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ABSTRACT

An  implicit, one-step, forward gradient method 1is
devel oped for the time integration of stifef
elasto-viscoplastic equations ‘-of the internal variable
type. Our method refines and extends the method recently
proposed by Fierce, Shih and Needleman [1] in four important
respects: (1) It does not use the equivalent plastic strain
as an internal state variable. (2) It takes into account
any possible change in the "direction" of visco-plastic flow
in a time step. (3) It allows for an automatic control of
the time step based on certain accuracy considerations. And
(4) it is implemented in a state—-of—-the—-art robust,
general —-purpose, non-linear finite element code ABARUS [2].

Several representative problems are solved using
internal variable constitutive equations Ffor elevated
temperature deformation proposed by Anand (31. Special
attention is given to the solution of a creeping
thick-walled cylinder under internal pressure and, the
upsetting of a cvylindrical billet.
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Chapter 1

INTRODUCTION

In the past decade or so, a substantial body of work
[3-5] on internal variable constitutive equations has
devel oped. The main attributes of this class of
constitutive equations are that (a) they do not artificially
decompose the inelastic strain increment into a rate
idependent "plastic" part and a rate-dependent "creep" part:
(b) they do not use any vyield conditions or attendant
lcading/neutral -loading/unloading criteriaj and (c) they
employ scalar and tensor valued "internal" variables to
model the resistance to plastic flow offered by the internal
state aof the material. Such constitutive equations are
numerically very stiff [6], and this has prevented an easy
implementation of this class of constitutive equations into
general-purpose finite element codes. Recently, Fierce et
al [1] have developed an effective one step forward gradient
time integration scheme which 1leads to a tangent stiffness
type method for viscoplastic solids. However, the work of
Pierce et al [1] is limited in three important respects: (a)

it implicitly used the equivalent plastic strain as an



internal variable; (b) it did not account for any possible
change in the direction of the plastic flow in a time step;
and (c) it did not allow for an automatic control of the

time step.

It is the purpose of this thesis to report on our
attempts at extending the work of Pierce et al [1] to remedy
this differences. We also report on our successful efforts
to incorporate such a time integration procedure in a
robust, general-purpose, non-linear finite element program

ABRAOUS.

For simplicity we have limited our attention to
internal variable constitutive equations which employ only a
single scalar internal variable. In the application of our
analysis procedure to specific problems we have used the
special functional forms suggested by Anand [5]1 for the

elevated temperature deformation of metallic materials.

1.1 _FREVIOUS_WOREK_ON_THE_AREA

Numerical integration of stiff equations for inelastic
behavior has been researched by several investigators [6-8].
Most of the literature deals with methods to produce
accurate and stable solutions, regardless of the cost

involved during numerical implementation. One early attempt



to treat the numerical analysis of stiff equations was
performed by Cyr et al [71. They performed a finite element
sﬁlution of elastic-plastic—creep problems using
axisymmetric and plane stress conditions. This work
concluded that one of the major praoblems was the choice of
the right time increment size which largely depends on the
stress level and the change of the creep strain rate. The
method they proposed could easily be extended for other

plastic and creep flow laws.

Some ot these methods have been reviewed by Willam [8].
Based upon stability and accuracy criteria, he compared each
of the most used methods to solve stiff equations. Implicit
and explicit methods are the two main groups of numerical
integration methods, as presented by Willam, and the main
dicsadvantages of each group are discussed. The author
concludes that the use of implicit methods .such as the
Euler backwards method, are to be prefered if the solution’®s
stability is the major concern. This is so, because of the
unconditional stability property pertaining to implicit
procedures. The main disadvantage 1in using implicit
integration, as concluded by Willam, is that very expensive
interative techniques are required to reach approximate
solutions, thus reducing the solution procedure’s

effectiveness.

A good review of numerical integration methods of



unified plasticity-creep formulations is presented by Fkrieg
[6]1. He describes some of the most recent constitutive
models for plasticity-creep phenomena, using a generalized
framewortk based on a unified inelastic strain. As tkreig
observes, all these models are well behaved in some regions
and very Ystiff" in others. The use of conventi06a1
integration methods with these equations becomes totally
inadequate [6]. He suggests two integration methods that
could be used to solve stiff eguations: (1) an Euler forward
predictor method with a trapezoidal corrector and (2) a
backward Euler methnod with a Ficard interation. kreig,
based on theoretical analysis only, concludes that method
(2) will be best suited to solve these models, given its
unconditional stability property. No finite element form

was presented in his paper.

Shih, Delorenzi and Miller [9] present a study of
ceveral integration techniques to solve time dependent
constitutive equations. They tested esxplicit models, such
as Euler forward integration, as well as implicit techniques
such an implicit trapezoidal rule that uses a strongly
convergent Newton®s method. The investigators tested these
models with the help of a finite element program by solving
a thick walled tube under mechanical and thermal loadings.
They found that if the implicit method were modified by
introducing the Taylor®s expansion of the main variables,

thus removing the method’s implicitness [9]1, they could



obtain accurate and stable solutions with almost 1/5 of the

time that the Newton’ s method used.

Using a different method, Fierce et al. L1J analyzed
the solution of several rate dependent equations, such as
creep problems. The method they used is called the
#-method, proposed by [7] and extended by [101]. It uses two
parameters: the time step, dt, and the {-parameter. which
handles the method’s degree of implicitness. They solved
typical problems with different choices of @ and dt looking
for stability and accuracy. It is stated that since the
plastic strain changes with each time step increment,
additional restrictions on the choice of dt are imposed.
Thus, if thé plastic strain undergoes large changes from one
step to the other, smaller dt°s should be used, and larger
dt’s should be used for the opposite case. These findings
imply that only in certain parts of the test should small
dt’=s be used to assure stability, but larger dt’s can be
used for the remainder of the test.In this way the
effectiveness of the solution could be greatly improved.
Pierce et al made these time step changes manually. This
means they knew beforehand when the small time steps should
be used, a case that only occurs in a few problems. To
overcome this problem, some kind of automatic time step

control is desirable.



The purpose of this thesis is to develop a numerical
integration procedure based on the @-method and which uses
an automatic time step control strategy such an approach can

be used to solve hot working equations.

Towards this goal, a set of analytical models as well
as some experimental tests were implemented. Chapter 2
describes in detail the set of constitutive equations that
will be used in this research , as well as the general
notation followed. Chapter 3, contains a general study of
the =stability characteristics of the @-method and the
criterions for stability are presented. Also, a discussion
of stiffness of inelastic equations 1is presented. The
solution procedure to solve one dimensional problems is
shown in Chapter 4. A set of uniaxial loading cases are
model ed to show the effectiveness o+ the model
presented.Chapter 5 extends the procedure to a fully 3-D
case and examples are included. A thick wall cylinder
experiment is explained in Chapter & and compared with the
finite element solution results. FORTRAN codes used in this

research are presented in the appendices.



Chapter 2

CONSTITUTIVE EQUATIONS FOR HOT WORKING PROCESSES

<.1 INTRODUCTION

The constitutive equations uwused in this‘research are
the equations for the analysis of rate dependent
deformations of metals at high temperatures, developed by
Anand [S]1. The following chapter outlines these hot 'working
equations in both one and three dimensional formats. A full

description of the variable notation used is summarized.

First, we introduce the notation that will be followed

in this section:

- ‘5 denotes the deformation gradient

- 2 sym (_l'.z f_-;) is the stretching tensor
- W= skw (:E E-l) is the spin tensor



- T is the Cauchy stress tensor

- ? t= (detF)T is the Eirchhoff stress tensor

This notation will be used to describe the constitutive
equations for isotropic thermo—elasto—viscoplasticity with

isotropic hardening proposed by Anand [111,

2.2.1 The stress—-strain temperature relation

Let us assume that D, the total stretching, could be
written as the sum of 2?, the elastic stretching, and QP,

the plastic stretching

D=0D%+0P 2.2.1

Then, the Jaumann derivative of the kirchhoff stress can be

represented by

TV=L(D-DP) - 3eabt 2.2.2
Here

"V._& o~ ~

T':=T-WI+TW 2.2.3
where é is the temperature®s rate of change, ki{#&) is the

bulk modulus, and a«(®) corresponds to the coefficient of
thermal expansion. The elasticity tensor., L, is represented
by

L=2ul+(¢-®u)1@1 2.2.4

where p((a) is the shear modulus and 1 is the identity

tensor.



.2.2 the flaw rule

The plastic stretching can be expressed by
P U
(—) . 2.2.5

DP =
h 2T

<t

where ?' is the equivalent plastic strain rate, f? is stress

deviator, and T is the equivalent shear stress, given by
t=| [} trace(T7) 17 . 2.2.6
Equation 2.2.5 constitutes the flow rule to be used.

If we define an equivalent tensile stress such that

g=[)?7 | 2.2.7
and, an equivalent plastic tensile strain, gp represented by
3P
. Y
P - 2.2.8

ol

we could replace eq. 2.2.5 with

~
‘rl

QP - (3"/2) z.P ( ;:) 2-2.9
7

2.2.3 The evolution equation

The equivalent plastic strain rate, gp, used in
eq.2.2.8 is assumed to be a function of stress, temperature,
and a set of internal variables, an. The equivalent plastic

strain rate can be written as

P=f({ 7,8,a) 2.2.10



where  1is the function form of %p.Here, the set of
variables L consist of several values which represent the
material’s internal behavior. As an approximation and to
sase the numerical analysis, 1t 1is assumed that . is
composed of a single variable s, which represents an
intrinsic deformation resistance to plastic flow offered by
the internal defect and microstructural state of the
material element [5]. Thus, the evolution of the variable s

can be assumed to be a function of stress, temperature, and

s, such that

s=h{ 7,9,s: . 2.2.11

s could be assumed to be formed by two different functions

since it ie assumed that s can change even if €P=0. Thus,
® P - '.:'F' i .
s=h({7,9,5i% -r{9,s}; . 2.2.12

where h represents the strain hardening rate and r
represents the rate of static recovery of s. Furthermore, we
can also represent the strain hardening rate as two
components, h1 and h which represent strain hardening and

2

strain softening respectively. Thus

h Er',é,s}:h1 { -':F,G,s)-hz( 7 ,9,s ) 2.2.13

So far, we have presented a general format for the
development of elasto-viscoplastic equations with isotropic
hardening. We now proceed to present Anand’s ([10]
equations, which are special cases of equations 2.2.10 to

[J
2.2.11. The equivalent plastic strain rate, %p’ is assumed



to be
-8 L t/m
fiFs3i=Alaxpi—Dii L T /53
R3S

(RN}
ro

\

S

where R is the universal gas constant, Q& represents the
material’es activation energy. m is the strain rate
sensitivity, and A 1s a nonzero positive parameter. The

variable m is assumed to be a function of temperature onlvy.

The evolution of the internal variable s, from

eq.2.2.11 can be written as

s
L) s ~
s=h(l-—= P-r : 2.2.13
where
* .2F' < n
s =3 axp | — ¢ | 2.2..8

A =3

Where hD and s are material guantities.

The degree of agreement between the theory proposed by
Anand and experimental stress—-strain data for an Fe-0.03
weight percent steel at elevated temperatures as shown 1n
his figures 1 and 2 of his 1982 paper are reasonable. It is
important to note that no equations for the static
restoration function r were proposed by Anand [3] because af
lack of adequate data. However, Anand (111 has recently
suggested that the following empirical form of the static

restoration function should be



Y
‘e

; S
JIE( — - )T 2.2.17

r=uAB{ag(

) L

RS
where B and p are additional material constants, sa 15 the
fully annealed value of s and < x r is the singularity map
defined by
M
X if X»0 !

(&}
5
A

(x): | L, 2.2.19
. : 70
i .

Far purposes of numerical experimentation we adopt this form

here.

In addition to the equations given above, we will

assume that the temperature 6 evolves according to

® Q -~ - =
5= T . P 2.2.'9
i = =

Where p is the mass density and C the specific heat. This
evolution equation for © assumes na thermal conductiaon.
With ©0.85<w<l may suitable represent the temperature change
under very rapid loadings. Of course, to calculate é, in

general one has to solve the coupled thermo mechanical

problem.

We will first discuss ow time integration procedure

- 20 -



for one-dimensional problems. For such situations the
constitutive equations analogous to those of the previous

section are: (a) the rate stress temperature relation

a:E(E-éF‘_\.-:‘ikaé 2.

L
y—-

(b) the flow rule

~y
. . .-\".-, . .‘1-"-'71 .. - -
F=a LEXE L —— 51 7 787 sign o 2.2.2
XY
(c) the evolution equation for s is
s . J' - s
s=hyil-—5) 1P| -ABE{exp{ ; - 2.3.3
S l R4S s
a
1
where
S =g{——=axp | — " 2.3.4
A RS

and (d) the evolution for @ under the assumptions of no

thermal conduction is

pre]

S=(—iizli® 2.3.3

[l



Chapter 3

NUMERICAL INTEGRATION PROCEDURE

=21 INTRODUCTION

The following chapter presents the numerical procedure
that we have used throughout our worlk. Stability
analysis,corresponding to the numerical scheme, 1is also
shown. The stiffness term is defined and a justification
for the usefulness of the integration method to solve stiff

equations is given.

3.2 _NUMERICAL _INTEGRATION_SCHEME

With the plastic strain law expressed in eq. 2.2.14 it

is possible to find the solution of Gpn+l at a future time

n+1 if we know the value of €P at time t=t" using

t=t

Gpn+1 = epn + Aepn ' 3.2.1

where the increment d€_ ( we will use d for A for the rest

of this paper), the plastic strain increment, is defined by



AP =at [(1-¢)f +of ] 3.2.2

where # represents the function of the plastic strain rate,
and the parameter 2 has the following possible and

meaningful values
0< <1 3.2.3

This time integration procedure 1is called the @-method and
it is classified as a linear, one step scheme of order one

£121].

By setting #=0, we obtain the Euler forward integration
scheme, which 1s also referred as a fully explicit method
since the plastic strain increment is completely determined
by "explicit" conditions existing at tn [iZ]. On the other
hand, if @=1, the method gives a fully explicit ( or
backward difference ) method., with the plastic strain
increment determined from "implicit" strain rates
corresponding to the end of the time interval. In general,
for any value of 0:0, there is a certain degree of

implicitness introduced in the method.

It can be shown [14] that the time integration scheme
presented by eq. 3.2.2 is unconditionally stable for values
of ©B30.5. This implies that the method is stable for any
choice of dt, but it does not guarantee the accuracy of the
solution. For this specific case, #0.5, the method is

considered an A-stable method of integration [12]. For the

- 2 -



case of @<0.5 the integration process is only conditionally
stable and the numerical time integration can only be stable

for values of dtn less than some critical value, dtc This

rt’
critical value can be shown [1]1 to be about 10% of the time
to reach yield strain, given a test strain rate. Thus,

using the equations of chapter 2, we can estimate this value

to be

3.2.4

m
Me

for the case of VYon Mises material, under a tenion test.
Here, S, is the initial value of s, E is the elasticity

modulus and é represents the test strain rate.

The problem of stiffness of nonlinear differential
equations has been known for some time. But, recently with
the availability of high speed computational methods and
systemé, the problem_has captured the attention of many
researchers around the field of engineering . The definition
of the problem is as follows: given a set of uncoupled

differential equations, is said to be stiff if

| Re! Amax) | 2> | Re (Amin ! | 3.4.1

where the eigenvalues are those of the Jacobian matris, ﬂ

[?]. This means, that having eigenvalues too far into the

- 24 -



left side of the complex plane will require very small
values of dt if we use @<1/2. The use of small dt’s makes
fhe whole procedure very expensive as a result of toco many
steps required to integrate over a long range of t. We can
solve this problem by using any A-stable method to integrate
the stiff equations , since the dt 1is not bound by any
stability condition. The only remaining consideration would
be the one related to the choice of dt to obtain accurate
solution. This suggestion was first made by Dahlquist

theorems for stiff equations [121].

It follows from the same Dahlquist theorems that the
value of @ which yields the smallest error constants is
#=1/2. So the closer we get to @=1, the bigger error we get
in approximating the exact solution, but, also a better
stability response 1is obtained. Then, since there 1is a
trade off between stability response and accuracy, the size
of ] should be picked taking into account this

considerations.

We can now check if the equations presented in chapter
2 are stiff or not. One way to find out 1is to compute for
the Jacobian®s eigenvalues and then ucse eq. Z.4.1 to check
for stiffness. However, in most cases 1involving stif+#
equations, finding the eigenvalues of J is not an easy task,
if possible at all. Therefore, we must use a different

approach based in the observation of the dependent

- 25 -



variables” evolution « Thus, recalling the set of
constitutive equations, it can be appreciated that the

stiffness arises from two sources

~ The plastic strain rate is strongly dependent on the
stress and the internal variable °s, which means that

®
small changes on ¢ and s causes large changes on eP.

- The evolution of s depends on the strain hardening rate
and recovery rate. When s approaches steady state, s
is given by a difference of two almost equal

quantities, any small change in ép,h and r would cause

large changes in s [?].

The integration time step, dt, depends on the magnitude of
the variations of f,h and r with respect to ¢ and s (similar
as to computing the Jacobian). Thus, 1f these changes are
very large (big eigenvalues), smaller dt’s will be required,

confirming the stiff properties of the equations .



Chapter 4

NUMERICAL SIMULATION OF UNIAXIAL PROBLEMS

4.1 INTRODUCTION

Having defined the specific form of the numerical
procedure used in this research, it remains to show how this
method of integration, combined with some form of automatic
time step control yet to be defined, can be successfully
applied to solve problems using the equations for hot

worlking processes presented in Chapter 2.

A series of numerical simulations have been performed
to model simple problems in both one and three dimensional
cases. These simulations were done using a VAX 11-780
computer, and, the more complicated problems involving
3-dimensional components, were implemented with the help of
the finite element program ABAGUS, developed by Hibbit et al

£21.

In the following chapter, one dimensional simulations
of simple problems are presented. Special tests such as

creep and cyclic loadings are emphasized.

- 27 -



Using eq’s 3.2.1 and 3.353.2 we can find the incremental
forms of the stress, temperature, internal variable s, and
the strain . The appropriate values of the variables in

question, at a future point in time t=tn+1’ are given by

= + 2
Ty =% Aan 4.2.1
P ~ (F F 4,2.2
€ L0 = ef + Ae a
s .. =S _+t A=_ 4.2.2
3 - + 9 4 -‘.4
“n+l 5n A n -

By using the @d-method, eq.3.2.2, we can find the increments
in the above equations. After some algebraic manipulation,
it can be shown that eq.’s 4.2.1 and 4.2.4 can be written as
functions of dSn and dépn only.This implies that it is only
necessary to find thecse two incremental values. We can find
the increment in the plastic strain def using EqQ.3.2.2 .

This increment is

- . o [ 1 2 3
Aepn =4t | -s"n + ¢( € .- e"_l) ; 4.2.2
[ ]
Here, the value of €n+1 is unknown, and so, it must be

expressed using it’s corresponding Taylor’s expansion about

as a first order Taylor’™s expansion, we

[ ]
. P
tn C1). Taking € n

+1
find that the approximation of deP is
rF =F 5
AE r. - n Atn 4.‘-6

s
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G. w Hn
U =se [ [E~(8-—)—o-1 —] 4.2.8

b ) 1 :'-‘ 4 D

1 n

where
- AtF o N = 'P = .P 4.2.9
G =8 s a3 D, =38 /37, I =38 /8s

Using eq. 3.2.2, the increment of the internal

variable S, dSn is expressed as

Asq:At_'[é =2 (5 -s_) 1] 4.2.10

(oY
IR

I

The result of the corresponding Taylor®s expansion,
sitbstituted into eq. 4.2.10 and after neglecting all terms

of order dt2 or higher, can be reduced to

s =H8 - AR 4.2.11
where
h?\
Lo 4.2.12
and ;
AR_ = o ©4.2.13
a L+ Pn

Here, the value of Pn is

- °p
Py=-¢at [CP +1h -K ] 4.2.14

where
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Using eq. 4.72.5 for the increment of the plastic strain. we
can write the corresponding temperature’s increment. This

increment is

AQ: = —:’? ‘a‘“lepni 4.

Mow, using the above equation and eq. 4,2,.6, we can write

o
(3}

the ctress increment used in 2q. 4.2.1 . This 1s

=T A _ P .
Ar.=E it - - A0 s

Alsc the increment on the total strain becomes

n n tele oo

(herm. wsing the increments  represented by 9.5 4. 2.9,

4.2.11,4.2.1%5, and 4.2.14 we can substitute back into =q.7s
4.2.1 to 4.2.4 and +ind the wvalues of ¢,5,€ and 6 =2t time

t=tn+l'

The appropriate choice of the time gstep 13 done by
means of an auvtomatic time step control algorithm, which is

based on the stability conditions presented in Chapter I.

4.% AUTOMATIC TIME_STEF_CONMTROL_ALGORITHM

As it was explained 1in Chapter I, tha use of the

d-method to integrate rate dependent equations requires a

- 3(:) —_



careful choice of the time step to be used at each
increment, based on certain considerations related to
stability and accuracy. However, it has been shown by
Pierce et al [1] that we can choose different time steps
during the integration, instead of a fixed time step for the
whole te§t region. This conclusion is made after observing
the behavior of the plastic strain rate, during the period
of any particular test. The plastic strain rate can change
dramatically in certain regions, but it could also remain
almost constant for other regions of the same test. For
example, let us consider a simple tension test of a material
which exhibits plastic behavior. It is known that the
plastic strain rate corresponding to the knee area undergoes
great changes in size, but, on the other hand in the steady
state stress region, the plastic strain rate remains almaost

constant.

Based on this particular behavior of the plastic
strain, we can infer that if the plastic strain rate changes
considerably, larger changes are to be expected for some of
the other variables in the material equations [91. In such a
case the time steps required to integrate this region need
to be small, que to the increased stiffness of the
equations. On the other hand, if the plastic strain rate
remains almost constant, it will be unnecessary to use small
time steps since the changes 1in the variables of the

equations are not too large.



Having these facts in mind, we have designed an
automatic time step control algorithm which will use the
maximum time step possible in every increment of the
integration. This means, that it will use small time steps
in areas of vastly changing plastic strain rates, and bigéer
time steps for areas of steady plastic strain rates. In
this way, the amount of steps required to integrate the
constitutive equations could be reduced by some amount,
without compromising the solution’®s accuracy. Based on this
criteria we have defined an error parameter which defines
the maximum allowable increment of the plastic strains,
which will be compared against the difference of plastic
strains at two consecutive increments. The result of such a
comparison will tell us if the size of the time step was the
appropriate one for the increment. This error parameter has

been called CETOL and is defined as

So
—_ 4.3.1
E

where & which controls the accuracy of the integration.

CETOL =

O

This CETOL value corresponds to § times the vield strain of

2

the material. A value of 10 < to 10~ for & has been found
to yield accurate solutions for most of the cases treated

during this investigation.

Once CETOL has been defined, the algorithm checks
XMDPE1, the max i mum difference of plastic strains

corresponding to the present increment. XMDPSI is expressed



as
XMDPSI = At (& - & ) 4.3.2

After this calculation is performed, the algorithm

calculates RI, the ratio of XMDPSI and CETOL, which is

represented by

XMDPSI
Rl = ————— 4.3.3

CETOL

Then, if the size of RI<1, the value of dtn is accepted as
the appropriate one and the increments of eq.'s 4.2.1 to
4.2.4 are computed. On the other hand if RI:1, the actual
time step is rejected and it is replaced by 0.85/RI times
the rejected time step. Then, XMDPSI is recomputed using
this new time step step. The process is repeated until

RI<1.

Once the incremental values have been computed, the
algorithm proceeds to determine the first trial value of the
time step that will be used at the next increment. The next

time step, dt is suggested as a multiple of the

n+1’

presently accepted time step, dtn, based on the size of RI.

The value of the next time step is equal to

- if 0.8<RIL1.0 then dtn =dtn

+1

- if 0.7<RIL0.8 then dtn+l=1'1dtn

= if 0.4<RI€0.7 then dtn+ =1.25dtn

1

- 1if 0.4¢RI then dtn+ =1.5dtn

1



Also, inside the algorithm there are procedures which will

limit the actual sizes of dtn to fall within a minimum and a
maximum time steps. These maximum and minimum values are

user supplied.

We could have used another measure for the time s£ep
control, other than XMDPSI. As an example, we could have
used the measure called XMDIVSI, the maximum difference of
the internal variable s increment, and have it compared to a
tolerance similar to CETOL. However, from the tests
performed in this research, we have found that XMDPSI
represents the most critical measure which changes by a
bigger amount than XMDIVSI. For this reason, we employ

XMDPSI.

Using the #-method in conjunction with the automatic
time step control outlined in this chapter, we have been
able to increase the effectiveness of the numerical
integration of rate dependent equations within acceptable

accuracy values.

A series of numerical exercises have been made using
the material parameters of Fe—-0.05 weight percent Carbon

steel, which values are shown in table 4.4.1. These tests
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TEMPERATURE 6=1323°K

VARIABLE VALUE UNITS
n 0.03 .
n 0.147 ane
A 1,007 1/sec
Q 2.7x1072 Joule
hy 1329.22 M MPa
s 147.06 MPa
R 8. 311:1‘)"3 Joule/®K
c 0.6482 Joule/°K gn
E 4,21x10° MPa
a 22x107% /%K
p 7.268 en/cn’
v 0.370 oo
Strair rate, 1/sec S, ItPa
2.3%10°2 47.11
2.x10™ 51.81
1410~ 48.25

TABLE 4.3.1 MATERIAL PROFERTIES OF
Fe-0.05 WEIGHT FERCENT CAREON STEEL
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were done to show the effectiveness of the automatic time
step control mechanism to integrate simple, one dimensional
problems, where there is only one component of strain and

one of stress, both in the same direction.

The specific parameters that were used in the numerical
method are
¢ =0.75
§=10"3

4.4.1

The minimum time step allowed, based upon equation 3.2.3, is

So
.lt.o =(.C! 4.4.2
E -
where € is the test’s strain rate. These parameters were

chosen based upon several parametric studies done which
incorporated the integration method proposed. They
represent an acceptable combination of accuracy and

stability.

The first series of tests show comparisons made between
the method proposed in this research and the Euler forward
method using a fivxed time step incrementation of Sdto, as
defined by eq. F.2.3. The test consisted of a simple
tension test at a constant strain rate %, where no recovery
effects and isothermal conditions where used; that is r=0
and w=0, respectively. Plots made of the results +or both

tests are shown in figure 4.4.,1. As it can be seen, both

tests show very similar results, but, as each data mark

- 346 -



STRESS, MPa

STRESS ,MPa

80 T T 1 1 T L 1 L
S50
40

30

20 r 0=1323°K .
§ €=2.3x10"2 sec”
10 g i
3
0 & 4 Y 1 1 1 1 . . - |
P.00 .02 0.04 .06 2.080.10 0.120.14 0.16 0.18
STRAIN
BULST METHCT
60 T I I . ’ : . .
S0 | N
40 | i
30 F =
20 | f=1323°K ]
é=2.3x10"% gec”!
10 .
g 1 | ) - A1 1 1 J 1

D.000.02 0.04 0.06 2.0B80.100.12 0.14 0.16 0.18

STRAIN

FIGURE 4.4.1 SIMULATION OF 1-D TENSION
TEST WITH NO RECOVERY EFFECTS



shows, our method of integration uses about 2/2 less time

steps than Euler’s method. It is important to look at these
graphs at how the distance between consecutive data points
is smaller around the knee area of the stress-strain curve,
and larger at the steady stress region of the same curve.
This observation confirms that the automatic time step

control mechanism is functioning properly.

In all the tests that follow, we will keep the
isothermal, no recovery rate conditions, unless otherwise

specified.

The second round of tests model a step
loading-unloading-reloading condition, using two different

strain rates. First, we use a positive strain rate éi’
® L]

until we reach a strain of 8%, then we unload using 618—61
until we reach a zero stress level. Then, we reload with a
different and larger strain rate 22. The result of such a
test is presented in figure 4.4.2. This test shows the
procedures’s ability to handle sudden changes in the sign of
the loading condition. It can easily be seen that the data
points behave in the form expected, changing fast enough to

handle step changes in the 1load input, thus resulting in a

smooth curve.

Figure 4.4.3 shows a series of tests that used a cyclic
strain loading condition. The purpose of this particular

test was to show how the strain-stress curve reach a steady



MPa

STRESS,

STRESS ., MPa

6@ I J 1 T 1 1 1 ¥
so |
40

30 |

0=1323°K

20 . -l -1 7
efl.hxlo sec
éfz.jxlo'z sec”!

10 -

@ 1 1 1 1
.00 0.02 .04 .06 .08 .10 0.12 0.14 0.16 0.18
STRAIN
60 T T L 1 1 T T 1

50

40

30

20

0=1323°K
é,=1.4x1074 sec™!

éz=2.3x10'2 sec™! ]|

10

1 1 i |

0.000.020.042.0602.080.100.120.14 0.16 0.18

STRAIN

FIGURE 4.4.2 SIMULATION OF A LOADING-UNLOADING
AND RELOADING TEST.



STRESS ,MPa

STRESS ,MPa

60 L L | 1 1 T L
6=1323° /i
O £=2,3x107% gec”!
20
0 -
-2@ -
-40 F
-60 | — T 1 1 1 1 1 1
-20 -15 -10 -9 1)) 5 19 15 20
E-3 -
STRAIN E-3
60 i 1 | 1
6=1323°K
YO §=2,3x10"2 gec”!

n
()

S 10 15 20

E-3 .
STRAIN E-3

FIGURE 4.4.3 SIMULATION OF CYCLIC STRAIN LOADING TEST

- 40 -~



state as the number of cycles increased. This behavior is
due to the evolution of the variable 8 reaching a saturation
value s‘. This rate dependent change needs to be handled by
the numerical integration procedure in a effective way if
any strain hardening effects are to be modeled. Once again,
the numerical method works well reducing the time step .at

every region required in each and every cycle.

In the next series of tests, we have included the
effects of static recovery (rf0) and the effects of
adiabatic temperature changes (w=0.95). The recovery rate r,

as defined by equation 2.2.17, used the following parameters

4.0
S

x 1C-?

P
E

which only represent a trial form of the recovery rate, as
suggested by Anand and Parks [151. This particular recovery
rate form has not been proven to be the correct +form

corresponding to this material.

The first test which included the above conditions was
a simple tension test at different strain rate levels. This
test emphasized the effects of recovery rate and thermal
rates when compared to a similar test where none of these
effects were considered. The results from this comparisons
are shown in figure 4.4.4 . In this figure, it can be
observed how the curves with the mentioned effects included,

reach a steady state stress much quicker. This is due to
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the increased softening behavior introduced by the recaovery
rate. Looking at the region before the knee area, we notice
that both sets of curves differ greatly as a result of the
large effects of thermal recovery imposed by the
non—-isocthermal condition. The introuduction of recovery
effects create large distortions which are not realistic
since the trial form of r has not been proven, as explained
in chapter 2. Also, it was noted that the inclusion of the
recovery rate and temperature rate, increased the number of
steps required to integrate the same strain range by about 3
times. This was due to the added non-linearities to the
plastic strain rate equation. In figure 4.4.5, we can
appreciate how the temperature and the internal variable s
increase with time, for the corresponding strain rates shown
in the 1last +Figure. It is important to note how the

temperature rises faster for larger strain rates.

Finally, a large strain tension test shows how the
temperature increase at large strain rates becomes so large
that the stresess reach a peak and then they start to
decrease.We attribute this to the big difference between the
initial temperature and the higher final temperature. The
thermal softening phenomena can be seen in figqure 4.4.6

quite clearly.

These simulations were performed with the use of a

FORTRAN subroutine, called HITREHD which includes our
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proposed numerical integration. The plots were performed
using PENFLOT software, part of the Joint Computer Facility

of M.I.T [16]1. The mentioned subroutines can be found in

appendix A.

Using the constitutive equations presented in chapter
2, we now present simulations of several creep tests. These
tests demonstrate the integration method®s ability to model

several kinds of rate dependent processes.

The first example simulates a simple creep test with a
step stress ;nput, as shown in figure 4.5.1. In this test,
the load was aplied at two different stress levels, with no
recovery effects included. The results of the strain
history shows a very smooth curve, with a calculated savings
of about 707 when compared to fiied time step integration
methods. This is based on the amount of cpu time used in
both cases. The results also show an accuracy good enough
to the second significant digit when compared against

classical models, such as the Euler forward method.

As a further example, using the same steel alloy, we
modeled a single step stress creep when recovery effects

were present. The results are shown in figure 4.5.2 . We
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used the same recovery parameters as the one presented in
section 4.2. This time, we observe a strain value of about
30% after 30 minutes, when a stress level of about 10 MFa is
maintained. This deformation seems resonable for the
mentioned alloy at a temperature of about 1300%: [£171. Al so,
in this test, the number of steps are increased due to the

recovery effects introduced.

At this point, the integration method proposed in this
thises performs very well when used to simulate simple one
dimensional problems. It shows 1large savings when compared
to other methods of integrations, while keeping the accuracy

and stability within acceptable limits.
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Chapter S

NUMERICAL SIMULATION OF MULTIAXIAL PROBLEMS

2.1 INTRODUCTION

We now have shown how successful the integration method
proposed in this research works in modelling  simple one
dimensional problems. However, in most real problems, more
than one dimensional strain and stress are present and so, a
more complex analysis must be done . In order to model
multiaxial problems we used the finite element code ABAGUS.
We have included a user material subroutine UMAT written by
FProfessor Anand £181, which incorporates the
elasto-viscoplastic equations that we have used during this
research into ABAOUS. Also, this subroutine includes the

time integration scheme proposed in this research.

In this chapter the incremental form of the
elasto-viscoplastic equations used in UMAT, are derived.
Also, several tests are performed to tast the integration
method’s ability to model simple plane strain and

axisymmetric problems. Also, a parametric study was made to
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find the optimal values of the #-method’'s parameters.

Using a similar procedure as the one used in section
4.2, we now present the incremental form of the 3-D
constitutive equations. This derivation was performed by

Anand [181 and its results were used to write UMAT.

The variables of interest at a future time tn+l are

T F +aT . 5.2.2

Tl Sipt ol o
-— - = <
Sary Sy TS 2.2.3
0, =6 +AS 5.2.4
P - r - O =
Vinet = an +oyP 3.2.2

To calculate the increment of the tensile plastic strain, we

use

Lol

er - P N 5.2.6

=Y
where E}represents the direction of the plastic straining.
Since the calculations performed to derive the increments of
equations 5.2.1 to 5.2.5 are excedingly long, we only
present the final form of the stress increment, eq. S.2.2.

A full derivation of these incremental forms are included in



appendixx H. Thus, we can write the increment of the

FKirchhoff stress as

- v ! fAt
AT =[L-{( ) —M®M] Ae - 3xeAB 1 - ( y M
1 g
+(,U—IF)——(T"A€) T" 9-2.7
o ~
where E.is defined as
L=27l+(k-BF)LOL
where p is defined as
! !
pE(—+—=) 5.2.0 ©=3G(PCa) at. 5.2.9
F h' hladid H
The value of M is
.u -o'_ - 2 1N
Mz[(:_)z J [ORY A AFRw]
and
T
hy = —— 5.2.11
YAt 4
Here, 6 is defined as
! om- M T e k
i POC (w/pC) T+ PCC (HE) | :
G=u-{ } 5.2.12
: PCA !
and
h - -
HE = 5.2.13
! + PDH
The incremental form of the material equations

presented were introduced in the material subroutine UMAT.

In this way ABARUS can take the increments of the stress



tensor and calculate <from that the increments of the

-

displacement. In ABAGUS, the spin terms of IY « the Jaumman
derivative of the kKirchhoff stress, egq. 2.2.3, are taken
care by the main body of the program. A modified version of
UMAT, to include the automatic time step control measures,

is presented in appendix A.

In this section we present the results of several
parametric studies done with the time integration procedure
proposed in this research. Such studies were done in order
to find an efficient combination of @ and dt to be used in

the 3-D problems.

Toward this purpose we tried simulations of cases that
approximated, in the best possible way, & 1-D tension test.
This was done using a single axisymmetric element mesh. The
possibility of necking 1is not allowed. To simulate a
constant true strain rate, we wrote a user subroutine called
DISP which translates the true strain rate to an equivalent
displacement. The mesh for this case can be seen in figure
5.3.1. The ABADUS input deck is found in Appendix C. The
material parameters used are the ones corresponding to
Fe-0.05% weight carbon steel, with the values found in table

4.3-1 Ll
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The +first series of tests were done by compairing
results from tension test simulations using ABAQUS, against
experimental data obtained from [S5]. The integration time

step used, dto’ based on the suggestions of section 4.4, is

So
Ato = 0.05
Ee
and the values of 6=0,0.25,0.5,0.75, and 1. These

comparisons are shown in figures S.3.2 to S5.3.3b. As it can
be observed, the model fits the experimental data fairly
well. At this point, using a time step of dto’ no
difference can be noticed between the results corresponding

to different @°s.

In order to check the effect of higher fixed time
steps, we performed similar tension tests using different
values of dt and different values of 6. In each test, we
fixed the time step to a multiple of dto and compared the
data for different @ against a "base" curve. The base curve
was computed with a fixed time step of dtD and @=0. The
first test uses a time step value of 2dto. The results are
ploted in figure 5.3.4 .As we can see, as the value of &
increased, the stress at the same strain decreased as
compared to the base curve. This agrees with the implicit
behavior of the integration method for @:0.0. Also, the
accuracy decreases slightly since we use one half as many

steps as the base curve. No oscillations of the solution
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were noticed.

Next, using a fixed time step of Sdto, we performed the
same tension test. The results are ploted in figure S.3.Sa
. As it can be observed, the accuracy bececmes less than the
previous test, and also, for the smallest value of "9,
@=0.25, the solution starts to oscillate slightly at the
knee area. As expected, the solution remains very stable
for larger values of @, but the accuracy obtained decreases
recspectively. Finally, using a fixed time step of IOdto .
we performed another tension test with the results obtained
shown in figure 5.3.5b . This time, for almost all the
values of @, the solution osciilates greatly,; except for the
value of @#=1. Here the solution only oscillates a little at
the knee region. The solution®s accuracy becomes very poor
for any of the values of @, but is extremely poor for @=1.
Here, the trade off between accuracy and stability can

easily be seen.

Finally, to test the method®s behavior for the case of
changing strain rates, we performea a <cyclic strain rate
test, using a fixed time step algorithm. After many trials,
it was found that a combination of 8=0.75 and a time step of
2dto vielded acceptable results. Compared to the base curve
the test showed accurate results. The results from this

comparison can be seen at figure 5.3.6 .

From all of the results obtained in this section, we
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conclude that a good parameter combination set to use
with the @#-method is
¢ =0.75

At < 2At,

where dt represents the maximum time step that can be used

in areas of large stiffness, such as the knee area.

In order to test the time integration procedure
proposed in this research with 3-D problems, we also made
use of the automatic time step control included in ARAQUS

£21.

The automatic time step control procedure used in
ABARUS is almost the same to the one we have outlined in
section 4.3, with the eiception of how the algorithms
handles the consecutive time step incrementation. The
ABAQUS automatic time step control uses a more conservative
incrementation of the time step in order to handle very
stiff equations. The integration scheme outlined in this
research will be used by ABAQUS, by means of the routine

UMAT.

The first test series were done for three different

tension tests using a constant true strain rates. These
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results were compared against the results from section 5.3,
and against experimental data. This comparison is shown in
figure 5.4.1. We see that the results of both tests are
fairly close, with the difference being that the run wusing
the automatic time step control used only 607 of the CFU
time that the fixed step run used. Thus, savings of 'up
about 40% in total Cpu time were obtained. The values of
CETOL and dto are the same values as the one defined in
section 4.3 and 4.4. We have also introduced a constrain in

the maximum time step allowed in order to obtain reasonably

accurate results. The parameters used are

Sg
Ato = 0.01 ‘—E-T s
Q
€ CETOL = 0.01 —
E
At = 15 Ato

max

The next series of tests were performed using a cyclic
loading history, using true strain rate cycles. Using the
above parameters for the integration procedure, we compared
results of the automatic time step control integration
against it’s fixed small time step counterpart, dt=2dto and

=0.0. We can see the results in figure S5.4.2. Again, the
results are very close to the base curve, and with a

calculated Cpu time savings of about S0%.

After proving the automatic time . step control’s
potential integrating one dimensional praoblems using ABAGUS,
we can now proceed and model much more complicated problems

that require multiaxial capabilities.
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A simulation has been done to show the solution of a
3-D case involving an axisymmetrical problem. This example
should give an idea of the great effectiveness of the

integration method to solve elasto-viscoplastic behavior.

The problem consisted of upsetting a cylindrical billet
made of steel, which was reduced by S0%Z of its original
leng*th. The equations for hot worhking processes were used
with no recovery effect, but with the inclusion of plastic
work heating (w=0.9). This problem is of great interest for
the manufacturing industry, especially when too high of a
temperature rise may degrade the material [19]). Also. for
this example, we used the assumption of adiabatic material

behavior.

The mesh wused in this analysis can be seen in figure
S5.5.1. Only the top half of the cylinder is shown.
Axisymmetric elements with reduced integration were used,
CAXBR, to model this example. The die was modeled as a
perfectly rigid surface which is completely rough. The
material equations were introduced by means of the UMAT
subroutine. The material parameters correspond to the steel

alloy used throughout this research.
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The analysis was performed using a slow upsetting,
where the S50%Z reduction of 1length took about 100 sec. The
die had a constant velocity to match this upseting. The

minimum value of dt that was used is dt=1.0 sec.

The results of this analysis can be seen in figures
$.5.2 to 5.%.4 . The first fiqure shows the deformed
configuration after the 5S0% reduction had taken place. The
following figures show the distributions of the plastic
strain and temperatures along the cylinder®s interior. As
it can be observed, peak strains of about 170% are found in
regions close to the center of the cylinder, and a
temperature rise of about 10°% in the regions close to the

center of the cylinder.
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Chapter 6

CREEP OF THICK WALLED CYLINDER UNDER INTERNAL PRESSURE

6.1 INTRODUCTION

Creep represents an important phenomena which is
present in metals at elevated temperatures, when subject to
a load. We now. present the experimental results of a
creeping thick walled cylinder subjected to a constant
internal pressure. The experimental results are compared to
results obtained from numerical simulations using the time

integration technique developed in this research.

6.2 PROEBLEM DESCRIPTION

The analysis of a thick walled cylinder under a
constant internal pressure constitutes a classical problem
in Creep theory. If the cylinder’s material is exposed to a

constant temperature higher then 0.4 times the material’s
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melting temperature, a cireep behavior can be observed if a
load condition exists. The secondary steady state creep
behavior can be modeled for some specific materials, at

least approximately, by using a power law model of the form

£=a3" 6.2.1
where the creep strain rate is expressed as a function of
the stress and the material®s constants A and n [17]. The

above relationship implies a linear behavior between strain

and time, for secondary creep only.

The theoretical solution for the creeping thick walled
cvlinder is a standard creep prablem . This solution is

summarized in Appendix D.

v

With the help of the equations presented in Appendi: D,
and with the equations of continuum mechanics, we are able
to find approximate values of the parameters A and n from
experimental measurements. It can be shown analytically
that having two sets of measurements, at different pressure
levels, the mentioned parameters can be obtained, given the
power law nature u# eq. 6.2.1. .Using these parameters, we
should be able to reproduce the enperimental results by
means of a finite element simulation using the time

integration technique presented in this research.



6.3_EXPERIMENTAL_PROCEDURE

The experimental setup was designed having in mind the
assumptions made in the analysis given in Appendix D. We
used a 1" gauge length sample of &0-40 Fb-Sn Vaculoy Solder
cylinder with an inside radius of a=0.1" and an outside
radius of b=0.2". The cylinder was locked into a special
support with two locking nuts which provided the constrains
required to simulate the plane strain condition, as seen in
fig. 6.37.1 . The bottom part of the cylinder was connected
to an o0il pump, which supplied the internal pressure
required. Once the pressure was ramped to the desired
level, we kept it constant and recorded the changes of the
outside diameter at fixed intervals of time. This
experiments were conducted for three different internal
pressures of 600,700 and 800 psi. For each pressure, we

recorded data until the cylinder burst.

60-40 Pb-Sn Solder was selected because at +room
temperature it is already above half its melting
temperature. No tests were done to find the basic material
parameters, such as elastic moduli, for the specific alloy
used. These parameters are assumed to be very close to the

properties available for this alloy in the literature [20].
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The results obtained from the experimentation are shown
in as a plot of outside diameter vs. time in fig 6.4.1.
Only the first 30 minutes of each test are included.
Included in fig. 6.4.2 is a photograph of the specimen
after the experiment at 700 psi. This <fracture occured

after 2 hours.

Using the data available from each of the tests
performed, we performed a linear squares fit approximation
to obtain the slope of each of the curves in fig. 6.4.1 .
Each of these slopes corresponds to the outside diameter
expansion rate, 6, at each pressure level. Then, the
constant outside wall displacement rate, Gr(b), where b is

the ouside radius, can be found using

. D
U(b)=— 6.4.1
r 2

Having found the corresponding displacements rates, it is
possible to find the corresponding radial strain rates at
the outer surface of the cylinder
()
0.(b)

b

from the same set of equations, we can obtain the radial

en.( b)=- 6.4.2

strain rate at the inside wall of the cylinder with
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bl
€ (a)= = €.(b) 6.4.3
a
Using equation o.4.3 and a log-log scale, we can plot
the radial strain rate at the inner wall, err(a), vs. the

corresponding radial stress at the inner wall,crr. We know

that this stress is equal to

onla)=-p
if we use the same assumptions presented in the Appendix D.
plot of the three different 'data points corresponding to
each pressure level can be seen in fig. 6.4.3 . Since the

radial strain rate at the inner wall is a function of

pressure

€.(a)=Ff(p) 6.4.4

the three point. .n fig. 6.4.3 should form a straight
line. The slope of this line corresponds to the material
parameter n, which in this case was found to be n=1.914.
With the value of n, it is then possible to find the value
of A by using equation 6.2.1 and the equations that define
equivalent strain rate and equivalent stress from the
tensorial components. First, since the radial stress at the

outer wall is

an_(b)=0
the equivalent stress at this location can be reduced to

F(b)=(3)¥o_(b) 6.4.5
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- . .
Since the axial strain rate ezz 1s zIero, we can express the

radial strain rate at the outside wall as

. 2
~C L4
€ = e (b) 6.4.6
@f T
From the Appendi:x, the equation for czz(b) is
7 (b)=§[a () +age(b)] 6.4.7
here, the values of crr(b) and cee(b) are taken from

Appendix D. Substituting the above equations, &.4.&4, 6.4.7
and 6.4.8, into 6.4.1 we find that the value of A is
2 €.(b)
n+l n
[ ™ (g (b))

A=

After introducing the corresponding values into eq.6.4.7,

the value of A becomes A=6.037:x10 .

If we compare the values found in this section for the

parameters A and n, with the values found by ather
researchers (20-231, we find that they are not in
agreement. Since neither the material used in this

experiment nor the actual experiment match exactly to the

ones on the literature, these differences are expected.

In order to check the time integration procedure’s
ability to simulate actual experimental results, we
performed a finite element simulation of this experiment.
This was done by running a simple axisymmetric mesh to model
the thick walled cvlinder. Such a mesh was formed of S

axisymmetric CAXBR type elements as shown in figure &.4.4 .
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The constitutive equations for this case, the power law
model, was introduced into ABAGUS by means of a specially
modified UMAT subroutine. This subroutine used the material
properties found in [21] corresponding to a medium sized
grain Solder. The values of A and n are the ones found from

the experimental values.

After running the simulation based on the abave
outline, we ploted the results of the experiment and the
ABAOUS results on fig. 6.4.5 . It can be appreciated how

well the simulation results reproduce the experimental data.
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Chapter 7

CONCLUSIONS

Analytical simulations and experimental results showed
that the time integration method proposed in this research
can effectively reduce the amount of computer time required
to solve problems related to rate dependent., high
temperature deformations of metals, when compared to more
classical modéls such as the Euler forward integration
scheme. The use of @=0.75 has been proven to vyield
unconditionally stable solutions, while introducing a small

ammount of inaccuracy.

Using the automatic time step algorithm described in
this research, the wuser can seclect a fixed tolerance
(CETOL) which controls the accuracy of the integration
results. This algorithm has been shown to reduce the nuber
of time steps by 40%-60%4 when used to solve uniaxial probems
while using no more than 2 interations per step in the areas

of large stiffrness.

The use of a user material subroutine UMAT introduced

into the finite element code ABAQUS has been succefully used



to solve simple elasto-vicoplastic problems. By using UMAT
we have succesfully extended the work of Fierce et al [1] to
a complete finite element application using ABABUS. Also, by
introducing the effects of changing plastic flow, we have
made the integration procedure compatible with more

sophisticated problems

Results of a thick walled cylinder under internal
pressure experiment has been succefully reproduced by using
the time integration technique proposed in this research.
Such findings prove the time integration abilities to solve

real life problems.

Further numerical analysis needs still to be
performed. The use of UMAT incorporated in ABAQUS should be
used to solve more realistic finite elements models in oder
to extend the validity of the integration method proposed.
Examples of such models are the simulations of fully coupled

temperature-deisplacement analysis, with the introduction of

non adiabatic conditions.
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c.i.i.l....lt.i.iﬂ...I..i'ﬁ.......l'ﬁ!t......i....il.l.l.tti

Subroutine Umat

c

¢

c This subroutine introduces the integration scheme

c into the ABAQUS codes. The Constitutiva equations used are
c the hot working equations developed by L. Anand. This

c subroutine can be used with the *VISCO procedure, and

(o with the automatic time step control optilon

c
c

SUBROUTINE UMAT (STRESS,STATEV,DDSDOE, SSE,SFD,
1SCD, STRAN, DSTRAN, TIME, DTIME , TEMP, DTEMP , PREDEF,
2DPRED,MATERL,N>I,NSHR, NTENS , NSTATV, PROPS,
3NPROPS.,

c.i‘l....l.tlll'.i....li.i....lll........ti....t.t.ll...'.ll

IMPLICIT REAL*8 (A-H,0-2Z)

c.t..............il....l.i....l.i..l‘t‘...i.....ﬂ.l...a..l..

COMMON/CERROR /RESMAX (30) , JNREMX (30) , ERRMAX (2) ,CETOL,CSLIM,

1 CEMAX,PCTOL, TLIMIT,PSUBIN,RESMIN, DUMAX {30) , JNDUMX (30) ,

2 ERRPRE,UDELSS, PTOL ,AMTOL ,DMKET , DMRETL , SIGTOL , DSIGMX.

3 UTOL,UMAX, UMAX, VMAX, VAMAX, AMAX , A4MAX , TMAX , EFPMAX , RMAX , R4MAX ,

4 mnjm".mm,mn.mm.nxm,chcs,nzm,nxm,mm;.

S RI

6. STRRAT, PCUT.RIKDLO

DIMENSION STRESS (NTENS) ,STATEV (NSTATV) .

1DDSDDE (NTENS , NTENS) , STRAN (NTENS) ,

2DSTRAN (NTENS) , PREDEF (1) ,DPRED(1) ,

3PRCPS (NPROPS) , COGRDS (3)

c.ﬁ.l.l..l.lﬁ........t....l.'lﬂ..il..t....ﬂllil...i.-'...i..

DIMENSION DSTRES (6) , STRESD (6)

c.&....l..l....i.......QQ........l.....l.i....l....i-.i..tlt

C ELASTIC SHEAR AND BULK MODULI
Costeeatieenotetaaeetesrineteienaeretanttncenentestasttnants
AMU=1.854E+3
AKAPPA=4.017E+3

ctltl.'l..l!....li...l.t....t..-tll.lO!.ﬁ.l...ﬁ'...t.llllll.

C COEFFICIENT OF THERMAL EXPANSION

c...ll.Q........i...........l....l.-G.i.lll-..ll....ll.tltl.

ALPHA=22 .0E-6

C'.Oﬂl.l...ﬁ..l..t......Il.........l....t.ilt'........ﬁliil-

C INITIAL VALUES OF STATE VARIABLES
Ce0000000eeaeeeenteentsdttataneaasinaiacscsnnansedstnnaees
S0n51.81/1.7321
TO=1223.0
EDOTO=1.D-10
Cattetaneeneestseateeteteisesteeanteanatsnstannaneseneenes
C THE PARAMETER PHI CONTROLS THE DEGREE OF IMPLICITNESS OF
C THE INTEGRATION PRCCEDURE:
C PHI=0,0 ---- EXPLICIT
C PHI=1.0 ---- IMPLICIT

c..'l.“...t'...lI.il.l.i..l.'.‘..'ll.l...t..l"l.tl.t.t..l.

PHI=0.75
Cottseneeeseteneeatieeeseestnestesasenaetsnasnnesstsandnnnce
C FOR ISOTHERMAL DEFORMATIONS SET QGMEGA EQUAL TO ZERO.

C EFOR ADIABATIC DEFORMATIONS THE PARAMETER OMEGA MUST BE
C SET TO A NON-ZERO VALUE OF APPROXIMATELY 0.9.

C RHO ---—-MASS DENSITY

C C ---—=SPECIFIC HEAT

c"l.ll......-l.i..l'...l..l....i!l....l.li.'...l.itlll-.l...
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CMEGA=0.9
RHO=7.3
C=0.669
ctl....l'...l..l....llll.u.'t....Oﬂ.l..ilil...l...!ll'tit.tﬁt
DO 10 Kl=1,NTENS
DSTRES (K1)=0.0
10 CONTINUE
c.Il.l....'.........l..........l.......!tl.....il!....l.t....
DO 20 Kl=1,NTENS
DO 20 K2=1,NTENS
DDSDDE (K1,K2) =0.0
20  CONTINUE

Cete ettt it 20RARR AR RN RARaRRARRORARRAnaRAdARRRReRadaRY

CALL SINV(STRESS,SINV1,SINV2)
c...l......-..l.t........l'.....'l..'ﬁlll..l........l...llﬂlﬁ
DO 30 Ki=1,NDI
STRESD (K1) =STRESS (K1) ~SINV1
30  CONTINUE

IF (NSHR.EQ.0) GO TO SO

I1=NDI
DO 40 K1=1,NSHR
I1=I1+1
STRESD (I1) =STRESS (I1)
40  CONTINUE
c
S0  CONTINUE
c..l..'..'l..Q'.it.-i.l.i.....l.'..'.l.....tﬂiitﬁillllt.lli‘.'
S=STATEV (1)
T=STATEV (2)
EDOT1=STATEV (3)

IF (STATEV (1) .EQ.0.0) THEN
$=50

T=T0
EDOT1=EDOTO
STATEV (1) =S0
STATEV (2) =T0
STATEV (3) =EDOTO
END IF
C....t.....l..t.i...l...i......l.l.....ilﬂ..'....a....lﬁﬁ.i..t.
TAUB=SINV2/1.73205081
PB=-SINV1
cl..l....l.'...........tl..l.....l...il'l....lt.....tl.ﬂ..lt.lI
C THE NEXT CALL TO SBETA IS TO DETERMINE THE VALUE OF THE
C THE PLASTIC DILATANCY FACTOR BETA

Coeaetasattt ettt ddetad Rttt ARARARRRRRARNSIRARARRARCARARARARAY

CALL SBETA(TAUB,.PB,T,S,BETA)
c...i.ll......l.l.l....i.'....I.I..I.C....li..t.‘.tt.l.it.l...t
C THE NEXT CALL TO GAMDOT IS TO DETERMINE THE EQUIVALENT
C PLASTIC SHEAR STRAIN RATE F AND THE PARTIAL DERIVATIVES
C PDA,PDB,PDC,PDD OF F WITH RESPECT TO TAUB,PB,T AND S.

C RESPECTIVELY.
c........'.C..........l.lﬂ.....‘.......l...ﬁ...l..t.ﬂ..l..IQ...

CALL GAMDOT(TAUB.PB,T.S.E.PDA,PDB,PDC, PDD)

STATEV (3) =F/1.73205081

EDOT2=STATEV (3)

(ol LA LLLLLE AL A L Y SRR LR RN

C THE NEXT CALL TO SDOT IS TO DETERMINE THE HARDENING RATE H,

(2]

0
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C THE STATIC RESTORATION RATE RDOT AND THE PARTIAL
C DERIVATIVES FDE AND PDF OF H AND RDOT, RESPECTIVELY, WITH
C RESPECT 7O S.

C'....i...0..l.....l...i..i...t...l'l...l.'.....l.....t......ii

CALL SDOT(TAUB,PB.T,S,F, H,RDOT,PDE, PDF)

C..t.i.ll...ﬁ.....l..!.t..........l.....ﬂ...l.ﬁ'...l.l....it...

PDG=PDE*F +PDD*H-PDF
POH=-PHI *DTIME*PDG
c
HB=H/ (1 .+PDH)
DR=RDOT*DTIME/ (1. +PDH)
c
G=AMJ- (PDD*HB+PDB*AKAPPA*BETA
. 1 +PDC* (OMEGA/ (RHO*C) ) * (TAUB-BETA*PB) ) /PDA
V=PHI *DTIME*PDA*G
IF (PHI.EQ.0.0) THEN
AMUB=AMU
GO TO S5
END IF
c
‘ H1=TAUB/ (PHI *DTIME*F)
c
AMUB= (AMU*H1) / (AMU+H1)
c

55 CONTINUE

c.ial...l'.l..i......i.l....ll..ﬁ...........l.ﬁ.l....'.'..ﬁi.ll

C THE NEXT BLOCK CALCULATES T'.DSTRAN
c..t.lil.......l..ll."..ll'l...l.'.l.ﬁ..ﬂ.ll.ﬁll.!..l.ﬂ.'...ﬂ.
W1=0.0
DO 60 K1=1,NDI
W1=W1+STRESD (K1) *DSTRAN (K1)
60  CONTINUE

c
IF (NSHR.EQ.0) GO TO 80
c
11=NDI
DO 70 K1=1,NSHR
I1=I1+1

W1=W1+STRESD(I1) *DSTRAN(I1)
70  CONTINUE
c
80  CONTINUE

Crent st adf it s dddtaads s tadfad et OaddanARAdaeRasasAasinnddans

C THE NEXT BLOCK CALCULATES TR
c.llllt.....‘.‘............'........I......ﬁ..t.ﬂi.....i....l.

W2=0.0

DO 90 Kl=1,NDI

W2=W2+DSTRAN (K1)

90  CONTINUE
ct.l!....‘.......Q........ﬁ...i...I..'.........llt....l..ﬂ.'..

V1= (E*DTIME) /(1. +V)

V2=(V/(1.+V)) * (1./G)
c.ltl....ll........'.....!'..........‘.....l...'.lt....t..l..l
C THE NEXT COMMAND CALCULATES THE EQUIVALENT PLASTIC SHEAR
C STRAIN INCREMENT.
Cl.....t.................l...ll..ﬁ...l........'t.....l.l...l..

DGAMPB=V1+V2* ( (AMU/TAUB) *W1+AKAPPA* (-PDB/FDA) *W2)

STATEV (3) =EQUIVPS+DCAMPB
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.ct.......l..."...................t'..ﬁ....‘.l...ll'ﬁ.l.'.....

C THE NEXT BLOCK CALCULATES THE INCRFMENTS DS AND DT IN THE
C STATE VARIABLES S AND T, AND UPDATES THE VALUES OF THE
C STATE VARIABLES.
Coantroaieenaraeieeseonteeetentoantenaesastentieanteantenneane
DS=HB*DGAMPE-DR
DT= (OMEGA/ (RHO*C) ) * (TAUB-BETA*PB) *DCAMPB

STATEV (1) =5+DS

STATEV (2) =T+DT
CQ.'.t!.t'at..!.i'..ltil'l.t...l.lt.l.lt.tttt.tt.u.a..!.llit..
C THE NEXT BLOCK CALCULATES THE STRESS INCREMENTS AND
C UPDATES THE VARIOUS COMPONENETS OF THE STRESS TENSOR.
c.t.t.l...Il...'..l.llll.tt.l.l.lﬂ...i.'lll..l..tl....llt.tlll

VisZ.*AMUB

Va= (AKAPPA- (2./3.) *AMUB) *W2

v5=3, *AKAPPA*ALPHA*DT

V6=AKAPPA*BETA*CGAMPB

V7=V4-V5-V6

VBA= (AMU/TAUB) *DGAMPB

V8B= (AMU-AMUB) *W1/ (TAUB**2.)

V8=VEA-VEB

VS=AMUB

DO 100 Ki=1,NDI
DSTRES (K1) =V3*DSTRAN (K1) +V7-V8*STRESD (K1)
STRESS (K1) =STRESS (K1) +DSTRES (K1)

100 CONTINUE

c
IF (NSHR.EQ.0)GO TO 120
c
I1=N\DI
DO 110 K1=1,NSHR
I1=I1+1

DSTRES (11)=V9*DSTRAN(I1)-VB*STRESD(I1)
STRESS (I1)=STRESS (I1) +DSTRES (I1)

110 CONTINUE

c

120 CONTINUE

C.....t.'.....l......-.l.'!....‘......i'-l............t.'l.tﬁ.

C THE NEXT BLOCK CALCULATES THE (IN GENERAL NON-SYMMETRIC)
C JACOBIAN MATRIX.
c-tt.l...l.lll..".......ll......t.......l..lt.l.ll..'!l.l.l.l
V10=AKAPPA
V112V10-(2./2.) *V9
V12=(V2* (AMU/TAUB) #42.) - (AMU-AMUB) / (TAUB**2.)
V13=V22V10* (-PDB/PDA) * (AMU/TAUB)

V14=V2+V102BETA* (AMJ )
V15=V2e (V10*#2.) *BETA® (-PDB/PDA)
Vi6=V11-V15

DO 130 Ki=1,NDI
DDSDDE (K1.K1) =sV3+V16
1 ~V12¢STRESD (K1) **2.
2 - (V13+V14) *STRESD (K1)
éso CONTINUE

IF (NDI.EQ.1)GO TO 160
DO 150 K1=2,NDI
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140
150
160

170
180

Cc
200
c

c............l....!!lll.'...ln......l.l.......l..l.l.t.l.......

C CALCULATION OF THE PLASTIC STRAIN RATES BEFORE AND AFTER
C THE TIME STEP,.TO BE USED BY THE AUTOMATIC INTEGRATION

N2=K1-1

DO 140 K2=1,N2

nosno:-: (K2,K1) =V16-V12*STRESD (K2) *STPESD (K1)
-V13*STRESD (K2) -V14*STRESD (K1)

msnoz (K1.K2) =V16-V12*STRESD (K1) *STRESD (K2)
-V13*STRESD (K1) -V14*STRESD (K2)

 conInue

CONTINUE

CONTINUE

IF (NSHR.EQ.0)GO TO 200
DO 180 K1=1,NDI

I1=NDI

DO 170 K2=1,NSHR

Il1=]1l+l

nosnos(n I1)=-V12*STRESD (K1) *STRESD(I1)
-V14*STRESD(I1)

WSDDE(IJ. K1) =-V12¢STRESD(I1) *STRESL (K1)
-V13*STRESD(I1)

CQITINUE

CONTINUE

I1=NDI

DO 190 K1=1,NSHR

I1=11+1

DDSDDE (11,I1)=V9-V12*STRESD(I1) *STRESD (I1)
CONTINUE

IF (NSHR.EQ.1) GO TO 200

IF (NSHR.EQ.2) THEN
I=NDI+1
J=NDI+2
DDSDDE (I, J) =-V12*STRESD (1) *STRESD (J)
DDSDDE (J ., I) =DDSDDE (I,J)
END IF

IF (NSHR .EQ.3) THEN
I=NDI+1
J=NDI+2
K=NDI+3
DDSDDE (1.,J)=-V12*STRESD(I) *STRESD (J)
DDSDDE (J, 1) =DDSDDE (I,J)
DDSDDE (I.K) =-V12*STRESD (I) *STRESD (K)
DDSDDE (K., I) =DDSDDE (I.K)
DOSDDE (J, K) =-V12*STRESD (J) *STRESD (K)
Dun)oigoE (K.J)=DDSDDE (J .K)

CONTINUE

C SCHEME OF ABAQUS

r.l...............I..!.t...............i.....!l......l..ll....l

DIFF=DTIME *DABS (DABS (EDOT1) -DABS (EDOT2) )
;?'IAXMI (CEMAX ,DIEF)
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Ciﬁil....l.....llﬂ...!...l...ﬁ...'ll.k4'.....!..iﬁttﬂlﬁtll.lt...

C

c.'....t......l'..!.......l'.-.....ll.....l.'.l.'..lt........l..

SUBROUTINE SBETA (TAUB,PB,T,S,BETA)

c....l....I.....G..l....l.ti.i...ﬂ........l..l.l...l...ll...i..l

IMPLICIT REAL®8(A-H,0-2)

c.li..Q.....'...‘...........I..l.l..l.‘.ﬂ..iﬂlial.l...i....ﬁ....

BETA=0.0

RETURN
END

c...ll........I...ll...l...'ﬂil...t..l".'.i.l..lll.'!...l...‘..

c

c.l..l.l............l..l.lll..'.l.'..ttli'..l.lll.l.l..Q..tl.t..

SUBRCUTINE GAMDOT (TAUB,PB,T,S.F,FDA,.PDB,PDC, PDD)

C....lI.........l.'.t.lll'.......Il...."..ll.ﬁ..l.tl.‘..t...ll.

IMPLICIT REAL*8 (A-H,0-2)
cl..ll..l....tl.-...ll.'..l.........'.....0'..'..........0.....”
C MATERIAL PARAMETERS DEFINING THE FUNCTION F FOR THE
C EQUIVALENT PLASTIC SHEAR STRAIN RATE:

C A --—PRE-EXPONENTIAL FACTOR

C Q ----ACTIVATION ENERGY

C R ----UNIVERSAL GAS CONSTANT

C AM --~STRAIN RATE SENSITIVITY

C PALPHA ---PRESSURE SENSITIVITY PARAMETER

C PALPHAs2* (DMU/DPB) /MU0

C MU0 -—SHEAR MODULUS AT ZERO PRESSURE

C DMU/DBP -----PRESSURE DEPENDENCY OF SHEAR MODULUS
c...l..t..‘...'..l'l.'.I..l.....tl.l.l'..'ll'llll...."....l....l

A=1.7321E+11

Q=270.0

R=8.31E-3

AM=0.147

PALPHA=0.0
CQ......I...................Il..ﬂ.tl.."...l..l............l..l...

IF (TAUB.LT.0.001) THEN

TAUB=.001

END IF

Al=A*DEXP (-Q/ (R*T))
F=Al* (TAUB/ (S* (1.+PALPHA*PB))) ** (1./AM)

IF (F.LT.1.D-10) THEN
F=1.D-10
END IF

PDA=F/ (AM*TAUB)

PDB=- (S*PALPHA) *F/ (AM* (S* (1.+PB*PALFHA)))
PDC=E* (Q/ (R*T**2.))

PDD=-F/ (AM*S)

RETURN
END

(AL A LR L L L L RN R R R R R R R R L R I

C

CRov ittt datdtd st at ettt adne it atatastntooRAanasAneeasddbads

SUBROUTINE SDOT (TAUB.PB,T,S.F,H,RDOT,PDE,PDF)

(ol A2 R R R L L R R R R R R RN R R R R R R RN R R R XA TSI s

Cc
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IMPLICIT REAL*8 (A-H,0-2)
c....l.ll.............l‘.........ei..l'..t..-l..lt.'l.....t.ﬂ'ﬁl
C MATERIAL PARAMETERS DETERMINING THE RATE OF HARDENING:

C HO -MAXIMAL HARDENING RATE
¢ SB ———---PRE-MULTIPLIER FOR SATURATION VALUE OF S
C A ———-----PRE- EXPONENTIAL EACTCR IN E

C Q -—-——-ACTIVATION ENERGY
C R ————-—UNIVERSAL GAS CONSTANT
C AN ———-——EXPONENT IN EQN. FOR SATURATION VALUE OF S
C AMJ --—--SHEAR MODULUS
C SA --——--ANNEALED VALUE OF S. A FUNCTION OF TEMP.
C B ——————-PRE-MULTIPLIER ECR RATE OF STATIC RESTORATION
C P --—----—-EXPONENT OF ((S/SA)-1.) IN RDOT
C.....l...'l'.........l.i......l...'......‘Q.'..................t
HDO=1329.22/3.
SB=147.6/1.7321
A=1,7321E+11
0=270.0
R=8.31E-3
AN=0.03
AMU=1,854E+3
SA=50.59/1.7321
B=0.0
P=3.5

C..'..‘......'ll.ll....ll......'.t.l.l.......llt'..tﬂ.'l...'l‘la..

IF(F.LT.1.0D-10) THEN
F=1.0D-10
END IF

c.ll.t..l.tl......lr....l.".tl........l.......'....I'..ll..ﬁl...l.

A1=A*DEXP (-Q/ (R*T) )
SS=SB* (E/A1) **AN

H=HD* (1.-S/SS)
PDE=-HD/SS
Bl=B*Al

RDOT=0.0
PDE=0.0
SD=(S/SA)-1.

IF(SD.LT.0.0) THEN
S=SA
END IF

IF (SD.CT.0.0) THEN
RDOT=AMU*B1*SD**P
FOE=AMU®B1* (P/SA) *SD** (P-1.)
END IF

RETURN
END
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gl....l......'.......'l.....ttl........‘...."’..ﬂl.!‘....ﬁ......'l........l-..

o000 OO0O0O000000000000000000

ann

HITREHO

The subroutine HITREHO will compute the solutions for stress.strain
and the internal variable "s" or hardness of a given material, using

a ramp strain rate test. The equations used are the constitutive eq.'s
for the description of high temperature, large rate-dependant defor-
tions using static recovery functions and interndl heat generation.
The integration procedure used is the called rate tangent modulus
msthod in its implicit form only(phi>0.5). lmplementsd with the usage
of an automatic time step control in order to minimize total #of steps.

The imput required for this program is:

MATERIAL PARAMETERS

TEMP= Initial temperature A= material parameter

EDT1= initial strain rate Q= Activation energy

EIM= Initlal strain limit Xi4= strain energy sensitivity

E= incremental Young's modulus Ho= initial strain hardening rate
So= initial internal variable § Sbs internal parameter

N= matrial parameter B= recovery function parameter
p= recovery function exponent xnu=poisson ratio

ws § of energy transformsd into hea% ro=density
spheat= gpecific heat

INTEGRATION PARAMETERS

psi= rate tangent modulus paranetsr dtmax=ytimes® (minirzun time step)
CALPHA= integration sensitivity icurv= #of periods to be ploted

COMMON STRESS (1500) , STRAIN (1500) . SIV(1500) , STEP (1500) , TEM® (1500) .

#E (1500) , XNU (1500) , ALPHA (1500) , BETA (1500) ,RO(1500) , SPHEAT (1500)

READ(S, *) ICURV

DO 110 KT=1, ICURV

READ (S, *) TEMPO, EDT1,ELM,ELM2 EOQ,A,Q, XM, XN

READ (S, *)HD,S0,SB,PSI.B,P,CALPHA, DTMAX, IXM

READ (S, *)W,ALPHAD , XNUO ,RO0, SPHEATO

WRITE (6, *) TEMPO, EDT1,ELM,ELM2,E0,A,Q. XM, XN ,HO, SO, SB
WRITE (6,*)PSI,B,P,W,ALPHAO, XINUO .ROO, SPHEATO

The flags klin and klon vork as stress and strain delimeting parazmeters

NI=2
KLIN=O
KLON=Q



c
c

C
c
o

oano

defining test constants

R=8.31E-03
CETOL=CALPHA*SQO/EQ
CsA*EXP (-Q/ (R*TEMPO) )

Defining the lnitial conditlons

EDT=EDT1
DTM=.01¢ (50/ (EO*ABS (EDT) ) )
DTMAX=DTMAX* (DTM)

SSTP=0.

SSTPP=0.

STRESS (1) =0.0001

STRAIN(1)=0.

SIV(1)=S0

TEMP (1) =TEMPO

E(1)=EO

ALPHA (1) =ALPHAO

XNU (1) =XNUO

RO (1) =RCO

SPHEAT (1) =SPHEATO

BETA (1) =E (1) *ALPHA (1) /(1.-24XNU (1) )

The ffollowing procedure uses the constitutive eq.'s to compute the desirad
values

KLAN=0
KLUN=O
10=0
DO 30 II=NI,1500
I=10+I1
WRITE (6,*)1
C=A*EXP (-Q/ (R*TEMP (I-1}))
SEN=C* (ABS (STRESS (I-1)) /SIV(I-1)) *s (1./XM}
IF (SEN.LT.1.E-28)SEN=1.E-28
ST=SB* (ABS (EDT) /C) * *XN
HSN=HO* (1.-SIV(I-1)/ST)
XRCO= (SIV(I-1)/SO)~1.
TF (XRCO.GT.0.) THEN
RCO= (C/A) *B*E (I-1) * (XRCO) **P
ELSE
XRCO=0.0001
RC0=0.0001
END IF
D=SEN/ (XM*ABS (STRESS (I-1)
C=-Q*SEN/ (R* (TEMP (I-1)) **
XI=-SEN/ (XM*SIV(I-1))
XK=RCO*P/ (SO*XRCO)
XC=-HO/ST
XO¥=XC* SEN+XI *HSN-XK
XP=-PSI *DTM*XNN
HNaHSN/ (1 . +XP)
DRCO=RCO*DTM/ (1. +XP)
T=E (I-1) -XI *HN/D+ (SIGN (BETA (I-1) ,STRESS (1--1) ) -G/D)
#*W2BS (STRESS (I-1) ) / (RO (I-1) *SPHEAT (I-1})
UsPSI*DIMeDeT
FaSEH/ (1. +U)
DSTR=EDT*DIM™
DSTRP=DTM*SICN (F, STRESS (I-1) ) +PST*DTM*D

))
2)



c
c
c

aonn

noaon

#*E (I-1) *DSTR/(1.+U)
DSTRPS=DTM*SIGN (E, STRESS (I-1) ) +PSI*DIM*D
#°E (I-1) *ABS (DSTR) / (1.+U)
DTEMP=W*ABS (STRESS (I-1) ) *ABS (DSTRP) / (RO (I-1) *SPHEAT (I-1))
DSTRESS=E (I-1) * (OSTR-DSTRP) -BETA (I-1) *DTEMP
DSIV=ABS (HN*DSTRPS) -DRCO

The following 1009 performs the automatic control of the time step

DO 10 J=1,500
STRAIN (I) =STRAIN (I-1) +DSTR
STRESS (1) =STRESS (I-1) +DSTRESS
SIV(I)=SIV(I-1)+DSIV
STEP (1) =DT™
TEMP (1) =TEMP (I-1) +DTEMP
E(I)=E(I-1)
XNU (I) =XNU (I-1)
ALPHA (1) =ALPHA (I-1)
BETA (I)=BETA (I-1)
RO (I)=RO(I-1)
SPHEAT (I) =SPHEAT (I-1)
C=A*EXP (-Q/ (R*TEMP (I)))
ST=SB* (ABS (EDT) /C) * *XN
XEPDTN=C* ( (ABS (STRESS (I)) /SIV(I))**(1./XM))
EPDTN=SICN (XEPDTN, STRESS (1))
XMDPS11=DTM*ABS (ABS (EPDTN) -ABS (SEN) )
XRCO= (SIV(I) /SO)~1.
IF (XRCO.GT.0.) THEN
RCO= (C/A) *B¢E (I) * (XRCO) **P
ELSE
RCO=0.
END IF
SDOTN=HO* (1.-SIV(I) /ST} *ABS (EPDIN) -RCO
XMDPS1 2=DTM*ABS (SDOTN-DSIV/DT™) /E (I)
IF (XMDPSI1.CE.XMDPSI2) THEN
XMDPSI=XMDPSI1
ELSE
XMDPSI=XMDPSI2
END IF
IF (1XM.EQ.0) XMDPSI=XMDPSI1
RI=XMDPSI/CETOL
IF (OTM.LT.STEP(2)) THEN
DTM=STEP (2)
GOTO 10
ELSE
END IF
IF (DTM.EQ.STEP (2))CO TO 20
IF(RI.LE.1.0)CO TO 20
DT™= (0.85/RI) *DTM
10  CONTINUE

the following procedure controls the data according to the ramp test

20 IF (STRAIN(I).GE.ELM2)GO TO 50

The follovwing Lf blocks control the value of the next time step to
be used in the integration point corresponding to I+l

IF(0.7.LT.RI.LE.0.8)DTM=1.1*DT™
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c
c
Cc

noncn

aonan

IF (0.4.LT.RI.LE.0.7)DIM=1.254DM
If (R1.LE.0.4)DTM=1.5DTM
IF (DTM.GE . DTMAX) DTM=DTMAX

30  CONTINUE

The output of the program

50 INT=I-1
WRITE (6,60) INT,PSI
60 “Egt;tm'r(/./.ax.'mm OF STEPS COMPUTED= ',I8,/.8X,'PSI USED=',
#F4.
WRITE (6.70)
70 FORMAT(/./.10X.90('*')./)
WRITE (6.80)
80 FORMAT (14X, 'STRESS',6X, ‘STRAIN',9X,'S’,8X, 'STEP'.SX, 'TEMP')
WRITE (6.90)
90 FORMAT(/.10X,90(°'*')./)
WRITE (6.100) (STRESS (K) , STRAIN(K) ,SIV (K]} , STEP (K) . TEMP (K) .X=1.1I)

100 EORMAT(12X,S5E12.5)

CALL PLOTIN(I,.KT,ICURV)

110 CONTINUE

STOP
END

The following subroutine plots the Stress VS. straln

SUBROUTINE PLOTIN(IC.LI.MFIN)
COMMON STRESS (1500) , STRAIN(1500)
REAL GRAP (2,1500) ,XL (4)

DATA XL,LQM/0..0.18,0.,60.,01/
DO 10 KP=1,IC

GRAP (1, KP)=STRESS (KP)

GRAP (2, KP) =STRAIN (KP)

10 CONTINUE

IF (LI.CT.1)LQM=11 _ .

1F (LI.EQ.MFIN) LQM=10

CALL QPICTR (GRAP,2,IC.QX(2) .QMOVE (LQM) ,QLABEL (13),
#QISCL (-2) ,QXSCL (XL) )

The function xintplt will interpolate to find an unknown value of X3,
vhere X1<X3<X2.

FUNCTION XINTPLT(X1,X2.Y1,Y2,Y2)
XINTPLT=( (X2-X1) * (Y3-Y1) /(Y2-Y1)) +X1
RETURN

END

the function extplt will extrapolate to find ar unknown value of Y3,
vhich lies between Yl and Y2, vhers Y1<Y3<Y2
FUNCTICN EXTPLT(X1,X2,X3,Y1,Y2)
EXTPLT=((X3-X1) * (Y2-Y1) / (X2-X1) ) +Y1
END
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We now present the derivation of the material equations

increments presented in Section 5.2. These calculations

form part of the UMAT subroutine, and were derived for Anand
[31].

If we define the increment of the equivalent plastic’

shear strain increment

AYP(n) = at(n) [f(n) +¢ {f(n + 1) - £(n)}]
where

Y = £(n)
Let

PDA(n) = 3f(n)/31t(n)

PDC(n)

9f(n)/36(n)

PDD(n) 9f(n)/3S(n)

then
f(n + 1) - f(n) = PDA(n) At(n)

+ PDC(n) A8(n) + PDD(n) AS(n)

We now successively estimate AT, A8, and AS:

1) AT

T=l@/2) o°. o732 = (%%). g
L
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Let

then

2)

27
N = (2

21
P = 3P )
T=N.Lp &l -N.pIN P
T=LINl.&-N.LIN P
N =20 () = (B ¢

21 T
N . LN = (%) (%)o‘=u°—‘j—23—‘-u
T T 21

T=® g & -uiP

T
At = (B) ¢ . Ae - u avyP

T
A8
9 = (L P
8 (pc)q-g

%) fg . [(1 4P
pc” = 27
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3)

a8 = (w/pc) (1) AYP

AS (n)

Let

PD1

PDF

then

é(n +

[£(n)

Let

PDS

PD7

PDG

= At(n) [é(n) + ¢ {Stn + 1) - S(m})

3h _ 3h 5h 5T
= Pp3 = 2N poE = 30 pp4 = 2L
3T
25

1) £ [h(n) + PD1 At(n) + PD3 A8(n)
+ PDE AS(n)] x

+ PDA At(n) + PDC 46 (n)

+ PDD AS(n)]

- [T(n) + PD4 A8(n) + PDF AS(n)]

PD1 x £f + PDA x h

PD3 x £ + PDC x h - PD4

PDE x £ + PDD x h - PDF
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Then to first order in increments
S(n + 1) - S(n) & PD5 x At(n) + PD7 x A6(n)

+ PDG x AS(n)

AS(n) = S(n) At(n) + ¢ At(n) PDG x AS(n) + 0 (At(n)?)
Let

PDH = - ¢ At PDG

then

AS(n) = é(nl At!n)

Let

HB = s po

AR = o7 i e

then

AS = HB x aYP - AR

Finally

£ x ot + ¢ At [PDA {(¥) (6° . ae) - u ayP}
T

AYP

+

PDC {(30) (T - &P}

PDD {HB x AYP - AR}]

+
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AYP = £ x At + ¢ At PDA [(%) (g” . Ag)
- [¢ Bt PDA [y - 3P () ()
- PR HBI] 43P
- ¢ At PDD AR

Let

G=u - {mxtﬁg (T) + PDD HB}/PDA

V = ¢ At PDA G

then

¢ At PDA = £

and

1+ V) 8P = £ x 8t g 1D (o7 - se))

- ¢ At PDD AR

Ay® = (r'v) (l—v) (U) [(—) (g”. Ae)

AP = () At} + () (@ M. B¢l
where
M= () o)

T
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*HEADING
UNIAXIAL TESION TEST USING UMAT

*NODE

&
i
7
:

ELEMENT, TYPE=CAX4H

B oBW D?WNH

N 2N
-

3,1,1.,2,1,-1.

*MATERIAL

*USER MATERIAL, CONSTANTS=1

1.

*DEPVAR

3

*STEP, INC=150, CYCLE=10, NLGEOM, AMP=RAMP
*VISCO,PTOL=5.0E-S,CETOL=8.0E-4
0.025,6.52,0.005,0.4

*BOUNDARY

EDGET,2,.,0.15

*EL PRINT,FREQUENCY=10

2,1

2'1.1

*NODE PRINT,FREQUENCY=100

*EL FILE,FREQUENCY=1

2,1

2,1,1

*END STEP
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*HEADING
THICK WALL TUBE, UMAT2
*NODE

1,0.1.0.

11.0.2,0.

51,0.1,0.05

61.0.2,0.05

101.0.1,0.1

111,0.2,0.1
*NGEN,NSET=SIDE1

1,11,1

*NGEN,NSET=S1LE3
101,111,1
*NGEN,NSET=SIDE2

51,61,1

*NSET,NSET=IN

1,51,101

*NSET,NSET=OUT

11,61,111
*NSET,NSET=SIDES
SIDE1,SIDE3

*ELEMENT, TYPE=CAXER
1,1,3,103,101,2,53,102,51
*ELGEN

1,5,2.1

*MATERIAL

*USER MATERIAL,CONSTANTS=1
1.

*DEPVAR

2

~BOUNDARY

SIDES, 2

*STEP, INC=1,CYCLE=10
*STATIC,PTOL=1.,DIRECT
0.02,0.02

*DLOAD

1,P4,0.7

*EL PRINT,COORDS

2.1

2,1,1

*NODE PRINT

*NODE FILE,NSET=OUT

2,1

*END STEP

*STEP, INC=101, CYCLE=10
*STATIC,PTOL=10.,DIRECT
0102020

*EL PRINT,COCRDS,FREQ=50
2,1

2,1,1

*NODE PRINT,FREQ=50

*NODE FILE,NSET=OUT,FREQ=20
2,1

*END STEP

*STEP, INC=135, CYCLE=10, AMP=STEP , NLGEOM
*VISCO,PTOL=1.,CETOL=1.E~4
SS.,7200.

*EL PRINT,COORDS, FREQ=S0
2,1

2,11

"&E PRINT, FREQ=S0

*NODE FILE,FREQm2, NSET=OQUT
2,1

*END STEP
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*HEADING

THICK WALL TUBE, UMAT2

*NODE

1,0.1.0.

11,0.2,0.

51,0.1,0.05

61,0.2,0.05

101,0.1,0.1

111,0.2,0.1

*NGEN,NSET=SIDE1

1,11,1

*NGEN,NSET=SIDE3

101,111,1

*NGCEN ,NSET=SIDE2

51,61.,1

*NSET,NSET=IN

1,51,101

*NSET,NSET=OUT

11,6:1,111

*NSET,NSET=SIDES

SIDE1,SIDE3

*ELEMENT, TYPE=CAX8R

1,1,3,103,101,2,53,102,51

*ELGEN

1,5,2.1

*MATERIAL

*USER MATERIAL, CONSTANTS=1

1.

*DEPVAR

2

*BOUNDARY

SIDES, 2

*STEP, INC=1,CYCLE=10

*STATIC,PTOL=1.,DIRECT

0.02,0.02

*DLOAD

1,P4,0.7

*EL PRINT,COORDS

2.1

2,1,1

*NODE PRINT

*NODE FILE,NSET=OUT

2,1

*END STEP

*STEP, INC=101,CYCLE=10

*STATIC,PTOL=10.,DIRECT

6.02,2.

;EL PRINT, COORDS , FREQ=50
'1

21,1

*NODE PRINT,FREQ=50

;ME FILE,NSET=OUT,FREQ=20
.1

*END STEP

*STEP, INC=135,CYCLE=10, AM’=STEP ,NLGEOM

*V1SCO,PTOL=1. ,CETOL=1.E-4

55.,7200.

;BL PRINT, COORDS, FREQ=S0
91
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Given the power law form of eq. 6.2.1, we can make the

following assumptions in order to find a analytical solution
for the thick walled cylinder: (a) the material is
incompressible, (b) the cvlinder expands in an
axisymmetrical fashion, (c) the condition of plane strain
prevails, and (d) the stresses remain steady so that elastic

strain rates will vanish.

Then the solution for a creeping cylinder, of inside

radius & and outside radius b, under internal pressure p is:
\

. _ (nt1)/2 <p 1 2

Gee(r)—A(i) [(b/a)z/n-]_:](b/r)
b/ee/™ -y

g _(r)=-

r P (b/a)z/n-l

[2-n]/n] (b/0% M+ 1
(b/a)*/™ - 1

g (r) =P

o (r)=4[ogg+a_.]
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