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Abstract

Consumers are purchasing an increasing amount of goods through digital channels as
compared to brick and mortar and expect fast, reliable delivery. At the same time,
society is facing the urgent challenge of reducing carbon emissions to limit global
warming to levels considered safe by climate scientists. A global sportswear retailer is
investing in improving the digital consumer experience while meeting its aggressive
2030 carbon reduction goals. This work studies how machine learning can be used
to both improve the retailer’s digital fulfillment operations and reduce their carbon
emissions footprint. It focuses on enhancing the decision-making used to select a
distribution center to fulfill a consumer’s order from, and aims to do so by increasing
the accuracy of a key input into that process. Specifically, the work targets accuracy
improvement of transit time estimates, which quantify the number of days between a
parcel’s carrier induction and delivery.

Machine learning techniques are leveraged to develop a model for predicting transit
times. Model development begins with data preparation, which is inclusive of sourc-
ing, cleaning, sampling and feature engineering. It then continues with a series of
experiments to provide insights into favorable model design elements. A final model is
created under consideration of experimentation results. This model is associated with
an accuracy of 67%, which is a improvement beyond the current state accuracy of
45%. A counterfactual analysis is conducted to assess the impact of improved transit
time estimates on key fulfillment metrics. On a one month sample, the model enables
improved fulfillment decisions; namely ones that are associated with a 4.5% decrease
in lead time, a 3% reduction in CO2 emissions, and a 1.5% reduction in cost.
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Title: Abraham J. Siegel Professor of Management

Thesis Supervisor: Y. Karen Zheng
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Chapter 1

Introduction

Consumers are purchasing an increasing amount of goods through digital channels
as compared to brick and mortar. Their expectations of digital shopping experiences
are shaped by Amazon and the like. As a result, a global sportswear retailer is
focused on improving the digital consumer experience through investment in analytics
technologies. To fulfill a digital order in a fast and cost-effective manner, knowledge of
the time it takes to transport the goods from the distribution center to the consumer
is required. These values, known as final mile transit time estimates, are currently
provided by third-party transportation partners but suffer from inaccuracy and missing
entries. This data integrity issue compromises the firm’s ability to make optimal
fulfillment decisions and thus risks a poor digital consumer experience. While con-
sumer experience is of utmost important to the firm, so is its contribution to climate
change. The firm has recognized the importance of limiting global warming to 1.5
degrees Celsius and has set corresponding 2030 carbon footprint reduction goals. [6] [12]

The goal of this work is to improve consumer experience and reduce carbon emissions
through improved digital fulfillment decision-making. This will be done through the
development of a machine learning model that generates enhanced final mile transit
time predictions. This model will be assessed in terms of its accuracy, and in terms of
its impact on key fulfillment performance indicators. The global footwear and apparel
retailer that motivated this work will be referred to as Victory for the remainder of
this thesis.

1.1 Industry Overview

1.1.1 Distribution Channels

The global sportswear industry consists of large multinational retailers such as Nike,
Adidas, Under Armour and Puma. These firms sell apparel, footwear and accessories for
use in athletic activity, as well as for normal everyday wear. Distribution is bifurcated
across two channels: brick and mortar and e-commerce. Across the industry, there
has been an increase in e-commerce demand due to convenience and public health
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factors. This trend is expected to continue [15] . As a result, retailers are competing
on and investing in their e-commerce offerings.

1.1.2 Climate Commitments

The carbon footprint of the apparel industry is attracting attention as society increases
its focus on climate change mitigation efforts. Fast-fashion retailers, or those that
sell high-velocity, low cost items, sit at one end of the carbon footprint spectrum,
while corporate sustainability pioneers like Victory, sit at the other. These corpo-
rate sustainability pioneers have made aggressive carbon reduction commitments to
support the limitation of global warming to levels considered safe for human society.
Commitments around waste reduction, water conservation, and hazardous chemical
elimination are often considered by these pioneers as well. As consumers become more
aware of the importance of climate change mitigation, sustainability is becoming an
important aspect of a brand and an aspect which retailers compete upon [16].

1.2 Supply Chain Overview
Victory’s supply chain not only is responsible for a large share of the firm’s carbon
emissions, but also is critically important in providing an exceptional experience for
digital consumers. The supply chain begins with the manufacturing of goods, either
by contract or in-house manufacturers. Once the goods are manufactured, they are
shipped, often from overseas, to Victory-owned distribution centers. Once a consumer
places their order on either the website or app, a critical set of decisions are made:
which distribution center to fulfill the order from and whether to use ground, two day
air or next day air shipping. Once the order has a distribution center and shipping
method assigned to it, warehouse employees in the selected distribution center pick
and pack the items. Sometime after the parcel is prepared, it is manifested to the
third party transportation partner. At this point, the package becomes the carrier’s
responsibility. They are responsible for picking up the parcel from the distribution
center, inducting or scanning it into their transportation network and delivering it to
the consumer. Victory’s effectiveness in operating this supply chain directly translates
to how quickly the consumer receives their item and thus their satisfaction. The
sequence of events described in this section is illustrated in Figure 1-1. Please note,
some details of the supply chain that are not pertinent to this thesis are omitted from
this description.

Figure 1-1: Simplified Supply Chain
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1.3 Project Motivation

Victory evaluates the performance of their digital business using various speed, cost
and emissions metrics. In general, Victory strives to meet or beat their delivery date
targets while minimizing costs and emissions. Their ability to achieve success is directly
tied to the set of fulfillment decisions mentioned above: which distribution center
to fulfill the order from and which shipping speed to use. The closest distribution
center to a consumer’s delivery address may not have inventory. If it does, shipping
from there may not be the cheapest option. Selecting the fastest shipping option will
produce strong delivery speed metrics, but may be expensive and carbon intensive.
In the face of such trade-offs and constraints, an optimization algorithm is used to
make these fulfillment decisions. These decisions are considered optimal given a set of
weights that score the importance of each performance metric.

An important data input to this optimization model is final mile transit time. Final
mile transit time is the number of delivery eligible days between when the parcel was
inducted into a third party carrier’s fulfillment network, and when it was delivered
to the customer. Days where carriers are not making deliveries are not included in
transit time estimates, nor are they included in the calculation of actual transit times.
Knowing the expected transit times for each distribution center with inventory for a
given shipping speed allows the algorithm to effectively weigh cost, time and carbon
trade-offs. The algorithm will then enable Victory to select the lowest cost and carbon
option that still gets the parcel to the consumer on time.

Carrier-provided transit time estimates are currently used as an input to the op-
timization. Unfortunately, this data suffers from quality issues. The data, which
provides the expected transit time in number of days, is incorrect about 56% of the
time. Further, the data set does not provide estimates for all available distribution
center and shipping speed combinations. These data problems prevent the fulfillment
optimization algorithm from making the best choices, which leads to higher costs,
higher emissions, or missing the delivery date targets. For example, when transit time
is overestimated for a given distribution center, Victory may be forced to select a
different, more costly distribution center, or may be forced to use carbon intensive
air-based shipping methods to ensure the delivery date promise is kept. When transit
time is underestimated, the risk of a late delivery increases. In each case, Victory
and its consumers are worse off. This opportunity area is what motivates this thesis.
If the quality of final mile transit time data could be improved, so could fulfillment
decisions and the associated performance.

1.4 Problem Statement and Approach

This thesis aims to generate final mile transit time estimates for all available distribution
center, shipping speed, destination zip code, and carrier combinations that are more
accurate than the ones currently used. Specifically, the discrete number of delivery
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eligible days between when a carrier inducts the parcel into their network and when
they deliver it to the consumer will be estimated. Predictive modeling techniques
from machine learning will be leveraged to generate such estimates. Experimentation
is conducted with generating estimates at two distinct time points.

1.4.1 Post-Purchase Prediction

For use in fulfillment decision-making, estimates must be generated immediately after a
consumer places their order. This is when a distribution center and shipping speed are
selected by the fulfillment optimization model. Models for generating estimates at this
point in time may not use any information from after the order placement timestamp.
For example, such models cannot include the time of the day distribution center em-
ployees finished preparing the parcel for pickup because that event has not occurred yet.

This type of model exists very early in an order’s life cycle and thus is limited in the
information it can use to make a prediction. Making a transit time prediction later in
the order life cycle would allow for additional data to be used. Although this would
likely enable a stronger prediction, the corresponding estimates cannot directly be
used for fulfillment decision-making.

1.4.2 Post-Induction Prediction

Models that make the transit time prediction right after the parcel has been inducted
or scanned into a carrier’s network are also explored in this thesis. These models
are included for two reasons. First, they support development of high-performance
post-purchase models. Later stage prediction models have a broader view of fulfillment
and can capture relationships that enable enhanced awareness of the factors that
influence transit times. For example, a later stage model would have access to data
regarding a later stage fulfillment event, and therefore would be able to demonstrate
that this feature is important in predicting transit time. Since late stage models aid
in establishing a strong understanding of the factors that influence transit time, they
are used in this thesis during initial exploration efforts.

Post-induction models are also capable of directly adding value to the Victory organi-
zation. Having accurate transit time estimates later in the order fulfillment journey
allows Victory to manage delivery date promises with their consumers. For example,
if a transit time was expected to be shorter than the original estimate, an updated
delivery date could be provided to the consumer.

14



1.5 Thesis Overview
The remainder of this thesis consists of five chapters:

Chapter 2 provides the necessary background on predictive transit time models. It
begins with a review of related academic work, then transitions to a presentation
of relevant data for this type of prediction problem in the context of Victory. The
chapter concludes by detailing the performance associated with the current transit
time estimates used in fulfillment decision-making.

Chapter 3 shares the model development process used in this thesis. It begins with
sharing the steps associated with analytical data set creation, namely data sourcing,
cleaning, sampling and feature engineering. It provides insights from an exploratory
data analysis, before transitioning to describing the model experimentation process.
It shares the performance metrics used to evaluate the predictive models, then details
the extensive number of experiments conducted to determine the best model design
elements.

Chapter 4 makes an assertion of which model is best and details the performance of this
model. A comparison to the carrier provided estimates is made and the importance
scores of the model features are shared. Finally, Chapter 4 investigates the impact of
improving transit time estimates on key fulfillment performance metrics.

Chapter 5 shares a set of recommendations on how to unlock the business value
associated with this work in production. It suggests next steps related to the creation
and deployment of a live model, and discusses the importance of prioritizing this work
over additional model enhancement efforts.

Chapter 6 provides a conclusion to this thesis. It begins with a summary of the
thesis, shares important lessons learned throughout the work, and concludes with a
set of ideas for future work on related topics. The suggestions for future work span
three distinct areas related to geographic expansion, data preparation and model
experimentation.
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Chapter 2

Background on Predicting Transit
Time

2.1 Related Work

In this section, work related to this thesis is presented. Specifically, travel time predic-
tion problems are shared. This thesis considers the final mile transit time prediction
problem a subset of the more general travel time prediction problem. A wide range
of techniques to predict travel time have been used in the literature. For a focused
comparison to the methods used in this thesis, studies with machine learning based
methodologies will be review in this section.

The problem of predicting travel time has been studied in various forms in the literature
[1]. Studies can be classified into various groups based on several key characteristics.
First, studies can be grouped based on the duration of time they are aiming to predict.
Some are focused on predicting short range travel times, on the order of hours, while
others are focused on longer range predictions in days. Longer range predictions are
considered to be more challenging [9].

The travel time prediction literature is often segmented based on whether the problem
is route-based or origin destination-based. Route-based prediction problems incor-
porate information on the path taken to get from the origin to the destination. For
example, in ground transit prediction, information on the roads taken will be used.
Some route-based prediction problems make predictions on independent segments of
the path and then aggregate to the path level. Others make predictions directly at
the path level. Travel time prediction methods that do not utilize route information
are known as origin destination-based methods.

Finally, travel time prediction can also be categorized based on how many modes of
transportation are spanned. Multi-modal problems predict a travel duration across
more than one mode of transportation. A single mode problem predicts travel duration
across one mode of transportation. Sometimes, prediction problems face uncertainty
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in the type of transportation modes leveraged or the number of modes utilized.

In the literature, a range of studies exist across the various attributes described above.
In [14], a long-range, route-based problem is studied in the context of a German
logistics company. A regression-based technique is used to make path-level travel time
predictions, with consideration of route uncertainty.

Another path-based travel time problem is studied in [11], where vehicle trajectory
data is used to generate short-range predictions for freight vehicles. A gradient boost-
ing regression tree methodology is employed, and model experiments are conducted
over three distinct routes. Interestingly, this work investigates both pre-start and
post-start predictions.

In [18], a route-based problem is again studied, this time using a segment-based
approach for a short-range prediction. The travel time prediction is broken up in to
separate prediction problems for a series of Maryland highway segments, each less
than two miles long. This work leverages historical travel time data and a gradient
boosting approach that outperforms classical statistical methods.

Another short-range prediction problem is studied in [8]. This work also leverages
boosting techniques, but uses an origin destination form instead of a route-based one.
Travel time predictions of less than 24 hours are made for a postal service application.
Instead of using route information, features such as scheduled trip duration and day
of the week are leveraged.

An origin destination based travel time problem is also studied in [17]. In this work, a
diverse feature set, including spatial attributes such as distance, temporal attributes
such as time of day, weather attributes, and historical traffic attributes, is used to
generate predictions for urban travel time. The authors find success using a deep-
learning based model. Their model is deemed superior than others on the basis of
mean average percent error, mean average error and computational cost.

Finally, a multi-modal, origin destination problem in the context of container transport
is studied in [13]. Travel times of up to thirty days are estimated using support vector
machines and tree-based methods. This work resembles that in this thesis most closely.
However, key differences exist related to model input data and prediction timing. [13]
uses goods-level, real-time tracking data. The authors use this data to infer routes
using unsupervised learning techniques and base their predictions on these inferences.
Finally, [13] appears to make post-start predictions only, as a pre-start prediction
would not have any feature data available to it under the authors’ current formulation.

Multi-modal, origin destination, long-range prediction studies are rare in the literature.
This thesis contributes to this currently sparse research area. Furthermore, this work
introduces a novel approach by making a pre-start prediction and omitting the use of
real-time tracking data.
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2.2 Data Sources
This section presents the data sources identified as being the most relevant to and
capable of solving Victory’s transit time prediction problem.

2.2.1 Order-Level Fulfillment Data

The primary data set used in this work is parcel-level fulfillment data. This data set
provides attributes related to a parcel’s journey through the supply chain after the
associated order has been placed. It contains details about which distribution center
the parcel originated from, what shipping speed was selected, what carrier serviced the
delivery, and the order destination address. It also includes timestamps for important
milestones in the fulfillment process such as when the order was placed and when the
parcel was manifested, inducted and delivered.

2.2.2 Carrier-Provided Transit Times

The second data set used in this work is the set of carrier-provided transit time esti-
mates. This data provides an estimated number of days between induction and delivery
for a set of distribution center, destination zip code, shipping speed combinations,
and are differentiated by carrier. Induction is when the parcel enters the carrier’s
network. Delivery is when the parcel is dropped off at the final destination. These
carrier-provided transit time files are standard files that carriers provide Victory as a
method of communicating their service levels. As mentioned previously, these files
are not exhaustive and are missing certain distribution center, destination zip code,
shipping speed, carrier combinations. From now on, the combination of distribution
center, destination zip code, shipping speed and carrier attributes will be referred to
as a configuration.

2.3 Current State Performance
The final piece of background that must be shared prior to discussing model devel-
opment work is the performance of the carrier provided transit time estimates used
currently. First, the metrics used to evaluate the performance of transit time estimates
in this section and throughout the remainder of the thesis are described. Then, the
current state performance is presented through the set of performance metrics and
through a series visualizations.

2.3.1 Performance Evaluation Metrics

Four metrics are used to evaluate the performance of transit time estimates. These
metrics are tailored to the business setting this problem is being solved in. The first
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metric is accuracy, which quantifies the percentage of estimates that match the actual
value. Any error in transit time estimation is expected to compromise the performance
of fulfillment-decisions. Therefore, this accuracy metric is of the utmost importance
when evaluating the performance of transit time estimates.

The second metric used to assess estimate performance is mean absolute error. This
metric is calculated by averaging the absolute value differences between the estimated
and actual values. This metric quantifies the magnitude of error and is relevant
because a larger error is expected to have larger negative effects to Victory’s customer
and business compared to a smaller one.

The third and fourth performance metrics are focused on negative errors, or errors
in which the transit time is underestimated. Negative errors increase the risk of a
late delivery and therefore seek to be minimized. A late delivery is when a parcel
is delivered to the customer after the delivery date Victory promised the customer
at order placement. Late deliveries are thought to have a severe negative impact on
Victory customer satisfaction. Victory, therefore, aims to minimize their occurences.
The third performance metric is percent negative error, which calculates the percentage
of estimates that underestimate transit time. The fourth and final metric is mean
negative error which calculates the average negative error across all records and enables
the magnitude of negative error to be quantified. If an error is positive, that value is
set to zero in this calculation.

2.3.2 Carrier-Provided Estimate Performance

Fulfillment decision-making currently is based on carrier-provided transit time es-
timates. This section shares a performance analysis of these estimates, including
presentation of the evaluation metrics shared above. The value of these metrics
change slightly based on the time period considered. For this section, we consider
a two month window of data that is used several times throughout the remainder
of this thesis, primarily in post-induction experiments. Calculating current state
performance metrics based on this data enables direct comparison of model estimates
to carrier-provided ones.

Carrier-provided estimates used currently are associated with an accuracy of 44.63%,
a mean absolute error of 0.69 days, a percent negative error of 17.65%, and a mean
negative error of 0.23 days. The distribution of prediction errors for the current state is
shown in Figure 2-1, where the prediction error in days is calculated as the difference
between the estimated and actual values. In this plot, errors for incorrect estimates are
shown. Correct estimates, or those with zero error, are omitted from the visualization.
This was done so the reader could more easily see the distribution of errors.
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Figure 2-1: Current State Prediction Error Distribution For Incorrect Estimates

When analyzing the confusion matrix of prediction errors (Figure 2-2), one can see
that the most frequent type of error, occurring for 14% of all records, is when the
carrier predicts a two-day transit time while the actual transit time is one day.

Figure 2-2: Current State Prediction Error Confusion Matrix

By viewing the box plots for prediction errors by shipping speed as shown in Figure
2-3, one can see that there is no significant variation across categories. When doing
the same by carrier (Figure 2-4), one can see significant variation across carriers.
Some carriers have a very narrow error distribution, while others have a much wider
one. This observation demonstrates that there is variability across carriers in their
ability to accurately predict transit time.
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Figure 2-3: Current State Prediction Error by Shipping Speed

Figure 2-4: Current State Prediction Error by Carrier
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Chapter 3

New Models for Transit Time
Estimation

This chapter presents the development process used to create a predictive model for
transit time estimation. The process begins with the creation of the analytical data
set through data sourcing, cleaning, sampling and feature engineering. The process
continues with experimental iterations on model parameters and hyperparameters.
The aim of this experimentation is to determine the design elements most favorable
for accurately predicting transit time. The model development process concludes with
selecting the best model attributes, discovered through experimentation, and thus
arriving at the best model. Please note, the term "best" in this thesis refers to the
best model within the scope of this work. It is akin to a local best, rather than a
global best.

3.1 The Analytical Data Set

The analytical data set is used to train, validate and test the model. Its creation
begins with merging the order-level fulfillment and carrier-provided transit time data
sets on the configuration attribute variables (distribution center, destination zip code,
shipping speed and carrier). From there, cleaning, sampling and feature engineering
occur.

3.1.1 Data Cleaning

The merged data set is cleaned by deleting rows with missing data and removing
duplicate rows. Records not associated with Victory’s main distribution centers are
removed for data density purposes. Finally, rows with incorrect state code data or
state codes outside of the main 50 states (e.g. AA for Armed Forced Americas) are
removed. The total number of rows removed is insignificant compared to the initial
data set size.
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3.1.2 Sampling

Sampling is a powerful strategy as it allows for the creation of a manageable sized
data set without losing valuable information. In other words, a data set with repre-
sentative variability can be created without requiring every data observation. This
supports the development of high-performance and computationally efficient model.
Computation efficiency is important from a cost and emissions perspective, and from
an implementation perspective as it enables the model to train and generate estimates
quickly.

Without sampling, the time window of the analytical data set is forced to be much
narrower, inherently limiting the information the model sees. With a limited view
of transit time dynamics, the model would be less equipped to make correct predictions.

Proportional stratified sampling is implemented with each configuration (distribution
center, destination zip code, carrier, shipping speed) considered as stratum. Within
each stratum records are randomly selected. The number of records selected is propor-
tional to the number of records in the stratum compared to the overall data set. For
example, if the data set had 100 records, and there were 10 records in a given stratum,
when implementing 10% proportional stratified sampling 1 record from that stratum
would be selected. If there were 20 records in another stratum, 2 records would be
selected for that configuration. This approach enables the creation of a smaller data
set that is still representative across configurations.

The sampling percentage selected is a function of the chosen time period for the data
set. A longer time period is associated with more records in the original data set
and thus a smaller sampling percentage. This relationship exists to keep the final
analytical data set within a reasonable size. This size is selected based on a target
model training time that enables rapid experimental iteration. A time period of
two months is selected using an experimental approach which will be described in a
subsequent section of this thesis. The sampling percentage associated with this time
period is 50%.

3.1.3 Feature Engineering

Features are a term used in machine learning to describe the independent variables
used in model training and estimate generation. In this work, a set of features is
curated by using as-is variables in the data set and by creating new variables based
on existing variables in the data set. The as-is variables used in the feature set are
displayed in Table 3.1. The initial features from newly created variables are shown
in Table 3.2. In later sections of this thesis, additional features will be added to the
feature set and will be explained then.

The dependent variable in this prediction problem is actual transit days. This is
calculated by finding the number of delivery eligible days between when a parcel was
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inducted into a carrier’s network, and when it was delivered to the consumer. Bank
holidays are not considered delivery eligible. Weekend eligibility is determined by
carrier. If a carrier delivers to more than 50% of zip codes on a given weekend day,
then that day is considered delivery eligible. Records with negative actual transit
days, due to data errors, are removed from the data set.

Table 3.1: Features from Existing Variables

Feature Name Description Type
PLNTCD Distribution center parcel

was shipped out of
Categorical

WMS_STDSHPGSVCLVL Shipping speed associated with
the parcel, consisting of the
following categories: ground
(GRND), two day air (2DA) and
next day air (NDA)

Categorical

SHIPTOZIP_FIVE_DIGIT Full 5 digit zip code associated
with consumers’ delivery address

Categorical

SHIPTOST State associated with consumers’
delivery address

Categorical

CARRIERGROUPNAME Third party carrier responsible
for delivery of parcel

Categorical

TNT Carrier provided transit time es-
timate in days

Categorical/Numeric
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Table 3.2: Initial Features from Newly Created Variables

Feature Name Description Type
ACTUAL_TNT Number of delivery eligible days

between when carrier inducted
parcel into their network and
when they delivered it to the con-
sumer

Numeric

SHIP_TO_ZIP_TWO_DIGIT Two digit zip associated with des-
tination address

Categorical

SHIP_TO_ZIP_THREE_DIGIT Two digit zip associated with des-
tination address

Categorical

MANIFEST_HOUR The hour of the day manifesta-
tion occurred

Categorical

FIRST_SCAN_HOUR The hour of the day the carrier in-
ducted, or first-scanned, the par-
cel into their fulfillment network

Categorical

MANIFEST_DAY The day of the week manifesta-
tion occurred

Categorical

FIRST_SCAN_DAY The day of the week the carrier
inducted, or first-scanned, the
parcel into their fulfillment net-
work

Categorical

MANIFEST_MONTH The month of the year manifes-
tation occurred

Categorical

FIRST_SCAN_MONTH The month of the year the carrier
inducted, or first-scanned, the
parcel into their fulfillment net-
work

Categorical

DISTANCE Road miles between distribution
center and destination zip codes;
removed rows where distance cal-
culation could not be performed

Numeric

26



3.1.4 Exploratory Data Analysis

An Exploratory Data Analysis is conducted to develop a baseline understanding of the
data set. Specifically, it is conducted to generate insights related to the composition
of the data set across configuration attributes and related to transit time patterns. A
new data set, consisting of three million records from a six month time period, is used
for the Exploratory Data Analysis. It is created using the same method described
above, except random sampling is leveraged instead of proportional stratified sampling.
The data set spans the months November to April and is inclusive of the annual retail
peak period. This sample is selected because it provides the data necessary to pick up
on seasonal trends, while also allowing for adequate data density and fast computations.

Analyzing the distribution of records across configuration attributes, it is observed
that a dominate share of parcel volume is associated with the ground shipping speed
as shown in Figure 3-1. A large portion of volume is also associated with two primary
carriers as shown in Figure 3-2. Finally, it can be seen in Figure 3-3 that records
are not uniformly distributed across distribution centers, with one distribution center
being much larger than the rest. Analysis of volume across destination zip codes is
not conducted because it will not provide useful insights given the large number of
destination zip codes available. Transit time behavior is also analyzed as part of the
exploratory data analysis.

Figure 3-1: Record Count Per Shipping Speed

The dependent variable, actual transit time, is analyzed alone and in relation to several
independent variables. In the data sample used for exploratory data analysis, 99.77%
of actual transit time values are seven days or less. The remainder are distributed
unevenly between 8 and 97. Most values in this range are extreme and likely are
erroneous data. The distribution of actual transit times that are 7 days or less have
a slight positive skewness and are centered on 2 days as shown in Figure 3-4. The
mean and standard deviation associated with this distribution are 2.06 days and 1.36
days, respectively.

Actual transit times vary considerably across configuration attributes. Figure 3-5,
3-6 and 3-7 show actual transit time box plots by distribution center, shipping speed,
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Figure 3-2: Record Count Per Carrier

Figure 3-3: Record Count Per Distribution Center

Figure 3-4: Actual Transit Time Distribution in Days

and carrier, respectively. Although some distribution centers have similar transit
time distributions, considerable variation exists across all distribution centers. Across
shipping speeds, transit time distributions vary considerably, which is expected based
on the nature of this variable. Finally, it can be seen that transit time distributions
vary considerably across carriers too. These findings indicate that the configuration
attributes should be useful in making transit time predictions. Transit time distribu-
tions are also analyzed across time of day, day of week and month of year features. No
considerable variation is seen. Rather, the distributions look similar across the various
time points. This is an important finding as it indicates that observed seasonality is
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not a factor in this prediction problem. Transit times behave similarly in and out of
retail peaks and thus incorporating peak status in the model is likely not necessary.

Figure 3-5: Actual Transit Time Distribution (in Days) By Distribution Center

Figure 3-6: Actual Transit Time Distribution (in Days) By Shipping Speed
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Figure 3-7: Actual Transit Time Distribution (in Days) By Carrier

To conclude the exploratory data analysis, the correlation coefficients between actual
transit time and the numeric independent variables are calculated. The correlation
between actual transit time and distance is 0.45, which is fairly strong considering
Victory’s delivery promises are not highly tailored to the customer based on the
customer’s proximity to the selected distribution center. This is a surprising finding,
as a longer distance is expected to be associated with a longer transit duration. The
correlation between actual transit time and carrier provided transit is 0.60, which is
indicative of the fact that carriers do sometimes predict transit time correctly.

3.2 Experiment Structure

With the initial analytical data set created, a series of experiments can now be con-
ducted to determine the best model design elements. Again, the term best is used
here to describe a local best, rather than a global one, since all possible scenarios
cannot be tested. The term design element is used here to describe aspects of the
model such as its structure, parameters, and hyperparameters. The majority of model
experiments are run sequentially. In a scenario with unlimited computing resources,
the experiments could be run simultaneously in a massive grid search algorithm. Grid
search is a technique were all possible combinations of settings or design elements
are tested to determine the best combination. This approach is exhaustive but not
feasible in this setting due to computing limitations.

The analytical data set is split into training and testing data using a 70/30 ratio prior
to running model experiments. Shuffling, or randomizing the data, is not conducted
prior to the split to maintain the chronology of the observations. This means that
the testing set corresponds to the last 30% of the data in time. It is important to
maintain the chronology of the observations when splitting into training and testing
data sets because this is representative of model’s eventual production environment.
Once the model is deployed in production, it will only have historical data to train on.
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It will not have access to data from the future when making predictions. In model
experimentation, ensuring the training set only contains data from prior to the testing
set simulates this constraint.

Post-induction models, or those that use data from when the order was placed up
until when it was inducted into a carrier’s network, are experimented with first. These
are called post-induction models because they make a prediction right after induction
occurs. As described previously, this type of model cannot be used for fulfillment
decision-making. However, they can enable understanding of transit time dynamics
and provide insights that enhance the post-purchase models that can be used for
fulfillment decision-making. After a series of post-induction model experiments are
conducted, focus shifts to post-purchase models. Findings from post-induction model
experiments are considered and additional experiments are run using post-purchase
models. The experimentation process concludes with the creation of a model that
takes into consideration the experimental findings. This model is considered the best
and final for this scope of work.

3.3 Post-Induction Model Experiments

Post-induction models use the full feature set described previously as independent
variables and actual transit time as the dependent variable. The following subsections
detail various experiments conducted on post-induction models and their findings.
Throughout experimentation, models are compared on the basis of accuracy. The
other three performance metrics introduced earlier are not included in the comparison
in order to simplify the experimentation process. The other performance metrics are
used when selecting the best model at the conclusion of the experimentation process,
and when comparing the model performance to the current state performance.

3.3.1 Model Type

Various regression and classification models are tested to determine which has the best
performance. Regression models predict the continuous number of transit days, which
is then rounded up to the nearest whole number prior to assessing model performance.
This is because transit times are always communicated as integers in the Victory
organization. Classification models predict categories associated with the discrete
number of transit days. The linear methods tested include linear regression, ridge
regression [7] and elastic net [19]. The non-linear methods tested include logistic
regression, decision trees, gradient boosted trees, and random forest [3]. These models
are selected because they are well known methods in machine learning and together
form a diverse set: varying on dimensions such as complexity, interpretability, and
performance. Where possible, models are tested on both a regression and a classifica-
tion problem formulation.

Random forest models perform the best out of the tested set, in terms of accuracy.
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Decision trees are a moderately close second. Linear methods in general perform
worse than tree-based methods. Performance of regression and classification models
within the same model type are similar. Decision tree classification is used as the
model type to run most subsequent post-induction model experiments with due to
its strong predictive performance, short training time, and interpretability. However,
when time permits, some experiments are conducted across the entire set of model
types or using a random forest approach. Experiments that use a different model type
than a decision tree classifier are noted as such.

3.3.2 Data Set Size

The size of the data set is varied to determine the impact on predictive performance.
Seven data sets ranging from five thousand records to two million records are created,
keeping the time period constant. The data sets are split into test and train, and
seven decision tree classification models are built.

Unsurprisingly, the larger the data set is, the better performance the associate model
had. However, the relationship is not linear. The degree of performance improvement
from 5,000 records to 100,000 records is much greater than that from 100,000 records
to 2,000,000 records.

3.3.3 Upper Winsorization

In the exploratory data analysis, extreme values of actual transit time were discovered.
A hypothesis is formed that these outliers could negatively impact model performance.
To address these outliers and test this hypothesis, an experiment on upper winsoriza-
tion of the dependent variable is conducted. Upper winsorization works as follows:
an upper winsor parameter of 0.005 will set any actual transit time greater than the
99.5th percentile to the 99.5th percentile value. For the current analytical data set,
this serves to narrow the dependent variable distribution to values between zero and
seven inclusive. In other words, upper winsorization is used to replace outliers with
upper bound values in the training and testing sets.

Models are created using the two different data sets: the winsorized data set and the
non-winsorized data set. Although the two models have the same model type, they
are not identical models because they are trained on different data sets. The model
with the winsorized data set outperforms the one with the non-winsorized data set.
Therefore, the above hypothesis is proven true. Removing outliers from the analytical
data set supports model performance.

3.3.4 Independent Models per Carrier

Experimentation is conducted to determine the impact of creating separate models
per carrier instead of utilizing one model for all carriers. Two models are created for
the two largest carriers, and another is created for all other carriers. The analytical
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data set used in previous model iterations is split in the same manner and used for
model training and testing.

Slight performance improvement is seen for one of the large carrier models, while the
remaining models result in performance degradation. This degradation could be a
result of reducing the number of training observations per model when the training
data was split by carrier.

3.3.5 Sampling

An experiment is conducted to confirm the hypothesis that proportional stratified
sampling improves model performance. In this experiment, the full set of model
types is run with random sampling and compared to the performance of the models
with proportional stratified sampling. Across nearly all model types, models with
proportional stratified sampling perform better than those with random sampling.
This confirms the proportional stratified sampling hypothesis.

3.3.6 Data Set Time Period

The time period associated with the analytical data set is experimented with. Time
periods of one month, two months, and fourteen months are tested. Time periods
begin with the most recent full month. For example, for the time period of two months,
the most recent complete two months are included. A test using two of the most
recent complete months plus one month from twelve months ago is also included. This
is in an effort to represent both recent behavior as well as any seasonal behavior that
would be seen during the same month of the previous year. Sampling percentages
that preserve the size of the analytical data set across each test case are used and are
shown in table 3.3.

Again, models are created for each test case and the accuracy performance metrics
are calculated and compared. The one month time period is associated with the
best performance, followed by two month, two plus one month, and fourteen months.
Please note, this experiment is run using a random forest classifier.

Table 3.3: Time Period Cases and Associated Sampling Percentages

Time Period Sampling Percentage
1 Month 100%
2 Months 50%
14 Month 10%

2 + 1 Month 25%
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3.3.7 Feature Importances in the Best Post-Induction Model

Prior to advancing to post-purchase model experimentation, the feature importance
scores of the best-performing post-induction model are assessed. Specifically, the
relative magnitude of the feature importance scores are compared. This provides
insights into which variables are most useful in predicting transit times and informs
the design of post-purchase models. The best-performing post-induction model is
a random forest classifier created using a one month, two million record analytical
data set with dependent variable outliers replaced via winsorization. The performance
metrics of this model compared to the current state are presented in Table 3.4. Note
that the current state performance metrics are slightly different than the ones present
earlier in this thesis due to the difference in time period considered. The top twenty
features, in terms of importance scores, are shown in Table 3.5. Importance scores
are based on the mean decrease in impurity for a given feature across all trees in the
random forest model.

The carrier provided transit estimate is considered the most important feature for
predicting transit times. This makes sense given the moderate correlation between this
independent variable and the dependent variable. Configuration attributes, namely
carrier name, distribution center and shipping speed also have high importance scores.
Recalling our findings from the exploratory data analysis, specifically that transit time
distributions vary significantly across configuration attributes, this also makes sense.

Interestingly, we observe that first-scan day features have high importance scores.
This communicates that the day a parcel is scanned into a carrier’s network impacts
its transit time. Knowing this information can aid in making a stronger prediction.
Three first-scan hour features, namely those associated with the first three hours of
the day, also appear in the top twenty feature list. The importance of first-scan related
variables will be kept in mind in future model experimentation.

Table 3.4: Post-Induction Random Forest Classifier Results

Metric Random Forest Classifier Current State
Accuracy 77% 40%

Mean Absolute Error 0.28 days 0.73 days
Percent Negative Error 14% 15%
Mean Negative Error 0.17 days 0.20 days
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Table 3.5: Post-Induction Random Forest Classifier Feature Importance Scores

Rank Feature Score
1 Carrier Provided Transit Time 0.086107
2 Carrier A 0.018591
3 Carrier B 0.01694
4 Destination State California 0.015586
5 Carrier B 0.015552
6 First Scan Day Friday 0.013816
7 Distribution Center 4 0.013161
8 Distribution Center 2 0.013048
9 First Scan Day Saturday 0.012684
10 First Scan Day Monday 0.010966
11 Shipping Speed Ground 0.009812
12 Carrier D 0.009787
13 Distribution Center 1 0.008586
14 Manifest Day Friday 0.008551
15 Shipping Speed Two Day Air 0.008081
16 First Scan Hour 1 0.007875
17 First Scan Hour 2 0.007528
18 First Scan Day Thursday 0.00752
19 First Scan Hour 0 0.007161
20 First Scan Day Tuesday 0.007022
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3.4 Post-Purchase Model Experiments

The post-induction models discussed in the previous section use features up to and
including the first-scan event. Post-purchase models, the focus of this section, use
features up to and including the purchase or order creation event. As discussed,
post-purchase models are preferred for the fulfillment decision-making use case. In this
section, experiments conducted on post-purchase models are shared. Post-induction
model experiments are not rerun, but rather built upon based on the assumption that
findings are transferable between these two model designations.

3.4.1 Initial Post-Purchase Models

For post-purchase models, a new analytical data set is created. The initial version is
the same as the post-induction data set except that all features after the purchase event
are removed and new purchase features are added. Features related to manifestation
and induction are removed. Hour, day and month features are added for the order
purchase or click event. This is done to add temporal features back into the data set.
In the post-induction data set all temporal features occur after the purchase event.
When the transformation from post-induction data to post-purchase data occurs, these
temporal features are removed.

The full set of model types are run using the initial post-purchase data set. Model
performances are worse than the post-induction model results. This is expected, given
the prediction is being made earlier in the order cycle and utilizes less information
about the parcel’s fulfillment journey. It also makes sense when recalling that features
with high importance scores, namely those related to the first-scan event, are not
included in the post-purchase model.

3.4.2 Model Type: CatBoost

Due to the strong performance of tree-based methods in the experimentation so far,
additional tree-based methods are experimented with. In particular, a CatBoost
regressor and classifier are tested. CatBoost is a popular gradient boosting algorithm
known for its efficiency, strong performance on complex prediction tasks, and support
of various feature types [5]. Root mean squared error and multiclass are used as loss
functions for the regressor and classifier, respectively.

These new models outperform all previous models, with the exception of the CatBoost
regressor having slightly lower accuracy than the random forest classifier. However, the
CatBoost regressor is associated with approximately 88% less training time than the
random forest classifier (3 hours versus 25 hours). The CatBoost classifier performs
the best out of all tested models, in terms of accuracy.
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3.4.3 Lagged Features

In hopes of increasing performance closer to post-induction model levels, new features
are experimented with. Recalling the importance of the first-scan features in the
post-induction models, two new classes of features using historical order information
are created: one related to the first-scan event and the other related to actual transit
time values. These are referred to as lagged features.

The aim of the lagged first-scan features is to provide the post-purchase model with
information on first-scan dynamics. Instead of using the known first-scan day, which is
not allowed in the post-purchase model designation, features are created to represent
the distribution of first-scan days across historical similar orders. Specifically, seven
numeric features are created for the percentage of historical similar orders with a
first-scan day of Monday, Tuesday, Wednesday, etc. Similar orders were first defined
as ones with the same configuration (distribution center, destination, carrier, shipping
speed). After additional thought, the approach was revised and similar orders are
defined as ones with the same distribution center, carrier, shipping speed and click
day. Click day was added because of the strong relationship that exists between click
day and first-scan day. Destination was removed in an effort to broaden the definition
of similar orders and expand the historical order set available for a given record.

Only similar orders that had been inducted by the time the given order was placed are
included in the historical order set. This is to avoid calculating lagged features using
data that would not actually be available when the transit time prediction is made
in production. In production, only first-scan information for orders that have been
inducted by the time the given order was placed would be available. It is important
to capture this constraint accurately in feature creation and model development.

The second class of lagged features created for post-purchase predictions are related to
actual transit time values. These features are created by gathering historical similar
orders and calculating various metrics across those orders’ actual transit time values.
In this case, similar orders are defined as ones with the same configuration attributes.
Only historical orders that had been delivered by the time the given order was placed
are included in the calculation of this class of lagged features, for the same reason
described above. Descriptions of these lagged actual transit time features are provided
in Table 3.6.

The initial post-purchase data set is updated to include all new lagged features. The
full set of model types are run against this updated data set. Model performance
improves with the inclusion of the lagged features across all model types except for
the decision tree classifier and regressor. Improvements ranged from 1.5% to 14.5% in
terms of percent change in accuracy, while degradations were on the order of -15%.
Percent change in accuracy is calculated using the equation below.
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Table 3.6: Lagged Actual Transit Time Features

Feature Name Description
5_OBS_MAX Maximum actual transit time across last 5 similar orders
5_OBS_MIN Minimum actual transit time across last 5 similar orders
5_OBS_MED Median actual transit time across last 5 similar orders
5_OBS_AVG Average actual transit time across last 5 similar orders

TO_DATE_AVG Average actual transit time across all historical similar orders
PREV_VALUE Actual transit time associated with the most recent similar order

Percent Change in Accuracy =
Current Accuracy Score - Previous Accuracy Score

Previous Accuracy Score

The feature importance scores for the best-performing model, the CatBoost classifier,
are provided in Figure 3-8, where days of the week represent the lagged first-scan
features. It can be seen that all lagged features have non-zero importance scores. This
indicates they have predictive power in the context of this transit time problem. The
feature describing the average actual transit time across all historical similar orders
replaces the carrier provided transit time feature as the most important. This indicates
that historical transit time values may be a good predictor of future values. All lagged
first-scan features have moderately high feature importance scores, notably beating
the importance scores of distance, destination and shipping speed. This indicates
these features may be picking up on the signals previously provided by the first-scan
day features.

To further validate the hypothesis that lagged features positively impact performance,
several model trials are conducted using a limited feature set. In these trials, the
lagged features are removed, in addition to some other features. Unexpectedly, one of
these simpler models outperforms the model with the full, lagged feature inclusive,
feature set. This finding motivates experimentation on alternative lagged feature
designs and feature selection methodologies.
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Figure 3-8: Feature Importance Scores of CatBoost Classifier with Lagged Features

3.4.4 Updated First-Scan Lagged Features

In post-induction model experiments, first-scan attributes proved to be useful in
predicting transit times. However, the initial iteration of lagged first-scan features did
not improve predictive performance. Another iteration of first-scan lagged features is
created in hopes of providing the valuable first-scan signal to the post-purchase models.
This second iteration encompasses the creation of two new features that represent the
following: 1) for a given order, the most frequent first-scan day seen in the set of all
historical similar orders and 2) for a given order, the first-scan day associated with
the most recent historical similar order.

Again, historical orders are defined as those that have been delivered by the time
the given order was placed. Similar orders are defined as those with a common set
of attributes. Experiments are conducted with different sets of attributes to define
similarity. The first trial defines similar orders as those with the same distribution
center, carrier, shipping speed and click day. The second trial defines similar orders as
those with the same distribution center, carrier, shipping speed, click day and click
hour. When creating similarity definitions, the need to be specific enough to find
orders with the same transit behavior is balanced with the need to have ample records
in the historical similar order set.

The percentage of time each of the two new lagged first-scan features correctly repre-
sented the actual first-scan day is calculated to gauge how strong these new features
may be. The percentages range from 35% to 55%, with the mode feature and second
similarity definition combination achieving the best matching capability and highest
percentage.

The performance impact of the new lagged first-scan features is evaluated in the
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feature selection experimentation described in the next section.

3.4.5 Feature Selection

A simpler feature set having stronger performance than a more complex one motivates
the development of a systematic feature selection process. This process begins with
creating a model based on only configuration attribute features. It continues with
adding new features to the model one at a time. If the feature improves model
performance, the feature remains in the set. If not, it is removed.

In this process, experimentation is also conducted on representing features as categori-
cal or numeric. If a feature can be represented as both categorical and numeric, two
separate instances of the feature for each representation are included in the feature
selection process. This provides insight into whether the feature as a categorical or
numeric variable is more useful in predicting transit times.

Using this process, the best feature set for the CatBoost model is found to consist of
the following features: distribution center, three digit destination zip code, destination
state, shipping speed, carrier, carrier provided transit time, distance, day of week of
purchase, hour of day of purchase, average actual transit time over last 5 historical
similar orders, minimum actual transit time over last 5 historical similar orders,
and median actual transit time over last 5 historical similar orders. Lagged first-
scan features are not included in the best feature set, indicating that the second
iteration of features still does not provide the predictive power hoped for. Categorical
representations of carrier provided transit time and lagged actual transit time features
outperform numeric representations, while the reverse is true for the click hour feature.

3.4.6 CatBoost Hyperparameter Tuning

Improving transit time estimates through hyperparameter tuning is explored in the
context of the CatBoost model. Hyperparameters are parameters that influence the
model learning process and are set prior to the model being fit on training data. The
goal of the tuning process is to discover the hyperparameter values that unlock the
best predictive performance. The following hyperparameters are experimented with in
this process: iterations, depth and L2 leaf regularization. Iterations is the number of
boosting rounds. Depth describes the maximum allowable level, counted from root to
leaf, of the trees in the model. L2 leaf regularization is used to penalize the complexity
of the trees and helps prevent overfitting. These hyperparameters are selected based on
recommendations provided in Catboost documentation. Hyperparameters are tuned
in an iterative manner rather than simultaneously. Experimentation starts with the
baseline model, or that with default hyperparameters. Iterations is tuned first. The
optimal iterations value is then used in the next experiment on depth. Finally, the
optimal iterations and depth values are used in the L2 leaf regularization experiment.
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Iterations is tuned by setting the number of iterations to a large value (10,000),
setting the learning rate, or gradient step size, to a small value (0.03) and using
the CatBoost overfit detector. When supplied an evaluation set, this detector will
stop model training when evaluation set performance improvement stagnates. In this
case, the overfit detector was set to stop training after 200 consecutive iterations of
accuracy deterioration. The optimal iterations value is considered the one with the
best accuracy on the evaluation set. For this process, new train, validation and test
splits are created using 70%, 15% and 15% of the data set, respectively. The validation
set is used as the evaluation set for the overfit detector.

The best depth and L2 leaf regularization values are determined using two grid search
processes. For depth, values of 6,7,8,9 and 10 are tested. For L2 leaf regularization,
values of 1,5,25,100, and 1000 are tested. CatBoost grid search does not support use
of the overfit detector. Therefore, the best hyperparameter values are chosen based
on training set performance.

This hyperparameter tuning process is conducted on three different models and asso-
ciated feature sets: the full feature set including lagged features, a feature set without
lagged features, and the best feature set determined through the feature selection
process. In two out of the three models, iterations tuning results in a model with worse
performance than the baseline. This could be explained by the overfit detector being
too conservative and stopping too soon. This would result in the number of iterations
being suboptimal, thus compromising performance. The iterations tuning process
results in improved model performance for the feature set created by feature selection.
The difference in iterations tuning results across models confirms the expectation that
hyperparameter tuning results are not transferable across models. Hyperparameter
tuning should be conducted again once the final model design is chosen.

Depth and L2 leaf regularization tuning do not meaningfully improve performance in
any of the models. This means that either the default values are similar or exactly
the same as the best value found, or that these hyperparameters do not meaningfully
impact model performance in general for this prediction problem.

3.4.7 Model Type: XGBoost

Another advanced tree-based model type, namely XGBoost, is tested given the success
with CatBoost. XGBoost is another popular gradient boosted trees method that is
known to be highly performant and efficient [4]. The performance of an XGBoost
classifier is evaluated by running the feature selection process described above and
comparing the results to those of the CatBoost feature selection process. A softmax
objective function is used for the XGBoost model given the multi-class nature of
transit time prediction problem.

The best XGBoost model’s performance is slightly worse than the best Catboost
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model’s. However, the XGBoost model takes 5 minutes to train versus the CatBoost’s
45 minutes when using the one month data set with proportional stratified sampling.

The feature set associated with the best XGBoost model is different than the feature
set associated with the best CatBoost model. A visual comparison of the feature
sets is provided in Table 3.7. The XGBoost feature set is smaller and includes fewer
lagged actual transit time features. Additionally, there is consistency between the
XGBoost and CatBoost results in terms of the feature describing the hour of day the
order was placed enabling better performance as a numeric variable and the carrier
provided transit time enabling better performance as a categorical variable. Finally,
in both XGBoost and CatBoost models, the lagged first-scan day features do not
increase model performance.

Table 3.7: Best CatBoost Model and Best XGBoost Model Feature Comparison

Feature Name Used in CatBoost Model? Used in XGBoost Model?
Distribution Center Yes Yes
Three Digit Destination
Zip Code

Yes Yes

Destination State Yes Yes
Shipping Speed Yes Yes
Carrier Yes Yes
Carrier Provided Transit
Time

Yes Yes

Distance Yes Yes
Day of Week of Purchase Yes Yes
Hour of Day of Purchase Yes Yes
Average Actual Transit
Time Over Last 5 Histori-
cal Similar Orders

Yes No

Minimum Actual Transit
Time Over Last 5 Histori-
cal Similar Orders

Yes No

Median Actual Transit
Time Over Last 5 Histori-
cal Similar Orders

Yes No

Actual Transit Time Asso-
ciated With Previous His-
torical Similar Order

No Yes

42



3.4.8 Encoding of Categorical Variables

The final post-induction model experiment conducted is related to the encoding of
categorical variables. In models up to this point, one hot encoding is used to encode
categorical variables prior to model training. One hot encoding consists of transforming
a categorical variable to a set of binary variables, one for each level of the categorical
variable, and setting the binary variable to one if a given observation is associated
with that binary variable’s level.

Three alternative encoding techniques are tested using XGBoost models: leave one out
encoding, target encoding, and ordinal encoding. Leave one out encoding consists of
replacing each level of a categorical variable with a numerical value based on the mean
of the target variable for that level, computed over all observations except the current
observation. Target encoding uses the same technique as leave one out encoding, but
includes the current observation in the mean calculation. Ordinal encoding transforms
categorical variables to numeric ones by replacing each level of a categorical variable
with an integer value. Ordinal encoding, fit on the full data set, is found to be
associated with meaningfully better performance than the other methods across all
performance metrics.

The final aspect of the categorical encoding experiment is to determine the best feature
set using ordinarily encoded variables. Since the features technically change with the
updated encoding methodology, reassessing the best feature set is considered necessary.
The same feature selection process described above is followed.

The best feature set changes with the change of encoding methodology. The best
set with ordinally encoded categorical variables is smaller than the one with one hot
encoded variables. The best set with ordinal encoding consists of the following features:
distribution center, three digit destination zip code, destination state, shipping speed,
carrier, carrier provided transit time, day of week of purchase and hour of day of
purchase (as a numeric variable). Notably, this set does not include distance or the
lagged feature that provided the actual transit time of the most recent historical
similar order, both of which were included in the one hot encoding best feature set.
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Chapter 4

Results

4.1 The Best Model
Insights from post-induction and post-purchase model experiments are leveraged to
create what is considered the best model in this scope of work. In the following
subsections, the design elements, performance and feature importance scores of this
model are discussed.

4.1.1 Design Elements

It is concluded that the best model is an XGBoost classifier. This model uses a one
month, roughly two million record analytical data set curated through proportional
stratified sampling on configuration attributes. Winsorization is applied to the analyt-
ical data set as a method to replace outliers and restrict actual transit time values to
be between zero and seven. The model leverages the following features to train and
make predictions: distribution center, three digit destination zip code, destination
state, shipping speed, carrier, carrier provided transit time, day of week the order was
placed, and hour of day the order was placed (as a numeric variable). Categorical
variables are encoded using ordinal encoding.

Although the CatBoost model has slightly better performance, the XGBoost model is
selected instead for two reasons. First, the XGBoost model trains in only 5 minutes,
which is 88% less time than the CatBoost model. Second, the XGBoost model requires
a smaller feature set to unlock roughly the same performance as the CatBoost model.
A smaller feature set supports interpretability and also simplifies the analytical data
set creation process.

4.1.2 Model Performance Versus Current State

The performance of the best model in relation to the carrier provided estimates for
the same period are presented in Table 4.1. The XGBoost model is associated with
significant improvements in accuracy and mean absolute error. The XGBoost model
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has marginally higher percent negative error and mean negative error.

This means that the XGBoost model is associated with more correct estimates. When
the XGBoost estimates are wrong, they are wrong by a smaller amount than the
carrier estimates on average. In terms of minimizing negative impact on fulfillment
decision-making, a smaller error is preferred to a larger one. Carrier estimates have
slightly less negative error occurrences and slightly smaller negative error on average
compared to the XGBoost model estimates.

Table 4.1: Best Model Estimates vs Carrier Provided Estimates: Performance Metrics

Performance Metric Best Model Carrier Provided
Accuracy 67% 45%

Mean Absolute Error 0.38 days 0.68 days
Percent Negative Error 18% 17%
Mean Negative Error 0.23 days 0.22 days

When viewing the error distribution of the XGBoost estimates, as shown in Figure
4-1, it can be seen that the vast majority of errors are only one day. Additionally, it
can be seen that underestimations are more frequent than overestimations. Comparing
the XGBoost error distribution to that of the carrier provided estimates shown in
Figure 4-2, it can be seen that the carrier estimates are more likely to underestimate
transit time too. In the case of overestimation, the carriers might be quoting longer
delivery times as a way to decrease late deliveries and improve customer satisfaction.

Figure 4-1: Best Model Error Distribution

To investigate the XGBoost model’s errors further, a confusion matrix is generated
and provided in Figure 4-3. Through this visualization it can be seen that errors are
fairly well distributed across error types. For example, the same number of records
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Figure 4-2: Carrier Provided Estimate Error Distribution

are associated with the following error types: predicting 1 day when the actual transit
time is 2 days, predicting 2 days when the actual is 3 days, predicting 2 days when
the actual is 1 day, and predicting 3 days when the actual is 2 days. To further com-
pare XGBoost estimates to the carrier’s, a confusion matrix for the carrier provided
estimates is generated and is displayed in Figure 4-4.

Figure 4-3: Best Model Confusion Matrix
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Figure 4-4: Carrier Provided Estimate Confusion Matrix

Viewing the carrier provided estimate confusion matrix and observing the smaller
proportion of records on the diagonal, it is apparent that the carrier estimates have
lower accuracy. It can also be seen that the carrier’s errors are more unevenly dis-
tributed. The errors of predicting 2 days when the actual is 1 day, and predicting 1
day when the actual is zero days are the tree most common types of errors. The top
two most-occurring types align with the hypothesis that carriers are being conservative
in their estimates.

The final comparison of XGBoost and carrier provided estimates is conducted by
creating cumulative density function plots for the absolute error of the predictions.
These plots are shown in Figure 4-5 and Figure 4-6. The XGBoost plot shows that
over 95% of records are accurately predicted or have an error of one day. Further, it
shows that very few records have an error greater than two days. The carrier estimate
plot shows that the percentage of records with error of one day or less is lower at 89%.
This supports the point that the carrier’s errors are on average of a larger magnitude
than the XGBoost model’s errors.
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Figure 4-5: Best Model Error CDF

Figure 4-6: Carrier Provided Estimate Error CDF

4.1.3 Outperformance Analysis

An investigation is conducted to characterize where the XGBoost model outperforms
carrier estimates. Charts displaying the percent change in accuracy across distribution
centers, carriers, and shipping speeds are shown in Figures 4-7, 4-8 and 4-9, respec-
tively. For convenience, the equation used to calculate percent change in accuracy is
shown again below.

Percent Change in Accuracy =
Current Accuracy Score - Previous Accuracy Score

Previous Accuracy Score

The XGBoost model estimates are more accurate than the carrier estimates on average
across all distribution centers, all carriers, and all shipping speeds. In other words,
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Figure 4-7: Percent Improvement in Accuracy by Distribution Center

Figure 4-8: Percent Improvement in Accuracy by Carrier

Figure 4-9: Percent Improvement in Accuracy by Shipping Speed

there is not one subset of data, based on the configuration attributes, where the carrier
estimates outperform the XGBoost model estimates.

The XGBoost model significantly outperforms carrier estimates for three distribution
centers in specific, with percent improvements in accuracy of over 90%. The same is
true for three out of the six carriers analyzed, this time with percent improvements of
over 100%. In terms of shipping speeds, the model especially outperforms the carrier
provided estimates for two day air and next day air.
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4.1.4 Feature Importances

To enhance model interpretability, feature importance scores are calculated using
weight and gain metrics. The weight metric quantifies importance by counting the
number of times the feature is used in a split. This metric favors high cardinality
features. The gain metric quantifies importance by calculating the average performance
gain across all splits where the feature is used. The top eight important features’ scores
are plotted in Figures 4-10 and 4-11 using the weight and gain metrics respectively.

Figure 4-10: Best Model Feature Importance Scores: Weight Metric

Figure 4-11: Best Model Feature Importance Scores: Gain Metric

The two top 8 sets consist of the same features but in somewhat reverse order. The
weight metric set scores the destination zip code feature very high, which makes sense
given its high cardinality. Destination zip code (SHIPTOZIP_THREE_DIGIT),
day of week the order was placed (CLICK_DAY) and hour of day the order was
placed (CLICK_HOUR) are the top three most important features in terms of weight
scores. These features make up the bottom of the top eight set by the gain metric.
Carrier provided transit time, carrier name and shipping speed are the top three most
important features in terms of gain scores. Interestingly, again, these features make
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up the bottom of the top eight set by the weight metric.

4.2 Impact Assessment
An analysis is conducted to determine the impact of improved transit time estimates
on fulfillment decision-making. Specifically, a counterfactual analysis is executed
to compare the performance of the fulfillment optimization algorithm using carrier
provided estimates to the performance using XGBoost model estimates. The perfor-
mance using the XGBoost model estimates is determined using Victory’s fulfillment
simulation environment. This environment is a copy of the production fulfillment
optimization system and enables simulation of the fulfillment outcomes that would
have occurred if XGBoost model estimates were used in production historically. The
performance of carrier provided estimates is known, and does not require simulation,
given these were the estimates that were actually used in production.

The test of XGBoost estimates is conducted on a one month sample of historical
data. The set of performance metrics assessed are based on what is used by Victory
leadership to monitor fulfillment decision-making performance and consist of the
following: average fulfillment cost in dollars, average CO2 emissions in tons, average
lead time in days and percentage of orders shipped in multiple boxes. Note that in
this context, lead time refers to the number of days between when a customer places
their order and when they receive it.

Performance metrics for the set of fulfillment decisions made using the carrier provided
transit times were calculated, as were those for the set of decisions based on the
XGBoost model estimates. The XGBoost model was associated with a 4.5% decrease
in lead time, a 3% reduction in CO2 emissions, a 1.5% reduction in cost and a 1%
reduction in multiple box shipments.
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Chapter 5

Recommendations

This chapter presents a set of recommendations for Victory’s supply chain data science
leadership. The primary recommendation is to build a production version of the
XGBoost model and replace carrier provided estimates with XGBoost estimates in
the fulfillment decision-making process. The XGBoost model generates more accurate
estimates and enables improvement across all key fulfillment performance indicators.

The XGBoost model trains quickly compared to other models analyzed which is
advantageous when production implementation is considered. Its training speed is
also beneficial in the context of computational resources, as a quicker training time is
associated with lower cost and a smaller carbon footprint [10].

The XGBoost model also has a relatively small feature set. This reduces the com-
plexity and time associated with creating and running production model pipelines. It
also promotes interpretability which will aid in establishing the stakeholder support
necessary for production release.

Conversations with software engineering regarding the development of a production
model have been initiated as part of this work. Effort should be allocated toward con-
tinuing these conversations. Specifics around data preparation pipelines and automated
model training and estimate generation processes should be discussed. Monitoring and
alerting to ensure software systems are running as expected and model performance is
in line with historical behavior should also be a topic of conversation. Finally, a plan
regarding integration with the production fulfillment optimization software, to enable
automated transit time estimate consumption, should be discussed.

Victory’s supply chain data science leaders should also consider first releasing the
XGBoost model on a subset of live orders to confirm expected performance. After
this pilot, the model should be released across all U.S. digital orders. This strategy
is advantageous because it increases the likelihood of receiving sufficient stakeholder
support; gaining organizational buy-in for a pilot is much easier than for a full scale
release. The strategy also increases the likelihood that stakeholders will support a full
scale release, given trust will be established in the pilot phase. Finally, releasing via a
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pilot strategy enables valuable insights to be gained and improvements to be made
prior to releasing across all orders.

An alternative next step is to continue experimentation in hopes of extracting addi-
tional model performance. This course of action is not recommended. The model
already significantly outperforms the current state. Steps towards realizing that value
should be taken, hence, the recommendation to build a production model. Continuing
to invest in performance gains will only delay value creation. Implementing the model
in production will also enable valuable lessons to be learned earlier on. The feedback
loop necessary for model enhancements will be initiated, unlocking a better model
sooner.
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Chapter 6

Conclusion and Future Work

6.1 Thesis Summary

In this thesis, a model to predict transit times is developed. Considerable experimenta-
tion is conducted to determine favorable model design elements, across model structure,
parameters and hyperparameters. The final model’s estimates are significantly more
accurate than the estimates used currently in Victory’s fulfillment decision-making
processes.

In this thesis, an impact assessment is conducted to determine the effect of improved
transit estimates on key fulfillment performance indicators. Using the predictive model
estimates instead of the current ones in the fulfillment optimization algorithm was
associated with a 4.5% decrease in lead time, a 3% reduction in CO2 emissions, a
1.5% reduction in cost and a 1% reduction in multiple box shipments on a historical
one month sample.

These results support the hypothesis that improving transit time estimates can improve
fulfillment decision-making. Furthermore, the results demonstrate that improving the
digital consumer experience while reducing carbon emissions is possible, especially
through the application of modern machine learning techniques. This thesis provides
a recommendation to implement the predictive model in production to realize the
expected, sizeable benefits.

6.2 Lessons Learned

This thesis conveys many lessons learned that are value to the Victory organization
and others managing supply chains for digital channels. This thesis demonstrates how
many different methods can be used to predict transit time under an origin-destination
formulation. Classification and regression methods can both be used, and within those,
various model types can be applied. This thesis shows how model type and feature
list selection are among the most influential aspects of model development. It also
shows how careful selection of data set time periods, processing of outliers, and imple-
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mentation of sampling methodologies can meaningfully impact model performance.

While model development can become complex quickly, this thesis shows how in-
terpretability and simplicity can be maintained by using a relatively small feature
set. This thesis also demonstrates that a relatively small feature set can enable the
generation of high quality transit time estimates. This is an important lesson, given
data sourcing, data cleaning and feature engineering are usually time intensive and
significant barriers to model development. By using a small feature set, these barriers
can be reduced and the likelihood of creating business value through machine learning
can be increased.

This thesis also conveys an important lesson around how the best machine learning
model should be selected. It shows how considering aspects like interpretability and
model train time, alongside accuracy, can result in a final model that better meets the
needs of an organization. Further, the thesis addresses how using a holistic selection
process like this can increase the likelihood that stakeholders understand and support
the machine learning work, and thus increase the likelihood that it is implemented in
production.

Finally, this thesis demonstrates the reality of computational resource limitations, and
shows how machine learning practitioners can design their experimentation given such
constraints. This work highlights the reality that decisions must be made related to
which experiments to run sequentially versus which to run simultaneously. In an ideal
state, all experiments could be run simultaneously, but given computational resource
limitations, this usually is not possible. Considering which experiments are likely to
be most influential, and which ones are likely to have dependencies on others, can
assist machine learning practitioners in deciding which ones to run simultaneously.
Careful consideration like this supports the development of highly performant machine
learning models in the face of computational resource limitations.

6.3 Future Work

In the future, additional work can be done to further improve transit time estimates.
There are three main areas of future work: geographic expansion, data preparation,
and model experimentation.

Geographic Expansion
In addition to the United States market, Victory operates in European and Asian
markets. The work presented in this thesis is limited to the United States. Extension
of the model into European and Asian businesses should be investigated. The current
model may perform well in these new regions, or the model may need to be tweaked
to reflect unique attributes associated with those geographic areas. Exploratory data
analysis, feature engineering and model experimentation should be revisited in this
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case. Victory should seek to realize the benefit of improving transit estimates globally
rather than just in the United States market.

Data Preparation
In the future, enhancements to the data preparation portion of model development
should occur. Investment in an automated data cleaning process should be made.
Open source cleaning packages should be researched and leveraged if possible. Further,
data imputation processes should be developed, evaluated and implemented. Currently,
data observations with missing values are deleted. This increases the risk of bias in
the analytical data set and can be avoided by implementing a robust data imputation
process. The final data related enhancement opportunity is to continue iterating on
lagged first-scan features. Different metrics, definitions of similar orders and time
periods should be investigated with the goal of creating features that emulate the
importance of first-scan features in post-induction models.

Model Experimentation
The final area of future work is related to model experimentation. Additional investi-
gation of separate models per carrier should occur. In the future, separate models
with the same number of training observations as the consolidated model should be
tested. This methodology will enable better isolation of the impact associated with
the model structure change.

Additional computational resources and an enhanced model development environment
should be pursued in the future. These would enable more robust experimentation
through the ability to run models faster and execute simultaneous experimentation.
A subset of design elements, ideally those considered to be most influential in model
performance, should be tested simultaneously through a grid search technique. This
approach is more exhaustive than running experiments sequentially, provides insight
into the best combination of design elements and could likely unlock additional per-
formance improvements.

The final area of future work related to model experimentation is to investigate
more advanced model types. Specifically, deep learning and neural network methods
should be implemented and their performance should be compared to existing model
types. When making this comparison, the complex tuning processes, high data volume
requirements, and large computational burdens associated with these techniques should
be considered [2].
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