
Private Information Retrieval with Access Control

by

Pawan Goyal
S.B., Computer Science and Engineering and Mathematical Economics,

Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Pawan Goyal. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Pawan Goyal
Department of Electrical Engineering and Computer Science
May 19, 2023

Certified by: Sacha Servan-Schreiber
Ph.D. Candidate, MIT CSAIL
Thesis Supervisor

Certified by: Srini Devadas
Edwin Sibley Webster Professor of Electrical Engineering
and Computer Science
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Private Information Retrieval with Access Control

by

Pawan Goyal

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Private Information Retrieval (PIR) allows a user to query for a record from a remote
database without revealing the query to the database server. However, PIR does not
provide access control guarantees, allowing any user access to any record. Moreover,
the database server cannot check access permissions through conventional techniques
as they are fundamentally incompatible with PIR.

In this thesis, we present Pirac—a novel framework for access control in PIR.
In Pirac, only users who have permission to access a specific database record can
retrieve it. Our constructions make black-box use of the underlying PIR schemes and
therefore apply to both single-server and multi-server PIR.

We evaluate our open-source implementation of Pirac when applied to state-of-the-
art PIR schemes. For databases with roughly one million 4 KiB records, adding access
control via Pirac incurs a 2.6× server-side computational overhead in single-server
PIR and 3.1× in multi-server PIR, while keeping user processing and communication
overheads at a minimum.

We show that Pirac enables new applications of PIR, including privacy-preserving
password breach lookups, multi-user databases with personal content, and private
friend discovery, among others.

Thesis Supervisor: Sacha Servan-Schreiber
Title: Ph.D. Candidate, MIT CSAIL

Thesis Supervisor: Srini Devadas
Title: Edwin Sibley Webster Professor of Electrical Engineering
and Computer Science

3

4

Acknowledgments

I would first and foremost like to express my utmost gratitude to my direct thesis

advisor, Sacha Servan-Schreiber, without whose support this thesis would not have

been possible. He brought me up to speed with the latest advancements in cryptog-

raphy and showed incredible patience in discussing ideas. At times, I would have

good ideas, but he would ask the right questions to make them great. His passion for

cryptography served as a constant source of inspiration, and he always went the extra

mile to help me learn, handle failures, and rise again. Sacha, thanks for showing me

the art of doing research. I learned a lot from working with you.

I would also like to extend my sincere thanks to Srini Devadas, my faculty super-

visor, whose guidance and expertise have been invaluable during my pursuit of this

research. I am deeply grateful for his feedback and advice.

To Kyle Hogan, Mayuri Sridhar, and Simon Langowski, I want to express my deep

appreciation for offering valuable feedback and suggestions, in addition to creating a

fun and stimulating atmosphere during the times I spent in their office.

To my friends: Arindam, thanks for being a friend I could always confide in and

making me Cambridge’s best cocktails every weekend. Giannis, thanks for playing

ping pong with me and teaching me how to live an organized life. Tharindu, thanks

for countless late-night philosophical and not-so-philosophical talks and helping me

become a better version of myself. Yash, thanks for giving me a new perspective in

life and teaching me how to live life to the fullest. Era, thanks for organizing the

mafia nights and going on walks with me. To my brothers at my fraternity and my

friends in Norfolk, thanks for keeping me sane during the pandemic and ensuring that

each day is a new adventure.

Last but not least, I want to acknowledge my family and especially my sister

Shristi for their relentless support. They are my rock, constantly motivating me

through my life’s highs and lows.

I extend my gratitude to all those mentioned above, as well as anyone else who

has supported me along the way during my time here at MIT. Thank you all.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 15

1.1 Setting and Threat Model . 17

2 Overview 19

2.1 The Strawman Approach . 19

2.2 Overview of Pirac Constructions . 21

2.3 Efficiency Considerations . 21

3 Related Work 23

4 Preliminaries 25

4.1 Notation . 25

4.2 Private Information Retrieval . 25

4.2.1 PIR by Keywords . 27

4.3 Symmetric and Public-key Encryption 27

5 Pirac Definitions 29

5.1 Defining Authorization . 31

5.1.1 Breach Resilient Authorization 34

6 Pirac Construction 35

6.1 Pirac from PIR-by-keywords . 35

6.1.1 Keyword-private PIR-by-keywords 35

6.1.2 Constructing Pirac from Keyword-private PIR-by-keywords . . 36

7

6.2 Pirac from Encryption . 37

6.2.1 Pirac with Dynamic-database Authorization 37

6.2.2 Upgrading to Forward Secrecy 37

6.2.3 Making Pirac Breach Resilient 39

6.3 Practical Considerations . 40

7 Security Analysis 43

7.1 Security of Pirac from PIR-by-keywords 43

7.2 Security of Pirac from Encryption . 45

7.2.1 Proof of Dynamic-database Authorization 46

7.2.2 Security of the Forward Secrecy Upgrade 48

7.2.3 Security of Breach Resilience Upgrade 51

8 Evaluation 53

8.1 Re-encryption and Key Refreshing . 54

8.1.1 Re-encryption . 55

8.1.2 Key-refresh . 55

8.1.3 Key-refresh (user) . 55

8.2 Single-server PIR . 56

8.2.1 Static database and Static Access Policy 56

8.2.2 Dynamic Database and Static Access Policy 57

8.2.3 Dynamic Database and Dynamic Access Policy 58

8.3 Multi-server PIR . 59

8.4 Pirac with Breach Resilience . 60

8.5 Optimization: Periodic Updates . 61

8.6 Comparison to Prior Work . 62

9 Applications of Pirac 63

9.1 Private Password Breach Lookups . 63

9.2 Private Purchased Content Retrieval 64

9.3 Private Friend Discovery . 65

8

10 Conclusion 67

A Keyword-private PIR-by-keywords 81

B Additional Evaluation 85

B.1 Evaluation of Pirac from PIR-by-keywords 85

B.1.1 Single-server Pirac from keyword-private PIR-by-keywords . . 85

B.1.2 Two-server Pirac from keyword-private PIR-by-keywords . . . 86

B.2 Public-key Re-randomization . 87

B.3 Evaluation of Henry et al. [57] . 87

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Figures

1-1 (1a) An access authority gives an access policy to the database server

and (1b) distributes the access keys to users. (2a) a user queries the

database with PIR and (2b) recovers the record, provided they have

the correct access key. 17

8-1 Throughput of Pirac when using single-server PIR schemes for dif-

ferent record sizes and considering the three authorization models:

Static-database authorization (Construction 1; same throughput as

baseline), with dynamic-database authorization (Construction 3), and

with forward-secret authorization (Section 6.2.2). 58

8-2 Overhead of Pirac (with dynamic-database and forward-secret autho-

rization) applied to SpiralStreamPack using the optimization from Sec-

tion 6.3 for different number of queries (𝑇) between updates to the

database and/or access policy. The baseline throughput is not im-

pacted by periodic updates. Increasing 𝑇 causes Pirac’s performance

to approach the baseline. 61

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

List of Tables

8.1 Throughput of re-encryption and key-refresh in our Pirac implemen-

tation from symmetric encryption. The throughput for re-encryption

plateaus with sufficiently large records due to the linear complexity

of AES. When key-refresh and re-encryption are applied sequentially,

throughput decreases initially but eventually amortizes with larger

records because key-refresh is a fixed cost. 54

8.2 Throughput of Pirac from symmetric encryption when used with single-

server PIR schemes on a database of size 𝑛 = 220. 56

8.3 Pirac with forward-secret authorization (Section 6.2.2) applied to multi-

server PIR schemes. 60

B.1 Pirac from single-server PIR-by-keywords [71]. 86

B.2 Pirac from two-server PIR-by-keywords [16]. 86

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

Chapter 1

Introduction

User privacy is becoming an increasingly important consideration on the internet

and new cryptographic protocols are rapidly being developed to meet these privacy

demands. At the backbone of many such protocols is Private Information Retrieval

(PIR) [30, 63]. Through PIR, a user can retrieve a record from a remote database

without revealing the query to the database server.

PIR has seen a renewed interest thanks to several concrete applications, including

private messaging [10, 11, 80], content discovery [15, 83, 88, 89], private friend dis-

covery [39, 61], privacy-preserving advertising [12, 52, 60, 81, 91], blocklist lookups

[62, 86], and media consumption [56].

Systems that use PIR as a building block cater to a large number of users. In the

real world, different users might have different access rights to database records. For

example, subscription services require memberships to access pay-walled content [56]

and friend discovery services should only reveal account information to contacts to

avoid publicly leaking email addresses or phone numbers [61, 73].

These examples motivate the development of access control in PIR and highlight

the current gap between real-world databases which support access control (but have

no query privacy) and databases that support private queries through PIR (but have

no access control). Specifically, conventional access control is easy: it suffices for the

server to check if the user is authorized to retrieve the requested record. However,

enforcing access control in PIR, where the query must remain private from the server,

15

becomes a challenging problem [56, 57, 65, 66]. Conventional approaches to access

control rely on the query, which puts them in fundamental conflict with the query

privacy property of PIR [56].

With this in mind, we formally examine how access control can be applied to PIR,

achieving a similar functionality to that of traditional databases.

Our contribution. This thesis contributes Pirac: a framework for adding access

control to PIR. We realize Pirac via two different classes of constructions.

Construction I. Our first construction is realized using a PIR-by-keywords scheme.

This approach requires no additional cryptographic assumptions but does require the

PIR-by-keywords scheme to satisfy “keyword privacy,” a property that we define in

Section 6.1.1.

Construction II. Our second construction is realized using lightweight cryptography

(symmetric-key encryption and pseudorandom functions) and is more general in that

it makes no assumptions whatsoever on the underlying PIR scheme. At a high level,

our construction encrypts the database such that only the authorized access key

holder can decrypt the retrieved record. The user queries the database as before, but

only authorized users can decrypt the result. However, we show that additional care

is required to handle dynamic databases and changing access policies, concepts we

elaborate on in Section 1.1.

The second construction is more concretely efficient and more widely applicable,

making it the focus of this thesis and our evaluation. We show in Chapter 8, that Pirac

imposes minimal computational overheads on the server and has no communication

overheads. These features make it possible to deploy Pirac in exciting new contexts

and applications, which we highlight in Chapter 9.

In summary, this thesis contributes:

1. Pirac: a framework for introducing access control to PIR with immediate real-

world applications,

2. a construction using keyword-private PIR-by-keywords that makes no additional

cryptographic assumptions,

16

3. a construction based on lightweight cryptographic primitives that applies to all

PIR schemes, and

4. an open-source implementation of Pirac, which we extensively evaluate using both

single-server and multi-server PIR schemes.

1.1 Setting and Threat Model

������� ��������

�������������

���������������
1 2 3 4

��������������������

	���

��� 2a

1a

2b

1b

3

Figure 1-1: (1a) An access authority gives an access policy to the database server and (1b)
distributes the access keys to users. (2a) a user queries the database with PIR and (2b)
recovers the record, provided they have the correct access key.

Pirac is instantiated with one (or more) database server(s) and a set of users.

For simplicity, however, we focus on the single-server PIR setting. The Pirac setting

and parties involved are illustrated in Figure 1-1. The database server processes user

queries and enforces access control policies over the queries. Similarly to prior work

(e.g., [48, 65, 66]), we assume that the access policy is created and provided to the

database server by an authority that also oversees granting access rights to users. For

example, this authority can be the database owner or an external party like a bank

or identity provider that outsources the PIR computation; in other cases, the access

authority can be the database server itself (see Chapter 9).

The threat model and assumptions of Pirac reflect those of PIR, which requires

query privacy for the user when interacting with a malicious database server (see

Chapter 4 for a formal definition of PIR). However, in Pirac, we must additionally

consider access control and record privacy for the database. Specifically, we must

model a setting where users may try to learn information about records that they do

not have permission to access.

17

Threat model. The goal of our threat model is to capture the different settings and

assumptions under which the server must enforce access control. Each threat model

“tier” reduces the set of restrictions surrounding the database and access permissions

(i.e., static or dynamic database records and permissions). These are summarized

below and formalized in Chapter 5.

1. Static-database authorization applies only to static databases and static access

policies. Assumes: records do not change over time, permissions for a record do

not change, and a secret server state.

2. Dynamic-database authorization applies to dynamic databases, where records

may change over time, and ensures that no information is revealed about a record

to a user unless they have permission to access the record. Assumes: a static ac-

cess policy and a secret server state.

3. Forward-secret authorization enhances dynamic-database authorization and ap-

plies to dynamic databases, where both records and access permissions change

over time. This tier ensures that users that gain access to a record learn no infor-

mation on previous versions of the record in the database prior to them gaining

access [41, 54]. Assumes: only a secret server state.

Breach resilience. For all three tiers, we can additionally require breach resilience [9,

85], which guarantees that even if the entire state of the database server is compro-

mised and revealed to users, access control is still guaranteed. This captures a threat

model where a “snapshot” of the database and server state might be leaked to an

adversary at various points in time and removes the assumption of a secret server

state under all three authorization tiers.

18

Chapter 2

Overview

In this section, we describe a “strawman” approach to realizing access control in PIR

and cover some limitations associated with it. We then overview our approaches to

realizing Pirac for dynamic databases in Section 2.2.

2.1 The Strawman Approach

A natural idea for realizing access control in PIR is using encryption: simply encrypt

each record using its access key! We describe this folklore strawman approach in

Construction 1.

Limitations of the strawman approach. The strawman approach is only secure

under the static-database authorization model described in Section 1.1. We explain

below why this construction fails to meet the required authorization properties when

considering dynamic databases and access policies.

Not dynamic-database compatible. The first limitation of Construction 1 is that it

may reveal when a record is updated. Consider malicious users that repeatedly query

the database for a record that they do not have permission to access. Depending on

the returned (encrypted) record, the user can determine if the record was updated or

not by inspecting the ciphertext: the ciphertext will be different if the server replaced

the 𝑖-th record with the updated (encrypted) record. This is metadata leakage (ob-

19

Strawman Pirac with static-database authorization

To set up an access policy as the access authority:

Step 1. Generate 𝑛 encryption keys Λ := (𝜅1, . . . , 𝜅𝑛).
◁ Let 𝜅𝑖 be the access key for the 𝑖-th record in the database.

Step 2. Give access key 𝜅𝑖 to users who are authorized to access the 𝑖-th record in
the database and send Λ to the database server.

To set up access control for the database as the server:
◁ Let database 𝒟ℬ := (x1, . . . , x𝑛), where x𝑖 is the 𝑖-th record.

Step 1. Encrypt record x𝑖 for 𝑖 ∈ {1, . . . , 𝑛} with access key 𝜅𝑖, using symmetric-key
encryption, to obtain ciphertext x̃𝑖.

Step 2. Replace the 𝑖-th record in the database with x̃𝑖.

To retrieve record x𝑖 as an authorized user:

Step 1. Retrieve the encrypted record x̃𝑖 from the server via PIR.

Step 2. Decrypt the retrieved record using the access key 𝜅𝑖 and recover the
(plaintext) database record x𝑖.

Construction 1: Static-database Pirac from encryption.

servers learn information about the database even without seeing the contents of the

database) that can have important downstream ramifications in many systems.

Not forward secret. The strawman scheme does not provide forward secrecy. Suppose

a user does not have access to the 𝑖-th record at time 𝑡0. Then, at a future time 𝑡1,

the user is given access to the 𝑖-th record following an update to the database. If the

user queried and stored the (encrypted) record at time 𝑡0, then they can recover the

old record after gaining access to the updated record at time 𝑡1.

Not breach resilient. The strawman scheme does not provide security against a snap-

shot adversary that obtains a copy of the server state at different points in time [9].

Specifically, even though the data is encrypted, the server can have the encryption

keys in the clear (e.g., for the purpose of encrypting record updates). As such, it is

possible to decrypt all the records with a copy of the server state.

20

2.2 Overview of Pirac Constructions

We provide two classes of constructions for Pirac.

Pirac via PIR-by-keywords

Our first construction is based on keyword-private PIR-by-keywords, a notion that we

define in Section 6.1.1 and achieved by several existing PIR-by-keyword schemes [16,

71] (also see Appendix A). Our Pirac construction is essentially a reduction from

keyword-private PIR-by-keywords to Pirac, which we describe in Section 6.1.2, and

achieves forward-secret authorization by default.

Pirac via encryption

Our second construction is realized by upgrading the strawman Pirac (Construction 1)

to handle authorization with dynamic databases and (optionally) forward secrecy. At

a high level, we show that if the server refreshes the key with the help of a PRF

and re-encrypts each record between queries, we can achieve (1) metadata privacy

between updates and (2) forward secrecy as access rights change (see Section 6.2).

Upgrade to breach resilience. In Section 6.2.3, we show how to upgrade our encryption-

based construction to achieve breach resilience. We do so through public-key en-

cryption (as opposed to using symmetric-key encryption). Unfortunately, public-key

encryption incurs a large concrete overhead making breach resilience primarily of

theoretical interest on larger databases (see Chapter 8 for evaluation).

2.3 Efficiency Considerations

We highlight some efficiency properties that we consider when defining and construct-

ing Pirac.

• Server-side overhead. One important property is the server-side overhead: Pirac

should not impose significant server-side work, ideally remaining on-par with the

work required to process the baseline PIR query.

21

• User-side overhead. Similarly, Pirac should not impose significant user-side com-

putational overheads and must remain on-par with the work required to generate

the baseline PIR query.

• Communication overhead. Finally, we must ensure that the communication be-

tween the user and the server in Pirac does not significantly increase, relative to

the baseline PIR scheme.

When defining Pirac, we will allow for a polynomial factor (in the security parameter)

overhead in all three of these properties. However, we note that our constructions

achieve minimal overheads that are at worst a linear factor in the security parameter.

22

Chapter 3

Related Work

In this section, we survey related work on access control and database privacy in PIR.

Symmetric PIR [47] (SPIR) is a solution to the database privacy problem (users

only gain one database record per query). Specifically, SPIR rate-limits users to only

one record per query, but does not provide access control, since any user is still allowed

to retrieve any record from the database.

Access control in single-server PIR. Layouni [65] is the first to consider ac-

cess control for the SPIR protocol of Lipmaa [69]. Layouni et al. [66] improve the

construction by making it black-box with respect to the underlying SPIR scheme

and considering a setting with multiple access authorities. Neither work provides

an implementation and their constructions are mainly of theoretical interest given

the heavy cryptographic primitives involved, including the use of a linear number of

bilinear pairing operations.

Access control in multi-server PIR. Henry et al. [57] build access control into

the Percy++ PIR scheme [48]. Their construction results in large computational

overheads for the servers and the user (due to zero-knowledge proofs, polynomial

commitments, and bilinear pairings). Additionally, the communication and compu-

tation for the user are linear in the number of records.

For PIR based on function secret sharing (FSS) [16], Servan-Schreiber et al. [82]

develop access control for FSS, which they show can be used to instantiate efficient

23

access control in two-server PIR (multi-server FSS schemes are not as efficient [16,

17, 20, 33]).

We compare both of these approaches to Pirac in Chapter 8 and note that neither

of these approaches to access control generalize to other multi-server PIR schemes.

Access control for Oblivious Transfer. A separate line of work explores access

control for Oblivious Transfer (OT) [6, 8, 21–24, 35, 40, 67, 90], which is related to

PIR. Like PIR, OT [79] is a protocol designed to privately retrieve a bit from a sender

(e.g., a database). However, unlike PIR, OT does not achieve the low communication

overhead required of PIR and is overall a weaker primitive compared to (symmetric)

PIR.

Among current OT schemes, Camenisch et al. [21] utilize anonymous credentials

and zero-knowledge proofs to enforce access control in Oblivious Transfer. In their

approach, the access policy is public, and users must convince the database that they

possess the credentials for all the required categories to access a specific entry. The

work of Camenisch et al. [24] extend this line of research by introducing hidden access

policies. However, to the best of our knowledge, none of the aforementioned works

provide an implementation of their schemes and are primarily of theoretical interest.

We consider these approaches as orthogonal but note that our Pirac constructions

can be applied to OT as well.

24

Chapter 4

Preliminaries

In this section, we describe the notation we use throughout the thesis and provide

background on the cryptographic protocols used in the construction of Pirac.

4.1 Notation

We describe the database as a vector 𝒟ℬ := (x1, . . . , x𝑛), where each x𝑖 ∈ {0, 1}ℓ. We

index into vectors as 𝒟ℬ[𝑖] such that 𝒟ℬ[𝑖] = x𝑖, modeling the syntax of an array

access. Occasionally, we denote the vector of tuples ((𝑤1, x1), . . . , (𝑤𝑛, x𝑛)) as 𝒟ℬW

and index into𝒟ℬW as𝒟ℬW[𝑤𝑖] = x𝑖, modeling the syntax of a key-value store instead

of an array access. We use N to denote natural numbers. Assignment to a variable 𝑥

from a possibly randomized algorithm Alg is denoted 𝑥 ← Alg and assignment from

a value 𝑦 is denoted 𝑥 := 𝑦. Sampling a random element 𝑥 from a distribution 𝒮

is denoted 𝑥 ← 𝑅 𝒮. By efficient, we mean any (possibly non-uniform) probabilistic

polynomial time (PPT) algorithm. We use the symbol ⊥ to represent “null” and

poly(·) to denote a fixed polynomial and negl(·) to denote a negligible function. We

use ≈𝑐 to denote computational indistinguishability between two distributions.

4.2 Private Information Retrieval

PIR is instantiated between a client and a remote database server. The database 𝒟ℬ

consists of 𝑛 ℓ-bit records (x1, . . . , x𝑛). The client has an index 𝑖 and must retrieve

25

𝒟ℬ[𝑖] through the server, without revealing 𝑖 to the server in the process.

Definition 4.1 (Private Information Retrieval [28, 30]). Fix security parameter 𝜆 ∈ N

and database parameters 𝑛, ℓ ∈ N. Let 𝒟ℬ be a 𝑛-record database with ℓ-bit records.

PIR consists of three efficient (possibly randomized) algorithms (Query,Answer,Recover),

with the following syntax.

• Query(1𝜆, 𝑖) → q. Takes as input the security parameter 𝜆 and an index 𝑖 ∈

{1, . . . , 𝑛}. Outputs a query q for index 𝑖.

• Answer(𝒟ℬ, q)→ c. Takes as input a database 𝒟ℬ and query q. Outputs a query

answer c.

• Recover(c)→ x. Takes as input the query answer c. Outputs database record x.

The above functionality must satisfy: correctness, privacy, and efficiency.

• Correctness. For all databases 𝒟ℬ and for all indices 𝑖 ∈ {1, . . . , 𝑛},

Pr

⎡⎢⎢⎢⎣
q← Query(1𝜆, 𝑖)

c← Answer(𝒟ℬ, q)

x← Recover(c)

: x = 𝒟ℬ[𝑖]

⎤⎥⎥⎥⎦ = 1− negl(𝜆).

• Privacy. For all indices 𝑖 ∈ {1, . . . , 𝑛}, there exists an efficient simulator 𝒮 such

that Query(1𝜆, 𝑖) ≈𝑐 𝒮(1𝜆). That is, the query reveals no information on the index

𝑖 to computationally bounded adversaries (i.e., the server).

• Efficiency. PIR is efficient if for all databases 𝒟ℬ, the size of the query and

response is 𝑂(𝑛𝜖1ℓ𝜖2), for any 𝜖1 < 1, 𝜖2 ≤ 1, that are possibly dependent on 𝑛.

Remark 1 (Multi-server PIR Syntax). Definition 4.1 captures the syntax of single-

server PIR schemes. However, we will also use the definition and syntax to describe

multi-server PIR. In this case, we treat each server as an individual instance using

the above syntax (and assume a local user state that links the two instances). Our

Pirac constructions will not require explicit multi-server PIR syntax.

26

4.2.1 PIR by Keywords

Definition 4.1 captures the syntax for querying the database at a particular index

(e.g., accessing an element in an array). A more general definition captures the

notion of querying the database on a keyword (e.g., accessing an element in a key-

value store). Syntactically, PIR.Query takes a keyword 𝑤 ∈ {0, 1}𝑘 (instead of an index

𝑖 ∈ {1, . . . , 𝑛} as defined in Definition 4.1) and PIR.Answer takes a keyword-value-pair

database denoted by 𝒟ℬW. All other properties of PIR remain the same.

4.3 Symmetric and Public-key Encryption

Here, we define symmetric-key encryption in Definition 4.2 and present its semantic

security in Definition 4.3.

Definition 4.2 (Symmetric-key Encryption [14, 51]). Fix a security parameter 𝜆 ∈ N.

A symmetric-key encryption scheme consists of three efficient (possibly randomized)

algorithms ℰ = (KeyGen, Enc, Dec) with the following syntax:

• KeyGen(1𝜆) → sk. Takes as input a security parameter 𝜆. Outputs a new secret

key sk.

• Enc(sk,𝑚) → 𝑐. Takes as input the secret key sk and message 𝑚. Outputs a

ciphertext 𝑐.

• Dec(sk, 𝑐) → 𝑚. Takes as input a secret key sk and ciphertext 𝑐. Outputs a

plaintext message 𝑚.

The above must satisfy correctness and semantic security. Correctness holds if

Dec(sk,Enc(sk,𝑚)) = 𝑚.

For convenience, we will use the simulation-based definition of semantic security [50,

68].

Definition 4.3 (Semantic Security [50, 68]). Fix security parameter 𝜆 ∈ N and mes-

sage length ℓ ≤ poly(𝜆). A symmetric-key encryption scheme ℰ = (KeyGen,Enc,Dec)

27

is said to be semantically secure if for all 𝑝 ≤ poly(𝜆) and messages 𝑚1 . . .𝑚𝑝 ∈ {0, 1}ℓ,

there exists an efficient simulator 𝒮 such that for

View :=

⎧⎨⎩𝑐1, . . . , 𝑐𝑝 :
sk← KeyGen(1𝜆),

c𝑖 ← Enc(sk,𝑚𝑖)

⃒⃒⃒⃒
⃒⃒ 𝑖 ∈ {1, . . . , 𝑝}

⎫⎬⎭,

it holds that View ≈𝑐 𝒮(1𝜆, ℓ, 𝑝, 𝑧), where 𝑧 ∈ {0, 1}* denotes arbitrary auxiliary

information. In words, a ciphertext reveals no information on the encrypted message

𝑚.

Public-key encryption. Public-key encryption shares the syntax of symmetric-key

encryption described in Definition 4.2, except that KeyGen outputs a key pair (pk, sk)

and Enc takes the public key pk instead of the secret key sk. The correctness and

semantic security definitions are then extended in a natural way.

28

Chapter 5

Pirac Definitions

In this chapter, we define Pirac. Our definition shares the syntax of PIR (Defini-

tion 4.1) and introduces additional functionality to support access authorization. In

Section 5.1, we define access authorization to complement our Pirac definition. Specif-

ically, we define static-database, dynamic-database, and forward-secret authorization,

which were highlighted in Section 1.1.

Authorization Predicate. We start by defining an authorization predicate AuthVerify,

that determines authorization with respect to an access policy Λ := (𝜅1, . . . , 𝜅𝑛), and

has the following syntax:

AuthVerify(Λ, 𝑖, 𝜅)→ yes or no. Takes as input the access policy Λ, index 𝑖, and an

access key 𝜅. Outputs yes if and only if 𝜅 is a valid access key with respect to Λ

and 𝑖.

We use the AuthVerify predicate to define Pirac in Definition 5.1.

Example: Equality Authorization Predicate. In our constructions, we define

Λ to be an ordered list of access keys (𝜅1, . . . , 𝜅𝑛) and AuthVerify to be the “equality

predicate” that outputs yes if and only if 𝜅 is the 𝑖-th access key in Λ. We note that

this model of access control is fully compatible with generic access policies [13, 19, 31].

Definition 5.1 (Private Information Retrieval with Access Control). Fix security

parameter 𝜆 ∈ N and database parameters 𝑛, ℓ ∈ N. Let 𝒟ℬ be an 𝑛-record database

29

with ℓ-bit records. Pirac consists of four efficient (possibly randomized) algorithms

(KeyGen, Query, Answer, Recover) with the following syntax:

• KeyGen(1𝜆, 𝑖)→ 𝜅𝑖. Takes as input a security parameter 𝜆 and index 𝑖 ∈ {1, . . . , 𝑛}.

Outputs an access key 𝜅𝑖 for the 𝑖-th record.

• Query(𝜅, 𝑖)→ q. Takes as input the access key 𝜅 and index 𝑖 ∈ {1, . . . , 𝑛}. Outputs

a query q.

• Answer(𝒟ℬ,Λ, q)→ c. Takes as input a database 𝒟ℬ, access policy Λ, and query

q. Outputs answer c.

• Recover(𝜅, c) → (x or ⊥). Takes as input access key 𝜅 and a query answer c.

Outputs database record x or ⊥ (fail).

We let Λ := (𝜅1, . . . , 𝜅𝑛), where 𝜅𝑖 are generated according to KeyGen. The above

functionality must satisfy: correctness, privacy, authorization, and efficiency. We

define authorization in Section 5.1.

• Correctness. For all databases 𝒟ℬ, indices 𝑖 ∈ {1, . . . , 𝑛}, access policies Λ, and

access keys 𝜅, if AuthVerify(Λ, 𝑖, 𝜅) = yes, then

Pr

⎡⎢⎢⎢⎣
q← Query(𝜅, 𝑖)

c← Answer(𝒟ℬ,Λ, q)

x← Recover(𝜅, c)

: x = 𝒟ℬ[𝑖]

⎤⎥⎥⎥⎦ = 1− negl(𝜆).

• Privacy. For all indices 𝑖 ∈ {1, . . . , 𝑛} and access keys 𝜅, there exists an efficient

simulator 𝒮 such that Query(𝜅, 𝑖) ≈𝑐 𝒮(1𝜆). That is, the query reveals no informa-

tion on the access key 𝜅 and index 𝑖 to computationally-bounded adversaries.

• Efficiency. Fix a PIR scheme. Pirac is said to be efficient (with respect to PIR)

if the server and user work and total communication is at most a factor of poly(𝜆)

greater compared to PIR.

30

5.1 Defining Authorization

We now turn to define the access authorization property for Pirac. As already men-

tioned in Section 1.1, we consider three “tiers” of access control: static-database,

dynamic-database, and forward-secret authorization. We specify each authorization

property using the standard “real vs. ideal” simulation paradigm [50, 68]. For each

authorization tier, we specify an ideal functionality modeling a world where access

control is enforced by a trusted party. Proving that a Pirac protocol meets the speci-

fied authorization functionality then requires constructing an efficient simulator that

generates a computationally-indistinguishable view to that of the adversary interact-

ing with the database server through the real protocol.

We start by describing static-database authorization, which captures a setting

with a fixed database and access policy. We then proceed to define dynamic-database

and forward-secret authorization. We highlight the differences between the ideal

functionalities.

Definition 5.2 (Static-database Authorization). Fix security parameter 𝜆 ∈ N, and

database parameters 𝑛, ℓ ∈ N. We say that Pirac satisfies static-database autho-

rization if, for all 𝑝 ≤ poly(𝜆), it instantiates the ideal functionality described in

Functionality 1.

Functionality 1: Static-database Authorization
Public parameters: 𝜆, 𝑛, ℓ ∈ N and AuthVerify.

Server input: database 𝒟ℬ and policy Λ.

User input: query indices 𝑖1, . . . , 𝑖𝑝 and access keys 𝜅1, . . . , 𝜅𝑝.

Procedure:

1: foreach 𝑗 ∈ {1, . . . , 𝑝}:

– if AuthVerify(Λ, 𝑖𝑗 , 𝜅𝑗) = yes then set x̃𝑗 := 𝒟ℬ[𝑖𝑗].

– if AuthVerify(Λ, 𝑖𝑗 , 𝜅𝑗) = no then set x̃𝑗 := ⊥.

2: Output (x̃1, . . . , x̃𝑝) to the user and ⊥ to the server.

31

Definition 5.3 (Dynamic-database Authorization). Let 𝜆, 𝑛, ℓ, 𝑝 be as in Defini-

tion 5.2. Pirac satisfies dynamic-database authorization if it instantiates the ideal

functionality described in Functionality 2.

Functionality 2: Dynamic-database Authorization
Public parameters: 𝜆, 𝑛, ℓ ∈ N and AuthVerify.

Server input: databases 𝒟ℬ1, . . . ,𝒟ℬ𝑝 and policy Λ.

User input: query indices 𝑖1, . . . , 𝑖𝑝, and access keys 𝜅1, . . . , 𝜅𝑝.

Procedure:

1: foreach 𝑗 ∈ {1, . . . , 𝑝}:

– if AuthVerify(Λ, 𝑖𝑗 , 𝜅𝑗) = yes then set x̃𝑗 := 𝒟ℬ𝑗 [𝑖𝑗].

– if AuthVerify(Λ, 𝑖𝑗 , 𝜅𝑗) = no then set x̃𝑗 := ⊥.

2: Output (x̃1, . . . , x̃𝑝) to the user and ⊥ to the server.

In words, dynamic-database authorization strengthens static-database authoriza-

tion to capture a setting where queries are computed on potentially different databases.

It requires that no information on database 𝒟ℬ𝑗 is leaked when AuthVerify outputs

no on index 𝑖𝑗. For example, in a setting where the database records are dynamic,

users should only learn that the 𝑖-th record was updated if they also have permission

to access it.

Claim 1. Dynamic-database authorization (Definition 5.3) implies static-database

authorization (Definition 5.2).

Proof. Consider an efficient simulator 𝒮 ′ that can simulate Functionality 2 of Defini-

tion 5.3. We can immediately construct an efficient simulator 𝒮 for Functionality 1

as follows: given the database 𝒟ℬ along with other input parameters specified in the

ideal functionality, 𝒮 runs 𝒮 ′ on 𝑝 copies of 𝒟ℬ. It then follows that if 𝒮 ′ correctly

simulates the 𝑝 copies of 𝒟ℬ, 𝒮 correctly simulates the Functionality 1.

Definition 5.4 (Forward-secret Authorization). Let 𝜆, 𝑛, ℓ, 𝑝 be as in Definition 5.2.

Fix an efficient and deterministic Update function that takes in an access policy Λ

32

and auxiliary information 𝑧 ∈ {0, 1}* and outputs an updated access policy Λ′. Pirac

satisfies forward-secret authorization if it instantiates the ideal functionality described

in Functionality 3 parameterized by Update.

Functionality 3: Forward-secret Authorization
Public parameters: 𝜆, 𝑛, ℓ ∈ N, (𝑧1, . . . , 𝑧𝑝 | 𝑧𝑖 ∈ {0, 1}*), Update and AuthVerify.

Server input: databases 𝒟ℬ1, . . . ,𝒟ℬ𝑝 and initial access policy Λ.

User input: query indices 𝑖1, . . . , 𝑖𝑝, and access keys 𝜅1, . . . , 𝜅𝑝.

Procedure:

1: Initialize Λ0 := Λ.

2: foreach 𝑗 ∈ {1, . . . , 𝑝}:

– Λ𝑗 ← Update(Λ𝑗−1, 𝑧𝑗).

– if AuthVerify(Λ𝑗 , 𝑖𝑗 , 𝜅𝑗) = yes then set x̃𝑗 := 𝒟ℬ𝑗 [𝑖𝑗].

– if AuthVerify(Λ𝑗 , 𝑖𝑗 , 𝜅𝑗) = no then set x̃𝑗 := ⊥.

3: Output (x̃1, . . . , x̃𝑝) to the user and ⊥ to the server.

In words, forward-secret authorization strengthens the dynamic-database autho-

rization definition to capture a setting where queries are computed on potentially dif-

ferent databases using potentially different access policies. Additionally, the Update

function represents the procession of time, where subsequent access policies are de-

rived from previous ones. For instance, if the Update function is an identity function,

the access policy remains unchanged. However, if Update continuously modifies the

access keys, Functionality 3 requires that users should not gain knowledge about past

records after being granted permission to access an updated record at a future point

in time.

Claim 2. Forward-secret authorization (Definition 5.4) implies dynamic-database

authorization (Definition 5.3).

Proof. Consider an efficient simulator 𝒮 ′ that can simulate Functionality 3 of Defini-

tion 5.4. We can immediately construct an efficient simulator 𝒮 for Functionality 2

as follows: given the input parameters, 𝒮 runs 𝒮 ′ with an identity Update function

33

(Λ← Update(Λ,_)). Then it is easy to see that if 𝒮 ′ correctly simulates Functional-

ity 3, 𝒮 correctly simulates Functionality 2.

5.1.1 Breach Resilient Authorization

Breach resilience requires authorization (static-database, dynamic-database, or forward-

secret) to hold in Pirac even when a copy of the entire server state is revealed to the

adversary. We note that breach resilience only requires providing security against a

snapshot adversary that obtains a copy of the server state [9]—it does not assume

that the adversary has a persistent view of the server state, as that would trivially

break authorization.

Definition 5.5 (Breach Resilience [9]). We say that Pirac is breach resilient if there

exists an efficient simulator 𝒮 such that {𝒟ℬ,Λ} ≈𝑐 𝒮(1𝜆, 𝑧), where 𝒟ℬ and Λ are

as defined in Definition 5.1, and 𝑧 ∈ {0, 1}* denotes arbitrary auxiliary information.

34

Chapter 6

Pirac Construction

In this chapter, we realize Pirac in two ways: (1) through keyword-private PIR-by-

keywords and (2) using any semantically-secure symmetric encryption. In Section 6.1,

we describe our construction of Pirac from keyword-private PIR-by-keywords. In

Section 6.2, we describe our construction of Pirac from symmetric-key encryption.

Finally, in Section 6.3, we provide some practical optimizations related to our con-

structions.

6.1 Pirac from PIR-by-keywords

Before diving into our construction, we first formalize the keyword-privacy property

we require of the PIR-by-keywords scheme.

6.1.1 Keyword-private PIR-by-keywords

While it is known how to turn any PIR scheme into a PIR-by-keywords scheme [29,

78], doing so leaks to the user the keywords that exist in the database. In our con-

struction of Pirac (Construction 2), we use the keywords as the access control keys.

Therefore, revealing the keywords that exist in the database to the user would imme-

diately subvert access control. Constructing PIR-by-keywords, without leaking the

keywords to users presents several challenges. However, in Appendix A, we identify

35

two existing PIR-by-keywords schemes for both single-server [71] and multi-server

settings [16] that satisfy this property.

Definition 6.1 (Keyword Privacy). Fix security parameter 𝜆 ∈ N and database pa-

rameters 𝑛, ℓ ∈ N. A PIR-by-keywords scheme defined by (Query,Answer,Recover) is

said to be keyword private if for all databases 𝒟ℬ, sets of keywords W := (𝑤1, . . . , 𝑤𝑛),

and queries q for a keyword 𝑤, there exists an efficient simulator 𝒮 such that:

{c : c← Answer(𝒟ℬW, q)} ≈𝑐 𝒮(1𝜆, 𝑤, x̃, 𝑧),

where x̃ := 𝒟ℬW[𝑤] if 𝑤 ∈ W, x̃ := ⊥ otherwise, and 𝑧 ∈ {0, 1}* denotes arbitrary

auxiliary information. In words, the query answer c does not reveal anything beyond

(𝑤,𝒟ℬW[𝑤]).

6.1.2 Constructing Pirac from Keyword-private PIR-by-keywords

Pirac from PIR-by-keywords
with forward-secret authorization

Database 𝒟ℬ := (x1, . . . , x𝑛) and access policy Λ := (𝜅1, . . . , 𝜅𝑛).
A PIR-by-keywords scheme PIR = (Query,Answer,Recover).

• KeyGen(1𝜆, 𝑖):
1: 𝑘 := 𝜆+ log 𝑛.
2: 𝜅𝑖 ←𝑅 {0, 1}𝑘.
3: Output 𝜅𝑖.

• Answer(𝒟ℬ,Λ, q):
1: c← PIR.Answer(𝒟ℬΛ, q).
2: Output c.

• Query(𝜅,_):
1: q← PIR.Query(1𝜆, 𝜅).
2: Output q.

• Recover(𝜅, c):
1: x← PIR.Recover(c).
2: Output x.

Construction 2: Forward-secret Pirac from PIR-by-keywords.

In Construction 2, we realize Pirac with forward-secret authorization (Defini-

tion 5.4) using any keyword-private PIR-by-keywords scheme (Definition 6.1). We

let the access policy Λ be the ordered list of 𝑛 access keys, where 𝜅𝑖 is the access key

for record 𝒟ℬ[𝑖]. This corresponds to an AuthVerify that outputs yes if and only if q

36

is accessing the 𝑖-th record and the access key 𝜅 is equal to 𝜅𝑖 ∈ Λ. We then let PIR

be a PIR-by-keywords scheme and 𝒟ℬΛ denote the database where 𝜅𝑖 is the keyword

for the 𝑖-th record. We formally prove correctness and security in Chapter 7.

We note that by Claims 1 and 2, Construction 2 also achieves dynamic-database

and static-database authorization.

6.2 Pirac from Encryption

In Section 6.2.1, we start by constructing Pirac from symmetric-key encryption which

achieves dynamic-database authorization. In Section 6.2.2, we explain how to upgrade

the construction to provide forward-secret authorization. Finally, in Section 6.2.3, we

show how to make Pirac breach resilient using public-key encryption.

6.2.1 Pirac with Dynamic-database Authorization

In Construction 3, we realize Pirac from symmetric-key encryption (Definition 4.2)

to satisfy dynamic-database authorization. At a high level, our approach augments

the strawman Pirac construction from Section 2.1 to satisfy the dynamic-database

authorization property (Definition 5.3). The main idea to prevent metadata leakage

is to re-randomize the database encryption by re-encrypting the database prior to

computing the PIR response. In this way, each response appears pseudorandom to

users who do not have permission to access the record. See Chapter 7 for security

analysis.

6.2.2 Upgrading to Forward Secrecy

To upgrade Construction 3 to achieve forward-secret authorization (Definition 5.4), we

present a function KeyRefresh that instantiates Update (defined in Definition 5.4) and

“refresh” the access keys between queries (in addition to re-encrypting the database

records). Let 𝑡 denote the current query epoch. Then, we define KeyRefresh such that

it outputs a fresh access key 𝜅
(𝑡+1)
𝑖 for epoch 𝑡+ 1 when given the key 𝜅

(𝑡)
𝑖 for epoch

37

Pirac from encryption (dynamic-database authorization)

Database 𝒟ℬ := (x1, . . . , x𝑛) and access policy Λ := (𝜅1, . . . , 𝜅𝑛).
PIR = (Query,Answer,Recover) is any PIR scheme.
ℰ = (KeyGen,Enc,Dec) is any symmetric encryption scheme.

• KeyGen(1𝜆, 𝑖):
1: sk𝑖 ← ℰ .KeyGen(1𝜆).
2: Output 𝜅𝑖 := sk𝑖.

• Query(𝜅, 𝑖):
1: q← PIR.Query(1𝜆, 𝑖).
2: Output q.

• Answer(𝒟ℬ,Λ, q):
1: ̃︂𝒟ℬ := (⊥, . . . ,⊥).
2: ̃︂𝒟ℬ[𝑖]← ℰ .Enc(𝜅𝑖,𝒟ℬ[𝑖]), ∀𝑖 ∈ {1, . . . , 𝑛}.
3: c← PIR.Answer(̃︂𝒟ℬ, q).
4: Output c.

• Recover(𝜅, c):
1: c̃← PIR.Recover(c).
2: x← ℰ .Dec(𝜅, c̃).
3: Output x.

Construction 3: Dynamic-database Pirac from encryption.

𝑡. Crucially, KeyRefresh must be (1) a deterministic and (2) one-way function so as

to (1) ensure that users can refresh keys themselves and (2) provide forward secrecy

from epoch-to-epoch.

We realize KeyRefresh in Construction 4 using a pseudorandom function (PRF)

𝐹 [51]. The idea is to start with a random seed s1. This seed is used as the randomness

in PIRAC.KeyGen to generate 𝜅1 for epoch 𝑡 = 1. Then, for each subsequent epoch,

we apply 𝐹 (keyed using the seed s𝑡) to generate a fresh psuedorandom seed for epoch

𝑡+ 1. Without loss of generality, we let 𝜅
(𝑡)
𝑖 = (𝜅𝑡,𝑖, s𝑡,𝑖) where s𝑡,𝑖 is the seed used as

the randomness to generate 𝜅𝑡,𝑖.

Observe that, using KeyRefresh, a user with an access key at epoch 𝑡 can compute

the access key for all subsequent epochs. However, an access key for epoch 𝑡 does

not allow computing the access key for epoch 𝑡 − 1. In Chapter 7, we prove that

instantiating Update by applying KeyRefresh on every access key of the access policy,

38

PRF 𝐹 : {0, 1}𝜆 × {0, 1}𝑝 → {0, 1}𝜆 for 𝑝 ≤ poly(𝜆).

KeyRefresh(𝜅
(𝑡)
𝑖 , 𝑡):

1: Parse 𝜅
(𝑡)
𝑖 = (𝜅𝑡,𝑖, s𝑡,𝑖).

2: s𝑡+1,𝑖 ← 𝐹 (s𝑡,𝑖, 𝑡).
3: 𝜅𝑡+1,𝑖 ← PIRAC.KeyGen(1𝜆, 𝑖; s𝑡+1,𝑖).

◁ PIRAC.KeyGen uses s𝑡+1,𝑖 as the randomness source.
4: Output 𝜅

(𝑡+1)
𝑖 := (𝜅𝑡+1,𝑖, s𝑡+1,𝑖).

Construction 4: Forward-secure key refresh procedure.

together with Construction 3, results in a Pirac scheme that achieves forward-secret

authorization as described in Functionality 3.

6.2.3 Making Pirac Breach Resilient

Here, we describe how to make Pirac from encryption breach resilient.

Breach resilience and dynamic-database authorization. We modify Construction 3 to

provide breach resilience by using re-randomizable public-key encryption [27, 45, 53],

as opposed to symmetric-key encryption. A re-randomizable public key encryption

scheme ℰ = (KeyGen, Enc, ReRand, Dec) is equipped with an efficient algorithm

ReRand that takes as input a public key pk and ciphertext 𝑐 and outputs a ran-

domized ciphertext 𝑐. We can then define Λ := (pk1, . . . , pk𝑛) to consist of the

public keys and let 𝜅𝑖 be the secret key corresponding to pk𝑖. Similarly, we mod-

ify AuthVerify to output yes if and only if 𝜅 is the secret key corresponding to pk𝑖

(e.g., if it holds that Dec(𝜅,Enc(pk𝑖, 0
ℓ)) = 0ℓ). In Construction 5, we describe how

to modify PIRAC.Answer from Construction 3 to use public-key re-randomization to

achieve breach resilience.

Breach resilience and forward-secret authorization. While public-key re-randomization

makes Construction 3 resilient to snapshot adversaries and provides dynamic-database

authorization, it is important to consider whether the upgrade to forward-secret au-

thorization, described in Section 6.2.2, remains compatible. Observe that the user

can locally update their secret key by applying KeyRefresh, even when using public

39

PIRAC.Answer(𝒟ℬ,Λ, q):

1: ̃︂𝒟ℬ := (⊥, . . . ,⊥).
2: ̃︂𝒟ℬ[𝑖]← ℰ .ReRand(pk𝑖,𝒟ℬ[𝑖]), ∀𝑖 ∈ {1, . . . , 𝑛}.
3: 𝒟ℬ ←̃︂𝒟ℬ and store the updated database 𝒟ℬ.
4: c← PIR.Answer(𝒟ℬ, q).
5: Output c.

Construction 5: Breach resilience modification for Construction 3.

key encryption. However, the server cannot do so because the randomness used to

generate the key pair must remain secret. We can get around this by having the

access authority provide the server with a list of public keys, computed by repeatedly

applying KeyRefresh, such that the 𝑡-th public key is used for epoch 𝑡. A similar

solution is described by Canetti et al. [26] in the context of forward-secret public-key

encryption. We leave open the problem of finding a more practical solution for breach

resilience with forward-secret authorization.

6.3 Practical Considerations

We discuss four practical optimizations we can apply to Pirac.

Query-independent pre-processing. We observe that the access control compo-

nents (key refreshing and database re-encryption) can be computed independently

of the user’s query. This allows for server-side pre-processing (at the cost of extra

storage) when using Pirac from encryption (Section 6.2).

Periodic database updates. We observe that it is only necessary to have dynamic-

database (or forward-secret) authorization when the database (or access policy) un-

dergoes updates. Therefore, we can avoid the re-randomization of the ciphertext for

every query if we assume that the database server only updates the database at fixed

time intervals (e.g., once an hour). This has the potential to significantly increase

performance of practical deployments of Construction 3, since re-randomization will

only be required periodically (e.g., once an hour) rather than per query. Similarly,

when considering forward-secret authorization, we can periodically update the access

40

policy to avoid re-keying per query. In this way, re-keying for forward-secret autho-

rization (using KeyRefresh) is only necessary between updates, rather than per query.

We showcase the efficiency improvement of doing periodic updates in Chapter 8.

Keychain checkpoints. The key-refresh procedure (used to achieve forward se-

crecy) requires users to compute a PRF proportionally to the number of queries

made through Pirac (in the worst case). Therefore, refreshing keys can become a

computational bottleneck for users. Because the server has to evaluate the PRF per

query regardless, it can store “checkpoints” along the way. These checkpoints consist

simply of the keys at time 𝑡 + 𝑖 where the access key at time 𝑡 + 𝑖 − 1 is required

to access the corresponding access key at time 𝑡 + 𝑖. Then, a user can query for an

access key at the latest checkpoint if the total query latency is less than the time

required to evaluate the PRF up to the current time. Let 𝑇q be the query latency

of Pirac when computed over a database consisting of access keys and let 𝑇𝐹 be the

time it takes to evaluate the PRF for the slowest user. Then, the server should keep

one checkpoint every 𝑂(𝑇q/𝑇𝐹) queries to ensure straggling users can refresh their

keys without needing to recompute the PRF.

Efficient access revocation. We describe an efficient way to keep separate access

policies for different users so as to make revocation more efficient. Let 𝐵 be a bound

on the number of users who have access to any given record in the database. We

then set up 𝐵 access policies (Λ1, . . . ,Λ𝐵). To make a PIR query, the user sends the

policy index 𝑡 ∈ {1, . . . , 𝐵} (in the clear) along with the PIR query. The server then

runs the PIRAC.Answer protocol, as before, but now uses Λ𝑡 in PIRAC.Answer. All the

constructions and optimizations work as before, with the only difference being that the

server stores 𝐵 access policies instead of one. To revoke the access of a user holding

the access key of the 𝑖-th entry from Λ𝑡, the access authority can simply replace

Λ𝑡[𝑖] with a new access key. The above construction adds no processing overhead to

the server or user computation, but does require 𝑂(𝜆𝑛𝐵) additional storage on the

server.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

Chapter 7

Security Analysis

In Section 7.1, we prove security of our Pirac construction from PIR-by-keywords. In

Section 7.2, we prove security of our Pirac construction from symmetric encryption

and authorization upgrades.

7.1 Security of Pirac from PIR-by-keywords

Here, we analyze the security of Construction 2 when using a keyword-private PIR-

by-keywords scheme.

Claim 3. Let PIR = (Query,Answer,Recover) be a PIR-by-keywords scheme satis-

fying Definition 6.1 (keyword privacy). Construction 2 satisfies the Pirac properties

defined in Definition 5.1 and achieves forward-secret authorization, as defined in Def-

inition 5.4.

Proof. We prove the four properties required: correctness, privacy, efficiency, and

forward-secret authorization.

Correctness. Follows directly from the correctness property of PIR-by-keywords

(see Definition 4.1 and Section 4.2.1). Specifically, if 𝜅𝑖 is in the set of keywords Λ

then, by correctness of PIR-by-keywords, the user obtains the record 𝒟ℬ[𝜅𝑖] = 𝒟ℬ[𝑖].

Privacy. Follows directly from the privacy property of PIR-by-keywords (see Def-

inition 4.1 and Section 4.2.1) given that the query consists solely of the output of

43

PIR.Query.

Efficiency. Let 𝐶(𝑛, ℓ) and 𝑊 (𝑛, ℓ) be the communication and server-side work of

PIR, respectively. Construction 2 incurs at most 𝑂(𝜆 ·𝑊 (𝑛, ℓ)) server-side work and

at most 𝑂(𝜆 · 𝐶(𝑛, ℓ)) communication. To see why, note that 𝐶(𝑛, ℓ) and 𝑊 (𝑛, ℓ)

are the baseline communication and work for ⌈log 𝑛⌉-sized keywords. In contrast,

the keywords in Construction 2 are each (𝜆 + ⌈log 𝑛⌉) bits in total. Therefore, the

PIR-by-keywords problem with 𝜆-bit keywords would require at most 𝑂(𝜆) times the

work of one invocation, resulting in the above bounds.

Forward-secret authorization. We prove that forward-secret authorization is met

by reducing to the keyword-privacy property of the PIR scheme. Let 𝒮 ′ be the key-

word privacy simulator from Definition 6.1. We prove that Construction 2 instantiates

the forward-secret functionality specified in Functionality 3. To do so, we construct

an efficient simulator 𝒮 for the view of the adversary interacting with the server via

Construction 2. 𝒮 proceeds as follows:

1: Receive as input the set {𝑖𝑗, 𝜅𝑗, x̃𝑗 | 𝑗 ∈ {1, . . . , 𝑝}}, where 𝑖𝑗, 𝜅𝑗, x̃𝑗 are the user’s

inputs and output, as specified in Functionality 3.

2: Output
⋃︀𝑝

𝑗=1 𝒮 ′(1𝜆, 𝜅𝑗, x̃𝑗).

We now argue that the output of 𝒮 is computationally indistinguishable to the real

view of the adversary interacting with the server. Notice that the real view of the

adversary consists of the set of answers computed by the server in response to 𝑝

queries:

Real := {c1, . . . , c𝑝 : c𝑗 ← Answer(𝒟ℬ𝑗,Λ𝑗, q𝑗) | 𝑗 ∈ {1, . . . , 𝑝}},

where q1, . . . , q𝑝 are chosen arbitrarily by the adversary.

By the specification of Functionality 3, we have that x̃𝑗 = 𝒟ℬ𝑗[𝑖𝑗] if and only if

AuthVerify(Λ𝑗, 𝑖𝑗, 𝜅𝑗) = yes.

By our definition of AuthVerify, we have that AuthVerify(Λ𝑗, 𝑖𝑗, 𝜅𝑗) = yes if and only

if Λ𝑗 is the 𝑖𝑗-th key in Λ𝑗. Furthermore, because of the one-to-one correspondence

between 𝜅𝑗 and 𝑖𝑗, we additionally have that x̃𝑗 = 𝒟ℬ𝑗Λ𝑗
[𝜅𝑗] if and only if Λ𝑗 is the

44

𝑖𝑗-th key in Λ𝑗.

Note that this matches the definition of PIR-by-keywords, where x̃𝑗 = 𝒟ℬ𝑗Λ𝑗
[𝜅𝑗] if

and only if Λ𝑗 is the 𝑖𝑗-th key in Λ𝑗. Therefore, 𝜅𝑗 and x̃ are distributed identically to

the user’s input and output in the ideal functionality implicit in the keyword-privacy

definition (Definition 6.1). From this, we conclude that 𝒮 ′ can simulate the view of

the adversary when interacting with the server on one query and one database. We

then have that, for any 𝑗 ∈ {1, . . . , 𝑝}, 𝒮 ′ generates a computationally indistinguish-

able view for the query answer c𝑗 computed on database 𝒟ℬ𝑗. Then, by sequential

composition [25, 50, 68], we get that the view output by 𝒮 is computationally indis-

tinguishable to Real, which proves that Construction 2 instantiates Functionality 3.

Lastly, we note that because each access key (keyword) is chosen from the space

{0, 1}𝜆+⌈log𝑛⌉, guessing the correct keyword of the 𝑖-th record has negligible (in 𝜆)

probability of success.

7.2 Security of Pirac from Encryption

Here, we analyze the security of the constructions from Section 6.2.

Claim 4. Let PIR = (Query,Answer,Recover) be any PIR scheme. Construction 3

satisfies the Pirac properties defined in Definition 5.1.

Proof. We prove the three properties of Construction 3 as defined in Definition 5.1.

• Correctness: Follows immediately from the correctness property of PIR (see Def-

inition 4.1) and the correctness of the symmetric-key encryption scheme ℰ (see

e.g., [14, 51]).

• Privacy: Follows immediately from the privacy property of PIR (see Definition 4.1).

Specifically, in Construction 3, the server only obtains q, which is output by

PIR.Query and is therefore efficiently simulatable by Definition 4.1.

• Efficiency: Let 𝐶(𝑛, ℓ) and 𝑊 (𝑛, ℓ) be the communication and server-side work of

PIR. By inspection, it is clear that Construction 3 has at most 𝑂(𝜆𝑛ℓ) +𝑊 (𝑛, ℓ)

server-side work and 𝐶(𝑛, ℓ) communication, when ℰ is a rate-1 encryption scheme.

45

In Section 7.2.1, we prove that Construction 3 satisfies dynamic-database autho-

rization. Then, in Sections 7.2.2 and 7.2.3 we prove security of the forward-secret

authorization upgrade and breach resilience transformation.

7.2.1 Proof of Dynamic-database Authorization

We first prove some useful lemmas.

Lemma 1. Let PIR be any PIR scheme satisfying Definition 4.1. The trivial PIR

scheme [30], where the user sends q := ⊥ to the server and the server sends the entire

database 𝒟ℬ to the user reveals strictly more information to the user than PIR.

Proof. The proof follows trivially from the fact that Definition 4.1 (1) makes no

database privacy guarantees and (2) has a communication efficiency guarantee that

(information theoretically) prevents revealing the full database to the user in one

query.

Lemma 2. Let ℰ = (KeyGen,Enc,Dec) be any semantically-secure encryption scheme.

We can assume, without loss of generality, that ℰ .Dec outputs ⊥ when provided with

the wrong decryption key.

Proof. It suffices to use authenticated encryption [14], which fails to decrypt (outputs

⊥) when given the wrong key.

Claim 5. Construction 3 instantiates the dynamic-database authorization functional-

ity specified in Functionality 2, assuming the existence of semantically-secure symmetric-

key encryption.

Proof. We prove that dynamic-database authorization is met by reducing to the se-

mantic security of the encryption scheme ℰ .

First, by Lemma 1, we can assume, without loss of generality, that c = ̃︂𝒟ℬ
(the encrypted database, as defined in Construction 3) and q = ⊥. Then, to prove

that Construction 3 satisfies the dynamic-database authorization functionality, we

46

construct an efficient simulator 𝒮 for the view of the adversary interacting with the

server via Construction 3. Let 𝒮 ′ be the simulator from Definition 4.3 and let 𝑝 ≤
poly(𝜆)

𝑛
be an integer. Define 𝒮 as follows:

1: Receive as input the set {𝑖𝑗, 𝜅𝑗, x̃𝑗 | 𝑗 ∈ {1, . . . , 𝑝}}, where 𝑖𝑗, 𝜅𝑗, x̃𝑗 are the user’s

inputs and output, as specified in Functionality 2.

2: (c1,1, . . . , c1,𝑛, c𝑝,1, . . . , c𝑝,𝑛)← 𝒮 ′(1𝜆, ℓ, 𝑛𝑝, 𝑧).

3: Set c𝑗 := (c𝑗,1, . . . , c𝑗,𝑛), ∀𝑗 ∈ {1, . . . , 𝑝}.

4: ∀𝑗 ∈ {1, . . . , 𝑝}, if x̃𝑗 ̸= ⊥, set c𝑗,𝑖𝑗 ← ℰ .Enc(𝜅𝑗, x̃𝑗).

We now argue that the output of 𝒮 is computationally indistinguishable to the real

view of the adversary interacting with the server. Notice that the real view consists

of the set of answers computed on the 𝑝 queries:

Real := {(c1, . . . , c𝑝) : c𝑖 ← Answer(𝒟ℬ𝑗, q𝑗) | 𝑗 ∈ {1, . . . , 𝑝}},

where each q𝑗 is arbitrarily chosen by the adversary. By Lemma 1 and the description

of Construction 3, we can further interpret Real as a 𝑝 × 𝑛 matrix of ciphertexts.

Specifically, we have c𝑗 = (c𝑗,1, . . . , c𝑗,𝑛), where c𝑗,𝑘 ← ℰ .Enc(𝜅𝑘,𝒟ℬ𝑗[𝑘]). Therefore,

we get that Real is distributed as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
c1,1, . . . , c1,𝑛

...

c𝑝,1, . . . , c𝑝,𝑛

⎤⎥⎥⎥⎦ : c𝑗,𝑘 ← ℰ .Enc(𝜅𝑘,𝒟ℬ𝑗[𝑘])

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝑗 ∈ {1, . . . , 𝑝},

𝑘 ∈ {1, . . . , 𝑛}

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

For each x̃𝑗 ̸= ⊥, 𝒮 sets c𝑗,𝑖𝑗 ← ℰ .Enc(𝜅𝑗,𝒟ℬ𝑗[𝑖𝑗]) because the ideal functionality

outputs x̃𝑗 = 𝒟ℬ𝑗[𝑖𝑗] when 𝜅𝑖𝑗 is the 𝑖𝑗-th key in Λ. This perfectly matches the

distribution of c𝑗,𝑖𝑗 in Real. On the other hand, for all 𝑗 where x̃𝑗 = ⊥, c𝑗,𝑖𝑗 (output

by 𝒮 ′) is computationally indistinguishable from a real encryption of 𝒟ℬ[𝑖𝑗], by the

semantic-security of ℰ . With the help of a standard hybrid argument, it then follows

that Real is computationally indistinguishable from the output of 𝒮, assuming ℰ

satisfies the semantic security definition (Definition 4.3).

47

7.2.2 Security of the Forward Secrecy Upgrade

Claim 6. Construction 3 in conjunction with KeyRefresh (Construction 4) instan-

tiates the forward-secret authorization functionality specified in Functionality 3, as-

suming the existence of a PRF.

Proof. Let Update𝑅 be an instance of the Update function (Definition 5.4) such that,

given input Λ (and auxiliary information 𝑧), it generates Λ′ completely independently

of Λ. It disregards Λ and employs fresh randomness along with PIRAC.KeyGen to

generate Λ′. Moreover, for the sake of simplicity, we will often refer to instantiating

Update with KeyRefresh, which means defining Update by applying KeyRefresh to every

access key of the access policy.

We first consider the case where (Λ1, . . . ,Λ𝑝) are generated independently of one

another, that is, Update is instantiated using Update𝑅. Later, we will replace this

assumption with (Λ1, . . . ,Λ𝑝) generated using KeyRefresh as the Update function.

In this case, we can compute sets 𝐼1, . . . , 𝐼𝑞, where 𝐼𝑖 ⊆ {1, . . . , 𝑝} such that

∀𝑗, 𝑘 ∈ 𝐼𝑖 Λ𝑗 = Λ𝑘. We can then define the set 𝒟ℬ𝐼𝑖 and Λ𝐼𝑖 to be subsets of

{𝒟ℬ1, . . . ,𝒟ℬ𝑝} and {Λ1, . . . ,Λ𝑝}, induced by indices in 𝐼𝑖.

By Claim 5, we have that there exists an efficient simulator 𝒮 ′ when the server

inputs are (𝒟ℬ𝐼𝑖 ,Λ𝐼𝑖), because it holds that for all 𝑗, 𝑘 ∈ 𝐼𝑖, Λ𝑗 = Λ𝑘. (Notice

that Functionality 3 only differs from Functionality 2 in that the authentication is

performed using 𝑝, possibly unique, access policies Λ1, . . . ,Λ𝑝.)

By the existence of 𝒮 ′ for each subset of indices 𝐼1, . . . , 𝐼𝑞, and sequential com-

position [25, 50, 68], we get that there exists an efficient simulator 𝒮 that is com-

putationally indistinguishable to Real, which proves that Construction 3 instantiates

Functionality 3 when access policies are generated independently of each other.

We now replace our starting assumption (each access policy is independent) to

instead have the access policies generated according to KeyRefresh (Construction 4).

Hybrid 0. In this hybrid, we have (Λ1, . . . ,Λ𝑝) generated independently according to

Update𝑅. Recall, Update𝑅 uses PIRAC.KeyGen with fresh randomness to use indepen-

dent access policies.

48

Hybrid 1. In this hybrid, we generate (Λ1, . . . ,Λ𝑝) using Update𝐹 . Update𝐹 works

similar to Update𝑅 but determines randomness of PIRAC.KeyGen using a PRF 𝐹 .

Specifically, Λ𝑖[𝑗] = 𝜅𝑖,𝑗 for 𝑖 ∈ {1, . . . , 𝑝}, 𝑗 ∈ {1, . . . , 𝑛} is generated by first com-

puting 𝑟𝑖,𝑗 ← 𝐹 (𝑘, 𝑖‖𝑗), where 𝑘 ∈ {0, 1}𝜆 is a random PRF key (coded in Update𝐹),

and then running 𝜅𝑖,𝑗 ← PIRAC.KeyGen(1𝜆; 𝑟𝑖,𝑗) = ℰ .KeyGen(1𝜆; 𝑟𝑖,𝑗). We now argue

that Hybrid 0 is computationally indistinguishable from Hybrid 1.

Lemma 3. Let ℰ = (KeyGen,Enc,Dec) be any semantically secure encryption scheme.

The output of KeyGen computed with pseudorandom coins (determined by a PRF 𝐹)

is computationally indistinguishable from the output of KeyGen on truly random coins.

Lemma 3 follows from 𝐹 being a PRF. Suppose, towards contradiction, that the

output of KeyGen on pseudorandom coins was computationally distinguishable from

the output of KeyGen on truly random coins, then there would also exist an efficient

distinguisher for 𝐹 , which contradicts the pseudorandomness of 𝐹 .

Hybrid 2. In this hybrid, we generate (Λ1, . . . ,Λ𝑝) using KeyRefresh as the Update

function. We prove that Hybrid 1 is computationally indistinguishable from Hybrid

2 in Lemma 4 by showing that 𝐹 keyed with a pseudorandom key (i.e., the pseudo-

random key output by 𝐹 at epoch 𝑡− 1) is still a PRF.

Putting things together. In sum, we have that Construction 3 when the access keys

are generated according to KeyRefresh is equivalent to Construction 3 instantiated

with 𝑝 independent access policies. Then, because KeyRefresh is deterministic and

efficiently computable “in the forward direction,” we get the desired correctness and

forward secrecy requirements.

Lemma 4. Fix security parameter 𝜆 ∈ N and let 𝑘, 𝑝 ≤ poly(𝜆). Let 𝐹 : {0, 1}𝜆 ×

{0, 1}𝑘 → {0, 1}𝜆 be a PRF. Then, it holds that the function 𝐹 ′ : {0, 1}𝜆×{0, 1}𝑘·𝑝 →

{0, 1}𝜆 defined as:

𝐹 ′(𝑦0, 𝑥1, . . . , 𝑥𝑝) = 𝑦𝑝,

where 𝑦0 ←𝑅 {0, 1}𝜆 and 𝑦𝑖+1 ← 𝐹 (𝑦𝑖, 𝑥𝑖+1), ∀𝑖 ∈ {0, . . . , 𝑝− 1}, is also a PRF.

49

Proof. Suppose, towards contradiction, that there exists an efficient distinguisher 𝒟

and non-negligible function 𝜈 such that:

⃒⃒⃒
Pr[𝒟𝐹 ′(𝑦0,·)(1𝜆)]− Pr[𝒟𝑅(·)(1𝜆)]

⃒⃒⃒
≥ 𝜈(𝜆),

where 𝑅 is a random function. Consider the hybrid distribution:

ℋ𝑖 :=

⎧⎨⎩𝑦𝑝 :
𝑦𝑖 ←𝑅 {0, 1}𝜆

𝑦𝑗+1 ← 𝐹 (𝑦𝑗, 𝑥𝑗)
| 𝑗 ∈ {𝑖, . . . , 𝑝− 1}

⎫⎬⎭.

Because ℋ0 is identical to the distribution of 𝐹 ′(𝑦0, ·) and ℋ𝑝 is identical to the

distribution of a random function, it must be that 𝒟 is also a distinguisher between

ℋ𝑖 and ℋ𝑖+1, for some 𝑖 ∈ {1, . . . , 𝑝}.

We construct an efficient 𝒜 such that:

⃒⃒
Pr[𝒜𝐹 (𝑦0,·)(1𝜆)]− Pr[𝒜𝑅(·)(1𝜆)]

⃒⃒
≥ 𝜈 ′(𝜆),

for some non-negligible function 𝜈 ′, contradicting the pseudorandomness of 𝐹 . 𝒜

proceeds as follows.

1: Receive as input 1𝜆 and run 𝒟(1𝜆).

2: For each query (𝑥1, . . . , 𝑥𝑝) from 𝒟,

– Query the oracle on 𝑥𝑖 to get response 𝑦𝑖+1.

– Compute 𝑦𝑗+1 ← 𝐹 (𝑦𝑗, 𝑥𝑗) for all 𝑗 ∈ {𝑖+ 1, . . . , 𝑝− 1}.

– Respond with 𝑦𝑝.

3: Output as 𝒟 does.

On the one hand, if 𝒜 is given oracle access to 𝐹 ′, then the response given to 𝒟’s

queries is identical to the distribution ℋ𝑖 (𝑦𝑖+1 is pseudorandom). On the other hand,

if 𝒜 is given oracle access to 𝑅, then the response given to 𝒟’s queries is identical to

the distribution ℋ𝑖+1 (𝑦𝑖+1 is truly random and 𝑦𝑖+2 is pseudorandom). Therefore, 𝒜

succeeds with the same probability as 𝒟, contradicting the pseudorandomness of 𝐹 .

As such, 𝐹 ′ must be a PRF if 𝐹 is a PRF.

50

7.2.3 Security of Breach Resilience Upgrade

Here, we analyze the security of our breach resilience transformation (Section 6.2.3).

Claim 7. The breach resilience modification described in Section 6.2.3 satisfies Def-

inition 5.5, assuming the existence of semantically-secure re-randomizable public-key

encryption.

Proof. First, we prove that our upgrade to breach resilience from Section 6.2.3 pre-

serves the dynamic-database authorization property of Construction 3. To see this,

observe that compared to Construction 3, we make two changes in Section 6.2.3: we

(1) replace the symmetric-key encryption with public-key encryption and (2) replace

re-encryption with re-randomization. We define the following hybrid distributions:

Hybrid 0. Identical to the real view of the user in Construction 3.

Hybrid 1. Replace the symmetric-key encryption scheme in Construction 3 with a

re-randomizable public-key encryption scheme.

Hybrid 2. Replace Answer (as defined in Construction 3) with the re-randomizing

variant described in Construction 5.

We now argue that Claim 7 follows from the proof of Claim 5. First, the proof of

Claim 5 applies to Hybrid 1 because 𝒮 ′ (the simulator from the semantic security

definition) can be replaced with the simulator of the public-key encryption scheme.

Second, we can safely replace the re-encryption in Hybrid 1 with re-randomization of

ciphertexts because re-randomization is equivalent to a fresh encryption [27, 45, 53].

This proves that Hybrid 2 instantiates the dynamic-database authorization function-

ality.

Now, we show that our upgrade meets the breach resilience property specified in

Definition 5.5. To do so, we must prove the existence of an efficient simulator 𝒮 for

the server state consisting of the database 𝒟ℬ and the access policy Λ. This follows

immediately from (1) 𝒟ℬ being encrypted (and therefore efficiently simulatable) and

(2) Λ consisting only of public keys, which can be efficiently generated using ℰ .KeyGen

to match the real distribution.

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

Chapter 8

Evaluation

In this chapter, we evaluate Pirac from encryption (Section 6.2), when applied to

single-server and multi-server PIR. We provide an evaluation of Pirac from PIR-

by-keywords (Construction 2) in Appendix B.1, as existing keyword-private PIR-by-

keywords schemes have limited practical efficiency or are restricted to two-server PIR.

Goals. The goals of our evaluation are to:

1. evaluate Pirac when instantiated using symmetric-key encryption and applied to

single-server and multi-server PIR,

2. compare the performance of Pirac to existing approaches for access control in

PIR, and

3. build the case for practical applications of Pirac.

Implementation and environment. We implement1 the encryption and key-

refresh in C, as these are performance-critical operations. We use Go and Python

to run and analyze experiments. All experiments are run on an AWS c5a.8xlarge

EC2 instance, with each experiment evaluated five times (unless otherwise stated)

and the standard deviation across experiments is reported in-line. All evaluations are

performed on a single core.

Organization. To gain a better understanding of the overhead that Pirac intro-

1Our implementation is open-source [4].

53

duces, in Section 8.1 we evaluate the cost of re-encryption, as required to satisfy

dynamic-database authorization in Construction 3, and key-refresh, as required for

the forward-secret authorization upgrade in Construction 4. Then, in Sections 8.2

and 8.3, we evaluate Pirac on state-of-the-art PIR schemes. In Section 8.4, we eval-

uate the overhead of introducing breach resilience into Pirac. In Section 8.5, we

evaluate the periodic-update optimization from Section 6.3. Finally, in Section 8.6,

we compare our performance to prior approaches for access control in PIR.

Table color coding. One of the key goals of our evaluation is to assess the overhead

incurred by Pirac in server-side throughput compared to the baseline. Therefore, to

help readers better interpret our results, we use color coding in our tables to represent

the throughput overhead over the baseline. We use the following colors to represent

different ranges of overhead: > 10×, 3-10×, 2-3×, and < 2×.

8.1 Re-encryption and Key Refreshing

We start by benchmarking re-encryption and key-refresh, as these inform the primary

overheads in Pirac when using dynamic-database and forward-secret authorization,

respectively.

Record Size
Re-encryption

(MB/s)
Key-refresh+Re-encryption

(MB/s)
16 B 809 11
64 B 1880 43
256 B 2636 164
1 KiB 2791 553
4 KiB 2170 1219
8 KiB 2200 1566
16 KiB 2200 1831

Table 8.1: Throughput of re-encryption and key-refresh in our Pirac implementation from
symmetric encryption. The throughput for re-encryption plateaus with sufficiently large
records due to the linear complexity of AES. When key-refresh and re-encryption are applied
sequentially, throughput decreases initially but eventually amortizes with larger records
because key-refresh is a fixed cost.

54

8.1.1 Re-encryption

To benchmark re-encryption, we measure the throughput for a range of record sizes;

see Table 8.1. Re-encryption with AES delivers a throughput of approximately 2100-

2700 MB/s when the record size becomes large enough. The throughput, in MB/s,

does not change significantly when the record size increases, since the time to encrypt

each additional byte remains the same.

8.1.2 Key-refresh

We set 𝜆 = 128 (i.e., 128-bit AES encryption keys). We instantiate the PRF 𝐹

(for KeyRefresh in Construction 4) using AES to take advantage of AES-NI hardware

acceleration. The average throughput, measured over 20 iterations, is 670.0 ± 2.4

thousand key-refresh operations per second. Since key-refresh throughput is indepen-

dent of record size: key-refresh adds a fixed overhead per record to the processing of

the PIR response in Pirac. Furthermore, we report the throughput achieved when

key-refresh and re-encryption are executed sequentially, as required by the forward-

secret authorization (Section 6.2.2). The results are reported in the third column

of Table 8.1, with a maximum standard deviation of 0.6%. For smaller record sizes

(i.e., ≤ 1 KiB), key-refresh is the throughput bottleneck, thereby determining the

overall throughput. However, as the record size increases, the time required for key-

refresh remains constant, while the time required for re-encryption increases linearly.

Consequently, for larger record sizes, the throughput is predominantly determined by

re-encryption.

8.1.3 Key-refresh (user)

We also benchmark key-refreshing for users who might run the Pirac protocol on

devices with limited computation resources (e.g., phones). We use an AWS t2.small

EC2 instance with 2 GiB RAM and 1vCPU. The average throughput (over 20 trials),

is 469.3± 1.6 thousand key-refreshes per second.

55

8.2 Single-server PIR

Here, we evaluate Pirac on four modern single-server PIR schemes: SealPIR [11],

FastPIR [7], Spiral [75], and SimplePIR [58]. We evaluate Pirac on databases of size

𝑛 = 220 with record size (ℓ) varying from 16 B to 16 KiB.

Record Size: 16 B 64 B 256 B 1 KiB 4 KiB 8 KiB 16 KiB

T
h
ro

u
gh

p
u
t

(M
B

/s
)

S
im

p
le

P
IR

Baseline 10447 11024 1150 11545 11003 - -
w/ static-database auth. 10447 11024 1150 11545 11003 - -
w/ dynamic-database auth. N/A N/A N/A N/A N/A N/A N/A
w/ forward-secret auth. N/A N/A N/A N/A N/A N/A N/A

S
p
ir

al
P

IR

Baseline 37 84 145 262 315 328 344
w/ static-database auth. 37 84 145 262 315 328 344
w/ dynamic-database auth. 36 81 137 239 275 285 298
w/ forward-secret auth. 8 28 76 177 249 271 290

S
p
ir

al
S
tr

ea
m

Baseline 75 213 283 364 557 565 729
w/ static-database auth. 75 213 283 364 557 565 729
w/ dynamic-database auth. 69 191 256 321 444 449 548
w/ forward-secret auth. 9 35 102 218 379 415 522

S
p
ir

al
P
ac

k

Baseline 35 85 193 263 444 505 545
w/ static-database auth. 35 85 193 263 444 505 545
w/ dynamic-database auth. 34 82 180 240 368 410 437
w/ forward-secret auth. 8 28 87 177 323 381 420

S
p
ir

al
S
tr

ea
m

P
ac

k

Baseline 346 539 871 1676 1957 1997 2160
w/ static-database auth. 346 539 871 1676 1957 1997 2160
w/ dynamic-database auth. 242 420 655 1042 1025 1043 1089
w/ forward-secret auth. 10 39 135 410 740 878 992

S
ea

l
P

IR

Baseline 54 75 88 91 65 87 87
w/ static-database auth. 54 75 88 91 65 87 87
w/ dynamic-database auth. 50 72 85 88 63 83 84
w/ forward-secret auth. 9 27 57 78 62 82 83

Fa
st

P
IR

Baseline 104 178 205 216 217 213 213
w/ static-database auth. 104 178 205 216 217 213 213
w/ dynamic-database auth. 92 163 190 200 198 194 194
w/ forward-secret auth. 10 34 91 155 184 188 190

Table 8.2: Throughput of Pirac from symmetric encryption when used with single-server
PIR schemes on a database of size 𝑛 = 220.

8.2.1 Static database and Static Access Policy

We first consider the static setting, where static-database authorization (Definition 5.2)

suffices. In this scenario, the database is encrypted once and does not change, fol-

lowing strawman Pirac (Construction 1). This authorization model is ideally suited

56

to PIR schemes that assume static databases, such as SimplePIR [58] and other

PIR schemes that have offline pre-processing requirements [32, 34, 84, 92]. Since the

database needs to be encrypted just once (e.g., in the setup phase), Pirac does not

introduce any processing overheads on the server, making the throughput equivalent

to the underlying PIR scheme. We evaluate different state-of-art single-server PIR

schemes with and without Pirac under static-database authorization. We report the

mean throughput in Table 8.2 (the standard deviation was below 3.8%).

8.2.2 Dynamic Database and Static Access Policy

We now turn our attention to settings in which the database undergoes regular up-

dates, which requires Pirac to satisfy dynamic-database authorization (Definition 5.3).

PIR schemes in the pre-processing model designed for static databases (e.g., Sim-

plePIR [58]) cannot handle dynamic databases by default [62, 70]. Spiral [75] is the

state-of-the-art PIR scheme that does not require pre-processing and is specifically

optimized for PIR in dynamic database settings. The throughput of Pirac when ap-

plied to the Spiral family, together with other common PIR schemes, is presented in

Table 8.2. The standard deviation was below 3.5% across all throughputs.

We compare the throughput for SealPIR [11], FastPIR [7], and the Spiral fam-

ily [75], under the dynamic-database authorization tier for varying record sizes in the

first plot of Figure 8-1. For SealPIR [11], FastPIR [7], and most variants of the Spiral

family, the re-encryption required in Pirac (which has a throughput of around 2200

MB/s) is significantly faster than computing the PIR response. As a result, comput-

ing the PIR answer is the primary bottleneck and determines the overall throughput

of Pirac. This is evident in Figure 8-1 where dynamic-database authorization (dashed

line) is very close to the baseline. We note that Pirac has an overhead of at most

1.3× in throughput compared to the baseline PIR schemes, with the exception of

SpiralStreamPack where Pirac incurs an overhead of at most 2.0×. SpiralStream-

Pack is a variant of Spiral where the query is reused repeatedly and has a baseline

throughput that is comparable to AES re-encryption, resulting in the 2.0× perfor-

mance hit observed above. Furthermore, in Figure 8-1, we note that even though

57

101

102

103

Th
ro

ug
hp

ut
 (i

n
M

B
/s

)
Baseline (& Pirac w/ static-database auth)
Pirac w/ dynamic-database auth

16 B 64 B 256 B 1 KiB 4 KiB 8 KiB 16KiB
Record size (in bytes)

101

102

103

Th
ro

ug
hp

ut
 (i

n
M

B
/s

)

Baseline (& Pirac w/ static-database auth)
Pirac w/ forward-secret auth

SpiralPIR SpiralStreamPack SealPIR FastPIR

Figure 8-1: Throughput of Pirac when using single-server PIR schemes for different record
sizes and considering the three authorization models: Static-database authorization (Con-
struction 1; same throughput as baseline), with dynamic-database authorization (Construc-
tion 3), and with forward-secret authorization (Section 6.2.2).

dynamic-database authorization is very close to the baseline for small record sizes, it

starts to diverge for larger record sizes. This is because re-encryption has a constant

throughput, independent of record size ℓ, while the throughput of single-server PIR

schemes (generally) increases with ℓ on our evaluation parameters.

8.2.3 Dynamic Database and Dynamic Access Policy

Finally, we evaluate Pirac in a setting where both the database and access policy

change over time, which requires Pirac to satisfy forward-secret authorization (Def-

inition 5.4). This requires the server to apply key-refresh (Construction 4) to each

access key, prior to re-encrypting the database records. We report the mean through-

put (±0.8%) of Pirac under this setting in Table 8.2.

As before, we plot the throughput for SealPIR [11], FastPIR [7], and the Spiral

family [75], under forward-secret authorization, for varying record sizes in the bot-

58

tom plot of Figure 8-1. Pirac with forward-secret authorization results in at most

10.7× overhead for smaller records (≤ 1 KiB) and 1.5× for larger records (≥ 4 KiB)

compared to baseline, when used with SealPIR [11], FastPIR [7], and most variants

of Spiral [75]. For SpiralStreamPack, however, Pirac with forward-secret authoriza-

tion results in an overhead of at most 33.9× for smaller records and 2.6× for larger

records. Overhead drops significantly for larger record sizes as key-refresh adds a

fixed cost per record (see Section 8.1.2) that amortizes as the records become larger.

This is evident in Figure 8-1, where forward-secret authorization (dotted line) has a

high overhead for small records but converges to the baseline throughput for large

records.

8.3 Multi-server PIR

Here, we evaluate Pirac when applied to multi-server PIR schemes. For multi-server

PIR, the XOR-based scheme of Chor et al. [30] is the fastest in terms of server-

side throughput, at 4196 MB/s, using the open-source Percy++ [49] implementation.

However, in practice, two-server PIR based on FSS [16, 17] or multi-server PIR ex-

tending Chor et al. [30] are used, as they provide better communication overheads

and other features [37, 39, 42, 55, 56, 64, 80, 88, 89].

As mentioned in Chapter 3, Henry et al. [57] develop access control for Goldberg

[48]’s multi-server PIR scheme. For FSS-based multi-server PIR, Servan-Schreiber

et al. [82] develop access control using private access control lists (PACLs). Both

PACLs and the technique of Henry et al. [57] achieve our notion of forward-secret

authorization. However, these two approaches for access control do not apply to

other multi-server PIR schemes (e.g., [16, 38]).

We evaluate these PIR schemes in the two-server setting, as this setting is often

more concretely efficient in terms of throughput [56, 58]. The results for databases of

size 𝑛 = 220 and varying record sizes are presented in Table 8.3.

All the reported throughputs have a standard deviation of at most 3.3%. Using

Percy++ [49], Pirac with forward-secret authorization results in a high overhead for

59

Percy++ [49] FSS-based PIR [16]
Record

Size
Baseline
(MB/s)

Pirac
(MB/s)

Baseline
(MB/s)

PACLs
(MB/s)

Pirac
(MB/s)

16 B 2017 10 240 201 10
64 B 2404 41 716 614 40
256 B 2488 149 1303 1201 145
1 KiB 2537 446 1779 1739 422
4 KiB 2551 810 1996 1989 757
8 KiB 2557 957 2054 2054 889
16 KiB 2543 1048 2085 2085 975

Table 8.3: Pirac with forward-secret authorization (Section 6.2.2) applied to multi-server
PIR schemes.

small records (because of the high fixed cost of key-refresh) but drops to 3.1× for

records of size ℓ ≥ 4 KiB. Using FSS-based PIR, Pirac (also with forward-secret

authorization) results in at most 2.6× overhead for the large record sizes (ℓ ≥ 4 KiB)

over the baseline. However, for FSS-based PIR, PACLs prove to be a more performant

choice for access control.

Unfortunately, we are unable to provide a complete head-to-head comparison be-

tween Pirac and Henry et al. [57] due to missing functionality in their open-source

implementation [49] (see Appendix B). However, because they also use Percy++ as a

baseline, we re-run Percy++ in their evaluation setting and extrapolate based on the

relative overhead reported in their paper [57, Figure 1] (our methodology is described

further in Appendix B). We find that, under their parameter settings, Pirac incurs

an overhead of 1.9-2.2× whereas the access control scheme of Henry et al. [57] incurs

an overhead of 3.5-10× over the Percy++ baseline.

8.4 Pirac with Breach Resilience

We benchmark Pirac with dynamic-database authorization and the breach resilience

modification described in Section 6.2.3. Because the modification involves swapping

out symmetric-key encryption with a re-randomizable public-key encryption scheme

(Construction 5), the throughput of Pirac is bottlenecked by the re-randomization re-

60

quired per record. Re-randomization in Paillier [77] and ElGamal [44] has a through-

put of 0.05 MB/s and 0.29 MB/s, respectively. In contrast, without breach resilience,

the throughput of randomization using AES is approximately 2200 MB/s (Table 8.1).

This illustrates the current impracticality of having breach resilience in Pirac with

dynamic-database or forward-secret authorization.

8.5 Optimization: Periodic Updates

1 10 20 50
Number of queries between re-encryption or key-refresh (T)

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (M

B
/s

)
 (a

m
or

tiz
ed

 o
ve

r
T

qu
er

ie
s)

Baseline (& Pirac w/ static-database auth)
Pirac w/ dynamic-database auth
Pirac w/ forward-secret auth

Figure 8-2: Overhead of Pirac (with dynamic-database and forward-secret authorization)
applied to SpiralStreamPack using the optimization from Section 6.3 for different number of
queries (𝑇) between updates to the database and/or access policy. The baseline throughput
is not impacted by periodic updates. Increasing 𝑇 causes Pirac’s performance to approach
the baseline.

The results reported in Tables 8.2 and 8.3 and Figure 8-1 assume a worst-case

scenario where the database and access policy change with every query. In real-world

databases, the database and/or access policy are only going to change periodically,

making the optimization described in Section 6.3 applicable to Pirac. If we assume

that the server updates the database and access policy after every 𝑇 queries, then re-

encryption and/or key-refresh only needs to be applied between updates. We evaluate

Pirac with different values of 𝑇 to calculate the amortized server-side overhead of

Pirac with dynamic-database and forward-secret authorization. We evaluate Pirac

with SpiralStreamPack using 𝑛 = 220 and 4 KiB record size. This combination

of parameters results in the largest server-side overheads for Pirac among all large

record (ℓ ≥ 4 KiB) sizes, see Table 8.2. We report the results of our “periodic update”

61

optimization in Figure 8-2. As before, Pirac with dynamic-database and forward-

secret authorization has an overhead of 1.9× and 2.6×, respectively, with 𝑇 = 1.

However, the overhead of authorization drops significantly as 𝑇 increases. These

experiments highlight the performance benefit of batching database and access policy

updates when using Pirac. We note that while Figure 8-2 reports the performance

improvement of periodic updates in the single-server setting, similar improvements

emerge in the multi-server setting.

8.6 Comparison to Prior Work

To the best of our knowledge, in the single-server setting, only Layouni [65] and Lay-

ouni et al. [66], consider access control for PIR. We estimate their concrete through-

put as they do not evaluate their approaches. Specifically, given that they require

a linear (in 𝑛) public key operations in addition to computing the SPIR query, the

throughput is likely to be on-par with the throughput of Paillier-based PIR (0.05

MB/s). Consequently, these approaches to access control for single-server PIR are

highly impractical.

PACLs [82] currently provide the best throughput for FSS-based PIR, but do

not extend to single-server or other multi-server PIR schemes. Similarly, the access

control technique of Henry et al. [57] only applies to Goldberg [48]’s multi-server PIR

scheme. Additionally, their construction incurs high computational overheads (for

both the user and the servers) and requires linear communication in the number of

records. Compared to Henry et al. [57], Pirac reduces overhead on the servers by

1.6-4.5× and is applicable to other multi-server PIR schemes.

62

Chapter 9

Applications of Pirac

In many real-world settings, databases cater to many users and contain content that

is exclusive to a subset of those users. Such settings demand both privacy and au-

thorization: users want to privately retrieve records from this database, while the

database wants to ensure that no malicious user can retrieve content they do not

have permission to access. Applications with this twofold problem include: password

breach lookups [62, 85], (priced) digital media downloads [56, 57], and friend discovery

services [61, 73]. We briefly survey how Pirac can be used in these applications.

9.1 Private Password Breach Lookups

Account breach alerting services [2, 59] allow users to check their usernames against

a database of exposed credentials. Most breach alerting services only allow users to

check for username matches to avoid revealing sensitive information. However, this

approach can result in false positive breach alerts for passwords users have already

changed and, moreover, it does not provide actionable information to the user about

which password was leaked. Thomas et al. [86] provide a comprehensive discussion

on the challenges related to this problem.

A better approach is to query using both the username and password, but this

reveals the sensitive (and possibly uncompromised) passwords to the checkup server.

Because breached credentials may remain valid for multiple years [85] after being

63

compromised, revealing the passwords to the checkup server is a security risk.

PIR can be applied to provide user privacy while Pirac can provide access control

to prevent malicious actors from stealing credentials. Using Pirac, the breach alerting

server sets up a database where each record entry corresponds to a unique username

(u) and password (p) pair and includes details about the breaches this credential is

involved in. The access key then consists of a hash of the credential 𝐻(u‖p) using

a suitable randomness extractor 𝐻 [87]. Because the database is dynamic, Pirac

with dynamic-database authorization should be used. However, because access to

credentials does not change, the access policy is static and therefore forward-secret

authorization is not required.

For instance, some databases of exposed credentials consists of 4 billion unique

usernames and passwords [86]. In prior approaches, the server partitions the database

randomly (with the help of a hash function), assigning a subset of credentials to

each partition. Thomas et al. [86] make the partitions consist of roughly 500,000

credentials, which translates to a 500 MB partition database, assuming 1 KiB records.

Pirac (Construction 3) using SpiralPIR [75] would require 2.1 seconds of server-side

processing (Table 8.2 in Appendix B). The processing time can be further reduced by

using the optimization from Section 6.3. This makes the response time comparable

to the work of Thomas et al. [86], where they achieve a median end-to-end (including

network latency) response time of 8.5 seconds. (Thomas et al. [86] do not use PIR

citing the lack of database access control, even though using PIR would improve user

privacy guarantees in their system [86, Section 2.5].)

9.2 Private Purchased Content Retrieval

Many online services have databases that contain exclusive or premium content ac-

cessible only to a subset of users. For example, Bloomberg Terminal [1] provides

proprietary market data to financial analysts. As the service provider, Bloomberg

needs to ensure that users can only access the content they have paid for. On the

flip side, analysts are inherently secretive and may want to keep their retrieval pat-

64

terns private from Bloomberg, as their accesses could reveal information about their

investment strategies.

With Pirac’s forward-secret authorization, Bloomberg can provide query privacy

to their customers while ensuring that only paying users can access the premium

content. In this example, the access policy might change monthly when users renew or

upgrade their subscriptions, making the periodic update optimization from Section 6.3

applicable. Additionally, the server can determine the frequency of database updates

and apply periodic updates to records as well.

For instance, consider a database of stock prices for 500 companies tracked by the

S&P 500 [5]. Each record may store the historical stock prices over the past three

decades and would be roughly 100KiB in size [72]. Using Pirac with SpiralPIR would

require 0.18 seconds of server time, suggesting the practicality of our scheme.

Similarly, in many other contexts, such as private media retrieval [56], purchases

can be privately accessed from a remote database using PIR while Pirac can guarantee

that only authorized (paying) users can download the digital content. Because Pirac

applies to all PIR schemes, it can be integrated directly with Percy++ [48], as done

in Popcorn [56] for movie streaming, or Spiral, which was used to privately query

Wikipedia [74].

9.3 Private Friend Discovery

Social media applications often use our contact books to recommend us other friends

who are using the platform [61, 73]. Friend discovery can easily be made private using

PIR, however, this runs the risk of malicious users scraping the discovery service for

user contact information, which leads to a severe privacy concern. With Pirac, we

can generate an access key for each user based on information that is only available

to a user’s “real” friends, for example, a phone number and personal email address.

Only people that have those two pieces of contact information in their address book

would be able to discover the corresponding user on the platform. For instance,

consider a database of 40 million users (approximately the number of monthly active

65

users on Signal as of January 2022 [36]) with 16-byte records. We can also assume

that the database is static (e.g., the database is replaced once a week), allowing

us to use a PIR-with-preprocessing scheme like SimplePIR. Then Pirac, combined

with SimplePIR, enables efficient authenticated friend discovery, requiring only 60

milliseconds of server-side processing per query.

66

Chapter 10

Conclusion

We present Pirac, a framework for adding access control to PIR in a black-box way

using lightweight cryptographic tools. We evaluate our open-source implementation

on a variety of PIR schemes and demonstrate the concrete efficiency of Pirac in

different settings. Finally, we show that Pirac enables new applications of PIR and

has exciting potential use-cases in real-world systems.

Future Work. Currently, the performance of Pirac using constant-weight PIR is

poor compared to our evaluation of Pirac using symmetric-key encryption (Chap-

ter 8 and Appendix B.1), where the throughput achieved using state-of-the-art PIR

schemes is roughly two orders of magnitude higher. To address this disparity, we

hope to see new keyword-private PIR schemes that can bridge this performance gap.

In addition, our current construction of breach resilience is slow and primarily of

theoretical interest. We acknowledge the need for improved constructions that can

be applied in real-life scenarios. Therefore, we leave it as future work to devise better

breach-resilient constructions that are both efficient and practical.

Furthermore, we aspire to deploy Pirac in various applications mentioned in Chap-

ter 9 to bring us closer to achieving privacy and anonymity. By exploring different

use cases, we can gain valuable insights and refine the implementation of Pirac for

real-world scenarios.

67

THIS PAGE INTENTIONALLY LEFT BLANK

68

Bibliography

[1] All products | bloomberg professional services. URL https://www.bloomberg.

com/professional/all-products/. Accessed May 2023.

[2] Enzoic. URL https://www.enzoic.com/. Accessed May 2023.

[3] Mirrored Percy++ source code. https://github.com/pawangoyal137/

Percyxx. Accessed May 2023.

[4] Pirac source code. https://github.com/pawangoyal137/PIRAC.

[5] S&P500, 2023. URL https://en.wikipedia.org/wiki/S%26P_500. Accessed

May 2023.

[6] Masayuki Abe, Jan Camenisch, Maria Dubovitskaya, and Ryo Nishimaki. Uni-

versally composable adaptive oblivious transfer (with access control) from stan-

dard assumptions. In Proceedings of the 2013 ACM workshop on Digital identity

management, pages 1–12, 2013.

[7] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trin-

abh Gupta. Addra: Metadata-private voice communication over fully untrusted

infrastructure. In 15th USENIX Symposium on Operating Systems Design and

Implementation, OSDI2021, July 14-16, 2021, 2021.

[8] Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to

sell digital goods. In Advances in Cryptology—EUROCRYPT 2001: Interna-

tional Conference on the Theory and Application of Cryptographic Techniques

69

https://www.bloomberg.com/professional/all-products/
https://www.bloomberg.com/professional/all-products/
https://www.enzoic.com/
https://github.com/pawangoyal137/Percyxx
https://github.com/pawangoyal137/Percyxx
https://github.com/pawangoyal137/PIRAC
https://en.wikipedia.org/wiki/S%26P_500

Innsbruck, Austria, May 6–10, 2001 Proceedings 20, pages 119–135. Springer,

2001.

[9] Ghous Amjad, Seny Kamara, and Tarik Moataz. Breach-Resistant Structured

Encryption. Proceedings on Privacy Enhancing Technologies, 1:245–265, 2019.

[10] Sebastian Angel and Srinath Setty. Unobservable Communication over Fully

Untrusted Infrastructure. In Proceedings of the 12th USENIX Conference on

Operating Systems Design and Implementation, OSDI’16, page 551–569, USA,

2016. USENIX Association. ISBN 9781931971331.

[11] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. PIR with compressed

queries and amortized query processing. In 2018 IEEE symposium on security

and privacy (SP), pages 962–979. IEEE, 2018.

[12] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. Obliviad: Prov-

ably secure and practical online behavioral advertising. In 2012 IEEE Symposium

on Security and Privacy, pages 257–271. IEEE, 2012.

[13] D Elliott Bell and Leonard J La Padula. Secure computer system: Unified expo-

sition and multics interpretation. Technical report, MITRE CORP BEDFORD

MA, 1976.

[14] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft

0.5, 2020.

[15] Nikita Borisov, George Danezis, and Ian Goldberg. DP5: A private presence

service. Proceedings on Privacy Enhancing Technologies, 2015(2):4–24, 2015.

[16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Advances

in Cryptology-EUROCRYPT 2015: 34th Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April

26-30, 2015, Proceedings, Part II, pages 337–367. Springer, 2015.

70

[17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improve-

ments and extensions. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, pages 1292–1303, 2016.

[18] Zvika Brakerski. Fundamentals of Fully Homomorphic Encryption-A Survey. In

Electron. Colloquium Comput. Complex., volume 25, page 125, 2018.

[19] David FC Brewer and Michael J Nash. The Chinese Wall Security Policy. In

IEEE symposium on security and privacy, volume 1989, page 206. Oakland, 1989.

[20] Paul Bunn, Eyal Kushilevitz, and Rafail Ostrovsky. CNF-FSS and its applica-

tions. In Public-Key Cryptography–PKC 2022: 25th IACR International Confer-

ence on Practice and Theory of Public-Key Cryptography, Virtual Event, March

8–11, 2022, Proceedings, Part I, pages 283–314. Springer, 2022.

[21] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Oblivious transfer

with access control. In Proceedings of the 16th ACM conference on Computer

and communications security, pages 131–140, 2009.

[22] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. Unlinkable priced

oblivious transfer with rechargeable wallets. In Financial Cryptography and Data

Security: 14th International Conference, FC 2010, Tenerife, Canary Islands,

January 25-28, 2010, Revised Selected Papers 14, pages 66–81. Springer, 2010.

[23] Jan Camenisch, Maria Dubovitskaya, Gregory Neven, and Gregory M Za-

verucha. Oblivious transfer with hidden access control policies. In Public Key

Cryptography–PKC 2011: 14th International Conference on Practice and Theory

in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings 14,

pages 192–209. Springer, 2011.

[24] Jan Camenisch, Maria Dubovitskaya, Robert R Enderlein, and Gregory Neven.

Oblivious Transfer with Hidden Access Control from Attribute-Based Encryp-

tion. In SCN, volume 7485, pages 559–579. Springer, 2012.

71

[25] Ran Canetti. Security and composition of multiparty cryptographic protocols.

Journal of CRYPTOLOGY, 13:143–202, 2000.

[26] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key

encryption scheme. In Advances in Cryptology—EUROCRYPT 2003: Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Warsaw, Poland, May 4–8, 2003 Proceedings 22, pages 255–271. Springer, 2003.

[27] Ran Canetti, Hugo Krawczyk, and Jesper B Nielsen. Relaxing chosen-ciphertext

security. In Advances in Cryptology-CRYPTO 2003: 23rd Annual International

Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003.

Proceedings 23, pages 565–582. Springer, 2003.

[28] Benny Chor and Niv Gilboa. Computationally Private Information Retrieval

(Extended Abstract). In Proceedings of the Twenty-Ninth Annual ACM Sympo-

sium on Theory of Computing, STOC ’97, page 304–313, New York, NY, USA,

1997. Association for Computing Machinery. ISBN 0897918886.

[29] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by key-

words. Citeseer, 1997.

[30] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private

Information Retrieval. J. ACM, 45(6):965–981, nov 1998. ISSN 0004-5411.

[31] David D Clark and David R Wilson. A comparison of commercial and military

computer security policies. In 1987 IEEE Symposium on Security and Privacy,

pages 184–184. IEEE, 1987.

[32] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with

sublinear online time. In Advances in Cryptology–EUROCRYPT 2020: 39th An-

nual International Conference on the Theory and Applications of Cryptographic

Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39, pages

44–75. Springer, 2020.

72

[33] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anony-

mous messaging system handling millions of users. In 2015 IEEE Symposium on

Security and Privacy, pages 321–338. IEEE, 2015.

[34] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-server

private information retrieval with sublinear amortized time. In Advances in

Cryptology–EUROCRYPT 2022: 41st Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May

30–June 3, 2022, Proceedings, Part II, pages 3–33. Springer, 2022.

[35] Scott Coull, Matthew Green, and Susan Hohenberger. Controlling access to

an oblivious database using stateful anonymous credentials. In Public Key

Cryptography–PKC 2009: 12th International Conference on Practice and Theory

in Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009. Proceedings

12, pages 501–520. Springer, 2009.

[36] David Curry. Signal Revenue & Usage Statistics, 2023. URL https://www.

businessofapps.com/data/signal-statistics/. Accessed May 2023.

[37] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Stoica.

DORY: An encrypted search system with distributed trust. In Proceedings of the

14th USENIX Conference on Operating Systems Design and Implementation,

pages 1101–1119, 2020.

[38] Daniel Demmler, Amir Herzberg, and Thomas Schneider. RAID-PIR: practical

multi-server PIR. In Proceedings of the 6th edition of the ACM Workshop on

Cloud Computing Security, pages 45–56, 2014.

[39] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: Scaling

Private Contact Discovery. Proceedings on Privacy Enhancing Technologies, 4:

159–178, 2018.

[40] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan.

73

https://www.businessofapps.com/data/signal-statistics/
https://www.businessofapps.com/data/signal-statistics/

Conditional oblivious transfer and timed-release encryption. In EuroCrypt, vol-

ume 99, pages 74–89. Springer, 1999.

[41] Whitfield Diffie, Paul C Van Oorschot, and Michael J Wiener. Authentication

and authenticated key exchanges. Designs, Codes and cryptography, 2(2):107–

125, 1992.

[42] Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In Proceed-

ings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, pages 523–535, 2017.

[43] Nico Döttling and Jesko Dujmovic. Maliciously Circuit-Private FHE from

Information-Theoretic Principles. In 3rd Conference on Information-Theoretic

Cryptography, 2022.

[44] Taher ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE transactions on information theory, 31(4):469–472,

1985.

[45] Antonio Faonio, Dario Fiore, Javier Herranz, and Carla Ràfols. Structure-

preserving and re-randomizable RCCA-secure public key encryption and its ap-

plications. In Advances in Cryptology–ASIACRYPT 2019: 25th International

Conference on the Theory and Application of Cryptology and Information Secu-

rity, Kobe, Japan, December 8–12, 2019, Proceedings, Part III, pages 159–190.

Springer, 2019.

[46] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings

of the forty-first annual ACM symposium on Theory of computing, pages 169–

178, 2009.

[47] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting Data

Privacy in Private Information Retrieval Schemes. Journal of Computer and

System Sciences, 60(3):592–629, Jun 2000. ISSN 0022-0000.

74

[48] Ian Goldberg. Improving the robustness of private information retrieval. In 2007

IEEE Symposium on Security and Privacy (SP’07), pages 131–148. IEEE, 2007.

[49] Goldberg, Ian and Devet, Casey and Lueks, Wouter and Yang, Anna and Hendry,

Paul and Henry, Ryan. Percy++ source code. https://percy.sourceforge.

net, 2014. Accessed May 2023.

[50] Oded Goldreich. Foundations of cryptography: volume 2, basic applications.

Cambridge University Press, 2009.

[51] Oded Goldreich et al. Foundations of cryptography–a primer. Foundations and

Trends® in Theoretical Computer Science, 1(1):1–116, 2005.

[52] Matthew Green, Watson Ladd, and Ian Miers. A protocol for privately reporting

ad impressions at scale. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, pages 1591–1601, 2016.

[53] Jens Groth. Rerandomizable and replayable adaptive chosen ciphertext attack

secure cryptosystems. In TCC, volume 2951, pages 152–170. Springer, 2004.

[54] Christoph G Günther. An identity-based key-exchange protocol. In Advances

in Cryptology—EUROCRYPT’89: Workshop on the Theory and Application of

Cryptographic Techniques Houthalen, Belgium, April 10–13, 1989 Proceedings 8,

pages 29–37. Springer, 1990.

[55] Daniel Günther, Maurice Heymann, Benny Pinkas, and Thomas Schneider.

GPU-accelerated PIR with Client-Independent Preprocessing for Large-Scale

Applications. In 31st USENIX Security Symposium (USENIX Security 22), pages

1759–1776, 2022.

[56] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo

Alvisi, and Michael Walfish. Scalable and private media consumption with Pop-

corn. In 13th USENIX Symposium on Networked Systems Design and Imple-

mentation NSDI 16), pages 91–107, 2016.

75

https://percy.sourceforge.net
https://percy.sourceforge.net

[57] Ryan Henry, Femi Olumofin, and Ian Goldberg. Practical PIR for electronic

commerce. In Proceedings of the 18th ACM conference on Computer and com-

munications security, pages 677–690, 2011.

[58] Alexandra Henzinger, Matthew M Hong, Henry Corrigan-Gibbs, Sarah Meikle-

john, and Vinod Vaikuntanathan. One server for the price of two: Simple and

fast single-server private information retrieval. Cryptology ePrint Archive, 2022.

[59] Troy Hunt. Have I been pwned: Check if your email has been compromised in a

data breach. URL https://haveibeenpwned.com/. Accessed May 2023.

[60] Ari Juels. Targeted advertising... and privacy too. In Cryptographers’ Track at

the RSA Conference, pages 408–424. Springer, 2001.

[61] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and

Christian Weinert. Mobile private contact discovery at scale. In 28th USENIX

Security Symposium (USENIX Security 19), pages 1447–1464, 2019.

[62] Dmitry Kogan and Henry Corrigan-Gibbs. Private Blocklist Lookups with

Checklist. In 30th USENIX Security Symposium (USENIX Security 21), pages

875–892. USENIX Association, August 2021. ISBN 978-1-939133-24-3.

[63] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single

database, computationally-private information retrieval. In Proceedings 38th

annual symposium on foundations of computer science, pages 364–373. IEEE,

1997.

[64] Maximilian Lam, Jeff Johnson, Wenjie Xiong, Kiwan Maeng, Udit Gupta, Min-

soo Rhu, Hsien-Hsin S Lee, Vijay Janapa Reddi, Gu-Yeon Wei, David Brooks,

et al. GPU-based Private Information Retrieval for On-Device Machine Learning

Inference. arXiv preprint arXiv:2301.10904, 2023.

[65] Mohamed Layouni. Accredited symmetrically private information retrieval. In

Advances in Information and Computer Security: Second International Work-

76

https://haveibeenpwned.com/

shop on Security, IWSEC 2007, Nara, Japan, October 29-31, 2007. Proceedings

2, pages 262–277. Springer, 2007.

[66] Mohamed Layouni, Maki Yoshida, and Shingo Okamura. Efficient multi-

authorizer accredited symmetrically private information retrieval. In Informa-

tion and Communications Security: 10th International Conference, ICICS 2008

Birmingham, UK, October 20-22, 2008 Proceedings 10, pages 387–402. Springer,

2008.

[67] Benoît Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong

Wang. Adaptive oblivious transfer with access control from lattice assump-

tions. In Advances in Cryptology–ASIACRYPT 2017: 23rd International Con-

ference on the Theory and Applications of Cryptology and Information Security,

Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23, pages 533–563.

Springer, 2017.

[68] Yehuda Lindell. How to simulate it–a tutorial on the simulation proof technique.

Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich,

pages 277–346, 2017.

[69] Helger Lipmaa. An oblivious transfer protocol with log-squared communication.

In Information Security: 8th International Conference, ISC 2005, Singapore,

September 20-23, 2005. Proceedings 8, pages 314–328. Springer, 2005.

[70] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel. Incremental Offline/On-

line PIR. In 31st USENIX Security Symposium (USENIX Security 22), pages

1741–1758, 2022.

[71] Rasoul Akhavan Mahdavi and Florian Kerschbaum. Constant-weight PIR:

Single-round Keyword PIR via Constant-weight Equality Operators. In 31st

USENIX Security Symposium (USENIX Security 22), pages 1723–1740, 2022.

[72] Boris Marjanovic. Huge Stock Market Dataset, 2017. URL https:

77

https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs

//www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-

all-us-stocks-etfs. Accessed May 2023.

[73] Moxie Marlinspike. Technology preview: Private contact discovery for Signal.

Signal Messenger, 2017.

[74] Samir Menon. Spiral demo. URL https://spiralwiki.com/. Accessed May

2023.

[75] Samir Jordan Menon and David J Wu. Spiral: Fast, high-rate single-server PIR

via FHE composition. In 2022 IEEE Symposium on Security and Privacy (SP),

pages 930–947. IEEE, 2022.

[76] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Ma-

liciously circuit-private FHE. In Advances in Cryptology–CRYPTO 2014: 34th

Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,

Proceedings, Part I 34, pages 536–553. Springer, 2014.

[77] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Advances in Cryptology—EUROCRYPT’99: International Confer-

ence on the Theory and Application of Cryptographic Techniques Prague, Czech

Republic, May 2–6, 1999 Proceedings 18, pages 223–238. Springer, 1999.

[78] Sarvar Patel, Joon Young Seo, and Kevin Yeo. Don’t be Dense: Efficient Key-

word PIR for Sparse Databases. In 32th USENIX Security Symposium (USENIX

Security 23), 2023.

[79] Michael O Rabin. How to exchange secrets with oblivious transfer. Cryptology

ePrint Archive, 2005.

[80] Len Sassaman, Bram Cohen, and Nick Mathewson. The Pynchon gate: A se-

cure method of pseudonymous mail retrieval. In Proceedings of the 2005 ACM

workshop on Privacy in the electronic society, pages 1–9, 2005.

78

https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://spiralwiki.com/

[81] Sacha Servan-Schreiber, Kyle Hogan, and Srinivas Devadas. AdVeil: A Private

Targeted Advertising Ecosystem. Cryptology ePrint Archive, 2021.

[82] Sacha Servan-Schreiber, Simon Beyzerov, Eli Yablon, and Hyojae Park. Pri-

vate Access Control for Function Secret Sharing. In 2023 IEEE Symposium on

Security and Privacy (SP), pages 1257–1276. IEEE Computer Society, 2022.

[83] Sacha Servan-Schreiber, Simon Langowski, and Srinivas Devadas. Private ap-

proximate nearest neighbor search with sublinear communication. In 2022 IEEE

Symposium on Security and Privacy (SP), pages 911–929. IEEE, 2022.

[84] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran, and Bruce Maggs.

Puncturable pseudorandom sets and private information retrieval with near-

optimal online bandwidth and time. In Advances in Cryptology–CRYPTO

2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual

Event, August 16–20, 2021, Proceedings, Part IV 41, pages 641–669. Springer,

2021.

[85] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi,

Yarik Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, et al. Data

breaches, phishing, or malware? Understanding the risks of stolen credentials.

In Proceedings of the 2017 ACM SIGSAC conference on computer and commu-

nications security, pages 1421–1434, 2017.

[86] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage

Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan

Boneh, et al. Protecting accounts from credential stuffing with password breach

alerting. In USENIX Security Symposium, pages 1556–1571, 2019.

[87] L. Trevisan and S. Vadhan. Extracting Randomness from Samplable Distribu-

tions. In Proceedings of the 41st Annual Symposium on Foundations of Com-

puter Science, FOCS ’00, page 32, USA, 2000. IEEE Computer Society. ISBN

0769508502.

79

[88] Adithya Vadapalli, Fattaneh Bayatbabolghani, and Ryan Henry. You May Also

Like... Privacy: Recommendation Systems Meet PIR. Proceedings on Privacy

Enhancing Technologies, 2021(4):30–53, 2021.

[89] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan, and

Matei Zaharia. Splinter: Practical Private Queries on Public Data. In NSDI,

pages 299–313, 2017.

[90] Ye Zhang, Man Ho Au, Duncan S Wong, Qiong Huang, Nikos Mamoulis,

David W Cheung, and Siu-Ming Yiu. Oblivious Transfer with Access Control:

Realizing Disjunction without Duplication. Pairing, 6487:96–115, 2010.

[91] Ke Zhong, Yiping Ma, and Sebastian Angel. Ibex: Privacy-preserving ad conver-

sion tracking and bidding. In Proceedings of the 2022 ACM SIGSAC Conference

on Computer and Communications Security, pages 3223–3237, 2022.

[92] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting Zheng. Piano: Extremely

Simple, Single-Server PIR with Sublinear Server Computation. Cryptology ePrint

Archive, 2023.

80

Appendix A

Keyword-private PIR-by-keywords

Here, we describe two PIR-by-keyword schemes and argue why they satisfy keyword

privacy (Definition 6.1). For convenience, we define the function 𝑓𝑒𝑞:

𝑓𝑒𝑞(𝒟ℬW, 𝑤) =

⎧⎪⎨⎪⎩𝒟ℬW[𝑤] if 𝑤 ∈ W,

⊥ otherwise.

Single-server PIR-by-keywords. Mahdavi and Kerschbaum [71] construct a single-

server PIR-by-keywords scheme that matches the syntax of Definition 4.1. Their con-

struction is equivalent to evaluating 𝑓𝑒𝑞 over an encryption of the keyword 𝑤 using

FHE (Definition A.1). The server outputs c ← FHE.Eval(𝑓𝑒𝑞,𝒟ℬW, q), where 𝑓𝑒𝑞 is

represented as a circuit. We now argue that when the FHE scheme used is circuit-

private [43, 46, 76] (see also Definition A.2), the scheme of Mahdavi and Kerschbaum

[71] satisfies the keyword privacy definition Definition 6.1.

Definition A.1 (Fully Homomorphic Encryption [18, 46]). Fix security parameter

𝜆 ∈ N. An FHE scheme consists of four efficient (possibly randomized) algorithms

FHE = (KeyGen,Enc,Eval,Dec) with the following syntax:

• KeyGen(1𝜆)→ (pk, sk). Takes as input a security parameter 𝜆. Outputs a new pair

of public and secret keys.

• Enc(pk,𝑚) → 𝑐. Takes as input a public key pk and message 𝑚. Outputs a

81

ciphertext 𝑐. For convenience, we will sometimes denote an FHE encryption of 𝑚

under public key pk as ⟨𝑚⟩pk.

• Eval(pk, 𝑓, 𝑐1 . . . 𝑐𝑘) → 𝑐𝑓 . Takes as input a public key pk, the description of an

efficiently computable 𝑘-variate function 𝑓 , and 𝑘 ciphertexts 𝑐1 . . . 𝑐𝑘. Outputs

evaluated ciphertext 𝑐𝑓 .

• Dec(sk, 𝑐) → 𝑚. Takes as input a secret key sk and ciphertext 𝑐. Outputs a

plaintext message 𝑚.

The above must satisfy correctness and semantic security. We elaborate here on

the correctness property only. Correctness of an FHE scheme holds if for all ef-

ficiently computable 𝑘-variate functions 𝑓 , Dec(sk,Eval(pk, 𝑓, ⟨𝑚1⟩pk, . . . ⟨𝑚𝑘⟩pk)) =

𝑓(𝑚1, . . . ,𝑚𝑘). We point to the survey of Brakerski [18] for more details on FHE.

Definition A.2 (Maliciously-secure Circuit-private FHE [43, 76]). Let FHE = (KeyGen,

Enc, Eval, Dec) be a fully-homomorphic encryption scheme. Fix 𝑘 = poly(𝜆), where

𝜆 is the security parameter of FHE. For all public keys pk and 𝑘-variate, efficiently

computable circuits 𝒞 computing a function 𝑓 , and for all input ciphertexts 𝑐1 . . . 𝑐𝑘

encrypting circuits inputs 𝑥1, . . . , 𝑥𝑘, there exists an efficient simulator 𝒮 such that

FHE.Eval(pk, 𝒞, 𝑐1 . . . 𝑐𝑘) ≈𝑐 𝒮(pk, 𝒞(𝑥1, . . . , 𝑥𝑘), leak(𝒞)), where leak captures possible

auxiliary information about the circuit 𝒞 that is revealed in the scheme (e.g., the size

or structure of 𝒞).

Claim 8. Let FHE = (KeyGen,Enc,Eval,Dec) be a circuit private fully-homomorphic

encryption scheme (Definition A.2). The PIR scheme of Mahdavi and Kerschbaum

[71] satisfies Definition 6.1 when instantiated with FHE.

Proof. We must construct an efficient simulator 𝒮 for the view of the adversary con-

sisting of c (recall Definition 6.1). Let 𝑧 ∈ {0, 1}* consist of the public key pk of the

FHE scheme and a description of the circuit computing 𝑓𝑒𝑞. 𝒮 proceeds as follows.

1: Receive as input (𝑤, x̃, 𝑧).

2: Parse 𝑧 = (pk, leak(𝒞)).

3: Output as 𝒮 ′(pk, x̃, leak(𝒞)).

82

Notice that 𝒮 obtains x̃ := 𝑓𝑒𝑞(𝒟ℬW, 𝑤) = 𝒞(𝒟ℬW, 𝑤). As such, the input to 𝒮 ′ is

correctly distributed. Therefore, the PIR answer c computed according to FHE.Eval,

is efficiently simulatable, satisfying Definition 6.1. Finally, provided that leak(𝒞)

consists of the description of the circuit computing 𝑓𝑒𝑞 and remains independent of

W and the database 𝒟ℬ, it does not reveal any information (beyond size) about the

database or keywords to the user. In conclusion, we have that a circuit-private FHE

scheme makes the PIR-by-keywords construction of [71] satisfy keyword privacy.

Two-server PIR-by-keywords. Boyle et al. [16] construct a two-server PIR-by-

keywords scheme that matches the syntax of Definition 4.1. Their construction is

equivalent to evaluating 𝑓𝑒𝑞 over secret shares of 𝑤. Moreover, their construction

satisfies function privacy : the output shares of PIR.Answer can be efficiently simulated

given only 𝑓𝑒𝑞(𝒟ℬW, 𝑤) [16]. This automatically makes their PIR-by-keyword scheme

based on FSS satisfy keyword-privacy following the same template in the proof of

Claim 8.

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

Appendix B

Additional Evaluation

B.1 Evaluation of Pirac from PIR-by-keywords

In this section, we evaluate Pirac from PIR-by-keyword (Construction 2) when instan-

tiated with single-server and two-server PIR-by-keyword schemes. We evaluate Pirac

using the two keyword-private PIR-by-keywords schemes described in Appendix A

on a database of size 𝑛 = 210 with record size ℓ varying from 20 KiB to 320 KiB. We

choose these parameters as the scheme of Mahdavi and Kerschbaum [71] is designed

for large records (and is only practical on smaller databases).

B.1.1 Single-server Pirac from keyword-private PIR-by-keywords

We first evaluate the server throughput for Pirac using the PIR-by-keywords scheme

of Mahdavi and Kerschbaum [71]. As mentioned in Appendix A, Mahdavi and Ker-

schbaum [71] use the equality operator to evaluate 𝑓𝑒𝑞 under FHE. However, instead of

naively evaluating 𝑓𝑒𝑞 (as described in Appendix A), they propose a faster method for

evaluating 𝑓𝑒𝑞 in the PIR-by-keywords setting use constant-weight codes. They map

the keywords of the database to a new space of constant Hamming-weight codewords,

which allows them to evaluate 𝑓𝑒𝑞 more efficiently.

We evaluate the PIR-by-keywords scheme of Mahdavi and Kerschbaum [71] under

two parameter settings. Our baseline evaluation uses 10-bit keywords, just enough

85

to assign a unique keyword to every record, with a Hamming weight of 2 (see [71]

for details on how Hamming weight affects performance). For Pirac from PIR-by-

keywords, we use 48-bit keywords with a Hamming weight of 5. Recall that the

keyword domain dictates the security we obtain in Pirac (i.e., with 48-bit keywords,

the probability of guessing an access key for a particular index is 2−48). Because an

adversary cannot mount an offline guessing attack, 48-bit keywords is a reasonable

security level: guessing one keyword in a database of size 𝑛 = 210 would require

issuing over 250 billion queries (recall that the probability of guessing any keyword is

2−𝜆+⌈log𝑛⌉). Even with the relatively small keyword domain, the throughput of Pirac

applied to Mahdavi and Kerschbaum [71] is not practical: ranging from 0.23 to 3.35

MB/s (see Table B.1), with a standard deviation of at most 0.2%. However, we note

that Pirac only adds a 3-4× overhead compared to the baseline in this setting.

The low throughput currently makes Pirac instantiated from PIR-by-keywords in

the single-server setting too inefficient for many real-world settings. Moreover, we

note that this throughput (both for baseline and Pirac) functions as an upper bound

on actual performance since larger databases would require a bigger keyword domain

and ensuring keyword-privacy in Mahdavi and Kerschbaum [71] requires additional

computational overheads, as explained in Appendix A.

Record
Size

Baseline
(MB/s)

Pirac
(MB/s)

20KiB 0.95 0.23
40 KiB 1.85 0.46
80 KiB 3.51 0.91
160 KiB 6.34 1.76
320 KiB 10.66 3.35

Table B.1: Pirac from single-server PIR-
by-keywords [71].

Record
Size

Baseline
(MB/s)

Pirac
(MB/s)

20 KiB 1880 1629
40 KiB 1857 1710
80 KiB 1843 1761
160 KiB 1877 1886
320 KiB 1962 1787

Table B.2: Pirac from two-server PIR-by-
keywords [16].

B.1.2 Two-server Pirac from keyword-private PIR-by-keywords

Next, we evaluate the server throughput of Pirac from PIR-by-keywords using the

two-server FSS-based PIR-by-keywords scheme [16]. We note that only two-server

86

constructions of FSS-based PIR-by-keywords constructions are known. To match

the single-server setting, we evaluate Pirac on a database of size 𝑛 = 210 with 48-bit

keywords and compare with the baseline PIR-by-keywords with 10-bit keywords. The

result for varying record sizes is presented in Table B.2, with a standard deviation of

at most 11.8%. Pirac from two-server PIR-by-keywords results in a modest overhead

of at at most 1.2× compared to the baseline, and is concretely practical in this setting.

B.2 Public-key Re-randomization

Linearly-homomorphic encryption schemes achieve the ciphertext re-randomizability

property required for our breach resilience upgrade. We benchmark the linearly-

homomorphic Paillier [77] and ElGamal [44] schemes, which to the best of our knowl-

edge, are the most efficient re-randomizable public-key encryption schemes.

We evaluate Paillier in Go using a 2048-bit modulus, which results in a 2048-bit

message space. We benchmark the throughput of Paillier by extrapolating the time

for one exponentiation and one multiplication1 and measure an average throughput

of 0.05 MB/s over 1,000 iterations.

To benchmark ElGamal, we use the P256 elliptic curve group (available in Go

crypto/elliptic package), which has a 256-bit message space. Re-randomization

in ElGamal has an average throughput of 0.29 MB/s. Our code for benchmarking

Paillier and ElGamal can be found in our GitHub repository [4].

B.3 Evaluation of Henry et al. [57]

As mentioned in Chapter 8, the Percy++ source code [49] is more than ten years

old and does not directly compile with modern machines. We created a mirror of

the original source code with some bug fixes [3]. While we were able to reproduce

the results from the original Percy++ paper [48], we were not able to reproduce the

results of Henry et al. [57] for two reasons. First, the scheme of Henry et al. [57]
1Note that re-randomization in Paillier encryption requires one exponentiation and one multipli-

cation per record entry.

87

needs to compile the Percy++ PIR scheme into a (symmetric) PIR scheme using a

library (PolyCommit) that to the best of our knowledge is no longer available on the

internet. Additionally, Henry et al. [57] mention that they apply optimizations to the

Percy++ scheme that improve the baseline performance by a factor of 40-60×, but

do not provide additional details or the code for these optimizations. Consequently,

we benchmark the original Percy++ code (after making it compatible with the newer

machine) and use the Henry et al. [57] reported overhead relative to Percy++ [57,

Figure 1] to compare with the overhead of Pirac.

88

	Introduction
	Setting and Threat Model

	Overview
	The Strawman Approach
	Overview of Pirac Constructions
	Efficiency Considerations

	Related Work
	Preliminaries
	Notation
	Private Information Retrieval
	PIR by Keywords

	Symmetric and Public-key Encryption

	Pirac Definitions
	Defining Authorization
	Breach Resilient Authorization

	Pirac Construction
	Pirac from PIR-by-keywords
	Keyword-private PIR-by-keywords
	Constructing Pirac from Keyword-private PIR-by-keywords

	Pirac from Encryption
	Pirac with Dynamic-database Authorization
	Upgrading to Forward Secrecy
	Making Pirac Breach Resilient

	Practical Considerations

	Security Analysis
	Security of Pirac from PIR-by-keywords
	Security of Pirac from Encryption
	Proof of Dynamic-database Authorization
	Security of the Forward Secrecy Upgrade
	Security of Breach Resilience Upgrade

	Evaluation
	Re-encryption and Key Refreshing
	Re-encryption
	Key-refresh
	Key-refresh (user)

	Single-server PIR
	Static database and Static Access Policy
	Dynamic Database and Static Access Policy
	Dynamic Database and Dynamic Access Policy

	Multi-server PIR
	Pirac with Breach Resilience
	Optimization: Periodic Updates
	Comparison to Prior Work

	Applications of Pirac
	Private Password Breach Lookups
	Private Purchased Content Retrieval
	Private Friend Discovery

	Conclusion
	Keyword-private PIR-by-keywords
	Additional Evaluation
	Evaluation of Pirac from PIR-by-keywords
	Single-server Pirac from keyword-private PIR-by-keywords
	Two-server Pirac from keyword-private PIR-by-keywords

	Public-key Re-randomization
	Evaluation of henry2011practical

