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Abstract
This thesis work is grounded primarily in the goal of leveraging the potent yet fine tunable
nature of an electrochemical driving force to tackle key issues in augmenting the chemical
recyclability of plastics, namely the synthesis of plastic monomers and the deconstruction
of existing plastics. Increasing plastic circularity will be crucial in decarbonizing the 400
Mt of plastic generated annually and the associated climate and environmental effects that
result from producing plastics on this scale. While the key chemical reaction involved in
the synthesis of plastics is the polymerization of monomers, the goal of this thesis is to
demonstrate that electrochemistry – both experimental and computational – has a role to
play in the synthesis of novel plastic monomers in addition to allowing for new potential
decomposition pathways for the plastics in use today. This thesis can be broken down
into three parts: (1) the experimental demonstration of sustainable synthesis of circular
monomers using electrochemistry (2) the computational study of organic redox mediators
with the potential for polystyrene deconstruction(3) and the implementation of data driven
models to improve the throughput of computational screening.
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Chapter 1

Introduction

1.1 Climate Change and Decarbonization

The threat of our society’s dependence on fossil fuels has never been so imminent, with

rising temperatures and extreme weather events becoming more commonplace due to ever-

increasing amounts of anthropogenic carbon dioxide (CO2). As a result, society is in a race

to decarbonize all sectors of our economy, with a common goal being net-zero emissions by

2050. This will be difficult, as every aspect of life results in the emissions of green house gases.

Most emitting processes can be placed into one of five categories: how we make things (mate-

rials), electricity generation and consumption, growing things (agriculture), transportation,

and keeping and cool and staying warm [15]. Each category roughly accounts for 10-30 % of

the 51 billion tons of CO2 equivalents that we emit as a planet each year. However, the role

of each sector in total emissions has historically received varying attention. For example,

there have been great strides forward in the development of technologies that will allow for

the decarbonization of electricity generation, namely wind and solar power. While electricity

generated from these renewable sources still has issues pertaining to their intermittency and

thus inability to always meet baseload electricity demand, research in the area of energy

storage is alleviating these concerns. Additionally, because the grid is becoming increas-

ingly carbon free, electrification has developed as a robust approach to decarbonizing many

processes and products. A clear example is the electrification of passenger vehicles where

Tesla has dominated the private market and is only aided by the recent Inflation Reduction
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Act which offers thousands of dollars in subsidies toward electric vehicles that source their

battery materials and produce their batteries in the US.

Electricity generation and transportation are important, but one area that has historically

received less attention in the context of decarbonization is the materials sector. The materials

sector can be broken up into the production of cement, steel, plastics, and other petrochem-

icals chemicals, which together account for 31% of our yearly emissions. Unlike, electricity

and transportation, technological advances are still required to allow for the carbon free pro-

duction of these materials. Cement and steel production release CO2 both stoichiometrically

due to certain chemical reactions and due to elevated temperatures that are achieved from

burning fossil fuels. Promising start-ups (Sublime Systems, Boston Metal) have developed

novel approaches for the production of cement and steel, often utilizing electrification for

either the production of process heat through Joule heating or the facilitation of chemical

reactions at an electrode. Plastics suffer from similar issues as cement and steel, with emis-

sions projected to increase drastically in the coming decades. Like cement and steel, fossil

fuels are burned to produce the necessary heat and energy for their synthesis – this accounts

for a majority of their associated emissions. However, there are some key differences per-

taining to plastics – as they are made now, they require fossil fuel carbon feedstocks and

emissions after post consumer use are also of great concern. This thesis focuses on developing

experimental and computational tools that can help address some of the issues associated

with plastics, including both their production and their deconstruction after consumer use.

The tools used in this thesis are those of electrochemistry and computational chemistry.

Electrochemistry serves a powerful yet fine-tunable driving force for that can be used to

synthesize novel plastics, and computational chemistry can aid in developing new materials

that can leverage clean electricity to deconstruct some of the common plastics used today.

1.2 The Plastics Problem and Circularity

As a society, humans have produced nearly 9 gigatonnes (Gt) of plastic since plastic produc-

tion began to accelerate in the 1950s [16]. Currently, we produce approximately 400 Mt of

plastic resin annually with the most common plastics being polyethylene (PE), polypropy-
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lene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene

(PS). From packaging, to containers, to textiles – these materials are everywhere and have

become pervasive in our society because of their useful properties and low cost. The issues

come when we consider how they are produced and what happens to these materials after

consumer use. Traditional plastics are synthesized from petroleum and its derivatives. For

example, polyolefins are made from ethylene and propylene, with PET and polystyrene com-

ing from benzene, toluene, and xylene (BTX) derivatives. Upon first considerations, plastics

may seem like a carbon sink because the carbon is stored in the material, but their synthesis

requires non-negligible amounts of heat and energy that is obtained by burning fossil fuels.

Life-cycle assessments often quote that the majority of emissions from plastics come from

their production.

While plastic production emits large amounts of CO2, one cannot ignore detrimental

effects that plastics bring about after they serve their purpose. Plastic is most often used

in a linear fashion meaning that plastic products are discarded after serving their primary

purpose, any recycling done is only for a small amount of the total plastic produced (<10%).

Nearly half of all plastic produced has ended up in landfills, an additional 10% has been in-

cinerated for cheap process heat, resulting in additional emissions.[16] Even when in landfills

bacteria can degrade these materials into potent greenhouse gases such as methane, meaning

emissions continue after consumer use. It is clear that society needs to move away from the

traditional linear way in which it uses plastics and move toward plastic circularity. Circu-

larity means using plastics (or any resource) more efficiently by keeping the material in use

for as long as possible, getting the most we can from the material during its use, and then

recovering it to make new products. This could imply scaling up the traditional mechanical

recycling that we use now, but this has key limitations. Mechanical recycling involves me-

chanically degrading products into fine particles that can be processes into pellets of plastic

resin. These pellets are often of much lower quality than the original plastic fed into the

recycling process, meaning that the products that they can go on to make are quite limited.

As a result, materials are typically only mechanically recycled once before ultimately ending

up in a landfill. Furthermore, there is a severe limitation on what types of materials can

be currently mechanically recycled. Most municipalities are only capable of mechanically
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recycling PET, PE, and some PP meaning a large fraction of materials only have the option

of being incinerated or going to a landfill. Chemical recycling is a new paradigm for recycling

that is under extensive research and offers many benefits over more traditional mechanical

recycling.

Chemical recycling comes in different forms, but at its core chemically recycling a poly-

mer implies that the bonds in the polymer backbone are being broken, resulting in smaller

molecules.

Figure 1-1: Scheme of closed loop recy-

cling.

One form of chemical recycling is referred to

as closed loop chemical recycling – in this case

plastics would be depolymerized back into their

constituent monomers via some process and then

these monomers could then be polymerized to

make a product of a similar quality to the original

plastic, something not possible with mechanical

recycling [37]. In this paradigm, the quantity of

and emissions associated with virgin plastic resin

synthesized would be greatly diminished. As one

might expect, this property does not belong to every plastic, especially those most commonly

used today (PE, PP, PET, PS). Thus, we will need to design new classes of plastics if we are to

adopt this paradigm. A key metric of a polymer that can give insight into whether not it will

undergo closed loop chemical recycling is its ceiling temperature (Tc), the ceiling temperature

is defined as the temperature at which the monomer and polymer are in equilibrium and

thus have the same Gibbs free energy(�G).[6, 50] In most cases, below Tc the monomer

state is favored and above Tc polymerization is favorable, but this depends on the individual

enthalpy and entropy of polymerization as we recall that

�G = �H � T�S (1.1)

Polymers with a medium Tc of 200 oC – 400 oC , typically for C–X(heteroatom) back-

boned polymers, can be redesigned to be intrinsically circular polymers (iCPs) or chemically
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re/up-cycled through engineering reaction/processing conditions and/or catalytic processes.

ICPs are polymers that favor the monomer state at room temperature, with a kinetic bar-

rier keeping them in the polymer state. This with the appropriate catalyst they can be

depolymerized with much greater ease than traditional plastics [50]. One important class of

medium TcC-X backboned monomers are lactones, which can be polymerized into polyesters

via ring opening polymerization (ROP). Great work has been done in designing lactones

monomers – by varying their structure polymers with different properties can be synthesized

[59, 18, 49, 48]. This is important because the property requirements of plastics are com-

pletely application specific, and thus a wide range of polymer properties will be required if

iCPs are to replace traditionally used plastics. A detailed discussion of lactones for circularity

can be found in 1.3.

Figure 1-2: Scheme of open loop recycling

and chemical upcycling.

In contrast to iCPs, traditional plastics have

ceiling temperature such as 610 oC for PE and

395 oC for PS, making it difficult to deconstruct

these materials into their constituent polymers in

a controlled fashion. As a result, these plastics

are more amenable to a second kind of plastic

circularity – open loop circularity. Open loop re-

cycling is defined as the deconstruction of waste

plastics into molecular intermediates that are

manufactured into products that differ from the

starting polymer feedstock [37]. In the case that

the manufactured product is of higher value than

the starting plastic, we refer to this as chemical

upcycling. Open loop thermal processes like gasi-

fication and pyrolysis are typically used at scale

today – these produce simpler products that will likely end up as fuels or chemicals, with

some fraction going to making new polymers. Catalytic technologies could allow for plastic

upcycling of materials beyond polyolefins and polyesters, which are the polymer classes of

primary focus to date. Developing new methods for recycling polymers that are not recy-
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clable today is a key step toward circularity. Furthermore, due to the scale at which plastics

are produced and used, it is likely that multiple upcycling processes will end up being used,

even for a given type a plastic. For example, for PS there are thermal, photocatalytic,

and electrochemical approaches that are currently under investigation. The details of PS

deconstruction are discussed in more detail in 1.5

1.3 Lactones

Lactones are a key class of molecules that have the potential to serve as scalable iCPs for

closed loop circularity.[59] These cyclic esters, can be polymerized via ring opening poly-

merization into polyesters whose properties are dictated by the structure of the starting

monomer. Various lactone derivatives have been shown to serve as good monomers for

synthesizing iCPs. Often the ring size and substitution are altered to augment the polymer-

ization thermodynamics and kinetics, with the inclusion of fused rings also being a common

tactic. [47, 6, 49] If this class of molecule is to be used at scale to replace traditional plastics,

it is important to understand how they are typically synthesized today. In an industrial set-

ting, lactones can be synthesized from cycloalkanones via the Bayer-Villiger(BV) reaction,

with one of the most common lactones being ✏-caprolactone synthesized from cyclohexanone

and peroxy-acetic acid.

The reaction proceeds by first activating the ketone oxygen in an acidic manner, followed

by a nucleophilic attack from the oxygen on the peroxy group, forming the Criegee interme-

diate which facilitates the migration of an R group and thus forming the lactone product

(Figure 1-3). The BV reaction can also be facilitated catalytically, for example in the homo-

geneous case Pt complexes have found great success using hydrogen peroxide. They operate

via mechanisms as show in Figure 1-4. Again, one can see that the ketone is activated in a

Lewis acidic manor, after which a nucleophilic Pt-OOH oxygen species attacks the carbonyl

carbon forming a Criegee like intermediate. Lastly, the BV reaction has also been shown to

run heterogeneously on materials such as �-Sn zeolites. In this context, the Sn active sites

are able to form nucleophilic oxygen and activate the ketone oxygen to allow the formation

of a Criegee like intermediate. While these catalytic materials have shown great success, at
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Figure 1-3: a. The overall Baeyer-Villiger reaction using peroxyacids. Cyclohexanone is
transformed into ✏-caprolactone. b. The mechanism of the Baeyer-Villiger reaction, showing
3 crucial steps that facilitate the reaction.RM = migrating group.

an industrial scale peroxyacids are still the oxidants of choice, but there are crucial issues

with the current process that will only be exacerbated if the scale of lactone production is

to increase to meet the future projected demand of circular plastics. The drawbacks mainly

pertain to requirement of a strong oxidant such as peroxy-acids, these chemicals pose acute

safety hazards as they are extremely reactive, to the point of being an explosion hazard.

Additionally, the process generates carboxylic acids as low value stoichiometric byproducts

that need to be separated and regenerated into their peroxy acid counterparts using H2O2,

which is generated via the anthroquinone process in an industrial setting. Lactone synthesis

would benefit from the ability to use a safer oxidative driving force that maintains the same

potency and a more benign oxygen atom source, both of these issues can be addressed by

implementing an electrochemical approach to lactone synthesis that uses water as an oxygen

atom source.

1.4 Electrochemistry for Chemical Synthesis

Electrochemical organic synthesis is the process of facilitating a chemical reaction using an

applied external potential to transfer electrons to or from an organic molecule. As previ-

ously discussed, one of the key benefits of this approach is its potential use of an increasingly
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Figure 1-4: The BV reaction mechanism using Pt homogeneous complexes.

carbon free electricity grid, resulting in reduced process emissions. In general, an electron

transfer can either be done directly at an electrode or indirectly by using another type of

molecule called a redox mediator (Figure 1-5). Both approaches are explored in this thesis.

In direct electrochemical oxidation, the molecule undergoes transport to an electrode (anode

for oxidation and cathode for reduction) where the molecule experiences a potential drop.

The applied voltage alters the energy states of the electrode material until it is thermody-

namically favorable for an electron in the highest occupied molecular orbital (HOMO) of the

organic molecule to transfer to the lowest occupied molecular orbital (LUMO) of the elec-

trode material. There are instances where a direct electron transfer is difficult, resulting in

a high over potential (⌘). The over potential is defined as the difference between the applied

potential and the equilibrium potential Eo, where the equilibrium potential is defined as

E
o = �

�G
o

nF
(1.2)

here n is the number of electrons transferred during the reaction, F is Faraday’s con-

stant and �G
o is the Gibbs free energy of the reaction. With this definition, we can say

⌘ = Eapp�E
o. When ⌘ is large, one can try to use a redox mediator as an alternative, which

can be one of many classes or molecules, ranging from organics to metal centered complexes.

During mediated oxidation, the redox mediator is first oxidized directly at the electrode,

producing an activate form of the mediator - a radical or radical cation, for example. The

oxidized mediator then goes on to chemically react with the substrate of interest, produc-
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ing the desired oxidized substrate and regenerating the mediator. In addition to reduced

overpotentials, redox mediators are also used because they can facilitate a wide variety of

chemistries. However, mediators make the system more complex and can suffer from deacti-

vation mechanisms such as dimerization. For this reason, the choice to use a redox mediator

should be dependent on the chemistry at hand.

Figure 1-5: a. Direct electrochemical organic oxidation. b. Mediated electrochemical organic
oxidation. [65]

1.4.1 Water as an Oxygen Atom Source

One of the most widely studied electrochemical reactants is water, primarily for its use as

a source of hydrogen and oxygen through water electrolysis or in the context of fuel cells,

where hydrogen and oxygen can react to form water and produce energy. For this reason,

there has been a large body of work on the development of water oxidation electrocatalysts.

For water oxidation, the typical reaction is

2H2O ��! O2 + 4H+ + 4 e� (1.3)

where water is oxidized to molecular oxygen via a 4 electron process. Leveraging this

chemistry, an approach to electrifying chemical reactions that transfer oxygen to an organic

molecule (epoxidation, lactonization) uses water as the oxygen atom source. This is in con-

trast to the thermochemical context, where O2 is more likely to be used. This is because

the oxidation of water is often a thermodynamically unfavorable reaction at room tempera-

ture, where it would take immensely high temperatures to shift the equilibrium toward the

oxidized product. In contrast, potentials on the order of 1–2 volts are typically all that are

required to facilitate water oxidation, making electrochemistry the clear tool to use when
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using water as the oxygen atom source.

R + H2O ��! RO+H2

R +O2 ��! RO
(1.4)

Water has various benefits over oxidation with molecular oxygen or other chemical oxi-

dants, like hydrogen peroxide or peroxy acids. First, water tends to be safer, peroxides and

peroxy acids are known to be explosive in many contexts and O2 can also pose flammability

issues when it is in the presence of large amounts of organic material. Additionally, if the

process is run in the liquid phase, water allows for a higher limiting current density because

one is able to achieve higher concentrations. The limiting current is given by,

ilim =
DC

�
(1.5)

where D is the diffusion coefficient, C is the concentration, and � is the boundary layer

in the system.

1.5 Polystyrene Upcycling

As previously mentioned, traditional commodity plastics used today are not as amenable

to closed loop chemical circularity as other classes of molecules, such as lactones. For this

reason, commodity chemicals are instead thought of as feedstocks for chemical upcycling

processes, where the materials can be converted into more valuable products. Because of

the differing chemical backbones of PE, PP, PET, and PS, it is likely that various polymer-

specific upcycling technologies will need to be developed [23]. A plastic of particular interest

is polystyrene (PS), PS is produced on the order of 15 mega tonnes (MT) per year still

making it a large scale product, although PE, PP, and PET are all made on larger scales.

One can find it in materials such as styrofoam, plastic utensils, and more. Unlike the more

inert PE and PP, due to the presence of periodic aromatic groups on the polymer backbone,

PS is amenable to functionalization and degradation via hydrogen atom transfer (HAT)
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reactions. HAT reactions can generally be classified as the following reaction class,

R ��! R• +H• (1.6)

where a proton and electron are removed from a molecule in the form of a hydrogen atom.

Notably, redox mediators have been previously shown to be able to facilitate these HAT

reactions, typically in the presence of molecular oxygen, where the organic radical reacts with

O2 to eventually form ketones and alcohols [25, 70]. Yan and coworkers used a common HAT

redox mediator – N-hydroxyphthalimide (NHPI) – to deconstruct styrene into processable

intermediates [69]. They found that after H atom abstraction and reaction with O2 a C-C

bond scission mechanism occurred that resulted in the production of smaller oxygenated

molecules. Their results demonstrated that mediated electrochemistry is a viable tool for

PS deconstruction, but there were some still some key issues that needed to be addressed.

A significant portion of the NHPI mediator was lost during the reaction, resulting in NHPI

oligomerization, and thus inhibiting long term electrolysis. This can be mitigated through

a better matching of the redox mediator energy to the C-H at hand. Typically, the energy

of a molecule can be tuned via functionalization, but in the case of NHPI, only a handful

of accessible derivatives exists. Recently, a new class of mediators, called N-ammonium

ylides were demonstrated to facilitate HAT reactions with the key property of being easily

functionalizable [46]. This synthetic accessibility opens up the chance to use valuable tools

in the realm of high throughput computational screening that were previously restricted.

In short, there is now the opportunity to design ylide mediators based on their calculated

energetics – this concept is discussed in more detail in chapter 3.

1.6 Rapid Discovery of Electro-active Molecules

The computational screening tools used to design HAT redox mediators in this thesis have

become common place in other fields, such as computational drug discovery. In those fields,

the typical work flow involves screening a library of preselected molecular structures by cal-

culating key properties specific to their application. These properties include solubility, free

energy, docking energy, etc. Notably, the structures in drug discovery tend to be small neu-
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tral molecules (< 10 atoms), which makes them very amenable to the rapid calculation of

their properties. The tools used to obtain these molecular properties typically include molec-

ular dynamics, wave function techniques, and density functional theory (DFT). DFT tends

to be one of the more widely used tools for calculating properties because of its relatively

good accuracy and speed, and for that reason it is the primary computational tool used in

this thesis.

DFT attempts to solve the many body Schrödinger equation by attempting to solve for

the electron density ⇢e. The time dependent Schrödinger equation is given by

ih̄
@ (r, t)

@t
= Ĥ (r, t) (1.7)

where  is the wave function, and Ĥ is the Hamiltonian, which is system dependent and

accounts for all the forms of energy in the system. For molecules, the Hamiltonian is given

by

Ĥ = T̂N(R) + T̂e(r) + Ve,N(r, R) + VNN(R) + Vee(r) (1.8)

T̂N and T̂e are the nuclear and electronic kinetic energy, while Ve,N , VNN , and Vee are

the electron-nuclear, nuclear, and electronic coulombic attraction terms. Wave function

methods, such as Hartree-Fock, Configuration Interaction (CI), and coupled-cluster singles

and doubles (CCSD) attempt to solve for the wave function directly by expressing the wave

function as a series of atom centered basis functions, which are typically Gaussian in nature.

DFT instead relies on the Hohenberg-Kohn theorems, which state that the electron density

⇢e contains all the information necessary to obtain the ground state properties of a molecule.

Thus, in DFT the energy given by 1.8 is written as

E[⇢] = T [⇢] + EeN [⇢] + Eee[⇢] (1.9)

here T [⇢] and Eee[⇢] are the multielectron interacting kinetic energy and coulombic in-

teraction functional, meaning they map electron density – a function of position – to energy.

For most systems, analytical expressions for these terms must be approximated and errors

can become quite large. For this reason, the Kohn-Sham formalism is typically applied.
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This formalism considers a non-interacting system of particles that is identical to the orig-

inal. In this case we are able to model the non-interacting kinetic and coulombic terms

exactly and the energy associated with particle interaction is lumped into a term called the

exchange-correlation functional. Written out, the energy becomes:

E[⇢] = Tni[⇢] + Eni,eN [⇢] + Eni,ee[⇢] + Exc[⇢] (1.10)

Here, "ni" refers to non-interacting and Exc[⇢] is the exchange-correlation energy func-

tional. In principle, equation 1.10 is exact, but in practice the expression for Exc[⇢] is not

known (the other terms are) and must be approximated. Countless approximation for this

functional have been developed with ranging accuracy depending on the property. Often,

they are organized on "Jacob’s Ladder" as is shown in Figure 1-6 where the more accurate

functionals tend to include more information on the density such as information about its

derivative and second derivative. Some famous functionals include the Minnesota function-

als, B3LYP, PBE, etc. Depending on the chosen functional, DFT calculations can scale

anywhere from O(N3) - O(N4) where N is the number of basis set functions used. In con-

trast, the most accurate wave function techniques scale as O(N7), restricting them to very

small molecules (<10 atoms). It is often the obligation of the researcher to verify which func-

tional is suitable for the problem at hand. For more information on DFT and computational

chemistry, the reader can refer to the textbook by Cramer [8].

Figure 1-7: Virtual high throughput

screening workflow.

High throughput computational screening

aims to accelerating the discovery of materials

for a given purpose when compared to the man-

ual way in which materials have typically been

discovered by scientist. The typical workflow is

found in Figure 1-7. Structures are first exam-

ined with the most rapid techniques, either ma-

chine learning models (1.6.1) or techniques like

DFT. The number of candidates is then down

selected based on these results, and the smaller set is examined with more accurate but time
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Figure 1-6: Jacobs ladder of DFT functionals. By including more and more information
about the electron density into the expression for Exc[⇢], higher accuracy can typically be
obtained.

intensive experimental techniques. The workflow is considered successful if it can produce

real working candidates with performance that is better than what a human could produce.

This approach has been generally applied extensively in the drug discovery field, as previ-

ously discussed, but only a handful of times in electrochemistry contexts. When it is used to

discover and design electroactive material, it has typically been in the context of designing

redox couples for redox flow batteries – an energy storage technology. [72, 58, 38, 5] Here,

properties that of interest include the redox potential and solubility, among others. In elec-

trochemical contexts, species can be charged or exist in their radical state, which can make

the calculations slightly less accurate because consideration of the solvent becomes more

important. When DFT is used, typically what is known as an implicit solvation technique

is used to model the solvation environment. In this case, the structure of the solvent is

not considered, and it is modeled as a continuous dielectric medium. For many properties,

this approximation is able to recover sufficient accuracy, but if explicit bonding with solvent

molecules is important for the property, often large errors are observed. Computational

screening of potential RFB redox couple has shown success because the properties of each

redox couple can essentially be examined in isolation. If one were to use the same techniques

to examine HAT redox mediators, the property of each candidate would need to be taken

into account with respect to the substrate of interests. Each time the substrate changes,
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the "optimal" mediator should also change, effectively resulting in a moving target. This

concept is discussed in more detail in chapter 3.

1.6.1 Machine Learning for the acceleration of high throughput

computational screening

While DFT is already a rapid technique, when molecular libraries become large (>107

molecules), the time and hardware required to screen the entire library can become lim-

iting. In the last 5 years, machine learning (ML) has proved to be a valuable technique for

accelerating the calculation of many material properties. In DFT, we have a physics based

model that is able to map from chemical structure to the properties we desire (section 1.6),

ML instead attempts to use large quantities of data to learn a data driven model that is

able to rapidly map chemical structures to a given set of properties such as formation ener-

gies or solvation free energies [63, 64]. In the context of vHTP, ML models can be used to

downselect a large library before DFT calculations are performed.

Data

ML techniques are usually broken up into three classes: supervised learning, unsupervised

learning, and reinforcement learning. The most common technique used for predicting molec-

ular properties is supervised learning, in this case the goal is to build a model by using a

set of data that has labels associated with the output. Typically, a ML model has many

parameters that need to be assigned a value and this is typically done through a process

called gradient descent where the labeled data are used to iteratively update the parame-

ters until some local (ideally also global) optimum is reached. This means the quality and

quantity of data is immensely important. The amount of data dictates how complex the

model architecture can be. With more parameters, more data is needed to avoid over fitting.

For some of the most complex model architectures, typically dataset sizes on the order of

105 points are sufficient to justify their use. The quality of the data is also very crucial.

Typically, experimental data is considered to be among the most reliable, however for many

molecular properties this is not available is large quantities as it requires extensive manual
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labor to collect. For this reason, computational data sets are often used to train ML models.

Large datasets can be generated with relative ease, the main issue in this case is that QM

techniques often have larger errors associated with them that can sometimes be systematic.

Having a better data set is usually more important than the functional form of the model –

it is common that very similar results can be achieved with different models [57].

Model Architectures

A typical machine learning model used for supervised learning will map a vector to a scalar

or vector output. There are many forms of models that can do this, in the simplest case

linear regression can achieve this. The issue is that due to its simplicity, linear regression is

often not able to map complex data sets and is thus limited in its use for molecular property

prediction. In order to increase the complexity of the model architecture, the models are

often made non-linear, with the most famous class of model being neural networks. A class

of models that has shown a lot of success recently have been graph convolutional neural

networks (GNNs). These models represent a given molecule as a graph, where the atoms

are nodes and bonds are edges. Each atom in the molecule is assigned a feature vector of

properties. This can be things like the atomic number, the number of attached hydrogens,

the hybridization, etc. Likewise, each bond is also assigned a bond feature vector with

information such as the degree of the bond or whether it is in a ring. Each of these atom

vectors is then updated with information from its neighbors in a predetermined number

of convolution steps, (usually 2-6). Finally, the atom vectors are aggregated into a single

molecular feature vector and then passed into a normal feed forward neural network to map

the vector to the target property (Figure 1-8).

While not physics-based, GNNs are inspired by the natural connectivity of molecules and

their highly non-linear nature has allowed them to successfully map large datasets to proper-

ties like free energies, solvation energies, and even reaction properties like rate constants. As

they have been described thus far, one draw back is that they only consider two-dimensional

connectivity with no incorporation of atomic positions, but there has been development in

including this information into newer types of GNNs.
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Figure 1-8: General scheme of how GNNs work.

Training

The general workflow of validating a machine learning model starts with splitting the avail-

able data set into a test and training set. This choice of train and test split is of utmost

importance, since it must allow for meaningful conclusions regarding the tasks the ML model

will be applied to. Often, this is done randomly. For each train-test split, the model needs

to be built using solely the training data. If a series of specific settings of the ML model

(so-called hyperparameters) are available, their influence on the performance should be eval-

uated by so-called nested cross validation. The best-performing model is selected based on

its average performance throughout nested cross validation, and with these settings, the ML

algorithm is subsequently trained.

In order to train, a loss function must be defined. This gives a sense of how accurate

the model predictions currently are and whether any parameter updates have resulted in

improvement. For a regression problem, a very common loss function is the least squares

error defined as

L = (Ytrue � Ypredicted)
2 (1.11)

Where Ypred is the output of our machine learning model Ypred = M(X; ✓). In order to

update the model parameters, ✓ we need to use gradient descent, moving in the direction
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opposite of the gradient of the loss function with respect to the model parameters. The way

we update our parameters then becomes

✓i+i = ✓i � �
@L

@✓i
(1.12)

where � is some step size parameter and i refers to the iteration step. After the parameters

are fit based on the training data, the performance of the best parameters ✓best are examined

with the test set. A good model will have similar accuracy on the test set as the training set.

A common error is to build a model that fits the training set very well but performs more

poorly on the test set, referred to as overfitting. In this case, the model will not generalize

well and should be used with caution.

1.7 Brief Overview of Thesis Work

This work is grounded primarily in the goal of leveraging the potent yet fine-tunable nature of

an electrochemical driving force to tackle key issues in augmenting the chemical recyclability

of plastics, namely the synthesis of plastic monomers and the deconstruction of existing

plastics. We demonstrate that electrochemistry – both experimental and computational –

have a role to play in the synthesis of novel plastic monomers, in addition to allowing for

new potential decomposition pathways for the plastics in use today.

This thesis can be broken down into three parts: (1) the experimental demonstration

of sustainable synthesis of circular monomers using electrochemistry (2) the computational

study of organic redox mediators with the potential for polystyrene deconstruction(3) and the

implementation of data driven models to improve the throughput of computational screening.

To summarize these parts:

1. Electrochemical synthesis of lactone monomers: Lactones can serve as excellent monomers

for circular plastics. Currently, they can typically be synthesized via the Bayer-Villiger

reaction, which transforms cyclic alkanones into their corresponding lactones. This pro-

cess suffers from drawbacks including the use of dangerous peroxyacids and in general

should be made more sustainable to operate on the scale needed to produce monomers
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that replace current plastics. We demonstrate that by using an applied electrochemical

potential, platinum catalysts, and water as the oxygen atom source, we can synthe-

size lactones with selectivity toward branched products with a Faradaic efficiency of

25%, complementing Baeyer-Villiger products. By collecting electrochemical kinetic

data, we propose a mechanism that can explain the observed selectivity of our system.

Additionally, we implement a computational chemistry method to better understand

the free energy landscape of our system and to investigate the polymerizability of our

lactone products, a key metric for their use as circular plastics.

2. Computational Design of organic H- atom transfer redox mediators: Complementary

to the synthesis of circular monomers, the deconstruction of current plastics is also

a key problem to tackle in the decarbonization of the plastics sector. Leveraging the

computational frameworks developed for in the study of the lactonization free energy

landscape, we try to address current issues with the electrochemical deconstruction of

polystyrene via H atom transfer pathways. Previous attempts at utilizing an organic

redox mediator to deconstruct plastics suffered from a mismatch of the bond dissoci-

ation energy of the redox mediator and the C-H bond that was to be activated in the

plastic. For this reason, we computationally screened tens of thousands of ylide redox

mediators by using DFT to calculate all the energies relevant to their catalytic cycle.

We were able to then identify and synthesize candidate structures with varying bond

dissociation energies to investigate how electrochemical performance changed as the

BDE of the redox mediator approached the BDE of the bond in the plastic.

3. Construction of data driven models to aid in the rapid prediction of electrochemical

properties to increase the throughput of screening electrochemical materials: The vir-

tual high throughput screening performed for project 2 still suffered from temporal

constraints and should be further accelerated for future screening. We tackled this is-

sue by constructing graph-based machine learning models using the DFT calculations

from (2) that were able to predict key thermodynamic properties of redox mediators.

Specifically, we constructed models that could simultaneously predict the redox po-

tential, bond dissociation energy, and deprotonation energy of a ylide redox mediator
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with reasonable accuracy for each property. A key consideration was that all DFT

calculations were performed in acetonitrile using a continuum solvation model. Vary-

ing solvent is an important parameter in electrochemistry, but performing additional

calculations for each structure in a new solvent quickly becomes intractable. For this

reason, we developed an additional graph-based machine learning model that was able

to map a solute and solvent to its solvation free energy. With this, we were able to

take a gas phase DFT calculation and rapidly get its energy in different solvents with

reasonable accuracy.
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Chapter 2

Electrochemical Synthesis of Lactones

using Water as the Oxygen Atom Source

The material in this chapter reproduced with little change with permission from Maalouf,

J. H., Jin, K., Yang, D., Limaye, A. M., & Manthiram, K. (2020). Kinetic Analysis of

Electrochemical Lactonization of Ketones Using Water as the Oxygen Atom Source. ACS

Catalysis, 10(10), 5750–5756. https://doi.org/10.1021/acscatal.0c00931

Abstract

Lactones serve as key synthetic intermediates for the large-scale production of several im-
portant chemicals, such as polymers, pharmaceuticals, and scents. Current thermochemical
methods for the formation of some lactones rely on molecular oxidants, which yield stoi-
chiometric side products that result in poor atom economy and impose safety hazards when
in contact with organic substrates. Electrochemical synthesis can alleviate these concerns
by exploiting applied potential to enable a sustainable and safe route for lactonization. In
this study, we investigated the mechanism of electrochemical lactone formation from cyclic
ketones. When using a platinum anode and cathode in acetonitrile with 10 M H2O and
400 mM cyclohexanone, we found that non-Baeyer-Villiger products, �-hexanolactone and
�-caprolactone, are formed with a total Faradaic efficiency of 20%. Isotope labeling ex-
periments support that water is the oxygen atom source for this reaction. In addition,
electrochemical kinetic data suggest a 1st order dependence on water at low water concen-
trations (<2 M H2O) and a 0th order dependence on the substrate, cyclohexanone. A Tafel
slope of 139 mV/decade was measured at 400 mM cyclohexanone and 10 M H2O, implying
a first electron transfer as the rate determining step. Literature proposed mechanisms for
similar transformations suggest an outer sphere pathway. However, based on the collected
electrochemical kinetic data, we propose the possibility that Pt reacts with water in an initial
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electron transfer that forms Pt-OH, which can subsequently react with the ketone substrate.
A subsequent electron transfer forms a ring opened carboxylic acid cation that can reclose
to form either of the observed five- or six-member ring lactone products.

2.1 Introduction

As mentioned previously, lactones are important functional motifs that are found in several

organic molecules with myriad applications across the chemical industry. For example, poly-

caprolactone, which finds use in human tissue scaffolds, long-term drug delivery systems,

microelectronics, and adhesives, can be made via ring-opening polymerization (ROP) of ✏-

caprolactone.[28] Importantly, �-lactones have also been shown to undergo ROP, with the for-

mation of �-valerolactone and ✏-caprolactone copolymers being previously demonstrated.[14]

Additionally, substituted 5 and 6 membered lactone moieties are often present in pharma-

ceutical molecules that have fungicidal, antibiotic, and anti-cancer properties[52, 26].

Lactones can be synthesized from several starting materials such as peroxyacids (via

intramolecular esterification), alkenes, and cyclic ketones. Cyclic ketones in particular are

an attractive option, as they are available on commodity chemical scales and only require

the net insertion of a single oxygen atom to produce a lactone product[36]. The Baeyer-

Villiger reaction, which inserts an oxygen atom between the more substituted alpha carbon

of a carbonyl, typically using a peroxy acid oxidant, is a common chemical method for

converting ketones into lactones (Figure 2-1) [43]. (However, this has many drawbacks;

peroxy acids are highly reactive and require employing chlorinated solvents, posing significant

safety and environmental hazards. Additionally, the stoichiometric by-products of peroxy

acids are lower value chemicals and require expensive downstream separation processes [29,

3]. Catalytic approaches to lactone production have been studied extensively, and enable

the use of milder oxygen atom sources, such as hydrogen peroxide, in the presence of a

homogeneous metal catalyst [11]. Despite these advances, hydrogen peroxide still poses

safety concerns, and current catalytic approaches for substituted lactone production still

rely on undesirable toxic homogeneous metal catalysts in large quantities [61, 34].

Using an applied potential as an alternative oxidative driving force can avoid the previ-

ously mentioned harsh chemical oxidants. In this vein, previous studies have demonstrated
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electrochemical lactone formation from diverse sets of precursors and oxygen atom sources.

For example, the Baeyer-Villiger reaction has been carried out electrochemically using molec-

ular O2 in ionic liquids [27]. Another study has demonstrated a scheme for C-O bond forma-

tion to form aromatic lactones from their carboxylic acid counterparts [60]. Additionally, the

formation of substituted lactones from hemioxalate salts and aliphatic carboxylic co-acids

has been explored[39]. It should be noted that the latter two methods do not involve the

transfer of an oxygen atom to the starting material. While these approaches demonstrate

promise, they all suffer key drawbacks, such as the use of exotic solvents, the direct genera-

tion of CO2, and the use of O2, which can also be unsafe when mixed with organic solvents

at scale. Moreover, electrochemical kinetic analyses that shed light on the lactone formation

mechanism are generally lacking in the literature.

Issues with electrochemical lactone synthesis could be alleviated by using water as a sus-

tainable and safe oxygen atom source. Thermochemically, the use of water as an oxygen

atom source is difficult, as it requires unreasonably high temperatures and pressures. How-

ever, an alternative paradigm that involves the use of electrical potential as a driving force in

chemical synthesis makes possible the use of water as an oxygen atom source without needing

strong chemical oxidants. The successful implementation of a such a scheme would eliminate

stoichiometric side products and hazardous reagents, overcoming the aforementioned issues

with current routes for lactone synthesis. This concept has been demonstrated in the context

of other electrochemical oxygen functionalization reactions, such as olefin epoxidation[24].

In this work we demonstrate that using water as an oxygen atom source, we were able

to form lactones from cyclic ketones such as cyclohexanone using Pt foil electrodes, with

Faradaic efficiencies (FEs) of approximately 20% toward lactone products. This scheme is

shown in Figure 1. These lactone products differ from those produced by the Baeyer-Villiger

reaction of cyclohexanone, diversifying the set of lactone products that can be synthesized

from a given starting material. Isotope labelling confirms that the oxygen in the lactone

products is inserted into cyclohexanone from the water in the electrolyte, with hydrogen gas

co-produced at the cathode. Additionally, we performed a detailed electrochemical kinetic

study on this reaction to elucidate a candidate mechanism. Similar chemical transformations

have been reported in schemes that employ other oxygen atom sources, such as trifluoroacetic
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Figure 2-1: Scheme of a typical Baeyer-Villiger reaction using cyclohexanone and a peroxy
acid as the oxygen atom source in the top reaction. The corresponding carboxylic acid is
produced as a stoichiometric byproduct. The middle and bottom arrow show electrochemical
lactone formation from cyclohexanone using water as the oxygen atom source with an applied
potential (This work). Hydrogen gas is produced at the cathode.

acid and ethanol, but without any accompanying mechanistic data[13, 32]. Hence, we are

able to demonstrate an electrochemical scheme for the proposed overall reaction, where

cycloalkanone substrates are oxidized at ambient conditions into lactones using water as the

sole source of oxygen in the system. This is accompanied by a mechanistic analysis of the

chemical transformation that is supported by electrochemical kinetic data.

2.2 Data and Discussion

First, we sought to ascertain the overall reaction in the electrochemical cell. Experiments

using 18OH2 supported that the oxygen atoms inserted into the products were derived from

water, rather than from other unintentional oxygen atom sources in the system. During

these labelled oxygen experiments, 16O2 was also flowed into the system at 10 standard cubic
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centimeters per second (sccm), and while the concentration of 16O2 was expected to be much

lower than that of water, we wanted to explicitly account for any potential dissolved 16O2

from the atmosphere during normal conditions. Mass spectrometry analysis of products

after electrolysis with 200 mM cyclohexanone and 1 M 18OH2 show products with shifts

in M/Z of +2 and +4 (Figure 2-2a and 2-2b), relative to the value of M/Z=114 for the

unlabeled products. In this case, a low cyclohexanone concentration was used to suppress

the overall ratio of 16O:18O in the system, minimizing the amount of introduced unlabeled

oxygen. The +4 M/Z shift may seem anomalous, since only shifts of +2 in M/Z would be

expected via the insertion of a single 18O atom. However, this peak can be explained by

a chemical equilibrium between water and ketones that involves the exchange of O atoms

through a ketal intermediate (Figure 2-2d) [30]. The small amount of product with M/Z

value of 114 is still consistent with water acting as an oxygen-atom source; the ratio of
16O:18O in the system is approximately 1:5, so an M/Z=114 product may be formed from
16OH2 produced in situ from a prior ketone-water oxygen exchange. Additionally, the 18OH2

water used was 97% pure, providing another minor source of 16OH2. Lactone products

formed from 18O insertion into an unexchanged cyclohexanone ring with an M=16 ketone

oxygen can account for the M/Z=116 peak, as well as oxygen from 16OH2 inserted into an
18O exchanged cyclohexanone. Additionally, when no water is intentionally added to the

system, the lactone formation partial current diminished by nearly an order of magnitude

(compared to 1M H2O), and lactone products are not quantifiable. When N2 gas is flowed

through the cell (to remove any O2 in solution) with water in the system, the FE and partial

current toward lactone formation remain unchanged from the case where no N2 is flowed.

From these observations, we propose that water is acting as the sole oxygen atom source.

Additionally, in a separate experiment, the effluent gas from the cell was fed into a GC

and quantified. Hydrogen gas was found to be produced in quantities corresponding to

approximately 100% FE at the cathode (Figure 2-2). For this reason, we believe that the

desired anodic lactonization transformation paired with the cathodic production of hydrogen

results in an overall reaction in the electrochemical cell that is depicted in Figure 2-1. Our

reaction scheme could thus be utilized to generate valuable chemicals at both electrodes.

A comparison of CV curves with only water, only cyclohexanone, and both cyclohexanone
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Figure 2-2: a,b) Mass spectra of �-caprolactone and �-hexanolactone using either 1 M 16OH2
and 18OH2. In the case of 18OH2, 16O2 was also flowed in at 10 sccm to test to see if O2
from air was acting as an oxygen atom source. 200 mM cyclohexanone and 1 M 18OH2 were
used. (c) Quantification of H2 via GC was performed, showing near 100% FE toward H2
production. 400 mM cyclohexanone and 10 M H2O were used for H2 quantification. (d)
The proposed pathways for each of the observed M/Z shifts from experiments using labeled
water is shown. M/Z shift of +2 can be explained by two different pathways. For simplicity,
only the formation of �-hexanolactone is shown.

and water (400 mM, and 10M respectively) demonstrate that in the presence of water, the

observed redox peak with only cyclohexanone present disappears, and the current continues

to grow in the explored potential range. The observed redox peak when no water is present

can potentially be ascribed to an irreversible oxidative electron transfer involving cyclohex-

anone; since no explicit O atom source is present in this case, potential products include

cyclohexanone coupling derivatives, among others. However, the onset of anodic current

44



reaches 5 mA/cm2 at approximately 2.0 V vs Fc/Fc+ when water is present, suggesting that

water is oxidized at lower potentials than cyclohexanone in the system. This supports the

notion that in the presence of water, it is the water that will be preferentially oxidized first

and this is what is responsible for the onset current. A CV comparison to a glassy carbon

electrode indicated that the onset potential of Pt is approximately 0.5 V lower with 10 M

H2O and 400 mM cyclohexanone (Figure 2-12). To further investigate this reaction, we per-

formed chronoamperometry (CA) at various potentials, with subsequent product analysis

and quantification using GC-MS and GC-FID. The reported lactone partial current (ilac)

comprises the sum of the �-caprolactone and �-hexanolactone partial currents.

Electrochemical kinetic data aided in elucidating a possible lactone formation mechanism.

While holding the water concentration constant at 10 M H2O at a potential of 2.15 V vs

Fc/Fc+, the concentration of cyclohexanone was varied from 200 mM to 1.5 M, with the

change in partial current over this range indicating a 0th order dependence on cyclohexanone

as shown in Figure 2-3c. Notably, the 0th order in cyclohexanone concentration is maintained

at lower water concentrations as well (1M H2O) as is shown in Figure 2-11. Varying the water

concentration from 0.5 to 10 M H2O while holding the cyclohexanone concentration constant

at 400 mM resulted in changes in the partial current stemming from both changes in the

FE (Figure 2-10c) and changes in the total current. At low water concentrations (<2 M

H2O) the reaction followed a 1.38 order with respect to water, which we approximate as a

unity order dependence. Stabilizing effects of hydrogen bonding between surface adsorbates

and water molecules near the Pt electrode surface provide a plausible explanation for the

observed elevated water order dependence. Specifically, hydrogen bonding between adsorbed

OH species (which we propose exist on the surface at oxidative potentials, and play a role

as a reaction intermediate, see below) and water molecules near the Pt electrode has been

previously characterized in aqueous systems[35]. Increasing the water concentration should

increase the density of hydrogen bond acceptors near the surface, further stabilizing adsorbed

OH species and leading to an elevated order dependence. This is further supported by an

observed depression in the FE with decreasing water concentration (Figure 2-10c). On the

other hand, the observed saturation of partial current at higher water concentrations (>2M

H2O) could possibly stem from either saturation of surface sites or from the breakdown of the
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Figure 2-3: (a) Cyclic voltammograms collected with all combinations of the presence of
cyclohexanone and water at a scan rate of 50 mV/s. When present, 400 mM cyclohexanone
and 10 M H2O are used. (b) The Tafel slope is shown with 100% manual IR correction,
described in the SI. A value of 139 mV is obtained at 400 mM cyclohexanone, 10 M H2O
and 350 mM TBABF4. (c) Cyclohexanone order dependence study, collected with 10 M
water and 350 mM TBABF4 present, at a potential of 2.15 V vs Fc/Fc+. (d) Water order
dependence study, collected at 400 mM cyclohexanone and 350 mM TBABF4, at a potential
of 2.15 V vs Fc/Fc+.

ideal solution approximation, which stipulates that the concentration of water is equivalent

to its activity. Thermodynamic data for water and AcN suggests that above mole fractions

of 0.1 (roughly 2 M H2O), increasing the concentration of water only marginally increases

its solution activity [53].

Additionally, the current and voltage dependence was collected in the form of a Tafel plot

(Figure 2-3b), indicating a Tafel slope of 139 mV/decade. Data was collected both at constant

current conditions and constant potential conditions with 100% manual IR compensation
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(Supporting Information). While this is formally higher than theoretically predicted values

with an assumed transfer coefficient of 0.5, it is in line with Tafel slopes observed for water

oxidation on bulk Pt. In the water oxidation literature, Tafel slopes slightly greater than

120 mV/decade have been explained by the formation of a surface PtO2 layer [42]. For this

reason, we believe that the Tafel slope suggests that the rate determining step is an initial

electron transfer. Taken together, the electrochemical kinetic data suggests the following

rate law:

ilac / CH2Oexp
✓

F⌘

2RT

◆
(2.1)

We hypothesize that the observed product selectivity is controlled by the stabilization

of a carbocation intermediate on a secondary carbon that is formed via ring opening, as

well as the driving force for the intermediate to close into predominantly 5- and 6- member

ring lactones. To probe this hypothesis, we attempted lactonization of cyclopentanone and

cyclohexanone derivatives such as 2 methyl-cyclohexanone, and characterized the observed

product distributions. The results are summarized in Table 1. When reacting cyclopen-

tanone in the same system, �-valerolactone is the sole observed lactone product. This is

consistent with our hypothesis; a 6-membered product is not observed because it requires

the formation of a highly unfavorable primary carbocation, whereas the 5-membered product

proceeds through a secondary carbocation. Reaction of 2-methyl cyclohexanone under the

same conditions produced two products, 6-ethyloxan-2-one and 7-methyl-2-oxepanone both

of which are in line with a secondary carbocation intermediate. Interestingly, the observed

products are consistent with ring opening only on the alpha carbon of 2-methyl cyclohex-

anone that contains the methyl substituent. This is rationalizable, as the methyl substituted

alpha carbon would directly form a secondary carbocation, while the unsubstituted alpha

carbon would form a primary carbocation.

Based on the collected kinetic data and the observed product distribution of different

substrates, we propose a mechanism that differs from mechanisms proposed in the literature

for similar chemical transformations [13, 32]. Prior literature suggests outer sphere path-

ways that involving an initial electron transfer from the substrate (Figure 2-5a). No explicit
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Figure 2-4: Products observed from reactions employing different cyclic lactone substrates.
All runs are conducted at 400 mM Substrate, 10 M H2O, 350 mM TBA BF4, applying 2.15
V vs Fc/Fc+ and passing 50 C using Pt foil electrodes.

electrochemical kinetic data is reported for the transformation in the literature, including

substrate dependence, oxygen source dependence, and Tafel slope; thus, when determining

the feasibility of the literature mechanisms, we have compared it to our collected electro-

chemical kinetic data. The mechanism in Figure 2-5a would exhibit 1st order kinetics with

respect to the ketone substrate since this is an outer-sphere mechanism, regardless of the

RDS, which is inconsistent with our kinetic data. If we disregard this inconsistency regard-

ing order in ketone substrate and assume a similar Tafel slope as we find in our work, that

would point toward the initial electron transfer being the RDS; this, however, would be in-

consistent with the observed 1st order dependence on water, which is not possible if water is

only involved in the mechanism after the proposed RDS. These observations taken together

suggest that the mechanism in Figure 2-5a is inconsistent with the electrochemical kinetic

data measured in this study. A possible mechanism more in line with the data is proposed

in Figure 2-5b, where water is initially activated by Pt in an electron transfer (ET) to form

Pt–OH. After this ET, which we propose is the RDS, the adsorbed OH reacts with adsorbed

cyclohexanone to form a tetrahedral intermediate that can undergo an additional ring open-

ing electron transfer to form a carboxylic acid cation. Finally, the carboxylic acid cation can

undergo ring closure to form the two observed lactone products. The proposed mechanism

is consistent with the kinetic data, and the initial activation of water is consistent with ob-
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servations from prior studies of water oxidation on Pt surfaces in neutral and alkaline media

[12]. Additionally, the proposed adsorption of cyclohexanone to Pt through the carbonyl

oxygen is similar to the proposed binding mechanism of cyclohexanone in homogeneous Pt

catalysts for the Baeyer-Villiger reaction[11]. Density functional theory studies have also

shown that it is favorable for ketones to adsorb to Pt surfaces through the carbonyl moi-

ety in heterogeneous reactions as well[22, 62]. The hypothesized Pt-OH surface species can

also be further oxidized into PtO2, which, as previously stated, can rationalize the observed

elevated Tafel slope. While the mechanism presented in Figure 2-5b is consistent with the

observed data and is put forth as a plausible one, further in situ and ex situ spectroscopic

studies are needed to refine the proposed mechanism.

Figure 2-5: (a) Mechanism consistent with previous literature of similar transformations. The
literature suggests an outersphere pathway that begins with an initial electron transfer from
cyclohexanone. (b) Proposed mechanism based off of the collected electrochemicalkinetic
data. Shows an inner sphere mechanism on Pt that undergoes an initial electron transfer
involving water as the rate determining step, followed by reaction with cyclohexanone and
another electron transfer.

In summary, we have investigated a method for using electricity derived from renewable

sources to convert cyclohexanone into 5 and 6 membered substituted lactones with an FE

of approximately 20% using Pt electrodes and water as the sole oxygen atom source. These

products expand and complement the set of possible lactone products synthesized from

cyclohexanone via the Baeyer-Villiger reaction. Additionally, H2 gas was co-produced at

the cathode with a near 100 % FE. Electrochemical kinetic studies allowed us to propose
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a mechanism that involves the initial inner sphere activation of water. We believe that our

concept will provide a new pathway for electrochemically producing important intermediate

ring sized lactones that are not accessible via the Baeyer-Villiger reaction from the same

starting material.

2.3 Experimental Methods for Lactonization Chemistry

2.3.1 Materials

Platinum foil (Pt Foil) (99.9%, Beantown), cyclohexanone (>99%, Sigma Aldrich), cyclopen-

tanone (>95%, Sigma Aldrich), �-valerolactone (>99%, Sigma Aldrich), �-hexanolactone

(98%, Alfa Aesar), �-caprolactone (98%, Sigma Aldrich), acetonitrile (ACN) (anhydrous,

99.8+%, Alfa Aesar), tetrabutylammonium tetrafluoroborate (TBABF4) (98%, TCI), di-

chloromethane (DCM) (99.5%, Fisher Scientific), nitric acid (70%, Fisher Scientific), alu-

mina polish (0.05 micron, CH Instruments), 18OH2 (97%, Sigma Aldrich), were purchased

and used without additional treatment.

2.3.2 Methods

Platinum Foil Preparation

Platinum foils were cut into 2.5 cm x 2.5 cm squares. Prior to each experiment, the working

electrode and counter electrode foils were rinsed with acetone and water. The foils to act as

working electrodes were polished with 0.05 micron size alumina powder for at least 1 minute

on each side. They were then rinsed with Milli-Q water and then sonicated in Milli-Q water

for 5 minutes to remove remaining alumina powder. The working electrodes were then rinsed

in 20% nitric acid and finally one last time with water, then dried with a paper towel. Foils

that acted as counter electrodes were rinsed in 20% nitric acid and then with Milli-Q water

and dried with a paper towel.
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Electrochemical Methods

Electrochemical experiments were conducted with a one compartment electrochemical cell.

Platinum foil was used both as the counter and working electrode (Figure 2.3.2). The plat-

inum foil working electrode was prepared as described in section 2.3.2. A Ag/AgCl electrode

(3.4 M KCl leak-free 2.0 mm diameter Innovative Instruments) was used as the reference

electrode and aluminum foil was used as the current collector. To determine the catalytic

activity of Pt foil toward cyclohexanone lactonization, cyclic voltammetry (CV) curves were

recorded. Acetonitrile with 0.35M tetrabutylammonium tetrafluoroborate (TBABF4) was

used as the solvent, with varying concentrations of cyclohexanone and water. The total

volume of electrolyte was set to be 4mL. All the potentials were 85% IR compensated, and

the resistance value at open circuit potential (OCP) was measured by EIS techniques. For

Tafel analysis, the points were 100% manually IR compensated. The reported potentials

were calibrated by measuring a 1 mM ferrocene / ferrocenium redox couple at various water

concentrations in acetonitrile (1M, 5M, and 10 M H2O in 0.35 M TBABF4 with 400 mM

cyclohexanone) and calculating the half potential of the redox couple. Examples of ferrocene

redox couples at different water concentrations are shown in Figure 2-7. The electrochemical

measurements were conducted with a VMP3 multichannel potentiostat from BioLogic.

Prior to each experiment, an ACN solution of 0.5M TBABF4 was treated with molecular

sieves (4 x 8 Mesh Type 3Å, Acros Organics) for at least 12 hours to remove residual water

in MeCN. For each measurement, 4 mL of electrolyte containing a specified composition of

cyclohexanone, water, and TBABF4 in MeCN was added into the 1-compartment cell. A

micro-magnetic stir bar was placed into the cell for stirring. For cyclic voltammetry analysis,

CV scans (no stirring) were initiated from the open-circuit potential, and two cycles (From

OCP to 2.6 V vs. Fc/Fc+) were recorded successively at a scan rate of 50 mV/sec (no

stirring in this case). The chronoamperometry analysis was conducted at 2.15 V vs. vs.

Fc/Fc+ to obtain electrochemicalkinetic data (with stirring). In all cases where partial

current is reported (iLac), this was calculated by quantifying the Faradaic efficiency toward

�-hexanolactone and gamma-caprolactone and summing them up to a single FE toward

lactone products. Specifics on the product analysis is given in section C.

51



Figure 2-6: Electrochemical sandwich cell used for all experiments. (A) Aluminum foil
current collector. (B) Platinum foil counter electrode. (C) Ag/AgCl reference electrode.
(D) Aluminum foil current collector. (E) Polished platinum foil working electrode.

Electrochemical Kinetic Measurements

For Tafel analysis, points were collected at both constant potential conditions and constant

current conditions. For constant potential conditions, a constant potential was applied be-

tween 2.1 V vs Fc/Fc+ and 2.3 V vs Fc/Fc+ with 85% manual IR compensation. The

average recorded total current, after passing 50 C total, was used to compensate the remain-

ing 15% of the resistance. For points collected at constant current, a total current density

between 5 and 25 mA/cm2 was applied with no IR compensation, but with the resistance

recorded. The total current density was then used to 100% manually IR compensate after

the experiment (subtracting IR from the recorded potential). Data from both conditions

are overlaid in Figure 3b. For chronoamperometry experiments conducted to collect the

water order dependence, 50C of charge was passed with 400 mM cyclohexanone and 0.35

M TBABF4. For chronoamperometry experiments conducted to collect the cyclohexanone

order dependence, 50 Coulombs (C) of charge was passed, except in the case of 200 mM cy-

clohexanone where 40 C of charge was passed. In this case less charge was passed in order to

reduce the theoretical maximum conversion of cyclohexanone which is necessary for making
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the approximation that the cyclohexanone concentration is effectively constant throughout

the experiment. The water concentration was held constant at 10 M H2O.

Isotope Labeling Experiments

Isotope labelling of the oxygen atom in water was used in order to determine if the inserted

oxygen atom in the lactone products were derived from water. For these experiments, 1M

97% 18OH2 was used instead of 16OH2. Additionally, 200 mM was used as the cyclohexanone

concentration, and 10 sccm of O2 (Industrial Grade) was also flown through the cell in order

to attempt to rule out oxygen gas as the oxygen atom source. Gas chromatography mass

spectroscopy (GCMS) was used to quantify the products, and determine any shifts in the

mass to charge ratio of these products. 50 C of charge was passed for these experiments.

Product Analysis

All the products generated by electrochemical cyclohexanone oxidation were analyzed by

gas chromatography–mass (GC-MS) spectrometry (5977B MSD and 7890B GC, Agilent)

and gas chromatography-FID (7890B GC, Agilent). After each electrolysis, we took out 50

µL of electrolyte from the electrochemical cell and diluted it with 950 µl of dichloromethane

(DCM). The 20 times diluted solution was analyzed by GCMS and GCFID. External stan-

dards of �-hexanolactone and �-caprolactone were obtained to quantify the product. All

the presented quantification data was obtained based on the GCMS and GCFID analysis.

Examples of external standard curves for �-caprolactone and �-hexanolactone are show in

Figure 2-8 and Figure 2-9.

Gas Chromatography For H2 Quantification

Gas chromatography was conducted to quantify the cathodic reaction product H2. An in-

line gas chromatograph (SRI Instruments, Inc., MG #5, Model 8610C) with auto-sampling

capabilities was used. N2 gas available in-house was used as the GC carrier gas, and was

adjusted to roughly 15 psig on the instrument. The data sample rate was 5 Hz. Gas flow into

the GC was normally vented out through a 1-mL sample loop. A sample was collected and

was sent onto a 6’ HayesepD pre-column. At the same time, another sample was collected
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and held without flowing. The gas-phase ppm determined from GC was converted into the

partial current for a given product, and Faradaic efficiencies were calculated by dividing the

partial current by the total current.

2.3.3 Supplementary Figures

Figure 2-7: Redox Peak of 1 mM ferrocene in ACN with 350 mM TBABF4, 400 mM cyclo-
hexanone with varying amounts of water (1, 5, 10, 12 M).

Figure 2-8: Calibration curves for �-caprolactone (a) and �-hexanolactone (b) using GCMS.
The fitted equation for (a) was calculated to be y=1.066E-4x + 0.511 and for (b) was
calculated to be y=2.566E-4x + 0.410.

54



Figure 2-9: Calibration curves for �-caprolactone (a) and �-hexanolactone (b) using GCFID.
The fitted equation for (a) was calculated to be y=4.744E-4x + 0.191 and for (b) was
calculated to be y=5.923E-4x + 0.244.
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Figure 2-10: (a) Faradaic efficiencies measured with GCFID as functions of the applied
potential. (b) as functions of cyclohexanone concentration, and (c) as functions of water
concentration. Standard conditions are 400 mM cyclohexanone, 10 M H2O, and 2.15 V vs
Fc/Fc+. (d) Table with the plotted data from a-c. The reported potential has been IR
corrected.
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Figure 2-11: Cyclohexanone order dependence collected at 2.15 V Vs Fc/Fc+ and 1 M H2O.

Figure 2-12: Cyclic voltammetry with 400 mM cyclohexanone, 10 M H2O, 350 mM TBABF4,
comparing a platinum foil working electrode with a glassy carbon electrode.

57



Figure 2-13: XPS spectra for Pt 4f conducted on a Pt foil before and after reaction. The
pre-reaction spectrum is shown in blue, and is consistent with reported spectra of Pt metal.
The spectra after passing 15 C of charge with 10 M H2O, 400 mM Cyclohexanone, 350
mM TBABF4, and 2.15 V vs Fc/Fc+ is shown in red. The development of the shoulder at
approximately 76 eV, and has been previously assigned to oxide forms of Pt.
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Chapter 3

Computational Screening of Organic

Hydrogen Atom Transfer Redox

Mediators

Abstract

Hydrogen atom transfer reactions are ubiquitous and important class of reactions. They
can be facilitated by organic p-block radicals, as is seen in mediated electrochemistry, where
for example they have been used to deconstruct plastics such as polystyrene. However,
when organic HAT redox mediators are used, the energetics of the mediator are typically
not considered in the context of the reactive C-H bond. Herein, using N-ammonium ylides
as a class of redox mediators, we demonstrate that superior HAT redox mediators can be
computationally designed to match the bond dissociation energy of the C-H bond of interest.
We generate a library of 20,000 candidate N-ammonium ylide redox mediators and calculate
the relevant thermodynamic values present in the ylide HAT catalytic cycle, namely the
redox potential (Eo), the hydrogen binding energy (�GHBind

) and the deprotonation energy
(�GDPFE). We use DFT to calculate these properties for the first 10,000 catalytic cycles
(30,000 molecules) of our molecular library and use these calculations to build machine
learning models that are able to calculate the same thermodynamic values for the remaining
half of the library – greatly reducing the required computational cost. We demonstrate, for
PS model compounds, we can computationally screen N-ammonium ylide thermodynamics
to generate candidate structures that promote the activation of the lowest energy C-H bond
in the system. We then validate these predicted ylide structures through electrochemical
experiments.
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3.1 Introduction

Approximately 400 million metric tonnes (Mt) of plastic are produced annually worldwide,

with production set to exceed 500 Mt by 2040 [16]. This will result in unprecedented amounts

CO2 emissions and solid waste in the environment. For this reason, there is a necessary

push to increase plastic circularity, either through designing monomers that can be easily

chemically recycled or through developing improved methods for chemically upcycling the

common plastics that are already in use today. If not recycled into the constituent monomer,

plastics can often be deconstructed into small and useful molecules for other applications

[37, 23]. However, plastic deconstruction is typically difficult because of the highly inert C-C

bonds present in common plastics (PE, PP, PS). One such plastic is polystyrene whose use

is found in styrofoam, plastic utensils and more and whose deconstruction is typically done

through thermally based processes that involve high temperature, pressure, or expensive

catalysts.

Various pathways have been demonstrated to convert polystyrene back into the styrene

monomer or to recover processable intermediates. [4, 31, 69]. One pathway of interest

that can create small oxygenated molecules from polystyrene is the hydrogen atom transfer

pathway (HAT). In this case, a hydrogen atom is abstracted from the PS carbon backbone

resulting in a radical that can later go on to react with oxygen gas in the system, (O2) which

results in C-C bond scission via subsequent bond rearrangement [69]. HAT reactions are not

only of great interest for plastic deconstruction, but also for a variety of applications that

require the activation of inert C-H bonds – this includes applications such as pharmaceutical

and metabolite synthesis [9]. As a result, effective routes for facilitating HATs have been

developed using materials such as organic p-block radicals and transition metal centered

complexes. These studies have revealed that the relative energy of the substrate BDE and

the oxidant is important and correlates with performance metrics such as the reaction rate

[?]. Typically, larger reaction rates are observed when there is a larger energy difference

between the oxidant and substrate, as is intuited by the Evans–Polanyi relation. However,

these large energy differences can potentially result in lower selectives because a higher energy

oxidant also has a non-negligible driving force to react with other species in the system.
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Electrochemical mediators are a class of oxidants that have showed a lot of promise in

facilitating HATs for various substrates [31]. Mediators are molecules that can be activated

by and external stimulus, such as an external potential, to form an activated species that

can go on to react with some substrate in the system and abstract a hydrogen atom[66].

Electrochemistry takes advantage of an increasingly carbon free and powerful driving force

that is readily accessible – an applied voltage. The potency of an applied voltage can re-

place demanding temperatures and pressures in many systems. Importantly, this driving

force is not indiscriminate, as it can be finely tuned to impart the appropriate thermo-

dynamic and kinetic driving force to the system at hand. HAT mediators can come in

many forms and range from small organic molecules to metal centered complexes. Com-

mon electrochemical organic redox mediators include (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl

(TEMPO), N-Hydroxyphthalimide (NHPI) and their derivatives. Yan et al. even used NHPI

as a PS degradation redox mediator – deconstructing PS into a variety of small oxygenated

molecules[69]. In this case, the authors hypothesized that some of the issues in their system

such as selectivity and mediator deactivation can be partly due to a mismatch of bond disso-

ciation energies (BDEs) of the C-H bonds on the substrate and the NO-H bond of NHPI. As

previously mentioned, the energy difference between the oxidant and substrate has already

been shown to be crucial for reaction rates so for a given substrate, the ability to modulate

the energy of the mediator would prove immensely beneficial.

In the case of NHPI or TEMPOH, the NO-H BDE could in principle be tuned through

molecular functionalization, but only a handful of derivatives has been shown to be synthet-

ically accessible in either case [40, 20]. Recently, N-ammonium ylides have been shown to

serve as electrochemical HAT redox mediators that exhibit a high degree of synthetic tun-

ability, with more than 80 ylide derivatives synthesized in the original work[46]. With this

increased level of sythesizability, we are able to apply tools such as virtual high throughput

screening (vHTP) to redox mediator design. vHTP screening has been shown to be useful in

designing electroactive materials in other contexts such as redox flow battery (RFB) redox

couples, but has not been applied to redox mediator design – this likely has to do with the

fact that mediators must be chemistry specific and their properties cannot always be ana-

lyzed in isolation [58]. In the case of HAT mediators, the energetics of the mediator must be
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considered in the context of C-H bond to be activated. If a mediator with too much energy

is used, it is more likely to react undesirably with either other molecules in the system or at

undesirable sites on the molecule of interest.

Using N-ammonium ylides as a class of redox mediators, we demonstrate that HAT

redox mediators can be computationally designed to match the bond dissociation energy of

the C-H bond of interest. We generate a library of 20,000 candidate N-ammonium ylide

redox mediators and calculate the relevant thermodynamic values present in the ylide HAT

catalytic cycle (Fig 3-1), namely the redox potential (Eo), the hydrogen binding energy

(�GHBind
) and the deprotonation energy (�GDPFE). We use density functional theory

(DFT) to calculate these properties for half of our molecular library (10,000 catalytic cycles

or 30,000 molecules) and use these DFT calculations to build machine learning models that

are able to calculate these relevant thermodynamic values for the remaining half of the

library – greatly reducing the required computational cost. We demonstrate that for PS

model compounds, we can computationally screen N-ammonium ylide thermodynamics to

generate candidate structures that promote the activation of the lowest energy C-H bond

in the system. This means we are choosing ylide candidates that have only the required

energy to activate the bond of interest, resulting in lower energy intermediates and thus

reducing the likelihood of radical intermediates undergoing any unwanted side reactions. Our

computational screened ylide candidate structures are then validated through electrochemical

experiments.

3.2 Results and Discussion

3.2.1 Virtual Library Generation and Calculating Properties

The molecules in the virtual library were generated by first performing a substructure search

in Reaxys for a carboxylic acid substructure. The details of this procedure can be found in

the supporting information. N-ammonium ylides have been shown to be synthesizable from

carboxylic acids, and since carboxylic acids are both diverse and easily purchasable, they are

good starting motifs for the purpose of building a virtual library. The results of the Reaxys
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Figure 3-1: a) Catalytic cycle of ylide redox mediators for HAT reactions. b) Virtual high
throughput computational workflow developed for redox mediator design in this work.

search were filtered by the criteria indicated in Table 3.1, which resulted in approximately

22,000 carboxylic acids. The screening criteria were elected to maximize the probability

that each library entry was practically synthesizable. Using RDkit, the Simplified Molecular

Input Line Entry System (SMILES) string for the 22,000 carboxylic acids was used to append

the structure to three different cores to form the three species present in the catalytic cycles

show in Figure 3-1 (Ylide = Y, Ylide Radical = Yrad, and protonated ylide = Yh).After

verifying all the structures were valid and removing any duplicates, we were left with 19,097

ylides.

Physics-based modeling utilizing DFT was used to calculate key thermodynamic proper-

ties of the first 10,000 ylide catalytic cycles. Specifically, we calculated the redox potential

E
o, the hydrogen binding energy �GHbind, and the ylide deprotonation energy �GDPFE

using the equations found in Table 3.3 at the M062X/def2-SVPD level of theory with SMD

implicit solvation in acetonitrile. Because of the anionic character of the N in the ylide

motif, we made sure to utilize a basis set that included diffuse functions. The results of

the calculations can be found in Figures S5 and S6, where we can see that for E
o and

�GDPFE the distributions exhibit good gaussian behavior. However, for �GHbind
there is a

larger cluster of values around -450 kJ/mol, which could point to limitations in the ability of

functionalization to modulate the energy of the hydrogen abstracting step. Of the original
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10,000 catalytic cycles, we obtained 8095 cycles where Y, Yh and Yrad were all calculated

successfully. The largest failure mode, was the inability to correctly optimize the geometry

to a minimum, which was checked by assuring all the vibrational frequencies were positive.

We wanted to take the values of these ylide energies in the context of a specific substrate

C-H bonds, and in order to do this, we considered the PS analog molecules studied by Yan et

al. [69]. The structures of these molecules can be found in Figure 3-8, and include biphenyl

compounds with a variable number of carbons between the two aromatic rings and some that

contain oxygen functionality on the aliphatic chain. HATs for these molecules were found to

occur on the aliphatic carbon backbone, so the BDEs for all possible HATs on the carbon

chain were calculated with the same work flow used to calculate the ylide energetics. We

observe that the energy of the benzylic position does not vary much across the molecules,

occurring at around 335-340 kJ/mol. C-H bonds further away from the aromatic rings tended

to be higher in energy. For example, in the case of 1,3 diphenylpropane, the two possible

HAT positions differ in energy by 32 kJ/mol which suggests that there is a workable energy

window that could be used to design a mediator that has selectivity toward the weaker bond.

For the purposes of exploring this concept, we chose to simplify our further analysis by

focusing on a single substrate - 1,3 diphenylpropane. To design an ylide mediator to facilitate

HAT reactions for this substrate, it is useful to consider the free energy landscape indicated

in Figure 3-2b. The landscape shows the ylide HAT catalytic cycle up until the formation of

the substrate radical R•, which goes on to react with O2 in the system to form oxygenated

products. We show the paths for both possible HATs, which diverge after step 1, and identify

two important free energy differences that are crucial to screening ylides with the energy of

the C-H bond in mind – �GCH and �GDP . These two energies are defined as follows:

�GCH = �GHbind
+�GBDE

= �GY h +�GR
• ��GY

• ��GRH

(3.1)

�GDP = �GDPFE +�GB

= �GY +�GBH ��GY h ��GB

(3.2)

and are simply the reaction energies for steps 2 and 3 on Figure 3-2b. We note that
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�GCH and �GDP do not require knowledge of the energy of protons (H+) or hydrogen

radicals (H•), which can have relatively large errors associated with their calculation [54].

Using the previously mentioned DFT results, we calculated these two values for the first

10,000 structures in our ylide library, which can be found in Figure 3-2c. The figure contains

2 vertical lines, labeled BDE 1 and BDE 2, which correspond to the energies of the two BDEs

of 1,3 diphenylpropane and are referenced to BDE 1, which is why it appears at �GCH = 0.

We note that for an ylide to be able to activate BDE 1 or BDE 2, the value of �GDP must

be negative and the value of �GCH must be negative of the vertical line corresponding to

the BDE of interest. We indicate 3 important regions on Figure 3-2c. First, region 1 in the

area left of the orange box, contains structures that have enough energy to activate both

BDE 1 and BDE 2. Next, there is the orange region (region 2), with structures that have

enough energy to selectively activate BDE 1. Lastly, structures in the rightmost box (region

3) have insufficient energy to activate either BDE 1 or BDE 2.

Figure 3-2: a)The two HAT reactions for 1,3-diphenylpropane, identified as (BDE 1) and
(BDE 2) with their associated BDE energies. b) Free energy landscape of an ylide redox
mediators showing the electron transfer, hydrogen abstraction and deprotonation. R-H =
substrate, B = Base. c) Scatter plot of �GCH and �GDP for all DFT analyzed ylides.

Each point on Figure 3-2c corresponds to a unique ylide structure, where our analysis

shows that most ylide structures are in great excess of the required energy to facilitate BDE 1
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and BDE 2. The highest density of points can be found in the region �120kJ/mol  �GCH 

�80kJ/mol, indicating that an ylide chosen at random, without prior consideration of the

energy of the BDE, is likely to have a sufficiently large thermodynamic driving force. To see

if there is any correlation between the presence of certain functional groups and the value

of �GCH , we isolated points containing halogens, amines, alcohols, ethers, phosphorous,

sulfur, and only carbon containing species, the results of which can be seen in Figure 3-

10. Some key insights into our library are that halogen containing ylides tend to lie in the

�120kJ/mol  �GCH  �80kJ/mol region, with no clear difference among the different

halogens. Additionally, structures containing, amines, alcohols, and ethers had a larger

spread in �GCH energy, suggesting that these functional groups have more potential to

modulate the energy of Yh and Yrad to result in lower �GCH values.

Figure 3-3: a)The two HAT reactions for 1,3-diphenylpropane, identified as (1) and (2) with
their associated BDEs. b) Free energy landscape of an ylide redox mediators showing the
electron transfer, hydrogen abstraction and deprotonation. c) Scatter plot of �GCH and
�GDP for all DFT analyzed ylides.

The time requirements of screening our virtual library at our desired level of theory are
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elucidated in Figure 3-13 and Table 3.4, where we can see that each calculation had an

average wall time of 1–3 hours. Based on our available resources, we sought to accelerate our

screening for the remaining 9,097 catalytic cycles (27,291 individual calculation). To do this,

we turned toward data driven modeling. In particular, we constructed a graph convolutional

neural network (GNN) that is capable of simultaneously mapping the SMILES string of an

ylide to E
o, �GDPFE , and �GHbind

. GNNs have been shown to perform quite well in

mapping chemical structure to thermochemistry, especially for datasets on the order of 105

and larger [63, 7, 19, 67]. The details of the methods we used to train our models can be

found in the supporting information. Briefly, we used Chemprop wrapped in custom code

to build and train our models, which were trained on ten 70:10:20 random splits of the data

using the Adam optimizer and mean squared error loss. Bayesian hyperparameters tuning

was performed using the python Optuna library, where all code for hyperparameter tuning

and training can be found at https://github.com/jmaalouf23/QMkit. The performance

of training a model using the best hyperparameters can be seen in Figure 3-3a-c. We achieve

mean average errors of 0.09 V, 4.10 kJ/mol, and 8.67 kJ/mol for E
o, �GDPFE , and

�GHbind
respectively on the test set. �GCH was observed to have the largest predictive

error, likely because of the higher deviation from gaussian behavior previously discussed.

The non-gaussian behavior would constrain the model to map many diverse input structures

to a narrow range of energy values.

We used our ML model to calculate �GCH and �GDP for the remaining ylides in our

library, which are shown by the orange points in Figure 3-3d. This process only required

seconds of computational time, orders of magnitude lower than the temporal requirements

of DFT calculations. Notable, the ML calculated points occupy a similar region in �GCH

x�GDP space as the DFT calculated points, similarly demonstrating a high density of points

in the low �GCH region. The analysis we have performed with 1,3 diphenylpropane can be

easily transferred to any substrate of interest without the need to recalculate any ylide

properties. Only BDEs of the new substrate are required. For a new substrate, the location

of the points would shift horizontally relative to the vertical line corresponding to the new

BDE of interest.
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3.2.2 Experimental Characterization

With values for �GCH and �GDP of our entire library, we sought to experimentally validate

the performance of specific structures HAT reactions of 1,3 diphenylpropane. We selected 7

ylides (referred to as YN, where N is the ylide index). The ylides were chosen first because

they span a wide range of values of �GCH , from -133.95 kJ/mol to -12 kJ/mol allowing us

to examine how this thermodynamic parameter effects important performance metrics. Of

these 7 selected ylides, we were able to successfully synthesize 4 of them, Y1, Y2, Y3, and

Y6.

Figure 3-4: a) Selected Ylide candidates that were chosen for further examination. b)
Performance of the selected candidates for HAT chemistry.

We probed their electrochemical properties by testing the materials using cyclic voltam-

metry. Figure 3-5 shows the results of plotting the peak potential of the CVs vs our calculated

values. We observe that the trend in experimental values follows our predictions for all cases

except for Y6. This suggests that conclusions that rely on relative values of different struc-

tures can be trusted, and it’s likely that the error with Y6 is related to the fact that it

belongs to a different structural class than Y1-Y3.

3.3 Conclusion

We have shown that for the case of 1,3 diphenylpropane we can use a virtual high through-

put screening approach to select N-ammonium ylide based HAT redox mediators that have
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energies commensurate with the BDEs present on the molecule. By screening a library of

20,000 ylides using DFT calculations supplemented with data driven models, we were able

to demonstrate that many common structures fall within a similar energy range. Only a

small percentage of our library fall within a low �GCH energy region (close to 0 kJ/mol),

demonstrating the need for prior knowledge of mediator energetics in order to choose ap-

propriate mediator structures. Our screening, allowed us to choose several ylide candidates

that we synthesized and tested for their electrochemical HAT performance.

Figure 3-5: Top: structures of ylides that were successfully synthesized in this work. Bottom:
Cyclic voltammetry of selected ylides. 100 mM of ylide was added to MeCN with 100 TBA
BF4 as the electrolyte.
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3.4 Supporting Information

3.4.1 Methods

Virtual Chemical Library Design

Ylide Redox Mediator Library

Figure 3-6: Original Reaxys carboxylic acid query.

N-ammonium ylides have previously been shown to be functionalizable using carboxylic

acids. Thus, we built our chemical library by first performing a carboxylic acid substructure

search using Reaxys. The original query was for any molecules that contained the acetic acid

motif (Figure 3-6). We included constraints such as commercial availability and the existence

of NMR spectra in order to increase the likelihood that the carboxylic acid was practically

accessible (Table 3.1). Additionally, we removed more exotic functional groups that could

potentially result in synthetic or reactive issues down the line. SMILES for the final 22.02

K molecules were exported in a csv format. Lastly, the set of carboxylic acid molecules were

double-checked for duplicates and additionally any molecules containing atoms outside the

set H,C,N,O,F,P,S,Cl,Br, and I were removed resulting in a final set of 17,586 carboxylic

acids.

Each ylide redox mediator catalytic cycle consists of three different species: the ylide (Y),

the radical cation (Yrad), and the protonated form (Yh) (Figure 1). Each carboxylic acid was
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Filter Number of Results Post Filter

Original Search 4.5 M

Commercially Available 1.82 M

Molecular Weight < 250 225.6 K

Remove Alkynes 98.3 K

Remove Q-Q 89.4k

Remove alkanes longer than 3 Carbons 57.2 K

Exclude 56.52 K

Exclude 55.42 K

Exclude Ethers 22.06 K

Table 3.1: Substructures filtered from original Reaxys query.

appended to the appropriate N-ammonium ylide core using RDKit’s ReplaceSubstruct()

function to form either Y, Yrad, or Y. As an example, Figure 3-7 shows the relevant con-

nection to form Y. For carboxylic acids that contained more than one carboxylic acid motif,

every possible attachment was considered and added to the ylide library. The original li-

brary of 17,586 carboxylic acids resulted in a library of 19,097 catalytic cycles and a total of

57,291 molecules. The SMILES strings for these molecules can be found in a csv file in the

supporting information.

Figure 3-7: Molecular connections made using RDkit to form ylide library.

Model Substrates

Our goal was to design a HAT redox mediator for polystyrene decomposition by matching

the thermodynamics of the mediator to the relevant C-H bond in polystyrene. In order to
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do this, we chose to first test our design capabilities on styrene model compounds shown in

Figure 3-8 that were inspired by those used by Yan et al. [69]. All model compounds include

2 phenyl groups with a varying number of carbons in between, in addition to some oxygen

functionality in certain cases.

Figure 3-8: Model substrates considered in this work. Energies correspond to the BDE of
removing a hydrogen atom from the indicated C-H bond.
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3.4.2 DFT Calculations

Due to the size of the library compared to available computational resources, DFT calcu-

lations were only performed for the first 10,000 catalytic cycles (30,000) molecules. The

energetics of the remaining half of the library was screened using graph based machine

learning models described later in the text. DFT calculations were run using Gaussian 16

Software and distributed across Intel Xeon Platinum 8260 nodes provided by the MIT Super

Cloud [1].

For Y, Yrad, and Yh, first a gas phase calculation (geometry optimization and harmonic

frequency calculation) was performed at the M06-2X/def2-TZVP level of theory, which has

been previously shown to obtain good accuracy for bond dissociation calculations. For Y and

Yh, the initial starting geometry was obtained by sampling 100 conformers using the RDKit

library and then optimizing their structure using RDKit’s implementation of the MMFF94s

force field. The geometry of the lowest energy converged conformer was then taken as the

starting geometry of the gas phase calculation. Since MMFF94s is not parameterized for

radicals, a procedure from the literature was implemented where the initial structure of Yrad

was obtained by using the DFT gas phase optimized geometry of Yh and then removing the

H atom which gives Yrad [56]. A geometry optimization and frequency calculation was then

performed for Yrad with this starting geometry.

The geometry optimized structure of Y, Yrad, and Yh from the gas phase calculations

were then used as a starting geometry for DFT calculation that incorporated implicit solva-

tion in acetonitrile using the SMD model. Acetonitrile was the dominant solvent used in all

validation experiments. These calculations were performed at the M06-2X/def2SVPD level

of theory. We chose this basis set as it includes diffuse basis functions to address the anionic

character of the nitrogen atom in Y, while also being of a tractable size to allow for rapid

computational screening.

All output files were parsed using cclib python library. The relevant python function

used for generating conformer, 3D coordinates and Gaussian input scripts can be found

at https://github.com/jmaalouf23/QMkit. These functions were utilized in the following

set of Jupyter Notebooks (https://github.com/jmaalouf23/ylide) to build the molecular
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Failure Mode Y Yrad Yh

Geometry Optimization Failure 385 436 562

Other Failure Modes 143 358 339

Table 3.2: Summary of the number of failed calculations for the 10,000 catalytic cycles,
corresponding to 30,000 DFT calculations

library, generate directories containing all the input scripts and to submit all the calculations

for execution on the MIT Super Cloud. Each calculation was checked to make sure that the

geometry had converged to a minimum by verifying that all vibrational frequencies were

greater than zero. This resulted in 8095 converged ylide catalytic cycles where Y, Yrad, and

Yh all successfully converged. A summary of all failures can be found in Table 3.2, where

"other failure modes" predominantly refers to SCF convergence issues.

The converged results of the DFT calculations performed on the ylide library were stored

in an PostgresSQL database. Stored data includes, the electronic energies, enthalpies, Gibbs

free energy, optimized xyz coordinates, and frequencies.

3.4.3 Calculated Thermodynamic Quantities

The successful DFT calculations for the first 10,000 catalytic cycles were used to calculate key

thermodynamic quantities indicated in Figure 1,namely the redox potential (Eo), the hydro-

gen binding energy (�GHBind
) and the deprotonation energy (�GDPFE) which are explicitly

defined in Table 3.3. Free energies of the hydrogen atom and the proton, which are required

to calculate the desired energies were calculated using DFT at the same level of theory as

Y,Yrad, and Yh (M06-2X/Def2-SVPD) in acetonitrile using SMD. While we acknowledge

there can be large errors associated with DFT calculations of protons, we note that �GDPFE

is typically subtracted from the deprotonation free energy of an explicit base, resulting in

the cancellation of the proton free energy. CSV files containing E
o
,�GDP ,�GHbind

for

each catalytic cycle were generated from the data stored in the aforementioned PostgreSQL

database.
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Thermodynamic Quantity Definition

Redox Potential E
o = �GY rad��GY

nF � 4.28V

Hydrogen Binding Free Energy �GHBind
= �GY h ��GY rad ��GH

•

Deprotonation Free Energy �GDPFE = �GY +�GH+ ��GY h

Table 3.3: Definitions of ylide thermodynamic quantities used for screening.

Another key thermodynamic quantity used throughout is the free energy of the base in

the system (�GBase = GBH � GB � GH+). In our case, the based used in our system was

predominantly NaHCO3, which was shown to be a suitable base in the literature[46]. �GBase

was calculated using DFT at the same level of theory as all other solvated calculations by

calculating the geometry optimized energies of HCO3, H2CO3 and H+.

3.4.4 Machine Learning Models

Model Architecture and Training

To obtain E
o, �GDPFE, and �GHBind

for the remainder of the ylide library, we trained

message passing neural networks using Chemprop to predict these properties. The original

software package was wrapped in custom code to allow for more flexibility during model

training and to allow us to predict all 3 energies at once. In the model, the SMILES of Y

is used to form a graph representation of the molecule. Atom and bond feature vectors are

built for each molecule. Chemprop by default only uses atom and bond features and does not

add molecular level features to the representation after convolution. We used the Chemprop

default atom and bond features. Specifically, the atom features are (i) the atomic number,

(ii) the number of directly bonded neighbors, (iii) the formal charge, (iv) the chiral tag, (v)

the number of connected H’s, (vi) and the hybridization. These are all one hot encoded,

resulting in a vector length of 130. The bond features are, (i) the bond type (single, double,

triple), (ii) the aromaticity, (iii) the conjugation, (iv) and whether the atom is in a ring.

The atomic and bond feature vectors are then convolved by passing them through message

passing (MPNN) layers, after which the atom features were aggregated into a molecular

vector representation by taking the mean of all the atom vectors. This vector is then passed
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into a traditional feed forward neural net (FFN) readout architecture that relates the vector

representation to the properties of interest.

We used a random split of size 70:10:20 to form the training, validation and test set

respectively. When training our model on this type of split, we chose to train 10 models in

total with 10 different random splits in order to perform a fair evaluation. The models were

trained using mean squared error as the loss function with and Adam optimizer. Bayesian

hyperparameter tuning was performed using the Optuna python library. Using the best

validation loss to monitor hyperparameter performance and the CMA-ES algorithm imple-

mented in Optuna, we were able to optimize the MPN hidden size, MPN depth, dropout

fraction, learning rate, batch size, FFN hidden size, and the FFN depth. All code for hyper-

parameter tuning and training can be found at https://github.com/jmaalouf23/gnn.

3.4.5 N-Ammonium Ylide Synthesis

The general synthesis procedure was adapted from Saito et al. [46] with the general steps

indicated in Figure 3-9.

Figure 3-9: General synthesis steps to make N-ammonium ylides when starting from a
carboxylic acid, as shown in 3.4.5.

Procedure 1: Starting from Carboxylic Acid

1. Step 1: Acyl Chloride Formation

A round-bottom flask was charged with carboxylic acid (1.0 equiv.) and a magnetic
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stirring bar. The flask was then evacuated and backfilled with argon. Depending on

the carboxylic acid solubility, either dry CH2Cl2 or dry THF (0.2 –0.3M) was used,

and the resulting solution was cooled to 0 °C. DMF (3–5 drops) was added and oxalyl

chloride (1.5–2.0 equiv.) was added dropwise over 10 min to the reaction mixture.

After addition, the reaction mixture was stirred for 1 h at 0 °C and 2 h at laboratory

temperature. The reaction mixture was then concentrated under reduced pressure to

remove any excess oxalyl chloride and afforded the desired acyl chloride. The crude

acyl chloride was used directly in the following step without further purification.

2. Step 2: dimethylhydrazide formation

A round-bottom flask charged with a magnetic stir bar was evacuated and backfilled

with argon twice. The flask was charged with N,N-dimethyl hydrazine (2.1 –3.0 equiv.)

and dry CH2Cl2(0.2 –0.3 M) and the resulting solution was cooled to 0 °C. To this

solution, acyl chloride (1 equiv.) was added dropwise over 15 min and the reaction was

stirred for 30 min at 0 °C and 3 h at laboratory temperature. The reaction mixture was

diluted with CH2Cl2(10 –50 mL) and 1 M aq. NaOH (20–50 mL), the organic phase was

separated, and the aqueous phase was extracted with CH2Cl2 twice. Combined organic

phases were dried over MgSO4, filtered, and concentrated under reduced pressure. The

crude hydrazide was used directly in the following transformation, with no further

purification.

3. Step 3: N-methylation of hydrazide

A round-bottom flask charged with a hydrazide (1.0 equiv.) and a magnetic stir bar

was evacuated and backfilled with argon twice. Dry MeCN (0.10 –0.25 M) was added,

followed by the addition of trimethyloxonium tetrafluoroborate (1.1 equiv.) in one

portion. The resulting homogeneous solution was stirred at laboratory temperature

for 30 min. Then the reaction mixture was concentrated under reduced pressure to

afford a solid residue. The crude ylide salt was recrystallized from refluxing EtOH then

washed with Et2O and EtOH to afford pure ylide salt.
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Procedure 2: Starting from Acyl Chloride

1. Step 1: N-acyl-N’, N’- dimethylhydrazide formation

A round-bottom flask charged with a magnetic stir bar was evacuated and backfilled

with argon twice. The flask was charged with N, N-dimethyl hydrazine (2.1 –3.0 equiv.)

and dry CH2Cl2(0.2 –0.3 M) and the resulting solution was cooled to 0 °C. To this

solution, acyl chloride (1 equiv.) was added dropwise over 15 min and the reaction was

stirred for 30 min at 0 °C and 3 h at laboratory temperature. The reaction mixture was

diluted with CH2Cl2(10 –50 mL) and 1 M aq NaOH (20 –50 mL), the organic phase was

separated, and the aqueous phase was extracted with CH2Cl2twice. Combined organic

phases were dried over MgSO4, filtered, and concentrated under reduced pressure. The

crude hydrazide was used directly in the following transformation, with no further

purification.

2. Step 2: N-methylation of hydrazide

A round-bottom flask charged with hydrazide (1.0 equiv.) and a magnetic stir bar

was evacuated and backfilled with argon twice. Dry MeCN (0.10 –0.25 M) was added,

followed by the addition of trimethyloxonium tetrafluoroborate (1.1 equiv.) in one

portion. The resulting homogeneous solution was stirred at laboratory temperature

for 30 min. Then the reaction mixture was concentrated under reduced pressure to

afford a solid residue. The crude ylide salt was recrystallized from refluxing EtOH then

washed with Et2O and EtOH to afford pure ylide salt.

3.4.6 NMR

For solid samples, NMR samples were prepared by creating a stock solution of 25 mg of

sample in 1 mL of d3-MeCN. Then 700 µL of this stock solution was loaded into an NMR

tube.

If the sample was a liquid or oil, we took 25 µL of the ylide and diluted it in 1 mL of

d3-MeCN. A 700 µL aliquot of this stock solution was then pipetted into an NMR tube and

run.
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3.5 Supplementary Figures

Figure 3-10: a) Ylides that contain at least one halogen in the set F, Cl, Br,I. It is possible
for molecules in this plot to contain multiple halogens, in which case the ylide was plotted
for each case. b) Ylides containing at least one of the amine types specified in the legend. c)
Ylides containing alcohols and ethers. It is possible for other functional groups to exist on
the molecule, such as amines or halogens. d) Ylides containing P atoms. e) ylides containing
sulfur atoms. f) Ylides that contain only carbon atoms (excluding the ylide motif). No other
functional groups are present on the molecule in this case.

79



Figure 3-11: Histograms of a) Eo, b) �GDPFE, and c) �GHbind from calculations performed
at the M062X/def2-SVPD level of theory.

Figure 3-12: Scatter plots from calculations performed at the M062X/def2-SVPD level of
theory of a) E

o vs �GDPFE, b) E
o vs �GHbind

, and c) �GHbind
vs �GDPFE.
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Figure 3-13: Histogram of the wall time of each ylide, ylide radical, and protonated ylide
calculation.

Ylide (Y) Ylide Radical (Yrad) Protonated Ylide (Yh)

Wall Time/molecule (h) 0.95 2.56 1.28

Table 3.4: Table of the average wall time per molecule of each of the three species in the
ylide catalytic cycle from calculations at the M062X/def2-SVPD level of theory with SMD
solvation in acetonitrile.
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Figure 3-14: Selected candidates that were synthesized in this work.
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3.5.1 NMR Spectra

Figure 3-15: NMR Spectra of Y1 taken in deuterated MeCN.
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Figure 3-16: NMR Spectra of Y2 taken in deuterated MeCN.
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Figure 3-17: NMR Spectra of Y3 taken in deuterated MeCN.
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Figure 3-18: NMR Spectra of Y6 taken in deuterated MeCN.
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Chapter 4

Incorporating Machine Learning into the

prediction of Organic PCET Redox

Potentials in Multiple Solvents

Abstract

Redox potentials of proton coupled electron transfers (PCETs) are important reaction prop-
erties that dictate capacities in energy storage systems such as redox flow batteries. They
can be calculated using techniques such as DFT, accompanied by implicit solvation to han-
dle environmental effects, but recently researches have turned toward fast and accurate data
driven models as a way to help bypass the need for repeated large-scale QM calculations dur-
ing high throughput computational screening of electroactive materials. Herein, we explore
the degree to which machine learning models can be used to calculate the redox potentials
of PCETs referenced to H2/H+. We compiled 75 experimental PCET redox potentials from
various literature sources and compared a baseline DFT + SMD approach with another that
replaces SMD implicit solvation with a graph convolutional neural network (GNN) trained
on 106 COSMO-RS calculation. We show that at the B3LYP/6-31G(2df,p) level of theory,
this new approach results in an average improvement of 186 mV. We also show that GNNs
that predict gas phase values for �Hf and �So can also be used in certain cases. Specif-
ically, for 2 electron PCETs, we obtain a MAE of 189 mV, in line with DFT calculations
at the same level of theory. However, for 1 electron PCETs the approach is not valid, as
MAEs of over 1V are obtained. These finding demonstrate the degree to which ML models
that predict gas phase molecular thermochemistry can be incorporated into workflows for
the large scale calculations of redox potentials.
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4.1 Introduction

Electrochemical equilibrium potentials are fundamental thermodynamic quantities that de-

termine the propensity of a molecule to accept or donate an electron. Redox reactions as a

general class of reactions are prevalent in areas such as photovoltaics, electrocatalysis, energy

storage, and biological processes. However, each application tends to involve different classes

of molecules that undergo electron transfers in drastically varying solvent environments (wa-

ter, acetonitrile, THF, DME, IPA, etc.). The ability to ascertain the equilibrium potential

of a redox reaction for an arbitrary redox couple in an arbitrary solvent would give great

insight to the design of optimal redox couples in a myriad of fields.

Two specific applications that would benefit from information on the redox potential

include redox mediated electrocatalysis and non-aqueous organic redox flow batteries. In

electroorganic synthesis, redox mediators are species that are activated at an electrode and

then go on to subsequently react with the intended substrate via a chemical reaction. Redox

mediators are typically used because they can be oxidized at much lower potentials than

what is usually required to directly activate the substrate. Additionally, finer control over

the redox potential and thus the thermodynamics of the system is available through means

such as chemical functionalization of the redox mediator. In principle, this functionalization

results in a rich design space, but it cannot be adequately investigated experimentally. For

this reason, being able to rapidly calculate the redox potential of redox mediators could help

in thorough searches of chemical space for candidate redox mediators for a given reaction.

Redox flow batteries are an energy storage technology based on the oxidative and reduc-

tive cycling of a redox couple and offer key benefits when compared to conventional elec-

trochemical energy storage technologies such as batteries. In particular, they allow for the

decoupling of energy and power density. RFBs based on organic redox couples are cheaper

and more environmentally friendly than their traditional metal ion counterparts. Addition-

ally, their solubility in various organic solvents in addition to water is also desirable, since

these solvents enable larger cell voltages due to their wider electrochemical stability windows.

The difference in standard redox potential (operation voltage), along with solubility of

the active species and the number of electrons involved in the redox reaction, are the key
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parameters that can dictate the energy density of RFBs. Some examples of typical classes

of molecules used in organic RFBs include quinones, viologens, nitroxides, methoxyben-

zenes, and phenazines, both in aqueous and non-aqueous organic systems. These classes of

molecules offer a high degree of tunability of over their standard redox potentials through

the selective addition of functional groups at various positions in the molecule. This tun-

ability can result in thousands of potential redox couple candidates, and even more system

configurations when different solvents are considered. This makes it infeasible in some cases

to experimentally investigate a meaningful portion of this chemical space if one is in search

of promising candidates for energy dense RFBs. Instead, computational modeling is often

used to screen candidates in a high throughput fashion by using molecular properties such as

redox potentials as a screening parameter. Typical computational approaches calculate the

standard redox potential by exploiting the relationship to the Gibbs free energy of reaction:

E
o =

��rG

nF
(4.1)

Here is the free energy change of the redox reaction and can be computed via the rela-

tionship:

�rG =
X

i

⌫i�Gi (4.2)

where ⌫i is the stoichiometric coefficient, n is the number of electrons transferred during

the reaction, and F is Faraday’s constant. When calculating �Gi for a given species i , the

free energy is typically divided into the gas phase free energy and solvation free energy:

�Gi = �Gi,gas +�Gi,solv (4.3)

Each of these free energy terms can be calculated from any one of many techniques

such as DFT, MD, wave function methods, etc. with the incorporation of some implicit or

explicit solvation method when calculating the solvation free energy (PCM, SMD, COSMO-

RS, etc). The overall relationship between the previously mentioned free energies is typically

summarized in the following Born-Haber cycle (Figure 4-1). For a redox reaction
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A(s) + ne
� ��*)�� B(s) (4.4)

we can draw:

Figure 4-1: Born-Haber cycle, demonstrating how the free energy of a redox reaction can be
broken up into its constituent gas phase and solvation free energies. Note that charges on A
and B are implicit, such that conservation of charge is maintained.

and decompose the relevant free energy into

�rGsolv = �rGgas +�GB,solv ��GA,solv (4.5)

where,

�rGgas = �GB,gas ��GA,gas ��Ge�,gas (4.6)

�Ggas is the gas phase free energy of formation and �Gsolv is the solvation free energy.

�rG indicates a quantity associated with a reaction. It is also useful to recall that the free

energy can be decomposed into enthalpy and entropy terms via the equation:

�rG = �rH � T�rS (4.7)

where expressions similar to equation (4.2) can be used for �rH and �rS

An important note is that �rG is often taken in conjunction with a reference electrode

half-reaction. Some popularly used reference electrodes include the standard hydrogen elec-

trode (SHE) in water and the Ferrocene/Ferrocenium redox couple in non-aqueous solvents.

When chosen properly, referencing to a reference electrode reaction can avoid the need to
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calculate the free energies of species such as electrons and other ions. In particular, this is

the case for proton coupled electron transfers (PCETs), a class of redox reaction prevalent

throughout electrochemistry. PCETs can be generally described by the following:

XHn(s) ��*)�� X(s) + nH
+(s) + ne

�(g) (4.8)

In this case, the same number of electrons and protons are transferred in the reaction. As

an example of a well-chosen reference reaction, for a PCET, if one uses the popular normal

hydrogen electrode (NHE) as a reference shown in (4.9).

XH2(s) ��*)�� X(s) + 2H+(s) + 2e�(g) (4.9)

Where the proton is solvated in the same solvent in which the PCET occurs, resulting

in the following overall reaction:

XH2(s) ��*)�� X(s) +H2 (4.10)

From (4.10) one can see it is no longer necessary to calculate any thermodynamic values

for charged species such as protons or electrons to obtain a redox potential referenced to

NHE(s). Specifically, when referenced to NHE(s), the reaction above can be written as:

ENHE(s) = �
�G

o
X(s) +�G

o
H2
(g)��G

o
XH2

(s)

nF
(4.11)

This avoids a common assumption that must be made when computationally determining

redox potentials vs SHE. Typically, the value of Eabs vs SHE , which is the value of SHE

referenced to vacuum, is assumed to be 4.422 volts based on computational studies. However,

others have reported values varying by a few hundred mV. Thus, the value of Eabs vs SHE

can be a source of error for any method that relies on its precise value, and it is noteworthy

that it is not required to calculate V vs NHE(s) for PCETs.

While there have been many efforts validating the use of cheaper computational methods

to compute the desired energies required to calculate a redox potential, which can help speed

up large scale computational screening efforts for potential molecules to serve as redox couples
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in RFBs, there is still a push to lower the computation time while maintaining accuracy and

generality. Rapid protocols for computing reasonably good free energies and solvation free

energies could be used in high-throughput screening studies to determine molecular and

solvent contributions to stabilizing the oxidized or reduced state of a given reactant, which

has been shown to be a key contribution in obtaining accurate predictions. In this vein,

machine learning has been shown to be a useful tool in the development of rapid and general

models to predict various molecular properties. Building machine learning models trained on

redox potential data to directly predict is likely not possible as large, (N > 105), diverse, and

curated datasets for this property do not exist. Instead, an abundance of thermochemical

data of organic molecules exists which can be used to build models and predict the necessary

values shown in equations (4.1) and (4.3) to obtain E . Incorporating ML into the prediction

of redox potentials has been demonstrated in a few different ways, but these studies are either

limited to very specific classes of molecule or never when consider redox reactions in multiple

solvents [55, 51, 2, 17].

Here in, we present and validate two approaches for incorporating thermochemical ma-

chine learning models into the prediction of 72 organic PCET reactions in 5 solvents (4-2). In

the first proposed method, we demonstrate a mixed DFT-machine learning approach where

gas phase free energies are predicted using DFT calculations (B3LYP or M062X) and the

solvation energy is determined using a graph convolutional network that has been trained

on 106 computational solvation free energies at the COSMO-RS level of theory. Secondly,

we present the incorporation of fast and accurate machine learning models that can predict

�Hf , �S
o , �Gsolv for diverse sets of organic molecules and solvents. These thermochemical

values are then used to calculate vs NHE(s) of PCETs as is shown in equation (4.1) resulting

in a pure machine learning based approach to calculating redox potentials. In this second

approach, �Hf and �S
o are predicted using graph convolutional networks (GNNs) trained

on 105 gas phase DFT calculations while is determined using the same model as before (GNN

that has been trained on 106 computational solvation free energies at the COSMO-RS level

of theory). We also compare the accuracy and temporal requirements of our approaches

to traditional computational methods for calculating standard redox potentials (DFT with

implicit solvation such as SMD). The described new approaches are validated on 72 exper-
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imental PCET reactions from the literature. We demonstrate that when comparing our

machine learning models to separate DFT calculations at the same level of theory that the

ML model was trained on, we are able to recover similar accuracy on our experimental data

set, validating our approach.

Figure 4-2: Summary of all approaches used to calculate redox potentials. Approach 1 uses
DFT is used to calculate gas phase thermodynamics along with SMD to account for solvation.
Approach 2 uses DFT to calculate gas phase thermodynamics and uses a machine learning
model to obtain the solvation free energy (�Gsolv). Approach 3 uses a machine learning
model to predict gas phase free energies (�Hf ,�S

o) and a separate machine model (same
as Approach 2) to predict �Gsolv
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4.2 Datasets

4.2.1 E
o

When validating the accuracy of our computational approaches, we compared our predictions

to two classes of experimentally obtained PCET redox potentials, summarized in Table 4.1:

Class Reaction n N
1 XH2

��*)�� X + 2H+ + 2e� 2 60
2 XH ��*)�� X +H

+ + e
� 1 12

Table 4.1: Classes of electron transfer reactions considered in this work. We considered both
1 and 2 electron proton coupled electron transfers.

Values for redox potentials in each class were aggregated from various literature sources

[68, 21]. The data set consists of experimental measurements in 5 different solvents com-

monly used for electrochemistry (water, acetonitrile, tetrahydrofuran, dimethylformamide,

and isopropyl alcohol). Two techniques were predominantly used to experimentally deter-

mine redox potentials. The first was cyclic voltammetry, a more common technique where

E
o is the midpoint of the oxidative and reductive peaks in a potential sweep[21]. The sec-

ond technique was based on open circuit techniques, showing high accuracy for non-aqueous

proton coupled electron transfers[68].

4.2.2 �Hf , �S
o, and �Gsolv

Data sets for each of the 3 given thermochemical properties were taken from previous liter-

ature sources. For �Hf and �S
o the QM9 database was adapted to remove all F contain-

ing species resulting 130,000 DFT calculations at the B3LPY/6-31G(2df,p) level of theory

[41, 45, 19]. The data sets consisted of H, C, O, and N containing molecules up to nine

heavy atoms. For entropy, only the most stable conformer was considered. For �Gsolv the

CombiSolv-QM database was used, which is a dataset of 106 computational solvation free

energies calculated at COSMO-RS level of theory[63]. CombiSolv-QM considers 11029 so-
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lutes with 284 common solvents and contains the elements H, B, C, N, O, F, P, S, Cl, Br,

and I.

Quantity N Elements Level of Theory Reference
E

o 72 H, C, N, O, S, Cl Experiment [68, 21]
�Hf 1.3*105 H, C, N, O B3LPY/6-

31G(2df,p)
[41, 45, 19]

�S
o 1.3*105 H, C, N, O B3LPY/6-

31G(2df,p)
[41, 45, 19]

�Gsolv 1.3*105 H, B, C, N, O, F, P, S,
Cl, Br, and I

COSMO-RS [63]

Table 4.2: Summary of datasets for various thermochemical quantities used to build data
driven models in this work.

4.3 Methods

4.3.1 DFT Calculations

DFT calculations were performed using Gaussian 16 with the B3LYP functional and a 6-

31++G** basis set. Initial 3D coordinates were obtained from SMILES strings using Open

Babel software to generate the starting conformer. Solvation energies were included using

continuum solvation models (SMD) with Bondi radii. This work used the Extreme Science

and Engineering Discovery Environment (XSEDE) Expanse SDSC.

4.4 Results and Discussion

4.4.1 Machine Learning Models

Machine learning models were built using Pytorch and Chemprop software [71]. Training was

performed using the MIT Supercloud on Nvidia Volta V100 GPUs [1]. In order to implement

approach 2 and 3, we developed 3 separate machine learning models trained on distinct data

sets to predict �Hf ,�S
o, and �Gsolv. Depending on the prediction task, each model takes
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in one or two SMILES strings as inputs and outputs the corresponding thermochemical

value. We chose to implement a graph neural network architecture for each model, as they

are highly nonlinear models that have been shown to accurately relate various chemical

properties to their molecular structure. Briefly, GNNs represent molecules as a graph with

atoms as nodes and bonds as edges, and can importantly capture the connectivity of atoms

within a molecule. They do however miss out on discrete 3-dimensional information that

can be important for the prediction of certain quantities, such as �S
o where conformational

information can greatly affect values. In these models, each atom and bond are assigned a

given set of features that are convolved multiple times through message passing steps that

use parameters specific to the training data, resulting in unique molecular representations

for each prediction task.

Machine Learning Models for Solvation

Figure 4-3: Architecture of our model to predict solvation free energies. SMILES strings
of the solute and solvent are transformed into graph representation where atom and bond
features are assigned. Convolutions are performed with a GNN to form embedding that are
concatenated and then passed through an MLP for property prediction.

The specific architecture we used to build our model to predict solvation free energies

can be summarized in Figure 4-3. We used a state-of-the-art directed message passing

neural network implemented with Chemprop software, build on top of Pytorch7. The solvent

SMILES and solute SMILES are each passed through their own distinct GNN to form a

96



graph representation using the open source cheminformatics software RDkit. Atom and bond

feature vectors are built for each molecule. Chemprop by default only uses atom and bond

features and does not add molecular level features to the representation after convolution.

We used the Chemprop default atom and bond features. Specifically, the atom features

are (i) the atomic number, (ii) the number of directly bonded neighbors, (iii) the formal

charge, (iv) the chiral tag, (v) the number of connected H’s, (vi) and the hybridization.

These are all one hot encoded, resulting in a vector length of 130. The bond features are,

(i) the bond type (single, double, triple), (ii) the aromaticity, (iii) the conjugation, (iv) and

whether the atom is in a ring. The atomic and bond feature vectors are passed through

MPNNs to form distinct latent molecular representations for both the solvent and solute. In

particular, for each GNN/MPN we implemented 4 rounds of convolutions and each message

passing MLP for the convolution steps consisted of a single hidden layer with 300 nodes.

After performing all the convolutions, the atom features were aggregated into a molecular

vector representation by taking the mean of all the atom vectors. These vectors are then

concatenated into a single vector embedding that can be passed into a traditional MLP

readout architecture that relates the vector representation to the solvation free energy. The

final dimension of this embedding was 600. This concatenated vector was then fed into a

readout MLP that consisted of two hidden layers of size 300, with the final output being the

solvation free energy.

We used a random split of size 70:10:20 to form the training, validation and test set

respectively. When training our �Gsolv model on this type of split, we chose to train 10

models in total with 10 different random splits in order to perform a fair evaluation. The

models were trained using mean squared error as the loss function with and Adam optimizer.

The models were trained for 100 epochs with a batch size of 50 and an initial learning rate

of 10-3 which was coupled with a patience of 5 to reduce the learning rate by a factor of 2

if no improvement was observed on the validation set over 5 epochs. Hyperparameters were

chosen based on similar models[63]. We chose not to optimize our hyperparameters grid

search or other more sophisticated methods due to constraints on the time required to train

our models.
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Figure 4-4: Parity plot of GNN used to fit �Gsolv .RMSE in kcal/mol.

Model MAE (kcal/mol) RMSE (kcal/mol)
�Gsolv 0.140 ±0.013 0.216 ± 0.0

Table 4.3: Performance metrics of solvation free energy GNN models.

We find that for we are able to predict �G of with an average MAE of 0.071 kcal/mol

(Table 4.3) which is on par with some of the best ML models reported in the literature [63].

The MAE for the training and test sets in this case are of equal value, suggesting that our

model has good generality and will have trustable predictive power when used on the E
o

dataset. Using equation 4.1 the MAE would correspond to an error of 8.5 mV for n=1 and

4.25 mV for n=2, although this is likely just a lower bound on the error as the molecules in

the E
o differ in structure from the Gsolv dataset.

The main caution to consider for this model is that because each data point consists of

a solvent and solute pair, a random split of the train and test set may result in an overly

optimistic model. This is because there is some information leakage between the training

and test sets, as there could be solvents in the training set that also exist in the test set,

although each solute-solvent pair is unique.
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Machine Learning Models for �Hf and �S
o

Figure 4-5: Architecture of our model to predict solvation free energies. SMILES strings
of the solute and solvent are transformed into graph representation where atom and bond
features are assigned. Convolutions are performed with a GNN to form embeddings that are
concatenated and then passed through an MLP for property prediction.

The models used to predict �Hf and �S
o were very similar to the one used to predict,

�Gsolv with the main difference being that for each model there is only one molecular input

instead of two. For each GNN/MPN we implemented 4 rounds of convolutions and each

message passing MLP for the convolution steps consisted of a single hidden layer with 300

nodes. The convolutions incorporated both bond and atom features (the same features as

the �Gsolv model). Additionally, after performing all the convolutions, the atom features

were aggregated into a molecular vector representation by taking the mean of all the atom

vectors. The final dimension of this vector was 600. This vector was then fed into a readout

MLP that consisted of two hidden layers of size 300, with the final output being either the

enthalpy of formation or the standard entropy.

Model MAE RMSE
�Hf (kcal/mol) 0.450 ±0.026 0.604 ± 0.025
�S

o (cal/molK) 0.297 ± 0.031 0.404± 0.025

Table 4.4: Results of GNN models to predict gas phase thermochemistry. Error bars are the
standard deviation of 10 random splits and trained models.
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Figure 4-6: Parity plot of GNN used to fit �Hf (a) and S
o (b).

The models were each trained three times using random 70:10:20 splits of the correspond-

ing datasets using the mean squared error as the loss function with an Adam optimizer. The

models were trained for 150–200 epochs with a batch size of 50 and an initial learning rate

of 10-3 which was coupled with a patience of 5 to reduce the learning rate by a factor of 2 if

no improvement was observed on the validation set over 5 epochs.

The results of the �Hfmodel and S
omodels are summarized in Table 4.4. For �Hf , the

MAE of 0.195 kcal/mol corresponds to a redox potential error of 19.5 mV for n=1 and 9.75

mV for n=2. On the other hand, for Sothe MAE of 0.297 cal/molK corresponds to an error

of 3.8 mV for n=1 and 1.9 mV for n=2. Fitting S
oproved to be more difficult, this is likely

because atom connectivity is likely not the most dominant factor in mapping molecules to

their entropies as conformational information is a crucial factor is determining entropy, but

no 3D positions were given for the ML model. Overall, the result of the 3 separate models

for �Gsolvproved accurate enough to proceed with verifying whether they could be used to

obtain values of Eo.

4.4.2 Prediction of Redox Potential

Performance of DFT and SMD

E
o was obtained from the approaches in Figure 4-2, where molecular thermochemistry was

related to E
o using equations 4.1, 4.3, and 4.2. The results of all approaches at the B3LYP/6-
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31(2df,p) level of theory for calculating the redox potential are summarized in Table 4.5. The

other levels of theory investigated in this work can be found in the supporting information.

Approach MAE(mV) MAEn(mV) RMSE(mV) RMSEn(mV)

DFT-SMD 216 294 (n=1) 229 308 (n=1)
206 (n=2) 217 (n=2)

DFT-ML 137 234 (n=1) 156 247 (n=1)
125 (n=2) 141 (n=2)

ML-ML 285 1037 (n=1) 428 1039 (n=1)
189 (n=2) 264 (n=2)

Table 4.5: Performance of different approaches depending on the number of electrons passed
during the reaction (n). DFT calculations are at the B3LYP/6-31(2df,p) level of theory.

In order to set a baseline for the performance of approaches 2 and 3 to calculating redox

potentials using DFT, we first investigated the results of using DFT at various levels of

theory complemented with SMD implicit solvation. In the literature, B3LYP is one of the

most commonly used functional for articles that report calculating redox potential, often

accompanied by some type of Pople basis set [10, 44, 33]. However, to test the importance

of functional choice, we utilized both the B3LYP and M062X functionals, along with the

6-31G(2df,p) (same as QM9 dataset) and 6-31++G** basis sets. We find that using M062X

over B3LYP resulted in a 250 mV improved accuracy on average. The greatest increase in

accuracy came when n=1, implying that M062X is able to more accurately model radical

thermochemistry. The accuracy of the B3LYP/6-31(2df,p) calculation are of note since they

are the only ones directly comparable to ML models for �Hfand S
o. In this case, the DFT-

SMD approach achieves an MAE of 216 mV, with the n=2 redox reactions having an 88 mV

lower error.

Approach 2 DFT + ML

Results of Approach 2 (DFT+ML) are shown in Figure 4-7a,b and Table 4.5. They indicate

that using the B3LYP/6-31(2df,p) level of theory for gas phase thermochemistry and an

ML model to predict solvation free energy, we recover an accuracy of 137 mV for the 75
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calculated experimental data points. Including solvation results in an improved accuracy of

approximately 90 mV when compared to redox potentials calculated from gas phase DFT

calculations, demonstrating how crucial information about the solvation environment is to

accurate predictions. The results of using the B3LYP/6-31++G**, M062X/6-31(2df,p), and

M062X/6-31++G** levels of theory can be found in the supporting information. When

using M062X, we observe that the accuracy that approaches 1 and 2 are on par with each

other. Specifically, approach 2 has a 37 mV higher MAE at the M062X/6-31++G** level of

theory and a 10 mV higher MAE at the M062X/6-31(2df,p) level of theory than approach 1.

We note that the ML model for �Gsolv is trained on COSMO-RS calculations, which is

known to be one of the most accurate methods for obtaining solvation free energies and in

general should give better result than using a technique such as SMD. This would imply

that in principle the approach 2 should give better results than approach 1, but this is only

observed when using B3LYP as the functional. From approach 1 we learned that M062X

gives more accurate results overall and when compared to B3LYP, but both functional have

their own systematic errors. Error cancelation is a concept that can lead to more accurate

results for a given technique, even though the way the physics is modeled is not superior in

any way. So in this case, it is possible that for M062X, there is fortuitous error cancellation

with the SMD solvation results that give more accurate MAEs when compared to using the

COSMO-RS trained �Gsolv ML model. As a result, even though the COSMO-RS results

could give more accurate solvation free energies, the overall value for Eo has a higher error.

Additionally, the ML models have their own error that is compounded onto the error inherent

to COSMO-RS, so it is possible the assumption that approach 2 should perform better is

flawed.

Approach 3 ML + ML

Approach 3, which involves replacing both the gas phase DFT and the SMD solvation cal-

culations used in Approach 1 with ML models, shows poorer performance overall. This

approach achieves an overall MAE of 285 mV which is 148 mV higher than approach 2 and

69 mV higher than approach 1. When considering accuracy as a function of n we see that

approach 3 is in par with approaches 1 and 3 when n=2 (Table 4.6), but when n=1 approach
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3 is not predictive at all with an MAE over 1V. This indicates that the error in ML models

that predict gas phase thermochemistry is still too large to accurately predict redox poten-

tials in general, but if one is only considering 2 electron transfer PCETs then approach 3

is usable for initial screening. While this class of redox reaction seems limiting, it applies

to a large quantity of redox couple candidates for applications such as redox flow batteries.

The reason approach 3 does not preform well for n=1 PCETs is likely because 1 electron

processes produce radicals, meaning the only difference between the reduced and oxidized

species is the loss of a hydrogen atom (H•) and since our GNN ML models only consider

the molecular graph of the heavy atoms on the molecules it may not be able to accurately

differentiate the energies of the reduced and oxidized species. This effect is diminished when

n=2 because we effectively have a C–OH group becoming a C––O functional group, which

is a bigger difference and is easier for the ML model to capture.

As previously mentioned, we observed greater accuracy with the Minnesota functionals,

but comparing approach 3 to these calculations would not be a fair comparison since the ML

models were trained with data at the B3LYP/6-31G(2df,p) level of theory. With this said,

the disparity between 1 and 2 electron reactions can be mitigated through the proper choice

of functionals for training data or by including hydrogen atoms in the molecular graphs of

the GNNs used for �Hf and S
o. It is noteworthy that the machine learning models were

all trained on a diverse set of molecules that don’t include the those in the E
o data set, and

even so we are still able to obtain reasonable accuracy. This speaks to the generalizability of

our ML models and implies that they are learning reasonable representations of molecules

for the purpose of predicting redox potentials.

Solvent Dependent Performance

We attempted to determine how the accuracy of our approached varied based on the solvent.

Our Eo data set contained 5 different solvents, but the data density within each solvent varied

drastically at times. Water, MeCN and THF are represented in relatively equal amounts, but

DMF and IPA only have one data point, making conclusions drawn for these two solvents

tough to extrapolate. Focusing on water, THF, and MeCN we see that at the B3LYP/

(2df,p) level of theory there is no significant difference between the solvents for approach
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Figure 4-7: a,c: Parity plots of approach 2 where gas phase free energies are predicted
using DFT and solvation free energies are predicted using a machine learning model. DFT
calculations are at the B3LYP/6-31(2df,p) level of theory. b,d: Parity plots of approach
2 where gas phase free energies are predicted using an ML model and solvation free energies
are predicted using a machine learning model.

1 and a max difference of 60 mV between the three solvents for approach 2 (Table 4.6. It

appears as though for approach 3, THF and MeCN perform significantly worse, but this

is likely convoluted with the poor performance of approach 3 on n=1 PCETs. In the E
o

dataset when n=1 the solvent is either MeCN or THF, for water n is always 2, when we

compare the n=2 case for THF and MeCN we see that we recover similar accuracy across

the three solvents. The roughly constant accuracy among these three solvents could point

to the robustness of the �Gsolv ML model that we built and its ability to generalize across

different solvent. However, we should note that the redox potentials in the E
odataset are

referenced to V vs NHE which is given by equation (4.11), this equation indicates that the
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species required to calculate V vs NHE are the reduced and oxidized forms of the redox couple

along with H2 (potentially radicals in the case of n=1). It’s likely that the difference between

in �Gsolv between the reduced and oxidized species is not large, meaning the contribution

of �Gsolv to E
oeffectively cancels out.

Solvent MAE RMSE
DFT +
SMD
(mV)

DFT +
ML

(mV)

ML +
ML

(mV)

DFT +
SMD
(mV)

DFT +
ML

(mV)

ML +
ML

(mV)
DMF 194 69 97 194 69 97
IPA 183 83 111 183 83 111
THF 233 139 515 246 161 683

MeCN 235 190 539 262 218 697
Water 211 129 200 220 143 281

Table 4.6: Performance of different approaches on specific solvents. DFT calculations are at
the B3LYP/6-31(2dfp) level of theory.

4.5 Conclusion

We have presented two new approaches to incorporate ML into the calculation of organic

PCET redox potentials. First, we investigated replacing solvation free energy calculations

with graph based ML models instead of using implicit solvation techniques. Next, we deter-

mined if the gas phase DFT calculations could be replaced by ML models for �Hfand S
oin

approach 3. In general, we found that replacing using ML models to predict the solvation

free energy recovers similar accuracy to the standard DFT + ML regardless of the solvent,

but the accuracy is improved when considering only PCETs where n=2. Furthermore, when

using a pure machine learning based approach, the performance recovers accuracy on par to

approach 1 only when n=2, and we also observe that there is little solvent dependence. In

this case, when n=1 this approach cannot be used with predictive power. To address these

issues, it’s likely that new ML models would have to be trained with data sets that include

species such as organic radicals both in the gas phase and in various solvents. We expect
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these validated approaches can be used in the future to support high throughput screening

efforts of electroactive materials.
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4.6 Supporting Information

4.7 Figures

Figure 4-8: Comparison of performance of the DFT and DFT + ML approaches. Results
for all possible combinations of the functionals B3LYP and M062X and the basis sets 6-
31++G** and 6-31G(2df,p) are shown.
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Figure 4-9: Comparison of performance of the DFT + ML approach (approach 1) based on
solvent. Results for all possible combinations of the functionals B3LYP and M062X and the
basis sets 6-31++G** and 6-31G(2df,p) are shown.
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Figure 4-10: Comparison of performance of the DFT + ML approach (approach 1) based
on the number of electrons transferred during the reaction (n). Results for all possible
combinations of the functionals B3LYP and M062X and the basis sets 6-31++G** and 6-
31G(2df,p) are shown.

109



Figure 4-11: All molecules used in the E
o dataset with the solvent and redox potential vs

NHE indicated below.
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4.8 Tables

Approach MAE(mV) MAEn(mV) RMSE(mV) RMSEn(mV)

DFT-SMD 411 394 (n=1) 1931 427 (n=1)
413 (n=2) 2045(n=2)

DFT-ML 117 293 (n=1) 153 318 (n=1)
95 (n=2) 117(n=2)

ML-ML 285 1037 (n=1) 428 1039 (n=1)
189 (n=2) 264 (n=2)

Table 4.7: Performance of different approaches depending on the number of electrons passed
during the reaction (n). MAE= mean average error. MAEn = mean average error for a
specific n value. RMSE = root mean squared error.DFT calculations are at the B3LYP/6-
31++G** level of theory.

Approach MAE(mV) MAEn(mV) RMSE(mV) RMSEn(mV)

DFT-SMD 55 61 (n=1) 82 80 (n=1)
55 (n=2) 83 (n=2)

DFT-ML 92 44 (n=1) 122 55 (n=1)
98 (n=2) 128 (n=2)

ML-ML 285 1037 (n=1) 428 1039 (n=1)
189 (n=2) 264 (n=2)

Table 4.8: Performance of different approaches depending on the number of electrons passed
during the reaction (n). MAE= mean average error. MAEn = mean average error for a
specific n value. RMSE = root mean squared error.DFT calculations are at the M062X/6-
31++G** level of theory.
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Approach MAE(mV) MAEn(mV) RMSE(mV) RMSEn(mV)

DFT-SMD 66 53 (n=1) 100 80 (n=1)
68 (n=2) 102 (n=2)

DFT-ML 76 40 (n=1) 99 45 (n=1)
81 (n=2) 104 (n=2)

ML-ML 285 1037 (n=1) 428 1039 (n=1)
189 (n=2) 264 (n=2)

Table 4.9: Performance of different approaches depending on the number of electrons passed
during the reaction (n). MAE= mean average error. MAEn = mean average error for a
specific n value. RMSE = root mean squared error. DFT calculations are at the M062X/6-
31(2dfp) level of theory.

Solvent MAE RMSE
DFT +
SMD
(mV)

DFT +
ML

(mV)

ML +
ML

(mV)

DFT +
SMD
(mV)

DFT +
ML

(mV)

ML +
ML

(mV)
DMF 174 44 97 174 44 97
IPA 142 58 111 142 59 111
THF 296 160 515 337 213 683

MeCN 229 169 539 280 220 697
Water 478 102 200 2293 124 281

Table 4.10: Performance of different approaches on specific solvents. DFT calculations are
at the B3LYP/6-31++G**level of theory.

Solvent MAE RMSE
DFT +
SMD
(mV)

DFT +
ML

(mV)

ML +
ML

(mV)

DFT +
SMD
(mV)

DFT +
ML

(mV)

ML +
ML

(mV)
DMF 1.3 116 97 1.3 116 97
IPA 12 102 111 12 102 111
THF 63 55 515 77 72 683

MeCN 75 105 539 110 135 697
Water 53 96 200 79 127 281

Table 4.11: Performance of different approaches on specific solvents. DFT calculations are
at the M062X/6-31++G**level of theory.
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Solvent MAE RMSE
DFT +
SMD
(mV)

DFT +
ML

(mV)

ML +
ML

(mV)

DFT +
SMD
(mV)

DFT +
ML

(mV)

ML +
ML

(mV)
DMF 18 93 97 18 18 97
IPA 7.1 80 111 7.1 7.1 111
THF 61 55 515 85 65 683

MeCN 60 91 539 92 117 697
Water 72 77 200 106 100 281

Table 4.12: Performance of different approaches on specific solvents. DFT calculations are
at the M062X/6-31G(2df,p)level of theory.
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

5.2 Future Directions

This thesis work broadly aimed to address the challenges and complexities of increasing

plastic circularity. It is likely that many different technologies will need to be developed

in order to achieve this, and that fact is reflected in the diversity of tools and techniques

studied in this thesis. Specifically, we focused on 1) using electrochemistry to synthesize

lactones, which have the potential to serve as circular monomers 2) using high throughput

computational screening to design redox mediators that are specific to C-H bond energies

which can potentially deconstruct polystyrene and 3) using ML models to accelerate the

prediction of important properties of electroactive material which can aid in high throughput

screening projects.

In the case of lactonization, we have investigated a method for using electricity derived

from renewable sources to convert cyclohexanone into 5 and 6 membered substituted lac-

tones with an FE of approximately 20% using Pt electrodes and water as the sole oxygen

atom source. These products expand and complement the set of possible lactone products

synthesized from cyclohexanone via the Baeyer-Villiger reaction. Electrochemical kinetic

studies allowed us to propose a mechanism that involves the initial inner sphere activation

of water to form reactive oxygen surface species that can then react with cyclohexanone.
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With our studies of HAT redox mediator design, we demonstrated that we were able

to build a library of 20,000 ylide redox mediators and calculate their relevant catalytic

thermodynamic values and then match these quantities to different substrates to propose

structures that are tailored to different bond energies. We then experimentally validated

our proposed candidates for 1,3 diphenylpropane. Our calculations indicate that most ylide

structures have more than enough energy to activate the bonds in 1,3 diphenylpropane with

a much lower number of structures that for example can only activate the lowest energy C-H

bond on 1,3 diphenylpropane. Our ability to identify these candidates apriori could allow

us to access unique selectivities and FEs that would not be available by using a "random"

ylide structure.

Lastly, upon completing the project in chapter 3 we found that the screening could be

further accelerated using ML. We investigated two new approaches to incorporate ML into

the calculation of organic PCET redox potentials. First, we investigated replacing solvation

free energy calculations with graph based ML models instead of using implicit solvation

techniques. Next, we determined if gas phase DFT calculations could be replaced by ML

models for �Hfand S
o. In general, we found that replacing using ML models to predict the

solvation free energy recovers similar accuracy to the standard DFT + ML regardless of the

solvent. Furthermore, when using a pure machine learning based approach, the performance

recovers accuracy on par to approach 1 only when n=2, but when n=1 this approach cannot

be used with any predictive power. We expect these validated approaches can be used in

the future to support high throughput screening efforts of electroactive materials.

5.2.1 Lactonization

In chapter 2 we were able to demonstrate that we could electrochemically transform cyclic

ketones into lactones, mimicking aspects of the Baeyer-Villiger reaction, but with products

that are isomers of the Baeyer-Villiger reaction. Due to the polymerization thermodynamics

of the BV products, they tend to be more desirable. For this reason, future directions of lac-

tonization work include targeting the BV products, namely ✏ caprolactone. This will involve

the same experimental set up but require new catalyst design. The approach will involve

mimicking BV homogeneous and heterogeneous catalysts that use hydrogen peroxide as their
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O atom source. The crucial reactive intermediate to mimic will be the Criegee intermediate

that is proposed in the BV mechanism. This intermediate allows for the migration of a

carbon on the starting ketone, resulting in the ring expanded lactone that is observed from

the BV reaction. The new BV electrocatalysts will need to activate the ketone substrate in

a Lewis acidic way and likely have to form a peroxo surface oxygen species. With oxidative

electrochemistry, the -OOH group is tougher to observe on a catalyst surface (single oxygen

-OH and ––O species are more common), but it is a common intermediate during O2 reduc-

tion, so future directions could attempt to synthesize lactones at the cathode using oxygen

reduction intermediates.

5.2.2 vHTP screening of redox mediators for plastic deconstruction

The main future directions for projects 2 and 3 involve applying the tools that we built

to actually polystyrene. Plastic deconstruction was the motivation of the work, but the

analysis was done as a proof of concept with polystyrene model compounds such as 1,3,

diphenylpropane. To apply our work to polystyrene deconstruction, we will need to calculate

its properties and then screen ylide candidates based on the new polystyrene energies. These

candidates will then need to be synthesized in the lab and tested for their capabilities for

polystyrene deconstruction. It is likely that trying to use our designed HAT mediators for

polystyrene deconstruction will result in a lot of practical issues such as solubility of the

plastic and the synthesizability of the proposed mediators. For this reason, we will likely

need to propose various ylide structures for each desired energy so that we have various

options to choose from.

Upon completing these two projects, we also have developed a computational workflow

that will make any screening in the future much faster. There are various other applications

that would benefit from the computational screening performed in chapters 3 and 4. For

example, we could expand our scope to consider molecules outside the domain of HAT

redox mediators and consider redox mediators such as quinones, derivatives of NHPI, and

TEMPOH, although in these cases we may run into issues with being able to synthesize any

candidates that we are able to propose.
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