
Rapidly Estimating Swarm Resource Needs Through
Autonomous Simulation

by
Eric Young

B.S. Computer Science, United States Naval Academy (2015)
B.S. Information Technology, United States Naval Academy (2015)

Submitted to the Department of Mechanical Engineering and the
System Design & Management Program

in partial fulfillment of the requirements for the degrees of
Naval Engineer

and
Master of Science in Engineering Management

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© Eric Young 2023. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Author: Eric Young
Department of Mechanical Engineering and the System Design & Management
Program
May 12, 2023

Certified by: Dr. Michael Benjamin
Principal Research Scientist in Mechanical Engineering, MIT

Approved by: Dr. Nicolas G. Hadjiconstantinou
Chairman, Department Committee on Graduate Theses

Approved by: Dr Joan S. Rubin
Executive Director, System Design & Management

2

Rapidly Estimating Swarm Resource Needs Through

Autonomous Simulation

by

Eric Young

Submitted to the Department of Mechanical Engineering and the System Design &
Management Program

on May 12, 2023, in partial fulfillment of the
requirements for the degrees of

Naval Engineer
and

Master of Science in Engineering Management

Abstract

The maritime industry spends significant time and resources accomplishing long last-
ing collaborative tasks such as search and rescue or ocean surveying. Autonomous
swarm ships’ ability to scale rapidly and operate with limited resources allows them
to outperform conventional crewed ships at these collaborative operations. Despite
their incredible potential, perpetually operating productive autonomous swarms cre-
ates significant logistic challenges. This thesis aims to solve these problems. Specif-
ically, this thesis aims to maximize collaborative swarm productivity, by predicting
and managing robot resource needs, using operations theory, simulation, and machine
learning.

Maximizing swarm productivity first requires developing a common scenario to
measure productivity. Drawing from multi-robot patrol research, this thesis imple-
ments two resource-aware multi-robot patrol missions in MOOS-IvP. In each mission,
vehicles perpetually patrol a grid and must periodically break patrol formation to re-
fuel at a depot. Missions measure their performance based on how frequently robots
visit each portion of the mission operating area (grid idle time) and how much area
each robot controls (average Voronoi polygon area). With a common patrol scenario
developed, this thesis then simulates patrol missions using different vehicle and depot
parameters to generate a broad performance dataset.

Finally, this thesis develops a method to predict future mission performance from
the simulated productivity dataset. Simulated mission data is post processed and
used to train XGBoost models. Compared to mission simulations, these models take
far less time to produce while still showing planners what performance and vehicle
output they can expect from a given mission.

Thesis Supervisor: Dr. Michael Benjamin
Title: Principal Research Scientist in Mechanical Engineering, MIT

3

4

Acknowledgments

I could not have done this thesis without the help and support of my friends and

colleagues at MIT. I cannot believe how fortunate I was to meet and interact with so

many exceptionally talented humans during my three years here. I will never forget

my time with you all.

To my advisor Dr. Mike Benjamin, thank you so much for guiding me through

this research, helping me learn marine autonomy, and helping me push the bound-

aries of collaborative vehicle autonomy. Despite teaching a class, running a lab, and

maintaining a major open source software project, you accepted me into the Pavlab

and helped me grow into a better human. Your work, humility, and breathtaking

talent inspire me. From your help, I leave MIT better prepared to usher the Navy

into a new autonomous era.

To Dr. Sean Willems, thank you for being a truly unbelievable mentor and opera-

tions management resource. From my simple email titled "Autonomous Ship Supply

Chain Questions" you helped me focus my thesis topic, develop analytical techniques

to analyze autonomous ship performance, and repeatedly took time to meet and offer

constructive feedback on my [often crazy] ideas. From your help, I leave MIT better

prepared to define and solve complex operational tasks.

To Randy, Sterling, Brian, and Nate, thank you all for recommending me for

admission at MIT. Your recommendations kicked off a truly unbelievable opportunity

that changed my life for the better. I intend to pay these recommendations forward

in the future.

To my family, thank you for your continued love, sacrifice and support. I love you

all so much.

5

6

Contents

1 Introduction 17

1.1 Collaborative and Perpetual Operations in the Maritime Industry . . 17

1.2 Performance Benefits Created When Autonomous Ship Swarms Per-

form Collaborative Maritime Operations 18

1.2.1 Autonomous Scaling Capability and its Benefits 18

1.2.2 Autonomous Ship Reduced Resource Benefits 19

1.3 New Challenges Caused by Autonomous Ship Swarm Operation . . . 20

1.3.1 Problem 1: Nonlinear Fuel Consumption 20

1.3.2 Problem 2: Difficult Operational Planning 21

1.4 Thesis Objective . 22

1.5 Thesis Contribution to Marine Robotics 22

1.6 Thesis Structure . 22

2 Developing a Common Scenario to Measure Swarm Productivity 25

2.1 Common Trait 1: Spreading . 25

2.2 Measuring Robot Spreading . 26

2.2.1 Nearest Neighbor Distance Anomaly Detection 26

2.2.2 Voronoi Entropy . 28

2.2.3 Probabilistic Sensor Coverage 28

2.2.4 Selected Metric: Average Voronoi Cell Area 30

2.3 Common Trait 2: Robot Movement 32

2.4 Measuring Robot Movement . 33

2.4.1 Problems With Inferring Movement from Task Performance . 33

7

2.4.2 Selected Metric: Time Sampled Average Node Idle Time . . . 34

2.5 Developing a Common Robot Productivity Task 36

2.5.1 Selected Task: Modified Multirobot Patrol Problem (MRPP) . 37

2.5.2 Chosen Productivity Scenario Description 38

3 Developing Resource Management Algorithms for the Common Sce-

nario 43

3.1 Related Work . 43

3.2 Creating Patrol Specific Resource Algorithms 44

3.3 Restocking strategy . 45

3.3.1 Implementing the Common Productivity Scenario in MOOSIvP 46

3.3.2 Analytically Validating Mission Performance 71

3.3.3 Comparing Analytically Performance Estimates With Observed

Results . 74

3.3.4 Post Processing Simulation Data 76

4 Predicating Future Swarm Needs from Past Mission Performance 81

4.1 Prominent Patrol Data Attributes . 82

4.1.1 Averaging Overall Performance Allows General Mission Com-

parison but Doesn’t Fully Capture Vehicle Behavior 82

4.1.2 Instantaneous Performance Becomes Difficult to Predict As Ve-

hicle Refuel . 84

4.2 Testing Machine Learning Algorithms to Predict Mission Performance 87

4.2.1 Time Series Transformer . 87

4.2.2 Selected Metric: Predicting Histogram Confidence 88

4.3 Practical Mission Planning Using ML Assisted Simulation 93

4.3.1 Example: Planning a Saxis Survey Mission 93

5 Conclusion 97

5.1 Reflection On Thesis Goals . 97

5.2 Future Work . 98

8

A Detailed XGBoost Prediction Results 101

9

10

List of Figures

2-1 An operating area partitioned by the Voronoi algorithm. In this case,

every point lying in P1’s polygon is closer to P1 than P2 or P3. . . . 31

2-2 Drone photo showing the WAM-V USV operating at the MIT Sail-

ing Pavilion [Bena]. The vehicle uses MOOS-IvP’s survey generation

capability to patrol an area of the Charles River for demonstration. . 40

3-1 Intra vehicle publish and subscribe behavior. 49

3-2 Inter vehicle publish and subscribe behavior. 49

3-3 Swarm toolbox mission demonstration showing 50 vehicles dynami-

cally spreading out in the Sea of Japan under a limited communication

scheme [Ben22] . 52

3-4 Graphical rendering showing latency grid tracking 10 ships patrolling

an operating area. Cells recently visited by ships render in blue. As

time elapses without a ship visit, the squares turn red. While PLG

maintains near instantaneous grid tracking in the background it infre-

quently updates its graphics output. Consequently, several cells may

remain red after a ship visit until PLG re-renders the grid for display 55

3-5 Depot spawn locations scheme for four and eight depots. In each case,

pickDepot spawns depots counter clockwise around the operating area. 57

3-6 Depot spawn location for five depots. In this case, pickDepot pop-

ulates the north side with two symmetric depots and then continues

populating one depot on the east, south, and west side. 57

11

3-7 Possible vehicle modes (white) and their the behaviors running during

each mode (orange). Dark grey modes represent a final mode state

a vehicle can be in. For example, A vehicle can be in mode AC-

TIVE:PATROLLING or mode ACTIVE:FUELING:RECEIVING . . 59

3-8 bhvSurvey functioning in a local polygon mode. In state one, vehicles

spread themselves out using pProxonoi and bhvVoronoi behavior in the

"Cover" mode. Once uFldVoronoi detects vehicles have spread out,

passes individual Voronoi polygons to bhvSurvey (State two). Each

vehicles’ bhvSurvey then creates its own survey pattern and begins

patrol. 63

3-9 bhvSurvey functioning in a global polygon mode. In this state, every

vehicle patrols the same survey polygon. Vehicles use Algorithm 8 to

spread themselves equally along the survey. 63

3-10 Overall mission layout used for simulations with a global patrol polygon. 67

3-11 Non-Linear Idle Time Changes Occur Most Within the First 5 Depots

[Truncated Y Axis To Highlight Rate of Change] 69

3-12 Non-Linear Area Changes Occur Most Within the First 5 Depots [Trun-

cated Y Axis To Highlight Rate of Change] 70

3-13 Top of the Ship Supply Visualization dashboard. Clicking on any of

the summary statistics displays specific time series an histogram data

for the selection. 77

3-14 Time Series Plot Showing Changing Vehicle Fuel Levels Over Time . 79

3-15 Average Voronoi Polygon Area Histogram 80

3-16 Average Grid Idle Time Histogram 80

4-1 Histograms comparing vehicle performance between missions 83

4-2 Infrequent fueling and small fuel delays make mission performance met-

rics relatively easy to predict. 85

4-3 Frequent fueling and uneven fuel delay introduce randomness into mis-

sion performance metrics . 86

12

4-4 Transformers Struggle to Predict an Idle Time Series Run 88

13

14

List of Tables

3.1 Table showing fuel tank sizes used in simulation 66

3.2 Avg Grid Idle Times for Scenarios W/ 4 Depot, Vehicles W/ 720 Unit

Fuel Tank. 75

3.3 Avg Voronoi Area for Scenarios W/ 4 Depot, Vehicles W/ 720 Unit

Fuel Tank. 75

4.1 Root Mean Squared Error (RMSE) (Units: 𝑠) When Predicting local

polygon idle time performance . 91

4.2 Root Mean Squared Error (RMSE) (Units: 𝑠) When predicting global

polygon idle time performance . 91

4.3 Root Mean Squared Error (RMSE) (Units: 𝑚2) when predicting global

Voronoi polygon area performance . 91

4.4 Root Mean Squared Error (RMSE) (Units: 𝑚2) when predicting local

Voronoi polygon area performance . 91

4.5 Example data showing overall time between vehicle samples in the saxis

operating area. 94

A.1 Predicted vs actual local idle time performance comparison(Units: 𝑠) 101

A.2 Predicted vs actual local idle time performance comparison (cont)(Units:

𝑠) . 102

A.3 Predicted vs actual global idle time performance comparison (Units: 𝑠) 103

A.4 Predicted vs actual global idle time performance comparison (cont)

(Units: 𝑠) . 103

A.5 Predicted vs actual global area performance comparison(Units: 𝑚2) . 104

15

A.6 Predicted vs actual global area performance comparison (cont)(Units:

𝑚2) . 104

A.7 Predicted vs actual local area performance comparison(Units: 𝑚2) . . 105

A.8 Predicted vs actual local area performance comparison (cont)(Units:

𝑚2) . 105

16

Chapter 1

Introduction

1.1 Collaborative and Perpetual Operations in the

Maritime Industry

Maritime operations incentivize collaboration. Specifically, the maritime industry

spends significant energy accomplishing collaborative and perpetual operations. In

this work, collaborative operations occur when commodity ships work together to

achieve a common goal. Perpetual operations occur when a ship must operate longer

than its normal operating period to achieve a task. In other words, a ship must return

to port at least once during its tasking to address human and supply needs. Examples

of collaborative, perpetual operations in the maritime industry include the following:

• Search and Rescue

• Hydrographic Mapping

• Patrol and Adversarial Search

• Convoy Escort

• Area Coverage Operations (e.g Smart Buoys)

These operations require substantial human and maritime resources. For example,

in 2013 alone, the US coast guard completed 17,826 search and rescue operations

17

that saved 3,773 lives. Saving these lives required Coast Guard assets perform 53,911

hours of search and rescue operations[Tra]. While the Coast Guard does not detail

their total Search and Rescue costs, they publish how much each of their assets

cost to assist federal and state governments. Utilizing a single Fast Response Coast

Guard Cutter costs government agencies $4,803 dollars per hour in 2021. Aircraft

and special purpose craft can cost double or even triple a cutter’s hourly rate[Guaa].

Consequently, Search and rescue likely costs the government hundreds of millions each

year. Search and rescue aside, hydrographic surveys also require significant economic

investment. For example, in 2008 alone, hydrographic survey organizations employed

over 8,400 people around the world to conduct an estimated $1.7 billion in offshore,

port, and harbor surveys[Joh]. Improving performance in these operations potentially

saves millions of dollars, strengthens our knowledge of the ocean, and saves human

lives.

1.2 Performance Benefits Created When Autonomous

Ship Swarms Perform Collaborative Maritime

Operations

Autonomous ships’ unique architectural advantages allow them to outperform crewed

ships at collaborative and perpetual tasks. Specifically, autonomous drone ships can

scale rapidly and require fewer resources than crewed ships.

1.2.1 Autonomous Scaling Capability and its Benefits

Autonomous ships can easily scale in quantity to tackle collaborative tasks in par-

allel. Purpose-built autonomous ships require no galley, berthing, pilot house, or

any other crew space. Further, they require no waste management, roll control, nor

other crew comfort systems. Without a crew, ship builders can design vessels con-

taining only systems required to accomplish a mission. This design shift reduces ship

complexity, enhances production capacity, and reduces overall ship cost.

18

Design choices aside, operating autonomous ships eliminates the need to find, train,

and retain capable mariners. Operating large ships in harbors and the open ocean

requires capable mariners to follow Rules of the Nautical Road, respond to shipboard

casualties, and navigate across large distances. Depending on the size of the ship in

operation, obtaining a license to operate these ships can take years of training[Guab].

These significant training requirements and the diversity of vessels restrict the mariner

labor pool’s size and flexibility. In other words, growing crewed ship capacity requires

significant human capital considerations. By contrast, autonomous ship operators

can update training, scheduling, and operational guidance to their entire fleet using

messaging and over the air software updates. This capability dramatically simplifies

the time required to add new autonomous ships to a fleet.

Autonomous ship scaling capability yields tremendous benefit in collaborative, per-

petual tasks. Collaborative tasks generally involve multiple ships performing their

own separate negotiated tasks to solve a large problem. These individual tasks can

also generally be performed in parallel. Further, each problem’s perpetual nature

guarantees there will be an abundance of tasks available for each ship to do. For

example, conducting ocean surveys generally involves multiple ships driving patterns

in the ocean to measure ocean floor characteristics with a sensor. Harbor patrol re-

quires ships repeatedly visit various spots to maintain harbor safety. Individual ships

can take surveys and visit patrol areas without affecting the quality of other ships’

operations, provided they know basic information like previously surveyed areas or

patrol visit frequency. Consequently, adding more ships to accomplish these simple,

perpetual, and parallel tasks improves global problem performance. In other words,

adding ships to an operation means more patrol visits, quicker ocean surveys, and

more lives rescued.

1.2.2 Autonomous Ship Reduced Resource Benefits

Individual autonomous ships require far fewer resources and support than crewed

vessels. From a short-term perspective, crews require food, water, medicine, and space

19

while at sea. Further, ships always need a contingent of humans awake to navigate and

maintain the ship. This requirement forces large and small ships to operate several

shifts to sustain basic operations at sea. Sustaining several shifts at sea requires

significant energy to run crew support systems. Even if ships can replenish these

resources at sea, their crews cannot mentally remain at sea indefinitely.

By contrast, autonomous ships consume fuel only to power systems vital to ac-

complishing their goals. Further, with no crew space requirements, ships can be built

smaller and thus require less fuel to move through the water. To summarize, assuming

long maintenance windows, only fuel limits the time an autonomous ship can remain

at sea.

1.3 New Challenges Caused by Autonomous Ship

Swarm Operation

Despite their incredible potential, perpetually operating large-scale autonomous

swarms creates significant logistic challenges. As previously discussed, an autonomous

ship’s fuel range limits their max operational time at sea. This limit means au-

tonomous ships must interrupt their current tasking to restock at a fuel depot when

performing perpetual operations. This restocking operation creates two problems:

1.3.1 Problem 1: Nonlinear Fuel Consumption

Sea state, wind, tasking adjustments, and collision avoidance maneuvers make ships

consume fuel at nonlinear rates. Consequently, if ships can restock whenever they

want, large groups of ships may leave the work area en masse to restock. This

mass movement may result in incomplete tasking and significant fuel queueing at fuel

depots. Human schedulers may be able to sequence and deconflict several ships re-

stocking manually. However, manually coordinating restocking operations for dozens

or hundreds of ships becomes rapidly unsustainable. In other words, organizations

20

cannot effectively implement autonomous swarms in perpetual operations without

managing how drones restock at sea.

1.3.2 Problem 2: Difficult Operational Planning

Operational planners cannot easily predict what infrastructure they need to main-

tain perpetual swarm operations. Any organization operating a large-scale swarm of

ships at sea needs to answer the following questions:

• How many drones do you plan to deploy?

• What geometry does the swarm operate in?

• Where is the farthest place their algorithms will take them?

• How many fuel depots do you have to restock these ships?

• Where are the depots located?

• Can the depots move?

• How does depot location affect mission performance?

• Who controls the scheme dictating when ships refuel?

• How does this refueling scheme affect overall mission performance?

• Can the ships run out of fuel?

• What happens if the ships run out of fuel?

• Can ships communicate their fuel status to each other?

• How do limited or degraded communication capabilities impact mission perfor-

mance?

21

Currently, many of these questions, especially those related to mission performance,

cannot easily be answered without historical data or time-consuming simulations.

Time-sensitive operations like search and rescue missions cannot afford to waste hours

estimating the resources needed to maintain sea swarms. Consequently, organizations

cannot effectively implement autonomous swarms in perpetual operations without

rapid tools to estimate swarm resource needs.

1.4 Thesis Objective

This thesis aims to maximize collaborative swarm productivity, by predicting and

managing robot resource needs using operations theory, simulation, and machine

learning.

1.5 Thesis Contribution to Marine Robotics

This thesis performs the following:

• Implements and simulates low communication resource-aware patrol algorithms

using many ships operating in a constrained marine environment.

• Tests how dynamic robot behavior impacts naïve resource management strate-

gies.

• Develops a novel way to predict future swarm resource needs based on machine

learning and past mission simulation.

1.6 Thesis Structure

While many organizations invest significant effort to develop uncrewed or au-

tonomous marine vehicles, no organization publicly deploys and operates marine ve-

hicles in long-term collaborative swarm scenarios. Consequently, this thesis uses sim-

ulation functions within the marine autonomy software MOOS-IvP to create and test

22

collaborative swarm scenarios. Maximizing collaborative swarm productivity requires

answering the following questions:

1. How do you develop a common scenario to measure robot productivity?

2. How do you develop general-purpose resource management algorithms to resup-

ply robots in the common scenario, and how well do these algorithms perform?

3. Given a common productivity scenario and appropriate resource management

algorithms, how can you predict what supply resources a future mission planner

might need?

Sections two through four will answer these questions respectively. These sections

will first discuss how others have viewed and analyzed each question. The sections will

then briefly discuss novel methods to answer the question. Finally, these sections will

discuss the selected method, its implementation, and how that implementation con-

tributed to the goals of the thesis. Section five concludes the thesis and recommends

areas for further study.

23

24

Chapter 2

Developing a Common Scenario to

Measure Swarm Productivity

Developing a common scenario to measure swarm productivity requires analyzing

what common traits maximize robot collaborative task performance. These traits can

then illustrate how to measure productivity in our scenario. Finally, a common robot

task can be created to cause robot movements that amplify each measurable trait.

2.1 Common Trait 1: Spreading

In most collaborative tasks, robots maximize job performance when they spread them-

selves across an operating area. Specifically, robot spread enhances task performance

in the following ways:

• Bathymetric Surveys: Robot spread minimizes the overlapping map data cap-

tured by each robots sensor and thus minimizes redundant survey work.

• Sonar Search: Ocean characteristics distort acoustic propagation. Spreading

sensors around an area maximizes the likelihood a nearby sound will be heard.

• Weather Observation: Spreading sensors around an area maximizes the likeli-

hood of identifying changing weather gradients.

25

• Search And Rescue: Many search and rescue tools (e.g visual search) cannot

search beyond the distance to the horizon caused by the curvature of the earth.

Spreading out sensors minimizes this blind spot. Further, robots that can auto-

matically spread themselves out eliminate the need for a mother ship to deliver

search and rescue sensors to prescribed locations.

2.2 Measuring Robot Spreading

Scientists frequently measure relative object placement and use these measure-

ments to answer questions across many scientific disciplines. The following object

observation methods were considered to analyze robot spreading across an operating

area.

2.2.1 Nearest Neighbor Distance Anomaly Detection

Data scientists use nearest neighbor distances (k-distances) to identify patterns and

detect anomalies in groups of data. Other researchers use similar k-distance metrics

to identify clustering and dispersion patterns in geographic planning. While several

methods exist to conduct k-distance anomaly testing, identifying anomalous clusters

of robots would generally work as follows:

26

Algorithm 1 Nearest Neighbor Anomaly Detection
INPUT: Test Point P, Threshold Value anomaly_thresh
OUTPUT: Density Anomaly Likelihood

1: Select P’s k nearest neighbors you want to analyze
2: for each 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈P’s Nearest Neighbors do
3: Calculate the Distance between P and neighbor
4: end for
5: Average all of P’s neighbor distances as 𝑃𝑑

6: for all 𝑃𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈P’s Nearest Neighbors do
7: Get the kNeighbors of Pneighbor
8: for all 𝑘𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ∈pNeighbors’ Nearest Neighbors do
9: Calculate the Distance between kNeighbor and pNeighbor

10: end for
11: end for
12: Average all distances between kNeighbors and pNeighbors as 𝐾𝑑

13: if diff(𝐾𝑑,𝑃𝑑) > anomaly_thresh then
14: return Density Anomaly Found
15: else
16: return No Density Anomaly Found
17: end if

While k-distance based anomaly detection algorithms can be completed faster

than polynomial time, they hold several properties that disqualify them from robot

spreading analysis. First, while [Qu08] and [Sof] successfully implemented efficient

k-distance density anomaly detection, [Sof] found that the algorithm routinely failed

when their area exhibited collections of both extremely sparse and extremely dense

data points. If implemented to identify poorly spread robots, this algorithm may

falsely consider a large group of fueling robots to be not anomalous because a few

well spread robots remain to patrol in the operating area. False positives aside,

anomaly detection algorithms require significant environmental based tuning to out-

put good results making them unfavorable to use in a robot system with dozens of

possible scenario variables.

27

2.2.2 Voronoi Entropy

Scientists use Voronoi entropy in chemical structural analysis to determine how

ordered given groups of objects are compared to their spatially random counter-

parts[Bor+18]. Unlike the k-distance evaluation, Voronoi entropy yields a single value

and requires no k-variable selection. Voronoi entropy, outlined by [Bor+18], can be

calculated for vehicles as follows:

Algorithm 2 Vehicle Voronoi Entropy Calculation
INPUT: Operating Area, Vehicle positions
OUTPUT: Operating Area Voronoi Entropy S

1: Create a Map(edgeNum,count) to record frequency of polygon edge counts
2: for each 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∈Operating Area do
3: Compute vehicle’s Voronoi Polygon 𝑉𝑝

4: Count the edges of 𝑉𝑝 as 𝐶𝑒

5: Increment count in Map(𝐶𝑒,count) by 1
6: end for
7: Create total Voronoi Polygon Count 𝑃𝑐 equal to number of vehicles in operating

area
8: Create total entropy count 𝑆
9: for each 𝐶𝑒 ∈Map do

10: 𝑆=𝑆+ (𝑀𝑎𝑝[𝐶𝑒]÷ 𝑃𝑐) · ln(𝑀𝑎𝑝[𝐶𝑒]÷ 𝑃𝑐)
11: end for
12: return -𝑆

In theory, robots patrolling in an orderly manner would display lower entropy than a

chaotic swarm disrupted by frequent fueling. However, Voronoi entropy’s edge metrics

make it unsuitable to measure robot spreading. When robots leave the operating area

to fuel, few operating robot Voronoi tessellations exist. Fewer tessellations lower the

likelihood of diverse edge counts. Consequently, Voronoi entropy can improve during

periods of heavy fueling even when most robots are not accomplishing their tasks.

2.2.3 Probabilistic Sensor Coverage

Scientists use probabilistic sensor coverage analysis to estimate how wireless sig-

nals cover an area, identify holes in mobile sensor networks, and predict how well

28

sensor array detect moving targets. These algorithms generally involve evaluating

how well objects, whose coverage abilities decay probabilistically with distance, cover

an area. While these algorithms provide concrete ways to measure how vehicle spread

impacts productivity, they have specific characteristics making them unsuitable for

robot spreading measurements.

For example, [AKJ05] Probabilistic Coverage Algorithm used probabilistic sen-

sor detection models to estimate coverage of a wireless network with overlapping

nodes. Specifically, the algorithm creates distance-based wireless probability gra-

dients around nodes, sums overlapping nodal probabilities using the likelihood no

overlapped gradients cover an object, and combines these overlapped probabilities

with coverage probabilities from non-overlapped nodes to estimate full area coverage.

While this algorithm provides excellent real time coverage estimation, it requires sig-

nificant geometric computation and code development to work effectively within open

source marine autonomy software like MOOS-IvP. Further, this algorithm requires

users upload probabilistic sensor performance models. Many collaborative tasks (e.g

search and rescue) cannot accurately measure how well their sensors perform over

time. These poor sensor models would likely yield inaccurate or false coverage re-

sults.

Alternatively, [Eva22] implemented probabilistic sonar searching in MOOS-IvP.

This experiment spawned multiple vehicles carrying simulated sonar sensors. These

vehicles patrolled in assigned area and tried to acoustically detect an adversarial vessel

driving nearby. While these algorithms run efficiently and indicate how robot position

and movement affect detection performance, they cannot provide concrete spreading

information without simulating multiple different adversarial runs. For example, a

sparse group of robots may always detect an adversary when moving through the

center of an operating area but never detect an adversary driving through a corner.

These additional simulations cost valuable computation time which could be used

to simulate scenario responses to changing vehicle quantity or restocking strategy.

29

Also, like [AKJ05] this algorithm requires that user estimate how well their sensors

perform.

2.2.4 Selected Metric: Average Voronoi Cell Area

Scientists utilize Voronoi diagrams to solve problems across mathematics and com-

puter science. Voronoi diagrams partition a region based on the objects or points

located inside that region. Specifically, Voronoi diagrams partition regions into cells

containing one object. The algorithm then cleaves the cells so that every point inside

each cell lives closer to that cell’s object than any other object in the region. In other

words, in a region containing objects P1-P3, any location in cell P1 will be closer to

P1 than points P2 or P3.

30

Figure 2-1: An operating area partitioned by the Voronoi algorithm. In this case,
every point lying in P1’s polygon is closer to P1 than P2 or P3.

31

Modern algorithms can compute Voronoi diagrams in 𝒪(𝑛 log 𝑛) time making cell

area statistics easy to compute[For86]. The following method uses Voronoi cell area

statistics to analyze vehicle spreading and task performance:

Algorithm 3 Voronoi Cell Area Performance Analysis
INPUT: Vehicle operating states
OUTPUT: Simulation Voronoi mean cell area

1: while Simulation ̸= 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 do
2: Identify all vehicle states. Label vehicles transiting to, receiving, or returning

from fueling FUELING.
3: Identify all other vehicles in operating area PATROLING
4: Compute Voronoi cells for all PATROLING vehicles
5: Compute instantaneous Voronoi cell areas for all PATROLING vehicles.
6: Average instantaneous cell areas as instantaneous average grid area
7: Log instantaneous average grid area every minute.
8: end while
9: for all 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝐺𝑟𝑖𝑑𝐴𝑟𝑒𝑎𝑠 ∈Mission Logs do

10: Average instantaneous areas as mean cell area
11: end for
12: return mean cell area

Average Voronoi cell area doesn’t explicitly identify robot spreading in an operating

area because average area does not indicate vehicle location in a cell. However, when

robots pull off station to fuel, they leave unoccupied holes in the operating area

which cannot immediately be filled by other patrolling robots and require robots to

reposition to obtain optimal spreading. These sustained holes in the operating area

drive up instantaneous Voronoi cell areas resulting in a higher simulation mean cell

area. Consequently, when comparing two simulations containing the same number

of robots, the simulations with higher overall mean cell area experienced more robot

disruption to fueling, more operational holes, and therefor worse spreading.

2.3 Common Trait 2: Robot Movement

Besides spreading, robots maximize performance in collaborative tasks when they

consistently move around the operating area. Specifically, robot movement enhances

32

task performance in the following ways:

• Bathymetric Surveys: Ships must tow mapping sensors through an entire oper-

ating area to map all bottom features.

• Weather Observation: Moving around large operating areas improves weather

sample diversity.

• Sonar Search: [Eva22] Showed that when conducting a multi-vehicle sonar

search, continuous vehicle movement alone raises the likelihood of detecting

an adversary.

• Search and Rescue: Ships may need to move through sites multiple times to

identify drifting debris and small objects obscured by high waves. Further, ships

cannot rescue or recover objects they cannot drive to.

2.4 Measuring Robot Movement

Each collaborative task rewards movement in different ways. Consequently, robot

movements cannot be simply inferred through task completion. However, robotics

engineers developed metrics to measure robot movement.

2.4.1 Problems With Inferring Movement from Task Perfor-

mance

Since all robots must move to complete their tasks, any common productivity

scenario could simply implement an existing movement heavy task (e.g sonar search,

bathymetric survey etc), score how well the robots perform the task, and use that

performance to conclude how robots would perform on other tasks. However, robots

move in different ways during each task. For example, sonar searches may move

robots exclusively towards high interest areas whereas weather searching may require

robots visit defined areas in a certain order.

33

Besides diverse movement patterns, many tasks contain probabilistic elements that

preclude comparing empirical robot performance against an analytical standard. For

example, during sonar search, sensor performance, sea state, environmental condi-

tions, and ocean bottom contouring all effect detection performance. These factors

eliminate the ability to calculate what the “best” possible run looks like without mak-

ing environment assumptions not relevant to the goals of the thesis. Consequently,

robot movement cannot be inferred through task performance.

2.4.2 Selected Metric: Time Sampled Average Node Idle Time

Robotics engineers frequently monitor the time since robots last visited a location

(node idle time) to measure how much robots move during a patrol. Most robot

patrol problems generally involve robots moving to a point, marking that point as

visited, and then employing situational metrics to guide them to a different point.

Patrol algorithms that employ idle time normally assign higher priority to locations

not recently visited. For example, while [MTR06] and [Chu+07] employ different

patrol decision and coordination techniques, all their robots change plans in part

because of changing node idle time.

[Mac+03]’s instantaneous graph idleness measured the “average instantaneous idle-

ness of all nodes in a given cycle”. They then averaged instantaneous idleness over an

n-cycle simulation to create their “graph idleness”. While these metrics provide excel-

lent graph insights for small numbers of nodes and short cycles, long cycles can mask

idle time spikes due to erratic robot behavior. For example, in large operating areas,

robots may fuel several times before completing a cycle. These robot interruptions

may boost uncaptured short term graph idle time prior to robots finishing their cycle.

However, graph idle time fidelity can be increased by simply sampling instantaneous

idle time at a specific frequency instead of at cycle end. The following method uses

time sampled node idle time to measure robot movement:

34

Algorithm 4 Time Sampled Average Node Idle Time
INPUT: Scenario Operating Area, Vehicle operating states/locations
OUTPUT: Simulation Mean Node Idle Time

1: Divide operating area into a 2D grid made of cells
2: for each 𝑐𝑒𝑙𝑙 ∈grid do
3: Store cell’s time since last vehicle visit
4: end for
5: Identify all vehicle states. Label vehicles transiting to, receiving, or returning

from fueling FUELING.
6: Identify all other vehicles in operating area PATROLING
7: for each 𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑆𝑒𝑐𝑜𝑛𝑑 ∈Simulation do
8: for each 𝑐𝑒𝑙𝑙 ∈grid do
9: Increment cell’s time since last visit by 1 second

10: for each 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∈mission do
11: if Vehicle located in cell and Vehicle state is PATROL then
12: Set cell’s time since last visit to zero
13: end if
14: end for
15: if 𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑆𝑒𝑐𝑜𝑛𝑑𝑠mod60 equals 0 then
16: Average all cell idle times
17: Log average as an instantaneous average idle time
18: end if
19: end for
20: end for
21: for all 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐼𝑑𝑙𝑒𝑇 𝑖𝑚𝑒𝑠 ∈Mission Logs do
22: Add instantaneous idle time to overall simulation average node idle time
23: end for
24: return Simulation Average Node Idle Time

35

Time sampled average node idle time provides immediate indication’s about how

vehicle operation changes impact productive operational movements. For example,

when a vehicle slows down to improve spacing between other vehicles, it visits fewer

nodes for a given time causing average idle time to rise. Further, when vehicles must

leave the operating area to fuel, they lower the total number of patrolling robots

capable of visiting nodes. Consequently, when comparing two simulations containing

the same number of robots, robots in simulations with higher average node idle time

experienced more fueling disruptions and remained less productive.

2.5 Developing a Common Robot Productivity Task

Any task considered for a common productivity scenario must satisfy the following

characteristics:

• Since these experiments will eventually implement strategies to predict and

manage resource needs, the task must force the vehicles to constantly consume

abundant amounts of fuel. Further, to add realism, the task must force vehicles

to consume fuel at variables rates.

• Since these experiments will use vehicle spreading and movement to infer sce-

nario performance, the task must force vehicles to move constantly and adjust

their behavior to obtain balanced positions throughout the operating area.

• As previously stated, existing collaborative tasks (e.g sonar search, rescue, etc)

require vehicles change their behavior to adapt to exogenous mission circum-

stances like changing target behavior or updated rescue data. These unpre-

dictable changes require any mission performance analysis to be completed us-

ing only empirical simulation. The task chosen for a common scenario must be

structured such that it’s performance can be estimated analytically.

• Since these experiments focus on vehicle swarms working together, the task must

require collaboration, must work under decentralized control schemes, and must

work in low bandwidth environments.

36

2.5.1 Selected Task: Modified Multirobot Patrol Problem (MRPP)

Related Work

Multi Robot Patrol problems plan and optimize how groups of robots periodically

visit sets of points. Many concepts that influence MRPP work come from past work

analyzing individual robot patrol and path planning. This individual robot patrol

work draws heavily on work relating to cellular decomposition-based path planning.

Cellular decomposition partitions an imperfectly shaped operating area into a set of

polygons. Robots can then use these polygons to create survey paths around each

polygon. [Lat91] used a trapezoidal decomposition method to partition operating

areas into navigable graphs of trapezoids and triangles. [CP98] then modified the

trapezoidal decomposition to segment an operating area using fewer polygons and

simpler survey patterns. While these works illustrate methods for robots to partition

and patrol an operating area, they do not examine how multiple robots can coordinate

on these patrols.

Multi robot patrol problems combine individual robot path planning with novel

coordination techniques to create emergent patrol performance benefits. While re-

searchers use MRPP to describe diverse types of multi robot problems, the most

relevant patrol experiments test patrol algorithms containing frequency constraints.

Like multi-agent persistent monitoring [Son+14], robot patrolling with frequency con-

straints generally requires robots visit all points in a way that minimizes node idle

time. [Che04] developed an 𝒪(𝑛3) algorithm that created a multi agent patrol cycle

whose idle time performance rivaled an ideal cycle created by a far more compu-

tationally expensive algorithm. Further, they also analyzed how individual vehicle

graph partitioning affects graph idle time. To further improve performance, [EAK07]

used Hamiltonian cycles created from minimum spanning trees to find an efficient

optimal patrol path for objects set in a grid. They then used information from these

cycles to control starting robot locations and guarantee a minimum patrol frequency.

While these works guide how to implement and measure multi robot patrol, their

37

methods do not analyze how long-term multi-robot restocking affects idle time and

patrol performance.

Benefits of Using a Multi Robot Patrol Problem to Analyze Robot Pro-

ductivity

Multi Robot Patrol Problem’s simple implementation, predictable tasking, and

relevance to many collaborative tasks make it an excellent task to measure robot

productivity. At a basic level, the MRPP simply requires vehicles to move around,

visit points, track the points they visited, and combine this data with other robot

information to plan their next visit. MOOS-IvP’s mission planning and simulation

capabilities contain all the tools required to easily develop and measure this type

of scenario. Implementation aside, MRPP’s simple scenario also allows for basic

analytical productivity estimation. Simply adding basic assumptions on how robots

move and restock in an MRPP allows easy estimation of an the best case idle time and

Voronoi polygon area with and without restocking. Section 3.3.2 further describes

these methods. Finally, MRPP’s make great productivity scenarios because they

resemble real world collaborative tasking. To resemble rescue or survey problems,

MRPP’s can be structured to require robots to cover an entire operating area. To

resemble sonar search problems, MRPP’s can be structured to require infrequent

turns. This structural flexibility allows operational planners to estimate real world

swarm capabilities without needing to develop and simulate their real-world swarm

scenario inside MOOS-IvP.

2.5.2 Chosen Productivity Scenario Description

This section describes the environmental, resource, and control dynamics used to

create a MRPP scenario for measuring productivity. Specific details describing how

this scenario was implemented in MOOS-IvP can be found in section 3.3.1.

38

Environment

The chosen scenario takes place in the Pocomoke Sound off the coast of Saxis Vir-

ginia. While MOOS-IvP’s simulation capabilities do not change based on a scenario’s

operating area size, the Saxis operating area provides enough space to simulate multi

vehicle patrolling without crowding. Further, the Saxis operating area’s size means

that even high-speed vehicles create measurable productivity disruptions when they

transit to restock at a depot. Finally, the Saxis operating area’s coastal geometry al-

low this restocking scenario to be easily expanded in the future productivity testing.

Specifically, future tests can easily measure how marine traffic and supplies leaving

the coast affects swarm productivity.

Robots will patrol within a square shaped operating area outlined within the

Pocomoke Sound. A square shaped operating area simplifies productivity estima-

tion by allowing depots to spawn symmetrically around an operating area. Further,

square shaped operating areas reduce the complexity required to create full coverage

survey patterns.

Multi-Robot Patrol Problem Task Description

To ensure productivity measurements can be easily simulated and measured, robots

will drive simple, long, reciprocating survey patterns designed to cover an entire

square shaped operating area. These survey patterns will be adapted from existing

capabilities within MOOS-IvP. MOOS-IvP already contains reciprocal survey gen-

eration capability currently used by single robots to conduct hydrographic mapping

and single robot patrol. These experiments will adapt this survey generator to allow

multiple robots to share and patrol from the same survey.

39

Figure 2-2: Drone photo showing the WAM-V USV operating at the MIT Sailing
Pavilion [Bena]. The vehicle uses MOOS-IvP’s survey generation capability to patrol
an area of the Charles River for demonstration.

40

Surveys are generated in the operating area based on [Che04]’s two major patrol

strategies. The first strategy forces all robots to evenly patrol the entire operating area

using the same shared cycle. The second strategy evenly distributes robots across a

geographic operating area, partitions the area surrounding each of the robots, creates

a unique survey routine in each partition, and assigns each robot to patrol only in

their specific unique partition. The first strategy tests a scenario in which robots are

allowed basic inter vehicle communication to continuously space themselves equally

along a single global survey. The second strategy tests a scenario in which robots

cannot share their position with each other and thus must patrol in their own box to

avoid collision.

Measuring Robot Productivity

As previously described, swarms are most productive when they minimize the av-

erage time since a robot last visited every portion of the operating area (idle time)

while also minimizing the total average area closest to each robot (Voronoi polygon

area). To track time since last visit, each simulation will divide the operating area

into square cells. Any time a robot enters a cell, the simulation resets the cell’s time

since last visit. Periodically, the simulation averages and records all current cell times

as described in the section 3.3.1 paragraph describing pLatencyGridReporter. The

scenario will track Voronoi polygon area using the uFldVoronoi application described

in section 3.3.1.

41

42

Chapter 3

Developing Resource Management

Algorithms for the Common Scenario

The common robot productivity scenarios’ continuous robot patrol mimics activi-

ties vehicles would do when performing collaborative tasking. Measuring the perfor-

mance impact caused by robots refueling during this patrol requires developing and

implementing resource management algorithms into the simulation. For this section,

resource management algorithms refer to methods and tools required to track and fuel

patrolling robots. Given the limited relevant work related to refueling robot swarms,

this section instead focuses on implementing naïve fueling strategies and comparing

their performance to the analytical ideal performance.

3.1 Related Work

Despite significant work dedicated to optimizing multi-robot patrol algorithms,

very few studies explore or implement resource constraints into their optimization

strategies. For example [JHL21] develops a patrol algorithm to visit the most points

in a cycle for a given amount of energy. However, this paper does not discuss how to

optimize routes over multiple restocking periods. In other words, the paper only plans

routes over a single robot charge cycle. [DMK11] presents a novel way to maintain

sustained robot area coverage using Voronoi polygons. Specifically, their algorithm

43

links a robot’s charge state to its respective Voronoi centroid. This weighting causes

low energy robots to gradually move towards depots. While these experiments develop

a novel way for robots to continuously cover an area, they do not force the working

robots to move continuously. Further, these experiments also allocate one charger

(depot) per robot. These design choices ensure a robot will always be close to its

own depot. In other words, these experiments don’t integrate depot scarcity into

their analysis. [HLH09] implements a cooperative auction where robots bid for patrol

points based on energy, point idle time, location, and other factors. While these

algorithms do allow for energy aware multi robot patrol, they require significant inter

robot communication making them difficult to implement in large, low bandwidth

environments. Finally, none of these experiments designed their resource management

algorithms to focus on routinely visiting all points in an operating area.

Outside of robot patrol, significant supply chain work has been dedicated to op-

timizing and solving variations of the multi-vehicle routing problem. These works

attempt to optimize how to route groups of replenishing vehicles to efficiently restock

groups of consumers. [Li+14] attempts to route fuel trucks to restock consumers while

minimizing the total time trucks spend restocking. [Cor+08] attempts to route fuel

trucks to restock consumers while minimizing the total cost spent to restock all con-

sumers. While these works illustrate methods to track and view resource consumption

across a network, they only optimize delivery routes for stationary consumers.

3.2 Creating Patrol Specific Resource Algorithms

Reviewing related supply and robot patrol work indicates there are limited works

dedicated to developing swarm resource management algorithms. Further, with lim-

ited real time swarm operations, no historical restocking data exists to compare with

any simulated resource management algorithms. Consequently, in this work, resource

management algorithms will instead be validated by implementing naïve algorithms

and comparing their performance against ideal best-case calculations. Specifically,

44

resource management algorithms will be evaluated using the following methods:

• Develop a naïve restocking strategy to prevent robots from running out of fuel

during a patrol.

• Mathematically estimate the average grid idle time for robots patrolling on a

global polygon with infinite fuel. Analytically calculating the average Voronoi

polygon area is not necessary since the average Voronoi polygon area always

works out to the operating area divided by the number of vehicles. These

values represent the absolute best possible metrics a swarm could achieve.

• Simulate and measure robots patrolling with infinite fuel. Verify these numbers

approximate the best case calculations.

• Analytically estimate the average cell idle time and average Voronoi polygon

area for robots fueling with stationary depots.

• Simulate and measure robots patrolling with finite levels of fuel. Verify empirical

performance metrics match analytical calculations.

This analysis does not guarantee the implemented resource management algorithms

create the smallest possible mission disruption when fueling robots. However, the

analysis does ensure the simulation performs as expected and benchmarks the gap

between patrol with basic resource management algorithms and patrolling under an

infinite resource ideal scenario.

3.3 Restocking strategy

The robots will utilize a naïve restocking strategy during their patrol. Specifically,

neither the vehicles nor depots apply any forward-looking algorithms when fueling.

A vehicle only considers its current fuel level when asking to restock and will not

opportunistically short cycle fueling when it drives past a depot. Further, depots

carry unlimited fuel and will always approve a vehicle to leave patrol and refuel.

45

They can also fuel an unlimited number of vehicles at once. These depot vehicle

interactions mean the entire patrol fleet can pull off patrol to refuel at once should

all vehicles run out of fuel at the same time.

To accomplish the naïve fueling strategy, each robot patrolling a survey tracks their

own fuel consumption. Robots consume fuel exponentially based on their current

speed. To determine when they must refuel, each robot calculates a minimum order

point (MOP) corresponding to the minimum fuel level required to sustain a transit

to and return from the closest available fuel depot. Each robot calculates their MOP

from their moving average speed, moving average fuel consumption, and distance to

their closest depot. Depots spawn symmetrically at the edge of the global operating

area when the simulation begins. When the ships reach their minimum order point,

they leave their patrol scheme, refuel at a depot, and return to the place where they

left off in the survey.

Each experiment’s robot patrol strategy dictates how other robots in a swarm

respond to other refueling robots. For scenarios using robots patrolling in a shared

global survey routine, removing a robot to fuel makes other ships speed up or slow

down to restore equal distance in a survey cycle. For scenarios where robots patrol

in their own partitioned survey box, removing a robot for fueling causes no change to

other robot behavior. In other words, when robots refuel in a partitioned scenario,

they leave their partitioned survey area completely un-patrolled while they refuel.

3.3.1 Implementing the Common Productivity Scenario in MOOSIvP

MOOS-IvP Core Description

MOOS-IvP is an open source software codebase dedicated to autonomous (primarily

marine) vehicles. It has been publicly available since 2006 and is currently used on

many types of marine robotic platforms, underwater and surface, around the world.

The codebase allows software developers to turn marine robots into autonomous ves-

sels capable of advanced decision-making, data collection, and safe retrieval.

46

MOOS-Ivp’s software architecture and licensing enable users to augment the core

capabilities with new modules in a manner that (a) does not require coordination or

changes to the public codebase, and (b) provides the user with the option of retaining

privacy of code augmentations, or redistributing under an open source or commercial

license.

MOOS-IvP is comprised of two architectures, each with their own notion of what

constitutes a new plug-in module. The IvP Helm is a behavior-based architecture

and modules have the form of new behaviors. Specifically, the IvP helm and sup-

porting IvP software libraries allow developers to write vehicle behaviors that take

in sensor information, plan responses to this information, and act without user as-

sistance[Benb]. These vehicle behaviors and supporting subsystems all communicate

using MOOS. MOOS is a publish-subscribe robot middleware, and new modules come

in the form of new MOOS apps. Initially created at MIT by Dr. Paul Newman

and now maintained by Dr. Newman at the Univ. of Oxford, MOOS’s tools build

multithreaded, distributed, and real-time communication capabilities into vehicle ap-

plications[Benb]. Combined, these two open-source applications decouple a vehicle’s

autonomous capabilities from its platform specific robot control software.

The MOOS-IvP codebase contains modules for robot autonomy as well as a full

multi-vehicle simulation and post-mission analysis toolset. Augmentations described

in this thesis include new MOOS apps for both autonomy, simulation and perfor-

mance analysis. Section 3.3.1 "Creating a MOOS-IvP Mission" further describes

these MOOS apps.

Publish-Subscribe Architecture Description The MOOS-IvP ecosystem and

applications used to measure swarm productivity share data through a publish-

subscribe architecture. All MOOS applications in a vehicle or shoreside system form

a MOOS community. Every vehicle and shoreside community contain their own

database (MOOSDB) for storing variables needed by their respective MOOS applica-

tions. MOOS applications publish variables to a MOOSDB when they want to make

47

these variables available to other applications. These same applications can then

subscribe to variables published by other MOOS application to use in their own com-

putation. Subscribing to only needed variables prevents an application from wasting

time processing unneeded data. Finally, MOOS-IvP’s uFldNodeBroker, uFldNode-

Comms, and pShare applications allow MOOS communities to share variables with

each other using standard TCP/IP networking protocol. The following two examples

illustrate how MOOS applications use the publish and subscribe architecture.

• Intra Vehicle Communications: A vehicles GPS receiver sends signal data to a

MOOS application designed to process the GPS signal. After processing the

signal, this GPS application then converts the Vehicles Latitude and Longi-

tude to (X,Y) coordinates and publishes real time coordinates to the vehicles’

MOOSDB as “NAV_X” and “NAV_Y”. The vehicle’s Odometer, an application

subscribed to “NAV_X” and “NAV_Y”, then receives notification that these

variables were updated, ingests their new values, and computes how far the

vehicle has traveled from its previous location. The Odometer then publishes

"ODOMETER_DISTANCE" to the vehicles MOOSDB.

48

Figure 3-1: Intra vehicle publish and subscribe behavior.

• Vehicle/Shore Communications: A vehicles publishes its current helm status

and location in the string variable “NODE_REPORT” to its MOOSDB. The ve-

hicle’s ip sharing application pShare then sends receives notification “NODE_REPORT”

was updated in the MOOSDB. pShare sends “NODE_REPORT” to the shore-

side instance of pShare who then publishes “NODE_REPORT” to the shoreside

MOOSDB where its status can then be displayed to an operator.

Figure 3-2: Inter vehicle publish and subscribe behavior.

49

MOOS-IvP Simulation Capabilities While MOOS-IvP communities normally

run on physically independent vehicles, MOOS-IvP’s unique qualities allow users to

simulate multiple communities on a single host. First MOOS-IvP’s platform inde-

pendent architecture allow users to run MOOS communities on any host capable of

compiling C++ code and communicating over TCP/IP. Consequently, the same ap-

plications that run on an operational vehicle can be run on a virtual vehicle located on

shore testing server with no additional software configuration. Further, MOOS-IvP

contains an application called uSimMarineV22 capable of simulating ship movements.

uSimMarineV22 ingests helm commands and past vehicle locations into a PID con-

troller, calculates resulting ship location changes, and publishes these ship location

changes to its respective MOOSDB. Finally, MOOS-IvP’s time-warp functionality

allows a user to run virtual applications at update speeds faster than normal time.

Consequently, users with hardware capable of supporting fast paced applications can

run week long virtual events in just a few hours.

Launching And Killing MOOS-IvP Simulations MOOS-IvP contains several

applications that allow users to automatically launch, start, monitor and kill MOOS

simulations. MOOS-IvP communities contain numerous applications required to com-

plete each mission (pHelmIvP, pLogger, uSimMarineV22, etc). Users launch all these

applications at once using the MOOS application pAntler. This application reads

configuration files dictating what applications need to run in a given community,

parses how each application should be configured (time-warp, startup variables, etc),

and then launches all applications listed in the configuration file. With the commu-

nity running, users can start missions using the application uPokeDB. This program

simply adds any user defined variable to a communities MOOSDB. Users can then

program helm behaviors in pHelmIvP to activate when uPokeDB updates this vari-

able. While the mission runs, users can periodically monitor the progress of their

missions using uQueryDB. uQueryDB reads a running mission’s configuration file,

identifies variables of interest, queries these variables in a communities MOOSDB,

and compares their values to pre-defined pass-fail conditions. Killing pAntler after

50

a successful uQueryDB condition brings down all child processes and ends each mis-

sions. Combined with Bash scripting, these tools can simulate diverse autonomous

environments with no user input.

Swarm Toolbox Description Created by MIT’s Marine Autonomy Lab (Pavlab),

the swarm toolbox contains scripts, behaviors, applications, and monitoring tools de-

signed to operate large swarms of MOOS vehicles over great distances. Many ex-

periments detailed in later sections used the toolboxes’ uFldVoronoi and pProxonoi

applications to stage ships for testing and later evaluate their Voronoi area perfor-

mance when patrolling. Descriptions of their Voronoi tessellation algorithm can be

found in later sections. Besides Voronoi tools, these experiments also used the tool-

boxes’ swarm launch scripts and random vehicle spawning tools.

51

Figure 3-3: Swarm toolbox mission demonstration showing 50 vehicles dynamically
spreading out in the Sea of Japan under a limited communication scheme [Ben22]

52

Creating a MOOS-IvP Mission

Running or simulating scenarios in MOOS-IvP first requires creating a mission. Mis-

sions dictate where vehicles operate, what applications run on vehicles, how vehicles

behave, what helper applications run on the mission’s shoreside control node. Imple-

menting the common productivity scenario required modifying the uFldSaxis mission

originally created to test multi-vehicle deployments. The original uFldSaxis mission

can be found in the stock missions bundled with the MOOS-IvP swarm toolbox. After

final modification, the uFldSaxis mission contained the following major components:

Meta_Shoreside.MOOS This file launches a “shoreside” mission community. Shore-

side communities contain software used to track, record, communicate with, and

display vehicles and depots. The shoreside community runs the following unique

applications to accomplish its mission.

uFldVoronoi The swarm toolbox application uFldVoronoi provides Voronoi calcu-

lations and metrics for the shoreside node. Specifically, uFldVoronoi takes in position

reports from all vehicles, calculates Voronoi polygons for each vehicle, and publishes

Voronoi stats such as minimum and maximum Voronoi polygon area. uFldVoronoi

also calculates when vehicles reach an Voronoi equilibrium state by determining when

the distance between a vehicle and its Voronoi centroid falls within a designated cap-

ture radius. Beyond standard swarm toolbox capabilities, the uFldSaxis mission runs

a modified uFldVoronoi version containing additional capabilities. This modified

version now publishes a variable indicating that all vehicles reached a Voronoi equi-

librium state. bhvSurvey uses this Voronoi equilibium status to transition the helm

mode from COVERING to PATROLING.

pLatencyGridReporter(PLG) PLG logs running instantaneous grid idle time, by

recording and averaging the time since a robot last visited each cell in an operating

area, using a grid object and vehicle positions. Written as an AppCastingMOOSApp,

PLG runs on the MOOS shoreside community and tracks vehicle positions by sub-

53

scribing to vehicle NodeReports passed to the shoreside community. The program

then records and averages grid cell idle time using the algorithm described in Alg

5. The Meta_Shoreside.moos file specifies the size of the grid as well as grid cell

size. Further, if a mission runs pMarineViewer on its shoreside community, PLG can

output individual cell idle times for colorful rendering in pMarineViewer (Fig 3-4).

Algorithm 5 Instantaneous Grid Idle Time
INPUT: XYGenPolyGrid 𝑚_𝑔𝑟𝑖𝑑 ,double
𝑚_𝑙𝑎𝑠𝑡_𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑡𝑖𝑚𝑒,𝑀𝑎𝑝 < 𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑁𝑜𝑑𝑒𝑅𝑒𝑝𝑜𝑟𝑡 > 𝑚_𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 :
OUTPUT: Instantaneous Grid Idle time

1: for each 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∈𝑀𝑖𝑠𝑠𝑖𝑜𝑛 do
2: 𝑚𝑜𝑜𝑠_𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒← 𝑚_𝑐𝑢𝑟𝑟_𝑡𝑖𝑚𝑒−𝑚_𝑙𝑎𝑠𝑡_𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑡𝑖𝑚𝑒
3: for each 𝑐𝑒𝑙𝑙 ∈ 𝑚_𝑔𝑟𝑖𝑑 do
4: 𝑐𝑒𝑙𝑙.𝑣𝑎𝑙𝑢𝑒← 𝑐𝑒𝑙𝑙.𝑣𝑎𝑙𝑢𝑒+𝑚𝑜𝑜𝑠_𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒
5: 𝑚_𝑙𝑎𝑠𝑡_𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡_𝑡𝑖𝑚𝑒← 𝑚_𝑐𝑢𝑟𝑟_𝑡𝑖𝑚𝑒
6: end for
7: for each 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ∈ 𝑚_𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 do
8: 𝑐𝑒𝑙𝑙_𝑖𝑛𝑑𝑒𝑥← getCellIndex(𝑣𝑒ℎ𝑖𝑐𝑙𝑒.𝑥, 𝑣𝑒ℎ𝑖𝑐𝑙𝑒.𝑦)
9: 𝑚_𝑔𝑟𝑖𝑑[𝑐𝑒𝑙𝑙_𝑖𝑛𝑑𝑒𝑥]← 0

10: end for
11: if 𝑚_𝑐𝑢𝑟𝑟_𝑡𝑖𝑚𝑒−𝑚_𝑙𝑎𝑠𝑡_𝑙𝑜𝑔_𝑡𝑖𝑚𝑒 > 60 then
12: 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡← 0
13: for each 𝑐𝑒𝑙𝑙 ∈ 𝑚_𝑔𝑟𝑖𝑑 do
14: 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡← 𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡+ 𝑐𝑒𝑙𝑙.𝑣𝑎𝑙𝑢𝑒
15: end for
16: log(𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡/𝑚_𝑔𝑟𝑖𝑑.𝑠𝑖𝑧𝑒)
17: 𝑚_𝑙𝑎𝑠𝑡_𝑙𝑜𝑔_𝑡𝑖𝑚𝑒← 𝑚_𝑐𝑢𝑟𝑟_𝑡𝑖𝑚𝑒
18: end if
19: end for

54

Figure 3-4: Graphical rendering showing latency grid tracking 10 ships patrolling an
operating area. Cells recently visited by ships render in blue. As time elapses without
a ship visit, the squares turn red. While PLG maintains near instantaneous grid
tracking in the background it infrequently updates its graphics output. Consequently,
several cells may remain red after a ship visit until PLG re-renders the grid for display

55

pickPos Given a quantity of ships, a start heading and polygon coordinates, pickPos

spawns unique random ship coordinate sets inside the given polygon. For example,

given 10 ships and a square polygon, pickPos returns 10 sets of ship headings and

(X,Y) coordinates located inside the square polygon. This behavior allows uFld-

Saxis’s mission launch script launch dynamic numbers of vehicles in a given mission.

pickPos comes bundled with the MOOS-IvP Swarm Toolbox.

pickDepot Given a depot quantity and square operating area coordinates, pick de-

pot symmetrically spawns depots coordinate sets clockwise around an operating area.

Specifically, pickDepot first determines how many depots belong on each side of the

operating area. For quantities less than four, pickDepot will place one depot per side

counterclockwise until it runs out. For depot quantities greater than four but less

than eight, pick depot will determine how many sides receive two depots given that

each side must receive at least one depot. pickDepot then spawns two depot sides in

a clockwise direction for all sides receiving two depots before spawning one depot on

the remaining sides. pickDepot repeats these behaviors for depot quantities greater

than 8 using progressively more depots per side. pickDepot spaces each depot evenly

across its respective side. For example, pickDepot will spawn a depot in the middle

of a side for sides with only one depot. For three depots, pickDepot spawns each

depot separated by one third of the side length.

56

Figure 3-5: Depot spawn locations scheme for four and eight depots. In each case,
pickDepot spawns depots counter clockwise around the operating area.

Figure 3-6: Depot spawn location for five depots. In this case, pickDepot populates
the north side with two symmetric depots and then continues populating one depot
on the east, south, and west side.

57

𝑀𝑒𝑡𝑎_𝑉 𝑒ℎ𝑖𝑐𝑙𝑒.𝑀𝑂𝑂𝑆,𝑀𝑒𝑡𝑎_𝐷𝑒𝑝𝑜𝑡.𝑀𝑂𝑂𝑆,𝑀𝑒𝑡𝑎_𝑆ℎ𝑜𝑟𝑒𝑠𝑖𝑑𝑒.𝑀𝑂𝑂𝑆 Each meta

MOOS file contains configuration parameters for all AppCastingMOOSApp applications

running on vehicles in their respective community. At mission start, a launch script

uses nsplug and each meta MOOS file to create unique .MOOS files for each ve-

hicle. For example, for a vehicle named "abe", the script would create a unique

"targ_abe.moos" file. pAntler, then launches and configures the applications speci-

fied in the vehicles respective .MOOS file.

𝑀𝑒𝑡𝑎_𝑉 𝑒ℎ𝑖𝑐𝑙𝑒.𝑏ℎ𝑣 Meta_Vehicle.bhv contains vehicle helm modes required to run

the uFldSaxis mission(Figure 3-7). Each helm mode represents different vehicle events

and dictates what behaviors influence vehicle course and speed. When vehicles first

deploy at the start of the mission, Meta_Vehicle.bhv ensures all vehicles start in

the ACTIVE:REGION_COVER mode. In this mode, BHV_Voronoi operates to

spread vehicles evenly across an the operating area. Once all vehicles achieve equilib-

rium, uFldVoronoi activates the ACTIVE:PATROLLING mode. In this mode, the

bhvSurvey behavior begins robot patrolling. When vehicles must refuel, they operate

in either the TRANSITING, RECEIVING, or RETURN_FROM_FUELING mode

depending on their refueling status.

58

Figure 3-7: Possible vehicle modes (white) and their the behaviors running during
each mode (orange). Dark grey modes represent a final mode state a vehicle can
be in. For example, A vehicle can be in mode ACTIVE:PATROLLING or mode
ACTIVE:FUELING:RECEIVING

uResourceBroker uResourceBroker runs on every depot and manages all depot-

vehicle refueling interactions. While uResourceBroker can operate in several refuel-

ing modes, in the uFldSaxis mission, uResourceBroker operates in an open refueling

state. In this state, uResourceBroker accepts all vehicle refueling requests regardless

of quantity previously accepted requests. uResourceBroker then tracks each vehicle

en route to refuel and will refuel the closest vehicle that falls within its refueling

capture radius. Finally, in an open refueling state, uResourceBroker refuels vehicles

instantly. In other words, any vehicle that negotiated a refueling contract with a

depot will obtain a full fuel tank as soon as they pass into the depot’s capture radius.

pGas Running on every vehicle, pGas tracks fuel consumption, determines when a

vehicle needs to refuel, and brokers refueling operations with depots. pGas knows

its vehicle’s location and uses this location to calculate a vehicle’s moving average

speed (Algorithm 7). pGas also knows the vehicles current thrust output. Instead of

vehicle speed, pGas uses this thrust output to approximate a vehicles instantaneous

fuel consumption (Algorithm 6). Basing consumption off of vehicle thrust instead

of speed allows accurate fuel calculations even if a vehicles fluid resistance changes.

59

Every instantaneous fuel consumption reading can then be accumulated to find a

moving average consumption.

With consumption 𝐶𝐴𝑣𝑔 and moving average speed 𝑉𝐴𝑣𝑔 calculated, the vehicle

calculates its minimum order point using the equation below. This minimum order

point allows a depot to abort travel to a depot that becomes unavailable, return to

its original position, and drive to a new available depot.

𝑂𝑝𝑚𝑖𝑛 = 3 · 𝑑𝑓𝑎𝑟𝑡ℎ𝑒𝑠𝑡𝐷𝑒𝑝𝑜𝑡 · 𝐶𝐴𝑣𝑔

𝑉𝑎𝑣𝑔

To broker refueling messages, pGas maintains a list of all available depots. When

the vehicle reaches its minimum order point, pGas, contacts the closest available de-

pot via NodeMessage to request refueling. If the depot denies a vehicles request,

pGas continues to contact other available depots. If a depot accepts a vehicles re-

quest, pGas changes the vehicle mode state to FUELING:TRANSITING and sends

BHV_Waypoint the target depot’s coordinates. When a depot notifies pGas that it

successfully fueled the vehicle, pGas updates the vehicle’s tank level, changes the vehi-

cle mode state to FUELING:RETURN_FROM_FUELING, and sends bhvWaypoint

return position coordinates.

Algorithm 6 Instantaneous Vehicle Fuel Consumption
INPUT: double 𝑡𝑖𝑚𝑒_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,double 𝑡𝑖𝑚𝑒_𝑓𝑖𝑛𝑎𝑙,double 𝑡ℎ𝑟𝑢𝑠𝑡_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ,double
𝑡ℎ𝑟𝑢𝑠𝑡_𝑓𝑖𝑛𝑎𝑙, ConsumptionMap 𝑚_𝑐𝑚𝑎𝑝, double 𝑚_𝑓𝑢𝑒𝑙_𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 :
OUTPUT: Updated 𝑚_𝑓𝑢𝑒𝑙_𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦

1: 𝑑𝑒𝑙𝑡𝑎_𝑡← 𝑡𝑖𝑚𝑒_𝑓𝑖𝑛𝑎𝑙 − 𝑡𝑖𝑚𝑒_𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2: 𝑎𝑣𝑔_𝑡ℎ𝑟𝑢𝑠𝑡← (𝑡ℎ𝑢𝑠𝑡_𝑓𝑖𝑛𝑎𝑙 + 𝑡ℎ𝑟𝑢𝑠𝑡_𝑖𝑛𝑖𝑡𝑖𝑎𝑙)/2
3: 𝑎𝑣𝑔_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛← 𝑚_𝑐𝑚𝑎𝑝.getConsumption(𝑎𝑣𝑔_𝑡ℎ𝑟𝑢𝑠𝑡)
4: 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦_𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝑑𝑒𝑙𝑡𝑎_𝑡 · 𝑎𝑣𝑔_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
5: 𝑚_𝑓𝑢𝑒𝑙_𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 ← 𝑚_𝑓𝑢𝑒𝑙_𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 − 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦_𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

pProxonoi/bhvVoronoi The swarm toolbox applications pProxonoi and bhvVoronoi

run on each vehicle and work in tandem to evenly distribute vehicles across an op-

erating area even when all vehicles cannot communicate with each other. In the

60

Algorithm 7 Moving Average Speed Calculation
INPUT: vector<pair<double,double> 𝑚_𝑜𝑑𝑜𝑚𝑒𝑡𝑒𝑟_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ,double
𝑚𝑜𝑣𝑖𝑛𝑔_𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤 : OUTPUT: double 𝑚𝑜𝑣𝑖𝑛𝑔_𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑠𝑝𝑒𝑒𝑑

1: 𝑝𝑎𝑖𝑟 < 𝑑𝑜𝑢𝑏𝑙𝑒, 𝑑𝑜𝑢𝑏𝑙𝑒 > 𝑐𝑢𝑟_𝑟 ← 𝑚_𝑜𝑑𝑜𝑚𝑒𝑡𝑒𝑟_ℎ𝑖𝑠𝑡𝑜𝑟𝑦[0]
2: for all 𝑜𝑑𝑜_𝑟 ∈ 𝑚_𝑜𝑑𝑜𝑚𝑒𝑡𝑒𝑟_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 do
3: if 𝑐𝑢𝑟_𝑟.𝑡𝑖𝑚𝑒− 𝑜𝑑𝑜_𝑟.𝑡𝑖𝑚𝑒 > 𝑚𝑜𝑣𝑖𝑛𝑔_𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤 then
4: return (𝑐𝑢𝑟_𝑟.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒− 𝑜𝑑𝑜_𝑟.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)/(𝑐𝑢𝑟_𝑟.𝑡𝑖𝑚𝑒− 𝑜𝑑𝑜_𝑟.𝑡𝑖𝑚𝑒)
5: end if
6: end for
7: 𝑙𝑎𝑠𝑡_𝑟 = 𝑚_𝑜𝑑𝑜𝑚𝑒𝑡𝑒𝑟_ℎ𝑖𝑠𝑡𝑜𝑟𝑦[𝑚_𝑜𝑑𝑜𝑚𝑒𝑡𝑒𝑟_ℎ𝑖𝑠𝑡𝑜𝑟𝑦.𝑠𝑖𝑧𝑒()− 1]
8: return (𝑐𝑢𝑟_𝑟.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒− 𝑙𝑎𝑠𝑡_𝑟.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)/(𝑐𝑢𝑟_𝑟.𝑡𝑖𝑚𝑒− 𝑙𝑎𝑠𝑡_𝑟.𝑡𝑖𝑚𝑒)

uFldSaxis mission, these applications spread vehicles across the Saxis operating us-

ing the helm COVER mode. pProxonoi takes in updated reports of nearby vehicle

known positions and calculates each vehicles Voronoi polygon. pProxonoi then sends

this polygon information to the vehicle’s bhvVoronoi behavior. bhvVoronoi finds

the centroid of the vehicles individual Voronoi polygon. It then creates a helm course

to drive the vehicle towards this Voronoi polygon centroid. This process of repeat-

edly calculating a Voronoi polygon, calculating its centroid, and driving towards that

centroid forces each vehicle to spread evenly thoughout an operating area.

bhvSurvey bhvSurvey uses survey generation libraries from the Swarm Toolbox to

generate and follow surveys patterns located within a polygon. bhvSurvey operates

in two different modes depending on the a users desired patrol algorithm.

In global polygon mode, a user gives all vehicles the same operating area polygon

at startup. Each vehicle then patrols this same pattern while remaining equally

spaced along the survey track. Vehicles achieve this equal spacing using variable

speed control. Since the survey ends in the southeast corner, the most westward

vehicle acts as the lead vehicle and sets a constant pace. Vehicles then speed up or

slow down based on their position in relation to the lead vehicle. Algorithm 8 describes

this speed control scheme in detail and figure 3-9 shows ten vehicles patrolling in this

scheme.

61

In local polygon mode, each vehicle patrols in its own unique polygon. Initially each

vehicle’s pProxonoi and bhvVoronoi applications spread each vehicle out over an en-

tire operating area. While they spread out, the shoreside application uFldVoronoi

tracks how close vehicles are to reaching a spread out equilibrium state. When vehicles

reach a satisfactory equilibrium state, uFldVoronoi sends each vehicle its own current

Voronoi polygon to patrol. Importantly, uFldVoronoi only passes vehicles their poly-

gons to standardize logging and patrol simulation start times for later observation in

this thesis. Each vehicle tracks and maneuvers using their own decentralized Voronoi

polygon created by pProxonoi. Vehicles could easily commence patrolling using only

calculations from this decentralized polygon however each vehicle’s pProxonoi would

transition to vehicle patrol at slightly different times. With polygons passed to each

vehicle, bhvSurvey then generates the largest possible survey in its given polygon and

begins patrolling. Figure 3-8 demonstrates ten vehicles operating in a local polygon

survey scheme.

62

Figure 3-8: bhvSurvey functioning in a local polygon mode. In state one, vehi-
cles spread themselves out using pProxonoi and bhvVoronoi behavior in the "Cover"
mode. Once uFldVoronoi detects vehicles have spread out, passes individual Voronoi
polygons to bhvSurvey (State two). Each vehicles’ bhvSurvey then creates its own
survey pattern and begins patrol.

Figure 3-9: bhvSurvey functioning in a global polygon mode. In this state, every ve-
hicle patrols the same survey polygon. Vehicles use Algorithm 8 to spread themselves
equally along the survey.

63

Algorithm 8 Global Polygon Speed Selection
INPUT: XYSeglist 𝑠𝑢𝑟𝑣𝑒𝑦_𝑝𝑜𝑖𝑛𝑡𝑠 ,Map<string,NodeRecord> 𝑚_𝑛𝑜𝑑𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑠,
XYPoint 𝑚_𝑐𝑢𝑟𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,double 𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑝𝑒𝑒𝑑 : OUTPUT: double
𝑜𝑟𝑑𝑒𝑟𝑒𝑑_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑝𝑒𝑒𝑑

1: double 𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛← 1
2: double 𝑚_𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑡𝑟𝑜𝑙𝑖𝑛𝑔_𝑣𝑒ℎ𝑐𝑙𝑒𝑠← 0
3: for all 𝑛𝑜𝑑𝑒_𝑟𝑒𝑐𝑜𝑟𝑑 ∈ 𝑚_𝑛𝑜𝑑𝑒_𝑟𝑒𝑐𝑜𝑟𝑑𝑠 do
4: if 𝑛𝑜𝑑𝑒_𝑟𝑒𝑐𝑜𝑟𝑑.𝑠𝑡𝑎𝑡𝑢𝑠() = ”𝑃𝑎𝑡𝑟𝑜𝑙𝑖𝑛𝑔” then
5: 𝑚_𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑡𝑟𝑜𝑙𝑖𝑛𝑔_𝑣𝑒ℎ𝑐𝑙𝑒𝑠← 𝑚_𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑡𝑟𝑜𝑙𝑖𝑛𝑔_𝑣𝑒ℎ𝑐𝑙𝑒𝑠+ 1
6: if 𝑛𝑜𝑑𝑒_𝑟𝑒𝑐𝑜𝑟𝑑.𝑔𝑒𝑡𝑋() > 𝑚_𝑐𝑢𝑟𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑔𝑒𝑡𝑋()” then
7: 𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛← 𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛+ 1
8: end if
9: end if

10: end for
11: double 𝑟𝑒𝑞_𝑠𝑢𝑟𝑣𝑒𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑙𝑒𝑎𝑑_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + (𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ·

𝑠𝑢𝑟𝑣𝑒𝑦_𝑝𝑜𝑖𝑛𝑡𝑠.𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒())/𝑚_𝑡𝑜𝑡𝑎𝑙_𝑝𝑎𝑡𝑟𝑜𝑙𝑖𝑛𝑔_𝑣𝑒ℎ𝑐𝑙𝑒𝑠
12: if 𝑟𝑒𝑞_𝑠𝑢𝑟𝑣𝑒𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < getDistanceFromEndOfCycle() then
13: return 𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑝𝑒𝑒𝑑 · 1.5
14: end if
15: if 𝑟𝑒𝑞_𝑠𝑢𝑟𝑣𝑒𝑦_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > getDistanceFromEndOfCycle() then
16: return 𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑝𝑒𝑒𝑑 · 0.5
17: end if
18: return 𝑡𝑎𝑟𝑔𝑒𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑝𝑒𝑒𝑑

bhvWaypoint bhvWaypoint comes bundled as a standard MOOS-IvP library be-

havior and makes vehicles drive to given waypoints. In this mission, bhvWaypoint

takes patroling vehicles to and from a refueling depot. When a vehicle must refuel,

its pGas application sends bhvWaypoint updated depot coordinates and activates

bhvWaypoint via a mode switch. Once active, bhvWaypoint guides the vehicle into a

depot and transitions the vehicle to station keeping behavior using an endflag posted

to the vehicles MOOSDB. Once fueled, uResourceBroker sends bhvWaypoint the ve-

hicle’s previous survey interruption point and activates bhvWaypoint to guide the

vehicle back to patroling. When the vehicle reaches its endpoint, bhvWaypoint re-

turns the vehicle to patroling behavior using an endflag posted to the vehicles MOOSDB.

64

Selecting Mission Parameters To Simulate

Producing good simulation data for productivity prediction requires simulating mis-

sions over diverse parameter combinations. Further, hardware and time limitations

reduce the practical amount of simulatable mission combinations. Consequently, each

simulation varied depot quantity, vehicle quantity, and fuel tank size combinations.

Specific variations were selected as follows:

Selecting Fuel Tank Sizes Selecting fuel tank size first requires calculating the

total distance a vehicle travels in a cycle 𝐷𝑡 and the total time required to cover this

distance. Calculating 𝐷𝑡 requires calculating the total distance traveled in a survey

𝐷𝑠 plus the total recycle distance 𝐷𝑟 required to reset from the survey end point to

the survey beginning.

𝐷𝑠 = 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑟𝑣𝑒𝑦𝑅𝑢𝑛𝐿𝑒𝑛𝑔𝑡ℎ + 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑟𝑣𝑒𝑦𝑇𝑢𝑟𝑛𝐿𝑒𝑛𝑔𝑡ℎ

= (𝑁𝑢𝑚𝑅𝑢𝑛𝑠 · 𝑆𝑢𝑟𝑣𝑒𝑦𝑅𝑢𝑛𝐿𝑒𝑛𝑔𝑡ℎ) + (𝑁𝑢𝑚𝑇𝑢𝑟𝑛𝑠 · 𝑆𝑢𝑟𝑣𝑒𝑦𝑇𝑢𝑟𝑛𝐿𝑒𝑛𝑔𝑡ℎ)

= (37 · 5350) + (36 · 150)

= 203, 350𝑚

𝐷𝑟 = 𝑆𝑢𝑟𝑣𝑒𝑦𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ

=
√︀

𝑠𝑢𝑟𝑣𝑒𝑦𝐿𝑒𝑛𝑔𝑡ℎ2 + 𝑠𝑢𝑟𝑣𝑒𝑦𝑊𝑖𝑑𝑡ℎ2

=
√︀

2 · (53502)

= 7566𝑚

𝐷𝑡 = 𝐷𝑠 +𝐷𝑟

= 210, 916𝑚
(3.1)

Estimating the graph idle time rise caused by refueling requires assuming that

vehicles always refuel on average from the center of the operating area. Ensuring

vehicles have enough fuel to make it to the center of the operating area following

a survey requires calculating the expected fuel quantity required 𝐹𝑟 to complete a

survey and run out half way through the recycling. Given vehicle fuel consumption

65

𝐶𝑣 = .0694 units/sec, 𝐹𝑟 can be calculated as follows

𝐹𝑟 =
𝐷𝑠 +

1
2
𝐷𝑟

𝑉𝑎𝑣𝑔

· 𝐶𝑣

= 719.21𝑢𝑛𝑖𝑡𝑠

≈ 720𝑢𝑛𝑖𝑡𝑠

(3.2)

To test how changing vehicle fuel tank size affects overall node idle time, simulations

will run with vehicles fuel tanks of size 𝐹𝑟, 50% 𝐹𝑟, and 150% 𝐹𝑟. These fuel tank

values will run in missions using both a global patrol and individual polygon patrol

schemes to simplify patrol algorithm comparison.

50%𝐹𝑟 𝐹𝑟 150%𝐹𝑟

360 720 1080

Table 3.1: Table showing fuel tank sizes used in simulation

66

Figure 3-10: Overall mission layout used for simulations with a global patrol polygon.

Selecting Mission Completion Metric Each simulation operating under a "global

polygon" patrol scheme operated for ten complete vehicle cycles. A cycle completes

when a vehicle completes an entire survey tour. Ten cycles guaranteed vehicles would

refuel multiple times during a simulation, vehicles could return to patrol position

equilibrium after fueling, and that the vehicles created sufficient performance data

samples to train a prediction engine on. Ten cycles also ensured even large vehicle

swarm missions could be simulated within two days. Each simulation operating under

a "local polygon" patrol scheme operated for 3150 vehicles cycles. In a local poly-

gon patrol scheme, higher vehicle missions create smaller Voronoi polygons. These

smaller polygons mean each vehicle patrols less and completes a patrol cycle sooner.

Patrolling for 3150 cycles ensures that even thirty vehicle missions produce quantities

of performance data equivalent to "global polygon" patrol schemes.

Selecting Quantity of Depots to Vary The large computational energy required

to operate large swarm patrol missions make some performance simulations last days.

67

Maximizing run performance diversity while minimizing this time spent simulating

required determining which depot quantity threshold produced meaningful changes to

grid idle time and grid average area. Simulating runs containing five, ten, and fifteen

vehicles showed missions with greater than five depots produced little meaningful

change in vehicle performance (Figure 3-12, 3-11). Consequently, all further supply

testing was conducted using missions containing five or less depots.

68

Figure 3-11: Non-Linear Idle Time Changes Occur Most Within the First 5 Depots
[Truncated Y Axis To Highlight Rate of Change]

69

Figure 3-12: Non-Linear Area Changes Occur Most Within the First 5 Depots [Trun-
cated Y Axis To Highlight Rate of Change]

70

3.3.2 Analytically Validating Mission Performance

The following section demonstrates how to calculate grid average idle time and average

Voronoi polygon area as described in Section 3.2 .

Mission Variables For Example Calculations

These calculations assume the following:

1. Any time a boat resides on a square, the squares time since last visit = 0.

2. Vehicles move at a constant speed across every square. A constant speed assump-

tion means every vehicle takes the same amount of time to cover each square.

This constant time allows idle times to be computed with a simple summation.

3. Vehicles immediately leave the patrol area when fueling is required.

4. Vehicles always reach their fuel minimum order point at the center of the oper-

ating area. When vehicles always refuel at the center of the operating area, they

always travel the same round trip distance to refuel at a depot.

5. Four symmetric depots surround the operating area.

The calculations use the following variables:

Variable Value Description
𝑉𝑎𝑣𝑔 20 m/s Vehicle Average Speed
𝐶 0.0694 Units/Sec Vehicle Consumption Required for Clean Hull 20m/s speed
𝑑𝑠𝑞𝑢𝑎𝑟𝑒 150 m Idle Grid Square Size
𝑑𝑑𝑖𝑎𝑔 7672 m Operating Area Diagonal Distance
𝑑𝑑𝑒𝑝𝑜𝑡 5350 m Average Round Trip Depot Distance

Calculating Grid Dimensions Let 𝑁ℎ be the total horizontal grid square count,

𝑁𝑣 be the total vertical square count, and 𝑁𝑡 be the total grid square count.

71

𝑁ℎ =
𝐺𝑟𝑖𝑑𝑊𝑖𝑑𝑡ℎ

𝐺𝑟𝑖𝑑𝑆𝑞𝑢𝑎𝑟𝑒𝑊𝑖𝑑𝑡ℎ

=
5550

150

= 37

𝑁𝑣 =
𝐺𝑟𝑖𝑑𝐿𝑒𝑛𝑔𝑡ℎ

𝐺𝑟𝑖𝑑𝑆𝑞𝑢𝑎𝑟𝑒𝐿𝑒𝑛𝑔𝑡ℎ

=
5350

150

= 36

𝑁𝑡 = 𝑁ℎ ·𝑁𝑣

= 36 · 37

= 1332𝑆𝑞𝑢𝑎𝑟𝑒𝑠

Example: Calculating No Fuel Grid Average Idle Time Define the following

variables:

𝑆 # of Empty Squares
𝐵 # of Boats
𝑇 Time Boat Spends on Each Square
𝐼𝑃𝐴𝑣𝑔 No Fuel Grid Average Idle Time

𝑆 =
(𝑁𝑠𝑞𝑢𝑎𝑟𝑒 − 1)

𝐵

=
(1332− 1)

10

= 133.1

𝑇 =
𝑑𝑠𝑞𝑢𝑎𝑟𝑒
𝑉𝑎𝑣𝑔

=
150

20

= 7.5

72

𝐼𝑃𝐴𝑣𝑔 =
𝑆∑︁

𝑖=1

𝑖𝑇

𝑆

=
𝑇

𝑆

𝑆∑︁
𝑖=1

𝑖

=
𝑇 (𝑆 + 1)

2

= 502.12

Example: Calculating the Total Average Grid Idle Time Caused During

Patrolling, Recycling, Refueling Define the following variables:

𝐹𝑝 Fuel Consumed During a Patrol
P Avg # of Refuelings Per Patrol
𝐹𝑡 Time to Refuel and Return to Patrol
𝐼𝐹𝐴𝑣𝑔 Avg Fueling Delay
𝐼𝑅𝑒𝑐𝑦𝑐𝑙𝑒 Avg Recycle Delay
𝐼𝑇𝑜𝑡𝑎𝑙 Grid Average Idle Time With Refueling

𝐹𝑃 = (𝑆𝑞𝑢𝑎𝑟𝑒𝑠/𝑃𝑎𝑡𝑟𝑜𝑙) · (𝑂𝑛𝑒𝑆𝑞𝑢𝑎𝑟𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑇 𝑖𝑚𝑒) · (𝐻𝑜𝑢𝑟𝑙𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐴𝑡𝑉𝑎𝑣𝑔)

=
𝑁𝑠𝑞𝑢𝑎𝑟𝑒

𝐵
· 𝑑𝑠𝑞𝑢𝑎𝑟𝑒

𝑉𝑎𝑣𝑔

· 𝐶

=
1332

10
· 150
20
· 0.06944

= 69.37

𝑃 =
𝐹𝑃

𝑄𝑡𝑎𝑛𝑘

=
69.37

720

= 0.0963

𝐹𝑇 =
𝑑𝑑𝑒𝑝𝑜𝑡
𝑉𝐴𝑣𝑔

=
5350

20

= 267.5

73

𝐼𝐹𝐴𝑣𝑔 = 𝑃 · 𝐹𝑇

= 25.8𝑆𝑒𝑐

𝐼𝑅𝑒𝑐𝑦𝑐𝑙𝑒 =
𝑑𝑑𝑖𝑎𝑔
𝑉𝐴𝑣𝑔

· 1
𝐵

= 38.36𝑆𝑒𝑐

𝐼𝑇𝑜𝑡𝑎𝑙 = 𝐼𝑃𝐴𝑣𝑔 + 𝐼𝐹𝐴𝑣𝑔 + 𝐼𝑅𝑒𝑐𝑦𝑐𝑙𝑒

= 566.25𝑆𝑒𝑐

Example: Calculating Average Voronoi Polygon Area Average Voronoi poly-

gon 𝐴𝑉 𝑃𝑇𝑜𝑡𝑎𝑙 area can be calculated by simply averaging the time weighted average

Voronoi polygon areas when a vehicle is patroling 𝐴𝑉 𝑃𝑃𝑎𝑡𝑟𝑜𝑙 and not patroling 𝐴𝑉 𝑃𝑁 .

Given 𝐴 = 𝑇𝑜𝑡𝑎𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐴𝑟𝑒𝑎

𝐴𝑉 𝑃𝑃𝑎𝑡𝑟𝑜𝑙 =
𝐴

𝐵

𝐴𝑉 𝑃𝑁 =
𝐴

(𝐵 − 1)

𝐴𝑉 𝑃 =
𝐼𝑃𝐴𝑣𝑔 · 𝐴𝑉 𝑃𝑃𝑎𝑡𝑟𝑜𝑙

𝐼𝑇𝑜𝑡𝑎𝑙

+
(𝐼𝐹𝐴𝑣𝑔 + 𝐼𝑅𝑒𝑐𝑦𝑐𝑙𝑒) · 𝐴𝑉 𝑃𝑁

𝐼𝑇𝑜𝑡𝑎𝑙

3.3.3 Comparing Analytically Performance Estimates With

Observed Results

The following tables show analytical vs observed Average Grid Idle Time and Voronoi

Polygon area for several different mission scenarios that most closely resemble ana-

lytical calculations. Specifically, all missions compared have four depots in order to

closely approximate the analytical solution’s round trip refueling distance. As pre-

viously stated, these results don’t prove the resource management algorithms create

the smallest possible mission disruptions when fueling robots. However, the results

validate that the mission simulation performs as expected and benchmarks the gap

between different calculations and real world performance.

74

Grid Average Idle Time

No Fuel Observed and Calculated Average grid idle time remain almost identical re-

gardless of the number of vehicles in the scenario. This lack of difference indicates

that pLatencyGridReporter successfully captures vehicle activity and that robots in

a no fuel patrol state can be approximated by simple calculations. By contrast, exper-

imental vehicle cycle restart time varies appreciably from its analytical calculation.

Grid sampling frequency likely causes most of this difference. Since vehicles recycle

quickly, pLatencyGridReporter does not run fast enough to capture the small and

instantaneous disruptions caused by vehicle recycling.

Vehicles 𝐼𝑃 Calc 𝐼𝑃 Obs % Diff 𝐼𝑅𝑒𝑐𝑦𝑐𝑙𝑒 Calc 𝐼𝑅𝑒𝑐𝑦𝑐𝑙𝑒 Obs % Diff
5 1002 1003 0.099 76 65 14.4
10 502 504 0.398 38 27 28.9
15 336 336 0 25 22 24

Table 3.2: Avg Grid Idle Times for Scenarios W/ 4 Depot, Vehicles W/ 720 Unit Fuel
Tank.

Average Voronoi Polygon Area With Fueling

Calculated and Observed Average Voronoi Polygon Area remain almost identical re-

gardless off the number of vehicles in the scenario. This lack of difference indicates

that uFldVoronoi successfully captures vehicle activity. Further, it indicates that the

average Voronoi polygon disruptions caused by refueling can be approximated using

simple calculations.

Vehicles 𝐴𝑉 𝑃 Calc 𝐴𝑉 𝑃 Obs % Diff
5 6185961.3 6108062.0 1.2
10 3035396.3 3051079.6 0.51
15 2014661.0 2030085.9 0.76

Table 3.3: Avg Voronoi Area for Scenarios W/ 4 Depot, Vehicles W/ 720 Unit Fuel
Tank.

75

3.3.4 Post Processing Simulation Data

This section described the programs and processes required to log, clean, store, and

display simulation data. All summary statistics, time series figures, and summary

histograms can be found in chapter 4.

Processing and Displaying Logged Simulation Data

Properly analyzing mission productivity data requires each MOOS community log

multiple MOOS variables throughout each simulation. To accomplish this logging,

each community runs the MOOS app pLogger. pLogger logs moos variables in plain-

text files. Following mission completion, a Python MOOS log processor parses the

text logs[Tur]. Other Python functions connected to this processor then convert de-

sired MOOS variables to their own Pandas data frames. This processing framework

creates data frames for instantaneous fuel level, instantaneous average grid idle time,

instantaneous average Voronoi polygon area, and refueling location data. These data

frames can then be read by a supply visualization application.

The supply visualization application ingests Pandas data frames for all simulated

depot, tank, and ship combinations to output summary statistics and figures in a

Python Dash page. Specifically, for each data frame, supply visualization eliminates

all data logged before or after patrol start and converts each time series data frame to

human readable datetime format. Supply visualization then create figures from each

frame showing individual ship fuel level, instantaneous average grid idle time, instan-

taneous average Voronoi polygon area size, and a plot showing geographically where

vehicles left patrol to refuel. It also creates histograms showing which instantaneous

grid idle times and polygon areas occurred most frequently during a mission. Finally,

supply visualization creates a table summarizing overall average grid idle time and

Voronoi polygon area for all missions. Figure 3-13 shows the Supply Visualization tool

dashboard. For layout and printing purposes, all graphs generated in the dashboard

are reformatted for print as "png" files with standard white backgrounds.

76

Figure 3-13: Top of the Ship Supply Visualization dashboard. Clicking on any of the
summary statistics displays specific time series an histogram data for the selection.

Interpreting Visualization Figures

Summary Statistics Table Each summary statistics table represents data col-

lected over missions containing a given quantity of patrol vehicles using a given patrol

algorithm. The table’s rows contain summary data collected for missions containing

a given quantity of depots. The tables columns summarize data collected for a given

fuel tank size. For example, in the figure below, a mission with 10 ships, 4 depots,

a 720 unit sized fuel tank size, and operating in a global polygon patrol algorithm

had grid average idle time of 550.16 seconds and Average Voronoi Polygon Area of

3051079.6𝑚2.
Avg Voronoi Area/Grid Avg Idle Time for 10 Vehicles in Global Polygon Patrol

Number of Depots 360 Unit Tank 720 Unit Tank 1080 Unit Tank

1 3244631.64 / 686.37 3156391.24 / 602.16 3094235.11 / 567.19

2 3163412.25 / 615.42 3072255.79 / 564.99 3052449.32 / 548.91

3 3113710.44 / 594.15 3051162.01 / 554.07 3031030.65 / 536.89

4 3099449.94 / 583.05 3051079.6 / 550.16 3033536.73 / 535.19

5 3080666.17 / 575.52 3043358.79 / 547.55 3025078.58 / 535.0

Units: 𝑚2/Seconds

77

Time Series Figures All time series figures plot readings for a mission with specific

patrol algorithm, ship, depot, and tank values. The vehicle fuel level figure plots units

of fuel for each vehicle in a given mission over time. Each colored trace represents a

vehicle name.

78

Figure 3-14: Time Series Plot Showing Changing Vehicle Fuel Levels Over Time

Histograms The supply visualization tool also generates histograms that model

the frequency of grid average idle time (Figure 3-16) and average Voronoi polygon

area (Figure 3-15. For example, in the figure below, a mission with 10 ships, 4 depots,

a 720 unit sized fuel tank size, and operating in a global polygon patrol algorithm

most commonly saw idle time around 525 seconds and average Voronoi polygon area

around 3M 𝑚2.

79

Figure 3-15: Average Voronoi Polygon Area Histogram

Figure 3-16: Average Grid Idle Time Histogram

80

Chapter 4

Predicating Future Swarm Needs

from Past Mission Performance

The last section implemented and tested two vehicle patrol algorithms. It then

established a framework to evaluate how these patroling vehicles perform when they

need to periodically refuel. Finally, the last section developed and validated naive

ways to fuel patroling vehicles.

Testing these resource constrained patrol strategies required significant computa-

tional effort. Testing a single mission with specific depot quantities, vehicle quantities,

and vehicle fuel tank sizes required starting an entire MOOS-IvP mission, running

the mission to completion, and post processing the raw mission data. Running a

mission requires dedicated computing hardware and takes hours to complete. Section

4 focuses on how to use this simulated mission data to rapidly predict future mission

performance.

Rapidly predicting future mission performance requires analyzing the simulated

data’s structure and attributes. This structure can then illustrate what attributes

best highlight strong mission performance. Finally, a machine learning algorithm can

be implemented to rapidly predict these attributes.

81

4.1 Prominent Patrol Data Attributes

4.1.1 Averaging Overall Performance Allows General Mission

Comparison but Doesn’t Fully Capture Vehicle Behavior

As previously shown, the Ship Supply Visualization Dashboard (Figure 3-13 sum-

marizes total mission performance using just two metrics. Specifically, the dashboard

averages time sampled instantaneous grid idle time and instantaneous average Voronoi

polygon area to display overall average idle time and polygon area. These metrics

provide easy ways for a policy maker to roughly determine what resources they need

to achieve a specific performance level. Further, they allow a planner to rapidly

ascertain which parameter changes most affect mission performance. For example,

examining averages from global polygon patrols missions show that ship quantity lin-

early reduces grid idle time but not all depot quantity changes linearly reduce idle

time.

While these metrics broadly show how top line mission parameters (e.g depot quan-

tity) change average performance, they fail to capture how reliably a vehicle can

maintain this average during a mission. Further, they don’t capture how great each

performance metric deviates from its average when vehicles must refuel.

Figure 4-1 demonstrates a case where these overall performance averages fail. In

this example, two different missions share nearly identical overall grid idle time and

Voronoi polygon area values. However, each missions’s performance histograms in-

dicate each mission achieved this average with vastly different vehicle behavior. In

the first mission (blue traces), vehicle fueling behavior ensures grid idle time never

rises above 500 seconds and instantaneous average polygon area never rises above

3M 𝑚2. In the other missions (red traces), large fuel tanked vehicles spend far more

time patrolling but occasionally must all leave and fuel at a single depot. This be-

havior normally maintains area and idle time low but occasionally allows them to

spike significantly higher than the first mission. During operations like adversarial

82

patrol, mission planners may not be able to deploy a mission that occasionally leaves

a grid completely unpatrolled, even if it generally produces favorable mean perfor-

mance. Consequently, any future performance prediction method must provide a

mission planner with some indication of underlying vehicle behavior.

Figure 4-1: Histograms comparing vehicle performance between missions

83

4.1.2 Instantaneous Performance Becomes Difficult to Predict

As Vehicle Refuel

Despite running simple patrol algorithms under weather free conditions, vehicle

fueling alone introduces uncertainty into each model. For example, Figure 4-2 shows

a mission where vehicles run large fuel tanks. Further, this mission also surrounds

the operating area with depots. Together, these two design parameters ensure that

vehicles rarely need to refuel and experience minimal depot travel disruption when

they do fuel. Consequently, vehicles in this mission generally run out of fuel at the

same time, take the same amount of time to fuel, and maintain this consistent fueling

period throughout the mission. This consistent fueling period ensures grid area and

idle time plots follow a fairly cyclic and predictable pattern.

By contrast, Figure 4-3 shows a mission whose performance metrics quickly become

unpredictable. In this mission, vehicles run small fuel tanks and must travel varying

distances to refuel at a single depot. This distance delays some vehicles from refueling

quickly. Consequently, vehicles begin refueling at different intervals. These uneven

intervals introduce randomness into grid area and idle time plots. These plots cannot

be reproduced or approximated with simple math equations. Any future prediction

method must be able to handle this uncertainty.

84

(a)

(b)

(c)

Figure 4-2: Infrequent fueling and small fuel delays make mission performance metrics
relatively easy to predict.

85

(a)

(b)

(c)

Figure 4-3: Frequent fueling and uneven fuel delay introduce randomness into mission
performance metrics

86

4.2 Testing Machine Learning Algorithms to Predict

Mission Performance

The simulation data revealed missions display complex, non linear mission behavior

whose performance cannot be easily modeled by simple math equations. This section

tests two methods to approximate this behavior and display it in a usable manner to

a mission planner.

4.2.1 Time Series Transformer

Transformers utilize deep learning technology to infer and predict future patterns in

data given prompts or past data trends. Invented by a team of Google researchers in

2017, transformers utilize an attention system to infer and represent information based

on a sequence of input items and their orientation within that input sequence. These

sequences can be used to then map a query to an output [Vas+17]. Transformers

unique attention architecture allow them to predict future data given only a robust

training dataset. Companies such as Open-AI and Google have created models using

a transformer’s predictive abilities to summarize emails, answer questions and even

pass the BAR exam[Ope23] [Dev+18].

Transformers could predict vehicle mission performance by using information in-

ferred from the time series idle time and area data generated from a mission. In this

method, a transformer would train on a performance value, the previous performance

value, the values time, and the static features (e.g depot/ship quantity) contributing

to each value. Once trained, the model could then predict future time series perfor-

mance values given a time and set of unseen static features. These predicted values

could then be either read or given to a mission planner in histogram form to show

future vehicle performance.

Despite their incredible inference power, transformer prediction models struggle to

predict mission performance for several major reasons. First, transformer’s signifi-

87

cant resource requirements limit what models can be run on consumer hardware. For

example, transformer memory requirements scale quadratically with input sequence

length [Vas+17]. Further, most of this memory must be located on a computer’s GPU

since the GPU acts as the primary computation engine to train the model. These

memory constraints limits how far back a transformer can look when inferring from

a value, how many features a transformer can use when inferring from a value, and

how much time series context a transformer can use to predict future performance

values. After training a model using Huggingface’s univariate time series transformer

for prediction[RR22], the model was unable to accurately predict mission perfor-

mance. Further, computational limitations limited the quantity of performance data

predictable by the model. Improving this performance would likely require training a

multivariate time series model, using a less memory intensive transformer implemen-

tation, and allocating more system resources for model training.

Figure 4-4: Transformers Struggle to Predict an Idle Time Series Run

4.2.2 Selected Metric: Predicting Histogram Confidence

As previously stated, uneven fueling delay prohibits directly predicting mission per-

formance as a time series. However, when predicting future vehicle resource needs,

planners likely only need to know how their vehicles usually perform instead of know-

88

ing exactly how vehicles perform at a given time. Confidence intervals help describe

how vehicles usually perform.

Confidence intervals represent bounds where a certain percent of mission values

lie. In other words, confidence intervals bound how bad and good a vehicle will

perform in a mission. For example, in a mission with a 95 percent grid idle time

confidence interval of 302-500 seconds, instantaneous grid idle time remains between

302 and 500 seconds for 95 percent of the mission. Confidence intervals excel as vehicle

behavior descriptors for several reasons. First confidence intervals intuitively explain

complex vehicle behavior. Since each interval’s unit of measurement matches the

underlying performance metric’s units, confidence intervals can be easily explained to

people without a statistics background. Besides simplicity, planners can also tailor

confidence intervals to their specific needs. For example, a planner may choose an

80 percent vice 95 percent confidence interval if they care less about extreme data

points and more about where mission performance metrics frequently fall. Finally,

confidence intervals excel at describing vehicle behavior because they can be predicted

on consumer grade hardware without complex GPU’s or excessive memory. Generally,

confidence intervals for a given performance metric can be predicted as follows:

1. Simulate 𝑚 missions with diverse depot, tank, and ship combinations.

2. Select 𝑛 representative performance samples from each dataset. For example, a

single sample might consist of an idle time, depot quantity, ship number, and

fuel tank size.

3. Select an ML model capable of quantile regression.

4. Train 3 models on 𝑛 ·𝑚 samples using the following optimization scheme.

(a) 1st Model: Optimize with quantile regression to predict the lower bound

confidence interval

(b) 2nd Model Optimize with RMSE loss function to predict a most likely

performance value

89

(c) 3rd Model: Optimize with quantile regression to predict the upper bound

confidence interval

(d) Test model using mission combinations unseen by model. Compute root

mean squared error RMSE for predictions.

Selected ML toolkit: XGBoost The software library XGBoost allows users to

create highly accurate predictive and regressive models over large datasets based on

the methods proposed in [Fri01]’s paper. Specifically, XGBoost simultaneously ap-

plies both boosting and regularization to prediction trees in order to find optimal

model weights capable of accurate future predictions. In boosting, XGBoost uses a

given optimization function to generate residual error trees. XGBoost then weights

these residual trees and incorporates the trees into more training rounds. Adding

residual trees to the model improves the overall model prediction accuracy [Com].

In regularization, XGBoost uses a function to penalize complex tree structures. Pe-

nalizing this complexity ensures XGBoost doesn’t over fit its model to training data

[Com]. XGBoost can predict upper and lower confidence intervals by training with

a cosh objective function. Similar to a quantile regression objective function used

in linear regression, cosh roughly approximates a rotated mean absolute error func-

tion (MAE) allowing XGBoost to optimize to a specific confidence interval [Gui20].

Unlike a quantile regression objective function, cosh also maintains a continuous 2nd

derivative as required by XGBoost.

XGBoost Prediction Results

Predicting confidence intervals required training three models (under prediction,

likely prediction, over prediction) on two different performance metrics (Grid Idle

time and Voronoi Polygon Area) for both unique mission patrol types (Global and

Local polygon patrol). Each of the twelve models train on 60,000 samples captured

from 60 missions. Each model was then used to predict a corresponding or 95 percent

confidence interval for 30 unseen missions. Tables 4.1, 4.2, 4.3, and 4.4 show these

results.

90

RMSE_UP RMSE_AVG RMSE_median RMSE_OP
12.09 23.52 26.9 57.23

Table 4.1: Root Mean Squared Error (RMSE) (Units: 𝑠) When Predicting local
polygon idle time performance

RMSE_UP RMSE_AVG RMSE_median RMSE_OP
11.1 17.56 21.92 42.46

Table 4.2: Root Mean Squared Error (RMSE) (Units: 𝑠) When predicting global
polygon idle time performance

RMSE_UP RMSE_AVG RMSE_median RMSE_OP
25392.66 38908.48 105808.44 289682.93

Table 4.3: Root Mean Squared Error (RMSE) (Units: 𝑚2) when predicting global
Voronoi polygon area performance

RMSE_UP RMSE_AVG RMSE_median RMSE_OP
44182.14 70485.85 153602.2 167361.05

Table 4.4: Root Mean Squared Error (RMSE) (Units: 𝑚2) when predicting local
Voronoi polygon area performance

Interpreting Results Tables 4.1, 4.2, 4.3, and 4.4 show XGBoost’s root mean

squared error when predicting confidence intervals for performance parameters in

various mission types. For example, table 4.3 shows that, over thirty unseen missions,

XGBoost could predict the worst grid case idle time seen during 95 percent of a

mission with an average error of 57 seconds. Further it could predict the best case

grid idle time seen during 95 percent of the mission with an error of 12 seconds. Also,

over thirty unseen missions, the table shows XGBoost could predict the median and

91

average grid idle time with an average error rate of 23 and 26 seconds respectively.

Similarly, 4.4 show that over thirty unseen missions, XGBoost could predict the

worst and best case Voronoi polygon area seen during 95 percent of a mission with

average errors of .04𝑘𝑚2 and .167𝑘𝑚2 respectively. For more granularity, the tables

in Appendix A show XGBoost’s prediction performance and performance percent

differences for each of the individually predicted missions.

Generally, XGBoost can predict missions involving global polygon patrol with a

lower root mean squared error (Tables 4.2, 4.3) than missions involving local poly-

gon patrol (Tables 4.1, 4.5). This performance benefit likely comes from the error

introduced by uneven polygons in a local patrol scheme. Specifically, the decentral-

ized Voronoi spreading algorithm used in a local patrol scheme cause each vehicle to

patrol polygons of different sizes. These differing sizes mean that vehicles patrolling

abnormally large or small polygons can unpredictably raise or lower a grid’s idle time

and Voronoi polygon area due to their uneven patrol frequency and uneven refuel

distance.

Generally, these results show XGBoost can predict a missions performance with

reasonable accuracy. In many cases, XGBoost’s performance predictions differ from

actual performance metrics by less than ten percent. In some cases, XGBoost can

predict mission performance to within one percent of actual simulated values. While

not perfect, these predictions can easily demonstrate a mission’s character and provide

operational planners needed mission insight far faster than simulation alone. In other

words, XGBoost can predict a mission’s behavior in a matter of minutes with a low

error rate.

92

4.3 Practical Mission Planning Using ML Assisted

Simulation

Section 4.2.2’s results demonstrate that XGBoost can predict a mission’s average

performance metrics and performance confidence intervals with reasonable accuracy.

While these models are critical to illustrate vehicle behavior, they do not allow a plan-

ner to estimate how many depots and vehicles they need to hit a broad performance

category. However, combining overall average mission performance with XGBoost’s

predictive capabilities allows a planner to estimate both resource needs while tailor-

ing the resources to produce a specific vehicle behavior. This combination can be

implemented using the following method:

1. Determine the maximum resources available for a given swarm mission.

2. Simulate missions with extreme parameter combinations (max/min depots, ve-

hicles etc) and average each mission’s overall performance to broadly estimate

mission resource needs.

3. Build XGBoost model from missions that can be simulated rapidly. Estimate

model RMSE.

4. Input Resource estimates into XGBoost models to obtain predicted vehicle be-

havior.

5. Given model error rate, select specific mission parameters based on desired

vehicle behavior.

4.3.1 Example: Planning a Saxis Survey Mission

In this example, a malfunctioning chemical factory leaks hazardous chemicals into

the Saxis River Basin. The government tasks a survey company to continuously

sample water quality throughout the basin to track and model chemical spread. The

companies’ model remains most accurate when samples are taken less than 10 minutes

93

apart. Saxis maritime traffic density prohibits more than 30 vehicles from surveying

at one time. While the company deployed all 30 vehicles to survey, they want to

reduce their vehicle operating count to minimize costs while maintaining a high model

accuracy for government review.

1. Determine Max Resources Available: The survey company can deploy 30 sample

vehicles into the Saxis Basin and maintain them with a maximum of 3 floating

supply depots.

2. Simulate Extreme Combinations: The survey company simulates the following

mission combinations:

(a) 30 Vehicles, 1 Depot

(b) 30 Vehicles, 3 Depots (This "simulated" data can come from actual real

time results)

(c) 20 Vehicles, 1 Depot

(d) 20 Vehicles, 3 Depots

(e) 10 Vehicles, 1 Depot

(f) 10 Vehicles, 3 Depots

The company reviews the simulation data (Table 4.5) and discovers they can

significantly reduce the number of vehicles surveying the chemical spill area

while maintaining a 10 minute survey interval.

- 10 Ships 20 Ships 30 Ships
1 Depot 602 Secs 304 Secs 206 Secs
3 Depots 554 Secs 276 Secs 184 Secs

Table 4.5: Example data showing overall time between vehicle samples in the saxis
operating area.

3. Build XGBoost Model From Rapid Simulation: The company conducts many

rapid simulations of 5-10 vehicle missions at 20x real time and then trains

XGBoost models from their performance results. The company then tests their

94

model with a 95 percent confidence interval and obtains a 40 second root mean

squared error.

4. Predict Behavior from Resource Estimates Based on the performance trends

from step 2, the company estimates they will likely need between 10 and 15 ships

to patrol the operating area. The company then uses their trained XGBoost

model to predict mission performance for all 15 different mission combinations.

5. Select Best Performing Mission: Since the survey company wants to maintain

time between surveys in all parts of an operating area less than 10 minutes

(600 seconds), they need to find a the lowest quantity of vehicles and depots

whose predicted 95 percent performance plus prediction RMSE remains below

600. In other words, with a 40 second RMSE, they need to find the smallest

mission combination that delivers a predicted performance rate below 560 sec-

onds. Based on predictions, the company determines that 12 vehicles and two

depots can represent the lowest vehicle combination capable of surveying the

operating area with satisfactory performance.

95

96

Chapter 5

Conclusion

5.1 Reflection On Thesis Goals

This thesis aimed to maximize collaborative swarm productivity, by predicting and

managing robot resource needs, using operations theory, simulation, and machine

learning. To achieve this goal, chapter two investigated what common swarm traits

indicate high productivity. This investigation found that measuring how much robots

spread out and move during tasking can illustrate overall swarm productivity. To

track spreading, this thesis proposed measuring a swarm’s average Voronoi cell area.

To track movement, this thesis proposed measuring a mission area’s time sampled

average node idle time. This thesis then applies these metrics to a modified Multi

Robot Patrol (MRPP) problem that forces ships in a swarm to move constantly,

consume abundant amounts of resources, and work under a decentralized control

scheme.

Chapter three adds naive resource awareness to the MRPP productivity scenario.

Specifically, the chapter outlines a naïve restocking strategy to maintain robots fueled,

implements this strategy as a collection of decentralized patrol robots performing

a simulated MRPP in MOOS-IvP, and analytically validates that this simulation

performs as expected. Following analytical validation, the section then describes

specific mission parameters chosen to best highlight how the robot’s behavior impacts

97

resource management strategies and overall mission performance.

Chapter four begins by highlighting how dynamic robot behavior impacts naïve re-

source management strategies and overall mission performance. Specifically, it shows

how when vehicles control their own naïve refueling strategies, they begin transiting to

refuel from different locations in the operating area. This location difference changes

when each vehicle refuels, when it returns to patrol, and when it must refuel in the

future. These refuel time changes preclude easily calculating future vehicle perfor-

mance. Thesis Chapter four then details how to use XGBoost with an approximated

mean absolute error function (MAE) to predict vehicle performance with confidence

intervals, thereby improving simple averaged performance predictions without the

need for full simulation.

Combined, these chapters describe this thesis’ three major contributions to marine

robotics. Specifically, this thesis develops

1. A low communication resource aware patrol algorithm using many ships oper-

ating in a constrained marine environment.

2. Tangible software modules, testing strategies, and data processing modules to

evaluate how this dynamic robot behavior impacts naïve resource management

strategies.

3. A novel way to predict future swarm resource needs based on machine learning

and past mission simulation.

4. Tangible software modules that implement this resource prediction algorithm

using past simulated mission data.

5.2 Future Work

This thesis tested how naive refueling algorithms affect patrolling vehicles ability to

continuously cover and visit all portions of an operating area. These naive algorithms

98

may not best represent how swarms refuel and they almost certainly do not deliver

the best patrol performance. By modifying how depots broker fueling, how they

communicate with vehicles, and where they could travel, researchers could easily

build refueling algorithms that better represent and optimize actual swarm behavior.

Further, researchers could also build intelligent fueling behavior into vehicles so they

could opportunistically refuel at close points in their patrol. Finally, researchers

could implement even greater communication restrictions to determine how degraded

communication affects a vehicles ability to refuel.

Besides testing refueling algorithms, this thesis tested if a mission planner could

predict future vehicle behavior based on past mission simulations. While simulations

accurately show how vehicles respond in ideal conditions, they don’t incorporate sea

state, wind, vehicle traffic, and other stochastic effects. Future testing on operational

swarm missions could help determine how mission predictions hold up when subjected

to these stochastic effects. Further, operationally testing these predictions could also

help determine what level of prediction accuracy a mission planner needs in order to

operate a swarm successfully.

Most importantly, any future swarm autonomy researcher should integrate resource

awareness and endurance requirements when designing collaborative algorithms and

operational swarm systems. As previously stated, most operational autonomous ma-

rine robotic missions remain in the research and testing phases. Further, marine

robotics competitions like RobotX require vehicles avoid obstacles, manipulate ve-

hicles, and find items in a small operating area [rob]. While these tasks test robot

sensing and path planning, they don’t test a robot’s endurance. Extending these tasks

to last for several hours or several days could incentivize researchers to focus more

closely on how they sense and manage their resource consumption during competition.

99

100

Appendix A

Detailed XGBoost Prediction Results

Depot Tank Ship Pred_UP Act_UP %Diff Pred_Val Act_AVG %Diff AVG %Diff Median
5 360 5 1054.68 1015.29 3.88 1123.44 1105.32 1.64 2.36
1 720 5 1033.75 1012.48 2.10 1102.89 1131.82 2.56 3.15
3 1080 5 1011.21 1006.01 0.52 1058.86 1054.65 0.40 1.46
5 1080 5 1019.78 1005.42 1.43 1053.91 1053.62 0.03 0.92
2 360 10 529.67 512.33 3.39 584.15 603.28 3.17 2.20
3 720 10 510.10 504.77 1.06 542.66 544.50 0.34 3.61
1 360 15 349.27 342.91 1.86 380.39 446.92 14.89 12.48
2 360 15 349.27 341.02 2.42 380.39 407.68 6.69 4.80
3 360 15 349.48 339.40 2.97 380.39 396.51 4.07 0.99
4 360 15 350.79 338.42 3.65 380.39 385.97 1.45 1.56
1 720 15 343.69 336.70 2.07 365.94 390.20 6.22 4.69
5 720 15 338.51 335.72 0.83 357.88 361.30 0.95 3.75
5 360 20 259.79 254.35 2.14 287.51 287.85 0.12 4.88
2 720 20 256.20 253.14 1.21 267.89 277.86 3.58 3.07
3 720 20 255.85 253.03 1.12 267.86 271.00 1.16 3.87
5 1080 20 255.16 252.65 1.00 261.30 261.97 0.25 1.78
4 360 25 209.17 202.54 3.28 236.83 234.05 1.18 10.46
3 1080 25 203.75 201.98 0.88 206.58 209.19 1.25 1.12
4 1080 25 202.83 201.59 0.62 206.55 208.49 0.93 1.27
1 720 30 176.41 167.72 5.19 237.60 197.66 20.21 36.08
1 1080 30 174.22 167.39 4.09 237.58 184.43 28.82 39.96
4 1080 30 168.28 167.20 0.65 172.24 172.34 0.06 2.01

Table A.1: Predicted vs actual local idle time performance comparison(Units: 𝑠)

101

Depot Tank Ship Pred_OP Act_OP %Diff
5 360 5 1199.96 1209.54 0.79
1 720 5 1240.54 1382.70 10.28
3 1080 5 1136.66 1169.48 2.81
5 1080 5 1124.86 1169.79 3.84
2 360 10 660.95 728.37 9.26
3 720 10 616.34 662.43 6.96
1 360 15 455.17 585.04 22.20
2 360 15 432.73 502.70 13.92
3 360 15 436.75 485.01 9.95
4 360 15 427.42 466.19 8.32
1 720 15 438.76 541.15 18.92
5 720 15 414.42 448.27 7.55
5 360 20 335.26 357.05 6.10
2 720 20 310.75 354.29 12.29
3 720 20 310.92 333.36 6.73
5 1080 20 290.22 311.48 6.82
4 360 25 276.00 298.86 7.65
3 1080 25 238.27 248.20 4.00
4 1080 25 231.83 252.31 8.11
1 720 30 275.85 293.17 5.91
1 1080 30 256.86 267.10 3.83
4 1080 30 196.33 196.66 0.16

Table A.2: Predicted vs actual local idle time performance comparison (cont)(Units:
𝑠)

102

Depot Tank Ship Pred_UP Act_UP %Diff Pred_Val Act_AVG %Diff AVG %Diff Median
2 360 5 1055.95 1031.45 2.38 1135.55 1192.14 4.75 4.55
3 720 5 1014.14 1007.64 0.65 1078.61 1079.61 0.09 2.01
3 360 10 527.57 508.43 3.76 577.17 583.51 1.08 0.41
5 360 10 527.46 509.65 3.49 577.17 568.40 1.54 3.48
2 1080 10 519.78 504.78 2.97 551.75 536.69 2.81 5.81
3 1080 15 339.66 335.64 1.20 351.58 349.91 0.48 2.31
3 360 20 269.14 253.67 6.10 305.77 294.71 3.76 9.51
4 360 20 261.27 253.31 3.15 288.04 287.32 0.25 7.25
1 720 20 258.05 253.58 1.77 279.41 295.27 5.37 7.72
1 360 25 217.14 203.41 6.75 253.75 285.20 11.03 10.67
3 360 25 207.91 202.68 2.59 234.39 236.35 0.83 7.29
5 360 25 207.60 202.83 2.35 234.38 236.76 1.00 0.76
1 720 25 205.32 202.15 1.57 225.13 235.13 4.26 7.97
5 720 25 204.02 201.82 1.09 213.19 214.68 0.69 4.29
1 360 30 181.25 169.36 7.02 212.05 235.34 9.90 8.68
2 720 30 169.08 167.56 0.91 180.57 190.21 5.07 1.47
3 720 30 169.08 167.41 1.00 176.75 180.06 1.83 4.21
1 1080 30 174.38 167.32 4.22 199.66 186.21 7.22 17.63
3 1080 30 168.39 167.36 0.63 172.25 174.32 1.18 1.68

Table A.3: Predicted vs actual global idle time performance comparison (Units: 𝑠)

Depot Tank Ship Pred_OP Act_OP %Diff
2 360 5 1246.69 1361.79 8.45
3 720 5 1184.20 1218.98 2.85
3 360 10 652.46 695.49 6.19
5 360 10 639.83 659.98 3.05
2 1080 10 633.21 641.79 1.34
3 1080 15 401.04 412.66 2.81
3 360 20 351.85 375.84 6.38
4 360 20 336.51 355.55 5.35
1 720 20 355.94 405.79 12.28
1 360 25 300.17 383.91 21.81
3 360 25 276.79 304.60 9.13
5 360 25 274.80 293.41 6.34
1 720 25 285.60 329.42 13.30
5 720 25 245.75 264.16 6.97
1 360 30 261.70 310.06 15.60
2 720 30 233.91 247.59 5.52
3 720 30 225.13 229.21 1.77
1 1080 30 246.24 277.27 11.19
3 1080 30 211.33 207.01 2.09

Table A.4: Predicted vs actual global idle time performance comparison (cont) (Units:
𝑠)

103

Depot Tank Ship Pred_UP Act_UP %Diff Pred_Val Act_AVG %Diff AVG %Diff Median
3 720 5 5958582.88 5995000.00 0.61 6134994.51 6091919.17 0.71 2.34
5 720 5 5989101.41 5995000.00 0.10 6085286.62 6085924.17 0.01 1.51
1 1080 5 6083047.39 5995000.00 1.47 6328359.60 6210320.42 1.90 5.56
4 720 10 3011801.00 2997500.00 0.48 3060453.18 3049397.19 0.36 2.10
3 720 15 1996438.98 1998333.33 0.09 2033489.94 2033412.96 0.00 1.76
1 1080 15 2015395.88 1998333.33 0.85 2132350.44 2066187.74 3.20 6.71
5 1080 15 2003254.18 1998333.33 0.25 2023618.70 2018779.81 0.24 1.27
1 360 20 1501840.11 1498750.00 0.21 1567612.65 1614349.36 2.90 0.64
4 360 20 1500742.67 1498750.00 0.13 1538296.10 1542210.75 0.25 2.64
5 360 25 1201406.36 1199000.00 0.20 1231438.64 1229140.74 0.19 2.71
3 720 25 1199424.51 1199000.00 0.04 1215512.63 1219155.75 0.30 1.38
4 720 25 1199109.91 1199000.00 0.01 1213749.29 1216040.34 0.19 1.23
3 360 30 1001974.70 999166.67 0.28 1030889.75 1031500.31 0.06 3.17
1 720 30 996712.21 999166.67 0.25 1029554.49 1042641.92 1.26 3.04
4 1080 30 997902.10 999166.67 0.13 1009987.71 1009183.33 0.08 1.08

Table A.5: Predicted vs actual global area performance comparison(Units: 𝑚2)

Depot Tank Ship Pred_OP Act_OP %Diff
3 720 5 6772048.00 7493750.00 9.63
5 720 5 6733738.42 7493750.00 10.14
1 1080 5 7155328.27 7493750.00 4.52
4 720 10 3330888.99 3330555.56 0.01
3 720 15 2207044.84 2305769.23 4.28
1 1080 15 2614740.85 2497916.67 4.68
5 1080 15 2188844.68 2141071.43 2.23
1 360 20 1783293.49 1873437.50 4.81
4 360 20 1683065.65 1763235.29 4.55
5 360 25 1335947.04 1303260.87 2.51
3 720 25 1307933.33 1303260.87 0.36
4 720 25 1300658.58 1303260.87 0.20
3 360 30 1131550.07 1110185.19 1.92
1 720 30 1222660.06 1248958.33 2.11
4 1080 30 1090782.05 1033620.69 5.53

Table A.6: Predicted vs actual global area performance comparison (cont)(Units: 𝑚2)

104

Depot Tank Ship Pred_UP Act_UP %Diff Pred_Val Act_AVG %Diff AVG %Diff Median
2 720 5 6099487.78 5995000.00 1.74 6353841.30 6190836.67 2.63 5.99
1 1080 5 6062000.75 5995000.00 1.12 6373164.65 6162360.42 3.42 6.31
2 1080 5 6138278.96 5995000.00 2.39 6362501.14 6224308.75 2.22 6.13
1 360 10 3010001.90 2997500.00 0.42 3165569.54 3248469.26 2.55 5.61
4 360 10 3000283.00 2997500.00 0.09 3097269.30 3106730.33 0.30 3.33
5 360 10 3039702.18 2997500.00 1.41 3097980.02 3080121.57 0.58 3.35
3 720 10 3003489.26 2997500.00 0.20 3064356.33 3063123.84 0.04 2.23
4 720 15 2007515.67 1998333.33 0.46 2037473.92 2027564.20 0.49 1.96
4 1080 15 2008477.93 1998333.33 0.51 2020849.23 2021739.38 0.04 1.13
5 360 20 1503065.47 1498750.00 0.29 1542378.19 1534294.46 0.53 2.91
3 720 20 1498857.86 1498750.00 0.01 1521340.73 1520206.32 0.07 1.51
1 1080 20 1515421.99 1498750.00 1.11 1547569.16 1553284.96 0.37 3.26
1 360 25 1205103.64 1199000.00 0.51 1252459.05 1291637.50 3.03 0.28
3 360 25 1183110.83 1199000.00 1.33 1229800.46 1237917.72 0.66 2.57
4 360 25 1189179.66 1199000.00 0.82 1229115.96 1230561.89 0.12 2.51
1 720 25 1201731.09 1199000.00 0.23 1242227.32 1253789.12 0.92 3.61
3 720 25 1198991.18 1199000.00 0.00 1217619.66 1217287.21 0.03 1.55
3 1080 25 1194303.51 1199000.00 0.39 1210191.01 1213733.33 0.29 0.93
5 360 30 1014148.95 999166.67 1.50 1032884.84 1027497.05 0.52 3.37
5 1080 30 999984.68 999166.67 0.08 1008728.03 1009049.49 0.03 0.96

Table A.7: Predicted vs actual local area performance comparison(Units: 𝑚2)

Depot Tank Ship Pred_OP Act_OP %Diff
2 720 5 7150909.90 7493750.00 4.58
1 1080 5 7178284.65 7493750.00 4.21
2 1080 5 7049148.08 7493750.00 5.93
1 360 10 3712442.16 3746875.00 0.92
4 360 10 3414295.20 3746875.00 8.88
5 360 10 3418306.11 3330555.56 2.63
3 720 10 3340511.56 3330555.56 0.30
4 720 15 2213905.33 2305769.23 3.98
4 1080 15 2184574.13 2141071.43 2.03
5 360 20 1687332.15 1665277.78 1.32
3 720 20 1644076.82 1665277.78 1.27
1 1080 20 1763687.49 1763235.29 0.03
1 360 25 1430455.80 1498750.00 4.56
3 360 25 1336395.14 1362500.00 1.92
4 360 25 1327599.64 1362500.00 2.56
1 720 25 1419782.28 1498750.00 5.27
3 720 25 1336427.93 1303260.87 2.54
3 1080 25 1288726.21 1303260.87 1.12
5 360 30 1130928.04 1152884.62 1.90
5 1080 30 1067198.04 1070535.71 0.31

Table A.8: Predicted vs actual local area performance comparison (cont)(Units: 𝑚2)

105

106

Bibliography

[AKJ05] N. Ahmed, S.S. Kanhere, and S. Jha. “Probabilistic coverage in wireless
sensor networks”. In: The IEEE Conference on Local Computer Networks
30th Anniversary (LCN’05)l. 2005, 8 pp.–681. doi: 10.1109/LCN.2005.
109.

[Bena] Mike Benjamin. Introduction 2.680. Image Found on Slide 12. url: https:
//oceanai.mit.edu/2.680/docs/2.680-01-intro_to_class_2023.
pdf. (accessed: 03.06.2023).

[Benb] Mike Benjamin. Introduction To MOOS. url: https://oceanai.mit.
edu/2.680/docs/2.680-03-intro_to_moos_2023.pdf. (accessed:
03.05.2023).

[Ben22] Mike Benjamin. sea_of_japan_fifty_nodes. Screenshot of Mission Simu-
lation. Swarm Toolbox Capability Demonstrator. 2022.

[Bor+18] Edward Bormashenko et al. “Characterization of Self-Assembled 2D Pat-
terns with Voronoi Entropy”. In: Entropy 20.12 (2018). issn: 1099-4300.
doi: 10.3390/e20120956. url: https://www.mdpi.com/1099-4300/
20/12/956.

[Che04] Yann Chevaleyre. “Theoretical analysis of the multi-agent patrolling prob-
lem”. In: Proceedings. IEEE/WIC/ACM International Conference on In-
telligent Agent Technology, 2004.(IAT 2004). IEEE. 2004, pp. 302–308.

[Chu+07] Hoang Nam Chu et al. “Swarm approaches for the patrolling problem,
information propagation vs. pheromone evaporation”. In: 19th IEEE in-
ternational conference on tools with artificial intelligence (ICTAI 2007).
Vol. 1. IEEE. 2007, pp. 442–449.

[Com] Distributed (Deep) Machine Learning Community. Introduction to boosted
trees. url: https://xgboost.readthedocs.io/en/stable/tutorials/
model.html.

[Cor+08] Fabien Cornillier et al. “A heuristic for the multi-period petrol station
replenishment problem”. In: European Journal of Operational Research
191.2 (2008), pp. 295–305. issn: 0377-2217. doi: https://doi.org/10.
1016/j.ejor.2007.08.016. url: https://www.sciencedirect.com/
science/article/pii/S0377221707008910.

107

[CP98] Howie Choset and Philippe Pignon. “Coverage Path Planning: The Bous-
trophedon Cellular Decomposition”. In: Field and Service Robotics. Springer
London, 1998, pp. 203–209. doi: 10.1007/978-1-4471-1273-0_32. url:
https://doi.org/10.1007%5C%2F978-1-4471-1273-0_32.

[Dev+18] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: CoRR abs/1810.04805 (2018).
arXiv: 1810.04805. url: http://arxiv.org/abs/1810.04805.

[DMK11] Jason Derenick, Nathan Michael, and Vijay Kumar. “Energy-aware cov-
erage control with docking for robot teams”. In: 2011 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 2011, pp. 3667–
3672. doi: 10.1109/IROS.2011.6094977.

[EAK07] Yehuda Elmaliach, Noa Agmon, and Gal Kaminka. “Multi-Robot Area
Patrol under Frequency Constraints”. In: Annals of Mathematics and Ar-
tificial Intelligence 57 (Apr. 2007), pp. 293–320. doi: 10.1007/s10472-
010-9193-y.

[Eva22] Nicholas Craig Evans. “A Practical Search with Voronoi Distributed Au-
tonomous Marine Swarms”. MA thesis. Massachusetts Institute of Tech-
nology, 2022.

[For86] S Fortune. “A Sweepline Algorithm for Voronoi Diagrams”. In: Proceedings
of the Second Annual Symposium on Computational Geometry. SCG ’86.
Yorktown Heights, New York, USA: Association for Computing Machin-
ery, 1986, pp. 313–322. isbn: 0897911946. doi: 10.1145/10515.10549.
url: https://doi.org/10.1145/10515.10549.

[Fri01] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boost-
ing Machine”. In: The Annals of Statistics 29.5 (2001), pp. 1189–1232.
issn: 00905364. url: http://www.jstor.org/stable/2699986 (visited
on 04/11/2023).

[Guaa] United States Coast Guard. COMMANDANT INSTRUCTION 7310.1V,
REIMBURSABLE STANDARD RATES. url: https://www.uscg.mil/
Portals/0/NPFC/docs/7310/CI_7310_1v.pdf?ver=Dp73u9f1G-
HaW7eyNMhBwg%5C%3D%5C%3D×tamp=1638384224069. (accessed:
03.04.2023).

[Guab] United States Coast Guard. NATIONAL 3rd MATE OF SELF-PROPELLED
VESSELS OF UNLIMITED TONNAGE UPON OCEANS OR NEAR
COASTAL WATERS § 11.407. url: https://www.dco.uscg.mil/
Portals/9/NMC/pdfs/checklists/mcp_fm_nmc5_05_web.pdf. (ac-
cessed: 03.04.2023).

[Gui20] Saupin Guillaume. Confidence intervals for xgboost. Sept. 2020. url:
https : / / towardsdatascience . com / confidence - intervals - for -
xgboost-cac2955a8fde.

108

[HLH09] Kao-Shing Hwang, Jin-Ling Lin, and Hui-Ling Huang. “Cooperative pa-
trol planning of multi-robot systems by a competitive auction system”.
In: 2009 ICCAS-SICE. 2009, pp. 4359–4363.

[JHL21] Katharin R. Jensen-Nau, Tucker Hermans, and Kam K. Leang. “Near-
Optimal Area-Coverage Path Planning of Energy-Constrained Aerial Robots
With Application in Autonomous Environmental Monitoring”. In: IEEE
Transactions on Automation Science and Engineering 18.3 (2021), pp. 1453–
1468. doi: 10.1109/TASE.2020.3016276.

[Joh] Douglas-Westwood Limited John Westwood Paul Newman. Ocean Sur-
vey - The World Market. url: https://www.hydro-international.
com/content/article/ocean-survey-the-world-market. (accessed:
03.04.2023).

[Lat91] Jean-Claude Latombe. “Approximate Cell Decomposition”. In: Robot Mo-
tion Planning. Boston, MA: Springer US, 1991, pp. 248–294. isbn: 978-
1-4615-4022-9. doi: 10.1007/978- 1- 4615- 4022- 9_6. url: https:
//doi.org/10.1007/978-1-4615-4022-9_6.

[Li+14] Kunpeng Li et al. “An inventory–routing problem with the objective of
travel time minimization”. In: European Journal of Operational Research
236.3 (2014). Vehicle Routing and Distribution Logistics, pp. 936–945.
issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2013.07.
034. url: https://www.sciencedirect.com/science/article/pii/
S0377221713006152.

[Mac+03] Aydano Machado et al. “Multi-agent patrolling: An empirical analysis
of alternative architectures”. In: Multi-Agent-Based Simulation II: Third
International Workshop, MABS 2002 Bologna, Italy, July 15–16, 2002
Revised Papers. Springer. 2003, pp. 155–170.

[MTR06] Talita Menezes, Patrícia Tedesco, and Geber Ramalho. “Negotiator agents
for the patrolling task”. In: Advances in Artificial Intelligence-IBERAMIA-
SBIA 2006: 2nd International Joint Conference, 10th Ibero-American
Conference on AI, 18th Brazilian AI Symposium, Ribeirão Preto, Brazil,
October 23-27, 2006. Proceedings. Springer. 2006, pp. 48–57.

[Ope23] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].
[Qu08] Jilin Qu. “Outlier Detection Based on Voronoi Diagram”. In: Advanced

Data Mining and Applications. Ed. by Changjie Tang et al. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2008, pp. 516–523. isbn: 978-3-540-
88192-6.

[rob] robotX. Task Descriptions and specifications version 4.0 (final ... - robon-
ation. url: https://robonation.org/app/uploads/sites/2/2019/
09/RobotX-2018-Tasks-FINAL_v4.0.pdf.

[RR22] Kashif Rasul and Niels Rogge. Probabilistic Time Series forecasting with
hugging-face transformers. Dec. 2022. url: https://huggingface.co/
blog/time-series-transformers.

109

[Sof] Jonathan Shaw Sofia Jones Weixian Lan. Anomaly Detection using Voronoi
k-distance. url: https://www.weixianlan.com/projects/voronoi_
outlier.pdf. (accessed: 03.04.2023).

[Son+14] Cheng Song et al. “Optimal control for multi-agent persistent monitoring”.
In: Automatica 50.6 (2014), pp. 1663–1668. issn: 0005-1098. doi: https:
//doi.org/10.1016/j.automatica.2014.04.011. url: https://www.
sciencedirect.com/science/article/pii/S0005109814001411.

[Tra] Bureau of Transportation Statistics. U.S. Coast Guard Search and Res-
cue Statistics, Fiscal Year. url: https://www.bts.gov/content/us-
coast- guard- search- and- rescue- statistics- fiscal- year. (ac-
cessed: 03.04.2023).

[Tur] Raymond Turrisi. MWDataMgr. url: https://github.com/raymondturrisi/
MWDataMgr. (accessed: 03.05.2023).

[Vas+17] Ashish Vaswani et al. “Attention is All You Need”. In: 2017. url: https:
//arxiv.org/pdf/1706.03762.pdf.

110

