policy admits the highest-scoring 𝑥 = 𝜅(1 − 𝜔) + 𝑄

minority students, floored by zero and capped by min{𝜅, 𝑞}. A priority policy 𝛼(𝑄) =
𝑄
𝜅

admits the highest-scoring 𝑥 = 𝜅(1+𝛼(𝑄)−𝜔) = 𝜅(1−𝜔)+𝑄 minority students,
floored by zero and capped by min{𝜅, 𝑞}. Thus, state-by-state, quota-second policy
𝑄 and priority subsidy 𝛼(𝑄) = 𝑄

𝜅
yield the same allocation. The claims then follow

from Proposition 16.

We emphasize that this equivalence is a result of the uniform distribution of scores
and merely illustrates the similarity between priority policies and processing quotas
second. This result does not hold in the more general model we study in the remainder
of the paper. Indeed, in Theorem 8, we show that for any quota policy to be optimal
in the presence of uncertainty, it must process quotas first.
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E.3 Extension of the Main Results to Discrete Economies
In this Appendix, we extend the results in the main text to discrete economies and
thereby establish that our analysis generalizes from the continuum framework. Con-
cretely, we show that appropriate analogs of Theorems 7, 8, 11 and Proposition 18
carry over to discrete economies. As discrete economies do not necessarily admit a
unique stable matching, Theorems 9 and 10 do not generalize. As Theorem 12 relies
on convex optimization techniques, it also does not generalize as written to a discrete
setting.

E.3.1 Primitives

An authority has 𝑞 resources to allocate. At each state 𝜔, the economy the author-
ity faces corresponds to agents Θ𝜔 = {𝜃1, . . . , 𝜃𝑁(𝜔)} where 𝑞 ≤ |𝑁(𝜔)|. As in the
continuum case, 𝜃 ∈ [0, 1] × ℳ denotes the type of an agent who has score 𝑠 and
belongs to group 𝑚. We denote the score and group of any type 𝜃 by 𝑠(𝜃) and 𝑚(𝜃),
respectively. For simplicity, we assume that no two agents have the same score at any
𝜔, formally, if {𝜃, 𝜃′} ⊆ Θ𝜔, then 𝑠(𝜃) ̸= 𝑠(𝜃′).

An allocation 𝜇 : Θ → {0, 1} specifies for any type 𝜃 ∈ Θ whether they are
assigned to the resource. The set of possible allocations is 𝒰 and Ω is the set of all
possible economies. An allocation is feasible if it allocates no more than measure 𝑞 of
the resource. A mechanism is a function 𝜑 : Ω → 𝒰 that returns a feasible allocation
for any possible Θ𝜔.

The authority believes 𝜔 has distribution Λ ∈ ∆(Ω). 𝑥(𝜇, 𝜔) = {𝑥𝑚(𝜇, 𝜔)}𝑚∈ℳ

denotes the number of agents of each group allocated the resource at matching 𝜇,
while 𝑠ℎ(𝜇, 𝜔) =

∑︀
𝜃∈Θ𝜔 𝜇(𝜃)ℎ(𝑠(𝜃)) denotes the utility the authority derives from

scores at 𝜇. The preferences of the authority are given by 𝜉 : R|ℳ|+1 → R:

𝜉 (𝑠ℎ, 𝑥) ≡ 𝑠ℎ +
∑︁
𝑚∈ℳ

𝑢𝑚(𝑥𝑚) (995)

where ℎ is continuous and strictly increasing and 𝑢𝑚 is concave for all 𝑚 ∈ ℳ.

E.3.2 Optimal Mechanisms in Discrete Economies

We adapt our definition of the Adaptive Priority Mechanisms to the discrete setting.
An adaptive priority policy 𝐴 = {𝐴𝑚}𝑚∈ℳ, where 𝐴𝑚 : R× [0, 1] → R. The adaptive
priority policy assigns priority 𝐴𝑚(𝑦𝑚, 𝑠) to an agent with score 𝑠 in group 𝑚 when
𝑦𝑚 of agents of the same group is allocated the object. Given an adaptive priority
policy, an APM implements allocations in the following way:
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Definition 23 (Adaptive Priority Mechanism). An adaptive priority mechanism, in-
duced by an adaptive priority 𝐴, implements an allocation 𝜇 in state 𝜔 if the following
are satisfied:

1. Allocations are in order of priorities: 𝜇(𝜃) = 1 if and only if

(i) for all 𝜃′ with 𝑚(𝜃′) ̸= 𝑚(𝜃) and 𝜇(𝜃′) = 0,

𝐴𝑚(𝜃)(𝑥𝑚(𝜃)(𝜇, 𝜔), 𝑠(𝜃)) ≥ 𝐴𝑚(𝜃′)(𝑥𝑚(𝜃′)(𝜇, 𝜔) + 1, 𝑠(𝜃′)) (996)

(ii) for all 𝜃′ with 𝑚(𝜃′) = 𝑚(𝜃) and 𝜇(𝜃′) = 0, 𝑠(𝜃) > 𝑠(𝜃′)

2. The resource is fully allocated: ∑︁
𝑚∈ℳ

𝑥𝑚(𝜇, 𝜔) = 𝑞 (997)

Definition 23 makes two modifications relative to the continuum model. First, the
measures of agents from each group are replaced by the number of agents from each
group. Second, when 𝑚(𝜃) ̸= 𝑚(𝜃′), the adaptive priority of 𝜃′ is now evaluated in the
case where an extra agent from 𝑚(𝜃′) is assigned the resource.8 Unlike the continuum
case, it is possible for a monotone APM to implement two different allocations, since
it can assign the same priority to two different agents, which could happen only for
a zero-measure set of agents in the continuum model.

Define 𝐴*
𝑚(𝑦𝑚, 𝑠) ≡ ℎ(𝑠)+𝑢𝑚(𝑦𝑚)−𝑢𝑚(𝑦𝑚−1), which will turn out to be the opti-

mal APM. We first show that 𝐴* is monotone, and all allocations that 𝐴* implements
give the authority the same utility.

Lemma 22. 𝐴* is monotone. Moreover, if 𝐴* implements 𝜇 and 𝜇′ ̸= 𝜇 in state 𝜔,
then 𝜉(𝜇, 𝜔) = 𝜉(𝜇′, 𝜔).

Proof. Monotonicity is immediate from the definition of 𝐴* and concavity of 𝑢𝑚.
Assume that 𝐴* implements two different allocations, 𝜇 and 𝜇′ at 𝜔. Let 𝑥𝑙 and 𝑥′𝑙
denote the number of group 𝑙 ∈ ℳ agents assigned the resource at 𝜇 and 𝜇′. Since
𝐴* is monotone and 𝜇 ̸= 𝜇′, there are 𝑚 and 𝑛 such that 𝑥𝑚 > 𝑥′𝑚 and 𝑥′𝑛 > 𝑥𝑛. Let
𝜃𝑙 and 𝜃′𝑙 denote the lowest-scoring type 𝑙 agent assigned the resource at 𝜇 and 𝜇′,
respectively. Similarly, let 𝜃𝑙 and 𝜃′𝑙 denote the highest-scoring type 𝑙 agents who is
not assigned the resource at 𝜇 and 𝜇′, respectively. Let �̃� denote the matching given

8This was not the case in the continuum model since all types of agents have measure 0 and
therefore replacing 𝜃 with 𝜃′ has no effect the evaluation of diversity.
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by: �̃�(𝜃) = 𝜇(𝜃) if 𝜃 ̸∈ {𝜃𝑚, 𝜃′𝑛}, �̃�(𝜃𝑚) = 0 while 𝜇(𝜃𝑛) = 1. �̃� starts with 𝜇, takes the
resource away from the lowest-scoring group 𝑚 agent who has it, 𝜃𝑚, and allocates it
to the highest-scoring group 𝑛 agent who does not have it, 𝜃𝑛. Note that since 𝐴* is
monotone, from 𝑥𝑚 > 𝑥′𝑚 and 𝑥′𝑛 > 𝑥𝑛, under 𝜇′, 𝜃𝑛 is already allocated the resource
while 𝜃𝑚 is not.

Claim 15. �̃� is implemented under 𝐴* in state 𝜔 and 𝜉(𝜇, 𝜔) = 𝜉(�̃�, 𝜔).

Proof. Since𝐴* implements 𝜇 and 𝜇(𝜃𝑛) = 0, we have that𝐴*
𝑚(𝑠(𝜃𝑚), 𝑥𝑚) ≥ 𝐴*

𝑛(𝑠(𝜃𝑛), 𝑥𝑛+

1). Conversely, since𝐴* also implements 𝜇′ and 𝜇′(𝜃′𝑚) = 0, we have that𝐴*
𝑛(𝑠(𝜃

′
𝑛), 𝑥

′
𝑛) ≥

𝐴*
𝑚(𝑠(𝜃

′
𝑚), 𝑥

′
𝑚+1). Moreover, since 𝑥𝑚 > 𝑥′𝑚 and 𝑥′𝑛 > 𝑥𝑛, we have that 𝑠(𝜃′𝑚) ≥ 𝑠(𝜃𝑚)

and 𝑠(𝜃𝑛) ≥ 𝑠(𝜃′𝑛) . From this, it follows that:

𝐴*
𝑛(𝑠(𝜃𝑛), 𝑥𝑛 + 1) ≥ 𝐴*

𝑛(𝑠(𝜃
′
𝑛), 𝑥𝑛 + 1) ≥ 𝐴*

𝑛(𝑠(𝜃
′
𝑛), 𝑥

′
𝑛)

≥ 𝐴*
𝑚(𝑠(𝜃

′
𝑚), 𝑥

′
𝑚 + 1) ≥ 𝐴*

𝑚(𝑠(𝜃
′
𝑚), 𝑥𝑚) ≥ 𝐴*

𝑚(𝑠(𝜃𝑚), 𝑥𝑚)
(998)

where the first inequality holds as 𝑠(𝜃𝑛) ≥ 𝑠(𝜃′𝑛), the second inequality holds as
𝑥′𝑛 > 𝑥𝑛 (which implies 𝑥′𝑛 ≥ 𝑥𝑛+1) and 𝐴*

𝑛 is decreasing in its second argument, the
third inequality holds as 𝐴* also implements 𝜇′ (as stated above), the fourth inequality
holds as 𝑥′𝑚 < 𝑥𝑚 (which implies 𝑥′𝑚 + 1 ≤ 𝑥𝑚) and 𝐴*

𝑛 is decreasing in its second
argument, and the fifth inequality holds as 𝑠(𝜃′𝑚) ≥ 𝑠(𝜃𝑚). Thus, 𝐴*

𝑚(𝑠(𝜃𝑚), 𝑥𝑚) ≤
𝐴*
𝑛(𝑠(𝜃𝑛), 𝑥𝑛 + 1). This shows that 𝐴*

𝑚(𝑠(𝜃𝑚), 𝑥𝑚) = 𝐴*
𝑛(𝑠(𝜃𝑛), 𝑥𝑛 + 1), which implies

that �̃� is implemented under 𝐴* and 𝜉(𝜇, 𝜔) = 𝜉(�̃�, 𝜔).

Note that Claim 15 shows that starting from a matching 𝜇 which is implemented
by 𝐴*, taking away the object from a particular agent who does not have it in 𝜇′ and
allocating it to a particular agent who has it in 𝜇′, we arrive at another matching �̃�
that is implemented under 𝐴* and gives the authority the same payoff. Therefore,
starting from any 𝜇 that is implemented by 𝐴* and repeating this construction (by
replacing 𝜇 at step 𝑖 with �̃� at step 𝑖 − 1) where at each step we take the resource
from an agent who is not allocated the resource at 𝜇′ and assign it to an agent who
is, in finitely many steps we arrive at 𝜇′. Since the payoff stays the same at each step,
𝜇′ gives the authority the same payoff as 𝜇.

Theorem 16. If 𝜇 is implemented by 𝐴*, then 𝜇 is an optimal matching.

Proof. First, note that an optimal matching exists since the economy (and therefore
the set of matchings) is finite. We first show the following lemma.

582



Lemma 23. If 𝜇 is not implemented by 𝐴*, then there exists 𝜇′ that gives the authority
a strictly higher payoff.

Proof. If 𝜇 is not implemented by 𝐴*, then there exists 𝜃 and 𝜃′ such that 𝜇(𝜃) = 0,
𝜇(𝜃′) = 1 and either 𝑚(𝜃) = 𝑚(𝜃′) and 𝑠(𝜃) > 𝑠(𝜃′) or 𝑚(𝜃) ̸= 𝑚(𝜃′) and

ℎ(𝑠(𝜃)) + 𝑢𝑚(𝜃)(𝑥𝑚(𝜃)(𝜇) + 1)− 𝑢𝑚(𝜃)(𝑥𝑚(𝜃)(𝜇)) >

ℎ(𝑠(𝜃′)) + 𝑢𝑚(𝜃′)(𝑥𝑚(𝜃′)(𝜇))− 𝑢𝑚(𝜃′)(𝑥𝑚(𝜃′)(𝜇)− 1)
(999)

However, in both cases, a 𝜇′ that allocates the resource to 𝜃 instead of 𝜃′ (while not
changing any other agent’s matching) strictly improves the utility of the authority.

Lemma 23 proves that the optimal matching cannot be a matching that is not
implemented by 𝐴*. Since the optimal matching exists, then it is implemented by
𝐴*. From Lemma 22, all matchings implemented by 𝐴* give the authority the same
payoff, proving the result.

Note that Lemma 22 and Theorem 16 imply that any mechanism that is defined
by an arbitrary singleton selection from the set of matchings that 𝐴* implements
would achieve the optimal matching under any 𝜔 and therefore would be first-best
optimal.

E.3.3 Priorities vs. Quotas in Discrete Economies

Now, we define Priority and Quota Mechanisms in the discrete model and extend our
(sub)optimality results to discrete economies.

A priority policy 𝑃 : Θ → [0, 1] awards an agent of type 𝜃 ∈ Θ a priority 𝑃 (𝜃).

Definition 24 (Priority Mechanisms). A priority mechanism, induced by a priority
policy 𝑃 , allocates the resource in order of priorities until measure 𝑞 has been allocated,
with ties broken uniformly and at random.

A quota policy is given by (𝑄,𝐷), where 𝑄 = {𝑄𝑚}𝑚∈ℳ and 𝐷 : ℳ ∪ {𝑅} →
{1, 2, . . . , |ℳ| + 1} is a bijection. The vector 𝑄 reserves 𝑄𝑚 objects for agents in
group 𝑚, with residual capacity 𝑄𝑅 = 𝑞 −∑︀𝑚∈ℳ𝑄𝑚 open to agents of all types.
The bijection 𝐷 (often called the precedence order) determines the order in which
the groups are processed.

Definition 25 (Quota Mechanisms). A quota mechanism, induced by a quota policy
(𝑄,𝐷), proceeds by allocating 𝑄𝐷−1(𝑘) objects to agents from group 𝐷−1(𝑘) (if there
are sufficient agents from this group) to the resource in ascending order of 𝑘, and in
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descending order of score within each 𝑘. If there are insufficiently many agents of any
group to fill the quota, the residual capacity is allocated to a final round in which all
agents are eligible.

We also extend the definitions of risk-neutrality and high risk aversion to the
discrete setting. Authority preferences are non-trivial if for all 𝑚,𝑛 ∈ ℳ:

ℎ(1) + (𝑢𝑛(1)− 𝑢𝑛(0)) > ℎ(0) + (𝑢𝑚(𝑞)− 𝑢𝑚(𝑞 − 1)) (1000)

The authority is risk-neutral if for all 𝑚 ∈ ℳ, 𝑢𝑚(𝑥) = 𝑐𝑚𝑥 for some 𝑐𝑚 ≥ 0

and all 𝑥 ∈ {0, 1, . . . , 𝑞}. Define �̃� and ℎ̃ as follows: there exists 𝑥tar
𝑚 such that

�̃�𝑚(𝑥𝑚 + 1)− �̃�𝑚(𝑥𝑚) = 0 for all 𝑥𝑚 ≥ 𝑥tar
𝑚 and �̃�𝑚(𝑥𝑚 + 1)− �̃�𝑚(𝑥𝑚) ≥ ℎ(1)− ℎ(0)

for 𝑥𝑚 < 𝑥tar
𝑚 and where

∑︀
𝑚∈ℳ 𝑥tar

𝑚 ≤ 𝑞. Let 𝜉 denote the preferences of the authority
under �̃� and ℎ̃. The authority with preferences 𝜉 is extremely risk-averse if the set of
optimal allocations under 𝜉 and 𝜉 coincide for all 𝜔.

Theorem 17. The following statements are true:

1. If there is no uncertainty, then there exist first-best priority and quota mecha-
nisms.

2. Suppose that the authority has non-trivial preferences. There exists a first-best
priority mechanism if and only if the authority is risk-neutral. This mechanism
is given by 𝑃 (𝑠,𝑚) = 𝑠+ 𝑢𝑚(1)− 𝑢𝑚(0).

3. Suppose that the authority has non-trivial preferences. There exists a first-best
quota mechanism if and only if the authority is extremely risk-averse. This
mechanism is given by 𝑄𝑚 = 𝑥tar

𝑚 and 𝐷(𝑅) = |ℳ|+ 1.

Proof. Part (1):

Claim 16. Let 𝜇 denote an optimal allocation at 𝜔. Then 𝜇 is a cutoff matching.

Proof. If 𝜇 is not a cutoff matching, then there exists (𝑠,𝑚) and (𝑠′,𝑚) where
𝜇(𝑠,𝑚) = 1, 𝜇(𝑠′,𝑚) = 0 and 𝑠′ > 𝑠. Define 𝜇′ by setting: 𝜇′(𝑠,𝑚) = 0, 𝜇(𝑠′,𝑚) = 1

and 𝜇(𝑠, �̃�) = 𝜇(𝑠, �̃�) for all (𝑠, �̃�) such that (𝑠, �̃�) ̸∈ {(𝑠,𝑚), (𝑠′,𝑚)}. Observe
that, 𝜉(𝜇′, 𝜔)− 𝜉(𝜇, 𝜔) = 𝑠′ − 𝑠 > 0. Therefore, 𝜇 is not an optimal allocation, which
is a contradiction.

Let 𝜇 denote an optimal allocation under 𝜔, {𝑠𝑚(𝜇, 𝜔)}𝑚∈ℳ denote the cutoff
scores at 𝜇 and 𝑠* denote an arbitrary number. Any priority policy that assigns
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𝑃 (𝑠𝑚(𝜔),𝑚) = 𝑠* for all 𝑚 ∈ ℳ and is strictly increasing in the first argument
allocates the resource to any agent who has a higher score than the cutoff for their
group and implements the optimal allocation.

Let 𝑥𝑚 denote the number of group 𝑚 agents who are allocated the resource at
an optimal allocation under 𝜔. Then a quota policy that sets 𝑄𝑚 = 𝑥𝑚 allocates
the resource to any agent who has a higher score than the cutoff for their group and
implements the optimal allocation.

Part (2): The if part of the result follows from observing the priority policy
𝑃 (𝑠,𝑚) = 𝑠+𝑢𝑚(1)−𝑢𝑚(0) is equivalent to the optimal APM 𝐴* under risk neutrality
since 𝑢𝑚(1) − 𝑢𝑚(0) = 𝑢𝑚(𝑦𝑚 + 1) − 𝑢𝑚(𝑦𝑚) for all 𝑚, 𝑦𝑚. Thus, by Theorem 16,
𝑃 (𝑠,𝑚) = 𝑠+ 𝑢𝑚(1)− 𝑢𝑚(0) is first-best optimal.

To prove the only if part, assume risk neutrality does not hold and let 𝑚 denote
a group such that 𝑢𝑚 does not satisfy risk neutrality. For a contradiction, assume
that 𝑃 is an optimal priority policy. First, we observe that 𝑃 (𝑠,𝑚) must be strictly
increasing in 𝑠 for all 𝑚. To see why, assume 𝑃 (𝑠,𝑚) = 𝑃 (𝑠′,𝑚) where 𝑠 > 𝑠′ and
just consider an 𝜔 where there are 𝑞 − 1 group 𝑚 agents with scores strictly higher
than 𝑠, and no other agents. Clearly, the optimal allocation would be to allocate the
resource to all agents but (𝑠′,𝑚), while 𝑃 allocates the resource to (𝑠′,𝑚) with at
least probability 1/2.

Second, let 𝑚 denote a group such that 𝑢𝑚 does not satisfy risk neutrality. Take
another arbitrary group 𝑛. We have the following:

Claim 17. Either (i) there exists 𝑡 < 𝑞, 𝑠𝑚, 𝑠𝑛 such that

𝑢𝑚(𝑡+ 1)− 𝑢𝑚(𝑡) + ℎ(𝑠𝑚) = 𝑢𝑛(𝑞 − 𝑡)− 𝑢𝑛(𝑞 − 𝑡− 1) + ℎ(𝑠𝑛) (1001)

or (ii) there exists 𝑡 < 𝑞 such that

𝑢𝑚(𝑡+ 1)− 𝑢𝑚(𝑡) + ℎ(1) < 𝑢𝑛(𝑞 − 𝑡)− 𝑢𝑛(𝑞 − 𝑡− 1) + ℎ(0) (1002)

𝑢𝑚(𝑡)− 𝑢𝑚(𝑡− 1) + ℎ(0) > 𝑢𝑛(𝑞 − 𝑡+ 1)− 𝑢𝑛(𝑞 − 𝑡) + ℎ(1) (1003)

Proof. From non-triviality, we know that 𝑢𝑚(1)−𝑢𝑚(0)+ℎ(1) > 𝑢𝑛(𝑞)−𝑢𝑛(𝑞− 1)+

ℎ(0) and 𝑢𝑛(1)−𝑢𝑛(0)+ℎ(1) > 𝑢𝑚(𝑞)−𝑢𝑚(𝑞−1)+ℎ(0). The result then follows from
the fact that ℎ is continuous and strictly increasing and 𝑢𝑚 and 𝑢𝑛 are concave.

We first prove the result under case (ii). Fix two agents with scores 𝑠𝑚 ∈ (0, 1),
who belong to group 𝑚 and 𝑠𝑛 ∈ (0, 1), who belong to group 𝑛. Assume that there are
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𝑡− 1 group 𝑚 agents and 𝑞 − 𝑡 group 𝑛 agents with higher scores than max{𝑠𝑛, 𝑠𝑚},
so a total of 𝑡 group 𝑚 agents and 𝑞 − 𝑡 + 1 group 𝑛 agents. Note that in this case,
only one agent will not be allocated the resource in the optimal allocation, and that
would be either (𝑠𝑚,𝑚) or (𝑠𝑛, 𝑛). From equation 1003, (𝑠𝑚,𝑚) is more preferred
than (𝑠𝑛, 𝑛) and therefore it must be that 𝑃 (𝑠𝑛, 𝑛) < 𝑃 (𝑠𝑚,𝑚), as otherwise 𝑃 would
not be optimal. Next, assume that there are 𝑡 group 𝑚 agents and 𝑞 − 𝑡 − 1 group
𝑛 agents with higher scores than max{𝑠𝑛, 𝑠𝑚}. From equation 1002, (𝑠𝑛, 𝑛) is more
preferred than (𝑠𝑚,𝑚) and therefore it must be that 𝑃 (𝑠𝑚,𝑚) < 𝑃 (𝑠𝑛, 𝑛), which is a
contradiction.

We now prove the result under case (i).

Claim 18. In case (i), any optimal priority policy 𝑃 must satisfy 𝑃 (𝑠𝑚 + 𝜖,𝑚) >

𝑃 (𝑠𝑛, 𝑛) for all 𝜖 > 0 and 𝑃 (𝑠𝑚 − 𝜖,𝑚) < 𝑃 (𝑠𝑛, 𝑛) for all 𝜖 > 0

Proof. From Equation 1001, we see that when there are 𝑡 group 𝑚 agents and 𝑞−𝑡−1

group 𝑛 agents with higher scores, (𝑠𝑚 + 𝜖,𝑚) is strictly preferred to (𝑠𝑛, 𝑛), which
is strictly preferred to (𝑠𝑚 − 𝜖,𝑚).

Since 𝑢𝑚 is not linear, there exists an 𝑙 such that 𝑢𝑚(𝑙 + 1) − 𝑢𝑚(𝑙) < 𝑢𝑚(𝑙) −
𝑢𝑚(𝑙 − 1). There are two possibilities: 𝑙 ≤ 𝑡 or 𝑙 > 𝑡. First, suppose that 𝑙 ≤ 𝑡. We
have that:

𝑢𝑚(𝑙)−𝑢𝑚(𝑙−1)+ℎ(𝑠𝑚) > 𝑢𝑚(𝑙+1)−𝑢𝑚(𝑙)+ℎ(𝑠𝑚) ≥ 𝑢𝑛(𝑞− 𝑙)−𝑢𝑛(𝑞− 𝑙+1)+ℎ(𝑠𝑛)

(1004)
where the first inequality follows from 𝑢𝑚(𝑙+1)− 𝑢𝑚(𝑙) < 𝑢𝑚(𝑙)− 𝑢𝑚(𝑙− 1) and the
second inequality follows as 𝑢𝑚(𝑡+1)−𝑢𝑚(𝑡)+ℎ(𝑠𝑚) = 𝑢𝑛(𝑞−𝑡)−𝑢𝑛(𝑞−𝑡−1)+ℎ(𝑠𝑛),
𝑢𝑚 and 𝑢𝑛 are concave, and 𝑙 ≤ 𝑡. Thus, for sufficiently small 𝜖 > 0, we have that:

𝑢𝑚(𝑙)− 𝑢𝑚(𝑙 − 1) + ℎ(𝑠𝑚 − 𝜖) > 𝑢𝑛(𝑞 − 𝑙)− 𝑢𝑛(𝑞 − 𝑙 + 1) + ℎ(𝑠𝑛) (1005)

Given this inequality, we see that when there are 𝑙 − 1 group 𝑚 agents and 𝑞 − 𝑙

group 𝑛 agents with higher scores, (𝑠𝑚 − 𝜖,𝑚) is strictly preferred to (𝑠𝑛, 𝑛). Thus,
to implement the optimal allocation, it must be that 𝑃 (𝑠𝑚− 𝜖,𝑚) ≥ 𝑃 (𝑠𝑛, 𝑛), which
is a contradiction to Claim 18.

Second, suppose that 𝑙 > 𝑡. We know that:

𝑢𝑚(𝑡+ 1)− 𝑢𝑚(𝑡) + ℎ(𝑠𝑚) = 𝑢𝑛(𝑞 − 𝑡)− 𝑢𝑛(𝑞 − 𝑡− 1) + ℎ(𝑠𝑛) (1006)
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As 𝑙 > 𝑡, from concavity of 𝑢𝑚 and 𝑢𝑛,

𝑢𝑚(𝑙)− 𝑢𝑚(𝑙 − 1) + ℎ(𝑠𝑚) ≤ 𝑢𝑛(𝑞 − 𝑙 + 1)− 𝑢𝑛(𝑞 − 𝑙) + ℎ(𝑠𝑛) (1007)

From concavity of 𝑢𝑛 and 𝑢𝑚:

𝑢𝑚(𝑙 + 1)− 𝑢𝑚(𝑙) + ℎ(𝑠𝑚) < 𝑢𝑛(𝑞 − 𝑙)− 𝑢𝑛(𝑞 − 𝑙 − 1) + ℎ(𝑠𝑛) (1008)

Thus, for sufficiently small 𝜖 > 0, we have that:

𝑢𝑚(𝑙 + 1)− 𝑢𝑚(𝑙) + ℎ(𝑠𝑚 + 𝜖) < 𝑢𝑛(𝑞 − 𝑙)− 𝑢𝑛(𝑞 − 𝑙 − 1) + ℎ(𝑠𝑛) (1009)

Given this inequality, we see that when there are 𝑙 group 𝑚 agents and 𝑞 − 𝑙 − 1

group 𝑛 agents with higher scores, (𝑠𝑛, 𝑛) is strictly preferred to (𝑠𝑚 + 𝜖,𝑚). Thus,
to implement the optimal allocation, it must be that 𝑃 (𝑠𝑚 + 𝜖,𝑚) ≤ 𝑃 (𝑠𝑛, 𝑛), which
is a contradiction to Claim 18.

Part (3): To prove the if part, fix an 𝜔 and let 𝜇* denote the optimal allocation
under 𝜔. Let 𝑥*𝑚 denote the number of group 𝑚 agents allocated the resource at 𝜇*

and 𝑥𝑚(𝜔) denote the total number of group 𝑚 agents under 𝜔.

Claim 19. If the authority is extremely risk-averse, then 𝑥*𝑚 ≥ min{𝑥𝑚(𝜔), 𝑥𝑡𝑎𝑟𝑚 }

Proof. Assume for a contradiction this is not the case. Then 𝑥*𝑚 < 𝑥𝑚(𝜔) and 𝑥*𝑚 <

𝑥𝑡𝑎𝑟𝑚 . Since
∑︀

𝑚∈ℳ 𝑥𝑡𝑎𝑟𝑚 ≤ 𝑞 and 𝑥*𝑚 < 𝑥𝑡𝑎𝑟𝑚 , there exists 𝑛 ∈ ℳ such that 𝑥*𝑛 > 𝑥𝑡𝑎𝑟𝑛 .
Let 𝑠𝑛 denote the score of the lowest-scoring group 𝑛 agent who is allocated the
resource, and let 𝑠𝑚 denote the score of any group 𝑚 agent who is not allocated the
resource, which exists as 𝑥*𝑚 < 𝑥𝑚(𝜔). Since the authority is extremely risk-averse,
we have the following:

ℎ(𝑠𝑚) + 𝑢𝑚(𝑥
*
𝑚 + 1)− 𝑢𝑚(𝑥

*
𝑚) > ℎ(𝑠𝑛)− 𝑢𝑛(𝑥

*
𝑛) + 𝑢𝑚(𝑥

*
𝑛 − 1) (1010)

However, this contradicts the optimality of 𝜇* and proves the claim.

Claim 20. If the authority is extremely risk-averse, 𝑥*𝑚 > 𝑥𝑡𝑎𝑟𝑚 and 𝑥*𝑛 > 𝑥𝑡𝑎𝑟𝑛 ,
𝜇*(𝑠,𝑚) = 0 and 𝜇*(𝑠′, 𝑛) = 1, then 𝑠′ > 𝑠.

Proof. Assume for a contradiction that 𝑠 > 𝑠′.9 The difference in the utility of the

9Remember that 𝑠′ = 𝑠 was ruled out by assumption.
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authority when allocating the resource to (𝑠,𝑚) rather than (𝑠′, 𝑛) is given by

ℎ(𝑠)+𝑢𝑚(𝑥
*
𝑚+1)−𝑢𝑚(𝑥*𝑚)−(ℎ(𝑠′)−𝑢𝑛(𝑥*𝑛)+𝑢𝑚(𝑥*𝑛−1)) = ℎ(𝑠)−ℎ(𝑠′) > 0 (1011)

which is a contradiction to optimality of 𝜇*.

The previous two claims show that under any 𝜔, the optimal allocation admits
(i) the highest-scoring 𝑥𝑡𝑎𝑟𝑚 agents from each group (provided that they exist) and (ii)
highest-scoring agents who are not in (i), until the capacity is exhausted. Clearly, the
quota policy 𝑄𝑚 = 𝑥tar

𝑚 and 𝐷(𝑅) = |ℳ|+ 1 implements this outcome at every 𝜔.
To prove the only if part, assume that {𝑄𝑚}𝑚∈ℳ is part of an optimal quota

policy.

Claim 21. For and each 𝑚,𝑛 ∈ ℳ and any 𝑡, 𝑙 such that 𝑡 ≤ 𝑄𝑚, 𝑄𝑚 > 0 and
𝑙 ≥ 𝑄𝑛, we have that:

𝑢𝑚(𝑡)− 𝑢𝑚(𝑡− 1) + ℎ(0) ≥ 𝑢𝑛(𝑙 + 1)− 𝑢𝑛(𝑙) + ℎ(1) (1012)

Proof. Assume that at 𝜔, there are 𝑡 group 𝑚 agents, one of which one has score 0

and 𝑙+1 group 𝑛 agents with scores higher than 1−𝜖1 and 𝑞 agents from other groups
who have scores higher than 1 − 𝜖2, where 𝜖1 > 𝜖2 > 0. As 𝑡 ≤ 𝑄𝑚 and 𝑄𝑛 < 𝑙 + 1,
𝑡 group 𝑚 agents and 𝑄𝑛 < 𝑙 + 1 group 𝑛 agents are admitted under 𝑄. Since 𝑄 is
optimal for all 𝜖1, we must have that:

𝑢𝑚(𝑡)− 𝑢𝑚(𝑡− 1) + ℎ(0) ≥ 𝑢𝑛(𝑙 + 1)− 𝑢𝑛(𝑙) + ℎ(1− 𝜖1) (1013)

The statement then follows from continuity of ℎ by taking the limit 𝜖1 → 0.

Claim 22. Merit slots are processed last at the optimal quota policy.

Proof. For a contradiction, assume there is a merit slot that is processed before a
quota slot. Let 𝑙 denote the last merit slot that precedes a quota slot. Let 𝑚 denote
a group that has a quota slot after 𝑙. We consider a state in which: (i) there are 𝑞
group 𝑛 agents with scores 𝑠− 𝜖𝑖, where 𝜖𝑖 > 0 for all 𝑖 ∈ {1, . . . , 𝑞} (let 𝑠 denote the
score of the highest-scoring agent from this group), (ii) there are 𝑄𝑚 group 𝑚 agents
with scores 𝑠+ 𝜖𝑗 for 𝑗 ∈ {1, . . . , 𝑄𝑚} (let 𝑠 denote the score of lowest-scoring agent
from this group) and one with score 𝑠/2, and (iii) 𝑞 agents from other groups with
scores in (𝑠, 𝑠). A group 𝑚 agent with score 𝑠 + 𝜖𝑘 for some 𝑘 is matched to 𝑙, thus
(𝑠/2,𝑚) is matched to a later quota slot, while some agents with type (𝑠− 𝜖𝑗, 𝑛) are
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rejected for some 𝑗. Let 𝑠− 𝜖𝑗′ be the score of the highest-scoring such agent. From
the optimality of the quota policy we have that

𝑢𝑚(𝑄𝑚 + 1)− 𝑢𝑚(𝑄𝑚) + ℎ(𝑠/2) ≥ 𝑢𝑛(𝑄𝑛 + 1)− 𝑢𝑛(𝑄𝑛) + ℎ(𝑠− 𝜖𝑗′) (1014)

Let 𝑠* be the score of the lowest-scoring group 𝑛 agent (i.e., 𝑠* = min𝑖∈{1,...,𝑞} 𝑠− 𝜖𝑖).
Next, consider the modified version of the above state, all group 𝑛 agents are the
same, but all of the other 𝑄𝑚 group 𝑚 agents as well as 𝑞 agents from other groups
now have scores in (𝑠* − 𝜖, 𝑠*) and the group 𝑚 agent who had a score of 𝑠/2 now
has a score of 𝑠/2 + 𝜖 for 𝜖 > 0. Note that now the group 𝑛 agent with score 𝑠− 𝜖𝑗′

is allocated the slot 𝑙 or an earlier slot, while the agent (𝑠/2 + 𝜖,𝑚) is not allocated
to any slot. Thus

𝑢𝑚(𝑄𝑚 + 1)− 𝑢𝑚(𝑄𝑚) + ℎ(𝑠/2 + 𝜖) ≤ 𝑢𝑛(𝑄𝑛 + 1)− 𝑢𝑛(𝑄𝑛) + ℎ(𝑠− 𝜖𝑗′) (1015)

which, since ℎ is strictly increasing, implies that 𝑢𝑚(𝑄𝑚 + 1) − 𝑢𝑚(𝑄𝑚) + ℎ(𝑠/2) <

𝑢𝑛(𝑄𝑛+1)−𝑢𝑛(𝑄𝑛)+ℎ(𝑠−𝜖𝑗′). This contradicts Equation 1014, proving the claim.

Given the previous two claims, the following claim proves the result.

Claim 23. If merit slots are processed last, then for all 𝑙 ≥ 𝑄𝑚 and 𝑗 ≥ 𝑄𝑛

𝑢𝑚(𝑙 + 1)− 𝑢𝑚(𝑙) = 𝑢𝑛(𝑗 + 1)− 𝑢𝑛(𝑗) (1016)

Proof. Assume for a contradiction this does not hold. Without loss of generality,
assume 𝑢𝑚(𝑙 + 1)− 𝑢𝑚(𝑙) > 𝑢𝑛(𝑗 + 1)− 𝑢𝑛(𝑗) and define 𝛿 as

𝛿 = (𝑢𝑚(𝑙 + 1)− 𝑢𝑚(𝑙))− (𝑢𝑛(𝑗 + 1)− 𝑢𝑛(𝑗)) (1017)

Consider a state with 𝑞 − 1 agents with scores higher than 𝑠*, of which exactly
𝑄𝑚 are group 𝑚 agents and 𝑄𝑛 are group 𝑛 agents. Moreover, there is one more
group 𝑚 agent with score 𝑠′ < 𝑠* (denote this agent by 𝜃𝑚) and one more group 𝑛

agent with score 𝑠′′ ∈ (𝑠′, 𝑠*) where ℎ(𝑠′′)− ℎ(𝑠′) < 𝛿 (denote this agent by 𝜃𝑛). Note
that all agents apart from 𝜃𝑚 and 𝜃𝑛 are allocated the resource before the final merit
slot. Moreover, since 𝜃𝑛 has a higher score, she obtains the final merit slot. However,
this is a contradiction to the optimality of 𝑄 as ℎ(𝑠′′)− ℎ(𝑠′) < 𝛿 and allocating that
resource to 𝜃𝑚 gives the authority higher utility. This proves the claim.

Taken together, claims 21 and 23 prove that a fictitious authority that is extremely
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risk-averse with 𝑥tar
𝑚 = 𝑄𝑚 agrees with the authority on the optimal allocation, for

all 𝜔. To see this, observe that claim 21 implies that diversity preferences dominate
any concern for scores when a group is allocated less than 𝑄𝑚. Moreover, conditional
on being allocated at least 𝑄𝑚, it is as if there is no residual diversity preference, by
claim 23. This proves the only if part of (3), which finishes the proof of the result.

E.3.4 Dominance of APM in Discrete Economies

In this section, we extend our discrete model to the multiple authority case and
show that the dominance of the optimal APM in the decentralized admissions setting
studied in Section 5.4.3 can be extended to this setting. Let Θ0 denote the set of
agents. 𝒞 = {𝑐0, 𝑐1, . . . , 𝑐|𝒞|−1} denote the set of authorities. 𝑞𝑐 denotes the capacity
of authority 𝑐 and 𝑞𝑐0 ≥ |Θ0|. 𝜃 = (𝑠,𝑚,≻) ∈ [0, 1]|𝒞| ×ℳ×ℛ = Θ, where ℛ is set
of all complete, transitive, and strict preference relations over 𝒞 such that 𝑐0 is less
preferred than all 𝑐 ∈ 𝒞. For each type 𝜃, 𝑠𝑐(𝜃) denotes the score of 𝜃 at authority 𝑐
and 𝑚(𝜃) denotes the group of 𝜃.

A matching in this environment is a function 𝜇 : 𝒞 ∪Θ → 2Θ ∪ 𝒞 where 𝜇(𝜃) ∈ 𝒞
is the authority any type 𝜃 is assigned and 𝜇(𝑐) ⊆ Θ is the set of agents assigned to
authority 𝑐, which satisfies |𝜇(𝑐)| ≤ 𝑞𝑐 for all 𝑐. 𝑥𝑐(𝜇) = {𝑥𝑚,𝑐(𝜇)}𝑚∈ℳ denotes the
number of agents of each group assigned to school 𝑐 at 𝜇 while 𝑠ℎ𝑐(𝜇) =

∑︀
𝜃∈𝜇(𝑐) ℎ(𝑠(𝜃))

denotes the score utility the authority derives from 𝜇. The preferences of the authority
are given by:

𝜉𝑐(𝑠ℎ𝑐 , 𝑥𝑐) = 𝑠ℎ𝑐 +
∑︁
𝑚∈ℳ

𝑢𝑚,𝑐(𝑥𝑚,𝑐) (1018)

where ℎ𝑐 is continuous and strictly increasing and 𝑢𝑚,𝑐 : R → R is concave for all
𝑚 ∈ ℳ and 𝑐 ∈ 𝒞.

Agents apply to the authorities sequentially, who decide which agents to admit.
We index the stage of the game by 𝑡 ∈ 𝒯 = {1, . . . , |𝒞| − 1}. Each stage corresponds
to an authority 𝐼(𝑡), where 𝐼 : 𝒯 → 𝒯 . At each stage 𝑡, any unmatched agents choose
whether apply to authority 𝐼(𝑡). Given the set of applicants, authority 𝐼(𝑡) chooses
to admit a subset of these agents. Given this, histories are indexed by the path of
the remaining of agents who have not yet matched, ℎ𝑡−1 = (Θ0,Θ1, . . . ,Θ𝑡−1) ∈ ℋ𝑡−1.
Given each history ℎ𝑡−1 and set of applicants Θ𝐴

𝑐 ⊆ Θ, a strategy for an authority
returns a set of agents Θ𝐺

𝑐 ⊆ Θ whom they will admit such that Θ𝐺
𝑐 ⊆ Θ𝐴

𝑐 and
|Θ𝐺

𝑐 | ≤ 𝑞𝑐 for each time at which they could move 𝑡 ∈ 𝒯 , 𝑎𝑐,𝑡 : ℋ𝑡−1 ×𝒫(Θ) → 𝒫(Θ),
where 𝒫(Θ) is the power set over Θ. A strategy for an agent returns a choice of
whether to apply to authorities at each history and time for all agent types 𝜃 ∈ Θ,
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𝜎𝜃,𝑡 : ℋ𝑡−1 → [0, 1]. We moreover say that a strategy 𝑎𝑐,𝑡 for an authority 𝑐 at time 𝑡
is dominant if it maximizes authority utility regardless of {{𝑎𝑐,𝑡}𝑐∈𝒞/{𝑐}, {𝜎𝜃,𝑡}𝜃∈Θ}𝑡∈𝒯
and 𝐼.

Theorem 18. The APM 𝐴*
𝑐 is a dominant strategy for all authorities.

Proof. We prove that APM 𝐴*
𝑐 implements a dominant strategy for all authorities in

all stages by backward induction. Consider the terminal time 𝑡 = |𝒞|−1. Some set of
agents Θ̂ ⊆ Θ applies to the authority. Regardless of Θ̂, by Theorem 16 we have that
the set of agents chosen under any selection from APM 𝐴*

𝑐 is first-best optimal. Thus,
𝐴*
𝑐 is dominant. Consider now any time 𝑡 < |𝒞| − 1, precisely the same argument

applies and 𝐴*
𝑐 is dominant.

E.3.5 Discrete Model: Example under Imperfect Information

We develop a simple example to show how the qualitative trade-offs between priorities
and quotas we have identified are those present in discrete matching markets. There
are 4 students, Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4} and one authority 𝑐 with capacity two. Students
𝜃3 and 𝜃4 belong to an underrepresented minority. The scores of minority students
are distributed independently and uniformly on [0, 1], so that 𝑠3, 𝑠4 ∼ 𝑈 [0, 1]. For
simplicity, we assume there is no uncertainty over the scores of other students: 𝑠1 =
𝑠2 = 1.10 We further specify that the authority has the following utility function:11

𝑊 (𝛽, 𝜇) = 𝛽I{𝜇(𝑐) ∩ {𝜃3, 𝜃4} ≠ ∅}+
∑︁

𝑖:𝜇(𝜃𝑖)=𝑐

𝑠𝑖 (1019)

This function embodies the main trade-off we have studied: the trade-off between
scores and diversity. The first term indicates that whenever the authority admits
at least one minority student, the utility of authority increases by 𝛽, which denotes
the strength of affirmative action or diversity preferences. The second term simply
indicates that the authority cares about scores and wants to admit the highest-scoring
students they can. An alternative interpretation in this context, where allocating to
agents with low scores is perceived as unfair, is that the authority wants to ensure
outcomes that are fair in this sense.

The authority implements a stable matching and has two different policies at
their disposal to influence the outcome of the matching mechanism. The first is a

10The qualitative result here does not change as long as non-minority students draw their scores
from a distribution that FOSD 𝑈 [0, 1].

11𝜇 denotes a matching, where 𝜇(𝑐) ⊂ Θ and |𝜇(𝑐)| = 2. We assume 𝜇 is stable, which uniquely
determines the allocations.
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priority subsidy, denoted by 𝛼 ∈ [0, 1]. A subsidy 𝛼 simply increases the scores of
minority students by 𝛼 and moves the distribution of scores of minority students to
𝑈 [𝛼, 1 + 𝛼]. The second is a minority quota 𝑄 ∈ {0, 1, 2} that reserves 𝑄 seats for
minority students.

We start by characterizing the first-best where the authority can choose the match-
ing they most prefer in each state of the world. Intuitively, if the score of the highest-
scoring minority student is sufficiently high, then the designer prefers to admit her
and one of the non-minority students. Otherwise, it is optimal for the designer to
admit the two highest-scoring students, that is the two non-minority students. The
first-best matching 𝜇* is therefore given by:

𝜇*(𝑐) =

⎧⎨⎩{𝜃1, 𝜃2} , if max𝑖∈{3,4} 𝑠𝑖 < 1− 𝛽,

{𝜃1, 𝜃𝑘} , if max𝑖∈{3,4} 𝑠𝑖 > 1− 𝛽 and 𝑠𝑘 = max𝑖∈{3,4} 𝑠𝑖.
(1020)

See that if the authority had perfect information and knew 𝑠3 and 𝑠4 that both
a priority subsidy and a quota can implement the first-best.12 In particular, if
max𝑖∈{3,4} 𝑠𝑖 > 1 − 𝛽, then both a quota 𝑄 = 1 that reserves one seat for minor-
ity students and a priority subsidy for minority students of 𝛼 ∈ (1−min𝑖∈{3,4} 𝑠𝑖, 1−
max𝑖∈{3,4} 𝑠𝑖) implement the first-best. When max𝑖∈{3,4} 𝑠𝑖 ≤ 1−𝛽, then both a quota
of 𝑄 = 0 and a subsidy 𝛼 = 0 implement the first-best. Thus, with perfect informa-
tion, both policies yield the first-best and there is no trade-off for the authority.

We now consider the second best where an authority is constrained to implement
a priority or a quota before the realization of uncertainty. Note that implementing the
first-best is impossible with both quotas and priorities as neither can be adapted to
the underlying realized scores of the minority students. We now solve for the optimal
quota and priority designs and compare their values. In order to characterize the
optimal reserve policy, one first notes that reserving both seats for minority students
is always strictly dominated by reserving only one. Thus the designer only needs
to compare a policy with a quota of one against a policy with no quotas. With no
quota, no minority student is admitted and the utility of the designer𝑊𝑛𝑟(𝛽) = 2 with
probability one. On the other hand, if a quota of one is used, only the highest-scoring
minority student is admitted. Thus, the expected utility of the designer is:

E[𝑊 (𝛽)] = 𝛽 + 1 + E [max{𝑠3, 𝑠4}] =
5

3
+ 𝛽 (1021)

12Formally speaking, this is only true outside of the knife-edge case where 𝑠3 = 𝑠4, which is
probability zero. In this case, there is no subsidy that can implement the first-best.
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The optimal quota policy is therefore to reserve one seat for minority students if
𝛽 > 1/3 and reserve no seats otherwise. Moreover, the utility of the designer under
the optimal quota policy is:

𝑉𝑄(𝛽) =

⎧⎨⎩2 , if 𝛽 ≤ 1
3
,

5

3
+ 𝛽 , if 𝛽 > 1

3
.

(1022)

We now compute the optimal priority design and the authority’s value thereof.
To this end, we first calculate the utility of the designer under subsidy 𝛼. We start
by calculating the matching conditional on the realized scores. There are three cases
to consider. If both minority students have scores above 1−𝛼, then both of them are
admitted to the authority. If both minority students score below 1− 𝛼, then neither
of them is admitted. Lastly, if one of them scores above 1− 𝛼 while the other scores
below 1 − 𝛼, then only one minority student is admitted. The following equation
gives the utility of the designer as a function of 𝛽 and 𝛼:

E[𝑊 (𝛽, 𝛼)] =

∫︁ 1

1−𝛼

∫︁ 1

1−𝛼
(𝑠3 + 𝑠4 + 𝛽)𝑑𝑠3𝑑𝑠4 + 2

∫︁ 1

1−𝛼

∫︁ 1−𝛼

0

(1 + 𝑠4 + 𝛽)𝑑𝑠3𝑑𝑠4

+

∫︁ 1−𝛼

0

∫︁ 1−𝛼

0

2𝑑𝑠3𝑑𝑠4

=− (1 + 𝛽)𝛼2 + 2𝛽𝛼 + 2

(1023)

A quick calculation shows that the optimal subsidy is always interior and 𝛼* = 𝛽
1+𝛽

.
Plugging the optimal subsidy policy into the authority’s payoff function, we obtain:

𝑉𝑃 (𝛽) = 1 + 𝛽 +
1

1 + 𝛽
(1024)

We now compare the value of the optimal quota and priority designs as the strength
of the affirmative action motive changes. Comparing 𝑉𝑃 (𝛽) and 𝑉𝑄(𝛽) shows that
the optimal policy depends on the strength of affirmative action preferences of the
authority. Figure E-1 plots these two values as a function of the affirmative action
motive with the dotted line giving the value 𝛽 = 1

2
at which the two value functions

cross. Importantly, we see that a quota policy is optimal whenever 𝛽 > 1/2 and a
priority subsidy policy is optimal whenever 𝛽 < 1/2.

This example highlights the main differences between priorities and quotas under
uncertainty and suggests when we might expect to prefer one over the other. When
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Figure E-1: Comparative Statics for the Preference Between Priorities and Quotas
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Notes: Values of the optimal priority policy, 𝑉𝑃 , and optimal quota policy, 𝑉𝑄, as a function
of the strength of the diversity preference 𝛽. The dashed black line corresponds to 𝛽 = 1/2
and is the point at which both policies yield the same value.

the preference for diversity is low, the authority only wants to admit a minority
student if her score is high enough. In this case, a subsidy is a better policy as its
outcome can depend on the relative scores of the students. In particular, it only
admits minority students if they obtain sufficiently high scores while a quota admits
minority students equally across states of the world. Consequently, priority designs
generate a desirable positive selection of minority students which tends to improve
scores. However, the drawback of a subsidy policy is that it applies to all students
and can therefore cause either the admission of a second minority student with a
lower average score or fail to admit any minority students. On the other hand, if
the preference for diversity is sufficiently high, then the authority wants to admit one
minority student for sure, regardless of her score. In this case, the subsidy policy
is undesirable as even under the optimal subsidy, there are many realizations where
neither or both minority students are admitted, while the reserve policy ensures that
one minority student is admitted in all states of the world.
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E.4 Extension to More General Authority Prefer-

ences
In this Appendix, we relax Assumption 10 to allow for (i) non-separable diversity
preferences, (ii) non-separable score and diversity preferences, (iii) non-differentiable
preferences, and (iv) non-concave diversity preferences. We show how these changes in
assumptions lead to certain modified APM mechanisms becoming first-best optimal.

E.4.1 Non-Separable Diversity Preferences

First, we relax Assumption 10 and instead suppose that the authority’s preferences
satisfy the following assumption:

Assumption 18. The authority’s utility function can be represented as:

𝜉 (𝑠ℎ, 𝑥) ≡ 𝑔 (𝑠ℎ + 𝑢(𝑥)) (1025)

for some continuous, strictly increasing function 𝑔 : R → R and a concave, partially
differentiable 𝑢 in each argument.

In this environment, we define a non-separable APM 𝐴 = {𝐴𝑚}𝑚∈ℳ where 𝐴𝑚 :

R|ℳ|× [0, 1] → R. This implements allocation 𝜇 in state 𝜔 as per Definition 10 (under
the modification of point 1 in Definition 10 to allow 𝐴𝑚 to depend on 𝑥 rather than
just 𝑥𝑚).

We generalize Theorem 7 to show that the following non-separable APM uniquely
implements the first-best optimal allocation:

Proposition 50. The non-separable APM 𝐴*
𝑚(𝑦, 𝑠) ≡ ℎ−1(ℎ(𝑠)+𝑢(𝑚)(𝑦)) and uniquely

implements the first-best optimal allocation.13

Proof. Follow every step in the proof of Theorem 7 with
∑︀

𝑚∈ℳ 𝑢𝑚(𝑥𝑚) replaced by
𝑢(𝑥) and 𝑢′𝑚(𝑥𝑚) replaced by 𝑢(𝑚)(𝑥).

Thus, allowing for non-separable diversity preferences does not substantially change
the analysis of adaptive priority mechanisms. One must simply adapt the APM to
be non-separable to allow cross-group diversity concerns to shape the marginal ben-
efits of admitting agents from various groups. The main difference is that this a
non-separable APM does not necessarily allow the greedy implementation of Algo-
rithm 1. This is because, in the presence of cross-group adaptive priorities, it is no

13Where we define 𝑢(𝑚)(𝑦) = 𝜕
𝜕𝑦𝑚

𝑢(𝑦).
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longer enough to rank agents within their own group. A small adaptation to this
algorithm that dynamically admits agents, starting from the highest-scoring agents
in each group, would naturally implement the unique first-best optimal allocation.

E.4.2 Non-Separable Score and Diversity Preferences

Second, we relax Assumption 10 and instead suppose that the authority’s preferences
are represented by:

Assumption 19. The authority’s Bernoulli utility function can be represented as:

𝜉 (𝑠ℎ, 𝑥) (1026)

where 𝜉 is monotone, differentiable, and concave.

We define a state-dependent APM 𝐴 = {𝐴𝑚}𝑚∈ℳ where 𝐴𝑚 : R|ℳ|× [0, 1]×Ω →
R. This implements allocation 𝜇 in state 𝜔 as per Definition 10 (where point 1 in
Definition 10 is modified to allow 𝐴𝑚 to depend on both 𝑥 and 𝜔).

In this more general setting, we now find a state-dependent APM that implements
the optimal allocation.

Proposition 51. The following state-dependent APM implements a first-best optimal
allocation:

𝐴𝑚(𝑦, 𝑠, 𝜔) ≡ ℎ−1

(︂
ℎ(𝑠) +

𝜉𝑥𝑚 (𝑠ℎ(𝑦, 𝜔), 𝑦)

𝜉𝑠ℎ (𝑠ℎ(𝑦, 𝜔), 𝑦)

)︂
(1027)

where 𝑠ℎ(𝑦, 𝜔) is the score index in state 𝜔 when the highest-scoring 𝑦 = {𝑦𝑚}𝑚∈ℳ

agents of each attribute are allocated.

Proof. Follow every step in Theorem 7 with
∑︀

𝑚∈ℳ
∫︀ ℎ(1)
𝑠𝑚(𝑥𝑚)

𝑠𝑓𝑚(𝑠)d𝑠+
∑︀

𝑚∈ℳ 𝑢𝑚(𝑥𝑚)

replaced with 𝜉 (𝑠ℎ(𝑦, 𝜔), 𝑥) where 𝑠ℎ(𝑦, 𝜔) =
∑︀

𝑚∈ℳ
∫︀ ℎ(1)
𝑠𝑚(𝑥𝑚)

𝑠𝑓𝑚,𝜔(𝑠)d𝑠.

There are two substantial differences in this optimal policy from our baseline APM.
First, the policy depends on the joint distribution of agents in the population. Thus,
specifying it ex ante is likely to be extremely challenging in any practical setting.
This is necessary because the marginal rate of substitution between diversity and
scores depends on the level of scores, which depends on the distribution of agents.
Second, without assumptions on the shape of the distribution of agents, there is no
guarantee that this policy is monotone and thus no guarantee that it implements a
unique policy.
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Thus, while Proposition 50 showed that cross-group separability is largely inessen-
tial for our main conclusions, separability between score and diversity preferences is
key to the power of APM.

E.4.3 Non-Differentiable Preferences

In this section, we retain the majority of Assumption 10, where we instead suppose
that the authority’s diversity preferences {𝑢𝑚}𝑚∈ℳ are potentially non-differentiable
at finitely many points.

As 𝑢𝑚 is concave, the left and right derivatives of 𝑢𝑚, 𝑢−𝑚 and 𝑢+𝑚, exist. The
definition of our first-best APM is not applicable to this case since 𝑢′𝑚 might not
exist. Therefore, we define the following generalized optimal APM 𝐴*

𝑚(𝑦𝑚, 𝑠) ≡
ℎ−1(ℎ(𝑠)+𝑢−𝑚(𝑦𝑚)), which simply replaces 𝑢′𝑚 with 𝑢−𝑚 in the definition. By concavity
of 𝑢𝑚, 𝑢−𝑚 is monotone decreasing. Thus, this generalized optimal APM (as it is a
montone APM) implements a unique allocation by Proposition 17. Moreover, the
unique allocation that it implements is an optimal allocation:

Proposition 52. Let 𝜇* denote the allocation implemented by the generalized optimal
APM. 𝜇* is an optimal allocation.

Proof. We first prove a claim. An allocation in this setting is a cutoff allocation if
there exists cutoffs {𝑠𝑚}𝑚∈ℳ such that an agent 𝜃 is assigned the resource if and only
if 𝑠(𝜃) ≥ 𝑠𝑚 and 𝑚(𝜃) = 𝑚.

Claim 24. There exists a unique optimal allocation 𝜇′ in the sense that all other
allocations that attain the optimal payoff differ from 𝜇′ on at most a measure zero set
of types. Moreover, there exists an optimal allocation that is a cutoff allocation.

Proof. In the setting of Theorem 7, observe that 𝑠𝑚(𝑥𝑚) is strictly decreasing in 𝑥𝑚.
This, together with the concavity of 𝑢 implies that the objective is strictly concave
and constraints are linear. Therefore an optimal allocation exists and is unique up
to measure zero transformations. Given this allocation 𝜇′ (with measures 𝑥𝑚), an
optimal cutoff allocation is obtained by the cutoff scores 𝑠*𝑚 that satisfy

𝑠′𝑚 = sup

{︂
𝑠𝑚 ∈ [0, 1] :

∫︁ 1

𝑠𝑚

𝑓𝑚(𝑠)d𝑠 = 𝑥𝑚

}︂
(1028)

Using this claim, toward a contradiction, assume there exists another allocation
𝜇′, which gives the authority a strictly higher utility. Moreover, take 𝜇′ to be an
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optimal cutoff allocation (which must exist by the claim). As 𝜇′ differs from 𝜇* and
both are cutoff allocations, we have that there exist two groups 𝑚,𝑛 ∈ ℳ such that:
(i) 𝑠′𝑚 > 𝑠*𝑚 and 𝑥′𝑚 < 𝑥*𝑚 and (ii) 𝑠′𝑛 < 𝑠*𝑛 and 𝑥′𝑛 > 𝑥*𝑚. We have that:

𝐴*
𝑚(𝑥, 𝑠) ≥ 𝐴*

𝑚(𝑥
*
𝑚, 𝑠) > 𝐴*

𝑚(𝑥
*
𝑚, 𝑠

*
𝑚) ≥ 𝐴*

𝑛(𝑥
*
𝑛, 𝑠) ≥ 𝐴*

𝑛(�̂�, 𝑠) (1029)

for all 𝑠 ∈ (𝑠*𝑚, 𝑠
′
𝑚), 𝑠 ∈ (𝑠′𝑛, 𝑠

*
𝑛), 𝑥 ≤ 𝑥*𝑚, �̂� ≥ 𝑥*𝑛. The first inequality follows by

concavity of 𝑢𝑚, the second follows by the fact that ℎ is strictly increasing, the third
follows by the definition of APM and the fact that 𝜇*(𝑠*𝑚,𝑚) = 1 and 𝜇*(𝑠, 𝑛) = 0,
and the fourth follows from concavity of 𝑢𝑛. Thus, we have that, for all 𝑠 ∈ (𝑠*𝑚, 𝑠

′
𝑚),

𝑠 ∈ (𝑠′𝑛, 𝑠
*
𝑛), 𝑥 ≤ 𝑥*𝑚, �̂� ≥ 𝑥*𝑛:

𝑢−𝑚(𝑥) + ℎ(𝑠) > 𝑢−𝑛 (�̂�) + ℎ(𝑠) (1030)

Thus, the total marginal utility obtained by replacing any positive measure type 𝑚
students with scores 𝑠 ∈ (𝑠*𝑚, 𝑠

′
𝑚) with an identical measure of type 𝑛 students with

scores 𝑠 ∈ (𝑠′𝑛, 𝑠
*
𝑛) is positive. But this contradicts the optimality of 𝜇′. Thus, if �̃� is

optimal, then �̃� = 𝜇* (up to a measure zero set).

E.4.4 Non-Concave Preferences

In this section, we relax the assumption that the 𝑢𝑚 are concave.

Proposition 53. If 𝜇 is an optimal allocation, then 𝜇 is implemented by 𝐴*.

Proof. Without concavity, the optimal allocation characterized in the proof of Theo-
rem 7 is no longer unique. However, the Lagrangian conditions we have derived are
still necessary for any optimal allocation 𝑥 = {𝑥𝑚}𝑚∈ℳ. Thus, any optimal allocation
is implemented by 𝐴*.

This result shows that any optimal allocation is implemented by the optimal APM.
However, when {𝑢𝑚}𝑚∈ℳ are not concave, 𝐴* is not necessarily monotone. There-
fore, 𝐴* does not necessarily implement a unique allocation. Indeed, it is possible
that 𝐴* implements suboptimal allocations, as it will implement any locally optimal
allocation. Therefore, a mechanism defined by an arbitrary selection from the alloca-
tions implemented by 𝐴* would not be first-best optimal. However, 𝐴* may still help
decision-making in this setting as it implements any optimal allocation.
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E.5 Implementation, Precedence Orders, and an Il-

lustration from H1-B Visa Allocation
In this appendix, we show that (with no uncertainty) priority and quota policies can
implement the same set of allocations. We apply this insight to study the effect of
precedence orders in US H1-B visa allocation.

E.5.1 Equivalence of Priorities and Quotas for Implementa-

tion

In Proposition 18, we showed that if there is no uncertainty, both priorities and quotas
can achieve the optimal allocation. We say that a priority policy 𝑃 is monotone if
𝑃 (𝑠,𝑚) is strictly increasing in 𝑠. Note that since the authority prefers higher-scoring
agents to lower-scoring ones, monotone policies perform better non-monotone policies.
We will now show that, in the setting of Section 5.3, for a given 𝜔 (which we suppress
for the rest of this section), these quota and monotone priority policies are equivalent
in the sense that any allocation that is achieved by one can also be achieved by the
other.

Proposition 54. 𝜇 is implemented by a quota policy if and only if it is also imple-
mented by a monotone priority policy.

Proof. Assume that 𝜇 is implemented by a quota policy. Then 𝜇 is a cutoff allocation
since the resource is allocated in descending order of score. Let 𝑠𝑚 denote the lowest-
scoring agent from group 𝑚 who is allocated the object at 𝜇 for 𝑚 ∈ ℳ. Let
𝑠 = max𝑚∈ℳ 𝑠𝑚. Define the priority policy as 𝑃 (𝑠,𝑚) = 𝑠 + (𝑠𝑚 − 𝑠). Note that
if 𝜇(𝑠,𝑚) = 1 and 𝜇(𝑠′,𝑚′) = 0, then 𝑠 + 𝑠𝑚 − 𝑠 > 𝑠′ + 𝑠𝑚′ − 𝑠 and therefore
𝑃 (𝑠,𝑚) > 𝑃 (𝑠′,𝑚′). As 𝑃 allocates the resource to measure 𝑞 highest-scoring agents
under 𝑃 and measure 𝑞 of agents who are allocated the resource under the quota policy
has higher priorities than those who are not, 𝑃 implements the same allocation as
the quota policy.

Conversely, assume that 𝜇 is implemented by a monotone priority policy. Let 𝑥𝑚
denote the measure of agents from group 𝑚 allocated the object at 𝜇 for 𝑚 ∈ ℳ. Let
𝑄 denote a quota policy where 𝑄𝑚 = 𝑥𝑚. Under any processing order, 𝑄 implements
the same allocation and allocates the resource to the highest-scoring measure 𝑥𝑚

agents from group 𝑚, for all 𝑚. This is the allocation under 𝑃 (𝑠,𝑚) since 𝑃 is a
monotone priority policy and allocates the resource to the highest-scoring measure
𝑥𝑚 agents from group 𝑚, which proves the result.
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In the next section, we use this result to provide a diagnostic test for evaluat-
ing quota policies with different precedence orders by the strength of the equivalent
priority policy.

E.5.2 Application of a Diagnostic Test for the Effect of Prece-

dence Orders to US H1-B Visa Allocation

In this Appendix, we argue that in light of Proposition 54, priorities can be used as
a diagnostic test for the effect of precedence orders in the context of US H1-B Visa
allocation, which has had historical issues in implementation arising from the choice
of precedence order. The American H1-B visa program enables American companies
to temporarily employ educated foreign workers in high-skill occupations.14 The
statutory law enacted by the U.S. Congress mandates the total number of visas to
be granted and The U.S. Customs and Immigration Service (USCIS) implements this
mandate. The visa allocation is governed by the H-1B Visa Reform Act of 2004 that
established an annual system in which 65,000 visas were made available for all eligible
applicants and an additional 20,000 visas were reserved for applicants with advanced
degrees. Until 2009, USCIS used the arrival time of the application to determine
priorities. Since then, the priorities are determined according to a uniform lottery.

As we have emphasized, under quota policies, specifying the processing order is
critical. Between 2009 and 2019, USCIS used a Reserve-Initiated processing rule.
In 2020, in accordance with the 2017 Buy American and Hire American Executive
Order, USCIS switched to a Unreserved-Initiated rule, in order to award visas to the
most-skilled workers. Pathak, Rees-Jones, and Sönmez (2020) document this switch
and give a detailed account of the consequences. In particular, they calculate the
effect of this change on visa allocation between 2013-2017. They find that from (on
average) 55,900 applicants with advanced degrees, 33,495 of them obtain a visa under
the Reserve-Initiated rule, while 38,843 of them obtain a visa under the Unreserved-
Initiated rule. This fact underscores how the complexity of quota policies can lead to
issues in implementation, even in the simplest case with two groups.

We now use the structure of Proposition 54 to provide a diagnostic test that au-
thorities can use to see the degree of effective affirmative action when employing a
quota policy and apply it to the H1-B and Boston Public Schools settings.15 Con-

14See Pathak, Rees-Jones, and Sönmez (2020) for a detailed account of H-1B policies and reforms.
15We note that the H-1B lottery is a setting where the perfect information assumption is justified.

First, the only object that is allocated is the visa and all applicants prefer obtaining the visa to
not obtaining it. This removes any uncertainty over the preferences of the individuals. Second,
the priorities are determined according to a uniform random lottery and the market is large. In
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Table E.1: Equivalent Priorities for Different Precedence Orders

# Applicants # Reserve-eligible Visas
General Reserve-eligible R-I Rule NR-I Rule

5-yr Average (2013-2017) 137,017 55,900 33,495 38,834
Equivalent Subsidy (𝛼) 23 35

Notes: Allocation of H-1B visas under Reserve-Initiated and Nonreserve-Initiated rules along
with the equivalent subsidies that would induce these allocations.

cretely, when an authority is considering designing its precedence order, it can simply
compute the implied priority subsidy being afforded to each group. In the context of
H1-B allocation, we assume the uniform random lottery of USCIS is implemented by
drawing a number uniformly from the interval [0, 100]. In the counterfactual priority
mechanism, there are no quotas for reserve category applicants, but they get a score
subsidy of 𝛼, i.e. their random numbers are distributed uniformly on [𝛼, 100 + 𝛼].
Computing the implied 𝛼 under both processing orders to compare the policies, we
obtain Table E.1. Note that even though both quota policies correspond to 20,000
visas being reserved for applicants with advanced degrees, there is an important dif-
ference in the number of visas allocated to advanced degree applicants and therefore
in the subsidy required to achieve that allocation. In particular, the Unreserved-
Initiated order leads to a 12-point subsidy increase relative to the Reserve-Initiated
benchmark.

particular, between 2013 and 2017, each year, 85,000 visas are allocated to an average of 137,017
reserve ineligible and 55,900 reserve eligible applicants. Thus, although there is uncertainty at the
individual level, the distribution of lottery numbers conditional on reserve eligibility is essentially
fixed.
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E.6 Additional Quantitative Results
In this Appendix, we describe both the methodology and results of the two robustness
exercises that are not discussed in full detail in the main text. First, we estimate the
gains from APM when we assume that CPS sets one tier size for all tiers rather than
separately optimizing the sizes of the four tiers. Second, we estimate the gains from
APM under alternative utility functions that differentially penalize underrepresenta-
tion and overrepresentation.

E.6.1 Estimation with Homogeneous Reserves

As we have motivated, in this section we estimate an alternative model, where CPS
chooses a single reserve size, 𝑟, instead of separate reserve sizes for all tiers. Formally,
we replace the vector of reserve sizes of the four socioeconomic tiers, 𝑟 = (𝑟1, 𝑟2, 𝑟3, 𝑟4)

by 𝑟 = (𝑟, 𝑟, 𝑟, 𝑟). In this setting, we define the marginal benefit of increasing reserve
size as

𝐺(𝑟,Λ; 𝛽, 𝛾) =
𝜕

𝜕𝑟
Ξ(𝑟,Λ; 𝛽, 𝛾) (1031)

As in the general model, any (interior) reserve policy 𝑟* must satisfy𝐺(𝑟*, Λ̂; 𝛽, 𝛾) =
0. This first-order condition yields one moment, and so we can estimate one param-
eter. To this end, we fix 𝛾, and for each 𝛾 ∈ [1, 10], and we estimate 𝛽*(𝛾) as the
exact solution to the following empirical moment condition:

𝐺(𝑟*, Λ̂; 𝛽*(𝛾), 𝛾) = 0 (1032)

Figure E-2 plots the logarithm of the estimated 𝛽*(𝛾). The estimated 𝛽*(𝛾) is
increasing in 𝛾. As the loss term |𝑥𝑡−0.25| is in (0, 1), 𝛽*(𝛾) is increasing and convex
in 𝛾, where 𝛽*(1) = 34 and 𝛽*(10) = 1.436× 108. In Figure E-3, we plot the gains as
a function of 𝛾, which shows that even though the estimated value for 𝛽 moves quite
a lot, the empirical gains range from 2 to 4 points. This also shows that the estimated
gain from APM of 2.1 under our benchmark specification is close to the lower bound
of the estimated gains under the alternative specification with homogeneous reserves.

Finally, we benchmark these gains as a fraction of loss from underrepresentation
under the CPS policy, where the loss of underrepresentation is calculated under the
estimated parameter values. In Figure E-4, we plot the gains under APM as a per-
centage of diversity loss under the CPS policy. These range from 26% to 300%. Our
baseline percentage gain estimate of 37.5% is again close to the lower bound that we
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Figure E-2: Estimated Slope of Utility Under Homogeneous Reserves
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Notes: This graph plots the estimated logarithm of the slope of utility log 𝛽*(𝛾) in the
homogeneous reserve case as we vary the curvature of utility 𝛾 ∈ [1, 10].

Figure E-3: Payoff Gains from APM Under Homogeneous Reserves
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Notes: This graph plots the estimated difference in payoffs in the homogeneous reserves case
between the optimal APM and the CPS policy as we vary the curvature of utility 𝛾 ∈ [1, 10].
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Figure E-4: The Gains from APM as a Fraction of the Loss From Underrepresen-
tation Under Homogeneous Reserves
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Notes: This graph plots the estimated difference between the payoffs under the optimal
APM under homogeneous reserves as a fraction of loss from underrepresentation as we vary
the curvature of utility 𝛾 ∈ [1, 10].

estimate under the alternative specification with homogeneous reserves.

E.6.2 Gains from APM Under Different Utility Functions

In this section, as we have motivated, we estimate alternative objective functions to
investigate the robustness of our findings.

First, we analyze a setting that includes a loss term only for underrepresented
tiers (and does not penalize overrepresentation of any tier). To this end, we replace
the term |0.25 − 𝑥𝑡| with min{0, (0.25 − 𝑥𝑡)} and perform the same estimation with
the following parametric utility function:

𝜉(𝑠, 𝑥; 𝛽, 𝛾) = 𝑠+ 𝛽
4∑︁
𝑡=1

(min{0, (0.25− 𝑥𝑡)})𝛾 (1033)

The estimated parameter values are 𝛽* = 52058 and 𝛾* = 3.87467. We compute
the difference between the empirical payoffs under APM and the CPS reserve pol-
icy to be 0.262, which is significantly lower than our estimate of 2.1. However, the
reason for this is that the diversity domain is estimated to be less important under
this specification, and the diversity loss under the CPS policy is 2.71. Thus, improve-
ments from APM correspond to 9.6% of the loss from underrepresentation, which is
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attenuated relative to our baseline specification, but remains non-negligible.
Second, we allow CPS to care differentially about underrepresentation and over-

representation by considering a utility function with separate coefficients for underrep-
resented and overrepresented tiers. To this end, we define the following loss function:

𝑓(𝑥𝑡, 𝛽𝑙, 𝛽ℎ, 𝛾) =

⎧⎨⎩𝛽𝑙(0.25− 𝑥𝑡)
𝛾 if 𝑥𝑡 ≤ 0.25

𝛽ℎ(𝑥𝑡 − 0.25)𝛾 if 𝑥𝑡 > 0.25
(1034)

where 𝛽𝑙 indexes the loss from underrepresentation of a tier, while 𝛽ℎ indexes the
loss from overrepresentation. We then perform the same estimation with the following
parametric utility function:

𝜉(𝑠, 𝑥; 𝛽, 𝛾) = 𝑠+
4∑︁
𝑡=1

𝑓(𝑥𝑡, 𝛽𝑙, 𝛽ℎ, 𝛾) (1035)

This yields the following estimated values: 𝛽*
𝑙 = 1362270, 𝛽*

ℎ = 12278, 𝛾* =

5.28021. We compute the difference between the empirical payoffs under APM and the
CPS reserve policy to be 0.195 and the loss from underrepresentation under the CPS
policy to be 2.24. Thus, we conclude that improvement from APM corresponds to
8.7% of loss from underrepresentation under the CPS policy, which is similar to what
we obtain under the specification in which there is no loss from overrepresentation.
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Appendix F

Appendix to Nonlinear Pricing with
Under-Utilization: A Theory of
Multi-Part Tariffs

F.1 Proofs of Main Results
In this appendix, we provide the proofs of the main results. In Section F.1.1, we define
and characterize implementable consumption functions under free disposal and char-
acterize optimal contracts, proving Proposition 21. In Section F.1.2, we characterize
the occurrence of multi-part tariffs by proving Proposition 22 and the correspond-
ing corollaries. Finally, in Section F.1.3, we derive comparative statics for welfare,
proving Propositions 23 and 24.

F.1.1 Implementation and Proof of Proposition 21

We say that consumption function 𝜑 is implementable if there exist a purchase func-
tion 𝜉 and a price schedule 𝑇 such that (𝜑, 𝜉, 𝑇 ) jointly satisfy the constraints (O),
(IC), and (IR) of Problem 198. In this case, we say that 𝜑 is supported by (𝜉, 𝑇 ). The
following intermediate results fully characterize implementable consumption functions
in terms of their functional properties. We say real functions are monotone when they
are monotone non-decreasing.

Lemma 24. Fix a consumption function 𝜑 that is monotone and such that 𝜑 ≤ 𝜑𝐴.
Define the transfer function 𝑡 : Θ → R as

𝑡(𝜃) = 𝐶 + 𝑢(𝜑(𝜃), 𝜃)−
∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠 (1036)
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for some 𝐶 ≤ 0, and define the price schedule 𝑇 : 𝑋 → R as

𝑇 (𝑥) = inf
𝜃′∈Θ

{𝑡(𝜃′) : 𝑥 ≤ 𝜑(𝜃′)} (1037)

Then 𝑡 and 𝑇 are monotone.

Proof. Fix 𝜃′, 𝜃 ∈ Θ such that 𝜃′ ≥ 𝜃. Given that 𝜑 is monotone, it is almost every-
where differentiable with derivative denoted by 𝜑′ when defined. By the Fundamental
Theorem of calculus, we can re-write the transfer function as

𝑡(𝜃) = 𝐶 + 𝑢(𝜑(0), 0) +

∫︁ 𝜃

0

(𝑢𝑥(𝜑(𝑠), 𝑠)𝜑
′(𝑠) + 𝑢𝜃(𝜑(𝑠), 𝑠)) d𝑠−

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠

(1038)
Subtracting 𝑡(𝜃) from 𝑡(𝜃′), we get

𝑡(𝜃′)− 𝑡(𝜃) =

∫︁ 𝜃′

𝜃

𝑢𝑥(𝜑(𝑠), 𝑠)𝜑
′(𝑠) d𝑠 (1039)

Given that 𝜑 ≤ 𝜑𝐴, and that 𝑢 is strictly quasiconcave in 𝑥, it follows that 𝑢𝑥(𝜑(𝑠), 𝑠) ≥
0 for all 𝑠 ∈ [0, 𝜃′]. Moreover, given that 𝜑 is monotone, it follows that 𝜑′(𝑠) ≥ 0

for almost all 𝑠 ∈ [0, 𝜃′]. Given that 𝜃′ ≥ 𝜃, Equation 1039 implies that 𝑡(𝜃′) ≥ 𝑡(𝜃).
Given that 𝜃′, 𝜃 were arbitrarily chosen, it follows that 𝑡 is monotone.

Next, fix 𝑥, 𝑦 ∈ 𝑋 such that 𝑦 ≤ 𝑥. Given that 𝜑 is monotone, the definition of 𝑇
implies that 𝑇 (𝑦) ≤ 𝑇 (𝑥). We then conclude that 𝑇 is monotone.

Lemma 25. A consumption function 𝜑 is implementable if and only if 𝜑 is monotone
and such that 𝜑 ≤ 𝜑𝐴. In this case, 𝜑 is supported by (𝜑, 𝑇 ), where 𝑇 is defined as in
Equation (1037) for some 𝐶 ≤ 0.1

Proof. (Only if). If 𝜑 is implementable, then there exists (𝜉, 𝑇 ) that support 𝜑. By
Incentive Compatibility and by the taxation principle, there exists a transfer function
𝑡 : Θ → R such that 𝑢(𝜑(𝜃), 𝜃) − 𝑡(𝜃) ≥ 𝑢(𝜑(𝜃′), 𝜃) − 𝑡(𝜃′) for all 𝜃, 𝜃′ ∈ Θ. By a
standard implementation result (see, e.g., Proposition 1 in Rochet, 1987), this implies
that 𝜑 is monotone. Finally, if there exists 𝜃 ∈ Θ such that 𝜑(𝜃) > 𝜑𝐴(𝜃), then we
would contradict Obedience for type 𝜃 since 𝑢(𝜑𝐴(𝜃), 𝜃) > 𝑢(𝜑(𝜃), 𝜃) and 𝜑𝐴(𝜃) would
be feasible given 𝜑(𝜃) by construction.

(If). Now suppose that 𝜑 is monotone and such that 𝜑(𝜃) ≤ 𝜑𝐴(𝜃) for all 𝜃 ∈ Θ.
Define 𝑡 and 𝑇 given 𝜑 as in Equations 1036 and 1037 respectively. We next prove
that (𝜑, 𝜑, 𝑇 ) satisfies (O), (IC), and (IR).

1Observe that here the purchase function is 𝜉 = 𝜑.
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First, for every 𝜃 ∈ Θ, we have

𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 𝑢(𝜑(𝜃), 𝜃)− 𝑡(𝜃) =

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠− 𝐶 ≥ 0 (1040)

where the first inequality follows from the definition of 𝑇 and the last inequality
follows from 𝐶 ≤ 0 and 𝑢𝜃(𝜑(𝜃), 𝜃) ≥ 0 for all 𝜃 ∈ Θ (𝑢 is monotone increasing in 𝜃).
This proves Individual Rationality.

Next, assume toward a contradiction that Obedience does not hold. That is, there
exist 𝜃 ∈ Θ and 𝑦 < 𝜑(𝜃) ≤ 𝜑𝐴(𝜃) such that 𝑢(𝑦, 𝜃) > 𝑢(𝜑(𝜃), 𝜃). However, this yields
a contradiction with strict quasiconcavity of 𝑢 in 𝑥. Therefore, Obedience holds.

We are left to prove that (𝜑, 𝜑, 𝑇 ) satisfy Incentive Compatibility. Fix 𝜃′, 𝜃 ∈ Θ

such that 𝜃′ ̸= 𝜃. We first prove that, for all 𝜃, 𝜃′, we have

𝑢(𝜑(𝜃), 𝜃)− 𝑡(𝜃) ≥ max
𝑥≤𝜑(𝜃′)

𝑢(𝑥, 𝜃)− 𝑡(𝜃′) (1041)

This is a variation of the standard reporting problem under consumption function 𝜑

and transfers 𝑡, where each agent, on top of misreporting their type, can freely dispose
of the allocated quantity. Violations of this condition can take two forms. First, an
agent of type 𝜃 could report type 𝜃′ and consume 𝑥 = 𝜑(𝜃′). We call this a single
deviation. Second, an agent of type 𝜃 could report type 𝜃′ and consume 𝑥 < 𝜑(𝜃′). We
call this a double deviation. Under our construction of transfers 𝑡 and monotonicity
of 𝜑, by a standard mechanism-design argument (e.g., Proposition 1 in Rochet, 1987),
there is no strict gain to any agent of reporting 𝜃′ and consuming 𝑥 = 𝜑(𝜃′). Thus,
there are no profitable single deviations under (𝜑, 𝑡).

We now must rule out double deviations. Define the value function 𝑉 : Θ → R
under 𝜑 and 𝑡 as

𝑉 (𝜃) = 𝑢(𝜑(𝜃), 𝜃)− 𝑡(𝜃) =

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠− 𝐶 (1042)

Suppose, toward a contradiction, that there exists a double deviation in which type 𝜃
reports type 𝜃′. We separate the argument by various cases comparing (𝜃, 𝜑(𝜃), 𝜑𝐴(𝜃))

and (𝜃′, 𝜑(𝜃′), 𝜑𝐴(𝜃′)).

1. 𝜃′ < 𝜃: Given that 𝜑 is monotone, it must be that 𝜑(𝜃′) ≤ 𝜑(𝜃). Moreover, as
(O) holds, we have that 𝜑(𝜃′) < 𝜑(𝜃). For the same reason, we have that 𝜑(𝜃′) is
optimal for type 𝜃′ when they could choose any 𝑥 ≤ 𝜑(𝜃′). Moreover, by strict
single-crossing of 𝑢 and strict quasiconcavity of 𝑢(·, 𝜃), it is optimal for type
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𝜃 to consume some 𝑥 ≥ 𝜑(𝜃′). But, we know that 𝑥 ≤ 𝜑(𝜃′); thus 𝑥 = 𝜑(𝜃′)

is optimal. Hence, if there is a double deviation with 𝜃′ < 𝜃, there is also a
single deviation. This is a contradiction as we already showed that there are no
strictly profitable single deviations.

2. 𝜃′ > 𝜃 and 𝜑𝐴(𝜃) ≥ 𝜑(𝜃′): the optimal choice of consumption for agent 𝜃
in [0, 𝜑(𝜃′)] is given by 𝜑(𝜃′) by strict quasiconcavity of 𝑢. Thus, there is a
profitable single deviation, which is a contradiction.

3. 𝜃′ > 𝜃 and 𝜑𝐴(𝜃) < 𝜑(𝜃′): We know 𝑥 = 𝜑𝐴(𝜃) is most attractive following the
misreport 𝜃′. Suppose that there exists some 𝜃 ∈ (𝜃, 𝜃′] such that 𝜑(𝜃) = 𝜑𝐴(𝜃).
Given that 𝑡 is monotone by Lemma 24, we know that a single deviation to 𝜃
is weakly more attractive than a double deviation to 𝑥 ≤ 𝜑(𝜃′). As no single
deviations exist, this is a contradiction. As 𝜑(𝜃) ≤ 𝜑𝐴(𝜃) < 𝜑(𝜃′), it follows
that no type 𝜃 ∈ (𝜃, 𝜃′] receives 𝜑𝐴(𝜃). We know that the most attractive
misreport is the smallest type 𝜃′ such that 𝜑(𝜃′) ≥ 𝜑𝐴(𝜃). It follows that 𝜑𝐴(𝜃) ≤
𝜑(𝜃′) ≤ 𝜑𝐴(𝜃′) and therefore that there exists some 𝜃 such that 𝜑𝐴(𝜃) = 𝜑(𝜃′),
by continuity of 𝜑𝐴.

We now work toward a contradiction. By the hypothesis of a double deviation
for type 𝜃:

𝑢(𝜑𝐴(𝜃), 𝜃)− 𝑡(𝜃′) > 𝑢(𝜑(𝜃), 𝜃)− 𝑡(𝜃) (1043)

Define for any type 𝜃, the value of optimal autarkic consumption as 𝑉 *(𝜃) =

𝑢(𝜑𝐴(𝜃), 𝜃). We can write 𝑉 *(𝜃) − 𝑉 (𝜃) > 𝑡(𝜃′). As we have ruled out single
deviations, we know that:

𝑢(𝜑𝐴(𝜃), 𝜃)− 𝑡(𝜃′) ≤ 𝑢(𝜑(𝜃), 𝜃)− 𝑡(𝜃) (1044)

Thus 𝑉 *(𝜃)−𝑉 (𝜃) ≤ 𝑡(𝜃′). Together, we then have that 𝑉 (𝜃)−𝑉 (𝜃) > 𝑉 *(𝜃)−
𝑉 *(𝜃). From the definition of 𝑉 in Equation 1042, the left-hand-side is 𝑉 (𝜃)−
𝑉 (𝜃) =

∫︀ 𝜃
𝜃
𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠. From the envelope theorem applied to the autarkic

consumption problem, the right-hand-side is 𝑉 *(𝜃)−𝑉 *(𝜃) =
∫︀ 𝜃
𝜃
𝑢𝜃(𝜑

𝐴(𝑠), 𝑠) d𝑠.
Combining these substitutions with the original inequality,

∫︁ 𝜃

𝜃

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠 >

∫︁ 𝜃

𝜃

𝑢𝜃(𝜑
𝐴(𝑠), 𝑠) d𝑠 (1045)

But we know that 𝜑𝐴(𝑠) ≥ 𝜑(𝑠) for all 𝑠 ∈ [𝜃, 𝜃], and this implies by single-
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crossing of 𝑢 that 𝑢𝜃(𝜑𝐴(𝑠), 𝑠) ≥ 𝑢𝜃(𝜑(𝑠), 𝑠), which contradicts the inequality
above.

We have ruled out double deviations in all cases and thereby completed the proof of
the claim in Equation 1041. We next prove that Equation 1041 implies that (𝜑, 𝜑, 𝑇 )
satisfy Incentive Compatibility. For all 𝜃 ∈ Θ, we have

𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜑(𝜃)) ≥ 𝑢(𝜑(𝜃), 𝜃)− 𝑡(𝜃)

≥ sup
𝜃′∈Θ

{︃
sup

𝑥∈𝑋:𝑥≤𝜑(𝜃′)
{𝑢(𝑥, 𝜃)} − 𝑡(𝜃′)

}︃
= sup

𝑥∈𝑋

{︃
sup

𝜃′∈Θ:𝑥≤𝜑(𝜃′)
{𝑢(𝑥, 𝜃)− 𝑡(𝜃′)}

}︃
= sup

𝑥∈𝑋
{𝑢(𝑥, 𝜃)− 𝑇 (𝑥)}

(1046)

yielding Incentive Compatibility. This concludes the proof of the implication.
The second part of the statement directly follows from the proof of sufficiency.

We now show that optimizing over the set of implementable allocations is equiv-
alent to maximizing virtual surplus subject to the implementation constraints from
Lemma 25.

Lemma 26. A consumption function 𝜑* is part of a solution to Problem 198 if any
only if it solves

max
𝜑

∫︁
Θ

𝐽(𝜑(𝜃), 𝜃) d𝐹 (𝜃)

s.t. 𝜑(𝜃′) ≥ 𝜑(𝜃), 𝜑(𝜃) ≤ 𝜑𝐴(𝜃), 𝜃, 𝜃′ ∈ Θ : 𝜃′ ≥ 𝜃

(1047)

Proof. We begin by eliminating the proposed allocation and transfers from the ob-
jective function of the seller. From the proof of Lemma 25, we have that every
implementable 𝜑 is supported by 𝜉 = 𝜑 and by a price schedule 𝑇 defined as in Equa-
tion 1037 where the transfer function 𝑡 is defined in Equation 1036 for some constant
𝐶 ≤ 0. Given that any 𝜉 that supports 𝜑 leads to the same seller payoff, we can then
set 𝜉 = 𝜑 without loss of optimality. Moreover, we know that 𝜑 being implementable
is equivalent to 𝜑 being monotone increasing and 𝜑 ≤ 𝜑𝐴 (given that 𝐶 ≤ 0). Fi-
nally, it is not optimal for the seller to exclude any agent from the mechanism as it is
without loss to allocate any agent 𝑥 = 0 rather than exclude them owing to the fact
that 𝜋(0, ·) = 0, 𝑢(0, ·) = 0, 𝑢(𝑥, ·) is monotone increasing over Θ, and 𝑢 has strict
single-crossing in (𝑥, 𝜃). In particular, for any incentive compatible allocation that
excludes some type 𝜃, it is without loss of optimality to set 𝜑(𝜃) = 𝜉(𝜃) = 𝑡(𝜃) = 0.
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Each agent is indifferent between participation and not, and this does not change the
principal’s payoff.

Plugging in the expression (1036), we can simplify the expression for the seller’s
total transfer revenue as the following:∫︁

Θ

𝑡(𝜃) d𝐹 (𝜃) =

∫︁
Θ

(︂
𝐶 + 𝑢(𝜑(𝜃), 𝜃)−

∫︁ 𝜃

0

𝑢𝜃(𝜑(𝑠), 𝑠) d𝑠

)︂
d𝐹 (𝜃)

=

∫︁
Θ

(︂
𝐶 + 𝑢(𝜑(𝜃), 𝜃)− (1− 𝐹 (𝜃))

𝑓(𝜃)
𝑢𝜃(𝜑(𝜃), 𝜃)

)︂
d𝐹 (𝜃)

(1048)

where the final equality follows by applying the standard integration-by-parts argu-
ment.

Plugging into the seller’s objective, we find that the principal solves:

max
𝜑,𝐶

∫︁
Θ

(𝐽(𝜑(𝜃), 𝜃) + 𝐶) d𝐹 (𝜃)

s.t. 𝐶 ≤ 0, 𝜑(𝜃′) ≥ 𝜑(𝜃), 𝜑(𝜃) ≤ 𝜑𝐴(𝜃) ∀𝜃, 𝜃′ ∈ Θ : 𝜃′ ≥ 𝜃

(1049)

It follows that it is optimal to set 𝐶 = 0, completing the proof.

Proof of Proposition 21. By Lemma 26, any optimal consumption function must solve
Problem 1047. Consider now the family of problems max𝑥∈[0,𝜑𝐴(𝜃)] 𝐽(𝑥, 𝜃), indexed by
𝜃 ∈ Θ. As 𝐽 is strictly quasiconcave in 𝑥, there is a unique maximum in this problem,
which we call 𝜑*(𝜃). Moreover, whenever 𝜑𝑃 (𝜃) < 𝜑𝐴(𝜃), we know that 𝜑*(𝜃) = 𝜑𝑃 (𝜃).
Otherwise 𝜑*(𝜃) = 𝜑𝐴(𝜃), by strict quasiconcavity of 𝐽 in 𝑥. Thus, the solution of
this pointwise problem is 𝜑*(𝜃) = min

{︀
𝜑𝐴(𝜃), 𝜑𝑃 (𝜃)

}︀
. As 𝜑𝐴 and 𝜑𝑃 are monotone,

𝜑* is monotone and is therefore the unique solution to Problem 1047.

We next prove the remaining parts of the statement by explicitly constructing
the claimed supporting price schedules and purchases. From Lemma 25, we can
construct the claimed formula for the price schedule directly. Because 𝜑* is invertible
over (𝜑*(0), 𝜑*(1)) and using its extension on the boundaries (see Footnote 14), we
have that for all 𝑥 ∈ 𝑋* = [𝜑*(0), 𝜑*(1)]:

𝑇 *(𝑥) = 𝑡(𝜑*−1

(𝑥)) = 𝑢(𝑥, 𝜑*−1

(𝑥))−
∫︁ 𝜑*

−1
(𝑥)

0

𝑢𝜃(𝜑
*(𝑠), 𝑠) d𝑠 (1050)

As 𝑇 * is monotone, it is almost everywhere differentiable. Moreover, whenever it is
differentiable, by differentiating Equation 1050 we obtain 𝑇 *′ (𝑥) = 𝑢𝑥(𝑥, 𝜑

*−1
(𝑥)).

Integrating, we obtain the price schedule in Equation 203 on 𝑋*.
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Finally, we show that the optimal level of consumption is supported by any selec-
tion from Ξ𝜑* , and only by selections from Ξ𝜑* . To this end, consider the selection
𝜉 ∈ Ξ𝜑* defined as 𝜉 = maxΞ𝜑* . We want to show that the triple (𝜑*, 𝜉, 𝑇 *) satis-
fies Obedience, Incentive Compatiblility, and Individual Rationality. We now define
𝑡 = 𝑇 * ∘ 𝜉.

Consider first the Obedience constraint that 𝜑*(𝜃) ∈ argmax𝑥∈[0,𝜉(𝜃)] 𝑢(𝑥, 𝜃), for all
𝜃 ∈ Θ. Observe that 𝜑* ≤ 𝜉 by construction of 𝜉. Moreover, toward a contradiction,
suppose that there exists 𝜃 ∈ Θ and 𝑥 ≤ 𝜉(𝜃) such that 𝑢(𝜑*(𝜃), 𝜃) < 𝑢(𝑥, 𝜃). There
are two cases:

1. If 𝜑*(𝜃) < 𝜑𝐴(𝜃), then by construction 𝑥 ≤ 𝜉(𝜃) = 𝜑*(𝜃) < 𝜑𝐴(𝜃) implying
that 𝑢(𝜑*(𝜃), 𝜃) ≥ 𝑢(𝑥, 𝜃) by strict quasiconcavity of 𝑢(·, 𝜃), hence yielding a
contradiction.

2. If 𝜑*(𝜃) = 𝜑𝐴(𝜃), then by construction 𝑢(𝜑*(𝜃), 𝜃) ≥ 𝑢(𝑥, 𝜃) yielding a contra-
diction.

Consider now the Incentive Compatibility constraint that for all 𝜃 ∈ Θ:

𝜉(𝜃) ∈ argmax
𝑦∈𝑋

{︂
max
𝑥∈[0,𝑦]

𝑢(𝑥, 𝜃)− 𝑇 *(𝑦)

}︂
(1051)

and define 𝑔(𝑦, 𝜃) = max𝑥∈[0,𝑦] 𝑢(𝑥, 𝜃). Toward a contradiction, suppose that there
exist 𝜃, 𝜃′ ∈ Θ such that 𝑔(𝜉(𝜃), 𝜃)− 𝑡(𝜃) < 𝑔(𝜉(𝜃′), 𝜃)− 𝑡(𝜃′). There are two cases to
consider:

1. If 𝜑*(𝜃′) < 𝜑𝐴(𝜃′), then Ξ𝜑*(𝜃
′) = {𝜑*(𝜃′)}. Thus, 𝜉(𝜃′) = 𝜑*(𝜃′). Hence:

𝑔(𝜑*(𝜃), 𝜃)− 𝑡(𝜃) = 𝑔(𝜉(𝜃), 𝜃)− 𝑡(𝜃) < 𝑔(𝜉(𝜃′), 𝜃)− 𝑡(𝜃′) = 𝑔(𝜑*(𝜃′), 𝜃)− 𝑡(𝜃′)

(1052)
where the first equality follows by Obedience, the inequality follows by hypoth-
esis, and the last equality follows as 𝜉(𝜃′) = 𝜑*(𝜃′).

2. If 𝜑*(𝜃′) = 𝜑𝐴(𝜃′), then define 𝜃′′ = inf
{︁
𝜃 ∈ Θ : 𝜃 ≥ 𝜃′, 𝜑*(𝜃) < 𝜑𝐴(𝜃)

}︁
. Note

that, by monotonicity of 𝜑* and by construction of 𝜉, we have 𝜑*(𝜃′′) = 𝜉(𝜃′′) =

𝜉(𝜃′). Moreover, by construction we necessarily have that [𝜃′, 𝜃′′] ⊆
{︁
𝜃 ∈ Θ : 𝜑*(𝜃) = 𝜑𝐴(𝜃)

}︁
.

Therefore, by Equation 1039 in Lemma 24, we have that:

𝑡(𝜃′′)− 𝑡(𝜃′) =

∫︁ 𝜃′′

𝜃′
𝑢𝑥(𝜑

𝐴(𝑠), 𝑠)
(︀
𝜑𝐴
)︀′
(𝑠) d𝑠 = 0 (1053)
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by optimality of 𝜑𝐴(𝑠) for all 𝑠 ∈ [0, 1]. Thus, 𝑡(𝜃′) = 𝑡(𝜃′′) and we have that:

𝑔(𝜑*(𝜃), 𝜃)− 𝑡(𝜃) = 𝑔(𝜉(𝜃), 𝜃)− 𝑡(𝜃) < 𝑔(𝜉(𝜃′), 𝜃)− 𝑡(𝜃′) = 𝑔(𝜑*(𝜃′′), 𝜃)− 𝑡(𝜃′′)

(1054)
where the first equality is by Obedience, the inequality is by hypothesis and the
second equality follows as 𝜑*(𝜃′′) = 𝜉(𝜃′) and 𝑡(𝜃′) = 𝑡(𝜃′′).

In both cases, there exists 𝜃′′ ∈ Θ such that 𝑔(𝜑*(𝜃), 𝜃)−𝑡(𝜃) < 𝑔(𝜑*(𝜃′′), 𝜃)−𝑡(𝜃′′) (in
case 1, 𝜃′′ = 𝜃′). This contradicts the fact that (𝜑*, 𝜑*, 𝑇 *) is implementable, which
we established in Lemma 25. Thus, Incentive Compatibility is satisfied.

Finally, consider the Individual Rationality constraint that 𝑢(𝜑*(𝜃), 𝜃)−𝑇 *(𝜉(𝜃)) ≥
0 for all 𝜃 ∈ Θ. Observe that 𝑇 *(𝜉(𝜃)) = 𝑇 *(𝜑*(𝜃)) for all 𝜃 such that 𝜑*(𝜃) < 𝜑𝐴(𝜃).
When 𝜑*(𝜃) = 𝜑𝐴(𝜃), we have that 𝑇 *(𝜉(𝜃))−𝑇 *(𝜑*(𝜃)) =

∫︀ 𝜉(𝜃)
𝜑*(𝜃) 𝑢𝑥(𝑧, 𝜑

*−1
(𝑧)) d𝑧 = 0

as all types that consume between 𝜑*(𝜃) = 𝜑𝐴(𝜃) and 𝜉(𝜃) consume their bliss point,
by construction. Thus, 𝑇 * ∘ 𝜉 = 𝑇 * ∘ 𝜑* and by implementability of (𝜑*, 𝜑*, 𝑇 *) (see
Lemma 25), Individual Rationality holds.

This proves that (𝜑*, 𝜉, 𝑇 *) is implementable and therefore optimal. We now argue
that for any other selection 𝜉 ∈ Ξ𝜑* , the triple (𝜑*, 𝜉, 𝑇 *) is necessarily implementable
and therefore optimal. Indeed, by way of contradiction, suppose that the latter is not
implementable. It follows that (𝜑*, 𝜉, 𝑇 *) is not implementable either as all feasible
deviations under purchase function 𝜉 are still feasible under 𝜉 and 𝑇 * ∘ 𝜉 = 𝑇 * ∘ 𝜉.
However, this contradicts our demonstration that (𝜑*, 𝜉, 𝑇 *) is implementable.

We finally show that if 𝜉 ̸∈ Ξ𝜑* , then it is not part of an optimal contract. We
will use the observation that all agents’ payments to the seller are pinned down
by the envelope formula for 𝑡. There are two cases to consider. First, suppose
that there exists a 𝜃 ∈ Θ such that 𝜉(𝜃) ̸= 𝜑*(𝜃) and 𝜑*(𝜃) < 𝜑𝐴(𝜃). If 𝜉(𝜃) <
𝜑*(𝜃), then 𝜑*(𝜃) ̸∈ [0, 𝜉(𝜃)], which makes 𝜑* infeasible. If 𝜉(𝜃) > 𝜑*(𝜃), then,
as 𝜑*(𝜃) < 𝜑𝐴(𝜃), 𝑡(𝜃) is strictly increasing at 𝜃. Thus 𝑇 *(𝜉(𝜃)) > 𝑡(𝜃), which
is a contradiction. Second, suppose that there exists a 𝜃 ∈ Θ such that 𝜉(𝜃) ̸∈
[𝜑𝐴(𝜃), inf𝜃′∈[𝜃,1]

{︀
𝜑*(𝜃′) : 𝜑*(𝜃′) < 𝜑𝐴(𝜃′)

}︀
] and 𝜑*(𝜃) = 𝜑𝐴(𝜃). Once again if 𝜉(𝜃) <

𝜑*(𝜃), then 𝜑*(𝜃) ̸∈ [0, 𝜉(𝜃)], which makes 𝜑* infeasible. If 𝜉(𝜃) > inf𝜃′∈[𝜃,1]
{︀
𝜑*(𝜃′) : 𝜑*(𝜃′) < 𝜑𝐴(𝜃′)

}︀
,

then as before 𝑇 *(𝜉(𝜃)) > 𝑡(𝜃), which is a contradiction.

F.1.2 Proof of Proposition 22, Corollary 13, and Corollary 14

Proof of Proposition 22. We first prove that 𝐻(𝑥) > 0 implies that 𝑇 *(𝑥) is flat at 𝑥,
for any 𝑥 ∈ 𝑋*. By the definition of a multi-part tariff, this will also prove that 𝑇 * is
a multi-part tariff. Consider first any 𝑥 ∈ Int(𝑋*), where Int(·) denotes the interior
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of a set. Observe that 𝜑* = min{𝜑𝑃 , 𝜑𝐴} is invertible over Int(𝑋*). Suppose now
that 𝐻(𝑥) = 𝐽𝑥(𝑥, (𝜑

𝐴)−1(𝑥)) > 0 and define 𝜃(𝑥) = (𝜑*)−1(𝑥). It is either the case
that 𝑥 = 𝑥 (which is not in Int(𝑋*)), or 𝜑𝐴(𝜃(𝑥)) < 𝜑𝑃 (𝜃(𝑥)). Thus, when 𝐻(𝑥) > 0,
𝜑𝐴(𝜃(𝑥)) < 𝜑𝑃 (𝜃(𝑥)), so 𝜑*(𝜃(𝑥)) = 𝜑𝐴(𝜃(𝑥)). As 𝜑𝐴 and 𝜑𝑃 are continuous functions
by the Theorem of the Maximum and invertible at 𝑥, we can find a neighborhood
𝑂(𝑥) of 𝑥, such that for all 𝑥′ ∈ 𝑂(𝑥), and corresponding 𝜃′ = (𝜑*)−1(𝑥′), we have
that 𝜑*(𝜃′) = 𝜑𝐴(𝜃′). To see that prices are constant on 𝑂(𝑥), take any two points
𝑥1, 𝑥2 ∈ 𝑂(𝑥), and observe that (by Equation 203 of Proposition 21):

𝑇 (𝑥1)− 𝑇 (𝑥2) =

∫︁ 𝑥1

𝑥2

𝑢𝑥(𝑧, 𝜑
𝐴−1

(𝑧)) d𝑧 = 0 (1055)

by optimality of 𝑧 for type 𝜑𝐴−1
(𝑧), which implies the necessary optimality condition,

for all 𝑧 ∈ [𝑥2, 𝑥1], 𝑢𝑥(𝑧, 𝜑𝐴
−1
(𝑧)) = 0. It remains to consider all 𝑥 ̸∈ Int(𝑋*).

Continuity of 𝐻 implies the result for the boundary points of 𝑋*.2 Thus, we have
shown that, if 𝐻(𝑥) > 0, then there exists a neighborhood of 𝑥 such that prices are
constant, proving the claim.

We now prove that, for every 𝑥 ∈ 𝑋*, if 𝑇 * is a multi-part tariff that is flat at
𝑥, then 𝐻(𝑥) ≥ 0. First, consider 𝑥 ∈ Int(𝑋*). If 𝑇 is flat at 𝑥, then there exists a
neighborhood 𝑂(𝑥) such that for all 𝑥1, 𝑥2 ∈ 𝑂(𝑥), we have that 𝑇 (𝑥1)− 𝑇 (𝑥2) = 0.
Thus, by Equation 203 of Proposition 21, we have that

∫︀ 𝑥1
𝑥2
𝑢𝑥(𝑧, 𝜑

*−1
(𝑧)) d𝑧 = 0 for

all 𝑥1, 𝑥2 ∈ 𝑂(𝑥). Thus, we have that 𝑢𝑥(𝑧, 𝜑*−1
(𝑧)) = 0 (as 𝑢𝑥(𝑧, 𝜑*−1

(𝑧)) ≥ 0 by
Obedience) for almost all 𝑧 ∈ 𝑂(𝑥). By strict quasiconcavity of 𝑢, this implies that
𝜑*−1

(𝑧) = 𝜑𝐴
−1
(𝑧) for almost all 𝑧 ∈ 𝑂(𝑥). Toward a contradiction, suppose that

𝐻(𝑥) < 0. By continuity of 𝐻, there exists a neighborhood 𝑂′(𝑥) ⊆ 𝑂(𝑥) such that
𝜑*−1

(𝑧) = 𝜑𝑃
−1
(𝑧) < 𝜑𝐴

−1
(𝑧) for all 𝑧 ∈ 𝑂′(𝑥). But we have already shown that

𝜑*−1
(𝑧) = 𝜑𝐴

−1
(𝑧) for almost all 𝑧 ∈ 𝑂(𝑥). This is a contradiction, and so 𝐻(𝑥) ≥ 0.

It remains to consider all 𝑥 ̸∈ Int(𝑋*). As before, continuity of 𝐻 implies the result
for the boundary points of 𝑋*.3

Proof of Corollary 13. Immediate from Proposition 22 and the pricing-scheme defi-
nitions.

Proof of Corollary 14. By Proposition 22, if 𝐻(𝑥) > 0 at 𝜑𝐴(1), then 𝑇 * is flat at

2A neighborhood at max𝑋* is of the form (max𝑋* − 𝜀,max𝑋*] for some 𝜀 > 0, and at min𝑋*

of the form [min𝑋*,min𝑋* + 𝜀).
3A careful reader may ask why it is not true that 𝑇 * being flat at 𝑥 ∈ 𝑋* implies 𝐻(𝑥) > 0.

Toward a counter-example to this claim, suppose that 𝜑𝑃 ≡ 𝜑𝐴. We have that 𝑇 * is flat everywhere
but 𝐻(𝑥) ≡ 0.
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𝜑*(1) = 𝜑𝐴(1). Moreover, at 𝑥 = 𝜑𝐴(1), we have 𝐻(𝜑𝐴(1)) = 𝜋𝑥(𝜑
𝐴(1), 1). It follows

that, when 𝜋𝑥(𝜑𝐴(1), 1) > 0, 𝐻(𝜑𝐴(1)) > 0 and 𝑇 * features an unlimited subscription.
Likewise, if 𝐻(𝑥) > 0 at 𝜑𝐴(0), then 𝑇 * is flat at 𝜑*(0) = 𝜑𝐴(0). Moreover, at
𝑥 = 𝜑𝐴(0), we have 𝐻(𝜑𝐴(0)) = 𝜋𝑥(𝜑

𝐴(0), 0) − 1
𝑓(0)

𝑢𝑥𝜃(𝜑
𝐴(0), 0). It follows that,

when 𝑓(0)𝜋𝑥(𝜑𝐴(0), 0)− 𝑢𝑥𝜃(𝜑
𝐴(0), 0) > 0, 𝐻(𝜑𝐴(0)) > 0 and 𝑇 * features a trial.

F.1.3 Proofs of Propositions 23 and 24

Proof of Proposition 23. We first prove that 𝑉 (𝜃;𝑇 ) ≥ 𝑉𝑁(𝜃;𝑇 ), for all 𝜃 ∈ Θ. We
compare the values with and without free disposal to each type 𝜃 ∈ Θ under any 𝑇 :

𝑉 (𝜃;𝑇 ) = sup
𝑦∈𝑋,𝑥∈[0,𝑦]

{𝑢(𝑥, 𝜃)− 𝑇 (𝑦)} ≥ sup
𝑦∈𝑋

{𝑢(𝑦, 𝜃)− 𝑇 (𝑦)} = 𝑉𝑁(𝜃;𝑇 ) (1056)

because any payoff in the problem on the right of the inequality is attainable in the
problem on the left of the inequality.

We now show that 𝑉 *(𝜃) ≤ 𝑉 *
𝑁(𝜃), for all 𝜃 ∈ Θ. Without free disposal, the

optimal allocation is 𝜑*
𝑁(𝜃) = 𝜑𝑃 (𝜃). With free disposal, the optimal allocation is

𝜑*(𝜃) = min{𝜑𝐴(𝜃), 𝜑𝑃 (𝜃)}. It follows that 𝜑*(𝜃) ≤ 𝜑*
𝑁(𝜃) for all 𝜃 ∈ Θ. Using the

formula for agent welfare under the optimal mechanism (see Equation 1042), we can
then see that:

𝑉 *(𝜃) =

∫︁ 𝜃

0

𝑢𝜃(𝜑
*(𝑠), 𝑠) d𝑠 ≤

∫︁ 𝜃

0

𝑢𝜃(𝜑
*
𝑁(𝑠), 𝑠) d𝑠 = 𝑉 *

𝑁(𝜃) (1057)

for all 𝜃 ∈ Θ, where the inequality follows as 𝑢 is strictly single-crossing in (𝑥, 𝜃) and
𝜑* ≤ 𝜑*

𝑁 .
For the seller, by Proposition 21, we have that for all 𝜃 ∈ Θ:

Π*(𝜃) = max
𝑥∈[0,𝜑𝐴(𝜃)]

𝐽(𝑥, 𝜃) ≤ max
𝑥∈𝑋

𝐽(𝑥, 𝜃) = Π*
𝑁(𝜃) (1058)

The inequality follows because the problem without free disposal allows for more
choices of 𝑥 ∈ 𝑋.

Proof of Proposition 24. We first show how 𝐽 and 𝜑𝑃 change when (i) 𝜋 changes to
�̃� such that �̃�𝑥 ≥ 𝜋𝑥 and (ii) 𝐹 changes to 𝐹 such that 𝐹 dominates 𝐹 in the hazard-
rate order. Observe that 𝐽(·, 𝜃) increases pointwise for all 𝜃 ∈ Θ as we may write
(noting that 𝐽(0, 𝜃) = 0 by the properties that 𝑢(0, 𝜃) ≡ 𝜋(0, 𝜃) ≡ 0):

𝐽(𝑥, 𝜃) =

∫︁ 𝑥

0

[︂
𝜋𝑥(𝑧, 𝜃) + 𝑢𝑥(𝑧, 𝜃)−

1− 𝐹 (𝜃)

𝑓(𝜃)
𝑢𝑥𝜃(𝑧, 𝜃)

]︂
d𝑧 (1059)
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and see that the integrand, 𝐽𝑥(𝑧, 𝜃), increases pointwise under (i) and (ii). As 𝐽𝑥
increases pointwise and 𝐽 is strictly quasiconcave, we moreover have that 𝜑𝑃 increases
pointwise while 𝜑𝐴 remains unchanged. Let 𝜑𝑃 , 𝐽 , 𝑉 *, and Π* be evaluated at the
original 𝜋 and/or 𝐹 , and 𝜑𝑃 , 𝐽 , 𝑉 *, and Π̃* be the same objects evaluated at the new
�̃� and/or 𝐹 .

We first study consumer welfare and establish that 𝑉 * ≥ 𝑉 *. See that (by Equa-
tion 1042):

𝑉 *(𝜃) =

∫︁ 𝜃

0

𝑢𝜃(𝜑*(𝑠), 𝑠) d𝑠 ≥
∫︁ 𝜃

0

𝑢𝜃(𝜑
*(𝑠), 𝑠) d𝑠 = 𝑉 *(𝜃) (1060)

for all 𝜃 ∈ Θ, where the inequality follows as 𝑢 is strictly single-crossing in (𝑥, 𝜃)

and 𝜑* = min{𝜑𝑃 , 𝜑𝐴} ≥ min{𝜑𝑃 , 𝜑𝐴} = 𝜑*. Showing that 𝑉 *
𝑁 − 𝑉 *

𝑁 ≥ 𝑉 * − 𝑉 * is
equivalent to showing that 𝑉 *

𝑁 − 𝑉 * ≥ 𝑉 *
𝑁 − 𝑉 *, or (by Equation 1042):∫︁ 𝜃

0

[︁(︁
𝑢𝜃(𝜑

*
𝑁(𝑠), 𝑠)− 𝑢𝜃(𝜑

*(𝑠), 𝑠)
)︁
− (𝑢𝜃(𝜑

*
𝑁(𝑠), 𝑠)− 𝑢𝜃(𝜑

*(𝑠), 𝑠))
]︁
d𝑠 ≥ 0 ,∀𝜃 ∈ Θ

(1061)
There are three possible cases for each 𝑠 ∈ Θ to compute the integrand:

i 𝜑𝑃 (𝑠) < 𝜑𝐴(𝑠) and 𝜑𝑃 (𝑠) < 𝜑𝐴(𝑠). Hence: 𝜑*(𝑠) = 𝜑𝑃 (𝑠) = 𝜑*
𝑁(𝑠) and 𝜑*(𝑠) =

𝜑𝑃 (𝑠) = 𝜑*
𝑁(𝑠). In this case, the value of the integrand is zero.

ii 𝜑𝑃 (𝑠) < 𝜑𝐴(𝑠) and 𝜑𝑃 (𝑠) ≥ 𝜑𝐴(𝑠). Hence: 𝜑*(𝑠) = 𝜑𝑃 (𝑠) = 𝜑*
𝑁(𝑠) and 𝜑*(𝑠) =

𝜑𝐴(𝑠). Thus, the integrand is 𝑢𝜃(𝜑𝑃 (𝑠), 𝑠) − 𝑢𝜃(𝜑
𝐴(𝑠), 𝑠) ≥ 0 by strict single-

crossing of 𝑢.

iii 𝜑𝑃 (𝑠) ≥ 𝜑𝐴(𝑠) and 𝜑𝑃 (𝑠) ≥ 𝜑𝐴(𝑠), so 𝜑*(𝑠) = 𝜑𝐴(𝑠) and 𝜑*(𝑠) = 𝜑𝐴(𝑠). Thus,
the value of the integrand is 𝑢𝜃(𝜑𝑃 (𝑠), 𝑠) − 𝑢𝜃(𝜑

𝑃 (𝑠), 𝑠) ≥ 0 by strict single-
crossing of 𝑢.

Thus, the integrand is positive for all 𝑠 ∈ Θ and the claimed inequality holds.

We now study producer welfare and establish that Π̃* ≥ Π*. By Proposition 21,
we have:

Π̃*(𝜃) = 𝐽(𝜑*(𝜃), 𝜃) ≥ 𝐽(𝜑*(𝜃), 𝜃) ≥ 𝐽(𝜑*(𝜃), 𝜃) = Π*(𝜃) (1062)

where the first inequality is by feasibility of 𝜑* before and after the change (as 𝜑𝐴

is unchanged), and the second inequality follows as 𝐽 ≥ 𝐽 . Showing that Π̃*
𝑁(𝜃) −

Π*
𝑁(𝜃) ≥ Π̃*(𝜃)−Π*(𝜃) is equivalent to showing that Π̃*

𝑁(𝜃)− Π̃*(𝜃) ≥ Π*
𝑁(𝜃)−Π*(𝜃),
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or: (︁
𝐽(𝜑*

𝑁(𝜃), 𝜃)− 𝐽(𝜑*(𝜃), 𝜃)
)︁
− (𝐽(𝜑*

𝑁(𝜃), 𝜃)− 𝐽(𝜑*(𝜃), 𝜃)) ≥ 0 ,∀𝜃 ∈ Θ (1063)

We have that 𝜑*
𝑁(𝜃) = 𝜑𝑃 (𝜃) and 𝜑*

𝑁(𝜃) = 𝜑𝑃 (𝜃), and there are three cases for each
𝜃 ∈ Θ:

i 𝜑𝑃 (𝜃) < 𝜑𝐴(𝜃) and 𝜑𝑃 (𝜃) < 𝜑𝐴(𝜃), so 𝜑*(𝜃) = 𝜑𝑃 (𝜃) = 𝜑*
𝑁(𝜃) and 𝜑*(𝜃) =

𝜑𝑃 (𝜃) = 𝜑*
𝑁(𝜃). In this case, the value of the expression is zero.

ii 𝜑𝑃 (𝜃) < 𝜑𝐴(𝜃) and 𝜑𝑃 (𝜃) ≥ 𝜑𝐴(𝜃), so 𝜑*(𝜃) = 𝜑𝑃 (𝜃) = 𝜑*
𝑁(𝜃) and 𝜑*(𝜃) =

𝜑𝐴(𝜃). In this case, the value of the expression is 𝐽(𝜑𝑃 (𝜃), 𝜃)− 𝐽(𝜑𝐴(𝜃), 𝜃) ≥ 0

as 𝜑𝑃 is maximal for 𝐽 .

iii 𝜑𝑃 (𝜃) ≥ 𝜑𝐴(𝜃) and 𝜑𝑃 (𝜃) ≥ 𝜑𝐴(𝜃), so 𝜑*(𝜃) = 𝜑𝐴(𝜃) and 𝜑*(𝜃) = 𝜑𝐴(𝜃). In this
case, the value of the expression is

(︁
𝐽(𝜑𝑃 (𝜃), 𝜃)− 𝐽(𝜑𝐴(𝜃), 𝜃)

)︁
−
(︀
𝐽(𝜑𝑃 (𝜃), 𝜃)− 𝐽(𝜑𝐴(𝜃), 𝜃)

)︀
,

and we wish to show that this is positive. Now observe that we can write this
inequality as:

∫︁ 𝜑𝑃 (𝜃)

𝜑𝑃 (𝜃)

𝐽𝑥(𝑧, 𝜃) d𝑧 +

∫︁ 𝜑𝑃 (𝜃)

𝜑𝐴(𝜃)

(︁
𝐽𝑥(𝑧, 𝜃)− 𝐽𝑥(𝑧, 𝜃)

)︁
d𝑧 ≥ 0 (1064)

As 𝐽 is strictly quasiconcave and 𝜑𝑃 is 𝐽 maximal, we know that
∫︀ 𝜑𝑃 (𝜃)
𝜑𝑃 (𝜃)

𝐽𝑥(𝑧, 𝜃) d𝑧 ≥
0. Moreover, as 𝐽𝑥 ≥ 𝐽𝑥, we have that

∫︀ 𝜑𝑃 (𝜃)
𝜑𝐴(𝜃)

(︁
𝐽𝑥(𝑧, 𝜃)− 𝐽𝑥(𝑧, 𝜃)

)︁
d𝑧 ≥ 0. The

claimed inequality follows.

Thus, the expression in (1063) is positive for all 𝜃 ∈ Θ and the claimed inequality
follows.

F.2 Additional Results

F.2.1 Optimal Bunching and Free Disposal

This appendix extends our main analysis to cover cases in which the virtual surplus
function 𝐽 does not satisfy single-crossing and thereby allows for the possibility that
multiple buyer types bunch on the same level of consumption. We apply techniques
from Nöldeke and Samuelson (2007) to study the inverse problem of assigning types
to consumption. For this reason, we make make the additional assumptions that 𝐽 is
concave and that both 𝜋𝑥𝑥 and 𝑢𝑥𝑥𝜃 exist and are continuous.
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Denote an inverse consumption function by 𝜓 : 𝑋 → Θ. This corresponds to
an inverse of the standard consumption function 𝜑. For any monotone 𝜓, define the
correspondence:

Ψ(𝑥) =

[︂
lim
𝑦→−𝑥

𝜓(𝑦), lim
𝑦→+𝑥

𝜓(𝑦)

]︂
(1065)

which “fills in” discontinuities in the inverse consumption function.4 Moreover, define
the generalized inverse of 𝜑𝐴 as

(︀
𝜑𝐴
)︀[−1]

(𝑥) = min
{︀
𝜃 ∈ [0, 1] : 𝜑𝐴(𝜃) = 𝑥

}︀
. Our first

result concerns implementation in this setting.

Lemma 27. A consumption function 𝜑 is implementable and supported by (𝜑, 𝑇 ) if
and only if there exists a monotone inverse consumption 𝜓 : 𝑋 → Θ such that 𝜓(𝑥) ≥(︀
𝜑𝐴
)︀[−1]

(𝑥) for all 𝑥 ∈ 𝑋, 𝜃 ∈ Ψ(𝜑(𝜃)) for all 𝜃 ∈ Θ, and 𝑇 (𝑥) = 𝐶+
∫︀ 𝑥
0
𝑢𝑥(𝑧, 𝜓(𝑧)) d𝑧

with 𝐶 ≤ 0.

Proof. By construction, (𝑇, 𝜓) are consistent as defined in Equation 5 in Nöldeke
and Samuelson (2007). Moreover, 𝜑 ≤ 𝜑𝐴 if and only if 𝜓 ≥ (𝜑𝐴)[−1]. Therefore,
the statement immediately follows from Lemma 1 and Lemma 2 in Nöldeke and
Samuelson (2007) and the proof of Lemma 25 in this paper.

We now provide the solution to the seller’s screening problem. Toward simplifying
the seller’s problem, we define the following function:

𝐽(𝑥, 𝜃) = 𝑢𝑥(𝑥, 𝜃)(1− 𝐹 (𝜃)) +

∫︁ 1

𝜃

𝜋𝑥(𝑥, 𝑠) d𝐹 (𝑠) (1067)

Using this function as well as Lemma 27 in this paper and Remark 1 and Lemma 5
in Nöldeke and Samuelson (2007), we can re-express the seller’s problem as:

max
𝜓

∫︁ 𝑥

0

𝐽(𝑥, 𝜓(𝑥)) d𝑥

s.t. 𝜓(𝑥′) ≥ 𝜓(𝑥), 𝜓(𝑥) ≥
(︀
𝜑𝐴
)︀[−1]

(𝑥), ∀𝑥′, 𝑥 ∈ 𝑋 : 𝑥′ ≥ 𝑥

(1068)

The following result solves this problem and uses the solution to solve Problem 198.

Proposition 55. Problem 1068 is solved by the inverse consumption 𝜓* : 𝑋 → Θ

given by

𝜓*(𝑥) = max

{︂
arg max

𝜃∈[(𝜑𝐴)[−1](𝑥),1]
𝐽(𝑥, 𝜃)

}︂
(1069)

4Where we follow the convention from Nöldeke and Samuelson (2007) that:

lim
𝑦→−0

𝜓(𝑦) = 0, lim
𝑦→+𝑥

𝜓(𝑦) = 1 (1066)
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Moreover, Problem 198 is solved by 𝜑*(𝜃) = inf{𝑥 ∈ 𝑋 : 𝜓*(𝑥) ≥ 𝜃} for all 𝜃 ∈ Θ.

Proof. We first show that 𝐽 is supermodular. We follow Lemma 6 in Nöldeke and
Samuelson (2007) and observe that the cross partial derivative of 𝐽 is:

𝐽𝑥𝜃(𝑥, 𝜃) = − [𝑢𝑥𝑥(𝑥, 𝜃) + 𝜋𝑥𝑥(𝑥, 𝜃)] 𝑓(𝜃) + [1− 𝐹 (𝜃)]𝑢𝑥𝑥𝜃(𝑥, 𝜃) = −𝐽𝑥𝑥(𝑥, 𝜃)𝑓(𝜃) ≥ 0

(1070)
where the last inequality uses the concavity of 𝐽 and 𝑓 > 0. Next, we argue that
the correspondence 𝑥 ↦→ [(𝜑𝐴)[−1](𝑥), 1] is monotone in the strong set order (SSO).
This immediately follows from the fact that (𝜑𝐴)[−1] is increasing. We then apply
Theorem 4’ in Milgrom and Shannon (1994) to argue that 𝜓* is monotone. Since
𝜓* ≥ (𝜑𝐴)[−1], the inverse consumption function 𝜓* is implementable and therefore
optimal in Problem 1068.

We now prove the optimality of 𝜑* in Problem 198. Given that 𝜓* is mono-
tone and such that 𝜓* ≥ (𝜑𝐴)[−1], it follows that 𝜑* is also monotone and such
that 𝜑* ≤ 𝜑𝐴. Hence, by Lemma 25, it is implementable. Next, suppose there
exists an implementable consumption function 𝜑 such that

∫︀ 1

0
𝐽(𝜑(𝜃), 𝜃) d𝐹 (𝜃) >∫︀ 1

0
𝐽(𝜑*(𝜃), 𝜃) d𝐹 (𝜃). Given that 𝜑 is implementable, there exist (𝜉, 𝑇 ) that support

it. By the proof of Lemma 1 in Nöldeke and Samuelson (2007) it follows that there
exists an inverse consumption function 𝜓 such that 𝑇 (𝑥) = 𝑇 (0) +

∫︀ 𝑥
0
𝑢(𝑧, 𝜓(𝑧)) d𝑧.

In turn, Lemma 3 in Nöldeke and Samuelson (2007) implies that∫︁ 𝑥

0

𝐽(𝑥, 𝜓*(𝑥)) d𝑥 =

∫︁ 1

0

𝐽(𝜑*(𝜃), 𝜃) d𝐹 (𝜃) <

∫︁ 1

0

𝐽(𝜑(𝜃), 𝜃) d𝐹 (𝜃) =

∫︁ 𝑥

0

𝐽(𝑥, 𝜓(𝑥)) d𝑥

(1071)
contradicting the optimality of 𝜓* in Problem 1068. Therefore, 𝜑* solves Problem
198.

As in Nöldeke and Samuelson (2007), bunching manifests in the solution to this
problem as a discontinuity in the resulting inverse consumption function 𝜓. In par-
ticular, whenever 𝜓 is discontinuous the outcome at the discontinuity is assigned to
a positive measure of types.

As explained in Remark 3, these bunching regions in the type space do not generate
flat regions of the optimal price schedule. Similarly to Proposition 22, we can fully
characterize the regions where 𝑇 * is flat. These are the quantities 𝑥 where the local
constraint 𝜃 ∈ [(𝜑𝐴)[−1](𝑥), 1] in (1069) binds at the optimum. However, here we do
not assume strict concavity of 𝐽 since this would be equivalent to assuming strict
supermodularity of 𝐽 . Therefore, we cannot rely on first-order conditions to replicate
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Figure F-1: Multi-part tariff with bunching in Example 11.

the local characterization of Proposition 22. We conclude with an example in which
the optimal contract features both bunching and a multi-part tariff:

Example 11. Consumer preferences, the outcome space, and the external revenue
function are identical to those in Example 4. The type distribution has density

𝑓(𝜃) = 1 +
𝑘

2𝜋𝜔
(cos(2𝜋𝜔)− 1) + 𝑘 sin(2𝜋𝜔𝜃) (1072)

for some 𝑘 > 0 and 𝜔 > 0. We solve the example for 𝛼 = 1, 𝛽 = 0, 𝑘 = 1
2
, and 𝜔 = 3.

In Figure F-1, we plot 𝜑*(𝜃), 𝜓*(𝑥), and 𝑇 (𝑥) in the optimal contract. In the price
schedule, there is both an unlimited subscription and a free trial. A mass of types,
approximately between 0.15 and 0.29, is bunched at the allocation 𝜑* = 0.15. These
types all consume the maximum amount possible in the free trial. Anecdotally, this
is a common occurrence for free trials in practice (e.g., the free allotment of online
Wall Street Journal articles).
F.2.2 Competition and Free Disposal

In this appendix, we study the relationship between competition and optimal pricing
under free disposal. We do this by comparing our monopoly screening benchmark
with one model of perfect competition. We show that our results are robust to this
extension by demonstrating that zero marginal pricing is in fact more prevalent under
perfect competition.

The nature of perfect competition we consider is that our monopolist faces a per-
fectly competitive fringe of firms that can enter and displace them to serve the entire
market. In this case (as in, e.g., Grubb, 2009), the equilibrium contract maximizes
expected consumer surplus subject to our usual implementation constraints and a
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new constraint that the monopolist actually wishes to serve the market. That is, the
screening problem becomes:

sup
𝜑,𝜉,𝑇

∫︁
Θ

(𝑢(𝜑(𝜃), 𝜃)− 𝑇 (𝜉(𝜃))) d𝐹 (𝜃)

s.t. (O),(IC),(IR)∫︁
Θ

(𝜋(𝜑(𝜃), 𝜃) + 𝑇 (𝜉(𝜃))) d𝐹 (𝜃) ≥ 0

(1073)

The last constraint, which we call “Monopolist’s IR,” encodes the requirement that
the monopolist wishes to serve the market compared to an outside option of earning
nothing.

Toward characterizing the solution of this problem, define the total surplus func-
tion as 𝑆(𝑥, 𝜃) = 𝜋(𝑥, 𝜃) + 𝑢(𝑥, 𝜃). In analogy to our assumptions that 𝐽 is strictly
single-crossing and strictly quasiconcave, we assume that 𝑆 is strictly single-crossing
in (𝑥, 𝜃) and strictly quasiconcave in 𝑥. We further define the total surplus maximizing
consumption level as 𝜑𝑂(𝜃) = argmax𝑥∈𝑋 𝑆(𝑥, 𝜃).

Proposition 56. The equilibrium consumption under perfect competition is 𝜑𝑃𝐶 =

min{𝜑𝐴, 𝜑𝑂}.

Proof. As in the proof of Lemma 26, we have that agents’ transfers under any lo-
cally incentive compatible menu are given by Equation 1036 for some 𝐶 ∈ R. We
can therefore rewrite the objective (using the same integration-by-parts argument as
Lemma 26) as:

−𝐶 +

∫︁
Θ

1− 𝐹 (𝜃)

𝑓(𝜃)
𝑢𝜃(𝜑(𝜃), 𝜃) d𝐹 (𝜃) (1074)

By integrating over types, we can then express the monopolist’s IR constraint as:∫︁
Θ

(︂
𝜋(𝜑(𝜃), 𝜃) + 𝑢(𝜑(𝜃), 𝜃)− 1− 𝐹 (𝜃)

𝑓(𝜃)
𝑢𝜃(𝜑(𝜃), 𝜃)

)︂
d𝐹 (𝜃) + 𝐶 ≥ 0 (1075)

Thus, the optimal 𝐶 sets this inequality tight. Substituting, we obtain that the
objective function becomes

∫︀
Θ
𝑆(𝜑(𝜃), 𝜃) d𝐹 (𝜃). Moreover, by the same arguments as

in Lemma 25, the remaining implementation constraints are that 𝜑(𝜃) ≤ 𝜑𝐴(𝜃) for all
𝜃 ∈ Θ, 𝜑 is monotone increasing and 𝑢(𝜑(0), 0)− 𝑡(0) ≥ 0. By identical arguments to
Proposition 21 (as 𝑆 is strictly single-crossing and quasiconcave), it follows that the
optimal consumption levels satisfy 𝜑𝑃𝐶(𝜃) = min{𝜑𝐴(𝜃), 𝜑𝑂(𝜃)}, which is monotone.
Moreover, 𝑡(0) = 𝐶 + 𝑢(𝜑𝑃𝐶(0), 0) ≤ 0 as 𝐶 is negative and 𝑢(𝜑𝑃𝐶(0), 0) ≥ 0 as
𝜑𝑃𝐶(0) ∈ [0, 𝜑𝐴(0)].
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We now show that zero marginal pricing is more prevalent under perfect compe-
tition:

Corollary 18. The set of outcomes at which there is flat pricing under perfect com-
petition includes the set of outcomes at which there is flat pricing under monopoly
pricing.

Proof. Define 𝐻𝑃𝐶(𝑥) = 𝑆𝑥

(︁
𝑥,
(︀
𝜑𝐴
)︀−1

(𝑥)
)︁

for all 𝑥 ∈ 𝑋* and observe that:

𝐻𝑃𝐶(𝑥) = 𝑆𝑥

(︁
𝑥,
(︀
𝜑𝐴
)︀−1

(𝑥)
)︁
= 𝑢𝑥

(︁
𝑥,
(︀
𝜑𝐴
)︀−1

(𝑥)
)︁
+ 𝜋𝑥

(︁
𝑥,
(︀
𝜑𝐴
)︀−1

(𝑥)
)︁

≥ 𝑢𝑥

(︁
𝑥,
(︀
𝜑𝐴
)︀−1

(𝑥)
)︁
+ 𝜋𝑥

(︁
𝑥,
(︀
𝜑𝐴
)︀−1

(𝑥)
)︁
−

1− 𝐹
(︁(︀
𝜑𝐴
)︀−1

(𝑥)
)︁

𝑓
(︀
(𝜑𝐴)−1 (𝑥)

)︀ 𝑢𝑥𝜃

(︁
𝑥,
(︀
𝜑𝐴
)︀−1

(𝑥)
)︁

= 𝐽𝑥

(︁
𝑥,
(︀
𝜑𝐴
)︀−1

(𝑥)
)︁
= 𝐻(𝑥)

(1076)

Thus, 𝐻(𝑥) ≥ 0 =⇒ 𝐻𝑃𝐶(𝑥) ≥ 0. Hence, by an identical argument to Proposition
22, whenever 𝑇 * is flat, so is 𝑇 𝑃𝐶 .

The intuition for this result is that there are no quantity distortions from in-
formation rents under the competitive solution. Thus, total-surplus-maximizing con-
sumption is greater than virtual-surplus-maximizing consumption, and the constraint
𝜑 ≤ 𝜑𝐴 binds more often.

F.3 Microfoundations of Revenue from Usage

F.3.1 Network Effects from Platform Externalities

Sellers may value usage because it makes the platform more valuable for other end
users. That is, usage generates network effects. Examples include networking ser-
vices (e.g., LinkedIn), matching services (e.g., Tinder, Match.com, or OK Cupid),
online games (e.g., Fortnite, Candy Crush Saga, or World of Warcraft), and content-
streaming platforms with social rating systems (e.g., Hulu or Netflix).

The function 𝑊 : 𝑋 × Θ → R+ maps each agent’s consumption to a positive
externality for every agent. Agents’ payoffs if they participate, given a consumption
function 𝜑, are:

𝑣
(︁
𝑥, 𝜃, (𝜑(𝑠))𝑠∈[0,1]

)︁
= 𝑢(𝑥, 𝜃) +

∫︁ 1

0

𝑊 (𝜑(𝑠), 𝑠) d𝐹 (𝑠) (1077)
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with the maintained assumption of a zero outside option otherwise. The rest of the
model is as in Section 6.2. The externality of others’ usage is obtained by an agent
whenever they use the platform at the extensive margin. This makes the model
amenable to settings where an agent may gain from participating, even if they do not
regularly use the platform. For example, having a LinkedIn profile may generate the
“passive” benefit of being findable by job recruiters, even if the user spends essentially
zero time using the website. In analogy to the main analysis, we assume that the
modified virtual surplus function

𝐽†(𝑥, 𝜃) = 𝜋(𝑥, 𝜃) + 𝑢(𝑥, 𝜃) +𝑊 (𝑥, 𝜃)− 1− 𝐹 (𝜃)

𝑓(𝜃)
𝑢𝜃(𝑥, 𝜃) (1078)

is strictly quasiconcave in 𝑥 and strictly single-crossing in (𝑥, 𝜃). We now show how
this setting maps to our baseline setting of Section 6.2.

Lemma 28. Optimal consumption is given by 𝜑*(𝜃) = min{𝜑𝐴(𝜃), 𝜑𝑃 (𝜃)}, where
𝜑𝐴(𝜃) = argmax𝑥∈𝑋 𝑢(𝑥, 𝜃) and 𝜑𝑃 (𝜃) = argmax𝑥∈𝑋 𝐽†(𝑥, 𝜃).

Proof. Observe first that the externality cannot affect the Obedience or Incentive
Compatibility constraints since it has no dependence on consumer choice. The In-
dividual Rationality constraint becomes 𝑣

(︁
𝜑(𝜃), 𝜃, (𝜑(𝑠))𝑠∈[0,1]

)︁
≥ 0. The same ar-

guments from the proof of Lemma 26 imply that, without loss of optimality, we
can restrict attention to allocations in which all agents participate (as 𝑊 ≥ 0), but
now where 𝐶 =

∫︀
Θ
𝑊 (𝜑(𝜃), 𝜃) d𝐹 (𝜃). Thus, by Equation 1049, the objective of the

monopolist is now
∫︀
Θ
𝐽†(𝑥, 𝜃) d𝐹 (𝜃) and the constraints are the same as those in

Equation 1047. The result then follows by application of the arguments in the proof
of Proposition 21.

Intuitively, since the externality is excludable, or not available to agents that
do not participate in the mechanism, the seller can extract the full value of the
externality as part of a “participation fee.” Thus, each agent’s marginal contribution
to the externality, 𝑊 (𝑥, 𝜃), is “as if” additional usage-derived revenue.
F.3.2 Irrational Addiction

Addicted users are commonly cited as a major source of revenue for digital goods
(see, e.g., Allcott, Gentzkow, and Song, 2022). In this appendix, we describe a simple
microfoundation of how external revenue could be derived from irrational addiction
of consumers.

Suppose that agents live for two periods but are myopic. Let 𝑥 ∈ 𝑋 be the
agent’s consumption today (𝑡 = 0) and �̃� ∈ 𝑋 their consumption tomorrow (𝑡 = 1).
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An agent of type 𝜃 ∈ Θ believes they have lifetime payoff from consumption 𝑥 given
by 𝑢(𝑥, 𝜃), where 𝑢 satisfies our running assumptions. In reality, however, the agent
also values consumption tomorrow. Moreover, the more (or less) that they consumed
today the more (or less) they value consumption tomorrow. Thus, at 𝑡 = 1, the
agent has utility function �̃� : 𝑋2 × Θ → R, where 𝑢(𝑥, �̃�, 𝜃) is their payoff. This
complete myopia can be thought of as an extreme form of the inattention toward habit
formation that Allcott, Gentzkow, and Song (2022) find is necessary to empirically
rationalize the total demand for six ubiquitous mobile apps (Facebook, Instagram,
Twitter, Snapchat, web browsers, and YouTube).

Observe that given a full-revelation mechanism (or equivalently under observa-
tion of agent consumption under an implementable mechanism), the seller knows the
agent’s type tomorrow. Thus, when agents consume 𝑥 today and their type is 𝜃,
tomorrow the monopolist sells them �̃�*(𝑥, 𝜃) ∈ argmax�̃�∈𝑋 �̃�(𝑥, �̃�, 𝜃) and charges a
transfer of 𝜋(𝑥, 𝜃) = �̃�(𝑥, �̃�*(𝑥, 𝜃), 𝜃) to extract full surplus. Thus, from the perspec-
tive of today, the monopolist faces the non-linear pricing problem we study in the
main text, with an external revenue function 𝜋 that captures the gains from addicting
a user through contemporaneous consumption and extracting this surplus from them
in the future.

F.3.3 Overconfidence

A natural reason why a seller may allocate more of a good than an agent wants ex post
is that the agent expected to want something different ex ante. This story is at the
heart of Grubb (2009)’s analysis of selling to overconfident consumers and his leading
example of pricing cell phone plans, a context in which individuals regularly (based
on anecdotes and empirical exploration) underestimate the variance of their future
demand (see also Grubb and Osborne, 2015). We now illustrate how over-confidence
at the participation stage can be mapped to our framework as a particular external
revenue function.

The Grubb (2009) model is a monopoly pricing model, with continuous, increasing,
and convex production costs 𝐾(𝑥) and no additional revenue from usage. The twist
relative to the standard model is that agents decide whether to participate ex ante
without knowing their type 𝜃, but with a prior belief 𝜃 ∼ 𝐹 which may differ from
the objective truth 𝜃 ∼ 𝐹 (see Grubb (2009) for the full details of the model). The
common individual rationality constraint for all consumers is that the expected payoff
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at the allocation (𝜑(𝜃), 𝜉(𝜃), 𝑡(𝜃))𝜃∈Θ exceeds the outside option 0, or∫︁ 1

0

(𝑢(𝜑(𝜃), 𝜃)− 𝑡(𝜃)) d𝐹 (𝜃) ≥ 0 (1079)

We derive the following mapping of the Grubb (2009) model into ours:

Lemma 29. The optimal consumption in the monopoly problem of Grubb (2009) is
equal to the consumption that solves Problem 198, with 𝜋(𝑥, 𝜃) = 1−𝐹 (𝜃)

𝑓(𝜃)
𝑢𝜃(𝑥, 𝜃)−𝐾(𝑥)

Proof. This follows immediately from our Lemma 26 and Proposition 1 in Grubb
(2009).

Observe first that, in a classical model with correctly specified expectations 𝐹 = 𝐹 ,
the first term in 𝜋 cancels with the information rents and the Obedience constraint
is always slack in the optimum. With mis-specified 𝐹 ̸= 𝐹 , the first term and in-
formation rents do not cancel. When the first term stemming from overconfidence
dominates both production costs and information rents on the margin at 𝑥 ∈ 𝑋, the
model generates 𝐻(𝑥) > 0 and multi-part tariffs. Grubb (2009) applies this model to
understand the occurrence of trial tiers (in our language) in cell phone pricing.
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