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Abstract

De-identification, the process of removing identifiers, is a crucial step in the prepa-
ration of clinical data for use in biomedical research. Advances in natural language
processing have increased interest in developing an accurate and adaptable automatic
de-identification system for clinical text. Models for de-identification have been found
successful but are largely unavailable for public use due to a lack of provided code
and a cost associated with using commercial models. A lack of transparency in de-
identification model training may bias the models against certain demographic groups,
which are hidden in overall performance metrics and need to be evaluated due to the
disproportionate potential harm to marginalized communities. In this thesis, we re-
view current de-identification methods, present a new de-identification dataset, audit
demographic biases in existing de-identification approaches, and develop an easy-to-
use, open-source de-identification software package. This package would make clinical
text de-identification more accessible to researchers and clinicians, alleviating the bot-
tleneck of de-identification to free up more data for biomedical research. This would
help make future research more robust and beneficial to not only the medical com-
munity, but also people around the world.
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Chapter 1

Introduction

1.1 Aims

In this thesis, I aim to (1) review the state of the art in de-identification of clinical

text; (2) carry out an audit of existing de-identification tools with a particular focus on

algorithmic fairness; and (3) develop easy-to-use, open-source software for detection

and removal of protected health information from clinical text.

1.2 De-identification: a bottleneck in data sharing

Electronic health records (EHRs) contain a wealth of information that is of strong

interest to medical researchers for developing insights and algorithms to assess and

improve patient care. In particular, free-text medical records have been found to hold

key insights absent from their more rigid, structured counterparts [55, 48]. To con-

duct meaningful research beyond the bedside, sharing patient data between clinicians

and researchers is crucial. To preserve patient privacy, this sharing of data is often

contingent on de-identification, which is the process of removing identifiers such as

names, contact information, and dates to protect patient privacy. If the data has not

undergone de-identification, it is severely limited in terms of how it may be shared

and reused [53].

De-identification presents many challenges, however, due to scarce high-quality
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annotated data for developing models, as well as the highly heterogeneous nature of

target identifiers such as patient names. To add to the difficulty, models that achieve

anything less than perfect sensitivity may be considered a failure, as any missed

private health information could put individuals at risk of harm [20]. This results in

the frequent withholding of patient data when sharing would benefit research. Even

past work in de-identification has involved training models on datasets that remain

internal, exemplifying a lack of transparency that has proven to be common across

other areas of health research [7].

In addition to the above challenges, de-identification can also be prone to bias. For

example, if a model is trained on a dataset that is not representative of the population,

it may be more likely to miss identifiers that are more common in underrepresented

groups. This could lead to a higher risk of data disclosure for these groups. Easy-to-

use, transparent, and fair de-identification would thus be a useful tool in the research

arsenal to make biomedical data more widely available. Increasing the amount of

data available through de-identification would power more research and eventually

benefit both healthcare providers and patients [23].

1.3 Health Insurance Portability and Accountability

Act

Patient health data is protected under different standards depending on the jurisdic-

tion: GDPR (General Data Protection Regulation) in the European Union, PHIPA

(Personal Health Information Protection Act) in Canada, and Health Insurance Porta-

bility and Accountability Act (HIPAA) in the United States. Some countries, such as

Australia, do not have a clear standard for "de-identified" health data, though multi-

ple health-specific privacy laws are in place [44]. This has led to efforts to de-identify

Australian health data acording to HIPAA [29]. Many de-identification methods

found in literature follow the HIPAA standard, often because of the availability of

datasets that have been de-identified according to HIPAA, as well as the organized
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challenges that invite de-identification solutions [57, 56, 42].

The HIPAA Privacy Rule provides a set of rules for de-identification of protected

health information (PHI). Additionally, the Privacy Rule provides two methods of

de-identifying health information: Expert Determination and Safe Harbor. Under

the Expert Determination method, a person with appropriate knowledge of generally

accepted methods for rendering information not individually identifiable applies such

methods to the information and determines that the risk of re-identification by an

anticipated recipient would be very small.1 Under the Safe Harbor provision, covered

entities need to remove identifiers of the individual or of relatives, employers, or

household members of the individual. The Safe Harbor method lists 18 categories of

identifiers for removal, including names, all geographic subdividisions smaller than

a state, and all elements of dates (except year) directly related to the individual

(Table 1.1). This project focuses on de-identification under Safe Harbor, as existing

de-identification methods focus on automated approaches to processing text.

1.4 Regulations are not technical specifications

The ambiguity surrounding the definition of PHI poses challenges due to the lack of

clearly defined technical specifications. While HIPAA regulations provide guidance

on what constitutes PHI, they do not offer specific technical criteria, and thus HIPAA

Safe Harbor cannot be considered a technical specification for de-identification. As

a result, it may be uncertain whether de-identification methods comply with HIPAA

requirements; or, more seriously, data thought to be fully de-identified under the

HIPAA requirements retain other information that puts individuals at the risk of

re-identification. This uncertainty can hinder the development of standardized de-

identification techniques.

Another factor contributing to the complexity of de-identification is the existence

of varying annotation schema used by dataset annotators. This variability not only

1https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-
identification/index.html

17



Table 1.1: List of HIPAA-defined protected health identifiers (PHI) for removal under
Safe Harbor method. Definitions are taken from the U.S. Department of Health and
Human Services.

The following identifiers of the individual or of relatives, employers, or household
members of the individual, are removed:

(A) Names
(B) All geographic subdivisions smaller than a state, including street address, city,
county, precinct, ZIP code, and their equivalent geocodes, except for the initial three
digits of the ZIP code if, according to the current publicly available data from the
Bureau of the Census: (1) The geographic unit formed by combining all ZIP codes
with the same three initial digits contains more than 20,000 people; and (2) The
initial three digits of a ZIP code for all such geographic units containing 20,000 or
fewer people is changed to 000
(C) All elements of dates (except year) for dates that are directly related to an
individual, including birth date, admission date, discharge date, death date, and all
ages over 89 and all elements of dates (including year) indicative of such age, except
that such ages and elements may be aggregated into a single category of age 90 or
older
(D) Telephone numbers
(E) Fax numbers
(F) Email addresses
(G) Social security numbers
(H) Medical record numbers
(I) Health plan beneficiary numbers
(J) Account numbers
(K) Certificate/license numbers
(L) Vehicle identifiers and serial numbers, including license plate numbers
(M) Device identifiers and serial numbers
(N) Web Universal Resource Locators (URLs)
(O) Internet Protocol (IP) addresses
(P) Biometric identifiers, including finger and voice prints
(Q) Full-face photographs and any comparable images
(R) Any other unique identifying number, characteristic, or code
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Table 1.2: Different possible interpretations of HIPAA PHI categories. Interpretation
#1 presents one option, and Interpretation #2 presents a stricter option. Adapted
from [10].

PHI type Interpretation #1 Interpretation #2 (strict)

Name Reason for visit: Mr. Doe comes
to follow up on his prediabetes.

Reason for visit: Mr. Doe comes
to follow up on his prediabetes.

Location She goes to the library twice a
week.

She goes to the library twice a
week.

Profession She is hoping to intern this sum-
mer.

She is hoping to intern this sum-
mer.

leads to differences in the tools trained on these datasets but also creates difficulties

in comparing the performance of de-identification models across different datasets.

For instance, HIPAA considers only ages over 89 as PHI, while the 2006 i2b2 de-

identification corpus treats all ages as PHI [60]. Models trained to only recognize

ages over 89 would not be able to identify ages below 89 as PHI in the i2b2 corpus,

though they may have higher performance metrics on their original dataset because

of the smaller ranges of ages to identify.

Furthermore, there remains much ambiguity regarding specific elements within

the 18 categories of identifiers that should be considered as part of PHI and removed.

For example, the inclusion or exclusion of salutations (e.g., "Mr.", "Ms.", "Dr.")

or suffixes (e.g., "Jr.", "Sr.") in names can lead to variation in different dataset

annotations. This variation in annotation practices extends to other categories of

identifiers as well. Table 1.2 presents a reasonable interpretation of HIPAA PHI, as

well as a stricter interpretation, adapted from missed PHI in [10]. While the stricter

interpretation may be considered safer by removing entities like "grocery store" and

"intern," these entities are fairly general. Their removal may be not only unnecessary

but also detrimental to the quality of the data, as the text may lose helpful context.

In conclusion, the lack of a technical specification for de-identification has led to

ambiguity in defining PHI, which in turn leads to variation in annotation practices

and the development of de-identification models.
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1.5 Beyond the discovery of HIPAA identifiers

The process of de-identification goes beyond the identification of HIPAA identifiers.

Once the PHI have been identified, the next step involves their removal or replace-

ment, commonly known as scrubbing. However, this task is non-trivial and poses

several challenges.

The approach employed by the Medical Information Mart for Intensive Care

(MIMIC) dataset [22] involves three main methods: redaction, replacement, and per-

turbation. Redaction refers to the removal of PHI, leaving blank spaces or other

markers in their place. Replacement involves substituting the PHI with surrogates,

such as randomly generated phone numbers or names. Perturbation, on the other

hand, entails modifying the PHI in some way, such as by adding or subtracting a

random value to dates or numerical identifiers.

Figure 1-1 in the thesis provides examples of how these scrubbing methods can

be applied to different categories of PHI. Replacing the identifiers with surrogates

may offer a more privacy-preserving approach, as undetected PHI can "hide" in plain

sight, as redaction can potentially reveal the presence of remaining undetected PHI.

Care must be exercised when perturbing values to avoid unintentionally disclosing

information.

Automating the end-to-end identification process poses additional challenges, as

highlighted by Yogarajan et al. (2020) [68]. Surrogate generation and replacement

are particularly complex tasks. An example of a challenge in replacement is the

generation of a surrogate for a location, such as a zip code. When a zip code is

replaced by a random zip code, even if the zip code is from a list of valid zip codes,

useful geographic information may be lost. For example, a zip code in a rural area

may be replaced by a zip code in an urban area, which may lead to a loss of relevant

information, such as expected living conditions, life expectancy, and healthcare access.

On the other hand, replacing a zip code with a zip code in the same area may lead

to re-identification, especially if there are fewer people living in that area.

While perturbation can address some issues of information loss, it is not uni-
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Figure 1-1: Different methods of scrubbing PHI. Given a note chunk, the PHI is first
detected and then scrubbed via one of the following methods: redact, replace, or
perturb. Note: perturbation is not applicable to all PHI categories; here, it is only
shown for dates.

versally applicable to all categories of PHI. For example, perturbing names is not

a viable option. However, perturbation can be effective for dates, allowing for the

preservation of time intervals between events while obscuring the exact dates. Care-

ful consideration is required to define "valid" dates, including considerations such as

the treatment of February 29 in non-leap years or whether dates falling on weekends

should be deemed valid. These decisions must be made with caution to ensure the

integrity of the de-identified data.

1.6 Algorithmic fairness

There is growing concern about the underlying mechanisms by which machine learn-

ing models make decisions, particularly in light of the many forms of discrimination

present today. One area in which a growing body of research has demonstrated the

presence of bias, potentially with negative consequences, is natural language process-
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ing. Recent studies have examined how human biases like stereotypes may be reflected

in semantic representations (abstract representations of words) like word embeddings,

which are word representations for text where words with the same meaning (e.g.,

“happy” and “cheerful”) have similar representations. Researchers have found that

applying machine learning to ordinary human language leads to human-like semantic

biases. The contexts for these biases range from relatively harmless, like preferences

between flowers and insects, to potentially problematic, such as stereotypes for race

and gender [6].

Recent techniques to facilitate the de-identification process have focused on com-

putational and machine learning approaches, but current de-identification tools in use

have variable performance, and they may be prone to bias that reflects the skewed de-

mographics of relatively scarce training data. Bias can occur even with well-designed

machine learning architectures, which—-while they can learn well—-are only able to

learn what is given to them in the form of training data. If the data given to a

machine learning model lacks certain ethnic subgroups of patients, it may lead to

uninformative predictions for these subgroups, in effect biasing the model against

those groups. This can have dire consequences, as a model that is biased against a

particular group may lead to a higher risk of data disclosure for that group, which

could lead to a higher risk of harm for that group. Little prior work has been done

to evaluate de-identification methods for bias, and part of this thesis aims to address

this gap.

1.7 Organization of the thesis

The remainder of this thesis is organized as follows:

• Chapter 2 reviews the state of the art in de-identification models and software.

• Chapter 3 reviews data available for training and evaluating de-identification

software and describes the creation of a new clinical notes dataset.
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• Chapter 4 presents an audit of existing de-identification software with particular

focus on bias.

• Chapter 5 describes the development of HIPAAway, an open-source de-identification

package, and evaluates its performance.

• Chapter 6 concludes the thesis and discusses future work.
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Chapter 2

Review of existing de-identification

software

2.1 Aim

Approaches to de-identification can involve rules (e.g., regular expressions, dictio-

naries), machine learning, or a combination of the two. This section describes cur-

rent progress in algorithms for de-identification and available software tools for de-

identification.

2.2 Introduction

De-identification approaches aim to identify and remove/replace entities that contain

PHI, such as names, dates, and locations. The task of PHI detection can be considered

a type of named entity recognition (NER) to identify entities for removal. Each word

is a token, and entities can consist of a single token or a string of tokens. In the

context of de-identification, entities are PHI (e.g. name, date, location). For example,

"Beth Israel Deaconess Medical Center" is a string of five tokens that represents a

LOCATION entity. At its core, NER is a two-step process: 1. Detecting a named

entity, and 2. Categorizing the entity. While one main goal of de-identification is to

detect PHI entities, it is also important to accurately categorize them in order for the
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appropriate actions to be taken to remove them. For example, NAME entities can

be removed or replaced with synthetic names, but they cannot be replaced with a

LOCATION entity. As NER approaches become more sophisticated, both detection

and classification are improved. This thesis reviews current state-of-the-art NER

approaches on de-identification of clinical text.

In order to compare de-identification models, benchmark datasets are needed. The

following two datasets are commonly used for evaluating de-identification models and

will be discussed in more detail in Chapter 3:

• 2014 Informatics for Integrating Biology & the Bedside (i2b2)/UTHealth dataset

• 2016 Centers of Excellence in Genomic Science (CEGS) and Neuropsychiatric

Genome-Scale and RDOC Individualized Domains (N-GRID) de-identification

challenge dataset.

2.3 Algorithms for de-identification

2.3.1 Pattern matching algorithms

Initial efforts to facilitate de-identification focused on rule-based approaches, also

known as pattern matching. These approaches define rules that characterize whether

a token is recognized as sensitive. Rule-based techniques can come in many forms,

including regular expressions (sequences of characters that specify a match pattern in

text) and lookup tables (hash tables of frequently used terms characterized as sensitive

or non-sensitive) [25]. Rule-based systems require minimal training data and can be

easily modified to change existing rules or incorporate new ones. In addition, they can

help distinguish some ambiguous instances of PHI, such as between a medical record

number of "293-46-51-8" and a phone number of "847-156-0392" [31]. However, rules

require careful curation by domain experts–people with knowledge of the particular

medical domain and with some level of programming skill–and are time-consuming

to create. They can also be limited by being too domain-specific for particular note

types [31].
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MIT Laboratory for Computational Physiology method: deid and pydeid

Over a decade ago, the MIT Laboratory for Computational Physiology (LCP) devel-

oped a Perl-based deidentification software package called deid, which contains lists

of words and phrases that are or are likely PHI, as well as words and phrases that

are not likely to be PHI. After identifying PHI entities, the package then replaces

them with their corresponding PHI tag or surrogate PHI-like entities. deid achieved

a recall of 0.967 and was fine-tuned to deidentify PHI in MIMIC-II nursing notes

and discharge summaries [42]. In terms of recall, the software out-performed a single

human deidentifier (0.81) and performed at least as well as a consensus of two human

deidentifiers (0.84). The algorithm made use of lexical look-up tables, regular expres-

sions, and simple heuristics. One factor of the package’s sucess was likely its use of

known doctor names from the hospital from which the clinical notes were obtained

in a look-up table, an example of use-case specificity that would not port well to

other hospitals. The authors concluded that while accuracy was high, the software

was probably insufficient for use to publicly disseminate medical data, a limitation

reflected by other rule-based approaches.

The Laboratory for Computational Physiology has since then converted deid into

Python and added new rules in a package called pydeid.1 Similarly to deid, pydeid

uses pattern matching to identify numerical PHI instances and look-up tables with

context checks to identify non-numerical PHI instances. This move to Python, with

an accompanying Jupyter notebook to show usage, has made the de-identification

tool more accessible to a broader audience of researchers looking to de-identify their

data. However, the same limitations of deid apply to pydeid, so the package is best

used in conjunction with other de-identification methods.

2.3.2 Machine learning algorithms

In contrast to purely rule-based approaches, machine learning methods use various

algorithms to train themselves to recognize patterns without the need to define these

1https://github.com/MIT-LCP/pydeid
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patterns. In practice, machine learning methods train neural networks (also known

as artificial neural networks, or ANNs), which are comprised of node layers: an input

layer, one or more hidden layers, and an output layer. Each node, or artificial neuron,

has its own associated weight and threshold, and when it receives data from the

previous layer, it can be activated and send the data to the next layer. In natural

language processing, the data is sequential, so many de-identification efforts have

focused on recurrent neural networks, or RNNs, which contain memory cells that

can store information over time. More recently, transformer architectures have been

explored for de-identification.

Previous research has found success with long short term memory (LSTM) [35], bi-

directional long short term memory (BiLSTM), and conditional random field (CRF)

models [32, 10]. After the development of BERT (bidirectional encoder representa-

tions from transformers), a deep learning model that uses attention through bidirec-

tional transformers, researchers have applied BERT and subsequent BERT-variant

models to the task of deidentification, achieving state-of-the-art performance [21, 38].

Most recently, there has been the emergence of large language models (LLMs), which

are deep learning algorithms with many parameters (on the order of billions or

more weights) trained on large quantities of unlabeled text using supervised or semi-

supervised learning. With the ability to perform well on NER with little to no addi-

tional fine-tuning, LLMs are a promising method of de-identification.

Long Short-Term Memory networks (LSTMs)

Long short-term memory (LSTM) models are a type of RNN that can learn long-

range dependencies in sequences of data [17]. LSTMs use a memory cell and gating

mechanisms to regulate the flow of information in a cell. While the memory cell stores

the previous state of the LSTM at that node, three gates–the input gate, forget gate,

and output gate–control the flow of information in and out of the cell. This allows for

LSTMs to "forget" information that is no longer relevant. The ability to understand

long-range context dependencies is useful, but conventional LSTMs are only able to

make use of previous context. To overcome this, bi-directional LSTMs (BI-LSTMs)
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were introduced to process sequential data in both directions [16]. Implementations

of BI-LSTMs in de-identification involve one LSTM trained on the regular sequence

and a second LSTM trained on a sequence with the words in reverse order.

Madan et al. [35] used a BI-LSTM with character-level embeddings concatenated

with POS (part-of-speech) tag embeddings for de-identification. The character-level

embeddings allowed the LSTMs to incorporate character-level information while en-

coding each word into a vector (embedding), and the POS were added to the final

input embedding to be fed into the model. The BI-LSTM achieved a strong micro-

averaged F1 score of 0.9592.

While BI-LSTMs can account for context in both left-to-right and right-to-left

fashion, they are subject to locality bias, which is the tendency to weight short-

distance context over long-distance context [24].

Hybrid methods

To mitigate some of the limitations of purely rule-based and machine learning meth-

ods, hybrid methods have combined the two. Liu et al. (2017) [32] tested four

de-identification subsystems, both individually and ensembled together: BI-LSTMs,

BI-LSTMs with features (an additional hidden layer), conditional random fields (or

CRFs, another type of machine learning), and rules-based (regular expressions).

When the ensemble classifier of three machine learning-based subsystems and the

rules-based subsystem were merged, the final system achieved the highest "strict"

micro-averaged F1-scores of 0.9143 on the 2016 N-GRID corpus, ranking first in the

2016 CEGS N-GRID NLP challenge [32].

2.3.3 State of the art

In 2017, the transformer neural network architecture was introduced [61], and it

used an attention mechanism that allowed for the input sequence to be processed in

parallel rather than sequentially, as in the case of RNNs. This allowed transformers to

process words concurrently and better learn the context of words (i.e. learn from both
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directions simultaneously). Transformers are composed of encoder-decoder stacks;

the encoder takes in words and generates embeddings that encapsulate the meaning

of the word and the context, while decoders take the embeddings and generate the

output sequence. Transformers are powerful tools for NLP, achieving state-of-the-art

results on a variety of NLP tasks. Applications of different types of transformers to

de-identification have similarly shown strong performance.

BERT (and RoBERTa)

The objective of the original transformer architecture was to generate output se-

quences from input sequences, as in the case of machine translation [61]. Devlin et

al. (2019) [11] took apart the transformer architecture and focused on stacking just

encoders, resulting in the development of BERT (Bi-directional Encoder Representa-

tions from Transformers). BERT was designed to learn bidirectional representations

from unlabeled text from pre-training, which is the process of training a model on a

dataset that is similar to the target task but not exactly the same, with the goal to

initialize the weights of the model based on knowledge tained from the pre-training

dataset. Following pre-training, the model is a viable option for transfer learning, a

technique where a model trained on one task is used as a starting point for training

a mdoel on a different task. By using the weights from the pre-trained model as a

starting point, the model can then be fine-tuned (trained) on a smaller labeled dataset

relevant to the intended task to achieve high performance.

BERT was pre-trained via self-supervised learning on the BooksCorpus (800M

words) [70] and English Wikipedia (2,500M words). The resulting pre-trained BERT

model can generate deep representations of input sequences and can then be fine-

tuned with just one additional output layer for application to a wide range of tasks,

including named entity recognition. Upon its release, BERT achieved new state-of-

the-art results on eleven NLP tasks [11]. Johnson et al. (2020) [21] used BERT for

clinical text de-identification, tokenizing sentences as inputs to different versions of

pre-trained BERT, with a final linear layer with the outputs of BERT as inputs and

the log-likelihood of different PHI classes as outputs. Both BERT-base and the larger
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BERT-large outperformed the previous state-of-the-art de-identification models based

on RNNs.

Following BERT, several BERT-variant models have arisen, including AlBERT (A

Lite BERT) [27] and RoBERTa (Robustly Optimized BERT Pre-Training Approach)

[30]. While the RoBERTa model shares the same architecture of BERT, the two differ

in training corpus size–RoBERTa’s is 160 GB compared to BERT’s 16-GB corpus–

and pre-training loss functions, and training hyperparameters. RoBERTa achieved

new state-of-the-art results on top of records set by BERT, and de-identification

was no exception. AlBERT was introduced in an effort to address issues associated

with larger/deeper models: increased hardware requirements, memory utilization,

and training times. In a comparison of several transformer architectures (i.e. BERT,

RoBERTa, and AlBERT) for clinical text de-identification using the i2b2 2014 cor-

pus, RoBERTa-large was found to be the best-performing model (> 0.99 accuracy,

0.967 precision/recall) [38]. In the study, the authors concluded that transformer

model-based architectures could, after suitable hyperparameter optimization, be a

satisfactory solution to clinical text-deidentification.

Large language models (LLMs)

In a similar way to the BERT architecture, which is based on stacks of encoders,

decoders have been stacked to form models like GPT (Generative Pre-trained Trans-

former) [13]. GPT-2, GPT-3, and other large language models (LLMs) have been

shown to perform well on a variety of NLP tasks. GPT-4 [45] in particular, with its

enhanced text data processing capabilities compared to its predecessor GPT-3, has

sparked renewed interest in zero-shot and few-shot learning, where models are trained

on limited or no data for a new task and subsequently tested on that task. This av-

enue of research holds promise for the field of de-identification, as it could enable the

development of de-identification models that generalize well to new datasets without

extensive fine-tuning.

One notable application of GPT-4 in de-identification is the "DeID-GPT" model,

which achieved a remarkable accuracy of over 0.99 in a zero-shot scenario when pro-
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vided with a specified prompt for de-identifying the 2014 i2b2 data [33]. However,

the evaluation of DeID-GPT solely based on accuracy raises questions about its over-

all performance, as other crucial metrics such as precision, recall, and F1 score are

not reported. Consequently, it becomes challenging to make meaningful comparisons

between DeID-GPT and other existing de-identification models.

While the proliferation of LLMs has significantly advanced the field of NLP, it has

also raised ethical concerns regarding the potential misuse and privacy implications

associated with these models. Particularly worrisome is the continuous training of

LLMs on user input data, as exemplified by models like ChatGPT and GPT-4. Ad-

versarial attacks, for instance, have been shown to extract sensitive information from

the training data utilized by LLMs [34], underscoring the need for robust privacy safe-

guards and responsible deployment of these powerful language models. As an even

more direct risk, data breaches targeting the companies that own and operate LLMs

could expose personal information, further jeopardizing the privacy and security of

individuals whose data has been used to train these models. Therefore, stringent

measures are needed to safeguard the data repositories and infrastructure support-

ing these LLMs, ensuring the protection of individuals’ privacy and preventing any

unauthorized access or misuse.

2.4 What tools are available for doing de-identification

today?

Despite numerous recent advances in de-identification algorithms, the actual task of

de-identifying a clinical dataset remains difficult. Studies reporting high performance

metrics for their de-identification models often do not make their code available,

making it a challenge for a researcher to piece together what they did. Out of the

de-identification methods that are available, there are three main categories: general-

purpose natural language processing libraries, commercial de-identification tools, and

open-source de-identification tools. Among these approaches, there is often a signifi-
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cant tradeoff between cost and performance. Many free methods fall noticeably short

of the current state of the art, and those that–potentially–perform better have a cost

of usage proportional to the amount of data processed.

In Table 2.1., we present some of the presently available de-identification tools.

We observe that there is no standardized method of evaluating performance of de-

identification tools. While all of the studies surveyed in Table 2.1 report F1 score,

the metric can be calculated in different ways; for example, some studies focus on

binary PHI classification [10], while others show metrics on multi-class classification

[32, 21]. While many studies use the i2b2 2014 dataset for evaluation and use the

set of PHI tags defined by the challenge, others use PHI tags that are often more

general, such as those based on a looser interpretation of HIPAA guidelines [42].

There are also varying levels of strictness when evaluating performance. Two more

common methods are token-level evaluation, which evaluates performance on each

token individually, and entity-level evaluation, which evaluates performance on each

entity (which can be composed of multiple tokens). While many de-identification

tools report token-level metrics, general NLP tools such as spaCy are often evaluated

at the entity level. All this variation makes it difficult to compare performance across

studies, and it is important to keep this in mind when evaluating the performance

of any single de-identification tool. While Table 2.1 records reported F1 scores for

many de-identification tools, we note that since the calculation of the F1 score can

vary, comparisons of tools using different evaluation approaches should be made with

caution.

2.4.1 General-purpose natural language processing libraries

There are several popular NLP libraries available in Python, the language we use

for the project. One popular example, SpaCy,2 is an industrial-strength, open-source

library for performing NLP tasks. The library is specifically designed to build com-

plex industrial systems, featuring integration with TensorFlow, PyTorch, sci-kit-learn,

Gensim, and others in Python’s AI ecosystem [28]. The library’s NER capabili-
2https://spacy.io/
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ties are based on CNNs (convolutional neural networks) and transformers, which

come pre-trained on general text and can be fine-tuned for specific purposes like de-

identification. SpaCy utilizes Document objects to store text and annotations, which

can be accessed through the ents property after being processed through an NER

pipeline.

Stanza [49] is a set of language processing tools that offers high accuracy and effi-

ciency for multiple human languages. It includes a Python interface to the CoreNLP

Java package. The toolkit includes dedicated tools and models tailored for biomedical

and clinical applications, making it particularly suitable for addressing specific tasks

in the medical domain [69]. The clinical models have been trained on the MIMIC

dataset. Within Stanza, the NERProcessor performs named entity recognition (NER)

and can be invoked using the name ner. Upon completion of the NER pipeline, the

resulting Document comprises a list of Sentences, with each Sentence containing a

list of Tokens. The flexibility of Stanza’s architecture allows the use of multiple NER

models concurrently by specifying a list in the package dictionary.

Flair [3], another NLP framework, streamlines the training and dissemination of

cutting-edge models for sequence labeling, text classification, and language model-

ing tasks. The central idea behind this framework is to provide a unified interface

for different types of word and document embeddings through its text embedding li-

brary, enabling researchers to combine and utilize diverse embeddings. Additionally,

the framework incorporates standard routines for model training, hyperparameter

selection, and a data fetching module, which can efficiently download and convert

publicly available NLP datasets into suitable data structures for rapid experimenta-

tion. Flair also includes a repository of pre-trained models, allowing users to readily

employ state-of-the-art NLP models. To run NER using flair, the steps are to make

a Sentence, load a pre-trained model, and use the model to predict tags for the

sentence. The standard model uses flair embeddings, is pre-trained over the English

CoNLL-03 task [51], and can recognize 4 different entity types, while the Ontonotes-

pretrained models [62] can classify 18 different types of entities.

Recent studies have explored the utility of natural language processing toolkits
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for de-identifying unstructured medical text documents. One study comparing spaCy

with OpenNLP, another open-source toolkit, found that a spaCy model achieved

higher performance at deidentification [46]. A spaCy model was also shown to out-

perform Bi-LSTM and CRF models when all were trained and evaluated on the 2014

i2b2 data [19]. While neither study specified the spaCy model architecture used, it is

likely that they used spaCy’s default NER system, which consists of a deep convolu-

tional neural network (CNN). Both studies found the spaCy model to achieve an F1

score of 0.91, which indicate that spaCy is a viable tool for deidentification, though

further models need to be tested to achieve sufficient performance.

2.4.2 Commercial de-identification tools

There are also software products that address text de-identification as part of the

scope of data privacy. These commercial tools use a mix of rules and machine learning

to detect sensitive data, though companies do not go into more detail about the rules

or model architectures. For example, Amazon Comprehend Medical3 is a HIPAA-

eligible natural language processing service that has been pre-trained to extract health

data from medical text. When using the DetectPHI operation, Amazon Comprehend

Medical creates a file in the output location with information on all the entities

detected, including position, confidence score, text, and category. However, it is not

free to use and could quickly become costly when deidentifying text with tokens in the

order of millions, as requests are measured and charged in units of 100 characters (1

unit = 100 characters). Initially, users can utilize the free tier, which covers 85k units

of text (8.5 million characters, or 1000 5-page 1700-character per page documents) for

the first month.4 Following the initial month, for requests of under 1 million units, the

cost of the DetectPHI API is $0.0014 per unit. Given an example clinical note from

the i2b2 2014 de-identification corpus containing 1,760 characters, de-identification

would cost $0.02464 per note, or $246.40 for 10,000 notes. While this cost could be

3https://docs.aws.amazon.com/comprehend-medical/latest/dev/comprehendmedical-
welcome.html

4https://aws.amazon.com/comprehend/medical/pricing/
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covered by some labs, it represents a financial barrier that could potentially deter

many from de-identifying and sharing their data.

PII (personally identifiable information) detection is one of the features offered

by Microsoft’s Azure Cognitive Service for Language.5 This feature can identify,

categorize, and redact sensitive information in unstructured text. By utilizing the

PII Detection "skill" (feature), users can detect PII in input text and choose to mask

it, if desired. The feature has two outputs: piiEntities, an array of complex types

including the extracted text, type, and score (indicating the likelihood of being a

real entity); and maskedText, the masked text processed according to the specified

maskingMode (if applicable). When using the PII detection feature, users can process

5,000 text records per month free, with an additional $700 monthly per 1 million text

records. Compared to Amazon Comprehend Medical, assuming the user uses the free

tier during the first month, the cost of de-identifying 10,000 notes would still be $700,

as pricing appear to be a flat rate for different tiers of usage.

Google Cloud Data Loss Prevention can detect PII and use a de-identification

transformation to mask, delete, or otherwise obscure the data.6 The API allows

users to specify configurations for de-identification techniques such as masking by

replacing characters with symbols, replacing entities with tokens or surrogates, and

encrypting and replacing sensitive data. The output file includes the de-identified

text and the type of PII detected. Cloud DLP content method pricing is billed based

on bytes inspected and bytes transformed (separately), with up to 1 GB monthly free

for each followed by $3/GB and $2/GB for further inspection and transformation,

respectively. To calculate the expected cost of de-identifying 1,000 notes, we consider

that the median note size of the i2b2 2014 dataset is around 7 kB. Assuming that the

notes all average out to a similar size, the cost of de-identifying 10,000 notes would

be free for the first GB. If considering additional requests beyond the first GB, the

calculation for cost would be 0.000007 GB x $5/GB * 10,000 notes = $0.35. This is

significantly cheaper than the other two commercial tools, though it is unclear how

5https://learn.microsoft.com/en-us/azure/search/cognitive-search-skill-pii-detection
6https://cloud.google.com/dlp/docs/deidentify-sensitive-data
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the performance of the de-identification model compares to the other two.

2.4.3 Freely available de-identification tools

There are also a few open-source de-identification tools available for users to de-

identify their clinical notes for free. For example, Philter (Protected Health Informa-

tion filter), an open-source, command line-based clinical text de-identification soft-

ware, relies purely on pattern matching in the form of whitelists, blacklists, and

regular expressions to flag and remove PHI [43]. De-identification is done with a

single command line function call specifying various parameters like file paths and

output format. By default, Philter outputs PHI-reduced notes (.txt format) in the

specified output directory.

When considering machine learning-based approaches, researchers can use MIST

(MITRE Identification Scrubber Toolkit) [1], a suite of tools for identifying and

redacting PHI powered by a conditional random field-based sequence tagger. While

not open source, the package is free to download and use. Users can use the provided

web interface to annotate text, and the documentation provides instructions on how

to train and evaluate a de-identification model from the command line. PII can be

masked either with obscuring fillers, such as "[NAME]", or with synthesized but real-

istic English fillers. While useful at the time of release, due to its age, MIST now has

reduced utility due to outdated dependencies. At the time of writing this thesis, the

latest version of the package is 2.0.4, which was last updated in 2014. The package

requires Python 2 to run, as Python 3 is known not to work with the software. This

could pose a challenge for users who do not have Python 2 installed on their machines,

as they would have to install an older version of Python to use the software. The

system requirements also hint at potential issues, as the last recorded MacOS system

that has been (partially) tested is Snow Leopard (10.8.x). At the time of writing,

the latest MacOS system is MacOS Ventura (13.3.x). Issues of compatibility with

newer systems and software versions are common in open-source software, and they

motivate the need for a new, regularly maintained de-identification tool.

NeuroNER is an open-source NER tool based on LSTMs that focuses on making
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(previously) state-of-the-art NER available to anyone, with an emphasis on usabil-

ity [9]. The tool allows users to create or modify annotations for new or existing

data by interfacing with the web-based annotation program BRAT [54]. The NER

engine consists of a model pre-trained on CoNLL 2003 and i2b2 2014, making Neu-

roNER well-suited PHI detection. Using default hyperparameters, the system per-

forms marginally better than the state of the art at the time on i2b2 2014 data: a

97.7% F1 score compared to the previous highest of 97.9%, also by Dernoncourt et al.

(2017). NeuroNER is pip installable, uses the spaCy English langauge module, can

be run using a Python interpreter or command line, and offers pretrained models for

use. The tool is also well-documented, with a tutorial and a user guide available on

the GitHub repository. However, NeuroNER tool is not actively maintained, with the

last commit being in 2019. This could pose a problem for users who encounter issues

with the tool, as there is no guarantee that the developers will respond to issues or

fix bugs.

These freely available de-identification tools, while undoubtedly helpful, vary in

performance and are often rather difficult to use due to incompatible or outdated

versioning. This motivates the need for a new, easy-to-use de-identification tool that

is actively maintained.
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Chapter 3

Datasets for de-identification

3.1 Aim

While HIPAA is intended as legal guidance, it falls short of a technical definition of

language tokens. As a result, there may be ambiguity as to what exactly constitutes a

specified identifier. This ambiguity has led to variation in labeling in the few datasets

available for training and evaluating models for de-identification. This may have

also indirectly contributed to a paucity of publicly available datasets for developing

de-identification models. This is concerning, as access to data is key to advancing

machine learning in healthcare. The lack of data is both a limitation for developing

models and a motivation for our work. In this chapter, we review currently available

datasets for de-identification and introduce a new dataset, which we use as the basis of

our bias audit in Chapter 4 and hope will be a useful resource for the de-identification

community. While we would like to work toward a technical specification for de-

identification, it is beyond the scope of this thesis.

3.2 Introduction

One recent finding that highlights the need for more de-identified data is presented

by Wornow et al. (2023) [65]. The authors point out that clinical language mod-

els (CLaMs), which are a subtype of large language models (LLMs), are almost all
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trained on a single database: MIMIC-III [22], which contains approximately 2 mil-

lion notes written between 2001 and 2012 in the ICU of the Beth Israel Deaconess

Medical Center. In particular, 17 out of the 23 CLaMs surveyed have been trained

on MIMIC-III/IV, with the remainder of the CLaMs having been trained on private

electronic health record data. This is problematic because MIMIC is a small dataset

and not representative of most populations, as Beth Israel Deaconess Medical Cen-

ter is a well-resourced private hospital in a major metropolitan area. Furthermore,

MIMIC data would lack any new diseases, treatments, or practices discovered after

2012. These limitations may cause CLaMs to encode weights or even biases unique

to characteristics of MIMIC data. This motivates the need for more data from health

centers of varying sizes, locations, and patient demographics.

Here we present five datasets commonly used to develop de-identification methods.

Three of the most commonly used datasets were introduced by three competitions:

the 2006 Informatics for Integrating Biology and the Bedside (i2b2) competition [60],

the 2014 i2b2/UTHealth shared task [57], and the 2016 Centers of Excellence in Ge-

nomic Science (CEGS) and Neuropsychiatric Genome-Scale and RDOC Individual-

ized Domain (N-GRID) shared task [56]. In addition to competition datasets, another

common source of data was MIMIC (‘Medical Information Mart for Intensive Care’),

an extensive database comprising data from critical care units at a large tertiary

care hospital [22]. MIMIC has undergone several updates and is now at MIMIC-IV.

MIMIC-II was the source of nursing notes for the PhysioNet corpus [12, 42, 15]. The

Dernoncourt-Lee corpus drew discharge summaries from MIMIC-III [10]. Table 3.1

provides summary statistics on these datasets, which are all publicly available. There

are also numerous datasets used to train and evaluate models that are unavailable,

however. For example, one study found high performance for the models it evaluated

using a dataset of 50 IME (independent medical examination) reports, which were

manually de-identified but not available for others to use [46]. Thus, datasets for the

de-identification tasks are either overused (in the case of the challenges and MIMIC)

or unavailable for use, highlighting the need for a new dataset, which is addressed as

part of the project.
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Table 3.1: Summary of available datasets for the de-identification task. The included
datasets are five of the most commonly used datasets to develop and evaluate models
for de-identification. The datasets are ordered by year of release. Partners HealthCare
is now known as Mass General Brigham. MIMIC: Medical Information Mart for
Intensive Care. BIDMC: Beth Israel Deaconess Medical Center. *: Track 1.A. was
split with 60% as test data, Track 1.B. was split with 60% as training data.

Dataset Year Note type Note source # pa-
tients

#
notes

# to-
kens

# PHI Train/test

i2b2-2006 2006 discharge
notes

Partners
HealthCare

889 889 487k 19.5k 75%/25%

physionet 2008 nursing notes MIMIC II
(BIDMC)

163 2434 345k 1.9k 59%/41%

i2b2-2014 2014 diabetic longi-
tudinal records

Partners
HealthCare

296 1304 738k 28.8k 61%/39%

CEGS-N-Grid-
2016

2016 psychiatric in-
take records

Partners
HealthCare

1000 1000 1,862k 34.4k 60%/40%*

Dernoncourt-
Lee

2016 discharge sum-
maries

MIMIC III
(BIDMC)

1635 1635 2,945k 60.8k 80%/20%

3.3 i2b2 2014 de-identification challenge data

We use the 2014 i2b2/UTHealth corpus for training and evaluating our de-identification

models [58]. The corpus contains 1,304 longitudinal medical records describing 296

patients, with 2-5 records selected per patient, and a total of 805,118 whitespace-

sparated tokens; an average of 617.4 tokens per file. The records come from Partners

Healthcare and present a snapshot of diabetic patients’ health at different points in

time. All records are annotated according to a risk-averse interpretation and exten-

sion of HIPAA as detailed in the corpus paper [58]. Each record is stored as an

XML file with a <TAGS> node containing annotations for the document text. The

downloadable corpus data comes in three sets: training set 1 (521 notes), training set

2 (269 notes), and test set (514 notes). We use training set 1 as our training data,

training set 2 as our validation data, and the test set as our test data. The data is

available for download from the i2b2 2014 de-identification challenge website.1

1https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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3.4 Challenges in annotation

Based on the 18 identifiers listed under the Safe Harbor provision, de-identification

dataset annotators have produced differing annotation schema, which forms a barrier

to cross-dataset evaluation. For example, HIPAA only considers ages over 89 as PHI,

and the 2006 i2b2 de-identification corpus treats all ages as PHI [60]. Continuing

along a risk-averse interpretation of HIPAA guidelines, creators of the 2014 i2b2 de-

identification dataset expanded their definition of PHI to other information indirectly

related to patients that could potentially identify them. This information includes

doctors’ and nurses’ names, all parts of dates (including years), and all locations

(including states and countries) [58]. In 2016, the CEGS N-GRID de-identification

dataset went on to include "generic" organizations such as "deli" or "gas station" in

the LOCATION: ORGANIZATION tag [56]. These annotation differences present a

challenge to researchers aiming to evaluate their de-identification method on multiple

datasets, requiring the grouping together of different PHI categories into larger bins

and subsequent shifts in preprocessing data and calculating metrics [?].

The varied landscape of PHI classification is especially a challenge for free text

de-identification, as models must adapt to the idiosyncracies of clinical notes, includ-

ing medical terminology, abbreviations, and writing errors. Manual de-identification

is able to address this somewhat, as medical professionals in the same domain or

health center as the clinical notes can draw from their expertise to identify PHI, but

the process is time-consuming and human error-prone [2]. Recent de-identification

approaches incorporate natural language processing (NLP), the branch of artificial

intelligence focused on giving computers the human-like ability to understand text

and spoken words, into their workflows, with promising results.

3.5 Creation of a new de-identification dataset

In Chapter 4, we detail an audit for potential demographic biases in de-identification

tools. Many of the evaluated tools have been trained on the same datasets, partic-
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ularly the i2b2 2014 dataset, motivating the need for a new dataset not yet "seen"

by the de-identification models. In order to facilitate our bias audit and contribute

a new dataset for future de-identification research, we create a new dataset of 100

hospital admission notes. Because of the objective of the bias audit to test the ability

of de-identification methods to remove names, we focus on constructing realistic name

surrogates that are in line with popular demographics. We describe the process of

creating the dataset in this section, and more details on the usage of the dataset are

discussed in Chapter 4.

To create the dataset, we first construct 16 name groups with distinct combi-

nations of gender, race, popularity, and decade demographics. The purpose of these

groups is for comparative evaluation of model performance on different groups. Then,

we present how we prepare and populate 100 hospital admission notes for evaluation

inputs.

3.5.1 Construction of name sets

To prepare name lists with diverse gender, race, popularity, and decade backgrounds,

we first aggregate the number of people of each gender having the same first name

and born in each of the following decades—the 1940s, 1970s, and 2000s—based on

the data from the US Social Security Administration.2 We then assign each first

name to a racial or ethnic group by referencing the demographic aspects in [59]. We

process the surnames in a similar fashion based on 2000 US Census data,3 with the

assumption that the population of each surname does not change much over time.

In this way, we create 16 mutually exclusive name lists in Table 3.2, where each

name list contained 20 names. In particular, the 20 most popular names of each

decade are chosen such that they do not appear in the 50 most popular names of

the other two decades, which ensures that the names are sufficiently representative

of people born in each decade. The 20 least popular names are chosen by breaking

ties randomly. The names of medium popularity are randomly sampled from the

2https://www.ssa.gov/oact/babynames/limits.html
3https://www.census.gov/topics/population/genealogy/data/2000_surnames.html
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Table 3.2: Description of 16 name sets of diverse demographic backgrounds and exam-
ples of first and last names for each set. Name Sets 1-6 are names with top, medium,
and bottom popularity associated with the White racial group in the 2000s. Name
Sets 7-12 are names with medium popularity associated with the Black, Asian, and
Hispanic racial groups in the 2000s. Name Sets 13-16 are names with top popularity
in the 1970s and 1940s associated with the White racial group. Reproduced from
Xiao et al. (2023) [66].

Name Set Gender Race Popularity Decade First Name Examples Last Name Examples
1 Male White Top 2000s Jacob, Ethan, Tyler, ... Smith, Davis, Brown, ...
2 Female White Top 2000s Emily, Emma, Olivia, ... Smith, Davis, Brown, ...
3 Male White Medium 2000s Wade, Ted, Brien, ... Waldon, Clapp, Bogle, ...
4 Female White Medium 2000s Mabel, Liz, Terressa, ... Waldon, Clapp, Bogle, ...
5 Male White Bottom 2000s Nicki, Leslee, Marti, ... Lofft, Lyna, Tamaro, ...
6 Female White Bottom 2000s Glenn, Lyle, Heath, ... Lofft, Lyna, Tamaro, ...
7 Male Black Medium 2000s Cedric, Marlon, Ollie, ... Booker, Grier, Spikes, ...
8 Female Black Medium 2000s Aisha, Ebony, Jamila, ... Booker, Grier, Spikes, ...
9 Male Asian Medium 2000s Zhi, Nguyen, Rajeev, ... Ngo, Mao, Ahmed, ...
10 Female Asian Medium 2000s Neha, Priya, Xin, ... Ngo, Mao, Ahmed, ...
11 Male Hispanic Medium 2000s Leonel, Camilo, Cruz, ... Ceja, Amaro, Recinos, ...
12 Female Hispanic Medium 2000s Celina, Rebeca, Luisa, ... Ceja, Amaro, Recinos, ...
13 Male White Top 1970s Patrick, Brian, Eric, ... Smith, Davis, Brown, ...
14 Female White Top 1970s Amy, Lisa, Laura, ... Smith, Davis, Brown, ...
15 Male White Top 1940s Jerry, George, Frank, ... Smith, Davis, Brown, ...
16 Female White Top 1940s Linda, Carol, Nancy, ... Smith, Davis, Brown, ...

names ranked 400 to 8000 by popularity, since the most popular names identified

with Black, Hispanic, or Asian groups fell into this range. Then, we can compare the

de-identification performance of models along name dimensions.

3.5.2 Preparation of clinical templates

We develop a new clinical text de-identification dataset with 100 selected hospital

admission notes from Beth Israel Lahey Health between 2017 and 2019 that have

not previously been made publicly available. Each note is used as a template for

PHI substitution. We follow the HIPAA Safe Harbor provisions by marking the

occurrence of names in the templates and replacing other PHI classes with realistic,

synthetic values. We note that our templates are more complex than those used in

existing benchmark datasets [37, 39, 40], with an average of 12,893 characters and

3.5 unique names per template and each unique name appearing an average of 2.1

times per template [66]. This design is more reflective of real-world de-identification

applications and more likely to expose flaws in less effective methods.
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Chapter 4

Auditing bias in de-identification

software

4.1 Aim

In this section, we audit the performance of existing de-identification software on

a new dataset. The dataset has been annotated to enable the evaluation of the

performance of each de-identification tool on different demographic groups, using

names as a proxy for these groups. We also explore a bias mitigation technique

of fine-tuning de-identification models on more diverse data and show that doing

so can improve the models’ performance on underrepresented groups. A note on

contribution: I did initial work on the project with Tom Pollard and found interesting

results, which then led to a collaboration with Yuxin Xiao and Marzyeh Ghassemi,

and together we carried out an extensive further analysis and wrote a paper [66].

4.2 Introduction

Considering the growing utility of natural language processing approaches to de-

identification, it is crucial to consider potential biases embedded in the models. All

five of the common, publicly available datasets used for de-identification are sourced

from American hospitals whose patient populations may not adequately reflect the
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diversity of patient data for de-identification. One characteristic component of patient

data that can vary widely is names. Names appear in a spectrum of formats reflecting

diverse naming practices based on religion, language, or geography. Names originating

from cultures outside America may not be represented as highly as typical American

names in the training datasets for language models. The skewed representation of

names in data could lead to the models unintentionally embedding biases that reflect

the datasets, including a decreased ability to recognize and remove uncommon names

from patient data before it is shared. While names are not a proxy for race/ethnicity,

if most of the people with a given name self-identify with a particular group, and

models are not as efficient at removing this name, it then follows that members of

this group may be at higher risk of data disclosure [37].

Multiple NER studies have used names as a proxy to detect biases against differ-

ent demographic groups. Mehrabi et al. (2020) [39] examined the difference in NER

models’ ability to recognize male and female names as PERSON entity types high-

lighted gender-based discrepancies. The model chosen for evaluation was Stanford

CoreNLP [36], an NLP toolkit used widely in research, government, and commer-

cial circles. When evaluating the model on a dataset of U.S. Census-obtained baby

names, researchers found that relatively more female names were not recognized as

PERSON entities as compared to male names. In particular, when female names

were also common location names (e.g. “Charlotte), the NER model almost always

wrongfully tagged the name as a location, despite clear context that the entity should

be a person.

Another paper similarly explored NER models for demographic bias in the cate-

gories of gender and ethnicity. Mishra et al. (2020) [40] evaluated a BiLSTM CRF,

spaCy, and Stanford CoreNLP with a dataset composed of names across 8 demo-

graphic groups, which were a combination of race (or ethnicity) and gender. By

assessing if NER models varied in their accuracy of identifying first names from vari-

ous demographics as PERSON entities, the researchers found that models were better

at identifying White-associated names with higher confidence as compared to other

demographics.
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To examine biases in name detection with a privacy lens, Mansfield et al. (2022)

[37] evaluated three off-the-shelf PII (personally identifiable information) masking

systems on name detection and redaction, using names and templates from customer

service messaging conversations. The authors found significant disparities in name

recognition based on demographics, particularly for names associated with Black

and Asian/Pacific Islander groups. These disparities were more pronounced in the

commercial models tested than an open-source RoBERTa-based system. Our work

in de-identification-related bias extends this work and the aforementioned studies

in the following key aspects: considering first and last names together, adding two

dimensions of evaluation (age and name popularity), changing the domain/length

of the templates (hospital admission notes, which are much longer), and increasing

the number and type of models evaluated (in total: 3 open-source NLP libraries, 3

open-source clinical text de-identification-specific models, and 3 commercial models).

4.3 Bias evaluation of existing de-identification tools

As the first audit in the existing literature to evaluate clinical text models for potential

bias, we identified four dimensions to reflect the diversity and trends in names found in

the United States: gender, race, popularity of a name, and decade of name popularity.

In particular, we define the demographic dimensions as follows:

• The gender of a name refers to the sex assigned at birth to someone with that

name, as the phonological property of a name can suggest the associated gender

[33]. We examine two gender groups in this study: male and female.

• The race of a name refers to the expected racial or ethnic identity of some-

one with that name, reflecting the variation in name distributions that exists

between different self-reported racial or ethnic groups [60]. We consider four

racial or ethnic groups: White, Black, Asian, and Hispanic. Other groups are

skipped due to prohibitively small community sizes.

• The popularity of a name refers to the size of the population of a gender within
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a decade having that name. We compare three groups here: top, medium, and

bottom popularity.

• The decade of popularity refers to the decade in which a name is popular in

the U.S. in terms of babies being given the name, as naming trends change over

time. We assess three decade groups: 2000s, 1970s, and 1940s.

Limitations of Standardized Demographic Categories. We acknowledge the lim-

itation of using standardized self-reported racial categorizations and binary gender

groups when composing the name sets. More fine-grained racial and gender cate-

gorizations can be explored in future work, as there can be variety in the linguistic

norms and naming traditions even within each racial group considered. Transgen-

der and non-binary gender groups are also important to consider in future work, as

these groups may use gender-neutral names or have variations in name usage between

records.

We conduct the bias audit according to the workflow in Figure 4-1 We first pre-

pare 16 name sets (Table 3.2) by combining the four demographic dimensions. To

construct the dataset, we duplicate each of the 100 selected clinical templates ten

times and populate the copies with randomly selected names for each of the name

sets. We then use the 16,000 evaluation notes to assess nine de-identification meth-

ods. The nine methods are chosen from three categories: general-purpose natural

language processing libraries, commercial services for PHI detection, and tools de-

signed specifically for the purpose of de-identification. We evaluate the methods on

their ability to detect names in the notes, with a focus on performance along the four

demographic dimensions.

4.3.1 De-identification methods for bias evaluation

Here we evaluate models of three different categories: general-purpose, open-source

libraries for natural language processing, commercial services for PHI detection, and

models designed specifically for the purpose of de-identification. For each category,

we identify three popular options for assessment.
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(a) 4 demographic dimensions & (b) 16 name sets
Name Set Gender Race Popularity Decade First Name Last Name

1 Male White Top 2000s Jacob, Ethan, … Smith, Davis, …
2 Female White Top 2000s Emily, Emma, … Smith, Davis, …
… … … … … … …

(c) 100 clinical templates

Mr. **NAME** met Dr. **NAME**  on **DATE**.
Mr. **NAME** is a pleasant, well-developed obese male in no acute distress. 
…

Mr. Jacob Smith met 
Dr. Ethan Davis …

…

(d) 16,000 evaluation notes

spaCy Google NeuroNER
…

(e) 9 de-identification methods

&

(f) performance evaluation

populate the 
copies

duplicate 10 times
for each name set

Mr. Emily Smith met 
Dr. Emma Davis …

Figure 4-1: Workflow of the bias audit study. We identify (a) four demographic
dimensions and prepare (b) 16 name sets with diverse settings. For each name set,
we duplicate each of the (c) 100 clinical templates ten times and populate the copies
with randomly generated names. We then uses these (d) 16,000 evaluation notes to
assess (e) nine de-identification methods. Reproduced from Xiao et al. (2023) [66]

.

General-purpose, open-source libraries for natural language processing:

• spaCy [18] is a widely-adopted open-source library for industrial information

extraction tasks. We use Roberta-base [30], which is pre-trained on a massive

general-purpose corpus, as the backbone of its named entity recognition pipeline.

• Stanza [49] is a Python natural language analysis package built with neural

network components for named entity recognition. We use its 18-class NER

model variant based on contextual string representations [4] and pre-trained on

the OntoNotes corpus [62].

• flair [3] is a powerful library based on state-of-the-art natural language process-

ing models for named entity recognition. We use its large four-class NER model

variant built on XLM-R embeddings [8] and document-level features [52] and

pre-trained on the CoNLL03 corpus [51].

Commercial services for protected health information detection:

• Amazon Comprehend Medical1 extracts useful information in unstructured clin-

ical text. We leverage its DetectPHI API to extract names in hospital admission

notes.
1https://docs.aws.amazon.com/comprehend-medical/latest/dev/comprehendmedical-

welcome.html
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• Microsoft’s Azure Cognitive Service for Language2 uses natural language un-

derstanding to extract key phrases from unstructured text, such as personally

identifiable information.

• Google Cloud Data Loss Prevention3 inspects sensitive data in text and removes

any personally identifiable information.

Open-source models designed specifically for the purpose of de-identification:

• Philter [43] is a command line-based clinical text de-identification software that

uses pattern matching to detect and scrub PHI.

• NeuroNER [9] performs named entity recognition by leveraging a long short-

term memory (LSTM) architecture. We use the model pre-trained on the 2014

i2b2 de-identification corpus with GloVe word embeddings [47].

• MIST [1] is a suite of tools for identifying and redacting personally identifiable

information in free-text medical records. We pre-train the model supplied by

the Carafe engine, a conditional random field-based [26] sequence tagger, on the

2006 i2b2 de-identification corpus.

4.4 Evaluation of Bias

To quantify the bias of each method along each dimension, we follow Mansfield et al.

(2022) [37] by evaluating the recall equality difference: the average absolute difference

between the recall of each demographic group and that of all the groups along the

corresponding demographic dimension. More specifically, for dimension 𝐷 and its

entailed set of demographic groups 𝒢𝐷 = {𝐺𝐷
1 , 𝐺

𝐷
2 , . . .}, recall equality difference

= 1
|𝒢𝐷|

∑︀
𝐺𝐷

𝑖 ∈𝒢𝐷 |𝑅𝑒𝑐𝑎𝑙𝑙(𝐺𝐷
𝑖 ) − 𝑅𝑒𝑐𝑎𝑙𝑙(𝐷)| [66]. We use the recall equality difference

as the fairness metric since it demonstrates the difference in recall each demographic

group would experience while expecting the reported average performance.
2https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/
3https://cloud.google.com/dlp

52



We carry out the Wilcoxon signed-rank test [64] for the dimension of gender and

the Friedman test [14] for the dimensions of race, popularity, and decade to assess the

null hypothesis that a de-identification method treats all the groups equally well along

a demographic dimension. After applying the Bonferroni correction, the adjusted

significance levels for gender, race, popularity, and decade are 5%, 0.833%, 1.667%,

and 1.667%, respectively [66].

4.5 Results

We present the results of the evaluation, considering overall performance and perfor-

mance across the four analyzed dimensions: gender, race, popularity, and decade. We

focus on the following performance metrics: precision, recall, and F1 score, with a

particular emphasis on recall. We conclude with promising results on the possibility

of mitigating bias with fine-tuning on diverse datasets.

4.5.1 Overall performance

We first describe the overall accuracy of various models in Table 4.1. We observe

that flair, Amazon, and NeuroNER have the highest recall for their respective model

category: NLP library, commercial, and free de-identification tool. The Microsoft

model has the highest recall overall of 0.960, while NeuroNER has the highest F1

score overall of 0.945. We also note that the spaCy model has the lowest recall

overall of 0.629, and the Philter model has the lowest F1 score overall of 0.353.

4.5.2 Name group recall

Next, we look at the average recall for each name set across all models used for de-

identification. Figure 4-2 shows each group’s average recall sorted from highest to

lowest. The six groups on the left (sets 16, 13, 14, 2, 15, and 1) with the highest

recall are all composed of White-associated names. The three groups on the right

with the lowest recall (sets 10, 7, and 9) are all composed of non-White-associated
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Table 4.1: Bias audit results: Overall performance (higher is better) and bias along
demographic dimensions (lower is better) of the examined de-identification methods.
We measure the bias with recall equality difference and bold the best two scores in
each column. In particular, flair achieves the highest recall and F1 and the lowest
bias for race and popularity. Moreover, the asterisk next to a bias score indicates
a statistically significant difference in performance at an adjusted significance level
(5% for gender, 0.833% for race, 1.667% for popularity and decade). A majority of
the examined methods exhibit statistically significant performance gaps along most
demographic dimensions. Reproduced from Xiao et al. (2023) [66].

Overall Performance Bias along Dimensions

Method Precision Recall F1 Gender Race Popularity Decade

spaCy 0.917 0.629 0.746 0.002* 0.013* 0.028* 0.007*
Stanza 0.678 0.881 0.766 0.002* 0.016* 0.011* 0.005*
flair 0.920 0.974 0.946 0.003* 0.006* 0.008* 0.002*

Amazon 0.923 0.925 0.924 0.005* 0.022* 0.032* 0.001
Microsoft 0.664 0.960 0.785 0.003* 0.023* 0.010* 0.006*
Google 0.609 0.869 0.716 0.009* 0.025* 0.014* 0.010*

NeuroNER 0.946 0.944 0.945 0.001 0.045* 0.026* 0.002
Philter 0.227 0.794 0.353 0.000 0.000 0.003* 0.000
MIST 0.474 0.751 0.581 0.013* 0.022* 0.017* 0.003*

names, namely Asian-associated and Black-associated names. Recall was poorest for

Asian-associated names (sets 9 and 10) and next poorest for male, Black-associated

names (set 7). Hispanic-associated names fared better overall, with recall for sets

12 and 11 comparable to the recall for White-associated names of equal popularity.

When considering gender, the recall between name sets of male and female names

appears roughly similar, with female name sets overall having slightly higher recall

than male name sets. Looking at name eras, we find that name sets with names from

older eras (1970s and 1940s) generally have higher average recall than the names from

the 2000s era.

4.5.3 Recall along demographic dimensions

We then consider the difference in recall by the models on each name set and plot

Figure 4-3. Along the dimension of gender (Figure 4-3a), most models appear to have

little difference in performance between male and female names. Similarly, recall be-
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Figure 4-2: Average recall and standard error of each name set by the examined de-
identification methods, ordered by decreasing recall. The average recall on name sets
with top popularity exceeds the other sets by a clear margin. Moreover, the methods
are, on average, more capable of recognizing less popular names associated with the
White racial group compared to more popular names associated with the Asian racial
group. Reproduced from Xiao et al. (2023) [66].

tween different decades of name popularity also does not appear to very within models

(Figure 4-3d). Interestingly, when considering the race demographic (Figure 4-3b),

we note that most of the models have a lower recall on names associated with minor-

ity racial groups, including Black and Asian groups, even though the names in each

non-White racial group are from the same popularity level in the 2000s. One partial

exception is Hispanic names, which often have comparable–and often improved–recall

relative to the White names. Along the dimension of popularity (Figure 4-3c), we

observe that most models achieve a higher recall on more popular names, with a more

notable drop in recall between name sets of top and medium popularity as compared

to the drop between name sets of medium and bottom popularity.

4.6 Mitigating bias

We explore a fine-tuning setup and find that it not only improves the overall recall

of the models tested but also reduces the bias significantly along most demographic

dimensions.
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Figure 4-3: Recall and 95% bootstrapped confidence interval of the demographic
groups along each dimension by each audited de-identification method. Disparities
in performance between different groups are more observable along the dimensions
of race and popularity than along the dimensions of gender and decade. Reproduced
from Xiao et al. (2023) [66].

4.6.1 Fine-tuning de-identification methods

We prepare the fine-tuning de-identification datasets by considering two types of

context and two types of names: general/clinical and popular/diverse. We treat

the longitudinal clinical narratives in the 2014 i2b2 de-identification challenge as the

clinical context and the Wikipedia articles in the DocRED dataset [67] as the general

context. We define "diverse" here as a set of names composed of 16 subsets randomly

sampled from each of the 16 name sets in Table 3.2, and "popular" as a set of names

randomly sampled from the most popular names over the three chosen decades that
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do not appear in the 16 name sets. We generate diverse and popular name sets of

160 names each, with 10 names from each of the 16 name sets in the diverse set.

For each type of context, we randomly sample 1000 templates for training and

100 for validation. We then fill in each template with names from either the diverse

or popular name sets. We thus end up with four fine-tuning setups: general-popular,

general-diverse, clinical-popular, and clinical-diverse. We also generate 1600 test notes

by filling in the 100 validation templates with the remaining 160 names not selected

for the diverse names set, populating each template with each of the 16 name sets in

Table 3.2. With this preparation, the test notes do not overlap with the fine-tuning

context or names.

To compare the effectiveness of these setups, we fine-tune two de-identification

methods with different performances from the previous analyses ("out-of-the-box"):

spaCy and NeuroNER. SpaCy is a widely-adopted NLP library that has a low de-

identification recall and a moderate demographic bias observed in Table ??. In con-

trast, NeuroNER has been pre-trained on the original 2014 i2b2 de-identification

corpus, and it yields a fairly high recall and high bias along the dimensions of race

and popularity. After fine-tuning with their respective default hyperparameters, these

methods are evaluated on the test notes.

4.6.2 Clinical context and diverse names improve performance

Table 4.2 displays the overall performance and the demographic bias (measured us-

ing recall equality difference) of the two methods, spaCy and NeuroNER, after fine-

tuning. Interestingly, despite distinct out-of-the-box performance for the two fine-

tuned methods, the setup comprising clinical context and diverse names largely en-

hances the overall performance of both methods and diminishes their bias, especially

along the dimensions of race and popularity.

In particular, although most of the fine-tuning setups improve spaCy’s overall

performance, fine-tuning with clinical context and diverse names results in the largest

boost in spaCy’s recall by over 0.3. On the other hand, most of the four fine-tuning

setups do not improve NeuroNER’s strong out-of-the-box performance, likely due to
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Table 4.2: Overall performance (higher is better) and bias along demographic di-
mensions (lower is better) of two de-identification methods fine-tuned with different
setups. We measure the bias with recall equality difference and bold the best score in
each column for each method. For both methods, using clinical context and diverse
names for fine-tuning improves the overall performance and reduces the demographic
bias along most dimensions, especially race and popularity. Reproduced from Xiao
et al. (2023) [66].

Fine-tuning Setup Overall Performance Bias along Dimensions

Method Context Name Precision Recall F1 Gender Race Popular Decade

spaCy

out-of-the-box 0.916 0.623 0.741 0.003 0.027 0.025 0.005
clinical diverse 0.984 0.958 0.971 0.009 0.019 0.003 0.004
clinical popular 0.999 0.729 0.843 0.009 0.101 0.131 0.003
general diverse 1.000 0.672 0.804 0.039 0.061 0.122 0.016
general popular 0.997 0.542 0.702 0.007 0.095 0.284 0.005

NeuroNER

out-of-the-box 0.955 0.953 0.954 0.005 0.044 0.030 0.001
clinical diverse 0.982 0.986 0.984 0.006 0.011 0.011 0.000
clinical popular 0.994 0.875 0.930 0.011 0.055 0.126 0.001
general diverse 0.975 0.896 0.934 0.025 0.066 0.067 0.015
general popular 0.921 0.772 0.840 0.002 0.061 0.337 0.003

its already having been pretrained with clinical text. The only exception is fine-tuning

with clinical context and diverse names, which increases precision, recall, and F1 by

0.03 across the board.

Considering the change in bias along each dimension across fine-tuning, the most

noteworthy changes are those of the dimensions of race and popularity, where the

initial high bias is reduced by more than half after fine-tuning with clinical-diverse

data. The fine-tuning setup did not affear to affect bias along the dimension of gender

as much, with bias even increasing with many setups.

4.7 Conclusion

In this chapter, we have shown that de-identification methods can be biased along

certain demographic dimensions, and the bias can be mitigated by fine-tuning with

clinical context and diverse names. We suggest that fine-tuning de-identification

methods with clinical context and diverse names should be done as an initial fix

to improve fairness before the methods are applied to clinical tasks. The ability

to equitably de-identify patient data would allow for the data’s wider circulation in
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research, enabling the use of more diverse datasets to train machine learning models in

healthcare and potentially mitigating the effects of medical bias on future predictions.
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Chapter 5

Developing a de-identification

package

5.1 Aim

In this chapter, we present the development of a de-identification package, HIPA-

Away. The package is designed to be simple and easy to use, providing the ability

to use and combine different machine learning approaches to de-identification. Upon

completion, the package will be installable from the Python Package Index (PyPI)

and will support user customization for different de-identification needs. We describe

the overall workflow, design decisions, and implementation details of the package.

We also analyze and report the performance of multiple de-identification approaches

provided through the package.

5.2 Software specifications

5.2.1 Objectives

After reviewing the current state of de-identification software and discussing with

colleagues, we identified the following objectives:

• Create an open-source package that will de-identify a patient dataset according
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to a defined set of patient identifiers.

• Create a set of methods to train a model on local patient health data so that

the package is adaptable to regional and system-specific variations.

• Add functionality to the package to allow users to generate a report on the

levels of PHI in an input dataset (e.g., number and category of PHI entities).

• Create a testing framework to assess performance against benchmark datasets

in terms of commonly reported metrics, such as precision, recall, and F1 score.

These objectives are used to guide the development of the package, and while

the package has not yet been completed, we have made significant progress toward

achieving these objectives.

5.2.2 Assumptions

The following assumptions have been made in the development of the package:

• The package will initially run on English-language data only, but it will be

designed to be easily extensible to other languages.

• The package will be developed in Python 3.7+ and will be distributed via the

Python Package Index (PyPI) and Conda package managers.

• Users will be familiar with running software in a Python interpreter on MacOS,

Unix, or Windows machines.

• The software will be able to process both structured and unstructured data.

• Minimum hardware specification for applying the software to a dataset for de-

identification will be an entry level CPU with 8 GB RAM. Training new models

and achieving best possible performance metrics may require higher-spec ma-

chines with GPU.
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• Runtime for training models and applying them to data will vary on hardware

specification. The runtime should allow a relatively large corpus (e.g. 100,000

records of 1000 words) to be processed within 24 hours.

5.2.3 Risks

The following risks have been identified in the development of the package:

• The HIPAA guidelines only broadly define PHI, leaving room for interpretation

of the details. We will draw on expert knowledge as appropriate.

• It is not possible to promise perfect performance (i.e. 100% precision and recall),

so there should be an expectation that there will be false positives (i.e. non-PHI

labelled as PHI) and false negatives (i.e. PHI not labelled as PHI).

5.2.4 Intended use

We intend for the package to provide the following de-identification workflow: load-

ing and pre-processing data, tokenization, (optional) model training/fine-tuning, (op-

tional) model validation, annotation, and scrubbing. At each step of model training,

validation, and prediction, the user can evaluate model performance. The workflow

is summarized in Figure 5-1.

5.2.5 User stories

To guide the development of the package, we create a set of user stories, which are

summarized in Table 5.1. The user stories are written according to needs that arise

for different users at different stages in the de-identification pipeline.
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Figure 5-1: Overview of HIPAAway workflow. Users typically start with clinical notes
in .txt, .csv, or .json files, which they can load, pre-process, and tokenize to produce
Dataset objects, which can be split into training, development/validation, and test
sets. The training and validation sets can be used to respectively train and validate a
model, which is specified and loaded via a config file. The fine-tuned model can then
be used to annotate and scrub PHI from the test set, which can be saved in the same
format options as the input data. The large arrows indicate starting points in the
workflow, as users can directly start from a fine-tuned model to annotate and scrub
PHI from new data.

Table 5.1: User stories for HIPAAway. The user stories are generally organized by
the steps in the de-identification workflow. The user stories are written in the format
of "As a: [user], I need: [functionality], so that: [reason].

ID Story Acceptance Test/s

S1: Load data As a: user of the de-identification package

I need: a method to load my dataset so

that it can be processed.

So that: I can identify and remove PHI

from the dataset.

T1: Load and parse

txt, csv, and json files

correctly.

S2: Annotate

PHI

As a: user of the de-identification package

I need: a method to annotate PHI within

my dataset

So that: I can review the annotations.

T2: Display the an-

notations in an un-

derstandable format.
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ID Story Acceptance Test/s

S3: Scrub

PHI

As a: user of the de-identification package

I need: a method to scrub PHI from my

data

So that: I can generate a de-identified

version of the data.

T3: Does the

software remove

PHI from my pre-

generated test set as

expected?

S4: Output

data

As a: user of the de-identification package

I need: to output my scrubbed data to

file and optionally a file containing the an-

notations

So that: I can share the de-identified ver-

sion of the data.

T4: Does the soft-

ware allow the de-

identified data to be

outputted to plain

text?

S5: Output

validation

As a: user of the de-identification package

I need: a way to measure the degree of

confidence that the output dataset is de-

identified to an agreed standard

So that: I can have confidence that I

know the PHI levels in the output dataset.

T5: Does the

software reach an

acceptable minimum

performance on my

benchmark dataset?

S6: Package

load

As a: person wanting to use the de-

identification package

I need: to be able to install the package

into my development environment

So that: I can use the tool.

T6: Users are able

to install the software

on local systems.

S7: Reporting As a: non-technical dataset owner

I need: to know the PHI levels pre- and

post-running the tool as a human-readable

report output

So that: I can have assurance that the

PHI in my data are at a certain level.

T7: Summary re-

ports can be created

using the software.
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ID Story Acceptance Test/s

S8: Aware-

ness and

terms of use

As a: user and consumer of the tool or

reports

I need: to be aware and/or confirm that I

understand that not all PHI data may be

removed

So that: I know and have acknowledged

that the output dataset may still contain

PHI.

T8: The software

and output reports

include clear guid-

ance on terms of use.

S9: Docu-

mentation

As a: user of the software or reports

I need: documentation

So that: I clearly understand how it

works.

T9: Documentation

is publicly available.

S10: Publica-

tion

As a: user of the tool or reports

I need: to be able to cite an authoritative

source that describes the software

So that: I can provide reassurance of the

quality of my de-identification approach.

T10: Paper submit-

ted to journal.

5.3 Implementation

In this section, we describe the development of HIPAAway. We first describe the NLP

libraries we use and then detail the implementation of the de-identification pipeline.

5.3.1 Choosing a library

When developing software employing natural language processing, choosing the right

NLP library is important, as the library provides developers with a wide range of

algorithms for building and applying machine learning models. Which NLP library

performs best depends on the task (e.g. tokenization or part-of-speech tagging) and
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the source (e.g. clinical text, which includes domain-specific technical language).

Despite this, Omran and Treude (2017) [5] have discovered that only a small minority

of software engineering conference papers that mention "natural language" mention

the NLP library used, and an even smaller proportion justify their choice of the

library. For the development of HIPAAway, we first build a framework using spaCy,

which Omran and Treude (2017) [5] found to have the most promising performance on

the NLP tasks they studied. After discovering some limitations with spaCy for our

intended implementation, we then switch to the Huggingface Transformers library

[63], which provides tools to easily download and train state-of-the-art pretrained

models.

Initial approach: spaCy

The initial de-identification package work focused on building a pipeline in spaCy [18],

which provides powerful language processing pipelines that take in text and return a

processed Doc object. The Doc object contains a list of Token objects, which contain

information about the tokenized text, such as the token’s text, start and end indices,

and label. Doc object text can undergo tokenization, part-of-speech tagging, named

entity recognition, and other processes depending on the pipeline. spaCy also offers

ways to incorporate pattern-matching approaches to the pipeline with components

like Matcher and EntityRuler.

Challenges using spaCy

After building out a de-identification pipeline in spaCy, we evaluated the performance

of the pipeline on the i2b2 2014 de-identification challenge data. We found that the

pipeline performance on the data fell short of the state of the art. We identified

several challenges with spaCy that contributed to this poor performance.

spaCy’s available models for NER are limited. The NER model is based on either

a CNN or transformer (RoBERTa) architecture. We found that that the CNN-based

pipeline had poor performance, so we focused on the transformer-based pipeline.

We used spaCy’s wrapper for the Huggingface Transformers library [63] to fine-tune
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different transformers on the i2b2 2014 de-identification challenge data. However, we

found that the fine-tuned models had poor performance on the i2b2 test data. We

concluded that the poor performance of the fine-tuned models was due to the inability

to use the NER heads from the pre-trained Huggingface transformers, losing valuable

information from pre-training. While some modifications could be made to obtain

predictions from the full Huggingface pre-trained model, these modifications would

prevent the model from being trainable in spaCy. Based on these factors, we looked

to building out the de-identification on top of the Huggingface transformers library

directly.

The Huggingface Transformers library

The HuggingFace Transformers library is a popular Python library that provides APIs

and tools to easily access and train state-of-the-art pretrained models.1 The models

support a broad range of machine learning tasks in different modalities, including

natural language processing. Within NLP, models can be used for tasks such as text

classification, named entity recognition, and question answering. The library also

supports framework interoperability between PyTorch, Tensorflow, and JAX, three

widely used deep learning frameworks. Similar to spaCy, the Transformers library

also provides a pipeline that takes in text and returns the processed text. The pipeline

supports a variety of tasks, including named entity recognition.

HIPAAway does not use the Huggingface pipeline directly, instead implementing

each step in the pipeline separately for more flexibility. To transition from the spaCy

workflow to Huggingface would be facilitated with a spaCy Doc-like object to rep-

resent each note. We use the Huggingface Dataset object, which–while it does not

split up notes into separate objects–has access to the data and methods needed for

implementing the de-identification workflow. The steps are detailed below.

1https://huggingface.co/transformers/
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5.3.2 Pre-processing data

HIPAAway supports loading data in multiple file type formats, specifying an annota-

tion format (if applicable) for each of .txt, .csv, and .json files. For data pre-processing,

HIPAAway supports sentence and word tokenization, as well as the ability to split

data into training, validation, and test sets. More details on data loading formats

and pre-processing are provided in Section 4. The data is annotated using the BIO

scheme, which annotates each token with B (beginning of a PHI entity), I (inside a

PHI entity), or O (outside a PHI entity).

5.3.3 Tokenization

We define tokenization here as the model-dependent process of splitting text into

tokens. HIPAAway uses the Huggingface Tokenizers library for tokenization2. As

defined by the Tokenizers library, the tokenization involves the following steps: nor-

malization, pre-tokenization, model, and post-processing. Normalization involves a

set of operations to a raw string to make it "cleaner," including operations like re-

moving whitespace and lowercasing text. Pre-tokenization splits the text into smaller

parts that can be considered "words," of which the final tokens will be a part. The

model step is when the Tokenizer applies a given model on the pre-tokens and is the

part that requires either training on the corpus or a pretrained tokenizer. Currently,

the Tokenizers library supports the following tokenization methods: WordLevel, byte-

pair encoding (BPE), Unigram, and WordPiece. WordLevel simply maps words to

IDs, while the other three options are subword tokenization algorithms, which further

split words into smaller tokens. Finally, the last step of the tokenization pipeline is

post-processing, which includes any additional transformations to the encoding, such

as adding special tokens that indicate the beginning or end of sentences. HIPAAway

uses the pre-trained tokenizers associated with each model in the Transformers li-

brary; for example, the BERT model has a corresponding BERT tokenizer that relies

on the WordPiece algorithm.

2https://huggingface.co/docs/tokenizers/index
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5.3.4 Training (fine-tuning)

HIPAAway allows users to specify any model in the Huggingface Transformers library

they wish to use, as long as the model is suitable for the task of token classification

(named entity recognition). Because the vast majority of the models available are not

pre-trained in the clinical domain, fine-tuning–even if only based on a few examples

with PHI tags–is crucial. That said, the package makes this step optional, allowing

users to skip fine-tuning and use the desired model as-is, with the recommendation

that they use a model that has been fine-tuned on a clinical de-identification task.

HIPAAway uses the Huggingface Trainer class3 to train the models, which pro-

vides an API for training in PyTorch. In addition to training, the Trainer class also

handles model evaluation and prediction. Users can specify training arguments such

as number of training epochs, batch size, and learning rate.

Saving and loading models

Following fine-tuning, models can be saved locally or in a private Huggingface repos-

itory. To access these models, users can specify a local filepath or a Huggingface

repository name in the config file as input into the de-identification pipeline.

5.3.5 Validation

Validation is an optional but recommended step in HIPAAway. The package uses the

Trainer class’s built-in evaluation method to evaluate the model on the validation

data. Users can evaluate their models on validation data set aside from the training

data or the training data itself (not recommended) to tune hyperparameters such as

the training arguments mentioned above: number of training epochs, batch size, and

learning rate.

3https://huggingface.co/docs/transformers/main_classes/trainer
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5.3.6 Prediction

The prediction step of HIPAAway uses the Trainer class’s built-in prediction method

to predict instances of PHI on either test data or new, unannotated data. The package

provides an annotate method that takes in a Dataset object and returns a list of

predicted labels for each full-word token in the dataset.

5.3.7 Aggregation of predictions

HIPAAway allows for ensembling models by aggregating predictions from multiple

models. The package provides a combine_annotations method that takes in a list

of predictions from different models and returns a list of predicted labels for each

full-word token in the dataset. The aggregation method is majority vote, and other

methods may be added in the future.

5.3.8 Evaluation

The models are evaluated using micro-averaged precision, recall, and F1 score, so

each prediction for a token is weighted equally. We focus on recall and F1 score, as

recall emphasizes false negatives (missed PHI), and F1 score is the harmonic mean of

precision and recall.

In NER, there are two levels of evaluation: entity and token. Entity-level eval-

uation is the standard in NER, where a model is evaluated on whether it correctly

predicts the entire entity. Token-level evaluation is more granular, as the model is

evaluated on whether each token of an entity is correctly predicted. For example, given

the ground truth label for "Jane Doe" is "B-NAME-PATIENT I-NAME-PATIENT,"

a model predicts "B-NAME-PATIENT O." The model would be considered correct

for "Jane" but not "Doe" in token-level evaluation, and it would be entirely wrong un-

der entity-level evaluation. HIPAAway uses entity-level evaluation, as it is important

to correctly predict the entire PHI instance, not just some of its tokens.
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5.3.9 Scrubbing

HIPAAway enables the scrubbing of PHI from data using the scrub method, which

takes in a Huggingface Dataset object with annotated text to be scrubbed, the scrub-

bing method, and optional parameters for the scrubbing method. The package pro-

vides two scrubbing methods: remove and replace. The remove method removes

all tokens with PHI tags from the text, in effect replacing them with empty strings.

The replace method replaces all tokens with PHI tags with a specified replacement

token. The replacement token can be the same for all PHI types (e.g. a string of

underscores, ’___’), or it can be an indicator for each class (e.g. ’NAME-PATIENT’

for all tokens with the ’NAME-PATIENT’ tag).

5.4 Package evaluation

5.4.1 Performance on i2b2 2014 dataset

We evaluate the performance of HIPAAway on the i2b2 2014 dataset and compare

it with the performance of other models in literature, namely the ones evaluated in

Johnson et al. (2020). We evaluate for precision, recall, and F1 score with a focus on

recall and F1 score, as recall emphasizes false negatives (missed PHI), and F1 score is

the harmonic mean of precision and recall. The results are shown in Table 5.2. Note

that the goal of this project is to develop software to allow de-identification models

to be applied rather than developing the algorithms themselves.

One issue in evaluating performance is the lack of a standardized way to cal-

culate metrics, which we highlight in Chapter 2 when reviewing currently available

de-identification software. The metric calculation used by HIPAAway is seqeval

[41], which underpins the Huggingface Trainer class’s evaluation method by default.

seqeval is a Python framework for evaluating sequence labeling tasks like named

entity recognition. seqeval calculates precision, recall, and F1 score at the entity

level, in line with CoNLL-2000 [50] and other benchmark NLP tasks. However, de-

identification papers in literature often calculate metrics at the token level due to
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Table 5.2: Performance of HIPAAway on the i2b2 2014 dataset compared with other
models in the literature. The best performance from past literature and HIPAAway
are in bold. Note that the goal of this project is to develop software to allow de-
identification models to be applied rather than developing the algorithms themselves.
*: Due to computational constraints, we were unable to fine-tune and evaluate the
BERT-large, uncased model on the i2b2 2014 dataset in this study.

Model Reference Precision Recall F1-Score Eval

BERT-large, uncased* Johnson et al. 0.987 0.982 0.984 token

BERT-large, cased Johnson et al. 0.986 0.978 0.982 token
HIPAAway 0.961 0.941 0.951 entity

BERT-base, uncased Johnson et al. 0.986 0.979 0.983 token
HIPAAway 0.963 0.959 0.961 entity

BERT-base, cased Johnson et al. 0.984 0.974 0.979 token
HIPAAway 0.957 0.944 0.950 entity

RoBERTa-base HIPAAway 0.970 0.965 0.967 entity
RoBERTa-large HIPAAway 0.963 0.968 0.965 entity
AlBERT-base HIPAAway 0.961 0.949 0.955 entity
DistilBERT-base, uncased HIPAAway 0.955 0.954 0.955 entity
DistilBERT-base, cased HIPAAway 0.954 0.941 0.947 entity

an emphasis on catching any PHI tokens rather than getting entire PHI entities cor-

rect. For example, Johnson et al. (2020) [21] evaluate metrics at the token level, so

their metrics are not directly comparable to ours. However, they serve as a helpful

ballpark estimate of performance. While the transformer models tested using the

HIPAAway framework have overall lower metrics than the models in HIPAAway, we

view our current metrics as a lower bound on performance. We hypothesize that

the lower metrics are due to the entity-level calculation of our metrics as opposed to

the compared token-level metrics. We also note that the models in HIPAAway are

trained using default hyperparameters, and we expect that performance can be im-

proved with hyperparameter tuning. We leave the calculation of token-level metrics

and hyperparameter tuning for future work.

5.4.2 Qualitative analysis of missed PHI

We continue with a qualitative analysis of PHI missed by language models in HIPA-

Away (false negatives), with a focus on the RoBERTa-base model, as it had the highest
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F1 score in our analysis. Similar to previous work in Dernoncourt et al. (2017) [10],

we notice patterns in the PHI missed. Dernoncourt et al. (2017) groups the sources

of errors into four main categories described as follows:

• Abbreviations: PHI instances that are abbreviations are sometimes challenging

to detect, especially when they are short and ambiguous.

• Ambiguities: Some PHI instances may not even be recognized as PHI by humans

due to uncertainty, such as common words or numbers that could be dates (PHI)

or test results (not PHI).

• Data sparsity: The training data may not contain many PHI instances similar

to certain ones that are missed in the test set.

• Debatable annotations: Some tokens marked as PHI instances could also be

considered as not PHI, such as names of medical conditions that happen to

have common human names.

We hypothesize that the missed PHI can be categorized into the above categories

and further extend the categories to include the following:

• Placement: PHI instances may be missed if they are split over multiple lines,

especially in the case of sentence tokenization, when inter-sentence relationships

between tokens are not taken into account.

Based on these definitions, we categorize the PHI missed by the RoBERTa-base

model into the five categories: abbreviations, ambiguities, data sparsity, debatable

annotations, and placement. We provide examples of each category in Table 5.3.

Notably, an abbreviation for a doctor’s name is missed ("O"), and we point out the

ambiguity of the missed DATE entity, which only includes the last two digis of the

year (i.e. 85 for 1985), which can be confused for a lab result or other non-PHI

metric. We also highlight a missed AGE entity in the format "[age]y[months]m"

(i.e. 56y0.5m), which is not a common age format and possibly appears little to no

times in the training data. There are two "debatable" PHI annoations included: (1)
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Table 5.3: Sample PHI missed by HIPAAway with context and hypothesized reason
missed.

PHI type Missed PHI with context Reason

DOCTOR Call me in a week to tell me how it is goin.
Best wishes, O

Abbreviation

DATE Has now gained 16lbs in less than a
month 4/04/85 Cancelled two attempts for
EGD/colonoscopy 85

Ambiguity

AGE 11/18/2069 NEGATIVE Vital Signs BLOOD
PRESSURE 128/68 WEIGHT 210 lbAGE
56y0.5m Physical Exam Stable fatigued ap-
pearance NAD

Data sparsity

PROFESSION Pt lives alone and has 2 daughters who live
nearby on the same street. Former Computer
and Network Operator. Smoked 1 PPD x 20
years, but stopped many years ago.

Debatable

ORGANIZATION Improving tolerance of CPAP seems very key.
Pt has started atkins dt with good success
(6# in first week)

Debatable

PATIENT It is certainly a pleasure for me to participate
in Shilpa \n Pickett’ care.

Placement

an example of the word "and" in a profession being considered PHI, which seems

unnecessary, albeit likely not to impact downstream clinical model predictions on the

de-identified text, and (2) an example of the word "atkins" in a diet being considered

PHI, which is debatable as it is a common diet and not a person’s name. The flagging

and subsequent scrubbing of "atkins" in this context as PHI could potentially impact

predictions made on this patient, as the diet is relevant to the patient’s health. Finally,

we include an example of a PATIENT entity missed likely due to its nature of having

a line break in the middle, preventing the model does not recognize the entity as a

whole.

This qualitative analysis of missed names highlights current hypothesized sources

of error for de-identification models, only some of which can be easily mitigated. In

the case of data sparsity, our proposed solution would be to increase the representation

of data with similar formats to the missed PHI to improve their detection rate. This

would work easily for numerical PHI, where structure rather than content is important
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for detection. In the case of PHI like names, content is more important than structure,

and while at issue here is potentially also data sparsity, it is more difficult to anticipate

all possible expected names in the training data. The other sources of error for missed

PHI are more difficult to address, and in particular, the "debetable" annotations

highlight the need for a standardized technical specification for PHI.

5.5 Discussion

In this work, we develop HIPAAway, a de-identification software tool that can be used

to remove PHI from clinical text. We evaluate the performance of HIPAAway on the

i2b2 2014 dataset and find that the best-performing models after fine-tuning are

RoBERTa-large and RoBERTa-base, which achieve the highest recall (0.968) and F1

score (0.967), respectively, out of the models analyzed. These metrics are competitive

for de-identification performance and are a promising start for the development and

release of high-performing pre-trained models as part of HIPAAway.

That said, we have come to believe that consistently achieving 100% accuracy may

remain an unattainable task. In addition to the possibility of new instances of PHI

unlike anything seen before, the presence of PHI that are ambiguous and debatable

means that there is no single "correct" answer for de-identification, complicating the

process and evaluation of de-identification.

If de-identification models are unable to reach 100% accuracy, we have a problem.

An accuracy of 99.9% would mean that for every 10,000 instances of PHI, perhaps

10 would be missed. These missed PHI instances have the possibility of being very

rare names or other unique identifiers that would put their respective patients at a

disproportionally high risk of de-identification. This is why we emphasize that even

though HIPAAway is intended to remove PHI as defined by HIPAA, careful human

review of all annotations is paramount.

Furthermore, HIPAA-defined de-identification works for data in the United States,

but other countries (or continents) may have more stringent privacy rules, such as Eu-
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rope’s GDPR, the "toughest privacy and security law in the world."4 One example of

GDPR being stricter than HIPAA is in the case of anonymization vs. pseudonymiza-

tion, both of which are possible methods of de-identification. In anonymization,

data is fully scrubbed for any PHI. GDPR defines pseudonymization as the follow-

ing: ”the processing of personal data in such a way that the data can no longer be

attributed to a specific data subject *without the use of additional information.*”

The "additional information" must be kept separately and is subject to measures to

ensure that the personal data cannot be attributed to a person. While HIPAA allows

de-identification in the forms of both anonymization and pseudonymization, GDPR

considers pseudonymous data as still personal data that cannot be shared in the same

way that anonymous data can.

One concern is that with the advances in natural language processing, the defi-

nition of pseudonymization may need to become broader in scope, and the task of

de-identification in its current form may become nearly impossible. Taking a stringent

view of privacy, it is possible to consider a free-text clinical note’s very structure as

the unique "noteprint" that serves as the key to be matched back to the original note.

This means that the PHI-containing electronic medical record itself is the "additional

information" that could turn de-identified text previously considered anonymous to

pseudonymous instead and thus personal data covered by GDPR. This is why the

package name of HIPAAway highlights the removal of HIPAA identifiers, which is not

a complete solution but rather a first step of the de-identification task. We believe

that the de-identification task will need to be redefined in the future to account for the

possibility of the note itself being the key to re-identification via its unique noteprint.

4https://gdpr-info.eu/
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Chapter 6

Future work and conclusion

In this thesis, we present contributions in the following areas: a review of the current

state of the art in de-identification software, a new de-identification dataset, an au-

dit of biases in existing de-identification tools, and a new de-identification software

package. We conclude with a discussion of future work.

6.1 Future work

6.1.1 Package improvements

Looking ahead, two major avenues of enhancement for the package are improving the

de-identification models’ performance and increasing ease of use. Previous research

has shown that hybrid approaches of pattern matching and machine learning can have

better performance than each method on its own, though the hybrid approaches have

only used LSTMs, not transformers [32]. We plan to incorporate pattern matching

approaches into the package, which–when combined with the package’s transformers

models–also have the potential to improve performance. We also hope to apply the

lessons learned from the bias audit and take a step toward mitigating biases in our

own fine-tuned models by further fine-tuning them with a more diverse set of data.

Finally, future work on the package could include designing a graphical user interface

for the software, which would make it easier for non-technical users to use the package
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to de-identify their data.

6.1.2 Standards for de-identification

Considering the variability in PHI definitions, dataset attributes, and calculation of

de-identification matrics, de-identification has much room for standardization. The

lack of standardization not only makes comparison of de-identification models dif-

ferent, but it also leaves uncertainty concerning the degree to which data has been

sufficiently de-identified under HIPAA. We propose for future work to develop a de-

tailed technical specification for PHI that would make PHI annotations more uniform

across datasets. We also suggest the curation of a single corpus of data which com-

bines text data from all publicly available clinical datasets. The resulting corpus

would contain notes from different clinical settings and medical disciplines and, when

used for model training, may facilitate better generalizability of de-identification mod-

els. Lastly, we call for the identification of a standard set of de-identification metrics,

with clear steps on how to calculate each one, as well as the potential development

of a light software tool to calculate these metrics.

6.1.3 Beyond HIPAA de-identification

In light of some of the challenges facing de-identification software highlighted in Chap-

ter 5, we come to a broader question: is de-identification enough? We believe the

answer is no; de-identification needs to be augmented with methods that help pre-

vent re-identification and disclosure of patient identifiers. One example method that

would help is the "hiding in plain sight" approach: surrogate names are inserted in

the place of real names so that if some real names are missed, they can "hide" among

the artificially inserted identifiers. Another option is the generation of synthetic clin-

ical notes, which shows more promise as large language models become increasingly

more adept at generating realistic data in all types of domains.
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6.2 Conclusion

This thesis has presented a review of the current state of the art in de-identification

software, a new de-identification dataset, an audit of demographic biases in existing

de-identification tools, and a new de-identification software package. We hope that the

audit will be a wake-up call for the de-identification community, as well as a framework

for future audits. We also hope that HIPAAway will be useful to researchers and

clinicians who need to de-identify their patient data to enable sharing. Finally, we

hope that the work presented in this thesis will help to advance the field of de-

identification and contribute to the curation of more secure and useful de-identified

data.
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