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Abstract

Reconstructing environments from a collection of images or videos could allow people
to revisit locations from their past. Existing reconstruction methods impose strict
constraints on input images, and require more data than most people have at their
disposal. This work provides a pipeline that takes a short video from a user’s past
and creates a virtual environment that they can experience in VR. In particular, we
at Photogrammetry and Neural Radiance Fields as ways of representing 3D environ-
ments that can be converted into meshes and exported to VR. A technical evaluation
compares the two methods and one is selected for use in our pipeline. Through a
human-subjects study, we found that experiencing past environments as immersive
walkable spaces, when compared to simply watching a video, improves users’ sense of
presence and ability to recall memories of the space.
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Chapter 1

Introduction

What if people could travel back in time to visit their childhood homes? Or visit

a location of historical or personal importance? People often remember their past

through photographs and videos, but advances in machine learning and virtual reality

may allow them to experience these environments in a more immersive way. If people

could visit a past environment that they no longer have access to, this might affect

the way in which they remember the experiences that took place there.

Revisiting memories is an idea that has been heavily explored in both media

and research. A common technology represented in movies and television series such

as Black Mirror [1], Watchmen [3], and Reminiscence [2] is a neural interface that

lets people replay memories in their mind. Although the technology does not exist

to make this possible, the idea of re-experiencing memories is a recurring theme.

Current research has explored this concept by creating interactive systems that allow

people to engage with memories and people from their past. Systems exist that allow

people to have conversations with, or listen to recordings of memories of loved ones

who have passed away [22][12]. Existing machine learning systems can also be used

to enhance data from the distant past in meaningful ways [30]. This work takes a

different approach to revisiting the past by creating immersive walkable spaces of

environments that users may no longer have access to.

Our system uses virtual reality (VR) as a means of enabling users to travel back

into their past. Most commercially available VR experiences are set in entirely fab-
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ricated environments, but the technology can also be used to simulate or preserve

environments from the real world. Recreating environments in VR from personal im-

ages and videos would allow users to travel back in time to a moment from their past.

This could be used to help people revisit places that no longer exist, help those with

PTSD battle through an environment-related trauma, or help patients with dementia

remember key moments in their life by taking them back to familiar places.

Much work has been done in the field of inverse graphics, which uses machine

learning models to create a 3D representation of an environment from a set of images

[14]. Modern processes for scanning and reconstruction use sophisticated scanning

equipment to create 3D models of a space. Furthermore, these reconstruction meth-

ods often have strict constraints on the input images, and require large amounts of

data to produce a high-quality output [6]. Preservation of historical monuments and

artifacts can be achieved through this kind of scanning, but it requires image data to

be recorded in the present. This makes it difficult for the average person to retrospec-

tively construct a virtual environment from their photographs or videos. Recreating

an environment from this kind of input is challenging because the images are not

taken with the purposes of 3D reconstruction in mind.

This work provides a pipeline that takes users’ existing images/videos, and creates

a 3D representation of the environment that they can experience in VR. The goal of

this pipeline is to require only a short video while still preserving the quality of the

reconstructed environment. Furthermore, we discuss the influence of factors such as

when the video was taken (5, 10, 20 years ago), how long the video is, and the contents

of the video.

1.1 Outline of Chapters

In Chapter 2 we further explore various projects that focus on revisiting the past.

Then, we take a look at existing state of the art methods that are currently used for

reconstructing 3D spaces from 2D input data. Particularly, we compare Photogram-

metry and Neural Radiance Fields through several of their implementations.

12



Our pipeline will be made of three modules which create a dataset from an input

video, apply one of the reconstruction methods, and turn it into a VR application

for the Oculus Quest 2. In Chapter 3, we discuss the functionality of each module

and how they work together to create an immersive walkable space. The technical

implementation of the sytem is then described in more detail in Chapter 5.

Particularly, we have compared Photogrammetry and Neural Radiance Fields to

determine which method yields better results on our input data. One of these methods

is the primary module of our pipeline. In addition to the 3D reconstruction methods,

we detail the implementation of additional modules that are necessary to go directly

from 2D image data to a fully immersive walkable space.

The system is evaluated both in terms of its technical efficacy and the effect that it

has on users’ recollection of memories from the space. Chapter 4 contains a systematic

evaluation of the reconstruction module where we compare Meshroom, a photogram-

metric reconstruction method, and NVIDIA’s Instant NeRF implementation [11][20].

This model comparison leads us to choose a reconstruction method to integrate into

our pipeline.

We conducted a human-subjects study to test the system on real-world user data.

In this study, we reconstruct environments from user videos and have them experience

the virtually recreated space in VR. Through this study, we examine the effect that the

system has on people in terms of recollection, presence, authenticity, and emotional

affect. The results of the study are reported in Chapter 6

The implications of the user-study results are discussed more in-depth in Chapter

7. We report interesting findings about the system’s technical performance on user

data as well how they were personally affected by the VR experience. Finally, we

propose areas of future research and conclude the paper in Chapter 8.

13
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Chapter 2

Related Works

In this chapter, we survey various works that allow people to revive the past in a

personally meaningful way. Understanding research that was done with this goal in

mind contextualizes the contribution of our system. Our pipeline builds upon exten-

sive work that has been done in the fields of machine learning and inverse graphics,

so we take a look at a few existing methods for reconstructing a 3D space from image

data.

2.1 Reviving the Past

Creating virtual environments from images is not the only way of reviving the past.

Machine learning methods can be used in different technical contexts to achieve this

goal in similar problem spaces.

2.1.1 Image Colorization

Machine learning methods are constantly used to bring past data to life, or enhance

it in some way. One such example of this is colorization of black and white images.

Images from the early twentieth century, particularly portraits, were taken primarily

in black and white. Colorizing these images provides a glimpse into the past by

showing users what their ancestors would have looked like in full color [30].
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2.1.2 Living Memories

The Living Memories project uses machine learning to bring memories of people to

life in a conversational and interactive way [22]. By looking at data from personal

journals, letters, and social media posts, the system creates an AI-generated portrayal

of someone who is no longer with us. These living memories are merely representations

of a person from a particular time period. The system does not attempt to clone or

portray itself as the actual person. By having a conversation with this AI character,

users can see what it may have been like to have a conversation with the person while

they were still alive.

2.1.3 TeleAbsence

The MIT Media Lab’s Tangible Media group proposed the idea of TeleAbsence, in

which illusionary channels of communications are created between people and their

deceased loved ones [12]. This aims to soothe people in their time of mourning by

allowing them to relive memories from their past through audio. One example of

this is ambientPhone: a phone that plays an audio recording of a passed loved one’s

voice when picked up by the user. Although TeleAbsence is not an inverse graphics

project, its function aligns with the core goals of this project. By letting people

revisit their past, we can give them the opportunity to experience their memories in

an emotionally impactful way.

2.2 Photogrammetry

Photogrammetry is the process of obtaining measurements of the physical world from

photographs, essentially reversing the process of photography [18]. This allows us

to infer geometric information about a scene from a set of unordered images. Pho-

togrammetric methods can be leveraged to create a 3D representation of a scene that

people can experience in Virtual Reality. This process is most often used in industries

such as architecture and real estate because it allows users to view an environment
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in all three dimensions.

Much work has been done in using photogrammetry to recreate physical environ-

ments in VR, but it requires an intensive data collection process that is costly and

time-intensive [18]. The most sophisticated photogrammetric scanning methods re-

quire a laser scanning system and cameras designed especially for VR reconstruction

[6]. It could take up to hundreds of detailed scans of an environment to create a

photo-realistic 3D model. Furthermore, the scanning would have to be done in the

present-day, which does not allow for reconstruction of past environments. However,

recent advancements in reconstruction algorithms have made it possible to create 3D

models from a smaller dataset. The following subsections will outline some of the

most popular open-source photogrammetry implementations.

2.2.1 COLMAP

Incremental Structure-from-Motion (SFM) has become one of the most widely used

3D reconstruction algorithms in the realm of photogrammetry. COLMAP is consid-

ered to be the state-of-the-art when it comes to SFM implementations [24][25]. It

takes an unordered set of 2D images from different viewpoints and extracts informa-

tion about the space. This information is then transformed into a 3D scene graph,

where images are iteratively projected onto the reconstruction. This continues until

all matched images have been considered. Given the iterative nature of this process,

having more images typically leads to a higher fidelity reconstruction. The two central

parts of the COLMAP implementation are discussed below.

Feature Matching

Before a 3D space can be recostructed, geometric information about the space is

required. COLMAP’s first module is a correspondence search, which attempts to

infer feature information through feature extraction, feature matching, and geometric

verification [24].

As is common with most computer vision applications, a Feature Extraction mod-
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ule is the first component of COLMAP. Using the Scale Invariant Feature Transform

(SIFT) approach, COLMAP obtains local features for each image that correspond to

invariant landmarks or objects [17]. These landmarks provide important information

about the space that can be used in the Feature Matching Process.

Once each image is broken down into its most important features, a matching

process attempts to find relationships between images to find image pairs with over-

lapping scene information. This matching can be done exhaustively, considering every

possible pair of images to find similarities [24]. Oftentimes, this naive approach is

necessary because the images are unordered. However, when the images come in the

form of a video, they can be considered sequentially to speed up the matching pro-

cess. Given a set of potential image pairs, a geometric verification process is then

run on each image pair to filter out any pair that does not have sufficient overlap.

COLMAPs Feature Matching process results in a 3D scene graph with image vertices

and edges corresponding to image pairs.

Incremental Reconstruction

The reconstruction procedure takes the 3D scene graph from the previous module,

and incrementally forms a set of points that represent the scene. The process starts

by choosing the image pair with the highest similarity and applying two-view recon-

struction. Selection of the initialization pair is a crucial step in this process because

all future iterations will build upon it. A bad initialization could ultimately lead to

a failed reconstruction.

After the scene is initialized, SFM incrementally expands the point cloud by iter-

ating over all matched images [24]. Each image is represented as a camera pose with

a position and a viewpoint angle. The pose of each successive image is estimated in

relation to the already considered images and a triangulation process then takes this

image and adds points to the existing scene. Not only does this add new information

to the scene, but it uses redundancy to strengthen what is already there.

After taking all images into account, COLMAP outputs a point cloud represen-

tation of the environment. Some additional computation is necessary to convert this

18



point cloud into something that can be experienced in VR.

2.2.2 Meshroom

Several implementations of COLMAP build on the original method. Meshroom is a

software that implements the structure-from-motion algorithm from COLMAP and

provides an infrastructure for extracting 3D textured meshes [11]. Meshroom runs as

a sequence of nodes, each of which performs a core component of the reconstruction

process. There are nodes for the Feature Matching and SFM algorithms, along with

depth map, meshing, and texturing nodes. Meshroom uses 3D Delaunay tetrahedral-

ization to efficiently create a high quality mesh from the SFM point cloud [10]. This

software provides a robust pipeline to go from images to a fully textured 3D model

as it can be run with both a user interface or in the command line.

2.2.3 Shurijo Project

Photogrammetry has previously been used to recreate lost environments. Most no-

tably, the Shuri castle was tragically lost in a fire in October of 2019, and photogram-

metry was used to recover a 3D model of the space. The Our Shurijo Project had

to work on existing data, collecting thousands of images taken by tourists over the

years [15]. With these images, a high-quality reconstruction of the environment was

recovered, preserving the Shuri Castle in a digital manner. The Our Shurijo Project

is one of the primary inspirations for this work because it retrospectively constructed

a 3D model of a lost environment. However, as a tourist site, the project had access

to much more data than what would be available for a user’s childhood home for

example. It will be necessary to consider reconstruction methods that require only a

small set of input images, and for that, we turn to Neural Radiance Fields.
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2.3 Neural Radiance Fields

Neural Radiance Fields (NeRFs) take a different approach to representing a 3D scene

from a set of images. NeRFs address the problem of view synthesis, in which novel

views of a scene are generated given a collection of input images. NeRF models use

a fully-connected nonconvolutional neural network to train a scene representation

function [19]. This function has a 5D input, with three spatial coordinates and two

angular view direction coordinates. Given a coordinate, the function outputs a volume

density for that point in space as well as a view-dependent radiance value. To generate

entirely new views of the scene, the model queries over all possible camera rays and

builds the scene as a projection of the emitted radiance values onto the camera plane.

The key difference between NeRFs and photogrammetric representations is that NeRF

has a view dependence that yields near photo realistic output views.

To train a NeRF, the input data needs to be represented as images with their

estimated camera poses. COLMAP is used to extract the camera pose estimation data

from a collection of unordered images [24]. Because the scene representation function

is differentiable, the neural network can be trained using gradient descent once the

data is in the correct format. NeRF models improve upon traditional convolutional

neural network approaches to yield high resolution images for novel views [19]. We

will now take a look at a few NeRF methods that work for different use cases with

varying performance.

2.3.1 Instant NeRF

NVIDIA developed their Instant Neural Graphics Primitives (Instant NGP) NeRF

model with the goal of significantly reducing the time it takes to train a NeRF model.

The original implementation proposed by Mildenhall et. al. took more than twelve

hours to run on a simple scene [19]. Instant NeRF uses Multiresolution Hash Encoding

to allow for the use of a smaller neural network that is faster without sacrificing quality

[20]. Given the images and positional information, the modified network is able to

train the scene representation function within seconds. This speed-up makes the
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usage of NeRFs a lot more practical, as we can see the reconstruction happen in real

time.

2.3.2 Pixel NeRF

Pixel NeRF attempts to build on the foundational NeRF architecture by allowing

for training across multiple scenes [29]. The original NeRF implementation requires

large amounts of data because it trains on each scene independently [19]. By using a

convolutional neural network trained on multiple scenes, Pixel NeRF is able to infer

information from scene priors. NeRFs often struggle to reconstruct the backisde of

objects and objects that are occluded in the images because there is no data about

what is there. The convolutional approach allows Pixel NeRF to train on a scene

with just one or a few images by learning similarities across different scenes. The

reconstruction will therefore have less artifacts, but this comes at the cost of fine-

grain object details.

2.3.3 Diet NeRF

Diet NeRF builds upon and improves on the implementation of Pixel NeRF, focusing

on reconstructing scenes from a small number of images [13]. The scene representa-

tion is able to capture unobserved regions by using prior knowledge from the CLIP

and ImageNet models [23][7]. Like Pixel NeRF however, Diet NeRF increases scene

coverage at the expense of mesh resolution.

2.3.4 NeRF2Mesh

NeRF2Mesh uses NeRFs to reconstruct 3D environments as a 3D Mesh [26]. It first

uses Instant NeRF to quickly generate a NeRF representation of the scene [20]. To

generate a mesh, this method reduces the view-dependent rendering function from

the NeRF model into a view-independent point cloud that can be converted into a

colored mesh [19]. The main contribution of this work is an iterative mesh refining

algorithm that significantly improves the quality of the extracted mesh. An algorithm
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like this can be useful in improving mesh quality for NeRF and photogrammetric

reconstruction methods.

2.4 Meshing Algorithms

The reconstruction methods described above all generate point cloud representations

of a scene. There is extensive work on algorithms that generate meshes from these

point clouds. The most commonly used algorithm is Marching Cubes, which uses

linear interpolation to compute a triangular surface mesh [16]. This method is used

by several NeRF implementations such as Instant NeRF and NeRF2Mesh. Another

popular method is Delaunay Tetrahedralization, which creates a volumetric tetrahe-

dral mesh [10]. Both of these algorithms can be applied to photogrammetric and

NeRF point cloud representations to extract a 3D model of a space.

2.5 Reliving the Past as immersive walkable spaces

We have seen that there are many ways in which machine learning can be used to

allow people to interact with their past. What this work contributes is a system for

interacting with past environments as immersive walkable spaces. Photogrammetry

and Neural Radiance Fields can be used in combination with Meshing Algorithms to

achieve this goal with already existing data. With only a short video, users are able

to revisit emotionally significant places that they may no longer have access to.
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Chapter 3

System Overview

The system implemented in this work is an end-to-end pipeline that takes a collection

of images as input and generates a VR application as output. Figure 3-1 shows the

structure of the pipeline as a sequence of modules. The functionality of each of these

modules is described below and implementation details are discussed in Chapter 5.

3.1 Dataset Creation

This module takes videos and turn them into a sequence of ordered images that can

be fed into the reconstruction module. The input images used in this pipeline can be

given in two forms: as a collection of unordered images, or as a video. This paper

focuses primarily on videos, because they can be broken down into a sequence of

ordered images. As we saw in section 2.2.1, having ordered images helps with the

reconstruction process [24]. Additionally, videos are often easier to work with because

they provide more data. Asking users for individual images of a past environment

is difficult because they may only have a few, whereas even a single video of the

environment could be transformed into hundreds of images.
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Figure 3-1: Pipeline Diagram

Full pipeline diagram split up into three individual modules that are run sequentially to go
from input videos to a final APK build that can be run on the Quest 2.

3.2 Reconstruction of 3D Environment

The images obtained from the previous module can be directly passed in to both the

Meshroom and Instant-NeRF programs [11][20]. In Chapter 4, we will evaluate the

two models and select the one that yields the best results.

Both programs use COLMAP for feature matching and pose estimation of the

cameras and use a machine learning approach to reconstruct the environment [24][20].

The output of these programs is quite different, however. Meshroom outputs a point

cloud while Instant-NeRF outputs a 5-Dimensional render function [19]. To get these

reconstructions to a form that can be experienced in VR, one of the meshing algo-

rithms discussed in Section 2.4 is used. With the reconstruction converted to a 3D

mesh, it can easily be imported into our next module.

3.3 VR Experience

The final module of this system is the creation of a runnable VR application. We use

the Unity Game Engine because it provides the design capabilities and portability

needed to run a high-quality VR experience. The applications are formatted as An-

droid Package Kits (APKs), that can be run directly on the Oculus Quest 2 or other

VR headsets.

For the purposes of this project, the user is simply be able to move and look

around the recreated environment. This module allows for a number of design choices

that ultimately shape the users’ experience. The experience provides an immersive
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walkable space, with movement being the primary source of interaction between the

user and the virtual environment. Because walking and viewing are the only forms

of interaction with the space, it is imperative that the quality of the reconstructed

environment is as high as possible. One of the biggest challenges with creating a

mesh from images is that the mesh can be quite noisy or low-resolution. A low

quality mesh limits the users’ level of immersion, especially in a space that they have

real-life memories of. In the next Chapter, we discuss how to optimize the resulting

mesh to be used for the VR experience.
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Chapter 4

Model Comparison

Before discussing the implementation details of the system, we must select a method

for reconstructing a 3D environment from a set of images. In, Chapter 2, we dis-

cussed Photogrammetry and Neural Radiance Fields as the most promising methods

[18][19]. We chose one implementation of each of these methods and compared their

performance on a dataset of indoor environments similar to what we expect users to

provide. We consider Meshroom, a Photogrammetric Computer Vision Software that

builds on the AliceVision framework, and NVIDIA’s Instant NGP implementation of

NeRF [11][20]. These two models are compared and one is selected for use in our

end-to-end pipeline.

4.1 Dataset

The Dataset we used for the model comparison is the NYU Depth Dataset V2 (2012)

[21]. This dataset contains numerous videos of indoor scenes that have been broken

down into sequences of images with depth map information. We only use the image

data, because that is the input for out system. We chose this dataset because it is

representative of the video content we expect to get from users (see Section 6 for our

user study results).
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4.2 Systematic Evaluation

First, we evaluate the performance of both the Meshroom and Instant NeRF systems

on the NYU dataset. The raw dataset consists of 37 folders with multiple subfolders

representing a variety of spaces such as kitchens, bedrooms, and offices [21]. We

selected 10 folders at random, from which we randomly chose a single scene. This

selection process is necessary to ensure that we evaluate the system on different types

of locations.

For testing, we removed three images from each of the scene folders. These are

not used for the reconstruction process, but we use the viewing angle of these test

images to compare the reconstructions from multiple views. Furthermore, some of

the scenes from the NYU dataset contain thousands of images. The feature matching

process described in 2.2.1 has an exponential complexity, so running a reconstruction

on this many images would take long time [24]. For the NYU dataset, we sampled

approximately 200-300 images per scene.

The images in the NYU dataset contain no metadata, and have a resolution of

640x480. Metadata can often help in the reconstruction because it contains informa-

tion about the camera used to take the images such as focal length [11]. Figures 4-1

and 4-2 show the reconstruction results for two of the scenes from the NYU dataset.

These figures show the qualitative difference in results for Instant-NeRF and Mesh-

room. Sections 4.2.1 and 4.2.2 describe the affordances and limitations of Meshroom

and Instant NeRF respectively.

4.2.1 Meshroom

The results from figures 4-1 and 4-2 are mostly representative of how Meshroom per-

formed on the scenes from the NYU dataset. Photogrammetry relies on geometric

information for reconstruction 2.2. Because of this, it works almost exclusively on

indoor scenes that are enclosed by walls or other objects. For example, the scene

in figure 4-1 has a window to an outdoor scene that is not captured in the recon-

struction. Backgrounds such as skies, landscapes, or other natural settings cannot be
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Figure 4-1: 3D Reconstruction of NYU Living Room Scene

Reconstruction Results for randomly selected living room scene from the NYU dataset.
One column for each of the three test image view angles. The rows show the original

images (first row), the Instant NeRF representation (second row), the mesh extracted from
the NeRF (third row), and the Meshroom result (fourth row). Number of Images: 171.
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Figure 4-2: 3D Reconstruction of NYU Basement Scene

Reconstruction Results for randomly selected basement scene from the NYU dataset.
Number of Images: 281.
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reconstructed using Meshroom [11].

The most striking shortcoming of Meshroom is the lack of scene coverage in the

mesh output. Meshroom attempts to create a dense point cloud representation of

a scene, but when the density is not high enough for a particular region, it is not

included in the mesh [11]. This leads to gaps in the floor, walls, and other major

objects that are clearly in the original images. The lack of density can be attributed to

the number of input images. Because this uses an incremental SFM algorithm, having

more images of the same objects leads to increased density of the reconstruction [24].

This is why sophisticated scanning technology requires hundreds to thousands of

images to get a complete reconstruction of the scene [6].

Meshroom successfully captures the overall geometry of the scene, and is capable

of reconstructing multi-room scenes that are recorded with arbitrary camera paths.

This is one of the biggest strengths of photogrammetry because arbitrary user data

does not follow a consistent path. Despite the lack of coverage, the reconstructed

regions have high texture quality. The scene in figure 4-1 has near photo-realistic

textures for objects such as couches, chairs, and pillows. There are some artifacts

and variations from the original images, but they are small relative to the size of the

scene.

4.2.2 Instant-NeRF

NeRF models were made to generate novel views from new viewing angles, so it is no

surprise that Instant NeRF renders near photorealistic images of the scene in figure

4-1 [19][20]. The images for this scene came in a sequence, so the test views are similar

to some of the input images that the model was trained on. We would therefore get

similar high quality results if we follow the same camera path as the input. We see

from the results that the scene has total coverage, even retaining the background

lighting from the outside. The rendered scene is view-dependent, so we get proper

lighting and shadows for different views.

A view-independent scene can be extracted by applying the marching cubes al-

gorithm to the NeRF [19][16]. This mesh unsurprisingly shows a decrease in quality
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from the rendered NeRF images, but it retains the structure and texture of the scene.

Additionally, meshing leads to extraneous artifacts that are floating around the scene.

The ’NeRF + Marching Cubes’ result for Angle 2 in figure 4-1 contains one such arti-

fact in the top left of the image. An incorrect depth estimation for a particular region

can lead to floating point clouds and mesh components in spaces that are empty in the

original scene. These could potentially be removed using a mesh refining algorithm

like the one discussed in section 2.3.4 [26].

The meshing artifacts are not ideal, but they do not significantly detract from

the overall appearance of the scene. However, NeRF models often completely fail to

capture the geometry and texture of the environment. Figure 4-2 shows one such

failure. For this scene, the input images go into a number of different rooms, but

the reconstruction attempts to put all of the data into one compacted region. The

incorrect geometric assumptions also lead to incorrect color mapping, with the NeRF

being much more saturated than the input images.

The biggest limitation of NeRFs is that they are highly dependent on the camera

path of the input video. Panning or rotating the camera can completely destroy the

reconstruction. NeRF outputs are best when there is an object at the center of the

scene that the camera rotates around and captures from different angles [20]. This is

problematic because user videos are not taken with these reconstruction ideas in mind.

Figures 4-1 and 4-2 show that some scenes are essentially impossible to reconstruct

using NeRF, while others are reconstructed without any issues.

4.2.3 Model Comparison

The systematic evaluation revealed many key differences between Meshroom and

Instant NeRF. The biggest trade-off seems to be between coverage and mesh quality.

Meshroom leads to a sparse reconstruction of the scene with entire regions missing, but

the parts that are meshed have near photorealistic quality. Conversely, Instant NeRF

results in a more dense reconstruction that retains all of the information from the

original scene. However, the final mesh is granular and contains artifacts. Meshroom

and Instant NeRF live on opposite ends of the spectrum when it comes to both
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coverage and texture quality.

The trade-offs between the two methods are a matter of preference. For the

purposes of this project, we are focused on accurately reconstructing an environment

from the user’s past. Although the Instant NeRF model shows promise, it is not

reliable and often leads to a result with undesirable artifacts or no result at all (like

the one in figure 4-2). We chose Meshroom for our system because of its robustness

and its ability to reconstruct environments without imposing any strict constraints

on the video’s camera path. In the next chapter, we will discuss how Meshroom is

integrated into our system as the core 3D reconstruction module.
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Chapter 5

Implementation

In this chapter, we will discuss the technical implementation of the three modules

descibed in Chapter 3.

5.1 Creating Dataset from Images

The data provided by users is a video in any one of the standard video formats

(mp4, mov, etc.). We require for the videos to contain fully static environments with

no moving objects or people. This constraint is necessary because photogrammetric

methods are not capable of reconstructing scenes with moving objects. Meshroom

takes input data as a collection of individual images, so there is some pre-processing

we must do. Using the open-source FFmpeg tool, we can extract images as frames

from the video. FFmpeg allows us to specify a frame rate as well as a temporal range.

As we will discuss in section 7.1, these parameters are important because it allows us

to choose the portion of the video that we want as well as the number of images that

will be used in the reconstruction.

The video frames are extracted into a folder in which they are numbered sequen-

tially. Depending on the image resolution, it is sometimes necessary to down-sample

the images to reduce the file size. Reconstructing scenes with large image files can

take too long to run due to hardware limitations. Using the Python Imaging Library

(PIL), we reduced each image file to a size of the order of 100KB. With the videos
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Figure 5-1: Meshroom SFM Nodes

Sequence of five nodes that implement the SFM algorithm. CameraInit: loads image data
and metadata, cretaing a camera object for each of the input images. FeatureExtraction:
uses SIFT to extract local features for each image. ImageMatching: Finds similar pictures
that are candidates for matching. FeatureMatching: computes the correspondance value
for matched pairs of images. StructureFromMotion: uses incremental reconstruction to

create a point cloud as described in section 2.2.1.

converted into down-sampled images, we now have a dataset that we can pass in to

the next module.

5.2 3D Reconstruction

As described in Chapter 4, we have chosen to work with the photogrammetric im-

plementation of Meshroom. The model comparison was done using the default re-

construction parameters, but we have made some modifications that lead to improve-

ments in both mesh quality and scene coverage.

5.2.1 Structure From Motion

Meshroom works as a sequence of executable nodes that can be broken down into two

main groups: SFM nodes, and Mesh Extraction nodes [11]. The first group of nodes

executes the SFM algorithm that was described in section 2.2.1. It consists of five

nodes that result in a SFM point cloud that is then used for Mesh Extraction. The

functionality of each node is described in Figure 5-1.

Each node has a set of default parameters. Running Meshroom with those de-

faults often outputs a suitable mesh, but fine tuning the parameters can significantly

improve the result. In this group of nodes, there are a few parameter changes that
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we made:

• FeatureExtraction: change the describer quality from normal to high to increase

the number of detected features.

• FeatureMatching: enable "guided matching" to run the feature matching pro-

cess a second time. This uses geometric feature data to increase the number of

matches.

• FeatureExtraction/ImageMatching/FeatureMatching: select the dsp-SIFT de-

scriber type. This is the most recent implementation of SIFT, improving on the

original algorithm [8].

• StructureFromMotion: Replace the SFM node with two chained SFM nodes.

The first SFM node has a higher threshold for matched pairs so it only uses the

pairs with the highest similarity. The second node has the default threshold

and will attempt to include all matched pairs. Using the stricter node first will

lead to a better initialization for incremental reconstruction.

Some images are discarded from the SFM node if they are not matched to any

other image. The goal of these changes is to minimize the number of images that

are discarded. This increases the coverage of the SFM result, which is the main issue

that we discussed in section 4.2.1. Although Meshroom’s runtime inevitably increases

because of the additional processes we are running, it is a worthwhile trade-off for

the increase in scene coverage.

5.2.2 Meshing

The second group of nodes creates a color textured 3D mesh from the SFM point

cloud. This is a sequence of six nodes, described in more detail in Figure 5-2. The

Texturing node is the final node that gives us a colored mesh that we can export and

use in the VR application. When running these nodes, we left most of the defaults

unchanged except for the following:
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Figure 5-2: Meshroom Meshing Nodes

Sequence of six nodes used for mesh and texture generation. PrepareDenseScene: converts
input images into EXR images that can be used for texturing. DepthMap: calculates the

depth of each SFM point for each of the selected cameras. DepthMapFilter: ensures
consistency of the depth map across all cameras. Meshing: creates a mesh using Delaunay

tetrahedralization on the SFM point cloud. MeshFiltering: removes small disconnected
components from the mesh to reduce noise. Texturing: generates a UV map and texture

for the filtered mesh.

• Texturing: Change the texture size from 4096 to 8192 or 16384. This increases

the resolution of the texture, giving a more photo-realistic appearance.

5.3 Unity VR Application

Now that we have a textured 3D model, the final step is to create the VR application

that users experience. To do this, we used the Unity game engine. Unity has extensive

support for creating and running VR applications on various headsets. Our headset

of choice is the Oculus Quest 2. The Quest 2 is a widely available headset with the

developer tools needed to build a VR project, and it has enough computing power to

render the generated meshes.

The first step is to create an empty Unity scene. We import the 3D model of

the scene as an obj file with an EXR texture file. The main difficulty with the

Meshroom meshes is that they typically have a different scale and orientation based

on the recording device and the camera path. After importing the mesh, we scale it

to life-size proportions and orient it such that the floor of the scene is parallel to the

horizontal xz plane. Based on depth information and and properties of the recording

device, we can properly scale the mesh to be the correct size. We chose to make the

skybox background completely black so that the mesh is the only thing that the user
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has to focus on. By making the texture emissive, we preserve the original lighting

from the scene without having to add any directional/point lights.

To integrate the Unity scene with VR support, we used Unity’s XR Plug-in Man-

agement Tool along with the HTC Vive Unity Package. The HTC Vive package comes

with built-in prefabs for the player controller as well as pointers that users control

with their hands. We simply drop this prefab into the scene and ensure that the

surrounding scene is scaled according to the size of the player controller. The goal of

the experience is to allow users to walk around the space as they did in the past when

the video was taken, so the only mode of locomotion is walking in the real world. We

have also decided not to add teleportation or linear joystick-controlled locomotion

because it could lead to motion sickness. The hand pointers are not used for the VR

experience, but they are used in the user study as described in section 6.1.3.

With the mesh and player controller in the scene, the project is ready to be run in

VR. This can be done in two ways. The first is to build the project as an APK and

upload it to run locally on the Quest 2. The second way, and the one that we use for

our user study, is to connect the headset to the computer and run it directly through

Unity. The computer we used has a GPU with high processing power for rendering

the high resolution mesh. Using SteamVR and Oculus Quest Link, we run the Unity

program on the Quest 2 through a wired link cable. This allows us to see the VR

scene on the computer and make changes to the scene in real time if necessary. This

flexibility was crucial in our live user-study, which we discuss in the next chapter.
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Chapter 6

Evaluation

We conducted a user study to evaluate both the technical efficacy of our pipeline as

well as users’ perception of the reconstructed space. The aim of this study is to explore

human behavioral and affective responses to revisiting personal memories in places

from their past in VR. The research gives insight into how environments reconstructed

from personal data can be used to trigger people’s memories and emotions. Users’

experiences in the VR environment are compared to watching the video that was used

in the reconstruction process.

6.1 User Study Design

The user study we conducted was a Within-Subjects study, in which each participant

was exposed to two conditions: the original 2D video and the 3D walkable VR space.

Figure 6-1 shows the steps we took to conduct the study for each user. Each subject

was asked to submit at least three videos from their past that are personally significant

to them. These videos were mainly of indoor spaces such as bedrooms, living rooms, or

any environment that they might have caught on video. We asked that the videos did

not contain any moving objects such as people because they could interfere with the

reconstruction process. One of these videos was selected and processed as described

in Section 6.1.2 to generate the VR experience.

The order in which the user experienced the two conditions was randomized. After
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Figure 6-1: User Study Within-Subjects Design

Experimental procedure for our Within-Subjects user study. Participants upload multiple
videos. One video is selected for 3D reconstruction through the system pipeline. In a

random order, users interact with both of the conditions. After each condition, they fill
out a set of questionnaires and are interviewed about the experience.

engaging with a given condition, the user was asked to complete the questionnaires

described in section 6.1.1. After the experimental conditions, participants engaged in

a phenomenological interview with one of the investigators, discussing their experience

in the study.

6.1.1 Questionnaires

We used four different questionnaires in the study to understand the user’s experience

in each of the two conditions.

1. Autobiographical Recollection Test (ART): Measure of how well the user thinks

they remember personal events [4]. The ART is split into seven subcategories:

reliving, vividness, visual imagery, scene, narrative coherence, life story rele-

vance, and rehearsal. These are different aspects of the way individuals experi-

ence their autobiographical memories.

2. Authenticity: We created an authenticity questionnaire to measure how accu-

rately the virtual environment represents the original space. This is a set of

four questions that ask the user to compare the virtual environment to their

memories of the original space. These help us evaluate the visual quality of the

textured mesh.

3. Igroup Presence Questionnaire (IPQ)1: Scale for measuring the user’s sense of
1http://www.igroup.org/pq/ipq/
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presence in the virtual environment.

4. Positive and Negative Affect Schedule (PANAS): Scale that measures positive

and negative emotions. Consists of various words to describe feelings and emo-

tions [27].

6.1.2 Data Pre-Processing

Before conducting the study, the user’s data had to be processed and converted into

a 3D environment. User data came in video form, so we could simply pass it into

our system pipeline. However, there was a lot of variance in the type and quality of

data that we received. Some videos ran smoothly through the pipeline while others

required modifications (see Section 7.1). We asked users for three or more videos to

increase the likelihood that at least one of the videos would output a suitable mesh.

If none of the user’s videos worked, it was not possible to run the study.

6.1.3 Unity Project

The user study experience was conducted entirely in VR. In preparation for the user

study, we created a Unity project that included multiple scenes, the first of which was

the Start scene. This scene contained a text description of the user study procedure

and directions for how to interact with the VR space. Once the user is ready to start,

a script randomly selects one of the two conditions to be shown to them first. A

fade-to-black transition is used between scenes to indicate that the current scene is

ending. All scenes have a black skybox background with no additional assets.

The video condition is shown in a simple scene. The video is projected onto a

large plane in front of the user and played seconds after the scene is loaded. Once

the video ends, we transition to the next scene. It could have been possible to show

the video on a computer in the real world, but we wanted to maintain consistency

between both conditions. A lot of our subjects had never used VR in the past, so it is

possible that the mere novelty of the technology could influence our results. Keeping
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both the video and 3D experiences in VR limits the impact that the technology could

have on the 3D condition.

The 3D condition simply contains the scene that was generated from our pipeline.

As mentioned in Section 5.3, the user is able to walk around and view the recon-

structed environment. We give the users ninety seconds to explore the space, or until

they indicate they want to move on to the next scene. Because the scenes are life-size,

we used a large open space with a guardian boundary to give the user room to move.

After each condition, the user is asked to complete the four questionnaires. Using

the VR Questionnaire Toolkit for Unity, we were able to have the user fill out the

questionnaires in VR [9]. The user is able to answer the questions and navigate

through the questions using the controllers to point and click on the buttons on the

questionnaire plane. This interaction is shown in Figure 6-2. Once the user finishes

all four questionnaires, their responses are exported as a CSV file named by their

participant ID. No identifying information is stored. The same questionnaire scene is

run after each of the two conditions. In the next section, we analyze this data for all

participants.

6.2 Results

A total of ten people signed up for the experiment, seven of which uploaded videos

that produced a mesh when run through our pipeline. Of these seven people, three

were male (42%) and four were female (58%). We required participants to be between

the ages of 18 and 65 years old and be fluent in English, with normal or corrected-

to-normal vision and hearing. Of our participants, three were between the ages of

18-24 (43%), three were between 25-34 (43%), and one was between 35-44 (14%). We

analyzed the aggregate questionnaire results of all participants as well as the major

themes that arose from the phenomenological interviews.
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