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ABSTRACT

ESSAYS ON ECUILIBRIA IN DYNAMIC ECONOMIES

Jonathan Lewlis PBurke

Submitted to the Department of Economics on May 16, 1985 in partial
fulfillment of the requirement for the degree of Doctor of Philosophy.

This thesis is focused on furthuring the study of equibria in
dynamic economies. In chapters 1 and 2 we consider a straightforward
extention of a classical exchange economy that is modified to
accomodate an infinite number of agents and goods. In chapter 3 we

consider a more general dynamic model that incorporates incomplete
commodity markets, production, and stock markets.

CQur analysis naturally begins in chapter I where we establish the
general existence of competitive equilibria for dynamic models. We
then proceed to establish some general properties of "monetary"
equilibria. Specifically, we establish the general existence of debt
equilibria (i.e. equilibria in which there are negative quantities of
fiat money outstanding), the sufficiency of monetary policy to
implement any Pareto optimal allocation scheme (i.e. the second
fundamental theorem of wel fare economics), and some continuity
properties of monetary policies.

In chapter 2 we focus on characterizing the simplest nonetary
policies that quarentee intertemporal efficiency. Althcugh this
problem has been extensivly studied by others, our results are
significant since we permit a quite general f>rm of non-stationarity
of agents tastes and endownents. In a sence, ours is the only model
considered to date that evolves over time (i.e. is genuinely dynamic).

Finally, in chapter 3, we provide a foundation to the study of
incomplete markets by establishing the existence of competitive
equilibria for a general class of sequencial economies with production
and stock markets.

Thesis Supervisor: Timothy J. Kehoe
Title: Associate Professor of Economics
Thesis Supervisor: Eric S. Maskin
Title: Professor of Economics (Harvard)
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CHAPTER I

EQUILIBRIA IN DYNAMIC ECONOMIES

1. INTRCDUCTION

In the study of the general properties of competitive equilibria,
a lot of attention has been focused on just a few areas. Perhaps the
most fundamental area one can explore are the conditions under which
competitive equilibria are guaranteed to exist. (nce it is known that
a certain class of economies has equilibria, one can then proceed to
investigate their optimality properties. Another, closely related,
area that has received extensive examination are the characteristics
of optimal goverrmental policies. For example, one may ask when the
second fundamental theorem of welfare economics is applicable (see
Arrow [1951] or Debreu [1959]). That is, ore determines when any
Pareto optimal distribution of goods can be implemented through a

system of lump-sum inccme or commodity transfers.

For many years, the above issues have been studied in the context
of static models. (We call these models static because they involve
only finite numbers of agents and goods and hence presuppose the
existence of some (arbitrary) terminal date.) It is only recently
that these issues have been rigorously studied for general dynamic
models (i.e. models that involve infinite numbers of agents and
goods) . This paper is focused on furthering the latter line of

research,



The early equilibrium existence theorems of Arrow and
Debreu [1954], McKensie [1954], and Nikaido [1956], for static mecdels,
have been refined over the years as the assumptions imposed to
guarantee the existence of equilibria have been successively weakened.
McKensie [1981] provides a brief review of this line of research as
well s what appears to be the minimel set of sufficient restrictions
known to date. For dynamic models, Balasko, Cass, Shell [1980(b)] and
Wilson [1981] have been able to establish existence results under
assumptions that are, for the most part, analogous to those imposed in
McKensie [1981). 1In fact, the only assumption crucial to the
existence proofs of Balasko, Cass, Shell and Wilson that is
sufficiently stronger then the corresponding assumption of McKensie is
there irreducibility conditions. e of the contributions of this
paper is a proof of the existence of competitive equilibria that does
not require the stronger form of irreducibility imposed by Palzsko et
al. Hence, we have a general existence theorem for dynamic economies
that is a direct analog of, perhaps, the strongest result yet attained

for static economies.

It is well-known that, under very general conditions, the
competitive equilibria of a static economy are Pareto optimal (see
Arrow [1951] or Debreu [1959]). On the other hand, it is also
well-known (see Samuelson [1958]) that this first fundamental theorem
of welfare economics fails for a general class of dynamic economies.
The crucial feature of these models that accounts for this discrepancy
is that the set of Pareto optimal allocation schemes is not necessary

closed in dynamic economies. In fact, in this paper, we characterize



a very lerge cless of dynamic economies for which the Pareto optimal
set is not closed. To illustrate the effect of the non-closedness of
the Pareto optimal set on the non-existence of optimal competitive
equilibria, we establish the general existence of comgetitive
equilibria that are in the closure of the set of Pareto optimal
ellocations. That is, even if a particular dynamic economy has no
optimal competitive equilibria, we know that at least one of its
equilibria is arbitrarily close to the collection of optimal
allocations. In a sense, these equilibria are "approximately"
optimal. The non-closedness of the set of Pareto optimal allocztions

prevents us from concluding that every economy has optimal competitive

equilibria.

The potential non-optimality of competitive equilibria in dynamic
economies makes the study of optimal govermmental policies of
particular importance. That is, since there may be no optimal
competitive equilibria in a particular dynamic economy, governmental
intervention that restores efficiency is clearly desirable. In
contrast, it is ambiguous whether intervention is beneficial in a
static economy since the purely competitive outcomes are already

Pareto optimal.

In dealing with the issue of the existence of optimal public
policies, Ealasko, Cass, Shell [1980(a)] establish the second
fundamental theorem of welfare economics for a fairly general class of
overlapping-generations economies. That is, they show that any Parecto

optimal allocation scheme can be supported as an equilibrium after a



lunp-sum redistribution of agents incomes or endowments. In our
paper, we extend this welfare theorem to cover a much more general

class of dynamic economies.

Given that any desirable outcome can be attained through lump-sum
redistribution of inccme (which one can think of as a (long-term)
monetary policy), we can ask if it is possible to move continuously
from one optimal policy to another. That is, given that the
government is currently implementing a particular optimal policy, if a
new target allocation scheme is chosen, we ask if the government's
policy can be smoothly changed to implement the new target while
maintaining an optimal policy at each point in time. Formally, we ask
Lf the class of optimal policies is arc-connected. This connectedness
problem was first considered by Ealasko and Shell [1981] for a class
of overlapping generations economies. Unfortunately, their proof
presupposes the closedness of the set of Pareto optimel allocations
(which we refute in Corollary 7.6). In this paper, we manage to alter
their proof and establish the arc-connectedness of optimal

governmental policies for our general class of dynamic economies.

In this paper, we examine each of the afore mentioned properties
of equilibria in the context of a dynamic economy. In section 2, we
introduce our model with its definitions and assumptions. 1In section
3, we establish the general compactness of equilibrium prices and
allocations. In section 4, we exploit our compactness result to
establish the general existence of a competitive equilibrium. As

previously mentioned, our existence result strengthens the results of



Balasko, Cass, Shell [1980(b)] and Wilson [1981] in that we impose a
weaker (and much more natural) irreducibility assumption. 1In section
5, we discuss which of our assumptions are essential to our existence
proof and which can be relaxed or eliminated. In section 6, we return
again to our compactness result to establish the general existence of
equilibria with outside debt (i.e. equilibria in which there are

negative quantities of fiat money outstanding).

In section 7, we establish the general non-closedness of the set
of Pareto optimal allocations and discuss the implications on the

optimality of equilibria in dynamic models.

In section 8, we further explore the compactness of equilibrium
prices and allocations and derive results that we exploit in the
following sections. In section 9, we establish the second fundamental
theorem of welfare economics for our general class of dynamic
economies., Finally, in section 10, we establish the continuity of
governmental monetary policy by supplying a proof of the
arc—~-connectedness of the set of Pareto optimal allocations and

monetary policies.



2. THE MCDEL

Our model is a straightforward extension of a classiczl pure
exchange economy (e.g. see McKensie [1981]) modified to accommcdzte an
infinite number of agents and goods. Let A be the set of agents and I
the set of goods. For each agent a € A, let xa be his consumption
set, (>)a his preference relation over X , and w, his endowment. An
economy can then be specified as a collection (Xa,(>)a,wa)aeA.

Both the set of agents, A, and goods, I, will be indexed by the
natural numbers. All subsets of R°° will be .endowed with the product
topology (see Bourbaki [1966]) unless otherwise specified. 1In
particula'r, the convergence of a sequence of points in R°°, { S, },
will be taken to mean pointwise convergence, i.e. s

k—->31s

equivalent to si — s' for each i.

The following is a list of assumptions that we employ throughout
this paper. As previously mentioned, the necessity of these

assumptions in guaranteeing the existence of equilibria is discussed

in section 5.

Assumption I (Regularity of consumption spaces and the survival

assumption)

For each a € A:

00
(1) X, = R,

(i1) W, € X,.



Assumption II (Regularity of preferences)

For each a € A; the preferences of agent a, (>)a' are
representable by a utility function, ua(o), that satisfies:
(1) u, : X, = R is continuous,

(ii) u_(e) is quasi-concave.

Assumption III (Free disposal)

For all ae A and x e X;;5 if y > x, then y (>,)a X

We assume that the total endowment of each good is finite and
define w :Z: W, as the aggregate endowment of the economy.
aeh
Assumption IV (Positive aggregate endowment)

w>> 0.

We say that an agent a € A desires good i€ I if, for some bundle

X, € Xa and scalar ¢ > 0,

1
a’

e XatEs ) O, (L Lkl

(x
For simplicity, we assume that each good is desired by at least one
agent (this assumption is clearly non-restrictive). For later

notational convenience, we redefine our indices, if necessary, so that

good i is desired by some agent a { 1i.

Assumption V (Finite number of agents for each good)
For each good, there are only a finite number of agents that

desire the good.



Note that assumption V is the only assumption imposed thus far
that is not analogous to one of the assumptions typicelly imposed on &
static economy. Assumption V should be innocuous for most
interpretations of our model. That is, since there can be only a
finite number of agents "alive" &at any given point in time, when a
particular good is availeble for consumption, the sub-collection of
agents that have tastes for a good must also be finite. 1In section 5,
we present an example that demonstrates the necessity of imposing an
assumption like V to guarantee the existence of competitive
equilibria. (The necessity of assumption V was overlooked in the

existence theorem of Wilson [19811].)

An allocation scheme for the economy is a collection (xa)aeA such
that X, € Xa for each a. The set of all such schemes is denoted by
X = X, =X, »X,*... .

a>e<A a 1 2
The sub-collection of feasible allocation schemes is defined

xf={xeX:Zx =W l.

aeA a
Assumption VI (Irreducibility)
For any partition of A into two non-empty subsets A0 end A1 and
for any feasible allocation scheme (xa) € Xr; there is an agent

ae Ao such that x_ + a%\ Wa (>)a X 5e
1

As in static models, the irreducibility assumption is imposed to
insure that each agent has income. (The positivity of income being
required to insure that market demands behave continuously (see lemma

3.2)
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A price system for the economy is a vector p e R°°, where pi
denotes the price of good i. If we interpret our mcdel as being
dynamic, then we think of prices expressed in terms of present
discounted value. By Assumption III, we can restrict our attention to
non-negative price vectors p e R:O. Agent a's market demand
correspondence Da(p,y) (given prices p € Rfo and income y > 0) is
defined to be the collection of all solutions to

max Ua(x)
X =y
X € Xa.
- 2.1 Definition.
(i) A Market Equilibrium consists of a price system [ e R?_o and a
feasible allocation scheme (xa) € X, such that for each agent a € A:
pxa < oo
X, € D_(p,px)
(ii) A Monetary Equilibrium is a Market Equilibrium where
pwa < 0o for each agent a € A.
(iii) A Competitive Equilibrium is a Market Equilibrium where

px, = pw, for each agent a € A.

The market equilibria of an economy are those equilibria that can
be attained through the open market after a lump-sum redistribution of
endowments., The monetary equilibria are those that can be implemented
by a lunp-sum redistribution of income. The difference between the
two equilibria arises when the value of some agents endowment is

infinite, pw, = 0o, since in this case an income transfer is not
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well-defined. We =mploy the familiar notion of competitive equilibria
to be those equilibria that can be attained without any govermmental

intervention.
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3. CCMPACTNESS OF PRICES AND ALLOCATIOMNS

In this section, we establish compactness results that are later
employed to establish the existence of competitive equilibria
(propositions 4,3 and 4.,4), the existence of debt equilibria
(proposition 6.1), and the existence of competitive equilibria in the

closure of the set of optimal allocations (proposition 7.2).

In order to guarantee the upper-hemi continuity of demand, we
\
follow Debreu [1959] and (temporarily) bound consumption sets.
Specifically, let us restrict consumption to be no greater than three

times the aggregate endowment. Agent a's demand, D;a(p,y), is then the

collection of all solutions to

m ax ua(x)
s.t.px = ¥y
X € X‘!a

where the agents feasibility space is defined to be

Xp= Uxe X, txg3wl.

The following lemma is an immediate consequence of assumption I(i)

and the Tychonoff theorem (see Bourbaki [1966]).
3.1 Lemma. For each a € A, X; is compact.
Qur next lemms extends the well-known result, for static

economies, that demand is upper hemi-continuous as long as income is

positive.
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3.2 Lemma. For each agent a e A, D'3(-,-) is upper hemi-continuous

at each point (p,y) e R?_oxR

++

Proof of lemma 3.2.

Consider any sequence { (pk,xk)}in R?_Ox X, such that

xk € Dé(pk,pkxk) for each k, (pk.xk) —> (p,x), and pkxk — y > 0,

We establish the desired continuity property by showing x e D'a(p,y) .

k

Since the components of p~ and xk are non-negetive for each k, one

may verify that px ¢ lim pkxk = Y.
Therefore, x is affordable given prices p. If x was not also optimal,

ie.x ¢ Dé(p,y) , then there is a z € x; such that pz { y and

z (>)a X.

By assumption II(i), there exists a t sufficiently large and a A< 1
such that

~ ' 1 t
(a) Az G), x, where 2z' = (z, ... , 2 ).
y > 0 implies

(b) p(Az') < vy.

But, for large k, (a) together with assumption II(i) implies
k
1
Az (>)a X
while (b) and the finiteness of z' imply
pk()\z') < pkxk.
k k) .

But, this contradicts x" € D;(pk,pkx

Q.E.D.

The following corollary of lemma 3.2 is useful in establishing
both our existence results of sections 4 and 6 and our results

concerning the continuity of governmental policies.
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3.3 Corollary. Consider any sequence | (pk,xk) } in R?_O- xa such

that (pk,xk) — (p,x). If xk € Da(pk,pkxk) for all k and if px > 0,

then 1lim pkxk exists and px = lim p"(xk

Proof of Corollary 3.3.

If either lim pkxk does not exist or it does exist and

px # lim pkxk, then, since px ¢ lim inf pkxk, we can choose a

subsequence such that lim pkxk exists and px <« lim pkxk

general lim pkxk

If lim pkxk = 0o, then by assumption VI, there exists a point

(where in

§ o0).

)
y € xa such that y (>)a Xx. By assumption II(i), there exists a t such

that (y1. e yt. 0, «.. ) (>)a X. But, this contradicts
xk € Dé(pk,pkxk) , Since for large Kk, pk(y1,....yt,0....) < pkxk.
Therefore, lim pkxk < oo.

By lemma 3.2, (pk,pkxk) o (p,limpkxk) and lim pkxk > px>0

implies xk € Dé(pk,limpkxk) . But, by the non-satiation implied by
assumption VI, xk € D;}(pk ,limpkxk) implies px = lim pkxk.

Q.E.D.

The following proposition allows us to establish the existence of
competitive equilibria for our infinite economy by considering a
sequence of equilibria of truncated (finite) sub-economies.
Propositions like this are at the heart of virtually all existence

proofs for dynamic economies (e.g. see Bewley [1972], Balasko, Cass,

Shell [1980(b)], and Wilson [19811]).

3.4 Proposition. Consider any collection of positive scalars
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(sa) € R_c: and any sequence of points in Rfon X, (pk,(x:)) }, that

satisfy the following for each k=1, 2, ... and a= 1,
(1 pkx1

(ii) pkx: < oo

k
a

A
=1
k k. k
1
(iii) x" e Da(D P xa)
(iv) (xl‘:‘)i = 0 unless agent a has tastes for good i
k k k

(v) p ::a Y s,pw,

(vi) ;x; — w as k — oo.
Assuming that the above conditions are met, there is a limit point,
(p.(xa)), of the sequence. Furthermore, the limit point is a monetary

equilibrium.

Proof of Proposition 3.4,
By Lemma 3.1 and the Cantor diagonalization process, we can
restrict our attention to a subsequence such that (x:) -~ (xa). By

assumption V and hypothesis (iv) and (vi), (xa) e X (Note that

£
without assumption V and hypothesis (iv), we could merely
k
- .k
conclude ) x_ ¢ wsince, in general ) x_ lim inf 3_ x5 = w.)
aeh aeh a=1
In order to guarantee that there is a further subsequence such
that prices converge, we estarlish
(a) for eacha € A, there is a B_ < oo suwh that p"x'; <B.
If (a) did not hold, then there is an agent a € A and a further

suwb sequence such that pkx: —> 00.

LetAo=[aeA:pkx§—>oo}

and
A:{aeA-forsomeB<oopkxk<B}
1 ‘ a ! a a ‘"’

By the Cantor diagonalization process, there exists a subsequence such



- 15 =

that each a € A is in either A0 or Al’ That is, A0 and A1 form a
partition of A.

By our assumption that (a) does not hold, we know that AO t 0.

By hypothesis (i), 1 e A, implies A, £ 0.

Therefore, since (xa) € Xf., assumption VI implies that there is an

agent a € A, such that x_ + Z w, O), x,.

ael
By assumption II(i), there is aI}‘< 1 and a finite subset of A1, A;,
such that
)\Xa + Z L (>)a X 40
2eh’

Again, by1II(i) , this implies
)\xk + Z w_ (>) xk for large k.
a ach!. @ a "a
1
Clearly, Axl; + Z W, € Xa for large k, since X5 { W,

€l
Therefore, hypothe.1sis (iii) implies
2 pkwa > (1-)«)pkxl; for large k.
aeh

But, by the construction of A1 and hypothesis (v),

(1-)\)pkxl; < Z pkwa < Z (1/s )pkxl; < Z B /s, < oo.
aeA! aeh! a aeA!

1
But, this contradicts a € Aé since pkxl; — o,

The above paragraph establishes (a). To bound prices, we note
that x e Xy implies that for each i, there is an agent a such that
xg > 0. Hence, for large k,
ky i i

(xa) > xa/2 > 0.

By (a), this implies (pk)ix:/z < (p“)“(x‘?;)JL ¢ Pk < B, which yields
Ky 1 i

(p Yy < 2Ba/xa for all large k.

Therefore, the price sequence { pk } is bounded.

Hence, by the Tychonoff theorem, we can further restrict our attention

to a subsequence such that pk —> p.

To sum up our results thus far, we have established (a),
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k , k%
(p ,(xa)) —_> (p.(xa)). and (xa) € Xs.
To show that the limit point, (P'(xa)), is a monetary equilibrium,
we need to establish the following three facts.
(b) pxa< oo for a € A
(c) X, € Da(p,pxa) for a e A
(d) pw, < oo for a e A.
Fix any a e A.
Since each of the components of pk, wa, and xl; are non-negative, one
may verify
L k k k
pW, & lim inf p LR and PX, £ lim inf p X,
(b) now follows from (a) since px_ ¢ lim inf pkxl; < B, < oo.

Similarly, (d) follows from (a) and the hypothesis (v) since

.. k . k k
PW, § lim inf p W IS (1/sa)l:|.m inf p X4

< Ba/sa < oo.

In order to verify (c), we employ
(e) 238 > 0 for ae€ A.
We will not provide a proof of (e) here since its derivation would
directly parallel our proof of (a). In particular, if (e) did not
hold, then we can obtain a contradiction by applying assumption III to
the sets A0={aeA:pxa>0 } and A,I ={ac—A:pxa=0 }. Given
(e), (c) follows from corollary 3.3 (since X, = lim pkxl;), (iii), and

lemma 3. 2.

Q. E.D.

The following corollary is employed to extend our result
concerning the existence of competitive equilibria (proposition 4.3).
To establish the existence of general debt equilibria (proposition

6.1) and the existence of competitive equilibria in the closure of the
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set of optimal allocations (rroposition 7.2), we construct a sequence
of economies in which endownents are purposefully redistributed . By
applying our existence result (Froposition 4.3) to the k'th perturbed
€conomy, we know that there exists an equilibrium (pk,(x:) ). By
applying the following corollary, we obtain a limiting equilibrium for
our full economy., The Sequence of perturbed economies will be
constructed so that the limiting equilibrium inherits the desired

properties.

Cne may readily verify that the following corollary is an

immed iate consequence of 1emms 3. 2.

3.5 Corollary. For any collection of positive scalars (sa) € Rf‘:,
the collection of all monetary equilibrium such that
px1 =1
x; = 0 unless agent a has tastes for good i

pxa 2 sapwa for all ae A;

1s a compact subset of R?_ol xf.

In static models, the above compactness results (proposition 3.4
and corollary 3.5) are trivial consequences of the continuity of
demand (lemma 3.2). This is due to the fact that, with only a finite
nunber of goods, prices can be normalized to lie in a compact set
(typically the wunit simplex) . Feasible allocation schemes also lie in
a compact set since they are bounded by the aggregate endowment.
Hence, to establish corollary 3.5, for example, one need only show

that the specified collection of equilibria is closed, since it is
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elready known that the set lies in a compact space. The closedness of
the set follows directly from lemma 3.2 and assumption VI (VI insures

that all incomes are positive).



-19 -

by, : GENERAL EXISTENCE OF EQUILIBRIA

In this section, we establish the general existence of competitive
equilibria for dynamic economies. Following Balasko, Cass,
Shell [1980(b)] and Wilson [1981], we find an equilibrium for our full
economy as a limit point of equilibria from a sequence of truncated
sub-economies. In order to guarantee the existence of equilibria for
each of the truncated sub-economies, Balasko et al. require that each
such economy is irreducible. In this paper, however, we refine their
techniques and, thereby, eliminate the need for the sub-economy
irreducibility assumptions. To avoid using these irreducibility
assumptions (which are imposed to guarantee that each agent has a
positive income), we simply perturb endownents in the truncated
economies by adding positive quantities to each agents endowment of
each good. Since each agent then has a strictly-positive (net)
endowment of all goods, the positivity of income is guaranteed. The
existence of equilibria for each truncated economy then follows from

classical methods.

The following lemma establishes the existence of equilibria for
each truncated sub-economy. In the k'th sub-economy, agent a

(a=1, ..., k) receives the extra endownent vector (1/2)aEk.

4,1 Lemma. For each k=1, 2, ... and ek € Rf_‘i with Gk $ w;

there is a pair (pk.(xl;)) € R?_o- X such that for a= 1, ... , k:

(1) pkxl;l = pkwa + (1/2);"pkek < oo
K _ ook KoK
(ii) X, € Da(p P xa)
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(iii) For each i = 1, ..., k; Z ((xla()i- w;) = (1-(1/2)k)6|i.

Proof of Lemma 4. 1.

For any k = 2, 3, ..., we restrict our attention to the following
sub-economy, Ek, which involves only the first k agents and the first
k goods.

For a =1, ... , k; agent a's preferences are given by
k) k

ua(x1, cee 4 X = ua(x1, cae 9 Xy 3wk+1, ees )

and his endowmnents are

ky

W_ = (w;, eee g Wa

: + (1/2)3(612, ey el‘f).

Note that, since ek >> 0, each of the agents has a positive endowment
of all goods.

One may readily verify that assumptions I, II, III, and the
non-satiation implied by VI, are sufficient to guarantee that the
above sub-economy has a competitive equilibrium (e.g. see
Debreu [1959] of Arrow and Hahn [1971]). We conclude our proof by
completing this equilibrium into a pair (pk,(xg)) thaﬁ satisfies
(1) - (iii) of our lemma.

Let (p1, cee pk) be the equilibrium prices and (x;, cee xg) be
the allocation to agent a.

The equilibrium properties of these prices and allocations can be
written:
(a) (p1, oo pk) >0

(b) (x;, e, x';) solves
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k .
@ . Glady = -0 g for =1, L k.

e=1
We define the desired gair (p¥,(xX)) by
pk = (p1, oo s pk, 0y ves )
x‘;: (x;. cee s x';, WY ) foraz=1, ..., k

and for completeness
X, = 0 for a = k+i, k+#2, ... .
ne may readily verify that (a) - (c) imply that (pk,(xl;)) satisfies

(1) - (iii).

Q. E.D.

We now exploit our general compactness result, proposition 3.4, to
find a competitive equilibrium for our full economy as a limit point
of the sequence of equilibria, { (pk.(xla()) }, described in lemma 4. 1.
The only subtlety in our proof lies in showing that we can choose a
sequence of perturbations, {Ek }, that tend to zero fast enough so as

not to effect each agents income in the limit, i.e. pkEk - 0.

Corollary 3.3 gives some insight as to why transfer paynents may
be required in the general equilibrium described in mroposition 4.2
and why these payments are non-negative. Since pkEk —> 0, lemma
4,1(i) implies lim pkx'; = lim pkwa while corollary 3.3 implies
X, = lim pkxg. But, if agent a has a positive endownent of an

infinite number of goods, then in general Pw, ¢ lim pkwa. That is,
incame, Pw,, is only a semi-continuwus function of prices. We
therefore have the inequality, Pw, § Px ..

4,2 Proposition. There exists a monetary equilibrium such that
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for each a e A:
(1) px_ 3 pw,

(ii) Px, = pw, if ”eix > 0 for only a finite number of 1.

Before we establish the above result, we present sufficient
conditions under which compctitive equilibria are guaranteed to exist.

(Proposition 4.3 below corresponds to Theorem 2 in Wilson [19811].)

4,3 Proposition. If either:
(i) for each a € A, wjé > 0 for only a finite number of i, or
(ii) there is a finite subset of agents BC A and an ¢ > 0 such
that 3 w_ ) Ew;

aeB
then a competitive equilibrium exists.

Proof of Proposition 4.3 (given Proposition 4,2).

In each case (i) or (ii), we simply show that the monetary
equilibriun given in proposition 4.2 satisfies px, = Pv, for a - A
(and is therefore a competitive equilibrium).

If (i) is satisfied, then P, = pw, for a¢e A follows immediately
from part {(ii) of proposition 4.2,

Assume that (ii) is satisfied. By definition 2. 1(ii), px, < oo
for ae B. FHence, since B is finite, (ii) implies
(a) pw ¢ (1/e)Z pw, < oo.

aeB

But, the market clearing constraint > x_= S Was part (1) of

ael aeh
proposition 4.2, and (a) imply

an= PY, for a€ A.

Q.E.D.
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Proof of Proposition 4.2.
Let Q++ denote the collection of positive rational numbers. Since
Q++ is countable, it follows that Q++ is also countable, Therefore,
we can list iis elements as
(03]
Q++ = [ q1, q2' se e }-
We recursively define the desired sequence of perturbations { Ek } to
be elements in G%°.
++
Let eo = W.
For k=1, 2, ... ;
let g, = min { (1/2)€,_1, qy },
where for any vectors u,v € R°°, w =min { u, v } denotes the vector
defined wt = min { ut, vt} for t =1, 2, ... .
- k kK 00 . G
For each k, let (p .(xa)) € R~ X be the pair of equilibria from
lemma 4.1 that correspond to Ek‘ That is, for a=1, ... , k:
k k k a k
(a) 0 <px, = pW, + (1/2)p€-k< 00}

k
a

k
(@ 5 cthialy = a-amMel.
a=1

(b) x € Dé(pk.pkxg);

We now verify that the sequence { (pk.(xg)) } satisfies the
hypothesies of proposition 3.3. (i) follows by (a) if we suitably
normalize prices. (ii) also follows directly from (a). (iii)
corresponds to (b). Since for each good i =1, ... , k there is some
agent a § k that has tastes for the good and since we have imposed our
free disposal assumption III, we can trivially change allocations of
free goods to insure that (iv) is satisfied. (v) follows by (a) since

k k k

PX; 32 pw,. Finally, (vi) follows by (¢) since g, ¢ (1/2)ke1

implies Ek —> 0.

Therefore, by proposition 3.3, there exists a monetary equilibrium
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(p,(xa)) such that, for some subsequence of our equilibria,
(pk.(xg)) — (p,(x)).
a
Before we can establish that (p,(xa)) satisfies conditions (i) and
(ii) of this proposition, we must guarantee
(d) pkek — 0.

Since pk —> p, there exists a q € R such that pk £ q for all k.

Clearly, we may assume q € Qﬁ. Now consider the vector q € Q?_‘:

defined by a_ = (1/q", (1/2)(1/6%), (1/2)2(1/a%), ... ),

where q = (q1, q2. oo )

Cbviously, q-qt = 2.

But, by our definition of { ek }, for all large k > t,

e < a g ¢ (1725 g, ¢ 120 aa, = a2k

(d) immediately follows from the above inequality.

Recall that corollary 3.3 implies px_ = lim pKx K.

a
In contrast, the fact that all allocations and prices are non-negative

k

only guarantees pv, ¢ lim inf p 'wa. Part (i) of our proposition now

follows from (a) and (b) since

pw_ ¢ lim pMw_ = lim px¥ - (1/2)% 1n p“ g = px,.

Similarly, part (ii) follows since if wi‘l > 0 for only a finite numkber

- 1im oK
of i, then pwa = lim p w,.

Q.E.D.
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5. EXTENTION OF EXISTENCE RESULTS

In this section, we discuss the directions in which our existence
results (propositions 4.2 and 4.3) can be generalized. In particular,
for each of the assumptions of section 2, we either provide a weaker
alternative restriction or we discuss why it is unlikely that one can

find a significantly weaker alternative.

Throughout this section, we compare our assumptions with those of
some of the most general and well-known existence theorems.
Specifically, we contrast our results with those of McKensie [1981],
Bal asko, Cass, Shell [1980(b)] and Wilson [1981]. Qur comparison
reveals that, in the special case when agents are finitely-lived, our
assumptions can be weakened to the point that they are direct
counterparts to the restrictions imposed by McKensie. In particular,
we rpoint out how our results extend those of Balasko, Cass,

Shell [1980(b)] (for overlapping-generations economies) as well as
those of Wilson [1981] by replacing their irreducibility assumptions

with the significantly weaker version imposed by McKensie.

We also provide counter-examples to demonstrate the necessity of
the three non-standard assumptions (I(i), V, and the finite endowment
restriction of Proposition 4.3) to guarantee the existence of

competitive equilibria for our general dynamic model.

If an agent is finitely-lived, then assumption I(i) can be

weakened to require that consumption set are closed, convex, and
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brunded from below. However, if the agent has tastes for an infinite
nunber of goods, then not only must we require that Xa is closed,
convex, and bounded from below, but we must impose a "separability"
assumption such as the following.

For each a € A, there exists a Ta such that x e Xa implies

(' w. x5 0, L) €X_ for t )T

a

A separability assumption like the one above is crucial to our
technique of establishing the existence of an equilibrium for our full
(infinite) economy by considering the limit point of a sequence of
equilibria from truncated (finite) sub-economies. Intuitively, the

separability assumption allows us to approximate any allocation x e Xa

t
[} X [} 0| s e e ) }(t)':)Ta'

thus establishing a link between equilibria of the full economy and

by a sequence of finite allocations, { (x1, ves
the equilibria of the truncated economies.

Not only is a separability assumption necessary to our proof
techniques, but, as the following example demonstrates, one like it is
necessary to guarantee the existence of equilibria. Specifically, the
economy we present consists of a collection of finitely-lived agents
together with one infinitely-lived egent. The finitely-lived agents
each have the standard consumption set Rgo but the infinitely-lived
agent does not. Although the particular consumption set of the
infinitely-lived agent is closed, convex, and bounded from below and
although the economy satisfies all of the requirements of section 2
(except I(i)), we are able to show that the economy has no equilibria
of the type described in Proposition 4.2. That is, there are no

monetary equilibria where the only monetary transfer is a non-negative
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one to the infinitely-lived 2zgent.

5.1 Example. Llet agent 1 have the consumption set

X, = 0y %2, ) e R e yaxt por iz 2, 3, L)

and give each of the other agents t = 2, 3, ... the set

oo
+

Xt =

let w

=1 1f 1 = 1 and 0 otherwise and let u1(x1) = x; +2x§. For

—_ =

t=2, 3 ...; let wl =1ifi= t-1, t and 0 otherwise and let
U (x) = xg !+ (1/3)xb.

Assume that the above economy has a monetary equilibrium,
(p.(xa)). where the only monetary transfer is a non-negative transfer
to agent 1, i.e. px1 2 pw,- By definition, X, being in agent 1's
consumption set implies x? > 2t_2x$

aggregate endownment of each good is bounded (wt = 2), feasibility

for all t =2, 3, ... . Since the

implies x? =0,

Clearly, all prices are positive, p >» 0, since each good is
insatiably desired by some agent. In particular, utility maximization
by agent 1 together with x? = 0 implies

ﬁ =0 for i=2, 3, ...

X
while utility maximization by agents t = 2, 3, ... imply
xt=0f‘ort=2, 3, ... and i= t-1, t.

Hence, the agents budget constraints simplify to

(a) pt_1(x§'1 -1) + pt(xt -1)=0fort=2, 3 ...
and the feasibility constraints become

(b) xt + xt+] =2fort=1, 2, «oo .

We now obtain a contradiction by pinning down the price system p

and then showing that, given p, X4 is not a utility maximizing choice
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for agent 1. Since agent 1 consumes only good 1, the fact that agent
1 spends at least the value of his endowment (i.e. receives a

non-negative income transfer), implies x11 = pXy > pwq = 1. Using

x: > 1 and repeated applications of (a) and (b), one may verify
() 1 ¢xbg2 fort=2,3 ....

Consider any t = 2, 3, ... .
If p® < (13)p%"!, then wtility maximization by agent t implies

xt > U4, which contradicts (c).

If pt > (1/3)pt_1, then utility maximization implies xE

also contradicts (e¢). Therefore, pt = (1/3)[31-'-'1 for t =2, 3, «ee ®

= 0, which

Hence,

1-t

(d) pt‘=3 for t =2, 3, ¢0o &

We now show that x1 cannot be a utility maximizing bundle for

agent 1. Specifically, instead of the bundle x. = (x11, 0, 0, ... ),

1,01, 2, 2%, )

1

the agent could have afforded the bundle z, = (x11

since by (d),
folo)
pz., = x1-1 4 Y 31't?_t"2 = x) = pX, .
1 1 1 1
t=2
One meay readily verify that z, is also feasible, i.e. z1eX1, and is

preferable to X1s i.e. u1(z1) = (x:-1) + 2> x.} u1(x1). Hence,

agent 1's alleged choice of X, is not consistent with utility

1
max imization. Therefore, the economy has no monetary equilibria as

described in proposition 4.2.

As in static models, assumption I(ii), which states that each
agent can survive without trade, can be eliminated after a suitable
adjustment of our irreducibility assumption (see Moore [19751). The

swrvival assumption is merely imposed to simplify our techniques.
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Specifically, W, > 0 guarantees that if we perturb zgent a's endowment
by adding any positive quantity of each good (&s in Lemma 4.2), then
agent a's net endownent inccme will be strictly positive at any set of
prices. It then follows by assumption II, that the agents market
denand correspondence has the necessary continuity prorperties that
allow us to employ finite-dimensional fixed-point theorems to

establish the existence of the truncated equilibria of Lemma 4.2.

For agents that have tastes for only a finite number of goods, we
claim that assumption II can be weakened to the level of generality
considered by McKensie. Specifically, if we define the preferred to
set
Pa(x) ={zeX :z ), x } for each x € X_,
then we can weaken assumption II to the requirement that
(1) Pa(o) is open-valued (relative to Xa) and lower hemi-continuous,
and
(ii) x ¢ convex-hull of Pa(x) for each x € X_.

On the other hand, if an agent has tastes for an infinite number of
goods, then our techniques require a stronger continuity condition of
the form

(i)* the graph of Po(e) = { (x,2) € Xy X

L, ‘2 € Po(x) } is open

(relative to Xax X,).
(It is unknown to us, at this time, if the general existence of

equilibria can be guaranteed under the weaker condition (1).)

To see that our proof techniques only require (i)* and (ii),

instead of assumption II, let us first verify that without loss of
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generality, one mey impose the addition convexity condition

(iii) If z e Pa(x), then Az + (1-M)x e Pa(x) for 0 < X¢ 1. This
condition entails no loss of generality since if we were given an
economy that satisfies all of the assumptions of section 2 (with (i)*¥
and (ii) replacing II), then we could simply expand the preference
relations by considering the preferred to sets

PL(x) = {xz + (1-M)x : z € P (x) and O < N¢ 1} for each x € X, .
This new economy satisfies all of our assumptions (including (iii)).
In addition, since the preference relation has been expanded, any
equilibrium of the altered economy is an equilibrium of the original

economy.

With the exception of the proof of the existence of the truncated
equilibrium in Lemma 4.1, one may verify that (i)* and (iii) were the
only restrictions on preferences that we employed in all of the proofs
in sections 3 and 4. Finally, note that given (i)* and (iii), lemma
4,1 can be established by employing the existence theorem of
McKensie [1981] directly on the truncated economies constructed in the

proof of the lemma.

As in static models, the free disposal assumption III is only a
convenience that allows us to restrict our attention to systems of
non-negative price systems p e Rfo. In contrast, our assumption IV
that the aggregate endoment is positive is necessary to insure that

we can restrict our attention to finite prices.

The following example demonstrates the necessity of our assumption



V that each good can be desired by at most a finite numnber of agents .
Specifically, the economy we present satisfies all of the requirements
of section 2 except assumption V. Nevertheless, the economy does not
satisfy the conclusions of propositions 4.2 or 4.3. That is, we

demonstrate that, although each agent has a positive endownent of only

a finite number of goods, there are no competitive equilibria.

5.2 Exanple. For notational convenience, we index the set of

goods by {0, 1, ... }. For t =1, 2, ... ; letw =27 ifi= t-1,
—t.t
Xt.

Assume that the above economy has a competitive equilibrium,

t and wt = 0 otherwise and let ut(xt) = xg + 3

(p,(x,)). Since each good is insatiably desired by at least one

0

agent, prices must be strictly positive, p >> 0. Let p =1 be our

price normalization. Since all prices are positive, utility

max imization implies

x} -0 forall t=1, 2 ...and i= t-1, t.

¢ =
Hence, we can write our budget constraints as

(a) xg + ptxt = 2—t(pt'-1 + pt) for t =1, 2, ...

and our feasibility constraints simplifies to
0o
(b) ; xg =w® =271 for good 0
A t
Xg = W = 3.27 for goods £ = 1, 2, «.. .
We can now finish our demonstration by pinning down the price
system p and then contradicting (b) by showing that there is an excess

supply of good 1. Specifically, we establish

(e) pt = 3_t for t =0, 1, ...,

by induction. Trivially, po =1 = 3"0. We assume the inductive

hypo thesis pt = 3"t (for some t = 0, 1, ... ) and prove



p'c.+1 , 3-(t+1).

If pt+1 < 3'(“1), then utility maximization by agent t+1 implies

x2+1 = 0. Hence, the agents budget constraint from (a), together with
the inductive hypothesis pt = 3't, implies

xﬁ::l . 2-(1’.+1)(1 . pt/pt”) 5 3n2-(t+1),

which contradict (b).
t+1 -(t+1)

If p >3 , then utility maximization by agent t+1 implies
"t:: = 0, which again contradicts (b). Therefore, p=*' =37 (%1 g

our inductive proof is complete.

We can now determine xg for t =1, 2, ... . By (a), (b), and {(c);

x0 =278 4 ph - Pl = 27ty 37h - g -t

t
-t -t - 6-t.

-t

(3-2°7)

=2 3
00 0o

Therefore, Z xg = Z 6t - 7"1 < 2-1,
t=1 t=1

which contradicts (b).

The irreducibility assumption VI is a direct analog of the
irreducibility assumption imposed by McKensie. Qur single requirement
that the entire economy is irreducible replaces the assumptions made
by Bal asko, Cass, Shell, and Wilson that not only require that the
entire economy be irreducible, but that there is a sequence of
irreducible sub-economies, { (xa’(>)a’wa)aeA }, where for each n, A

n
is a finite subset of &, A S A ., and V) A, = A. Te critical
feature of our proof that allows us to d:op these additional
irreducibility assumptions is that, in establishing the existence of
the equilibria for the finite sub-economies (lemma 4.1), we perturbed

each agents endowment to insure that he always has a positive (net)

income. In the theorems of Balasko, Cass, Shell and Wilson, the
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existence of equilibria for the sub-economies required the
irreducibility of these economies to guarantee that each agent has a

positive income in equilibrium.

To illustrate the greater generality that our techniques allow, we
provide a simple exanple of an economy that satisfies all of our
assumptions but does not satisfy the afore mentioned sub-economy
irreducibility restrictions. 1In fact, in this example, we are able to

demonstrate that there are no irreducible finite sub-economies that

consist of more than one agent.

5.3 Example. Let w11 = 1if i = 1, 2 and 0 otherwise and let
o] - 3 4 _ . i
u1(x1) = X, + max { X3y X, }. Fort=2, 3 ... ; let W = 11if
i = tel and O otherwlse and let u (x.) = x + max ( X2, xi3 ),

ne may readily verify that this economy satisfies all of our
assumptions in section 2. In particular, to see that the economy
satisfies our irreducibility assumption VI, simply consider any
partitioning of A into non-empty sets AO and A1 and any allocation
scheme (xa) e X.
If AO is finite, then let t be the largest index of an agent in Ao (in

particular; t+1, t+2 € A1). By our construction,

t t+2
u(x, + EE% Wed 2 U (xp + W g+ W o) = X+ M { x,  + N

t+3 1
X o o+ 11} = ut(xt) + 1> ut(xt).

If A0 is infinite, then since A1 is non-empty, there exists a t e Ao

such that t-1 e A1. Therefore,

t t+2 t+3
u (xg + g;% we) 3ouCxg + W o) o= xg e 1o max [T, Xy }
1
= ut(xt) + 1> ut(xt).
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Hence, the full economy is irreducible.

Now consider any finite sub-economy (Xa,(>)a,wa) aeA* that consists
of more that one agent. That is, the nunber of agents in A* is
greater that 1 but less than infinity. Let t be the highest element

of A*, We can show that this sub-economy is reducible by considering

the partitioning of A* into A, = { t} and A

- ®
: o = A {t } together

with any feasible allocation scheme with the property xi_a = x:‘:; and
t+1 _ t+2 X t+1 _ t42
xb_1 = xb_1. By our construction and the restriction xt_1 = xb—l’
t-1 t+1 t+2 , _ E-1 .

ut_1(xt_1+wt) = X+ min { xt_’_1+1,xb_1 } = Xg ¢ + min

t+1 _t+2, _
Uxg X7 = u g (x_q).
Similarly, xt = )

g2 © Yo IMPLIES, Up o (xp pee) = up o (Xy 5).
But, none of the other agents a (a < t-2) can be made better off by

receiving t's endownent since they do not have tastes for any goods

dated later than t. Hence, the economy is reducible,
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6. EXISTENCE OF MCNETARY EQUILIBRIA

In this section, we employ our model to examine the well-studied
question of how (or why) fiat money can have value. Most of the
Frevious work in this area is concerned with establishing the
existence of equilibria where agents receive positive lump sum

transfers of fiat money (e.g. Cass and Yaari [1966],
Gale [1973], or Samuelson [1958]). But, as our proposition 6.2 below

points out, the existence of equilibria with positive transfers of
money may not be very robust. In contrast, in proposition 6.3, we
establish the general existence of debt equilibria. Tat is,
equilibria with negative transfers (tax's) of fiat money.

6. 1. Definition. A feasible allocation scheme (xa) € Xp is Pareto

Cptimal if there are no other feasible schemes (ya) € X, such that

f
ua(ya) > ua( xa) for a € A with at least one strict inequality.

6.2 Proposition. If the initial endowment sequence (wa) is Pareto
optimal, then there are no monetary equilibria such that pX > v, for

a € A with at least one strict inequality.

Proof of Proposition 6.2.

Assume that there is such an equilibrium, (p.(xa)) .
For each a ¢ A, since PX, ) P, utility maximization implies
(a) u,(x;) 2 ua(wa).
By hypothesis, PX > Pv,

0 0
By assumption V, preferences are monotonic. Hence, utility

for some 3 € A.
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max imization implies
(bY u_ (x_)> u (w ).
g ", ap a
But, (a) and (b) imply that (wa) is not a Pareto optimzal zllocation

Scheme since, in particular, it is dominated by (xa).

C.E.D.

6.3 Proposition. If each agent has a positive endownent of only a
finite number of goods, then given any collection of scalars
(sa) e R% such that 0 < S, £ 1 for each a ¢ 4A;
there exists a monetary equilibrium such that px, = S,PwW, for each

a € A.

Proof of Proposition 6. 3.
For k=1, 2, ... ; we perturb the endowments of our original

economy thus forming a new economy Ek Specifically, the endownents

in Ek are given by

k _ -

wa- sawak:‘ora- 1, oo, k=1

w: =W+ Z“"Sa)"a for a = k
K a=1

Na = wa fOr a = k"’]. k+2, s e

By inspection, one may verify that the economy Ek inherits all the
Properties of our original economy as specified in section 2. In
addition, each agent still has'a positive endowment of only a finite
nunber of goods. Therefore, proposition 4,3 establishes the existence
of a competitive equilibrium (pk.(xl;)) for the economy EX,

By definition 2, 1(ii) and (iii), one may verify that (pk.(xg))
constitutes a monetary equilibrium for our original economy. By the

definition of the economy Ek,
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k_k k
(a) p Xg= S,pW, fora=1, ..., k-1.
Technically, we restrict (xl;)i = 0 unless agent a has tastes for good
i, We also normalize prices so that pkxk = 1 for each k.

1

We now apply corollary 3.4 to obtain a subsequence of the
"k-equilibria" end a (limiting) monetary equilibrium (P.(xa)) such

that (p%,(x)) — (p,(x) .,
k, k

Corollary 3.3 implies pX = lim p Xa while the finiteness property of
k
Wa implies pw, = lim p Wy

Therefore, by (a), PX, = s pw, for a e A.

Q.E.D.
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7. NON-CLOSEDNESS OF THE PARETO OPTIMAL SET

AND THE FAILURE OF THE FIRST FUNDAMENTAL WELFARE THEOREM

In this section, we examine the relationship between the
non-closedness of the set of pareto optimal allocations and the
existence of pareto optimal equilibria. It is well-known that the set
of pareto optimal allocations is closed if an economy is static
(i.e. finite). Clearly, this closedness is preserved in dynamic
economies that are formed by simply concatenating a series of disjoint
(and finite) collections of agents. For example, the pareto optimal
set is closed in a dynamic economy where agents in a given generation
do not interact with agents in any other generation. That is, there
tastes and endowments do not intersect. In this section, we
characterize a large class of economies that are sufficiently
well-connected so as to insure that the pareto optimal set is not

closed.

7.1 Lemma. Consider any market equilibrium (P.(xa)). If pw < o0,

then the equilibrium allocation scheme, (xa), is Pareto optimal.

Proof of Lemma 7. 1.

Suppose that there was a feasible allocation scheme (ya) 3 xf such

that ua(ya) > ua(xa) for each a € A and u, (y, ) > u

(xa ) for some
0 0

8 %

a0 € A.
We first show

(a) py, > px_ for ae A.

a

If (a) did not hold, then since pw < oo, p(yafxw) = px, for some
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N>0. But u(y,) » u(x,), together with assumptions II(ii), III,
IV, and the non-satiation implied by VI; yields ua(ya"}‘”) > ua(xa) .
But this contradicts X, being demanded by agent a since Yy + AW is
affordable.

The above paragraph establishes (a). By similar arguments, one
can conclude
(b) py, > px,_ .

%o %

To obtain a contradiction, we first note that pw < oo, together

with the feasibility conditions Zxa =2y, =W, implies
a a

& px, = Lpy, = pWw< oo.
a a
But, (a) and (b) mplyaZpya > Zapxa.

Q.E.D.

7.2 Proposition., If each agent has a finite endowment, then there
is a competitive equilibrium, (p,(xa)), such that the equilibrium
allocztion scheme, (xa) y 1s in the closure of the set of Pareto
optimal allocation schemes. That is, there is a sequence of Pareto
optimal allocation schemes, { (x:) }1?21’ such that (xl;) - (xa) as

k —> oo.

Proof of Proposition 7.2.

As in the proof of proposition 6.3, we find the desired
equilibriumn as a limit point of equilibria from a sequence of
perturbed economies. For our present purposes, we define the economy

Ek by changing the endowments in our original economy to

~

W. = W for a

a 1' cee k"1

00
wk+(1/2)z W for a = k
a
a=k+1

R D

W
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W, o= (1/2)wa for a = k+1, K+2, cu. .
Again the economy inherits all of the properties of our original
economy. Agents 1, ... , k collectively hold more than a fraction
(1/2) of all endowments. Hence, proposition 4.3 establishes the
existence of a competitive equilibrium (pk,(xg)) for the economy Ek
We interpret the competitive equilibrium (pk.(xg)) for the economy

El'c to be a monetary equilibrium for our original economy.

By the definition of EX,

k

(a) pxi: pkwa fora=1, ..., k=1

and
00

(b) pkxk = pkw + (1/72) pkw for a = k.

k k a

a=k+1 K K

But, by definition 2. 1(ii), p X < oo for ae A.

In particular, pkxlf( < 00, Hence, (b) implies pkw < oo0.

Therefore, lemma 7.1 implies that the allocation scheme (x:) is pareto
optimal .

After suitable normalization, as in the proof of proposition 6.3,
we can apply corollary 3.4 to obtain a subsequence of the
"k-equil ibria" and a monetary equilibrium (p,(xa)) such that
5,5 = (pylx ).
Again we argue that px_ = lim pkx‘; and pw, = lim pkwa. Hence, (&)
implies PX, = pw, for ae A, ‘Therefore, (p,(xa)) is a competitive
equilibriun.

Q- E. Do

A feasible allocation scheme (xa) € X; is said to be Irreduwcible
if, for any partitioning of A into two non-empty subsets A0 and A1,

there is an zgent a € A, such that x_ ZA Xg ()5 X 4.
ae
1
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An economy is said to satisfy the Irreducible Allocations assumption
if all feasible allocation schemes (xa) € Xp such that ua(xa) > ua(O)

for a € A, are irreducible.

Consider any feasible allocation scheme (xa) € Xf. VWle say that
agent ay can always benefit at a1's expense if for any ¢ > 0, there
exists a feasible allocation scheme (ya) € Xp such that

uy(yy) % uy(xy) for all a ¢ a,

Uao(yao) > uao(xao) for a = g,.

u, (yy; ) >u

, : L (x5 ) - ¢ for a = &,

1 1

7.3 Lemma. If the irreducible allocations assumption is
satisfied, then given any feasible allocation scheme (xa) € xf such
that ua(xa) > ua(o) for a € A:

Each agent a, can benefit at each other agents (a1 € A-{aol) expense.

Proof of Lemma 7.3.

Consider any allocation scheme (xa) € xf such that Xa (>)a 0 for
a€ A, MAssume that the implications of this lemma are not satisfied.
That is, there are agents a and a, (a ¢t a1) such that a cannot benefit
at a1's expence.

We partition agents into the two sets A0 ={ ae A-[a1] : agent a
cannct benefit at a1's expense } and Ap = A - A,

By construction, both A0 and A1 are non-empty.

Hence, by our irreducibility hypothesis, there exists an agent a, € AO

such that

(a) x, + 9 x_ O). x_.
o) a(-A1a % %
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Consider any € > 0. By the definition of A1, for each

e A;-{a1}, there exists a feasible allocation scheme (y:) e Xf, such
that

| -

yy ) x_  for all at a,

3

Yz (>)5x5 for a = a

u (y“" ) > u, (x -

a,. a, a, a.l)) - € for a = ag
Now consider any convex combination (ya) of these schemes, i.e.

a
(v) = 2wy,
ZeA!'-{a.}

where the A.é.'s are positive weights that sum to 1.
Clearly, (ya) & Xf.
Qur concavity assumption II(ii) implies,
(e) uy) 3y ulx) forall at a,
ua(ya) > ua(xa) for a e A1—{a1}
ua1(ya1) > ua1(xa1) -¢g fora= a,.
For A< 1/2, consider the allocation scheme (za) defined by

z, = (1/2)x_ + (1/2)y, + (12-\)§_ x_for a= a
a, 2 a a€h! @ 0

1
z, = (1/2)xa+ (‘I/Z)ya for a ¢ aj,a, and a¢ Aj
z, = )\xa + (‘l/2)yEl for a e A‘i-{a1}
za1 = )\xa1 + (1/2)y‘_111 for a = a,.

Clearly, (xa) ,(ya) € Xp imply (za) € Xe.

Now (c), Logether with assunption II, implies that for some
sufficiently close to 1/2,

u(z)) % u(x) for all a# a, and a* A,

ua(za) > ua(xa) for a e A1—{a1}

u, (z
31 31)> u

(x, )~ ¢ for a= a,,
a1 a1 1

However, again by assumption II(ii), (b) implies

u

z. ) > u, (x_) for a = .
ao(a0 aoa0 aO
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this means that agent a, can benefit at the expense of agent a

1
contradiction to 3 € AO).

Q.E.D.

Let U1 be the collection of all utility vectors (u2,

u3, ces ) € R°° such that for some feasible allocation scheme
(xa) € X,
u1(x1) > u1(0)
Ua(xa) % uy > ua(O) for a =2, 3, .e. .
For u e U1, define x(u) to be the collection of all solutions to
max u1(x1)
s.t.xe d(u,
where
4)(u)={xe)(f:ua(xa)zua for a=2, 3, ... }.
The range of the correspondence x(e) is defined to be the collection

of all x such that x ¢ x(u) for some u e U1.

Let P denote the collection of all Pareto optimal allocation

schemes (xa) such that ua(xa) > ua(O) for a e A.

(a)

7.4 Lemma. P = the range of x(u).

Proof of Lemma T7.4.
It immediately follows, by inspection, that P C the range of x(e).
Consider any x € x(u) for some u € U1. By construction,

u,(x) > uy(0) and u (x,) 3 u, > u(0) for a=2, 3 ... .

If x is not pareto optimal, then there is a feasible allocation scheme
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(Ya) € X such that

(b) u(y) 2 ua(xa) for ae A with u, (y, ) > u

(x, ) for some
1 784 a3

a, € A.

(a) and (b) imply ua(ya) > ua(O) for a e A.

Hence, we can apply lemma 7.3 to agents a; = 1 and a, Wwith

€ = ua1(ya1) - ua1(xa1) > 0 to obtain a feasible allocation (za) € xf
such that

(e) ua(za) > ua(ya) for all a ¢ a,
u1(z1) > u1(y1) for a = 1

u_ (z_)>u (y. )-¢ for a= a,.
a,; a, a,’a, 1

(a), (b), (c¢) and the definition of ¢ then imply
u(z) > u(x)) 3 u, for ae A-{1}

and
u1(z1) > u1(x1) for a = 1.

But, this contradicts x € x(u).

Q- E. D.

7.5 Proposition. If the irreducible allocations assumption is
satisfied, then the correspondence x(eo) is not upper hemi-continuous

at any point in its domain.

Proof of Proposition 7.5.

We show that x(e) is discontinuous at each u € U1 by proving that
U1(x1(°)) is discontinuwous at u. Specifically, we construct a
sequence { u? } in U1 converging to u, such that
u1(x1(ua)) = b for all a,

where b = u1((1/2)x) < u1(x1(u)) for some x € x1(u)
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(The strict inequality follows from the quasi-concavity of u1(°) and
the restriction u1(x1(u)) > u1(0).)
Fora=1, 2, ...

letBaz['ﬁa>,u :(u2, wee , U

R e ) € U1 and u1(x1(u2, cee

a’

Uy, «. )3 bl

ne may verify that the continuity of preferences implies that Ea is

closed. Ba is also non-empty (since u, € Ba) and is obviously

bounded. Therefore, we can define u; to be the maximal element of Ba'
We employ lemma 7.3 to argue that u1(x1(u2, cee u; y ees )) = Db,

since otherwise we could allow agent a* to become better off at the

exrense of agent 1 and therefore generate a utility level, u;, that is

higher than u;. But, if the loss of agent 1 was small enough

(maintaining ul(-) > b), then u; € Ba' which contradicts ug being

max imal .

The desired sequence of utility vectors can then be defined by

u? = (Uy, wer , u%, ...) for ae A.

(Clearly, u? converges to u = (u

10 e ) pointwise.)

Q. E. Dl

7.6 Corollary. If the irreducible allocations assumption is

satisfied, then the set of Pareto optimal allocations is not closed.

Proof of Corollary T7.6.

Consider any point u e U‘l' By proposition 7.5, there exists a
sequence { (xk,uk) } in Xru U1 such that (xk.uk) —> (x,u) and
x € x(u¥) for each k but x ¢ x(u).

It follows from assumption II(ii) that ¢(®) is a continuous
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correspondence. In particular, x & ¢(u) . Hence, the only way that we
can have x ¢ x(u) is that x does not maximize agent 1's utility
subject to all other utilities constant. In other words, x is not
pareto optimal. PBut, by lemma 7.4, each of the allocations xk is

optimal .

Q.E.D.

We illustrate the non-closedness of the pareto optimal set and its
relation to the non-existence of pareto optimal competitive equilibria
by considering a simple overlapping generations economy of the type

considered in Samuelson [19581,

7.7 Example.
Let u.(x) = x) and for a = 2 3 let u (x) = 21 L %3, et
1 - M vy osec a " "a a’

w1=1if‘i=1and00ther‘wise and letwi:]if‘i: &1 or aand 0
otherwise.

(ne may readily verify that the only competitive equilibrium for
the above economy is autarky. That is, the only equilibrium
allocation is

X

(w1, Wor ees )

((1,0,..), (1,4,0,...), (0,1,1,0,...), (0,0,1,1,00.), «u ). We
note that x is not pareto optimal since, in particular, it is
dominated by the scheme

x(0) = ( (2,0,...), (0,2,0,...), €0,0,2,...), (0,0,0,2,.0.), «ua ).
One may readily verify the x(0) is optimal as are each of the schemes
{ x(k) } given by

x(1) = ( (1,0,..0), (1,2,0,...), (0,0,2,...), €(0,0,0,2,...), .. )
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x(2) = ( (1,0,...), (1,10,...), (0,1,2,...), (0,0,0,2,...), .. )
x(3)= ((1,0,-.-)'(1,1,0.---)'(0,1’1|---)’(0'0’1'2|-uo)' s e )
etc. .

Qur demonstration is therefore complete since x(k) — x as k — oo.

Q. E.D.
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8. FURTHUR CCMPACTNESS RESULTS

8.1 Proposition. Consider any collection of utility levels
(ua) e R®° such that u, > ua(O) for a € A and any sequence of points
in B%nx,, (pk,(xl;)) }, that satisfy the following for k = 1,

2y «e.and a=1, ... , k:

pkxl; < o0

(91 =0 for 1= kel, ke2, ...

x: solves max ua(x)

pkx k

s.t. pkx < a

b (91 for 1= ke, ke2, ...
X € Xa
(X’:)i = 0 unless agent a has tastes for good 1i.
If, in addition to the above conditions, the irreducible allocations
assumption is also satisfied, then there is a limit point, (p.(xa)) ,

of the sequence { (pk.(x]’a‘)) }. Furthermore, the limit point is a

market equilibrium.

Proof of Proposition 8.1.

By the Tychonoff theorem, xf is compact. Hence, there exists a
subsequence such that (xl;) - (xa) for some limiting allocation
scheme (xa) € Xr.

We argue that for each a € A, there exists a bound Ba < oo such
that pkxl; < B, for all k. Otherwise, by the Cantor diagonalization

process, we can partition A into two non-empty sets Ao and A1 such
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that for some subsequence

A =[aeA;ka§—>m}

A1 ={ ae A : there is a B, < oo such that ka: < Ea }.
We can obtain a contradiction by employing the irreducible allocations
hypothesis to the limiting allocation % (since

k
ua(xa) = lim ua(xa) 2 u, > ua(O) for a e A) to conclude that there is

an agent a € A such that
X, + Z X, (>)a X e
a€n
By assumption II(ii), we can find a A< 1, a finite subset (A}) of

Al' and a large t such that

(y1, oo yt, 0, «.. ) (>)a X g0

where y:)\xa+ > x..

2eA! a
Again by assumption II(ii),

zk = (y1, e s yt, 0 «oo , (xg)kﬂ, oo ) (>)a x: for all large k.

But, by the definition of Aj, A, X, and vy,

pkzk < pkx: for large k, which contradicts our hypothesis of the

(limited) optimality of xX.
The remainder of the proof closely parallels the proof of

proposition 3.4 and, therefore, will not be repeated here.

Q. E. D.

8.2 Corollary. For any collection of scalars (ua) € R%° such that

u, > u,(0) for a € A, the collection of all market equilibria such

that
px1 =1

ua(xa) ),ua for a € A;
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9. THE SECOND FUNDAMENTAL WELFARE THECREM

In this section, we establish the broad scope of governmental tax
and transfer policies by deriving the second fundamental welfare
theorem for our general class of dynamic economies. Note, in
proposition 9.1 below, we can only guarantee that a given outcome is
achieved through a transfer of endowments (as opposed to a transfer of
income) . The sufficiency of a pure monetary (income) policy can only
be assured when each agent has a finite number of endowments, since we

must guarantee pwW, < o0,

9.1 Proposition (Second fundamental theorem of welfare economics).
If the irreducible allocations assumption is satisfied, then any
Pareto optim&l allocation (xa), such that ua(xa) > ua(O) for a e A,
can be supported as a ccapetitive equilibrium given a suitable
redistribution of endownents. Specifically, there is a price system
e

p e such that (p.(xa)) is an (autarkic) competitive equilibrium if

endownents are given by W, o= X for a € A.

Proof of Proposition 9. 1.

Consider any such pareto optimal allocation scheme (xa) € xf. For
each k, we define the following sub-economy consisting of the first k
agents and goods. Agent a's tastes are given by

k _k+1
ua(x1, cee xKy = ua(x1, cee g Xy xa+ y ees )
and his endowments are
1 k
wa = (wa, cee Wa).

Since (xa) is a pareto optimal allocation for our full economy, the
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k

1 k
scheme ((xa, ooy xa))a=1

is pareto optimal for the k'th sub-economy.

Therefore, by the classical (finite-dimensional) version of the second

wel fare theorem (see Arrow [19]), there exists prices (p1, e pk)
such that
(x1 xk) solves max u (x)
a' “"* ' "a a
s.t. px ¢ pX
X € Rk.
+

It then follows that if we expand (p1, cee pk) into a full price

system by defining pk = (p1

) eee g pk. 0, ... ) for each k, then the
sequence { (pk,(xa)) } satisfies the hypothesis of proposition 8. 1.
Therefore, there exists a market allocation (p,(ya)) such that
(p".(xa)) = (ps(yy)). Trivially, (y)) = (x)). It follows by
definition 3.1 that if (wa) = (xa) , then (p,(xa)) is a competitive

equilibrium.

Q. E.D.
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10. ARC-CONNECTEDNESS OF THE PARETO OPTIMAL SET

AND THE CONTINUITY OF MCNETARY POLICY

10. 1 Definition. The basis of the From Below (FB) topology,
defined on the space u, < R°°, is taken to be all subsets of the form

[(az,bz) e -(an,bn) x (—oo,bn+1) x (=00 ,b ) ... 1nU

n+2 1

for any real numbers 85y eee s A, b2, b3, ... and n= 2, 3,
ne may readily verify that the above collection of sets does indeed
constitute a basis. Also, the topology is first countable since we

could have alternatively defined a countable basis by restricting the

coefficients a eee 4 A

o b2, b3, ... to be rational numbers.

nl

10.2 Lemma. A sequence { uk } in U1 converges to a point u e U1

if, and only if,

(1) u: -—> u for a € A-{1} (i.e. the sequence converges pointwise)

and

(ii) there ana* such that for large k, u: < u, for a > ak.

Proof of Lemma 10.2.

(Sufficiency of (i) and (ii)) Consider any such sequence { uk },
point u, and constant N that satisfy (i) and (ii). To show that
uk ~—> u, we must demonstrate that for any open neighborhood O of u,
uk € 0 for large k. Clearly, we can restrict our attention to
neighborhoods in the previously described basis of the FB topology,
i.e.

0={ (a2.b2)»...-(an,bn)*(—oo.b ) ..U

1.
For notational convenience (and without loss of generality), assume

n+1
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n = &%,
For the set G given above, u € O implies
(a) u e (aa,ba) fer a=1, ..., a*
and
(b) u, e (-oo,ba) for a = a*+1, a*+2, ... .
Hypothesis (1), together with (a) implies
(e) there is'a K0 such that ug € (aa,ba) for a=1, ..., a* and
k> KO'
Qur second hypothesis (ii), together with (b), implies
(d) there is a K1 such that u: € (—oo,ba) for a = a*+1, ... and
k> K1.
Therefore, by the construction of 0, uk € O for all k> K = max { KO'
K1 }I
(Necessity of (i)) The necessity of (i) is immediate since for any
a and € > 0, the set
0= [(Uz-E.U2+G)" ces A (ua-e,ua+e)r (-oo,ua+1+e) * e ]nU1, which
contains u, is in the basis of the FB topology. Hence, uk —> u
impl ies uk € 0 for large k. In particular, u: € (ua—e,ua+E) for large
k. Therefore, uk —> u_.
a a
We will not demonstrate the necessity of (ii) since this result

will not be employed in this paper.

Q. E. D-

10. 3 Lemma. U1 is arc-connected when it is endowed with the FB

topology.

Proof of Lemma 10.3.
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Since for any two points v,w € Ul' there exists a point u in U1
such that u { v,w; it is sufficient to show that any u,v e U1 can be
connected by a continuwous path in U1 if u g v,

Fix any increasing sequence of numbers { c, } such that ¢, =0 and
¢, —1 ast — oo.

Define a path connecting u to v by

(5 - (V1""')‘Vn+(1‘>‘)un"") v if £ = hep 4+(1-Ne,, where 0<X<
v, if £t = 1.

The range of g(e) is contained in U1 since for any t e [0, 1];

u £ g(t) ¢ v implies that g(t) e U1 since u,v e U'I'

We complete the proof by showing that the map g(e) is continuous.
Since the FB topology is first countable, the continuity of g(») can
be expressed as follows.

For any sequence { tk } in [0, 1], t, — t implies g(tk) —> g(t).
Since each ga(o) is, by construction, piecewise linear (hence
continuwous), tk —> t implies ga(tk) - ga(t) . Hence, the
convergence criterion (i) of lemma 10.2 is satisfied. To conclude the
proof, we establish criterion (ii) in two cases.

If¥ t € [0,1), then t < Chr for some n. Hence, t

<ec for

k
< c

n+1

large k. But, by the construction of g(«); t, t implies

k

ga(tk) = u, = ga(t) for a = m1, n+2, ... . The criterion (ii) of

n+1

lemma 10.2 now follows.
If £t = 1, then since u { v, the construction of g(e) implies
Ba(tk) v, = ga(t) for a € A-{1}. Again, (ii) is satisfied.

a

Q.E.D.

10.4 Proposition., If the irreducible allocations assumption is
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satisfied and if U1 is endowed with the FB topology, then x(s)

: U1 —> Xp is upper hemi-continuous.

Proof of Proposition 10.4.

Since the FB topology is first countable and the range of x(e) is
contained in a compact space (Xf) , the continuity of x(e) can be
characterized as follows,

For any sequence { (uk,(xl;) } in U1 x Xp such that

k k k k . .
(u .(xa) o (u.(xa)) €Uy =Xp, X € x(u™) for all k, implies
x e x(u).

For each k, xk

k

e x(uk - Q(uk) implies ua(xg) > ug for ae A-{1}.

k

By lemma 10,2, u~ — u implies u_ —> u

, for a e A-{1}. Hence,

(xl;) - (xa), together with assumption II(ii), implies u,(x,) u,
for a € A-{1}. In addition, the closedness of Xf. implies (xa) € Xp.
Therefore, (x.)) € ¢p(u).

Since x € P(u), if x ¢ x(u), then there is some y € ¢(u) such that
(a) u1(y1) > u1(x1). By repeated applications of lLemma 7.3, all of
the agents a € A-{(1} can be made better off at the expense of agent 1.
Specifically, for any € > 0, there exists a feasible allocation
(za) € X such that
(b) u(zy) > u(yy) - € and u(z)) > u (y,) for ae A-{1}.

First note that, for £ sufficiently small, (a) and (b) imply,
u,(zy) > u1(x1). Hence,
(e) u1(z1) > u1(x|1‘) for large k.
Secondly, y € §(u), together with (b), implies u,(z,) > uy for

ae€ A-{1}. This can be written,

ueo = [(-00.u2(z2))u(-oo,u3(z3)) X .oo InUy
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The set C is therefore an open neighborhood of u. Hence, uk ~—> u

impl ies uk e 0 for large k.

That is, ug < ua(za) for a € A-(1} and large k.
In particular, this implies z € 4)(uk) for large k, which, together

with (e¢), contradicts xX € ‘D(uk) .

Q. E.D.

10.5 Definitions.
(2) A Pareto optimal allocation scheme (xa) is called Potent if
u (xy) > u,(0) for ae A

(b) A vector (m.l, m ve. ) € R%C is called a Potent Gross Monetary

2!
Target if there is some price system p e R°® and some Potent
allocation scheme (xa) such that (p,(xa)) is a market equilibrium and

m, = PX, for a e A.

o0

(ec) A vector (n1, n ee. ) € R is called a Potent MNet Mnetary

2'
Target if there is some price system p € R°° and some Potent
allocation scheme (xa) such that (p,(xa)) is a monetary equilibrium

and N, = PX, - PW, for a € A.

The following propositions (10.6 and 10.7) concerning the
continuity of govermental intervention can be established for our
general economy described in section 2. However, the general proof is
notationally quite complex. Therefore, we simplify our analysis by

imposing the following constraints.

Assumption VII.

(1) For each u € U1, x(u) is single-valued.
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(ii) Given two market equilibria (p.(xa)) and (q,(z,)), (x) = (z,)

implies p = A q for some A> O.

It would be conceptually straightforward to generically express
the above assumption in terms of differentiability and strict. quasi-
concavity assumptions on preferences. However, since assumption VII

is only imposed to expedite our exposition, we refrain from doing so.

Qur next proposition establishes the continuity of optimal
govermmental policies in terms of physical redistribution of
endowments while proposition 10.7 establishes continuity in terms of

monetary targets.

10.6 Proposition. If the irreducible allocations assumption is
satisfied, then the collection of all potent allocation schemes, P, is

arc-connected.

Proof of Proposition 10.6.

The arc-connectedness of P follows from the arc-connectedness of
U1 (lemma 10.3), the continuity of the function x(e) (proposition
10.4), and the fact that P = the range of x(a) (lemma T.4).

Q.E.D.

10.7 Proposition. If the irreducible allocations assumption is
satisfied, then the collection of potent monetary targets is
arc-connected. In addition, if each agent has a positive endownent of

only a finite number of goods, then the collection of potent net
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monetary targets is arc-connected.

Proof of Proposition 10.7.

Given any potent allocation x = (xa) e P, proposition 9.1
guarantees that there is a price system p e Q such that (p,x) is a
market equilibrium. Assumption VII guarantees that the system p is
unique. Therefore, we can write p = q(x). Corollary 8.2 implies that

p = q(e) is a continuous function of x. That is, xk

—> x implies
pk -—> p.

Given any allocation x = (xa) € P, the corresponding gross monetary
target is given by m(x) = (ma(x)), where ma( x) = p(x) Xx,. Given the
continuity of p(e), corollary 3.3 insures that m(e) is a continuous
function of x € P. That is, xk —> x implies p(xk) —> p(x) and,
therefore, p(xk) xl; —> p(x) X, by corollary 3.3. Therefore, the
arc-connectedness of the set of gross monetary targets follows from
the arc-connectedness of the potent allocations (proposition 10.6) and
the continuity of the function m(e).

The arc-connectedness of the set of net monetary targets follows by a

similar argument given that the mapping from P to the corresponding

net target is continuous. For x € P, the net target is

i

> 0 for
a

n(x) = (na(x)). where n_(x) = my(x) - p(x)w,. Given that w
only a finite number of i, the continuity of n(e) follows from the
continuity of m_(e) and p(e).

Q.E.D.
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CHAPTER II

GPTIMAL MONETARY EQUILIBRIA IN DYNAMIC ECONOMIES

1. INTRODUCTION

In the study of the classical competitive model, in which a finite
nunber of agents trade in markets for a finite number of goods, two
fund anental welfare theorems emerge (e.g., see, Arrow [1951]). The
first states that any competitive equilibrium is pareto optimal. 1In
the study of dynamic models, this theorem has been shown to hold in
cases where the popul ation of the economy includes a finite number of
infinitely-lived agents (e.g., see, Arrow and Hahn [1971]). However,
in dynamic models where there are an infinite number of agents which
are grouped into a collection of overlapping generations, Samuelson
[1958] demonstrates that the first fundamental welfare theorem is no
longer valid. As a cure for this non-optimality, Samuelson proposes
the introduction of fiat (or outside) money. Samuelson is able to
show that, within a certain restricted class of economies, there
always exists a pareto optimal equilibrium in which the agents in the
initial generation are endowed with non-negative quantities of fiat
money. OQur paper focuses on the extension of this result to much more
general overlapping generations economies. (We will consider the

class of economies as defined in Balasko and Shell [19801].)

Traditionally, when economists think of money they consider its
two major roles as a medium of exchange and a store of value. Since

ow analysis 1s primarily concerned with the use of money to implement
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intergenerational transfers, we will focus our attention on the store
of value aspect of money. In our paper, the scope of mcnetary policy
is limited to the determination of the aggregate level of government
debt at any given point in time. In this context, Samuelson's result
states that an optimal outccme can always be achieved through a
monetary policy which simply maintains a constant level of government
debt. In light of the fact that Samuelson only considers economies
that are stationary over time, the optimality of maintaining a
constant level of debt should be anticipated. However, it may be
somewhat surprising that, in this paper, we can essentially extend
Samuelson's optimality result to economies that are constantly

evolving (i.e. are non-stationary) over time.

Inasmuch as we have focused our attention on only one of the roles
of money, the results presented in this paper can be thought of as
tentative. It remazins to be seen if our results can be meaningfully
generalized to accommodate a fully developed model that allows money
to play both of its afore mentioned roles. That is, even though the
scope of monetary policy now includes the composition of government
debt, we want to know under what circumstances can an optimal outcome
be achieved through a monetary policy that maintains a constant level

of debt.

We will now illustrate Samuelson's basic findings in the following
example. We consider a simple overlapping generations economy where
there is only one consumption good available in each time period and

only one agent in each generation. All agents live for two periods,
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with the exception of the agent in the initial generation who lives
out his life in the first period. Thus, in each time period, there
will be one currently "young" agent and one currently "old" egent. We
denote by z the consumption of the agent in the initial generation and
denote by y and z the levels of consumption of each of the other
agents in the economy during their "youth" and "old-zge" respectively,
Preferences are represented by the utility function uo(z) = z for the
agent in the initial generation and u(y,z) = y + z for each of the
other agents. Each agent is endowed with one unit of each good which
i1s available in his lifetime. That is, the agent in the initial
generation is endowed with one wnit of the first period good and each
of the other agents is endowed with one wnit of the good which is
available during their youth and one wnit of the good which is
available during their old-zge. We will be considering a price system
where the price of each good, in terms of present discounted value, is
equal to 1. Given these prices, the agent in the initial generation
is facing the budget constraint z £ 1, while each of the other agents
face the constraint y + z £ 2. Given our specification of tastes and
endownents, it should be clear that these prices support an autarkic
equilibrium, 1In fact, it can be readily verified that the autarkic
solution is the only competitive equilibrium for the economy,

However, one may also verify that the avtarkic allocation scheme is
pareto dominated by the scheme where the initial agent receives z = 2
units of consumption and where each of the uther agents receive

(y,z) = (0,2). That is, in the alternative allocation scheme, the
agent in the initial generation is better off while each of the other

agents is no worse off. Thus, we have an example of an economy for
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which there is no pareto optimal competitive equilibrium. Finally, we
note that this second allocation scheme is pareto optimal and that it
can be supported as an equilibrium by our original price system

(i,e. with all prices equal to 1) if the agent in the initial
generation is given a transfer of one wnit of fiat money. That is,
the initial agent is now facing the budget constraint z{ 1 +1 =2,

where we normalize the price of money to be 1.

We will see that Samuelson's existence result is also closely
related to the second fundamental welfare theorem. This theorem
states that any pareto optimal allocation can be supported as a
competitive equilibriumn after a suitable redistribution of endowments.
It is relatively straightforward to establish the second welfare
theorem for a quite general overlapping generations economy (e.g., see
Balasko and Shell [1980]1). Since we wish to interpret the above
theorem as a statement about public policy, it seems more natural to
think of the transfers as being in terms of fiat money rather than in
terms of a redistribution of physical endowments. The net quantity of
money transferred to any particular agent would simply be the value of
the corresponding transfer of physical endownents that he would have
otherwise received. One drawback to the second welfare theorem is
that there is no bound imposed on the amount of govermment
intervention that is required to generate any particular allocation.
Indeed, in dynanic models, the govermment might be forced to
continually intercede in the economy by imposing an infinite number of

monetary transfers, While the second welfare theorem states that

there is an appropriate monetary policy that will support any given
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pareto optimal allocation, Samuelson's result can be viewed zs stating
that there is always a particular pareto optimal allocation that can
be supported by a passive monetary policy. That is, one in which the
government intercedes once and for all by giving non-negative

endownents of fiat money to the agents in the initial generation.

Since the publication of Samuelson's article in 1958, a lot of
wrk has been done to extend his basic result. Most of these attempts
(e.g., see, Cass and Yaari [1966], Diamond [1965], Gale [1973], Shell
[1971], and Wallace [1980]) restrict their attention to economies with
homogeneous agents and only one good per period. Starrett [1972]
allows heterogeneity of agents within each generation hut requires
that there be only one good per period. kuno and Zilcha [1980, 1983 ]
allow for both heterogeneous agents and many goods per period. All of
the papers mentioned above concern models that are stationary with
respect to both tastes and endowments. Millan [1981] was able to
establish an existence result, which allows only one good per period,
where he assumes that the economy is "asymptotically" stationary.
.That is, the agents tastes and endowments in generation t converge to
a limit as t becomes large. In contrast to the above works, we
establish optimality results for a class of economies in which there
are many heterogeneous agents per generation and many goods per
period. Also, we allow the economy to exhibit a quite general form of

non-stationarity with respect to both tastes and endownents.

Due to the generality of our model, we ¢cannot establish the exact

form of Samuelson's result. In fact, Millan [1981] presents an
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exanple of an economy that satisfies all of the assumptions ¢f our
paper but does not satisfy the conclusions of Samuelson's theorem.
However, we are able to establish general propositions that come
arbitrarily close to coinciding with Samuelson's result. The sense of
closeness of our results will be defined in the next paragraph. In
light of the fact that Millan's example demonstrates that the exact
form of Samuelson's result cannot be generalized, it may seem
surprising that we can come arbitrarily close. We conclude our paper

by exploring a possible cause of this apparent anomaly.

We introduce our model, along with its assumptions, in section 2.
In section 3 we establish two existence results. The first concludes
that there is a passive monetary policy that is consistent with a
pareto optimal allocation that is almost feasible for our economy.
The degree of infeasibility of this allocation (as measured by the
level of aggregate excess demand for any given good) can be chosen to
be less than any given (arbitrarily) small quantity. Qur next
proposition concludes that there is a feasible and pareto optimal
allocation that is consistent with a monetary policy that is almost
passive. That is, although the government must intervene in periods
other than the first, the extent of intervention (as measured by the
magnitude of each agent's monetary transfer as a fraction of the value
of his endownents), can be chosen to be less than any (arbitrarily)

snall quantity.

Generalizations of the above two results are presented in

section 4, The first result 13 significantly strengthened by
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conclud ing that the zggregate degree of infeasibility of the rpareto
optimal allocation scheme (as measured by the summation of the
megnitudes of all excess demands) can be chosen to be arbitrarily
small., In the strengthening of our second result, we are able to
choose an optimal monetary policy where the aggregate interventions in
periods other than the first (as measured by the summation of the
magnitudes-of the transfers to the agents as a fraction of the values

of their endownents) can be made arbitrarily small.

In section 5, we explain why our techniques, which are able to
establish (arbitrarily) small perturbations of Samuelson's result,
cannot be used to extend the exact form of his result to the general
class of economies that we consider. The key problem with using our
approximate results to obtain an exact result is summed up 1in
Proposition 5.2. This proposition states that, in general, the set of
feasible and pareto optimal allocation bundles is not closed.

Finally, in section 6, we give a brief summary of our current
knowledge of the existence of optimal monetary policies in general
overlapping generations models, along with an open question for future

research,
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2. THE MCEL

We will analyze the overlapping-generations economy specified by
Balasko and Shell [1980] with the exception that we allow each
generation to consist of meny agents. However, we do require that
each generation contains the same number of agents. This requirement,
along with many of those listed below, insures that we can
characterize the set of pareto optimal allocations as in PBalasko and
Shell [(1980]. In each period t (t =1, 2, ... ), there is a finite
(constant) nunber N of non-producible and non-storable commodities.
Consumers are identified by the generationg (g =0, 1, ... ) in which
they belong as well as an index h (h= 1, ... , H) of their position
in that generation. Since the model we consider is, in general,
non-stationary, there is no significance attached to an agent's
position, h, in a given generation. Agents in generation 0 consume
only period 1 goods while agents in generationg (g =1, 2, ... )

consume goods in periods g and g+1.

t,i
gh

period £t (t =1, 2, ... ) by consumer (g,h)

Let x be the consumption of commodity i (1 = 1, ... ,N) in

(g=t-1, t and h=1, ..., H). Consumer (g,h)'s preferences are
assumed to be representable by a utility function

ug.h(xg'h)' g = 0' 1, e and h = 1. ees 9 H'
where

1,1 1, N N B
xo'h - xo.h - (xo:h’ ese Xo:h) é R++ fOl‘ g - 0

and
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g g+1
(Xz,h1*g,n’

g,h

1 g,N _g+1,1 g+1, N 2N
(xg'h. oo 1y xg:h' xg,h' y eee xg'h' ) e RH_

forg=1, 2, «.. .

That is, if we define )(g h to be the consumption space for agent
? .

N - _ poN _
Hforg-Oandxg'h-RH_forg_h 2y cee .

An allocation scheme for the economy will be denoted by

(E,h) , then xo’h = R

X = (x0,1' ses 9 XO'H, X1'1, sse 9 X.l,H. es e ) Ex,

where the set of all such schemes, X, is defined as

X=X X

0,1‘... O’Hlx1,1l....x1,Hx.-. L]

For notational convenience, we define the sequences

1] -
Xo,n = (X

and

0, «e.) forg=20

x'g,h xg’h, x%t;l, 0 o) forg=1, 2, eee

Each consumer has strictly positive endowments of the goods in his

]

—~

o
-

.

.

.

o
-

lifetime
S D A 1, N N _
Wo b = Wo,h * (wo'h, wo'h) € R++ forg = 0
and
w =

g+1
(g 0 Vg )

1 g,N _g+1,1 g+1, N 2N
(N'g: ) see "g:h' “g,h. y eee "g,h’ ) e RH_

for g = 1, 2, ess =

We also find it convenient to define the sequences

1
1 - -
wo'h = ("o,h' 0 ... ) for g = 0
and
1
wé.h = (0’ eee 0’ wg.h' wg‘:h' 0' ene ) fOl‘ g = 1. 2. eee

The aggregate endownent of goods in the economy can then be written

= (W' w2 =
w— (H ) w 1) LICN ) ) - (g'h)wg,h.
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The utility functions and the endownent streams are assumed to

satisfy the following.

(A1) u,  (e) and u_ ,(a,9) (g0) have continuwous and strictly
O,h g,h

positive first-order partial derivatives;
Assumption (A.1) states that preferences are smoothly monotonic.

(A.2) u . (e) and u, ,(o,s) (0) are strictly quasi-concave.
0,h g,h

(A.3) The magnitude of the Gaussian curvature of consumer (g,h)'s

indifference surface at any point x such that 0 < xg h < w® and
?

g,h

0 < xg*'ll < w1 is wniformly bounded away from O.
’

(A.4) There exists constants P and Q (independent of (g,h)) such that
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D u
0<p Bl BN 0
“Dgug,hH
and
D u
0 <P < g.i7g,h <Q<oo forgs=1, 2 ...
11 (D u D

gl ,h*Dg+19g ,n) 1

at an oint x t
yp g,h such tha ug,h(xg,h) > ug,h(“g,h/a) and
1
Xg.n § 2(w®,wB*"), where D, 1Y%.h (s = g, g#1) is the marginal utility

of good 1 in period s to consumer (g,h) and Dsu (D

g,h = s, tMg,n cee

Ds ,N¥g,n’ -

(A.5) For any x e Ri’:, the closure of
2N
: >
U { yeR ug’h(y) ug.h(x)}

(g,h) A
20

2N

is contained in R2N for any x € R7 .
++ ++

Assumption (A.5) implies that agents will always demand a strictly
positive quantity of all of the goods that are available in their
lifetimes.

Assumptions (A.1) and (A.5) insure that we can always find
suitable bounds, P and Q, as in (A.4), for each agent (g,h). But,

(A.Y4) restricts these bounds to be the same for every agent.

2N
(A.6) There are vectors W, Wy € RT such that 0« W« ”g,h« w, for
all (g,h). For convenience, we scale our measure of quantities so

that each component of W is greater than 1.

Assunptions (A.U4) - (A.6) limit the degree to which our economy
can be non-stationary with respect to both preferences and endowments.

In later proofs of the existence of optimal monetary equilibria, we
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wWill be considering monetary equilibria in which all agents are
achieving at least a minimum utility level. That is, for some

2N
X € R++’ ug,h(xg,h) > ug'h(x) for all (g,h). As we shall see later,

(A.5) is then employed to deduce that the sequence { x }

is

g,h g0

bounded from below by a strictly positive vector.

Many of the properties of the overlapping generations model
explored in later sections of this paper (such as the compactness of
the set of monetary allocations and the non-closure of the set of
pareto optimal allocations) hold under much weaker conditions than
those listed above., Assumptions (A.1) - (A.6) are employed in the
proofs of the existence of optimal monetary policies (Propositions
3.2, 3.3, 4.3 and 4.4)., The assumptions allow us to essentially
employ Proposition 5.6 of Balasko and Shell [1980] to characterize the

set of pareto optimal monetary allocations as in our Llemma 3. 1.

Let pt il denote the price, in terms of present discounted value,

of commodity 1 (i =1, ..., N) in period t(t=1, 2, ... ). Also

let Dt' = (pt'1. oo pt'N) and p = (p1. p2, ves ). We choose the

1,1

normalization p = 1 and thus restrict prices to lie in the space

S={p>o0;:ph!

=1 }. Individual demand functions f’g R(P.y) are
,
determined as the solutions to

(2. 1)

max imize uD,h( "o,h)

'
subject to PXop$VY for g = 0
’

¥o,h € Xo,n
and



The following pages are missing from the
original

Pa, 7



- 73 -

imi )
max imize ug,h(xg,h‘
subject to px! (B for g =1, 2, eee
g.h
*g,h € Xgn

X 1.1
1] 1 - -
(Given our definition of x h pxa’l = p xO,h for ¢ = 0 and

px' g 8 g+1xg+1
]

g,h= pxg'h+ P ghforg= 1, 2| cee .)

Assumptions (A.1) and (A.3) insure that the functions fg n(pPyy) are
1]

well-defined and continwus at any (p,y) such that pe€ S and y > 0.

We let f‘;';(p,y) denote the demand by agent (g,h) for good (t,i)
’

(t=g,8g+1 and 1 =1, ... , N). We also define

£ R £,N )
fg,h(p'y) z (f‘g:h(P.Y). eee fg:h(p,y)) for t = g, g+1.

In this model, monetary policy consists of the government imposing
taxes and distributing subsidies of fiat money. A particular policy

is a vector m = (m h)en°° where m_ . is the net transfer of fiat
’

g,h
money to agent (g,h) . Throuwghout this paper, the price of money, when

it is valued, will be normalized to be 1. Therefore, given a system
of prices p and a monetary policy m, agent (g,h) has a net income of

pw'h+m

g and hence demands the consumption bundle
’

gh
- t
*g,n = Tg,n(PP¥g p*Mg ) -
Clearly, given prices p € S, we can only consider monetary policies m
where each agent has a positive after-tax income, 1.e. pw'g h+mg h >0
’ ?

for all (g,h).

We denote by mt' the aggregate stock of fiat money outstanding in

the economy at time t. If taxes and subsidies to an agent are
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executed at the beginning of the agent's life, then mt = Z m he
(g’h) g'
gst
The optimality results presented in the next section concern monetary
polices where the stock of fiat money is always non-negative,

i.e.mt 2 0 for all t,

2.2 Definition.
(a) A Monetary AMllocation consists of a price system p, a monetary

policy m, and an allocation scheme x, such that:

P €S,
1
PWen * Mgon > 0 for all (g,h),
- 1
xg,h = fg,h(p’p"g,h+mg.h) for all (g,h),
and

mt 2 0 for all time periodst = 1, 2, ... .

(b) A Monetary Equilibrium (p,m,x) is a Monetary Allocation scheme

which satisfies the feasibility constraint

] -
(g'h) xg'h = W.

(c) A Competitive Equilibrium (p,x) is a Monetary Equilibrium where we
consider the associated trivial monetary policy, m, defined by

mg,h = 0 for all (g,h).

2.3 Definition. The allocation scheme x € X is Pareto Optimal if

there is no y e X such that

2y, = ¥ x
(gh) B0 (gh) B
and

ug.h< yg,h) b ug,h(xg,h) for all (g,h), with at least one strict
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inequality. We will also czll a monetary allccation (p,m,x) pareto

optimal if the associated allocation scheme, x, is pareto optimal.
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3. PRELIMINARY OPTIMAL MONETARY rOLICY RESULTS

Before we establish our optimality results, we will find it useful
to characterize the set of pareto optimal allocations in terms of the
prices that support them. The following lemma is based on Proposition

5.6 of Balasko and Snell [1980]. Their result is extended to allow

for generations to consist of many agents.

3.1 Lemma. Given any monetary allocation (p,m,x) such that

psz h* Mg,h > (1/2)pwé h for all (g,h), the allocation scheme x is
1] ’ ?

Liptlt

pareto optimal if Z 1. 00.
t

In order to fully understand the above lemma, it is helpful to
consider the source of the potential non-optimality of monetary
allocations. As we saw in the example that was presented in the
introduction of this paper, non-optimal allocation schemes can be
improved upon by "passing back" consumption from the infinite future
to agents in initial generation. That is, all asgents, except those in
the initial generation, are giving up some consumption during their
youth in return for increased consumption in their old-age. The net
effect of this redistribution is an increase in the welfare of the
agents in the initial generation with no change in the welfare of each

of the other agents in the economy.

The factor that prevents all monetary allocations from being

improved upon in this manner is that the additional quantities of
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goods that agents in generation t require in their old-=zge, to
canpensate for their foregone consumption in their youth, becomes
unboundedly large for large t. Hence, the pareto-improving
redistribution of goods in necessarily infeasible, given our
boundedness condition, (A.6), on endownents. We can, therefore,
characterize the set of all non-optimal allocations (i.e. the
allocations that can be feasibly improved upon) as being those in
which, on average, the necessary increase in each agents old-age
consunption is small relative to the loss of consumption during their
youth, That is, we have a sense in which non-optimal allocation
schemes are those in which, at the margin, agents put a large value on
old-zge consumption relative to consumption during their youth. For
any agent (g,h), we can express this condition of willingness to
substitute as saying that HDgHug’h(xg'h)::/{ wg“g,h(xg,h)“ is
large. Since the efficiency condition for individual utility
max imazation implies that

g+ 1

t1p g

VAR AR “Dg+1ug,h(x ,hH”“Dgug,h(xg,h)“’ we can express

our characterization of the non-optimal monetary allocations, (p,m,x),

as being those in which, on average, the terms of the sequence
1 (o o]
L odee,
of prices that characterizes the monetary allocations that are

00 1
non-optimal is given by Lemma 3.1 to be ) 2

g=1 iip

grow sufficiently quickly. The precise growth condition

< oo.
]

Proof of Lemma 3.1. We wish to employ Proposition 5.6 of Bal asko
and Shell [1980]. However, since the model that they consider

restricts each generation to consist of a single agent, we must first

transform our economy into one that meets this requirement. For
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simplicity, we strengthen (A.2) and assume that all utility functions,

ug ,h(') y are concave,

Fix anyg 0, 1y, cee

H H
ng e Wg = ng,h’ m_ = ng,h' and Z, = X

xX

h=1 ’ h=1 g h=-| 3'1".'. G!H.
We first demonstrate that (x_ ., ..., x_. ) solves
g1 g,H '
(i)
aximi
m 28 g 107,
H

g
(x ) for h= 2, ... , H )

subject to z! S w' m
J ﬂé; g,n $PH*

h(Z, p) 2 u

Y%,0'%g,h’ 7 Y n

(28,1' cee s zg,H) € Zg.

If (x8 1 eee xg H) did not solve the above problem, then there
1] ?

would exist a vector (zg 1
1]

(a) “3,1(23,1) >u ’1(x

eee 3 zg,H) € Zg such that

g, 10 (0 g (25 n) 2 Yg n(Xg )

H
for h=2, ..., H, and (c¢) ph;zé’h < pwé + mg.

Since each allocation xg h solves agent (g,h)'s welfare maximazation
’
problem (2.1), (@), together with our monotonicity assumption (A. 1),
impl ies pzé4l > 1 , while (b), together with (A.1), implies
?

|
h > pxg. But by

pzfs,h 2 Pxé'h for h= 2, ..., H. Hence, ph;z'
(A.1), each consumer spends all of his income, i.e.

1 - ] - | . 1
Pth_pwgha-mg’h for h=1, ..., Ho Hence, pxg-pwg+m,

H g

which, together with pZz > pxé, contradicts (ec).

gsh

From the above paragraph, we conclude that (xg 10 eer 0 Xg H)
L ?

solves the problem (1). Therefore, for anyg=0, 1, ... , the
Kuhn-Tucker Theorem implies that there exist positive scalars

a8’1, ces 'ag,H such that (xg,1' 'xg,H) solves '



(ii)
H
max im i ze Eag’h . h(zE )
H
subject to przg’h < p..é + mg
(z

g, 10ttt Zg.n) € g

Before we proceed further, we must make a technical modification.
For the remainder of this proof, we extend agent (g,h)'s preferences

to the set x; h = closure )(g he This extension is necessary to insure
] ’

that the functions Vg(ﬂ) will be well-defined in (iii) below.

For each (g,h), 1et u* = the limit of u (x) as x — 0.
g,h g,h

(Technically, to insure that the above limit exists we may have to
normalize the agents' utility functions to be bounded from below.) By
assumption (A.5), the following extension, u* ( o), of ug (°) is

continwus on X*

g,h° We define,

u Al
Sl - g,h(’()_ if x e xg'h
g,h

*
ug,h if x € xg,h' where xg'h denotes the boundary of xg'.h.

Clearly, since preferences are quasi-concave, we can replace Zg with

Za = Xg 1!...:)(*8 h as the constraint set and replace the preferences
’ ’

ug ple) with their extensions ug p¢e)y in the maximazation problem
, )
(ii), and conclude that (x vee o X u) still solves (ii).

g,1" * "g,H

Therefore, it follows that xg solves

(1i1)
max im i ze Vg(zg)

subject to pz!S < pwé + mg

Z exg1’

where vg(O) is defined by
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H

H
iv = * i )
(iv) Vg(zg) max h;ag,hug,h(zg.h) subject to ﬁﬁzg'h £ Zg and

%*
(28.1' cee zg,H) e 1*,

8
The continuity of the utility functions ug,h(o) is sufficient to
guarantee that each of the functions vg(a) is well-defined at any
point zg € xg'1,
We now consider an economy E* consisting of N goods per period but
only one agent per generation. We give the agent in generation g the
consumption set xg,T’ the endownent wg, and the utility function
Vg(')' By the preceding paragraph, in particular (iii), we can

conclude that (p,( mg) ,(xg)) is an monetary allocation for the economy

E*. It should be obvious that the economy E* inherits all of the
properties, (A.1) - (A.6), our original economy, It is also
straightforward to verify that (A.1) - (A.6) are sufficient to
guarantee that the allocation (p,(mg) ,(xg)) for the economy E*
satisfies all of the hypothesis of Proposition 5.6 of Balasko and
Shell [1980] with the possible exception of the requirement that

{ xS }:?1 is bounded from below by a strictly positive vector. Gnce

we have established this 1ast requirement, our proof will be compl eted
since if Z .-.|1T. = oo, then by Proposition 5.6 of Ealasko and
t lip il

Shell (19801, (xg) is a pareto optimal allocation scheme for the

economy E*, This, in turn, implies that the allocation scheme (xg h)
’

is pareto optimal for our original economy since preferences, Vg\-),
in the eccnomy E*, as defined in (iv), are monotonic transformations
of the preferences of the agents in our original economy,

i ] ]
By our hypothesis pwg’h + mg,h p3 (1/2)p”g,h' the bundle (1/2)“g,h

D)

was affordable to agent (g,h). Hence, > ug.h((”z)wg,h)

Yg,h{*g ,n)
for all (g,h), since xg nh was chosen over (1/2)wg n+ Therefore, by
I ?
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assumptions (A.1) and (A.6),

(1iv) ug’h(x ) > ug’h((l/Z)wL.(WE)wL) for all (g,h),

where w 1is the lower bound on endowments as specified in (A.6). By

assumption (A.5), (iv) implies that the collection

{ xg h $8=0,1 ...and h=1, 2 ...} is uniformly bounded away
’

from 0. This, in turn, implies that { x }°°

g 1g=1 is also bounded from

below by a strictly positive vector,

Q.E.D.

We are now ready to establish our optimality results. The
intuition and strategy behind the proofs of these propositions is
quite simple and will now be explained. First let us redefine our

prico set to be

={p>»o:5phl-ny,
i
We will only consider monetary allocation schemes (p,m,x) such that

the market for period 1 goods is in equilibrium. Given any such

_ 1 _ 1
scheme, p € S and xo'h = (xo’h) < ( Zh)xg' = (w'). Hence,
g=0,1
1
P 0 h <p w Zw ’
where w1’i is the aggreg ate endownent of good i in period 1.

Therefore, Zw"vi serves as an upper bound on the net quantity of
4

A

money, mo'h, that any consumer h in generation O can receive. Given
this bound, we can construct pareto optimal monetary allocations
{p,m,x) by giving consumers in generation 0 monetary transfers which
equal the value of (small) quantities of future goods. Prices are

t

kept from exploding (i.e. the terms in the sequence { |ip’}! |

t=0 do

not diverge to oo as t — oo0), since otherwise consumers in

generation 0 would end up receiving arbitrarily large monetary
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transfers, which would violate the upper bound Zw1’i. By Lemma 3.1,
i
this boundedness property of the price system implies that the

allocation scheme, x, is pareto optimal.

3.2 Proposition. For any small e > 0, there exists a monetary

allocation (p,m,x) that satisfies:

(a) mo’hZOforg 0 and h=1, ..., H;

(b) m =0 forg=1, 2, oo and h=1, 2, ..., H;
g,h

(e¢) If we define eVl to be the aggreg ate excess demand for

good (t,i), Z (xb0d wg'}il), then
?

(g,h) &
g=t-1,¢t

1,1

E =0fort=1and i=1 ... , N,

t,i .

E = e for t = 2. 3’ ee e and 1 = 1' eees N;

(d) pt'i < %thi for t=2, 3, eeoand 1 =1, ..., N;
i

and

(e) x is a pareto optimal allocation scheme.

Proof of Proposition 3.2. Let h* = 1. The desired monetary
allocation, i.e. that which satisfies (a) - (e) above, will be found
as the competitive equilibrium of an economy E¥*, which is formed by
perturbing our original economy. Specifically, our original economy
1s altered by giving agent (0,h*) the moperty rights to an extra
endownent of - units of each good i (i =1, ... , N) in periods t
(t=2, 3, «eo ). The agent (0,h*) is now interpreted as being an
infinitely-lived agent who only has tastes for period 1 goods. Even
though the economy E* does not fit into our overlapping generations

framework, it does satisfy all of the hypothesis of Theorem 2 in
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Wilson (1981]. Wilson's theorem concerns the class of economies which
consist of an infinite number of possibly infinitely-lived agents.

(In the terminology of Wilson's Theorem 2, the endowment of agent
(0,h*) is a significant fraction of the aggregate endowment in the
economy E¥.) Theorem 2 establishes the existence of a competitive
equilibrium (p.(xg’h)) for the economy E*. Specifically, (p,(xg'h)
satisfies:

(1) pe S;

(i1) X, h* = fo'h,(p,pwb'h,+mo'h,) for (g,h)=(0,h*),

where the total value of the extra endownents given to agent (0,h*) is

[ols] N t .1
being denoted by my , 4 = € Y Y b
' t=2 i=1
i = ' ).
(1ii) X n * fg,h(p'pwg,h) for all (g,h) ¢ (0,h*);
and
(iv) Z (x1'i w1’i) =0 fort=1and i=1, ... ,N
(g.h) g’h g’h
g=t-1,t
2 eitabhyoe pore-2,3 coandi=1, .., N
(g.h) glh g’h
g=t-1,t

(iv) is the feasibility constraint for (p,(xg'h)) to be an equilibrium
for the economy E* since the aggregate endownents of good i
(=1, ... N) in period t (t = 2, ... ) is wo'l &+ g.

Since only agent (0,h*) received a monetary transfer, we define

the monetary policy associated with (p,(xg h)) as m = 0 for all
?

g,h
(g,n) # (0,h*) (where LY has already been defined in (ii)). ne

may now verify that if we interpret (p,m,x) in terms of our original
economy, then (1) - (iv) imply that (p,m,x) is a monetary allocation
which satisfies (a) - (¢). Property (d) follows immediately since if
t,i

.
P ") giZm,i, for some t = 2, 3, ... and 1 = 1, ... , N; then
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t,i t,i 1,1
Mo =€ 2 et gty whi,
! (t,1) i
which, as pointed out earlier, is inconsistent with the fact that the
market for first period goods is in equilibrium. (e) now follows from

(d) by an application of Lemma 3. 1.

Q. E.D.

3.3 Proposition, For any small ¢ > 0, there exists a monetary

equilibrium (p,m,x) that satisfies:

(a) ng.h= 1H
(b) nlo’hZOforg:Oand h=1, ... , H;
(c)—i’—-<E forg=1, 2, ... and h= 1, ..., H;

(@) ptrt < (‘.&Zw"i for t =1, 2, ...and L =1, ... , N;
1
and

(e) x is a pareto optimal allocation scheme,

Condition (c) of this proposition gives us a sense in which the
monetary transfers to agents, in all generations other than the first,
is small in real terms. Specifically, if the transfers were carried
out by physically redistributing endownents, then we are guaranteed
that each agent would undergo a transfer that amounts to less than the

fraction - of his initial endowment.

Proof of Proposition 3.3. The proof of this proposition is so
close to the proof of Proposition 3.2 that we will only highlight the

differences.
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Let h* = 1, The economy E* is formed by perturbing the endownents
of agents (0,h*), (1,n%), ... . Agent (0,h*) receives ap extra
endownent of ~ units of each good i (i =1, ... y N) in period t
(t=2, 3, ...). Agents {g,h*) (g =2, 3, ...) lose € units of
their endowments of each good i (i =1, ..., N) in period g. (By
assumption (A.6), this redistribution of endownents is feasible as

long as ¢ < 1, which is less then the minimal coordinate of the vector

W)

As in the proof of the previous proposition, we apply Theorem 2 of
Wilson 1981 to obtain a competitive equilibrium (p,(xg’h)) for the
economy E*, Specifically, (p,( xg,h)) satisfies:

(1) pe s;
(ii) Xz h% = fg,h(p'p“g,h*"’mg,h*) for g =0, 1, ... and h = h*,

where the net value of the endownent transferred to agent (g,h*) is

denoted by
00 N tq
My pe = € Zp'(ooforg:Oandh:h",
! t=2 i=1

- - - *

m1'h, =0 for g -Nl and h = h*,
i

and mg,h* =-€ Zpg' forg =2, 3, ... and h = h*;

i=1
(1i1) X h = fg’h(p,pwé’h) for g = 0, 1, ... and all h# ¥,

i > g = W
( v) (ﬁ)xg,h W

Since the increased endownent of agent (0,h*) is offset by the
decreased endownents of the other agents in the economy, the
feasibility constraint for the economy E*, condition (d¥), corresponds
to the f‘easibility constraint for our original economy,

We complete the specification of the monetary policy associated
with (P'(xg,h)) by defining Mg,n =0forg=10, 1 .., and all h$ h*,

It now follows that if we interpret (p,m,x) in terms of our original
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economy, then (i) - (iv) imply that (p,m,x) is a monetary allocation

that satisfies (a) - (c).

Ql E. D.

We will call a monetary allocation scheme (p,m,x) passive if
Meh = 0 for all (g,h) such that g > 0. Proposition 3.2 establishes
the existence of a passive and pareto optimal monetary allocation
which is "approximately" feasible, Similarly, Proposition 3.3
establishes the existence of a pareto optimal monetary equilibrium
vhich is "approximately" passive. The problem of obtaining monetary
allocations which are (exactly) feasible and (exactly) passive is
discussed in the next section. For the remainder of this section, we

will el aborate further on the implications of Proposition 3. 3.

Another interpretation of Proposition 3.3 is that it establishes
the existence of a passive and pareto optimal equilibrium where
consumers are "approximately" rational. That is, as long as there is
some degree of imprecision in the agents measurement of his own
income, the taxes mg,h (for g>0) in the equilibrium of Proposition 3.3
need not be imposed. Formally, we assume that when facing prices p,
agent (g,h) (for g>0) might mistakenly calcul ate his income to be
p"'g,h+mg,h' instead of pw{s’h, which would lead this agent to demand

the consumption bundle x Part (c¢) of Proposition 3.3 guarantees

gsh°
that the necessary imprecision, m8 h? in the agents measurement of his
? 1 [}
m 1
income can be made arbitrarily small in percentage terms (_ﬁ_'g_.h_).
g,h

Clearly, if we are going to allow even a small degree of imprecision,

as described above, there will be a continuum of monetary equilibria
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associated with any given monetary policy. Proposition 3.3 then makes
the statement that there exists a proper monetary policy such that at

least one of its associated monetary equilibria is pareto optimal.
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4, OPTIMAL MCNETARY POLICY RESULTS

In this section, we strengthen our preliminary existence results.
Proposition 3.2 is extended in two ways. First, it is noted that it
is only necessary to bound an infinite subset of prices, as opposed to

bounding all of the prices, in order to guarantee that a given

allocation is pareto optimal, i.e. Z l = oo. Therefore, since
tiipi
the only reason that we allowed the market for a good to be out of

equilibrium, in Proposition 3.2, was so that we could bound the price
of that good, we can restrict the markets that are out of equilibrium
to lie in any specified infinite subset of markets. However, the
major strengthening of Proposition 3.2 lies in the bound that we
impose on the degree to which our allocation scheme can depart from
feasibility. Instead of uniformly bounding each component of the
excess demand for goods by any arbitrarily small number, as in
Proposition 3.2, we can require that the summation of the magnitudes
of the excess demands for all goods be made arbitrarily small. That

is, we can bound the aggregate divergence from feasibility by a small

nunber,

Similarly, Proposition 3.3 is extended in two ways. For the same
reason that the markets that are out of equilibrium in Proposition 3.2
can be restricted to any infinite set, we can strengthen Proposition
3.3 by requiring that the agents who are taxed can be restricted to
any given infinite collection of agents. The major strengthening of

Proposition 3.3 lies in the bound that we impose on the degree to
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which agents in all of the generations, other than the first, are
taxed. Instead of uniformly bounding the magnitude of the tax on each
agent, measured as a fraction of the agents endownent income, by an
arbitrarily small number, as in Proposition 3.3, we can require that
the summation of the magnitudes of the taxes can be made arbitrarily

small. That is, we can bound the aggreg ate divergence of our monetary

policy from being passive.

The following lemma, about the set of monetary allocations, will
be employed in the proofs of our extensions of Propositions 3.2 and

3.3, i.e. Propositions 4.3 and 4.4 respectively,

4.1 Lemma. Consider any point y € X. The set of all monetary

allocations (p,m,x) such that

(a) pwé,h AL > (1/2)pwé'h for all (g,h)

and

(b) xgvy

is a compact subset of S*M=X, where M = R°® 1is the space of monetary
policies and S, M, and X are each endowed with the product topology.
Note, in the product topology on S*M~X, the compactness of a subset of

S M X1is equivalent to the sequential compactness of a subset,

Proof of Lemma 4.1. Consider any sequence of monetary allocations
{ (p(k) ,m(k) ,x(K)) } each of which satisfies (a) and (b).
Consider any (g,h).

For each k, hypothesis (a) implies that the consumption bundle

(1/2)"g,h 1s in agent (g,h)'s budget set, as defined in (2.1), given

ey A
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prices p(k) and the monetary transfer mg h(k) . Since Xg h(l-c) is
1] ?
demanded by agent (g,h), when the bundle (1/2)wg p 1s available, it
L

tb t1l t b i.e.
mus e at least as desirable, i.e ug,h(xg,h(k)) P ug,h((1/2)"g,h)'
Therefore, by hypothesis (b),
xg,h(k) € X"h for each k,
where
X' = .
g,h { xe xg,h “g,h(") > "g,h((1/2)”g,h) and x {y

forg=0, 1, «¢e. , and h=1, ... , H.
By assumption (A.1), each of the sets X; h is closed and hence
1

compact since, by definition, they are bounded. Therefore, the set

X* = X6' 1'...;X6,H-X?, 1'...'X?’H'... , which contains each of the
points x(k), is compact for the product topology by Tychonoff's
theorem (see, e.g., Bourbaki (1966, I, Sect. 9.5, Theorem 3, p. 881).
Hence we may select a subsequence of { x(k) } such that x(k) = x for
some x ¢ X*, (Since X is endowed with the product topology, the
convergence x(k) —> x means pointwise convergence, 1i.e.

xg h(k) - x for each (g,h).) Clearly X*C X so x € X.
L

g,h
We will now verify, by induction, that for each g =1, 2, ... 3}

p8(k) — pﬁ where { p® )} is defined inductively by

o - Dyug, 1(xg, 1)
Dy, 4o, 1¢%g, 1)

and

+1

D

p° i g+1Yg, 1%, 1)

g,1 _

p Dg'1ug'1(xg'1) for g = 1, 2, «ees

Note that by assumption (A.1), p® € R_IL for all g and that p1'1 = 1.

2

Hence, p = (p‘, Py ... ) € S.

For each k, the efficiency condition from (2.1) together with the
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normal ization p'* '(k) = 1 implies

Diug, 1(xy 1(K))

D1.1u0’1(x0' 1(k)) .

P1(k) =

Therefore, by assunption (A.1), X 1(k) —> ¥ ¢ implies p1(k) o p1.
? ’

Assume the inductive hypothesis p3(k) —> pB.

For each k, the efficiency condition from (2.1) implies

g+1
p> (k) 1(xg'1(k))

D
_ _s+1'g,
Bl

( (k) .

g,1g, 1 %g,1

By assumption (A. 1), x8 1(k) —> x and p3'1(k) —> p )1 imply
’ ’

g,1

pg+1(k) - pg+1.
We have just shown p(k) — p, where p(k) = (p1(k). p2(k). cee )
For each k, (2.1), together with our non-satiation assumption

(A.1), implies mg,h(k) = p(k) xé'h(k) € pwé’h. Therefore, x(k) — x

and p(k) — p imply that m(k) — m where m is defined by

m = 1 - w'
g,h = Pgn T Pgon
We have just demonstrated that there is a triple (p,m,x) € S=M=X

for all (g,h).

such that (p(llc) m(k) ,x(k)) —> (pm,x). Since pxé’h = pwé'h + mg,h'
peS and x € X imply that pw' + m > 0. Given this, it is easy
g,h g,h

to see that (p,m,x) is a monetary allocation and that it satisfies our
hypotheses (a) and (b) since each of the triples (p(k) ,m(k) ,x(k)) are
monetary allocations that satisfy (a) and (b).

Q. E.D.

The following result is an immediate consequence of Proposition

4.1.
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4.2 Corollary. The set of all monetary equilibria (p,m,x) such

. ' . .
that pwg'h + mg,h > (‘l/2)pwg’h for a1l (g,h), is compact in the

product topology.
We now present our existence results,

4,3 Proposition. For any infinite collection of goods
IC{ (ti):t=2,3 ...and 1=1, ..., N} and any small ¢ > 0,
there exists a monetary allocation (p,m,x) that satisfies:
(a) mo'h>,0f‘org=0 and h=1, ..., H;

(b) m =0forg=12 ...and h=1, ..., H;

g,h
(c) If we define Et b to be the aggregate excess demand for

good (t,i), Z (xSl w;':;), then
’

(g,n) &M
g=t-1,t
Et’i = 0 for each (t,i) € I,

> keS¢

(t,i)el

(@ ptotg ‘l: Zw1'i for each (t,i) e I,
© i

and

(e) x is a pareto optimal allocation scheme.

Qur strategy for proving this proposition will be similar to the
approach that we used to establish Proposition 3.2. FRecall, in the
proof of proposition 3.2, our original economy is perturbed by giving
agent (0,h*) the property rights to an extra endownent of - units of
all goods in each period other than the first. The market value of

00 N

this transfer, given prices p, ism, . ,(p) = ¢ Z Zpt’i. We then
0,h t=2 {1
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considered a competitive equilibrium (p,x) of the perturbed economy,
The boundedness property of the equilibrium transfer,

mo'h,(p) $ iZw1'i, implies that the prices, p, satisfy pt'l kS éZw1'i
fer £t =2, 3, ... and i = 1, «eo , N. The optimality of the

allocation scheme, x, then follows by Lemma 3.1,

In the current proposition, we want to introduce as few extra
endownents as possible into our perturbed economy. To accomplish this
feat, we are forced to make the quantities of the extra endownents
depend on the current market price system. Specifically, we only
introduce endowments of goods whose prices are maximal. 1In this way,
we can keep the quantity of extra endowments to a minimum, while still
being able to employ the boundedness property on the value of agent
(0,h*)'s equilibriun transfer to bownd the equilibrium prices.
Unfortunately, the price dependency of agent (0,h*)'s endownents put
the perturbed economy beyond the reach of all well-lncwn equilibrium
existence theorems for dynamic economies. We, therefore, must
construct a sequence of approximations | (p(k) m(k) ,x(k)) } to our
desired allocation (p,m,x), i.e. (p(k) ,m(k) x(k)) — (p,m,x) as

k = oo.

The k'th approximation (p(k) m(k) ,x(k)) is derived from a
competitive equilibrium of a truncated economy in which agent (0,h#*)
receives an extra endownent of goods which are contained in the given
set I, dated no later than k, and have a maximal price. The total
distribution of goods is €. Therefore, the equilibrium value of the

transfers to agent (0,h*) is
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mD,h*(k) = € max | pt’i(k) : (tyi) eI and t=2, ..., k}, since
the price of each gzood which makes up the additional endownents must
be at the level max { p*'1(k) : (t,i) e I and ta=2, ..., k}. By
the afore mentioned boundedness property, mo,h*(k) <Zw1'i. we
: i

conclude that pt'l(k) < ;.thi for each (t,i) € I such that

2 ¢ t < k. Taking the limit. of the above inequality as k — oo
ylelds the desired boundedness property of the limiting prices, p, as
specified in condition (d) of the proposition. In turn, this

boundedness of prices guarantees that the limiting allocation is

pareto optimal.

The bulk of the following proof lies in establishing the existence
of each of the approximations (p(k) ,m(k),x(k)). Next, we verify that
Lemma 4.1 can be emyloyed to come up with a limit point (p,m,x) of the
sequence { (p(k) ,m(k),x(k)) }. It is then a simple matter to verify
that the limiting allocation (p,m,x) satisfies the conditions

(a) -~ (e) of the proposition.

Proof of Proposition 4.3. Let h* = 1.

Fix any k = 1, 2, «s. &

To establish the existence of the k'th monetary allocation,
(p(k) m(k) ,x(k)), we will consider a finite truncation of our full
economy. fThis truncated economy will consist of all of the agents in
generations 0, ... , k. These agents will be allowed to trade in all
of the markets for the goods which are available in their lifetimes,
The resul ting equilibrium for this finite economy will then be

(arbitrarily) completed to form the monetary allocation
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(p(k) ,m(k) ,x(k)).

Formally, consider the (truncated) collection of agents

{ (g,h) : g=0, ... , kand h=1, ..., H},
of goods
{ (¢,i) : t =1, ... , ket and i =1, ... N},

of commodity prices

k+1 N N

) eR “..ox R },

Pk = [ (p1' csee p —+

and the collection of goods from which agent (0,h*) receives added
endownents

Ik= { (ti)eI:t=2, ..., k}.

We wish to find a monetary allocation (p(k) ,m(k) ,x(k)) for the
truncated economy in which agent (0,h*) receives the transfer

my }.

Let the f‘unction.

mO,h* : Sk o d R++

be defined by

(0 = € ma (PP 1 (8,0 €I

() my o (p) = € max { prt

s (t,i) e Ik } for each p € S+
Given prices p € Sk, agent (0,h*) will receive the monetary transfer
mo'h,(p). No other agents in the truncated economy will be given any
transfers.

The aggregate demand for goods in this economy, which is denoted

by F(p) = (F1(p), cee s Fk+1(p)) € S, , is then given by

k'
1 1 1 -
F'(p) = rO,h'(p'p"('),h*+m0,h‘(p)) +(g h)#Z(o h“)fg'h(P’PWé'h) for t = 1
’ ’
g=0,1
t _ t ' -
F*(p) = Z fg,h(p'p"g,h) for t = 2, ... , k

(g,h)
g=t-1,t
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and

),
F'("'](p) = %f‘}:ﬂ'h(p,pwkﬂ’h) for t = k+1.

We denote by Ft'i(p) the demand for good (t,i), i.e. the i'th
camponent of Ff‘(p) .

Due to the monetary transfer to agent (0,h*), the value of aggregate
denand exceeds the value of the aggregate endownent by mo'h*(p) . That
is, Walras's law is not satisfied. Therefore, in order to establish
the existence of an equilibrium, we must first restore Walras's law by
introducing further quantities of goods into the economy beyond the
existing endowments of the agents. The total value of these additions
must offset the transfer mO,h*(p) . We wish to introduce the least
amount of extra goods as possible, while still generating the value
mo'h.(p) , S0 that the resulting "equilibrium" allocation, x(k), will
be very close to being feasible for our original economy. Therefore,
for each p € Sk' we only supply extra quantities of endownents of the
goods whose prices are maximal in the set Ik That is, for any

p € Sk' the added endownents are constrained to lie in the set
t,i

G(p) = { ye Pocy = 0 unless (t,i) € I(p
'ty 0 for all (t,1) € I (p)
yt'i = e ]'
(t.i)elk(p)

where the subset of goods whose prices are maximal in Ik is denoted by

e by T
L(p = { (t,1) € I, : for all (v',i') eI, p > P .
One may verify that the correspondence G(e) is upper hemi-continwus

on the set of prices Sk
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We now consider the following (modified) excess demand
correspondence H : Sk —> RN* cee ® RN, which we define by
H(p) = { F(p) - (w1,...,w::+1) -y :y eG(p 1},
where v{” denotes that aggregate endownent of goods in period k+1 by
the agents in generation k, i.e. wﬁ” =§wﬁt:1
That is, H(p) 1s the collection of levels of demand which are in
excess of both the original endownents, as specified in (wg ,h> , and
the artificially added quantities of goods y € G(p). We wish to
verify that H(s) satisfies the following properties (which are
typically associated with excess demand correspondences);

(i) H(e) is upper hemi-continwous on Sk’

(ii) (Walras's law) For any p € P » Pz = 0 for all z € H(p),
(1ii) H(e) 1s uniformly bounded from below,

(iv) (Boundary condition) inf { iizl} : z eH(p) } — o0 as p
approaches the boundary of Sk,

and

(v) (Convexity) H(p) is a convex subset of HNl cee X RN for each
p € Pk'

(i) follows from the continuity of individual demand, fg ,h(') , the
continuity of the monetary transfer to agent (0,h*), mo’h*(-) , and
from the upper hemi-continuity of G(e). By our monotonicity
assumption (A.1), every agent spends all of his (after-tax) income.
Hence, pF(p) = p(w1, cee wk, wt“) + mo'h.(p). But, by the
definition of G(p), py = mo'h'(p) for every y € G(p). (ii) now
follows from the above two equalities and the definition of H(p).
(Recall that G(e) was specifically defined so that (ii) would be

satisfied.) For any point z € H(p), by definition there exists a
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point y € G(p) such that z = F(p) - (w1. ey wll:”) - y. Hence,
since the components of F(p) are strictly positive and the components
of y are each no greater than €, (iii) follows because for all (t,i),
28h 2 ptalony L tal b y-uwbid g
(i.e. the desired lower bound for H(p), b, can be defined by
ptel o _ bl E). By (A.2), aggregate demand, F(p), satisfies the
boundary condition (iv). (Technically, the correspond ence
F'(p) = { F(p) } satisfies (iv).) Hence, since the magnitude of the
vectors in G(p) are wiformly bounded, the correspondence H(p) al so
satisfies (iv). Finally, (v) follows from the convexity of G(p).
Since H(e) satisfies (1) - (v) , We can appeal to lemma 1 of

Hildenbrand [1974] to deduce that there are prices P(k) € P, such that

k

0 € H(B(k)). By definition, 0 € H(P(k)) implies

FIBK) = (', oot wE) € G(F10).

Hence, by the definition of G(P(k)):

(vi) FPlB0) = wbt for t =1, oo, , kand i=1, .o, N
such that (t,i) e Ik‘

F'k+1’1('§(k)) = w]l:”’i for t = k¢l and 1 =1, ... , N;
(vii) FEoR(Bo)) 3 Wbl for all (t,1) e I ;

and
(vit1) 3 (FEel(BK) - Wiy - gl

(t,i)eIk
We can now define the desired monetary allocation (p(k) ,m(k),x(k)) for
the full economy by (arbitrarily) extending our equilibrium for the
truncated economy. We first normalize the prices p(k) by '51'1(k) = 1.
let q= (1, ..., 1) e RN

We extend our prices P(k) into a full system for our infinite economy
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by defining
(b%) plk) = (B0, voo , B0, a, a, ... ) €S, where B°(K) is the
price of t-period goods (t = 1, ... , k+1) in the equilibrium price
system P(k).
We define our monetary policy m by
() my yw(K) = my y(B(K)) for (g,h) = (0,h*) and m_ (k) = 0
for all (g,h) £ (0,h*).
allocations are defined by
(d*) xg,h(k) = fg'h(p(k) 'p(k)“'g,h"'mg,h(k)) for g =0, 1, ... and
h=1, ... , H
By its definition in (b*) - (d*) we conclude that (p(k) m(k),x(k)) is
a monetary allocation for our full economy. Note that for agents in
generations g = 0, ... , k and goods in perjiodst = 1, ..., k+1, the
price, transfers, and allocations defined in (b*) - (d*),
(p(k) m(k) ,x(k)), coincide with their respective values in the
equilibrium of the truncated economy.
let Et'i(k) denote the aggregate excess demand for good (t,i),
te. Eto = 3 (xBlen - Wby,
(g,h) &N 8h
g=t-1,t
The following are consequences of (vi) - (viil) respectively;
(e*) E¥() =0 for t =1, ...,k and 1i=1, ..., Nsuch that
(t,1) e L.k,
(%) "1 (10 3 0 for each (t,1) € I,

and

(e 2 oo =g
(t,i)el,

We now verify that the hypothesis of Lemma 4.1 are satisfied by
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the sequence of monetary allocations { (p(k) ,m(k),x(k)) }. Clearly,
the first hypothesis is satisfied since mg h(k) > 0 for all sgents
?

(g,h) and points k. Define the point y € X by

ti ot

t,i t,i
Yg'n * B+ xn(e1) o £ ((a,a) ((aa) W ).

Consider any agent (g,h), good (t,i), and iteration k.

If g < k, then by (vi) - (vili)

t,i ti, .y _ ot,l t,i
Xg (k) < (g) Xg (k) = Fh(p(k)) ¢ Wit + €.
g=t-1,t

If g = k+ 1, then xt'i

g h
If g > k+ 1, then by the definition of xg h(k) in (d*),
?

t,i
(k) = xs'h(8-1).

t,i t,i

X ’ = ’

g n(K = £ (0a,a),(q,) v ).

By the above arguments, the second hypothesis is also satisfied,
i.e. x(k) ¢ y for all k. Therefore, we may apply Lemma 4.1 to
conclude that there is a monetary allocation, (p,m,x), which is a
limit point of { (p(k) m(k),x(k)) }.

We now verify that (p,m,x) satisfies all of the requirements of
our proposition. Properties (a) and (b) follow from the definition of
the monetary policy m(k) in (c*) and from the definition of L h*(°)

’
in (a*). The only portion of property (c) that does not obviously
follow from (e*) - (g*) is Z :Et'ii ¢ €. To prove this, we
(t,1)el £
consider any finite subset, I', of I and show that Z ‘E o < E.

) - (t,i)el’
Since EV '3 (k) 3 0 and EF'l(k) — EP'Y for all (t,1) €I,

ot aum Y P ¢aum 2 .
(t,)el’ (t,i)el! (1:.1)61k

(c) now follows since by (g*) the limit on the far right is no greater
than €. By previous remarks in section 3, the fact that markets are

in equilibrium for all goods in the first period in the allocation
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(p(k) ,m(k) ,x(k)) implies my h'(k) < Zw1'1- But, for any good
’
i

(t,i) e I and k> t, the definition of m, e (e) implies
t,i 1
p (k) < A mo,h,(p(k)). Hence, by (c*),

ptrlci) < é My (PCK)) =

My palk) < %Zw"'i. Therefore, in the
' -

i
t,i

limit as k = o0, p S

(Nl — M=

Y w1, Finally, since I is infinite, (e)
{

follows from (d) by an application of Lemma 3. 1.

Q. E.D.

4.4 Proposition. For any infinite collection of agents
AcC{ (gh) : g=1,2 ... and h=1, ... ,H} ad any small ¢ > 0,
there exists a monetary equilibrium (p,m,x) that satisfies:
(a) mo.h>,0 forg =0 ad h=1, ..., H;

(b) moh S 0 forg=1,2, ... and h=1, ..., Hsuh that (g,h) e A,
’

]
lmg'h= .
_H'__ <E;
(g,h)er P¥g h
(c) pg"l £ %Z;ﬂ’i + 1 for all g such that (g,h) € A for some h,
i
and

(d) x is a pareto optimal allocation scheme.

Te techniques that we use to establish the above proposition
parallel those that were employed in the proof of Proposition 4.3. In
particular, the desired equilibrium (p,m,x) will be found as a limit
point of allocations, { (p(k) ,m(k),x(k)) }. In turn, eachof the
allocations are derived from the competitive equilibria of a sultably
chosen collection of truncated economies. 1In the k'th allocation,
(p(k) m(k) ,x(k)), agent (0,h*) receives the monetary transfer

Mg, pe(k) = € 3 p8+1(k) min {1, max {0, p8+ (k) - %Zi whi} }, where
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the summation 1is taken over all g < k such that (g,h) € A fo~ some h.
By the boundedness property of ma'h.(k) , Wwe conclude that

pg’i(k) < ézwhi + 1 for all such g < k. Passing to the limit, the
above inequa]fity bounds an infinite number of equilibrium prices,
pg,i’ as specified in condition (c) of the proposition. Hence, the

optimal ity of the limiting &llocation scheme, x, is guaranteed,

As with the previous proposition, the bulk of the proof of
Proposition 4.4 lies in establishing the existence of each of the
allocations (p(k) ,m(k) ,x(k)). The remainder of the proof follows
along the same lines as the proof of Proposition 4.4 with the single
exception that we want to bound the level of monetary transfers

instead of the divergence from feasibility.

Proof of Proposition 4.4, Let h* = 1,

Fix anyk =1, 2, ... .

To establish the existence of the k'th monetary allocation,
(p(k) m(k) ,x(k)), we will consider a finite truncation of our full
economy,. This truncated economy will consist of all of the agents in
generations 0, ... , k. These agents will be allowed to trade in all
of the markets for the goods which are available in their lifetimes.
The resul ting equilibrium for this finite economy will then be
(arbitrarily) completed to form the monetary allocation
(p(k) m(k) ,x(k)).

Formally, consider the (truncated) collection of agents
{ (g,h) : g=0, oo. , kand h=z1, ..., H},

of goods
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{ (t.i) t b= 1, ces k+1 and i-= 1, ses g N}'

of canmodity prices

€ RN LI RN },

k+1)
+—+ ° ++

1
Pk = { (p 1] LR [} p
and the collection of agents that can be taxed
Ak= { (gh)eA :g=1, ... ,kand h=1, ..., H}.
We wish to find a monetary allocation, (p(k) ,m(k) ,x(k)), for the

truncated economy in which agent all sgents (g,h) € Ak pay the tax

-m. (k) = -p8 (0 min { 1, max (0, pBr 0 e L Wiy
g,h =

and the agent (0,h*) receives the tax revenues, i.e.

My pa(K) = 2 -m ().
! (g.h)eAk !

For each (g,h) e A,y let the function

mg,h : Sk —> R
be defined by

(a*) mg p(p) = - epg’1 min { 1, max { O, pg"| - thi 1.
’ i

We also defined the function
mo'h. . sk é R
by

(b*) (M= 2 o  (p.
mO,h* (g,h)EAk g,h

The aggregate excess demand for goods in this economy, which is
denoted by H(p) = (H1(p), ooy Hk+1(p)) € S,, is then given by

Lip = t ' t _
H(p) = D (fg n(PPWg p*Mg p(P)) =Wy ) for =1, ..uy K
(g,h)
g=t=-1,t

and

Hk”(p) = . (rll:t;(p,pwk,mmk’h(p)) - w‘l:t:‘) for t = k+ 1

We now verify the excess demand function, H(e), satisfies the

following;



- 104 -

(1) H(e) is continuous on S

(ii) (Walras's law) pH(p) = O for each p & Sk'

(iii) (Bouwndary condition) !{H(p)!} —> 0 as p approaches the boundary
of 5. '

(1) follows from the continuity of demend, rg,h(°)' and the
continuity of the monetary transfers, mg,h(') . (ii) follows from the
fact, by our monotonicity assumption (A. 1), that each agent spends all
of his after-tax incame pwé ht mg,h(p) and from the fact that the
monetary transfer to agent (0,h*) is exactly offset by the negative
transfers, mg,h(p) y to agents (g,h) contained in A.. (iii) follows
immed iately from our interiority assumption (A.2).

Since H(o) satisfies (1) - (iii), we can appeal to result in
Dlerker [1974,8ection 8] to deduce that there are prices P(k) e P\
such that
(iv) H(B(K)) = 0.

We can now define the desired monetary allocation (p(k) ,m(k),x(k)) for
the full economy by (arbitrarily) extending our equilibrium for the
truncated economy. We first normalize the prices P(k) by'51'1(k) = 1.
let q= (1, ..., 1) e RN-

We extend our prices B‘ into a full system for our infinite economy by
defining

(c*) p(k) = (31(k), cee Ek*'](k), 9, 9y ... ) € S, where pt(k) is the
price of the t-period goods in the equilibrium of our truncated
economy.,

We define our monetary policy m(k) by

() mg p(K) = m p(B(K)) for (g,h) = (0,h*) and all (g,h) € A,

and
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mg'h(k) = 0 for all other (g,h).
allocations are then defined by
(e*) xg,h = f‘g'h(p(k) ,p(k)wg'hq-mg'h(k))

forg =0, 1, ... and h=1, ..., H
By the definitions in (b*) - (e*), we conclude that (p(k) m(k),x(k))
is a monetary allocation for our full economy.

Let Et"i(k) denote the aggregate excess demand for good (t,i),
te. E't = S (wbln - WErly,

(g,h) g.:h g.h

g=t-1,¢t
Since the allocations of the agents in generations 0, ... , k+1 in the
scheme x(k) coincide with their allocations in the truncated economy,
the equilibrium condition (iv) implies
(v) ES(K) = 0 for ¢t = 1, «es 4 k.

It can now be shown that the sequence { (p(k),m(k),x(k)) }
satisfies the hypothesis of Lemma 4.1. The verification of this fact
would be nearly identical to the verification of the corresponding
sequence of allocations in the proof of Proposition 4.3 and,
therefore, will not be pesented here. By lemma 4.1, there is a
monetary allocation, (p,m,x), which is a limit point of
{ (p(k),m(k),x(k)) }. We can employ (v) to deduce that (p,m,x) is a
monetary equilibrium for our full economy.

We now verify that (p,m,x) satisfies all of the requirements of
our proposition. Property (a) follows from definitions (a*), (b%*),
and (d*). The only portion of property (b) that does not obviously
follow from (b*) is

LLLEWY ,' < €
(g,h)eA PYgy.
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We will find it more convenient to verify the stronger statement

,““g,h:
(g,mer pBrl

<e.

1 1 1,1
By definitions (a*) and (d*), mg n(k) =0 onlyif p8r (k) > g%" 1

Hence,

|"l (k)l
(vi) Z : g,}: : < 51 1 Z im, (K.
(g,h)eA, p& (k) Sw' (g.h)eh, g

By definitions (b*) and (d*),

(vii) (k) = tm L (K) 1.
"o, e (G.ﬁ\_)—;l\k R ILA

Combining (vi), (vii), and our now familiar boundedness property,

m Lk <Twil, yields
0,h -

lm (k)l
(vitd) ) BT g
(ghyed, p8+ (k)

Therefore, for any finite A' C A, (viii) implies

LN im0 |
) By D g,
(g,meA’ pB*] (g,mea' P8 (k)

im_ (k)
¢1m ) —ﬂ;——— < g.
(gh)e, P8 (k)

(b) now follows, since the above inequalities hold for all finite
Pmg (K4

A' C A, By (viii), —2——
- pg'l(k)
sufficiently large (i.e. for all (g,h) € A

< g for all (g,h) € A and k

k). But, by definitions
(a*) and (d®*), this implies

p8r 1) < %thi + 1. (c¢) now follows if we pass to the limit as k
becames 1arg: in the above inequality. Finally, since A is infinite,
(d) follows from (c) by an application of Lemma 4. 1.

Q.E.D.
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5. NON-EXISTENCE OF OPTIMAL AND PROPER MCNETARY POLICIES

Upon examination of any one of the Propositions 3.2, 3.3, 4.3, or
4.4, one may wonder why these "approximate" results cannot he used to
prove the existence of a pareto optimal and passive monetary
equilibriun by letting the tolerance, £, of the equilibria in these
propositions tend to 0. Indeed, if we consider a sequence of monetary
allocations { (p(k) m(k) ,x(k)) }, from any of these propositions,
which correspond to various choices of €(k) with (k) — 0, then by
Lemma 3.2 we may obtain a limit point (p,m,x) that is 2 passive
monetary equilibrium, However, (p,m,x) need not be a pareto cptimal
equilibrium even though each of the allocations (p(k) ,m(k),x(k)) is
optimal. The problem is that the set of feasible and pareto optimal
allocation schemes is not closed. Proposition 5.2, of this section,

states that this non-closure problem exists for all economies.

We can illustrate the non-closure property by considering the
simple overlapping generations economy that was introduced in
section 1. Using the notation developed in section 2, preferences are
specified by uo(xo) = xa for g = 0 and ug(xg) = xg + xg*'1
forg=1, 2, ... . MNote, since there is only one good per period and
only one agent per generation, all good super-scripts and all agent
su-scripts have been suppressed. In section 1, we considered the
allocation scheme x = ((1), (1,1), ... ) =nd stated that x was
inefficient since it was pareto daminated by the scheme ((2),
(0,2), «o. ). Consider the sequence of allocation schemes { x(k) }

defined by,
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(5.1) x(0) = ((2), (0,2), ... )

x(1)

«n, 1,2y, (0,2), ... )

x(2)

(¢, 1,n, 1,2, (0,2), ... )

x(3)

, (,n, ,n, (1,2), (0,2), ... )

ete. .
Qur discontinuity property can now be revealed since x, which is not
pareto optimal, is clearly the limit point of the sequence of
allocation schemes, { x(k) }, each of which can be shown to be both

feasible and pareto optimal.

(bviously, our non-closure result relied on our particular choice
of a topology for the space of allocation schemes, X. We have
asserted that the set of feasible and pareto optimal allocation
schemes is not ¢losed given that X is endowed with the product
topology. It may well be the case that the non-closure problem
disappears if we endow X with some other well known topology such as
that generated by the sup-norm or the L1-norm. M though endowing X
with a topology finer than that of the product topology may establish
the general closuce of the feasible pareto optimal set, the
compactness property of this set could likely fail., Recall, that a
crucial step in the argument set forth in the first paragraph of this
section was that we could find a limit point of the set of monetary
equilibrium, { (p(k) m(k),x(k)) }. Without the compactness of the set
of feasible pareto optimal allocations, we could no longer guarantee
that such a 1limit point exists. For example, one may verify that
there would be no limit point of the sequence [ x(k) }, as defined in

5.1, if X was endowed with the topologies which are generated by
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either the sup-norm or the L.I-norm. Hence, there would be no limit
point of the sequence of monetary equilibria, { (p(k) m(k) ,x(k)) 1},
where for each k, p(k) and m(k) are the prices and monetary policies

which support the allocation x(k) as a monetary equilibrium.

Before we formally state our non-closure result, we make the
following definitions.
Xf = { x : x is an allocation scheme such that Z x! ¢ wl is

(g,h) g'h
the set of feasible allocation schemes.

U= { (u0,2' see p Ugpe ses 0 Ug gy eee Ug go eee ) ¢
t‘here is an x € X such that ug,h(xg .h) > Y h
for all (g,h) ¢ (0,1) }
is the set of attainable utility levels of all of the agents except
(0, 1).

We also define a function

x:U—)Xf.

by

x(u) = (xg,h(")) = arg max u0'1(x0’1)
subject to

ug,h(xg,h) > Uz h for all (g,h) # (0,1)
X e xf.
That is, given the utility levels of all of the agents in the economy,
except (0,h*), x(u) is the (unique) pareto optimal allocation that
generates these levels. It can be readily verified that for any

economy, the closure of the set of pareto optimal allocations is
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equivalent to the continuity of the function x(u). Therefore, the
following proposition demonstrates that, for any economy, the set of

feasible pareto optimal allocations is not closed

5.2. Proposition. x(u) is discontinuous at every point in its

danain, where both U and xf are endowed with the product topology.

This proposition, along with some other interesting facts about
the nature of the set of pareto optimal allocations in dynamic

economies, was estabilched in thapter 1,



-111 -

6. MILLAN'S COUNTER-EXAMPLE

The purpose of this section is two-fold. First, we specify an
economy that satisfies the assumptions of our section 2 but for which
there are no passive monetary equilibrium that are optimal. The
economy we present is only a specific selection from the class of
counter-ex anples set forth in Millan [1981] but it is provided to pin
down Mlllan's subtle argumnents. Secondly, for this same economy, we
illustrate our primary existence result (Proposition 4.4) by
denonstrating that, even though there are no optimal monetary policies
that are passive, there are optimal monetary policies that come

arbitrarily close to being passive.

Qur counter-example requires only one good per period (N = 1) and
tw> agents (H = 2) in each generation t (t =1, 2, ... ); which we
denote (1,t) and (2,t). The economy is stationary with respect to
preferences and "asymptotically" stationary with respect to
endownents. Specifically, the preferences of agent (1,t) are

specified by the utility function

3
(6.1) % y8&3  for wzgus3
4833
“1.t(Y.Z) = uq(y,2z) = (Sz-y)3(y-z) for 473 L yz 32
73

m y3zu for vz 3/2

7

332
where for simplicity y (or Y4 t) denotes consumption during the agents
’
yuth and z (or z, t) denotes old-age consumption. Glven these
?

preferences, it is easy to verify that the agents rate of
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intertemporal substitution is given by

(6.2) (3/78)y/ 2 for yz < U4/3
du.l/dz Uy/z -5
W(y/z) = —L—z-y/z for 4/3 (¢ yz 372

4/3)y/ 2 for y/z ) 3/2

Fix any e such that 0 < e < 1/2.

MAgent (1,t) 1is endowed with 5 + 3et units of period t goods and
1 + 2et' units of period t + 1 goods. Given relative prices
r = pt+1/pt and the monetary transfer (in real terms) n = mt/pt' agent
(1,t)'s market demand is determined by the equations

du1/dz

F = Tqu 7dy (yq,¢/29,¢)

t t
y1,t. + rz1't = (543e) + (1+2e)r + n

(Since in our example it will not be necessary to impose a monetary
transfer on the other agent in generation t, (2,t), m, will denote the

monetary transfer to agent (1,t).)

One may readily verify that the (unique) solution to these

equations is

t
(6.3) (r+5 +e1(“2.r+3)+ T (8r,3) fer 0 <rg /2
r+5 +e(2r+3) + n
(y2,t’22,t) ={ TIDIETEY) (2r+5,r+4) for 1/2 { r 2
t
i r+5 +e';ir+3) * 0 30y for r 3 2
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Agent (2,t)'s tastes are specified by

3
(6.4) —%— yuz3 for yzg273
2'33
uz’t(y,z) = u2(y,z) = (5y-z)3(z-y) for 2/3 { y/z § 3/4

3
_gl'_8y328 for y/z3 3/4
3

Again one may verify that the agents rate of intertemporal

substitution is given by

(6.5) (3u)y/ z for y/z £ 2/3
du2/dz ov/z - 1
a8y (y/2) = ‘hﬂz‘ for 2/3 < y/z & 3/4

(8/73)y/z for y/z 3 3/4

With endownents of 1 unit of period t goods and 5 units of period

t + 1 goods, the agents market demand is defined by the equations
du2/dz

TE Tduzdy (1,07,

y2,t + rzz't =1 +5r

ne may verify that the (unique) solution to these equations is

(6.6) [5-57;—1(%,3) for 0 < r g 1/2
M)z, (1) = -{ = l 7r+e1,5r42) for 1/2 {r g 2
5‘“;.1: 1(3r,8) forr 2
.

The aggregate excess demand of generation t, given relative prices
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I = Py,q/pP, and the monetary transfer n = m/py to agent (1,t) is

determined by

(Ey(r;et.n),ﬁz(r;et.n)) = (Y1't,z1't) + (yt'z.zt’g) - (6+3e%,6+2eb),
From (6.3) and (6.6) we obtain

t
(6.7) [ ‘38("2”7:“7?‘9"’‘5""e (-, 1) + $=(8r,3)  for r ¢ 172

N

t
(2-r)e n
(€y,E,) = ﬁ =T 5) Cr D) + Ty a5y @15, rel) for 1/2 ¢ r g 2

t
138(2-?)7;r66(2-r)e (-r,1) +-7ﬂ;(3r,'4) forr > 2

7]

L

The following properties of these excess demands are immediate

consequences of (6.7).

(6.8) (1) Ey(r;et.n) + rEz(r;et,n) = n
(11) E_(r;e®,0) is decreasing ia r
(111) E_(2;e%,0) = 0

(iv) Ez(1/2;et,0) = (2/11)e"

t
.ot _ 138 + 63e 138 + 63e
(v) Ey(r,e y0) 2 T 5 - 77

(vi) (Ey(1;et,n),Ez(1;et,n)) = et/12(-1,1) + w/12(7,5)
(vii) Ez(r;et,o) —> +00 asr — 0

(viii) Ey(r;et,O) <0 for0 <r<2

Given our excess demand functions in (6.7), the requirements of a
monetary equilibrium (see (2.2)) can be expressed in terms of prices

(Pt) and monetary transfers (m,) as

(6.9)

(1 My/pq + Ey(p2/p1;e1.m1/p1) =0

. t ) u1 -
(11) E (P q/pgie "ime/pe) + E (P o/P g€ amy 1 /P ) = 0

fort=1, 2, ...
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(Formally, we have not vet specified the initial generation of
agents. However, since there is only one good availale in the first
period, as long as there preferences are monotonic, each initial zgent
will simply spend all of his income on the first period good.
Therefore, if we let m denote the net aggregate transfer to agents in
the initial generation, then the aggregate excess demand by these

agents is mO/pl‘)

One may readily verify by repeated applications of (6.8)(i) and

(6.9), that any monetary equilibrium satisfies
t
(6.10) P 4E, (P, /Pyie my/py) = Wy + 2 my
1<k<t

By inspection, the economy described zbove satisfies all of the
assunptions of section 2. One may also verify that the economy
satisfies the additional restriction of Proposition 5.6 of Balasko and
Shell [1981], which allows us to strengthen the implications of our
lemma 3.1 to state that a monetary equilibrium for our economy is

pareto optimal if, and only if, Y 1

—_— = 00,
t pt

We will now establish three facts about our economy.

(1) There are no competitive equilibria (i.e. 0 =m =m = ... )

that are pareto optimal.

Consider any competitive equilibrium. By (6.10),
t
E,(py,q/Pyse »0) = 0 for all t. By (6.8)(11) and (iii), we see that

Pt”/pt = 2. Therefore, %-;—t =§—1 < o0o. Hence, the equilibrium is
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not optimal.

(2) There are no passive monetary equilibria (i.e. my > 0 and

0 = m =m = ... ) that are pareto optimal.

Consider any passive monetary equilibrium. Let re = pt+1/pt'
By (6.10),

(2 E(rg;e%,0) = m/p, , >0 for all t.

Hence, by (6.8)(i1) and (iii),

(b) r, < 2 for all t.

(6.10) then implies

Lt
PetEplryie »0) ]
Bl gy M

(c)
PeaoEr(reirie
We now demonstrate

(d) For any t; ifr_< 1/2, thenr

t t+1
If (d) did not hold, then for some t, re < 1/2 and Ceil > 172,

<1/2.

By (6.8)(11) and (1v), E (r ;e%,0) > E (1/2;¢°,0) = @/11)eb

and

E,(ry,qie 11 0) g E,(1/2;¢%1,0) = @/11)e™'. By (a), this implies
Ez(rt;et.o) et

1
> ==> 2.
t+1 t+1 e
E(reqie” 000 e

But, (c) then impliesr, . = p  5/p;,q > 2, which contradicts (b).

The above paragraph establishes (d). We now use (d) to prove

(e) r, % 1/2 for each t.
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If (e) did nct hold, then re < 1/2 for some T. By (d), this implies
rey < 1/2 for all t > T. But, (c) then imfplies

E,(ry,q3e" O)/E (r ;e",0) = 1/r

T-1
T-1i¢

t — oo, which contradicts (6.8)(v) and (6.9)(1ii) for large t.

£ >2for t>T -1, This,

together with E (r ,0) > 0 implies E (r ;e%,0) —> oo as

By (6.8)(i1), (1iv), and (e),

Ez(rt;et.O) < 52(1/2;et.o> = @2/11)e’ for al1 t.

Therefore, by (6.10),
: TR

+ 1/p =1/p, + (1/m,) E(r_;e",0)
& t+1 1 Mo & 2t

M8

1/Pt = 'l/p.l

cr

=1
00 t
< l/p1 + (1/mo)t=21(2/11)e

(2/11)e

m,(1-e) < "

= 1/p1 +

Therefore, the equilibriun is not optimal. Hence (2) is established.

(3) (Proposition 4.4) For any € > 0, there exists a pareto optimal

00
monetary equilibrium such that t;imtilpt < E.

Since 0 < e < 1/2, we can find a date T sufficiently large such
that e1/(Tes5) ¢ €. We claim that the following policy
my = e/(Tes5); m =0 for t=1, ..., T-1; and m =
-(1-) /(Tes5)e" for t = T, T+l, ...; together with prices p,,

Py ... satisfying 1 = pp = Pryq = ... constitute a monetary

equilibrium.

Note, once we have established that the above policy and prices
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are an equilibrium, then (3) will be established

00
since ; 1/p, > 5 1 = oo implies optimality and
=1

o0
t=T

L 1-e & t_ T
Z‘mt{/pt = 7:5 S e“= e/(Tes5) < E.

Before we define the prices Pyr eeey Pp_q Ve demonstrate that the
markets for goods in dates T+1, T+2, ... are in equilibrium. Glven

the above definitions of the me, (6.8)(vi) implies

t
t t
(E (15e"my) ,E (15e7,m)) = 7—2+-§(-1,e) for t > T. Hence, the
equilibrium condition (6.9)(ii) for dates t > T are satisfied since
t 1
ot g ==L _e_ & .
Ez(1.e .mt) + Ey(1,e 'mb+1) = TeEC T Tew T 0.
(Recall that re = pg = 1 for all t>T.)

The remaining prices Pyp ooy Pp_q can be defined recursively by

the market clearing conditions (6.8)(il). Specifically, is

P
defined by
(6.11)

L T-1 . T T
(1) Ez(p,l./p.r_1,e ,0) = Ey(1,e ,m.r) = e/(Tes5) > 0
while p, (t = 1, ... , T-2) is defined by

t o0y - L tel
(11) E (pg,qspgie 40) = = E(p >/pp qie” 4 0).
(6.8)(iii) and (vii) guarantee that Pr_; is well-defined by (6.11)(1)
and that Pr/pr_qy < 2.
Assuming that Peyo/Proq < 2» (6.8)(ii1), (vii), and (viiil) guarantee
that P, 1s well-defined in (6.11)(11) and that Pp,q/P < 2. Hence,
each of the Pr_1» Py_os +ee » Pqare suwccesivly well-defined.
1

Finally, if we define my = p1Ey( Po/Pqie ,m1/p1), then we have a

monetary equilibrium. By (6.10),



- 119 -

T T
mo = pT+1Ez(pT+1/pT|e lmT) = e /(7&5)-
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7. CCNCLUS ION

In this paper, we have considered a general class of overlapping
generations economies and have characterized some of the fFroperties of
their equilibria. We now summarize our current knowl edge about these

equilibria, along with an open question, in the following table.

i Passivity | Feasibility | Optimality
1 of the i of the 1 of the
i monetary i alocation | allocation
H policy H scheme H Sc heme
i ] i
i
Millan's counter-example: H
We can not guarentee that 1
there exists a monetary { passive feasible pareto
allocation with the H optimal
following properties. !
[]
'
- ]
i
Proposition 4.4:
In general, there exists a approximately feasible pareto
monetary allocation with passive optimal

the following properties.

Proposition 4.3:

In general, there exists a
monetary allocation with
the following properties.

passive approximately pareto
feasible optimal

Open question:

Is it true that, in
general, there exists a
monetary allocation with
the following properties?

approx imately
passive feasible pareto
optimal

Of course, before one can answer the above open question, one must
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first define a sense in which a given allocation is "approximatel y"
pareto optimel. To be precise, one needs a measure of the degree to
which an allocation scheme is inefficient. One such measure can be
neatly expressed in terms of the function x(u) that was introduced in
section 5. The inefficiency of an allocation can be measured by the
anount by which agent (0, 1) can be made better off, by a feasible
redistribution of goods, while none of the other agents are made worse
off. Specifically, given any allocation scheme x, our measure of the
inefficiency of x is

E(x) = U, 1(x0' 1(u0,2(X) y eee 9 uO,H(X) » U 1(x)y ) - u0'1(x) .

Qur open question can now be precisely stated as: Is it true that, in
general, for any & > 0, there exists a passive monetary equilibrium
(p,m,x) such that E(x) < £. MNote, even if the answer to the above
question is affirmative, the discontinuity of x(e) would prevent us
from allowing € —> 0 and concluding that there is a passive and

pareto optimal monetary allocation.

while an affirmative answer to the above question wuld be a more
satisfying statement about the general existence of optimal monetary
policies, its proof would likely require different, and probably more

subtle, techniques than those employed in this paper.
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CHAPTER III

EQUILIBRIA IN DYNAMIC ECCNOMIES WITH OR WITHOUT CCMPLETE MARKETS

1. INTRODUC TION

In their attempts to characterize rational market behavior in the
face of uncertainty, many economists focus their attention on the
Arrow-Debreu theory of contingent commodities (see Arrow [1953] or
Debreu [1953]1). This theory extends the classical Walrasian model by
distinguishing commodities not only by their physicel characteristics
but by the dates and envirormental events in which they are avail able,
Implicit in the Arrow-Debreu model is the assumption that all
(contingent) commodities are traded in one (complete) market. Over
the years, the Arrow-Debreu theory has been criticized (e.g. see
Radner [1968, 1970, 19811) for both the restrictivness of the assumption
of a complete market and tie inability of the model to explain some
basic market behavior such as continual trading in commodity and stock

markets.

(ne obvious way in which one can explain continual trading is to
assume that markets for contingent (future) delivery sequentially open
and close over time and at no point in time can all future trades be
made (i.e. each market is incomplete). Not only does this sequential
frzmework seem more plausible and compatible with continuous trading
than the Arrow-Debreu model, but meny economists have found it useful
to study the role of money in providing insurance (e.g. Beuwley £19791]

or Foley and Helwig [19751). In this paper, we provide a firm
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foundation for the analysis of incomplete markets by establishing the
existence of competitive equilibria for a very general class of

sequential economies.

The formzl specification of our sequential economy is patterned
after the work of Radner [1972,1982). In this paper, we significantly
extend Radner's existence results in many ways. First, since
sequential economies are inherently dynamic, we feel that one
important refinement of Radner's work is our elimination of his
(arbitrary) terminal date. We find that considering an unbounded time
horizon permits us to bring out some additional attributes of the
sequential model. In particular, the sequential framework allows us
to establish a more robust existence result for dynamic economies than
is possible in a complete market model ., In this paper, we provide
counter-examples that demonstrate the inability of complete market
models to guarantee the existence of equilibria when there are an
infinite number of possibly infinitely-lived agents or when there are
infinitely-lived firms. In contrast, our Proposition 3.5 establishes
the existence of equilibria for a general class of sequential
economies that can incorporate any number of infinitely-lived zgents

and firms.

Secondly, we significantly strengthen Radner's existence resul ts
by relaxing his assumptions to the point that they are direct
counterparts to the regularity assumptions typically imposed on
classical complete market economies (e.g. see McKensie [1981] for

static economies and Balasko, Cass, Shell [1980], Burke [1985], and
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Wilson [1681] for dynamic economies). Most importantly, we replace
Radner's assumption that each agent has a strictly positive endowment
of all goods (an assumption that seems particularly restrictive when
we are considering a dynamic model with uncertainty) with an
irreducibility assumption of the type first considered in

McKensie [1959], In fact, in Burke [1985], we demonstrate how the
general techniques that we employ to establish the existence of
equilibria for our incomplete market economy can be employed to
generalize the existence results of Bal asko, Cass, Shell [1980] and

VWilson [1981] for dynamic models with complete markets.

Perhaps one of the most significant features of the incomplete
market economy is that it is capable of explaining the existence of
active trading in the stock market. Since agents may not be able to
trade in enough contingent commodities to diversify all of their risk,
there is a need to diversify further by actively buying and selling
shares in (heterogeneous) firms. In each of his papers, Radner
specifies how production can be incorporated into the sequential
framework. However, Radner is no longer able to establish the general
existence of competitive equilibria once he considers this extension.
In section 6, we exposit our third major strengthening of Radner's
work by establishing the general existence of competitive equilibria

with production.

In section 2, we specify a skeletal model of an economy that
differs from a standard complete market economy only in that trading

markets are partitioned. That is, consumers face a sequence of budget
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constraints, each involving a different subset nf goods and each of
which must be satisfied for an allocation to be "affordable". In
section 3, we derive a general existence result for our skeletal
model. In section U4, we discuss the merits of our sequential
framework as an alternative to the complete market model. We consider
not only its deseriptive appeal but also the greater generality that

the sequential economy permits.

In section 5, we expand the skeletal framework of section 3 into a
fully developed economy with incomplete markets. Finally, in section
6, we incorporate production into our model and derive a general

existence result,
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2. THE MODEL

We begin with a standard formul ation of a pure exchange economy
with the aforementioned exception that trading markets are
partitioned. Let A be the collection of agents and let I be the set
of decision variables for these agents. In classical models with
complete markets, these decision variables simply measure various
quantities of consumction goods. As we will see in section 6, in
geneiral models with incomplete markets, it is more convenient to take
these variables to measure holdings of commodity contracts.
Nevertheless, in order to ease the difficulty of comprehending the
assumptions presented in this section and the derivations of the
results of the next section, one should intuitively think of I as if

it were the collection of "goods" that agents can "consume".

Given this interpretation, (net) consumption profiles correspond
to vectors in R#I, where R#I denotes the set of all vectors z whose
components are super-scripted by the elements of I. That is, zjL
denotes the quantity of good iel specified in the bundle zeR#I. et M
denote the partition of I into trading markets. That is, M is a
collection of mutually disjoint subsets of goods in I whose union is
all of I, i.e. I = { i : iem for some meM }. Let xac_; R”I be the
space of (physically, legally, etc.) feasible consumption bundles for
agent aeA and let (>)a be his preference relation defined over Xa.

Qur economy is now fully specified by the collection of agents A, of

goods I, of markets M, of consumption sets Xa, and of preference

relations (>),, pn Mllocation Scheme for the economy is a collection
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(x)

2’ e with X, € xa for a € A.

Throughout the remainder of this paper, we adopt the following

conventions, All subsets of R#I will be endowed with the product

topology. 1In particular, the convergence of a sequence { s(k) } of

elenents of R#I to an element s, written s(k) —s, will mean

pointwise convergence i.e, si(k) — st for i e I, For any x e g1

and any market m € M or collection of markets M' € M; let xime R#I

i

be the element defined by (x:m)i = x* 1if 1 € m and 0 otherwise and let

XM e R™ be the element defined by (le')i = xtiri € m for snme
me M and 0 otherwise. In particular, given any bundle X, € xa and

any market m e Ma' xa:m denotes the corresponding bundle where agent a

trades only in the market m.

We now present our assumptions. In section 3, we establish that
assumptions I - V are sufficient to guarantee the existence of
competitive equilibria for our sequential model. When our model is
fully illustrated as an economy with incomplete markets, we will see
that our assumptions are significantly weaker than those employed in
Radner [1972,1982]. In fact, most of the assumptions below correspond
to those of McKensie [1981] (for static models) and of Ealasko, Cass,
thell [1980], Burke [1985], and Wilson [1981] (for dynamic economies).
The necessity of our non-standard assumptions, I(ii) and V(ii), is
denonstrated in section 4 when we present examples of economies that,
after the relaxation of either of these two restrictions, fail to have

equilibria.
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Given that we wish to interpret our economy as being dynamic with
an wnbounded time horizon, we would like to allow for the possibility
that any given egent may not be able to participate in all of the
markets. Clearly, if an agent is not living &t the incertion of the
economy, it is possible that some markets may already be closed before
the agent is born. OConversely, if a given agent is finitely-lived, he
will clearly not be able to participate in markets that open at some
distant future date. 1In order to incorporate the possible limited
partition of agents into our assumptions, we denote the collection of
markets that agent a - A can participate in by Ma = { me M : there is
an x_ € X, and an i e m such that x; = 0 }. That is, M, is the
collection of all markets that contain at least one good that agent
a e A can either buy or sell. We also find it convenient to define
the collection of agents that can participate in a given market m - M

by%:[aeA:meMa}.

Assumption I (Regularity of feasibility spaces)
For each a € A:
(1) Xa is a closed and convex subset of R °;
(i) There exists a sequence { Ma(t) } such that each Ma(t) is a
finite subset of M, (that is, Ma(t) contains a finite number of the
markets that agent a can trade in), M (t) C M (t+1) for all
t,LéMa(t) = M, and such that x{M_(t) € X, for x € X, and any t;
(iii) 0 ¢ Xa.

As we will see in section U4, assumption I(ii) restricts the degree

to which an agent can short futures contracts. However, for our
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mresent exposition, it suffices to think of assumption I(ii) as a
separability condition on feasibility spaces that allows us to
approximate any allocation, x e Xa, Wwith a sequence of allocations,

{ x:Ma(t) }, each of which involves trades in only a finite set »of
markets. In section 3, this assumption plays a critical role in our
technique of finding a competitive equilibrium for our full (infinite)
economy by considering a limit point of a sequence of equilibria that

come from applying standard existence techniques to truncated (finite)

sub-economies.

Assumption II (Positive and finite aggregate endowments)
(i) For each market me M and good i € m, there exists a collection of
allocations (xa) aeAm that satisfy X, € Xa and X, = xaim for all
i
aeAm, and Z xa< 0;

aeA
(i1) { xe J_ lp;a : x £ 0} is bounded from below.
&eh

If feasibility spaces are of the particular form X = RfI - [wa} ’
then assumption II corresponds to the standard requirement of positive
but finite aggregate endowments. That is,
0<Zw;< oo for i e I.

ael

Assumption III (Regularity of preferences)

For each a € A, the preferences of agent a are representable by a
utility function ua(o):}(a -> R that satisfies:
(1) ua(°) is continuous;

(ii) ua(O) is quasi-concave.



-129 -

Assumption IV (Irreducibility of each market)
Given any market m £ M, any partition of Am into two non-empty subsets
BO and B1 (i.e. the sets Bo and B1 are disjoint with Am = BOUB1) and
given any allocation scheme (xa) such that aZA xi 0for aliem
(i.e. the market m clears): i
There is an sgent b ¢ By and allocations (za )aeB that satisfy;

z, & X, and z, =2 im for ac-B1, and xb- Z z, () xb.

a. a
2€B | a

Assumption IV 1s an extension of the now standard irreducibility
condition that first appeared in the complete market model of
McKensie [1959]. Recall that, in a complete market model, the
irreducibil ity assunption guarantees that each agent has positive
income. By extending this assumption to require that each market
taken individually is irreducible, we guarantee that agents have
positive income in all of the markets they participate in. In section
3, we see that having positive income in all relevant markets
guarantees that agents demands are continuous (which is crucial to any

proof of the existence of equilibria).

Note that assumption IV is stated in terms of contracts x € R#I.
Hence, this assumption is making a statement about the availebility of
contracts as well as a statement about agents tastes and endowments of

consunption goods. This point will be discussed further in section 5.

Assumption V (Dimensions of the economy)
(i) Both A and I are countable;

(ii) Each market m e M is a finite subset of I.
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In our general sequential model, we place no restrictiosns on the
duration of each agents life (i.e. we allow agents to be
infinitely-lived). However, assumption V(ii) requires that each
trading market is finite. The contrast between our finite market
assunption and the standard assumption of finite-lifetimes in complete

mearket models (e.g. the overlapping-generations model) is discussed

in section 4,

Assumption VI (Simplifying assumption)

For each a € A, Xa is a bownded subset of R°°. That is, there exist

i i

i
positive scalars (sa)ieI such that X, C X (5,43,

i i i el
< x5 € 5, for all x,eX, and ieI.

1,

i.e. =5 ¢
Following Debreu [1959], we can demonstrate that assumption VI is

innocuous by finding scalars (s:") sufficiently large such that if we

bound consumption sets by them, then the competitive equilibria of the

bounded economy coincide with the equilibria of our original economy.

The contrast between sequential economies and standard models of
complete markets is brought into focus as we now discuss the agents
market behavior. A Price System for the economy will be a vector
pe Rf_I, where pi denotes the price of good 1. The cost of the (net)
purchase of the bundle x € X_ in the market m is the inner product
p(xim) = jl§1p1(x{m)j‘, where by assumption V(ii), the inner product is

well defined since (x{m) has only a finite number of non-zero

components.
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Given prices p & RfI, the agents budget set is simply the
collection of feasible allocations x € Xa that are affardeble in each
market, i.e. p(xim) ¢ Y, for each m e Ma, where y  denotes the
(lunp-sum) income transfer to the agent in the market m. Clearly, the
agents budget sets will be homcgeneous of degree zero in prices and
the income transfer in each market. Hence, we can independently
normalize prices in each market. We choose the (normalized) price
systems to lie in the space P = { pe Rf_I : iZ pi = 1 for each
meM}. We denote the space of allocation s:ltr:emes by X = )(A Xa.

&€

iy}
Given prices p € P and the income transfer scheme (ym) € R a'

agent a's market demand correspondence, Da(p,(ym)), is defined to be
the collection of all solutions to
max ua(x)
s.t. p(xim) ¢ Yo forme M,
X e xa.
N.B. The monotonicity implied by assumption VI insures that the
Solutions to the above problem do not change if we replace the

inequality with p(xim) = Y,» Tis fact will be exploited later in

this paper without being specifically mentioned.

Before we formally define our concept of a competitive equilibrium

for our sequential economy, we find it useful to define a weaker

notion which we call a competitive allocation. In section 3, we find
a competitive equilibrium for our full economy by considering a limit
point of an appropriately chosen sequence of competitive allocations

(each of which come from applying standard existence techniques to
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finite sub-economies).

2.1 Definitions.
(i) A Competitive Allocation consists of a price system pe P and an
allocation scheme (xa) € X such that for ae A:
p(xa:m) >0 forme M,
X, € Da(p,(ym)), where y_ = p( x,im forme M ;
(ii) A (Free Disposal) Competitive Equilibrium is a Competitive
Mlocation that satisfies
p(xa:m) =0 for aeA and allme M,
gxa < 0.
Competitive allocations are those that can be supported by a system of
non-neg ative income transfers to the various agents. The usefulness
of the restriction to non-negative transfers is seen in the proof of

Lemma 3. 1.
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3. GENERAL EXISTENCE CF EQUILIBRIA

In this section, we establish the existence of cempetitive
equilibria for the general class of sequential economies describ ed in
section 2. Following PBalasko, Cass, Shell [1980], Burke 19851, ard
Wilson (19811, we find an equilibrium for our full economy by
considering a limit point 5f equilibria of a sequence of truncated
sub-economies. Lemma 3.3 establishes the existence of equilibria for
each of the truncated economies while Lemmas 3.1 and 3.4 guarantee
that any limit point of these equilibria will be a competitive

equilibrium for our full economy.

A crucial step in any proof of the existence of competitive
equilibria is to show that market demands are appropriately
continwus. In order to characterize the conditions under which
demand is continudus in a sequential economy, we must first extend the
standard notion of income. In classical models, where the market
structure is complete and feasibility spaces are of the form

X =R#I

a . - {wa}, an agents income 1s simply the value of his

endowment, PW,. In our sequential economy, we can generalize this
notion by defining the concept of income in a given market as the
maximun amount of revenue that can be raised by (feasibly) selling off
goods (endownents) in that market only. Specifically, for each a € A,
agent a's (potential) income in the market m & Ma' given prices p &€ S,
is

Ia,m(p) = Inf px subject to x = xime X,.

If we impose the simplifying assumption VI, as we do throughout the
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roofs in section 3, then since X, 1s compact, we czn define I, .(p)
’

as the minimun income px instead of the infimum of all such incomes.

Lemma 3.1 and Corollary 3.2 below provide useful characterizatinns

of the continuity of demand.

3.1 Lemma,
For a € A, agent a's demand correspondence, Da(o,o) y 1s upper

™M
hemi-continuwus at each point (p.(ym)) e P»R

a
Lemma 3.1 and Corollary 3.2 below provide useful characterizations

of the continuity of demend.,

3.1 Lemma.
For ae A, agent a's denand correspondence, Da(°'°) , is upper
™
hemi-continuwus at each point (p,(ym)) € Px R+ 8 such that

Ia,m(p) < Yn forme Ma.

Proof of Lemma 3. 1.

Consider any such sequence { (p(k) ,xa(k)) } and limit point
(py(x,)) in P X, suwch that Ia,m(p) < plxyim) for me Mj.

Since X, is closed by assumption I(i), x,(k) € X, for all k and
X (k) = x, imply x_ € X,. Hence, our proof is complete once we have
establ ished:
(*) For every z ¢ Xa suwch that z(>)a X,» there is a market m € M, such
that p(zim) > p( xa:m) .

Consider any z e X, such that z (>)a Xge let { Ma(t) } be the
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sequence of subsets of Ma as defined in assumption II(ii). By
assunption II(ii), lea(t) € Xa for each t and 2z} Ma(t) —> z as

t — oo. Hence, if we fix a sufficiently large t, Assumption III (i)
implies 2 (>)a X 5o where 2' = z| Ma(t) . Mgain, by assumption III(i),
z! (>)a xa(k) for large k. Hence, since (p(k),xa(k)) is a competitive
allocation, there is a m(k) e Ma such that
u>mmuwmm>>mmwémmwn.

In particular, (a) implies m(k) € Ma(t). Ctherwise, m(k) & Ma(t)
implies 2' m(k) = O since 2' = 2z} Ma(t), and hence p(k)(xa(k):m(k)) <0
by (a). But, this contradicts our hypothesis that (p(k) ,(xa(k)) is a
competitive allocation. Therefore, for each k, m(k) lies in the
(finite) set Ma(t) . Hence, there is an m € M_(t) such that m(k) = m
for an infinite number of k. By the definition of 2' and (a),
p(k)(zim) = p(k)(z'im) > p(k)(xa(k)im) for an infinite number of k.
Therefore, in the limit as k — oo, p(zim) 3 p(xa:m).

The above paragraph establishes
(b) for every z € Xa such that z (>)a L there is a market m e Ma
such that p(zim) > p(xa:m).

To verify (*), we need to strengthen (b) by replacing the weak
inequality with the strict inequality p(zim) > p(xa:m). For the
limiting prices p, consider the allocation W that defines I, 'm(P) .
That is, Ia.m(p) = PW,, where w = wm{m and W, € X,.

Consider any z € xa such that z (>)a X, By assumption I(i) and
assumption III(i), there is a collection of sufficiently small (but
positive) scalars (Am) € ;Ma) such that Z:Am < 1 and z' (>)a X g0 where
z' = Az *%hm“m and \= 1 —‘%—}.m. By (T)), there exists an m € M,

such that
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(c) p(2'im) > p( xa:m).

But,

(d) p(2'im = NpCzim) + 2 Apy pCuy im)
m

- i ’
= Ap(zim) + A pP¥y
since w ,im= w_ if m' = m and O otherwise.
By hypothesis,
(e) pw, = Ia'm(P) < plzgim .
The combination of (c¢), (d), and (e) yields
p(x im) & p(z'im) < Ap(zim) + }\mp( Xgim) .
The above inequality implies
p(x_im) ¢ p(zim), since 0 < 1-A_ < A and p(xgim) > 0.

(*) is now established.

Q. E. D‘

3.2 Corollary. Glven any agent a € A and any system of positive
M

income transfers (ym) € R++ ,

the demand correspondence Da(-;(ym)) is

upper hemi-continuous at each point p € P.

To prove this corollary, simply apply Lemma 3.1 and note that by

assumption I(iii), Ia,m(p) <0 for all ae A, m ¢ Ma, and pe S.

The next Lemma establishes the existence of equilibria for the
afore mentioned sub-economies. By corollary 3.2, we know that, in
order to guarantee the continuity of demand (which is crucial to any
existence proof), we must insure that each agent has positive income.
We do so by adding a strictly positive quantity of each good to each

agents endownent. These additional endownents imply that, in the
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"equilibrium" of the perturbed economy, agents will over-spend, in
terms of their original budget constraints. Also, aggregate demand
will exceed the original zggregate endownents. However, this excess
spending and excess demand will venish in the limit if we
systematically reduce the amount of additional endownents introduced

in each successive truncation.

3.3 Lemma. Given any finite collection of markets M', i.e. M' is
a finite subset of M; there is a competitive allocation, (p.(xa)) , in
which all of the agents receive a small income transfer and &ll of the
markets in M' almost clear. Specifically, given any € > 0, there
exists a competitive allocation (p,(xa)) such that 0 ¢ p( xaIm) £ € for
achand allmeM and S x (€ formeM and all ig m

a€A

Proof of Lemma 3.3.

Since the lemma only restricts aggregate demand in the markets in
M', we focus our attention on the sub-collection of goods
I'= {1 :1emfor someme M },
the sub-collection of agents that trade for these goods
A' = { a:aeh for someme M' },
the sub-collection of markets that agent a € A' trades in
Ma' = M nM',

the sub-collection of feasible trades that an agent a € A' can make in
the markets in Ma'
- ',
X, =1xeR :

there is a z € X, such that 2= x! for all 1e1' 3},

and on the sub-collection of prices of the goods in I'
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s' = { pe R”I': > pi=1f‘or eachm e M' },

+
Since M' is finitej;e:ssumption V(ii) and VI(i) imply that there are
only a finite number of agents in A' and goods in I'.

For each i € I - I', let m(1i) denote the (unique) market m e M
such that i € m.

Glven prices p' € P', the agents a € A' will act as if the price
of each good i € I' were (p' )1 as if the price of each good i€ I - 1!

#m(11)' That is, the price system p' € P', for the goods in I',

were
is {artificially) extended to a full system p(p') € P, for all of the
goods in the economy, where (p( p'))i = pi' if i e I' and

(p( p')):L = m otherwise. Furthermore, in order to generate
positive incomes, each agent a € A' receives an added endowment >f

"; = JIE}A— units of each good i in each market m e Ma. Since our
extendedmprice system always lies in P, the value of the added
endownents to agent a € A', in each market m € Ma, is

P(p') (W im) = ieZm (p(p' Nt ﬁ_r.n ='%m .

Therefore, given prices p' € P', the value of agent a's demand
correspondence is Da(p( pP'); (ym)), where Y = -#%:n for m € Ma.
Henceforth, we will suppress the occurrences of (ym) . Since the value
of the income transfers is always positive, corollary 4.2 implies

(a) the correspondence Da( p(p')) 1is upper hemi-continuous at each
point p € P'.

In order to satisfy the conclusions of this lemma, we must only
guarantee that the desired a2llocation scheme 1s "feasible" (given our
added endowments) for all of the goods in the markets in M'. Hence,
we can restrict out attention to truncations of our demand

correspondences. For ae A', let Da' (e) denote the truncation of
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Da(p(O)) with respect to the collection of goods I'. That is,
D;(p') = { xe R#I' : there is a z ¢ Da(p(p')) such that zi = x* far
all ie I'}.
The following regularity properties of demand are immediate
consequences of (a) and assumptions I(i) and III(ii).
(b) The correspondence D;(o) is upper hemi-continudus at each point
p' € P'.
(c¢) (Walras's law) For any p' e P', p'(x—wa:m) £ 0 forme M; and all
x € DI (p').
(d) (Convexity) For any p' € P!, D'3(p') is a convex subset of R#I'.

We now establish the existence of an equilibrium for osur truncated
economy by adapting the methods of Debreu [1959] to our sequential
franework.
Define the correspondence
H: R — po
by
H(z) = { p' € P' :

for anyq' € P', 3 (qlzt ¢ 3 (pylz! for all me M 3.
iem iem

One may verify that (b) and (d), together with assumption I(i), imply

that the correspondence

(p'4(z)) —> (H( 2_ (z,-W_)) D! (p'), that maps P'. X X! into

a ah' 2 @ 'a>e$\'a aeht 2
itself, satisfies the hypotheses of the Kakutani fixed point theorem.
We, therefore, conclude that there is a fixed point (p' ,(za)).
That is,
(&) p' € HU 3 (z-w,))

E

(f z, € D;(p') for a€ A'.

ne may verify that (c¢) and (e) imply
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(S)Zz$Zwa.

aeh' 2" aeA!
We extend the equilibrium (p' ,(za)), for the truncated economy,

into a competitive allocation (p,(xa)) for our full economy by

defining

p=p(p')

X, = the element in D (p,(y,)) that corresponds to z, e Dé(p') for
ae A
and

X, = an (arbitrary) element in Da(p,(ym)) for ae A-A"'.

By (f) and (g), one may verify not only that (p.(xa)) constitutes a
competitive allocation, but that it satisfies the additional

requirements of Lemma 3.3.

Q.E.D.

3. 4 Lemma.

Given any limit point, (p,(xa)), of a convergent sequence of
competitive allocations, { (p(k) ,(xa(k))) }, and given any market
me M; if the market m clears at the limiting allocation,

t.e. ) x;s 0 for all i€ m, then each agent a € A_ has income in
ael

the market m at the limiting prices, i.e. I_ _(p) < 0.
1

Proof of Lemma 3. 4.

Assume the contrary. That is, assume that there is a sequence of
allocations, { (p(k) .(xa(k))) }, that converge to a limit, (p,(x,)),
and assume that there is a market m € M such that ZA x: £ 0 for all
aeh

1€ mbut I:]'(p) 3 0 for some a' € A . Let

BO={aeAm:Ia'm(p)<0}and B1=[aeﬂm:Ia'm(p)>,0}. By
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assumption II(i) and the definition of I , 2 I
aeh
Hence, P‘O is non-enpty. Since a' e 51, B1 is also Xgan-enpty.

’m(p) < 0.
Therefore, given our hypothesis that the market m clears, we can apply
assumption IV to the market m, the partition [BO,B1} of Am, and to the
limiting &allocation scheme (xa) , to conclude

(a) there is an agent b € B, and allocations (z ) that satisfy;

0 a E:EB1

z, eX and z, = 2 .mf‘oreachaeB,andxb-Z za(>)bxb.

let W define Ib (p), as in the proof of Lemma'} 1. That is,
Ib,m(p) = DWy, W, = Wpim, and w, € xP. By assumption I(i), III(1),
and (a); there is a A< 1 such that A(x"- 2 z) + (1= O), x°.
By assumption III(i), this implies aeB]
(0 AxP() + y 0)° xP(k) for 1arge K,
where y = (1->\)w -2 z,. Since, by hypothesis, (p(k),(x (k))) is
a competitive alloc:at:iac‘;;'rs);| (b) implies that there is a market m' € M
swh that p(k) (AxPCK)+y) im') > p(k) (xP(K) {m'), 1.e.
(e) pI)(yim) > (1=Mp(k) (xP(K) im') 3 0
where the last inequality follows from (3.1)(iii). In particular, (c)

implies that m' = m since otherwise, by the definition of vy,

(yim') = (1= \)(Hb.m') -\ (z,im') = 0. Therefore, again using (e,
aeB
p(k)(yim) > 0, which by the Jefinition of y, can be written

(&) (1-Mp(k)w, > Aa% p(k) z,,
since y = yim. Pa:ssing1 to the limit as k — o0, (d) yields
(e) (1-Npw, 2 AD_ pz,.
aeB, °
But, by the definition of W, and I (p) for each a € B,, (e) implies
(1-NI, (p) = (1-M)pw, AZ pz, xZ Inm(P
which contradicts the definitfon of BO a}d By, since b € By and

0 < A< 1,
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Q.E.D.

Qur general existence result will now follow from Lemmas 201, 3.7

. Jy

and 3.4,

3.5 Proposition. There exists a competitive equilibrium.

Proof of Propasition 3.5.

Fix any sequence { M(k) } such that each M(k) is a finite subset
of M, M(k) C M(k+1) for all k, and UM(k) = M. Also, fix a sequence of
positive scalars { £(k) } such thatke(k) — 0. Let (p(k),( xa(k))) be
the competitive allocation associated with M(k) and £(k), as specified
in Lemma 3.3. That is,

(a) 0 ¢ p(x (k)im) K E(k) for ae A and all m e M,
(b) ZA XxL(K) = €(K) for m & M(K) and all i€ m.

ginge each allocation, (p(k),(x_(k))), is, by definition,
contained in P+X, which is compact by assumption V and the Tychonoff
theorem (cf. Bourbaki [19661), Lemma 3.3 implies that there is a point
(p,(xa)) € PxX and a subsequence of allocations such that
(e) (p(k) .(xa(k))) — (p,(x,)).

Since £(k) — 0, (a) and (b) imply
(d) p(x im) = 0 for ae A and all m e My
(e) )~ x, € O.

aehA
By Lemma 4.4, (c) and (e) imply
(n Ia,m(p) <0 foraeAhand almeM,.

By lemma 4.1, (c), (d), and (f) imply

(2 (p.(xa)) is a competitive allocation.
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Therefore, by (g), (d), and (e), (p,(xa)) is a competitive
equilibrium.

Q.E.D.
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4, RBUSTNESS OF THE SEQUEMNCIAL MCDEL

In this section, we highlight the robustness of the sequential
model by comparing our existence result (proposition 3.5) with those
that can be attained for models with a single (complete) market. We
find that, with respect to separability requirements on consungtion
spaces, the two models are comparable in generality. Specifically,
our example 4,1 demonstrates the necessity of imposing a condition
like I(ii) on a sequential economy while example 4.2 shows that a
similar such separability assumption must be imposed on a complete
market economy. However, exanples 4.3, 4.4, and 4.5 demonstrate that,
unlike the sequential model, one can no longer guarantee the existence
of competitive equilibria in complete market economies when there are

either infinitely-lived =gents, infinitely-lived firms, or an infinite

nunber of agents with tastes for the same good.

The following is an example of a sequential economy that satisfies
all of the assunptions of section 2 except I(ii). As a result, we are
able to demonstrate that the economy has no competitive equilibria.
Not only does our example demonstrate the necessity of an assumption
like I(ii), but it illustrates how I(ii) can be violated if agents are

given too much leverage in shorting futures contracts,

Example 4.1. Let the collection of agents be indexed by A = {0,
1, +«. }. There is one good availale in each of the time periods
t=1, 2 ... . MAent 01s infinitely-lived vwhile agent t (t = 1,

2, «.. ) lives during periods t and t+1. At time t, there is a market
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for current goods, xt's, and for futures contracts, xt”, for period
t+1 goods. That is, the set of contingent commodities is indexed by
I=1{.5 2 2.5 3, ...} with the partitioning of these contracts
into markets given by M = { {1.5,2}, {2.5,3}, ... }.

For any (contingent) commodity bundle x ¢ R#I, let agent 0's

utility be uo(x) = x1’5 + v(xz,xz's, .e. ), where v(s) is
quasi-concave, and strictly-increasing in &all of its components, and
where 0 < v(e) < 1., For t=1, 2, ... ; let ut(x) = xt'5 + xt"'l.
Thus far, the economy conforms to the specifications of section 2.
We now violate assumption I(ii) by giving egent I(ii) the right to
short all of the futures contracts. Suppose that agent 0 has an
endownent of (1/2)t units of goods in period t. Also, suppose that
this agent can short up to 2-(1/2)t’ units of period t goods (t = 2,
3, ... ) through the sale of futures contracts at time t-1. Agent 0's
space of feasible (net) contract holdings is then given by

2

X, = xe R 1 x5 5 1/2), k2 y -2, 2+ 20y 01208,

vy xBy 2, kB By mamt, L
Suppose that agent t (t = 1, 2, ... ) has an endownent of (1/2)t
wmnits of period t goods and (1/2)“1 units of period t+1 goods. Even
though agent t is alive when both of the markets {t.5,t+1} and
{(t+1).5,t+2} are open, the agent will only trade in the market
{t.5,t+1}. This is due to the fact that the agent has neither tastes
nor endownments for the contract t+2, since it only involves goods in
period t+2. Therefore, agent t's space of (net) trades is given by
x, = (xe R 15y mamb, My amy™,
and xl =0 for all i = t.5 or t+1 }.

We now verify that the economy has no equilibria by an ind irect
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argunent. Jpecifically, we pin down any candidate for an equilibrium
price system and then show that the corresponding allocation scheme is
infeasible.

uppose that (p.(xa)) was a competitive equilibrium for the above

economy. Agent a's budget constraint for trades in the market

1)

m = {t.5,t+1} = M, simplifies to

t.Sxt.S + pt+1 xbﬂ

(a) p(xa:m) = p a 2 $0.

The special form of the feasibility spaces X.I, X5 ... allows us )

simplify the market clearing conditions to

(0 x5°% & x82 0 and xS 4 kB g0 for b=, 2, Ll

Consider any t = 1, 2, ... .

If pt‘s > pt+1, then (a) and utility maximization by agent t implies

te1
Xt

By (b), this implies

= (3 YhYast s ae)t.

< s et

0
Since Xy € XO, this implies
S L am™ s am™.

By (b), this implies

(t+1).5 t+1

But, this contradicts Xep1 € Xt”.

The above paragraph establishes

t+1

() pt"5 £p for t=1, 2, ... .

(ne may readily verify that

2 2.5 3

x=(x1'5,x,x ,x,...)=(2.-2.2.-2....)€ﬂﬂ

is in agent 0's budget set since x € X, and, by (¢), x satisfies (a)

0

for all markets. Therefore, since x was affordable when X, was

chosen,
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uo(xo) > uo(x).

By the definition of uo(o) , this imflies

xg)'s + v(xg, xg's, eee )22 + (=2, 2, ... ).
This, in turn, implies

1.5

X, > 1, since 0 < v(3) < 1.

But, by (b), this implies
x:‘s < -1, which contradicts x1 € x1.

We conclude that the above economy has no competitive equilibria.

All of the exanples that follow are of complete market economies,
i.e. M={1I}. Unless stated otherwise, the collection of agents is
indexed by the set
A=1{0, 1, ...}
vhile the collection of goods is indexed by
I=1{1, 2 ...1.

For convenience, we now refer to Xa c Rfo as agent a's space of
feasible gross consumption. Unless specified otherwise, assume
00

Xa = R+ . Slnce we now consider gross consumption, we must explicitly

introduce agent a's endownent, which we denote by wa € R?_o.

The following example demonstrates the necessity of a separability

| 0\

assumption like I(ii) to insure the existence of equilibria for

dynamic models with complete markets.

4,2 Examnple. Let agent 1 have the consunption set

x1 = [ (x}' x?, ) ) e R;w H x1+1 >,2Xi ror i = 2' 3' e e }

and give each of the other agents t = 2, 3, ... the set
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-~
]
L=
.

Let w, =1 if i = 1 and 0 otherwise and let u1(x1) = x; +2x§. For

—_

tz2, 3 ...; let wi = 11ifi= t-1, t and O otherwise and let

t-1

ut( xt) = x{ + (1 /3)xt£.

Assume that the above economy has a monetary equilibrium,
(p.(xa)) » where the only monetary transfer is a non-negative transfer

to agent 1, 1.e. PX, 2 PW 1. By definition, X4 being in agent 1's

consumption set implies xﬁ p Zt'zx,'f for all t =2, 3, ... . Since the

aggreg ate endownent of each good is bounded (wt = 2), feasibility

impl ies xﬁ = 0.

Clearly, all prices are positive, p >> 0, since each good is

insatiably desired by some agent. In particular, utility meximization

by agent 1 together with x‘12 =0 implies

xi1 =0 fori=2, 3 ...

while utility maximization by agents t = 2, 3, ... implies
Xt =0fort=2, 3 ..and i= t-1,t.

Hence, the agents budget constraints simplify to

(@ p"TaET s g - =0 for b= 2, 3, L.

and the feasibility constraints become

(b) x{ + x¢ . =2for t=1,2 ...

We now obtain a contradiction by pinning down the price system p
and then showing that, given p, X, is not a utility maximizing choice
for agent 1. Since agent 1 consumes only good 1, the fact that agent
1 spends at least the value of his endownent (i.e. receives a

non-negative income transfer), implies x: = px1 > pw, = 1., Using

x} > 1 and repeated applications of (a) and (b), one may verify

L¢2 fort=2, 3 ....

(c)1<xt\

N
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Consider any t = 2, 3, ... .
If pt < (1/3)pt-1, then utility meximization by agent t imrpl ies
xz > 4, which contradicts (c).

I pb > (1/3)p%"7, then wtility maximization implies xt = 0, which

also contradicts (c¢). Therefore, pt = (1/3)pt’-1. Hence,
(0 pt=3"t fre=2, 3 ...

We now show that x1 cannot be a utility maximizing bundle for

agent 1, Specifically, instead of the bundle Xy = (x11, 0, 0, ... ),

the agent could have afforded the bundle z, = (x11—1, 1, 2, 22, e )

since by (d),
00

o 1=t t-2 _ 1 _
Pz, = X -1 + S 372 = X = px,.
t=2
One may readily verify that z, is also feasible, i.e. 21611, and is
preferable to x1, i.e. u1(z1) = x} +1 > x11 = u1(x.|). Hence, agent
1's alleged choice of x1 is not consistent with utility maximization.

Therefore, the economy has no monetary equilibria as described in

proposition 4.2,

The following example, that demonstrates the potential
non-ex istence of competitive equilibria for complete market economies
when there are infinitely-lived agents, is taken from Wilson [19811].
i

1, let w. = 1 if i = a, a+1 and 0 otherwise

4,3 Exanple. For a > a

n
»

and let ua(xa) aa+ 3x:+1. For agent 0, let w%) = (1/2)i for all 1

and let uo(xo)

xg. For all a, let X, = R%°,

We will assume that all goods are traded in a single market. That
is, agent a faces the single budget constraint 29 < pw,. Hence, X,

1s chosen to maximize u,(x,) subject to px, { pwy and x5 & RPO.

N
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We now prove, by contradiction, that there is no competitive
equilibriun (see definition (3.5)) for this economy. Assume that p

and (xa) are equilibrium prices and allocations respectively,

Clearly, by the monotonicity of preferences, p € RT:. lLet

I=01i>1:p*" <3pl ). Ten for any i € I, utility maximization

by agent i implies x’; = 0. Therefore, 3ince demand equals supply for

good i, xji'_1 = %+ wi_.l + Wy > 2. The budget constraint of agent i-1

[w5

W

then implies .':"pi < pixi:_.l < pi—1wi:} + piw:;_1 = pi"1 + pi. From this
it follows that i € I implies pi < Pi_1- In particular, 1 € I implies
i-1 € I. But the demand of agent 0 will only be well defined if

P¥, < 00. Terefore, I must be an infinite set. It then follows from
induction that i € I for all i > 1.

The preceding paragraph then implies that for all i, Pis1 < pi and
hence, p1 < pyfor all i > 1. Therefore, pwo = l_;__g_.' 912_1 < Py which
from the budget constraint of agent 0 implies x& < 1. However,

Py < Pq also implies that x‘% = 0 since agent 1 maximizes his utility.
But since x; + x: = xg <1 <% z wé +w.‘||, i.e. supply exceeds demand,

it follows that a competitive equilibrium cannot exist.

The following 1is an example of a well-behaved economy in which
there is a single trading market and each agent trades for only a
finite number of goods in that market. However, we do assume that
goods are perfectly storable. As a result of our considering this
simple form of production, we are able to demonstrate that the economy
has no competitive equilibria. The inability of the complete market
model to accommodate even the simplest form of production stands in

sharp contrast to the results obtained in section 6 that establish the
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ex istence of competitive equilibria for a general class of production

frocesses,

4.4 Example.

For a > 1, let w: = 21if i = a, a+1 and 0 otherwise and let
_ .a a+1 i _ . .
ua(xa) = X+ 2xa . For agent 0, let HB = 11if i = 1 and 0 otherwise

00

Yy -] -
and let uo(xo) = X For all a, let Xa = R+ .

0°
As in the previous example, we assume that all goods are traded in

a single market. However, in contrast we now consider a simple

(perfect storage) production process., let

Y2 { (yy, Yo wee )t -1 ¥y €0, ¥yt 30 for i>1

and ZYiS-Y-, }

i>1
be the set of net production possibilities.

We now prove that there are no equilibria for this economy. Let
P (xa) , and y be any proposed collection of equilibrium prices,
allocations, and net output levels respectively. We first

1

demonstrate, by induction, that pi+ >,2pi for all i. Clearly

p >,2p1, since otherwise utility maximization by agents 0 and 1 imply

xg = 2 and x11 = 0. But these equalities imply, since y1 2 -1,
x; + x11 =2 <3 ¢ w}, + w: + ¥ which contradicts the requirement

that equilibriun demand equals supply for all goods. We now assume

ou inductive hypothesis pi*? >,2pj“"I and demonstrate pi*2 3 2pi*l,

Ir pt*2 ¢ 2pl*!, then utility maximization by agent i+1 implies
xiﬂ = 0. Hence, the condition that the demand equals the supply of

good i+1 yields

\

i+ _ 141 i+1 i+ i+1 i+
Xg =Xy kX =Wy vWig ey O

since y1+1 > 0. By the budget constraint of agent i, this implies
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pi+1 p1+1
i i iv+1 i1
iswi"pi(“i -xi)$2-2i5_2

p
since by assumption pj'+1 2 2p1. But this contradicts the feasibility

X

of the bundle x;, i.e. x; € Ro°. It then follows, by induction, that

> 2pt for all 1.

pi+1
The above paragraph demonstrates that if we were given an
equilibrium, prices would at least double each period. But given such
prices, the firm could make any arbitrarily large level of profits by
simply storing one wnit of period 1 goods until some suitably distant

future date. Therefore, there can be no profit maximizing produc tion

plan. Hence, the economy has no competitive equilibria.

For completeness, we include our next example that demonstrates
the inability of the complete market model to guarantee the existence
of equilibria when there are an infinite number of agents with tastes
for a single good. We note that the cause of the non-existence of
equilibria in examples 4.1-4,.4 is due to the lack of continuity of
individual demands and supplies. 1In contrast, the absence of
equilibria in the following example stems from the lack of continuity
of aggregate demand. That is, even though each agents demand is
continuous, the aggregate demand for a good need not be continuous

since we are summing up over an infinite number of agents with tastes

for that good.

4,5 Example. For notational convenience, we index the set of

agents by A = {1, 2, ... } ad the set of goods by I ={0, 1, ... }.

For t =1, 2, ... ; let w =2""ifi= t-1, t and w2 0 otherwise
—t.t

0
and let ut(xt) = Xy + 3 Xgo
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Assume that the above economy has a competitive equilibrium,
(p,( xa)) . Since each good is insatiably desired by at least one
agent, prices must be strictly positive, p >> 0. Let p0 = 1 be our
price normalization. Since all prices are positive, utility
max imization implies
xI =0 forall t=1, 2 ...and i= t-1, t.

Hence, we can write our budget constraints as

(a) %0 4 pt'xt = 2"1~'(pt'_‘I + pt) for t =1, 2, ...

t t
and our feasibility constraints simplifies to
(o)
(B) > xg =w? =277 for good 0
t=1 t
xt:wtz 3.27 for goods t = 1, 2, ... .

We can now finish our demonstration by pinning down the price
system p and then contradicting (b) by showing that there is an excess

supply of good 1. Specifically, we establish

t

(e) pt = 37 for t=0, 1, ... ,

by induction. Trivially, p0 =1 = 3'0. We assume the inductive

hypo thesis pt = 3% (for some t = 0, 1, ... ) ad prove
te1 3-(b+1).

p

r pt*! < 3'(“1), then utility maximization by agent t+1 implies

x?_d_] = 0. Hence, the agents budget constraint from (a), together with
the inductive hypothesis pt = 3't, implies

<1 2-(1'.4-1)(1 . pt/pt+1) N 3.2-(t+1)'

t+1
which contradict (b).

It p**' > 371 then utility maximization by agent t+1 implies

xa’_: = 0, which again contradicts (b). Therefore, pt+1 = 3-“*1) and
our inductive proof is complete.

We can now determine x% for t=1, 2, ... . By (a), (b), and (e);
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x0 22788 e ) - b s 27ty 37 L3t
- 2—1’._3—‘[‘, - ﬁ-t.

00 00
Therefore, }_ xg = 6=t = 771 <27,

t=1 t=1

which contradicts (b).

To further illustrate the generality of the sequential economy and
its implicit debt restrictions, we reconsider examnple 4.3. As it
stands, example 4,3 describes a complete market economy in which, due
to the presence of an infinitely-lived agent, there are no competitive
equilibria. However, if we recast this economy into a sequential
framework, then we can easily solve for a competitive equilibrium (the

existence of which is guaranteed by proposition 3.5).

We note that the non-existence of equilibria in example 4.3 stems
from the fact that, since agent 0 is endowed with an infinite number
of goods, his endowment income, pw, can vary discontinuously with
prices. This discontinuity of income naturally leads to a
discontinuity of demand. When we recast the agents in example 4.3
into a sequential economy, we find that the (implicit) restrictions on
the degree to which agents can access their future endownent income
sufficiently dampen the above discontinuous income effects to

guarantee the continuity of demand.

Example 4. 6.
In order to satisfy assumption VI, once the economy is cast into
the sequential framework, we assume that agent 0's utility function is

uo(xo) = Z(1/ll)txg. The remainder of the economy is as specified in
t



-p=(p

- 155 -

example 4,3,

It is straightforward to verify, by the techniques employed in
example 4.3, that the above economy has no competitive equilibria.

We now cast the agents into the incomplete market structure
described in example 4, 1, Specifically, at time t, there is a market
for current goods, xt‘s, and for futures contracts, xt+1, for period
t+1 goods. That is, the set of contingent commodities is indexed by
I=1{1.5 2 2.5 3, ...} with the partitioning of these contracts
into markets given by M = { {1.5,2}, {2.5,3}, ... }.

For a > 1, agent a's feasibility set is given by

X, = { xe g7 . xi>,-1 if i = a.5 or a1 and x* = 0 for all other i},

with preferences defined by

a.b +

_ a+1
ua(x) = X 3x f‘or'xexa.

Agent 0's feasibility set is given by

x0={xe R#I : x1'5

Xt+Xt'5 >,"(1/2)t’ see }

5-0/2), o, xPy a2,

with preferences defined by

00
ug(x) =(1/a)x'*? + > )b x5y,
0 t=2
We now verify that competitive equilibrium prices are given by

1'5.p2.p2'5 3 )

'p y) sen

= (1/4)(1,3,1,3,...)
with equilibriun allocations given by
xg =(x"2x3,x2°3,3, 0.0 = 3a/22,-0/22,30/2)3,-012)3,..)

ard

Xy = 0,00,x32x 0,000 = 0,...,302)*,(1/2)*,0,...) for

By inspection, the all markets clear in the above allocation scheme
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eand each agent 2a = 1, 2, ... maximizes his utility.

To verify that agent 0 is maximizing his utility in Xg by
shorting to the limit on every futures contract, we simply note that
agent 0's rate of substitution between consumption in periods t+1 vs.

t is given by

t.5
duo/dx

= 4

1
du./dx
while, through the sale of futures contracts of period t+1 goods and

the purchase of spot contracts for period t goods, the agent can
exchange these goods at a rate of 3 units of period t goods for every

1T unit of period t+1 goods.
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5. EXISTENCE CF CQMPETITIVE EQUILIBRIA FCR DYNAMIC MCDELS

WITH INCQMPLETE MARKETS

In this section, we describe a general model of a dynamic
Pure-exchange economy in which, at any given point in time, trading
for future commodity contracts takes place in mearkets that are, in
general, inconplete., The model we describe is patterned after the
work of Radner [1972,1982]. CQur most significant extensions of
Radner's model are that we allow for an unbounded time horizon and
that we replace his assumption of each agent having a positive
endownent of all goods with a much weaker assumption of
irreducibility. In section 6, we further extend Radner's work by
establishing the general existence of competitive equilibria when

production is considered.

In contrast to the standard Arrow-Debreu economy, since the market
structure is incomplete, it may not be possible for a given agent to
consummate all of his desired transactions by trading once and for all
in a single market. Thus, there will be a demand by agents for a
continually reopening of markets over time as new commodity contracts
become available. As an extreme example, consider an economy in
which, at time t, there are only markets for trade in current goods
(i.e. those goods which are consumed at time t). Each time the
economy enters a new time period, agents will engage in trade for the
now current goods, since these trades could not be made at any
previous date. Thus, markets are sequentially opening and closing

over time,
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After we have described our incomplete market model in detail, we
will show how it fits into the general framework developed in section
2. Mext, we list restrictions on the incomplete market economy that
are sufficient to guarantee that the corresponding assumptions of
section 3 are satisfied. It will then follow, by Proposition 3.5,
that competitive equilibria exist for our general incomplete market

economy.

The economy evolves over dates t = 1, 2, ... . Uncertainty about
future events is modeled by specifying a set, S, of all possible
histories of the economy. Information is modeled as the knowledge
that the true history of the economy lies in a specific subset, s, of
S. The collection of all alternative collections of information that
can be acquired by time t constitutes a partition St of S. That is,
St contaiﬁs all of the subsets of S, called events, that are
observable at time t. If we assume that previously known information
is never lost, then the sequence of partitions { St } will be monotone
non-decreasing in fineness. That is, any element in St+1 is a suvhset

of a element in S,. For notatlional simplicity, we assume 8 = {s}.

Agents plan to consume goods at various dates and possibly
contingent on (uncertain) events. We denote the set of all such
date-event pairs by D = { (t,s) : t =1, 2, ... and s & Sy 1. We
assume that there are a finite number, He Y of goods that can be
consumed at date t in the event s € St' We index the collection of
all such (contingent) commodities by the set G = { (t,s,h) : (t,s) € D

and h=z 1, ..., H o }. For each agent a € A, we denote the
9



- 159 -

collection of all feasible levels of (gross) consunption by Cag R{”G.
That is, given c € Ca' c® denotes the agents consunption of good
g € G. We also let W, € R”G denote the endowment bundle of consumer
a. In general, we allow endownents to be state-dependent. For
exanple, at date t, the agents endownents of good 1 in the state
s € St, "(t,s,1)' can differ from the agents endowments of good 1 in

1
the state s' e St.' w(t’s, e
At each date-event pair (t,s) € D, consumers can choose to trade
anong a finite collection of contracts. We index the contacts that

are available at (t,s) by It, g = { (£,8,3) ¢ 3 =1y eea y d }. In
’

t,s
the terminology of section 3, each of the sets It s constitutes a
’

market. We denote the collection of all contracts that are traded on
these markets by I = U It g? while the partitioning of I into
1]

(t,s)eD
trading markets is denoted by M = { It s * (t,s) e D }.
1]

One unit of contract 1 = (t,s,j) € I entitles the consumer to an
allocation bundle c(i) e Rﬁc. Clearly, at any date-event pair
(t,s) € D, the consumer can no longer change his consumption plans for
any previous date or in any future event that cannot occur given the
current state of the economy. Therefore, we must impose the
restriction;
For any contract i e It,s and any good g = (t',s',h) € G, (c(i))B =0
unless t' > t and s' C S.
In general, contracts may be bought and sold in any (divisible)

i

quantity. Holding z~ units of contract i entitles/ocbligates the agent

to a net commodity trade of zic( i) e R”G. A complete description of
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an agents trade plans are specified by a vector z & R"’I, where zi
denotes the net quantity of contract i that is traded. Given net
trades z ¢ R#I, in terms of contracts, the consumer then incurs a net
trade of $_z'c(1) € R in terms of actual commodities.
iel
To conclude our exposition of the incomplete market economy, we
fresent restrictions that will guarantee that the assumptions of

section 2 are satisfied.

As previously noted, in order to satisfy assumption I(ii), we must
1limit the ability of (infinitely-lived) azgents to short futures
contracts (i.e. sell so much of a contract that the consumer must buy
contracts in latter markets in order to meet his existing
obligations). For notational simplicity, we simply eliminate shorting
altogether, Before we do s0, it is convenient to introduce notation
to single out all of the contracts that have been traded up to a given

date-event pair (t,s) e D.

We define the relation { on I =D by
(t,s,j) ¢ (t',s'") 1if t ¢ t' and s' C S.
For later convenience, we define the stronger relation < on I»D by

(t,s,J) < (t',8') if t < t' and s' C s.

Given an agents space of feasible (gross) consumption profiles

Cag R”C', we define the agents space of feasible (net) contract
holdings xa S R”I, as the set of all contract schemes that satisfy the

constraint that the agent never shorts a contract. That is,
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Xa={zeR#I:

w4+ Z zic(i) € Ca for each date-event pair d € D

a 4
Kd b s ,d)

and 2z = 0 for all (t,s) ¢ Da }

’
where Dag D denotes the collection of date-event pairs in which agent
ae A is "alive",

In words, a contract scheme is feasible, z & xa, if at any given
date-event pair d € D the consumer can meet his existing obligations
(i.e. fulfill all of the contacts 1 { d) without trading in any later
markets. As in section 2, given xa, we define the set of markets that
agent a € A participates in by Ma = { me M| there is an x e Xa and

an 1 € m such that xi

= 0 }. One may readily verify that Assumption
I(i1) is an immediate consequence of the definition of Xa if we
consider the sequence { Ma( t) } defined by

Ma(t) = {m= It',s € Ma :t' ¢t and se St, }. Assumption I(i)

and (iii) will also follow once we impose the following.

Restriction II {(Finite endowments).

For eachme M, { c € Z C,b:cg0 } is bounded from below.
A

2

For convenience, in section 3, we worked solely in terms of trade
contracts x € R#I (as opposed to consumption profiles c € R”G).
However, since preferences are generically expressed in terms of
consunption profiles, we provide the following restriction as an
alternative to assumption III.

(R.3) (Regularity of preferences)
For a € A, the preferences of agent a € A are represented by a utility

function va(-): Ca —> R that satisfies:
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(1) v,(e) is continuwsus;
(ii) v (e) is quasi-concave.
Glven these preferences, defined on consumption profiles, we can
represent the equivalent preferences over the space of contracts , Xa,
by the utility function
u(z) = v( L zle(i)).
iel
One may readily verify that (R.3) implies that assumption III is

satisfied by u(a).

In each of the above three cases (except for II(i)), there is a
natural equivalence between the generic restrictions in terms of
consumption goods and the induced assumptions in terms of contracts.
However, the irreducibility assumption IV has no simple generic
counterpart. This is due to the fact that the assumption of
irreducibility in terms of trade contracts involves not only the
degree of irreducibility of preferences and endowmnents, but it
restricts the underlying market structure of the economy as well. To
i1lustrate this point, consider the following simple economy. There
are two dates t = 1, 2 (with a trading market open at each date) and
tw agents a = 1, 2. Each agent has strictly-monotone preferences for
all goods and agent 1 has positive endowments of all goods. However,
agent 2 only has endownents for goods in period 2 (suppose he has
positive endownents for all second period goods). If the first period
market is restricted to trading in current goods, then the
irreducibility assumption Assumption IV is not satisfied since agent 2
has nothing of value to trade. However, if the first period market

also includes trade in some futures contracts, then assumption IV is
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satisfied since agent 2 can now sell all or part of his second period

endownents.

For completeness, we present a restriction on preferences and
endowments that is sufficient to guarantee that assumption IV is
satisfied. The above examplc demonstrates that this restriction is
not necessary for assumption IV to hold.

(R.4) (Irreducibility at each date-event pair and completeness of

current markets)

(1) Given any market m = It s € M, any partition of Am into non-empty
’

subsets B0 and B1, and given any consumption scheme (ca) e C such

that Z cg < Z wg for g such that g = (t,s,h) for some h: There is
aeh ach

an agent b € B, end allocations (ea)

0 at-B1 that satisfy; e, € Ca and

e i(t,s) for ae B,, and vb(cb+a>e:B (wo=e)) > vple).
(ii) For each good g = (t,s,h) & G,1 there exists a contract
1
i= (t,s,j) € I such that (c(i))8 > 0 and (c(i))® = 0 for all goods

g' = g.
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6. EXISTENCE OF CGMPETITIVE EQUILIBRIA FCR DYNAMIC MCDELS

WITH INCQMPLETE MARKETS AND PRODUCTION

In this section, we introduce production into the incomplete

market model. In doing so, we closely follow the general scheme set
forth in Radner [1972, 1982). To avoid unnecessary duplication, we

abbreviate our basic description of production and the accompanying
stock markets. Instead, we focus our attention on our extensions of
Radner's work and, in particuler, on estahlishing the general

existence of competitive equilibria.

In his commentaries, Radner [1972, 1982] suggests a few areas in
which his work should be strengthened. (COf course, the most
significant of these is to establish the general existence of
equilibria.) Another such area is the incorporation of limited
liability of agents that hold shares in the various firms. Having
limited liability is essential to our interpretation of agents as
" shareholders", as opposed to partners, in firms. We incorporate
limited 1iability by constraining firms to generate only non-negative
mofits at each date-event pair (thus guaranteeing that agents holding
shares in these firms will never suffer a loss of income). MNote that
these non-negativity constraints do not necessarily prevent firms from
undergoing periods of substantial investment. Specifically, firms can
invest in excess of revenue from current production provided that they
are able to finance at least part of their investments through the

sale of contracts for anticipated future output.
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The reason that Radner did not incorporate non-negative profit
constraints into his mecdel is that he did not find accertable
conditions that wuld guarantee the continuity of producers supply
correspondences. The possible dis-continuity of supply stems from the
fact that, for general classes of production technologies (e.g. in the
case of constant returns to scale), producers may not be able to
generate positive profits in equilibrium. Thus, firms may be forced
to the boundary of their feasibility sets (with respect to the
non-negative profit constraints). This problem is similar to the
dis-continuities of demand that can arise when some agents have no

income.

Fortwately, in this section, we develop techniques that allow us
to guarantee the required continuity of producers supply for a quite
general class of production technologies. Thus, we are able to
incorporate the desired limited liability of shareholders into the
sequential model. Quite surprisingly, we find that imposing limited
liability is our key to transforming Radner's model into one in which

equilibria are guaranteed to exist.

It is well-known that to guarantee the general existence of
equilibria (with non-negative prices), one must insure that there is
some form of free disposal of goods. In pure exchange economies, this
requirement is typically satisfied by assuming that each agent can
derive non-negative marginal utilities from consuming each good. This
observation directly relates to our incomplete market model in that,

in order to establish the existence of equilibria with non-negative
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commcedity and share prices, we must insure that potential investors
can derive non-negative benefits from holding additional shares. But,
this is implied by the non-negative profit constraints since holding

shares can never decrease an agents income.

Before we formally introduce production, we find it necessary to
impo se further constraints on the underlying structure of commodity
contracts, One should note that, at this time, we do not know
precisely how necessary most of the assumptions of this section are to

insuring the validity of our existence result (proposition 6.9).

Assumption VII.
(i) For each contract i € I, c¢(i) = c(i)}d(i) for some date-event pair
d(i) e D.
(ii) For each contract i e It ) and date-event pair d € D;

if e(i) = c(i)}d and i < d, then there is an event s' e S and a

t+1
contract i* & I such that 1* ¢ d and e(i*) = o(1).

t+1,s!

For the remainder of this paper, we adopt the notation defined in
assumption VII (i.e. d(i) and i*). For convenience, we assume that
glven any contract i, as described in (ii) above, the contract it is
uique. Furthermore, given any such contracts i and 1*‘, we define
J7 = 1 where j = i*, Tat is, for i e I, i* (if it exists) is the
contract that corresponds to "reselling" i in the next available
market while i~ (if it exists) is the previously available contract

that is "resold" as the contract 1.
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Assumption VII(i) requires that any given commodity contract can
involve goods at only one date-event pair. 1In comparison, our payoff
structure is less restrictive than that imposed in Radner [1972,1982]
(who assumes that every contract involves only a single good) but is
more restrictive than that considered in Hart [1975] (who allows
contracts to involve arbitrary bundles of goods). Assumption VII(ii)

requires that futures contracts can always be resold in later markets.

We now specify the market behavior of firms. Let the collection
of firms be indexed by F. For notational simplicity, we assume that
the number of firms, #F, 1s finite. It is straightforward to extend
the arguments in this section to establish the existence of equilibria
if we replace this finiteness assumption with the requirement that

there are only a finite number of firms operating at any given point

in time.

Let Yf c R#G denote the set of feasible net-output levels of firm
f € F. For simplicity, we assume that firms are given access to the
same trading markets as consumers. We specify the feasible trades for
firms, as we have done for consumers, to be those in which they never
short a contract. That is,
Z.= { z e |

i%i ziC( 1) e Y. for every date-event pair d € D }.

As in section 3, in order to insure that all market behavior is
appropriately continuous, we bound the feasibility set of each agent

a€ A and each firm f € F. We choose ab e RfI and consider the
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truncated consumption sets

N

' o .
Xa-{xexa.x<b} for a € A.

We bound production sets by
g = { ze Zp : for any maximal string of contracts i,, ..., i,

: + - _
i.e. ik+1 = ik for k.: 1y e+ », n=1 and neither i

T nor i; exist:
1 11 12 11 i, i i i
z “+z

1
z b, \<b,..,z1+...+zn\<bn}.

ne may readily verify, by assumption VIII(ii) below, that 2! is a

£

bounded set (that is each of the components of elements in Z;. are

bounded) . Technically, the reason that we do not simply consider the
truncated sets { z e Lo 1z { b} is that we want ZE. to have the
property that the purchase of any futures contract can always be

pstponed to the next availale market. That is, for all z,
1 it . . i
Z 2 (eeeyZ yeeeyZ™ yeee) € Zf. implies (eeey0yeeey2z

Following Debreu [1959], we can argue that if we choose b large

+
‘ .

+zipcno) - Zf

enough, then the competitive equilibria of the bounded economy
correspond to the equilibria of our original economy. We denote the

collection of consumer contract schemes by X

X X' and the
A a

ae
K 24
feF

collection of producer contract schemes by Z

Given contract prices p € RfI and net trades z € z;,, firm
generates a net revenue of p(zjm) in the market m € M. The stream of
all such revenues is denoted r(p,z) = (rm(p,z)) € R#M, where
ro(p,z) = p(zim) for m € M. We assume that firms choose their
production profiles to maximize the value of some exogenously given
function, vr(o), of its revenue stream. Formally, given the price
system pe Rf_I, firm f*'s supply correspondence, Qf( p), 1s defined to

be the collection of all solutions to
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max v.(r(p,z))
s.t. r(p,z) 2 0
z ellL.
Note that r(p,z) > 0 restricts net revenue to be non-negative in each

merket.

We now list restrictions on production technologies and the firms
objective functions that, together with assumptions I - VII, guarantee

the general existence of competitive equilibria.

Assunption VIII. For each firm fe F:

(1) Yt‘ is a closed and convex subset of R#C';

(i1) For anyb e R, (y e?Yf ! y> bl is bounded;

(iii) o er;

(iv) Y. = Y, ,, where Y denotes the set of feasible output

f Y Tf.d f,d

levels of goods available at the date-event pair d e D.
H
t,s

That is, y € Y. if, and only if, (y (t,s,h)), " € Yf,(t's) for all

date-event pairs (t,s) € D.

(v) vf(c) is continuwous, non-decreasing, and strictly quasi-concave.

Assumption VIII(ii) states that it is impossible to produce
arbitrarily large quantities of output from a finite quantity of
inputs. Assumption VIII(iv) is a separability condition on the firms
production technology. There are counter-examples that demonstrates
the necessity of an assumption like VIII(iv) (even for finite-horizon
economies) but we do not present them here so as to abbreviate our

exposition.
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Unfortwmately, the separability condition VIII(iv) rules out time
to build technologies since, in particuler, production opportunities
at a given date are necessarily independent of any previous production
levels, However, time to build technologies can be incorporated if we
alternatively specify production to be in terms of contracts, i.e. Yf.
< R#I. For example, if employing one wmit of lebor and steel today
produces one car next year (thus implying a non-separable production
set Yf‘E R#G) and if there are futures contracts for cars, then we can
alternatively think of the firms technology as being separable if it
is expressed in terms of contracts. Specifically, in each perioed,
firms can employ one unit of lzbor and steel to "produce" one futures

contract for a car.

Assumption VIII(v) is analogous to restrictions typically impo sed
on consumers preferences. In particular, the strict quasi-concavity
of Vf(c) implies that a firms revenue stream is uniquely determined
given a commodity price system p e Rf[. That is, for f e F, we can
define firm f's optimal revenue stream by rf( P = (rm(p)). where

r‘r'm(p) = p(zim) for z € Qe(p) and m € M.

We now briefly describe the stock market. In each market m & M,
agents trade for shares in each firm f e F. We index shares by the
set N={ (mf) : meMand feF}. A agents share trading plan is
then a ppint w e R#N, where W' denotes the quantity held of share
n € N. Share quantities are normalized to be non-negative with the
aggregate stock of shares outstanding in each firm taken to be 1.

Therefore, the space of feasible share plans for agent a e A is given
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Wy= Cwe™ : 0 ¢ W ¢ 1 for mel and w? 2 0 if n = (mf) =d mgn_ 1.

The collection of all such share plans is denoted W = X W,
ael

#N, where q" denotes the

A share price system is a point q € R
price of share n € N, As previously mentioned, our non-negativity
constraints on producer profit allows us to restrict our attention to
non-neg ative share prices. We jointly rnormalize commod‘ity and share
prices to lie in the space
I -= X Hm,

meM

where l'Im = { (p,q) € R N

RN : S ot e ™D i forment.

o,
©*  iem feF

4
Given a (commodity-share) price system (p,q) € II, a portfolio
plan w € wa implies that agent a's total share of producer revenue in

the market m € M is Zw(""”rf.m(p) . In addition to sharing in
producer profit, tracﬁﬁg in shares effects income through capital
gains or losses. We assume that agents are (exogenously) endowed with
shares at the inception of the economy. Let wg denote the endowment
of agent a € Am of shares in the firm f € F, which he receives before

the initial market m = I1 g OFens. We normalize share quantities so
’

that, w % 0 and 2 Wf =1 for feF.
ST

For completeness, let wg = 0 for ae Am'

For ae Am, agent a's capital gains in the initial market m = I1,S is

Z (m,f) , (m,f) £
(W ew),
fF a a

while his gains in each market m € Ma-{m} are

Z q(m,f‘) (wgm,f)_wgm .f)) i
feF
where m~ denotes the (unique) market immediately preceding m. That
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is, ifm = (t,s), thenm = (t-1,s') for some s' e St_1 with sC s'.

We now characterize the agents market behavior. Given a
commodity-share price system (p,q) € IT and an income transfer scheme
™
a
(ym) € R+ , agent a's demand correspondence, Da(p,(ym)), is defined

to be the set of all solutions to

max u_(x)
s.t. p(xim) - f%._w(m’f‘)rm’f(p) + fg.q(m’f)(!.u;“"f)-wg) $ Y
form = I1 g
)
] 'r lf 'f -’f
p(xim) - erFw(m )rm'r(p) + erFq(m )(w;m )-wgm )) $ Yy

for m € M={m}

(x,w) € X;xwa.

As in our model without production, we find it useful to consider
the notion of a competitive allocation as an intermediate step toward
obtaining a competitive equilibrium. For purely teclnical reasons, we
introduce q e R_‘#_N as an argument in producers correspondences (i.e. we

hav e Qf.( p,q)).

6.1 Definition.
(i) A Competitive Allocation consists of a commodity-share price
system (p,q) € II, commodity contract schemes (xa) € X and (zf) ez,
and a distribution of shares (wa) € W such that for ae A and fe F:
(y, n) 30 for ae A, where (y, =) denotes the income transfer scheme
m’ 7z a,m
to agent a

(xa.wa) € Da(p.( ya’m))

Ze € Qf(P'Q) .
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(11) A (Free Disposal) Competitive Equilibrium is a Competitive

Allocation that satisfies:

Ya'm=0f‘or ae A and allmeMa
\:an Z:zf
aehA feF
anslforneN.

a
a€l

We now establish the general existence of equilibria for our
sequential model with production. As previously mentioned, the main
difficulty we face is in establishing the continuity of firms supply.
Once we do so, the remainder of our proof proceeds as in section 3.
Specifically, we find a competitive equilibrium for our full economy
as a limit point of equilibria from a sequence of (finite)

sub-economies.

In a manner analogous to the income perturbations of section 3, we
find it useful to perturb firms trading sets in each of the
sub-economies. Specifically, 1if we "endow' each firm with a positive
quantity of all commodities, i.e. change Z;. to Z;. + (€46 ...), then,
by assumption VIII(iii), each firm can generate a positive income in
each market. Qur first lemma states that this perturbation is

sufficient to guarantee the desired continuity of supply.

6.2 Lemma., For each firm fe F; 1if Z;.

upper hemi-continuous at each point (p,q) e IT.

xﬂﬂ = 0, then Q.(p,q) is

Proof of Lemma 6. 2.

Consider a sequence { ((p(k),q(k)),z(k)) } in IT~ Z[t such that
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z(k) e Qf((p(k) ,(k)) for each k and ((p(k) ,q(k)),z(k)) —> ((p,q),2).

To establish the desired continuity property we must show z € Qf(p.q) .
Since each market is finite by assumption V(ii), r(e,s) is

continuwus, Hence, r(p(k),z(k)) % 0 for each k implies r(p,z) > O.

Al so, assumption VIII implies that Z;. is closed. FHence, z(k) € Z;. for

each k implies z € Z;..

To conclude our proof, we must demonstrate that z is an optimal

trade plen. If z was not optimal, then there would exist an

al ternative z0 € Z;. such that

vf(r(p,zo)) > vf(r(p.z)) and r(p.zo) > 0.

I
'
f nR++'

By the continuity of r(e,s) and assumption VIII(v)

By hypothesis, there exists a 21 el

vf.(r(p,zz)) > vf(r(p.z)).
where z, = Nz + (1-)\)21 for some A< 1.
z, > 0 and r(p.zc) > 0 implies,
(a) r(p,zz) > 0.
Let M = { I, €Mtk t}.
By the definition of Z!., the continuity of r(e,e), and assumption
VIII(v), there is a t sufficiently large such that
22th £ 7p end vf(r(p,zzth)\ > vf(r(p,z)).
(ne may now contradict z(k) < Qf(p(k) ,a(k)) since, for large Kk,
vr( r( p( k) ,zzth)) > vf.( r(p(k) ,z(k))
end (a) implies
ralp(K) ,25iM) 3 0 for m € M, .

Clearly, r (p(k),z,iM) = 0 for m ¢ M, since (z5iM) im =

1
o
.

Therefore, z(k) is dominated by zz:Mt.

Q. E.D.
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The above lemma establishes the generzl continuity of supply at
all price systems (p,q) € IT provided that each firm czn "produce" a
positive quantity of all contrects. This result is therefore
sufficient to guarantee the existence of equilibria for each o7 our
perturbed economies. However, in order to guarantee that any limit
point of these equilibria constitutes an equilibrium for the full
economy, we muct establish the continuity of producer supply, at the
limiting prices, for the original economy (without any added producer

endownents) .

In proposition 6.9, we verify that all limiting prices satisfy the
following "no arbitrage" condition. In lemma 6.5, we guarantee the
desired continuity of supply by establishing continuity at all prices

that, satisfy the no arbitragze requirement.

A commodity price system pe R:’_I is said to satisfy the no
arbitrege condition if for any market m € M, there is a A\> 0 such
that pi = Xpi- for all i e m such that i~ exists. Qur interpretation
of the above as a requirement of no arbitrage should be apparent. For
example, if pJ = pi_ = 1 and pi = pJ- = 2 (thus violating the no
arbitrage condition); then by buying 1 unit of i~ and j and selling 1

unit of 1 and j~, agents generate 1 unit of income in each market m~

and m with no loss of income in any of the other markets.

The following lemma is crucial to establishing the necessary
continuity of producer supply. As previously mentioned, it is

conceivable that discontinuities in supply can arise when producers
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zre wmable to generate positive profits in each market. If we refer
to the markets in which the firm cznnot generate profits as
unproductive, then Lemma 6.3 states that any unproductive market mey
as well be "eliminated" from the firms opportunity set. Specifically,
as pointed our iu the corollary to the lemma, a firm can always choose
an optimzl production trade plan in which it does not trada in
wnproductive markets. The desired continuity of supply is then
established, as in the proof of lemma 6.2, once a firm restricts its
trades to productive markets.

Given mprices p & Rfl, let M;.(p) denote the collection of markets
at which firm f can generate positive profits and let Mg(p) denote the

renaining (unproductive) markets in which it cannot., That is,

M"f'.(p) = [ meM: there is a z € Z}
such that r(p,z) > 0 and r_ .(p,2) > 0}
while
MO(p) = M - MY(p)
f f ‘

3

6.3 Lemma. If the commodity price system p € R+ satisfies the

no-arbitrage condition, then for any firm f e F, market m € Mg(p) , and

f

There is an alternative plan z, € Z;. such that z,{m= O and

trade plan 2 € 2

r(p,zg) = r(p,z). Furthermore, z, can be chosen so that zyim = zim

for all markets other than It and those of the form I“1 gt where s8'
’

y3

S sl

Proof of Lemma 6. 3.
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We define the desired trade plan, z,, by perturbing the plan z.

For i e m, letz:'=0.

i

For 1 € I such that i~ exists and i” & m, let z: =2 4z
For all other i e I, let z = 2.
Basically, we form z, to differ from z in two ways.

First, we delete from z all trades for current goods in the market m.
Second, we shift all trades for future goods from the market m to the
next availeble market. Thus, the new trade plan is both feasible,
le. (z4 € Z;.), and it satisfies the condition zjm = 0.
Recall, Z;. was defined' to insure that such a move from z to z, is
feasible.

We conclude our proof by demonstrating that r{p,z*) = r(p,z).
That is, we show that there is no net change in revenue by moving from
zto z,. Clearly, sincem e Mg(p) ' rm(p,z) = 0. Therefore, there is
no change in revenue when we delete the trades in m from z. The other
markets effected by moving from z to z, are the markets It+1,s for
s e St+1‘ The condition for their to be no revenue change in these

markets can be written

(a) Z pi+zi = 0 for s € St+1’
iem
- s - . + .+
whe.em3 = {iem:i" exists and i" € It+1,s } for s e St+1‘

That is, since each of the contracts effected in the market It+1,s can

be written as i* for some i € mg and since the total quantity change

for the contract i* is zi, the total value of all quantity changes in
it 1
the merket I is p z .
t+1,s fem

By our hypothesis that the price system p satisfies the no arbitrage

condition, we can replace (a) with the equivalent expression

(0 3 plt =0 forses, ..
i t+1
Ems
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Our proof is therefore complete once we establish (b).

We first verify

() 2 pizi %> 0 for ses
iems

For any s € St+1' consider the contract scheme zg defined by

t+1°

N
1}

0if i e m or i) (tal,s)

i zi otherwise.

N
n

That is, zg cuts off future trades that involve gocds in the
date-event pair (t+1,s) and in its successors.

By examining the definition of Z;., one may conclude zg € YA

1
f‘.
By our construction, zs{m' = either zim' or 0 for m' & M-{m}.

In particular, this implies rm,(p,zs) >0 form' € M={m}. Now since
me M?.(p) , We must have

(d) r (p,zy) € 0.

But, by our construction,

ra(Pizg) = Zpizzi‘ = p(zim) - Z piZi.
iem iem

(e) now follows from (d) since p(%i m) =0.

In the above paragrarh, we established that the firm must be
making a non-negative profit from trading in certain collections (ms)
of futures contracts that are availzble in the market m. We first
showed that the agent always has the freedom of canceling all of his
trades in any of these collections (by moving from z to zs) . We then
argued that, since these cancellations cannot raise profits at m (or
our hypothesis m e M?.(p) would be violated), our non-negative profit
condition (c) follows. One may similarly argue that the profit from

trading in current goods at m must also be non-negative since these

trades can also be deleted. Therefore,
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e Y ptztyo,
lem

c
where mc = m- U mg denotes the sub-collection of contracts for

seSt+1
curent goods.

But, since the aggregate profit at m is zero, i.e. Zpiz1 = 0, (b)
iem
follows from (c) and (e).

G. E.D.

The following corollary puts the above result into a form that is
useful in establishing the desired continuity of supply. The

corollary follows from repeated applications of lemma 6. 3.

6.4 Corollary. If prices pe Rfl satisfy the no arbitrage
condition, then
(a) there is an optimal trade plan z e Qf(p'q) such that zim = 0 for
0
me Mf.(p)
(b) there is a trade plan z € Z' such that zlm= 0 form € Mg(p) and

f
+
r‘m(p,z) >0 forme Mf(p) .

Proof of Corollary 6.4.
(Proof of a). Clearly, assumptions VIII(i) and (v) imply that
Ge(p,a) = 0. Let 20 € Qup,q).

Order the collection of markets in Zg(p) = { My Moy oo } to be such
that t.' ¢t ¢ ..., vherem, = I(tk'sk).
We recursively define a sequence { X } by letting zk+1 (ko)

denote the trade plan that results from applying lemma 6.3 to the
market mk_'_1 and the trade plan zk. By induction, one may verify that

for each k:
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(c) z € Z}.

(d) zk:mtz 0O fort=1, ... , k
and

(e) r(p,zk) = r(p,zo).

If { My Myy ees } is finite, then let 2z, denote the last plan Z, -
Ir { My Moy oo } is infinite, then the set { zk } is also infinite.
By the Tychonoff theorem, Z;. is compact. Hence, there is a limit
pint, call it z,, of the sequence { zk }.

In either of the above two cases, one may verify that (¢) - (e) imply
that z, satisfies (a). (The optimality of 2z, i.e. z4 € Qr(p.q) ,
follows from z0 Qf(p,q) ' Zg € Z;., and r(p,z,) = r(p,zo).)

(Proof of b). We can establish (b) by the same inductive process
described sbove. The only difference in the two proofs being the
choice of the initial allocation z° € Z,.

For each m & M"t'.(p) , there is, by definition, a trade plan z € Z;.
such that r(p.zm) > 0 and rm(p,zm) > 0. Fix any collection of

positive scalars (Am) such that Z AN.o=1.

meM*(p) "
et zg= 2\ _z. £
meM?, (p) .
Clearly, r(p,zo) > 0 and rm(p,zo) >0 forme Mf(p) .

tne may verify that assumption VIII(i) implies 20

|
€ Zf.

If one now follows the procedure used to establish (a), the
resulting limiting allocation z, will satisfy the requirements of part

(b) of ouw corollary.

6.5 Lemma. For each firm f e F, Q.(p,q) 1s upper hemi-continuwous
at each point (p,q) € TI such that p satisfies the no arbitrage

condition,
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Proof of Lemmz 6.5.

Consider a sequence { ((p(k),q(k),(z(k))) } in H-ZE. such that
z(k) € Qp((p(k) ,q(k)) for each k, ((p(k),q(k),z(k)) — ((p,q),2), and
p satisfies the no arbitrage condition. To establish the desired
continuity property, we must show z € Qf(p,q) .

As in the proof of lemma 6.2, it immediately follows that z ZE.
and r(p,z) % 0. Hence, if z € Qp(p,q), then z must not be optimal,
i.e.

(&) ve(r(p,2z)) < velre(p)).

By corollary 6.4, there exists a z; € Qr(p.q) such that zim = 0 for

m e M?(p) and there is a z, € Z; such that r (p,z;) > 0 form e M;(p)
and z,im= 0 form e M?(p) .

Since z, is optimal, rf.(p) = r(p.zo).

Hence, (a) implies

(b) vf(r(p.z)) < vf(r(p,zo)).

By assumption V(ii), r(p,s) is continuwus in z. Hence, (b) together
with assumption VIII(v) implies

(e) velr(p,z)) < vr(r(p.zz)),

where z, =>‘ZO + (1-)‘)21 for some positive A< 1.

By assumption VIII(i), z, € z;..

M so, by the definitions of zy and Zq

(d) rn(p,z,) > 0 form € M}'.(p) and Zyim= 0 for m € M?(p) .

Again, by assumption VIII(v),

(e) ve(r(p,z)) < vf(r(p.zzth)) for large t,

where Mtz { (t',s) eM :t" <Ct}.

Fix any such t.

For large k, (d) implies
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r( p(k) ,zlet) »0

while (e) and assumption VIII(v) imply

Vr(r(p(k) »z(K)) < vf(r(p(k) '22=Mt))‘

Taken together, the above two inequalities demonstrate that z2:Mt
dominates z(k), in contradiction to our hypothesis

z(k) € Qf(p(k) ,q(k)).

Q.E.D.

As previously mentioned, the main difficulty in establishing the
general existence of equilibria lies in guaranteeing the above
continuity of supply. Since the remainder of ow proof is a
straightforward extension the techniques employed in section 3, we
merely highlight the necessary modifications of our arguments.
Specifically, we supply statements (without proofs) of three lemmas,
two concerning agents demand and income and one concerning the
existence of equilibria for truncated economies. These lemmas, along
with our results on the continuity of supply, are then employed to
establish of the general existence of competitive equilibria

(proposition 6.9).

6.6 Lemma. For a € A, agent a's demand correspondence, Da(o,o) is

M
upper hemi-continwus at each point ((p,q),( ym)) € 1'1"‘R+ 4 such that

Ia,m(p) < Yo form e Ma.

Since considering production enlarges the set of allocation
schemes that clear the markets, owr irreducibility assumption IV must

be strengthened.
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Assunption IV¥* (Irreducibility of each market).
Given any market m € M, any partition of Am into tw non-empty subsets
B0 and B1 and given any allocation scheme (xa) € X such that for some

produe cion scheme (zf.) e 2, Z x. ¢ Z z. (i.e. the merket m
a f
aeA feF
clears):

There is an agent b & B0 and allocations (za)

aeB1 that satisfy;

zZ, € x; and z, = zim for a € By and xy - Z Z, (>)b Xy,
E-EB1
6.7 Lemma. Given any limit point, (p,q.(xa) o zf) ,(wa)), of a
convergent sequence of competitive allocations,
{(p(k) ,q(k) ,(xa(k)),(zf(k)),(wa(k))) }, and given any market m € M; 1if

the merket m clears at the limiting allocation, i.e. & x.< I z;

ael feF
for i € m, then each agent a ¢ Am has income in the merket m &t the

limiting prices, i.e. I_ (p) < O.
a,m

In the next lemma, we assert the existence of equilibria for each
of our finite sub-economies. MNote that in order to guarantee the
positivity of income, we give agents additional endownents of shares
28 well as endownents of commodity contracts. Thus, in each of the
"equilibria", share markets, like commodity markets, only come close

to clearing.

6.8 Lemma. Given any finite collection of markets M'; there is a
competitive allocation, (p,q,( xa) '(zf) '("a)) , in which all of the
agents and firms receive a small income transfer and all of the
markets in M' almost clear, Specifically, given any € > 0, if we

replace ZE. with Z}.+(€,e,...) for f € F, then there is a competitive
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~&locatian (p.q.(xa) ,(zf.) .(wa)) such that
0¢ Yam S E for e A and alme M, where (ya,m) denotes the income

transfer scheme to agent a e A

Z Xja'$ z}.+6formeM' and all ie m,
aeA feF

m
and

2 W .1 sg formeM ed al fe k.
A @

6.9 Proposition. Under assumptions I - III, IV¥, V, and

VII - VIII, there exists a competitive equilibrium.

Proof of Proposition 6.9.

Fix a sequence of collections of markets { M(k) } such that each
M(k) is a finite subset of M, M(k) C M(k+1) for all k, and UM(k) = M.
Mlso, fix a sequence of positive scalars { €(k) } such “
that €(k) — 0.

Let (p(k),q(k) ,( X (k) ,(z,(K),(w (K))) be the competitive
allocation associated with M(k) and €(k), as specified in lemma 6. 8.
That is, for the k'th equilibrium
(a) 0 g Yo m(K € E(k) for a€ A and all m ¢ My

where (ya‘m (k)) denotes the income transfer scheme to agent a
(b) 7} is replaced by Zh+ (€ (K) ,€(K) ,...)

(c) Z x;< Z z;+e(k) for me M(k) and all iem

N

aeh aeh
() S F ¢1™ gk for f€F and all m e M(K) .

a
SinCe each allocation (pCk) ,q( k) ,( x,(K)) ,(zp(K) - (Kk)) ,(w (K))) is

contained in TI» X~Z xW, which is compact by the Tychonoff theorenm,

there is a point (p,q,( x,) 1 (Z¢) ,(wa)) € TIxX~Z+~W and a subsequence

of allocations such that
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(e) (p(k),q(k) -(Xa(k)).(za(k)).(wa(k) )) = (p,q,( Xy (2zp) (W)
By careful inspection, one may verify that the merket clearing
conditions (c) imply that prices p(k) satisfy the no arbitrage
condition for £(k) sufficiently smzall. The no arbitrage condition if
clearly preserved in the limit by the price system p.
Since g(k) —> 0, (a), (c), (d) and (e) imply
() ym,a= 0 for a€ A and almeM,
vhere ya,m = lim ya,m(k) .
(g) Z Xq < Ze
ael ffel"
(h) 3~ Wi* ¢ 1for feF and all m e M.
acA
By lemm2 6.7, (e) and (g) imply
(i) Ia,m(p) <0 for ae A and 2ll m e M,.
By lemma 6.6, (e) and (i) imply
(x,,w,) € D_((p,q),(0)) for ae A,
By definition 6.1(ii) of competitive equilibria, it only remains to
verify
()] z, € Qf(p,Q) for f e F.
Clearly, since £(k) — 0, zf(k)-(E(k) velk) ,...) € ZE. and
r( p( k) ,zf(k))) > 0 for all k imply z, € ZE. and r(p,zf) > 0.

/d

Therefore, in order establish (j), we need only show that z_. generates

f
the optimal revenue stream, i.e.

(K) ve(r(p,zp)) % vplre(p)).

For each k, since the feasibility set of firm f is perturbed by adding
positive quantities (E(k)) of contracts and since zf(k) is firm f's
optimal trade plan in the k'th equilibria, assumption VIII(v) implies
Vr(rf(p(k))) $ vr(r(p(k) .zf(k))).

But, since by lemmz 6.5, Qf(c) is upper hemi-continwus at (p,q), (e)
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impl ies rr(p) = lim rf(p(k)).

The above two expressions, together with (e) and assumption VIII(v),
imply Vr(r(p,zf)) = lim vf(r(p(k) ,zf(k))) > lim vf(rf.(p(k)))

= velre(p)).
Q.E.D.

N
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