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Abstract

One of the central goals of quantum optics is the generation and control of quantum
states of light. Chief among these states are Fock states, the fundamental eigen-
states of the electromagnetic Hamiltonian with a perfectly-defined photon number.
Decades of research have been devoted to producing Fock states, but no known source
can produce Fock states at macroscopic intensities and optical wavelengths. Such a
source would revolutionize applications ranging from all-optical quantum information
processors to quantum sensing far below the shot noise limit. Here, I describe two
projects related to the development of quantum states of light, focusing on Fock state
sources. First, I demonstrate an improved characterization of single photon emit-
ters (SPEs) in hexagonal boron nitride (hBN) at optical wavelengths. Specifically,
I demonstrate how one can extract information about electron-phonon coupling in
SPEs from photoluminescence spectra in order to characterize fidelity in generating
𝑁 = 1 Fock states. Second, I consider methods for generating 𝑁 ≫ 1 Fock states.
I describe a novel method to generate highly intensity-noise squeezed states of light
and demonstrate the feasibility of their production on existing semiconductor lasers.
This method combines nanophotonics and nonlinear optics to generate photonic dis-
sipation (“nonlinear dispersive loss”) that depends nonperturbatively on the photon
number itself. This allows unprecedented squeezing of the intracavity photon number
distribution, approaching Fock states of millions of photons. I provide a thorough
analysis of intensity and phase noise in these semiconductor lasers and propose real-
istic platforms amenable to the effects described here.
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Title: Professor of Physics
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Chapter 1

Introduction

One of the main goals of quantum optics as a field is to generate and control quantum

states of light. This is an intriguing objective both from a fundamental physics

point of view as well as from an applied perspective. Quantum states of light do

not naturally occur and are often destroyed with the slightest presence of noise or

loss, but their potential in everything from optical quantum computers to enhanced

biosensors is tantalizing [4]. I provide three examples of quantum light and the

potential applications they may unlock:

1. Squeezed states. In the family of squeezed states, the uncertainty in one ob-

servable reduces at the expense of the other, while still maintaining Heisenberg’s

uncertainty principle. A practical example of such a pair of variables is that

of photon number (amplitude) and phase. States of light squeezed in photon

number promise numerous applications in quantum information and sensing,

allowing, for example, signal detection below the shot noise limit [4]. In the

limit of infinite number squeezing, one approaches a so-called Fock state, an

energy eigenstate of the electromagnetic field Hamiltonian with perfectly de-

fined photon number 𝑛. This state can be used to realize numerous quantum

computing protocols that require operations on photon number, such as bo-

son sampling [5]. In the area of sensing, phase-squeezed vacuum has already

been employed by LIGO to improve phase sensitivity to gravitational waves
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[6]. Photon number-squeezed quantum sources of light could enable below-shot

noise sensing and metrology.

2. Superposition and entangled states. The notion of superposition states is

a well-known manifestation of quantum mechanics often exemplified by the fa-

mous Schrodinger cat thought experiment. Superposition and entangled states

of light, such as a superposition of Fock states, is immensely valuable to real-

izing logic gates at the single-photon level in all-optical quantum computers.

A reliable source of such states would revolutionize quantum optical informa-

tion processing and pave the way towards significant advances over classical

computers [7]. Relatedly, numerous protocols in quantum cryptography rely on

entangled photon states for secure encryption and decoding of quantum infor-

mation, unachievable by classical methods [8].

3. Entangled photon-matter hybrid quantum states. Strongly coupled pho-

tonic quasiparticles, such as polaritons, are entangled light-matter states that

possess both photonic and matter-like character [9]. The strong coupling regime

of light-matter interactions has enabled incredible applications, from ultralow

threshold polaritonic lasers to modified chemical kinetics to quantum batter-

ies employing superabsorption. Polaritons emerging from ultrastrong coupling

(USC) between light and matter may enable the unprecedented ability to engi-

neer material properties, including superconductivity and optical nonlinearity.

USC has garnered significant recent theoretical and experimental interest and

is actively being explored through multiple lenses, from quantum chemistry to

quantum optics.

Despite these promising applications, the reliable production of many quantum

states of light remains quite difficult and is an area of active research. In this thesis,

I describe my undergraduate research in developing and characterizing sources of

quantum light, focusing on the generation of Fock states and highly intensity noise-

squeezed states.
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Chapter 2 describes my work at Caltech in characterizing single photon emission

in hexagonal boron nitride, a 2D van der Waals material. I demonstrate how hBN can

host extraordinarily efficient color centers (defects) that emit single photons (𝑁 = 1

Fock states) and discuss practical limitations on this efficiency due to electron-phonon

coupling.

Chapter 3 describes my work at MIT in developing the theoretical foundations and

proposing experimental platforms for a laser capable of generating highly intensity

noise-squeezed states of light approaching Fock states with millions of photons. This

could pave the way to the first “Fock laser,” a source of optical/near-IR Fock states

at macroscopic intensities.

Finally, in Chapter 4, I conclude and discuss a few exciting avenues that my work

has opened in the direction of quantum light generation

21
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Chapter 2

Isotopic Hexagonal Boron Nitride

Single Photon Emitters

2.1 Introduction

Single-photon quantum emitters have emerged as promising candidates for applica-

tion in quantum information, photonics, and sensing, among other fields, exhibiting

important quantum effects such as photon antibunching [10, 11]. To this end, solid-

state network covalent materials such as diamond, silicon carbide, gallium nitride,

zinc oxide, and boron nitride (BN) have been engineered with atomic defects known

as “color centers” that act as single-photon emitters [12, 13, 14, 15]. However, to

be viable for on-chip integration into photonic devices, 2D layered van der Waals

materials are preferred. Furthermore, it is important that the material shows high

brightness at room temperature. For these reasons, hexagonal boron nitride (hBN)

has recently garnered much interest as a bright single-photon quantum emitter in the

visible range at room temperature [16].

Ideally, single-photon emitters should exhibit minimal coupling to phonons (quan-

tum lattice vibrational modes) within a material, so that phenomena such as line

broadening (acoustic phonons) and the presence of phonon side bands (optical phonons)

are suppressed [17]. In this case, in the absence of line broadening effects due to spec-

tral diffusion and phonon coupling, the emitter is only Fourier transform limited
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by the uncertainty principle, making it suitable for multiple quantum applications.

Future work involves engineering hBN quantum emitters as building blocks for a

quasi-noiseless optical amplifier, whereby single-photon stimulated emission is capa-

ble of amplifying very weak optical signals by adding photons coherently and thus

increasing the signal to noise ratio [18]. Prior work has used conductive substrates

to reduce the noise introduced by spectral diffusion, but the temperature-dependent

effect of phonon noise (which is negligible at cryogenic temperatures but dominates at

room temperature) remains and has been difficult to address [19]. The main reason

for this is that different emitters within the same crystal can have different phonon

side band profiles, so that phononic effects can vary considerably between samples.

The importance in identifying electron-phonon coupling in hBN emitters is twofold.

Through the Huang-Rhys factor, one can probe correlations with ZPL broadening and

PSB profiles. Through the PDOS, information about coupling to both lattice and

local phonon modes can be extracted. Two key measures for doing so are the Debye-

Waller and Huang-Rhys factors. The former is well-characterized for hBN and reflects

the relatively high amount of spectral energy density that lies in the zero-phonon line

compared to phonon side bands. The latter more accurately describes emitter-phonon

coupling strength by measuring the displacement between ground and excited elec-

tronic states due to the coupling. Figure 2-1 provides an overview of the detection of

single-photon emission and the manifestation of electron-phonon coupling.

2.2 Methodology

2.2.1 Theoretical fit

Photon-mediated transitions in a material like hBN are complicated by electron-

phonon coupling, which results in so-called phonon side bands (PSB) in the photolu-

minescence (PL) spectrum of the material, shifted redward relative to the zero-phonon

line (ZPL) that does not feature an exchange of phonons. To quantify the strength

of the ZPL, I used a fitting procedure involving the Huang-Rhys factor 𝑆HR, which
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quantifies the average number of phonons emitted in a transition (𝑆HR ≈ 0 if the

zero-phonon line dominates the PL spectrum). The theory and application of this

procedure to defects in diamond have been reported previously [20, 21, 22]. The

free parameters in the fit are the central energy and FWHM of the ZPL, which is

modeled by the corresponding Lorentzian 𝐼0(𝐸), 𝑆HR, and the one-phonon spectral

distribution 𝐼1(𝐸) which gives the probability that a phonon of energy 𝐸 is emitted,

increasing the energy of the lattice surrounding the defect (the function is also defined

for 𝐸 < 0, corresponding to phonon absorption). The fitting function is summarized

by

𝐿(𝐸) = 𝑒−𝑆HR𝐼0(𝐸) + 𝐼0(𝐸)⊗

(︃∑︁
𝑛

𝑒−𝑆HR
𝑆𝑛
HR

𝑛!
𝐼𝑛(𝐸)

)︃
, (2.1)

where

𝐼𝑛(𝐸) = 𝐼1(𝐸)⊗ 𝐼𝑛−1(𝐸). (2.2)

Here, 𝐿(𝐸) is directly determinable experimentally from the PL spectrum via

𝐿(𝐸) = 𝑆(𝐸)/𝐸3. (2.3)

The division by 𝐸3 is necessary to normalize out the effect of spontaneous emission.

This procedure has shown excellent fits even for spectra with broad ZPLs and multiple

phonon side bands. It also enables us to extract 𝑆HR, to quantify the efficiency of

hBN emitters, as well as the phonon density of states 𝑔(𝐸), which is directly related

to 𝐼1(𝐸) via

𝐼1(𝐸) ∝ (𝑛(𝐸) + 1)
ℏ3𝑔(𝐸)

𝐸2
. (2.4)

The phonon density of states is difficult to obtain directly by experiment, so this

method provides an excellent way to learn about both local and global vibrational

modes that couple strongest to defect-site electrons.
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Fitting parameters

In addition to the Huang-Rhys factor 𝑆HR, modeling the ZPL as a (normalized)

Lorentzian introduces two additional degrees of freedom. The last fitting parameter

is the function 𝑔(𝐸), or equivalently 𝐼1(𝐸). I explore two approaches to parametrizing

this function:

1. discretizing 𝑔(𝐸) with some step size 𝑑𝐸 ≈ 5 meV and up to some maximum

energy 𝐸max ≈ 200 meV (beyond which there are no more theoretically predicted

peaks in the PDOS for hBN), treating all discrete points as fitting parameters

and

2. treating 𝐼1(𝐸) as a sum of 𝑛 Lorentzians, where 𝑛 ≤ 5 is typically chosen.

The latter greatly reduces the number of fitting parameters (and thus also the like-

lihood of overfitting) while still maintaining a low reduced chi-squared value. Both

methods allow extraction of 𝑆HR and the ZPL parameters to a fairly high accuracy,

but (2) may allow more accurate estimation of the energies of phonon modes to which

electrons couple most strongly since it is not restricted by discretization. It is also

possible to model 𝑔(𝐸) as a sum of Lorentzians instead (roughly corresponding to

peaks in the PDOS), but I find that the fitting is considerably slower and not as

good, converging on local optima.

The inclusion of 𝐸max in the discretized-based fit is also somewhat restrictive

(𝑔(𝐸) is padded outside of the range [0, 𝐸max]). If I were to neglect it and use the

maximum phonon energy defined by the dataset, a coarser resolution 𝑑𝐸 would be

necessary to prevent overfitting. This is not a problem for the Lorentzian-based fit. I

do sometimes see peaks in the predicted PDOS from this method above 220 meV, but

these are attributed to emission of multiple phonons whose energies are seen as lower-

energy peaks in the PDOS. These higher-energy peaks are trimmed when reporting

the one-phonon PDOS in the range [0, 𝐸max].

Constraints sometimes need to be imposed to obtain physically reasonable fits. In

particular, for spectra with lower Debye-Waller factors and more prominent PSBs,

it is necessary to have 𝑔(𝐸)
𝐸2 → 0 as 𝐸 → 0 to enforce consistency with deformation
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potential coupling at low phonon energies. Without this constraint, the goodness

of fit is not compromised, but bunching of 𝐼𝑛 for 𝑛 > 0 near the ZPL is observed,

yielding an artificially high 𝑆HR. To enable faster fitting, I also sometimes fix two

modes to be fit around 165 and 195 meV, corresponding to well-known longitudinal

optical (LO) modes.

2.2.2 Experimental protocol

Isotopic hBN crystals are exfoliated onto a PDMS silicone substrate and subsequently

transferred to a silicon/silicon dioxide chip at 80∘C. Defects are introduced in the

crystal by annealing in a vacuum chamber at temperature 850∘C and pressure 1.2

torr, with argon gas flow rate 300 mL/min. Microscopy is used to characterize the

crystal at each stage of this process.

The crystals are then characterized optically using confocal microscopy and pho-

toluminescence (PL) spectroscopy. The latter involves excitation with a 532 nm

laser. Scans across regions of the sample are performed using a fast scanning mir-

ror (FSM). Once regions with candidate single-photon sources are discerned from

the PL maps, atomic force microscopy (AFM) is used to perform thickness measure-

ments of the crystal in these regions and the single-photon source PL spectrum is

collected. Follow-up 𝑔2 correlation measurements can be used to confirm the single-

photon sources. The collected functions 𝑔2(𝜏) are expected to show a dip at 𝜏 = 0,

characteristic of the antibunching property of single-photon emission.

2.3 Results

Before performing experiments, sample exfoliated hBN datasets were fitted using the

Huang-Rhys procedure. Figure 2-2 shows fits and extracted PDOS for the same sam-

ple at two different temperatures. Thermal broadening of the ZPL due to quadratic

electron-phonon coupling is observed. I also see that overall agreement in the position

of peaks in the PDOS is seen for the Lorentzian-based and discretized-based methods,

with some discrepancies attributed to overfitting in the latter method.
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2.3.1 Isotopic hBN optical characterization

Optical characterization of nine hB10N and three hB11N SPEs was performed. Con-

focal microscope images and integrated PL maps of two sample crystals are shown in

Figure 2-3. The fitted PL spectra and extracted PDOS for two emitters are shown in

Figure 2-4. A fit involving Lorentzian-based 𝐼1(𝐸) was not performed for the hB11N

emitter because of the prediction of an unphysically broad peak around 200 meV.

This can still be seen for the discretized-based fit in Figure 2-4d. Further constraints

on the fit will be implemented to remove this artifact.

2.3.2 Phonon density of states

The phonon density of states (PDOS) for isotopic hBN has previously been deter-

mined using density functional theory (DFT), as shown in Figure 2-5a [3]. Peaks in

the PDOS correspond to global in-plane and out-of plane optical and acoustic phonon

modes throughout the lattice. The peaks at ≈ 165 meV and ≈ 195 meV are in-plane

longitudinal optical (LO) modes for which I observe strong coupling for most emit-

ters (including those shown above). Figure 2-5b shows the experimentally-predicted

PDOS for hB10N and hB11N obtained by averaging over all available emitters using

the discretized-based fit. An analogous plot will be obtained for the Lorentzian-based

fitting method.

Given the resolution of the discretized function 𝑔(𝐸) was 5 meV, approximately

the largest observable shift in corresponding phonon modes between the two isotopic

varieties of hBN in Figure 2-5a, and the small sample size thus far, I cannot discern

the expected shift in phonon modes (particularly LO modes around ≈ 165 meV and

≈ 195 meV). Local strain and other effects can induce variations about these two

energies, giving another reason for why a larger sampling size is necessary before

taking an appropriate statistical average.
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2.4 Outlook

I have demonstrated the application of the Huang-Rhys fitting method to isotopic

hBN single-photon emitters, obtaining excellent fits to experimental PL spectra and

extracting useful parameters governing electron-phonon coupling, including ZPL FWHM,

Huang-Rhys factor, and predicted PDOS. The extracted PDOS demonstrates strong

coupling to lattice LO phonon modes at ≈ 165 meV and ≈ 195 meV, as expected

from previous work [14].

I hope to vastly increase the sample size for isotopic hBN SPEs, as this will allow

more accurate extraction of the energies of phonon modes (both local and global)

that induce strongest coupling. Furthermore, I would like to test the hypothesis of

theoretically-predicted shifts in the aforementioned LO modes between the two iso-

topes. The largest shift occurs for high-energy LO modes and requires a resolution of

≤ 5 meV [3]. Other predictions I hope to test include ZPL broadening of naturally-

occurring hBN due to its mass impurity, broadening due to stronger coupling to

acoustic phonons, and shifts in the energies of phonon modes due to variations in

crystal thickness. I envision that larger sample sizes will also allow extraction of cor-

relations between ZPL FWHM, Huang-Rhys factor, and PDOS amplitudes indicative

of strength of electron-phonon coupling.

Future experimental steps include collection of PL spectra for isotopic samples at

varying temperatures, to examine temperature dependence of the Huang-Rhys factor

and PDOS, as well as collection of PLE spectra. The latter provides another way to

estimate the Huang-Rhys factor via the Stokes shift and could provide finer resolution

of the PDOS.

Overall, this method has provided a convenient way to probe electron-phonon

coupling and phonon density of states via a tabletop optical experiment, without the

use of complicated experimental methods such as neutron scattering. In the long

term, I hope to use this method to probe conclusive signatures of the structure of

the color center and even engineer better emitters by suppressing coupling to the

strongest phonon modes.
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(a) (b)

(c)

Figure 2-1: (a): Excitation of the color center by a 532 nm laser and resulting photolu-
minescence at 600 nm [1]. (b): Typical antibunching dip in 𝑔2(𝜏) correlation function
at 𝜏 = 0, indicative of single-photon emission [1]. (c): Non-radiative transitions ac-
companying photoluminescence process. These correspond to lattice relaxation and
result in phonon emission, which is quantified by the Huang-Rhys factor and the re-
lated Stokes shift [2].
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(a) (b)

(c) (d)

Figure 2-2: Fits to sample exfoliated hBN PL spectra collected at (a) 30∘C (left) and
(b) 100∘C (right). Their corresponding predicted PDOS (using both discretized 𝑔(𝐸)
and Lorentzian-based 𝐼1(𝐸)) are shown in figures (c) and (d) respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2-3: (a), (b): Optical microscope images of hB10N and hB11N (respectively)
prior to collection of PL spectra. Approximate laser location shown, not to scale. (c),
(d): Corresponding confocal microscope images with excitation laser shown. Diffrac-
tion results in a beam size of ≈ 1 micron. (e), (f): Corresponding 20 µm× 20 µm PL
maps. The laser in figures (c) and (d) are initially centered at (0, 0) in maps (e) and
(f). Locations of SPEs are indicated by colored circles.
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(a) (b)

(c) (d)

Figure 2-4: (a), (b): Fitted PL spectra for the SPEs indicated by the red and orange
circles in Figures 2-3e and 2-3f. (c), (d): Corresponding PDOS for these two emitters.

(a) (b)

Figure 2-5: (a): Phonon dispersion curves and PDOS for hB10N (blue) and hB11N
(red), as calculated in [3]. (b): Experimental predictions of PDOS for isopic hBN
obtained by averaging the PDOS over all emitters.

33



34



Chapter 3

Semiconductor “Fock” Lasers

The content of this chapter is taken largely from my first author preprint last year

[23].

3.1 Introduction

The generation of quantum states of light has long been a milestone of quantum

optics. An example of such states are squeezed states, in which the uncertainty in

one observable reduces at the expense of the other, An example of such variables are

number and phase. States of light squeezed in photon number promise numerous

applications in quantum information and sensing, allowing, for example, signal de-

tection below the shot noise limit [4, 24]. In the limit of infinite number squeezing,

one approaches a so-called Fock state, an energy eigenstate of the electromagnetic

field Hamiltonian with a perfectly defined photon number 𝑛. In addition to their im-

portance as fundamental quantum states of light, Fock states can be used to realize

numerous quantum computing protocols that require operations on photon number

(e.g., photon number subtraction and boson sampling) [25]. Thus, many applications

would be aided by the generation of Fock or other highly number squeezed states.

Despite these potential rewards, macroscopic Fock and near-Fock states are inher-

ently challenging to produce. The main reason for this is that there is a general lack

of nonlinear mechanisms which selects specifically for 𝑛 photons, especially where 𝑛
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may be large. Moreover, most highly quantum states of light are difficult to maintain,

due to the deleterious effects of loss.

To address these issues, the physical mechanism of nonlinear dispersive loss has

been recently introduced as a potential new method to create “Fock” lasers, which pos-

sess steady state photon number distributions approaching macroscopic Fock states

[26]. This phenomenon relies critically on the ability to simultaneously harness strong

optical nonlinearities and low background loss (high 𝑄 cavities). Although the fun-

damental phenomenology of this effect has been developed, there are still large out-

standing questions about potential platforms for realizing these new lasers.

One platform of potential interest for lasers which create strongly intensity squeezed

light are semiconductor lasers. Semiconductor lasers have become ubiquitous due to

their compact form factor, ease of electrical pumping, and wide gain bandwidths.

There has already been considerable work on the topic of reducing noise in semi-

conductor lasers. The earliest methods for generating intensity-squeezed light with

these devices involved exploiting the sub-shot noise regime of space charge limited

current in diodes [27, 28]. In these demonstrations, reduced photon number noise and

increased phase noise were obtained in constant current-driven semiconductor lasers.

However, reducing pump noise was shown to reduce intensity noise by at most a few

dB. Since these early works, attempts have been made to combine pump noise sup-

pression with optical feedback using amplitude-phase decorrelation [29, 30, 31]. Still,

relative intensity noise suppression did not surpass 10 dB, was limited by the linewidth

enhancement factor 𝛼𝐿, and only appreciable for frequencies below the relaxation os-

cillation frequency. Because these methods achieve non-negligible squeezing in only

part of the intensity noise spectrum, the total variance in photon number is weakly

squeezed at best. Building off constant current driving, recent theoretical work has

also considered exploiting pump electron antibunching (“quiet” pumping) to yield in-

tensity noise squeezing [32]. However, significant squeezing will require sources of

very strongly antibunched electrons and likely nanoLED platforms with near-unity

spontaneous emission factors (incoherent output). To use semiconductor lasers in

on-chip quantum sensing far below the shot noise limit and in quantum computing
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protocols, enhanced squeezing is warranted.

Here, I show how semiconductor lasers with a strong and frequency dependent

outcoupling could be used to create strongly intensity squeezed light with broadband

squeezing of 10 dB or more below the shot noise limit. Additionally, I show that

semiconductor lasers with strong carrier nonlinearities in conjunction with dispersive

loss can exhibit a new kind of carrier bistability. I show how strong carrier nonlinearity

can drastically impact laser steady state behavior, and also show how strong noise

reduction can still be achieved even in the presence of this effect. Semiconductor

lasers are a strong candidate platform to realize these effects due to their ability to

sustain wavelength modulation owing to wide gain bandwidth and also possibly due

to strong nonlinearities owing to smaller active regions like quantum wells. They are

also amenable to on-chip integration with optical elements such as low loss resonators,

photonic crystals, and lithium niobate optics, making them suitable for potential

applications in quantum information and sensing [33].

3.2 Nonlinear dispersive loss and the concept of a

“Fock laser”

In this section, I introduce and describe the operation of a “Fock laser” which can

produce laser cavity states far below the shot noise limit, even approaching Fock

states in extreme cases. The essential elements of a Fock laser are: (a) a pumped

gain medium, (b) Kerr nonlinearity which gives the laser cavity an intensity dependent

frequency shift, and (c) a frequency dependent outcoupling mechanism which gives

the laser cavity a frequency dependent loss rate (Fig. 1a).

I first describe how under the right conditions, the combination of Kerr nonlin-

earity and frequency dependent loss lead to a laser cavity with an effective inten-

sity dependent loss that controls the quantum state of light produced by the laser.

Consider the cavity architecture shown in Fig. 1a, but without any gain medium.

Additionally, I focus on a single cavity mode, with annihilation operator 𝑎. As is
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well known, a cavity containing a Kerr nonlinearity develops an intensity dependent

resonance frequency due to the intensity dependent index of the Kerr material. More

specifically, the resonance frequency takes the form 𝜔(𝑛) = 𝜔0(1 − 𝛽𝑛), where 𝜔0 is

the bare cavity frequency, and 𝛽 is a dimensionless per-photon nonlinearity.

In addition to this Kerr nonlinearity, the cavity contains a frequency dependent

outcoupling mirror characterized by the complex transmission amplitude coefficient

𝑡(𝜔) (associated with the intensity transmission coefficient 𝑇 (𝜔) ≡ |𝑡(𝜔)|2). This

frequency dependence can come from, for example, a Bragg reflector, or a Fano reso-

nance which gives a Lorentzian reflectivity spectral profile. This frequency dependent

outcoupling results in a corresponding frequency dependent damping rate in the cav-

ity. Assuming 𝑡 ≪ 1, the frequency dependent damping rate of the cavity is given as

𝜅(𝜔) ≈ FSR · 𝑇 (𝜔).

When combined, the intensity dependent resonance frequency and frequency de-

pendent dissipation give the cavity mode an effective intensity dependent dissipation.

The one critical assumption for this description is that the temporal response of the

frequency dependent mirror is fast compared to the round trip time of the cavity. This

corresponds to an adiabatic limit in which the loss rate is able to near-instantaneously

follow shifts in the cavity frequency caused by the Kerr nonlinearity. When these as-

sumptions are fulfilled, the cavity field is subject to an effective intensity dependent

damping rate 𝜅(𝑛). Sharply frequency dependent reflectivity profiles enable the dis-

sipation rate 𝜅(𝑛) to take on forms which are highly nonperturbative in 𝑛, making

this type of nonlinear dissipation fundamentally different than the types of nonlinear

dissipation realized by multi-photon absorption. The fact that loss can vary sharply

with photon number is fundamental to enabling the strong laser noise condensation

I describe below.

I now describe how this intensity dependent loss can compress steady state photon

statistics (Fig. 1b). The steady states of all lasers are characterized by a balance be-

tween saturable gain and loss. Gain saturation is itself a form of “intensity dependent

gain,” in the sense that the net gain seen by the cavity field depends on the intensity.

Quantum mechanically, this means that different photon number states experience
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Figure 3-1: The concept of a Fock laser. (a) Essential components of a Fock
laser (illustrated as a ring laser for concreteness) consisting of at least one mirror
with frequency dependent transmission 𝑡(𝜔). (b) Comparison of conventional and
sharp loss Fock laser steady state photon probability distribution 𝑝(𝑛). The steady
state photon number is determined by the location of intersection between saturable
gain and loss. The variance of the probability distribution is determined by the
effective “steepness” of intersection of the gain and loss curves. While the conventional
laser architecture with linear loss results in a near-coherent state far above threshold,
the sharp loss architecture results in states with variance below the mean, which
correspond to non-classical light. In the most extreme limit, this mechanism can
enable the generation of near-Fock states inside the laser cavity.

different amounts of gain. In a conventional laser with intensity independent “lin-

ear loss,” the loss rate seen by the cavity field is the same for all photon numbers.

For photon numbers where gain exceeds loss, an effective “force” encourages occupa-

tion of yet higher photon numbers; for photon numbers where loss dominates gain,

an effective force encourages occupation of lower photon numbers. The intersection

point where “gain equals loss” represents the equilibrium point between these two

forces, and consequently determines the mean photon number of the cavity in the

laser steady state. While the intersection point determines the mean photon num-

ber, the behavior of the photon number dependent gain and loss in the vicinity of

this intersection dictates the variance of the photon number probability distribution

𝑝(𝑛). In conventional lasers which are far above threshold, the probability distribu-

tion approaches that of a coherent state, with Poissonian statistics (variance equal to

the mean). It is this fact that leads to the common statement that “lasers produce

coherent states.”
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This situation changes significantly if the number dependent gain or loss profiles

deviate substantially from their usual forms. I will focus here on situations where

the gain remains identical, but the ordinary linear loss is replaced with a strongly

intensity dependent loss. If the loss rises sharply with photon number around its

intersection with the saturable gain, then the steady state probability distribution

becomes compressed compared to the case of linear loss. To understand this, I can

return to the picture of “forces” on the probability distribution described for the nor-

mal laser. The magnitudes of these forces are essentially determined by the extent

to which gain exceeds loss (or vice versa) below (or above) the mean photon number.

Comparing the conventional and sharp loss lasers, it is clear that above the mean

photon number, loss exceeds gain more aggressively for the sharp loss. Since loss

dominates gain more strongly, the probability distribution is more strongly “discour-

aged” from entering this region. The result of this is that the probability distribution

has the same mean, but can become strongly compressed, resulting in a much lower

variance. Roughly speaking, the mean photon number is determined by the location

of the intersection point, while the variance is determined by the ratio of the slopes

of the gain and loss.

This mechanism enables the sharp loss laser to create steady states with variance

lower than the mean, a feature only possible in non-classical light. In the most

extreme limit, the loss rises so sharply that only a single number state (the mean)

has a substantial probability of occupation, resulting in a cavity Fock state.

3.3 Semiconductor Fock laser architecture

In this section, I introduce the semiconductor “Fock laser” architecture that generates

strongly noise condensed steady states inside the optical cavity. The device is a

semiconductor heterostructure with an electrically pumped active region (Fig. 3-

2a). The cavity mode (with annihilation operator 𝑎) has a bare resonance frequency

𝜔0. One of the end facets is a broadband reflector, while the other is a sharply

dispersive element, such as a Fano resonance structure (main text) or a Bragg reflector
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(Appendix), which equips the cavity with sharply frequency dependent dissipation.

Both Kerr and carrier nonlinearity inside the cavity shift the index, and hence the

resonance frequency (Fig. A-2b). However, as I show in Section 3.4.3, the effect of

these two nonlinearities on photon quantum statistics is very different.

To lowest order, the cavity frequency depends linearly on the photon and inverted

carrier numbers 𝑛 and 𝑁 as

𝜔(𝑛,𝑁) = 𝜔0(1− 𝛽𝑛− 𝜎𝑁), (3.1)

as analyzed previously using coupled mode theory and supported experimentally [34,

35, 36, 37]. The dimensionless, per-photon Kerr nonlinear strength 𝛽 is related to the

Kerr nonlinear coefficient 𝑛2 (m2/W) via 𝛽 = −ℏ𝜔𝑛2
eff𝑛2𝑐

8𝑉𝑚
, where 𝑉𝑚 denotes the modal

volume, 𝑛eff the cavity’s effective refractive index, and 𝜔 the laser frequency. The

carrier nonlinearity 𝜎 is material-dependent and is directly related to the linewidth

enhancement factor, as described in the Appendix. It arises predominantly from

two-photon absorption, band filling effects, and free carrier dispersion.

Here, I consider a semiconductor laser with separate gain and Kerr nonlinear

elements. I choose to use a different material for the Kerr nonlinearity in order

to avoid possible dispersive resonant effects of optical nonlinearity near transition

energies in the gain material. The Kerr material is still chosen to be a GaAs-based

semiconductor due to its strong optical nonlinearity from bound carriers. I describe

Fock lasers based on “active nonlinearity” (in which the gain and Kerr materials are

the same) in the Appendix, emphasizing that the timescale of resonant effects in that

case may invalidate the assumption of the cavity resonance frequency’s instantaneous

response to changes in photon number.

By enlarging the volume of the Kerr nonlinear chip relative to the gain chip, the

optical nonlinearity of the cavity is dominated by the nonresonant Kerr nonlinearity

of the former. This assumes the modal volume is approximately uniform across the

two materials with minimal loss at the interface (i.e. the gain and Kerr materials

should be index matched). Then, the effective Kerr nonlinearity of the cavity is given
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Figure 3-2: Semiconductor Fock laser architecture with separate gain and
Kerr elements. (a) Basic semiconductor laser diode heterostructure design with
nonlinear dispersive loss. Dispersive outcoupling is generated via the sharp frequency
dependent transmission of a photonic crystal element. Coupling of Kerr nonlinearity
from the Kerr material and carrier nonlinearity from the gain material with dispersive
loss 𝑅(𝜔) creates sharp nonlinear loss 𝜅(𝑛,𝑁). Here, ∆ denotes detuning from the
dispersive (Lorentzian) resonance and 𝛾 denotes the width of the dispersive resonance
(related to its FWHM). (b) Semiconductor optical nonlinearities, including intensity
dependent Kerr effect as well as carrier-dependent free carrier dispersion (FCD) and
two photon absorption (TPA). These nonlinearities shift the real part of the cavity’s
refractive index, in turn shifting the resonance frequency in the diode cavity. Weak
nonlinear loss from shifting the imaginary part of the refractive index via the Kramers-
Kronig relations is also generated, but in most cases is negligible compared to the
nonlinear dispersive loss.

by 𝛽eff ≈ 𝑥𝛽𝑎 + (1− 𝑥)𝛽𝑝 where nominally the active region filling factor 𝑥 ≪ 𝛽𝑝/𝛽𝑎

so that the passive Kerr nonlinearity 𝛽𝑝 dominates over the active one (𝛽𝑎). This

allows the refractive index, and thus resonance frequency, to respond instantaneously

to changes in photon number, relative to other timescales in the system.

Following the same reasoning of the previous section, the photon and carrier num-

ber dependence of the resonance frequency can transfer to the loss, so long as the

cavity resonance frequency responds instantaneously to changes in both photon and

carrier number. In this case, the carrier and photon number dependent loss is given

by

𝜅(𝑛,𝑁) ≡ 𝜅(𝜔(𝑛,𝑁)) = −FSR · log𝑅(𝜔(𝑛,𝑁)), (3.2)
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where in the limit of a small gain chip and large Kerr chip, the resonance frequency

just depends on photon number through the Kerr nonlinearity, 𝜔(𝑛,𝑁) → 𝜔(𝑛).

Hence the sharp frequency dependent element with reflectivity 𝑅(𝜔) now controls

the nonlinear loss. As I will show, these systems can provide new behaviors not just

in their steady states, but also through new quantum noise behaviors.

3.3.1 Semiconductor Laser Dynamics

Semiconductors typically fall into the category of so-called “class B” lasers, in which

the polarization dynamics decay quickly relative to the timescales associated with

carrier recombination and cavity decay. In this case, the polarization dynamics are

adiabatically eliminated, resulting in Heisenberg-Langevin equations for photon num-

ber, carrier number operators, and phase [38]:

𝑛̇ = (𝐺(𝑛,𝑁)− 𝜅(𝑛,𝑁))𝑛+ 𝐹𝑛 (3.3a)

𝑁̇ = 𝐼 −
(︀
𝑛𝐺(𝑛,𝑁) + 𝛾‖𝑁

)︀
+ 𝐹𝑁 (3.3b)

𝜑̇ = −𝜔(𝑛,𝑁) (3.3c)

=
𝛼𝐿

2
𝐺(𝑛,𝑁) + 𝛽𝑛+ 𝐹𝜑 (3.3d)

To be maximally general here, I allow the gain 𝐺 and loss 𝜅 to depend on both the

carrier density 𝑁 and photon number 𝑛 (the latter could account for gain saturation).

In writing this form of the gain and loss, I have assumed that the gain and loss

respond effectively instantaneously to changes in the photon and carrier number.

Pumping is performed by carrier injection using current 𝐼 (in units of carrier density

per unit time), and 𝛾‖ denotes the nonradiative decay rate of carriers. Furthermore,

𝛼𝐿 denotes the linewidth enhancement factor and is associated with amplitude-phase

coupling. The decay rates are associated with Langevin force terms 𝐹𝑛,𝑁,𝜑 with

nonzero correlators given by the diffusion coefficients (including the effects of TPA,

𝑛̇ = −𝛼TPA𝑛
2): ⟨𝐹 †

𝑛𝐹𝑛⟩ = ⟨2𝐷𝑛𝑛⟩ = 2𝑅𝑠𝑝𝑛+ 𝛼TPA𝑛
2, ⟨𝐹 †

𝑁𝐹𝑁⟩ = ⟨2𝐷𝑁𝑁⟩ = 2(𝑅𝑠𝑝𝑛+

𝛾‖𝑁), ⟨𝐹 †
𝑁𝐹𝑛⟩ = ⟨2𝐷𝑁𝑁⟩ = −𝑅𝑛, ⟨𝐹 †

𝜑𝐹𝜑⟩ = ⟨2𝐷𝜑𝜑⟩ = 𝑅𝑠𝑝/2𝑛 where 𝑅𝑠𝑝 ≈ 𝐺(𝑛,𝑁)
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denotes the rate of spontaneous emission into the cavity mode, 𝑅𝑎𝑏𝑠 ≈ 0 denotes the

rate of absorption (negligible above threshold), and 𝑅 = 𝑅𝑠𝑝+𝑅𝑎𝑏𝑠. These correlators

give rise to nonzero fluctuations in 𝑛,𝑁 about their steady state values. A derivation

of ⟨2𝐷𝑛𝑛⟩ including the effects of TPA is provided in the Appendix.

In all examples presented in the main text, I consider linear gain neglecting sat-

uration effects, 𝐺(𝑛,𝑁) = 𝐺(𝑁) = 𝐺𝑁(𝑁 − 𝑁trans) with 𝑁trans the transparency

carrier density. I found no significant differences using logarithmic quantum well gain

or including the effects of gain saturation [39].

3.3.2 Noise properties

The steady state noise properties of semiconductor lasers can be computed by consid-

ering operator valued fluctuations of the Heisenberg-Langevin equations from their

mean solutions. In the steady state, this results in a pair of coupled linear equations

for the operator values fluctuations 𝛿𝑛 and 𝛿𝑁 , which are given as:

⎡⎣ 𝛿𝑛̇
𝛿𝑁̇

⎤⎦ = 𝑀

⎡⎣ 𝛿𝑛
𝛿𝑁

⎤⎦+

⎡⎣𝐹𝑛

𝐹𝑁

⎤⎦
with the fluctuation matrix

𝑀 =

⎡⎣−𝑛𝜅𝑛 𝑛 (𝐺𝑁 − 𝜅𝑁)

−𝐺0 −(𝑛𝐺𝑁 + 𝛾‖)

⎤⎦
Here, for example, 𝜅𝑛 = −𝛽𝜔0𝜅𝜔 = −𝛽𝜔0(𝑑𝜅/𝑑𝜔) represents the sharpness of the

dispersive loss, with the instantaneous laser frequency being given by 𝜔(𝑛,𝑁).

By solving this linear system in the frequency domain, one can construct the

frequency resolved power spectrum of fluctuations for either of the operators. Of par-

ticular interest is the photon number variance, given by (∆𝑛)2 = 1
𝜋

∫︀∞
0
⟨𝛿𝑛†(𝜔)𝛿𝑛(𝜔)⟩.

The fluctuation spectrum inside the integral is related to the frequently defined rela-

tive intensity noise (RIN) as

RIN =
1

𝑛2
⟨𝛿𝑛†(𝜔)𝛿𝑛(𝜔)⟩, (3.4)
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A useful parameter to quantify the quantum nature of light is the Fano factor,

defined as 𝐹 = (∆𝑛)2/𝑛. The Fano factor is 1 for Poissonian light, corresponding to

the shot noise limit; values below one indicate sub-Poissonian light below the show

noise level. I calculate the most general expression for 𝐹 in the presence of nonlinear

dispersive loss in the Appendix.

Here, I summarize the results corresponding to a few important limiting cases

where the effect of amplitude-phase coupling on intensity noise may be neglected.

For completeness, I include the effect of two-photon absorption (TPA) when con-

sidering carrier nonlinearities (two-photon carrier generation is negligible compared

to the pump current). However, for most systems, the magnitude of dispersive loss is

at least an order of magnitude greater than TPA-induced loss; the effects of TPA are

only seen at the weakest nonlinearities and lowest background losses. A more thor-

ough discussion of TPA is provided in the Appendix. Important physical parameters

to characterize intensity noise are the relaxation oscillation frequency and damping

rate of relaxation oscillations. As derived in the Appendix, these are respectively

given by

Ω2
𝑅 ≈ (𝑛𝐺𝑁 + 𝛾‖)(𝑛𝜅𝑛) + 𝑛(𝐺𝑁 − 𝜅𝑁)𝜅

Γ1 ≈ 𝑛(𝐺𝑁 + 𝜅𝑛) + 𝛾‖

These measures provide an important way to understand the effect of nonlinear dis-

persive loss on intensity noise. The limiting Fano factors are thus:

1. For weak Kerr and carrier nonlinearities, 𝜅𝑛, 𝜅𝑁 → 0, I have 𝐹 → 1+ 𝜅/(𝑛𝐺𝑁)

when pumping far above threshold, recovering linear behavior. When 𝑛 becomes

large far about threshold, the Fano factor approaches 1, resulting in Poissonian

(coherent) statistics.

2. For strong Kerr nonlinearity but weak carrier nonlinearity, 𝑛|𝜅𝑛| ≫ 𝜅0, 𝑛|𝜅𝑁 |, 𝛾‖, 𝐺𝑁 ,

the Fano factor 𝐹 → 𝜅/|𝑛𝜅𝑛| for large 𝑛. Critically, the ratio |𝜅𝑛|/𝜅 is a measure

of how sharply the loss varies with 𝑛 compared to the absolute loss rate at the
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steady state photon number, and thus dictates the dimensionless “sharpness” of

the loss. The Fano factor is inversely proportional to this sharpness factor, and

thus sharp losses lead to sub-Poissonian states.

3. For strong carrier nonlinearity but weak Kerr nonlinearity, 𝑛|𝜅𝑁 | ≫ 𝜅0, 𝑛|𝜅𝑛|, 𝛾‖,

I have 𝐹 → 𝜅/(𝑛𝐺𝑁)+𝐺𝑁/|𝐺𝑁−𝜅𝑁 | → 𝐺𝑁/|𝐺𝑁−𝜅𝑁 | for large 𝑛. The carrier

nonlinearity reduces dependence of the rate of change of intensity fluctuations

on carrier fluctuations (𝐺𝑁 → 𝐺𝑁 − 𝜅𝑁), lowering the relaxation oscillation

frequency Ω2
𝑅 while leaving the damping of these oscillations unchanged. This

can amplify low-frequency intensity noise slightly.

4. For simultaneously strong Kerr and carrier nonlinearities, 𝑛|𝜅𝑛,𝑁 | ≫ 𝜅0, 𝛾‖,

𝐹 → 𝜅

𝑛|𝐺𝑁 + 𝜅𝑛|

(︂
1 +

𝑛𝐺2
𝑁

𝑛𝜅𝑛𝐺𝑁 + |𝐺𝑁 − 𝜅𝑁 |𝜅

)︂
. (3.5)

Roughly, this expression can be broken into Kerr nonlinearity (first term) and

carrier nonlinearity (second term) contributions. The former describes squeez-

ing via increased Ω2
𝑅 and damping of relaxation oscillations due to “sharp” inten-

sity dependent loss, while the latter reduces intensity noise-carrier noise coupling

and thus Ω2
𝑅. Kerr and carrier nonlinearities may therefore have competing ef-

fects, leading to interesting steady state and noise fluctuation behavior.

3.3.3 Example setup parameters

I emphasize that measured nonlinear strengths can vary widely based on experimental

conditions, but to provide a rough estimation of typical per-photon Kerr nonlinear-

ities for the parameters considered here, I note order-of-magnitude values for bulk

(active region volume 𝑉 ≈ 10−16 m3) and QW/QD semiconductors (active region

volume 𝑉 ≈ 10−18 − 10−17 m3), employing passive (below bandgap) or active (above

bandgap) Kerr nonlinearity, in Table 3.1. Values are calculated from data summa-

rized in an earlier review of nonlinear refraction in semiconductors [40]. Note that

stronger nonlinearities may be accessible using InGaAs- or AlGaAs-based materials.
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Table 3.1: Order-of-magnitude estimates of per-photon Kerr nonlinearities (𝛽) in
GaAs-based semiconductors at active and passive wavelengths, for typical diode and
photonic crystal (PC) lasers.

Bulk GaAs GaAs-based GaAs-based
diode laser QW diode laser1 QW PC laser

Passive −10−11 (1.5 𝜇m) −10−10 −10−9

Active 10−4 (873 nm) 10−3 10−2

For active nonlinearities, I point out again that large values of 𝛽 are also gener-

ally associated with slow response times, which may be too slow for the version of

nonlinear dispersive loss presented here to be effective, or significant absorptive loss.

Detuning the cavity away from resonance would result in weaker, more instantaneous

nonlinearities compatible with the nonlinear dispersive loss mechanism, still with

considerable intensity noise condensation. Note also that the sign of 𝛽 just changes

which side of the nonlinear dispersive resonance sharp loss (𝜅𝑛 > 0) occurs, which is

irrelevant for the symmetric Fano dispersive losses I consider in the main text.

For concreteness, I propose the following example system: a laser operating around

1.5 𝜇m with gain medium InGaAs/InAlGaAs QWs and Kerr medium GaAs. Given

the ratio of Kerr nonlinear coefficient 𝑛2 for both materials, a geometrical enhance-

ment such that 𝑥 ≈ 10−4 is needed for the passive nonlinearity of GaAs to dominate

𝛽eff . To minimize absorption loss, Al0.18Ga0.82As may be used as the Kerr material

instead, since it has similar 𝑛2 but absorption losses over an order of magnitude lower

than GaAs.

In this design, the Kerr nonlinear material dominates the refractive index (and

resonance frequency) shifts. In the Appendix, I describe how small variations in

steady state and noise behavior arise from other weak nonlinear effects such as two-

photon absorption (TPA) and nonlinear gain saturation.

Unless otherwise noted, Figures in the main text use the following parameters for

the designs proposed in Sec. ??, chosen to be similar to experimentally determined

parameters for GaAs-based lasers: modal volume and active region volume 𝑉 = 10−16

m3 (confinement factor Γ = 1), bare cavity resonance frequency 𝜔0 = 2.16× 1015 s-1

(873 nm), free spectral range FSR = 17 GHz, transparency density 𝑁trans = 2× 1024
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m-3, nonradiative decay rate 𝛾‖ = 3 × 108 rad/s, and linear gain coefficient 𝐺𝑁 =

1/𝑉 · 𝑑𝐺/𝑑𝑁 = 3694 rad/s [41].

For quantum well gain, active region volumes are roughly one and two orders

of magnitude below 𝑉 for double heterostructure diode lasers and photonic crystal

(PC) lasers, respectively. The latter is similar to the Fano laser structure considered

in earlier works [42].

For sharp losses in the main text, I consider symmetric Fano loss profiles, with

central frequency given by 𝜔(𝑛𝑐 = 106, 𝑁𝑐 = 𝑁trans) and resonance decay (FWHM)

𝛾 = 2× 1012 rad/s.

3.4 Results

3.4.1 Noise condensation from Fano-based nonlinear loss

I now discuss how this semiconductor laser architecture with sharp nonlinear loss can

lead to new behaviors in both the mean field as well as the fluctuations, eventually

leading to strongly noise-reduced states. I begin by considering systems in the absence

of carrier nonlinearity. In Fig. 3-3, I compare steady state and intensity noise plots

for conventional linear loss and sharp (Lorentzian/symmetric Fano) loss. Linear loss

presents an 𝑛-independent loss profile, and leads to the well known linear dependence

of steady state photon number on pump current. In the presence of dispersive loss,

moderate nonlinearity (𝛽 = −10−10) begins to modify the steady state behavior. For

pump currents just above threshold, the behavior is close to linear. However, as

the pump current increases, so does the loss, pulling down the input-output curve

to a sub-linear behavior. For even stronger nonlinearity (𝛽 = −10−9), a bistable

transition occurs that creates a range of photon numbers which have no stable steady

state solution. In particular, this occurs because there is a nonzero photon number

at which the cavity experiences minimum loss. This left bistable edge lies below

threshold, and thus needs to be accessed "from above", by pumping to a high power

(beyond the range of zero solutions), and slowly lowering the power (this is a hysteresis
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effect).

Beyond the point of bistability (roughly 30 mA in Fig. 3b), 𝑛 stays approx-

imately constant while the photon number variance ∆𝑛2 can decrease sharply. I

see the consequence of this in Fig. 3-3c, which plots the Fano factor spectrum

𝑛 · RIN ≡ ∆𝑛2(𝜔)/𝑛. Here, the intensity noise fluctuations associated with relax-

ation oscillations are quenched closer to the bistable point. Due to the sharp loss,

the relaxation oscillation peak is in general significantly suppressed compared to the

case of linear loss. As a result of the bistability, the laser can exist in two states with

very different photon numbers over a range of pump currents. The larger photon

number branch corresponds to sharp loss (𝜅𝑛 > 0) in this scheme. Overall, nonlinear

dispersive loss creates significant broadband intensity noise squeezing by orders of

magnitude compared to analogous linear loss.

Finally, I calculate Fano factors as a function of pump current in Fig. 3-3d by

integrating the spectra in Fig. 3-3c. For linear loss, as the intracavity intensity grows

with pump current, the relaxation oscillations shift to higher noise frequencies but

also undergo stronger damping, giving rise to a decaying Fano factor that approaches

the shot noise limit far above threshold. Stronger linear losses amplify relaxation

oscillations but do not affect the shot noise limit.

The behavior of Fano factor for nonlinear dispersive loss is phenomenologically

different. For simplicity, in Fig. 3-3d, I only plot the sharp loss (upper) branch

when bistability is present (purple curve) 1. On the upper branch, linear behavior

(shot noise) is restored as the detuning from the Fano resonance grows large: this

corresponds to low reflectivity, high loss, and high pump currents. Approaching the

left bistable edge, the cavity frequency approaches the Fano resonance and, for a

certain 𝑛, the ratio 𝜅/(𝑛𝜅𝑛) approaches a minimum, corresponding to minimum Fano

factor. The Fano factor does not decrease indefinitely approaching the left bistable

edge. Coupling of intensity and carrier density implies that even at zero loss, nonzero

carrier noise and thus intensity noise exist due to the nonradiative decay 𝛾‖. This

1The lower branch, accessible by normal pumping from threshold, resembles linear behavior
apart from the bistable point, which creates a discontinuity in the Fano factor as a function of pump
current.
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results in an increase of Fano factor at the left bistable edge. Nonetheless, nonlinear

dispersive loss creates a range of pump currents over which intensity noise drops far

below the shot noise limit. The effect is stronger for lower linear background losses

and larger (Kerr) nonlinearities, with a maximum of 92% (12 dB) reduction in Fano

factor below the shot noise limit displayed in Fig. 3-3d.

3.4.2 Noise condensation using nonlinear distributed feedback-

based loss

In this section, I consider distributed feedback semiconductor lasers where a dis-

tributed Bragg reflector (DBR) is fabricated on one (or both) ends/facets of the laser

cavity, or a VCSEL-type structure is employed. In this case, I use Eq. 3.2 with the

analytical form for reflectivity given by coupled mode theory [43, 44] to obtain

𝜅(𝜔) = −FSR · log
⃒⃒⃒⃒

𝑔 sinh(𝜃)

Γ cosh(𝜃) + (𝛼DBR + 𝑖𝛿) sinh(𝜃)

⃒⃒⃒⃒2
, (3.6)

where 𝛽 = 𝑛̃𝜔/𝑐 is the propagation constant (wavevector), 𝑔 = 𝜔∆𝑛/(𝜋𝑐) is the

approximate coupling coefficient, 𝛿 = 𝛽 − 𝜋/𝑑, Γ2 = 𝑔2 + (𝛼DBR + 𝑖𝛿)2, 𝜃 = 𝑁DBR𝑑Γ,

and 𝛼DBR the radiative loss from the DBR. Here, 𝑁DBR denotes the number of pairs

of layers in the DBR, 𝑑 the thickness of a pair of layers, ∆𝑛 the index contrast,

𝑛̃ the effective index, and 𝜔 ≡ 𝜔(𝑛,𝑁) the laser frequency. Note that 𝛿 has the

interpretation of a detuning from the Bragg value 𝜋/𝑑 (the center of the Bragg stop-

band of maximum reflectivity and thus lowest loss is at 𝛿 = 0). I would like to operate

in the “sharp loss” regime, which is where the stop-band switches over to a pass-band,

first occurring when 𝜃 = 𝜋 =⇒ 𝛿2 − 𝑔2 = 𝜋2/𝐿2. For a lossless DBR, choosing the

frequency 𝜔𝑐 at which this sharp transition occurs fixes 𝛿 and therefore ∆𝑛 from the

above relations:

∆𝑛 =
𝜋𝑐

𝜔𝑐

√︃(︂
𝑛̃

𝑐
(𝜔𝑐 − 𝜔𝑡)

)︂2

−
(︁𝜋
𝐿

)︁2
, (3.7)

where 𝜔𝑡 denotes the center of the stop band, so that 𝜔𝑐 − 𝜔𝑡 is effectively the half-
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width of the stop band. The coupling coefficient 𝑔, index contrast ∆𝑛 and stop band

width 2(𝜔𝑡 − 𝜔𝑐) are thus closely related.

To use Eq. 3.6, it is necessary to ensure the time response of the DBR is much

faster than the free spectral range. I extract this time response by performing an

FFT of 𝑅(𝜔). For lossy DBRs, 𝑅(𝜔) approaches a Lorentzian with width governed

by 𝛼DBR, and the maximum reflectivity may be far from unity. When the DBR is

lossless, an analytical expression for the time response is in general difficult to obtain.

I observe that the time response is faster for DBRs of larger bandgap (wider stop

bands). Intuitively, outcoupling in a lossless DBR is through the coupling coefficient

𝑔 which scales with the index contrast ∆𝑛 and thus correspondingly with the stop

band width 2(𝜔𝑐 − 𝜔𝑡). This is distinct from the Fano resonances considered in

the main text where the loss profile was derived from interference between a “direct

channel” pathway bypassing the Fano resonance and an “indirect pathway” coupling to

an intrinsic resonant mode of the photonic crystal. In such a case, the time response

of the effective nonlinear dispersive loss is governed by the the complex resonance

frequency of the Fano resonance (intuitively, how long light spends trapped in the

photonic crystal). Here, however, sharply frequency dependent loss arises from a

different mechanism, namely the photonic bandgap of the DBR.

I explore coupling of a Kerr nonlinearity with an approximately lossless DBR in

Fig. 3-5 with linear background loss 𝜅0 = 10−1 · FSR (𝑄 ≈ 2 × 105). Furthermore,

I fix the position of the stop band in photon number, though the values of 𝜔𝑐,𝑡 vary

with nonlinear strength. From 𝜔𝑐,𝑡 and the DBR length, I calculate the required index

contrast ∆𝑛 via Eq. 3.7.

I first examine steady state behavior. The sharpness of 𝜅(𝑛) increases with the

number of layers 𝑁DBR and Kerr nonlinear strength (the former corresponds to sharper

evanescent decay of modes in the photonic bandgap), as shown in Fig. 3-5a. For the

strongest nonlinearity and sharpest 𝑅(𝜔), multiple stop bands may be accessible,

corresponding to multiple regions of noise condensation. Input-output S-curves are

shown in Fig. 3-5b, demonstrating bistability for each transition from pass band to

stop band. An important distinction from the Fano resonances considered earlier is
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that the sharp loss regions 𝜅𝑛 > 0 are now the lower bistability branches, accessible

by simply pumping smoothly from threshold. Finally, I investigate the integrated

Fano factor.

For the sharpest losses, I reach nearly 20 dB squeezing below the shot noise limit

(𝐹 ≈ 0.02). I plot here only the lower bistable branch, though for large pump currents,

the laser would cross a bistable point and either enter a linear loss regime (orange

curves) or a second bistability region (solid blue curve).

From an experimental standpoint, the sharpest loss (and strongest squeezing) can

be obtained by maximizing the stop band width and number of layer pairs 𝑁DBR.

The former is limited by the intracavity saturation intensity and required index con-

trast ∆𝑛, while the latter is limited by fabrication methods. Nevertheless, carefully-

engineered DBR-based losses when coupled to strong Kerr nonlinearity in semicon-

ductor lasers may result in unprecedented broadband intensity noise squeezing.

3.4.3 Bistability from carrier nonlinearity

In this section, I describe how the interplay of carrier nonlinearity with dispersive loss

can result in unexplored “carrier bistability” behavior. I consider carrier nonlinear

strengths 𝜎 comparable to what they might be in, for example, GaAs-based gain

media [45, 37].

I first describe how multiple lasing steady states can exist when strong carrier non-

linearity and dispersive loss are simultaneously present. In an ordinary semiconductor

laser, the “gain equals loss” requirement leads to a so-called “gain clamping” condition,

wherein above threshold, the inverted carrier density is fixed at some value, regardless

of the intensity (i.e. the carrier density 𝑁 such that 𝐺𝑁(𝑁 − 𝑁trans) = 𝜅). This is

depicted in Fig. 3-4a by the “linear loss” case which shows only a single intersection

point of the carrier dependent gain and carrier independent loss. However, in the

presence of strong carrier nonlinearity and sharply frequency dependent outcoupling

(with a Fano mirror for example), the loss of the cavity mode can depend nonlinearly

on the carrier density 𝑁 , 𝜅(𝜔(𝑁)) = 𝜅(𝑁). As the carrier density changes, so does

the cavity frequency, and hence the damping rate via the frequency dependent mirror.
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The “gain equals loss” condition now reads 𝐺𝑁(𝑁 −𝑁trans) = 𝜅(𝑁). As shown in Fig.

3-4a, this leads to a situation where more than one carrier density 𝑁 can cause gain

and loss to be equal, corresponding to multiple cavity resonance frequencies. In the

case of the Fano resonance, I see that up to three different steady states are possible.

Fig. 3-4b shows how this phenomenon manifests in the steady state laser behavior.

The dependence of steady state intensity on the pump current is still linear, but

there can be up to three independent branches, corresponding to different steady

state 𝑁 and different lasing frequencies. For the Fano mirror example, one resonance

frequency is always present such that the detuning from the Fano resonance ∆ ≈ 0.

Since this solution has lowest loss, and thus the lowest threshold, lasing will occur

here by default. The other branches are also stable, but disconnected from the lowest

branch. It may be possible to experimentally access these higher branches through

dynamic pumping schemes which generate transients that can travel from one branch

to another.

When Kerr nonlinearity is also introduced, additional phenomena appear due to

the simultaneous nonlinear dependence of the damping rate on intensity and carrier

number. It is important to note that the profile 𝜅(𝜔) is unchanged, though 𝜅(𝑛,𝑁)

will vary based on the nonlinear strengths. Furthermore, the gain (and thus loss) is

monotonically increasing in 𝑁 . For typical materials (and for the results presented

in Fig. 3-4), 𝜎 < 0 increases the resonance frequency 𝜔(𝑛,𝑁) and thus pushes lasing

solutions rightward along 𝜅(𝜔).

Consider first weak carrier nonlinearity (orange and green curves in Fig. 3-4c).

Then, the carrier nonlinearity can be treated as a perturbation to the initially sym-

metric Lorentzian loss 𝜅(𝑛). On the 𝜅𝜔 ≡ 𝑑𝜅/𝑑𝜔 > 0 (right) branch of the dispersive

loss, the carrier nonlinearity shifts the loss curve upward. On the other hand, the

𝜅𝜔 < 0 (left) branch shifts downwards since an increase in 𝜔 corresponds to a point

of lower loss (approaching detuning ∆ = 0).

Suppose I increase the carrier nonlinearity further (red curve in Fig. 3-4c). For

𝑛 near threshold, far below the “magic” photon number 𝑛𝑐 ≈ 106 of lowest loss, the

carrier nonlinearity pushes solutions rightward along the Lorentzian. However, the
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laser still lies on the 𝜅𝜔 < 0 branch - the carrier nonlinearity pushes the mode closer to

𝑛𝑐, which is near zero loss and thus 𝑁 ≈ 𝑁trans. This yields one steady state solution.

For higher 𝑛, near but still below 𝑛𝑐, I eventually reach an 𝑛 at which two solutions

are possible: 𝑁 ≈ 𝑁trans (lower loss) or 𝑁 > 𝑁trans (higher loss). Immediately

afterwards, a third solution is possible with still higher loss/higher carrier density,

phenomenologically similar to the dashed curve in Fig. 3-4a. Finally, as 𝜅𝜔 drops

past the inflection point of 𝜅(𝜔), a point corresponding to two solutions marks the

end of the carrier bistability and for the largest 𝑛 I again obtain only one solution

(the Lorentzian loss looks approximately linear).

For even stronger carrier nonlinearity (purple curve in Fig. 3-4c), the carrier

bistability boundaries shift leftward in photon number. Comparing the red and purple

curves in Fig. 3-4c, the left boundary eventually crosses zero and becomes negative,

at which point the loss curve detaches into two parts: a sharp part at low loss and

linear part at higher loss, separated by a range of pump currents over which no stable

lasing solution occurs. When the right bistability boundary also crosses 𝑛 = 0 the

sharp loss vanishes and laser operation only occurs on the linear high-loss branch

(with correspondingly larger threshold currents), as shown for the brown curve in

Fig. 3-4c.

I now examine the effects of this carrier bistability on intensity noise. As shown

in Fig. 3-4e, the minimum achievable Fano factor is relatively independent of the

level of carrier nonlinearity. This can be seen by noting that the first term in Eq.

3.5 dominates the Fano factor at these points. However, past the sharp loss region,

the linear branch created by the carrier nonlinearity possesses a higher loss that pulls

the Fano factor upward for larger pump currents. For large carrier nonlinearities,

the system eventually hits bistability and a region of unstable lasing, transitioning

to (approximately) linear behavior again. For carrier nonlinearities much stronger

than the Kerr nonlinearity (brown curve), approximately linear loss is restored as

described above and no intensity noise reduction is observed. Mathematically, Eq.

3.5 essentially contains a combination of dominant Kerr and dominant carrier nonlin-

earity terms, demarcated by pump currents smaller and larger than the Fano factor
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minimum/sharp loss regime, respectively.

3.4.4 A look towards phase noise

Thus far, I have just considered intensity noise. However, the well-known effect

of amplitude-phase coupling in semiconductor lasers suggests interesting effects of

nonlinear dispersive loss on phase noise and laser linewidth.

The phase noise can be calculated by noting 𝛿𝜑̇ = −𝛿𝜔 = 𝛼
2
𝐺𝑁𝛿𝑁 + 𝛽𝛿𝑛, so that

𝜔2⟨𝛿𝜑†𝛿𝜑⟩ = 𝛼2𝐺2
𝑁

4
⟨𝛿𝑁 †𝛿𝑁⟩+ 𝛽2⟨𝛿𝑛†𝛿𝑛⟩+ 𝛼𝐺𝑁𝛽Re

(︀
𝛿𝑁 †𝛿𝑛

)︀
(3.8)

The effect of nonlinear dispersive loss on phase noise is the subject of further analysis.

3.5 Discussion

3.5.1 Experimental platforms

In this section, I describe some of the experimental platforms for realizing the effects

described here. Because semiconductor platforms are conducive to integration with

on-chip photonic crystal optical elements, many designs have already achieved the

dispersive losses considered here and therefore could exhibit intensity noise reduction

if quality factors and nonlinear strengths are within the tolerances required. For

example, previous work has realized “Fano lasers” that exhibit self-pulsing due to the

interplay between dispersive loss and carrier nonlinearity [42]. A Fano resonance is

created by coupling between a waveguide and nanocavity (point defect) in a photonic

crystal slab. By increasing the quality factor of the lasing waveguide mode in these

types of structures, intensity noise reduction by nonlinear dispersive loss could be

observable.

Photonic crystal surface-emitting lasers (PCSELs) are another platform that may

be used for demonstrating the effects of nonlinear dispersive loss [46]. PCSELs may

present advantages such as single-mode operation and high output powers; in contrast
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to the Fano laser concept, lasing occurs transversely (and thus the Fano mirror is

aligned transversely rather than longitudinally). However, because losses may be

significant in both longitudinal and transverse directions, it is necessary to optimize

quality factors in both directions. Nevertheless, advances in fabrication have achieved

𝑄 > 5 × 106 in photonic crystal nanocavities, well within the background losses

considered here [47].

In addition to Fano-type dispersive losses, distributed feedback-based losses have

been commonly exploited to enforce single-mode operation. Examples include dis-

tributed Bragg reflector (DBR) fiber lasers, vertical cavity surface-emitting lasers

(VCSELs), and DBR diode lasers [48, 49]. All of these architectures include sharply

frequency dependent elements that may be used to achieve strong noise condensation.

High quality fabrication is necessary to minimize background losses (e.g., scattering)

at interfaces in order to observe the intensity noise condensation described here. In

general, photonic crystals such as Fano mirrors and DBRs provide ideal platforms to

realize sharply dispersive losses due to their geometrically-tunable photonic bandgaps.

Combined with strong semiconductor optical nonlinearities, I foresee numerous exper-

imental platforms that could exhibit the phenomena enabled by nonlinear dispersive

loss.

Lastly, I note that even stronger nonlinearities are achievable in systems such as

microdisk and quantum dot lasers due to enhanced confinement and ultralow mode

volumes [50]. For mode volumes achieving 𝜆3, the dimensionless Kerr coefficient can

be orders of magnitude larger than the values considered here. However, damage

threshold intensities may also be lower, limiting the maximum shifts to refractive

index and resonance frequency from Kerr nonlinearity. Nevertheless, these systems

can exhibit ultrahigh quality factors, and are thus of potential interest for studying

the effects presented here.

Lastly, combining the methodology described here with existing methods of pump

noise reduction could yield even further intensity noise reduction.
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3.5.2 Outlook

In this paper, I have shown how semiconductor lasers with sharply frequency depen-

dent outcoupling and Kerr nonlinearity could be used to create lasers which produce

high levels of intensity squeezing in the laser cavity. Additionally, I have demon-

strated how strong carrier nonlinearities in these systems can lead to a new type of

“carrier bistability” which leads to multiple possible laser steady states. I anticipate

that many existing experimental platforms could realize the intensity noise condensa-

tion and bistable effects described here, especially systems employing a geometry that

maximizes photonic (Kerr) nonlinearity over carrier nonlinearities, as in the external

cavity-like geometry of Fig. 1 (with the gain being a semiconductor gain chip).

This work naturally suggests additionally possibilities for using nonlinear dis-

perisve dissipation to control the output state of semiconductor lasers. Examples

of topics for additional investigation include the effect of nonlinear dispersive loss

on phase noise and linewidth, as well as the effects of optical feedback on intensity

and phase noise (e.g., in external cavity lasers). Semiconductor lasers are ubiquitous

in many real-world applications and I envision that the use of nonlinear dispersive

loss could render them important sources of low noise states for use in sensing and

quantum computing applications.

57



Shot noise

r = 1.41
r = 1.41
r = 4.16

(c) (d)

β = -10-9

β = -10-10

β = 0

(a) (b)

Unstable region

12 dB squeezing

κ0 = FSR
κ0 = 10-1 · FSR
κ0 = 10-2 · FSR

Figure 3-3: Intensity noise squeezing in semiconductor lasers with dispersive
photonic loss and intensity dependent nonlinearity. (a) Intensity dependent
loss profiles 𝜅(𝑛) for three different (dimensionless) nonlinear strengths 𝛽 (𝛽 = 0
corresponds to linear loss) coupled to symmetric Fano (Lorentzian) dissipation in the
absence of carrier nonlinearity, as is a good approximation for an “external cavity”
type geometry. (b) Steady state photon number 𝑛 as a function of pump current
(S-curve) for three different linear background losses 𝜅0 expressed as a fraction of the
free spectral range FSR. The indicated unstable region is bypassed by the bistable
point and is not generally accessible during lasing. (c) Fano factor spectrum (𝑛 ·
RIN ≡ ∆𝑛2(𝜔)/𝑛) as a function of noise frequency for three different pump powers
𝑟 ≡ 𝐼/𝐼thres. Here, 𝜅0 = FSR for the linear loss (blue) and 𝜅0 = 10−2 · FSR for the
nonlinear loss (purple). (d) Fano factor as a function of pump current. Fano factors
in (d) are plotted for the low noise (upper) branch in (b) when bistability is present.
The Fano resonance decay rate is 𝛾 = 2× 1012 rad/s.
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Figure 3-4: Effects of carrier and Kerr nonlinearities composed with dis-
persive loss. (a) Schematically, in the presence of only carrier nonlinearity 𝜎, the
resonance frequency and thus loss depend “directly” on carrier density 𝑁 . Thus, “gain
equals loss” implies 𝐺(𝑁) = 𝜅(𝑁) (both plotted as a function of the ratio of mean
carrier density to transparency density). For sufficiently strong 𝜎 and low background
loss 𝜅0, multiple steady state carrier densities 𝑁 can correspond to a given photon
number 𝑛, resulting in different losses (detunings from the Fano resonance). The low-
est loss solution (smallest detuning) is most likely to lase, though extra solutions may
be accessible by dynamic pumping schemes. (b) The schematic effect of this “carrier
bistability” is to create multiple branches in the S-curve of different slope/threshold
current. Interesting features emerge when both carrier and Kerr nonlinearities are
present, resulting in the behaviors shown in panels (c), (d), and (e). In particular,
the carrier nonlinearity causes a deformation of the intensity-nonlinear Lorentzian
loss profile, eventually pinching off the “sharp loss” from the linear loss for sufficiently
strong carrier nonlinearity (purple curve). This stems from leftward motion of the
carrier bistability boundaries and creates a demarcation between linear (𝐹 ≫ 1) and
nonlinear (𝐹 < 1) loss regimes which may be separated by a region of lasing with
no stable solution. System parameters used are the same as those in Fig. 3-3 with a
nonlinear strength 𝛽 = −10−10, background loss 𝜅0 = 10−2 ·FSR, and Fano resonance
decay 𝛾 = 2 × 1012 rad/s. The magnitudes of Kerr and carrier nonlinearities taken
here are comparable to what they might be in GaAs-based gain media: 𝛽 ∼ −10−10

and 𝜎 ∼ −3× 10−27 m3 (with the proviso of being taken as instantaneous and being
evaluated at a single wavelength). Note also that the Kerr nonlinearity varies with
mode volume (here, I consider a mode volume equal to the cavity volume).
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Figure 3-5: (a) Loss profiles for a DBR-based dispersive dissipation in the presence of
Kerr nonlinearity. Here, the number of layer pairs 𝑁DBR and strength of nonlinearity
𝛽 are varied, with larger 𝑁DBR and stronger 𝛽 corresponding to sharper loss. In
the most extreme case (solid blue curve), the loss is sharp enough to create two
regions of sharp loss separated by a bistable region. (b) Corresponding S-curves,
demonstrating how the sharp loss region 𝜅𝑛 > 0 occurs for forwards pumping (where
a stop band switches to a pass band). (c) Integrated Fano factor plots, demonstrating
strongly sub-Poissonian photon number noise, with maximum squeezing for sharpest
loss (strongest nonlinearity and widest stop band). The artifacts near 100 mA are a
result of amplitude-phase coupling. The effective refractive index and refractive index
contrast are 𝑛̃ = 3.0,∆𝑛 = 1.23 respectively. A linear background loss 𝜅0 = 10−1·FSR
(quality factor 𝑄 ≈ 2× 105) is assumed.
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Chapter 4

Conclusions and Future Directions

In this thesis, I have described two projects related to state-of-the-art and next-

generation sources of quantum states of light. My discussion thus far has focused on

Fock states and intensity noise-squeezed states. However, since the writing of this

thesis, I have begun investigating other methodologies for developing novel sources of

other quantum states of light.

4.1 Generalizing nonlinear dispersive loss for quan-

tum light generation

The phenomenon of nonlinear dispersive loss may be amenable to generating quantum

states of light in systems other than those described here.

4.1.1 Intensity squeezing through electromagnetically induced

transparency (EIT)

EIT, which arises from the destructive interference of two transition pathways in an

atom, creates a transparency window in an otherwise opaque material. The typical

setup is a three-level system coupled by pump and probe beams (the transparency

window occurs in the latter). In addition to transparency, EIT is characterized by

amplified nonlinear susceptibility; Kerr nonlinearities over 10 orders of magnitude
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larger than those in conventional semiconductors have been observed in Rydberg atom

Bose-Einstein condensate (BEC) systems exhibiting EIT, and recently this strength

has been approached using Rydberg excitons in solid Cu2O [51]. By placing such

an EIT system in a high-Q cavity endowed with dispersive loss (as for example via

photonic crystal elements), a loss that is sharply dependent on intracavity intensity

can be created for the probe beam. This may induce unprecedented squeezing in

intensity noise and represent the closest approach to a Fock state, limited only by

background losses, which can be very low in the high finesse cavities common in

atomic physics experiments. Thus, I expect EIT systems in high finesse cavities to be

an ideal platform for the generation of highly number-squeezed radiation, eventually

enabling the generation of high number Fock states.

4.1.2 Creating quantum states of light with second order non-

linearities and dispersive loss

Second order (𝜒(2)) nonlinearities, which are intrinsically stronger than Kerr nonlin-

earities, are often harnessed for parametric frequency conversion, mixing two waves

and creating a third at the sum or difference of the two frequencies. Since these non-

linearities are intrinsically stronger than the Kerr nonlinearity discussed so far, these

systems may come with new advantages for generating novel states of light in the pres-

ence of frequency dependent dissipation. Specifically, I propose studying an optical

parametric oscillator (OPO), where a high-frequency pump is downconverted into two

lower-frequency signal and idler beams, 𝜔𝑝 = 𝜔𝑠+𝜔𝑖. The frequency-dependent index

of refraction depends on the electric fields as 𝑛(𝜔𝑠,𝑖) ∝ 𝐸𝑝𝐸𝑖,𝑠 [52, 45]. The addition of

sharply frequency dependent loss elements will create a system with complex coupled

mode dynamics and amplitude-phase coupling absent in the Kerr nonlinear systems

considered above. Depending on the details of the cavity and dispersive loss, different

behaviors may emerge. For example, by varying geometric parameters of the setup,

the resonances in the dispersive loss may be tuned such that each mode experiences

lowest loss around some controllable photon number, with the nonlinear loss prevent-
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ing fluctuations from this value. This could create a mixture or superposition of Fock

states at degenerate or non degenerate frequencies. The amplitude-phase coupling

induced by the 𝜒(2) nonlinearity may also enable phase noise squeezing, analogous

to the use of external feedback and dispersive loss in semiconductor lasers. These

systems are also amenable to on-chip applications with e.g. lithium niobate photon-

ics, which could eventually lead to on-chip quantum light sources which are usable as

resources for quantum information and more.

4.2 Other avenues

In addition to exploring the aforementioned two realizations of nonlinear dispersive

loss, I am excited to explore other directions during my PhD, including:

1. Quantum multimode nonlinear optics (MMNLO). This is an area with consider-

able room for growth in both theory and experiment. For example, building on

my machine learning background, I aim to develop a physics informed machine

learning framework incorporating recent work on understanding multimode non-

linear interactions through the lens of thermodynamics as well as other physical

constraints, potentially allowing a better physical picture of MMNLO [53]. By

developing a quantum mechanical description of MMNLO, I also aim to explore

how the integration of nonlinear dispersive loss in multimodal systems could

realize highly entangled quantum states of unprecedented complexity.

2. Free electron interactions with nanophotonics have recently garnered significant

interest for exhibiting quantum optical phenomena [54, 55, 56, 57, 58, 59]. One

example is the recent demonstration of detecting heralded photons from free

electron-photon entanglement [57]. I aim to study whether nanophotonics can

be used to tailor free electron-photon interactions in such a way to determin-

istically create coherent and squeezed light of macroscopic intensities over an

unprecedented wavelength range. This could, for example, result in the first

demonstration of nanoscale free electron lasers, which could revolutionize laser
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science and spectroscopy.

3. The study of strong and ultrastrong coupling (USC) is also one that is burgeon-

ing. For example, strong coupling between solid state emitters and high-quality

dielectric resonators have been applied for ultrasensitive magnetometry, while

photonic quasiparticles formed from USC are thought to modify material prop-

erties [60, 61]. Can nanophotonics be used to amplify interactions between

matter (such as solid state emitters) and photonic quasiparticles (such as po-

laritons) to create novel phases of quantum matter with photonic and matter-

like character? This could be harnessed to boost the performance of classical

photonic devices, from lasers to photovoltaics.

The generation of quantum light is a goal that will continue to guide the field of

quantum optics, and I am excited by the potential contributions to this direction that

my work may unlock.
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Appendix A

Semiconductor Fock Laser

Derivations

A.1 Derivation of ⟨2𝐷𝑛𝑛⟩ correlator

In this section, we derive the photon number correlator in the presence of two-photon

absorption (TPA). We begin with the equation of motion for photon number proba-

bilities in the presence of TPA only, 𝑝̇𝑛 = −𝛼TPA

2
𝑛(𝑛− 1)𝑝𝑛 +

𝛼TPA

2
(𝑛+1)(𝑛+2)𝑝𝑛+2,

where 𝑝𝑛 denotes the probability of having 𝑛 photons inside the laser cavity. Thus,

⟨𝑛̇⟩ =
∑︁
𝑗

𝑗𝑝̇𝑗

= −2𝛼TPA

∑︁
𝑗

𝑗(𝑗 − 1)𝑝𝑗

= −𝛼TPA[⟨𝑛2⟩ − ⟨𝑛⟩].

(A.1)

The RHS reduces to −𝛼TPA⟨𝑛⟩2 assuming mean field theory, ∆𝑛 ≪ ⟨𝑛⟩, recovering

the equation of motion 𝑛̇ = −𝛼TPA𝑛
2. Using the generalized Einstein relation, the

correlator is ⟨2𝐷𝑛𝑛⟩ = 𝑑
𝑑𝑡
⟨𝑛2⟩ − 2⟨𝑛𝐷𝑛⟩, where we express 𝑛̇ = 𝐷𝑛 + 𝐹𝑛, with 𝐷𝑛 a

diffusion term and 𝐹𝑛 a Langevin force. Thus
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⟨2𝐷𝑛𝑛⟩ =
(︁∑︁

𝑛2𝑝̇𝑛

)︁
+ 2𝛼TPA⟨𝑛3 − 𝑛2⟩

= −𝛼TPA⟨𝑛(𝑛− 1)2⟩+ 2𝛼TPA⟨𝑛2(𝑛− 1)⟩

≈ 2𝛼TPA⟨𝑛⟩2,

(A.2)

again assuming mean field theory. Allowing for one-photon gain and loss, ⟨2𝐷𝑛𝑛⟩ =

2𝜅𝑛+ 𝛼TPA𝑛
2 → 3𝜅𝑛 for dominant TPA loss.

A.2 Linearized semiconductor rate equations and rel-

ative intensity noise

In this section, we provide a linearization of the semiconductor laser rate equations

in the presence of various nonlinearities and calculate relative intensity noise using

this formalism. We obtain

𝛿𝑛̇ = −
(︂
𝜅𝑛𝑛+

𝑝𝐺0

2(1 + 𝑝)

)︂
𝛿𝑛+ (𝐺𝑁𝑛− 𝜅𝑁𝑛) 𝛿𝑁 + 𝐹𝑛

= −
(︂
𝜅𝑛𝑛+

𝑝𝐺0

2(1 + 𝑝)

)︂
𝛿𝑛+ 𝑛 (𝐺𝑁 − 𝜅𝑁) 𝛿𝑁 + 𝐹𝑛

𝛿𝑁̇ = −
(︂
𝐺0(1 + 𝑝/2)

1 + 𝑝
− 𝐼𝑛

)︂
𝛿𝑛−

(︀
𝐺𝑁𝑛+ 𝛾‖

)︀
𝛿𝑁 + 𝐹𝑁 .

(A.3)

where 𝑝 = 𝑛/𝑛sat denotes the saturation fraction for photon number and 𝐼𝑛 denotes

carrier generation by TPA. Note that 𝐺0, 𝐺𝑁 implicitly include the effects of gain

saturation, 𝐺0,𝑁 → 𝐺0,𝑁/
√
1 + 𝑝. Results in the main text assume 𝑝, 𝐼𝑛 → 0.

For simplicity of notation, we will introduce 𝑎 = 𝑛𝐺𝑁 + 𝛾‖, 𝑏 = 𝑛 (𝐺𝑁 − 𝜅𝑁) , 𝑐 =

𝐺0
1+𝑝/2
1+𝑝

− 𝐼𝑛, 𝑑 = 𝑛(𝜅𝑛 −𝐺𝑛),Γ1 = |𝑎+ 𝑑|,Ω2
𝑅 = |𝑎𝑑+ 𝑏𝑐|. Note that Ω2

𝑅 denotes the

approximate relaxation oscillation frequency and Γ1 the decay of relaxation oscilla-

tions. Fourier transforming the linearized rate equations,
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⎡⎣−𝑖𝜔 + 𝑑 −𝑏

𝑐 −𝑖𝜔 + 𝑎

⎤⎦⎡⎣ 𝛿𝑛(𝜔)
𝛿𝑁(𝜔)

⎤⎦ =

⎡⎣𝐹𝑛

𝐹𝑁

⎤⎦ , (A.4)

yielding⎡⎣ 𝛿𝑛(𝜔)
𝛿𝑁(𝜔)

⎤⎦ =
1

−𝜔2 + (𝑎𝑑+ 𝑏𝑐)− 𝑖𝜔(𝑎+ 𝑑)

⎡⎣ (−𝑖𝜔 + 𝑎)𝐹𝑛 + 𝑏𝐹𝑁

−𝑐𝐹𝑛 + (−𝑖𝜔 + 𝑑)𝐹𝑁 .

⎤⎦ (A.5)

The intensity noise spectrum is then

⟨𝛿𝑛†(𝜔)𝛿𝑛(𝜔)⟩ = (𝜔2 + 𝑎2)⟨2𝐷𝑛𝑛⟩+ 𝑏2⟨2𝐷𝑁𝑁⟩+ 𝑎𝑏⟨2𝐷𝑁𝑛⟩
(𝜔2 − Ω2

𝑅)
2 + 𝜔2Γ2

1

. (A.6)

As a side note, ignoring the effect of Kerr nonlinearity but including dispersive loss

and the associated amplitude-phase coupling, we see that RIN can be reduced by a

factor (1+𝜅2
𝜔)/(1−𝛼𝐿𝜅𝜔/2)

2 → 1/(1+𝛼2
𝐿) if the slope 𝜅𝜔 is chosen appropriately, in

agreement with earlier work on amplitude-phase decorrelation (where intensity noise

is reduced somewhat at the expense of an increase in phase noise) [29]. However, this

method leads to frequency selective squeezing, as opposed to the type of broadband

squeezing we consider here.

We compute the Fano factor from Eq. 3.4 using the integrals

𝐼1 =

∫︁ ∞

0

1

(𝜔2 − 𝑥2)2 + 𝑦2
𝑑𝜔 =

𝜋

4𝑦

√︁
2𝑥2 + 2

√︀
𝑥4 + 𝑦2√︀

𝑥4 + 𝑦2

𝐼2 =

∫︁ ∞

0

𝜔2

(𝜔2 − 𝑥2)2 + 𝑦2
𝑑𝜔 =

𝜋

4

√︁
−2𝑥2 + 2

√︀
𝑥4 + 𝑦2√︀

𝑥4 + 𝑦2
+ 𝑥2𝐼1,

where 𝑥, 𝑦 ∈ R. With 𝑥2 = Ω2
𝑅−

Γ2
1

2
, 𝑦2 = Γ2

1

(︁
Ω2

𝑅 − Γ2
1

4

)︁
, we have 𝐼1 = 𝜋

2Γ1Ω2
𝑅
, 𝐼2 =

𝜋
2Γ1

.

Thus, the Fano factor reads

𝐹 =
1

2𝑛Γ1Ω2
𝑅

(︁
[⟨2𝐷𝑛𝑛⟩+ 𝑛2𝜅2

𝜑̇
⟨2𝐷𝜑𝜑⟩](Ω2

𝑅 + 𝑎2) + ⟨2𝐷𝑁𝑛⟩𝑎𝑏+ ⟨2𝐷𝑁𝑁⟩𝑏2
)︁

(A.7)
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A.3 Noise reduction from two photon absorption (TPA)

Two photon absorption (TPA), though not a dispersive loss, is weakly nonlinear in

photon number and thus may be expected to permit some squeezing in intensity noise.

When TPA is present, for large 𝑛,

𝐹 → 3𝜅

2𝑛(𝐺𝑁 + 𝛼TPA)

(︂
1 +

𝐺𝑁

𝛼TPA + 𝜅/𝑛

)︂
, (A.8)

where 𝛼TPA = 𝜅𝑛. The minimum achievable Fano factor is 3/4, obtained when

𝜅0/𝑛 ≪ 𝛼TPA ≪ 𝐺𝑁 (here 𝜅0 denotes linear background loss). To obtain the TPA

coefficient 𝛼TPA, we use the relationship between intensity 𝐼 and photon number

𝐼 ∼ 𝑛ℏ𝜔𝑐/𝑉 , so that 𝛼TPA ∼ 2ℏ𝜔𝑐𝐿𝛽TPA · FSR/𝑉 , where 𝐿, 𝑉 respectively denote

the length and volume of the cavity. For a cavity field oscillating at 𝜔 ∼ 1015 Hz for

GaAs at 1064 nm (𝛽TPA = 260 m/TW), we find 𝛼TPA ∼ 10−8 · FSR for 𝐿 ≈ 1 mm,

𝑉 ≈ 10−16 m3.

As shown in Fig. A-1a, TPA creates a sublinear S-curve that arises from the

monotonic dependence of 𝜅(𝑛) on 𝑛. Fig. A-1b demonstrates how TPA induces

broadband intensity noise squeezing, resulting in a weak suppression of Fano factor

(integrated over all noise frequencies) in Fig. A-1c. Linear loss asymptotes to unit

Fano factor for large pump powers, while TPA can result in minor noise condensation

(though this effect can be washed out if TPA is too strong or too weak, in violation of

𝜅0/𝑛 ≪ 𝛼TPA ≪ 𝐺𝑁). The source of Fano factor reduction for higher pump currents

is slightly different for both loss profiles. For linear loss, it occurs because steady state

𝑛 increases linearly with pump current while the fluctuations (∆𝑛)2 have a sublinear

dependence on pump current. In contrast, for TPA, the photon number 𝑛 is clamped

at high pump current and the photon number distribution is squeezed slightly due to

the nonlinear loss 𝜅(𝑛).
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Figure A-1: (a) Steady state intracavity photon number as a function of pump current
(S-curve), demonstrating sub-linear dependence of photon number with pump current
for two-photon absorption (TPA). (b) Photon number variance spectrum for two
different pump powers 𝑟 = 𝐼/𝐼thres, with broadband squeezing for intensity dependent
TPA. (c) Fano factor plots for linear and TPA loss profiles. The intensity dependence
of TPA 𝜅(𝑛) ∝ 𝑛 creates small (< 2 dB) drops in Fano factor below the shot noise
limit when pumped far above threshold. Here, 𝛼 ≡ 𝛼TPA/FSR.

A.4 Steady states of Fano-based Fock laser

The oscillation condition requires that “gain equals loss” and that the cavity field is

phase matched over a round trip through the resonator. The former condition was

explicitly encoded in the rate equations and allowed us to determine steady state

photon number. The latter condition reads

− tan−1

(︂
𝛿

𝛾

)︂
+

2𝜔𝐿

𝑐
𝑛eff(𝑛,𝑁) = 2𝑚𝜋, (A.9)

where 𝑛eff(𝑛,𝑁) = 𝑛eff,0(1 + 𝜎𝑁 + 𝛽𝑛) is the shifted refractive index due to intensity

and carrier nonlinearities and the amplitude reflectivity of the Fano mirror is 𝑟Fano =
𝛾

𝑖𝛿+𝛾
with 𝛾 the decay of the Fano resonance and 𝛿 = 𝜔 − 𝜔𝑐 the detuning from the

Fano resonance centered at 𝜔𝑐. We assume the second cavity mirror is broadband

and imparts no phase shift (though a nonzero frequency independent phase shift can

easily be incorporated without changing this analysis). If the phase shift of the Fano

mirror was frequency independent, we would directly recover Equation 3.1 from the

main text (ignoring constant phase offsets). The effect of the dispersive phase shift

imparted by the Fano mirror is negligible over the detunings we consider: sweeping
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across the Fano resonance gives a deviation from the prediction of Equation 3.1 of at

most 0.02𝛾.

A.5 Carrier dependence of refractive index

The refractive index in the active region depends on carrier density as [42]

𝑛eff(𝜔,𝑁) = −𝛼𝐺𝑁(𝑁 −𝑁trans)/2𝜔 + 𝑛𝑏(𝜔), (A.10)

where we neglect the frequency dependence of the “bound” contribution to the

refractive index 𝑛𝑏 ≡ 𝑛𝑏(𝜔). Thus we can immediately associate

𝜎 = −𝛼𝐺𝑁

2𝜔𝑛𝑏

(A.11)

in Equation 3.1, explicitly showing the relationship between the carrier depen-

dence of refractive index 𝜎 and the linewidth enhancement factor 𝛼. For example,

GaAs/AlGaAs double-heterostructure lasers may have 𝐺𝑁 ≈ 3 × 104 s-1 [62]. With

linewidth enhancement factor 𝛼 ≈ 2, 𝑛𝑏 ≈ 3.5 and 𝜔 ≈ 1015 (telecom wavelengths),

we find 𝜎 ≈ −10−27 m3, consistent with the values used in the main text.

A.6 Active semiconductor Fock laser architecture

In this section, we introduce a special case of the semiconductor Fock laser architecture

wherein the per-photon Kerr nonlinearity 𝛽 comes from the gain medium itself, shown

in Figure A-2. Importantly, since the medium is active, the Kerr nonlinearity is

resonantly enhanced (typical values are provided in Table 3.1). For the purposes

of our analysis, we will also assume that the index, and thus resonance frequency,

responds instantaneously to changes in photon and carrier number relative to other

timescales in the system, so that Specifically, here we ignore dispersive effects in the

nonlinear strength near bandgap resonance. Materials and operating frequencies may

need to be optimized so that this assumption is valid. For example, DBR lasers may
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Figure A-2: All-semiconductor Fock laser architecture. (a) Basic semicon-
ductor laser diode heterostructure design with nonlinear dispersive loss. Dispersive
outcoupling is generated via the sharp frequency dependent transmission of a photonic
crystal element. Coupling of combined Kerr and carrier nonlinearity with dispersive
loss 𝑅(𝜔) creates sharp nonlinear loss 𝜅(𝑛,𝑁). Here, ∆ denotes detuning from the
dispersive (Lorentzian) resonance and 𝛾 denotes the width of the dispersive resonance
(related to its FWHM). (b) Semiconductor optical nonlinearities, including intensity
dependent Kerr effect as well as carrier-dependent free carrier dispersion (FCD) and
two photon absorption (TPA). These nonlinearities shift the real part of the active
region’s refractive index, in turn shifting the resonance frequency in the diode cavity.
Weak nonlinear loss from shifting the imaginary part of the refractive index via the
Kramers-Kronig relations is also generated, but in most cases is negligible compared
to the nonlinear dispersive loss.

be operated sufficiently far from the gain peak that the Kerr nonlinearity remains

relatively large but can also be treated as instantaneous.

With this assumption of instantaneity of the Kerr nonlinearity, the results in Figs.

3-3 and 3-4 still hold, though larger nonlinearities may be accessible depending on

the choice of material and cavity geometry.
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