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Abstract

The democratization of machine learning requires architectures that automatically
adapt to new problems. Neural Differential Equations have emerged as a popular
modeling framework, enabling ML practitioners to design neural networks that
can adaptively modify their depth based on the input problem. Neural Differential
Equations combine differential equationswith neural networks and rely on adaptive
differential equation solvers for the forward process.

The flexibility of automatically adapting the depths comes with the cost of expen-
sive training and slower predictions. Several prior works have tried to accelerate
training and inference. However, almost all of them have severe tradeoffs. Either
these works rely on expensive training methods to accelerate predictions or use
algorithms that are harder to integrate into existing workflows.

This thesis will discuss two methods to accelerate Neural Differential Equations.
We propose an Infinite Time Neural ODE, which paradoxically can be trained faster
than integrating aNeural ODE to a fixed time-point. We also build upon priorworks
on regularized Neural ODEs and propose a stochastic local regularization scheme
that can be used as a drop-in replacement for Neural ODEs.

Thesis Supervisor: Alan Edelman
Title: Professor of Applied Mathematics
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CHAPTER1
IntRoduction

Combining numerical methods and scientific computing with machine learning holds immense potential for
democratizing the field. Developing neural network architectures that automatically adapt to new problems is
crucial in advancingmachine learning algorithms. Howmany hidden layers should you choose in your recurrent
neural network? Chen et al. [2018] showed that the answer could be found automatically by using a continuous
reformulation, the neural ordinary differential equation, and allowing an adaptive ODE solver to effectively
choose the number of steps to take. Explicit models maximize performance on a dataset by being tuned to the
“hardest” training sample, which hurts the inference timings for “easier” – more abundant – samples. Using
adaptive differential equation solvers allows these implicit models to effectively choose the number of steps they
need. Additionally, these models have constant memory overhead for training, i.e., irrespective of the number
of steps of the solver, backpropagation takes constant memory.

Implicit Machine Learning has emerged as a popular modeling framework, enabling ML practitioners to design
neural networks that adaptively modify their depth based on the input problem. The “depth” of these models
is typically a function of the number of internal explicit neural network evaluations. In this thesis, we will
focus on two main types of implicit models – Deep Equilibrium Models (DEQs) [Bai et al., 2019] drive a discrete
dynamical system parameterized by a neural network to steady state, and Neural Ordinary Differential Equations
(Neural ODEs) [Chen et al., 2018] solve an ODE parameterized by a neural network over a fixed time-span. There
are several extensions/generalizations to these frameworks – like Multiscale DEQs [Bai et al., 2020], Neural
Stochastic Differential Equations [Liu et al., 2019], Universal Differential Equations [Rackauckas et al., 2020], etc.
– and we will show that our proposed methods naturally extend to these setups.

However, there is no free lunch. Despite much research in this domain, one fact remained: solving a neural dif-
ferential equation is expensive and training a neural differential equation is even more so. Grathwohl et al. [2018],
Dupont et al. [2019], Kelly et al. [2020], Finlay et al. [2020] have identified several problems with training implicit
networks. Implicit Models come with extremely high training and inference costs making them not as scalable
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Chapter 1. Introduction 2

as explicit models like transformers [Chen et al., 2016, Vaswani et al., 2017], recurrent neural networks [Elman,
1990, Hochreiter and Schmidhuber, 1997], etc. Accelerating forward pass is as simple as demanding the solver to
“take fewer steps.” But this “simple objective” is non-differentiable. Several solutions have been proposed using
proxy losses for this objective – Kelly et al. [2020], Finlay et al. [2020] use higher order derivatives for regular-
ization of Neural Differential Equations, Pal et al. [2021] proposed a “zero-cost” global regularization scheme for
problems using adaptive differential equation solvers, and Bai et al. [2021b] use jacobian regularization for Deep
Equilibrium Models. Other alternate strategies have been learning new solvers [Poli et al., 2020], randomizing
the time-span for integration to smoothen the learned dynamics [Behl et al., 2020]. We build upon prior works to
propose a generally applicable Neural ODE regularization scheme and an infinite time Neural ODE that provides
faster training and inference than existing methods.

1 Outline of tHe THesis

In Part I, we describe the background needed to understand the novel methods proposed in this thesis. Chap-
ter 2 describe the background on Ordinary Differential Equations and Neural Ordinary Differential Equations.
Chapter 3 describes the background on Deep Equilibrium Models or Infinite Depth Neural Networks. We de-
scribe our methods in Part II. Chapter 4 introduces Infinite-Time Neural ODEs, which accelerate the training of
Neural ODEs by integrating them to infinity. In Chapter 5, we open black box differential equation solvers and
use internal solver heuristics and discrete sensitivity analysis to accelerate the training and inference of Neu-
ral Differential Equations. In Chapter 6, we observe the shortcomings of former global regularization schemes
and propose a local regularization scheme for Neural ODEs. In Part III, we describe the open-source software
developed as a part of this thesis work. Finally, we conclude the thesis with open future research directions in
Part IV.

2 Main ContRibutions

The main contributions of this thesis are as follows:

1. In Chapter 4, we will design a continuous variant of Deep Equilibrium Networks that is equivalent to inte-
grating a Neural ODE to infinite.

2. In Chapter 4, we will demonstrate empirically and mathematically that integrating a Neural ODE to infinity
accelerates the backwards pass.

3. In Chapter 5, we will build upon the internals of differential equation solvers and open the solver black-box
to accelerate training and inference of Neural Differential Equations.

4. In Chapter 6, we will further show that trading off slight performance allows us to develop a highly-
composable stochastic local regularization scheme for Neural Differential Equations.

5. In Chapter 7, we introduce a new Julia deep learning library, Lux, that bridges the gap between scientific
computing and deep learning.



Part I

FOUNDATIONS

3



CHAPTER2
NeuRal ORdinaRy DiffeRential Eations

1 ORdinaRy DiffeRential Eations

Ordinary Differential Equations (ODEs) are equations defined by a relationship to their derivative. We can
generally write an ODE as:

𝑑𝑧

𝑑𝑡
= 𝑓 (𝑧, 𝑝, 𝑡)

This effectively describes the evolution of a state 𝑧 (𝑡). To compute 𝑧 (𝑡), we could solve the following integral
equation:

𝑧 (𝑡) =
∫ 𝑡

𝑡0

𝑓 (𝑧, 𝑝, 𝑡) d𝑡

where 𝑡0 is the initial time. However, analytically computing these solutions is almost impossible; hence, we
must rely on numerical solvers. For this thesis, we will focus exclusively on Initial Value Problems (IVP), which
specify the differential equations along with an initial condition, i.e., the value of the state at 𝑡0: 𝑧 (𝑡0). Other
kinds of ODE Problems, like Boundary Value Problems (BVP), specify additional conditions at the end of the
interval, i.e., 𝑧 (𝑡1).

We can broadly categorize Numerical Solvers for ODEs into Implicit Methods and Explicit Methods. Explicit
Methods compute the dynamical system’s state at a future time-point given the current state. Implicit Methods
solve for the dynamical system’s state at a future time-point given the current state and the later one. For example,
consider two extremely simple numerical solvers for an ODE:

• Euler Method (Explicit Method) [Euler, 1824]:

𝑧𝑛+1 = 𝑧𝑛 + d𝑡 · 𝑓 (𝑧𝑛, 𝑝, 𝑡𝑛)

4



Chapter 2. Neural Ordinary Differential Equations 5

• Backward Euler Method (Implicit Method) [Euler, 1824]:

𝑧𝑛+1 = 𝑧𝑛 + d𝑡 · 𝑓 (𝑧𝑛+1, 𝑝, 𝑡𝑛+1)

Explicit methods are usually faster than implicit methods but are ineffective for solving stiff equations [Wanner
and Hairer, 1996, Kim et al., 2021]. In this thesis, we will exclusively use explicit methods. A detailed discussion
on implicit and explicit methods is beyond the scope of this thesis, and we refer the readers to Rackauckas [2019].

2 Explicit ODE SolveRs

In this section, we will briefly discuss relevant ODE solvers in the context of Neural ODEs.

2.1 TsitouRas 5(4) Runge-Kutta (Tsit5) MetHod

Runge-Kutta (RK) Methods [Runge, 1895, Kutta, 1901] are widely used to approximate the solutions of ODEs
numerically. Given a tableau of coefficients {𝐴, 𝑐, 𝑏}, these methods combine 𝑠 stages to obtain the estimate at
𝑡 + d𝑡 .

𝑘𝑠 = 𝑓

(
𝑡 + 𝑐𝑠 · d𝑡, 𝑧 (𝑡) +

𝑠−1∑
𝑖=1

𝑎𝑠𝑖 · 𝑘𝑖

)
𝑧 (𝑡 + 𝑑𝑡) = 𝑧 (𝑡) + d𝑡 ·

(
𝑠∑
𝑖=1

𝑏𝑖 · 𝑘𝑖

)
Tsitouras [2011] presented a tableau of coefficients for a 6-stage RK method of order 5(4). We have found Tsit5
to be an excellent default for most ODEs (including Neural ODEs) at lower tolerances.

2.2 3rd oRdeR Adams-BasHfoRtH (VCAB3) MetHod

Contrary to RK Methods, Multi-step methods compute 𝑧 (𝑡) by efficiently using the information from previous
time steps. A linear multi-step method uses linear interpolation to compute 𝑧𝑛+1:

𝑧𝑛+1 = 𝑧𝑛 + d𝑡 ·
𝑠∑
𝑖=0

𝛽𝑖 · 𝑓 (𝑧𝑛+1−𝑖 , 𝑝, 𝑡𝑛+1−𝑖 ) given
𝑠∑
𝑖=0

𝛽𝑖 = 1

where 𝑠 is the number of steps. If 𝛽0 = 0, then we have an explicit method. In this thesis, we will focus on Adams
methods which involve solving the following:

𝑧𝑛+1 = 𝑧𝑛 +
∫ 𝑡𝑛+1

𝑡𝑛

𝑓 (𝑧 (𝜏), 𝑝, 𝜏) · d𝜏

Adams methods approximate the integral using polynomial interpolation of the function 𝑓 using evaluations at
points {𝑡𝑛+1−𝑠 , 𝑡𝑛+2−𝑠 , . . . , 𝑡𝑛}. Adams-Bashforth Method approximates the function using Lagrange Interpola-
tion:

𝑓 (𝑧 (𝜏), 𝑝, 𝜏) ≈
𝑠∑
𝑖=0

L𝑛+1−𝑖 · 𝑓 (𝑧𝑛+1−𝑖 , 𝑝, 𝑡𝑛+1−𝑖 )



Chapter 2. Neural Ordinary Differential Equations 6

where L𝑛+1−𝑖 ’s are the Lagrange polynomials. For 𝑠 = 3, we get the 3rd order Adams-Bashforth (VCAB3)
Method [Durran, 1991]:

𝑧𝑛+1 = 𝑧𝑛 +
d𝑡

12
· (23𝑓 (𝑧𝑛, 𝑝, 𝑡𝑛) − 16𝑓 (𝑧𝑛−1, 𝑝, 𝑡𝑛−1) + 5𝑓 (𝑧𝑛−2, 𝑝, 𝑡𝑛−2))

This method has a local truncation error of O
(
d𝑡3

)
. Additionally, since this method evaluates 𝑓 infrequently (by

reusing the evaluations of 𝑓 from previous time steps), it is efficient for ODEs with expensive evaluations of 𝑓
like a Neural ODE.

3 Adaptive Time-Stepping in NumeRical ODE SolveRs

Adaptive solvers need to maximize the step size (d𝑡 ) while keeping the error estimate below the user-specified
tolerances, i.e., they need to satisfy the:

EEst ≤ atol + max ( |𝑧 (𝑡) |, |𝑧 (𝑡 + d𝑡) |) · rtol

where EEst is the local error estimate. Adaptive solvers utilize an additional linear combiner𝑏𝑖 to get an alternate
solution, typically with one order less convergence [Wanner and Hairer, 1996, Fehlberg, 1968, Dormand and
Prince, 1980, Tsitouras, 2011].

𝑧 (𝑡 + 𝑑𝑡) = 𝑧 (𝑡) + d𝑡 ·
(
𝑠∑
𝑖=1

𝑏𝑖 · 𝑘𝑖

)
A classic result from Richardson extrapolation shows that EEst = ∥𝑧 (𝑡 + d𝑡) − 𝑧 (𝑡 + d𝑡)∥ is an estimate of the
local truncation error [Hairer et al., 1993, Ascher and Petzold, 1998]. The new step size is determined using the
following:

𝑞 =

 EEst
atol + max (|𝑧 (𝑡) |, |𝑧 (𝑡 + d𝑡) |) · rtol


• If 𝑞 < 1, d𝑡 is accepted.

• Otherwise, it is rejected and reduced. A standard PI controller proposes the new step size to be:

𝑑𝑡𝑛𝑒𝑤 = 𝜂 · 𝑞𝛼𝑛−1 · 𝑞
𝛽
𝑛 · 𝑑𝑡

where 𝜂 is the safety factor, 𝑞𝑛−1 is the error proportion of the previous step, and (𝛼, 𝛽) are tunable PI-gain
hyperparameters Wanner and Hairer [1996].

We defer the discussion of error estimation schemes for stochastic RK integrators to Rackauckas and Nie [2017b,
2020].

4 Automatic Stiffness Detection

While there is no precise definition of stiffness, the definition used in practice is “stiff equations are problems for
which explicit methods don’t work” [Wanner and Hairer, 1996, Shampine and Gear, 1979]. A simplified stiffness
index is given by:

𝑆 = max∥Re(𝜆𝑖 )∥
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Sensitivity Algorithm Memory Requirement Memory Requirement with Checkpointing

Backsolve Adjoint [Chen et al., 2018] O (𝑠) O (𝑠 × 𝑐)

Interpolating Adjoint [Hindmarsh et al., 2005] O (𝑠 × 𝑡) O (𝑠 × 𝑐)

Quadrature Adjoint [Kim et al., 2021] O ((𝑠 + 𝑝) × 𝑡) -

Direct Reverse Mode Differentiation O (𝑠 × 𝑡 × stages) -

Table 2.1: Memory Requirements for various Sensitivity Algorithms for ODEs: 𝑠 is the number of states,
𝑡 is the number of time steps for the ODE Solve, 𝑐 is the number of checkpoints (𝑐 << 𝑡 ) and stages is the number
of stages of the ODE solver.

where 𝜆𝑖 are the eigenvalues of the local Jacobian matrix. We note that various measures of stiffness have been
introduced over the years, all being variations of conditioning of the pseudo-spectra [Shampine and Thompson,
2007, Higham and Trefethen, 1993]. The difficulty in defining a stiffness metric is that in each case, stiff systems
like the classic Robertson chemical kinetics or excited Van der Pol equation may violate the definition, meaning
all such definitions are (useful) heuristics. In particular, it was shown that for explicit Runge-Kutta methods
satisfying 𝑐𝑥 = 𝑐𝑦 for some internal step, the term

∥𝜆∥ ≈
 𝑓 (

𝑡 + 𝑐𝑥 · d𝑡,
∑𝑠
𝑖=1 𝑎𝑥𝑖

)
− 𝑓

(
𝑡 + 𝑐𝑦 · d𝑡,

∑𝑠
𝑖=1 𝑎𝑦𝑖

)∑𝑠
𝑖=1 𝑎𝑥𝑖 −

∑𝑠
𝑖=1 𝑎𝑦𝑖


serves as an estimate to 𝑆 [Shampine, 1977]. Since each of these terms are already required in the Runge-Kutta
updates of Section 2.1, this gives a computationally-free estimate. This estimate is thus found throughout widely
used explicit Runge-Kutta implementations, such as by the dopri method (found in suites like SciPy and Octave)
to exit when stiffness is detected automatically [Wanner and Hairer, 1996], and by switching methods which
automatically change explicit Runge-Kutta methods to methods more suitable for stiff equations [Rackauckas
and Nie, 2019].

5 Sensitivity Analysis of ODEs

5.1 Continuous Sensitivity Analysis

A detailed discussion of different continuous sensitivity algorithms is beyond the scope of this thesis. Instead, we
present the algorithm of one of the popular methods (especially for training Neural ODEs) – Backsolve Adjoint.
We refer the readers to Chen et al. [2018, Appendix B] for rigorous proof of this method.

Let the gradient of the loss L wrt the final state of the ODE be 𝑧 (𝑡1) be 𝜕𝐿
𝜕𝑧 (𝑡1 ) . Define 𝜆(𝑡) to be an augmented

state. To compute the adjoint, we solve an augmented ODE from 𝑡1 to 𝑡0 with the initial condition:

𝑠0 =

[
𝑧 (𝑡1),

𝜕𝐿

𝜕𝑧 (𝑡1)
, 0 |𝑝 | ,−

(
𝜕𝐿

𝜕𝑧 (𝑡1)

)𝑇
𝑓 (𝑧 (𝑡1), 𝑝, 𝑡1)

]
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The augmented dynamics is given by the following:

𝑑𝑧 (𝑡)
𝑑𝑡

= 𝑓 (𝑧 (𝑡), 𝑝, 𝑡)

𝑑𝜆(𝑡)
𝑑𝑡

= −𝜆(𝑡)𝑇 𝜕𝑓 (𝑧 (𝑡), 𝑝, 𝑡)
𝜕𝑧

𝑑𝜆𝑝 (𝑡)
𝑑𝑡

= −𝜆(𝑡)𝑇 𝜕𝑓 (𝑧 (𝑡), 𝑝, 𝑡)
𝜕𝑝

𝑑𝜆𝑡 (𝑡)
𝑑𝑡

= −𝜆(𝑡)𝑇 𝜕𝑓 (𝑧 (𝑡), 𝑝, 𝑡)
𝜕𝑡

After solving this augmented ODE, we compute the final gradients as:

𝑑L
𝑑𝑝

= 𝜆𝑝 (𝑡0)
𝑑L
𝑑𝑧 (𝑡0)

= 𝜆(𝑡0)

𝑑L
𝑑𝑡0

= 𝜆𝑡 (𝑡0)
𝑑L
𝑑𝑡1

= 𝜆𝑡 (𝑡1)

In this algorithm, we don’t need to store any of the intermediate activations in the forward solve, hence it is
extremely memory efficient and has a complexity of O (𝑠) (See Table 2.1).

5.2 DiscRete Sensitivity Analysis

Discrete Sensitivity Analysis is the same as running any reverse mode AD software directly through the solver.
Hence, we need to store the activations at every time step the function was evaluated making the memory cost
of the method extremely high. This method doesn’t scale too well for larger systems, however, has certain nice
properties that can be exploited to accelerate Neural ODEs (See Section 4).

5.3 TRadeoffs between Continuous and DiscRete Sensitivity Analysis

Using continuous sensitivity analysis or Optimize-then-Discretize (Opt-Disc) we “optimize the continuous ODE
and then discretize the optimal dynamics after training” [Onken and Ruthotto, 2020]. Alternatively in discrete
sensitivity analysis or Discretize-then-Optimize (Disc-Opt) we discretize the ODE and then compute the sensi-
tivities over that discretization. Opt-Disc has a clear memory advantage over Disc-Opt (See Table 2.1). Gholami
et al. [2019] compared Disc-Opt and Opt-Disc and concluded the following for image classification tasks:

1. Opt-Disc leads to numerical instabilities in general deep neural network operations like convolutions, etc.

2. Inconsistent gradients in Opt-Disc can lead to divergence

Onken and Ruthotto [2020] extended this discussion to time-series problems and continuous normalizing flows
and showed that Disc-Opt obtains similar or better results compared to Opt-Disc while having a lower compu-
tational cost.
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6 NeuRal ORdinaRy DiffeRential Eations

Neural Ordinary Differential Equations are Implicit Neural Networks that use a neural network to parameterize
the dynamics of the ODE: Mathematically, this is given by:

𝑑𝑧

𝑑𝑡
= 𝑓 (𝑧 (𝑡), 𝜃, 𝑡) 𝑧 (𝑡0) = 𝑧0

𝑧 (𝑡1) = 𝑧 (𝑡0) +
∫ 𝑡1

𝑡0

𝑓 (𝑧 (𝑡), 𝜃, 𝑡) d𝑡

where 𝑓 is an Explicit Neural Network, 𝜃 are the parameters of the neural network, and we want to solve for
the dynamics 𝑧 (𝑡) in 𝑡 ∈ [𝑡0, 𝑡1]. Typically, 𝑧0 is specified as the input from the previous layers. Then we can
use sensitivity analysis (Section 5) to compute 𝑣𝑇 𝜕𝑧 (𝑡 )𝜕𝑧0

���
𝑡=𝑡1

and 𝑣𝑇 𝜕𝑧 (𝑡 )𝜕𝑔

���
𝑡=𝑡1

(where 𝑣𝑇 is obtained from back-
propagation on the succeeding layers) and train the neural network end-to-end using gradient descent.

7 Common Applications of NeuRal ODEs

Neural ODEs have emerged as a direct alternative to explicit neural networks that can automatically adapt its
depth to the problem. However, apart from being a continuous replacement to standard explicit models, Neural
ODEs have certain specific modelling advantages that make them a good fit for certain problems. In this section,
we discuss some of those applications of Neural ODEs.

7.1 Density Estimation: Continuous NoRmalizing Flows and FFJORD

Given a random variable 𝑧 ∼ P𝑧 , we can compute the probability distribution of 𝑥 = 𝑓 (𝑧) ∼ P𝑥 , where 𝑓 :

ℝ𝐷 ↦→ ℝ𝐷 is an invertible function, as:

log 𝑝𝑥 (𝑥) = log 𝑝𝑧 (𝑧) − log det
���� 𝜕𝑓 (𝑧)𝜕𝑧

����
Chen et al. [2018] use a neural ODE to transform a sample from a simple distributionP𝑧0 to the target distribution
P𝑧1 . The exact log likelihood of the sample 𝑧 (𝑡1) is given by an ODE:

log 𝑝𝑧1 (𝑧 (𝑡1)) = log 𝑝𝑧0 (𝑧 (𝑡0)) −

∫
𝑡1

𝑡0

Tr
���� 𝜕𝑓 (𝑧 (𝑡), 𝑝, 𝑡)𝜕𝑧 (𝑡)

���� d𝑡
During training the Continuous Normalizing Flow (CNF) we want to obtain the sample 𝑧0 that generated the
data 𝑥 ∈ ℝ𝐷 , and the corresponding log probability log 𝑝 (𝑥). This is done by solving the following equations
(note the backward integration from 𝑡1 to 𝑡0):


𝑧 (𝑡0)

log 𝑝𝑧1 (𝑥) − log 𝑝𝑧0 (𝑧 (𝑡0))

 =

∫
𝑡0

𝑡1


𝑓 (𝑧 (𝑡), 𝑝, 𝑡)

−Tr
��� 𝜕𝑓 (𝑧 (𝑡 ),𝑝,𝑡 )𝜕𝑧 (𝑡 )

���
 d𝑡


𝑧 (𝑡1)

log 𝑝𝑧1 (𝑥) − log 𝑝𝑧1 (𝑧 (𝑡1))

 =


𝑥

0

 initial conditions
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Solving this problem reduces the time complexity of O
(
(𝐷𝐻 + 𝐷3)𝐿

)
(where 𝐻 is the size of the largest hidden

dimension in 𝑓 and 𝐿 is the number of transfomations) in Normalizing Flows to O
(
(𝐷𝐻 + 𝐷2)𝐿

)
(where 𝐿 is

the number of function evaluations for the CNF). Grathwohl et al. [2018] further improve the time complexity
by using the Hutchinson Trace Estimator [Hutchinson, 1989] to estimate Tr

��� 𝜕𝑓 (𝑧 (𝑡 ),𝑝,𝑡 )𝜕𝑧 (𝑡 )

���.
log 𝑝𝑧1 (𝑧 (𝑡1)) = log 𝑝𝑧0 (𝑧 (𝑡0)) −

∫
𝑡1

𝑡0

Tr
���� 𝜕𝑓 (𝑧 (𝑡), 𝑝, 𝑡)𝜕𝑧 (𝑡)

���� d𝑡
= log 𝑝𝑧0 (𝑧 (𝑡0)) −

∫
𝑡1

𝑡0

𝔼𝑝𝜖

[
𝜖𝑇
𝜕𝑓 (𝑧 (𝑡), 𝑝, 𝑡)

𝜕𝑧 (𝑡) 𝜖

]
d𝑡

= log 𝑝𝑧0 (𝑧 (𝑡0)) − 𝔼𝑝𝜖


∫

𝑡1

𝑡0

𝜖𝑇
𝜕𝑓 (𝑧 (𝑡), 𝑝, 𝑡)

𝜕𝑧 (𝑡) 𝜖 d𝑡


𝜖𝑇 𝜕𝑓 (𝑧 (𝑡 ),𝑝,𝑡 )𝜕𝑧 (𝑡 ) is a VJP that can be directly obtained using Reverse Mode AD. This transformation further reduces
the time complexity to O ((𝐷𝐻 + 𝐷)) 𝐿.

7.2 Time SeRies PRedictions

Standard Recurrent Neural Networks (RNNs) ignore the time spacing between subsequent predictions, hence
when used in the context of time series predictions, they work well then the data is evenly separated. However,
for irregularly spaced time series data, RNNs require discretizing the observation times or imputing the data as
a preprocessing.

Chen et al. [2018] use an latent ODE model with an RNN encoder to capture the dynamics of the time series data.
They use a Variational AutoEncoder (VAE) and compute the approximate posterior distribution of the latent
variables 𝑧 given the data sequence 𝑥 :

𝑞
(
𝑧0 | {𝑥𝑖 , 𝑡𝑖 }𝑁𝑖=0

)
= N

(
𝜇𝑧0 , 𝜎𝑧0

)
𝜇𝑧0 , 𝜎𝑧0 = RNN

(
{𝑥𝑖 , 𝑡𝑖 }𝑁𝑖=0

)
The generative process works by integrating a Neural ODE from 𝑡0 to 𝑡𝑁 :

𝑥𝑖 = 𝑥𝑖−1 +
∫ 𝑡𝑖

𝑡𝑖−1

𝑓 (𝑧 (𝑡), 𝑝, 𝑡) d𝑡 ∀𝑖 ∈ [𝑁 ] 𝑥0 ∼ N
(
𝜇𝑧0 , 𝜎𝑧0

)
Rubanova et al. [2019] extended this framework to allow encoding irregular spaced data. They used an ODE-
RNN encoder, i.e. a Neural ODE that models the hidden state dynamics of the RNN. Let, ℎ𝑡𝑖 be the hidden state
of the RNN at time 𝑡𝑖 . Since the encoding is performed backwards, i.e. from 𝑡𝑁 to 𝑡0, the hidden state ℎ𝑡𝑖−1 is
given by:

ℎ𝑡𝑖−1 = ℎ𝑡𝑖 +
∫ 𝑡𝑖−1

𝑡𝑖

𝑔 (ℎ(𝑡), 𝑝, 𝑡) d𝑡

Using an ODE-RNN encoder, allows the model to encode non-uniformly spaced data by simply updating the
integration time-span of the ODE.
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8 AcceleRating NeuRal ODEs

Neural ODEs are competitive against explicit models in terms of accuracy and outperform them wrt memory
requirements. However, their widespread adoption is bottlenecked by higher training costs and eventual slow-
down over training due to emergent complicated dynamics. Hence, to make them competitive against explicit
models several approaches have been proposed to accelerate Neural ODEs [Finlay et al., 2020, Kelly et al., 2020,
Behl et al., 2020, Poli et al., 2020, Kidger et al., 2021, Pal et al., 2021, Xia et al., 2021, Zhuang et al., 2021, Djeumou
et al., 2022, Pal et al., 2023]. In this section, we discuss some of these prior works.

8.1 TayloR NeuRal ODE

In Section 3, we discussed adaptive timestepping for RK schemes. A limiting factor in taking large and accurate
time steps is the𝐾𝑡ℎ order Taylor Coefficients of the solution trajectory. Kelly et al. [2020] proposed the following
regularization scheme to minimize the 𝐾𝑡ℎ order Taylor Coefficients:

(R𝐾 )𝑔 =

∫
𝑡1

𝑡0

𝑑𝐾𝑧 (𝑡)𝑑𝑡𝐾

2
2

d𝑡

Computing the 𝐾𝑡ℎ-order gradients for 𝑑
𝐾𝑧 (𝑡 )
𝑑𝑡𝐾

is computationally prohibitive. However, Kelly et al. [2020] used
Taylor-Mode Automatic Differentiation [Griewank and Walther, 2008, Bettencourt et al., 2019] to reduce the
exponential Time Complexity to O

(
𝐾2

)
or O (𝐾 log𝐾) (based on the operations).

8.2 STEER

Neural ODEs tend to learn more complex dynamics as the training progresses. Since the complexity of the
dynamics and time taken by the solver are intrinsically related, the training and inference time grows over
training. Behl et al. [2020] stochastically perturb the ending integration time-point of the ODE to allow the
Neural ODE to learn simpler dynamics. During training, they reformulate the problem as:

𝑧 (𝑡1) = 𝑧 (𝑡0) +
∫ 𝑇

𝑡0

𝑓 (𝑧 (𝑡), 𝑝, 𝑡) d𝑡

where 𝑇 ∼ U(𝑡1 − 𝑏, 𝑡1 + 𝑏)
𝑏 < 𝑡1 − 𝑡0

8.3 HypeRsolveRs foR NeuRal ODEs

Poli et al. [2020] proposed Hypersolvers to speed up inference of Neural ODEs. They trained a hypersolver to
augment a base ODE solver to match the truncation error of a more accurate ODE solver. Let,

𝑧𝑛+1 = 𝑧𝑛 + d𝑡 ·𝜓 (𝑧𝑛, 𝑝, 𝑡𝑛)

where 𝜓 is the update from an Explicit ODE Integrator. We can represent the steps of a 𝛾𝑡ℎ order Hypersolved
Neural ODE to be:

𝑧𝑛+1 = 𝑧𝑛 + d𝑡 ·𝜓 (𝑧𝑛, 𝑝, 𝑡𝑛) + d𝑡𝛾+1 · 𝑔𝜔 (𝑧𝑛, 𝑧0, d𝑡, 𝑡𝑛)
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where 𝑔𝜔 is a neural network that is trained to match the residual of the base ODE solver and a more accurate
solver. The typical training process involves:

• Train a Neural ODE with an accurate ODE solver

• Fixed the weights of the Neural ODE

• Train the Hypersolver to match the residual of the Neural ODE solved using the base ODE integrator with
hypersolver and the more accurate ODE solver.

Poli et al. [2020] demonstrated that Hypersolvers can speedup inference of Neural ODEs by 8x over Dopri5 [Dor-
mand and Prince, 1980] for certain image classification tasks.

9 Conclusion

In this chapter, we have have briefly covered numerical methods to solve ODEs specifically in the context of
Neural ODEs. Additionally, we have described some algorithms for sensitivity analysis of ODEs that allow us to
compute gradients and perform gradient based optimization of Neural ODEs. We covered various applications
of Neural ODEs like time series modelling and generative modelling. Finally, we have discussed prior works that
have accelerated the training and inference of Neural ODEs.

However, most of these prior works have focused on either accelerating the training or the inference. Addition-
ally, speeding up inference often comes at the price of slower training or tools that are not easily applicable. In
this thesis, we will describe methods that can accelerate both training and inference of Neural ODEs while being
easily composable with existing methods.



CHAPTER3
Deep EilibRium Models

1 Steady State PRoblems

Steady State Problems involve determining the equilibrium state of a system, i.e., the state of the system where
the rate of change of the system is zero. Let, our steady state problem be defined as follows:

𝑑𝑧

𝑑𝑡
= 𝑓𝜃 (𝑧, 𝑡) − 𝑧

In the case of continuous dynamical systems, the steady state would be determined by the partial derivative w.r.t.
time being zero:

𝑑𝑧

𝑑𝑡
= 0

In case of discrete dynamical systems, the steady state would be defined by states remaining constant over time:

𝑧𝑛+1 = 𝑧𝑛 =⇒ 𝑧∗ = 𝑓𝜃 (𝑧∗,∞)

There are two ways to solve steady-state problems:

1. Treating it as a Nonlinear Problem: Steady State Problems can be efficiently solved by Nonlinear
Solvers by removing the temporal dependence of the function 𝑓𝜃 with ∞. This is typically the most effi-
cient way to solve steady state problems, however, it might give the non-preferred root. Solving this is
equivalent to solving Section 1.

2. Treating it as an ODE: Another approach to solve steady state problems is to use the ODE form in
Section 1 with a time span of (0,∞) with a termination condition when Section 1 is satisfied. This approach
is typically slower than the first approach, however, it respects the temporal dependence of the function
𝑓𝜃 .

13
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2 Sensitivity Analysis of Steady State PRoblems

Let, 𝑧∗ be the steady state solution of the system, i.e., 𝑧∗ = 𝑓𝜃 (𝑧∗,∞). For the sake of brevity, let us drop the
𝑡 = ∞ term, i.e., 𝑧∗ = 𝑓𝜃 (𝑧∗). Differentiating w.r.t. 𝜃 we get:

𝜕𝑧∗

𝜕𝜃
=
𝜕𝑓𝜃 (𝑧∗)
𝜕𝑧∗

× 𝜕𝑧
∗

𝜕𝜃
+ 𝜕𝑓𝜃 (𝑧

∗)
𝜕𝜃

=⇒
(
𝐼 − 𝜕𝑓𝜃 (𝑧

∗)
𝜕𝑧∗

)
× 𝜕𝑧

∗

𝜕𝜃
=
𝜕𝑓𝜃 (𝑧∗)
𝜕𝜃

Let, the cost function we are optimizing be 𝑔 (𝑧∗, 𝜃 ). Taking the total derivative of 𝑔 (𝑧∗, 𝜃 ) w.r.t. the parameters
𝜃 we get:

𝑑𝑔 (𝑧∗, 𝜃 )
𝑑𝜃

=
𝜕𝑔 (𝑧∗, 𝜃 )
𝜕𝑧∗

× 𝜕𝑧
∗

𝜕𝜃
+ 𝜕𝑔 (𝑧

∗, 𝜃 )
𝜕𝜃

=
𝜕𝑔 (𝑧∗, 𝜃 )
𝜕𝑧∗

×
(
𝐼 − 𝜕𝑓𝜃 (𝑧

∗)
𝜕𝑧∗

)−1
× 𝜕𝑓𝜃 (𝑧

∗)
𝜕𝜃

+ 𝜕𝑔 (𝑧
∗, 𝜃 )

𝜕𝜃

TheRHS term involves the inverse of the jacobian 𝑓𝜃 (𝑧∗ )
𝜕𝑧∗ , computing which is both computationally and memory-

wise inefficient. Instead of directly computing the RHS, we can rewrite Section 2 as:

𝜆𝑇 =
𝜕𝑔 (𝑧∗, 𝜃 )
𝜕𝑧∗

×
(
𝐼 − 𝜕𝑓𝜃 (𝑧

∗)
𝜕𝑧∗

)−1
=⇒ 𝜆𝑇 ×

(
𝐼 − 𝜕𝑓𝜃 (𝑧

∗)
𝜕𝑧∗

)
=
𝜕𝑔 (𝑧∗, 𝜃 )
𝜕𝑧∗

=⇒
(
𝐼 − 𝜕𝑓𝜃 (𝑧

∗)
𝜕𝑧∗

)𝑇
× 𝜆 =

(
𝜕𝑔 (𝑧∗, 𝜃 )
𝜕𝑧∗

)𝑇
Substituting 𝜆𝑇 in the Section 2, we get:

𝑑𝑔 (𝑧∗, 𝜃 )
𝑑𝜃

= 𝜆𝑇 × 𝜕𝑓𝜃 (𝑧
∗)

𝜕𝜃
+ 𝜕𝑔 (𝑧

∗, 𝜃 )
𝜕𝜃

For small systems we can compute 𝜕𝑓𝜃 (𝑧∗ )
𝜕𝑧∗ using forward mode automatic differentiation and solve Section 2

using any linear solver. However, as the scale of the problem increases, these methods are inefficient and often
practically infeasible. We defer the discussion on how to deal with large scale steady state problems to Section 3.3.
Hence, sensitivity analysis of a (small) steady state problem boils down to solving a linear system of equations
and a matrix-vector product.

3 Deep EilibRium NetwoRKs

Deep Equilibrium Networks (DEQs) [Bai et al., 2019] are implicit models where the output space represents a
steady-state solution. Intuitively, this represents infinitely deep neural networks with input injection, i.e., an
infinite composition of explicit layers 𝑧𝑛+1 = 𝑓𝜃 (𝑧𝑛, 𝑥) with 𝑧0 = 0 and 𝑛 → ∞. In practice, it is equivalent to
evaluating a dynamical system until it reaches a steady state:

𝑧∗ = 𝑓𝜃 (𝑧∗, 𝑥)
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Figure 3.1: Discrete DEQ Formulation: Discrete DEQ Block where the input 𝑥 is injected at every iteration
till the system (with initial state 𝑧0) converges to a steady 𝑧∗.

Evaluating DEQs requires solving a steady-state equation involving multiple evaluations of the explicit layer
slowing down the forward pass. However, driving the solution to steady-state makes the backward pass very
efficient [Johnson, 2006] (See Section 2). Despite a potentially infinite number of evaluations of 𝑓𝜃 in the forward
pass, backpropagation only requires solving a linear equation.

Deep Equilibrium Models have been used as a drop-in replacement for Explicit Neural Networks for Time Se-
ries applications [Bai et al., 2019] and Computer Vision [Bai et al., 2020]. Winston and Kolter [2020] proposed
additional structure on the DEQ formulation (monotone DEQs) to ensure that Section 3 has a unique solution.
Revay et al. [2020] show that training using Lipchitz bounds on the DEQ formulation leads to greater robustness
to adversarial attacks.

3.1 NonlineaR SolveRs

In this section, we will exclusively discuss Nonlinear Solvers for solving large steady state problems (i.e., systems
with thousands of states).

3.1.1 BRoyden’s MetHod

Newton’s method is a widely used iterative method for solving nonlinear systems of equations. It is an iterative
method that uses the Jacobian matrix to update the solution vector in each iteration.

𝑥 (𝑘+1) = 𝑥 (𝑘 ) −
(
𝜕𝑓

(
𝑥 (𝑘 )

)
𝜕𝑥

)−1
𝑓

(
𝑥 (𝑘 )

)
However, computing the Jacobian matrix is computationally expensive (cubic time complexity) and memory-
wise inefficient. Broyden’s method [Broyden, 1965] is a quasi-Newton method that approximates the Jacobian
matrix using the updates to the solution vector from previous iterations. Specifically, let 𝑓 (𝑥) be a nonlinear
function of the vector 𝑥 , and let 𝑥 (𝑘 ) denote the solution vector at the 𝑘-th iteration. The approximation to the
inverse of the Jacobian matrix at iteration 𝑘 is given by:

𝐵 (𝑘 ) = 𝐵 (𝑘−1) +
(
Δ𝑥 (𝑘 ) − 𝐵 (𝑘−1)Δ𝑓 (𝑘 )

Δ𝑥 (𝑘 )𝑇 𝐵 (𝑘−1)Δ𝑓 (𝑘 )

) (
Δ𝑥 (𝑘 )

𝑇
𝐵 (𝑘−1)

)
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where Δ𝑥 (𝑘 ) = 𝑥 (𝑘 ) −𝑥 (𝑘−1) is the step vector, and Δ𝑓 (𝑘 ) = 𝑓
(
𝑥 (𝑘 )

)
− 𝑓

(
𝑥 (𝑘−1)

)
is the difference in the function

values at the current and previous iterations. 𝐵 (𝑘−1) is the approximation to the Jacobian matrix at the previous
iteration.

The solution vector at the 𝑘-th iteration is then updated using the following equation:

𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝐵 (𝑘 ) 𝑓 (𝑥 (𝑘 ) )

Broyden’s method has several advantages over Newton’s method, including a lower computational cost per
iteration, making it feasible for solving large nonlinear system of equations (like deep equilibrium models).

3.1.2 Limited MemoRy BRoyden’s MetHod

As described in Section 3.1.1, we can avoid the computational complexity of inverting a Jacobian Matrix by using
Broyden’smethod. However, as pointed out in Bai et al. [2020], even storing the Broydenmatrix𝐵 for a Nonlinear
function 𝑔𝜃 : 𝑅32×32×80 ↦→ 𝑅32×32×80 requires nearly 25𝐺𝐵 of storage. To circumvent this issue Bai et al. [2020]
propose a limited memory variant of Broyden’s method. The idea is to write the low rank approximation matrix
of the inverted jacobian 𝐽 −1𝑔𝜃 (𝐵) as the sum of low rank updates:

𝐵 (𝑖+1) = 𝐵 (0) +
𝑖+1∑
𝑘=𝑖

u(𝑘 )v (𝑘 )
𝑇

𝐵 (𝑖+1) = 𝐵 (0) +𝑈𝑉𝑇

where 𝐵 (0) = −𝐼

u and v come from Sherman-Morrison Formula [Sherman and Morrison, 1950]. In the limited memory version,
Bai et al. [2020] store the last𝑚 low-rank updates for u and v, and use a first-in-first-out approach to update 𝑈
and 𝑉 .

3.2 JacobianFReeNewton-KRylovMetHods (JNFK) foR solvingLineaR Systems

JFNK Methods are used to solve Linear System of Equations without actually computing the Jacobian Matrix.
These methods require the ability to compute matrix-vector products. As we will observe in Section 3.3, ability
to avoid the computation of the Jacobian matrix is crucial for large scale steady state problems. JNFK methods
use Krylov subspace 𝐾 𝑗 of dimension 𝑘 to solve linear equations of the form 𝐴𝑥 = 𝑏 where 𝐴 ∈ ℝ𝑛×𝑛 is an
invertible matrix, 𝑏 ∈ ℝ𝑛 is a known vector, and 𝑥 ∈ ℝ𝑛 is the solution vector.

𝐾 𝑗 (𝐴,𝑏) = span
(
𝑟0, 𝐴𝑟0, 𝐴

2𝑟0, . . . , 𝐴
𝑗−1𝑟0

)
where 𝑟0 = 𝑏 −𝐴𝑥0

In this section, we will describe Generalized Minimal Residual Method (GMRES) [Saad and Schultz, 1986] a
popular JNFK method, that approximates the solution of 𝐴𝑥 = 𝑏 using 𝑥𝑛 ∈ 𝐾𝑛 which minimizes the Euclidean
norm of the residual 𝑟𝑛 = 𝑏 −𝐴𝑥𝑛 .

The solution 𝑥𝑛 is obtained using the Arnoldi iteration, which generates an orthonormal basis {𝑞1, 𝑞2, . . . , 𝑞𝑛+1}
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for 𝐾𝑛+1 (𝐴,𝑏) and the upper Hessenberg matrix 𝐻𝑛 ∈ ℝ(𝑛+1)×𝑛 s.t:

𝐴𝑄𝑛 = 𝑄𝑛+1𝐻𝑛

where 𝑄𝑛 =

[
𝑞𝑇1 𝑞𝑇2 . . . 𝑞𝑇𝑛

]
𝑄𝑛+1 =

[
𝑞𝑇1 𝑞𝑇2 . . . 𝑞𝑇𝑛+1

]
The solution 𝑥𝑛 is then obtained by solving the least-squares problem:

min
𝑥𝑛
∥𝑏 −𝐴𝑥𝑛 ∥2 = min

𝑦𝑛∈ℝ𝑛
∥𝑄𝑛+1 (𝑟0𝑒1 − 𝐻𝑛𝑦𝑛) ∥2 = min

𝑦𝑛∈ℝ𝑛
∥𝐻𝑛𝑦𝑛 − 𝑟0𝑒1∥2,

where 𝑒1 is the first standard basis vector of length 𝑛 + 1. The approximate solution is then given by

𝑥𝑛 = 𝑄𝑛𝑦𝑛 + 𝑥0

GMRES is particularly effective for large-scale linear systems. GMRES can be sensitive to the choice of pre-
conditioner, which is used to improve the convergence rate of the algorithm. However, for large scale neural
networks [Pal et al., 2022] GMRES has been shown to be robust even without preconditioning.

3.3 Adjoint Eations

In Section 2, we derived the following linear system of equations:(
𝐼 − 𝜕𝑓𝜃 (𝑧

∗)
𝜕𝑧∗

)𝑇
× 𝜆 =

(
𝜕𝑔 (𝑧∗, 𝜃 )
𝜕𝑧∗

)𝑇
For DEQs, the state space is too large to compute the entire jacobian matrix 𝜕𝑓𝜃 (𝑧∗ )

𝜕𝑧∗ . Instead of computing

𝐴 =
(
𝐼 − 𝜕𝑓𝜃 (𝑧∗ )

𝜕𝑧∗

)𝑇
, we can use Matrix-Free Methods discussed in Section 3.2 to solve Section 2. To use JFNK

solvers we need to be efficiently compute:

𝐴 × 𝜆 = 𝜆 −
(
𝜕𝑓𝜃 (𝑧∗)
𝜕𝑧∗

)𝑇
× 𝜆

= 𝜆 −
(
𝜆𝑇 × 𝜕𝑓𝜃 (𝑧

∗)
𝜕𝑧∗

)𝑇
The second term is the Vector-Jacobian Product (VJP) which can be efficiently computed by any reverse-mode
automatic differentiation framework (without constructing the entire Jacobian). Additionally, in Section 2 we
can compute 𝜆𝑇 × 𝜕𝑓𝜃 (𝑧∗ )

𝜕𝜃 using the VJP trick using any reverse-mode automatic differentiation framework.

4 AcceleRating DEQs

DEQs share the benefits of implicit neural networks in reducing the memory requirements for training. Specif-
ically, DEQs reduce the memory complexity from O (𝑆𝐿) where 𝑆 is the dimensions of the output and 𝐿 is the
number of layers to O (𝑆). However, a major concern is the high cost of forward pass which requires solving a
steady state problem. An expensive forward pass is not only a bottleneck for training but also hinders deploy-
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ment, that rely on fast inference. In this section, we discuss some prior works that accelerate the training and
inference of DEQs.

4.1 Jacobian RegulaRization of DEQs

The stability of fixed point convergence 𝑧∗ is directly affected by the spectral radius. At equilibrium, the spectral
radius (𝜌) of the Jacobian (𝐽𝑓𝜃 ) is given by:

𝜌
(
𝐽𝑓𝜃 (𝑧∗)

)
= 𝜌

(
𝐽𝑓𝜃 (𝑧∗)𝑇

)
= max (|𝜆1 |, . . . , |𝜆𝑑 |)

where 𝜆1, . . . , 𝜆𝑑 are the eigenvalues of 𝐽𝑓𝜃 (𝑧∗). The spectral radius can be computed using power iterations,
however, these are prohibitively expensive for DEQs (due to successive jacobian vector products). Bai et al.
[2021b] propose to use the Frobenius norm to regularize the Jacobian matrix since:

𝜌
(
𝐽𝑓𝜃 (𝑧∗)

)
≤ 𝜎

(
𝐽𝑓𝜃 (𝑧∗)

)
≤

√
Tr

(
𝐽𝑓𝜃 (𝑧∗) 𝐽𝑓𝜃 (𝑧∗)𝑇

)
= ∥ 𝐽𝑓𝜃 (𝑧∗)∥𝐹

The Frobenius norm can be estimated using Hutchinson Trace Estimation [Hutchinson, 1989]. Hence, Bai et al.
[2021b] propose to stabilize DEQ training using an additional loss term:

Ljacobian = 𝛾 ·
∥𝜖𝑇 𝐽𝑓𝜃 (𝑧∗)∥22

𝑑

Empirically using jacobian stabilization yields an acceleration of over 2.5x in training time over discrete DEQs.

4.2 Jacobian-FRee BacKpRopagation

Standard back-propagation through fixed point iterations is computationally prohibitive. Hence, we use the
adjoint method described in Section 2 to efficiently compute the gradients of steady state problems w.r.t. the
parameters. However, thismethod requires computing 𝜆𝑇 𝜕𝑓𝜃 (𝑧

∗ )
𝜕𝑧∗ which can be expensive is performed repeatedly.

Fung et al. [2022] show that if we perform a 0𝑡ℎ-order approximation of Neumann series:(
𝐼 − 𝑓𝜃 (𝑧

∗)
𝜕𝑧∗

)−1
=
∞∑
𝑘=0

(
𝑓𝜃 (𝑧∗)
𝜕𝑧∗

)𝑘
we obtain a theoretically justified back-propagation scheme. This is equivalent to ignoring the fixed point itera-
tions and performing a single backward pass through the evaluation of 𝑓𝜃 (𝑧∗) The authors show that Jacobian
Free Back-propagation (JFB) achieves competitive results on MNIST, CIFAR-10 and SVHN, while drastically re-
ducing training timings. However, we note that our experiments to reproduce similar results for larger models
on ImageNet did not lead to stable convergence.



Part II

ACCELERATING NEURAL
DIFFERENTIAL EQUATIONS

19



CHAPTER4
Continuous Deep EilibRium NetwoRKs: TRaining

NeuRal ODEs FasteR by IntegRating THem to
Infinity

Implicit layer methods, such as Neural ODEs and Deep Equilibrium models [Chen et al., 2018, Bai et al., 2019,
Ghaoui et al., 2020], have gained popularity due to their ability to automatically adapt model depth based on
the “complexity” of new problems and inputs. The forward pass of these methods involves solving steady-state
problems, convex optimization problems, differential equations, etc., all defined by neural networks, which can
be expensive. However, training these more generalized models has empirically been shown to take significantly
more time than traditional explicit models such as recurrent neural networks and transformers. Nothing within
the problem’s structure requires expensive training methods, so we asked, can we reformulate continuous implicit
models so that this is not the case?

Grathwohl et al. [2018], Dupont et al. [2019], Kelly et al. [2020], Finlay et al. [2020] have identified several prob-
lems with training implicit networks. These models grow in complexity as training progresses, and a single
forward pass can take over 100 iterations [Kelly et al., 2020] even for simple problems like MNIST. Deep Equilib-
rium Models [Bai et al., 2019, 2020] have better scaling in the backward pass but are still bottlenecked by slow
steady-state convergence. Bai et al. [2021b] quantified several convergence and stability problems with DEQs.
They proposed a regularization technique by exploiting the “implicitness” of DEQs to stabilize their training. We
marry the idea of faster backward pass for DEQs and continuous modeling from Neural ODEs to create Infinite Time
Neural ODEs which scale significantly better in the backward pass and drastically reduce the training time.

Our main contributions include1:

1Our code is publicly available at https://github.com/SciML/DeepEquilibriumNetworks.jl

20

https://github.com/SciML/DeepEquilibriumNetworks.jl
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Figure 4.1: Relative Training and Backward Pass Timings against Continuous DEQs (lower is better): In
all scenarios, Neural ODEs take 4.7 − 6.182× more time in the backward pass compared to Vanilla Continuous
DEQs. Whereas combining Skip (Reg.) with Continuous DEQs accelerates the backward pass by 2.8 − 5.9×.

1. An improved DEQ architecture (Skip-DEQ) that uses an additional neural network to predict better initial
conditions.

2. A regularization scheme (Skip Regularized DEQ) incentivizes the DEQ to learn simpler dynamics and leads
to faster training and prediction. Notably, this does not require nested automatic differentiation and thus
is considerably less computationally expensive than other published techniques.

3. A continuous formulation for DEQs as an infinite time neural ODE, which paradoxically accelerates the
backward pass over standard neural ODEs by replacing the continuous adjoints with a simple linear sys-
tem.

4. We demonstrate the seamless combination of Continuous DEQs with Skip DEQs to create a drop-in re-
placement for Neural ODEs without incurring a high training cost.

The contents of this chapter has appeared in the pre-print: Pal, A., Edelman, A. and Rackauckas, C., 2022. Con-
tinuous Deep Equilibrium Models: Training Neural ODEs Faster by Integrating Them to Infinity. arXiv preprint
arXiv:2201.12240. [Pal et al., 2022]

1 Continuous Deep EilibRium NetwoRKs

Deep Equilibrium Models have traditionally been formulated as steady-state problems for a discrete dynamical
system. However, discrete dynamical systems come with a variety of shortcomings. Consider the following
linear discrete dynamical system (See Figure 4.2):

𝑢𝑛+1 = 𝛼 · 𝑢𝑛
where ∥𝛼 ∥ < 1 and 𝑢0 = 1

This system converges to a steady state of 𝑢∞ = 0. However, in many cases, this convergence can be relatively
slow. If 𝛼 = 0.9, then after 10 steps, the value is 𝑢10 = 0.35 because a small amount only reduces each successive
step. Thus convergence could only be accelerated by taking many steps together. Even further, if 𝛼 = −0.9, the
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value ping-pongs over the steady state 𝑢1 = −0.9, meaning that if we could take some fractional step 𝑢𝛿𝑡 then it
would be possible to approach the steady state much faster.
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Figure 4.2: Slow Convergence of Simple Linear Discrete Dynamical Systems

Rico-Martinez et al. [1992], Bulsari [1995] describe several other shortcomings of using discrete steady-state
dynamics over continuous steady-state dynamics. These issues combined motivate changing from a discrete
description of the system (the fixed point or Broyden’s method approach) to a continuous description of the
system that allows adaptivity to change the stepping behavior and accelerate convergence.

To this end, we propose an alternate formulation for DEQs by modeling a continuous dynamical system (Con-
tinuous DEQ) where the forward pass is represented by an ODE which is solved from 𝑡0 = 0 to 𝑡1 = ∞:

𝑑𝑧

𝑑𝑡
= 𝑓𝜃 (𝑧, 𝑥) − 𝑧

where 𝑓𝜃 is an explicit neural network. Continuous DEQs leverage fast adaptive ODE solvers, which terminate
automatically once the solution is close to a steady state, i.e., 𝑑𝑧∗𝑑𝑡 = 0, which then satisfies 𝑓𝜃 (𝑧∗, 𝑥) = 𝑧∗ and is
thus the solution to the same implicit system as before.

The Continuous DEQ can be considered an infinite-time neural ODE in this form. However, almost paradoxically,
the infinite time version is cheaper to train than the finite time version as its solution is the solution to the
nonlinear system, meaning the same implicit differentiation formula of the original DEQ holds for the derivative.
This means that no backpropagation through the steps is required for the Continuous DEQ, and only a linear
system must be solved. In Section 4, we empirically demonstrate that Continuous DEQs outperform Neural
ODEs in terms of training time while achieving similar accuracies.
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2 SKip Deep EilibRium NetwoRKs

Bai et al. [2019, 2020] set the initial condition 𝑢0 = 0 while solving a DEQ. Assuming the existence of a steady
state, the solvers will converge given enough iterations. However, each iteration is expensive, and a poor guess
of the initial condition makes the convergence slower. To counteract these issues, we introduce an alternate
architecture for DEQ (Skip DEQ), where we use an explicit model 𝑔𝜙 to predict the initial condition for the
steady-state problem 𝑢0 = 𝑔𝜙 (𝑥)2. We jointly optimize for {𝜃, 𝜙} by adding an auxiliary loss function:

Lskip = 𝜆skip · ∥ 𝑓𝜃 (𝑧∗, 𝑥) − 𝑔𝜙 (𝑥)∥

Intuitively, our explicit model 𝑔𝜙 better predicts a value closer to the steady-state (over the training iterations),
and hence we need to perform fewer iterations during the forward pass. Given that its prediction is relatively
free compared to the cost of the DEQ, this technique could decrease the cost of the DEQ by reducing the total
number of iterations required. However, this prediction-correction approach still uses the result of the DEQ for
its final predictions and thus should achieve robustness properties equal.

3 SKipRegulaRizedDEQ:RegulaRization ScHemewitHoutExtRa
PaRameteRs

One of the primary benefits of DEQs is the lowmemory footprint of these models. Introducing an explicit model
𝑔𝜙 increases the memory requirements for training. To alleviate this problem, we propose a regularization term
to minimize the L1 distance between the first prediction of 𝑓𝜃 and the steady-state solution:

Lskip_reg = 𝜆skip · ∥ 𝑓𝜃 (𝑧∗, 𝑥) − 𝑓𝜃 (0, 𝑥)∥

This technique follows the same principle as the Skip DEQ where the DEQ’s internal neural network is now
treated as the prediction model. We hypothesize that this introduces an inductive bias in the model to learn
simpler training dynamics.

4 ExpeRiments

In this section, we consider the effectiveness of our proposed methods – Continuous DEQs and Skip DEQs – on
the training and prediction timings. We consider the following baselines:

1. Discrete DEQs with L-Broyden Solver.

2. Jacobian Regularization of DEQs.3

3. Multi-Scale Neural ODEs with Input Injection: A modified Continuous Multiscale DEQwithout the steady
state convergence constaint.

Our primary metrics are classification accuracy, the number of function evaluations (NFEs), total training time,

2We note that the concurrent work Bai et al. [2021a] introduced a similar formulation as a part of HyperDEQ

3We note that due to limitations of our Automatic Differentiation system, we cannot perform Jacobian Regularization for Convolutional
Models. However, our preliminary analysis suggests that the Skip DEQ and Continuous DEQ approaches are fully composable with Jacobian
Regularization and provide better performance compared to using only Jacobian Regularization (See Table 4.1).
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Model Jacobian Reg. # of Params Test Accuracy (%) Testing NFE Training Time (min) Prediction Time (s / batch)

Vanilla DEQ 7 138K 97.926 ± 0.107 18.345 ± 0.732 5.197 ± 1.106 0.038 ± 0.009

3 98.123 ± 0.025 5.034 ± 0.059 7.321 ± 0.454 0.011 ± 0.005

Skip DEQ 7 151K 97.759 ± 0.080 4.001 ± 0.001 1.711 ± 0.202 0.010 ± 0.001

3 97.749 ± 0.141 4.001 ± 0.000 6.019 ± 0.234 0.012 ± 0.001

Skip Reg. DEQ 7 138K 97.973 ± 0.134 4.001 ± 0.000 1.295 ± 0.222 0.010 ± 0.001
3 98.016 ± 0.049 4.001 ± 0.000 5.128 ± 0.241 0.012 ± 0.000

Table 4.1: MNIST Classification with Fully Connected Layers: Skip Reg. Continuous DEQ without Jaco-
bian Regularization takes 4× less training time and speeds up prediction time by 4× compared to Continuous DEQ.
Continuous DEQwith Jacobian Regularization has a similar prediction time but takes 6×more training time than
Skip Reg. Continuous DEQ. Using Skip variants speeds up training by 1.42 × −4×.

time for the backward pass, and prediction time per batch. We showcase the performance of our methods on –
MNIST [LeCun et al., 1998], CIFAR-10 [Krizhevsky et al., 2009], SVHN [Netzer et al., 2011], & ImageNet [Deng
et al., 2009]. We use perform our experiments in Julia [Bezanson et al., 2017] using Lux.jl [Pal, 2023] and Differ-
entialEquations.jl [Rackauckas and Nie, 2017a, Rackauckas et al., 2018, 2020].

4.1 MNIST Image Classification

Training Details: Following Kelly et al. [2020], our Fully Connected Model consists of 3 layers – a downsam-
pling layer ℝ784 ↦→ ℝ128, continuous DEQ layer 𝑓𝜃 : ℝ128 ↦→ ℝ128, and a linear classifier ℝ128 ↦→ ℝ10.

For regularization, we use 𝜆skip = 0.01 and train the models for 25 epochs with a batch size of 32. We use
Tsit5 [Tsitouras, 2011]with a relative tolerance for convergence of 0.005. For optimization, we useAdam [Kingma
and Ba, 2014a] with a constant learning rate of 0.001.

Baselines: We use continuous DEQ and continuous DEQ with Jacobian Stabilization as our baselines. We
additionally compose Skip DEQs with Jacobian Stabilization in our benchmarks. For all experiments, we keep
𝜆jac = 1.0.

Results: We summarize our results in Table 4.1. Without Jacobian Stabilization, Skip Reg. Continuous DEQ has
the highest testing accuracy of 97.973% and has the lowest training and prediction timings overall. Using Jaco-
bian Regularization, DEQ outperforms Skip DEQ models by < 0.4%, however, jacobian regularization increases
training time by 1.4 − 4×. Skip DEQ models can obtain the lowest prediction time per batch of ∼ 0.01s.

4.2 CIFAR10 Image Classification

For all the baselines in this section, Vanilla DEQ is trained with the same training hyperparameters as the corre-
sponding Skip DEQs (taken from Bai et al. [2020]). Multiscale Neural ODE with Input Injection is trained with
the same hyperparameters as the corresponding Continuous DEQs.
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Model Continuous # of Params Test Accuracy (%) Training Time
(s / batch)

Backward Pass
(s / batch)

Prediction Time
(s / batch)

Vanilla DEQ 7 163546 81.233 ± 0.097 0.651 ± 0.009 0.075 ± 0.001 0.282 ± 0.005
3 80.807 ± 0.631 0.753 ± 0.017 0.261 ± 0.010 0.136 ± 0.010

Skip DEQ 7 200122 82.013 ± 0.306 0.717 ± 0.022 0.115 ± 0.004 0.274 ± 0.005
3 80.807 ± 0.230 0.806 ± 0.010 0.293 ± 0.004 0.154 ± 0.002

Skip Reg. DEQ 7 163546 81.170 ± 0.356 0.709 ± 0.005 0.114 ± 0.002 0.283 ± 0.007
3 82.513 ± 0.177 0.679 ± 0.015 0.143 ± 0.017 0.154 ± 0.003

Neural ODE 3 163546 83.543 ± 0.393 1.608 ± 0.026 1.240 ± 0.021 0.207 ± 0.006

Table 4.2: CIFAR10 Classification with Small Neural Network: Skip Reg. Continuous DEQ achieves the
highest test accuracy among DEQs. Continuous DEQs are faster than Neural ODEs during training by a factor
of 2 × −2.36×, with a speedup of 4.2 × −8.67× in the backward pass. We also observe a prediction speed-up for
Continuous DEQs of 1.77 × −2.07× against Discrete DEQs and 1.34 × −1.52× against Neural ODE.
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Figure 4.3: CIFAR10 Classification with Small Neural Network

4.2.1 ARcHitectuRe witH 200K paRameteRs

Training Details: Our Multiscale DEQ architecture is the same as MDEQ-small architecture used in Bai et al.
[2020]. For the explicit network in Skip DEQ, we use the residual block and downsampling blocks from Bai et al.
[2020] which account for the additional 58K trainable parameters.

We use a fixed regularization weight of 𝜆skip = 0.01 and the models are trained for 20000 steps. We use a
batch size of 128. For continuous models, we use VCAB3 [Wanner and Hairer, 1996] with a relative tolerance
for convergence of 0.05. We use AdamW [Loshchilov and Hutter, 2017] optimizer with a cosine scheduling on
the learning rate – starting from 10−3 and terminating at 10−6 – and a weight decay of 2.5 × 10−6.

Results: We summarize our results in Table 4.2 and Figure 4.3. Continuous DEQs are faster than Neural ODEs
during training by a factor of 2 × −2.36×, with a speedup of 4.2 × −8.67× in the backward pass.
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Model Continuous # of Params Test Accuracy (%) Training Time
(s / batch)

Backward Pass
(s / batch)

Prediction Time
(s / batch)

Vanilla DEQ 7 10.63M 88.913 ± 0.287 0.625 ± 0.165 0.111 ± 0.021 0.414 ± 0.222
3 89.367 ± 0.832 1.284 ± 0.011 0.739 ± 0.003 0.606 ± 0.010

Skip DEQ 7 11.19M 88.783 ± 0.178 0.588 ± 0.042 0.112 ± 0.006 0.314 ± 0.017
3 89.600 ± 0.947 0.697 ± 0.012 0.150 ± 0.013 0.625 ± 0.004

Skip Reg. DEQ 7 10.63M 88.773 ± 0.115 0.613 ± 0.048 0.109 ± 0.008 0.268 ± 0.031
3 90.107 ± 0.837 0.660 ± 0.019 0.125 ± 0.003 0.634 ± 0.019

Neural ODE 3 10.63M 89.047 ± 0.116 5.267 ± 0.078 4.569 ± 0.077 0.573 ± 0.010

Table 4.3: CIFAR10 Classification with Large Neural Network: Skip Reg. Continuous DEQ achieves the
highest test accuracy. Continuous DEQs are faster than Neural ODEs during training by a factor of 4.1 × −7.98×,
with a speedup of 6.18 × −36.552× in the backward pass. However, we observe a prediction slowdown for
Continuous DEQs of 1.4 × −2.36× against Discrete DEQs and 0.90 × −0.95× against Neural ODE.
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Figure 4.4: CIFAR10 Classification with Large Neural Network

4.2.2 ARcHitectuRe witH 11M paRameteRs

Training Details: Our Multiscale DEQ architecture is the same as MDEQ-large architecture used in Bai et al.
[2020]. For the explicit network in Skip DEQ, we use the residual block and downsampling blocks from Bai et al.
[2020] which account for the additional 58K trainable parameters.

We use a fixed regularization weight of 𝜆skip = 0.01 and the models are trained for 90000 steps. We use a batch
size of 128. For continuous models, we use VCAB3 [Wanner and Hairer, 1996] with a relative tolerance for
convergence of 0.05. We use Adam [Kingma and Ba, 2014a] optimizer with a cosine scheduling on the learning
rate – starting from 10−3 and terminating at 10−6.

Results: We summarize our results in Table 4.3 and Figure 4.4. Continuous DEQs are faster than Neural ODEs
during training by a factor of 4.1 × −7.98×, with a speedup of 6.18 × −36.552× in the backward pass.
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Figure 4.5: ImageNet Classification

Model Continuous # of Params Test Accuracy
(Top 5) (%)

Training Time
(s / batch)

Backward Pass
(s / batch)

Prediction Time
(s / batch)

Vanilla DEQ 7 17.91M 81.809 ± 0.115 2.057 ± 0.138 0.195 ± 0.007 1.963 ± 0.189
3 81.329 ± 0.516 3.131 ± 0.027 1.873 ± 0.015 1.506 ± 0.027

Skip DEQ 7 18.47M 81.717 ± 0.452 1.956 ± 0.012 0.194 ± 0.001 1.843 ± 0.025

3 81.334 ± 0.322 2.016 ± 0.129 0.845 ± 0.127 1.575 ± 0.053

Skip Reg. DEQ 7 17.91M 81.611 ± 0.369 1.996 ± 0.035 0.539 ± 0.023 1.752 ± 0.093
3 81.813 ± 0.350 1.607 ± 0.044 0.444 ± 0.026 1.560 ± 0.021

Table 4.4: ImageNet Classification: All the variants attain comparable evaluation accuracies. Skip (Reg.)
accelerates the training of Continuous DEQ by 1.57 × −1.96×, with a reduction of 2.2 × −4.2× in the backward
pass timings. However, we observe a marginal increase of 4% in prediction timings for Skip (Reg.) Continuous
DEQ compared against Continuous DEQ. For Discrete DEQs, Skip (Reg.) variants reduce the prediction timings
by 6.5% − 12%.

4.3 ImageNet Image Classification

Training Details: Our Multiscale DEQ architecture is the same as MDEQ-small architecture used in Bai et al.
[2020]. For the explicit network in Skip DEQ, we use the residual block and downsampling blocks from Bai et al.
[2020] which account for the additional 58K trainable parameters.

We use a fixed regularization weight of 𝜆skip = 0.01, and the models are trained for 500000 steps. We use a
batch size of 64. For continuous models, we use VCAB3 [Wanner and Hairer, 1996] with a relative tolerance
for convergence of 0.05. We use SGD with a momentum of 0.9 and weight decay of 10−6. We use a step LR
scheduling reducing the learning rate from 0.05 by a multiplicative factor of 0.1 at steps 100000, 150000, and
250000.

Baselines: Vanilla DEQ is trained with the same training hyperparameters as the corresponding Skip DEQs
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(taken from [Bai et al., 2020])4.

Results: We summarize our results in Table 4.4 and Figure 4.5. Skip (Reg.) variants accelerate the training of
Continuous DEQ by 1.57 × −1.96×, with a reduction of 2.2 × −4.2× in the backward pass timings.

5 Discussion

We have empirically shown the effectiveness of Continuous DEQs as a faster alternative for Neural ODEs. Con-
sistent with the ablation studies in Bai et al. [2021a], we see that Skip DEQ in itself doesn’t significantly improve
the prediction or training timings for Discrete DEQs. Skip Reg. DEQ does, however, speeds up the inference
for larger Discrete DEQs. However, combining Skip DEQ and Skip Reg. DEQ with Continuous DEQs, enable a
speedup in backward pass by over 2.8 − 5.9×. We hypothesize that this improvement is due to reduction in the
condition number, which results in faster convergence of GMRES in the backward pass, however, acertaining
this would require furthur investigation. We have demonstrated that our improvements to DEQs and Neural
ODEs enable the drop-in replacement of Skip Continuous DEQs in any classical deep learning problem where
continuous implicit models were previously employed.

5.1 Limitations

We observe the following limitations for our proposed methods:

• Reformulating aNeural ODE as a ContinuousDEQ is valid, when the actual dynamics of the system doesn’t
matter. This holds true for all applications of Neural ODEs to classical Deep Learning problems.

• Continuous DEQs are slower than their Discrete counterparts for larger models (without any significant
improvement to accuracy), hence the authors recommend their usage only for cases where a continuous
model is truly needed.

4When training MultiScale Neural ODE with the same configuration as Continuous DEQ, we observed a 8× slower backward pass which
made the training of the baseline infeasible.



CHAPTER5
Opening tHe BlacKbox: Global RegulaRization

using Local ERRoR & Stiffness Estimates

How many hidden layers should you choose in your recurrent neural network? Chen et al. [2018] showed that
the answer could be found automatically by using a continuous reformulation, the neural ordinary differential
equation, and allowing an adaptive ODE solver to effectively choose the number of steps to take. Since then the
idea was generalized to other domains such as stochastic differential equations [Liu et al., 2019, Rackauckas et al.,
2020] but one fact remained: solving a neural differential equation is expensive, & training a neural differential
equation is even more so.

In this thesis, we present a generally applicable method to force the neural differential equation training process
to choose the least expensive option. We open the blackbox and show how using the numerical heuristics baked
inside of these sophisticated differential equation solver codes allows for identifying the cheapest equations
without requiring extra computation. However, “opening the blackbox” has several downsides – they are harder
to integrate into existing code-bases and aremore memory intensive. Hence, we describe methods that exploit ran-
dom sampling to leverage the benefits of “opening the blackbox” without actually requiring specialized training
methods and the associated memory overhead.

Our main contributions include:

• We introduce a novel regularization scheme for neural differential equations based on the local error esti-
mates and stiffness estimates. We observe that by white-boxing differential equation solvers to leverage
pre-computed statistics about the neural differential equations, we can obtain faster training and predic-
tion time while having a minimal effect on testing metrics.

• We compare our method with various regularization schemes [Kelly et al., 2020, Behl et al., 2020], which
often use higher order derivatives and are difficult to incorporate within existing systems. We empirically

29
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Figure 5.1: Training and Prediction Performance
of Regularized NDEs We obtain an average training
and prediction speedup of 1.45x and 1.84x respectively
for our bestmodel on supervised classification and time
series problems.

Figure 5.2: Error and Stiffness Regularization
Keeps Accuracy. We show the fits of the unregu-
larized/regularized Neural ODE variants on the Sprial
equation. However, the unregularized variant requires
1083.0±57.55NFEswhile the one regularized using the
stiffness and error estimates requires only 676.2±68.20
NFEs, reducing prediction time by nearly 50%.

show that regularization using cheap statistics can lead to as efficient predictions as the ones requiring
higher order automatic differentiation [Kelly et al., 2020, Finlay et al., 2020] without the increased training
time.

• We release our code1, implemented using the Julia Programming Language [Bezanson et al., 2017] and
SciML Software Suite [Rackauckas et al., 2019], with the intention of wider adoption of the proposed
methods in the community.

The contents of this chapter has appeared previously in the publication: Pal, A., Ma, Y., Shah, V. and Rackauckas,
C.V., 2021, July. Opening the Blackbox: Accelerating Neural Differential Equations by Regularizing Internal
Solver Heuristics. In International Conference on Machine Learning (pp. 8325-8335). PMLR. [Pal et al., 2021]

1 Opening tHe BlacKbox: Global RegulaRization using Local
ERRoR & Stiffness Estimates

Section 3 describes how larger local error estimates EEst lead to reduced step sizes and thus a higher overall
cost in the neural ODE training and predictions. Given this, we propose regularizing the neural ODE training
process by the total local error in order to learn neural ODEs with as large step sizes as possible. Thus we define
the regularizing term:

(R𝐸)𝑔 =
∑
𝑗

(EEst) 𝑗 · |d𝑡 𝑗 |

summing over 𝑗 the time steps of the solution. This was done by accumulating the (EEst) 𝑗 from the internals of
the time stepping process at the end of each step. We note that this is similar to the regularization proposed in

1https://github.com/avik-pal/RegNeuralDE.jl

https://github.com/avik-pal/RegNeuralDE.jl
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Kelly et al. [2020], namely:

(R𝐾 )𝑔 =
∫ 𝑡1

𝑡0

𝑑𝐾𝑧 (𝑡)𝑑𝑡𝐾

 d𝑡
where integrating over the 𝐾𝑡ℎ derivatives is proportional to the principle (largest) truncation error term of
the Runge-Kutta method [Hairer et al., 1993]. However, this formulation requires high order automatic dif-
ferentiation (which then is layered with reverse-mode automatic differentiation) which can be an expensive
computation [Zhang et al., 2008] while Section 1 requires no differentiation.

Similarly, the stiffness estimates (Section 4) at each step can be summed as:

(R𝑆 )𝑔 =
∑
𝑗

(SEst) 𝑗 · |d𝑡 𝑗 |

giving a computational heuristic for the total stiffness of the equation. Notably, both of these estimates (EEst) 𝑗
and (SEst) 𝑗 are already computed during the course of a standard explicit Runge-Kutta solution, making the
forward pass calculation of the regularization term computationally free.

2 Adjoints of InteRnal SolveR HeuRistics

Notice that (EEst) 𝑗 =
∑𝑠
𝑖=1

(
𝑏𝑖 − 𝑏�̃�

)
·𝑘𝑖 cannot be constructed directly from the 𝑧

(
𝑡 𝑗
)
trajectory of the ODE’s so-

lution. More precisely, the 𝑘𝑖 terms are not defined by the continuous ODE but instead by the chosen steps of the
solver method. Continuous adjoint methods for neural ODEs [Chen et al., 2018, Zhuang et al., 2021] only define
derivatives in terms of the ODE quantities. This is required in order exploit properties such as allowing different
steps in reverse and reversibility for reduced memory, and in constructing solvers requiring fewer NFEs [Kidger
et al., 2021]. Indeed, computing the adjoint of each stage variable 𝑘𝑖 can be done, but is known as discrete
sensitivity analysis and is known to be equivalent to automatic differentiation of the solver [Zhang and Sandu,
2014]. Thus to calculate the derivative of the solution simultaneously to the derivatives of the solver states, we
used direct automatic differentiation of the differential equation solvers for performing the experiments [Innes,
2018a]. We note that discrete adjoints are known to be more stable than continuous adjoints [Zhang and Sandu,
2014] and in the context of neural ODEs have been shown to stabilize the training process leading to better
fits [Gholami et al., 2019, Onken and Ruthotto, 2020]. While more memory intensive than some forms of the
continuous adjoint, we note that checkpointing methods can be used to reduce the peak memory [Dauvergne
and Hascoët, 2006]. We note that this is equivalent to backpropagation of a fixed time step discretization if the
step sizes are chosen in advance, and verify in the example code that no additional overhead is introduced.

3 ExpeRimental Results

In this section, we consider the effectiveness of regularizing Neural Differential Equations (NDEs) on their train-
ing and prediction timings. We consider the following baselines while evaluating our models:

1. Vanilla Neural (O/S)DE with discrete sensitivities.

2. STEER: Temporal Regularization for Neural ODE models by stochastic sampling of the end time during
training [Behl et al., 2020].
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Figure 5.3: Number of Function Evaluations and
Training Accuracy for Supervised MNIST Classifi-
cation Regularizing using ERNODE is the most consis-
tent way to reduce the overall number of function eval-
uations. Using SRNODE alongside ERNODE stabilizes
the training at the cost of increased prediction time.

Figure 5.4: Number of Function Evaluations and
Training Loss for Physionet Time Series Interpo-
lation Regularized and Unregularized variants of the
model have very similar trajectories for the training
loss. We do notice a significant difference in the NFE
plot. Using either Error Estimate Regularization or
Stiffness Regularization is able to bound the NFE to
< 300, compared to ∼ 700 for STEER or unregularized
Latent ODE.

3. TayNODE: Regularizing the 𝐾𝑡ℎ order derivatives of the Neural ODEs [Kelly et al., 2020]2.

We test our regularization on four tasks – supervised image classification (Section 3.1.1) and time series interpola-
tion (Section 3.1.2) using Neural ODE, and fitting Neural SDE (Section 3.2.1) and supervised image classification
using Neural SDE (Section 3.2.2). We use DiffEqFlux [Rackauckas et al., 2019] and Flux [Innes et al., 2018] for
our experiments.

3.1 NeuRal ORdinaRy DiffeRential Eations

In the following experiments, we use a Runge Kutta 5(4) solver [Tsitouras, 2011] with absolute and relative
tolerances of 1.4× 10−8 to solve the ODEs. To measure the prediction time, we use a test batch size equal to the
training batch size.
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Method Train Accuracy (%) Test Accuracy (%) Train Time (hr) Prediction Time (s) NFE

Vanilla NODE 100.0 ± 0.00 97.94 ± 0.02 0.98 ± 0.03 0.094 ± 0.010 253.0 ± 3.46

STEER 100.0 ± 0.00 97.94 ± 0.03 1.31 ± 0.07 0.092 ± 0.002 265.0 ± 3.46

TayNODE 98.98 ± 0.06 97.89 ± 0.00 1.19 ± 0.07 0.079 ± 0.007 080.3 ± 0.43

SRNODE (Ours) 100.0 ± 0.00 98.08 ± 0.15 1.24 ± 0.06 0.094 ± 0.003 259.0 ± 3.46

ERNODE (Ours) 99.71 ± 0.28 97.32 ± 0.06 0.82 ± 0.02 0.060 ± 0.001 177.0 ± 0.00

STEER + SRNODE 100.0 ± 0.00 97.88 ± 0.06 1.55 ± 0.27 0.101 ± 0.009 275.0 ± 12.5

STEER + ERNODE 99.91 ± 0.02 97.61 ± 0.11 1.37 ± 0.11 0.086 ± 0.018 197.0 ± 9.17

SRNODE + ERNODE 99.98 ± 0.03 97.77 ± 0.05 1.37 ± 0.04 0.081 ± 0.006 221.0 ± 17.3

Table 5.1: MNIST Image Classification using Neural ODE Using ERNODE obtains a training and prediction
speedup of 16.33% and 37.78% respectively, at only 0.6% reduced prediction accuracy. SRNODE doesn’t help in
isolation but is effective when combined with ERNODE to reduce the prediction time by 14.44% while incurring
a reduced test accuracy of only 0.17%.

3.1.1 SupeRvised Classification

Training Details We train a Neural ODE and a Linear Classifier to map flattened MNIST Images to their corre-
sponding labels. Our model uses a two layered neural network 𝑓𝜃1 , as the ODE dynamics, followed by a linear
classifier 𝑔𝜃2 , identical to the architecture used in Kelly et al. [2020].

𝑧𝜃1 (𝑥, 𝑡) = tanh(𝑊1 [𝑥 ; 𝑡] + 𝐵1)

𝑓𝜃1 (𝑥, 𝑡) = tanh(𝑊2 [𝑧𝜃1 (𝑥, 𝑡); 𝑡] + 𝐵2)
𝑔𝜃2 (𝑥, 𝑡) = 𝜎 (𝑊3𝑥 + 𝐵3)

where the parameters𝑊1 ∈ ℝ100×785, 𝐵1 ∈ ℝ100,𝑊2 ∈ ℝ784×101, 𝐵2 ∈ ℝ784,𝑊3 ∈ ℝ10×784, and 𝐵3 ∈ ℝ10. We
use a batch size of 512 and train the model for 75 epochs using Momentum [Qian, 1999] with learning rate of 0.1
and mass of 0.9, and a learning rate inverse decay of 10−5 per iteration. For Error Estimate Regularization, we
perform exponential annealing of the regularization coefficient from 100.0 to 10.0 over 75 epochs. For Stiffness
Regularization, we use a constant coefficient of 0.0285.

Baselines For the STEER baseline, we train the models by stochastically sampling the end time point from
U(𝑇 − 𝑏,𝑇 + 𝑏) where 𝑇 = 1.0 and 𝑏 = 0.53. We observe no training improvement but there is a minor
improvement in prediction time. For the TayNODE baseline, we train the model with a reduced batch size of

2We use the original code formulation of the TayNODE in order to ensure usage of the specially-optimized Taylor-mode automatic
differentiation technique [Bettencourt et al., 2019] in the training process. Given the large size of the neural networks, most of the compute
time lies in optimized BLAS kernels which are the same in both implementations, meaning we do not suspect library to be a major factor in
timing differences beyond the AD specifics.

3𝑏 = 0.25 was also considered but final results were comparable
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Method Train Loss (×10−3) Test Loss (×10−3) Train Time (hr) Prediction Time (s) NFE

Vanilla NODE 3.48 ± 0.00 3.55 ± 0.00 1.75 ± 0.39 0.53 ± 0.12 733.0 ± 84.29

STEER 3.43 ± 0.02 3.48 ± 0.01 1.62 ± 0.26 0.54 ± 0.06 699.0 ± 141.1

TayNODE 4.21 ± 0.02 4.21 ± 0.01 12.3 ± 0.32 0.22 ± 0.02 167.3 ± 11.93

SRNODE (Ours) 3.52 ± 1.44 3.58 ± 0.05 0.87 ± 0.09 0.20 ± 0.01 273.0 ± 0.000

ERNODE (Ours) 3.51 ± 0.00 3.57 ± 0.00 0.94 ± 0.13 0.21 ± 0.02 287.0 ± 17.32

STEER + SRNODE 3.67 ± 0.02 3.73 ± 0.02 0.89 ± 0.08 0.20 ± 0.01 271.0 ± 12.49

STEER + ERNODE 3.41 ± 0.02 3.48 ± 0.01 1.03 ± 0.25 0.24 ± 0.05 269.0 ± 33.05

SRNODE + ERNODE 3.48 ± 0.11 3.56 ± 0.03 1.12 ± 0.08 0.21 ± 0.01 263.0 ± 12.49

Table 5.2: Physionet Time Series Interpolation All the regularized variants of Latent ODE (except STEER)
have comparable prediction times. Additionally, the training time is reduced by 36% − 50% on using one of
our proposed regularizers, while TayNODE increases the training time by 7x. Overall, SRNODE has the best
training and prediction timings while incurring an increased 0.85% test loss.

1004, 𝜆 = 3.02 × 10−3, and regularizing 3𝑟𝑑 order derivatives.

Results Figure 5.3 visualizes the training accuracy and number of function evaluations over training. Table 5.1
summarizes the metrics from the trained baseline and proposed models – Error Estimate Regularized Neural
ODE (ERNODE) and Stiffness Regularized Neural ODE (SRNODE). Additionally, we perform ablation studies by
composing various regularization strategies.

3.1.2 Time SeRies InteRpolation

Training Details We use the Latent ODE [Chen et al., 2018] model with RNN encoder to learn the trajectories
for ICU Patients for Physionet Challenge 2012 Dataset [Silva et al., 2012]. We use the preprocessed data provided
by Kelly et al. [2020] to ensure consistency in results. For every independent run, we perform an 80 : 20 split of
the data for training and evaluation.

Our model architecture is similar to the encoder-decoder models used in Rubanova et al. [2019]. We use a 20-
dimensional latent state and a 40-dimensional hidden state for the recognition model. Our ODE dynamics is
given by a 4-layered neural network with 50 units and tanh activation. We train our models for 300 epochs with
a batchsize of 512 and using Adamax [Kingma and Ba, 2014b] with a learning rate of 0.01 and an inverse decay
of 10−5. We minimize the negative log likelihood of the predictions and perform KL annealing with a coefficient
of 0.99.

For Error Estimate Regularization, we perform exponential annealing of the regularization coefficient from
1000.0 to 100.0 over 300 epochs. We note that using (R𝐸)𝑔 =

∑
𝑗 (EEst)2𝑗 , instead of (R𝐸)𝑔 =

∑
𝑗 (EEst) 𝑗 · |d𝑡 𝑗 |,

yields similar results with a constant regularization coefficient of 100.0. For Stiffness Regularization, we use a
constant coefficient of 0.285.

4Batch Size was reduced to ensure we reach a comparable train/test accuracy as the other trained models.
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Method Mean Squared Loss Train Time (s) Prediction Time (s) NFE

Vanilla NSDE 0.0217 ± 0.0088 178.95 ± 20.22 0.07553 ± 0.0186 528.67 ± 6.11

SRNSDE (Ours) 0.0204 ± 0.0091 166.42 ± 14.51 0.07250 ± 0.0017 502.00 ± 4.00

ERNSDE (Ours) 0.0227 ± 0.0090 173.43 ± 04.18 0.07552 ± 0.0008 502.00 ± 4.00

Table 5.3: Spiral SDEThe ERNSDE attains a relative loss of 4% compared to vanilla Neural SDE while reducing
the training time and number of function evaluations. Using SRNSDE reduces both the training and prediction
times by 7% and 4% respectively.

Baselines For STEER Baseline, we stochastically sample the timestep to evaluate the difference between interpo-
lated and ground truth data. Essentially for the interval (𝑡𝑖 , 𝑡𝑖+1), we evaluate the model atU(𝑡𝑖+1 − 𝑡𝑖+1−𝑡𝑖2 , 𝑡𝑖+1 +
𝑡𝑖+1−𝑡𝑖

2 ) and compare with the truth at 𝑡𝑖+1. We sample end points after every iteration of the model. STEER
reduces the training time but has no significant effect on the prediction time. TayNODE was trained by regular-
izing the 2𝑛𝑑 order derivatives and a coefficient of 0.01 for 300 epochs and a batchsize of 512. TayNODE had an
exceptionally high training time ∼ 7× compared to the unregularized baseline.

Results Figure 5.4 shows the training MSE loss and the NFE counts for the considered models. Table 5.2 sum-
marizes the metrics and wall clock timings for the baselines, proposed regularizers and their compositions with
previously proposed regularizers. We observe that SRNODE provides the most significant speedup while ERN-
ODE attains similar losses at slightly higher training and prediction times.

3.2 NeuRal StocHastic DiffeRential Eations

In these experiments, we use SOSRI/SOSRI2 [Rackauckas and Nie, 2020] to solve the Neural SDEs. Thewall clock
timings represent runs on a CPU.

3.2.1 Fitting SpiRal DiffeRential Eation

Training Details In this experiment, we consider training a Neural SDE to mimic the dynamics of the Spi-
ral Stochastic Differential Equation with Diagonal Noise (DSDE). Spiral DSDE is prescribed by the following
equations:

𝑑𝑢1 = −𝛼𝑢31𝑑𝑡 + 𝛽𝑢32𝑑𝑡 + 𝛾𝑢1𝑑𝑊
𝑑𝑢2 = −𝛽𝑢31𝑑𝑡 − 𝛼𝑢32𝑑𝑡 + 𝛾𝑢2𝑑𝑊

where 𝛼 = 0.1, 𝛽 = 2.0, and 𝛾 = 0.2. We generate data across 10000 trajectories at 30 uniformly spaced points
between 𝑡 ∈ [0, 1] (Figure 5.5). We parameterize our drift and diffusion functions using neural networks 𝑓𝜃 and
𝑔𝜙 via:

𝑓𝜃 (𝑥, 𝑡) =𝑊2 tanh(𝑊1𝑥
3 + 𝐵1) + 𝐵2

𝑔𝜙 (𝑥, 𝑡) =𝑊3𝑥 + 𝐵3

where the parameters𝑊1 ∈ ℝ50×2, 𝐵1 ∈ ℝ50,𝑊2 ∈ ℝ2×50, 𝐵2 ∈ ℝ2,𝑊3 ∈ ℝ2×2, and 𝐵3 ∈ ℝ2. For fitting the
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Figure 5.5: Fitting a Neural SDE on Spiral SDE
Data. Regularizing has minimal effect on the learned
dynamics with reduced training and prediction cost. Figure 5.6: Number of Function Evaluations and

Training Error for Supervised MNIST Classifica-
tion using Neural SDE ERNSDE reduces the NFE be-
low 300 with minimal error change while the unregu-
larized version has NFE ∼ 400.

drift and diffusion functions to the simulated data, we used a generalized method of moments loss function [Lück
and Wolf, 2016, Jeisman, 2006]. Our objective is to train these parameters to minimize the 𝐿2 distance between
the mean (𝜇) and variance (𝜎2) of predicted and real data. Let, �̂�𝑖 ’s and 𝜎2𝑖 ’s denote the means and variances
respectively of the multiple predicted trajectories.

L(𝑢0;𝜃, 𝜙) =
30∑
𝑖=1

[
(𝜇𝑖 − �̂�𝑖 )2 + (𝜎2𝑖 − 𝜎2𝑖 )2

]
+ 𝜆𝑟𝑅𝐸

The models were trained using AdaBelief Optimizer [Zhuang et al., 2020] with a learning rate of 0.01 for 250
iterations. We generate 100 trajectories for each iteration to compute the �̂�𝑖s and 𝜎2𝑖 s.

Results Table 5.3 summarizes the final results for the trained models for 3 different random seeds. We notice
that even for this “toy” problem, we can marginally improve training time while incurring a minimal penalty on
the final loss.

3.2.2 SupeRvised Classification

Training Details We train a Neural SDE model to map flattened MNIST Images to their corresponding labels.
Our diffusion function uses a two layered neural network 𝑓𝜃2 and the drift function is a linear map 𝑔𝜃3 . We use
two additional linear maps – 𝑎𝜃1 mapping the flattened image to the hidden dimension and 𝑏𝜃4 mapping the
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Method Train Accuracy (%) Test Accuracy (%) Train Time (hr) Prediction Time (s) NFE

Vanilla NSDE 98.97 ± 0.11 96.95 ± 0.11 6.32 ± 0.19 15.07 ± 0.93 411.33 ± 6.11

SRNSDE (Ours) 98.79 ± 0.12 96.80 ± 0.07 8.54 ± 0.37 14.50 ± 0.40 382.00 ± 4.00

ERNSDE (Ours) 98.16 ± 0.11 96.27 ± 0.35 4.19 ± 0.04 07.23 ± 0.14 184.67 ± 2.31

Table 5.4: MNIST ImageClassificationusingNeural SDE ERNSDE obtains a training and prediction speedup
of 33.7% and 52.02% respectively, at only 0.7% reduced prediction accuracy.

output of the Neural SDE to the logits.

𝑎𝜃1 (𝑥, 𝑡) =𝑊1𝑥 + 𝐵1
𝑓𝜃2 (𝑥, 𝑡) =𝑊3 tanh(𝑊2 𝑥 + 𝐵2) + 𝐵3
𝑔𝜃3 (𝑥, 𝑡) =𝑊4 𝑥 + 𝐵4
𝑏𝜃4 (𝑥, 𝑡) =𝑊5 𝑥 + 𝐵5

where the parameters𝑊1 ∈ ℝ32×784, 𝐵1 ∈ ℝ32,𝑊2 ∈ ℝ32×64, 𝐵2 ∈ ℝ64,𝑊3 ∈ ℝ32×64, 𝐵3 ∈ ℝ32,𝑊4 ∈ ℝ10×32,
and 𝐵3 ∈ ℝ10. We use a batch size of 512 and train the model for 40 epochs using Adam [Kingma and Ba, 2014b]
with learning rate of 0.01, and an inverse decay of 10−5 per iteration. While making predictions we use the
mean logits across 10 trajectories. For Error Estimate and Stiffness Regularization, we use constant coefficients
10.0 and 0.1 respectively.

Results Figure 5.6 shows the variation in NFE and Training Error during training. Table 5.4 summarizes the final
metrics and timings for all the trained models. We observe that SRNSDE doesn’t improve the training/prediction
time, similar to the MNIST Neural ODE Experiment 3.1.1. However, ERNSDE gives us a training and prediction
speedup of 33.7% and 52.02% respectively, at the cost of 0.7% reduced test accuracy.

4 Discussion

Numerical analysis has had over a century of theoretical developments leading to efficient adaptive methods for
solving many common nonlinear equations such as differential equations. Here we demonstrate that by using
the knowledge embedded within the heuristics of these methods we can accelerate the training process of neural
ODEs.

We note that on the larger sized PhysioNet and MNIST examples we saw significant speedups while on the
smaller differential equation examples we saw only minor performance improvements. This showcases how the
NFE becomes a better estimate of the total compute time as the cost of the ODE 𝑓 (and SDE 𝑔) increase when
the model size increases.

This result motivates efforts in differentiable programming [Wang et al., 2018, Abadi and Plotkin, 2019, Rack-
auckas et al.] which enables direct differentiation of solvers since utilizing the solver’s heuristics may be crucial
in the development of advanced techniques. This idea could be straightforwardly extended not only to other
forms of differential equations, but also to other “implicit layer” machine learning methods. For example, Deep
Equilibrium Models (DEQ) [Bai et al., 2019] model the system as the solution to an implicit function via a non-
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linear solver like Bryoden or Newton’s method. Heuristics like the ratio of the residuals have commonly been
used as a convergence criterion and as a work estimate for the difficulty of solving a particular nonlinear equa-
tion [Wanner and Hairer, 1996], and thus could similarly be used to regularize for learning DEQs whose forward
passes are faster to solve. Similarly, optimization techniques such as BFGS [Kelley, 1999] contain internal esti-
mates of the Hessian which can be used to regularize the stiffness of “optimization as layers” machine learning
architectures like OptNet [Amos and Kolter, 2017]. However, in these cases we note that continuous adjoint
techniques have a significant computational advantage over discrete adjoint methods because the continuous
adjoint method can be computed directly at the point of the solution while discrete adjoints would require dif-
ferentiating through the iteration process. Thus while a similar regularization would exist in these contexts, in
the case of differential equations the continuous and discrete adjoints share the same computational complexity
which is not the case in methods which iterate to convergence. Further study of these applications would be
required in order to ascertain the effectiveness in accelerating the training process, though by extrapolation one
may guess that at least the forward pass would be accelerated.

4.1 Limitations

While these experiments have demonstrated major performance improvements, it is pertinent to point out the
limitations of the method. One major point to note is that this only applies to learning neural ODEs for maps
𝑧 (0) ↦→ 𝑧 (1) as is used in machine learning applications of the architecture [Chen et al., 2018]. Indeed, a neural
ODE as an “implicit layer” for predictions in machine learning does not require identification of dynamical
mechanisms. However, if the purpose is to learn the true governing dynamics a physical system from timeseries
data, this form of regularization would bias the result, dampening higher frequency responses leading to an
incorrect system identification. Approaches which embed neural networks into solvers could be used in such
cases [Shen et al., 2020, Poli et al., 2020]. Indeed we note that such Hypereuler approaches could be combined
with the ERNODE regularization on machine learning prediction problems, which could be a fruitful avenue
of research. Lastly, we note that while either the local error and stiffness regularization was effective on each
chosen equation, neither was effective on all equations and at this time there does not seem to be a clear a priori
indicator as to which regularization is necessary for a given problem. While it seems the error regularization
was more effective on the image classification tasks while the stiffness regularization was more effective on the
time series task, we believe more experiments will be required in order to ascertain whether this is a common
phenomena, possibly worthy of theoretical investigation.



CHAPTER6
Closing tHe BlacKbox: Local RegulaRization of

NeuRal DEs using Local ERRoR Estimates

Implicit Models, such as Neural Ordinary Differential Equations Chen et al. [2018] and Deep Equilibrium Mod-
els Bai et al. [2019], Pal et al. [2022], have emerged as a promising technique to determine the depth of neural
networks automatically. To maximize performance on a dataset, explicit models are tuned to the “hardest” train-
ing sample, which hurts the inference timings for “easier” –more abundant – samples. Using adaptive differential
equation solvers allow these implicit models to choose the number of steps they need effectively. This idea of
representing neural networks as ODEs has since been generalized to Stochastic Differential Equations [Liu et al.,
2019, Rackauckas et al., 2020] and other architectures to improve robustness.

Despite the rapid progress in these methods, the core problem of the scalability of these models is still persistent.
Several solutions to these have been proposed:

• Kelly et al. [2020], Finlay et al. [2020] use higher order derivatives for regularization.

• Poli et al. [2020] learn neural solvers to solve Neural ODEs faster.

• In Chapter 5, we described a “zero-cost” global regularization scheme.

• Behl et al. [2020] randomize the integration stop time to “smoothen” the dynamics.

All these methods have definite tradeoffs. Finlay et al. [2020], Kelly et al. [2020] have relied on using higher-
order regularization terms to constrain the space of learnable dynamics. These models speed up predictions, but
their benefits are often overshadowed by a massive training slowdown [Pal et al., 2021]. More recently, quite
a few first-order schemes have been proposed. Behl et al. [2020] randomized the endpoint of Neural ODEs to
incentivize simpler dynamics. However, Pal et al. [2021] didn’t find significant benefits of using STEER in their
experiments. Pal et al. [2021] used internal solver heuristics – local error and stiffness estimates – to control the
learned dynamics in a way that decreased both prediction and training time.

39



Chapter 6. Closing the Blackbox: Local Regularization of Neural DEs using Local
Error Estimates 40

MNIST NODE MNIST NSDE Physionet CIFAR10

V
al

ue
 R

el
at

iv
e 

to
 V

an
ill

a 
N

D
E

0.0

0.5

1.0

1.5

2.0

NFE (lower is better)

MNIST NODE MNIST NSDE Physionet CIFAR10

0.0

0.5

1.0

1.5

2.0

Prediction Timing (higher is better)

MNIST NODE MNIST NSDE Physionet CIFAR10

0.0

0.5

1.0

1.5

2.0

Training Time (higher is better)

Local Unbiased
Local Biased

Figure 6.1: Locally RegularizedNDE leads to faster predictions and faster training compared to vanilla
NDE.

This paper presents a generally applicable method to force the neural differential equation training process
to choose the least expensive option. We build upon the global regularization scheme proposed in Pal et al.
[2021] and “close” the blackbox allowing our method to work across various sensitivity algorithms. Our main
contributions include the following1:

1. We show that our local regularization method – building upon the primitives proposed in Pal et al. [2021]
– performs at par with global regularization.

2. We present two sampling methods that trade-off small computational costs for consistently better perfor-
mance.

3. Using local regularization allows our models to leverage optimize-then-discretize in the backward pass
(in addition to discretize-then-optimize methods). Our method works around the several engineering
limitations of automatic differentiation (AD) systems [Rackauckas, 2022] that are needed to make global
regularization work.

4. We empirically show that regularizing solver heuristics with biased sampling stabilizes the training of
larger neural ODEs.

The contents of this chapter has appeared previously in the publication: Pal, A., Edelman, A. and Rackauckas,
C., 2023. Locally Regularized Neural Differential Equations: Some Black Boxes Were Meant to Remain Closed!.
In International Conference of Machine Learning. PMLR. [Pal et al., 2023]

1 RandomizedLocalRegulaRization: OveRcomingtHe sHoRtcom-
ings of Global RegulaRization

In Section 4.1, we discussed the downsides of using global regularization with local error estimates. To summa-
rize:

1. Global Regularization relies on discrete sensitivity analysis, which is more memory intensive.

2. Global Regularization depends on AD tooling to support dynamic compute graphs in an efficient way,

1Our code is publicly available at https://github.com/avik-pal/LocalRegNeuralDE.jl

https://github.com/avik-pal/LocalRegNeuralDE.jl
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Algorithm 6.1 Unbiased Sampling: Training
1: function ERNODEUNBIASED(𝑥 , 𝑓𝜃 , 𝑡span)
2: Define 𝑑𝑢

𝑑𝑡 = 𝑓𝜃 (𝑢, 𝑡)
3: 𝑡0, 𝑡1 ← 𝑡𝑠𝑝𝑎𝑛
4: treg ∼ 𝕌 [𝑡0, 𝑡1]
5: sol← solve( 𝑑𝑢𝑑𝑡 , DE Solver, 𝑡span)
6: 𝑢treg ← sol(treg)
7: Run single step for the solver with time-span (treg, 𝑡1)
8: r← Local Error Estimate @𝑡 = treg
9: return sol,r

10: end function

making it hard to incorporate into existing code-bases.

To get around these limitations, we developed a new technique using local sampling of error estimates at specific
time points, rather than globally over the full interval. We deal with sampling the “appropriate” time point for
regularization by two strategies:

• Algorithm6.1 Unbiased Sampling: We random uniformly sample the time-point in the integration time
span. Intuitively, since we will perform the training for “a large number of steps,” the learned dynamical
system would end up being faster to solve “everywhere” over the time span.

• Algorithm 6.2 Biased Sampling: Adaptive Time-Stepping Differential Equation Solvers naturally take
more steps around the area, which is harder to integrate. We can bias the regularization to operate around
parts of the dynamical system which are “harder” by sampling a time-point from the solution time points.

1.1 Unbiased Sampling of Local ERRoR Estimates

When training a Neural ODE, the integration time-span is fixed. Training any deep learning model involves
several thousand steps. We compute the total local error estimate over the entire time-span when performing
global regularization. For unbiased sampling, we hypothesize that if we regularize at random uniformly sampled
time points in the time-span, the learned dynamical system will demonstrate similar properties in terms of NFE
compared to global regularization. Our new regularization term becomes (R𝐸)unbiased as:

(R𝐸)unbiased = (EEst)treg · |d𝑡treg |
treg ∼ 𝕌[tspan]

1.2 Biased Sampling of Local ERRoR Estimates
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Algorithm 6.2 Biased Sampling: Training
1: function ERNODEBIASED(𝑥 , 𝑓𝜃 , 𝑡span)
2: Define 𝑑𝑢

𝑑𝑡 = 𝑓𝜃 (𝑢, 𝑡)
3: 𝑡0, 𝑡1 ← 𝑡𝑠𝑝𝑎𝑛
4: sol← solve( 𝑑𝑢𝑑𝑡 , DE Solver, 𝑡span)
5: treg ∼ 𝕌

(sol.𝑡 )
6: 𝑢treg ← sol(treg)
7: Run single step for the solver with time-span (treg, 𝑡1)
8: r← Local Error Estimate @𝑡 = treg
9: return sol,r

10: end function

t
0 5.0×10⁴ 1.0×10⁵

u

0.0
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u 1(t)
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Figure 6.2: Robertson Stiff ODE System: Solving
stiff systems like Robertson [Robertson, 1966] (using
Rodas5 [Piché, 1995]) involves spending around 75%
of the time in 𝑡 < 5000 (i.e. 5% of the time-span).
The vertical lines denote the time-points at which the
ODE System was solved.

Consider a simple scenario where the learned dynam-
ics of the DE is harder to solve in [0.25, 0.35], and
we are solving the DE from 𝑡0 = 0 to 𝑡1 = 1. Our
primary aim is to modify the learned system s.t. it
becomes simpler to solve in [0.25, 0.35]. If we use
unbiased sampling, the probability that we regular-
ize at treg ∈ [0.25, 0.35] is 0.1 (which is low). The
problem gets even more severe if the range is low-
ered. An extreme version of this problem is observed
for stiff systems like Robertson’s Equations (See Fig-
ure 6.2) where 75% of the time is spent in solving 5%

of the problem. We note that these extreme scenarios
rarely occur for traditional deep learning tasks since
Pal et al. [2021] observed minor speedups using stiff-
ness regularization. However, the problem that some
parts of the dynamical system are harder to integrate
persists, and designing a regularization scheme targeting those parts is highly desirable.

We considered a simple scenario where the learned dynamical system was fixed. However, while training NDEs,
this system evolves with training, and apriori predicting the more difficult portions to integrate is not feasible.
Adaptive solvers take more frequent steps in the parts of the DE where it is harder to integrate. Anantharaman
et al. [2020] leveraged this property of adaptive solvers to learn surrogates for stiff systems. Since these solvers
adapt to concentrate around the most numerically difficult time points, we automatically obtain the time points
where we want to regularize the model. Hence, for our biased sampling regularize, we uniformly sample the
regularization timepoint treg from the time points at which the solver solved the differential equation.

2 Adjoint foRLocalRegulaRizedNeuRalDiffeRentialEations

Adjoint Sensitivity Analysis of Local Regularization works by piggy-backing on the existing adjoint sensitivity
analysis algorithms. Our algorithm is effectively equivalent to using the default adjoint sensitivity algorithm
with direct reverse mode differentiation through a single step of the solver, i.e. 𝑡 = 1. Thus, our algorithm adds
a constant overhead of O (𝑠 × stages) memory to the underlying sensitivity algorithm.
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Sensitivity Algorithm Memory Requirement Memory Requirement with Local Reularization

Backsolve Adjoint [Chen et al., 2018] O (𝑠) O (𝑠 × (1 + stages))

Backsolve Adjoint with Checkpointing [Chen et al., 2018] O (𝑠 × 𝑐) O (𝑠 × (𝑐 + stages))

Interpolating Adjoint [Hindmarsh et al., 2005] O (𝑠 × 𝑡) O (𝑠 × (𝑡 + stages))

Interpolating Adjoint with Checkpointing [Hindmarsh et al., 2005] O (𝑠 × 𝑐) O (𝑠 × (𝑐 + ×stages))

Quadrature Adjoint [Kim et al., 2021] O ((𝑠 + 𝑝) × 𝑡) O ((𝑠 + 𝑝) × 𝑡 + 𝑠 × stages)

Direct Reverse Mode Differentiation O (𝑠 × 𝑡 × stages) O (𝑠 × (𝑡 + 1) × stages)

Table 6.1: Memory Requirements for various Sensitivity Algorithms for ODEs with Local Regulariza-
tion

3 ExpeRimental Results

In this section, we compare the effectiveness of unbiased and biased local regularization’s effectiveness on the
training and prediction timings of NDEs. We choose image classification and time series prediction problems in
line with prior works on accelerating NDEs. We consider the following baselines:

1. Vanilla Neural ODE with Continuous Interpolating Adjoint.

2. Vanilla Neural SDE with discrete sensitivities.

3. Global Regularization of Neural Differential Equations using discrete sensitivity analysis [Pal et al., 2021].

4. TayNODE [Kelly et al., 2020] and STEER [Behl et al., 2020] for models reported in Pal et al. [2021].

We use the DifferentialEquations.jl [Rackauckas et al., 2019] and Lux.jl [Pal, 2023] software stack written in the
Julia Programming Language [Bezanson et al., 2017] for all our experiments.

Some details about the data presented in the tables:

• All experimental results in the tables marked with ¶ were taken directly from Pal et al. [2021].

• We have tried to match the hardware details presented in the paper and the corresponding GitHub repos-
itory for Pal et al. [2021], but we note that differences in wall clock timings can be partially attributed to
hardware.

• TayNODE [Kelly et al., 2020] uses a different ODE integrator. Hence the NFEs are not directly comparable.

3.1 MNIST Image Classification

We train a neural differential equation classifier to map flattened MNIST [LeCun et al., 1998] images to their
corresponding labels.

3.1.1 NeuRal ORdinaRy DiffeRential Eation

Training Details: We use the same model architecture as described in Kelly et al. [2020]. Our model comprises
of single hidden layered explicit model 𝑓𝜃 modeling the ODE dynamics followed by a linear classifier 𝑔𝜙 . The hid-
den layer is 100-dimensional. We train with a batch size of 512 for a total of 7500 steps. We use Adam [Kingma
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Figure 6.3: MNIST Classification using Neural
ODE
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Figure 6.4: MNIST Classification using Neural
SDE

and Ba, 2014b] with a constant learning rate of 0.001. For error estimate regularization, we exponentially de-
crease the regularization coefficient from 2.5 to 1.0. We use Tsit5 [Tsitouras, 2011] as the ODE integrator with
an absolute and relative tolerance of 10−8.2

Baselines: We consider a Vanilla Neural ODE trained with the exact aforementioned specifications. All other
baselines are directly taken from Pal et al. [2021].

Results: We summarize the results in Table 6.2 and Figure 6.3. Using local regularization speeds up prediction
in all cases while it leads to a minor slowdown during training for biased sampling.

3.1.2 NeuRal StocHastic DiffeRential Eation

Training Details: We downsample the flattened images to a 32-dimensional vector before feeding it into the
Neural SDE which uses a diffusion model (𝑓𝜃 ) having a 64-dimensional hidden layer and a linear drift model (𝑔𝜙 ).
Finally, a linear classifier (ℎ𝛾 ) predicts the label. We train our models on CPU with a batch size of 512 for a total
of 4000 steps. We optimize the weights using Adam [Kingma and Ba, 2014b] with a constant learning rate of
0.01. We use SOSRI2 SDE solver [Rackauckas and Nie, 2017b] with a tolerance of 0.14. We fix our regularization
coefficient to be 103. For this experiment, we rely on discrete sensitivity analysis.

2We note that this is not a realistic tolerance at which image classification models are trained. We use this tolerance to allow a direct
comparison to prior works.
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Method Train Accuracy (%) Test Accuracy (%) Training Time
(hr)

Prediction Time
(s / batch) Testing NFE

Vanilla NODE 99.898 ± 0.066 97.612 ± 0.163 0.54 ± 0.001 0.088 ± 0.020 303.559 ± 3.194

STEER ¶ 100.00 ± 0.000 97.94 ± 0.03 1.31 ± 0.07 0.092 ± 0.002 265.0 ± 3.46
TayNODE ¶ 98.98 ± 0.06 97.89 ± 0.00 1.19 ± 0.07 0.079 ± 0.007 80.3 ± 0.43
ERNODE ¶ 99.71 ± 0.28 97.32 ± 0.06 0.82 ± 0.02 0.060 ± 0.001 177.0 ± 0.00
SRNODE ¶ 100.00 ± 0.000 98.08 ± 0.15 1.24 ± 0.06 0.094 ± 0.003 259.0 ± 3.46

Local Unbiased ERNODE 99.447 ± 0.039 97.526 ± 0.131 0.49 ± 0.002 0.046 ± 0.002 187.961 ± 1.812
Local Biased ERNODE 99.477 ± 0.051 97.488 ± 0.016 1.12 ± 0.065 0.044 ± 0.002 182.849 ± 1.578

Vanilla NSDE 98.27 ± 0.11 96.66 ± 0.16 2.70 ± 0.00 0.51 ± 0.07 313.86 ± 2.94
ERNSDE ¶ 98.16 ± 0.11 96.27 ± 0.35 4.19 ± 0.04 7.23 ± 0.14 184.67 ± 2.31
SRNSDE ¶ 98.79 ± 0.12 96.80 ± 0.07 8.54 ± 0.37 14.50 ± 0.40 382.00 ± 4.00
Local Unbiased ERNSDE 98.05 ± 0.09 96.57 ± 0.13 2.10 ± 0.01 0.39 ± 0.10 228.93 ± 1.77

Local Biased ERNSDE 98.02 ± 0.07 96.44 ± 0.16 1.90 ± 0.00 0.36 ± 0.03 230.10 ± 0.71

Table 6.2: MNIST Image Classification using Neural DE: Using local unbiased regularization on neural ODE
speeds up training by 1.1× and predictions by 1.9× while reducing the total NFEs to 0.619×. Local Biased Regu-
larization tends to slow down training for smaller models on GPU while it further reduces the NFEs by 0.602×.
For Neural SDE, we observe a similar reduction of NFEs by 0.729 × −0.733× and a training time improvement
of 1.28 × −1.42×. The best global regularization method gets lower NFEs but overall takes more wall clock than
the best performing local regularization method.

Baselines: ERNSDE and SRNSDE results were taken from Pal et al. [2021]. These were trained for 40 epochs,
nearly equivalent to training for 4000 iterations.

Results: We summarize the results in Table 6.2 and Figure 6.4. Local regularization improves training and
prediction performance while keeping the test accuracy nearly constant.

3.2 PHysionet Time SeRies InteRpolation

Training Details: We use the experimental setup for Physionet 2012 Challenge Dataset [Citi and Barbieri,
2012] from Kelly et al. [2020]. We use a Latent Neural ODE [Rubanova et al., 2019] to perform time series
interpolation on the dataset. We use the preprocessed dataset from Kelly et al. [2020] to ensure a fair comparison
and independent runs are performed using an 80:20 split of the dataset.
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Method Test Loss (×10−3) Training Time (hr) Prediction Time
(s / batch) Testing NFE

Vanilla NODE 3.41 ± 0.10 2.48 ± 0.22 0.16 ± 0.01 758.0 ± 25.87
STEER ¶ 3.48 ± 0.01 1.62 ± 0.26 0.54 ± 0.06 699.0 ± 141.1
TayNODE ¶ 4.21 ± 0.01 12.3 ± 0.32 0.22 ± 0.02 167.3 ± 11.93
ERNODE ¶ 3.57 ± 0.00 0.94 ± 0.13 0.21 ± 0.02 287.0 ± 17.32
SRNODE ¶ 3.58 ± 0.05 0.87 ± 0.09 0.20 ± 0.01 273.0 ± 0.000
Local Unbiased ERNODE 3.64 ± 0.07 2.31 ± 0.02 0.09 ± 0.00 422.0 ± 4.580

Local Biased ERNODE 3.63 ± 0.08 2.12 ± 0.24 0.10 ± 0.01 463.0 ± 63.02

Table 6.3: Physionet Time Series Interpolation: Local Regularization reduces NFEs by 0.556 × −0.610×
reducing the prediction timings by 1.6 × −1.78×. Our methods additionally improve training timings by
1.073 × −1.167×. We note that the difference in training time compared to (E/S)RNODE methods is due to
change in the sensitivity algorithm.
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Figure 6.5: Physionet Time Series Interpolation
using Latent ODE

For specific model architecture details, we refer the
readers to Pal et al. [2021]. We train the model for a
total of 3000 iterations using Adamax [Kingma and
Ba, 2014b] with a learning rate of 0.01 with 10−5 in-
verse decay per step. We use a batch size of 512. We
diverge from Pal et al. [2021], in using the regulariza-
tion term as (EEst)treg · |𝑑𝑡 |treg instead of the squared
regularization term

∑
𝑗 (EEst)2𝑗 . Additionally, we de-

cay the regularization coefficient exponentially from
100 to 10 over the 3000 training iterations.

Baselines: Vanilla NODE was trained with the exact
aforementioned configuration. All the other baselines
were trained using discrete sensitivity analysis, and
the exact details are present in Pal et al. [2021].

Results: We summarize the results in Figure 6.5 and
Table 6.3.

3.3 CIFAR10 Image Classification

3.3.1 NeuRal ORdinaRy DiffeRential Ea-
tion

Training Details: We use the CNN architecture for
CIFAR10 as described in Poli et al. [2020]. We train
the models for 31250 steps with Adam [Kingma and Ba, 2014b] using a cosine-annealing learning rate scheduler
from 0.003 to 0.0001. We train the models with a batch size of 32 and keep the regularization coefficient fixed
at 2.5. We use Tsit5 [Tsitouras, 2011] with a tolerance of 10−4.
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Configuration Method Train
Accuracy (%)

Test
Accuracy (%)

Training Time
(s / batch)

Prediction Time
(s / batch)

Testing
NFE

Standard Vanilla 83.683 ± 1.450 67.394 ± 0.849 0.457 ± 0.018 0.130 ± 0.013 115.315 ± 12.136
Local Unbiased ER 83.665 ± 0.805 67.678 ± 0.874 0.399 ± 0.014 0.096 ± 0.007 89.048 ± 7.335

Local Biased ER 83.958 ± 1.032 67.745 ± 0.824 0.555 ± 0.008 0.088 ± 0.003 81.301 ± 1.255

Multi-Scale Vanilla 92.807 ± 12.458 80.048 ± 6.740 0.572 ± 0.012 0.170 ± 0.005 27.616 ± 0.905

Local Unbiased ER 94.159 ± 9.694 80.432 ± 5.548 0.641 ± 0.025 0.175 ± 0.019 27.760 ± 0.177

Local Biased ER 99.987 ± 0.023 83.460 ± 0.727 0.774 ± 0.293 0.163 ± 0.015 26.334 ± 0.992

Table 6.4: CIFAR10 Image Classification using Neural DE: For the standard Neural ODE, local regulariza-
tion reduces the NFE by 0.705 × −0.772×, thereby improving prediction timings by 1.35 × −1.477×. However,
unregularized model training takes 0.823× the time for the biased model. For multi-scale models, the NFE and
prediction time improvements are marginal and come at the cost of higher training time.
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Figure 6.6: CIFAR10 Image Classification using Standard Neural ODE

Results: We summarize the results in Figure 6.6 and Table 6.4.

3.3.2 Multiscale NeuRal ODE

Training Details: We modify the Tiny Multiscale DEQ architecture for CIFAR10 from Bai et al. [2020] as Multi-
scale Neural ODE with Input Injection. To stabilize the training for larger models, we exponentially increase the
regularization coefficient from 0.1 to 5.0. We train with a batch size of 128 using VCAB3 [Wanner and Hairer,
1996] with a tolerance of 0.05.

Results: We summarize the results in Figure 6.7 and Table 6.4. The benefits from regularization for NFEs and
prediction timings seem marginal. However, regularization using biased sampling makes the training dynamics
stable as observed in Figure 6.7.
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Figure 6.7: CIFAR10 Image Classification using Multi-Scale Neural ODE

4 Discussion

In this chapter, we have shown that we can obtain similar properties to global regularization by regularizing dy-
namical systems at randomly sampled time points. Additionally, this comes with the benefit of not being forced
into a specific sensitivity analysis method. We have taken every experiment in Pal et al. [2021] and empirically
showed that our local regularization works at par with global regularization. However, our experiments using
stiffness estimate for local regularization did not yield positive results and were not presented in this chapter.
Thus, we have demonstrated that we can “close the blackbox” and still leverage all the benefits of internal solver
heuristics to improve training and predictions of neural differential equations.

4.1 Limitations

We note the following limitations of our work:

• Similar to Pal et al. [2021], if the objective is to learn the actual dynamical system, our method will not
yield proper results. Our method is applicable only when the final state is relevant, i.e., in most classical
deep learning tasks.

• Regularization introduces a new regularization coefficient hyperparameter which, if not tuned correctly,
can lead to unstable dynamics or might negate the scheme’s usefulness.
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CHAPTER7
Lux.jl: BRidging Scientific Computing and Deep

LeaRning

1 IntRoduction

Julia already has quite a fewwell establishedNeural Network Frameworks – Flux [Innes et al., 2018]&KNet [Yuret,
2016]. However, certain design elements – Coupled Model and Parameters & Internal Mutations – associated with
these frameworks make them less compiler and user friendly. Making changes to address these problems in the
respective frameworks would be too disruptive for users. In this chapter, we introduce Lux: a neural network
framework built completely using pure functions to make it both compiler and autodiff friendly.

The main design principles of Lux include:

1. Truly Immutable Models storing information to construct a layer rather than the parameters and states.

2. All models are pure functions and outputs are completely deterministic given the inputs.

3. Models are decoupled from the parameters and states. This allows us to perform easy parameter manipu-
lation like in Weight Normalization, Hypernetworks and Spectral Normalization.

2 Composability via GeneRic PaRameteRization

One of the distinguishing features of Lux.jl is its generic parameters interface. Lux can accept any special pa-
rameter type as long as the parameters are accessible via getproperty. This allows Lux to seamlessly interface
with packages that are completely agnostic to the specifics of Lux. This is in contrast to most prior works that
require glue code for interfacing – like Flux.jl [Innes, 2018b] – or requires reimplementing algorithms in spe-
cific Domain Specific Languages (DSLs) – like Pytorch [Paszke et al., 2019, 2017], JAX [Bradbury et al., 2018],
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Tensorflow [Abadi et al., 2015].

Scientific Computing software differ from most modern ML software in that they are designed to operate on
arrays, while ML software operate on deeply nested structures. This is a fundamental difference that makes it
difficult to interface between the two. However, Lux.jl is designed to be agnostic to the underlying data structure.
In this section, we will demonstrate several examples interfacing Lux with Scientific Computing frameworks
solving Neural ODEs, Physics Informed Neural Networks and Optimization Problems.

2.1 NeuRal DiffeRential Eations

In this thesis, we have described Neural ODEs in great depth. However, for physics based modelling we often
need to rely on higher order differential equations. In this section, we will describe how to model a second order
differential equation using Lux.jl and OrdinaryDiffEq.jl. We will attempt to model the acceleration of a system
using a Neural Network1:

𝑑2𝑢

𝑑𝑡2
= NN(𝑢)

1 using ComponentArrays, Lux, Optimization, OptimizationOptimisers, OrdinaryDiffEq, RecursiveArrayTools,
SciMLSensitivity, StableRNGs↩→

2

3 u0, du0, tspan = [0.0f0; 2.0f0], [0.0f0; 0.0f0], (0.0f0, 1.0f0)
4 ts = range(tspan[1], tspan[2], length=21)
5

6 model = Chain(Dense(2 => 50, tanh), Dense(50 => 2))
7 ps, st = Lux.setup(StableRNG(1234), model)
8 ps = ComponentArray(ps)
9

10 ff(du, u, p, t) = first(model(u, p, st))
11 prob = SecondOrderODEProblem{false}(ff, u0, du0, tspan, ps)
12

13 predict(θ) = Array(solve(prob, Tsit5(); p=θ, saveat=ts))
14

15 y_true = vcat(collect(0:0.05f0:1)', collect(2:-0.05f0:1)')
16

17 loss_function(θ) = sum(abs2, predict(θ)[1:2, :] .- y_true)
18

19 optprob = OptimizationProblem(OptimizationFunction{false}((x, p) -> loss_function(x),
Optimization.AutoZygote()), ps)↩→

20

21 res = Optimization.solve(optprob, Adam(0.01f0); maxiters=1000)

Figure 7.17.1.1 shows that our model is able to accurately learn the dynamics of the system from a few discrete
data points. This is a very simple example, but it demonstrates the composability of Lux.jl and DifferentialEqua-
tions ecosystem.

2.2 GRadient FRee Optimization AlgoRitHms

Lux allows the parameters of a complicated neural network to be represented as a flattened vector. This allows
it to interface directly with optimization packages without any glue code. In this example, we will train a neural

1We have modified this example from https://docs.sciml.ai/SciMLSensitivity/stable/examples/ode/second_
order_neural/

https://docs.sciml.ai/SciMLSensitivity/stable/examples/ode/second_order_neural/
https://docs.sciml.ai/SciMLSensitivity/stable/examples/ode/second_order_neural/
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(7.1.1) Learning 2𝑛𝑑 order differential equation with
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(7.1.2) Gradient Free Optimization to train a neural
network to approximate the function 𝑟 (𝜃 ) = 𝑒𝑠𝑖𝑛 (𝜃 ) −
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2𝜃−𝜋
12

)5
.

network with gradient-free optimization algorithms to learn the function:

𝑟 (𝜃 ) = 𝑒𝑠𝑖𝑛 (𝜃 ) − 2𝑐𝑜𝑠 (4𝜃 ) + 𝑠𝑖𝑛
(
2𝜃 − 𝜋
12

)5
where 𝜃 ∈ [0, 2𝜋]

We will use algorithms implemented in packages that are agnostic to the specifics of Lux2:

• Covariance Matrix Adaptation Evolutionary Strategy (CMAES) [Hansen, 2016] from CMAEvolutionStrat-
egy.jl.

• LN_NEWUOA [Powell, 2006] from NLopt.jl [Johnson and Schueller, 2021]. Since Lux allows flattened
parameters we can easily interoperate with NLopt which is a C library.

1 using ComponentArrays, FillArrays, Lux, Optimization, OptimizationCMAEvolutionStrategy,
OptimizationNLopt, StableRNGs, Statistics, Zygote↩→

2

3 r(θ) = exp(sin(θ)) - 2cos(4θ) + sin((2θ - oftype(θ, π)) / 12)^5
4

5 θs = collect(0:1.0e-2:2π)
6 rs = r.(θs)
7

8 model = Chain(Dense(1 => 16, tanh), Dense(16 => 16, tanh), Dense(16 => 1))
9 ps, st = Lux.setup(StableRNG(1234), model)

10 ps = ComponentArray(ps)
11 ps_flat, ps_ax = Float64.(getdata(ps)), getaxes(ps)
12

13 function loss_function(ps, _)
14 ps_ = ComponentArray(ps, ps_ax)
15 r_pred, st_ = model(reshape(θs, 1, :), ps_, st)
16 return mean(abs2, vec(r_pred) .- rs)
17 end
18

2Note that these are not the most efficient algorithms to solve the problem, but these simply demonstrate the composability of Lux.
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Figure 7.2: Physics Informed Neural Networks using Lux for solving Kuramoto–Sivashinsky equation.

19 opt_func = OptimizationFunction{false}(loss_function, Optimization.AutoZygote())
20 opt_prob = OptimizationProblem(opt_func, ps_flat)
21

22 sol_LN_NEWUOA = solve(opt_prob, OptimizationNLopt.NLopt.LN_NEWUOA(); maxiters=100_000)
23 sol_CMAES = solve(opt_prob, CMAEvolutionStrategyOpt(); maxiters=100_000)

2.3 PHysics InfoRmed NeuRal NetwoRKs

Lux.jl supports PINNs using NeuralPDE.jl [Zubov et al., 2021]. In this example, we will solve the Kuramoto–
Sivashinsky equation3:

𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

+ 𝑢 (𝑥, 𝑡) · 𝜕𝑢 (𝑥, 𝑡)
𝜕𝑥

+ 𝛼 · 𝜕
2𝑢 (𝑥, 𝑡)
𝜕𝑥2

+ 𝛽 · 𝜕
3𝑢 (𝑥, 𝑡)
𝜕𝑥3

+ 𝛾 · 𝜕
4𝑢 (𝑥, 𝑡)
𝜕𝑥4

= 0

For 𝛼 = 𝛾 = 1 and 𝛽 = 4, we have the exact analytic solution:

𝑢𝑒 (𝑥, 𝑡) = 11 + 15 tanh𝜃 − 15 tanh2 𝜃 − 15 tanh3 𝜃

where 𝜃 = 𝑡 − 𝑥
2

The initial and boundary conditions are given by:

𝑢 (𝑥, 0) = 𝑢𝑒 (𝑥, 0)

𝑢 (−10, 𝑡) = 𝑢𝑒 (−10, 𝑡)

𝑢 (10, 𝑡) = 𝑢𝑒 (10, 𝑡)
𝜕𝑢

𝜕𝑥
(−10, 𝑡) = 𝜕𝑢𝑒

𝜕𝑡
(−10, 𝑡)

𝜕𝑢

𝜕𝑥
(10, 𝑡) = 𝜕𝑢𝑒

𝜕𝑡
(10, 𝑡)

3This example has been adapted from https://docs.sciml.ai/NeuralPDE/stable/examples/ks/

https://docs.sciml.ai/NeuralPDE/stable/examples/ks/
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1 using NeuralPDE, Lux, NNlib, ModelingToolkit, Optimization, OptimizationOptimJL
2 import ModelingToolkit: Interval, infimum, supremum
3

4 @parameters x, t
5 @variables u(..)
6 ∂t = Differential(t)
7 ∂x = Differential(x)
8 ∂x² = Differential(x)^2
9 ∂x³ = Differential(x)^3

10 ∂x⁴ = Differential(x)^4
11

12 α = 1
13 β = 4
14 γ = 1
15 eq = ∂t(u(x, t)) + u(x, t) * ∂x(u(x, t)) + α * ∂x²(u(x, t)) + β * ∂x³(u(x, t)) + γ * ∂x⁴(u(x, t)) ~ 0
16

17 uₑ(x, t; θ=-x / 2 + t) = 11 + 15 * tanh(θ) - 15 * tanh(θ)^2 - 15 * tanh(θ)^3
18 du(x, t; θ=-x / 2 + t) = 15 / 2 * (tanh(θ) + 1) * (3 * tanh(θ) - 1) * sech(z)^2
19

20 bcs = [
21 u(x, 0) ~ uₑ(x, 0),
22 u(-10, t) ~ uₑ(-10, t),
23 u(10, t) ~ uₑ(10, t),
24 ∂x(u(-10, t)) ~ du(-10, t),
25 ∂x(u(10, t)) ~ du(10, t),
26 ]
27

28 # Space and time domains
29 domains = [x ∈ Interval(-10.0, 10.0), t ∈ Interval(0.0, 1.0)]
30

31 # Discretization
32 dx = 0.4;
33 dt = 0.2;
34

35 # Neural network
36 chain = Chain(Dense(2 => 12, σ), Dense(12 => 12, σ), Dense(12 => 1))
37

38 discretization = PhysicsInformedNN(chain, GridTraining([dx, dt]))
39 @named pde_system = PDESystem(eq, bcs, domains, [x, t], [u(x, t)])
40 prob = discretize(pde_system, discretization)
41

42 callback = function (p, l)
43 println("Current loss is: $l")
44 return false
45 end
46

47 opt = OptimizationOptimJL.BFGS()
48 res = Optimization.solve(prob, opt; callback, maxiters=2000)
49 ϕ = discretization.phi

Figure 7.2 demonstrates that our PINN can solve the Kuramoto–Sivashinsky equation with high accuracy.

3 Discussion

In this chapter, we have introduced a new neural network framework in Julia. We designed the framework to
be modular and composable. We demonstrated the composability of Lux.jl by showing how it can be used with
other packages in the Julia ecosystem. We also showed that Lux.jl can be used to solve a variety of problems.
Despite being in early days of development, Lux.jl is already being used extensively in research projects and
being extended by the open-source community.
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3.1 CuRRent Limitations

Lux.jl has the following known limitations, most of which are being actively worked upon:

• Lux.jl is not the fastest framework for training small neural networks on CPU. For smaller architectures,
SmallChains.jl is the fastest option.

• Lux.jl shares the same backend as Flux.jl and hence migration from Flux to Lux doesn’t speed up user code.
However, a new backend LuxLib.jl is under development which should be faster than Flux.jl’s backend.

• Lux.jl is currently tested to work on CPU and NVIDIA CUDA GPUs. Support for AMD GPUs is being
worked upon.

• Nested Reverse Mode differentiation of Lux models is not supported yet.

https://github.com/PumasAI/SimpleChains.jl
https://github.com/LuxDL/LuxLib.jl
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CHAPTER8
Conclusion

In this thesis, we have two objectives. Firstly, we have attempted to provide an overview of numerical meth-
ods literature for deep learning practitioners and researchers. By reviewing traditional numerical methods, we
attempt to show how we can leverage domain specific knowledge of solver internals to accelerate training of
Neural Differential Equations. Additionally, we discuss non-linear solvers to expose readers to the internals of
deep equilibrium models and draw parallels between Neural ODEs and deep equilibrium models.

Additionally in this thesis we have introduced two novel training strategies for accelerating Neural Differential
Equations:

1. Building upon the prior works on discrete deep equilibrium networks [Bai et al., 2019, 2020], we propose
continuous deep equilibrium methods [Pal et al., 2022] which are a special case for Neural ODEs with
the integration end-point being ∞. Interestingly, we demonstrate that integrating Neural ODEs to ∞
paradoxically, simplifies the back-propagation thereby accelerating training significantly.

Additioanlly, we propose methods like Skip DEQ and Skip Regularized DEQs which further accelerate
training by attempting to predict the steady-state or simplify the learned dynamics.

2. Next, we provide a detailed review on Pal et al. [2021], and discuss the major shortcomings of discrete
sensitivity analysis methods. We then propose a novel local regularization method for Neural ODEs which
is inspired by the global regularization method proposed in Pal et al. [2021]. We demonstrate that our
proposed method is able to achieve similar performance as global regularization methods while being
significantly easier to integrate into existing code-bases.
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FutuRe WoRKs

In this thesis, we have described how to accelerate the training and prediction timings of Neural Differential
Equations. However, despite these advances we note that these models are still not competitive to standard
explicit models for classical deep learning tasks. But despite their shortcomings in traditional tasks, we note
that implicit models still hold immense value in areas where it is hard to retrofit explicit models. For example,
in the case of physical simulations, implicit models like Hamiltonian Neural Networks [Greydanus et al., 2019],
Lagrangian Neural Networks [Cranmer et al., 2020], etc. can directly conserve physical laws. Continuous Nor-
malizing Flows [Chen et al., 2018] and FFJORD [Grathwohl et al., 2018] are able to perform density estimation
via normalizing flows without the need for specific invertible architectures. Latent ODEmodels [Rubanova et al.,
2019] can successfully learn time-series models from irregularly spaced data. Hence, while implicit models might
not be competitive in traditional domains like image classification, we believe that they are already competitive
in several niche domains.

Another domain where implicit models can be of immense value are in enforcing hard constraints on the output
space of the neural networks. We have already seen convex optimization layers [Agrawal et al., 2019] for enforc-
ing convex constraints in neural network outputs. However, we believe we can use implicit models like Neural
Boundary Value Problems (BVPs) for enforcing arbitrary equality constraints on the output space. Essentially,
solving general BVPs involve solving a Nonlinear Problem minimizing a residual to match boundary conditions.
Therefore, similar to DEQs their back-propagation is given by a simple linear equation that can be efficiently
solved using Matrix-Free Krylov methods.

Furthermore, we can enforce properties like complementarity on the output space in the form of Neural Nonlin-
ear Complementarity Models:

𝑥𝑇 𝑓 (𝑥) = 0

𝑥 ≥ 0 𝑓 (𝑥) ≥ 0

Despite these strong inductive biases in these models, we note that the back-propagation through these models
is still well defined and extremely simple. Most of these models can be reduced to Nonlinear Problems and hence
back-propagation through these models is as simple as solving a Linear Problem. We believe that reformulation
of common constraints as Nonlinear Problems opens up a pandora’s box of possibilities for implicit models in
enforcing hard constraints.
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