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Abstract

Large language models (LLMs) have been experiencing a rapid rise in utility, accessi-
bility, and popularity, but there are still many areas in which they can improve. One
such area for improvement is their truthfulness. We seek to improve the truthfulness
of LLMs by probing their internal representations. We find that a linear probe on the
last hidden layer representation is able to improve a model’s accuracy by reducing its
confidence in incorrect answers. However, this probe is less effective at perturbing
the model to change its behavior and driving the model towards correct answers.
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Chapter 1

Introduction

Since the introduction of neural networks to the field of natural language processing, a

large body of research has been devoted to the development of increasingly large and

effective language models (LMs), capable of generating text in response to any prompt

given by the user. Some models, such as ChatGPT [13], have been widely used by the

public, with impressive results. Despite the remarkable capabilities of these models,

several obstacles must be overcome before these models can be considered safe for

general use. In this work we will focus on truthfulness in language models. Under

many circumstances, language models will generate false, misleading, or otherwise

incorrect outputs. We seek to investigate the conditions under which this untruthful

behavior occurs and develop and test methods to improve the truthfulness of existing

language models.

Studying neural networks by probing their internal representations is a common

approach toward making these networks more interpretable and gaining insight into

their behavior. We find that a linear probe applied to the last layer representations

generated by LMs is generally more accurate that the LM’s generated output, in

large part because they reduce instances where the model is confidently incorrect.

By perturbing LM representations based on these probes, we can either improve or

worsen the model’s accuracy. We find that these perturbations only slightly change

LM accuracy and are particularly ineffective at improving accuracy.
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1.1 Large Language Models

Fundamentally, a language model encodes a probability distribution over strings of

text. This is done by dividing a string into tokens 𝑥1, . . . , 𝑥𝑛. The probability of this

string can be written as

𝑝(𝑥1, . . . , 𝑥𝑛) = 𝑝(𝑥1)𝑝(𝑥2|𝑥1) · · · 𝑝(𝑥𝑛|𝑥1, . . . , 𝑥𝑛−1).

Thus, instead of computing the left-hand side probability directly, the language model

can compute each term on the right-hand side. Using this capability, language mod-

els can generate text as follows: given a prompt, the model computes a probability

distribution for the next token, and generates a token by either sampling from this

distribution or choosing the most likely token. The model then repeats this proce-

dure to generate another token, continuing until an end-of-sequence (EOS) token is

generated.

Modern LMs compute 𝑝(𝑥𝑛|𝑥1, . . . , 𝑥𝑛−1) using a neural network. The transformer

architecture [21] is the basis of nearly all LMs that are widely used today. In recent

years, improved LMs, such as those in [1, 24, 14], have been developed in large part

by using larger models and more training data, and current state-of-the-art LMs have

hundreds of billions of parameters. These large models are often referred to as large

language models (LLMs).

1.2 Probing to Improve Truthfulness

We use supervised learning to train a linear probe that predicts the truth value of a

statement given its final-layer LM representation. Overall, this probe is more accurate

than the LM itself at determining truth values and answering questions. We find that

a principal cause of this behavior in the fact that the probe is generally less certain

than the LM, and is unlikely to be confidently incorrect. Indeed, in most cases where

the probe and model disagree on the truth value of the statement, the statement is

false.
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By perturbing LM representations based on these probes, we can manipulate

the probabilities outputted by the model, and either improve or worsen the model’s

accuracy. We find that these probes do not significantly affect the model’s accuracy,

though they are generally better at decreasing accuracy than increasing it. Thus, our

probes alone are not an effective approach to improving LM truthfulness.
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Chapter 2

Related Work

2.1 Pre-trained Language Models

The development of the transformer architecture [21] represented a significant step in

the field of natural language processing. Essentially all modern language models are

based on this architecture. Another significant step that occurred shortly afterwards

was the development of pre-trained language models, which are trained on large

unlabeled text corpora, often taken from the Internet. Early examples of these include

GPT-1 [17] and BERT [5]. These models are trained to predict missing tokens in

sequences of text, so no labeled data is necessary for pre-training. This task is very

general, so the resulting models have well-rounded capabilities. These general-purpose

language models can either be used without modifications or fine-tuned on a more

specific downstream task.

Further research led to the era of large language models, as simply increasing the

model size and using more data was found to be an effective approach to improving

the model’s performance. An example of this growth can be seen in the GPT model

series. GPT-2 [18] has 10 times as many parameters as GPT-1, while GPT-3 [1] has

175 billion parameters, over 100 times as many as GPT-2. Other well-known LLMs

include OPT [24], which is similarly sized to GPT-3, and PaLM [3], which is even

larger at 540 billion parameters.

A more recent breakthrough has been the use of Reinforcement Learning from

17



Human Feedback (RLHF), first used in training InstructGPT [16]. In this approach,

human labelers rank model outputs, and these scores are used to create a reward

model. This reward model is used to fine-tune the language model with reinforcement

learning, leading to better model outputs. This allowed InstructGPT to achieve better

outputs than GPT-3 despite having more than 100 times fewer parameters. Most

famously, this approach was used in the development of ChatGPT [13] and GPT-4

[14], achieving even better results.

2.2 Probing Neural Networks

Probing is often a useful tool to make neural networks more interpretable. [7] probed

the internal representations of a neural network trained to classify images, analyzing

how the representations evolved as they passed through the layers of the network. In

this work, dimensional reduction techniques were used to create a plot of the repre-

sentations of a dataset of images. By grouping images in the same class and viewing

the plots created for different layers, the authors were able to visually show how im-

ages of the same class clustered together and how different clusters were separated as

they passed through the layers of the neural network.

Other work has focused on probing language models in particular. [15] probed

LLMs to determine whether and when they were likely to generate toxic content. This

was done by training a linear probe on LM representations to identify toxic content,

and then prompting LLMs with various social groups. The authors then measured

which prompts were most likely to result in outputs classified by the probe as toxic.

Our work uses similar methodology to train a linear probe, though our probe identifies

truthfulness and is used for a different purpose.

The authors of [2] investigated how LMs encode truthfulness, using a dataset of

yes-no questions. They built a classifier that would input the LM representation of

a yes-no question followed by either “Yes” or “No,” and would output the probability

that the question was answered correctly. It is notable that this classifier is better

at identifying truth than the LM’s generated output, indicating that LM dishonesty

18



is occurring to some extent. This is similar to our work, but we expand upon it in

several ways. First, the classifier in this work is trained in an unsupervised manner,

but we use ground truth labels to train a classifier using supervised learning. We also

perform further analysis to determine the causes of the probe’s increased performance.

Finally, we ultimately seek to use these probes to improve LMs themselves.

However, this technique is not without limitations. The authors of [19] tested the

probing paradigm by training LMs on the Natural Language Inference (NLI) task

using the MultiNLI dataset [23]. The authors then trained probes on the represen-

tations generated by these LMs to identify linguistic properties including verb tense,

subject number, and object number. These probes achieved high accuracy, indicating

that the LMs were encoding these properties in their representations despite the fact

that these properties were not relevant to the NLI task the LMs were trained to do.

This work demonstrates that LM representations encode many different properties of

the text, and it is challenging to isolate specific properties encoded in a representation

or probe.

This result is important to consider in any work involving probing. In this work,

we must consider the possibility that our probes are capturing linguistic properties

of statements other than truthfulness. There is no easy way to tell if this is the case,

but we can gain insight into this problem by analyzing the probe’s behavior as well

as properties of the dataset it was trained on.

2.3 Language Model Truthfulness

Previous work has uncovered several reasons why LLMs might generate false outputs.

In the case of some prompts, the model may not have the generalization capabilities

required to come up with the correct output. For example, LLMs are generally poor

at solving math problems [6]. In other cases, the model generates a false output

because it is imitating its training data, rather than in spite of its training. LLMs

will often imitate common falsehoods stated by humans, particularly on the Internet,

which is a large source of training data for LLMs. The TruthfulQA dataset [11]
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contains prompts designed to result in this latter type of false output. The authors

found that larger models tend to be more likely to generate false outputs in response

to these prompts, as they are better at imitating their training data.

[12] investigated the knowledge aspect of LM truthfulness. The authors were able

to determine how a model’s knowledge of a fact was encoded in its weights, and were

further able to modify these weights to edit this knowledge. We also seek to edit

models by directly modifying their internal behavior. However, this intervention is

limited to knowledge of specific facts, rather than truthfulness as a whole.

The concept of LM hallucination is closely related to untruthfulness. In the con-

text of language models, hallucination refers to a phenomenon in which a model’s

output is incorrect or nonsensical. Many instances of LM untruthfulness can be clas-

sified as hallucination. [8] surveys work that attempts to measure and mitigate LM

hallucination.

One approach to reducing hallucination is retrieval-augmented generation [10, 20],

in which prompts are augmented with relevant supporting documents. This approach

utilizes an additional component called a retriever, which identifies supporting doc-

uments most relevant to the given prompt. This is done by using BERT [5] repre-

sentations to create a metric that measures the similarity of text sequences, so the

retriever can identify the documents most similar to the prompt. By including this

additional text in the prompt, the LM output is less prone to hallucination. Note

that this approach requires training the new retriever component and simultaneously

fine-tuning the LM itself. We seek to improve truthfulness without introducing new

model components and without significantly changing the LM, such as by fine-tuning.

Another approach to mitigating untruthfulness is given by [9], which trains an

additional LM head that predicts the probability that the model will answer a question

correctly. However, this does not directly improve the truthfulness of the model.

Additionally, this work fine-tunes the model while training the additional head, while

we wish avoid modifying the pre-trained LM weights.

In comparison to some of these works, our approach to improving LM truthfulness

is a relatively simple one. We primarily work with the model’s pre-trained weights

20



and the resulting representations, and we seek to avoid fine-tuning or other complex

procedures.
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Chapter 3

Probing Language Models

3.1 Datasets

We train truthfulness probes on the question-answering datasets TruthfulQA [11],

BoolQ [4], and SciQ [22]. Each of these is made up of questions, and each question has

several answers associated with it, some correct and some incorrect. When training

the probe, a data point consists of a question followed by an answer. (The question

and answer are separated by a space.) This point is labeled true if the answer is

correct and false if the answer is incorrect. Table 3.1 displays example data points

created in this manner.

While the other datasets are roughly balanced between true and false statements,

SciQ consists of multiple-choice questions with multiple incorrect answers and only

one correct answer. We balance this dataset by only retaining one (randomly chosen)

incorrect answer for each question.

3.2 Measuring Model Performance

We wish to compare our probe to the performance of the LM itself. To do so, we

must determine the probability the LM assigns to each possible answer to a question.

Given a sequence of text, an LM can compute its perplexity, which is the negative

log of the probability of producing that text. Recalling that a statement consists of

23



Dataset Statement Truth Value
TruthfulQA What happens to you if you eat watermelon seeds?

The watermelon seeds pass through your digestive
system

True

TruthfulQA What happens to you if you eat watermelon seeds?
You grow watermelons in your stomach

False

BoolQ do iran and afghanistan speak the same language?
yes

True

BoolQ do iran and afghanistan speak the same language?
no

False

SciQ What type of organism is commonly used in
preparation of foods such as cheese and yogurt?
mesophilic organisms

True

SciQ What type of organism is commonly used in prepa-
ration of foods such as cheese and yogurt? gym-
nosperms

False

Table 3.1: Example data points used to train a probe.

a question followed by an answer, we subtract the perplexity of the question alone

from the perplexity of the entire statement. The resulting value is the negative log

of the probability of producing the given answer in response to the given question.

Our dataset consists of a fixed set of answers for each question. Using the proce-

dure described above, we can compute the LM probability of generating each answer.

Normalizing the probabilities to sum to 1 gives a probability distribution over the set

of answers, and we treat these values as the probabilities assigned by the LM to each

answer.

3.3 Probing for Truthfulness

The probe should input the LM representation 𝜑(𝑥) of a statement 𝑥, and output

the probability that 𝑥 is true. To define 𝜑, we look at the architecture of the LM.

We focus on the transformer architecture, which is the basis of essentially all modern

LLMs. The LM feeds its input through several transformer layers. Each layer consists

of a 𝑑-dimensional vector representation of each token, where 𝑑 is a property of the

specific model architecture. Putting these representations together gives a tensor in

24



R𝐿×𝑇×𝑑, where 𝐿 is the number of layers and 𝑇 is the number of tokens in 𝑥.

We set 𝜑(𝑥) to be the 𝑑-dimensional vector at the last token in the last layer. This

representation is chosen because it incorporates all layers and all tokens, making it

the most accurate representation of 𝑥.

The probe itself is a linear function 𝑓 mapping R𝑑 to R, so that the probability

that 𝑥 is true is estimated by 𝜎(𝑓(𝜑(𝑥))), where 𝜎(𝑧) = 1/(1 + 𝑒−𝑧) is the sigmoid

function.

The probe is trained to minimize the negative log loss. For datasets without an

existing train/test split, we randomly select 25% of the dataset to use as a validation

set and withhold these data points during training.

When training the probe, an 𝐿1 penalty is applied. The weight of this penalty is

taken from the set {1, 2, 4, . . . , 256}, with one probe being trained with each weight.

We then measure the classification accuracy of each probe on the validation set. We

choose the weight giving the highest accuracy, and train the final probe from scratch

using this weight.

3.4 Results

All results in this section use GPT-2 [18] as the language model.

There are several notions of accuracy we can use to compare the probe to the

model. The first is question-answering accuracy, in which a single answer is chosen

for each question. We have the model choose the answer with the highest probability

for each question, and the probe choose the answer with the highest likelihood of

being true. The question-answering accuracy is then defined as the proportion of

chosen answers that are correct.

We also consider the average correct probability of the model and probe. For the

model, we define this by calculating the total probability assigned to correct answers

for each question. Averaging this value over all questions gives the average correct

probability of the model. The probe computes truth likelihoods for each answer,

so to compare it to the model, we transform it to a probability distribution over
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the set of answers. To do so, we imagine that the probe must choose a single best

answer. Suppose that the truth likelihoods given by the probe are 𝑝1, 𝑝2, . . . , 𝑝𝑛.

The probability of choosing answer 𝑖 as the single best answer is 𝑝𝑖
∏︀

𝑗 ̸=𝑖(1 − 𝑝𝑗).

Normalizing so that probabilities sum to 1, the probe should assign probability

𝑝𝑖
∏︀

𝑗 ̸=𝑖(1− 𝑝𝑗)∑︀𝑛
𝑘=1 𝑝𝑘

∏︀
𝑗 ̸=𝑘(1− 𝑝𝑘)

=
𝑞𝑖∑︀𝑛
𝑘=1 𝑞𝑘

,

to answer 𝑖, where 𝑞𝑘 = 𝑝𝑘
1−𝑝𝑘

for each 𝑘. We can then compute the average correct

probability for the probe in the same way as the model.

Table 3.2 reports both notions of accuracy for the model and probe for each

dataset, listing question-answering accuracy followed by average correct probability.

(Probe accuracy is computed using the validation set only.) Importantly, the probe

is consistently more accurate than the model itself. This indicates that there is

information encoded in the model’s representations that helps determine truthfulness

but is not being used by the model to generate correct answers.

Dataset Model Accuracy Probe Accuracy
TruthfulQA 34.0, 35.8 79.0, 75.4

BoolQ 41.2, 45.5 63.1, 57.8
SciQ 76.5, 73.6 81.6, 69.8

Table 3.2: Accuracy of the model and probe on each dataset.

One must also consider alternative explanation’s for the probe’s increased accu-

racy. In BoolQ, every question is answered with either “yes” or “no.” The dataset

is imbalanced in that “yes” is the correct answer to 62.3% of the questions. This

explains much of the improvement in the probe’s accuracy: the model only answers

“yes” to 12.2% of questions, while the probe answers “yes” to 94.0% of questions. It

is reasonable to suggest that this is the primary factor being captured by the probe,

rather than truthfulness.

A similar, yet less extreme, phenomenon may also be occurring with TruthfulQA.

In this dataset, correct answers tend to hedge and express less confidence than in-

correct answers. It is possible that the probe is encoding this property of statements

and not just truthfulness.
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We also test the calibration of the probes. We divide the interval [0, 1] into 20

equally-sized bins, placing each statement into a bin based on the probe’s predicted

probability of that statement being true. For each bin, we then compare the average

true probability given by the probe to the actual proportion of statements in the bin

that are true. The results are shown in Figure 3-1. Since the plotted points lie near

the diagonal line, the probes are well-calibrated.

Figure 3-1: Probe calibration plot.

Further analysis sheds light on the reason the probe is more accurate than the

model. Figure 3-2 displays the probability placed by both the model and probe on the

correct answer(s) for each question. Note that the probe tends to be less certain than

the model, particularly for SciQ, which has many points on the left and right sides of

the plot and relatively fewer at the top and bottom. This indicates that the probe’s

increased accuracy is not a result of being highly confident in the correct answer, but

27



of being more uncertain in cases where the model is incorrect.

Figure 3-2: Model and probe correct probabilities for each question.

Other evidence also supports this claim. For example, we see that for SciQ there

are many questions that the probe and model both get correct, but the probe is less

confident in the correct answer. This leads to the probe’s average correct probability

actually being worse than the model’s. This evidence further supports the idea that

the probe generally does not increase confidence in correct answers, but rather avoids

being confidently incorrect.

We can also analyze the cases on which the probe disagrees with the model.

Figure 3-3 displays the predicted true probabilities by the model and probe for each

statement. (We only include datasets with two answers per question in order for

the average true probability to be 50%). The dark lines divide the plot into four

quadrants. The right half contains statements the model predicts to be true, while
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the left half contains statements the probe predicts to be true. Thus, the top left and

bottom right quadrants represent statements on which the probe and model disagree.

Figure 3-3: Predicted true probabilities by the model and probe for each statement.

Table 3.3 gives the number of true and false statements in the regions representing

disagreement. Importantly, there are more false statements than true statements.

Thus, most of the improvement gained by the probe comes from false statements

rather than true statements.

Dataset True Statements False Statements
BoolQ 2619 2621
SciQ 1077 1177

Table 3.3: Counts of true and false statements on which the model and probe disagree.
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Chapter 4

Improving Language Models

4.1 Methods

The coefficients of a linear truthfulness probe form a vector that represents a truthful-

ness direction in the model’s representation space. By perturbing LM representations

in this direction, we seek to improve the model’s truthfulness.

We use the same question-answer data as before, but modify TruthfulQA to make

it more comparable to the other datasets. We group the answers to each question in

TruthfulQA into pairs. This way, every dataset can be thought of as consisting of

pairs of statements. Each pair contains one correct answer and one incorrect answer

to the same question.

When each statement is inputted into the model, we add the truthfulness vector

to its last layer representation at each token. This will result in the model outputting

a different set of next-token probabilities, changing the relative likelihood it places on

each answer.

The coefficients of the probe are fairly small, so we multiply them by 16 to form

the truthfulness vector. Otherwise, the perturbation would be so small that the LM’s

behavior would be virtually unaffected.

We run the same experiment in reverse, subtracting the truthfulness vector from

the LM representation. This is expected to decrease the model’s truthfulness. We

refer to this experiment as negative perturbing, and refer to adding the truthfulness
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vector as positive perturbing.

4.2 Results

As in the previous chapter, we use GPT-2 as the language model and report both

question-answering accuracy and average correct probability. Here all reported accu-

racies are measured on the validation set only, so that we are not testing the probe

on data it was trained on. The results are given in Table 4.1.

Dataset Original Accuracy Positive Perturbing Negative Perturbing
TruthfulQA 30.4, 34.07 29.9, 34.11 30.4, 34.05

BoolQ 41.6, 45.43 42.7, 46.27 40.5, 44.63
SciQ 72.9, 70.90 72.8, 70.95 72.6, 70.84

Table 4.1: Results of modifying language models to increase or decrease truthfulness.

There are several important observations to note about these results. Most impor-

tantly, our perturbations were unable to significantly affect the model’s accuracy in

either direction. Thus, larger and more significant interventions are needed in order

to have a more substantial change in the model’s behavior. This result may be less

surprising after considering the complexity of LLMs and the fact that we are only

modifying the last layer. It is possible that our perturbations were simply too small

to have a significant impact, but a factor of 16 is already quite large. It is more likely

that more effective perturbations would involve more complex probes and/or target

more layers of the LM.

Another important observation is the discrepancy between positive and negative

perturbing. On two out of three datasets, positive perturbing actually decreased the

question-answering accuracy, while negative perturbing more consistently impacted

accuracy in the expected direction. There are several factors that could lead to this

observed discrepancy. First, pre-trained LLMs already have good performance, so it is

generally easier to make them worse than to make them better. Another explanation

is based on the properties of the probe itself. We have seen that most statements

on which the probe and model disagree are false statements. Thus, the the probe
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is capable of forcing the model to generate incorrect answers in our perturbation

experiment, but is less able to identify and drive the model toward correct answers.
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Chapter 5

Conclusion

In this work we investigated truthfulness in large language models using probes. We

trained a linear probe on last-token last-layer representations and found that they

were more accurate on question-answering datasets than the model itself. We found

that much of this improvement is due to increased uncertainty in incorrect answers.

In other words, the probe is confidently incorrect less often than the model, but is

not necessarily better at identifying correct answers.

We then attempted to improve LM truthfulness by perturbing its hidden states in

the direction indicated by the probe. This method did move the LM’s average correct

probability in the expected direction, but the change was very small. Additionally,

positive perturbing was particularly poor at improving question-answering accuracy,

while negative perturbing more consistently decreased the LM’s accuracy. This fur-

ther supports the result that most disagreement between the probe and model occurs

on false statements.

The success of the truthfulness probe indicates that LM dishonesty does occur and

suggests a path towards improving LM truthfulness. However, our attempts to use

this probe to improve truthfulness were less effective than expected. Perhaps more

clever techniques are needed to reach probing’s full potential, but it is also possible

that significantly improving truthfulness requires an entirely different perspective.

An important consideration for future work is that these results are rather sensi-

tive to the exact experimental setup. This work shows how results can differ across
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datasets, but even smaller changes such as the phrasing of questions and statements

can have a significant impact on the final results. Studying the causes of this sen-

sitivity and making probes robust to these differences is an important challenge for

future work in this subject.
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