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Abstract

The speed a hitter swings a baseball bat has become more and more popular among
the baseball analytics community. Determining a player’s bat speed not only can
tell you how fast a player can swing but also would allow you to measure how hard
player’s can hit the baseball. Bat speed is very difficult to measure without attaching
any tool to the bat as the task takes multiple camera angles from precise distances
from the hitter. This thesis presents a method to develop a tool that can estimate
the bat speed of a swing captured by a single camera as video. This thesis also shows
the success a regression model can have on a synthetic dataset of swings as proof of
concept.
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Chapter 1

Introduction

1.1 Baseball

Baseball is a game where a pitcher throws a ball, a baseball, towards a batter who

is trying to hit that ball so they can get on base and give their team a chance at

scoring runs, which is an event where a runner for the team hitting, advances to all

four bases. Whoever scores the most runs at the end of the game wins the game.

Major League Baseball is widely considered the best baseball league in the world.

Hitting the ball to a place where the batter can safely reach a base is a very hard

thing to do in the MLB. To add more context, batting average is expressed as a ratio

of times that a batter gets a hit per official times at bat. The highest batting average

in the MLB during the 2022 season was 0.326 [1], meaning that out of 1,000 official

at bats, this batter got a hit 326 times, a little under a third of the time.

A batter makes a decision to swing at a pitch once they recognize that the pitch

will be called a strike, which means the ball will end up crossing the plate in the

strike zone, which can be generalized as over the plate (if looking down at home

plate) and between the batter’s belly button and knees. The bat’s starting position

is normally about straight up and then the batter swings through the plate, trying

to make contact with the ball, and then the bat finishes behind the batter’s body.
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1.2 Bat Speed

As its name suggests, bat speed is a way to measure the speed of the bat during the

swing. Bat speed is defined as the maximum speed of the sweet spot of the bat prior

to contact. The sweet spot can be defined as the point 6 inches from the end of the

bat in the direction of the knob, or the side where the batter holds the bat.

The exit velocity statistic, which is the speed of the ball as it leaves the bat, has

been used in the past five years as a way to measure a batter’s success. A blog for

the sports analytics group at UC-Berkeley [11] explored this relationship given the

available baseball statistics and concluded that “as the exit velocity increases, so does

the player’s likelihood to produce more runs for his team.” There are several different

factors that can affect the exit velocity of a batted ball, such as the speed of the pitch

thrown, or the area where the ball made contact with the bat. Bat speed also has a

large role in affecting the exit velocity of the ball due to the fact that the bat is the

object that hits the ball and changes its path from one direction to the opposite.

Currently, bat speed can be measured in one of two ways, with sensors on the

baseball bat itself, and with several cameras that are strategically placed in a ball-

park. There are currently two MLB stadiums (Minute Maid Park in Houston, Dodger

Stadium in Los Angeles) that have the cameras setup to measure a player’s bat speed

on swings where they make contact. This technology is expensive to install and has

many constraints in order to maintain the correctness of the statistic.

As the bat speed statistic becomes more widely used in measuring a hitter’s ca-

pability, scouting departments across the league are looking to use bat speed in eval-

uating players. The Boston Red Sox are trying to use bat speed in order to get a

better idea of what a player has to offer for their team. But, because of the lack of

technology at almost all of the baseball fields around the world, getting the bat speed

measurement for a player they are scouting is not very practical.
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1.3 A New Pursuit

The importance of the bat speed statistic has highlighted the lack of inexpensive and

easy to use baseball technology in measuring the speed of the bat. There currently

is no way for one to measure bat speed with no additional equipment placed on the

bat and with just one video. This is a hard task to do as one cannot recreate a swing

in 3-dimensions from just one 2-dimensional angle from one camera. I present work

that explores the problem of estimating the bat speed given one video of a baseball

swing from just one camera. By extracting features from the swing, we can use these

as inputs to a machine learning algorithm to learn how to predict the bat speed.

Developing a tool to estimate bat speed would allow for a much easier, and more

cost-effective way of estimating a player’s bat speed.

1.4 Outline

I will first start off discussing the related work of pose estimation and research findings

on bat speed. Then in chapter 3 I will present the work I did on the data that I had

and then present a method of creating synthetic swing data. Chapter 4 describes the

machine learning part of the project and discusses what features found in the Data

section could be useful in estimating bat speed. The conclusion describes the steps for

one to produce this work on their own so they can apply the bat speed estimator to

whatever use case they may want. At the end of the thesis I have put what software

packages I used and the bibliography.

13



14



Chapter 2

Related Work

2.1 Pose Estimation

Human pose estimation entails tracking a person’s joint positions given an image.

By tracking the joint coordinates of a person, one can infer aspects of their motion.

There are several high performing models that are available for use to the public

such as MediaPipe’s Pose Landmark model [2]. This model can successfully track 33

joint locations on the human body and return the 2D coordinates to the user from

the image. This model is limited to just tracking the human joints and not easily

extensible. One can build on top of the model by training it with many additional

labeled examples, which I did not have.

A great tool for solving my pose estimation problem was DeepLabCut [7]. DeepLab-

Cut is a software tool that was originally developed for animal pose estimation. Deep-

erLabCut is a tool expanded on DeepLabCut that offers a human pose estimation

model that allows a user to adapt the extremely deep Residual Network (ResNet) [5]

to fit their pose estimation needs. The authors found that the more residual layers

that are used in the model, the higher the performance of the model, which is also

consistent with what the He Et al. discovered when they were testing their ResNet

architecture for human pose estimation.

What is great about DeepLabCut is that not only does it offer the state-of-the-art

architectures but it also allows users to train a custom model on top of these pre-
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trained networks. The process to add new labels that you want the model to target

is a rather long. It involves uploading videos to DeepLabCut, extracting frames from

the videos that you selected, labeling the points on the image of which are being

added as targets, and then training the model to a point where the loss starts to

plateau, which the developers say take around 500,000 iterations.

2.2 Baseball Bat Speed

Bat speed has successfully been collected from videos of swings before [9]. In order to

answer questions about the baseball swing, Tabuchi Et al. tracked the swing of eight

different college baseball players by using markers attached to the end of the bat. In

this experiment, they setup a very controlled environment for the players to swing

including the use of four different cameras to track the bat in three dimensions. It’s

important to note that while they found that bat speed peaked right at impact for

six of the eight participants. From this, I take away that even though that I am not

necessarily trying to find the peak bat speed but rather the bat speed as described

above, it will likely come at time of impact. In their calculations for bat speed, they

used the velocity in all three dimensions as well.
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Chapter 3

The Data

3.1 Raw Videos

In order for the project to be completed, I first required videos to work with in order

to accurately create the model. I was given 7 different angles of 100 different swings

where each swing had a measured swing speed. These videos were captured using

a frame rate of 300 fps (frames per second), in order for the data to be the most

accurate. The seven different angles of the swings can be found below in figure 3-1.

Given these videos, the next step was to choose which of the videos I would use to

train a pose estimator. I chose 25 videos from the dataset because I had to manually

annotate each frame for training the pose estimator with DeepLabCut. I chose one

camera angle for each swing from the camera angles 3-1a, 3-1b, 3-1c, and 3-1d because

the bat would never be occluded as the real bat speed was measured, moments before

the bat makes contact with the ball. And because I did not have a lot of data to work

with in order to train the model, I had to be sure that the data that I did use was

clearer and thus, easier for the ResNet architecture to learn. For left-handed batters,

the angles were the same but I had only 3 options: angles 3-1e, 3-1f, and 3-1g. Next I

will discuss the process of taking these videos and getting meaningful numbers from

them in order to train a model to predict bat speed from the pixel locations of the

bat.
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