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Abstract

We study the problem of estimating the joint probability mass function (pmf) over
two random variables. In particular, the estimation is based on the observation of 𝑚
samples containing both variables and 𝑛 samples missing one fixed variable. We adopt
the minimax framework with 𝑙𝑝𝑝 loss functions, and we show that the composition of
uni-variate minimax estimators achieves minimax risk with the optimal first-order
constant for 𝑝 ≥ 2, in the regime 𝑚 = 𝑜(𝑛).
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Chapter 1

Introduction

1.1 Probability Mass Function (PMF) Estimation

1.1.1 Motivation

The vast realm of natural phenomena encompasses a multitude of phenomena that

are commonly postulated to possess inherent probabilistic characteristics. These phe-

nomena span a wide spectrum, including but not limited to written text, spoken lan-

guage, stock prices, genomic composition, disease symptoms, physical characteristics,

communication noise, traffic patterns, and various others. An underlying assump-

tion in the scientific community is that these phenomena are generated according to

an unknown distribution, which motivates the practical need to approximate such

distributions from observed samples. The fundamental objective is to discover a dis-

tribution, denoted as q, that effectively approximates the true but elusive distribution

p in a manner that aligns with the specific goals and requirements of the given context.

Surprisingly, despite numerous years dedicated to statistical research and investiga-

tion, the understanding of this problem remains relatively limited, underscoring the

intricacies involved and the complexity of the task at hand.

To formulate this problem in a rigorous manner, researchers often turn to the concept

of minimax performance, which provides a solid foundation for analysis [13]. In this

framework, an estimator is assessed based on its performance against the worst-case
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distribution, highlighting the importance of robustness and resilience in the face of

challenging situations. In this regard, our primary focus is directed toward deter-

mining the least worst-case loss achieved by any estimator, often referred to as the

minimax loss. This quantity captures the optimal performance attainable under the

most adverse circumstances, providing valuable insights into the effectiveness and re-

liability of the estimator.

The investigation of the minimax loss, along with the identification of the optimal

estimator that achieves it, carries significant practical implications. For instance, an

estimator characterized by a small KL-loss can greatly enhance the realms of data

compression and stock portfolio selection. Similarly, an estimator exhibiting a small

𝑙1 loss can yield superior performance in classification tasks, fostering advancements

in various domains.

In summary, the approximation of underlying distributions from observed samples

in natural phenomena poses a profound and challenging problem. By embracing the

minimax performance framework and judiciously selecting suitable loss functions, re-

searchers can delve into the investigation of optimal estimators and the determination

of the least worst-case loss. The pursuit of understanding and characterizing the mini-

max loss serves as a cornerstone of practical significance, offering valuable insights into

the robustness and efficacy of estimators in various domains. An estimator with a min-

imized minimax loss can contribute to advancements in data compression techniques,

stock portfolio selection, and classification tasks, fostering improved decision-making

processes and enhancing overall system performance. By unraveling the complexities

inherent in the approximation of underlying distributions, researchers can pave the

way for advancements in statistical modeling, data analysis, and algorithmic design,

enabling a deeper understanding of the probabilistic nature of diverse natural phe-

nomena and facilitating the development of more accurate and reliable estimation

techniques.
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1.1.2 Related Work

Within the realm of this challenging problem, early contributions have successfully re-

solved the minimax risk associated with estimating probability mass functions (pmfs)

under the 𝑙22 loss by identifying the minimax estimator [11, 10, 14]. These seminal

works shed light on the optimal strategies for pmf estimation under this loss func-

tion. Subsequent studies have extended these findings by determining the constant

of the first order for the minimax risk under other prominent divergences, such as the

Kullback-Leibler (KL) divergence, 𝑙1 loss, and 𝑓 -divergences [2, 5, 7]. These investi-

gations have contributed to a more comprehensive understanding of the performance

limits and optimal estimation approaches in different contexts.

1.2 Semi-Supervised PMf Estimation

1.2.1 Motivation

In recent decades, there has been a significant proliferation in the sizes of avail-

able datasets, surpassing the labeling efforts dedicated to them. Consequently, these

datasets exhibit heterogeneity, characterized by a substantial number of samples lack-

ing specific variables. This novel scenario necessitates a comprehensive theoretical

analysis that effectively addresses the challenges it presents. The estimators dis-

cussed in the preceding section are confined to operating within two distinct modes

within this framework: either disregarding complete samples in order to estimate

solely the marginal probability mass function (pmf) of the corresponding variable, or

excluding the incomplete samples to formulate an estimate of the joint pmf. Draw-

ing from established naming conventions in the machine learning literature (Pattern

Recognition), these modes are commonly classified as unsupervised and supervised es-

timation, respectively. Both modes exhibit inherent inefficiencies, thereby prompting

the development of estimators capable of effectively utilizing both types of samples,

commonly referred to as semi-supervised learning. The primary focus of this thesis

is to delve into the fundamental limitations of semi-supervised pmf estimators.
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Specifically, our study revolves around the case involving two random variables,

denoted as 𝑋 and 𝑌 , which are jointly distributed according to the probability dis-

tribution function 𝑝𝑋𝑌 . We are presented with two distinct datasets: m independent

and identically distributed (i.i.d.) samples of (𝑥𝑖, 𝑦𝑖) pairs drawn from the joint dis-

tribution 𝑝𝑋𝑌 , as well as 𝑛 samples solely comprising of 𝑥𝑗, drawn from the marginal

distribution 𝑝𝑋 . Our ultimate objective is to determine the minimax estimator of

the joint distribution 𝑝𝑋𝑌 , based on the observations obtained from these datasets.

As a primary outcome, we establish that the amalgamation of minimax univariate

estimators effectively accomplishes the correct first-order term of risk associated with

the semi-supervised estimation problem, particularly in the regime where 𝑚 = 𝑜(𝑛).

The exploration of semi-supervised pmf estimation carries important practical im-

plications. By developing estimators that can effectively leverage both complete and

incomplete samples, we can improve the accuracy and efficiency of various machine

learning applications. However, to fully harness the potential of semi-supervised pmf

estimation, it is crucial to prioritize a rigorous theoretical analysis. Such analysis

is necessary to understand and address the challenges posed by the heterogeneity

of datasets, and to develop robust estimators capable of effectively utilizing both

complete and incomplete samples. By delving into the fundamental limitations of

semi-supervised pmf estimators, we can make significant advancements in the field,

leading to improved data analysis, modeling, and decision-making in practical appli-

cations.

1.2.2 Related Work

To the knowledge of the author, the minimax pmf estimation problem with labeled

and unlabeled samples remains unexplored in the existing literature. In the multivari-

ate case, the analysis is complicated by nature’s control over the number of samples

with a fixed marginal. Previous works, such as [6] and [8], have addressed related

complications with slight variations. Unlike these works, where the number of sam-

ples is either generated from a fixed distribution or chosen adversarially, our study

focuses on the case where the number of samples is generated from a distribution

20



adversarially chosen by nature [6, 8].

1.3 Outline of the Thesis

In Chapter 2, we establish the necessary groundwork to prepare the reader for the

subsequent unveiling of results in this thesis, which will be presented in Chapter 3.

Chapter 4 encompasses the proofs for the theorems introduced in chapter 3, supple-

mented by relevant digressions. The appendix is dedicated to the proofs in Chapter

2 and the figures.
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Chapter 2

Preliminaries

2.1 Probability Mass Function (PMF) Estimation

In order to formulate the problem of PMF estimation in a rigorous manner, researchers

often turn to the concept of minimax performance, which provides a solid founda-

tion for analysis. Within this framework, any distribution 𝑝 over a discrete set X

corresponds to an element residing within the simplex denoted as ΔX:

ΔX = {𝑝 = (𝑝1, ...., 𝑝|X|) ∈ R|X| :

|X|∑︁
𝑖=1

𝑝𝑖 = 1} (2.1)

By considering two distributions 𝑝 and 𝑞, both of which belong to the simplex ΔX. ,

the loss function L(𝑝, 𝑞) serves as a metric to quantify the dissimilarity between the

true distribution 𝑝 and the estimated distribution 𝑞. It is important to emphasize

that the selection of an appropriate loss function is highly dependent on the specific

application domain being considered. For instance, in the context of compression

and investment applications, the Kullback-Leibler (KL) divergence has emerged as a

widely adopted loss measure. Conversely, classification tasks often leverage the 𝑙1 loss

as the pertinent measure of dissimilarity. Moreover, alternative loss functions such as

𝑙2, Hellinger distance, and 𝜒2 distance find utility in diverse applications, catering to

the unique characteristics and requirements of each respective field.

To further investigate the problem, we introduce the concept of a distribution
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estimator, which is a mapping denoted as 𝑞 : [X]* → ΔX, where [X]* represents

the set of finite sequences over the discrete set [X]. The distribution estimator, 𝑞,

associates each observed sample, 𝑥𝑛, from the set [X]* with a distribution 𝑞(𝑥𝑛) =

(𝑞1(𝑥
𝑛), ..., 𝑞𝑘(𝑥

𝑛)) over the discrete set X. We will denote by EX as the set of all

valid pmf estimators. The average loss of the estimator 𝑞, after observing 𝑛 samples

𝑋𝑛 = 𝑋1, ..., 𝑋𝑛, which are generated independently and identically according to an

unknown distribution 𝑝 ∈ Δ𝑘, serves as a good metric for the performance of the

estimator:

E𝑋𝑛∼𝑝𝑋 [L(𝑝, 𝑞(𝑋𝑛))] (2.2)

Of particular interest is the analysis of the worst-case scenario, where the performance

of the estimator 𝑞 is evaluated in relation to the most unfavorable distribution:

max
𝑝∈ΔX

E𝑋𝑛∼𝑝𝑋 [L(𝑝, 𝑞(𝑋𝑛))] (2.3)

This entails measuring the loss of the estimator 𝑞 under this worst-case distribution,

highlighting the importance of robustness and resilience in the face of challenging

situations. In this regard, our primary focus is directed towards determining the

least worst-case loss achieved by any estimator, often referred to as the minimax risk:

𝑟L𝑛 ≜ min
𝑞∈EX

max
𝑝∈ΔX

E𝑋𝑛∼𝑝𝑋 [L(𝑝, 𝑞(𝑋𝑛))] (2.4)

This quantity captures the optimal performance attainable under the most adverse

circumstances, providing valuable insights into the effectiveness and reliability of the

estimator.

2.1.1 𝑙22 Minimax PMF Estimation

Let us establish a concrete foundation for our discussion by focusing on the case of 𝑙22
loss functions. By limiting our scope to 𝑙22 loss functions, we can use it as a simplified

example to illustrate the mathematical techniques that we will frequently encounter.

It is worth mentioning that all the exercises presented below have long been included
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in textbooks [9, p. 349], with the earliest known reference found in [11].

Now, let’s consider what could be a suitable estimator under the 𝑙22 case. The

initial inclination might be to consider the maximum likelihood estimator, as it is

known to be asymptotically consistent and asymptotically efficient, thus leading to

an estimator with asymptotically minimal square error. However, it turns out that

the maximum likelihood estimator is not the optimal choice in-terms of worst case

risk when dealing with a finite number of samples. Let us demonstrate this fact. It

can be easily verified that for the problem of estimating the probability mass function

(pmf), the maximum likelihood estimator coincides with the empirical distribution of

the observed samples 𝑋1, ..., 𝑋𝑛:

𝑝(𝑥; {𝑋𝑖}𝑛𝑖=1) ≜
𝑇𝑥

𝑛

where we define 𝑇𝑥 ≜
∑︀𝑛

𝑖=1 1 {𝑋𝑖 = 𝑥}. To ensure clarity in our presentation, let’s

set 𝑘 ≜ |X|. Now, we will proceed to compute the worst case risk of the maximum

likelihood estimator in terms of the 𝑙22 loss. Specifically, we obtain the following

expression:

R ≜ max
𝑝𝑋∈ΔX

E

[︃⃦⃦⃦⃦
𝑝𝑋(𝑥)−

𝑇𝑥

𝑛

⃦⃦⃦⃦2
2

]︃
(2.5)

= max
𝑝𝑋∈ΔX

∑︁
𝑥∈X

E

[︃(︂
𝑝𝑋(𝑥)−

𝑇𝑥

𝑛

)︂2
]︃

(2.6)

= max
𝑝𝑋∈ΔX

∑︁
𝑥∈X

var

(︂
𝑇𝑥

𝑛

)︂
(2.7)

= max
𝑝𝑋∈ΔX

∑︁
𝑥∈X

1

𝑛2
var

(︃
𝑛∑︁

𝑖=1

𝑋𝑖

)︃
(2.8)

=
1

𝑛
max
𝑝𝑋∈ΔX

∑︁
𝑥∈X

𝑝𝑋(𝑥)(1− 𝑝𝑋(𝑥)) (2.9)

Upon observation, we note that the function 𝑝𝑋(𝑥)(1−𝑝𝑋(𝑥)) is concave with respect

to 𝑝𝑋(𝑥). Furthermore, the objective function exhibits symmetry in the variables

𝑝𝑋(𝑥)𝑥 ∈ X. Consequently, the maximum value is attained when all the variables
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𝑝𝑋(𝑥), 𝑥 ∈ X are selected to be equal, indicating that the adversarial distribution

corresponds to the uniform distribution. With this understanding, we can proceed to

compute the worst case risk as follows:

𝑅 =
1

𝑛2

(︃∑︁
𝑥∈X

1

𝑘

(︂
1− 1

𝑘

)︂)︃
=

1

𝑛

(︂
1− 1

𝑘

)︂
(2.10)

Indeed, it is natural to inquire whether there exists an estimator that outperforms

the maximum likelihood estimator in terms of the minimax criterion. The answer is

affirmative. In particular, let’s examine the following estimator:

𝑞(𝑥; {𝑋𝑖}𝑛𝑖=1) ≜

∑︀𝑛
𝑖=1 1 {𝑋𝑖 = 𝑥}+

√
𝑛
𝑘

𝑛+
√
𝑛

(2.11)

Let us proceed to compute the worst case risk associated with this estimator, while

considering a fixed value 𝑥 ∈ X:

E

⎡⎣(︃𝑝𝑋(𝑥)− 𝑇𝑥 +
√
𝑛
𝑘

𝑛+
√
𝑛

)︃2
⎤⎦ =

1

(𝑛+
√
𝑛)2

E

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝𝑝𝑋(𝑥)(𝑛+

√
𝑛)−

(︂
𝑇𝑥 +

√
𝑛

𝑘

)︂
⏟  ⏞  

≜𝑈

⎞⎟⎟⎟⎠
2⎤⎥⎥⎥⎦

=
1

(𝑛+
√
𝑛)2

(︀
var𝑈 + E [𝑈 ]2

)︀
=

1

(𝑛+
√
𝑛)2

(︃
var(𝑇𝑥) +

(︂√
𝑛𝑝𝑋(𝑥)−

√
𝑛

𝑘

)︂2
)︃

=
1

(𝑛+
√
𝑛)2

(︃
𝑛𝑝𝑋(𝑥)(1− 𝑝𝑋(𝑥)) + 𝑛

(︂
𝑝𝑋(𝑥)−

1

𝑘

)︂2
)︃

=
1

(1 +
√
𝑛)2

(︂
𝑝𝑋(𝑥)−

2

𝑘
𝑝𝑋(𝑥) +

1

𝑘2

)︂

Therefore,

E
[︀
‖𝑝− 𝑞({𝑋𝑖}𝑛𝑖=1)‖

2
2

]︀
=
∑︁
𝑥∈X

E
[︀
𝑝𝑋(𝑥)− 𝑞(𝑥; {𝑋𝑖}𝑛𝑖=1)

2
]︀

(2.12)

=
∑︁
𝑥∈X

1

(1 +
√
𝑛)2

(︂
𝑝𝑋(𝑥)−

2

𝑘
𝑝𝑋(𝑥) +

1

𝑘2

)︂
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=
1

(1 +
√
𝑛)2

(︂
1− 1

𝑘

)︂
(2.13)

Upon observation, we notice that (2.13) remains constant for all 𝑝𝑋 ∈ ΔX, indicating

that it is also the worst case risk for 𝑞. By comparing (2.10) with (2.13), we can deduce

that 𝑞 exhibits slightly better performance than the maximum likelihood estimator,

in the worst case scenario.

The natural question that arises is whether there exists another estimator that

can surpass this result. Surprisingly, the answer is no. The intuition behind proving

this stems from the idea that the maximum of a set can be lower bounded by the

average over the set. In our specific problem, we will establish a lower bound on the

maximum risk of any estimator using an average over the simplex, which is described

by the averaging measure Π:

max
𝑝𝑋∈ΔX

E𝑋𝑛∼𝑝𝑥

[︀
‖𝑝𝑋 − 𝑞(𝑋𝑛)‖22

]︀
≥ E𝑝∼Π

[︀
E𝑋𝑛∼𝑝𝑋

[︀
‖𝑝𝑋 − 𝑞(𝑋𝑛)‖22

]︀]︀
(2.14)

which implies:

min
𝑞∈EX

max
𝑝𝑋∈ΔX

E𝑋𝑛∼𝑝𝑥

[︀
‖𝑝𝑋 − 𝑞(𝑋𝑛)‖22

]︀
≥ min

𝑞∈EX

E𝑝∼Π

[︀
E𝑋𝑛∼𝑝𝑋

[︀
‖𝑝𝑋 − 𝑞(𝑋𝑛)‖22

]︀]︀
(2.15)

When the lower bound matches the worst case risk of an estimator 𝑞, we can consider

the task essentially accomplished.

By employing the technique of lower bounding the maximum over the probability

simplex with an average and seeking the optimal estimator as indicated in (2.15), we

delve into the realm of Bayesian inference. This introduces additional terminology

that is worth mentioning. Specifically, Π is now referred to as the prior, the right-

hand side of (2.15) is known as the Bayes risk of Π, and finally, the estimator that

achieves the Bayes risk is called the Bayes estimator. Continuing on (2.15):

min
𝑞∈EX

max
𝑝𝑋∈ΔX

E𝑋𝑛∼𝑝𝑥

[︀
‖𝑝𝑋 − 𝑞(𝑋𝑛)‖22

]︀
≥ min

𝑞∈EX

E𝑝∼Π

[︀
E𝑋𝑛∼𝑝𝑋

[︀
‖𝑝𝑋 − 𝑞(𝑋𝑛)‖22

]︀]︀
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≥ min
{𝑞𝑥}𝑥∈X

E𝑝∼Π

[︀
E𝑋𝑛∼𝑝𝑋

[︀
‖𝑝𝑋 − 𝑞(𝑋𝑛)‖22

]︀]︀
(2.16)

= min
{𝑞𝑥}𝑥∈X

∑︁
𝑥∈X

E𝑝∼Π

[︀
E𝑋𝑛∼𝑝𝑋

[︀
(𝑝𝑋(𝑥)− 𝑞(𝑥;𝑋𝑛))22

]︀]︀
=
∑︁
𝑥∈X

min
{𝑞𝑥}𝑥∈X

E𝑝∼Π

[︀
E𝑋𝑛∼𝑝𝑋

[︀
(𝑝𝑋(𝑥)− 𝑞(𝑥;𝑋𝑛))22

]︀]︀
(2.17)

The expression (2.16) plays a crucial role in the analysis as it involves the minimization

over a broader set of functions. However, it is important to note that in this context,

the condition
∑︀

𝑥∈X 𝑞(𝑥;𝑋𝑖
𝑛
𝑖=1) = 1 may no longer hold with high probability, and as

a result, the resulting estimate may not satisfy the properties of a probability mass

function.

Next, we will apply straightforward results from the Bayesian estimation litera-

ture. Consider random variables 𝑌 and 𝑍 following the distribution 𝑝𝑌 𝑍 . Let us

construct an estimate 𝑌 (𝑍) based on the observation of 𝑍. In this case, the min-

imum mean square error estimator should be E [𝑌 | 𝑍] a.s., which we illustrate in

appendix B.3.

Now, by selecting Π as the Dirichlet distribution and by the discussion in ap-

pendix B.2, we derive the conditional Bayes estimator as follows:

E [𝑝𝑋(𝑥) | 𝑋𝑛] =
𝑇𝑥(𝑋

𝑛) + 𝛽𝑛

𝑛+ 𝑘𝛽𝑛

(2.18)

By selecting the 𝛽𝑛 =
√
𝑛
𝑘

we obtain the estimator (2.11). As demonstrated in (2.13)

the risk function of 𝑞
+

√
𝑛
𝑘

is independent of 𝑝𝑋 . Therefore, we infer that the average

over 𝑝𝑋 ∼ Π should also be equal to the same risk value. Consequently 𝑞
+

√
𝑛
𝑘

is the

minimax estimator. Another intriguing aspect of the estimator (2.18) is that although

each 𝑞(𝑥; {𝑋𝑛}) is seperately obtained in the step (2.16) the resulting estimator is self

normalizing. Consequently, (2.16) actually is an equality. However, this is far from

being a coincidence. Turns out that if the loss function is a Bregman divergence [1]

then associated Bayes estimator will always be be the conditional expectation, thus
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giving the same estimator after decomposing in the step (2.16). However this is not

true in general. For instance, if the loss function were 𝑙1, the Bayes estimator for each

component would be the median of observed samples observed in that component.

This would not guarantee the normalization of the estimated components, leading to

a loose inequality in the step (2.16).

2.1.2 Add-𝛽 Estimators

The estimators of the form shown in (2.19) are not exclusive to the analysis of the

𝑙22 loss. In fact, one can argue that the entire literature on probability mass function

(pmf) estimation is dedicated to finding the appropriate sequence 𝛽𝑛 to achieve nearly

minimax estimators. As a result, these estimators have earned a special designation

and are commonly known as add-𝛽𝑛 estimators. When the value of 𝛽𝑛 remains con-

stant as the number of samples 𝑛 increases, it is referred to as an add-constant rule.

We will denote an add-𝛽𝑛 estimator as 𝑝+𝛽𝑛. Given a specific observation {𝑋𝑖}𝑛𝑖=1,

the add-𝛽𝑛 estimator produces the following output:

𝑞+𝛽𝑛(𝑥; {𝑋𝑖}𝑛𝑖=1) =

∑︀𝑛
𝑖=1 1 {𝑋𝑖 = 𝑥}+ 𝛽

𝑛+ 𝛽 |X|
(2.19)

The operation of add-𝛽 estimator can be given an alternative interpretation, if the

following decomposition of (2.19) is considered:

𝑞+𝛽𝑛(𝑥; {𝑋𝑖}𝑛𝑖=1) =
𝑛

𝑛+ 𝛽𝑘

∑︀𝑛
𝑖=1 1 {𝑋𝑖 = 𝑥}

𝑛
+

𝛽 |X|
𝑛+ 𝛽 |X|

1

𝑘

=

(︂
1− 𝛽𝑘

𝑛+ 𝛽𝑘

)︂∑︀𝑛
𝑖=1 1 {𝑋𝑖 = 𝑥}

𝑛⏟  ⏞  
𝐼

+
𝛽 |X|

𝑛+ 𝛽 |X|
1

𝑘⏟ ⏞ 
𝐼𝐼

where we recognize 𝐼 as the MLE and 𝐼𝐼 as the uniform distribution over the set X.

Furthermore, we observe their coefficients sum to one, and we see that as 𝑛 grows, the

coefficient of MLE becomes more dominant in the mixture. Therefore operationally

and add-𝛽𝑛 rule performs MLE but steps back to the uniform distribution, which

would have been the correct output if there were no samples observed, accordingly
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with the number of samples.

Perhaps the lag in the development of new results on pmf estimation can be

explained by the non-existence of nice features of the 𝑙22 loss highlighted in this section.

In particular, the first result in the literature for a non 𝑙22 loss is due to [2], which dates

almost five decades later the work of Trybula [11]. In particular, [2] showed that a

varying add-𝛽 rule achieves the minimax risk with the correct first-order constant for

the 𝐾𝐿 divergence and established that for fixed 𝑘 ≜ |X|:

𝑟KL
𝑘,𝑛 =

𝑘 − 1

2𝑛
+ 𝑜

(︂
1

𝑛

)︂

A decade later, [7] showed that add-constant estimators are optimal in the corre-

sponding regimes for the losses 𝑙1, 𝜒2, and ’smooth’ 𝑓 -divergences achieves the mini-

max rate with the correct first-order constant. We summarize the contributions of [7]

in table 2.1 for the regimes and the loss functions where the first-order constant is de-

termined: For general 𝑓 -divergences, it is assumed that 𝑓 is thrice differentiable and

Loss Function Regime Minimax Estimator Minimax Risk

𝑙22 - 𝑞
+

√
𝑛
𝑘

1− 1
𝑘

(
√
𝑛+1)2

𝜒2 𝑘 = Θ(1) 𝑞+1
𝑘−1
𝑛 +𝑂

(︁
log 𝑛
𝑛2

)︁
𝑙1 𝑘 = Θ(1) 𝑞+0

√︁
2(𝑘−1)
𝜋𝑛 +𝑂

(︁
1

𝑛
3
4

)︁
𝑓 -divergences 𝑘 = Θ(1) 𝑞+𝛽, 𝛽 > 0 𝑓 ′′(1)𝑘−1

2𝑛 + 𝑜
(︀
1
𝑛

)︀
Table 2.1: First Order Constants of Minimax Risk determined in [7]

follows subexponential tails. Furthermore, it is assumed that 𝑝𝑋 should be away from

the boundaries of the probability simplex. Hence the risk depicted on the table 2.1

is for the problem:

𝑟𝑓,𝛿𝑛 ≜ min
𝑞∈EX

max
𝑝∈ΔX

E𝑋𝑛∼𝑝𝑋 [L(𝑝, 𝑞(𝑋𝑛))]

where:

Δ𝛿 = {𝑝𝑥 ∈ ΔX : ∀𝑥 ∈ X, 𝑝𝑋(𝑥) ≥ 𝛿}
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2.1.3 𝑙𝑝𝑝 Minimax PMF Estimation

This work is mainly concerned with the 𝑙𝑝𝑝 loss functions. The simple results given

in this chapter seem missing in the literature. In particular for two distributions 𝑝, 𝑞

over the alphabet X, their 𝑙𝑝𝑝 distance the 𝑙𝑝𝑝 norm of their difference:

𝑙𝑝𝑝(𝑝, 𝑞) ≜ ‖𝑝− 𝑞‖𝑝𝑝 =
X∑︁

𝑖=1

|𝑝𝑖 − 𝑞𝑖|𝑝

and we denote the one variable minimax risk as:

𝑟𝑝𝑛 ≜ 𝑟𝑙
𝑝
𝑝
𝑛 = min

𝑞
max
𝑝∈ΔX

E𝑋𝑛∼𝑝𝑋

[︀
‖𝑝− 𝑞(𝑋𝑛))‖𝑝𝑝

]︀
The rate of decay of the 𝑟𝑝𝑛 will be important for the proofs:

Lemma 2.1.1. For |X| = 𝑂𝑛(1), 𝑟𝑝𝑛 = Θ(𝑛− 𝑝
2 )

The proof for Lemma 2.1.1 is given in appendix B.4. We will be ultimately

interested in the constants of 𝑟𝑝𝑛 for the rate 𝑛− 𝑝
2 . We will denote the constants of

this rate by 𝐶𝑝 ≜ lim sup𝑛 𝑛
𝑝
2 𝑟𝑝𝑛 and 𝐶𝑝 = lim inf𝑛 𝑛

𝑝
2 𝑟𝑝𝑛. For convinience, we will

group the constanst 𝐶𝑝, 𝐶𝑝 into 𝐶𝑝 and use the operator ≃ to denote that 𝑔𝑛 ≃ 𝐶𝑝𝑓𝑛

if lim sup𝑛 𝑔𝑛/𝑓𝑛 ≤ 𝐶𝑝 and lim inf𝑛 𝑔𝑛/𝑓𝑛 ≥ 𝐶𝑝. Similarly, we say 𝑔𝑛 ≲ 𝐶𝑝𝑓𝑛 if

lim inf𝑛 𝑔𝑛/𝑓𝑛 ≤ 𝐶𝑝 and lim sup𝑛 𝑔𝑛/𝑓𝑛 ≤ 𝐶𝑝.

2.2 Semi-supervised PMF Estimation

We formalize the semi-supervised PMF estimation for the case when there are two

random variables 𝑋, 𝑌 jointly distributed with 𝑝𝑋𝑌 ∈ ΔX×Y. We observe two datasets:

𝑚 i.i.d. samples of {(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1 pairs drawn from 𝑝𝑋𝑌 and 𝑛 samples of only

{𝑋 ′
𝑗}𝑛𝑗=1 drawn from the marginal distribution 𝑝𝑋 . Now an estimator is a mapping

𝑞𝑋𝑌 : [X]* × [X × Y]* → ΔX×Y.We can alternatively describe the set of estimators

under consideration as the set EX×Y = EX × E
|X|
Y . Since there is no unpaired 𝑌 obser-

vations in this scenario, it is natural to decompose the estimator into marginal 𝑞𝑋 and
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conditional part, 𝑞𝑇 |𝑥 where labeled and unlabeled samples enhance the estimation of

𝑝𝑋 where only labeled samples provide information about 𝑝𝑌 |𝑋 .

The worst case risk for the estimator 𝑞𝑋𝑌 is:

max
𝑝𝑋𝑌 ∈ΔX×Y

E {𝑋′
𝑗}𝑛1∼𝑝𝑋

{(𝑋𝑖,𝑌𝑖)}𝑛𝑖=1∼𝑝𝑋𝑌

[︀
L(𝑝𝑋𝑌 , 𝑞𝑋𝑌 ({𝑋 ′

𝑗}𝑛𝑗=1, {(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1))
]︀

(2.20)

and the minimax risk is:

𝑅L
𝑚,𝑛 ≜ min

𝑞𝑋𝑌 ∈EX×Y

max
𝑝𝑋𝑌 ∈ΔX×Y

E {𝑋′
𝑗}𝑛1∼𝑝𝑋

{(𝑋𝑖,𝑌𝑖)}𝑛𝑖=1∼𝑝𝑋𝑌

[︀
L(𝑝𝑋𝑌 , 𝑞𝑋𝑌 ({𝑋 ′

𝑗}𝑛𝑗=1, {(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1))
]︀

(2.21)

We specialize it to the 𝑙𝑝𝑝 loss:

𝑅𝑝
𝑚,𝑛 ≜ min

𝑞𝑋𝑌 ∈EX×Y

max
𝑝𝑋𝑌 ∈ΔX×Y

E {𝑋′
𝑗}𝑛1∼𝑝𝑋

{(𝑋𝑖,𝑌𝑖)}𝑛𝑖=1∼𝑝𝑋𝑌

[︁⃦⃦
𝑝𝑋𝑌 − 𝑞𝑋𝑌 ({𝑋 ′

𝑗}𝑛𝑗=1, {(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1)
⃦⃦𝑝
𝑝

]︁
(2.22)

Attacking the problem 𝑅𝑝
𝑚,𝑛 seems formidable. Instead, we will study the following

problems with increasing similarity to (2.21).

Auxilary Problem 1.

𝑅𝑝
𝑚 ≜ min

𝑞𝑌 |𝑋∈E|X|
Y

max
𝑝𝑋𝑌 ∈ΔX×Y

E{(𝑋𝑖,𝑌𝑖)}𝑚𝑖=1∼𝑝𝑋𝑌

[︁⃦⃦
𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋({(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1)

⃦⃦𝑝
𝑝

]︁
(2.23)

Auxilary Problem 2.

𝑅̄𝑝
𝑚 ≜ min

𝑞𝑌 |𝑋∈E|X|
Y

max
𝑝𝑋∈ΔX

E{𝑋𝑖}𝑚𝑖=1∼𝑝𝑋

[︃
max

𝑝𝑌 |𝑋∈Δ|X|
Y

E{𝑌𝑖}𝑚𝑖=1∼𝑝𝑌 |𝑋

[︁⃦⃦
𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋({(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1)

⃦⃦𝑝
𝑝

]︁]︃
(2.24)

The problem 𝑅𝑝
𝑚 corresponds to the limit of the problem 𝑅𝑝

𝑚,𝑛 as 𝑛 → ∞. In-

tuitively, in this case, there are sufficiently many incomplete samples to make the

perfect estimation of 𝑝𝑋 possible. The difference between the two problems is that

for 𝑅̄𝑝
𝑚, nature has an additional advantage in forming the dataset {𝑋𝑖}𝑚𝑖=1: it can first

observe the realization of the (𝑋1, ..., 𝑋𝑚) symbols then choose 𝑝𝑌 |𝑋 from which to

generate the (𝑌1, ..., 𝑌𝑚) values accompanying the (𝑋1, ..., 𝑋𝑚) to finish the construc-
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tion of the joint samples. Mathematically this follows from the trivial comparison

which holds for all 𝑥𝑖 ∈ X𝑛, 𝑝𝑋𝑌 ∈ ΔX:

E{𝑌𝑖}𝑚𝑖=1∼𝑝𝑌 |𝑋

[︁⃦⃦
𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋({(𝑥𝑖, 𝑌𝑖)}𝑚𝑖=1)

⃦⃦𝑝
𝑝

]︁
≤ max

𝑝𝑌 |𝑋∈Δ|X|
Y

E{𝑌𝑖}𝑚𝑖=1∼𝑝𝑌 |𝑋

[︁⃦⃦
𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋({(𝑥𝑖, 𝑌𝑖)}𝑚𝑖=1)

⃦⃦𝑝
𝑝

]︁
and observing that all the following operations applying to both sides are monotonic

and hence preserving the relationship:

𝑅𝑝
𝑚 ≜ min

𝑞𝑌 |𝑋
max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑌 ‖𝑝𝑝

]︀
≤ min

𝑞𝑌 |𝑋
max
𝑝𝑋

E
[︂
max
𝑝𝑌 |𝑋

E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀]︂
= 𝑅̄𝑚

(2.25)

2.2.1 Composition Estimators

Our discussion focuses on composition estimators, which we aim to demonstrate their

optimality. To aid in understanding, we can consider a given univariate estimator 𝑞 as

a set of estimators 𝑞𝑖∞𝑖 = 0, where each 𝑞𝑖 maps from X𝑖 to ΔX. This approach helps

avoid any confusion that may arise due to changes in the adversarial distribution as

the number of samples varies. We will utilize this notation for now to define the

composition estimators.

Definition 2.2.1. For a given univariate estimator 𝑞, the conditional compostion

estimator of 𝑞 is:

𝑞
**,(𝑚,𝑛)
𝑌 |𝑋 ({(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1) ≜

∏︁
𝑥∈X

𝑞*𝑚𝑝𝑋(𝑥;{(𝑋𝑖,𝑌𝑖)}𝑚𝑖=1)
({𝑌𝑗 : 1 ≤ 𝑗 ≤ 𝑚 : 𝑋𝑗 = 𝑥})

Definition 2.2.2. For a given univariate estimator 𝑞, the joint compostion estimator

of 𝑞 is:

𝑞
**,(𝑚,𝑛)
𝑋𝑌 ({𝑋𝑖}𝑛𝑖=1, {(𝑋 ′

𝑖, 𝑌
′
𝑖 )}𝑚𝑖=1) ≜ 𝑝𝑛+𝑚({𝑋𝑖}𝑛𝑖=1 ∪ {𝑋 ′

𝑖}𝑚𝑖=1)∏︁
𝑥∈X

𝑞*𝑚𝑝𝑋(𝑥;{(𝑋′
𝑖,𝑌

′
𝑖 )}𝑚𝑖=1)

({𝑌 ′
𝑗 : 1 ≤ 𝑗 ≤ 𝑚 : 𝑋 ′

𝑗 = 𝑥})
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2.2.2 First Order Optimality

Another fundamental concept in this study is the notion of first-order minimax opti-

mality pertaining to the presented problems thus far.

Definition 2.2.3. An estimator 𝑞 is first order minimax optimal for the problem 𝑟𝑝𝑛

if

max
𝑝𝑋

E𝑋𝑛∼𝑝𝑋 [‖𝑝𝑋 − 𝑞𝑋‖] + 𝑜(𝑟𝑝𝑛)

.

Definition 2.2.4. An estimator 𝑞𝑌 |𝑋 ∈ E
|X|
Y is first order minimax optimal for the

problem 𝑅𝑝
𝑛 if

max
𝑝𝑋𝑌 ∈ΔX×Y

E{(𝑋𝑖,𝑌𝑖)}𝑚𝑖=1∼𝑝𝑋𝑌

[︁⃦⃦
𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋({(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1)

⃦⃦𝑝
𝑝

]︁
+ 𝑜(𝑅𝑝

𝑛)
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Chapter 3

Main Results

Theorem 1. Let 𝑞*𝑛 be a minimax optimal estimator for 𝑟𝑝𝑛. Then the conditional

composition 𝑞*,𝑚𝑌 |𝑋 based on 𝑞*𝑛 is minimax optimal for 𝑅̄𝑝
𝑚:

max
𝑝𝑋∈ΔX

E{𝑋𝑖}𝑚𝑖=1∼𝑝𝑋

[︃
max

𝑝𝑌 |𝑋∈Δ|X|
Y

E{𝑌𝑖}𝑚𝑖=1∼𝑝𝑌 |𝑋

[︁⃦⃦
𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋({(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1)

⃦⃦𝑝
𝑝

]︁]︃
= 𝑅̄𝑝

𝑚

(3.1)

Theorem 2. Let 𝑝 ≥ 2 and 𝑞*𝑛 be a first order minimax optimal estimator for 𝑟𝑝𝑛.

Then the conditional composition 𝑞*,𝑚𝑌 |𝑋 based on 𝑞*𝑛 is first order minimax optimal for

𝑅𝑝
𝑚:

max
𝑝𝑋𝑌

E{(𝑋𝑖,𝑌𝑖)}𝑚𝑖=1

[︁
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞

*,𝑚
𝑌 |𝑋({(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1)‖𝑝𝑝

]︁
= 𝑅𝑝

𝑚 + 𝑜 (𝑅𝑝
𝑚) (3.2)

Theorem 3. Let 𝑚 = 𝑜(𝑛):

⃒⃒
𝑅𝑝

𝑚,𝑛 −𝑅𝑝
𝑚

⃒⃒
≤ 𝑂

(︁
𝑚− 𝑝−1

2 (𝑛)−1/2
)︁

(3.3)

Theorem 4. Let 𝑝 ≥ 2 and 𝑞*𝑛 be a first-order optimal estimator for 𝑟𝑝𝑛. Then the

joint composition 𝑞*,𝑚,𝑛
𝑋𝑌 based on 𝑞*𝑛 is first order minimax optimal for 𝑅𝑝

𝑚,𝑛 in the

regime 𝑚 = 𝑜(𝑛).
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3.1 Sketch of the Proof

The primary conclusion of this paper, as delineated in Theorem 4, is established

through a logical progression of Theorems 1-3. We commence by demonstrating in

Theorem 1 that the conditional composition of a minimax optimal estimator for 𝑟𝑝𝑛

acts as a minimax optimal estimator for 𝑅̄𝑝
𝑚. Subsequently, in Theorem 2, we draw a

connection between the problems 𝑅̄𝑝
𝑚 and 𝑅𝑝

𝑚. In detail, we ascertain that for 𝑝 ≥ 2,

the adversarial distribution of 𝑅̄𝑝
𝑚 is 𝛿𝑥, causing the problem 𝑅̄𝑝

𝑚 to simplify into

𝑅𝑝
𝑚. Finally, we argue in Theorem 3 that 𝑅𝑝

𝑚,𝑛 = 𝑅𝑝
𝑚 + 𝑜(𝑚− 𝑝

2 ), accomplished by

scrutinizing the regime where 𝑚 = 𝑜(𝑛)
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Chapter 4

Proofs for the Main Results

4.1 Proof for Theorem 1

Theorem 1. Let 𝑞*𝑛 be a minimax optimal estimator for 𝑟𝑝𝑛. Then the conditional

composition 𝑞*,𝑚𝑌 |𝑋 based on 𝑞*𝑛 is minimax optimal for 𝑅̄𝑝
𝑚:

max
𝑝𝑋∈ΔX

E{𝑋𝑖}𝑚𝑖=1∼𝑝𝑋

[︃
max

𝑝𝑌 |𝑋∈Δ|X|
Y

E{𝑌𝑖}𝑚𝑖=1∼𝑝𝑌 |𝑋

[︁⃦⃦
𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋({(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1)

⃦⃦𝑝
𝑝

]︁]︃
= 𝑅̄𝑝

𝑚

(3.1)

Proof. Now we define:

𝑓(𝑝𝑋 , 𝑞𝑌 |𝑋) ≜E𝑋𝑚
1 ∼𝑝𝑋

[︂
max
𝑝𝑌 |𝑋

E𝑌 𝑚
1 ∼𝑃𝑌 |𝑋

[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀]︂

Let 𝑞𝑌 |𝑋 : (X× Y)𝑚 → (ΔY)
|X| be an arbitrary estimator for the conditional distribu-

tion 𝑝𝑌 |𝑋 . A sufficient condition for 𝑞𝑌 |𝑋 to achieve 𝑅̄𝑝
𝑚 is that for all 𝑝𝑋 :

min
𝑞𝑌 |𝑋

𝑓(𝑝𝑋 , 𝑞𝑌 |𝑋) = 𝑓(𝑝𝑋 , 𝑞𝑌 |𝑥) (4.1)

This follows from that:

max
𝑝𝑋

𝑓(𝑝𝑋 , 𝑞𝑌 |𝑋) ≥ 𝑅̄𝑝
𝑚 ≜ min

𝑞
max
𝑝𝑋

𝑓(𝑝𝑋 , 𝑞) ≥ max
𝑝𝑋

min
𝑞

𝑓(𝑝𝑋 , 𝑞) = max
𝑝𝑋

𝑓(𝑝𝑋 , 𝑞𝑌 |𝑋)
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where the first inequality is due to the substitution of the estimator 𝑞𝑌 |𝑋 , and the

second inequality is the change of minmax with maxmin. Next, we see the condition

(4.1) implies that all terms are actually equal which establishes that that 𝑞𝑌 |𝑋 is

minimax optimal for 𝑅̄𝑝
𝑚. Now let us show (4.1) holds for the conditional compositon

estimator 𝑞**𝑌 |𝑋 fix 𝑝𝑋 ∈ ΔX:

min
𝑞𝑌 |𝑋

𝑓(𝑝𝑋 , 𝑞𝑌 |𝑋) =min
𝑞𝑌 |𝑋

E𝑋𝑚
1 ∼𝑝𝑋

[︂
max
𝑃𝑌 |𝑋

E𝑌 𝑚
1 ∼𝑃𝑌 |𝑋

[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀]︂
=min

𝑞𝑌 |𝑋

∑︁
𝑥∈X

(𝑝𝑋(𝑥))
𝑝 E𝑋𝑚

1 ∼𝑝𝑋

[︂
max
𝑝𝑌 |𝑋=𝑥

E𝑌 𝑚
1 ∼𝑝𝑌 |𝑋

[︀
‖𝑝𝑌 |𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝

]︀]︂
=
∑︁
𝑥∈X

(𝑝𝑋(𝑥))
𝑝 min
𝑞𝑌 |𝑋=𝑥

E𝑋𝑚
1 ∼𝑝𝑋

[︂
max
𝑝𝑌 |𝑋=𝑥

E𝑌 𝑚
1 ∼𝑝𝑌 |𝑋

[︀
‖𝑝𝑌 |𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝

]︀]︂
(4.2)

=
∑︁
𝑥∈X

(𝑝𝑋(𝑥))
𝑝 min
𝑞𝑌 |𝑋=𝑥

𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
(𝑝𝑋(𝑥))

𝑖(1− 𝑝𝑋(𝑥))
𝑚−𝑖

E𝑋𝑚
1 ∼𝑝𝑋

[︂
max
𝑝𝑌 |𝑋=𝑥

E𝑌 𝑚
1 ∼𝑝𝑌 |𝑋

[︀
‖𝑝𝑌 |𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝 | 𝑇𝑥(𝑋

𝑚
1 ) = 𝑖

]︀]︂
=
∑︁
𝑥∈X

(𝑝𝑋(𝑥))
𝑝 min
𝑞𝑌 |𝑋=𝑥

𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
(𝑝𝑋(𝑥))

𝑖(1− 𝑝𝑋(𝑥))
𝑚−𝑖

E𝑋𝑚
1 ∼𝑝𝑋

[︂
max
𝑝𝑌 |𝑋=𝑥

E𝑌 𝑚
1 ∼𝑝𝑌 |𝑋

[︀
‖𝑝𝑌 |𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝

]︀
| 𝑇𝑥(𝑋

𝑚
1 ) = 𝑖

]︂
=
∑︁
𝑥∈X

(𝑝𝑋(𝑥))
𝑝

𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
(𝑝𝑋(𝑥))

𝑖(1− 𝑝𝑋(𝑥))
𝑚−𝑖

min
𝑞𝑌 |𝑋=𝑥,𝑖

E𝑋𝑚
1 ∼𝑝𝑋

[︂
max
𝑝𝑌 |𝑋=𝑥

E𝑌 𝑚
1 ∼𝑝𝑌 |𝑋

[︀
‖𝑝𝑌 |𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝

]︀
| 𝑇𝑥(𝑋

𝑚
1 ) = 𝑖

]︂
⏟  ⏞  

≜𝐼𝑖

(4.3)

=
∑︁
𝑥∈X

(𝑝𝑋(𝑥))
𝑝

𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
(𝑝𝑋(𝑥))

𝑖(1− 𝑝𝑋(𝑥))
𝑚−𝑖𝑟𝑝𝑖 (4.4)

=
∑︁
𝑥∈X

𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
(𝑝𝑋(𝑥))

𝑖+𝑝(1− 𝑝𝑋(𝑥))
𝑚−𝑖𝑟𝑝𝑖 (4.5)

In (4.2), it is noted that the optimization variables are independent. In (4.3), each

estimator is considered as a collection 𝑞𝑌 |𝑋=𝑥 = 𝑞𝑌 |𝑋=𝑥,𝑖, as previously described.
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Under the conditioning 𝑇𝑥(𝑋
𝑛
1 ) = 𝑖, only the optimization variable 𝑞𝑌 |𝑋=𝑥,𝑖 is involved

in the minimization problem. In (4.4), it is observed that problem 𝐼𝑖 is the same

problem as 𝑟𝑝𝑖 . Hence by assumption 𝑞*,𝑖𝑌 |𝑋 and 𝑟𝑝𝑖 achieves it.

4.2 Proof for Theorem 2

Theorem 2. Let 𝑝 ≥ 2 and 𝑞*𝑛 be a first order minimax optimal estimator for 𝑟𝑝𝑛.

Then the conditional composition 𝑞*,𝑚𝑌 |𝑋 based on 𝑞*𝑛 is first order minimax optimal for

𝑅𝑝
𝑚:

max
𝑝𝑋𝑌

E{(𝑋𝑖,𝑌𝑖)}𝑚𝑖=1

[︁
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞

*,𝑚
𝑌 |𝑋({(𝑋𝑖, 𝑌𝑖)}𝑚𝑖=1)‖𝑝𝑝

]︁
= 𝑅𝑝

𝑚 + 𝑜 (𝑅𝑝
𝑚) (3.2)

Proof. We start with (4.5):

𝑅̄𝑝
𝑚 =max

𝑝𝑋

∑︁
𝑥∈X

𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
(𝑝𝑋(𝑥))

𝑖+𝑝 (1− 𝑝𝑋(𝑥))
𝑚−𝑖 𝑟𝑝𝑖 (4.6)

≃max
𝑝𝑋

∑︁
𝑥∈X

𝐶𝑝

(︂
𝑝𝑋(𝑥)

𝑚

)︂ 𝑝
2

+ 𝑜(𝑚− 𝑝
2 ) (4.7)

=
𝐶𝑝

𝑚
𝑝
2

+ 𝑜(𝑚− 𝑝
2 ) (4.8)

The key step (4.7) follows from Lemma 4.2.1. Ignoring the lower order terms in (4.7),

we note that for 𝑝 ≥ 2 the objective function is convex and symmetric in variables

{𝑝𝑋(𝑥)}𝑥∈X. Therefore the optimizer is a vertex of the probability simplex, which

leads to (4.8).

In order to obtain the matching lower bound, we substitute 𝑝𝑋 = 𝛿𝑥 for some

arbitrary 𝑥 ∈ X. For completeness, we carry out the steps:

𝑅𝑝
𝑚 ≥ min

𝑞𝑌 |𝑋
max
𝑝𝑌 |𝑋

E{(𝑋𝑖,𝑌𝑖)}𝑚𝑖=1∼𝛿𝑥𝑝𝑌 |𝑋

[︀
‖𝛿𝑥𝑝𝑌 |𝑋 − 𝛿𝑥𝑞𝑌 |𝑋‖𝑝𝑝

]︀
(4.9)

= min
𝑞𝑌 |𝑋

max
𝑝𝑌 |𝑋

E{𝑌𝑖}𝑚𝑖=1∼𝑝𝑌 |𝑋=𝑥

[︀
‖𝑝𝑌 |𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝

]︀
(4.10)

= min
𝑞𝑌 |𝑋=𝑥

max
𝑝𝑌 |𝑋=𝑥

E{𝑌𝑖}𝑚𝑖=1∼𝑝𝑌 |𝑋=𝑥

[︀
‖𝑝𝑌 |𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝

]︀
= 𝑟𝑝𝑚 (4.11)
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Therefore by 𝑅𝑝
𝑚 ≤ 𝑅̄𝑝

𝑚 (see the discussion in (2.2) ) and (4.8) we obtain:

𝐶𝑝

𝑚
𝑝
2

≲ 𝑅𝑝
𝑚 ≤ 𝑅̄𝑝

𝑚 ≃ 𝐶𝑝

𝑚
𝑝
2

+ 𝑜

(︂
1

𝑚
𝑝
2

)︂

4.2.1 Supplementary Results for Theorem 2

Before introducing the required lemmas, it is beneficial to provide some contextual

information to facilitate comprehension of the topic at hand. Notably, one can assert

that a pivotal advancement in the entire study lies in equation (4.7), where it states

𝑚∑︁
𝑖=1

(︂
𝑚

𝑖

)︂
(𝑥)𝑖+𝑝 (1− 𝑥)𝑚−𝑖 1(︀

𝑖
𝑚

)︀ 𝑝
2

≈ 𝑥
𝑝
2 (4.12)

To ensure clarity in the presentation, we have omitted the first term in the summation

and cleared the denominator. This approximation method draws inspiration from the

Bernstein polynomial basis in approximation theory. Specifically, the set of functions

employed in this approach is the 𝑛 + 1-th order Bernstein basis polynomials, which

can be defined as follows:

𝐵𝑖,𝑛(𝑥) =

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑝−𝑖, 𝑖 ∈ {0, ..., 𝑛}

where a function 𝑓 ∈ 𝑅 is constructed from its Bernstein basis representation as:

𝐵𝑛(𝑓, 𝑥) =
𝑛∑︁

𝑖=0

𝑓

(︂
𝑖

𝑛

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖

The Bernstein polynomial basis exhibits numerous intriguing and valuable properties.

Notably, Bernstein polynomials are renowned for their ability to provide smooth ap-

proximations. They not only succeed in approximating a given differentiable function

but also its higher-order derivatives, if they exist. This characteristic yields practical

implications, such as the guarantee of convexity in the approximation over any do-
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main where the approximated function is convex, among others. A brief illustration

of this scenario is depicted in fig. A-1. However, this smooth approximation comes

at the cost of a slower convergence rate of 1
𝑛
, as elucidated by the following theorem:

Theorem 5 ([4],Theorem-3.1). If 𝑓 is bounded on A, differentiable in some neigh-

borhood of 𝑥, and has second derivative 𝑓 ′′(𝑥) for some 𝑥 ∈ 𝐴, then

lim
𝑛→∞

𝑛 [𝐵𝑛(𝑓, 𝑥)− 𝑓(𝑥)] =
𝑥(1− 𝑥)

2
𝑓 ′′(𝑥).

It appears that this result cannot be directly employed to assert that:

𝑚∑︁
𝑖=1

(︂
𝑚

𝑖

)︂
(𝑥)𝑖 (1− 𝑥)𝑚−𝑖 1

𝑖
𝑚

𝑝
2

≈ 1

𝑥
𝑝
2

In particular, as fig. A-2, we observe that convergence does not occur as anticipated.

This observation aligns with the prediction made by Theorem 4.2.1, which states that:

lim
𝑛→∞

𝑛 [𝐵𝑛(𝑓, 𝑥)− 𝑓(𝑥)] =
(1− 𝑥)

𝑥1+ 𝑝
2

Indeed, the approximation error has unbounded growth as 𝑥 approaches 0. On the

other hand, (4.12) is an accurate approximation, as verified in fig. A-3. This can be

explained by the fact that multiplying by the term 𝑥𝑝 suppresses the approximation

error near 0. In the following, we provide proof for this phenomenon, perhaps by

examining the situation from a different perspective. Consider the following:

𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
(𝑥)𝑖+𝑝 (1− 𝑥)𝑚−𝑖 1

𝑖
𝑚

𝑝
2

=
𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
(𝑥)𝑖 (1− 𝑥)𝑚−𝑖 ( 𝑖

𝑚
)𝑝(︀

𝑖
𝑚

)︀ 𝑝
2

(4.13)

=
𝑚∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
(𝑥)𝑖 (1− 𝑥)𝑚−𝑖

(︂
𝑖

𝑚

)︂ 𝑝
2

(4.14)

=𝑥
𝑝
2 +𝑂

(︂
1

𝑚

)︂
(4.15)

Let us assume that equation (4.13) holds with negligible error for now. Then equation

(4.15) follows directly from equation (4.14) using Theorem 4.2.1, since 𝑥
(1−𝑥)

𝑑2

𝑑𝑥2 (𝑥
𝑝
2 ) =
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𝑥
𝑝
2
−1, which is finite for all 𝑥 ∈ [0, 1] as long as 𝑝 ≥ 2. The only remaining task is to

demonstrate the substitution 𝑥𝑝. Consider the identity:

𝑥𝑝 =
𝑚∑︁
𝑖=1

(︂
𝑚

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑚−𝑖

(︂
𝑖

𝑚

)︂𝑝

+𝑂

(︂
1

𝑚

)︂

which follows again from (4.2.1). Then (4.13) is nothing but:

𝑚∑︁
𝑖=1

(︂
𝑚

𝑖

)︂
(𝑥)𝑖 (1− 𝑥)𝑚−𝑖 ( 𝑖

𝑚
)𝑝(︀

𝑖
𝑚

)︀ 𝑝
2

≈
𝑚∑︁
𝑖=1

(︂
𝑚

𝑖

)︂
(𝑥)𝑖 (1− 𝑥)𝑚−𝑖

∑︀𝑚
𝑗=1

(︀
𝑚
𝑗

)︀
( 𝑗
𝑚
)𝑝𝑥𝑗(1− 𝑥)𝑚−𝑗(︀
𝑖
𝑚

)︀ 𝑝
2

In other words, it must be the case that
∑︀𝑚

𝑗=1

(︀
𝑚
𝑗

)︀
( 𝑗
𝑚
)𝑝𝑥𝑗(1− 𝑥)𝑚−𝑗 =

(︀
𝑖
𝑚

)︀
whenever

is needed. It turns out that this intuition is correct due to a double-sifting effect.

Specifically, for any fixed value of 𝑥, only a relatively small number of terms 𝑥𝑖(1 −

𝑥)𝑚−𝑖 dominate the sum. These dominant terms correspond to indices 𝑖 in the range

(𝑚𝑥 − 𝜖𝑚,𝑚𝑥 + 𝜖𝑚). Since this effect also holds for the sum
∑︀𝑚

𝑗=1

(︀
𝑚
𝑗

)︀ (︀
𝑗
𝑚

)︀𝑝
𝑥𝑗(1 −

𝑥)𝑚−𝑗, it is effectively dominated by 𝑗 in the range (𝑚𝑥− 𝜖𝑚,𝑚𝑥+ 𝜖𝑚), and its value

is approximately
(︀

𝑗
𝑚

)︀𝑝 ≈
(︀

𝑖
𝑚

)︀𝑝. To capture this sifting effect, we need to alleviate

concentration and use sharp bounds on the tails of a binomial random variable. In

this regard, we will utilize the following bound:

Theorem 6 ([3], lemma-2). Let 𝑋1, . . . , 𝑋𝑛 be independent Bernoulli(𝑝𝑖) variables.

We consider the sum 𝑋 =
∑︀𝑛

𝑖=1𝑋𝑖, with expectation E(𝑋) =
∑︀𝑛

𝑖=1 𝑝𝑖. Then, we

have:

Pr(𝑋 ≤ E(𝑋)− 𝜆) ≤ 𝑒−𝜆2/2E(𝑋)

Pr(𝑋 ≥ E(𝑋) + 𝜆) ≤ 𝑒−
𝜆2

2(E(𝑋)+𝜆/3)

Now, let us proceed to formalize these intuitive arguments. First, let us introduce:

𝐻𝑛
𝑝 (𝑥) ≜

𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑟𝑝𝑖 𝑥

𝑖+𝑝(1− 𝑥)𝑛−𝑖 (4.16)

𝐺𝑛
𝑝 (𝑥) ≜

𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑟𝑝𝑖 𝑥

𝑖

(︂
𝑖

𝑛

)︂𝑝

(1− 𝑥)𝑛−𝑖 (4.17)
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and we proceed by presenting and proving the lemmas:

Lemma 4.2.1.

𝐻𝑛
𝑝 (𝑥) ≃ 𝐶𝑝

(︁𝑥
𝑛

)︁ 𝑝
2
+ 𝑜(𝑛− 𝑝

2 )

Proof. We fix the constant 𝑐 given in Lemma 4.2.2. There are two cases: In the first

case 𝑥 ≥ 𝑐 𝑙𝑜𝑔
2(𝑛)
𝑛

:

𝐻𝑛
𝑝 (𝑥) ≃

𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝐶𝑝

𝑖
𝑝
2 + 1

𝑥𝑖+𝑝(1− 𝑥)𝑛−𝑖 (4.18)

=
𝐶𝑝

𝑛
𝑝
2

𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂(︂
𝑖

𝑛

)︂ 𝑝
2

𝑥𝑖(1− 𝑥)𝑛−𝑖 +𝑂

(︂
𝐻𝑛

𝑝 (𝑥)√
log 𝑛

)︂
(4.19)

=
𝐶𝑝

𝑛
𝑝
2

(︁
𝑥

𝑝
2 +𝑂

(︀
𝑛−1
)︀)︁

+𝑂

(︂
𝐻𝑛

𝑝 (𝑥)√
log 𝑛

)︂
(4.20)

= 𝐶𝑝

(︁𝑥
𝑛

)︁ 𝑝
2
+ 𝑜

(︁
𝑛− 𝑝

2

)︁
(4.21)

(4.18) holds since 𝑟𝑝𝑛 ≃ 𝐶𝑝𝑛
− 𝑝

2 = 𝐶𝑝𝑛
− 𝑝

2+𝑜(𝑛− 𝑝
2 ) whereas in (4.19) we use Lemma 4.2.2.

To obtain (4.20), we utilize as follows: we set 𝑓(𝑥) = 𝑥
𝑝
2 and bound the error of 𝑛th

order Bernstein polynomial approximation 𝐵𝑛 as:

|𝐵𝑛(𝑥; 𝑓)− 𝑓(𝑥)| = 𝑛−1𝑥(1− 𝑥)𝑓 ′′(𝑥)/2 + 𝑜(𝑛−1) (4.22)

= 𝑛−1𝑝/4(𝑝/2− 1)𝑥
𝑝
2
−2 + 𝑜(𝑛−1) (4.23)

≤ 𝑛−1𝑝/4(𝑝/2− 1) + 𝑜(𝑛−1) (4.24)

where (4.24) follows since 𝑝 ≥ 2. Therefore we conclude that convergence is uniform

with error 𝑂(𝑛−1) for all 𝑥 ∈ (0, 1). Finally, (4.20) implies that 𝐻𝑛
𝑝 (𝑥) = 𝑂(𝑛− 𝑝

2 ) and

in (4.21) we substitute this in the error term of (4.20). For the second case we have

𝑥 ≤ 𝑐 𝑙𝑜𝑔
2(𝑛)
𝑛

:

𝐻𝑛
𝑝 (𝑥) =

𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑟𝑝𝑖 𝑥

𝑖+𝑝(1− 𝑥)𝑛−𝑖 (4.25)

≤ 𝐶𝑝 𝑥𝑝

𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
1

𝑖
𝑝
2 + 1

𝑥𝑖(1− 𝑥)𝑛−𝑖 (4.26)
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≤ 𝐶𝑝 𝑥𝑝 = 𝑂

(︂
log2𝑝(𝑛)

𝑛𝑝

)︂
(4.27)

Similarly 𝐶𝑝

(︀
𝑥
𝑛

)︀ 𝑝
2 = 𝑂

(︁
log2𝑝(𝑛)

𝑛𝑝

)︁
when 𝑥 ≤ 𝑐 log

2 𝑛
𝑛

, therefore
⃒⃒⃒
𝐶𝑝

(︀
𝑥
𝑛

)︀ 𝑝
2 −𝐻𝑛

𝑝 (𝑥)
⃒⃒⃒
=

𝑜
(︀
𝑛− 𝑝

2

)︀
.

Lemma 4.2.2. There exists a 𝑐 > 0 such that for 𝑥 ≥ 𝑐 𝑙𝑜𝑔
2𝑛
𝑛

:

⃒⃒
𝐻𝑛

𝑝 (𝑥)−𝐺𝑛
𝑝 (𝑥)

⃒⃒
= 𝑂

(︂
𝐻𝑛

𝑝 (𝑥)√
log 𝑛

)︂
(4.28)

Proof. Fix 𝑐 > 0, let 𝛿1, 𝛿2 > 0, whose values will be determined later, we define

Δ𝑝(𝑥, 𝑖) ≜
⃒⃒⃒
𝑥𝑝 −

(︁
𝑖
𝑛

)︁𝑝 ⃒⃒⃒
. As a result of triangular inequality:

⃒⃒
𝐻𝑛

𝑝 (𝑥)−𝐺𝑛
𝑝 (𝑥)

⃒⃒
≤

𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖𝑟𝑝𝑖 Δ𝑝(𝑥, 𝑖) (4.29)

Before analyzing this sum, we note that by the mean value theorem, there exists

𝜉 ∈ (𝑥 ∧ 𝑖
𝑛
, 𝑥 ∨ 𝑖

𝑛
) hence 𝑥𝑝 −

(︀
𝑖
𝑛

)︀𝑝
=
(︀
𝑥− 𝑖

𝑛

)︀
𝜉𝑝−1, thus:

Δ𝑝(𝑥, 𝑖) =
⃒⃒⃒
𝑥𝑝 −

(︁ 𝑖
𝑛

)︁𝑝 ⃒⃒⃒
≤ 𝑝
⃒⃒⃒
𝑥− 𝑖

𝑛

⃒⃒⃒⃒⃒⃒
𝑥 ∨ 𝑖

𝑛

⃒⃒⃒𝑝−1

(4.30)

To analyze the sum in (4.29), we inspect the intervals 𝑖 ≤ 𝑛𝑥, 𝑛𝑥 > 𝑖 separately.

Case-1: 𝑖 ≤ 𝑛𝑥:

∑︁
𝑖≤𝑛𝑥

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖𝑟𝑝𝑖 Δ𝑝(𝑥, 𝑖) (4.31)

=
∑︁

𝑖≤𝑛𝑥−𝛿1

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖𝑟𝑝𝑖Δ𝑝(𝑥, 𝑖) +

∑︁
𝑛𝑥−𝛿1<𝑖<𝑛𝑥

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖𝑟𝑝𝑖Δ𝑝(𝑥, 𝑖) (4.32)

≤
∑︁

𝑖≤𝑛𝑥−𝛿1

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖2 +

∑︁
𝑛𝑥−𝛿1≤𝑖≤𝑛𝑥

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖𝑟𝑝𝑖 𝑝

⃒⃒⃒⃒
𝑥− 𝑖

𝑛

⃒⃒⃒⃒
𝑥𝑝−1 (4.33)

≤ 2𝑒−
𝑛
𝑥
𝛿21 +

∑︁
𝑛𝑥−𝛿1≤𝑖≤𝑛𝑥

𝑝

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖𝑟𝑝𝑖 𝛿1𝑥

𝑝−1 (4.34)

≤ 2𝑒−
𝑛
𝑥
𝛿21 +

𝑝 𝛿1
𝑥

𝐻𝑛
𝑝 (𝑥) (4.35)
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In (4.32) we use (4.30). In (4.33), we bound the lower tail of the binomial via The-

orem 6 and observe that
⃒⃒
𝑥− 𝑖

𝑛

⃒⃒
≤ 𝛿1 in the range 𝑛𝑥 − 𝛿1 ≤ 𝑖 ≤ 𝑛𝑥. We also note

that in (4.33), 𝑟𝑝𝑖 ≤ 2 and Δ𝑝(𝑥, 𝑖) ≤ 1. Now we choose 𝛿1 = 𝑐1

√︁
−𝑥

𝑛
log
(︀
1
𝑥
𝐻𝑛

𝑝 (𝑥)
)︀

and obtain:

(4.35) ≤ 2

(︂
𝐻𝑛

𝑝 (𝑥)

𝑥

)︂𝑐21

+ 𝑝 𝑐1

√︃
− 1

𝑛𝑥
log

(︂
1

𝑥
𝐻𝑛

𝑝 (𝑥)

)︂
𝐻𝑛

𝑝 (𝑥) (4.36)

Hence to establish the lemma, we first show that
√︁
− 1

𝑛𝑥
log 1

𝑥
𝐻𝑛

𝑝 (𝑥) = 𝑂( 1√
log𝑛

).

1

𝑥
𝐻𝑛

𝑝 (𝑥) ≃ 𝐶𝑝

𝑛∑︁
𝑖=0

𝑥𝑝−1

𝑖
𝑝
2 + 1

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖 (4.37)

≥ 𝐶𝑝
1

𝑛
𝑝
2 + 1

(︂
𝑐 log2 𝑛

𝑛

)︂𝑝−1 𝑛∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖 (4.38)

= 𝐶𝑝
1

𝑛
𝑝
2 + 1

(︂
𝑐 log2 𝑛

𝑛

)︂𝑝−1

(4.39)

≥ 𝑘′

𝑛
3
2
𝑝

(4.40)

In (4.38), we notice 𝑥 ≥ 𝑐 log2 𝑛
𝑛

. On the right-hand side of (4.40) we collect the

constants in 𝑘′. Therefore we establish that:√︂
− 1

𝑛𝑥
log

1

𝑥
𝐻𝑛

𝑝 (𝑥) ≤
√︂

𝑘′′ 1

𝑛𝑥
log 𝑛 ≤ 𝑂

(︂
1

log(𝑛)

)︂
(4.41)

where in the first inequality we use that 𝑥 ≥ 𝑐 log𝑛
𝑛

and collect the constants in 𝑘′′.

Secondly, we need to show that 𝐻𝑛
𝑝 (𝑥)

𝑥
decays sufficiently fast. To this end, we have:

∑︁
𝑖

𝐶𝑝

𝑖
𝑝
2 + 1

(︂
𝑛

𝑖

)︂
𝑥𝑖+𝑝−1(1− 𝑥)𝑛−𝑖 ≤

∑︁
𝑖

𝑐3
𝑖+ 1

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖 (4.42)

≤ 𝑐3
1− (1− 𝑥)𝑛+1

𝑛+ 1
𝑥𝑝−2 (4.43)

≤ 𝑐3
𝑥𝑝−2

𝑛+ 1
(4.44)

Therefore by choosing 𝑐1 large enough we ensure that 𝐵
(︁

𝐻𝑛
𝑝 (𝑥)

𝑥

)︁𝑐21
= 𝑜(𝑛− 𝑝

2 ).
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Case-2: 𝑖 > 𝑛𝑥 :

∑︁
𝑖≥𝑛𝑥

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖𝑟𝑝𝑖 Δ𝑝(𝑥, 𝑖) (4.45)

=
∑︁

𝑛𝑥<𝑖≤𝑛𝑥+𝛿2

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖𝑟𝑝𝑖Δ𝑝(𝑥, 𝑖) +

∑︁
𝑖>𝑛𝑥+𝛿2

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖𝑟𝑝𝑖Δ𝑝(𝑥, 𝑖) (4.46)

≤
∑︁

𝑛𝑥<𝑖≤𝑛𝑥+𝛿2

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖

⃒⃒⃒⃒
𝑥− 𝑖

𝑛

⃒⃒⃒⃒ (︂
𝑖

𝑛

)︂𝑝−1

(4.47)

+ 2
∑︁

𝑖>𝑛𝑥+𝛿2

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖 (4.48)

≤ 𝛿2
∑︁

𝑛𝑥<𝑖≤𝑛𝑥+𝛿2

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖 (𝑥+ 𝛿2)

𝑝−1 + 2𝑒
− 𝑛𝛿22

2(𝑥+
𝛿2
3 ) (4.49)

≤ 𝛿22
𝑝−1

∑︁
𝑛𝑥<𝑖≤𝑛𝑥+𝛿2

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖 (𝑥 ∨ 𝛿2)

𝑝−1 + 𝑒
− 𝑛𝛿22

2
3 (𝑥∨𝛿2) (4.50)

≤ 𝛿2 2𝑝−1
∑︁

𝑛𝑥<𝑖≤𝑛𝑥+𝛿2

(︂
𝑛

𝑖

)︂
𝑥𝑖(1− 𝑥)𝑛−𝑖 (𝑥)𝑝−1 + 2𝑒

−𝑛𝛿22
2
3𝑥 (4.51)

Each step is justified in the corresponding step in the analysis for the range 𝑖 ≤

𝑛𝑥, except now we are using the upper tail in Theorem 6. In (4.51), we see that

the problem is identical to (4.35) except for the constants. Hence we choose 𝛿2 =

𝑐2

√︁
−𝑥

𝑛
log
(︀
1
𝑥
𝐻𝑛

𝑝 (𝑥)
)︀

and by (4.40) we have 𝛿2 ≤ 𝑐3

√︁
𝑥 log𝑛

𝑛
. This ensures that 𝛿2 ≤ 𝑥

when 𝑥 ≥ 𝑐 log
2 𝑛
𝑛

and the step (4.51) is valid.

4.3 Proof for Theorem 3

Theorem 3. Let 𝑚 = 𝑜(𝑛):

⃒⃒
𝑅𝑝

𝑚,𝑛 −𝑅𝑝
𝑚

⃒⃒
≤ 𝑂

(︁
𝑚− 𝑝−1

2 (𝑛)−1/2
)︁

(3.3)

Proof. We note that By Lemma 2.1.1 and Lemma 4.3.1 we have 𝑟𝑝𝑚+𝑛 = Θ(𝑛+𝑚)−
𝑝
2

and 𝑅𝑝
𝑚 = Θ(𝑚− 𝑝

2 ). Therefore In the regime 𝑚 = 𝑜(𝑛), 𝛾𝑝
𝑚,𝑛 = 𝑂(𝑚− 𝑝−1

2 (𝑛)−1/2).

Finally, we observe that 𝑅𝑝
𝑚,𝑛 monotonically decreases 𝑛, and in the limit it reduces
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𝑅𝑝
𝑚. We forammly establish the lower bound 𝑅𝑝

𝑚 ≤ 𝑅𝑝
𝑚,𝑛 in Lemma 4.3.4.

4.3.1 Supplementary Results for Theorem-3

Lemma 4.3.1. We have

𝐶𝑝

𝑚
𝑝
2

≤ 𝑅𝑝
𝑚 ≤ 𝑘𝑥

𝐶𝑝

𝑚
𝑝
2

(4.52)

Proof. The lower bound follows from choosing 𝑝𝑋 = 𝛿𝑥 and is considered in the proof

for Theorem 2. The upper bound follows from:

‖𝑝𝑋𝑝𝑌 |𝑋=𝑥 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝 =
∑︁
𝑥∈X

(𝑝𝑋(𝑥))
𝑝‖𝑝|𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝

yielding:

sup
𝑝𝑋𝑌

E𝐿𝑚

[︀
‖𝑝𝑋𝑝𝑌 |𝑋=𝑥 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
≤
∑︁
𝑥∈X

sup
𝑝𝑋(𝑥),𝑝𝑌 |𝑋=𝑥

(𝑝𝑋(𝑥))
𝑝 E𝐿𝑚

[︀
‖𝑝𝑌 |𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝

]︀
≤
∑︁
𝑥∈X

sup
𝑝𝑌 |𝑋=𝑥

E𝐿𝑚

[︀
‖𝑝𝑌 |𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝

]︀
Finally taking min over 𝑞𝑚𝑌 |𝑋 and noting that variables {𝑞*𝑌 |𝑋=𝑥}𝑥∈X are independent:

inf
𝑞𝑌 |𝑋

sup
𝑝𝑋𝑌

E𝐿𝑚

[︀
‖𝑝𝑋𝑝𝑌 |𝑋=𝑥 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
≤
∑︁
𝑥∈X

inf
𝑞𝑌 |𝑋=𝑥

sup
𝑝𝑌 |𝑋=𝑥

E𝐿𝑚

[︀
‖𝑝𝑌 |𝑋=𝑥 − 𝑞𝑌 |𝑋=𝑥‖𝑝𝑝

]︀
= |X| 𝑟𝑝𝑚

(4.53)

Lemma 4.3.2. For 𝑝 ≥ 0, there exists constants {𝑐𝑖}𝑝𝑖=0 and 𝑐′, 𝑐′′ such that:

𝑅𝑝
𝑚,𝑛 ≤ 𝑅𝑝

𝑚 + 𝛾𝑝
𝑚,𝑛 (4.54)
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for

𝛾𝑝
𝑚,𝑛 =

⌊𝑝⌋−1∑︁
𝑖

𝑐𝑖(𝑅
𝑝
𝑚)

𝑝−𝑖
𝑝 (𝑟𝑝𝑚+𝑛)

𝑖
𝑝 + 𝑐′(𝑅𝑝

𝑚)
𝑝−⌊𝑝⌋

𝑝 (𝑟𝑝𝑚+𝑛)
⌊𝑝⌋
𝑝 + 𝑐′′(𝑅𝑝

𝑚 + 𝑟𝑝𝑚+𝑛)
𝑝−⌊𝑝⌋

𝑝 (𝑟𝑝𝑛+𝑚)
⌊𝑝⌋
𝑝

(4.55)

Proof. First let us fix 𝑞𝑋𝑌 (𝑈,𝐿), 𝑈, 𝐿 and let us define:

Γ𝑈,𝐿
𝑥,𝑦 (𝑢) ≜ 𝑝𝑋𝑌 (𝑥, 𝑦)− 𝑢𝑞𝑌 |𝑋(𝑦 | 𝑥) (4.56)

with derivatives: ⃒⃒⃒⃒
𝑑𝑖

𝑑𝑢𝑖

⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑢)

⃒⃒𝑝 ⃒⃒⃒⃒
= 𝑝(𝑖)(𝑞𝑌 |𝑋(𝑦 | 𝑥))𝑖

⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑢)

⃒⃒𝑝−𝑖 (4.57)

≤ 𝑝(𝑖)
⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑢)

⃒⃒𝑝−𝑖 (4.58)

Continuing, we have:

⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑞𝑋(𝑥))

⃒⃒𝑝 ≤ ⌊𝑝⌋−1∑︁
𝑖=0

𝑝(𝑖)

𝑖!

⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑝𝑋(𝑥))

⃒⃒𝑝−𝑖 |𝑞𝑋(𝑥)− 𝑝𝑋(𝑥)|𝑖 (4.59)

+
(︁ ⃒⃒

Γ𝑈,𝐿
𝑥,𝑦 (𝑝𝑋(𝑥))

⃒⃒𝑝−⌊𝑝⌋ ∨
⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑞𝑋(𝑥))

⃒⃒𝑝−⌊𝑝⌋
)︁
|𝑞𝑋(𝑥)− 𝑝𝑋(𝑥)|⌊𝑝⌋

𝑝⌊𝑝⌋

⌊𝑝⌋!
(4.60)

≤
⌊𝑝⌋−1∑︁
𝑖=0

𝑝(𝑖)

𝑖!

⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑝𝑋(𝑥))

⃒⃒𝑝−𝑖 |𝑞𝑋(𝑥)− 𝑝𝑋(𝑥)|𝑖

+
𝑝⌊𝑝⌋

⌊𝑝⌋!
⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑝𝑋(𝑥))

⃒⃒𝑝−⌊𝑝⌋ |𝑞𝑋(𝑥)− 𝑝𝑋(𝑥)|⌊𝑝⌋

+
𝑝⌊𝑝⌋

⌊𝑝⌋!
⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑞𝑋(𝑥))

⃒⃒𝑝−⌊𝑝⌋ |𝑞𝑋(𝑥)− 𝑝𝑋(𝑥)|⌊𝑝⌋ (4.61)

In the above display, we Taylor expand the ℎ(𝑢) ≜
⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑢)(𝑞𝑋)

⃒⃒𝑝 around the 𝑢 =

𝑝𝑋(𝑥) and use the upper bound (4.58) for the derivatives. We bound the remainder

of the Taylor expansion with the mean value theorem via the monotonicity of the

derivatives as in (4.30), leading to (4.60).

E𝑈,𝐿

[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑌 ‖𝑝𝑝

]︀
≤ E𝑈,𝐿

[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
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+

⌊𝑝⌋−1∑︁
𝑖=1

𝑝(𝑖)

𝑖!
E𝑈,𝐿

[︃∑︁
𝑥,𝑦

⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑝𝑋(𝑥))

⃒⃒𝑝−𝑖 |𝑞𝑋(𝑥)− 𝑝𝑋(𝑥)|𝑖
]︃

+
𝑝⌊𝑝⌋

⌊𝑝⌋!
E𝑈,𝐿

[︃∑︁
𝑥,𝑦

⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑝𝑋(𝑥))

⃒⃒𝑝−⌊𝑝⌋ |𝑞𝑋(𝑥)− 𝑝𝑋(𝑥)|𝑝−⌊𝑝⌋

]︃

+
𝑝⌊𝑝⌋

⌊𝑝⌋
E𝑈,𝐿

[︃∑︁
𝑥,𝑦

⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑞𝑋(𝑥))

⃒⃒𝑝−⌊𝑝⌋ |𝑞𝑋(𝑥)− 𝑝𝑋(𝑥)|𝑝−⌊𝑝⌋

]︃
(4.62)

E𝑈,𝐿

[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑌 ‖𝑝𝑝

]︀
≤ E𝑈,𝐿

[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
+

⌊𝑝⌋−1∑︁
𝑖=1

𝑝(𝑖)𝑘
𝑖
𝑝
𝑦

𝑖!
E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀ 𝑝−𝑖
𝑝 E

[︀
‖𝑞𝑋 − 𝑝𝑋‖𝑝𝑝

]︀ 𝑖
𝑝

+
𝑝⌊𝑝⌋𝑘

⌊𝑝⌋
𝑝

𝑦

⌊𝑝⌋!
E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀ 𝑝−⌊𝑝⌋
𝑝 E

[︀
‖𝑞𝑋 − 𝑝𝑋‖𝑝𝑝

]︀ ⌊𝑝⌋
𝑝

+
𝑝⌊𝑝⌋𝑘

⌊𝑝⌋
𝑝

𝑦

⌊𝑝⌋!
E
[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀ 𝑝−⌊𝑝⌋
𝑝 E

[︀
‖𝑞𝑋 − 𝑝𝑋‖𝑝𝑝

]︀ ⌊𝑝⌋
𝑝 (4.63)

≜ 𝜅𝑚,𝑛(𝑝𝑋𝑌 , 𝑞𝑋𝑌 )

In (4.62) we sum over 𝑥, 𝑦 and take expectations with respect to 𝑈,𝐿 ∼ 𝑝𝑋𝑌 of both

handsides (4.59) ,(4.61) by noting that E𝑈,𝐿

[︁∑︀
𝑥,𝑦

⃒⃒
Γ𝑈,𝐿
𝑥,𝑦 (𝑞(𝑋))

⃒⃒𝑝]︁
= E𝑈,𝐿

[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑌 ‖𝑝𝑝

]︀
.

To obtain (4.63), we apply Hölder’s inequality to each summation inside the expec-

tations in (4.62). Taking maximum of both sides over 𝑝𝑋𝑌 and taking the minimum

of the left-hand side over 𝑞𝑌 |𝑋 we establish that for all 𝑞𝑋𝑌 :

𝑅𝑝
𝑚,𝑛 = min

𝑞𝑋𝑌

max
𝑝𝑋𝑌

E𝑈,𝐿

[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑌 ‖𝑝𝑝

]︀
≤ max

𝑝𝑋𝑌

𝜅𝑚,𝑛(𝑝𝑋𝑌 , 𝑞𝑋𝑌 ) (4.64)

Hence substituting 𝜅𝑚,𝑛 we obtain:

𝑅𝑝
𝑚,𝑛 ≤ max

𝑝𝑋𝑌

E𝑈,𝐿

[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
+

⌊𝑝⌋−1∑︁
𝑖=1

𝑐𝑖max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀ 𝑝−𝑖
𝑝 max

𝑝𝑋
E
[︀
‖𝑞𝑋 − 𝑝𝑋‖𝑝𝑝

]︀ 𝑖
𝑝

+ 𝑐′ max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀ 𝑝−⌊𝑝⌋
𝑝 max

𝑝𝑋
E
[︀
‖𝑞𝑋 − 𝑝𝑋‖𝑝𝑝

]︀ ⌊𝑝⌋
𝑝

+ 𝑐′′′ max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀ 𝑝−⌊𝑝⌋
𝑝 max

𝑝𝑋
E
[︀
‖𝑞𝑋 − 𝑝𝑋‖𝑝𝑝

]︀ ⌊𝑝⌋
𝑝 (4.65)
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𝑅𝑝
𝑚,𝑛 ≤ max

𝑝𝑋𝑌

E𝑈,𝐿

[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
+

⌊𝑝⌋−1∑︁
𝑖=1

𝑐𝑖 max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀ 𝑝−𝑖
𝑝 max

𝑝𝑋
E
[︀
‖𝑞𝑋 − 𝑝𝑋‖𝑝𝑝

]︀ 𝑖
𝑝

+ 𝑐′ max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀ 𝑝−⌊𝑝⌋
𝑝 max

𝑝𝑋
E
[︀
‖𝑞𝑋 − 𝑝𝑋‖𝑝𝑝

]︀ ⌊𝑝⌋
𝑝

+ 𝑐′′ max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀ 𝑝−⌊𝑝⌋
𝑝 max

𝑝𝑋
E
[︀
‖𝑞𝑋 − 𝑝𝑋‖𝑝𝑝

]︀ ⌊𝑝⌋
𝑝

+ 𝑐′′ max
𝑝𝑋

E
[︀
‖𝑝𝑋 − 𝑞𝑋‖𝑝𝑝

]︀
(4.66)

In (4.65), we further upper bound (4.64) by taking the maximum of each summation

separately. We define the constants are 𝑐𝑖 ≜ 𝑝(𝑖)
𝑘

𝑖
𝑝
𝑦

𝑖!
, 𝑐′ = 𝑐′′′ ≜ 𝑝(⌊𝑝⌋)

𝑘
⌊𝑝⌋
𝑝

𝑦

⌊𝑝⌋! based on

(4.63). In (4.66) we note that:

max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
≤ 2𝑝−1max

𝑝𝑋
E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
+ 2𝑝−1max

𝑝𝑋𝑌

E
[︀
‖𝑝𝑋 − 𝑞𝑋‖𝑝𝑝

]︀
which is a consequence of convexity of |𝑥|𝑝 for 𝑝 ≥ 1. For completeness, we include

a proof for this in Lemma 4.3.3. Finally, we choose 𝑞𝑋 , 𝑞𝑌 |𝑋 to be the minimax

estimators of the 𝑟𝑝𝑚 and 𝑅𝑝
𝑚 respectively to establish the Lemma 4.3.2.

Lemma 4.3.3.

max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
≤ 2𝑝−1max

𝑝𝑋
E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
+ 2𝑝−1max

𝑝𝑋𝑌

E
[︀
‖𝑝𝑋 − 𝑞𝑋‖𝑝𝑝

]︀
Proof. We have,

|𝑝𝑋𝑌 (𝑥, 𝑦)− 𝑞𝑋𝑌 (𝑥, 𝑦)|𝑝 =
⃒⃒
𝑝𝑋𝑌 (𝑥, 𝑦)− 𝑝𝑋(𝑥)𝑞𝑌 |𝑋(𝑦 | 𝑥) + 𝑝𝑋(𝑥)𝑞𝑌 |𝑋(𝑦 | 𝑥)− 𝑞𝑋𝑌 (𝑥, 𝑦)

⃒⃒𝑝
= 2𝑝

⃒⃒⃒1
2
(𝑝𝑋𝑌 (𝑥, 𝑦)− 𝑝𝑋(𝑥)𝑞𝑌 |𝑋(𝑦 | 𝑥)) + 1

2
(𝑝𝑋(𝑥)𝑞𝑌 |𝑋(𝑦 | 𝑥)− 𝑞𝑋𝑌 (𝑥, 𝑦))

⃒⃒⃒𝑝
≤ 2𝑝−1

⃒⃒
𝑝𝑋𝑌 (𝑥, 𝑦)− 𝑝𝑋(𝑥)𝑞𝑌 |𝑋(𝑦 | 𝑥)

⃒⃒𝑝
+ 2𝑝−1

⃒⃒
𝑝𝑋(𝑥)𝑞𝑌 |𝑋(𝑦 | 𝑥)− 𝑞𝑋𝑌 (𝑥, 𝑦)

⃒⃒𝑝 (4.67)

≤ 2𝑝−1
⃒⃒
𝑝𝑋𝑌 (𝑥, 𝑦)− 𝑝𝑋(𝑥)𝑞𝑌 |𝑋(𝑦 | 𝑥)

⃒⃒𝑝
+ 2𝑝−1

⃒⃒
𝑝𝑋(𝑥)− 𝑞𝑋(𝑥)

⃒⃒𝑝 (4.68)

where in (4.67) we use Jensen’s inequality. Summing over 𝑥, 𝑦 ∈ X,Y and taking

expectation over {𝑋 ′
𝑖}𝑛𝑖=1, {(𝑋𝑗, 𝑌𝑗)}𝑚𝑗=1 ∼ 𝑝𝑋𝑌 of both sides (4.3.1) and (4.68) we
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obtain:

E
[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
≤ 2𝑝−1 E

[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
+ 2𝑝−1 E

[︀
‖𝑝𝑋 − 𝑞𝑋‖𝑝𝑝

]︀
taking maximum over both sides over 𝑝𝑋𝑌 we obtain:

max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
≤ max

𝑝𝑋𝑌

(︀
2𝑝−1 E

[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
+ 2𝑝−1 E

[︀
‖𝑝𝑋 − 𝑞𝑋‖𝑝𝑝

]︀)︀
≤ 2𝑝−1max

𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑝𝑋𝑞𝑌 |𝑋‖𝑝𝑝

]︀
+ 2𝑝−1max

𝑝𝑋
E [‖𝑝𝑋 − 𝑞𝑋‖]

Lemma 4.3.4. For all 𝑚,𝑛 and 𝑝 ≥ 1:

𝑅𝑝
𝑚 ≤ 𝑅𝑝

𝑚,𝑛

Proof. Let us denote the adversarial distribution of the 𝑅𝑝
𝑚 by 𝑝*𝑋𝑌 . We choose a prior

Π𝑝𝑋𝑌
over ΔX×Y such that 𝜋𝑝𝑋𝑌

= 𝛿𝑝*𝑋𝜋𝑝𝑌 |𝑋 , we leave the choice of the 𝜋𝑝𝑌 |𝑋 free as

long as supp(𝜋𝑝𝑌 |𝑋=𝑥
) = ΔY for all 𝑥 ∈ X. Also let 𝑈 = {𝑋𝑖}𝑚𝑖=1 and 𝐿 = {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1

for notational convinence. Then,

𝑅𝑝
𝑚,𝑛 = min

𝑞𝑋𝑌

max
𝑝𝑋𝑌

E
[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑌 ‖𝑝𝑝

]︀
(4.69)

≥ min
𝑞𝑋𝑌

E𝑝𝑋𝑌 ∼𝜋𝑋𝑌

[︀
E𝑈,𝐿∼𝑝𝑋𝑌

[︀
‖𝑞𝑋𝑌 − 𝑝𝑋𝑌 ‖𝑝𝑝

]︀]︀
(4.70)

= E𝑝𝑋𝑌 ∼𝜋𝑋𝑌

[︀
E𝑈,𝐿∼𝑝𝑋𝑌

[︀
‖𝑞𝜋𝑋𝑌

𝑋𝑌 − 𝑝𝑋𝑌 ‖𝑝𝑝
]︀]︀

(4.71)

= E𝑝𝑋𝑌 ∼𝜋𝑋𝑌

[︁
E𝑈,𝐿∼𝑝𝑋𝑌

[︁
‖𝑝*𝑋𝑞

𝜋𝑋𝑌

𝑌 |𝑋 − 𝑝𝑋𝑝𝑌 |𝑋‖𝑝𝑝
]︁]︁

(4.72)

= E𝑝𝑋𝑌 ∼𝜋𝑋𝑌

[︁
E𝑈,𝐿∼𝑝𝑋𝑌

[︁
‖𝑝*𝑋𝑞

𝜋𝑋𝑌

𝑌 |𝑋 − 𝑝*𝑋𝑝𝑌 |𝑋‖𝑝𝑝
]︁]︁

(4.73)

= min
𝑞𝑌 |𝑋

max
𝑝𝑌 |𝑋

E
[︀
‖𝑝*𝑋𝑞𝑌 |𝑋 − 𝑝*𝑋𝑝𝑌 |𝑋‖𝑝𝑝

]︀
(4.74)

= min
𝑞𝑌 |𝑋

max
𝑝𝑋𝑝𝑌 |𝑋

E
[︀
‖𝑝𝑋𝑞𝑌 |𝑋 − 𝑝𝑋𝑝𝑌 |𝑋‖𝑝𝑝

]︀
= 𝑅𝑝

𝑚 (4.75)

in (4.70) we lower bound the supremum with the average. In (4.71) we set 𝑞𝜋𝑋𝑌
𝑋𝑌 to

be the Bayes estimator for the prior 𝜋𝑝𝑋𝑌
which minimizes the posterior risk for an
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assignment 𝑈,𝐿:

𝑞𝜋𝑋𝑌
𝑋𝑌 (𝑈,𝐿) ≜ argmin

𝑞𝑋𝑌 ∈ΔXY

E𝑝𝑋𝑌 ∼𝜋𝑝𝑋𝑌 |𝑈,𝐿

[︀
‖𝑝𝑋𝑌 − 𝑞𝑋𝑌 ‖𝑝𝑝

]︀
(4.76)

≜ argmin
𝑞𝑋𝑌 ∈ΔXY

𝐹 (𝑞𝑋𝑌 , 𝑈, 𝐿) (4.77)

In (4.72), we note that the functional 𝐹 (𝑞𝑋𝑌 , 𝑈, 𝐿) is minimized by some element

in the support of 𝜋𝑋𝑌 |𝑈,𝐿 by Lemma 4.3.5. Since for all 𝑈 and 𝐿, supp(𝜋𝑋𝑌 |𝑈,𝐿) ⊆

{𝑝*𝑋𝑞𝑌 |𝑋 : 𝑞𝑌 |𝑋 ∈ Δ
|X|
Y } we have 𝑞𝜋𝑋𝑌

𝑋 (𝑈,𝐿) = 𝑝*𝑋 . In (4.73) we again use that

the 𝜋𝑋 = 𝛿𝑝*𝑋 . In (4.74), we use that the prior 𝜋𝑌 |𝑋 is essentially free, and since any

minimax risk can be approximated arbitrarily by a sequence of priors by the minimax

theorem [13]. Finally (4.75) follows since 𝑝* is the adversarial distribution of 𝑅𝑝
𝑚.

We introduce the following trivial result for the sake of completeness:

Lemma 4.3.5. Let P ⊂ R𝑑 be a bounded convex set. Let 𝜇 be a probability measure

on (R𝑑,B(R𝑑)) with support P. Let be 𝑥* ∈ R𝑑 such that

inf
𝑥∈R𝑑

∫︁
‖𝑥− 𝑦‖𝑝𝑝𝑑𝜇(𝑦) =

∫︁
‖𝑥* − 𝑦‖𝑝𝑝𝑑𝜇(𝑦)

then 𝑥* ∈ P.

Proof. Suppose for the contradiction that 𝑥* ̸∈ P. Then we let,

𝑥** ≜ inf
𝑥∈P

‖𝑥* − 𝑥‖22

such 𝑥** exists by the convexity of P and the convexity of 𝑙2 norm. Then we note

that ∀𝑦 ∈ P:

‖𝑥** − 𝑦‖𝑝𝑝 ≤ ‖𝑥* − 𝑦‖𝑝𝑝 =⇒ ‖𝑥** − 𝑦‖22 ≤ ‖𝑥* − 𝑦‖22

=⇒
∫︁

‖𝑥** − 𝑦‖𝑑𝜇(𝑦) ≤
∫︁

‖𝑥* − 𝑦‖𝑑𝜇(𝑦)
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4.4 Proof for Theorem 4

Theorem 4. Let 𝑝 ≥ 2 and 𝑞*𝑛 be a first-order optimal estimator for 𝑟𝑝𝑛. Then the

joint composition 𝑞*,𝑚,𝑛
𝑋𝑌 based on 𝑞*𝑛 is first order minimax optimal for 𝑅𝑝

𝑚,𝑛 in the

regime 𝑚 = 𝑜(𝑛).

Proof. According to Theorem 2, the composition estimator 𝑞*,𝑚𝑌 |𝑋 achieves first-order

minimax optimality for 𝑅𝑝
𝑚 when 𝑝 ≥ 2. Moreover, as stated in Theorem 3, in the

regime where 𝑚 = 𝑜(𝑛), both 𝑅𝑝
𝑚,𝑛 and 𝑅𝑝

𝑚 exhibit the same first-order behavior.
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Chapter 5

Conclusion

In this study, we embarked on tackling the challenging problem of minimax estimation

of probability mass functions (pmfs). Our objective was to capture fundamental

notions pertaining to this problem, shedding light on the optimal strategies for pmf

estimation under different loss functions. Specifically, we focused on the minimax

risk in the first-order constant for the 𝑙𝑝𝑝 loss, considering scenarios where there are

𝑚 labeled and 𝑛 unlabeled samples.

Through our investigation, we were able to identify the optimal estimator that

achieves the minimax risk in the first order constant for the 𝑙𝑝𝑝 loss. Notably, we

demonstrated that for 𝑝 ≥ 2, the composition estimators of univariate minimax prob-

lems emerged as the optimal choice in the first order over the regime where 𝑚 = 𝑜(𝑛).

This finding highlights the efficacy of composition estimators in achieving optimal

performance within this specific context. However, it is important to note that the

semisupervised pmf estimation problem remains an open and unresolved area of re-

search, offering ample opportunities for future exploration and advancements.

Moving forward, there are several avenues for future research that can build upon

the current findings. One potential direction involves extending the scope of the cur-

rent results to encompass a broader range of loss functions, such as 𝑓 -divergences.

By considering alternative divergence measures, we can gain a more comprehensive

understanding of the optimal estimation strategies under different contexts. Addi-

tionally, it would be valuable to investigate the case where 1 ≤ 𝑝 ≤ 2 within the
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framework of minimax pmf estimation. This extension would provide insights into

the performance limits and optimal strategies in scenarios where the 𝑙𝑝𝑝 loss function

is applicable.

In conclusion, our work has made significant strides in addressing the problem

of minimax pmf estimation, particularly under the 𝑙𝑝𝑝 loss function. By identifying

the optimal estimator in achieving the first-order constant for the minimax risk and

considering the regime of labeled and unlabeled samples, we have contributed to the

existing body of knowledge in this field. Nonetheless, there are still exciting research

opportunities to explore, including the semisupervised pmf estimation problem and

the extension of results to encompass 𝑓 -divergences and for the 𝑙𝑝𝑝 losses when 1 ≤

𝑝 ≤ 2 regime. By pursuing these avenues, we can advance our understanding and

capabilities in pmf estimation, enhancing decision-making processes and performance

in various domains reliant on accurate probability estimation.
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Appendix A

Figures

Figure A-1: Smooth Approximation of Polynomials.
We notice that all Bernstein approximations follow the convexity pattern of sin(2𝜋𝑥)
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Figure A-2: Bernstein approximation for (𝑛𝑥)
−𝑝
2 vs (𝑛𝑥)

−𝑝
2 .

In this plot 𝑝 = 2 and 𝑛 = 20, we notice the approximation error near 0.

Figure A-3: Bernstein approximation for
(︀
𝑥
𝑛

)︀ 𝑝
2 vs

(︀
𝑥
𝑛

)︀ 𝑝
2 .

In this plot 𝑝 = 2 and 𝑛 = 20.
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Appendix B

Omitted Proofs for Chapter-2

B.1 Digression on Bayesian Methods

Let us consider the classical estimation setup, where given a model parametrized by

𝜃, 𝑝(𝑥; 𝜃) we wish to estimate the 𝜃* after observing a set of samples {𝑥𝑖}𝑛𝑖=1 ∼ 𝑝(.; 𝜃*).

A belief encodes our initial thought about what parameter 𝜃* may be through a prob-

ability measure Π whiich is a member of the set of all measures over the parameter

space 𝜃 and an 𝜎-algebra, which we denote by M(𝜃, 𝜎) over this parameter set. Intu-

tively this . After the observation {𝑥𝑖}𝑛𝑖=1 is made the belief Π is revisioned according

to Bayes rule Γ : M(𝜃, 𝜎) → M(𝜃, 𝜎). Assuming that the likelihood 𝐿({𝑥𝑖}𝑚𝑖=1; 𝜃) and

Π admits a densities 𝜋, 𝑙({𝑥𝑖}𝑚𝑖=1; 𝜃) relative to a given dominating measure, one can

write the operation of the Bayes belief update using the Bayes’ rule:

Γ(𝜃; Π, {𝑥𝑖}𝑛𝑖=1) =
𝑙({𝑥𝑖}𝑚𝑖=1; 𝜃) 𝜋(𝜃)∫︀
𝑙({𝑥𝑖}𝑚𝑖=1; 𝜃) 𝑑Π(𝜃)

(B.1)

Under some mild assumptions, it can be shown that Bayes update yield a consistent

estimator of 𝜃*, and Bernstein-von Mises Theorem [12, Theorem 10.1] contitutes one

good example. This statement can be interpreted as that bayes methods work in a

frequentist’ world, and establishes a link between bayesian and frequentists points of

views.
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B.2 Conjugate Priors

A conjugate prior is an algebraic convenience yielding closed form solutions for the

Bayesien belief updates ((B.1)), otherwise would be analytically intractable. In par-

ticular, one remains in the same parametrized family of distributions after performing

successive belief updates, reducing the belief update procedure into a calculation of a

new parameter pointing to a member in the family. We can derive for the multinomial

likelihood function, as is the case in the PMF estimation problem, the corresponding

conjugate family prior trivially. Let {𝑥𝑖}𝑛𝑖=1 be a collection of observations from the

𝑝𝑋 and we define for 𝑥 ∈ X, 𝑇𝑥 ≜
∑︀𝑛

𝑖=1 1 {𝑥𝑖 = 𝑥}. Then the density of the likelihood

becomes:

𝑙({𝑥𝑖}𝑛𝑖=1; 𝑝𝑋) =
𝑛∏︁

𝑖=1

𝑝𝑋(𝑥𝑖) =
∏︁
𝑥∈X

𝑝𝑋(𝑥)
𝑇𝑥

We see that for a member of the conjugate prior family parametrized by 𝛽 ≜ [𝛽1, ..., 𝛽|X|]:

Π(𝑝𝑋 ; 𝛽) ∝
∏︁
𝑥∈X

(𝑝𝑋(𝑥))
𝛽𝑥 (B.2)

the Bayesian updates Γ yields another member of the family:

Γ(𝑝𝑋 ; Π(𝛽), {𝑥𝑖}𝑛𝑖=1) ∝Π(𝑝𝑋)𝑙({𝑥𝑖}𝑛𝑖=1; 𝑝𝑋)

=
∏︁
𝑥∈X

(𝑝𝑋(𝑥))
𝛽
∏︁
𝑥∈X

𝑝𝑋(𝑥)
𝑇𝑥

=
∏︁
𝑥X

(𝑝𝑋(𝑥))
𝛽+𝑇𝑥

∝Π(𝑝𝑋 ; 𝛽 + 𝑇 )

where 𝑇 ≜ [𝑇1, ..., 𝑇𝑥], is the occurences of the samples {𝑥𝑖}𝑛𝑖=1. The family of distri-

butions (B.2) are called Dirichlet distribution and we will denote:

Dir(𝑝𝑋 ; 𝛽) =
1

B(𝛽)

∏︁
𝑥∈X

(𝑝𝑋(𝑥))
𝛽𝑥 (B.3)
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where the normalization constant is the Beta function defined in-terms of the Gamma

function as:

B(𝛽) =

∏︀
𝑥∈X Γ(𝛽𝑥)

Γ(
∑︀

𝑥∈X 𝛽𝑥)
(B.4)

Dirichlet distribution has nice analytical properties. Of particular interest is the

mean:

E𝑝𝑋∼Dir(.;𝛽) [𝑝𝑋(𝑥)] =
𝛽𝑥∑︀
𝑥∈X 𝛽𝑥

Hence as per the discussion in appendix B.3, the bayes estimator for 𝑙22 loss before

the observation for 𝑝𝑋(𝑥) is 𝛽𝑥∑︀
𝑥∈X 𝛽𝑥

. After observing the samples {𝑥𝑖}𝑛𝑖=1 the bayes

estimator becomes 𝛽𝑥+𝑇𝑥∑︀
𝑥∈X 𝛽𝑥+𝑇𝑥

, which in a way translates according to the occurences

of the observations {𝑥𝑖}𝑛𝑖=1. Hence when all 𝛽𝑥 is the same and 𝛽𝑛 we obtain (2.18).

B.3 Minimum Mean Square Estimation

Theorem 7. Let 𝑌, 𝑍 be two random variables with finite second moments defined on

the probability space (Σ,F, 𝜇). Let F denote all the measurable functions of 𝑍 w.r.t.

Let 𝑔 ∈ F such that,

inf
𝑓∈F

E
[︀
(𝑌 − 𝑓(𝑍))2

]︀
. = E

[︀
(𝑌 − 𝑔(𝑍))2

]︀
(B.5)

then

𝑔(𝑍) = E [𝑌 | 𝑍] 𝑎.𝑠.

Proof. This theorem can be derived directly from the definition of conditional expec-

tation as a projection in the Hilbert space 𝐿2(Σ,F, 𝜇) onto the subspace 𝐿2(Σ,F𝑋 , 𝜇),

where F𝑋 represents the sigma-algebra generated by the random variable 𝑋. How-

ever, we will present a more accessible and elementary proof, which is outlined below.
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Let ℎ ∈ F. Then we gave:

E
[︀
(𝑌 − ℎ(𝑍))2

]︀
= E

[︀
(𝑌 − 𝑔(𝑍) + 𝑔(𝑍)− ℎ(𝑍))2

]︀
=E

[︀
(𝑌 − 𝑔(𝑍))2

]︀
+ E

[︀
(𝑔(𝑍)− ℎ(𝑍))2

]︀
+ 2E [(𝑌 − 𝑔(𝑍))(𝑔(𝑍)− ℎ(𝑍))]

=E
[︀
(𝑌 − 𝑔(𝑍))2

]︀
+ E

[︀
(𝑔(𝑍)− ℎ(𝑍))2

]︀
+ 2E [E [(𝑌 − 𝑔(𝑍))(𝑔(𝑍)− ℎ(𝑍)) | 𝑍]]

=E
[︀
(𝑌 − 𝑔(𝑍))2

]︀
+ E

[︀
(𝑔(𝑍)− ℎ(𝑍))2

]︀
+ 2E

⎡⎣(E [𝑌 | 𝑍]− 𝑔(𝑍))⏟  ⏞  
=0

(𝑔(𝑍)− ℎ(𝑍))

⎤⎦
=E

[︀
(𝑌 − 𝑔(𝑍))2

]︀
+ E

[︀
(𝑔(𝑍)− ℎ(𝑍))2

]︀
In the last step, we see E [(𝑌 − 𝑔(𝑍))2] does not depend on the choice of ℎ. Therefore if

ℎ can minimize the square error only if E [(𝑔(𝑍)− ℎ(𝑍))2] which happens 𝑔(𝑍) = ℎ(𝑍)

a.s.

B.4 Proof for Lemma 2.1.1

Here we recall Lemma 2.1.1:

Lemma 2.1.1. For |X| = 𝑂𝑛(1), 𝑟𝑝𝑛 = Θ(𝑛− 𝑝
2 )

Proof. For the lower bound we utilize Lemma B.4.1 and obtain by letting 𝑘 ≜ |X|:

‖𝑝𝑋 − 𝑞𝑋(𝑋
𝑛
1 )‖𝑝 𝑘1− 1

𝑝 ≥ ‖𝑝𝑋 − 𝑞𝑋(𝑋
𝑛
1 )‖1 (B.6)

‖𝑝𝑋 − 𝑞𝑋(𝑋
𝑛
1 )‖𝑝 ≥ ‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖1

1

𝑘1− 1
𝑝

(B.7)

‖𝑝𝑋 − 𝑞𝑋(𝑋
𝑛
1 )‖𝑝𝑝 ≥

(︂
‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖1

1

𝑘1− 1
𝑝

)︂𝑝

(B.8)

‖𝑝𝑋 − 𝑞𝑋(𝑋
𝑛
1 )‖𝑝𝑝 ≥ (‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖1)

𝑝 1

𝑘𝑝−1
(B.9)

‖𝑝𝑋 − 𝑞𝑋(𝑋
𝑛
1 )‖𝑝𝑝 ≥ (‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖1)

𝑝 𝑘1−𝑝 (B.10)
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Now taking the expectation of both sides of the inequality over 𝑋𝑛
1 ∼ 𝑝𝑋 :

E
[︀
‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖𝑝𝑝

]︀
≥ E [(‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖)

𝑝] 𝑘1−𝑝 (B.11)

E
[︀
‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖𝑝𝑝

]︀
≥ (E [‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖])

𝑝 𝑘1−𝑝 (B.12)

min
𝑞𝑋

max
𝑝𝑋

E
[︀
‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖𝑝𝑝

]︀
≥ min

𝑞𝑋
max
𝑝𝑋

(E [‖𝑝𝑋 − 𝑞𝑋(𝑋
𝑛
1 )‖])

𝑝 𝑘1−𝑝 (B.13)

min
𝑞𝑋

max
𝑝𝑋

E
[︀
‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖𝑝𝑝

]︀
≥
(︂
min
𝑞𝑋

max
𝑝𝑋

E [‖𝑝𝑋 − 𝑞𝑋(𝑋
𝑛
1 )‖]

)︂𝑝

𝑘1−𝑝 (B.14)

min
𝑞𝑋

max
𝑝𝑋

E
[︀
‖𝑝𝑋 − 𝑞𝑋(𝑋

𝑛
1 )‖𝑝𝑝

]︀
≥

(︃√︂
2(𝑘 − 1)

𝜋𝑛
+𝑂

(︂
1

𝑛3/4

)︂)︃𝑝

𝑘1−𝑝 (B.15)

where in (B.12) we use Jensen’s inequality and in (B.15) we use Corollary-9 from [7].

Hence,

𝑟𝑝𝑛 ≥

(︃√︂
2(𝑘 − 1)

𝜋𝑛
+𝑂

(︂
1

𝑛3/4

)︂)︃𝑝

𝑘1−𝑝 (B.16)

=

⎛⎝(︃√︂2(𝑘 − 1)

𝜋𝑛

)︃𝑝

+𝑂

(︂
1

𝑛3/4

)︂(︃√︂
2(𝑘 − 1)

𝜋𝑛

)︃𝑝−1
⎞⎠ 𝑘1−𝑝 (B.17)

=

(︃√︂
2(𝑘 − 1)

𝜋𝑛

)︃𝑝

𝑘1−𝑝 +𝑂

(︂
1

𝑛
2𝑝+1

4

)︂
(B.18)

For the upper bound, we note that the same strategy would not work because of the

irreversibility of Jensen’s step. However, we note that in the large sample regime,

we should expect the random variable ‖𝑝𝑋 − 𝑞𝑋‖𝑝𝑝 (B.12) to concentrate, allowing to

reverse the Jensen inequality with some error margin. Although this is an interesting

technique for the upper bound, we will plug in the MLE estimator and use its light-

tails. In particular, we have by Hoeffding’s inequality:

P (|𝑝𝑋(𝑥)− 𝑝𝑋(𝑥)| ≥ 𝑡) ≤ 2𝑒−2𝑛𝑡2

by Hoeffding’s inequality, then for the MLE estimator 𝑝𝑋 :

E
[︀
‖𝑝𝑋 − 𝑝𝑋‖𝑝𝑝

]︀
=
∑︁
𝑥∈X

E [|𝑝𝑋(𝑥;𝑋𝑛
1 )− 𝑝𝑋(𝑥)|𝑝] (B.19)
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=
∑︁
𝑥∈X

E [|𝑝𝑋(𝑥;𝑋𝑛
1 )− 𝑝𝑋(𝑥)|𝑝] (B.20)

=
∑︁
𝑥∈X

∫︁ ∞

𝑡=0

P (|𝑝𝑋(𝑥;𝑋𝑛
1 )− 𝑝𝑋(𝑥)|𝑝 ≥ 𝑡) 𝑑𝑡 (B.21)

=
∑︁
𝑥∈X

∫︁ ∞

𝑡=0

P
(︁
|𝑝𝑋(𝑥;𝑋𝑛

1 )− 𝑝𝑋(𝑥)| ≥
𝑝√
𝑡
)︁
𝑑𝑡 (B.22)

=
∑︁
𝑥∈X

∫︁ ∞

𝑢=0

P (|𝑝𝑋(𝑥;𝑋𝑛
1 )− 𝑝𝑋(𝑥)| ≥ 𝑢) 𝑝𝑢𝑝−1𝑑𝑢 (B.23)

=
∑︁
𝑥∈X

∫︁ ∞

𝑢=0

2𝑒−2𝑛𝑢2

𝑝𝑢𝑝−1𝑑𝑢 (B.24)

We let 𝑣 = 2𝑛𝑢2:

=
∑︁
𝑥∈X

∫︁ ∞

𝑢=0

2𝑒−2𝑛𝑢2

𝑝 (𝑢)𝑝−2 𝑢𝑑𝑢 (B.25)

=
∑︁
𝑥∈X

∫︁ ∞

𝑢=0

2𝑒−𝑣𝑝
(︁ 𝑣

2𝑛

)︁ 𝑝−2
2 1

4𝑛
𝑑𝑣 (B.26)

=

(︂
1

2𝑛

)︂ 𝑝
2

𝑝
∑︁
𝑥∈X

∫︁ ∞

𝑢=0

𝑒−𝑣 (𝑣)
𝑝−2
2 𝑑𝑣 (B.27)

=

(︂
1

2𝑛

)︂ 𝑝
2

𝑝
∑︁
𝑥∈X

Γ
(︁𝑝
2

)︁
(B.28)

=

(︂
1

2𝑛

)︂ 𝑝
2

𝑝𝑘Γ
(︁𝑝
2

)︁
(B.29)

≤
(︂

1

2𝑛

)︂ 𝑝
2

𝑝𝑘
(︁𝑝
2

)︁ 𝑝
2 (B.30)

where there is a suboptimal 𝑘 in front of the upper bound. For the purposes of

proving the lemma, the gap between 𝑘1−𝑝 and 𝑘 is insignificant. Essentially, this

leaves obtaining a general formula that reflects the interaction between 𝑘, 𝑛 for 𝑟𝑝𝑘,𝑛

open.

Lemma B.4.1 (Equivalence of norms on finite dimensional linear spaces). : Let
𝑝
𝑞
≥ 1 and ‖‖𝑝, ‖‖𝑞 be the 𝑙𝑝, 𝑙𝑞 norms for R𝑛. Then ∀𝑥 ∈ R𝑛:

‖𝑥‖𝑞 ≤ 𝑛
1
𝑞
− 1

𝑝‖𝑥‖𝑝 (B.31)
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Proof. This is a classical application of Hölder’s inequality:

‖𝑥‖𝑞𝑞 =
𝑛∑︁

𝑖=1

|𝑥𝑖|𝑞 1 (B.32)

≤

(︃
𝑛∑︁

𝑖=1

|𝑥𝑖|𝑝
)︃ 𝑞

𝑝
(︃

𝑛∑︁
𝑖=1

|1|
𝑞

𝑝−1

)︃1− 𝑞
𝑝

(B.33)

=

(︃
𝑛∑︁

𝑖=1

|𝑥𝑖|𝑝
)︃ 𝑞

𝑝

𝑛1− 𝑞
𝑝 (B.34)

yielding:

‖𝑥‖𝑞 =

(︃
𝑛∑︁

𝑖=1

|𝑥𝑖|𝑞
)︃ 1

𝑞

≤

⎛⎝(︃ 𝑛∑︁
𝑖=1

|𝑥𝑖|𝑝
)︃ 𝑞

𝑝

𝑛1− 𝑞
𝑝

⎞⎠ 1
𝑞

(B.35)

=

(︃
𝑛∑︁

𝑖=1

|𝑥𝑖|𝑝
)︃ 1

𝑝

𝑛
1
𝑞
− 1

𝑝 (B.36)

=‖𝑥‖𝑝𝑛
1
𝑞
− 1

𝑝 (B.37)
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