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Abstract

In modern statistical and machine learning models, structural constraints are usu-
ally imposed for model interpretability as well as model complexity reduction. In
this thesis, we present scalable optimization methods for several large-scale machine
learning problems under structural constraints, with a focus on shape constraints in
nonparametric statistics and sparsity in high-dimensional statistics.

In the őrst chapter, we consider the subgradient regularized convex regression
problem, which aims to őt a convex function between the target variable and covari-
ates. We propose novel large-scale algorithms, based on proximal gradient descent
and active set methods, and derive novel linear convergence guarantees for our pro-
posed algorithms. Empirically, our framework can approximately solve instances with
𝑛 = 105 and 𝑑 = 10 within minutes.

In the second chapter, we develop a new computational framework for computing
log-concave density MLE, based on smoothing techniques in combination with an
appropriate integral discretization of increasing accuracy. We establish convergence
guarantees of our approaches and demonstrate signiőcant runtime improvements over
earlier convex approaches.

In the third chapter, we focus on Gaussian Graphical Models, which aims to esti-
mate a sparse precision matrix from iid multivariate Gaussian samples. We propose
a novel estimator via ℓ0ℓ2-penalized pseudolikelihood. We then design a specialized
nonlinear Branch-and-Bound (BnB) framework that solves a mixed integer program-
ming (MIP) formulation of the proposed estimator. Our estimator is computationally
scalable to 𝑝 ∼ 10,000, and provides faster runtime compared to competing ℓ1 ap-
proaches, while leading to superior statistical performance.

In the fourth chapter, we further look into improving the BnB framework for
sparse learning problems with the ℓ0ℓ2 penalty and general convex smooth losses. We
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present a novel screening procedure within the BnB framework to őx relaxed variables
to 0 or 1 with guarantees. Our experiments indicate that this screening procedure
can signiőcantly reduce the runtimes of BnB solvers.

Thesis Supervisor: Rahul Mazumder
Title: Associate Professor of Operations Research and Statistics
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Chapter 1

Introduction

Last few decades have seen substantial advancements in machine learning models,

motivated by many applications from various domains. In modern statistical and

machine learning models, structural constraints are usually imposed to (i) meet com-

plicated application-speciőc assumptions and provide model interpretability, and (ii)

reduce the sample complexity and improve model performance. While there have

been extensive studies in statistical properties of these models, the computational in-

scalability of underlying optimization problems becomes the main bottlenock for their

applications in practice. In this thesis, we present efficient optimization methods for

large-scale machine learning problems under structural constraints, with a focus on

two types of structure that can lead to interpretable statistical learning models Ð

shape constraints in nonparametric statistics and sparsity in high-dimensional statis-

tics:

Shape constraints Shape constraints are usually imposed in nonparametric statis-

tical inference and estimation to restrict the feasible region of functions. Some exam-

ples of shape constraints can be monotonicity, convexity, log-concavity, unimodality,

etc [103]. Shape constraints are usually motivated by either application-speciőc as-

sumptions or existing theory, thus providing certain interpretability; they can also

help reduce the sample complexity and improve statistical performance [127].

Despite great progress in recent years on the statistical theory of the nonpara-

19



metric shape-constrained estimators [195, 139], adoption of these methods have been

limited by the complexities and the intractability of their underlying convex opti-

mization problems [53]. Although there are some nonconvex approaches available,

they cannot certify optimality and thus it is unclear how the optimization error is

compared with the statistical error for the estimates.

In the őrst half of the thesis, we focus on two important problems with shape

constraints Ð subgradient regularized multivariate convex regression (in Chapter 2)

and multivariate log-concave density estimation (in Chapter 3). Our goal for these two

problems is to develop scalable computational methods with convergence guarantees

via convex approaches.

Sparsity Sparsity is a central concept in high-dimensional statistics and data sci-

ence, where the model selects a small subset of features from a large pool [115]. It

is an important and effective regularization technique that can help provide inter-

pretability, reduce the model complexity and mitigate the overőtting issues especially

when the model is overparametrized.

Recently, since the work of [28], there has been a renewed interest in exploring

statistical problems with structured sparsity using tools from combinatorial optimiza-

tion. Sparse linear regression [32, 119] and sparse principal component analysis [20]

are among examples where combinatorial optimization methods have been success-

ful. However, the exploration of the combinatorial methods for the Gaussian graphical

models and general convex loss functions is still limited.

In the second half of the thesis, we focus on two classes of problems with sparsity Ð

Gaussian graphical models (in Chapter 4) and sparse learning problems with general

loss functions (in Chapter 5). Our goal is to develop scalable computational methods

based on combinatorial optimization.

The results of Chapters 2 and 3 are based on papers [52, 53], respectively. Below

we provide a brief summary of each chapter.
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Chapter 2: Subgradient Regularized Multivariate Convex Regression at

Scale

In this chapter, we present new large-scale algorithms for őtting a subgradient

regularized multivariate convex regression function to 𝑛 samples in 𝑑 dimensionsÐa

key problem in shape constrained nonparametric regression with widespread appli-

cations in statistics, engineering and the applied sciences. The inőnite-dimensional

learning task can be expressed via a convex quadratic program (QP) with 𝑂(𝑛𝑑)

decision variables and 𝑂(𝑛2) constraints. While instances with 𝑛 in the lower thou-

sands can be addressed with current algorithms within reasonable runtimes, solving

larger problems (e.g., 𝑛 ≈ 104 or 105) is computationally challenging. To this end,

we present an active set type algorithm on the dual QP. For computational scalabil-

ity, we allow for approximate optimization of the reduced sub-problems; and propose

randomized augmentation rules for expanding the active set. We derive novel com-

putational guarantees for our algorithms. We demonstrate that our framework can

approximately solve instances of the subgradient regularized convex regression prob-

lem with 𝑛 = 105 and 𝑑 = 10 within minutes; and shows strong computational

performance compared to earlier approaches. Our implementation is available in a

github repository ConvexRegression.

Chapter 3: A New Computational Framework for Log-concave Density

Estimation

This chapter considers log-concave density estimation. In Statistics, log-concave

density estimation is a central problem within the őeld of nonparametric inference

under shape constraints. Despite great progress in recent years on the statistical

theory of the canonical estimator, namely the log-concave maximum likelihood esti-

mator, adoption of this method has been hampered by the complexities of the non-

smooth convex optimization problem that underpins its computation. We provide

enhanced understanding of the structural properties of this optimization problem,
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which motivates the proposal of new algorithms, based on both randomized and Nes-

terov smoothing, combined with an appropriate integral discretization of increasing

accuracy. We prove that these methods enjoy, both with high probability and in ex-

pectation, a convergence rate of order 1/𝑇 up to logarithmic factors on the objective

function scale, where 𝑇 denotes the number of iterations. The beneőts of our new

computational framework are demonstrated on both synthetic and real data, and

our implementation is available in a github repository LogConcComp (Log-Concave

Computation).

Chapter 4: Guassian Graphical Models: A Scalable Framework Based on

Combinatorial Optimization

In this chapter, we consider the well-known Gaussian Graphical Models (GGM)

problem, where the goal is to estimate the precision matrix of a 𝑝-dimensional Normal

distribution, given 𝑛 samples. We propose a new estimator based on the notion of

pseudo-likelihood under certain sparsity assumptions on the precision matrix. How-

ever, our estimator uses ℓ0 regularization to encourage sparsity, unlike most current

algorithms which are based on convex optimization. We show our estimator can be

written as a Mixed Integer Program (MIP). We provide statistical guarantees for our

estimator in terms of estimation and variable selection, and discuss how the use of

ℓ0 penalty improves the behavior. Next, we provide a comprehensive optimization

framework including heuristic methods to obtain good feasible solution to the MIP, as

well as a specialized nonlinear branch-and-bound method to obtain optimal solutions

to our proposed MIP. Our numerical experiments on real and synthetic data show

that our estimator is computationally scalable to 𝑝 ≈ 10,000, and provides faster run-

time compared to competing (polynomial-time) methods, while leading to superior

statistical performance.

Chapter 5: Safe Screening Procedure within a Specialized Branch-and-

Bound Solver for Sparse Learning
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In this chapter, we focus on sparse learning problems with a general smooth convex

loss function and ℓ0ℓ2 regularization. In particular, we present a novel screening

procedure to safely őx relaxed variables to 0 or 1 at each node within a specialized

Branch-and-Bound (BnB) solver to solve this class of problems. We őrst establish

optimality conditions and dual bounds for the node relaxation subproblems within

the BnB framework. We then develop a screening procedure at each node within

BnB tree, in combination with the branching procedure. This signiőcantly reduces

the optimization cost of subproblems and thus reduces the runtime of the BnB solver

(up to 2 times faster). For strong branching rules, we propose an enhanced screening

procedure which can substantially reduce the size of search trees and further improve

the efficiency.

Funding: The work presented in this theses was funded in part by grants from the

Office of Naval Research: ONR-N000141812298, N000142112841, N000142212665,

the National Science Foundation: NSF-IIS-1718258, MIT IBM Watson AI Lab and

Google Research.

Computing resources: The authors acknowledge MIT SuperCloud and Lincoln

Laboratory Supercomputing Center for providing HPC resources that have contributed

to the research results reported within this thesis.
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Chapter 2

Subgradient Regularized Multivariate

Convex Regression at Scale

This chapter is based on [52].

2.1 Introduction

Given 𝑛 samples (𝑦𝑖,𝑥𝑖), 𝑖 ∈ [𝑛] := {1, . . . , 𝑛} with response 𝑦𝑖 ∈ R and covariates

𝑥𝑖 ∈ R
𝑑, we consider the task of predicting 𝑦 using a convex function of 𝑥. This

convex function is unknown and needs to be estimated from the data. This leads rise

to the so-called multivariate convex regression problem [200, 149] where we minimize

the sum of squared residuals

�̂� = argmin
𝜙∈ℱ

1

𝑛

𝑛∑︁

𝑖=1

(𝑦𝑖 − 𝜙(𝑥𝑖))2 (2.1)

over all real-valued convex functions in R
𝑑, denoted by ℱ . Above, 𝜙(𝑥𝑖) is the value

of the convex function 𝜙 at point 𝑥𝑖.

In the special case where 𝜙(𝑥) = 𝑥⊤𝛽 is a linear function, with unknown re-

gression coefficients 𝛽, criterion (2.1) leads to the well-known least squares problem.

Problem (2.1) is an instance of shape constrained nonparametric regression [192] Ð

here we learn the underlying function 𝜙 under a qualitative shape constraint such
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as convexity. The topic of function estimation under shape constraints has received

signiőcant attention in recent years Ð see for example, the special issue in Statistical

Science [196] for a nice overview.

Convex regression is widely used in economics, operations research, statistical

learning and engineering applications. In economics applications, for example, con-

vexity/concavity arise in modeling utility and production functions, consumer pref-

erences [210, 127], among others. In some stochastic optimization problems, value

functions are taken to be convex [202]. See also the works of [112, 219, 14] for other

important applications of convex regression.

There is a rich body of work in statistics studying different (statistical) method-

ological aspects of convex regression [200, 149, 14, 110, 111, 139, 140, 141]. However,

the challenges associated with computing the convex regression estimator limit our

empirical understanding of this estimator and its usage in practice. More recently,

there is a growing interest in developing efficient algorithms for this optimization

problem Ð see for e.g. [158, 11, 31, 150]. The focus of this chapter is to further

advance the computational frontiers of convex regression.

We note that the inőnite-dimensional Problem (2.1) can be reduced [200, 158] to

a őnite dimensional convex quadratic program (QP):

minimize
𝜑1,...,𝜑𝑛;𝜉1,...,𝜉𝑛

1

𝑛

𝑛∑︁

𝑖=1

(𝑦𝑖 − 𝜑𝑖)2

s.t. 𝜑𝑗 − 𝜑𝑖 ≥ ⟨𝑥𝑗 − 𝑥𝑖, 𝜉𝑖⟩, ∀(𝑖, 𝑗) ∈ Ω

(2.2)

where 𝜑1, . . . , 𝜑𝑛 ∈ R, 𝜉1, . . . , 𝜉𝑛 ∈ R
𝑑, and Ω := {(𝑖, 𝑗) : 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗}. In (2.2),

𝜑𝑖 = 𝜙(𝑥𝑖) and 𝜉𝑖 is a subgradient of 𝜙(𝑥) at 𝑥 = 𝑥𝑖. Problem (2.2) has 𝑂(𝑛𝑑)

variables and 𝑂(𝑛2) constraints and becomes computationally challenging when 𝑛 is

large. For the convex regression problem to be statistically meaningful [139, 158],

we consider cases with 𝑛 ≫ 𝑑 (and number of features 𝑑 ∼ log 𝑛 to be small).

Off-the-shelf interior point methods [200] for (2.2) are limited to instances where 𝑛

is at most a few hundred. [11] consider a regularized version of (2.2) (i.e., (𝑃0),

below) and propose parallel algorithms to solve instances with 𝑛 ≈ 1,600 leveraging
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commercial QP solvers (like Mosek). [158] use an alternating direction method of

multipliers (ADMM) [39]-based algorithm that can address problems up to 𝑛 ≈ 3,000.

Recently, [150] propose a different ADMM method and also a proximal augmented

Lagrangian method where the subproblems are solved by the semismooth Newton

methodÐthey address instances with 𝑛 ≈ 3,000. Algorithms based on nonconvex

optimization have been proposed to learn convex functions that are representable

as a piecewise maximum of 𝑘-many hyperplanes [112, 14, 96]Ðthese are interesting

approaches, but they may not lead to an optimal solution for the convex regression

convex optimization problem. Recently, [31] present a cutting plane or constraint

generation-type algorithm for (2.2): At every iteration, they solve a reduced QP by

considering a subset of constraints. Leveraging capabilities of commercial solvers

(e.g., Gurobi), this can approximately solve instances of (2.2) with 𝑛 ≈ 104 − 105.

In this chapter, we also present an active-set type method, but our approach differs

from [31], as we discuss below. We also establish novel computational guarantees for

our proposed approach.

The convex least squares estimator (2.2) may lead to undesirable statistical prop-

erties when 𝑥 is close to the boundary of the convex hull of {𝑥𝑖}𝑛1 [158, 13]. This

problem can be improved by considering a subgradient regularized version of (2.2)

given by:

minimize
𝜑1,...,𝜑𝑛;𝜉1,...,𝜉𝑛

1

𝑛

𝑛∑︁

𝑖=1

(𝑦𝑖 − 𝜑𝑖)2 +
𝜌

𝑛

𝑛∑︁

𝑖=1

‖𝜉𝑖‖2

s.t. 𝜑𝑗 − 𝜑𝑖 ≥ ⟨𝑥𝑗 − 𝑥𝑖, 𝜉𝑖⟩, ∀(𝑖, 𝑗) ∈ Ω,

(𝑃0)

where we impose an additional ℓ2-based regularization on the subgradients {𝜉𝑖}𝑛1 of 𝜙;

with 𝜌 > 0 being the regularization parameter. Formulation (𝑃0) also appears in [11].

Statistical estimation error properties of a form of subgradient regularized convex least

squares estimator appear in [158]. In the special case, where 𝜙(𝑥) = 𝑥⊤𝛽 is a linear

function, (𝑃0) leads to the popular ridge regression estimator (i.e., least squares with

an additional squared ℓ2 penalty on 𝛽). In ridge regression a nonzero penalty on ‖𝛽‖22
often leads to improved statistical performance over vanilla least squares. Similarly,
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in convex regression, a value of 𝜌 > 0 can result in better statistical estimation error

compared to the unregularized estimator with 𝜌 = 0ÐSee Section 2.5 for numerical

support on a collection of datasets.

Our approach: In this chapter, we focus on solving (𝑃0) for 𝜌 > 0. Problem (𝑃0)

has a strongly convex objective function in the decision variables ({𝜑𝑖}𝑛1 , {𝜉𝑖}𝑛1 ) Ð

its Lagrangian dual (see (𝐷) below) is a convex QP with 𝑂(𝑛2) variables over the

nonpositive orthant. We present large scale algorithms for this dual and study their

computational guarantees. The large number of variables poses computational chal-

lenges for full-gradient-based optimization methods as soon as 𝑛 becomes larger than

a few thousand. However, we anticipate that 𝑂(𝑛)-many of the constraints in (𝑃0) will

suffice. We draw inspiration from the one dimensional case (𝑑 = 1), an observation

that was also used by [31]. Hence, we use methods inspired by constraint genera-

tion [34], which we also refer to (with an abuse of terminology) as active set type

methods [25]. Every step of our algorithm considers a reduced dual problem where

the decision variables, informally speaking, correspond to a subset of the primal con-

straints. The vanilla version of this active set method, which solves the reduced

dual problem to optimality1, becomes expensive when 𝑛 and/or the size of the active

set becomes large especially if one were to perform several active-set iterations. We

propose improved algorithms that perform inexact (or approximate) optimization for

this reduced problem initially and then increase the optimization accuracy at a later

stage. Upon solving the reduced problem (exactly or inexactly), we examine opti-

mality conditions for the full problem; and include additional variables into the dual

problem, if necessary.

To augment the current active-set, greedy deterministic augmentation rules that

scan all 𝑂(𝑛2)-constraints, become computationally expensive Ð therefore, we use

randomized rules, which leads to important cost savings. These randomized augmen-

tation rules extend the random-then-greedy selection strategies proposed by [154] in

the context of Gradient Boosting Machines [92]. Our approach operates on the dual

1This is similar to the method of [31] who consider a constraint generation method for (2.2) where
the reduced sub-problems are solved to optimality.
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and results in a dual feasible Ð we show how this leads to a primal feasible solution,

delivering a duality gap certiőcate.

We establish a novel linear convergence rate of our algorithm (in terms of outer

iterations) on the dual, which is not strongly convex. Our guarantees apply to both

exact/inexact optimization of the reduced problem; and both deterministic and ran-

domized augmentation rules. As we focus on large scale problems (e.g. 𝑛 ≥ 10, 000),

inexact optimization of the reduced sub-problem and randomized augmentation rules

play a key role in computational efficiency. As we carefully exploit problem-structure,

our standalone algorithms enjoy a low memory footprint and can approximately solve

instances of subgradient regularized convex regression with 𝑛 ≈ 105 and 𝑑 = 10 in

minutes. Numerical comparisons suggest that on several datasets, our approach ap-

pears to notably outperform earlier algorithms in solving (𝑃0) for values of 𝜌 > 0 that

result in good statistical performance. Since our approach is based on the smooth

dual of (𝑃0), the performance of our algorithm would deteriorate when 𝜌 is numeri-

cally very close to zero. In particular, our approach may not be suitable for obtaining

a high-accuracy solution to the unregularized problem (2.2).

Organization of chapter: Section 2.2 presents both primal and dual formulations

of the full problem (𝑃0); and a őrst order method on the dual. Section 2.3 presents

active-set type algorithms, augmentation rules and associated computational guaran-

tees. Section 2.4 discusses computing duality gap certiőcates. Section 2.5 presents

numerical experiments. Some technical details are relegated to Section 2.A to improve

readability.

Notations: For convenience, we list some notations used throughout the chapter.

We denote the set {1, 2, . . . , 𝑛} by [𝑛]. The cardinality of a set 𝑊 is denoted by |𝑊 |.
We denote by R+, R++ the set of nonnegative and positive real numbers (respec-

tively). A similar notation applies for R− and R−−. Symbols 1𝑛, 𝑒𝑖 and 𝐼 denote: a

vector of length 𝑛 of all ones, the 𝑖-th standard basis element and the identity matrix

(respectively). span(𝐴) denotes the linear space generated by the vectors in the set

𝐴. For a matrix 𝐵, let vec(𝐵) denote a vectorized version of 𝐵. The largest singular
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value of a matrix 𝐵 is denoted by 𝜆max(𝐵). We use ‖ · ‖ to denote the Euclidean

norm of a vector and the spectral norm of a matrix. Finally, 𝜕𝑓(𝑥) denotes the

subdifferential (set of subgradients) of 𝑓 at 𝑥.

2.2 Primal and Dual Formulations

We introduce some notation to rewrite Problem (𝑃0) compactly. Let 𝑦 = [𝑦1, . . . , 𝑦𝑛]
⊤

∈ R
𝑛, 𝑋 = [𝑥⊤

1 , . . . ,𝑥
⊤
𝑛 ] ∈ R

𝑛×𝑑, 𝜑 = [𝜑1, . . . , 𝜑𝑛]
⊤ ∈ R

𝑛, and 𝜉 = vec([𝜉1, . . . , 𝜉𝑛]) ∈
R
𝑛𝑑. We deőne 𝐴 ∈ R

𝑛(𝑛−1)×𝑛 and 𝐵 ∈ R
𝑛(𝑛−1)×𝑛𝑑 such that the rows of 𝐴𝜑 +𝐵𝜉

correspond to the constraints 𝜑𝑗 − 𝜑𝑖 − ⟨𝑥𝑗 − 𝑥𝑖, 𝜉𝑖⟩ for (𝑖, 𝑗) ∈ Ω. Hence (𝑃0) is

equivalent to:

minimize
𝜑,𝜉

𝑓(𝜑, 𝜉) :=
1

2
‖𝑦 − 𝜑‖2 + 𝜌

2
‖𝜉‖2 s.t. 𝐴𝜑+𝐵𝜉 ≥ 0, (𝑃 )

where 𝐴𝜑 +𝐵𝜉 ≥ 0 denotes componentwise inequality. Due to strong convexity of

the objective, (𝑃 ) has a unique minimizer denoted by (𝜑⋆, 𝜉⋆). While (𝑃 ) has a large

number (i.e., 𝑂(𝑛2)) of constraints, given that the affine hull of the data points has

full dimension2, i.e. span({𝑥𝑖 − 𝑥𝑗}𝑗 ̸=𝑖) = R
𝑑, it can be shown that the constraint

matrix 𝐶 =
[︁

𝐴 𝐵

]︁

∈ R
𝑛(𝑛−1)×(𝑛+𝑛𝑑) is of rank 𝑂(𝑛𝑑). This serves as a motivation

for our active-set approach.

The Lagrangian dual of (𝑃 ) is equivalent to the following convex problem

𝐿⋆ = minimize
𝜆∈R𝑛(𝑛−1)

𝐿(𝜆) :=
1

2𝜌
𝜆⊤(𝜌𝐴𝐴⊤ +𝐵𝐵⊤)𝜆− 𝑦⊤𝐴⊤𝜆 s.t. 𝜆 ≤ 0. (𝐷)

Deőnition 2.1. A convex function 𝑓 is 𝜎-smooth if it is continuously differentiable

with 𝜎-Lipschitz gradient; 𝑓 is 𝜇-strongly convex if 𝑓(𝑥)− 𝜇
2
𝑥⊤𝑥 is convex.

Note that 𝜆 ↦→ 𝐿(𝜆) is not strongly convex, but it is 𝜎-smooth, where 𝜎 is the

maximum eigenvalue of the matrix 𝑄 := 𝐴𝐴⊤ + 1
𝜌
𝐵𝐵⊤.

2This occurs with probability one if the covariates are drawn from a continuous distribution.
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Unlike the primal (𝑃 ), the dual problem (𝐷) is amenable to proximal gradient

methods [175, 19] (PGD). Other gradient based methods like accelerated proximal

gradient methods (APG) [19, 175], the limited-memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) method [152] (for example), may also be used; and they work well

in our numerical experience. However, every iteration of PGD requires computing

the gradient ∇𝐿(𝜆) ∈ R
𝑛(𝑛−1). While an unstructured gradient computation will

cost 𝑂(𝑛4), exploiting the structure of 𝐴,𝐵, this cost can be reduced to 𝑂(𝑛2𝑑),

allowing us to scale these algorithms for instances with 𝑛 ≈ 3, 000. Such matrix-

vector multiplications can be used to estimate 𝜎 via the power method or backtracking

line-search [19]. When 𝐿 is 𝜎-smooth, PGD enjoys a standard sublinear convergence

rate 𝑂(1/𝑡) [19]. With an additional strong convexity assumption PGD is known to

converge at a linear rate [173]. Note 𝐿(𝜆) is not strongly convex. However, 𝐿(𝜆)

satisőes the Polyak-Łojasiewicz condition [129, 170] under which PGD converges at a

linear rate. We note more general convergence results under error bound conditions

can be found in [155, 156, 147, 37].

2.3 Active Set Type Algorithms

As (𝐷) has𝑂(𝑛2) variables, the proximal gradient method (owing to full gradient com-

putations) becomes prohibitively expensive when 𝑛 becomes larger than a few thou-

sand. However, as discussed earlier, we expect only 𝑂(𝑛)-many of these variables to be

nonzero at an optimal solutionÐmotivating the use of a constraint-generation/active

set-type method on the primal (𝑃 ), which relates to a column-generation type method

on the dual (𝐷).

Constraint generation is traditionally used in the context of solving large-scale

linear programs [64, 34]. When used in the context of the QP (𝑃 ), as done in [31], we

start with a reduced problem with a small subset of constraints in (𝑃 ). With a slight

abuse of nomenclature, we refer to these constraints as the active set3. After obtaining

an optimal dual solution to this reduced problem, the traditional form of constraint

3Our usage of “active setž differs from the active set method for solving a QP, as discussed in [176].
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generation will augment the active set with some dual variables that correspond to the

violated primal constraints (if any) and re-solve the problem on the expanded set of

constraints. We mention two shortcomings of this approach: (a) Solving the reduced

problem to optimality becomes expensive (especially when the active set becomes

large and/or if several iterations of constraint-generation is needed); and (b) őnding

variables to be appended to the active set has a large cost of 𝑂(𝑛2𝑑) operations.

To circumvent these shortcomings, we propose modiőcations to the above con-

straint generation or active set method. To address (a), we solve the reduced sub-

problem inexactly (e.g., by taking a few iterations of the proximal gradient method).

To address (b), we consider randomized rules to reduce the cost of augmenting the

active set from 𝑂(𝑛2𝑑) to 𝑂(𝑛𝑑) (for example). We show that our proposed algorithm

converges; and does so with a linear convergence rate in the outer iterations.

2.3.1 Properties of the reduced problem

Let 𝑊 ⊆ Ω index a subset of the constraints in (𝑃 ); and consider the reduced primal:

minimize
𝜑,𝜉

𝑓(𝜑, 𝜉) =
1

2
‖𝑦 − 𝜑‖2 + 𝜌

2
‖𝜉‖2 s.t. 𝐴𝑊𝜑+𝐵𝑊𝜉 ≥ 0 (𝑃𝑊 )

where, 𝐴𝑊 (and 𝐵𝑊 ) denotes matrix 𝐴 (and 𝐵) restricted to rows indexed by 𝑊 .

In the rest of the chapter, we will use 𝑊 as a subscript for vectors or matrices

whose size changes with 𝑊 , and use 𝑊 (or [𝑊 ]) as superscript for vectors or matrices

whose size does not change with 𝑊 . When 𝑊 = Ω, the relaxed problem is the original

problem, and we drop the use of Ω as subscript and/or superscript for notational

convenience.

We consider solving the dual of (𝑃𝑊 ). Proposition 2.1 presents some of its properties.

Proposition 2.1. The Lagrangian dual of (𝑃𝑊 ) is given by:

min
𝜆𝑊

𝐿𝑊 (𝜆𝑊 ) := 1
2𝜌
𝜆⊤
𝑊 (𝜌𝐴𝑊𝐴

⊤
𝑊 +𝐵𝑊𝐵

⊤
𝑊 )𝜆𝑊 − 𝑦⊤𝐴⊤

𝑊𝜆𝑊 s.t. 𝜆𝑊 ≤ 0. (𝐷𝑊 )
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Let 𝐿⋆𝑊 be the optimal objective value for (𝐷𝑊 ). The objective function 𝐿𝑊 (·) :

R
|𝑊 | → R is 𝜎𝑊 -smooth for some 𝜎𝑊 ≤ 𝜎. The set of all optimal solutions to (𝐷𝑊 )

is a polyhedron of the form

Λ⋆𝑊 =

{︂

𝜆𝑊 ∈ R
|𝑊 | : 𝐴⊤

𝑊𝜆𝑊 = 𝑠𝑊𝐴 ,
1√
𝜌
𝐵⊤
𝑊𝜆𝑊 = 𝑠𝑊𝐵 ,𝜆𝑊 ≤ 0

}︂

(2.3)

where, 𝑠𝑊𝐴 = 𝑦 −𝜑𝑊⋆ , 𝑠𝐵 = −√𝜌𝜉𝑊⋆ ; and (𝜑𝑊⋆ , 𝜉
𝑊
⋆ ) is the unique optimal solution to

the reduced primal problem (𝑃𝑊 ).

Proof Sketch. The Lagrangian dual is obtained by computing min𝜉,𝜑 ℒ(𝜑, 𝜉;𝜆𝑊 ),

where ℒ(𝜑, 𝜉;𝜆𝑊 ) = 𝑓(𝜑, 𝜉) + 𝜆⊤
𝑊 (𝐴𝑊𝜑 +𝐵𝑊𝜉) for any 𝜆𝑊 ≤ 0. The optimality

(KKT) conditions for 𝜑, 𝜉 are 𝜑𝑊⋆ = 𝑦+𝐴⊤
𝑊𝜆𝑊 and 𝜉𝑊⋆ = 𝜌𝐵⊤

𝑊𝜆𝑊 . Plugging these

equations into ℒ and ŕipping the sign of the function lead to the objective 𝐿𝑊 . As

𝜆𝑊 ↦→ 𝐿𝑊 (𝜆𝑊 ) is a quadratic function, it is 𝜎𝑊 -smooth with 𝜎𝑊 being the maximum

eigenvalue of the Hessian matrix. Since the Hessian of the reduced dual problem is

a submatrix of that of the original dual problem (corresponding to 𝑊 out of Ω), it

follows that 𝜎𝑊 ≤ 𝜎. The formulation of the polyhedral set follows from the KKT

conditions [40].

PGD is readily applicable to (𝐷𝑊 ). The per iteration cost is 𝑂(|𝑊 |𝑑), which

is much smaller than 𝑂(𝑛2𝑑) (as |𝑊 | ∼ 𝑛). Solving the reduced problem (𝐷𝑊 ) is

usually much faster than solving the full problem (𝐷) when |𝑊 | ≪ |Ω|.

2.3.2 Augmentation Rules

For any 𝑊 ⊆ Ω, given a feasible solution4 𝜆𝑊 ∈ R
|𝑊 |
− to the reduced dual (𝐷𝑊 ), we

can construct its corresponding primal variables (𝜑𝑊 , 𝜉𝑊 ) for (𝑃𝑊 ), by making use

of the KKT conditions:

(𝜑𝑊 , 𝜉𝑊 ) = (𝑦 −𝐴⊤
𝑊𝜆𝑊 ,−

1

𝜌
𝐵⊤
𝑊𝜆𝑊 ) ∈ R

𝑛 × R
𝑛𝑑. (2.4)

4This can be obtained by solving (𝐷𝑊 ) exactly (i.e., to optimality) or inexactly (i.e., approxi-
mately).
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Notice that for a general dual variable 𝜆𝑊 ∈ R
|𝑊 |
− , the primal variables obtained

via (2.4) may not be feasible for the reduced primal problem (𝑃𝑊 ). Below we discuss

some rules for augmenting the current set of constraints (i.e., the active set).

After obtaining (𝜑𝑊 , 𝜉𝑊 ), we check if it is feasible for (𝑃 )Ðthat is, we verify if

each component of 𝐴𝜑𝑊 +𝐵𝜉𝑊 (denoted by 𝑣(𝑖,𝑗)) is nonnegative:

𝑣(𝑖,𝑗) = 𝜑𝑊𝑗 − 𝜑𝑊𝑖 − ⟨𝑥𝑗 − 𝑥𝑖, 𝜉𝑊𝑖 ⟩ ≥ 0 ∀(𝑖, 𝑗) ∈ Ω. (2.5)

To this end, it is helpful to decompose the 𝑂(𝑛2) constraints into 𝑛 blocks

Ω =
⋃︁

𝑖

Ω𝑖· =
⋃︁

𝑗

Ω·𝑗,

where Ω𝑖· = {(𝑖, 𝑗) : 𝑗 ̸= 𝑖, 1 ≤ 𝑗 ≤ 𝑛} and Ω·𝑗 = {(𝑖, 𝑗) : 𝑖 ̸= 𝑗, 1 ≤ 𝑖 ≤ 𝑛}.
Similarly, we deőne the slices 𝑊𝑖· and 𝑊·𝑖 for all 𝑖. The two decompositions {Ω𝑖·}𝑛1
and {Ω·𝑗}𝑛1 have different geometric interpretations. Now deőne points 𝑃𝑗 = {𝑥𝑗, 𝜑𝑊𝑗 }
and hyperplanes 𝐻𝑖 : 𝑦 = ⟨𝑥 − 𝑥𝑖, 𝜉𝑊𝑖 ⟩ + 𝜑𝑊𝑖 in R

𝑑+1. Note that each point 𝑃𝑖 lies

on the hyperplane 𝐻𝑖, and 𝑣(𝑖,𝑗) denotes the vertical distance between 𝑃𝑗 and 𝐻𝑖.

For each 𝑖, the nonnegativity of 𝑣(𝑖,𝑗) for all (𝑖, 𝑗) ∈ Ω𝑖·, checks if the hyperplane 𝐻𝑖

lies below each point 𝑃𝑗, i.e. if 𝐻𝑖 is a supporting hyperplane of the points {𝑃𝑗}𝑛1 .
On the other hand, for each 𝑗, the nonnegativity of 𝑣(𝑖,𝑗) for all (𝑖, 𝑗) ∈ Ω·𝑗, checks

if 𝑃𝑗 lies above each hyperplane 𝐻𝑖Ði.e., if 𝑃𝑗 lies above the piecewise maximum of

these hyperplanes. The quantity |min𝑖 𝑣(𝑖,𝑗)| is the amount by which 𝑃𝑗 lies below the

piecewise maximum.

In Section 2.4 we see that the block decomposition interpretation is useful in ob-

taining a primal feasible solution. Next we discuss a deterministic augmentation rule

Ð due to its high computational cost, we subsequently present randomized augmen-

tation rules Ð both of which make use of the above decomposition of Ω.

2.3.2.1 Deterministic Augmentation Rule

We őrst present a simple greedy-like deterministic augmentation rule:
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Rule 1. Greedy within each Block: For each block Ω𝑖· (or Ω·𝑗), choose 𝑃 pairs

with the smallest 𝑣(𝑖,𝑗)-values among Ω𝑖·∖𝑊𝑖· (or Ω·𝑗∖𝑊·𝑗). From these 𝑃 indices,

we add to the current active set 𝑊 , only those with negative 𝑣(𝑖,𝑗)-values.

Rule 1 evaluates 𝑂(𝑛2) constraints with computational cost 𝑂(𝑛2𝑑 + 𝑑|𝑊 |) and

augments 𝑊 by at most 𝑛𝑃 such constraints. For every block, obtaining the largest 𝑃

violations can be done via a partial sortÐleading to a total cost of 𝑂(𝑛2𝑑+𝑛𝑃 log𝑃 )

for 𝑛 blocks5. As a result, with this greedy rule, the augmentation becomes a ma-

jor computational bottleneck for the active-set type method. This motivates the

randomized augmentation rules discussed below.

2.3.2.2 Randomized Augmentation Rules

We present four randomized rules that sample a small subset of the indices in Ω ∖𝑊
instead of performing a computationally intensive full scan across 𝑂(𝑛2) indices as in

Rule 1.

Rule 2. Random: Uniformly sample 𝐾 indices in Ω∖𝑊Ðthe cost of computing the

corresponding 𝑣(𝑖,𝑗)-values is 𝑂(𝐾𝑑+ 𝑑|𝑊 |).

Rule 3. Random within each Block: For each block Ω𝑖· (or Ω·𝑗), uniformly

sample 𝑃 elements in Ω𝑖·∖𝑊𝑖· (or Ω·𝑗∖𝑊·𝑗); the total computational cost is

𝑂(𝑛𝑃𝑑+ 𝑑|𝑊 |).

Rule 4. Random then Greedy: Uniformly sample𝑀 -many (𝑖, 𝑗)-pairs from Ω∖𝑊 ,

and from these pairs choose the 𝐾 pairs with the smallest 𝑣(𝑖,𝑗)-values. Com-

puting the 𝑀 values of 𝑣(𝑖,𝑗) cost 𝑂(𝑀𝑑+ 𝑑|𝑊 |), and the greedy selection step

costs 𝑀 +𝐾 log𝐾. The total computational cost is 𝑂(𝑀𝑑+ 𝑑|𝑊 |).

Rule 5. Random Blocks then Greedy within each Block: Uniformly sample

𝐺 groups from {Ω𝑖·}𝑛𝑖=1 (or {Ω·𝑗}𝑛𝑗=1) and for each group, choose the 𝑃 pairs

that have the smallest 𝑣(𝑖,𝑗) values with (𝑖, 𝑗) ∈ Ω𝑖·∖𝑊𝑖· (or Ω·𝑗∖𝑊·𝑗). Similar to

Rule 4, the total computational cost is 𝑂(𝐺𝑛𝑑+ 𝑑|𝑊 |).

Note that the above rules lead to a set of indices denoted by ∆′. From these

5A similar augmentation rule with 𝑃 = 1 is used in [31]
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candidates, we only select those with negative 𝑣(𝑖,𝑗)-values, which are then appended

to the current active set 𝑊 . That is, if ∆ = {(𝑖, 𝑗) ∈ ∆′ : 𝑣(𝑖,𝑗) < 0} then we set

𝑊 ← 𝑊 ∪∆.

Of the above, Rules 4 and 5 are inspired by, but different from the random-

then-greedy coordinate descent procedure [154], proposed in the context of Gradient

Boosting.

2.3.2.3 Norms Associated with the Augmentation Rules

The computational guarantees of our active set-type algorithms depend upon certain

norms induced by the aforementioned augmentation rules. We őrst present some

notation that we will use in our analysis.

Deőnition 2.2. Given a vector 𝜃, an index set 𝑆, and 𝑘 ≤ |𝑆|, let 𝒢[𝑆, 𝑘,𝜃] be the

set of 𝑘 elements with the largest values of |𝜃𝜔| for 𝜔 ∈ 𝑆. Given a pair (𝑆, 𝑘) as

above, we let 𝒰 [𝑆, 𝑘] denote the set of 𝑘 uniformly subsampled indices from the set 𝑆.

Deőnition 2.3. Given a vector 𝜃 ∈ R
𝑛(𝑛−1) indexed by Ω, let {𝑆𝑖}𝑛1 be disjoint subsets

of Ω, with �̄� = ∪𝑖∈[𝑛]𝑆𝑖. Given positive integers 𝑃,𝐾,𝑀,𝐺, we deőne 𝛿1(𝜃, {𝑆𝑖}),
. . . , 𝛿5(𝜃, {𝑆𝑖}) ⊂ Ω as follows:

𝛿1(𝜃, {𝑆𝑖}) =
𝑛⋃︁

𝑖=1

𝒢[𝑆𝑖, 𝑃,𝜃], 𝛿2(𝜃, {𝑆𝑖}) = 𝒰 [�̄�, 𝐾], 𝛿3(𝜃, {𝑆𝑖}) =
𝑛⋃︁

𝑖=1

𝒰 [𝑆𝑖, 𝑃 ]

𝛿4(𝜃, {𝑆𝑖}) = 𝒢[𝒰 [�̄�,𝑀 ], 𝐾,𝜃], 𝛿5(𝜃, {𝑆𝑖}) =
⋃︁

𝑖∈𝒰 [[𝑛],𝐺]

𝒢[𝑆𝑖, 𝑃,𝜃].

With the above notation, we can express the indices to be augmented as a function

of the violations 𝑣, a vectorized representation of the entries {𝑣(𝑖,𝑗)}(𝑖,𝑗)∈Ω (2.5). Let

∆′
{ℓ} denote the pairs selected by Rule ℓ, and ∆{ℓ} = {𝜔 ∈ ∆′

{ℓ} : 𝑣(𝑖,𝑗) < 0} ⊆ ∆′
{ℓ}

be the őnal set to be added to 𝑊 . Let �̃� be a vector having the same length as 𝑣,

with its entries given by 𝑣(𝑖,𝑗) = min{𝑣(𝑖,𝑗), 0}. Then it is easy to verify that ∆′
{ℓ} can

be written as 𝛿ℓ(�̃�, {𝑆𝑖}) with 𝑆𝑖 = Ω𝑖· ∖𝑊𝑖· or 𝑆𝑖 = Ω·𝑖 ∖𝑊·𝑖.
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Deőnition 2.4. Given 𝜃 ∈ R
𝑛(𝑛−1), let {Ω𝑖}𝑛1 be either {Ω𝑖·}𝑛1 or {Ω·𝑖}𝑛1 . Deőne

‖𝜃‖{ℓ} =

⎛

⎝E

⎡

⎣
∑︁

𝜔∈𝛿ℓ(𝜃,{Ω𝑖})
|𝜃𝜔|2

⎤

⎦

⎞

⎠

1/2

for ℓ ∈ {1, . . . , 5}. (2.6)

For ℓ = 1, there is no randomness in 𝛿ℓ, so the expectation can be removed. For ℓ ≥ 2,

the expectation is taken over the randomness arising from the selection operator 𝒰 (cf

Deőnition 2.2).

Lemma 2.1 shows that the expression in display (2.6) leads to a norm on R
𝑛(𝑛−1).

Furthermore, the norm equivalence constants appearing in (2.7) determine the con-

vergence rates of Algorithm 2.1 (see Theorem 2.1).

Lemma 2.1. ‖𝜃‖{ℓ} deőned in (2.6) is a norm on R
𝑛(𝑛−1). Furthermore, the constants

𝛼{ℓ}, 𝛽{ℓ} listed in Table 2.1 satisfy that for all 𝑥 ∈ R
𝑛(𝑛−1)

𝛼{ℓ}‖𝑥‖2{ℓ} ≥ ‖𝑥‖22 ≥ 𝛽{ℓ}‖𝑥‖2{ℓ}. (2.7)

The proof of Lemma 2.1 appears in Section 2.A.1.

Table 2.1 presents a summary of some key characteristics of the őve rules.

Table 2.1: Summary of some properties of the augmentation rules. Recall that ∆′
{ℓ}

denotes the pairs selected as per Rule ℓ. The number of candidates to be augmented
to the current active set depends upon the signs of 𝑣(𝑖,𝑗)s; and is of size at most |∆′

{ℓ}|.
Here, Augmentation Cost is the cost of obtaining ∆′

{ℓ}. We present estimates of the

norm-equivalence constants 𝛼{ℓ}, 𝛽{ℓ} (2.7). For notational convenience, we assume
that 𝑊 = ∅Ðfor a nonempty 𝑊 , we can replace Ω𝑖 with Ω𝑖∖𝑊𝑖.

Rule ∆′
{ℓ} |∆′

{ℓ}| Augmentation Cost 𝛼{ℓ} 𝛽{ℓ}
1 ∪𝑛𝑖=1𝒢[Ω𝑖, 𝑃, �̃�] 𝑛𝑃 𝑂(𝑛2𝑑+ 𝑑|𝑊 |) 𝑛−1

𝑃
1

2 𝒰 [Ω, 𝐾] 𝐾 𝑂(𝐾𝑑+ 𝑑|𝑊 |) 𝑛(𝑛−1)
𝐾

𝑛(𝑛−1)
𝐾

3 ∪𝑛𝑖=1𝒰 [Ω𝑖, 𝑃 ] 𝑛𝑃 𝑂(𝑛𝑃𝑑+ 𝑑|𝑊 |) 𝑛−1
𝑃

𝑛−1
𝑃

4 𝒢[𝒰 [Ω,𝑀 ], 𝐾, �̃�] 𝐾 𝑂(𝑀𝑑+ 𝑑|𝑊 |) 𝑛(𝑛−1)
𝐾

𝑛(𝑛−1)
𝑀

5 ∪𝑖∈𝒰 [[𝑛],𝐺]𝒢[Ω𝑖, 𝑃, �̃�] 𝐺𝑃 𝑂(𝐺𝑛𝑑+ 𝑑|𝑊 |) 𝑛(𝑛−1)
𝐺𝑃

𝑛
𝐺

37



2.3.3 Active set method with inexact optimization of sub-

problems

Once we augment the active set (based on Rules 1ś5), we solve the updated reduced

QP either exactly or inexactly. We then identify additional constraints to be added

to the current active set; and continue till some convergence criteria is satisőed. Our

algorithm is summarised below:

Algorithm 2.1 An Active Set Type Method on the Dual (𝐷)

Input: Initialize with 𝑊 0 and 𝜆0.

1: for 𝑚 = 0, 1, . . . do

2: Step 1: Obtain a feasible solution 𝜆𝑊𝑚 for (𝐷𝑊𝑚) by either (a) solving (𝐷𝑊𝑚)

to optimality (i.e., exactly) or (b) solving (𝐷𝑊𝑚) inexactly via a few steps of

proximal gradient descent6.

3: Step 2: Compute 𝜑𝑊
𝑚

= 𝑦 −𝐴⊤
𝑊𝑚𝜆𝑊𝑚 , 𝜉𝑊

𝑚

= −1
𝜌
𝐵⊤
𝑊𝑚𝜆𝑊𝑚 as per (2.4).

4: Step 3: Use one of the Rules 1ś5 to augment 𝑊𝑚 to obtain 𝑊𝑚+1.

5: end for

In what follows, we call Algorithm 2.1 with option (a) [Step 1] the Exact Active

Set method (EAS); and option (b) [Step 1] the Active Set Gradient Descent (ASGD)

method.

If the size of the active set remains sufficiently small, interior point solvers (in-

cluding heavy-duty commercial solvers like Gurobi, Mosek) may be used for full mini-

mization of the reduced problem, as long as the number of active set iterations remain

small. However, for larger problems (e.g., when 𝑛 ≈ 104 − 105), őrst order methods

may be preferable due to warm-start capabilities (across active sets) and low mem-

ory requirements (by exploiting problem-structure). Furthermore, they also allow for

inexact computation for the sub-problemsÐsee numerical experiments in Section 2.5

showing the important beneőts in approximate optimization.

Theorem 2.1 establishes that Algorithm 2.1 requires at most 𝑚 = 𝑂(log(1/𝜖))-

many outer iterations to deliver an 𝜖-optimal dual solution for Problem (𝐷):

6Other choices are also possible, as discussed in Remark 2.2.
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Theorem 2.1. For a given 𝜆0 and 𝑊 0, let 𝜆𝑚 = 𝜆[𝑊𝑚] (for 𝑚 ≥ 1) be the sequence

generated by Algorithm 2.1. Then, for either EAS or ASGD with augmentation Rule ℓ,

we have:

E[𝐿(𝜆𝑚)− 𝐿⋆] ≤
(︂

1− 𝜇

𝜎𝛼{ℓ}

)︂𝑚

[𝐿(𝜆0)− 𝐿⋆],

where 𝜎 is the smoothness constant of 𝐿, 𝜇 is a constant depending7 only on 𝐴,𝐵

and 𝜌, and 𝛼{ℓ} appears in Lemma 2.1.

The proof of Theorem 2.1 is provided in Sections 2.A.2 and 2.A.3. We make a few

remarks regarding Theorem 2.1.

Remark 2.1. If we used PGD on the dual (𝐷), the linear convergence rate parame-

ter [175, 129] would be (1 − 𝜇/𝜎). The parameter in Theorem 2.1 has an additional

factor 1/𝛼{ℓ}, which arises due to the use of an active set method in conjunction with

the augmentation rules. We present an example in Section 2.B.1 showing that this

factor is perhaps unavoidable.

Remark 2.2. Algorithm 2.1 allows for both exact and inexact optimization of the

reduced problemÐthe guarantees for Theorem 2.1 apply to both variants. In par-

ticular, if we use a őxed number of PGD iterations for every sub-problem, we would

obtain a linear convergence rate on the total number of inner iterations. Furthermore,

Theorem 2.1 applies to both deterministic and randomized augmentation rules.

Although our theory is based on a proximal gradient update on the reduced problem,

the theory also applies to other descent algorithms that have a sufficient decrease con-

dition, e.g. accelerated proximal gradient (APG) methods [19, 175] and L-BFGS [152]

with some modiőcationsśsee discussions in Remark 2.4.

Remark 2.3. Theorem 2.1 implies that we need at most 𝑂
(︀
(𝜎𝛼{ℓ}/𝜇) log(1/𝜖)

)︀
-many

outer iterations, to achieve an accuracy level of 𝜖 > 0. This quantiőes the worst-case

convergence rate via 𝛼{ℓ}. We note that the constant 𝜎𝛼{ℓ}/𝜇 can be large when

𝑛 is large, making the speed of linear convergence slow. However, by following the

arguments in the proof, one can consider a more optimistic upper bound on the number

of iterations, by replacing 𝛼{ℓ} with 𝛽{ℓ} (cf Lemma 2.1), as we discuss below.
7See Section 2.A.2 for a characterization of 𝜇.
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Understanding the costs of different rules: To better understand the compu-

tational costs of the different rules, we consider a setting where the maximum number

of selected pairs (i.e., |∆′
{ℓ}|) is set to be 𝑂(𝑛) across all rules8.

According to Remark 2.3, to achieve 𝜖 accuracy, we need 𝑂((𝜎𝛼{ℓ}/𝜇) log(1/𝜖))

outer iterations in the worst case and 𝑂((𝜎𝛽{ℓ}/𝜇) log(1/𝜖)) outer iterations in the

best case. Hence, for a őxed 𝜖 > 0, the total augmentation cost is proportional to

𝛼{ℓ}×Augmentation Cost for the worst case and 𝛽{ℓ}×Augmentation Cost for the best

case. See Table 2.2 for an illustration.

Table 2.2: Comparing Augmentation Rules: We present an instance of Table 2.1
where |∆′

{ℓ}| is the same across ℓ. Speciőcally, we set 𝑃 = 1 for Rule 1, 𝐾 = 𝑛 for

Rule 2, 𝑃 = 1 for Rule 3, 𝑀 = 𝑛
√
𝑛,𝐾 = 𝑛 for Rule 4, and 𝐺 =

√
𝑛, 𝑃 =

√
𝑛 for

Rule 5. Here, we ignore log-terms in the big 𝑂 notation.

Rule |∆′
{ℓ}| Augmentation Cost 𝛼{ℓ} 𝛽{ℓ}

1 𝑂(𝑛) 𝑂(𝑛2𝑑+ 𝑑|𝑊 |) 𝑂(𝑛) 𝑂(1)
2 𝑂(𝑛) 𝑂(𝑛𝑑+ 𝑑|𝑊 |) 𝑂(𝑛) 𝑂(𝑛)
3 𝑂(𝑛) 𝑂(𝑛𝑑+ 𝑑|𝑊 |) 𝑂(𝑛) 𝑂(𝑛)
4 𝑂(𝑛) 𝑂(𝑛

√
𝑛𝑑+ 𝑑|𝑊 |) 𝑂(𝑛) 𝑂(

√
𝑛)

5 𝑂(𝑛) 𝑂(𝑛
√
𝑛𝑑+ 𝑑|𝑊 |) 𝑂(𝑛) 𝑂(

√
𝑛)

We make a note of the following observations from Table 2.2.

• As the maximum size of the augmentation set (i.e, |∆′
{ℓ}|) at each iteration is

the same across all rules, 𝛼{ℓ} is the same across all the őve rules ℓ.

• In the worst case, different rules take the same number of iterations to achieve 𝜖

accuracy. The largest total augmentation costs (i.e., 𝛼{ℓ}×Augmentation Cost)

are incurred by the purely greedy rule (Rule 1), and then the random-then-

greedy rules (Rule 4 and Rule 5).

• In the best case, the greedy rules take fewer iterationsÐthe purely greedy rule

(Rule 1) is better than random-then-greedy rules (Rules 4 and 5). The purely

random rules (Rules 2 and 3) have similar iteration counts for the best and

worst cases (as 𝛼{ℓ} = 𝛽{ℓ}).

The above discussion pertains to our theoretical guarantees. We note that the

parameter 𝜇/(𝜎𝛼{ℓ}) appearing in Theorem 2.1 can be difficult to compute (see Sec-

8The choice of 𝑃,𝐾,𝑀,𝐺 are speciőed in the caption of Table 2.2
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tion 2.A.2 for a description of 𝜇), and may be small for large datasets making the

linear rate slow in the worst-case scenario. Our numerical experiments offer a reőned

understanding of the operating characteristics of the different algorithms, and what

occurs in practice.

We note that though our work focuses on a problem arising from convex regression,

our algorithmic framework with randomized and random-then-greedy augmentation

rules can also be applied to other convex quadratic programming problems involving

a large number of decision variables with nonnegativity constraints.

Related work: As discussed earlier, Algorithm 2.1 (with exact optimization for

the subproblems) is inspired by constraint generation, a classic tool for solving large

scale linear programs [64, 34]. Recently [31] explore constraint generation for con-

vex regression, but our framework differs. [31] use a primal approach for (2.2) and

solve the restricted primal problem to optimality using commercial QP solvers (e.g.,

Gurobi). They do not present computational guarantees for their procedure. In this

chapter we consider the subgradient regularized problem (𝑃 ), and our algorithms are

on the dual problem (𝐷). We extend the framework of [31] to allow for both exact and

inexact optimization of the reduced problems. As a main computational bottleneck

in the constraint generation procedure is in the augmentation step which requires

scanning all the 𝑂(𝑛2) constraints, we present randomized augmentation rules, which

examine only a small subset of the constraints, before augmenting the active-set.

Our computational guarantees, which to our knowledge are novel, apply to both the

exact and inexact sub-problem optimization processes and deterministic/randomized

augmentation rules.

As far as we can tell, with the exception of [31], convex optimization-based ap-

proaches for convex regression that precede our work (e.g, [158, 150, 11]), do not use

active set-type methods and hence apply to smaller problem instances 𝑛 ≈ 3000. We

note that active-set type methods are commonly used for convex QPs see for e.g.,

[142, 89] and references therein. We also explore active-set type methods, (random-

ized) augmentation rules, inexact optimization of sub-problems, and their computa-
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tional guarantees for subgradient regularized convex regression.

The primal problem (𝑃 ) can also be viewed as a projection problem onto a poly-

hedron with 𝑂(𝑛2) constraints. [106] consider the problem of projecting a point into

a polyhedron. To solve this problem, they explore some active set ideas and develop

convergence guarantees for their procedure. The active-set subproblem considered

in [106] is different from what we consider. Furthermore, our work differs in us-

ing randomized augmentation rules, inexact optimization of the subproblems, and

their associated computational guarantees. Using problem structure, we can address

instances larger than those studied in [106].

2.4 Primal Feasibility and Duality Gap

Given a feasible solution for the full dual (𝐷), we show how it can be used to obtain

a feasible solution for the primal problem (𝑃 ) while also achieving a good primal

objective value (note that (2.4) need not deliver a primal feasible solution). A primal

feasible solution is useful as it leads to a convex function estimate and also a duality

gap certiőcate.

Given a primal candidate (𝜑, 𝜉), we will construct (�̃�, 𝜉) that is feasible for (𝑃 ).

To this end, let 𝑣(𝑖,𝑗) = 𝜑𝑗 − 𝜑𝑖− ⟨𝑥𝑗 −𝑥𝑖, 𝜉𝑖⟩, for all 𝑖 ̸= 𝑗 and we use the convention

𝑣(𝑗,𝑗) = 0. Furthermore, let

𝜈𝑗 = min
𝑖

𝑣(𝑖,𝑗) and 𝜅𝑗 ∈ argmin{‖𝜉𝑘‖ : 𝑘 ∈ argmin
𝑖
𝑣(𝑖,𝑗)} (2.8)

and deőne (�̃�, 𝜉) := 𝜓(𝜑, 𝜉) as follows

𝜉𝑗 = 𝜉𝜅𝑗 and �̃� = 𝜑− 𝜈 + 𝑐1 (2.9)

where, 𝑐 is such that 1
⊤�̃� = 1

⊤𝑦. The following proposition shows that (�̃�, 𝜉) is

feasible for the full primal problem.

Proposition 2.2. For any pair (𝜑, 𝜉), the pair (�̃�, 𝜉) deőned in (2.9), is feasible

for (𝑃 ). Furthermore, if (𝜑⋆, 𝜉⋆) is an optimal solution for (𝑃 ) then it is a őxed
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point for the map 𝜓(·, ·), i.e., 𝜓(𝜑⋆, 𝜉⋆) = (𝜑⋆, 𝜉⋆).

Proof of Proposition 2.2. Given {𝜑𝑖}, {𝜉𝑖} and a scalar 𝑐, we deőne the following

piecewise linear convex function (in 𝑥):

𝜙(𝑥) = max
𝑖∈[𝑛]

{⟨𝑥, 𝜉𝑖⟩+ (𝜑𝑖 − ⟨𝑥𝑖, 𝜉𝑖⟩)}+ 𝑐.

For any 𝑗, we have

max
𝑖∈[𝑛]
{⟨𝑥𝑗, 𝜉𝑖⟩+ (𝜑𝑖− ⟨𝑥𝑖, 𝜉𝑖⟩)} = max

𝑖∈[𝑛]
{𝜑𝑗 − (𝜑𝑗 − 𝜑𝑖− ⟨𝑥𝑗 −𝑥𝑖, 𝜉𝑖⟩)} = 𝜑𝑗 −min

𝑖∈[𝑛]
𝑣(𝑖,𝑗).

By deőnition of �̃�, 𝜉 given by (2.9), it follows that

𝜙(𝑥𝑗) = �̃�𝑗 and 𝜉𝑗 = 𝜉𝜅𝑗 ∈ 𝜕𝜙(𝑥𝑗).

Therefore, (�̃�, 𝜉) is feasible for the full primal problem.

Due to the feasibility of (𝜑⋆, 𝜉⋆), we have 𝑣⋆ = 𝐴𝜑⋆ + 𝐵𝜉⋆ ≥ 0, and thus

min𝑖 𝑣(𝑖,𝑗) = 0 = 𝑣(𝑗,𝑗). This means 𝜈 = 0, so it suffices to show that 𝑐 = 0. Note that

the őrst term in the primal objective 1
2
‖𝜑−𝑦‖2 is minimized when 𝜑 and 𝑦 have the

same mean (otherwise we can add a constant to 𝜑 to decrease the objective). There-

fore, the 𝑐 that satisőes 1
⊤(𝜑⋆ + 𝑐1) = 1

⊤𝑦 must be 0. Thus, we have shown that

�̃�
⋆
= 𝜑⋆. If 𝜉

⋆ ̸= 𝜉⋆, then there exists 𝑗 such that 𝜅𝑗 ̸= 𝑗, which means ‖𝜉⋆𝜅𝑗‖ ≤ ‖𝜉⋆𝑗‖,
and we have 𝑓(�̃�

⋆
, 𝜉

⋆
) ≤ 𝑓(𝜑⋆, 𝜉⋆). This contradicts the strict minimality of (𝜑⋆, 𝜉⋆)

as the primal objective function 𝑓 is strictly convex.

As discussed in Section 2.3.2, each (𝜑𝑖, 𝜉𝑖) deőnes a hyperplane 𝐻𝑖 : 𝑦 = ⟨𝑥 −
𝑥𝑖, 𝜉𝑖⟩ + 𝜑𝑖 containing 𝑃𝑖 = (𝑥𝑖, 𝜑𝑖). However, (𝜑, 𝜉) may not satisfy the convexity

constraint (i.e., 𝑃𝑗 may not lie above 𝐻𝑖); and |𝜈𝑗| quantiőes how far 𝑃𝑗 lies below the

piecewise maximum of 𝐻𝑖s. Intuitively, (�̃�, 𝜉) attains feasibility by taking a piecewise

maximum of these hyperplanes and then adjusts itself by a constant in an attempt

to decrease the primal objective.

Duality Gap: In light of strong duality between (𝑃 ) and (𝐷), we have 𝐿(𝜆⋆) =
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−𝑓(𝜑⋆, 𝜉⋆). From a dual feasible solution 𝜆, we can obtain a primal variable (𝜑, 𝜉)

via (2.4). If 𝜓(𝜑, 𝜉) is a primal feasible solution obtained from (𝜑, 𝜉) by the operation

deőned in (2.9), then we can compute a duality gap via:

𝐿(𝜆) = −𝑓(𝜓(𝜑, 𝜉)) ≤ 𝐿⋆ ≤ 𝐿(𝜆).

The gap 𝐿(𝜆)− 𝐿(𝜆) equals zero if and only if 𝜆 is an optimal solution for (𝐷).

2.5 Numerical Experiments

We present numerical experiments to study the different variants of our algorithm;

and compare it with current approaches. As our focus is on large-scale instances

of (𝑃0), we study both real and synthetic datasets in the range 𝑛 ∼ 104 − 105 and

4 ≤ 𝑑 ≤ 20.

Datasets: We consider the following synthetic and real datasets for the experiments.

Synthetic Data: Following [158], we generate data via the model 𝑦𝑖 = 𝜑0(𝑥𝑖) + 𝜖𝑖, 𝑖 ∈
[𝑛] where, 𝜑0(𝑥) is a convex function, 𝜖𝑖

iid∼ 𝑁(0, 𝛾2) and 𝛾 is chosen to match a

speciőed value of signal-to-noise ratio, SNR = ‖𝜑0‖2/‖𝜖‖2 = 3. The covariates

are drawn independently from a uniform distribution on [−1, 1]𝑑. Every feature is

normalized to have zero mean and unit ℓ2-norm; and 𝑦 has zero mean and unit

ℓ2-norm. We consider the following choices of the underlying true convex function

𝜑0(𝑥).

• SD1: 𝜑0(𝑥) = ‖𝑥‖22
• SD2: 𝜑0(𝑥) = max1≤𝑖≤2𝑑{𝜉⊤𝑖 𝑥}, where 𝜉𝑖 ∈ R

𝑑 are independently drawn from

the uniform distribution [−1, 1]𝑑.

Real Data: We also consider the following real datasets in our experiments:

• RD1, RD2: These two datasets, studied in [130] have 𝑛 = 10, 000 and 𝑑 = 4.

• RD3, RD4: These two datasets, studied in [229] have 𝑛 = 10, 000 and 𝑑 = 4.

• RD5: This dataset, studied in [148], has 𝑛 = 10, 000 and 𝑑 = 4.

• RD6: This dataset, studied in [131, 208], has 𝑛 = 5, 000 and 𝑑 = 4.
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• RD7: This dataset, from earlier work [164, 158, 31] has 𝑛 = 30, 000 and 𝑑 = 4.

• RD8: This dataset, from [186, 112, 14], has 𝑛 = 10, 000 and 𝑑 = 4.

For additional details on the real datasets see Section 2.C.1. In all above datasets,

covariates and response are centered and scaled so that each variable has unit ℓ2-norm.

Algorithms: We compare our approach versus the cutting plane (CP) method [31]

and the ADMM method [158] using the authors’ implementations. All algorithms

are run with the time limit of 12 hours9. For our algorithms, we consider two-stage

methods: In the őrst stage, we use random rules 2/4 for augmentation and perform

inexact optimization over the active set Ð empirically, this results in good initial

progress in the objective value but then the progress slows down as the augmentation

rules include very few violated constraints. When the number of added constraints

is less than 0.005𝑛 for consecutive 5 iterations10 we switch to the second stage where

we use occasional greedy rules 1/5 for augmentation and exact optimization of sub-

problems. Note that our theory (Section 2.3) guarantees convergence of this two-

stage procedure. Additional details on algorithm parameter choices can be found in

Section 2.C.2. In this section, we will use Rule 𝑎-𝑏 (𝑎 ∈ {2, 4}, 𝑏 ∈ {1, 5}) to denote

different variants of our algorithm with random rule 𝑎 (Stage 1) and greedy rule 𝑏

(Stage 2).

Software Speciőcations: All computations were carried out on MIT’s Engaging

Cluster on an Intel Xeon 2.30GHz machine, with one CPU and 8GB of RAM. For

ADMM and CP, we used a larger amount of memory 64GB RAM. Our algorithms

are written in Julia (v1.5), and our code is available on github at:

https://github.com/wenyuC94/ConvexRegression

Performance of proposed algorithms: Figure 2-1 presents the relative objective

of the dual, deőned as

Rel. Obj. = (𝐿(𝜆𝑡)− 𝐿⋆)/(|𝐿⋆|+ 1)

9For the cutting plane method which uses Gurobi, it can take a long time to solve the reduced
sub-problem thereby exceeding the allocated 12 hr time-limit before obtaining an accurate solution.

10This is a choice we used in our experiments, and can be tuned in general for performance beneőts.
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as well as the primal infeasibility (pinfeas)Ðalso used in [158, 31]Ðdeőned as11

pinfeas =
1

𝑛
‖(∇𝐿(𝜆𝑡))+‖

for different algorithms versus time (in seconds). Above, 𝐿⋆ is taken as the minimum

objective among solutions obtained by all the algorithms running for 12 hours. Fig-

ure 2-1 considers synthetic datasets SD1 and SD2 with different 𝑛’s and 𝑑’s, and the

real dataset RD1. We note that the choices of 𝜌 displayed in Figure 2-1 correspond

to good statistical performanceÐthis is discussed in further detail below and in Fig-

ure 2-2. Figure 2-1 suggests that our algorithms perform better than CP and ADMM

ś both in terms of Rel. Obj. and primal infeasibility. Note that ADMM [158] does not

use active-set methods and consumes prohibitively large memory when 𝑛 ≥ 30,000.

Table 2.3 presents a snapshot of the runtimes of our proposed algorithms, CP

and ADMM. Here, the runtime corresponds to the time (s) taken by an algorithm

to achieve a 0.05 relative objective. Our proposed two-stage algorithms can achieve

this accuracy quite quickly, while CP and ADMM are often unable to converge to

that accuracy. We observe that for our algorithms, runtime generally increases with

smaller 𝜌-values. Table 2.4 presents results for larger datasets with 𝑛 = 100,000Ðwe

show two of our methods and do not include greedy augmentation Rule 1 due to large

computational costs. As expected, for such large problems randomized augmentation

rules play a key role.

Subgradient regularization can improve statistical performance: As men-

tioned earlier, the presence of ℓ2-regularization on the subgradients (i.e., a value of

𝜌 > 0) in (𝑃0), can lead to improved statistical performance of the convex function

estimate when compared to the unregularized case (i.e., when 𝜌 = 0). Intuitively, this

is due in part to the behavior of the convex regression őt near the boundary of the

convex hull of the covariates [13, 158]. The ℓ2-regularization on subgradients can help

regulate boundary behavior and improve performance of the estimator: see [158] for

11For CP [31] and ADMM [158], Rel. Obj. is deőned as |𝑓(𝜑𝑡, 𝜉𝑡)−𝑓⋆|/(1+|𝑓⋆|), where 𝑓⋆ = −𝐿⋆;
pinfeas is deőned as ‖(𝐴𝜑𝑡 +𝐵𝜉𝑡)

−
‖/𝑛. Here 𝑎+ and 𝑎

−
denotes the vector of [max{𝑎𝑗 , 0}]𝑗 and

[min{𝑎𝑗 , 0}]𝑗 , respectively.
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Table 2.3: Comparison of runtime (s) of our algorithms versus CP [31] and
ADMM [158]. Here runtime refers to the time taken to achieve a Rel. Obj. of
5 × 10−2. We report the median runtime and standard error (in bracket) across 5
replications (random instances). Note: ‘-’ means that no replication of the algorithm
achieves this level of relative accuracy within 4hrs, ‘-*’ means that some replications
encountered convergence issues and others did not reach the tolerance within 4hrs,
‘**’ means all replications crash due to either numerical/memory problems. The entry
4320.90* (column=CP and row=RD4) means that some of replications crashed due
to numerical/memory issues, and we report the median runtime for the replications
that did not crash.

data 𝑛
104

𝑑 log10 𝜌 Rule2-1 Rule2-5 Rule4-1 Rule4-5 CP [31] ADMM [158]

SD1 3 4 -3 3.81 (0.95) 3.67 (0.66) 2.33 (0.25) 2.41 (0.24) - **
SD1 3 4 -4 52.66 (1.93) 52.35 (35.44) 44.14 (9.56) 43.71 (45.87) - **
SD1 3 10 -3 31.56 (10.62) 21.06 (12.57) 10.64 (8.69) 11.50 (2.25) - **
SD1 3 10 -4 1290.51 (114.15) 1289.37 (355.51) 364.57 (202.95) 362.25 (192.42) -* **
SD1 3 20 -3 101.14 (72.88) 180.22 (64.26) 95.69 (25.63) 93.91 (28.92) - **
SD1 3 20 -4 2767.88 (373.64) 2774.59 (416.69) 939.66 (222.82) 898.22 (297.24) - **

SD2 3 4 -3 4.29 (3.22) 3.51 (0.32) 2.33 (0.14) 2.52 (1.32) - **
SD2 3 4 -4 39.22 (1.83) 44.87 (21.84) 37.05 (21.41) 37.14 (21.96) - **
SD2 3 10 -3 18.76 (12.56) 19.00 (3.86) 10.60 (0.77) 14.00 (8.59) - **
SD2 3 10 -4 975.48 (344.82) 978.28 (330.26) 404.70 (223.14) 403.52 (217.71) -* **
SD2 3 20 -3 124.51 (9.55) 124.22 (9.39) 66.80 (49.30) 66.01 (49.05) - **
SD2 3 20 -4 4292.47 (365.84) 4693.06 (434.83) 1400.07 (249.20) 1187.88 (119.68) - **

RD1 1 4 -4 28.74 (2.72) 28.68 (2.81) 22.16 (3.96) 21.72 (4.12) 6827.02 (963.13) -
RD1 1 4 -5 168.99 (13.11) 161.28 (17.96) 276.40 (20.29) 273.31 (20.43) 3704.07 (876.34) 9729.61 (609.72)

RD2 1 4 -4 47.16 (4.77) 61.88 (3.99) 24.19 (1.81) 23.02 (2.65) -
RD2 1 4 -5 264.68 (21.88) 255.80 (21.92) 115.46 (43.57) 117.49 (41.41) ** 248.71 (9.77)

RD3 1 4 -4 18.16 (2.07) 18.01 (2.06) 11.09 (2.04) 11.31 (2.09) - -
RD3 1 4 -5 83.41 (4.48) 70.47 (6.94) 75.07 (6.94) 74.31 (6.97) 7805.34 (1325.51) 244.73 (4.75)

RD4 1 4 -4 17.59 (0.76) 18.04 (0.85) 17.72 (1.08) 15.92 (1.19) - -
RD4 1 4 -5 128.86 (4.95) 128.51 (5.00) 107.64 (6.75) 122.39 (5.62) 4320.90* 261.39 (8.66)

RD5 1 4 -4 11.98 (0.82) 11.76 (0.84) 7.72 (0.53) 7.70 (0.55) - -
RD5 1 4 -5 104.33 (7.92) 114.19 (9.29) 83.22 (5.31) 81.75 (2.51) - 248.79 (7.82)

RD6 1
2

4 -4 3.59 (0.22) 3.15 (0.27) 2.61 (0.25) 2.34 (0.26) 233.47 (6.98) 1707.11 (115.08)

RD6 1
2

4 -5 9.35 (0.68) 10.81 (0.53) 7.41 (1.05) 6.92 (1.10) 64.06 (13.64) 71.84 (5.13)

RD7 3 4 -4 20.84 (3.08) 20.84 (3.13) 17.15 (3.35) 25.51 (3.65) - **
RD7 3 4 -5 40.81 (7.80) 41.31 (7.73) 39.99 (16.76) 85.39 (17.16) - **
RD8 1 4 -4 4.87 (0.12) 5.25 (0.46) 4.98 (0.85) 5.00 (0.86) - -
RD8 1 4 -5 37.56 (4.07) 33.31 (4.28) 54.85 (8.00) 55.22 (9.21) - 235.58 (5.29)

theoretical support. Here, we present some numerical evidence to support this obser-

vation. Figure 2-2 presents the training and test root mean squared error (RMSE)12

on some real datasets. To quantify the performance of the convex function esti-

mate near the boundary of the convex hull, we compute the RMSE on the boundary

points13. Figure 2-2 shows what values of 𝜌 > 0 result in good statistical performance

12The RMSE is computed by the following procedure: (i) obtain the primal feasible solution (�̃�, 𝜉)
according to Section 2.4, (ii) obtain the prediction 𝑦 for each data point 𝑥 via a piecewise-maximum
interpolation scheme 𝑦 = max𝑖{�̃�𝑖 + ⟨�̃�𝑖,𝑥 − 𝑥𝑖⟩}; (iii) evaluate RMSE based on the predictions 𝑦
and the observed values 𝑦.

13We compute the convex hull of the training set and identify points in the test set near the
boundary of this convex hull, according to the distance of each point to the convex hull.
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Table 2.4: Runtime (s) of our algorithms, and the cutting plane (CP) method [31] for
𝑛 = 100,000. ADMM runs out of memory (64GB) on these instances. See Table 2.3
for more details on the notations.

data 𝑛 𝑑 log10 𝜌 Rule2-5 Rule4-5 CP [31]

SD1 100000 4 -3 19.15 (5.05) 16.50 (1.12) -
SD1 100000 4 -4 94.52 (21.63) 102.66 (23.53) -
SD1 100000 10 -3 27.30 (7.66) 22.48 (6.07) -
SD1 100000 10 -4 598.83 (54.45) 627.96 (59.55) -
SD1 100000 20 -3 71.08 (12.05) 38.84 (6.29) -
SD1 100000 20 -4 2428.77 (232.50) 1041.10 (113.51) -*

SD2 100000 4 -3 29.89 (2.62) 28.46 (5.69) -
SD2 100000 4 -4 121.77 (23.12) 111.20 (19.85) -
SD2 100000 10 -3 27.08 (2.60) 28.15 (3.17) -
SD2 100000 10 -4 509.58 (27.91) 422.83 (73.77) -
SD2 100000 20 -3 75.59 (13.97) 49.22 (6.37) -
SD2 100000 20 -4 2810.69 (262.19) 1397.47 (134.45) -

(in terms of RMSE). In particular, values of 𝜌 = 10−4− 10−5 generally result in good

RMSE performance for the real data sets. We also observe that 𝜌 = 10−3 − 10−4

result in good statistical performance for the synthetic data sets. In practice, we

recommend selecting a value of 𝜌 that minimizes RMSE on a validation dataset (or

based on cross-validation).

2.6 Conclusion

We present large-scale algorithms for subgradient regularized multivariate convex

regression, a problem of key importance in nonparametric regression with shape con-

straints. We present an active set type method on the smooth dual problem (𝐷):

we allow for inexact optimization of the reduced sub-problems and use randomized

rules for augmenting the current active set. We establish novel computational guar-

antees for our proposed algorithms. For large-scale instances, our approach appears

to be more suited to obtain low-moderate accuracy solutions. Exploiting problem-

structure, our open source toolkit can deliver approximate solutions for instances with

𝑛 ≈ 105 and 𝑑 = 10 (a QP with 10 billion decision variables) within a few minutes

on a modest computer. Our approach appears to work well as long as the tuning

parameter 𝜌 is not too small, while still corresponding to good statistical models. For
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2.A.1 Proof of Lemma 2.1

For any 𝑢 ∈ R
𝑁 and 𝑃 ≤ 𝑁 , we deőne two norms:

‖𝑢‖𝒢[𝑃 ] =

⎛

⎝
∑︁

𝑖∈𝒢[[𝑁 ],𝑃,𝑢]

𝑢2𝑖

⎞

⎠

1/2

and ‖𝑢‖𝒰 [𝑃 ] = E

⎛

⎝
∑︁

𝑖∈𝒰 [[𝑁 ],𝑃 ]

𝑢2𝑖

⎞

⎠

1/2

(2.10)

where, 𝒢[[𝑁 ], 𝑃,𝑢], 𝒰 [𝑃 ] are deőned in Deőnition 2.2 and E(·) is the expectation wrt

scheme 𝒰 . Proposition 2.3 links these norms to the Euclidean norm:

Proposition 2.3. For 𝑢 ∈ R
𝑁 and the norms deőned in (2.10), the following state-

ment holds:

‖𝑢‖2 ≥ ‖𝑢‖2𝒢[𝑃 ] ≥
𝑃

𝑁
‖𝑢‖2 = ‖𝑢‖2𝒰 [𝑃 ].

Proof of Proposition 2.3. For 𝑢 ∈ R
𝑁 , we see that ‖𝑢‖2𝒰 [𝑃 ] = (𝑃/𝑁)‖𝑢‖2. Notice

that

‖𝑢‖2𝒢[𝑃 ] = max
𝜋

∑︁

𝜔∈[𝑁 ]

𝜋𝜔|𝑢𝜔|2 s.t.
∑︁

𝜔∈[𝑁 ]

𝜋𝜔 ≤ 𝑃, 0 ≤ 𝜋𝜔 ≤ 1, ∀𝜔.

Since 𝜋𝜔 = 𝑃/𝑁 ∀𝜔, is feasible for the above problem, it follows that

‖𝑢‖2𝒢[𝑃 ] ≥
𝑃

𝑁
‖𝑢‖2 = ‖𝑢‖2𝒰 [𝑃 ].

Equality above is attained if and only if 𝑢𝜔 = 𝐶 ∀𝜔 for some 𝐶. Furthermore, we

note that

‖𝑢‖2𝒢[𝑃 ] =
∑︁

𝜔∈𝒢[[𝑁 ],𝑃 ]

|𝑢𝜔|2 ≤
∑︁

𝜔∈[𝑁 ]

|𝑢𝜔|2 = ‖𝑢‖2,

and this equality is attained if and only if 𝑢𝜔 = 0 for all 𝜔 ̸∈ 𝒢[[𝑁 ], 𝑃 ], i.e. the 𝑁 −𝑃
smallest values of |𝑢𝜔| are 0.

Proof of Lemma 2.1. We divide the proof into 5 parts depending upon the 5 rules.

Rule 1: Greedy within each Block. (𝛿1(𝜃, {Ω𝑖}) = ∪𝑛𝑖=1𝒢[Ω𝑖, 𝑃,𝜃], 𝛼{1} = 𝑛−1
𝑃

,
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and 𝛽{1} = 1.) For this selection rule, we have

‖𝜃‖2{1} =
𝑛∑︁

𝑖=1

‖𝜃Ω𝑖
‖2𝒢[𝑃 ].

It is easy to see that ‖𝜃‖{1} is a norm. It follows from Proposition 2.3 that

‖𝜃‖2 =
𝑛∑︁

𝑖=1

‖𝜃Ω𝑖
‖2 ≥

𝑛∑︁

𝑖=1

‖𝜃Ω𝑖
‖2𝒢[𝑃 ] ≥

𝑛∑︁

𝑖=1

𝑃

𝑛− 1
‖𝜃Ω𝑖
‖2 = 𝑃

𝑛− 1
‖𝜃‖2.

Therefore, we have 𝛼{1} =
𝑛−1
𝑃

, and 𝛽{1} = 1.

Rule 2: Random. (𝛿2(𝜃, {Ω𝑖}) = 𝒰 [Ω, 𝐾], 𝛼{2} =
𝑛(𝑛−1)
𝐾

and 𝛽{2} =
𝑛(𝑛−1)
𝐾

).

For this selection rule, we have

‖𝜃‖2{2} = ‖𝜃‖2𝒰 [𝐾] =
𝐾

𝑛(𝑛− 1)
‖𝜃‖2.

Thus, in this case the norm-equivalence constants are 𝛼{2} = 𝛽{2} =
𝑛(𝑛−1)
𝐾

.

Rule 3: Random within each Block. (𝛿3(𝜃, {Ω𝑖}) = ∪𝑛𝑖=1𝒰 [Ω𝑖, 𝑃 ], 𝛼{3} = 𝑛−1
𝑃

,

and 𝛽{3} =
𝑛−1
𝑃

.) For this selection rule, we have

‖𝜃‖2{3} =
𝑛∑︁

𝑖=1

‖𝜃Ω𝑖
‖2𝒰 [𝑃 ] =

𝑛∑︁

𝑖=1

𝑃

𝑛− 1
‖𝜃Ω𝑖
‖2 = 𝑃

𝑛− 1
‖𝜃‖2.

Hence, it follows that 𝛼{3} = 𝛽{3} =
𝑛−1
𝑃
.

Rule 4: Random then Greedy. (𝛿4(𝜃, {Ω𝑖}) = 𝒢[𝒰 [Ω,𝑀 ], 𝐾,𝜃], 𝛼{4} = 𝑛(𝑛−1)
𝐾

,

and 𝛽{4} =
𝑛(𝑛−1)
𝑀

.) We adapt the proof of [154] to show that under this selection rule

‖𝜃‖2{4} =
𝑛(𝑛−1)
∑︁

𝑙=1

𝜋(𝑙)|𝜃(𝑙)|2,

where |𝜃(𝑙)| is the 𝑙-th largest value in {|𝜃𝜔|}𝜔∈Ω and 𝜋(𝑙) is given by

𝜋(𝑙) =
𝑀

𝑛(𝑛− 1)

𝐾∑︁

𝑘=1

(︀
𝑙−1
𝑘−1

)︀(︀
𝑛(𝑛−1)−𝑙
𝑀−𝑘

)︀

(︀
𝑛(𝑛−1)−1
𝑀−1

)︀ .
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Here, by convention, we deőne
(︀
𝑁
𝛼

)︀
= 0 if 𝛼 < 0 or 𝛼 > 𝑁 .

Let 𝜋(𝑙) be the probability that |𝜃(𝑙)| is selected. Since the subsample is selected

uniformly at random, it suffices to count the number of combinations that include

|𝜃(𝑙)| and those in which |𝜃(𝑙)| ranks among the top 𝐾 values. This is equivalent to

choosing 𝑘 − 1(≤ 𝐾 − 1) elements from {|𝜃(𝑠)|}𝑠≤𝑙−1, selecting the element |𝜃(𝑙)| and

then choosing the remaining (𝑀 − 𝑘) elements from the rest. Therefore, the number

of such combinations is

𝑁(𝑙) =
𝐾∑︁

𝑘=1

(︂
𝑙 − 1

𝑘 − 1

)︂(︂
𝑛(𝑛− 1)− 𝑙
𝑀 − 𝑘

)︂

.

Thus,

𝜋(𝑙) =
𝑁(𝑙)

(︀
𝑛(𝑛−1)
𝑀

)︀ =
𝑀

𝑛(𝑛− 1)

𝐾∑︁

𝑘=1

(︀
𝑙−1
𝑘−1

)︀(︀
𝑛(𝑛−1)−𝑙
𝑀−𝑘

)︀

(︀
𝑛(𝑛−1)−1
𝑀−1

)︀ .

Notice that when 𝑙 ≤ 𝐾 (i.e., 𝑙 − 1 ≤ 𝐾 − 1), then

𝑁(𝑙) =
𝑙∑︁

𝑘=1

(︂
𝑙 − 1

𝑘 − 1

)︂(︂
𝑛(𝑛− 1)− 𝑙
𝑀 − 𝑘

)︂

=

(︂
𝑛(𝑛− 1)− 1

𝑀 − 1

)︂

,

and thus 𝜋(𝑙) = 𝑀
𝑛(𝑛−1)

.

When 𝑙 ≥ 𝑛(𝑛− 1)− (𝑀 −𝐾) + 1 and 𝑀 − 𝑘 ≥𝑀 − 1−𝐾 > 𝑛(𝑛− 1)− 𝑙, then

𝑁(𝑙) = 0 and thus 𝜋(𝑙) = 0.

As each element appears in the same number of combinations of size 𝑀 (in the

random selection step), and the greedy selection step favors the larger one, we have

the following ordering: 𝜋(1) ≥ . . . ≥ 𝜋(𝑛(𝑛− 1)). Therefore, ‖𝜃‖{4} is a norm.

Since 𝜋(𝑙) = E[I{(𝑙)∈𝒢[𝒰 [Ω,𝑀 ],𝐾]}], it follows that

𝑛(𝑛−1)
∑︁

𝑙=1

𝜋(𝑙) = E

⎡

⎣

𝑛(𝑛−1)
∑︁

𝑙=1

I{(𝑙)∈𝒢[𝒰 [Ω,𝑀 ],𝐾]}

⎤

⎦ = 𝐾.
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Then, we have

‖𝜃‖2{4} =
𝑛(𝑛−1)
∑︁

𝑙=1

𝜋(𝑙)|𝜃(𝑙)|2 ≥
𝑛(𝑛−1)
∑︁

𝑙=1

𝐾

𝑛(𝑛− 1)
|𝜃(𝑙)|2 =

𝐾

𝑛(𝑛− 1)
‖𝜃‖2. (2.11)

On the other hand, since 𝜋(𝑙) ≤ 𝜋(1) = 𝑀
𝑛(𝑛−1)

, it follows that

‖𝜃‖2{4} =
𝑛(𝑛−1)
∑︁

𝑙=1

𝜋(𝑙)|𝜃(𝑙)|2 ≤
𝑛(𝑛−1)
∑︁

𝑙=1

𝑀

𝑛(𝑛− 1)
|𝜃(𝑙)|2 =

𝑀

𝑛(𝑛− 1)
‖𝜃‖2. (2.12)

Hence from (2.11) and (2.12), we obtain 𝛼{4} =
𝑛(𝑛−1)
𝐾

and 𝛽{4} =
𝑛(𝑛−1)
𝑀

.

Rule 5: Random Blocks then Greedy within each Block.

(𝛿5(𝜃, {Ω𝑖}) = ∪𝑖∈𝒰 [[𝑛],𝐺]𝒢[Ω𝑖, 𝑃,𝜃], 𝛼{5} =
𝑛(𝑛−1)
𝐺𝑃

, and 𝛽{5} =
𝑛
𝐺

.)

By the selection rule, we have

‖𝜃‖2{5} =
𝐺

𝑛

𝑛∑︁

𝑖=1

‖𝜃Ω𝑖
‖2𝒢[𝑃 ] =

𝐺

𝑛
‖𝜃‖2{1}

with 𝛼{5} =
𝑛
𝐺
𝛼{1} =

𝑛(𝑛−1)
𝐺𝑃

and 𝛽{5} =
𝑛
𝐺
𝛽{1} =

𝑛
𝐺
.

2.A.2 Auxiliary lemmas for the proof of Theorem 2.1

Here we present Lemmas 2.3 and 2.4 that will be used for the proof of Theorem 2.1.

Lemma 2.2 (Hoffman’s Lemma [122]). Let Λ = {𝜆 : 𝐷𝜆 = 𝑠,𝜆 ≤ 0}. There is a

constant 𝜇𝐷 > 0 that depends only on 𝐷 such that for any 𝜆 ≤ 0, there exists an

𝜆0 ∈ Λ with

‖𝐷𝜆− 𝑠‖2 ≥ 𝜇𝐷‖𝜆− 𝜆0‖2.

The constant 𝜇𝐷 is called the Hoffman’s constant associated with 𝐷.

Let 𝐷⋆ =

⎡

⎣
𝐴⊤

𝐵⊤/
√
𝜌

⎤

⎦ be the coefficient matrix corresponding to set of optimal

solutions Λ
⋆ with 𝑊 = Ω in (2.3). We get the following sufficient descent lemma
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according to [129]:

Lemma 2.3 ([129] Case 3, Page 18). For any 𝜆 ≤ 0 and optimal dual solution 𝜆⋆ of

(𝐷), we have

𝐿(𝜆⋆) ≥ 𝐿(𝜆)− 1

2𝜇𝐷⋆

𝒟(𝜆,∇𝐿(𝜆), 𝜇𝐷⋆), (2.13)

where 𝜇𝐷⋆ > 0 is the Hoffman’s constant associated with 𝐷⋆.

Deőnition 2.5. Deőne a function 𝒟(·, ·, ·) : R𝑁
− × R

𝑁 × R++ → R+ as

𝒟(𝜆,𝜃, 𝜇) = −2𝜇min
𝜆′≤0

{︁

⟨𝜃,𝜆′ − 𝜆⟩+ 𝜇

2
‖𝜆′ − 𝜆‖2

}︁

.

Lemma 2.4 makes use of the following useful proposition.

Proposition 2.4. Deőne 𝑑(·, ·, ·) : R− × R+ × R++ → R as

𝑑(𝜆, 𝜃, 𝜇) = −2𝜇min
𝜆′≤0

{︁

𝜃(𝜆′ − 𝜆) + 𝜇

2
(𝜆′ − 𝜆)2

}︁

.

We have the following:

(a) if 𝜆 = 0, then for any 𝜇 > 0, 𝑑(𝜆, 𝜃, 𝜇) = max{𝜃, 0}2;

(b) if 𝜆𝜃 = 0 with 𝜆 ≤ 0 and 𝜃 ≤ 0, then for any 𝜇 > 0, 𝑑(𝜆, 𝜃, 𝜇) = 0;

(c) if 𝜆 ≤ 0, then for any 𝜇 > 0, 𝑑(𝜆, 𝜃, 𝜇) ≥ 0.

Proof. Part (a): If 𝜆 = 0, then

𝑑(𝜆, 𝜃, 𝜇) = −2𝜇min
𝜆′≤0

{︁

𝜃𝜆′ +
𝜇

2
(𝜆′)2

}︁

=

⎧

⎨

⎩

0 if 𝜃 ≤ 0

𝜃2 if 𝜃 > 0
,

i.e. 𝑑(𝜆, 𝜃, 𝜇) = max{𝜃, 0}2.
Part (b): If 𝜆𝜃 = 0 with 𝜆 = 0 and 𝜃 ≤ 0, then 𝑑(𝜆, 𝜃, 𝜇) = 0 follows from Part (a).

If 𝜆𝜃 = 0 with 𝜆 < 0, then 𝜃 = 0, so 𝑑(𝜆, 𝜃, 𝜇) = −2𝜇min𝜆′≤0{𝜇2 (𝜆′ − 𝜆)2} = 0.

Part (c): If 𝜆 ≤ 0, then 𝜆′ = 𝜆 ≤ 0 is always feasible, so 𝑑(𝜆, 𝜃, 𝜇) ≥ 0.
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Lemma 2.4. Suppose there exists 𝛼 ≥ 1 such that for any 𝑚 and 𝑊 0 the following

𝛼E𝜂𝑚+1

⎡

⎣
∑︁

𝜔∈𝑊𝑚+1∖𝑊𝑚

max{∇𝜆𝜔𝐿(𝜆
𝑚), 0}2

⎤

⎦ ≥
∑︁

𝜔∈Ω∖𝑊𝑚

max{∇𝜆𝜔𝐿(𝜆
𝑚), 0}2 (2.14)

holds almost surely, where E𝜂𝑚+1 denotes expectation over all the random sources in

(𝑚 + 1)-th iteration (conditional on events up to iteration 𝑚). Then, the following

holds:

E𝜂𝑚+1 [𝐿(𝜆
𝑚+1)− 𝐿⋆] ≤

(︁

1− 𝜇𝐷⋆

𝛼𝜎

)︁

[𝐿(𝜆𝑚)− 𝐿⋆].

Proof of Lemma 2.4. We make use of the following notation in the proof:

𝜆𝑚𝜔 is the 𝜔-th component of 𝜆𝑚, ∇𝑚
𝜔 = ∇𝜆𝜔𝐿(𝜆

𝑚) and ∇̃𝑚

𝜔 = max{∇𝑚
𝜔 , 0}.

The proof has three steps, and we consider both exact and inexact cases in each step.

Step 1: In the őrst part, we will show that

𝐿(𝜆𝑚)− 𝐿(𝜆⋆)

≤

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

2𝜇𝐷⋆

∑︁

𝜔∈Ω∖𝑊𝑚

(∇̃𝑚

𝜔 )
2 (exact case)

1

2𝜇𝐷⋆

⎡

⎣
∑︁

𝜔∈𝑊𝑚

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜇𝐷⋆) +

∑︁

𝜔∈Ω∖𝑊𝑚

(∇̃𝑚

𝜔 )
2

⎤

⎦ (inexact case).

(2.15)

It follows from Lemma 2.3 that

𝐿(𝜆⋆) ≥ 𝐿(𝜆𝑚)− 1

2𝜇𝐷⋆

𝒟(𝜆𝑚,∇𝐿(𝜆𝑚), 𝜇𝐷⋆). (2.16)

By the deőnitions of 𝒟(·) (Deőnition 2.5) and 𝑑(·) (Proposition 2.4), we have

𝒟(𝜆𝑚,∇𝐿(𝜆𝑚), 𝜇𝐷⋆) =
∑︁

𝜔∈Ω
𝑑(𝜆𝑚𝜔 ,∇𝑚

𝜔 , 𝜇𝐷⋆)

=
∑︁

𝜔∈𝑊𝑚

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜇𝐷⋆) +

∑︁

𝜔∈Ω∖𝑊𝑚

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜇𝐷⋆) (2.17)
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Inexact Case: By the deőnition of 𝜆𝑊
𝑚

, we know that 𝜆𝑚𝜔 = 0 for 𝜔 ̸∈ 𝑊𝑚.

Then it follows from Proposition 2.4 that

𝒟(𝜆𝑚,∇𝐿(𝜆𝑚), 𝜇𝐷⋆) =
∑︁

𝜔∈𝑊𝑚

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜇𝐷⋆) +

∑︁

𝜔∈Ω∖𝑊𝑚

(∇̃𝑚

𝜔 )
2 (2.18)

Exact Case: By the primal feasibility, dual feasibility and complementary slack-

ness of 𝜆⋆𝑊𝑚 , we have 𝜆𝑚𝜔∇𝑚
𝜔 = 0 with 𝜆𝑚𝜔 ,∇𝑚

𝜔 ≤ 0 for 𝜔 ∈ 𝑊𝑚. Combining this with

𝜆𝑚𝜔 = 0 for 𝜔 ̸∈ 𝑊𝑚, by Proposition 2.4, we have

𝒟(𝜆𝑚,∇𝐿(𝜆𝑚), 𝜇𝐷⋆) =
∑︁

𝜔∈Ω∖𝑊𝑚

(∇̃𝑚

𝜔 )
2. (2.19)

The conclusions from (2.18) and (2.19) lead to (2.15).

Step 2: In the second step, we will show that

𝐿(𝜆𝑚+1)− 𝐿(𝜆𝑚)

≤

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1

2𝜎

∑︁

𝜔∈𝑊𝑚+1∖𝑊𝑚

(∇̃𝑚

𝜔 )
2 (exact case)

− 1

2𝜎

⎡

⎣
∑︁

𝜔∈𝑊𝑚

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜎) +

∑︁

𝜔∈𝑊𝑚+1∖𝑊𝑚

(∇̃𝑚

𝜔 )
2

⎤

⎦ (inexact case)

(2.20)

Exact Case: Let Λ𝑚+1 = {𝜆 ∈ R
𝑛(𝑛−1) : 𝜆𝜔 = 0, ∀𝜔 ∈ Ω∖𝑊𝑚+1}. Recall that

𝜆𝑚+1 minimizes 𝐿(𝜆) over Λ𝑚+1. Therefore, we have the following:

𝐿(𝜆𝑚+1) = min
𝜆∈Λ𝑚+1

𝐿(𝜆)

≤ min
𝜆∈Λ𝑚+1

{︁

𝐿(𝜆𝑚) + ⟨∇𝐿(𝜆𝑚),𝜆− 𝜆𝑚⟩+ 𝜎

2
‖𝜆− 𝜆𝑚‖2

}︁

= 𝐿(𝜆𝑚)− 1

2𝜎

∑︁

𝜔∈𝑊𝑚

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜎)−

1

2𝜎

∑︁

𝜔∈𝑊𝑚+1∖𝑊𝑚

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜎)

= 𝐿(𝜆𝑚)− 1

2𝜎

∑︁

𝜔∈𝑊𝑚+1∖𝑊𝑚

(∇̃𝑚

𝜔 )
2 (2.21)
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where the őrst inequality uses 𝜎-smoothness of 𝐿; the last line follows from an argu-

ment similar to (2.19) where we use Proposition 2.4 and complementary slackness.

Inexact Case: Here we take one (or more) projected gradient step(s) to par-

tially minimize the reduced dual. Let 𝜆𝑚+ 1
2 be obtained after one projected gradient

descent step from 𝜆𝑚. Then we have

𝐿(𝜆𝑚+1) ≤ 𝐿(𝜆𝑚+ 1
2 )

≤ 𝐿(𝜆𝑚) + ⟨∇𝐿(𝜆𝑚),𝜆𝑚+ 1
2 − 𝜆𝑚⟩+ 𝜎

2
‖𝜆𝑚+ 1

2 − 𝜆𝑚‖2

= 𝐿(𝜆𝑚)− 1

2𝜎

∑︁

𝜔∈𝑊𝑚+1

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜎)

= 𝐿(𝜆𝑚)− 1

2𝜎

∑︁

𝜔∈𝑊𝑚

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜎)−

1

2𝜎

∑︁

𝜔∈𝑊𝑚+1∖𝑊𝑚

(∇̃𝑚

𝜔 )
2, (2.22)

where the őrst inequality follows from the descent property of projected gradient

descent; the second inequality uses 𝜎-smoothness of 𝐿; and the last line follows from

Proposition 2.4.

Finally, the result in (2.20) follows from (2.21) and (2.22)

Step 3: For the third step, we will show that the following holds

𝜎𝛼E𝜂𝑚+1 [𝐿(𝜆
𝑚+1)− 𝐿(𝜆𝑚)] ≤ −𝜇𝐷⋆ [𝐿(𝜆𝑚)− 𝐿(𝜆⋆)]. (2.23)

Exact Case: For this case, we have the following chain of inequalities:

−2𝜎𝛼E𝜂𝑚+1 [𝐿(𝜆
𝑚+1)− 𝐿(𝜆𝑚)] ≥ 𝛼E𝜂𝑚+1

∑︁

𝜔∈𝑊𝑚+1∖𝑊𝑚

(∇̃𝑚

𝜔 )
2

≥
∑︁

𝜔∈Ω∖𝑊𝑚

(∇̃𝑚

𝜔 )
2

≥ 2𝜇𝐷⋆ [𝐿(𝜆𝑚)− 𝐿(𝜆⋆)], (2.24)

where the őrst inequality uses (2.20); the second inequality is the assumption (2.14);

and the last line uses (2.15).
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Inexact Case: Since 𝜆𝑚𝜔 ≤ 0, we know 𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜎) ≥ 0 by Proposition 2.4.

Using the fact that 𝛼 ≥ 1, we have the following:

−2𝜎𝛼E𝜂𝑚+1 [𝐿(𝜆
𝑚+1)− 𝐿(𝜆𝑚)] ≥ 𝛼

∑︁

𝜔∈𝑊𝑚

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜎) + 𝛼E𝜂𝑚+1

∑︁

𝜔∈𝑊𝑚+1∖𝑊𝑚

(∇̃𝑚

𝜔 )
2

≥
∑︁

𝜔∈𝑊𝑚

𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜎) +

∑︁

𝜔∈Ω∖𝑊𝑚

(∇̃𝑚

𝜔 )
2

≥ 2𝜇𝐷⋆ [𝐿(𝜆𝑚)− 𝐿(𝜆⋆)], (2.25)

where the őrst inequality uses (2.20); the second inequality uses assumption (2.14),

𝛼 ≥ 1 and 𝑑(𝜆𝑚𝜔 ,∇𝑚
𝜔 , 𝜎) ≥ 0; and the last line uses (2.15).

The statement in (2.23) follows from (2.24) and (2.25).

Finally, we complete the proof by using (2.23) and observing that:

E𝜂𝑚+1 [𝐿(𝜆
𝑚+1)− 𝐿⋆] =E𝜂𝑚+1 [𝐿(𝜆

𝑚+1)− 𝐿(𝜆𝑚)] + 𝐿(𝜆𝑚)− 𝐿⋆

≤
(︁

1− 𝜇𝐷⋆

𝛼𝜎

)︁

[𝐿(𝜆𝑚)− 𝐿⋆].

2.A.3 Proof of Theorem 2.1

The proof of Theorem 2.1 uses Lemmas 2.1 and 2.4.

Proof of Theorem 2.1. Recall that 𝜆𝑚𝜔 is the 𝜔-th component of 𝜆𝑚, and we denote

by ∇𝑚
𝜔 = ∇𝜆𝜔𝐿(𝜆

𝑚), and ∇̃𝑚

𝜔 = max{∇𝑚
𝜔 , 0}. Now let {Ω𝑖} be one of the partitions

{Ω𝑖·} or {Ω·𝑖}, and 𝑊𝑚
𝑖 be the corresponding partition for 𝑊𝑚. Let ∆ = 𝑊𝑚+1∖𝑊𝑚.

Using this notation, the condition of Lemma 2.4 reduces to

𝛼E𝜂𝑚+1 [
∑︁

𝜔∈Δ
(∇̃𝑚

𝜔 )
2] ≥

∑︁

𝜔∈Ω∖𝑊𝑚

(∇̃𝑚

𝜔 )
2. (2.26)

We organize the proof into four steps: (1) we construct a random vector 𝑔 ∈
R
𝑛(𝑛−1) from ∇

𝑚 = ∇𝐿(𝜆𝑚); (2) we then show
∑︀

𝜔∈Ω∖𝑊𝑚(∇̃𝑚

𝜔 )
2 equals ‖𝑔‖2; (3) we
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relate E𝜂𝑚+1 [
∑︀

𝜔∈Δ(∇̃
𝑚

𝜔 )
2] to ‖𝑔‖2{ℓ}; and (4) őnally, we apply Lemmas 2.1 and 2.4 to

complete the proof.

Step 1: Deőne each entry 𝑔𝜔 of 𝑔 as follows:

𝑔𝜔 =

⎧

⎨

⎩

∇̃𝑚

𝜔 if 𝜔 ∈ Ω∖𝑊𝑚

0 if 𝜔 ∈ 𝑊𝑚
. (2.27)

Notice 𝑔 is a random vector depending upon random sources from iterations 1, . . . ,𝑚.

Step 2: By the deőnition of 𝑔, we have
∑︀

𝜔∈Ω∖𝑊𝑚(∇̃𝑚

𝜔 )
2 = ‖𝑔‖22.

Step 3: Recall that ∆′ denotes the set of selected pairs as per a rule, and we consider

a subset ∆ = {𝜔 ∈ ∆′ : ∇̃𝑚

𝜔 = ∇𝑚
𝜔 > 0}Ðthat is, ∇̃𝑚

𝜔 = 0 for any 𝜔 ∈ ∆′∖∆. Thus,

E𝜂𝑚+1

[︃
∑︁

𝜔∈Δ
(∇̃𝑚

𝜔 )
2

]︃

= E𝜂𝑚+1

[︃
∑︁

𝜔∈Δ′

(∇̃𝑚

𝜔 )
2

]︃

.

Note that ∆′ = 𝛿ℓ(∇̃
𝑚

Ω∖𝑊𝑚 , {Ω𝑖 ∖𝑊𝑚
𝑖 }), and let ∆′′ = 𝛿ℓ(𝑔, {Ω𝑖}). Notice that 𝑔

has more zero coordinates compared to ∇̃
𝑚

(see (2.27)). Thus, we have

E𝜂𝑚+1

[︃
∑︁

𝜔∈Δ
(∇̃𝑚

𝜔 )
2

]︃

= E𝜂𝑚+1

[︃
∑︁

𝜔∈Δ′

(∇̃𝑚

𝜔 )
2

]︃

≥ E𝜂𝑚+1

[︃
∑︁

𝜔∈Δ′′

(𝑔𝜔)
2

]︃

= ‖𝑔‖2{ℓ},

where the last equality follows from Deőnition 2.4.

Step 4: From Step 2, Step 3 and Lemma 2.1, we arrive at (2.26). Therefore, it

follows from Lemma 2.4 that

E𝜂𝑚+1 [𝐿(𝜆
𝑚)− 𝐿⋆] ≤

(︂

1− 𝜇𝐷⋆

𝛼{ℓ}𝜎

)︂

[𝐿(𝜆𝑚)− 𝐿⋆]

and (using tower property of expectation) we arrive at the conclusion of the theorem:

E[𝐿(𝜆𝑚)− 𝐿⋆] ≤
(︂

1− 𝜇𝐷⋆

𝛼{ℓ}𝜎

)︂𝑚

[𝐿(𝜆0)− 𝐿⋆].
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Remark 2.4. Both accelerated gradient methods (APG) and L-BFGS can be used

to solve the reduced problems to optimalityÐso, the proof for the exact subproblem

optimization (in Theorem 2.1) for these cases will be the same as that for PGD, The

proof for the inexact subproblem optimization for PGD uses only the sufficient decrease

condition of the őrst PGD update and the fact that PGD is a descent algorithm. Since

APG with adaptive restart (function scheme) [179] and L-BFGS [152] are descent

algorithms, the theory presented above, goes through as long as the progress made by

APG or L-BFGS is at least as large as the progress made by the őrst step of APG.

To this end, for L-BFGS, when setting the initial inverse Hessian approximation as

the identity matrix, i.e. 𝐻0 = 𝐼, the őrst step of L-BFGS is exactly PGD update, so

the theory works for L-BFGS. For APG with restarts, if we perform a PGD update

preceding the APG updates, then the theory will go through as well.

2.B Additional Technical Details

2.B.1 Examples of unavoidable factor 𝛼{ℓ}

For simplicity, we consider an unconstrained problem with objective 𝑓(𝑥) = 𝑥⊤𝐻𝑥,

where 𝐻 = diag(𝜎, 1, 1, . . . , 1) ∈ R
𝑝×𝑝 with 𝜎 > 1. Then, 𝑓 is 1-strongly convex and

𝜎-smooth, and thus the step size will be 1/𝜎.

Gradient Descent: Starting from any 𝑥𝑘 = (𝑥𝑘𝑖 : 𝑖 ∈ [𝑝]), the gradient step yields

𝑥𝑘+1 = (0, 𝛾𝑥𝑘2, . . . , 𝛾𝑥
𝑘
𝑚),

where 𝛾 = 1− 1
𝜎
. Therefore, for 𝑘 ≥ 1, 𝑥𝑘+1

1 = 𝑥𝑘1 = 0, and 𝑓(𝑥𝑘+1) = 𝛾2𝑓(𝑥𝑘). Since

the minimum objective value 𝑓 * = 0, we have

𝑓(𝑥𝑘+1)− 𝑓 * = (1− (1− 𝛾2))(𝑓(𝑥𝑘)− 𝑓 *) (2.28)

Our algorithm (inexact optimization): We now consider the inexact active set algo-

rithm (denoted by ASGD). Suppose, we start with initial active set 𝒲0 = {1} and
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𝑥0 = (1, 1, . . . , 1). We take a gradient step over𝒲0 to obtain 𝑥1 = (0, 1, . . . , 1). Start-

ing with𝒲𝑘−1 and 𝑥𝑘, we randomly select 𝑖𝑘 from [𝑝]∖𝒲𝑘−1, and augment𝒲𝑘−1 with

𝑖𝑘, i.e. 𝒲𝑘 =𝒲𝑘−1 ∪ {𝑖𝑘}. Then, we take a gradient step from 𝑥𝑘 over 𝒲𝑘 to obtain

𝑥𝑘+1, it is easy to see that

𝑥𝑘+1
𝑖 = 𝛾𝑥𝑘𝑖 , ∀𝑖 ∈ 𝒲𝑘, and 𝑥𝑘+1

𝑖 = 𝑥𝑘𝑖 , ∀𝑖 /∈ 𝒲𝑘.

Moreover, by induction, we have that 𝑥𝑘+1
1 = 0, 𝑥𝑘+1 contains (𝑝− 𝑘− 1) coordinates

of 1, and 𝑘 coordinates that are 𝛾, 𝛾2, . . . , 𝛾𝑘. Therefore,

𝑓(𝑥𝑘) = (𝑝− 𝑘 − 1) +
𝑘∑︁

𝑗=1

𝛾2𝑘 = (𝑝− 𝑘 − 1) +
𝛾2 − 𝛾2𝑘+2

1− 𝛾2 .

Since 𝑓 * = 0, we have for 𝑘 ≥ 1

𝑓(𝑥𝑘)− 𝑓(𝑥𝑘+1)

𝑓(𝑥𝑘)
=

1− 𝛾2𝑘+2

𝑝− 𝑘 − 1 + 𝛾2−𝛾2𝑘+2

1−𝛾2
≥ 1− 𝛾2

𝑝− 1
.

The above inequality is tight, and it indicates

𝑓(𝑥𝑘+1)− 𝑓 * ≤
(︂

1− 1− 𝛾2
𝑝− 1

)︂

(𝑓(𝑥𝑘)− 𝑓 *) (2.29)

Compared to the rate of gradient descent in (2.28), the above rate (2.29) has an

additional 𝑂(1
𝑝
) factor. This is similar to having the factor 𝛼{ℓ} for the augmentation

rules in Theorem 2.1.

2.C Additional Experiment Details

2.C.1 Real dataset details

RD1, RD2: These are taken from https://archive.ics.uci.edu/ml/datasets/

Gas+Turbine+CO+and+NOx+Emission+Data+Set, and were studied in [130].

The dataset has 36,733 samples. RD1 has CO as response with features: AP, AFDP,
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GTEP, CDP. RD2 has NOx as response with features: AT, AP, AH, AFDP. We apply

the log-transform on the responses. Each training set has 𝑛 = 10,000 and 𝑑 = 4, with

the remaining set aside for testing.

RD3, RD4: These two datasets are taken from https://archive.ics.uci.edu/

ml/datasets/Beijing+Multi-Site+Air-Quality+Data.

They have been studied in [229]. This dataset has approximately 420,768 samples;

we select SO2, NO2, CO, O3 as features. We apply the log-transform on all features

and both responses PM2.5 and PM10. Each training dataset has 𝑛 = 10,000 and

𝑑 = 4 (remaining samples used for testing).

RD5: This dataset is taken from https://archive.ics.uci.edu/ml/datasets/

Beijing+PM2.5+Data; and has been studied in [148]. We use PM2.5 as response with

features: DEWP, TEMP, PRES, Iws. We use a log-transform of all features and

response; and consider a training set with 𝑛 = 10,000 and 𝑑 = 4.

RD6: This dataset is taken from https://archive.ics.uci.edu/ml/datasets/

combined+cycle+power+plant; and has been studied in [131, 208]. We consider a

training set with 𝑛 = 5,000 and 𝑑 = 4.

RD7: This dataset taken from [164], is available at http://ampd.epa.gov/ampd/,

and has been recently used in [158, 31]. We apply the log-transformation on all

features and the response, and consider a training set with 𝑛 = 30,000 and 𝑑 = 4.

RD8: This is taken from [186] and is the ex1029 dataset available from R package

Sleuth2Ðsee also [112, 14]. We őrst winsorize the data by excluding the samples that

have response with score ≥ 2; and consider a training set with 𝑛 = 15,000 and 𝑑 = 4.

Following [14], we apply the transformation 𝑥 ↦→ 1.2𝑥 to the education variable.

2.C.2 Algorithm Parameters

The tolerance for violations of constraints is set as 10−4 (10−8 for the second stage).

For inexact optimization, the tolerance for the relative objective change is 10−6 and

the maximum number of PGD iterations is taken to be 5. For exact optimization,

the violation tolerance is 10−7, the maximum number of PGD iterations for the sub-

problems is 3,000 and the minimum number of PGD iterations for the sub-problems
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http://ampd.epa.gov/ampd/


is 5.

In Rule 2, we take 𝐾 = 𝑛; in Rule 4, we take 𝑀 = 4𝑛 and 𝐾 = 𝑛. In Rule 1, we

take 𝑃 = 1; in Rule 5, we take 𝐺 = 𝑛/4, and 𝑃 = 4.

In the second stage, we apply the occasional rule 1/5 when: (i) the number of

constraints added by random rules 2/4 is less than 0.005𝑛 for consecutive 5 iterations;

or (ii) the number of PGD iterations in the subproblems is the minimum number 5

for consecutive 5 iterations.

Scripts used to run the experiments containing all algorithm parameters can be

found in our github repository.
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Chapter 3

A New Computational Framework for

Log-concave Density Estimation

This chapter is based on [53]. It is a joint work with Rahul Mazumder and Richard

J. Samworth.

3.1 Introduction

In Statistics, the őeld of nonparametric inference under shape constraints dates back

at least to [99], who studied the nonparametric maximum likelihood estimator of a

decreasing density on the non-negative half line. But it is really over the last decade or

so that researchers have begun to realize its full potential for addressing key contem-

porary data challenges such as (multivariate) density estimation and regression. The

initial allure is the ŕexibility of a nonparametric model, combined with estimation

methods that can often avoid the need for tuning parameter selection, which can often

be troublesome for other nonparametric techniques such as those based on smoothing.

Intensive research efforts over recent years have revealed further great attractions: for

instance, these procedures frequently attain optimal rates of convergence over rele-

vant function classes. Moreover, it is now known that shape-constrained procedures

can possess intriguing adaptation properties, in the sense that they can estimate par-

ticular subclasses of functions at faster rates, even (nearly) as well as the best one
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could do if one were told in advance that the function belonged to this subclass.

Typically, however, the implementation of shape-constrained estimation tech-

niques requires the solution of an optimization problem, and, despite some progress,

there are several cases where computation remains a bottleneck and hampers the

adoption of these methods by practitioners. In this chapter, we focus on the problem

of log-concave density estimation, which has become arguably the central challenge

in the őeld because the class of log-concave densities enjoys stability properties under

marginalization, conditioning, convolution and linear transformations that make it

a very natural inőnite-dimensional generalization of the class of Gaussian densities

[195].

The univariate log-concave density estimation problem was őrst studied in [214],

and fast algorithms for the computation of the log-concave maximum likelihood esti-

mator (MLE) in one dimension are now available through the R packages logcondens

[77] and cnmlcd [153]. [61] introduced and studied the multivariate log-concave max-

imum likelihood estimator, but their algorithm, which is described below and imple-

mented in the R package LogConcDEAD [59], is slow; for instance, [61] report a running

time of 50 seconds for computing the bivariate log-concave MLE with 500 observa-

tions, and 224 minutes for computing the log-concave MLE in four dimensions with

2,000 observations. An alternative, interior point method for a suitable approxima-

tion was proposed by [137]. Recent progress on theoretical aspects of the compu-

tational problem in the computer science community includes [10], who proved that

there exists a polynomial time algorithm for computing the log-concave maximum

likelihood estimator. We are unaware of any attempt to implement this algorithm.

[188] compute an approximation to the log-concave MLE by considering − log 𝑝 as a

piecewise affine maximum function, using the log-sum-exp operator to approximate

the non-smooth operator, a Riemann sum to compute the integral and its gradient,

and obtain a solution via L-BFGS. This reformulation means that the problem is no

longer convex.

To describe the problem more formally, let 𝒞𝑑 denote the class of proper, convex

lower-semicontinuous functions 𝜙 : R𝑑 → (−∞,∞] that are coercive in the sense that
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𝜙(𝑥) → ∞ as ‖𝑥‖ → ∞. The class of upper semi-continuous log-concave densities

on R
𝑑 is denoted as

𝒫𝑑 :=
{︂

𝑝 : R𝑑 → [0,∞) : 𝑝 = 𝑒−𝜙 for some 𝜙 ∈ 𝒞𝑑,
∫︁

R𝑑

𝑝 = 1

}︂

.

Given 𝑥1, . . . ,𝑥𝑛 ∈ R
𝑑, [61, Theorem 1] proved that whenever the convex hull 𝐶𝑛 of

𝑥1, . . . ,𝑥𝑛 is 𝑑-dimensional, there exists a unique

�̂�𝑛 ∈ argmax
𝑝∈𝒫𝑑

1

𝑛

𝑛∑︁

𝑖=1

log 𝑝(𝑥𝑖). (3.1)

If 𝑥1, . . . ,𝑥𝑛 are regarded as realizations of independent and identically distributed

random vectors on R
𝑑, then the objective function in (3.1) is a scaled version of

the log-likelihood function, so �̂�𝑛 is called the log-concave MLE. The existence and

uniqueness of this estimator is not obvious, because the inőnite-dimensional class 𝒫𝑑
is non-convex, and even the class of negative log-densities

{︀
𝜙 ∈ 𝒞𝑑 :

∫︀

R𝑑 𝑒
−𝜙 = 1

}︀

is non-convex. In fact, the estimator belongs to a őnite-dimensional subclass; more

precisely, for a vector 𝜑 = (𝜑1, . . . , 𝜑𝑛) ∈ R
𝑛, deőne cef[𝜑] ∈ 𝒞𝑑 to be the (pointwise)

largest function with

cef[𝜑](𝑥𝑖) ≤ 𝜑𝑖

for 𝑖 = 1, . . . , 𝑛. [61] proved that �̂�𝑛 = 𝑒−cef[𝜑*] for some 𝜑* ∈ R
𝑛, and refer to the

function −cef[𝜑*] as a ‘tent function’; see the illustration in Figure 3-1. [61] further

deőned the non-smooth, convex objective function 𝑓 : R𝑛 → R by

𝑓(𝜑) ≡ 𝑓(𝜑1, . . . , 𝜑𝑛) :=
1

𝑛

𝑛∑︁

𝑖=1

𝜑𝑖 +

∫︁

𝐶𝑛

exp
{︀
−cef[𝜑](𝑥)

}︀
𝑑𝑥, (3.2)

and proved that 𝜑* = argmin𝜑∈R𝑛 𝑓(𝜑).

The two main challenges in optimizing the objective function 𝑓 in (3.2) are that

the value and subgradient of the integral term are hard to evaluate, and that it is

non-smooth, so vanilla subgradient methods lead to a slow rate of convergence. To

address the őrst issue, [61] computed the exact integral and its subgradient using
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Figure 3-1: An illustration of a tent function, taken from [61].

the qhull algorithm [15] to obtain a triangulation of the convex hull of the data,

evaluating the function value and subgradient over each simplex in the triangulation.

However, in the worst case, the triangulation can have 𝑂(𝑛𝑑/2) simplices [162]. The

non-smoothness is handled via Shor’s 𝑟-algorithm [203, Chapter 3], as implemented

by [128].

In Section 3.2, we characterize the subdifferential of the objective function in terms

of the solution of a linear program (LP), and show that the solution lies in a known,

compact subset of R𝑛. This understanding allows us to introduce our new compu-

tational framework for log-concave density estimation in Section 3.3, based on an

accelerated version of a dual averaging approach [174]. This relies on smoothing the

objective function, and encompasses two popular strategies, namely Nesterov smooth-

ing [172] and randomized smoothing [143, 225, 75], as special cases. A further feature

of our algorithm is the construction of approximations to gradients of our smoothed

objective, and this in turn requires an approximation to the integral in (3.2). While

a direct application of the theory of [75] would yield a rate of convergence for the

objective function of order 𝑛1/4/𝑇 + 1/
√
𝑇 after 𝑇 iterations, we show in Section 3.4

that by introducing őner approximations of both the integral and its gradient as

the iteration number increases, we can obtain an improved rate of order 1/𝑇 , up to

logarithmic factors. Moreover, we translate the optimization error in the objective

into a bound on the error in the log-density, which is uncommon in the literature in

the absence of strong convexity. A further advantage of our approach is that we are

able to extend it in Section 3.5 to the more general problem of quasi-concave density
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estimation [137, 201], thereby providing a computationally tractable alternative to

the discrete Hessian approach of [137]. Section 3.6 illustrates the practical beneőts

of our methodology in terms of improved computational timings on simulated data.

Additional experimental details and applications on real data sets are provided in

Appendix 3.A. Proofs of all main results can be found in Appendix 3.B, and back-

ground on the őeld of nonparametric inference under shape constraints can be found

in Appendix 3.C.

Notation: We write [𝑛] := {1, 2, . . . , 𝑛}, let 1 ∈ R
𝑛 denote the all-ones vector, and

denote the cardinality of a set 𝑆 by |𝑆|. For a Borel measurable set 𝐶 ⊆ R
𝑑, we use

vol(𝐶) to denote its volume (i.e. 𝑑-dimensional Lebesgue measure). We write ‖ · ‖ for

the Euclidean norm of a vector. For 𝜇 > 0, a convex function 𝑓 : R𝑛 → R is said to

be 𝜇-strongly convex if 𝜑 ↦→ 𝑓(𝜑) − 𝜇
2
‖𝜑‖2 is convex. The notation 𝜕𝑓(𝜑) denotes

the subdifferential (set of subgradients) of 𝑓 at 𝜑. Given a real-valued sequence (𝑎𝑛)

and a positive sequence (𝑏𝑛), we write 𝑎𝑛 = �̃�(𝑏𝑛) if there exist 𝐶, 𝛾 > 0 such that

𝑎𝑛 ≤ 𝐶𝑏𝑛 log
𝛾(1 + 𝑛) for all 𝑛 ∈ N.

3.2 Understanding the structure of the optimization

problem

Throughout this chapter, we assume that 𝑥1, . . . ,𝑥𝑛 ∈ R
𝑑 are distinct and that their

convex hull 𝐶𝑛 := conv(𝑥1, . . . ,𝑥𝑛) has nonempty interior, so that 𝑛 ≥ 𝑑 + 1 and

∆ := vol(𝐶𝑛) > 0. This latter assumption ensures the existence and uniqueness of a

minimizer of the objective function in (3.2) [78, Theorem 2.2]. Recall that we deőne

the lower convex envelope function [193] cef : R𝑛 → 𝒞𝑑 by

cef[𝜑](𝑥) ≡ cef[(𝜑1, . . . , 𝜑𝑛)](𝑥) := sup
{︀
𝑔(𝑥) : 𝑔 ∈ 𝒞𝑑, 𝑔(𝑥𝑖) ≤ 𝜑𝑖 ∀𝑖 ∈ [𝑛]

}︀
. (3.3)
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As mentioned in the introduction, in computing the MLE, we seek

𝜑* := argmin
𝜑∈R𝑛

𝑓(𝜑), (3.4)

where

𝑓(𝜑) :=
1

𝑛
1
⊤𝜑+

∫︁

𝐶𝑛

exp{−cef[𝜑](𝑥)} 𝑑𝑥 =:
1

𝑛
1
⊤𝜑+ 𝐼(𝜑). (3.5)

Note that (3.4) can be viewed as a stochastic optimization problem by writing

𝑓(𝜑) = E𝐹 (𝜑, 𝜉), (3.6)

where 𝜉 is uniformly distributed on 𝐶𝑛 and where, for 𝑥 ∈ 𝐶𝑛,

𝐹 (𝜑,𝑥) :=
1

𝑛
1
⊤𝜑+∆𝑒−cef[𝜑](𝑥). (3.7)

Let 𝑋 := [𝑥1 · · · 𝑥𝑛]⊤ ∈ R
𝑛×𝑑, and for 𝑥 ∈ R

𝑑, let 𝐸(𝑥) :=
{︀
𝛼 ∈ R

𝑛 : 𝑋⊤𝛼 =

𝑥,1⊤
𝑛𝛼 = 1,𝛼 ≥ 0

}︀
denote the set of all weight vectors for which 𝑥 can be written

as a weighted convex combination of 𝑥1, . . . ,𝑥𝑛. Thus 𝐸(𝑥) is a compact, convex

subset of R𝑛. The cef function is given by a linear program (LP) [137, 10]:

cef[𝜑](𝑥) = inf
𝛼∈𝐸(𝑥)

𝛼⊤𝜑. (𝑄0)

If 𝑥 /∈ 𝐶𝑛, then 𝐸(𝑥) = ∅, and, with the standard convention that inf ∅ :=∞, we see

that (𝑄0) agrees with (3.3). From the LP formulation, it follows that 𝜑 ↦→ cef[𝜑](𝑥)

is concave, for every 𝑥 ∈ R
𝑑.

Given a pair 𝜑 ∈ R
𝑛 and 𝑥 ∈ 𝐶𝑛, an optimal solution to (𝑄0) may not be unique,

in which case the map 𝜑 ↦→ cef[𝜑](𝑥) is not differentiable [27, Proposition B.25(b)].

Noting that the inőmum in (𝑄0) is attained whenever 𝑥 ∈ 𝐶𝑛, let

𝐴[𝜑](𝑥) := conv
(︀{︀
𝛼 ∈ 𝐸(𝑥) : 𝛼⊤𝜑 = cef[𝜑](𝑥)

}︀)︀

=
{︀
𝛼 ∈ 𝐸(𝑥) : 𝛼⊤𝜑 = cef[𝜑](𝑥)

}︀
.
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Danskin’s theorem [27, Proposition B.25(b)] applied to −cef[𝜑](𝑥) then yields that

for each 𝑥 ∈ 𝐶𝑛, the subdifferential of 𝐹 (𝜑,𝑥) with respect to 𝜑 is given by

𝜕𝐹 (𝜑,𝑥) :=

{︂
1

𝑛
1−∆𝑒−cef[𝜑](𝑥)𝛼 : 𝛼 ∈ 𝐴[𝜑](𝑥)

}︂

. (3.8)

Since both 𝑓 and 𝐹 (·,𝑥) are őnite convex functions on R
𝑛 (for each őxed 𝑥 ∈ 𝐶𝑛 in

the latter case), by [56, Proposition 2.3.6(b) and Theorem 2.7.2], the subdifferential

of 𝑓 at 𝜑 ∈ R
𝑛 is given by

𝜕𝑓(𝜑) :=
{︀
E𝐺(𝜑, 𝜉) : 𝐺(𝜑,𝑥) ∈ 𝜕𝐹 (𝜑,𝑥) for each 𝑥 ∈ 𝐶𝑛

}︀
. (3.9)

Observe that given any 𝜑 ∈ R
𝑛, the function 𝑥 ↦→ −cef

[︀
𝜑 + log 𝐼(𝜑)1

]︀
(𝑥) (where

𝐼(𝜑) is the integral deőned in (3.5)) is a log-density. It is also convenient to let �̄� ∈ R
𝑛

be such that exp{−cef[�̄�]} is the uniform density on 𝐶𝑛, so that 𝑓(�̄�) = log∆ + 1.

Proposition 3.1 below (an extension of [10, Lemma 2]) provides uniform upper and

lower bounds on this log-density, whenever the objective function 𝑓 evaluated at 𝜑

is at least as good as that at �̄�. In more statistical language, these bounds hold

whenever the log-likelihood of the density exp
{︀
−cef

[︀
𝜑+ log 𝐼(𝜑)1

]︀
(·)

}︀
is at least as

large as that of the uniform density on the convex hull of the data, so in particular,

they must hold for the log-concave MLE (i.e. when 𝜑 = 𝜑*). Let 𝜑0 := (𝑛−1)+𝑑(𝑛−
1) log

(︀
2𝑛+ 2𝑛𝑑 log(2𝑛𝑑)

)︀
+ log∆ and 𝜑0 := −1− 𝑑 log

(︀
2𝑛+ 2𝑛𝑑 log(2𝑛𝑑)

)︀
+ log∆.

Proposition 3.1. For any 𝜑 ∈ R
𝑛 such that 𝑓(𝜑) ≤ log∆ + 1, we have 𝜑0 ≤

𝜑𝑖 + log 𝐼(𝜑) ≤ 𝜑0 for all 𝑖 ∈ [𝑛].

The following corollary is an immediate consequence of Proposition 3.1.

Corollary 3.1. Suppose that 𝜑 ∈ R
𝑛 satisőes 𝐼(𝜑) = 1 and 𝑓(𝜑) ≤ 𝑓(�̄�) = log∆+1.

Then 𝜑* ∈ R
𝑛 deőned in (3.4) satisőes

‖𝜑− 𝜑*‖ ≤ √𝑛(𝜑0 − 𝜑0).

Corollary 3.1 gives a sense in which any 𝜑 ∈ R
𝑛 for which the objective function is
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‘good’ cannot be too far from the optimizer 𝜑*; here, ‘good’ means that the objective

should be no larger than that of the uniform density on the convex hull of the data.

Moreover, an upper bound on the integral 𝐼(𝜑) provides an upper bound on the norm

of any subgradient 𝑔(𝜑) of 𝑓 at 𝜑.

Proposition 3.2. Any subgradient 𝑔(𝜑) ∈ R
𝑛 of 𝑓 at 𝜑 ∈ R

𝑛 satisőes ‖𝑔(𝜑)‖2 ≤
max

{︀
1/𝑛+ 1/4, 𝐼(𝜑)2

}︀
.

3.3 Computing the log-concave MLE

As mentioned in the introduction, subgradient methods [203, 185] tend to be slow for

minimizing the objective function 𝑓 deőned in (3.5) [61]. Our alternative approach

involves the minimizing the representation of 𝑓 given in (3.6) via smoothing tech-

niques, which offer superior computational guarantees and practical performance in

our numerical experiments.

3.3.1 Smoothing techniques

We present two smoothing techniques to őnd the minimizer 𝜑* ∈ R
𝑛 of the nonsmooth

convex optimization problem (3.4). By Proposition 3.1, we have that 𝜑* ∈ Φ, where

Φ := {𝜑 = (𝜑1, . . . , 𝜑𝑛) ∈ R
𝑛 : 𝜑0 ≤ 𝜑𝑖 ≤ 𝜑0 for 𝑖 ∈ [𝑛]}, (3.10)

with 𝜑0, 𝜑
0 ∈ R. In what follows we present two smoothing techniques: one based on

Nesterov smoothing [172] and the second on randomized smoothing [75].

3.3.1.1 Nesterov smoothing

Recall that the non-differentiability in 𝑓 in (3.5) is due to the LP (𝑄0) potentially

having multiple optimal solutions. Therefore, following [172], we consider replacing

this LP with the following quadratic program (QP):

𝑞𝑢[𝜑](𝑥) := inf
𝛼∈𝐸(𝑥)

(︂

𝛼⊤𝜑+
𝑢

2
‖𝛼−𝛼0‖2 −

𝑢

2

)︂

, (𝑄𝑢)
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where 𝛼0 := (1/𝑛)1 ∈ R
𝑛 is the center of 𝐸(𝑥), and where 𝑢 ≥ 0 is a regularization

parameter that controls the extent of the quadratic regularization of the objective.

With this deőnition, we have 𝑞0[𝜑](𝑥) = cef[𝜑](𝑥). For 𝑢 > 0, due to the strong

convexity of the function 𝛼 ↦→ 𝛼⊤𝜑+ (𝑢/2)‖𝛼−𝛼0‖2 on the convex polytope 𝐸(𝑥),

(𝑄𝑢) admits a unique solution that we denote by 𝛼*
𝑢[𝜑](𝑥). It follows again from

Danskin’s theorem that 𝜑 ↦→ 𝑞𝑢[𝜑](𝑥) is differentiable for such 𝑢, with gradient

∇𝜑𝑞𝑢[𝜑](𝑥) = 𝛼
*
𝑢[𝜑](𝑥).

Using 𝑞𝑢[𝜑](𝑥) instead of 𝑞0[𝜑](𝑥) in (3.5), we obtain a smooth objective 𝜑 ↦→
𝑓𝑢(𝜑), given by

𝑓𝑢(𝜑) :=
1

𝑛
1
⊤𝜑+

∫︁

𝐶𝑛

exp{−𝑞𝑢[𝜑](𝑥)} 𝑑𝑥 = E�̃� 𝑢(𝜑, 𝜉), (3.11)

where �̃� 𝑢(𝜑,𝑥) := (1/𝑛)1⊤𝜑 + ∆exp{−𝑞𝑢[𝜑](𝑥)}, and where 𝜉 is again uniformly

distributed on 𝐶𝑛. We may differentiate under the integral (e.g. [136, Theorem 6.28])

to see that the partial derivatives of 𝑓𝑢 with respect to each component of 𝜑 exist,

and moreover they are continuous (because 𝜑 ↦→ 𝛼*
𝑢[𝜑](𝑥) is continuous by Proposi-

tion 3.5), so ∇𝜑𝑓𝑢(𝜑) = E[�̃�𝑢(𝜑, 𝜉)], where

�̃�𝑢(𝜑,𝑥) := ∇𝜑�̃� 𝑢(𝜑,𝑥) =
1

𝑛
1−∆𝑒−𝑞𝑢[𝜑](𝑥)𝛼*

𝑢[𝜑](𝑥). (3.12)

Proposition 3.3 below presents some properties of the smooth objective 𝑓𝑢.

Proposition 3.3. For any 𝜑 ∈ Φ, we have

(a) 0 ≤ 𝑓𝑢(𝜑)− 𝑓𝑢′(𝜑) ≤ 𝑢−𝑢′
2
𝑒𝑢

′/2𝐼(𝜑) for 𝑢′ ∈ [0, 𝑢];

(b) For every 𝑢 ≥ 0, the function 𝜑 ↦→ 𝑓𝑢(𝜑) is convex and ∆𝑒−𝜑0+𝑢/2-Lipschitz;

(c) For every 𝑢 ≥ 0, the function 𝜑 ↦→ 𝑓𝑢(𝜑) has ∆𝑒−𝜑0+𝑢/2(1 + 𝑢−1)-Lipschitz

gradient;

(d) E
(︀
‖�̃�𝑢(𝜑, 𝜉)−∇𝜑𝑓𝑢(𝜑)‖2

)︀
≤ (∆𝑒−𝜑0+𝑢/2)2 for every 𝑢 ≥ 0.

73



3.3.1.2 Randomized smoothing

Our second smoothing technique is randomized smoothing [143, 225, 75]: we take the

expectation of a random perturbation of the argument of 𝑓 . Speciőcally, for 𝑢 ≥ 0,

let

𝑓𝑢(𝜑) := E𝑓(𝜑+ 𝑢𝑧), (3.13)

where 𝑧 is uniformly distributed on the unit ℓ2-ball in R
𝑛. Thus, similar to Nesterov

smoothing, 𝑓 0 = 𝑓 , and the amount of smoothing increases with 𝑢. From a stochastic

optimization viewpoint, we can write

𝑓𝑢(𝜑) = E𝐹 (𝜑+ 𝑢𝑧, 𝜉) and ∇𝜑𝑓𝑢(𝜑) = E𝐺(𝜑+ 𝑢𝑧, 𝜉)

where 𝐺(𝜑 + 𝑢𝑣,𝑥) ∈ 𝜕𝐹 (𝜑 + 𝑢𝑣,𝑥), and where the expectations are taken over

independent random vectors 𝑧, distributed uniformly on the unit Euclidean ball in

R
𝑛, and 𝜉, distributed uniformly on 𝐶𝑛. Here the gradient expression follows from,

e.g., [143, Lemma 3.3(a)], [225, Lemma 7]; since 𝐹 (𝜑+𝑢𝑣,𝑥) is differentiable almost

everywhere with respect to 𝜑, the expression for 𝑓𝑢(𝜑) does not depend on the choice

of subgradient.

Proposition 3.4 below lists some properties of 𝑓𝑢 and its gradient. It extends [225,

Lemmas 7 and 8] by exploiting special properties of the objective function to sharpen

the dependence of the bounds on 𝑛.

Proposition 3.4. For any 𝑢 ≥ 0 and 𝜑 ∈ Φ, we have

(a) 0 ≤ 𝑓𝑢(𝜑)− 𝑓(𝜑) ≤ 𝐼(𝜑)𝑢𝑒𝑢
√︁

2 log𝑛
𝑛+1

;

(b) 𝑓𝑢′(𝜑) ≤ 𝑓𝑢(𝜑) for any 𝑢′ ∈ [0, 𝑢];

(c) 𝜑 ↦→ 𝑓𝑢(𝜑) is convex and ∆𝑒−𝜑0+𝑢-Lipschitz;

(d) 𝜑 ↦→ 𝑓𝑢(𝜑) has ∆𝑒−𝜑0+𝑢𝑛1/2/𝑢-Lipschitz gradient;

(e) E
(︀⃦
⃦𝐺(𝜑+ 𝑢𝑧, 𝜉)−∇𝑓𝑢(𝜑)

⃦
⃦
2)︀ ≤ (∆𝑒−𝜑0+𝑢)2 whenever 𝐺(𝜑+ 𝑢𝑣,𝑥) ∈ 𝜕𝐹 (𝜑+

𝑢𝑣,𝑥) for every 𝑣 ∈ R
𝑛 with ‖𝑣‖ ≤ 1 and 𝑥 ∈ 𝐶𝑛.

74



3.3.2 Stochastic őrst-order methods for smoothing sequences

Our proposed algorithm for computing the log-concave MLE is given in Algorithm 3.1.

It relies on the choice of a smoothing sequence of 𝑓 , which may be constructed us-

ing Nesterov or randomized smoothing, for instance. For a non-negative sequence

(𝑢𝑡)𝑡∈N0 , this smoothing sequence is denoted by (ℓ𝑢𝑡)𝑡∈N0 , where ℓ𝑢𝑡 := 𝑓𝑢𝑡 is given

by (3.11) or ℓ𝑢𝑡 := 𝑓𝑢𝑡 is given by (3.13). In Algorithm 3.1, 𝑃Φ : R𝑛 → Φ denotes the

projection operator onto the closed convex set Φ, which is essentially a threshold clip-

ping operator. In fact, Algorithm 3.1 is a modiőcation of an algorithm due to [75],

and can be regarded as an accelerated version of the dual averaging scheme [174]

applied to (ℓ𝑢𝑡).

Algorithm 3.1 Accelerated stochastic dual averaging on a smoothing sequence with
increasing grids

Input: Smoothing sequence (ℓ𝑢𝑡) whose gradients have Lipschitz constants (𝐿𝑡)𝑡∈N0 ;
initialization 𝜑0 ∈ R

𝑛; learning rate sequence (𝜂𝑡)𝑡∈N of positive real numbers;
number of iterations 𝑇 ∈ N

1: 𝜑
(𝑥)
0 = 𝜑

(𝑦)
0 = 𝜑

(𝑧)
0 = 𝜑0, 𝑠𝑡 = 0 ∈ R

𝑛, 𝜃0 = 1
2: for 𝑡 = 0, . . . , 𝑇 − 1 do
3: Compute an approximation 𝑔𝑡 of ∇𝜑ℓ𝑢𝑡

(︀
𝜑

(𝑦)
𝑡

)︀
; see Section 3.3.2.1

4: 𝑠𝑡+1 = 𝑠𝑡 + 𝑔𝑡/𝜃𝑡
5: 𝜃𝑡+1 =

2

1+
√

1+4/𝜃2𝑡

6: 𝜑
(𝑧)
𝑡+1 = 𝑃Φ

(︀
𝜑0 − 𝑠𝑡

𝐿𝑡+1+𝜂𝑡+1/𝜃𝑡+1

)︀

7: 𝜑
(𝑥)
𝑡+1 = (1− 𝜃𝑡)𝜑(𝑥)

𝑡 + 𝜃𝑡𝜑
(𝑧)
𝑡+1

8: 𝜑
(𝑦)
𝑡+1 = (1− 𝜃𝑡+1)𝜑

(𝑥)
𝑡+1 + 𝜃𝑡+1𝜑

(𝑧)
𝑡+1

9: end for
10: return 𝜑

(𝑥)
𝑡+1

3.3.2.1 Approximating the gradient of the smoothing sequence

In Line 3 of Algorithm 3.1, we need to compute an approximation of the gradient

∇𝜑ℓ𝑢, for a general 𝑢 ≥ 0. A key step in this process is to approximate the integral

𝐼(·), as well as a subgradient of 𝐼, at an arbitrary 𝜑 ∈ R
𝑛. [61] provide explicit formu-

lae for these quantities, based on a triangulation of 𝐶𝑛, using tools from computational

geometry. For practical purposes, [62] apply a Taylor expansion to approximate the
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analytic expression. The R package LogConcDEAD [59] uses this method to evaluate

the exact integral at each iteration, but since this is time-consuming, we will only use

this method at the őnal stage of our proposed algorithm as a polishing step1.

An alternative approach is to use numerical integration2. Among determinis-

tic schemes, [188] observed empirically that the simple Riemann sum with uniform

weights appears to perform the best among several multi-dimensional integration

techniques. Random (Monte Carlo) approaches to approximate the integral are also

possible: given a collection of grid points 𝒮 = {𝜉1, . . . , 𝜉𝑚}, we approximate the in-

tegral as 𝐼𝒮(𝜑) := (∆/𝑚)
∑︀𝑚

ℓ=1 exp{−cef[𝜑](𝜉ℓ)}. This leads to an approximation of

the objective 𝑓 given by

𝑓(𝜑) ≈ 1

𝑛
1
⊤𝜑+ 𝐼𝒮(𝜑) =: 𝑓𝒮(𝜑). (3.14)

Since 𝑓𝒮 is a őnite, convex function on R
𝑛, it has a subgradient at each 𝜑 ∈ R

𝑛, given

by

𝑔𝒮(𝜑) :=
1

𝑚

𝑚∑︁

ℓ=1

𝐺(𝜑, 𝜉ℓ).

As the effective domain of cef[𝜑](·) is 𝐶𝑛, we consider grid points 𝒮 ⊆ 𝐶𝑛.

We now illustrate how these ideas allow us to approximate the gradient of the

smoothing sequence, and initially consider Nesterov smoothing, with ℓ𝑢 = 𝑓𝑢. If

𝒮 = {𝜉1, . . . , 𝜉𝑚} ⊆ 𝐶𝑛 denotes a collection of grid points (either deterministic or

Monte Carlo based), then ∇𝜑ℓ𝑢 can be approximated by �̃�𝑢,𝒮 , where

�̃�𝑢,𝒮(𝜑) :=
1

𝑛
1− ∆

𝑚

𝑚∑︁

𝑗=1

𝑒−𝑞𝑢[𝜑](𝜉𝑗)𝛼*
𝑢[𝜑](𝜉𝑗). (3.15)

In fact, we distinguish the cases of deterministic and random 𝒮 by writing this ap-

proximation as �̃�D𝑢,𝒮 and �̃�R𝑢,𝒮 respectively.

1Once our algorithm terminates at �̃�𝑇 , say, we evaluate the integral 𝐼(�̃�𝑇 ) in the same way as
[61]. Our őnal output, then is 𝜑𝑇 := �̃�𝑇 +log 𝐼(�̃�𝑇 )1; this őnal step not only improves the objective
function, but also guarantees that exp[−cef[𝜑𝑇 ](·)] is a log-concave density.

2Yet another option involves sampling from a log-concave density [61, 63]. [10] discuss interesting
polynomial-time sampling methods to approximate 𝐼(·), but as noted by [188], these methods may
not be practically efficient, and we do not pursue them here.
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For the randomized smoothing method with ℓ𝑢 = 𝑓𝑢, the approximation is slightly

more involved. Given 𝑚 grid points 𝒮 = {𝜉1, . . . , 𝜉𝑚} ⊆ 𝐶𝑛 (again either deter-

ministic or random), and independent random vectors 𝑧1, . . . , 𝑧𝑚, each uniformly

distributed on the unit Euclidean ball in R
𝑛, we can approximate ∇𝜑ℓ𝑢(𝜑) by

�̄�∘𝑢,𝒮(𝜑) =
1

𝑛
1− ∆

𝑚

𝑚∑︁

𝑗=1

𝑒−cef[𝜑+𝑢𝑧𝑗 ](𝜉𝑗)𝛼*[𝜑+ 𝑢𝑧𝑗](𝜉𝑗), (3.16)

with ∘ ∈ {D,R} again distinguishing the cases of deterministic and random 𝒮.

3.3.2.2 Related literature

As mentioned above, Algorithm 3.1 is an accelerated version of the dual averaging

method of [174], which to the best of our knowledge has not been studied in the

context of log-concave density estimation previously. Nevertheless, related ideas have

been considered for other optimization problems (e.g. [221, 75]). Relative to previous

work, our approach is quite general, in that it applies to both of the smoothing

techniques discussed in Section 3.3.1, and allows the use of both deterministic and

random grids to approximate the gradients of the smoothing sequence. Another key

difference with earlier work is that we allow the grid 𝒮 to depend on 𝑡, so we write

it as 𝒮𝑡, with 𝑚𝑡 := |𝒮𝑡|; in particular, inspired by both our theoretical results and

numerical experience, we take (𝑚𝑡) to be a suitable increasing sequence.

3.4 Theoretical analysis of optimization error of Al-

gorithm 3.1

We have seen in Propositions 3.3 and 3.4 that the two smooth functions 𝑓𝑢 and 𝑓𝑢 en-

joy similar properties Ð according to Proposition 3.3(a) to (c) and Proposition 3.4(a)

to (d), both 𝑓𝑢 and 𝑓𝑢 satisfy the following assumption:

Assumption 3.1 (Assumptions on smoothing sequence). There exists 𝑟 ≥ 0 such

that for any 𝜑 ∈ Φ,

77



(a) we can őnd 𝐵0 > 0 with 𝑓(𝜑) ≤ ℓ𝑢(𝜑) ≤ 𝑓(𝜑) + 𝐵0𝐼(𝜑)𝑢 for all 𝑢 ∈ [0, 𝑟];

(b) ℓ𝑢′(𝜑) ≤ ℓ𝑢(𝜑) for all 𝑢′ ∈ [0, 𝑢];

(c) for each 𝑢 ∈ [0, 𝑟], the function 𝜑 ↦→ ℓ𝑢(𝜑) is convex and has 𝐵1/𝑢-Lipschitz

gradient, for some 𝐵1 > 0.

Recall from Section 3.3 that we have four possible choices corresponding to a

combination of the smoothing and integral approximation methods, as summarized

in Table 3.1.

Table 3.1: Summary of options for smoothing and gradient approximation methods.

Options Smoothing Approximation Options Smoothing Approximation

1 𝑓𝑢 �̃�D𝑢,𝒮 3 𝑓𝑢 �̄�D𝑢,𝒮
2 𝑓𝑢 �̃�R𝑢,𝒮 4 𝑓𝑢 �̄�R𝑢,𝒮

Once we select an option, in line 3 of Algorithm 3.1, we can take

𝑔𝑡 = �̌�
∘
𝑢𝑡,𝒮𝑡

(𝜑
(𝑦)
𝑡 ),

whereˇ∈ {̆ , }̄ and ∘ ∈ {D,R}. To encompass all four approximation choices in Line 3

of Algorithm 3.1, we make the following assumption on the gradient approximation

error 𝑒𝑡 := 𝑔𝑡 −∇𝜑ℓ𝑢𝑡(𝜑
(𝑦)
𝑡 ):

Assumption 3.2 (Gradient approximation error). There exists 𝜎 > 0 such that

E
(︀
‖𝑒𝑡‖2|ℱ𝑡−1

)︀
≤ 𝜎2/𝑚𝑡 for all 𝑡 ∈ N0, (3.17)

where ℱ𝑡−1 denotes the 𝜎-algebra generated by all random sources up to iteration 𝑡−1

(with ℱ−1 denoting the trivial 𝜎-algebra).

When 𝒮 is a Monte Carlo random grid (options 2 and 4), the approximate gra-

dient 𝑔𝑡 is an average of 𝑚𝑡 independent and identically distributed random vectors,

each being an unbiased estimator of ∇ℓ𝑢𝑡(𝜑(𝑦)
𝑡 ). Hence, (3.17) holds true with 𝜎2

determined by the bounds in Proposition 3.3(d) (option 2) and Proposition 3.4(e)

(option 4). For a deterministic Riemann grid 𝒮 and Nesterov’s smoothing technique
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(option 1), 𝑒𝑡 is deterministic, and arises from using �̃�𝑢,𝒮(𝜑) in (3.15) to approxi-

mate ∇𝜑𝑓𝑢(𝜑) = E[�̃�𝑢(𝜑, 𝜉)]. For the deterministic Riemann grid and randomized

smoothing (option 3), the error 𝑒𝑡 can be decomposed into a random estimation error

term (induced by 𝑧1, . . . , 𝑧𝑚𝑡
) and a deterministic approximation error term (induced

by 𝜉1, . . . , 𝜉𝑚𝑡
) as follows:

𝑒𝑡 =
1

𝑚𝑡

𝑚𝑡∑︁

𝑗=1

(︀
𝐺(𝜑

(𝑦)
𝑡 + 𝑢𝑡𝑧𝑗, 𝜉𝑗)− E[𝐺(𝜑

(𝑦)
𝑡 + 𝑢𝑡𝑧, 𝜉𝑗)|ℱ𝑡−1]

)︀

+

(︂
1

𝑚𝑡

𝑚𝑡∑︁

𝑗=1

E[𝐺(𝜑
(𝑦)
𝑡 + 𝑢𝑡𝑧, 𝜉𝑗)|ℱ𝑡−1]− E[𝐺(𝜑

(𝑦)
𝑡 + 𝑢𝑡𝑧, 𝜉)|ℱ𝑡−1]

)︂

.

It can be shown using this decomposition that E(‖𝑒𝑡‖2|ℱ𝑡−1) = 𝑂(1/𝑚𝑡) under reg-

ularity conditions.

Theorem 3.1 below establishes our desired computational guarantees for Algo-

rithm 3.1. We write 𝐷 := sup𝜑,�̃�∈Φ ‖𝜑− �̃�‖ for the diameter of Φ.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold, and deőne the sequence

(𝜃𝑡)𝑡∈N0 by 𝜃0 := 1 and 𝜃𝑡+1 := 2
(︀
1+

√︀

1 + 4/𝜃2𝑡
)︀−1

for 𝑡 ∈ N0. Let 𝑢 > 0, let 𝑢𝑡 := 𝜃𝑡𝑢

and take 𝐿𝑡 = 𝐵1/𝑢𝑡 and 𝜂𝑡 = 𝜂 for all 𝑡 ∈ N0 as input parameters to Algorithm 3.1.

Writing 𝑀
(1)
𝑇 :=

√︁
∑︀𝑇−1

𝑡=0 𝑚
−1
𝑡 and 𝑀

(1/2)
𝑇 :=

∑︀𝑇−1
𝑡=0 𝑚

−1/2
𝑡 , we have for any 𝜑 ∈ Φ

that

E[𝑓(𝜑
(𝑥)
𝑇 )]− 𝑓(𝜑) ≤ 𝐵1𝐷

2

𝑇𝑢
+

4𝐵0𝐼(𝜑)𝑢

𝑇
+
𝜂𝐷2

𝑇
+
𝜎2(𝑀

(1)
𝑇 )2

𝑇𝜂
+

2𝐷𝜎𝑀
(1/2)
𝑇

𝑇
. (3.18)

In particular, taking 𝜑 = 𝜑*, and choosing 𝑢 = (𝐷/2)
√︀

𝐵1/𝐵0 and 𝜂 = (𝜎𝑀
(1)
𝑇 )/𝐷,

we obtain

𝜀𝑇 := E[𝑓(𝜑
(𝑥)
𝑇 )]− 𝑓(𝜑*) ≤ 4

√
𝐵0𝐵1𝐷

𝑇
+

2𝜎𝐷𝑀
(1)
𝑇

𝑇
+

2𝐷𝜎𝑀
(1/2)
𝑇

𝑇
. (3.19)

Moreover, if we further assume that E(𝑒𝑡|ℱ𝑡−1) = 0 (e.g. by using options 2 and 4),

then we can remove the last term of both inequalities above.

For related general results that control the expected optimization error for
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smoothed objective functions, see, e.g., [172], [207], [221], [75]. With determinis-

tic grids (corresponding to options 1 and 3), if we take |𝒮𝑡| = 𝑚 for all 𝑡, then

𝑀
(1/2)
𝑇 = 𝑇/

√
𝑚, and the upper bound in (3.19) does not converge to zero as 𝑇 →∞.

On the other hand, if we take |𝒮𝑡| = 𝑡2, for example, then sup𝑇∈N𝑀
(1)
𝑇 < ∞ and

𝑀
(1/2)
𝑇 = �̃�(1), and we őnd that 𝜀𝑇 = �̃�(1/𝑇 ). For random grids (options 2 and 4),

if we take |𝒮𝑡| = 𝑚 for all 𝑡, then 𝑀
(1)
𝑇 =

√︀

𝑇/𝑚 and we recover the 𝜀𝑇 = 𝑂(1/
√
𝑇 )

rate for stochastic subgradient methods [185]. This can be improved to 𝜀𝑇 = �̃�(1/𝑇 )

with 𝑚𝑡 = 𝑡, or even 𝜀𝑇 = 𝑂(1/𝑇 ) if we choose (𝑚𝑡)𝑡 such that
∑︀∞

𝑡=0𝑚
−1
𝑡 <∞.

A direct application of the theory of [75] would yield an error rate of 𝜀𝑇 =

𝑂(𝑛1/4/𝑇 + 1/
√
𝑇 ). On the other hand, Theorem 3.1 shows that, owing to the

increasing sequence of grid sizes used to approximate the gradients in Step 3 of Algo-

rithm 3.1, we can improve this rate to �̃�(1/𝑇 ). Note however, that this improvement

is in terms of the number of iterations 𝑇 , and not the total number of stochas-

tic oracle queries (equivalently, the total number of LPs (𝑄0)), which is given by

𝑇query :=
∑︀𝑇−1

𝑡=0 𝑚𝑡. [3] and [171] have shown that the optimal expected number of

stochastic oracle queries is of order 1/
√︀
𝑇query, which is attained by the algorithm

of [75]. For our framework, by taking 𝑚𝑡 = 𝑡, we have 𝑇query =
∑︀𝑇−1

𝑡=0 𝑚𝑡 = �̃�(𝑇 2), so

after 𝑇query stochastic oracle queries, our algorithm also attains the optimal error on

the objective function scale, up to a logarithmic factor. Other advantages of our algo-

rithm and the theoretical guarantees provided by Theorem 3.1 relative to the earlier

contributions of [75] are that we do not require an upper bound on 𝐼(𝜑) and are able

to provide a uniőed framework that includes Nesterov smoothing and an alternative

gradient approximation approach by numerical integration in addition to randomized

smoothing scheme with stochastic gradients. Moreover, we can exploit the speciőc

structure of the log-concave density estimation problem to provide much better Lips-

chitz constants for the randomized smoothing sequence than would be obtained using

the generic constants of [75]. For example, our upper bound in Proposition 3.4(a) is

of order 𝑂(𝑛−1/2 log1/2 𝑛), whereas a naive application of the general theory of [75]

would only yield a bound of 𝑂(1). A further improvement in our bound comes from

the fact that it now involves 𝐼(𝜑) directly, as opposed to an upper bound on this
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quantity.

In Theorem 3.1, the computational guarantee depends upon 𝐵0, 𝐵1, 𝜎 in Assump-

tions 3.1 and 3.2. In light of Propositions 3.3 and 3.4, Table 3.2 illustrates how these

quantities, and hence the corresponding guarantees, differ according to whether we

use Nesterov smoothing or randomized smoothing.

The randomized smoothing procedure requires solving LPs, whereas Nesterov’s

smoothing technique requires solving QPs. While both of these problems are highly

structured and can be solved efficiently by off-the-shelf solvers (e.g., [104]), we found

the LP solution times to be faster than those for the QP. Additional computational

details are discussed in Section 3.6.

Table 3.2: Comparion of constants in Assumption 3.1 for different smoothing schemes
with 𝑢 ∈ [0, 𝑟]. Here, 𝜎 corresponds to random grid points (options 2 and 4), the
optimal 𝜂 is taken to be proportional to 𝜎, the optimal 𝑢 is proportional to

√︀

𝐵1/𝐵0,

we take 𝐶1 =
√
∆𝑒−𝜑0 ;

√
𝐵0𝐵1 determines the őrst term in the error rate.

𝐵0 𝐵1 𝜎 (𝜂 ∝ 𝜎) 𝑢 (∝
√︀

𝐵1/𝐵0)
√
𝐵0𝐵1

Nesterov 1/2 ∆𝑒−𝜑0+𝑟/2(𝑟 + 1) ∆𝑒−𝜑0+𝑟/2 𝐶1𝑒
𝑟/4

√︀

(𝑟 + 1)𝑂(1)

Randomized
√︀

2𝑛−1 log 𝑛𝑒𝑟 ∆𝑒−𝜑0+𝑟
√
𝑛 ∆𝑒−𝜑0+𝑟 𝐶1�̃�(

√
𝑛) 𝐶1𝑒

𝑟�̃�(1)

Note that Theorem 3.1 presents error bounds in expectation, though for option

1, since we use Nesterov’s smoothing technique and the Riemann sum approximation

of the integral, the guarantee in Theorem 3.1 holds without the need to take an

expectation. Theorem 3.2 below presents corresponding high-probability guarantees.

For simplicity, we present results for options 2 and 4, which rely on the following

assumption:

Assumption 3.3. Assume that E(𝑒𝑡|ℱ𝑡−1) = 0 and that E
(︀
𝑒‖𝑒𝑡‖

2/𝜎2
𝑡 | ℱ𝑡−1

)︀
≤ 𝑒,

where 𝜎𝑡 = 𝜎/
√
𝑚𝑡.

Theorem 3.2. Suppose that Assumptions 3.1 and 3.3 hold, and deőne the sequence

(𝜃𝑡)𝑡∈N0 by 𝜃0 := 1 and 𝜃𝑡+1 := 2
(︀
1 +

√︀

1 + 4/𝜃2𝑡
)︀−1

for 𝑡 ∈ N0. Let 𝑢 > 0, let

𝑢𝑡 := 𝜃𝑡𝑢 and take 𝐿𝑡 = 𝐵1/𝑢𝑡 and 𝜂𝑡 = 𝜂 for all 𝑡 ∈ N0 as input parameters

to Algorithm 3.1. Writing 𝑀
(2)
𝑇 :=

√︁
∑︀𝑇−1

𝑡=0 𝑚
−2
𝑡 and 𝑀

(1)
𝑇 :=

√︁
∑︀𝑇−1

𝑡=0 𝑚
−1
𝑡 , and
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choosing 𝑢 = (𝐷/2)
√︀

𝐵1/𝐵0 and 𝜂 = (𝜎𝑀
(1)
𝑇 )/𝐷 as in Theorem 3.1, for any 𝛿 ∈

(0, 1), we have with probability at least 1− 𝛿 that

𝑓(𝜑
(𝑥)
𝑇 )− 𝑓(𝜑*) ≤ 2

√
𝐵0𝐵1𝐷

𝑇
+
𝜎𝐷𝑀

(1)
𝑇

𝑇
+

4𝜎𝐷𝑀
(1)
𝑇

√︁

log 2
𝛿

𝑇

+
4𝜎𝐷max

{︀
𝑀

(2)
𝑇

√︁

2𝑒 log 2
𝛿
,𝑚−1

0 log 2
𝛿

}︀

𝑀
(1)
𝑇 𝑇

.

For option 3, we would need to consider the approximation error from the Riemann

sum, and the őnal error rate would include additional 𝑂(1/𝑇 ) terms. We omit the

details for brevity.

Finally in this section, we relate the error of the objective to the error in terms

of 𝜑, as measured through the squared 𝐿2 distance between the corresponding lower

convex envelope functions.

Theorem 3.3. For any 𝜑 ∈ Φ, we have

∫︁

𝐶𝑛

{︀
cef[𝜑](𝑥)− cef[𝜑*](𝑥)

}︀2
𝑑𝑥 ≤ 2𝑒𝜑

0{︀
𝑓(𝜑)− 𝑓(𝜑*)

}︀
. (3.20)

3.5 Beyond log-concave density estimation

In this section, we extend our computational framework beyond the log-concave den-

sity family, through the notion of 𝑠-concave densities. For 𝑠 ∈ R, deőne domains 𝒟𝑠
and 𝜓𝑠 : 𝒟𝑠 → R by

𝒟𝑠 :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

[0,∞) if 𝑠 < 0

(−∞,∞) if 𝑠 = 0

(−∞, 0] if 𝑠 > 0.

and 𝜓𝑠(𝑦) :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

𝑦1/𝑠 if 𝑠 < 0

𝑒−𝑦 if 𝑠 = 0

(−𝑦)1/𝑠 if 𝑠 > 0.

Deőnition 3.1 (𝑠-concave density, [201]). For 𝑠 ∈ R, the class 𝒫𝑠(R𝑑) of 𝑠-concave
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density functions on R
𝑑 is given by

𝒫𝑠(R𝑑)

:=

{︂

𝑝(·) : 𝑝 = 𝜓𝑠 ∘ 𝜙 for some 𝜙 ∈ 𝒞𝑑 with Im(𝜙) ⊆ 𝒟𝑠 ∪ {∞},
∫︁

R𝑑

𝑝 = 1

}︂

.

For 𝑠 = 0, the family of 𝑠-concave densities reduces to the family of log-concave

densities. Moreover, for 𝑠1 < 𝑠2, we have 𝒫𝑠2(R𝑑) ⊆ 𝒫𝑠1(R𝑑) [71, p. 86]. The 𝑠-concave

density family introduces additional modelling ŕexibility, in particular allowing much

heavier tails when 𝑠 < 0 than the log-concave family, but we note that there is no

guidance available in the literature on how to choose 𝑠.

For the problem of 𝑠-concave density estimation, we discuss two estimation meth-

ods, both of which have been previously considered in the literature, but for which

there has been limited algorithmic development. The őrst is based on the maximum

likelihood principle (Section 3.5.1), while the other is based on minimizing a Rényi

divergence (Section 3.5.2).

3.5.1 Computation of the 𝑠-concave maximum likelihood esti-

mator

[201] proved that a maximum likelihood estimator over 𝒫𝑠(R𝑑) exists with probability

one for 𝑠 ∈ (−1/𝑑,∞) and 𝑛 > max
(︀
𝑑𝑟
𝑟−𝑑 , 𝑑

)︀
, where 𝑟 := −1/𝑠, and does not exist if

𝑠 < −1/𝑑. [73] provide some statistical properties of this estimator when 𝑑 = 1. The

maximum likelihood estimation problem is to compute

�̂�𝑛 := argmax
𝑝∈𝒫𝑠(R𝑑)

𝑛∑︁

𝑖=1

log 𝑝(𝑥𝑖), (3.21)

or equivalently,

argmax
𝜙∈𝒞𝑑:Im(𝜙)⊆𝒟𝑠∪{∞}

1

𝑛

𝑛∑︁

𝑖=1

log𝜓𝑠 ∘ 𝜙(𝑥𝑖) subject to

∫︁

R𝑑

𝜓𝑠 ∘ 𝜙(𝑥) 𝑑𝑥 = 1. (3.22)

We establish the following theorem:
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Theorem 3.4. Let 𝑠 ∈ [0, 1] and suppose that the convex hull 𝐶𝑛 of the data is 𝑑-

dimensional (so that the 𝑠-concave MLE �̂�𝑛 exists and is unique). Then computing

�̂�𝑛 in (3.21) is equivalent to the convex minimization problem of computing

𝜑* := argmin
𝜑=(𝜑1,...,𝜑𝑛)∈𝒟𝑛

𝑠

{︂

− 1

𝑛

𝑛∑︁

𝑖=1

log𝜓𝑠(𝜑𝑖) +

∫︁

𝐶𝑛

𝜓𝑠
(︀
cef[𝜑](𝑥)

)︀
𝑑𝑥

}︂

, (3.23)

in the sense that �̂�𝑛 = 𝜓𝑠 ∘ cef[𝜑*].

Remark 3.1. The equivalence result in Theorem 3.4 holds for any 𝑠 (outside [0, 1])

as long as the 𝑠-concave MLE exists. However, when 𝑠 ∈ [0, 1], (3.23) is a convex op-

timization problem. The family of 𝑠-concave densities with 𝑠 < 0 appears to be more

useful from a statistical viewpoint as it allows for heavier tails than log-concave den-

sities, but the MLE cannot be then computed via convex optimization. Nevertheless,

the entropy minimization methods discussed in Section 3.5.2 can be used to obtain

𝑠-concave density estimates for 𝑠 > −1.

3.5.2 Quasi-concave density estimation

Another route to estimate an 𝑠-concave density (or even a more general class) is via

the following problem:

�̌� := argmin
𝜙∈𝒞𝑑:dom(𝜙)=𝐶𝑛

{︂
1

𝑛

𝑛∑︁

𝑖=1

𝜙(𝑥𝑖) +

∫︁

𝐶𝑛

Ψ
(︀
𝜙(𝑥)

)︀
𝑑𝑥

}︂

, (3.24)

where Ψ : R → (−∞,∞] is a decreasing, proper convex function. When Ψ(𝑦) =

𝑒−𝑦, (3.24) is equivalent to the MLE for log-concave density estimation (3.1), by

[61, Theorem 1]. This problem, proposed by [137], is called quasi-concave density

estimation. [137, Theorem 4.1] show that under some assumptions on Ψ, there exists a

solution to (3.24), and if Ψ is strictly convex, then the solution is unique. Furthermore,

if Ψ is differentiable on the interior of its domain, then the optimal solution to the

dual of (3.24) is a probability density 𝑝 such that 𝑝 = −Ψ′(𝜙), and the dual problem

can be regarded as minimizing different distances or entropies (depending on Ψ)

between the empirical distribution of the data and 𝑝. In particular, when 𝛽 ≥ 1
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and Ψ(𝑦) = 1{𝑦≤0}(−𝑦)𝛽/𝛽, and when 𝛽 < 0 and Ψ(𝑦) = −𝑦𝛽/𝛽 for 𝑦 ≥ 0 (with

Ψ(𝑦) =∞ otherwise), the dual problem of (3.24) is essentially minimizing the Rényi

divergence and we have the primal-dual relationship 𝑝 = |𝜙|𝛽−1. In fact, this amounts

to estimating an 𝑠-concave density via Rényi divergence minimization with 𝛽 = 1+1/𝑠

and 𝑠 ∈ (−1,∞) ∖ {0}. We therefore consider the problem

min
𝜙∈𝒞𝑑:dom(𝜙)=𝐶𝑛

Im(𝜙)⊆𝒟𝑠

{︂
1

𝑛

𝑛∑︁

𝑖=1

𝜙(𝑥𝑖) +
1

|1 + 1/𝑠|

∫︁

𝐶𝑛

|𝜙(𝑥)|1+1/𝑠 𝑑𝑥

}︂

. (3.25)

The proof of Theorem 3.5 is similar to that of Theorem 3.4, and is omitted for brevity.

Theorem 3.5. Given a decreasing proper convex function Ψ, the quasi-concave den-

sity estimation problem (3.24) is equivalent to the following convex problem:

𝜑* := argmin
𝜑∈𝒟𝑛

𝑠

{︂
1

𝑛
1
⊤𝜑+

∫︁

𝐶𝑛

Ψ
(︀
cef[𝜑](𝑥)

)︀
𝑑𝑥

}︂

, (3.26)

in the sense that �̌� = cef[𝜑*], with corresponding density estimator �̃�𝑛 = −Ψ′∘cef[𝜑*].

The objective in (3.26) is convex, so our computational framework can be applied

to solve this problem.

3.6 Computational experiments on simulated data

In this section, we present numerical experiments to study the different variants of

our algorithm and compare them with existing methods based on convex optimization

for the log-concave MLE. Our results are based on large-scale synthetic datasets with

𝑛 ∈ {5,000, 10,000} observations generated from standard 𝑑-dimensional normal and

Laplace distributions with 𝑑 = 4. Code for our experiments is available from the

github repository LogConcComp available at:

https://github.com/wenyuC94/LogConcComp.
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All computations were carried out on the MIT Supercloud Cluster [190] on an Intel

Xeon Platinum 8260 machine, with 24 CPUs and 24GB of RAM. Our algorithms were

written in Python; we used Gurobi [104] to solve the LPs and QPs.

Our őrst comparison method is that of [61], implemented in the R package

LogConcDEAD [59], and denoted by CSS. The CSS algorithm terminates when

‖𝜑(𝑡) − 𝜑(𝑡−1)‖∞ ≤ 𝜏 , and we consider 𝜏 ∈ {10−2, 10−3, 10−4}. Our other competing

approach is the randomized smoothing method of [75], with random grids of a őxed

grid size, which we denote here by RS-RF-𝑚, with 𝑚 being the grid size. To the best

of our knowledge, this method has not been used to compute the log-concave MLE

previously.

We denote the different variants of our algorithm as Alg-𝑉 , where Alg ∈ {RS,NS}
represents Algorithm 3.1 with Randomized smoothing and Nesterov smoothing, and

𝑉 ∈ {DI,RI} represents whether we use deterministic or random grids of increasing

grid sizes to approximate the gradient. Further details of our input parameters are

given in Appendix 3.A.3.

Figure 3-2 presents the relative objective error, deőned for an algorithm with

iterates 𝜑1, . . . ,𝜑𝑡 as

relobj(𝑡) :=

⃒
⃒
⃒
⃒

min𝑠∈[𝑡] 𝑓(𝜑𝑠)− 𝑓(𝜑*)

𝑓(𝜑*)

⃒
⃒
⃒
⃒
, (3.27)

against time (in minutes) and number of iterations. In the deőnition of the relative

objective error in (3.27) above, 𝜑* is taken as the CSS solution with tolerance 𝜏 =

10−4. The őgure shows that randomized smoothing appears to outperform Nesterov

smoothing in terms of the time taken to reach a desired relative objective error, since

the former solves an LP (𝑄0), whereas the latter has to solve a QP (𝑄𝑢); the number

of iterations taken by the different methods is, however, similar. There is no clear

winner between randomized and deterministic grids, and both appear to perform well.

Table 3.3 compares our proposed methods against the CSS solutions with different

tolerances, in terms of running time, őnal objective function, and distances of the

algorithm outputs to the optimal solution 𝜑* and the truth 𝜑truth. We őnd that all
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of our proposals yield marked improvements in running time compared with the CSS

solution: with 𝑛 = 10,000, 𝑑 = 4 and 𝜏 = 10−4, CSS takes more than 20 hours for all of

the data sets we considered, whereas the RS-DI variant is around 50 times faster. The

CSS solution may have a slightly improved objective function value on termination,

but as shown in Table 3.3, all of our algorithms achieve an optimization error that is

small by comparison with the statistical error, and from a statistical perspective, there

is no point in seeking to reduce the optimization error further than this. Table 3.5

shows that the distances ‖𝜑*−𝜑truth‖/𝑛1/2 are well concentrated around their means

(i.e. do not vary greatly over different random samples drawn from the underlying

distribution), which provides further reassurance that our solutions are sufficiently

accurate for practical purposes. On the other hand, the CSS solution with tolerance

10−3 is not always sufficiently reliable in terms of its statistical accuracy, e.g. for

a Laplace distribution with 𝑛 = 5,000. Our further experiments on real data sets

reported in Appendix 3.A.4 provide qualitatively similar conclusions.

Finally, Figure 3-3 compares our proposed multistage increasing grid sizes (RS-

DI/RS-RI) (see Tables 5 and 6) with the őxed grid size (RS-RF) proposed by [75],

under the randomized smoothing setting. We see that the beneőts of using the increas-

ing grid sizes as described by our theory carry over to improved practical performance,

both in terms of running time and number of iterations.

3.A Additional implementational and experimental

details

3.A.1 Initialization: non-convex method

[61] show that the negative log-density − log �̂�𝑛(·) of the log-concave MLE is

a piecewise-affine convex function over its domain 𝐶𝑛. This allows us to

parametrize these functions as 𝜙(𝑥) := max𝑗∈[𝑚]{𝑎⊤
𝑗 𝑥 + 𝑏𝑗} for 𝑥 ∈ 𝐶𝑛, where

𝑎1, . . . ,𝑎𝑚 ∈ R
𝑑 and 𝑏1, . . . , 𝑏𝑚 ∈ R. We can then reformulate the problem as
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Table 3.3: Comparison of our proposed methods with the CSS solution [61] and RS-
RF [75]. On a single dataset, we ran 5 repetitions of each algorithm with different
random seeds and report the median statistics. Here, obj and relobj denote the
objective and relative objective error, respectively, runtime denotes the running time
(in minutes), dopt and dtruth denote the (Euclidean) distances between the algo-
rithm outputs and the optimal solution and the truth, respectively, iter denotes the
number of iterations, tO denotes the total number of oracles (grid points), aO denotes
the average number of oracles (grid points) per iteration, and hO denotes the harmonic

average of grid sizes (which equals 𝑇/(𝑀
(1)
𝑇 )2). For CSS, param is the tolerance 𝜏 ;

for RS-RF, param is the (őxed) grid size 𝑚. Here ‘-’ means the running time of the
corresponding algorithm exceeded 20 hours.

Normal, 𝑛 = 5,000, 𝑑 = 4
algo param obj relobj runtime dopt dtruth iter tO aO hO

CSS
1e-2 6.5209 1.1e-03 10.15 0.1955 0.2788
1e-3 6.5146 9.8e-05 110.04 0.0612 0.2465
1e-4 6.5140 0.0e-00 829.55 0.0000 0.2454

RS-DI None 6.5144 7.0e-05 16.04 0.0227 0.2499 128 6.18M 48.31K 20.23K
RS-RI None 6.5150 1.6e-04 31.05 0.0289 0.2502 128 6.88M 53.75K 32.00K
NS-DI None 6.5144 7.1e-05 89.94 0.0259 0.2497 128 6.18M 48.31K 20.23K
NS-RI None 6.5149 1.5e-04 102.23 0.0312 0.2502 128 6.88M 53.75K 32.00K

RS-RF

5000 6.5174 5.2e-04 30.22 0.0575 0.2552 1024 5.12M 5.00K 5.00K
10000 6.5168 4.4e-04 25.48 0.0429 0.2508 512 5.12M 10.00K 10.00K
20000 6.5164 3.7e-04 23.05 0.0552 0.2567 256 5.12M 20.00K 20.00K
40000 6.5158 2.9e-04 21.31 0.0344 0.2496 128 5.12M 40.00K 40.00K
80000 6.5150 1.6e-04 42.25 0.0288 0.2499 128 10.24M 80.00K 80.00K

Laplace, 𝑛 = 5,000, 𝑑 = 4
algo param obj relobj runtime dopt dtruth iter tO aO hO

CSS
1e-2 7.9183 3.0e-02 30.77 2.5100 2.5449
1e-3 7.6994 1.1e-03 387.34 0.5985 0.6514
1e-4 7.6908 0.0e-00 1007.80 0.0000 0.2552

RS-DI None 7.6988 1.0e-03 17.64 0.0592 0.2304 128 7.24M 56.54K 34.84K
RS-RI None 7.6939 4.0e-04 31.32 0.0424 0.2632 128 6.88M 53.75K 32.00K
NS-DI None 7.6989 1.0e-03 109.68 0.0640 0.2259 128 7.24M 56.54K 34.84K
NS-RI None 7.6943 4.5e-04 107.57 0.0362 0.2601 128 6.88M 53.75K 32.00K

RS-RF

5000 7.7048 1.8e-03 31.43 0.0628 0.2732 1024 5.12M 5.00K 5.00K
10000 7.7059 2.0e-03 27.33 0.0621 0.2745 512 5.12M 10.00K 10.00K
20000 7.6986 1.0e-03 24.53 0.0527 0.2696 256 5.12M 20.00K 20.00K
40000 7.6979 9.2e-04 22.68 0.0852 0.2776 128 5.12M 40.00K 40.00K
80000 7.6949 5.4e-04 43.27 0.0349 0.2614 128 10.24M 80.00K 80.00K

min𝑎1,...,𝑎𝑚∈R𝑑,𝑏1,...,𝑏𝑚∈R 𝑓0(𝑎, 𝑏), with non-convex objective

𝑓0(𝑎, 𝑏) :=
1

𝑛

𝑛∑︁

𝑖=1

max
𝑗∈[𝑚]
{𝑎⊤

𝑗 𝑥𝑖 + 𝑏𝑗}+
∫︁

𝐶𝑛

𝑒−max𝑗∈[𝑚]{𝑎⊤
𝑗 𝑥+𝑏𝑗} 𝑑𝑥. (3.28)

To approximate the integral, we use the same simple Riemann grid points mentioned

in Section 3.3.2.1. Subgradients of the objective (3.28) are straightforward to compute
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Table 3.4: Comparison of our proposed methods with the CSS solution [61] and RS-
RF [75], but with 𝑛 = 10,000. Details are given in the caption of Table 3.4.

Normal, 𝑛 = 10,000, 𝑑 = 4
algo param obj relobj runtime dopt dtruth iter tO aO hO

CSS
1e-2 6.5634 4.1e-04 24.72 0.1018 0.1911
1e-3 6.5612 7.3e-05 181.01 0.0462 0.1854
1e-4 6.5607 0.0e-00 - 0.0000 0.1859

RS-DI None 6.5621 2.1e-04 35.40 0.0411 0.1939 128 6.67M 52.14K 21.85K
RS-RI None 6.5626 3.0e-04 65.18 0.0443 0.1939 128 6.88M 53.75K 32.00K
NS-DI None 6.5620 2.0e-04 207.32 0.0429 0.1953 128 6.67M 52.14K 21.85K
NS-RI None 6.5625 2.8e-04 215.51 0.0452 0.1959 128 6.88M 53.75K 32.00K

RS-RF

5000 6.5690 1.3e-03 64.80 0.1097 0.2205 1024 5.12M 5.00K 5.00K
10000 6.5704 1.5e-03 56.26 0.0470 0.1854 512 5.12M 10.00K 10.00K
20000 6.5656 7.5e-04 50.17 0.0412 0.1890 256 5.12M 20.00K 20.00K
40000 6.5638 4.7e-04 46.24 0.0478 0.1948 128 5.12M 40.00K 40.00K
80000 6.5627 3.0e-04 89.52 0.0446 0.1948 128 10.24M 80.00K 80.00K

Laplace, 𝑛 = 10,000, 𝑑 = 4
algo param obj relobj runtime dopt dtruth iter tO aO hO

CSS
1e-2 8.1796 5.8e-02 57.46 3.9044 3.9328
1e-3 7.7327 4.6e-04 - 0.3470 0.4081
1e-4 7.7292 0.0e-00 - 0.0000 0.2025

RS-DI None 7.7401 1.4e-03 42.70 0.0886 0.1825 128 8.14M 63.60K 39.20K
RS-RI None 7.7370 1.0e-03 65.67 0.0753 0.2295 128 6.88M 53.75K 32.00K
NS-DI None 7.7399 1.4e-03 263.40 0.0801 0.1724 128 8.14M 63.60K 39.20K
NS-RI None 7.7365 9.4e-04 225.80 0.0480 0.2159 128 6.88M 53.75K 32.00K

RS-RF

5000 7.7541 3.2e-03 64.93 0.1051 0.2499 1024 5.12M 5.00K 5.00K
10000 7.7543 3.2e-03 57.87 0.0918 0.2435 512 5.12M 10.00K 10.00K
20000 7.7468 2.3e-03 51.25 0.1157 0.2529 256 5.12M 20.00K 20.00K
40000 7.7511 2.8e-03 46.31 0.0907 0.2423 128 5.12M 40.00K 40.00K
80000 7.7378 1.1e-03 89.13 0.0529 0.2230 128 10.24M 80.00K 80.00K

via the chain rule and the subgradient of the maximum function (see, e.g., [26]). After

standardizing each coordinate of our data to have mean zero and unit variance, which

does not affect the őnal outcome due to the affine equivariance of the log-concave

MLE [78, Remark 2.4], we generate 𝑚 = 10 initializing hyperplanes from a standard

(𝑑+1)-dimensional Gaussian distribution. We then obtain the initializer for our main

algorithm by applying a vanilla subgradient method to the objective (3.28) [203, 185]

with stepsize 𝑡−1/2 at the 𝑡th iteration, terminating when the difference in the objective

function at successive iterations drops below 10−4, or after 100 iterations, whichever

is the sooner. This technique is related to the non-convex method for log-concave

density estimation proposed by [188], who considered a smoothed version of (3.28).

Our goal here is only to seek a good initializer rather than the global optimum, and

we found that the approach described above was effective in this respect, as well as
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Table 3.5: Statistics of the distance between the optimal solution and truth. For each
type of data set, we drew 40 random samples of the sizes given, and computed the
log-concave MLE by CSS with tolerance 10−4.

mean std.error min 25% 50% 75% max

normal (𝑛 = 5,000) 0.2565 0.0093 0.2415 0.2480 0.2574 0.2629 0.2745
Laplace (𝑛 = 5,000) 0.2590 0.0114 0.2366 0.2508 0.2578 0.2676 0.2825

being faster to compute than the method of [188].

3.A.2 Final polishing step

As mentioned in Section 3.3.2.1, once our algorithm terminates at �̃�𝑇 , say, we

evaluate the integral 𝐼(�̃�𝑇 ) in the same way as [61]. Our őnal output, then is

𝜑𝑇 := �̃�𝑇 + log 𝐼(�̃�𝑇 )1; this őnal step not only improves the objective function,

but also guarantees that exp[−cef[𝜑𝑇 ](·)] is a log-concave density. This can be shown

by following the same arguments as in Steps 2-3 in the proof of Theorem 3.4.

3.A.3 Input parameter settings

According to Theorem 3.1, we should take 𝑢 = 𝐷
2

√︁
𝐵1

𝐵0
. By Table 3.2, for randomized

smoothing, this is approximately 𝐷
2
𝐶1

√
𝑛, where 𝐶1 =

√
∆𝑒−𝜑0 . In our experiments

for randomized smoothing, we chose 𝑢 = 𝐷𝑛1/4/2, while for Nesterov smoothing, we

chose 𝑢 = 𝐷/2. According to Theorem 3.1, 𝜂 = 𝜎𝑀
(1)
𝑇 /𝐷, where we took 𝜎 = 10−4 for

RS-RI and RS-DI, and 𝜎 = 10−3 for NS-RI and NS-DI. For the competing RS-RF-𝑚

method, we present the better of the results from 𝜎 ∈ {10−3, 10−4}.
To illustrate the increasing grid size strategy we take in the experiments, we őrst

present in Table 3.6 some potential schemes to achieve the �̃�(1/𝑇 ) error rate on the

objective function scale. In our experiments, we used the multi-stage increasing grid

size scheme with 𝐶1 = 8 and 𝜌1 = 2. For the random grid (RI), we take 𝐶 = 5,000 and

𝜌 = 2. For the deterministic grid (DI), we őrst choose an axis-aligned grid with 𝑚0,𝑡

points in each dimension that encloses the convex hull 𝐶𝑛 of the data. Then 𝑚𝑡 is the

number of these grid points that fall within 𝐶𝑛. Table 3.7 provides an illustration of
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Table 3.6: Examples of increasing grid size (|𝒮𝑡| = 𝑚𝑡) schemes to achieve �̃�(1/𝑇 )

rate (i.e. 𝑀
(1/2)
𝑇 = �̃�(1) for deterministic 𝒮𝑡 and 𝑀

(1)
𝑇 = �̃�(1) for random 𝒮𝑡). Here,

𝐶 and 𝐶1 are positive constants. For the multi-stage scheme, 𝑎 ≥ 1 denotes the
current stage number.

Schemes Grid Sizes 𝑀
(1/2)
𝑇 = �̃�(1) 𝑀

(1)
𝑇 = �̃�(1)

Exponential 𝑚𝑡 = 𝐶𝜌𝑡 𝜌 > 1 𝜌 > 1

Polynomial 𝑚𝑡 = 𝐶𝑡𝛽 𝛽 ≥ 2 𝛽 ≥ 1

Multi-stage
𝑚𝑡 = 𝐶𝜌𝑎 for

𝜌21 ≤ 𝜌 𝜌1 ≤ 𝜌
𝑡 ∈

[︀
1{𝑎≥1} + 𝐶1𝜌

𝑎−1
1 1{𝑎≥2}, 𝐶1𝜌

𝑎
1

]︀

this multi-stage strategy used in the numerical experiments for a Laplace distribution

with 𝑛 = 5,000 and 𝑑 = 4. Code for the other settings is available in the github

repository LogConcComp.

Table 3.7: Summary of increasing grid size strategy (illustrated with 𝑛 = 5,000
observations from a Laplace distribution in four dimensions). We take a four stage
grid strategy and 128 iterations in total, with stage lengths shown in second line.
For deterministic grids (denoted by DI), we use 𝑚0,𝑡 to determine the grid size (third
line in the table), and the fourth line of the table is the corresponding grid size. For
random grids (denoted by RI), the őfth line is the grid size of random sample.

Stage number 𝑎 1 2 3 4
Stage length 16 16 32 64

DI 𝑚0,𝑡 18 22 26 30
DI 𝑚𝑡 10,656 23,582 45,969 81,558
RI 𝑚𝑡 10,000 20,000 40,000 80,000

3.A.4 Experimental results on real data sets

We provide additional simulation results on three real data sets:

• Stock returns: The Stock returns real data consist of daily returns of four

stocks3 over 𝑛 = 10,000 randomly sampled days between 1970 and 2010, nor-

malized so that each dimension has unit variance. The real data are available

at https://stooq.com/db/h/.

3International Business Machines Corporation (IBM.US), JPMorgan Chase & Co. (JPM.US),
Caterpillar Inc. (CAT.US), 3M Company (MMM.US)
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• Census: The Census real data consist of percentages of the population of

different age groups (18-24, 25-44, 45-64 and 65+) for 𝑛 = 10,000 randomly

sampled Census tracts based on the 2015-2019 5-year ACS (American Commu-

nity Survery)4, and the data are normalized so that each dimension has unit

variance. The data and description are available at https://www.census.gov/

topics/research/guidance/planning-databases/2021.html.

• Gas turbine: The Gas turbine real data consist of 4 sensor measures5 aggre-

gated over one hour from a gas turbine for 𝑛 = 10,000 hours between 2011

and 2015, normalized so that each dimension has unit variance. The data are

available at https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+

and+NOx+Emission+Data+Set.

Table 3.8, Figure 3-4 and Figure 3-5 provide simulation results that correspond to

those in Table 3.3, Figure 3-2 and Figure 3-3 respectively, but for three three real data

sets. The table and őgures reveal a qualitatively very similar story to that presented

for the simulated data in Section 3.6: the main conclusion is that our randomized

smoothing approaches are signiőcantly more computationally efficient than both the

Nesterov smoothing and CSS methods.

3.B Appendix: Proofs

3.B.1 Proofs of Propositions 3.1 and 3.2

The proof of Proposition 3.1 is adapted from the proof of [10, Lemma 2], which in

turn is based on [47, Lemma 8].

Proof of Proposition 3.1. The proof has three parts.

4pct_Pop_18_24_ACS_15_19, pct_Pop_25_44_ACS_15_19,
pct_Pop_45_64_ACS_15_19, pct_Pop_65plus_ACS_15_19

5Ambient temperature (AT), Ambient pressure (AP), Carbon monoxide (CO), Nitrogen oxides
(NOx).
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Table 3.8: Comparison of our proposed methods with the CSS solution [61] and RS-
RF [75], but on 3 real datasets. Details are given in the caption of Table 3.3.

Stock returns, 𝑛 = 10,000, 𝑑 = 4
algo param obj relobj runtime dopt iter tO aO hO

CSS
1e-2 6.3395 6.7e-02 315.19 5.4659
1e-3 5.9458 8.7e-04 - 0.5130
1e-4 5.9406 0.0e-00 - 0.0000

RS-DI None 5.9589 3.1e-03 38.47 0.1428 128 7.79M 60.86K 30.22K
RS-RI None 5.9778 6.3e-03 59.65 0.2032 128 6.88M 53.75K 32.00K
NS-DI None 5.9506 1.7e-03 254.91 0.0792 128 7.79M 60.86K 30.22K
NS-RI None 5.9672 4.5e-03 228.82 0.1362 128 6.88M 53.75K 32.00K

RS-RF

5000 6.0003 1.0e-02 61.98 0.2015 1024 5.12M 5.00K 5.00K
10000 5.9886 8.1e-03 54.20 0.2354 512 5.12M 10.00K 10.00K
20000 5.9852 7.5e-03 49.16 0.2141 256 5.12M 20.00K 20.00K
40000 5.9940 9.0e-03 46.25 0.3194 128 5.12M 40.00K 40.00K
80000 5.9665 4.4e-03 84.59 0.1055 128 10.24M 80.00K 80.00K

Census, 𝑛 = 10,000, 𝑑 = 4
algo param obj relobj runtime dopt iter tO aO hO

CSS
1e-2 5.4458 9.4e-03 71.36 0.9222
1e-3 5.3953 1.2e-05 812.49 0.0098
1e-4 5.3952 0.0e-00 - 0.0000

RS-DI None 5.3995 8.0e-04 31.97 0.0478 128 6.19M 48.33K 25.79K
RS-RI None 5.4003 9.4e-04 63.32 0.0506 128 6.88M 53.75K 32.00K
NS-DI None 5.3992 7.3e-04 199.74 0.0453 128 6.19M 48.33K 25.79K
NS-RI None 5.3992 7.4e-04 223.34 0.0475 128 6.88M 53.75K 32.00K

RS-RF

5000 5.4100 2.7e-03 69.86 0.1047 1024 5.12M 5.00K 5.00K
10000 5.4093 2.6e-03 60.79 0.0796 512 5.12M 10.00K 10.00K
20000 5.4074 2.3e-03 55.89 0.1236 256 5.12M 20.00K 20.00K
40000 5.4059 2.0e-03 49.04 0.0587 128 5.12M 40.00K 40.00K
80000 5.3998 8.6e-04 94.51 0.0477 128 10.24M 80.00K 80.00K

Gas turbine, 𝑛 = 10,000, 𝑑 = 4
algo param obj relobj runtime dopt iter tO aO hO

CSS
1e-2 5.5920 5.7e-03 95.59 0.5908
1e-3 5.5617 2.7e-04 - 0.0994
1e-4 5.5602 0.0e-00 - 0.0000

RS-DI None 5.5693 1.6e-03 34.14 0.0897 128 7.08M 55.28K 25.53K
RS-RI None 5.5633 5.7e-04 61.90 0.0493 128 6.88M 53.75K 32.00K
NS-DI None 5.5689 1.6e-03 230.47 0.0914 128 7.08M 55.28K 25.53K
NS-RI None 5.5622 3.7e-04 224.88 0.0499 128 6.88M 53.75K 32.00K

RS-RF

5000 5.5694 1.7e-03 67.28 0.1111 1024 5.12M 5.00K 5.00K
10000 5.5670 1.2e-03 61.22 0.0794 512 5.12M 10.00K 10.00K
20000 5.5673 1.3e-03 53.08 0.0455 256 5.12M 20.00K 20.00K
40000 5.5657 9.9e-04 47.80 0.0547 128 5.12M 40.00K 40.00K
80000 5.5632 5.5e-04 92.44 0.0501 128 10.24M 80.00K 80.00K

Part 1. We őrst prove that 𝜑*
𝑖 ∈ [𝜑0, 𝜑

0] for all 𝑖 ∈ [𝑛]; or equivalently

log �̂�𝑛(𝑥𝑖) ≥ −(𝑛− 1)− 𝑑(𝑛− 1) log
(︀
2𝑛+ 2𝑛𝑑 log(2𝑛𝑑)

)︀
− log∆

log �̂�𝑛(𝑥𝑖) ≤ 1 + 𝑑 log
(︀
2𝑛+ 2𝑛𝑑 log(2𝑛𝑑)

)︀
− log∆

(3.29)
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for all 𝑖 ∈ [𝑛]. Deőne

𝑀 := sup
𝑥∈R𝑑

�̂�𝑛(𝑥) = max
𝑖∈[𝑛]

�̂�𝑛(𝑥𝑖) and 𝑅 :=
max𝑖∈[𝑛] �̂�𝑛(𝑥𝑖)

min𝑖∈[𝑛] �̂�𝑛(𝑥𝑖)
.

We proceed to obtain an upper bound on 𝑅. To this end, let �̄�𝑛 denote the uniform

density over 𝐶𝑛. If �̂�𝑛(𝑥𝑖) = �̄�𝑛(𝑥𝑖) = 1/∆ for all 𝑖, then (3.29) holds. So we may

assume that �̂�𝑛 ̸= �̄�𝑛, so that 𝑅 > 1 and 𝑀 > 1/∆. For a density 𝑝 on R
𝑑 and for

𝑡 ∈ R, let 𝐿𝑝(𝑡) := {𝑥 ∈ R
𝑑 : 𝑝(𝑥) ≥ 𝑡} denote the super-level set of 𝑝 at height 𝑡.

Since �̂�𝑛 is supported on 𝐶𝑛, and since �̂�𝑛(𝑥) ≥ min𝑖∈[𝑛] �̂�𝑛(𝑥𝑖) =𝑀/𝑅 for 𝑥 ∈ 𝐶𝑛, it

follows by [47, Lemma 8]6 that when 𝑅 ≥ 𝑒,

∆ = vol(𝐶𝑛) ≤ vol
(︀
𝐿�̂�𝑛(𝑀/𝑅)

)︀
≤ 𝑒 log𝑑𝑅

𝑀
. (3.30)

On the other hand, since inf𝑥∈𝐶𝑛
�̂�𝑛(𝑥) =𝑀/𝑅, we have (𝑀/𝑅) ·∆ ≤ 1, so for 𝑅 < 𝑒,

we have 𝑀 ≤ 𝑅/∆ < 𝑒/∆. We deduce that

𝑀 ≤ 𝑒 log𝑑+𝑅

∆
, (3.31)

for all 𝑅 > 1, where log+(𝑥) := 1 ∨ log 𝑥. Now, by the optimality of �̂�𝑛, we have

𝑛 log(1/∆)=
𝑛∑︁

𝑖=1

log �̄�𝑛(𝑥𝑖)≤
𝑛∑︁

𝑖=1

log �̂�𝑛(𝑥𝑖) ≤ min
𝑖∈[𝑛]

log �̂�𝑛(𝑥𝑖) + (𝑛− 1)max
𝑖∈[𝑛]

log �̂�𝑛(𝑥𝑖)

= log(𝑀/𝑅) + (𝑛− 1) log𝑀, (3.32)

so that 𝑅 ≤ (𝑀∆)𝑛. It follows that when 𝑅 ≥ 𝑒, we have from (3.31) and the fact

that log 𝑦 ≤ 𝑦 for 𝑦 > 0 that

𝑅 =
𝑅2

𝑅
≤ 𝑒2𝑛 log2𝑛𝑑𝑅

𝑅
≤ 𝑒2𝑛(2𝑛𝑑)2𝑛𝑑. (3.33)

6In fact, the factor of 𝑒 is omitted in the statement of [47, Lemma 8], but one can see from the
authors’ inequalities (27) and (28) that it should be present.
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Since (3.33) holds trivially when 𝑅 < 𝑒, we may combine (3.33) with (3.31) to obtain

log𝑀 ≤ 1 + 𝑑 log
(︀
2𝑛+ 2𝑛𝑑 log(2𝑛𝑑)

)︀
− log∆ (3.34)

Moreover, from (3.32) and (3.34), we also have

log(𝑀/𝑅) ≥ −𝑛 log∆− (𝑛− 1) log𝑀

≥ −(𝑛− 1)− 𝑑(𝑛− 1) log
(︀
2𝑛+ 2𝑛𝑑 log(2𝑛𝑑)

)︀
− log∆,

as required.

Part 2. Now we extend the above result to all 𝜑 ∈ R
𝑛 such that 𝐼(𝜑) = 1 and

𝑓(𝜑) ≤ 𝑓(�̄�), where �̄� is deőned just after Proposition 3.1. The key observation here

is that the proof of Part 1 applies to any density with log-likelihood at least that of

the uniform distribution over 𝐶𝑛. In particular, for any 𝜑 satisfying these conditions,

the density 𝑝 ∈ ℱ𝑑 given by 𝑝(𝑥) = exp{−cef[𝜑](𝑥)} has log-likelihood at least that

of the uniform distribution over 𝐶𝑛, so

−𝜑0 ≤ min
𝑖∈[𝑛]

log 𝑝(𝑥𝑖) ≤ sup
𝑥∈R𝑑

log 𝑝(𝑥) ≤ −𝜑0,

as required.

Part 3. We now consider the case for a general 𝜑 ∈ R
𝑛 with 𝑓(𝜑) ≤ 𝑓(�̄�). Let �̃� :=

𝜑+ log 𝐼(𝜑)1, so that 𝐼(�̃�) = 1 and cef[�̃�](·) = cef[𝜑](·) + log(𝐼(𝜑)). Furthermore,

𝑓(�̃�) =
1

𝑛
1
⊤𝜑+ log 𝐼(𝜑) + 1 ≤ 1

𝑛
1
⊤𝜑+ 𝐼(𝜑) = 𝑓(𝜑) ≤ 𝑓(�̄�).

The result therefore follows by Part 2.

Proof of Proposition 3.2. Recall our notation from Section 3.2 that 𝛼*[𝜑](𝑥) ∈
𝐴[𝜑](𝑥) denotes a solution to (𝑄0) at 𝑥 ∈ 𝐶𝑛. Recall further from (3.9) that any
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subgradient 𝑔(𝜑) of 𝑓 at 𝜑 is of the form

𝑔(𝜑) =
1

𝑛
1− 𝛾,

where 𝛾 := ∆E
[︀
𝛼*[𝜑](𝜉) exp{−cef[𝜑](𝜉)}

]︀
and 𝜉 is uniformly distributed on 𝐶𝑛.

Since 𝛼* lies in the simplex {𝛼 ∈ R
𝑛 : 𝛼 ≥ 0,1⊤𝛼 = 1}, we have 𝛾 ≥ 0 and

1
⊤𝛾 = ∆E[1⊤𝛼*[𝜑](𝜉) exp{−cef[𝜑](𝜉)}] = ∆E[exp{−cef[𝜑](𝜉)}] = 𝐼(𝜑).

In particular, ‖𝛾‖1 = 𝐼(𝜑), so

‖𝑔(𝜑)‖2 = 1

𝑛
− 2

𝑛
1
⊤𝛾 + ‖𝛾‖2 ≤ 1

𝑛
− 2

𝑛
𝐼(𝜑) + 𝐼(𝜑)2.

If 𝐼(𝜑) ≤ 1/2, then ‖𝑔(𝜑)‖2 ≤ 1/4 + 1/𝑛; if 𝐼(𝜑) > 1/2, then ‖𝑔(𝜑)‖2 ≤ 𝐼(𝜑)2.

Therefore, ‖𝑔(𝜑)‖2 ≤ max
{︀
1/4 + 1/𝑛, 𝐼(𝜑)2

}︀
.

3.B.2 Proofs of Proposition 3.3 and Proposition 3.4

The proof of Proposition 3.3 is based on the following properties of the quadratic

program 𝑞𝑢[𝜑](𝑥) deőned in (𝑄𝑢), as well as its unique optimizer 𝛼*
𝑢[𝜑](𝑥):

Proposition 3.5. For 𝜑 ∈ Φ and 𝑥 ∈ 𝐶𝑛, we have

(a) ‖𝛼*
𝑢[𝜑](𝑥)‖ ≤ 1 for any 𝑥 ∈ 𝐶𝑛 and 𝜑 ∈ Φ;

(b) 𝑞𝑢′ [𝜑](𝑥) + (𝑢′ − 𝑢)/2 ≤ 𝑞𝑢[𝜑](𝑥) ≤ 𝑞𝑢′ [𝜑](𝑥) for 𝑢′ ∈ [0, 𝑢];

(c) 𝜑0 − 𝑢
2
≤ 𝑞𝑢[𝜑](𝑥) ≤ 𝜑0 for all 𝑢 ≥ 0, 𝜑 ∈ Φ and 𝑥 ∈ 𝐶𝑛;

(d) ‖𝛼*
𝑢[�̃�](𝑥) − 𝛼*

𝑢[𝜑](𝑥)‖ ≤ (1/𝑢)‖�̃� − 𝜑‖ for any 𝑢 > 0, 𝜑, �̃� ∈ Φ, and any

𝑥 ∈ 𝐶𝑛.

Proof. The proof exploits ideas from [172]. For (a), observe that 𝛼*
𝑢[𝜑](𝑥) ∈ 𝐸(𝑥) ⊆

{𝛼 ∈ R
𝑛 : 1⊤

𝑛𝛼 = 1,𝛼 ≥ 0
}︀
, and this simplex is the convex hull of 𝑛+ 1 points that

all lie in the closed unit Euclidean ball in R
𝑛.

The lower bound in (b) follows immediately from the deőnition of the quadratic
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program in (𝑄𝑢). For the upper bound, for 𝑢′ ∈ [0, 𝑢], we have

𝑞𝑢[𝜑](𝑥)− 𝑞𝑢′ [𝜑](𝑥)

= (𝛼*
𝑢)

⊤𝜑+
𝑢

2

⃦
⃦𝛼*

𝑢 −𝛼0

⃦
⃦
2 − (𝛼*

𝑢′)
⊤𝜑− 𝑢′

2

⃦
⃦𝛼*

𝑢′ −𝛼0

⃦
⃦
2
+
𝑢′ − 𝑢

2

≤ 𝑢− 𝑢′
2

(︂
⃦
⃦𝛼*

𝑢′ −𝛼0

⃦
⃦
2 − 1

)︂

≤ 𝑢− 𝑢′
2

(︂

1− 2

𝑛
+

1

𝑛
− 1

)︂

≤ 0,

in which 𝛼*
𝑢 and 𝛼*

𝑢′ denote 𝛼*
𝑢[𝜑](𝑥) and 𝛼*

𝑢′ [𝜑](𝑥), respectively.

(c) For all 𝑢 ≥ 0, 𝜑 ∈ Φ and 𝑥 ∈ 𝐶𝑛, we have

𝑞𝑢[𝜑](𝑥) = inf
𝛼∈𝐸(𝑥)

(︂

𝛼⊤𝜑+
𝑢

2
‖𝛼−𝛼0‖2 −

𝑢

2

)︂

≥ inf
𝛼∈𝐸(𝑥)

𝛼⊤𝜑− 𝑢

2

≥ 𝜑0 inf
𝛼∈𝐸(𝑥)

𝛼⊤
1𝑛 −

𝑢

2
= 𝜑0 −

𝑢

2
.

Similarly,

𝑞𝑢[𝜑](𝑥) ≤ 𝜑0 sup
𝛼∈𝐸(𝑥)

𝛼⊤
1𝑛 +

𝑢

2
sup

𝛼∈𝐸(𝑥)

‖𝛼−𝛼0‖2 −
𝑢

2
≤ 𝜑0.

(d) Observe that

𝛼*
𝑢[𝜑](𝑥) = argmin

𝛼∈𝐸(𝑥)

(︂

𝛼⊤𝜑+
𝑢

2
‖𝛼−𝛼0‖2

)︂

= argmin
𝛼∈𝐸(𝑥)

⃦
⃦
⃦
⃦
𝛼−

(︂

𝛼0 −
𝜑

𝑢

)︂⃦
⃦
⃦
⃦

2

,

so 𝛼*
𝑢[𝜑](𝑥) is the Euclidean projection of 𝛼0−(𝜑/𝑢) onto 𝐸(𝑥). Since this projection

is an ℓ2-contraction, we deduce that

⃦
⃦𝛼*

𝑢[�̃�](𝑥)−𝛼*
𝑢[𝜑](𝑥)

⃦
⃦ ≤

⃦
⃦
⃦
⃦
𝛼0 −

�̃�

𝑢
−

(︂

𝛼0 −
𝜑

𝑢

)︂⃦
⃦
⃦
⃦
=

1

𝑢
‖�̃�− 𝜑‖,

as required.

Proof of Proposition 3.3. (a) For 𝑢 ≥ 0 and 𝜑 ∈ Φ, let

𝐼𝑢(𝜑) :=

∫︁

𝐶𝑛

𝑒−𝑞𝑢[𝜑](𝑥) 𝑑𝑥 = ∆E(𝑒−𝑞𝑢[𝜑](𝜉)),
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where 𝜉 is uniformly distributed on 𝐶𝑛, so that 𝐼0(𝜑) = 𝐼(𝜑). By deőnition of 𝑓𝑢,

we have for 𝑢′ ∈ [0, 𝑢] that

𝑓𝑢(𝜑)− 𝑓𝑢′(𝜑) = 𝐼𝑢(𝜑)− 𝐼𝑢′(𝜑) = ∆E
(︀
𝑒−𝑞𝑢[𝜑](𝜉) − 𝑒−𝑞𝑢′ [𝜑](𝜉)

)︀
≥ 0, (3.35)

where the inequality follows from Proposition 3.5(b). Hence, for every 𝑢 ≥ 0 and

𝜑 ∈ Φ,

𝐼𝑢(𝜑) ≤ 𝑒𝑢/2𝐼0(𝜑) = 𝑒𝑢/2𝐼(𝜑). (3.36)

Now, from (3.35), Proposition 3.5(b) and (3.36), we deduce that

𝑓𝑢(𝜑)− 𝑓𝑢′(𝜑) ≤
(︀
𝑒(𝑢−𝑢

′)/2 − 1
)︀
𝐼𝑢′(𝜑) ≤

𝑢− 𝑢′
2

𝑒𝑢
′/2𝐼(𝜑),

as required.

(b) For each 𝑥 ∈ 𝐶𝑛, the function 𝜑 ↦→ 𝑞𝑢[𝜑](𝑥) is the inőmum of a set of affine

functions of 𝜑, so it is concave. Moreover, 𝑦 ↦→ 𝑒−𝑦 is a decreasing convex function, so

𝜑 ↦→ 𝑒−𝑞𝑢[𝜑](𝑥) is convex, and it follows that 𝜑 ↦→ (1/𝑛)1⊤𝜑+∆E(𝑒−𝑞𝑢[𝜑](𝜉)) = 𝑓𝑢(𝜑)

is convex. Similarly to the proof of Proposition 3.2, any subgradient �̃�𝑢(𝜑) of 𝑓𝑢 at

𝜑 satisőes

‖�̃�𝑢(𝜑)‖2 ≤ max

{︂
1

4
+

1

𝑛
, 𝐼𝑢(𝜑)

2

}︂

≤ max

{︂
1

4
+

1

𝑛
,∆2𝑒−2𝜑0+𝑢

}︂

. (3.37)

But 𝜑* ∈ Φ, so ∆2𝑒−2𝜑0+𝑢 ≥ (∆𝑒−𝜑0)2 ≥ 𝐼(𝜑*)2 = 1 ≥ 1/4 + 1/𝑛. Hence, 𝑓𝑢 is

𝑒−𝜑0+𝑢/2-Lipschitz.

(c) To establish the Lipschitz property of ∇𝜑𝑓𝑢, for any 𝑥 ∈ 𝐶𝑛, any 𝜑, �̃� ∈ Φ, and

𝑡 ∈ [0, 1], we deőne

𝜂(𝑡) := 𝑒−𝑞𝑢[𝜑+𝑡(�̃�−𝜑)](𝑥).

Then

𝜂′(𝑡) = −𝑒−𝑞𝑢[𝜑+𝑡(�̃�−𝜑)](𝑥)(�̃�− 𝜑)⊤𝛼*
𝑢[𝜑+ 𝑡(�̃�− 𝜑)](𝑥).
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By the mean value theorem there exists 𝑡0 ∈ [0, 1] such that

⃒
⃒𝑒−𝑞𝑢[�̃�](𝑥) − 𝑒−𝑞𝑢[𝜑](𝑥)

⃒
⃒ = |𝜂(1)−𝜂(0)| = |𝜂′(𝑡0)|

≤ 𝑒−𝑞𝑢[𝜑+𝑡0(�̃�−𝜑)](𝑥)‖�̃�− 𝜑‖
⃦
⃦𝛼*

𝑢[𝜑+ 𝑡0(�̃�− 𝜑)](𝑥)
⃦
⃦

≤ 𝑒−𝜑0+𝑢/2‖�̃�− 𝜑‖, (3.38)

where the őnal bound follows from Proposition 3.5(a) and (c). Now, for any 𝑥 ∈ 𝐶𝑛,
we have by (3.38) as well as Proposition 3.5(a), (c) and (d) that

⃦
⃦𝑒−𝑞𝑢[�̃�](𝑥)𝛼*

𝑢[�̃�](𝑥)− 𝑒−𝑞𝑢[𝜑](𝑥)𝛼*
𝑢[𝜑](𝑥)

⃦
⃦

=
⃦
⃦
(︀
𝑒−𝑞𝑢[�̃�](𝑥) − 𝑒−𝑞𝑢[𝜑](𝑥)

)︀
𝛼*
𝑢[�̃�](𝑥) + 𝑒−𝑞𝑢[𝜑](𝑥)

(︀
𝛼*
𝑢[�̃�](𝑥)−𝛼*

𝑢[𝜑](𝑥)
)︀⃦
⃦

≤ 𝑒−𝜑0+𝑢/2‖�̃�− 𝜑‖+ 𝑒+𝑢/2−𝜑0
1

𝑢
‖�̃�− 𝜑‖ = 𝑒−𝜑0+𝑢/2(1 + 𝑢−1)‖�̃�− 𝜑‖.

It follows that for any 𝜑, �̃� ∈ Φ, we have

⃦
⃦∇�̃�𝑓𝑢(�̃�)−∇𝜑𝑓𝑢(𝜑)

⃦
⃦ ≤ ∆E

⃦
⃦𝑒−𝑞𝑢[�̃�](𝜉)𝛼*

𝑢[�̃�](𝜉)− 𝑒−𝑞𝑢[𝜑](𝜉)𝛼*
𝑢[𝜑](𝜉)

⃦
⃦

≤ ∆𝑒−𝜑0+𝑢/2(1 + 𝑢−1)‖�̃�− 𝜑‖,

as required.

(d) For 𝑢 ≥ 0 and 𝜑 ∈ Φ, it follows from Proposition 3.5(a) and (c) that

E
(︀
‖�̃�𝑢(𝜑, 𝜉)−∇𝑓𝑢(𝜑)‖2

)︀
= E

⃦
⃦∆𝑒−𝑞𝑢[𝜑](𝜉)𝛼*

𝑢[𝜑](𝜉)−∆E
(︀
𝑒−𝑞𝑢[𝜑](𝜉)𝛼*

𝑢[𝜑](𝜉)
)︀⃦
⃦
2

≤ ∆2
E
⃦
⃦𝑒−𝑞𝑢[𝜑](𝜉)𝛼*

𝑢[𝜑](𝜉)
⃦
⃦
2 ≤ (∆𝑒−𝜑0+𝑢/2)2,

as required.

Proposition 3.6. If 𝑧 is uniformly distributed on the unit ℓ2-ball in R
𝑛, then

E(‖𝑧‖∞) ≤
√︁

2 log𝑛
𝑛+1

.

Proof. By [223, Proposition 3], we have that 𝑧
𝑑
= 𝑈1/𝑛𝑧′, where 𝑈 ∼ 𝒰 [0, 1], where 𝑧′

is uniformly distributed on the unit sphere in R
𝑛, and where 𝑈 and 𝑧′ are independent.
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Thus,

E(‖𝑧‖∞) = E(𝑈1/𝑛)E(‖𝑧′‖∞) =
𝑛

𝑛+ 1
E(‖𝑧′‖∞). (3.39)

Moreover, if 𝜁 ∼ 𝒩 (0, 𝐼𝑛), then ‖𝜁‖ and 𝜁/‖𝜁‖ are independent, and 𝑧′
𝑑
= 𝜁/‖𝜁‖. It

follows that

E(‖𝑧′‖∞)=E

(︂‖𝜁‖∞
‖𝜁‖

)︂

· E(‖𝜁‖)
E(‖𝜁‖) =

E(‖𝜁‖∞)

E(‖𝜁‖) =

√
2 log 𝑛 · Γ(𝑛/2)

21/2Γ
(︀
(𝑛+ 1)/2

)︀ ≤ 1

𝑛

√︀

2(𝑛+ 1) log 𝑛,

(3.40)

where the őnal bound follows from bounds on the gamma function, e.g. [79,

Lemma 12]. The result follows from (3.39) and (3.40).

Proof of Proposition 3.4. (a) By Jensen’s inequality,

𝑓𝑢(𝜑) = E𝑓(𝜑+ 𝑢𝑧) ≥ 𝑓(𝜑). (3.41)

For the upper bound, let 𝑣 ∈ R
𝑛 have ‖𝑣‖ ≤ 1 and, for some 𝜑 ∈ Φ, let �̄� := 𝜑+𝑢𝑣.

For any 𝛼 ∈ 𝐸(𝑥), we have

|𝛼⊤�̄�−𝛼⊤𝜑| = 𝑢|𝛼⊤𝑣| ≤ 𝑢‖𝛼‖1‖𝑣‖∞ ≤ 𝑢.

Therefore, for any 𝑥 ∈ 𝐶𝑛, we have cef[�̄�](𝑥) ≥ cef[𝜑](𝑥)− 𝑢. Hence

𝐼(�̄�) = ∆E[exp{−cef[�̄�](𝜉)}] ≤ 𝑒𝑢∆E[exp{−cef[𝜑](𝜉)}] = 𝑒𝑢𝐼(𝜑). (3.42)

Recall that all subgradients of 𝐼 at �̃� ∈ R
𝑛 are of the form −𝛾(�̃�), where

𝛾(�̃�) = ∆E
(︀
𝛼 exp{−cef[�̃�](𝜉)}

)︀

for some𝛼 ∈ 𝐴[�̃�](𝑥). Moreover, as we saw in the proof of Proposition 3.2, ‖𝛾(�̃�)‖1 =
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𝐼(�̃�). We deduce from [193, Theorem 24.7] that

𝑓𝑢(𝜑)− 𝑓(𝜑) = E
(︀
𝐼(𝜑+ 𝑢𝑧)− 𝐼(𝜑)

)︀
≤ 𝑢 sup

𝜑∈Φ,‖𝑣‖≤1

𝐼(𝜑+ 𝑢𝑣)E
(︀
‖𝑧‖∞

)︀

≤ 𝐼(𝜑)𝑢𝑒𝑢E
(︀
‖𝑧‖∞

)︀
≤ 𝐼(𝜑)𝑢𝑒𝑢

√︂

2 log 𝑛

𝑛+ 1
,

where the őnal inequality uses Proposition 3.6.

(b) By the convexity of 𝑓 , we have

𝑓𝑢′(𝜑) = E
(︀
𝑓(𝜑+ 𝑢′𝑧)

)︀
≤ 𝑢′

𝑢
𝑓𝑢(𝜑) +

(︂

1− 𝑢′

𝑢

)︂

𝑓(𝜑) ≤ 𝑓𝑢(𝜑),

where the last inequality uses property (a).

(c) For each 𝑣 ∈ R
𝑛 with ‖𝑣‖ = 1, the map 𝜑 ↦→ 𝑓(𝜑 + 𝑢𝑣) is convex, so 𝜑 ↦→

E
(︀
𝑓(𝜑+ 𝑢𝑧)

)︀
= 𝑓𝑢(𝜑) is convex. The proof of the Lipschitz property is very similar

to that of Proposition 3.3(b) and is omitted for brevity.

(d) As in the proof of (a), for any 𝑣 ∈ R
𝑛 with ‖𝑣‖ ≤ 1, 𝑥 ∈ 𝐶𝑛 and 𝛼 ∈ 𝐴[𝜑+𝑢𝑣](𝑥),

we have
⃦
⃦𝛼𝑒−cef[𝜑+𝑢𝑣](𝑥)

⃦
⃦ ≤ 𝑒−𝜑0+𝑢.

Since ∇𝜑𝑓𝑢(𝜑) = 𝑛−1
1 − ∆E

(︀
𝛼*[𝜑 + 𝑢𝑧](𝜉)𝑒−cef[𝜑+𝑢𝑧](𝜉)

)︀
, where 𝛼*[𝜑 + 𝑢𝑣](𝑥) ∈

𝐴[𝜑+ 𝑢𝑣](𝑥), we have by [225, Lemma 8] that ∇𝜑𝑓𝑢 is ∆𝑒−𝜑0+𝑢𝑛1/2/𝑢-Lipschitz.

(e) The proof is very similar to the proof of Proposition 3.3(d) and is omitted for

brevity.

3.B.3 Proofs of Theorem 3.1 and Theorem 3.2

We will make use of the following lemma:

Lemma 3.1 (Lemma 4.2 of [75]). Let
(︀
ℓ𝑢𝑡(𝜑)

)︀

𝑡
be a smoothing sequence such that

𝜑 ↦→ ℓ𝑢𝑡(𝜑) has 𝐿𝑡-Lipschitz gradient. Assume that ℓ𝑢𝑡(𝜑) ≤ ℓ𝑢𝑡−1(𝜑) for 𝜑 ∈ Φ.

Let (𝜑
(𝑥)
𝑡 )𝑇𝑡=0, (𝜑

(𝑦)
𝑡 )𝑇𝑡=0, (𝜑

(𝑧)
𝑡 )𝑇𝑡=0 be the sequences generated by Algorithm 3.1. Let 𝑔𝑡

denote an approximation of ∇ℓ𝑢𝑡(𝜑(𝑦)
𝑡 ) with error 𝑒𝑡 = 𝑔𝑡−∇ℓ𝑢𝑡(𝜑(𝑦)

𝑡 ). Then for any
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𝜑 ∈ Φ and 𝑡 ∈ N, we have

1

𝜃2𝑡
ℓ𝑢𝑡(𝜑

(𝑥)
𝑡+1) ≤

𝑡∑︁

𝜏=0

1

𝜃𝜏
ℓ𝑢𝜏 (𝜑) +

1

2

(︂

𝐿𝑡+1 +
𝜂𝑡+1

𝜃𝑡+1

)︂

‖𝜑− 𝜑0‖2

+
𝑡∑︁

𝜏=0

‖𝑒𝜏‖2
2𝜃𝜏𝜂𝜏

+
𝑡∑︁

𝜏=0

1

𝜃𝜏
⟨𝑒𝜏 ,𝜑− 𝜑(𝑧)

𝜏 ⟩.

Recall the deőnition of the diameter 𝐷 of Φ given just before Theorem 3.1.

Corollary 3.2. Fix 𝑢, 𝜂 > 0, and assume that Assumption 3.1 holds with 𝑟 ≥
𝑢. Suppose in Algorithm 3.1 that 𝑢𝑡 = 𝜃𝑡𝑢, 𝐿𝑡 = 𝐵1/𝑢𝑡 and 𝜂𝑡 = 𝜂. Let

(𝜑
(𝑥)
𝑡 )𝑇𝑡=0, (𝜑

(𝑦)
𝑡 )𝑇𝑡=0, (𝜑

(𝑧)
𝑡 )𝑇𝑡=0 be the sequences generated by Algorithm 3.1 and let

𝑒𝑡 = 𝑔𝑡 −∇ℓ𝑢𝑡(𝜑(𝑦)
𝑡 ). Then for any 𝜑 ∈ Φ, we have

𝑓(𝜑
(𝑥)
𝑇 )−𝑓(𝜑) ≤ 𝐵1𝐷

2

𝑇𝑢
+
𝜂𝐷2

𝑇
+

1

𝑇𝜂

𝑇−1∑︁

𝑡=0

‖𝑒𝑡‖2+𝜃2𝑇−1

𝑇−1∑︁

𝑡=0

1

𝜃𝑡
⟨𝑒𝑡,𝜑−𝜑(𝑧)

𝑡 ⟩+
4𝐵0𝐼(𝜑)𝑢

𝑇
.

Proof. By induction, we have that 𝜃𝑡 ≤ 2/(𝑡+ 2) and
∑︀𝑡

𝜏=0 1/𝜃𝜏 = 1/𝜃2𝑡 for all

𝑡 = 0, 1, . . . , 𝑇 [207, 75]. Using Assumption 3.1, we have

1

𝜃2𝑇−1

(︀
𝑓(𝜑

(𝑥)
𝑇 )− 𝑓(𝜑)

)︀
≤ 1

𝜃2𝑇−1

ℓ𝑢𝑇−1
(𝜑

(𝑥)
𝑇 )−

𝑇−1∑︁

𝑡=0

1

𝜃𝑡

(︀
ℓ𝑢𝑡(𝜑)− 𝐵0𝑢𝑡

)︀

=
1

𝜃2𝑇−1

ℓ𝑢𝑇−1
(𝜑

(𝑥)
𝑇 )−

𝑇−1∑︁

𝑡=0

1

𝜃𝑡
ℓ𝑢𝑡(𝜑) + 𝑇𝐵0𝐼(𝜑)𝑢.
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Hence, by Lemma 3.1,

𝑓(𝜑
(𝑥)
𝑇 )− 𝑓(𝜑)

≤ 𝜃2𝑇−1

2
‖𝜑− 𝜑0‖2

(︂

𝐿𝑇 +
𝜂𝑇
𝜃𝑇

)︂

+
𝑇−1∑︁

𝑡=0

𝜃2𝑇−1

2𝜃𝑡𝜂𝑡
‖𝑒𝑡‖2

+ 𝜃2𝑇−1

𝑇−1∑︁

𝑡=0

1

𝜃𝑡
⟨𝑒𝑡,𝜑− 𝜑(𝑧)

𝑡 ⟩+ 𝜃2𝑇−1𝑇𝐵0𝐼(𝜑)𝑢

≤ 𝐵1𝐷
2𝜃2𝑇−1

2𝑢𝜃𝑇
+
𝜂𝑇 𝜃

2
𝑇−1𝐷

2

2𝜃𝑇
+

𝑇−1∑︁

𝑡=0

𝜃2𝑇−1

2𝜃𝑡𝜂𝑡
‖𝑒𝑡‖2

+ 𝜃2𝑇−1

𝑇−1∑︁

𝑡=0

1

𝜃𝑡
⟨𝑒𝑡,𝜑− 𝜑(𝑧)

𝑡 ⟩+ 𝜃2𝑇−1𝑇𝐵0𝐼(𝜑)𝑢

≤ 𝐵1𝐷
2

𝑇𝑢
+
𝜂𝑇𝐷

2

𝑇
+

1

𝑇

𝑇−1∑︁

𝑡=0

1

𝜂𝑡
‖𝑒𝑡‖2 + 𝜃2𝑇−1

𝑇−1∑︁

𝑡=0

1

𝜃𝑡
⟨𝑒𝑡,𝜑− 𝜑(𝑧)

𝑡 ⟩+
4𝐵0𝐼(𝜑)𝑢

𝑇
,

where we have used the facts that 𝜃2𝑇−1/𝜃𝑇 = 𝜃𝑇/(1 − 𝜃𝑇 ) ≤ 2/𝑇 and 𝜃2𝑇−1/𝜃𝑡 ≤
𝜃𝑇−1 ≤ 2/𝑇 for 𝑡 ∈ {0, 1, . . . , 𝑇 − 1} and 𝜃2𝑇−1 ≤ 4/𝑇 2.

Proof of Theorem 3.1. According to Corollary 3.2, it suffices to bound

𝜃2𝑇−1

∑︀𝑇−1
𝑡=0

1
𝜃𝑡
E
(︀
⟨𝑒𝑡,𝜑 − 𝜑(𝑧)

𝑡 ⟩
)︀

and
∑︀𝑇−1

𝑡=0 E
(︀
‖𝑒𝑡‖2

)︀
. To this end, we have by As-

sumption 3.2 that

E
(︀
⟨𝑒𝑡,𝜑− 𝜑(𝑧)

𝑡 ⟩
)︀
= E

(︀
E(⟨𝑒𝑡,𝜑− 𝜑(𝑧)

𝑡 ⟩
⃒
⃒ ℱ𝑡−1)

)︀
≤ E

(︀
E(‖𝑒𝑡‖‖𝜑− 𝜑(𝑧)

𝑡 ‖ | ℱ𝑡−1)
)︀

≤ 𝐷 · E
(︀
E(‖𝑒𝑡‖ | ℱ𝑡−1)

)︀
≤ 𝐷 · E

(︁√︁

E
(︀
‖𝑒𝑡‖2

⃒
⃒ ℱ𝑡−1

)︀)︁

≤ 𝐷𝜎√
𝑚𝑡

.

(3.43)

We deduce that

𝜃2𝑇−1

𝑇−1∑︁

𝑡=0

1

𝜃𝑡
E
(︀
⟨𝑒𝑡,𝜑− 𝜑(𝑧)

𝑡 ⟩
)︀
≤ 2𝐷𝜎𝑀

(1/2)
𝑇

𝑇
. (3.44)

Moreover, by Assumption 3.2 again,

𝑇−1∑︁

𝑡=0

E
(︀
‖𝑒𝑡‖2

)︀
≤ 𝜎2

𝑇−1∑︁

𝑡=0

1

𝑚𝑡

= 𝜎2(𝑀
(1)
𝑇 )2. (3.45)
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The bound (3.18) follows from Corollary 3.2, together with (3.44) and (3.45), and the

bound (3.19) then follows directly from the parameter choice of 𝑢 and 𝜂 and the fact

that 𝐼(𝜑*) = 1.

Finally, if E(𝑒𝑡 | ℱ𝑡−1) = 0, then

E
(︀
⟨𝑒𝑡,𝜑− 𝜑(𝑧)

𝑡 ⟩
)︀
= E

(︀
E(⟨𝑒𝑡,𝜑− 𝜑(𝑧)

𝑡 ⟩ | ℱ𝑡−1)
)︀
= E

(︀
⟨E(𝑒𝑡|ℱ𝑡−1),𝜑− 𝜑(𝑧)

𝑡 ⟩
)︀
= 0

where the second equality uses the fact that 𝜑−𝜑(𝑧)
𝑡 is ℱ𝑡−1-measurable. This allows

us to remove the last term of the two inequalities in the theorem.

Proof of Theorem 3.2. According to Corollary 3.2, it suffices to obtain a high-

probability bound for 𝜃2𝑇−1

∑︀𝑇−1
𝑡=0

1
𝜃𝑡
⟨𝑒𝑡,𝜑 − 𝜑(𝑧)

𝑡 ⟩ and
∑︀𝑇−1

𝑡=0 ‖𝑒𝑡‖2. Writing 𝜁𝑡 :=

𝜑 − 𝜑(𝑧)
𝑡 , we have from the proof of Theorem 3.1 that (1/𝜃𝑡)⟨𝑒𝑡, 𝜁𝑡⟩ is a martingale

difference sequence under Assumption 3.3. Note that 𝜁𝑡 is ℱ𝑡−1-measurable, and we

will now show that ⟨𝑒𝑡, 𝜁𝑡⟩ is
√
2𝜎𝑡𝐷 sub-Gaussian, conditional on ℱ𝑡−1.

For any 𝑥 ∈ R, we have 𝑒𝑥 ≤ 𝑥+ 𝑒𝑥
2
. Hence, for 𝜆 ∈ R such that 𝜆2𝜎2

𝑡𝐷
2 ≤ 1, we

have by the conditional version of Jensen’s inequality that

E
(︀
𝑒𝜆⟨𝑒𝑡,𝜁𝑡⟩ | ℱ𝑡−1

)︀
≤ E

(︀
𝜆⟨𝑒𝑡, 𝜁𝑡⟩ | ℱ𝑡−1

)︀
+ E

(︀
𝑒𝜆

2⟨𝑒𝑡,𝜁𝑡⟩2 | ℱ𝑡−1

)︀

≤ E
(︀
𝑒𝜆

2‖𝑒𝑡‖2𝐷2 |ℱ𝑡−1

)︀
≤ 𝑒𝜆

2𝜎2
𝑡𝐷

2

.

On the other hand, if 𝜆2𝜎2
𝑡𝐷

2 > 1, then since 2𝑎𝑏 ≤ 𝑎2 + 𝑏2 for all 𝑎, 𝑏 ∈ R, we have

E
(︀
𝑒𝜆⟨𝑒𝑡,𝜁𝑡⟩ | ℱ𝑡−1

)︀
≤ 𝑒𝜆

2𝜎2
𝑡𝐷

2/2
E
(︀
𝑒⟨𝑒𝑡,𝜁𝑡⟩

2/(2𝜎2
𝑡𝐷

2) | ℱ𝑡−1

)︀

≤ 𝑒𝜆
2𝜎2

𝑡𝐷
2/2

E
(︀
𝑒‖𝑒𝑡‖

2/(2𝜎2
𝑡 ) | ℱ𝑡−1

)︀
≤ 𝑒𝜆

2𝜎2
𝑡𝐷

2/2𝑒1/2 ≤ 𝑒𝜆
2𝜎2

𝑡𝐷
2

.

We deduce that ⟨𝑒𝑡, 𝜁𝑡⟩/𝜃𝑡 is (
√
2𝜎𝑡𝐷)/𝜃𝑡 sub-Gaussian, conditional on ℱ𝑡−1. Applying
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the AzumaśHoeffding inequality (e.g. [12]) therefore yields that for every 𝜖 > 0,

P

(︂

𝜃2𝑇−1

𝑇−1∑︁

𝑡=0

1

𝜃𝑡
⟨𝑒𝑡, 𝜁𝑡⟩ ≥ 𝜖

)︂

≤ exp

(︂

− 𝜖2

4𝐷2𝜃2𝑇−1

∑︀𝑇−1
𝑡=0 𝜎

2
𝑡 𝜃

2
𝑇−1/𝜃

2
𝑡

)︂

≤ exp

(︂

− 𝑇 2𝜖2

16𝐷2𝜎2(𝑀
(1)
𝑇 )2

)︂

,

where the last inequality uses the facts that 𝜃𝑇−1 ≤ 𝜃𝑡 and 𝜃𝑇−1 ≤ 2/𝑇 . Therefore,

for every 𝛿 ∈ (0, 1), we have with probability at least 1− 𝛿/2 that

𝜃2𝑇−1

𝑇−1∑︁

𝑡=0

1

𝜃𝑡
⟨𝑒𝑡, 𝜁𝑡⟩ ≤

4𝜎𝐷𝑀
(1)
𝑇

√︀

log(2/𝛿)

𝑇
. (3.46)

Next we will turn to őnding a tail bound for
∑︀𝑇−1

𝑡=0 ‖𝑒𝑡‖2. By Assumption 3.3 and

Jensen’s inequality, we have

𝑇−1∑︁

𝑡=0

E
(︀
‖𝑒𝑡‖2

⃒
⃒ ℱ𝑡−1

)︀
≤

𝑇−1∑︁

𝑡=0

𝜎2
𝑡 log

(︀
E(𝑒‖𝑒𝑡‖

2/𝜎2
𝑡 |ℱ𝑡−1)

)︀
≤ 𝜎2(𝑀

(1)
𝑇 )2. (3.47)

Now deőne the random variables Ξ𝑡 := ‖𝑒𝑡‖2 − E
(︀
‖𝑒𝑡‖2

⃒
⃒ ℱ𝑡−1

)︀
. Then by Markov’s

inequality, for every 𝜖 > 0,

P
(︀
Ξ𝑡 > 𝜖

⃒
⃒ ℱ𝑡−1

)︀
≤P

(︀
‖𝑒𝑡‖2/𝜎2

𝑡 > 𝜖/𝜎2
𝑡

⃒
⃒ ℱ𝑡−1

)︀
≤𝑒−𝜖/𝜎2

𝑡E
(︀
𝑒‖𝑒𝑡‖

2/𝜎2
𝑡

⃒
⃒ ℱ𝑡−1

)︀
≤ 𝑒1−𝜖/𝜎

2
𝑡 .

Moreover, by Markov’s inequality again, and then Jensen’s inequality, we have for

every 𝜖 > 0 that

P
(︀
Ξ𝑡 < −𝜖

⃒
⃒ ℱ𝑡−1

)︀
≤ 𝑒−𝜖/𝜎

2
𝑡E

(︀
𝑒E(‖𝑒𝑡‖

2/𝜎2
𝑡 |ℱ𝑡−1)−‖𝑒𝑡‖2/𝜎2

𝑡

⃒
⃒ ℱ𝑡−1

)︀

≤ 𝑒−𝜖/𝜎
2
𝑡 𝑒E(‖𝑒𝑡‖

2/𝜎2
𝑡 |ℱ𝑡−1) ≤ 𝑒1−𝜖/𝜎

2
𝑡 .

It follows by, e.g., [75, Lemma F.7] that Ξ𝑡 is sub-exponential with parameters 𝜆𝑡 :=

1/(2𝜎2
𝑡 ) = 𝑚𝑡/(2𝜎

2) and 𝜏 2𝑡 := 16𝑒𝜎4
𝑡 = 16𝑒𝜎4/𝑚2

𝑡 , in the sense that

E
(︀
𝑒𝜆Ξ𝑡

⃒
⃒ ℱ𝑡−1

)︀
≤ 𝑒8𝑒𝜆

2𝜎4
𝑡 , (3.48)
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for |𝜆| ≤ 1/(2𝜎2
𝑡 ).

Now deőne Λ𝑇 := min𝑡=0,...,𝑇−1 𝜆𝑡 = 𝑚0/(2𝜎
2) (as we assume (𝑚𝑡) is increasing)

and 𝐶𝑇 :=
(︀∑︀𝑇−1

𝑡=0 𝜏
2
𝑡

)︀1/2
= 4𝑒1/2𝜎2𝑀

(2)
𝑇 . We claim that

∑︀𝑇−1
𝑡=0 Ξ𝑡 is sub-exponential

with parameters Λ𝑇 and 𝐶𝑇 , and prove this by induction on 𝑇 . The base case 𝑇 = 1

holds by (3.48), so suppose it holds for a given 𝑇 ∈ N. Then for 𝜆 ∈ R with

|𝜆| ≤ min(Λ𝑇 , 𝜆𝑇 ) = Λ𝑇+1, we have

E

{︂

exp

(︂

𝜆

𝑇∑︁

𝑡=0

Ξ𝑡

)︂}︂

= E

[︂

exp

(︂

𝜆

𝑇−1∑︁

𝑡=0

Ξ𝑡

)︂

E
{︀
exp

(︀
𝜆Ξ𝑇 |ℱ𝑇−1

)︀}︀
]︂

≤ 𝑒(𝜆
2𝐶2

𝑇+16𝑒𝜆2𝜎4
𝑇 )/2 = 𝑒𝜆

2𝐶2
𝑇+1/2,

which proves the claim by induction. We deduce by, e.g. [42, Lemma 1.4.1], that for

every 𝜖 > 0 and 𝑇 ∈ N,

P

(︂𝑇−1∑︁

𝑡=0

Ξ𝑡 ≥ 𝜖

)︂

≤ exp

(︂

−min

{︂
𝜖2

2𝐶2
𝑇

,
Λ𝑇 𝜖

2

}︂)︂

.

In other words, with probability at least 1− 𝛿/2,

𝑇−1∑︁

𝑡=0

Ξ𝑡 ≤ 4𝜎2 max

{︂

𝑀
(2)
𝑇

√︂

2𝑒 log
2

𝛿
,
1

𝑚0

log
2

𝛿

}︂

. (3.49)

Applying (3.46), (3.47) and (3.49) in Corollary 3.2, together with a union bound,

yields that with probability at least 1− 𝛿,

𝑓(𝜑
(𝑥)
𝑇 )− 𝑓(𝜑) ≤ 𝐵1𝐷

2

𝑇𝑢
+

4𝐵0𝐼(𝜑)𝑢

𝑇
+
𝜂𝐷2

𝑇
+
𝜎2(𝑀

(1)
𝑇 )2

𝑇𝜂
+

4𝜎𝐷𝑀
(1)
𝑇

√︀

log(2/𝛿)

𝑇

+
4𝜎2 max

{︀
𝑀

(2)
𝑇

√︀

2𝑒 log(2/𝛿),𝑚−1
0 log(2/𝛿)

}︀

𝑇𝜂
.

Taking the same choices of 𝜑, 𝑢 and 𝜂 as in Theorem 3.1, we obtain the őnal result.
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3.B.4 Proof of Theorem 3.3

To prove Theorem 3.3, we őrst introduce the following lemma. Recall that 𝒞𝑑 denotes

the class of proper, convex lower-semicontinuous functions 𝜙 : R𝑑 → (−∞,∞] that

are coercive in the sense that 𝜙(𝑥) → ∞ as ‖𝑥‖ → ∞. Recall further from [78,

Theorem 2.2] that if 𝑃 is a distribution on R
𝑑 with

∫︀

R𝑑 ‖𝑥‖ 𝑑𝑃 (𝑥) <∞ and 𝑃 (𝐻) < 1

for all hyperplanes 𝐻, then the strictly convex function Γ : 𝒞𝑑 → (−∞,∞] given by

Γ(𝜙) :=

∫︁

R𝑑

𝜙(𝑥) 𝑑𝑃 (𝑥) +

∫︁

R𝑑

𝑒−𝜙(𝑥) 𝑑𝑥 (3.50)

has a unique minimizer 𝜙* ∈ 𝒞𝑑 satisfying Γ(𝜙*) ∈ R.

Lemma 3.2. Let 𝑃 be a distribution on R
𝑑 with

∫︀

R𝑑 ‖𝑥‖ 𝑑𝑃 (𝑥) < ∞ and 𝑃 (𝐻) < 1

for all hyperplanes 𝐻, and let 𝜙* := argmin𝜙∈𝒞𝑑 Γ(𝜙). Then

(1) For any 𝜆 ∈ [0, 1], and 𝜙, �̃� ∈ 𝒞𝑑, we have

Γ
(︀
𝜆𝜙+ (1− 𝜆)�̃�

)︀
≤ 𝜆Γ(𝜙) + (1− 𝜆)Γ(�̃�)

− 𝜆(1− 𝜆)
2

∫︁

R𝑑

𝑒−max{𝜙(𝑥),�̃�(𝑥)}{︀𝜙(𝑥)− �̃�(𝑥)
}︀2
𝑑𝑥. (3.51)

Here, when max
{︀
𝜙(𝑥), �̃�(𝑥)

}︀
=∞, we deőne the integrand to be zero.

(2) Furthermore, if 𝜙 ∈ 𝒞𝑑 is such that max{𝜙(𝑥), 𝜙*(𝑥)} ≤ 𝜑0 for all 𝑥 ∈ dom𝜙 ∩
dom𝜙*, then

Γ(𝜙)− Γ(𝜙*) ≥ 1

2
𝑒−𝜑

0

∫︁

dom𝜙∩dom𝜙*

{︀
𝜙(𝑥)− 𝜙*(𝑥)

}︀2
𝑑𝑥. (3.52)

Proof. (1) Fix 𝜙, �̃� ∈ 𝒞𝑑 with max
{︀
Γ(𝜙),Γ(�̃�)

}︀
<∞ (because otherwise the result

is clear). For any 𝑀 ∈ R, the function 𝑦 ↦→ 𝑒−𝑦 is 𝑒−𝑀 -strongly convex on 𝑦 ≤ 𝑀 .
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Therefore, for any 𝜆 ∈ [0, 1], we have Γ
(︀
𝜆𝜙+ (1− 𝜆)�̃�

)︀
≥ Γ(𝜙*) > −∞, so

Γ
(︀
𝜆𝜙+ (1− 𝜆)�̃�

)︀
− 𝜆Γ(𝜙)− (1− 𝜆)Γ(�̃�)

=

∫︁

R𝑑

[︀
𝑒−{𝜆𝜙(𝑥)+(1−𝜆)�̃�(𝑥)} − 𝜆𝑒−𝜙(𝑥) − (1− 𝜆)𝑒−�̃�(𝑥)

]︀
𝑑𝑥

≤ −𝜆(1− 𝜆)
2

∫︁

R𝑑

𝑒−max{𝜙(𝑥),�̃�(𝑥)}{︀𝜙(𝑥)− 𝜙*(𝑥)
}︀2
𝑑𝑥,

(3.53)

as required.

(2) By (3.53), we have for any 𝜆 ∈ (0, 1) that

𝜆(1− 𝜆)
2

𝑒−𝜑
0

∫︁

dom𝜙∩dom𝜙*

{︀
𝜙(𝑥)− 𝜙*(𝑥)

}︀2
𝑑𝑥

≤ 𝜆Γ(𝜙) + (1− 𝜆)Γ(𝜙*)− Γ
(︀
𝜆𝜙+ (1− 𝜆)𝜙*)︀

≤ 𝜆
{︀
Γ(𝜙)− Γ(𝜙*)

}︀
,

where the last inequality follows by deőnition of 𝜙*. We deduce that

1

2
𝑒−𝜑

0

∫︁

dom𝜙∩dom𝜙*

{︀
𝜙(𝑥)− 𝜙*(𝑥)

}︀2
𝑑𝑥 ≤ Γ(𝜙)− Γ(𝜙*)

1− 𝜆 .

The result follows on taking 𝜆↘ 0.

Proof of Theorem 3.3. In Lemma 3.2, let 𝑃 be the empirical distribution of

{𝑥𝑖}𝑛𝑖=1. From the proof of Theorem 2 of [61] (see also the proof of Theorem 3.4),

Problem (3.50) is equivalent to (3.5) in the sense that Γ(cef[𝜑]) = 𝑓(𝜑) for all 𝜑 ∈ R
𝑛,

and 𝜙* = cef[𝜑*]. Now őx 𝜑 ∈ Φ and let 𝜙 = cef[𝜑], so that 𝜙(𝑥) ≤ 𝜑0 for all 𝑥 ∈ 𝐶𝑛.
From (3.52), we obtain

1

2
𝑒−𝜑

0

∫︁

𝐶𝑛

{︀
cef[𝜑](𝑥)− cef[𝜑*](𝑥)

}︀2
𝑑𝑥 ≤ Γ(cef[𝜑])− Γ(cef[𝜑*]) = 𝑓(𝜑)− 𝑓(𝜑*),

as required.
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3.B.5 Proofs of Theorem 3.4 and Theorem 3.5

The proof of Theorem 3.4 is based on following proposition:

Proposition 3.7. Given 𝑠 ∈ R, 𝜙 ∈ 𝒞𝑑 and 𝑐 > 0, there exists �̃� ∈ 𝒞𝑑, such that

𝜓𝑠 ∘ 𝜙(·) = 𝑐 · 𝜓𝑠 ∘ �̃�(·).

Proof. Given 𝑠, 𝜙 and 𝑐, deőne

�̃�(·) :=

⎧

⎨

⎩

𝜙(·) + log 𝑐 if 𝑠 = 0

𝑐−𝑠𝜙(·) if 𝑠 ̸= 0.

Then �̃� ∈ 𝒞𝑑, and for 𝑥 ∈ 𝒟𝑠,

𝜓𝑠 ∘ �̃�(𝑥) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(︀
𝑐−𝑠𝜙(𝑥)

)︀1/𝑠
if 𝑠 < 0

exp
(︀
−𝜙(𝑥)− log 𝑐

)︀
if 𝑠 = 0

(︀
−𝑐−𝑠𝜙(𝑥)

)︀1/𝑠
if 𝑠 > 0

= 𝑐−1 · 𝜓𝑠 ∘ 𝜙(𝑥),

as required.

Proof of Theorem 3.4. The proof is split into four steps. The őrst three steps hold

for any 𝑠 ∈ R, while in Step 4, we show the convexity of the objective when 𝑠 ∈ [0, 1].

Step 1: We claim that any solution �̂�𝑛 to (3.21) is supported on 𝐶𝑛, so that 𝜙*(𝑥) =

∞ when 𝑥 /∈ 𝐶𝑛, where 𝜙* is the solution to (3.22). Indeed, suppose for a con-

tradiction that 𝑝 = 𝜓𝑠 ∘ 𝜙 ∈ 𝒫𝑠(R𝑑) is such that
∑︀𝑛

𝑖=1 log 𝑝(𝑥𝑖) > −∞, and that
∫︀

𝐶𝑛
𝑝(𝑥) 𝑑𝑥 = 𝑐 < 1 =

∫︀

R𝑑 𝑝(𝑥) 𝑑𝑥. We may assume that 𝑐 > 0, because otherwise

𝑝(𝑥) = 0 for almost all 𝑥 ∈ 𝐶𝑛, which would mean that
∑︀𝑛

𝑖=1 log 𝑝(𝑥𝑖) = −∞ since

𝑝 ∈ 𝒫𝑠(R𝑑). Deőne �̄� ∈ 𝒞𝑑 by

�̄�(𝑥) :=

⎧

⎨

⎩

𝜙(𝑥) if 𝑥 ∈ 𝐶𝑛
∞ otherwise,

so that
∫︀

R𝑑 𝜓𝑠 ∘ �̄�(𝑥) 𝑑𝑥 =
∫︀

R𝑑 𝜓𝑠 ∘ 𝜙(𝑥) 𝑑𝑥 = 𝑐 < 1. Applying Proposition 3.7 to

�̄� ∈ 𝒞𝑑 and 𝑐 > 0, we can őnd �̃� ∈ 𝒞𝑑 with
∫︀

R𝑑 𝜓𝑠∘�̃�(𝑥) 𝑑𝑥 =
∫︀

R𝑑 𝑐
−1 ·𝜓𝑠∘�̄�(𝑥) 𝑑𝑥 = 1,

109



and
𝑛∑︁

𝑖=1

log𝜓𝑠 ∘ �̃�(𝑥𝑖) =
𝑛∑︁

𝑖=1

log𝜓𝑠 ∘ 𝜙(𝑥𝑖)− 𝑛 log 𝑐 >
𝑛∑︁

𝑖=1

log𝜓𝑠 ∘ 𝜙(𝑥𝑖).

This establishes our desired contradiction.

Step 2: We claim that any solution 𝜙* to (3.22) satisőes

𝜙* = argmin
𝜙∈𝒞𝑑:Im(𝜙)⊆𝒟𝑠∪{∞},

dom𝜙=𝐶𝑛

{︂

− 1

𝑛

𝑛∑︁

𝑖=1

log𝜓𝑠 ∘ 𝜙(𝑥𝑖) +
∫︁

𝐶𝑛

𝜓𝑠 ∘ 𝜙(𝑥) 𝑑𝑥
}︂

. (3.54)

Indeed, for any 𝜙 ∈ 𝒞𝑑 such that dom𝜙 = 𝐶𝑛 and
∫︀

𝐶𝑛
𝜓𝑠 ∘ 𝜙(𝑥) 𝑑𝑥 = 𝑐 ̸= 1, we can

again apply Proposition 3.7 to 𝜙 and 𝑐 to obtain �̃�. Then

− 1

𝑛

𝑛∑︁

𝑖=1

log𝜓𝑠 ∘ 𝜙(𝑥𝑖) +
∫︁

𝐶𝑛

𝜓𝑠 ∘ 𝜙(𝑥) 𝑑𝑥 = − 1

𝑛

𝑛∑︁

𝑖=1

log𝜓𝑠 ∘ 𝜙(𝑥𝑖) + 𝑐

> − 1

𝑛

𝑛∑︁

𝑖=1

log𝜓𝑠 ∘ 𝜙(𝑥𝑖) + log 𝑐+ 1 = − 1

𝑛

𝑛∑︁

𝑖=1

log𝜓𝑠 ∘ �̃�(𝑥𝑖) +
∫︁

𝐶𝑛

𝜓𝑠 ∘ �̃�(𝑥) 𝑑𝑥,

so
∫︀

𝐶𝑛
𝜓𝑠 ∘ 𝜙*(𝑥) 𝑑𝑥 = 1, which establishes our claim.

Step 3: Letting 𝜑* = (𝜑*
1, . . . , 𝜑

*
𝑛) denote an optimal solution to (3.23), we claim that

cef[𝜑*](𝑥𝑖) = 𝜑*
𝑖 holds for all 𝑖 ∈ [𝑛]. Indeed, for any 𝜑 = (𝜑1, . . . , 𝜑𝑛) ∈ 𝒟𝑛𝑠 , if there

exists 𝑖* ∈ [𝑛] such that cef[𝜑](𝑥𝑖*) ̸= 𝜑𝑖* , then we can deőne �̃� = (�̃�1, . . . , �̃�𝑛) ∈ 𝒟𝑛𝑠
such that �̃�𝑖 = cef[𝜑](𝑥𝑖) for all 𝑖 ∈ [𝑛]. We now claim that cef[�̃�] = cef[𝜑]. On the

one hand, by (3.3), �̃�𝑖 = cef[𝜑](𝑥𝑖) ≤ 𝜑𝑖 for any 𝑖 ∈ [𝑛]. From the LP expression

(𝑄0), cef[�̃�] ≤ cef[𝜑]. On the other hand, since cef[𝜑](·) is a convex function with

cef[𝜑](𝑥𝑖) = �̃�𝑖 ≤ �̃�𝑖 for any 𝑖, we have cef[�̃�](·) ≥ cef[𝜑](·). It follows that cef[�̃�] =

cef[𝜑], and �̃� with a smaller objective than 𝜑. This establishes our claim, and shows

that (3.23) is equivalent to (3.54) in the sense that �̂�𝑛 and 𝜑* satisfy �̂�𝑛 = 𝜓𝑠(cef[𝜑
*]).

Step 4: When 𝑠 = 0, the function 𝜑 ↦→ 1
𝑛
1
⊤𝜑 is convex on R

𝑛; when 𝑠 > 0, the

function 𝜑 ↦→ − 1
𝑛𝑠

∑︀𝑛
𝑖=1 log(−𝜑𝑖) is convex on (−∞, 0]𝑛. Moreover, when 𝑠 ≤ 1, the

function 𝜓𝑠 is decreasing and convex, and since 𝜑 ↦→ cef[𝜑](𝑥) is concave for every

𝑥 ∈ R
𝑛, the result follows.
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3.C Background on shape-constrained inference

Entry points to the őeld of nonparametric inference under shape constraints include

the book by [100], as well as the 2018 special issue of the journal Statistical Science

[196]. Other canonical problems in shape constraints that involve non-trivial com-

putational issues include isotonic regression ([41, 227, 49, 81, 21, 224, 108, 181]) and

convex regression ([121, 200, 44, 102, 110, 84, 52]), or combinations and variants of

these ([55]).

Beyond papers already discussed, early theoretical work on log-concave density

estimation includes [180], [76], [215], [60], [78], [199], [197] and [54]. Sometimes,

the class 𝒫𝑑 is considered as a special case of the class of 𝑠-concave densities ([137,

201, 109, 73, 107]); see also Section 3.5. Much recent work has focused on rates of

convergence, which are best understood in the Hellinger distance 𝑑H, given by

𝑑2H(𝑝, 𝑞) :=

∫︁

R𝑑

(𝑝1/2 − 𝑞1/2)2.

For the case of correct model speciőcation, i.e. where �̂�𝑛 is computed from an inde-

pendent and identically distributed sample of size 𝑛 from 𝑝0 ∈ 𝒫𝑑, it is now known

[134, 138] that

sup
𝑝0∈𝒫𝑑

E𝑑2H(�̂�𝑛, 𝑝0) ≤ 𝐾𝑑 ·

⎧

⎨

⎩

𝑛−4/5 when 𝑑 = 1

𝑛−2/(𝑑+1) log 𝑛 when 𝑑 ≥ 2,

where 𝐾𝑑 > 0 depends only on 𝑑, and that this risk bound is minimax optimal (up

to the logarithmic factor when 𝑑 ≥ 2). See also [47] for an earlier result in the case

𝑑 ≥ 4, and [223] for an alternative approach to high-dimensional log-concave density

estimation that seeks to evade the curse of dimensionality in the additional presence of

symmetry constraints. It is further known that when 𝑑 ≤ 3, the log-concave maximum

likelihood estimator can adapt to certain subclasses of log-concave densities, including

log-concave densities whose logarithms are piecewise affine [133, 85]. See also [16] for

recent work on extensions to the misspeciőed setting (where the true distribution
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from which the data are drawn does not have a log-concave density).
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Chapter 4

Guassian Graphical Models: A

Scalable Framework Based on

Combinatorial Optimization

This is a joint work with Kayhan Behdin and Rahul Mazumder.

4.1 Introduction

Gaussian Graphical Models (GGM), due to Dempster [68], are amongst the most

widely used tools to analyze continuous multivariate random systems ([93, Chap-

ter 17] and [213, Chapter 11]). Formally, in a GGM, we are given 𝑛 data points

𝑥(1), · · · ,𝑥(𝑛) ∈ R
𝑝 from a multivariate normal distribution as

𝑥(1), . . . ,𝑥(𝑛) iid∼ 𝒩 (0, (Θ*)−1), Θ
* ∈ S

𝑝
+ (4.1)

where S
𝑝
+ is the set of 𝑝× 𝑝 positive deőnite matrices. The goal in the GGM problem

is to estimate the matrix Θ
*, known as the precision matrix, as this matrix contains

the information required to recover the normal distribution generating the data.

From both interpretability and statistical perspectives, a sparse estimation of Θ*

(i.e., one with only a few nonzero coordinates) is more desirable [68] Ð through-
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out this chapter, we assume Θ
* is sparse. A zero entry in Θ* indicates conditional

independence: For a pair (𝑖, 𝑗), 𝜃*𝑖𝑗 = 0 if and only if features 𝑖, 𝑗 are independent

conditioned on the other variables. Our goal is to provide a precision matrix Θ
* such

that it is sparse (i.e., has few nonzeros). The problem of sparse precision matrix

estimation has garnered signiőcant attention in the statistics and machine learning

literature [90, 183, 83]. Performance of an estimation Θ̂ of Θ* can be measured by

different criteria. A common metric is the Frobenius norm estimation error deőned

as ‖Θ* − Θ̂‖2𝐹 . We also seek to estimate the location of nonzeros of Θ
* (i.e., the

support).

In what follows, we őrst present an overview of current algorithms for sparse

GGMs and then summarize our key contributions in this chapter.

4.1.1 Background and Literature Review

Numerous algorithms have been proposed for GGMs. Generally, these methods aim

to minimize a penalized data ődelity loss, where the penalty encourages sparsity in the

solution. One of the most popular approaches to GGMs is ℓ1-regularized likelihood

maximization, known as Graphical Lasso [90]. Graphical Lasso is known to enjoy good

statistical and computational properties [189, 159]. Another approach is constrained

ℓ1-norm minimization [45], known as CLIME. CLIME estimator can be calculated by

solving a series of linear programs, and overall the CLIME estimator leads to good

statistical guarantees. Another approach to GGM is the node-wise linear regression

framework of [163] which requires solving 𝑝-many sparse linear regression problems

(i.e. Lasso).

In this chapter, we focus on an interesting but less-understood approach to GGMs,

the pseudo-likelihood approach. The notion of pseudo-likelihood was introduced by

Besag [35] in the context of spatial analysis. In the pseudo-likelihood analysis, instead

of directly working with the likelihood of the data, the likelihood function is approxi-

mated by the multiplication of conditional likelihood functions of each variable, given

the rest. Pseudo-likelihood analysis with ℓ1 regularization was őrst applied to GGMs

by [183]. [183] presents an asymptotic analysis of their algorithm when 𝑛→∞. Oth-
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ers have proposed algorithms based on pseudo-likelihood, for example, see [91, 132].

However, the statistical properties of these methods are less understood compared to

more common methods.

A recent approach to GGMs is based on discrete optimization. Since the work

of [28], there has been a renewed interest in exploring statistical problems that admit

combinatorial structure using tools from Mixed Integer Programming (MIP)[220]. In

particular, MIP techniques have proved useful in sparse learning problems, where the

sparsity structure can be encoded by binary variables. Sparse linear regression [32,

119] and sparse principal component analysis [20] are among examples where MIP

methods have been successful. However, there has been little exploration regarding

MIP formulations for GGMs. [29] consider an ℓ0-constrained maximum likelihood

approach. They propose an MIP algorithm for their formulation, however, their

algorithm only scales to problems with 𝑝 ≈ 100.

In terms of statistical performance, to have a consistent estimation in terms of

Frobenius norm, we need 𝑛 ≳ 𝑘𝑝 log 𝑝 samples [194], where 𝑘 is the number of nonze-

ros in each row of Θ
*. This implies that a consistent estimation is only possible

when 𝑘𝑝/𝑛 → 0 which corresponds to the classical low-dimensional setting. In the

high-dimensional setting, estimating the correct support is more interesting. In gen-

eral, under certain non-degeneracy conditions, 𝑛 ≳ 𝑘 log 𝑝 samples are required for a

consistent estimation of the support of Θ* [218]. This shows that support recovery is

possible even when 𝑝/𝑛→∞.

4.1.2 Outline of the Approach and Contributions

Despite the promising results of pseudo-likelihood estimators, the theoretical and

algorithmic understanding of such estimators has remained limited. In this chapter,

we propose a new pseudo-likelihood-based estimator that enjoys both good statistical

guarantees and computational performance. To this end, in a departure from current

literature, we consider an ℓ0 regularized version of the pseudo-likelihood function.

We show that this estimator can be reduced to an MIP, where a convex objective

function is minimized over a Mixed Integer Second-Order Conic (MISOC) constraint
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set. We then study the statistical properties of the estimator and develop a scalable

algorithm for the MIP.

We analyze our estimator from estimation and variable selection points of view.

In terms of estimation, our estimator achieves Frobenius error bound scaling as

𝑘𝑝 log 𝑝/𝑛. As for the variable selection performance, we show that under certain

regularity conditions, if 𝑛 ≳ 𝑘 log 𝑝, our estimator is able to recover the support of

Θ
* correctly with high probability. An interesting property of our estimator is that

the non-degeneracy condition needed for consistent variable selection for our method

is milder compared to the ones appearing in the literature. This is due to certain

symmetry structures that we enforce on the solution.

To solve the MIP for the estimator, we develop a specialized Branch-and-Bound

(BnB) solver that does not rely on commercial MIP solvers. Following [119], our BnB

framework solves a version of our MIP based on a perspective reformulation [101]

of the ℓ0-regularized pseudo-likelihood function. We propose a coordinate-descent

(CD) algorithm to solve the node relaxations as well as obtaining a fast approximate

integral solution. With both logarithmic term and quadratic-over-linear structure in

the objective (see Section 4.2), the existing convergence theory of CD algorithm is

not directly applicable. We provide the computational guarantee of CD algorithm

for node relaxations, which also applies to a convex reformulation of the estimator

proposed in [91]. We also make use of active set updates to reduce the complexity of

CD algorithm by exploiting the structured sparsity in the statistical problem, as well

as shared information across the BnB tree. Furthermore, we propose a novel method

to efficiently generate dual bounds in the BnB tree from primal solutions. Our dual

method handles extra symmetry constraint and special terms in the objective function

arsing from the statistical structure, compared to the dual bounds derived for the

sparse regression in [119].

Finally, we perform numerical experiments on both synthetic and real datasets,

and compare results with other existing methods in terms of both statistical per-

formance and computational efficiency. The results indicate that our optimization

framework is scalable to problems with 𝑝 ≈ 10,000 while it is faster or compara-
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ble to polynomial-time methods. Moreover, our proposed estimator provides better

statistical performance on synthetic and real datasets.

Our contributions in this chapter can be summarized as follows:

1. We propose a new estimator for GGMs as an ℓ0-regularized pseudo-likelihood

problem. We show our estimator can be written as an MIP.

2. We discuss statistical properties of our estimator and discuss how our new

estimator can improve upon existing algorithms in terms of estimation and

variable selection.

3. We develop and implement an optimization framework for our estimator, in-

cluding heuristic solvers and a specialized nonlinear branch-and-bound method.

Our framework is open-source and does not use any commercial solver.

4. Our numerical experiments show that the proposed estimator outperforms ex-

isting (polynomial-time) methods for GGMs in terms of runtime and statistical

performance.

Organization of chapter In Section 4.2, we introduce our proposed estimator,

and reformulate it into a MIP problem based on perspective reformulation. In Sec-

tion 4.3, we provide an efficient computational framework for our proposed estima-

tor. In Section 4.4, we analyze the statistical properties of our proposed estimator.

In Section 4.5, we present various numerical experiments on both synthetic and real

datasets, showing the beneőts of our estimator from both statistical and computa-

tional perspectives. The derivations and proofs in the computational and statistical

parts are deferred to Appendix 4.A and 4.B.

Notations For𝐴 ∈ R
𝑝1×𝑝2 and 𝑆1 ⊆ [𝑝1], 𝑆2 ⊆ [𝑝2], denote by𝐴𝑆1,𝑆2 the submatrix

of 𝐴 with rows sampled in 𝑆1 and columns sampled in 𝑆2. ℬ(𝑝) denotes the unit

Euclidean ball of dimension 𝑝. Let S
𝑝 denote the set of symmetric matrices in R

𝑝×𝑝.

We let 1{𝑥 ̸= 0} denote the indicator function, i.e. 1{𝑥 ̸= 0} = 1 if 𝑥 ̸= 0; otherwise,

1{𝑥 ̸== 0} = 0. We let 𝜒{𝑎 ∈ 𝐴} denote the characteristic function, i.e. 𝜒{𝑎 ∈ 𝐴} =
0 if 𝑎 ∈ 𝐴; otherwise, 𝜒{𝑎 ∈ 𝐴} =∞.
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4.2 Proposed Estimator

Our formulation of the GGM problem is based on the idea of pseudo-likelihood. If

𝑋 ∈ R
𝑛×𝑝 has independent rows of 𝒩 (0, (Θ*)−1) for some Θ

* ∈ S
𝑝
+, the conditional

distribution of each variable, given the rest, follow the normal distribution

𝑥𝑗| {𝑥𝑖}𝑖 ̸=𝑗 ∼ 𝒩
(︃
∑︁

𝑖 ̸=𝑗
𝛽*
𝑖𝑗𝑥𝑖, (𝜎

*
𝑗 )

2𝐼𝑛

)︃

(4.2)

where

𝛽*
𝑖𝑗 = −

𝜃*𝑗𝑖
𝜃*𝑗𝑗

𝑖 ̸= 𝑗 ∈ [𝑝], (𝜎*
𝑗 )

2 =
1

𝜃*𝑗𝑗
𝑗 ∈ [𝑝]. (4.3)

We note that 𝛽*
𝑖𝑗 ̸= 0 if and only if 𝜃*𝑗𝑖 ̸= 0 and as Θ* is sparse, most values of 𝛽*

𝑖𝑗 are

zero. As a result, we propose an ℓ0-constrained estimator:

min
𝛽𝑖𝑗 ,𝜎𝑗

𝑝
∑︁

𝑗=1

⎡

⎣log(𝜎𝑗) +
1

𝑛

1

2𝜎2
𝑗

⃦
⃦
⃦
⃦
⃦
𝑥𝑗 −

∑︁

𝑖:𝑖 ̸=𝑗
𝛽𝑖𝑗𝑥𝑖

⃦
⃦
⃦
⃦
⃦

2

2

⎤

⎦ (4.4a)

s.t. 𝛽𝑖𝑗𝜎
2
𝑖 = 𝛽𝑗𝑖𝜎

2
𝑗 , 𝛽𝑖𝑖 = 0, 𝑖 ̸= 𝑗 (4.4b)

|{𝑖 : 𝑖 ̸= 𝑗, 𝛽𝑖𝑗 ̸= 0}| ≤ 𝑘, 𝑗 ∈ [𝑝]. (4.4c)

In Problem (4.4), the objective function is the summation of negative log-likelihood

functions for Normal distributions given in (4.2). Constraint (4.4b) enforces the

symmetric structure based on the fact 𝛽*
𝑖𝑗(𝜎

*
𝑖 )

2 = 𝛽*
𝑗𝑖(𝜎

*
𝑗 )

2. Finally, constraint (4.4c)

enforces that 𝛽 and consequently 𝜃 are sparse, as 𝛽*
𝑖𝑗 ̸= 0 ⇔ 𝜃*𝑗𝑖 ̸= 0. We investigate

statistical properties of this estimator in Section 4.4. In what follows, we present a

convex mixed integer formulation of the estimator introduced in (4.4).

4.2.1 A convex mixed integer reformulation

Problem (4.4) in its current form has a non-convex objective function and involves

nonlinear symmetry constraints. However, this issue can be remedied by simple

change of variables [145, 132] Ð 𝜃𝑗𝑗 = 1/𝜎2
𝑗 and 𝛽𝑖𝑗 = −𝜃𝑗𝑖/𝜃𝑗𝑗. Under this map-

ping, the symmetry constraint (4.4b) simpliőes to the matrix Θ being symmetric.
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Moreover, instead of the sparsity constraint (4.4c), we impose an ℓ0− ℓ2 penalty [160]

on the off-diagonals of Θ to enforce the sparsity. Such penalty is used to help prevent

over-őtting in the regime of low-signal-to-noise ratios in the context of sparse regres-

sion. As we discuss throughout the chapter, this regularization leads to improved

computational properties. Overall, our reformulation of Problem (4.4) is given as:

min
Θ∈S𝑝

𝐹0(Θ) =

𝑝
∑︁

𝑖=1

(︀
− log(𝜃𝑖𝑖) +

1

𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2

)︀
+

∑︁

𝑖<𝑗

(︀
𝜆01{𝜃𝑖𝑗 ̸= 0}+ 𝜆2𝜃

2
𝑖𝑗

)︀
(4.5)

where �̃� = 1√
𝑛
𝑋 and 𝜆0, 𝜆2 ≥ 0 are regularization coefficients that should be se-

lected. Next, we introduce a perspective reformulation of Problem (4.5). Perspective

formulations [88, 4, 101] are helpful in terms of stronger MIP relaxations, and they

have been used recently in a specialized BnB framework for sparse regression [119].

To this end, we introduce the auxiliary binary variables 𝑧𝑖𝑗 that encode the sparsity

and consider the following perspective reformulation of Problem (4.5):

min
Θ,𝑧,𝑠

𝐹mio(Θ, 𝑧, 𝑠) =

𝑝
∑︁

𝑖=1

(︀
− log(𝜃𝑖𝑖) +

1

𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2

)︀
+

∑︁

𝑖<𝑗

(︀
𝜆0𝑧𝑖𝑗 + 𝜆2𝑠𝑖𝑗

)︀
, (4.6)

s.t. 𝑠𝑖𝑗𝑧𝑖𝑗 ≥ 𝜃2𝑖𝑗, |𝜃𝑖𝑗| ≤𝑀𝑧𝑖𝑗, ∀𝑗 ̸= 𝑖

𝜃𝑖𝑗 = 𝜃𝑗𝑖, ∀𝑖 ̸= 𝑗

𝑧𝑖𝑗 ∈ {0, 1}, 𝑠𝑖𝑗 ≥ 0, ∀𝑗 ̸= 𝑖.

Further details and beneőts of using such a perspective reformulation along with

big-𝑀 constraint can be found in [119]. In Section 4.3, we present an optimization

framework for Problem (4.6).

4.3 Computational Framework

In this section, we will focus on a specialized scalable branch-and-bound (BnB) frame-

work for efficiently solving Problem (4.6). In Section 4.3.1, we discuss related work

on nonlinear BnB and provide an overview of our specialized BnB framework. In Sec-
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tion 4.3.2, we study the formulations of node relaxations of Problem (4.6) in the BnB.

We then present an efficient coordinate descent algorithm along with the active-set

update for both node relaxations and heuristic solver in Section 4.3.3, and provide

more details in Sections 4.3.4 and 4.3.6. In Section 4.3.5, we show how to obtain dual

bounds from primal solutions to node relaxations.

4.3.1 Related work and overview of BnB framework

Our BnB framework follows the high-level ideas proposed by the prior work of [119].

In their paper, they propose a specialized BnB framework for the sparse regression,

which consists of a highly-scalable primal-based CD algorithm along with the active-

set update and gradient screening. There are several challenges arising from the dif-

ferences of the sparse regression and pseudolikelihood function for GGM. Speciőcally,

the extra logarithm term, quadratic-over-linear structure and symmetry constraint

lead to complicated CD updates, unknown convergence property of CD algorithm

and complicated dual bounds.

Overview of Nonlinear BnB: For self-containedness of this chapter, we provide a

brief overview of nonlinear BnB framework. Nonlinear BnB is a general framework

for solving mixed integer nonlinear programs [22]. The algorithm starts by solving

the root relaxation (4.9) of (4.6). Then, the algorithm chooses a branching variable,

say 𝑧𝑘ℓ and create two new nodes (optimization subproblems): one with 𝑧𝑘ℓ = 0

and the other with 𝑧𝑘ℓ = 1, where all the other 𝑧𝑖𝑗’s are relaxed to the interval

[0, 1]. The algorithm then proceeds recursively: for every unvisited node, it solves the

corresponding optimization problem and then branch on a new fractional variable (if

any) to create new nodes. This leads to a search tree with nodes corresponding to

optimization subproblems and edges representing branching decisions.

While growing the search tree, BnB prunes a node either (a) the relaxation at the

current node has an integral 𝑧 or (b) the objective of the current relaxation exceeds

the best available upper bound on (4.6), which can be obtained from any feasible

integral solution to the problem.
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Our strategies:

• Node relaxations: Similar to [119], one can show that the node relaxations of

Problem (4.6) can be written in the Θ-space instead of the extended (Θ, 𝑧, 𝑠)-

space. The formulations are studied in Section 4.3.2.

• Convex relaxation solver: To solve the node relaxations, we develop a scal-

able coordinate descent (CD) algorithm with active set update. The algorithm

exploits and shares warm starts and active set information across the BnB tree

to further improve the efficiency. Such active set strategies and warm starts

turn out to be keys to the speedup of our approach compared to a generic BnB

framework. Our algorithm will be described in Section 4.3.3 and additional com-

putational details and convergence guarantee will be provided in Section 4.3.4.

• Dual bounds: Dual bounds of the node relaxation problem provides important

lower bound information for search space pruning. We develop a novel method

to compute dual bounds from the primal solutions, using the convex conjugate

of the regularizer derived in [119]. See Section 4.3.5.

• Heuristic solver and upper bounds: Better upper bounds can lead to more

aggressive pruning in the search tree, thus reducing the BnB running time. At

each node of BnB, we attempt to improve the upper bound based on the solution

Θ̂ to the current node’s relaxation problem. To be more speciőc, let 𝒮 be some

sparsity pattern induced by the current solution Θ̂. Then, we use a heuristic

solver to obtain an approximate solution to

min
Θ∈S𝑝

𝑝
∑︁

𝑖=1

(︀
− log 𝜃𝑖𝑖 +

1

𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2

)︀
+

∑︁

(𝑖,𝑗)∈𝒮

(︀
𝜆01{𝜃𝑖𝑗 ̸= 0}+ 𝜆2𝜃

2
𝑖𝑗

)︀
,

s.t. |𝜃𝑖𝑗| ≤𝑀, ∀(𝑖, 𝑗) ∈ 𝒮; 𝜃𝑖𝑗 = 0, ∀(𝑖, 𝑗) ∈ 𝒮𝑐, (4.7)

starting from the current solution Θ̂. We use the same method introduced in

Section 4.3.3 to solve Problem (4.7). Moreover, a better initialization might

lead to a better upper bound as this problem is not convex. We will discuss

more details about initialization in Section 4.3.6.
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4.3.2 Formulations in BnB

In this section, we study the convex relaxation of (4.6) at each node of the BnB search

tree. We start with the root relaxation, where all the binary variables 𝑧 are relaxed

to the interval [0, 1]. It can be shown [119] that the root relaxation in terms of the

variables (Θ, 𝑧, 𝑠) can be expressed in the Θ space instead, using the regularizer 𝜓:

𝜓(𝜃;𝜆0, 𝜆2,𝑀) := min
𝑧,𝑠

𝜆0𝑧 + 𝜆2𝑠

s.t. 𝑠𝑧 ≥ 𝜃2, |𝜃| ≤𝑀𝑧, 𝑧 ∈ [0, 1]

=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2
√
𝜆0𝜆2|𝜃| if |𝜃| ≤

√︀

𝜆0/𝜆2 ≤𝑀

𝜆0 + 𝜆2𝜃
2 if

√︀

𝜆0/𝜆2 ≤ |𝜃| ≤𝑀

(𝜆0/𝑀 + 𝜆2𝑀)|𝜃| if |𝜃| ≤𝑀 ≤
√︀

𝜆0/𝜆2

∞ if |𝜃| > 𝑀.

(4.8)

This leads to the root relaxation problem as follows:

min
Θ∈S𝑝

𝐹root(Θ) =

𝑝
∑︁

𝑖=1

(︀
− log(𝜃𝑖𝑖) +

1

𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2

)︀
+

∑︁

𝑖<𝑗

𝜓(𝜃𝑖𝑗;𝜆0, 𝜆2,𝑀), (4.9)

We note that this regularizer is closely related to the reverse Huber penalty [178] (see

also [72]).

Node relaxation within the BnB tree: For each node within the BnB tree, the

node relaxation is similar to the root relaxation, except that some of 𝑧𝑖𝑗’s are őxed to

0 and 1. Let [𝑧𝑖𝑗, 𝑧𝑖𝑗] be the range of 𝑧𝑖𝑗 at each node relaxation1, the corresponding

node relaxation problem is

min
Θ∈S𝑝

𝐹node(Θ) =

𝑝
∑︁

𝑖=1

(︀
− log(𝜃𝑖𝑖) +

1

𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2

)︀
+

∑︁

𝑖<𝑗

𝑔(𝜃𝑖𝑗;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗), (4.10)

1For example, if 𝑧𝑖𝑗 is relaxed to [0, 1], then 𝑧𝑖𝑗 = 0 and 𝑧𝑖𝑗 = 1; if 𝑧𝑖𝑗 is őxed to 0 or 1, then
𝑧𝑖𝑗 = 𝑧𝑖𝑗 = 0 or 1.
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where

𝑔(𝜃;𝜆0, 𝜆2,𝑀, 𝑧, 𝑧) =

⎧

⎨

⎩

𝜓(𝜃;𝜆0, 𝜆2,𝑀) if 𝑧 = 0, 𝑧 = 1

𝜙(𝜃; 𝑧, 𝜆0, 𝜆2,𝑀) if 𝑧 = 𝑧 = 𝑧,
(4.11)

in which

𝜙(𝜃; 𝑧, 𝜆0, 𝜆2,𝑀) =

⎧

⎨

⎩

𝜒{𝜃 = 0} if 𝑧 = 0

𝜒{|𝜃| ≤𝑀}+ 𝜆0 + 𝜆2𝜃
2 if 𝑧 = 1.

(4.12)

To this end, we consider the following uniőed formulation

min
Θ∈S𝑝

𝐹 (Θ) =

𝑝
∑︁

𝑖=1

− log(𝜃𝑖𝑖) +
1

𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2 +

∑︁

𝑖<𝑗

ℎ𝑖𝑗(𝜃𝑖𝑗), (4.13)

where ℎ𝑖𝑗 is some regularizer. Problem (4.13) encompasses the original problem (4.5),

the root relaxation problem (4.9), the node relaxation problem (4.10) and the problem

for incumbent solving (4.7) as special cases. Furthermore, when ℎ𝑖𝑗(𝜃) = 𝜆1|𝜃|, (4.13)

is equivalent to the symmetric lasso procedure proposed by [91]; the difference is that

in [91], they consider a nonconvex formulation wrt 𝜎𝑗𝑗 = 1
𝜃𝑖𝑖

and off-diagonals Θ̃ of

Θ.

In next section, we will develop a scalable active-set coordinate descent algorithm

for solving or approximately solving (4.13), depending on the convexity of 𝐹 .

4.3.3 Active-set Coordinate Descent

Due to the separability of the (nonsmooth) regularizers ℎ𝑖𝑗, Problem (4.13) is

amenable to the cyclic CD [206] with full minimization in every coordinate in the

lower triangular part of Θ. CD-type methods are widely used for solving huge-scale

optimization problems in statistical learning, especially those problems with spar-

sity structure, due to their inexpensive iteration updates and capability of exploiting

problem structure. For example, they have been used to solve the Lasso problem

[94, 198], the support vector machines [126, 48], and the graphical Lasso [159].

As presented in Algorithm 4.1, at each step, the cyclic CD performs an exact

minimization update at one coordinate (given others őxed), and the algorithm goes
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through all coordinates cyclically according to a őxed ordering. In Algorithm 4.1,

𝐸𝑖𝑗 ∈ R
𝑝×𝑝 denotes standard basis matrix with exactly one nonzero entry 1 at (𝑖, 𝑗)-

th element.

Algorithm 4.1 Cyclic CD for solving (4.13)

Input: An initialization Θ̂

1: while not converged do

2: for each pair of 𝑖 < 𝑗 do

3: �̂�𝑖𝑗 = �̂�𝑗𝑖 ← argmin𝜃𝑖𝑗 𝐹 (Θ̂− �̂�𝑖𝑗𝐸𝑖𝑗 − �̂�𝑖𝑗𝐸𝑗𝑖 + 𝜃𝑖𝑗𝐸𝑖𝑗 + 𝜃𝑖𝑗𝐸𝑗𝑖)

4: end for

5: for 𝑖 = 1, 2, . . . 𝑝 do

6: �̂�𝑖𝑖 ← argmin𝜃𝑖𝑗 𝐹 (Θ̂− �̂�𝑖𝑖𝐸𝑖𝑖 + 𝜃𝑖𝑖𝐸𝑖𝑖)

7: end for

8: end while

Notice that the symmetric lasso formulation in [91] is not a convex formulation

as noted by [132, Lemma 2], but it is convex with respect to off-diagonals Θ̃ given

the inverse of diagonals {𝜎𝑗𝑗}. [91] propose to solve the problem by alternating

minimizing {𝜎𝑗𝑗} and Θ̃ with the subproblem of Θ̃ solved by cyclic CD. This can be

regarded as a cyclic BCD over two blocks diag(Θ) and Θ̃, with another cyclic CD as

the subproblem solver for Θ̃ update, which is different from Algorithm 4.1.

Cyclic CD methods are also applied in the context of best subset selection for both

regression and classiőcation settings [116, 119, 66]. There are two major differences in

terms of the cyclic CD methods. First, different from the regression or classiőcation

problem, we are dealing with the sparse symmetric matrix in the covariance matrix

estimation framework (4.13). The cyclic CD needs to handle the on-diagonal and

(symmetric) off-diagonal entries differently, as shown in lines 3 and 6 in Algorithm 4.1.

Second, the convergence guarantee of Algorithm 4.1 is unknown, even when ℎ𝑖𝑗’s are

convex. The sparse regression problem considered in [119] is convex, smooth and

component-wise strongly convex, and thus the coordinate descent enjoys a 𝑂(1/𝑇 )

sublinear rate of convergence [123]. However, the pseudo-likelihood framework in
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(4.13) has additional log terms and quadratic-over-linear structure, which make the

objective neither smooth nor componentwise strongly convex. As pointed out by

[132], there is no known convergence guarantee for the cyclic CD applied to this

convex formulation of symmetric lasso procedure. Later in Section 4.3.4, we will

provide the convergence guarantee for Algorithm 4.1 for the root/node relaxation

subproblems (4.10).

Coordinate updates: The coordinate updates in lines 3 and 6 of Algorithm 4.1 can

be reduced to simple formulations. In fact, for any 𝑖 < 𝑗 and ℎ𝑖𝑗, the update in line

3 of Algorithm 4.1 is equivalent to2

�̂�
+

𝑖𝑗 = argmin
𝜃

𝑎𝑖𝑗𝜃
2 + 𝑏𝑖𝑗𝜃 + ℎ𝑖𝑗(𝜃) (4.14)

where

𝑎𝑖𝑗 =
𝑣𝑗

�̂�𝑖𝑖
+

𝑣𝑖

�̂�𝑗𝑗
, 𝑏𝑖𝑗 =

2�̃�⊤
𝑗 (𝑟𝑖 − �̂�𝑖𝑗�̃�𝑗)

�̂�𝑖𝑖
+

2�̃�⊤
𝑖 (𝑟𝑗 − �̂�𝑖𝑗�̃�𝑖)

�̂�𝑗𝑗

with 𝑣𝑖 = �̃�
⊤
𝑖 �̃�𝑖 and 𝑟𝑖 = �̃��̂�𝑖. The solution to (4.14) is closely related the proximal

operator of ℎ𝑖𝑗. For all special cases we are interested in, the proximal operators

can be computed in the closed form; see [116, 119] and Appendix 4.A.1 for detailed

expressions, properties and their derivations.

For the diagonal entries 𝜃𝑖𝑖, the update in line 6 of Algorithm 4.1 is given by

�̂�
+

𝑖𝑖 = argmin
𝜃
− log 𝜃 + 𝑣𝑖𝜃 +

‖𝑒𝑖‖2
𝜃

=
1 +

√︀

1 + 4𝑣𝑖‖𝑒𝑖‖2
2𝑣𝑖

, (4.15)

where 𝑒𝑖 = 𝑟𝑖 − �̂�𝑖𝑖�̃�𝑖. Note that the update does not depend on the choice of ℎ𝑖𝑗.

In the implementation of CD, instead of computing 𝑟𝑖’s from scratch, we store

and update the values of 𝑟𝑖’s after each coordinate update to improve the efficiency.

This is known as the residual update, which is common in the coordinate descent

algorithm implementation for sparse learning [89, 116].

2In both updates (4.14) and (4.15), we use the superscript + to disambiguate the entries after

and before the coordinate update. To be more speciőc, the �̂�𝑖𝑗 and �̂�𝑖𝑖 in 𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑟𝑖 and 𝑒𝑖 are the

ones before the update, while �̂�
+

𝑖𝑗 and �̂�
+

𝑖𝑖 are the ones after the update.
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Active sets: The computational costs of 𝑎𝑖𝑗, 𝑏𝑖𝑗 and 𝑒𝑖 in the updates (4.14) and

(4.15) are 𝑂(𝑛), and there are 𝑂(𝑝2) variables in each full pass, so each iteration of

Algorithm 4.1 has cost of 𝑂(𝑛𝑝2), which becomes prohibitively expensive when 𝑛 or 𝑝

becomes large. To reduce the computational cost, we propose an active-set method:

we run Algorithm 4.1 restricted to the diagonal variables 𝒟 and a small subset of the

off-diagonal variables 𝒜 ⊆ {(𝑖, 𝑗) : 𝑖 < 𝑗, 𝑖, 𝑗 ∈ [𝑝]}, i.e. Θ|𝒜𝑐∖𝒟 = 0. After solving

the restricted problem, we augment the active set with the off-diagonal variables

(𝑖, 𝑗) ∈ 𝒜𝑐 that violate the coordinate-wise optimality conditions, and resolve the

problem on the new active set. We repeat this process and terminate the algorithm

until there are no more violations. Such an approach is effectively used for speeding

up structured-sparity learning algorithms [116, 119, 117, 52]. Our proposed method

is detailed in Algorithm 4.2.

Algorithm 4.2 Active set method for solving (4.13)

Input: An intial active set 𝒜 and initial solution Θ̂

1: while not converged do

2: Get a solution for minΘ∈S𝑝 𝐹 (Θ), s.t. Θ|𝒜𝑐∩𝒟𝑐 = 0 using Algorithm 4.1

3: 𝒱 ← {(𝑖, 𝑗) : 𝑖 < 𝑗, 𝑖, 𝑗 ∈ [𝑝], �̂�𝑖𝑗 = 0, 0 /∈ argmin𝜃𝑖𝑗 𝐹 (Θ̂ − �̂�𝑖𝑗𝐸𝑖𝑗 − �̂�𝑖𝑗𝐸𝑗𝑖 +

𝜃𝑖𝑗𝐸𝑖𝑗 + 𝜃𝑖𝑗𝐸𝑗𝑖)}
4: If 𝒱 is empty then Terminate; otherwise, 𝒜 ← 𝒜∪ 𝒱
5: end while

In what follows, we will discuss some details of Algorithm 4.2 when we use it

to solve the root/node relaxation (4.10) and the problem for incumbents (4.7), in

Sections 4.3.4 and 4.3.6, respectively.

4.3.4 Node relaxation solving

In this section, we discuss computational details as well as convergence guarantees of

using Algorithms 4.1 and 4.2 introduced in Section 4.3.3 to obtain solutions to the

root/node relaxation subproblems (4.10).
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Coordinate updates: Recall that as a special case of the uniőed formula-

tion (4.13), the node relaxation subproblem (4.10) has regularizers ℎ𝑖𝑗(𝜃𝑖𝑗) =

𝑔(𝜃𝑖𝑗;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗). Its corresponding off-diagonal updates (4.14) in the line 3

of Algorithm 4.1 has a closed-form solution, related to the proximal operators of 𝜓

and 𝜙, derived in [119]. For the self-containedness of the chapter, we present these

formulations and closed-form updates in Appendix 4.A.1.2.

Computational guarantee: As we mentioned earlier, due to the log-terms and

quadratic-over-linear structure of the pseudolikelihood, there is no known conver-

gence guarantee for the coordinate descent algorithm, as pointed out by [132]. The

following theorem provides such convergence guarantee and presents the sublinear

rate of convergence for Algorithm 4.1 applied to the relaxation subproblem (4.10).

Theorem 4.1. Given any initialization Θ
(0), let Θ

(𝑡) be the 𝑡-th iterate generated

by Algorithm 4.1 (at the end of 𝑡-th while-loop), then there exists a constant 𝐶 that

depends on Θ
(0), for any 𝑡 ≥ 1,

𝐹node(Θ
(𝑡))− 𝐹 *

node
≤ 𝐶

𝑡
, (4.16)

where 𝐹 *
node

= minΘ∈S𝑝 𝐹node(Θ).

In Appendix 4.A.2, we prove the convergence guarantee for the uniőed formula-

tion (4.13) with a more class of regularizers. This also includes the equivalent convex

formulation of symmetric lasso procedure with ℎ𝑖𝑗(𝜃) = 𝜆1|𝜃|.

Initializations: The quality of the initial active set 𝒜 affect the number of iterations

in Algorithm 4.2. Due to the similarity between the parent node and its two child

nodes, we take the initial active set to be the same as the support of the relaxation

solution at the parent node. For the root relaxation problem, we consider initializing

the active set as the support of the warm start, obtained by the heuristic solver that

will be discussed in Section 4.3.6.

Inexact solving: For the practical purpose, we do not solve the restricted problem

in line 2 of Algorithm 4.2 exactly Ð instead we terminate Algorithm 4.1 when the
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relative change in the objectives is small. In next section, we will discuss how to

obtain a dual bound based on the primal inexact solution for pruning purpose.

4.3.5 Dual bounds

As mentioned before, for the practical purpose, we do not need to use Algorithm 4.2 to

solve the problem exactly. Instead, inexact solutions to the node relaxations (4.10) are

obtained by using Algorithm 4.2 with low accuracy. However, we still the dual bounds

to perform search space pruning in BnB. We provide an efficient method to compute

the dual bounds from the primal solutions. Compared to dual bounds presented in

[119] for regression problem, the dual bounds derived here have several differences: (i)

compared to the regression problem, our relaxation (4.10) has a quadratic-over-linear

structure, an extra log terms and the symmetric constraint, so the dual becomes more

complicated; (ii) we provide a uniőed dual expression in terms of convex conjugate

functions of 𝑔, while [119] introduce two additional dual variables 𝛾, 𝜇 for computing

the dual for different regimes of
√︀

𝜆0/𝜆2.

We presents the Lagrangian dual of (4.10) in the following theorem:

Theorem 4.2. A dual of Problem (4.10) is given by

max
𝜈

𝐷(𝜈) := 𝑝+

𝑝
∑︁

𝑖=1

log(−‖𝜈𝑖‖2/4− �̃�⊤
𝑖 𝜈𝑖)−

∑︁

𝑖<𝑗

𝑔*(�̃�⊤
𝑗 𝜈𝑖+ �̃�

⊤
𝑖 𝜈𝑗;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗),

(4.17)

where 𝑔*(·;𝜆0, 𝜆2,𝑀, 𝑧, 𝑧) is the convex conjugate of 𝑔(·;𝜆0, 𝜆2,𝑀, 𝑧, 𝑧). The strong

duality holds, i.e.

min
Θ∈S𝑝

𝐹node(Θ) = max
𝜈

𝐷(𝜈).

Furthermore, if Θ
* is an optimal primal solution to (4.10), let 𝑟*𝑖 = �̃�𝜃*𝑖 for all

𝑖 ∈ [𝑝], then 𝜈*
𝑖 = −2𝑟*𝑖 /𝜃*𝑖𝑖 is the optimal dual solution to (4.17).

Given any 𝛼, the convex conjugate 𝑔*(𝛼) can be computed explicitly, and we

provide the computational details in Appendix 4.A.3.

Dual bounds: Let Θ̂ be an inexact solution generated by Algorithm 4.1 or 4.2
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applied to the node relaxation (4.10). Then, we can construct a dual solution based

on Θ:

�̂�𝑖 = −2�̃��̂�𝑖/�̂�𝑖𝑖. (4.18)

Notice that when −‖�̂�𝑖‖2/4 − �̃�⊤
𝑖 𝜈𝑖 ≤ 0, the dual solution is infeasible, and thus

𝐷(�̂�) = −∞. This indicates the optimization error of the current inexact solution Θ̂

is still not small enough.

However, it is possible to show the tightness of the dual bounds in a similar

fashion to [119, Theorem 3], in the sense that as long as Θ̂ is close to the optimal Θ*

to (4.10) in certain metric, then 𝐷(Θ*) − 𝐷(Θ̂) cannot be too large, and its upper

bound depends on the number of nonzero off-diagonal entries instead of 𝒪(𝑝2). The

proof is omitted here because this is not the focus of the chapter.

Efficient computation of the dual bounds: A direct computation of the dual

bounds 𝐷(�̂�) costs 𝒪(𝑛𝑝2). This can be reduced to 𝒪(𝑛𝑘) if Θ̂ is a solution from

Algorithm 4.2, where 𝑘 is the number of nonzero off-diagonal entries in Θ̂. [119]

explores the good property of 𝜓 in the root relaxation in the sparse regression setting

Ð translated into our setting, this is equivalent to if �̂�𝑖𝑗 = 0, then

𝜓*(�̃�⊤
𝑗 �̂�𝑗 + �̃�

⊤
𝑖 �̂�𝑖;𝜆0, 𝜆2,𝑀) = 0.

This means we compute 𝜓* (as a special case of 𝑔* in root relaxation) over the off-

diagonal support of Θ̂, which reduces the operations to 𝒪(𝑛𝑘).
This can be generalized to the node relaxation setting Ð the only difference is

that if �̂�𝑖𝑗 = 0 and 𝑧𝑖𝑗 = 𝑧𝑖𝑗 = 1, 𝑔*(�̃�⊤
𝑗 �̂�𝑗 + �̃�

⊤
𝑖 �̂�𝑖;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗) = −𝜆0. Since

we can easily store the number of 𝑧𝑖𝑗’s that are őxed to 1 in 𝒪(1) at each node,

the complexity of computing dual bounds remains 𝒪(𝑛𝑘). The formal statement is

presented in Proposition 4.1.

Proposition 4.1. Let Θ̂ be a solution obtained by Algorithm 4.2 applied to the node

relaxation (4.10), and �̂� is a dual feasible solution obtained by (4.18). Denote by

�̂� = {(𝑖, 𝑗) : 𝑖 < 𝑗, �̂�𝑖𝑗 ̸= 0}, and ℱ1 = {(𝑖, 𝑗) : 𝑖 < 𝑗, 𝑧𝑖𝑗 = 𝑧𝑖𝑗 = 1}.
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If for any 𝑖 ∈ [𝑝], −‖�̂�𝑖‖2/4− �̃�⊤
𝑖 �̂�𝑖 > 0, then

𝐷(�̂�) = 𝑝+

𝑝
∑︁

𝑖=1

log(−‖�̂�𝑖‖2/4− �̃�⊤
𝑖 �̂�𝑖) + 𝜆0|ℱ1∖�̂�|

−
∑︁

(𝑖,𝑗)∈�̂�

𝑔*(�̃�⊤
𝑗 �̂�𝑖 + �̃�

⊤
𝑖 �̂�𝑗;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗).

Otherwise, 𝐷(�̂�) = −∞.

In practice, we always make sure ℱ1 is a subset of the active set 𝒜, and thus both

�̂� and ℱ1 are subsets of 𝒜. We can compute the convex conjugate terms restricted

to 𝒜, and the corresponding computational cost is 𝒪(𝑛|𝒜|).

4.3.6 Heuristic solver and incumbents

In this section, we discuss computational details of our heuristic solver to solve (4.7),

using Algorithms 4.1 and 4.2 introduced in Section 4.3.3. We will őrst present the

coordinate updates corresponding to Problem (4.7), and then we discuss choices of

𝒮 and the initializations for both initial incubment solving and incumbent solving at

each node.

Coordinate updates: We notice that the objective in (4.7) is a special case of the

uniőed formulation (4.13) with

ℎ𝑖𝑗(𝜃𝑖𝑗) =

⎧

⎨

⎩

𝜆01{𝜃𝑖𝑗 ̸= 0}+ 𝜆2𝜃
2
𝑖𝑗 + 𝜒{|𝜃𝑖𝑗| ≤𝑀}, if (𝑖, 𝑗) ∈ 𝒮

𝜒{𝜃𝑖𝑗 = 0}, if (𝑖, 𝑗) ∈ 𝒮𝑐
.

Its corresponding off-diagonal update in (4.14) in the line 3 of Algorithm 4.1 has a

closed-form expression. When (𝑖, 𝑗) ∈ 𝒮 and 𝑀 = ∞, the corresponding expression

is derived in [116], and we extend it to the big-𝑀 constraint setting and present the

results in Appendix 4.A.1.3.

Heuristics of choosing 𝒮: For the initial incumbent solving, since we do not have

prior knowledge of the support of the problem, we take 𝒮 to be the set of all pairs,

i.e. 𝒮 = {(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑗 ≤ 𝑝}, and we solve the problem by Algorithm 4.2.
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For the incumbent solving at each node, we attempt to improve the upper bound

based on the solution Θ̂ at the current node’s relaxation, and thus we set 𝒮 based

on 𝑧 induced by Θ̂. We propose two optionsÐ(i) directly taking the support of

𝑧, i.e. 𝒮 = {(𝑖, 𝑗) : 𝑖 < 𝑗, 𝑧𝑖𝑗 > 0}; (ii) taking the support of rounded 𝑧, i.e.

𝒮 = {(𝑖, 𝑗) : 𝑖 < 𝑗, 𝑧𝑖𝑗 ≥ 0.5}. In this case, due to the sparsity of Θ̂, we expect 𝒮 to

be small, so Algorithm 4.1 should be efficient enough to solve the problem.

Initializations: Since (4.7) is a discrete nonconvex problem, so the number of iter-

ations in Algorithm 4.1 or 4.2 and the quality of the approximate solution given by

the algorithms are affected by the quality of the initial solution Θ̂ and/or the quality

of the initial active set 𝒜.

For initial incumbent solving, as we do not have any prior knowledge, we initialize

Algorithm 4.2 with the trivial solution

Θ̂
(0)

= diag(𝑣−1
1 , . . . , 𝑣−1

𝑝 ),

which is optimal when all the off-diagonal entries are forced to be 0. We obtain the

initial active set 𝒜 by correlation screening [116] Ð computing the correlation matrix

of 𝑋 and taking a small portion of coordinates (𝑖, 𝑗) that have highest correlations

in each row.

For the incumbent solving at every node, we initialize Algorithm 4.1 with the

current relaxation solution Θ̂ restricted on 𝒮.

4.4 Statistical Properties

In this section, we investigate the statistical properties of the estimator (4.4). We

consider two different criteria for our estimator. for our analysis. First, we present

estimation error bounds of the form ‖Θ*− Θ̂‖𝐹 where Θ
* is the underlying precision

matrix and Θ̂ is the estimated one. In the high-dimensional regime where 𝑝/𝑛 can

be large, we consider the variable selection properties of our estimator.
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4.4.1 Estimation Error Bound

Before proceeding with our results in this section, we state our assumptions on the

model for this case.

Assumption 4.1. Suppose the GGM model (4.1) holds. Let 𝛽*
𝑖𝑗, 𝜎

*
𝑗 be as deőned

in (4.3). We assume:

(A1) There exist 𝑙𝜎, 𝑢𝜎 ≥ 0 such that for any 𝑗 ∈ [𝑝], 𝑙𝜎 ≤ 𝜎*
𝑗 ≤ 𝑢𝜎 with 𝑢𝜎 ≥ 1.

(A2) For any 𝑖 ̸= 𝑗, |𝛽*
𝑖𝑗| ≲ 1.

(A3) We have 𝑙2𝜎 ≥ 6
25
𝑢4𝜎 +

2
5
𝑢2𝜎.

(A4) For 𝑗 ∈ [𝑝],
⃒
⃒
{︀
𝑖 ∈ [𝑝] : 𝑖 ̸= 𝑗, 𝛽*

𝑖𝑗 ̸= 0
}︀⃒
⃒ ≤ 𝑘.

(A5) For the matrix Θ
*, we assume

min
𝑆⊆[𝑝]
|𝑆|≤2𝑘

𝜆min(Σ
*
𝑆,𝑆) ≥ 𝜅2 ≳ 1

where Σ
* = (Θ*)−1 and 𝜅 is an absolute constant.

Assumptions (A1) to (A3) stated above ensure that the matrix Θ
* is normalized

and does not have large or small entries. Assumption (A4) states that each column

of Θ* is sparse and off-diagonals of each column have at most 𝑘 nonzeros. This is

a standard assumption in the GGM literature [213, Chapter 11]. Assumption (A5)

states that the sub-matrices of Σ
* are not badly conditioned. This assumption is

required in our analysis to be able to derive estimation error bounds. In our analysis,

we consider 𝜅 to be a őxed absolute constant while other parameters can vary.

In light of Assumption (A1), we consider a slightly modiőed version of Prob-

lem (4.4). Namely, we consider

min
𝛽,𝜎

𝑝
∑︁

𝑗=1

⎡

⎣log(𝜎𝑗) +
1

𝑛

1

2𝜎2
𝑗

⃦
⃦
⃦
⃦
⃦
𝑥𝑗 −

∑︁

𝑖:𝑖 ̸=𝑗
𝛽𝑖𝑗𝑥𝑖

⃦
⃦
⃦
⃦
⃦

2

2

⎤

⎦ (4.19)

s.t. 𝑙𝜎 ≤ 𝜎𝑗 ≤ 𝑢𝜎, 𝑗 ∈ [𝑝]; 𝛽𝑖𝑗𝜎
2
𝑖 = 𝛽𝑗𝑖𝜎

2
𝑗 , 𝑖 ̸= 𝑗, 𝛽𝑖𝑖 = 0, 𝑖 ∈ [𝑝]

|{𝑖 ∈ [𝑝] : 𝑖 ̸= 𝑗, 𝛽𝑖𝑗 ̸= 0}| ≤ 𝑘, 𝑗 ∈ [𝑝]
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where we add additional boundedness constraints on 𝜎𝑗. Theorem 4.3 establishes an

estimation error bound for Problem (4.19).

Theorem 4.3. Let {�̂�𝑖𝑗}, {�̂�𝑗} be the optimal solution to Problem (4.19). Under

Assumptions (A1) to (A5) with 𝑝/𝑘 > 5, if 𝑛 ≳ 𝑘 log 𝑝,

∑︁

𝑗∈[𝑝]
(�̂�𝑗 − 𝜎*

𝑗 )
2 +

1

𝑢2𝜎

∑︁

𝑗∈[𝑝]

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)2 ≲
𝑢2𝜎𝑘𝑝 log(2𝑝/𝑘)

𝑙2𝜎𝑛
(4.20)

with high probability.3

Theorem 4.3 established an ℓ2 error bound on the estimation of coefficients 𝛽*

and variances 𝜎*. As our goal is to estimate the precision matrix Θ
*, we perform a

transformation on the results of Problem (4.19), based on (4.3). Theorem 4.4 below

establishes the estimation error bound on the precision matrix.

Theorem 4.4. Let {�̂�𝑖𝑗}, {�̂�𝑗} be the optimal solution to Problem (4.19), and let

�̂�𝑗𝑗 =
1
�̂�2
𝑗

and �̂�𝑗𝑖 = − �̂�𝑖𝑗

�̂�2
𝑗

for 𝑖 ̸= 𝑗 ∈ [𝑝]. Then, under the assumptions of Theorem

4.3,
⃦
⃦
⃦Θ̂−Θ

*
⃦
⃦
⃦

2

𝐹
≲

(𝑢6𝜎 + 𝑢8𝜎)𝑘𝑝 log(2𝑝/𝑘)

𝑙10𝜎 𝑛
(4.21)

with high probability.3

Remark 4.1 (Comparison with statistically optimal results). Theorem 4.4 shows that

our proposed estimator achieves a Frobenius estimation rate of
√︀

𝑘𝑝 log 𝑝/𝑛. This rate

typically matches the estimation rate of current methods for GGM and is known to

be minimax optimal up to logarithmic factors (see [194] for a detailed discussion on

estimation rate for GGM).

Remark 4.2 (Comparison with prior pseudo-likelihood-based methods). To our

knowledge, Theorem 4.4 is the őrst result that presents a non-asymptotic estimation

guarantee for pseudo-likelihood-based GGM that results in a symmetric estimator.

GGM estimators based on pseudo-likelihood have been considered by [183, 132, 91]

however, none of these papers provide a non-asymptotic analysis similar to the one in

3An explicit expression for probability can be found in (4.78).
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Theorem 4.4. (The analysis of [183] is asymptotic as 𝑛→∞). The method of [166]

is based on solving a sparse linear regression-type problem. However, their analysis

is focused on variable selection (which we discuss later). In addition, their estimator

does not enforce symmetry, unlike us.

An important property of our estimator is symmetry. Although the bound of The-

orem 4.4 is minimax optimal, it does not justify how a symmetric solution improves

the estimation accuracy. As a result, below we consider an illustrative example in

which we quantify the beneőt of symmetry constraints.

Example 4.1. Let 𝑝 = 2, 𝑐 ∈ (0, 1), and

Θ
* =

⎡

⎣
1 𝑐

𝑐 1

⎤

⎦ , Σ
* = (Θ*)−1 =

1

1− 𝑐2

⎡

⎣
1 −𝑐
−𝑐 1

⎤

⎦ (4.22)

and data is generated per model (4.1). As we are interested to investigate the effect

of symmetry on values of 𝛽, we assume the variance values (𝜎*
𝑗 )

2 are known. As a

result, in the symmetric case, we consider the problem:

min
𝛽1,𝛽2

‖𝑥1 − 𝛽1𝑥2‖22 + ‖𝑥2 − 𝛽2𝑥1‖22 s.t. 𝛽1 = 𝛽2. (4.23)

The optimal solution to (4.23) is given as

�̂�1 = �̂�2 = �̂� =
2𝑥⊤

1 𝑥2

𝑥⊤
1 𝑥1 + 𝑥⊤

2 𝑥2

resulting in the total estimation error

2
(︁

𝛽* − �̂�
)︁2

= 2

(︂

𝑐+
2𝑥⊤

1 𝑥2

𝑥⊤
1 𝑥1 + 𝑥⊤

2 𝑥2

)︂2

. (4.24)

Without the symmetry constraints, we consider

min
𝛽1,𝛽2

‖𝑥1 − 𝛽1𝑥2‖22 + ‖𝑥2 − 𝛽2𝑥1‖22 (4.25)

138



which leads to solutions

�̂�1 =
𝑥⊤
1 𝑥2

𝑥⊤
2 𝑥2

, �̂�2 =
𝑥⊤
1 𝑥2

𝑥⊤
1 𝑥1

.

As a result, the total estimation error in this case is

(︁

𝛽* − �̂�1

)︁2

+
(︁

𝛽* − �̂�2

)︁2

=

(︂

𝑐+
𝑥⊤
1 𝑥2

𝑥⊤
1 𝑥1

)︂2

+

(︂

𝑐+
𝑥⊤
1 𝑥2

𝑥⊤
2 𝑥2

)︂2

. (4.26)

As it can be seen, the estimation error in the asymmetric case depends on quantities

𝑥⊤
1 𝑥1 and 𝑥⊤

2 𝑥2 separately while the error in the symmetric case only depends on

𝑥⊤
1 𝑥1 + 𝑥⊤

2 𝑥2. Intuitively, the latter has an averaging effect on the error caused

by randomness of the data. In other words, 𝑥⊤
1 𝑥1 + 𝑥⊤

2 𝑥2 has a lower variance

compared to 𝑥⊤
1 𝑥1 and 𝑥⊤

2 𝑥2 separately. This leads to lower estimation error and

better estimation performance in the symmetric case.

Mathematically, one can show (see Appendix 4.C for details) for the symmetric case,

the estimation error is upper bounded as

P

(︂

2
(︁

𝛽* − �̂�
)︁2

≤ 4𝜖2(𝑐2 + 1)

(1− 𝜖)2
)︂

≥ 1− 2 + 2𝑐2

𝑛𝜖2

for 𝜖 ∈ (0, 1). On the other hand, for the asymmetric case we have

P

(︂(︁

𝛽* − �̂�1

)︁2

+
(︁

𝛽* − �̂�2

)︁2

≤ 4𝜖2(𝑐2 + 1)

(1− 𝜖)2
)︂

≥ 1− 5 + 𝑐2

𝑛𝜖2
.

This shows for a given 𝜖, the symmetric case can provide the same error bound with

a higher probability or for a őxed conődence level, the symmetric case can provide a

lower error.

4.4.2 Support Recovery Guarantees

In this section, we analyze our estimator from variable selection point of view and

present support recovery guarantees. Before proceeding with our results, we introduce

an adjusted version of our estimator that is more suited to high-dimensional settings

where variable selection is canon. As we seek to estimate the support, we relax
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the symmetry constraint (4.4b) so that the support of 𝛽𝑖𝑗 is symmetric, that is, the

location of nonzeros of {𝛽𝑖𝑗} is symmetric. Moreover, as we show in this case it is not

required to know the value of sparsity 𝑘 so we relax constraint (4.4c) as a penalty.

As a result, the estimator we consider is given as

min
𝛽,𝜎,𝑧

𝑝
∑︁

𝑗=1

⎡

⎣log(𝜎𝑗) +
1

2𝑛𝜎2
𝑗

⃦
⃦
⃦
⃦
⃦
𝑥𝑗 −

∑︁

𝑖:𝑖 ̸=𝑗
𝛽𝑖𝑗𝑥𝑖

⃦
⃦
⃦
⃦
⃦

2

2

⎤

⎦+ 𝜆
∑︁

𝑖 ̸=𝑗
𝑧𝑖𝑗 (4.27)

s.t. 𝑧𝑖𝑗 ∈ {0, 1}, 𝑧𝑖𝑗 = 𝑧𝑗𝑖, 𝑧𝑖𝑗 = 0⇒ 𝛽𝑖𝑗 = 0, 𝛽𝑖𝑖 = 0 𝑖 ̸= 𝑗 ∈ [𝑝]

𝜎𝑗 ≥
√
ℓ, 𝑗 ∈ [𝑝]

where 𝑧𝑖𝑗 controls the sparsity structure of {𝛽𝑖𝑗}, similar to Problem (4.6). In this

section, we use the following assumptions.

Assumption 4.2. Suppose the GGM model (4.1) holds. Let 𝛽*
𝑖𝑗 be as deőned in (4.3).

We assume:

(B1) There exist 𝑢𝜎 ≥ 𝑙𝜎 > 0 such that for any 𝑗 ∈ [𝑝], 𝑙𝜎 ≤ 𝜎*
𝑗 ≤ 𝑢𝜎 and 𝑢𝜎 ≤ 5𝑙𝜎.

(B2) For 𝑖, 𝑗 ∈ [𝑝], 𝑖 ̸= 𝑗, we have |𝛽*
𝑖𝑗| ≤ 1/

√
𝑘.

(B3) For 𝑖.𝑗 ∈ [𝑝], we have

(Σ*)𝑖𝑗 ≲ 1

and

max
𝑗∈[𝑝]

(Σ*)𝑗𝑗
(𝜎*

𝑗 )
2
≤ 400

7

where Σ
* = (Θ*)−1.

(B4) There exists a value 𝛽min such that 𝛽min ≥
√︁

𝜂 log 𝑝
𝑛

for some sufficiently large

numerical constant 𝜂 ≳ 𝑢2𝜎, and

|𝛽*
𝑖𝑗| ≥ 𝛽min for all (𝑖, 𝑗) ∈ [𝑝]× [𝑝] such that 𝛽*

𝑖𝑗 ̸= 0 and 𝑖 > 𝑗. (4.28)

(B5) For 𝑗 ∈ [𝑝],
⃒
⃒
{︀
𝑖 ∈ [𝑝] : 𝑖 ̸= 𝑗, 𝛽*

𝑖𝑗 ̸= 0
}︀⃒
⃒ ≤ 𝑘 for some 𝑘 > 0.
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(B6) For the matrix Θ
*, we assume

3 ≥ max
𝑆⊆[𝑝]
|𝑆|≤2𝑘

𝜆max(Σ
*
𝑆,𝑆) ≥ min

𝑆⊆[𝑝]
|𝑆|≤2𝑘

𝜆min(Σ
*
𝑆,𝑆) ≥ 𝜅2 > 0.3

where 𝜅 is an absolute constant.

In Assumptions (B1) to (B3), we generally assume that Θ
*,Σ* are bounded.

Assumption (B4) is a non-degeneracy condition that is generally needed to achieve

support recovery. Such assumptions are common in the literature [218]. Assump-

tion (B5) is the sparsity assumption on the underlying model. Note that the value

of 𝑘 does not appear in Problem (4.27). Finally, Assumption (B6) is a condition

number assumption that is generally common in the literature. Theorem 4.5 presents

support recovery guarantees for our estimator.

Theorem 4.5. Suppose Assumptions (B1) to (B6) hold. Let {𝑧𝑖𝑗} be the optimal

solution to Problem (4.27) with ℓ = 𝑙𝜎/
√
3 and {𝑧*𝑖𝑗} be the binary matrix correspond-

ing to the correct support, such that 𝑧*𝑖𝑗 = 1 ⇔ 𝜃*𝑖𝑗 ̸= 0 for 𝑖 ̸= 𝑗. Then, 𝑧𝑖𝑗 = 𝑧*𝑖𝑗

for 𝑖 ̸= 𝑗 ∈ [𝑝] with high probability4 if 𝑛 = 𝑐𝑛𝑘 log 𝑝 and 𝜆 = 𝑐𝜆 log 𝑝/𝑛 for some

sufficiently large absolute constants 𝑐𝑛, 𝑐𝜆 > 0.

Remark 4.3 (Comparison with statistically optimal results). We note that the num-

ber of samples 𝑛 ≳ 𝑘 log 𝑝 required in Theorem 4.5 for correct support recovery is

Minimax optimal up to logarithmic constants [218] and matches the support recovery

results of current methods (for example, see [45, 90].)

Remark 4.4 (The effect of symmetry). As seen in Theorem 4.5, to achieve perfect

support recovery, we require a non-degeneracy condition as given by the 𝛽min assump-

tion (B4). However, we note that as Problem (4.27) results in a symmetric support,

we need non-degeneracy conditions only on half of the value of 𝛽*
𝑖𝑗 as stated in As-

sumption (B4). Intuitively, an error in estimating the support propagates to at least

one other location (due to the symmetric support), meaning only half of the 𝛽*
𝑖𝑗 coeffi-

cients need to be non-degenerate. To our knowledge, other estimators based on linear

4An explicit expression for the probability can be found in (4.121)
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regression (such as [163, 166]) do not enjoy this property, as they do not enforce

symmetry in their linear regression-based estimators.

4.5 Numerical Experiments

In this section, we present various numerical experiments to compare our proposed

method against several competing methods in terms of computational efficiency, sta-

tistical performance and a downstream task of portfolio optimization.

Competing Methods: We compare our method to following algorithms for

graphical models: GLASSO [90], CONCORD [132] and CLIME [45]. We use a validation

set to select parameters for different methods.

4.5.1 Synthetic Data

In this section, we investigate the computational and statistical performance of our

proposed estimator using synthetic datasets. The data points 𝑥(𝑖) for 𝑖 = 1, · · · , 𝑛
are drawn independently from the normal distribution 𝒩 (0, (Θ*)−1). We also draw

𝑛 validation points from the same distribution. We consider two scenarios for the

precision matrix Θ
* ∈ R

𝑝×𝑝 as outlined below:

1. Uniform Sparsity: We let Θ = 𝐵+𝛿𝐼𝑝 where𝐵 is generated as follows. Each

entry of 𝐵 is set to 0.5 with probability 𝑝0 and zero with probability 1 − 𝑝0.
We also symmetrize 𝐵 as (𝐵 +𝐵⊤)/2. Then, the value of 𝛿 is chosen so that

the condition number of 𝐵 + 𝛿𝐼𝑝 is as desired. Finally, Θ−1 is normalized so

that each variable has unit variance. We set 𝑝0 = 𝑘/2𝑝. Note that Θ has 𝑘𝑝

nonzero entries on average.

2. Banded Precision: We let Θ = 𝐵 + 𝛿𝐼𝑝 where 𝐵 is as

𝑏𝑖𝑗 =

{︃

0 if |𝑖− 𝑗| > 𝑘/2 or 𝑖 = 𝑗

0.5|𝑖−𝑗| if |𝑖− 𝑗| ≤ 𝑘/2.
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Figure 4-1: Runtimes (in seconds) for different estimators in Section 4.5.1.1.

where 𝑘 is the bandwidth. Then, the value of 𝛿 is chosen so that the condition

number of𝐵+𝛿𝐼𝑝 is as desired. Finally, Θ−1 is normalized so that each variable

has unit variance. Note that Θ has 𝑘 + 1 nonzeros per column.

The results reported here are the averages of 10 independent runs.

4.5.1.1 Timing benchmarks

In this section, we compare the runtime of our method to other (convex) estimators.

We use the uniform sparsity scenario from above. We set the condition number of Θ*

to 𝑝/20 and 𝑘 = 10. Based on our experiment, GLASSO and CONCORD provide the best

runtime overall and we compare the runtime of our estimator to them. The results for

different values of parameters are shown in Figure 4-1. The experiments are done on

a personal computer equipped with AMD Ryzen 9 5900X CPU and 32GB of RAM.

In these examples, our BnB framework achieves average optimality gaps less than

2%. We also use warm-starts for GLASSO as this leads to faster convergence of this

method.

As it can be seen, our framework is the fastest estimator compared to GLASSO

and CONCORD. In addition, in our experiments CLIME did not scale to experiments

considered in Figure 4-1. Our method scales to 𝑝 = 104, while in our experiments,

GLASSO only scales to 𝑝 ≈ 3000 and CONCORD only scales to 𝑝 ≈ 2000 variables. This

is while GGMvPLL0 is almost an order of magnitude faster than the aforementioned
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estimators for 𝑝 ≤ 3000.

4.5.1.2 Statistical benchmarks

In this section, we use synthetic datasets to compare the statistical performance

of our estimator to other algorithms. We set 𝑝 = 200 and consider the following

scenarios. In terms of performance metrics, we report the normalized estimation error

‖Θ̂−Θ
*‖𝐹/‖Θ*‖𝐹 where Θ

* is the true precision matrix and Θ̂ is the estimated one.

Next, we report Matthews Correlation Coefficient (MCC) which is deőned as

MCC =
TP× TN− FP× FN

√︀

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where

TP = |{(𝑖, 𝑗) : 𝜃*𝑖𝑗, �̂�𝑖𝑗 ̸= 0}|,FP = |{(𝑖, 𝑗) : 𝜃*𝑖𝑗 = 0, �̂�𝑖𝑗 ̸= 0}|

TN = |{(𝑖, 𝑗) : 𝜃*𝑖𝑗, �̂�𝑖𝑗 = 0}|,FN = |{(𝑖, 𝑗) : 𝜃*𝑖𝑗 ̸= 0, �̂�𝑖𝑗 = 0}|.

Note that a higher value of MCC implies a better support recovery performance.

Finally, we report the support size of each estimator as NNZ = |{(𝑖, 𝑗) : �̂�𝑖𝑗 ̸= 0}|.
Scenario 1, Banded Precision: In this setup, we let 𝑛 = 50, · · · , 300 and set

the condition number to 100, and the sparsity to 𝑘 = 6. Here we compare the

outcomes of different methods. The results for this case are shown in Figure 4-

2. As it can be seen, our proposed estimator provides the lowest estimation error,

and the highest MCC (which implies the best support recovery), while leading to a

sparse solution. Although CONCORD provides good support recovery, it leads to bad

estimation performance. GLASSO provides good estimation performance, however,

similar to CLIME, leads to many false positives and larger support sizes, resulting in

poor support recovery performance.

Scenario 2, Uniform Sparsity: In this setup, we let 𝑛 = 50, · · · , 300 and set

the condition number to 200, and the sparsity to 𝑘 = 5, 10. The results for 𝑘 =

5 are shown in Figure 4-3 and the results for 𝑘 = 10 can be found in Figure 4-

4. Overall, as it can be seen our proposed estimator provides good estimation and

support recovery performance. Moreover, our estimator is sparse, specially compared
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Figure 4-2: Comparison for the banded precision model in Section 4.5.1.2 with 𝑘 = 6.

to CLIME and GLASSO. Another observation is that increasing the sparsity level leads

to worse statistical performance, which is expected.
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Figure 4-3: Comparison for the uniforms sparsity model in Section 4.5.1.2 with 𝑘 = 5
and 𝑝 = 200.

Finally, we consider a case to investigate the statistical properties of GGMs in

high-dimensional settings. To this end, we set 𝑝 = 3000, 𝑘 = 10 and we let the

condition number to be 150. As discussed in Section 4.5.1.1, only our method and

GLASSO scale to these data instances. The results for this case are shown in Figure 4-

5. As it can be seen, GGMvPLL0 leads to almost-perfect support recovery for 𝑛 ≈
1000 while providing better estimation performance compared to GLASSO. Moreover,

GLASSO leads to numerous false positives and a dense support, as observed before.

4.5.2 Financial application

In this section, we consider portfolio optimization as a őnancial application of GGM.

We use the stocks returns data extracted from Yahoo Finance from 2005 to 2019
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Figure 4-4: Comparison for the uniforms sparsity model in Section 4.5.1.2 with 𝑘 = 10
and 𝑝 = 200.

Estimation Error MCC NNZ

0 500 1000 1500

n

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

GLASSO

GGMvPLL0

0 500 1000 1500

n

0.2

0.4

0.6

0.8

1

GLASSO

GGMvPLL0

0 500 1000 1500

n

0

1

2

3

4

5
10

5

GLASSO

GGMvPLL0

True

Figure 4-5: Comparison for the uniforms sparsity model in Section 4.5.1.2 with 𝑘 = 10
and 𝑝 = 3000.

for 1452 companies. Given the data, the goal of portfolio optimization is to select

a portfolio such that leads to maximum returns and minimum risk over the portfo-

lio [157]. Given the returns data matrix 𝑋 ∈ R
𝑛×𝑝 and a portfolio 𝑤 ∈ R

𝑝
≥0 such

that
∑︀𝑝

𝑖=1𝑤𝑖 = 1, the values of returns and risk are deőned as

𝑟 =
𝑛∑︁

𝑖=1

(𝑋𝑤)𝑖

𝜎 =
√︀

VAR(𝑋𝑤),

(4.29)

respectively, where VAR denotes the variance of the vector. To select the optimal

portfolio, we solve the quadratic portfolio selection problem:

min
𝑤

𝑤⊤
Σ𝑋𝑤 s.t. 𝑤 ∈ R

𝑝
≥0,

𝑝
∑︁

𝑖=1

𝑤𝑖 = 1 (4.30)
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GGMvPLL0 GLASSO CONCORD CLIME

Returns 25.02 24.98 24.87 24.50
Risk 0.38 0.34 0.41 0.47

‖Θ̂‖0 2398 3060 107 3369
Runtime 19.02 0.42 0.39 44.11

Table 4.1: Simulation results for the real dataset in Section 4.5.2

where Σ𝑋 is an estimation of the covariance matrix of the data. To obtain a consistent

estimation of Σ𝑋 , we run different GGM methods on𝑋 to achieve Θ̂ as an estimation

of Σ−1
𝑋 , and use Θ̂

−1
as the covariance matrix. Then, after selecting the portfolio by

solving (4.30), we calculate the returns and risk on a held-out test set of data points.

For more details on the setup, see [132].

We consider two cases. In the őrst case, we select the top 100 stocks with highest

variance over time. Then, use GGM methods to estimate Σ𝑋 and select the optimal

portfolio using 1000 training data points and 500 validation points. Then, we use

1000 test data points to calculate the returns and risk. The average results for 20

selections of train/validation/test data are reported in Table 4.1. Overall, we see that

our method provides the highest return. In terms of risk, GLASSO has a lower risk

compared to our method, however, our method leads to lower risk compared to other

methods. This is while our estimator is more sparse than GLASSO. In comparison to

CONCORD, our method is more dense but has higher returns and lower risk. Overall,

our method is performing well both statistically and computationally.

Next, we use every stock in the dataset and repeat the same experiment. In this

case, only our method and GLASSO provide meaningful results, reported in Table 4.2.

Overall, our method provides a considerably higher value of return, while providing

better returns to risk ratio. This is while our solution is more sparse and our al-

gorithm is faster, showing that our estimator is superior in terms of statistical and

computational performance.
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GGMvPLL0 GLASSO

Returns 8.96 2.50
Risk 0.36 0.20

‖Θ̂‖0 27055 114450
Runtime 459 1470

Table 4.2: Simulation results for the real dataset in Section 4.5.2

4.A Results related to computations

4.A.1 Properties and optimization oracles related to regular-

izers

In this subsection, we present properties and optimization oracles related to regular-

izers, for the computations in the coordinate descent updates (4.14) and (4.15).

In Sections 4.A.1.1 and 4.A.1.4, we őrst present the derivations related to up-

dates (4.14) and (4.15), and we reduce the off-diagonal update (4.15) to a proximal

operator computation problem. In Sections 4.A.1.2 and 4.A.1.3, we derive the closed-

form expressions of the proximal operators for the convex regularizer 𝑔 (4.11) in the

node/root relaxation subproblem (4.10), and the 𝐿0𝐿2 regularizers in the incumbent

solving problem (4.7).
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4.A.1.1 Off-diagonal update

We show that the update of �̂�𝑖𝑗 in line 3 of Algorithm 4.1 is given by (4.14). For any

𝑖 < 𝑗 and ℎ𝑖𝑗, we have

𝐹 (Θ̂− �̂�𝑖𝑗𝐸𝑖𝑗 − �̂�𝑖𝑗𝐸𝑗𝑖 + 𝜃𝑖𝑗𝐸𝑖𝑗 + 𝜃𝑖𝑗𝐸𝑗𝑖)

= Const +
1

�̂�𝑖𝑖
‖�̃��̂�𝑖 − �̂�𝑖𝑗�̃�𝑗 + 𝜃𝑖𝑗�̃�𝑗‖2 +

1

�̂�𝑗𝑗
‖�̃��̂�𝑗 − �̂�𝑖𝑗�̃�𝑖 + 𝜃𝑖𝑗�̃�𝑖‖2 + ℎ𝑖𝑗(𝜃𝑖𝑗)

(𝑎)
= Const +

1

�̂�𝑖𝑖
‖𝑟𝑖 − �̂�𝑖𝑗�̃�𝑗 + 𝜃𝑖𝑗�̃�𝑗‖2 +

1

�̂�𝑗𝑗
‖𝑟𝑗 − �̂�𝑖𝑗�̃�𝑖 + 𝜃𝑖𝑗�̃�𝑖‖2 + ℎ𝑖𝑗(𝜃𝑖𝑗)

(𝑏)
= Const +

‖�̃�𝑗‖2
�̂�𝑖𝑖

𝜃2𝑖𝑗 +
2�̃�⊤

𝑗 (𝑟𝑖 − �̂�𝑖𝑗�̃�𝑗)
�̂�𝑖𝑖

𝜃𝑖𝑗 +
‖�̃�𝑖‖2
�̂�𝑗𝑗

𝜃2𝑖𝑗 +
2�̃�⊤

𝑖 (𝑟𝑗 − �̂�𝑖𝑗�̃�𝑖)
�̂�𝑗𝑗

𝜃𝑖𝑗 + ℎ𝑖𝑗(𝜃𝑖𝑗)

(𝑐)
= Const + 𝑎𝑖𝑗𝜃

2
𝑖𝑗 + 𝑏𝑖𝑗𝜃𝑖𝑗 + ℎ𝑖𝑗(𝜃𝑖𝑗),

where Const denotes the constant terms with respect to the variable of interest 𝜃𝑖𝑗

and may vary line by line; (𝑎) uses the deőnition of 𝑟𝑖 = �̃��̂�𝑖, (𝑏) expands the squared

norm and moves the constant terms into Const, and (𝑐) is due to 𝑣𝑖 = ‖�̃�𝑖‖2 and the

deőnitions of 𝑎𝑖𝑗 and 𝑏𝑖𝑗. Thus, we have shown that the line 3 of Algorithm 4.1 is

given by (4.14).

In fact, this update can be expressed as the so-called proximal operator [17] for

the regularizer ℎ𝑖𝑗, under some scaling. For a lower-semicontinuous function ℎ, we

denote by the following operator

𝒬ℎ(𝑎, 𝑏) = argmin
𝜃

𝑎𝜃2 + 𝑏𝜃 + ℎ(𝜃), (4.31)

and the proximal operator

proxℎ(�̃�) = argmin
𝜃

1

2
(𝜃 − �̃�)2 + ℎ(𝜃). (4.32)

It is easy to verify that

𝒬ℎ(𝑎, 𝑏) = prox 1
2𝑎
ℎ

(︂

− 𝑏

2𝑎

)︂

. (4.33)

Therefore, according to (4.33), it suffices to investigate into the proximal operator
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computations for the regularizers, and we will present the closed-form expressions for

the proximal operators of different classes of regularizers we consider in Section 4.3.3,

including 𝐿0𝐿2, 𝐿1 regularizers and relaxation regularizer 𝑔 (4.11), in the following

sections.

4.A.1.2 Regularizers for relaxations

The expression and the proximal operator of 𝑔 in (4.11) are derived and presented in

[119]. For completeness, we will summarize the results.

Interval relaxation: Recall that when 𝑧 = 0, 𝑧 = 1, the regularizer 𝑔 becomes

𝜓(𝜃;𝜆0, 𝜆,𝑀) = min
𝑧,𝑠

𝜆0𝑧 + 𝜆2𝑠, s.t. 𝑠𝑧 ≥ 𝜃2, |𝜃| ≤𝑀𝑧, 𝑧 ∈ [0, 1].

We summarize different regimes and cases of 𝜓 in Table 4.3 (also in (4.8)), according

to [119].

Table 4.3: Summary of different regimes and cases of 𝜓

Regime Range of |𝜃| 𝜓(𝜃;𝜆0, 𝜆2,𝑀) 𝑧* 𝑠*

√︀

𝜆0/𝜆2 ≤𝑀

[0,
√︀

𝜆0/𝜆2) 2
√
𝜆0𝜆2|𝜃|

√︀

𝜆2/𝜆0|𝜃|
√︀

𝜆0/𝜆2|𝜃|
(
√︀

𝜆0/𝜆2,𝑀 ] 𝜆0 + 𝜆2𝜃
2 1 𝜃2

(𝑀,∞) ∞ ∅ ∅

√︀

𝜆0/𝜆2 > 𝑀
[0,𝑀 ] (𝜆0/𝑀 + 𝜆2𝑀)|𝜃| |𝜃|/𝑀 |𝜃|𝑀
(𝑀,∞) ∞ ∅ ∅

Given non-negative parameters 𝜆 and 𝑀 , we deőne the boxed soft-thresholding

operator 𝒯 : R→ R

𝒯 (𝑥;𝜆,𝑀) :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0 if |𝑥| ≤ 𝜆

(|𝑥| − 𝜆) sign(𝑥) if 𝜆 ≤ |𝑥| ≤ 𝜆+𝑀

𝑀 sign(𝑥) o.w.

. (4.34)

This is the proximal operator for the boxed 𝐿1 regularizer ℎ(𝑥) = 𝜆|𝑥|+𝜒{|𝑥| ≤𝑀}.
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Then, according to [119], the proximal operator of 𝜓 is given by

prox𝜓(�̃�;𝜆0, 𝜆2,𝑀)

= argmin
𝜃

1

2
(𝜃 − �̃�)2 + 𝜓(𝜃;𝜆0, 𝜆2,𝑀)

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

𝒯 (�̃�; 2
√
𝜆0𝜆2,𝑀) if |�̃�| ≤ 2

√
𝜆0𝜆2 +

√︀

𝜆0/𝜆2 and
√︀

𝜆0/𝜆2 ≤𝑀

𝒯 (�̃�/(1 + 2𝜆2); 0,𝑀) if |�̃�| > 2
√
𝜆0𝜆2 +

√︀

𝜆0/𝜆2 and
√︀

𝜆0/𝜆2 ≤𝑀

𝒯 (�̃�;𝜆0/𝑀 + 𝜆2𝑀,𝑀) if
√︀

𝜆0/𝜆2 > 𝑀

.

(4.35)

Based on this, we deőne the following quadratic minimization oracle

𝒬𝜓(𝑎, 𝑏;𝜆0, 𝜆2,𝑀) := argmin
𝑥

𝑎𝑥2+𝑏𝑥+𝜓(𝑥;𝜆0, 𝜆2,𝑀) = prox𝜓

(︂

− 𝑏

2𝑎
;
𝜆0
2𝑎
,
𝜆2
2𝑎
,𝑀

)︂

.

(4.36)

Fixed 𝑧: Recall that when 𝑧 = 𝑧 = 𝑧 ∈ {0, 1}, the regularizer 𝑔 becomes 𝜙 in (4.12),

i.e.

𝜙(𝜃; 𝑧, 𝜆0, 𝜆2,𝑀) := min
𝑠

𝜆0𝑧 + 𝜆2𝑠

s.t. 𝑠𝑧 ≥ 𝜃2, |𝜃| ≤𝑀𝑧, 𝑧 ∈ [0, 1]

=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if 𝑧 = 0 and |𝜃| = 0

∞ if 𝑧 = 0 and |𝜃| > 0

𝜆0 + 𝜆2𝜃
2 if 𝑧 = 1 and |𝜃| ≤𝑀

∞ if 𝑧 = 1 and |𝜃| > 𝑀

, (4.37)

and its corresponding proximal operator is

prox𝜙(�̃�; 𝑧, 𝜆0, 𝜆2,𝑀) = argmin
𝜃

1

2
(𝜃 − �̃�)2 + 𝜙(𝜃; 𝑧, 𝜆0, 𝜆2,𝑀)

=

⎧

⎨

⎩

0 if 𝑧 = 0

𝒯 (�̃�/(1 + 2𝜆2); 0,𝑀) if 𝑧 = 1
. (4.38)
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Based on this, we deőne the following regularized quadratic minimization oracle

𝒬𝜙(𝑎, 𝑏; 𝑧, 𝜆0, 𝜆2,𝑀) := argmin
𝑥

𝑎𝑥2 + 𝑏𝑥+ 𝜙(𝑥; 𝑧, 𝜆0, 𝜆2,𝑀)

= prox𝜙

(︂

− 𝑏

2𝑎
; 𝑧,

𝜆0
2𝑎
,
𝜆2
2𝑎
,𝑀

)︂

(4.39)

4.A.1.3 ℓ0ℓ2 regularizers

We derive the closed-form expression for the proximal operator for the 𝐿0𝐿2 regular-

izer

ℎ(𝜃) = 𝜆01{𝜃 ̸= 0}+ 𝜆2𝜃
2 + 𝜒{|𝜃| ≤𝑀},

where 𝑀 > 0 could be ∞.

The proximal operator of ℎ is

proxℎ(�̃�;𝜆0, 𝜆2,𝑀) = arg min
|𝜃|≤𝑀

𝑞(𝜃) :=
1

2
(𝜃 − �̃�)2 + 𝜆01{𝜃 ̸= 0}+ 𝜆2𝜃

2.

When 𝜃 = 0, we have 𝑞(0) = 1
2
�̃�
2
; when 𝜃 ̸= 0, we have 𝑞(𝜃) = 𝜆0+𝜆2𝜃

2+ 1
2
(𝜃− �̃�)2,

which is minimized at 𝜃′ = min{|�̃�|/(1 + 2𝜆2),𝑀} sign(�̃�).

Without loss of generality, we assume �̃� > 0. If �̃�
1+2𝜆2

> 𝑀 , then 𝜃′ =𝑀 , and

𝑞(𝜃′) = 𝜆0 + 𝜆2𝑀
2 +

1

2
(𝑀 − �̃�)2.

The root of 𝑞(𝜃′) = 𝑞(0) is �̃� = (1
2
+ 𝜆2)𝑀 + 𝜆0

𝑀
.

If, on the other hand, �̃�
1+2𝜆2

≤𝑀 , then 𝜃′ = �̃�
1+2𝜆2

, and

𝑞(𝜃′) = 𝜆0 +
𝜆2�̃�

2

1 + 2𝜆2
.

The root of 𝑞(𝜃′) = 𝑞(0) is �̃� =
√︀

2𝜆0(1 + 2𝜆2).
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Therefore, we obtain the following closed-form expression for the 𝐿0𝐿2 regularizer

proxℎ(�̃�;𝜆0, 𝜆2,𝑀) = arg min
|𝜃|≤𝑀

𝑞(𝜃)

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{𝑀 sign(�̃�)}, if |�̃�| > max
{︀
(1
2
+ 𝜆2)𝑀 + 𝜆0

𝑀
, (1 + 2𝜆2)𝑀

}︀

{0,𝑀 sign(�̃�)}, if |�̃�| = (1
2
+ 𝜆2)𝑀 + 𝜆0

𝑀
> (1 + 2𝜆2)𝑀

{0}, if |�̃�| ∈
(︀
(1 + 𝜆2)𝑀, (1

2
+ 𝜆2)𝑀 + 𝜆0

𝑀

)︀

{ �̃�
1+2𝜆2

}, if |�̃�| ∈
(︁√︀

2𝜆0(1 + 2𝜆2), (1 + 2𝜆2)𝑀
]︁

{0, �̃�
1+2𝜆2

}, if |�̃�| =
√︀

2𝜆0(1 + 2𝜆2) ≤ (1 + 2𝜆2)𝑀

{0}, if |�̃�| < min{
√︀

2𝜆0(1 + 2𝜆2), (1 + 2𝜆2)𝑀}

(4.40)

Note that when 𝑀 = ∞, (4.40) (the last three conditions) recovers the closed-form

expression for ℓ0ℓ2 regularizer provided in [116].

4.A.1.4 Diagonal update

We show that the update of �̂�𝑖𝑖 in the line 6 of Algorithm 4.1 is given by (4.15). For

any 𝑖, we have

𝐹 (Θ̂− �̂�𝑖𝑖𝐸𝑖𝑖 + 𝜃𝑖𝑖𝐸𝑖𝑖) = Const− log 𝜃𝑖𝑖 +
1

𝜃𝑖𝑖
‖�̃��̂�𝑖 − �̂�𝑖𝑖�̃�𝑖 + 𝜃𝑖𝑖�̃�𝑖‖2

(𝑎)
= Const− log 𝜃𝑖𝑖 +

1

𝜃𝑖𝑖
‖𝑟𝑖 − �̂�𝑖𝑖�̃�𝑖 + 𝜃𝑖𝑖�̃�𝑖‖2

(𝑏)
= Const− log 𝜃𝑖𝑖 +

1

𝜃𝑖𝑖
(‖𝑒𝑖‖2 + 2𝜃𝑖𝑖𝑒

⊤
𝑖 �̃�𝑖 + 𝜃2𝑖𝑖‖�̃�𝑖‖2)

(𝑐)
= Const− log 𝜃𝑖𝑖 +

‖𝑒𝑖‖2
𝜃𝑖𝑖

+ 𝜃𝑖𝑖𝑣𝑖,

where Const denotes the constant terms with respect to the variable of interest 𝜃𝑖𝑖 and

may vary line by line; (𝑎) and (𝑏) uses the deőnitions of 𝑟𝑖 = �̃��̂�𝑖 and 𝑒𝑖 = 𝑟𝑖− �̂�𝑖𝑖�̃�𝑖,
and (𝑐) is due to 𝑣𝑖 = ‖�̃�𝑖‖2 and 2𝑒⊤𝑖 �̃�𝑖 absorbed into Const.

Since the function is convex in 𝜃𝑖𝑖, by computing the őrst-order condition and

taking the positive root, we get

argmin
𝜃𝑖𝑖

𝐹 (Θ̂− �̂�𝑖𝑖𝐸𝑖𝑖 + 𝜃𝑖𝑖𝐸𝑖𝑖) = argmin
𝜃
− log 𝜃 + 𝜃𝑣𝑖 +

‖𝑒𝑖‖2
𝜃

=
1 +

√︀

1 + 4𝑣𝑖‖𝑒𝑖‖2
2𝑣𝑖

.
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4.A.2 Convergence guarantee of Algorithm 4.1

In this section, we consider a more general convergence statement about the uniőed

formulation (4.13), with the following assumption on ℎ𝑖𝑗:

Assumption 4.3. Assume that for each 1 ≤ 𝑖 < 𝑗 ≤ 𝑝, ℎ𝑖𝑗(𝜃) is convex in 𝜃. In

addition, there exist two constants 𝑐1, 𝑐2 ≥ 0 but 𝑐1 + 𝑐2 > 0, such that for any

1 ≤ 𝑖 < 𝑗 ≤ 𝑝, we have

ℎ𝑖𝑗(𝜃) ≥ min{𝑐1|𝜃|, 𝑐2𝜃2}.

It is easy to see that the usual ℓ1, ℓ2 penalties and their combinations satisfy

Assumption 4.3. The following proposition states that the relaxation regularizer 𝑔

also satisőes this assumption.

Proposition 4.2. For any 𝑧𝑖𝑗 ≤ 𝑧𝑖𝑗 ∈ {0, 1}, 𝑔(𝜃;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗) satisőes Assump-

tion 4.3 with 𝑐1 = 2
√
𝜆0𝜆2, 𝑐2 = 0.

Proof. Based on the deőnition of 𝜙 and 𝜓 in different cases, using the inequality

𝑎2+𝑏2 ≥ 2𝑎𝑏, it is easy to see that 𝜓(𝜃;𝜆0, 𝜆2,𝑀) ≥ 2
√
𝜆0𝜆2|𝜃| and 𝜙(𝜃; 𝑧, 𝜆0, 𝜆,𝑀) ≥

2
√
𝜆0𝜆2|𝜃|.

Lemma 4.1. Under Assumption 4.3, given any 𝑈 ≥ 𝐹 * = minΘ∈S𝑝 𝐹 (Θ), there exist

constants 𝑢𝜃 ≥ 𝑙𝜃 > 0 and 𝑢𝑟 > 0, for any Θ such that 𝐹 (Θ) ≤ 𝑈 and any 𝑖 ∈ [𝑝],

we have

𝑙𝜃 ≤ 𝜃𝑖𝑖 ≤ 𝑢𝜃 and ‖�̃�𝜃𝑖‖ ≤ 𝑢𝑟.

Proof. For any Θ such that 𝐹 (Θ) ≤ 𝑈 , let 𝑘 = argmax𝑖∈[𝑝] 𝜃𝑖𝑖. Then, we have

𝑈 ≥ 𝐹 (Θ)

=

𝑝
∑︁

𝑖=1

(︂

− log 𝜃𝑖𝑖 +
1

𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2

)︂

+
∑︁

𝑖<𝑗

ℎ𝑖𝑗(𝜃𝑖𝑗)

≥ −𝑝 log 𝜃𝑘𝑘 +
1

𝜃𝑘𝑘
‖�̃�𝜃𝑘‖2 +

∑︁

𝑖 ̸=𝑘
min{𝑐1|𝜃𝑖𝑘|, 𝑐2𝜃2𝑖𝑘}, (4.41)
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where the last line is because (i) − log 𝜃𝑖𝑖 ≥ − log 𝜃𝑘𝑘 by deőnition of 𝑘; (ii) by

Assumption 4.3, ℎ𝑖𝑗(𝜃𝑖𝑗) ≥ min{𝑐1|𝜃𝑖𝑗|, 𝑐2𝜃2𝑖𝑗} ≥ 0; (iii) 1
𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2 is nonnegative for

any 𝑖 ̸= 𝑘.

Now deőne 𝛽𝑘 ∈ R
𝑝, with 𝛽𝑘𝑘 = 0 and 𝛽𝑘𝑖 = −𝜃𝑖𝑘/𝜃𝑘𝑘, then we can rewrite (4.41)

into

𝑈 ≥ −𝑝 log 𝜃𝑘𝑘 +
1

𝜃𝑘𝑘
‖𝜃𝑘𝑘�̃�𝑘 − �̃�𝜃𝑘𝑘𝛽𝑘‖2 +

∑︁

𝑖 ̸=𝑘
min{𝑐1|𝜃𝑖𝑘|, 𝑐2𝜃2𝑖𝑘}

= −𝑝 log 𝜃𝑘𝑘 + 𝜃𝑘𝑘‖�̃�𝑘 − �̃�𝛽𝑘‖2 +
∑︁

𝑖 ̸=𝑘
min{𝑐1𝜃𝑘𝑘|𝛽𝑘𝑖|, 𝑐2𝜃2𝑘𝑘𝛽2

𝑘𝑖}

(𝑎)

≥ −𝑝 log 𝜃𝑘𝑘 + 𝜃𝑘𝑘max

{︂
1

2
‖�̃�𝑘‖2 − ‖�̃�𝛽𝑘‖2, 0

}︂

+
∑︁

𝑖 ̸=𝑘
min{𝑐1𝜃𝑘𝑘|𝛽𝑘𝑖|, 𝑐2𝜃2𝑘𝑘𝛽2

𝑘𝑖}

(𝑏)

≥ −𝑝 log 𝜃𝑘𝑘 + 𝜃𝑘𝑘max

{︂
1

2
𝑠min − 𝐿2

�̃�
‖𝛽𝑘‖2, 0

}︂

+
∑︁

𝑖 ̸=𝑘
min{𝑐1𝜃𝑘𝑘|𝛽𝑘𝑖|, 𝑐2𝜃2𝑘𝑘𝛽2

𝑘𝑖},

(4.42)

where (𝑎) uses the fact that ‖𝑎 + 𝑏‖2 ≤ 2(‖𝑎‖2 + ‖𝑏‖2) with 𝑎 = �̃�𝑘 − �̃�𝛽𝑘 and

𝑏 = �̃�𝛽𝑘; in (𝑏), we deőne 𝑠min = min𝑖 𝑣𝑖 = min𝑖 ‖�̃�𝑖‖2 > 0 and 𝐿�̃� = ‖�̃�‖.

Now if ‖𝛽𝑘‖ ≤ 𝜖 := 𝐿�̃�

√
𝑠min/2, then it follows from (4.42) that −𝑝 log 𝜃𝑘𝑘 +

1
4
𝑠min𝜃𝑘𝑘 ≤ 𝑈 , from which we can deduce there exists 𝑢1 > 0, such that 𝜃𝑘𝑘 ≤ 𝑢1.

On the other hand, if ‖𝛽𝑘‖ > 𝜖, then there exists a 𝑗 such that |𝛽𝑘𝑗| ≥ 𝜖/
√
𝑝, again

by (4.42), we have −𝑝 log 𝜃𝑘𝑘 +min{𝑐1𝜃𝑘𝑘𝜖/√𝑝, 𝑐2𝜃𝑘𝑘𝜖2/𝑝} ≤ 𝑈 , and thus there exists

𝑢2 > 0, such that 𝜃𝑘𝑘 ≤ 𝑢2. Therefore, 𝜃𝑘𝑘 = max𝑖 𝜃𝑖𝑖 ≤ max{𝑢1, 𝑢2}, and by taking

𝑢𝜃 = max{𝑢1, 𝑢2}, we get the upper bound.

As for the lower bound on 𝜃𝑖𝑖, let ℓ = argmin𝑖 𝜃𝑖𝑖, by nonnegativity of 1
𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2

and ℎ𝑖𝑗’s, we have

𝑈 ≥ −
𝑝

∑︁

𝑖=1

log 𝜃𝑖𝑖 = − log 𝜃ℓℓ −
∑︁

𝑖 ̸=ℓ
log 𝜃𝑖𝑖 ≥ − log 𝜃ℓℓ − (𝑝− 1) log 𝑢𝜃.

Therefore, 𝜃ℓℓ = min𝑖 𝜃𝑖𝑖 ≥ exp(−𝑀 − (𝑝− 1) log 𝑢𝜃), and we obtain the lower bound

𝑙𝜃 = exp(−𝑀 − (𝑝− 1) log 𝑢𝜃).
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Again by nonnegativity of 1
𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2 and ℎ𝑖𝑗’s, we have for any 𝑗,

𝑈 ≥ −
𝑝

∑︁

𝑖=1

log 𝜃𝑖𝑖 +
1

𝜃𝑗𝑗
‖�̃�𝜃𝑗‖2 = −𝑝 log 𝑢𝜃 +

1

𝑢𝜃
‖�̃�𝜃𝑗‖2.

Therefore, ‖�̃�𝜃𝑗‖2 ≤ 𝑢𝜃(𝑈 + 𝑝 log 𝑢𝜃), and we obtain the upper bound 𝑢𝑟 =
√︀

𝑢𝜃(𝑈 + 𝑝 log 𝑢𝜃).

Corollary 4.1. Let 𝑓(Θ) =
∑︀𝑝

𝑖=1

(︁

− log 𝜃𝑖𝑖 +
1
𝜃𝑖𝑖
‖�̃�𝜃𝑖‖2

)︁

. Under Assumption 4.3,

given any 𝐹 (0) ≥ 𝐹 * = minΘ∈S𝑝 𝐹 (Θ), there exist constants 𝐿, 𝜇𝑖𝑗, 𝐿𝑖𝑗 such that over

{Θ : 𝐹 (Θ) ≤ 𝐹 (0)}, the objective function 𝐹 (Θ) in (4.13) satisőes

(a) ∇𝑓 is 𝐿-Lipschitz

(b) ∇𝑓 is {𝐿𝑖𝑗}-coordinatewise Lipschitz

(c) 𝐹 is {𝜇𝑖𝑗}-coordinatewise strongly convex

Proof. We will show (b) and (c), and (a) follows from (b).

From the derivation of the off-diagonal update in Section 4.A.1.1, we can easily

see that the second derivative of 𝑓 with respect to the off-diagonal entry 𝜃𝑖𝑗 (for any

𝑖 < 𝑗) is given by

∇2
𝜃𝑖𝑗
𝑓(𝜃𝑖𝑗) =

𝑣𝑖
𝜃𝑗𝑗

+
𝑣𝑗
𝜃𝑖𝑖
. (4.43)

From the derivation of the on-diagonal update in Section 4.A.1.4, we see that the

second derivative of 𝑓 with respect to the on-diagonal entry 𝜃𝑖𝑖 (for any 𝑖) is given by

∇2
𝜃𝑖𝑖
𝑓(𝜃𝑖𝑖) =

1

𝜃2𝑖𝑖
+
‖�̃�−𝑖𝜃𝑖,−𝑖‖2

2𝜃2𝑖𝑖
, (4.44)

where �̃�−𝑖 ∈ R
𝑛×(𝑝−1) is the data matrix without 𝑖-th column, and 𝜃𝑖,−𝑖 ∈ R

𝑝−1 is

the vector of 𝜃𝑖 without 𝑖-th component.

(b) By Lemma 4.1, we have 𝜃𝑖𝑖 ≥ 𝑙𝜃, and it follows from (4.43) that ∇2
𝜃𝑖𝑗
𝑓(𝜃𝑖𝑗) ≤

(𝑣𝑖 + 𝑣𝑗)/𝑙𝜃. Therefore, we have ∇𝑓 is 𝐿𝑖𝑗-Lipschitz with respect to 𝜃𝑖𝑗, where 𝐿𝑖𝑗 =

(𝑣𝑖 + 𝑣𝑗)/𝑙𝜃.
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Again by Lemma 4.1, we have 𝜃𝑖𝑖 ≥ 𝑙𝜃 and ‖�̃�𝜃𝑖‖2 ≤ 𝑢2𝑟, and thus

∇𝑓 2
𝜃𝑖𝑖
(𝜃𝑖𝑖) =

1

𝜃2𝑖𝑖
+
‖�̃�𝜃𝑖 − 𝜃𝑖𝑖�̃�𝑖‖2

2𝜃2𝑖𝑖
≤ 1 + ‖�̃�𝜃𝑖‖2 + 𝜃2𝑖𝑖‖�̃�𝑖‖2

𝜃2𝑖𝑖
≤ 1 + 𝑢2𝑟

𝑙2𝜃
+ 𝑣𝑖.

Therefore, we have ∇𝑓 is 𝐿𝑖𝑖-Lipschitz with respect to 𝜃𝑖𝑖, where 𝐿𝑖𝑖 = (1+𝑢2𝑟)/𝑙
2
𝜃+𝑣𝑖.

(c) By Lemma 4.1, we have 𝜃𝑖𝑖 ≤ 𝑢𝜃, so ∇2
𝜃𝑖𝑗
𝑓(𝜃𝑖𝑗) ≥ (𝑣𝑖 + 𝑣𝑗)/𝑢𝜃. Therefore, we

have ∇𝑓 is 𝜇𝑖𝑗-strongly convex with respect to 𝜃𝑖𝑗, where 𝜇𝑖𝑗 = (𝑣𝑖 + 𝑣𝑗)/𝑢𝜃.

Similarly, we have∇𝑓 is 𝜇𝑖𝑖-strongly convex with respect to 𝜃𝑖𝑖 with 𝜇𝑖𝑖 = 1/𝑢2𝜃.

Theorem 4.6. Under Assumption 4.3, given any initialization Θ
(0), let Θ(𝑡) be the

𝑡-th iterate generated by Algorithm 4.1, then there exists a constant 𝐶 that depends

on Θ
(0), such that for any 𝑡 ≥ 1,

𝐹 (Θ(𝑡))− 𝐹 * ≤ 𝐶

𝑡
,

where 𝐹 * = minΘ∈S𝑝 𝐹 (Θ).

Proof. It is not hard to see that Algorithm 4.1 is a descent algorithm, meaning that

the objective function decreases after each coordinate update. Therefore, we must

have

𝐹 (Θ(𝑡)) ≤ 𝐹 (Θ(0)),

i.e. Θ
(𝑡) ∈ {Θ : 𝐹 (Θ) ≤ 𝐹 (Θ(0))}.

Since Assumption 4.3 holds, invoking Corollary 4.1 with 𝐹 (0) = 𝐹 (Θ(0)), we get 𝑓

is coordinatewise-Lipschitz and 𝐹 is coordinatewise-strong convex with some param-

eters depending on 𝐹 (0), and thus on Θ
(0). According to [123], we get the sublinear

rate of convergence of Algorithm 4.1, i.e.

𝐹 (Θ(𝑡))− 𝐹 * ≤ 𝐶

𝑡
,

where the constant 𝐶 depends on Θ
(0).

Remark 4.5. According to Proposition 4.2, the regularizers 𝑔(𝜃𝑖𝑗;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗) in

𝐹node satisfy Assumption 4.3, and thus Theorem 4.6 applies to 𝐹node, which is exactly
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Theorem 4.1 in the main text. Furthermore, as we mentioned earlier, ℎ𝑖𝑗(𝜃𝑖𝑗) =

𝜆1|𝜃𝑖𝑗| also satisőes Assumption 4.3, and thus Theorem 4.6 also provides convergence

guarantee for the convex reformulation of symmetric lasso formulation.

4.A.3 Dual bound

In this section, we őrst provide the proof for Theorem 4.2 in Section 4.A.3.1, deriving

the Lagrangian dual of the node relaxation objective 𝐹node. We then summarize how

to compute the convex conjugate of 𝜓 and 𝜙 as two cases of 𝑔 in Section 4.A.3.2.

Finally, we provide the proof for Proposition 4.1 in Section 4.A.3.3.

4.A.3.1 Proof of Theorem 4.2

Proof of Theorem 4.2. We introduce auxiliary primal variables 𝑟𝑖 = �̃�𝜃𝑖 to

rewrite the problem into the following formulation

min
Θ∈S𝑝

𝑝
∑︁

𝑖=1

(− log 𝜃𝑖𝑖 +
1

𝜃𝑖𝑖
‖𝑟𝑖‖2) +

∑︁

𝑖<𝑗

𝑔(𝜃𝑖𝑗;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗), s.t. 𝑟𝑖 = �̃�𝜃𝑖, ∀𝑖 ∈ [𝑝]

(4.45)

By dualizing the constraints in (4.45), we can write the Lagrangian as

ℒ(Θ, 𝑟;𝜈) =
𝑝

∑︁

𝑖=1

(− log 𝜃𝑖𝑖 +
1

𝜃𝑖𝑖
‖𝑟𝑖‖2 + ⟨𝜈𝑖, 𝑟𝑖 − �̃�𝜃𝑖⟩) +

∑︁

𝑖<𝑗

𝑔(𝜃𝑖𝑗;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗).

(4.46)

The Lagrangian dual is given by 𝐷(𝜈) = minΘ∈S𝑝 ℒ(Θ, 𝑟;𝜈). Since the Slater’s con-

dition holds [27], we have the strong duality holds, i.e.

min
Θ∈S𝑝

𝐹node(Θ) = max
𝜈

𝐷(𝜈).

Minimizing (4.46) with respect to 𝑟𝑖, we get

𝑟𝑖 = −
𝜃𝑖𝑖
2
𝜈𝑖. (4.47)
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Plugging this back to the Lagrangian (4.46), we get

𝜃𝑖𝑖 = argmin
𝜃
− log 𝜃 + 𝜃(−‖𝜈𝑖‖2/4− �̃�⊤

𝑖 𝜈𝑖),

which yields

𝜃𝑖𝑖 =
1

−‖𝜈𝑖‖2/4− �̃�⊤
𝑖 𝜈𝑖

if − ‖𝜈𝑖‖2/4− �̃�⊤
𝑖 𝜈𝑖 > 0. (4.48)

If −‖𝜈𝑖‖2/4− �̃�⊤
𝑖 𝜈𝑖 ≤ 0, then 𝜃𝑖𝑖 →∞, and the minimum value is −∞, which cannot

be achieved.

As for 𝜃𝑖𝑗 = 𝜃𝑗𝑖,

𝜃𝑖𝑗 = 𝜃𝑗𝑖 = argmin
𝜃

(−�̃�⊤
𝑗 𝜈𝑖 − �̃�⊤

𝑖 𝜈𝑗)𝜃 + 𝑔(𝜃;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗)

= argmax
𝜃

(�̃�⊤
𝑗 𝜈𝑖 + �̃�

⊤
𝑖 𝜈𝑗)𝜃 − 𝑔(𝜃;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗)

∈ 𝜕𝑔*(�̃�⊤
𝑗 𝜈𝑖 + �̃�

⊤
𝑖 𝜈𝑗;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗). (4.49)

Therefore, plugging (4.47), (4.48) and (4.49) into the Lagrangian function (4.46),

we get the Lagrangian dual problem:

max
𝜈

𝐷(𝜈) = 𝑝+

𝑝
∑︁

𝑖=1

log(−‖𝜈𝑖‖2/4− �̃�⊤
𝑖 𝜈𝑖)−

∑︁

𝑖<𝑗

𝑔*(�̃�⊤
𝑗 𝜈𝑖 + �̃�

⊤
𝑖 𝜈𝑗;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗).

(4.50)

4.A.3.2 Computing the convex conjugates

Convex Conjugate of 𝜓: We consider the Fenchel conjugate 𝜓* of 𝜓:

𝜓*(𝛼;𝜆0, 𝜆2,𝑀) := sup
𝜃

𝛼𝜃 − 𝜓(𝜃;𝜆0, 𝜆2,𝑀). (4.51)
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According to [119], when
√︀

𝜆0/𝜆2 ≤𝑀 ,

𝜓*(𝛼;𝜆0, 𝜆2,𝑀) = min
𝛾

[︂
(𝛾 − 𝛼)2

4𝜆2
− 𝜆0

]︂

+

+𝑀 |𝛾|; (4.52)

when
√︀

𝜆0/𝜆2 > 𝑀 ,

𝜓*(𝛼;𝜆0, 𝜆2,𝑀) = min
𝜇

𝑀 |𝜇| s.t. |𝛼| − 𝜇 ≤ 𝜆0/𝑀 + 𝜆2𝑀. (4.53)

We summarize different regimes and cases of 𝜓* as follows

Table 4.4: Summary of different regimes and cases of 𝜓*

Regime Range of |𝛼| 𝜓*(𝛼;𝜆0, 𝜆2,𝑀) 𝜃* ∈ 𝜕𝜓*(𝛼) 𝛾*/𝜇*

√︀

𝜆0/𝜆2 ≤𝑀

[0, 2
√
𝜆0𝜆2) 0 0 0

(2
√
𝜆0𝜆2, 2𝜆2𝑀 ] 𝛼2

4𝜆2
− 𝜆0 𝛼

2𝜆2
0

(2𝜆2𝑀,∞) 𝑀 |𝛼| − (𝜆0 + 𝜆2𝑀
2) 𝑀 sign(𝛼) 𝛼− 2𝑀𝜆2 sign(𝛼)

√︀

𝜆0/𝜆2 > 𝑀
[0, 𝜆0/𝑀 + 𝜆2𝑀 ] 0 0 0

(𝜆0/𝑀 + 𝜆2𝑀,∞) 𝑀 |𝛼| − (𝜆0 + 𝜆2𝑀
2) 𝑀 sign(𝛼) |𝛼| − (𝜆0/𝑀 + 𝜆2𝑀)

Convex conjugate of 𝜙: We consider the Fenchel conjugate 𝜙* of 𝜙:

𝜙*(𝛼; 𝑧, 𝜆0, 𝜆2,𝑀) := sup
𝜃

𝛼𝜃 − 𝜙(𝜃; 𝑧, 𝜆0, 𝜆2,𝑀). (4.54)

We summarize different regimes and cases of 𝜙* as follows

Table 4.5: Summary of different regimes and cases of 𝜙*

Regime Range of |𝛼| 𝜙*(𝛼; 𝑧, 𝜆0, 𝜆2,𝑀) 𝜃* ∈ 𝜕𝜙*(𝛼; 𝑧)

𝑧 = 0 [0,∞) 0 0

𝑧 = 1, 𝜆2 > 0
[0, 2𝜆2𝑀 ] 𝛼2

4𝜆2
− 𝜆0 𝛼

2𝜆2

(2𝜆2𝑀,∞) 𝑀 |𝛼| − (𝜆0 + 𝜆2𝑀
2) 𝑀 sign(𝛼)

𝑧 = 1, 𝜆2 = 0 [0,∞) 𝑀 |𝛼| − 𝜆0 𝑀 sign(𝛼)
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4.A.3.3 Proof of Proposition 4.1

To prove Proposition 4.1, we start with the following proposition:

Proposition 4.3. Denote by

𝑐(𝜆0, 𝜆2,𝑀) =

⎧

⎨

⎩

2
√
𝜆0𝜆2 if

√︀

𝜆0/𝜆2 ≤𝑀

𝜆0/𝑀 + 𝜆2𝑀 o.w.
. (4.55)

The following statements hold

(a) prox𝜓(�̃�;𝜆0, 𝜆2,𝑀) = 0 ⇐⇒ |�̃�| ≤ 𝑐(𝜆0, 𝜆2,𝑀)

(b) 𝒬𝜓(𝑎, 𝑏;𝜆0, 𝜆2,𝑀) = 0 ⇐⇒ |𝑏| ≤ 𝑐(𝜆0, 𝜆2,𝑀)

(c) 𝜓*(𝛼;𝜆0, 𝜆2,𝑀) = 0 ⇐⇒ |𝛼| ≤ 𝑐(𝜆0, 𝜆2,𝑀)

The proposition can be easily veriőed by using (4.35), (4.36) and Table 4.4.

Proof of Proposition 4.1. Recall the deőnitions of �̂� and ℱ1:

�̂� = {(𝑖, 𝑗) : 𝑖 < 𝑗, �̂�𝑖𝑗 ̸= 0}, and ℱ1 = {(𝑖, 𝑗) : 𝑧𝑖𝑗 = 𝑧𝑖𝑗 = 1}.

Additionally, we deőne

ℱ0 = {(𝑖, 𝑗) : 𝑧𝑖𝑗 = 𝑧𝑖𝑗 = 0}, and ℛ = {(𝑖, 𝑗) : 𝑧𝑖𝑗 = 0, 𝑧𝑖𝑗 = 1}.

Throughout the proof, we will denote by 𝑔*𝑖𝑗 := 𝑔*(�̃�⊤
𝑖 �̂�𝑗+�̃�

⊤
𝑗 �̂�𝑖;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗).

Claim: We claim that for any �̂�𝑖𝑗 = 0, i.e. (𝑖, 𝑗) ∈ �̂�𝑐,

(a) if (𝑖, 𝑗) ∈ ℛ ∪ ℱ0, then

𝑔*𝑖𝑗 = 0;

(b) if (𝑖, 𝑗) ∈ ℱ1, then

𝑔*𝑖𝑗 = −𝜆0.

161



We can decompose the sum over all pairs of (𝑖, 𝑗) into four parts:

∑︁

𝑖,𝑗

𝑔*𝑖𝑗 =
∑︁

(𝑖,𝑗)∈�̂�

𝑔*𝑖𝑗 +
∑︁

(𝑖,𝑗)∈�̂�𝑐∩ℱ1

𝑔*𝑖𝑗 +
∑︁

(𝑖,𝑗)∈�̂�𝑐∩ℱ0

𝑔*𝑖𝑗 +
∑︁

(𝑖,𝑗)∈�̂�𝑐∩ℛ

𝑔*𝑖𝑗.

With the claim, we have the last two term are 0 and the second term becomes

−𝜆0|ℱ1∖�̂�|. Thus, we prove the desired result.

Proof of the claim: We őrst note that when Algorithm 4.2 terminates, then 𝒱 must

be empty, i.e. for any �̂�𝑖𝑗 = 0, we must have

0 ∈ argmin
𝜃𝑖𝑗

𝐹 (Θ̂− �̂�𝑖𝑗𝐸𝑖𝑗 − �̂�𝑖𝑗𝐸𝑗𝑖 + 𝜃𝑖𝑗𝐸𝑖𝑗 + 𝜃𝑖𝑗𝐸𝑗𝑖),

or equivalently (according to Section 4.A.1.1),

𝒬𝑔
(︀
𝑎𝑖𝑗, 𝑏𝑖𝑗;𝜆0, 𝜆2,𝑀, 𝑧𝑖𝑗, 𝑧𝑖𝑗

)︀
= 0, (4.56)

where

𝑎𝑖𝑗 =
𝑣𝑗

�̂�𝑖𝑖
+

𝑣𝑖

�̂�𝑗𝑗
,

and

𝑏𝑖𝑗 =
2�̃�⊤

𝑗 (�̂�𝑖 − �̂�𝑖𝑗�̃�𝑗)
�̂�𝑖𝑖

+
2�̃�⊤

𝑖 (�̂�𝑗 − �̂�𝑖𝑗�̃�𝑖)
�̂�𝑗𝑗

= −(�̃�⊤
𝑖 �̂�𝑗 + �̃�

⊤
𝑗 �̂�𝑗). (4.57)

Here, (4.57) follows from �̂�𝑖𝑗 = 0 and the dual solution deőnition (4.18).

Proof of (a): If (𝑖, 𝑗) ∈ ℱ0, then reading Table 4.5, we get 𝑔*𝑖𝑗 = 0.

If (𝑖, 𝑗) ∈ ℛ, we have 𝑔 = 𝜓. According to Proposition 4.3 (b), (4.56) with (4.57)

implies |𝑏𝑖𝑗| = |�̃�⊤
𝑖 �̂�𝑗 + �̃�

⊤
𝑗 �̂�𝑗| ≤ 𝑐(𝜆0, 𝜆2,𝑀), which, by Proposition 4.3 (c), implies

𝑔*𝑖𝑗 = 𝜓*(�̃�⊤
𝑖 �̂�𝑗 + �̃�

⊤
𝑗 �̂�𝑗) = 0.

Proof of (b): If (𝑖, 𝑗) ∈ ℱ1, then 𝑔(𝜃𝑖𝑗) = 𝜓(𝜃𝑖𝑗; 𝑧, 𝜆0, 𝜆2,𝑀) with 𝑧 = 1. According

to (4.39) and (4.38) in the case of 𝑧 = 1, we have (4.56) with (4.57) implies |𝑏𝑖𝑗| =
|�̃�⊤

𝑖 �̂�𝑗 + �̃�
⊤
𝑗 �̂�𝑗| = 0, which implies 𝑔*𝑖𝑗 = 𝜙*(�̃�⊤

𝑖 �̂�𝑗 + �̃�
⊤
𝑗 �̂�𝑗; 𝑧 = 1) = −𝜆0, according to

Table 4.5.
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4.B Proofs from Section 4.4

Before proceeding with the proof of main results, we present a formal version of our

discussion at the beginning of Section 4.2 that we use throughout the proofs.

Lemma 4.2. For 𝑗 ∈ [𝑝], let 𝜀𝑗 ∈ R
𝑛 be such that

𝜀𝑗 = 𝑥𝑗 −
∑︁

𝑖 ̸=𝑗
𝛽*
𝑖𝑗𝑥𝑖.

Then, 𝜀𝑗 and {𝑥𝑖}𝑖 ̸=𝑗 are independent for every 𝑗. Moreover, for every 𝑗,

𝜀𝑗 ∼ 𝒩 (0, (𝜎*
𝑗 )

2𝐼𝑛).

4.B.1 Useful Lemmas

Lemma 4.3 (Theorem 1.19, [191]). Let 𝜔 ∈ R
𝑝 be a random vector with 𝜔𝑖

iid∼
𝒩 (0, 𝜎2), then

P( sup
𝜃∈ℬ(𝑝)

𝜃⊤𝜔 > 𝑡) ≤ exp

(︂

− 𝑡2

8𝜎2
+ 𝑝 log 5

)︂

, (4.58)

where ℬ(𝑝) denotes the unit Euclidean ball of dimension 𝑝.

Lemma 4.4 (Lemma 6, [20]). Suppose the rows of the matrix 𝑋 ∈ R
𝑛×𝑝 are iid

draws from a multivariate Gaussian distribution 𝒩 (0,𝐺). Moreover, suppose for any

𝑆 ⊆ [𝑝] such that |𝑆| ≤ 𝑘,

𝜆min(𝐺𝑆,𝑆) ≥ 𝜅2 > 0.

Then, if 𝑛 ≳ log 𝑝, with probability at least 1− 𝑘 exp(−10𝑘 log 𝑝), we have:

𝜎min(𝑋𝑆) ≳ 𝜅
√
𝑛 for all 𝑆 with |𝑆| ≤ 𝑘.

(We recall that 𝑋𝑆 is a sub-matrix of 𝑋 restricted to the columns indexed by 𝑆).

Lemma 4.5. Suppose 𝑋 ∈ R
𝑛×𝑝 has iid rows of 𝒩 (0,𝐺). For őxed 𝑗1, 𝑗2 ∈ [𝑝], we
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have

P

⎛

⎝

⃒
⃒
⃒
⃒
⃒

1

𝑛

𝑛∑︁

𝑖=1

𝑥𝑖𝑗1𝑥𝑖𝑗2 − 𝑔𝑗1𝑗2

⃒
⃒
⃒
⃒
⃒
> 𝑐𝜓(|𝑔𝑗1𝑗2 |+

√
𝑔𝑗1𝑗1𝑔𝑗2𝑗2)

√︃

log(1/𝛿)

𝐶𝑏𝑛

⎞

⎠ ≤ 2𝛿 (4.59)

if 𝑛 > 2
𝐶𝑏

log(1/𝛿), for some absolute constants 𝐶𝑏, 𝑐𝜓 > 0.

Proof. Note that E[𝑥𝑖𝑗1𝑥𝑖𝑗2 ] = 𝑔𝑗1𝑗2 , the 𝜓1-Orlicz norm of 𝑥𝑖𝑗1𝑥𝑖𝑗2 − 𝑔𝑗1𝑗2 can be

bounded as

‖𝑥𝑖𝑗1𝑥𝑖𝑗2 − 𝑔𝑗1𝑗2‖𝜓1 ≤ ‖𝑥𝑖𝑗1‖𝜓2‖𝑥𝑖𝑗2‖𝜓2 + ‖𝑔𝑗1𝑗2‖𝜓1 ≤ 𝑐𝜓(|𝑔𝑗1𝑗2 |+
√
𝑔𝑗1𝑗1𝑔𝑗2𝑗2)

for some 𝑐𝜓 > 0. Consequently, by Bernstein’s inequality [211, Theorem 2.8.1]

P

(︃⃒
⃒
⃒
⃒
⃒

1

𝑛

𝑛∑︁

𝑖=1

𝑥𝑖𝑗1𝑥𝑖𝑗2 − 𝑔𝑗1𝑗2

⃒
⃒
⃒
⃒
⃒
> 𝑡

)︃

≤ 2 exp

(︃

−𝐶𝑏𝑛
[︃

𝑡2

𝑐2𝜓(|𝑔𝑗1𝑗2 |+
√
𝑔𝑗1𝑗1𝑔𝑗2𝑗2)

2
∧ 𝑡

𝑐𝜓(|𝑔𝑗1𝑗2 |+
√
𝑔𝑗1𝑗1𝑔𝑗2𝑗2)

]︃)︃

. (4.60)

for some constant 𝐶𝑏 > 0. Take

𝑡 = 𝑐𝜓(|𝑔𝑗1𝑗2 |+
√
𝑔𝑗1𝑗1𝑔𝑗2𝑗2)

√︃

log(1/𝛿)

𝐶𝑏𝑛

and

𝑛 >
2

𝐶𝑏
log(1/𝛿).

As a result,

𝑡2

𝑐2𝜓(|𝑔𝑗1𝑗2 |+
√
𝑔𝑗1𝑗1𝑔𝑗2𝑗2)

2
=

log(1/𝛿)

𝐶𝑏𝑛
≤

√︃

log(1/𝛿)

𝐶𝑏𝑛
=

𝑡

𝑐𝜓(|𝑔𝑗1𝑗2 |+
√
𝑔𝑗1𝑗1𝑔𝑗2𝑗2)

so

[︃

𝑡2

𝑐2𝜓(|𝑔𝑗1𝑗2 |+
√
𝑔𝑗1𝑗1𝑔𝑗2𝑗2)

2
∧ 𝑡

𝑐𝜓(|𝑔𝑗1𝑗2 |+
√
𝑔𝑗1𝑗1𝑔𝑗2𝑗2)

]︃

=
𝑡2

𝑐2𝜓(|𝑔𝑗1𝑗2 |+
√
𝑔𝑗1𝑗1𝑔𝑗2𝑗2)

2
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which completes the proof with (4.60).

4.B.2 Proof of Theorem 4.3

Lemma 4.6. Let

�̂�𝑗 = 𝑥𝑗 −
∑︁

𝑖 ̸=𝑗
�̂�𝑖𝑗𝑥𝑖,

𝑦*
𝑗 = 𝑥𝑗 −

∑︁

𝑖 ̸=𝑗
𝛽*
𝑖𝑗𝑥𝑖

(4.61)

for 𝑗 ∈ [𝑝]. Let the event 𝐸1 be deőned as

𝐸1 =

⎧

⎨

⎩

∑︁

𝑗∈[𝑝]

1

20
(�̂�𝑗 − 𝜎*

𝑗 )
2 +

∑︁

𝑗∈[𝑝]

‖�̂�𝑗‖22 − ‖𝑦*
𝑗‖22

2𝑛�̂�2
𝑗

≲
1

𝑙2𝜎

𝑝 log(𝑝/𝑘)

𝑛

⎫

⎬

⎭
. (4.62)

Under the assumptions of the theorem,

P(𝐸1) ≥ 1− 𝑝(𝑘/𝑝)10.

Proof. Let the event ℰ𝑗 be deőned as

ℰ𝑗 =
{︃⃒
⃒
⃒
⃒
(𝜎*

𝑗 )
2 − ‖𝑦

*
𝑗‖22
𝑛

⃒
⃒
⃒
⃒
≲ (𝜎*

𝑗 )
2

√︂

log(𝑝/𝑘)

𝑛

}︃

.

Note that ‖𝑦*
𝑗‖22 = ‖𝜀𝑗‖22, therefore by taking 𝛿 = (𝑝/𝑘)10 in Lemma 4.5, as 𝑛 ≳ log 𝑝,

one has
⃒
⃒
⃒
⃒
(𝜎*

𝑗 )
2 − ‖𝑦

*
𝑗‖22
𝑛

⃒
⃒
⃒
⃒
=

⃒
⃒
⃒
⃒
⃒
(𝜎*

𝑗 )
2 − 1

𝑛

𝑛∑︁

𝑖=1

(𝜀𝑗)
2
𝑖

⃒
⃒
⃒
⃒
⃒

so

P (ℰ𝑗) ≥ 1− (𝑘/𝑝)10. (4.63)

As a result, by union bound

P

⎛

⎝
⋂︁

𝑗∈[𝑝]
ℰ𝑗

⎞

⎠ ≥ 1− 𝑝(𝑘/𝑝)10. (4.64)
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In particular, note that if we take 𝑛 ≳ 36 log(𝑝/𝑘), we achieve

‖𝑦*
𝑗‖22
𝑛
≥ 5(𝜎*

𝑗 )
2

6
. (4.65)

The rest of the proof is on the event
⋂︀

𝑗∈[𝑝] ℰ𝑗.
Let

𝑓𝑗(𝑥) = log(𝑥) +
‖𝑦*

𝑗‖22
2𝑛

1

𝑥2
. (4.66)

By optimality of {�̂�𝑗, �̂�𝑖𝑗} and feasibility of {𝜎*
𝑗 , 𝛽

*
𝑖𝑗} for Problem (4.19),

∑︁

𝑗∈[𝑝]
log(�̂�𝑗) +

‖�̂�𝑗‖22
2𝑛�̂�2

𝑗

≤
∑︁

𝑗∈[𝑝]
log(𝜎*

𝑗 ) +
‖𝑦*

𝑗‖22
2𝑛(𝜎*

𝑗 )
2

⇒
∑︁

𝑗∈[𝑝]

[︃

log(
�̂�𝑗
𝜎*
𝑗

) +
‖𝑦*

𝑗‖22
2𝑛

(︃

1

�̂�2
𝑗

− 1

(𝜎*
𝑗 )

2

)︃

+
‖�̂�𝑗‖22 − ‖𝑦*

𝑗‖22
2𝑛�̂�2

𝑗

]︃

≤ 0

⇒
∑︁

𝑗∈[𝑝]

[︀
𝑓𝑗(�̂�𝑗)− 𝑓𝑗(𝜎*

𝑗 )
]︀
≤

∑︁

𝑗∈[𝑝]

‖𝑦*
𝑗‖22 − ‖�̂�𝑗‖22
2𝑛�̂�2

𝑗

. (4.67)

By (4.66),.

𝑓 ′
𝑗(𝑥) =

1

𝑥
− ‖𝑦

*
𝑗‖22

𝑛𝑥3
,

𝑓 ′′
𝑗 (𝑥) = −

1

𝑥2
+

3‖𝑦*
𝑗‖22

𝑛𝑥4
.

(4.68)

Therefore, by Taylor’s expansion of 𝑓𝑗,

𝑓𝑗(�̂�𝑗)− 𝑓𝑗(𝜎*
𝑗 ) =

[︂
1

𝜎*
𝑗

− ‖𝑦
*
𝑗‖22

𝑛(𝜎*
𝑗 )

3

]︂

(�̂�𝑗 − 𝜎*
𝑗 ) +

1

2

[︂

− 1

𝑥2
+

3‖𝑦*
𝑗‖22

𝑛𝑥4

]︂

(�̂�𝑗 − 𝜎*
𝑗 )

2

(𝑎)

≥ −
[︂
1

𝜎*
𝑗

− ‖𝑦
*
𝑗‖22

𝑛(𝜎*
𝑗 )

3

]︂2

+
1

2

[︂

− 1

𝑥2
+

3‖𝑦*
𝑗‖22

𝑛𝑥4
− 1

2

]︂

(�̂�𝑗 − 𝜎*
𝑗 )

2 (4.69)

for some 𝑥 between 𝜎*
𝑗 and �̂�𝑗 where (𝑎) is by the inequality 2𝑎𝑏 ≥ −2𝑎2 − 𝑏2/2.
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Consequently, for any 𝑥 ∈ [𝑙𝜎, 𝑢𝜎],

− 1

𝑥2
+

3‖𝑦*
𝑗‖22

𝑛𝑥4
− 1

2
=

6‖𝑦*
𝑗‖22/𝑛− 2𝑥2 − 𝑥4

2𝑥4

(𝑎)

≥ 5(𝜎*
𝑗 )

2 − 2𝑢2𝜎 − 𝑢4𝜎
2𝑥4

≥ 5𝑙2𝜎 − 2𝑢2𝜎 − 𝑢4𝜎
2𝑥4

≥ 5𝑙2𝜎 − 2𝑢2𝜎 − 𝑢4𝜎
2𝑢4𝜎

>
1

10
(4.70)

where the last inequality is due to Assumption 4.1 and (𝑎) is due to (4.65). By

substituting (4.69) and (4.70) into (4.67), we obtain

∑︁

𝑗∈[𝑝]

1

20
(�̂�𝑗 − 𝜎*

𝑗 )
2 +

∑︁

𝑗∈[𝑝]

‖�̂�𝑗‖22 − ‖𝑦*
𝑗‖22

2𝑛�̂�2
𝑗

≤
∑︁

𝑗∈[𝑝]

[︃

1

𝜎*
𝑗

− ‖𝑦
*
𝑗‖22

𝑛(𝜎*
𝑗
3)

]︃2

. (4.71)

From (4.63), for any 𝑗 ∈ [𝑝]

[︂
1

𝜎*
𝑗

− ‖𝑦
*
𝑗‖22

𝑛(𝜎*
𝑗 )

3

]︂2

=
1

(𝜎*
𝑗 )

6

[︂

(𝜎*
𝑗 )

2 − ‖𝑦
*
𝑗‖22
𝑛

]︂2

≲
1

(𝜎*
𝑗 )

2

log(𝑝/𝑘)

𝑛
≲

1

𝑙2𝜎

log(𝑝/𝑘)

𝑛
. (4.72)

As a result, by substituting (4.72) into (4.71) the proof is complete.

Lemma 4.7. Let 𝑦*
𝑗 , �̂�𝑗 be deőned as in (4.61). Let the event 𝐸2 be deőned as

𝐸2 =

⎧

⎨

⎩

1

2𝑛𝑢2𝜎

∑︁

𝑗∈[𝑝]

⃦
⃦
⃦
⃦
⃦

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖
⃦
⃦
⃦
⃦
⃦

2

2

≲
∑︁

𝑗∈[𝑝]

‖�̂�𝑗‖22 − ‖𝑦*
𝑗‖22

𝑛�̂�2
𝑗

+
𝑢2𝜎𝑘𝑝 log(2𝑝/𝑘)

𝑙2𝜎𝑛

⎫

⎬

⎭
.

Under the assumptions of Theorem 4.3,

P(𝐸2) ≥ 1− 𝑝 exp(−10𝑘 log(𝑝/𝑘)).
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Proof. One has

‖�̂�𝑗‖22 − ‖𝑦*
𝑗‖22

=

⃦
⃦
⃦
⃦
⃦

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖 + 𝜀𝑗
⃦
⃦
⃦
⃦
⃦

2

2

− ‖𝜀𝑗‖22

=

⃦
⃦
⃦
⃦
⃦

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖
⃦
⃦
⃦
⃦
⃦

2

2

+ 2𝜀⊤𝑗
∑︁

𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖

=

⃦
⃦
⃦
⃦
⃦

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖
⃦
⃦
⃦
⃦
⃦

2

2

+ 2𝜀⊤𝑗

∑︀

𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖

‖∑︀𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖‖2

‖
∑︁

𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖‖2

(𝑎)

≥ 1

2

⃦
⃦
⃦
⃦
⃦

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖
⃦
⃦
⃦
⃦
⃦

2

2

− 2

(︃

𝜀⊤𝑗

∑︀

𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖

‖∑︀𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖‖2

)︃2

(4.73)

where (𝑎) is by the inequality 2𝑎𝑏 ≥ −2𝑎2 − 𝑏2/2. For 𝑗 ∈ [𝑝] let

�̂�𝑗 = {𝑖 ∈ [𝑝] : 𝑖 ̸= 𝑗, �̂�𝑖𝑗 ̸= 0},

𝑆*
𝑗 = {𝑖 ∈ [𝑝] : 𝑖 ̸= 𝑗, 𝛽*

𝑖𝑗 ̸= 0}.
(4.74)

Moreover, let 𝑆𝑗 = �̂�𝑗 ∪ 𝑆*
𝑗 . Note that |𝑆𝑗| ≤ 2𝑘. Suppose Φ𝑆 ∈ R

𝑛×|𝑆| is an

orthonormal basis for the column span of 𝑋𝑆 for 𝑆 ⊆ [𝑝]. By Lemma 4.2, if 𝑗 /∈ 𝑆,

then 𝜀𝑗 and𝑋[𝑝]∖{𝑗} are independent. As a result, we have the conditional distribution
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Φ
⊤
𝑆 𝜀𝑗|𝑋[𝑝]∖{𝑗} ∼ 𝒩 (0, (𝜎*

𝑗 )
2𝐼|𝑆|). Given this fact, one has for 𝑡 > 0 and a őxed 𝑗 ∈ [𝑝],

P

⎛

⎝

(︃

𝜀⊤𝑗

∑︀

𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖

‖∑︀𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖‖2

)︃2

> 𝑡

⎞

⎠

≤ P

⎛

⎜
⎝ sup

𝑣∈R𝑝

𝑆(𝑣)=𝑆𝑗

(︂

𝜀⊤𝑗
𝑋𝑣

‖𝑋𝑣‖2

)︂2

> 𝑡

⎞

⎟
⎠

≤ P

⎛

⎝ max
𝑆⊆[𝑝]∖{𝑗}
|𝑆|=2𝑘

sup
𝑣∈R2𝑘

(︂

𝜀⊤𝑗
𝑋𝑆𝑣

‖𝑋𝑆𝑣‖2

)︂2

> 𝑡

⎞

⎠

(𝑎)
= P

⎛

⎝ max
𝑆⊆[𝑝]∖{𝑗}
|𝑆|=2𝑘

sup
𝑣∈R2𝑘

(︂

𝜀⊤𝑗
𝑋𝑆𝑣

‖𝑋𝑆𝑣‖2

)︂2

> 𝑡

⃒
⃒
⃒
⃒
⃒
⃒

𝑋[𝑝]∖{𝑗}

⎞

⎠

(𝑏)

≤ P

⎛

⎝ max
𝑆⊆[𝑝]∖{𝑗}
|𝑆|=2𝑘

sup
𝛼∈ℬ(2𝑘)

(︀
𝜀⊤𝑗 Φ𝑆𝛼

)︀2
> 𝑡

⃒
⃒
⃒
⃒
⃒
⃒

𝑋[𝑝]∖{𝑗}

⎞

⎠

≤
∑︁

𝑆⊆[𝑝]∖{𝑗}
|𝑆|=2𝑘

P

(︃

sup
𝛼∈ℬ(2𝑘)

(︀
𝜀⊤𝑗 Φ𝑆𝛼

)︀2
> 𝑡

⃒
⃒
⃒
⃒
⃒
𝑋[𝑝]∖{𝑗}

)︃

(𝑐)

≤
∑︁

𝑆⊆[𝑝]∖{𝑗}
|𝑆|=2𝑘

exp

(︂

− 𝑡

8(𝜎*
𝑗 )

2
+ 2𝑘 log 5

)︂

(𝑑)

≤
(︁ 𝑒𝑝

2𝑘

)︁2𝑘

exp

(︂

− 𝑡

8(𝜎*
𝑗 )

2
+ 2𝑘 log 5

)︂

≤ exp

(︂

− 𝑡

8𝑢2𝜎
+ 4𝑘 log(2𝑝/𝑘)

)︂

(4.75)

where (𝑎) is due to independence of 𝜀𝑗 and 𝑋[𝑝]∖{𝑗} as discussed above, (𝑏) is true

as 𝑋𝑆𝑣 is in the column span of Φ𝑆, (𝑐) is due to Lemma 4.3 and the conditional

distribution discussed above and (𝑑) is due to the inequality
(︀
𝑛
𝑘

)︀
≤ (𝑒𝑝/𝑘)𝑘. Take

𝑡 = 8𝑐𝑢2𝜎𝑠 log(2𝑝/𝑘)
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so from (4.75),

P

⎛

⎝

(︃

𝜀⊤𝑗

∑︀

𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖

‖∑︀𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖‖2

)︃2

> 8𝑐𝑢2𝜎𝑘 log(2𝑝/𝑘)

⎞

⎠ ≤ exp (−(𝑐− 4)𝑘 log(2𝑝/𝑘)) .

(4.76)

Take 𝑐 sufficiently large and by union bound over 𝑗 ∈ [𝑝], we have

P

⎛

⎝

𝑝
∑︁

𝑗=1

(︃

𝜀⊤𝑗

∑︀

𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖

‖∑︀𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖‖2

)︃2

≲𝑢2𝜎𝑘𝑝 log(2𝑝/𝑘)

⎞

⎠ ≥ 1−𝑝 exp(−10𝑘 log(𝑝/𝑘)).

(4.77)

By (4.73) and (4.77),

∑︁

𝑗∈[𝑝]

1

2𝑛𝑢2𝜎

⃦
⃦
⃦
⃦
⃦

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖
⃦
⃦
⃦
⃦
⃦

2

2

≤
∑︁

𝑗∈[𝑝]

1

2𝑛�̂�2
𝑗

⃦
⃦
⃦
⃦
⃦

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖
⃦
⃦
⃦
⃦
⃦

2

2

≤
∑︁

𝑗∈[𝑝]

⎡

⎣
‖�̂�𝑗‖22 − ‖𝑦*

𝑗‖22
𝑛�̂�2

𝑗

+
2

𝑛�̂�2
𝑗

(︃

𝜀⊤𝑗

∑︀

𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖

‖∑︀𝑖:𝑖 ̸=𝑗(𝛽
*
𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖‖2

)︃2
⎤

⎦

≲
∑︁

𝑗∈[𝑝]

‖�̂�𝑗‖22 − ‖𝑦*
𝑗‖22

𝑛�̂�2
𝑗

+
𝑢2𝜎𝑘𝑝 log(2𝑝/𝑘)

𝑙2𝜎𝑛

with high probability.

Proof of Theorem 4.3. Let us deőne the events 𝐴𝑗 for 𝑗 ∈ [𝑝] as

𝐴𝑗 =
{︀
𝜎min(𝑋𝑆) ≳

√
𝑛 : 𝑆 ⊆ [𝑝] ∖ {𝑗}, |𝑆| ≤ 2𝑘

}︀
.

By Lemma 4.4 and part 5 of Assumption 4.1, we have P(𝐴𝑗) ≥ 1−𝑘 exp(−10𝑘 log(𝑝−
1)) so by union bound over 𝑗 ∈ [𝑝],

P(∩𝑗∈[𝑝]𝐴𝑗) ≥ 1− 2𝑘𝑝 exp(−20𝑘 log(𝑝− 1)).

The rest of the proof is on the intersection of events 𝐸1, 𝐸2 from Lemmas 4.6 and 4.7
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and ∩𝑗𝐴𝑗. By Lemmas 4.6 and 4.7, this happens with probability at least

1− 2𝑘𝑝 exp(−20𝑘 log(𝑝− 1))− 𝑝(𝑘/𝑝)10 − 𝑝 exp(−10𝑘 log(𝑝/𝑘)). (4.78)

One has

1

𝑛

∑︁

∈[𝑝]

⃦
⃦
⃦
⃦
⃦

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖
⃦
⃦
⃦
⃦
⃦

2

2

=
1

𝑛

∑︁

𝑗∈[𝑝]

⃦
⃦
⃦𝑋𝑆𝑗

(�̂�𝑆𝑗 ,𝑗
− 𝛽*

𝑆𝑗 ,𝑗
)
⃦
⃦
⃦

2

2

≥ 1

𝑛

∑︁

𝑗∈[𝑝]
𝜎2
min(𝑋𝑆𝑗

)
⃦
⃦
⃦�̂�𝑆𝑗 ,𝑗

− 𝛽*
𝑆𝑗 ,𝑗

⃦
⃦
⃦

2

2

≳
∑︁

𝑗∈[𝑝]

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)2 (4.79)

where 𝛽𝑆𝑗 ,𝑗 ∈ R
|𝑆𝑗 | is the vector containing the values {𝛽𝑖,𝑗 for 𝑖 ∈ 𝑆𝑗. The last

inequality above is a result of event 𝐴𝑗. As a result,

∑︁

𝑗∈[𝑝]
(�̂�𝑗 − 𝜎*

𝑗 )
2 +

1

𝑢2𝜎

∑︁

𝑗∈[𝑝]

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)2

(𝑎)

≲
∑︁

𝑗∈[𝑝]
(�̂�𝑗 − 𝜎*

𝑗 )
2 +

1

𝑛𝑢2𝜎

∑︁

∈[𝑝]

⃦
⃦
⃦
⃦
⃦

∑︁

𝑖:𝑖 ̸=𝑗
(𝛽*

𝑖𝑗 − �̂�𝑖𝑗)𝑥𝑖
⃦
⃦
⃦
⃦
⃦

2

2

(𝑏)

≲
∑︁

𝑗∈[𝑝]
(�̂�𝑗 − 𝜎*

𝑗 )
2 +

∑︁

𝑗∈[𝑝]

‖�̂�𝑗‖22 − ‖𝑦*
𝑗‖22

𝑛�̂�2
𝑗

+
𝑢2𝜎𝑘𝑝 log(2𝑝/𝑘)

𝑙2𝜎𝑛

(𝑐)

≲
𝑢2𝜎𝑘𝑝 log(2𝑝/𝑘)

𝑙2𝜎𝑛

where (𝑎) is due to (4.79), (𝑏) is due to Lemma 4.7 and (𝑐) is due to Lemma 4.6.
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4.B.3 Proof of Theorem 4.4

Proof. Based on the deőnition of Θ*, Θ̂ for 𝑖 ̸= 𝑗 ∈ [𝑝] one has

|�̂�𝑗𝑖 − 𝜃*𝑗𝑖| =
⃒
⃒
⃒
⃒
⃒

�̂�𝑖𝑗

�̂�2
𝑗

− 𝛽*
𝑖𝑗

(𝜎*
𝑗 )

2

⃒
⃒
⃒
⃒
⃒

≤ |�̂�𝑖𝑗(𝜎
*
𝑗 )

2 − 𝛽*
𝑖𝑗�̂�

2
𝑗 |

𝑙4𝜎

≤ |(�̂�𝑖𝑗 − 𝛽
*
𝑖𝑗)(𝜎

*
𝑗 )

2|+ |𝛽*
𝑖𝑗(�̂�

2
𝑗 − (𝜎*

𝑗 )
2)|

𝑙4𝜎

≤ |(�̂�𝑖𝑗 − 𝛽
*
𝑖𝑗)(𝜎

*
𝑗 )

2|
𝑙4𝜎

+
|𝛽*
𝑖𝑗||�̂�𝑗 − 𝜎*

𝑗 ||�̂�𝑗 + 𝜎*
𝑗 |

𝑙4𝜎

≲
|�̂�𝑖𝑗 − 𝛽*

𝑖𝑗|𝑢2𝜎
𝑙4𝜎

+
|�̂�𝑗 − 𝜎*

𝑗 |𝑢2𝜎
𝑙4𝜎

(4.80)

where the last inequality is due to Assumption 4.1. Similarly,

|�̂�𝑗𝑗 − 𝜃*𝑗𝑗| =
⃒
⃒
⃒
⃒
⃒

1

�̂�2
𝑗

− 1

(𝜎*
𝑗 )

2

⃒
⃒
⃒
⃒
⃒

≤ |(𝜎
*
𝑗 )

2 − �̂�2
𝑗 |

𝑙4𝜎

≲
|�̂�𝑗 − 𝜎*

𝑗 |𝑢2𝜎
𝑙4𝜎

. (4.81)

As a result,

⃦
⃦
⃦Θ̂−Θ

*
⃦
⃦
⃦

2

𝐹
=

∑︁

𝑖 ̸=𝑗∈[𝑝]
|�̂�𝑗𝑖 − 𝜃*𝑗𝑖|2 +

∑︁

𝑗∈[𝑝]
|�̂�𝑗𝑗 − 𝜃*𝑗𝑗|2

(𝑎)

≲
𝑢4𝜎
𝑙8𝜎

⎡

⎣
∑︁

𝑖 ̸=𝑗∈[𝑝]
|�̂�𝑖𝑗 − 𝛽*

𝑖𝑗|2 +
∑︁

𝑗∈[𝑝]
|�̂�𝑗 − 𝜎*

𝑗 |2
⎤

⎦

(𝑏)

≲
(𝑢6𝜎 + 𝑢8𝜎)𝑘𝑝 log(2𝑝/𝑘)

𝑙10𝜎 𝑛
(4.82)

with high probability, where (𝑎) is due to (4.80) and (4.81) and (𝑏) is because of

Theorem 4.3.
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4.B.4 Proof of Theorem 4.5

We őrst introduce some notation that we will be using in this proof.

Notation. For 𝑆 ⊆ [𝑝], we denote the projection matrix onto the column span

of 𝑋𝑆 by 𝑃𝑋𝑆
. Note that if 𝑋𝑆 has linearly independent columns, 𝑃𝑋𝑆

=

𝑋𝑆(𝑋
⊤
𝑆𝑋𝑆)

−1𝑋⊤
𝑆 . In our case, as the data is drawn from a normal distribution

with a full-rank covariance matrix, for any 𝑆 ⊆ [𝑝] with |𝑆| < 𝑛, 𝑋𝑆 has linearly

independent columns with probability one. We deőne the operator of 𝐴 ∈ R
𝑝1×𝑝2 as

‖𝐴‖op = max
𝑥∈R𝑝1

𝑥 ̸=0

‖𝐴𝑥‖2
‖𝑥‖2

.

The solution to the least squares problem with the support restricted to 𝑆,

min
𝛽𝑆𝑐=0

1

𝑛
‖𝑦 −𝑋𝛽‖22 (4.83)

for 𝑦 ∈ R
𝑛 and 𝑋 ∈ R

𝑛×𝑝 is given by

𝛽𝑆 = (𝑋⊤
𝑆𝑋𝑆)

−1𝑋⊤
𝑆 𝑦.

Note that as in our case the data is drawn from normal distribution with a full-rank

covariance matrix, (𝛽𝑆)𝑖 ̸= 0 for 𝑖 ∈ 𝑆. Consequently, we denote the optimal objective

in (4.83) by

ℒ𝑆(𝑦) =
1

𝑛
𝑦⊤(𝐼𝑛 − 𝑃𝑋𝑆

)𝑦. (4.84)

For 𝑆1, 𝑆2 ⊆ [𝑝], Σ ∈ R
𝑝×𝑝 positive deőnite and 𝑆0 = 𝑆2 ∖ 𝑆1, we let

Σ/[𝑆1, 𝑆2] = Σ𝑆0,𝑆0 −Σ𝑆0,𝑆1Σ
−1
𝑆1,𝑆1

Σ𝑆1,𝑆0 . (4.85)

Note that Σ/[𝑆1, 𝑆2] is the Schur complement of the matrix

Σ(𝑆1, 𝑆2) =

⎡

⎣
Σ𝑆1,𝑆1 Σ𝑆1,𝑆0

Σ𝑆0,𝑆1 Σ𝑆0,𝑆0

⎤

⎦ . (4.86)
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Let 𝑆*
𝑗 , �̂�𝑗, 𝑡𝑗, �̃�𝑗 for 𝑗 ∈ [𝑝] be deőned as

�̂�𝑗 = {𝑖 ∈ [𝑝] : 𝑖 ̸= 𝑗, �̂�𝑖𝑗 ̸= 0},

𝑆*
𝑗 = {𝑖 ∈ [𝑝] : 𝑖 ̸= 𝑗, 𝛽*

𝑖𝑗 ̸= 0},

𝑡𝑗 = |𝑆*
𝑗 ∖ �̂�𝑗|,

�̄�𝑗 = |�̂�𝑗 ∖ 𝑆*
𝑗 |,

�̃�𝑗 =
⃒
⃒
⃒(𝑆*

𝑗 ∖ �̂�𝑗) ∩ {𝑗 + 1, · · · , 𝑝}
⃒
⃒
⃒ .

(4.87)

Let us deőne for 𝑗 ∈ [𝑝],

ℎ𝑗(𝜎, 𝑆) = log(𝜎) +
ℒ𝑆(𝑥𝑗)
2𝜎2

. (4.88)

Roadmap: At optimality of Problem (4.27), the optimal objective is given as

𝑝
∑︁

𝑗=1

{︁

ℎ𝑗(�̂�𝑗, �̂�𝑗) + 𝜆|�̂�𝑗|
}︁

.

Similarly, if we őx the value of 𝑧𝑖𝑗 to 𝑧*𝑖𝑗, the objective value is

𝑝
∑︁

𝑗=1

{︀
ℎ𝑗(�̃�𝑗, 𝑆

*
𝑗 ) + 𝜆|𝑆*

𝑗 |
}︀

where �̃�𝑗 are optimal variance values from Problem (4.27) on the underlying support.

Next, we divide variables into two parts based on the value of ℒ�̂�𝑗
:

𝒥 =
{︁

𝑗 ∈ [𝑝] : ℒ�̂�𝑗
(𝑥𝑗) ≥ ℓ

}︁

(4.89)

We note that the function

𝑓(𝑥) = log(𝑥) +
𝑎

2𝑥2
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for 𝑎, 𝑥 > 0 is minimized for 𝑥2 = 𝑎. Therefore, for 𝑗 ∈ 𝒥 we have �̂�2
𝑗 = ℒ�̂�𝑗

(𝑥𝑗) ≥ ℓ.

This leads to ℎ𝑗(�̂�𝑗, �̂�𝑗) = log(ℒ�̂�𝑗
(𝑥𝑗))/2 + 1/2. Moreover,

𝑓 ′(𝑥) =
1

𝑥
− 𝑎

𝑥3
=

1

𝑥3
(𝑥2 − 𝑎) ≥ 0

for 𝑥 ≥ √𝑎, showing 𝑓(𝑥) is minimized for 𝑥 =
√
𝑎 for 𝑥 ≥ √𝑎. As a result, for

𝑗 ∈ 𝒥 𝑐, �̂�2
𝑗 = ℓ. As a result, the optimal objective of Problem (4.27) is given as

𝑝
∑︁

𝑗=1

{︁

ℎ𝑗(�̂�𝑗, �̂�𝑗) + 𝜆|�̂�𝑗|
}︁

=
∑︁

𝑗∈𝒥 𝑐

{︁

ℎ𝑗(
√
ℓ, �̂�𝑗) + 𝜆|�̂�𝑗|

}︁

+
∑︁

𝑗∈𝒥

{︁

ℎ𝑗(
√︁

ℒ�̂�𝑗
(𝑥𝑗), �̂�𝑗) + 𝜆|�̂�𝑗|

}︁

=
∑︁

𝑗∈𝒥 𝑐

{︁

ℎ𝑗(
√
ℓ, �̂�𝑗) + 𝜆|�̂�𝑗|

}︁

+
∑︁

𝑗∈𝒥

{︂
1

2
log(ℒ�̂�𝑗

(𝑥𝑗)) +
1

2
+ 𝜆|�̂�𝑗|

}︂

. (4.90)

We also will show the optimal cost on the correct support is

𝑝
∑︁

𝑗=1

{︀
ℎ𝑗(�̃�𝑗, 𝑆

*
𝑗 ) + 𝜆|𝑆*

𝑗 |
}︀
=

𝑝
∑︁

𝑗=1

{︂
1

2
log(ℒ𝑆*

𝑗
(𝑥𝑗)) +

1

2
+ 𝜆|𝑆*

𝑗 |
}︂

(4.91)

Our roadmap for this proof is to show that őrst, 𝒥 𝑐 = ∅ and second, for 𝑗 ∈ 𝒥 ,

the support is estimated correctly by comparing the objective value of optimal and

correct support.

We note that by Assumption 4.2 part (B5), 𝑡𝑗 ≤ 𝑘. Let us deőne the following basic
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events for 𝑗 ∈ [𝑝] and 𝑆 ⊆ [𝑝]:

ℰ1(𝑗, 𝑆) =
{︃

(𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆, 𝑆*

𝑗 ])𝛽
*
𝑆0
𝑗 ,𝑗
≥ 0.2𝜂

|�̃�0

𝑗 | log 𝑝
𝑛

}︃

ℰ2(𝑗, 𝑆) =
{︂
1

𝑛

⃦
⃦
⃦𝑋𝑆0

𝑗
𝛽*
𝑆0
𝑗 ,𝑗

⃦
⃦
⃦

2

2
≤ 4
|𝑆0
𝑗 |
𝑘

}︂

ℰ3(𝑗, 𝑆) =
{︃

1

𝑛
𝜀⊤𝑗 (𝐼𝑛 − 𝑃𝑋𝑆

)𝑋𝑆0
𝑗
𝛽*
𝑆0
𝑗 ,𝑗
≥

− 𝑐𝑡1𝜎*
𝑗

√︂

(𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆, 𝑆*

𝑗 ])𝛽
*
𝑆0
𝑗 ,𝑗

√︂

(|𝑆*
𝑗 ∖ 𝑆|+ |𝑆 ∖ 𝑆*

𝑗 |) log 𝑝
𝑛

}︃

ℰ4(𝑗, 𝑆) =
{︁

𝜀⊤𝑗 (𝑃𝑋𝑆
− 𝑃𝑋𝑆*

𝑗

)𝜀𝑗 ≤ 𝑐𝑡2(𝜎
*
𝑗 )

2(|𝑆*
𝑗 ∖ 𝑆|+ |𝑆 ∖ 𝑆*

𝑗 |) log 𝑝
}︁

ℰ5(𝑗, 𝑆) =
{︀
−𝑐𝑡3(𝜎*

𝑗 )
2𝑘 log 𝑝 ≤ 𝜀⊤𝑗 𝑃𝑋𝑆

𝜀𝑗 ≤ 𝑐𝑡3(𝜎
*
𝑗 )

2𝑘 log 𝑝
}︀

ℰ6(𝑗) =
{︂

ℒ�̂�𝑗
(𝑥𝑗) ≥ ℒ𝑆*

𝑗
(𝑥𝑗) +

3

20
𝜂�̃�𝑗

log 𝑝

𝑛
− (𝜎*

𝑗 )
2 (𝑡𝑗 + �̄�𝑗) log 𝑝

𝑛
(4𝑐2𝑡1 + 𝑐𝑡2)−

4𝑡𝑗
𝑘

}︂

ℰ7(𝑗) =
{︂

ℓ <
2

3
(𝜎*

𝑗 )
2 ≤ ℒ𝑆*

𝑗
(𝑥𝑗) ≤

4

3
(𝜎*

𝑗 )
2

}︂

(4.92)

for some numerical constants 𝑐𝑡1 , 𝑐𝑡2 , 𝑐𝑡3 > 0, where 𝑆0
𝑗 = 𝑆*

𝑗 ∖ 𝑆, �̃�
0

𝑗 = 𝑆0
𝑗 ∩ {𝑗 +

1, · · · , 𝑝}, 𝛽*
𝑆0
𝑗 ,𝑗

is the vector {𝛽*
𝑖𝑗}𝑖∈𝑆0

𝑗
and Σ̂ = 𝑋⊤𝑋/𝑛. The following lemmas

establish that the events deőned above hold with high probability. The proof of some

of these results are similar to results shown in [20], building and improving upon the

results of [82].

Lemma 4.8. Under the assumptions of Theorem 4.5, we have

P

⎛

⎜
⎜
⎝

⋂︁

𝑗∈[𝑝]

⋂︁

𝑆𝑗⊆[𝑝]∖{𝑗}
|𝑆𝑗 |≤𝑘

ℰ1(𝑗, 𝑆𝑗)

⎞

⎟
⎟
⎠
≥ 1− 𝑝−8. (4.93)

and

P

⎛

⎝
⋂︁

𝑗∈[𝑝]

⋂︁

𝑆𝑗⊆[𝑝]∖{𝑗}
ℰ2(𝑗, 𝑆𝑗)

⎞

⎠ ≥ 1− 𝑝−8. (4.94)
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Proof. Let the events ℰ0(𝑆) for 𝑆 ⊆ [𝑝] with |𝑆| ≤ 2𝑘 and ℰ0 be deőned as

ℰ0(𝑆) =
{︃
⃦
⃦
⃦Σ̂𝑆,𝑆 −Σ

*
𝑆,𝑆

⃦
⃦
⃦

op
≲

√︂

𝑘 log 𝑝

𝑛

}︃

,

ℰ0 =
⋂︁

𝑆⊆[𝑝]
|𝑆|≤2𝑘

ℰ0(𝑆).

One has (for example, by Theorem 5.7 of [191] with 𝛿 = exp(−11𝑘 log 𝑝))

P(ℰ0(𝑆)) ≥ 1− exp(−11𝑘 log 𝑝)

as 𝑛 = 𝑐𝑛𝑘 log 𝑝 is sufficiently large and by Assumption 4.2 part (B6), ‖Σ*
𝑆,𝑆‖op ≲ 1.

As a result, by union bound

P(ℰ0) ≥ 1−
∑︁

𝑆⊆[𝑝]
|𝑆|≤2𝑘

(1− P(ℰ0(𝑆))) ≥ 1−
2𝑘∑︁

𝑡=1

(︂
𝑝

𝑡

)︂

exp(−11𝑘 log 𝑝)

≥ 1−
2𝑘∑︁

𝑡=1

𝑝2𝑘𝑝−11𝑘 ≥ 1− 𝑝× 𝑝−9 = 1− 𝑝−8.

The rest of the proof is on event ℰ0. We őrst consider the proof of (4.93). Conse-

quently, as |𝑆𝑗|, |𝑆*
𝑗 | ≤ 𝑘,

‖Σ̂(𝑆, 𝑆*
𝑗 )−Σ

*(𝑆, 𝑆*
𝑗 )‖op ≤ 𝑐𝑏

√︂

𝑘 log 𝑝

𝑛
:= 𝜋 (4.95)

for some constant 𝑐𝑏 > 0 where Σ(𝑆1, 𝑆2) is deőned in (4.86). Let 𝑐𝑛 be sufficiently

large such that 𝜋 < 0.1. Therefore, one has

𝜆min(Σ̂/[𝑆, 𝑆
*
𝑗 ])

(𝑎)

≥ 𝜆min(Σ̂(𝑆, 𝑆*
𝑗 ))

(𝑏)

≥ 𝜆min(Σ
*(𝑆, 𝑆*

𝑗 ))− ‖Σ̂(𝑆, 𝑆*
𝑗 )−Σ

*(𝑆, 𝑆*
𝑗 )‖op

≥ 𝜅2 − 0.1 > 0.2

where (𝑎) is by Corollary 2.3 of [228], (𝑏) is due to Weyl’s inequality and the last
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inequality is by part (B6) of Assumption 4.2. Finally,

(𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆, 𝑆*

𝑗 ])𝛽
*
𝑆0
𝑗 ,𝑗
≥ 𝜆min(Σ̂/[𝑆, 𝑆

*
𝑗 ])‖𝛽*

𝑆0
𝑗 ,𝑗
‖22 ≥ 0.2‖𝛽*

𝑆0
𝑗 ,𝑗
‖22 ≥ 0.2𝜂

|�̃�0

𝑗 | log 𝑝
𝑛

where the last inequality is achieved by substituting 𝛽min condition from Assump-

tion 4.2 part (B4). This completes the proof of (4.93).

We now proceed to prove (4.94). Note that by Weyl’s inequality,

𝜆max(Σ̂𝑆0
𝑗 ,𝑆

0
𝑗
) ≤ 𝜆max(Σ

*
𝑆0
𝑗 ,𝑆

0
𝑗
) + ‖Σ*

𝑆0
𝑗 ,𝑆

0
𝑗
− Σ̂𝑆0

𝑗 ,𝑆
0
𝑗
‖op ≤ 𝜆max(Σ

*
𝑆0
𝑗 ,𝑆

0
𝑗
) + 0.1 ≤ 4

where the second inequality is due to event ℰ0 (note that |𝑆0
𝑗 | ≤ 𝑘) and the last

inequality is due to part (B6) of Assumption 4.2. Finally, note that

1

𝑛

⃦
⃦
⃦𝑋𝑆0

𝑗
𝛽*
𝑆0
𝑗 ,𝑗

⃦
⃦
⃦

2

2
= (𝛽*

𝑆0
𝑗 ,𝑗
)⊤
𝑋⊤

𝑆0
𝑗

𝑋𝑆0
𝑗

𝑛
𝛽*
𝑆0
𝑗 ,𝑗
≤ 𝜆max(Σ̂𝑆0

𝑗 ,𝑆
0
𝑗
)‖𝛽*

𝑆0
𝑗 ,𝑗
‖22 ≤ 4‖𝛽*

𝑆0
𝑗 ,𝑗
‖22 ≤ 4

|𝑆0
𝑗 |
𝑘

where the last inequality is due to part (B2) of Assumption 4.2.

Lemma 4.9. One has

P

⎛

⎝
⋂︁

𝑗∈[𝑝]

⋂︁

𝑆⊆[𝑝]∖{𝑗}
ℰ3(𝑗, 𝑆)

⎞

⎠ ≥ 1− 2𝑘𝑝−7. (4.96)

Proof. The proof follows a similar path to the proof of Lemma 13 of [20]. Fix

𝑗 ∈ [𝑝], 𝑆 ⊆ [𝑝] ∖ {𝑗}, and let 𝑡 = |𝑆*
𝑗 ∖𝑆|, �̄� = |𝑆 ∖𝑆*

𝑗 |, 𝑆0
𝑗 = 𝑆*

𝑗 ∖𝑆. Note that if 𝑡 = 0,

the lemma is trivial. Therefore, without loss of generality we assume 𝑡 ≥ 1. Let

𝛾(𝑗,𝑆) = (𝐼𝑛 − 𝑃𝑋𝑆
)𝑋𝑆0

𝑗
𝛽*
𝑆0
𝑗 ,𝑗
.

Following the same calculations in Lemma 13 of [20], one has

P

(︃

𝜀⊤𝑗 𝛾
(𝑗,𝑆)

‖𝛾(𝑗,𝑆)‖2
< −𝑥

)︃

≤ exp

(︂

− 𝑥2

8(𝜎*
𝑗 )

2
+ 𝑡 log 5

)︂

. (4.97)
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Take

𝑥2 = 8𝜉2(𝜎*
𝑗 )

2(𝑡+ �̄�) log 𝑝

for some absolute constant 𝜉 > 0 that is sufficiently large, and noting

‖𝛾(𝑗,𝑆)‖2 =
√︂

(𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆, 𝑆*

𝑗 ])𝛽
*
𝑆0
𝑗 ,𝑗
,

we achieve

P

(︃

𝜀⊤𝑗 𝛾
(𝑗,𝑆)

𝑛
< −
√
8𝜉𝜎*

𝑗

√︂

(𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆, 𝑆*

𝑗 ])𝛽
*
𝑆0
𝑗 ,𝑗

√︂

(𝑡+ �̄�) log 𝑝

𝑛

)︃

≤ exp(−10(𝑡+ �̄�) log 𝑝). (4.98)

Finally, we complete the proof by using union bound over all possible choices of

𝑗, 𝑡, 𝑆. As a result, the probability of the desired event in the lemma being violated

is bounded as

𝑝
∑︁

𝑗=1

𝑘∑︁

𝑡=1

𝑝−𝑘
∑︁

�̄�=0

∑︁

𝑆⊆[𝑝]∖{𝑗}
|𝑆*

𝑗 ∖𝑆|=𝑡
|𝑆∖𝑆*

𝑗 |=�̄�

exp(−10(𝑡+ �̄�) log 𝑝)

=

𝑝
∑︁

𝑗=1

𝑘∑︁

𝑡=1

𝑝−𝑘
∑︁

�̄�=0

(︂
𝑘

𝑡

)︂(︂
𝑝− 𝑘
�̄�

)︂

exp(−10(𝑡+ �̄�) log 𝑝)

≤ 𝑝
𝑘∑︁

𝑡=1

𝑝
∑︁

�̄�=0

𝑝𝑡𝑝�̄� exp(−10(𝑡+ �̄�) log 𝑝)

≤ 𝑝
𝑘∑︁

𝑡=1

𝑝
∑︁

�̄�=0

exp(−9(𝑡+ �̄�) log 𝑝)

≤ 𝑝

𝑘∑︁

𝑡=1

𝑝
∑︁

�̄�=0

exp(−9 log 𝑝)

≤ 𝑘𝑝2
𝑝+ 1

𝑝
𝑝−9 = 2𝑘𝑝−7.
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Lemma 4.10. One has

P

⎛

⎝
⋂︁

𝑗∈[𝑝]

⋂︁

𝑆⊆[𝑝]∖{𝑗}
ℰ4(𝑗, 𝑆)

⎞

⎠ ≥ 1− 8𝑘𝑝−7. (4.99)

Proof. The proof of this lemma follows a similar path to the proof of Lemma 15

of [20]. Fix 𝑗 ∈ [𝑝], 𝑆 ⊆ [𝑝] ∖ {𝑗}, and let 𝑡 = |𝑆*
𝑗 ∖ 𝑆|, �̄� = |𝑆 ∖ 𝑆*

𝑗 |, 𝑆0
𝑗 = 𝑆*

𝑗 ∖ 𝑆. Let

𝒲 be the column span of 𝑋𝑆∩𝑆*
𝑗
. Moreover, let 𝒰 ,𝒱 be orthogonal complement of

𝒲 as subspaces of column spans of 𝑋𝑆 and 𝑋𝑆*
𝑗
, respectively. Let 𝑃𝒰 ,𝑃𝒱 ,𝑃𝒲 be

projection matrices onto 𝒰 ,𝒱 ,𝒲 , respectively. With this notation in place, one has

𝜀⊤𝑗 (𝑃𝑋𝑆
− 𝑃𝑋𝑆*

𝑗

)𝜀𝑗 = 𝜀
⊤
𝑗 (𝑃𝒰 − 𝑃𝒱)𝜀𝑗.

Note that dim(𝒰) = �̄�, dim(𝒱) = 𝑡. As a result, by calculations similar to one in

Lemma 15 of [20], we achieve

P
(︀
𝜀⊤𝑗 𝑃𝒰𝜀𝑗 ≤ �̄�(𝜎*

𝑗 )
2 + (𝜎*

𝑗 )
2𝑥, 𝜀⊤𝑗 𝑃𝒱𝜀𝑗 ≥ −(𝜎*

𝑗 )
2𝑥

)︀
≥

1− 2 exp(−𝑐min(𝑥, 𝑥2/𝑡))− 2 exp(−𝑐min(𝑥, 𝑥2/�̄�)).

without loss of generality, we assume �̄� ≥ 1 as otherwise the lemma is trivial. Take

𝑥 = 𝜉(𝑡+ �̄�) log 𝑝

for some sufficiently large absolute constant 𝜉 and we achieve

P
(︀
𝜀⊤𝑗 𝑃𝒰𝜀𝑗 − 𝜀⊤𝑗 𝑃𝒱𝜀𝑗 ≲ (𝜎*

𝑗 )
2(𝑡+ �̄�) log 𝑝

)︀
≥ 1− 4 exp(−10(𝑡+ �̄�) log 𝑝).

The proof is completed by union bound similar to Lemma 4.9.

180



Lemma 4.11. [20, Lemma 14] One has

P

⎛

⎜
⎜
⎝

⋂︁

𝑗∈[𝑝]

⋂︁

𝑆⊆[𝑝]∖{𝑗}
|𝑆|≤𝑘

ℰ5(𝑗, 𝑆)

⎞

⎟
⎟
⎠
≥ 1− 2𝑘𝑝−7. (4.100)

Lemma 4.12. Under the assumptions of Theorem 4.5,

P

⎛

⎝
⋂︁

𝑗∈[𝑝]
ℰ6(𝑗)

⎞

⎠ ≥ 1− 12𝑘𝑝−7. (4.101)

Proof. In this proof, we assume without loss of generality that |�̂�𝑗| ≤ 𝑛 as otherwise,

it is possible to remove some redundant indices in �̂�𝑗 without increasing ℒ�̂�𝑗
(𝑥𝑗), as

this quantity is zero in both cases. The proof of this lemma is on events ℰ1, ℰ2, ℰ3 and

ℰ4 over all values of 𝑗, 𝑆, as in Lemmas 4.8, 4.9 and 4.10. The intersection of these

events happen with probability at least

1− 12𝑘𝑝−7.

Recalling the deőnition of ℒ𝑆(·) in (4.84), one has (see calculations leading to (89)

of [20] and (6.1) of [82]),

𝑛ℒ𝑆𝑗
(𝑥𝑗) = 𝑛(𝛽*

𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗

+ 2𝜀⊤𝑗 (𝐼𝑛−𝑃𝑋𝑆𝑗
)𝑋𝑆0

𝑗
𝛽*
𝑆0
𝑗 ,𝑗

+ 𝜀⊤𝑗 (𝐼𝑛−𝑃𝑋𝑆𝑗
)𝜀𝑗

(4.102)
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where 𝑆0
𝑗 = 𝑆*

𝑗 ∖ 𝑆𝑗. As a result, one has

𝑛
[︁

ℒ�̂�𝑗
(𝑥𝑗)− ℒ𝑆*

𝑗
(𝑥𝑗)

]︁

(𝑎)
= 𝑛(𝛽*

𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗

+ 2𝜀⊤𝑗 (𝐼𝑛 − 𝑃𝑋𝑆𝑗
)𝑋𝑆0

𝑗
𝛽*
𝑆0
𝑗 ,𝑗

+ 𝜀⊤𝑗 (𝑃𝑋𝑆*
𝑗

− 𝑃𝑋𝑆𝑗
)𝜀𝑗

(𝑏)

≥ 𝑛(𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗
− 2𝑐𝑡1(𝜎

*
𝑗 )

√︂

𝑛(𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆, 𝑆*

𝑗 ])𝛽
*
𝑆0
𝑗 ,𝑗

√︁

(𝑡𝑗 + �̄�𝑗) log 𝑝

− 𝑐𝑡2(𝜎*
𝑗 )

2(𝑡𝑗 + �̄�𝑗) log 𝑝

(𝑐)

≥ 3

4
𝑛(𝛽*

𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗
− 4𝑐2𝑡1(𝜎

*
𝑗 )

2(𝑡𝑗 + �̄�𝑗) log 𝑝− 𝑐𝑡2(𝜎*
𝑗 )

2(𝑡𝑗 + �̄�𝑗) log 𝑝

(4.103)

where (𝑎) is due to (4.102), (𝑏) is due to events ℰ3, ℰ4 and (𝑐) is by inequality 2𝑎𝑏 ≥
−𝑎2/4− 4𝑏2. Next, let �̃�𝑗 = 𝑆𝑗 ∩ 𝑆*

𝑗 . Note that 𝑆0
𝑗 = 𝑆𝑗 ∖ �̃�𝑗. Write

(𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗

=(𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[𝑆𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗
− (𝛽*

𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[�̃�𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗

+ (𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[�̃�𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗

(𝑎)
=(𝛽*

𝑆0
𝑗 ,𝑗
)⊤

(︁

Σ̂𝑆𝑗
0,�̃�𝑗

Σ̂
−1

�̃�𝑗 ,�̃�𝑗
Σ̂�̃�𝑗 ,𝑆0

𝑗
− Σ̂𝑆𝑗

0,𝑆𝑗
Σ̂

−1

𝑆𝑗 ,𝑆𝑗
Σ̂𝑆𝑗 ,𝑆0

𝑗

)︁

(𝛽*
𝑆0
𝑗 ,𝑗
)

+ (𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[�̃�𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗

(𝑏)
=
1

𝑛
(𝑋𝑆0

𝑗
𝛽*
𝑆0
𝑗 ,𝑗
)⊤

(︁

𝑋�̃�𝑗
(𝑋⊤

�̃�𝑗
𝑋�̃�𝑗

)−1𝑋⊤
�̃�𝑗
−𝑋𝑆𝑗

(𝑋⊤
𝑆𝑗
𝑋𝑆𝑗

)−1𝑋⊤
𝑆𝑗

)︁

(𝑋𝑆0
𝑗
𝛽*
𝑆0
𝑗 ,𝑗
)

+ (𝛽*
𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[�̃�𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗

(𝑐)
=
1

𝑛
(𝑋𝑆0

𝑗
𝛽*
𝑆0
𝑗 ,𝑗
)⊤

(︁

𝑃𝑋
�̃�𝑗
− 𝑃𝑋𝑆𝑗

)︁

(𝑋𝑆0
𝑗
𝛽*
𝑆0
𝑗 ,𝑗
) + (𝛽*

𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[�̃�𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗

(𝑑)

≥ − 1

𝑛
(𝑋𝑆0

𝑗
𝛽*
𝑆0
𝑗 ,𝑗
)⊤𝑃𝑋𝑆𝑗

(𝑋𝑆0
𝑗
𝛽*
𝑆0
𝑗 ,𝑗
) + (𝛽*

𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[�̃�𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗

(𝑒)

≥ − 1

𝑛

⃦
⃦
⃦𝑋𝑆0

𝑗
𝛽*
𝑆0
𝑗 ,𝑗

⃦
⃦
⃦

2

2
+ (𝛽*

𝑆0
𝑗 ,𝑗
)⊤(Σ̂/[�̃�𝑗, 𝑆

*
𝑗 ])𝛽

*
𝑆0
𝑗 ,𝑗

(𝑓)

≥0.2𝜂 |�̃�
0

𝑗 | log 𝑝
𝑛

− 4
|𝑆0
𝑗 |
𝑘

(4.104)

where (𝑎) is achieved by substituting the Schur complement deőnition, (𝑏) is achieved

by substituting Σ̂, (𝑐) is by deőnition of projection matrices, (𝑑) is true as projection

matrices positive semideőnite, (𝑒) is true as the largest eigenvalue of a projection ma-
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trix is 1, and (𝑓) is due to events ℰ1, ℰ2 as |�̃�𝑗| ≤ 𝑘. Substituting (4.104) into (4.103)

completes the proof.

Lemma 4.13. One has

P

⎛

⎝
⋂︁

𝑗∈[𝑝]
ℰ7(𝑗)

⎞

⎠ ≥ 1− 2𝑘𝑝−7 − 𝑝(𝑘/𝑝)10. (4.105)

Proof. The proof of this lemma is on the event considered in (4.64) and the inter-

section of events ℰ5(𝑗, 𝑆) for all 𝑗, 𝑆 as in Lemma 4.11. Note that by union bound,

this happens with probability greater than

1− 2𝑘𝑝−7 − 𝑝(𝑘/𝑝)10.

Based on the event considered in (4.64) (and arguments leading to (4.65)),

5(𝜎*
𝑗 )

2𝑛/6 ≤ ‖𝜀𝑗‖22 ≤ 7(𝜎*
𝑗 )

2𝑛/6. (4.106)

In addition, from (4.102),

𝑛ℒ𝑆*
𝑗
(𝑥𝑗) = 𝜀

⊤
𝑗 (𝐼𝑛 − 𝑃𝑋𝑆*

𝑗

)𝜀𝑗 = ‖𝜀𝑗‖22 − 𝜀⊤𝑗 𝑃𝑋𝑆*
𝑗

𝜀𝑗. (4.107)

As a result, from (4.106) we have

5(𝜎*
𝑗 )

2

6
− 1

𝑛
𝜀⊤𝑗 𝑃𝑋𝑆*

𝑗

𝜀𝑗 ≤ ℒ𝑆*
𝑗
(𝑥𝑗) ≤

7(𝜎*
𝑗 )

2

6
− 1

𝑛
𝜀⊤𝑗 𝑃𝑋𝑆*

𝑗

𝜀𝑗. (4.108)

Moreover, by taking 𝑛 = 𝑐𝑛𝑘 log 𝑝 to be sufficiently large and by event ℰ4,

−(𝜎*
𝑗 )

2/6 ≤ 1

𝑛
𝜀⊤𝑗 𝑃𝑋𝑆*

𝑗

𝜀𝑗 ≤ (𝜎*
𝑗 )

2/6

which together with (4.108) completes the proof.
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Lemma 4.14. Under the assumptions of Theorem 4.5, one has

P

(︃
⋂︁

𝑗∈𝒥

{︃

−99
100
≤
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

≤ 100

}︃)︃

≥ 1− 2𝑝(𝑘/𝑝)10 − 13𝑘𝑝−7. (4.109)

Proof. Note that 𝑥𝑗 ∼ 𝒩 (0, (Σ*)𝑗𝑗𝐼𝑛). Let events 𝐴𝑗 for 𝑗 ∈ [𝑝] be deőned as

𝐴𝑗 =

{︂
1

𝑛
‖𝑥𝑗‖22 ≤

7

6
(Σ*)𝑗𝑗

}︂

. (4.110)

By Lemma 4.5 and an argument similar to the one leading to (4.64), by taking

𝑛 ≳ log 𝑝, we have

P(𝐴𝑗) ≥ 1− (𝑘/𝑝)10

which leads to

P

⎛

⎝
⋂︁

𝑗∈[𝑝]
𝐴𝑗

⎞

⎠ ≥ 1− 𝑝(𝑘/𝑝)10

by union bound. The proof of this lemma is on events
⋂︀

𝑗∈[𝑝]𝐴𝑗, and ℰ7 over all

choices of 𝑗, as considered in Lemma 4.13. By union bound, the intersection of these

events occur with probability at least

1− 2𝑝(𝑘/𝑝)10 − 2𝑘𝑝−7.

First, for 𝑗 ∈ 𝒥 we have

ℒ�̂�𝑗
(𝑥𝑗)− ℒ𝑆*

𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

(𝑎)

≥ ℓ

ℒ𝑆*
𝑗
(𝑥𝑗)

− 1

(𝑏)

≥ 3ℓ

4(𝜎*
𝑗 )

2
− 1

(𝑐)

≥ 𝑙2𝜎
4𝑢2𝜎
− 1 ≥ − 99

100
(4.111)

where (𝑎) is true as for 𝑗 ∈ 𝒥 , ℒ�̂�𝑗
(𝑥𝑗) ≥ ℓ, (𝑏) is due to event ℰ7, (𝑐) and the

last inequality are due to Assumption 4.2 part (B1). The proof of lower bound is
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completed. Next, note that

ℒ�̂�𝑗
(𝑥𝑗)− ℒ𝑆*

𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

≤
ℒ�̂�𝑗

(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

(𝑎)

≤
1
𝑛
‖𝑥𝑗‖22
ℒ𝑆*

𝑗
(𝑥𝑗)

(𝑏)

≤ 3

2

1
𝑛
‖𝑥𝑗‖22
(𝜎*

𝑗 )
2

(𝑐)

≤ 7

4

(Σ*)𝑗𝑗
(𝜎*

𝑗 )
2
≤ 100 (4.112)

where (𝑎) is due to deőnition of ℒ�̂�𝑗
, (𝑏) is by event ℰ7, (𝑐) is a result of event 𝐴𝑗 and

the last inequality is a result of Assumption 4.2 part (B3).

Lemma 4.15. Let ℎ𝑗 be deőned as in (4.88). Let the event ℰ𝒥 𝑐 be deőned as

ℰ𝒥 𝑐 =

{︂
∑︁

𝑗∈𝒥 𝑐

[︁

ℎ𝑗(�̂�𝑗, �̂�𝑗) + 𝜆|�̂�𝑗| − ℎ𝑗(�̃�𝑗, 𝑆*)− 𝜆|𝑆*
𝑗 |
]︁

≥

𝑐1
𝑙2𝜎
𝜂
log 𝑝

𝑛

∑︁

𝑗∈𝒥 𝑐

�̃�𝑗 + (𝑐𝜆 − 𝑐2)
log 𝑝

𝑛

∑︁

𝑗∈𝒥 𝑐

�̄�𝑗 +

(︂

−𝑐𝜆 − 𝑐3 −
𝑐𝑛𝑐4
𝑙2𝜎

)︂
log 𝑝

𝑛

∑︁

𝑗∈𝒥 𝑐

𝑡𝑗

}︂

(4.113)

for some absolute constants 𝑐1, · · · , 𝑐4 > 0. Then,

P(ℰ𝒥 𝑐) ≥ 1− 14𝑘𝑝−7 − 𝑝(𝑘/𝑝)10.

Proof. The proof of this lemma in on the intersection of events ℰ6 and ℰ7 as in

Lemmas 4.12 and 4.13. Note that this happens with probability at least

1− 14𝑘𝑝−7 − 𝑝(𝑘/𝑝)10.
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One has

ℎ𝑗(�̂�𝑗, �̃�𝑗)− ℎ𝑗(𝜎*
𝑗 , 𝑆

*
𝑗 )

= log(�̂�𝑗) +
ℒ�̂�𝑗

(𝑥𝑗)

2�̂�2
𝑗

− log(�̃�𝑗)−
ℒ𝑆*

𝑗
(𝑥𝑗)

2�̃�2
𝑗

=

[︂

log(�̂�𝑗)− log(�̃�𝑗) + ℒ𝑆*
𝑗
(𝑥𝑗)(

1

2�̂�𝑗
− 1

2�̃�𝑗
)

]︂

+
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

2�̂�𝑗
(𝑎)

≥
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

2�̂�𝑗

(𝑏)
=
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

2ℓ
(𝑐)

≥
3
20
𝜂�̃�𝑗

log 𝑝
𝑛
− (𝜎*

𝑗 )
2 (𝑡𝑗+�̄�𝑗) log 𝑝

𝑛
(4𝑐2𝑡1 + 𝑐𝑡2)− 4𝑡𝑗

𝑘

2ℓ
(𝑑)

≥ 9

40𝑙2𝜎
𝜂�̃�𝑗

log 𝑝

𝑛
− 6𝑡𝑗
𝑙2𝜎𝑘
− 3𝑢2𝜎

2𝑙2𝜎
(4𝑐2𝑡1 + 𝑐𝑡2)

log 𝑝

𝑛
𝑡𝑗 −

3𝑢2𝜎
2𝑙2𝜎

(4𝑐2𝑡1 + 𝑐𝑡2)
log 𝑝

𝑛
�̄�𝑗

(𝑒)

≥ 9

40𝑙2𝜎
𝜂�̃�𝑗

log 𝑝

𝑛
− 6𝑐𝑛

𝑙2𝜎

log 𝑝

𝑛
𝑡𝑗 −

75

2
(4𝑐2𝑡1 + 𝑐𝑡2)

log 𝑝

𝑛
𝑡𝑗 −

75

2
(4𝑐2𝑡1 + 𝑐𝑡2)

log 𝑝

𝑛
�̄�𝑗 (4.114)

where (𝑎) is true as on event ℰ7, ℒ𝑆*
𝑗
(𝑥𝑗) ≥ 2(𝜎*

𝑗 )
2/3 > ℓ so �̃�𝑗 =

√︁

ℒ𝑆*
𝑗
(𝑥𝑗) and

ℎ𝑗(�̃�𝑗, 𝑆
*
𝑗 ) ≤ ℎ𝑗(�̂�𝑗, 𝑆

*
𝑗 ), (𝑏) is true as �̂�𝑗 ≥ ℓ, (𝑐) is by event ℰ6, (𝑑) is by substituting

ℓ = 𝑙2𝜎/3 and 𝜎*
𝑗 ≤ 𝑢𝜎, and (𝑒) is by Assumption 4.2 part (B1), 𝑢𝜎/𝑙𝜎 ≤ 5 and also

𝑛 = 𝑐𝑛𝑘 log 𝑝. By summing (4.114) over 𝑗 ∈ 𝒥 𝑐, we achieve

∑︁

𝑗∈𝒥 𝑐

[︁

ℎ𝑗(�̂�𝑗, �̂�𝑗) + 𝜆|�̂�𝑗| − ℎ𝑗(�̃�𝑗, 𝑆*)− 𝜆|𝑆*
𝑗 |
]︁

≥

𝑐1
𝑙2𝜎
𝜂
log 𝑝

𝑛

∑︁

𝑗∈𝒥 𝑐

�̃�𝑗 + (𝑐𝜆 − 𝑐2)
log 𝑝

𝑛

∑︁

𝑗∈𝒥 𝑐

�̄�𝑗 +

(︂

−𝑐𝜆 − 𝑐3 −
𝑐𝑛𝑐4
𝑙2𝜎

)︂
log 𝑝

𝑛

∑︁

𝑗∈𝒥 𝑐

𝑡𝑗

𝑐1 = 9/40, 𝑐2 = 𝑐3 = 75(4𝑐2𝑡1 + 𝑐𝑡2)/2 and 𝑐4 = 6.

Lemma 4.16. Let 𝑎 > 0. Then,

log(1 + 𝑥) ≥ 𝑥

1 + 𝑎
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for 𝑥 ∈ [0, 𝑎]. Similarly, if 𝑎 ∈ (−1, 0),

log(1 + 𝑥) ≥ 𝑥

1 + 𝑎

for 𝑥 ∈ [𝑎, 0].

Proof. Suppose 𝑎 > 0 and 𝑥 ∈ [0, 𝑎]. Note that

log(1 + 𝑥) =

∫︁ 𝑥

0

𝑑𝑡

1 + 𝑡
≥

∫︁ 𝑥

0

𝑑𝑡

1 + 𝑎
=

𝑥

1 + 𝑎
.

The proof of other part is similar.

Lemma 4.17. Let the event ℰ𝒥 be deőned as

ℰ𝒥 =

{︂
∑︁

𝑗∈𝒥

[︁

ℎ𝑗(�̂�𝑗, �̂�𝑗) + 𝜆|�̂�𝑗| − ℎ𝑗(�̃�𝑗, 𝑆*)− 𝜆|𝑆*
𝑗 |
]︁

≥

𝑐5𝜂

𝑢2𝜎

log 𝑝

𝑛

∑︁

𝑗∈𝒥
�̃�𝑗 + (−𝑐6 −

𝑐7𝑐𝑛
𝑙2𝜎
− 𝑐𝜆)

log 𝑝

𝑛

∑︁

𝑗∈𝒥
𝑡𝑗 + (𝑐𝜆 − 𝑐8)

log 𝑝

𝑛

∑︁

𝑗∈𝒥
�̄�𝑗

}︂

(4.115)

for some absolute constants 𝑐5, · · · , 𝑐8 > 0. Then,

P(ℰ𝒥 ) ≥ 1− 27𝑘𝑝−7 − 3𝑝(𝑘/𝑝)10.

Proof. The proof of this lemma in on the intersection of events ℰ6, ℰ7 as in Lem-

mas 4.12 and 4.13 and the event in Lemma 4.14. Note that this happens with prob-

ability at least

1− 27𝑘𝑝−7 − 3𝑝(𝑘/𝑝)10.

Let 𝒥+,𝒥− ⊆ [𝑝] be deőned as

𝒥+ = {𝑗 ∈ 𝒥 : ℒ�̂�𝑗
(𝑥𝑗)− ℒ𝑆*

𝑗
(𝑥𝑗) ≥ 0}

𝒥− = {𝑗 ∈ 𝒥 : ℒ�̂�𝑗
(𝑥𝑗)− ℒ𝑆*

𝑗
(𝑥𝑗) < 0}.

(4.116)
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Based on Lemma 4.14, for 𝑗 ∈ 𝒥+, we have

0 ≤
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

≤ 100.

Consequently, by Lemma 4.16, for 𝑗 ∈ 𝒥+ we have

log

(︃

1 +
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

)︃

≥ 𝑐(1)
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

(4.117)

where 𝑐(1) = 1/101. Similarly, for 𝑗 ∈ 𝒥− we have

log

(︃

1 +
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

)︃

≥ 𝑐(2)
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

(4.118)

where 𝑐(2) = 100. By discussion leading to (4.90), we have that for 𝑗 ∈ 𝒥 ,

ℎ𝑗(�̂�𝑗, �̂�𝑗) =
log(ℒ�̂�𝑗

(𝑥𝑗))

2
+

1

2
, ℎ𝑗(�̃�𝑗, 𝑆

*
𝑗 ) =

log(ℒ𝑆*
𝑗
(𝑥𝑗))

2
+

1

2
.
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Therefore, one has

∑︁

𝑗∈𝒥

{︁

ℎ𝑗(�̂�𝑗, �̂�𝑗)− ℎ𝑗(�̃�𝑗, 𝑆*
𝑗 ) + 𝜆|�̂�𝑗| − 𝜆|𝑆*

𝑗 |
}︁

=
∑︁

𝑗∈𝒥

{︂
1

2
log(ℒ�̂�𝑗

(𝑥𝑗))−
1

2
log(ℒ𝑆*

𝑗
(𝑥𝑗)) + 𝜆|�̂�𝑗| − 𝜆|𝑆*

𝑗 |
}︂

=
∑︁

𝑗∈𝒥

1

2
log

(︃

1 +
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

)︃

+ 𝜆
∑︁

𝑗∈𝒥
(�̄�𝑗 − 𝑡𝑗)

(𝑎)
=

∑︁

𝑗∈𝒥+

1

2
log

(︃

1 +
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

)︃

+
∑︁

𝑗∈𝒥−

1

2
log

(︃

1 +
ℒ�̂�𝑗

(𝑥𝑗)− ℒ𝑆*
𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

)︃

+ 𝜆
∑︁

𝑗∈𝒥
(�̄�𝑗 − 𝑡𝑗)

(𝑏)

≥𝑐(1)
∑︁

𝑗∈𝒥+

ℒ�̂�𝑗
(𝑥𝑗)− ℒ𝑆*

𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

+ 𝑐(2)
∑︁

𝑗∈𝒥−

ℒ�̂�𝑗
(𝑥𝑗)− ℒ𝑆*

𝑗
(𝑥𝑗)

ℒ𝑆*
𝑗
(𝑥𝑗)

+ 𝜆
∑︁

𝑗∈𝒥
(�̄�𝑗 − 𝑡𝑗)

(𝑐)

≥3𝑐(1)

4

∑︁

𝑗∈𝒥+

ℒ�̂�𝑗
(𝑥𝑗)− ℒ𝑆*

𝑗
(𝑥𝑗)

(𝜎*
𝑗 )

2
+

3𝑐(2)

2

∑︁

𝑗∈𝒥−

ℒ�̂�𝑗
(𝑥𝑗)− ℒ𝑆*

𝑗
(𝑥𝑗)

(𝜎*
𝑗 )

2
+ 𝜆

∑︁

𝑗∈𝒥
(�̄�𝑗 − 𝑡𝑗)

(4.119)

where (𝑎) is by the fact that 𝒥+,𝒥− is a partition of 𝒥 , (𝑏) is due to (4.117)

and (4.118), and (𝑐) is due to event ℰ7. From (4.119) and event ℰ6,

∑︁

𝑗∈𝒥

{︁

ℎ𝑗(�̂�𝑗, �̂�𝑗)− ℎ𝑗(�̃�𝑗, 𝑆*
𝑗 ) + 𝜆|�̂�𝑗| − 𝜆|𝑆*

𝑗 |
}︁

≥3𝑐(1)

4

∑︁

𝑗∈𝒥+

3
20
𝜂
�̃�𝑗 log 𝑝

𝑛
− (𝜎*

𝑗 )
2 (𝑡𝑗+�̄�𝑗) log 𝑝

𝑛
(4𝑐2𝑡1 + 𝑐𝑡2)− 4𝑡𝑗

𝑘

(𝜎*
𝑗 )

2

+
3𝑐(2)

2

∑︁

𝑗∈𝒥−

3
20
𝜂
�̃�𝑗 log 𝑝

𝑛
− (𝜎*

𝑗 )
2 (𝑡𝑗+�̄�𝑗) log 𝑝

𝑛
(4𝑐2𝑡1 + 𝑐𝑡2)− 4𝑡𝑗

𝑘

(𝜎*
𝑗 )

2
+ 𝑐𝜆

log 𝑝

𝑛

∑︁

𝑗∈𝒥
(�̄�𝑗 − 𝑡𝑗)

(𝑎)

≥
∑︁

𝑗∈𝒥

[︃

9𝑐(1)𝜂

80

log 𝑝

𝑛
�̃�𝑗 −

3𝑐(2)(4𝑐2𝑡1 + 𝑐𝑡2)

2

log 𝑝

𝑛
𝑡𝑗 −

6𝑐(2)

𝑙2𝜎
𝑐𝑛
log 𝑝

𝑛
𝑡𝑗

− 𝑐𝜆𝑡𝑗 −
3𝑐(2)(4𝑐2𝑡1 + 𝑐𝑡2)

2

log 𝑝

𝑛
�̄�𝑗 + 𝑐𝜆�̄�𝑗

]︃

≥𝑐5𝜂
𝑢2𝜎

log 𝑝

𝑛

∑︁

𝑗∈𝒥
�̃�𝑗 + (−𝑐6 −

𝑐7𝑐𝑛
𝑙2𝜎
− 𝑐𝜆)

log 𝑝

𝑛

∑︁

𝑗∈𝒥
𝑡𝑗 + (𝑐𝜆 − 𝑐8)

log 𝑝

𝑛

∑︁

𝑗∈𝒥
�̄�𝑗 (4.120)
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where (𝑎) is due to the fact 𝑐(2) > 𝑐(1), and 𝑐5 = 9𝑐(1)/80, 𝑐6 = 𝑐8 = 3𝑐(2)(4𝑐2𝑡1 + 𝑐𝑡2)/2

and 𝑐7 = 6𝑐(2).

Proof of Theorem 4.5. The proof of this theorem is on the intersection of events

ℰ𝒥 and ℰ𝒥 𝑐 as in Lemmas 4.17 and 4.15. Note that this happens with probability at

least

1− 4𝑝(𝑘/𝑝)10 − 41𝑘𝑝−7. (4.121)

By optimality of 𝑧 and feasibility of 𝑧*, we have

0 ≥
𝑝

∑︁

𝑗=1

{︁

ℎ𝑗(�̂�𝑗, �̂�𝑗)− ℎ𝑗(�̃�𝑗, 𝑆*
𝑗 ) + 𝜆|�̂�𝑗| − 𝜆|𝑆*

𝑗 |
}︁

=
∑︁

𝑗∈𝒥

{︁

ℎ𝑗(�̂�𝑗, �̂�𝑗)− ℎ𝑗(�̃�𝑗, 𝑆*
𝑗 ) + 𝜆|�̂�𝑗| − 𝜆|𝑆*

𝑗 |
}︁

+
∑︁

𝑗∈𝒥 𝑐

{︁

ℎ𝑗(�̂�𝑗, �̂�𝑗)− ℎ𝑗(�̃�𝑗, 𝑆*
𝑗 ) + 𝜆|�̂�𝑗| − 𝜆|𝑆*

𝑗 |
}︁

(𝑎)

≥ 𝑐5𝜂
𝑢2𝜎

log 𝑝

𝑛

∑︁

𝑗∈𝒥
�̃�𝑗 + (−𝑐6 −

𝑐7𝑐𝑛
𝑙2𝜎
− 𝑐𝜆)

log 𝑝

𝑛

∑︁

𝑗∈𝒥
𝑡𝑗 + (𝑐𝜆 − 𝑐8)

log 𝑝

𝑛

∑︁

𝑗∈𝒥
�̄�𝑗

+
𝑐1
𝑙2𝜎
𝜂
log 𝑝

𝑛

∑︁

𝑗∈𝒥 𝑐

�̃�𝑗 + (𝑐𝜆 − 𝑐2)
log 𝑝

𝑛

∑︁

𝑗∈𝒥 𝑐

�̄�𝑗 +

(︂

−𝑐𝜆 − 𝑐3 −
𝑐𝑛𝑐4
𝑙2𝜎

)︂
log 𝑝

𝑛

∑︁

𝑗∈𝒥 𝑐

𝑡𝑗

≥𝑐𝑓1𝜂
𝑢2𝜎

log 𝑝

𝑛

𝑝
∑︁

𝑗=1

�̃�𝑗 +

(︂

−𝑐𝜆 − 𝑐𝑓2 −
𝑐𝑛𝑐𝑓3
𝑙2𝜎

)︂
log 𝑝

𝑛

𝑝
∑︁

𝑗=1

𝑡𝑗 + (𝑐𝜆 − 𝑐𝑓4)
log 𝑝

𝑛

𝑝
∑︁

𝑗=1

�̄�𝑗

(𝑏)
=

[︂
𝑐𝑓1𝜂

𝑢2𝜎
− 2𝑐𝜆 − 2𝑐𝑓2 −

2𝑐𝑛𝑐𝑓3
𝑙2𝜎

]︂
log 𝑝

𝑛

𝑝
∑︁

𝑗=1

�̃�𝑗 + (𝑐𝜆 − 𝑐𝑓4)
log 𝑝

𝑛

𝑝
∑︁

𝑗=1

�̄�𝑗 (4.122)

where 𝑐𝑓1 = 𝑐1∧𝑐5, 𝑐𝑓2 = 𝑐3∨𝑐6, 𝑐𝑓3 = 𝑐4∨𝑐7 and 𝑐𝑓4 = 𝑐2∨𝑐8, (𝑎) is due to Lemmas 4.17

and 4.15 and (𝑏) is true as if 𝑧𝑖𝑗 ̸= 𝑧*𝑖𝑗, then 𝑧𝑗𝑖 ̸= 𝑧*𝑗𝑖 so
∑︀𝑝

𝑗=1 𝑡𝑗 = 2
∑︀𝑝

𝑗=1 �̃�𝑗. Take

𝑐𝜆 > 𝑐𝑓4 and 𝜂 ≳ (2𝑐𝜆 + 2𝑐𝑓2 +
2𝑐𝑛𝑐𝑓3
𝑙2𝜎

)𝑢2𝜎. Therefore, from (4.122) we have

0 ≥
[︂
𝑐𝑓1𝜂

𝑢2𝜎
− 2𝑐𝜆 − 2𝑐𝑓2 −

2𝑐𝑛𝑐𝑓3
𝑙2𝜎

]︂
log 𝑝

𝑛
⏟  ⏞  

>0

𝑝
∑︁

𝑗=1

�̃�𝑗 + (𝑐𝜆 − 𝑐𝑓4)
log 𝑝

𝑛
⏟  ⏞  

>0

𝑝
∑︁

𝑗=1

�̄�𝑗

which implies
∑︀𝑝

𝑗=1 �̃�𝑗 =
∑︀𝑝

𝑗=1 �̄�𝑗 = 0 or equivalently 𝑧𝑖𝑗 = 𝑧*𝑖𝑗.
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4.C Details of Example 4.1

Note that based on the deőnition of Θ* in (4.22), for 𝑖 ∈ [𝑛], E[(𝑥1)
2
𝑖 ] = 1/(1 − 𝑐2).

As a result, the distribution of the random variable
(𝑥1)2𝑖

1/(1−𝑐2) is 𝜒2(1) so

var((𝑥1)
2
𝑖 ) =

2

(1− 𝑐2)2 ,E[(𝑥1)
4
𝑖 ] =

3

(1− 𝑐2)2 . (4.123)

It is also easy to see

E
[︀(︀
(𝑥1)

2
𝑖 (1− 𝑐2)

)︀ (︀
(𝑥2)

2
𝑖 (1− 𝑐2)

)︀]︀

= 1 + 2E
[︁(︁

(𝑥1)𝑖
√
1− 𝑐2

)︁(︁

(𝑥2)𝑖
√
1− 𝑐2

)︁]︁2

= 1 + 2𝑐2. (4.124)

Let 𝑦𝑖 =
(𝑥1)2𝑖

2
+

(𝑥2)2𝑖
2

for 𝑖 ∈ [𝑛]. Note that E[𝑦𝑖] = 1/(1− 𝑐2). As a result,

var(𝑦𝑖) =
1

4
E[((𝑥1)

2
𝑖 + (𝑥2)

2
𝑖 )

2]− E[𝑦𝑖]
2

(𝑎)
=

3

4(1− 𝑐2)2 +
3

4(1− 𝑐2)2 +
E[(𝑥1)

2
𝑖 (𝑥2)

2
𝑖 ]

2
− 1

(1− 𝑐2)2

=
1 + E[((𝑥1)

2
𝑖 (1− 𝑐2)) ((𝑥2)

2
𝑖 (1− 𝑐2))]

2(1− 𝑐2)2
(𝑏)
=

2 + 2𝑐2

2(1− 𝑐2)2 =
1 + 𝑐2

(1− 𝑐2)2 . (4.125)

where (𝑎) is due to (4.123) and (𝑏) is due to (4.124). In addition,

var((𝑥1)𝑖(𝑥2)𝑖) =
E[

(︀
(𝑥1)𝑖

√
1− 𝑐2

)︀2 (︀
(𝑥2)𝑖

√
1− 𝑐2

)︀2
]

(1− 𝑐2)2 − 𝑐2

(1− 𝑐2)2
(𝑎)
=

1 + 𝑐2

(1− 𝑐2)2 (4.126)
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where (𝑎) is due to (4.124). Deőne the events

ℰ1 =
{︂⃒
⃒
⃒
⃒

1

𝑛
𝑥⊤
1 𝑥2 +

𝑐

1− 𝑐2
⃒
⃒
⃒
⃒
>

𝜖

1− 𝑐2
}︂

,

ℰ2 =
{︂⃒
⃒
⃒
⃒

1

𝑛
𝑥⊤
1 𝑥1 −

1

1− 𝑐2
⃒
⃒
⃒
⃒
>

𝜖

1− 𝑐2
}︂

,

ℰ3 =
{︂⃒
⃒
⃒
⃒

1

𝑛
𝑥⊤
2 𝑥2 −

1

1− 𝑐2
⃒
⃒
⃒
⃒
>

𝜖

1− 𝑐2
}︂

,

ℰ4 =
{︃⃒
⃒
⃒
⃒
⃒

1

𝑛

𝑛∑︁

𝑖=1

𝑦𝑖 −
1

1− 𝑐2

⃒
⃒
⃒
⃒
⃒
>

𝜖

1− 𝑐2

}︃

.

(4.127)

By Chebyshev’s inequality, (4.123), (4.125) and (4.126),

P(ℰ𝑐1) ≤
1 + 𝑐2

𝑛𝜖2
, P(ℰ𝑐2) ≤

2

𝑛𝜖2
, ,P(ℰ𝑐3) ≤

2

𝑛𝜖2
, P(ℰ𝑐4) ≤

1 + 𝑐2

𝑛𝜖2
. (4.128)

As a result, for the symmetric error (4.24), on events ℰ1, ℰ4 we have we have

2

(︂

𝛽* − 2𝑥⊤
1 𝑥2

𝑥⊤
1 𝑥1 + 𝑥⊤

2 𝑥2

)︂2

= 2

(︂

𝑐+
𝑥⊤
1 𝑥2/𝑛

∑︀𝑛
𝑖=1 𝑦𝑖/𝑛

)︂2

=
2

(
∑︀𝑛

𝑖=1 𝑦𝑖/𝑛)
2

(︃

𝑐

𝑛∑︁

𝑖=1

𝑦𝑖/𝑛+ 𝑥⊤
1 𝑥2/𝑛

)︃2

≤ 4(1− 𝑐2)2
(1− 𝜖)2

[︃

(𝑐
𝑛∑︁

𝑖=1

𝑦𝑖/𝑛− 𝑐/(1− 𝑐2))2 + (𝑥⊤
1 𝑥2/𝑛+ 𝑐/(1− 𝑐2))2

]︃

≤ 4(1− 𝑐2)2
(1− 𝜖)2

[︂
𝑐2𝜖2

(1− 𝑐2)2 +
𝜖2

(1− 𝑐2)2
]︂

=
4𝜖2(𝑐2 + 1)

(1− 𝜖)2 . (4.129)
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Similarly, for the asymmetric case (4.26), on events ℰ1, ℰ2, ℰ3 we have

(︂

𝛽* − 𝑥
⊤
1 𝑥2

𝑥⊤
1 𝑥1

)︂2

+

(︂

𝛽* − 𝑥
⊤
1 𝑥2

𝑥⊤
2 𝑥2

)︂2

=

(︀
𝑐𝑥⊤

1 𝑥1/𝑛+ 𝑥⊤
1 𝑥2/𝑛

)︀2

(𝑥⊤
1 𝑥1/𝑛)2

+

(︀
𝑐𝑥⊤

2 𝑥2/𝑛+ 𝑥⊤
1 𝑥2/𝑛

)︀2

(𝑥⊤
2 𝑥2/𝑛)2

≤ 2(1− 𝑐2)2
(1− 𝜖)2

𝜖2(𝑐2 + 1)

(1− 𝑐2)2 +
2(1− 𝑐2)2
(1− 𝜖)2

𝜖2(𝑐2 + 1)

(1− 𝑐2)2

=
4𝜖2(𝑐2 + 1)

(1− 𝜖)2 . (4.130)
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Chapter 5

Safe Screening Procedure within a

Specialized Branch-and-Bound Solver

for Sparse Learning

It is a joint work with Xiang Meng and Rahul Mazumder.

5.1 Introduction

Sparse learning is a central problem in high-dimensional statistics, machine learning

and other related őelds [115]. We consider the sparse learning problem with ℓ0ℓ2

regularization [161, 116, 120]:

min
𝛽

𝐹0(𝛽) := 𝑓(𝛽) + 𝜆0‖𝛽‖0 + 𝜆2‖𝛽‖2, (5.1)

where 𝑓 is continuously differentiable convex function based on the data (𝑋,𝑦) ∈
R
𝑛×𝑝×R

𝑝 and 𝛽 ∈ R
𝑝 is the vector of decision variables. Two important applications

of Problem (5.1) are sparse linear regression with 𝑓(𝛽) = 1
2
‖𝑦 −𝑋𝛽‖2 and sparse

logistic regression with 𝑓(𝛽) =
∑︀𝑛

𝑗=1 log(1 + exp(−𝑦𝑗𝑥⊤
𝑗 𝛽)).

In Problem (5.1), ‖𝛽‖0 denotes the number of nonzeros coordinates in 𝛽, and ‖𝛽‖2

is the squared ℓ2 norm of 𝛽. Note that the inclusion of ℓ2 term can help preventing
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overőtting issues in the low-signal-to-noise-ratio (SNR) regimes [114, 161]. There have

been extensive studies in statistical properties of ℓ0-based estimators in the statistical

literature [98, 43, 187, 46, 230, 65, 212, 161, 87, 67]. These estimators have been

shown to exhibit some intriguing properties in support recovery, estimation error and

prediction error under certain circumstances.

Nevertheless, Problem (5.1) is NP-Hard [169] and thus is computationally chal-

lenging. Thanks to the signiőcant advancements in the őeld of mixed-integer op-

timization (MIO), there has been an emerging interest in developing MIO-based

approaches to solve Problem (5.1) and its siblings, e.g. [58, 28, 167, 182, 72, 30,

116, 33, 222, 9, 120, 67, 165]. Speciőcally, several works [28, 97, 167, 182] have

demonstrated that off-the-shelf MIP solvers can handle problem instances of moder-

ate size (𝑝 ≲ 103). While they can achieve promising results, they are still relatively

slow for practical usage [114, 116], compared to specialized solvers tailored for its ℓ1

counterparts and local heuristics for (5.1), e.g. [89, 114, 118, 222]. Recently, there

have been several attempts to develop specialized MIO solvers for ℓ0-based estima-

tors [135, 30, 33, 67, 120, 165]. In particular, [120] develop a specialized nonlinear

Branch-and-Bound (BnB) solver for Problem (5.1) in the context of linear regression

Ð they leverage several strategies and heuristics to improve the efficiency of convex

relaxation subproblem solving at each node within the BnB tree. They demonstrate

a signiőcant speedup, compared to commercial solvers (Gurobi [104], Mosek [6]) as

well as state-of-the-art solver [30]. In an orthogonal direction, recently, [9] propose

a safe screening approach to provably identify some of the zero and non-zero entries

in the minimizers and thus reduce the number of binary variables, prior to solving

Problem (5.1) for linear regression. However, in our experiments, we observe that

this preprocessing screening might not lead to signiőcant reduction in the problem

size. In this chapter, we bring this notation of safe screening into the BnB frame-

work to progressively screen variables for each node during the course of solving

Problem (5.1).

To this end, we propose a nonlinear Branch-and-Bound framework with safe

screenings at each node for solving Problem (5.1). Our framework can handle
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any smooth convex function 𝑓 , including the linear regression and logistic re-

gression problems. We consider the hybrid perspective reformulation proposed

by [120], which incorporates perspective formulation [88, 4, 101] and big-𝑀 refor-

mulation [28, 222, 161, 116] as special cases.

In brief, the safe screening of our framework works as follows: at each node, after

solving the node relaxation problem, the dual bounds for child nodes are computed

to compare with the best feasible integral solution so as to determine the set of

binary variables that can be safely őxed to 0 or 1 for all descendants of the current

node. Such screening strategy can help improve the efficiency of the Branch-and-

Bound solver in several ways: (a) it reduces the optimization complexity for relaxation

subproblems in that more and more variables are őxed to 0 or 1 as the tree goes deeper;

(b) it improves the branching efficiency by eliminating the unnecessary candidates

for branching, especially for strong branching rules [5, 69] that involve additional

relaxation problem solving. Additionally, combined with strong branching, we can

further enhance the quality of screening based on the additional information brought

by the strong branching, which further reduces the search space and thus reduces the

size of tree (in term of tree depth and the number of nodes).

To better exploit the sparsity structure, the őrst-order primal methods are usually

used for solving the relaxation subproblems, which might lead to an approximate

solution, namely a primal feasible solution with low-to-medium accuracy. In contrast

to [9, 70] which requires an optimal solution to the relaxation problem, our framework

supports an approximate solution to perform the safe screening.

Contributions and Structure The key contributions are summarized as below.

• We consider the sparse learning problem (5.1) with a general convex smooth

function 𝑓 , and develop a nonlinear Branch-and-Bound solver for the hybrid

perspective reformulation (See Section 5.2)

• We investigate into the optimality conditions and dual characterizations of con-

vex relaxation subproblems, and present a dual bound formulation for any given

primal feasible solution (see Section 5.3).
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• We propose a safe screening framework at each node within the Branch-and-

Bound tree, and show how this interacts with different branching strategies

to improve the efficiency of BnB. For strong branching rules, we propose an

enhanced version which leads to further improvement (see Section 5.4).

• Our BnB framework can handle various losses in sparse learning, including

squared error loss and Huber loss for regression, logistic loss and squared hinge

loss for classiőcation and Cox proportional hazard model (see Section 5.5).

• We show improvements of our proposed screening framework across various

datasets, a wide range of (𝜆0, 𝜆2) and different branching strategies (see Sec-

tion 5.6). In particular, our screening procedure can lead to up to 3 times

runtime improvements for easy problems; it can help explore much more nodes

(up to 2 times) and reduce the optimality gap within the time limit for hard

problems.

Additional proofs can be found in Section 5.A. Additional technical and experimental

details can be found in Appendix 5.B and Appendix 5.C.

Related work The notion of safe screening was originally proposed by earlier lit-

erature [95, 216, 86] for the ℓ1-penalized regression Lasso problem [205]. It provably

removes some zero parameters in the optimal solutions before the problem solving

or during the optimization, and this can help signiőcantly speed up the convex op-

timization solver. While in a similar spirit, our work is focused more on reducing

the size of the tree and improving the branching, instead of simply accelerating the

convex subproblem solvers.

In addition to the recent paper [9] mentioned above, [70] and [105] extend [9] in

different directions. [70] consider a logistic regression case, and [105] consider the

big-𝑀 formulation for linear regression and make an attempt to bring the screening

idea at each node. However, here we consider a broader class of loss functions as well

as the hybrid perspective formulation (which include the big-𝑀 as a special case).

In addition, we also investigate into the interactions between branching rules and
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the screening rule, and propose an enhanced screening in the cases where the strong

branching rules are deployed.

Beyond papers mentioned above, there is also a lot of work on global optimization

approaches [28, 30, 31, 222, 67] as well as fast approximate solvers [184, 72, 8, 18, 36]

for sparse regression. Moreover, there is a rich body of work on solving mixed integer

nonlinear programs (MINLPs) using BnB [146, 22] or outer approximations [80]. For

more details, one can refer to [120] and the references therein. In this chapter, we

focus on developing a safe screening rule within the BnB solver to improve the global

optimization solver for Problem (5.1).

Notations For a vector 𝛽 ∈ R
𝑝, we use ‖𝛽‖0 to denote the number of nonzeros

in 𝛽; ‖𝛽‖ to denote the Euclidean norm of 𝛽. We will use † and * as superscripts

to denote optimal solutions/values to mixed integer problems and convex problems,

respectively.

5.2 Problem formulations and branch-and-bound

solver

Perspective formulation In this chapter, we adopt the hybrid perspective refor-

mulation proposed by [120], given by

𝐹 †
𝐼 := min

𝛽,𝑧
𝐹 (𝛽, 𝑧) := 𝑓(𝛽) +

𝑝
∑︁

𝑖=1

(︀
𝜆0𝑧𝑖 + 𝜆2𝛽

2
𝑖 /𝑧𝑖

)︀
(𝑃𝐼)

s.t. (𝛽, 𝑧) ∈ 𝒞𝑀 := {(𝛽, 𝑧) : |𝛽𝑖| ≤𝑀𝑧𝑖, ∀𝑖 ∈ [𝑝]}

𝑧 ∈ {0, 1}𝑝.

for some 𝑀 > 0. Here, we adopt the convention that 0/0 = 0, 0·∞ = 0, and 𝑥/0 =∞
for 𝑥 > 0. We denote by (𝛽†, 𝑧†) an optimal solution to (𝑃𝐼).

[120] show that compared to perspective reformulation [88, 4, 101, 72] and big-

𝑀 reformulation [28, 222, 161, 116] used before, the hybrid version leads to tighter
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reformulation in some circumstances. Note that when 𝑀 = ∞ and 𝜆2 > 0, (𝑃𝐼)

reduces to perspective formulation; when 𝜆2 = 0 and 𝑀 <∞, this becomes the big-

𝑀 formulation. In the setting of screening, [9, 70] use the perspective formulation,

and [105] use the big-𝑀 formulation. Our proposed framework works on the hybrid

version, which can also handle these cases.

Relaxation formulation The branch-and-bound solver relies heavily on solving

the convex (interval) relaxation problem as follows

𝐹 *(𝒵) := min
𝛽,𝑧

𝐹 (𝛽, 𝑧), s.t. (𝛽, 𝑧) ∈ 𝒞𝑀 , 𝑧 ∈ 𝒵, (𝑃𝒵)

where 𝒵 =
∏︀𝑝

𝑖=1[𝑧𝑖, 𝑧𝑖] for some 𝑧𝑖, 𝑧𝑖 ∈ {0, 1}𝑝. Denote by (𝛽*(𝒵), 𝑧*(𝒵)) an optimal

solution to (𝑃𝒵).

Branch-and-Bound solver In Algorithm 5.1, we provide an overview of the BnB

solver with the approximate subproblem solver and screening tests. The high-level

ideas of the algorithm is as follows: The algorithm starts with solving the the interval

relaxation at the root node 𝑟, where all binary variables 𝑧𝑖’s are relaxed to the interval

[0, 1], i.e. (𝑃𝒵) with 𝒵 = 𝒵𝑟 := [0, 1]𝑝. Then, the algorithm selects a branching

variable 𝑧𝑗, and creates two child nodes (new convex optimization problems), one

with 𝒵 = 𝒵𝑟 ∩ {𝑧𝑗 = 0} and the other with 𝒵 = 𝒵𝑟 ∩ {𝑧𝑗 = 1}. The algorithm grows

the binary trees recursively until either of two conditon are met: (i) the optimal

solution to the current node relaxation problem is integral (Line 6 in Algorithm 5.1);

or (ii) the objective of the current optimization problem exceeds the best available

upper bound �̄� 𝐼 on (𝑃𝐼) (Line 8). The algorithm terminates if the relative optimality

gap, deőned as (�̄� 𝐼 − 𝐹 𝐼)/𝐹 𝐼 is smaller than a pre-speciőed tolerance.

Our proposals Following [120], for scalability considerations, we apply the primal

őrst-order methods, such as proximal gradient descent (PGD) and coordinate descent

(CD) to solve the relaxation subproblems. Dual bounds for the node relaxation

problems are required to prune nodes as well as perform screening and branching
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Algorithm 5.1 An overview of proposed BnB solver

Input: Set �̄� 𝐼 =∞, 𝐹 𝐼 = −∞ and initialize the set of nodes to be solved ℋ = ∅
Output: An integral solution
1: Add the root node (𝑃𝑟) to the set ℋ = ℋ ∪ {𝑃𝑟}
2: while ℋ ̸= ∅ do
3: Remove a problem (𝑃𝒵) from the set: ℋ = ℋ− {𝑃𝒵}
4: Solve (𝑃𝒵) inexactly and let (�̂�(𝒵), �̂�(𝒵)) be an approximate solution
5: Update the incumbent solution if a better integral solution is found, continue
6: Compute a lower bound 𝐹 (𝒵) on 𝐹 *(𝒵), based on (�̂�(𝒵), �̂�(𝒵))
7: Update lower bound 𝐹 𝐼 on MIP, based on 𝐹 (𝒵) under some condition
8: If 𝐹 (𝒵) > �̄� 𝐼 , the current node can be pruned; otherwise, perform

screening and branching procedure, and add new nodes to ℋ if any
9: end while

procedure. We develop an efficient method for obtaining dual bounds from the primal

solutions, which will be detailed in Section 5.3. Based on these lower bounds, we

develop a novel screening procedure in combination with the branching procedure in

BnB, and this will be discussed in Section 5.4.

5.3 Characterizations of relaxation subproblems

In this section, we provide characterizations of relaxation subproblems (𝑃𝒵) for both

root relaxation and the relaxations at general nodes. To simplify the presentation, we

will focus mainly on the root relaxation problem, and present its properties including

the optimality conditions (in Section 5.3.1), primal-dual relationship (in Section 5.3.2)

and dual bounds (in Section 5.3.3). We then present the properties of the relaxation

problems at general nodes in Section 5.3.4.

To this end, we őrst introduce some notations in this section. Denote by (𝑃𝑟) the

root relaxation problem, i.e. the problem (𝑃𝒵) with 𝒵 = 𝒵𝑟 = [0, 1]𝑝, which can be

written as

𝐹 *(𝒵) := min
𝛽,𝑧

𝐹 (𝛽, 𝑧), s.t. (𝛽, 𝑧) ∈ 𝒞𝑀 , 𝑧 ∈ [0, 1]𝑝. (𝑃𝑟)

In Section 5.3.1 to 5.3.3, we will focus on the root relaxation problem, and for brevity,

we denote by 𝐹 *
𝑟 = 𝐹 *(𝒵𝑟), (𝛽*, 𝑧*) = (𝛽*(𝒵𝑟), 𝑧*(𝒵𝑟)).
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5.3.1 Optimality conditions

We őrst derive the optimality conditions for the root relaxation problem (𝑃𝑟). We

consider the Lagrangian dual by making use of the following identity: for any 𝑧𝑖 ≥ 0,

𝛽2
𝑖

𝑧𝑖
= max

𝑢𝑖
𝑢𝑖𝛽𝑖 −

𝑢2𝑖
4
𝑧𝑖, (5.2)

and dualizing the constraint |𝛽𝑖| ≤ 𝑀𝑧𝑖 deőned in 𝒞𝑀 at the same time. More

speciőcally, the Lagrangian can be written as

𝐿(𝛽, 𝑧;𝑢,𝑣) := 𝑓(𝛽) +

𝑝
∑︁

𝑖=1

(︂

𝜆0𝑧𝑖 + 𝜆2𝑢𝑖𝛽𝑖 − 𝜆2
𝑢2𝑖
4
𝑧𝑖 + 𝑣𝑖𝛽𝑖 −𝑀 |𝑣𝑖|𝑧𝑖

)︂

, (5.3)

and the domain of 𝑧 is 𝒵𝑟 = [0, 1]𝑝.

Proposition 5.1. The strong duality holds for the root relaxation problem (𝑃𝑟):

min
(𝛽,𝑧)∈𝒞𝑀 ,𝑧∈𝒵𝑟

𝐹 (𝛽, 𝑧) = min
𝛽∈R𝑝,𝑧∈𝒵𝑟

max
𝑢,𝑣

𝐿(𝛽, 𝑧;𝑢,𝑣) = max
𝑢,𝑣

min
𝛽∈R𝑝,𝑧∈𝒵𝑟

𝐿(𝛽, 𝑧;𝑢,𝑤).

(5.4)

Furthermore, (𝛽*, 𝑧*) and (𝑢*,𝑣*) are an optimal primal-dual pair, if and only if the

following KKT condition holds:

0 = ∇𝑖𝑓(𝛽
*) + 𝜆2𝑢

*
𝑖 + 𝑣*𝑖 (5.5a)

𝑧*𝑖 ∈

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

{1} if 𝜆0 − 𝜆2(𝑢*𝑖 )
2

4
−𝑀 |𝑣*𝑖 | < 0

{0} if 𝜆0 − 𝜆2(𝑢*𝑖 )
2

4
−𝑀 |𝑣*𝑖 | > 0

[0, 1] otherwise

(5.5b)

0 = 2𝛽*
𝑖 − 𝑢*𝑖 𝑧*𝑖 (5.5c)

𝑣*𝑖 ∈

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−∞,∞) if 𝑧*𝑖 = 0

{0} if 𝑧*𝑖 > 0 and |𝛽*
𝑖 | < 𝑀𝑧*𝑖

(−∞, 0] if 𝑧*𝑖 > 0 and 𝛽*
𝑖 = −𝑀𝑧*𝑖

[0,∞) if 𝑧*𝑖 > 0 and 𝛽*
𝑖 =𝑀𝑧*𝑖

(5.5d)

(𝛽*, 𝑧*) ∈ 𝒞𝑀 , 𝑧* ∈ 𝒵𝑟. (5.5e)
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Note that (5.5a) and (5.5c) are the őrst-order conditions wrt 𝛽 and 𝑢, respec-

tively; (5.5b) includes both őrst-order condition wrt 𝑧 and complementary slackness

wrt the constraint 𝑧 ∈ [0, 1]𝑝; (5.5d) includes both őrst-order condition wrt 𝑣𝑖 and

complementary slackness wrt the constraint |𝛽𝑖| ≤𝑀𝑧𝑖 and the dual 𝑣𝑖; (5.5e) is the

primal feasibility condition.

The proof of strong duality is based on Fenchel Duality Theorem (e.g. [193, Corol-

lary 31.2.1]). The details can be found in Section 5.A.1.

5.3.2 Optimal dual variables

From the KKT conditions (5.5), the following proposition provides an approach of

computing a optimal dual solution (𝑢*,𝑣*) based on an optimal primal solution

(𝛽*, 𝑧*):

Proposition 5.2. Given an optimal primal solution (𝛽*, 𝑧*) to (𝑃𝑟), then (𝑢*,𝑣*)

given in (5.6) is an optimal dual solution corresponding to it.

𝑢*𝑖 = −min{|∇𝑖𝑓(𝛽
*)|, 2𝜆2𝑀} sign(∇𝑖𝑓(𝛽

*))/𝜆2 (5.6a)

𝑣*𝑖 = −(|∇𝑖𝑓(𝛽
*)| − 2𝜆2𝑀)+ sign(∇𝑖𝑓(𝛽

*)). (5.6b)

Let ∆*
𝑖 = 𝜆0 − 𝜆2(𝑢*𝑖 )

2

4
−𝑀 |𝑣*𝑖 |, then we have

∆*
𝑖 = ℎ(∇𝑖𝑓(𝛽

*)), (5.7)

where

ℎ(𝛼) =

⎧

⎨

⎩

𝜆0 − 𝛼2

4𝜆2
if |𝛼| ≤ 2𝜆2𝑀

𝜆0 + 𝜆2𝑀
2 −𝑀 |𝛼| otherwise

. (5.8)

Proof. For each 𝑖, we consider two cases based on the sign of 𝑧*𝑖 : 𝑧
*
𝑖 = 0 and 𝑧*𝑖 ̸= 0.

Case 1: 𝑧*𝑖 = 0. In this case, we know 𝛽*
𝑖 = 0 from (5.5c), and 𝑣*𝑖 is free

from (5.5d). In addition, by (5.5a) and (5.5b), there exists 𝑢*𝑖 and 𝑣*𝑖 such that

𝜆2𝑢
*
𝑖 + 𝑣*𝑖 = −∇𝑖𝑓(𝛽

*) and 𝜆0 − 𝜆2(𝑢*𝑖 )
2

4
−𝑀 |𝑣*𝑖 | ≥ 0. Therefore, we can őnd one

203



feasible 𝑢*𝑖 and 𝑣*𝑖 by solving the following optimization problem

(𝑢*𝑖 , 𝑣
*
𝑖 ) = argmax

𝑢,𝑣
𝜆0 −

𝜆2(𝑢
*
𝑖 )

2

4
−𝑀 |𝑣*𝑖 |, s.t. 𝜆2𝑢

*
𝑖 + 𝑣*𝑖 = −∇𝑖𝑓(𝛽

*), (5.9)

which leads to (5.6). By the maximality of (5.9), we know that 𝜆0−𝜆2(𝑢*𝑖 )
2

4
−𝑀 |𝑣*𝑖 | ≥ 0,

i.e. (5.5b) holds; other conditions hold by deőnition, so (𝛽*
𝑖 , 𝑧

*
𝑖 ) and (𝑢*𝑖 , 𝑣

*
𝑖 ) satisfy

(5.5).

Case 2: 𝑧*𝑖 > 0. In this case, from the KKT condition (5.5), we know (𝑢*𝑖 , 𝑣
*
𝑖 ) is

uniquely determined by (5.5a) and (5.5c), i.e.

𝑢*𝑖 =
2𝛽*

𝑖

𝑧*𝑖
, and 𝑣*𝑖 = −𝜆2𝑢*𝑖 −∇𝑖𝑓(𝛽

*) = −2𝜆2
𝛽*
𝑖

𝑧*𝑖
−∇𝑖𝑓(𝛽

*). (5.10)

Now it remains to show that (5.6) leads to (5.10) in this case.

If |𝛽*
𝑖 | =𝑀𝑧𝑖, by (5.10), we have 𝑢*𝑖 = 2𝑀 sign(𝛽*

𝑖 ) and

𝑣*𝑖 + 2𝜆2𝑀 sign(𝛽*
𝑖 ) = −∇𝑖𝑓(𝛽

*). (5.11)

It follows from (5.5d) that 𝑣*𝑖 𝛽
*
𝑖 ≥ 0. Therefore, by taking the signs of both sides of

(5.11), we have sign(𝛽*
𝑖 ) = − sign(∇𝑖𝑓(𝛽

*)); by taking the absolute values of both

sides, we have |𝑣*𝑖 | + 2𝜆2𝑀 = |∇𝑖𝑓(𝛽
*)|. This implies |∇𝑖𝑓(𝛽

*)| ≥ 2𝜆2𝑀 . By some

calculations, it is not hard to see that (5.6) leads to (5.10).

If |𝛽*
𝑖 | < 𝑀𝑧𝑖, then by (5.5d), |𝑢𝑖| < 2𝑀 . It follows from (5.5d) that 𝑣*𝑖 = 0.

Combining this with (5.10), we get ∇𝑖𝑓(𝛽
*) = −𝜆2𝑢𝑖 and thus |∇𝑖𝑓(𝛽

*)| < 2𝜆2𝑀 .

By some calculations, it is not hard to see that (5.6) leads to (5.10).

Hence, we have shown that in both cases, (5.6) gives a dual variable (𝑢*,𝑣*) that

along with (𝛽*, 𝑧*) satisőes the KKT conditions (5.5).

Finally, (5.7) follows from direct calculations.
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5.3.3 Dual bounds

In this section, we derive a dual bound on the relaxation problem (𝑃𝑟), i.e. a lower

bound on 𝐹 *
𝑟 . This is used in the BnB solver for pruning the search space; see Line 8

in Algorithm 5.1.

Proposition 5.3. Given any (�̂�, �̂�) ∈ R
𝑝 ×𝒵𝑟 (not necessarily feasible to (𝑃𝑟)), let

∆̂𝑖 = ℎ(∇𝑖𝑓(�̂�)) =

⎧

⎨

⎩

𝜆0 − |∇𝑖𝑓(�̂�)|2
4𝜆2

if |∇𝑖𝑓(�̂�)| ≤ 2𝜆2𝑀

𝜆0 + 𝜆2𝑀
2 −𝑀 |∇𝑖𝑓(�̂�)| otherwise

, (5.12)

and deőne

𝐹 𝑟 = 𝑓(�̂�)− ⟨∇𝑓(�̂�), �̂�⟩ −
𝑝

∑︁

𝑗=1

(−∆̂𝑗)+. (5.13)

Then, we have 𝐹 *
𝑟 ≥ 𝐹 𝑟. Furthermore, when (�̂�, �̂�) is an optimal solution to (𝑃𝑟),

then 𝐹 *
𝑟 = 𝐹 𝑟.

Proof. Let (�̃�, �̃�) be any dual variable, and denote by ∆̃𝑖 = 𝜆0 − 𝜆2�̃�
2
𝑖

4
−𝑀 |𝑣𝑖|.

We őrst show that for any �̃� and (�̃�, �̃�) such that ∇𝑓(�̃�) + 𝜆2�̃�+ �̃� = 0, we have

min
𝛽∈R𝑝,𝑧∈𝒵𝑟

𝐿(𝛽, 𝑧; �̃�, �̃�) = 𝑓(�̃�)− ⟨∇𝑓(�̃�), �̃�⟩ −
𝑝

∑︁

𝑗=1

(−∆̃𝑗)+. (5.14)

By the deőnition of the Lagrangian 𝐿, we can write it as

𝐿(𝛽, 𝑧; �̃�, �̃�) = 𝑓(𝛽) + ⟨𝜆2�̃�+ �̃�,𝛽⟩+
𝑝

∑︁

𝑗=1

∆̃𝑗𝑧𝑗. (5.15)

The minimization problem of 𝐿 wrt 𝛽 ∈ R
𝑝 and 𝑧 ∈ 𝒵𝑟 is separable and can be

decomposed into subproblems wrt 𝛽 and 𝑧𝑗’s.

For 𝑧𝑗 ∈ [0, 1], it is clear to see the subproblem has the minimizer 𝑧*𝑗 = 0 if ∆̃𝑗 > 0;

𝑧*𝑗 = 1 if ∆̃𝑗 < 0; 𝑧*𝑗 ∈ (0, 1) if ∆̃𝑗 = 0. Thus, min𝑧𝑗∈[0,1] ∆̃𝑗𝑧𝑗 = −(−∆̃𝑗)+.

As for 𝛽, when ∇𝑓(�̃�) + 𝜆2�̃� + �̃� = 0, i.e. ∇𝛽𝐿(�̃�, 𝑧; �̃�, �̃�) = 0, we have �̃� is

an optimal solution to the subproblem wrt 𝛽. Thus, min𝛽 𝑓(𝛽) + ⟨𝜆0�̃� + �̃�,𝛽⟩ =
𝑓(�̃�)− ⟨∇𝑓(�̃�), �̃�⟩.
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Therefore, combining these subproblems yields (5.14).

Hence, combining Proposition 5.1 with (5.14), we have

𝐹 *
𝑟 = max

𝑢,𝑣
min

𝛽∈R𝑝,𝑧∈𝒵𝑟

𝐿(𝛽, 𝑧;𝑢,𝑣)

≥ min
𝛽∈R𝑝,𝑧∈𝒵𝑟

𝐿(𝛽, 𝑧; �̃�, �̃�)

= 𝑓(�̃�)− ⟨∇𝑓(�̃�), �̃�⟩ −
𝑝

∑︁

𝑗=1

(−∆̃𝑗)+ (5.16)

for any �̃� and (�̃�, �̃�) that satisfy ∇𝑓(�̃�) + 𝜆2�̃�+ �̃� = 0.

Now it remains to choose suitable �̃� and (�̃�, �̃�) in (5.16), based on (�̂�, �̂�).

Here, we simply take �̃� = �̂�. As for (�̃�, �̃�), we want to choose (�̃�, �̃�) to make the

lower bound given by (5.16) as large as possible, given �̃� = �̂� and∇𝑓(�̂�)+𝜆2�̃�+�̃� = 0.

Denote by

∆̂𝑗 = max
�̃�𝑗 ,𝑣𝑗

∆̃𝑗 = 𝜆0 −
𝜆2�̃�

2
𝑗

4
−𝑀 |𝑣𝑗|, s.t. ∇𝑗𝑓(�̂�) + 𝜆2�̃�𝑗 + 𝑣𝑗 = 0, (5.17)

and denote by (�̂�𝑗, 𝑣𝑗) the corresponding maximizer

�̂�𝑖 = −min{|∇𝑖𝑓(�̂�)|, 2𝜆2𝑀} sign(∇𝑖𝑓(�̂�))/𝜆2 (5.18a)

𝑣𝑖 = −(|∇𝑖𝑓(�̂�)| − 2𝜆2𝑀)+ sign(∇𝑖𝑓(�̂�)). (5.18b)

The expression of ∆̂𝑗 is given by (5.12), and it follows from (5.16) that such choice of

(�̂�, �̂�) leads to the lower bound given in (5.13).

Finally, we show that 𝐹 *
𝑟 = 𝑓(𝛽*)− ⟨∇𝑓(𝛽*),𝛽*⟩ −∑︀𝑝

𝑗=1(−∆*
𝑗)+for any optimal

solution to (𝛽*, 𝑧*). Notice that by the deőnition of (𝑢*,𝑣*) in (5.6), we know that

∇𝑓(𝛽*) + 𝜆2𝑢
* + 𝑣* = 0. Therefore, it follows from Proposition 5.1 and (5.14) that

𝐹 *
𝑟 = min

𝛽,𝑧
𝐿(𝛽, 𝑧;𝑢*,𝑣*) = 𝑓(𝛽*)− ⟨∇𝑓(𝛽*),𝛽*⟩ −

𝑝
∑︁

𝑗=1

(−∆*
𝑗)+. (5.19)
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Remark 5.1. Notice that the dual bound expression in (5.13) depends only on �̂�, not

on �̂�. In fact, recall that

𝐹 (𝛽, 𝑧) := 𝑓(𝛽) +

𝑝
∑︁

𝑖=1

(︀
𝜆0𝑧𝑖 + 𝜆2𝛽

2
𝑖 /𝑧𝑖

)︀
. (5.20)

For any őxed 𝛽𝑖, the minimization problem (𝑃𝑟) wrt 𝑧𝑖 has a solution

𝑧𝑖 = min
{︁

1,max
{︁

|𝛽𝑖|/𝑀, |𝛽𝑖|
√︀

𝜆2/𝜆0

}︁}︁

. (5.21)

This holds in edge cases where 𝜆2 = 0 or 𝑀 = ∞ as well. Based on this relation-

ship (5.21), the relaxation problem can be reduced to an optimization problem wrt 𝛽

on its own. Therefore, the dual bound (5.13) can also regarded as a lower bound on

the reduced optimization problem, and this provides an explanation why the expression

depends only on �̂� instead of (�̂�, �̂�).

Additional details around this reduction can be found in [120], where they ap-

ply the őrst-order methods on the reduced problem to solve the relaxation problems.

Here, we adopt similar approaches to get an approximate solution �̂�, and obtain the

corresponding �̂� via (5.21).

Remark 5.2. Denote by 𝑓 *(𝛼) = sup𝛽{⟨𝛼,𝛽⟩ − 𝑓(𝛽)} the Fenchel conjugate of

𝑓 , then it can be shown that the dual of (𝑃𝑟) is given by max𝛼 𝐷(𝛼) := −𝑓 *(𝛼) −
∑︀𝑝

𝑖=1[−ℎ(𝛼𝑖)]+, and the dual bound 𝐹 𝑟 given in (5.13) is the value of the dual function

𝐷 evaluated at 𝛼 = ∇𝑓(�̂�). Since this is not the focus of the work, we will not provide

the proof for this claim.

5.3.4 Node relaxations

In this section, we present the properties of the convex relaxation problem (𝑃𝑣) at a

general node 𝑣:

𝐹 *(𝒵) := min
𝛽,𝑧

𝐹 (𝛽, 𝑧), s.t. (𝛽, 𝑧) ∈ 𝒞𝑀 , 𝑧 ∈ 𝒵𝑣. (𝑃𝑣)
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Based on the deőnition of the branching process, the domain 𝒵𝑣 can be characterized

as a triple of index sets (ℱ0,ℱ1,ℛ), where ℱ𝑏 denotes the indices of 𝑧𝑗’s that are

őxed to 𝑏 for 𝑏 ∈ {0, 1}, and ℛ denotes the indices of 𝑧𝑗’s that are still relaxed to the

interval [0, 1]. With this notation, the Lagrangian of (𝑃𝑣) can be written as

𝐿𝑣(𝛽, 𝑧;𝑢,𝑣) = 𝑓(𝛽)+
∑︁

𝑖∈ℱ1

(︂

𝜆0 + 𝜆2𝑢𝑖𝛽𝑖 − 𝜆2
𝑢2𝑖
4
− 𝑣𝑖𝛽𝑖 −𝑀 |𝑣𝑖|

)︂

+
∑︁

𝑖∈ℛ

(︂

𝜆0𝑧𝑖 + 𝜆2𝑢𝑖𝛽𝑖 − 𝜆2
𝑢2𝑖
4
𝑧𝑖 − 𝑣𝑖𝛽𝑖 −𝑀 |𝑣𝑖|𝑧𝑖

)︂

. (5.22)

The strong duality holds for the root relaxation problem (𝑃𝑟), i.e.

min
(𝛽,𝑧)∈𝒞𝑀 ,𝑧∈𝒵𝑣

𝐹 (𝛽, 𝑧) = min
𝛽∈R𝑝,𝑧∈𝒵𝑣

max
𝑢,𝑣

𝐿(𝛽, 𝑧;𝑢,𝑣) = max
𝑢,𝑣

min
𝛽∈R𝑝,𝑧∈𝒵𝑣

𝐿(𝛽, 𝑧;𝑢,𝑤).

(5.23)

Furthermore, (𝛽*, 𝑧*) and (𝑢*,𝑣*) are an optimal primal-dual pair, if and only if the

following KKT condition holds:

0 = ∇𝑖𝑓(𝛽
*) + 𝜆2𝑢

*
𝑖 + 𝑣*𝑖 (5.24a)

𝑧*𝑖 ∈

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

{1} if (𝑖 ∈ ℱ1) or (𝑖 ∈ ℛ and 𝜆0 − 𝜆2(𝑢*𝑖 )
2

4
−𝑀 |𝑣*𝑖 | < 0)

{0} if (𝑖 ∈ ℱ0) or (𝑖 ∈ ℛ and 𝜆0 − 𝜆2(𝑢*𝑖 )
2

4
−𝑀 |𝑣*𝑖 | > 0)

[0, 1] otherwise

(5.24b)

0 = 2𝛽*
𝑖 − 𝑢*𝑖 𝑧*𝑖 (5.24c)

𝑣*𝑖 ∈

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−∞,∞) if 𝑧*𝑖 = 0

{0} if 𝑧*𝑖 > 0 and |𝛽*
𝑖 | < 𝑀𝑧*𝑖

(−∞, 0] if 𝑧*𝑖 > 0 and 𝛽*
𝑖 = −𝑀𝑧*𝑖

[0,∞) if 𝑧*𝑖 > 0 and 𝛽*
𝑖 =𝑀𝑧*𝑖

(5.24d)

(𝛽*, 𝑧*) ∈ 𝒞𝑀 , 𝑧* ∈ 𝒵𝑣. (5.24e)

Proposition 5.4. Given any (�̂�, �̂�) ∈ R
𝑝 × [0, 1]𝑝 (not necessarily feasible to (𝑃𝑣)),
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for any 𝑖 /∈ ℱ0, deőne

∆̂𝑖 = ℎ(∇𝑖𝑓(�̂�)) =

⎧

⎨

⎩

𝜆0 − |∇𝑖𝑓(�̂�)|2
4𝜆2

if |∇𝑖𝑓(�̂�)| ≤ 2𝜆2𝑀

𝜆0 + 𝜆2𝑀
2 −𝑀 |∇𝑖𝑓(�̂�)| otherwise

, (5.25)

and deőne

𝐹 𝑣 = 𝑓(�̂�)− ⟨∇𝑓(�̂�), �̂�⟩ −
∑︁

𝑗∈ℛ
(−∆̂𝑗)+ +

∑︁

𝑗∈ℱ1

∆̂𝑗. (5.26)

Then, we have 𝐹 *
𝑣 ≥ 𝐹 𝑣. Furthermore, when (�̂�, �̂�) is an optimal solution to (𝑃𝑣),

then 𝐹 *
𝑣 = 𝐹 𝑣.

The proof of strong duality, KKT conditions and dual bounds for node relaxation

is similar to that for root relaxation, and a proof sketch is provided in Section 5.A.1.

5.4 Screening framework for the BnB solver

The screening procedure is based on the key idea presented in the following lemma:

Lemma 5.1. For any convex set 𝒵 ⊆ [0, 1]𝑝, let 𝐹 (𝒵) be a lower bound on 𝐹 *(𝒵),
and �̄� 𝐼 an upper bound on 𝐹 †

𝐼 . Then, 𝐹 (𝒵) > �̄� 𝐼 implies 𝑧† /∈ 𝒵 for any optimal

solution (𝛽†, 𝑧†) to (𝑃𝐼).

Proof. By deőnitions of 𝐹 (𝒵) and �̄� 𝐼 , we have 𝐹 *(𝒵) ≥ 𝐹 (𝒵) > �̄� 𝐼 ≥ 𝐹 †
𝐼 . By

deőnition of (𝛽†, 𝑧†), we know that 𝐹 †
𝐼 = 𝐹 (𝛽†, 𝑧†). If 𝑧† ∈ 𝒵, since 𝐹 *(𝒵) is the

optimal value of 𝐹 over 𝑧 ∈ 𝒵, then we would have 𝐹 †
𝐼 = 𝐹 (𝛽†, 𝑧†) ≥ 𝐹 *(𝒵), which

yield contradiction. Therefore, we must have 𝑧† /∈ 𝒵.

5.4.1 Screening at the root

We discuss how to perform safe screening rule at the root node, i.e. identifying the

indices 𝑗’s of which 𝑧†𝑗 = 0 or 𝑧†𝑗 = 1 for sure.

To this end, we őrst introduce some notations for this section. Recall that 𝒵𝑟 =
[0, 1]𝑝 is the domain of 𝑧 at the root relaxation, and 𝐹 *

𝑟 = 𝐹 (𝒵) is the optimal value
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of the root relaxation. For any 𝑗 ∈ [𝑝] and 𝑏 ∈ {0, 1}, we denote by 𝐹 *
𝑟 (𝑧𝑗 = 𝑏) =

𝐹 *(𝒵𝑟 ∩ {𝑧𝑗 = 𝑏}), and we use 𝐹 𝑟(𝑧𝑗 = 𝑏) to denote a lower bound on 𝐹 *
𝑟 (𝑧𝑗 = 𝑏).

Corollary 5.1. For any 𝑗 ∈ [𝑝] and any 𝑏 ∈ {0, 1}, let 𝐹 𝑟(𝑧𝑗 = 1 − 𝑏) be a lower

bound on 𝐹 *
𝑟 (𝑧𝑗 = 1− 𝑏). If 𝐹 𝑟(𝑧𝑗 = 1− 𝑏) > �̄� 𝐼 , then we have 𝑧†𝑗 = 𝑏 for any optimal

solution (𝛽†, 𝑧†) to (𝑃𝐼).

Proof. This follows directly from Lemma 5.1 by invoking 𝒵 = 𝒵𝑟 ∩{𝑧𝑗 = 1− 𝑏}.

Proposition 5.5. Given any (�̂�, �̂�) ∈ R
𝑝× [0, 1]𝑝, deőne ∆̂𝑖 and 𝐹 𝑟 as in (5.12) and

(5.13). For any 𝑗 ∈ [𝑝] and 𝑏 ∈ {0, 1}, we have

𝐹 *
𝑟 (𝑧𝑗 = 1− 𝑏) ≥ 𝐹 𝑟 +max{(1− 2𝑏)∆̂𝑗, 0} > �̄� 𝐼 =⇒ 𝑧†𝑗 = 𝑏. (5.27)

Proof. It follows from Proposition 5.3 that

𝐹 𝑟 = 𝑓(𝛽)− ⟨∇𝑓(𝛽),𝛽⟩ −
𝑝

∑︁

𝑖=1

(−∆̂𝑖)+. (5.28)

Now consider the problem (𝑃𝒵) with 𝒵 = 𝒵𝑟 ∩{𝑧𝑗 = 1− 𝑏} and it corresponds to

ℱ1−𝑏 = {𝑗}, ℱ𝑏 = ∅ and ℛ = [𝑝]− {𝑗}. According to Proposition 5.4, we have

𝐹 *
𝑟 (𝑧𝑗 = 1) ≥ 𝑓(𝛽)− ⟨∇𝑓(𝛽),𝛽⟩ −

∑︁

𝑖 ̸=𝑗
(−∆̂𝑖)+ +∆𝑗 = 𝐹 𝑟 + (∆̂𝑗)+ (5.29a)

𝐹 *
𝑟 (𝑧𝑗 = 0) ≥ 𝑓(𝛽)− ⟨∇𝑓(𝛽),𝛽⟩ −

∑︁

𝑖 ̸=𝑗
(−∆̂𝑖)+ = 𝐹 𝑟 + (−∆̂𝑗)+, (5.29b)

i.e. for any 𝑗 ∈ [𝑝] and 𝑏 ∈ {0, 1},

𝐹 *
𝑟 (𝑧𝑗 = 1− 𝑏) ≥ 𝐹 𝑟 +max{(1− 2𝑏)∆̂𝑗, 0}. (5.30)

Combining this with Corollary 5.1, we complete the proof.

The following proposition shows that the screening rules presented in [9, 70] are

special cases of our rule presented in Proposition 5.5. Its proof can be found in

Section 5.B.1.1.
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Proposition 5.6. Proposition 5.5 recovers the screening rule given in [9, 70], when

we take 𝑀 =∞ and (�̂�, �̂�) = (𝛽*, 𝑧*) as an optimal solution to (𝑃𝑟), in the cases of

linear regression and logistic regression, respectively.

Our screening rule extends [9, 70] in several aspects: (a) apart from squared-

error loss and logistic loss, our screening rule works for a general differentiable loss

function; (b) as for the MIP reformulation, we consider a hybrid version of big-

𝑀 and perspective reformulations [120] that encompasses both reformulations as

special cases; (c) our screening rule works with an approximate solution to the root

relaxation problem as opposed to an optimal solution. This allows us to speed up the

BnB algorithm by solving the relaxation problem inexactly while still being able to

perform the screening tests. In addition, with approximate solutions (�̂�, �̂�) satisfying

the relationship (5.21), the screening may also happen when 𝑧𝑗 ∈ (0, 1), while the

screening never happens when 𝑧*𝑗 ∈ (0, 1) if we take the optimal solution (𝛽*, 𝑧*).

To illustrate this, let’s take a closer look into the case where we take (�̂�, �̂�) =

(𝛽*, 𝑧*) as an optimal solution to (𝑃𝑟). Let ∆*
𝑗 be deőned as in (5.7), and 𝐹 *

𝑟 be the

optimal value to (𝑃𝑟). Since any feasible solution to (𝑃𝐼) is also feasible to (𝑃𝑟), we

have 𝐹 *
𝑟 ≤ �̄� 𝐼 . Then, for any 𝑗 ∈ [𝑝] and 𝑏 ∈ {0, 1} we have

𝐹 *
𝑟 +max{(1− 2𝑏)∆*

𝑗 , 0} > �̄� 𝐼
(i)⇐⇒ 𝐹 *

𝑟 + (1− 2𝑏)∆*
𝑗 > �̄� 𝐼 (5.31a)

⎧

⎨

⎩

(ii)
=⇒ (1− 2𝑏)∆*

𝑗 > 0
(iii)
=⇒ 𝑧*𝑗 = 𝑏

(iv)
=⇒ 𝑧†𝑗 = 𝑏

(5.31b)

where (i) and (ii) is due to the fact that 𝐹 *
𝑟 ≤ �̄� 𝐼 ; (iii) is by the complementary

slackness condition (5.5b) in Proposition 5.1; (iv) is by the screening rule in Propo-

sition 5.5.

On the other hand, if 𝑧*𝑗 ∈ (0, 1), then we know ∆*
𝑗 = 0 by (5.5b), and since

𝐹 *
𝑟 ≤ �̄� 𝐼 , no screening happens in this case.

Hence, combining above arguments, we know that when given an optimal solution

to the root relaxation, the screening happens only when 𝑧*𝑗 is binary, and when it

happens, we must have 𝑧†𝑗 = 𝑧*𝑗 .
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On the other hand, given an approximate solution (�̂�, �̂�) satisfying (5.21), screen-

ing might happen when 𝑧𝑗 ∈ (0, 1), because ∆̂𝑗 may not necessarily be 0 in this case.

In Section 5.B.1.2, we provide examples of screening when 𝑧𝑗 is non-binary.

5.4.2 Screening at a general node

In this section, we discuss how to perform screening rule at each node in the BnB

tree. We őrst introduce some notations in this section.

Recall that for each node 𝑣 in the tree, 𝒵𝑣 denotes the domain of 𝑧 at this node,

and 𝐹 *
𝑣 = 𝐹 (𝒵𝑣) is the optimal value of the node relaxation problem. Recall that the

domain 𝒵𝑣 can be also represented by the index set triple (ℱ0,ℱ1,ℛ). Now for any

𝑗 ∈ [𝑝] and 𝑏 ∈ {0, 1}, we denote by 𝐹 *
𝑣 (𝑧𝑗 = 𝑏) = 𝐹 *(𝒵𝑣 ∩ {𝑧𝑗 = 𝑏}), and we use

𝐹 𝑣(𝑧𝑗 = 𝑏) to denote a lower bound on 𝐹 *
𝑣 (𝑧𝑗 = 𝑏).

The following corollary, which is a corollary of Lemma 5.1, presents the key idea

of screening at node in a BnB tree.

Corollary 5.2. For any 𝑗 ∈ [𝑝] and 𝑏 ∈ {0, 1}, let 𝐹 𝑣(𝑧𝑗 = 𝑏) be a lower bound on

𝐹 *
𝑣 (𝑧𝑗 = 𝑏). If 𝐹 𝑣(𝑧𝑗 = 𝑏) > �̄� 𝐼 , then we can safely őx 𝑧𝑗 = 1 − 𝑏 under the node 𝑣

in the BnB tree. If min{𝐹 𝑣(𝑧𝑗 = 0), 𝐹 𝑣(𝑧𝑗 = 1)} > �̄� 𝐼 , then we can prune the node

𝑣 in the BnB tree.

Proof. When 𝐹 𝑣(𝑧𝑗 = 𝑏) > �̄� 𝐼 , by Lemma 5.1, we know that 𝑧† ̸∈ 𝒵𝑣 ∩ {𝑧𝑗 = 𝑏}.
Therefore, under the node 𝑣, we need only consider 𝒵𝑣 ∩ {𝑧𝑗 = 1− 𝑏} for the search

space, i.e. we can safely őx 𝑧𝑗 = 1− 𝑏 under the node in the BnB tree.

When min{𝐹 𝑣(𝑧𝑗 = 0), 𝐹 𝑣(𝑧𝑗 = 1)} > �̄� 𝐼 , then it follows from Lemma 5.1 that

𝑧† /∈ 𝒵𝑣 ∩ {𝑧𝑗 = 0} and 𝑧† /∈ 𝒵𝑣 ∩ {𝑧𝑗 = 1}, i.e. 𝑧† /∈ 𝒵𝑣. Hence, we can prune the

node 𝑣 in the BnB tree.

Proposition 5.7. Given any (�̂�, �̂�) ∈ R
𝑝× [0, 1]𝑝, deőne 𝐹 𝑣 and ∆̂𝑖 as in (5.25) and

(5.26). For any 𝑗 ∈ ℛ and 𝑏 ∈ {0, 1}, we have

𝐹 *
𝑣 (𝑧𝑗 = 1−𝑏) ≥ 𝐹 𝑣+max{(1−2𝑏)∆̂𝑗, 0} > �̄� 𝐼 =⇒ őx 𝑧𝑗 = 𝑏 under node 𝑣. (5.32)
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Proof. Using similar arguments in the proof for Proposition 5.5, we have for any

𝑗 ∈ ℛ and 𝑏 ∈ {0, 1}

𝐹 *
𝑣 (𝑧𝑗 = 1− 𝑏) ≥ 𝐹 𝑣 +max{(1− 2𝑏)∆̂𝑗, 0}. (5.33)

Combining this with Corollary 5.2, we complete the proof.

Remark 5.3 (A note on pruning). Compared to Corollary 5.2, Corollary 5.1 does

not have the statement on the pruning, because min{𝐹 𝑟(𝑧𝑗 = 0), 𝐹 𝑟(𝑧𝑗 = 1)} > �̄� 𝐼

never happens. In fact, for the feasible solution (�̄�, �̄�) that achieves the upper bound

�̄� 𝐼 , either �̄� ∈ 𝒵𝑟 ∩ {𝑧𝑗 = 0} or �̄� ∈ 𝒵𝑟 ∩ {𝑧𝑗 = 1} holds; therefore, �̄� 𝐼 = 𝐹 (�̄�, �̄�) ≥
min{𝐹 *

𝑟 (𝑧𝑗 = 0), 𝐹 *
𝑟 (𝑧𝑗 = 1)} ≥ min{𝐹 𝑟(𝑧𝑗 = 0), 𝐹 𝑟(𝑧𝑗 = 1)}.

For a non-root node 𝑣, min{𝐹 𝑣(𝑧𝑗 = 0), 𝐹 𝑣(𝑧𝑗 = 1)} > �̄� 𝐼 can happen because the

incumbent solution �̄� does not necessarily belong to 𝒵𝑣. That being said, if the node 𝑣

is not pruned in Line 8 in Algorithm 5.1 before entering the screening procedure (i.e.

𝐹 𝑣 ≤ �̄� 𝐼), then the screening rules in Proposition 5.7 cannot prune the node either,

because at least one of (∆̂𝑗)+ and (−∆̂𝑗)+ is 0.

5.4.3 Screening and branching procedures

In this section, we describe how the theory presented in Section 5.4.1 and Section 5.4.2

can be applied in the BnB framework in combination with the branching procedures

and the advantages of such screening.
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Algorithm 5.2 Screening and branching procedure

Input: Node 𝑣 with domain 𝒵𝑣, and the index triple {ℱ𝑣0 ,ℱ𝑣1 ,ℛ𝑣}, an approximate

solution (�̂�, �̂�) to the node relaxation (𝑃𝑣)

1: Obtain ∆̂𝑖 based on (5.17) for any 𝑖 ∈ ℛ𝑣

2: For 𝑏 ∈ {0, 1}, set ℱ̂𝑣𝑏 = ℱ𝑣𝑏 ∪ {𝑗 ∈ ℛ : (5.32) holds}, ℛ̂𝑣
= [𝑝]− ℱ̂𝑣0 − ℱ̂

𝑣

1

3: Set 𝒥 = {𝑗 ∈ ℛ̂ : 𝑧𝑗 ̸∈ {0, 1}} as branching candidates

4: Select 𝑗 ∈ 𝒥 as the branching variable based on the branching rule; (for certain

rules) perform enhanced screening and update (ℱ̂𝑣0, ℱ̂
𝑣

1, ℛ̂
𝑣
) during branching

5: Branch the node 𝑣 into left(𝑣) and right(𝑣) with ℱ left(𝑣)
0 = ℱ̂𝑣0 ∪ {𝑗},ℱ right(𝑣)

0 =

ℱ̂𝑣0,ℱ left(𝑣)
1 = ℱ̂𝑣1,ℱ right(𝑣)

1 = ℱ̂𝑣1 ∪ {𝑗},ℛleft(𝑣) = ℛright(𝑣) = ℛ̂𝑣 − {𝑗}.

To this end, we outline the screening and branching procedure in Algorithm 5.2.

The procedure is as follows: at each node 𝑣, we őrst compute an approximate solution

(�̂�, �̂�) to the node relaxation (𝑃𝑣) using the őrst-order methods (similar to [120]).

We then compute ∆̂𝑗 using (5.17) (Line 1) and based on these, we can safely őx

some variables under the current node (Line 2), according to Corollary 5.2. Here,

(ℱ̂𝑣0, ℱ̂
𝑣

1, ℛ̂
𝑣
) refers to the updated index triple after screening, which will be inherited

by the children of the current node. After screening, we perform the branching

procedure (Lines 3-5). Following the usual branching procedure in BnB (see, e.g. [22]),

we őrst consider all fractional 𝑧𝑗 from the remaining relaxed variables ℛ̂𝑣
(instead

of ℛ𝑣) as branching candidates, and then select the branching variable based on a

certain branching rule.

5.4.3.1 Branching strategies

Many branching strategies for BnB have been studied in literature, e.g. maxi-

mum fractional branching, random branching, pseudo-cost branching and strong

branching [24, 5, 151, 177, 1]. More details on branching for BnB can be found

in [2, 38, 22, 168, 120]. In this chapter, we consider and study 4 different branching

rules in combination with our screening procedure:

1. Maximum fractional branching. Maximum fraction rule selects the branching
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variable as 𝑗 = argmax𝑖∈𝒥 min{𝑧𝑖 − ⌊𝑧𝑖⌋, ⌈𝑧𝑖⌉ − 𝑧𝑖}. This is also called most

infeasible or most fractional rule [22, 168]. It is one of the most commonly-

used and simplest rules. In practice, however, this might not be as effective as

random branching [2].

2. Maximum 𝑧 branching. Maximum 𝑧 rule determines the branching variable with

the largest 𝑧𝑗: 𝑗 = argmax𝑖∈𝒥 𝑧𝑖. This is the branching rule used by [165, 105],

which may work well when the solution is sparse. This is also similar to the

least fractional rule, which is often outperformed by other methods [177].

3. Strong branching (linear score). Strong branching rule branches on the variable

that leads to most impact on the objective function. Speciőcally, let 𝛿𝐹 1
𝑖 and

𝛿𝐹 0
𝑖 be estimates for the increase in the optimal values 𝐹 *

𝑣 (𝑧𝑖 = 1) − 𝐹 *
𝑣 and

𝐹 *
𝑣 (𝑧𝑖 = 0)− 𝐹 *

𝑣 after branching 𝑧𝑖 to 1 and 0, respectively. For each candidate

variable, a score 𝑠𝑖 is computed based on 𝛿𝐹 𝑏
𝑖 ’s, and the branching variable is

selected as 𝑗 = argmax𝑖∈𝒥 𝑠𝑖. A common formula to compute 𝑠𝑖 is

𝑠𝑖 = 𝜇min(𝛿𝐹 0
𝑖 , 𝛿𝐹

1
𝑖 ) + (1− 𝜇)max(𝛿𝐹 0

𝑖 , 𝛿𝐹
1
𝑖 ) (5.34)

for some constant 𝜇 ∈ [0, 1] typically taken close to 1. This strategy was őrst

proposed by [5], and it is one of the most successful branching methods. It often

leads to a small search tree, However, such strategy usually requires solving

2|𝒥 | that many subproblems at each node to provide good estimates 𝛿𝐹 𝑏
𝑖 , so

it induces a lot more computation costs compared to other approaches [2]. To

address high computational cost, we use a fast approximate version of strong

branching, in which we take a full pass of coordinate descent from (�̂�, �̂�) to

obtain (�̂�
𝑖,𝑏
, �̂�𝑖,𝑏), and take 𝛿𝐹 𝑏

𝑖 = 𝐹 (�̂�
𝑖,𝑏
, �̂�𝑖,𝑏)− 𝐹 (�̂�, �̂�) as the estimates. Due

to the warm start, in practice, this approximation often leads to similar BnB

trees compared to exact strong branching [120].

4. Strong branching (product score). Instead of using a linear score function (5.34),
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[1] recommend using the following product score function for strong branching:

𝑠𝑖 = max(𝛿𝐹 0
𝑖 , 𝜖) ·max(𝛿𝐹 1

𝑖 , 𝜖), (5.35)

for a small positive value 𝜖. In a recent work, [69] has shown empirically strong

branching with such product score dominates the one with linear score by a

small margin for certain problems.

5.4.3.2 Enhanced screening for strong branching

For strong branching strategies, during the course of branching, we perform another

round of screening which we call enhanced screening, update the index triple again

and possibly pruning the node. Such extra round of screening is possible mainly

due to the updated dual information provided by the subproblem solving during

the strong branching process. Recall that to provide estimates for 𝛿𝐹 𝑏
𝑖 in strong

branching, we need to (approximately) solve the convex relaxation problem (𝑃𝒵) with

𝒵 = 𝒵∩{𝑧𝑖 = 𝑏} for any 𝑖 ∈ 𝒥 and 𝑏 ∈ {0, 1}. We can then utilize the tailored primal

solution (�̂�
𝑖,𝑏
, �̂�𝑖,𝑏) to compute an updated (and highly likely improved) dual bound

𝐹 𝑣(𝑧𝑖 = 𝑏) according to Proposition 5.4. Thus, by Corollary 5.2, we can perform

another round of screening and possibly pruning based on the new lower bounds.

Note that different from the circumstance described in Remark 5.3, the pruning is

possible at the enhanced screening time because the dual bounds are computed based

on different solutions instead of the same solution (�̂�, �̂�).

5.4.3.3 Effects of screening

As we conclude this section, we summarize the advantages of using screening as a

procedure within BnB framework. As we can see in Algorithm 5.2, without screening

procedure in Line 2, only one variable is removed from ℛ to either ℱ0 or ℱ1 at each

time of branching; while on the contrary, there can be a bunch of variables being

őxed to 0 or 1 at each node. As a result, it will reduce effective dimensions of convex

subproblems to be solved, and thus subproblem solving will be more efficient. It
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might also reduce sizes of search trees, because ℛ may converge faster to empty set

and a smaller ℛ may lead to improved lower bounds and thus earlier termination.

Furthermore, the screening procedure can reduce the size of branching candidates

(in Line 3) and improve the efficiency of branching, especially for strong branching

rules, which requires solving as many subproblems as twice the number of candidates.

Finally, enhanced screening can make use of the updated information given by strong

branching rules, which can further improve the efficiency of BnB framework.

5.5 Applications

In this section, we provide some examples of potential applications of our branch-and-

bound framework for the sparse learning problem. In what follows, we will introduce

various applications in different statistical learning settings.

5.5.1 Regression

In this section, we introduce different objective functions for sparse regression prob-

lems. Let 𝑋 ∈ R
𝑛×𝑝 and 𝑦 ∈ R

𝑝 denote the data matrix of independent variables

and the observations of dependent variables, respectively. We consider the following

three objectives with different losses:

• Squared error loss: The squared error loss is most commonly used in the

statistical learning; it leads to the least squares problem. The squared error

objective can be written as

𝑓(𝛽) =
1

2
‖𝑦 −𝑋𝛽‖2. (5.36)

• Huber loss: The Huber loss is an important and useful loss function in robust

statistics literature [124]. It is deőned as

ℎ𝛿(𝑡) =
𝑡2

2𝛿
1{|𝑡| < 𝛿}+ (|𝑡| − 𝛿

2
)1{|𝑡| ≥ 𝛿} (5.37)
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for some positive 𝛿. The corresponding optimization objective given data 𝑋

and 𝑦 is

𝑓(𝛽) =
𝑛∑︁

𝑗=1

ℎ𝛿(𝑦𝑗 − 𝑥⊤
𝑗 𝛽). (5.38)

We note that when 𝛿 ↓ 0, the optimization objective is equivalent to the mean

absolution error loss. Therefore, it can be seen as a smooth version of median

regression.

• Smooth quantile loss: Smooth quantile loss is a smooth version of quantile

regression [7]. Given 𝛿 > 0 and 𝑞 ∈ (0, 1), we deőne

ℎ𝛿,𝑞(𝑡) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

𝑞|𝑡| − 𝛿𝑞2

2
if 𝑡 ≤ −𝑞𝛿

𝑡2

2𝛿
if − 𝑞𝛿 < 𝑡 < (1− 𝑞)𝛿

(1− 𝑞)|𝑡| − 𝛿(1−𝑞)2
2

if 𝑡 ≥ (1− 𝑞)𝛿
. (5.39)

The corresponding smooth quantile regression is given by

𝑓(𝛽) =
𝑛∑︁

𝑗=1

ℎ𝛿,𝑞(𝑦𝑗 − 𝑥⊤
𝑗 𝛽). (5.40)

When 𝛿 ↓ 0, this converges to the quantile regression problem.

5.5.2 Binary classiőcation

In this section, we consider different objective functions for sparse binary classiőcation

problems. Let 𝑋 ∈ R
𝑛×𝑝 and 𝑦 ∈ {−1, 1}𝑝 denote the data matrix of independent

variables and the observations of dependent variables, respectively. We consider the

following three objective with different losses:

• Logistic loss: The logistic regression [113] is one of the most commonly used

classiőers in machine learning. The objective is given by

𝑓(𝛽) =
𝑛∑︁

𝑗=1

log(1 + exp(−𝑦𝑗𝑥⊤
𝑗 𝛽)). (5.41)
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• Squared hinge loss: Support Vector Machien (SVM [209]) is another impor-

tant methodology for classiőcation. The objective is based on hinge loss, which

can be written as
∑︀𝑛

𝑗=1(1− 𝑦𝑗𝑥⊤
𝑗 𝛽)+. However, the hinge loss is not a contin-

uously differentiable function. We consider a smooth alternative with squared

hinge loss [226]:

𝑓(𝛽) =
𝑛∑︁

𝑗=1

(1− 𝑦𝑗𝑥⊤
𝑗 𝛽)

2
+. (5.42)

• Huberized hinge loss: We could also consider another smooth sibling for

SVM with Huberized hinge loss [217]:

𝑓(𝛽) =
𝑛∑︁

𝑗=1

ℎ𝛿((1− 𝑦𝑗𝑥⊤
𝑗 𝛽)+). (5.43)

5.5.3 Multi-class logistic model

For the multi-class classiőcation problem, we assume there is 𝑚 categories and thus

the target variable Y ∈ 𝒴 = [𝑚]. The logistic model assumes that given features

X ∈ R
𝑝, the probability of falling into category 𝑙 is

P(Y = 𝑙|X) =
exp(𝛽⊤

𝑙 X)
∑︀𝑚

𝑙′=1 exp(𝛽
⊤
𝑙′ X)

, ∀𝑙 ∈ [𝑚], (5.44)

where 𝛽 = [𝛽1, . . . ,𝛽𝑚] ∈ R
𝑝×𝑚 is the coefficient matrix to be learned. Given the

data (𝑋,𝑦), the logistic loss is given by

𝑓(𝛽) =
𝑚∑︁

𝑙=1

∑︁

𝑗:𝑦𝑗=𝑙

−𝛽⊤
𝑘 𝑥𝑗 +

𝑛∑︁

𝑗=1

log

(︃
𝑚∑︁

𝑙=1

exp(𝛽⊤
𝑙 𝑥𝑗)

)︃

(5.45)

5.5.4 Cox’s proportional hazards

The Cox proportional hazards model [57] is a survival model in statistics; see [204] for

more details. Given observations {(𝑥𝑗, 𝑂𝑗, 𝑇𝑗)}𝑗∈[𝑛] ⊆ R
𝑝×{0, 1}×R+, the log-partial

219



likelihood of the model can be written as

𝑓(𝛽) =
∑︁

𝑗:𝑂𝑗=1

⎡

⎣−𝛽⊤𝑥𝑗 + log

⎛

⎝
∑︁

𝑙:𝑇𝑙≥𝑇𝑗

exp(𝛽⊤𝑥𝑙

⎞

⎠

⎤

⎦ . (5.46)

This is a smooth objective, which can be handled in our framework.

5.6 Numerical Experiments

We present numerical experiments to investigate the impact of different levels of de-

ployment of our proposed screening rules on the efficiency of the BnB solver. We

conduct experiments on synthetic and real-world datasets for both least square re-

gression problems and logistic regression problems, whose formulations are presented

in (5.36) and (5.41), respectively.

5.6.1 Experimental setup

All computations were carried out on the MIT Supercloud Cluster [190] on an Intel

Xeon Platinum 8260 machine, with 2 CPUs and 8GB of RAM. Our algorithms were

written in Python with critical code sections optimized using Numba [144]. Code for

our experiments is available from the github repository l0bnb-screen available at:

https://github.com/wenyuC94/l0bnb-screen.

Algorithms We conduct all experiments using the Branch-and-Bound solver de-

signed in Algorithm 5.1, but with various branching strategies and different levels

of screening. Speciőcally, as mentioned in Section 5.4.3, we consider four branching

strategies: maximum fractional branching (MaxFrac), maximum 𝑧 branching (MaxZ),

and strong branching rules with linear score (Strong-L) and product score (Strong-P).

Different levels of screening include (i) plain BnB solver with no screening (Plain);

(ii) BnB solver with screening at root only (Root); (iii) BnB solver with screening

at each node (Node); (iv) BnB solver with enhanced screening at each node (Node-
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E). Here, “Plainž can be seen as a counterpart of L0BnB framework [120]1, where

őrst-order methods and warm starts are tailored to the nonlinear BnB for sparse

learning; “Rootž is a counterpart of [9, 70]; “Nodež and “Node-Ež are our proposals,

and “Node-Ež only applies to strong branching rules (Strong-L and Strong-P).

All algorithms are run with time limit of 4 hours for synthetic datasets and 8

hours for real datasets. Following [120], we terminate algorithms once the optimality

gap for MIO (deőned as (�̄� 𝐼 − 𝐹 𝐼)/𝐹 𝐼) is smaller than 1%, where 𝐹 𝐼 is the lower

bound on the MIP. Additional BnB solver settings can be found in Appendix 5.C.1.

Datasets For synthetic datasets, we generate datasets with 𝑛 = 1000 samples and

𝑝 = 1000 features. Following prior works [116, 120], we draw the data matrix 𝑋 ∈
R
𝑛×𝑝 from a multivariate Gaussian distribution with zero mean and a covariance

matrix Σ with unit diagonal and constant correlation Σ𝑖𝑗 = 𝜌 > 0. The underlying

truth 𝛽𝑐 ∈ R
𝑝 is a sparse vector with 𝑘 = 10 equispaced nonzero entries all set to 1.

For classiőcation model, following [67, 70], we generate each coordinate 𝑦𝑗 ∈ {−1, 1}
independently by sampling from a Bernoulli distribution with success probability

P(𝑦𝑗 = 1|𝑥𝑗) = (1 + exp (−𝑠𝑥⊤
𝑗 𝛽

𝑐))−1, where 𝑠 is a scale parameter. Speciőcally,

smaller values of 𝑠 increase the variance in the response, while 𝑠 → ∞ generates

linearly separable data. In our experiments, we consider Scale 𝑠 ∈ {1, 3, 5}, and for

each 𝑠, we simulate 10 synthetic datasets. Additional details along with the details

on the regression dataset generation can be found in Appendix 5.C.1.1.

Beyond synthetic datasets, we also consider four real-world datasets from the UCI

Machine Learning Repository [74]. We preprocess the data by mean-centering and

normalizing the response and columns of the data matrix. To facilitate exploration

of a wider range of regularization parameters (𝜆0, 𝜆2), we apply our implementation

of L0Learn [116] with suitable regularization parameters and exclude all features not

in the support of the obtained solution. The reduced datasets are summarized below

• Dexter: classiőcation problem with 𝑛 = 300 and 𝑝 = 457

• Arcene: classiőcation problem with 𝑛 = 100 and 𝑝 = 482

1Here, we have switched off the active set heuristics.
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• REJA: classiőcation problem with 𝑛 = 1996 and 𝑝 = 477

• Crime: regression problem with 𝑛 = 1999 and 𝑝 = 94

Additional details on real datasets can be found in Appendix 5.C.1.2.

Choices of 𝜆0, 𝜆2 and 𝑀 To examine the effects of our proposed screening rules,

we run experiments for a wide range of (𝜆0, 𝜆2), with a őxed 𝑀 = 1 throughout.

The way to select the grid is similar to the methodologies adopted by the earlier

works [116, 120]. In brief, we apply fast approximate solvers to solve the problems

with a wide range of grid points, őnd the statistically “optimalž grid point(s), and

then take 100 grid points around the optimal one(s). The details can be found in

Appendix 5.C.1.3.

5.6.2 Numerical results

For each case with a certain choice of (𝜆0, 𝜆2) and the dataset, we őrst categorize it

as “easyž or “hardž, based on whether the plain BnB can achieve 1% optimality gap

within the time limit using any of four branching rules. We report the performance of

different levels of screening and branching strategies for easy and hard cases separately

due to different patterns presented in the results.

Easy cases Table 5.1 reports the average runtimes and the average size of the

BnB search trees over all easy cases for synthetic classiőcation datasets. Figure 5-

1 provides a straightforward comparison on the distributions of different screening

levels. We can see that on easy problems, Root provides negligible improvement in

efficiency when compared to Plain, while on average Node can be up to 3 times faster

than Plain, indicating its capacity to improve the overall efficiency of the solver. We

attribute this to the fact that node screening greatly reduces the number of relaxed

indices at each node, thereby decreasing the time required to solve the lower bound

at each node.

Furthermore, we őnd that Node-E is even more effective than Node, as it is able to

őx even more variables, leading to a reduction in the size of the BnB tree and further
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reducing the overall running time. In terms of the size of the BnB tree, neither Root

nor Node is effective in reducing the number of nodes explored. In contrast, enhanced

node screening (Node-E) can reduce the size of the tree by up to 50%.

We note that the box plots show some outliers, which indicates that the per-

formance of BnB solver can vary signiőcantly depending on the dataset and the

regularization parameters.

Results for real datasets presented in Table 5.2 are consistent with the observa-

tions above. Our further experiments on synthetic regression datasets reported in

Appendix 5.C.2 provide qualitatively similar conclusions.

Table 5.1: Average runtime and tree sizes for easy case of logistic regression problems.
Results are averaged over different choices of 𝜆0, 𝜆2, and random seeds of synthetic
datasets. The numbers in the bracket below “scale" indicate the number of easy cases
and total cases, respectively. Here, Time refers to runtime in seconds; Size refers to
the number of nodes in the BnB tree.

Rules
MaxFrac MaxZ Strong-L Strong-P

Plain Root Node Plain Root Node Plain Root Node Node-E Plain Root Node Node-E

scale=1
(742/1000)

Time 2021 2024 718 1982 1979 728 2408 2393 1181 864 2400 2386 1144 862

Size 2968 2972 2976 2940 2941 2950 2950 2964 2991 1668 2889 2893 2942 1627

scale=3
(883/1000)

Time 386 390 131 371 375 124 410 414 170 146 413 399 166 142

Size 424 423 428 416 415 417 413 418 426 280 414 412 417 271

scale=5
(908/1000)

Time 336 348 112 319 314 104 351 348 137 133 340 339 138 129

Size 344 347 348 340 340 340 346 348 349 253 339 337 339 245

Table 5.2: Average runtime and tree sizes for easy case of real-world problems.
Results are averaged over different choices of 𝜆0, 𝜆2. Details are given in the caption
of Table 5.1.

Rules
MaxFrac MaxZ Strong-L Strong-P

Plain Root Node Plain Root Node Plain Root Node Node-E Plain Root Node Node-E

REJA
(51/100)

Time 2925 2709 1021 3312 2936 1262 2502 2602 1096 344 2781 2551 1031 364

Size 1225 1225 1127 1270 1273 1176 1052 1050 973 421 1040 1048 969 413

Dexter
(55/100)

Time 4313 4333 1395 5055 4974 1846 4137 4267 1671 662 4123 4251 1506 624

Size 3728 3782 3358 3811 3313 3467 2786 3022 2635 1034 2961 2961 2562 976

Arcene
(54/100)

Time 3139 3216 1021 3686 3914 1368 3085 3043 1088 467 3101 3220 1274 433

Size 2060 2066 1857 2119 2132 1931 1673 1674 1509 620 1675 1676 1497 614

Crime
(97/100)

Time 3252 3137 2469 3195 3149 2582 2201 2209 1711 1574 2238 2211 1700 1656

Size 12396 12236 11356 12568 12455 11360 8085 8149 6802 6628 8226 8223 6883 6667

Hard cases Table 5.3 and Table 5.4 are counterparts of Table 5.1 and Table 5.2,

with additional information on the failure ratio and average optimality gaps achieved
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are similar, and Node and Node-E have slightly larger sizes. This explains why on

average Node-E has a smaller tree size.

Table 5.3: Average runtime and tree sizes for hard case of logistic regression prob-
lems. Results are averaged over different choices of 𝜆0, 𝜆2, and random seeds of
synthetic datasets. The numbers in the bracket below “scale" indicate the number of
hard cases and total cases, respectively. Succ refers to the proportion of successfully
solved problems; Gap refers to the relative optimality gap. Time and Size deőnitions
are given in the caption of Table 5.1. The time limit here is 4 hours.

Rules
MaxFrac MaxZ Strong-L Strong-P

Plain Root Node Plain Root Node Plain Root Node Node-E Plain Root Node Node-E

scale=1
(258/1000)

Time 14400 14383 13694 14400 14387 13666 14400 14400 14096 13972 14400 14400 14102 13937

Size 8560 8590 13214 8598 8492 13460 6024 6194 8909 7860 6214 6059 9065 7561

Succ 0.0 0.008 0.124 0.0 0.012 0.124 0.0 0.0 0.088 0.084 0.0 0.0 0.084 0.08

Gap 0.118 0.118 0.112 0.125 0.125 0.119 0.129 0.129 0.123 0.123 0.128 0.129 0.123 0.124

scale=3
(117/1000)

Time 14400 14400 13790 14400 14374 13728 14400 14400 14041 14107 14400 14398 13992 14074

Size 5627 5618 9608 5385 5439 9789 4525 4592 7315 7080 4597 4609 7380 6914

Succ 0.0 0.0 0.11 0.0 0.017 0.102 0.0 0.0 0.076 0.076 0.0 0.017 0.076 0.067

Gap 0.108 0.108 0.103 0.119 0.119 0.114 0.113 0.113 0.108 0.108 0.113 0.112 0.108 0.108

scale=5
(92/1000)

Time 14400 14400 13886 14400 14396 13830 14400 14400 14159 14089 14400 14400 14123 14060

Size 4638 4836 7650 4575 4601 8314 3865 3962 6791 6320 4124 3924 6471 6198

Succ 0.0 0.0 0.097 0.0 0.011 0.097 0.0 0.0 0.064 0.075 0.0 0.0 0.054 0.064

Gap 0.119 0.119 0.114 0.134 0.134 0.129 0.124 0.124 0.12 0.12 0.124 0.124 0.12 0.12

In summary, our numerical results for both easy and hard cases demonstrate that

node and enhanced node screening strategies can effectively improve the efficiency

of the BnB solver for sparse learning problems, while screening at root level (Root)

only provides limited improvement. Enhanced node screening (Node-E) is the most

efficient screening rule, as it can őx more variables, leading to a reduction in the size

of the BnB tree and further reducing the overall running time. Our őndings suggest

that our proposed screening rules can be used to solve large-scale sparse learning

problems in practice effectively.

5.7 Conclusion

We have proposed a novel screening procedure to safely őx relaxed variables to 0 or

1 at each node within a specialized Branch-and-Bound (BnB) solver for sparse learn-

ing problems with a generic continuously differentiable convex function and ℓ0 − ℓ2
regularization. By establishing optimality conditions and dual bounds for the node

relaxation subproblems, we have developed an effective screening procedure at each
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node within the BnB tree to reduce the optimization cost of subproblems signiőcantly,

thus reducing the overall runtime of the solver. Our numerical results demonstrate the

effectiveness of our proposed screening rules on both synthetic and real-world datasets.

Furthermore, we have introduced an enhanced screening procedure for strong branch-

ing rules, which can substantially reduce the size of search trees and further improve

the efficiency of the solver. Overall, our proposed screening procedure provides a

powerful tool for solving sparse learning problems with ℓ0 − ℓ2 regularization.

5.A Additional proofs and examples

5.A.1 Proof of Strong Duality

In this section, we present the proof of strong duality result in Proposition 5.1, and

provide the proof sketch of results for node relaxations.

5.A.1.1 Notations

we denote by 𝜒{𝑥 ∈ 𝐴} the characteristic function of 𝐴, i.e. if 𝑥 ∈ 𝐴, 𝜒{𝑥 ∈ 𝐴} = 0;

otherwise, 𝜒{𝑥 ∈ 𝐴} =∞. Similarly 𝜒{𝑎(𝑥) ≤ 𝑏} denotes the characteristic function

of the constraint 𝑎(𝑥) ≤ 𝑏. For a function 𝜙, We use dom𝜙 to denote the domain

of 𝜙, i.e. dom𝜙 = {𝑥 : 𝜙(𝑥) < ∞}. For a set 𝐴, we use ri𝐴 to denote the relative

interior of 𝐴.

5.A.1.2 Proof of Proposition 5.1

By Fenchel Duality Theorem, we have the following lemma:

Lemma 5.2. Let 𝜙0, 𝜙1, 𝜙2 be proper lower-semicontinuous convex functions. If

ri(dom𝜙0) ∩ ri(dom𝜙1) ∩ ri(dom𝜙2) ̸= ∅, then

inf
𝑥

𝜙0(𝑥) + 𝜙1(𝑥) + 𝜙2(𝑥) = inf
𝑥

sup
𝑦1,𝑦2

𝜙0(𝑥) + 𝑥⊤𝑦1 − 𝜙*
1(𝑦2) + 𝑥⊤𝑦2 − 𝜙*

2(𝑦2)

= sup
𝑦1,𝑦2

inf
𝑥

𝜙0(𝑥) + 𝑥⊤𝑦1 − 𝜙*
1(𝑦2) + 𝑥⊤𝑦2 − 𝜙*

2(𝑦2),
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where 𝜙*
𝑖 (𝑖 ∈ {1, 2}) is the Fenchel conjugate of 𝜙𝑖. The ri can be omitted for dom𝜙𝑖

if 𝜙𝑖 is a polyhedron (for any 𝑖).

Proof. Since 𝜙1 and 𝜙2 are convex and lower semi-continuous, we have 𝜙𝑖(𝑥) =

𝜙**
𝑖 (𝑥) = sup𝑦𝑖 𝑥

⊤𝑦𝑖 − 𝜙*
𝑖 (𝑦𝑖), and therefore

inf
𝑥

𝜙0(𝑥) + 𝜙1(𝑥) + 𝜙2(𝑥) = inf
𝑥

sup
𝑦1,𝑦2

𝑓(𝑥) + 𝑥⊤𝑦1 − 𝜙*
1(𝑦2) + 𝑥⊤𝑦2 − 𝜙*

2(𝑦2).

Hence,

inf
𝑥

𝜙0(𝑥) + 𝜙1(𝑥) + 𝜙2(𝑥)

(𝑎)
= sup

𝑦2

− (𝜙0 + 𝜙1)
*(−𝑦2)− 𝜙*

2(𝑦2)

(𝑏)
= sup

𝑦2

inf
𝑥
𝜙0(𝑥) + 𝜙1(𝑥) + 𝑥⊤𝑦2 − 𝜙*

2(𝑦2)

(𝑐)
= sup

𝑦2

sup
𝑦1

−(�̄�𝑦2)*(−𝑦1)− 𝜙*
1(𝑦1)− 𝜙*

2(𝑦2)

(𝑑)
= sup

𝑦1,𝑦2

inf
𝑥

𝜙0(𝑥) + 𝑥⊤𝑦1 − 𝜙*
1(𝑦1) + 𝑥⊤𝑦2 − 𝜙*

2(𝑦2),

where (a) follows from Fenchel Duality Theorem applied to 𝜙0 + 𝜙1 and 𝜙2; (b) is

due to the deőnition of Fenchel conjugate; (c) follows from Fenchel Duality Theorem

applied to �̄�𝑦2(·) = 𝜙0(·) + ·⊤𝑦2 and 𝜙1; and (d) is due to the deőnition of Fenchel

conjugate. Here, the regularity conditions for two applications of Fenchel Duality

Theorem are justiőed by ri(dom𝜙0) ∩ ri(dom𝜙1) ∩ ri(dom𝜙2) ̸= ∅.

Based on Lemma 5.2, the road map of the proof of Proposition 5.1 is as follows:

let

𝜌𝑟(𝛽, 𝑧) =
𝛽2

𝑧
+ 𝜒{𝑧 ≥ 0}, and 𝜄𝑟(𝛽, 𝑧) = 𝜒{|𝛽| ≤𝑀𝑧}, (5.47)
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and consider the following 𝜙0, 𝜙1 and 𝜙2:

𝜙0(𝑥) = 𝑓(𝛽) + 𝜆0

𝑝
∑︁

𝑖=1

𝑧𝑖 + 𝜒{𝑧 ∈ 𝒵𝑟} (5.48a)

𝜙1(𝑥) = 𝜆2

𝑝
∑︁

𝑖=1

𝜌𝑟(𝛽𝑖, 𝑧𝑖) (5.48b)

𝜙2(𝑥) =

𝑝
∑︁

𝑖=1

𝜄𝑟(𝛽𝑖, 𝑧𝑖). (5.48c)

Then, we will show that

𝐹 (𝛽, 𝑧) + 𝜒{(𝛽, 𝑧) ∈ 𝒞𝑀} = max
𝑢,𝑣

𝐿(𝛽, 𝑧;𝑢,𝑣) for any 𝑧 ≥ 0 (5.49a)

𝐹 (𝛽, 𝑧) + 𝜒{(𝛽, 𝑧) ∈ 𝒞𝑀 , 𝑧 ∈ 𝒵𝑟} = 𝜙0(𝑥) + 𝜙1(𝑥) + 𝜙2(𝑥) (5.49b)

max
𝑢,𝑣

min
𝑧∈𝒵𝑟,𝛽

𝐿(𝛽, 𝑧;𝑢,𝑣) ≥ sup
𝑦1,𝑦2

inf
𝑥

𝜙0(𝑥) + 𝑥⊤𝑦1 − 𝜙*
1(𝑦1) + 𝑥⊤𝑦2 − 𝜙*

2(𝑦2) (5.49c)

Here, (5.49a) implies the őrst equality in (5.4); (5.49b) and (5.49c), combined with

Lemma 5.2, indicate the second equality in (5.4).

The formal proof is as follows:

Proof of Proposition 5.1. We őrst prove (5.49):

Proof of (5.49a). Recall that for any 𝑧𝑖 ≥ 0, the identity (5.2) holds. It suffices

to show for any 𝑧 ≥ 0, 𝛽 ∈ R, the following holds

𝜒{|𝛽| ≤𝑀𝑧} = max
𝑣

𝑣𝛽 −𝑀 |𝑣|𝑧. (5.50)

This can be checked case by case (LHS/RHS denote left/right hand side of the above

equation, resp.):

• |𝛽| ≤𝑀𝑧: 𝐿𝐻𝑆 = 0 = 𝑅𝐻𝑆 with 𝑣* = 0

• |𝛽| > 𝑀𝑧: 𝐿𝐻𝑆 =∞ = 𝑅𝐻𝑆 with 𝑣* =∞ sign(𝛽)

Note that the above hold true even if 𝑀 =∞ with the convention 0 · ∞ = 0.

Proof of (5.49b). This part is obvious by deőnition of 𝜙𝑖’s.
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Proof of (5.49c). To show this, let us őrst compute 𝜌*𝑟 and 𝜄*𝑟:

𝜌*𝑟(𝑢, 𝑢
′) = max

𝛽,𝑧
𝑢𝛽 + 𝑢′𝑧 − 𝛽2

𝑧
− 𝜒{𝑧 ≥ 0}

= max

{︂

0,max
𝑧>0,𝛽

− 1

4𝑧
(𝑢𝑧 + 2𝛽)2 +

(︂

𝑢′ +
𝑢2

4

)︂

𝑧

}︂

= 𝜒

{︂

𝑢′ +
𝑢2

4
≤ 0

}︂

,

where the second equation separates the case of 𝑧 = 0 and 𝑧 > 0.

𝜄*𝑟(𝑣, 𝑣
′) = max

𝛽,𝑧
𝑣𝛽 + 𝑣′𝑧 − 𝜒{|𝛽| ≤𝑀𝑧}

= max
𝛽,𝑧

(𝑣𝛽 −𝑀 |𝑣|𝑧) + (𝑣′ +𝑀 |𝑣|)𝑧 + 𝜒{|𝛽| ≤𝑀𝑧}

= 𝜒{𝑣′ +𝑀 |𝑣| ≤ 0}.

Note that if 𝑀 =∞, this reduces to 𝜄*𝑟(𝑣, 𝑣
′) = 𝜒{𝑣 = 0, 𝑣′ ≤ 0}.

Therefore, using the above conjugate functions and the decomposability of 𝜙1 into

𝜌𝑟’s and that of 𝜙2 into 𝜄𝑟’s, we have

𝜙0(𝑥) + 𝑥⊤𝑦1 − 𝜙*
1(𝑦1) + 𝑥⊤𝑦2 − 𝜙*

2(𝑦) (5.51)

= 𝑓(𝛽) +

𝑝
∑︁

𝑖=1

(︂

𝜆0𝑧𝑖 + 𝜆2𝑢𝑖𝛽𝑖 + 𝜆2𝑢
′
𝑖𝑧𝑖 + 𝑣𝑖𝛽𝑖 + 𝑣′𝑖𝑧𝑖

)︂

+ 𝜒{𝑧 ∈ 𝒵𝑟}

−
𝑝

∑︁

𝑖=1

(︂

𝜒

{︂

𝑢′𝑖 +
𝑢2𝑖
4
≤ 0

}︂

+ 𝜒{𝑣′𝑖 +𝑀 |𝑣𝑖| ≤ 0}
)︂

.

When 𝑀 < ∞, it is clear to see that when 𝑢′𝑖 = −𝑢2𝑖
4

and 𝑣′𝑖 = −𝑀 |𝑣𝑖|, the RHS of

(5.51) recovers (5.3). Also, by the indicator functions in (5.51), these choices are the

upper bounds for 𝑢′𝑖 and 𝑣𝑖. Therefore, the objective in (5.51) is upper bounded by

𝐿 in (5.3), which implies (5.49c). The case for 𝑀 = ∞ can be proved in a similar

argument.
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Combining (5.49b), (5.49c) and Lemma 5.2, we have

min
(𝛽,𝑧)∈𝒞𝑀 ,𝑧∈𝒵𝑟

𝐹 (𝛽, 𝑧)

= inf
𝑥

𝜙0(𝑥) + 𝜙1(𝑥) + 𝜙2(𝑥)

= sup
𝑦1,𝑦2

inf
𝑥

𝜙0(𝑥) + 𝑥⊤𝑦1 − 𝜙*
1(𝑦1) + 𝑥⊤𝑦2 − 𝜙*

2(𝑦2)

≤max
𝑢,𝑣

min
𝛽∈R𝑝,𝑧∈𝒵𝑟

𝐿(𝛽, 𝑧;𝑢,𝑣).

By weak duality, we have the other direction of inequality holds, and thus the strong

duality holds.

The KKT conditions in (5.5) follow directly from the őrst-order conditions for the

minimization and maximization problems in (5.4).

5.A.1.3 Proof sketch of strong duality for node relaxation

The node relaxation strong duality proof is similar by replacing 𝒵𝑟 with 𝒵𝑣 and

enforcing 𝑧𝑖 = 1 for 𝑖 ∈ ℱ1, 𝑧𝑖 = 0 for 𝑖 ∈ ℱ0.

To be more speciőc, let 𝜌1(𝛽, 𝑧) = 𝛽2, 𝜄1(𝛽, 𝑧) = 𝜒{|𝛽| ≤ 𝑀}. Then, 𝜌*1(𝑢, 𝑢
′) =

𝑢2

4
, 𝜄*1(𝑣, 𝑣

′) =𝑀 |𝑣|. Note that if 𝑀 =∞, this is equivalent to 𝜄*1(𝑣, 𝑣
′) = 𝜒{𝑣 = 0}.

We can then consider

𝜙0(𝑥) = 𝑓(𝛽) + 𝜆0
∑︁

𝑖∈ℛ
𝑧𝑖 + 𝜆0|ℱ1|+ 𝜒{𝑧 ∈ 𝒵𝑣} (5.52a)

𝜙1(𝑥) = 𝜆2
∑︁

𝑖∈ℛ
𝜌𝑟(𝛽𝑖, 𝑧𝑖) + 𝜆2

∑︁

𝑖∈ℱ1

𝜌1(𝛽𝑖, 𝑧𝑖) (5.52b)

𝜙2(𝑥) =
∑︁

𝑖∈ℛ
𝜄𝑟(𝛽𝑖, 𝑧𝑖) +

∑︁

𝑖∈ℱ1

𝜄1(𝛽𝑖, 𝑧𝑖) (5.52c)

Following a similar road map, one can get the strong duality as well as optimality

conditions for node relaxation problems.
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5.A.1.4 Proof sketch of Proposition 5.4

Similar to the proof for Proposition 5.3, one can get similar equation to (5.15), i.e.

𝐿𝑣(𝛽, 𝑧; �̃�, �̃�) = 𝑓(𝛽) + ⟨𝜆2�̃�+ �̃�,𝛽⟩+
𝑝

∑︁

𝑗=1

∆̃𝑗𝑧𝑗. (5.53)

At node relaxation, we have for 𝑗 ∈ ℱ1, 𝑧𝑗 ≡ 1; for 𝑗 ∈ ℱ0, 𝑧𝑗 ≡ 0. Therefore, this

leads to

min
𝛽∈R𝑝,𝑧∈𝒵𝑣

𝐿𝑣(𝛽, 𝑧; �̃�, �̃�) = 𝑓(�̃�)− ⟨∇𝑓(�̃�), �̃�⟩ −
∑︁

𝑗∈ℛ
(−∆̃𝑗)+ +

∑︁

𝑗∈ℱ1

∆̃𝑗. (5.54)

Following similar arguments in the proof of Proposition 5.3 to optimizing the choices

of ∆̃𝑗, we obtain the results in Proposition 5.4.

5.B Additional Technical Details

5.B.1 Relationship to [9, 70]

5.B.1.1 Proof sketch of Proposition 5.6

Recall that in Section 5.5, we use𝑋 and 𝑦 to denote the data matrix and the response

vector. The sparse regression setting in [9] is equivalent to taking 𝑓(𝛽) = ‖𝑦−𝐴𝛽‖2,
𝜆0 = 𝜇, 𝜆2 =

1
𝛾
, and𝑀 =∞. The sparse logistic regression setting in [70] is equivalent

to taking 𝑓(𝛽) =
∑︀𝑛

𝑖=1 log(1 + exp(−𝑦𝑖𝑥⊤
𝑖 𝛽)), 𝜆0 = 𝜇, 𝜆2 =

1
𝛾

and 𝑀 =∞. It is not

hard to verify that the screening criterion given in Corollary 5.1 exactly recovers that

in [9, 70].

5.B.1.2 Examples of screening when 𝑧 ∈ (0, 1)

Consider the following problem

min
𝛽

1

2
(𝑦 − 𝛽)2 + 𝜆01{𝛽 ̸= 0}+ 𝜆2𝛽

2. (5.55)
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Given any 𝛽, we have

𝐹 𝑟 =
1

2
(𝑦 − 𝛽)2 − 𝛽(𝛽 − 𝑦) = 1

2
𝑦2 − 1

2
𝛽2 (5.56)

∆ = 𝜆0 −
(𝛽 − 𝑦)2

4𝜆2
(5.57)

𝑧 = min{1,max{0, |𝛽|
√︀

𝜆2/𝜆0}} (5.58)

Therefore, in this case

𝐹 𝑟(𝑧 = 0) =
1

2
𝑦2 − 1

2
𝛽2 (5.59)

𝐹 𝑟(𝑧 = 1) =
1

2
𝑦2 − 1

2
𝛽2 + 𝜆0 −

(𝛽 − 𝑦)2
4𝜆2

. (5.60)

Screening to 𝑧† = 0. Taking 𝑦 = 3, 𝜆0 = 100, 𝜆2 = 10−2,𝑀 = ∞, we have the

optimal solutions to the MIP and the relaxation problems are

(𝛽†, 𝑧†, 𝐹 †) = (0, 0, 4.5), and (𝛽*, 𝑧*, 𝐹 *) = (1, 0.01, 4) (5.61)

Let �̄� 𝐼 = 𝐹 †. Since 𝑧* = 0.01 ∈ (0, 1), no screening happens at the optimal relaxation

solution (𝛽*, 𝑧*).

For a general 𝛽, 𝐹 𝑟(𝑧 = 0) = 4.5− 0.5𝛽2 ≤ �̄� 𝐼 = 4.5, but 𝐹 𝑟(𝑧 = 1) = −25.5𝛽2 +

150𝛽 − 120.5 > �̄� 𝐼 = 4.5 when

𝛽 ∈
(︃

50

17
− 5
√
390

51
,
50

17
+

5
√
390

51

)︃

≈ (1.00506, 4.87730). (5.62)

This corresponds to

𝑧 = |𝛽|/100 ∈ (0.01005, 0.04877) ⊂ (0, 1). (5.63)

Screening to 𝑧† = 1. Taking 𝑦 = 1, 𝜆0 = 𝜆2 = 0.05,𝑀 =∞, we have the optimal

233



solutions to the MIP and the relaxation problems are

(𝛽†, 𝑧†, 𝐹 †) = (
10

11
, 1,

21

220
), and (𝛽*, 𝑧*, 𝐹 *) = (

9

10
,
9

10
,
19

200
) (5.64)

Let �̄� 𝐼 = 𝐹 †. Since 𝑧* = 0.9 ∈ (0, 1), no screening happens at the optimal relaxation

solution (𝛽*, 𝑧*).

For a general 𝛽, 𝐹 𝑟(𝑧 = 1) = −11
2
(𝛽 − 10

11
)2 + 21

220
≤ �̄� 𝐼 , but 𝐹 𝑟(𝑧 = 0) =

0.5− 0.5𝛽2 > �̄� 𝐼 =
21
220

when

𝛽 ∈
(︃

−
√︂

89

110
,

√︂

89

110

)︃

≈ (−0.89949, 0.89949). (5.65)

This corresponds to

𝑧 = |𝛽| ∈ [0, 0.89949) ⊆ [0, 1). (5.66)

5.B.2 Relationship to [105]

The following proposition suggests that the node screening test presented in [105] is

a special case of our rule presented in Proposition 5.7.

Proposition 5.8. Proposition 5.7 recovers the screening tests presented in [105] when

𝜆2 = 0 in the case of linear regression.

The sparse regression setting in [105] is equivalent to taking 𝑓(𝛽) = 1
2
‖𝑦−𝑋𝛽‖2,

𝜆0 = 𝜆 and 𝜆2 = 0, and it is not hard to verify that our screening rules presented in

Corollary 5.2 exactly recovers [105].

5.C Additional Experiment Details

5.C.1 Additional experiment setup

Following [120], we adopt the similar parameters for the BnB solver. Speciőcally,

relative optimality gap for BnB solver termination is set to 1%, integer feasibility
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tolerance is set to 10−4, and primal-dual optimality gap for subproblem solver is set

to 10−8 (as opposed to 10−5 in [120]).

5.C.1.1 Synthetic data generation

For classiőcation datasets, we take 𝜌 = 0.05. For the regression model, the data

matrix 𝑋 ∈ R
𝑛×𝑝 is generated in the same way as classiőcation model with constant

correlation 𝜌 = 0.15. The response vector 𝑦 is obtained from the linear model 𝑦 =

𝑋𝛽𝑐+𝜖, where the noise vector 𝜖 with independent and identically distributed (i.i.d.)

coordinates 𝜖𝑗 ∼ 𝑁(0, 𝜎2) for 𝑗 ∈ [𝑛]. Here, the standard error 𝜎 is determined by

so-called signal-to-noise ratio (SNR), deőned as SNR = 𝑉 𝑎𝑟(𝑋𝛽𝑐)/𝜎2. We consider

SNR ∈ {1, 1.5, 2} in the experiments, and like classiőcation datasets, for each SNR

value, we generate 10 random data sets.

5.C.1.2 Real-world data details

• REJA: this dataset is taken from https://archive.ics.uci.edu/ml/

datasets/REJAFADA+. We consider a training dataset with 𝑛 = 1996 and

𝑝 = 477.

• Dexter: this dataset is taken from https://archive.ics.uci.edu/ml/

datasets/dexter. We consider a training dataset with 𝑛 = 300 and 𝑝 = 457.

• Arcene: this dataset is taken from https://archive.ics.uci.edu/ml/

datasets/Arcene. We consider a training dataset with 𝑛 = 100 and 𝑝 = 482.

• Crime: this dataset is taken from https://archive.ics.uci.edu/ml/

datasets/communities+and+crime. We remove all features with missing val-

ues and consider a training dataset with 𝑛 = 1999 and 𝑝 = 94.

5.C.1.3 Choices of 𝜆0, 𝜆2

Synthetic datasets To determine the grid of regularization parameters (𝜆0, 𝜆2),

we follow these steps.
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1. We őrst create a grid of �̃�2 in a wide range. For the regression model, we take

10 values equispaced on a logarithmic scale in the range [101, 101.25], while for

the classiőcation model, we take 10 points equispaced on a logarithmic scale in

the range [10−0.5, 101.5].

2. For each �̃�2, we compute a regularization path of �̃�0: �̃�
1

0(�̃�2) > �̃�
2

0(�̃�2) > · · · >
�̃�
𝑚

0 (�̃�2). We use adaptive selection rules as described in [116] to generate a

sequence �̃�
𝑖

0 that avoids duplicate solutions. For each (�̃�0, �̃�2), we use our plain

BnB solver to approximately solve the problem, with maximal tree depth set

to 5 and a time limit of 30 seconds. We denote by �̂�(�̃�
𝑖

0(�̃�2), �̃�2) the solution

obtained from Plain.

3. Determine 𝜆*0(�̃�2) that minimizes the ℓ2 estimation error of �̂�. For the regression

model, we choose

𝜆*0(�̃�2) ∈ argmin
�̃�
𝑖

0(�̃�2)
‖𝛽𝑐 − �̂�(�̃�𝑖0(�̃�2), �̃�2)‖2, (5.67)

and for the classiőcation model, we choose

𝜆*0(�̃�2) ∈ argmin
�̃�
𝑖

0(�̃�2)
‖𝑠𝛽𝑐 − �̂�(�̃�𝑖0(�̃�2), �̃�2)‖2. (5.68)

4. Choose the 𝜆0 grid for each �̃�2. For the regression model, we take 10 values

equispaced on a linear scale in the range [1.25𝜆*0(�̃�2), 1.5𝜆
*
0(�̃�2)]. For the clas-

siőcation model, we take 10 values equispaced on a linear scale in the range

[0.5𝜆*0(�̃�2), 2𝜆
*
0(�̃�2)].

Real datasets Since there is no ground truth of 𝛽𝑐 known to us. Instead, we

perform a 5-fold cross-validation using our implementation of L0learn [116] to őnd

the optimal regularization parameters 𝜆*0 and 𝜆*2. Then, our experiments are run on

the grids where we take 10 values of 𝜆2 equispaced on a logarithmic scale in the range
{︀
10−1/2𝜆*2, 10

1/2𝜆*2
}︀

and vary 𝜆0 to generate solutions of different support sizes.

236



5.C.2 Additional numerical results

Finally, we present additional numerical results for synthetic regression datasets. Ta-

ble 5.5, Table 5.6 and Figure 5-3 provide simulation results that correspond to those in

Table 5.1, Table 5.3 and Figure 5-1 respectively, but for regression model. The tables

and őgure reveal a qualitatively very similar story to that presented in Section 5.6.

Table 5.5: Average runtime and tree sizes for easy case of synthetic regression prob-
lems. Results are averaged over different choices of 𝜆0, 𝜆2, and random seeds of
synthetic datasets. Details are given in the caption of Table 5.1.

Rules
MaxFrac MaxZ Strong-L Strong-P

Plain Root Node Plain Root Node Plain Root Node Node-E Plain Root Node Node-E

SNR=1
(803/1000)

Time 2932 2899 1692 2730 2661 1594 3114 3066 1966 1371 3057 3071 1896 1314

Size 9048 9035 9098 8719 8720 8750 9020 9021 9085 5372 9161 9139 9191 5234

SNR=1.5
(847/1000)

Time 1613 1598 968 1479 1474 900 1704 1705 1100 602 1716 1712 1068 568

Size 4885 4853 4916 4751 4751 4788 4867 4819 4977 2258 4899 4889 5037 2182

SNR=2
(1000/1000)

Time 184 181 107 162 160 96 196 193 121 82 189 190 118 78

Size 624 624 624 602 602 602 625 625 624 367 619 619 618 352

Table 5.6: Average runtime and tree sizes for hard case of synthetic regression
problems. Results are averaged over different choices of 𝜆0, 𝜆2, and random seeds of
synthetic datasets. Details are given in the caption of Table 5.3.

Rules
MaxFrac MaxZ Strong-L Strong-P

Plain Root Node Plain Root Node Plain Root Node Node-E Plain Root Node Node-E

SNR=1
(197/1000)

Time 14400 14400 14166 14400 14390 14083 14400 14387 14184 14216 14400 14378 14165 14122

Size 21803 21466 22986 20429 20111 22494 18297 18437 19541 17990 17716 17835 19263 17570

Succ 0.0 0.0 0.07 0.0 0.01 0.08 0.0 0.01 0.061 0.061 0.0 0.015 0.061 0.075

Gap 0.063 0.063 0.061 0.065 0.065 0.063 0.064 0.064 0.062 0.062 0.064 0.064 0.063 0.063

SNR=1
(153/1000)

Time 14400 14361 14235 14400 14375 14142 14400 14397 14284 14213 14400 14382 14249 14159

Size 12022 12308 13449 11611 11823 13501 10305 10421 11579 10732 10503 10055 11857 10782

Succ 0.0 0.013 0.033 0.0 0.013 0.052 0.0 0.007 0.039 0.033 0.0 0.013 0.033 0.052

Gap 0.063 0.062 0.061 0.065 0.065 0.063 0.066 0.066 0.064 0.065 0.066 0.066 0.065 0.065

237





Chapter 6

Conclusion

This thesis presented large-scale optimization algorithms for several machine learning

problems under structural constraints. In Chapters 2 and 3, we focused on problems

in nonparametric statistics with shape constraints and developed efficient convex op-

timization approaches with novel convergence guarantees. In particular, in Chapter

2, we present an active set algorithmic framework for solving large-scale subgradient

regularized convex regression problem, which leverages proximal gradient methods

as well as different random and greedy techniques for active set augmentation. We

show novel linear convergence guarantees for our algorithms in the absence of strong

convexity. In practice, our algorithms can approximately solve the instances with

𝑛 = 105 and 𝑑 = 10 within minutes. In Chapter 3, we develop a scalable compu-

tational framework for computing log-concave MLE, based on randomized smooth-

ing and Nesterov smoothing, combined with an integral discretization of increasing

grid sizes. We provide the convergence guarantees and our new framework is up to

30 times faster than the existing convex methods. Our framework can also apply

to other shape constrained density estimation problems. In Chapters 4 and 5, we

switched the gear to investigate into sparse learning problems and proposed scalable

discrete optimization methods. Speciőcally, in Chapter 4, we propose a novel esti-

mator for sparse precision matrix for iid multivariate Gaussian samples, based on

ℓ0ℓ2-regularized pseudolikelihood. We provide statistical guarantees for our proposal

in terms of estimation and variable selection. We further reformulate the problem into
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MIP, and develop a fast approximate algorithm as well as a scalable exact algorithm

(specialized BnB solver) for the problem. Our exact algorithm is computationally

scalable to 𝑝 ≈ 10,000 (corresponding to 50 million parameters). In Chapter 5, we

design a safe screening procedure at each node within BnB solver for a general ℓ0ℓ2-

regularized sparse learning problem. We demonstrate that the deployment of such

screening procedure can improve the runtime of BnB algorithm up to 2 times. When

using strong branching strategies, it can further reduce the tree sizes and lead to a

substantial runtime improvement.

There are multiple exciting directions for future work in sparse learning and convex

optimization. The ℓ0ℓ2 penalty has a drawback that it can control the exact sparsity

of the őnal solution Ð for example, if one wishes to select 𝑘 variables out of 𝑝,

sometimes it is hard to őnd a hyperparameter grid (𝜆0, 𝜆2) so that the őnal solution

has exactly 𝑘 nonzeros. Hence one interesting direction could be replacing ℓ0 penalty

with cardinality constraint, i.e. ‖𝛽‖0 ≤ 𝑘, for sparse learning problem, and developing

scalable approximate and exact algorithms.

The methodological work presented in Chapters 2 to 5 has many applications

and generalizations in areas of őnance and neural networks. In [125]1, we develop a

GregNets framework for joint learning time series forecasting models and partial cor-

relation structures that leverages graph connectivity from őnancial knowledge graphs

(based on pseudo-likelihood). In [51]2, we propose a ŕexible optimization frame-

work to simultaneously learn covariance matrices across different time periods under

suitable structural assumptions on the period-speciőc covariance matrices and time-

varying regularizers. In [23]3, we propose an optimization framework CHITA for neural

network pruning/sparsiőcation based on an ℓ0 cardinality-constrained sparse regres-

sion problem.

1This is a joint work with Shibal Ibrahim, Yada Zhu, Pin-Yu Chen, Yang Zhang and Rahul
Mazumder.

2This is a joint work with Riade Benbaki, Yada Zhu and Rahul Mazumder.
3A workshop version of this appears in [50]. This is a joint work with Riade Benbaki, Xiang

Meng, Hussein Hazimeh, Natalia Ponomareva, Zhe Zhao, and Rahul Mazumder.
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