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Abstract

Atmospheric density modeling and uncertainty quantification for fast and accurate
orbit propagation are vital to drag force estimation for satellite reentry prediction
and conjunction assessment in today’s increasingly cluttered Low Earth Orbit (LEO)
environment. Current density models can be computationally expensive, and often
contain large errors, which make density modeling a leading cause of uncertainty in
drag estimation. Reduced-order atmospheric density Models (ROMs) have shown po-
tential to provide good predictive performance at a significantly lower computational
cost, by propagating a low-dimensional representation of the atmospheric density
state instead of the entire density state.

In this thesis, ROMs were implemented in a high-fidelity orbital propagator and
tested on the problem of reentry modeling for LEO objects. First, uncertainty quan-
tification was performed on a test case for three significant sources of uncertainty in
reentry modeling to compare the impact of uncertainty from initial state, ballistic
coefficient, and space weather indices on residual lifetime estimation. These results
highlighted features of interest in ROM behavior relative to empirical models.

Second, ROMs were used to predict reentry of three LEO object test cases. ROMs
were found to provide residual lifetime estimation performance comparable to current
empirical models such as JB2008 and NRLMSISE-00, with a run time reduction of up
to 70% compared to the empirical models. ROMs were especially effective for longer
predictions starting two or more days prior to LEO object reentry, where in some
cases ROMs outperformed both empirical models while saving hours of run time.
These findings validate the utility of ROMs for orbit propagation applications such
as reentry prediction.

Thesis Supervisor: Richard Linares
Title: Associate Professor
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Plain Language Summary

Over the last several decades, the number of satellites in Low-Earth Orbit (LEO)
has increased rapidly. With the growing population of LEO satellites comes an ur-
gent requirement for accurate orbit propagation to predict future satellite "states"
(positions and velocities). Orbit propagation gives satellite operators time to react
to potentially hazardous situations before they occur. Examples of such hazardous
scenarios include debris-generating collisions such as the 2009 Iridium-Cosmos colli-
sion, and atmospheric reentry of large spacecraft which may impact the ground and
cause casualties or damage, as in the May 2020 reentry of a Chinese rocket body
which damaged buildings in the Ivory Coast. Orbit propagator algorithms function
by modeling the forces experienced by a object in orbit, including gravity, drag, and
solar radiation pressure, in order to predict its motion.

Orbit propagation for reentry prediction is used to forecast the time and/or lo-
cation of a satellite’s reentry into the lower atmosphere. Reentry prediction may be
applied to assess the damage/casualty risk from pieces of spacecraft which survive
the reentry process to impact the ground instead of burning up during reentry. Addi-
tionally, reentry analysis may be used to investigate premature deorbit events such as
the February 2022 loss of 38 Starlink satellites, when unexpectedly high atmospheric
densities induced by a geomagnetic storm caused the Starlink satellites to reenter the
atmosphere within weeks after launch.

In the LEO environment between 100 and 1000 km above Earth’s surface, air drag
is one of the largest non-gravitational forces on a satellite. To accurately determine
satellites’ future positions, propagators must be able to model drag. However, drag
force calculations require knowledge of air density at LEO altitudes, where the at-
mosphere is thin but influential to satellite orbits. A variety of atmospheric models
predict densities, but many exhibit large errors. Uncertainty in atmospheric density
is a limiting factor in the accuracy of LEO orbit propagation. Solar and geomagnetic
activity (space weather) increase uncertainty in a satellite’s future state by causing
rapid changes in density, which may not be well-predicted by atmospheric models.
Another challenge of orbit propagation is its computational expense, due largely to
the computational demands of atmospheric density models.

In this thesis, a new type of atmospheric density model is tested on reentry pre-
diction. Reduced-Order density Models (ROMs) show potential for accurate density
modeling at a low computational cost, but they have not yet been widely applied
in orbit propagation. The goal of this thesis is to provide preliminary validation
of ROM performance in orbit propagation by demonstrating their utility on reentry
prediction for three spacecraft test cases. ROM behaviors and features of interest in
reentry modeling are explored in an uncertainty quantification analysis, prior to ex-
tensive testing of the reentry prediction performance of four ROMs and two empirical
density models. ROMs are found capable of offering comparable reentry prediction
accuracy to commonly-used density models, at a fraction of the computational ex-
pense. The results of this thesis validate the potential utility of ROMs in fast and
accurate orbit propagation for reentry prediction and other applications.
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Chapter 1

Introduction

1.1 Motivation

In 1957, a man-made satellite orbited the Earth for the first time [2]. In 1978, after

barely two decades of human activity in space, the growth of the artificial satellite

population into the thousands prompted National Aeronautics and Space Administra-

tion (NASA) scientist Donald Kessler to sound an alarm by describing a hypothetical

condition of cascading collisions between orbiting Resident Space Objects (RSOs),

since nicknamed the "Kessler Syndrome," in which debris-generating collisions create

clouds of spacecraft fragments, which spawn additional collisions until a belt of ar-

tificial debris forms around the Earth [42]. Thirty years after Kessler’s premonitory

warning, the 2009 collision of the Cosmos 2251 and Iridium 33 satellites produced

upwards of 1,600 debris fragments, many of which have the potential to destroy or

damage other RSOs, including manned spacecraft such as the International Space

Station (ISS) [108]. Worse still, accidental and intentional [99] fragmentation events,

defunct satellites, rocket bodies, and other objects contribute to a growing popula-

tion of long-lived space debris, some of which will remain in orbit for years to decades

[108, 1]. Already, active satellites constitute only a small fraction of the total pop-
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ulation of RSOs in Earth orbit [3]. Although increasing attention towards debris

mitigation strategies has prompted research and experimentation on the feasibility

of active debris removal (ADR) [8, 24, 16], widespread usage of ADR is currently

nonexistent.

Figure 1-1: Number of tracked objects in Low Earth Orbit (apogee ≤2000 km) per
calendar year. Data is from Spacetrack Satellite Situation Report.1

Meanwhile, space activity continues to multiply. In 2019, the population of more

than 2,000 active satellites was set to quintuple over the next decade [93], a predic-

tion which seems likely to be realized. As of 2022, SpaceX’s Starlink constellation

alone exceeded 2,000 active satellites, with plans to build a megaconstellation of up to

42,000 satellites total [84]. And unlike early satellites, whose primary missions were

often scientifically or politically motivated, today’s satellites are deeply integrated

into global technological systems with applications ranging from navigation and com-

munication to emergency response and disaster management. In other words, the

growth of space traffic is set to exponentially increase, while the implications of a

catastrophic chain of collisions grow increasingly dire.
1https://www.space-track.org/#ssr
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Preservation of the LEO space environment for current and future use is a top

priority, given its enormous and growing importance for a vast range of technological

applications. But managing space traffic to prevent collisions and near-approaches

among the estimated 29,000 LEO objects greater than 10 cm in size, not to mention

the 170+ million smaller objects [4], is a challenging logistical, political, economic,

and technical problem. And the challenges of a crowded space environment do not

end with conjunction assessment. Greater LEO activity leads to a rising number of

objects reentering the atmosphere each year, which creates another kind of risk: the

ground impact of deorbiting spacecraft.

Figure 1-2: Illustration of spacecraft reentry and ground impact footprint [19]. Cre-
ated with Microsoft PowerPoint.

Although most deorbiting objects will burn up or melt due to heating during

the reentry process, some debris may survive the reentry process and fall to Earth,

potentially causing casualties or property damage. This is especially concerning if

the object is large, contains high amounts of toxic materials, or contains durable

materials likely to survive reentry, such as titanium [75]. Unfortunately, the spent

rocket bodies left in uncontrolled orbit after most launches are just such an example
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of large objects capable of surviving reentries [12]. In fact, in May of 2020, pieces of

a Chinese rocket body survived atmospheric reentry and damaged buildings in two

villages in the Ivory Coast [12]. Although falling space debris is not yet a widespread

hazard, Byers et. al. estimated a 10% chance of casualties over the next decade

[12]. Besides ground impact, space debris could also pose a threat to aviation safety

[19]. For both controlled and uncontrolled objects, reentry prediction is essential for

assessing the hazards that surviving materials may pose to people and property on

the ground and in the air. Additionally, for controlled objects, reentry predictions

can be used to facilitate safe disposal over unpopulated areas of the Earth. With

the disposal of the ISS on the horizon, NASA recently underscored the importance

of reentry prediction by announcing its intent to spend up to $1 billion on ensuring

the safe and controlled deorbit of the ISS [25].

Among the technical challenges inherent in space traffic management is the need

for fast, accurate orbit propagation for conjunction assessment and reentry prediction.

In LEO, uncertainty in future satellite states requires a margin for error in conjunction

assessment and reentry prediction. On orbit, maintaining these margins for error

between satellites will become increasingly difficult as the LEO environment becomes

more crowded, so reducing the uncertainty is a priority. For reentry modeling, this

uncertainty may decrease the ability to determine whether people or property are at

risk from space debris ground impact. One of the leading causes of uncertainty in

orbit propagation is drag modeling inaccuracy due to errors in atmospheric density

modeling [106]. Despite decades of efforts towards fast, accurate atmospheric density

models, the models commonly used in practice today are known to contain significant

uncertainties. Improving the accuracy of density models and quantifying associated

uncertainty in LEO orbit propagation is a vital area of research for the continued safe

and productive use of LEO.

35



1.2 Reduced-Order Density Modeling and Reentry

Prediction

Accurate modeling of atmospheric density is vital to orbit propagation in Low Earth

Orbit (LEO), since air drag is directly proportional to atmospheric (air) density, and

is the largest non-gravitational force acting on LEO satellites [104]. The primary

effect of drag on an LEO satellite orbit is to circularize and shrink the orbit, which

results in a gradual reduction of orbital altitude over time until the satellite reenters

the denser lower layers of the Earth’s atmosphere and burns up, disintegrates, and/or

impacts the ground. Because of the dominance and impact of the drag force in LEO,

propagating a LEO satellite’s orbit for reentry prediction or conjunction analysis is

heavily reliant on the atmospheric density modeling capability.

Atmospheric density models in use today typically fall into one of two classes:

empirical or physics-based models [20]. Empirical density models involve large his-

torical data sets of measurements, including actual density values and/or quantities

related to density, such as temperature [82]. Density-related quantities are incorpo-

rated using the relevant physical equations to derive densities from these data sets.

Empirical density models may also impose physical constraints [82]. However, the

key feature of empirical models is that they estimate densities primarily by perform-

ing interpolation and/or extrapolation upon their underlying data sets to estimate

a density for the particular input conditions given. Input conditions include, at a

minimum, date, time, and location (typically in latitude, longitude, and altitude),

but usually also include other inputs such as solar and geomagnetic conditions. Em-

pirical models are often used in operational applications since they are relatively fast

to run. However, even empirical models can become computationally expensive for

high-fidelity simulations, which may require density computations every few seconds

over a propagation window of hours to days. Additionally, empirical models do not
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incorporate the underlying dynamics of the atmosphere.

Physics-based models are, in a sense, the opposite of empirical models. While

they may rely on empirical models or data sets to establish boundary conditions,

physics-based models operate by solving the systems of equations that describe fluid

flow [20]. Since these equations must be solved at hundreds or thousands of grid

points in latitude, longitude, and altitude to construct density fields for each time of

interest, physics-based models can be extremely computationally expensive to run,

although they may have some benefits in density forecasting ability [20]. Because of

their prohibitively high computational cost, physics-based models are not widely used

for orbit propagation.

The hypothetical "golden standard" of atmospheric density models is a model

capable of combining the benefits of empirical and physics-based models by providing

a fast run time equal to or faster than today’s empirical models while leveraging

the underlying dynamics of the thermosphere to improve forecasting ability. Recent

progress towards such a hybrid model has occurred with the development of Reduced-

Order atmospheric density Models (ROMs), first developed in [59, 62] and expanded

in [60, 63, 33, 32, 30, 61, 34, 103]. Reduced-order models encode a spatial grid of

density points into a lower-dimensional "reduced-order space," which can represent an

entire global distribution of density values in a very compressed form. Propagation

(forecasting) of the density state is conducted in the reduced-order space, and the

final reduced-order state is then converted back into the full-density space. Density

state propagation in the low-dimensional reduced-order state space is very efficient,

making ROMs computationally inexpensive.

ROMs can be trained on density datasets generated by any density model, includ-

ing physics-based models. Provided the data set is sufficiently extensive, the trained

ROM density model remains valid outside of the time period of the original training

data. In other words, ROMs can be used to capture the key dynamics of a density
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Figure 1-3: Illustration of the order-reduction process for a ROM. Figure courtesy of
Julia Briden, adapted from Fig. 3 in [35].

data set and approximately replicate those dynamics at a greatly reduced computa-

tional cost. This offers the potential for improved density forecasts at a fraction of

the computational costs of physics-based density models. Added benefits of ROMs

include easy data assimilation from a variety of data sources for model calibration

[60, 33, 61, 34] and uncertainty quantification of ROM densities [32, 30].

Despite extensive validation performed throughout the development of the ROM

technique, discussed in [59, 62, 103] and other papers, ROMs have not yet been widely

applied to common operational density model use cases, such as orbit propagation.

Initial application of ROMs in orbit propagation for conjunction assessment was con-

ducted in [30, 32], and ROMs were used for reentry simulation by the author of this

thesis and others in [10]. This thesis expands significantly on the reentry modeling

work in [10]. Application of ROMs to common density model use cases represents

an opportunity for further validation of this class of density models, and a chance

to comparatively evaluate their performance in typical applications relative to other

density models.

Besides its importance in ground impact risk assessment, reentry prediction is

an appealing area for ROM application for multiple reasons. First of all, it is a
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Figure 1-4: Initial application of ROMs to reentry simulation for an analysis of one
of the satellites lost in the February 2022 Starlink deorbit event. Altitudes shown are
geocentric. Figure originally published in [10].

challenging problem under the best of conditions, with residual lifetime prediction

errors in reentry campaigns often exceeding 10% [76] and sometimes surpassing 20%

[46]. Secondly, as Solar Cycle 25 ramps up [96], the prospect of increasing frequency

and intensity of elevated solar/geomagnetic activity means that reentry predictions

will rarely be made "under the best of conditions." Space weather in the form of solar

and geomagnetic activity can have dramatic impacts on LEO satellites’ orbits, even

to the point of inducing severely premature reentry, as seen in the SpaceX Starlink

loss event of February 2022, when 38 Starlink satellites were lost within weeks of

launch due to geomagnetic storm conditions [10, 21]. This event highlighted the need

for research into space weather impacts on orbital reentry. Applying ROMs to the

problem of reentry, therefore, offers the chance to fill this gap, while also comparing

ROM responses to space weather to those observed in traditional empirical density

models.
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1.3 Goal, Overview, and Scope of Thesis

The objective of this thesis is to validate the performance of reduced-order atmo-

spheric density models on the exemplary orbit propagation problem of reentry simu-

lation and to conduct quantitative analysis of uncertainty sources in reentry predic-

tion in order to explore density model behavior and identify areas for improvement

of orbit propagation results using reduced-order density models. This thesis builds

upon initial work conducted in [10] by selecting reentry test cases with improved

data availability and known true reentry times, expanding the scope of density model

comparisons by including multiple ballistic coefficients (BC) models and examining

the evolution of density model performance over time, and adding uncertainty quan-

tification to the reentry study.

Towards this end, uncertainty quantification (UQ) is first accomplished for the

three most significant uncertainty sources in the reentry prediction process, apart

from inherent density model uncertainty: ballistic coefficient, initial state, and space

weather uncertainty. Ballistic coefficient impacts are examined by varying the BC

above and below its nominal value to determine its contribution to the reentry time

uncertainty. The contribution of initial-state uncertainty is examined with Monte

Carlo (MC) techniques. Finally, MC methods are applied to space weather uncer-

tainty in two separate ways, which explore 1) the impact of space weather uncer-

tainty on reentry predictions for two ROMs and an empirical density model, and 2)

the impact of space weather uncertainty on ROM initialization. The purpose of the

UQ analysis is to reveal the challenges of separating density model error from other

sources of error and to outline important characteristics of ROM behavior.

Second, reentry prediction is conducted on a sample set of spacecraft reentering

the atmosphere from LEO using four ROMs and two empirical atmospheric density

models. Density models are compared on the basis of accuracy and run time. The

results produced by various ballistic coefficient (BC) modeling strategies and reentry
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prediction window durations are simultaneously investigated. This section comprises

the bulk of the ROM validation work, by rigorously comparing the performance of

four ROMs to the JB2008 and NRLMSISE-00 density models in terms of absolute

error, relative error, and run time. Differences in density model performance are

observed with multiple BC models and prediction windows for every test case. The

organization of this thesis is described below.

Figure 1-5: Diagram of thesis organization.

Chapter 2 offers a rigorous literature review on the topics of reentry prediction

and its associated uncertainty sources, ballistic coefficient and atmospheric density

modeling, and space weather impacts. Criteria for evaluating reentry prediction ac-

curacy are justified in Section 2.1. The comparative performance of density models

for reentry prediction or similar applications is highlighted in Section 2.7.

Chapter 3 outlines the methods and techniques applied in this thesis. This chap-

ter describes the basic theory of orbit propagation using the special perturbations

method and presents the formulation, training, and implementation of reduced-order

atmospheric density models. Additionally presented are details on code structure and
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availability, LEO object test cases and parameters, ballistic coefficient models, and

uncertainty quantification methodology. At the end of this chapter, a set of reen-

try simulations using various density models, BC models, prediction windows, and

uncertainty sources is selected for analysis.

Chapter 4 conducts uncertainty quantification to determine the relative contribu-

tions of initial state, ballistic coefficient, and space weather to uncertainty in predicted

reentry time. As part of the uncertainty quantification, the impact of initialization

error on ROMs is investigated by introducing space weather error into the ROM ini-

tialization process. Chapter 4 lays foundations for understanding ROM and reentry

simulation behavior, and helps interpret the ROM validation work in Chapter 5.

Chapter 5 presents the performance of each density model and BC model on the

set of three LEO object test cases. Observations and comparisons of density/BC

model performance are offered on the basis of run time and accuracy. Results are

discussed comparatively, with reference to the analyses performed in Chapter 4 and

to the performance criteria established in Section 2.1.

Finally, Chapter 6 summarizes the findings presented in Chapters 4 and 5 and

offers takeaways on ROM performance and behavior and uncertainty quantification in

reentry prediction. Opportunities for improvement and future research are presented.
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Chapter 2

Literature Review

2.1 Reentry prediction techniques and accuracy

Predicting the time and location of an orbiting object’s reentry into the atmosphere

is a challenging task, given the significant uncertainties in the satellite’s character-

istics and environment [38]. Precise reentry predictions rely on accurate knowledge

of parameters such as the satellite’s ballistic coefficient (affected by satellite mass,

composition, shape, and rotational state, as well as by the atmosphere’s local chem-

ical composition), and the local density of the atmosphere. Atmospheric density

prediction depends on solar and geomagnetic activity data, which also suffer from

uncertainty in predicted values. Complicating the problem is the extreme sensitivity

of the satellite’s reentry location to small changes in the reentry time. Orbital ve-

locities are extremely high in LEO, with a full orbit around the Earth lasting only

about 90 minutes, so small errors in reentry time yield significant errors in reentry lo-

cation [38]. Factors such as computational resources available may present additional

constraints on the achievable accuracy of reentry prediction techniques.

Organizations with an interest in reentry prediction include space agencies such as

NASA, the European Space Agency (ESA), and the French National Centre for Space
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Studies (CNES); international bodies such as the Inter-Agency Space Debris Coor-

dination Committee (IADC) and the International Association for the Advancement

of Space Safety (IAASS); military organizations such as the U.S. Space Command

(USSPACECOM); and satellite owners and operators seeking to plan for the safe and

responsible disposal of their spacecraft. Depending on the particular purpose of the

reentry prediction, varying levels of accuracy may be desired. For example, a pre-

launch assessment of how long it will take for a spacecraft to deorbit after completing

its mission may seek only a rough estimate with an acceptable uncertainty of several

months or even years. A research paper studying the effects of geomagnetic activity

on the premature deorbit of satellites may seek results with uncertainty on the order

of a few hours, while reentry predictions for ground casualty risk assessment may

demand higher accuracy and better uncertainty quantification (UQ).

Depending on the resources available and the level of accuracy needed for the par-

ticular application, reentry prediction techniques of choice range from high-precision

propagation using six-degree-of-freedom (6DOF) modeling of satellite translational

and rotational state [26], to Monte Carlo techniques simulating an ensemble of pos-

sible uncertainty conditions to predict a maximum-likelihood reentry point [38], to

purely data-based predictions with a neural network absent any underlying consider-

ation of orbital dynamics [39]. Many reentry analysis tools also include survivability

analysis [50], which is useful in evaluating the level of casualty and damage risk from

debris fragments surviving reentry. Reentry footprint predictions, as in [43], focus on

finding ground impact locations of debris fragments for risk assessment.

Common tools for reentry analysis generally fall into one of two categories: object-

oriented and spacecraft-oriented techniques [50]. Examples of object-oriented meth-

ods include NASA’s Debris Assessment Software (DAS), developed in 1998 by Lock-

heed; NASA’s Object reentry Survival Analysis Tool (ORSAT), developed by NASA

in 1993; and the Spacecraft Entry Survival Analysis Module (SESAM) in the ESA’s
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Debris Risk Assessment and Mitigation Analysis (DRAMA) [50]. Currently, the

ESA’s Spacecraft Atmospheric reentry and Aerothermal Breakup (SCARAB), de-

veloped for ESA by a German company in 1995, is the only spacecraft-oriented tool

[13, 50]. Object-oriented techniques involve a simplified model of the spacecraft’s com-

ponents, and assume that these individual components do not begin to disintegrate

until after the spacecraft reaches its breakup altitude [50]. This second assumption

can lead to an exaggerated assessment of ground casualty and damage risk [50], which

may be useful when seeking an upper bound on ground risk. Spacecraft-oriented tech-

niques attempt to model the full spacecraft dynamics using a model of all spacecraft

components and accounting for complex effects, such as shielding of some components

behind others, in order to predict the altitude and dynamics of breakup [13, 50].

The DAS tool provides a fast, simplified breakup model for preliminary assess-

ments, which tends to notably overestimate risk due to its binary predictive capa-

bilities: DAS predicts either survival or demise for each component, based on the

predicted heat absorption [50]. It does not account for effects such as fragmentation

of components, or partial melting [50]. ORSAT does model partial melting but is still

limited in its accuracy due to non-consideration of lift forces on reentering objects

[50]. SESAM is a slightly modified version of the ORSAT techniques, which is used to

predict the velocity, angle, and location of impacting fragments, which can, in turn,

be used for risk assessment [50]. SCARAB uses a complete geometrical spacecraft

model and 6DOF propagation to predict the satellite’s translational and rotational

state, while simultaneously analyzing heating and stress on components to predict

melting and fragmentation [13, 50].

Comparisons of ORSAT, DAS, SESAM, and SCARAB were conducted by Lips

and Fritsche (2005) [50]. They found reasonably good agreement between the four

tools concerning aerodynamic and aerothermodynamic effects [50]. The most signif-

icant difference found was in predictions of material properties; DAS and ORSAT
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predicted higher emissivity and heat capacity than did the other tools, which made

DAS and ORSAT more likely to predict the survival of satellite components [50].

More recent tools such as the CNES Semi-analytic Tool for End of Life Analysis

software (STELA) and the ESA’s Survival And Risk Analysis (SARA) module of

DRAMA may offer improvements over older tools, especially in predicting residual

lifetime and ground risk [13].

The focus of this thesis is residual lifetime prediction (a prerequisite to precise

risk assessment) using a set of atmospheric density models. Ground risk and reentry

footprint prediction are not treated herein, though they are also essential for the safe

disposal of RSOs. While residual lifetime prediction cannot and should not be wholly

separated from its role in ground risk assessment, we turn now to recent work in

reentry time prediction techniques and accuracy. Generally speaking, residual life-

time prediction can be accomplished by propagating a spacecraft’s initial position

forward in time until its altitude drops below a predefined “deorbit altitude.” As long

as the deorbit altitude is above 80-90 km, reentry can be accurately modeled with

orbital dynamics [77]. While sophisticated reentry analysis tools such as ORSAT and

SCARAB include such techniques, these full-analysis tools are not strictly necessary

if survivability, ground risk, and reentry footprint are not considered. Simpler reen-

try simulations can be accomplished using orbital propagators ranging from SGP4

to high-fidelity 6DOF propagators, such as the one Geul et. al. (2018) used to ana-

lyze the Gravity field and steady-state Ocean Circulation Explorer (GOCE) reentry

[26]. Even when the problem of reentry analysis is restricted to only residual lifetime

prediction, the ability to consistently and accurately predict orbital reentry remains

a work in progress, due to large uncertainties in atmospheric density, ballistic coeffi-

cient, and other factors involved in these predictions. Uncertainty sources in reentry

prediction are discussed in depth beginning in Section 2.2. Reentry time predictions

may be especially challenging for highly elliptical orbits [68], though filtering of mea-
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surements used for initial state determination may improve results [67, 68].

In 2012 and 2013, Pardini and Anselmo examined the accuracy of real-time reentry

predictions for three large spacecraft made in support of an IADC reentry campaign

and the Italian Civil Protection Authorities [75, 5]. These spacecraft (NASA’s Up-

per Atmosphere Research Satellite (UARS), German Aerospace Center’s Roentgen

Satellite (ROSAT), and Roscosmos’ Fobos-Grunt) were of particular interest due to

their large size and estimated risk of ground casualties surpassing the 1/10,000 stan-

dard used as an “alert threshold” by a number of agencies, including the National

Aeronautics and Space Administration (NASA) [75]. Average residual lifetime errors

Figure 2-1: Reentry time prediction study by Pardini and Anselmo (2013) for the
ROSAT reentry.1 Red indicates prediction, and blue indicates uncertainty window.
Figure is from [5].

for ROSAT and Fobos-Grunt were found to be 3% and 4%, respectively, while the

average residual lifetime error for UARS was 15%; a large terminal drop in the UARS’

ballistic coefficient may have been partially responsible for the greater errors in its

predicted lifetime [75].
1Figure reproduced in accordance with the agreement between MIT and publisher Elsevier. For

more information, see https://libraries.mit.edu/scholarly/publishing/using-published
-figures/.
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Another 2012 study of UARS reentry time prediction developed a Markov Chain

Monte Carlo (MCMC) technique for quantifying uncertainty both in reentry time and

location [38]. Factors considered as sources of uncertainty were the NRLMSISE-00

density model, the predicted values of F10.7 used as an input to the density model, and

the ballistic coefficient. 150 iterations of the MCMC algorithm yielded an asymmetric

distribution of reentry times centered at 04:16 on 24 September 2011, only 16 minutes

after the observed reentry time, with a 1-sigma value of ∼37 minutes [38]. Horsley

observed that the distribution of predicted reentry times was skewed right, with later

reentry times having a longer tail in the predicted reentry time distribution [38].

While recent works by Trisolini and Colombo have outlined alternative methods of

reentry uncertainty quantification [101, 102], Monte Carlo techniques remain a valid

approach when the computational cost is not a significant barrier.

In 2013, the ESA performed reentry predictions using a combination of MSIS-

90e and CIRA-72 to estimate atmospheric density, along with a series of three drag

coefficient estimation techniques to provide drag coefficients with the uncertainty of

±10% or less [46]. Klinkrad found that ESA reentry time predictions were accurate to

within ±20% in about 95% of cases; however, this finding was based on IADC reentry

campaigns, for which more high-quality data is available than for reentries without

associated IADC campaigns [46]. Therefore, it is unclear whether Klinkrad’s finding

can accurately characterize the quality of ESA reentry predictions for cases without

an associated IADC reentry campaign. In the same year, Pardini and Anselmo (2013)

found mean relative reentry epoch prediction errors of >10% (either for the whole

campaign, for the last 48 hours, or both) in 5 out of 15 examined test cases, although

only one case had the error above 20% [76].

A 2016 study of reentry predictions for Progress-M 27M, a failed Russian cargo

vessel, found a mean residual lifetime prediction error of 12% over the 8-day period

prior to its reentry. The peak error of around 20% falling 3 days before the reentry
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was likely a result of a geomagnetic storm the next day, which led to higher densities

than the 3-day predictions accounted for. The lowest error of 5% occurred just over

one day prior to reentry [77].

One alternative method of reentry prediction bears mentioning. In a recent paper,

Jung et. al. explored the use of a recurrent neural network (RNN) to predict reentry

trajectories [39]. The novelty of this approach lies in the fact that the RNN method

was entirely independent of the system dynamics; that is, no direct modeling of the

forces experienced by reentering satellites was performed. The RNN was trained on a

database consisting of epoch and altitude information of objects with known reentry

times [39]. Reentry times were then predicted using epoch and altitude information

for test cases (excluded from the training set) [39]. Provided that the RNN was

trained on objects with a similar BC to those it was tested on, the average relative

error of its prediction for 4 test cases was around 7%. This was on par with the 6-9%

average relative error observed in IADC reentry campaigns for the same 4 objects [39].

However, when the RNN was trained on objects with different ballistic coefficients

than those it was tested on, its average relative error increased to almost 36% [39].

This method shows promise for providing quick, data-driven reentry predictions,

but it is likely to suffer in cases where system dynamics differ significantly from train-

ing data. For example, the RNN approach might break down for reentries impacted

by geomagnetic storms, unless it was specifically trained on a data set of similar cases.

The RNN method represents a realistic alternative for reentry prediction, as long as

a training set composed of many reentries under similar conditions is available. How-

ever, dynamics-based approaches are likely to be more effective when training data

under similar conditions is limited.

Based on the accuracy evaluations discussed above, an approximate benchmark

for reentry time prediction accuracy can be given. A residual lifetime prediction error

of ±10% is a reasonable goal for prediction performance given current methods, while
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single-digit error (especially below 5%) can be considered excellent performance. In

order to compete with existing reentry prediction methods, prediction error should

be under ±20% for the vast majority of test cases. These metrics for residual lifetime

prediction performance can be used to evaluate how well a particular method performs

relative to existing counterparts.

2.2 Sources of error in reentry prediction

The general form of a reentry prediction problem using propagation techniques is that

of an initial-value ordinary differential equation (ODE) problem, that is, a problem

of the form:

Given:

𝑓(𝑡, 𝑦) = �̇� and 𝑦(𝑡0) = 𝑦0

Find:

𝑦(𝑡) for 𝑡 ∈ [𝑡0, 𝑡𝑓 ]
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Solving this problem requires two primary pieces of information: an initial state

vector 𝑦0 describing the position and velocity of the satellite at initial time 𝑡0, and a

function 𝑓(𝑡, 𝑦) describing the time rate of change (derivative) of the components of
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the satellite state vector. The first three components of the state vector derivative

are the derivatives of the position components, that is, the velocity components.

These are obtained directly from the last three elements of the state vector. The last

three components of the state vector derivative are the satellite’s acceleration. The

acceleration components can be obtained using Newton’s Second Law:

∑︁
𝐹 = 𝑚−→𝑎 (2.1)

By describing and summing the forces acting on the satellite in the 𝑥, 𝑦, and 𝑧

directions and dividing out the satellite’s mass, we can describe the satellite’s accelera-

tion 𝑎 in each direction. Because it calculates acceleration from the sum of the forces

acting on a satellite, the function 𝑓(𝑡, 𝑦) in orbit propagation is sometimes called

the “force model.” The force model includes the gravitational force of the Earth, as

well as orbital perturbations including the forces of atmospheric drag, solar radiation

pressure, and third-body gravitational effects.

Orbital propagation is subject to error in both the initial state 𝑦0 and in the force

model 𝑓(𝑡, 𝑦). High-accuracy initial states may be obtained from Global Positioning

System (GPS) data; however, not all satellites carry GPS trackers, and the avail-

ability of this data (especially in real time) is often limited. Frequently, the only

source of orbital data available for satellites is publicly-available Two-Line Elements

(TLEs) produced by the North American Aerospace Defense Command (NORAD).

Unfortunately, TLE accuracy leaves much to be desired. TLEs are known to contain

errors up to 10 km [41], and can suffer from other problems such as misattribution

of TLEs to the wrong RSOs [92]. TLE error and its impacts are discussed in the fol-

lowing section. Besides initial state error, the force model also introduces errors into

the orbital propagation process. Error in the force model comes from such sources

as the absence of forces that are intentionally unmodeled because of their negligible

magnitude; inaccuracies in the satellite parameters (mass, area, drag / solar radiation
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coefficients) used in calculating solar radiation pressure and atmospheric drag; and

errors in the atmospheric density model used in calculating the drag force. Small

errors are also introduced by the numerical techniques (integrators) used for solving

the differential equation problem of orbital propagation.

Some of these errors are relatively minor, but significant errors exist in the areas

of 1) insufficient tracking data (leading to low accuracy in the initial state); 2) bal-

listic coefficient determination, due to uncertainty in satellite configuration, attitude,

and drag coefficient; and 3) atmospheric density model uncertainty, both from the

inherent uncertainty of the model and from uncertainty in predicted space weather

inputs [76]. The majority of these uncertainties impact the estimation of the aero-

dynamic drag force, which is collectively the largest source of uncertainty for LEO

satellite orbits [56]. In reentry predictions for the GOCE satellite using a high-fidelity

propagator, Geul et. al. (2018) found that two drag-related uncertainties (spacecraft

attitude and density model uncertainty) led to the largest uncertainties in reentry

time [26]. Atmospheric density uncertainty was found to be the largest single source

of uncertainty in the GOCE reentry prediction uncertainty analysis [26].

A complete description and quantification of every error source present in orbital

propagation is unwarranted for the purposes of this thesis, since the dominating

uncertainties come from only a few sources. Instead, this thesis focuses on the largest

sources of uncertainty, especially on drag force modeling. In the following sections,

three of the significant error sources relevant to reentry modeling are discussed: TLE

error, ballistic coefficient estimation, and atmospheric density modeling. The latter

two uncertainty sources are discussed both individually and collectively, since both

fall under the broader topic of drag modeling uncertainty.
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2.2.1 TLE use and error

NORAD releases TLE sets for a large catalog of objects orbiting the Earth. TLEs

contain the satellite’s identifying information and mean orbital elements [70], along

with the date and time of the TLE. TLEs can be obtained from CelesTrak2 and

from the 18th Space Defense Squadron3 [105]. A full description of the TLE format

can be found on CelesTrak’s documentation page.4 NORAD TLEs are generated

with the Simplified General Perturbations 4 (SGP4) propagator [37, 105], and direct

propagation of TLEs should be accomplished using this propagator.5

TLEs represent a vital source of data for space researchers and satellite operators,

since no other readily available data source provides such comprehensive data about

most of the RSOs in Earth orbit [105]. Other sources of tracking data may be available

only to the operators of a particular satellite (for example, positioning data from an

onboard GPS unit) or to those with access to specialized equipment (such as radar

tracking data from observatories). In the absence of other sources of data, TLEs are

widely used for applications ranging from conjunction assessment [105] to ballistic

coefficient estimation [95] to computing density model corrections [110] and more.

While the large repository of publicly available data provided by TLEs is a distinct

advantage for research and operational applications, there are downsides: TLEs often

contain significant inaccuracies, and moreover do not contain covariance information

[41, 70]. This means not only that TLEs can be erroneous, but also that it is difficult

to quantify how large the errors may be [70]. Efforts have been made to quantify

TLE uncertainty [70, 27], but inconsistent TLE accuracy continues to plague users.

Kelso (2007) assessed the accuracy of TLEs and TLE propagation by using SGP4

to propagate TLEs both 15 days forward and 15 days backward in time from an initial

2https://celestrak.org/
3https://www.space-track.org/
4https://celestrak.org/NORAD/documentation/tle-fmt.php
5See SpaceTrack documentation at https://www.space-track.org/documentation#sgp4
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TLE and comparing the results to precise GPS ephemerides for satellites in the GPS

constellation [41]. Kelso examined and plotted6 radial, in-track, and cross-track errors

across the 30-day window for each of the 22 satellites examined. The mean TLE error

at the epoch time is found from Kelso’s plots by examining the mean error at x = 0.

Figure 2-2 summarizes in-track mean TLE error at the epoch time from all 22 plots

generated by Kelso (rounding error magnitude shown on plots down to the nearest

integer value).

Figure 2-2: Histogram of mean in-track TLE error reported by Kelso (2007) at prop-
agation time = 0 for 22 satellites in the GPS constellation. Data is from [41].

Kelso recorded mean errors of up to 10 km in the in-track direction at the epoch

time, and errors of 50 km or more in the in-track direction after 15 days of forward

propagation [41]. Less bias was seen in the radial and across-track errors, which

6http://celestrak.org/publications/AAS/07-127/
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generally centered around zero, but the variance in radial error was found to be up

to about 2 km at the TLE epoch and increased with forward propagation. Based on

Kelso’s plots,7 cross-track error variance was also up to 2 km at the TLE epoch, but

was in most cases less than radial error. Kelso noted that errors were not symmetric

in forward versus backward propagation, with larger errors generally resulting from

forward propagation [41]. In fact, backward propagation regularly yielded lower errors

than those at the TLE epoch time [41].

Similar TLE accuracy results were found for small satellites. In an analysis of

TLE propagation accuracy for three small satellites in low Earth orbit (LEO), Kahr

et. al. (2013) found that TLE propagation errors reached up to 50 km in the in-

track direction after two weeks of forward propagation, while radial and cross-track

errors remained much lower, around 1 km [40]. Like Kelso, Kahr et. al. found that

errors were asymmetric with respect to the direction of propagation, and forward

propagation yielded larger errors than backward propagation [40]. However, TLE

in-track error was much lower at the epoch time (2-3 km in the in-track direction),

except when the satellites maneuvered (TLEs do not account for maneuvers) [40].

In a study of 10 cubesats deployed from the ISS, Riesing found much larger errors

after a shorter forward propagation period, though it is possible that these large errors

are unique to ISS-released cubesats, which could be at higher risk for misidentification

(where the TLE is incorrectly labeled as belonging to the wrong satellite) [92]. It is

also possible that the higher TLE propagation errors in this study may be influenced

by atmospheric drag. Although SGP4 is the preferred propagator for TLEs, Osweiler

found that SGP4 performance was notably worse for orbits low enough to experience

drag [70]. Since drag is a major influence in the LEO regime, poor handling of drag

by SGP4 could have contributed to propagation errors in Riesing’s study.

Fortunately, the problem of TLE error may not always be as grim as these findings

7http://celestrak.org/publications/AAS/07-127/
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suggest. TLE propagation error using SGP4 is of less concern for the purposes of this

thesis than is LEO TLE error at epoch time, that is, at the time of the TLE.

TLE uncertainty at epoch time varies based on orbital characteristics, such as

eccentricity, inclination, and orbital regime [22]. Flohrer et. al. (2008) found that

TLE along-track uncertainty was lower for objects in circular or near-circular orbits

[22]. In addition, for objects in higher-eccentricity orbits, a higher inclination led

to lower along-track uncertainty, though medium-inclined orbits had the largest out-

of-plane uncertainty [22]. The orbital regime also played a significant role, with the

lowest uncertainties found in the MEO regime, followed by the LEO regime [22].

Higher orbits, like the orbits of the GPS satellites in Kelso’s study, typically had

higher uncertainties, as did highly-elliptical orbits [22]. While larger errors did occur

in some cases, the uncertainty in TLE position averaged across the entire TLE catalog

in the LEO regime was found to be about 0.1 km in the across-track and out-of-plane

directions, and about 0.5 km in the along-track direction [22].

Improvements in TLE generation procedures around 2013 led to higher TLE qual-

ity since that time [27]. Geul et. al. developed the Weighted Differences (WD) pro-

cedure for estimating TLE uncertainty in [27] and applied this technique to an error

quantification of TLEs for the GOCE satellite, concluding that post-2013 TLEs had

approximately half the uncertainty of pre-2013 TLEs [26]. However, TLE inaccura-

cies remain. Besides the errors discussed above, TLEs are sometimes mislabeled as

belonging to other objects [49, 92], and are a relatively sparse source of data, with

only around two TLEs released per day, per object [26]. TLE filtering for outliers

and large time gaps is helpful in some applications, but this results in even sparser

data [31].

The work in this thesis utilizes initial state vectors derived from TLEs, due to lack

of access to alternate, higher-accuracy data sources. TLE-derived initial states are

used for propagation with a modified version of the High-Precision Orbit Propagator
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(HPOP). While SGP4 is the propagator optimally compatible with TLE data, it is not

well-suited to the inclusion of multiple atmospheric density models for comparison.

In addition, it tends to perform worse in the presence of drag [70]. To minimize the

error introduced by using TLEs with an alternate propagator, the TLEs used in this

thesis are first converted with the SGP4 propagator into a state vector in an Earth-

Centered Inertial (ECI) coordinate frame. Then, the initial ECI vector is propagated

with HPOP.

The author recognizes that this procedure is not without drawbacks, since the

propagator used is not SGP4. However, this analysis is conducted using TLEs in

view of the fact that frequently (including in this case), TLEs are the only data

source available. The impact of TLE uncertainty on reentry prediction results is

explored using Monte Carlo simulation. For further details, see Section 3.5.

2.2.2 Drag Modeling Error

The drag force, that is, the force produced on a satellite by the transfer of momen-

tum from molecules in the atmosphere to the satellite, is the second-largest perturb-

ing force on a near-Earth satellite’s orbit, after the gravitational effects produced by

Earth’s oblateness [106, 104] (p.551). It is also the largest source of uncertainty in

determining satellite orbits below about 600-700 km in altitude [56, 57, 44]. Atmo-

spheric drag is calculated with the following equation [104] (p.551):

−→𝑎 𝑑𝑟𝑎𝑔 = −1

2

𝑐𝐷𝐴𝑒𝑓𝑓

𝑚
𝜌𝑣2𝑟𝑒𝑙

−→𝑣 𝑟𝑒𝑙
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(2.2)

where −→𝑎 𝑑𝑟𝑎𝑔 is the acceleration due to aerodynamic drag, 𝑐𝑑 is the dimension-

less drag coefficient, 𝐴𝑒𝑓𝑓 is effective cross-sectional frontal area of the satellite, 𝑚 is

the satellite mass, 𝜌 is the local atmospheric density, and 𝑣𝑟𝑒𝑙 is the relative velocity

between the satellite and the local atmosphere. A comprehensive review of uncer-
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tainty sources in atmospheric drag modeling can be found in Vallado and Finkleman

(2010) [106]. Vallado and Finkleman identify 32 potential sources of uncertainty in

drag modeling, ranging from uncertainty in the density model (both inherent and in

the space weather inputs) to uncertainty in winds, satellite characteristics, and orbit

determination/propagation methods [106].

Because it is the largest source of uncertainty for low LEO satellite orbits, drag

prediction improvements are critical for satellite conjunction assessment [83] and for

reentry predictions, since drag is the primary force that induces reentry. While drag

effects can be a limiting factor for low-flying satellites with limited fuel available for

orbit maintenance maneuvers, drag can also be leveraged to reduce the proliferation

of space debris, for example by equipping cubesats with a drag sail to induce prompt

deorbit following mission completion [87, 36]. Whether the goal is to mitigate, max-

imize, or simply to plan for drag effects, accurate drag prediction is as important as

it is challenging.

A dominant source of uncertainty in drag modeling is an error in the neutral

atmospheric density, 𝜌, used to calculate the drag force [26]. Atmospheric density

at orbital altitudes varies over ten or more orders of magnitude, and is a complex

function of altitude, latitude, local solar time, solar and geomagnetic activity (space

weather), and other factors, which makes it challenging to predict. Some of these

factors, such as solar and geomagnetic activity, also need to be predicted in order

to forecast future atmospheric densities, which adds another layer of potential error.

Geomagnetic activity can cause major fluctuations in atmospheric density, leading

to faster orbital decay and greater errors in drag predictions. The impact of space

weather on satellite reentries is discussed in Section 2.5.

Another significant source of error in atmospheric drag estimation is the ballistic

coefficient (BC), a parameter that combines several factors describing how the satellite

interacts with the atmosphere. Like atmospheric density, BC has a major impact on
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drag calculations. For example, reentry simulations of the GOCE satellite found that

drag predictions that assumed that the satellite was tumbling were roughly 3 times

higher than those assuming a stable rotational position [26], due to the increased BC

caused by the tumbling. In a study using only TLE-derived satellite data, Saunders

et. al. (2009) also found that BC estimation was “the prime factor in accurately

predicting reentry dates” [94]. Because of the techniques used for ballistic coefficient

estimation, it is not always possible to separate BC uncertainty from density model

uncertainty. BC estimation techniques are discussed in Section 2.3.

Despite the complexity of drag prediction in practice, it is conceptually simple.

Drag prediction involves 1) estimating the density of the medium surrounding an

object, and 2) describing how that medium interacts with the object [106]. Con-

veniently, two key error sources in drag prediction fit directly into these categories:

atmospheric density modeling, and determination of a satellite’s ballistic coefficient.

In the study on reentry predictions of the GOCE satellite, Geul et. al. found that

“decay time distribution accuracy. . . is dominated primarily by systemic errors in at-

mospheric density and attitude control, whereas its precision is dominated by the

atmospheric uncertainty” [26]. Attitude control influences drag (and thus reentry

time) due to its impact on the ballistic coefficient. In other words, BC error and

density error were the primary reasons for incorrect reentry time predictions, while

uncertainties in atmospheric density were the largest contributors to the width of the

spread of reentry predictions.

Discussion of atmospheric drag error and uncertainty in this thesis is therefore

restricted to initial-state TLE, BC, and atmospheric density, due to their large con-

tribution to the total error/uncertainty in drag and reentry prediction. Uncertainty in

solar and geomagnetic proxies as inputs to density models is covered as a sub-topic of

atmospheric density uncertainty. The three areas of ballistic coefficient, density, and

space weather indices are discussed in detail in Sections 2.3, 2.4, and 2.5, respectively.
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2.3 Ballistic Coefficient

As previously discussed, atmospheric drag is calculated with Eqn. 2.2 [104] (p.551):

−→𝑎 𝑑𝑟𝑎𝑔 = −1

2

𝑐𝐷𝐴𝑒𝑓𝑓

𝑚
𝜌𝑣2𝑟𝑒𝑙

−→𝑣 𝑟𝑒𝑙

|𝑣𝑟𝑒𝑙|

The term 𝑐𝐷𝐴𝑒𝑓𝑓

𝑚
is collectively known as the ballistic coefficient (BC). It describes

how significantly the satellite is impacted by atmospheric drag, based on the physical

characteristics of the satellite [104] (p. 552). (Note that some texts define BC as

the reciprocal of 𝑐𝐷𝐴𝑒𝑓𝑓

𝑚
[104] (p.552). In this work, BC is consistently defined as

𝑐𝐷𝐴𝑒𝑓𝑓

𝑚
.) In this definition, 𝑚 is the mass of the satellite and is the only component

of the BC that can often be well-defined based on knowledge of the satellite. 𝑐𝐷

is the dimensionless drag coefficient, which encapsulates gas-surface interactions and

is influenced by both satellite shape and atmospheric chemical composition [79, 104]

(p.551). The minimum physical value for 𝑐𝐷 is 2 [95]. The drag coefficient is often ap-

proximated as 2.2, but even for uniform spheres at low altitudes (325 km and below),

this value can vary by a small amount of about ±5% [36]. At higher altitudes, drag

coefficients tend to increase [79]. Theoretical techniques can be used to approximate

𝑐𝐷 for satellites, with an estimated uncertainty of ±15% [71]. Finally, 𝐴𝑒𝑓𝑓 is the

effective cross-sectional frontal area of the satellite. This is the area of the satellite

perpendicular to the relative velocity vector between the satellite and the surrounding

atmosphere. As intuition suggests, objects with higher BCs are more impacted by

drag than objects with low BCs: an object with a small mass and large area (e.g.,

a piece of paper) will be “blown around” more than an object with a high mass and

small frontal area (such as a glass marble).

The effective frontal area of a satellite can be even more difficult to determine than

the drag coefficient. With the exception of uniformly spherical satellites, the effec-

tive frontal area varies based on satellite attitude (rotational orientation around the
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satellite’s center of mass). However, satellite rotational attitude is often not precisely

known, and can change rapidly, especially for a tumbling satellite. Many satellites

tumble during reentry, which makes frontal area determination even more difficult

during the reentry process. Rotational attitude can be modeled, for example with

a 6DOF propagator such as the one in [26]. However, propagation techniques are

limited by the need for an accurate initial rotational state. Additionally, propagation

must include torques from the satellite’s attitude control system, if present. These

also may be difficult to determine, especially if the system is no longer fully functional

as the satellite approaches reentry at the end of its lifetime. Even where 6DOF prop-

agation is possible, it may not be practical due to its complexity and computational

cost.

Instead of attempting to independently determine 𝑐𝐷, 𝐴𝑒𝑓𝑓 , and 𝑚 at each point

in a satellite’s orbit, estimation techniques often model the ballistic coefficient as a

single quantity. Because of its impact on the drag force, which is one of the primary

orbital perturbations in LEO, estimation of the BC is a vital topic for orbital propa-

gation. In a 2009 assessment of an orbital propagator intended for use in estimating

thermospheric density from orbital data, Saunders et. al. found that poor estimation

of ballistic coefficients was a significant limiting factor on the propagator’s ability to

predict reentry [94].

The naive technique for estimating a satellite’s ballistic coefficient is to calculate

it from the B-star (𝐵*) drag term contained in publicly-available TLEs. In theory,

the ballistic coefficient can be calculated from 𝐵* as follows [37]:

𝐵 =
2𝐵*

𝜌0
(2.3)

where 𝐵* is the TLE B-star drag term, 𝐵 is the ballistic coefficient, and 𝜌0 is an
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atmospheric density reference value defined by [37]:

𝜌0 = (2.461× 10−5)× (6378.135)[
𝑘𝑔

𝑚2 · 𝐸𝑎𝑟𝑡ℎ 𝑅𝑎𝑑𝑖𝑖
] = 0.1570[

𝑘𝑔

𝑚2 · 𝐸𝑎𝑟𝑡ℎ 𝑅𝑎𝑑𝑖𝑖
]

(2.4)

Unfortunately, while the nominal definition of 𝐵* allows a simple calculation of

the ballistic coefficient, the reality is more complex. According to Vallado (p. 106),

𝐵* is “an arbitrary free parameter in differential correction,” meaning that it may

be “completely unrelated to drag effects in the presence of. . . maneuvers” and other

orbital perturbations [104]. Because the 𝐵* term in TLEs can even be negative

[95, 104], the ballistic coefficients calculated with this technique can be nonphysical.

If used to calculate drag acceleration, a nonphysical negative ballistic coefficient value

will yield a drag acceleration value that appears to add energy to the satellite’s orbit

(speeding it up, rather than slowing it down).

Even in cases where the 𝐵* term is consistent with possible physical values, it

is not necessarily accurate. Saunders et. al. (2009) found that reentry predictions

using ballistic coefficients calculated from the 𝐵* term overestimated the remaining

satellite lifetime in all four test cases, indicating that the 𝐵*-derived ballistic coeffi-

cients consistently underestimated the true BC [94]. These problems with the TLE

drag term make the 𝐵* method generally unreliable for determining accurate ballistic

coefficients.

Saunders et. al. (2012) therefore explored an alternative method of deriving

ballistic coefficients empirically from TLE data by comparing the change in semimajor

axis observed from TLEs with drag-induced change in the semimajor axis predicted

by the AETHER orbit propagator, then updating the BC guess using the Secant

method and re-running the AETHER propagation until the predicted and observed

changes in semimajor axis converged [95]. To minimize error from TLE inaccuracy,

Saunders et. al. repeated this process using TLE pairs across the historical record
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of TLEs for each object, then chose the most commonly predicted value (or mode)

as the final ballistic coefficient estimate [95]. Note that this technique can be used

either to determine the ballistic coefficient directly, or to determine drag coefficient

𝑐𝐷 in cases where satellite frontal area 𝐴𝑒𝑓𝑓 is known and stable, such as for uniform

spherical satellites [71]. Saunders’ method closely resembles the estimation procedure

used by Pardini and Anselmo in [71, 72, 73, 79].

One characteristic of this method is that it tends to absorb atmospheric density

error into the BC estimate, since it uses BC as a fit parameter [95]. Pardini and

Anselmo leveraged this tendency to reveal characteristics of several density models’

performance; however, when trying to determine a physically accurate BC, as in Saun-

ders et. al. (2012), the absorption of density model error into the ballistic coefficient

is problematic [71, 72, 73, 79, 95]. In fact, some of Saunders’ drag coefficient estimates

returned nonphysical values, which were attributed to errors in the NRLMSISE-00

density model used [95]. Saunders et. al. therefore cautioned that, when using BCs

obtained with this technique for orbit propagation, the BCs should be paired with

the same density model used to generate them [95]. Additionally, this technique was

found to be highly influenced by the initial TLE used for the BC estimation, meaning

that propagation using these BC estimates should ideally use the same initial state

as the BC estimate [31].

Gondelach et. al. (2016) used a modified version of this ballistic coefficient estima-

tion technique to simultaneously estimate BC and solar radiation pressure coefficient

(SRPC) from filtered TLEs for reentry prediction of spent rocket bodies with highly-

eccentric orbits [31, 29]. The authors found that TLE outliers in perigee radius

resulted in BC outliers, meaning that filtering TLEs by perigee radius (or equiva-

lently, by semimajor axis and eccentricity) was important to accurate BC estimation

using the modified version of Saunders’ technique [29]. Gondelach et. al. concluded

that TLE error was a major contributor to reentry prediction and BC estimation
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accuracy, and that filtering TLEs was important in obtaining accurate results [29].

High-quality TLE-derived BC estimates rely on filtering of TLEs for errors and out-

liers, such as removing TLEs with a negative (non-physical) 𝐵* term and those that

are outliers in inclination, eccentricity, and perigee radius [31, 29, 49, 48]. The im-

portance of filtering procedures was underscored in [49], where Lidtke et. al. found

that removing TLE outliers was “vital in order to reduce the prediction errors” for

reentry predictions of spent rocket bodies [49]. TLE-based BC estimation may be

more effective for circular than for eccentric orbits, since TLE errors exhibit a bias

between perigee and apogee [95].

As an alternative to estimating BC from TLE data, a similar technique has been

applied to estimate BC from radar tracking data [15, 14]. Like TLE-based estima-

tion, radar-based estimation allows BC to absorb errors from multiple sources. If

observations can be made at a sufficient frequency, even relatively sparse radar mea-

surements may yield average BC estimates comparable to those from onboard GPS

monitoring [14]. As a development on BC estimation using both radar and TLEs,

the authors of [109] propose the use of mean ballistic coefficient over a single orbit

for low-eccentricity orbits, as a means of accounting for short-term BC variations

due to altitude change. Finally, another recent effort used simulated photometric

measurements of non-resolved objects to derive drag coefficients by determining the

attitude of rocket bodies with known geometry [64]. This technique holds promise

for improving drag estimates for non-resolved objects, which could subsequently be

used to calibrate atmospheric models [64].

For the purposes of this thesis, ballistic coefficient estimation is accomplished

with two methods. The first is Gondelach’s technique of estimating BC by iteratively

comparing observed semimajor axis change from filtered TLEs to predicted semimajor

axis change using the Accurate Integrator for Debris Analysis (AIDA) propagator

[65]. This BC estimation method was accomplished with code provided by David
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Gondelach from [31, 65]. The second method involved using BCs estimated by Pardini

and Anselmo with the CDFIT tool in [75, 77]. For further discussion of BC estimation

and modeling in this thesis, see Section 3.3.3.

2.4 Atmospheric Density Modeling

As briefly discussed in the previous section, one of the complicating factors of ballistic

coefficient estimation is uncertainty/error in atmospheric density. Returning again to

Equation 2.2, we find that drag acceleration is linearly dependent on both atmospheric

density 𝜌 and BC:
−→𝑎 𝑑𝑟𝑎𝑔 = −1
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Even in cases where drag-induced acceleration can be precisely determined (for exam-

ple, by subtracting precisely-modeled non-drag perturbations from onboard satellite

accelerometer readings), the dependency of drag-induced acceleration on BC and 𝜌

makes it difficult to separate the two. Doing so requires precise knowledge of at least

one of the two factors, which is rarely available. For propagation and reentry model-

ing, the ideal case is a physically accurate BC paired with an accurate atmospheric

density model. But due to BC error, it can be difficult to determine the accuracy of a

density model. For drag coefficient or BC estimation using the semimajor axis tech-

nique described in Section 2.3, an atmospheric density model such as NRLMSISE-00

is used in the propagation process [95]. However, as described by Saunders et. al.

(2012), this leads to the absorption of density model error into the BC [95].

To begin a discussion of atmospheric density modeling, let us look at a naive

approach to the problem.

The Earth’s atmosphere is composed of layers, beginning with the troposphere at

low altitudes of 10 km or less, and extending up to the thermosphere at LEO orbital

altitudes (from around 100 km to between 500-1000 km) [23]. Although atmospheric
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density decreases quickly with altitude, most of the thermosphere is still dense enough

to have a significant impact on satellite orbits.

Figure 2-3: Diagram of atmospheric layers [23]. Created with Microsoft PowerPoint.

Density models can be either static (depending only on altitude) or time-varying

(depending on time and time-based factors) [104] (p.553). Both types of models rely

on underlying physics principles, including the ideal-gas law and the hydrostatic equa-

tion, but static models are significantly simpler than their time-varying counterparts

[104] (p.553). The simplest density model of all is the static exponentially decaying

density model, described by Markley and Crassidis in [58] (p.406) and Vallado [104]

(p.565). This model describes density as a simple function of altitude and assumes

that density at a given altitude is invariant in longitude, latitude, and time [104]

(p.565). The exponential model is described by the following equation [58] (p.406):
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𝜌(ℎ) = 𝜌0 · exp(−ℎ− ℎ0

𝐻
) (2.5)

In this equation, 𝜌0 and ℎ0 are reference density and reference altitude, respec-

tively, and 𝐻 is the scale height. These three quantities are determined from tabulated

values available in Table 8-4 in Vallado [104] (p.567) and Table 11.1 in Markley and

Crassidis [58] (p.407). Finally, ℎ is the actual altitude above the ellipsoid (above

Earth’s surface) [104] (p.566). While the exponential model can provide a reasonable

and computationally efficient approximation for low-fidelity simulations [58] (p.406),

and this model or variations of it are used in some cases such as [18], the static ex-

ponentially decaying density model is not suitable for precision applications, because

it neglects significant factors including space weather and latitude-, longitude-, and

time-dependent dynamics. Other static table-based density models include the 1962

and 1976 Standard Atmosphere models [104] (p.568).

Early attempts at more sophisticated density models include the semi-theoretical

Committee on Space Research (COSPAR) International Reference Atmosphere (CIRA)

models (including CIRA-65, CIRA-72, and CIRA-90), and the partially static Harris-

Priester model, which utilizes interpolation between density tables referenced to dif-

ferent points in the solar cycle and also includes averaged values for the major known

variations impacting the thermosphere [104] (pp.568-569). The Jacchia and Jacchia-

Roberts models, including J70, J71, and JR-71, are early empirically-based models

involving diffusion equation integration [104] (pp.569-571), [58] (p.408). Another

early empirical model was the fast-to-evaluate Russian GOST density model, based

on data collected from Russian Cosmos satellites [104] (pp.571-572), [58] (pp.408-

409). Other early empirical models include the DTM models and the MSIS family of

models derived from the DTM [104] (p.571). Note that data-based empirical models

are not necessarily based on measured thermospheric density data, but may be de-

rived from related quantities such as temperatures and incoherent radar scatter data
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[104] (p.571).

Today, commonly-used models can be classified as empirical or physical/physics-

based [20]. Empirical models, like the MSIS family, rely on large data sets and are

typically fast to evaluate. Though they lack a framework for the underlying dy-

namics of the thermosphere, empirical models often include physical constraints [20].

Physics-based models, on the other hand, solve the governing fluid equations to rep-

resent atmospheric densities [20] on a grid of points in time and space. Physics-based

models may be informed by empirical models, for example by using boundary condi-

tions derived empirically [20]. The knowledge of underlying thermospheric dynamics

present in physics-based density models may provide an advantage in density forecast-

ing, as compared to empirical models, but it comes at a high computational cost [59].

Recently, the development of reduced-order density models has offered the possibility

of improved forecasting ability at a low computational cost [59]. Reduced-order mod-

els are used extensively in this thesis, and are described in 2.4.3. The reduced-order

model formulation, training, and implementation are detailed in Sections 3.4.2, 3.4.3,

and 3.4.4.

2.4.1 Empirical atmospheric density models

Emmert (2015) provides a description of the three leading empirical density models:

Naval Research Laboratory Mass Spectrometer Incoherent Scatter radar Extended

(NRLMSISE-00), Drag Temperature Model (DTM-2013), and Jacchia-Bowman (JB2008)

[20]. All three of these models are commonly used for satellite drag calculations [51].

The primary differences between these models include their underlying data sets, and

the mathematical formulations they use to describe the altitude-dependent change

in thermospheric temperature [20]. While these empirical models are fairly accu-

rate at describing regular, large-scale variations on neutral mass density, they may

not capture small-scale dynamics with the accuracy desired for drag predictions [51].
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The NRLMSISE-00 and JB2008 empirical models are used in this thesis, while the

DTM-2013 is not. For a description of DTM-2013, see [20].

The NRLMSISE-00 (or NRLMSIS-00) builds off of the MSIS family of density

models (MSIS-86, MSIS-90) by including a wider range of data sets [82]. Like the

previous MSIS models, the NRLMSISE-00 uses a set of parametric equations fitted

to its underlying data sets to interpolate/extrapolate atmospheric conditions at the

time and location of interest [82]. Unlike the earlier MSIS models, however, the

NRLMSISE-00 was expanded to include additional data sets of orbital drag and de-

cay data, accelerometer readings, and additional incoherent scatter radar datasets

over a longer period of time than any of the former MSIS models, to help account for

gradual long-term changes in the thermosphere [82]. These additional datasets made

the NRLMSISE-00 competitive with the older Jacchia models, and Picone (2002)

found that the NRLMSISE-00 slightly outperformed the MSIS-90 and Jacchia-70

[82]. However, Marcos et. al. (2006) found that the NRLMSISE-00 tends to un-

derestimate densities during some geomagnetic storms by 10-15% [55]. In addition,

in a comparison of NRLMSISE-00 predictions against density data obtained from

satellite tracking, the standard deviation of the data-to-model ratio for NRLMSISE-

00 increased with altitude between 200 and 600 km, topping off at over 0.3 (a 30%

standard deviation of model error as compared to satellite tracking densities!) [55].

Various techniques exist for improving NRLMSISE-00 density estimates for drag

modeling and reentry prediction applications. For example, Yurasov et. al. (2008)

improved reentry time predictions made with NRLMSISE-00 by using TLE-based

density corrections [110]. This improved reentry prediction accuracy by 60% or more

for spherical objects, and by approximately 32% for non-spherical objects due to

their time-varying ballistic coefficients [110]. However, Yurasov’s NRLMSISE-00 cor-

rections are limited by the sparsity of TLE data at very low altitudes for computing

corrections at these altitudes, and by the inability to calculate density corrections in
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advance, making real-time predictions with this technique impracticable [110]. Shi

et. al. (2015) used TLE data for NRLMSISE-00 calibration at solar maximum, re-

sulting in a lower bias and standard deviation, and RMS improvements of more than

10% at some altitudes [97]. Another development on the NRLMSISE-00 model was

the recent release of the new NRLMSISE 2.0, an updated version of the model [107].

However, Virgili et. al. (2021) found that the NRLMSISE 2.0 “does not seem to pro-

vide any significant improvement” for reentry predictions, relative to other density

models (including the NRLMSISE-00) [107].

Figure 2-4: Neutral mass densities predicted by NRLMSISE-00 at 400 km altitude at
12:00 UTC on 10 May 2023.

Another empirical model in common use is the JB2008, described in depth by

Bowman et. al. [9]. Like NRLMSISE-00, JB2008 is publicly available in several

programming languages. JB2008 density modeling is built on four key data sources:

orbit-derived densities from the U.S. Air Force (1997-2007), density data from the Air

Force’s High Accuracy Satellite Drag Model (HASDM) (2001-2005), accelerometer

densities from the Challenging Minisatellite Payload (CHAMP) (2001-2005), and ac-

celerometer densities from the Gravity Recovery and Climate Experiment (GRACE)
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(2002-2005) [9]. The JB2008 model uses four indices (F10.7, S10.7, M10.7, and Y10.7)

as proxies for solar heating, in addition to the 81-day average values of these indices

[9]. Disturbance storm time (Dst) index is used to improve JB2008 modeling of geo-

magnetic storms [9]. Bowman et. al. found that using Dst instead of the 𝑎𝑝 magnetic

index reduced error during major geomagnetic storms by a significant margin (∼20%)

as compared to NRLMSISE-00 [9].

JB2008 also offers modest improvements over NRLMSISE-00 and Jacchia-70 dur-

ing non-storm times, and overall provides standard deviations around 10% at 400 km

in altitude [9]. Marcos et. al. (2010) also found that the standard deviation of the

ratio between JB2008 densities and CHAMP density data was slightly lower than for

NRLMSISE-00 and J70 [57], meaning that the spread of JB2008 predictions around

the measured density values was smaller. However, depending on solar conditions and

altitude, JB2008 does not always outperform its counterparts. By comparing drag

coefficients fitted using different density models, Pardini and Anselmo (2012) found

that at sunspot maximum, JB2008 consistently overestimated average density values

by 8-9% at altitudes of ∼275-625 km [78]. In contrast, NRLMSISE-00 overestimated

average densities by a similar amount (9%) around 275 km, but this value decreased

with increasing altitude, and at 625 km NRLMSISE-00 density bias dropped to nearly

zero [78]. This might give the NRLMSISE-00 an advantage in predicting average drag

effects at higher altitudes, despite its greater variance at higher altitudes found by

Marcos et. al. (2006) [55]. Bruinsma et. al. (2017) found that JB2008 out-performed

NRLMSISE-00 for lower altitudes (170-275 km) in a comparison of empirical models

to GOCE accelerometer densities, but noted that JB2008 performance suffered at

times during low solar activity conditions [11]. Additionally, Arenillas et. al. (2020)

found that the NRLMSISE-00 was less computationally expensive to run than JB2008

in a large-scale simulation [6]. As these comparisons show, determining a “best” em-

pirical density model among those readily available is a non-trivial task, and may
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depend on the altitudes of interest, the solar conditions during the time period of

interest, and the computational resources available.

The U.S. Air Force’s HASDM model, on which the JB2008 is partially based, pro-

vides significantly better density modeling than JB2008, NRLMSISE, and J70 during

a range of geomagnetic conditions. HASDM achieved standard deviations consis-

tently below 10%, or about half the standard deviations of the next-best performer,

JB2008, in a 2008 comparison by Bowman et. al. [9]. HASDM uses the Dynamic

Calibration Atmosphere (DCA) model to provide high-resolution density estimates

(and predictions up to 3 days in the future) based on observations of drag effects on a

set of “calibration satellites” [98]. HASDM provides significant accuracy benefits over

other models [98]. Unfortunately, HASDM is not publicly available, so it cannot be

widely used for real-time or predictive density modeling. Archived HASDM density

data sets for the years from 2000 to 2019 is available from the SET HASDM Density

Database.8

2.4.2 Physics-based atmospheric density models

Unlike empirical models, physics-based models are typically not readily available for

operational application due to their prohibitively high computational cost. Physics-

based models solve fluid equations in three dimensions on grids of varying temporal

and spatial resolution [20]. While physics-based models may have some advantage

over empirical models for density forecasting [59], this advantage may be limited by

the low availability of thermospheric data for model assimilation, and by the depen-

dence of physics-based models on forecasts of solar conditions, which may contain

error [20]. Most physics-based models include some assumptions (such as hydrostatic

equilibrium) which may not be fully accurate [20, 44]. Additionally, data assimila-

tion into physics-based models is more challenging than for empirical models [57].

8https://spacewx.com/hasdm/
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Nonetheless, physics-based models are valuable tools for understanding the physical

processes of the thermosphere, and are able to simulate conditions not covered by

historical data sets, which empirical models cannot do [20]. Physics-based models in-

clude the Global Ionosphere-Thermosphere Model (GITM), the National Center for

Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamic General

Circulation Model (TIE-GCM), and the National Oceanic and Atmospheric Admin-

istration’s (NOAA) Whole Atmosphere Model-Ionosphere Plasmasphere Electrody-

namics (WAM-IPE) Forecast System (WFS).

The NCAR/TIE-GCM was developed in the early 1990s, based on predecessors

dating back to the early 1980s [90]. In addition to densities of the atmosphere’s

constituent species, the TIE-GCM also models temperature, winds, ion densities, and

electron densities on a global grid, using pressure surfaces as its vertical coordinate

[90, 86]. TIE-GCM includes electrodynamic interactions and feedback between the

thermosphere and ionosphere [57], and has been valuable in ionosphere-thermosphere

studies [85]. TIE-GCM testing has shown good general agreement with empirical

models [90], and has been validated against data sets including satellite drag data

and incoherent scatter radar data [85].

Developed in the mid-2000s, the GITM model diverges from other physics-based

models by removing the hydrostatic equilibrium assumption, which allows the study of

conditions during which this assumption does not hold [20]. Additionally, the GITM

model provides a great deal of flexibility with adjustable resolution, acceptance of

several models for electric fields and particle precipitation, multiple options for initial-

state specification, and operation in both 1-D and 3-D [91]. GITM was validated

against MSIS temperature profiles, International Reference Ionosphere (IRI) electron

densities, and ground- and satellite-based measurements of neutral winds [91].

NOAA’s WAM-IPE incorporates forcing from solar/geomagnetic activity, as well

as from lower atmosphere dynamics [69]. The Whole Atmosphere Model (WAM)
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component describes temperature, wind, and atmospheric composition, while the

coupled Ionosphere Plasmasphere Electrodynamics (IPE) describes the ionosphere

[69]. Two-day neutral density forecasts using the WAM-IPE are available to the

public from NOAA’s Space Weather Prediction Center (SWPC).9

Figure 2-5: Neutral mass densities predicted by WAM-IPE at 400 km altitude at
12:00 UTC on 13 May 2023. Data from NOAA SWPC.10

While physics-based models are not the leading choice for satellite drag calcula-

tions due to their computational expense, greater requirements for inputs and bound-

ary conditions, and difficulty in assimilating data, their descriptions of thermospheric

dynamics show promise for improved density forecasting capabilities for drag model-

ing. In fact, Marcos et. al. (2010) went so far as to call operational application of

physics-based density forecasting “The ultimate goal of satellite drag research” [57].

Physics-based models are already in use for some operational applications, such as

the use of GITM in conjunction with analysis for the IMPACT project [44], and

the use of WAM-IPE by the Space Weather Forecast Office for alerts/warnings [69].
9https://www.swpc.noaa.gov/products/wam-ipe

10https://www.swpc.noaa.gov/products/wam-ipe
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With further study and development, the role of physics-based models in satellite

drag predictions will continue to grow.

2.4.3 Reduced-order atmospheric density models

A newly-emerged branch of atmospheric density modeling is reduced-order modeling,

which seeks to combine the low computational cost and easy data assimilation of

empirical models with the predictive advantages of physics-based models. The key

theme of this thesis is the application of a set of Reduced-Order atmospheric density

Models (ROMs) to the problem of satellite reentry prediction. ROMs are therefore

discussed more extensively in Section 3.4. A brief conceptual overview is presented

here.

The basic idea of reduced-order modeling is to represent a complex, high-dimensional

system in a low-dimensional way by identifying underlying basis modes/functions. In

2017, Mehta and Linares used proper orthogonal composition (POD) to decompose

thermospheric density snapshots into a series of spatially-dependent basis functions,

along with an associated set of time-dependent coefficients [59]. Although the use of a

finite number of spatial modes to represent the original data snapshot does introduce

truncation error (meaning that the original density data snapshots cannot be perfectly

recovered from the reduced-order form), a relatively low number of modes is needed

to well capture the system dynamics. Mehta and Linares (2017) demonstrated that

using only the first 10 spatial modes identified with POD captured more than 99% of

the system’s energy [59]. These modes were shown to capture the dominant underly-

ing dynamics of the thermosphere, including diurnal and semidiurnal solar tides. The

time-dependent coefficients oscillated with periods reflecting the time scale of those

tides (e.g., modes representing diurnal variations had coefficients oscillating with a

period of 24 hours) [59].
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Figure 2-6: First 10 spatial modes identified by POD in NRLMSISE-00 snapshots.
Figure reproduced from [59], courtesy of Dr. Richard Linares.
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Figure 2-7: Time-dependent coefficients associated with first 10 spatial modes iden-
tified by POD in NRLMSISE-00 snapshots. Figure reproduced from [59], courtesy of
Dr. Richard Linares.

When used to reconstruct global density snapshots generated by the NRLMSISE-

00 model, the POD technique resulted in a mean error of ∼1% relative to the original

NRLMSISE-00 snapshots, using 30 spatial modes [59]. It is important to note that

all types of input conditions must be included in the snapshots used to construct

the POD model to ensure the model’s accuracy for any inputs [59]. In 2018, Mehta

et. al. applied the POD order-reduction technique to density model snapshots gen-
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erated with the TIE-GCM physics-based model [62]. In this paper, Mehta et. al.

also extended the ROM model by developing a Hermitian Space-Dynamic Mode De-

composition with Control (HS-DMDc) algorithm which they used to propagate the

time-dependent ROM coefficients. HS-DMDc accomplishes this by describing the

unforced system dynamics with the “dynamic matrix” and including the effects of ex-

ternal inputs (such as space weather) with the “input matrix”. This technique allows

the ROM to propagate in time its low-dimensional representation of the thermospheric

state, giving it predictive capabilities [62]. The TIE-GCM POD ROM can therefore

act as a computationally fast substitute for the full TIE-GCM model, capturing most

of the TIE-GCM model’s dynamics at a small fraction of the cost. Mehta et. al.

(2018) found that the TIE-GCM ROM was able to remain within ∼5% of simulated

densities over a 24-hour forecast period [62].

Mehta, Linares, and others continued to develop the capabilities of ROMs by

calibrating the TIE-GCM ROM via assimilation of accelerometer densities from the

CHAMP and GOCE missions with a Kalman filter [60]; extending the ROM technique

to modeling atmospheric composition and temperature in addition to neutral density

[63]; developing ROMs based on other models, including JB2008 and NRLMSISE-00

[33]; quantifying uncertainty in ROM densities for conjunction assessment/collision

probability estimation and orbit predictions [32, 30]; and expanding data assimilation

capabilities that allowed for ROM calibration using TLEs, GPS measurements, and

radar tracking data [33, 61, 34].

Another vector of development for ROMs has been the use of machine learning

(ML) for the encoding and predicting functions of reduced-order modeling. The

advantage of the ML approach over POD and DMDc is its ability to capture nonlinear

dynamics, which POD/DMDc do not [103]. A deep or convolutional autoencoder

can be used to encode density data to a lower dimension, after which prediction is

accomplished either using DMDc or using a deep feedforward neural network (NN)
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[103]. Turner et. al. (2020) found that the NN predictions outperformed the DMDc

predictions, for JB2008 and NRLMSISE-00 density data encoded both with POD

and with an autoencoder [103]. ROM techniques can be categorized by 1) the density

model on which they are based (NRLMSISE-00, TIE-GCM, JB2008, etc.), 2) the

encoding method (POD, autoencoder), and 3) the prediction method (DMDc, NN).

Preliminary application of ROMs to the problem of reentry prediction was con-

ducted in [10]. This thesis expands on that work, using a set of test cases for which

true reentry times are available. The reduced-order models used for reentry predic-

tion in this thesis include POD-DMDc ROMs (henceforth “PODROMs”) based on

NRLMSISE-00, TIE-GCM, and JB2008, and a convolutional neural network (CNN)

autoencoder-DMDc ROM (henceforth “ML ROM”) based on JB2008. ROMs with

NN-based prediction are not included in this thesis. For further details on POD- and

ML ROMs, see Section 3.4.

2.5 Space Weather Impact on Satellite Reentry

One of the complicating factors of atmospheric density prediction is the significant

impact of space weather on density at orbital altitudes. “Space weather” refers to

both solar activity and the solar-driven response of the Earth’s magnetosphere, known

as geomagnetic activity. Space weather starts with the Sun, which has the largest

magnetic field of any body in the Solar System [7]. The plasma composition of

the Sun rotates at different rates depending on solar latitude, causing twists in the

magnetic field [7]. Energy builds up in these twisted magnetic flux ropes until their

magnetic field lines connect with a set of opposing field lines in the process of magnetic

reconnection [7]. Magnetic reconnection releases enormous amounts of energy and can

cause outflows of coronal mass (Coronal Mass Ejections or CMEs), radiation bursts

(solar flares), and high-energy particle releases (Solar Energetic Particles or SEPs)
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[7]. Solar activity increases and decreases on an approximately 11-year solar cycle

(sometimes called the sunspot cycle) [7]. The number of sunspots on the surface of

the Sun is a reliable indicator of the level of solar activity, since these darkened areas

of the sun’s surface result from the magnetic field in flux ropes inhibiting heat transfer

[7]. In addition to the solar energy released during magnetic reconnection, the Sun

also outputs a constant flow of conductive plasma and magnetic flux called the “solar

wind” [7].

Solar activity is a major driver of thermospheric mass density, since the domi-

nant source of thermospheric heating is extreme ultraviolet (EUV) radiation from

the sun [57]. According to Marcos et. al. (2010), solar EUV accounts for 75-80%

of thermospheric energy input [57]. In addition, solar activity drives another major

thermospheric forcing mechanism: higher solar activity leads to increased frequency

and intensity of geomagnetic activity. The solar wind and other releases of solar

energy interact with the Earth through the Earth’s magnetosphere [7]. One of the

main processes is the buildup of energy in the magnetotail (the elongated region of

Earth’s magnetic field flowing out into space on the side of Earth away from the Sun),

followed by magnetic reconnection in the tail, during which field lines in the mag-

netotail “snap” back together, releasing energy into the inner regions of the Earth’s

magnetosphere, primarily at high latitudes [7]. Larger geomagnetic events, called

geomagnetic storms, are caused by CMEs and other solar events [7].

Geomagnetic activity drives electric fields in the magnetosphere, which produce

heat as they dissipate [20]. Combined with the increased flux of energetic particles

during higher geomagnetic activity, this heating results in increased neutral mass

density [20]. In fact, geomagnetic activity via Joule heating and energetic particle

flux is the second-strongest external forcing mechanism acting on the thermosphere,

after solar irradiance [86]. Marcos et. al. (2010) estimate that geomagnetic storms are

responsible for approximately 20% of thermospheric heating [57], even though high
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Figure 2-8: Illustration of the Earth’s magnetosphere (light blue lines) [57]. Created
with Microsoft PowerPoint.

geomagnetic activity is only present about 10% of the time [56]. On very large time

and space scales, geomagnetic activity-driven density increases are relatively simple

to predict [20]. However, accurate drag predictions require far greater granularity in

time and space than can be predicted with general trends.

Atmospheric density models typically take space weather information as inputs in

the form of solar and geomagnetic indices, which serve as proxies to represent solar and

geomagnetic factors driving density [20]. Commonly used proxy indices include F10.7,

the solar radio flux at 10.7 cm, which is used to represent solar extreme ultraviolet

irradiance; the geomagnetic disturbance storm time index (Dst), which helps quantify

the intensity of geomagnetic storms; and the 𝑎𝑝 and 𝑘𝑝 geomagnetic indices, which are

globally averaged metrics of geomagnetic activity as measured at ground test stations

[78, 20, 7]. Some density models, such as JB2008, also use more recently-developed

solar indices, including S10.7, M10.7, and Y10.7 [78]. These indices are described in

detail in [100].

The use of proxies in density models does introduce error, since proxies are not

perfect representations of the driving factors they attempt to describe [20]. This

type of error tends to cause underestimation of density response [20]. Since most
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density models take proxies as inputs, forecasting density into the future requires the

prediction of solar/geomagnetic proxies. These predictions are subject to error, which

can lead to poor estimates of atmospheric density (and thus of drag).

Figure 2-9: Base-10 logarithm of densities computed by JB2008 empirical density
model at a fixed latitude of 30 degrees North, at a time of low space weather activity
on 12 October 2019 (left) and during a geomagnetic storm on 4 February 2022 (right)
Labeled points indicate approximate orbital altitudes of various satellites of interest.

Geomagnetic storms can produce dramatic changes in atmospheric density, result-

ing in rapid increases in drag experienced by satellites. As an example of the density

changes produced during geomagnetic storms, the JB2008 atmospheric density model

[53] is used to create Figure 2-9, which shows density on a base-10 logarithmic scale

as a function of altitude during a time of low space weather activity (left) and during

a geomagnetic storm (right). Labeled points at the approximate altitudes of various

satellites of interest show the densities calculated by JB2008 at those altitudes under

each condition.

An equivalent representation is the percent change in atmospheric density at each
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altitude between low space weather (SW) activity as compared to the geomagnetic

storm. Figure 2-10 is a plot of the percent increase in density during the geomagnetic

storm as compared to the low-SW densities. Each satellite point is labeled with the

SW-induced percent increase at that altitude.

Figure 2-10: Percent increase in densities calculated by JB2008 during a geomagnetic
storm, as compared to densities during low SW activity.

As Figure 2-10 shows, thermospheric density changes (such as those caused by

space weather activity) become more pronounced at higher altitudes [78], but are

still dramatic even at very low altitudes below 300 km. For example, according to the

JB2008 model, the Starlink 51470 satellite featured in this plot at its initial perigee

altitude of 210 km [21] could expect a 36% increase in density (and consequently in

drag force) during a geomagnetic storm such as the two minor storms [88, 21] of 3-5

February, 2022. At its apogee altitude of 350 km [21], the density increase would be

higher – almost 90% over non-storm values, according to the JB2008 model!

Such a sudden increase in drag can have especially dire consequences for very low
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LEO satellites such as Starlink 51470, which may have little margin for error due

to the already-high drag forces on low LEO objects. An additional complication is

that the NRLMSISE-00, which is commonly used for operational applications (and

is in fact used by the Starlink team), may significantly underestimate the impact of

geomagnetic storms on neutral mass density [21]. In a comparison of NRLMSISE-

00 densities to those predicted by the physics-based WAM-IPE model, Fang et. al.

(2022) found that NRLMSISE-00 showed density enhancements of up to 20% due to

the storm. WAM-IPE, on the other hand, demonstrated density increases of 50% or

more in most areas [21]. During the geomagnetic storm of 3-5 February discussed by

Fang et. al. and represented in Figs. 2-9 and 2-10, the storm-induced drag increase

caused a total of 38 Starlink satellites, including Starlink 51470, to prematurely de-

orbit shortly after launch [88, 21]. With an estimated total cost of $15 million for a

Starlink launch [47], the premature reentry of roughly 80% of the 49 satellites on this

launch represents a loss of about $10-12 million. Space weather can be expensive!

While the prediction of space weather and space weather proxies is out of the scope

of this thesis, it is important to realize that the challenges of space weather prediction

can form a barrier to predicting atmospheric density. In recognition of this impact,

Monte Carlo simulations are presented in this thesis to demonstrate the sensitivity

of reentry predictions, using several density models, to noise in space weather inputs.

For further details, see the Section 3.5.3.

2.6 Density Model Comparisons for Reentry

One early work on atmospheric density modeling and uncertainty quantification for

reentry prediction was Klinkrad’s 1996 benchmarking of Jacchia-71, TD-88, early

MSIS versions, and other models against the MSISe-90 density model [45]. The other

models were found to have a root mean square (RMS) error of about ±20% as com-
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pared to the MSISe-90, while the MSISe-90 was determined to estimate densities

to about ±10% during mean solar conditions [45]. Combined with other reentry-

associated errors, including spacecraft attitude uncertainty, initial state error, and

space weather forecasting error, Klinkrad determined that drag force model uncer-

tainties lead to reentry prediction uncertainties of ±20% of the spacecraft’s estimated

remaining lifetime [45].

Since Klinkrad’s early work, further attention has turned to quantifying density

model performance for orbit decay and reentry prediction, with additional regard

to density model performance during varying solar/geomagnetic conditions and at

varying altitudes. As Pardini and Anselmo found in a series of studies spanning

over a decade, no single-density model is necessarily the best in all cases, even when

comparisons are restricted to the particular application of reentry prediction [71, 73,

74, 79].

Beginning in the early-2000s, Pardini and Anselmo approached the question of

optimal density modeling for reentry applications in a series of studies that lever-

aged the tendency of drag coefficients and/or BCs to absorb density model error,

when they are estimated using a semimajor axis change technique similar to the

one refined by Saunders et. al. [95]. The authors analyzed the accuracy of vari-

ous atmospheric models, developed on distinct data sets, for predicting orbital decay

and reentry. These models included MSIS-86, MSISE-90, JR-71, TD-88, and later

JB-2006, JB2008, GOST-2004, and NRLMSISE-00 [71, 73, 74, 79, 78].

In a 2001 study, Pardini and Anselmo calculated drag coefficients for a set of

nine spherical satellites at varying altitudes and under varying solar activity condi-

tions, using JR-71, TD-88, MSIS-86, and MSIS-90 [71]. In this case, the uniform

spherical configuration of the satellites used made a precise determination of frontal

area 𝐴𝑒𝑓𝑓 possible, allowing for separation of the drag coefficient 𝑐𝐷 from the ballis-

tic coefficient. Drag coefficients were calculated by fitting the semimajor axis decay
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predicted by NASA Jet Propulsion Laboratory (JPL) Satellite Reentry Analysis Pro-

gram (SATRAP) software to the actual semimajor axis decay observed in NORAD

TLEs [71]. The drag coefficients were fit using each of the density models over time

periods capturing a variety of altitude-solar activity combinations. Overall density

model behavior during these periods was inferred by comparing the estimated drag

coefficients to each other and to a theoretical drag coefficient calculated based on

solar activity, altitude, atmospheric composition, and satellite surface composition,

with an estimated accuracy of ±15% [71]. Higher drag coefficient estimates indicated

that density predictions were low, requiring a higher drag coefficient in order to match

SATRAP’s orbital decay predictions to the satellite’s observed behavior. This study

found that for low solar activity and altitudes below 400 km, the MSIS models per-

formed best. However, JR-71 was better for higher altitudes and higher solar activity.

Nonetheless, Pardini and Anselmo noted that each of the models showed significant

error in some altitude-solar activity regimes [71]. In a similar 2006 study using 11

spherical satellites and the JR-71 and MSIS-90 density models, the authors concluded

that “no model considered in this study was able to correctly represent the air density

at each altitude and environmental condition” [79].

In 2002, Pardini and Anselmo extended their 2001 density model comparison to

reentry prediction for satellites and rocket bodies during high solar activity, using

TD-88, JR-71, and MSIS-86 [72]. First, ballistic parameters (defined as ½ BC) were

estimated using a procedure similar to the drag coefficient estimation procedure de-

scribed above. Predicted semimajor axis decay was fit to TLE-observed semimajor

axis decay, for each density model and time period, using a least squares approach

with ballistic parameter as the fit parameter [72]. From there, SATRAP was used

to estimate the remaining lifetime of each satellite starting one month, one week,

and one day prior to the nominal reentry times. These simulations were run using

“a posteriori” knowledge of true solar and geomagnetic parameters to isolate reentry
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prediction uncertainty from solar/geomagnetic parameter uncertainty [72]. RMS er-

rors in residual lifetime for the JR-71 and MSIS-86 models were 10-15% one month

prior to reentry, and dropped to 8-10% for the cases run one week and one day prior

to reentry, while TD-88 predictions remained >15% RMS error for all three cases

[72]. A 2004 paper by the same authors conducted an almost identical analysis us-

ing a Russian Volstok upper stage as a test case, since this reentry was associated

with an IADC reentry test campaign and therefore provided an opportunity for com-

parison against observed reentry time, rather than estimated nominal reentry times

[73]. This study yielded consistent results to its predecessor, with JR-71 and MSIS-

86 showing generally good accuracy and agreement, while the TD-88 showed “more

irregular behavior and quite large errors” [73].

In a 2008 study on the Cosmos 1025 and EAS reentry campaigns, Pardini and

Anselmo compared predictions of satellite residual lifetime during low solar activity

using JR-71, MSISE-90, and NRLMSISE-00, with the addition of MSIS-86 for the

Cosmos reentry and JB2006 for the Early Ammonia Servicer (EAS) reentry [74]. In

the Cosmos case they found that JR-71 was the best predictor of residual lifetime,

but only by a small margin, while the JB2006 model showed the lowest mean residual

lifetime prediction error in the EAS case [74]. In a later 2012 study of density model

performance at sunspot minimum, Pardini and Anselmo compared JR-71, MSISE-

90, NRLMSISE-00, GOST-2004, JB2006, and JB2008 behavior using drag coefficients

computed based on semimajor axis change as described previously [78]. Below 500

km, all models somewhat overestimated density, with the smallest overestimation

biases found in JB2008, NRLMSISE-00, and GOST-2004 [78].

The performance of NRLMSISE-00 for reentry predictions may be improved for

some cases, especially for spherical satellites, using density corrections based on ob-

servations in the form of TLE data [110]. However, this technique is not applicable in

real-time, since the NRLMSISE-00 corrections can only be computed after-the-fact
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[110]. The recently-released NRLMSISE 2.0, an update of the NRLMSISE-00, has

not been found to show notable reentry prediction improvements [107].

To summarize the work of Pardini and Anselmo, the use of a series of density

models for calculating drag parameters and residual satellite lifetime at varying alti-

tudes and solar activity levels indicated no clear density model “winner.” While several

of the studies found that JR-71 and the MSIS family of models often outperformed

other density models, results consistently indicated that no single model exhibited the

best performance throughout all altitudes and solar conditions [71, 73, 74, 79]. It is

notable, however, that in some cases individual model performance did appear corre-

lated to altitude and solar activity. For example, JR-71 displayed relatively stronger

performance at high altitudes and elevated solar activity levels [71]. Ideally, we would

like a density model that demonstrates equally strong performance during high and

low solar activity, and at a wide range of altitudes.

In this thesis, density model comparisons will be conducted for reentry predictions

on a set of test cases. Predictions will be conducted using a posteriori knowledge of

the system, including TLEs and true space weather inputs, which are not available

for real-time reentry prediction. This allows density model error to be intentionally

isolated from other uncertainty sources, such as space weather indices and ballistic

coefficient evolution. Uncertainty quantification is conducted separately for TLE

initial-state, BC, and space weather uncertainty sources.

2.7 Thesis Description

This thesis expands upon preliminary reentry analysis using reduced-order atmo-

spheric density models, which was conducted in [10]. Three satellite test cases with

known reentry times are propagated over time periods ranging from 7 days to 12

hours prior to reentry using the MATLAB HPOP propagator [52] paired with a se-
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ries of atmospheric density models including two commonly-used empirical models

(NRLMSISE-00 and JB2008) as well as three PODROMs (based on NRLMSISE-00,

TIE-GCM, and JB2008) and one ML ROM (based on JB2008). Reentry predic-

tions are restricted to predictions of the reentry epoch, and reentry footprints are not

treated.

Initial satellite states are generated by using SGP4 to derive an ECI state from a

TLE. Satellite ballistic coefficient models are based on BCs estimated using Gondelach’s

modified version of Saunders’ technique [31, 29, 95], where TLEs are filtered prior to

their use in estimating BCs by the method of observed versus predicted semimajor

axis change. To isolate inherent density model performance from other sources of

uncertainty where possible, true space weather inputs and TLEs are used for reentry

prediction simulations.

To better evaluate the true uncertainties in the reentry epoch predictions provided,

UQ is conducted using Monte Carlo simulation for TLE initial-state and space weather

input uncertainty sources. Initial-state uncertainty values are obtained from [22],

and space weather uncertainty values are derived from [100]. The effect of ballistic

coefficient uncertainty is examined by varying the BC by ±25%. Other sources of

uncertainty are not treated in this thesis.

The unique contribution of this thesis is the extensive application of reduced-

order models to orbital reentry prediction of test cases with known reentry times, and

the comparison of their performance on these test cases against the commonly-used

empirical density models NRLMSISE-00 and JB2008. In addition, UQ for initial-

state TLE, BC, and space weather explores the impact of uncertainty sources other

than inherent density model uncertainty on reentry predictions and density model

behavior.
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Chapter 3

Methods

This chapter discusses the methods and techniques applied in this thesis. Special

attention is devoted to orbital propagation theory in Section 3.2.2 and to reduced-

order density modeling theory, which is outlined in full in Section 3.4.2. UQ methods

are here described last in Section 3.5. Since UQ methods involve strategic injection

of error into portions of the reentry prediction algorithm, understanding the UQ

methods requires prerequisite knowledge of the propagation and ROM techniques

discussed in Sections 3.2 through 3.4.

3.1 Hardware, Language, and Software Packages

The BC estimation process, some TLE processing, and plotting of results were con-

ducted on an HP Elitebook laptop with an Intel® CoreTM i7-8650U (8th generation)

CPU and 16.0 GB of random access memory (RAM). All simulations and other pro-

cessing work were run on the MIT Supercloud supercomputer [89]. Some ML ROM

simulations were run on the Supercloud using 8 cores, and all other simulations were

run with 1 core.

The programming languages used, in order of increasing use, were Python, MAT-

LAB, and Julia. The Julia Programming Language was used for the main simulation
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code and most subsidiary functions. Information about the Julia Programming Lan-

guage can be found on the Julia web page1. A few data processing functions were

left in MATLAB and called using the MATLAB.jl2 and MAT.jl3 packages, but all

HPOP functions called inside of the propagation routine were translated into Julia

to avoid the computational overhead of repeatedly opening and closing MATLAB

engine sessions.

BC estimation and some TLE processing were conducted using MATLAB R2017b.

All plots were generated using MATLAB 2022a. The ML ROM model used is from

the Dynamic Data-Driven Thermospheric Density Estimation with Quantified Un-

certainties (DESQU) Toolbox, which is available in Python4. The Python version of

the ML ROM was called into the Julia-based propagator using the PyCall.jl package.

A summary of the Julia packages used in this project is shown in Table 3.1.

Table 3.1: Complete list of Julia packages used.

AstroTime.jl
Dates.jl

DelimitedFiles.jl
DifferentialEquations.jl

Distributions.jl
HTTP.jl

Interpolations.jl
JLD2.jl

LazyGrids.jl
LinearAlgebra.jl

MAT.jl
MATLAB.jl

NPZ.jl
Plots.jl

PyCall.jl
Random.jl

SatelliteDynamics.jl
SatelliteToolbox.jl

SPICE.jl
Statistics.jl

URIs.jl

1https://julialang.org/
2https://github.com/JuliaInterop/MATLAB.jl
3https://github.com/JuliaIO/MAT.jl
4https://github.com/SWQU/DESQU

93

https://julialang.org/
https://github.com/JuliaInterop/MATLAB.jl
https://github.com/JuliaIO/MAT.jl
https://github.com/SWQU/DESQU


3.2 Orbit Propagation

3.2.1 Description of the orbital propagator and code structure

The orbital propagator used in this thesis was a modified version of the High-Precision

Orbital Propagator (HPOP) v2.2.1 written in MATLAB by Meysam Mahooti [52].

The latest version of the HPOP may be found on Mathworks File Exchange5. This

algorithm uses the special perturbations approach to propagate an ECI satellite state

vector over a specified period of time, using an initial state and satellite physical

parameters supplied by the user. The following modifications were made to the

original HPOP v2.2.1.

1. The HPOP propagator was translated into the Julia Programming Language.

2. The gravity model used was changed to the Earth Gravitational Model 2008

(EGM2008), with degree 10 and order 10. This change was made to align the

HPOP propagator as closely as possible to the BC estimation propagator.

3. A deorbit condition was added to halt propagation when the object’s geocentric

altitude dropped below 100 km.

4. The integrator was changed to the Julia language’s VCABM propagator from

the package DifferentialEquations.jl. The radau integrator used in the original

HPOP is available in Julia, but in a more primitive form which did not allow

for the deorbit condition (which is necessary to prevent the propagator from

attempting to propagate the satellite state beyond reentry). Additionally, ac-

cording to documentation for the DifferentialEquations package,6 VCABM is
5https://www.mathworks.com/matlabcentral/fileexchange/55167-high-precision-orb

it-propagator
6https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/
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the most equivalent integrator to MATLAB’s ode113, which was substituted

for the original radau integrator in previous ROM reentry prediction work [10].

ode113 was also the integrator used during propagation for the BC estimation

process. Both absolute and relative tolerance of VCABM was set to 1e-8.

5. Additional atmospheric density model options were added to the HPOP, includ-

ing several PODROM options and a ML ROM option.

The HPOP configuration is flexible, with options to select the degree and order of

the gravity model, which third-body effects to include, and whether to use solid

Earth and/or ocean tides. Individual perturbations can be turned on or off in HPOP,

including drag, solar radiation pressure, and relativity. The perturbations used in the

HPOP propagation were matched as closely as possible to the perturbations used in

the AIDA propagator during the BC estimation process, which is discussed in Section

3.3.3. The following table shows a comparison of the propagator configurations used

in the reentry prediction and BC estimation processes.

Table 3.2: Comparison of HPOP and AIDA propagator configurations.

Parameter HPOP (Reentry) AIDA (BC Estimation)
Language Julia MATLAB R2017b
Integrator VCABM ode113
Gravitational Harmonics Model EGM2008 EGM2008
Gravitational Harmonics Degree 10 10
Gravitational Harmonics Order 10 10
Solid Earth Tides Used No No
Ocean Tides Used No No
Third Body Effects Sun, Moon Sun, Moon
SRP Used Yes Yes
SRP Shadow Model Geometric Biconical
Relativity Used No No
Atmospheric Drag Model Rotating Atmosphere Rotating Atmosphere
Atmospheric Density Model Various NRLMSISE-00
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The HPOP orbital propagator comprised the bulk of the reentry prediction pro-

cess, with supporting scripts used to prepare HPOP inputs, call density models, and

process/plot HPOP output. Figure 3-1 shows a simplified structure of the code setup

used for reentry prediction. Monte Carlo simulations used the same basic setup, ex-

cept that the added function of randomized uncertainty value generation, and the

propagation process, were repeated in a loop for a set number of iterations.

Figure 3-1: Simplified code structure diagram.
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3.2.2 Orbit Propagation Theory

Orbit propagation using the special perturbations technique models the state vector

𝑦 of an RSO by solving an initial value ODE problem described as follows.

Given:

𝑓(𝑡, 𝑦) = �̇� and 𝑦(𝑡0) = 𝑦0

Find:

𝑦(𝑡) for 𝑡 ∈ [𝑡0, 𝑡𝑓 ]

𝑤ℎ𝑒𝑟𝑒 𝑦 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟𝑥

𝑟𝑦

𝑟𝑧

�̇�𝑥

�̇�𝑦

�̇�𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑎𝑛𝑑 �̇� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̇�𝑥

�̇�𝑦

�̇�𝑧

𝑟𝑥

𝑟𝑦

𝑟𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑤𝑖𝑡ℎ �̇� =
𝑑𝑟

𝑑𝑡
𝑎𝑛𝑑 𝑟 =

𝑑2𝑟

𝑑𝑡2

The ODE is solved by numerically integrating the satellite force model. First,

a force model is constructed to describe the forces acting on the RSO, from which

its instantaneous acceleration can be computed using Newton’s Second Law. An

integrator (also called an ODE solver) is then used to propagate the RSO state vector

over a period of time. For the specific application of reentry modeling, propagation

is continued until the satellite’s altitude drops below a predetermined altitude, often

80-100 km.

The force model for an Earth-orbiting satellite consists of two primary types of

forces: 1) the force of gravity exerted by the Earth as described by the Two-Body

Equation (2BE), and 2) orbital perturbations. Earth’s gravitational force is the dom-

inant force on an Earth-orbiting RSO. Earth’s gravity is approximated with the 2BE
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(for a complete description, see [104] pp. 20-33). Orbital perturbations (forces that

“perturb” the satellite from the idealized orbit described by the 2BE) include gravita-

tional effects as well, by stripping away the 2BE assumptions and including gravita-

tional effects caused by the Earth’s oblateness (non-spherical shape). Orbital pertur-

bations also include other forces, such as drag, solar radiation pressure, third-body

effects from the sun, moon, and planets, relativistic effects, and more.

Numerically integrating the satellite’s force model is computationally expensive,

especially when the prediction window is many hours to days and the desired precision

is relatively high. One way to reduce the computational cost of the simulation is to

truncate the number of perturbation forces included in the force model, at the cost of

slightly lower precision. Depending on the precision needed in the orbital propagation,

the force model may include many perturbations or only a few dominant ones.

The satellite’s orbital altitude determines in part which perturbations must be

included, and which can be disregarded without introducing significant error. For

example, in LEO (at ∼1000km or less) atmospheric drag is one of the dominant

orbital perturbations [106] [104] (p.551). At geosynchronous (GEO) orbits altitudes

of about 35,780 km, drag is insignificant, while other perturbations, such as third-

body effects, become more important [104] (p.31). Only LEO orbits are treated in

this thesis, so atmospheric drag is always relevant. When drag is considered, another

way of minimizing computational cost is to choose an efficient, fast-evaluating air

density model, such as a reduced-order model.

Idealized Gravity

By far the strongest force acting on a LEO satellite is Earth’s gravity. Acceleration

due to Earth’s gravity is described by the 2BE [104] (p.23):

−̈→𝑟 = −𝐺𝑚𝐸𝑎𝑟𝑡ℎ

𝑟2

−→𝑟
𝑟

= − 𝜇

𝑟2

−→𝑟
𝑟

(3.1)
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where 𝐺 is the gravitational constant, 𝑚𝐸𝑎𝑟𝑡ℎ is the mass of the Earth, −→𝑟 is the

position vector of the satellite, and 𝜇 is Earth’s gravitational parameter (the quantity

𝐺𝑚𝐸𝑎𝑟𝑡ℎ). Technically, this equation describes the relative motion between the Earth

and the satellite (where the satellite’s mass is ignored, since it is negligible in com-

parison to the Earth’s mass) [104] (p.23). However, choosing a coordinate frame with

its origin at the Earth’s center allows the equation above to describe the satellite’s

motion with respect to the origin of the coordinate frame.

The Two-Body Equation introduces several assumptions: First, that the satellite’s

mass is negligible; second, that the coordinate frame chosen is inertial (which is not

quite true, since the Earth orbits the sun, but is a good enough approximation); and

third, that the Earth and the satellite are perfect spheres of uniform density, which can

be treated as point masses [104] (p.23). This third assumption is inaccurate, since

the Earth is neither perfectly spherical nor uniformly dense. Usually, the satellite

is also non-spherical and non-uniform in density. However, if we are satisfied with

describing the translational motion of the satellite’s center of mass (rather than also

considering its rotational state), then for the purposes of the two-body equation, we

can assume that the satellite is a uniform sphere.

Orbital Perturbations

Non-spherical Earth gravitational effects do have a significant impact on satellite

orbits, so these effects are included in the orbital perturbations described by the force

model. The EGM2008 with degree and order 10 was used to estimate non-spherical

Earth gravitational effects in this work. The EGM2008 is described in [80].

The second orbital perturbation type included in the force model is the third-

body effects. While the Earth’s gravity is the dominant gravitational force on an

Earth-orbiting satellite, the satellite does experience small gravitational accelerations

from other nearby bodies, such as the sun, moon, and planets. Each third-body

99



gravitational force is approximated using a point mass approximation, which assumes

that the third body producing the gravitational force is a point mass (or equivalently,

a uniform spherical mass). The satellite’s mass is neglected. Third-body gravitational

effects can be described with the following equation from Vallado [104] (p.574):

−̈→𝑟 = −𝐺𝑀3

(︂ −→𝑟 −−→𝑟3
|−→𝑟 −−→𝑟3 |3

+
−→𝑟3
|−→𝑟3 |3

)︂
(3.2)

where 𝑀3 is the mass of the third body, −→𝑟 is the position vector of the satellite, and
−→𝑟3 is the position vector of the third body. The term −→𝑟 − −→𝑟3 gives the vector from

the third-body center of mass to the satellite center of mass. This equation can be

applied to any third-body mass, given the relevant third-body mass and position in

the applicable reference frame. The point-mass equation is used to calculate third-

body gravitational effects for the sun and the moon. Third-body effects from planets

are not included in the propagator setup for this thesis.

Solar radiation pressure (SRP) is the force due to the momentum of solar radiation

incident on the satellite surface. SRP is stronger at higher altitudes and is always

directed away from the sun [104] (p.578). At the very low altitudes considered in

this thesis, SRP is small, but it is included for completeness. Consideration of SRP

must account for the absence of this force when the satellite is in Earth’s shadow (in

eclipse), during which it is not exposed to incoming solar radiation. When the satellite

is not in eclipse, the SRP force upon it at a distance of 1 AU from the sun, assuming

a 0-degree angle of incidence, is given by the following equation [104] (p.580):

−̈→𝑟𝑠𝑟𝑝 = 𝑝𝑠𝑟𝑝𝑐𝑅
𝐴⊙

𝑚

−→𝑟⊙
|−→𝑟⊙|

(3.3)

where 𝑝𝑠𝑟𝑝 is the solar pressure at 1 AU, 𝑐𝑅 is the satellite reflectivity, 𝐴⊙ is the

satellite area facing the sun, −→𝑟⊙ is the vector from the sun to the satellite, and 𝑚

is the satellite mass. A satellite’s reflectivity 𝑐𝑅 is the proportion of solar radiation
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momentum absorbed by the satellite, ranging from 0 (a transparent satellite) to 2

(perfectly reflective satellite) [104] (p.580).

In HPOP, Eqn. 3.3 is modified to account for Earth shadow transition effects and

the precise distance between the satellite and the sun (rather than approximating the

distance as 1 AU at all times). A geometrical shadow model is used, with an eclipse

factor that adjusts SRP by a factor 𝜈. This factor represents the fraction of the solar

disk visible from the spacecraft’s position, so 𝜈 is 1 when the satellite is in the sun,

0 when it is in shadow, and between 0 and 1 during transitions between the sun and

eclipse.

Solar radiation falls off as the surface area of a sphere, that is, proportionally to

the inverse of the squared distance between the sun and the satellite. This value is

converted into AU, giving a factor of ( [𝑚𝑒𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝐴𝑈 ]
𝑟[𝑚]

)2. Including this modification and

the eclipse factor 𝜈, the equation used to calculate SRP acceleration in HPOP is:

−̈→𝑟𝑠𝑟𝑝 = 𝜈𝑝𝑠𝑟𝑝𝑐𝑅
𝐴⊙

𝑚
[meters/AU]2

−→𝑟⊙
|−→𝑟⊙|3

(3.4)

where meters/AU is the conversion factor from meters to AU, 1.496×1011m = 1 𝐴𝑈 .

The final orbital perturbation modeled in this thesis is atmospheric drag, which

is the non-conservative force caused by the transfer of momentum from air particles

to the satellite. This force was discussed in depth in Chapter 2. The equation for

atmospheric drag is Equation 2.2 [104] (p.551):

−→𝑎 𝑑𝑟𝑎𝑔 = −1

2

𝑐𝐷𝐴𝑒𝑓𝑓

𝑚
𝜌𝑣2𝑟𝑒𝑙

−→𝑣 𝑟𝑒𝑙

|𝑣𝑟𝑒𝑙|

Atmospheric drag is one of the largest perturbations for satellites in low Earth

orbit, and it is the force primarily responsible for satellite reentry. Accurate drag pre-

dictions rely on a good estimate of the satellite’s ballistic coefficient, and an accurate

atmospheric density model. High-altitude winds are not included when calculating
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𝑣𝑟𝑒𝑙 in the HPOP. The atmosphere is assumed to co-rotate with the Earth.

3.3 Test Cases and Object Parameters

3.3.1 Test Cases and Basic Parameters

A total of three test cases are selected for analysis. These cases are NASA’s Upper

Atmosphere Research Satellite (UARS), Roscosmos’ Fobos-Grunt probe (also spelled

Phobos-Grunt), and the Roscosmos Progress-M 27M cargo vessel. These spacecraft

are good candidates for test cases due to the IADC reentry campaigns conducted

for all three objects, and the thorough reentry prediction analyses of these cases in

[5, 75, 38, 77]. Table 3.3 summarizes the test case physical parameters. Individual

test cases and parameters are discussed further in the following sections.

Table 3.3: Spacecraft test case physical parameters.

Test Case UARS Fobos-Grunt Progress-M 27M
NORAD ID 21701 37872 40619
Mass [kg] 5668 13525 7289

𝐴𝑒𝑓𝑓 (Drag) [m2] 21.16 23.76 7.398
𝐴𝑒𝑓𝑓 (SRP) [m2] 21.16 23.76 7.398

𝑐𝑑 2.2 2.2 2.2
𝑐𝑅 1.0 1.0 1.0

Reentry Date 24-Sep-2011 15-Jan-2012 08-May-2015
Reentry Time (UTC) 04:00 ± 1 min 17:46 ± 1 min 02:20 ± 1 min

Upper Atmosphere Research Satellite (UARS)

The UARS satellite’s 14-year mission to study the chemical composition of the at-

mosphere commenced in 1991 with its release from the shuttle Discovery [75]. Its

mission orbit was circular at an altitude of 580 km, which was lowered via several
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maneuvers after mission completion in 2005, leaving the fuel tanks empty [75]. Ma-

neuvers were completed in late 2005, after which the UARS satellite’s orbit decayed

under the influence of drag until its reentry on 24 September 2011 at 04:00 UTC ±1

minute [38].

Pardini and Anselmo identify the UARS satellite’s dry mass and dimensions as

5668 kg and 4.6 m diameter with a length of 9.7 m [75]. From these dimensions,

a drag area estimate of (4.6 m)2 is chosen to calculate an initial ballistic coefficient

starting guess. The ballistic coefficient estimation process (see Methods Section 3.3.3)

is iterative, so the initial guess has minimal impact on the final BC estimate. Due

to a lack of information on the spacecraft attitude, the same area estimate is used

for the effective SRP area. No information on drag coefficient 𝑐𝑑 or reflectivity 𝑐𝑅 is

available, so default values of 2.2 and 1.0, respectively, are chosen. Like the effective

drag area, the estimated 𝑐𝑑 is used only for calculating an initial BC guess for the

iterative estimation process. Inaccuracies in the SRP area and reflectivity have mini-

mal effect on the reentry predictions, since in the LEO regime, the drag perturbation

is overwhelmingly larger than SRP.

Fobos-Grunt

The Fobos-Grunt spacecraft was a failed Mars moon probe launched on 9 November

2011 into an initial 208 × 344 km orbit [75]. Unfortunately, Roscosmos quickly lost

control of the probe, possibly due to corruption of its computer processors, and the

probe never departed its Earth orbit as planned [75]. The probe continued a series

of small maneuvers, with solar panels deployed, until 22 November, after which its

orbit decayed under the influence of drag and other natural perturbations until its

reentry on 15 January 2012 at 17:46 UTC ±1 minute, according to the Joint Space

Operations Center (JSpOC) [75]. Decay altitude was recorded as 80 km [75]; however,

a decay altitude of 100 km was used in this thesis, since several of the density models
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used are valid only down to 100 km in altitude. Because orbital decay is very rapid

at such low altitudes during the final phase of reentry, the error introduced by the

reentry altitude difference is not here considered.

An IADC reentry campaign was conducted for the Fobos-Grunt probe due to

its very large mass of 13,525 kg and the large quantity of highly toxic propellants

it carried. Pardini and Anselmo give the probe diameter as 3.76×3.76×6.32 m with

stowed solar panels, and 3.76×7.97×6.32 m with the panels deployed [75]. An effective

area estimate of (3.76 m × 6.32 m) was used for both the initial BC estimate and

the SRP area estimate, but again, the exact estimate of this area is not considered

significant, since the initial BC guess has minimal effect on the final output of the

iterative estimation process, and SRP is small. As for the UARS satellite, 𝑐𝑑 and 𝑐𝑅

are chosen as 2.2 and 1.0, respectively.

Progress-M 27M

The Progress-M 27M was a failed Roscosmos cargo mission to the ISS, which launched

in April 2015 but quickly lost communications [77]. Its initial orbit of 189 × 269 km

was very low, and as in the case of Fobos-Grunt probe, Progress-M 27M had a large

mass and quantity of toxic propellant [77]. An IADC campaign was launched due

to these factors, with the expectation that Progress-M 27M would deorbit within 2

weeks [77]. JSpOC recorded the reentry of Progress-M 27M at 02:20 UTC ±1 minute

on 8 May 2015, at an altitude of 80 km [77].

Pardini and Anselmo record the cargo vessel’s dimensions as 2.72 m in diameter

and 7.23 m in length, with a mass of 7289 kg [77]. In this thesis, the assumed effective

area for SRP and drag was (2.72 m)2, the drag coefficient was 2.2, and the reflectivity

was 1.0.
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3.3.2 Initial States

Initial states for each reentry test case were derived from TLEs. As discussed in

Section 2.2.1, TLEs are known to be subject to error and even mislabeling with the

wrong object ID. Unfortunately, no other initial-state data sources were available for

the test-case objects. For each test object, TLEs prior to reentry were processed

using TLE handling code from BC estimation setup code by Gondelach et. al. (2017)

[31], in addition to Beck and Vallado’s MATLAB version of the SGP4 propagator.

BC estimation code by Gondelach et. al. is not publicly available, but the SGP4

propagator code may be downloaded from Github.7 For each test case simulation,

the following initial state processing steps were used.

1. Read TLEs into a data structure for SGP4 input, including calculating the

Julian date for each TLE.

2. Using the Julian dates, identify the TLE closest in time to the Julian date of

the desired start time 𝐽𝐷𝑠𝑡𝑎𝑟𝑡 = 𝐽𝐷𝑟𝑒𝑒𝑛𝑡𝑟𝑦 − 𝐿𝑠𝑖𝑚, where 𝐿𝑠𝑖𝑚 is the desired

length of the simulation in days. 𝐽𝐷𝑟𝑒𝑒𝑛𝑡𝑟𝑦 is the true reentry time, such that

the simulation starts as close as possible to 𝐿𝑠𝑖𝑚 days prior to the true reentry,

depending on the times of TLEs that are available.

3. Convert the initial-state TLE identified in step 2 to an ECI state vector [−→𝑟 ,−→𝑣 ] =

[𝑟𝑥, 𝑟𝑦, 𝑟𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧] using the SGP4 propagator.

Due to non-uniform distribution of TLEs in time, the durations of the simulations

across all five test cases varied somewhat from the nominal simulation durations.

Results are plotted against time using true simulation lengths, not nominal lengths,

but the nominal-length notation is retained for convenience.

7https://github.com/shupp/sgp4
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3.3.3 Ballistic Coefficient Estimation and Modeling

Several different ballistic coefficient estimates were used for the various test cases. The

first method was the method developed by Saunders et. al. (2012) and Gondelach

et. al. (2017) based on comparing semimajor axis change observed from TLEs with

predicted semimajor axis change from an orbital propagator [31, 29, 95]. In this

technique, henceforth the “Saunders-Gondelach" (SG) method, TLEs are first filtered

to remove excessive time gaps, outliers, inconsistent or corrected TLEs, and TLEs

with a nonphysical drag term, as described in [31, 49, 10]. Then, the change in the

semimajor axis between a pair of TLEs is calculated, and compared to the change

in the semimajor axis predicted by the high-fidelity Accurate Integrator for Debris

Analysis (AIDA) propagator [65] with an initial BC estimate calculated from the

estimated mass and frontal area of the object, with an assumed drag coefficient of

2.2. The following filter parameters were used for TLE filtering for all test cases.

Note that a TLE sequence is "a set of TLEs that does not contain any events, which

might change object’s physical properties" [49]. For details on TLE filtering, see [49].

Table 3.4: TLE filter settings used in Saunders-Gondelach BC estimation [31, 49].
Values and descriptions derived from code by David Gondelach and Aleksander

Lidtke (2015).

Parameter Threshold Value Description
Minimum time gap 1⁄2 orbital period Minimum allowed time between TLEs. Earlier TLE thrown out if

violated.
Time gap percentile 0.9 Percentile of TLE time gaps in which to search for start of distri-

bution tail.
Time gap threshold 3 Within above percentile, number of median absolute deviations of

TLE time gap to use as distribution tail threshold.
Window length 3 Number of TLEs in sliding window.
Relative tolerance 0.6 Threshold relative difference between actual and expected change

between TLEs. TLE w/higher relative difference is an outlier.
Absolute tolerance 5e-3 Absolute difference between TLE and regressing polynomial must

be this many times higher than regression value at last TLE in
window. TLE w/higher difference is an outlier.

Sequence outlier threshold 3 Number of mean motion absolute deviations above median change
between sequences, above which sequence is deemed an outlier.

Minimum sequence length 3 Minimum number of TLEs in a sequence.
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The difference between the observed and predicted semimajor axis change is as-

sumed to be due only to inaccuracy in the ballistic coefficient estimate. The BC esti-

mate is updated with the Secant method, and the predicted semimajor axis change is

re-computed using the new estimate. This process is repeated iteratively until either

1) the observed and predicted semimajor axis changes converge to within 1 cm, or 2)

the maximum number of iterations (10) is reached. The specifications of the AIDA

propagator are described in Table 3.2 in Methods Section 3.2.1. The satellite param-

eters used in AIDA propagation are the same as those used in the HPOP propagator,

which are described in Table 3.3 in Methods Section 3.3.1. BC estimates using this

method were generated using code supplied by David Gondelach. This code is not

currently publicly available, but it is described in detail in [31, 29].

Using the SG estimates, the mean ballistic coefficient over the simulation duration

was taken as the BC value for each simulation. For example, for a 5-day reentry simu-

lation, the BC value used was the mean value of the BCs estimated from TLEs in the

final 5 days of the object’s lifetime. Because they rely on TLEs after the start time of

the simulation, the BC values generated with this technique are "a posteriori" values,

which would not be available in real-time for an operational scenario. The purpose

of using a posteriori values was to attempt to isolate atmospheric density uncertainty

as much as possible from BC uncertainty. However, the Saunders-Gondelach tech-

nique is known to absorb error from the density model which it uses for BC fitting

[95], which in this case was NRLMSISE-00. Ideally, each reentry simulation would

use BC values generated using the same atmospheric density model, but AIDA is not

available with integrated ROM density model options, so NRLMSISE-00 was used for

most density estimates. One BC model for the Fobos-Grunt test case was estimated

using JB2008 as the AIDA density model for BC estimation, using a modification

of the BC code made by Julia Briden. In all other cases, NRLMSISE-00 was used.
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Any non-physical (negative) BC values, of which there were very few, were discarded.

Mean BC values were used in an attempt to smooth out time-dependent errors in the

NRLMSISE-00 model absorbed into the BC estimates, but this was not always very

effective. Mean BCs generated using the SG technique were used for all test cases.

The second source of ballistic coefficient estimates was data published by Pardini

and Anselmo (2012 and 2016) from studies of the IADC reentry campaigns for UARS,

Progress-M 27M, and Fobos-Grunt [75, 77]. These BC values and their corresponding

times (in days before reentry) were obtained from Figures 11 and 12 in [75] for UARS,

Figures 15 and 16 in [75] for Fobos-Grunt, and Figure 4 in [77] for Progress-M 27M.

These ballistic coefficient estimates were generated using the NRLMSISE-based CD-

FIT method (henceforth abbreviated the “Pardini-Anselmo" (PA) technique). The

CDFIT tool estimates ballistic coefficients by fitting the semimajor axis change ob-

served from TLEs in the least squares sense [75], using the EGM96 gravitational

harmonics model with degree and order 16, moon/sun third body effects, solar radi-

ation pressure, and aerodynamic drag using the NRLMSISE-00 model [78]. The time

arc over which these BC estimates were computed is not stated, but it is assumed

that each BC estimate was calculated over the time period since the calculation of

the previous estimate.

Pardini and Anselmo’s BC estimates were used in two ways: first, the mean value

of the estimates for the simulation duration was used, calculated in the same way

as the SG mean BCs; and second, the time-varying BC curve was used, with linear

interpolation in time between neighboring BC points. The results of simulations with

all three BC types are presented.
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3.4 Atmospheric Density Models

3.4.1 Empirical Models

The two empirical models used in this project are the JB2008 and NRLMSISE-00

model, both of which are commonly used for research and operational applications.

These are available in the Julia language in the package SatelliteToolbox.jl.8 Doc-

umentation for these density models can be found on Github9. These models are

discussed in Section 2.4.1. For further information on the JB2008 and NRLMSISE-00

models, see [9] and [82], respectively.

3.4.2 Reduced-Order Model Theory

As described in Section 2.4.3, Reduced-Order Models describe global atmospheric

density distributions in a low-dimensional way. The order-reduction step of reduced-

order modeling is accomplished by the projection of the density system onto a set of

spatial modes, which are weighted by time-dependent coefficients [59]. Order reduc-

tion uses either POD or an autoencoder. The second step of reduced-order modeling

is propagating the reduced state forward in time to predict future densities. The

predictive step uses either DMDc or a neural network. Only DMDc-based prediction

is used in this thesis.

Proper Orthogonal Decomposition

The goal of conducting POD is to represent in a compressed form global density

distributions, which are sets of neutral mass density values at locations defined by a

discretized grid in latitude, longitude, and altitude, at specific times. A “snapshot” is

a single distribution giving density variance across the entire spatial grid, at a single

8https://github.com/JuliaSpace/SatelliteToolbox.jl
9https://juliaspace.github.io/SatelliteToolbox.jl/dev/man/earth/atmospheric_mod

els/
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point in time. The grid of density variance can be obtained directly from the grid of

density values, via pointwise subtraction of the mean density value over time at each

position on the spatial grid. When conducted on a series of snapshots, POD identifies

the dominant spatial modes which capture the greatest amount of energy relative to

the mean density value [59].

Let s be a spatial position on the discretized grid of latitude, longitude, and

altitude positions, and let 𝑡 represent time. The atmospheric density distribution

x(s, 𝑡) can be separated into a spatially-dependent distribution of density means over

time (x̄), and a distribution of space- and time-dependent variances (x̃) [33]:

x(s, 𝑡) = x̄(s) + x̃(s, 𝑡) (3.5)

Since x̄(s) does not vary in time, it need only be calculated once from the set of

density snapshots used to construct the POD model. To prepare the density data

for POD, the base-10 logarithm is taken of the density distributions, then the mean

values are calculated as [59]:

x̄(s) =
1

𝑛

𝑛∑︁
𝑘=1

x(s, 𝑡𝑘) (3.6)

where 𝑛 is the number of snapshots. x̄ is subtracted from each snapshot, and POD

is conducted directly on the time-varying variance component of the density [33]:

x̃(s, 𝑡) = log10(x(s, 𝑡))− log10(x̄(s)) (3.7)

POD represents the distribution x̃(s, 𝑡) as a set of orthonormal basis functions

Φ(s) weighted by the uncorrelated time-dependent coefficients 𝑐(𝑡) [59]:

x̃(s) ≈
𝑟∑︁

𝑖=1

𝑐𝑖(𝑡)Φ𝑖(s) (3.8)
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where 𝑟 is the number of modes used in the reconstruction, and 𝑟 is restricted to

being less than or equal to the number of snapshots 𝑛 on which POD is conducted

[59]. The POD reconstruction minimizes truncation error 𝜖𝑟 in the least squares sense

[59].

𝜖𝑟(s, tk) =
𝑛∑︁

𝑘=1

⟨(x̃(s, tk)−
∑︀𝑟

𝑖=1 𝑐𝑖(tk)Φ𝑖(s)), (x̃(s, tk)−
∑︀𝑟

𝑖=1 𝑐𝑖(tk)Φ𝑖(s))⟩
⟨(x̃(s, tk), (x̃(s, tk)⟩

(3.9)

In the above equation, ⟨□⟩ represents the inner product.

The spatial modes are calculated with a Singular Value Decomposition (SVD)

of the matrix X of density snapshots. The snapshots are rearranged from the grid

dimensions into vectors. The SVD is computed as [33, 10]:

X =

⎡⎢⎢⎢⎢⎣
| | |

x̃1 x̃2 ... x̃n

| | |

⎤⎥⎥⎥⎥⎦ = UΣV⊤ (3.10)

The columns of the matrix U are the left singular vectors, which provide the

orthonormal spatial modes Φ(s) [33, 10]. The reduced-order state z (the “ROM state”)

of time-dependent coefficients is calculated with a similarity transform using U𝑟, the

matrix of the first 𝑟 columns of U (the first 𝑟 POD modes) [33, 10]:

z = U−1
𝑟 x̃ = U⊤

𝑟 x̃ (3.11)

Since the 𝑟 spatial modes contained in U𝑟 are invariant in time, they are calculated

only once for the PODROM. Once U𝑟 is calculated, the ROM state z is sufficient to

completely reconstruct the entire density field [33]:

x′(s, 𝑡) = U𝑟(s)z(𝑡) + x̄(s) ≈ x(s, 𝑡) (3.12)
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Further details on this process are available in [59] and [33].

Convolutional Autoencoder

Another method of order reduction is the use of an undercomplete autoencoder neural

network, which encodes data into a dimension smaller than that of the original input

data [10]. The encoder portion of the autoencoder reduces the data dimension, while

the decoder portion reconstructs the original data. The encoder/decoder system is

trained such that the mean square error loss function is minimized [103, 10]:

ℒ(X,X′) =
||X-X′||2

𝑑
(3.13)

Where X is the original input data, X′ is the encoded/decoded reconstruction,

and 𝑑 is the dimension of X. The key strength of this technique is its ability to encode

nonlinear features in the underlying data, whereas the linear POD method captures

only linear features [103].

Like for the POD encoding, the densities are standardized prior to encoding. To

reduce the range of data magnitudes, density snapshots are standardized by taking

the base-10 logarithm and calculating the statistical z-score of the snapshot elements:

𝒵(s, 𝑡) =
log10(x(s, 𝑡))− log10(x̄(s))

log10(𝜎(s))
(3.14)

Snapshots of 𝒵(s, 𝑡) are passed into the input layer of the autoencoder. The au-

toencoder stages include two 2-dimensional convolution layers using nonlinear Recti-

fied Linear Unit (ReLU) activation functions and separated by batch normalization

layers to center and scale the data between layers, followed by three fully-connected

(dense) layers [10]. The first two fully-connected layers also use ReLU activation

functions. The following function defines the convolution used in the 2-D convolution

layers with layer input 𝑥, output data 𝑔, and filter 𝑐 [10]:
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𝑔𝑖,𝑗,𝑘,𝑐 = 𝜎(𝑤𝑇
𝑐 𝑥𝑖,𝑗,𝑘,𝑐) (3.15)

Note that 𝜎 in Eqn. 3.15 is a function definition, not the standard deviation. The

architecture of the NN autoencoder and decoder are shown in Figure 3-2.

Figure 3-2: Architecture of the NN autoencoder and decoder. Reproduced from [10],
courtesy of Dr. Peng Mun Siew.

Convolutional layers help to prevent overfitting, which occurs when a NN “memo-

rizes” specific training data sets instead of learning underlying data patterns, resulting

in a NN that can accurately recreate training data but struggles to generalize to condi-

tions not directly encountered in the training data set [103]. The decoder reconstructs

𝒵(𝑡) density data from a length-𝑟 encoded ROM state z, and the spatially-dependent

log-10 mean x̄(s) and standard deviation 𝜎(s) are used to reverse the data standard-

ization, returning density snapshots X′ after the inverse base-10 logarithm is taken.

113



Dynamic Mode Decomposition with Control

The Dynamic Mode Decomposition with Control (DMDc) is a linear technique used

to propagate the reduced-order density model state in time, subject to the effects of

space weather as described by the SW index inputs. Given a set of density snapshots,

a pair of matrices can be estimated that describe the time evolution of the system

(the dynamic matrix) and the impact of space weather (the input matrix). This

estimation is conducted in the reduced-order space, making the process very efficient.

The DMDc linear system is [33, 10]:

z𝑘+1 = Az𝑘 + Bu𝑘 (3.16)

where z𝑘 and u𝑘 are respectively the ROM state and vector of SW inputs at epoch

𝑘, A is the DMDc dynamic matrix, and B is the DMDc input matrix. To estimate

A and B, two matrices of time-shifted ROM states are constructed from the set of

available density snapshots. A matrix of SW input vectors corresponding to the times

of the density snapshots is also constructed. These matrices are defined as [10]:

Z1 =

⎡⎢⎢⎢⎢⎣
| | |

z1 z2 ... z𝑛−1

| | |

⎤⎥⎥⎥⎥⎦ Z2 =

⎡⎢⎢⎢⎢⎣
| | |

z2 z3 ... z𝑛

| | |

⎤⎥⎥⎥⎥⎦ Υ =

⎡⎢⎢⎢⎢⎣
| | |

u1 u2 ... u𝑛−1

| | |

⎤⎥⎥⎥⎥⎦
where 𝑛 is, as previously, the number of density snapshots. As the definitions above

clearly show, Z2 is the equivalent of the Z1 matrix shifted forward in time by one

time unit. Referencing the DMDc linear formulation, Z2 can be written as follows:

Z2 = AZ1 + BΥ (3.17)

The matrices A and B advance z𝑘 to z𝑘+1 at specified discrete-time intervals.
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However, for the application of density modeling, we seek a continuous-time model

which can provide a ROM state at any arbitrary time. In other words, we require the

continuous dynamical model [33, 10]:

ż = A𝑐z + B𝑐u (3.18)

where the matrices A𝑐 and B𝑐 are the continuous-time equivalent of the A and B

matrices from the original discrete-time formulation [33]. DeCarlo (1989) provides

the relation between the discrete-time and continuous-time matrices [17, 33]:

⎡⎢⎣A𝑐 B𝑐

0 0

⎤⎥⎦ = log

⎛⎜⎝
⎡⎢⎣A B

0 I

⎤⎥⎦
⎞⎟⎠ /𝑇 (3.19)

where 𝑇 is the time between density snapshots used to construct the system.

A weakness of the DMDc algorithm for the application of density modeling is

that it is a linear algorithm, while the dynamics of the thermosphere are nonlinear.

Turner et. al. (2020) addressed this problem in [103] by using a NN, which can

capture nonlinear dynamics, to propagate the ROM state instead of DMDc. The NN

improved over the DMDc model [103]. However, only the DMDc-based models are

explored in this thesis. Using a small 1-hour time step between ROM states helps

to keep the linear approximation error low, and allows hourly correction of ROM

states via data assimilation, as in [33]. Although the ROMs used in this thesis do not

include data assimilation, the one-hour time step is retained for consistency.

Following propagation in the reduced-order state, the new ROM state is converted

back into the full-density space by reversing POD with Eqn. 3.12 or the decoder (de-

pending on the encoding method used), and then unstandardizing the data. Densities

can then be interpolated anywhere in the longitude, latitude, and altitude domain of

the ROMs.
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Summary and Advantages of the ROM process

In summary, a series of training-data snapshots are used to construct the POD ma-

trices or autoencoder/decoder, which reduce each large density snapshot to a much

smaller representation consisting of an 𝑟-vector z. The ROM states derived from the

training data snapshots are used to construct the DMDc matrices, which capture the

unperturbed time evolution of the ROM state as well as the perturbing impact of

space weather on the ROM state. With a sufficiently extensive training data set, the

ROM formulation is valid beyond the time range of the training data.

The data compression achieved by the encoding process is tremendous. Using typ-

ical values for resolution in latitude, longitude, and altitude, a single-density snapshot

in the full-density space is a 3-D grid of 17,280 double-precision floating-point num-

bers (135 KB). Considering that the typical time resolution of density data snapshots

is 1 hour, a week’s worth of density snapshots is about 22.1 MB of data, and data

covering a full solar cycle (∼12 years) is almost 13.5 GB of data.

In contrast, when stored as a ROM state, a density snapshot can be represented as

an 𝑟-vector, where 𝑟 is the number of spatial modes included in the model. Typical

values of 𝑟 could be 10 to 30, so one density snapshot can be represented in 80-

240 B, with a low single-digit truncation error in the density snapshot reconstructed

from the ROM state (about 1% mean error using 𝑟 = 30 [59]). ROMs do carry the

additional overhead of storing the A𝑐, B𝑐, and U𝑟 matrices and x̄ for POD, and

the autoencoder/decoder for ML ROMs. For a POD ROM with 𝑟 = 30, the three

matrices and x̄ are about 4.09 MB; however, these need only be calculated and stored

once. Including these matrices, the memory needed to store one week of ROM states

with 𝑟 = 30 is ∼4.14 MB. Storing 12 years of data as ROM states requires only about

28.1 MB, or about 0.2% of what is needed for storing raw density data sets.

The computational advantage of conducting the prediction step of the algorithm

in the reduced-order space is also significant. DMDc could be conducted in the full
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density space, but this would require much larger A𝑐 and B𝑐 matrices. Using the

same assumed density field size of 17,280 data points and 23 space weather inputs (a

typical value for the JB2008-based PODROM, see Section 3.4.3), one step of DMDc in

the full density space would require approximately 600 million individual operations

to perform the matrix multiplication. In contrast, using 𝑟 = 30, one DMDc step in

the reduced-order space requires just over 3 thousand operations, or 0.0005% of the

operations which would be needed for DMDc in the full-density space.

Once the encoding and DMDc algorithms have been trained on a set of density

Table 3.5: Modeling thermospheric density using a ROM.
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snapshots, the ROM can be used as an independent density model. An empirical

model, such as JB2008, is used to generate an initial global density distribution, from

which an initial ROM state z0 is calculated. Then, the ROM state is propagated

from z0 at some time step over the time period of interest, using the relevant space

weather inputs (or predicted values of those inputs). Table 3.5 summarizes the basic

steps of the ROM density modeling process.

3.4.3 DESTO and DESQU Toolboxes

The MATLAB version of the PODROM code used in this thesis is publicly available

in the Density Estimation Toolbox (DESTO)10 [33, 28]. The PODROM code used

in this thesis is a translation of that code into the Julia language. The Python

version of the ML ROM model code is publicly available in the Dynamic Data-Driven

Thermospheric Density Estimation with Quantified Uncertainties (DESQU)11 toolbox

[66], and was called into the main Julia code with the package PyCall.jl.12

The density data used to train the PODROMs was generated using the JB2008,

NRLMSISE-00, and TIE-GCM models, and the ML ROM was trained on JB2008

data. Using each of these models, training snapshots were generated at hourly inter-

vals over a 12-year period (to cover a full solar cycle), resulting in more than 105,000

snapshots of training data [33]. In these models, local solar time (LST) was substi-

tuted for the longitude coordinate. Table 3.6 describes the features of the training

data sets.

10https://zenodo.org/record/3634245
11https://github.com/SWQU/DESQU
12https://github.com/JuliaPy/PyCall.jl
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Table 3.6: PODROM training data parameters, from [33].

The different date range for JB2008 training data was due to gaps in space weather

input data in the year 1998.

The ROM DMDc prediction step requires space weather inputs. In addition to

the inputs used by the original model used to generate training snapshots, additional

inputs were added, including nonlinear space weather inputs [33]. Table 3.7 describes

the space weather inputs used.

Table 3.7: ROM space weather inputs, reconstructed from [33].

*Vector of 8 ap indices up to 57 hours before current time [33].
**Temperature change calculated from Dst index [10].

***Greenwich Mean Sidereal Time [33].
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For complete details and code for the ROMs and training processes, see [33, 62,

103] and the DESTO/DESQU packages [28, 66].

3.4.4 Reduced-Order Model Implementation

The first step of ROM implementation was running the model setup to prepare the

dynamic and input matrices, spatial density modes, space weather inputs, and other

ROM components. An initial snapshot of global densities was encoded, using either

POD or an autoencoder, to produce the initial ROM state. For the NRLMSISE-00

PODROM, this snapshot was generated using the NRLMSISE-00 model. This was a

change from the original DESTO NRLMSISE-00 PODROM, which used the JB2008

model for ROM state initialization. The reason for the change was to eliminate the

JB2008 influence on the NRLMSISE-based model. The JB2008 model was used for

the JB2008 POD and ML ROMs, and for the TIE-GCM POD ROM, since running the

TIE-GCM model to generate an initial snapshot was too computationally expensive.

Next, the space weather inputs and the dynamic/input matrices prepared in ROM

setup were used to propagate the initial ROM state over the entire period of the

simulation, at hourly intervals beginning from the start time of the reentry simulation.

The end product of this propagation was a matrix containing ROM state vectors

at one-hour time intervals. The ROM state matrix was passed into the satellite

propagation routine.

At each time step in the satellite propagation process, the ROM state matrix

was interpolated in time using a linear interpolation scheme, giving a ROM state

at the time of interest. The resulting ROM state vector was converted back into

a density field, either by summing the product of the time-dependent ROM state

coefficients with the respective spatial mode values at the location of interest (for the

POD ROMs), or by applying the decoder algorithm (for the ML ROM). The density

field was interpolated to the satellite’s position, and this density value was passed
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into the drag calculation subroutine.

3.5 Uncertainty Quantification and Monte Carlo

Monte Carlo (MC) simulation provides a non-intrusive method of uncertainty quan-

tification for complex algorithms [38]. Randomly varying inputs subject to physically

realistic constraints for a large number of iterations produce a distribution of outputs

that can approximate the true uncertainty distribution of the algorithm results. For

example, varying the initial satellite position within a range of reasonable TLE error

values over repeated simulations can simulate the distribution of reentry prediction

results expected in the presence of TLE uncertainty. This allows the uncertainty in

the reentry predictions to be quantified to estimate margins of error. By varying the

simulation inputs that are perturbed, we can also evaluate the sensitivity of the sys-

tem to errors in multiple inputs. Monte Carlo simulations are very computationally

expensive, since they converge only as 1/
√
𝑁 , with 𝑁 being the number of simulation

runs [38].

Due to limited computational resources, MC simulation in this thesis is restricted

to only the UARS case over a period of 3 days prior to reentry, and to only three

density models. Uncertainty from initial-state (TLE) uncertainty and space weather

index uncertainty is examined with MC simulation. Initial state uncertainty is se-

lected for examination due to the known inaccuracies in TLEs. Space weather index

error is included to evaluate the sensitivity of reentry predictions to noise in SW

inputs, simulating the use of predicted SW index values. Ballistic coefficient uncer-

tainty is not included in MC simulations, but is evaluated by varying the BC ±25%.

BC uncertainty is selected for analysis due to its significant impact on reentry pre-

dictions, combined with the difficulty of determining BC because of satellite attitude

and drag coefficient uncertainties.
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Because bias and uncertainty distribution types are unknown for these three fac-

tors, a Gaussian (normal) error distribution centered at zero is adopted for sampling

each input.

3.5.1 TLE Uncertainty

In a 2008 study of TLE uncertainty across the entire TLE catalog, Flohrer et. al.

found average LEO TLE 1-sigma uncertainty values in the radial, along-track, and

out-of-plane directions to be 0.102 km, 0.471 km, and 0.126 km, respectively [22].

Correlation between errors in these three dimensions is unknown, so the three direc-

tions are assumed to be independent. For each iteration of the MC simulation using

TLE uncertainty, a sampled TLE error value is drawn from three independent distri-

butions constructed for each of the three directional components. These distributions

are zero-centered Gaussian distributions, with standard deviations defined by the

Flohrer’s findings. A sample initial-position uncertainty distribution for 𝑁 = 1000 is

plotted in 3 dimensions in Fig. 3-3. Adding uncertainty to the initial position creates

a "cloud" of initial position points, centered on the unperturbed TLE location.

The vector of sampled errors in each component (which can each be positive or

negative) is transformed from the local-vertical, local-horizontal (LVLH, also called

RTN) coordinate frame into the ECI coordinate frame using a coordinate transfor-

mation function from the Julia SatelliteToolbox package. No information is available

on the quantification of TLE-derived velocity uncertainty, so velocity uncertainty is

assumed to be zero in all components. The ECI vector of TLE position uncertainty

is added to the satellite’s ECI initial position, as defined by the initial TLE. Satellite

initial positions in the Monte Carlo simulation, therefore, vary in all three dimensions

about the TLE-defined position.
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Figure 3-3: Illustration of TLE uncertainty distribution in 3 dimensions for a satellite
at point [2.5, 2.5, 2.5].

3.5.2 BC Uncertainty

Because drag is linearly related to BC, the relationship of BC to reentry time is more

straightforward than the relationships between reentry time and space weather or ini-

tial state uncertainty. The relationship between BC and reentry time is not generally

linear; a higher BC results in quicker orbital decay, which lowers the satellite’s orbit

into higher-density regions of the atmosphere, compounding the impact of the higher

BC non-linearly. However, the BC-reentry time relationship is straightforward in the

sense that, all else being equal, a higher BC will always result in an earlier reentry

time and vice versa. Therefore, reentry prediction uncertainty stemming from BC

uncertainty can be modeled by varying BC up and down by some uncertainty value.

This captures a window of possible reentry times, and is far more efficient than MC

simulation. Pardini and Anselmo used this technique for estimating reentry time

uncertainty in [75, 77].

For the UARS case, Pardini and Anselmo varied the BC by ±20% to obtain a
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reentry uncertainty window. The 1-sigma uncertainty in UARS SG BCs over the

week prior to reentry was ±24% of the mean value, which accords relatively well with

the 20% BC uncertainty estimate used by Pardini and Anselmo. In this thesis, the

UARS BC was varied by ±25% as a conservative estimate on 1-sigma BC uncertainty.

UARS simulations were run for all nominal durations with the varied BCs, and using

the JB2008, JB8ROM, and ML ROM density models.

3.5.3 Space Weather Uncertainty

The three density models used for the Monte Carlo simulation were the JB2008,

JB2008-based POD ROM, and JB2008-based ML ROM. These models take the F10.7,

Y10.7, S10.7, and M10.7 indices, 81-day averaged values of these indices, and DST-

DTC. The indices perturbed were the F10.7, Y10.7, S10.7, and M10.7 indices. Be-

cause the uncertainty distribution values were normal distributions centered at zero,

no perturbation was added to the 81-day average values. Quantifying correlations

between these indices is out of the scope of this paper, so uncertainty in each index

value is treated independently.

Standard deviations are estimated from the CIRA-08 reference space weather

data tables, which cover 143 months, just over a full 11-year solar cycle [100]. These

tables provide minimum, mean, and maximum values of F10.7, Y10.7, S10.7, and

M10.7 indices in each month of the solar cycle. To determine standard deviation, the

spread between minimum and maximum index values for each month was assumed to

represent a ±3-sigma spread. The one-sigma value for each index was estimated to

be 1
6
(max-min) for the respective month of the solar cycle. For each simulation, the

month in the solar cycle was determined to find the relevant minimum and maximum

index values, using December 2008 and December 2019 as the respective start dates

of Solar Cycles 24 and 25 [81, 96].

Noise values were generated for one-hour windows throughout the simulation du-
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ration and added directly to the SW indices. Because the JB2008 model uses some

time-lagging SW inputs while the ROMs use real-time data, the magnitude of the

perturbations are not equal for each step of the simulations. Some of the time lags in

the inputs taken by JB2008 are greater than the MC simulation duration of 3 days,

so the noise values in some of the indices do not overlap at all between the JB2008

and ROM models. Since the results of all the runs are examined as a whole rather

than individually, and all noise values are randomly drawn from the same distribu-

tion, the difference in SW noise values ingested by the models is not a concern. The

SW perturbation process is also described in [10]. Nonlinear ROM SW inputs were

calculated from the perturbed values of the relevant indices.

Another difference between SW noise ingestion process for the ROMs versus

JB2008 occurs because the ROMs require initialization using a density model snap-

shot from JB2008 or NRLMSISE-00. This initial snapshot is encoded and used as

the starting ROM state, which is then updated at hourly intervals as it is propagated

across the simulation duration. Since the ROM state is changed by applying updates

rather than discarding the previous ROM state, each state vector preserves historical

data from previous ROM states. The initial snapshot used to generate the first ROM

state, therefore, has a persistent impact on the ROM results throughout the reentry

simulations. The JB2008 model has no equivalent initialization process.

This creates two different ways that space weather noise can be ingested into the

ROM: either it can be ingested only into ROM state updates, or it can be ingested

into the ROM state initialization as well, by feeding noisy space weather data into the

JB2008 model when generating the initial snapshot. Including space weather noise

in the ROM state initialization may magnify the impact of space weather noise. The

initial-state noise impacts the entire “history” of the ROM states propagated from

that initial ROM state. This impact adds to the impact of space weather noise in the

ROM state updates. Simulations were run using both methods of SW noise ingestion.
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Figure 3-4: Example of a set of noisy SW values for the UARS test case. Unique
sets of noisy SW values were used for each MC iteration. True values are plotted for
reference.
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3.6 Simulations and Expected Results

Simulation setups were chosen according to the following points of interest: 1) uncer-

tainty quantification/sensitivity analysis to examine features of the reentry prediction

process and characteristics of ROM behavior; 2) impact of different atmospheric den-

sity models on reentry simulation accuracy; 3) impact of different ballistic coefficient

models on reentry simulation accuracy; and 4) evolution of reentry prediction accu-

racy as the simulation start time approaches the reentry time. Both MC simulations

and "standard" simulations (single propagator runs, as opposed to Monte Carlo sim-

ulations) were used for point 1, while only standard simulations were used for points

2 through 4.

Simulation Selections

Due to the high computational cost of MC simulation (each of which involves running

150 standard simulations), only one test case (UARS), one BC model (the SG mean

BC), and one simulation duration (3 days) was used for the TLE-based and SW-bases

MC simulations. Three density models were selected for UQ: the JB2008, JB8ROM,

and ML ROM. Because all three of these are based on JB2008, they accept the same

base set of space weather inputs (although the ROMs include additional nonlinear

inputs). This allows uncertainty in space weather to be introduced into the same set

of inputs for consistency across the density models.

TLE uncertainty and space weather uncertainty are investigated with MC sim-

ulations, due to the more complex relationships between these factors and the drag

force. BC uncertainty was explored by varying the BC by ±25% instead of using

MC simulation. This reduced the run time needed and allowed the impact of BC

uncertainty to be evaluated for all 6 prediction windows, instead of only for the 3-day

prediction window.

Further MC simulation would be a good direction for future work, but insufficient
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computational resources were available during the completion of this thesis. Table

3.8 shows the UQ simulations run. All combinations of the factors listed in Table 3.8

were run with 𝑁 = 150.

Table 3.8: Uncertainty quantification simulations.

Table 3.9: Standard simulations.

The final three points of interest were explored with “standard” simulations. Six

different density models were used: JB2008, NRLMSISE-00 (abbreviated NRLM00),

JB2008 PODROM (JB8ROM), NRLMSISE-00 PODROM (NRLROM), TIE-GCM
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PODROM (TIEROM), and JB2008 ML ROM (ML ROM). Three different BCs were

used for standard simulations: Saunders-Gondelach mean BC, Pardini-Anselmo mean

BC, and Pardini-Anselmo time-varying BC. In addition, six different nominal predic-

tion windows were used, ranging from 7 days to 12 hours prior to reentry, to mimic the

recurring predictions conducted during IADC reentry prediction campaigns. Table

3.9 summarizes the standard simulations performed; all combinations of all factors

described in Table 3.9 were run, for a total of 324 standard simulations.

Expected Results

Based on the preliminary results in [10], ROMs are expected to show performance

relatively comparable to empirical models. Because the ROMs presented in this

thesis do not use data assimilation, they are not necessarily expected to outperform

the density models on which they were trained. In fact, the ROMs may show slightly

worse results overall due to truncation error from discarding higher-order spatial

density modes present in the empirical model data used for ROM training, since only

10 modes (𝑟 = 10) are used for the ROMs in this thesis. However, ROMs should be

relatively competitive with empirical models in terms of reentry prediction accuracy,

and should have an advantage in run time. Only the TIEROM is expected to possibly

outperform empirical models, as it was trained on a physics-based model.

Ballistic coefficient models are expected to have a major impact on reentry predic-

tions. The NRLM00 is expected to have an advantage in prediction accuracy on BC

models that absorb significant NRLM00 model error during the estimation process.

This advantage is expected to manifest as the NRLM00 showing better performance

on some BC models, while other density models perform worse with the same BC.

Similarly, the JB2008 is expected to have an advantage over other density models

when JB2008-based BC estimates are used in the Fobos-Grunt test case.

The JB2008, JB8ROM, and ML ROM reentry predictions are expected to show
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relatively similar sensitivity to uncertainty in BC, and to and uncertainty in initial

state. The ROMs are expected to show more sensitivity to SW than JB2008 when SW

noise is included in the ROM initialization process, since initial ROM state "history"

persists across later ROM states. For the same reason, ROMs are expected to show

less sensitivity to SW noise than the JB2008 when SW noise is used only in ROM

updates. BC uncertainty is expected to yield the greatest reentry time uncertainty

of the three factors tested.
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Chapter 4

Uncertainty Quantification

4.1 Initial-State Uncertainty

Because of the low quality of TLE data, propagating initial states derived from TLEs

can result in significant errors in the predicted satellite state after hours or days of

propagation. To investigate the effect of TLE error on reentry time predictions, Monte

Carlo simulations were performed with error added to the TLE initial position in three

dimensions, as described in Section 3.5.1. The UARS test case with the SG mean

BC and a nominal 3-day prediction window were chosen for the MC simulations. 150

iterations were run using the JB2008, JB2008 PODROM (JB8ROM), and the JB2008

ML ROM. Figure 4-1 shows the range of reentry trajectories predicted by each density

model. The region between the earliest and the latest reentry prediction is shaded.

The unperturbed results (with no error added to the initial state) are indicated with

a solid line.

The significance of the range between earliest and latest reentry times is that

this spread represents the amount of reentry time variation that could be attributed

to the initial-state error. If the earliest and latest reentry times enclose the true

reentry epoch (shown by a vertical dotted line), then TLE initial-state uncertainty
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could account for the entirety of the difference between the given density model’s

prediction and the true reentry time. This is the case for the JB8ROM and the

JB2008. For both of these density models, not only do the earliest/latest predictions

enclose the true reentry epoch, but the reentry trajectory ranges are nearly centered on

the true reentry epoch. This means the difference between the JB2008 and JB8ROM

predictions and the true reentry time is significantly less than the amount that could

be attributed to error in the initial position.

Figure 4-1: UARS reentry trajectory ranges predicted by three density models during
𝑁 = 150 Monte Carlo simulation with radial, along-track, and out-of-plane error
added to initial position.

This is not the case for the ML ROM, which underestimates the UARS residual

lifetime over a three-day window. The range of reentry times attributable to TLE

error does not include the true reentry time. This can be interpreted as follows:

assuming the zero-centered Gaussian TLE error model is a reasonable characterization

of TLE uncertainty, at least some of the error in the ML ROM’s reentry prediction

must come from some source other than TLE error. It could come from BC error, or

from inherent density model error. Note that none of the error can be attributed to
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space weather input prediction error in this case, because true space weather inputs

(a posteriori) were used for the simulations in Figure 4-1.

Reentry time distributions are plotted in Figure 4-2.

Figure 4-2: Distribution of change in reentry time predicted by three density models
during 𝑁 = 150 Monte Carlo simulation with radial, along-track, and out-of-plane
error added to TLE. Change in reentry time given relative to unperturbed reentry
time predicted by each respective model, as a percent of true residual lifetime.
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Reentry time distributions are plotted in a relative sense. The quantity plotted

is difference from unperturbed (no TLE error added) reentry time predicted by each

respective model, given as a percent of the true residual lifetime. This quantity is

defined by:

𝑡𝑟,𝑖 − 𝑡𝑟
𝑡𝑟,𝑡𝑟𝑢𝑒 − 𝑡0

× 100% (4.1)

where 𝑡𝑟,𝑖 is the reentry time predicted by the 𝑖𝑡ℎ MC iteration, 𝑡𝑟 is the unperturbed

reentry time prediction of the respective density model, 𝑡0 is the simulation start time,

and 𝑡𝑟,𝑡𝑟𝑢𝑒 is the true reentry time. Figure 4-2 therefore represents the distributions

of percent error in residual lifetime resulting from TLE error, for each density model.

The mean and standard deviation of each distribution is marked on its plot, and a

Gaussian curve with the same mean and standard deviation is plotted on the same

axes for reference.

None of the distributions well match a Gaussian (normal) distribution. In each

distribution, three distinct "peaks" appear: one below zero, one close to zero, and one

above zero. One possible explanation for this pattern is that it may stem from the si-

multaneous perturbation of the initial states in three dimensions, with the three-peak

pattern representing the summation of three underlying reentry time distributions

resulting from TLE perturbation in the radial, along-track, and out-of-plane direc-

tions. The second possibility is that the peaks may represent perigees in successive

orbits of the UARS. Since perigee is the lowest point of the orbit, where densities are

highest, the probability of reentry may be higher during "bands" of time centered

on successive perigee passes. The distribution peaks in most cases are separated by

(very approximately) 2% of residual lifetime, which for a 3-day prediction window

corresponds to about 1.5 hours. This is also the approximate orbital period of an

object in LEO, so the spacing of the peaks is about equal to the expected spacing

between successive perigees of the reentering UARS.
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All of the distributions are centered close to but slightly less than zero. According

to Figure 4-2, TLE error tends to create a minor underestimation bias of about 0.2%.

However, with 150 samples, this finding is not statistically significant at the 10%

significance level. Ideally, MC simulations should be performed with a higher number

of iterations to confirm this finding.

The standard deviation in reentry times is around 1.7% for the JB2008 and the

ML ROM, which produce very similar distributions. The JB8ROM reentry time

distribution has a greater spread, with about 2.3% standard deviation. The JB8ROM

also has a small but notable peak at the -4% mark, indicating that a cluster of

individual perturbed JB8ROM simulations underestimated residual lifetime compared

to the unperturbed JB8ROM, by about 4%. Neither of the other density models

display such a peak as far from zero. The greater spread of the JB8ROM means that

it is slightly more sensitive to initial-state error than the JB2008 and the ML ROM.

This could indicate greater variations in density on small time and space scales in the

JB8ROM than in its counterparts. Again, increasing the number of MC runs would

be useful to confirm the greater sensitivity of the JB8ROM to TLE initial state error.

As a final note on TLE uncertainty, it’s important to consider the physical impli-

cations of the reentry time error magnitudes discussed above. A 1-sigma uncertainty

value of 2% at three days prior to reentry (equivalent to ∼90 minutes) due to TLE er-

ror may sound relatively small, but could create a significant error in terms of ground

risk assessment. 90 minutes is the approximate period of LEO RSOs, meaning that a

2% error corresponds to position uncertainty equivalent to about one entire orbit of

the reentering spacecraft after only three days of propagation. Such a large position

uncertainty can make risk assessment very difficult.

136



4.2 Ballistic Coefficient Uncertainty

As discussed in Section 3.5.2, the BC was varied by ±25% for UARS reentry sim-

ulations. These simulations were performed with the JB2008, JB8ROM, and ML

ROM density models, over the same prediction windows as the standard simulations.

Reentry trajectories are shown in Figure 4-3. Altitudes shown are geocentric.

Figure 4-3: Reentry trajectories predicted by three density models with Saunders-
Gondelach mean BC and ±25% BCs.

As expected, there is an inverse relationship between BC and residual lifetime.

A higher BC results in greater drag force, inducing an earlier reentry, while a lower

BC decreases the drag force and leads to a longer reentry time. SpaceX utilized this

relationship during the February 2022 geomagnetic storm, when Starlink satellites

were commanded into an "edge-on" attitude which lowered their BCs by reducing

their effective frontal area [54]. This was intended to compensate for the increase

in drag from higher densities during the storm, and prevent premature reentry. For

11 of the satellites, the maneuver was successful in delaying reentry long enough for
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the satellites to outlast the storm and recover [21]. Similarly, the predicted UARS

reentry is delayed by a lower BC and expedited by a higher BC. However, the change

in residual lifetime is not linear with respect to the change in BC.

Figure 4-4: Residual lifetime predicted by three density models with Saunders-
Gondelach mean BC and ±25% BCs.

Fig. 4-4 demonstrates that, assuming a 25% uncertainty in BC, all of the residual

lifetime prediction error present in all three models at every prediction window can

be accounted for purely by BC uncertainty. It is possible (though unlikely) that any

one density model is perfectly accurate, and its residual lifetime error is entirely due

to BC error. (It is not, however, possible that all density models are exactly correct;

obviously, they would agree identically if this were the case.)

For reference, prediction results obtained by Pardini and Anselmo (2013) on the

UARS reentry are presented in Figure 4-5 [5]. Uncertainty windows in this figure

were produced by varying the BC by ±20% [5]. The results obtained by Pardini and

Anselmo over the final 7 days of the UARS lifetime are very similar to the JB8ROM

results shown in Fig. 4-4, except that the JB8ROM shows overall lower error and

higher uncertainty. The lower error is likely due at least in part to the use of a

posteriori SW data and TLE data for BC fitting, while the higher uncertainty is due
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to the larger BC uncertainty of ±25% used in Fig. 4-4.

Figure 4-5: Reentry time prediction study by Pardini and Anselmo (2013) for the
UARS reentry.1 Red indicates prediction, and blue indicates uncertainty window.
Figure is from [5].

The assumption of a 1-sigma estimate of 25% for BC uncertainty may be overly

conservative, in which case the results in Fig 4-4 would overestimate the reentry time

uncertainty attributable to BC. Although Pardini and Anselmo did use a similarly

conservative variation of ±20% of the BC value, the actual standard deviation they

found in the UARS’ BC was 13% over the reentry campaign [75]. However, the

evolution of the UARS BC was not random around a steady mean value; instead,

it decreased steadily towards the end of the campaign [75]. This kind of behavior

could not be well captured by varying the BC by ±13%. Pardini and Anselmo found

that ±20% uncertainty yielded a "satisfactory" residual lifetime uncertainty window,

but a larger uncertainty of ±30% would have given "more regular and conservative

evolution of the upper bound" [75].

1Figure reproduced in accordance with agreement between MIT and publisher Elsevier. For more
information, see https://libraries.mit.edu/scholarly/publishing/using-published-figur
es/.
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The first conclusion regarding BC uncertainty, therefore, is contingent upon the

accuracy of the BC uncertainty estimate. If ±25% is an accurate characterization

of the uncertainty in the UARS BC, then the error in estimated residual lifetime

due to atmospheric density model error for the JB2008, JB8ROM, and ML ROM is

smaller than the BC-induced uncertainty in residual lifetime, for all reentry prediction

windows. The practical implication of this finding is that for the UARS test case,

improving the BC estimate would be more effective than improving the density model,

if the goal is to reduce residual lifetime uncertainty.

Figure 4-6: Residual lifetime percent error predicted by three density models with
Saunders-Gondelach mean BC and ±25% BCs.

Figure 4-6 shows a scatter plot of percent change in predicted residual lifetime as a

function of percent change in BC, for all three models and all six prediction windows.
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Fig. 4-6 illustrates the second notable conclusion, which is the nonlinear relationship

between BC and reentry time. Underestimation of the BC relative to its true value

tends to create larger errors in predicted residual lifetime than overestimation by an

equal amount. On average, a 25% decrease in the BC leads to a 32% increase in the

predicted residual lifetime, while a 25% increase in BC leads to only a 19% average

decrease in predicted residual lifetime.

This is due to the approximately exponential decrease of atmospheric density with

altitude. An object with a lower BC spends a longer time at higher altitudes, because

the lower BC causes its orbit to decay more slowly. But the amount of additional

time spent at higher altitudes is not linear in BC, because density is (approximately)

exponentially lower at higher altitudes. An incremental increase in altitude results

in a greater percent change in density than does an incremental decrease in altitude

(assuming the same starting altitude). Therefore, an incremental increase in the

amount of time spent at higher altitudes causes a larger relative change in average

drag force than does an incremental decrease in the amount of time spent at higher

altitudes. The rate of change in average drag force, like the atmospheric density to

which it is directly proportional, decreases approximately exponentially with higher

altitude (and thus with time spent at higher altitude). A BC slightly higher than the

true BC will produce lower residual lifetime prediction error, on average, than a BC

which is lower than the true BC by the same amount.

This BC study highlights the significant impact that BC estimates have on the

success of reentry prediction. In practice, real-time BC estimation is more challenging

than the methods presented in this thesis, which use TLEs that are not available

ahead of time. Even given TLEs for the time range of interest, physically-accurate

BC estimation is difficult due to the tendency of the BC to absorb atmospheric density

model error during the estimation process. Choosing an effective BC model therefore

depends on the application. Pairing a BC model with the optimally compatible
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density model can artificially conceal density model error, which is a problem when

validating density models. However, using a BC that is optimally compatible with

the density model of choice is important for accuracy in practice, when the priority

is compensating for density model error to achieve accurate reentry prediction.

4.3 Space Weather Uncertainty

The final uncertainty source examined is space weather inputs to density models. To

understand the purpose of the following analysis, it is necessary to distinguish between

two separate error types associated with using SW indices as density model inputs.

The first problem is that that the true index values are proxies which may not well

represent the physical solar/geomagnetic processes they are meant to describe [20].

Because of this, and also based on the density model’s internal handling of the index

values, the density model’s response to a particular proxy value may not accurately

characterize the true density response [20], even when the true (observed) value of

the SW index is used. The key point here is that even true SW inputs may lead to

inaccurate density predictions. For the purposes of this thesis, this first type of error

associated with SW is considered inherent density model error (although it could, at

least in part, be considered "inherent SW proxy error").

The second problem with SW inputs is prediction error. This factor comes into

play when a density forecast is required, necessitating predictions of future SW index

values as density model inputs. On top of the SW-associated inherent error in density

modeling, predicting index values can introduce error into the actual SW index values.

The difference between these error types can be summarized briefly: "type 1" error

is when you have the correct SW inputs, but still predict the wrong density; "type

2" error is when you incorrectly predict the SW inputs, causing inaccurate density

predictions. Type 1 (inherent density model) uncertainty is always present, while type
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2 is only present when using predicted SW proxies instead of true observed values.

The following MC analysis investigates the impact of type 2 SW error on reentry

predictions using the JB2008, JB8ROM, and ML ROM. SW proxy prediction error is

represented by random noise drawn from a zero-centered Gaussian model described

in Section 3.5.3. The perturbed SW values are centered on the true index values,

with prediction bias assumed to be zero. The sensitivity of reentry time predictions

of the three models to random noise in SW values, representing prediction error, is

presented in the following sections. As explained in Section 3.5.3, adding SW error

to ROMs can be accomplished in two ways: first, by adding noise in both the ROM

state initialization and the propagation, and second, by adding SW noise only during

ROM state propagation (initializing on true SW values). The first of these methods

is presented in Section 4.3.1, and the second is presented in Section 4.3.2.

4.3.1 Noise in ROM state Initialization

First, noisy SW data was used as density model inputs for the reentry simulation,

including in the ROM state initialization process for the ML ROM and JB8ROM.

JB2008 has no equivalent initialization process, so at each point the JB2008 was run

directly on noisy SW values. Figure 4-7 shows the spread between earliest and latest

reentry trajectories predicted by each model in an MC simulation of 150 iterations.

SW noise clearly has a much larger impact on the two ROMs than on the JB2008

model, which shows only small deviations from its unperturbed prediction. On the

other hand, both ROMs show deviations of up to a few hours in their reentry pre-

dictions as a result of the added SW index noise. Note that this is not a reflection

of inherent density model error, but rather of the models’ sensitivity to random zero-

centered error in SW inputs. Distributions of space-weather-noise-induced reentry

time change are shown in Figure 4-8.

As in Section 4.1, reentry time change is shown as defined in Eqn. 4.1. For each
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Figure 4-7: UARS reentry trajectory ranges predicted by three density models (with
noise in ROM initialization) during Monte Carlo simulation with Gaussian zero-
centered noise added to F10.7, S10.7, M10.7, and Y10.7.

MC iteration, this quantity answers the question: By what percent of the residual

lifetime does each model’s reentry time prediction change, due to SW index noise?

As observed in Figure 4-7, the ROM predictions are significantly more sensitive to

SW noise. Although the ROM reentry time changes center very close to zero, like the

JB2008 model, the ROMs have a 1-sigma uncertainty of nearly 1% due to SW noise.

The 1-sigma uncertainty of the JB2008 is almost an order of magnitude lower than

the ROMs, at close to 0.1%.

However, this is not the end of the story. As noted previously, these results

were obtained by adding SW noise both to ROM state initialization and to ROM

state propagation. As described in Section 3.4.2 and Table 3.5, ROMs are initialized

by creating a global density snapshot with an empirical density model (JB2008, in

the case of the JB2008-based ROMs), and encoding that snapshot with POD or

an autoencoder. The encoded snapshot becomes the initial ROM state, and it is

propagated across the time window of interest to generate the full set of ROM states.
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Figure 4-8: Distribution of change in reentry time predicted by three density models
(with noise in ROM initialization) during 𝑁 = 150 Monte Carlo simulation with
Gaussian zero-centered noise added to F10.7, S10.7, M10.7, and Y10.7. Change in
reentry time given relative to unperturbed reentry time predicted by each respective
model, as a percent of true residual lifetime.
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In Figs. 4-7 and 4-8, SW noise is included in this process by generating a JB2008

snapshot using perturbed SW inputs, and encoding that snapshot as the initial ROM

state.

As the ROM state is propagated across the time period of interest using DMDc,

the initial ROM state is not discarded and replaced, but rather is updated at each

1-hour time step according to 1) the time evolution described in the DMDc dynamic

matrix and 2) the SW inputs throughout the time window of propagation (which are

incorporated using the DMDc input matrix). The ROM state at a given point in time

is therefore influenced by the history of previous ROM states. When the ROM is run

from an erroneous initial ROM state (for example, one generated with SW noise), the

initial error persists in later ROM states generated with DMDc propagation. This

persistent error is in addition to the ROM state update errors induced by noisy SW

inputs during DMDc propagation. The JB2008 has no equivalent to the initial ROM

state error. Therefore, using noise in the ROM state initialization places the ROMs

at an automatic disadvantage in terms of sensitivity to SW noise, as compared to the

JB2008.

The other method of ingesting SW noise into ROMs is to initialize the ROMs on

true SW inputs, and then propagate the initial (unperturbed) ROM state using noisy

SW inputs. The results of this method are presented next.

4.3.2 No Noise in ROM state Initialization

ROMs were run from initial states generated using JB2008 with true SW inputs.

Zero-centered Gaussian noise was added to all SW inputs, as previously, except that

true SW inputs were used to generate the initial ROM state. This method of SW noise

ingestion produced very different results. Density model reentry trajectory spreads

due to SW noise incorporated in this manner are shown in Figure 4-9. Note that the

JB2008 results included for reference are the same results shown in Section 4.3.1.
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Figure 4-9: UARS reentry trajectory ranges predicted by three density models (no
noise in ROM initialization) during Monte Carlo simulation with Gaussian zero-
centered noise added to F10.7, S10.7, M10.7, and Y10.7.

As Fig. 4-9 shows, ROM trajectory spread due to space weather noise is indis-

tinguishably small when no noise is included in the ROM state initialization process.

Reentry time change distributions are shown in Fig. 4-10. As previously, reentry time

change is defined by Eqn. 4.1. Mean and standard deviations of each distribution are

shown on the plots as 𝜇 and 𝜎, respectively. Gaussian (normal) distributions with the

same 𝜇 and 𝜎 are overlaid for reference. The overlaid distribution on the JB8ROM

is scaled down by a factor of 5⁄3 for plot clarity.

Reentry time changes produced by SW noise only in ROM state updates is van-

ishingly small, with a standard deviation on the order of ∼30-60 seconds for 3-day

predictions. For all density models, reentry time changes are centered close to zero.

The interpretation of these results is that, if initialized on true SW inputs, ROMs

are virtually unaffected by random noise in SW inputs. Note that this does not

indicate insensitivity to SW inputs generally (a topic which is not addressed by this

UQ technique), but rather insensitivity to zero-centered (unbiased) SW noise. This
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Figure 4-10: Distribution of change in reentry time predicted by three density models
(no noise in ROM initialization) during 𝑁 = 150 Monte Carlo simulation with Gaus-
sian zero-centered noise added to F10.7, S10.7, M10.7, and Y10.7. Change in reentry
time given relative to unperturbed reentry time predicted by each respective model,
as a percent of true residual lifetime.
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characteristic could prove very useful in density forecasting, when only predicted SW

inputs, which contain error, are available as density model inputs.

There is a caveat: this analysis assumes 1) zero-centered SW noise (equivalent

to no average bias in SW predictions) and 2) no correlation in errors among the

perturbed SW inputs. Uncertainty quantification of SW index predictions is out of

the scope of this thesis. However, error bias and correlation among predicted SW

inputs are possible, in which case the density model SW UQ simulations presented

here should be rerun with an updated SW index uncertainty model.

4.4 Summary of Uncertainty Quantification

In this chapter, UQ analysis was performed for three significant sources of uncertainty

in reentry prediction: satellite initial positions (derived from TLEs), BCs, and SW

inputs. By far the most important uncertainty source of the three was the ballistic

coefficient. Uncertainties of 25% in the BC led to residual lifetime uncertainty window

bounds of -19% and +32%, on average. Although 25% may be too high an estimate

of BC uncertainty [75], the strong influence of BC on reentry time predictions is well

documented [94, 26]. Ballistic coefficients which were too low were found to yield

greater reentry time errors than BCs which were too high.

The second most influential uncertainty source on reentry time was the initial

position of the satellite, which was examined with MC analysis using physically rea-

sonable values of LEO TLE position uncertainty from [22]. Over 3-day prediction

windows, satellite initial-state uncertainty led to 1-sigma residual lifetime uncertain-

ties of around 2%. No significant reentry time bias was produced by TLE position

uncertainty. The JB8ROM was slightly more sensitive to satellite initial-state uncer-

tainty than the JB2008 and ML ROM.

Finally, SW uncertainty was the smallest uncertainty source, producing no more
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than 1% 1-sigma uncertainties over three days even when SW noise was included in

ROM state initialization. SW-induced uncertainty had less impact on the JB2008

than on ROMs with noisy initial states. When SW noise was not included in ROM

state initialization, ROMs were virtually unaffected by SW noise, showing 1-sigma

uncertainties of ∼30-60 seconds (about 1/10 the magnitude of JB2008 1-sigma un-

certainties). The SW analysis had the additional effect of demonstrating the strong,

lasting impact of the initial ROM states on ROM density estimations.
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Chapter 5

Reentry Simulations

5.1 Upper Atmosphere Research Satellite (UARS)

The distinguishing feature of the UARS reentry was the relative stability of its bal-

listic coefficient throughout most of the reentry campaign, followed by a sudden BC

decrease of almost 40% in the last two days of its lifetime [75]. Changes in BC during

the reentry process are common during uncontrolled reentries [77] like that of UARS.

The drag coefficient 𝑐𝑑 may change as the satellite’s orbital altitude decreases due to

greater density and differences in the chemical composition of the lower atmosphere.

Additionally, the satellite may begin to tumble, or components such as solar panels

may break off, changing its effective frontal area and/or mass. The UARS’ terminal

drop in BC is captured in both the Pardini-Anselmo (PA) BC estimates and the

Saunders-Gondelach (SG) BC estimates. Ballistic coefficient models used for UARS

reentry simulations are plotted in Figure 5-1. SG BC estimates are also included for

reference.

The interpretation of the plotted mean BC values is that the BC for a simulation

starting in the x (time) range of each horizontal line is given by that line’s vertical

coordinate. For example, as SG mean BC simulation starting less than 7 and more
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Figure 5-1: UARS ballistic coefficient models.

than 5 days prior to reentry would use the BC value of 0.012 indicated by the y-

coordinate of the leftmost blue line. The mean BC value is invariant throughout the

simulation, but its constant value depends on the start time of the simulation. The

plotted lines indicate the constant BC value for simulations beginning in that time

range. Note that each mean BC value is computed by taking the mean of all BC

estimates between the simulation start time and the true reentry epoch; they are not

rolling mean values.

Although the SG BC estimates (black) show greater variation than the PA es-

timates (orange), both sets of BC values capture the same general trend of relative

stability followed by a terminal drop in BC. This trend is captured in the mean BC

models, with the mean BC over the remaining simulation lifetime dropping as the

remaining lifetime decreases. The SG technique estimates lower BCs overall than

the PA technique, and also indicates a more gradual terminal drop in BC. The PA

time-varying BC model (orange) remains higher than either of the mean BC models

until within the final 24 hours of the UARS lifetime, at which point it drops steeply.
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Since ballistic coefficient is directly proportional to drag force, the SG mean BC can

be expected to produce the lowest drag force estimates and thus the latest reentry

times, while the PA time-varying BC will yield the earliest reentry times, until within

the final 24 hours.

5.1.1 Saunders-Gondelach Mean BC

Figure 5-2 shows a snapshot of UARS reentry trajectories computed with each of the

6 density models using the SG mean BC, for 6 different prediction window durations

ranging from nominal 7 days to 12 hours prior to the true reentry epoch. Altitudes

shown are geocentric. Note that these durations are nominal. Simulations can only

be started at times when a TLE initial state is available, and TLE availability is non-

uniform in time. Simulations are run from the nearest available TLE to the nominal

start time of the simulation, as explained in Section 3.3.2. True reentry epoch is

indicated on each plot with a vertical dotted line.

Figure 5-2: UARS reentry trajectories predicted with the Saunders-Gondelach mean
BC using 6 different atmospheric density models and 6 different simulation durations.
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Using the SG mean BC, reentry predictions of the 6 models center close to the

true reentry epoch for all simulation durations. No significant uniform trend towards

overestimation or underestimation emerges from this first-glance look at UARS re-

sults, which may indicate that the BC does not contain a significant bias. Figures 5-3

and 5-4 shows percent and absolute error of the density models over time. Note that

negative percentages in Figure 5-3 indicate a predicted entry time prior to the true

reentry, while positive values indicate a predicted reentry time later than the true

reentry. For the UARS, Pardini and Anselmo found mostly negative prediction error

(predicted reentry time was earlier than true reentry epoch) [75]. the predictions

shown in Figs. 5-3 and 5-4 validate Pardini and Anselmo’s finding.

Figure 5-3: Percent error (%) of each model over time using the Saunders-Gondelach
mean BC.

Using the SG mean BC, the best-performing model overall is the JB2008, which

demonstrates a maximum absolute percent error of 2.2% at 12 hours prior to reentry.

Up until the final prediction at 12 hours prior to reentry, the overall runner-up is the

TIEROM, with a maximum error of 5.1% and mean absolute percent error (MAPE)

of 3.2% as compared to the third-place NRLM00 maximum error of 6.3% and MAPE
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Figure 5-4: Absolute error (hrs) of each model over time using the Saunders-
Gondelach mean BC.

of 5.7% over the same time frame. However, the performance of the TIEROM suffers

significantly at 12 hours prior to reentry, with its error more than doubling to 10.6%,

while the NRLM00 error remains low at 5.4%.

The JB8ROM follows the same performance trend as the TIEROM, at a consis-

tent negative bias of equal to 1-3% up to 12 hours prior to reentry. The physical

interpretation of this is that the JB8ROM consistently predicts reentries earlier than

the TIEROM by an amount 1-3% of the true residual lifetime. At 12 hours prior to

reentry, the JB8ROM is slightly better than the TIEROM, with an error of 9.2%.

The ML ROM and the NRLROM perform worst overall, but still provide reason-

ably low percent error (under 10%) for longer simulation time frames of 3+ days (for

the NRLROM) and 2+ days (for the ML ROM). In the final 2 days of the UARS

lifetime, the error of both models increases to around 20%. Both the NRLROM and

ML ROM also experience an increasing trend towards underestimation of the true

reentry epoch, in terms of percent error, as the prediction window decreases.

In terms of absolute error, all of the models do show a general convergence towards

the true reentry epoch as prediction window decreases, as shown in Fig. 5-4. In
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addition, all of the density models meet the ±20% error benchmark for “competitive

performance,” as established in Section 2.1, across all prediction windows. The sole

exception is the ML ROM at 12 hours prior to reentry (21.7% error). In addition, three

of the models, the JB2008, NRLM00, and JB8ROM, meet the “good performance”

benchmark of ±10% error across all prediction windows, and the TIEROM only

fractionally misses out on this benchmark with 10.6% error at 12 hours before reentry.

Finally, only the JB2008 model meets the ±5% metric for “excellent performance” for

all simulation durations. The TIEROM meets this standard for simulation durations

of 2 days or longer. The NRLM00 and JB8ROM are close contenders, with errors of

5-6.3% and 1.2-9.2%, respectively.

5.1.2 Pardini-Anselmo Mean BC

Figure 5-5 shows the UARS trajectories predicted by the six density models using

the PA mean BC.

Figure 5-5: UARS reentry trajectories predicted with the Pardini-Anselmo mean BC
using 6 different atmospheric density models and 6 different simulation durations.
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Because the PA mean BC is higher than the SG mean BC, it is no surprise that

the density models predict earlier reentry times with this BC.

Figure 5-6: Percent error (%) of each model over time using the Pardini-Anselmo
mean BC.

Figure 5-7: Absolute error (hrs) of each model over time using the Pardini-Anselmo
mean BC.

Overall percent error for all of the density models is generally higher for this BC
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model. Even the best-performing model, the NRLM00, exhibits errors of 10% or

more for some simulation durations. All of the models show greatest relative error

at 1 day prior to reentry, which is also the time at which the PA mean BC has the

greatest disagreement with the SG mean BC. All models experience an improvement

in performance at 12 hours before reentry, at which time the PA mean BC comes into

closer agreement with the SG mean BC. The steeper and later terminal decrease in

the PA BCs means that the average BC for the simulation duration does not fully

reflect the drop in BC until very shortly before reentry.

For all prediction windows, the JB2008 follows the same performance trend as

the NRLM00, with a 4-7% negative (underestimation) bias. Similarly, the JB8ROM

follows the TIEROM at a slight negative bias until 12 hours before reentry, as in the

SG mean BC results. Once again, the ROMs demonstrate their best performance over

longer prediction windows. At 7 days prior to reentry, both the TIEROM (3.8%) and

the ML ROM (1.4%) give lower error than the JB2008 (4.6%). However, ROM error

is higher for shorter prediction windows, especially for the ML ROM and NRLROM,

which experience maximum errors of 26% and 28.7%, respectively.

Almost all of the models underestimate the reentry at almost all times. In fact,

only two individual predictions (ML ROM at 7 days and NRLM00 at 12 hours)

overshoot the true reentry epoch. Again, this is consistent with Pardini and Anselmo’s

results [75]. This could indicate either 1) a consistent tendency of all the density

models to overestimate densities, or 2) a tendency of the PA BC to overestimate the

true BC. Further testing is needed to distinguish which of these is the most probable

cause.

Although Fig. 5-7 shows that absolute error does converge towards zero for all

of the models as the prediction window decreases, this convergence is not consistent

over time for any of the models. The PODROMs all experience their highest absolute

error at 5 days prior to reentry, and the absolute error of JB8ROM and TIEROM
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improves briefly at 3 days before deteriorating again at 2 days. Even the NRLM00

converges inconsistently, with its worst absolute error at 2 days prior to reentry.

The JB2008, NRLM00, and TIEROM all exhibit sub-20% error over all prediction

windows, with the JB8ROM just missing this standard with 20.1% error at 1 day prior

to reentry. However, none of the models have errors of less than 10% at all times.

5.1.3 Pardini-Anselmo time-varying BC

Figure 5-8 shows the predicted reentry trajectories for UARS using the PA time-

varying BC model.

Figure 5-8: UARS reentry trajectories predicted with the Pardini-Anselmo time-
varying BC using 6 different atmospheric density models and 6 different simulation
durations.

Reentries predicted with this model are even more premature than those predicted

with the PA mean BC, up until 24 hours prior to reentry. This reflects the fact that

the PA time-varying BC remains higher than the PA mean BC until shortly before

the reentry, because the terminal BC drop influences the mean BC for all simulation
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durations. Simulations using the time-varying BC do not experience this drop until

the last few days prior to reentry.

Figure 5-9: Percent error (%) of each model over time using the Pardini-Anselmo
time-varying BC.

Figure 5-10: Absolute error (hrs) of each model over time using the Pardini-Anselmo
time-varying BC.

The primary difference between the mean and time-varying PA BC results is the
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poorer performance of all models over longer prediction windows using the time-

varying BC. The time-varying BC is higher for longer simulation durations, resulting

in underestimation of the true residual lifetime by up to 32 hours (NRLROM) at

7 days prior to reentry. For longer simulation durations, the generally higher time-

varying BC causes many of the models to predict reentry before the terminal BC

drop even begins, so this BC feature is entirely missed in some simulations. All of the

ROMs experience their highest absolute error at 5 days prior to reentry, after which

all the models converge steadily towards the true reentry epoch in terms of absolute

error, as the terminal drop in BC begins to affect the simulation results.

The highest relative error for all density models except the ML ROM occurs at 2

days prior to reentry, while the ML ROM experiences slightly greater percent error

at 1 day prior to reentry. Starting at 1 day prior to reentry, the time-varying BC

results converge closely to those of the PA mean BC, since at this point the two BC

models are very close (see Fig. 5-1).

Apart from the higher error for longer simulation durations, there are no major

differences between the results obtained with the PA mean and time-varying BCs.

All models follow the same general performance trends, and the rank of model per-

formance for each prediction window is the same as in the mean BC case. Results

obtained with the PA time-varying BC were relatively poor for all models. Only the

NRLM00 (which was used in the CDFIT BC estimation routine) meets the ±20% er-

ror benchmark for all simulation durations, and only 3 individual predictions feature

error below 10% (ML ROM at 7 days, and NRLM00/JB2008 at 12 hours).

5.1.4 UARS Overall Results

Figure 5-11 shows the mean absolute percent error across all simulation durations,

for each density model and each BC model.

For the UARS test case, the SG mean BC model was the most successful for
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Figure 5-11: Average residual lifetime prediction MAPE across all simulation dura-
tions, for all density models and all BC models, for the UARS test case.

most density models by a wide margin. The only exception is the NRLM00, which

performed marginally better with the PA mean BC. All models demonstrated their

worst performance with the PA time-varying BC. In most cases, all density models

reacted similarly to all BC models, meaning that a BC model change either improved

performance for most density models, or worsened performance across most models.

The NRLM00 was the exception, as mentioned earlier. This likely stems from the use

of NRLM00 in BC estimation for all of the BC models. Depending on the NRLM00

error bias during the BC fitting window, and the particulars of the BC estimation

algorithm, it is likely that some BC models absorbed more NRLM00 error than oth-

ers. The NRLM00 would tend to perform better using BCs which compensated for

NRLM00 inaccuracies due to density model error absorbed during fitting. On the

other hand, non-NRLM00 density models are expected to suffer from the presence of

NRLM00 error in the BC.

The best performance observed across all density-BC model combinations for the

UARS test case was the JB2008 with the SG mean BC model, which achieved an
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impressively low 1.3% MAPE across all prediction windows. The second-best density

model with this BC was the TIEROM, with a MAPE of 4.4%, and the JB8ROM

at 5.1%. The NRLM00 achieved good performance with both mean BC models

(5.6% and 5.1%), but it is uncertain to what extent these results are due to the

NRLM00’s advantage resulting from its use in BC estimation. All the models except

the NRLROM achieved the ±10% benchmark, in terms of MAPE, using the SG BC.

The NRLROM missed this standard only slightly, with a MAPE of 11.5%. This

means that most of the density models are showing good performance relative to

typical reentry prediction accuracy, as described in Section 2.1. All models met the

±20% standard in terms of MAPE using both mean BC models; however, only half

the models (JB2008, NRLM00, and TIEROM) achieved this standard with the time-

varying BC. The TIEROM had very similar MAPE performance to the JB8ROM.

These two density models agreed in MAPE to within 1.5% for all BC models.

Results are further split into short prediction windows (1 nominal day or less) and

long prediction windows (nominal 2+ days).

Figure 5-12: UARS residual lifetime prediction MAPE for all density and BC models
for short prediction windows of one nominal day or less.
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Figure 5-13: UARS residual lifetime prediction MAPE for all density and BC models
for longer prediction windows of 2-7 nominal days.

For both mean BC models, all of the ROMs have lower MAPE for longer prediction

windows. The improvement in ROM MAPE for long prediction windows over short

windows with the mean BC models ranged from 3.2% (JB8ROM with PA mean BC)

to 13.4% (ML ROM with PA mean BC). The same trend was not observed for the

time-varying BC, where most ROMs did as well or better on shorter simulations.

The difference across BC models is likely because longer simulations using the higher

time-varying BC often yielded reentries prior to the terminal BC drop, causing larger

prediction errors.

Like the ROMs, the JB2008 model also did better over longer prediction windows

for the mean BC models. The performance difference was smaller (1-2%) than for

most of the ROMs; however, the JB2008 MAPE was the lowest of all the models

for both short and long prediction windows. Both the JB2008 and the NRLM00 did

relatively worse on longer simulations with the time-varying BC. The NRLM00 had

low MAPE for longer simulations with the PA mean BC, but experienced greater

MAPE for long simulations with the SG mean BC.
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Table 5.1: Density models ranked by MAPE performance on UARS test case with
Saunders-Gondelach mean BC.

Table 5.1 ranks models by MAPE for short-duration, long-duration, and overall

performance for the UARS simulations, using the overall best-performing BC model,

the SG mean BC.

Density model performance by run time is shown in Figure 5-14, averaged across

all simulation durations and all BC models, in units of seconds of run time per hour

of simulation.

Note that the run times shown are for the entire propagation process with each

model, and are not run times for the density models alone. On average, orbit propa-

gation with the PODROMs is an impressive 70.4% faster than the empirical JB2008

and NRLM00 models, while the ML ROM is an average of 28.4% faster. The ML

ROM used in this thesis was not optimized for run time, which could make the model

faster. The run time advantage of the ROMs is most pronounced over long time

frames, when the overhead cost of model setup is negligible. For very short simula-

tions (nominal 12 hours), the ML ROM run time is approximately on par with the

empirical model run times due to the overhead of ML ROM setup. For more details

and complete run time plots, see Appendix A.

In light of the fact that the ROMs performed better on longer simulations than

shorter simulations, and that two of the PODROMs met the ±5% error in terms of

MAPE for long simulations with the SG mean BC, the fast run time makes ROMs
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a strong prospect for longer reentry simulations. Although the JB2008 retains an

advantage of 1.8-2.8% MAPE over the top-performing ROMs for long reentry simula-

tions with the SG BC, it also takes an average of 9.7 hours to run a 1-week simulation

with JB2008 using HPOP. The JB8ROM or TIEROM can run the same simulation

in about 2.5 hours.

Figure 5-14: Average HPOP run time by density model for UARS test case.

From an operational perspective, this represents the ability to run 3-4 orbit propa-

gations with a PODROM in the time it would take to run 1 propagation with JB2008

or NRLMSISE-00, with only a small tradeoff in accuracy (especially over long time

frames). The increasing congestion of LEO requires the ability to perform large

amounts of orbit propagations on a continual basis to deconflict the trajectories of

active satellites with other orbiting objects, such as debris and other dead or active

satellites. The fast performance of the ROMs, at comparable accuracy to prevailing

167



empirical models, provides greater propagation ability per unit of available run time.

This gives an opportunity to perform orbit propagation for reentry prediction or con-

junction analysis a) over longer time windows, b) more frequently, c) for a greater

number of objects, or d) some combination of the above, while still requiring less total

run time than needed to use JB2008/NRLM00 for shorter, less frequent, and fewer

analyses. Achieving this performance does require a suitable BC model, as evidenced

in the varying efficacy of ROMs depending on BC. However, the necessity for good

BC estimation is not a problem unique to ROMs. Saunders et. al. (2009) found

in a study of 4 reentries that an accurate BC was "the prime factor in accurately

predicting re-entry dates" [94].

5.1.5 A Note on Reentry Locations

An example of the sensitivity of reentry location to reentry time may be useful to

illustrate the challenge of ground impact risk assessment. Figure 5-15 shows plots

of predicted ground tracks and 100-km reentry points for the UARS test case, with

the SG mean BC. Only three density models (JB8ROM, JB2008, and ML ROM) are

shown in order to maintain plot clarity. The final few orbit ground tracks and the

100-km reentry point for each model are shown for 7-day and 12-hour predictions.

As Figure 5-15 shows, major differences in reentry location can result from relatively

minor differences in reentry time, such as the 48-minute difference between the 12-

hour predictions of JB8ROM and JB2008.

Note that the plotted reentry locations should not be taken as ground impact

locations. Surviving pieces of the UARS would travel significant distances over the

final 100 km of altitude before ground impact. Figure 5-15 is presented only to provide

context on the extreme sensitivity of reentry location to reentry time, due to the high

orbital velocities in LEO.
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Figure 5-15: Ground tracks and 100-km reentry locations (starred) predicted for
UARS.
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5.2 Fobos-Grunt

The Fobos-Grunt ballistic coefficient proved challenging to model with the SG tech-

nique, which produced a non-physical (negative) BC value at approximately 1 day

prior to reentry, followed immediately by a sharp spike in BC. This behavior may be

due to TLE error, despite the use of TLE filtering. The nonphysical BC value was not

included in the mean SG BC model. This exclusion was partially responsible for the

different trends in BC between the SG BC model and the PA BC models shortly prior

to reentry, when the SG method shows elevated BCs while the PA method predicted

a slight drop in BC, as seen in Figure 5-16. This led to disagreement between the BC

models, especially between 3 days and 12 hours prior to reentry. A plot of the BC

models is shown in Figure 5-16, along with the SG BC estimates for reference.

Figure 5-16: Fobos-Grunt ballistic coefficient models.

Due to the difficulty in estimating a BC for this test case, one additional BC model

was included for the Fobos-Grunt. BC values obtained using the SG BC estimates

generated with NRLM00 showed an especially heavy bias towards the NRLM00 for
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the Fobos-Grunt case, so SG BC estimates were also generated using JB2008 as

the density model in the AIDA propagator for BC estimation. The additional BC

permits evaluation of how much of the non-NRLM00 density models’ residual lifetime

prediction error was due to absorbed NRLM00 bias in the BC. A mean BC model

was produced with both the NRLM00-based and the JB2008-based estimates, and

reentry simulation was performed for Fobos-Grunt using both BCs.

In Fig. 5-16, the variance of the SG BC estimates, using both NRLM00 and

JB2008, was scaled down around their mean value by a factor of 3 to allow all BCs to

be plotted on the same axes. (This scaling is why the raw SG estimates with JB2008

appear to be higher than their mean value, just prior to reentry.) Note that the reason

for the JB2008-based estimates ending slightly before the NRLM00-based estimates

with the SG technique is due to altitude restrictions on the MATLAB version of the

JB2008 model used. Propagation from the final, low TLEs resulted in decay of the

orbital altitude below the allowed altitude range of the model, and BC estimation

could not continue. The interpretation of the mean BCs is the same as for UARS:

the BC for a simulation starting in the x (time) range of each horizontal line is given

by that line’s y-coordinate.

The SG BC model with NRLM00 yields the highest BCs across all simulation

durations, so this BC model is expected to give the earliest reentry times. Note

that Pardini and Anselmo observed mostly negative reentry prediction errors for

Fobos-Grunt in [75], meaning that reentry predictions using their BC estimates typ-

ically showed premature reentries, as in the UARS case. Therefore, the SG BC with

NRLM00 can also be expected to yield premature reentry predictions, because it is

even higher than the PA BC estimates.

Since Pardini and Anselmo also used NRLM00 in their BC estimation process, the

trend they observed towards underestimation of residual lifetime could indicate that

NRLM00 chronically underestimated density during the time period of the Fobos-
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Grunt reentry, resulting in artificially elevated BCs from estimation techniques using

NRLM00. To evaluate the extent to which the NRLM00 effects BCs estimated using

that density model, an SG mean BC model using JB2008 instead of NRLM00 for the

estimation process was included for the Fobos-Grunt.

As Fig. 5-16 shows, the BC estimates generated with JB2008 are significantly

lower than any of the NRLM00-generated BCs for most of the prediction windows.

Only at 1-2 days prior to reentry is the JB2008-generated BC model close to or

slightly above the PA BCs, and it remains consistently well below the SG NRLM00

mean BC. In fact, the SG BCs estimated with JB2008 are, on average, 14% lower than

those estimated with NRLM00! Clearly, the density model used in the BC estimation

process does significantly impact the BC, as Saunders et. al. (2012) observed in [95].

These differences in BC have a significant impact on reentry predictions.

5.2.1 Saunders-Gondelach Mean BC with NRLM00

Figure 5-17 shows Fobos-Grunt reentry trajectories produced by each density model

for each simulation duration using the SG mean BC. Altitudes shown are geocentric.

The SG mean BC, which is the highest BC overall, does indeed result in premature

reentry predictions for most of the atmospheric density models. The one exception is

NRLM00, which is the density model used for BC estimation. For every prediction

window, the NRLM00 predicts reentry closest to the true reentry epoch by a large

margin. As mentioned previously, these results may indicate that the higher BC is

due to NRLM00 underestimating densities during this time frame, requiring a higher

BC to fit the TLE data. Although NRLM00 is known to underestimate densities

under some conditions, such as during geomagnetic storms [21], an examination of

archived space weather data1 revealed no storms or major geomagnetic disturbances

during the week of 8-15 January, 2012. It is nonetheless probable, however, that the

1https://www.spaceweatherlive.com/en/archive.html
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Figure 5-17: Fobos-Grunt reentry trajectories predicted with the Saunders-Gondelach
mean BC using 6 different atmospheric density models and 6 different simulation
durations.

excellent performance of the NRLM00 with the SG BC was due to absorbed density

model error. This is a known feature of the SG method, and is the reason why

Saunders et. al. recommend using the same density model for propagation as for

BCs estimation when using this method [95].

Percent error and absolute error for each density model are shown in Figure 5-18

and 5-19.

As observed in Figure 5-17, the NRLM00 density model is the best-performing

model for all prediction windows, with 3% error or less up until 1 day prior to reentry

and a maximum error of 9.8% at 12 hours prior to reentry. In comparison, the

next-best individual predictions of any other models using this BC were the 7-day

predictions for JB2008, JB8ROM, and TIEROM, which were in the range of 14.2-

15.8% error. All of the PODROMs and the JB2008 experienced their worst predictions

in terms of percent error at 1 day prior to reentry, ranging from 23-24% error for the

JB2008 and TIEROM up to almost 32% for the NRLROM. The ML ROM, which

173



Figure 5-18: Percent error (%) of each model over time using the Saunders-Gondelach
mean BC.

Figure 5-19: Absolute error (hrs) of each model over time using the Saunders-
Gondelach mean BC.

was overall the worst-performing model with this BC, deteriorated to a maximum

of just over 40% absolute percent error at 12 hours prior to reentry. Both the

JB8ROM and the TIEROM tracked JB2008 behavior at a slight negative bias, with
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the TIEROM overall closer than JB8ROM to JB2008.

Although the relative performance of most of the density models in terms of per-

cent error is underwhelming with the SG BC, the absolute error does steadily decrease

with proximity to the reentry for all models except the NRLM00. Nonetheless, the

overall performance of most of the density models on Fobos-Grunt with the SG mean

BC was poor. None of the density models except NRLM00 remained within ±20%

error for all predictions, and the NRLROM and ML ROM had no predictions within

±20% error with this BC model. The NRLM00 had errors within ±10% for all pre-

dictions, and within ±5% for most predictions.

5.2.2 Pardini-Anselmo Mean BC

Figure 5-20 shows Fobos-Grunt trajectories predicted by all models with the Pardini-

Anselmo mean BC.

Figure 5-20: Fobos-Grunt reentry trajectories predicted with the Pardini-Anselmo
mean BC using 6 different atmospheric density models and 6 different simulation
durations.
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With the overall lower BCs of the PA mean BC model, most of the density models’

predictions are closer to the true reentry epoch. However, as Pardini and Anselmo

found in their own Fobos-Grunt reentry predictions [75], most of the predictions still

result in underestimation of the residual lifetime. The NRLM00 is the exception; in

every case, it overestimates the residual lifetime. These results show that NRLM00

underestimates atmospheric densities relative to the other density models.

Figure 5-21: Percent error (%) of each model over time using the Pardini-Anselmo
mean BC.

The JB2008 model has the lowest overall percent error, with a maximum relative

error of 13.6% at 12 hours prior to reentry and most errors at or below about 8%.

Most of the density models experience their maximum relative error at 12 hours prior

to reentry. The NRLM00 is the exception, and has its greatest error of 17.2% at 1 day

before reentry. The JB8ROM and TIEROM track the performance of the JB2008 at

a small bias, as in the Fobos-Grunt simulations with the SG BC. The three density

models agree to within 4% error up until 12 hours prior to reentry, at which time the

spread of the three models increases to 10% error.

The similarity between JB8ROM and TIEROM was also observed in the UARS
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Figure 5-22: Absolute error (hrs) of each model over time using the Pardini-Anselmo
mean BC.

test case. Because it was trained and initialized on JB2008, the JB8ROM is expected

to agree well with the JB2008 model. The TIEROM, although it was trained on TIE-

GCM data, likely yields similar results because it, like the JB8ROM, was initialized

with POD on a JB2008 snapshot. As UQ results showed in Section 4.3, initial ROM

states have a persistent impact on ROM results. The ML ROM has the highest error

overall, with a maximum error of 36.5%. However, the ML ROM has lower error for

longer prediction windows.

Absolute error for all models converges towards zero as the prediction window

shrinks. The NRLM00, JB2008, and TIEROM model relative error remains under

±20% for all reentry prediction windows, while the JB8ROM and NRLROM fail this

standard only in their 12-hour predictions, which have 23.1% and 24.3% absolute

percent error, respectively. None of the density models demonstrate error under

±10% for all predictions, although the JB2008 is close, with >10% error only for one

prediction window. None of the density models has less than 5% residual lifetime

error for any of the simulation durations using the PA mean BC.
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5.2.3 Pardini-Anselmo Time-Varying BC

Figure 5-23 shows the Fobos-Grunt reentry predictions for all density models using

the PA time-varying BC model.

Figure 5-23: Fobos-Grunt reentry trajectories predicted with the Pardini-Anselmo
time-varying BC using 6 different atmospheric density models and 6 different simu-
lation durations.

An initial inspection of Figure 5-23 shows that the results produced with the

PA time-varying BC are similar to those with the PA mean BC. All density models

except for the NRLM00 predict premature reentries, while the NRLM00 overestimates

residual lifetime of the Fobos-Grunt.

As in the PA mean BC case, the JB2008 has the least residual lifetime relative error

overall. For longer prediction windows ≥3 days, the JB2008 has slightly higher error

(by about 1%) than it does with the mean BC, while for shorter prediction windows

the JB2008 error is very close or slightly lower than with the mean BC. This result

closely corresponds to the relative differences in the PA mean and time-varying BCs.

Where the time-varying BC is higher than the mean, at ≥3 days prior to reentry, the
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Figure 5-24: Percent error (%) of each model over time using the Pardini-Anselmo
time-varying BC.

JB2008 performs worse with the time-varying BC than with the mean BC. Where the

two BCs are very close or the time-varying BC is lower, at <3 days prior to reentry,

the JB2008’s performance is equivalent or slightly better with the time-varying BC.

Given that the mean BC results in underestimation of residual lifetime, this is the

expected result; a lower BC results in a later predicted reentry time. The same is

true for all of the ROMs, and again, this is the expected result. When the density

models are underestimating residual lifetime, a higher BC will worsen performance by

resulting in earlier reentry predictions, while a lower BC will improve performance by

causing later reentries. For the NRLM00, which overestimates residual lifetime, the

opposite is true: higher BCs slightly improve performance, while lower BC worsens

performance.

Despite these slight differences, the performance of all density models is relatively

similar for the two PA BC models. None of the density models’ residual lifetime

prediction error changes by more than 2% for any prediction window for the PA time-

varying BC as compared to the PA mean BC. This is the reflection of the relative
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Figure 5-25: Absolute error (hrs) of each model over time using the Pardini-Anselmo
time-varying BC.

agreement between the two PA BC models, which differ by no more than ∼6% across

all prediction windows.

5.2.4 Saunders-Gondelach Mean BC with JB2008

Because of the poor performance of most density models using the SG mean BC

with NRLM00, results with the JB2008-derived SG mean BC are presented here for

comparison. Reentry trajectories using the JB2008-based BC model are shown in

Figure 5-26.

The effect of the much lower BCs estimated using the JB2008 density model is to

"shift" all reentry predictions forward in time, so that the JB2008 model is generally

in best alignment with the TLE data. This result is expected, since the SG BC

estimation process fits BCs to TLE data. The NRLM00, which predicts much lower

densities than the JB2008 over the Fobos-Grunt reentry time frame, considerably

overestimates the residual lifetime of the probe using this BC model.
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Figure 5-26: Fobos-Grunt reentry trajectories predicted with the Saunders-Gondelach
mean BC fitted with the JB2008 density model, using 6 different atmospheric density
models and 6 different simulation durations.

The residual lifetime percent error curves for all density models are similarly

shifted from those generated with the NRLM00-based SG mean BC. All of the density

models except for NRLM00 improve by an average of about 12-14% in terms of

residual lifetime relative error using this BC model, as compared to the equivalent

NRLM00-based model. As expected, the performance of the NRLM00 worsens by a

similar amount (14.8%, on average). Apart from this shift, the general performance

trends in all models in terms of percent error are the same as with the NRLM00-

based SG BC model. For example, most of the models still exhibit a tendency to

underestimate residual lifetime, and the JB2008, JB8ROM, and TIEROM remain in

very good agreement until 12 hours prior to reentry.
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Figure 5-27: Percent error (%) of each model over time using the Saunders-Gondelach
mean BC derived with the JB2008 density model.

Figure 5-28: Absolute error (hrs) of each model over time using the Saunders-
Gondelach mean BC derived with the JB2008 density model.
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5.2.5 Overall Results

Figure 5-29 shows Fobos-Grunt mean absolute percent error across all simulation

durations, with each density model-BC combination.

Figure 5-29: Average residual lifetime prediction MAPE across all simulation dura-
tions, for all density models and all BC models, for the Fobos-Grunt test case.

For all of the models except NRLM00, the PA BC models are more successful than

the NRLM00 SG BC by about 8-10% in terms of MAPE. The NRLM00 reverses this

trend, performing 9-9.7% better in terms of MAPE with the NRLM00 SG BC than

with the PA BCs. The ROMs and JB2008 perform slightly (0.6-0.7%) better with

the mean PA BC than with the time-varying BC, while the NRLM00 performs worse

by the same margin. On the other hand, all models except the NRLM00 perform

about 4% better with the SG JB2008 BC than with either PA BC. The NRLM00

exactly reverses the performance trend of all other models used across all four BC

models. This likely indicates of NRLM00 error absorption into the NRLM00-based

BC models, with the NRLM00 performing better and other density models worse on

BCs which have absorbed more NRLM00 error.

The best performance of any density-BC model combination was 3.1% MAPE
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with the NRLM00 and the NRLM00 SG BC. However, using this BC, none of the

other models achieved 10% MAPE or lower, and only two other models (JB2008 and

TIEROM) achieved within 20% MAPE. The next-best performer is, unsurprisingly,

the JB2008 paired with the JB2008-based mean BC at 4.2% MAPE. With this BC,

the JB2008 is followed by the TIEROM with 6.1% MAPE and the JB8ROM at

7.9%. With the PA BCs, the best performer is JB2008, at 9.1% and 8.4% MAPE

with the time-varying and mean BCs respectively. The next-best performer was the

TIEROM, with 11.1% and 10.4% MAPE, respectively. As in the UARS test case, the

JB8ROM gave very similar results to the TIEROM, with MAPE agreeing to within

1.8% between the two models for all BCs. The JB8ROM performance was also similar

to the NRLM00 for both of the PA BCs, on which the two density models agreed

to within 0.7% MAPE. For the Fobos-Grunt test case, the NRLROM and ML ROM

lagged in performance with all BCs.

For this test case, only the NRLM00 with the NRLM00 SG BC and the JB2008

with the JB2008 SG BC reached the ±5% standard in terms of MAPE. These two

density-BC model combinations are expected to yield good results. An inevitable

consequence of estimating BC estimation by using BC as a fit parameter is that the

BC will absorb density model error during the estimation process, and will therefore

be optimally compatible with that density model when used in propagation [95].

However, the JB8ROM and TIEROM both met the ±10% standard by a significant

margin when using the JB2008-based BC, and all models achieved ±20% MAPE

with this BC. For the Pardini-Anselmo BCs, only the JB2008 reached the ±10%

performance standard, although the TIEROM was close at 11.1% and 10.4% on the

two PA BCs. All of the density models except the ML ROM performed to within

±20% MAPE with the PA BCs, though the ML ROM was close to this standard as

well.
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Figure 5-30: Fobos-Grunt residual lifetime prediction MAPE for all density and BC
models for short prediction windows of one nominal day or less.

Figure 5-31: Fobos-Grunt residual lifetime prediction MAPE for all density and BC
models for longer prediction windows of 2-7 nominal days.

All density-BC model combinations performed better over long prediction windows

than over short prediction windows. This could indicate either larger errors in density

models, or larger BC errors, during the last day of the Fobos-Grunt’s lifetime. The
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ML ROM saw the greatest performance difference, with 11-15% lower MAPE over

long prediction windows than over short prediction windows, for all BCs. The JB2008

saw the least performance difference, with an average of 3.1% lower MAPE for long

prediction windows than for short prediction windows.

Over long prediction windows, the JB2008 and TIEROM met the ±10% MAPE

standard for both PA BCs. The JB8ROM meets this standard for the PA mean BC

and barely misses for the time-varying BC, while the NRLM00 is within ±10% for

the time-varying BC. Using the JB2008-based SG mean BC, the JB2008, JB8ROM,

and TIEROM all met the ±5% mark in terms of MAPE. This is considered very low

error for residual lifetime estimation. The NRLM00 with the SG NRLM00 BC met

this standard as well. All density-BC model combinations are within ±20% MAPE

over long time windows, except the ML ROM and NRLROM with the SG NRLM00

BC. Over short prediction windows, the JB2008, NRLM00, JB8ROM, and TIEROM

met the ±20% standard for both PA BCs. The JB2008 and all PODROMs achieve

±20% MAPE over short prediction windows with the JB2008-based BC, and the

JB2008 and TIEROM also meet the ±10% mark. None of the density-BC model

combinations achieved ±5% MAPE over short prediction windows.

Table 5.2 ranks MAPE performance for the Fobos-Grunt simulations using the

overall best-performing BC model, the SG JB2008 mean BC.

Table 5.2: Density models ranked by MAPE performance on Fobos-Grunt test case
with Pardini-Anselmo mean BC.
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Orbit propagation run time by density model for the Fobos-Grunt simulations is

shown in Figure 5-32, averaged across BC models and prediction windows.

Figure 5-32: Average HPOP run time by density model for Fobos-Grunt test case.

HPOP performance with all density models is slightly faster but comparable to run

time performance observed in the UARS test case. PODROM propagation averages

69.8% faster and the ML ROM 26.0% faster than propagation with empirical models.

None of the density-BC model combinations perform remarkably well with NRLM00-

based BCs, except for the NRLM00 with the SG BC. However, all other density mod-

els perform relatively poorly with this BC model and much better with the JB2008-

based BC model, likely indicating a high level of NRLM00 error absorption during

the BC estimation process for NRLM00-based BCs. In addition, most of the den-

sity models chronically underestimated the Fobos-Grunt’s residual lifetime for all BC

models and prediction windows. This accords with Fobos-Grunt reentry predictions
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made by Pardini and Anselmo, where 15 out of 20 reentry predictions underestimated

the residual lifetime of Fobos-Grunt [75].

Once again, with a suitable BC model, at least two ROMs achieve comparable

performance to empirical models at a drastically reduced run time, offering the po-

tential for greater orbit propagation capacity over the same time frame. Additionally,

the TIEROM and JB8ROM show excellent performance (±5% MAPE) over long

prediction windows.

5.3 Progress-M 27M

The Progress-M 27M (PM27M) test case was distinguished in this thesis by its higher

initial orbital eccentricity of 0.175, making it the most eccentric of the five test cases.

This may make estimation of its BC more challenging than for other test cases, since

TLEs tend to experience a bias in error between perigee and apogee [95]. How-

ever, this effect is most pronounced in Highly Elliptical Orbits (HEO) [22, 95], which

PM27M is not. By many standards, such as those in [109] and [22], the orbit of

PM27M is still considered low-eccentricity or near-circular, so the impact of perigee-

apogee TLE bias is unlikely to be large. A plot of BC estimates used for the PM27M

case is shown in Figure 5-33.

Once again, note that for each mean BC simulation, the BC value is held constant

throughout the entire simulation. Mean BC values in Fig. 5-33 are shown as a

function of start time. Recall that the interpretation of the mean BCs is that the

BC for a simulation starting in the x (time) range of each horizontal line is given by

that line’s value. The mean BC value is invariant throughout the simulation, but its

constant value depends on the start time of the simulation.

In this figure, the variance of the SG time-varying BC around its mean value has

again been scaled down by a factor of 3 to allow all BCs to be shown on the same plot.
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The most notable feature of this plot is the spike in BC predicted by both methods

of BC estimation between 17 and 20 hours prior to reentry. Because the mean BC

is sensitive to outliers, this spike has a notable impact on calculations of mean BC.

Using the SG BC estimation method, this spike is especially dramatic – the outlying

value jumps around 200% above the previous and next estimated BCs.

Figure 5-33: PM27M Ballistic coefficient estimates.

For reference, the SG mean BC is calculated with the outlying value replaced

by the previous highest BC value, and the result is plotted in green. Note that

the BC plotted in green was not used in any simulations, and is shown here only

for comparison. Exclusion of the outlying BC estimate results in a 6% decrease

in the SG mean BC value for a 7-day simulation, and up to a 32% decrease for

shorter simulations. Interestingly, the SG mean BC with the outlier excluded remains

relatively close to the PA mean BC, with a maximum difference of 8% and a mean

difference of 2%. Additionally, both show a terminal decrease in BC, unlike the SG

mean BC with the outlier included (in blue).

The spike in BC is not necessarily erroneous, and it is also present in the PA BC
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estimates (orange). Variations in BC during reentry are common for uncontrolled

objects [77] as the object traverses different atmospheric regimes at a changing veloc-

ity, and potentially undergoes changes in mass/area due to breakup. However, it is

possible that the SG method overestimates the BC increase in the case of PM27M.

In any event, since the mean BC method is not time-weighted, the impact of this

short-lived BC increase on PM27M reentry predictions using the SG mean BC may

be disproportionate. Time-weighting of the SG BC estimates might be a more ef-

fective technique for this test case. Based on Fig. 5-33, we can expect that reentry

simulations using the SG mean BC will predict earlier reentries than simulations run

with the PA mean BC. Furthermore, the SG mean BC with the outlying BC value

replaced, also plotted in Fig. 5-33, shows that the earlier reentry predictions are al-

most entirely due to the impact of the BC spike on the mean BC value. Without the

outlier, the SG mean BC would be similar to the PA mean BC, yielding later reentry

times.

5.3.1 Saunders-Gondelach Mean BC Results

Figure 5-34 shows the reentry trajectories predicted by each model over nominal

simulation durations ranging from 7 days to 12 hours, using the SG mean BC model.

The SG mean BC yields significant underestimations of the reentry time, with

all models uniformly forecasting premature reentries over all simulation durations.

Given the disproportionate impact of the BC spike on the SG mean BC model due

to the lack of BC estimate weighting, this result is not surprising. Percent error

and absolute error of the density models over time are shown in Figures 5-35 and 5-

36. Again, negative percent error indicates residual lifetime underestimation, where

predicted reentry time is premature with respect to the true reentry time. Altitudes

shown are geocentric.
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Figure 5-34: PM27M reentry trajectories predicted with the Saunders-Gondelach
mean BC using 6 different atmospheric density models and 6 different simulation
durations.

Two major trends visible in Fig. 5-35 are that the NRLM00 density model has

consistently the lowest error over time, and that the percent error of all models

increases with time. The first observation is an expected result for the NRLM00 SG

BC, as also observed in Section 5.2.1. The mean of BC values estimated using the

NRLM00 retain absorbed error caused by any bias in the density model.

Over longer prediction windows (nominal 7 days to 5 days prior to reentry), the

ML ROM and JB8ROM are close runners-up to the NRLMSISE-00 model, with

absolute percent errors of 4-5% at 7 days and 8-9% at 5 days, as compared to 3% and

6% error in NRLM00 for the same prediction windows. The JB2008-based ROMs

begin to diverge from NRLM00 predictions at 3 days prior to reentry, but remain

runners-up until 1 day prior to reentry, after which time the JB2008 model takes over

the second-best position after NRLM00.

The JB2008 model follows the same trend in percent error over time as NRLM00,

but with a consistent underestimation bias as compared to NRLM00. For predic-
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tion windows between 7 and 2 days, the JB2008-based PODROM and ML ROM

predictions are bounded above by NRLM00 and below by JB2008.

Figure 5-35: Percent error (%) of each model over time using the Saunders-Gondelach
mean BC.

Figure 5-36: Absolute error (hrs) of each model over time using the Saunders-
Gondelach mean BC.

Fig. 5-36 shows that over the final 2 days of the PM27M’s lifetime, absolute
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residual lifetime error of all models shrinks, but this convergence is slow. Therefore,

the relative error of the reentry predictions for most of the models continues to grow

during this time, reaching around 35-45% (underestimation) for most of the models

12 hours prior to reentry. The NRLM00 retains an almost 9% advantage over the

second-best model at 12 hours prior to reentry. The one exception to the overall

growth in absolute percent is the TIEROM, which experiences a 2.5% reduction in

relative error between its final two reentry predictions. The final performance of the

TIEROM at a nominal 12 hours prior to reentry is within 1% of the JB2008, which is

the second-best performer at 12 hours, after the NRLM00. Although the ML ROM

performed well over longer prediction windows, its performance quickly drops over

short windows to a percent error of almost 46% at 12 hours prior to reentry.

The performance of most of the models on the PM27M test case using the SG

mean BC technique is disappointing. Maximum residual lifetime percent errors at 12

hours prior to reentry reach nearly 50%, much worse than the target performance of

20% or better for all models and simulation durations. However, the poor performance

of all models, including the NRLM00 (with which the BCs were estimated) is very

possibly a reflection of the disproportionate impact of the 200% increase in estimated

BC occurring during the previously-discussed BC spike. Taking the mean BC over

the prediction window with this value included yields a 7% BC increase over a 7-day

prediction window, and the impact becomes increasingly pronounced as the prediction

window narrows.

5.3.2 Pardini-Anselmo Mean BC

Figure 5-37 shows reentry trajectories predicted by all density models for PM27M

using the PA mean BC model.
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Figure 5-37: PM27M reentry trajectories predicted with the Pardini-Anselmo mean
BC using 6 different atmospheric density models and 6 different simulation durations.

It is immediately apparent that the PA mean BC model is more effective at mod-

eling the BC of PM27M than the SG BC model. The lower mean BC is due both

to the smaller spike in BC predicted by Pardini and Anselmo’s CDFIT algorithm as

compared to the BC spike predicted by the SG mean BC method, and also to the

overall lower BCs estimated with the PA method.

The two empirical models, JB2008 and NRLM00, show a very similar trend in

percent error over time, with the NRLM00 biased 5-13% higher than JB2008. In fact,

this trend is quite strong – the Pearson correlation coefficient (a statistical measure

of correlation between two variables, with 1 being perfect correlation) for the relative

error of these two models is 0.85. From 7 to 2 days prior to reentry, the JB2008-based

ROMs are bounded between the NRLM00 and JB2008 models, resulting in a lower

mean percent error than either empirical model over this time frame. Between 7 and

2 days prior to reentry, the JB2008 and NRLM00 models have a MAPE of 5.6% and

3%, respectively, while the JB8ROM and ML ROM have lower MAPE of 2.8% and
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Figure 5-38: Percent error (%) of each model over time using the Pardini-Anselmo
mean BC.

Figure 5-39: Absolute error (hrs) of each model over time using the Pardini-Anselmo
mean BC.

2.4% over the same period. The tendency of the JB2008-based ROMs to be bounded

by JB2008 above and NRLM00 below over the 2-7 day prediction windows was also

observed when using the SG mean BC model.
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All of the models predict a later reentry time 12 hours before reentry than they did

at 1 day prior to reentry, reflecting the terminal drop in BC for this model (see Fig.

5-33). This feature is especially pronounced in the case of the TIEROM, which at 12

hours predicted reentry 5.8 hours later than it did at 24 hours prior to reentry. This

change brought the TIEROM’s final prediction into close agreement (∼22 minutes /

2% residual lifetime error) with the final prediction of the JB2008 model. With the

exception of the NRLMSISE-00 model, all models made their worst predictions in

terms of relative error at 1 day prior to reentry. Absolute error (in hours) did not

smoothly decrease for shorter prediction windows; only half of the models (JB2008,

TIEROM, and NRLROM) had their lowest absolute error at 12 hours prior to reentry.

Using the PA mean BC, all density models’ reentry predictions stay within ±20%

error for all prediction windows. Only the JB2008 model meets the “good perfor-

mance” standard of ±10% across all prediction windows. However, for longer pre-

diction windows of 2-7 days, the JB8ROM is the only model to consistently achieve

excellent performance of ±5% error for all predictions (the ML ROM is also very

close, but misses out with an error of 5.8% at 2 nominal days prior to reentry). For

the same period, the JB2008 and NRLM00 models have maximum absolute percent

errors of 7.8% and 6.4%, respectively, and also have higher MAPE, as previously

discussed.

5.3.3 Pardini-Anselmo Time-Varying BC

Figure 5-40 shows the reentry trajectories predicted by each model over nominal

simulation durations ranging from 7 days to 12 hours, using the PA time-varying BC

model.

Reentry predictions using the PA time-varying BC model appear reasonably close

to those made with the PA mean BC. The main difference is the generally later reentry

times for longer prediction windows, reflecting the diminished influence of the BC
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Figure 5-40: PM27M reentry trajectories predicted with the Pardini-Anselmo time-
varying BC using 6 different atmospheric density models and 6 different simulation
durations.

spike in the PA time-varying versus the PA mean BC.

Error trends with the PA time-varying BC are also very similar to those observed

with the PA mean BC.

The JB2008 model has the lowest relative error overall, although the JB8ROM and

ML ROM rival the performance of the JB2008 to within about ±2% until the final 24

hours prior to reentry. The relative performance of all models except the NRLM00 is

worst at 24 hours prior to reentry, with all models excluding the NRLM00 recovering

slightly at 12 hours before reentry.

The TIEROM shows an especially pronounced performance improvement from 24

to 12 hours prior to reentry, with a 15% decrease in its relative error over this time

window. The improvement is so significant that at the nominal 12-hour mark, the

TIEROM is the second-best model, after the JB2008. This is consistent with the
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Figure 5-41: Percent error (%) of each model over time using the Pardini-Anselmo
time-varying BC.

Figure 5-42: Absolute error (hrs) of each model over time using the Pardini-Anselmo
time-varying BC.

pattern of its behavior in both of the other BC cases, where the TIEROM demon-

strated worse performance until shortly before reentry, at which point its relative

error dropped suddenly and the TIEROM yielded results very similar to those of
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the JB2008 model. One possible explanation for this behavior is the influence of

the JB2008-based initial ROM state, which may be stronger over short prediction

windows than long windows; however, this is not confirmed.

A comparison with the JB8ROM, which is also initialized with JB2008, shows

that it, like the TIEROM, echoes JB2008 performance for shorter simulations, albeit

at a diminished intensity. Both TIEROM and JB8ROM show their highest error at

the 24-hour mark but improve at the 12-hour mark, like the JB2008 model. The

JB8ROM is expected to show similar behavior to the JB20088, since it is trained

and initialized on that model. However, it is uncertain why the impact of JB2008

initialization on the TIEROM appears so pronounced over short simulation durations

for the Progress-M 27M particularly.

In terms of absolute error, most of the models converge towards the true reentry

epoch as the simulation start time approaches the reentry time. Exceptions include

the JB8ROM and ML ROM, which experience their highest absolute error of about

-4 and -6 hours (underestimating the true residual lifetime), respectively, at 24 hours

prior to reentry. Additionally, at 12 hours prior to reentry, the absolute error of the

NRLM00 increases slightly over its 24-hour absolute error.

The overall accuracy of the six models is quite strong over long prediction win-

dows, with all models maintaining ±9% or lower residual lifetime prediction error for

nominal 7-day, 5-day, and 3-day prediction windows. Performance begins to diverge

at 2 nominal days prior to reentry, when the absolute percent error of the TIEROM

and NRLROM increases to 12-13%. Over the last 24 hours, model performance is

increasingly inconsistent. However, all models stay within the benchmark of ±20% er-

ror for all prediction windows using the PA time-varying BC model. Only the JB2008

meets the ±10% benchmark for all prediction windows, though both JB2008-based

ROMs maintain sub-5% error between 7 and 2 days prior to reentry, as with the PA

mean BC.
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5.3.4 Overall Results

The mean absolute percent error for all density and ballistic coefficient models for

the Progress-M 27M case are shown in Figure 5-43.

Figure 5-43: Mean absolute percent error (MAPE) across all prediction window
lengths, for all models and all BCs.

As in previous test cases, a single BC model emerges as most successful for the

majority of the density models, with NRLM00 as an exception. In this case, the

most successful BC model is the PA time-varying BC, while the SG BC results in the

poorest performance for all density models. Another difference in this test case is that

the ML ROM, like the NRLM00, has lower MAPE with the PA mean BC, though

only by a tiny fraction of a percent. As with previous cases, NRLM00 exhibits an

opposite performance trend to other density models across the different BCs, tending

to do worse on BC models which improve results for other density models.

The best performance across all density-BC model combinations came from the

JB2008, with 2.8% residual lifetime MAPE across all prediction windows. This per-

formance was achieved with the time-varying BC. For the same BC, the next-best

model was JB8ROM with 4.4% MAPE, followed by NRLM00 at 6.6% and ML ROM
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at 7.8%. Once again, the NRLROM was the only model which did not achieve the

±10% “good performance” benchmark in terms of MAPE averaged across all simula-

tion durations, though for the time-varying BC it was very close at 10.5% MAPE. All

models met the ±20% standard by a wide margin for both of the PA BCs, but only

the NRLM00 had <20% MAPE with the SG BC. The JB8ROM and JB2008 met the

<5% “excellent performance” standard with the time-varying BC in terms of MAPE,

and missed out by only 0.1-0.2% for the PA mean BC. The NRLM00 also had <5%

MAPE for the PA mean BC.

Unlike in the UARS case, the TIEROM and JB8ROM were not in close agreement

in terms of MAPE across all prediction windows. Instead, the TIEROM behaved very

similarly to the NRLROM, with MAPE agreement to within 1.1% for all BC models.

The JB8ROM, on the other hand, showed very similar MAPE performance to the

JB2008 across all BC models, agreeing to within 1.6% for the time-varying BC and

within 0.7% on the mean BC models.

Next, results were split into MAPE over long and short prediction windows.

Figure 5-44: PM27M residual lifetime prediction MAPE for all density and BC models
for short prediction windows of one nominal day or less.
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Figure 5-45: PM27M residual lifetime prediction MAPE for all density and BC models
for longer prediction windows of 2-7 nominal days.

Although the two empirical models were the top performers in terms of short-term

reentry prediction MAPE for all BCs, density model performance was very different

over long prediction windows. With the exception of the TIEROM paired with the

PA mean BC, every single ROM-BC combination performed better in terms of MAPE

over long prediction windows than over short prediction windows. The reduction in

MAPE ranged from 0.6% (TIEROM with time-varying BC) to 29.3% (ML ROM

with Saunders-Gondelach BC). Most ROM-BC combinations had lower MAPE by

>5% over long prediction windows. The ML ROM had an astonishing 20% average

reduction in MAPE for long predictions as compared to short prediction windows,

across all BCs. In fact, the ROM advantage for long prediction windows brought the

JB8ROM into the lead for the time-varying BC, and the ML ROM into the lead for

the PA mean BC for longer prediction windows.

Furthermore, over long prediction windows, the JB8ROM outperformed the JB2008

in terms of MAPE for all BCs and the NRLM00 for two out of three BCs, while the

ML ROM outperformed both the JB2008 and NRLM00 for two out of three BCs.
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Even for the time-varying BC, where JB2008 out-performed the ML ROM, the dif-

ference between the two density models’ MAPE was only 0.4%. Over long prediction

windows, the JB8ROM and ML ROM were the only two density models to meet the

±5% “excellent performance” standard in terms of MAPE for multiple BC models;

the JB2008 and NRLM00 each achieved this standard for only one BC model.

Interestingly, the TIEROM-JB8ROM similarity observed in the UARS test case

re-emerges in short-term Progress-M 27M reentry predictions, with these two models

agreeing in MAPE to within 0.4% for all BCs. For long-term predictions, however,

the TIEROM behaved like the NRLROM, with MAPE agreement to within 0.6%

across all BCs.

Table 5.3 ranks models by MAPE for the overall best BC model, the PA time-

varying BC.

Table 5.3: Density models ranked by MAPE performance on PM27M test case with
Pardini-Anselmo time-varying BC.

HPOP run time per hour of simulation time, averaged across all BCs and all

prediction windows, is shown in Figure 5-46.

Once again, the PODROMs dominate in terms of computational speed, averaging

70.1% faster than the empirical models, while the ML ROM averages 28.6% faster.

The advantage of ROMs for longer simulations is even more striking in this test case,

where the JB8ROM achieves both the lowest MAPE on the leading BC model, and

the fastest run time.
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Figure 5-46: Average HPOP run time by density model for PM27M test case.

5.3.5 A Final Note on Reentry Locations

Figure 5-47 gives a final example of the sensitivity of reentry location to reentry time.

Ground tracks and 100-km locations for the final few orbits of Progress-M 27M are

shown for nominal 7-day and 12-hour simulations with JB8ROM, JB2008, and ML

ROM. As Figure 5-47 demonstrates, reentry location is both highly sensitive to, and

nonlinearly related to, reentry time. A reentry time which is incorrect by an integer

multiple of the orbital period will provide a better reentry location estimate than a

reentry time estimate which is off by only a fraction of an orbital period. This is

clearly demonstrated in the bottom plot of Fig. 5-47. The JB8ROM reentry time is

only about 60 minutes before the JB2008 prediction, but the two models’ 100-km-

altitude location predictions are over 10,000 km apart. On the other hand, the
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Figure 5-47: Ground tracks and 100-km reentry locations (starred) predicted for
PM27M with Pardini-Anselmo time-varying BC.

ML ROM predicts reentry 3 hours (about 2 orbital periods) before the JB2008, and

its 100-km location prediction is much closer to JB2008 due to the periodic nature of

orbital motion.
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For reference, the JSpOC reentry assessment of the Progress-M 27M found that

its 80-km reentry point was 350-1300 km off the coast of south Chile [77], which is

in good agreement with the 100-km reentry location estimated by the JB2008 in Fig.

5-47.

5.4 Summary

This chapter presented residual lifetime prediction estimates with four ROMs and

two empirical density models for the UARS, Fobos-Grunt, and Progress-M 27M reen-

tries. Reentry simulations were run for all density models and 3-4 BC models, over

prediction windows ranging from a nominal week to 12 hours prior to reentry.

One noteworthy observation from these results is the importance of an effective

BC model. This was also studied in Chapter 4, where BC uncertainty was found to

be the primary contributor to reentry time uncertainty among the three uncertainty

sources examined. In the current chapter, no single BC model was found to be the

most effective for all test cases. Further study of BC modeling is out of the scope

of this paper, but the need for improved BC estimates is a clear conclusion of the

preceding results.

In most cases, JB2008 provided the most accurate reentry time predictions. ROMs

were not found to generally outperform both of the empirical models, but the JB8ROM

and TIEROM in particular showed comparable performance to the empirical models

(within ∼1-4% overall MAPE in most cases) when paired with the best-performing

BC models. This accords with expectations for ROMs trained on empirical models.

Without data assimilation, each ROM aims to replicate the density model it was

trained on, at a small relative error due to truncation of spatial modes.

The only model which could reasonably be expected to perform better than the

empirical models was the TIEROM, which was trained on a physics-based model. In
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two out of the three test cases, TIEROM did show excellent performance. In terms of

MAPE for these two cases (UARS and Fobos-Grunt), TIEROM beat out all models

except for the JB2008 in simulations using the overall best BC model. However, the

TIEROM never outperformed the JB2008 in terms of MAPE. Chapter 4 provides

an explanation for this result. The UQ analysis in Section 4.3 amply demonstrates

the strong persistent impact of the initial ROM state on ROM performance. Due to

the prohibitive computational expense of running TIE-GCM to generate snapshots

for ROM state initialization, the TIEROM was initialized on JB2008. The lasting

impact of the JB2008-generated initial ROM state may explain why TIEROM did

not outperform JB2008, and also helps explain the similarities observed between the

JB2008, JB8ROM, and TIEROM throughout the rest of this chapter.

Like the TIEROM, the ML ROM showed good performance in two of three test

cases. In the PM27M test case, the ML ROM even outperformed all other models

over long prediction windows for the PA mean BC, with a very low 2.4% MAPE.

However, its performance was quite inconsistent. The ML ROM typically had >10%

higher MAPE over short prediction windows as compared to long windows, and on

the Fobos-Grunt test case, the ML ROM achieved <10% error on only one individual

prediction on one BC. In fact, the ML ROM produced both some of the lowest and the

highest individual errors observed among all density models throughout this thesis.

Further work is needed to determine why the ML ROM’s behavior was so inconsistent.

The JB8ROM was a consistently strong performer in all three test cases. Al-

though the TIEROM slightly outperformed the JB8ROM on 2 out of 3 test cases, its

performance was worse for the Progress-M 27M. The JB8ROM also showed the best

individual performance of any ROM, when it surpassed all density other models with

an impressive 1.9% MAPE over long reentry prediction windows on the Progress-M

27M test case, using the PA time-varying BC.

The NRLROM was the only ROM to show relatively poor performance through-
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out, though it was still able to achieve <10% MAPE for at least one BC on long

prediction windows for two of three test cases. An unexpected finding for the NRL-

ROM is that it did not tend to agree well with the NRLM00 model. Further research

is needed to determine the cause of this unexpected behavior, but it should be noted

that the NRLROM presented here deviated from the original DESTO formulation by

using a NRLM00 snapshot for ROM state initialization, as opposed to the JB2008

snapshot used in the original version. This change may have worsened the perfor-

mance of the NRLROM.

Figure 5-48 displays the percent error distributions for each density model across

all BCs, prediction windows, and test cases. Mean percent error 𝜇, standard deviation

of percent error 𝜎, and mean absolute percent error (MAPE) are displayed on each

plot. For reference, the desired qualities for a density model percent error distribution

are 1) low 𝜇, indicating no significant bias in reentry predictions (accuracy); 2) low

Figure 5-48: Percent error distributions by density model, for all BCs, all prediction
windows, and all test cases.
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𝜎, indicating that most predictions are consistent with each other (precision); and 3)

low MAPE, indicating generally low error. Normal distributions with the same 𝜇 and

𝜎 are overlaid for reference. Note that because all BC models are included in this

plot, even those which were very ineffective on some test cases, errors will be appear

generally high in Fig. 5-48.

NRLM00 displayed the least overall bias. However, this is an expected result, given

that NRLM00 was the density model used in BC estimation for all but one BC model

on one test case (Fobos-Grunt with the JB2008-based SG BC). The JB8ROM and

TIEROM had somewhat more bias (2.7-3.7%) than the JB2008, while the NRLROM

and ML ROM had significant bias. All the PODROMs and JB2008 had similar

standard deviations of 8-9%, while the NRLM00 and ML ROM had higher variance.

The finding of higher standard deviation of error for the NRLM00 agrees with with

the results of Marcos et. al. (2006), who found a relatively high data-to-model error

standard deviation for the NRLM00 [55]. The ML ROM has the greatest variance,

resulting from its inconsistent predictions.

With the exception of the NRLM00, all of the density model error distributions are

centered below zero, showing a general tendency to underestimate residual lifetime

across all test cases, BCs, and prediction windows. The explanation for this may be,

again, the use of NRLM00 in BC estimation. The NRLM00 shows a tendency to

overestimate residual lifetime, meaning that this model predicts the lowest densities.

When NRLM00 is used for BC estimation, the lower densities of the NRLM00 result

in higher BCs to compensate for the low densities when fitting BCs to observed data.

The higher BCs then induce earlier reentries when paired with other density models,

causing the underestimation bias. Except for the ML ROM, all of the density models

produced left-tailed distributions. Large errors tended to be underestimations rather

than overestimations, relative to each model’s mean percent error.

Although the ROMs did not generally outperform both empirical models in terms

209



of reentry time prediction accuracy, they dominated in terms of run time performance.

HPOP orbit propagation with PODROMs averaged more than 70% faster than em-

pirical models. The ML ROM was slower than PODROMs, but was still at least

26-28% faster than empirical models when used in HPOP. Additionally, optimizing

the ML ROM for run time could improve its speed. Consistent with the results of

Arenillas et. al. (2020), NRLM00 was found to be faster on average than JB2008 [6],

but still much slower than the ROMs.

An interesting and potentially useful feature of ROM performance was lower rel-

ative error over prediction windows >2 days in length. In almost every single case,

ROMs showed notably lower MAPE for long than for short prediction windows. Over

long prediction windows, the JB8ROM never had more than 2% higher MAPE than

JB2008 for the best BC models, and never more than 4% higher MAPE than JB2008

for any BC model. In fact, for one test case (the PM27M), the JB8ROM outperformed

the JB2008 in terms of MAPE for all BC models over longer prediction windows. As

previously noted, the ML ROM tended to do much better for long than for short pre-

diction windows. The TIEROM also achieved its best performance of 2.7% MAPE

on long prediction windows for the UARS case with the SG BC.

Significant work remains in the area of orbit propagation for reentry prediction

with ROMs. However, the results presented in this chapter validate the ability of

ROMs, even without data assimilation, to provide reentry prediction performance

relatively comparable to that of empirical models, at a drastically reduced run time.
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Chapter 6

Conclusions

6.1 Key Findings and Importance

Reentry prediction is an increasingly important area for the application of atmo-

spheric density models, as the rising population of objects in LEO leads to a greater

risk of casualties and/or damage from debris surviving for RSO reentries. However,

atmospheric density models contain large uncertainties, making accurate reentry pre-

diction difficult, and can moreover be computationally expensive to run. This thesis

has presented an extensive application of reduced-order atmospheric density model-

ing to the problem of reentry prediction for three uncontrolled satellite test cases,

along with UQ for three key sources of reentry prediction uncertainty. The primary

conclusion of the results presented herein is that, even without data assimilation,

ROMs are able to provide reentry prediction accuracy within a few percent MAPE of

JB2008 and NRLMSISE-00, with run times averaging up to 70% less than the empir-

ical density models. The dramatically lower computational/memory cost of ROMs

is one of their key advantages. The relative orbit propagation run time advantage of

the ROMs is shown in Figure 6-1.

Three out of the four ROMs tested (JB8ROM, TIEROM, and ML ROM) provided
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residual lifetime MAPE of <10% on at least two out of three test cases, using the

leading BC models for each case. According to the standards established in Section 2.1

based on a review of reentry prediction accuracy, this is considered good performance.

The JB8ROM and TIEROM showed good performance on all three using at least one

BC model, and the JB8ROM further achieved <8% MAPE with at least one BC on

all test cases, and excellent performance of ∼5% MAPE on two of the three test cases.

ML ROM achieved excellent performance at times, but was unexpectedly inconsistent

across prediction windows and test cases. Also unexpectedly, the NRLROM did not

agree well with the NRLM00. These unexpected ML ROM and NRLROM results

may warrant further inquiry in future work. Overall, the NRLROM was the least

accurate ROM.

Figure 6-1: Run time per hour of simulation for all density models, as a percent of
slowest model’s run time per simulation hour. Averaged across all BCs, prediction
windows, and test cases.

The ballistic coefficient was found in both Chapter 4 and Chapter 5 to be a

key factor in the success of reentry predictions, but none of the BC models used in

Chapter 5 was consistently effective across all test cases. In addition, the density

model absorbed into the BC during estimation was found to significantly influence
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the reentry prediction results. Reentry prediction performance was generally best

when orbit propagation was conducted with the same density model used for BC

estimation, consistent with recommendations by Saunders et. al. (2012) [95]. In the

UQ analysis of Chapter 4, underestimation of the BC resulted in greater reentry time

errors than overestimation. Also in Chapter 4, initial position error was found to

influence reentry predictions much less than BC.

Across all test cases and all BCs, all density models except the NRLM00 showed

a tendency to underestimate the residual lifetime. The underestimation bias was

likely a result of using NRLM00 as the density model in BC estimation for most

of the BC models, which lead to higher BCs to compensate for the lower densities

estimated by NRLM00. Consistent with previous findings [55], NRLM00 was found

to have a relatively high standard deviation of error. JB2008 and PODROMs had

lower standard deviations. The inconsistent predictions of the ML ROM caused it to

have the largest percent-error standard deviation of all the density models used.

When initialized on true SW inputs, ROMs were found to be effectively insensitive

to noise in the SW inputs used for updating ROM states with DMDc. This quality

could be very useful for density forecasting, as it shows that variance in SW predic-

tion error would have little impact on ROM orbit propagation results, as long as the

ROM was initialized on true SW inputs. In this regard, the ROMs were more suc-

cessful than the JB2008 model, which was about 10 times as sensitive as the ROMs

to SW input noise. SW UQ analysis also revealed the heavy impact of the initial

ROM state on overall ROM performance. This finding was further illustrated by the

relatively similar performance of the PODROMs which were initialized on JB2008

data (TIEROM and JB8ROM).

ROMs were found to have lower relative error for prediction windows of ≥2 days

than on shorter prediction windows. This finding is very complementary to 1) the ex-

tremely fast run time of ROMs and 2) their insensitivity to SW noise when initialized
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on true SW data. In combination, these results make ROMs a strong prospect for

longer-duration reentry predictions. Over long prediction windows using predicted

SW inputs, ROMs may tend to show good results and less SW noise sensitivity rela-

tive to empirical models, and will also run much faster.

Table 6.1 summarizes the advantages and drawbacks of ROMs for orbit propaga-

tion and reentry prediction.

Table 6.1: Pros and cons of ROM density models for orbit propagation.

* See [33, 61, 34]. ** See [32, 30].

The greatest advantage of the ROM density models presented in this thesis is their

low computational demand, so this work will likely be most important for applications

with very limited memory and/or computational resources. ROMs are much faster

to run than empirical models, and ROM order reduction using POD stores density

data in a very compressed form, even when the overhead of storing U𝑟 and x̄ for

POD decoding is considered. Although the order reduction (POD or autoencoder)

and propagation (DMDc or NN) steps of ROMs have been used together throughout

this thesis, it is important to note that these processes can be separated. POD could

be performed after the fact to store density forecasts, without significant truncation

error for a reasonable 𝑟-value. For example, 48-hour WAM-IPE density forecasts1

1https://www.swpc.noaa.gov/products/wam-ipe
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could be encoded into a very low-memory format with POD. This could be useful for

low-memory/low-resource applications, such as satellite onboard operations.

Based on the findings in this thesis, the author recommends consideration of

ROM density models, especially the JB8ROM and TIEROM, for orbit propagation

and reentry predictions in the following scenarios:

1. Longer-term predictions of 2-7 days, especially when SW index values may

contain noise.

2. Applications with limited memory/computational resources. Users may con-

sider applying only the POD encoding technique to their own density predic-

tions for low-memory storage.

3. Applications where frequent, quick-to-run density estimates are preferred over

infrequent but slightly more accurate estimates.

6.2 Strengths and Weaknesses of the Research

The work in this thesis improved upon the previous work of [10] in several key ways.

First, test cases were selected for data availability. All three test cases used had

associated IADC reentry campaigns and published reentry studies [75, 77]. For each

test case, JSpOC published true reentry epochs with ±1 minute uncertainty [75, 77].

Dimensions and masses of the test cases were also well-known.

Secondly, this work conducted reentry predictions over a series of 6 prediction

windows, beginning at 7 days prior to reentry and moving progressively closer to

reentry, up to 12 hours prior. In contrast, previous work included only nominal 5-

day predictions [10]. The inclusion of multiple prediction windows is much more

representative of operational reentry campaigns, during which frequent predictions

are made based on updated initial states and ballistic coefficients, as seen in [75, 77].
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The work in this thesis also added several BC models for reentry prediction.

Although no single BC model was found to be consistently most effective across all

test cases, this measure did serve to highlight 1) the importance of the BC model in

reentry prediction and 2) the significance of the density model used in BC estimation.

Another major advancement of this thesis was the inclusion of run time assess-

ments for orbit propagation with ROMs as compared to empirical density models.

The quantified run time advantage of ROMs over empirical models in orbit propaga-

tion is a new finding.

Finally, this thesis added UQ for reentry prediction uncertainty sources. This ad-

dition allowed for a comparison of the effects of BC, initial position, and SW uncer-

tainties on reentry time predictions for two ROMs and JB2008. SW MC simulations

revealed the relative insensitivity of ROM orbit propagation to SW noise, which has

not been studied in previous work. SW UQ also revealed the persistent impact of the

initial ROM state on ROM orbit propagation results.

Despite these major advancements, the author recognizes several areas for im-

provement in the research process. First, a sample set of only three test cases (chosen

due to time and computational constraints) is quite low. The test cases used did

allow for good data availability, but did not reflect 1) a significant range of vary-

ing solar/geomagnetic conditions; 2) variation in orbit type (such as the inclusion of

highly-elliptical orbits); or 3) significant variation of individual object parameters (all

test cases were large, uncontrolled objects, with BCs ∼10−2 or 10−3). The exclusion

of prediction windows >7 days represents another restriction on the scope of this

work. Reentry prediction campaigns often start more than 7 days prior to reentry,

so the longer prediction windows excluded from this study are certainly relevant for

judging reentry prediction performance. Again, this limitation was due to constraints

on time and computational resources.

Another limitation of the work in this thesis was the lack of information on un-
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certainty in predicted SW indices. The assumption of a zero-centered Gaussian noise

model, with no correlation between error in the various SW indices, may not well

characterize the uncertainty distribution actually present in SW index predictions.

Therefore, the finding of ROM insensitivity to SW noise is restricted in scope by

the simplistic uncertainty model used. The areas here identified as drawbacks of the

research methodology in this thesis represent areas of improvement for future work.

6.3 Directions for Future Research

Besides the areas for improvement discussed above, a number of directions are avail-

able for future research on ROM application in orbital propagation for reentry pre-

diction and other applications. Figure 6-2 shows recommended areas for future work,

organized by an intended goal.

First, given the significant impact of the ballistic coefficient on reentry prediction

performance, another avenue for further research is to generate Saunders-Gondelach

BCs using each density model, and to pair each BC with its respective density model

for reentry predictions, in accordance with the recommendation of Saunders et. al.

(2012) [95]. This would circumvent the problem of absorbed NRLM00 density error

in the BC causing increased error for non-NRLM00 density models. The expected

outcome of pairing each density model with its respective BC for reentry prediction

is improved overall performance for most or all of the density models at all prediction

windows.

Another opportunity for future work, which would advance ROMs further towards

operational application, is to remove the a posteriori availability of data assumed in

this thesis. TLEs and space weather data are not available ahead of time for BC

estimation and density model input, respectively. To create a realistic predictive

scenario, BCs would be estimated using only TLEs prior to the start time of the sim-
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ulation. Ideally, this experimentation would be performed using the aforementioned

SG BC estimates paired with their respective density models. Additionally, true space

weather inputs would be replaced with predicted index values available prior to the

reentry simulation. These replacements would introduce additional uncertainty, in

line with the uncertainty realistically expected in an operational environment. Using

ROMs in a truly predictive sense, without a posteriori data availability, would better

exemplify ROM performance in practice.

Figure 6-2: Recommended directions for future work, based on the goal of interest.

To use ROMs to greater advantage, further work should be conducted on data-

assimilating ROMs for use in orbit propagation. Assimilation of data using a Kalman

filter allows ROMs to make real-time density corrections based on observations from

reference objects, which reveal current drag conditions. Data assimilation was found

to make ROMs more accurate than empirical models [34]. Additionally, ROM density
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uncertainty can be propagated with the density estimate using this technique, as

described in [32], which can help define accurate uncertainty windows for propagated

RSOs. In practice, applying this technique to reentry prediction might be challenging

due to lack of reference objects at comparable altitudes. Additionally, the effect of

data assimilation on run time (a key advantage of ROMs) is unknown. However,

both conjunction assessment and reentry prediction using data-assimilating ROMs

are worthwhile areas of investigation.

Other areas of future interest include training a POD and/or ML ROM on the

NOAA WAM-IPE density model for reentry prediction; further study of the incon-

sistency of ML ROM performance; adding physics-based density models, such as

TIE-GCM or WAM-IPE to this reentry prediction study; including a ML ROM with

neural network ROM state propagation instead of DMDc, to fully realize the ben-

efits of density field non-linearity captured by the ML autoencoder; studying ROM

performance on reentries during both high and low solar conditions and other inves-

tigations of SW impact on ROMs; and continuation of the work in [30, 32] by further

application of ROMs to conjunction analysis.

Code Availability

Code and results data for this thesis are available on Github. Please contact Nicolette

Clark at nlclark2021@gmail.com for access.
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Appendix A

Appendix A

A.1 UARS Run Time Plots

Figure A-1: Run time performance of all density models on UARS test case for all
simulation durations for the Saunders-Gondelach mean BC simulation set.
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Figure A-2: Run time performance of all density models on UARS test case for all
simulation durations for the Pardini-Anselmo mean BC simulation set.

Figure A-3: Run time performance of all density models on UARS test case for all
simulation durations for the Pardini-Anselmo time-varying BC simulation set.
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Figure A-4: Run time performance of all density models on UARS test case for all
simulation durations, averaged across all BC models.

A.2 Fobos-Grunt Run Time Plots

Figure A-5: Run time performance of all density models on Fobos-Grunt test case for
all simulation durations for the Saunders-Gondelach mean BC simulation set.
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Figure A-6: Run time performance of all density models on Fobos-Grunt test case for
all simulation durations for the Pardini-Anselmo mean BC simulation set.

Figure A-7: Run time performance of all density models on Fobos-Grunt test case for
all simulation durations for the Pardini-Anselmo time-varying BC simulation set.
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Figure A-8: Run time performance of all density models on Fobos-Grunt test case for
all simulation durations for the simulation set using Saunders-Gondelach mean BC
derived with the JB2008 density model.

Figure A-9: Run time performance of all density models on Fobos-Grunt test case for
all simulation durations, averaged across all BC models.
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A.3 Progress-M 27M Run Time Plots

Figure A-10: Run time performance of all density models on Progress-M 27M test
case for all simulation durations for the Saunders-Gondelach mean BC simulation set.

Figure A-11: Run time performance of all density models on Progress-M 27M test
case for all simulation durations for the Pardini-Anselmo mean BC simulation set.
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Figure A-12: Run time performance of all density models on Progress-M 27M test
case for all simulation durations for the Pardini-Anselmo time-varying BC simulation
set.

Figure A-13: Run time performance of all density models on Progress-M 27M test
case for all simulation durations, averaged across all BC models.
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