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Abstract

Language models have become ubiquitous in natural language processing, leverag-
ing large amounts of unlabeled data and fine-tuning for downstream tasks. However,
concerns have been raised regarding the accuracy and trustworthiness of the text gen-
erated by these models. In parallel, differential privacy has emerged as a framework
to protect sensitive information while allowing machine learning algorithms to learn
from it. Nevertheless, the trade-off between statistical guarantees and utility poses
challenges for many applications. Therefore, this thesis aims to develop techniques
that balance guarantees and utility, focusing on improving the reliability of generative
models while preserving their flexibility.

First, we propose a framework that enables the generation of text conditionally
using hard constraints, allowing users to specify certain elements in advance while
leaving others open for the model’s prediction. By facilitating interactive editing and
rewriting, this framework provides users with precise control over the generated text.

Next, we introduce conformal prediction methods for generating predictions un-
der soft constraints, ensuring statistical correctness. These methods produce valid
confidence sets for text generation while maintaining high empirical precision.

Finally, we explore the balance between privacy and utility in data release by
relaxing the notion of guarantees from differential privacy to a definition based on
guesswork. We present a learning-based approach to de-identification, addressing the
challenges of privacy preservation while still enabling effective data utilization.

The effectiveness of our proposed methods is demonstrated through a range of
tasks, including text infilling, radiology report generation, and X-ray classification.
These tasks showcase the utility of our techniques in various practical scenarios.

Thesis Supervisor: Regina Barzilay
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In an increasingly digitized world, a vast majority of human knowledge is stored in

text format. Throughout history, scholars and researchers have relied on texts as

primary sources for understanding the human experience. Historians meticulously

analyze ancient manuscripts, letters, and archival records to reconstruct past events

and shed light on the motivations and actions of our ancestors. Sociologists investigate

newspaper articles, online forums, and social media posts to discern patterns in public

sentiment and track the evolution of social dynamics. Psychologists delve into written

accounts of individual experiences, such as diaries or therapy transcripts, to gain

insights into the complexities of human behavior and cognition.

Harnessing this abundance of textual data, large language models learn a prob-

ability distribution over sequences of words from unlabeled training corpora. They

learn that the sentence “Abraham Lincoln died in 1865” is more likely than “Abraham

Lincoln was born in 1942”. They recognize that the phrase “The stock price will go

up, we should buy now” is more probable than “The stock price will go up, we should

sell now”, or that the sequence “1+1=2” is more likely than “1+1=3”. These learned

probabilities capture generalizations about word order, syntactic structure, semantic

meaning, and pragmatic function.

At first glance, it may seem that a probability distribution over sequences of

words is all that is needed to effectively model language. To challenge this idea,

Noam Chomsky [29] proposed the famous pair of sentences: “Colorless green ideas
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sleep furiously” and “Furiously sleep ideas green colorless”. Chomsky argues that any

two consecutive words in the preceding sentences are unlikely to happen together;

thus, a statistical model would predict that these two phrases are equally (un)likely.

However, the first one is grammatical while the second one is not. Chomsky concludes

that statistical models are unable to capture grammaticalness. Fortunately, statistical

models are not restricted to bigram models. For example, a simple hidden markov

model would assign a probability much greater to the first sentence than the second

sentence [118].

In the 90s, statistical models developed with some success, paving the way for

more advanced techniques in NLP. Early attempts at applying deep learning to lan-

guage modeling were made in the 2000s using recurrent neural networks (RNNs) [16,

107, 31], but they were limited due to the vanishing gradient problem. The problem

persisted until the development of long short-term memory (LSTM) units [61], which

enabled the creation of efficient RNN architectures. Later, the use of attention mech-

anisms [10] allowed LSTMs to reach state-of-the-art performance on a wide majority

of NLP tasks.

At the time, researchers and practitioners would need to build custom models for

each task. Early works have studied the use of language models for representation

learning [108] but relied on fixed word representations. In 2018, ELMo [119] was

proposed, introducing contextual embeddings that encode information about both

the current word and its surrounding context. This marked the start of NLP’s trans-

fer learning era, where models are trained on massive amounts of unlabeled text,

then fine-tuned on downstream tasks. Meanwhile, the Transformer architecture [150]

was introduced: it uses multiheaded self-attention layers to compute the probability

distributions of sequences without recurrence. Being highly parallelizable, Trans-

formers leverage the power of modern GPU hardware and enabled training at scale.

Incorporating these innovations, pretrained language models like BERT [35] and its

variants [98, 88] have become the de facto standard for many NLP applications, reach-

ing state-of-the-art results across a variety of NLP tasks, such as text classification,

question answering or natural language inference.
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The latest wave of progress in NLP has been fueled by scaling pretrained language

models, both in terms of model size and data size. These so-called large language

models (LLM) [184] not only demonstrate superior performance compared to smaller

ones, but also display new capabilities that were previously thought impossible for

NLP models to achieve. For instance, the 175B-parameter GPT-3 [21] can solve few-

shot tasks with in-context learning where the 1.5B-parameter GPT-2 [121] cannot.

Despite their remarkable achievements, language models raise significant concerns

regarding trustworthiness and controllability. Even large models such as GPT-4 [113]

suffer from hallucinations, i.e., generating plausible yet false statements. These false

statements can range from factual inaccuracies to entirely fabricated information.

Furthermore, large language models require users to provide appropriate prompts

to elicit desired responses effectively. Understanding how to prompt these models

effectively requires human expertise and experimentation.

The limitations in trust and control become particularly consequential when large

language models are deployed in real-world applications. These models have expanded

beyond academia and are now widely used by millions of people daily. For instance,

ChatGPT, a variant of the GPT series, has become a popular language model for

engaging in human-like conversations and providing assistance across a range of tasks.

It assists users in generating text, answering questions, offering recommendations, and

even providing emotional support. However, the lack of guarantees in the outputs of

these models can lead to unintended consequences or the propagation of incorrect or

harmful information.

In the field of privacy, there has been significant progress in developing methods

that provide statistical guarantees to control the risk of privacy leakage. Differential

privacy (DP) is one such framework that has gained attention and has been applied

to various domains [43, 93, 171, 146, 73, 1]. DP ensures that the presence or absence

of any individual data point does not significantly affect the output of a computation,

thus protecting the privacy of individuals in the dataset.

Privacy is a domain where failures can have catastrophic consequences. The mis-

use or mishandling of private data can lead to privacy breaches, identity theft, dis-
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crimination, or the compromise of sensitive personal information. In response to

these risks, regulators have introduced laws and regulations that govern how private

data should be handled and protected. Organizations are required to comply with

strict privacy regulations, which often involve implementing complex technical and

organizational measures to ensure data privacy.

However, the implementation of privacy requirements can be costly and challeng-

ing, leading to restricted data sharing and reduced data utility. Organizations face

significant hurdles in sharing sensitive data for research purposes due to concerns

about privacy risks and the cost associated with implementing privacy-preserving

techniques. This scarcity of available data, particularly in domains such as health-

care, has hindered the progress of medical AI research and prevented the exploration

of the full potential enabled by training large models at scale.

This dilemma faced by data owners who seek to comply with HIPAA [60] reg-

ulations highlights the challenges in achieving a balance between privacy preserva-

tion and data utility. Currently, they are forced to choose between manual heuristic

de-identification techniques, which lack formal privacy guarantees, or adopting dif-

ferential privacy, which can result in a significant loss of data utility. As a result,

data owners often resort to not sharing the data at all or only sharing it with a lim-

ited number of partners under restricted licenses. These restrictions not only hinder

the potential for collaborative research and innovation but also raise concerns about

reproducibility, transparency, and fairness.

This thesis aims to address some of the challenges in generative modeling with

guarantees, with a focus on advancing the field of trustworthy and controllable

generation. We explore novel approaches that enhance the reliability, and user control

over the outputs of generative models. The objective is to develop methods that

empower users to have greater confidence in the model’s generations and ensure that

the model operates within predefined constraints or guidelines.

In the following sections, we outline the three main contributions of this research.

1. Blank Language Model: A language model that enables users to designate spe-

cific locations where to generate text ;
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2. Conformal Language Modeling: A method to achieve conformal prediction guar-

antees for text generation ;

3. Syfer: A framework that leverages advances in image generation for private

data sharing.

1.1 Blank Language Model

At the core of language models lies their ability to generate coherent and fluent

sentences based on contextual information and provide meaningful completions given

partial input. This capability has naturally paved the way for numerous generative

applications, including auto-completion systems, writing assistants, code generation

tools, and more.

Language models traditionally attribute probabilities to sequences of words by

factorizing them from left to right, as:

𝑝𝜃(x) =
𝑛∏︁

𝑘=1

𝑝𝜃(𝑥𝑘|𝑥1, . . . , 𝑥𝑘−1).

However, the process of writing text is rarely linear and unidirectional. For ex-

ample, when composing a sentence, a writer considers not only the preceding context

but also the expected structure and content of the remaining of the text. Using a text

editor, writers frequently navigate throughout the document, simultaneously editing

multiple sections, deleting and revising text. The new text will be influenced by the

flow of ideas and the current state of the document, which include both preceding

and subsequent context. Similarly, programmers rarely write lines of code, one after

another. Instead, they may edit several lines at once or even jump back and forth

between different parts of the file. To be valuable tools, auto-completion systems and

writing assistants must incorporate information from both preceding and subsequent

context to generate meaningful and contextually appropriate responses.

Masked language models (MLMs) such as BERT and variants [35, 98, 88] use a

denoising objective that involves masking a portion of the input text. This training
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objective allows MLMs to obtain powerful context-aware representations that are

highly effective for downstream tasks. However, the nature of the masking objective

does not readily lend itself to direct text generation in place of the masked tokens.

The central question, therefore, is how to reconcile the unidirectional nature of

language models with the need for context-aware and holistic text representations.

How can we design models that can utilize contextual information while still being

able to generate text, effectively leveraging the interdependencies between different

parts of the text, and generating coherent and contextually appropriate completions?

Previous and subsequent work have proposed sequence-to-sequence approaches [37,

88, 40, 122] for text infilling. However, these methods are subject to high failure rate

when the ratio of masked tokens diverges from the training setup. We aim to develop

a method where output generations are guaranteed to respect the canvas they are

generated on.

In Chapter 2, we introduce Blank Language Model (BLM), a new sequence

model that addresses the challenge of generating coherent and contextually appro-

priate text by filling in blanks in the input. Instead of factorizing from left to right,

BLM learns the joint probability of generating a sequence of words together with the

generating order:

𝑝𝜃(x) =
∑︁
𝜎∼𝑆𝑛

𝑝𝜃(𝑥, 𝜎).

BLM operates on a dynamic canvas that consists of words and special blank

symbols. Given an input text with one or more blanks, the model determines which

words to place in the blanks and whether to split them into new blanks. The model

continues generating until there are no more blanks left to fill. This process allows

the BLM to generate text that seamlessly integrates with the existing content.

When starting from a single blank, BLM can generate complete sentences or

paragraphs, similar to regular language models. Alternatively, it can take as input a

partially completed text with specified blank locations, enabling users to guide the

generation process and focus on specific sections of the text.

To train BLM, we propose an efficient training procedure using a lower bound
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of the marginal data likelihood. Under our training framework, the model learns

the joint distribution of blank completions together with a generation order. During

testing, BLM can employ traditional decoding algorithms such as greedy decoding or

beam search to generate the most likely completions given the context.

On the text infilling task, we demonstrate the superiority of our method over

models trained at a comparable scale. Additionally, we showcase the versatility of

BLM in various scenarios, including style transfer and ancient text restoration. Since

the publication of our work in [135], other authors have adopted the BLM framework

and shown its effectiveness in different NLP tasks, such as information fusion [133],

molecule generation [158], and material design [159].

1.2 Conformal Language Modeling

One concerning phenomenon observed in language models is the occurrence of hal-

lucinations. Hallucinations refer to the generation of plausible yet false statements

by the model. These false statements can range from factual inaccuracies to entirely

fabricated information. The prevalence of hallucinations in language models presents

significant challenges in real-world applications. In domains where accurate and re-

liable information is paramount, such as healthcare or legal advice, the presence of

hallucinations can result in severe consequences. Users may unknowingly receive mis-

leading or erroneous information, leading to incorrect decisions, potential harm to

individuals, or detrimental effects on organizations.

Researchers and practitioners have often addressed this challenge by focusing on

enhancing the interpretability of these black box models. However, the problem lies

not only in understanding how the models arrive at their predictions but also in

ensuring the accuracy and reliability of the generated output. Interpreting the inner

workings of the models does not guarantee correctness or offer a measure of confidence

in the produced outputs.

Practitioners seeking a measure of uncertainty have commonly relied on raw model

likelihoods as a proxy of model confidence. However, those probability scores have
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been shown to be unreliable [34, 77, 105, 149]. This unreliability becomes apparent in

scenarios where a text contains an incorrect statement, followed by a factual one. Due

to the conditioning on previous context, the second sentence, which may contradict

the first, would have a low likelihood. Some approaches propose to calibrate these

logits [70, 77, 106, 179] but they still cannot provide guarantees that the output will

consistently meet a certain level of quality.

Conformal prediction provides a framework for creating prediction sets that have

a high probability of containing correct answers. It offers a model-agnostic way to

guarantee a certain level of performance, by producing predition regions instead of

point predictions. Traditionally, conformal prediction methods involve filtering the

output space of a model using a nonconformity measure (e.g. 𝒩 (𝑥, 𝑦)), which quan-

tifies the deviation between the predicted output of a data point and the outputs

observed in the training data. However, in the case of generative language models,

the output space is unbounded and combinatorial in nature, rendering exhaustive

exploration and enumeration of candidate outputs intractable.

How to extend conformal prediction to generative language models? In

Chapter 3, we propose a novel approach to generate prediction sets via an iterative

sampling strategy. We show that our method can effectively produce prediction sets

with provably high probability of containing at least one correct answer.

The key idea behind our method is to conformalize the generative process rather

than the outputs. We introduce a stopping rule that determines when to halt the

generation of candidate outputs for a given input. This rule terminates the generation

process when the desired level of confidence is reached. In conjunction, we use a

rejection rule during the generation process to remove undesirable outputs, such as

those deemed low-quality or redundant. To optimize the precision and coverage of

the prediction sets, we jointly calibrate these two rules. This calibration enables us to

identify the appropriate thresholds that yield the most effective prediction sets while

maintaining the desired coverage level.

Our method naturally extends to identifying the most confident components within

each generation and providing statistical guarantees that they are each independently
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correct, i.e. that they are not hallucinations.

We validate our method across three diverse tasks: open-domain question answer-

ing, radiology report generation, and news article summarization. We demonstrate

valid risk control on multiple diverse tasks with different formats of LMs, while still

retaining meaningful output sets that are precise on average, as compared to base-

lines.

1.3 Neural Obufscation for De-identification

In the United States, the Health Insurance Portability and Accountability Act (HIPAA) [60]

is a legislation that defines Protected Health Information (PHI) as any information

about a patient that can be used to identify the individual. It sets restrictions on the

release of such PHI to protect patient privacy. To facilitate the sharing and analysis

of health data while preserving privacy, HIPAA provides two approaches: safe harbor

and expert determination.

The safe harbor method requires the removal of 18 specific identifiers, such as

names, addresses, and medical record numbers, effectively de-identifying the health

data. If all 18 identifiers are removed, the data is considered de-identified and can

be used without restrictions under HIPAA. On the other hand, expert determination

involves obtaining the professional judgment of a qualified expert who assesses the

risk of identifying an individual from the health information and determines it to be

very small.

While techniques like differential privacy [42, 43, 2] offer strong statistical guar-

antees by introducing noise into the data, they often come at the cost of utility.

The added noise can distort the data and limit its usability for research and analysis

purposes.

In practice, many clinical settings employ the safe harbor approach due to its sim-

plicity. However, the availability of diverse data sources and advanced computational

techniques enable attacks that can undermine the privacy protections provided by safe

harbor [142]. As a result, there is a growing need for more robust de-identification

27



methods that can withstand such attacks and preserve patient privacy.

In Chapter 4, we aim to challenge the status quo by addressing the limitations of

existing de-identification methods and proposing a novel approach for data owners

who seek to enhance privacy beyond the manual removal of identifiers. Our goal is

to strike a balance between privacy and utility and offer a viable option for

data owners who are committed to safeguarding privacy but cannot afford the utility

sacrifices imposed by existing approaches.

To measure privacy, we introduce the concept of guesswork [101, 102, 7, 120, 14],

which quantifies the number of trials an adversary would require to guess private

information, such as a private key, when querying an oracle. Higher guesswork cor-

responds to higher privacy.

We then propose Syfer as a neural obfuscation method to protect against re-

identification attacks. In our framework, data owners encode their data with a random

neural network acting as their private key before releasing it publicly. While arbitrary

random neural networks alone are not sufficient to achieve privacy on real-world

data (e.g., X-rays), we demonstrate how to shape the distribution of private keys by

composing random layers with trained obfuscator layers. The obfuscator layers are

trained on public data, allowing us to precondition random transformations in order

to achieve privacy against an estimated attacker while maintaining the invertability

of the whole transformation. In particular, our method tailors the distribution of

random encoders to capture the characteristics of real-world X-rays.

Additionally, we introduce a flexible computational attacker and a realistic chest

X-ray utility benchmark to evaluate the trade-offs between privacy and utility. Our

results showcase a significant improvement in the privacy-utility trade-offs compared

to a differentially private baseline, with a notable 25-point AUC improvement and

high guesswork. Furthermore, our learned encoding schemes offer enhanced privacy-

utility trade-offs for arbitrary and unknown downstream tasks.

We strive to provide data owners with a comprehensive understanding of the

proposed method and its potential benefits, as well as its limitations. We will address

the challenges associated with implementing the proposed approach and discuss the
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potential implications for its real-world application.
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Chapter 2

Blank Language Model

This chapter presents Blank Language Model (BLM), a model that generates se-

quences by dynamically creating and filling in blanks. Unlike previous masked lan-

guage models [35] or the Insertion Transformer [140], BLM uses blanks to control

which part of the sequence to expand. This fine-grained control of generation is ideal

for a variety of text editing and rewriting tasks. The model can start from a single

blank or partially completed text with blanks at specified locations. It iteratively de-

termines which word to place in a blank and whether to insert new blanks, and stops

generating when no blanks are left to fill. BLM can be efficiently trained using a lower

bound of the marginal data likelihood, and achieves perplexity comparable to tradi-

tional left-to-right language models on the Penn Treebank and WikiText datasets.

On the task of filling missing text snippets, BLM significantly outperforms all other

baselines in terms of both accuracy and fluency. Experiments on style transfer and

damaged ancient text restoration demonstrate the potential of this framework for a

wide range of applications.
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They also have which .
They also have ice cream which is really good .

Figure 2-1: BLM fills in blanks of arbitrary length.

2.1 Introduction

Neural language models have shown impressive performance across many applications

such as machine translation and summarization where the text is generated from

scratch [10, 127]. However, a broader set of text generation tasks — including text

editing, information fusion, and ancient text restoration — requires the model to

start with partially specified text and generate the missing fragments. In the general

setup, the input document may have any number of missing spans, and each span

may have an unknown number of missing tokens. To perform this text infilling task

[187], a model should: (1) provide fine-grained control over the generation location,

(2) accommodate a variable number of missing tokens, and (3) respect both the

preceding and following context.

Existing approaches focus on adapting left-to-right language models for text in-

filling. Intricate inference algorithms leveraging dynamic programming or gradient

search are proposed to find the filling content that has a high likelihood within the

surrounding context [141, 94, 180]. These methods make simplified Markov assump-

tions, require high decoding time complexity, and cannot adapt to variable infilling

length. Alternatively, [37] predict the concatenation of the infilling content, but do

not guarantee that the output will match the number of missing spans in the input.

In this work, we introduce the Blank Language Model (BLM), which uses a special

“ ” symbol to control where tokens can be placed. The generation of BLM follows

the grammar of replacing a blank with a word and possibly adjoining blanks. By

jointly modeling context and missing content, BLM supports the control of generation

location and produces consistent infilling of variable length.

Our model can start from a single blank or partial text with blanks in specified

locations. It maps the entire input into a sequence of vector representations, and

further processes the representations in blank positions to determine the generation
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action. Generation actions are performed iteratively until there are no blanks. Since

multiple trajectories of BLM actions can produce the same final text, we train the

model by maximizing a lower bound of the log-likelihood marginalized over trajecto-

ries. At test time, we can use simple greedy decoding or beam search to fill in the

blanks in the input text.

BLM shows superior performance in text infilling [187], ancient text restoration [8]

and style transfer [134], demonstrating its flexibility to generate text in diverse con-

ditions. Our model achieves 92.5% accuracy and BLEU score of 23.1 on the Amazon

dataset for sentiment transfer. On the task of restoring ancient text that lost half of

the characters, we reduce the error rate by 3.3 points compared to previous methods.

2.2 Related work

Recent work has explored various sequence models for non-autoregressive machine

translation [55]. The Insertion Transformer supports dynamic canvas with word in-

sertion [140], but does not allow users to specify where to insert. The model is unaware

of which parts of the canvas are contiguous text spans that should remain intact, and

which (potentially scattered) parts need to be filled in. Directly forcing the Inser-

tion Transformer to perform text infilling can therefore lead to suboptimal solutions.

The Levenshtein Transformer combines insertion and deletion through complex pol-

icy learning [57]. Its insertion mechanism is a two-stage process in which placeholders

are first predicted and then filled-in in a masked language model (MLM) manner. In

text infilling where the blanks/placeholders are given, it reduces to an MLM.

MLMs are commonly used in representation learning [35, 74]. To use them in

rewriting tasks, one needs to specify the insertion length in advance and heuristically

determine the generation order among the masks [46, 155, 52]. Similarly, XL-Net

requires absolute positional embedding and thus does not support unknown-length

text infilling [174, 136]. BLM provides a natural formulation for generative modeling

that can dynamically accommodate insertions of various length.

Another line of work focuses on finding an optimal language generation order,
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Canvas 𝑐 Action 𝑎
Step 𝑡 Location 𝑏 Word 𝑤 (Left blank 𝑙, Right blank 𝑟)

0. #1 #1 is Yes Yes
1. #1 is #2 #1 customer No Yes
2. customer #1 is #2 #2 awesome No No
3. customer #1 is awesome #1 service No No
4. customer service is awesome -End-

Figure 2-2: An example trajectory that generates the sentence “customer service is
awesome”. Each action is a tuple (𝑏, 𝑤, 𝑙, 𝑟), indicating the blank location 𝑏 selected
for expansion, the word 𝑤 to fill in, whether to create a left blank 𝑙, and whether to
create a right blank 𝑟.

such as syntax-based generation [44] and learning adaptive generation order [56].

These approaches are tailored to generation from scratch in a specific order. Our

model instead is attuned for text rewriting, where the missing parts can be located

anywhere in the input text, and the algorithm must flexibly complete them.

2.3 Method

A blank language model (BLM) generates sequences by creating and filling in blanks.

Generation starts with a single blank and ends when there is no blank. In each step,

the model selects a blank “ ”, predicts a word 𝑤, and fills the blank with “𝑤”, “

𝑤”, “𝑤 ”, or “ 𝑤 ”. This way, a blank can be expanded to any number of words.

We define a canvas as a sequence of words interspersed with special “ ” tokens.

The subsequent action is conditioned on this intermediate stage of generation. Sup-

pose the current canvas is 𝑐 = (𝑐1, · · · , 𝑐𝑛) with blanks located at indices 𝑏1, · · · , 𝑏𝑘
(i.e. 𝑐𝑏𝑖 = “ ”, for 𝑖 = 1, . . . , 𝑘). BLM maps this canvas to a distribution over actions

specifying how the canvas is to be revised:

𝑝(𝑏, 𝑤, 𝑙, 𝑟|𝑐; 𝜃) = BLM(𝑐) (2.1)

where 𝑏 ∈ {𝑏1, · · · , 𝑏𝑘} is a blank location; 𝑤 is a word in the vocabulary 𝑉 ; 𝑙, 𝑟 ∈

{0, 1} denote whether or not to create a blank to the left and right of 𝑤; and 𝜃 are

the model parameters. The action, defined as the tuple (𝑏, 𝑤, 𝑙, 𝑟) uniquely specifies
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the next state of canvas (see Fig. 2-2 for illustration).

Alternatively, we can view the actions in BLM as production rules in a grammar.

Each blank represents a nonterminal symbol or the start symbol, and the terminal

symbols come from the vocabulary 𝑉 . The production rules are restricted to be of

the form “ ” → “ ?𝑤 ?” for 𝑤 ∈ 𝑉 , where “?” indicates that the preceding symbol

is optional. In contrast to context-free grammars, the probability distribution over

production rules in BLM is conditioned on the entire canvas generated so far.

Model Architecture We encode the canvas 𝑐 into a sequence of representations

(𝑧1, · · · , 𝑧𝑛), and take representations 𝑍 = (𝑧𝑏1 , · · · , 𝑧𝑏𝑘) where the blanks are located.

Let 𝑑 denote the dimension of 𝑧’s. We factorize the joint distribution 𝑝(𝑏, 𝑤, 𝑙, 𝑟|𝑐; 𝜃)

into three parts (shown in Fig. 2-3):

1. Choose a blank:

𝑝(𝑏𝑖|𝑐; 𝜃) = Softmax(𝑢𝑇𝑍) (2.2)

where 𝑢 ∈ R𝑑 is a parameter vector to project 𝑧’s into one-dimensional logits.

2. Predict a word for the selected blank:

𝑝(𝑤|𝑐, 𝑏𝑖; 𝜃) = Softmax(𝑊𝑧𝑏𝑖) (2.3)

where 𝑊 ∈ R|𝑉 |×𝑑 is a parameter matrix to project 𝑧𝑏𝑖 into the vocabulary.

3. Decide whether or not to create blanks to the left and right of the predicted

word:

𝑝(𝑙, 𝑟|𝑐, 𝑏𝑖, 𝑤; 𝜃) = MLP(𝑧𝑏𝑖 , 𝑣𝑤) (2.4)

where 𝑣𝑤 is the word vector of 𝑤, and MLP is a multilayer perceptron with 4

output classes: Left.Yes/No × Right.Yes/No.
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Likelihood Now let us consider the probability 𝑝(𝑥; 𝜃) of generating a sentence/-

paragraph 𝑥 = (𝑥1, · · · , 𝑥𝑛) under the BLM. We call the generating process from an

initial blank to complete text a trajectory. The same final text 𝑥 can be realized by

multiple trajectories. However, if we specify the order in which the words in 𝑥 are

generated, the trajectory will be uniquely determined. Consider the example trajec-

tory of a 4-word sentence in Fig. 2-2. Given the order (3, 1, 4, 2), at step 0 when we

generate 𝑥3, both left and right blanks are created for future generations of 𝑥1 and

𝑥2, 𝑥4. In step 1 of generating 𝑥1, only a right blank is created for the future 𝑥2. Sub-

sequent steps can be deduced by analogy. The correspondence between trajectories

and generation orders allows us to write the marginal likelihood as:

𝑝(𝑥; 𝜃) =
∑︁
𝜎∈𝑆𝑛

𝑝(𝑥, 𝜎; 𝜃)

=
∑︁
𝜎∈𝑆𝑛

𝑛−1∏︁
𝑡=0

𝑝(𝑎𝑥,𝜎𝑡 |𝑐
𝑥,𝜎
𝑡 ; 𝜃) (2.5)

where 𝑆𝑛 is the set of all 𝑛-permutations; 𝑎𝑥,𝜎𝑡 , 𝑐𝑥,𝜎𝑡 denote the action and canvas at

step 𝑡 under sentence 𝑥 and order 𝜎, respectively (cf. Fig. 2-2).

Training Different losses have been proposed to train generalized sequence models.

For instance, BERT and XL-Net mask and predict 15% of tokens conditioned on the

rest. This strategy is more suitable for representation learning rather than genera-

tion. Insertion Transformer masks different numbers of tokens and weights them with

uniform loss or binary tree loss [140, 24]. It aims to perform fast inference through

parallel decoding. Here, we present a training objective from the language modeling

perspective by estimating the log likelihood of generating 𝑥.

Directly computing the marginal likelihood over 𝑛! orders is intractable. We apply
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Jensen’s inequality to lower bound the log likelihood:

log 𝑝(𝑥; 𝜃) = log
∑︁
𝜎∈𝑆𝑛

𝑛−1∏︁
𝑡=0

𝑝(𝑎𝑥,𝜎𝑡 |𝑐
𝑥,𝜎
𝑡 ; 𝜃)

≥ log(𝑛!) +
1

𝑛!

∑︁
𝜎∈𝑆𝑛

𝑛−1∑︁
𝑡=0

log 𝑝(𝑎𝑥,𝜎𝑡 |𝑐
𝑥,𝜎
𝑡 ; 𝜃) (2.6)

where equality holds when the posterior 𝑝(𝜎|𝑥; 𝜃) is uniform. By maximizing this lower

bound, we do not favor any particular order, but encourage the model to realize 𝑥

equally well in all orders. It can help the model to complete any partial input text

regardless of the position of blanks.

A naive training algorithm is to directly estimate the lower bound in Eq. (2.6): first

uniformly sample a permutation 𝜎 from 𝑆𝑛 and a step 𝑡 from 0 to 𝑛−1, then construct

the canvas 𝑐𝑥,𝜎𝑡 , and compute the estimated loss [− log(𝑛!)− 𝑛 · log 𝑝(𝑎𝑥,𝜎𝑡 |𝑐
𝑥,𝜎
𝑡 ; 𝜃)].

However, this procedure has a large variance and can only compute the loss of a

single action in one pass (in contrast to left-to-right language models that compute

𝑛 word losses per pass).

To train the model more efficiently, we note that the canvas 𝑐𝑥,𝜎𝑡 depends only on

the first 𝑡 elements of 𝜎. Hence we can combine into one pass the loss calculations

of trajectories that are the same in the first 𝑡 steps but different at the 𝑡 + 1 step.

Switching the summation order of 𝜎 and 𝑡, we have:

𝑛−1∑︁
𝑡=0

1

𝑛!

∑︁
𝜎∈𝑆𝑛

log 𝑝(𝑎𝑥,𝜎𝑡 |𝑐
𝑥,𝜎
𝑡 ; 𝜃)

= 𝑛 · E𝑡E𝜎1:𝑡E𝜎𝑡+1E𝜎𝑡+2:𝑛 [log 𝑝(𝑎
𝑥,𝜎
𝑡 |𝑐

𝑥,𝜎
𝑡 ; 𝜃)]

= 𝑛 · E𝑡E𝜎1:𝑡E𝜎𝑡+1 [log 𝑝(𝑎
𝑥,𝜎
𝑡 |𝑐

𝑥,𝜎
𝑡 ; 𝜃)]

= E𝑡E𝜎1:𝑡

[︃
𝑛

𝑛− 𝑡

∑︁
𝜎𝑡+1

log 𝑝(𝑎𝑥,𝜎𝑡 |𝑐
𝑥,𝜎
𝑡 ; 𝜃)

]︃
(2.7)

which leads to our efficient training algorithm: sample 𝑡 from 0 to 𝑛− 1 and partial
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permutation 𝜎1:𝑡, construct the canvas 𝑐𝑥,𝜎𝑡 , and compute loss:

− log(𝑛!)− 𝑛

𝑛− 𝑡

∑︁
𝜎𝑡+1

log 𝑝(𝑎𝑥,𝜎𝑡 |𝑐
𝑥,𝜎
𝑡 ; 𝜃) (2.8)

The whole process is illustrated in Algorithm 1. In this way, we can compute in

expectation 𝑛/2 action losses per pass.

2.4 Experiments

We test BLM’s capacity to rewrite specified portions of text on three tasks: text

infilling [187], ancient text restoration [8] and style transfer [134]. Fig. 2-4 displays

example inputs and outputs for these tasks. We also measure the perplexity of BLM

on language modeling benchmarks and compare with traditional left-to-right language

models.

Experimental Details In all experiments, the sequence representations in BLM

are obtained using the encoder module of transformer_base [150] (6 layers, 8 heads,

𝑑𝑚𝑜𝑑𝑒𝑙 = 512, 𝑑𝑓𝑓 = 2048, 𝑑𝑘 = 𝑑𝑣 = 64). The MLP used for blank prediction has one

hidden layer of size 1024. Weight decay, learning rate, and dropout are tuned based

on the loss on the validation set for each dataset respectively. When decoding, we

use beam size in {1, 5, 10} and choose the best value as observed on the validation

set. We note that beam search in BLM does not search for the sentence with the

maximum marginal likelihood 𝑝(𝑥; 𝜃), but instead for a sentence and a trajectory that

have the maximum joint likelihood 𝑝(𝑥, 𝜎; 𝜃).

2.4.1 Text Infilling

Dataset We experiment on the Yahoo Answers dataset, which has 100K/10K/10K

documents for train/valid/test respectively [176]. A document has a maximum length

of 200 words, with an average of 78 words. Following [187], we automatically compile

test data by deleting portions of documents. For each document 𝑥, we randomly
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mask a given ratio 𝑟 of its tokens. Contiguous masked tokens are collapsed into a

single “ ”, resulting in a canvas 𝑐 to be completed.

Metrics We measure generation’s accuracy by computing its BLEU score against

the original document 𝑥, and fluency as its perplexity evaluated by a pre-trained (left-

to-right) language model. We also report the failure rate, which is the percentage of

invalid generations, such as missing existing words or not filling in all the blanks.

Baselines We compare BLM with five baselines:

• Insertion Transformer (InsT): By default, InsT does not support controlling the

insertion position. We force it to produce valid generations by normalizing the

predictions over valid locations, disabling the ⟨eos⟩ prediction unless all blanks

have been filled, and prioritizing slots that have not been filled yet. Without

these steps, InsT would have a failure rate ≥ 88%. An illustration is provided

Figure 2-5

• MLM (oracle length): MLM for text infilling requires predicting the length of

each blank. Here we replace blanks with the target number of ⟨mask⟩ tokens,

and fill them autoregressively by the most-confident-first heuristic. We illustrate

the process on Figure 2-6

• BERT+LM : We use BERT’s representation of each blank as seed for a left-to-

right language model that learns to generate the tokens in the corresponding

blank. At inference time, the multiple blanks are filled in one after another,

conditioned on previous generations. The generation process is illustrated on

Figure 2-7.

• Seq2seq-full [37]: We train a seq2seq model to output the full document 𝑥 from

input 𝑐. Note that it may have invalid outputs that do not match the input

format, such as missing existing tokens in 𝑐 or generating tokens in incorrect

locations.

• Seq2seq-fill [37]: We train a seq2seq model to output only tokens to be placed

in the blanks, with a special ‘|’ token to indicate separation. For the example in
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Fig. 2-4, its target output will be “ice cream |is really good”. Unlike seq2seq-full,

seq2seq-fill does not have the problem of losing existing tokens in 𝑐. However,

it may still fail to generate the correct number of ‘|’ that matches the input.

Results As shown in Table 2.1, BLM achieves the highest BLEU score at all mask

ratios: 0.7 to 1.7 higher than InsT, 2.6 to 4.1 higher than MLM with oracle length,

and 3.7 to 9.4 higher than BERT+LM. InsT is not trained with insertion position

control. Restricting it to generate at the specified positions thus biases the model

towards making suboptimal completions. MLM is trained to independently predict

masked tokens instead of jointly modeling them. Even with the target number of

⟨mask⟩ tokens given, its performance is still inferior to BLM. BERT+LM lags behind

other models. In BERT training, one mask corresponds to one token, whereas a blank

here can cover multiple tokens, and the distance between words is not fixed. Hence,

it is difficult for the LM to complete the sentence from BERT representations.

Seq2seq-full has BLEU scores closest to BLM. However, its failure rate ranges from

15% to 40.6% as the mask ratio increases. Seq2seq-fill performs worse than Seq2seq-

full, possibly because the decoder has to model segmented text while counting the

number of blanks.

In terms of fluency, Table 2.2 shows that outputs of BLM, InsT and Seq2seq-full all

have perplexity lower than original data perplexity. This is because with beam search,

models tend to generate the most typical output with the highest likelihood [63].

Examination of model generations confirms the superiority of BLM. In Fig. 2-8,

we showcase example outputs by each model at different mask ratios. In low mask

ratio settings, models only need to fill in the blanks with a single word to produce

grammatical completions. Most models succeed in this task. With a higher mask

ratio of 50%, the main ideas of the document are concealed, and the infilling task

is much more challenging. Models need to creatively generate sentences that fit the

imposed canvas. Although the original meaning of the sentence is not recovered, BLM

is the only model able to produce a coherent document with consistency between the

question and the answer.
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Overall, BLM displays the best performance both quantitatively and qualitatively.

Its inherent text infilling ability frees it from length, order, or termination heuristics

used by other methods.

Mask ratio 10% 20% 30% 40% 50%

No infill 75.2 55.0 37.4 23.6 13.0
InsT 84.8 72.3 58.9 46.0 33.8
MLM (oracle length) 83.7 69.3 55.5 43.2 32.2
BERT+LM 82.8 66.3 50.3 37.4 26.2
Seq2seq-full 86.3 72.9 59.4 46.3 34.0
Seq2seq-fill 82.8 67.5 52.9 39.9 28.6
BLM 86.5 73.2 59.6 46.8 34.8

Table 2.1: BLEU scores of generated documents by different models for text infilling.

Mask ratio 10% 20% 30% 40% 50%

No infill 98.4 163.0 266.3 421.0 647.9
InsT 48.3 44.2 41.8 39.7 37.7
MLM (oracle length) 58.4 59.8 59.8 59.0 56.8
BERT+LM 55.1 55.2 54.9 56.5 53.6
Seq2seq-full 51.3 46.9 41.0 31.9 20.6
Seq2seq-fill 64.6 71.0 73.4 65.6 48.7
BLM 50.2 44.9 39.9 35.0 32.7

Table 2.2: Perplexity (PPL) of generated documents by different models for text
infilling. The perplexity is measured by a pre-trained left-to-right language model,
and the original documents have perplexity 55.8.

2.4.2 Ancient Text Restoration

Ancient text restoration is a form of text infilling where there are fragments in ancient

documents that are illegible due to time-related damages and need to be recovered.

[8] introduces the PHI-ML dataset made of fragments of ancient Greek inscriptions.

Restoration is performed at the character-level. The number of characters to recover

is assumed to be known and indicated by a corresponding number of ‘?’ symbols, as

shown in the second row of Fig. 2-4. In reality, when epigraphists restore a deterio-

rated document, the length of the lost fragment is unknown and needs to be guessed
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Mask ratio 10% 20% 30% 40% 50%

Seq2seq-full 15.0 22.4 28.7 33.3 40.6
Seq2seq-fill 31.0 28.4 34.5 42.5 47.2

Table 2.3: Infilling failure rate (%) of seq2seq models. Other methods always produce
valid outputs.

as a first step. While models proposed by [8] relies on expert conjectures, we note

that BLM can bypass this limitation and flexibly generate completions without this

additional knowledge. However, in order to compute the character error rate (CER)

for each ’?’ and have a fair comparison with previous work, we evaluate our model

in the length-aware setting.

Length-aware BLM (L-BLM) We present a variant of BLM adapted to the

specific features of this task. The vocabulary 𝑉 is an alphabet of characters from the

ancient Greek language. We extend 𝑉 with special “ [𝑡] ” tokens that denote the

length of the fragment to recover. Specifically, as a preprocessing step, consecutive

‘?’ characters are collapsed into a single “ [𝑡] ” token, where 𝑡 is the number of

‘?’ symbols. For each such blank token, L-BLM is trained to predict a character to

fill in and the length 𝑙 ∈ {0, · · · , 𝑡− 1} of the new blank to its left. The length of the

new blank on the right is accordingly 𝑡− 1− 𝑙.

Dataset The PHI-ML dataset contains about 3 million words / 18 million char-

acters. We report the statistics in Figure 2-9. We evaluate models in two settings:

single-slot and multi-slot. For the single-slot setting, we use the testing script of [8]

which samples a context of length 𝐿 = 1000 from an inscription, then samples a slot

of length 𝐶 ∈ [1, 10] from that context. The characters from the slot are replaced with

‘?’ and constitute the target. For the multi-slot setting, we progressively increase the

number of slots, yielding mask ratios of 25%, 40% and 50% respectively.

Baselines [8] proposed two models: Pythia, a character-level seq2seq-based ap-

proach; and Pythia-Word, a variant of Pythia that uses both character and word
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Single- Multi-slot

Mask ratio 1% 25% 40% 50%

Human 57.3% - - -
Pythia 32.5% - - -
Pythia-Word 29.1% 36.9% 42.3% 44.9%

L-BLM 33.7% 37.1% 37.9% 41.6%

Table 2.4: CER for ancient text restoration.

representations as input. During training, the model learns to recover the missing

characters of examples where a random slot has been masked. When testing on the

multi-slot setting, Pythia(-Word) is applied iteratively with beam size 20 for each

slot.

Results Table 2.4 summarizes the CER of all models in both settings. L-BLM

achieves similar CER as Pythia in the single-slot setting, significantly outperform-

ing human experts. Augmented with word representations, Pythia-Word further de-

creases the error rate compared to character-only methods.

In reality, restoring damaged inscriptions requires reconstructing multiple lost

fragments. As a larger proportion of text is missing, Pythia-Word’s performance is

degraded. L-BLM is robust to the setting change and outperforms Pythia-Word at

the mask ratio of 40% and 50% by 4.4 and 3.3 points, respectively. We posit that L-

BLM’s advantage lies in its ability to maximize the joint likelihood of the completions

over all slots. In contrast, Pythia-Word’s is only aware of one slot at a time, and beam

search is performed locally within each slot.

2.4.3 Sentiment Transfer

The goal of sentiment transfer is to modify the sentiment of a sentence while main-

taining its topic [134]. An example is described on the third row of Fig. 2-4. Inspired

by the way humans perform rewriting, we follow a recent line of work in style transfer

that adopts a two-step approach [89, 172, 164]:
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1. Remove words and expressions of high polarity from the source sentence;

2. Complete the partial sentence with words and expressions of the target senti-

ment.

Specifically, we adapt the Mask-And-Infill (M&I) framework of [164]. We perform

Step 1 by training a Bi-LSTM sentiment classifier and masking words whose attention

weight is above average. We evaluate the contribution of our model as an infilling

module in Step 2 in place of their fine-tuned BERT model. To this end, we train

two instances of BLM on the dataset, one for each sentiment. At test time, the

corresponding BLM is used to produce completions of the target sentiment.

[164] further train the infilling model with the classifier to improve transfer ac-

curacy. They use soft words relaxation to backprop gradients from the classifier to

the generator. For BLM, however, we cannot pick locations or insert blanks as “soft”

choices, making it challenging to employ a classifier at training time. Nevertheless,

we can easily apply the classifier to guide inference. We sample 10 outputs and keep

the one with the highest classifier ranking. It is not slower than beam search with

size 10 and can be fully parallelized.

Datasets We test on the Yelp and Amazon review datasets [134, 89]. The Yelp

dataset has 450K/4K/1K non-parallel sentences for train/valid/test respectively, and

the Amazon dataset has 555K/2K/1K sentences. (see Table 2-10). Each sentence

is labeled as either positive or negative. The task is to flip the sentiment of each

sentence.

Metrics We use evaluation methods introduced by prior work [134, 89, 164, 175].

To assess the accuracy of generated sentences with respect to the target sentiment, we

use a pretrained CNN classifier that achieves 97.7% accuracy on the Yelp dataset and

82.2% accuracy on the Amazon dataset. We also measure the BLEU score between

transferred sentences and human references.
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Yelp Amazon

ACC BLEU ACC BLEU

Delete-And-Retrieve [89] 88.7 8.4 48.0 22.8
UMT [183] 96.6 22.8 84.1 33.9
Point-Then-Operate [163] 91.5 29.9 40.2 41.9
Mask & Infill with MLM [164] 41.5 15.9 31.2 32.1

+ classifier 97.3 14.1 75.9 28.5

Mask only (canvas) 42.6 19.9 37.1 21.2
Mask & Infill with BLM 79.6 21.9 52.0 24.7

+ classifier 96.5 21.5 92.5 23.1

Table 2.5: Accuracy and BLEU scores for style transfer. Accuracy measures the
percentage of sentences labeled as the target sentiment by the classifier. BLEU is
evaluated against human reference generations. For reference, we also report accuracy
and BLEU scores of the canvas (i.e. the original masked sentence).

Baselines [89] propose Delete-And-Retrieve (DAR) which generates the output

conditioned on the hidden representation of the masked sentence and retrieved ex-

pressions of the target sentiment. is a seq2seq-based approach where hidden represen-

tations of the masked sentence is concatenated with a learned attribute embedding

before decoding. Additionally, a retrieval module is used to collect relevant expres-

sions of the target sentiment to guide generation. [183] adapt Unsupervised Machine

Translation (UMT) techniques and iteratively train the style transfer models with

back translation and a style classifier. [163] present a hierarchical reinforcement

learning method Point-Then-Operate (PTO), in which a pointer indicates operation

positions and an operator modifies them.

We follow the Mask-And-Infill (M&I) framework of [164]. Their infilling module

is a fine-tuned BERT𝑏𝑎𝑠𝑒 model, while ours is BLM.

Results In Table 2.5, we can see that directly applying BLM as the infilling module

is significantly better than MLM. The accuracy on Yelp and Amazon datasets is in-

creased by 38.1% and 20.8%, respectively. In addition to the aforementioned problem

of MLM being trained to predict masked tokens independently, it must generate the

same number of tokens as in the source sentence, whereas our BLM formulation is
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not subject to this constraint. Our simple use of a classifier at inference time further

improves accuracy. It achieves the highest accuracy of 92.5% on Amazon with a small

decrease in BLEU, indicating that BLM can easily find high-quality outputs.

Results in Table 2.5 demonstrate the ability of different models to perform text

infilling for style transfer. The Delete-And-Retrieve method with the frequency-

ratio based masking strategy achieves high sentiment accuracy, but can only do so

at the expense of content fidelity. By constraining BLM to fill in blanks in between

content words, we ensure that the predictions will yield high content preservation,

improving both BLEU score and sentiment accuracy over the original masked sen-

tence.

The MLM formulation in Mask-And-Infill is problematic on this task for two

reasons. By design, MLM is forced to generate the same number of tokens as there

were originally in the source sentence, making it more difficult to produce coherent

sentences that are consistent with the target sentiment. Furthermore, MLM is trained

to predict the masked tokens independently rather than jointly, which further hurts

performance. Our formulation of BLM does not suffer any of these weaknesses. With

both masking strategies, our model outperforms the Mask-And-Infill baseline on

all metrics, proving its superiority as the better-suited formulation for this setup.

In Fig. 2-11, we show examples generated by BLM on Yelp. It can dynamically

adapt to the imposed canvas and fill in blanks with expressions of varied lengths, e.g.,

“nowhere to be found” → “the best i found” and “definitely not” → “always”. We

note that failure cases arise when negative words like “either” are left unmasked; BLM

is then unable to produce satisfactory outputs from the canvas.

2.4.4 Language Modeling

Language modeling is a special case of text infilling where sequences are generated

from scratch. Traditional left-to-right models dominate this task, but are not suitable

for text infilling. Conversely, unconventional sequence models are rarely evaluated on

language modeling. Here, we study the perplexity of BLM and Insertion Transformer,

and compare them with left-to-right language models to provide additional insights.
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𝑚 1 10 100 1000

Estimated PPL 46.3 44.4 43.3 42.5

Table 2.6: The estimated perplexity of BLM with the number of MC samples 𝑚 on
WikiText-103.

PTB WT2 WT103

LSTM [54] 82.3 99.3 48.7
TCN [11] 88.7 - 45.2
AWD-LSTM [103] 57.3 65.8 -
Transformer [32] - - 30.1
Adaptive [9] - - 18.7
Transformer-XL [32] 54.5 - 18.3

InsT (our implementation) 77.3 91.4 39.4
BLM 69.2 81.2 42.5

Table 2.7: Perplexity on the PTB and WikiText datasets.

We use the Monte-Carlo method to estimate the likelihood in Eq. (2.5) with 𝑚

samples. While the estimate is unbiased, given that per-word perplexity is a convex

function of per-sentence likelihood, sampling estimates like ours are likely yielding

a value higher than the actual perplexity (see Appendix A.2 for a proof). As 𝑚

increases, it converges to the actual perplexity.

Datasets We test on three benchmark datasets: Penn Treebank (PTB) which has

about 1M tokens [107], WikiText-2 (WT2) which has 2M tokens, and WikiText-103

(WT103) which has 103M tokens [104].

Results Table 2.6 shows the trend of estimated PPL with the number of samples

𝑚. We choose 𝑚 = 1000 in our evaluation, which is close to convergence. Table 2.7

summarizes the perplexity of our model in comparison with previous work. The top

results are achieved by the Transformer-XL [32] and the adaptive embedding method

[9]. They use larger model sizes and supplementary techniques that can also be

combined with our model. BLM rivals the Insertion Transformer and outperforms left-

to-right language models with LSTM and Temporal Convolutional Network (TCN)
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architecture. Language modeling seems to still be challenging for free-order models.

By reporting the perplexity of unconventional models like BLM, we hope to stimulate

future work in this area to close the performance gap with traditional left-to-right

models.

2.5 Qualitative results

In Figure 2-12, we present examples of the generation trajectory of BLM on the

Yelp review dataset. This demonstrates the sequential generation of text by the

model, where each row in the table corresponds to a different step in the generation

process. It seems that the model’s learned joint distribution (𝑥, 𝜎) is not guided by

grammatical considerations. Instead, the model tends to choose words that have a

high probability of appearing, such as determiners like "the," or polarity words like

"terrible" or "favorite." This is because the model was trained on a dataset that

primarily focused on high polarity expressions.
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2.6 Conclusion

2.6.1 Summary of contributions

In this chapter, we proposed the Blank Language Model for flexible text generation.

Given partially specified text with one or more blanks, BLM will fill in the blanks

with a variable number of tokens consistent with the context. We demonstrate the

effectiveness of our model on various text rewriting tasks, including text infilling,

ancient text restoration and style transfer.

The action of BLM consists of selecting a blank and replacing it with a word

and possibly adjoining blanks. We train BLM by optimizing a lower bound on the

marginal data likelihood that sums over all possible generation trajectories. In this

way, we encourage the model to realize a sentence equally well in all orders, which is

suitable for filling arbitrary blanks. Appendix 2.5 shows examples generated by BLM

along with their trajectories.

2.6.2 Future work

The research presented in this work opens up several exciting avenues for future

exploration.

One natural direction is the application of BLM in other NLP tasks, such as

template infilling, information fusion [133], and writing or coding assistance. For

example, BLM can assist programmers by providing suggestions or completing code

snippets based on the given context. This application has the potential to enhance

coding productivity and improve the efficiency of software development.

Moreover, the formulation of BLM can be extended to sequence-to-sequence set-

tings, enabling it to function as a conditional generative model. This extension opens

up possibilities for supporting interactive editing and refining of generated text. BLM

can be applied in machine translation systems, summarization software, and dialogue

systems, where users can iteratively modify the generated text based on feedback. Ad-

ditionally, there is great potential in extending BLM to tasks involving multimodal
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data, such as generating image captions, or video descriptions, that incorporate both

text and visual information. In such cases, users can utilize BLM to specify the lo-

cations requiring editing or provide additional context to guide the model’s focus on

specific parts of the input that needs to be described.

In general, BLM can enable incremental text generation, where a user and the

language model collaborate to construct text. The model can adapt in real-time to

user feedback or dynamically incorporate new information. This feature makes BLM

a valuable addition to collaborative writing tools.

Another avenue of research to explore is the expansion of its action space. In this

work, the focus was on word and blank insertions as the actions. However, a valuable

extension would be to incorporate token deletion capability. By allowing the model

to choose to delete previously generated tokens as an action, BLM gains the ability to

self-recover from mistakes or incorrect predictions. This enhancement would further

improve its performance in interactive systems, where accuracy and coherence are

essential. Incorporating token deletion as an action expands the model’s flexibility

and adaptability, enabling it to dynamically adjust its output based on user feedback

or changing contexts.

While this work primarily focuses on language generation and text infilling tasks,

it would be interesting to compare the learned representations of BLM with those

generated by other pre-training methods. BLM combines the contextual information

from both directions, similar to BERT-like models, while also being designed for text

generation, similar to GPT-like models. It will be interesting to explore pre-training

and fine-tuning BLM on downstream tasks that require both these capabilities.

Scaling up the training process of BLM is essential to fully harness its potential.

Although beyond the scope of this thesis, the positive results obtained in this chapter

provide a strong foundation for further exploration in this direction. Scaling up BLM

would involve training on larger datasets, utilizing more computational resources,

and potentially exploring distributed training techniques. This advancement would

enable the model to handle more complex and diverse language tasks, opening up

new possibilities for its application.
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Furthermore, future research can extend the use of BLM beyond language gen-

eration. Recent studies have already explored its application in molecule generation

and material design [158, 159]. Another domain of interest is music modeling, as the

harmonic constraints naturally impose a canvas that composers fill in with melodies.
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Figure 2-3: Architecture of the BLM. In the first stage, an index is chosen among
all current blank positions. For that location, a word is selected in the second stage.
In the final stage, the blank representation is concatenated with the chosen word’s
embedding and fed into an MLP to determine the creation of the following blanks.
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Algorithm 1 BLM Training
1: Initialize model parameters 𝜃
2: while model not converged do
3: Sample a training example 𝑥 = (𝑥1, · · · , 𝑥𝑛)
4: Sample 𝑡 from 0 to 𝑛− 1
5: Sample an 𝑛-permutation 𝜎
6: Construct canvas 𝑐 that keeps tokens 𝑥𝜎𝑗

(𝑗 = 1, · · · , 𝑡) and collapses
remaining tokens as blanks

7: Get 𝑛− 𝑡 target actions 𝑎𝑗−𝑡 for filling 𝑥𝜎𝑗
(𝑗 = 𝑡+ 1, · · · , 𝑛) into canvas

𝑐
8: Compute loss({𝑎1, · · · , 𝑎𝑛−𝑡},model.forward(𝑐)) from Eq. (2.8)
9: Update 𝜃 by gradient descent

They also have which .
They also have ice cream which is really good .

τε εγγονον εισαι? ? ? ? ? ? ?σοφιαι

τε εγγονον εισαιου του σοφιαι

The employees were super nice and efficient !
The employees were rude and unprofessional !

Figure 2-4: Examples of input and output for text infilling, ancient text restoration,
and style transfer tasks.

Figure 2-5: Schematic of the Insertion Transformer
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Figure 2-6: Schematic of the MLM baseline

Figure 2-7: Schematic of the BERT + LM baseline
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Mask-ratio 10% Mask-ratio 50%

Blanked when time flies , does it go ? the center
of the to be recycled made into new
time .

when time , where ? the of
universe to recycled made into .

BLM when time flies , where does it go ? for the center
of the earth to be recycled and made into new
time .

when time was created , where did it come from ?
it was the first part of the universe to be recycled and
made into space .

InsT when time flies , where does it go ? for the center
of the earth has to be recycled and made into new
time .

when time was created , where was it ? what was the
name of the universe to be recycled and made into
space .

MLM
(oracle
len)

when time flies , where does it go ? from the
center of the earth to be recycled converted made
into new time .

when time is , where is the universe ? from the
creation of the universe to be recycled and made into
the universe .

BERT+LM when time flies , where does it go ? to the center
of the earth to be recycled came made into new
time .

when time is , where to ? i need to find the way of
the universe to be recycled and made into a lot .

Seq2seq-
full

when time flies , where does it go ? at the center
of the earth to be recycled and made into new
time .

when time heals , where does it go ? it ’s the end of
the universe to be recycled and made into space .

Seq2seq-
fill

when time flies , how does it go ? at the center
of the earth to be recycled and made into new
time .

when time is time , where is time ? time is the time
of time universe to the recycled be made into and . the
universe

how |at |earth |and is time |is time |time is |time |time |the |be |and |the
universe

Original when time flies , where does it go ? to the center
of the universe to be recycled and made into
new time .

when time flies , where does it go ? to the center of
the universe to be recycled and made into new time
.

Figure 2-8: Example generations of different models for text infilling on Yahoo An-
swers. Completions are in italic. Invalid completions are in red. For Seq2seq-fill, we
present model outputs along with the merged document.

Split Inscriptions Word Chars

Train 34,952 2,792K 16,300K
Dev 2,826 211K 1,230K
Test 2,949 223K 1,298K

Figure 2-9: Statistics of the PHI-ML dataset.

Attribute Train Dev Test

Positive 270K 2000 500
Negative 180K 2000 500

Figure 2-10: Statistics of the Yelp review dataset for style transfer.
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the food ’s ok , the service is among the worst i have encountered .
the food ’s ok , the service is probably the best i have encountered .
the food is good, and the service is one of the best i’ve ever encountered.
everyone that i spoke with was very helpful and kind .
everyone that i spoke with was rude and unprofessional .
everyone that i spoke with wasn’t helpful or kind.
the beans were in the burro in the rice was nowhere to be found .
the beans were in the burro in the rice was the best i found .
the beans were in the burro and the rice was plentiful
everything is fresh and so delicious !
everything is horrible and so expensive !
everything was so stale
there is definitely not enough room in that part of the venue .
there is always enough parking in that part of the venue .
there is so much room in that part of the venue
it is n’t terrible , but it is n’t very good either .
it is n’t fancy , but it is still very good either .
it is n’t perfect , but it is very good .
executive chefs would walk by not even saying good morning .
executive chefs would come by without even saying good morning .
the excecutive chef was nice and said good morning to us very often

Figure 2-11: Example generations by BLM for sentiment transfer on Yelp. The first
line is the source sentence with masked words in bold. The second line is BLM’s
completion. The third line is a human reference.
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also
the also
the also choice
the salsa also choice
the salsa was also choice
the salsa was also only choice
the salsa was also only choice .
the salsa was also my only choice .

,
, terrible
poor , terrible
poor , terrible ,
poor , terrible , very
poor selection , terrible , very

very poor selection , terrible , very
very poor selection , service terrible , very
very poor selection , service terrible , very !
very poor selection , service terrible , very slow !

favorite
my favorite
my favorite pittsburgh
my favorite pittsburgh .
my favorite restaurant pittsburgh .
my favorite restaurant in pittsburgh .

the
is the
is the .
is the are .
food is the are .
food is the are friendly .
food is and the are friendly .
food is delicious and the are friendly .
food is delicious and the are very friendly .
food is delicious and the owners are very friendly .

the food is delicious and the owners are very friendly .

Figure 2-12: Examples of BLM generation trajectory on the Yelp review dataset.
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Chapter 3

Conformal Language Modeling

In this chapter, we propose a novel approach to conformal prediction for generative

language models (LMs). Standard conformal prediction produces prediction sets—in

place of single predictions—that have rigorous, statistical performance guarantees.

LM responses are typically sampled from the model’s predicted distribution over the

large, combinatorial output space of natural language. Translating this process to

conformal prediction, we calibrate a stopping rule for sampling different outputs from

the LM that get added to a growing set of candidates, until we are confident that the

output set is sufficient. Since some samples may be low-quality, we also simultaneously

calibrate and apply a rejection rule for removing candidates from the output set to

reduce noise. Similar to conformal prediction, we prove that the sampled set returned

by our procedure contains at least one acceptable answer with high probability, while

still being empirically precise (i.e., small) on average. Furthermore, within this set of

candidate responses, we show that we can also accurately identify subsets of individual

components, such as phrases or sentences, that are each independently correct (e.g.,

that are not “hallucinations”), again with statistical guarantees. We demonstrate

the effectiveness of our approach on multiple types of language models applied to

tasks in open-domain question answering, text summarization, and radiology report

generation.
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3.1 Introduction

Language models (LMs) have emerged as powerful tools for solving natural language

processing (NLP) tasks. Given an input prompt, LMs generate a response from

some predicted distribution over output text sequences. For modern models, these

generations are often coherent and contextually relevant. At the same time, these

models still make mistakes, and lack certain aspects of robustness and reliability

in terms of providing accurate, trustworthy predictions [72, 81, 91, 100, 139, 157].

Unfortunately, however, quantifying the uncertainty in LM outputs has remained a

major challenge.

Conformal prediction is a popular model-agnostic and distribution-free method for

creating prediction sets that contain the correct answers with high probability [4, 5,

6, 13, 86, 126, 152]. Applying conformal prediction to generative models such as LMs,

however, is challenging due to (a) the unbounded nature of their output space (i.e.,

all possible text sequences), and (b) the limited (tractable) mechanisms for exploring

all possible predictions. In particular, LMs can typically only approximately search

or sample candidate responses. Furthermore, while several possible responses might

be acceptable (e.g., correct or factual), small differences can result in abrupt changes

in coherence or meaning.

In this chapter, we propose an extension of conformal prediction that is tailored

specifically to generative LMs. We only assume that the (potentially black-box) LM

that is given to us can be used to sample diverse output sequences, together with

their evaluated model likelihoods (i.e., the output token sequence logits). Like con-

formal prediction, our method offers a rigorous coverage guarantee by constructing

prediction sets that, in our case, provably contain at least one acceptable response

with high probability. Unlike conformal prediction, however, we do not enumerate

the entire output space (which is impossible). Instead, we derive a calibrated stopping

rule for sampling different outputs from the LM that get added to a growing output

set of candidates, until we are confident that the output set is sufficient. Since not all

samples from the LM may be high quality (e.g., some may be redundant, incoherent,
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or have lower confidence), we also simultaneously calibrate a rejection rule for remov-

ing candidates from the output set—while still ensuring that our coverage bound is

not violated. This gives the benefit of making our output sets not only accurate, but

also precise (i.e., small).

To more concretely describe the type of guarantee that we provide, suppose we

have been given a calibration set 𝒟cal = (𝑋𝑖, 𝐴𝑖) ∈ 𝒳 ×𝒜, 𝑖 = 1, . . . , 𝑛 of independent

and identically distributed (i.i.d.) prompts and “admission” functions (see also [47]).

Here, 𝐴𝑖 is a binary random function that measures whether or not a generation 𝑦 for

prompt 𝑋𝑖 is good enough (i.e., 𝐴𝑖(𝑦) = 1). Note that randomness in 𝐴𝑖 can come

from implicit random covariates—such as relying on a random annotated reference,

𝑌 ref
𝑖 , to compare the candidate 𝑦 to. For example, Figure 3-1 illustrates a setting

where 𝑋𝑖 is an X-ray to automatically analyze and produce a report for, while 𝐴𝑖

extracts individual findings from each generated report, and checks if they correspond

to those given by an expert radiologist. Let 𝑋test be a new i.i.d. test prompt. Using

𝒟cal to guide our choice of hyper-parameters 𝜆 ∈ Λ, for any 𝜖, 𝛿 ∈ (0, 1), our goal is

to generate a set of samples 𝒞𝜆(𝑋test) ⊆ 2𝒴 that satisfies

P
(︁
P
(︁
∃𝑦 ∈ 𝒞𝜆(𝑋test) : 𝐴test(𝑦) = 1 | 𝒟cal

)︁
≥ 1− 𝜖

)︁
≥ 1− 𝛿. (3.1)

The outer and inner probabilities are over the draws of 𝒟cal and (𝑋test, 𝐴test), respec-

tively. Intuitively, 𝜖 is our error tolerance, while 𝛿 controls for the sensitivity of our

algorithm with respect to calibration data. While Eq. equation 3.1 stipulates the

existence of at least one “acceptable” generation in 𝒞𝜆(𝑋test), it does not tell us much

about the individual responses, 𝑦 ∈ 𝒞𝜆(𝑋test). Furthermore, longer generations are of-

ten composed of multiple statements. In our radiology example, a report may contain

multiple findings, such as “Cardiomegaly is moderate. There is mild pulmonary inter-

stitial edema.” Extending techniques from multi-label conformal prediction [23, 49],

we identify a subset of confident components that would independently be catego-

rized as being correct (given another admission function 𝐴𝑐
test, this time operating

over generation fragments). For example, we might predict that “Cardiomegaly is
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Figure 3-1: Our procedure samples candidate reports from a trained language model
until a stopping rule is reached. Each sample is only added to the output conformal
set if it meets both a minimum estimated quality and a diversity criterion. The pro-
cedure is calibrated such that at least one candidate 𝑦 from the conformal set (green
frame) is admissible (𝐴(𝑦) = 1). In this example, samples 𝑦1 and 𝑦2 are in-admissible
because they hallucinate the presence of “edema” (in orange) and “hilar congestion”
(in magenta), respectively. Sample 𝑦3, however, is admissible, and included in the
output set by our method.

moderate.” is correct, but perhaps not “There is mild pulmonary interstitial edema.”

This can not only be useful in catching incorrect statements, but can also help iden-

tify independently correct parts of a larger generation, even when the overall quality
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of the full generation is poor. Like Eq. equation 3.1, we calibrate this process such

that it gives accurate results with high probability.

Contributions. In summary, our main results are as follows:

• We bridge the gap between conformal prediction and LMs by calibrating the sam-

pling of output sets, rather than enumerating and selecting candidate responses

directly from the output space;

• We extend multi-label conformal prediction to identify confident components of

long generations;

• We demonstrate valid risk control on multiple diverse tasks with different formats

of LMs, while still retaining meaningful output sets that are precise on average, as

compared to baselines.

3.2 Related work

Conformal prediction and risk control. Our work adds to the rich collec-

tion of tools for uncertainty estimation and risk control for machine learning al-

gorithms [4, 5, 12, 13, 49, 58, 87, 86, 151, 153, 154, inter alia]. These techniques

were previously extended and applied in the language domain to classification with

finitely-many classes [47, 48, 72], to token-level predictions [36, 125], and to reliably

accelerate LMs [85, 131, 130]. Here, we address the emerging challenge of providing

reliable prediction sets in unbounded, free-text generation—which previous meth-

ods are unequipped for. The distribution-free, finite-sample performance guarantees

that we derive are similar to those given by prediction sets or regression intervals in

standard conformal prediction [4, 116, 152], but with slightly relaxed “correctness”

criterions [22, 47]. In particular, we build on the groundwork set by [5], which pro-

vides a general methodology for calibrating any risk function that is controllable via

some low-dimensional hyper-parameter configuration. We extend their framework to

handle sampling-based algorithms that can effectively be used for LMs, and that,

critically, do not require enumerating the full output space (which is intractable in
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our case). Most relevant to our work in LMs, other recent approaches have built on

conformal principles to construct confidence intervals for generative diffusion models

over images [65, 144]. These methods do not directly translate to LMs, however, as

they only provide non-combinatorial confidence intervals on the pixel-level.

Uncertainty estimation in LMs. As the use of LMs in-the-wild grows fast,

there is growing interest in obtaining and expressing meaningful confidence estimates

for each output. Recent studies show that the logits of out-of-the-box LMs tend to ex-

hibit overconfidence, even when wrong [34, 77, 105, 149]. Recent alignment techniques

degrade this even further [77, 113]. Most current mitigation approaches focus on intro-

ducing linguistic cues [92, 186] or empirical post-hoc logit calibration [70, 77, 106, 179].

However, such heuristics don’t provide any concrete guarantees. In this work, we de-

velop similar techniques to improve the output of the underlying LM. Our methods

are model agnostic and provide rigorous guarantees. Our conformal component selec-

tion (§3.4.4) also relates to recent self-consistency work that builds on the empirical

observation that repeated similar samples are more likely to be correct [109, 157],

and cross-sample entailment can approximate uncertainty [83]. Unlike previous work

that uses a fixed number of re-samples and compares full outputs, we (1) introduce

a dynamic stopping rule to reduce the number of samples, (2) extend this concept to

semantically compare sub-components of long text outputs, and (3) conformalize the

process to provide proper guarantees.

Reliable generation. It is common practice to post-hoc apply classifiers and

filters on top of LM generations for various quality goals such as preventing toxic-

ity [50, 123, 160], verifying grounding against sources [17, 97, 178], or re-ranking the

set of decoded outputs [69]. Our work provides a systematic and reliable approach for

filtering or flagging poor-quality outputs—both at a full generation and component

level—and can also readily incorporate additional signal from auxiliary classifiers.

For example, we demonstrate in our experiments using off-the-shelf natural language

inference (NLI) models [19, 78, 129, 145, 161, 182] to help guide the selection of in-

dividual, confident components in text summarization (i.e., sentences that are fully

entailed by the larger text [45, 64, 84, 128]).
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3.3 Background

We begin with a brief review of conformal prediction and general risk control (see

also [3]). Here, and in the rest of the chapter, upper-case letters (𝑋) denote random

variables; lower-case letters (𝑥) denote constants, and script letters (𝒳 ) denote sets,

unless specified.

Given a new example 𝑥, for every candidate label 𝑦 ∈ 𝒴 standard conformal

prediction either accepts or rejects the null hypothesis that the pairing (𝑥, 𝑦) is correct.

The test statistic for this test is a nonconformity measure, ℳ((𝑥, 𝑦),𝒟), where 𝒟 is

a dataset of labeled examples. Informally, a lower value of ℳ reflects that point

(𝑥, 𝑦) “conforms” to 𝒟, whereas a higher value ofℳ reflects that (𝑥, 𝑦) does not. For

example, a practical choice for ℳ could be the model-based negative log likelihood,

− log 𝑝𝜃(𝑦|𝑥), where 𝜃 are parameters fit to 𝒟. Split conformal prediction [115] uses a

separate training set 𝒟train to learn a fixedℳ that is not modified during calibration

or prediction. To construct a prediction set for the new test point 𝑥, the conformal

classifier outputs all 𝑦 for which the null hypothesis (that pairing (𝑥, 𝑦) is correct) is

not rejected. This is achieved by comparing the scores of the test candidate pairs to

the scores computed over 𝑛 calibration examples.

Theorem 3.3.1 (Split conformal prediction [115, 152]). Let (𝑋𝑖, 𝑌𝑖), 𝑖 = 1, . . . , 𝑛+1

be i.i.d random variables.1 Let random variable 𝑉𝑖 =ℳ(𝑋𝑖, 𝑌𝑖) be the nonconformity

score of (𝑋𝑖, 𝑌𝑖), whereℳ is fixed. For 𝜖 ∈ (0, 1), define the prediction (based on the

first 𝑛 examples) at 𝑥 ∈ 𝒳 as

𝒞𝜖(𝑥) :=
{︀
𝑦 ∈ 𝒴 :ℳ(𝑥, 𝑦) ≤ Quantile(1− 𝜖; 𝑉1:𝑛 ∪ {∞})

}︀
(3.2)

Then P(𝑌𝑛+1 ∈ 𝒞𝜖(𝑋𝑛+1)) ≥ 1− 𝜖.

Note that the coverage property expressed in Theorem 3.3.1 is marginal over the

draw of calibration and test data. The recent Learn Then Test (LTT) framework

of [5] extends conformal prediction to control the expectation of any loss function
1Technically, standard conformal prediction only requires exchangeablity—a weaker requirement

than i.i.d.
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(conditional on the draw of calibration data) by reframing hyper-parameter selection

as a statistical multiple hypothesis testing problem.

Specifically, let 𝐿 : Λ → R be any random function using a hyper-parameter

configuration 𝜆 in some space Λ. For example, we might have 𝐿(𝜆) := ℓ(𝑋, 𝑌 ;𝜆) for

some fixed loss function ℓ with random inputs (𝑋, 𝑌 ). Unlike conformal prediction,

however, 𝜆 can be multi-dimensional (e.g., consist of multiple thresholds). Let 𝐿𝑖,

𝑖 = 1, . . . , 𝑛 be an i.i.d. calibration set 𝒟cal of random functions, and 𝜖 ∈ R be a

tolerance for the test risk, E[𝐿test(𝜆)] ≤ 𝜖. LTT then identifies a random (depending

on 𝒟cal) subset of parameters, Λvalid ⊆ Λ, with the goal of guaranteeing:

P
(︂

sup
𝜆∈Λvalid

E[𝐿test(𝜆) | 𝒟cal] ≤ 𝜖

)︂
≥ 1− 𝛿, (3.3)

where the outer probability is over the draw of 𝒟cal, and the inner expectation is over

draws of 𝐿test. This then implies that any 𝜆 ∈ Λvalid can be selected to control the risk

of 𝐿test. In short, this is achieved by associating the null hypothesis ℋ𝜆 : E[𝐿test(𝜆)] >

𝜖 to each 𝜆 ∈ Λ. For each null hypothesis, we then use the calibration set to compute

a super-uniform p-value 𝑝𝜆 using concentration inequalities. Any multiple testing

algorithm 𝒯 (𝑝𝜆 : 𝜆 ∈ Λ) that controls the family-wise error rate (FWER) can then be

used to identify the subset of non-rejected 𝜆, i.e., Λvalid.2 Note that it is possible for

Λvalid = ∅, in the case that we fail to identify any statistically valid solutions (and

the desired risk may not even be achievable with any 𝜆). In this situatoin, we set

𝜆 = null, and either reject the task, or provide a trivial solution (e.g., a classifier

that provides all possible labels 𝒴).

Theorem 3.3.2 (Learn Then Test [5]). Suppose p-value 𝑝𝜆, derived from 𝒟cal, is

super-uniform under ℋ𝜆 for all 𝜆. Let 𝒯 be any FWER-controlling algorithm at level

𝛿. Then Λvalid satisfies Eq. equation 3.3.

Defining 𝒞𝜆(𝑥) := {𝑦 ∈ 𝒴 :ℳ(𝑥, 𝑦) ≤ 𝜆}, Λ ⊂ R, and 𝐿(𝜆) := 1{𝑌 ̸∈ 𝒞𝜆(𝑋)}

recovers a criterion similar to that of conformal prediction (though not marginal over

2A FWER-controlling algorithm at level 𝛿 is any procedure that accepts or rejects null hypotheses
ℋ𝜆, while ensuring that the probability of falsely rejecting any ℋ𝜆, ∀𝜆 ∈ Λ, is less than 𝛿.
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𝒟cal). Unfortunately, in either instantiation (LTT vs. conformal prediction) iterating

over 𝑦 ∈ 𝒴 is intractable for LMs, regardless of whatever calibration technique is

ultimately used. Instead, in §3.4, we introduce our method for generating uncertainty

sets by casting 𝜆 as a configuration of a sampling algorithm, rather than a filter on the

output space 𝒴 . We then show that this randomized algorithm can still be calibrated

with LTT.

3.4 Conformal language modeling

We now introduce our method for generating uncertainty sets for LMs. At a high

level, our procedure consists of three main steps to sample and return an collection

of plausible output predictions:

1. Sample. A new candidate response 𝑦 is sampled from our language model.

2. Accept or reject. The sample 𝑦 is added to the growing output set, as long as it

is diverse (e.g., maximum overlap with any other element is ≤ 𝜆1) and confident

(e.g., the LM likelihood is ≥ 𝜆2).

3. Stop or repeat. Using a set-based scoring function, we check if the confidence in

the current set is ≥ 𝜆3. If it is, then we stop and return the current set. Otherwise

we return to Step 1.

𝜆 = (𝜆1, 𝜆2, 𝜆3) is a configuration that we calibrate to find a valid setting, 𝜆̂ =

(𝜆̂1, 𝜆̂2, 𝜆̂3), that controls the risk of our output sets. In the following, we more

carefully define our setting and notation (§3.4.1), and then describe our sampling

(§3.4.2) and calibration algorithms (§3.4.3). Then, in §3.4.4, we provide an additional

extension for highlighting confident generation components—i.e., subsections of our

full generations that are independently likely to be correct, even if the full generation

is not.
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3.4.1 Formal setting and notation

Let 𝒱 be an alphabet (a non-empty, finite set of tokens such as {“a”, “b” , “c”, . . .})

from which all possible output strings, 𝑦, are composed, i.e. 𝒴 := 𝒱*.3 We assume

that we are given a generative model 𝑝𝜃(𝑦 | 𝑥) that defines a conditional probability

distribution given some input prompt 𝑥 ∈ 𝒳 (where 𝑥 may be text, or another

modality such as an image), which we can sample from to obtain candidate output

strings, 𝑦 ∼ 𝑝𝜃(𝑦 | 𝑥). Following [47], for every input prompt 𝑥, we assume access to

some “admission” function 𝐴 : 𝒱* → {0, 1} that is used to measure the acceptability

of a given sample 𝑦. Intuitively, 𝐴 tells us if an output is “good enough”.

As an example, in our radiology report setting from §3.1, 𝑥 is the input X-ray, 𝑦

is the generated report, and 𝑝𝜃(𝑦 | 𝑥) is our image-to-text LM (in English). Given

𝑦 and some “ground truth” report 𝑦* (e.g., written by a radiologist), 𝐴(𝑦) might

measure if 𝑦 and 𝑦* agree on all findings. Note that, in practice, it may be hard to

exactly define such an 𝐴, or at least an 𝐴 that is automatically computable without

manual annotation. In Appendix B.2 we show that it is also sufficient to only require

access to a conservative admission function, 𝐴 : 𝒱* → {0, 1}, where ∀𝑦 ∈ 𝒱* we

have 𝐴(𝑦) ≤ 𝐴(𝑦). For instance, 𝐴 might measure exact match on a word-for-word

basis between 𝑦 and 𝑦*, instead of accounting for differences in dictation. We explore

different tasks and admission functions in our experiments in §3.5.

As introduced in §3.1, given a calibration set 𝒟cal, our goal is to derive a config-

urable algorithm with input parameters 𝜆 ∈ Λ for constructing a prediction 𝒞𝜆 that

we can calibrate to satisfy Eq. equation 3.1. In the framework of LTT (refer to §3.3),

this is equivalent to defining

𝐿𝑖(𝜆) = 1
{︀
∄𝑦 ∈ 𝒞𝜆(𝑋𝑖) : 𝐴𝑖(𝑦) = 1

}︀
, (3.4)

and using the calibration set 𝒟cal to find a value 𝜆̂ such that E[𝐿test(𝜆̂)] ≤ 𝜖 with

probability ≥ 1− 𝛿.

3We write 𝒱* to denote the Kleene closure of a set 𝒱, i.e., 𝒱* :=
⋃︀∞

𝑛=0 𝒱𝑛.
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Algorithm 2 Conformal sampling with rejection
Definitions: 𝑥 is an input prompt, ℱ is our set-based confidence function, 𝒮 is
our text similarity function, 𝒬 is our sample quality estimator, 𝜆 is our threshold
configuration, and 𝑘max is our sampling budget. 𝑝𝜃(𝑦 | 𝑥) is the conditional output
distribution defined by our language model.
1: function sample(𝑥, ℱ , 𝒮, 𝒬, 𝜆, 𝑘max)
2: 𝒞𝜆 ← {} ◁ Initialize an empty output set.
3: for 𝑘 = 1, 2, . . . , 𝑘max do
4: 𝑦𝑘 ← 𝑦 ∼ 𝑝𝜃(𝑦 | 𝑥). ◁ Sample a new response.
5: if 𝒬(𝑥, 𝑦𝑘) < 𝜆2 then ◁ Reject if its estimated quality is too low.
6: continue
7: if max{𝒮(𝑦𝑘, 𝑦𝑗) : 𝑦𝑗 ∈ 𝒞𝜆} > 𝜆1 then ◁ Reject if it is too similar to other samples.
8: continue
9: 𝒞𝜆 = 𝒞𝜆 ∪ {𝑦𝑘}. ◁ Add the new response to the output set.

10: if ℱ(𝒞𝜆) ≥ 𝜆3 then ◁ Check if we are confident enough to stop.
11: break
12: return 𝒞𝜆

3.4.2 Conformal sampling with rejection

Let ℱ : 2𝒱
* → R be a set-based function that, for any set 𝒞 ∈ 2𝒱

* , gives a confidence

score for the event 1{∃𝑦 ∈ 𝒞 : 𝐴(𝑦) = 1}. Practically, we expect that ℱ should be

non-decreasing, i.e., 𝒞 ⊂ 𝒞 ′ =⇒ ℱ(𝒞) ≤ ℱ(𝒞 ′), though it is not strictly enforced.

Furthermore, let 𝒮 : 𝒱* × 𝒱* → R be a text-based similarity function (e.g., such as

BLEU or ROUGE) that we use to detect duplicates in 𝒞, and 𝒬 : 𝒳 ×𝒱* → R an input-

conditional text-based measure of individual prediction quality—such as the LM’s

likelihood function, 𝑝𝜃(𝑦 | 𝑥). We then adopt a sampling-based procedure that grows

an output set, 𝒞1 ⊆ 𝒞2 ⊆ . . . ⊆ 𝒞𝑘−1, by repeatedly taking samples 𝑦𝑘 ∼ 𝑝𝜃(𝑦 | 𝑥),

and updating

𝒞𝑘 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝒞𝑘−1 ∪ {𝑦𝑘} if max{𝒮(𝑦𝑘, 𝑦𝑗) : 𝑦𝑗 ∈ 𝒞𝑘−1} ≤ 𝜆1

and 𝒬(𝑥, 𝑦𝑘) ≥ 𝜆2,

𝒞𝑘−1 otherwise.

(3.5)

until the confidence after 𝑘 samples, ℱ(𝒞𝑘), is ≥ 𝜆3 (or some sampling budget 𝑘max

is reached).

As an intuitive, but toy, example, suppose we modeled 𝑦𝑘 ∼ 𝑝𝜃(𝑦 | 𝑥), 𝑘 = 1, 2, . . .
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as a Bernoulli process, where each 𝑦𝑘 has the same probability of success 𝑝 that we

assume (albeit unrealistically) that we know. For 𝑋test, “success” is determined by

the admission function, 𝐴test. The confidence that our current set 𝒞𝑘 contains at

least one admissible answer (without rejection) then follows a geometric distribution,

Geo(𝑝): all that remains is to compute the minimum number of samples to take

such that Eq. equation 3.1 is satisfied. This is achieved by taking ℱ(𝒞𝑘) = 𝑘 and

𝜆3 = ⌈log(𝜖)/ log(1− 𝑝)⌉.

Of course, in reality we do not know the probability of success 𝑝 for test examples.

Furthermore, the samples 𝑦𝑘 are not independent, and since we are also able to

observe their values, better strategies may exist to conditionally estimate 𝐴(𝑦𝑘) = 1.

Therefore, we allow ℱ to be any set-based function—that we also pair with similarity

function 𝒮, and sample quality function 𝒬, for handling rejections. Pseudocode is

given in Algorithm 2. We derive, calibrate, and test different variations of ℱ , 𝒮, and

𝒬 in §3.5 and §3.6, respectively. Using 𝜆 = (𝜆1, 𝜆2, 𝜆3), we write 𝒞𝜆(𝑋test) to denote

the final output set.

3.4.3 Calibration with Learn Then Test

Let Λ be a finite set of configurations. For example, if searching for a value of 𝜆 =

(𝜆1, 𝜆2, 𝜆3) ∈ [0, 1]3, we might consider the evenly-spaced set Λ = { 𝑖
𝜅
: 𝑖 = 1, . . . , 𝜅}3

for some finite 𝜅 ∈ N. For each 𝜆 ∈ Λ, LTT then requires computing a valid p-value

𝑝𝜆, where 𝑝𝜆 is a super-uniform random variable under ℋ𝜆. Here, we can obtain valid

p-values from the empirical risk on 𝒟cal,

̂︀𝑅𝑛(𝜆) :=
1

𝑛

𝑛∑︁
𝑖=1

𝐿𝑖(𝜆), where 𝐿𝑖(𝜆) = 1
{︀
∄𝑦 ∈ 𝒞𝜆(𝑋𝑖) : 𝐴𝑖(𝑦) = 1

}︀
, (3.6)

Lemma 1 (Binomial tail bound p-values). Let ̂︀𝑅𝑛(𝜆) be the empirical risk in Eq. equa-

tion 3.6, and let Binom(𝑛, 𝜖) denote a binomial random variable with sample size 𝑛
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and success probability 𝜖. Then

𝑝BT
𝜆 := P(Binom(𝑛, 𝜖) ≤ 𝑛 ̂︀𝑅𝑛(𝜆)) (3.7)

is a valid p-value for ℋ𝜆 : E[𝐿test(𝜆)] > 𝜖.

Proof. Let 𝑋 = Binom(𝑛, 𝜖) and 𝑌 = 𝑛𝑅̂𝑛(𝜆). Under ℋ𝜆, 𝑛𝑅̂𝑛(𝜆) stochastically

dominates Binom(𝑛, 𝜖), i.e., 𝐹𝑋(𝑢) ≥ 𝐹𝑌 (𝑢) ∀𝑢. Let 𝑍 = 𝑝BT
𝜆 = 𝐹𝑋(𝑌 ). Then

P(𝑍 ≤ 𝑧) = P(𝐹𝑋(𝑌 ) ≤ 𝑧) (3.8)

≤ P(𝐹𝑌 (𝑌 ) ≤ 𝑧) (3.9)

= P(𝑌 ≤ 𝐹−1
𝑌 (𝑧)) (3.10)

= 𝐹𝑌 (𝐹
−1
𝑌 (𝑧)) (3.11)

= 𝑧. (3.12)

Therefore, 𝑝BT
𝜆 is super-uniform, and a valid p-value.

When paired with any FWER-controlling algorithm 𝒯 at level 𝛿, we obtain the

set Λvalid ⊆ Λ by selecting all configurations for hypotheses ℋ𝜆 that are rejected by

𝒯 (𝑝BT
𝜆 : 𝜆 ∈ Λ). We then use the configuration that empirically minimizes the average

set size (also measured over 𝒟cal), i.e.,

𝜆̂ = argmin
𝜆∈Λvalid

1

𝑛

𝑛∑︁
𝑖=1

|𝒞𝜆(𝑋𝑖)|. (3.13)

As mentioned in §3.3, if we fail to find any valid configurations (which may not even

exist for small values of 𝑘max, or LMs without full support over 𝒱*) with the right

confidence, then we abstain. As a consequence of LTT, 𝜆̂ (which is a random variable

that depends on 𝒟cal) is risk-controlling.

Theorem 3.4.1 (Sampling-based LTT). Let 𝜆̂ be defined according to Eq. equa-

tion 3.13. Then the prediction 𝒞𝜆̂(𝑋test) computed by Algorithm 2 satisfies Eq. equa-

tion 3.1.
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Figure 3-2: Our conformal selection procedure requires splitting each candidate gen-
erations in components, then filtering them while controlling for desired risk with
LTT

Finally, to efficiently search and test the higher dimensional 𝜆 = (𝜆1, 𝜆2, 𝜆3) that

we consider here, we use the recently proposed (FWER-controlling) Pareto Testing

procedure from [85]. Pareto Testing can be used to exploit structure in Λ by first using

a proportion of 𝒟cal to find Λ’s Pareto-optimal frontier, and then iteratively validate

the most empirically promising configurations using Fixed Sequence Testing [62] on

the remaining calibration data. See Appendix B.1 for details.

3.4.4 Conformal selection of individual components

A caveat of language generation tasks is that it is often the case that LM responses

can be verbose, and composed of multiple components. We consider a component

to be some logically defined subpart of a larger response, such as a series of phrases,

sentences, or propositions. For example, in our radiology setting, a report such as

“The heart is mildly enlarged. The lungs are clear.” can be broken down into two

findings, namely, “The heart is mildly enlarged.” and “The lungs are clear.” While

our past guarantees may tell us that admissible generations exist within our sampled

prediction sets, they still do not give us any insight into how confident our model is

about individual statements within each option.

To address this, we propose the conformal selection of individual components. We
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illustrate our approach in Figure 3-2. let ℰ : 𝒱* → 2𝒱
* be a deterministic function that

takes a text string as input, and breaks it down into components. Here, we implement

ℰ to be a simple sentence splitter. Similar to before, for every input 𝑥, we assume

access to some component-based admission function 𝐴c : 2𝒴 → {0, 1} that is used to

judge response fragments for correctness. For example, 𝐴 can check if 𝑒 is entailed by

(or exactly matches) another component 𝑒′ ∈ ℰ(𝑦ref), where 𝑦ref is a human reference.

Let ℱ c : 𝒱* → R be a function that, for any component 𝑒 ∈ 𝒱*, gives a confidence

score for the event 𝐴c(𝑒) = 1. We then define the subset of components 𝒞inner𝛾 ⊆ 2𝒱
*

as

𝒞inner𝛾 (𝑥) :=
{︁
𝑒 ∈

⋃︁
𝑦∈𝒞𝜆(𝑥)

ℰ(𝑦) : ℱ c(𝑒) ≥ 𝛾
}︁
. (3.14)

Again using 𝒟cal, we seek to calibrate 𝛾 ∈ Γ, such that for test pair (𝑋test, 𝐴test) and

𝛼, 𝛿 ∈ (0, 1),

P
(︁
P
(︁
𝐴c

test(𝑒) = 1,∀𝑒 ∈ 𝒞inner𝛾 (𝑋test)
)︁
≥ 1− 𝛼 | 𝒟cal

)︁
≥ 1− 𝛿. (3.15)

The outer and inner probabilities are over the draws of 𝒟cal and (𝑋test, 𝐴test), respec-

tively. The new parameter 𝛼 can be interpreted as the maximum rate of making any

false positive predictions in which we select a component that is not in fact accept-

able. Like 𝒞𝜆, we calibrate 𝒞inner𝛾 using LTT. In contrast to 𝒞𝜆, however, we seek to

make 𝒞inner𝛾 as large as possible. Concretely, let 𝐿c
𝑖 (𝛾) = 1{∃𝑒 ∈ 𝒞inner𝛾 : 𝐴c

𝑖 (𝑒) = 0}

and let Γvalid be the set of non-rejected configurations found by LTT (when using

binomial tail p-values, 𝑝BT
𝛾 ). During calibration we define 𝒞inner𝛾 (𝑋𝑖) using an upper

bound to 𝒞𝜆(𝑋𝑖), by simply taking the first 𝑘max samples, {𝑦1, . . . , 𝑦𝑘max}. We then

use the configuration that empirically maximizes the average number of confident

components (again, while reusing 𝒟cal):

𝛾 = argmax
𝛾∈Γvalid

1

𝑛

𝑛∑︁
𝑖=1

|𝒞𝛾(𝑋𝑖)|. (3.16)

Proposition 3.4.2 (Component-based LTT). Let 𝛾 be defined according to Eq. equa-

tion 3.16, where 𝒞𝛾(𝑋𝑖) uses 𝒞𝜆(𝑋𝑖) ≡ {𝑦1, . . . , 𝑦kmax} during calibration. Then the
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Algorithm 3 Conformal component selection
Definitions: 𝒞𝜆 is a prediction set, ℰ is an algorithm for splitting candidates
𝑦 into components, ℱ c is a confidence estimator for individual components, 𝛾 is
our threshold configuration.
1: function select(𝒞𝜆, ℰ , ℱ c, 𝛾)
2: 𝒞inner𝛾 ← {} ◁ Initialize an empty output set.
3: for 𝑦 ∈ 𝒞𝜆 do ◁ Iterate over full predictions.
4: for 𝑒 ∈ ℰ(𝑦) do ◁ Iterate over individual components.
5: if ℱc(𝑒) ≥ 𝛾 then
6: 𝒞inner𝛾 ← 𝒞inner𝛾 ∪ {𝑒} ◁ Keep only high-confidence components.

7: return 𝒞inner𝛾

Figure 3-3: We study the applicability of our method on three generation tasks

prediction set of components, 𝒞𝛾(𝑋test) computed by Algorithm 3 paired with any 𝒞𝜆
at test time with sup𝑥 |𝒞𝜆(𝑥)| ≤ 𝑘max satisfies Eq. equation 3.15.

Furthermore, by the union bound, Eq. equation 3.1 and Eq. equation 3.15 hold

simultaneously with probability 1− 2𝛿.

3.5 Experimental setup

We evaluate our methods on datasets for open-domain question answering (TriviaQA [75]),

news summarization (CNN/DM [132]), and chest X-ray radiology report generation

(MIMIC-CXR [71]). Figure 3-3 summarize the tasks. Appendix B.3 contains ad-

ditional details.
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3.5.1 Tasks

Radiology report generation. As motivated in §3.1, we apply our method to chest

X-ray radiology report generation using the MIMIC-CXR [71] dataset. For our LM,

we fine-tune an encoder-decoder architecture based on a pretrained ViT [39] image

encoder and a GPT2-small [121] text decoder. To judge admission, we use the popular

Clinical Efficacy metric [95, 112] to check if the 14 labels predicted by an auxiliary

CheXbert [138] model on the generated report exactly match the labels predicted

by the same CheXbert model for a reference report from a radiologist. Similarly, a

component (here a sentence including a finding) is defined to be admissible if it has

a ROUGE-L [90] score ≥ 0.4 (picked through empirical validation), when compared to

any component directly extracted from the reference.

News summarization. We also apply our method to news article text summa-

rization using the CNN/DM [132] dataset. For our LM, we finetune a T5-XL [122]

model. We define a candidate generation to be admissible if it has a ROUGE-L score

higher than 0.35 , when compared to all available reference summaries from human

annotators. Like MIMIX-CXR, we define a component to be admissible if it has

a ROUGE-L score ≥ 0.4 when compared to components extracted from human sum-

maries.

Open-domain question answering. Finally, we apply our method to open-

domain question answering using the TriviaQA [75] dataset. For this task, we

sample answers from the LLaMA-13B [147] LM in the few-shot setting (𝑘 = 32),

without any additional fine-tuning. Since answers are limited to one or few tokens,

a candidate output generation is acceptable only if it exactly matches an annotated

reference answer (after minor normalization for removing articles, casing, and punc-

tuation). Furthermore, since the expected answers are short and fairly atomic, we do

not evaluate component-level confidence.
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3.5.2 Scoring functions

As discussed in §3.4.2, our method is implementation-agnostic and can support dif-

ferent choices of quality function 𝒬, similarity function 𝒮, and set scoring function ℱ .

For our purposes, we show that it can be sufficient to simply use transformations on

the model likelihoods (from token logits).4 Specifically, we define 𝒬(𝑥, 𝑦) = 𝑝𝜃(𝑦 | 𝑥)

using the likelihood function of the base LM, with length-normalization [165]. We

use ROUGE-L for 𝒮. For ℱ , we experiment with the following variants:

• First-K. As a baseline, we score a set by its size, ℱfirst-k(𝒞) = |𝒞|, and do not

use rejection. This corresponds to the number of samples taken, and follows the

intuition from our toy example in §3.4.2.

• Max. The ℱMax scoring function stems from the intuition that a set is only as

good as its best element, and defines ℱMax(𝒞) = max{𝒬(𝑦) : 𝑦 ∈ 𝒞}.

• Sum. Alternatively, we also use the sum of item-level scores: ℱSum(𝒞) =
∑︀

𝑦∈𝐶 𝒬(𝑦).

3.5.3 Metrics

Our main motivation is to produce valid confidence sets that are also precise. A de-

sirable procedure should output smaller sets on easy examples, and dedicate a larger

budget to harder examples. To reflect this, we measure both the loss of our sets

(which is guaranteed to satisfy our prescribed limits), as well as both (a) the rel-

ative number of “excess” samples taken from our model (i.e., how many extra

samples our algorithm takes after the first admissible answer has already been sur-

faced, proportional to the total number of samples), and (b) the ultimate output size

of the prediction set (after rejection). Both metrics are important, as over-sampling

wastes computational budget, while conservative, large output sets can be unwieldy

to use, and less helpful as an uncertainty quantification tool. We measure results

and compute the AUC over the range of achievable 𝜖 or 𝛼 (using a fixed 𝛿 = 0.05),

excluding trivial values (e.g., that a policy that always returns the first generation

would satisfy).
4While straightforward, note that potentially better measures can be derived through other

means like [77, 157].
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(a) MIMIC-CXR

Figure 3-4: Conformal sampling results for 𝒞𝜆 a function of 𝜖, on MIMIC-CXR. We
report the loss, relative excess samples, and overall size (normalized by 𝑘max). We
also report the AUC over achieved/non-trivial 𝜖.

3.6 Experimental results

We now present our main results. In all plots, solid lines give the mean over 100

trials and shaded regions show +/− the standard deviation. Additional experimental

results are reported in Appendix B.4.

Validity of conformal sampling with rejection. As per Theorem 3.4.1, we

observe in Figure 3-4 and Figure 3-6 that our conformal sampling approach is valid,

as the average set loss often matches but never exceeds the target risk level. Methods

that have access to the model logits (namely Max and Sum) are close to the diagonal

line, indicating that they are not overly conservative.

Prediction efficiency. The likelihood-based approaches outperform the uniform

First-K baseline across all three tasks. For example, as Figure 3-6a shows, the AUC

of expected set size of Max and Sum are both less than half the AUC of First-K
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(a) CNN/DM

Figure 3-5: Conformal sampling results for 𝒞𝜆 a function of 𝜖, on CNN/DM. We
report the loss, relative excess samples, and overall size (normalized by 𝑘max). We
also report the AUC over achieved/non-trivial 𝜖.

in the QA task. In tasks with longer output texts, First-K produces competitive

set sizes across all achievable 𝜖. However, it is being overly conservative on easy

examples at the expense of hard ones. This is revealed when plotting the relative

number of excess samples, where the Max scoring function largely outperforms Sum

and First-K.

Individual components. We evaluate two scoring functions ℱ 𝑐 to apply our

conformal component selection method. A first method Span-logits extracts the

likelihood of a candidate component, as produced by the language model. Since

those likelihoods are conditioned on previous context, this scoring function may un-

derestimate the score of a correct component if it follows an incorrect component.

Instead, we use an application-specific Classifier to assign a conformity score to

each component. We compare these methods to a Random baseline which attributes

a random score to any (𝑥, 𝑒) pair. Figure 3-7 shows that by modeling components
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(a) TriviaQA

Figure 3-6: Conformal sampling results for 𝒞𝜆 a function of 𝜖, on TriviaQA. We report
the loss, relative excess samples, and overall size (normalized by 𝑘max). We also report
the AUC over achieved/non-trivial 𝜖.

(a) MIMIC-CXR (b) CNN/DM

Figure 3-7: Conformal component selection results for 𝒞inner𝛾 as a function of 𝛼. We
report the number of components identified in 𝒞inner𝛾 , which we want to maximize.
We also report the AUC over 𝛼.

independently, we produce more effective (larger) sets. We show qualitative results

in Appendix 3.7.
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3.7 Qualitative results

We present qualitative results for the task of radiology report generation. In Figure 3-

8, an X-ray example is shown, depicting left basilar opacities while the rest of the

X-ray appears normal. Table 3.1 indicates that our method terminates the generation

process after producing three samples. The third generation correctly identifies “apical

scarring”; however, it mistakenly attributes it to the right lung instead of the left lung.

This highlights a limitation of using CheXbert as the basis for the admission function,

as its label granularity does not differentiate between left and right.

Our component selection method accurately identifies several sentences that align

with the reference report. These sentences are displayed in bold. Notably, our method

avoids emphasizing low-confidence findings such as “right apical scarring” and instead

focuses on the absence of an acute cardiopulmonary process.

Furthermore, we examine a more challenging example in Figure 3-9. The report

mentions an enlarged heart, signs of cardiomegaly, and edema. Samples 4 and 5

correctly capture these findings but are considered incorrect due to the inclusion

of “effusion.” The conformal selection of components chooses not to highlight any

sentences since none of them meet the confidence threshold defined by 𝜖.
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AP and lateral views of the chest. Streaky biapical and left basilar opacities
are most compatible with scarring. The lungs are clear of confluent consol-
idation. There is no effusion. Cardiomediastinal silhouette is within normal
limits. No acute osseous abnormalities detected. IMPRESSION: No definite
acute cardiopulmonary process.

Figure 3-8: Chest X-ray and reference radiology report for study id 55663120

3.8 Conclusion

3.8.1 Summary of contributions

Reliably using language models (LMs) in real-world tasks inevitably requires mean-

ingful uncertainty quantification. In this chapter, we introduced a novel approach

to conformal prediction that allows a user to sample prediction sets from generative

LMs with infinite, combinatorial output spaces, while retaining desirable statistical

guarantees. Our method bridges the gap between standard conformal prediction and

LM inference techniques by calibrating a stopping rule for an algorithm that itera-

tively grows an output prediction set by sampling new generations (with rejection).

Moreover, we provide a method for separately identifying answer components that we

are more confident are accurate. This can help users better understand the quality

of LM answers, including which parts may be incorrect (and vice versa) within a

larger, verbose output. Finally, we demonstrate our method on three popular LM
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Table 3.1: Example prediction sets for study id 556631204, at 𝛼 = 0.7, 𝜖 = 0.7.
Bolded sentences are sentences that are selected by the component selection process.

Text Score Label
Sample 1 AP upright and lateral views of the chest

provided. There is chronic left lower lobe at-
electasis. There is no focal consolidation concern-
ing for pneumonia. No large effusion or pneu-
mothorax. The cardiomediastinal silhouette
is normal. Imaged osseous structures are notable
for a mild compression deformity of an upper lum-
bar vertebral body. Degenerative change is seen
in the right acromioclavicular joint. IMPRES-
SION: No acute intrathoracic process.

1.45e-05 False

Sample 2 AP and lateral views of the chest. Diffusely
calcified pleural plaques are identified bilaterally
suggesting prior asbestos exposure. There is no
pleural effusion. The cardiomediastinal silhou-
ette is within normal limits. No acute os-
seous abnormalities detected. Surgical clips
project over the upper abdomen. IMPRESSION:
No definite acute cardiopulmonary process.

1.98e-05 False

Sample 3 AP and lateral views of the chest. There
is right apical scarring. Elsewhere, the lungs are
clear. The cardiomediastinal silhouette is
within normal limits. Atherosclerotic calcifica-
tions noted at the aortic knob. No acute osseous ab-
normality detected. IMPRESSION: No acute
cardiopulmonary process.

5.36e-03 True

applications. Compared to common practices (e.g., first 𝑘), we obtain more efficient

prediction sets, both in terms of size and samples required, leading to more effective

outputs that are also less costly to obtain.

3.8.2 Discussion

Proposed guarantee Traditionally, conformal prediction provides marginal

guarantees concerning the selection of calibration and test data. These guarantees

are in the form of E[E[1𝑌 ∈𝒞(𝑋)|𝒟cal]] ≤ 1− 𝜀. However, this approach fails to address

the performance of a model in the future when a single split of the data is relied
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In comparison with the study of ___, there is continued enlargement of
the cardiac silhouette with increasing fullness and indistinctness of central
pulmonary vessels, consistent with worsening pulmonary edema. Mild asym-
metry at the left base could represent developing aspiration or even infectious

Figure 3-9: Chest X-ray and reference radiology report for study id 55770135

upon by a specific researcher or practitioner. The marginal validity of the system

merely suggests that, on average, it will be valid across different researchers who use

randomly drawn calibration sets.

In contrast, we follow prior work [5, 130] and propose a more conditional form of

guarantee using the two-parameter form of Equation 3.1:

P
(︁
P
(︁
∃𝑦 ∈ 𝒞𝜆(𝑋test) : 𝐴test(𝑦) = 1 | 𝒟cal

)︁
≥ 1− 𝜖

)︁
≥ 1− 𝛿. (3.17)

This equation ensures that at least a fraction of (1 − 𝛿) of researchers will be

satisfied. In our empirical experiments (Section 3.6), we observe that the risk does

not significantly increase for the remaining 𝛿 fraction, and that we achieve marginally

valid prediction sets.

Dependence on model quality and achievable risk values The effective-

ness of our method relies on the underlying LM’s ability to generate diverse and

accurate outputs. If the LM itself produces unreliable or redundant predictions, our

approach may not fully mitigate these issues.

Algorithm 2 introduces a procedure that includes a maximum cap, denoted as

𝑘max, on the number of generations per example. This cap guarantees the termination
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of our algorithm but imposes limitations on the achievable range of 𝜖 (target risk).

Consequently, there exist certain combinations of (𝜖, 𝛿, 𝑘max) that are unattainable for

any selection of 𝜆̂. Practitioners may desire to experiment with different values for

𝑘max. However, it is important to note that even with unlimited sampling budget (i.e.

𝑘max = ∞), certain values of 𝜖 may remain unachievable. This is particularly true

when the underlying model’s support does not contain any acceptable answers.

3.8.3 Future work

In this section, we outline potential avenues for future research and development to

further enhance the framework of applying conformal sampling to language modeling.

Alternative quality and scoring functions While our work demonstrates the

effectiveness of using model logits as the scoring function, there is room for exploration

of alternative approaches. Future research can investigate the use of self-evaluation

techniques [77] or independent evaluators as quality functions. Additionally, more

sophisticated aggregation functions can be explored, such as those based on estimating

the marginal benefit of sampling a new generation or utilizing self-consistency as a

measure of uncertainty.

Admission function In our study, our primary focus is on addressing miscover-

age, which captures the user’s preference to accept or reject a set based on whether at

least one element is deemed good enough. When it is not feasible to precisely estimate

user preferences in a computable admission function 𝐴, we demonstrate that it is pos-

sible to use a conservative admission function 𝐴 ≥ 𝐴. However, different applications

may require controlling for different notions of risk. Practitioners are encouraged to

adapt the admission function accordingly to align with specific requirements. For

instance, an application might consider a set of predictions acceptable if they collec-

tively cover all relevant points (without any single prediction covering everything).

Our framework allows for the adaptation of the admission function to accommodate

such scenarios. It is important to note that the use of a binary admission function
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enables the utilization of efficient concentration inequalities, such as the binomial tail

bound. If practitioners require different forms of risk control, appropriate 𝑝-values

should be selected accordingly. For instance, in the bounded case of controlling for a

risk ℒ(𝒞(𝑋), 𝑌 ) ∈ [0, 1] (such as false positive rate), one could follow [5] and employ

the Hoeffding-Bentkus inequality.

Explainability An exciting direction is the integration of the conformal selec-

tion of individual elements (as discussed in Section 3.4.4) with interpretable methods.

This integration would enable us to generate explanatory text for each selected ele-

ment. Such an approach holds the potential to significantly enhance the trustworthi-

ness of generated predictions and serve as a crucial component for production-ready

systems.

Constrained decoding Another promising avenue to explore is the alteration

of the language model’s decoding process (e.g., using a reinforcement learning objec-

tive) to directly enforce desirable properties, such as diversity. By doing so, we can

achieve more efficient prediction sets while ensuring their validity.

Extension to other generation tasks Our approach holds the potential for

application beyond language modeling, extending into various domains such as image

generation, music composition, or de novo molecular design. By adapting the prin-

ciples of our framework to these different domains, we can explore the generation of

diverse and high-quality outputs while incorporating meaningful uncertainty quan-

tification. This extension opens up exciting opportunities for advancing generative

tasks in diverse fields and further enhancing the reliability and effectiveness of the

generated results.
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Table 3.2: Example prediction sets for study id 55770135, at 𝛼 = 0.7, 𝜖 = 0.7. Bolded
sentences are sentences that are selected by the component selection process.

Text Score Label
Sample 1 In comparison with the study of ___, there is lit-

tle overall change. Again there is enlargement of
the cardiac silhouette with elevated pulmonary ve-
nous pressure and bilateral opacification is consis-
tent with developing pulmonary edema or pneumo-
nia in the appropriate clinical setting. The nasogas-
tric tube again extends at least to the lower body
of the stomach, where it crosses the lower margin
of the image.

1.96e-05 False

Sample 2 Compared to chest radiographs ___ through
___. Moderate pulmonary edema is exaggerated
due to the low lung volumes, but is new, including
mild interstitial edema and engorgement of the me-
diastinal veins. Mediastinal veins are still engorged,
but not large. Pleural effusions are presumed, but
not large. Indwelling right subclavian line ends in
the low SVC.

7.10e-08 False

Sample 3 Compared to chest radiographs ___ through
___. Moderate pulmonary edema is improving,
although heart remains moderately enlarged and
mediastinal veins are substantially dilated due to
volume status. Bilateral pleural effusions are pre-
sumed, but not large. No pneumothorax. NOTIFI-
CATION: I discussed the findings with the referring
physician by telephone on ___ at 3:08 PM.

2.42e-07 False

Sample 4 Compared to chest radiographs ___ through
___. Moderate to severe pulmonary edema has
worsened. Moderate cardiomegaly is chronically
large, exaggerated by lower lung volumes. Pleu-
ral effusions are small if any. No pneumothorax.

2.35e-04 False

Sample 5 No previous images. The cardiac silhouette is
enlarged and there is some indistinctness of pul-
monary vessels consistent with mild elevation of
pulmonary venous pressure. In view of the promi-
nence of the pulmonary vasculature, it would be dif-
ficult to unequivocally exclude superimposed pneu-
monia, especially in the absence of a lateral view.

4.69e-04 False
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Chapter 4

Neural Obfuscation for

De-identification

Balancing privacy and predictive utility remains a central challenge for machine learn-

ing in healthcare. In this chapter, we develop Syfer, a neural obfuscation method to

protect against re-identification attacks. Syfer composes trained layers with random

neural networks to encode the original data (e.g. X-rays) while maintaining the abil-

ity to predict diagnoses from the encoded data. The randomness in the encoder acts

as the private key for the data owner. We introduce a guesswork-based metric to eval-

uate the re-identification risk of encoding schemes and propose a contrastive learning

algorithm to measure it. We show empirically that differentially private methods,

such as DP-Image, can obtain privacy at the cost of a significant loss of utility. In

contrast, Syfer achieves comparable privacy while preserving utility. For example,

X-ray classifiers built with DP-image, Syfer, and original data achieve average AUCs

of 0.53, 0.78, and 0.86, respectively.
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4.1 Introduction

One of the key impediments to the development and democratization of clinical AI

algorithms is the lack of public datasets. Access to such datasets is limited to a select

few with established hospital partnerships, leaving out the majority of ML researchers

interested to contribute. Moreover the lack of standard benchmarks for comparison

slows methodological advancements for clinical AI and exacerbates reproducibility

concerns. If this unfortunate trend continues, a significant portion of patient groups

and diseases will be systematically underrepresented in available datasets, steering

healthcare AI models towards inequitable outcomes [27]. In this work, we aim to

develop a mechanism for data sharing while preserving patient privacy. We propose

Syfer , a learned encoding scheme for data de-identification, where data owners en-

code their data with a random neural network (acting as their private key) for public

release.

An ideal encoding scheme would enable untrusted third parties to develop classi-

fiers for an arbitrary (i.e unknown) downstream task using standard machine learning

tools, while preventing attackers from re-identifying raw samples. Designing such

an encoding scheme with practical privacy-utility tradeoffs has remained a long-

standing challenge for the community. Cryptographic tools (e.g. homomorphic en-

cryption [177, 53, 15, 25, 51, 20, 28]) can guarantee both privacy and utility, but these

methods are still too computationally expensive for modern model development. Dif-

ferentially private methods [42] leverage additive random noise to achieve privacy.

However, the stringent requirements of Local DP lead to a substantial utility loss,

rendering predictions useless in the medical context [27]. As a result, hospitals still

lack practical alternatives to the current practice of manual heuristic anonymization

[68, 71] , which is an expensive process to abide by privacy regulations and does

not offer a quantifiable notion of privacy. In this work, we propose to learn a keyed

encoding scheme to achieve improved privacy-utility tradeoffs.

The relevant notion of privacy, as defined by HIPAA, is de-identification, i.e.

preventing an attacker from identifying matching pairs between raw and encoded
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samples. We measure this risk using guesswork, i.e. the rank of the first correct

guess by an attacker who ranks (raw image, encoded image) pairs from most likely

to least likely. This setting subsumes reconstruction hardness and corresponds to

a worst-case scenario where an attacker has gained access to the raw images (e.g.

through a data leak). In particular, the adversary can exploit correlations in the

raw data, a challenging setting for data privacy [79, 148]. In addition, we assume

the attacker knows the implementation details of the encoding scheme, but does not

have access to the data owner’s private key. While stronger threat models exist (e.g.

chosen-plaintext attack), we focus on the threat model that precisely captures HIPAA

requirements. Furthermore, our method does not require hospitals to ever store the

correspondence between raw and encoded samples, making it impermeable to attacks

relying on parallel datasets, even in the event of data breaches.

While an arbitrary distribution of random neural networks is insufficient to achieve

strong privacy on real-world datasets, we can learn to shape this distribution to obtain

privacy. Using a public dataset, Syfer ’s obfuscator layers are optimized to maximize

the re-identification loss of a model-based attacker while minimizing a reconstruction

loss, maintaining the (almost) invertibility of the whole encoding. Data owners then

compose the pretrained obfuscator with (private) random layers to encode their pri-

vate data samples. To encode labels, they apply a random permutation to the label

identities.

Characterizing the privacy-utility tradeoffs of such complex encoding schemes on

real-world datasets is an open challenge, theoretically and empirically. To measure

these tradeoffs, we leverage a realistic utility benchmark and develop a flexible com-

putational attacker trained to maximize the likelihood of re-identifying raw images

across encodings. While such a computational attacker does not provide a lower

bound on guesswork, we show that it refutes previously proposed methods such as

InstaHide [67] and Dauntless [169], which both achieve a guesswork of 1.

We train Syfer on a public X-ray dataset from NIH [156], and evaluate the privacy-

utility tradeoffs of the scheme on a heldout dataset (MIMIC-CXR [71]) across multiple

attacker architectures and prediction tasks. Syfer displays strong empirical privacy,
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with an expected guesswork of 8411, (i.e. when presented with 10,000 raw samples

× 10,000 encoded samples, an attacker ranks their first correct pairwise correspon-

dence at rank 8411 on average). This matches the privacy provided by differentially

private schemes, such as DP-Image [93] which gets a guesswork of 9037 at 𝜀 = 4.

Moreover, models built on Syfer encodings obtain an average AUC of 0.78 across

diagnosis tasks, approaching the accuracy of models built on raw images (0.84 AUC).

In contrast, DP-Image only achieves an average utility AUC of 0.53, even when using

a higher 𝜀 = 32, at the cost of worse privacy, with an average guesswork of 1146.

We emphasize that Syfer does not come with theoretical privacy guarantees. How-

ever, we believe that the strong empirical results and favorable comparison against

state-of-the-art encoding schemes, that do offer privacy guarantees, will foster the

development and theoretical analysis of learned privacy-preserving methods.

4.2 Related Work

Differentially Private Dataset Release Differential privacy [43] methods offer

strong privacy guarantees by leveraging additive random noise in accordance to the

maximum sensitivity of the function of interest (e.g. dataset release algorithms).

For instance, DP-Image [93] proposed to add laplacian noise to the latent space

of an auto-encoder to produce differentially private instance encodings. Instead of

directly releasing noisy data, methods like DP-GAN [171, 146, 73] propose to leverage

generative adversarial networks, trained in a differentially private manner (e.g. DP-

SGD [1] or PATE [117]), to produce private synthetic data. Such methods would

require data owners to have the computational resources and skills to train models

that are orders of magnitude more complex than classifiers of the target task. Besides,

differentially private tools have been shown to significantly degrade image quality and

result in large utility losses [27]. Instead of leveraging independent noise per sample

to achieve privacy, Syfer obtains privacy through its keyed encoding scheme and thus

enables improved privacy-utility trade-offs.

90



Cryptographic Techniques Cryptographic techniques, such as secure multiparty

computation and fully homomorphic encryption [177, 53, 15, 25, 51, 20, 28] allow

data owners to encrypt their data before providing them to third parties. These

tools provide extremely strong privacy guarantees, making their encrypted data in-

distinguishable under chosen plaintext attacks (IND-CPA). However, building models

with homomorphic encryption [111, 96, 76, 18] requires leveraging specialized crypto-

graphic primitives and induces a large computational overhead (ranging from 100x-

10,000x [99]) compared to standard model inference. As a result, these tools are still

too slow for training modern deep learning models. In contrast, Syfer considers a

weaker threat model, where attackers cannot query the data owner’s private-encoder

(i.e no plaintext attacks) and specifically protects against raw data re-identification

(the privacy notion of HIPAA). Moreover, Syfer encodings can be directly leveraged

by standard deep learning techniques, improving their applicability.

Lightweight Encoding Schemes Our work extends prior research in lightweight

encoding schemes for dataset release. Previous approaches [80, 143, 137] have pro-

posed tools to carefully distort images to reduce their recognition rate by humans

while preserving the accuracy of image classification models. However, these meth-

ods do not offer privacy against machine learning based re-identification attacks.

[166, 170, 167, 124] have proposed neural encoding schemes that aim to eliminate a

particular private attribute (e.g. race) from the data while protecting the ability to

predict other attributes (e.g. action) through adversarial training. These tools require

labeled data for sensitive and preserved attributes, and cannot prevent general re-

identification attacks while preserving the utility of unknown downstream tasks. Our

work is most closely related to general purpose encoding schemes like InstaHide [67]

and Dauntless [169, 168]. InstaHide encodes samples by randomly mixing images

with MixUp [181] followed by a random bitwise flip. Dauntless encodes samples

with random neural networks and provides information-theoretic bounds on how well

an adversary can approximate the private transformation. However, we show that

neither InstaHide nor Dauntless meet our privacy standard on our real-world image
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datasets. In contrast, Syfer leverages a composition of trained obfuscator layers and

random neural networks to achieve privacy on real word datasets while preserving

downstream predictive utility.

Evaluating Privacy with Guesswork Our study builds on prior work leveraging

guesswork to characterize the privacy of systems [101, 102, 7, 120, 14]. Guesswork

quantifies the privacy of a system as the number of trials required for an adversary

to guess private information, like a private key, when querying an oracle. In this

framework, homomorphic encryption methods, which uniformly sample 𝑏-bit private

keys, offer maximum privacy [41], as the average number of guesses to identify the

correct key is 2𝑏−1. In the non-uniform guessing setting [30], guesswork offers a

worst-case notion of privacy by capturing the situation where an attacker may only

be confident on a single patient identity. Such privacy weaknesses are not measured

by average case metrics, like Shannon entropy.

4.3 Problem Statement

Our problem setting is illustrated in Figure 4-1. A data owner (Alice) wishes to

publish an encoded medical dataset to enable untrusted third parties (Bob) to develop

machine learning models, while protecting patient privacy. In Figure 4-2, we describe

how Bob uses the encoded dataset to train a classifier 𝐶𝑇 . The classifier is then used

by Alice in Figure 4-3 to make predictions on unseen images.

We consider an adversary (Eve) with knowledge of Alice’s image distribution,

encoding scheme and encoded data. Intuitively, Alice’s encoding scheme is deemed

private if it takes many guesses for Eve to re-identify any single raw image from the

encoded data.

Alice (the Data Owner). Alice uses a potentially randomized algorithm to trans-

form each sample of her dataset and releases the encoded data along with their en-

coded labels. Formally, let 𝑋𝐴 = {𝑥1, ..., 𝑥𝑛} ⊂ R𝑑 denote Alice’s dataset, com-

posed of 𝑛 samples, each of size 𝑑. She is interested in a 𝑘-class classification task
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Figure 4-1: Alice (data-owner) samples a transformation 𝑇 according to P(𝑇 ) and
leverages 𝑇 to encode her labeled data (𝑋,𝐿𝐹 (𝑋)). She then publishes (𝑍, 𝑌 ) =
𝑇 (𝑋,𝐿𝐹 (𝑋)) for model development by Bob, while preventing re-identification by
Eve, the adversary.

Figure 4-2: Role of Bob the model builder. Given encoded images 𝑍 and encoded
labels 𝑌 , Bob’s task is to learn a classifier to predict 𝑦 from a sample 𝑧

defined by a labeling function 𝐿𝐹 : R𝑑 → {1, . . . , 𝑘} (e.g. diagnosis labels anno-

tated by a radiologist), and assembles the labeled dataset {(𝑥, 𝐿𝐹 (𝑥)), 𝑥 ∈ 𝑋𝐴}.

To encode her data, Alice samples a transformation 𝑇 = (𝑇𝑋 , 𝑇 𝑌 ) according to

a distribution P(𝑇 ), where 𝑇𝑋 : R𝑑 → R𝑑 is a sample encoding function and

𝑇 𝑌 : {1, ..., 𝑘} → {1, ..., 𝑘} is a label encoding function. Alice releases the encoded

dataset (𝑍𝐴, 𝑌𝐴) = 𝑇 (𝑋𝐴, 𝐿𝐹 (𝑋𝐴)) = (𝑇𝑋(𝑋𝐴), 𝑇
𝑌 (𝐿𝐹 (𝑋𝐴)). We use Γ to denote

the encoding scheme defined by P(𝑇 ).

In the case of Syfer , Alice samples random neural network weights to construct

a 𝑇𝑋 and samples a permutation to construct a 𝑇 𝑌 . We assume all actors have
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Figure 4-3: Illustration of how Alice, the data owner, uses a model (at test time)
built using Syfer encodings. Alice receives 𝐶𝑇 from Bob. Given a new image 𝑥, she
first encodes it with her private key 𝑇𝑋 to produce 𝑧. She then inputs 𝑧 into Bob’s
classifier to obtain a encoded prediction 𝑦. Alice then leverages the inverse of her label
encoding, (𝑇 𝑌 )−1, to decode Bob’s prediction into a raw prediction 𝑝. Alice’s utility
is then ℒ(𝑝, 𝐿𝐹 (𝑥), which compares the raw prediction to the true label 𝐿𝐹 (𝑥).

knowledge of the distribution P(𝑇 ) (i.e. the neural network architecture and the

pretrained weights of the obfuscator layers), but do not know Alice’s specific choice

of random 𝑇 (i.e. sampled weights or permutation).

Bob (the Model Builder). As illustrated in Figure 4-2, Bob learns to clas-

sify the encoded data. He receives the encoded training dataset (𝑍train
𝐴 , 𝑌 train

𝐴 ) =

𝑇 (𝑋train
𝐴 , 𝐿𝐹 (𝑋train

𝐴 )) and trains a model 𝐶𝑇 for the task of interest. Bob then shares

the model 𝐶𝑇 with Alice who can then use the model on newly generated data and

decode the predictions using the inverse of the label encoding,
(︀
𝑇 𝑌

)︀−1. We illustrate

how Alice uses 𝐶𝑇 in Figure 4-3. We note that Bob does not know 𝑇 or
(︀
𝑇 𝑌

)︀−1.

Bob’s objective is to minimize the generalization error of his classifier on the testing

set (𝑍test
𝐴 , 𝑌 test

𝐴 ) = 𝑇 (𝑋test
𝐴 , 𝐿𝐹 (𝑋test

𝐴 )).

Definition 1 (utility). The utility score of an encoding scheme Γ for a labeling

function 𝐿𝐹 on a dataset 𝑋𝐴 is defined as the expected value of the generalization
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performance of Bob’s classifier, i.e.

𝒰 = − E
𝑇∼P(𝑇 )

[︂
E

𝑥∈𝑋test
𝐴

[︁
ℒ
(︁(︀

𝑇 𝑌
)︀−1 ∘ 𝐶𝑇 (𝑧), 𝐿𝐹 (𝑥)

)︁]︁]︂

where ℒ is a loss function (e.g. cross entropy), 𝑧 = 𝑇𝑋(𝑥), 𝐶𝑇 is a classifier trained

for a specific transformation 𝑇 , and
(︀
𝑇 𝑌

)︀−1 is the inverse of the label encoding.

Eve (the Adversary). Eve’s objective is to re-identify Alice’s data. In a realistic

setting, Eve would use an encoded image from Alice’s released dataset to reconstruct

the pixels of the corresponding raw image. To simplify analysis, we consider an easier

task for Eve where she only needs to select the correct raw image from a list 𝑋𝐸

of candidate raw images, akin to identifying a suspect from a police lineup. In the

rest of the chapter, we use 𝑋𝐸 = 𝑋𝐴. Knowing the dataset 𝑋𝐴 and the encoding

scheme Γ, Eve’s task is to leverage the released dataset (𝑍𝐴, 𝑌𝐴) = 𝑇 (𝑋𝐴, 𝐿𝐹 (𝑋𝐴))

to re-identify samples from 𝑍𝐴. Specifically, Eve’s objective is to identify a single

correct match within 𝑀𝑇 = {(𝑥, 𝑧) ∈ 𝑋𝐴 × 𝑍𝐴 s.t. 𝑧 = 𝑇𝑋(𝑥)}.

Definition 2 (privacy). We quantify the privacy of an encoding scheme by computing

the guesswork of its transformations. Intuitively, a computationally unbounded Eve

ranks pairs of (𝑥, 𝑧) as most likely to least likely. Guesswork is defined as the rank

of Eve’s first correct guess. Given the dataset 𝑋𝐴, the encoding scheme Γ, i.e. P(𝑇 ),

the released dataset 𝑍𝐴 (of size 𝑛) along with released labels 𝑌𝐴, Eve derives for any

(𝑥, 𝑧) ∈ 𝑋𝐴×𝑍𝐴 the probability P ((𝑥, 𝑧) ∈𝑀𝑇 |𝑍𝐴, 𝑌𝐴, 𝑋𝐴,Γ). Eve then submits an

ordered list of 𝑛2 correspondence guesses (𝑢1, 𝑢2, . . . 𝑢𝑛2), where 𝑢𝑖 ∈ 𝑋𝐴 × 𝑍𝐴, by

greedily ordering1 her guesses from most likely to least likely. The guesswork of a

transformation 𝑇 is defined as the index of the first correct guess in the ordered list,

i.e.

𝒢(𝑇 ) = min
𝑘
{𝑘 s.t. 𝑢𝑘 ∈𝑀𝑇}.

Finally, to compare the privacy of encoding schemes, we compare the distributions of

1Whenever ties occur, we compute 𝒢(𝑇 ) as an average over the permutations of the list that
keep it ordered.
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𝒢(𝑇 ) as 𝑇 is drawn from different distributions P(𝑇 ).

4.4 Privacy quantification by guesswork

Recall that for an ordered list of 𝑚𝑛 correspondence guesses (𝑢1, . . . , 𝑢𝑚𝑛), where

𝑢𝑖 ∈ 𝑋𝐸 × 𝑍𝐴, the guesswork is defined as the rank of the first correct guess: 𝒢 =

min𝑘{𝑘 s.t. 𝑢𝑘 ∈𝑀𝑇}, where 𝑀𝑇 = {(𝑥, 𝑧) ∈ 𝑋𝐸×𝑍𝐴 s.t. 𝑧 = 𝑇𝑋(𝑥)}. In the event

of ties, the guesswork is computed as the expected value over permutations of the

suitable subsets. In this work, we use 𝑋𝐸 = 𝑋𝐴 but the guesswork can be computed

for an arbitrary superset 𝑋𝐸 ⊇ 𝑋𝐴 of size 𝑚.

Guesswork Algorithm We propose the following algorithm to compute the guess-

work for a given probability matrix and set of correct guesses.

Algorithm 4 Guesswork algorithm
Input Correct matching 𝑀𝑇 = {(𝑥𝑖, 𝑧𝑗) s.t. 𝑧𝑗 = 𝑇𝑋(𝑥𝑖)}

Input Probability matrix 𝐴 where 𝐴𝑖,𝑗 = P((𝑥𝑖, 𝑧𝑗) ∈𝑀)

Output Guesswork 𝒢 for 𝐴

1: From 𝐴, extract

2: 𝑆 = {(𝑖, 𝑗, 𝐴𝑖,𝑗) for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}

3: Partition 𝑆:

4: 𝑆 =
⋃︀

𝑝 𝑆𝑝 where 𝑆𝑝 = {(𝑖, 𝑗, 𝐴𝑖,𝑗) s.t. 𝐴𝑖,𝑗 = 𝑝}

5: Find the highest value of 𝑝 such that 𝐴𝑝 contains matches:

6: 𝑞 = max𝑝{𝑝 s.t. ∃(𝑖, 𝑗, 𝐴𝑖,𝑗) ∈ 𝑆𝑝 s.t. (𝑥𝑖, 𝑧𝑗) ∈𝑀𝑇}

7: 𝒢 ← 0

8: for 𝑝 > 𝑞 do

9: 𝒢 ← 𝒢 + |𝐴𝑝|

10: 𝒢 ← 𝒢 + 1+|𝐴𝑞 |
1+|𝐴𝑞∩𝑀 |

11: return 𝒢

The expression 1+|𝐴𝑞 |
1+|𝐴𝑞∩𝑀 | is derived by computing the expected value of number of
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trials before success in the urn problem without replacement.

Example 4.4.1 (Guesswork Calculation). Let 𝑋𝐸 = 𝑋𝐴 = {1, 2} and disregard

labels for now. Consider three transformations 𝑋𝐴 → {𝑎, 𝑏, 𝑐, 𝑑}:

𝑇1 :

⎧⎨⎩ 1 ↦→ 𝑎

2 ↦→ 𝑏
𝑇2 :

⎧⎨⎩ 1 ↦→ 𝑏

2 ↦→ 𝑎
𝑇3 :

⎧⎨⎩ 1 ↦→ 𝑐

2 ↦→ 𝑑

We evaluate the following encoding schemes, defined by the distribution used to

sample 𝑇 :

Γ1 : P(𝑇1) = 2/3, P(𝑇2) = 1/3, P(𝑇3) = 0

Γ2 : P(𝑇1) = 1/2, P(𝑇2) = 1/2, P(𝑇3) = 0

Γ3 : P(𝑇1) = 1/3, P(𝑇2) = 1/3, P(𝑇3) = 1/3.

For Γ1, Eve observes 𝑍𝐴 = {𝑎, 𝑏} regardless of the choice of 𝑇𝐴. Given her

knowledge of P(𝑇 ), she elects to rank {(1, 𝑎), (2, 𝑏)} before {(1, 𝑏), (2, 𝑎))} which gives

guessworks 𝒢(𝑇1) = 1 and 𝒢(𝑇2) = 3. In expectation, the guesswork of Γ1 is 5/3 (with

a variance of 8/27).

For Γ2, Eve observes 𝑍𝐴 = {𝑎, 𝑏} as well, but equally ranks all 4! orderings of

the guesses ((1, 𝑎), (1, 𝑏), (2, 𝑎), (2, 𝑏)), which leads to the same guesswork for both 𝑇 :

𝒢(𝑇1) = 𝒢(𝑇2) =
1
2
· 1 + 1

2
· 2
3
· 2 + 1

2
· 1
3
· 3 = 5

3
(no variance).

For Γ3, whenever Eve observes 𝑍𝐴 = {𝑐, 𝑑}, she deduces that 𝑇𝐴 = 𝑇3, which

leads to a guesswork of 1. In the other cases, observing 𝑍𝐴 = {𝑎, 𝑏} means that 𝑇1

and 𝑇2 are equally likely, so the guesswork is 5/3. In expectation, the guesswork is

13/9, which is lower (and thus worse privacy) than the previous schemes.

Example 4.4.2 (Guessworks in Special Cases). We discuss two special cases that

arise when computing guesswork.

1. If all guesses in the bucket 𝐴𝑝 of highest probability are correct guesses, then

the guesswork is 1, characterizing a non-private scheme. Note that this does not

depend on the cardinal of the bucket 𝐴𝑝 of highest probability: regardless of
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whether the attacker is confidently correct about one matching pairs or multiple

matching pair, the guesswork will still be 1.

2. If the probability matrix is uniform (i.e. there is 𝑝 for which 𝑆 = 𝑆𝑝, such that

all guesses are in the same bucket), then the guesswork is 𝑚𝑛+1
𝑛+1

, i.e. 𝒢 ≈ |𝑋𝐸|.

This characterizes an attacker that fails to capture any privacy leakage of the

encoding scheme.

Note that |𝑋𝐸| is not an upper-bound of guesswork. An attacker that is confidently

wrong can achieve a guesswork up to 𝑚𝑛− 𝑛+ 1.

Discussion on the Guesswork Definition Traditionally, guesswork is defined as

the “number of guesses an attacker needs in order to break a system”, while we only

measure and report the “rank of the first correct match in the attacker ordered list of

guesses”. When guesses are correlated, those definitions do not match.

For Γ1,Γ2 and Γ3 defined in Example 4.4.1, an attacker can rule out the (2, 𝑏)

correspondence after guessing (1, 𝑎), which brings the expected number of guesses to

respectively 4
3
, 3

2
and 4

3
.

In Example 4.4.2.1, if the guesswork is 1, then the expected number of guesses

will also be 1. In Example 4.4.2.2, when P((𝑥𝑖, 𝑧𝑗) is uniform, Eve should commit to

a single column (or row) and achieve an expected number of guesses of 𝑚/2 (or 𝑛/2).

More generally, after Eve made her first guess 𝑢1, she can assume the first guess

was incorrect and recompute the new probability matrix P((𝑥𝑖, 𝑧𝑗) ∈ 𝑀 |𝑢1 ̸∈ 𝑀),

then proceed with subsequent guesses. Such an auto-regressive strategy is costly to

implement. Therefore, we adopt the definition of guesswork exposed in Section 4.3

as an efficient way to universally compare the privacy of different encoding schemes.

In particular, our definition of guesswork can rule out schemes that are clearly not

private (guesswork of 1), while providing a scale-invariant measure of uniformness of

the probability matrix 𝐴.
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4.5 Method

We propose Syfer , an encoding scheme which uses a combination of learned obfuscator

layers and random neural network layers to encode raw data. Syfer is trained to

maximize the re-identification loss of an attacker while minimizing a reconstruction

loss, which acts as a regularizer to preserve predictive utility for downstream tasks. To

estimate the privacy of an encoding scheme on a given dataset, we use a model-based

attacker trained to maximize the likelihood of re-identifying raw data. To encode the

labels 𝐿𝐹 (𝑋), Syfer randomly chooses a permutation of label identities {1, ..., 𝑘}.

4.5.1 Privacy Estimation via Contrastive Learning

Before introducing Syfer , we adopt Eve’s perspective and describe how to evaluate

the privacy of encoding schemes. The attacker is given the candidate list 𝑋𝐸 = 𝑋𝐴,

and a fixed encoding scheme Γ, i.e. a fixed distribution P(𝑇 ). We propose an efficient

contrastive algorithm to estimate P ((𝑥, 𝑧) ∈𝑀𝑇 |𝑍𝐴, 𝑌𝐴,Γ, 𝑋𝐴). When the context

allows it, we omit the conditional terms and use P((𝑥, 𝑧) ∈𝑀𝑇 ).

As shown in Figure 4-4, the attacker’s model 𝐸 is composed of an instance-level

encoder 𝐸ins, with parameters 𝜙ins, acting on individual images and their labels and

a set-level encoder 𝐸set, with parameters 𝜙set, taking a set of instance representations

as input.

In each iteration, we sample a batch 𝑋 = (𝑥1, . . . , 𝑥𝑏) of datapoints from 𝑋𝐸 = 𝑋𝐴

and a transformation 𝑇 = (𝑇𝑋 , 𝑇 𝑌 ) according to the fixed distribution P(𝑇 ). Let

𝑍 = 𝑇𝑋(𝑋) = (𝑧1, . . . , 𝑧𝑏) denote the transformed batch and 𝑌 = 𝑇 𝑌 (𝐿𝐹 (𝑋)) =

(𝑦1, . . . , 𝑦𝑏) the encoded labels. The hidden representations of the raw data are com-

puted as a two-step process:

1. using 𝐸ins, we compute 𝐻𝑋 = (ℎ𝑋
1 , . . . , ℎ

𝑋
𝑏 ) where each ℎ𝑋

𝑖 = 𝐸ins (𝑥𝑖, 𝐿𝐹 (𝑥𝑖))

;

2. using 𝐸set, we compute 𝑅𝑋 = (𝑟𝑋1 , ..., 𝑟
𝑋
𝑏 ) where each 𝑟𝑋𝑖 = 𝐸set

(︀
ℎ𝑋
𝑖 , 𝐻

𝑋
)︀
.
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Figure 4-4: Architecture of the model-based attacker. Given pairs of raw samples
(𝑋,𝐿𝐹 (𝑋)) and encoded samples (𝑍, 𝑌 ), the attacker learns to recover matching
pairs (𝑥, 𝑧) ∈𝑀𝑇 . In this figure, we omit label information for clarity.

Similarly, for the encoded data, we form 𝐻𝑍 = (ℎ𝑍
1 , . . . , ℎ

𝑍
𝑏 ) where ℎ𝑍

𝑖 = 𝐸ins (𝑧𝑖, 𝑦𝑖)

and 𝑅𝑍 = (𝑟𝑍1 , ..., 𝑟
𝑍
𝑏 ) where each 𝑟𝑍𝑖 = 𝐸set

(︀
ℎ𝑍
𝑖 , 𝐻

𝑍
)︀
.

Following prior work on contrastive estimation [26], we use the cosine distance

between hidden representations to measure similarity:

sim(𝑟𝑋𝑖 , 𝑟
𝑍
𝑗 ) =

(︀
𝑟𝑋𝑖

)︀⊤
𝑟𝑍𝑗

‖𝑟𝑋𝑖 ‖‖𝑟𝑍𝑗 ‖
.

Then, we estimate the quantity P((𝑥𝑖, 𝑧𝑗) ∈𝑀𝑇 ) as proportional to 𝑝(𝑥𝑖, 𝑧𝑗):

𝑝(𝑥𝑖, 𝑧𝑗) =
exp(sim(𝑟𝑋𝑖 , 𝑟

𝑍
𝑗 ))∑︀𝑏

𝑘,𝑙 exp(sim(𝑟𝑋𝑘 , 𝑟
𝑍
𝑙 ))

.
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The weights 𝜙ins and 𝜙set of the attacker’s model 𝐸 are trained to minimize the

negative log-likelihood of re-identification across unknown 𝑇 :

ℒreid = −
∑︁

(𝑥,𝑧)∈𝑀𝑇

log (𝑝(𝑥, 𝑧)) .

4.5.2 Syfer

Architecture As illustrated in Figure 4-5, we propose a new encoding scheme by

learning to shape the distribution P(𝑇 ). Specifically, we parametrize a transformation

𝑇𝑋 using a neural network that we decompose into blocks of learned obfuscator layers

(weights 𝜃Syfer), and random layers (weights 𝜃𝑘𝑒𝑦). The obfuscator layers are trained

to leverage the randomness of the subsequent random layers and learn a distribution

P(𝑇 ) that achieves privacy. In this framework, Alice constructs 𝑇𝑋 by randomly

sampling the weights 𝜃𝑘𝑒𝑦 and composing them with pre-trained obfuscator weights

𝜃Syfer to encode the raw data 𝑋. Alice chooses the label encoding 𝑇 𝑌 by randomly

sampling a permutation of the label identities {1, . . . , 𝑘}, which is applied to 𝐿𝐹 (𝑋).

We note that our 𝑇 𝑌 assumes that Alice’s dataset is class-balanced. If Alice’s data

is not class-balanced, she should down-sample her dataset to a class-balanced subset

before release.

Alice’s random choices of 𝜃𝑘𝑒𝑦 and 𝑇 𝑌 act as her private key, and she can publish

the encoded data with diagnosis labels for model development while being protected

from re-identification attacks. Given Bob’s trained classifier to infer 𝑇 𝑌 (𝐿𝐹 (𝑥)) from

𝑇𝑋(𝑥), Alice then uses
(︀
𝑇 𝑌

)︀−1 to decode the predictions.

Training Data owners may not have the computational capacity to train their own

obfuscator layers, so we train Syfer without direct knowledge of 𝑋𝐴 or 𝐿𝐹 . Instead,

we rely on a public dataset 𝑋public and use the null labeling function 𝐿𝐹 (𝑥) = 0.

To be successful, Syfer needs to generalize to held-out datasets, prediction tasks and

attackers.

As shown in Algorithm 1, we train Syfer ’s obfuscator layers (parameters 𝜃Syfer)

to maximize the loss of an attacker 𝐸 (parameters 𝜙 = (𝜙ins, 𝜙set)) and to minimize
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Figure 4-5: Proposed encoding scheme: Syfer uses repeating blocks of learned obfus-
cator layers and random neural network layers as 𝑇𝑋 and samples a random permu-
tation of {1, ..., 𝑘} as 𝑇 𝑌 .

the reconstruction loss of an ensemble of decoders 𝐷1, . . . , 𝐷𝑠 (parameters 𝛽1, . . . 𝛽𝑠).

At each step of training, we sample a transformation 𝑇 batch by choosing a new

𝜃batch
𝑘𝑒𝑦 to combine with the current 𝜃Syfer (Alg. 1, L.7-8). Using the current attacker

weights 𝜙, we then compute the re-identification loss (Alg. 1, L.9-10) as: ℒreid =

−
∑︀

(𝑥,𝑧)∈𝑀𝑇
log (𝑝(𝑥, 𝑧))

Next, we estimate the overall invertability of the encoding scheme by measuring

the reconstruction loss of an ensemble of decoders 𝐷1, . . . , 𝐷𝑠. For each each decoder

𝐷𝑖, we randomly sample a private key 𝜃𝑖𝑘𝑒𝑦, which is fixed throughout the training

algorithm. Each decoder 𝐷𝑖 is trained to reconstruct 𝑋 from 𝑍 = 𝑇 𝑖(𝑋) where 𝑇 𝑖 is

constructed by composing the current 𝜃Syfer with 𝜃𝑖𝑘𝑒𝑦. We update 𝛽𝑖 to minimize the

reconstruction loss (Alg. 1, L.12-17): ℒrec =
∑︀𝑠

𝑖=1 (E𝑋 [||𝑥−𝐷𝑖 ∘ 𝑇 𝑖(𝑥)||2])

We train our attacker and decoders in alternating fashion with Syfer ’s obfuscator

parameters. On even steps, Syfer ’s weights 𝜃Syfer are updated to minimize the loss:

ℒSyfer = 𝜆rec · ℒrec − 𝜆reid · ℒreid

On odd steps, the attacker and decoders are updated to minimize ℒreid and ℒrec
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respectively (Alg. 1, L. 19-26).

In this optimization, the tasks of our attacker and decoders are asymmetric: the

attacker is trained to generalize across transformations 𝑇 (i.e. 𝜃𝑘𝑒𝑦), while the de-

coders only need to generalize to unseen images, for a fixed key 𝜃𝑘𝑒𝑦.

4.6 Experiments

Datasets For all experiments, we utilized two benchmark datasets of chest X-rays,

NIH [156] and MIMIC-CXR [71], from the National Institutes of Health Clinical

Center and Beth Israel Deaconess Medical Center respectively. Both datasets were

randomly split into 60,20,20 for training, development and testing, and all images

were downsampled to 64x64 pixels. We leveraged the NIH dataset to train all private

encoding schemes (i.e. Syfer and baselines), and we evaluated the privacy and utility

of all encoding schemes on the MIMIC-CXR dataset, for the binary classification

tasks (𝑘 = 2) of predicting Edema, Consolidation, Cardiomegaly, and Atelectasis.

This reflects the intended use of the tool, where a hospital leverages a pretrained

Syfer for their heldout datasets.

For experiments considering a specific diagnosis task, we followed common prac-

tice [68] and excluded exams with an uncertain disease label i.e., the clinical diagnosis

did not explicitly rule out or confirm the disease. Then, we selected one random neg-

ative control case for each positive case in order to create a balanced dataset. Our

dataset statistics are shown in Appendix C.1.

Syfer Implementation Details As shown in Figure 4-5, Syfer consists of

repeated blocks of trained obfuscator layers and random neural network layers. Fol-

lowing prior work in vision transformers [185], Syfer operates at the level of patches

of images. We implemented our trained obfuscator layers as Simple Attention Units

(SAU), a gated multi-head self attention module. The full architecture details are

listed in Appendix C.2. The SAU module is detailed in Appendix C.3.

We implemented the instance encoder 𝐸ins and set encoder 𝐸set of our adversary

model as a depth 3 and depth 1 SAU respectively. We utilized separate 𝐸ins networks
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to encode the raw data (𝑋,𝐿𝐹 (𝑋)) and encoded data (𝑍, 𝑌 ). We use a single decoder

𝐷1 (i.e. 𝑠 = 1) and implement it as a depth 3 SAU. While using an ensemble of

decoders should improve the invertibility of the encodings, we saw that using 𝑠 = 5 did

not significantly improve downstream utility. The full training details are described

in Appendix C.2 and training Syfer is fully reproducible in our code release.

Privacy Estimators To evaluate the ability of Syfer to defend against re-identification

attacks, we trained attackers to re-identify raw images from Syfer encodings on the

MIMIC-CXR dataset. Since we cannot bound the prior knowledge the attacker may

have over 𝑋𝐴, we consider the extreme case and train our attackers on their eval-

uation set, i.e. we only use MIMIC-CXR’s training set for privacy evaluation. As

a result, the attacker does not have to generalize to held-out images, but only to

held-out private encoders 𝑇 .

As described in Section 4.5.1, the attacker is trained to re-identify raw images

from encoded images across new unobserved private keys using an image encoder

𝐸ins and a set encoder 𝐸set. This attacker estimates P((𝑥, 𝑧) ∈ 𝑀) for an encoding

scheme Γ on a dataset 𝑋. Across our experiments, we implemented 𝐸ins as either a

ResNet-18 [59], a ViT [185], or a SAU. We implemented 𝐸set as a depth 1 SAU. All

attackers were trained for 500 epochs.

We computed the guesswork of each attacker by sorting the scores 𝑝(𝑥, 𝑧) and

identifying the index of the first correct correspondence. To measure the attackers

average performance, we also evaluated the ROC AUC of the attacker attempting to

predict an (𝑥, 𝑧) matching as a binary classification task. A higher guesswork and

lower re-identification AUC (ReID AUC) reflect a more private encoding scheme.

Generalized Privacy We first evaluated the guesswork and re-identification AUC

(ReID AUC) of attackers trained using only encoded images (i.e. without labels) on

the entire unfiltered MIMIC-CXR training set. For Syfer , this only requires using

the neural encoder 𝑇𝑋 . We compared Syfer to prior lightweight encoding schemes,

including InstaHide [67] and Dauntless [169, 168]; and differential privacy methods,
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like DP-Image [93]. We now detail our baseline implementations.

• To assess the value of training Syfer ’s obfuscator layers, we compared Syfer to

an ablation with randomly initialized obfuscator layers, Syfer -Random.

• InstaHide randomly mixes each private image with 2 other private images (i.e

with MixUp [181]) and then randomly flips each pixel sign.

• Dauntless [168] applies a separate random linear layer to each 16x16 pixel patch

of the images, with each random weight initialized as according to a standard

Gaussian distribution.

• DP-Image [93] adds independent laplacian noise to the latent space of an auto-

encoder to produce differentially private encodings. We trained our auto-encoder

on the NIH dataset and measure its 𝑙1-sensitivity on MIMIC-CXR dataset as

∆𝑓 = 137.8. We then applied laplacian noise parametrized by 𝑏 = ∆𝑓/𝜀 for

varying values of 𝜀 to achieve 𝜀-LDP.

We report the expected guesswork and AUC for each attack as well as 95% con-

fidence intervals (CI). To compute confidence intervals, we sampled 100 bootstrap

samples of 10,000 images (all encoded by a single 𝑇 ) from the MIMIC-CXR training

set. Our 100 bootstraps consisted of 10 random data samples (of 10,000) across 10

random 𝑇 .

Privacy with Real Labeling Functions In practice, the encoded images are

released with encoded labels to enable model development on tasks of interest. Using

this additional knowledge, attackers may be able to better re-identify private data.

To evaluate the privacy of Syfer encodings when released with public labels, we

trained the attackers to re-identify raw images given access to (raw image, raw label)

pairs and (obfuscated image, obfuscated label) pairs. To highlight the importance

of Syfer ’s label encoding scheme 𝑇 𝑌 in this scenario, we also train attackers on an

ablation of Syfer which does not encode the labels and releases (obfuscated image,

raw label). This corresponds to using only Syfer ’s neural encoder 𝑇𝑋 . In particular,
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this characterizes the risks of using Syfer without first balancing disease labels, as

that would negate the effectiveness of 𝑇 𝑌 .

We performed this attack independently per diagnosis. We implemented the in-

stance encoder 𝐸ins of our attacker as an SAU, our self-attention module, and repre-

sented the disease label an additional learned 256 dimensional input token for 𝐸ins.

As before, our attackers were trained for 500 epochs, and evaluated on the MIMIC-

CXR training set. We report the expected guesswork and AUC for each attack as

well as 95% confidence intervals. To compute confidence intervals, we sampled 100

random 𝑇 and encoded the whole class-balanced MIMIC-CXR training set for each

sampled 𝑇 .

Utility Evaluation We evaluated the utility of an encoding scheme on the MIMIC-

CXR dataset by measuring the ROC-AUC of diagnosis models trained using its en-

codings. We compared the utility of Syfer to a plaintext baseline (i.e. using raw data),

which provides us with a utility upper bound. To isolate the impact of training Syfer ’s

obfuscator layers on utility, we also compared the utility of Syfer to Syfer -Random.

We also computed the utility of our differential privacy baseline, DP-Image with a 𝜀

values of ∞, 128 and 32 (lower 𝜀 values lead to an AUC of 0.50). For each encoding

scheme, we experimented with different classifier architectures (e.g. SAU vs ResNet-

18), dropout rates and weight decay, and reported the test AUC for the architecture

that achieved the best validation AUC.

4.7 Main privacy-utility results

Generalized Privacy We report our generalized privacy results, which consider re-

identification attacks on the unlabeled MIMIC-CXR dataset, in Table 4.1, with higher

guesswork and lower ReID AUC denoting increased privacy. While Syfer was trained

to maintain privacy against an SAU-based attacker on the NIH training set, we found

that its privacy generalized to a held-out dataset, MIMIC-CXR, and held-out attack

architectures (e.g. ResNet-18 and ViT). Syfer obtains a guesswork of 8411 (95% CI
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Figure 4-6: Utility for chest X-ray prediction tasks across different encoding schemes.

E C C A Avg
Raw data 0.91 0.78 0.89 0.85 0.86
Encoded data
∞-DP 0.87 0.76 0.84 0.81 0.82
128-DP 0.62 0.56 0.61 0.61 0.60
32-DP 0.53 0.55 0.51 0.53 0.53
Syfer -Rand 0.89 0.75 0.86 0.84 0.84
Syfer 0.82 0.69 0.81 0.78 0.78

(a) All metrics are ROC AUCs across the MIMIC-CXR test set. Guides of abbreviations
for medical diagnosis: (E)dema, (Co)nsolidation, (Ca)rdiomegaly and (A)telectasis.
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Table 4.1: Privacy evaluation of different encoding schemes against an SAU based
attacker (unless specified) on the unlabeled MIMIC-CXR dataset. For Syfer , only
𝑇𝑋 is used. Our DP baseline is DP-Image, using laplacian noise parametrized by 𝑏 =
∆𝑓/𝜀, with ∆𝑓 = 137.772. Metrics are averages over 100 trials using 10,000 samples
each, followed by 95% confidence intervals (CI). AUC 95% confidence intervals are
all within +/- 0.01 and were omitted for brievety.

Encoding Guesswork ReId AUC Encoding Guesswork ReId AUC
Dauntless 1.0 (1, 1) 1.00 ∞-DP 1 (1, 1) 1.00
InstaHide 1.0 (1, 1) 1.00 128-DP 9.40 (1, 31) 0.87
Syfer-Random 1.7 (1, 4) 0.99 64-DP 109 (3.9, 348) 0.71
Syfer (𝑇𝑋 only) 32-DP 1146 (86, 3403) 0.60

vs SAU 8476 (1971, 20225) 0.50 16-DP 3636 (36, 10605) 0.55
vs ViT 8411 (5219, 12033) 0.50 8-DP 5732 (443, 15257) 0.51
vs Resnet-18 10070 (9871, 10300) 0.50 4-DP 9037 (453, 28882) 0.50

Table 4.2: Privacy evaluation of Syfer when released with different diagnosis labels
in MIMIC-CXR dataset, using label encoding or not (ablation). Metrics are averages
over 100 trials using 10,000 samples each, followed by 95% CI.

Syfer (using 𝑇𝑋 and 𝑇 𝑌 ) Syfer no label encoding (𝑇𝑋 only)
Diagnosis Guesswork ReId AUC Guesswork ReId AUC
Edema 3617 (94, 11544) 0.50 (0.49, 0.51) 47 (12, 83) 0.76 (0.76, 0.76)
Consolidation 1697 (83, 5297) 0.55 (0.53, 0.57) 36 (2, 104) 0.76 (0.76, 0.76)
Cardiomegaly 9834 (2072, 15766) 0.51 (0.49, 0.53) 42 (17, 57) 0.75 (0.75, 0.75)
Atelectasis 13189 (2511, 28171) 0.50 (0.48, 0.52) 80 (65, 98) 0.75 (0.75, 0.75)

5219, 12033) and a ReId AUC of 0.50 (95% CI 0.49, 0.51), and achieves empirical

privacy comparable to an 𝜀-DP baseline with 𝜀 = 4 which obtains a guesswork of 9037

(95% CI 453, 28882) and a ReId AUC of 0.50 (95% CI 0.49, 0.51). We recall that a

guesswork of 9,999 corresponds to guessing randomly in this evaluation, as described

in Appendix 4.4. In contrast, the InstaHide and Dauntless baselines could not defend

against re-identification attacks obtaining both a guesswork of 1.0 (95% CI 1, 1).

Privacy with Real Labeling Functions We evaluated the privacy of releasing

Syfer encodings with different public labels in Table 4.2. Releasing raw labels resulted

in significant privacy leakage with guessworks ranging from 36 (95% CI 2, 104) to 80

(95% CI 65, 98) for Consolidation and Atelectasis respectively. In contrast, when

labels are protected using Syfer ’s label encoding scheme and released alongside the
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image encodings, Syfer maintains privacy across all diagnoses tasks, with guessworks

ranging from 1697 (95% CI 83, 5297) to 13189 (95% CI 2511, 28171) for Consolidation

and Atelectasis respectively.

Utility Evaluation We report our results in predicting various medical diagnosis

from X-rays in Table 4-6a. Models built on Syfer obtained an average AUC of 0.78,

compared to 0.86 by the plaintext baseline and 0.84 by the Syfer -Random baseline.

In contrast, Image-DP obtained average AUCs of 0.60, and 0.53 when using a 𝜀 values

of 128 and 32 respectively. Syfer obtained a 25 point average AUC improvement over

DP-Image while obtaining better privacy.

Additional Experiments To validate the applicability of our method beyond med-

ical imaging for multi-channel images, we evaluate Syfer on CIFAR10 [82]. The re-

sults in 4.9 show that Syfer outperforms DP-Image, improving the utility AUC by 30

points, while being more private.

4.8 Additional utility analysis

In Figure 4-7, we plot the learning curves of Syfer , Syfer -Random and our plaintext

baselines when training on fractions 1
32

, 1
16

, 1
8
, 1

4
, 1

2
and 1 of the data.
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Figure 4-7: Average AUC on MIMIC-Test set when training with different fractions
of the data when using Syfer , Syfer -Random, and Plaintext encodings.

We find that it takes plaintext models 1
2

of the training data to reach the full

performance of Syfer -Random, indicating that using a random Syfer architecture

harms sample complexity. Syfer , which achieves strong privacy, requires more data

to achieve the same utility, with Syfer -Random achieving the same average AUC

when using less than 1
8

of the data and Plaintext achieving the same performance

when using 1
32

.

4.9 Imagenette and CIFAR10 experiments

We report additional experiments using Imagenette [66] (a subset of ImageNet [33])

and CIFAR10 [82]. For pretraining, we use the whole set of 13394 images from

Imagenette. We resize the images so that the shortest dimension is 32 pixels, and

crop the other dimension around the center to get a 32 × 32 image. To evaluate

privacy and downstream utility of Syfer, we split the CIFAR10 dataset into 40000

train images, 10000 validation images and 10000 test images.

We follow the experimental procedure described in Section 4.6. In particular,

for privacy experiments, we use the whole CIFAR train set to evaluate an attacker’s

guesswork. For utility experiments, we consider each label separately in a one-vs-rest
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binary classification and downsample the dataset such that classes are balanced.

We report measure privacy and utility for raw images, DP baselines, Syfer and

Syfer-random in Tables 4.3, 4.4 and Figure 4-8. The experimental results follow

the same trend as the X-ray experiments: Syfer achieves better privacy than a 2-

DP-Image baseline while maintaining significantly better utility (30 AUC points on

average).

Table 4.3: Privacy evaluation of different encoding schemes against an SAU-based
attacker (unless specified) on the unlabeled CIFAR dataset. For Syfer , only 𝑇𝑋 is
used. Our DP baseline is DP-Image, using laplacian noise parametrized by 𝑏 = ∆𝑓/𝜀,
with ∆𝑓 = 815.1442. Metrics are averages over 100 trials using 10,000 samples each,
followed by 95% confidence intervals (CI).

Encoding Guesswork ReId AUC
Raw data 1.0 (1, 1) 1.00
∞-DP 1.0 (1, 1) 1.00
32-DP 300 (13, 795) 0.69
16-DP 3013 (194, 8137) 0.58
8-DP 6055 (422, 19630) 0.53
4-DP 8786 (350, 28920) 0.51
2-DP 6527 (38, 17599) 0.50
1-DP 9943 (910, 26124) 0.50
Syfer -Random 3.2 (1, 10) 0.99
Syfer

vs SAU 12284 (840, 43894) 0.44
vs Resnet-18 11752 (599, 36665) 0.53
vs ViT 9999 (9999, 9999) 0.51

4.10 Qualitative results

In Figure 4-9, we visualize the impact of Syfer and DP-Image encodings when using

different amounts of noise (parametrized by the diversity parameter 𝑏). Each row

represents a different image. The raw_x column are raw images. The DP-image

no noise column is the reconstructed image obtained with the trained auto-encoder

that is used for the DP-Image baseline. We visualize the reconstructed images when

varying amounts of noise are added.
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Table 4.4: Utility on CIFAR10 as one-vs-rest binary classification tasks. All metrics
are ROC AUCs across the CIFAR10 test set.

Encoding 0 1 2 3 4 5 6 7 8 9 Avg
Raw data 0.917 0.929 0.931 0.923 0.926 0.926 0.925 0.927 0.928 0.931 0.926
∞-DP 0.875 0.899 0.895 0.893 0.896 0.896 0.901 0.902 0.888 0.891 0.894
32.0-DP 0.514 0.508 0.514 0.507 0.513 0.508 0.520 0.519 0.494 0.513 0.511
16.0-DP 0.510 0.509 0.497 0.504 0.490 0.523 0.517 0.519 0.506 0.515 0.509
8.0-DP 0.483 0.497 0.511 0.491 0.506 0.502 0.524 0.498 0.501 0.497 0.501
4.0-DP 0.505 0.497 0.513 0.507 0.489 0.488 0.516 0.502 0.517 0.497 0.503
2.0-DP 0.515 0.509 0.484 0.524 0.511 0.501 0.486 0.499 0.495 0.509 0.503
1.0-DP 0.502 0.506 0.502 0.522 0.493 0.509 0.499 0.488 0.499 0.493 0.501
Syfer -Random 0.870 0.878 0.874 0.879 0.874 0.876 0.876 0.871 0.870 0.870 0.874
Syfer 0.801 0.810 0.806 0.799 0.813 0.815 0.802 0.790 0.790 0.797 0.802

The Syfer column shows encodings obtained when applying Syfer ’s neural encoder

for a specific choice of private weights 𝜃𝑘𝑒𝑦: those are representative of the released

images. We then train a decoder 𝐷𝑇 for a specific choice of private weights 𝜃𝑘𝑒𝑦.

During training, the decoder has access to parallel data (raw image, encoded Syfer

image). We visualize the decoded images in the Syfer decoded column. Note that

this scenario would require Alice to have stored the correspondences between raw

images and encoded images. We emphasize that storing these parallel datasets are

never needed in our scheme: once Alice has encoded her training data samples with

her private key, she can shuffle the resulting encoded dataset and forget the actual

correspondences. All Alice needs for inference on new data is access to her private

key (which she should keep private). In the event of a data breach, the attacker

would only have access to nonparallel datasets, which is the scenario covered by our

threat model. We note that if the private key is compromised, then the attacker

can re-identify the private data. This is similar to traditional cryptographic systems

where identifying the private key leads to total failure.
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Figure 4-8: Privacy-utility tradeoff on CIFAR10. Privacy is measured as the expected
guesswork. Utility is the average across 10 tasks of the test AUC achieved for the
best dev AUC.
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4.11 Conclusion

4.11.1 Summary of contributions

We propose Syfer , an encoding scheme for releasing private data for machine learning

model development while preventing raw data re-identification. Syfer uses trained

obfuscator layers and random neural networks to minimize the likelihood of re-

identification, while encouraging the (almost) invertibility of the overall transforma-

tion. To evaluate private encoding schemes, we define a guesswork-based evaluation

framework, where the privacy of an encoding scheme is the number of attacker guesses

to re-identify a single raw image. We introduce an efficient contrastive algorithm to

estimate the privacy of arbitrary encoding schemes on given datasets. In experiments

on MIMIC-CXR, a large chest X-ray benchmark, we show that Syfer obtains strong

privacy across held-out attackers, obtaining an average guesswork of 8411, whereas

prior encoding schemes like Dauntless [169], InstaHide [67] did not meet our privacy

standard, obtaining guessworks of 1. which rivals an 𝜀-LDP baseline with 𝜀 = 4.

While differential privacy baselines can achieve privacy with enough noise, we found

this came with a massive loss of utility, with DP-Image obtaining an average AUC of

0.53 for a guesswork of 1146 at 𝜀 = 32. In contrast, models built on Syfer encodings

approached the utility of our plaintext baseline, obtaining an average AUC of 0.78

compared to 0.86 by the plaintext model.

4.11.2 Limitations and future work

While this chapter demonstrates the potential of our method for de-identification

using a radiology dataset, there are certain assumptions and limitations that need to

be considered for real-world applications.

Threat model Our method assumes that the attacker has knowledge of whether

a target individual is present in the released dataset, which is often referred to as

prosecutor risk. However, in some scenarios, captured by journalistic risk, it may

be safe to assume that the attacker does not have such knowledge. In such cases,
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sophisticated methods like Syfer may not be necessary.

Additionally, our threat model assumes a computationally unbounded adversary.

However, in practice, we rely on model-based attackers for both the development

and evaluation of our method. In the implementation, we assume that the compute

power of the model builder (Bob) is not worse than that of the attacker (Eve). It is

important to consider that more powerful models may lead to more successful attacks

on our Syfer .

Formal privacy guarantees While we demonstrate the effectiveness of Syfer in

achieving strong privacy, we do not provide formal privacy guarantees in this work.

Future research can explore deriving theoretical bounds on privacy based on specific

assumptions about the data distribution, attacker capabilities, and attack strategies.

Developing provable privacy guarantees for Syfer will contribute to its adoption and

deployment in privacy-sensitive domains.

Generalizability and robustness Although we demonstrate that our method

generalizes to unseen datasets, multiple unseen attackers, and various diagnosis tasks,

this does not guarantee its generalizability to arbitrary datasets. Further research is

needed to study the privacy impact of domain shifts, and it is crucial to evaluate

the privacy of our method on specific datasets before releasing them. However, it

should be noted that delaying data release until privacy evaluation is conducted may

itself result in privacy leakage. Real-world datasets are subject to domain shifts over

time, and attackers’ capabilities may evolve. Future work should investigate the

privacy robustness of Syfer under domain shifts and consider mechanisms to adapt

the encoding scheme to evolving attack strategies.

Scalability and efficiency Our experiments primarily focus on the MIMIC-CXR

dataset, which is a large chest X-ray benchmark of grayscale images. Appendix 4.9

demonstrates the applicability of our method to multi-channel images. However,

the scalability and efficiency of Syfer on larger and more diverse datasets require

further investigation. In our work, we downsampled images to a resolution of 64x64,
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as it struck a good balance between utility and privacy. However, the performance

and resource requirements of Syfer may vary when applied to datasets with higher

resolutions or different modalities.

Development challenges The use of privately encoded training data may intro-

duce challenges for model development, as it limits certain standard practices such

as manual error inspection or traditional data augmentation. Addressing these chal-

lenges would likely require the development of new techniques specifically tailored to

privacy-preserving model training.

Overall, continued innovation in the architecture design and training of our method

can lead to further improvements in the trade-off between privacy and utility. How-

ever, it is crucial for data owners to carefully evaluate the privacy implications of

our method on their own datasets before releasing them to ensure compliance with

privacy regulations.
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Chapter 5

Conclusion

5.1 Summary of contributions

In this thesis, we proposed methods to enhance the reliability and user control over

the outputs of generative models, empowering users to have greater confidence in the

generated predictions and ensuring adherence to predefined constraints.

In Chapter 2, we introduced the Blank Language Model (BLM) as a flexible ap-

proach for text generation. BLM allows for the generation of a variable number of

tokens consistent with the given context by filling in partially specified text with

one or more blanks. Through extensive experiments on various text rewriting tasks,

including ancient text restoration, and style transfer, we have demonstrated the ef-

fectiveness of our model for text infilling tasks.

In Chapter 3, we proposed a novel approach to conformal prediction for generative

language models. By leveraging the idea of prediction sets, we developed a calibration-

based stopping rule for sampling different outputs from language models. This allowed

us to construct a set of candidate responses with statistical guarantees of containing at

least one acceptable answer. Simultaneously, we introduced a rejection rule to set size

by removing low-quality candidates from the output set. Through theoretical analysis

and empirical evaluations on tasks such as open-domain question answering, text

summarization, and radiology report generation, we demonstrated the effectiveness

of our approach.
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In Chapter 4, we utilized image generation techniques to address the challenge

of sharing private data for machine learning development while preserving data pri-

vacy. We presented Syfer , a method that trains obfuscator layers to balance privacy

and invertibility constraints. When combined with random neural networks, Syfer

enables a computationally-limited data owner to outsource machine learning training

to untrusted third parties while preventing the shared data from being re-identifiable.

We have showcased the applicability of our method on a radiology dataset.

5.2 Limitations and future work

Throughout this thesis, we have made several contributions, each with its own lim-

itations. These limitations should be taken into consideration for future research

and practical applications. To gain a better understanding of these limitations, we

encourage readers to refer to the respective discussions in Section 2.6.2 (for Chap-

ter 2), Section 3.8.2 (for Chapter 3), and Section 4.11.2 (for Chapter 4). We provide

a summary of these limitations below for clarity.

In Chapter 2, our focus was on BLM (Blank Language Model) for text generation.

However, there are still areas that need to be explored in future work. For instance,

it would be valuable to investigate the potential of our method for representation

learning by comparing it to similar pretrained methods through training BLM at scale.

Additionally, it would be interesting to extend BLM to the sequence-to-sequence

setting and adapt the framework to other sequence modeling tasks.

Chapter 3 delved into conformal prediction for language generation tasks, with a

specific emphasis on controlling miscoverage and optimizing for prediction set size.

To enhance our framework and showcase its potential in various settings, further ex-

ploration of alternative objectives, admission functions, quality functions, and aggre-

gation functions is warranted. Another promising avenue for research would involve

experimenting with modifying the underlying language model to directly enforce de-

sirable properties. For example, guiding the decoding process to promote diversity

or applying our framework to BLM to influence the generative process with more
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control.

In Chapter 4, we introduced Syfer and demonstrated its value for de-identification

on a radiology dataset. However, it is important to highlight certain assumptions and

limitations that should be considered for real-world applications. The achieved pri-

vacy of Syfer is not theoretically guaranteed, and additional research is required to

evaluate the privacy impact on specific datasets. It is crucial to assess the gener-

alizability of Syfer to arbitrary datasets and investigate the privacy implications of

domain shifts.

By addressing these limitations and exploring the avenues for future work outlined

in each chapter, we can further advance the research and practical applications of

methods for reliable and flexible generation with guarantees.
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Appendix A

Blank Language Model

A.1 Implementation Details for Text Infilling Base-

lines

A.1.1 Insertion Transformer

We implement the Insertion Transformer in our own framework, using the same Trans-

former encoder module as for BLM and replacing the prediction layers by Insertion

Transformer’s mechanism. The canvas is also generated according to the training

procedure of Insertion Transformer. See Figure 2-5.

A.1.2 Masked Language Model

We use the RobertaForMaskedLM architecture in the Transformers library for MLM

[162, 98].

At test time, the model is given an easier version of the text infilling task where

blanks are expanded into sequences of ⟨mask⟩ tokens of the target length (or equiva-

lently, the model uses an oracle to predict the length of the infilling).

We experiment with three decoding strategies: (1) one-shot: the model predicts

all masks simultaneously (2) left-to-right: the model fills in the masks from left to

right (3) confident-first: the model fills one mask at a time that has the highest score.
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We report results for the confident-first strategy which has the best performance.

See Figure 2-6.

A.1.3 BERT+LM

We use the bert-base-uncased model as served by the Transformers library [162, 35].

The left-to-right language model is a Transformer decoder to predict tokens in a blank.

Its input word embedding is concatenated with BERT’s output in the blank position

at each time step. See Figure 2-7.

A.1.4 Seq2seq-full and Seq2seq-fill

For both seq2seq baselines, we use Fairseq’s transformer_iwslt_de_en architecture

[114]. To generate training data, we apply the blanking procedure to the input dataset

and generate 𝑘 copies of each sentence with different masks. We experiment with

𝑘 ∈ {1, 10, 100} and report the best performance, obtained by 𝑘 = 10.

A.2 Monte-Carlo Estimate of Perplexity

For a sentence 𝑥 of length 𝑛, we estimate 𝑝(𝑥; 𝜃) in Eq. (2.5) with 𝑚 samples:

𝑋𝑚 =
𝑛!

𝑚

𝑚∑︁
𝑖=1

𝑝(𝑥, 𝜎𝑖; 𝜃)

where 𝜎𝑖’s are randomly sampled orders.

Note that 𝑋𝑚 is an unbiased estimate of 𝑝(𝑥; 𝜃):

E[𝑋𝑚] = 𝑝(𝑥; 𝜃)

The estimated PPL is accordinly:

𝑌𝑚 = 𝑋−1/𝑛
𝑚
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Since 𝑧−1/𝑛 is a convex function of 𝑧,

E[𝑌𝑚] = E[𝑋−1/𝑛
𝑚 ] ≥ E[𝑋𝑚]

−1/𝑛 = 𝑝(𝑥; 𝜃)−1/𝑛

i.e., the expectation of the estimated PPL ≥ the actual PPL. As 𝑚 increases, the

variance of 𝑋𝑚 decreases, and the inequality becomes tighter.

Hence, we will observe that as 𝑚 increases, the estimated PPL becomes smaller

and converges to the real PPL.
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Appendix B

Conformal Language Modeling

B.1 Pareto testing

We recall the Pareto Testing method introduced by [85].

B.2 Admission functions

Note that, as briefly discussed in §3.4.1, 𝜆̂ is also valid if a conservative, “approximate”

admission function 𝐴𝑖 is used in place of a “complete” 𝐴𝑖 during calibration.

Corollary B.2.1 (Conservative sampling-based LTT). Suppose that over 𝒟cal we let

𝐿𝑖(𝜆) = 1{∄𝑦 ∈ 𝒞𝜆(𝑋𝑖) : 𝐴𝑖(𝑦) = 1} where 𝐴(𝑦) ≤ 𝐴(𝑦), ∀𝑦 ∈ 𝒱*. Then 𝒞𝜆̂(𝑋test)

still satisfies Eq. equation 3.1.

B.3 Additional experimental details

In this section, we provide additional details regarding the experiments conducted for

the three tasks discussed in Section 3.5.
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B.3.1 Radiology report generation

Dataset For the radiology report generation experiment, we utilized the labeled

MIMIC-CXR and MIMIC-CXR-JPG datasets [71]. The MIMIC-CXR dataset can

be accessed at https://physionet.org/content/mimic-cxr/2.0.0/ under the PhysioNet

Credentialed Health Data License 1.5.0. Similarly, the MIMIC-CXR-JPG dataset

is available at https://physionet.org/content/mimic-cxr-jpg/2.0.0/ under the same

license.

We start with the standard splits prescribed in MIMIC-CXR-JPG. However, we

further divide the training set into a train set and a dev set using a 0.9/0.1 ratio. The

train set is used for training the model, using the validation set for early stopping. We

then exclusively use the dev set for conformal prediction experiments. Subsequently,

we filtered the dataset to include only anterior to posterior (AP) or posterior to

anterior (PA) views and retained only one image per report. Furthermore, we removed

examples where the report did not start with the phrase “FINAL REPORT” as these

reports often contained a summary of the findings at the beginning, inadvertently

leaking the answer we aimed to generate with the model. Table B.1 provides a

statistical overview of the resulting dataset.

Table B.1: Dataset statistics for preprocessed MIMIC-CXR. The split indices and
preprocessing scripts are available within our code release.

Split Train Dev Validate Test

Number of Images 176,078 19,658 1,594 2,799

Number of Studies 176,078 19,658 1,594 2,799

Number of Patients 54,482 6,053 463 286

Each image was resized and cropped to a resolution of 224x224. Following prior

methodology [110], we split each report into a prompt part and a findings part (which

may also contain the impressions section) by identifying one of the following phrases:

“FINDINGS AND IMPRESSION”, “FINDINGS” or “IMPRESSION”.
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Model The image encoder used in our experiment was a Vision Transformer (ViT)

model pretrained on ImageNet-21k at a resolution of 224x224. Specifically, we uti-

lized the google/vit-base-patch16-224-in21k model available in the Transformers

library [162]. The text decoder was a GPT2-small model (gpt2 on HuggingFace). We

trained the model with a batch size of 128 distributed over 8 GPUs, resulting in a

batch size of 16 per GPU. The AdamW optimizer was employed with 𝛽1 = 0.9,

𝛽2 = 0.999, and 𝜖 = 10−8. The learning rate was set to 5 × 10−5. The training

process consisted of 10 epochs, and the total training time on 8 RTX A6000 GPUs

was approximately 11 hours.

Generations Candidate reports were sampled from the model using default argu-

ments from the Transformers library, i.e. top_k = 50, top_p = 1.0 and tempera-

ture = 1. Each generated report is then evaluated using a trained CheXbert model

[138]. The CheXbert model is available at https://stanfordmedicine.box.com/ under

the Stanford Academic Software License. The CheXbert model labels each report for

14 conditions, assigning one of the following labels: “Blank,” “Positive,” “Negative,”

or “Uncertain.”

To determine the admission of a candidate report, we compare it with a reference

(human) report from the MIMIC dataset. If the candidate report matches all 14 labels

of the reference report, the admission function returns 1; otherwise, it returns 0.

Components We define a component as a sentence delimited by a period. The

component-level admission function is defined based on how well a sentence“almost

matches” one of the reference sentences. Two sentences are considered to “almost

match” if their ROUGE-L score is above 0.4. If a sentence almost matches a reference

sentence, the component-level admission function returns 1; otherwise, it returns 0.

Component classifier For the MIMIC-CXR dataset, we also train a classifier to

produce a conformity score for pairs (𝑥, 𝑒), where 𝑥 represents an image and 𝑒 is a

sentence. This classifier is used in §3.6 as a possible implementation of the component-

level score function ℱ𝐶 .
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To train this classifier, we reserve a subset of the dev set. A sentence 𝑒 is labeled

as acceptable if its ROUGE-L score with any reference sentence exceeds a threshold of

0.4. The classifier is trained using these labeled pairs to learn the conformity score

for image-sentence pairs.

B.3.2 Open-domain question answering

We use the TriviaQA [75] dataset available at https://nlp.cs.washington.edu/triviaqa/

under the Apache License Version 2.0.

To generate candidate responses, we used LLaMA-13B [147]. We considered the

closed-book setting, where the model does not have access to supporting text for an-

swering the questions. We performed experiments in the few-shot setting by providing

32 example question-answer pairs sampled from the training set.

A truncated prompt used for generating answers on the TriviaQA dev set is re-

produced as an illustration in Figure B-1. Please note that the actual prompt used

in the experiment contains 32 question-answer pairs.

For generating answers in the open-domain question answering task, we use the

default Transformers parameters reported in the previous section. We extract an

answer by considering the text until the first line break, comma, or period is encoun-

tered. We then normalize the answers: this involves converting the generated answers

to lowercase, removing articles, punctuation, and duplicate whitespace. Generated

answers are then compared using the exact match metric: an answer is considered

correct only if it matches the provided answer exactly.

B.3.3 Length-normalization

For all tasks, we apply length-normalization [165] to the model logits, i.e. we compute:

𝒬(𝑥, 𝑦𝑘) = exp

(︂
log 𝑝𝜃(𝑦𝑘|𝑥)

𝑙𝑝(𝑦𝑘)

)︂
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where

𝑙𝑝(𝑦) =
(5 + |𝑦|)0.6

(5 + 1)0.6
.

B.4 Additional results

(a) MIMIC-CXR (b) CNN/DM

Figure B-2: Conformal component selection results for 𝒞inner𝛾 as a function of 𝛼. We
report the recall achieved by 𝒞inner𝛾 , which we want to maximize. We also report the
AUC over 𝛼.

We describe another metric useful to characterize the effectiveness of the components

identified by our component selection method.

Given an input 𝑥 and a component set 𝒞𝛾inner(𝑥), we compute the recall by count-

ing the number of reference sentences that “almost match” at least one element in

𝒞𝛾inner(𝑥). We then divide this count by the total number of reference sentences for

that particular example. This gives us a measure of how much of the human reference

is covered by the selected components. To obtain the expected recall, we average the

recall values over all examples. The expected recall is reported in Figure B-2.

In particular, we observe that component sets generated using scoring functions

based on an auxiliary Classifier outperform uncertainty measures based solely on

the span logits provided by the model.
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Answer these questions

Q: Which American-born Sinclair won the Nobel Prize for Literature in 1930?
A: Sinclair Lewis
Q: Where in England was Dame Judi Dench born?
A: York
Q: In which decade did Billboard magazine first publish and American hit chart?
A: 30s
Q: From which country did Angola achieve independence in 1975?
A: Portugal
Q: Which city does David Soul come from?
A: Chicago
Q: Who won Super Bowl XX?
A: Chicago Bears
Q: Which was the first European country to abolish capital punishment?
A: Norway
Q: In which country did he widespread use of ISDN begin in 1988?
A: Japan
Q: What is Bruce Willis’ real first name?
A: Walter
Q: Which William wrote the novel Lord Of The Flies?
A: Golding
Q: Which innovation for the car was developed by Prince Henry of Prussia in 1911?
A: Windshield wipers
Q: How is musician William Lee Conley better known?
A: Big Bill Broonzy
Q: How is Joan Molinsky better known?
A: Joan Rivers
...

Figure B-1: Truncated replication of the prompt used to generate answer on the
TriviaQA dev set. The actual prompt contains 32 question-answer pairs.
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Appendix C

Neural Obfuscation for

De-identification

C.1 Dataset Statistics

We leveraged the NIH training set for training Syfer , and leveraged the unlabeled

MIMIC-CXR training set for all generalized privacy evaluation. To evaluate utility

and privacy with real labeling functions, we use the labeled subsets of the MIMIC-

CXR dataset. The labeled MIMIC-CXR training and validation sets were filtered

to be class balanced, by assigning random one negative control for each positive

sample. The number of images per dataset is shown in Table C.1 The NIH dataset is

available at https://nihcc.app.box.com/v/ChestXray-NIHCC. The MIMIC dataset is

available at https://physionet.org/content/mimiciii-demo/1.4/ under the Open Data

Commons Open Database License v1.0.
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Table C.1: Dataset statistics for all datasets. The training and development sets of
MIMIC CXR Edema, Consolidation, Cardiomegaly and Atelecatasis were filtered to
contain one negative control for each positive sample. Guides of abbreviations for
medical diagnosis: (E)dema, (Co)nsolidation, (Ca)rdiomegaly and (A)telectasis.

Dataset Train Dev Test

Unlabeled

NIH 40365 NA NA

MIMIC-CXR 57696 NA NA

Labeled

MIMIC-CXR E 3660 1182 12125

MIMIC-CXR Co 1120 375 11031

MIMIC-CXR Ca 11724 3876 12791

MIMIC-CXR A 2164 3992 12129

C.2 Syfer Implementation Details

We experimented with multiple variants of the hyperparameters below and chose the

combination that led to produced the best tradeoffs. In all experiments, we used a

patch size of 16x16 pixels and 5 Syfer blocks. Earlier analysis showed that a larger

patch size lead to better utility at the cost of worse privacy. Similarly, we saw that

using 10 Syfer blocks increases privacy at the cost of worse utility.

We implemented our random neural networks as linear layers, followed by a SeLU

nonlinearity and layer normalization. We saw that SeLU tends to outperform ReLU,

Tanh and Sigmoid when used in random neural network-based schemes without an

obfuscator. Layer normalization is used as a instance-level alternative to batch nor-

malization. All random linear layers weights were sampled from a unit Gaussian

(which does better than Xavier initialization and no worse than Orthogonal initial-

ization), and we used separate random networks per patch. Our full Syfer architecture

has 12.9M parameters, of which 6.6M are learned obfuscator parameters and 6.3M

are random neural layer parameters.
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We used a batch size of 128, the Adam optimizer and a learning rate of 0.001

for training Syfer and our estimators. We trained Syfer for 50,000 steps on the NIH

training set to maximize the re-identification loss and minimize the reconstruction

loss, with 𝜆reid = 1, 𝜆rec = 10. Our training regime alternates one step of obfuscator

training with one step estimator training. We experimented with varying the number

of estimator training in between steps of obfuscator training, as well as jointly upgrad-

ing the gradients of all modules and saw no substantial difference. The total training

time is 2 hours and 50 minutes, using a single A100 GPU and is fully reproducible in

our code release. We include additional timing benchmarks in Table C.2.

Table C.2: Timing benchmarks for using Syfer and our baselines.

Task Runtime
Using 40,365 images of NIH Dataset

(Pre)Training Syfer 2h 50min
(Pre)Training DP-Image’s auto-encoder 28m

Using 57,696 images of MIMIC Dataset
Reading raw images from disk 4s
Reading images and encoding them with Syfer on CPU 3m30s
Reading images and encoding them with DP-Image using a single GPU 12s
Reading images and encoding them with Syfer using a single GPU 13s

Using 11,724 images of downsampled MIMIC Dataset for Cardiomegaly
Training a Resnet on raw images (single GPU) 11m37s +/- 37s
Training a Resnet on Syfer-encoded images (single GPU) 11m36s +/- 35s
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C.3 SAU: Simple Attention Unit

Figure C-1: Simple Attention Unit Architecture. The module uses a learnable gate
at each layer to interpolate between leveraging behaving as a feed forward network
(FFN) and a multi-headed self attention network (MHSA).

Our Simple Attention Unit (SAU), illustrated in Figure C-1, utilizes a learned gate, 𝛼,

at each layer to interpolate between acting as a standard feed forward network (FFN)

with no attention computation, and a multi-head self-attention (MHSA) network. We

found that this allowed for faster and more stable training compared to ViTs[185, 38]

in both privacy and utility experiments. To encode patch positions, we leverage a

learned positional embedding for each location, following prior work [185, 38]. Each

layer of the SAU is composed of the following operations:

𝑥𝑛𝑜𝑟𝑚 = BatchNorm(𝑥)

ℎ𝑓𝑓𝑛 = SELU(𝑊𝑖𝑛𝑥𝑛𝑜𝑟𝑚 + 𝑏𝑖𝑛)

ℎ𝑎𝑡𝑡𝑛 = MHSA(𝑥𝑛𝑜𝑟𝑚)

ℎ = 𝜎(𝛼)× ℎ𝑎𝑡𝑡𝑛 + (1− 𝜎(𝛼))× ℎ𝑓𝑓𝑛

𝑜 = SELU(𝑊𝑜ℎ+ 𝑏𝑜) + 𝑥𝑛𝑜𝑟𝑚
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Where Multi-head self-attention (MHSA) is defined as:

𝐾𝑖, 𝑄𝑖, 𝑉𝑖 = 𝑊𝑖𝑥𝑛𝑜𝑟𝑚

head𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑖𝐾

𝑇
𝑖√

𝑑𝑘
)𝑉 𝑖

ℎ𝑎𝑡𝑡𝑛 = BatchNorm(𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊𝑎𝑡𝑡𝑛)

Where 𝑑𝑘 is the dimension of each head, all 𝑊 and 𝑏 are learned parameters, and

𝛼 is a learned gate. 𝛼 is initialized at −2 for each layer.

C.4 DP-Image Baseline

DP-Image[93] is a differential privacy method based adding laplacian noise to the

latent space of auto encoders to achieve differential privacy. We trained our auto-

encoder on the NIH training set, with no noise, and apply it with noise on the MIMIC

dataset. Our encoder, mapping each 64x64 pixel image 𝑥 to a 256d latent code 𝑧,

is composed of six convolutional layers, each followed by a leaky relu activation and

batch normalization. Each convolutional layer had a kernel size of 3, a stride of 2. This

was then reduced a single code 𝑧 with global average pooling. Our decoder, which

mapped 𝑧 back to 𝑥, consisted of six transposed convolutional layers, each followed

by a leaky relu activation and batch normalization. The auto encoder was trained to

minimize the mean squared error between the decoded image and the original image.
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