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Abstract

A common machine learning task in healthcare is to predict a patient’s final outcome
given their history of vitals and treatments. For example, sepsis is a life-threatening
condition that happens when the body has an extreme response to an infection.
Treating sepsis is a complicated process, and we are interested in being able to predict
a sepsis patient’s final outcome. Neural networks are a powerful model to make
accurate predictions on such outcomes, but a major drawback of these models is that
they are not interpretable. Being able to accurately predict treatment outcomes while
also being able to understand the model’s predictions is necessary for these models
and algorithms to be used in the real world.

In this thesis, we use knowledge distillation, which is a technique for taking a
model with high predictive power (known as the "teacher model"), and using it to
train a model that has other desirable traits such as interpretability (known as the
"student model"). For our teacher model, we use an LSTM, which is a type of neural
network, to predict mortality for sepsis patients, given information about their recent
history of vital signs and treatments. For our student model, we use an autoregres-
sive hidden Markov model to learn interpretable hidden states. To incorporate the
knowledge from the teacher model into the student model, we use a similarity-based
constraint. We evaluate a method from a previous work that uses variational infer-
ence to learn the hidden states, and also develop and evaluate an alternative approach
that uses the expectation-maximization algorithm. We analyze the interpretability
of the learned states. Our results show that, although there is room for improvement
in maintaining the generative performance of the model after adding the similarity
constraint, the expectation-maximization algorithm is successful in incorporating the
constraint to achieve high predictive power similar to the teacher model, along with
better interpretability when compared to the teacher model.

Thesis Supervisor: Roger G. Mark
Title: Distinguished Professor
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Chapter 1

Introduction

A common task for machine learning in a healthcare setting is to predict what a

patient’s final outcome will be. Information we might consider in the prediction

process include the patient’s history, their recent vital signs, their response to previous

treatments, and the outcomes of similar patients. Given this information, we would

like to be able to accurately predict the final outcome of a patient.

One real-world example where such a model could be useful is in sepsis outcome

prediction. Sepsis is a life-threatening condition that occurs when the body has an

extreme response to an infection. It’s estimated that over 1.7 million people in the

United States are affected by sepsis each year, and between one-third and one-sixth

of those affected will die [26] [4]. One-third of patients who die in a hospital are

affected by sepsis during their stay [26]. It is challenging to predict what outcome a

patient will experience beccause there are many factors to consider, and in addition

to considering the current information about a patient, we also need to factor in their

recent history to predict how they will fare in the future.

1.1 Technical Challenges

In order to accurately predict a patient’s outcome in challenging settings such as

during sepsis treatment, we might be interested in training a neural network to make

these predictions, and previous approaches have used these models [1], [18]. However,
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although neural networks are powerful predictive models, they are not interpretable.

While the models can predict outcomes with high accuracy, they do not explain which

factors are most predictive of a patient’s outcome. Interpretability is important in

healthcare so that doctors can understand where the model’s predictions are coming

from, which will lead to more trust in the model. Furthermore, interpretable models

can help us learn new things that we previously have not observed, such as if we

discover that one of the most predictive covariates for the model is a biomarker that

we previously thought was unrelated.

Latent variable models, such as hidden Markov models (HMM) and other variants

of HMMs like the autoregressive HMM (AR-HMM), can be trained on clinical time

series data to learn an interpretable latent structure that represents a patient’s state

of health over time. The limitation of these models is that the state representations

are often not optimized for predicting downstream outcomes, and thus the predictions

may not be as accurate as with a neural network.

1.2 Thesis Overview

In this thesis, we train a model that attempts to combine both the neural network

approach and the latent variable model approach, with the goal of achieving high

predictive power while having an interpretable model. This project builds on work

done by Saeedi et al. [25]. In that previous work, the authors use a technique called

knowledge distillation, which is used to distill the knowledge learned in a powerful

"teacher" model to train a "student" model that has more desirable characteristics

such as interpretability. In the case of Saeedi et al., the teacher model is an LSTM

with high predictive power, and the student model is an AR-HMM that learns latent

states. The authors use a technique known as automatic differentiation variational

inference (ADVI) for approximate inference to learn the latent states. They then

incorporate the teacher model’s knowledge through the use of a similarity constraint.

We denote the models created using this method as AR-HMM-ADVI.

In this thesis, we first evaluated the models developed in Saeedi et al. on a real-
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world dataset (MIMIC-IV) [12]. We then developed a similar model with knowledge

distillation, where we use an LSTM for our teacher model and an AR-HMM for the

student model, and use a similar similarity constraint. The difference is that in our

model, instead of using ADVI, we investigate an alternative approach by instead

using the expectation-maximization (EM) algorithm to learn the latent states, and

we also use a similarity constraint to incorporate the teacher model’s knowledge so

that we can make accurate clinical time series outcome predictions. We evaluate

the predictive power and the interpretability of the models produced by this new

approach. We denote the models created using this approach as AR-HMM-EM.

1.2.1 Contributions

The contributions of this thesis are as follows:

1. Evaluation of the AR-HMM-ADVI models on MIMIC-IV dataset.

We evaluated and analyzed the performance of the AR-HMM-ADVI models

presented in [25] on a new dataset, namely the MIMIC-IV dataset.

2. Development of an alternative approach for incorporating similarity-

based constraints. We developed and evaluated an alternative approach for

incorporating similarity-based constraints to learn AR-HMM models for clinical

time series outcome prediction. Our approach is similar to the previous work

in Saeedi et al., but we use the EM algorithm as an alternative to ADVI.

3. Analysis of tradeoffs between predictive and generative performance.

Using our new models, we examined the tradeoff between the predictive and

generative performance of our approach by weighting the similarity constraint,

which is designed to improve predictive performance, at different amounts to

evaluate its impact on the generative performance.

4. Analysis of predictive performance and interpretability of models.

We evaluated how well our models were able to predict hospital mortality, and

also examined the interpretability of the model by looking at the learned latent
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states. In addition to evaluating the models’ ability to predict mortality, we

evaluated the performance of the model in predicting other downstream out-

comes such as the development of pulmonary edema, or the need for dialysis,

diuretics, or mechanical ventilation.

While the work presented in this thesis is focused on outcome prediction, we hope

that our method for predicting patient outcomes can also be extended to help predict a

patient’s response to a specific treatment. This would be useful for physicians who are

often faced with a variety of treatment options, and must choose the treatment that

will be most beneficial for each patient and result in the best downstream outcome.
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Chapter 2

Related Works

2.1 Outcome Prediction

Predicting clinical outcomes is a common target of machine learning research. There

is often a large amount of data that we want to consider, and it would be difficult for

a human to process all of that information to make an accurate prediction. Further-

more, many clinical outcomes depend on not only the patient’s current state, but also

their recent history. Previous work has been done for time series outcome prediction

to identify patients who are at risk of sepsis shock [8].

The predictive power of neural networks makes these models a frequent choice for

researchers who are interested in predicting clinical outcomes. Neural networks are

able to take in a lot of data to make accurate predictions, and there are many types

of neural networks that are able to evaluate time series data to make predictions,

such as a long short term memory (LSTM) model, which is a type of recurrent neural

network.

For example, LSTMs have been used successfully to predict the onset of congestive

heart failure, and convolutional neural networks (CNNs) have been used to predict the

mortality of patients with heart failure [21], [17]. Recurrent neural networks have also

been used to predict various COVID outcomes including in-hospital mortality, needing

mechanical ventilation, and staying the hospital for more than 7 days [23]. Both CNNs

and LSTMs have been used to predict mortality outcomes for sepsis patients [3].
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Park et al. evaluated different ML methods for predicting sepsis mortaliity, including

random forest, gradient-boosted decision tree, and deep neural network, and while all

of them were pretty accurate, the neural network had the best predictive performance

[22].

However, while neural networks have been shown to be effective at a variety of

outcome prediction tasks, they have the drawback of not being very interpretable.

Interpretability is an important trait of models and algorithms if they are to be

used in a healthcare setting, as it gives medical experts confidence in the model’s

predictions.

2.2 Supervised Learning with Probabilistic Graphi-

cal Models

Another common approach to learning models to predict final outcomes is a 2-stage

approach. In the first stage, a graphical model is used to infer latent features for a

dataset. These features are then passed into the second stage of the model, which is

a discriminative model that predicts an outcome.

Examples of this method include using a graphical model to derive features that

are then used as input for a linear regression to predict neuroticism and depression

[24], using a switching vector autoregressive (SVAR) model to learn states that are

used to predict hospital mortality [14], and deriving interpretable features from time

series vital signs to detect severe sepsis with a logistic regression on these features

[16].

The latent features from the graphical model make the model more interpretable

than a neural network, but since the inferred features are not optimized for the

prediction task, these types of models often do not have very high predictive power.

Previous work has tried to resolve this issue by incorporating the labels as part of

the model [19], [24]. Saeedi et al. used a knowledge distillation approach to improve

performance by using a pre-trained discriminative model with high predictive ability
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to help learn useful features in a more interpretable model [25].

2.3 Constrained Inference

Another approach that is used to improve model performance is constrained infer-

ence. In this approach, the posterior distribution of learned states is constrained in

some way to enforce a performance constraint. For example, we can add a discrim-

inative constraint to improve prediction while still learning interpretable states, by

incorporating supervised loss as part of the loss function [10]. Instead of constraining

by performance, another constraint could be to constrain the feature space of one

model so that it is similar to the feature space of a pre-trained model [25]. We use

this feature space constraint in this thesis.
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Chapter 3

Methods

Our approach was to use knowledge distillation to develop models that are both

predictive and interpretable. Knowledge distillation is a technique that uses a model

with high predictive power, known as the teacher model, and distills its information

into another model known as the student model, which ideally has some preferable

characteristics such as interpretability. For our work, we first trained the teacher

model, which was an LSTM, to learn patient hospital mortality. For the student

model, we chose to use an autoregressive HMM (AR-HMM) to learn hidden states. We

tried two different approaches for learning this student model. The first approach was

to use a variational inference technique known as ADVI to learn the latent states of the

model. The second approach used the expectation-maximization (EM) algorithm to

learn the hidden states. In both approaches, while learning the AR-HMM, we trained

a recognition network to learn latent states of the model while also incorporating a

similarity-based constraint between the teacher model and the student model. The

similarity-based constraint was used to distill knowledge from the teacher to the

student.
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3.1 Background

3.1.1 Knowledge Distillation

Knowledge distillation is a technique used to take the knowledge of a teacher model

and distill it so it can be used in a student model. Typically, the teacher model is

a more powerful model such as a neural network, but the student model has some

preferable traits such as being more efficient, more generalizable, or in our case, more

interpretable. The teacher model may have additional features that can also improve

its predictive power. Since the feature sets may be different between teacher and

student models, we cannot simply use the student model to copy the teacher model.

In Saeedi et al, the authors use the observation that similar inputs should generate

similar feature representations in a neural network to propose a method for knowledge

distillation. Their proposed method, which we adapted for our work, is to ensure that

if a pair of inputs to the teacher model produces dis(similar) feature representations,

then that pair will also produce dis(similar) feature representations when given to

the student model. More specifically, they create pairwise similarity matrices for

the student and teacher models, where each matrix contains the pairwise distances

between feature representations of the inputs to a model [25].

3.1.2 AR-HMM

In many problems such as ours, we have a time series of data and wish to be able to

segment this data in terms of similar dynamics. In order to represent this, for each

observation, we introduce a latent variable 𝑧. If we then use the latent variables to

form a Markov chain, this forms a state space model (SSM).

A hidden Markov model (HMM) is a type of SSM where the variables are dis-

crete (although the observed variables can be discrete or continuous). HMMs are

commonly used in speech recognition and natural language modelling. However, an

HMM assumes that given the latent state sequence, the observations are conditionally

independent. Such a model would fail to capture important dependencies between
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timesteps. In order to further account for dynamics, we can consider each latent state

in the HMM to model one dynamic mode or behavior, and we can allow the model

to switch between the various dynamic modes by switching between the latent states.

In particular, we can use a switching vector autoregressive (SVAR) process, which

differentiates between the discrete part of the state (the "mode") and the continuous

part of the state, which capture the dynamics for a mode. Using this SVAR process

with our HMM gives us an autoregressive HMM (AR-HMM). By switching between

these linear dynamic states and behaviors, we can model more complicated dynamics

[5].

In an AR-HMM, each state is parameterized by a set of AR coefficients (which de-

fine how much the previous observations affect the current observation), a covariance

matrix Σ, and a bias term 𝑏, so we can define the 𝑘-th state as 𝜃𝑘 = {𝐴𝑘,Σ𝑘, 𝑏𝑘}. In

a SVAR process with order 𝑟, each observation depends on the 𝑟 observations before

it [6]. Let 𝑦
(𝑖)
𝑡 be the observation vector of the 𝑖-th patient at time 𝑡, and let 𝑧

(𝑖)
𝑡 be

the state of the corresponding Markov chain for that patient at time 𝑡. Let 𝜋𝑘 be the

transition probabilities for state 𝑘. Then, since this is a Markov chain, we know that

𝑧
(𝑖)
𝑡 ∼ 𝜋

𝑧
(𝑖)
𝑡−1

, for all 𝑡 > 1. An order 𝑟 SVAR process, denoted by VAR(𝑟), is defined

as follows

𝑧
(𝑖)
𝑡 ∼ 𝜋

𝑧
(𝑖)
𝑡−1

(3.1)

𝑦
(𝑖)
𝑡 =

𝑟∑︁
𝑙=1

𝐴
𝑧
(𝑖)
𝑡
𝑙 𝑦

(𝑖)
𝑡−𝑙 + 𝑒

(𝑖)
𝑡 (𝑧

(𝑖)
𝑡 ) + 𝑏

𝑧
(𝑖)
𝑡

≜ 𝐴
𝑧
(𝑖)
𝑡
𝑦
(𝑖)
𝑡 + 𝑒

(𝑖)
𝑡 (𝑧

(𝑖)
𝑡 ) + 𝑏

𝑧
(𝑖)
𝑡

(3.2)

where 𝑒
(𝑖)
𝑡 (𝑧

(𝑖)
𝑡 ) ∼ 𝒩 (0,Σ(𝑍𝑡)) is the state-specific noise, 𝐴𝑘 = [𝐴𝑘

1...𝐴
𝑘
𝑟 ] are the

lag matrices that indicate how much to weight previous observations, and 𝑦
(𝑖)
𝑡 =

[𝑦
(𝑖)⊤

𝑡−1 ...𝑦
(𝑖)⊤

𝑡−𝑟 ]
⊤ are the previous observations [15]. The models we discuss in this thesis

use an AR-HMM with AR order 1.
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3.1.3 Automatic Differentiation Variational Inference

The mechanism behind many models that identify patterns in a model or make predic-

tions is typically a computation of the posterior distribution of latent variables, given

the observation. However, it is often difficult to calculate the posterior, which leads to

the use of approximate inference techniques. Automatic Differentiation Variational

Inference (ADVI) is an example of one such technique. It is a flexible black-box vari-

ational inference method that can be used for many different probabilistic models. In

ADVI, the goal is to maximize the evidence lower bound (ELBO), which is a lower

bound on the log-likelihood. In Saeedi et al., ADVI is used as part of the model to

approximate the posterior of the global variables [25].

3.1.4 Expectation Maximization Algorithm

The expectation-maximization (EM) algorithm is a technique used to learn latent

variable models, such as an HMM. It does this by maximizing the likelihood function

of the model.

We start with an initial selection of model parameters. Each iteration of the

model involves two steps - the expectation step and the maximization step. In the

expectation step (E step), we use the parameter values to get the posterior distribution

of the latent variables, and use this distribution to calculate the expected value of

the log-likelihood. In the maximization step (M step), we find the parameters that

maximize the expected log likelihood. On each iteration of E step and M step, the

log-likelihood should hopefully increase and gives us new parameter values that result

in the increased log-likelihood [2].

3.1.5 Recognition Network

A recognition network is used to map from observations to a posterior distribution

of local latent variables. They can be used to efficiently approximate parameters

or latent variables [13]. The output from a recognition network is typically used as

the features that are inputted to a predictive task. In Saeedi et al., the authors use
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Autoencoding Variational Bayes (AEVB) to train a recognition network that is used

to infer local latent variables of the HMM [25]. In our approach, between the E- and

M- steps of the EM algorithm, we train an LSTM as our recognition network to learn

latent states of our model while incorporating the knowledge distillation constraint.

We do so by calculating a similarity loss between the student and teacher models,

and adding it to the loss function for the recognition network.

3.2 Data

In this work, we used data from the Medical Information Mart for Intensive Care IV

(MIMIC-IV) database, which contains medical records from hospital admissions and

ICU stays at the Beth Israel Deaconess Medical Center (BIDMC) [12]. Our dataset

came from previous work done by Hu [9]. For our patient cohort, we selected patients

meeting the sepsis-3 criteria. Under this criteria, a patient is defined to have sepsis

if they have both an episode of suspected infection and a Sequential Organ Failure

Assessment (SOFA) score of 2 or more points. An episode of suspected infection is

defined as either (a) an antibiotic was given and a culture was sampled within 24

hours or (b) a culture was sampled and an antibiotic was administered within 72

hours.

The dataset excludes patients whose time of suspected infection was more than 24

hours after ICU admission. It also excludes patients who were admitted after cardiac,

vascular, or trauma surgery since those surgeries pose risks that could lead to different

mortality outcomes. Additionally, if a patient had more than one ICU stay, only the

first stay was used. The dataset also excludes patients who did not have documented

pre-ICU fluids. This was because we expect sepsis patients to get some fluid therapy

before being admitted to the ICU, so not having pre-ICU fluids documented probably

means it just was not properly recorded in the dataset. Patients were also excluded

if they had certain outliers in their covariates, as determined by medical experts [9].

Finally, we removed patients who died within 24 hours of entering the ICU, and

patients who did not have all 24 hours of data.
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Table 3.1: Final Sepsis Cohort Characteristics.

Characteristic n
Number of Patients 7,296

Mean age 65.10
Median age 67.0

Male 4,135
Hospital mortality 13.4%

After ensuring patients met all of these criteria, we were left with 7663 patients.

We put 70% of patients in the training set, and 15% in each of the validation and

testing sets. Since we used batches for our training with a batch size of 128, we

removed any patients that were left out of a full batch. This left us with 5248

patients in the training set, and 1024 in each of the validation and testing sets, for a

total of 7296 patients. There were 694 patients who died in the training set, 139 in

the validation set, and 148 in the testing set, for a total of 981 patients who died, and

a mortality rate of 13-15% within each set. More statistics about the final cohort are

provided in Table 3.1.

For each patient, we have 24 hours of hourly data, with covariates such as heart

rate, blood pressure, SOFA score, and other clinical variables such as glucose, crea-

tinine, potassium, and more. We also have information about the actual treatment

given to these patients at each hour, such as if patients are on mechanical ventilation

or dialysis and the amount and dosage (if any) of fluids, vasopressors, and diuret-

ics given. Finally, we have information about outcomes such as if the patient has

pulmonary edema, is on diuretics, dialysis, or mechanical ventilation, or if they die

in the hospital. We fill in missing covariate values by either extending the previous

covariate measurement for that patient if it exists, or filling it in with the population

average value for that covariate.

The presence of pulmonary edema was not included as a variable in the origi-

nal MIMIC-IV dataset, but it was derived in Hu’s thesis using NLP techniques on

radiology reports of patient x-ray images. More specifically, chest x-ray images are

frequently used to diagnose pulmonary edema, and these images are interpreted by
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medical experts in radiology reports. The radiology reports in MIMIC-IV were first

de-identified using an NLP technique known as bidirectional encoder representations

for transformers (BERT) and a Python module called pydeid. These reports were

then fed into a state-of-the-art labeler called CheXpert, which outputs 1, 0, or -1 to

indicate the presence, absence, or possible presence of pulmonary edema [11]. Our

dataset includes both 1 and -1 as indicating the presence of edema [9].

The dataset provided in Hu’s thesis additionally measures O2 requirements, which

represent levels of oxygen requirement of the patient. The value is an integer from 0

to 6, where 0 means there is no oxygen requirement, and 6 means the patient is on

an invasive mechanical ventilator [9].

For our models, we used covariates similar to the ones used in Hu’s thesis [9]. A

full list of covariates is provided in Tables A.1 and A.2.

3.3 Teacher Model

For our teacher model, we trained an LSTM on the patient data to predict mortality.

The teacher model included a total of 47 features, which is more features than the

student model. The extra features included in the LSTM but not the student model

are shown in Table A.2. Our hope was that the knowledge learned by the teacher

model could be transferred to the student model, without the student model needing

as many covariates. We tried various seeds and hyperparameter settings for this

LSTM, and used the model with the best validation AUROC for our teacher model.

3.4 Student Models: AR-HMMs

For both of our student models, we used an autoregressive hidden Markov Model

(AR-HMM) of order 1, with 𝐷-dimensional Gaussian distribution, where 𝐷 is the

number of covariates used for each patient’s input to the model. In our models,

𝐷 = 34. For each patient, we have a 𝐷×𝑇 vector input, where 𝑇 = 24 is the number

of timesteps. There are 𝐾 possible latent states learned by the AR-HMM.
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3.4.1 Knowledge Distillation Constraint

We incorporated the knowledge distillation constraint by using a similarity-based

constraint between the teacher and student models. We used a constraint similar to

the one used in Saeedi et al. [25]. Let 𝐶𝑡 be the feature dimensionality of the teacher

model, and 𝐶𝑠 be the feature dimensionality of the student model. For a dataset of

size 𝑁 , we denote the feature representations of the teacher and student models as

𝐹 𝑡 ∈ R𝑁×𝐶𝑡 and 𝐹 𝑠 ∈ R𝑁×𝐶𝑠 , respectively. For the student model, we assume that

every row of the feature representation is a function of the inferred latent variables.

The knowledge distillation constraint is designed to make sure that the differences

between the two feature representations is less than some tolerance level.

More specifically, we compute the similarity of feature representations across pa-

tients by taking the dot product, which results in 𝑁 ×𝑁 matrices:

𝐹 𝑠 = 𝐹 𝑠 · 𝐹 𝑠⊤ and 𝐹 𝑡 = 𝐹 𝑡 · 𝐹 𝑡⊤ (3.3)

We also apply a normalization to the matrices. In Saeedi et al, and for the KD-AR-

HMM-ADVI models we trained, the similarity matrices were derived by first taking

the dot product of the feature matrix, then normalizing by dividing each column by

the ℓ2 norm of the row. We modified this normalization for the KD-AR-HMM-EM

models so that we first normalized across the columns, each of which is a covariate,

and then took the dot product of the normalized matrices. Let us denote the final

normalized similarity matrices as 𝐹 𝑠 and 𝐹 𝑡 for the student and teacher models,

respectively. We calculate the similarity loss as

similarity loss = 𝛾
1

𝑁2
||𝐹 𝑠 − 𝐹 𝑡||2 (3.4)

where 𝛾 is a hyperparameter that specifies how much to weight the loss from this

similarity constraint in the overall loss function.
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3.5 AR-HMM-ADVI

For our first attempt at using knowledge distillation, we used the AR-HMM-ADVI

developed in [25]. This model uses constrained variational inference to incorporate

the knowledge distillation constraint. The baseline model was a basic AR-HMM

without knowledge distillation or supervision. The model that incorporates knowledge

distillation via a similarity constraint is denoted as KD-AR-HMM-ADVI. We also

used a model with a discriminator constraint (DISC-AR-HMM-ADVI), and tried

combining both the discriminator and similarity constraints in the KD-DISC-AR-

HMM-ADVI model.

3.6 AR-HMM-EM

The majority of the work presented in this paper involves an AR-HMM fitted using

the EM algorithm, denoted as AR-HMM-EM.

3.6.1 Baseline

We used the SSM package [20] to develop our HMM models with a custom EM fitting

method. For the baseline, we used the package’s provided EM fitting algorithm,

and trained the model for 50 iterations of the expectation and maximization steps.

Although we had an early stopping mechanism in place that was based on changes in

log-likelihood, this mechanism was never triggered, so all 50 iterations were run. We

used various seeds for the baseline model and picked the one with the highest training

and validation log-likelihood to build our knowledge distillation model on top of.

3.6.2 Modified E-step

In order to incorporate the teacher model into the AR-HMM-EM, we modified the

EM algorithm to factor in the similarity constraint between the AR-HMM-EM and

the teacher LSTM model. We denote the resulting model as KD-AR-HMM-EM. In

the modified algorithm, we trained a recognition network to output expected states

31



that factored in the teacher model’s knowledge. The recognition network is described

in more detail below. We used the expected states outputted by the recognition

network as input to the M-step for that EM iteration. This modified E-step was used

for up to 20 iterations of the EM algorithm (after the initial baseline was trained).

However, due to an early stopping condition based on the validation AUCs of the

recognition network, only 11 iterations were actually used.

Recognition Network

The recognition network was an LSTM that took the same input as the overall model,

and was trained to predict the state marginals for each patient at each time step. The

labels provided to the recognition network were the true state marginals, as calculated

by a function provided in the SSM package on that iteration of the algorithm. Thus,

the output of the recognition network has dimensions 𝑁×𝑇×𝐾. For this recognition

network, the objective was to minimize a combination of the difference between the

true and predicted state marginals (as calculated using mean squared error (MSE)

loss), as well as the similarity loss between the features generated by the teacher

model and the features generated by the recognition network.

When training the recognition network, we used 5-fold cross validation on the

provided training data. Each of the five recognition networks was trained for 20

epochs. The recognition network with the highest validation AUC was selected as

our recognition network for that step, and was used to calculate the predicted state

marginals that were passed into the M-step of the model.

Algorithm 1 summarizes the training process for the KD-AR-HMM-EM. Lines 3

- 8 correspond to the modified E-step that trains the recognition network.

3.6.3 Final Outcome Prediction

Our ultimate goal behind the AR-HMM-EM models was to be able to predict final

patient outcomes such as mortality. To do this, we used a logistic regression model

that took as input the features outputted by the AR-HMM-EM model, and outputted
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Algorithm 1: KD-AR-HMM-EM Training
1 Train baseline AR-HMM-EM for 50 iterations
2 for iter = 1, ..., 20 do
3 for fold = 1, ..., 5 do
4 for epoch = 1, ..., 20 do
5 Train Recognition LSTM
6 end
7 end
8 Select best recognition network from the 5 folds
9 Run M-step on recognition network output

10 Check for early stopping
11 end

the probability of an outcome such as mortality.

For the baseline EM model, the inputs to the logistic regression were the state

marginals as calculated by the SSM package’s built-in function. For our custom EM

models, after fully training the EM with a combination of the base EM iterations and

the iterations using a recognition network, we saved the recognition network from the

final iteration that had the highest validation AUROC. The output from this final

recognition network was then used as the input features to the logistic regression.

In addition to predicting mortality, we also used the same set of features to predict

other patient outcomes such as the development of pulmonary edema, or the need for

dialysis, mechanical ventilation, or diuretics.

3.6.4 Evaluation

The primary metrics we used to evaluate our models were Area under the ROC

Curve (AUROC) and log-likelihood. We also have several ways of evaluating the

interpretability of our models.

AUROC (AUC)

A Receiver Operating Characteristic (ROC) curve graphs the true-positive rate versus

the false-positive rate for a classification model. Each point on the curve shows the

true- and false- positive rates for a classification threshold. A higher area under the
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curve (AUROC) means that the model does a better job of distinguishing between the

two classes - an AUROC of 0.5 means the classifier is essentially randomly guessing the

class, whereas an AUROC of 1.0 means the model can perfectly distinguish between

the two classes. We calculated the AUROC of the final logistic regression that predicts

mortality or other final outcomes.

Log-Likelihood

Log-likelihood is a metric for how well a model fits the data. A higher log-likelihood

means the model is a better fit for the dataset. Unlike AUROC, there is no absolute

cutoff for log-likelihood that determines if the model is "good" or "bad". Instead, we

can use the log-likelihood to compare two models against each other, or to see how a

model is improving over training.

Interpretability

While the previous two metrics help us determine how good our model is for predicting

values, we are also interested in the interpretability of our model. To this end, we can

look at the states predicted by our trained AR-HMM-EM models and compare the

state distributions of patients with one outcome to patients with another outcome

(e.g. comparing patients who lived versus patients who died).

Another metric we can use is the odds ratio of our final logistic regression coeffi-

cients. The odds ratio for a coefficient measures the change in the odds of one event

occurring when you change the feature associated with that coefficient. We can also

calculate a confidence interval for the odds ratio. An odds ratio where the upper and

lower bounds are either both greater than 1 or both less than 1 indicates that the

feature is significant. For example, if we are predicting mortality and the coefficient

for state 1 is greater than 1, that means that being in state 1 is correlated with dying.

However, it is important to note that the odds ratio can only show correlation, and

does not imply causation.
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Table 3.2: Hyperparameter Settings. This table shows the options for various hyper-
parameters that we tried for our KD-AR-HMM-EM models.

Hyperparameter Settings
Similarity coefficient 1e1, 1e3, 1e5, 1e10, 1e30
Learning rate 0.1, 0.01, 0.001
Batch size 64, 128, 256
Number of hidden dimensions 4, 8, 16, 32
Number of hidden layers 2, 4

3.6.5 Experiment Settings

In order to tune the model, we considered adjusting various hyperparameters. One

of the main hyperparameters we focused on was the similarity coefficient used to

scale the similarity loss. If the coefficient was too low, then the similarity loss would

have little effect on the model’s predictions and essentially ignore the teacher model.

However, if the coefficient was too high, the similarity loss term would dominate the

overall loss of the recognition network, and the network might fail to learn the true

state marginals.

In addition to the similarity coefficient, we examined different settings for hyper-

parameters involved in the tuning of the recognition network LSTM, including the

learning rate, batch size, number of hidden dimensions, and number of hidden layers.

The options we considered for each of these hyperparameters is shown in Table 3.2.

A grid search through all of these combinations was too computationally expen-

sive. Thus, when training the KD-AR-HMM-EM model with 5 states, we first fixed

the seed to be 123 and chose a starting configuration for the remaining hyperparam-

eters, then varied each hyperparameter to one of its extreme values to see the effect

of that hyperparameter individually. This allowed us to slightly narrow down the

hyperparameter search space.

For subsequent runs of the model (e.g. for different numbers of states), we varied

the seed and for each seed, we randomly selected values from the narrowed down

search space.
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Chapter 4

Results

Using knowledge distillation, we were able to significantly improve the model from

the baseline to more accurately predict mortality. We adapted the existing AR-

HMM-ADVI models to work on the MIMIC-IV dataset and found that the similarity

constraint helped the model achieve high predictive power for various numbers of

hidden states. However, the model exhibited stability issues when incorporating a

discriminator constraint. We found that the alternative method we developed for

incorporating the similarity constraint, which uses the EM algorithm, was similarly

successful to the ADVI method in learning states that could be used to successfully

predict the final mortality outcome. We also evaluated the model’s performance

on other outcomes, including presence of pulmonary edema, and need for diuretics,

dialysis, or mechanical ventilation. This chapter also conducts exploratory analyses

on the interpretability of the states learned by our models at both the population

level and the individual level. We find that the model learned some states that were

significantly associated with the hospital mortality, which suggests that the states are

potentially clinically meaningful.

4.1 AR-HMM-ADVI

We adapted the existing AR-HMM-ADVI models from [25] to apply them to the

MIMIC-IV dataset, and we ran the models with different numbers of states to see
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Table 4.1: DISC-AR-HMM-ADVI Test AUC Results

Model 2 states 3 states 5 states 10 states
LSTM (Teacher) 0.833
AR-HMM-ADVI (Baseline) 0.500 0.579 0.516 0.653
DISC-AR-HMM-ADVI 0.799 0.693 0.596 0.488
KD-AR-HMM-ADVI 0.783 0.795 0.791 0.792
KD-DISC-AR-HMM-ADVI 0.783 0.788 0.784 0.778

Table 4.2: For the AR-HMM-ADVI models, the table shows the average test AUROC
of the top 3 runs of each model (as determined by validation AUROC) for that number
of states.

if varying the number of states would affect performance. Table 4.1 summarizes

the results from the various models. The baseline AR-HMM-ADVI had AUROCs

ranging from 0.50 to 0.65. Both models that incorporated knowledge distillation

performed much better that the baseline, regardless of the number of states, and

achieved average AUROCs between 0.78 and 0.79. However, as can be seen in the

DISC-AR-HMM-ADVI results, the ADVI algorithm exhibited stability issues when

it came to the discriminator model - although the DISC-AR-HMM-ADVI model had

the highest average test AUROC when using 2 states, the AUROC was much lower

for higher numbers of states.

To examine this stability issue, we looked at the evidence lower bound (ELBO)

metric, which is a lower bound on the log-likelihood and was used to evaluate the

generative ability of the model. The average ELBO from the top 3 seeds of each

experiment are shown in table 4.3. This table confirms that the DISC-AR-HMM-

ADVI model seems to have unstable metrics, with the ELBOs being unreasonably

high compared to the other models. Because of these results, we decided to try a

different approach to incorporating similarity loss in our models; namely, using a

custom AR-HMM model that uses a modified EM algorithm for fitting.
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Table 4.3: AR-HMM-ADVI Test ELBO Results (×106)

Model 2 states 3 states 5 states 10 states
AR-HMM-ADVI (Baseline) -10.8e7 -4.2e7 -9.0e7 -6.0e7
DISC-AR-HMM-ADVI 9.45e3 1.8e7 4.7e7 16.5e7
KD-AR-HMM-ADVI -5.70 -9.52 0.0316 -12.76
KD-DISC-AR-HMM-ADVI -5.92 -9.30 -15.63 -14.52

Table 4.4: This table shows the average test ELBO of the top 3 models (as determined
by validation AUROC) for each category.

4.2 AR-HMM-EM

For our AR-HMM-EM experiments, we looked at results for models with 5 states and

10 states. For each number of states, as a baseline, we first ran the EM model for 50

iterations of E- and M- steps. We tried several seeds, and the results for each of these

seeds can be seen in Tables B.1 and B.2. After trying several seeds and selecting the

baseline model with the highest training and validation log-likelihoods, we continued

training the model with an adjusted algorithm - between the E- and M- steps, we

trained a recognition network to also incorporate the similarity loss. We used this for

up to 20 more iterations of the E- and M- steps. Due to the early stopping mechanism

we had that was based on the average validation AUROC of the recognition network,

most experiments only ran the model with the recognition network for 11 iterations

before stopping. We tried several different seeds and hyperparameter settings for the

recognition network, and chose the best models by looking at the final validation

AUROC and validation log-likelihood.

For this section, most of the figures and tables provided are for one specific KD-

AR-HMM-EM model, which we chose to be the the 10-state KD-AR-HMM-EM model

with the highest validation AUROC. Select results for the 10-state KD-AR-HMM-EM

model with the highest validation log-likelihood can be found in Appendix B.3.
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Table 4.5: Effect of Similarity Coefficient on AUROC and Log-Likelihood (5 states)

AUC𝑣𝑎𝑙 LL𝑣𝑎𝑙 AUC𝑡𝑒𝑠𝑡 LL𝑡𝑒𝑠𝑡 LL𝑡𝑟𝑎𝑖𝑛

LSTM (Teacher) 0.780 N/A 0.833 N/A N/A
AR-HMM-EM Base 0.643 2835237 0.629 2830714 14631833
sim coef = 1e1 0.640 136588 0.581 116903 718746
sim coef = 1e2 0.703 129589 0.748 106958 677687
sim coef = 1e3 0.740 105622 0.803 79266 553452
sim coef = 1e30 0.727 83259 0.768 46291 407369

4.2.1 Mortality Prediction

KD-AR-HMM-EM (5 states)

Much of our hyperparameter tuning was done using 5 states. One of the main hyper-

parameters we wanted to set was the similarity coefficient. To identify the optimal

value of this coefficient, we fixed the seed and other hyperparameters, and trained

the model using different values for the similarity coefficient. Table 4.5 shows the

results from these experiments. An increase in the similarity coefficient corresponds

to an increase in the AUROCs, but only up to a certain point. A coefficient of 1 was

not sufficient for the knowledge from the teacher model to make an impact, so the

AUROC did not improve compared to the baseline. On the other hand, when the

coefficient was too large (1e30), this resulted in a lower log-likelihood and did not

further improve the AUROC when compared to using a coefficient like 1e3.

Furthermore, we found that an increase in the similarity coefficient corresponds

to a decrease in the log-likelihood. Since our goal is to improve the AUROC with-

out affecting the log-likelihood too much, we settled on 1e3 as the ideal similarity

coefficient for subsequent experiments.

After narrowing down the hyperparameter search space, we trained various base-

line models using different random seeds. The best baseline model for 5 states, as

determined by looking at the training log-likelihood, was using a seed of 131 and

gave a test AUROC of 0.642 and a final test log-likelihood of -3454621. The test

log-likelihood of this baseline model was much lower than other models, but this may
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Table 4.6: KD-AR-HMM-EM Best Results (5 states)

Model AUC𝑣𝑎𝑙 LL𝑣𝑎𝑙 AUC𝑡𝑒𝑠𝑡 LL𝑡𝑒𝑠𝑡 LL𝑡𝑟𝑎𝑖𝑛

LSTM (Teacher) 0.780 N/A 0.833 N/A N/A
AR-HMM-EM Base 0.647 2868846 0.642 -3454621 14804169
KD-AR-HMM-EM (AUC) 0.762 131176 0.810 108720 682222
KD-AR-HMM-EM (LL) 0.760 170763 0.795 149569 888422

simply be due to randomness, as the training and validation log-likelihoods for this

model were higher than other baseline models.

After incorporating knowledge distillation on top of this chosen baseline model,

the final model with the highest validation AUROC had a test AUROC of 0.810 and

a test log-likelihood of 108720. The model with the highest validation log-likelihood

had a test AUROC of 0.795 and a test log-likelihood of 149569. Metrics for the

baseline model and the two best models are shown in Table 4.6. KD-AR-HMM-EM

(AUROC) is the model with the highest validation AUROC, and KD-AR-HMM-EM

(LL) is the model with the highest validation log-likelihood.

KD-AR-HMM-EM (10 states)

The best baseline model for the AR-HMM-EM with 10 states used a seed of 125

and gave a test AUROC of 0.639, and a final test log-likelihood of 3438851. After

incorporating the recognition network and trying several seeds, we chose the best

models by looking at the validation AUROC and validation log-likelihood. The model

with the highest validation AUROC had a test AUROC of 0.811 and a test log-

likelihood of 243512. The model with the highest validation log-likelihood had a test

AUROC of 0.802 and a test log-likelihood of 317686. Metrics for the baseline model

and the best final models are shown in Table 4.7.

The following figures are derived from the 10-state KD-AR-HMM-EM model with

the best validation AUROC. Figure 4-1 shows the recognition network losses for the

recognition network with the highest validation AUC, on the last iteration of the

EM algorithm. The total loss, MSE loss, and similarity loss all go down throughout
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Table 4.7: KD-AR-HMM-EM Best Results (10 states)

Model AUC𝑣𝑎𝑙 LL𝑣𝑎𝑙 AUC𝑡𝑒𝑠𝑡 LL𝑡𝑒𝑠𝑡 LL𝑡𝑟𝑎𝑖𝑛

LSTM (Teacher) 0.780 N/A 0.833 N/A N/A
AR-HMM-EM Base 0.675 3441403 0.639 3438851 17805116
KD-AR-HMM-EM (AUC) 0.761 265154 0.811 243512 1384804
KD-AR-HMM-EM (LL) 0.747 337504 0.802 317686 1760088

Figure 4-1: KD-AR-HMM-EM (10 states, model with best validation AUC) - Losses
over epochs for the best recognition network trained in the last iteration of the EM
algorithm

the epochs of training, which suggests that the similarity coefficient of 1e3 was large

enough to be considered in the recognition network training and affect the recognition

network, but small enough that it did not prevent the base MSE loss from decreasing.

Figure 4-2 shows the train AUROC for mortality prediction and the training log-

likelihood over EM iterations. The train AUROC improves slightly in the first few

normal EM iterations but then stays roughly the same until iteration 50 (when the

recognition network is first used). After just one iteration of using the recognition

network that incorporates knowledge distillation, the train AUROC is greatly im-

proved. On the other hand, the train log-likelihood increases significantly for the first

few normal EM iterations and then continues slowly increasing, but drops sharply

once the recognition network is used.
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(a) Train AUROC (b) Train LL

Figure 4-2: KD-AR-HMM-EM (10 states, model with best validation AUC) - Train
AUROC and LL over Iterations

(a) (b) (c)

Figure 4-3: KD-AR-HMM-EM (10 states, model with best validation AUC) - Pairwise
similarity matrices for the test dataset. Each row and column corresponds to a patient
in the test dataset. Brighter colors indicate higher similarity between patients. The
model with the knowledge distillation constraint (b) is more similar to the teacher
model (a) than the baseline before adding the knowledge distillation constraint is (c).

Figure 4-3 shows the pairwise similarity matrices for the test set for the teacher

LSTM model, the KD-AR-HMM-EM that is constrained to be similar to the teacher

model, and the baseline AR-HMM-EM. The constrained model is more similar to the

teacher model than the baseline is, indicating success with the knowledge distillation

technique.
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Table 4.8: KD-AR-HMM-EM (10 states, model with best validation AUC) Results
for Other Outcome Predictions. # pos /# total shows the number of patients with
that final outcome, and the total number of patients remaining in the dataset for that
experiment, respectively. The other numbers in the cell are the test AUROCs for the
trained models.

Model Mortality Edema Dialysis Mech. Vent. Diuretic
# pos/# total 981/7296 911/5034 163/7462 221/4166 970/6413
AR-HMM-EM 0.634 0.643 0.663 0.529 0.671
KD-AR-HMM-EM 0.811 0.619 0.830 0.636 0.587

4.2.2 Other Outcome Predictions

Although the bulk of our work focused on mortality prediction, we were also inter-

ested in our model’s ability to accurately predict other outcomes. We used the same

set of features (state marginals) to train logistic regression models for a variety of

outcomes. For each outcome, we took the existing dataset and removed any patients

who had that particular outcome within the first 24 hours. The final datasets had

the following rates of positive outcomes (i.e. patients who ultimately experienced

that outcome): 13.4% for mortality, 18.1% for edema, 2.2% for dialysis, 5.3% for

mechanical ventilation, and 15.1% for diuretics. Specific counts for each dataset as

well as results from the individual regressions trained to predict each outcome are

summarized in Table 4.8. We were unable to predict pulmonary edema, mechanical

ventilation, or diuretics very accurately, but we achieved a test AUROC of 0.830 when

predicting dialysis, which was much better than the baseline.

4.3 Exploratory Analyses

4.3.1 Population Statistics

State Probabilities

To interpret the states, we divided the test set into patients who lived and patients

who died, and looked at the population-level state probabilities for each cohort. Two

44



(a) AR-HMM-EM (10 states) Baseline
State Probabilities, calculated using ex-
pected states

(b) AR-HMM-EM (10 states) Base-
line State Probabilities, calculated using
Viterbi sequence

Figure 4-4: AR-HMM-EM (10 states) Baseline State Probabilities

methods were used for calculating these state probabilities - one method used the

state marginals outputted by the KD-AR-HMM-EM, while the second method used

the Viterbi algorithm to decide what state a patient would be in at each timestep.

The Viterbi algorithm is a method to get the most likely sequence of hidden states

that would result in the sequence of observations,.

Figure 4-4 shows the state probabilities as outputted by the baseline AR-HMM-

EM after the 50 normal EM iterations, but before incorporating the similarity loss.

Regardless of which method is used to calculate the state probabilities, there does

not appear to be a clear difference between the distributions for the two groups, as

the many of the patients in both groups fall under one state (state 0).

Figure 4-5 shows the state probabilities as outputted by the KD-AR-HMM-EM

after incorporating knowledge distillation. Since it is difficult to see the exact prob-

abilities through the graph, a table with the same probabilities is provided in Table

4.9, along with exact counts for each state predicted by the Viterbi algorithm. When

using the state marginals to calculate probabilities, there does not appear to be a

clear difference between the distributions for the two groups. However, using the

Viterbi algorithm shows some differences between the cohorts - for example, the most

prevalent state for patients who lived was state 5, but the most prevalent state for

patients who died was state 1. This is an improvement from the baseline because we

can identify some differences in state probabilities between the cohorts.
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(a) KD-AR-HMM-EM (10 states) State
Probabilities, calculated using expected
states

(b) KD-AR-HMM-EM (10 states) State
Probabilities, calculated using Viterbi se-
quence

Figure 4-5: KD-AR-HMM-EM (10 states, model with best validation AUC) State
Probabilities

Odds Ratios and p-values

To determine whether or not a state is significantly associated with mortality, we

looked at the odds ratios and p-values for each state. We fitted a logistic regression

on the test set, where the features were the features generated by the KD-AR-HMM-

EM and the labels were the mortality outcomes.

We used univariate logistic regressions to try and isolate the effect of each indi-

vidual state on the outcome. We used two methods of creating features for input

to the regression - one method used the state marginals, while the other used the

Viterbi algorithm to calculate the patient’s probability of being in a state. The state

marginal features were multiplied by 100000, and the Viterbi features were multiplied

100. We did not fit a logistic regression for state 2 as doing so resulted in an ill-fitted

model. We adjusted the p-values using an FDR (False Discovery Rate) adjustment

to account for the fact that we fitted several distinct univariate logistic regressions.

Using the state marginal features, this univariate analysis suggested that all states

were significant, with p-values all < 0.001. Since this seems unreasonable, we do not

include a table of these results here. The univariate analysis using Viterbi features

showed that states 0 and 1 were significantly positively associated with mortality,

while states 3, 5, 7, and 9 were significantly negatively associated with mortality, and

states 4, 6, and 8 had no significant association in either direction. A summary of
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Table 4.9: State Probabilities for KD-AR-HMM-EM (10 states, model with best
validation AUC). These are the same values used to make the graph in Figure 4-5.
For the Viterbi states, the actual count of how many times those states were predicted
across the test set patients is shown in parentheses.

Probability using State Marginals Probability using Viterbi States
State Lived cohort Died cohort Lived cohort Died cohort
0 0.1733 0.1548 0.1400 (2944) 0.1886 (670)
1 0.5798 0.6204 0.2355 (4951) 0.3387 (1203)
2 0.0185 0.0154 0.0065 (136) 0.0003 (1)
3 0.0001 0.0001 0.0060 (126) 0.0023 (8)
4 0.0003 0.0003 0.0245 (515) 0.0163 (58)
5 0.0001 0.0001 0.3676 (7729) 0.2579 (916)
6 0.0001 0.0001 0.1421 (2987) 0.1399 (497)
7 0.0002 0.0001 0.0521 (1095) 0.0386 (137)
8 0.0006 0.0005 0.0021 (45) 0.0017 (6)
9 0.2270 0.2083 0.0236 (496) 0.0158 (56)

the results can be found in Table 4.10.

AR Coefficients and Covariances

Since states 1 and 5 seemed significant in opposite directions, and since we saw

differences in the distributions between cohorts, we compared these two states by

looking at heatmaps for AR coefficients and covariances, as shown in Figures 4-6 and

4-7. Although most parts of the heatmaps look similar, there are a few cells in the

coefficients heatmap that are brighter or differently colored than others.

Simulation of States

We are interested in examining the dynamics between covariates, and how those

dynamics differ among states. We can use our trained KD-AR-HMM-EM model to

simulate the covariates of a patient in a particular state over time. For our simulations,

we simulated the covariates for 34 timesteps. We did not plot the first 10 timesteps,

because the covariates were likely shifting around before reaching dynamics that were

more representative of that state.
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Table 4.10: KD-AR-HMM-EM (10 states, model with best validation AUC), Odds
Ratios and P-values for Univariate Logistic Regressions fitted using Viterbi features.
Significant p-values are bolded.

State Odds Ratio (95% CI) FDR-adj p-value
0 (1.042, 1.082) < 0.001
1 (1.028, 1.051) < 0.001
3 (0.673, 0.945) 0.016
4 (0.913, 1.001) 0.068
5 (0.967, 0.984) < 0.001
6 (0.984, 1.013) 0.842
7 (0.910, 0.982) 0.009
8 (0.773, 1.158) 0.665
9 (0.881, 0.988) 0.027

(a) State 1 AR Coefficients (b) State 5 AR Coefficients (c) Difference between
State 1 AR Coefficients
and State 5 AR Coefficients

Figure 4-6: KD-AR-HMM-EM (10 states, model with best validation AUC), AR
Coefficients for State 1 and State 5

(a) State 1 AR Covariance (b) State 5 AR Covariance (c) Difference between
State 1 AR Covariance and
State 5 AR Covariance

Figure 4-7: KD-AR-HMM-EM (10 states, model with best validation AUC), AR
Covariance for State 1 and State 5
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Figures 4-8 and 4-9 show the simulations of certain covariates, including vitals

and treatments, for 4 selected states (2 high-risk, 1 low-risk, and 1 that was not

significant in either direction). We notice that in general, the high-risk states seem

to have much higher variance in these covariates than the low-risk and neutral states.

This makes sense because we might expect a low-risk or neutral-risk patient to be

more stable, so their vitals and other measurements may not fluctuate as much.

States 0 and 1, which are both high-risk states, seem to exhibit the dynamic where if

the blood pressure drops, the respiratory rate increases, and vice versa, whereas the

other states do not exhibit this trend. An interesting dynamic in State 0 is that when

the blood pressure drops, the bolus fluids increase shortly afterwards, and then the

blood pressure increases again. This likely indicates that doctors observed the drop

in blood pressure and chose to administer more bolus fluids as treatment, and this

was successful, at least initially. We notice that all states exhibit the same inverse

relationship between pH and PCO2. The high-risk states seem to have more variance

in the glucose and creatinine levels.

We also evaluated the significance of the learned states in predicting pulmonary

edema using univariate logistic regressions. As previously seen in Table 4.8, we were

unable to predict pulmonary edema very successfully. Table 4.11 supports these

findings, as only state 0 appeared significant in our regressions. State 0 was positively

associated with the development of pulmonary edema, which matches the observation

that state 0 was also positively associated with mortality.

A similar simulation for the baseline 10-state AR-HMM-EM can be found in Ap-

pendix B as a comparison for the interpretability of the baseline AR-HMM-EM and

constrained KD-AR-HMM-EM models.

4.3.2 Individual Patient Analysis

We compared the trajectories and state assignment of individual patients who lived

vs. those who died in the hospital. One example of such a comparison is shown in

Figure 4-10. This figure shades different states in different colors. The states with

higher risk (i.e. states positively associated with mortality, which are states 0 and
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(a) State 0 (high-risk) (b) State 1 (high-risk)

Figure 4-8: KD-AR-HMM-EM (10 states, model with best validation AUC), simu-
lation of select covariates for States 0 and 1 (high-risk). RR represents respiratory
rate, Cr represents creatinine, and UO represents urine output.
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(a) State 5 (low-risk) (b) State 6 (neutral)

Figure 4-9: KD-AR-HMM-EM (10 states, model with best validation AUC), sim-
ulation of select covariates for States 5 (low-risk) and 6 (neutral). RR represents
respiratory rate, Cr represents creatinine, and UO represents urine output.
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Table 4.11: KD-AR-HMM-EM (10 states, model with best validation AUC), Pul-
monary Edema State Probabilities, Odds Ratios, and P-values for Univariate Logis-
tic Regressions, using Viterbi features. The values under the Pos. Cohort and Neg.
Cohort columns indicate what percentage of the states predicted by the Viterbi al-
gorithm corresponded to that state, for the group with pulmonary edema (positive)
and without pulmonary edema (negative). The significant p-value is bolded.

State Pos. Cohort Neg. Cohort Odds Ratio (95% CI) FDR-adj p-value
0 0.1347 0.1674 (1.271, 2.013) 0.001
1 0.2380 0.2496 (0.925, 1.194) 0.640
2 0.0072 0.0042 (0.306, 1.521) 0.583
3 0.0062 0.0035 (0.053, 1.247) 0.305
4 0.0271 0.0221 (0.525, 1.240) 0.583
5 0.3683 0.3589 (0.895, 1.074) 0.838
6 0.1410 0.1254 (0.754, 1.063) 0.513
7 0.0511 0.0497 (0.653, 1.388) 0.867
8 0.0023 0.0025 (0.172, 8.060) 0.867
9 0.0243 0.0168 (0.274, 0.984) 0.223

1), are colored in shades of red and orange, while the states with lower risk (states

3, 5, 7, and 9) are colored in shades of green. We also plot a few covariates along

with these states. In this example, the patient who lived initially spent some time in

the high-risk states, but later spent most of their time in the low risk (green) states

throughout the 24 hours, while the patient who did not survive the hospital stay

initially spent time in low-risk states, but later on spent most of their time in the

high risk (red and orange) states. This matches the odds ratio analysis, which also

suggested that states 0 and 1 were more common among patients who died, while

states 3, 5, 7 and 9 were more common among patients who lived. Neither patient

was administered fluid boluses during these 24 hours, so we did not plot that value.

The patient who lived saw a decrease in the amount of vasopressors given to them

later on in their stay, whereas the patient who died saw an increase in the amount of

vasopressors administered as well as in their SOFA score. Additionally, the patient

who lived had a relatively stable heart rate and PCO2 value, both of which seemd to

decrease just before the patient entered low-risk states, while the patient who died

saw a big spike in PCO2 and heart rate later on in their stay while they were in
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Figure 4-10: Patient Comparison. States are predicted using the Viterbi algorithm
on the KD-AR-HMM-EM (10 states) model. "Vaso" indicates the amount of vaso-
pressors administered to the patient.

high-risk states.
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Chapter 5

Conclusion

Predicting outcomes for sepsis patients is a challenging problem faced by physicians.

This is due to the dynamic and time-varying nature of the condition, as well as the

many differences between individuals that may cause one patient to have a better

outcome than another. There are a wide variety of factors to consider when trying

to predict a patient’s outcome, such as the recent history of physiological traits of

the patient, how they have responded to any previous treatments, and how similar

patients have fared. Due to the large amount of information to consider in the pre-

diction, machine learning presents itself as a promising tool for this setting. However,

given the critical nature of a healthcare setting, it is important that any model or

algorithm used is interpretable.

In this thesis, we developed a method to learn an interpretable model that can

still predict downstream outcomes with high accuracy. We first evaluated an existing

approach presented in Saeedi et al. on a new dataset, which used ADVI to learn

an AR-HMM, along with a recognition network to incorporate similarity-based con-

straints from a powerful teacher model LSTM [25]. We then developed an alternative

approach - similar to the ADVI model, our model used an LSTM as the teacher

model to provide high predictive power, and used an AR-HMM to learn more inter-

pretable hidden states. However, in our approach, we used the EM algorithm instead

of ADVI to learn the latent states. We also used a recognition network to incorporate

a similarity-based constraint. After developing this model, we evaluated its predic-

55



tive and generative performance, as well as its interpretability. By incorporating the

similarity constraint, we were able to achieve higher predictive power compared to

the baseline. Furthermore, differences in the state distributions between patients who

died and patients who lived suggest that the learned hidden states are interpretable

and can potentially provide meaningful information about patients.

5.1 Discussion & Future Work

The results we provided in this thesis suggest many opportunities for further explo-

ration, some of which are outlined below.

5.1.1 Limitations of Current Analysis

One limitation of our interpretability analysis was our use of univariate analyses

to examine significance of states with respect to the mortality outcome. The odds

ratios we presented are only indicative of correlation, and there could be confounding

variables involved that cause a state to appear significant when it actually is not. In

future work, we should adjust for possible confounders in order to better understand

how states are associated with outcomes. Another limitation was that we used p-

values to determine whether a state was significantly associated with the outcome,

but there are known limitations in how valid p-values are at assessing statistical

significance [7]. Finally, for our individual patient analysis, we only examined two

patients in different categories, but the trends we observed in that analysis may not

hold for all patients.

5.1.2 Further Interpretability Analysis

Although we found some differences in state distributions when using the Viterbi

algorithm to calculate the most likely states of a patient, there was still a lot of overlap

of states between patients who lived and patients who died. While the high predictive

power of the model shows that the model was able to learn these differences, more
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analysis needs to be done to see if we can identify specific covariates that distinguish

between states. Such information would be valuable for physicians, who might learn

new trends between certain covariates and sepsis outcomes that could help them

predict the trajectory of a patient under the current treatment strategy.

5.1.3 Predicting Other Outcomes

We are interested in seeing if the approach we used in this thesis to predict patient

mortality is also successful in predicting other outcomes. In this thesis, we trained the

teacher model to predict one outcome (mortality), and used this teacher model to help

learn the student model (KD-AR-HMM-EM). Thus, the states learned by the KD-

AR-HMM-EM were optimized for mortality prediction. We used these same states

to predict other outcomes, but most of these predictions were not as accurate as the

predictions for mortality. In the future, we would like to train separate teacher models

to predict each individual outcome of interest, and train separate student models

on each corresponding teacher model, then evaluate how the student model that is

trained specifically on that outcome performs when used to predict that outcome.

5.1.4 Predicting Treatment Response

Ultimately, we would like to be able help physicians decide what treatment to give a

patient. Our model is able to accurately predict final outcomes given the patient data

and their treatments, but we would like to extend this model to be able to predict

how a patient might respond to various treatment options, and choose the option

with the best outcomes. This would require causal inference to predict outcomes for

patients under counterfactual strategies.

Thus, one avenue to explore in future work is to combine our work with G-Net,

a model introduced by Li et al. which uses an RNN for a causal inference method

known as g-computation in order to predict responses to both time-varying and dy-

namic treatments [18] [9]. We could first use our KD-AR-HMM-EM to get inter-

pretable states for patients, and then provide those states as input to G-Net to make
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predictions on treatment effects.

In this thesis, we were able to learn states that can be used to have both high

predictive power and greater interpretability. We hope that the work presented in

this thesis will be able to improve treatment outcomes for sepsis patients.
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Appendix A

Data Tables

Table A.1 shows the variables that were used as inputs for both the teacher LSTM

and student AR-HMM models. The vasopressor amount variable measures the total

amount of vasopressors used during that time period. Vasopressors are standardized

by comparing their relative strength to norepinephrine, also known as noradrenaline

or norad. The vasopressors included in this standardization are norepinephrine (or

levophed), epinephrine, vasopressin, phenylephrine, and dopamine. The measure-

ment unit used is mcg/kg/minute, except for vasopressin, which is expressed as

units/minute. The standardization process involves adjusting the dosage rate of each

vasopressor by multiplying it with a scaling constant based on the typical dosing

of each drug. Norepinephrine is typically administered at a dosage range of 0-1

mcg/kg/minute. If multiple vasopressors were used during the same time period, the

combined total dose for each hour is reported.
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Table A.1: MIMIC time-varying variables that were used as inputs to both the teacher
LSTM and student AR-HMM models.

Variable Name Variable Type Units
Heart Rate Continuous beats/min

Diastolic Blood Pressure Continuous mmHg
Systolic Blood Pressure Continuous mmHg
Mean Blood Pressure Continuous mmHg

Minimum Diastolic Blood Pressure Continuous mmHg
Minimum Systolic Blood Pressure Continuous mmHg
Minimum Mean Blood Pressure Continuous mmHg

Temperature Continuous °C
SOFA Score Treated as Continuous N/A

Glasgow Coma Score Treated as Continuous N/A
Platelet Continuous counts/109L

Hemoglobin Continuous g/dL
Calcium Continuous mg/dL

BUN Continuous mmol/L
Creatinine Continuous mg/dL

Bicarbonate Continuous mmol/L
Lactate Continuous mmol/L

Potassium Continuous mmol/L
Bilirubin Continuous mg/dL
Glucose Continuous mg/dL

pO2 Continuous mmHg
SO2 Continuous %
SpO2 Continuous %
pCO2 Continuous mmHg

Total CO2 Continuous mEq/L
pH Continuous Numerical[1,14]

Base excess Continuous mmol/L
Weight Continuous kgs

Respiratory Rate Continuous breaths/min
Total Fluids Continuous mL
Urine Output Continuous mL

Total Urine Output Continuous mL
Fluid Bolus Continuous mL

Vasopressor Amount Continuous mcg/kg/min
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Table A.2: MIMIC time-varying variables that were only used for the teacher LSTM
model, and not for the student AR-HMM models.

Variable Name Type Units
Minimum Mean Blood Pressure from Baseline Continuous mmHg

Glasgow Coma Score - Motor Ordinal N/A
Glasgow Coma Score - Verbal Ordinal N/A
Glasgow Coma Score - Eye Ordinal N/A

O2 requirement level Ordinal [0,6] N/A
Pulmonary Edema Indicator Binary N/A

Cumulative Edema Binary N/A
Diuretics Indicator Binary N/A
Diuretics Amount Continuous mg
Dialysis Indicator Binary N/A

Mechanical Ventilation Indicator Binary N/A
Bolus Indicator Binary N/A

Vasopressor Indicator Binary N/A

61



62



Appendix B

Additional Results

B.1 Baseline AR-HMM-EM Results for Different Seeds

This section provides results for the baseline experiments that we ran with different

seeds. Figure B.1 shows the different seeds we tried for the 5-state baseline AR-HMM-

EM model and their metrics, and Figure B.2 shows the different seeds we tried for

the 10-state baseline AR-HMM-EM model and their metrics.

B.2 Baseline 10-state AR-HMM-EM Exploratory Anal-

yses

This section analyzes the interpretability for the baseline 10-state AR-HMM-EM

model, which came from running the normal EM steps for 50 iterations. We con-

ducted an odds ratio analysis using univariate logistic regressions with the Viterbi

features. We multiplied the features by 100, and the results are shown in Table B.3.

The results suggest that state 0 was negatively associated with mortality, and states

2, 3, 6, and 7 were positively associated with mortality.

We simulated covariates for select states using the baseline AR-HMM-EM, the

same way we simulated states for the KD-AR-HMM-EM in Section 4.3.1. Figure B-1

shows the simulation for state 3, which was significantly associated with mortality,
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Table B.1: AR-HMM-EM (5 states) Baseline Results. This table shows results we got
for the baseline AR-HMM-EM model with 5 states, using 10 different random seeds.
We selected the best model based on the model with the highest train and validation
log-likelihoods, which are in bold.

Seed AUC𝑣𝑎𝑙 LL𝑣𝑎𝑙 AUC𝑡𝑒𝑠𝑡 LL𝑡𝑒𝑠𝑡 LL𝑡𝑟𝑎𝑖𝑛

123 0.651 2808492 0.634 1768968 14499823
124 0.646 2808952 0.636 -64675 14497745
125 0.651 2811893 0.632 2805773 14509213
126 0.640 2785814 0.628 2784795 14392350
127 0.648 2791970 0.646 1794463 14415593
128 0.663 2801962 0.643 1978155 14462727
129 0.664 2792485 0.650 -531065 14415111
130 0.652 2810267 0.648 2806297 14495521
131 0.647 2868846 0.642 -3454621 14804169
132 0.649 2742988 0.626 1608935 14175382

Table B.2: AR-HMM-EM (10 states) Baseline Results. This table shows results we
got for the baseline AR-HMM-EM model with 10 states, using 10 different random
seeds. We selected the best model based on the model with the highest train and
validation log-likelihoods, which are in bold.

Seed AUC𝑣𝑎𝑙 LL𝑣𝑎𝑙 AUC𝑡𝑒𝑠𝑡 LL𝑡𝑒𝑠𝑡 LL𝑡𝑟𝑎𝑖𝑛

123 0.675 3212834 0.633 255984 16612384
124 0.671 3357462 0.639 3139094 17395658
125 0.675 3441403 0.639 3438851 17805116
126 0.668 3193904 0.617 1097147 16510295
127 0.673 3187565 0.632 4132 16483110
128 0.673 3290026 0.616 1946073 17027327
129 0.675 3210484 0.635 3206945 16600615
130 0.673 3215810 0.625 -807511 16636914
131 0.694 3286547 0.644 3283355 16995983
132 0.671 3188060 0.631 3182254 16476596
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Table B.3: Baseline AR-HMM-EM (10 states), Odds Ratios and P-values for Uni-
variate Logistic Regressions fitted using Viterbi features. Significant p-values are
bolded.

State Odds Ratio (95% CI) FDR-adj p-value
0 (0.970, 0.988) < 0.001
1 (0.967, 1.045) 0.928
2 (1.090, 1.215) < 0.001
3 (1.026, 1.085) 0.001
4 (0.988, 1.014) 0.928
5 (0.897, 1.067) 0.896
6 (1.023, 1.105) 0.003
7 (1.025, 1.065) < 0.001
8 (0.974, 1.108) 0.415
9 (0.968, 1.036) 0.928

and Figure B-2 shows the simulations for state 0, which was negatively associated

with mortality, and state 4, which had no significant association in either direction.

We can see that for the low-risk and neutral states, several of the covariates such

as PCO2, pH, lactate, creatinine, and glucose did not seem to vary at all, whereas

these values seemed to fluctuate in the high-risk state. The flat lines for many of

these covariates suggests that the baseline model did not learn enough to be able to

simulate these covariates well. Although the baseline model had higher log-likelihood

than the KD-AR-HMM-EM, the baseline simulations do not seem as reliable, so the

interpretability of the KD-AR-HMM-EM seems better.

B.3 KD-AR-HMM-EM, 10 states, Model with best

validation log-likelihood

This section provides more detailed results and figures for the 10-state KD-AR-HMM-

EM that had the highest validation log-likelihood. This model had a test AUROC

of 0.802 and a test log likelihood of 317686. The recognition network for this model

was trained with a seed of 130, a learning rate of 0.1, a batch size of 64, a hidden
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(a) State 3 (high-risk)

Figure B-1: Baseline AR-HMM-EM (10 states), simulation of select covariates for
State 3 (high-risk). RR represents respiratory rate, Cr represents creatinine, and UO
represents urine output.
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(a) State 0 (low-risk) (b) State 4 (neutral)

Figure B-2: Baseline AR-HMM-EM (10 states), simulation of select covariates for
States 0 (low-risk) and 4 (neutral). RR represents respiratory rate, Cr represents
creatinine, and UO represents urine output.
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Figure B-3: KD-AR-HMM-EM (10 states, model with highest validation LL) - Losses
over epochs for the best recognition network trained in the last iteration of the EM
algorithm

dimension of 8, and 4 hidden layers.

Figure B-3 shows the recognition network losses for the recognition network with

the highest validation AUC on the last iteration of the EM algorithm. Although the

total loss and similarity loss go down throughout the epochs of training, the MSE

loss between the true expected states and the predicted expected states increases.

This differs from the graphs we saw with the 10-state KD-AR-HMM-EM model in

Figure 4-1. In this case, it appears that the similarity coefficient of 1e3 caused the

recognition network to focus too much on lowering the similarity loss, so it ignored

the MSE loss.

Figure B-4 shows the train AUROC for mortality prediction and the training

log-likelihood over EM iterations. The graphs are similar to the results for the KD-

AR-HMM-EM with the highest validation AUROC in 4-2, where the train AUROC

increases significantly after incorporating knowledge distillation, but the train log-

likelihood drops.

Figure B-5 shows the pairwise similarity matrices for the test set for the teacher

LSTM model, the 10-state KD-AR-HMM-EM with the highest validation log-likelihood

that is constrained to be similar to the teacher model, and the baseline AR-HMM-
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(a) Train AUROC (b) Train LL

Figure B-4: KD-AR-HMM-EM (10 states, model with highest validation LL) - Train
AUROC and LL over Iterations

(a) (b) (c)

Figure B-5: KD-AR-HMM-EM (10 states, model with highest validation LL) - Pair-
wise similarity matrices for the test dataset. Each row and column corresponds to
a patient in the test dataset. Brighter colors indicate higher similarity between pa-
tients. The model with the knowledge distillation constraint (b) is more similar to
the teacher model (a) than the baseline before adding the knowledge distillation con-
straint (c).

EM. Similar to the KD-AR-HMM-EM model with the best validation AUROC, we

see that the constrained model is more similar to the teacher model than the baseline,

indicating success with the knowledge distillation technique.

B.3.1 Other Outcome Predictions

Table B.4 shows how this model performed at predicting other outcomes. Similar to

the model with the best validation AUROC, we were able to predict dialysis with a
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Table B.4: KD-AR-HMM-EM (10 states, model with highest validation LL) - Results
for Other Outcome Predictions. # pos /# total shows the number of patients with
that final outcome, and the total number of patients remaining in the dataset for that
experiment, respectively. The other numbers in the cell are the test AUROCs for the
trained models.

Model Mortality Edema Dialysis Mech. Vent. Diuretic
# pos/# total 981/7296 911/5034 163/7462 221/4166 970/6413
AR-HMM-EM 0.634 0.643 0.663 0.529 0.671
KD-AR-HMM-EM 0.811 0.583 0.805 0.607 0.580

high AUROC of 0.805, but predictions for other outcomes were less successful.
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