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Abstract

Modern automated-bidding (or autobidding) ecosystems have fueled the prevalence
of programmatic advertising, which accounts for 90% of total digital ad transaction
volume and more than $120 billion dollar ad spend in 2022. In an autobidding
ecosystem, online advertisers convey high-level goals to ad platforms using levers
presented by the platforms, and subsequently platforms run automated algorithms to
procure ads on advertisers’ behalf. While autobidding signiőcantly simpliőes and scales
up ad procurement processes, it also brings about new challenges: for advertisers,
the simpliőcation to ad procurement comes at the cost of information dilution as
advertisers no longer have access to granular procurement details; for ad platforms,
booming advertiser activities have incentivized growing sophistication in advertising
campaign and objectives.

My thesis is dedicated to address two themes from a data-centric perspective:
how should advertisers effectively interact with ad platforms in limited information
environments? And how should ad platforms design procurement mechanisms to
achieve revenue and advertiser welfare goals under complex advertiser objectives and
behaviors?

The thesis őrst addresses the advertisers’ problem by exploring how advertisers can
utilize levers presented by ad platforms such as budgets or target return-on-investments
(ROI) to optimize ad procurement objectives. We analyze the effectiveness of standard
platform levers, and then present efficient data-driven algorithms for an advertiser
to optimize over lever decisions under limited information, where the procurement
algorithm and selling mechanisms in the autobidding ecosystem are treated as a
blackbox. Then, the thesis explores an ad platform’s problem of designing selling
mechanisms against advertisers with complex objectives. In particular, this part of
the thesis concerns strategic advertisers who may manipulate selling mechanisms
via submitting corrupted information to achieve better long-term rewards, as well
as constrained advertisers who are subject to őnancial restrictions. We őrst design
data-driven pricing algorithms to maximize long-term platform revenue in the pres-
ence of different advertiser types. Then, we also investigate how ad platforms can
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augment standard ad auctions with machine-learned advice to improve worst-case
welfare guarantees on the individual advertiser level when advertisers are őnancially
constrained and adopt arbitrary strategies.

Thesis Supervisor: Patrick Jaillet
Title: Dugald C. Jackson Professor, Department of Electrical Engineering and Computer

Science

Co-Director, Operations Research Center

Thesis Supervisor: Negin Golrezaei
Title: KDD Career Development Professor in Communications and Technology and Assistant

Professor of Operations Management
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1.1 Background on autobidding ecosystems

Over the past few years, programmatic advertisingśthe automation of purchase and

sales of online digital inventoriesśhas become the prevalent mode for digital ad

transactions. In 2022, it is estimated that 90% of digital display ads are traded

programmatically, resulting in more than $120 billion dollar ad spend, and these őgures

are expected to continue their steady increases in following years [2, 1]. Programmatic

advertising practices are primarily powered by autobidding ecosystems, in which

advertisers only need to convey high-level ad campaign goals to ad platforms, and

subsequently ad platforms deploy automated algorithms to procure ads on advertisers’

behalf. Although speciőcs of autobidding ecosystems may vary across different market

segments (e.g. display ads versus key word search), the vast majority shares three

data-centric components: 1. advertiser-platform interactions; 2. automated proxy

procurement; and 3. ad selling mechanism.

Advertiser-platform interactions. An advertiser’s digital ad campaign starts

from the advertiser setting high-level ad procurement goals for their ad campaign using

pre-deőned levers provided by the platform. These levers include, but are not limited

to, procurement objective functions (e.g. optimize quasi-linear utility which is the net

monetary gain from conversions after cost, or simply maximize total conversion), total

budget, target return-on-investment ROI, maximum cost per conversion, campaign

duration, etc.; see e.g. [16, 111] that study setups where advertisers utilize the budget

and target ROI levers to express procurement goals. As advertisers generally run

sequential campaigns, they make lever decisions based on feedback or conversion

outcomes from previous interactions with platforms.

Automated proxy procurement. After an advertiser sets their lever decisions,

the ad platform deploys automated algorithms to make procurement decisions on

behalf of the advertiser w.r.t. ad selling mechanisms (e.g. determining bid values in

ad auctions). The automated algorithm may dynamically analyze data on market

demand, competitor behavior, and audience demographics to determine the optimal

18



procurement decision. The goal of the deployed algorithms is to meet the speciőed

goals of advertisers conveyed through their lever decisions. Speciőcally, in the case

where selling mechanisms are ad auctions, procurement decisions take the form of

submitted bids, and there has been a vast line of research that develops bidding

algorithms for different kinds of auctions under a spectrum of advertiser objectives;

see e.g. [109, 14, 66, 65, 18].

Ad selling mechanism. Independent of the design and deployment of automated

procurement algorithms, the ad platform also determines the selling mechanism, which

can include auction-based systems [92, 106, 46, 61], őxed-price models [77, 25, 38],

or other pricing strategies [41, 42, 75].1 The selling mechanism determines which ad

slots are sold to which advertisers and at what price, with the goal of maximizing

revenue for the ad platform and/or optimizing advertiser welfare. In modern ad

platforms, the design of selling mechanisms are largely driven by data generated from

past advertiser-platform interactions, e.g. using outcomes from past ad auctions to

learn optimal auction formats [96, 60, 43], or augmenting standard auction formats

with predictions from machine learning models on advertisers’ perceived monetary

values on ads [35, 36].

These three components constitute key functionalities of data-centric autobidding

ecosystems, and their harmonious interplay has been largely beneőcial for both

advertisers and ad platforms. For advertisers, autobidding has simpliőed the ad

procurement process by removing much of the manual work involved in purchasing ads.

Traditionally, advertisers would manually negotiate with ad platforms for ad space

and make bids based on their discretionary views on market demand and competitor

behavior. However, with autobidding services offered by ad platforms, advertisers

only need to convey high-level procurement goals such as budget and ROI targets,

and the rest is taken care of by ad platforms that analyze large amounts of data in

real-time and make procurement decisions on behalf of advertisers. This makes it

1In many modern ad platforms, the design of selling mechanisms is isolated from the design and
deployment of automated procurement algorithms to prevent market manipulation and enforce fair
prices for ads.
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possible for advertisers to participate in millions of digital ad sales per day and allow

them to focus on developing effective ad campaigns rather than on the intricacies of

the procurement process. On the other hand from the perspective of ad platforms,

autobidding has greatly increased online ad transaction volume and revenue: with

automated algorithms making procurement decisions on behalf of advertisers, the

number of ad sales that can be processed in real-time has increased dramatically.

Further, increased advertiser activity due to autobidding generates a large amount of

data, with which ad platforms can reőne their selling mechanisms to improve revenue

and welfare outcomes.

Despite such beneőts, data-driven autobidding also brings about many challenges.

For advertisers, the simpliőcation of the ad procurement process has led to a lack

of transparency not only in procurement behavior, but also in selling mechanics

and procurement outcomes; e.g. ad platforms typically do not reveal details of

procurement algorithms, making the procurement process a complete black box

from advertisers’ perspective. Further, advertisers in general do not have access to

information on competitors’ actions or behavior, nor do they know the procurement

outcomes of others. This lack of transparency creates opaque environments for

advertisers, making it difficult for them to determine ad campaign lever decisions

such as setting budgets or ROI targets. On the other hand, for ad platforms, the

vast amount of repeated interactions between automated procurement algorithms and

platform selling mechanisms generates abundant data that incentivizes the adoption

of even more complex behavior and algorithms to express long and short term goals.

This complexity makes it difficult for platforms to design effective selling mechanisms

that can achieve revenue and welfare goals.

As autobidding continues to be the dominant mode for advertisers to engage in

online adverising markets, őnding ways to overcome the aforementioned challenges

that advertisers and ad platforms face becomes essential to ensuring the efficiency of

modern online advertising systems.
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1.2 Thesis goal and methodology

This thesis is dedicated to navigate through the aforementioned challenges by presenting

theoretical frameworks to study both the advertiser and ad platform’s problems, and

further present data-driven approaches to help both parties achieve their respective

goals in complex autobidding ecosystems. In particular, we present novel data-driven

methods to address the following questions.

1. (For advertisers) Facing opaque ad platform procurement mechanics and

procedures, how can advertisers design their ad campaigns by effectively

setting lever decisions to achieve their business objectives?

2. (For ad platforms) Facing complex advertiser objectives and automated

procurement algorithms, how should ad platforms design selling mechanisms

to achieve revenue goals and/or optimize overall social welfare among

advertisers?

Answering these two questions is challenging because the three data-centric compo-

nents in the autobidding ecosystem, namely advertiser-platform interaction, automated

proxy procurement, and ad selling mechanism, create a łthree-body problemžśthe

components are tightly interlinked such that any perturbations or changes in one may

cause intractable rippling effects on the others. For instance, as an advertiser varies her

input levers presented by platforms, the subsequent automated procurement algorithm

would adjust accordingly, shifting competition dynamics between the advertiser and

competitors, and potentially leading to drastically different outcomes or equilibria of

the selling mechanism. Additionally, modiőcations to the selling mechanism motivates

new designs of procurement algorithms, and also prompts advertisers to rethink their

lever decisions with which they utilize to achieve certain campaign goals.

In this thesis, our methodology to address both the advertiser’s and the ad

platform’s questions in face of this łthree-body problemž is to isolate a single component,

and abstract the other two as a whole while retaining key features that interact with

the single isolated component. In particular, in Section 1.2.1, we describe our approach

to address the advertiser’s problem regarding effective decision making for platform
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levers by isolating the advertiser-platform interaction component, while modelling

automated procurement algorithms and the ad mechanism together as a blackbox. In

Section 1.2.2, we study ad platforms’ revenue maximization problem in the context of

the selling mechanism component, while facing automated procurement algorithms

that are governed by pre-speciőed advertiser levers. Finally in Section 1.2.3, we shed

light on ad platforms’ welfare maximization problem for individual advertisers through

the lens of the selling mechanism component, while only considering satisfaction of

advertiser levers without speciőcations of actual automated procurement algorithms.

1.2.1 An advertiser’s view: multi-channel ad procurement with

limited information (Chapter 2)

We address an advertiser’s problem to make effective lever decisions under limited

information via viewing the automated procurement algorithms and selling mechanism

together as a blackbox that inputs lever decisions, and outputs conversion and spend.

In particular, we focus on the advertiser’s problem in Chapter 2 under a multi-channel

ad procurement setup, where advertisers procure ad impressions simultaneously on

multiple platforms, or so-called channels, such as Google Ads, Meta Ads Manager, etc.

We study how an advertiser maximizes their total conversion (e.g. ad clicks) while

satisfying aggregate ROI and budget constraints across all channels.

As illustrated in Section 1.1, the autobidding ecosystem does not allow advertisers

to control over, and thus globally optimize, her procurement decisions in individual ad

sales for each channel, as such granular procurement decisions are handled completely

by channels: the advertiser can only utilize levers on each channel, such as setting

a per-channel budget and per-channel target ROI, to convey high-level procurement

goals. In Chapter 2, we speciőcally focus on two widely used levers, namely per-channel

budget and per-channel ROI, and analyze the effectiveness of each of these levers for

solving the advertiser’s global multi-channel procurement problem. We show that

when an advertiser only optimizes over per-channel ROI levers, her total conversion can

be arbitrarily worse than what she could have obtained in the global problem which
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assumes the advertiser can optimize procurement decisions in individual sales. Further,

we show that the advertiser can achieve the global optimal conversion when she only

optimizes over per-channel budgets. In light of this őnding, under a bandit feedback

setting that mimics real-world scenarios where advertisers have limited information on

ad auctions in channels and how channels procure ads, we present an efficient learning

algorithm that produces per-channel budgets whose resulting conversion approximates

that of the global optimal problem. Finally, we argue that all our results hold for

selling mechanisms that take standard single-item or multi-item auction formats.

1.2.2 An ad platform’s view I: revenue-maximization against

strategic and őnancially constrained advertisers (Chap-

ters 3 & 4)

We address an ad platform’s revenue maximization problem in the context of the

selling mechanism component while viewing the advertiser-platform interaction and

automated procurement algorithm components as a wholeśwe perceive advertisers

directly running general automated procurement algorithms with the aim to satisfy

pre-determined ad procurement goals. In particular, we focus on two advertiser types,

those who maximize long term cumulative quasi-linear utility, and those who maximize

cumulative conversion subject to őnancial constraints, respectively.

In Chapter 3, we őrst study selling to quasi-linear utility maximizing advertisers (or

buyers for short) under a dynamic reserve-price optimization setup for repeated con-

textual second-price auctions. The ad platform (or the seller) has limited information

on buyers’ overall demand curves which depends on a non-parametric market-noise

distribution, whereas buyers run automated bidding algorithms that aim to maximize

their long-term time discounted utility. Buyer algorithms may take advantage of

the seller’s lack of information, and thereby may potentially submit corrupted bids

(relative to true valuations) to manipulate the seller’s reserve price policies for more

favorable reserve prices in the long run. We focus on designing the seller’s learning

policy to set contextual reserve prices where the seller’s goal is to minimize regret
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compared to the revenue of a benchmark clairvoyant policy that has full information

of buyers’ demand. We propose a policy with a phased-structure that incorporates

randomized łisolation" periods, during which a buyer is randomly chosen to solely

participate in the auction. We show that this design allows the seller to control the

number of periods in which buyers signiőcantly corrupt their bids. We then prove

that our policy enjoys a 𝑇 -period regret of ̃︀𝒪(
√
𝑇 ) facing strategic buyers.

In Chapter 4, we focus on selling to a őnancially constrained value-maximizing

buyer who is subject to long-term ROI and budget constraints that help ensure

efficient utilization of limited monetary resources. In particular, we study from a

seller’s perspective how to learn and dynamically price ads through repeated posted

price mechanisms to maximize revenue, while the constrained buyer runs an data-driven

algorithm to learn her optimal strategy to acquire impressions. For this two-sided

learning setup, we őrst show that under full information, the seller’s revenue function

admits bell-shaped structure when the buyer best responds to prices under budget and

ROI constraints. Motivated by this structural property, we propose a seller pricing

algorithm that utilizes an episodic binary-search procedure to identify a revenue-

optimal selling price. We show that such a simple learning algorithm enjoys low seller

regret if within each episode the budget and ROI constrained buyer approximately

best responds to the posted price. We present simple yet natural buyer’s bidding

algorithms under which the buyer approximately best responds while satisfying budget

and ROI constraints, leading to a low regret for our proposed seller pricing algorithm.

1.2.3 An ad platform’s view II: Improving individual advertiser

welfare with ML advice (Chapter 5)

In parallel to Section 1.2.2 (and correspondingly Chapters 3 and 4), in this section we

investigate an ad platform’s goal to optimize advertiser welfare, rather than platform

revenue, in the context of the seller mechanism component. We again combine the

advertiser-platform interaction and automated procurement components by assuming

advertisers directly make procurement decision according to their campaign goals, and
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consider how an ad platform can improve welfare for individual advertisers in face of

worst-case advertiser decision proőles and outcomes under which every advertiser’s

procurement goals are satisőed.

In Chapter 5, we examine a setup where an ad platform sells ads over parallel

auctions, in which multiple advertisers aim to maximize value (e.g. conversion) subject

to a return-on-ad spent (ROAS) constraint that limits total spending to the value

acquired. The ad platform aims to utilize machine-learned advice (i.e. predictions

for advertiser values) to enforce welfare guarantees for individual advertisers while

maintaining overall constraint satisfaction. This setup is motivated by the lack of

understanding in the literature for advertiser welfare on the individual level: although

the literature has studied auction design by incorporating ML advice through various

forms to improve total welfare among advertisers, such improvements could come

at the cost of individual bidders’ welfare and do not shed light on how particular

advertiser bidding strategies impact individual fairness.

To address this gap, Chapter 5 demonstrates how ad platforms can utilize ML

advice to improve welfare guarantee on both the aggregate and individual bidder level

by setting ML advice as personalized reserve prices. Under parallel VCG auctions

with such ML advice-based reserve prices, we present a worst-case welfare lower-bound

guarantee for an individual advertiser, and show that the lower-bound guarantee is

positively correlated with ML advice quality as well the scale of bids induced by an

advertiser’s bidding strategies. Further, we prove an impossibility result showing that

no truthful, and possibly randomized mechanism with anonymous allocations can

achieve universally better individual welfare guarantees than VCG, in presence of

personalized reserves based on ML-advice of equal quality. Finally, we extend our

analysis to generalized őrst price (GFP) and generalized second price (GSP) auctions.
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Chapter 2

Multi-channel ad procurement with

limited information

This chapter is based on [34], which is joint work with Yuan Deng, Negin Golrezaei,

Patrick Jaillet, and Vahab Mirrokni.
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2.1 Introduction

In this chapter, we focus on advertiser-ad platform interactions, and study how

advertiser’s can effectively communicate with platforms to achieve their ad procurement

goals. In today’s online advertisers world, advertisers (including but not limited to

small businesses, marketing practitioners, non-proőts, etc) have been embracing

an expanding array of advertising platforms such as search engines, social media

platforms, web publisher display etc. which present a plenitude of channels for

advertisers to procure ad impressions and obtain traffic. In this growing multi-channel

environment, the booming online advertising activities have fueled extensive research

and technological advancements in attribution analytics to answer questions like which

channels are more effective in targeting certain users? Or, which channels produce

more user conversion (e.g. ad clicks) or return-on-investment (ROI) with the same

amount of investments? (see [73] for a comprehensive survey on attribution analytics).

Yet, this area of research has largely left out a crucial phase in the workŕow of

advertisers’ creation of a digital ad campaign, namely how advertisers interact with

advertising channels, which is the physical starting point of a campaign.

To illustrate the signiőcance of advertiser-channel interactions, consider for ex-

ample a small business who is relatively well-informed through attribution research

that Google Ads and Meta ads are the two most effective channels for its products.

The business instantiates its ad campaigns through interacting with the platforms’

ad management interfaces (see Figure 2-1), on which the business utilizes levers such

as specifying budget and a target ROI1 to control campaigns. Channels then input

these speciőed parameters into their autobidding procedures, where they procure

impressions on the advertiser’s behalf through automated blackbox algorithms. Even-

tually, channels report performance metrics such as expenditure and conversion back

to the advertiser once the campaign ends. Therefore, one of the most important

decisions advertisers need to make involves how to optimize over these levers provided

by channels. Unfortunately, this has rarely been addressed in attribution analytics

1Target ROI is the numerical inverse of CPA or cost per action on Google Ads, and cost per result
goal in Meta Ads.
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of these levers. We summarize our contributions as followed:

Modelling ad procurement through per-channel ROI and budget levers.

In Section 2.2 we develop a novel model for online advertisers to optimize over the

per-channel ROI and budget levers to maximize total conversion over channels while

respecting a global ROI and budget constraint. This multi-channel optimization model

closely imitates real-world practices (see Figure 2-1 for evidence), and to the best

of our knowledge is the őrst of its kind to characterize advertisers’ interactions with

channels to run ad campaigns.

Solely optimizing per-channel budgets are sufficient to maximize conversion.

In Theorem 2.3.2 of Section 2.3, we show that solely optimizing for per-channel ROIs

is inadequate to optimize conversion across all channels, possibly resulting in arbitrary

worse total conversions compared to the hypothetical global optimal where advertisers

can optimize over individual auctions. In contrast, in Theorem 2.3.4 and Corollary

2.3.5 we show that solely optimizing for per-channel budgets allows an advertiser to

achieve the global optimal.

Algorithm to optimize per-channel budget levers. Under a realistic bandit

feedback structure where advertisers can only observe the total conversion and spend in

each channel after making a per-channel budget decision, in Section 2.4 we develop an

algorithm that augments stochastic gradient descent (SGD) with the upper-conődence

bound (UCB) algorithm, and eventually outputs within 𝑇 iterations a per-channel

budget proőle with which advertisers can achieve 𝒪(𝑇−1/3) approximation accuracy

in total conversion to that of the optimal per-channel budget proőle, and a 𝒪(𝑇−1/2)

violation in both global budget and ROI constraints. Our algorithm relates to

constrained convex optimization with uncertain constraints and bandit feedback under

a łone point estimationž regime, and to the best of our knowledge, our proposed

algorithm is the őrst to handle such a setting; see more discussions in Section 2.1

and Remark 2.4.2 of Section 2.4. Finally, we also present an extended version of our
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algorithm that achieves the same 𝒪(𝑇−1/3) conversion accuracy, while respecting both

constraints exactly.

Extensions to general advertiser objectives and mutli-impression auctions.

In Sections 2.5 and 2.6, we shed light on the applicability of our results in Section

2.3 and 2.4 to more general settings when auctions correspond to the sale of multiple

auctions, or when advertisers aim to optimize a private cost model instead of conversion.

Related works

Generally speaking, this chapter focuses on advertisers’ impression procurement

process or the interactions between advertisers and impression sellers, which has been

addressed in a vast amount of literature in mechanism design and online learning; see

e.g. [25, 38, 58, 54, 13, 55] to name a few. Here, we review literature that relate to

key themes of this chapter, namely autobidding, budget and ROI management, and

constrained optimization with bandit feedback.

Autobidding. There has been a rich line of research that model the autobidding

setup as well as budget and ROI management strategies. The autobidding model has

been formally developed in [4], and has been analyzed through the lens of welfare

efficiency or price of anarchy in [37, 11, 36, 89], as well as individual advertiser fairness

in [33]. The autobidding model has also been compared to classic quasi-linear utility

models in [16]. The autobidding model considered in these papers assume advertisers

can directly optimize over individual auctions, whereas in this chapter we address

a more realistic setting that mimics practice where advertisers can only use levers

provided by channels, and let channels procure ads on their behalf.

Budget and ROI management. Budget and ROI management strategies have

been widely studied in the context of mechanism design and online learning. [14]

studies the łsystem equilibriaž of a range of budget management strategies in terms of

the platforms’ proőts and advertisers’ utility; [17, 18] study online bidding algorithms
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(called pacing) that help advertisers achieve high utility in repeated second-price

auctions while maintaining a budget constraint, whereas [50] studies similar algorithms

but considers respecting a long term ROI constraint in addition to a őxed budget. All

of these works on budget and ROI management focus on bidding strategies in a single

repeated auction where advertisers’ decisions are bid values submitted directly to the

auctions. In contrast, this chapter focuses on the setting where advertisers procure

ads from multiple auctions through channels, and make decisions on how to adjust the

per-channel ROI and budget levers while leaving the bidding to channels’ blackbox

algorithms.

Online optimization. Section 2.4 where we develop an algorithm to optimize

over per-channel target ROI and budgets relates to the area of convex constrained

optimization with bandit feedback (also referred to as zero-order or gradient-less

feedback) since in light of Lemma 2.4.3 in Section 2.4 our problem of interest is also

constrained and convex. First, there has been a plenitude of algorithms developed

for deterministic constrained convex optimization under a bandit feedback structures

where function evaluations for the objective and constraints are non-stochastic. Such

algorithms include őlter methods [8, 97], barrier-type methods [48, 45], as well as

Nelder-Mead type algorithms [26, 9]; see [93] and references therein for a comprehensive

survey. In contrast to these works, our optimization algorithm developed in Section

2.4 handles noisy bandit feedback.

Regarding works that also address stochastic settings, [52] presents online opti-

mization algorithms under the known constraint regime, which assumes the optimizer

can evaluate whether all constraints are satisőed, i.e. constraints are analytically

available. Further, the algorithm achieves a 𝒪(𝑇−1/4) accuracy. In this chapter, our

setting is more complex as the optimizer (i.e. the advertiser) cannot tell whether the

ROI constrained is satisőed (due to unknown value and cost distributions in each

channels’ auctions). Yet our proposed algorithm can still achieve a more superior

𝒪(𝑇−1/3) accuracy. Most relevant to this chapter is the very recent works [105, 93],

which considers a similar setting to ours that optimizes for a constrained optimiza-
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tion problem where the objective and constraints are only available through noisy

function value evaluations (i.e. unkownn constraints). [105] focuses on a special

(unknown) linear constraint setting, and [93] extends to general convex constraints.

Although [105] and [93] achieve 𝒪(𝑇−1) and 𝒪(𝑇−1/2) approximation accuracy to the

optimal solution which contrasts our 𝒪(𝑇−1/3) accuracy, these works imposes several

assumptions that are stronger than the ones that we consider. First, the objective and

constraint functions are strongly smooth (i.e. the gradients are Lipschitz continuous)

and [93] further assume strong convexity. But in this chapter, our objectives and

constraints are piece-wise linear and do not satisfy such salient properties. Second,

and most importantly, both works consider a setting with łtwo point estimationsž that

allows the optimizer to access the objective and constraint function values twice in

each iteration, enabling more efficient estimations. this chapter, however, lies in the

one-point setting where we can only access function values once per iteration. Finally,

we remark that the optimal accuracy/oracle complexity for the one-point setting for

constrained (non-smooth) convex optimization with bandit feedback and unknown

constraints remains an open question; see Remark 2.4.2 in Section 2.4 for more details.

We refer readers to Table 4.1 in [81] for a survey on best known bounds under different

one-point bandit feedback settings.

2.2 Preliminaries

Advertisers’ global optimization problem. Consider an advertiser running a

digital ad campaign to procure ad impressions on 𝑀 ∈ N platforms such as Google

Ads, Meta Ads Manager etc., each of which we call a channel. Each channel 𝑗 consists

of 𝑚𝑗 ∈ N parallel ad auctions, each of which corresponds to the sale of an ad

impression.2 An ad auction 𝑛 ∈ [𝑚𝑗 ] is associated with a value 𝑣𝑗,𝑛 ≥ 0 that represents

the expected conversion (e.g. number of clicks) of the impression on sale, and a cost

𝑑𝑗,𝑛 ≥ 0 that is required for the purchase of the impression. For example, the cost

2Ad auctions for each channel may be run by the channel itself or other external ad inventory
suppliers such as web publishers.
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in a single slot second-price auction is the highest competing bid of competitors in

the market, and in a posted price auction the cost is simply the posted price by the

seller of the impression. Writing 𝑣𝑗 = (𝑣𝑗,𝑛)𝑛∈[𝑚𝑗 ] and 𝑑𝑗 = (𝑑𝑗,𝑛)𝑛∈[𝑚𝑗 ], we assume

that 𝑧𝑗 := (𝑣𝑗,𝑑𝑗) is sampled from some discrete distribution 𝑝𝑗 supported on some

őnite set 𝐹𝑗 ⊆ R𝑚𝑗

+ × R𝑚𝑗

+ .

The advertiser’s goal is to maximize total conversion of procured ad impressions,

while subject to a return-on-investment (ROI) constraint that states total conversion

across all channels is no less than 𝛾 times total spend for some pre-speciőed target ROI

0 < 𝛾 <∞, as well as a budget constraint that states total spend over all channels

is no greater than the total budget 𝜌 ≥ 0. Mathematically, the advertiser’s global

optimization problem across all 𝑀 channels can be written as:

GL-OPT = max
𝑥1,...,𝑥𝑀

∑︁

𝑗∈[𝑀 ]

E
[︀
𝑣⊤
𝑗 𝑥𝑗

]︀

s.t.
∑︁

𝑗∈[𝑀 ]

E
[︀
𝑣⊤
𝑗 𝑥𝑗

]︀
≥ 𝛾

∑︁

𝑗∈[𝑀 ]

E
[︀
𝑑⊤
𝑗 𝑥𝑗

]︀

∑︁

𝑗∈[𝑀 ]

E
[︀
𝑑⊤
𝑗 𝑥𝑗

]︀
≤ 𝜌

𝑥𝑗 ∈ [0, 1]𝑚𝑗 𝑗 ∈ [𝑀 ] .

(2.1)

Here, the decision variable 𝑥𝑗 ∈ [0, 1]𝑚𝑗 is a vector where 𝑥𝑗,𝑛 denotes whether

impression in auction 𝑛 for channel 𝑗 is procured. We remark that 𝑥 depends on

the realization of 𝑧 = (𝑣𝑗,𝑑𝑗)𝑗∈[𝑀 ] and is also random. We note that the ROI and

budget constraints are taken in expectation because an advertiser procures impressions

from a very large number of auctions (since the number of auctions in each platform

is typically very large) and thus the advertiser only demands to satisfy constraints

in an average sense. We note that GL-OPT is a widely adopted formulation for

autobidding practices in modern online advertising, which represents advertisers’

conversion maximizing behavior while respecting certain őnancial targets for ROIs

and budgets; see e.g. [4, 11, 37, 36]. In Section 2.6 we discuss more general advertiser

objectives, e.g. maximizing quasi-linear utility.
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Our overarching goal of this work is to develop methodologies that enable an

advertiser to achieve total campaign conversion that match GL-OPT while respecting

her global ROI 𝛾 and budget 𝜌. However, directly optimizing GL-OPT may not be

plausible as we discuss in the following.

Advertisers’ levers to solve their global problems. To solve the global opti-

mization problem GL-OPT, ideally advertisers would like to optimize over individual

auctions across all channels. However, in reality channels operate as independent

entities, and typically do not provide means for general advertisers to participate in

speciőc individual auctions at their discretion. Instead, channels provide advertisers

with speciőc levers to express their ad campaign goals on spend and conversion. In

this work, we focus on two of the most widely used levers, namely the per-channel ROI

target and per-channel budget (see illustration in Fig. 2-1). After an advertiser inputs

these parameters to a channel, the channel then procures on behalf of the advertiser

through autonomous programs (we call this programmatic process autobidding) to

help advertiser achieve procurement results that match with the inputs. We will

elaborate on this process later.

Formally, we consider the setting where for each channel 𝑗 ∈ [𝑀 ], an advertiser

is allowed to input a per-channel target ROI 0 ≤ 𝛾𝑗 <∞, and a per-channel budget

𝜌𝑗 ∈ [0, 𝜌] where we recall 𝜌 > 0 is the total advertiser budget for a certain campaign.

Then, the channel uses these inputs in its autobidding algorithm to procure ads, and

returns the total conversion 𝑉𝑗(𝛾𝑗, 𝜌𝑗 ; 𝑧𝑗) ≥ 0 , as well as total spend 𝐷𝑗(𝛾𝑗, 𝜌𝑗 ; 𝑧𝑗) ≥ 0

to the advertiser, where we recall 𝑧𝑗 = (𝑣𝑗,𝑑𝑗) ∈ R𝑚𝑗 ×R𝑚𝑗 is the vector of value-cost

pairs in channel 𝑗 sampled from discrete support 𝐹𝑗 according to distribution 𝑝𝑗; 𝑉𝑗

and 𝐷𝑗 will be further speciőed later.

As the advertiser has the freedom of choice to input either per-channel target

ROI’s, budgets, or both, we consider three options for the advertiser: 1. input only a

per-channel target ROI for each channel; 2. input only a per-channel budget for each

channel; 3. input both per-channel target ROI and budgets for each channel. Such
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options correspond to the following decision sets for (𝛾𝑗, 𝜌𝑗)𝑗∈[𝑀 ]:

Per-channel budget only option: ℐ𝐵 = {(𝛾𝑗, 𝜌𝑗)𝑗∈[𝑀 ] ∈ R2×𝑀
+ : 𝛾𝑗 = 0, 𝜌𝑗 ∈ [0, 𝜌] for ∀𝑗}.

Per-channel target ROI only option: ℐ𝑅 = {(𝛾𝑗, 𝜌𝑗)𝑗∈[𝑀 ] ∈ R2×𝑀
+ : 𝛾𝑗 ≥ 0, 𝜌𝑗 =∞ for ∀𝑗}.

General option: ℐ𝐺 = {(𝛾𝑗, 𝜌𝑗)𝑗∈[𝑀 ] : 𝛾𝑗 ≥ 0, 𝜌𝑗 ∈ [0, 𝜌] for ∀𝑗}.

(2.2)

The advertiser’s goal in practice is to maximize their total conversion of procured

ad impressions through optimizing over per-channel budgets and target ROIs, while

subject to the global ROI and budget constraint similar to those in GL-OPT. Math-

ematically, for any option ℐ ∈ {ℐ𝐵, ℐ𝑅, ℐ𝐺}, the advertiser’s optimization problem

through channels can be written as

CH-OPT(ℐ) = max
(𝛾𝑗 ,𝜌𝑗)𝑗∈[𝑀 ]∈ℐ

∑︁

𝑗∈𝑀
E [𝑉𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)]

s.t.
∑︁

𝑗∈𝑀
E [𝑉𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)] ≥ 𝛾

∑︁

𝑗∈𝑀
E [𝐷𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)]

∑︁

𝑗∈[𝑀 ]

E [𝐷𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)] ≤ 𝜌 ,

(2.3)

where the expectation is taken w.r.t. randomness in 𝑧𝑗. We remark that for any

channel 𝑗 ∈ [𝑀 ], the number of auctions 𝑚𝑗 as well as the distribution 𝑝𝑗 are őxed

and not a function of the input parameters 𝛾𝑗, 𝜌𝑗.

The functions (𝑉𝑗, 𝐷𝑗) that map per-channel target ROI and budgets 𝛾𝑗, 𝜌𝑗 to the

total conversion and expenditure are speciőed by various factors including but not

limited to channel 𝑗’s autobidding algorithms deployed to procure ads on advertisers’

behalf as well as the auctions mechanisms that sell impressions. In this work, we study

a general setup that closely mimics industry practices. We assume that on the behalf

of the advertiser, each channel aims to optimize their conversion over all 𝑚𝑗 auctions

while respecting the advertiser’s input (i.e., per-channel target ROI and budgets); see

e.g. Meta Ads Manager in Figure 2-1 speciőcally highlights the channel’s autobidding

procurement methodology provides evidence to support the aforementioned setup.
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Hence, each channel 𝑗’s optimization problem can be written as

𝑥*
𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗) = arg max

𝑥∈[0,1]𝑚𝑗
𝑣⊤
𝑗 𝑥 s.t. 𝑣⊤

𝑗 𝑥 ≥ 𝛾𝑗𝑑
⊤
𝑗 𝑥, 𝑑⊤

𝑗 𝑥 ≤ 𝜌𝑗 , (2.4)

where 𝑥 = (𝑥𝑛)𝑛∈[𝑚𝑗 ] ∈ [0, 1]𝑚𝑗 denotes the vector of probabilities to win each of the

parallel auctions, i.e. 𝑥𝑛 ∈ [0, 1] is the probability to win auction 𝑛 ∈ [𝑚𝑗] in channel

𝑗. In light of this representation, the corresponding conversion and spend functions

are given by

𝑉𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗) = 𝑣⊤
𝑗 𝑥

*
𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗) and 𝑉𝑗(𝛾𝑗, 𝜌𝑗) = E[𝑉𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)]

𝐷𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗) = 𝑑⊤
𝑗 𝑥

*
𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗) and 𝐷𝑗(𝛾𝑗, 𝜌𝑗) = E[𝐷𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)] .

(2.5)

Here, the expectation is taken w.r.t. randomness in 𝑧𝑗 = (𝑣𝑗,𝑑𝑗) ∈ R𝑚𝑗

+ × R𝑚𝑗

+ . We

assume that for any (𝛾𝑗, 𝜌𝑗) and realization 𝑧𝑗, 𝑉𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗) is bounded above by

some absolute constant 𝑉 ∈ (0,∞) almost surely. We remark that Eq.(2.5) assumes

channels are able to achieve optimal procurement performance. Later in Section 2.6,

we will brieŕy discuss setups where channels does not optimally solve for Eq.(2.4).

Key focuses and organization of this work. In this paper, we address two

key topics:

1. How effective are the per-channel ROI and budget levers to help advertisers

achieve the globally optimal conversion GL-OPT while respecting the global

ROI and budget constraints? In particular, for each of the advertiser options ℐ ∈
{ℐ𝐵, ℐ𝑅, ℐ𝐺} deőned in Eq. (2.2), what is the discrepancy between CH-OPT(ℐ),
i.e. the optimal conversion an advertiser can achieve in practice, versus the

optimal GL-OPT?

2. Since in reality advertisers can only utilize the two per-channel levers offered by

channels, how can advertisers optimize per-channel target ROIs and budgets to

solve for CH-OPT(ℐ)?

In Section 2.3, we address the őrst question to determine the gap between CH-OPT(ℐ)
and GL-OPT for different advertiser options. In Section 2.4, we develop an efficient
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algorithm to solve for per-channel levers that optimize CH-OPT(ℐ).

2.3 On the efficacy of the per-channel target ROIs

and budgets as levers in solving the global prob-

lem

In this section, we examine the effectiveness of the per-channel target ROI and per-

channel budget levers in achieving the global optimal GL-OPT. In particular, we study

if the optimal solution to the channel problem CH-OPT(ℐ) deőned in Eq. (2.3) for

ℐ ∈ {ℐ𝐵, ℐ𝑅, ℐ𝐺} is equal to the global optimal GL-OPT. As a summary of our results,

we show that the per-channel budget only option, and the general option achieves

GL-OPT, but the per-channel ROI only option can yield conversion arbitrarily worse

than GL-OPT for certain instance, even when there is no global budget constraint

(i.e., 𝜌 = ∞). This implies that the per-channel ROI lever is inadequate to help

advertisers achieve the globally optimal conversion, whereas the per-channel budget

lever is effective to attain optimal conversion even when the advertiser solely uses this

lever.

Our őrst result in this section is the following Lemma 2.3.1 which shows that

GL-OPT serves as a theoretical upper bound for an advertiser’s conversion through

optimizing CH-OPT(ℐ) with any option ℐ.

Lemma 2.3.1 (GL-OPT is the theoretical upper bound for conversion). For any

option ℐ ∈ {ℐ𝐵, ℐ𝑅, ℐ𝐺} deőned in Eq. (2.2), we have GL-OPT ≥ CH-OPT(ℐ),
where we recall the deőnitions of GL-OPT and CH-OPT in Eq. (2.1) and (2.3),

respectively.

The proof of Lemma 2.3.1 is deferred to Appendix A.1.1. In light of the theoretical

upper bound GL-OPT, we are now interested in the gap between GL-OPT and

CH-OPT(ℐ) for option ℐ ∈ {ℐ𝐵, ℐ𝑅, ℐ𝐺}. In the following Theorem 2.3.2, we show

that there exists a problem instance under which the ratio CH-OPT(ℐ𝑅)
GL-OPT

nears 0, implying

the per-channel ROIs alone fail to help advertisers optimize conversion.
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Theorem 2.3.2 (Per-channel ROI only option fails to optimize conversion). Consider

an advertiser with a (global) target ROI of 𝛾 = 1 procuring impressions from 𝑀 = 2

channels, where channel 1 consists of a single auction and channel 2 consists of two

auctions. The advertiser has unlimited budget 𝜌 = ∞, and chooses the per-channel

target ROI only option ℐ𝑅 deőned in Eq. (2.2). Assume there is only one realization

of value-cost pairs 𝑧 = (𝑣𝑗,𝑑𝑗)𝑗∈[𝑀 ] (i.e. the support 𝐹 = 𝐹1 × 𝐹2 is a singleton),

and the realization is presented in the following table, where 𝑋 > 0 is some arbitrary

parameter. Then, for this problem instance we have lim𝑋→∞
CH-OPT(ℐ𝑅)

GL-OPT
= 0.

Channel 1 Channel 2

Auction 1 Auction 2 Auction 3

Value 𝑣𝑗,𝑛 1 𝑋 2𝑋

Spend 𝑑𝑗,𝑛 0 1 +𝑋 2(1 +𝑋)

Proof. Let ̃︀𝛾 = (̃︀𝛾1, ̃︀𝛾2) be the optimal solution to CH-OPT(ℐ𝑅) and recall under the

option ℐ𝑅, we let per-channel budgets to be inőnity. It is easy to see that ̃︀𝛾1 can be

any arbitrary nonnegative number because the advertiser always wins auction 1, and

̃︀𝛾2 > 𝑋
1+𝑋

: if otherwise ̃︀𝛾2 ≤ 𝑋
1+𝑋

, then the optimal outcome of channel 2 is to win both

auctions 2 and 3. However, in this case, the advertiser wins all auctions and acquires

total value 1+𝑋+2𝑋 = 1+3𝑋, and incurs total spend 0+(1+𝑋)+2(1+𝑋) = 3+3𝑋,

which violates the ROI constraint in CH-OPT(ℐ𝑅) because 1+3𝑋
3+3𝑋

< 1. Therefore the

advertiser can only win auction 1, or in other words ̃︀𝛾2 > 𝑋
1+𝑋

. This implies that the

optimal objective to CH-OPT(ℐ𝑅) is 1. On the other hand, it is easy to see that the

optimal solution to GL-OPT is to only win auctions 1 and 2, yielding an optimal

value of 1 + 𝑋. Therefore CH-OPT(ℐ𝑅)
GL-OPT

= 1
1+𝑋

. Taking 𝑋 → ∞ yeilds the desired

result.

Deőnition 2.3.1 (Strictly quasi-concave value-cost landscape). We say that a value-

cost pair vector 𝑧 = {(𝑣1, 𝑑1) . . . (𝑣𝑛, 𝑑𝑛)} has a strictly quasi-concave landscape if for
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any subset 𝒮 ⊂ [𝑛], and 𝑛′ /∈ 𝒮, we have

𝑣𝑛′ +
∑︀

𝑘∈𝒮 𝑣𝑘

𝑑𝑛′ +
∑︀

𝑘∈𝒮 𝑑𝑘
< max

{︂
𝑣𝑛′

𝑑𝑛′

,

∑︀
𝑘∈𝒮 𝑣𝑘∑︀
𝑘∈𝒮 𝑑𝑘

}︂

Lemma 2.3.3 (Conditions when per ROI-only option is sufficient). We have GL-OPT =

CH-OPT(ℐ𝑅) if and only if for each channel 𝑗, any realization of 𝑧𝑗 ∈ 𝐹𝑗 has a strictly

quasi-concave landscape (see Deőnition 2.3.1).

In fact, we show that the optimal per-channel ROIs under strictly quasi-concave

value-cost landscapes is the realized expected ROI in that channel for auctions selected

by GL-OPT. The intuition is that for GL-OPT, we rank individual auctions according

to their value-to-cost ratios. And for each channel, winning any other auction (apart

from those selected by GL-OPT) will bring down the per-channel realized ROI under

the strictly quasi-concave value-cost landscape condition, and hence violating the

per-channel ROI constraint.

In contrast to the per-channel ROI only option, the budget only option in fact

allows an advertiser’s conversion to reach the theoretical upper bound GL-OPT

through solely optimizing for per-channel budgets. This is formalized in the following

theorem whose proof we present in Appendix A.1.2.

Theorem 2.3.4 (Per-channel budget only option suffices to achieve optimal con-

version). For the budget only option ℐ𝐵 deőned in Eq.(2.2), we have GL-OPT =

CH-OPT(ℐ𝐵) for any global target ROI 𝛾 > 0 and total budget 𝜌 > 0, even for 𝜌 =∞.

As an immediate extension of Theorem 2.3.4, the following Corollary 2.3.5 states

per-channel ROIs in fact become redundant once advertisers optimize for per-channel

budgets.

Corollary 2.3.5 (Redundancy of per-channel ROIs). For the general option ℐ𝐺
deőned in Eq.(2.2) where an advertiser sets both per-channel ROI and budgets, we have

GL-OPT = CH-OPT(ℐ𝐺) for any aggregate ROI 𝛾 > 0 and total budget 𝜌 > 0, even

for 𝜌 =∞. Further, there exists and optimal solution (𝛾𝑗, 𝜌𝑗)𝑗∈[𝑀 ] to CH-OPT(ℐ𝐺),
s.t. 𝛾𝑗 = 0 for all 𝑗 ∈ [𝑀 ].

40



In light of the redundancy of per-channel ROIs as illustrated in Corollary 2.3.5, in

the rest of the paper we will őx 𝛾𝑗 = 0 for any channel 𝑗 ∈ [𝑀 ], and omit 𝛾𝑗 in all

relevant notations; e.g. we will write 𝐷𝑗(𝜌𝑗; 𝑧𝑗) and 𝐷𝑗(𝜌𝑗), instead of 𝐷𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)

and 𝐷𝑗(𝛾𝑗, 𝜌𝑗). Equivalently, we will only consider the per-channel budget only option

ℐ𝐵.

2.4 Optimization algorithm for per-channel budgets

under bandit feedback

In this section, we develop an efficient algorithm to solve for per-channel budgets

that optimize CH-OPT(ℐ𝐵) deőned in Eq. (2.3), which achieves the theoretical

optimal conversion, namely GL-OPT, as illustrated in Theorem 2.3.4. In particular,

we consider algorithms that run over 𝑇 > 0 periods, where each period for example

corresponds to the duration of 1 hour or 1 day. At the end of 𝑇 periods, the algo-

rithm produces some per-channel budget proőle (𝜌𝑗)𝑗∈[𝑀 ] ∈ [0, 𝜌]𝑀 that approximates

CH-OPT(ℐ𝐵), and satisőes aggregate budget and ROI constraints, namely

ROI:
∑︁

𝑗∈𝑀
𝑉𝑗(𝜌𝑗) ≥ 𝛾

∑︁

𝑗∈𝑀
𝐷𝑗(𝜌𝑗), and Budget:

∑︁

𝑗∈[𝑀 ]

𝐷𝑗(𝜌𝑗) ≤ 𝜌 , (2.6)

where we recall the expected conversion and spend functions (𝑉𝑗(𝜌𝑗), 𝐷𝑗(𝜌𝑗)) deőned

in Eq. (2.5).

The algorithm proceeds as follows: at the beginning of period 𝑡 ∈ [𝑇 ], the ad-

vertiser sets per-channel budgets (𝜌𝑗,𝑡)𝑗∈[𝑀 ], while simultaneously values and costs

𝑧𝑡 = (𝑣𝑗,𝑡,𝑑𝑗,𝑡) ∈ R𝑀𝑗

+ × R𝑀𝑗

+ are sampled (independently in each period) from őnite

support 𝐹 = 𝐹1 × . . . 𝐹𝑀 according to discrete distributions (𝑝𝑗)𝑗∈[𝑀 ]. Each channel

𝑗 then takes as input 𝜌𝑗,𝑡 ∈ [0, 𝜌] and procures ads on behalf of the advertiser, and

reports the total realized conversion 𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡) as well as total spend 𝐷𝑗(𝜌𝑗,𝑡; 𝑧𝑡) to

the advertiser, where 𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡) and 𝐷𝑗(𝜌𝑗,𝑡; 𝑧𝑡) are deőned in Eq. (2.5). For sim-

plicity we also assume for any realization 𝑧 = (𝑣𝑗,𝑑𝑗) ∈ 𝐹 we have the ordering
𝑣𝑗,1
𝑑𝑗,1

>
𝑣𝑗,2
𝑑𝑗,2

> · · · > 𝑣𝑗,𝑚𝑗

𝑑𝑗,𝑚𝑗

for all channels 𝑗 ∈ [𝑀 ].
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Here, we highlight that the advertiser receives bandit feedback from channels, i.e.

the advertiser only observes the numerical values 𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡) and 𝐷𝑗(𝜌𝑗,𝑡; 𝑧𝑡), but does

not get to observe 𝑉𝑗(𝜌′𝑗 ; 𝑧
′) and 𝐷𝑗(𝜌

′
𝑗 ; 𝑧

′) evaluated at any other per-channel budget

𝜌′𝑗 ≠ 𝜌𝑗,𝑡 and realized value-cost pairs 𝑧′ ̸= 𝑧𝑡. More discussions on challenges that

arise from this bandit feedback structure can be found in Section 2.4.1.

We also make the following Assumption 2.4.1 that states that if the advertiser

allocates any feasible per-channel budget to a channel 𝑗 ∈ [𝑀 ], the channel will almost

surely deplete the entire budget in the impression procurement process. This is a

natural assumption that mimics practical scenarios, e.g. small businesses who have

moderate-sized budgets.

Assumption 2.4.1 (Moderate budgets). We assume the total budget is őnite, i.e.

𝜌 < ∞, and for any channel 𝑗 ∈ [𝑀 ], value-cost realization 𝑧 = (𝑣,𝑑) ∈ 𝐹𝑗, and

per-channel budget 𝜌𝑗 ∈ [0, 𝜌], the optimal solution 𝑥*
𝑗(𝜌; 𝑧) deőned in Eq. (2.4) is

budget binding, i.e. 𝐷𝑗(𝜌𝑗; 𝑧) = 𝑑⊤
𝑗 𝑥

*
𝑗(𝜌𝑗; 𝑧) = 𝜌𝑗.

2.4.1 The SGD-UCB algorithm to optimize per-channel bud-

gets

Here, we describe our algorithm to solve for optimal per-channel budgets w.r.t.

CH-OPT(ℐ𝐵). Similar to most algorithms for constrained optimization, we take a

dual stochastic gradient descent (SGD) approach; see a comprehensive survey on

dual descent methods in [21]. First, we consider the Lagrangian functions w.r.t.

CH-OPT(ℐ𝐵) where we let 𝑐 = (𝜆, 𝜇) ∈ R2
+ be the dual variables corresponding to

the ROI and budget constraints, respectively:

ℒ𝑗(𝜌𝑗, 𝑐; 𝑧𝑗) = (1 + 𝜆)𝑉𝑗(𝜌𝑗; 𝑧𝑗)− (𝜆𝛾 + 𝜇)𝜌𝑗 and ℒ𝑗(𝜌𝑗, 𝑐) = E [ℒ𝑗(𝜌𝑗, 𝑐; 𝑧𝑗)] .

(2.7)
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Then, in each period 𝑡 ∈ [𝑇 ] given dual variables 𝑐𝑡 = (𝜆𝑡, 𝛾𝑡), SGD decides on a

primal decision, i.e. per-channel budget (𝜌𝑗,𝑡)𝑗∈[𝑀 ] by optimizing the following:

𝜌𝑗,𝑡 = arg max
𝜌𝑗∈[0,𝜌]

ℒ𝑗(𝜌𝑗, 𝑐𝑡; 𝑧𝑡) . (2.8)

Having observed the realized values (𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡))𝑗∈[𝑀 ] (note that spend is (𝜌𝑗,𝑡)𝑗∈[𝑀 ] in

light of Assumption 2.4.1), we calculate the current period violation in budget and ROI

constraints, namely 𝑔1,𝑡 :=
∑︀

𝑗∈𝑀 (𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡)− 𝛾𝜌𝑗,𝑡) and 𝑔2,𝑡 = 𝜌−∑︀
𝑗∈[𝑀 ] 𝜌𝑗,𝑡. Next,

we update dual variables via 𝜆𝑡+1 = (𝜆𝑡 − 𝜂𝑔1,𝑡)+ and 𝜇𝑡+1 = (𝜇𝑡 − 𝜂𝑔2,𝑡)+, where 𝜂

is some pre-speciőed step size.3

However, the above SGD approach faces a fatal drawback, namely we cannot

realistically őnd the primal decisions by solving Eq. (2.8) since the function ℒ𝑗(·, 𝑐𝑡; 𝑧𝑡)

is unknown due to the bandit feedback structure. Therefore, we provide a modiőcation

to SGD to handle this issue. Before we present our approach, we brieŕy note that

although bandit feedback prevents the naive application of SGD for our problem of

interest, this may not be the case in other online advertising scenarios that involve

relevant learning tasks, underlining the challenges of our problem; see following Remark

2.4.1 for details.

Remark 2.4.1. Our problem of interest under bandit feedback is more difficult than

similar problems in related works that study online bidding strategies under budget

and ROI constraints; see e.g. [14, 18, 50]. To illustrate, consider for instance

[14] in which a budget constrained advertiser’s primal decision at period 𝑡 is to

submit a bid value 𝑏𝑡 after observing her value 𝑣𝑡. The advertiser competes with some

unknown highest competing bid 𝑑𝑡 in the market, and after submitting bid 𝑏𝑡, does not

observe 𝑑𝑡 if she does not win the competition, which involves a semi-bandit feedback

structure. Nevertheless, the corresponding Lagrangian under SGD takes the special

form ℒ𝑗(𝑏, 𝜇𝑡; 𝑧𝑡) = (𝑣𝑡 − (1 + 𝜇𝑡)𝑑𝑡) I{𝑏𝑡 ≥ 𝑑𝑡} where 𝜇𝑡 is the dual variable w.r.t. the

budget constraint. This simply allows an advertiser to optimize for her primal decision

by bidding argmax𝑏≥0 ℒ𝑗(𝑏, 𝑐𝑡; 𝑧𝑡) =
𝑣𝑡

1+𝜇𝑡
. So even though [14, 18, 50] study dual SGD

3Here, the dual updates follow the vanilla gradient descent approach, and one can also employ
more general mirror descent updates; see e.g. [18].
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under bandit feedback, the special structures of their problem instances permits SGD

to effectively optimize for primal decisions in each period, as opposed to Eq. (2.8) in

our setting which can not be solved.

To resolve challenges that arise with bandit feedback in our model, we take a

natural approach to augment SGD with the upper-conődence bound (UCB) algorithm,

which is well celebrated for solving learning problems under bandit feedback such

as multi-arm bandits; see an introduction to bandits in [102]. In particular, we őrst

discretize our per-channel buudget decision set [0, 𝜌] into granular łarmsž that are

separated by some distance 𝛿 > 0, so that the discretized per-channel budget decisions

become

𝒜(𝛿) = {𝑎𝑘}𝑘∈[𝐾] where 𝑎𝑘 = (𝑘 − 1)𝛿 and 𝐾 := ⌈𝜌/𝛿⌉+ 1 . (2.9)

In the following we will use the terms łper-channel budgetž and łarmž interchangeably.

In the spirit of UCB, in each period 𝑡 we maintain some estimate
(︁
𝑉𝑗,𝑡(𝑎𝑘)

)︁
𝑗∈[𝑀 ]

of the conversions (𝑉𝑗(𝑎𝑘))𝑗∈[𝑀 ] as well as an upper conődence bound UCB𝑗,𝑡(𝑎𝑘) for

each arm 𝑎𝑘 using historical payoffs from periods in which arm 𝑎𝑘 is pulled. Finally,

we update primal decisions for each channel 𝑗 ∈ [𝑀 ] using the łbest armž 𝜌𝑗,𝑡 =

argmax𝑎𝑘∈𝒜(𝛿) (1 + 𝜆𝑡)
(︁
𝑉𝑗,𝑡(𝑎𝑘) + UCB𝑗,𝑡(𝑎𝑘)

)︁
− (𝜆𝑡𝛾 + 𝜇𝑡) 𝑎𝑘. We summarize our

algorithm, called SGD-UCB, in the following Algorithm 1.

We remark that there has been very recent works that combine SGD with Thompson

sampling which is another well-known algortithm for solving bandit problems (e.g.

[40] and references therein), and works that employ SGD in bandit problems (e.g.

[67]). Yet to the best of our knowledge, approach to augment SGD with UCB is novel.

2.4.2 Analyzing the SGD-UCB algorithm

In this subsection, we analyze the performance of SGD-UCB in Algorithm 1, and

present accuracy guarantees on the őnal output 𝜌𝑇 =
(︁

1
𝑇

∑︀
𝑡∈[𝑇 ] 𝜌𝑗,𝑡

)︁
𝑗∈[𝑀 ]

of the

algorithm. The backbone of our analysis strategy is to show the cumulative conversion

loss over 𝑇 periods, namely 𝑇 ·GL-OPT− E
[︁∑︀

𝑡∈[𝑇 ]

∑︀
𝑗∈[𝑀 ] 𝑉𝑗(𝜌𝑗,𝑡)

]︁
consists of two
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Algorithm 1 SGD-UCB
Input: Budget discretization decision set 𝒜(𝛿) deőned in Eq.(2.9). Step size 𝜂 > 0. Initialize

𝑁𝑗,1(𝑎𝑘) = 𝑉𝑗,1(𝑎𝑘) = 0 for all 𝑗 ∈ [𝑀 ] and 𝑘 ∈ [𝐾], and dual variables 𝜆1 = 𝜇1 = 0.
1: Output: Per channel budget.
2: for 𝑡 = 1 . . . 𝑇 do
3: Update (primal) per-channel budget. For each channel 𝑗 ∈ [𝑀 ] set (primal) per-channel

budget:

• If 𝑡 ≤ 𝐾, set 𝜌𝑗,𝑡 = 𝑎𝑡.

• If 𝑡 > 𝐾, set

𝜌𝑗,𝑡 = arg max
𝑎𝑘∈𝒜(𝛿)

𝑉𝑗,𝑡(𝑎𝑘) + UCB𝑗,𝑡(𝑎𝑘)−
𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝑎𝑘, where UCB𝑗,𝑡(𝑎𝑘) =

√︃
2 log(𝑇 )

𝑁𝑗,𝑡(𝑎𝑘)

(2.10)

4: Observe realized values {𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡)}𝑗∈[𝑀 ], and update for each arm 𝑘 ∈ [𝐾]:

𝑁𝑗,𝑡+1(𝑎𝑘) = 𝑁𝑗,𝑡(𝑎𝑘) + I{𝜌𝑗,𝑡 = 𝑎𝑘}

𝑉𝑗,𝑡+1(𝑎𝑘) =
1

𝑁𝑗,𝑡+1(𝑎𝑘)

(︁
𝑁𝑗,𝑡(𝑎𝑘)𝑉𝑗,𝑡(𝑎𝑘) + 𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡)I{𝜌𝑗,𝑡 = 𝑎𝑘}

)︁
, for 𝑗 = 1 . . .𝑀

(2.11)

5: Update dual variables. Update dual variables with 𝑔1,𝑡 :=
∑︀

𝑗∈𝑀 (𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡)− 𝛾𝜌𝑗,𝑡) and
𝑔2,𝑡 = 𝜌−

∑︀
𝑗∈[𝑀 ] 𝜌𝑗,𝑡:

𝜆𝑡+1 = (𝜆𝑡 − 𝜂𝑔1,𝑡)+ and 𝜇𝑡+1 = (𝜇𝑡 − 𝜂𝑔2,𝑡)+ (2.12)

6: end for
7: Output 𝜌𝑇 =

(︁
1
𝑇

∑︀
𝑡∈[𝑇 ] 𝜌𝑗,𝑡

)︁
𝑗∈[𝑀 ]

.

main parts, namely the error induced by the UCB in our algorithm, and the error

due to SGD (or what is typically viewed as the deviations from complementary

slackness), as shows in the following Proposition 2.4.1. Then we further bound each

part, respectively.

Proposition 2.4.1. For any channel 𝑗 ∈ [𝑀 ] deőne 𝜌*𝑗(𝑡) = argmax𝜌𝑗∈[𝑀 ]
ℒ𝑗(𝜌𝑗; 𝑐𝑡)

to be the optimal per-channel budget w.r.t. dual variables 𝑐𝑡 = (𝜆𝑡, 𝜇𝑡)𝑡∈[𝑇 ] during
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period 𝑡 ∈ [𝑇 ]. Then we have

𝑇 ·GL-OPT−
∑︁

𝑡∈[𝑇 ]

∑︁

𝑗∈[𝑀 ]

E [𝑉𝑗(𝜌𝑗,𝑡)]

≤ 𝑀𝑉𝐾 +
∑︁

𝑗∈[𝑀 ]

∑︁

𝑡>𝐾

E
[︀
ℒ𝑗(𝜌

*
𝑗(𝑡), 𝜆𝑡, 𝜇𝑡)− ℒ𝑗(𝜌𝑗,𝑡, 𝜆𝑡, 𝜇𝑡)

]︀

⏟  ⏞  
UCB error

+
∑︁

𝑡>𝐾

E [𝜆𝑡𝑔1,𝑡 + 𝜇𝑡𝑔2,𝑡]

⏟  ⏞  
SGD complementary slackness deviations

,

(2.13)

where we recall the deőnitions of 𝑔1,𝑡 and 𝑔2,𝑡 in step 4 of Algorithm 1, and the

fact that the conversion 𝑉𝑗(𝜌𝑗; 𝑧𝑗) is bounded above by absolute constant 𝑉 ∈ (0,∞)

almost surely for any channel 𝑗 ∈ [𝑀 ], (𝛾𝑗, 𝜌𝑗) and realization 𝑧𝑗.

The bound on SGD complementary slackness violation is presented in the following

Lemma 2.4.2, and follows a standard analyses for SGD; we refer readers to the proof

in Appendix A.2.2.

Lemma 2.4.2 (Bounding complementary slackness deviations). Recall

𝑔1,𝑡 =
∑︀

𝑗∈[𝑀 ] (𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡)− 𝛾𝜌𝑗,𝑡), 𝑔2,𝑡 = 𝜌−
∑︀

𝑗∈[𝑀 ] 𝜌𝑗,𝑡 and 𝜂 > 0 the step size deőned

in Algorithm 1. Then we have

∑︁

𝑡>𝐾

E [𝜆𝑡𝑔1,𝑡 + 𝜇𝑡𝑔2,𝑡] ≤ 𝒪
(︂
𝜂𝑇 +

1

𝜂

)︂
. (2.14)

Challenges in bounding UCB error due to adversarial contexts and

continuum-arm dicretization. Bounding our UCB error is much more challenging

than doing so in classic stochastic multi-arm bandit settings: őrst, our setup involves

discretizing a continuum of arms i.e. our discretization in Eq.(2.9) for [0, 𝜌]; second,

and more importantly, the dual variables {𝑐𝑡}𝑡∈[𝑇 ] are effectively adversarial contexts

since they are updated via SGD instead of being stochastically sampled from some nice

distribution, and correspondingly the Lagrangian function ℒ𝑗(𝑎𝑘, 𝑐𝑡; 𝑧𝑡) can be viewed

as a reward function that maps any arm-context pair (𝑎𝑘, 𝑐𝑡) to (stochastic) payoffs.

Moreover, the UCB error in Eq.(2.13) concerns a dynamic benchmark ℒ𝑗(𝜌
*
𝑗(𝑡), 𝑐𝑡; 𝑧𝑡)
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instead of a single-arm benchmark across all contexts, namely max𝑎∈𝒜(𝛿) ℒ𝑗(𝑎, 𝑐𝑡; 𝑧𝑡) .

Both continuum-arms and dynamic benchmarks under adversarial contexts have been

notorious in making reward function estimations highly inefficient; see e.g. discussions

in [5, 3]. We further elaborate on additional challenges that adversarial contexts bring

about:

• Boundedness of rewards. In classic stochastic multi-arm bandtis and UCB,

losses in total rewards grow linearly with the magnitude of rewards. In our

setting, the reward function, i.e. the Lagrangian function ℒ𝑗(𝑎𝑘, 𝑐𝑡; 𝑧𝑡), scales

linearly with the magnitude of contexts (see Eq. (2.7), so large contexts (i.e.

large dual variables) may lead to large losses.

• Context-dependent exploration-exploitation tradeoffs. The typical trade-

off for arm exploration and exploitation in our setting depends on the particular

values of the contexts (i.e. the dual variables), which means there may exist łbadž

contexts that lead to poor tradeoffs that require signiőcantly more explorations

to achieve accurate estimates of arm rewards than other łgoodž contexts. We

elaborate more in Lemma 2.4.5 and discussions thereof.

In the following, we őrst handle continuum arm discretization and dynamic contextual

benchmarks via analyzing structural properties of the reward (i.e. Lagrangian) func-

tions. Fortunately, the speciőc form of conversion functions 𝑉 (𝜌𝑗; 𝑧) deőned in Eq.

(2.4) imposes a salient structure on the Lagrangian for pulling an arm. Speciőcally, the

following lemma shows that the Lagrangian is continuous, piece-wise linear, concave,

and unimodal4; we present the proof in Appendix A.2.3

Lemma 2.4.3 (Structural properties of conversion and Lagrangian functions). •

For any channel 𝑗 ∈ [𝑀 ] and per-channel budget 𝜌𝑗, the conversion function

𝑉𝑗(𝜌𝑗) is continuous, piece-wise linear, strictly increasing, and concave. In

4We say a real-valued function 𝑓 : R → R is unimodal if there exists some 𝑦* such that 𝑓(𝑦)
strictly increases when 𝑦 ≤ 𝑦* and strictly decreases when 𝑦 ≥ 𝑦*.
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particular, 𝑉𝑗(𝜌𝑗) takes the form

𝑉𝑗(𝜌𝑗) =
∑︁

𝑛∈[𝑆𝑗 ]

(𝑠𝑗,𝑛𝜌𝑗 + 𝑏𝑗,𝑛) I{𝑟𝑗,𝑛−1 ≤ 𝜌𝑗 ≤ 𝑟𝑗,𝑛} , (2.15)

where the parameters 𝑆𝑗 ∈ N and {(𝑠𝑗,𝑛, 𝑏𝑗,𝑛, 𝑟𝑗,𝑛)}𝑛∈[𝑆𝑗 ] only depend on the

support 𝐹𝑗 and distribution 𝑝𝑗 from which value-to-cost pairs are sampled. These

parameters satisfy 𝑠𝑗,1 > 𝑠𝑗,2 > · · · > 𝑠𝑗,𝑆𝑗
> 0 and 0 = 𝑟𝑗,0 < 𝑟𝑗,1 < 𝑟𝑗,2 <

· · · < 𝑟𝑗,𝑆𝑗
= 𝜌, as well as 𝑏𝑗,𝑛 > 0 s.t. 𝑠𝑗,𝑛𝑟𝑗,𝑛 + 𝑏𝑗,𝑛 = 𝑠𝑗,𝑛+1𝑟𝑗,𝑛 + 𝑏𝑗,𝑛+1 for all

𝑛 ∈ [𝑆𝑗 − 1], implying 𝑉𝑗(𝜌𝑗) is continuous in 𝜌𝑗.

• For any dual variables 𝑐 = (𝜆, 𝜇) ∈ R2
+, the Lagrangian function ℒ𝑗(𝜌𝑗, 𝑐) deőned

in Eq. (2.7) is continuous, piece-wise linear, concave, and unimodal in 𝜌𝑗. In

particular,

ℒ𝑗(𝜌𝑗, 𝑐) =
∑︁

𝑛∈[𝑆𝑗 ]

(𝜎𝑗,𝑛(𝑐)𝜌𝑗 + (1 + 𝜆)𝑏𝑗,𝑛) I{𝑟𝑗,𝑛−1 ≤ 𝜌𝑗 ≤ 𝑟𝑗,𝑛} , (2.16)

where the slope 𝜎𝑗,𝑛(𝑐) = (1 + 𝜆)𝑠𝑗,𝑛 − (𝜇 + 𝛾𝜆). Then, this also implies

argmax𝜌𝑗≥0 ℒ𝑗(𝜌𝑗, 𝑐) = max{𝑟𝑗,𝑛 : 𝑛 = 0, 1 . . . , 𝑆𝑗 , 𝜎𝑗,𝑛(𝑐) ≥ 0}.

In fact, for any realized value-cost pairs 𝑧, the łrealization versionsž of the conversion

and Lagrangians functions, namely 𝑉𝑗(𝜌𝑗; 𝑧) and ℒ𝑗(𝜌𝑗, 𝑐; 𝑧), also satisfy the same

properties as those of 𝑉𝑗(𝜌𝑗) and ℒ𝑗(𝜌𝑗, 𝑐), respectively. We provide a visual illustration

for these structural properties in Figure 2-2.

We now handle the reward boundedness issue in the Lagrangian functions deőned

in Eq. (2.7) that arise from adversarial contexts. In the following Lemma 2.4.4, we

show that the Lagrangian functions, as well as dual variables, are indeed bounded by

some absolute constants under a mild feasibility Assumption 2.4.2 stated below:

Assumption 2.4.2 (Strictly feasible global ROI constraints). For any realization

of value-cost pairs 𝑧 = (𝑣𝑗,𝑑𝑗)𝑗∈[𝑀 ] ∈ 𝐹1 × . . . 𝐹𝑀 , the realized version of the

ROI constraint in GL-OPT deőned in Eq. 2.1 is strictly feasible, i.e. the set
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depends on adversarial contexts. To illustrate (see e.g. Figure 2-2), we deőne the slopes

that are adjacent to the optimal budget argmax𝜌𝑗∈[0,𝜌] ℒ𝑗(𝜌𝑗, 𝑐) for any 𝑐 = (𝜆, 𝜇) as

followed: assuming the optimal budget argmax𝜌𝑗∈[0,𝜌] ℒ𝑗(𝜌𝑗, 𝑐) is located at the 𝑛th

łturning pointž 𝑟𝑗,𝑛 we have

𝜎−
𝑗 (𝑐) = 𝜎𝑗,𝑛(𝑐) and 𝜎+

𝑗 (𝑐) = 𝜎𝑗,𝑛+1(𝑐) (2.18)

Similar to standard multi-arm bandits exploration-exploitation tradeoffs, the ŕatter

the slope (e.g. 𝜎−
𝑗 (𝑐) is close to 0), the more pulls required to accurately estimate

rewards for sub-optimal arms on the slope, but the lower the loss in conversion for

pulling sub-optimal arms. Our setting is challenging because the magnitude of this

tradeoff depends on the adversarial contexts 𝑐𝑡, i.e., the dual variables, which requires

delicate treatments. In the following Lemma 2.4.5 where we bound the UCB error, we

handle this context-dependent tradeoff by separately analyzing periods during which

the adjacent slopes 𝜎−
𝑗 (𝑐) and 𝜎+

𝑗 (𝑐) are less or greater than some parameter 𝜎, and

characterize the context-dependent tradeoff w.r.t. ŕatness of adjacent slopes using 𝜎.

Lemma 2.4.5 (Bounding the UCB error in per-channel budgets). Assume the dis-

cretization width 𝛿 satisőes 𝛿 < 𝑟𝑗 := min𝑛∈[𝑆𝑗 ] 𝑟𝑗,𝑛 − 𝑟𝑗,𝑛−1, where 𝑆𝑗 and {𝑟𝑗,𝑛}𝑆𝑗

𝑛=0

are deőned in Lemma 2.4.3. Then we have

∑︁

𝑡>𝐾

E
[︀
ℒ𝑗(𝜌

*
𝑗(𝑡), 𝑐𝑡)− ℒ𝑗(𝜌𝑗,𝑡, 𝑐𝑡)

]︀
≤ ̃︀𝒪

(︂
𝛿𝑇 + 𝜎𝑇 +

1

𝜎𝛿
+

1

𝛿𝑇

)︂
, (2.19)

where 𝜎 > 0 is any small positive absolute constant that we can specify later, and recall

𝜌*𝑗(𝑡) = argmax𝜌𝑗∈[𝑀 ]
ℒ𝑗(𝜌𝑗 ; 𝑐𝑡) is the optimal per-channel budget w.r.t. dual variables

𝑐𝑡. ̃︀𝒪 hides all logarithmic factors.

We refer the readers to Appendix A.2.5 for the proof. Note that the parameter

𝜎 will be chosen later. Finally, returning to bounding the UCB error in Proposition

2.4.1, we put together Lemmas 2.4.2 and 2.4.5, and obtain the main result of this

section in the following Theorem 2.4.6 whose proof we detail in Appendix A.2.6.
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Theorem 2.4.6 (Putting everything together). Assume assumptions 2.4.1 and 2.4.2

hold. Let (𝜌𝑗,𝑡)𝑗∈[𝑀 ],𝑡∈[𝑇 ] be the per-channel budgets generated from Algorithm 1 and

assume we take step size 𝜂 = Θ(1/
√
𝑇 ), discretization width 𝛿 = Θ(𝑇−1/3), and

𝜎 = Θ(𝑇−1/3) in Lemma 2.4.5. Then for large enough 𝑇 we have 𝑇 · GL-OPT −
E
[︁∑︀

𝑡∈[𝑇 ]

∑︀
𝑗∈[𝑀 ] 𝑉𝑗(𝜌𝑗,𝑡)

]︁
≤ 𝒪(𝑇 2/3). Recalling 𝜌𝑇 =

(︁
1
𝑇

∑︀
𝑡∈[𝑇 ] 𝜌𝑗,𝑡

)︁
𝑗∈[𝑀 ]

is the vec-

tor of time-averaged per-channel budgets, this implies

GL-OPT−
∑︁

𝑗∈[𝑀 ]

E
[︀
𝑉𝑗(𝜌𝑇,𝑗)

]︀
≤ 𝒪(𝑇−1/3) ,

as well as approximate constraint satisfaction

∑︁

𝑗∈[𝑀 ]

E
[︀
𝑉𝑗(𝜌𝑇,𝑗)− 𝛾𝜌𝑇,𝑗

]︀
≥ −𝒪(𝑇−1/2), and 𝜌−

∑︁

𝑗∈[𝑀 ]

E[𝜌𝑇,𝑗] ≥ −𝒪(𝑇−1/2)

Here, we note that the above approxamate constraint satisfaction is in expectation,

similar to our deőnition of CH-OPT(ℐ𝐵) deőned in Eq. (2.3). To conclude, we make

an important remark that distinguishes our result in Theorem 2.4.6 with related

literature on convex optimization.

Remark 2.4.2. In light of Lemma 2.4.3, the advertiser’s optimization problem

CH-OPT(ℐ𝐵) in Eq. (2.3) effectively becomes a convex problem (see Proposition

A.2.4 in Appendix A.2.9). Hence it may be tempting for one to directly employ off-

the-shelf convex optimization algorithms. However, our problem involves stochastic

bandit feedback, and more importantly, uncertain constraints, meaning that we cannot

analytically determine whether a primal decision satisőes the constraints of the prob-

lem. For example, in CH-OPT(ℐ𝐵), for some primal decision (𝜌𝑗)𝑗∈[𝑀 ], we cannot

determine whether the ROI constraint
∑︀

𝑗∈𝑀 E [𝑉𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)− 𝛾𝐷𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)] ≥ 0

holds because the distribution (𝑝𝑗)𝑗∈[𝑀 ] from which 𝑧 is sampled is unknown. To the

best of our knowledge, there are only two recent works that handle a similar stochastic

bandit feedback, and uncertain constraint setting, namely [105] and [93]. Nevertheless,

our setting is more challenging because these works consider a łtwo-point estimationž

regime where one can make function evaluations to the objective and constraints twice

51



each period, whereas our setting involves łone-point estimationž such that we can

only make function calls once per period. We note the optimal oracle complexities for

unknown constraint convex optimization with one-point bandit feedback, remains an

open problem.6

2.4.3 Extension to strict constraint satisfaction: UCB-SGD-II

In Theorem 2.4.6, we showed that the őnal output of the UCB-SGD Algorithm 1

outputs a per-channel budget proőle 𝜌𝑇 =
(︁

1
𝑇

∑︀
𝑡∈[𝑇 ] 𝜌𝑗,𝑡

)︁
𝑗∈[𝑀 ]

that satisőes both ROI

and budget constraints in CH-OPT(ℐ𝐵) approximately, i.e. there can be at most

violations in the magnitude of 𝒪(𝑇−1/2) for both constraints. In this subsection, we

present a modiőcation to UCB-SGD that enables us to achieve no-constraint violations,

while still retaining the 𝒪(𝑇−1/3) accuracy in total conversion. Similar modiőcation

techniques have been introduced in [18, 50].

Our modiőcation strategy handles ROI and budget constraint satisfactions differ-

ently. For budget constraints, we simply maintain a spend balance 𝐵𝑡 in each period

starting from 𝐵1 = 0, and increase the balance by the expenditure in each period.

When the balance nears 𝜌𝑇 , i.e. total spend comes close to 𝜌𝑇 , we simply terminate

the algorithm. Regarding the ROI constraint, we develop two phases. Phase 1 is a

łsafety buffer phasež where we conservatively set per-channel budgets to accumulate a

positive łROI balancež, i.e. in this phase (assume ending in period 𝑇1) we hope to

achieve
∑︀

𝑡∈[𝑇1]
𝑔1,𝑡 ≥ Θ(

√
𝑇 ), where we recall −𝑔1,𝑡 deőned in step 4 of Algorithm

1 can be viewed as the ROI constraint violations in period 𝑡. For phase 2, we then

naively run SGD-UCB. The motivation for this two-phase design is that we aim to

have a buffer, i.e. positive ROI balance, in phase 1 that can compensate for possible

constraint violations in phase 2 when we run SGD-UCB (see Theorem 2.4.6). We call

our algorithm SGD-UCB-II which we present in Algorithm 2.

We remark that in order to implement the buffer phase 1 to attain a positive ROI

balance, we rely on the following Assumption 2.4.3 which is a strengthened version of

Assumption 2.4.2 that states in each channel there is always an auction that has a

6See Table 4.1 in [81] for best known complexity bounds for one-point bandit feedback setups.

52



value-to-cost ratio above the global target ROI 𝛾. Then by setting a small budget we

denote as 𝛽, the channel will only procure impressions with high value-to-cost ratios

(due to the structure of conversion functions in Lemma 2.4.3), and thus ensuring that

the ROI balance increases.

Algorithm 2 SGD-UCB-II
Input: Set spend balance 𝐵1 = 0, and 𝑔1,0 = 0, 𝛽 > 0

Phase 1 ś Accumulate ROI balance buffer

1: while
∑︀

𝑡′∈[𝑡−1] 𝑔1,𝑡′ ≤
√
𝑇 log(𝑇 ) do

2: if 𝐵𝑡 +𝑀𝜌 > 𝜌𝑇 then

3: Terminate algorithm and output 𝜌 =
(︁

1
𝑇

∑︀
𝑡′∈[𝑡] 𝜌𝑗,𝑡′

)︁
𝑗∈[𝑀 ]

.

4: end if
5: Set per-channel budget to be 𝛽 for all channels. Observe conversion 𝑉𝑗(𝛽; 𝑧𝑡) for all 𝑗 ∈ [𝑀 ],

and calculate

𝑔1,𝑡 =
∑︁

𝑗∈𝑀

(𝑉𝑗(𝛽; 𝑧𝑡)− 𝛾𝛽) .

6: Calculate 𝐵𝑡+1 = 𝐵𝑡 +𝑀𝛽.
7: Increment 𝑡← 𝑡+ 1
8: end while
9: Denote end period of Phase 1 as 𝑇1 = 𝑡− 1.

Phase 2 ś Run SGD-UCB

10: For remaining 𝑇 − 𝑇1 periods, run SGD-UCB in Algorithm 1 with a spend balance check during
each period 𝑡:

11: if 𝐵𝑡 +𝑀𝜌 > 𝜌𝑇 then

12: Terminate and output 𝜌 =
(︁

1
𝑇

∑︀
𝑡′∈[𝑡] 𝜌𝑗,𝑡′

)︁
𝑗∈[𝑀 ]

.

13: else
14: Set per-channel budgets {𝜌𝑗,𝑡}𝑗∈[𝑀 ] according to SGD-UCB for all channels.
15: Update spend balance 𝐵𝑡+1 = 𝐵𝑡 +

∑︀
𝑗∈[𝑀 ] 𝜌𝑗,𝑡.

16: end if

Assumption 2.4.3 (Strictly feasible per-channel ROI constraints). Fix any channel

𝑗 ∈ [𝑀 ] and any realization of value-cost pairs 𝑧𝑗 = (𝑣𝑗,𝑑𝑗) ∈ 𝐹𝑗, the channel’s opti-

mization problem in Eq. 2.4 is strictly feasible, i.e. the set
{︀
𝑥𝑗 ∈ [0, 1]𝑚𝑗 : 𝑣⊤

𝑗 𝑥𝑗 > 𝛾𝑑⊤
𝑗 𝑥𝑗

}︀

is nonempty.7

Our strategy to bound the performance of SGD-UCB-II is as followed: In the

őrst phase, we show that we acquire sufficient ROI balance buffers to compensate for

7Equivalently, for any realization of value-cost pairs 𝑧𝑗 = (𝑣𝑗 ,𝑑𝑗) there always exists an auction
𝑛 ∈ [𝑚𝑗 ] in this channel whose value-to-cost ratio is at least 𝛾, i.e. 𝑣𝑗,𝑛 > 𝛾𝑑𝑗,𝑛.
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global ROI constraint violation in the second phase. On the other hand, conversion

loss in the second phase is solely due to SGD-UCB (Algorithm 1), and thus our proof

to bound such loss follows from similar ideas in Theorem 2.4.6 (but here we have to

additionally handle łearly stoppingž of UCB-SGD-II due to the spend balance check.

Note that in the őrst ROI balance buffer phase, we are not optimizing for per-

channel budgets which may lead to signiőcant per-period conversion loss. Nevertheless,

in the following lemma, we őrst show that the őrst ROI balance buffer phase does not

last too long; We refer readers to Appendix A.2.7 for the proof.

Lemma 2.4.7 (Bounding length of Phase 1). Recall 𝑇1 ∈ [𝑇 ] is the end period of

Phase 1 in the SGD-UCB-II algorithm (see step 10). Denote the event ℰ = {𝑇1 ≥
2
√
𝑇 log3(𝑇 )}, and take small budget 𝛽 = 1

log(𝑇 )
in the SGD-UCB-II algorithm. Then,

under Assumption 2.4.2, for large enough 𝑇 we have P (ℰ) ≤ 1
𝑇
.

Our main result in this subsection is the following Theorem 2.4.8 which bounds

the conversion loss of SGD-UCB-II. The proof is detailed in Appendix A.2.8.

Theorem 2.4.8. Suppose that Assumptions 2.4.1 and 2.4.3 hold. Let 𝑇2 ∈ [𝑇 ] be the

termination period of SGD-UCB-II (Algorithm 2), and recall 𝜌 =
(︁

1
𝑇

∑︀
𝑡∈[𝑇2]

𝜌𝑗,𝑡

)︁
𝑗∈[𝑀 ]

are the őnal outputs of the algorithm. Further, we input 𝛽 = 1
log(𝑇 )

to the algorithm

that is used for Phase 1, and in Phase 2 where we run SGD-UCB, we use the

same parameters as those in Theorem 2.4.6. Then, for large enough 𝑇 we have

GL-OPT −
∑︀

𝑗∈[𝑀 ] E
[︀
𝑉𝑗(𝜌𝑗)

]︀
≤ 𝒪(𝑇−1/3), and further

∑︀
𝑗∈[𝑀 ] E

[︀
𝑉𝑗(𝜌𝑗)− 𝛾𝜌𝑗

]︀
≥ 0

and
∑︀

𝑗∈[𝑀 ] E
[︀
𝜌𝑗
]︀
≤ 𝜌.

2.5 Generalizing to autobidding in multi-item auc-

tions

In previous sections, we assumed that each channel consists of multiple auctions,

each of which is associated with the sale of a single ad impression (see Eq. (2.4) and

discussions thereof). Yet, in practice, there are many scenarios in which ad platforms

sell multiple impressions in each auction (see e.g. [106, 46]). Thereby in this section,
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we extend all our results for the single-item auction setting in previous sections to the

multi-item auction setup. In Section 2.5.1, we formally describe the multi-item setup;

in Section 2.5.2 we show that in the multi-item setting, the per-budget ROI lever is

again redundant (similar to what is shown in Theorem 2.3.4 and Corollary 2.3.5),

and an advertiser can solely optimize over per-channel budgets to achieve the global

optimal conversion; in Section 2.5.3, we show our proposed UCB-SGD algorithm is

directly applicable to the multi-item auction setup for a broad class of auctions, and

similar to Theorem 2.4.6, our algorithm produces accurate lever estimates with which

the advertiser can approximate the globally optimal lever decisions.

2.5.1 Multi-item autobidding setup

We őrst formalize our multi-item setup as followed. For each auction 𝑛 ∈ [𝑚𝑗] of

channel 𝑗 ∈ [𝑀 ], assume 𝐿𝑗,𝑛 ∈ N impressions are sold, and channel 𝑗 is only allowed

to procure at most 1 impression in auction 𝑛 on the advertiser’s behalf. The value

acquired and cost incurred by the advertiser when procuring impression ℓ ∈ [𝐿𝑗,𝑛]

are 𝑣𝑗,𝑛(ℓ) and 𝑑𝑗,𝑛(ℓ), respectively. With a slight abuse of notation from previous

sections, we write 𝑣𝑗,𝑛 = (𝑣𝑗,𝑛(1), . . . 𝑣𝑗,𝑛(𝐿𝑗,𝑛)) ∈ R𝐿𝑗,𝑛

+ as the 𝐿𝑗,𝑛-dimensional vector

that includes all impression values of auction 𝑛 in channel 𝑗, and further write

𝑣𝑗 = (𝑣𝑗,1 . . .𝑣𝑗,𝑚𝑗
) ∈ R

∑︀
𝑛∈[𝑚𝑗 ]

𝐿𝑗,𝑛

+ as the vector that concatenates all value vectors

across auctions in channel 𝑗. We also deőne 𝑑𝑗,𝑛 ∈ R𝐿𝑗,𝑛

+ and 𝑑𝑗 ∈ R
∑︀

𝑛∈[𝑚𝑗 ]
𝐿𝑗,𝑛

+

accordingly for costs. Similar to Section 2.2, we assume 𝑧𝑗 = (𝑣𝑗,𝑑𝑗) is sampled from

őnite support 𝐹𝑗 according to discrete distribution 𝑝𝑗 for any channel 𝑗 ∈ [𝑀 ], and

without loss of generality, we assume that for any element 𝑧𝑗 ∈ 𝐹𝑗 , the value and costs

for individual impressions in any auction 𝑛 ∈ [𝑚𝑗 ] satisfy 𝑣𝑗,𝑛(1) > . . . > 𝑣𝑗,𝑛(𝐿𝑗,𝑛) > 0

and 𝑑𝑗,𝑛(1) > . . . > 𝑑𝑗,𝑛(𝐿𝑗,𝑛) > 0.

Under the above multi-item setup, an advertiser’s global optimization problem

(analogous to GL-OPT in Eq. (2.1) for the single-item auction setup in previous
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sections), can be written as the following problem called GL-OPT
+:

GL-OPT
+ =

max
(𝑥𝑗=(𝑥𝑗,1...,𝑥𝑗,𝑚𝑗

))
𝑗∈[𝑀 ]

∑︁

𝑗∈[𝑀 ]

E
[︀
𝑣⊤
𝑗 𝑥𝑗

]︀

s.t.
∑︁

𝑗∈[𝑀 ]

E
[︀
𝑣⊤
𝑗 𝑥𝑗

]︀
≥ 𝛾

∑︁

𝑗∈[𝑀 ]

E
[︀
𝑑⊤
𝑗 𝑥𝑗

]︀

∑︁

𝑗∈[𝑀 ]

E
[︀
𝑑⊤
𝑗 𝑥𝑗

]︀
≤ 𝜌

𝑥𝑗,𝑛 ∈ [0, 1]
∑︀

𝑛∈[𝑚𝑗 ]
𝐿𝑗,𝑛 and

∑︁

ℓ∈[𝐿𝑗,𝑛]

𝑥𝑗,𝑛(ℓ) ≤ 1, ∀𝑗 ∈ [𝑀 ], 𝑛 ∈ [𝑚𝑗]

(2.20)

Here 𝑥𝑗,𝑛 = (𝑥𝑗,𝑛(ℓ))ℓ∈[𝐿𝑗,𝑛] denotes the indicator vector for procuring impressions

ℓ ∈ 𝐿𝑗,𝑛 in auction 𝑛 ∈ [𝑚𝑗] of channel 𝑗 ∈ [𝑀 ]. Compared to GL-OPT, the key

difference for GL-OPT
+ is that we introduced additional constraints which states łat

most 1 impression is procured in every multi-item auctionž.

On the other hand, analogous to a channel’s autobidding problem for the single-

item auction setup in previous sections (Eq. (2.4)), in the multi-item setting each

channel 𝑗’s autobidding problem can be written as

𝑥
*,+
𝑗 (𝛾𝑗, 𝜌𝑗; 𝑧𝑗) = arg max

𝑥=(𝑥1...𝑥𝑚𝑗
)
𝑣⊤
𝑗 𝑥

s.t. 𝑣⊤
𝑗 𝑥 ≥ 𝛾𝑗𝑑

⊤
𝑗 𝑥, and 𝑑⊤

𝑗 𝑥 ≤ 𝜌𝑗

𝑥𝑛 ∈ [0, 1]𝐿𝑗,𝑛 and
∑︁

ℓ∈[𝐿𝑗,𝑛]

𝑥𝑛(ℓ) ≤ 1, ∀𝑛 ∈ [𝑚𝑗]

(2.21)

where 𝑥𝑛 = (𝑥𝑛(ℓ))ℓ∈[𝐿𝑗,𝑛] ∈ [0, 1]𝑚𝑗 denotes the (possibly random) vector of indicators

to win each impression of auction 𝑛 in channel 𝑗. With respect to this per-channel multi-

item auction optimization problem in Eq. (2.21), we can further deőne 𝑉 +
𝑗 (𝛾𝑗, 𝜌𝑗 ; 𝑧𝑗),

𝐷+
𝑗 (𝛾𝑗, 𝜌𝑗 ; 𝑧𝑗), 𝑉

+
𝑗 (𝛾𝑗, 𝜌𝑗), 𝐷

+
𝑗 (𝛾𝑗, 𝜌𝑗) as in Eq.(2.5), and CH-OPT

+(ℐ) as in Eq.(2.3)

for any advertiser lever option ℐ in Eq.(2.2).

56



2.5.2 Optimizing per-channel budgets is sufficient to achieve

global optimal

Our őrst main result for the multi-item setting is the following Theorem 2.5.1 which

again shows an advertiser can achieve the global optimal conversion GL-OPT
+ via

solely optimizing over per-channel budgets (analogous to Theorem 2.3.4 and Corollary

2.3.5).

Theorem 2.5.1 (Redundancy of per-channel ROIs in multi-slot auctions). For the

per-channel budget option ℐ𝐵 and general options ℐ𝐺 deőned in Eq.(2.2), we have

GL-OPT
+ = CH-OPT

+(ℐ𝐵) = CH-OPT
+(ℐ𝐺) for any aggregate ROI 𝛾 > 0 and

total budget 𝜌 > 0, even for 𝜌 = ∞. Further, there exists and optimal solution

(𝛾𝑗, 𝜌𝑗)𝑗∈[𝑀 ] to CH-OPT
+(ℐ𝐺), s.t. 𝛾𝑗 = 0 for all 𝑗 ∈ [𝑀 ].

It is easy to see that the proof of Lemma 2.3.1, Theorem 2.3.4, and Corollary 2.3.5

w.r.t. the single item setting in Section 2.3 can be directly applied to Theorem 2.5.1

since we did not rely on speciőc structures of the solutions to GL-OPT and CH-OPT

other than the presence of the respective ROI and budget constraints (which are still

present in GL-OPT
+ and CH-OPT

+). Thereby we will omit the proof of Theorem

2.5.1. In light of Theorem 2.5.1, we again conclude that the per-channel ROI lever is

redundant, and hence omit per-channel ROI 𝛾𝑗 when the context is clear.

2.5.3 Applying UCB-SGD to the multi-item setting

We now turn to our second main focus of the multi-item setting, which is to understand

whether our proposed UCB-SGD algorithm can achieve accurate approximations to

the optimal per-channel budgets, similar to Theorem 2.4.6 for the single-item setting.

A key observation is that the only difference between bounding the error of UCB-

SGD in the single and multi-item settings is the structure of the conversion and

corresponding Lagrangian functions (see Lemma 2.4.3), since the only change in the

multi-item setting compared to the single-item setting is how a given per-channel

budget translates into a certain conversion. Therefore, in this section we introduce a
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broad class of multi-item auction formats that induce the same conversion function

structural properties as those illustrated in Lemma 2.4.3, which will allows us to

directly apply the proof for bounding the error of UCB-SGD (Theorem 2.4.6) to the

multi-item setting of interest.

To begin with, we introduce the following notion of increasing marginal values,

which is a characteristic that preserves the structural properties for conversion and

Lagrangian functions from the single-item setting (in Lemma 2.4.3), as shown later in

Lemma 2.5.2.

Deőnition 2.5.1 (Multi-item auctions with increasing marginal values). We say

an auction 𝑛 ∈ [𝑚𝑗] in channel 𝑗 ∈ [𝑀 ] has increasing marginal values if for any

realization 𝑧𝑗 = (𝑣𝑗,𝑑𝑗), we have

𝑣𝑗,𝑛(1)− 𝑣𝑗,𝑛(2)
𝑑𝑗,𝑛(1)− 𝑑𝑗,𝑛(2)

> . . . >
𝑣𝑗,𝑛(𝐿𝑗,𝑛 − 1)− 𝑣𝑗,𝑛(𝐿𝑗,𝑛)

𝑑𝑗,𝑛(𝐿𝑗,𝑛 − 1)− 𝑑𝑗,𝑛(𝐿𝑗,𝑛)
>
𝑣𝑗,𝑛(𝐿𝑗,𝑛)

𝑑𝑗,𝑛(𝐿𝑗,𝑛)
> 0 ,

where we recall 𝑣𝑗,𝑛(1) > . . . > 𝑣𝑗,𝑛(𝐿𝑗,𝑛) > 0 and 𝑑𝑗,𝑛(1) > . . . > 𝑑𝑗,𝑛(𝐿𝑗,𝑛) > 0.

Increasing marginal values intuitively means that in some multi-item auction, the

marginal value per cost gained increases with procuring impressions of greater values.

Many classic position auction formats satisfy increasing marginal gains, such as the

VickreyśClarkeśGroves (VCG) auction; see [106, 46] for more details on position

auctions.

Example 2.5.1 (VCG auctions have increasing marginal values). Let auction 𝑛 ∈ [𝑚𝑗 ]

in channel 𝑗 ∈ [𝑀 ] be a VCG auction, where for any realization of (𝑣𝑗,𝑛,𝑑𝑗,𝑛) =

(𝑣𝑗,𝑛(ℓ), 𝑑𝑗,𝑛(ℓ))ℓ∈[𝐿𝑗,𝑛] there exists some ̃︀𝑣𝑛,𝑗 > 0, position discounts 1 ≥ 𝜃𝑛,𝑗(1) >

𝜃𝑛,𝑗(2) . . . 𝜃𝑛,𝑗(𝐿𝑛,𝑗) > 0, and 𝐿𝑛,𝑗-highest competing bids from competitors in the

market ̃︀𝑑𝑛,𝑗(1) > ̃︀𝑑𝑛,𝑗(2) . . . > ̃︀𝑑𝑛,𝑗(𝐿𝑛,𝑗) > 0, such that the acquired value for procuring

impression ℓ ∈ 𝐿𝑛,𝑗 is 𝑣𝑛,𝑗(ℓ) = 𝜃𝑛,𝑗(ℓ) · ̃︀𝑣𝑛,𝑗, and the corresponding cost is 𝑑𝑗,𝑛(ℓ) =
∑︀𝐿𝑗,𝑛

ℓ′=ℓ(𝜃𝑛,𝑗(ℓ
′)−𝜃𝑛,𝑗(ℓ′+1))̃︀𝑑𝑛,𝑗(ℓ′) where we denote 𝜃𝑛,𝑗(𝐿𝑗,𝑛+1) = 0.8 Thereby, under

8Here, the distribution over (𝑣𝑗,𝑛,𝑑𝑗,𝑛) can be viewed as the joint distribution over ̃︀𝑣𝑛,𝑗 ,
(𝜃𝑛,𝑗(ℓ))ℓ∈[𝐿𝑗,𝑛] and (̃︀𝑑𝑛,𝑗(ℓ))ℓ∈[𝐿𝑗,𝑛].
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VCG the marginal values are

𝑣𝑗,𝑛(ℓ)− 𝑣𝑗,𝑛(ℓ+ 1)

𝑑𝑗,𝑛(ℓ)− 𝑑𝑗,𝑛(ℓ+ 1)
=

(𝜃𝑛,𝑗(ℓ)− 𝜃𝑛,𝑗(ℓ+ 1)) ̃︀𝑣𝑗,𝑛
(𝜃𝑛,𝑗(ℓ)− 𝜃𝑛,𝑗(ℓ+ 1)) ̃︀𝑑𝑗,𝑛(ℓ)

=
̃︀𝑣𝑗,𝑛

̃︀𝑑𝑗,𝑛(ℓ)
,

which decreases in ℓ since ̃︀𝑑𝑛,𝑗(1) > ̃︀𝑑𝑛,𝑗(2) . . . > ̃︀𝑑𝑛,𝑗(𝐿𝑛,𝑗) > 0. Hence VCG auctions

admit increasing marginal values.

We remark that the generalized second price auction (GSP) does not necessarily

have increasing marginal values. Now, if all auctions in a channel have increasing

marginal values, then we can show the conversion function 𝑉 +
𝑗 (𝜌𝑗) and the correspond-

ing Lagrangian function for multi-item auctions admits the same structural properties

as those in Lemma 2.4.3:

Lemma 2.5.2 (Structural properties for multi-item auctions). For any channel

𝑗 ∈ [𝑀 ] whose auctions have increasing marginal values (see Deőnition 2.5.1), the

conversion function 𝑉 +
𝑗 (𝜌𝑗) = E

[︀
𝑣⊤
𝑗 𝑥

*,+
𝑗 (𝜌𝑗; 𝑧𝑗)

]︀
is continuous, piece-wise linear,

strictly increasing, and concave. Here recall 𝑥*,+
𝑗 (𝜌𝑗; 𝑧𝑗) is the optimal solution to

the channel’s optimization problem in Eq. (2.21). Further, for any dual variables

𝑐 = (𝜆, 𝜃) ∈ R2
+, the Lagrangian function ℒ+

𝑗 (𝜌𝑗, 𝑐) := (1 + 𝜆)𝑉 +
𝑗 (𝜌𝑗)− (𝜃 + 𝛾𝜆)𝜌𝑗 is

continuous, piece-wise linear, concave, and unimodal in 𝜌𝑗.

See the proof in Appendix A.3.1. In light of Lemma 2.5.2, we can argue that

UCB-SGD produces per-channel budgets that yield the same accuracy as in Theorem

2.4.6 for the single-item setting,

Theorem 2.5.3 (UCB-SGD applied to channel procurement for multi-item auctions).

Assume multi-item auctions in any channel 𝑗 ∈ [𝑀 ] has increasing marginal values

(per Deőnition 2.5.1), and assume Assumptions 2.4.1 and 2.4.2 hold for the multi-item

setting.9 Then with the same parameter choices as in Theorem 2.4.6, and recalling

9Assumption 2.4.1 in the multi-item setting again implies the spend in any channel is exactly the
input per-channel budget; Assumption 2.4.2 in the multi-item setting states that for any realization
of value-cost pairs 𝑧 = (𝑣𝑗 ,𝑑𝑗)𝑗∈[𝑀 ] ∈ 𝐹1 × . . . 𝐹𝑀 , the realized version of the ROI constraint in

GL-OPT
+ deőned in Eq. (2.20) is strictly feasible.
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𝜌𝑇 =
(︁

1
𝑇

∑︀
𝑡∈[𝑇 ] 𝜌𝑗,𝑡

)︁
𝑗∈[𝑀 ]

is the vector of time-averaged per-channel budgets produced

by UCB-SGD, we have

GL-OPT
+ −

∑︁

𝑗∈[𝑀 ]

E
[︀
𝑉 +
𝑗 (𝜌𝑇,𝑗)

]︀
≤ 𝒪(𝑇−1/3) ,

as well as approximate constraint satisfaction

∑︁

𝑗∈[𝑀 ]

E
[︀
𝑉 +
𝑗 (𝜌𝑇,𝑗)− 𝛾𝜌𝑇,𝑗

]︀
≥ −𝒪(𝑇−1/2), and 𝜌−

∑︁

𝑗∈[𝑀 ]

E[𝜌𝑇,𝑗] ≥ −𝒪(𝑇−1/2) ,

where we recall GL-OPT
+ is deőned in Eq. (2.20), 𝑉 +

𝑗 (𝜌𝑗) = E
[︀
𝑣⊤
𝑗 𝑥

*,+
𝑗 (𝜌𝑗; 𝑧𝑗)

]︀
and

𝑥
*,+
𝑗 (𝜌𝑗; 𝑧𝑗) is deőned in Eq. (2.21).

The proof for this theorem is identical to that of Theorem 2.4.6 given the same

structural properties of the conversion and Lagrangian functions in Lemma 2.5.2 and

Lemma 2.4.3. Hence we will omit the proof. Finally, we remark that UCB-SGD-II

(Algorithm 2) can also be applied to the multi-item setting and yield per-channel

budget estimates that achieve the same performance as illustrated in Theorem 2.4.8

while satisfying both global budget and ROI constraints exactly.

2.6 Additional discussions and future research

More general advertiser objectives

In GL-OPT and CH-OPT(ℐ) deőned Section 2.2 (or similarly GL-OPT
+ and

CH-OPT
+(ℐ) deőned in the multi-item setting in Section 2.5), we can also con-

sider more general objectives, namely max𝑥1,...,𝑥𝑀

∑︀
𝑗∈[𝑀 ] E

[︀
𝑣⊤
𝑗 𝑥𝑗 − 𝛼𝑑⊤

𝑗 𝑥𝑗

]︀
and

max(𝛾𝑗 ,𝜌𝑗)𝑗∈[𝑀 ]∈ℐ
∑︀

𝑗∈𝑀 E [𝑉𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)− 𝛼𝑉𝑗(𝛾𝑗, 𝜌𝑗; 𝑧𝑗)] for some private cost 𝛼 ∈
[0, 𝛾]10 in GL-OPT and CH-OPT(ℐ), respectively. When 𝛼 = 0, we recover our

considered models in the previous section, whereas in when 𝛼 = 1, we obtain the

classic quasi-linear utility. We remark that this private cost model has been introduced

10If 𝛼 > 𝛾 the ROI constraints in GL-OPT as well as CH-OPT(ℐ) become redundant.

60



and studied in related literature; see [13] and references therein. Nevertheless, when

each channel’s autobidding problem remains as is in Eq.(2.4), i.e. channels still aim to

maximize conversion which causes a misalignment between advertiser objectives and

channel behavior, it is not difficult to see in our proofs that all our results still hold in

Section 2.3, and our UCB-SGD algorithm still produces estimates of the same order of

accuracy via introducing 𝛼 into the Lagrangian. In other words, even if channels aim

to maximize total conversion for advertisers, advertisers can optimize for GL-OPT

with a private cost 𝛼 through optimizing CH-OPT(ℐ) that also incorporates the same

private cost.

Future research on non-optimal autobidding in channels

We recall in previous sections we assumed that each channel adopts łoptimal autobid-

dingž that solves Eq. (2.4) to optimality. This raises the natural question that whether

our őndings will still hold when channels do not procure ads optimally, perhaps be-

cause of non-stationary environments [22, 85, 29], or the presence of strategic market

participants who aim to manipulate the market [54, 42, 63, 55]. In such a scenario, an

advertiser’s (bandit) conversion feedback in a channel 𝑗 would be 𝑉 (𝛾𝑗, 𝜌𝑗 ; 𝑧𝑗)− 𝜖𝑗 for

some channel-speciőc and possibly adversarial loss 𝜖𝑗 > 0. One potential resolution is

to treat such 𝜖𝑗 as adversarial corruptions to bandit rewards, and instead of integrating

vanilla UCB with SGD as in Algorithm 1, augment SGD with bandit algorithms

that are robust to robust corruptions; see e.g. [86, 64]. Nevertheless, it remains

an open question to prove how such augmentation would perform in our speciőc

bandit-feedback constrained optimization setup. This leads to potential research

directions of both practical and theoretical signiőcance.
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Chapter 3

Learning to price against strategic

buyers

This chapter is based on [54], which is joint work with Negin Golrezaei and Patrick

Jaillet.
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3.1 Introduction

In the previous Chapter 2 we studied how advertisers can effectively interact with

autobidding ecosystems to procure ads from ad platforms, and abstracted away from

details on the procurement algorithms and selling mechanisms run by platforms. In

this chapter, we turn to investigate an ad platform’s problem to design ad selling

mechanisms that speciőcally take the form of ad auctions with reserve prices, which

is arguably one of the most widely adopted forms of selling mechanisms in online

advertising; see e.g. [106, 46, 94, 39, 49].

To put the ad platform’s auction design problem in more context, consider an

autobidding ecosystem for display ads: when a user makes a request (e.g. viewing

a webpage or mobile app), the ad platform receives the request and triggers an ad

auction, in which automated procurement (i.e. bidding) algorithms compete on behalf

of advertisers for the auctioned łitemž-the opportunity to display an ad to the user. It

is important to note that user requests are highly heterogeneous, meaning that users’

preferences, or likelihood of clicking the ad, vary. Such variation in user preferences

can be characterized by user features which are typically modelled as contexts of the

auctioned item [54]. From an ad platform’s perspective, both the advertiser-platform

interaction component and the automated procurement component can be perceived as

virtual buyers directly submitting bids according to some algorithm that aims to satisfy

certain objectives (i.e. the corresponding advertisers’ procurement goals). Under

this view, this chapter focuses on the problem of designing dynamic reserve pricing

policies for highly heterogeneous items against strategic buyers whose bidding behavior

may aim to manipulate the platform’s pricing policies. This involves learning buyers’

demand, which is a mapping from item context and offered prices to the likelihood of

the item being sold, under limited understanding of buyers’ bidding behavior. The

key goal of this chapter is to develop effective and robust dynamic pricing polices that

facilitate such a complex learning process for very general non-parametric contextual

demand curves facing strategic buyers.

Formally, we study the setting wherein any period 𝑡 over a őnite time horizon
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𝑇 , a seller (i.e. an ad platform) sells one item (i.e. an ad impression) to buyers via

running a second price auction with a reserve price. The item is characterized by

a 𝑑-dimensional context vector 𝑥𝑡, public to the seller and buyers. We consider an

interdependent contextual valuation model in which a buyer’s valuation for the item is

the sum of common and private components. The common component determines the

expected willingness-to-pay of buyers and is the inner product of the feature vector

and a őxed łmean vector" 𝛽 that is homogeneous across buyers; the private component,

which captures buyers’ idiosyncratic preferences, is independently sampled from an

unknown non-parametric noise distribution 𝐹 . We note that such a linear valuation

model is very common in the literature of dynamic pricing; e.g. see [57, 71, 74, 70].

Under this interdependent contextual valuation model, we study a strategic setting

where buyers intend to maximize long-term discounted utility and may consequently

submit corrupted, i.e., untruthful bids. The motivation of this strategic setting comes

from the repeated buyer-seller interactions when the seller does not possess full

information on buyers’ demand and aims to learn it using buyers’ submitted bids. In

a single-shot second price auction, where there is no repeated interactions between the

seller and buyers, bidding truthfully is a buyer’s weakly dominant action. However,

this is no longer the case in our repeated second price auction setting: repeated

auctions may incentivize the buyers to submit corrupted bids, rather than their true

valuations, in order to manipulate seller’s future reserve prices; e.g. by underbidding,

buyers may trick the seller to lower future reserve prices.

In this chapter, we would like to design a reserve price policy for the seller who does

not know the mean vector 𝛽 and the noise distribution 𝐹 . The policy dynamically

learns/optimizes contextual reserve prices while being robust to corrupted data (bids),

submitted by strategic buyers. In particular, our objective is to minimize our policy’s

regret computed against a clairvoyant benchmark policy that knows both 𝛽 and 𝐹 .

Designing low-regret policies in our setting involves overcoming the following challenges:

(i) The demand curve is constantly shifting due to the change in contexts over time.

(ii) The shape of the demand curve is unknown due to the lack of information on

the market noise distribution 𝐹 which may not enjoy a parametric functional form.
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Furthermore, we do not impose the Monotone Hazard Rate (MHR)1 assumption on 𝐹 .

While the MHR assumption is common in the related literature and can signiőcantly

simplify reserve price optimization (see e.g. Remark 3.3.1), it has been shown to fail

in practice (see [27, 60]). (iii) As stated earlier, in our strategic setting, buyers may

take advantage of the seller’s lack of knowledge about buyers’ demand and submit

corrupted bids to manipulate future reserve prices.

Main contribution. We develop a policy called Non-Parametric Contextual

Policy against Strategic Buyers (NPAC-S) that enables the seller to efficiently learn

the optimal contextual reserve prices while being robust against buyers’ corrupted

bids. Our policy design incorporates two simple yet effective features, namely a phased

structure and random isolation. First, NPAC-S partitions the entire horizon into

consecutive phases, and then estimates the mean vector and the distributions of the

second-highest and highest valuations only using data from the previous phase. This

reduces the buyers’ manipulating power on future reserve prices as past corrupted

bids prior to the previous phase will not affect future pricing decisions. Second, the

NPAC-S policy incorporates randomized isolation periods, that is, in each period with

some probability the seller chooses a particular buyer at random and let her be the

single participant of the auction during this period. In these isolation periods, the

isolated buyer faces no competition from other buyers, and hence may incur large

utility loss if a signiőcantly corrupted bid is submitted.2

For our main theoretical results, we show that in virtue of our isolation periods in

our design of NPAC-S, the number of past periods with large corruptions is 𝒪(log(𝑡))
for any period 𝑡 via leveraging the fact that buyers aim to maximize their long-term

discounted utility. Furthermore, we present novel high probability bounds for our

estimation errors in 𝛽 and 𝐹 which are estimated by ordinary least squares and

empirical distributions, respectively, with the presence of corrupted bids. Finally, in

1Distribution 𝐹 is MHR if 𝑓(𝑧)
1−𝐹 (𝑧) is non-decreasing in 𝑧, where 𝑓 is the corresponding pdf.

2In the isolation periods, when the valuation of the isolated buyer is greater than the reserve price,
signiőcantly underbidding may cause the item to not be allocated; when the valuation of the isolated
buyer is lower than the reserve price, overbidding results in the buyer paying much higher prices
(relative to valuation) to achieve the item. In either case, the isolated buyer will incur a signiőcant
utility loss compared to truthful bidding.
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Theorem 3.4.2, we show that the NPAC-S policy achieves a regret of 𝒪̃(𝑑
√
𝑇 ) for

general non-parametric distributions 𝐹 against a clairvoyant benchmark policy.

Related works

Here we discuss related works that study dynamic pricing against strategic buyers

with stochastic valuations, 3.

Both [6, 7] study a dynamic pricing problem in a posted price auction against a

single strategic buyer. [6] addresses the non-contextual stochastic valuation setting,

where as [7] studies a linear contextual valuation model, but with no market noise

disturbance. [7] proposes an algorithm that achieves ̃︀𝒪(𝑇 2/3) regret in contrast with

our regret of ̃︀𝒪(
√
𝑇 ) using the NPAC-S policy. We point out that this is because the

seller in their setting only observes the outcome of the auction (i.e. bandit feedback),

while in our setting we assume that seller can examine all submitted bids. Our setting

is more complex compared to [6, 7] as we handle the contextual pricing problem against

multiple strategic buyers, and also deals with the issue of learning a non-parametric

distribution function in the presence of strategic buyer behavior. [74] consider a

contextual buyer valuation model similar to ours (but with the MHR assumption on

the market noise distribution) and proposes a pricing algorithm that sets personalized

reserve prices for individual buyers. They argue that the design of their algorithm

induces an equilibrium where buyers always bid truthfully, and then further assume

buyers act according to this equilibrium. This chapter distinguishes itself from two

aspects. First, setting personalized reserve prices in [74] rely crucially on the MHR

assumption, and in this chapter we relax this assumption such that our methodology

works for a larger class of market noise distributions. Second, we consider more

general buyers who do not necessarily play any equilibrium and are forward looking.

[57] study a similar interdependent contextual valuation model to ours, but with

3The general theme of learning in the presence of strategic agents or corrupted information has
also been studied in other applications; see, for example, [28, 23, 51]. There are also related works
that study adversarial buyer valuations. For example, [41] studies the seller’s pricing problem for
repeated second-price auctions facing multiple strategic buyers with private valuations őxed overtime.
In addition, buyers in this chapter also seek to maximize cumulative discounted utility. The paper
proposes an algorithm that achieves 𝒪(log log(𝑇 )) regret for worst-case (adversarial) valuations.
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heterogeneous mean vector 𝛽 across agents. This chapter distinguishes itself from

[57] in two major ways. First, they focus on optimizing contextual reserve w.r.t. the

worst-case distribution among a known class of MHR market noise distributions. In

contrast, this chapter relaxes this constraint and does not require the seller to have

any prior knowledge on the possibly non-parametric distribution. Second, in their

setting, the seller only utilizes the outcome of the auctions to learn buyer demand

and results in a regret of ̃︀𝒪(𝑇 2/3).4 In this chapter, we exploit the information of

all submitted bids by taking advantage of the fact that buyers’ utility-maximizing

behaviour constrains their degree of corruption on bids. This eventually allows us to

achieve an improved regret of ̃︀𝒪(
√
𝑇 ). Nevertheless, our proposed algorithm cannot

not handle heterogeneous 𝛽’s, and hence this will be an interesting future research

direction. [42] studies the posted price selling problem against a strategic agent with

a non-linear (stochastic) contextual valuation model that satisőes some Lipschitz

condition with no additive noise.

We summarize some key differences in the settings/results of the aforementioned

works in Table 3.1.

3.2 Preliminaries

Notation. For 𝑎 ∈ N+, denote [𝑎] = {1, 2, . . . , 𝑎}. For two vectors 𝑥, 𝑦 ∈ R𝑑, denote

⟨𝑥, 𝑦⟩ as their inner product. Finally, I{·} is the indicator function: I{𝒜} = 1 if event

𝒜 occurs and 0 otherwise.

We consider a seller who runs repeated second price auctions over a horizon

with length 𝑇 that is unknown to the seller. In each auction 𝑡 ∈ [𝑇 ], an item is

sold to 𝑁 buyers, where the item is characterized by a 𝑑-dimensional feature vector

𝑥𝑡 ∈ 𝒳 ⊂ {𝑥 ∈ R𝑑 : ‖𝑥‖∞ ≤ 𝑥max} where 0 < 𝑥max < ∞. We assume that 𝑥𝑡 is

independently drawn from some distribution 𝒟 unknown to the seller. We deőne Σ as

4A recent work [35] builds on the result of [57] by considering a stronger benchmark that knows
future buyer valuation distributions (noise distribution and all the future contextual information).
They design robust pricing schemes whose regret is 𝒪(𝑇 5/6) against the aforementioned benchmark,
conőrming the generalizability of pricing schemes in [57].
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Algorithm # buyers Context Noise/value dist. Disc. util. Regret

Phased [6] 1 False Lipschitz True Sublinear5

LEAP [7] 1 True No additive noise True 𝒪(𝑇 2/3)
PELS [42] 1 True No additive noise True 𝒪(𝑇 𝑑/(𝑑+1))

HO-SERP [75] ≥ 2 True MHR False 𝒪(
√
𝑇 )

SCORP [57] ≥ 2 True MHR True 𝒪(𝑇 2/3)

NPAC-S ≥ 2 True Non-parametric True 𝒪(
√
𝑇 )

Table 3.1: Summary of settings and results for seller algorithms that sell against
strategic agents with stochastic valuations. Note that the Discount util. column
indicates whether the algorithm deals with buyers who discount their long-term
utilities. Note that HO-SERP[75] and SCORP [57] set personalized reserve prices for
each buyer, whereas NPAC-S sets a single reserve for all buyers. PELS in [42] learns
a non-linear contextual valuation model and hence yields larger regret. Among all
algorithms, only SCORP [57] handles heterogeneous 𝛽 across buyers.

the covariance matrix of distribution 𝒟.6 We assume that Σ is positive deőnite and

unknown to the seller, and deőne the smallest eigenvalue of Σ to be 𝜆0 > 0.

Buyer valuation model. We focus on an interdependent valuation model

where the valuation of buyer 𝑖 ∈ [𝑁 ] at time 𝑡 ∈ [𝑇 ]is given by 𝑣𝑖,𝑡 = ⟨𝛽, 𝑥𝑡⟩ + 𝜖𝑖,𝑡.

Here, 𝛽 is called the mean vector and is őxed over time and unknown to the seller,

while 𝜖𝑖,𝑡 is idiosyncratic market noise sampled independently over time and across

buyers from some time-invariant distribution 𝐹 with probability density function 𝑓 ,

both unknown to the seller. Furthermore, 𝐹 has bounded support (−𝜖max, 𝜖max), in

which its probability density function is bounded by 𝑐𝑓 := sup𝑧∈[−𝜖max,𝜖max] 𝑓(𝑧) ≥
inf𝑧∈[−𝜖max,𝜖max] 𝑓(𝑧) > 0. The support boundary 𝜖max is not necessarily known to the

seller. We assume there exist 𝑣max > 0 so that 𝑣𝑖,𝑡 ∈ [0, 𝑣max] for all 𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ].

We highlight that our setting does not enforce distribution 𝐹 to be parametric

nor to satisfy the MHR assumption. This is because via analyzing real auction data

sets, it has been shown that the MHR assumption does not necessarily hold in online

advertising markets [27, 60].

Repeated contextual second price auctions with reserve. The contextual

6The covariance matrix of a distribution 𝒫 on R𝑑 is deőned as E𝑥∼𝒫 [𝑥𝑥
⊤] − 𝜇𝜇⊤, where 𝜇 =

E𝑥∼𝒫 [𝑥].
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second price auction with reserve is described as followed for 𝑁 ≥ 2 buyers: In any

period 𝑡 ≥ 1, a context vector 𝑥𝑡 ∼ 𝒟 is revealed to the seller and buyers. The

seller then computes reserve price 𝑟𝑡, while simultaneously each buyer 𝑖 ∈ [𝑁 ] forms

individual valuations 𝑣𝑖,𝑡 and submits a bid 𝑏𝑖,𝑡 to the seller. Let 𝑖⋆ = argmax𝑖∈[𝑁 ] 𝑏𝑖,𝑡

be the buyer who submitted the highest bid.7 If 𝑏𝑖⋆,𝑡 ≥ 𝑟𝑡, the item is allocated

to buyer 𝑖⋆ and he is charged the maximum between the reserve price and second

highest bid, i.e. buyer 𝑖⋆ pays 𝑝𝑖⋆,𝑡 = max{𝑟𝑡,max𝑖 ̸=𝑖⋆ 𝑏𝑖,𝑡}. For any other buyer 𝑖 ̸= 𝑖⋆,

the payment 𝑝𝑖,𝑡 = 0. In the case where 𝑏𝑖⋆,𝑡 < 𝑟𝑡, the item is not allocated and all

payments are zero.

Here, the seller’s reserve price 𝑟𝑡 can only depend on 𝑥𝑡 and the history set

ℋ𝑡−1 := {(𝑟1, {𝑏𝑖,1}𝑖∈[𝑁 ], 𝑥1), . . . , (𝑟𝑡−1, {𝑏𝑖,𝑡−1}𝑖∈[𝑁 ], 𝑥𝑡−1)} which includes all informa-

tion available to the seller up to period 𝑡− 1.

Buyers’ bidding behavior. In the setting where buyers are strategic, we assume

that in any period 𝑡, each buyer 𝑖 ∈ [𝑁 ] aims at maximizing his long-term discounted

utility 𝑈𝑖,𝑡:

𝑈𝑖,𝑡 :=
𝑇∑︁

𝜏=𝑡

𝜂𝜏E [𝑣𝑖,𝜏𝑤𝑖,𝜏 − 𝑝𝑖,𝜏 ] , (3.1)

where 𝜂 ∈ (0, 1) is the discount factor, 𝑤𝑖,𝑡 ∈ {0, 1} indicates whether buyer 𝑖 wins

the item; the expectation is taken with respect to the randomness due to the noise

distribution 𝐹 , the context distribution 𝒟, buyers’ bidding behavior, and the seller’s

pricing policy. We point out that this discounted utility model illustrates the fact that

buyers are less patient than the seller, and is a common framework in many dynamic

pricing literature; see [6, 7, 57], and [84]. The motivation lies in many applications in

online advertisement markets wherein the user traffic is usually very uncertain and as

a result, advertisers (buyers) would not like to miss out an opportunity of showing

their ads to targeted users. An alternative interpretation for the above discounted

utility model is that each buyer has probability 𝜂 of leaving the repeated auctions,

and thereby the expected cumulative utility of each bidder is exactly Eq. (3.1). It is

7No ties will occur since we assume that no valuations and bids are the same.
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worth noting that [6] showed, in the case of a single buyer, it is not possible to obtain

a no-regret policy when 𝜂 = 1, that is, when the buyer is as patient as the seller.

Furthermore, we assume buyers corrupt their true valuations in an additive manner:

∀𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ] 𝑏𝑖,𝑡 = 𝑣𝑖,𝑡 − 𝑎𝑖,𝑡 where |𝑎𝑖,𝑡| ≤ 𝑎max .

Here, 𝑎𝑖,𝑡 is called the degree of corruption, and we refer to the buyer behavior of

submitting a bid 𝑏𝑖,𝑡 ≠ 𝑣𝑖,𝑡 (i.e., 𝑎𝑖,𝑡 ≠ 0) as łcorrupted biddingž. Note that when

𝑎𝑖,𝑡 > 0, the buyer shades her bid, and when 𝑎𝑖,𝑡 < 0, the buyer overbids. Essentially,

a buyer 𝑖’s strategic behavior is equivalent to deciding on a non-zero value of 𝑎𝑖,𝑡. In

this work, we impose no restrictions on the degree of corruption 𝑎𝑖,𝑡 for a buyer 𝑖 in

period 𝑡 other than it is bounded. 8

3.3 Benchmark and seller’s regret

The seller’s revenue in period 𝑡 ∈ [𝑇 ] is the sum of total payments from all buyers,

and the expected revenue given context 𝑥𝑡 ∈ 𝒳 and reserve price 𝑟𝑡 is

rev𝑡(𝑟𝑡) := E
[︁ ∑︁

𝑖∈[𝑁 ]

𝑝𝑖,𝑡

⃒⃒
⃒ 𝑥𝑡, 𝑟𝑡

]︁
,

where 𝑝𝑖,𝑡 = max{𝑏−𝑡 , 𝑟𝑡}I{𝑏𝑖,𝑡 ≥ max{𝑏+𝑡 , 𝑟𝑡}} .
(3.2)

Here, 𝑏−𝑡 and 𝑏+𝑡 are the second-highest and highest bids in period 𝑡, respectively;

the expectation is taken with respect to the noise distribution in period 𝑡 and any

randomness in the reserve price 𝑟𝑡 as well as bid values submitted by buyers in period

𝑡 (as buyers’ bidding strategies may be randomized).

The seller’s objective is to maximize his expected revenue over a őxed time horizon

𝑇 through optimizing contextual reserve prices 𝑟𝑡 for any 𝑡 ∈ [𝑇 ]. To evaluate any

seller pricing policy, we compare its total revenue against that of a benchmark policy

run by a clairvoyant seller who knows the mean vector 𝛽 and the non-parametric

8A bound for the degree of corruption is natural as buyers always submit non negative bids and
all bids are bounded by 𝑣max.
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noise distribution 𝐹 . This clairvoyant seller’s benchmark policy sets the łoptimalž

contextual reserve price in each period to obtain the maximum achievable revenue

max𝑟 rev𝑡(𝑟) in each period, and hence facing such a seller there will be no incentive

for buyers’ to corrupt their bids. To provide a more formal deőnition for the revenue

of the clairvoyant seller as well as łoptimalityž in contextual reserve prices, we rely on

the following proposition that characterizes the seller’s conditional expected revenue

when buyers bid truthfully.

Proposition 3.3.1 (Seller’s Revenue with Truthful Buyers). Consider the case of

𝑁 ≥ 2 buyers who bid their true valuations, i.e., 𝑣𝑖,𝑡 = 𝑏𝑖,𝑡 for any 𝑖 ∈ [𝑁 ] and 𝑡 ∈ [𝑇 ].

Conditioned on the reserve price 𝑟𝑡 and the current context 𝑥𝑡 ∈ 𝒳 , the seller’s single

period expected revenue in Equation (3.2) is

∫︁ ∞

−∞
𝑧𝑑𝐹−(𝑧) + ⟨𝛽, 𝑥𝑡⟩+

∫︁ 𝑟𝑡

0

𝐹−(𝑧 − ⟨𝛽, 𝑥𝑡⟩)𝑑𝑧

− 𝑟𝑡
(︀
𝐹+(𝑟𝑡 − ⟨𝛽, 𝑥𝑡⟩)

)︀
,

(3.3)

where for any 𝑧 ∈ R, 𝐹−(𝑧) := 𝑁𝐹𝑁−1(𝑧)− (𝑁 − 1)𝐹𝑁(𝑧) and 𝐹+(𝑧) := 𝐹𝑁(𝑧).

The proof for this proposition is detailed in Appendix B.1.1. In Proposition 3.3.1,

𝐹+(·) and 𝐹−(·) are the cumulative distribution functions of 𝜖+𝑡 := 𝑣+𝑡 − ⟨𝛽, 𝑥𝑡⟩ and

𝜖−𝑡 := 𝑣−𝑡 − ⟨𝛽, 𝑥𝑡⟩ respectively, where 𝑣+𝑡 and 𝑣−𝑡 are the highest and second highest

valuations in period 𝑡 ∈ [𝑇 ].

In light of Proposition 3.3.1, we deőne the benchmark policy of the clairvoyant

seller as followed,

Deőnition 3.3.1 (Benchmark Policy). The benchmark policy knows the mean vector

𝛽 and noise distribution 𝐹 , and sets the reserve price for a context vector 𝑥 ∈ 𝒳 as

𝑟⋆(𝑥)

= argmax
𝑦≥0

∫︁ 𝑦

0

𝐹−(𝑧 − ⟨𝛽, 𝑥⟩)𝑑𝑧 − 𝑦
(︀
𝐹+(𝑦 − ⟨𝛽, 𝑥⟩)

)︀
.

(3.4)

Therefore, the benchmark reserve price in period 𝑡, denoted by 𝑟⋆𝑡 , is 𝑟⋆(𝑥𝑡), and the
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corresponding optimal revenue, denoted by REV⋆
𝑡 , is equal to

∫︁ ∞

−∞
𝑧𝑑𝐹−(𝑧) + ⟨𝛽, 𝑥𝑡⟩+

∫︁ 𝑟⋆(𝑥𝑡)

0

𝐹−(𝑧 − ⟨𝛽, 𝑥𝑡⟩)𝑑𝑧

− 𝑟⋆(𝑥𝑡)
(︀
𝐹+(𝑟⋆(𝑥𝑡)− ⟨𝛽, 𝑥𝑡⟩)

)︀
.

Remark 3.3.1. When distribution 𝐹 satisőes the MHR assumption, the objective

function of the optimization problem in Equation (3.4) is unimodal in the deci-

sion variable 𝑦, and according to [57], 𝑟⋆(𝑥) can be simpliőed as follows: 𝑟⋆(𝑥) =

argmax𝑦≥0 𝑦(1−𝐹 (𝑦− ⟨𝛽, 𝑥⟩)). In words, the MHR assumption decouples the reserve

price optimization problem for multiple agents to the much simpler monopolistic pricing

for each individual agent.

We observe this benchmark provides an optimal mapping from the feature vector

𝑥𝑡 to reserve price 𝑟⋆(𝑥𝑡), which remains unchanged over time as the mean vector 𝛽

and noise distribution 𝐹 are time-invariant. This echoes our earlier point that pricing

is challenging in our contextual setting since we would need to approximate or learn

the optimal mapping 𝑟⋆(·), whereas in non-contextual environments it is sufficient to

learn a single optimal reserve price value.

We now proceed to deőne the regret of a policy 𝜋 (possibly random) when the

regret is measured against the benchmark policy. Suppose that in any period 𝑡, policy

𝜋 selects reserve price 𝑟𝜋𝑡 . Then, the regret of policy 𝜋 in period 𝑡 and its cumulative

𝑇 -period regret are deőned as:

Regret𝜋(𝑇 ) =
∑︁

𝑡∈[𝑇 ]

E [REV⋆
𝑡 − rev𝑡(𝑟

𝜋
𝑡 )] , (3.5)

where the optimal revenue REV⋆
𝑡 is given in Deőnition 3.3.1, and the expectation is

taken with respect to the context distribution 𝒟 as well as the possible randomness in

the actual reserve price 𝑟𝜋𝑡 . Our goal is to design a policy that obtains a low regret for

any 𝛽, 𝐹 , and context distribution 𝒟.
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3.4 The NPAC-S Policy

In this section, we őrst propose a policy called Non-Parametric Contextual Policy

against Strategic Buyers (NPAC-S) to maximize seller’s expected revenue in our

strategic setting. Then, we provide insights into how our design in NPAC-S makes the

policy robust to buyer strategic behavior, and in turn allows the policy to learn the

mean vector 𝛽 and noise distribution 𝐹 efficiently. Finally, we present theoretical regret

guarantees for NPAC-S against the clairvoyant benchmark described in Deőnition

3.3.1 that sets the optimal contextual reserve price deőned in Equation (3.4).

The NPAC-S policy. The detailed NPAC-S policy is shown in Algorithm 3,

and consists of three main components. (i) Phased Structure: NPAC-S partitions 𝑇

into consecutive phases, where each phase ℓ ≥ 1, denoted as 𝐸ℓ, has length 𝑇 1−2−ℓ

.

This implies |𝐸1| =
√
𝑇 and |𝐸ℓ|/

√︀
|𝐸ℓ−1| =

√
𝑇 . Here, we can establish that the

total number of phases can be upper bounded by ⌈log2(log2(𝑇 ))⌉+ 1. (ii) Estimation

for 𝛽, 𝐹− and 𝐹+: At the end of each phase, NPAC-S uses the submitted bids

from the pervious phase and employs Ordinary Least Squares (OLS) and empirical

distributions to estimate the mean vector 𝛽 as well as 𝐹 , respectively. (iii) Random

isolation: NPAC-S incorporates random isolation periods in which a single buyer is

chosen at random, and the item is auctioned to this isolated buyer (i.e. the seller only

considers the bid of the isolated buyer and ignores bid from other buyers).9 Note that

when a buyer 𝑖 is isolated, the buyer wins the item if and only if his bid is greater than

the reserve price, and pays the reserve price if he wins. Here, the seller’s pricing policy

is announced to all buyers (at 𝑡 = 0) so that buyers examine the policy and have the

freedom to adopt any bidding strategy to maximize their long term discounted utility.

Remark 3.4.1. Here, we comment on how one can solve the reserve price optimization

problem in Equation (3.7). The key observation is that for any period 𝑡, ̂︀𝐹ℓ(·) is a

step function with jumps at points in the őnite set 𝒞ℓ := {𝑏𝑖,𝜏 − ⟨̂︀𝛽ℓ, 𝑥𝜏 ⟩}𝑖∈[𝑁 ],𝜏∈𝐸ℓ−1
.

9The seller discloses her commitment to the random isolation protocol to all buyers at 𝑡 = 0, and
it is not necessary for the seller to reveal, during an isolation period, which buyer is being isolated.

10For a matrix 𝐴, 𝐴† represents its pseudo inverse, so if 𝐴 is invertible, we have 𝐴† = 𝐴−1. In
Lemma B.2.1 of Appendix B.2.1, we show that with high probability

∑︀
𝜏 𝑥𝜏𝑥

⊤
𝜏 is positive deőnite,

and hence invertible.
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Algorithm 3 Non-Parametric Contextual Policy against Strategic Buyers (NPAC-S)

1: Initialize ̂︀𝛽1 = 0, and ̂︀𝐹−
1 (𝑧) = ̂︀𝐹+

1 (𝑧) = 0 for ∀𝑧 ∈ R.
2: for phase ℓ ≥ 1 do
3: for 𝑡 ∈ 𝐸ℓ do
4: Isolation: With probability 1/|𝐸ℓ|, choose one buyer uniformly at random and offer price

𝑟𝑢𝑡 ∼ Uniform(0, 𝑣max) . (3.6)

5: No Isolation: With probability 1− 1/|𝐸ℓ|, set reserve price for all buyers as

̂︀𝑟𝑡 = arg max
𝑦∈[0,𝑣max]

∫︁ 𝑦

0

̂︀𝐹−
ℓ (𝑧 − ⟨̂︀𝛽ℓ, 𝑥𝑡⟩)𝑑𝑧 − 𝑦 · ̂︀𝐹+

ℓ (𝑦 − ⟨̂︀𝛽ℓ, 𝑥𝑡⟩) . (3.7)

6: Observe all bids {𝑏𝑖,𝑡}𝑖∈[𝑁 ]

7: end for
8: Update estimate of the mean vector 𝛽: 10

̂︀𝛽ℓ+1 = (
∑︁

𝜏∈𝐸ℓ

𝑥𝜏𝑥
⊤
𝜏 )

† · (
∑︁

𝜏∈𝐸ℓ

𝑥𝜏 𝑏̄𝜏 ) , (3.8)

where 𝑏̄𝜏 = 1
𝑁

∑︀
𝑖∈[𝑁 ] 𝑏𝑖,𝜏 .

9: Update the estimate of 𝐹+ and 𝐹−:

̂︀𝐹−
ℓ+1(𝑧) = 𝑁 ̂︀𝐹𝑁−1

ℓ+1 (𝑧)− (𝑁 − 1) ̂︀𝐹𝑁
ℓ+1(𝑧)

̂︀𝐹+
ℓ+1(𝑧) =

̂︀𝐹𝑁
ℓ+1(𝑧) .

(3.9)

where ̂︀𝐹ℓ+1(𝑧) is deőned as

̂︀𝐹ℓ+1(𝑧) =
1

𝑁 |𝐸ℓ|
∑︁

𝜏∈𝐸ℓ

∑︁

𝑖∈[𝑁 ]

I(𝑏𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧), (3.10)

10: end for

This implies that in order to solve for 𝑟𝑡 in Equation (3.7), it suffices to conduct a

grid search for ∀𝑦 ∈ 𝒞ℓ. More speciőcally, we let {𝑧(0), 𝑧(1), . . . 𝑧(𝑀)} be the ordered list

(in increasing order) of all elements in 𝒞ℓ ∪ {0}, where 𝑧(0) := 0 and 𝑀 := |𝒞ℓ| (here,
we assumed that 0 /∈ 𝒞ℓ without loss of generality). Hence, 𝑟𝑡 is equal to

arg max
𝑚∈[𝑀 ]

𝑚∑︁

𝑗=1

̂︀𝐹−
ℓ (𝑧(𝑗) − ⟨̂︀𝛽ℓ, 𝑥𝑡⟩) · (𝑧(𝑗) − 𝑧(𝑗−1))

− 𝑧(𝑚) ̂︀𝐹+
ℓ (𝑧(𝑚) − ⟨̂︀𝛽ℓ, 𝑥𝑡⟩) .

This shows that the complexity to solve Equation (3.7) is 𝒪(𝑀2). More detailed

discussions and efficient algorithms regarding related problems can be found in [90].
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Motivation for design of NPAC-S. Here we provide some insights into the

design of the NPAC-S policy, particularly the phased structure and the incorporation

of random isolation periods.

Due to the phased structure of the algorithm, our estimates for 𝛽, 𝐹−, and 𝐹+ only

depend on the bids and contextual features in the previous phase. Thus, corrupted

bids submitted by buyers in past periods will have no impact on future estimates as

well as pricing decisions. One can think of this as erasing all memory prior to the

previous phase and restarting the algorithm, which can potentially reduce buyers’

manipulating power on our estimates and reserve prices.

We now discuss the impact of having isolation periods. As all buyers are aware of

the randomized isolation protocol, the presence of isolation periods restricts buyers

from signiőcantly corrupting their bids too often as by doing so they may suffer a

substantial utility loss when they are isolated. To illustrate this point with an example,

compare the following scenarios: (i) if there are no isolation periods, a buyer having

the lowest valuation among all buyers may submit a bid by adding large corruption,

but still ending up not being the second highest or highest bidder. Assuming that

other buyers bid truthfully, such a scenario will not lead to any changes in utility of any

buyer, but introduces a large outlier to the set of data points used in our estimations.

In words, when no isolation occurs, buyers may be able to distort the seller’s learning

process without facing unfavorable consequences; (ii) during an isolation period when

a buyer is isolated, corrupting her bid may perhaps result in signiőcant utility loss, e.g.,

losing the item by underbidding when her true valuation is greater than the reserve

price, or winning the item by overbidding when her true valuation is less than the

reserve price. Therefore, randomized isolation incentivizes utility-maximizing buyers

to reduce the frequency of corrupting their bids. Mathematically, we characterize this

statement in the following Lemma 3.4.1.

Lemma 3.4.1 (Bounding number of signiőcantly corrupted bids). For 𝑖 ∈ [𝑁 ] and
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phase ℓ ≥ 1 deőne

𝒮𝑖,ℓ :=
{︂
𝑡 ∈ 𝐸ℓ : |𝑎𝑖,𝑡| ≥

1

|𝐸ℓ|

}︂

𝐿ℓ := log
(︀
𝑣2max𝑁 |𝐸ℓ|4 − 1

)︀
/log(1/𝜂) ,

(3.11)

where 𝒮𝑖,ℓ is the set of all periods in phase 𝐸ℓ during which buyer 𝑖 signiőcantly corrupts

his bids. Then, we have P (|𝒮𝑖,ℓ| > 𝐿ℓ) ≤ 1/|𝐸ℓ|.

The proof of this lemma is shown in Appendix B.2.2.

Bounding the regret of NPAC-S. Here, we őrst present the regret of NPAC-S.

Then we introduce several key results that are crucial to proving the regret bound of

NPAC-S and also comment on how they resolve challenges that arise due to buyers’

strategic behavior.

Theorem 3.4.2 (Regret of NPAC-S Policy). Suppose that the length of the horizon

𝑇 ≥ max{
(︀
8𝑥2

max

𝜆2
0

)︀4
, 9} where 𝜆20 is the minimum eigenvalue of covariance matrix Σ.

Then, in the strategic setting, the T-period regret of the NPAC-S policy is in the order

of 𝒪
(︁
𝑐𝑓
√︀
𝑑𝑁3 log(𝑇 ) · log (log(𝑇 ))

(︀√
𝑇 +

√
𝑁3 log(𝑇 )𝑇

1
4

log(1/𝜂)

)︀)︁
, where regret is computed

against the benchmark policy in Deőnition 3.3.1 that knows the mean vector 𝛽 and

noise distribution 𝐹 . Here, recall 𝑐𝑓 = sup𝑧∈[−𝜖max,𝜖max] 𝑓(𝑧) > 0 where 𝑓 is the the pdf

of 𝐹 .

Remark 3.4.2. The proof of this theorem is presented in Appendix B.2.1. In the

regret of NPAC-S, the factor 1/log(1/𝜂) serves as a worse case guarantee for the

amount of corruption that buyers’ can apply to their bids throughout the entire horizon

𝑇 . As buyers get less patient, i.e., as 𝜂 decreases, buyers are less willing to forgo

current utility in the current period. Thus, in the presence of randomized isolation

periods, impatient buyers are less likely to signiőcantly corrupt bids, which translates

into lower regret. The log(log(𝑇 )) factor corresponds to the information loss due to

the policy’s phased structure, which łrestartsž the algorithm at the beginning of each of

𝒪 (log(log(𝑇 ))) phases and relies only on the information of the previous phase.

The regret of NPAC-S can be decomposed into two parts: (i) the estimation errors
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in 𝛽, 𝐹− and 𝐹+, which result in the posted reserve price 𝑟𝑡 deviating from the

optimal reserve price 𝑟⋆𝑡 , and hence incur a revenue loss compared to the clairvoyant

benchmark; and (ii) the revenue loss due to allocation mismatch in the auction outcome

because of buyers’ strategic bidding behaviour. Here, allocation mismatch refers to

the phenomenon where a bidder would have won (lost) the auctioned item had she bid

truthfully, but instead lost (won) the item as she submitted a corrupted bid in reality.

We őrst comment on several challenges with respect to bounding the estimation

errors in 𝛽, 𝐹− and 𝐹+. First, the OLS estimator and empirical distributions to

estimate the mean vector and distributions 𝐹− and 𝐹+, respectively are extremely

vulnerable to corrupted data (outliers), and hence standard high probability bounds

are invalid for our setting. Additionally, there exists a complication in terms of

bounding the estimation errors in 𝐹− and 𝐹+ because estimation errors for 𝛽 will

further propagate into the estimation errors in 𝐹 and consequently impacting the

estimates for 𝐹− and 𝐹+. To illustrate this point, consider the ideal scenario where

all bids are truthful (i.e. 𝑣𝑖,𝑡 = 𝑏𝑖,𝑡 for all 𝑖 ∈ [𝑁 ] and 𝑡 ∈ [𝑇 ]). Even in this scenario,

the terms 𝑣𝑖,𝜏 − ⟨̂︀𝛽ℓ, 𝑥𝜏 ⟩ in the expressions for ̂︀𝐹ℓ(·) are not realizations of 𝜖𝑖,𝜏 due to

estimation errors in the mean vector ̂︀𝛽ℓ. Hence, the estimate ̂︀𝐹ℓ(·) evaluated at any

point 𝑧 ∈ R is biased, i.e. E[ ̂︀𝐹ℓ(𝑧 − ⟨̂︀𝛽ℓ, 𝑥𝑡⟩)] ̸= 𝐹 (𝑧 − ⟨̂︀𝛽ℓ+1, 𝑥𝑡⟩). Furthermore, the

estimates ̂︀𝐹+
ℓ (·) and ̂︀𝐹−

ℓ (·) are evaluated at points which may be random variables

since ̂︀𝛽ℓ is a random variable that depends on the history of the previous phase.

In light of such challenges in bounding estimation errors, as one of our main

contributions, the following Lemma 3.4.3 provides good estimation error guarantees

for 𝛽, 𝐹− and 𝐹+ in the presence of corrupted bids and the aforementioned error

propagation phenomena.

Lemma 3.4.3 (Bounding estimation errors in 𝛽, 𝐹− and 𝐹+). For any phase 𝐸ℓ,

with probability at least 1−Θ(1/|𝐸ℓ|), the following events hold: (i) ‖̂︀𝛽ℓ+1 − 𝛽‖1 =
𝒪( 1√

|𝐸ℓ|
+ log(|𝐸ℓ|)

log(1/𝜂)|𝐸ℓ|); (ii) for any 𝑧 ∈ R, | ̂︀𝐹−
ℓ+1(𝑧)−𝐹−(𝑧)| = 𝒪( 𝑁2√

|𝐸ℓ|
+𝑁2 log(|𝐸ℓ|)

log(1/𝜂)|𝐸ℓ|) and

| ̂︀𝐹+
ℓ+1(𝑧)− 𝐹+(𝑧)| = 𝒪

(︀
𝑁√
|𝐸ℓ|

+ 𝑁 log(|𝐸ℓ|)
log(1/𝜂)|𝐸ℓ|

)︀
. Here, recall the discount factor 𝜂 ∈ (0, 1).

We refer readers to Lemma B.2.1 and Lemma B.2.2 in Appendix B.2.4 for more
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detailed statements on our high probability bounds regarding estimation errors in 𝛽,

𝐹− and 𝐹+.

In addition to inaccurate estimates for 𝛽, 𝐹− and 𝐹+, the allocation mismatch

phenomenon due to strategic bidding also contributes to the regret of NPAC-S. For

example, suppose that the highest valuation is greater than the reserve price. In that

case, if buyers were truthful, the item would be allocated and the seller would gain

positive revenue. Now, if buyers shade their bids, the auctioned item may not get

allocated, resulting in zero revenue for the seller. In the following Lemma 3.4.4, we

show that the number of allocation mismatch periods for each buyer is bounded with

high probability.

Lemma 3.4.4 (Bounding allocation mismatch periods). Deőne the following two sets

of time periods:

ℬ𝑠
𝑖,ℓ = {𝑡 ∈ 𝐸ℓ : 𝑣𝑖,𝑡 ≥ 𝐷𝑡 , 𝑏𝑖,𝑡 ≤ 𝐷𝑡} and

ℬ𝑜
𝑖,ℓ = {𝑡 ∈ 𝐸ℓ : 𝑣𝑖,𝑡 ≤ 𝐷𝑡 , 𝑏𝑖,𝑡 ≥ 𝐷𝑡}

where 𝐷𝑡 = max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡} .

(3.12)

Here, 𝑏+−𝑖,𝑡 is the highest among all bids excluding that submitted by buyer 𝑖, and ̂︀𝑟𝑡 is

the reserve price offered to all buyers if no isolation occurs (deőned in Equation (3.7)).

Then, for ℬ𝑖,ℓ := ℬ𝑠
𝑖,ℓ ∪ℬ𝑜

𝑖,ℓ, we have P (|ℬ𝑖,ℓ| ≤ 2𝐿ℓ + 4𝑐𝑓 + 8 log(|𝐸ℓ|)) ≥ 1− 4/|𝐸ℓ|,
and 𝐿ℓ is deőned in Equation (3.11). Here, the probability is taken with respect to the

randomness in {(𝑥𝜏 , 𝜖𝑖,𝜏 , 𝑎𝑖,𝜏 )}𝜏∈𝐸ℓ,𝑖∈[𝑁 ].

Note that ℬ𝑠
𝑖,ℓ represents the set of all periods in phase ℓ during which buyer 𝑖

should have won the item if she bid truthfully, but in reality lost due to shading her

bid (i.e. allocation mismatch due to shading), while similarly ℬ𝑜
𝑖,ℓ is the periods of

allocation mismatch due to overbidding. Therefore, ℬ𝑖,ℓ := ℬ𝑠
𝑖,ℓ∪ℬ𝑜

𝑖,ℓ can be interpreted

as the set of all periods in phase ℓ when an allocation mismatch occurs for buyer 𝑖.

The detailed proof is provided in Appendix B.2.3.

NPAC-S against Truthful Buyers. Here, we make a remark that in a

hypothetical world where buyers are truthful (i.e. 𝑣𝑖,𝑡 = 𝑏𝑖,𝑡 or equivalently the degree
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of corruption 𝑎𝑖,𝑡 = 0 for all 𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ]), our proposed NPAC-S policy achieves

a regret of 𝒪(𝑐𝑓
√︀
𝑑𝑁3𝑇 log(𝑇 ) · log log(𝑇 )) compared to the clairvoyant benchmark

policy in Deőnition 3.3.1. Intuitively, this is easy to see because the set of all periods

in phase 𝐸ℓ during which a buyer 𝑖 signiőcantly corrupts his bids, namely 𝒮𝑖,ℓ deőned

in Lemma 3.4.1, will be empty. As a result, there will be no allocation mismatch

periods, and the 1/ log(1/𝜂) terms in the estimation errors in 𝛽, 𝐹−, 𝐹+ will vanish

(see Lemma 3.4.3). The proof for the regret bounds of NPAC-S against truthful

buyers would thus be a simpliőcation to the proof of Theorem 3.4.2, and hence will

be omitted.

3.5 Numerical studies

Here, we present numerical simulations to compare the performance of NPAC-S with

several baseline seller policies. In particular, consider the following baseline policies:

(i) Naive which always sets a 0 reserve price; (ii) ContHEDGE which runs an

independent version of the HEDGE algorithm for every distinct context vector (see an

introduction of HEDGE for the adversarial multi-arm bandit problem in [10]). The

łarmsž of HEDGE correspond to potential reserve price options. Note that HEDGE

is a special case of the well-known EXP3 algorithm which is a simple off-the-shelf

algorithm that not only has good theoretical guarantees, but has also been applied (or

its variations/generalizations have been adopted) in many areas in online advertising

(see e.g. [114, 17, 65]). (iii) HO-SERP, which sets personalized reserve prices for

each buyer using łrolling windowž estimates of 𝛽 and 𝐹 w.r.t other buyers’ submitted

bids (see [75]). Here we consider HO-SERP as a baseline because among all seller

algorithms in related works that study pricing in a contextual, stochastic, and strategic

buyer setting similar to ours (see Table 3.1), HO-SERP achieves nearly the best

theoretical performance. Note HO-SERP requires the noise distribution to be MHR.

To model buyers’ strategic behavior, instead of restricting buyers to bid according

to a speciőc strategy to maximizes long-term discounted utility, we instead mimic the

outcome of some general class of such strategies (parameterized by 𝜂) via randomly
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selecting periods over the entire horizon and have buyers signiőcantly corrupt bids in

these periods. We will refer to these randomly selected periods as corruption periods.

When this randomization procedure is repeated over many trials, we believe the average

bidding outcome would serve as a relatively accurate approximation to the outcomes

of a general class of strategies for utility-discounting buyers. Furthermore, inspired by

Lemma 3.4.1 which suggests that the number of periods when a buyer signiőcantly

corrupts her bid is bounded, we let the selected number of corruption periods be 𝐿ℓ

deőned in Equation (3.11) . Note that 𝐿ℓ is increasing in 𝜂 and represents the fact

that more patient buyers (i.e. larger 𝜂) value long term utility more and hence would

be willing to corrupt bids more frequently with the aim of achieving higher future

utility.

Out detailed experimental setup is as followed. We consider a horizon of length

𝑇 = 5, 000, 𝑁 = 2 buyers, context vectors of dimension 𝑑 = 4, 𝑣max = 10 and 𝑣min = 0.

For each 𝜂 ∈ {0.2, 0.4, 0.6, 0.8}, repeat the following procedure for 𝑛 = 50 trials, each

including 𝑇 periods:

For each phase 𝐸ℓ (ℓ ≥ 1), 11 sample 𝐿ℓ corruption periods uniformly at random.

Then, regarding buyer’s valuations, we generate 𝛽 ∈ [0, 1]𝑑, where each entry is sampled

independently according to a uniform distribution on [0,1], i.e., 𝑈(0, 1). We further

normalize 𝛽 with the sum of all entries so that ‖𝛽‖2 = 1. We then generate 10 distinct

contexts vectors 𝒳 = {𝑋𝑗}𝑗∈[10], where each entry for any distinct context vector is

sampled independently from 𝑈
(︀
𝑣max

3
, 2𝑣max

3

)︀
. Then, for every period 𝑡 ∈ [𝑇 ], sample

𝑥𝑡 uniformly at random from 𝒳 , and sample 𝜖𝑖,𝑡 for all 𝑖 ∈ [𝑁 ] independently from

𝑈
(︀
−𝑣max

3
, 𝑣max

3

)︀
. Note that our construction guarantees 𝑣𝑖,𝑡 = ⟨𝛽, 𝑥𝑡⟩+𝜖𝑖,𝑡 ∈ [𝑣min, 𝑣max],

and the noise distribution is uniform which satisőes the MHR assumption (so the

application of the HO-SERP is valid). If 𝑡 is a corruption period, we let buyers submit

a bid of value 0 to model the behavior of signiőcant bid-shading; otherwise, we let

buyers bid their true valuations.12

11For őxed 𝑇 , since length of phase ℓ ≥ 1 is 𝑇 1−2−ℓ

, in our case when 𝑇 = 5, 000 we have 4 phases
whose phase lengths are 70, 594, 1724, 2612, respectively, where the last phase is truncated.

12We remark that our numerical experiments focus on buyers’ bid-shading behavior. This is
mainly because empirical studies found that shading is prevalent in repeated auctions on modern
online advertising platforms and theoretical works have demonstrated various versions of bid-shading
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favors HO-SERP since performance guarantees of this algorithm relies on the noise

distribution being MHR, which is the case for our uniform noise. Moreover, the

comparison with HO-SERP also demonstrates the advantages of NPAC-S from a

practical viewpoint, since NPAC-S, unlike HO-SERP, sets a single reserve price for

all buyers and still matches or improves upon the performance of HO-SERP.

3.6 Additional discussions and future research

Heterogeneous discount rates

We remark that our NPAC-S algorithm is agnostic to buyer discount rates as well

as adopted bidding strategies w.r.t. such rates. It is not difficult to see that in the

case where buyers have heterogeneous discount rates, Lemma 3.4.1 which bounds the

number of periods during which buyers signiőcantly corrupted bids still holds since

our proof only concerns each individual buyer. This implies that our NPAC-S policy

can also handle heterogeneous buyer discount rates and result in a regret similar to

that in the current homogeneous setup.

Future research

Our current model in Section 2.2 studies homogeneous buyers who share an identical

preference vector 𝛽 and noise distribution 𝐹 . One immediate future research direction

is to handle a heterogeneous buyer setup where these model parameters differ across

buyers. This setting is challenging because the optimal contextual reserve price no

longer admits a closed form as illustrated in Eq. (3.4). Another research question of

signiőcant practical and theoretical importance is contextual dynamic reserve price

optimization under repeated őrst price auctions (FPA) facing strategic buyers. In an

FPA setting, bidding truthfully is no longer a weakly dominant strategy for buyers,

and therefore making it difficult for the seller to recover buyer preferences from

submitted bids. It would be interesting to see if techniques such as enforcing a phased

structure and including randomized isolation periods as in NPAC-S can still limit
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buyers’ strategic behavior.
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Chapter 4

Learning to price against őnancially

constrained buyers

This chapter is based on [55], which is joint work with Negin Golrezaei, Patrick Jaillet,

and Vahab Mirrokni.
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4.1 Introduction

In the previous Chapter 3, we considered an ad platform’s revenue maximization

problem through designing reserve-price based ad auctions, while perceiving the

advertiser-platform interaction and automated procurement algorithm components in

the autobidding ecosystem together as buyers who dynamically make bidding decisions

according to certain algorithms. In this chapter, we investigate a similar problem

of repeatedly selling ads to algorithmic buyers, but instead of strategic buyers as in

Chapter 3, here we consider buyers being subject to real-world őnancial constraints.

In practice, to efficiently utilize limited monetary resources that are allocated to a

certain campaign, advertisers’ strategies in the procurement process are typically sub-

ject to őnancial constraints, which generally include budget and return-on-investment

(ROI) constraints. Budget constraints primarily reŕect advertisers’ monetary limits

due to organizational planning, whereas ROI constraints enforces the desired per-

formance/return on the amount of capital spent [76, 61, 13]. The presence of such

őnancial constraints, along with the increasing availability of real time data, motivates

buyers’ deployment of complex algorithms to procure impressions. Such őnancial

constraint and algorithm driven buyer behavior introduces signiőcant challenges to

sellers’ design of selling mechanisms, primarily due to the fact that buyer algorithms

adapt quickly and constantly to data generated by buyer-seller interactions, and also

sellers’ lack of information on buyers’ model primitives such as target ROI, budget,

buyer algorithm, etc. In this chapter, we address the following question:

From the perspective of a seller (e.g. ad platform), what is an optimal selling

strategy against a buyer who adopts value-maximizing algorithms under both budget

and ROI constraints?

We study the setting where a seller repeatedly sells items to a single budget and

ROI constrained buyer through a posted price mechanism. This single-buyer setup

is primarily motivated by ad platforms’ targeting practices that enable advertisers

to target users who may be more interested in their ads, as such practices along

with advertisers’ heterogeneous targeting criteria lead to a very small number of
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advertisers/buyers per ad impression, justifying our single-buyer setup. Throughout

the repeated mechanism, the seller posts a price for an impression during each period,

and the buyer decides on whether to accept and pay the posted price for the sold

impression. Our key focus lies in the practical two-sided learning setup where buyers

adopt learning algorithms under both budget and ROI constraints, and the seller sets

prices algorithmically based on past transactions. The key challenge for the seller’s

problem of interest is two-fold: the seller does not know the buyer parameters such

as target ROI, budget or algorithm, and buyer actions constantly adapt to the past

buyer-seller algorithmic interactions. The goal of this chapter is to design a revenue-

maximizing seller pricing strategy against algorthmic and őnancially constrained

buyers in such a limited information setting.

The main contribution of this chapter is that we propose a simple seller algorithm

that does not require explicitly learning buyer’s parameters nor reverse engineering

the buyer’s learning algorithms. We show that our algorithm is feasible in achieving

high revenue under limited information by exploiting a salient property of the seller

revenue function against őnancially-constrained buyers. In particular, we summarize

our contributions as followed:

Main contributions. We őrst characterize the seller revenue function against a

clairvoyant budget and ROI constrained buyer who always best responds to posted

prices. To begin with, we show that the buyer’s best response to a posted price is a

łthreshold strategyž, i.e. the buyer accepts the sold item if her valuation exceeds a

certain threshold that depends on the posted price. With this characterization of buyer

best response, we show that the seller revenue function against a best-responding

clairvoyant buyer admits a salient łbell-shapedž structure: as the seller increases prices,

the corresponding per-period seller revenue őrst monotonically increases and decreases.

We argue that such a structure is exploitable by the seller to extract revenue even

without knowing buyer model primitives such as value distribution, budget rate, and

target ROI.

We exploit this bell-shaped structure and design an episodic binary search seller
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pricing algorithm. In each episode, the algorithm sets a single price, and then moves

on to the next episode with an updated price based on a binary search procedure w.r.t.

the realized revenue of previous prices. We also characterize general buyer-algorithm

adaptiveness properties that allow buyers to adapt quickly to prices in seller episodes,

and present regret analyses against buyer algorithms that are adaptive to seller prices

in the sense of our deőned adaptiveness properties. Moreover, we argue that seller

regret of our proposed algorithm is driven by the agent (i.e. seller or buyer) who

incurs a larger loss in terms of learning error.

Finally, we analyze example buyer algorithms which satisfy the aforementioned

adaptiveness properties and aim to maximize total value under both budget and ROI

constraints. In particular, we consider clairvoyant buyers who best respond in each

period, as well as buyers who make decisions based on machine-learned advice that

take the form of value distribution estimates. For each of these buyers, we show that

both buyer and seller regret are sublinear.

Related works

Mechanism design for budget and ROI constrained buyers. One relevant

line of research addresses the mechanism design problem for budget or ROI con-

strained buyers. As one of the pioneering works regarding mechanism for őnancially

constrained buyers, [79] derives the optimal mechanism for symmetric buyers and

public budget information. On the contrary, a more recent paper [95] studies the

general multidimensional mechanism design setting against buyers with private bud-

gets. Regarding ROI constrained buyers, [61] shows that the optimal mechanism

for symmetric ROI-constrained buyers is either second-price auctions with reduced

reserve prices or subsidized second-price auctions. The work also derives an optimal

mechanism for asymmetric ROI buyers. There is also a wide range of work that study

dynamic mechanism design for budget constrained buyers, and we refer the reader

to the survey [20] and references therein. There have also been recent developments

for designing auctions in a setup called autobidding, where advertisers simultaneously

participate in parallel auction to maximize total value while subject to a coupled
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ROI constraint across all auctions (see e.g. [4, 37, 11, 33]). All aforementioned works

focus on the static mechanism design problem, whereas in this chapter we address the

topic of designing repeated posted price mechanisms to sell to both budget and ROI

constrained buyers.

Selling to strategic or learning buyers. [77] studies the scenario where the seller

sells items through a repeated posted price mechanism to a single truthful buyer

who accepts the price if her valuation is greater than the offered price. The work

presents optimal algorithms in the settings where the buyer’s valuations are őxed,

stochastic and adversarial, respectively. [6] also concerns selling through a posted

price mechanism, but to a strategic buyer who may choose not to accept a price

bellow her valuation (or accept a price above her valuation). The work presents

learning algorithms in both the őxed valuation and stochastic valuation settings under

the assumption that discount their utilities over time. Other related works include

[59] which studies the dynamic pricing problem for repeated contextual second price

auctions facing multiple strategic buyers. The work proposes learning algorithms that

are robust to buyers’ strategic behavior under various seller information structures

and provides corresponding performance guarantees. [54] relaxes several assumptions

for one of the settings in [59], and presents an algorithm with improved performance

guarantees. Finally, [15] considers the dynamic mechanism design problem against

strategic buyers, and further identiőes a class of problems in which the optimal

mechanism is to simply repeat some static mechanism over time. The closest previous

work to this chapter is [25], where it studies the pricing problem against a single

unconstrained quasi-linear buyer who adopts a certain class of learning algorithms,

which they refer to as łmean-basedž algorithms (e.g. Follow the Perturbed Leader

algorithm and EXP3), the seller can extract the buyer’s entire surplus; see [38] for

an extensions. We remark that all works discussed here do not consider constrained

buyers, and therefore this chapter distinguishes itself by studying the pricing problem

against buyers with both budget and ROI constraints, which further allows us to

characterize special structures of seller revenue (see Section 4.3).
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4.2 Preliminaries

Notation. Let R+ be all non-negative real numbers, and R++ be all strictly pos-

itive real numbers. For integer 𝑁 ∈ N, denote [𝑁 ] = {1, 2, . . . , 𝑁} and ∆𝑁 ={︁
𝑝 ∈ [0, 1]𝑁 :

∑︀
𝑛∈[𝑁 ] 𝑝𝑛 = 1

}︁
be the 𝑁 -dimensional probability simplex. Finally, de-

note ‖·‖ as the Euclidean norm.

Model setup: Consider a seller repeatedly selling items to a buyer over 𝑇

periods through a posted price mechanism: in each period 𝑡, the seller posts a price 𝑑𝑡

for the item to be sold, and the buyer makes a take it or leave it decision 𝑧𝑡 ∈ {0, 1}
based on her value 𝑣𝑡 of the item, where 𝑧𝑡 = 1 when the buyer takes the item at price

𝑑𝑡, and 0 otherwise.

We assume the seller commits to a őnite price set 𝒟 = {𝐷𝑚}𝑚∈[𝑀 ] where 1 ≥ 𝐷1 >

· · · > 𝐷𝑀 > 0 from which she chooses the posted prices {𝑑𝑡}𝑡∈[𝑇 ], and we assume the

the buyer’s valuations are drawn independently each period from a distribution over

𝑔 = (𝑔1 . . . 𝑔𝑁) ∈ ∆𝑁 (𝑔𝑛 ∈ R++ for all 𝑛 ∈ [𝑁 ]) over a őnite support 𝒱 = {𝑉𝑛}𝑛∈[𝑁 ]

where 1 ≥ 𝑉1 > · · · > 𝑉𝑁 > 0 such that P(𝑣𝑡 = 𝑉𝑛) = 𝑔𝑛 for any period 𝑡 ∈ [𝑇 ].

ROI and budget constrained buyers: The buyer aims to maximize total

acquired value over 𝑇 periods, while subject to an ROI constraint with the target ROI

of 𝛾 ≥ 1 and a budget constraint with budget rate 𝜌 ∈ (0, 1).1 Mathematically, using

the shorthand notation 𝑑1:𝑇 for the sequence of prices {𝑑𝑡}𝑡∈[𝑇 ], the buyer’s hindsight

optimization problem can be written as followed

OPT(𝑑1:𝑇 ) = max𝑧∈[0,1]𝑇 E
[︁∑︀

𝑡∈[𝑇 ] 𝑣𝑡𝑧𝑡

]︁

s.t. E
[︁∑︀

𝑡∈[𝑇 ] (𝑣𝑡 − 𝛾𝑑𝑡) 𝑧𝑡
]︁
≥ 0

E
[︁∑︀

𝑡∈[𝑇 ] 𝑑𝑡𝑧𝑡

]︁
≤ 𝜌𝑇 .

(4.1)

We remark that both budget and ROI constraints are studied in expectation. Such

łsoftž constraints are useful in practice due to the fact that real-world advertisers

1Note that in the literature another common buyer objective is to optimize linear utility that
takes the form

∑︀
𝑡∈[𝑇 ](𝑣𝑡 − 𝛼𝑑𝑡)𝑧𝑡 for some parameter 𝛼 ≥ 0. We point out that all results in this

paper can be extended easily to such linear objectives.
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typically engage in many different online advertising campaigns, so it is reasonable

to maintain these őnancial constraints in an average sense. We note that such soft

őnancial constraints are also studied in mechanism design and online learning literature

such as [107, 61].

We denote the optimal hindsight buyer decision sequence to Equation (4.1) as

{𝑧*𝑡 (𝑑1:𝑇 )}𝑡∈[𝑇 ]. When all prices are equal, i.e. 𝑑𝑡 = 𝑑 for all 𝑡, we use the shorthand no-

tation OPT(𝑑) and {𝑧*𝑡 (𝑑)}𝑡∈[𝑇 ]. Note that optimal hindsight decisions {𝑧*𝑡 (𝑑1:𝑇 )}𝑡∈[𝑇 ]

may possibly be fractional, which can be implemented by randomization.

The buyer’s target ROI 𝛾 and budget rate 𝜌 are private to the buyer and unknown

to the seller. Also, both the seller and the buyer do not know the valuation distribution

𝑔.

Seller’s benchmark revenue and regret.

The seller does not know the buyer’s model primitives, namely the buyer’s valuation

distribution 𝑔, target ROI 𝛾 and budget rate 𝜌. Furthermore, the seller only observes

the buyer’s decision 𝑧𝑡 ∈ {0, 1}, and does not observe buyer values. Under such

information structure, we focus on non-anticipative seller pricing strategies that

post prices based on historical data, i.e. in each period 𝑡, the decision 𝑧𝑡 can only

depend on {(𝑑𝜏 , 𝑧𝜏 )}𝜏∈[𝑡−1]. We evaluate the performance of any sequence of pricing

decision {𝑑𝑡}𝑡∈[𝑇 ] ∈ 𝒟𝑇 by benchmarking its realized revenue, namely
∑︀

𝑡∈[𝑇 ] 𝑑𝑡𝑧𝑡, to

the maximum revenue that could have been obtained if (i) the seller had set a őxed

price over all 𝑇 periods and (ii) the buyer makes optimal hindsight decisions given her

ROI and budget constraints. Mathematically, assume the seller őxes price 𝑑 ∈ 𝒟 over

all 𝑇 periods, and the buyer’s optimal decisions are {𝑧*𝑡 (𝑑)}𝑡∈[𝑇 ]. Then, the seller’s

benchmark revenue is max𝑑∈𝒟 E[𝑑
∑︀

𝑡∈[𝑇 ] 𝑧
*
𝑡 (𝑑)] and her regret can be deőned as follows

Regsell = max
𝑑∈𝒟

E

⎡
⎣𝑑

∑︁

𝑡∈[𝑇 ]

𝑧*𝑡 (𝑑)

⎤
⎦−

∑︁

𝑡∈[𝑇 ]

E [𝑑𝑡𝑧𝑡] , (4.2)

where the expectation is taken w.r.t. {𝑣𝑡}𝑡∈[𝑇 ] and randomness in the buyer’s strategy

(and thus randomness in {𝑧*𝑡 (𝑑)}𝑡∈[𝑇 ]).
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Remark 4.2.1. The seller’s regret resembles that of an 𝑀-arm multi-arm bandit

(MAB) problem (see [82] for a detailed introduction), where we can view each price

𝑑 ∈ 𝒟 as an arm and 𝑑 · 𝑧𝑡 as the reward by pulling arm 𝑚. Nevertheless, we point out

that our setting is more complex than the vanilla MAB setting as the seller’s reward

𝑑 · 𝑧𝑡 for setting price 𝑑 during period 𝑡 not only depends on the seller algorithm which

determines prices based on historical observations , but also the buyer’s algorithm to

optimize Equation (4.1).

We point out that the benchmark revenue in the seller’s regret of Equation (4.2) is

strong, as it represents the maximum seller revenue when both the buyer and seller

have complete information and act optimally, i.e. if the seller knows everything about

the buyer, in each period she myopically posts a revenue-maximizing price under best

buyer response.

Our goal is to develop a seller pricing algorithm to minimize regret when facing a

buyer who optimizes Equation (4.1) via running some online learning algorithm (to

be discussed in later sections).

4.3 Seller’s revenue and regret

In this section, we present a reformulation for the seller’s benchmark revenue in the

seller’s regret (Equation (4.2)), and then further characterize special structures of this

reformulation which will later motivate the design of our pricing algorithm.

4.3.1 Reformulating the seller’s benchmark revenue

Recall the seller’s benchmark revenue in Equation (4.2) which depends on the buyer’s

best response decision sequence over the entire horizon 𝑇 under a őxed price. To present

our reformulation of this benchmark, we őrst show that for any price 𝑑, although

the buyer’s hindsight optimal decisions {𝑧*𝑡 (𝑑)}𝑡∈[𝑇 ] may seemingly be interdependent

across periods due to the coupling of budget and ROI constraints over the entire

horizon, the optimal buyer decision in each period 𝑡 simply requires the buyer to
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myopically make a decision 𝑧𝑡 that maximizes single-period expected value under

łsingle-period budget and ROI constraintsž, namely E [(𝑣𝑡 − 𝛾𝑑) 𝑧𝑡] ≥ 0 and E [𝑑𝑧𝑡] ≤ 𝜌.

Formally, consider the following myopic buyer optimization problem: for a given

posted price 𝑑, let 𝑥 ∈ [0, 1]𝑁 be some vector whose 𝑛th entry 𝑥𝑛 denotes the

probability of accepting the price when the buyer’s realized value is 𝑉𝑛. Then, the

myopic buyer optimization problem can be written as Equation (4.3) whose optimal

solution is shown in the following Lemma 4.3.1 (see proof in Appendix C.2.1).

𝑈(𝑑) = max
𝑥∈[0,1]𝑁

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑉𝑛𝑥𝑛

s.t.
∑︁

𝑛∈[𝑁 ]

𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥𝑛 ≥ 0

𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑛 ≤ 𝜌 .

(4.3)

Lemma 4.3.1. For any price 𝑑, the optimal solution to Equation (4.3) is unique, and

takes the form 𝑥𝑑 = (1, 1, . . . 𝑞, 0, 0 . . . 0) ∈ [0, 1]𝑁 for some 𝑞 ∈ (0, 1].

The special form of the optimal solution of Equation (4.3) suggests a buyer strategy

that accepts all items when buyer value is beyond a certain threshold. We formalize

such a strategy in the following deőnition.

Deőnition 4.3.1 (Threshold strategy). For a given vector 𝑥 that takes the form

𝑥 = (1, 1, . . . 𝑞, 0, 0 . . . 0) ∈ [0, 1]𝑁 where 𝑞 ∈ (0, 1] is the 𝑛th entry, we say a buyer

adopts a threshold strategy w.r.t. 𝑥 if, regardless of the posted price, she accepts the

item when her value is 𝑉1 . . . 𝑉𝑛−1; accepts w.p. 𝑞 when her value is 𝑉𝑛; and rejects

the item otherwise.

As an example, for 𝑁 = 4 and some vector 𝑥 = (1, 1, 0.3, 0), the buyer adopts a

threshold strategy w.r.t. 𝑥 if she accepts the item when her value is 𝑉1 or 𝑉2; accepts

w.p. 0.3 when her value is 𝑉3, and rejects when her value is 𝑉4.

With Lemma 4.3.1 and the notion of threshold strategies in Deőnition 4.3.1, we

can formally deőne the buyer’s best response to a given price 𝑑:
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Deőnition 4.3.2 (Buyer best response). We say a buyer best responds to a posted

price 𝑑 if she adopts a threshold strategy w.r.t. 𝑥𝑑 ∈ [0, 1]𝑁 which is the optimal

solution to 𝑈(𝑑) (see Lemma 4.3.1).

Note that in order for to best respond to a posted price, the buyer would need to

know the value distribution 𝑔.

Our main result for this subsection is illustrated in the following theorem, which

states that buyer’s hindsight optimal decision sequence {𝑧*𝑡 (𝑑)}𝑡∈[𝑇 ] for OPT(𝑑) in

Equation (4.1) simply requires the buyer to independently best respond to the posted

price in each period.

Proposition 4.3.2. Given a single price 𝑑 posted across all periods, the optimal buyer

decision in each period 𝑡 is to best respond according to a threshold strategy w.r.t.

𝑥𝑑 (Deőnition 4.3.2), where 𝑥𝑑 ∈ [0, 1]𝑁 is the unique optimal threshold solution to

𝑈(𝑑) (Equation (4.3)). Further, the best response buyer decision induces a per-period

expected revenue

rev(𝑑) := 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑑,𝑛 . (4.4)

Then, max𝑑∈𝒟 E
[︁
𝑑
∑︀

𝑡∈[𝑇 ] 𝑧
*
𝑡 (𝑑)

]︁
= 𝑇 max𝑑∈𝒟 rev(𝑑) and thus Regsell = 𝑇 max𝑑∈𝒟 rev(𝑑)−

∑︀
𝑡∈[𝑇 ] E [𝑑𝑡𝑧𝑡].

We refer readers to the proof in Appendix C.2.2.

4.3.2 Structure of Benchmark Seller Revenue

Here, we present a special underlying structure of the seller revenue rev(𝑑) deőned in

Equation (4.4) which will motivate our pricing algorithm in the next Section 4.4. The

goal of this section is to develop efficient ways to identify argmax𝑑∈𝒟 rev(𝑑) by avoiding

exploring each possible price in 𝒟. In the rest of the paper, we make the following

assumption to rule out trivial problem instances (e.g. cases when the optimal solution

𝑥𝑑 corresponding to some 𝑑 ∈ 𝒟 has all 0 entries or when one of the constraints are

redundant):
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Assumption 4.3.1. For any 𝑑 ∈ 𝒟, assume 𝑉𝑁 −𝛾𝑑 < 0 < 𝑉1−𝛾𝑑 and
∑︀

𝑛∈[𝑁 ](𝑉𝑛−
𝛾𝑑)𝑔𝑛 ̸= 0. Furthermore, assume 𝐷𝑀 < 𝜌 < 𝐷1.

To begin with, we categorize all prices 𝑑 ∈ 𝒟 based on whether constraints are

binding under the corresponding optimal solution 𝑥𝑑.

Deőnition 4.3.3. For price 𝑑 let 𝑥𝑑 be the optimal threshold-based solution to 𝑈(𝑑)

in Equation (4.3). Then we call 𝑑

• Non-binding, if under 𝑥𝑑, both constraints are non binding, i.e., 𝑑
∑︀

𝑛∈[𝑁 ] 𝑔𝑛𝑥𝑑,𝑛 <

𝜌 and
∑︀

𝑛∈[𝑁 ] (𝑉𝑛 − 𝛾𝑑) 𝑔𝑛𝑥𝑑,𝑛 > 0;

• Budget binding if under 𝑥𝑑, the budget constraints is binding, i.e. 𝑑
∑︀

𝑛∈[𝑁 ] 𝑔𝑛𝑥𝑑,𝑛 =

𝜌 and
∑︀

𝑛∈[𝑁 ](𝑉𝑛 − 𝛾𝑑)𝑔𝑛𝑥𝑑,𝑛 > 0;

• ROI binding if under 𝑥𝑑, the ROI constraint is binding, i.e.
∑︀

𝑛∈[𝑁 ](𝑉𝑘 −
𝛾𝑑)𝑔𝑛𝑥𝑑,𝑛 = 0 and 𝑑

∑︀
𝑛∈[𝑁 ] 𝑔𝑛𝑥𝑑,𝑛 ≤ 𝜌.

It is apparent that any price 𝑑 ∈ 𝒟 must belong to at least one of these categories.

Also, if a price is non-binding, it cannot be budget binding or ROI binding.

Our main result of this subsection is the following Theorem 4.3.3, which states that

as we traverse 𝒟 in increasing price order, prices are őrst non-binding and the revenue

rev(𝑑) increases in 𝑑; then prices become budget binding, where revenue remains

constant at rev(𝑑) = 𝜌; őnally prices become ROI binding, where rev(𝑑) decreases in 𝑑.

The proof can be found in Appendix C.2.3.

Theorem 4.3.3 (Bell-shaped Structure of the Revenue Function). Suppose that

Assumption 4.3.1 holds. Then, the following hold

1. For any non-binding prices 𝑑, ̃︀𝑑, if 𝑑 < ̃︀𝑑 then rev(𝑑) < rev(̃︀𝑑).

2. If 𝑑 is budget binding, any price ̃︀𝑑 > 𝑑 cannot be non-binding, which means ̃︀𝑑 is

budget binding or ROI binding.

3. If 𝑑 is ROI binding, then any ̃︀𝑑 > 𝑑 must also be ROI binding. Furthermore,

rev(𝑑) > rev(̃︀𝑑).
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whether the buyer accepted the price or not, i.e., the seller only observes the outcome

𝑧𝑡 ∈ {0, 1}. This lack of information makes it very difficult for the seller to estimate

the buyer’s model primitives. Nevertheless, we propose a simple pricing algorithm

that bypasses this lack of knowledge via exploiting the price transition phenomenon

as characterized in Theorem 4.3.3 and Figure 4-1. We demonstrate later in subsection

4.4.1 that this algorithm achieves good performance when facing a general class of

algorithms that is adaptive to nonstationary environments.

Our proposed pricing algorithm consists of an exploration phase and an exploitation

phase. During the exploration phase, the algorithm searches for a revenue maximizing

price argmax𝑑∈𝒟 rev(𝑑) through an episodic structure: the seller initiates the őrst

episode ℰ1, and őxes the price chosen in this episode 𝐷1 for 𝐸 consecutive periods.

At the end of the episode (i.e. after 𝐸 periods since the beginning of the episode), the

seller records the average per-period revenue ˆrev(𝐷1) =
𝐷1

𝐸

∑︀
𝑡∈ℰ1 𝑧𝑡, where 𝑧𝑡 ∈ {0, 1}

indicates whether the buyer takes the price at time 𝑡 ∈ ℰ1. The process then repeats

as the seller moves on to episodes ℰ2, . . . This exploration phase eventually terminates

when the seller has explored enough prices. The seller’s pricing decision in each episode

is governed by a binary search procedure over the price set 𝒟, such that every price is

chosen at most once across all episodes, and the exploration phase will have 𝒪(log(𝑀))

episodes. Our pricing algorithm is detailed in Algorithm 4.

We note that our proposed algorithm does not try to learn the buyer’s model

primitives. We further point out that such a binary-search approach is a natural choice

to identify revenue-optimal prices in the simplest monopolistic pricing setting under

a typical unimodal assumption, 2 and one may wonder whether this approach can

have good performances against a much more complex setting where the buyer is ROI

and budget constrained and aims to learn her optimal bidding strategy. Surprisingly,

in the next section we are in fact able to show this simple approach achieves good

performances against buyers who are adaptive to price changes.

2In monopolistic pricing, the revenue-optimal price 𝑝* is charachterized by 𝑑* = argmax𝑑 𝑑𝐹 (𝑑),
where 𝐹 is the cdf of buyer valuations. A typical assumption is such that the function 𝑑𝐹 (𝑑) is
unimodal.
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Algorithm 4 Episodic Binary Search
Input: Exploration episode length 𝐸.

1: Initialize iteration index iter = 1.

Exploration episodes:

2: Set 𝐷1 for 𝐸 consecutive periods, and record per-period revenue ^rev (𝐷1). Then set 𝐷𝑀 for 𝐸

consecutive periods, and record average per-period revenue ^rev (𝐷𝑀 ).

3: Set 𝑚* ← argmax𝑚∈{1,𝑀} ^rev (𝐷𝑚) L = 1, R = 𝑀 , med = ⌊L+R

2 ⌋.
4: while L < R do

5: iter← iter + 1.

6: if per-period revenue ^rev (𝐷𝑘) is not recorded for 𝑘 = med,med + 1 then

7: Set price 𝐷𝑘 for 𝐸 consecutive periods and record per-period revenue ^rev (𝐷𝑘) for 𝑘 =

med,med + 1

8: end if

9: if ^rev (𝐷med) < ^rev (𝐷med+1) then

10: Set 𝑚* ← argmax𝑚∈{𝑚*,med+1} ^rev (𝐷𝑚), L← med + 1, med← ⌊L+R

2 ⌋
11: else

12: Set 𝑚* ← argmax𝑚∈{𝑚*,med} ^rev (𝐷𝑚), R← med− 1, med← ⌊L+R

2 ⌋
13: end if

14: end while

Exploitation episode:

15: Set price 𝐷𝑚* for the remaining periods.

For notation convenience, we denote ℰℎ as the collection of periods in episode ℎ.

Finally, we remark that the exploration episode length 𝐸 is deterministic and depends

on the total number of periods 𝑇 .

4.4.1 Regret Analysis of Pricing Algorithm

In this section, we provide theoretical guarantees for our proposed pricing algorithm

against buyer algorithms whose induced decisions approximate single-round best

responses (see Deőnition 4.3.2) in the average sense. We formally deőne algorithms

with such properties as follows:

Deőnition 4.4.1 (𝜉-Adaptive Buyer Algorithms). We say a buyer algorithm is 𝜉-

adaptive to seller algorithm 4 for some 𝜉 ∈ (0, 1) if the induced decisions {𝑧𝑡}𝑡∈[𝑇 ] in
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any exploration or exploitation episode ℰℎ satisőes

⃒⃒
⃒⃒
⃒
𝐷ℎ

|ℰℎ|
∑︁

𝑡∈ℰℎ

𝑧𝑡 − rev(𝐷ℎ)

⃒⃒
⃒⃒
⃒ ≤

𝜑(|ℰℎ|)
|ℰℎ|

(4.5)

with probability (w.p.) at least 1−1/𝑇 for some increasing error function 𝜑 : R+ → R+

and 𝜑(𝑥) = 𝒪(𝑥1−𝜉). Here 𝐷ℎ is the price set in episode ℎ, and rev(·) is the per-period

revenue function under buyer best response deőned in Equation (4.4).

The term
⃒⃒
⃒ 𝐷ℎ

|ℰℎ|
∑︀

𝑡∈ℰℎ 𝑧𝑡 − rev(𝐷ℎ)
⃒⃒
⃒ is the seller’s average revenue loss, relative

to the revenue from optimal buyers, over a certain period with a őxed price 𝐷ℎ.

Alternatively, the term can be viewed as the buyer’s deviation from best responding

since rev(𝐷ℎ)
𝐷ℎ

=
∑︀

𝑛∈[𝑁 ] 𝑔𝑛𝑥𝐷ℎ,𝑛 is the optimal probability with which the buyer should

take price 𝐷ℎ.

The main result of this subsection is presented in Theorem 4.4.1, which characterizes

the performance of our pricing algorithm against any 𝜉-adaptive buyer algorithm. The

proof of Theorem 4.4.1 can be found in Appendix C.3.1.

Theorem 4.4.1 (Pricing against 𝜉-adaptive buyers). Consider the seller runs Al-

gorithm 4 against an 𝜉-adaptive buyer algorithm (Deőnition 4.4.1). Fix 𝜖 ∈ (0, 𝜉)

independent of 𝑇 . Then by setting exploration episode length 𝐸 = 𝑇 1−𝜉+𝜖 in seller

algorithm 4, for large enough 𝑇 under Assumption 4.3.1 the seller’s regret is bounded

as

Regsell ≤2 (⌊log2(𝑀)⌋+ 1) · 𝑇 1−𝜉+𝜖 + 𝜑 (𝑇 )

+ (⌊log2(𝑀)⌋+ 1)2 /2 ,
(4.6)

where 𝜑 is the error function deőned Equation (4.5).

The őrst term 𝑇 1−𝜉+𝜖 in the seller’s regret (see Equation (4.2)) characterizes

the number of periods required for the buyer’s algorithm to approximate the best-

responding decisions in each episode facing a őxed price; the second term 𝜑 (𝑇 )

represents the buyer’s deviation from the best response. Finally, we point out that

although in Theorem 4.6 we set the exploration episode length to be 𝐸 = 𝑇 1−𝜉+𝜖,
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the seller does not need to know the exact value of 𝜉 as a lower bound would be

sufficient: if the seller knows some lower bound for 𝜉, say 𝜉′ < 𝜉, she can set 𝐸 = 𝑇 1−𝜉′ ,

and the őnal seller regret would become Regsell ≤ 2 (⌊log2(𝑀)⌋+ 1) · 𝑇 1−𝜉′ + 𝜑 (𝑇 ) +

(⌊log2(𝑀)⌋+ 1)2 /2 for large enough 𝑇 .

Another interesting observation for the seller regret is that its dependence on the

price set dimension 𝑀 is logarithmic, meaning that our Algorithm 4 is robust w.r.t.

the size of the seller’s decision set. In fact, later in Section 4.6, we discuss that this nice

logarithmic dependence on 𝑀 allows us to easily handle continuous price sets without

causing decay in seller performance by using a simple discretization approach.

4.5 Example of adaptive and buyer-regret minimizing

algorithms

In this section, we present simple examples of buyer algorithms that are adaptive

in the sense of Deőnition 4.4.1, and also aim to satisfy budget and ROI constraints

(Equation (4.1)) while attaining low buyer regret, where the regret of the buyer is

deőned as

Regbuy = OPT(𝑑1:𝑇 )−
∑︁

𝑡∈[𝑇 ]

E [𝑣𝑡𝑧𝑡] . (4.7)

Here {𝑧𝑡}𝑡∈[𝑇 ] is the sequence of buyer binary decisions produced by the buyer algorithm.

Also recall OPT is the buyer’s optimal hindsight total value described in Equation

(4.1). In the following subsections, we consider a clairvoyant buyer who best responds

in each period as well as a buyer who possess machine-learned (ML) advice with which

she uses to make decisions. We then further characterize seller regret of our proposed

Algorithm 4 against such buyers.
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4.5.1 Best-responding buyer

As a warm-up buyer example, we őrst consider a clairvoyant buyer who knows her value

distribution 𝑔, which means the buyer has nothing to learn from the data and thus

can best respond in the sense of Deőnition 4.3.2 during each period to maximize value

under both budget and ROI constraints (Equation (4.1). We show in the following

lemma that best responding is adaptive (see proof in Appendix C.4.1).

Lemma 4.5.1 (Best-responding is 1/2-adaptive). There exists some 𝑇0 ∈ N such that

for all 𝑇 > 𝑇0, best responding is 1
2
-adaptive (Deőnition 4.4.1).

Combining Lemma 4.5.1 and Theorem 4.4.1, we present the regret of Algorithm 4

against a best responding buyer in the following theorem whose proof can be found in

Appendix C.4.2

Theorem 4.5.2 (Seller’s regret against best responding buyer). Assume the buyer

always best responds, then for a őxed 𝜖 ∈ (0, 1
2
) independent of 𝑇 , if the seller sets

prices with episode length 𝐸 = 𝑇
1
2
+𝜖 using Algorithm 4, then for large enough 𝑇 , the

seller’s regret is bounded as Regsell ≤ 𝒪(𝑇
1
2
+𝜖). On the other hand, the buyer also

incurs 𝒪(𝑇 1
2
+𝜖) regret, and both budget and ROI constraints are satisőed.

In this clairvoyant buyer setting, since the buyer is not learning and always best

responds, the 𝑇
1
2 constituent in the seller regret is due to learning error from the

seller. In the next section, we introduce a buyer who is non-clairvoyant and also

constantly learns how to respond, and further discuss how buyer and seller learning

errors simultaneously impact seller regret.

4.5.2 Buyer with machine-learned (ML) advice

In a real world scenario, buyers typically do not know their value distribution; e.g.

buyers may be unaware of the likelihood of conversion of their ad impressions. However,

the emergence of data-driven tools for online advertising platforms have provided

buyers with additional analytics, or so-called ML advice, to help buyers estimate

ad conversion. In this subsection, we consider a buyer who possesses ML advice

101



in the form of distribution estimates of 𝑔 with which she uses to approximate best

responses against posted prices. Formally, we characterize such ML-advice-driven

buyer responses as followed:

Deőnition 4.5.1 (Approximate best response with ML advice.). Assume in each

period 𝑡, the buyer obtains ML advice 𝑔𝑡 ∈ ∆𝑁 that only depends on historical data

{𝑣𝜏}𝜏∈[𝑡] s.t. ‖𝑔𝑡 − 𝑔‖ < ℓ𝑡 where ℓ𝑡 is some estimation error. Then, the buyer solves

for the optimal solution 𝑥̂𝑡 in Equation (4.3) via replacing the true distribution 𝑔 with

𝑔𝑡, and then adopts a threshold strategy w.r.t. 𝑥̂𝑡 (see Deőnition 4.3.1).

We remark that ML advice in the form of distributional estimates is very common.

For model-based approaches, ML algorithms assume distributions take a certain

parametric form and then uses data to estimate unknown distribution parameters;

see e.g. [47] for an intro on maximum likelihood estimation. For more general non-

parametric approaches, ML advice concerns using empirical estimates (or so-called

histogram estimates), which we will later discuss in Theorem 4.5.4.

The following lemma relates ML advice driven approximate responses to our notion

of buyer adaptivity in Deőnition 4.4.1, with which we are able to quantify seller regret

in light of Theorem 4.4.1. The detailed proof can be found in Appendix C.4.3

Theorem 4.5.3 (Seller regret against approximate best responding buyer with ML

advice). Assume the buyer approximate best responds with ML advice (Deőnition

4.5.1) and there exists some 𝐿 ∈ (0, 1) s.t. in each exploration or exploitation episode

ℎ of Algorithm 4 the estimation errors, denoted by ℓ𝑡’s, satisfy lim𝑡→∞ ℓ𝑡 = 0 and
∑︀

𝑡∈ℰℎ ℓ𝑡 ≤ ̃︀𝜑(|ℰℎ|) for some increasing function ̃︀𝜑 : R+ → R+ and ̃︀𝜑(𝑥) ≤ 𝒪(𝑥1−𝐿).

Then this buyer algorithm is 𝜉-adaptive for 𝜉 = min{1
2
, 𝐿}. Further, by setting

exploration episode length 𝐸 = 𝑇 1−𝜉+𝜖 for some 𝜖 ∈ (0, 𝜉) independent of 𝑇 , the seller

regret is exactly that in Equation (4.6) of Theorem 4.4.1 for large enough 𝑇 . On the

buyer side, we have Regbuy ≤ 𝒪(𝑇 1−𝜉) and the induced buyer decisions {𝑧𝑡}𝑡∈[𝑇 ] satisfy

1

𝑇
E

⎡
⎣∑︁

𝑡∈[𝑇 ]

(𝑣𝑡 − 𝛾𝑑𝑡) 𝑧𝑡

⎤
⎦ ≥ −Θ(𝑇−𝐿)
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and

1

𝑇
E

⎡
⎣∑︁

𝑡∈[𝑇 ]

𝑑𝑡𝑧𝑡

⎤
⎦ ≤ 𝜌+Θ(𝑇−𝐿) .

We remark that best responding buyers considered in Section 4.5.1 can be viewed

as a special case of buyers with ML advice where the advice is perfect, i.e. ℓ𝑡 = 0 for

all 𝑡 so ̃︀𝜑(𝑥) ≡ 0 and consequently 𝐿 = 1. This recovers our results in Theorem 4.5.2.

Here, we also quickly discuss the aggregate impact of buyer and seller learning

error on the seller regret of our proposed Algorithm 4. In particular, the constituent

𝑇 1−𝜉 = 𝑇 1−min{ 1
2
,𝐿} in the seller regret arises from learning errors of both the buyer

and the seller. We can view the seller’s learning rate to be in the order of 𝑡−
1
2 , and

the buyer learning rate to be of order 𝑡−𝐿, and thus we see that the seller regret is

governed by the agent that learns at a slower rate: if the buyer is learning more

slowly, i.e. 𝐿 < 1
2
, then the seller regret is driven by the buyer learning loss; a similar

argument applies for the case when the buyer learns more quickly.

To conclude this section, we present a concrete example for buyers with ML advice:

consider the simple ML advice that is an empirical estimate of the buyer’s value

distribution:

𝑔𝑡 =
1

𝑡
· (

∑︁

𝜏∈[𝑡]
I{𝑣𝜏 = 𝑉 1}, . . . ,

∑︁

𝜏∈[𝑡]
I{𝑣𝜏 = 𝑉 𝑁}) . (4.8)

Then, both the buyer and seller regret are characterized in the following theorem (see

proof in Appendix C.4.4).

Theorem 4.5.4 (Seller regret against approximate best responding buyer with

empirical distribution estimates). When the buyer approximate best responds with ML

advice in the form of empirical estimates as deőned in Equation (4.8), Theorem 4.5.3

holds for 𝐿 = 𝜉 = 1
2

w.p. at least 1− 1/𝑇 .
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4.6 Additional discussions and future research

Continuous price set

We remark that our main results in this paper, speciőcally the analyses of Algorithm

4 and the corresponding seller regret, can be easily extended to handle continuous

seller price sets, as the seller regret in Theorem 4.4.1 only depends logarithmically

on 𝑀 which we recall to be the size of a discrete price set. Assuming the price

decision set is [0, 1], the approach that the seller can take is to discretize the decision

set into 𝒟 = { 1
𝑇
, 2
𝑇
. . . 1} with size |𝒟| = 𝑇 . Recall 𝜋(𝑑) deőned in Equation (4.4)

is the expected per-period seller revenue under buyer best response, and deőne

𝑑* = argmax𝑑∈[0,1] rev(𝑑) to be the optimal price w.r.t. the continuous set, such

that the seller regret is now Regsell = 𝑇 · 𝜋(𝑑*) −∑︀
𝑡∈[𝑇 ] E [𝑑𝑡𝑧𝑡] (see Proposition

4.3.2). Then, for a price ̃︀𝑑 ∈ 𝒟 in the discretized set 𝒟 that is close to 𝑑* such that

|̃︀𝑑 − 𝑑*| < 1
𝑇
, similar to our proof in Theorem 4.5.3 we can show that the optimal

solutions 𝑥𝑑 and 𝑥̃︀𝑑 to the per-period buyer optimization problem 𝑈(𝑑) and 𝑈(̃︀𝑑) (see

Equation (4.1)), respectively, are also close to one another. Further, we can show that

rev(𝑑*) − rev(̃︀𝑑) ≤ 𝑂( 1
𝑇
). Therefore, via running Algorithm 4 w.r.t. the discretized

price set 𝒟, our seller regret when facing a 𝜉-adaptive buyer (Deőnition 4.4.1) can be

bounded as

Regsell = 𝑇 max
𝑑∈[0,1]

rev(𝑑)−
∑︁

𝑡∈[𝑇 ]

E [𝑑𝑡𝑧𝑡]

= 𝑇 (𝜋(𝑑*)−max
𝑑∈𝒟

rev(𝑑))
⏟  ⏞  

discretization error

+𝑇 max
𝑑∈𝒟

rev(𝑑)−
∑︁

𝑡∈[𝑇 ]

E [𝑑𝑡𝑧𝑡]

≤ 𝑇 (𝜋(𝑑*)− rev(̃︀𝑑)) + 𝑇 max
𝑑∈𝒟

rev(𝑑)−
∑︁

𝑡∈[𝑇 ]

E [𝑑𝑡𝑧𝑡]

≤ 𝒪(1) + 𝑇 max
𝑑∈𝒟

rev(𝑑)−
∑︁

𝑡∈[𝑇 ]

E [𝑑𝑡𝑧𝑡]

≤ 𝒪(1) +𝒪(log(𝑇 )𝑇 1−𝜉+𝜖 + 𝜑(𝑇 )) ,
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where the őnal inequality follows from the seller regret (Equation (4.6)) in Theorem

4.4.1 by setting the price set size 𝑀 = 𝑇 . That being said, the discretization error

introduced to the seller regret is only in the order of 𝒪(1), and this is due to the the

fact that the bell-shape structure of seller’s revenue (Theorem 4.3.3) along with our

seller algorithm yields a seller regret that is logarthmic in the discrete price set size.

Future directions

One natural future research direction that is of both theoretical and practical interest

involves designing pricing algorithms when facing multiple őnancially constrained

buyers. The multi-buyer analogue to our single-buyer posted price setup in this work

is to set a single reserve price in each period over time where constrained buyers

compete in a second-price auction (see e.g. setup in [54] for non-constrained buyers).

The key challenge lies in the fact that in this multi-buyer setup we no longer have

the salient bell-shape structure in the seller revenue function, and more importantly

buyer algorithmic interactions introduce signiőcant difficulties to the analyses of seller

regret. Similar challenges that arise from selling to multiple learning buyers have also

been discussed (but not resolved) in related works such as [25, 38].
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Chapter 5

Improving individual advertiser

welfare with ML-advice

This chapter is based on [33], which is joint work with Yuan Deng, Negin Golrezaei,

Patrick Jaillet, and Vahab Mirrokni.

107



5.1 Introduction

Online advertisers have access to a vast array of digital advertising channels, such

as social media, web display, keyword search, etc., from which they can procure ad

impressions and drive user traffic. One possible way for these channels to improve

overall attractiveness and retention is to design appropriate ad auction mechanisms that

enhance advertisers’ total welfare, which reŕects the aggregate advertiser-perceived

value for procured ad impressions on the channel.

For instance, consider advertisers whose ad campaign objective is to maximize ad

clicks that direct users to landing pages of their services or products, as described

in [53]. These advertisers’ perceived value of procured ad impressions is their click

conversion rate, and thereby ad channels’ welfare maximization goal translates into

improving the aggregate realized click conversion among all participating advertisers.

Academic literature has developed various approaches to improve total welfare,

one of which involves predicting advertiser values by applying machine learning tools

to data on users’ interactions with ads. In the instance where welfare corresponds to

click conversion, channels use ML algorithms to produce predictions (i.e., ML advice)

on click conversion rates for impressions. See [99, 103, 88] or [112] for a comprehensive

survey on click predictions.

Having obtained ML advice on advertiser values, recent works such as [37, 11, 36]

motivate the approach to augment existing ad auctions by directly setting personalized

reserve prices for advertisers using such ML advice, and show theoretical guarantees

on total welfare improvement.

Nevertheless, these results have two important issues. First, the pursuit of im-

proving total welfare may not necessarily guarantee all individual advertisers beneőt

equally and may come at the expense of certain individual advertisers’ welfare. For

instance, larger advertisers acquiring more impressions while smaller advertisers re-

ceive fewer impressions could potentially harm the businesses of smaller advertisers

and compromise the overall health of the channel in the long term. Second, welfare

improvement guarantees are presented in a price of anarchy (POA) fashion, which
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measures the worst-case outcome total welfare compared to the maximum achievable

(or efficient) welfare. However, these POA bounds are independent of advertiser

bidding strategies and thus do not shed light on how particular advertiser bidding

strategies in ad auctions impact individual or total welfare.

In light of these insufficiencies of existing results, in this work, we address the

following questions:

Given an advertisers’ bidding strategy to procure impressions in ad auctions,

how can platforms characterize the potential welfare loss of this individual

advertiser? How should ad channels utilize machine-learned advice that

predict advertiser values to improve individual welfare?

We study a prototypical autobidding setting where advertisers compete simultane-

ously in numerous multi-slot position auctions that are run in parallel, and aim to

maximize total advertiser value under return-on-ad-spent (ROAS) constraints that

restrict total spend of a bidder to be less than her total acquired value across all

auctions in an average sense; see similar setups in [4, 37, 11, 89]. On the other hand,

ad platforms possess ML advice that predicts advertisers’ real values with a certain

degree of accuracy/quality. Under this setup, our main contributions and organization

of the paper is described as followed:

Strategy-dependent individual welfare guarantee metric for individual

advertisers. In Section 5.2, we present a novel individual welfare metric that mea-

sures the difference between two speciőc welfare outcomes of an individual advertiser:

őxing a certain bidding strategy, the worst case welfare over all auction outcomes

under which all bidders’ ROAS constraints are satisőed; and the welfare this individual

bidder would have obtained in the global welfare maximizing outcome. Our metric

achieves two key goals: 1. it characterizes individual welfare loss, and 2. allows

platforms to uncover the relationship between advertiser strategies and individual

welfare guaranties. Our proposed metric is the őrst of its kind to achieve these two

goals.

Individual welfare guarantees in VCG auctions by setting personalized
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reserves with ML advice. In Section 5.3, we illustrate through examples that

setting ML advice as personalized reserves as in [37, 11, 36] surprisingly improves

individual welfare guarantees under our aforementioned individual welfare metric.

Then, in Section 5.4 where we consider parallel VCG auctions, and focus on an

individual autobidder who adopts uniform bidding (Proposition 5.2.1), we formally

show that augmenting such auctions with ML-advice-based reserves allows us to

present an individual welfare lower bound guarantee for this advertiser that increases

in the advertiser’s uniform bid multiplier, the quality of ML advice, and the relative

market share of this advertiser compared to competitors (Theorem 5.4.1). Together

with results in [37] stating ML-advice-based reserves can improve total welfare, we

conclude that incorporating ML advice as personalized reserves achieves łbest of both

worldsž by simultaneously beneőting total and individual welfare.

Impossibility result: VCG yields the best individual welfare guarantees

among a broad class of auctions. In Section 5.5, we show an impossibility

result that says no allocation-anonymous, truthful, and possibly randomized auction

format with ML advice of given quality can achieve a strictly better individual welfare

guarantee than the VCG auction coupled with ML advice of the same quality; see

Theorem 5.5.1. In particular, for any allocation-anonymous, truthful, and possibly

randomized auction, we construct a problem instance with personalized reserves based

on ML-advice of given quality, and show that there must be at least 1 bidder whose

welfare is at most the welfare lower bound guarantee we presented under VCG (i.e.

Theorem 5.4.1).

Extending individual welfare guarantee to GSP and GFP. We extend

individual welfare guarantee results to GSP and GFP auctions, and show that a similar

individual welfare lower bound guarantee for VCG continues to hold (Theorem 5.6.2).

We compare these lower bound guarantees in GSP and GFP with that of VCG and

identify conditions under which VCG outperforms (or underperforms) GSP/GFP in

terms of our individual welfare metric with the same ML advice quality.

Numerical results. We present numerical studies using semi-synthetic data

derived from auction logs of a search ad platform to showcase individual welfare
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improvement via setting personalized reserve prices with ML-advice. We demonstrate

that as ML-advice quality improves, more advertisers’ welfare would approach what

they would have obtained under the efficient outcome.

Related Works

Autobidding and total welfare maximization. The most relevant works to this

paper are [37, 11, 89], where they consider the same autobidding setting (i.e. value-

maximizers with ROAS constraints) as ours. [37, 11, 89, 36] all present techniques

to improve price-of-anarchy bounds for the total welfare of any feasible outcome in

which all bidders’ ROAS constraints are satisőed: where [37] relies on additive boosts

on bid values, [11, 36] utilizes approximate reserve prices derived from ML-advice,

and [89] develops randomized allocation and payment rules. Our work distinguishes

itself from these works as we focus on welfare and individual welfare guarantees on

the individual bidder level, and also sheds light on how autobidders’ uniform bidding

strategies affect individual welfare loss. We point out that our proof techniques also

differ from those in [37, 11, 89, 36] as our individual individual welfare guarantees

require novel analyses on the value-expenditure tradeoffs individual bidders’ would

face when they are tempted to outbid others to acquire more value; see discussion in

Section 5.4 for more details.

Exploiting machine-learned advice. ML advice has been utilized in various

applications to improve learning and decision making. For example, [108] exploits

ML advice to develop algorithms for the multi-shop ski-rental problem, [87] adopts

ML advice for the caching problem, and [69] studies online page migration with ML

advice. However, although many works in online advertising studied predictive models

for advertiser values, click through rates, etc (see e.g. [99, 83, 103]), the literature on

applying such predictions (or more generally, ML advice) to the mechanism design

problem has been scarce. See also [30, 56] for works that exploit sample information

(unstructured ML advice) in online decision-making. One related work along this

direction is [91], which develops a theoretical framework to optimize reserve prices in

a posted price mechanism by utilizing prediction inputs on bid values. In this work,
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we do not optimize for reserves, and motivate the simple approach of setting reserves

using ML advice to improve individual advertiser welfare. Finally, we note that our

work contributes to the area of exploiting ML advice to designing mechanisms for

improving welfare guarantees for individual bidders.

5.2 Preliminaries

We describe our model in the context of sponsored search as in Section 5.1, but

remark that all results and insights apply to general online advertising setups such as

web display, e-commerce, social newsfeed, etc. Consider 𝑁 bidders (i.e. advertisers)

participating in 𝑀 parallel position auctions (𝒜𝑗)𝑗∈[𝑀 ], where each auction 𝒜𝑗 is

instantiated by a user keyword search query. An auction 𝒜𝑗 sells to bidders 𝐿𝑗 ≥ 1

ad slots that are ordered by visual prominence, or equivalently the likelihood of the

user viewing the slot, on the webpage, represented by click-through-rates (CTR)

1 ≥ 𝜇𝑗(1) ≥ 𝜇𝑗(2) ≥ . . . ≥ 𝜇𝑗(𝐿𝑗) ≥ 0, where 𝜇𝑗(ℓ) is the likelihood of the user of

auction 𝑗 viewing slot ℓ ∈ [𝐿𝑗 ] (see an intro to position auctions in e.g. [80, 106, 46]).

A bidder 𝑖 ∈ [𝑁 ] possess a private value-per-click equal to 𝑣𝑖,𝑗 > 0 for auction 𝒜𝑗 that

represents her perceived value conditioned on the user viewing her ad, so her attained

utility for winning slot ℓ ∈ [𝐿] is 𝜇𝑗(ℓ) · 𝑣𝑖,𝑗.
In the following subsection 5.2.1 we present an overview for position auction

mechanisms; in subsection 5.2.2 we describe bidder objectives and actions; and

őnally in subsection 5.2.3 we introduce deőnitions regarding bidder individual welfare

guarantees.

5.2.1 Preliminaries for a single position auction

A (possibly randomized) position auction 𝒜 with 𝐿 ≥ 1 slots is characterized by

a tuple (𝒳 ,𝒫 ,𝜇), where 𝒳 is an allocation rule, 𝒫 is a payment rule, and CTRs

𝜇 = (𝜇(ℓ))ℓ∈[𝐿] ∈ [0, 1]𝐿 that satisőes 1 ≥ 𝜇(1) ≥ 𝜇(2) > . . . ≥ 𝜇(𝐿) ≥ 0. Let

𝑁 bidders with private value per-clicks 𝑣 = (𝑣𝑖)𝑖∈[𝑁 ] participate in auction 𝒜 by

submitting a bid proőle 𝑏 = (𝑏𝑖)𝑖∈[𝑁 ] ∈ R𝑁
+ , and we describe the payment and
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allocation rules as followed:

The allocation rule 𝒳 : R𝑁
+ → {0, 1}𝑁×𝐿 maps bid proőle 𝑏 ∈ R𝑁

+ to an outcome

𝑥 = 𝒳 (𝑏) ∈ {0, 1}𝑁×𝐿 which may possibly be random. The entry 𝑥𝑖,ℓ = 1 if bidder 𝑖

is allocated slot ℓ ∈ [𝐿], and 0 otherwise. Here, each slot ℓ is at most allocated to one

bidder so
∑︀

𝑖∈[𝑁 ] 𝑥𝑖,ℓ ≤ 1 for any ℓ. Further, under outcome 𝑥 ∈ {0, 1}𝑁×𝐿, bidder

𝑖 who has value 𝑣𝑖 attains a total welfare of 𝑊𝑖(𝑥) = 𝑣𝑖
∑︀

ℓ∈[𝐿] 𝜇(ℓ)𝑥𝑖,ℓ. That is, if

bidder 𝑖 is allocated slot ℓ ∈ [𝐿] (i.e., 𝑥𝑖,ℓ = 1), her welfare is 𝑊𝑖(𝑥) = 𝜇(ℓ)𝑣𝑖. The

payment rule 𝒫 : R𝑁
+ → R𝑁

+ maps bids 𝑏 to payments 𝒫(𝑏) ∈ R𝑁
+ where 𝒫𝑖(𝑏) is the

payment of bidder 𝑖. In this work, we focus on the class of auctions that are ex-post

individual rational (IR), i.e. the payment for any bidder is less than her submitted

bid, or mathematically 𝒫𝑖(𝑏𝑖, 𝑏−𝑖) ≤ 𝑏𝑖 for any 𝑏−𝑖 ∈ R𝑁−1
+ . We note that the classic

VCG, GSP and GFP auctions are ex-post IR. Further, we assume bidders who submit

a 0 bid value will not be allocated any slots and incur no payment.

Having introduced general position auction allocation and payment rules, in the

following we deőne three special auction classes, namely truthful auction (Deőnition

5.2.1), allocation anonymous auctions (Deőnition 5.2.2), and personalized reserve

augmented allocation anonymous auctions (Deőnition 5.2.3).

Deőnition 5.2.1 (Truthful auction). Consider position auction 𝒜 = (𝒳 ,𝒫 ,𝜇) where

we recall 𝒳 ,𝒫 are possibly random allocation and payment rules, and 𝜇 ∈ [0, 1]𝐿

are CTRs. Then we say the auction is truthful if for any bidder 𝑖 ∈ [𝑁 ], her value

𝑣𝑖 ∈ argmax𝑏≥0 E [𝑊𝑖(𝒳 (𝑏, 𝑏−𝑖))− 𝒫𝑖(𝑏, 𝑏−𝑖)] for any competing bid proőle 𝑏−𝑖, where

the expectation is taken w.r.t. possible randomness in (𝒳 ,𝒫), and recall welfare

𝑊𝑖(𝑥) = 𝑣𝑖
∑︀

ℓ∈[𝐿] 𝜇(ℓ)𝑥𝑖,ℓ with 𝑥 = 𝒳 (𝑏, 𝑏−𝑖).

Note that the well-known VCG auctions is truthful. In truthful auctions it is a

weakly dominant strategy for a bidder to bid her true value when her objective is to

maximize quasi-linear utility. In the next Subsection 5.2.2 we study bidders whose

objectives are not necessarily quasi-linear, so that truthful bidding is no longer weakly

optimal in truthful auctions.

We next deőne allocation-anonymous auctions, in which if two bidders swap their

113



bids, the probability of each bidder winning any slot will also be swapped, or in other

words, the outcome of the position auction only depends on solicited bid values, and

independent of bidders’ identity.

Deőnition 5.2.2 (Allocation anonymous auctions). Consider position auction 𝒜 =

(𝒳 ,𝒫 ,𝜇) and any permutation 𝜎 : [𝑁 ]→ [𝑁 ] of {1 . . . 𝑁}, as well as the permuted bid

proőle 𝑏′ = (𝑏𝜎(𝑖))𝑖∈[𝑁 ]. Let 𝑥 = 𝒳 (𝑏), 𝑥′ = 𝒳 (𝑏′) be the (possibly random) outcomes

under 𝑏, 𝑏′, respectively. Then, we say 𝒳 is allocation anonymous if for any bidder

𝑖 ∈ [𝑁 ] and slot 𝑗 ∈ [𝐿], we have P(𝑥𝜎(𝑖),𝑗 = 1) = P(𝑥′𝑖,𝑗 = 1).

The classic VCG, GSP, and GFP are all allocation anonymous. The following

presents an illustrative example of allocation-anonymity for GSP.

Example 5.2.1 (Example for allocation anonymous auctions). Consider a single GSP

auction with 2 slots and 3 bidders who submitted a bid proőle 𝑏 = (0.1, 0.2, 0.3). As GSP

allocates slots by ranking bidders’ submitted bids, the outcome under bid proőle 𝑏 is 𝑥 =⎛
⎜⎜⎜⎝

0, 0

0, 1

1, 0

⎞
⎟⎟⎟⎠. Next, consider some permutation 𝜎 that maps {1, 2, 3} to {3, 1, 2}. That is,

𝜎(1) = 3, 𝜎(2) = 1 and 𝜎(3) = 2. Under this permutation, the corresponding permuted

bid proőle 𝑏′ = (0.3, 0.1, 0.2), which results in the outcome 𝑥′ =

⎛
⎜⎜⎜⎝

1, 0

0, 0

0, 1

⎞
⎟⎟⎟⎠. Then, it is

easy to check that P(𝑥𝜎(𝑖),𝑗 = 1) = P(𝑥′𝑖,𝑗 = 1) =

⎧
⎪⎨
⎪⎩
1 if (𝑖, 𝑗) = (1, 1) or (3, 2)

0 otherwise

. In

particular, because 𝜎(1) = 3 we have P(𝑥3,1 = 1) = P(𝑥′1,1 = 1) = 1, and because

𝜎(3) = 2 we have P(𝑥2,2 = 1) = P(𝑥′3,2 = 1) = 1.

Finally, we describe augmenting allocation anonymous auctions with personalized

reserves.

Deőnition 5.2.3 (Personalized-reserve augmented allocation anonymous auctions).

Fix position auction 𝒜 = (𝒳 ,𝒫 ,𝜇), and some vector of personalized reserve prices
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𝑟 ∈ R𝑁
+ where 𝑟𝑖 is the reserve price for bidder 𝑖 ∈ [𝑁 ]. Then, the augmented auction

is 𝒜′ = (𝒳 ′,𝒫 ′,𝜇) whose payment 𝒳 ′ and allocation 𝒫 ′ are characterized via the

following procedure for any bid proőle 𝑏 ∈ R𝑁
+ :

• 𝒳 ′: Deőne bid proőle 𝑏′ = (𝑏𝑖 · I{𝑏𝑖 ≥ 𝑟𝑖})𝑖∈[𝑁 ]. Then 𝒳 ′(𝑏) = 𝒳 (𝑏′). 1

• 𝒫 ′: If 𝑖 ∈ [𝑁 ] is not allocated a slot under outcome 𝒳 ′(𝑏), 𝒫 ′
𝑖(𝑏) = 0.

Otherwise, let ℓ𝑖 ∈ [𝐿] be the slot allocated to bidder 𝑖 under 𝒳 ′(𝑏). Then,

𝒫 ′
𝑖(𝑏) = max{𝒫𝑖(𝑏

′), 𝜇(ℓ𝑖) · 𝑟𝑖}.

Recall that a 0 bid will always result in no allocation and 0 payment, so 𝒳 ′

can be effectively viewed as excluding all bidders who do not clear their reserves,

and implement the allocation rule 𝒳 with respect to the remaining bidders. We

remark in later sections, the personalized reserve prices relevant in this work (based

on ML-advice) guarantee all bidders clear their reserves so that no bidders will be

excluded from ranking. Finally, we refer readers to Example D.1.1 for an illustration

of augmenting anonymous VCG, GSP, and GFP auctions with personalized reserves.

5.2.2 Autobidders’ objectives and bidding strategies

In this subsection we describe the scope for bidders’ objectives as well as bidding strate-

gies of interest. We recall the setup with 𝑁 bidders participating in 𝑀 parallel position

auctions (𝒜𝑗)𝑗∈[𝑀 ], where 𝑣𝑗 ∈ R𝑁
+ are bidders’ values in auction 𝒜𝑗 = (𝒳𝑗,𝒫𝑗,𝜇𝑗)

(see deőnitions in Subsection 5.2.1). We use the following notations for convenience:

1This allocation is known as an eager implementation of personalized reserve prices, where any
high-ranked slots are always allocated before a lower-rank slot gets allocated. There also exists a
lazy implementations, where we őrst rank all bids, and then allocate slots to each bidder following
this ranking if the bidder clears her reserve. Note that the lazy implementation may leave łholesž in
allocation, e.g. the őrst and third slots are allocated while leaving the second slot un-allocated. It
will become clear later that all results in this work hold for both eager and lazy implementation of
personalized reserve prices.
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𝑏𝑖 ∈ R𝑀
+ : bids submitted by 𝑖 𝑏⊤𝑗 ∈ R𝑁

+ : bids submitted to 𝒜𝑗

𝒳𝑗(𝑏
⊤
𝑗 ) ∈ {0, 1}𝑁×𝐿𝑗 : outcome of 𝑏⊤𝑗 in 𝒜𝑗 𝒫𝑗(𝑏

⊤
𝑗 ) ∈ R𝑁

+ : payment vector of 𝒜𝑗

𝒳𝑖,ℓ,𝑗(𝑏
⊤
𝑗 ) ∈ {0, 1}: indicator of 𝑖 winning slot ℓ in 𝒜𝑗 𝒫𝑖,𝑗(𝑏

⊤
𝑗 ) ∈ R+: payment of 𝑖 in 𝒜𝑗

Let 𝒳 (𝑏) := (𝒳𝑗(𝑏
⊤
𝑗 ))𝑗∈[𝑀 ]. Then, bidder 𝑖’s welfare in auction 𝒜𝑗 namely

𝑊𝑖,𝑗(𝒳𝑗(𝑏
⊤
𝑗 )), and her total welfare over all auctions namely 𝑊𝑖(𝒳 (𝑏)), are deőned as

𝑊𝑖(𝒳 (𝑏)) :=
∑︁

𝑗∈[𝑀 ]

𝑊𝑖,𝑗(𝒳𝑗(𝑏
⊤
𝑗 )) and 𝑊𝑖,𝑗(𝒳𝑗(𝑏

⊤
𝑗 )) =

𝐿𝑗∑︁

ℓ=1

𝜇𝑗(ℓ) · 𝑣𝑖,𝑗 · 𝒳𝑖,ℓ,𝑗(𝑏
⊤
𝑗 ) .

(5.1)

We study the setting where each bidder is subject to a return-on-ad-spent (ROAS)

constraint, which requires her total expenditure across all auctions to be less than her

total acquired value.2 Mathematically, őx some competing bid proőle 𝑏−𝑖 ∈ R(𝑁−1)×𝑀
+ ,

the ROAS constraint of bidder 𝑖 is

E [𝑊𝑖(𝒳 (𝑏𝑖, 𝑏−𝑖))] ≥ E [𝒫𝑖(𝑏𝑖, 𝑏−𝑖)] where 𝒫𝑖(𝑏𝑖, 𝑏−𝑖) :=
∑︁

𝑗∈[𝑀 ]

𝒫𝑖,𝑗(𝑏
⊤
𝑗 ) . (5.2)

Here, the expectation is taken w.r.t. possible randomness in the allocation and

payment rules of auctions (𝒜𝑗)𝑗∈[𝑀 ]. When allocation and payment for (𝒜𝑗)𝑗∈[𝑀 ] are

deterministic (e.g. for VCG, GSP and GFP), we omit the expectation for simplicity.

We call a bidder an autobidder when she aims to maximize welfare E [𝑊𝑖(𝒳 (𝑏𝑖, 𝑏−𝑖))]

subject to the ROAS constraint in Eq. (5.2). The following proposition states that an

autobidder’s optimal bidding strategy in truthful auctions, facing any competing bid

proőle, is uniform bidding :

2A more general concept related to ROAS is return-on-investment (ROI), where each bidder 𝑖 has
a target ROI ratio T𝑖 such that her constraint in Eq. (5.2) is instead written as 𝑊𝑖(𝒳 (𝑏𝑖, 𝑏−𝑖)) ≥
T𝑖 ·

∑︀
𝑗∈[𝑀 ] 𝑝𝑖,𝑗 ; see e.g. [62, 55]. In this paper, since we study worst-case instances, we can scale all

bidder 𝑖’s values by T𝑖 so it is without loss of generality to consider ROAS constraints.

116



Proposition 5.2.1 (Uniform bidding is optimal for autobidders in truthful auctions).

Let all auctions (𝒜𝑗)𝑗∈[𝑀 ] be identical truthful auctions (see Deőnition 5.2.1), and

bidder 𝑖 ∈ [𝑁 ] is an autobidder who aims to maximize welfare E [𝑊𝑖(𝒳 (𝑏𝑖, 𝑏−𝑖))]

subject to the ROAS constraint in Eq. (5.2) for any őxed competing bids 𝑏−𝑖 ∈ R𝑁−1
+ .

Then, there exists some constant uniform multiplier 𝛼*
𝑖 ≥ 1 s.t. the uniform bidding

proőle 𝛼*
𝑖𝑣𝑖 is 𝑖’s optimal strategy:

𝛼*
𝑖 · 𝑣𝑖 ∈ arg max

𝑏𝑖∈R𝑀
+

E [𝑊𝑖(𝒳 (𝑏𝑖, 𝑏−𝑖))] s.t. E [𝑊𝑖(𝒳 (𝑏𝑖, 𝑏−𝑖))] ≥ E [𝒫𝑖(𝑏𝑖, 𝑏−𝑖)] , .

(5.3)

Further, adopting any uniform bid multiplier 𝛼𝑖 < 1 is weakly dominated by truthful

bidding, i.e.

E [𝑊𝑖(𝒳 (𝛼𝑖𝑣𝑖, 𝑏−𝑖))] ≤ E [𝑊𝑖(𝒳 (𝑣𝑖, 𝑏−𝑖))] for any 𝑏−𝑖 ∈ R𝑁−1
+ .

This is a well-known result that has been proved and adopted in many related

works such as [4, 37, 11, 89] and we will omit the proof here. We remark that

autobidding represents advertisers’ conversion maximizing behavior while respect-

ing constraints on spend. We note that our methodologies and insights in the pa-

per can be extended to autobidders with a more general private costs objective

E [𝑊𝑖(𝒳 (𝑏𝑖, 𝑏−𝑖))]− 𝜌E [𝒫𝑖(𝑏𝑖, 𝑏−𝑖)] where 𝜌 ≥ 0 is some private cost, but for simplic-

ity we assume in the rest of the paper 𝜌 = 0. In light of this proposition, we will

assume that all autobidders will adopt bid multiplier at least 1 in truthful auctions.

Finally, we conclude by introducing the notion of feasible bid proőles:

Deőnition 5.2.4 (Feasible bid proőles). For a given set of parallel auctions (𝒜𝑗)𝑗∈[𝑀 ],

we say that a bid proőle 𝑏 ∈ R𝑁×𝑀
+ is feasible if Eq. (5.2) holds for all bidders, and

denote all feasible bid proőles as ℱ . Further, őx a bidder 𝑖 and her bids 𝑏𝑖 ∈ R𝑀
+ .

Then let ℱ−𝑖(𝑏𝑖) = {𝑏−𝑖 ∈ R(𝑁−1)×𝑀
+ : (𝑏𝑖, 𝑏−𝑖) ∈ ℱ}.3

In words, ℱ−𝑖(𝑏𝑖) is all competing bid proőles for bidder 𝑖 that guarantee all

bidders’ ROAS constraints are satisőed. It is easy to see that in ex-post IR auctions,

3Here, we exclude the trivial zero bid proőles in the sets ℱ and ℱ−𝑖(𝑏𝑖).
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any bidder can satisfy her ROAS constraint by simply bidding truthfully, since a

bidder’s payment is always no greater than her submitted bid. This implies that the

feasible set of bid proőles ℱ is never empty and contains the truthful bid proőle.

5.2.3 Efficient auction outcomes and individual welfare guar-

antees

Let ℓ*𝑖,𝑗 be the ranking of bidder 𝑖 in auction 𝒜𝑗 when ranked according to true values

𝑣𝑗 ∈ R𝑁
+ . Then we call the outcome 𝑥* = (𝑥*

𝑗)𝑗∈[𝑀 ] with 𝑥*𝑖,ℓ,𝑗 = I{ℓ = ℓ*𝑖,𝑗}, the

efficient outcome. Note that 𝑥* yields the largest total welfare because allocation of

slots in each auction follows ranking of bidder true values for that auction. Similar to

our deőnition for welfare for any outcome in Eq. (5.1), let

OPT𝑖,𝑗 = 𝜇𝑗(ℓ
*
𝑖,𝑗) · 𝑣𝑖,𝑗, OPT𝑖 =

∑︁

𝑗∈[𝑀 ]

OPT𝑖,𝑗, and OPT =
∑︁

𝑖∈[𝑁 ]

OPT𝑖 (5.4)

be the welfare of bidder 𝑖 in auction 𝑗, total welfare contribution of bidder 𝑖, and total

welfare, respectively, under the efficient outcome. Here we let 𝜇𝑗(ℓ) = 0 for all ℓ > 𝐿𝑗 .

Despite truthful bidding is always feasible (see Deőnition 5.2.4 for feasible bid

proőles and discussions on truthful bidding thereof), autobidders may not necessarily

bid truthfully (even in truthful auctions) due to the presence of ROAS constraints,

and instead adopt arbitrary strategies to optimize personal welfare which may deviate

real auction outcomes from the efficient outcome. For certain individual bidders. Such

deviations can potentially lead to signiőcant welfare losses compared to the welfare

she would have attained under the efficient one, whereas some other bidders may be

signiőcantly better off. These biases are not only largely unfavorable to bidders, but

also to auction platforms as they may incentivize bidders to leave the platforms.

It is thus important for auction platforms to characterize to what extent the

auctions ensure individual advertiser welfare, and better understand how individual

welfare relates to advertiser strategies. In the following Deőnition 5.2.5, we present a

individual welfare metric that measures how much a bidder’s realized welfare can fall
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short from the welfare she would have obtained in the efficient outcome if she adopts

a certain strategy.

Deőnition 5.2.5 (𝛿-approximate). Fix a bidder 𝑖 ∈ [𝑁 ] and her bids 𝑏𝑖 ∈ R𝑀
+ . Then

we say auctions (𝒜𝑗)𝑗∈[𝑀 ] are 𝛿-approximate for some 𝛿 ∈ [0, 1] and any bidder 𝑖 ∈ [𝑁 ]

if

min
𝑏−𝑖∈ℱ−𝑖(𝑏𝑖)

E [𝑊𝑖(𝒳 (𝑏)]
OPT𝑖

≥ 𝛿 , (5.5)

where ℱ−𝑖(·) is deőned in Deőnition 5.2.4, the total welfare 𝑊𝑖 under outcome 𝒳 (𝑏)
is deőned in Eq. (5.1), and the expectation is taken w.r.t. possible randomness in the

allocation and payment rules of auctions (𝒜𝑗)𝑗∈[𝑀 ].

The above individual welfare metric provides a quantitative answer to the following

question: őxing a bid proőle 𝑏𝑖 for bidder 𝑖, among all outcomes induced by competing

bid proőles 𝑏−𝑖 ∈ ℱ−𝑖(𝑏𝑖) that ensure every bidders’ ROAS constraint is satisőed (see

Deőnition 5.2.4), what proportion of the welfare under the efficient outcome can be

retained under the worst case outcome? We remark that under this interpretation, our

individual welfare metric is reminiscent of the notion of price of anarchy (POA) which

measures the worst-case total welfare achieved amongst all equilibrium compared to

the optimal total welfare (see e.g. [100] for a detailed introduction on POA).

5.3 Incorporating ML advice for bidder values as

personalized reserve prices

With modern machine learning (ML) models and frameworks, online ad platforms can

utilize available historical data (e.g. bid logs, keyword characteristics, user proőles,

etc.) to produce predictions on autobidders’ values (which we refer to as ML advice) ;

see e.g. [99, 103]. In this work, we speciőcally focus on ML advice that take the form

of a lower-conődence bound of true advertiser values. Our key approach to incorporate

this type of ML advice in our autobidding setting, is via simply setting personalized
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reserve prices to be the lower conődence bound for each bidder’s value. To motivate

this approach, we start with an example.

5.3.1 Motivating Example

Consider 2 bidders competing in two (single-slot) second-price auctions (i.e. 𝐿1 =

𝐿2 = 1) with corresponding CTRs 𝜇1(1) = 𝜇2(1) = 1. Bidders’ values are indicated in

the following table with some 𝑣 > 0.

Auction 1 Auction 2

bidder 1 𝑣1,1 = 𝑣 𝑣1,2 = 0

bidder 2 𝑣2,1 =
𝑣
2

𝑣2,2 = 𝑣

Suppose that both bidders are autobidders who adopt uniform bidding strategies

(see Proposition 5.2.1), and in particular, suppose that bidder 1 sets her bid multiplier

to be 𝛼1 = 1. Then when her competitor bidder 2 sets a multiplier 𝛼2 > 2, bidder

2 will win both auctions and acquire a total value/welfare of 𝑣2,1 + 𝑣2,2 =
3
2
𝑣 while

submitting a payment of 𝛼1(𝑣1,1 + 𝑣1,2) = 𝑣. In this case, bidder 2 satisőes her ROAS

constraint and extracts all bidder 1’s welfare, leaving her with no value. We also

highlight that this bid mulitplier proőle constitutes an equilibrium, 4 because bidder

1 cannot raise her bid multiplier to outbid bidder 2 for auction 1, since with 𝛼2 > 2

bidder 1 would violate her ROAS constraint if she bids more than 𝛼2𝑣2,1 > 𝑣.

Now suppose that for each value 𝑣𝑖,𝑗 (𝑖, 𝑗 ∈ [2]), the platform possesses a lower-

conődence type of ML advice, namely (𝑣𝑖,𝑗)𝑖,𝑗∈[𝑁 ] such that 𝛽𝑣𝑖,𝑗 ≤ 𝑣𝑖,𝑗 < 𝑣𝑖,𝑗 for all

𝑣𝑖,𝑗 > 0 for some 𝛽 > 1
2
, and sets personalized reserve price 𝑟𝑖,𝑗 = 𝑣𝑖,𝑗. If bidder

2 attempts to win both auctions by setting 𝛼2 > 2, her payment will be at least

max{𝛽𝑣2,1, 𝛼1𝑣1,1}+max{𝛽𝑣2,2, 𝛼1𝑣1,2} = 𝑣+𝛽𝑣 > 3
2
𝑣, violating her ROAS constraint.

Therefore, via setting personalized reserves with ML advice, bidder 1’s competitor

4At an equilibrium bid multiplier proőle, every bidder best responds to other bidders’ bid multipliers
while maintaining ROAS constraint satisfaction.
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is prohibited from outbidding her in auction 1, and hence safeguarding bidder 1’s

welfare.

Key takeaway from Example 5.3.1. The main observation from the above

example is that without reserve prices, bidder 2 acquires a large margin for her ROAS

constraint by winning auction 2 where payment required to win the auction is low.

Therefore, she can raise her bid to outbid bidder 1 in auction 1 without violating

her overall ROAS constraint. In other words, bidder 2 can compensate the high

expenditure in auction 1 with her acquired value margin in auction 2. By setting

personalized reserve prices properly, the platform can increase bidder 2’s payment

in auction 2, which in turn decreases the manipulative power of bidder 2. More

generally, without reserve prices, bidders with large total values across auctions can

overbid and consequently manipulate the outcome of certain auctions by compensating

the incurring costs with acquired values from other auctions. Therefore, setting

personalized reserve prices makes such overbidding behavior more costly, and thus

reduces the overall manipulative power of bidders.

5.3.2 Setting personalized reserve prices using ML advice

Here, we focus on the following notion of approximate reserve prices with which we

can reduce bidders’ manipulative power as exampliőed in Example 5.3.1.

Deőnition 5.3.1 (𝛽-accurate ML advice and approximate reserve prices). Suppose

there exists ML advice (𝑣𝑖,𝑗)𝑖,𝑗∈[𝑁 ] in the form a lower-conődence bound. If 𝑣𝑖,𝑗 ∈
[𝛽𝑣𝑖,𝑗, 𝑣𝑖,𝑗) with some 𝛽 ∈ (0, 1) for any bidder 𝑖 ∈ [𝑁 ] and auction 𝑗 ∈ [𝑀 ], we say

the ML advice is 𝛽-accurate. Further, if the platform sets 𝑟𝑖,𝑗 = 𝑣𝑖,𝑗, we say reserve

prices 𝑟 are 𝛽-approximate.5

The gap between the lower bound 𝛽𝑣𝑖,𝑗 and the true value 𝑣𝑖,𝑗 in Deőnition (5.3.1)

represents the inaccuracies of the platform’s ML advice. In other words, 𝛽 can be

perceived as a quality measure of the platform’s ML advice for advertiser value, such

that larger 𝛽 represents better advice quality.

5Note that any 𝛽-approximate reserve prices are also 𝛽′-approximate if 𝛽′ < 𝛽.
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Further, ML-advice in online advertising settings generally concerns predicting

advertiser values with historical conversion data and produces conődence intervals of

advertiser values (see e.g. [101, 24, 72, 31]). We remark that these conődence intervals

can be viewed as a special case of the lower-conődence type of ML advice in Deőnition

(5.3.1): suppose the auctioneers utilize some ML model to predict the true value

𝑣𝑖,𝑗 of bidder 𝑖 in auction 𝑗, and produce a conődence interval (𝑣𝑖,𝑗, 𝑣𝑖,𝑗) ∋ 𝑣𝑖,𝑗 with

𝑣𝑖,𝑗, 𝑣𝑖,𝑗 > 0. The auctioneer can then choose personalized reserve 𝑟𝑖,𝑗 = 𝑣𝑖,𝑗, which is

𝛽-approximate for 𝛽 = 𝑣𝑖,𝑗/𝑣𝑖,𝑗 ∈ (0, 1) because 𝛽𝑣𝑖,𝑗 < 𝛽𝑣𝑖,𝑗 = 𝑣𝑖,𝑗 = 𝑟𝑖,𝑗 < 𝑣𝑖,𝑗.

Furthermore, in Deőnition 5.3.1, it is assumed that the ML advice 𝑣𝑖,𝑗 is a true

lower bound on the bidder 𝑖’s value in auction 𝑗. This assumption can be relaxed by

considering the ML advice that are accurate with high probability. Suppose the we

possess some prediction 𝑣𝑖,𝑗 for 𝑣𝑖,𝑗 that satisőes |𝑣𝑖,𝑗 − 𝑣𝑖,𝑗| < 𝜂 with high probability

(w.h.p) for some known 𝜂, then the conődence interval (𝑣𝑖,𝑗 − 𝜂, 𝑣𝑖,𝑗 + 𝜂) contains 𝑣𝑖,𝑗

w.h.p. Them, the platform can set personalized reserve 𝑟𝑖,𝑗 = 𝑣𝑖,𝑗 − 𝜂. Note that with

such personalized reserve prices derived from probabilistic ML-advice, all results in

this paper remain valid w.h.p.

We conclude with a őnal remark regarding allocation-anonymous auctions (Deőni-

tion 5.2.2).

Remark 5.3.1. We remark that implementing 𝛽-approximate personalized reserve

prices in allocation-anonymous auctions does not impact anonymity, because 𝛽 < 1

and thus all bidders clear there reserves. Therefore, the outcome with personalized

reserves will be exactly the same as that without reserves; recall augmenting allocation-

anonymous auctions with personalized reserves in Deőnition 5.2.3.

5.4 Individual welfare guarantees for VCG with ML

advice

In the motivating Example 5.3.1, we observe that ML advice and corresponding

𝛽-approximate reserves allow the parallel auctions to safeguard welfare for individual
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bidders by increasing payments and consequently limit the manipulative behavior of

bidders who face signiőcantly small competition in certain auctions. In this section,

through the following Theorem 5.4.1, we formalize this intuition for the classic VCG

auction, and present a quantitative measure for the relationship between overall

individual welfare and ML advice when incorporated in the form of approximate

reserves.

Theorem 5.4.1 (Individual welfare lower bound for VCGs with 𝛽-approximate

reserves). Consider the setting where (𝒜𝑗)𝑗∈[𝑀 ] are VCG auctions, and personalized

reserve prices 𝑟 are 𝛽-approximate as in Deőnition 5.3.1. Fix an autobidder 𝑖 ∈ [𝐾]

who adopts bid multiplier 𝛼𝑖 > 1 (see Proposition 5.2.1) so 𝑏𝑖 = 𝛼𝑖𝑣𝑖. Then, the

individual welfare guarantee in Deőnition 5.2.5) is bounded as:

min
𝑏−𝑖∈ℱ−𝑖(𝛼𝑖𝑣𝑖)

𝑊𝑖(𝒳 (𝑏))
OPT𝑖

≥ 1− 1− 𝛽
𝛼𝑖 − 1

· OPT−𝑖

OPT𝑖

,

where ℱ−𝑖(·) is deőned in Deőnition 5.2.4, and OPT−𝑖 =
∑︀

𝑗 ̸=𝑖 OPT𝑗.
6

Details on implementation of VCG with personalized reserve prices can be found in

Deőnition 5.2.3 and Example D.1.1. We defer our proof for Theorem 5.4.1 to Section

5.4.1, and here we provide some intuition for the individual welfare bound in the

theorem.

In light of our interpretation for the individual welfare metric in Deőnition 5.2.5,

Theorem 5.4.1 states that at some bid multiplier 𝛼𝑖, among all outcomes induced by

competing bid proőles (possibly arbitrary non-uniform bidding proőles) that ensure

every bidders’ ROAS constraint is satisőed, in the worst case outcome, bidder 𝑖 can

retain at least a 1 − 1−𝛽
𝛼𝑖−1

· OPT−𝑖

OPT𝑖
portion of the welfare she would have obtained

under the efficient outcome. We also remark that this individual welfare bound is

very general since it does not impose any assumptions on competing bidders’ bidding

strategies and concerns any feasible general bid proőles under which bidders’ ROAS

constraint is satisőed. In other words, even if bidder 𝑖’s competing bidders optimize

6We remark that the individual welfare lower bound in Theorem 5.4.1 applies only to bidders
whose welfare under the efficient outcome is nonnegative, i.e. OPT𝑖 > 0.
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arbitrary objectives through complex bidding strategies, Theorem 5.4.1 holds valid as

long as the resulting bid proőle is feasible.

The key message from Theorem 5.4.1 is that with more accurate ML advice (i.e.

larger 𝛽), auctions can set larger approximate reserves, and hence improve individual

welfare guarantees for each individual bidder. We also provide some intuition for the

term 1−𝛽
𝛼𝑖−1

OPT−𝑖

OPT𝑖
in the bound. Increasing 𝛽 (i.e. increasing reserve prices via improving

ML quality) or increasing the bid multiplier 𝛼𝑖, raises the cost for competitors to outbid

bidder 𝑖 in certain auctions, and hence makes it more difficult to cover her expenditures

that arise from signiőcant overbidding. This reduces competitors’ manipulative power,

and in turn improves the welfare guarantees for bidder 𝑖. Note that this aligns with the

intuition we obtained in Example 5.3.1. On the other hand, OPT𝑖

OPT−𝑖
can be perceived as

the relative market share of bidder 𝑖 w.r.t. competing bidders. Our result shows that

with a small market share, the bidders become vulnerable to manipulative behavior of

others, resulting in low individual welfare guarantees.

The following Corollary 5.4.2 presents a sufficient condition for the ML advice

accuracy to achieve some predesignated level of individual welfare, whereas the

following Theorem 5.4.3 states the individual welfare bound in Theorem 5.4.1 is tight;

see Appendix D.2.1 for corresponding proofs.

Corollary 5.4.2 (ML advice accuracy level to achieve 𝛿-approximation of individual

welfare). Let (𝒜𝑗)𝑗∈[𝑀 ] be VCG auctions, and assume all bidders adopt uniform bidding

strategies with bid multipliers (𝛼𝑖)𝑖∈[𝑁 ] ∈ (1,∞)𝑁 , where we denote 𝛼 = min𝑖∈[𝑁 ] 𝛼𝑖 > 1.

Then, with 𝛽 accurate ML advice such that 𝛽 ≥ 1− (1− 𝛿) · (𝛼− 1) ·min𝑖∈[𝐾]
OPT𝑖

OPT−𝑖
,

the auctions (𝒜𝑗)𝑗∈[𝑀 ] are 𝛿-approximate for all bidders.

Theorem 5.4.3 (Matching individual welfare lower bound). For any 𝛽 ∈ (0, 1), 𝛼 > 1,

and 𝑅 ≥ 1−𝛽
𝛼−1

, there exists values 𝑣 ∈ R𝑁×𝑀
+ and 𝛽-approximate reserves 𝑟 ∈ R𝑁×𝑀

+ ,

such that there is a bidder 𝑖 with multiplier 𝛼𝑖 = 𝛼 and relative market share OPT𝑖

OPT−𝑖
= 𝑅,

who has an individual welfare guarantee min𝑏−𝑖∈ℱ−𝑖(𝛼𝑖𝑣𝑖)
𝑊𝑖(𝒳 (𝑏))
OPT𝑖

= 1− 1−𝛽
𝛼𝑖−1
· OPT−𝑖

OPT𝑖
.

We conclude by comparing our individual welfare result in Theorem 5.4.1 with

related results in the literature: we point out that although our autobidding setup
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described in Section 5.2 and the notion of approximate reserves (Deőnition 5.3.1) are

the same as those in [37, 11], our analyses and proof techniques are different, primarily

because we focus on the welfare guarantees for individual bidders, where as [37, 11]

investigates total welfare for all bidders. In particular, in our proof we őx a bidder

𝑖 and carefully analyze the amount of expenditure that could be covered by each

competitor who outbids bidder 𝑖 in auctions where 𝑖 has the highest value, whereas the

aforementioned related works takes an aggregate view to lower bound total welfare of

all bidders; see more details in the next subsection 5.4.1. Nevertheless, [11] shows that

approximate reserves improve the total welfare of all bidders, and therefore along with

Theorem 5.4.1, we can see that incorporating 𝛽-accurate ML advice as approximate

reserves not only beneőts total welfare, but also enhances individual welfare.

5.4.1 Proof for Theorem 5.4.1 and a tighter individual welfare

guarantee

In this subsection, we őrst present the proof for the individual welfare lower bound

in Theorem 5.4.1. From the proof, we further motivate a stronger individual welfare

lower bound that depends on the total welfare of at most min{𝑀,𝑁 − 1} of bidder

𝑖’s competitors, instead of OPT−𝑖 which sums up the welfare of all 𝑁 − 1 of bidder

𝑖’s competitors and can potentially be enormous due to large 𝑁 . We will later remark

that this strengthened bound, despite its improvement to the bound in Theorem 5.4.1,

may be difficult to compute in practice.

Proof for Theorem 5.4.1

First, to prove Theorem 5.4.1, we rely on the deőnition of an advertisers’ loss in

welfare compared to her welfare contribution under the efficient outcome, formally

deőned as followed:

Deőnition 5.4.1 (Welfare loss w.r.t. efficient outcome). For any bidder 𝑖 ∈ [𝑁 ] and

outcome 𝑥 = (𝑥𝑗 ∈ {0, 1}𝑁×𝐿𝑗)𝑗∈[𝑀 ], let ℒ𝑖(𝑥) = {𝑗 ∈ [𝑀 ] : 𝑊𝑖,𝑗(𝑥) < OPT𝑖,𝑗} be

the set of auctions in which bidder 𝑖’s acquired welfare is less than that of her welfare
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under the efficient outcome. Then, we deőne the welfare loss of bidder 𝑖 under outcome

𝑥 w.r.t. the efficient outcome 𝑥* as:

loss𝑖(𝑥) =
∑︁

𝑗∈ℒ𝑖(𝑥)

(OPT𝑖,𝑗 −𝑊𝑖,𝑗(𝑥)) . (5.6)

Remark 5.4.1. For any outcome 𝑥, let ℓ𝑖,𝑗 be the position (i.e. ranking) of bidder

𝑖 in auction 𝑗, and recall that ℓ*𝑖,𝑗 is the position of bidder 𝑖 in auction 𝑗 under the

efficient outcome 𝑥*. Then, the set ℒ𝑖(𝑥) = {𝑗 ∈ [𝑀 ] : 𝑊𝑖,𝑗(𝑥𝑗) < OPT𝑖,𝑗} (where

𝑊𝑖,𝑗(𝑥𝑗) is bidder 𝑖’s welfare in 𝒜𝑗 as deőned in Eq.(5.1)) can also be interpreted as

the set of auctions where bidder 𝑖’s ranking under 𝑥 is lower than her ranking under

𝑥*, or in other words the set of auctions that incur a welfare loss w.r.t. 𝑥*. Hence we

can also rewrite ℒ𝑖(𝑥) = {𝑗 ∈ [𝑀 ] : ℓ𝑖,𝑗 > ℓ*𝑖,𝑗}.

The following proposition connects the notion of welfare loss (as in Deőnition 5.4.1)

and individual welfare (as in Deőnition 5.2.5) by showing an upper bound on welfare

loss can be directly translated into a welfare lower bound that corresponds to our

individual welfare guarantee.

Proposition 5.4.4 (Translating loss to individual welfare guarantee). Assume for

bidder 𝑖 ∈ [𝑁 ] and outcome 𝑥 = (𝑥𝑗 ∈ {0, 1}𝑁×𝐿𝑗)𝑗∈[𝑀 ] we have loss𝑖(𝑥) ≤ 𝐵 for

some 𝐵 > 0. Then, 𝑊𝑖(𝑥)
OPT𝑖

≥ 1− 𝐵
OPT𝑖

.

The proof of this proposition is presented in Section D.2.2. Now, in light of this

proposition, we proceed to prove Theorem 5.4.1 by bounding bidder 𝑖’s welfare loss

for auctions where she obtains a slot that is lower in position than what she would

have obtained under the efficient outcome.

Proof of Theorem 5.4.1. Fix any feasible competing bid proőle 𝑏−𝑖 ∈ ℱ−𝑖(𝛼𝑖𝑣𝑖) under

which every bidders’ ROAS constraint is satisőed; see Deőnition 5.2.4. Denote the

corresponding outcome as 𝑥 = 𝒳 (𝑏), and ℓ𝑘,𝑗, ℓ*𝑘,𝑗 to be the position of any bidder

𝑘 ∈ [𝑁 ] in auction 𝑗 ∈ [𝑀 ] under outcome 𝑥 and the efficient outcome, respectively.

Consider any auction 𝑗 ∈ ℒ𝑖(𝑥) = {𝑗 ∈ [𝑀 ] : ℓ𝑖,𝑗 > ℓ*𝑖,𝑗} (see Remark 5.4.1), i.e. in

auction 𝒜𝑗, bidder 𝑖 acquires a position (under 𝑥) bellow her position in the efficient
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outcome 𝑥*. This implies there must exist competing bidders in auction 𝒜𝑗 whose

values are smaller than that of bidder 𝑖’s, but obtains a higher position, making bidder

𝑖 lose welfare. Motivated by this, we let ℬ𝑖(𝑘;𝑥) denote the set of all auctions in which

bidder 𝑘’s value is lower than 𝑖’s but acquires a higher position than 𝑖:

ℬ𝑖(𝑘;𝑥) =
{︀
𝑗 ∈ [𝑀 ] : OPT𝑖,𝑗 > 0, 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗 and ℓ𝑘,𝑗 ≤ ℓ*𝑖,𝑗 < ℓ𝑖,𝑗

}︀
(5.7)

where we recall OPT𝑖,𝑗 is the welfare of bidder 𝑖 in auction 𝑗 under the efficient

outcome. Further, we can őnd a collection of 𝑖’s competitors whose ℬ𝑖( · ;𝑥) łcoversž

all auctions ℒ𝑖(𝑥) in which 𝑖 loses welfare. We call this collection of competitors a

covering, and formally deőne the collection of all coverings, called 𝒞𝑖(𝑥), as followed:

𝒞𝑖(𝑥) = {𝒞 ⊆ [𝑁 ]/{𝑖} : (ℬ𝑖(𝑘;𝑥))𝑘∈𝒞 is a maximal set cover of ℒ𝑖(𝑥)} . (5.8)

Here, for any set 𝒮, we say 𝒮1 . . .𝒮𝑛 a maximal set cover of 𝒮 if 𝒮 ⊆
⋃︀

𝑛′∈[𝑛] 𝒮𝑛′ but

𝒮 ⊊
⋃︀

𝑛′∈[𝑛] 𝒮𝑛′/𝒮𝑛′′ for any 𝑛′′ ∈ [𝑛]. In words, ℬ𝑖(𝑘;𝑥) is the set of auctions in which

bidder 𝑘 has a smaller value than bidder 𝑖 but acquires a higher position, and any

𝒞 ∈ 𝒞𝑖(𝑥) is a subset of 𝑖’s competitors who are responsible for all welfare losses of

bidder 𝑖 in auctions of ℒ𝑖(𝑥).

Fix any covering 𝒞 ∈ 𝒞𝑖(𝑥), and some bidder 𝑘 ∈ 𝒞. We őrst state the following

inequality that bounds the welfare loss of bidder 𝑖 caused by competitor 𝑘 ∈ 𝒞 in the

covering (we will prove this inequality later).

∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗 ≤

1− 𝛽
𝛼𝑖 − 𝛽

∑︁

𝑗∈[𝑀 ]

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 (5.9)
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Summing the above over all competitors 𝑘 ∈ 𝒞, we have

loss𝑖(𝑥) =
∑︁

𝑗∈ℒ𝑖(𝑥)

(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗

(𝑎)

≤
∑︁

𝑘∈𝒞

∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗

(𝑏)

≤ 1− 𝛽
𝛼𝑖 − 𝛽

∑︁

𝑘∈𝒞

∑︁

𝑗∈[𝑀 ]

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 =
1− 𝛽
𝛼𝑖 − 𝛽

∑︁

𝑘∈𝒞
𝑊𝑘(𝑥)

≤ 1− 𝛽
𝛼𝑖 − 𝛽

𝑊−𝑖(𝑥)

(𝑐)

≤ 1− 𝛽
𝛼𝑖 − 𝛽

(OPT−𝑖 + loss𝑖(𝑥))

=⇒ loss𝑖(𝑥) ≤
1− 𝛽
𝛼𝑖 − 1

OPT−𝑖 .

(5.10)

Here, in (a) we used the fact that ℒ𝑖(𝑥) ⊆
⋃︀

𝑘∈𝒞 ℬ𝑖(𝑘;𝑥) (see Eq. (5.8)); in (b) we

applied Eq. (5.9); (c) follows from OPT ≥ ∑︀
𝑖∈[𝑁 ]𝑊𝑖(𝑥) where OPT is the total

efficient welfare and
∑︀

𝑖∈[𝑁 ]𝑊𝑖(𝑥) is the total welfare under outcome 𝑥, so further

OPT−𝑖 ≥ 𝑊−𝑖(𝑥) +𝑊𝑖(𝑥)−OPT𝑖

= 𝑊−𝑖(𝑥) +
∑︁

𝑗∈ℒ𝑖(𝑥)

(𝑊𝑖,𝑗(𝑥)−OPT𝑖,𝑗) +
∑︁

𝑗∈[𝑀 ]/ℒ𝑖(𝑥)

(𝑊𝑖,𝑗(𝑥)−OPT𝑖,𝑗)

(𝑒)

≥ 𝑊−𝑖(𝑥) +
∑︁

𝑗∈ℒ𝑖(𝑥)

(𝑊𝑖,𝑗(𝑥)−OPT𝑖,𝑗)

= 𝑊−𝑖(𝑥)− loss𝑖(𝑥) .

(5.11)

where in (e) we used the fact that 𝑊𝑖,𝑗(𝑥) ≥ OPT𝑖,𝑗 in any auction 𝑗 ∈ [𝑀 ]/ℒ𝑖(𝑥).

Finally, applying Proposition 5.4.4 w.r.t. upper bound of loss𝑖(𝑥), and noting that

the feasible competing bid proőle is arbitrary, we obtain the desired welfare guarantee

lower bound.

Now, it remains to prove Eq. (5.9) that bounds the welfare loss of bidder 𝑖 caused

by competitor 𝑘 ∈ 𝒞 in the covering. Denote 𝑝𝑘,𝑗 as the payment of bidder 𝑘, and

𝑏̂ℓ,𝑗 as the ℓth largest bid in any auction 𝑗 ∈ [𝑀 ]. Then in some auction 𝑗 ∈ ℬ𝑖(𝑘; 𝑏)
recall from Eqs. (5.7) and (5.8) that 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗 but ℓ𝑘,𝑗 ≤ ℓ*𝑖,𝑗 < ℓ𝑖,𝑗. Thus bidder 𝑘’s
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payment is lower bounded as followed: for 𝑗 ∈ ℬ𝑖(𝑘; 𝑏)

𝑝𝑘,𝑗

≥
𝐿𝑗∑︁

ℓ=ℓ𝑘,𝑗

(𝜇(ℓ)− 𝜇(ℓ+ 1)) 𝑏̂ℓ+1,𝑗

(𝑎)
=

ℓ*𝑖,𝑗−1∑︁

ℓ=ℓ𝑘,𝑗

(𝜇(ℓ)− 𝜇(ℓ+ 1)) 𝑏̂ℓ+1,𝑗 +

ℓ𝑖,𝑗−1∑︁

ℓ=ℓ*𝑖,𝑗

(𝜇(ℓ)− 𝜇(ℓ+ 1)) 𝑏̂ℓ+1,𝑗 + 𝑝𝑖,𝑗

(𝑏)

≥
(︀
𝜇(ℓ𝑘,𝑗)− 𝜇(ℓ*𝑖,𝑗)

)︀
𝑣𝑖,𝑗 + 𝛼𝑖

(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗 + 𝛽 · 𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

= 𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗 + (𝛼𝑖 − 1)
(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗 − (1− 𝛽) · 𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗 .

(5.12)

Here , (a) follows from the VCG payment rule (see Example D.1.1); (b) follows from

the fact that bidder 𝑖’s ranking is ℓ𝑖,𝑗 , so any bidder who is ranked before position ℓ𝑖,𝑗

submits a bid greater than bidder 𝑖’s bid 𝑏𝑖,𝑗 = 𝛼𝑖𝑣𝑖,𝑗, i.e. 𝑏̂ℓ,𝑗 ≥ 𝑏𝑖,𝑗 = 𝛼𝑖𝑣𝑖,𝑗 > 𝑣𝑖,𝑗 for

any ℓ ≤ ℓ𝑖,𝑗.

On the other hand, we have

∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

𝑝𝑘,𝑗 +
∑︁

𝑗 /∈ℬ𝑖(𝑘;𝑏)

𝑝𝑘,𝑗 ≤
∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 +
∑︁

𝑗 /∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗

𝑝𝑘,𝑗 ≥ 𝛽 · 𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 ∀𝑗 ∈ [𝑀 ] ,

where the őrst inequality follows from bidder 𝑘’s ROAS constraint; the second inequality

follows from the fact that any winning bidder’s payment must be greater than her

𝛽-approximate reserves. Combining the above inequalities and rearranging we get

∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

𝑝𝑘,𝑗 ≤
∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 + (1− 𝛽) ·
∑︁

𝑗 /∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 , (5.13)
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Summing Eq.(5.12) over all 𝑗 ∈ ℬ𝑖(𝑘; 𝑏) and combining with Eq. (5.13), we get

(𝛼𝑖 − 1) ·
∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗

≤ (1− 𝛽) ·

⎛
⎝ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗 +
∑︁

𝑗 /∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗

⎞
⎠+

∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑘,𝑗) (𝑣𝑘,𝑗 − 𝑣𝑖,𝑗)

(𝑎)

≤ (1− 𝛽) ·

⎛
⎝ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗 +
∑︁

𝑗 /∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 +
∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑘,𝑗) (𝑣𝑘,𝑗 − 𝑣𝑖,𝑗)

⎞
⎠

(𝑏)

≤ (1− 𝛽) ·

⎛
⎝ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗 +
∑︁

𝑗∈[𝑀 ]

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 −
∑︁

𝑗∈ℬ𝑖(𝑘;𝑏)

𝜇(ℓ*𝑖,𝑗)𝑣𝑖,𝑗

⎞
⎠ .

In (a), we used the fact that 𝛽 ∈ (0, 1] and 𝑣𝑘,𝑗 − 𝑣𝑖,𝑗 < 0 for any 𝑘 ∈ 𝒞 ⊆ 𝒞𝑖(𝑥); see

deőnition of 𝒞𝑖(𝑥) in Eq. (5.8); and (b) follows from ℓ𝑘,𝑗 ≤ ℓ*𝑖,𝑗 for any 𝑘 ∈ 𝒞 ⊆ 𝒞𝑖(𝑥).
Rearranging terms we obtain the desired Eq. (5.9).

A tighter fariness lower bound guarantee

We recognize that the individual welfare lower bound guarantee in Theorem 5.4.1,

namely 1− 1−𝛽
𝛼𝑖−1
· OPT−𝑖

OPT𝑖
, may be negative and hence meaningless for a small advertiser,

i.e. advertiser 𝑖 whose market share OPT𝑖

OPT−𝑖
is very small which may be a result of a very

large number of bidders 𝑁 . Nevertheless, in light of the proof above for Theorem 5.4.1,

we can in fact present a tighter individual welfare guarantee that replaces OPT−𝑖 in

the numerator, i.e. total welfare summed over 𝑁 − 1 competitors of bidder 𝑖, by the

total welfare of a potentially much smaller subset of bidder 𝑖’s competitors.

Analogous to the deőnitions ℒ𝑖(𝑥),ℬ𝑖(𝑘;𝑥) and 𝒞𝑖(𝑥) for any outcome 𝑥 deőned

in Deőnition 5.4.1, Eqs. (5.7) and (5.8), respectively, we slightly abuse notation and

deőne their outcome-independent counterparts.

ℒ𝑖 = {𝑗 ∈ [𝑀 ] : OPT𝑖,𝑗 > 0}

ℬ𝑖(𝑘) = {𝑗 ∈ [𝑀 ] : OPT𝑖,𝑗 > 0, 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗}

𝒞𝑖 = {𝒞 ⊆ [𝑁 ]/{𝑖} : (ℬ𝑖(𝑘))𝑘∈𝒞 is a maximal set cover of ℒ𝑖} ,

(5.14)
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where we recall OPT𝑖,𝑗 is the welfare of bidder 𝑖 in auction 𝒜𝑗 under the efficient

outcome as deőned in Eq. (5.4). In words, ℒ𝑖 is the set of auctions in which bidder

𝑖 can potentially lose welfare, ℬ𝑖(𝑘) is the set of auctions in which competitor 𝑘

can potentially cause 𝑖 to lose welfare, and any covering of competitors 𝒞 ∈ 𝒞𝑖 can

potentially cause 𝑖 to lose welfare in all auctions of ℒ𝑖.

We remark that 𝒞𝑖 only depends on bidder values (𝑣𝑖,𝑗)𝑖∈[𝑁 ],𝑗∈[𝑀 ], and it is easy to

see that any covering ̃︀𝒞 ∈ 𝒞𝑖 has cardinality at most min{𝑀,𝑁 − 1}. To exemplify

the covering set 𝒞𝑖, consider an instance consisting of 2 single slot VCG auctions (i.e.

SPA) and 3 bidders with the following advertiser values

SPA 1 SPA 2 SPA 3

bidder 1 𝑣1,1 = 2 𝑣1,2 = 5 𝑣1,3 = 0

bidder 2 𝑣2,1 = 1 𝑣2,2 = 1 𝑣2,3 = 10

bidder 3 𝑣3,1 = 0 𝑣3,2 = 4 𝑣3,3 = 10

Then under the efficient outcome, bidder 1 wins auctions 1 and 2. However, it may be

possible that bidder 2 solely outbids the other bidders to win both auctions 1 and

2, inducing a covering {2} for bidder 1; or bidder 2 wins auction 1 while bidder 3

wins auction 2, inducing a covering {2, 3} for bidder 1. Therefore, the covering set

𝒞𝑖 = {{2}, {2, 3}}.
The following proposition states that any covering 𝒞 ∈ 𝒞𝑖(𝑥) that contributes to

all bidder 𝑖’s welfare loss under 𝑥, must be a subset of an element of the set 𝒞𝑖.

Proposition 5.4.5. Let 𝑥 be any outcome and denote 𝒞𝑖(𝑥) be the corresponding set

of coverings deőned in Eq. (5.8). Then, for any covering 𝒞 ∈ 𝒞𝑖(𝑥), there must exist

an ̃︀𝒞 ∈ 𝒞𝑖 such that 𝒞 ⊆ ̃︀𝒞, where 𝒞𝑖 is deőned in Eq. (5.14).

In the following theorem, we present a tighter individual welfare guarantee than

that of Theorem 5.4.1 by replacing OPT−𝑖 with the welfare of some covering for
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bidder 𝑖, which may potentially be a very small subset of all bidder 𝑖’s competitors

that includes at most min{𝑀,𝑁 − 1} bidders.

Theorem 5.4.6. Consider (𝒜𝑗)𝑗∈[𝑀 ] are VCG auctions, and personalized reserve

prices 𝑟 are 𝛽-approximate as in Deőnition 5.3.1. Fix an autobidder 𝑖 ∈ [𝐾] who

adopts bid multiplier 𝛼𝑖 > 1 (see Proposition 5.2.1) so 𝑏𝑖 = 𝛼𝑖𝑣𝑖. Then, the individual

welfare guarantee in Deőnition 5.2.5) is bounded as:

min
𝑏−𝑖∈ℱ−𝑖(𝛼𝑖𝑣𝑖)

𝑊𝑖(𝒳 (𝑏))
OPT𝑖

≥ 1− 1− 𝛽
𝛼𝑖 − 𝛽

·
max̃︀𝒞∈𝒞𝑖

∑︀
𝑘∈̃︀𝒞 𝑊𝑘(𝒳 (𝑣̃︀𝒞,0))

OPT𝑖

,

where ℱ−𝑖(·) is deőned in Deőnition 5.2.4, 𝑣̃︀𝒞 = (𝑣𝑘)𝑘∈̃︀𝒞, and 𝒳 (𝑣̃︀𝒞, 0) is the outcome

when bidders in covering ̃︀𝒞 bid truthfully while others bid 0; equivalently, this is the

total efficient welfare when participation in all auctions are restricted to bidders in ̃︀𝒞
only.

Proof. Let 𝑏 ∈ ℱ be any feasible bid proőle, and let 𝑥 = 𝒳 (𝑏) be the corresponding

outcome. Also, let 𝒞𝑖(𝑏) be the set of coverings deőned in Eq. (5.8), and con-

sider any 𝒞 ∈ 𝒞𝑖(𝑥). In Eq. (5.10) within the proof of Theorem 5.4.1, we showed

loss𝑖(𝑥) ≤ 1−𝛽
𝛼𝑖−1

∑︀
𝑘∈𝒞 𝑊𝑘(𝑥), so

loss𝑖(𝑥) ≤
1− 𝛽
𝛼𝑖 − 1

∑︁

𝑘∈𝒞
𝑊𝑘(𝑥)

(𝑎)

≤ 1− 𝛽
𝛼𝑖 − 1

∑︁

𝑘∈̃︀𝒞

𝑊𝑘(𝑥)

≤ 1− 𝛽
𝛼𝑖 − 1

max
̃︀𝒞∈𝒞𝑖

∑︁

𝑘∈̃︀𝒞

𝑊𝑘(𝒳 (𝑣̃︀𝒞,0)) ,

where in (a) we let ̃︀𝒞 ∈ 𝒞𝑖 deőned in Eq. (5.14) such that 𝒞 ⊆ ̃︀𝒞 according Proposition

5.4.5. Rearranging and applying Proposition 5.4.4 yields the desired lower bound.

We conclude by making the remark that although the individual welfare lower

bound in Theorem 5.4.6 may potentially be stronger that in Theorem 5.4.1, it comes at

the cost of signiőcantly increased computational complexity due to the maximum over

all coverings. Nevertheless, this improved bound may still be practical for instances

with relatively small number of auctions, since the cardinality of any covering is upper

bounder by the number of auctions.
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5.4.2 Applicability of the individual welfare guarantee when

all bidders bid uniformly

We recognize that as the individual welfare lower bound in Theorem 5.4.1 monotonically

increases in the bid multiplier 𝛼𝑖, it is tempting for bidder 𝑖 to apply a very large

multiplier 𝛼𝑖. Nevertheless, in this section we describe a potential tradeoff between

large multipliers (i.e. better individual welfare guarantees in light of Theorem 5.4.1)

and ROAS feasibility in the practical scenario where all bidders are autobidders and

adopt uniform bidding.

To illustrate, we see that for large multiplier 𝛼𝑖, the set of competing bids ℱ−𝑖(𝛼𝑖𝑣𝑖)

may only include very small bid values (e.g. the bid proőle where each competing

bidder (under)bids some small 𝜖 > 0 close to 0 in each auction), at which bidder 𝑖

faces nearly no competition so that the ROAS constraint can be trivially satisőed

for every bidder. In light of this discussion, we consider a more practical scenario

where all competing bidders are also autobidders and adopt uniform bidding, or

equivalently, a reőnement of ℱ−𝑖(𝛼𝑖𝑣𝑖) in which each competing bidder 𝑗 ≠ 𝑖, similar

to bidder 𝑖, also adopts uniform bidding with bid multiplier 𝛼𝑗 ≥ 1. We deőne

ℱ𝑢
−𝑖(𝑏𝑖) = ℱ−𝑖(𝑏𝑖) ∩ {(𝛼𝑗𝑣𝑗)𝑗 ̸=𝑖 : 𝛼𝑗 ≥ 1} that represents the set of uniform competing

bids for bidder 𝑖 that ensure ROAS constraint satisfaction for every bidder. From

Theorem 5.4.1, it is easy to see

min
𝑏−𝑖∈ℱ𝑢

−𝑖(𝛼𝑖𝑣𝑖)

𝑊𝑖(𝒳 (𝑏))
OPT𝑖

(𝑖)

≥ 1− 1− 𝛽
𝛼𝑖 − 1

· OPT−𝑖

OPT𝑖

, (5.15)

where (i) follows from min𝑏−𝑖∈ℱ𝑢
−𝑖(𝛼𝑖𝑣𝑖)

𝑊𝑖(𝒳 (𝑏))
OPT𝑖

≥ min𝑏−𝑖∈ℱ−𝑖(𝛼𝑖𝑣𝑖)
𝑊𝑖(𝒳 (𝑏))
OPT𝑖

because

ℱ𝑢
−𝑖(𝛼𝑖𝑣𝑖) ⊆ ℱ−𝑖(𝛼𝑖𝑣𝑖). Nevertheless, in light of Eq. (5.15), when all bidders bid uni-

formly, an excessively large 𝛼𝑖 may let bidder 𝑖 incur large payments that signiőcantly

exceed her values, resulting in non-existence of competing uniform bids 𝑏−𝑖 that can

ensure satisfaction of every bidders’ ROAS constraints, i.e. ℱ𝑢
−𝑖(𝛼𝑖𝑣𝑖) being empty. In

other words, there exists a tradeoff between large multipliers (i.e. better individual

welfare guarantees) and ROAS feasibility when all bidders bid uniformly. The following
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Lemma 5.4.7, along with a technical deőnition of łwell-separatedž values per Deőnition

5.4.2, addresses this tradeoff by characterizing how large the multiplier 𝛼𝑖 can be set

that still ensures the existence of uniform competing bids within ℱ𝑢
−𝑖(𝛼𝑖𝑣𝑖).

Deőnition 5.4.2 (∆-separated values). We say values 𝑣 ∈ R𝑁×𝑀
≥0 are ∆-separated

for some ∆ > 1 if any value 𝑣𝑖,𝑗 is at least ∆ times as much as any value that is less

than 𝑣𝑖,𝑗 in the same auction 𝑗, i.e. 𝑣𝑖,𝑗 ≥ ∆ ·max{𝑣𝑘,𝑗 : 𝑘 ∈ [𝑁 ], 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗} for any

bidder 𝑖 and auction 𝑗.7

Lemma 5.4.7 (Valid regions for uniform bid multiplier). Let (𝒜𝑗)𝑗∈[𝑀 ] be VCG

auctions and assume bidders values are ∆-separated (Deőnition 5.4.2) in every auction

for some ∆ > 1, then ℱ𝑢
−𝑖(𝛼𝑖𝑣𝑖) ̸= ∅ for any 𝛼𝑖 ∈ [1,∆).

The proof of this lemma is presented in Appendix D.2.3. We also remark that

the upper bound ∆ in Lemma 5.4.7 is sufficient, meaning that there may exist larger

values of 𝛼𝑖 that can ensure the set ℱ𝑢
−𝑖(𝛼𝑖𝑣𝑖) ̸= ∅ nonempty. To better visualize the

structure of ℱ𝑢
−𝑖(𝛼𝑖𝑣𝑖), as well as our individual welfare guarantee in Theorem 5.4.1

and Eq. (5.15), we present the following example.

Example 5.4.1. Consider 2 bidders bidding in 3 single-slot VCG auctions in which

each slot is associated with CTR equal to 1. Bidder values are 𝑣1 = (4, 3, 1) and

𝑣2 = (1, 4, 3), while personalized reserves are set to be 𝑟𝑖 = 𝛽𝑣𝑖 for 𝛽 = 0.7 and

𝑖 = 1, 2. It is easy to check that with the presence of personalized reserves, no bidder

can signiőcantly overbid and win all auctions (otherwise she will incur large payments

and thus violate their ROAS constraints), and therefore each bidder will obtain non-zero

value. This aligns with our intuition presented in Sections 5.3 that states personalized

reserves beneőt individual welfare.

In the left subgraph of Figure 5-1, we color the region of all pairs of uniform

bid multipliers (𝛼1, 𝛼2) ∈ [1,∞)2 that induce feasible bid proőles (𝑏1, 𝑏2) ∈ ℱ , where

7Deőnition 5.4.2 also captures values which are ładditively separatedž. In particular, take some
𝑑 > 0 such that 𝑑 < min{𝑣𝑖,𝑗 : 𝑣𝑖,𝑗 ̸= 0} and also 𝑣𝑖,𝑗 − 𝑑 ≥ max{𝑣𝑘,𝑗 : 𝑘 ∈ [𝑁 ], 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗} for any

bidder 𝑖 and auction 𝑗. Then, by taking Δ ∈ min𝑣𝑖,𝑗 :𝑣𝑖,𝑗 ̸=0

{︁
𝑣𝑖,𝑗

𝑣𝑖,𝑗−𝑑

}︁
, the values are Δ-separated

according to Deőnition 5.4.2 because 1
Δ𝑣𝑖,𝑗 ≥ 𝑣𝑖,𝑗 − 𝑑 ≥ max{𝑣𝑘,𝑗 : 𝑘 ∈ [𝑁 ], 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗} for all 𝑣𝑖,𝑗 .

This suggests Deőnition 5.4.2 is quite general to capture value separation scenarios.
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5.5 VCG yields best individual welfare guarantee

among broad class of auctions

Having presented an individual welfare guarantee in the previous Section 5.4 that

improves according to the platform’s ML advice accuracy, a natural question is that

for a given level of accuracy 𝛽, can one achieve a universally better individual welfare

guarantee than that of Theorem 5.4.1 via considering auction formats other than

VCG? In this section, we demonstrate that the answer is negative when we restrict the

auction to a broad class of truthful mechanisms (possibly randomized) with anonymous

allocations (see Deőnition 5.2.2). Here, we again emphasize that truthfulness is w.r.t.

quasi-linear utility maximizers (see Deőnition 5.2.1).

In the following theorem, we show that no allocation-anonymous, truthful auction

𝒜 when augmented by 𝛽-approximate reserves (see Deőnition 5.2.3), can universally

outperform VCG, i.e. for any 𝒜 there exists a problem instance in which a bidder has

a welfare guarantee at most the individual welfare lower bound for VCG of Theorem

5.4.1.

Theorem 5.5.1. Let 𝒜 be any single-slot auction format (with position bias 𝜇 = 1)

that is allocation-anonymous, truthful, and possibly randomized. Then, there exists

an instance of 𝑀 parallel auctions (𝒜𝑗)𝑗∈[𝑀 ] of format 𝒜, 𝑁 bidders with values

𝑣 ∈ R𝑁×𝑀
+ , 𝛽-approximate reserves 𝑟 ∈ R𝑁×𝑀

+ , and an autobidder 𝑖 with multiplier

𝛼𝑖 > 1 (see Proposition 5.2.1), such that there is a feasible bid proőle 𝑏 ∈ ℱ in

which 𝑏𝑖 = 𝛼𝑖𝑣𝑖 ∈ R𝑀
+ that results in the following welfare upper bound for autobidder

𝑖: E[𝑊𝑖(𝒳 (𝑏))]
E[OPT𝑖]

≤ 1 − 1−𝛽
𝛼𝑖−1

· E[OPT−𝑖]
E[OPT𝑖]

. Here the expectation is taken w.r.t. possible

randomness in 𝒜.

Details on implementation allocation-anonymous auctions with personalized reserve

prices can be found in Deőnition 5.2.3 and Example D.1.1. Our proof strategy for

Theorem 5.5.1 is to construct a łbadž autobidding instance for any auction 𝒜 of

interest that yields low individual welfare for one speciőc bidder: we show that in this

autobidding instance, there is some bidder 𝑖 who has a welfare upper bound as stated
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in the theorem. The construction of this bad autobidding instance is motivated by

Example 5.3.1, in which the key source of low welfare for an individual bidder 𝑖 comes

from the fact that competing bidders outbid 𝑖 in auctions where 𝑖’s value is high, and

cover their expenditures with value acquired from other auctions where they have no

competition. Following this idea, since the bad instance in Theorem 5.5.1 requires us

to maximize individual welfare for a speciőc bidder 𝑖, we can achieve this by having

auctions where each of 𝑖’s competitors is the only bidder submitting a nonzero bid,

and with these łno-competitionž auctions competitors can cover their expenditures for

outbidding bidder 𝑖 in auctions where 𝑖’s value is largest.

Proof sketch for Theorem 5.5.1. For any auction 𝒜 that is allocation-

anonymous, truthful and possibly randomized, we consider a łbadž autobidding

instance (𝑁,𝑀,𝒜, 𝑟,𝑣) where 𝑁 = 𝐾 + 1 bidders labeled 𝐵1...𝐵𝐾 , 𝐵0 compete in

𝑀 = 2𝐾 +1 auctions with single-slots for some 𝐾 ∈ N, and bidders’ values are shown

in the following table. Reserves are set to be 𝑟𝑖,𝑗 = 𝛽𝑣𝑖,𝑗 for some 𝛽 ∈ (0, 1) and are

𝛽-approximate (see Deőnition 5.3.1). Bidder 𝐵0’s multiplier is őxed at 𝛼0 > 1.

𝐴1 𝐴2 . . . 𝐴𝐾 𝐴𝐾+1 𝐴𝐾+2 . . . 𝐴2𝐾 𝐴2𝐾+1

𝐵1
𝛼0𝑣+𝜖

𝜌
𝛼0𝑣+2𝜖

𝜌
. . . 𝛼0𝑣+𝐾𝜖

𝜌
𝛾 0 . . . 0 0

𝐵2
𝛼0𝑣+2𝜖

𝜌
𝛼0𝑣+3𝜖

𝜌
. . . 𝛼0𝑣+𝜖

𝜌
0 𝛾 . . . 0 0

...
...

...
...

...
...

...
...

𝐵𝐾
𝛼0𝑣+𝐾𝜖

𝜌
𝛼0𝑣+𝜖

𝜌
. . . 𝛼0𝑣+(𝐾−1)𝜖

𝜌
0 0 . . . 𝛾 0

𝐵0 𝑣 𝑣 . . . 𝑣 0 0 . . . 0 𝑦

In the table, we choose 𝜖 = 𝒪(1/𝐾3) and suitable parameters 𝜌, 𝛾, 𝑣, 𝑦 > 0 to satisfy

certain conditions, one of which guarantees 𝐵0’s value is the highest in auctions

𝐴1 . . . 𝐴𝐾 . With the above instance, we consider the speciőc outcome 𝑥 where bidders

1, . . . , 𝐾 adopt bid multiplier 𝜌, in which case bidder 𝐵0 has the lowest bid in auctions
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𝐴1 . . . 𝐴𝐾 (since 𝛼0 > 1. Then, our proof of Theorem 5.5.1 is to show bidder 𝐵0 can

acquire welfare at most the upper bound in Theorem 5.5.1. The proof consists of 3

parts:

(1) Under outcome 𝑥, we upper bound bidder 𝐵0’s expected acquired welfare

in auctions 𝐴1...𝐴𝐾 . This acquired welfare should be small, since other bidders are

outbidding bidder 𝐵0 in these auctions, by covering their expenditures via the value

acquired in auctions 𝐴𝐾+1, ..., 𝐴2𝐾 , respectively.

(2) We show that bidder 𝐵0 satisőes her ROAS constraint, which holds valid

due to the fact that she is acquiring value in auction 𝐴2𝐾+1 for suitable 𝑦 facing no

competition.

(3) We show that any bidder 𝑖 ∈ [𝐾] satisőes her ROAS constraint. In this

part, when we take appropriate parameters 𝜖 → 0 and 𝜌 → 𝛼0, we őrst show that

the total expected acquired value of bidder 𝑖 minus her total expected cost over all

2𝐾 + 1 auctions is approximately 1 −∑︀
𝑗∈[𝐾] P (bidder 𝑖 wins auction 𝑗) + 𝒪(𝐾2𝜖)

and since 𝜖 = 𝒪(1/𝐾3), we only need to show 1 ≥∑︀
𝑗∈[𝐾] P (bidder 𝑖 wins auction 𝑗).

Our proof for this claim exploits the speciőc structure of our problem instance

construction: we recognize that when bidders 1, . . . , 𝐾 use bid multiplier 𝜌, the

bid proőles for auctions 𝐴1...𝐴𝐾 are a cyclic permutation of the set {𝑏0, . . . , 𝑏𝐾} =
{𝛼0𝑣, 𝛼0𝑣 + 𝜖, . . . , 𝛼0𝑣 +𝐾𝜖}. Therefore by allocation-anonymity of 𝒜, the expected

outcome in each of the auctions in 𝐴1, . . . , 𝐴𝐾 are symmetric over bidders 1, . . . , 𝐾,

or in other words, P (bidder 𝑖 wins auction 𝑗) depends only on the bid value of bidder

𝑖 in auction 𝑗. The cyclic structure thus implies

∑︁

𝑗∈[𝐾]

P (bidder 𝑖 wins auction 𝑗)

=
∑︁

𝑘∈[𝐾]

P (bid value 𝑏𝑘 wins auction 𝒜 given competing bids 𝑏−𝑘) ≤ 1 .

Here, we also point out that any 𝛽 approximate reserves do not affect allocation in

auctions 𝐴1...𝐴𝐾 , simply because any bid value in {𝑏0, . . . , 𝑏𝐾} is greater than the

largest reserve price among agents, namely 𝛽𝑣, since 𝛼0 > 1 > 𝛽. In other words,
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under the speciőc outcome 𝑥, allocation anonymity of any auction in 𝐴1, . . . , 𝐴𝐾 is

preserved with personalized reserves 𝑟𝑖,𝑗 = 𝛽𝑣𝑖,𝑗 due to our construction; see also

Remark 5.3.1. For a technical re-statement of Theorem 5.5.1 and its proof, please

refer to Appendix D.3.2.

5.6 Extensions: Individual welfare guarantees for

GSP and GFP with ML advice

In this section, we extend our individual welfare guarantees for the VCG auction

in Theorem 5.4.1 to the GSP and GFP auctions, which are both non-truthful. For

technical purposes, we assume that bidder values are łwell-separatedž as deőned in

Deőnition 5.4.2.

Further, as discussed in Section 5.2.2, uniform bidding (i.e. setting the same

bid multiplier for all auctions) is only optimal in truthful auctions. In GSP and

GFP, one can construct instances where non-uniform bidding strictly outperforms

uniform bidder (for more details see e.g. [38]). Thus, for GSP and GFP autobidding

instances, we impose no assumptions on the bid values of bidders other than being

undominated: we say a bid value 𝑏𝑖 ∈ R𝑀
+ is undominated for bidder 𝑖 if there is no

other bid value 𝑏′𝑖 ∈ R𝑀
+ that strictly outperforms 𝑏𝑖 in welfare under all competing

bid proőles. Mathematically, ∄𝑏′𝑖 ∈ R𝑀
+ such that 𝑊𝑖(𝒳 (𝑏𝑖, 𝑏−𝑖)) < 𝑊𝑖(𝒳 (𝑏′𝑖, 𝑏−𝑖)) for

all 𝑏−𝑖 ∈ R(𝑁−1)×(𝑀)
+ . The following lemma lower bounds undominated bids in the

presence of 𝛽-approximate reserves.

Lemma 5.6.1 (Lemma 4.7 & 4.9 of [11]). Consider the setting where (𝒜𝑗)𝑗∈[𝑀 ] are

all GSP auctions or GFP auctions, and reserve prices 𝑟 are 𝛽-approximate. Denote

𝒰 ⊆ ℱ to be the set of bid proőles in which each bid is undominated and satisőes all

bidders’ ROAS constraints. Then for any 𝑏 ∈ 𝒰 , 𝑏𝑖,𝑗 must satisfy 𝑏𝑖,𝑗 ≥ 𝑟𝑖,𝑗 ≥ 𝛽𝑣𝑖,𝑗 for

any bidder 𝑖 ∈ [𝑁 ] and auction 𝒜𝑗.

Finally, our main theorem for this section is the following:
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Theorem 5.6.2. Consider the setting where (𝒜𝑗)𝑗∈[𝑀 ] are all GSP auctions or GFP

auctions. Suppose reserve prices 𝑟 are 𝛽-approximate, and values 𝑣 are ∆-separated

s.t. 𝛽 > Δ
2Δ−1

. Consider any undominated bid proőle 𝑏 ∈ 𝒰 ⊆ ℱ where 𝒰 is the set

of all undominated bids under which every bidder’s ROAS constraint is satisőed (see

Equation (5.2)). Then, the individual welfare guarantee (Deőnition 5.2.5) is bounded

as

min
𝑏∈𝒰

𝑊𝑖(𝒳 (𝑏))
OPT𝑖

≥ 1− 1− 𝛽
𝛽 − Δ

2Δ−1

· OPT−𝑖

OPT𝑖

.

Details on implementation of GSP and GFP with personalized reserve prices can be

found in Deőnition 5.2.3 and Example D.1.1. The proof for Theorem 5.6.2 is presented

in Appendix D.4.1. Comparing the individual welfare guarantees in Theorem 5.4.1

for VCG and Theorem 5.6.2 for GSP/GFP, we observe when values are ∆-separated

and ML advice is 𝛽-accurate, when bidders adopt small enough uniform multipliers

in VCG (i.e. 𝛼𝑖 − 1 < 𝛽 − Δ
2Δ−1

), GSP/GFP provides a better individual welfare

guarantee compared to VCG, whereas for large multipliers (i.e. 𝛼𝑖 − 1 > 𝛽 − Δ
2Δ−1

),

individual welfare in VCG dominates that in the considered non-truthful auctions.

5.7 Additional discussions and future research

This chapter focuses on presenting theoretical welfare guarantees on the individual

advertiser level. One important question is how ad channels can measure such welfare

guarantees via a data-driven metric in practice without knowing certain parameters

present in our individual welfare guarantees such as 𝛽,OPT𝑖,OPT−𝑖? For instance,

how should an ad platform choose between VCG or GSP/GFP auctions (based

on comparing their individual welfare guarantees), when ML-advice quality 𝛽 and

value separation parameter ∆ are unknown (recall Theorem 5.6.2 and discussions

thereof)? Therefore one important future research direction is to develop data-driven

metrics to measure individual welfare guarantees in practical setups, and consequently

demonstrate the accuracy of such metrics w.r.t. our presented theoretical welfare
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lower bounds.
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Appendix A

Supplementary material for Chapter 2

A.1 Additional material for Section 2.3

A.1.1 Proof of Lemma 2.3.1

Proof. Fix any option ℐ ∈ {ℐ𝐵, ℐ𝑅, ℐ𝐺} deőned in Eq. (2.2), and let (̃︀𝛾, ̃︀𝜌) ∈ ℐ be the

optimal solution to CH-OPT(ℐ). Note that for the per-channel ROI only option ℐ𝑅,

we have ̃︀𝜌𝑗 =∞ and for the per-channel budget only we have ̃︀𝛾𝑗 = 0 for all 𝑗 ∈ [𝑀 ].

Further, for any realization of value-cost pairs over all auctions 𝑧 = (𝑣𝑗,𝑑𝑗)𝑗∈[𝑀 ], recall

the optimal solution 𝑥*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗 ; 𝑧𝑗) to 𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗 ; 𝑧𝑗) for each channel 𝑗 ∈ [𝑀 ] as deőned

in Eq. (2.4).

Due to feasibility of (̃︀𝛾, ̃︀𝜌) ∈ ℐ for CH-OPT(ℐ), we have

∑︁

𝑗∈𝑀
E [𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)] ≥ 𝛾

∑︁

𝑗∈𝑀
E [𝐷𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)]

=⇒
∑︁

𝑗∈[𝑀 ]

E
[︀
𝑣⊤
𝑗 𝑥

*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)

]︀
≥ 𝛾

∑︁

𝑗∈[𝑀 ]

[︀
𝑑⊤
𝑗 𝑥

*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)

]︀

where we used the deőnitions 𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) = 𝑣⊤
𝑗 𝑥

*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) and 𝐷𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) =

𝑑⊤
𝑗 𝑥

*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) in Eq. (2.5). This implies

(︀
𝑥*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)

)︀
𝑗∈[𝑀 ]

satisőes the ROI

constraint in GL-OPT. A similar analysis implies
(︀
𝑥*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)

)︀
𝑗∈[𝑀 ]

also satisőes

the budget constraint in GL-OPT. Therefore,
(︀
𝑥*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)

)︀
𝑗∈[𝑀 ]

is feasible to GL-
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OPT. So

GL-OPT ≥
∑︁

𝑗∈[𝑀 ]

E
[︀
𝑣⊤
𝑗 𝑥

*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)

]︀
=

∑︁

𝑗∈𝑀
[𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)] = CH-OPT(ℐ) . (A.1)

where the őnal equality follows from the assumption that (̃︀𝛾, ̃︀𝜌) ∈ ℐ is the optimal

solution to CH-OPT(ℐ).

A.1.2 Proof of Theorem 2.3.4

Proof. In light of Lemma 2.3.1, we only need to show CH-OPT(ℐ𝐵) ≥ GL-OPT.

Let ̃︀𝑥(𝑧) = {̃︀𝑥𝑗(𝑧𝑗))}𝑗∈[𝑁 ] be the optimal solution to GL-OPT, and deőne ̃︀𝛾𝑗 = 0 and

̃︀𝜌𝑗 = E
[︀
𝑑⊤
𝑗 ̃︀𝑥𝑗(𝑧𝑗))

]︀
to be the corresponding expected spend for each channel 𝑗 under

the optimal solution ̃︀𝑥(𝑧) to GL-OPT, respectively.

We őrst argue that (̃︀𝛾𝑗, ̃︀𝜌𝑗)𝑗∈[𝑀 ] is feasible to CH-OPT(ℐ𝐵). Recall the optimal

solution 𝑥*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) to 𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) for each channel 𝑗 ∈ [𝑀 ] as deőned in Eq.

(2.4), as well as the deőnitions 𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) = 𝑣⊤
𝑗 𝑥

*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) and 𝐷𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) =

𝑑⊤
𝑗 𝑥

*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) in Eq. (2.5). Then, we have

E [𝐷𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)] = E
[︀
𝑑⊤
𝑗 𝑥

*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗); 𝑧𝑗

]︀ (𝑖)

≤ ̃︀𝜌𝑗 = E
[︀
𝑑⊤
𝑗 ̃︀𝑥𝑗(𝑧𝑗)

]︀
, (A.2)

where (i) follows from feasibility of 𝑥*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) to 𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗). Summing over

𝑗 ∈ [𝑀 ] we conclude that (𝛾𝑗,𝜌𝑗)𝑗∈[𝑀 ] satisőes the budget constraint in CH-OPT(ℐ𝐵):

∑︁

𝑗∈[𝑀 ]

E [𝐷𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)] ≤
∑︁

𝑗∈[𝑀 ]

E
[︀
𝑑⊤
𝑗 ̃︀𝑥𝑗(𝑧𝑗)

]︀ (𝑖)

≤ 𝜌 . (A.3)

Here (i) follows from feasibility of ̃︀𝑥(𝑧) = {̃︀𝑥𝑗(𝑧𝑗))}𝑗∈[𝑁 ] to GL-OPT since it is the

optimal solution.

On the other hand, we have

𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) = 𝑣⊤
𝑗 𝑥

*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)

(𝑖)

≥ 𝑣⊤
𝑗 ̃︀𝑥𝑗(𝑧𝑗) (A.4)

144



where (i) follows from optimality of 𝑥*
𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗) to 𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗). Hence, we have

∑︁

𝑗∈𝑀
E [𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)] ≥

∑︁

𝑗∈𝑀
E
[︀
𝑣⊤
𝑗 ̃︀𝑥𝑗(𝑧𝑗)

]︀ (𝑖)

≥ 𝛾
∑︁

𝑗∈𝑀
E
[︀
𝑑⊤
𝑗 ̃︀𝑥𝑗(𝑧𝑗)

]︀

(𝑖𝑖)

≥ 𝛾
∑︁

𝑗∈[𝑀 ]

E [𝐷𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)]

(A.5)

where (i) follows from feasibility of ̃︀𝑥(𝑧) = {̃︀𝑥𝑗(𝑧𝑗))}𝑗∈[𝑁 ] to GL-OPT since it is the

optimal solution; (ii) follows from Eq. (A.2). Hence combining Eq. (A.3) (A.5) we

can conclude that (̃︀𝛾𝑗, ̃︀𝜌𝑗)𝑗∈[𝑀 ] is feasible to CH-OPT(ℐ𝐵).

Finally, we have CH-OPT(ℐ𝐵) ≥
∑︀

𝑗∈𝑀 E [𝑉𝑗(̃︀𝛾𝑗, ̃︀𝜌𝑗; 𝑧𝑗)] ≥
∑︀

𝑗∈𝑀 E
[︀
𝑣⊤
𝑗 ̃︀𝑥𝑗(𝑧𝑗)

]︀
=

GL-OPT, where the last inequality follows from (A.5), and the őnal equality is

because we assumed ̃︀𝑥(𝑧) = {̃︀𝑥𝑗(𝑧𝑗))}𝑗∈[𝑁 ] is the optimal solution to GL-OPT.

A.1.3 Proof of Corollary 2.3.5

Proof. In light of Lemma 2.3.1, we only need to show CH-OPT(ℐ𝐺) ≥ GL-OPT. Let

(̃︀𝛾, ̃︀𝜌) ∈ ℐ𝐵, and by deőnition of ℐ𝐵 in Eq. (2.2) we have ̃︀𝛾𝑗 = 0 for all 𝑗 ∈ [𝑀 ]. Since

(̃︀𝛾, ̃︀𝜌) is feasible to CH-OPT(ℐ𝐵), it is also feasible to CH-OPT(ℐ𝐺) since these two

problems share the same ROI and budget constraints. Because they also share the

same objectives, we have

CH-OPT(ℐ𝐺) ≥ CH-OPT(ℐ𝐵) = GL-OPT (A.6)

where the őnal equality follows from Theorem 2.3.4.

A.2 Additional material for Section 2.4

A.2.1 Proof of Proposition 2.4.1

Proof. Deőne 𝜇̄𝑇 = 1
𝑇

∑︀
𝑡∈[𝑇 ] 𝜇𝑡 as well as 𝜆̄𝑇 = 1

𝑇

∑︀
𝑡∈[𝑇 ] 𝜆𝑡 . Let (𝜌*𝑗)𝑗∈[𝑀 ] be the

optimal per-channel budgets to CH-OPT(ℐ𝐵), then we have the following weak duality
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statement for any 𝜆, 𝜇 ≥ 0:

CH-OPT(ℐ𝐵) =
∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌
*
𝑗)

(𝑖)

≤
∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌
*
𝑗) + 𝜆

∑︁

𝑗∈[𝑀 ]

(︀
𝑉𝑗(𝜌

*
𝑗)− 𝛾𝜌*𝑗

)︀
+ 𝜇

⎛
⎝𝜌−

∑︁

𝑗∈[𝑀 ]

𝜌*𝑗

⎞
⎠

(𝑖𝑖)

≤
∑︁

𝑗∈[𝑀 ]

ℒ(𝜌*𝑗 , 𝜆, 𝜇) + 𝜌𝜇

(A.7)

where (i) follows from feasibility of (𝜌*𝑗)𝑗∈[𝑀 ] to CH-OPT(ℐ𝐵); (ii) follows from

the deőnition of the Lagrangian function in Eq. (2.7). We can further bound the

advertiser’s regret as followed:

𝑇 ·GL-OPT− E

⎡
⎣∑︁

𝑡∈[𝑇 ]

∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑗,𝑡)

⎤
⎦

(𝑖)
= 𝑀𝑉𝐾 + (𝑇 −𝐾) ·CH-OPT(ℐ𝐵)− E

⎡
⎣∑︁

𝑡>𝐾

∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑗,𝑡)

⎤
⎦

(𝑖𝑖)

≤ 𝑀𝑉𝐾 + (𝑇 −𝐾) ·
∑︁

𝑗∈[𝑀 ]

E
[︀
ℒ𝑗(𝜌

*
𝑗 , 𝜆̄𝑇 , 𝜇̄𝑇 ) + 𝜌𝜇̄𝑇

]︀
− E

⎡
⎣∑︁

𝑡>𝐾

∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑗,𝑡)

⎤
⎦

(𝑖𝑖𝑖)
< 𝑀𝑉𝐾 + 𝜌

∑︁

𝑡>𝐾

E [𝜇𝑡] +
∑︁

𝑡>𝐾

∑︁

𝑗∈[𝑀 ]

E
[︀
ℒ𝑗(𝜌

*
𝑗 , 𝜆𝑡, 𝜇𝑡)

]︀

−
∑︁

𝑡>𝐾

∑︁

𝑗∈[𝑀 ]

E [ℒ𝑗(𝜌𝑗,𝑡, 𝑐𝑡)− 𝜆𝑡 (𝑉𝑗(𝜌𝑗,𝑡)− 𝛾𝜌𝑗,𝑡) + 𝜇𝑡𝜌𝑗,𝑡]

(𝑖𝑣)

≤ 𝑀𝑉𝐾 +
∑︁

𝑗∈[𝑀 ]

∑︁

𝑡>𝐾

E
[︀
ℒ𝑗(𝜌

*
𝑗(𝑡), 𝑐𝑡)− ℒ𝑗(𝜌𝑗,𝑡, 𝑐𝑡)

]︀
+

∑︁

𝑡>𝐾

(𝜆𝑡𝑔1,𝑡 + 𝜇𝑡𝑔2,𝑡) .

(A.8)

In (i), we őrst used the trivial upper bound 𝑉 on conversion functions in each channel

for the őrst 𝐾 periods where we choose each of the arms once and pull that arm across

all channels. Then we applied GL-OPT = CH-OPT(ℐ𝐵) from Theorem 2.3.4; (ii)

follows from the weak duality statement in Eq. (A.7) by taking 𝜆 = 𝜆̄𝑇 = 1
𝑇

∑︀
𝑡∈[𝑇 ] 𝜆𝑡

and 𝜇 = 𝜇̄𝑇 = 1
𝑇

∑︀
𝑡∈[𝑇 ] 𝜇𝑡; (iii) follows from the deőnition of the Lagrangian function in

Eq. (2.7) where we have ℒ𝑗(𝜌𝑗, 𝑐; 𝑧𝑗) = (1+𝜆)𝑉𝑗(𝜌𝑗 ; 𝑧𝑗)− (𝜆𝛾+𝜇)𝜌𝑗 , and ℒ𝑗(𝜌𝑗, 𝑐) =
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E [ℒ𝑗(𝜌𝑗, 𝑐; 𝑧𝑗)]; in (iv) we used the deőnition that 𝜌*𝑗(𝑡) = argmax𝜌𝑗≥0 ℒ𝑗(𝜌𝑗, 𝑐𝑡)

to be the optimal budget that maximizes the Lagrangian w.r.t. the dual variables

𝑐𝑡 = (𝜆𝑡, 𝜇𝑡), and the deőnition 𝑔1,𝑡 =
∑︀

𝑗∈[𝑀 ] 𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡)−𝛾𝜌𝑗,𝑡 and 𝑔2,𝑡 = 𝜌−
∑︀

𝑗∈[𝑀 ] 𝜌𝑗,𝑡

as deőned in Algorithm 1.

A.2.2 Proof for Lemma 2.4.2

Proof. Here, we would like to show that
∑︀

𝑡>𝐾 E [𝜆𝑡𝑔1,𝑡 + 𝜇𝑡𝑔2,𝑡] ≤ 𝒪
(︁
𝜂𝑇 + 1

𝜂

)︁
,

where we recall that 𝑔1,𝑡 =
∑︀

𝑗∈[𝑀 ] (𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡)− 𝛾𝜌𝑗,𝑡), 𝑔2,𝑡 = 𝜌−∑︀
𝑗∈[𝑀 ] 𝜌𝑗,𝑡 and 𝜂 > 0

the step size deőned in Algorithm 1.

Now from lemma A.2.3, we have for any 𝜆 ≥ 0 and 𝜇 ≥ 0,

(𝜆𝑡 − 𝜆) 𝑔1,𝑡 ≤
𝜂𝑀2(𝑉 + 𝛾𝜌)2

2
+

1

2𝜂

(︀
(𝜆− 𝜆𝑡)2 − (𝜆− 𝜆𝑡+1)

2
)︀

(𝜇𝑡 − 𝜇) 𝑔2,𝑡 ≤
𝜂𝑀2𝜌2

2
+

1

2𝜂

(︀
(𝜇− 𝜇𝑡)

2 − (𝜇− 𝜇𝑡+1)
2
)︀

Telescoping the above from 𝑡 = 𝐾 + 1 to 𝑡 = 𝑇 , we get

∑︁

𝑡>𝐾

(𝜆𝑡 − 𝜆) 𝑔1,𝑡 ≤
𝜂𝑀2(𝑉 + 𝛾𝜌)2

2
· 𝑇 +

1

2𝜂
(𝜆− 𝜆1)2

∑︁

𝑡>𝐾

(𝜇𝑡 − 𝜇) 𝑔2,𝑡 ≤
𝜂𝑀2𝜌2

2
· 𝑇 +

1

2𝜂
(𝜇− 𝜇1)

2 .

By taking 𝜆 = 𝜇 = 0 and recalling 𝜆1 = 𝜇1 = 0, we get the desired bound in the

statement of the lemma.

A.2.3 Proof of Lemma 2.4.3

Proof. We őrst show for any realization 𝑧 = (𝑧𝑗)𝑗∈[𝑀 ] = (𝑣𝑗,𝑑𝑗)𝑗∈[𝑀 ], the conversion

function 𝑉𝑗(𝜌𝑗; 𝑧𝑗) is piecewise linear, strictly inreasing, and concave for any 𝑗 ∈ [𝑀 ].

Fix any channel 𝑗 which consists of 𝑚𝑗 parallel auctions, and recall that we assumed

the orderding 𝑣𝑗,1
𝑑𝑗,1

>
𝑣𝑗,2
𝑑𝑗,2

> · · · > 𝑣𝑗,𝑚𝑗

𝑑𝑗,𝑚𝑗

for any realization 𝑧𝑗. Then, with the option

where the per-channel ROI is set to 0 (i.e. omitted) 𝑉𝑗(𝜌𝑗; 𝑧𝑗) is exactly the LP

relaxation of a 0-1 knapsack, whose optimal solution 𝑥*
𝑗(𝜌𝑗; 𝑧𝑗) is well known to be
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unique [32], and takes the form for any auction index 𝑛 ∈ [𝑚𝑗]:

𝑥*𝑗,𝑛(𝜌𝑗; 𝑧𝑗) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if
∑︀

𝑛′∈[𝑛] 𝑑𝑗,𝑛′ ≤ 𝜌𝑗

𝜌𝑗−
∑︀

𝑛′∈[𝑛−1] 𝑑𝑗,𝑛′

𝑑𝑗,𝑛
if

∑︀
𝑛′∈[𝑛] 𝑑𝑗,𝑛′ > 𝜌𝑗

0 otherwise

(A.9)

where we denote 𝑑𝑗,0 = 0. With this form, we can see that when 𝜌𝑗 lies in between
∑︀

𝑛′∈[𝑛−1] 𝑑𝑗,𝑛′ and
∑︀

𝑛′∈[𝑛] 𝑑𝑗,𝑛′ , the conversion functions is

𝑉𝑗(𝜌𝑗; 𝑧𝑗) = 𝑣⊤
𝑗 𝑥

*
𝑗(𝜌𝑗; 𝑧𝑗) =

∑︁

𝑛′∈[𝑚𝑗 ]

𝑣𝑗,𝑛′ · 𝑥*𝑗,𝑛′(𝜌𝑗; 𝑧𝑗)

=
∑︁

𝑛′∈[𝑛−1]

𝑣𝑗,𝑛′ · 1 + 𝑣𝑗,𝑛 ·
𝜌𝑗 −

∑︀
𝑛′∈[𝑛−1] 𝑑𝑗,𝑛′

𝑑𝑗,𝑛
=
𝑣𝑗,𝑛
𝑑𝑗,𝑛

𝜌𝑗 + 𝑏𝑗,𝑛

where we denote 𝑑𝑗,0 = 𝑣𝑗,0 = 0 and also 𝑏𝑗,𝑛 =
∑︀

𝑛′∈[𝑛−1] 𝑣𝑗,𝑛′ − 𝑣𝑗,𝑛
𝑑𝑗,𝑛
·
(︁∑︀

𝑛′∈[𝑛−1] 𝑑𝑗,𝑛′

)︁
.

Hence, by using indicators to specify where 𝜌𝑗 lies, we have

𝑉𝑗(𝜌𝑗; 𝑧𝑗) = 𝑣⊤
𝑗 𝑥

*
𝑗(𝜌𝑗; 𝑧𝑗)

=
∑︁

𝑛∈[𝑚𝑗 ]

(︂
𝑣𝑗,𝑛
𝑑𝑗,𝑛

𝜌𝑗 + 𝑏𝑗,𝑛

)︂
I {𝑑𝑗,0 + · · ·+ 𝑑𝑗,𝑛−1 ≤ 𝜌𝑗 ≤ 𝑑𝑗,0 + · · ·+ 𝑑𝑗,𝑛} .

(A.10)

Further, it is easy to check that any two line segments, say [𝑋𝑛−1, 𝑋𝑛] and [𝑋𝑛, 𝑋𝑛+1]

where we write 𝑋𝑛 = 𝑑𝑗,0 + · · · + 𝑑𝑗,𝑛, intersect at 𝜌𝑗 = 𝑋𝑛, because 𝑣𝑗,𝑛
𝑑𝑗,𝑛

𝜌𝑗 + 𝑏𝑗,𝑛 =

𝑣𝑗,𝑛+1

𝑑𝑗,𝑛+1
𝜌𝑗 + 𝑏𝑗,𝑛+1 at 𝜌𝑗 = 𝑋𝑛. Hence, from Eq. (A.10) we can conclude 𝑉𝑗(𝜌𝑗; 𝑧𝑗)

is continuous, which further implies it is piece-wise linear and strictly increasing.

Further, the ordering 𝑣𝑗,1
𝑑𝑗,1

>
𝑣𝑗,2
𝑑𝑗,2

> · · · > 𝑣𝑗,𝑚𝑗

𝑑𝑗,𝑚𝑗

implies that the slopes on each segment

[𝑋𝑛, 𝑋𝑛+1] decreases as 𝑛 increases, which implies 𝑉𝑗(𝜌𝑗; 𝑧𝑗) is concave.

Since 𝑉𝑗(𝜌𝑗) = E [𝑉𝑗(𝜌𝑗; 𝑧𝑗)], where the expectation is taken w.r.t. randomness in

𝑧𝑗, and since the 𝑧𝑗 is sampled from some discrete distribution 𝑝𝑗 on őnite support

𝐹𝑗 , 𝑉𝑗(𝜌𝑗) is simply a weighted average over all (𝑉𝑗(𝜌𝑗; 𝑧𝑗))𝑧𝑗∈𝐹𝑗
with weights in 𝑝𝑗 , so

𝑉𝑗(𝜌𝑗) is also continuous, piece-wise linear, strictly increasing, and concave, and thus
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can be written as in Lemma 2.4.3:

𝑉𝑗(𝜌𝑗) =
∑︁

𝑛∈[𝑆𝑗 ]

(𝑠𝑗,𝑛𝜌𝑗 + 𝑏𝑗,𝑛) I{𝑟𝑗,𝑛−1 ≤ 𝜌𝑗 ≤ 𝑟𝑗,𝑛} ,

where the parameters 𝑆𝑗 ∈ N and {(𝑠𝑗,𝑛, 𝑏𝑗,𝑛, 𝑟𝑗,𝑛)}𝑛∈[𝑆𝑗 ] only depend on the support

𝐹𝑗 and distribution 𝑝𝑗 from which value-to-cost pairs are sampled. These parameters

satisfy 𝑠𝑗,1 > 𝑠𝑗,2 > · · · > 𝑠𝑗,𝑆𝑗
> 0 and 0 = 𝑟𝑗,0 < 𝑟𝑗,1 < 𝑟𝑗,2 < · · · < 𝑟𝑗,𝑆𝑗

= 𝜌, as well

as 𝑏𝑗,𝑛 > 0 s.t. 𝑠𝑗,𝑛𝑟𝑗,𝑛 + 𝑏𝑗,𝑛 = 𝑠𝑗,𝑛+1𝑟𝑗,𝑛 + 𝑏𝑗,𝑛+1 for all 𝑛 ∈ [𝑆𝑗 − 1], implying 𝑉𝑗(𝜌𝑗) is

continuous in 𝜌𝑗.

Finally, according to the deőnition of ℒ𝑗(𝜌𝑗, 𝑐) = E [ℒ𝑗(𝜌𝑗, 𝑐; 𝑧𝑗)] and ℒ𝑗(𝜌𝑗, 𝑐; 𝑧𝑗) =

(1 + 𝜆)𝑉𝑗(𝜌𝑗; 𝑧𝑗)− (𝜆𝛾 + 𝜇)𝜌𝑗 as deőned in Eq. (2.7), we have

ℒ𝑗(𝜌𝑗, 𝑐) = (1 + 𝜆)𝑉𝑗(𝜌𝑗)− (𝜆𝛾 + 𝜇)𝜌𝑗 , (A.11)

which implies ℒ𝑗(𝜌𝑗, 𝑐) is continuous, piece-wise linear, and concave in 𝜌𝑗 because

𝑉𝑗(𝜌𝑗) is continuous, piece-wise linear, and concave as shown above. Combining Eq.

(A.11) and the representation of 𝑉𝑗(𝜌𝑗) in Lemma (2.4.3), we have

ℒ𝑗(𝜌𝑗, 𝑐) =
∑︁

𝑛∈[𝑆𝑗 ]

(𝜎𝑗,𝑛(𝑐)𝜌𝑗 + (1 + 𝜆)𝑏𝑗,𝑛) I{𝑟𝑗,𝑛−1 ≤ 𝜌𝑗 ≤ 𝑟𝑗,𝑛} . (A.12)

where the slope 𝜎𝑗,𝑛(𝑐) = (1 + 𝜆)𝑠𝑗,𝑛 − (𝜇 + 𝛾𝜆) decreases in 𝑛. Thus at the point

𝑟𝑗,𝑛* = max{𝑟𝑗,𝑛 : 𝑛 = 0, 1 . . . , 𝑆𝑗 , 𝜎𝑗,𝑛(𝑐) ≥ 0} in which the slope to the right turns

negative for the őrst time, ℒ𝑗(𝜌𝑗, 𝑐) takes its maximum value max𝜌𝑗≥0 ℒ𝑗(𝜌𝑗, 𝑐). This

is because to the left of 𝑟𝑗,𝑛* , namely the region [0, 𝑟𝑗,𝑛* ], ℒ𝑗(𝜌𝑗, 𝑐) strictly increases as

the slopes are positive; and to the right of 𝑟𝑗,𝑛* , namely the region [𝑟𝑗,𝑛* , 𝜌], ℒ𝑗(𝜌𝑗, 𝑐)

strictly decreases.

A.2.4 Proof for Lemma 2.4.4

Proof. We őrst present some deőnitions for convenience: denote 𝑐 = (𝜆, 𝜇), 𝑐𝑡 =

(𝜆𝑡, 𝜇𝑡), and 𝑧𝑡 = (𝑣𝑡,𝑑𝑡). For any realization 𝑧 = (𝑣,𝑑) = (𝑣𝑗,𝑑𝑗)𝑗∈[𝑀 ] ∈ 𝐹1 × . . . 𝐹𝑀
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of values and costs across channels, deőne the dual function

ℒ𝑑(𝑐; 𝑧) = max
𝜌∈[0,𝜌]𝑀

∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑗; 𝑧) + 𝜆
∑︁

𝑗∈[𝑀 ]

(𝑉𝑗(𝜌𝑗; 𝑧)− 𝛾𝜌𝑗) + 𝜇

⎛
⎝𝜌−

∑︁

𝑗∈[𝑀 ]

𝜌𝑗

⎞
⎠

= 𝜇𝜌+ max
(𝜌𝑗)𝑗∈[𝑀 ]∈[0,𝜌]𝑀

∑︁

𝑗∈[𝑀 ]

ℒ𝑗(𝜌𝑗, 𝑐; 𝑧𝑗) .

(A.13)

From standard convex analysis we know that ℒ𝑑 is convex in (𝜆, 𝜇), which implies for

any 𝑐′ = (𝜆′, 𝜇′)

(𝑐′ − 𝑐)⊤∇ℒ𝑑(𝑐; 𝑧) ≤ ℒ𝑑(𝑐
′; 𝑧)− ℒ𝑑(𝑐; 𝑧) . (A.14)

We prove the lemma by induction that

‖(𝜆𝑡, 𝜇𝑡)‖ = ‖𝑐𝑡‖

≤ 𝐶𝐹 := 1 +
max𝑧∈𝐹1×...𝐹𝑀

𝑒⊤𝑣 + 1

min𝑧∈𝐹1×...𝐹𝑀

{︁∑︀
𝑗∈[𝑀 ]

(︀
𝑉𝑗(𝜌(𝑧),𝑗; 𝑧)− 𝛾𝜌𝑗

)︀
, 𝜌−

∑︀
𝑗∈[𝑀 ] 𝜌(𝑧),𝑗

}︁ .

(A.15)

Here, we utilized the existence of some (𝜌(𝑧),𝑗)𝑗∈[𝑀 ] ∈ [0, 𝜌]𝑀 for any 𝑧 according

to Proposition A.2.1 which states at per-channel budget proőle (𝜌(𝑧),𝑗)𝑗∈[𝑀 ] Slater’s

condition holds, i.e.
∑︀

𝑗∈[𝑀 ]

(︀
𝑉𝑗(𝜌(𝑧),𝑗; 𝑧)− 𝛾𝜌𝑗

)︀
> 0 and 𝜌−

∑︀
𝑗∈[𝑀 ] 𝜌(𝑧),𝑗 > 0. Slater’s

condition also implies 𝐶𝐹 > 1.

The base case for 𝑡 = 1 is satisőed trivially since we take 𝜆1 = 𝛾1 = 0 and thus

‖𝑐1‖ = 0 < 1 < 𝐶𝐹 . Now assume ‖𝑐𝑡‖ ≤ 𝐶𝐹 for some 𝑡 ≥ 1, and we will show

‖𝑐𝑡+1‖ ≤ 𝐶𝐹 by considering two different case:

Case (A): ℒ𝑑(𝑐𝑡; 𝑧𝑡) > ℒ𝑑(0; 𝑧𝑡) + 𝜂2𝑀2
(︀
(𝑉 + 𝛾𝜌)2 + 𝜌2

)︀
. Deőne 𝑔𝑡 = (𝑔1,𝑡, 𝑔2,𝑡)

where we recall 𝑔1,𝑡 =
∑︀

𝑗∈[𝑀 ] (𝑉𝑗,𝑡(𝜌𝑗,𝑡)− 𝛾𝜌𝑗,𝑡) and 𝑔2,𝑡 = 𝜌 −∑︀
𝑗∈[𝑀 ] 𝜌𝑗,𝑡. From Eq.
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(A.53) in the statement of Lemma A.2.3, we have for any 𝜆 ≥ 0 and 𝜇 ≥ 0

(𝜆− 𝜆𝑡+1)
2 ≤ (𝜆− 𝜆𝑡)2 + 2𝜂 (𝜆− 𝜆𝑡) 𝑔1,𝑡 + 𝜂2𝑀2(𝑉 + 𝛾𝜌)2

(𝜇− 𝜇𝑡+1)
2 ≤ (𝜇− 𝜇𝑡)

2 + 2𝜂 (𝜇− 𝜇𝑡) 𝑔1,𝑡 + 𝜂2𝑀2𝜌2 .

By summing the two inequalities and taking 𝜆 = 𝜇 = 0 we get

‖𝑐𝑡+1‖2 ≤ ‖𝑐𝑡‖2 + 2𝜂 (𝑐𝑡)
⊤
𝑔𝑡 + 𝜂2𝑀2

(︀
(𝑉 + 𝛾𝜌)2 + 𝜌2

)︀

(𝑖)

≤ ‖𝑐𝑡‖2 + 𝜂 (ℒ𝑑(0; 𝑧𝑡)− ℒ𝑑(𝑐𝑡; 𝑧𝑡)) + 𝜂2𝑀2
(︀
(𝑉 + 𝛾𝜌)2 + 𝜌2

)︀
,

(A.16)

where in (i) we applied Eq. (A.14) with 𝑧 = 𝑧𝑡 and used the fact that 𝑔𝑡 = (𝑔1,𝑡, 𝑔2,𝑡) =

∇ℒ𝑑(𝑐𝑡; 𝑧𝑡).

Then from Eq. (A.16) and the assumption ℒ𝑑(𝑐𝑡; 𝑧𝑡) > ℒ𝑑(0; 𝑧𝑡)+𝜂
2𝑀2

(︀
(𝑉 + 𝛾𝜌)2 + 𝜌2

)︀

we have

max{𝜆𝑡, 𝜇𝑡} ≤ ‖𝑐𝑡+1‖ < ‖𝑐𝑡‖ ≤ 𝐶𝐹 ,

where the őnal inequality follows from the induction hypothesis.

Case (B): ℒ𝑑(𝑐𝑡; 𝑧𝑡) ≤ ℒ𝑑(0; 𝑧𝑡) + 𝜂2𝑀2
(︀
(𝑉 + 𝛾𝜌)2 + 𝜌2

)︀
. Under this case, we
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have

ℒ𝑑(0; 𝑧𝑡) + 𝜂𝑀2𝑉 2

≥ ℒ𝑑(𝑐𝑡; 𝑧𝑡)

(𝑖)
= 𝜇𝑡𝜌+ max

𝜌∈[0,𝜌]𝑀

∑︁

𝑗∈[𝑀 ]

ℒ𝑗(𝜌, 𝑐𝑡; 𝑧𝑡)

(𝑖𝑖)

≥ 𝜇𝑡𝜌+ ℒ(𝜌(𝑧𝑡), 𝑐𝑡; 𝑧𝑡)

=
∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌(𝑧𝑡),𝑗; 𝑧𝑡) + 𝜆𝑡
∑︁

𝑗∈[𝑀 ]

(︀
𝑉𝑗(𝜌(𝑧𝑡),𝑗; 𝑧𝑡)− 𝛾𝜌𝑗

)︀
+ 𝜇𝑡

⎛
⎝𝜌−

∑︁

𝑗∈[𝑀 ]

𝜌(𝑧𝑡),𝑗

⎞
⎠

≥ 𝜆𝑡
∑︁

𝑗∈[𝑀 ]

(︀
𝑉𝑗(𝜌(𝑧𝑡),𝑗; 𝑧𝑡)− 𝛾𝜌𝑗

)︀
+ 𝜇𝑡

⎛
⎝𝜌−

∑︁

𝑗∈[𝑀 ]

𝜌(𝑧𝑡),𝑗

⎞
⎠

(𝑖𝑖𝑖)

≥ (𝜆𝑡 + 𝜇𝑡) · min
𝑧∈𝐹1×...𝐹𝑀

⎧
⎨
⎩

∑︁

𝑗∈[𝑀 ]

(︀
𝑉𝑗(𝜌(𝑧),𝑗; 𝑧)− 𝛾𝜌𝑗

)︀
, 𝜌−

∑︁

𝑗∈[𝑀 ]

𝜌(𝑧),𝑗

⎫
⎬
⎭ .

(A.17)

Here, (i) follows from the deőnition of the dual function in Eq. (A.13); in (ii) we

recall the deőnition of 𝜌(𝑧) ∈ [0, 𝜌]𝑀 that satisőes the Slater’s condition in Proposition

A.2.1; in (iii), we used the fact that 𝜆𝑡, 𝜇𝑡 ≥ 0 and also under Slater’s condition we

have for any 𝑧,
∑︀

𝑗∈[𝑀 ]

(︀
𝑉𝑗(𝜌(𝑧),𝑗; 𝑧)− 𝛾𝜌𝑗

)︀
> 0 and 𝜌−∑︀

𝑗∈[𝑀 ] 𝜌(𝑧),𝑗 > 0.

On the other hand, we have 𝜂2𝑀2
(︀
(𝑉 + 𝛾𝜌)2 + 𝜌2

)︀
< 1 since in the statement of

the lemma we assumed 𝜂 < 1

𝑀
√

(𝑉+𝛾𝜌)2+𝜌2
. Also, ℒ𝑑(0; 𝑧𝑡) = max𝜌∈[0,𝜌]𝑀

∑︀
𝑗∈[𝑀 ] 𝑉𝑗(𝜌𝑗 ; 𝑧𝑡) =

max𝑧∈𝐹1×...𝐹𝑀
𝑒⊤𝑣. Hence combining this with Eq. (A.17) we get

𝜆𝑡 + 𝜇𝑡 <
max𝑧∈𝐹1×...𝐹𝑀

𝑒⊤𝑣 + 1

min𝑧∈𝐹1×...𝐹𝑀

{︁∑︀
𝑗∈[𝑀 ]

(︀
𝑉𝑗(𝜌(𝑧),𝑗; 𝑧)− 𝛾𝜌𝑗

)︀
, 𝜌−

∑︀
𝑗∈[𝑀 ] 𝜌(𝑧),𝑗

}︁ := 𝐶𝐹 − 1 ,

(A.18)

which further implies 𝜆𝑡, 𝜇𝑡 ≤ 𝐶𝐹 − 1. Hence, we can őnally conclude

𝜆𝑡+1 = (𝜆𝑡 − 𝜂𝑔1,𝑡)+ ≤ 𝜆𝑡 + 𝜂|𝑔1,𝑡| ≤ 𝐶𝐹 − 1 + 𝜂𝑀(𝑉 + 𝛾𝜌) < 𝐶𝐹 (A.19)
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where in the őnal inequality we used the fact that 𝜂𝑀(𝑉 + 𝛾𝜌) < 1 since in the

statement of the lemma we assumed 𝜂 < 1

𝑀
√

(𝑉+𝛾𝜌)2+𝜌2
. A similar bound holds for

𝜇𝑡+1.

A.2.5 Proof for Lemma 2.4.5

Proof. We őx some channel 𝑗 ∈ [𝑀 ] and omit the subscript 𝑗 when the context is

clear. Also, we őrst introduce some deőnitions that will be used throughout our proof.

Fix some positive constant 𝜎 > 0 whose value we choose later, and recall 𝑎𝑘 denotes

the 𝑘th arm in the discretized budget set 𝒜(𝛿) as we deőned in Eq. (2.9). Then we

deőne the following

∆𝑘(𝑐) = max
𝜌𝑗∈[0,𝜌]

ℒ𝑗(𝜌𝑗, 𝑐)− ℒ𝑗(𝑎𝑘, 𝑐)

𝒞𝑛 =
{︁
𝑐 ∈ {𝑐𝑡}𝑡∈[𝑇 ] : 𝑟𝑗,𝑛 = argmax

𝜌𝑗≥0
ℒ𝑗(𝜌𝑗, 𝑐)

}︁
for 𝑛 = 0 . . . 𝑆𝑗

𝒞(𝜎) =
{︀
𝑐 ∈ {𝑐𝑡}𝑡∈[𝑇 ] : 𝜎

−
𝑗 (𝑐) > 𝜎, |𝜎+

𝑗 (𝑐)| > 𝜎
}︀

for 𝑛 = 0, . . . , 𝑆𝑗

𝑚𝑘(𝑐) =
8 log(𝑇 )

∆2
𝑘(𝑐)

for ∀(𝑘, 𝑐) s.t. ∆𝑘(𝑐) > 0 .

(A.20)

Here, the ładjacent slopesž 𝜎−
𝑗 (𝑐) and 𝜎+

𝑗 (𝑐), which are deőned in Eq.(2.18), represent

the slopes that are adjacent to the optimal budget argmax𝜌𝑗∈[0,𝜌] ℒ𝑗(𝜌𝑗, 𝑐) for any

context 𝑐 = (𝜆, 𝜇). Further, 𝑆𝑗 and {𝑟𝑗,𝑛}𝑗∈[𝑆𝑗 ] are deőned in Lemma 2.4.3. Here we

state in words the meanings of ∆𝑘(𝑐), 𝒞(𝜎) and 𝒞𝑛, respectively.

• ∆𝑘(𝑐) denotes the loss in contextual bandit rewards when pulling arm 𝑎𝑘 under

context 𝑐.

• 𝒞𝑛 is the set including all context 𝑐𝑡 under which the optimal per-channel budget

argmax𝜌𝑗≥0 ℒ𝑗(𝜌𝑗, 𝑐𝑡) is taken at the 𝑛th łturning pointž 𝑟𝑗,𝑛 (see Lemma 2.4.3).

• 𝒞(𝜎) is the set of all contexts, in which the adjacent slopes to the optimal point

w.r.t. the context 𝑐, namely argmax𝜌𝑗≥0 ℒ𝑗(𝜌𝑗, 𝑐), have magnitude greater than

𝜎, or in other words, the adjacent slopes are steep.
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On a related note, for any context 𝑐, we deőne the following ładjacent regionsž that

sandwich the optimal budget w.r.t.𝑐

𝒰−
𝑗 (𝑐) = [𝑟𝑗,𝑛−1, 𝑟𝑗,𝑛] and 𝒰+

𝑗 (𝑐) = [𝑟𝑗,𝑛, 𝑟𝑗,𝑛+1] if 𝑐 ∈ 𝒞𝑛 . (A.21)

In other words, if 𝑐 ∈ 𝒞𝑛, per the deőnition of 𝒞𝑛 above, argmax𝜌𝑗∈[0,𝜌] ℒ𝑗(𝜌𝑗, 𝑐) is

located at the 𝑛th łturning pointž 𝑟𝑗,𝑛, then 𝒰−
𝑗 (𝑐) and 𝒰−

𝑗 (𝑐) are respectively the left

and right regions surrounding 𝑟𝑗,𝑛.

With the above deőnitions, we demonstrate how to bound the UCB-error. Deőne

𝑁𝑘,𝑡 =
∑︀

𝜏≤𝑡−1 I{𝜌𝑗,𝜏 = 𝑎𝑘} to be the number of times arm 𝑘 is pulled up to time 𝑡,

then we can decompose the UCB error as followed

∑︁

𝑡>𝐾

ℒ𝑗(𝜌
*
𝑗(𝑡), 𝑐𝑡)− ℒ𝑗(𝜌𝑗,𝑡, 𝑐𝑡) = 𝑋1 +𝑋2 +𝑋3 where

𝑋1 =
∑︁

𝑡>𝐾:𝑐𝑡 /∈𝒞(𝜎)

∑︁

𝑘∈[𝐾]

∆𝑘(𝑐𝑡)I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐𝑡)}

𝑋2 =
∑︁

𝑡>𝐾:𝑐𝑡∈𝒞(𝜎)

∑︁

𝑘∈[𝐾]

∆𝑘(𝑐𝑡)I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐𝑡)}

𝑋3 =
∑︁

𝑘∈[𝐾]

∑︁

𝑡>𝐾

∆𝑘(𝑐𝑡)I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 > 𝑚𝑘(𝑐𝑡)} .

(A.22)

In Section A.2.5, we show that 𝑋1 ≤ ̃︀𝒪(𝛿𝑇 + 𝜎𝑇 + 1
𝛿
); in Section A.2.5 we show that

𝑋2 ≤ ̃︀𝒪(𝛿𝑇 + 1
𝛿𝜎
); in Section A.2.5 we show that 𝑋3 ≤ ̃︀𝒪( 1

𝛿𝑇
).

Remark A.2.1. In the following sections A.2.5, A.2.5 and A.2.5 where we bound 𝑋1,

𝑋2, and 𝑋3, respectively, we assume the optimal per-channel 𝜌*𝑗(𝑡) = argmax𝜌𝑗∈[0,𝜌] ℒ𝑗(𝜌𝑗, 𝑐𝑡)

lies in the arm set 𝒜(𝛿) for all 𝑡. This is because otherwise, we can consider the

following decomposition of the UCB error in period 𝑡 as followed:

ℒ𝑗(𝜌
*
𝑗(𝑡), 𝑐𝑡)− ℒ𝑗(𝜌𝑗,𝑡, 𝑐𝑡) = ℒ𝑗(𝜌

*
𝑗(𝑡), 𝑐𝑡)− ℒ𝑗(𝑎

*
𝑡 , 𝑐𝑡) + ℒ𝑗(𝑎

*
𝑡 , 𝑐𝑡)− ℒ𝑗(𝜌𝑗,𝑡, 𝑐𝑡)

where 𝑎*𝑡 = arg max
𝑎𝑘∈𝒜(𝛿)

ℒ𝑗(𝑎𝑘, 𝑐𝑡)

The őrst term will yield an error in the order of 𝒪(𝛿) due to the Lagrangian func-
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tion being unimodal, piecewise linear liner, which implies |𝑎*𝑡 − 𝜌*𝑗(𝑡)| ≤ 𝛿 so that

ℒ𝑗(𝜌
*
𝑗(𝑡), 𝑐𝑡) − ℒ𝑗(𝑎

*
𝑡 , 𝑐𝑡) = 𝒪(𝛿). Hence, this łdiscretization errorž will accumulate

to a magnitude of 𝒪(𝛿𝑇 ) over 𝑇 periods, which leads to an additional error that is

already accounted for in the statement of the lemma.

Bounding 𝑋1.

Our strategy to bound 𝑋1 consists of 4 steps, namely bounding the loss of arm 𝑎𝑘 at

each context 𝑐 /∈ 𝒞(𝜎) when 𝑎𝑘 ∈ 𝒰−
𝑗 (𝑐) lies on the left adjacent region of the optimal

budget; 𝑎𝑘 < min 𝒰−
𝑗 (𝑐) lies to the left of the left adjacent region; 𝑎𝑘 ∈ 𝒰+

𝑗 (𝑐) lies

on the right adjacent region of the optimal budget; and 𝑎𝑘 > max 𝒰+
𝑗 (𝑐) lies to the

right of the right adjacent region. Here we recall the adjacent regions are deőned in

Eq.(A.21).

Step 1: 𝑎𝑘 ∈ 𝒰−
𝑗 (𝑐𝑡). For arm 𝑘 such that 𝑎𝑘 ∈ 𝒰−

𝑗 (𝑐𝑡), recall Lemma 2.4.3 that

ℒ𝑗(𝑎, 𝑐𝑡) is linear in 𝑎 for 𝑎 ∈ 𝒰−
𝑗 (𝑐𝑡), so ∆𝑘(𝑐𝑡) = 𝜎−

𝑗 (𝑐𝑡) · (𝜌*𝑗(𝑡)− 𝑎𝑘) ≤ 𝜎𝜌 where we

used the condition that 𝑐𝑡 /∈ 𝒞(𝜎) so the adjacent slopes have magnitude at most 𝜎,

and 𝜌*𝑗(𝑡) ≤ 𝜌. Thus, summing over all such 𝑘 we get

∑︁

𝑡>𝐾:𝑐𝑡 /∈𝒞(𝜎)

∑︁

𝑘∈[𝐾]:𝑎𝑘∈𝒰−

𝑗 (𝑐𝑡)

∆𝑘(𝑐𝑡)I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐𝑡)}

≤
∑︁

𝑡>𝐾:𝑐𝑡 /∈𝒞(𝜎)

∑︁

𝑘∈[𝐾]:𝑎𝑘∈𝒰−

𝑗 (𝑐𝑡)

𝜎𝜌 · I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐𝑡)} ≤ 𝜎𝜌𝑇 = 𝒪(𝜎𝑇 ) .

(A.23)

Step 2: 𝑎𝑘 < min 𝒰−
𝑗 (𝑐𝑡). For arm 𝑘 such that 𝑎𝑘 < min 𝒰−

𝑗 (𝑐𝑡), we further

split contexts into groups 𝒞𝑛 for 𝑛 = 0 . . . 𝑆𝑗 (deőned in Eq. (A.20)) based on whether

the corresponding optimal budget w.r.t. the Lagrangian at the context is taken at the

𝑛th łturning pointž (see Figure 2-2 of illustration). Then, for each context group 𝑛 by

deőning 𝑘′ := max{𝑘 : 𝑎𝑘 < 𝑟𝑗,𝑛−1} to be the arm closest to and less than 𝑟𝑗,𝑛−1, we
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have

∑︁

𝑡>𝐾:𝑐𝑡∈𝒞𝑛/𝒞(𝜎)

∑︁

𝑘∈[𝐾]:𝑎𝑘<min𝒰−

𝑗 (𝑐𝑡)

∆𝑘(𝑐𝑡)I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐𝑡)}

(𝑖)
=

∑︁

𝑡>𝐾:𝑐𝑡∈𝒞𝑛/𝒞(𝜎)

∑︁

𝑘∈[𝐾]:𝑎𝑘<𝑟𝑗,𝑛−1

∆𝑘(𝑐𝑡)I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐𝑡)}

=
∑︁

𝑡>𝐾

∑︁

𝑐∈𝒞𝑛/𝒞(𝜎)

∑︁

𝑘∈[𝐾]:𝑎𝑘<𝑟𝑗,𝑛−1

∆𝑘(𝑐)I{𝑐𝑡 = 𝑐, 𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐)}

(𝑖𝑖)

≤
∑︁

𝑡>𝐾

∑︁

𝑐∈𝒞𝑛/𝒞(𝜎)

(︁
∆𝑘′(𝑐)I{𝑐𝑡 = 𝑐}

+
∑︁

𝑘∈[𝐾]:𝑎𝑘<𝑟𝑗,𝑛−1−𝛿

∆𝑘(𝑐)I{𝑐𝑡 = 𝑐, 𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐)}
)︁

(𝑖𝑖𝑖)

≤ ((1 + 𝐶𝐹 )𝑠𝑗,𝑛−1𝛿 + 𝜌𝜎)𝑇 +
∑︁

𝑘∈[𝐾]:𝑎𝑘<𝑟𝑗,𝑛−1−𝛿

∑︁

𝑐∈𝒞𝑛/𝒞(𝜎)
∆𝑘(𝑐)𝑌𝑘(𝑐)

(A.24)

where in the őnal equality we deőned 𝑌𝑘(𝑐) =
∑︀

𝑡>𝐾 I{𝑐𝑡 = 𝑐, 𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐)}.
In (i) we used the fact that the left end of the left adjacent region, i.e. min𝒰−

𝑗 (𝑐𝑡) is

exactly 𝑟𝑗,𝑛−1 because for context 𝑐𝑡 ∈ 𝒞𝑛 the optimal budget argmax𝜌𝑗∈[0,𝜌] ℒ𝑗(𝜌𝑗, 𝑐𝑡)

is at the 𝑛th turning point; in (ii) we used the deőnition 𝑘′ := max{𝑘 : 𝑎𝑘 < 𝑟𝑗,𝑛−1}
where we recall arms are indexed such that 𝑎1 < 𝑎2 < · · · < 𝑎𝐾 . Note that in

(ii) we separate out the arm 𝑎𝑘′ because its distance to the optimal per-channel

may be less than 𝛿 since it is the closest arm, and thus we ensure all other arms

indexed by 𝑘 ∈ [𝐾] : 𝑎𝑘 < 𝑟𝑗,𝑛−1 − 𝛿, are at least 𝛿 away from the optimal per-

channel budget; (iii) follows from the fact that under a context 𝑐 ∈ 𝒞𝑛/𝒞(𝜎), we have

argmax𝜌𝑗∈[0,𝜌] ℒ𝑗(𝜌𝑗, 𝑐) = 𝑟𝑗,𝑛 so

∆𝑘′(𝑐) = ℒ𝑗(𝑟𝑗,𝑛, 𝑐)− ℒ𝑗(𝑟𝑗,𝑛−1, 𝑐) + ℒ𝑗(𝑟𝑗,𝑛−1, 𝑐)− ℒ𝑗(𝑎𝑘′ , 𝑐)

= 𝜎−
𝑗 (𝑐)(𝑟𝑗,𝑛 − 𝑟𝑗,𝑛−1) + 𝜎𝑗,𝑛−1(𝑐)(𝑟𝑗,𝑛−1 − 𝑎𝑘′)

(𝑖𝑣)

≤ 𝜎𝜌+ 𝜎𝑗,𝑛−1(𝑐)𝛿

(𝑣)

≤ 𝜎𝜌+ (1 + 𝐶𝐹 )𝑠𝑗,𝑛−1𝛿 ,

where in (iv) we used 𝑐 ∈ 𝒞𝑛/𝒞(𝜎) implies 𝜎−
𝑗 (𝑐) ≤ 𝜎, as well as all 𝑟𝑗,𝑛 ≤ 𝜌 for any
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𝑛 and the fact that 𝑘′ lies on the line segment between points 𝑟𝑗,𝑛−2 and 𝑟𝑗,𝑛−1 since

𝛿 < min𝑛′∈[𝑆𝑗 ] 𝑟𝑗,𝑛′ − 𝑟𝑗,𝑛′−1; in (v) we recall 𝜎𝑗,𝑛−1(𝑐) = (1 + 𝜆)𝑠𝑗,𝑛−1 − (𝜇 + 𝛾𝜆) ≤
(1 + 𝐶𝐹 )𝑠𝑗,𝑛−1 where 𝐶𝐹 is deőned in Lemma 2.4.4.

We now bound
∑︀

𝑐∈𝒞𝑛/𝒞(𝜎)∆𝑘(𝑐)𝑌𝑘(𝑐) in Eq. (A.24). It is easy to see the follow-

ing inequality for any sequence of context 𝑐(1), . . . , 𝑐(ℓ) ∈ {𝑐𝑡}𝑡∈[𝑇 ] (This is a slight

generalization of an inequality result shown in [12]):

𝑌𝑘(𝑐(1)) + · · ·+ 𝑌𝑘(𝑐(ℓ)) ≤ max
ℓ′=1...ℓ

𝑚𝑘(𝑐(ℓ′)) . (A.25)

This is because

∑︁

ℓ′∈[ℓ]
𝑌𝑘(𝑐(ℓ′)) =

∑︁

𝑡>𝐾

∑︁

ℓ′∈[ℓ]
I{𝑐𝑡 = 𝑐(ℓ′), 𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐(ℓ′))}

≤
∑︁

𝑡>𝐾

∑︁

ℓ′∈[ℓ]
I{𝑐𝑡 = 𝑐(ℓ′), 𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ max

ℓ′=1...ℓ
𝑚𝑘(𝑐(ℓ′))}

=
∑︁

𝑡>𝐾

I{𝑐𝑡 ∈ {𝑐(ℓ′)}ℓ′∈[ℓ], 𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ max
ℓ′=1...ℓ

𝑚𝑘(𝑐(ℓ′))}

≤ max
ℓ′=1...ℓ

𝑚𝑘(𝑐(ℓ′)) .

For simplicity denote 𝐿 = |𝒞𝑛/𝒞(𝜎)|, and order contexts in 𝑐 ∈ 𝒞𝑛/𝒞(𝜎) as {𝑐(ℓ)}ℓ∈[𝐿]
s.t. ∆𝑘(𝑐(1)) > ∆𝑘(𝑐(2)) > · · · > ∆𝑘(𝑐(𝐿)), or equivalently 𝑚𝑘(𝑐(1)) < 𝑚𝑘(𝑐(2)) <

· · · < 𝑚𝑘(𝑐(𝐿)) according to Eq.(A.20). Then multiplying Eq. (A.25) by by ∆𝑘(𝑐(ℓ))−
∆𝑘(𝑐(ℓ+1)) (which is strictly positive due to the ordering of contexts), and summing

ℓ = 1 . . . 𝐿 we get

∑︁

𝑐∈𝒞𝑛/𝒞(𝜎)
∆𝑘(𝑐)𝑌𝑘(𝑐) =

∑︁

ℓ∈[𝐿]
∆𝑘(𝑐(ℓ))𝑌𝑘(𝑐(ℓ)) ≤

∑︁

ℓ∈[𝐿]
𝑚𝑘(𝑐(ℓ))

(︀
∆𝑘(𝑐(ℓ))−∆𝑘(𝑐(ℓ+1))

)︀

(𝑖)
= 8 log(𝑇 )

∑︁

ℓ∈[𝐿−1]

∆𝑘(𝑐(ℓ))−∆𝑘(𝑐(ℓ+1))

∆2
𝑘(𝑐(ℓ))

(𝑖𝑖)

≤ 8 log(𝑇 )

∫︁ ∞

Δ𝑘(𝑐(𝐿))

𝑑𝑧

𝑧2

=
8 log(𝑇 )

∆𝑘(𝑐(𝐿))

(𝑖𝑖𝑖)
=

8 log(𝑇 )

min𝑐∈𝒞𝑛/𝒞(𝜎) ∆𝑘(𝑐)
.

(A.26)
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Here (i) follows from the deőnition of 𝑚𝑘(𝑐) in Eq. (A.20) where 𝑚𝑘(𝑐) =
8 log(𝑇 )

Δ2
𝑘
(𝑐)

;

both (ii) and (iii) follow from the ordering of contexts so that ∆𝑘(𝑐(1)) > ∆𝑘(𝑐(2)) >

· · · > ∆𝑘(𝑐(𝐿)). Note that for any 𝑐 ∈ 𝒞𝑛/𝒞(𝜎) and arm 𝑘 such that 𝑎𝑘 < 𝑟𝑗,𝑛−1, we

have

∆𝑘(𝑐) = ℒ𝑗(𝑟𝑗,𝑛, 𝑐)− ℒ𝑗(𝑟𝑗,𝑛−1, 𝑐) + ℒ𝑗(𝑟𝑗,𝑛−1, 𝑐)− ℒ𝑗(𝑎𝑘, 𝑐)

> ℒ𝑗(𝑟𝑗,𝑛−1, 𝑐)− ℒ𝑗(𝑎𝑘, 𝑐)

(𝑖)

≥ 𝜎𝑗,𝑛−1(𝑐)(𝑟𝑗,𝑛−1 − 𝑎𝑘)
(𝑖𝑖)

≥ (𝜎𝑗,𝑛−1(𝑐)− 𝜎𝑗,𝑛(𝑐)) (𝑟𝑗,𝑛−1 − 𝑎𝑘)
(𝑖𝑖𝑖)
= (1 + 𝜆) (𝑠𝑗,𝑛−1 − 𝑠𝑗,𝑛) (𝑟𝑗,𝑛−1 − 𝑎𝑘)

> (𝑠𝑗,𝑛−1 − 𝑠𝑗,𝑛) (𝑟𝑗,𝑛−1 − 𝑎𝑘) ,

(A.27)

where in (i) we recall the slope 𝜎𝑗,𝑛−1(𝑐) is deőned in Lemma 2.4.3 and further (i)

follows from concavity of ℒ𝑗(𝜌𝑗, 𝑐) in the őrst argument 𝜌𝑗; in (ii) we used the fact

that 𝜎𝑗,𝑛(𝑐) ≥ 0 since the optimal budget argmax𝜌𝑗∈[0,𝜌] ℒ𝑗(𝜌𝑗, 𝑐) is taken at the 𝑛th

turning point, and is the largest turning point whose left slope is non-negative from

Lemma 2.4.3; (iii) follows from the deőnition 𝜎𝑗,𝑛′(𝑐) = (1 + 𝜆)𝑠𝑗,𝑛′ − (𝜇+ 𝛾𝜆) for any

𝑛′.

Finally combining Eqs. (A.24), (A.26) and (A.27), and summing over 𝑛 = 1 . . . 𝑆𝑗
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we get

∑︁

𝑡>𝐾:𝑐𝑡 /∈𝒞(𝜎)

∑︁

𝑘∈[𝐾]:𝑎𝑘<min𝒰−

𝑗 (𝑐𝑡)

∆𝑘(𝑐𝑡)I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐𝑡)}

=
∑︁

𝑛∈[𝑆𝑗 ]

∑︁

𝑡>𝐾:𝑐𝑡∈𝒞𝑛/𝒞(𝜎)

∑︁

𝑘∈[𝐾]:𝑎𝑘<min𝒰−

𝑗 (𝑐𝑡)

∆𝑘(𝑐𝑡)I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐𝑡)}

≤
∑︁

𝑛∈[𝑆𝑗 ]

((1 + 𝐶𝐹 )𝑠𝑗,𝑛−1𝛿 + 𝜌𝜎)𝑇 +
∑︁

𝑛∈[𝑆𝑗 ]

∑︁

𝑘∈[𝐾]:𝑎𝑘<𝑟𝑗,𝑛−1−𝛿

8 log(𝑇 )

(𝑠𝑗,𝑛−1 − 𝑠𝑗,𝑛) (𝑟𝑗,𝑛−1 − 𝑎𝑘)

(𝑖)

≤
∑︁

𝑛∈[𝑆𝑗 ]

((1 + 𝐶𝐹 )𝑠𝑗,𝑛−1𝛿 + 𝜌𝜎)𝑇 +
∑︁

𝑛∈[𝑆𝑗 ]

𝐾∑︁

ℓ=1

8 log(𝑇 )

(𝑠𝑗,𝑛−1 − 𝑠𝑗,𝑛) ℓ𝛿

≤
∑︁

𝑛∈[𝑆𝑗 ]

((1 + 𝐶𝐹 )𝑠𝑗,𝑛−1𝛿 + 𝜌𝜎)𝑇 +
8 log(𝑇 ) log(𝐾)

𝛿

∑︁

𝑛∈[𝑆𝑗 ]

1

(𝑠𝑗,𝑛−1 − 𝑠𝑗,𝑛)

= ̃︀𝒪(𝛿𝑇 + 𝜎𝑇 +
1

𝛿
) .

(A.28)

Note that (i) follows because for all 𝑎𝑘 < 𝑟𝑗,𝑛−1 − 𝛿, the 𝑎𝑘’s distances from 𝑟𝑗,𝑛−1 are

at least 𝛿, 3𝛿, 2𝛿 . . . . In the last equation, we hide all logarithmic factors using the

notation ̃︀𝒪, and note that the constants 𝐶𝐹 , (𝑠𝑗,𝑛)𝑛∈𝑆𝑗
, 𝑆𝑗 are all absolute constants

that depend only on the support 𝐹𝑗 and corresponding sampling distribution 𝑝𝑗 for

value-cost pairs; see deőnitions of these absolute constants in Lemmas 2.4.3 and 2.4.4.

Step 3 and 4: 𝑎𝑘 ∈ 𝒰+
𝑗 (𝑐𝑡) or 𝑎𝑘 > max 𝒰+

𝑗 (𝑐𝑡). The cases where arm

𝑎𝑘 ∈ 𝒰+
𝑗 (𝑐𝑡) and 𝑎𝑘 > max𝒰+

𝑗 (𝑐𝑡) are symmetric to 𝑎𝑘 ∈ 𝒰−
𝑗 (𝑐𝑡) and 𝑎𝑘 < min𝒰+

𝑗 (𝑐𝑡),

respectively, and we omit from this paper.

Therefore, combining Eqs. (A.23) and (A.28) we can conclude

𝑋1 ≤ ̃︀𝒪(𝛿𝑇 + 𝜎𝑇 +
1

𝛿
) . (A.29)
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Bounding 𝑋2.

We őrst rewrite 𝑋2 as followed

𝑋2 =
∑︁

𝑡>𝐾:𝑐𝑡∈𝒞(𝜎)

∑︁

𝑘∈[𝐾]

∆𝑘(𝑐𝑡)I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐𝑡)}

=
∑︁

𝑡>𝐾

∑︁

𝑛∈[𝑆𝑗 ]

∑︁

𝑘∈[𝐾]

∑︁

𝑐∈𝒞𝑛∩𝒞(𝜎)
∆𝑘(𝑐)I{𝑐𝑡 = 𝑐, 𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐)}

(𝑖)
=

∑︁

𝑛∈[𝑆𝑗 ]

∑︁

𝑘∈[𝐾]

∑︁

𝑐∈𝒞𝑛∩𝒞(𝜎)
∆𝑘(𝑐)𝑌𝑘(𝑐)

(𝑖𝑖)
=

∑︁

𝑛∈[𝑆𝑗 ]

∑︁

𝑐∈𝒞𝑛∩𝒞(𝜎)

∑︁

𝑘∈{𝑘−𝑛 ,𝑘+𝑛 }

∆𝑘(𝑐)𝑌𝑘(𝑐) +
∑︁

𝑛∈[𝑆𝑗 ]

∑︁

𝑐∈𝒞𝑛∩𝒞(𝜎)

∑︁

𝑘∈[𝐾]/{𝑘−𝑛 ,𝑘+𝑛 }

∆𝑘(𝑐)𝑌𝑘(𝑐)

(𝑖𝑖𝑖)

≤ 𝑇𝛿(1 + 𝐶𝐹 )
∑︁

𝑛∈[𝑆𝑗 ]

(𝑠𝑗,𝑛 + 𝑠𝑗,𝑛+1) +
∑︁

𝑛∈[𝑆𝑗 ]

∑︁

𝑐∈𝒞𝑛∩𝒞(𝜎)

∑︁

𝑘∈[𝐾]/{𝑘−𝑛 ,𝑘+𝑛 }

∆𝑘(𝑐)𝑌𝑘(𝑐) .

(A.30)

where in (i) we deőne 𝑌𝑘(𝑐) =
∑︀

𝑡>𝐾 I{𝑐𝑡 = 𝑐, 𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 ≤ 𝑚𝑘(𝑐)}; in (ii) we

separate out two arms 𝑘−𝑛 and 𝑘+𝑛 deőned as followed: recall for context 𝑐 ∈ 𝒞𝑛 ∩ 𝒞(𝜎),
the optimal budget argmax𝜌𝑗∈[0,𝜌] ℒ𝑗(𝜌𝑗, 𝑐) = 𝑟𝑗,𝑛 is taken at the 𝑛th turning point

per the deőnition of 𝒞𝑛 in Eq. (A.20), and thereby we deőned 𝑘−𝑛 := max{𝑘 ∈ [𝐾] :

𝑎𝑘 < 𝑟𝑗,𝑛} to be the arm closest to and no greater than 𝑟𝑗,𝑛, whereas 𝑘+𝑛 := min{𝑘 ∈
[𝐾] : 𝑎𝑘 > 𝑟𝑗,𝑛} to be the arm closest to and no less than 𝑟𝑗,𝑛; in (iii), for small enough

𝛿 < min𝑛′∈[𝑆𝑗 ] 𝑟𝑗,𝑛′ − 𝑟𝑗,𝑛′−1, we know that 𝑘−𝑛 lies on the line segment between 𝑟𝑗,𝑛−1

and 𝑟𝑗,𝑛, so ∆𝑘−𝑛
(𝑐) = 𝜎−

𝑗 (𝑐)(𝑟𝑗,𝑛−𝑎𝑘−𝑛 ) ≤ 𝜎−
𝑗 (𝑐)𝛿 ≤ (1+𝐶𝐹 )𝑠𝑗,𝑛−1𝛿, where in the őnal

inequality follows from the deőnition of 𝜎−
𝑗 (𝑐) = 𝜎𝑗,𝑛(𝑐) = (1 + 𝜆)𝑠𝑗,𝑛 − (𝜇+ 𝛾𝜆) ≤

(1 + 𝜆)𝑠𝑗,𝑛 ≤ (1 + 𝐶𝐹 )𝑠𝑗,𝑛 where 𝐶𝐹 is deőned in Eq. (2.4.4). A similar bound holds

for ∆𝑘+𝑛
(𝑐).

Then, following the same logic as Eqs. (A.25), (A.26), (A.27) in Section A.2.5

where we bound 𝑋1, we can bound
∑︀

𝑐∈𝒞𝑛∩𝒞(𝜎)∆𝑘(𝑐)𝑌𝑘(𝑐) as followed for any arm

𝑘 ∈ [𝐾]/{𝑘−𝑛 , 𝑘+𝑛 }, i.e. arms who are at least 𝛿 away from the optimal per-channel
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budget w.r.t. 𝑐:

∑︁

𝑐∈𝒞𝑛∩𝒞(𝜎)
∆𝑘(𝑐)𝑌𝑘(𝑐) ≤

8 log(𝑇 )

min𝑐∈𝒞𝑛∩𝒞(𝜎) ∆𝑘(𝑐)
. (A.31)

Now, the set 𝑘 ∈ [𝐾]/{𝑘−𝑛 , 𝑘+𝑛 } in Eq. (A.30) can be further split into two subsets,

namely {𝑘 ∈ [𝐾] : 𝑎𝑘 < 𝑟𝑗,𝑛 − 𝛿} and {𝑘 ∈ [𝐾] : 𝑎𝑘 > 𝑟𝑗,𝑛 + 𝛿} due to the deőnitions

𝑘−𝑛 := max{𝑘 ∈ [𝐾] : 𝑎𝑘 < 𝑟𝑗,𝑛} and 𝑘+𝑛 := min{𝑘 ∈ [𝐾] : 𝑎𝑘 > 𝑟𝑗,𝑛}. Therefore, for

any 𝑘 s.t. 𝑎𝑘 < 𝑟𝑗,𝑛 − 𝛿 and any 𝑐 ∈ 𝒞𝑛 ∩ 𝒞(𝜎),

∆𝑘(𝑐) = ℒ𝑗(𝑟𝑗,𝑛, 𝑐)− ℒ𝑗(𝑎𝑘, 𝑐) ≥ 𝜎−
𝑗 (𝑐)(𝑟𝑗,𝑛 − 𝑎𝑘) ≥ 𝜎(𝑟𝑗,𝑛 − 𝑎𝑘) ,

where the őnal inequality follows from the deőnition of 𝒞(𝜎) in Eq. (A.20) such that

𝜎−
𝑗 (𝑐) ≥ (𝜎) for 𝑐 ∈ 𝒞(𝜎). Hence combining this with Eq. (A.31) we have

∑︁

𝑘∈[𝐾]:𝑎𝑘<𝑟𝑗,𝑛−𝛿

∑︁

𝑐∈𝒞𝑛∩𝒞(𝜎)
∆𝑘(𝑐)𝑌𝑘(𝑐) ≤

∑︁

𝑘∈[𝐾]:𝑎𝑘<𝑟𝑗,𝑛−𝛿

8 log(𝑇 )

𝜎(𝑟𝑗,𝑛 − 𝑎𝑘)

(𝑖)

≤
𝐾∑︁

ℓ=1

8 log(𝑇 )

𝜎ℓ𝛿
≤ 8 log(𝑇 ) log(𝐾)

𝜎𝛿
,

(A.32)

where (i) follows because for all 𝑎𝑘 < 𝑟𝑗,𝑛 − 𝛿, the 𝑎𝑘’s distances from 𝑟𝑗,𝑛−1 are

at least 𝛿, 3𝛿, 2𝛿 . . . . Symmetrically, we can show an identical bound for the set

{𝑘 ∈ [𝐾] : 𝑎𝑘 > 𝑟𝑗,𝑛 + 𝛿}. Hence, combining Eqs. (A.30) and (A.32) we can conclude

𝑋2 ≤ ̃︀𝒪
(︂
𝛿𝑇 +

1

𝛿𝜎

)︂
. (A.33)

Here, similar to our bound in Eq. (A.28) for bounding 𝑋1, we hide all logarithmic

factors using the notation ̃︀𝒪, and note that the constants 𝐶𝐹 , (𝑠𝑗,𝑛)𝑛∈𝑆𝑗
, 𝑆𝑗 are all

absolute constants that depend only on the support 𝐹𝑗 and corresponding sampling

distribution 𝑝𝑗 for value-cost pairs; see deőnitions of these absolute constants in

Lemma 2.4.3 and 2.4.4.
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Bounding 𝑋3.

We őrst deőne

ℒ̄ = (1 + 𝛾) 𝜌𝐶𝐹 + (1 + 𝐶𝐹 )𝑉 (A.34)

where 𝐶𝐹 is speciőed in Lemma 2.4.4. Recalling the deőnition ∆𝑘(𝑐) = max𝜌𝑗∈[0,𝜌] ℒ𝑗(𝜌𝑗, 𝑐)−
ℒ𝑗(𝑎𝑘, 𝑐) in Eq. (A.20), and −(1 + 𝛾)𝜌𝐶𝐹 ≤ ℒ𝑗(𝜌𝑗, 𝑐) ≤ (1 + 𝐶𝐹 )𝑉 for any 𝜌𝑗 ∈ [0, 𝜌]

and context 𝑐 (see Lemma 2.4.4), it is easy to see

∆𝑘(𝑐) ≤ ℒ̄ ∀𝑘 ∈ [𝐾], ∀𝑐 . (A.35)

Then we bound 𝑋3 as followed

𝑋3 =
∑︁

𝑘∈[𝐾]

∑︁

𝑡>𝐾

E [∆𝑘(𝑐)I{𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 > 𝑚𝑘(𝑐)}]

(𝑖)

≤ ℒ̄ ·
∑︁

𝑘∈[𝐾]

∑︁

𝑡>𝐾

P (𝜌𝑗,𝑡 = 𝑎𝑘, 𝑁𝑘,𝑡 > 𝑚𝑘(𝑐𝑡))

(𝑖𝑖)

≤ ℒ̄ ·
∑︁

𝑘∈[𝐾]

∑︁

𝑡>𝐾

P
(︁
𝑉𝑗,𝑡(𝑎𝑘)−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝑎𝑘 + UCB𝑗,𝑡(𝑎𝑘) ≥ 𝑉𝑗,𝑡(𝜌

*
𝑗(𝑡))

− 𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝜌*𝑗(𝑡) + UCB𝑗,𝑡(𝜌

*
𝑗(𝑡)), 𝑁𝑘,𝑡 > 𝑚𝑘(𝑐𝑡)

)︁
,

(A.36)

where (i) follows from Eq. (A.35); in (ii), recall that we choose arm 𝜌𝑗,𝑡 = 𝑎𝑘

because the estimated UCB rewards of arm 𝑎𝑘 is greater than that of any other arm

including 𝜌*𝑗(𝑡) according to Eq. (2.10) in UCB-SGD (Algorithm 2), or mathematically,

𝑉𝑗,𝑡(𝑎𝑘)− 𝜆𝑡𝛾+𝜇𝑡

1+𝜆𝑡
𝑎𝑘 + UCB𝑗,𝑡(𝑎𝑘) ≥ 𝑉𝑗,𝑡(𝜌

*
𝑗(𝑡))− 𝜆𝑡𝛾+𝜇𝑡

1+𝜆𝑡
𝜌*𝑗(𝑡) + UCB𝑗,𝑡(𝜌

*
𝑗(𝑡)). Here we also

used the fact that 𝜌*𝑗(𝑡) lies in the arm set 𝒜(𝛿) for all 𝑡 (see Remark A.2.1).

Now let 𝑅̂𝑛(𝑎𝑘) denote the average conversion of arm 𝑘 over its őrst 𝑛 pulls, i.e.

𝑅̂𝑛(𝑎𝑘) = 𝑉𝑗,𝜏 (𝑎𝑘) for 𝜏 = min{𝑡 ∈ [𝑇 ] : 𝑁𝑘,𝑡 = 𝑛} (A.37)

where we recall 𝑉𝑗,𝜏 (𝑎𝑘) is the estimated conversion for arm 𝑎𝑘 in channel 𝑗 during

period 𝜏 as deőned in Algorithm 1. In other words, 𝜏 is the period during which arm
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𝑎𝑘 is pulled for the 𝑛th time so 𝑅̂𝑛(𝑎𝑘) = 𝑉𝑗,𝜏 (𝑎𝑘).

Hence, we continue with Eq. (A.36) as followed:

P
(︁
𝑉𝑗,𝑡(𝑎𝑘)−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝑎𝑘 + UCB𝑗,𝑡(𝑎𝑘)

≥ 𝑉𝑗,𝑡(𝜌
*
𝑗(𝑡))−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝜌*𝑗(𝑡) + UCB𝑗,𝑡(𝜌

*
𝑗(𝑡)), 𝑁𝑘,𝑡 > 𝑚𝑘(𝑐𝑡)

)︁

≤ P
(︁

max
𝑛:𝑚𝑘(𝑐𝑡)<𝑛≤𝑡

{︁
𝑅̂𝑛(𝑎𝑘) + UCB𝑛(𝑎𝑘)−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝑎𝑘

}︁

≥ min
𝑛′:1≤𝑛′≤𝑡

{︁
𝑅̂𝑛′(𝜌*𝑗(𝑡)) + UCB𝑛′(𝜌*𝑗(𝑡))−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝜌*𝑗(𝑡)

}︁)︁

≤
𝑡∑︁

𝑛=⌈𝑚𝑘(𝑐𝑡)⌉+1

𝑡∑︁

𝑛′=1

P
(︁
𝑅̂𝑛(𝑎𝑘) + UCB𝑛(𝑎𝑘)−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝑎𝑘

> 𝑅̂𝑛′(𝜌*𝑗(𝑡)) + UCB𝑛′(𝜌*𝑗(𝑡))−
𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝜌*𝑗(𝑡)

)︁

(A.38)

Now, when the event

{︂
𝑅̂𝑛(𝑎𝑘) + UCB𝑛(𝑎𝑘)−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝑎𝑘 > 𝑅̂𝑛′(𝜌*𝑗(𝑡)) + UCB𝑛′(𝜌*𝑗(𝑡))−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝜌*𝑗(𝑡)

}︂

occurs, it is easy to see that one of the following events must also occur:

𝒢1,𝑛 =
{︀
𝑅̄𝑛(𝑎𝑘) ≥ 𝑉 (𝑎𝑘) + UCB𝑛(𝑎𝑘)

}︀
for 𝑛 s.t. 𝑚𝑘(𝑐𝑡) < 𝑛 ≤ 𝑡

𝒢2,𝑛′ =
{︀
𝑅̄𝑛′(𝜌*𝑗(𝑡)) ≤ 𝑉 (𝜌*𝑗(𝑡))− UCB𝑛(𝜌

*
𝑗(𝑡))

}︀
for 𝑛′ s.t. 1 ≤ 𝑛′ ≤ 𝑡

𝒢3 =
{︂
𝑉𝑗(𝜌

*
𝑗(𝑡))−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝜌*𝑗(𝑡) < 𝑉𝑗(𝑎𝑘)−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝑎𝑘 + 2 · UCB𝑛(𝑎𝑘)

}︂ (A.39)

Note that for 𝑛 > 𝑚𝑘(𝑐𝑡), we have UCB𝑛(𝑎𝑘) =
√︁

2 log(𝑇 )
𝑛

<
√︁

2 log(𝑇 )
𝑚𝑘(𝑐𝑡)

= Δ𝑘(𝑐𝑡)
2

since we
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deőned 𝑚𝑘(𝑐) =
8 log(𝑇 )

Δ2
𝑘
(𝑐)

in Eq. (A.20). Therefore

𝑉𝑗(𝑎𝑘)−
𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝑎𝑘 + 2 · UCB𝑛(𝑎𝑘)

< 𝑉𝑗(𝑎𝑘)−
𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝑎𝑘

⏟  ⏞  
=ℒ(𝑎𝑘,𝑐𝑡)

+∆𝑘(𝑐𝑡)

(𝑖)
= 𝑉𝑗(𝜌

*
𝑗(𝑡))−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝜌*𝑗(𝑡)

⏟  ⏞  
=ℒ(𝜌*𝑗 (𝑡),𝑐𝑡)=max𝑎∈𝒜(𝛿) ℒ(𝑎,𝑐𝑡)

where (i) follows from the deőnition of ∆𝑘(𝑐) = max𝑎∈𝒜(𝛿) ℒ(𝑎, 𝑐) − ℒ(𝑎𝑘, 𝑐) in Eq.

(A.20) for any context 𝑐. This implies that event 𝒢3 in Eq. (A.39) cannot hold for

𝑛 > 𝑚𝑘(𝑐𝑡). Therefore

P

(︂
𝑅̂𝑛(𝑎𝑘) + UCB𝑛(𝑎𝑘)−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝑎𝑘 > 𝑅̂𝑛′(𝜌*𝑗(𝑡)) + UCB𝑛′(𝜌*𝑗(𝑡))−

𝜆𝑡𝛾 + 𝜇𝑡

1 + 𝜆𝑡
𝜌*𝑗(𝑡)

)︂

≤ P (𝒢1,𝑛 ∪ 𝒢2,𝑛′) .

(A.40)

From the standard UCB analysis and the Azuma Hoeffding’s inequality, we have

P(𝒢1,𝑛) ≤ 𝑉
𝑇 4 and P(𝒢2,𝑛′) ≤ 𝑉

𝑇 4 . Hence combining Eqs. (A.36) (A.38), (A.40) we can

conclude

𝑋3 ≤
∑︁

𝑘∈[𝐾]

∑︁

𝑡>𝐾

𝑡∑︁

𝑛=⌈𝑚𝑘(𝑐𝑡)⌉+1

𝑡∑︁

𝑛′=1

(P (𝒢1,𝑛) + P (𝒢2,𝑛′))

≤
∑︁

𝑘∈[𝐾]

∑︁

𝑡>𝐾

𝑡∑︁

𝑛=⌈𝑚𝑘(𝑐𝑡)⌉+1

𝑡∑︁

𝑛′=1

2𝑉

𝑇 4

≤ 2𝐾𝑉

𝑇
= 𝒪

(︂
1

𝛿𝑇

)︂
.

(A.41)
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A.2.6 Proof for Theorem 2.4.6

Proof. Starting from Proposition 2.4.1, we get

𝑇 ·GL-OPT− E

⎡
⎣∑︁

𝑡∈[𝑇 ]

∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑗,𝑡)

⎤
⎦

≤ 𝑀𝑉𝐾 +
∑︁

𝑗∈[𝑀 ]

∑︁

𝑡>𝐾

E
[︀
ℒ𝑗(𝜌

*
𝑗(𝑡), 𝑐𝑡)− ℒ𝑗(𝜌𝑗,𝑡, 𝑐𝑡)

]︀
+

∑︁

𝑡>𝐾

(𝜆𝑡𝑔1,𝑡 + 𝜇𝑡𝑔2,𝑡)

(𝑖)

≤ 𝑀𝑉𝐾 +𝒪
(︂
𝜎𝑇 + 𝛿𝑇 +

1

𝜎𝛿

)︂
+𝒪

(︂
𝜂𝑇 +

1

𝜂

)︂
,

(A.42)

where in (i) we applied Lemmas 2.4.5 and 2.4.2. Taking 𝜂 = 1/
√
𝑇 , 𝛿 = 𝜎 = 𝑇−1/3 (i.e.

𝐾 = 𝒪(𝑇 1/3) yields 𝑇 ·GL-OPT− E
[︁∑︀

𝑡∈[𝑇 ]

∑︀
𝑗∈[𝑀 ] 𝑉𝑗(𝜌𝑗,𝑡)

]︁
≤ 𝒪(𝑇 2/3). According

to Lemma 2.4.3, 𝑉𝑗(𝜌𝑗) is concave for all 𝑗 ∈ [𝑀 ], so

𝒪(𝑇−1/3) ≥ GL-OPT− 1

𝑇

∑︁

𝑡∈[𝑇 ]

E

⎡
⎣ ∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑗,𝑡)

⎤
⎦

≥ GL-OPT− E

⎡
⎣ ∑︁

𝑗∈[𝑀 ]

𝑉𝑗

⎛
⎝ 1

𝑇

∑︁

𝑡∈[𝑇 ]

𝜌𝑗,𝑡

⎞
⎠
⎤
⎦

≥ GL-OPT− E

⎡
⎣ ∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑇,𝑗)

⎤
⎦ ,

where in the őnal equality we used the deőnition 𝜌𝑇 as deőned in Algorithm 1.

On the other hand, Lemma A.2.2 shows that

−𝒪(1/
√
𝑇 ) ≤ 1

𝑇

∑︁

𝑡∈[𝑇 ]

E [𝑔1,𝑡] =
1

𝑇

∑︁

𝑡∈[𝑇 ]

∑︁

𝑗∈[𝑀 ]

E [(𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡)− 𝛾𝜌𝑗,𝑡)]

=
1

𝑇

∑︁

𝑡∈[𝑇 ]

∑︁

𝑗∈[𝑀 ]

E [(𝑉𝑗(𝜌𝑗,𝑡)− 𝛾𝜌𝑗,𝑡)]

(𝑖)

≤
∑︁

𝑗∈[𝑀 ]

⎛
⎝𝑉𝑗

⎛
⎝ 1

𝑇

∑︁

𝑡∈[𝑇 ]

𝜌𝑗,𝑡

⎞
⎠− 𝛾 · 1

𝑇

∑︁

𝑡∈[𝑇 ]

𝜌𝑗,𝑡

⎞
⎠

=
∑︁

𝑗∈[𝑀 ]

(𝑉𝑗 (𝜌𝑇,𝑗)− 𝛾𝜌𝑇,𝑗) .
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where in (i) we again applied concavity of 𝑉𝑗(𝜌𝑗).

For the budget constraint, again Lemma A.2.2 shows

−𝒪(1/
√
𝑇 ) ≤ 1

𝑇

∑︁

𝑡∈[𝑇 ]

E [𝑔2,𝑡] =
1

𝑇

∑︁

𝑡∈[𝑇 ]

⎛
⎝𝜌−

∑︁

𝑗∈[𝑀 ]

E [𝜌𝑗,𝑡]

⎞
⎠ = 𝜌−

∑︁

𝑗∈[𝑀 ]

E[𝜌𝑇,𝑗] .

A.2.7 Proof of Lemma 2.4.7

Proof. Recall in SGD-UCB-II for all periods 𝑡 ∈ 𝑇1 in Phase 1, we set the per-channel

budget for each channel as some constant 𝛽 which we input to the algorithm, so that

𝑔1,𝑡 =
∑︀

𝑗∈𝑀 (𝑉𝑗(𝛽; 𝑧𝑡)− 𝛾𝛽) for all 𝑡 ∈ 𝑇1. Consider the hypothetical version of SGD-

UCB-II where we ignore the budget balance condition 𝐵𝑡 +𝑀𝜌 > 𝜌𝑇 in step 2 of the

algorithm, and terminate phase 1 only when the condition
∑︀

𝑡′∈[𝑡−1] 𝑔1,𝑡′ >
√
𝑇 log(𝑇 )

in Step 1 holds. Denote this hypothetical stopping time as ̃︀𝑇1, deőned to be

̃︀𝑇1 = min
{︁
𝑡 ∈ [𝑇 ] :

∑︁

𝑡′∈[𝑡]

∑︁

𝑗∈𝑀
(𝑉𝑗(𝛽; 𝑧𝑡′)− 𝛾𝛽)

⏟  ⏞  
:=ℎ𝑡′

>
√
𝑇 log(𝑇 )

}︁

(A.43)

It is easy to see that with probability 1, we have ̃︀𝑇1 ≥ 𝑇1 where we recall 𝑇1 is the

real stopping time of Phase 1 in SGD-UCB-II. Hence we have

P (𝑇1 ≥ 𝑅) ≤ P
(︁
̃︀𝑇1 ≥ 𝑅

)︁
(A.44)

Now, it is not difficult to see {ℎ𝑡}𝑡 where ℎ𝑡 deőned in Eq. (A.43) are i.i.d. random

variables, since the only randomness comes from the realization of value-cost pairs

{𝑧𝑡}𝑡∈[𝑇 ] which are i.i.d.. Further, for any 𝑡 ∈ [𝑇 ] we have

ℎ𝑡 :=
∑︁

𝑗∈𝑀
(𝑉𝑗(𝛽; 𝑧𝑡)− 𝛾𝛽)

(𝑖)

≥ (𝜉 − 𝛾)𝛽 =⇒ ℎ̄ := E[ℎ𝑡] ≥ (𝜉 − 𝛾)𝛽 > 0 (A.45)
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where (i) follows from Claim A.2.1 where we also deőned 𝜉 := min𝑗∈[𝑀 ] min𝑧𝑗∈𝐹𝑗

𝑣𝑗,1
𝑑𝑗,1

> 𝛾

under Assumption 2.4.3; in the őnal inequality we let ℎ̄ be the mean of the i.i.d. random

variables {ℎ𝑡}𝑡∈[𝑇 ].

We note that ̃︀𝑇1 > 𝑅 implies that the sum of the őrst 𝑅 ℎ𝑡’s do not exceed
√
𝑇 log(𝑇 ) (see deőnition of ̃︀𝑇1 in Eq. (A.43)). Hence, we have

P
(︁
̃︀𝑇1 > 𝑅

)︁
≤ P

⎛
⎝

⌈𝑅⌉∑︁

𝑡=1

ℎ𝑡 ≤
√
𝑇 log(𝑇 )

⎞
⎠

= P

⎛
⎝

⌈𝑅⌉∑︁

𝑡=1

(ℎ𝑡 − ℎ̄) ≤
√
𝑇 log(𝑇 )− ⌈𝑅⌉ · ℎ̄

⎞
⎠

(𝑖)

≤ P

⎛
⎝

⌈𝑅⌉∑︁

𝑡=1

(ℎ𝑡 − ℎ̄) ≤
√
𝑇 log(𝑇 )−𝑅(𝜉 − 𝛾)𝛽

⎞
⎠

(𝑖𝑖)
= P

⎛
⎝

⌈𝑅⌉∑︁

𝑡=1

(ℎ𝑡 − ℎ̄) ≤ −
√
𝑇 log(𝑇 )

⎞
⎠

(𝑖𝑖𝑖)

≤ exp

(︂
− 𝑇 log2(𝑇 )

2⌈𝑅⌉𝑀2𝑉 2

)︂

(𝑖𝑣)

≤ 1

𝑇
.

(A.46)

Here (i) follows from ℎ̄ ≥ (𝜉 − 𝛾)𝛽 in Eq. (A.45); (ii) follows from the deőnition that

𝑅 = 2
√
𝑇 log3(𝑇 ) and 𝛽 = 1

log(𝑇 )
so 𝑅(𝜉−𝛾)𝛽 = 2(𝜉−𝛾)

√
𝑇 log2(𝑇 ) ≥ 2

√
𝑇 log(𝑇 ) for

large enough 𝑇 such that log(𝑇 ) > 1
𝜉−𝛾

; (iii) follows from Azuma Hoefding’s inequality

given that ℎ𝑡 ∈ [0,𝑀𝑉 ] for any 𝑡 ∈ [𝑇 ]; and őnally (iv) follows from 𝑇 ≥ ⌈𝑅⌉, and

log(𝑇 ) > 𝑀2𝑉 2 for large enough 𝑇 . Hence, combining Eqs. (A.46) and (A.44) yields

the desired statement of the lemma.

A.2.8 Proof of Theorem 2.4.8

Proof. The proof of this theorem consists of 3 parts. In Part I, we bound the global

budget constraint violation; in Part II, we bound the global ROI constraint violation;

in Part III, we bound the conversion error.

Part I. Bounding global budget constraint violation. The design of the
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SGD-UCB-II algorithm ensures that the per-channel budget decisions never sum up

to exceed 𝜌𝑇 −𝑀𝜌, so

1

𝑇

∑︁

𝑡∈[𝑇2]

∑︁

𝑗∈[𝑀 ]

𝜌𝑗,𝑡 ≤
1

𝑇
(𝜌𝑇 −𝑀𝜌) < 𝜌 .

Part II. Bounding global ROI constraint violation. Recall the event ℰ =

{𝑇1 ≥ 2
√
𝑇 log3(𝑇 )} deőned in Lemma 2.4.7 where 𝑇1 is the end period of Phase

1 in the SGD-UCB-II algorithm (see step 10). We consider two scenarios, namely

when event ℰ holds and doesn’t hold. Recall 𝑔1,𝑡 =
∑︀

𝑗∈[𝑀 ] (𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡)− 𝛾𝜌𝑗,𝑡) ∈
[−𝛾𝑀𝜌,𝑀𝑉 ].

When event ℰ holds, we consider the following naive bound

E

⎡
⎣∑︁

𝑡∈[𝑇2]

𝑔1,𝑡

⃒⃒
⃒ ℰ

⎤
⎦ ≥ −𝑇𝛾𝑀𝜌 . (A.47)

When event ℰ does not hold, Phase 1 terminates within the őrst 2
√
𝑇 log3(𝑇 )

periods, i.e. 𝑇1 < 2
√
𝑇 log3(𝑇 ), and the total spend balance at the end of Phase 1,

namely 𝐵𝑇1 is at most

𝐵𝑇1 =
∑︁

𝑡∈[𝑇1]

∑︁

𝑗∈[𝑀 ]

𝛽 =𝑀𝛽𝑇1 < 2𝑀
√
𝑇 log2(𝑇 ) < 𝜌𝑇 −𝑀𝜌 ,

where we recall in Phase 1, i.e. the őrst 𝑇1 periods we set each per-channel budget

to be 𝛽, and the őnal inequality holds for large enough 𝑇 . This implies that the

budget balance termination condition in step 2 of Algorithm 2 is not met, so Phase 1

terminates because the ROI buffer condition in step 1 of Algorithm 2 is met, i.e.

∑︁

𝑡∈[𝑇1]

𝑔1,𝑡 >
√
𝑇 log(𝑇 ) . (A.48)
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Now in periods 𝑡 = 𝑇1 + 1 . . . 𝑇2, following the proof of Lemma A.2.2, we have

𝑇2∑︁

𝑡=𝑇1+1

𝑔1,𝑡 ≥
1

𝜂
(𝜆𝑇1 − 𝜆𝑇2)

(𝑖)

≥ −𝐶𝐹

𝜂
= −𝐶𝐹

√
𝑇 . (A.49)

Here, (i) follows from Lemma 2.4.4 such that 0 ≤ 𝜆𝑡 ≤ 𝐶𝐹 for any 𝑡 ∈ [𝑇 ] for

some absolute constant 𝐶𝐹 > 0 that only depends on the support of value-cost pairs

𝐹 = 𝐹1 × . . .× 𝐹𝑀 , and recall the SGD step size 𝜂 = 1/
√
𝑇 . Hence, combining Eqs.

(A.47), (A.48), (A.49), we have

E

⎡
⎣∑︁

𝑡∈[𝑇2]

𝑔1,𝑡

⎤
⎦ = E

⎡
⎣∑︁

𝑡∈[𝑇2]

𝑔1,𝑡

⃒⃒
⃒ ℰ

⎤
⎦P (ℰ) + E

⎡
⎣∑︁

𝑡∈[𝑇2]

𝑔1,𝑡

⃒⃒
⃒ ℰ𝑐

⎤
⎦P (ℰ𝑐)

≥ − 𝑇𝛾𝑀𝜌 · P (ℰ) + E

⎡
⎣∑︁

𝑡∈[𝑇2]

𝑔1,𝑡

⃒⃒
⃒ ℰ𝑐

⎤
⎦P (ℰ𝑐)

(𝑖)

≥ − 𝛾𝑀𝜌+
(︁√

𝑇 log(𝑇 )− 𝐶𝐹

√
𝑇
)︁
P (ℰ𝑐)

(𝑖𝑖)

≥ 0 ,

(A.50)

where (i) follows from Lemma 2.4.7 which states P (ℰ) ≤ 1
𝑇
; in (ii) we used the fact

that for large enough 𝑇 , we have log(𝑇 ) > −𝐶𝐹 , and P (ℰ𝑐) ≥ 1 − 1/𝑇 ≥ 1/2 so

−𝛾𝑀𝜌+ 1
2

(︁√
𝑇 log(𝑇 )− 𝐶𝐹

√
𝑇
)︁
> 0 since log(𝑇 ) > 𝐶𝐹 +

2𝛾𝑀𝜌√
𝑇

for large 𝑇 . Therefore

Eq. (A.50) implies

E

⎡
⎣∑︁

𝑡∈[𝑇2]

∑︁

𝑗∈[𝑀 ]

(𝑉𝑗(𝜌𝑗,𝑡)− 𝛾𝜌𝑗,𝑡)

⎤
⎦ ≥ 0 . (A.51)

Finally, we have

∑︁

𝑗∈[𝑀 ]

E
[︀
𝑉𝑗(𝜌𝑗)− 𝛾𝜌𝑗

]︀ (𝑖)

≥ 1

𝑇
E

⎡
⎣∑︁

𝑡∈[𝑇2]

∑︁

𝑗∈[𝑀 ]

(𝑉𝑗(𝜌𝑗,𝑡)− 𝛾𝜌𝑗,𝑡)

⎤
⎦ ≥ 0

where (i) follows from concavity of 𝑉𝑗(𝜌𝑗) according to Lemma 2.4.3.

Part III. Bounding conversion error. We őrst show that 𝑇 −𝑇2 ≤𝑀 + 𝐶𝐹

𝜌

√
𝑇
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where 𝐶𝐹 is an absolute constant independent of 𝑇 deőned in Lemma 2.4.4 and 𝑇2 is

the last period of the algorithm.

If 𝑇2 = 𝑇 , the inequality 𝑇−𝑇2 ≤𝑀+𝐶𝐹

𝜌

√
𝑇 holds trivially. Assume 𝑇2 < 𝑇 , the by

the algorithm’s termination criteria we have 𝜌𝑇 ≤ 𝐵𝑇2+𝑀𝜌 =𝑀𝜌+
∑︀

𝑡∈[𝑇2]

∑︀
𝑗∈[𝑀 ] 𝜌𝑗,𝑡,

where we recall the deőnition of the spend balance 𝐵𝑡 =
∑︀

𝑡′∈[𝑡]
∑︀

𝑗∈[𝑀 ] 𝜌𝑗,𝑡′ . Now,

recalling 𝑔2,𝑡 = 𝜌−∑︀
𝑗∈[𝑀 ] 𝜌𝑗,𝑡, we have

𝜌𝑇 ≤ 𝑇2𝜌−
∑︁

𝑡∈[𝑇2]

𝑔2,𝑡 +𝑀𝜌
(𝑖)

≤ 𝑇2𝜌+
𝐶𝐹

𝜂
+𝑀𝜌

=⇒𝑇 − 𝑇2 ≤𝑀 +
𝐶𝐹

𝜌

√
𝑇 .

(A.52)

where (i) follows from the proof of Lemma A.2.2 such that
∑︀𝑇2

𝑡=1 𝑔2,𝑡 ≥ 1
𝜂
(𝜆1 − 𝜆𝑇2)

(𝑖𝑖)

≥
−𝐶𝐹

𝜂
= −𝐶𝐹

√
𝑇 , and (ii) follows from Lemma 2.4.4 such that 0 ≤ 𝜆𝑡 ≤ 𝐶𝐹 for any

𝑡 ∈ [𝑇 ] for some absolute constant 𝐶𝐹 > 0 that only depends on the support of

value-cost pairs 𝐹 = 𝐹1 × . . .× 𝐹𝑀 , and recall the SGD step size 𝜂 = 1/
√
𝑇 .

So far, we have shown that 𝑇 − 𝑇2 ≤𝑀 + 𝐶𝐹

𝜌

√
𝑇 . Next, we bound 𝑇 ·GL-OPT−

E
[︁∑︀

𝑡∈[𝑇2]

∑︀
𝑗∈[𝑀 ] 𝑉𝑗(𝜌𝑗,𝑡)

]︁
using this result. Recalling the event ℰ = {𝑇1 > 2

√
𝑇 log3(𝑇 )}

deőned in Lemma 2.4.7, we have

𝑇 ·GL-OPT− E

⎡
⎣∑︁

𝑡∈[𝑇2]

∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑗,𝑡)

⎤
⎦

≤ E
[︁
𝑇 ·GL-OPT

⃒⃒
⃒ ℰ

]︁
P (ℰ) + E

⎡
⎣𝑇 ·GL-OPT−

∑︁

𝑡∈[𝑇2]

∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑗,𝑡)
⃒⃒
⃒ ℰ𝑐

⎤
⎦

(𝑖)

≤ 𝑀𝑉 + E

⎡
⎣(𝑇1 + 𝑇 − 𝑇2) ·GL-OPT + (𝑇2 − 𝑇1) ·GL-OPT−

𝑇2∑︁

𝑡=𝑇1+1

∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑗,𝑡)
⃒⃒
⃒ ℰ𝑐

⎤
⎦

(𝑖𝑖)

≤ 𝑀𝑉 +𝑀𝑉

(︂
2
√
𝑇 log3(𝑇 ) +𝑀 +

𝐶𝐹

𝜌

√
𝑇

)︂

+ E

⎡
⎣(𝑇2 − 𝑇1) ·GL-OPT−

𝑇2∑︁

𝑡=𝑇1+1

∑︁

𝑗∈[𝑀 ]

𝑉𝑗(𝜌𝑗,𝑡)
⃒⃒
⃒ ℰ𝑐

⎤
⎦

(𝑖𝑖𝑖)

≤ 𝒪(𝑇 2/3) .
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Here, (i) follows from Lemma 2.4.7 s.t. P(ℰ) ≤ 1
𝑇
; in (ii) we used the fact that under

event ℰ𝑐 we have 𝑇1 ≤ 2
√
𝑇 log3(𝑇 ) and also Eq. (A.52) that bounds 𝑇 − 𝑇2; in (iii),

the term (𝑇2 − 𝑇1) ·GL-OPT −
∑︀𝑇2

𝑡=𝑇1+1

∑︀
𝑗∈[𝑀 ] 𝑉𝑗(𝜌𝑗,𝑡) represents the convergence

loss for UCB-SGD in Algorithm 1, which is in the order of 𝒪(𝑇 2/3) according to

Theorem 2.4.6.

Finally, using concavity of 𝑉𝑗(𝜌𝑗) as illustrated in Lemma 2.4.3, we have GL-OPT−
E
[︁∑︀

𝑗∈[𝑀 ] 𝑉𝑗(𝜌𝑗)
]︁
≤ GL-OPT− 1

𝑇
E
[︁∑︀

𝑡∈[𝑇2]

∑︀
𝑗∈[𝑀 ] 𝑉𝑗(𝜌𝑗,𝑡)

]︁
≤ 𝒪(−𝑇 1/3)

A.2.9 Additional Results for Section 2.4

Assumption 2.4.2 ensures that for any realization 𝑧 = (𝑣,𝑑) there must be some

per-channel budget allocation that allows the advertiser to satisfy her ROI constraints

as illustrated in the following proposition

Proposition A.2.1 (Slater’s condition). Assume Assumption 2.4.2 holds. Let 𝑧 =

(𝑣,𝑑) = (𝑣𝑗,𝑑𝑗)𝑗∈[𝑀 ] ∈ 𝐹1 × . . . 𝐹𝑀 be any realization of values and costs across all

channels, then there exists some per-channel budget allocation (𝜌(𝑧),𝑗)𝑗∈[𝑀 ] ∈ [0, 𝜌]𝑀

s.t.
∑︀

𝑗∈𝑀 𝑉𝑗(𝜌(𝑧),𝑗; 𝑧) > 𝛾
∑︀

𝑗∈𝑀 𝜌(𝑧),𝑗 and
∑︀

𝑗∈[𝑀 ] 𝜌(𝑧),𝑗 < 𝜌.

Proof. Under Assumption 2.4.2, it is easy to see for any realization of value-cost pairs

𝑧 = (𝑣𝑗,𝑑𝑗)𝑗∈[𝑀 ] there always exists a channel 𝑗 ∈ [𝑀 ] in which there is an auction

𝑛 ∈ [𝑚𝑗] whose value-to-cost ration is at least 𝛾, i.e. 𝑣𝑗,𝑛 > 𝛾𝑑𝑗,𝑛. Since we assumed

the ordering 𝑣𝑗,1
𝑑𝑗,1

>
𝑣𝑗,2
𝑑𝑗,2

> · · · > 𝑣𝑗,𝑚𝑗

𝑑𝑗,𝑚𝑗

, we know that 𝑣𝑗,1
𝑑𝑗,1
≥ 𝑣𝑗,𝑛

𝑑𝑗,𝑛
> 𝛾. Now, in Eq.

(A.10) within the proof of Lemma 2.4.3, we showed

𝑉𝑗(𝜌𝑗; 𝑧𝑗) = 𝑣⊤
𝑗 𝑥

*
𝑗(𝜌𝑗; 𝑧𝑗)

=
∑︁

𝑛∈[𝑚𝑗 ]

(︂
𝑣𝑗,𝑛
𝑑𝑗,𝑛

𝜌𝑗 + 𝑏𝑗,𝑛

)︂
I {𝑑𝑗,0 + · · ·+ 𝑑𝑗,𝑛−1 ≤ 𝜌𝑗 ≤ 𝑑𝑗,0 + · · ·+ 𝑑𝑗,𝑛}

where 𝑏𝑗,𝑛 =
∑︀

𝑛′∈[𝑛−1] 𝑣𝑗,𝑛′ − 𝑣𝑗,𝑛
𝑑𝑗,𝑛
·
(︁∑︀

𝑛′∈[𝑛−1] 𝑑𝑗,𝑛′

)︁
and 𝑑𝑗,0 = 𝑣𝑗,0 = 0. Hence by

taking 𝜌𝑗 = 𝜌 for some 𝜌 < min{𝑑𝑗,1, 𝜌}, we have 𝑉𝑗(𝜌; 𝑧𝑗) =
𝑣𝑗,1
𝑑𝑗,1
𝜌 > 𝛾𝜌. Therefore,

constructing 𝜌(𝑧),𝑗 = (0, . . . , 0, 𝜌𝑗, 0 . . . 0) for 𝜌𝑗 = 𝜌 satisőes
∑︀

𝑗∈𝑀 𝑉𝑗(𝜌(𝑧),𝑗; 𝑧) >

𝛾
∑︀

𝑗∈𝑀 𝜌(𝑧),𝑗 and
∑︀

𝑗∈[𝑀 ] 𝜌(𝑧),𝑗 < 𝜌.
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Lemma A.2.2 (Approximate constraint satisfaction). Assume Assumption 2.4.2

holds. If Algorithm 1 is run with stepsize 𝜂 = 1/
√
𝑇 such that 𝜂 < 1

𝑀
√

(𝑉+𝛾𝜌)2+𝜌2
,

then we have

1

𝑇

∑︁

𝑡∈[𝑇 ]

𝑔1,𝑡 ≥ −𝐶𝐹/
√
𝑇 and

1

𝑇

∑︁

𝑡∈[𝑇 ]

𝑔2,𝑡 ≥ −𝐶𝐹/
√
𝑇

where we recall 𝑔1,𝑡 =
∑︀

𝑗∈[𝑀 ] (𝑉𝑗(𝜌𝑗,𝑡; 𝑧𝑡)− 𝛾𝜌𝑗,𝑡), 𝑔2,𝑡 = 𝜌−∑︀
𝑗∈[𝑀 ] 𝜌𝑗,𝑡, and 𝐶𝐹 > 0

is an absolute constant deőned in Lemma 2.4.4 that depends only on the support

𝐹 = 𝐹1 × . . . 𝐹𝑀 .

Proof. According to the dual update step in Algorithm 1 wee have

𝜆𝑡+1 = (𝜆𝑡 − 𝜂𝑔1,𝑡)+ ≥ 𝜆𝑡 − 𝜂𝑔1,𝑡

Summing from 𝑡 = 1 . . . 𝑇 − 1 and telescoping, we get

𝜆𝑇 ≥ 𝜆1 − 𝜂
∑︁

𝑡∈[𝑇 ]

𝑔1,𝑡 = −𝜂
∑︁

𝑡∈[𝑇 ]

𝑔1,𝑡

From Lemma 2.4.4, we have 𝜆𝑇 ≤ 𝐶𝐹 for some absolute constant 𝐶𝐹 > 0, therefore

we have

∑︁

𝑡∈[𝑇 ]

𝑔1,𝑡 ≥ −
𝐶𝐹

𝜂

since we take 𝜂 = 1/
√
𝑇 . A similar bound holds for

∑︀
𝑡∈[𝑇 ] 𝑔2,𝑡.

Lemma A.2.3. Let (𝜆𝑡, 𝜇𝑡)𝑡∈[𝑇 ] be the dual variables generated by Algorithm 1. Then

for any 𝜆, 𝜇 ≥ 0 we have

(𝜆− 𝜆𝑡+1)
2 ≤ (𝜆− 𝜆𝑡)2 + 2𝜂 (𝜆− 𝜆𝑡) 𝑔1,𝑡 + 𝜂2𝑀2(𝑉 + 𝛾𝜌)2

(𝜇− 𝜇𝑡+1)
2 ≤ (𝜇− 𝜇𝑡)

2 + 2𝜂 (𝜇− 𝜇𝑡) 𝑔1,𝑡 + 𝜂2𝑀2𝜌2𝑉 2 ,
(A.53)

where we recall 𝑔1,𝑡 =
∑︀

𝑗∈[𝑀 ] (𝑉𝑗,𝑡(𝜌𝑗,𝑡)− 𝛾𝜌𝑗,𝑡) and 𝑔2,𝑡 = 𝜌−∑︀
𝑗∈[𝑀 ] 𝜌𝑗,𝑡.
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Proof. We start with the őrst inequality w.r.t. 𝜆𝑡’s. We have

(𝜆𝑡 − 𝜆) 𝑔1,𝑡 = (𝜆𝑡+1 − 𝜆) 𝑔1,𝑡 + (𝜆𝑡 − 𝜆𝑡+1) 𝑔1,𝑡 . (A.54)

Since 𝜆𝑡+1 = (𝜆𝑡 − 𝜂𝑔1,𝑡)+ = argmin𝜆≥0 (𝜆− (𝜆𝑡 − 𝜂𝑔1,𝑡))2 (see Algorithm 1), for any

𝜆 ≥ 0 we have

(𝜆𝑡+1 − (𝜆𝑡 − 𝜂𝑔1,𝑡)) · (𝜆− 𝜆𝑡+1) ≥ 0 .

by rearranging terms in (𝜆𝑡+1 − (𝜆𝑡 − 𝜂𝑔1,𝑡)) · (𝜆− 𝜆𝑡+1) ≥ 0, we get

(𝜆𝑡+1 − 𝜆) 𝑔1,𝑡 ≤
1

𝜂
(𝜆𝑡+1 − 𝜆𝑡) · (𝜆− 𝜆𝑡+1)

=
1

2𝜂

(︀
(𝜆− 𝜆𝑡)2 − (𝜆− 𝜆𝑡+1)

2 − (𝜆𝑡+1 − 𝜆𝑡)2
)︀
.

where the equality can be checked easily by expending terms apart. Plugging the

above back into Eq. (A.54) we get

(𝜆𝑡 − 𝜆) 𝑔1,𝑡 ≤ (𝜆𝑡 − 𝜆𝑡+1) 𝑔1,𝑡 +
1

2𝜂

(︀
(𝜆− 𝜆𝑡)2 − (𝜆− 𝜆𝑡+1)

2 − (𝜆𝑡+1 − 𝜆𝑡)2
)︀

(𝑖)

≤ 𝜂

2
𝑔21,𝑡 +

1

2𝜂

(︀
(𝜆− 𝜆𝑡)2 − (𝜆− 𝜆𝑡+1)

2
)︀

(𝑖𝑖)

≤ 𝜂𝑀2(𝑉 + 𝛾𝜌)2

2
+

1

2𝜂

(︀
(𝜆− 𝜆𝑡)2 − (𝜆− 𝜆𝑡+1)

2
)︀
,

(A.55)

where (i) follows from (𝜆𝑡 − 𝜆𝑡+1) 𝑔1,𝑡− 1
2𝜂
(𝜆𝑡+1−𝜆𝑡)2 ≤ 𝜂

2
𝑔21,𝑡 using the basic inequality

𝑎𝑏 ≤ 1
2
𝑎2 + 1

2
𝑏2 with 𝑎2 = 1

𝜂
(𝜆𝑡+1 − 𝜆𝑡)2 and 𝑏2 = 𝜂𝑔21,𝑡; (ii) follows from the fact that

𝑉𝑗,𝑡(𝜌𝑗,𝑡) ≤ 𝑉 for any 𝑗 ∈ [𝑀 ] and 𝑡 ∈ [𝑇 ] so−𝑀𝛾𝜌 ≤ 𝑔1,𝑡 ≤𝑀𝑉 so 𝑔21,𝑡 ≤𝑀2(𝑉 +𝛾𝜌)2.

Rearranging terms yields the őrst inequality in Eq. (A.53).

Following the same arguments above we can show for any 𝜇 ≥ 0 we have

(𝜇𝑡 − 𝜇) 𝑔1,𝑡 ≤
𝜂𝑀2𝜌2

2
+

1

2𝜂

(︀
(𝜇− 𝜇𝑡)

2 − (𝜇− 𝜇𝑡+1)
2
)︀
.
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Proposition A.2.4. Under Assumption 2.4.2, the advertiser’s per-channel only budget

optimization problem, namely CH-OPT(ℐ𝐵) is a convex problem.

Proof. Recalling the CH-OPT(ℐ𝐵) in Eq. (2.3) and the deőnition of ℐ𝐵 in Eq. (2.2),

we can write CH-OPT(ℐ𝐵) as

CH-OPT(ℐ𝐵) = max
(𝜌𝑗)𝑗∈[𝑀 ]∈ℐ

∑︁

𝑗∈𝑀
𝑉𝑗(𝜌𝑗)

s.t.
∑︁

𝑗∈𝑀
𝑉𝑗(𝜌𝑗) ≥ 𝛾

∑︁

𝑗∈𝑀
𝜌𝑗

∑︁

𝑗∈[𝑀 ]

𝜌𝑗 ≤ 𝜌 .

(A.56)

Here, we used the deőnition 𝑉𝑗(𝜌𝑗) = E [𝑉𝑗(𝜌𝑗; 𝑧𝑗)] in Eq. (2.5), and 𝐷𝑗(𝜌𝑗; 𝑧𝑗) = 𝜌𝑗

for any 𝑧𝑗 under the budget depletion Assumption 2.4.1. According to Lemma 2.4.3,

𝑉𝑗(𝜌𝑗) is concave in 𝜌𝑗 for any 𝑗, so the objective of CH-OPT(ℐ𝐵) maximizes a

concave function. For the feasibility region, assume 𝜌𝑗 and 𝜌′𝑗 are feasible, then

deőning 𝜌′′𝑗 = 𝜃𝜌𝑗 + (1− 𝜃)𝜌′𝑗 for any 𝜃 ∈ [0, 1], we know that

∑︁

𝑗∈𝑀

(︀
𝑉𝑗(𝜌

′′
𝑗 )− 𝛾𝜌′′𝑗

)︀ (𝑖)

≥
∑︁

𝑗∈𝑀

(︀
𝜃𝑉𝑗(𝜌𝑗) + (1− 𝜃)𝑉𝑗(𝜌′𝑗)− 𝛾𝜌′′𝑗

)︀

= 𝜃
∑︁

𝑗∈𝑀
(𝑉𝑗(𝜌𝑗)− 𝛾𝜌𝑗) + (1− 𝜃)

∑︁

𝑗∈𝑀

(︀
𝑉𝑗(𝜌

′
𝑗)− 𝛾𝜌′𝑗

)︀

(𝑖𝑖)

≥ 0

where (i) follows from concavity of 𝑉𝑗(𝜌𝑗) and (ii) follows from feasiblity of 𝜌𝑗 and

𝜌′𝑗. On the other hand it is apparent that
∑︀

𝑗∈[𝑀 ] 𝜌
′′
𝑗 ≤ 𝜌. Hence we conclude that for

any 𝜌𝑗 and 𝜌′𝑗 feasible, 𝜌′′𝑗 = 𝜃𝜌𝑗 + (1− 𝜃)𝜌′𝑗 is also feasible, so the feasible region of

CH-OPT(ℐ𝐵) is convex. This concludes the statement of the proposition.

Claim A.2.1. Assume Assumption 2.4.3 holds, then for any channel 𝑗 ∈ [𝑀 ] and

value-cost realization 𝑧𝑗 = (𝑣𝑗,𝑑𝑗) ∈ 𝐹𝑗, we have
𝑣𝑗,1
𝑑𝑗,1

> 𝛾. This further implies that

𝜉 := min𝑗∈[𝑀 ] min𝑧𝑗∈𝐹𝑗

𝑣𝑗,1
𝑑𝑗,1

> 𝛾. Further, let 𝛽 = 1
log(𝑇 )

. Then, for large enough 𝑇 we
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have 𝑉𝑗(𝛽; 𝑧𝑗) =
𝑣𝑗,1
𝑑𝑗,1
𝛽 ≥ 𝜉𝛽 for any realization 𝑧𝑗 ∈ 𝐹𝑗.

Proof. Under Assumption 2.4.3, we know that for any realization of value-cost pairs

𝑧𝑗 = (𝑣𝑗,𝑑𝑗) there always exists an auction 𝑛 ∈ [𝑚𝑗] in this channel whose value-to-

cost ratio is at least 𝛾, i.e. 𝑣𝑗,𝑛 > 𝛾𝑑𝑗,𝑛. Under the ordering 𝑣𝑗,1
𝑑𝑗,1

>
𝑣𝑗,2
𝑑𝑗,2

> · · · > 𝑣𝑗,𝑚𝑗

𝑑𝑗,𝑚𝑗

,

we have 𝑣𝑗,1
𝑑𝑗,1

> 𝛾. In Eq. (A.10) within the proof of Lemma 2.4.3, we showed that

for any realization 𝑧𝑗 ∈ 𝐹𝑗, 𝑉𝑗(𝜌𝑗; 𝑧𝑗) =
𝑣𝑗,1
𝑑𝑗,1
𝜌𝑗 for all 𝜌𝑗 ≤ 𝑑𝑗,1. Hence we know that

when 𝑇 is large enough such that 𝛽 = 1
log(𝑇 )

< min𝑗∈[𝑀 ] min𝑧𝑗∈𝐹𝑗
𝑑𝑗,1, we always have

𝑉𝑗(𝛽; 𝑧𝑗) =
𝑣𝑗,1
𝑑𝑗,1
𝛽 ≥ 𝜉𝛽.

A.3 Additional material for Section 2.5

A.3.1 Proof of Lemma 2.5.2

Proof. Before we show the lemma, we őrst show the following claim is true:

Claim A.3.1. Recall 𝑣𝑗,𝑛(1) > . . . > 𝑣𝑗,𝑛(𝐿𝑗,𝑛) > 0 and 𝑑𝑗,𝑛(1) > . . . > 𝑑𝑗,𝑛(𝐿𝑗,𝑛) > 0

for any channel 𝑗 ∈ [𝑀 ] and auction 𝑛 ∈ [𝑚𝑗]. If auction 𝑛 in channel 𝑗 has

increasing marginal values, i.e. for any realization 𝑧𝑗 = (𝑣𝑗,𝑑𝑗), for any 𝑛 ∈ [𝑚𝑗] we

have
𝑣𝑗,𝑛(ℓ−1)−𝑣𝑗,𝑛(ℓ)

𝑑𝑗,𝑛(ℓ−1)−𝑑𝑗,𝑛(ℓ)
decreases in ℓ then

𝑣𝑗,𝑛(ℓ)

𝑑𝑗,𝑛(ℓ)
also decreases in ℓ.

Proof. We prove this claim by induction. The base case is ℓ = 𝐿𝑗,𝑛: it is easy to see

𝑣𝑗,𝑛(𝐿𝑗,𝑛 − 1)− 𝑣𝑗,𝑛(𝐿𝑗,𝑛)

𝑑𝑗,𝑛(𝐿𝑗,𝑛 − 1)− 𝑑𝑗,𝑛(𝐿𝑗,𝑛)
>
𝑣𝑗,𝑛(𝐿𝑗,𝑛)

𝑑𝑗,𝑛(𝐿𝑗,𝑛)
=⇒ 𝑣𝑗,𝑛(𝐿𝑗,𝑛 − 1)

𝑑𝑗,𝑛(𝐿𝑗,𝑛 − 1)
>
𝑣𝑗,𝑛(𝐿𝑗,𝑛)

𝑑𝑗,𝑛(𝐿𝑗,𝑛)
.

Now assume the induction hypothesis 𝑣𝑗,𝑛(ℓ)

𝑑𝑗,𝑛(ℓ)
>

𝑣𝑗,𝑛(ℓ+1)

𝑑𝑗,𝑛(ℓ+1)
> · · · > 𝑣𝑗,𝑛(𝐿𝑗,𝑛)

𝑑𝑗,𝑛(𝐿𝑗,𝑛)
. Then, we

have

𝑣𝑗,𝑛(ℓ)

𝑑𝑗,𝑛(ℓ)
>
𝑣𝑗,𝑛(ℓ+ 1)

𝑑𝑗,𝑛(ℓ+ 1)
=⇒𝑑𝑗,𝑛(ℓ+ 1)− 𝑑𝑗,𝑛(ℓ)

𝑑𝑗,𝑛(ℓ)
>
𝑣𝑗,𝑛(ℓ+ 1)− 𝑣𝑗,𝑛(ℓ)

𝑣𝑗,𝑛(ℓ)

=⇒𝑑𝑗,𝑛(ℓ)− 𝑑𝑗,𝑛(ℓ+ 1)

𝑑𝑗,𝑛(ℓ)
<
𝑣𝑗,𝑛(ℓ)− 𝑣𝑗,𝑛(ℓ+ 1)

𝑣𝑗,𝑛(ℓ)

=⇒𝑣𝑗,𝑛(ℓ)

𝑑𝑗,𝑛(ℓ)
<
𝑣𝑗,𝑛(ℓ)− 𝑣𝑗,𝑛(ℓ+ 1)

𝑑𝑗,𝑛(ℓ)− 𝑑𝑗,𝑛(ℓ+ 1)
.

(A.57)
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Since 𝑣𝑗,𝑛(ℓ−1)−𝑣𝑗,𝑛(ℓ)

𝑑𝑗,𝑛(ℓ−1)−𝑑𝑗,𝑛(ℓ)
decreases in ℓ we have

𝑣𝑗,𝑛(ℓ− 1)− 𝑣𝑗,𝑛(ℓ)
𝑑𝑗,𝑛(ℓ− 1)− 𝑑𝑗,𝑛(ℓ)

>
𝑣𝑗,𝑛(ℓ)− 𝑣𝑗,𝑛(ℓ+ 1)

𝑑𝑗,𝑛(ℓ)− 𝑑𝑗,𝑛(ℓ+ 1)

(𝑖)
>
𝑣𝑗,𝑛(ℓ)

𝑑𝑗,𝑛(ℓ)

=⇒𝑣𝑗,𝑛(ℓ− 1)

𝑑𝑗,𝑛(ℓ− 1)

(𝑖𝑖)
>

𝑣𝑗,𝑛(ℓ)

𝑑𝑗,𝑛(ℓ)
,

where (i) follows from Eq. (A.57), and (ii) follows from the fact that 𝐴
𝐵
> 𝐶

𝐷
for

𝐴,𝐵,𝐶,𝐷 > 0 implies 𝐴+𝐶
𝐵+𝐷

> 𝐶
𝐷

where we let 𝐴 = 𝑣𝑗,𝑛(ℓ − 1) − 𝑣𝑗,𝑛(ℓ), 𝐵 =

𝑑𝑗,𝑛(ℓ− 1)− 𝑑𝑗,𝑛(ℓ), 𝐶 = 𝑣𝑗,𝑛(ℓ) and 𝐷 = 𝑑𝑗,𝑛(ℓ). This concludes the proof.

Now we prove Lemma 2.5.2. Similar to the proof of Lemma 2.4.3, we only need

to show for any realization 𝑧𝑗 = (𝑣𝑗,𝑑𝑗)𝑗∈[𝑀 ], the conversion function 𝑉 +
𝑗 (𝜌𝑗; 𝑧𝑗) =

𝑣⊤
𝑗 𝑥

*,+
𝑗 (𝜌𝑗 ; 𝑧𝑗) where 𝑥*,+

𝑗 (𝜌𝑗 ; 𝑧𝑗) is deőned as Eq. (2.21) is piecewise linear, continuous,

strictly increasing and concave.

For simplicity we use the shorthand notation 𝑥*
𝑗 = 𝑥

*,+
𝑗 (𝜌𝑗; 𝑧𝑗) ∈ [0, 1]

∑︀
𝑛∈[𝑚𝑗 ]

𝐿𝑗,𝑛

as the optimal solution to 𝑉 +
𝑗 (𝜌𝑗 ; 𝑧𝑗), deőned in Eq. (2.21). By re-labeling the auction

indices in channel 𝑗 ∈ [𝑀 ] such that 𝑣𝑗,1(1)

𝑑𝑗,1(1)
>

𝑣𝑗,2(1)

𝑑𝑗,2(1)
> · · · > 𝑣𝑗,𝑚𝑗

(1)

𝑑𝑗,𝑚𝑗
(1)

, we claim that 𝑥*
𝑗

takes the following form:

𝑥*𝑗,𝑛(ℓ) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if ℓ = 1 and
∑︀

𝑛′∈[𝑛] 𝑑𝑗,𝑛′(1) ≤ 𝜌𝑗

𝜌𝑗−
∑︀

𝑛′∈[𝑛−1] 𝑑𝑗,𝑛′ (1)

𝑑𝑗,𝑛(1)
if ℓ = 1 and

∑︀
𝑛′∈[𝑛] 𝑑𝑗,𝑛′(1) > 𝜌𝑗

0 otherwise

(A.58)

which is analogous to that of Eq. (A.9) in the proof of Lemma 2.4.3. In other words,

in the optimal solution, an advertiser would only procure impressions who are in the

őrst position in each auction, and also those with high value-to-cost ratios. With the

above representation of 𝑥*
𝑗 , the rest of the proof follows exactly from that for Lemma

2.4.3.

It now remains to show that Eq. (A.58) holds. We őrst argue by contradiction that

in any auction, no impression other than the őrst would get procured, i.e. 𝑥*𝑗,𝑛(ℓ) = 0

for any ℓ ∈ 2 . . . 𝐿𝑗,𝑛. Assume there exists some auction 𝑛 ∈ [𝑚𝑗] and impression slot

176



ℓ′ ∈ 2 . . . 𝐿𝑗,𝑛 such that 𝑥*𝑗,𝑛(ℓ
′) > 0, then by the constraint that at most 1 impression

can be procured, i.e.
∑︀

ℓ∈[𝐿𝑗,𝑛]
𝑥*𝑗,𝑛(ℓ) ≤ 1 in Eq. (2.21), we know that 𝑥*𝑗,𝑛(1) < 1.

Also, note that 𝑥*𝑗,𝑛(ℓ
′) incurs a cost of 𝑑𝑗,𝑛(ℓ′) · 𝑥*𝑗,𝑛(ℓ′) amongst the total per-channel

budget 𝜌𝑗. If we instead use this cost on the őrst impression, then we will obtain a

value increase of

𝑣𝑗,𝑛(1) ·
𝑑𝑗,𝑛(ℓ

′) · 𝑥*𝑗,𝑛(ℓ′)
𝑑𝑗,𝑛(1)

− 𝑣𝑗,𝑛(ℓ′) · 𝑥*𝑗,𝑛(ℓ′) = 𝑑𝑗,𝑛(ℓ
′) · 𝑥*𝑗,𝑛(ℓ′) ·

(︂
𝑣𝑗,𝑛(1)

𝑑𝑗,𝑛(1)
− 𝑣𝑗,𝑛(ℓ

′)

𝑑𝑗,𝑛(ℓ′)

)︂
> 0,

where the őnal inequality follows from the assumption that 𝑥*𝑗,𝑛(ℓ
′) > 0, and the multi-

item auction has increasing marginal values (see Deőnition 2.5.1) so Claim A.3.1 holds.

This contradicts the optimality of 𝑥*
𝑗 , and hence 𝑥*𝑗,𝑛(ℓ) = 0 for any ℓ ∈ 2 . . . 𝐿𝑗,𝑛, or in

other words, a channel will only procure impressions ranked őrst. Hence, a channel’s

procurement problem in Eq. (2.21) can be restricted to the őrst impression in each

auction, and thus similar to the proof of Lemma 2.4.3, is an LP-relaxation to the 0-1

knapsack with budget 𝜌𝑗 , and 𝑚𝑗 items whose values are 𝑣𝑗,1(1) . . . 𝑣𝑗,𝑚𝑗
(1) with costs

𝑑𝑗,1(1) . . . 𝑑𝑗,𝑚𝑗
(1).
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Appendix B

Supplementary material for Chapter 3

B.1 Additional material for Section 3.3

B.1.1 Proof for Proposition 3.3.1

Let 𝑄𝑡(·) be the distributions of a buyer’s valuation when we condition on the feature

vector 𝑥𝑡. Further, let 𝑄−
𝑡 (·) be the distribution of 𝑣−𝑡 , which is the second highest

valuation at time 𝑡. Then, we have 𝑄𝑡(𝑧) = 𝐹 (𝑧−⟨𝛽, 𝑥𝑡⟩) and 𝑄−
𝑡 (𝑧) = 𝐹−(𝑧−⟨𝛽, 𝑥𝑡⟩).

When 𝑁 ≥ 2 and all buyers bid truthfully, according to Equations (3.2) , the seller’s

expected revenue conditioned on 𝑥𝑡 by setting reserve price 𝑟𝑡 is:

rev𝑡(𝑟𝑡) = E
[︀
max{𝑟𝑡, 𝑣−𝑡 }I{𝑣+𝑡 ≥ 𝑟𝑡} | 𝑥𝑡, 𝑟𝑡

]︀

= E
[︀
𝑟𝑡I{𝑣+𝑡 ≥ 𝑟𝑡 ≥ 𝑣−𝑡 }+ 𝑣−𝑡 I{𝑣+𝑡 ≥ 𝑣−𝑡 ≥ 𝑟𝑡} | 𝑥𝑡, 𝑟𝑡

]︀
,

(B.1)

where 𝑣+𝑡 is the highest valuation at time 𝑡. The őrst term within the expectation,

conditioned on 𝑥𝑡 and 𝑟𝑡, is

E
[︀
𝑟𝑡I{𝑣+𝑡 ≥ 𝑟𝑡 ≥ 𝑣−𝑡 } | 𝑥𝑡, 𝑟𝑡

]︀
= 𝑟𝑡𝑁 [𝑄𝑡(𝑟𝑡)]

𝑁−1 [1−𝑄𝑡(𝑟𝑡)] , (B.2)

where we used the fact that 𝑟𝑡 is independent of 𝑣+𝑡 and 𝑣−𝑡 since the seller sets reserve

price 𝑟𝑡 based on only the past historyℋ𝑡−1 = {(𝑟1, 𝑣1, 𝑥1), (𝑟2, 𝑣2, 𝑥2), . . . , (𝑟𝑡−1, 𝑣𝑡−1, 𝑥𝑡−1)},
and both 𝑣+𝑡 and 𝑣−𝑡 , conditioned on 𝑥𝑡, are independent of the past. The second term
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within the expectation of Equation (B.1) is

E
[︀
𝑣−𝑡 I{𝑣+𝑡 ≥ 𝑣−𝑡 ≥ 𝑟𝑡} | 𝑥𝑡, 𝑟𝑡

]︀

= E
[︀
𝑣−𝑡 I{𝑣−𝑡 ≥ 𝑟𝑡} | 𝑥𝑡, 𝑟𝑡

]︀

= E
[︀
(𝑣−𝑡 − 𝑟𝑡)I{𝑣−𝑡 ≥ 𝑟𝑡} | 𝑥𝑡, 𝑟𝑡

]︀
+ 𝑟𝑡E

[︀
I{𝑣−𝑡 ≥ 𝑟𝑡} | 𝑥𝑡, 𝑟𝑡

]︀

=

∫︁ ∞

0

P
(︀
𝑣−𝑡 − 𝑟𝑡 ≥ 𝑧

)︀
𝑑𝑧 + 𝑟𝑡

[︀
1−𝑄−

𝑡 (𝑟𝑡)
]︀

=

∫︁ ∞

𝑟𝑡

[︀
1−𝑄−

𝑡 (𝑧)
]︀
𝑑𝑧 + 𝑟𝑡

[︀
1−𝑄−

𝑡 (𝑟𝑡)
]︀

= E
[︀
𝑣−𝑡 | 𝑥𝑡, 𝑟𝑡

]︀
−

∫︁ 𝑟𝑡

0

[︀
1−𝑄−

𝑡 (𝑧)
]︀
𝑑𝑧 + 𝑟𝑡

[︀
1−𝑄−

𝑡 (𝑟𝑡)
]︀

= E
[︀
𝑣−𝑡 | 𝑥𝑡

]︀
+

∫︁ 𝑟𝑡

0

𝑄−
𝑡 (𝑧)𝑑𝑧 − 𝑟𝑡𝑄−

𝑡 (𝑟𝑡) . (B.3)

Note that the integration starts from 0 because all valuations are considered to be

positive. Since 𝐹−(𝑧) := 𝑁𝐹𝑁−1(𝑧)− (𝑁 − 1)𝐹𝑁(𝑧) for any 𝑧 ∈ R, we have

𝑄−
𝑡 (𝑟𝑡) = 𝑁 [𝑄𝑡(𝑟𝑡)]

𝑁−1 [1−𝑄𝑡(𝑟𝑡)] + [𝑄𝑡(𝑟𝑡)]
𝑁 . (B.4)

Hence, combining Equations (B.1), (B.2), (B.3), and (B.4), we have

rev𝑡(𝑟𝑡) = E
[︀
𝑣−𝑡 | 𝑥𝑡

]︀
+

∫︁ 𝑟𝑡

0

𝑄−
𝑡 (𝑧)𝑑𝑧 − 𝑟𝑡 [𝑄𝑡(𝑟𝑡)]

𝑁

= E
[︀
𝑣−𝑡 | 𝑥𝑡

]︀
+

∫︁ 𝑟𝑡

0

𝐹−(𝑧 − ⟨𝛽, 𝑥𝑡⟩)𝑑𝑧 − 𝑟𝑡
[︀
𝐹+(𝑟𝑡 − ⟨𝛽, 𝑥𝑡⟩)

]︀

=

∫︁ ∞

−∞
𝑧𝑑𝐹−(𝑧) + ⟨𝛽, 𝑥𝑡⟩+

∫︁ 𝑟𝑡

0

𝐹−(𝑧 − ⟨𝛽, 𝑥𝑡⟩)𝑑𝑧 − 𝑟𝑡
[︀
𝐹+(𝑟𝑡 − ⟨𝛽, 𝑥𝑡⟩)

]︀
.

B.2 Additional material for Section 3.4

B.2.1 Proof of Theorem 3.4.2

We őrst introduce some deőnitions that we will extensively rely on throughout our

proof of Theorem 3.4.2. We start off with the łgoodž events 𝜉ℓ+1, 𝜉
−
ℓ+1 and 𝜉+ℓ+1 for
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ℓ ≥ 1 in which the estimates of 𝛽, 𝐹− and 𝐹+ are accurate:

𝜉ℓ+1 =

{︂
‖̂︀𝛽ℓ+1 − 𝛽‖1 ≤

𝛿ℓ
𝑥max

}︂
(B.5)

where 𝛿ℓ :=

√︀
2𝑑 log(|𝐸ℓ|)𝜖max𝑥

2
max

𝜆20
√︀
𝑁 |𝐸ℓ|

+

√
𝑑 (𝑁𝐿ℓ𝑎max + 1) 𝑥2max

|𝐸ℓ|𝜆20
, (B.6)

𝜉−ℓ+1 =

{︂⃒⃒
⃒ ̂︀𝐹−

ℓ+1(𝑧)− 𝐹−(𝑧)
⃒⃒
⃒ ≤ 2𝑁2

(︂
𝛾ℓ + 𝑐𝑓𝛿ℓ +

𝑐𝑓 +𝑁𝐿ℓ

|𝐸ℓ|

)︂}︂
, (B.7)

𝜉+ℓ+1 =

{︂⃒⃒
⃒ ̂︀𝐹+

ℓ+1(𝑧)− 𝐹+(𝑧)
⃒⃒
⃒ ≤ 𝑁

(︂
𝛾ℓ + 𝑐𝑓𝛿ℓ +

𝑐𝑓 +𝑁𝐿ℓ

|𝐸ℓ|

)︂}︂
, (B.8)

where 𝑎max is the maximum possible corruption, 𝛾ℓ =
√︀
log(|𝐸ℓ|)/

√︀
2𝑁 |𝐸ℓ|, 𝜆20 is

the minimum eigenvalue of covariance matrix Σ, and 𝑐𝑓 = sup𝑧∈[−𝜖max,𝜖max] 𝑓(𝑧) ≥
inf𝑧∈[−𝜖max,𝜖max] 𝑓(𝑧) > 0. Furthermore,

𝐿ℓ =
log (𝑣2max𝑁 |𝐸ℓ|4 − 1)

log(1/𝜂)
= 𝒪

(︂
log(|𝐸ℓ|)
log(1/𝜂)

)︂
,

where |𝐸ℓ| = 𝑇 1−2−ℓ

is the length of the ℓ𝑡ℎ phase.

We also deőne the event that the number of periods in phase 𝐸ℓ during which

buyer 𝑖 submits signiőcantly corrupted bids is bounded by 𝐿ℓ:

𝒢𝑖,ℓ := {|𝒮𝑖,ℓ| ≤ 𝐿ℓ} . (B.9)

Here, 𝒮𝑖,ℓ =
{︁
𝑡 ∈ 𝐸ℓ : |𝑎𝑖,𝑡| ≥ 1

|𝐸ℓ|

}︁
is the set of all periods in phase 𝐸ℓ during which

buyer 𝑖 extensively corrupts her bids.

We are now equipped to show Theorem 3.4.2 according to the following steps:

(i) Decompose the single period regret into ℛ(1)
𝑡 and ℛ(2)

𝑡 , where ℛ(1)
𝑡 bounds the

expected revenue loss due to the discrepancy between the actual reserve price 𝑟𝑡

and the optimal reserve price 𝑟⋆𝑡 and ℛ(2)
𝑡 , which bounds the expected revenue

loss due to allocation mismatches. Note that ℛ(1)
𝑡 is a result of the estimation

inaccuracies in 𝛽, 𝐹− and 𝐹+.

(ii) Bound ℛ(1)
𝑡 using Lemmas 3.4.1, B.2.1, B.2.2, and B.2.3.
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(iii) Bound ℛ(2)
𝑡 using Lemmas 3.4.1 and 3.4.4.

(iv) Sum up ℛ(1)
𝑡 and ℛ(2)

𝑡 to bound the cumulative expected regret over a phase 𝐸ℓ

and the entire horizon 𝑇 .

(i) Decomposing single period regret into ℛ(1)
𝑡 and ℛ(2)

𝑡 : According to the

NPAC-S policy detailed in Algorithm 3, the expected revenue in period 𝑡 is given by

rev𝑡(𝑟𝑡) = E
[︁
max{𝑏−𝑡 , ̂︀𝑟𝑡}I{𝑏+𝑡 > ̂︀𝑟𝑡}I{no isolation in 𝑡}

+
∑︁

𝑖∈[𝑁 ]

𝑟𝑢𝑡 I{𝑏𝑖,𝑡 > 𝑟𝑢𝑡 }I{𝑖 is isolated} | 𝑥𝑡, 𝑟𝑡
]︁
,

(B.10)

where the expectation is taken with respect to {(𝑥𝜏 , 𝜖𝑖,𝜏 , 𝑎𝑖,𝜏 )}𝜏∈[𝑡],𝑖∈[𝑁 ] and ̂︀𝑟𝑡, 𝑟𝑢𝑡 are

deőned in Equations (3.6) and (3.7) respectively. Hence, the regret is given by

Regret𝑡 = E [REV⋆
𝑡 − rev𝑡(𝑟𝑡)]

= E
[︀
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 } − rev𝑡(𝑟𝑡)

]︀

=
(︀
E
[︀
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 }

]︀
− E

[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}I{no isolation in 𝑡}

]︀)︀

+
(︀
E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}I{no isolation in 𝑡} − rev𝑡(𝑟𝑡)

]︀)︀

:= ℛ(1)
𝑡 +ℛ(2)

𝑡 , (B.11)

where the expectation is taken with respect the context 𝑥𝑡 ∼ 𝒟 and the randomness

in 𝑟𝑡; 𝑟⋆𝑡 is the optimal reserve price (deőned in Equation (3.4)) if the seller has full

knowledge of 𝐹 and 𝛽; and we deőned:

ℛ(1)
𝑡 := E

[︀
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 }

]︀
− E

[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}I{no isolation in 𝑡}

]︀

ℛ(2)
𝑡 := E

[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}I{no isolation in 𝑡} − rev𝑡(𝑟𝑡)

]︀
(B.12)

(ii) Bounding ℛ(1)
𝑡 : We start by upper bounding ℛ(1)

𝑡 for a period 𝑡 ∈ 𝐸ℓ+1
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where ℓ ≥ 1.

ℛ(1)
𝑡 = E

[︀
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 }

]︀
− E

[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}I{no isolation in 𝑡}

]︀

= E
[︀(︀
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 } −max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}

)︀
I{no isolation in 𝑡}

]︀

+ E
[︀
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 } (1− I{no isolation in 𝑡})

]︀

= E
[︀
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 } −max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}

]︀(︂
1− 1

|𝐸ℓ|

)︂

+ E
[︀
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 }

]︀
· 1

|𝐸ℓ|
≤ E

[︀
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 } −max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}

]︀
+
𝑣max

|𝐸ℓ|
, (B.13)

where the third equality is because an isolation event is independent of any other event,

and the őnal inequality follows from a simple observation that max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 >

𝑟⋆𝑡 } ≤ 𝑣max.

For simplicity, we deőne

̃︀ℛ(1)
𝑡 := E

[︁
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 } −max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}

⃒⃒
⃒ 𝑥𝑡, ̂︀𝑟𝑡

]︁
,

so Equation (B.13) yields

ℛ(1)
𝑡 ≤ E

[︁
̃︀ℛ(1)
𝑡

]︁
+
𝑣max

|𝐸ℓ|
, (B.14)

where the expectation is taken with respect to the context 𝑥𝑡 and reserve price ̂︀𝑟𝑡.
Notice that max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 } −max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡} is exactly the revenue

difference rev𝑡(𝑟
⋆
𝑡 )− rev𝑡(𝑟𝑡) had the seller set reserve prices 𝑟⋆𝑡 or 𝑟𝑡 when all buyers

bid truthfully. Hence, by applying Proposition 3.3.1 we obtain

̃︀ℛ(1)
𝑡 =

∫︁ 𝑟⋆𝑡

0

𝐹−(𝑧 − ⟨𝛽, 𝑥𝑡⟩)𝑑𝑧 − 𝑟⋆𝑡
[︀
𝐹+(𝑟⋆𝑡 − ⟨𝛽, 𝑥𝑡⟩)

]︀

−
∫︁ ̂︀𝑟𝑡

0

𝐹−(𝑧 − ⟨𝛽, 𝑥𝑡⟩)𝑑𝑧 + ̂︀𝑟𝑡
[︀
𝐹+(̂︀𝑟𝑡 − ⟨𝛽, 𝑥𝑡⟩)

]︀
.

Note that we can apply Proposition 3.3.1 because ̂︀𝑟𝑡 is the reserve price set according
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to the NPAC-S policy when no isolation occurs, and only depends on the current

context 𝑥𝑡 and the past ℋ𝑡−1 = {(𝑟1, 𝑏1, 𝑥1), (𝑟2, 𝑏2, 𝑥2), . . . , (𝑟𝑡−1, 𝑏𝑡−1, 𝑥𝑡−1)}.

By deőning 𝑦𝑡 := ⟨𝛽, 𝑥𝑡⟩, ̂︀𝑦𝑡 := ⟨̂︀𝛽ℓ, 𝑥𝑡⟩ and

𝜌𝑡(𝑟, 𝑦, 𝐹
(1), 𝐹 (2)) :=

∫︁ 𝑟

0

𝐹 (2)(𝑧 − 𝑦)𝑑𝑧 − 𝑟
[︀
𝐹 (1)(𝑟 − 𝑦)

]︀
, (B.15)

we can rewrite ̃︀ℛ(1)
𝑡 as the following:

̃︀ℛ(1)
𝑡 = E

[︁
max{𝑣−𝑡 , 𝑟⋆𝑡 }I{𝑣+𝑡 > 𝑟⋆𝑡 } −max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}

⃒⃒
⃒ 𝑥𝑡, ̂︀𝑟𝑡

]︁

= 𝜌𝑡(𝑟
⋆
𝑡 , 𝑦𝑡, 𝐹

−, 𝐹+)− 𝜌𝑡(̂︀𝑟𝑡, 𝑦𝑡, 𝐹−, 𝐹+)

= 𝜌𝑡(𝑟
⋆
𝑡 , 𝑦𝑡, 𝐹

−, 𝐹+)− 𝜌𝑡(𝑟⋆𝑡 , ̂︀𝑦𝑡, 𝐹−, 𝐹+)

+ 𝜌𝑡(𝑟
⋆
𝑡 , ̂︀𝑦𝑡, 𝐹−, 𝐹+)− 𝜌𝑡(𝑟⋆𝑡 , ̂︀𝑦𝑡, ̂︀𝐹−

ℓ+1,
̂︀𝐹+
ℓ+1)

+ 𝜌𝑡(𝑟
⋆
𝑡 , ̂︀𝑦𝑡, ̂︀𝐹−

ℓ+1,
̂︀𝐹+
ℓ+1)− 𝜌𝑡(̂︀𝑟𝑡, ̂︀𝑦𝑡, ̂︀𝐹−

ℓ+1,
̂︀𝐹+
ℓ+1)

+ 𝜌𝑡(̂︀𝑟𝑡, ̂︀𝑦𝑡, ̂︀𝐹−
ℓ+1,

̂︀𝐹+
ℓ+1)− 𝜌𝑡(̂︀𝑟𝑡, ̂︀𝑦𝑡, 𝐹−, 𝐹+)

+ 𝜌𝑡(̂︀𝑟𝑡, ̂︀𝑦𝑡, 𝐹−, 𝐹+)− 𝜌𝑡(̂︀𝑟𝑡, 𝑦𝑡, 𝐹−, 𝐹+) .

(B.16)

We now invoke Lemma B.2.3, where we show that when events 𝜉ℓ+1, 𝜉
−
ℓ+1 and 𝜉+ℓ+1

(see deőnition in Equation (B.5),(B.6), (B.7) and (B.8) ) happen for some phase ℓ ≥ 1,

we have for 𝑟 ∈ {𝑟⋆𝑡 , ̂︀𝑟𝑡},

(i) |𝜌𝑡(𝑟, 𝑦𝑡, 𝐹−, 𝐹+)− 𝜌𝑡(𝑟, ̂︀𝑦𝑡, 𝐹−, 𝐹+)| ≤ 3𝑟𝑐𝑓𝑁
2𝛿ℓ a.s.

(ii)
⃒⃒
⃒𝜌𝑡(𝑟, ̂︀𝑦𝑡, 𝐹−, 𝐹+)− 𝜌𝑡(𝑟, ̂︀𝑦𝑡, ̂︀𝐹−

ℓ+1,
̂︀𝐹+
ℓ+1)

⃒⃒
⃒ ≤ 3𝑟𝑁2

(︁
𝛾ℓ + 𝑐𝑓𝛿ℓ +

𝑐𝑓+𝐿ℓ

|𝐸ℓ|

)︁
a.s.

Note that the őrst inequality bounds the impact of errors 𝛽 and the second bounds
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the impact of errors in the distributions. Applying these bounds in (B.16), we get

̃︀ℛ(1)
𝑡 · I

{︀
𝜉ℓ+1 ∩ 𝜉−ℓ+1 ∩ 𝜉+ℓ+1

}︀
≤ 3(𝑟⋆𝑡 + ̂︀𝑟𝑡)𝑐𝑓𝑁2𝛿ℓ

+ 3(𝑟⋆𝑡 + ̂︀𝑟𝑡)𝑁2

(︂
𝛾ℓ + 𝑐𝑓𝛿ℓ +

𝑐𝑓 + 𝐿ℓ

|𝐸ℓ|

)︂

+ 𝜌𝑡(𝑟
⋆
𝑡 , ̂︀𝑦𝑡, ̂︀𝐹−

ℓ+1,
̂︀𝐹+
ℓ+1)− 𝜌𝑡(̂︀𝑟𝑡, ̂︀𝑦𝑡, ̂︀𝐹−

ℓ+1,
̂︀𝐹+
ℓ+1) .

(B.17)

We recall that the seller’s pricing decision ̂︀𝑟𝑡 when no isolation occurs is deőned in

Equation (3.7), and realize that in fact ̂︀𝑟𝑡 = argmax𝑟∈(0,𝑣max] 𝜌𝑡(𝑟, ̂︀𝑦𝑡, ̂︀𝐹−
ℓ+1,

̂︀𝐹+
ℓ+1). So,

by the optimality of ̂︀𝑟𝑡 and 𝑟⋆𝑡 ≤ 𝑣max, we obtain the fact that 𝜌𝑡(𝑟⋆𝑡 , ̂︀𝑦𝑡, ̂︀𝐹−
ℓ+1,

̂︀𝐹+
ℓ+1)−

𝜌𝑡(̂︀𝑟𝑡, ̂︀𝑦𝑡, ̂︀𝐹−
ℓ+1,

̂︀𝐹+
ℓ+1) ≤ 0. Using this inequality in (B.17), we get

̃︀ℛ(1)
𝑡 · I

{︀
𝜉ℓ+1 ∩ 𝜉−ℓ+1 ∩ 𝜉+ℓ+1

}︀

≤ 6𝑣max𝑐𝑓𝑁
2𝛿ℓ + 6𝑣max𝑁

2

(︂
𝛾ℓ + 𝑐𝑓𝛿ℓ +

𝑐𝑓 + 𝐿ℓ

|𝐸ℓ|

)︂

= 12𝑣max𝑐𝑓𝑁
2𝛿ℓ + 6𝑣max𝑁

2

(︃√︀
log(|𝐸ℓ|)√︀
2𝑁 |𝐸ℓ|

+
𝑐𝑓 + 𝐿ℓ

|𝐸ℓ|

)︃

= 12𝑣max𝑐𝑓𝑁
2𝛿ℓ +

6𝑣max

√︀
𝑁3 log(|𝐸ℓ|)√
2𝐸ℓ

+
6𝑣max𝑁

2(𝑐𝑓 + 𝐿ℓ)

|𝐸ℓ|
, (B.18)

where we used the fact that 𝑟⋆𝑡 , ̂︀𝑟𝑡 ≤ 𝑣max in the inequality. Note that 𝐿ℓ =

log (𝑣2max𝑁 |𝐸ℓ|4 − 1)/log( 1
𝜂
) = 𝒪 (log(𝑇 )/ log(1/𝜂)), since we recall that |𝐸ℓ| = 𝑇 1−2−ℓ

.

To complete the bound for ℛ(1)
𝑡 in period 𝑡 ∈ 𝐸ℓ+1, we continue to bound Equation

(B.14):

ℛ(1)
𝑡 ≤ E

[︁
̃︀ℛ(1)
𝑡

]︁
+
𝑣max

|𝐸ℓ|
= E

[︁
̃︀ℛ(1)
𝑡 · I

{︀
𝜉ℓ+1 ∩ 𝜉−ℓ+1 ∩ 𝜉+ℓ+1

}︀]︁
+ E

[︁
̃︀ℛ(1)
𝑡 · I

{︀
𝜉𝑐ℓ+1 ∪

(︀
𝜉−ℓ+1

)︀𝑐 ∪
(︀
𝜉+ℓ+1

)︀𝑐}︀]︁
+
𝑣max

|𝐸ℓ|
≤ E

[︁
̃︀ℛ(1)
𝑡 · I

{︀
𝜉ℓ+1 ∩ 𝜉−ℓ+1 ∩ 𝜉+ℓ+1

}︀]︁
+ 𝑣maxP

(︀
𝜉𝑐ℓ+1 ∪

(︀
𝜉−ℓ+1

)︀𝑐 ∪
(︀
𝜉+ℓ+1

)︀𝑐)︀
+
𝑣max

|𝐸ℓ|

≤ 12𝑣max𝑐𝑓𝑁
2𝛿ℓ +

6𝑣max

√︀
𝑁3 log(|𝐸ℓ|)√
2𝐸ℓ

+
𝑣max (6𝑁

2(𝑐𝑓 + 𝐿ℓ) + 9𝑁 + 15𝑑+ 9)

|𝐸ℓ|
,

(B.19)
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where the second inequality follows from a simple observation that ̃︀ℛ(1)
𝑡 ≤ 𝑣max almost

surely, and the third inequality uses Equation (B.18) and Lemma B.2.4, which shows

P
(︀
𝜉𝑐ℓ+1 ∪

(︀
𝜉−ℓ+1

)︀𝑐 ∪
(︀
𝜉+ℓ+1

)︀𝑐)︀ ≤ (9𝑁 + 15𝑑+ 8)/|𝐸ℓ|,

(iii) Bounding ℛ(2)
𝑡 : So far, we have bounded ℛ(1)

𝑡 for 𝑡 ∈ 𝐸ℓ+1 (ℓ ≥ 1), and will

move on to bound ℛ(2)
𝑡 deőned in Equation (B.11) for 𝑡 ∈ 𝐸ℓ for any ℓ ≥ 1 . We deőne

𝑏+−𝑖,𝑡 = max
𝑗 ̸=𝑖

𝑏𝑗,𝑡 and 𝑣+−𝑖,𝑡 = max
𝑗 ̸=𝑖

𝑣𝑗,𝑡 , (B.20)

which represent the highest bid excluding that of buyer 𝑖, and the highest valuation
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excluding that of buyer 𝑖, respectively. We then have

ℛ(2)
𝑡

= E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}I{no isolation in 𝑡} − rev𝑡(𝑟𝑡)

]︀

≤ E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}I{no isolation in 𝑡}

]︀

− E
[︀
max{𝑏−𝑡 , 𝑟𝑡}I{𝑏+𝑡 > ̂︀𝑟𝑡}I{no isolation in 𝑡}

]︀

=
(︀
E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}

]︀
− E

[︀
max{𝑏−𝑡 , ̂︀𝑟𝑡}I{𝑏+𝑡 > ̂︀𝑟𝑡}

]︀)︀
·
(︂
1− 1

|𝐸ℓ|

)︂

< E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣+𝑡 > ̂︀𝑟𝑡}

]︀
− E

[︀
max{𝑏−𝑡 , ̂︀𝑟𝑡}I{𝑏+𝑡 > ̂︀𝑟𝑡}

]︀

=
∑︁

𝑖∈[𝑁 ]

E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣𝑖,𝑡 > max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡}} −max{𝑏−𝑡 , ̂︀𝑟𝑡}I{𝑏𝑖,𝑡 > max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}

]︀

=
∑︁

𝑖∈[𝑁 ]

E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖,𝑡 < max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}

]︀

−
∑︁

𝑖∈[𝑁 ]

E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{max{𝑏+−𝑖,𝑡̂︀𝑟𝑡} < 𝑣𝑖,𝑡 < max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡}}

]︀

+
∑︁

𝑖∈[𝑁 ]

E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣𝑖,𝑡 > max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}} −max{𝑏−𝑡 , ̂︀𝑟𝑡}I{𝑏𝑖,𝑡 > max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}

]︀

≤
∑︁

𝑖∈[𝑁 ]

E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖,𝑡 < max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}

]︀

+
∑︁

𝑖∈[𝑁 ]

E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣𝑖,𝑡 > max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}} −max{𝑏−𝑡 , ̂︀𝑟𝑡}I{𝑏𝑖,𝑡 > max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}

]︀

≤
∑︁

𝑖∈[𝑁 ]

𝑣maxE
[︀
I{max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖,𝑡 < max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}

]︀

+
∑︁

𝑖∈[𝑁 ]

E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣𝑖,𝑡 > max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}} −max{𝑏−𝑡 , ̂︀𝑟𝑡}I{𝑏𝑖,𝑡 > max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}

]︀
,

(B.21)

where the őrst inequality follows from Equation (B.10); the third inequality is due to

the fact that
∑︀

𝑖∈[𝑁 ] E
[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{max{𝑏+−𝑖,𝑡̂︀𝑟𝑡} < 𝑣𝑖,𝑡 < max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡}}

]︀
≥ 0; and

the last inequality holds because max{𝑣−𝑡 , ̂︀𝑟𝑡} ≤ 𝑣max. To continue the bound for
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Equation (B.21), we use the deőnition of ℬ𝑖,ℓ := ℬ𝑠
𝑖,ℓ ∪ ℬ𝑜

𝑖,ℓ in Lemma 3.4.4, where

ℬ𝑠
𝑖,ℓ =

{︀
𝑡 ∈ 𝐸ℓ : I

{︀
𝑣𝑖,𝑡 > {𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}

}︀
= 1 , I

{︀
𝑏𝑖,𝑡 > {𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}

}︀
= 0

}︀

ℬ𝑜
𝑖,ℓ =

{︀
𝑡 ∈ 𝐸ℓ : I

{︀
𝑣𝑖,𝑡 > {𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}

}︀
= 0 , I

{︀
𝑏𝑖,𝑡 > {𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}

}︀
= 1

}︀
.

Here, ℬ𝑠
𝑖,ℓ represents the periods during which buyer 𝑖 could have won the auc-

tion had she bid truthfully but in reality lost since she shaded her bid (alloca-

tion mismatch due to shading), while ℬ𝑜
𝑖,ℓ represents the periods when buyer 𝑖

would have lost the auction had she bid truthfully, but instead won the item due

to overbidding (allocation mismatch due to overbidding). Hence, for any period

𝑡 ∈ 𝐸ℓ/ℬ𝑖,ℓ =
{︀
𝑡 ∈ 𝐸ℓ : I

{︀
𝑣𝑖,𝑡 > {𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}

}︀
= I

{︀
𝑏𝑖,𝑡 > {𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}

}︀}︀
(which means in

period 𝑡 ∈ 𝐸ℓ/ℬ𝑖,ℓ the outcome for buyer 𝑖 would not have changed even if she bid

truthfully), we have I{𝑣𝑖,𝑡 > max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}} = I{𝑏𝑖,𝑡 > max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}}. Therefore,

deőning ℬℓ := ∪𝑖∈[𝑁 ]ℬ𝑖,ℓ, we have

ℛ(2)
𝑡 I{𝑡 ∈ 𝐸ℓ/ℬℓ}

≤
∑︁

𝑖∈[𝑁 ]

𝑣maxE
[︀
I{max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖,𝑡 < max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}

]︀

+
∑︁

𝑖∈[𝑁 ]

E
[︁
max{𝑣−𝑡 , ̂︀𝑟𝑡}I{𝑣𝑖,𝑡 > max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}

−max{𝑏−𝑡 , ̂︀𝑟𝑡}I{𝑏𝑖,𝑡 > max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}
]︁
I{𝑡 ∈ 𝐸ℓ/ℬℓ}

=
∑︁

𝑖∈[𝑁 ]

𝑣maxE
[︀
I{max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖,𝑡 < max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}}

]︀

+
∑︁

𝑖∈[𝑁 ]

E
[︀(︀
max{𝑣−𝑡 , ̂︀𝑟𝑡} −max{𝑏−𝑡 , ̂︀𝑟𝑡}

)︀
I{𝑏𝑖,𝑡 > max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}}

]︀

≤
∑︁

𝑖∈[𝑁 ]

𝑣maxE
[︀
I{max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖,𝑡 < max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}}

]︀
+ E

[︀
max{𝑣−𝑡 , ̂︀𝑟𝑡} −max{𝑏−𝑡 , ̂︀𝑟𝑡}

]︀

≤
∑︁

𝑖∈[𝑁 ]

𝑣maxE
[︀
I{max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖,𝑡 < max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}}

]︀
+ E

[︁(︀
𝑣−𝑡 − 𝑏−𝑡

)︀+]︁
.

The őrst inequality follows from Equation (B.21); the őrst equality follows from the
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fact that 𝑡 ∈ 𝐸ℓ/ℬℓ; the second inequality holds because

∑︁

𝑖∈[𝑁 ]

I{𝑏𝑖,𝑡 > max{𝑏+−𝑖,𝑡̂︀𝑟𝑡}} ≤
∑︁

𝑖∈[𝑁 ]

I{𝑏𝑖,𝑡 > 𝑏+−𝑖,𝑡}} = 1

The third inequality applies the fact that max{𝑎, 𝑐} −max{𝑏, 𝑐} ≤ (𝑎− 𝑏)+ for any

𝑎, 𝑏, 𝑐 ∈ R. Denoting 𝑖⋆ := argmax𝑖∈[𝑁 ] 𝑣𝑖,𝑡, we have

∑︁

𝑖∈[𝑁 ]

𝑣maxE
[︀
I{max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖,𝑡 < max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡}}

]︀

= 𝑣maxE
[︀
I{max{𝑣+−𝑖⋆,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖⋆,𝑡 < max{𝑏+−𝑖⋆,𝑡, ̂︀𝑟𝑡}}

]︀

since I{max{𝑣+−𝑖,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖,𝑡} = 0 if 𝑖 ̸= 𝑖⋆. Therefore

ℛ(2)
𝑡 I{𝑡 ∈ 𝐸ℓ/ℬℓ} ≤ 𝑣maxE

[︀
I{max{𝑣+−𝑖⋆,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖⋆,𝑡 < max{𝑏+−𝑖⋆,𝑡, ̂︀𝑟𝑡}}

]︀
+ E

[︁(︀
𝑣−𝑡 − 𝑏−𝑡

)︀+]︁
,

(B.22)

To bound the őrst term in Equation (B.22), we again evoke the inequality

max{𝑎, 𝑐} − max{𝑏, 𝑐} = (𝑎 − 𝑏)+ for any 𝑎, 𝑏, 𝑐 ∈ R and get max{𝑏+−𝑖⋆,𝑡, ̂︀𝑟𝑡} −
max{𝑣+−𝑖⋆,𝑡, ̂︀𝑟𝑡} ≤

(︀
𝑏+−𝑖⋆,𝑡 − 𝑣+−𝑖⋆,𝑡

)︀+
. Hence,

E
[︀
I{max{𝑣+−𝑖⋆,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖⋆,𝑡 < max{𝑏+−𝑖⋆,𝑡, ̂︀𝑟𝑡}}

]︀

≤ E
[︁
I{max{𝑏+−𝑖⋆,𝑡, ̂︀𝑟𝑡} −

(︀
𝑏+−𝑖⋆,𝑡 − 𝑣+−𝑖⋆,𝑡

)︀+
< 𝑣𝑖⋆,𝑡 < max{𝑏+−𝑖⋆,𝑡, ̂︀𝑟𝑡}}

]︁

= E
[︁
E
[︁
I{max{𝑏+−𝑖⋆,𝑡, ̂︀𝑟𝑡} −

(︀
𝑏+−𝑖⋆,𝑡 − 𝑣+−𝑖,𝑡

)︀+
< 𝑣𝑖⋆,𝑡 < max{𝑏+−𝑖⋆,𝑡, ̂︀𝑟𝑡}}

⃒⃒
⃒ 𝑏+−𝑖⋆,𝑡, 𝑣

+
−𝑖⋆,𝑡

]︁]︁

= E

[︃∫︁ max{𝑏+
−𝑖⋆,𝑡

,̂︀𝑟𝑡}−⟨𝛽,𝑥𝑡⟩

max{𝑏+
−𝑖⋆,𝑡

,̂︀𝑟𝑡}−(𝑏+−𝑖⋆,𝑡
−𝑣+

−𝑖⋆,𝑡)
+−⟨𝛽,𝑥𝑡⟩

𝑓(𝑧)𝑑𝑧

]︃

≤ 𝑐𝑓E
[︁(︀
𝑏+−𝑖⋆,𝑡 − 𝑣+−𝑖⋆,𝑡

)︀+]︁
. (B.23)

Now, set 𝑗 ∈ [𝑁 ] such that 𝑏+−𝑖⋆,𝑡 = 𝑏𝑗,𝑡 (𝑗 ̸= 𝑖⋆), i.e. 𝑗 is the highest bidder among all

buyers excluding 𝑖⋆. Then 𝑏+−𝑖⋆,𝑡 − 𝑣+−𝑖⋆,𝑡 = 𝑏𝑗,𝑡 − 𝑣+−𝑖⋆,𝑡 ≤ 𝑏𝑗,𝑡 − 𝑣𝑗,𝑡 = −𝑎𝑗,𝑡, where the

inequality follows from the fact that 𝑣+−𝑖⋆,𝑡 is the highest valuation among all buyers

excluding 𝑖⋆ (which includes 𝑗 as 𝑗 ̸= 𝑖⋆). Therefore, continuing the bound in Equation
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(B.23), we have

E
[︀
I{max{𝑣+−𝑖⋆,𝑡, ̂︀𝑟𝑡} < 𝑣𝑖⋆,𝑡 < max{𝑏+−𝑖⋆,𝑡, ̂︀𝑟𝑡}}

]︀
≤ 𝑐𝑓 (−𝑎𝑗,𝑡)+ ≤ 𝑐𝑓

∑︁

𝑖∈[𝑁 ]

(−𝑎𝑖,𝑡)+ .

(B.24)

To bound the second term in Equation (B.22), namely E
[︁(︀
𝑣−𝑡 − 𝑏−𝑡

)︀+]︁
, without

loss of generality assume 𝑣1,𝑡 ≥ 𝑣2,𝑡 ≥ · · · ≥ 𝑣𝑁,𝑡. Hence 𝑣−𝑡 = 𝑣2,𝑡. If 𝑏2,𝑡 ≤ 𝑏−𝑡 , we

have 𝑣−𝑡 − 𝑏−𝑡 ≤ 𝑣2,𝑡 − 𝑏2,𝑡 = 𝑎2,𝑡. Otherwise if 𝑏2,𝑡 > 𝑏−𝑡 , then buyer 2 submitted the

highest bid, so 𝑏𝑖,𝑡 ≤ 𝑏−𝑡 for any 𝑖 ≠ 2 and thus, 𝑣−𝑡 − 𝑏−𝑡 ≤ 𝑣1,𝑡 − 𝑏−𝑡 ≤ 𝑣1,𝑡 − 𝑏1,𝑡 = 𝑎1,𝑡.

Hence,

E
[︁(︀
𝑣−𝑡 − 𝑏−𝑡

)︀+]︁ ≤ max
𝑗∈[𝑁 ]

(𝑎𝑗,𝑡)
+ ≤

∑︁

𝑗∈[𝑁 ]

(𝑎𝑗,𝑡)
+ . (B.25)

Finally, combining Equations (B.22), (B.24), and (B.25), we have for any 𝑡 ∈ 𝐸ℓ

and ℓ ≥ 1

ℛ(2)
𝑡 I{𝑡 ∈ 𝐸ℓ/ℬℓ} ≤ 𝑣max𝑐𝑓

∑︁

𝑖∈[𝑁 ]

(−𝑎𝑖,𝑡)+ +
∑︁

𝑖∈[𝑁 ]

(𝑎𝑖,𝑡)
+ ≤ (𝑣max𝑐𝑓 + 1)

∑︁

𝑖∈[𝑁 ]

|𝑎𝑖,𝑡| (B.26)

iv. Bounding Cumulative Regret: We now bound the cumulative expected regret
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in a phase 𝐸ℓ+1 (ℓ ≥ 1) via őrst bounding
∑︀

𝑡∈𝐸ℓ+1
ℛ(1)

𝑡 and
∑︀

𝑡∈𝐸ℓ+1
ℛ(2)

𝑡 respectively.

∑︁

𝑡∈𝐸ℓ+1

ℛ(1)
𝑡

≤
∑︁

𝑡∈𝐸ℓ+1

(︃
12𝑣max𝑐𝑓𝑁

2𝛿ℓ +
6𝑣max

√︀
𝑁3 log(|𝐸ℓ|)√
2𝐸ℓ

+
𝑣max (6𝑁

2(𝑐𝑓 + 𝐿ℓ) + 9𝑁 + 15𝑑+ 9)

|𝐸ℓ|

)︃

= |𝐸ℓ+1|
(︃
12𝑣max𝑐𝑓𝑁

2𝛿ℓ +
6𝑣max

√︀
𝑁3 log(|𝐸ℓ|)√
2𝐸ℓ

+
𝑣max (6𝑁

2(𝑐𝑓 + 𝐿ℓ) + 9𝑁 + 15𝑑+ 9)

|𝐸ℓ|

)︃

= |𝐸ℓ+1| ·
3𝑣max

√︀
2𝑁3 log(|𝐸ℓ|)√︀
|𝐸ℓ|

(︃
4𝑐𝑓𝜖max𝑥

2
max

√
𝑑

𝜆20
+ 1

)︃

+
|𝐸ℓ+1|
|𝐸ℓ|

(︃
12𝑣max𝑐𝑓𝑁

2
√
𝑑 (𝑁𝐿ℓ𝑎max + 1) 𝑥2max

𝜆20
+ 𝑣max

(︀
6𝑁2(𝑐𝑓 + 𝐿ℓ) + 9𝑁 + 15𝑑+ 9

)︀
)︃

≤ 𝑐11𝑐𝑓
√︀
𝑑𝑇𝑁3 log(|𝐸ℓ|) + 𝑐22𝑐𝑓

√
𝑑𝑁3𝐿ℓ𝑇

1
4

≤ 𝑐1𝑐𝑓
√︀
𝑑𝑁3 log(|𝐸ℓ|)

(︃
√
𝑇 +

√︀
𝑁3 log(|𝐸ℓ|)𝑇

1
4

log (1/𝜂)

)︃
, (B.27)

for some absolute constants 𝑐11, 𝑐
2
1, 𝑐1 > 0. The őrst inequality follows from Equation

(B.19). In the second equality, we then used the deőnition of 𝛿ℓ =
√

2𝑑 log(|𝐸ℓ|)𝜖max𝑥2
max

𝜆2
0

√
𝑁 |𝐸ℓ|

+
√
𝑑(𝑁𝐿ℓ𝑎max+1)𝑥2

max

|𝐸ℓ|𝜆2
0

, deőned in Equation (B.6). In the second inequality, we relied on

the construction of the length of phases in Algorithm 3, i.e. |𝐸ℓ| = 𝑇 1−2−ℓ

so that

|𝐸ℓ+1|/
√︀
|𝐸ℓ| =

√
𝑇 and |𝐸ℓ+1|/|𝐸ℓ| = 𝑇 2−(ℓ+1) ≤ 𝑇

1
4 . The last inequality follows from

the fact that 𝐿ℓ = log (𝑣2max𝑁 |𝐸ℓ|4 − 1)/log( 1
𝜂
).

On the other hand, to bound
∑︀

𝑡∈𝐸ℓ+1
ℛ(2)

𝑡 , we again utilize the deőnition of

ℬ𝑖,ℓ := ℬ𝑠
𝑖,ℓ ∪ℬ𝑜

𝑖,ℓ and ℬℓ := ∪𝑖∈[𝑁 ]ℬ𝑖,ℓ where ℬ𝑠
𝑖,ℓ and ℬ𝑜

𝑖,ℓ are deőned in Equation (3.12)
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of Lemma 3.4.4. Denote 𝐾ℓ+1 := 2𝐿ℓ+1 + 4𝑐𝑓 + 8 log(|𝐸ℓ+1|). Then, we have

∑︁

𝑡∈𝐸ℓ+1

ℛ(2)
𝑡 = E

⎡
⎣ ∑︁

𝑡∈ℬℓ+1

ℛ(2)
𝑡

⎤
⎦+ E

⎡
⎣ ∑︁

𝑡∈𝐸ℓ+1/ℬℓ+1

ℛ(2)
𝑡

⎤
⎦

≤ 𝑣maxE [|ℬℓ+1| · I{|ℬℓ+1| ≤ 𝑁𝐾ℓ+1] + 𝑣maxE [|ℬℓ+1| · I{|ℬℓ+1| > 𝑁𝐾ℓ+1}]

+ (𝑣max𝑐𝑓 + 1)E

⎡
⎣ ∑︁

𝑡∈𝐸ℓ+1/ℬℓ+1

∑︁

𝑖∈[𝑁 ]

|𝑎𝑖,𝑡|

⎤
⎦

≤ 𝑣max𝑁𝐾ℓ+1 + 𝑣max|𝐸ℓ+1| · P (|ℬℓ+1| > 𝑁𝐾ℓ+1)

+ (𝑣max𝑐𝑓 + 1)E

⎡
⎣ ∑︁

𝑡∈𝐸ℓ+1/ℬℓ+1

∑︁

𝑖∈[𝑁 ]

|𝑎𝑖,𝑡|

⎤
⎦

≤ 𝑣max𝑁𝐾ℓ+1 + 4𝑣max𝑁 + (𝑣max𝑐𝑓 + 1)E

⎡
⎣ ∑︁

𝑡∈𝐸ℓ+1/ℬℓ+1

∑︁

𝑖∈[𝑁 ]

|𝑎𝑖,𝑡|

⎤
⎦

≤ 𝑣max𝑁(𝐾ℓ+1 + 4) + (𝑣max𝑐𝑓 + 1)E

⎡
⎣ ∑︁

𝑡∈𝐸ℓ+1

∑︁

𝑖∈[𝑁 ]

|𝑎𝑖,𝑡|

⎤
⎦ , (B.28)

where the őrst inequality follows from Equation (B.26) and uses the fact that

ℛ(2)
𝑡 ≤ 𝑣max; the second inequality is because |ℬℓ+1| ≤ |𝐸ℓ+1|; the third inequal-

ity applies Lemma 3.4.4 which shows P (|ℬ𝑖,ℓ+1| > 𝐾ℓ+1) ≤ 4/|𝐸ℓ+1|, and hence

P (|ℬℓ+1| ≤ 𝑁𝐾ℓ+1) ≥ P
(︀
∩𝑖∈[𝑁 ] {|ℬ𝑖,ℓ+1| ≤ 𝐾ℓ+1}

)︀
≥ 1− 4𝑁/|𝐸ℓ+1|. To bound

E
[︁∑︀

𝑡∈𝐸ℓ+1

∑︀
𝑖∈[𝑁 ] |𝑎𝑖,𝑡|

]︁
, we recall 𝒮ℓ+1 := ∪𝑖∈[𝑁 ]𝒮𝑖,ℓ+1 where 𝒮𝑖,ℓ+1 is deőned in Equa-
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tion (3.11), and consider the following

E

⎡
⎣ ∑︁

𝑡∈𝐸ℓ+1

∑︁

𝑖∈[𝑁 ]

|𝑎𝑖,𝑡|

⎤
⎦

≤ E

⎡
⎣ ∑︁

𝑡∈𝒮ℓ+1

∑︁

𝑖∈[𝑁 ]

|𝑎𝑖,𝑡|

⎤
⎦+ E

⎡
⎣ ∑︁

𝑡∈𝐸ℓ+1/𝒮ℓ+1

∑︁

𝑖∈[𝑁 ]

1

|𝐸ℓ+1|

⎤
⎦

≤ 𝑁𝑎maxE [|𝒮ℓ+1|] +𝑁

= 𝑁𝑎maxE [|𝒮ℓ+1| · (I{|𝒮ℓ+1| ≤ 𝑁𝐿ℓ+1}+ I{|𝒮ℓ+1| > 𝑁𝐿ℓ+1})] +𝑁

≤ 𝑁𝑎max (𝑁𝐿ℓ+1 + |𝐸ℓ+1| · P (|𝒮ℓ+1| > 𝑁𝐿ℓ+1)) +𝑁

≤ 𝑁2𝑎max (𝐿ℓ+1 + 1) +𝑁 , (B.29)

where the őrst inequality holds because |𝑎𝑖,𝑡| ≤ 1/|𝐸ℓ+1| for all 𝑡 ∈ 𝐸ℓ+1/𝒮ℓ+1 and the

fourth inequality follows from Lemma 3.4.1 that shows P (|𝒮𝑖,ℓ+1| > 𝐿ℓ+1) ≤ 1/|𝐸ℓ+1|,
which implies P (|𝒮ℓ+1| ≤ 𝑁𝐿ℓ+1) ≥ P

(︀
∩𝑖∈[𝑁 ] {|𝒮𝑖,ℓ+1| ≤ 𝐿ℓ+1}

)︀
≥ 1−𝑁/|𝐸ℓ+1|.

Hence, Equations (B.28) and (B.29) show that
∑︀

𝑡∈𝐸ℓ+1
ℛ(2)

𝑡 is upper bounded as

∑︁

𝑡∈𝐸ℓ+1

ℛ(2)
𝑡 ≤ 𝑣max𝑁(𝐾ℓ + 4) + (𝑣max𝑐𝑓 + 1)

(︀
𝑁2𝑎max (𝐿ℓ+1 + 1) +𝑁

)︀

≤ 𝑐2𝑐𝑓𝑁
2 · log(|𝐸ℓ+1|)

log (1/𝜂)
, (B.30)

for some absolute constant 𝑐2 > 0. Combining this with the upper bound

𝑐1𝑐𝑓
√︀
𝑑𝑁3 log(|𝐸ℓ|)

(︃
√
𝑇 +

√︀
𝑁3 log(|𝐸ℓ|)𝑇

1
4

log (1/𝜂)

)︃

shown in Equation (B.27), the expected cumulative regret in phase 𝐸ℓ+1 is

∑︁

𝑡∈𝐸ℓ+1

Regret𝑡 ≤ 𝑐3𝑐𝑓
√︀
𝑑𝑁3 log(𝑇 )

(︃
√
𝑇 +

√︀
𝑁3 log(𝑇 )𝑇

1
4

log (1/𝜂)

)︃
,

for some absolute constant 𝑐3 > 0. Finally, since the total number of phases is upper

bounded by ⌈log log(𝑇 )⌉+ 1, the cumulative expected regret over the entire horizon
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𝑇 is

Regret(𝑇 ) ≤ 𝑣max|𝐸1|+
⌈log log(𝑇 )⌉∑︁

ℓ=2

𝑐3𝑐𝑓
√︀
𝑑𝑁3 log(𝑇 )

(︃
√
𝑇 +

√︀
𝑁3 log(𝑇 )𝑇

1
4

log (1/𝜂)

)︃

= 𝒪
(︃
𝑐𝑓
√︀
𝑑𝑁3 log(𝑇 ) · log (log(𝑇 ))

(︃
√
𝑇 +

√︀
𝑁3 log(𝑇 )𝑇

1
4

log (1/𝜂)

)︃)︃
.

B.2.2 Proof of Lemma 3.4.1

According to the deőnitions of the cumulative discounted utility deőned in Equation

(3.1) and the NPAC-S policy in Algorithm 3, buyer 𝑖’s utility for submitting a bid

𝑏 ∈ [0, 𝑣max] in period 𝑡 ∈ [𝑇 ] conditioning on 𝑣𝑖,𝑡, 𝑏
+
−𝑖,𝑡, 𝑟𝑡 is given by

𝑢𝑖,𝑡(𝑏) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(︀
𝑣𝑖,𝑡 −max{𝑟𝑡, 𝑏+−𝑖,𝑡}

)︀
I{𝑏 > max{𝑟𝑡, 𝑏+−𝑖,𝑡}} no isolation

(𝑣𝑖,𝑡 − 𝑟𝑡) I{𝑏 > 𝑟𝑡} 𝑖 is isolated

0 𝑗 ̸= 𝑖 is isolated

, (B.31)

where 𝑏+−𝑖,𝑡 is the highest bid excluding that of buyer 𝑖, and the reserve price 𝑟𝑡 =

̂︀𝑟𝑡I{no isolation in 𝑡}+ 𝑟𝑢𝑡 (1− I{no isolation in 𝑡}) (̂︀𝑟𝑡 and 𝑟𝑢𝑡 are deőned in Equations

(3.6) and (3.7) of the NPAC-S policy respectively). Note that 𝑢𝑖,𝑡(𝑏) is a random variable

that depends on the 𝑥𝑡, {𝜖𝑖,𝑡}𝑖∈[𝑁 ], 𝑏
+
−𝑖,𝑡 and 𝑟𝑡. The undiscounted utility loss 𝑢−𝑖,𝑡 for

buyer 𝑖 if he submits a bid 𝑏𝑖,𝑡 compared to bidding truthfully is 𝑢−𝑖,𝑡 = 𝑢𝑖,𝑡(𝑣𝑖,𝑡)−𝑢𝑖,𝑡(𝑏𝑖,𝑡).

Now, when any buyer 𝑗 ̸= 𝑖 is isolated, the utility for buyer 𝑖 is always 0 regardless of

what he submits, so there is no utility loss due to bidding behaviour. We now consider

the scenarios when no isolation occurs and when buyer 𝑖 is isolated, respectively, using

the deőnition of utility in Equation (3.1).
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No isolation occurs: The undiscounted utility loss for bidding untruthfully is

𝑢−𝑖,𝑡I{no isolation in 𝑡}

= (𝑢𝑖,𝑡(𝑣𝑖,𝑡)− 𝑢𝑖,𝑡(𝑏𝑖,𝑡)) I{no isolation in 𝑡}

=
(︀
𝑣𝑖,𝑡 −max{𝑟𝑡, 𝑏+−𝑖,𝑡}

)︀
I{𝑣𝑖,𝑡 > max{𝑟𝑡, 𝑏+−𝑖,𝑡}}

−
(︀
𝑣𝑖,𝑡 −max{𝑟𝑡, 𝑏+−𝑖,𝑡}

)︀
I{𝑏𝑖,𝑡 > max{𝑟𝑡, 𝑏+−𝑖,𝑡}}

=
⃒⃒
𝑣𝑖,𝑡 −max{𝑟𝑡, 𝑏+−𝑖,𝑡}

⃒⃒
I{𝑣𝑖,𝑡 > max{𝑟𝑡, 𝑏+−𝑖,𝑡} > 𝑏𝑖,𝑡}

+
⃒⃒
𝑣𝑖,𝑡 −max{𝑟𝑡, 𝑏+−𝑖,𝑡}

⃒⃒
I{𝑣𝑖,𝑡 < max{𝑟𝑡, 𝑏+−𝑖,𝑡} < 𝑏𝑖,𝑡}

≥ 0 . (B.32)

Isolating buyer 𝑖: The undiscounted utility for submitting any bid 𝑏 ∈ R for

any given 𝑟𝑡 is (𝑣𝑖,𝑡 − 𝑟𝑡) I{𝑏 > 𝑟𝑡}. Hence,

𝑢−𝑖,𝑡I{𝑖 is isolated}

= (𝑢𝑖,𝑡(𝑣𝑖,𝑡)− 𝑢𝑖,𝑡(𝑏𝑖,𝑡)) I{𝑖 is isolated}

= (𝑣𝑖,𝑡 − 𝑟𝑡) I{𝑣𝑖,𝑡 > 𝑟𝑡} − (𝑣𝑖,𝑡 − 𝑟𝑡) I{𝑏𝑖,𝑡 > 𝑟𝑡}

= (𝑣𝑖,𝑡 − 𝑟𝑡) I{𝑣𝑖,𝑡 > 𝑟𝑡 > 𝑏𝑖,𝑡}+ (−𝑣𝑖,𝑡 + 𝑟𝑡) I{𝑣𝑖,𝑡 < 𝑟𝑡 < 𝑏𝑖,𝑡} . (B.33)

The NPAC-S policy offers a price 𝑟𝑡 drawn from Uniform(0, 𝑣max) to the isolated

buyer 𝑖 with probability 1/|𝐸ℓ|, where 𝑖 is chosen uniformly among all buyers. So, the

expected utility loss 𝑢−𝑖,𝑡 for a buyer 𝑖 ∈ [𝑁 ] conditioned on the fact that the buyer
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lies by an amount of 𝑎𝑖,𝑡 is

E[𝑢−𝑖,𝑡 | 𝑎𝑖,𝑡]

= E[𝑢−𝑖,𝑡I{𝑖 is isolated}+ 𝑢−𝑖,𝑡I{no isolation in 𝑡} | 𝑎𝑖,𝑡]

≥ E[𝑢−𝑖,𝑡I{𝑖 is isolated} | 𝑎𝑖,𝑡]

=
1

𝑁 |𝐸ℓ|
E [(𝑣𝑖,𝑡 − 𝑟𝑡) I{𝑣𝑖,𝑡 > 𝑟𝑡 > 𝑏𝑡}+ (−𝑣𝑖,𝑡 + 𝑟𝑡) I{𝑏𝑡 < 𝑟𝑡 < 𝑣𝑖,𝑡} | 𝑎𝑖,𝑡]

=
1

𝑣max𝑁 |𝐸ℓ|
E

[︃
E

[︃∫︁ 𝑣𝑖,𝑡

𝑣𝑖,𝑡−𝑎𝑖,𝑡

(𝑣𝑖,𝑡 − 𝑟)𝑑𝑟 +
∫︁ 𝑣𝑖,𝑡+𝑎𝑖,𝑡

𝑣𝑖,𝑡

(−𝑣𝑖,𝑡 + 𝑟)𝑑𝑟
⃒⃒
⃒ 𝑎𝑖,𝑡, 𝑣𝑖,𝑡

]︃ ⃒⃒
⃒ 𝑎𝑖,𝑡

]︃

=
(𝑎𝑖,𝑡)

2

𝑣max𝑁 |𝐸ℓ|
. (B.34)

The őrst inequality follows from 𝑢−𝑖,𝑡I{𝑖 is isolated} ≥ 0 as demonstrated in Equation

(B.32). Now we lower bound the total expected utility loss in phase 𝐸ℓ. First, by

Equations (B.32) and (B.33), we know that 𝑢−𝑖,𝑡 ≥ 0 for ∀𝑖, 𝑡. Therefore, denoting 𝑠ℓ+1

as the őrst period of phase 𝐸ℓ+1, for any 𝑧 > 0 we have

E

[︃
∑︁

𝑡∈𝐸ℓ

𝜂𝑡𝑢−𝑖,𝑡

]︃
≥ E

⎡
⎣∑︁

𝑡∈𝒮𝑖,ℓ

𝜂𝑡𝑢−𝑖,𝑡

⎤
⎦

≥ E

⎡
⎣∑︁

𝑡∈𝒮𝑖,ℓ

𝜂𝑡𝑢−𝑖,𝑡I{|𝒮𝑖,ℓ| ≥ 𝑧}

⎤
⎦

= E

⎡
⎣E

⎡
⎣∑︁

𝑡∈𝒮𝑖,ℓ

𝜂𝑡𝑢−𝑖,𝑡

⃒⃒
⃒ {𝑎𝑖,𝑡}𝑡∈𝐸ℓ

⎤
⎦ I{|𝒮𝑖,ℓ| ≥ 𝑧}

⎤
⎦

≥ E

⎡
⎣∑︁

𝑡∈𝒮𝑖,ℓ

𝜂𝑡

𝑣max𝑁 |𝐸ℓ|3
· I{|𝒮𝑖,ℓ| ≥ 𝑧}

⎤
⎦

≥ E

⎡
⎢⎣

𝑠ℓ+1−1∑︁

𝑡=𝑠ℓ+1−|𝒮𝑖,ℓ|

𝜂𝑡

𝑣max𝑁 |𝐸ℓ|3
· I{|𝒮𝑖,ℓ| ≥ 𝑧}

⎤
⎥⎦

≥ E

⎡
⎣

𝑠ℓ+1−1∑︁

𝑡=𝑠ℓ+1−𝑧

𝜂𝑡

𝑣max𝑁 |𝐸ℓ|3
· I{|𝒮𝑖,ℓ| ≥ 𝑧}

⎤
⎦

=
𝜂𝑠ℓ+1

(︀
1− 𝜂−𝑧

)︀

(1− 𝜂)𝑣max𝑁 |𝐸ℓ|3
P (|𝒮𝑖,ℓ| ≥ 𝑧) , (B.35)
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where the őrst equality holds because |𝒮𝑖,ℓ| =
∑︀

𝑡∈𝐸ℓ
I{𝑎𝑖,𝑡 > 1/𝐸ℓ} is a function of

{𝑎𝑖,𝑡}𝑡∈𝐸ℓ
; the third inequality follows from Equation (B.34) and 𝑎𝑖,𝑡 ≥ 1/|𝐸ℓ| for any

𝑡 ∈ 𝒮𝑖,ℓ; and the fourth inequality is because 𝜂 ∈ (0, 1).

Furthermore, corrupting a bid at time 𝑡 ∈ 𝐸ℓ will only impact the prices offered by

the seller in future phases, i.e., phase ℓ+ 1, ℓ+ 2, . . . , so the utility gain due to lying

in phase ℓ, denoted as 𝑈+
𝑖,ℓ is upper bounded by 𝑣max

∑︀
𝑡≥𝑠ℓ+1

𝜂𝑡 = 𝑣max𝜂
𝑠ℓ+1/(1− 𝜂).

Since the buyer is utility maximizing, the net utility gain due to lying in phase ℓ

should be greater than 0, otherwise the buyer can choose to always bid 0 in phase ℓ

which is equivalent to not participating in the auctions. Hence,

E

[︃
𝑈+
𝑖,ℓ −

∑︁

𝑡∈𝐸ℓ

𝜂𝑡𝑢−𝑖,𝑡

]︃
≥ 0 .

Combining this with 𝑈+
𝑖,ℓ ≤ 𝑣max𝜂

𝑠ℓ+1/(1− 𝜂) and the lower bound for E
[︀∑︀

𝑡∈𝐸ℓ
𝑢−𝑖,𝑡

]︀

shown in Equation (B.35), we have

𝑣max𝜂
𝑠ℓ+1

1− 𝜂 ≥ 𝜂𝑠ℓ+1
(︀
1− 𝜂−𝑧

)︀

(1− 𝜂)𝑣max𝑁 |𝐸ℓ|3
P (|𝒮𝑖,ℓ| ≥ 𝑧) ,

which holds for any 𝑧 > 0. Taking 𝑧 = log (𝑣2max𝑁 |𝐸ℓ|4 − 1) / log(1/𝜂) and by rear-

ranging terms, the inequality above yields

P

(︃
|𝒮𝑖,ℓ| ≥

log (𝑣2max𝑁 |𝐸ℓ|4 − 1)

log( 1
𝜂
)

)︃
≤ 1

|𝐸ℓ|
.
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B.2.3 Proof of Lemma 3.4.4

Deőning ℋ𝑖,𝑡 := {(𝑏+−𝑖,𝜏 , ̂︀𝑟𝜏 , 𝑥𝜏 )}𝜏∈[𝑡], we have

E
[︀
I{𝑡 ∈ (𝐸ℓ/𝒮𝑖,ℓ) ∩ ℬ𝑠

𝑖,ℓ} | ℋ𝑖,𝑡

]︀

= P
(︀
𝑡 ∈ (𝐸ℓ/𝒮𝑖,ℓ) ∩ ℬ𝑠

𝑖,ℓ | ℋ𝑖,𝑡

)︀

= P
(︀
𝑣𝑖,𝑡 ≥ max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡} , 𝑏𝑖,𝑡 < max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡} , 𝑎𝑖,𝑡 ∈ (0, 1/|𝐸ℓ|) | ℋ𝑖,𝑡

)︀

= P
(︁
max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡} − ⟨𝑥𝑡, 𝛽⟩ ≤ 𝜖𝑖,𝑡 ≤ max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡} − ⟨𝑥𝑡, 𝛽⟩+ 𝑎𝑖,𝑡 ,

𝑎𝑖,𝑡 ∈ (0, 1/|𝐸ℓ|) | ℋ𝑖,𝑡

)︁

≤ P
(︀
max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡} − ⟨𝑥𝑡, 𝛽⟩ ≤ 𝜖𝑖,𝑡 ≤ max{𝑏+−𝑖,𝑡, ̂︀𝑟𝑡} − ⟨𝑥𝑡, 𝛽⟩+ 1/|𝐸ℓ| | ℋ𝑖,𝑡

)︀

= E

[︃∫︁ max{𝑏+
−𝑖,𝑡,̂︀𝑟𝑡}−⟨𝑥𝑡,𝛽⟩+1/|𝐸ℓ|

max{𝑏+
−𝑖,𝑡,̂︀𝑟𝑡}−⟨𝑥𝑡,𝛽⟩

𝑓(𝑧)𝑑𝑧
⃒⃒
⃒ ℋ𝑖,𝑡

]︃

≤ 𝑐𝑓
|𝐸ℓ|

. (B.36)

The last inequality uses the fact that 𝑐𝑓 = sup𝑧∈[−𝜖max,𝜖max] 𝑓(𝑧).

Deőne 𝜁𝑡 = I{𝑡 ∈ (𝐸ℓ/𝒮𝑖,ℓ)∩ℬ𝑠
𝑖,ℓ} and 𝜑𝑡 = E

[︀
I{𝑡 ∈ (𝐸ℓ/𝒮𝑖,ℓ) ∩ ℬ𝑠

𝑖,ℓ} | ℋ𝑖,𝑡

]︀
. Then

E[𝜁𝑡 | ℋ𝑖,𝑡] = 𝜑𝑡, which implies

E[𝜁𝑡 − 𝜑𝑡 |
∑︁

𝜏<𝑡

𝜁𝜏 ,
∑︁

𝜏<𝑡

𝜑𝜏 ] = E

[︃
E [𝜁𝑡 − 𝜑𝑡 | ℋ𝑖,𝑡] |

∑︁

𝜏<𝑡

𝜁𝜏 ,
∑︁

𝜏<𝑡

𝜑𝜏

]︃
= 0.

Hence, in the context of the multiplicative Azuma inequality described in Lemma B.3.3,

by setting 𝑧1,𝑡 = 𝜁𝑡, 𝑧2,𝑡 = 𝜑𝑡, 𝛾 = 1/2 and 𝐴 = 2 log(|𝐸ℓ|) we have |𝑧1,𝑡 − 𝑧2,𝑡| ≤ 1

P

(︃
1

2

∑︁

𝑡∈𝐸ℓ

𝜁𝑡 ≥
∑︁

𝑡∈𝐸ℓ

𝜑𝑡 + 2 log(|𝐸ℓ|)
)︃
≤ exp (− log(|𝐸ℓ|)) . (B.37)

Now, according to Equation (B.36), we have 𝜑𝑡 ≤ 𝑐𝑓/|𝐸ℓ|, so
∑︀

𝑡∈𝐸ℓ
𝜑𝑡 ≤ 𝑐𝑓 . Moreover,
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|(𝐸ℓ/𝒮𝑖,ℓ) ∩ ℬ𝑠
𝑖,ℓ| =

∑︀
𝑡∈𝐸ℓ

𝜁𝑡. Hence, following Equation (B.37), we have

P
(︀
|(𝐸ℓ/𝒮𝑖,ℓ) ∩ ℬ𝑠

𝑖,ℓ| ≥ 2𝑐𝑓 + 4 log(|𝐸ℓ|)
)︀

≤ P

(︃
1

2

∑︁

𝑡∈𝐸ℓ

𝜁𝑡 ≥
∑︁

𝑡∈𝐸ℓ

𝜑𝑡 + 2 log(|𝐸ℓ|)
)︃

≤ exp (− log(|𝐸ℓ|)) =
1

|𝐸ℓ|
. (B.38)

When the event 𝒢𝑖,𝑡 = {|𝒮𝑖,ℓ| ≤ 𝐿ℓ} occurs, where 𝐿ℓ = log (𝑣2max𝑁 |𝐸ℓ|4 − 1)/log(1/𝜂),

we have |ℬ𝑠
𝑖,ℓ| ≤ |𝒮𝑖,ℓ|+ |(𝐸ℓ/𝒮𝑖,ℓ)∩ℬ𝑠

𝑖,ℓ| ≤ 𝐿ℓ+ |(𝐸ℓ/𝒮𝑖,ℓ)∩ℬ𝑠
𝑖,ℓ|. Therefore when event

𝒢𝑖,𝑡 occurs,

P
(︀
|ℬ𝑠

𝑖,ℓ| ≤ 𝐿ℓ + 2𝑐𝑓 + 4 log(|𝐸ℓ|)
)︀

≥ P
(︁{︀
|ℬ𝑠

𝑖,ℓ| ≤ 𝐿ℓ + 2𝑐𝑓 + 4 log(|𝐸ℓ|)
}︀ ⋂︁

𝒢𝑖,𝑡
)︁

≥ P
(︁{︀
|(𝐸ℓ/𝒮𝑖,ℓ) ∩ ℬ𝑠

𝑖,ℓ| ≤ 2𝑐𝑓 + 4 log(|𝐸ℓ|)
}︀ ⋂︁

𝒢𝑖,𝑡
)︁

≥ 1− P
(︀
|(𝐸ℓ/𝒮𝑖,ℓ) ∩ ℬ𝑠

𝑖,ℓ| ≥ 2𝑐𝑓 + 4 log(|𝐸ℓ|)
)︀
− P

(︀
𝒢𝑐𝑖,𝑡

)︀

≥ 1− 2

|𝐸ℓ|
.

The second inequality follows from |ℬ𝑠
𝑖,ℓ| ≤ 𝐿ℓ + |(𝐸ℓ/𝒮𝑖,ℓ) ∩ ℬ𝑠

𝑖,ℓ| when the event 𝒢𝑖,𝑡
occurs; the third inequality applies the union bound, and the őnal inequality follows

from Equation (B.38) and Lemma 3.4.1.

Similarly, we can show the same probability upper bound for |ℬ𝑜
𝑖,ℓ|. Finally, using

the fact that ℬ𝑖,ℓ = ℬ𝑠
𝑖,ℓ ∪ ℬ𝑜

𝑖,ℓ and applying a union bound would yield the desired

expression.
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B.2.4 Other Lemmas for proving Theorem 3.4.2

Lemma B.2.1 (Bounding Estimation Errors in 𝛽). For any phase 𝐸ℓ and 𝛾 > 0, we

have

P

(︂
‖̂︀𝛽ℓ+1 − 𝛽‖1 ≤ 𝛾 +

𝑑 (𝑁𝐿ℓ𝑎max + 1) 𝑥max

|𝐸ℓ|𝜆20

)︂

≥ 1− 2𝑑 exp

(︂
− 𝑁𝛾2𝜆40|𝐸ℓ|
2𝜖max

2𝑥2max𝑑

)︂
− 𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂
− 𝑁

|𝐸ℓ|
,

where 𝜆20 is the minimum eigenvalue of the covariance matrix Σ, ̂︀𝛽ℓ+1 is deőned

in Equation (3.8), and 𝐿ℓ = log (𝑣2max𝑁 |𝐸ℓ|4 − 1)/log(1/𝜂). Furthermore, setting

𝛾 =

√
2𝑑 log(|𝐸ℓ|)𝜖max𝑥max

𝜆2
0

√
𝑁 |𝐸ℓ|

and denoting 𝛿ℓ = 𝛾 · 𝑥max +
𝑑(𝑁𝐿ℓ𝑎max+1)𝑥2

max

|𝐸ℓ|𝜆2
0

, we have

P

(︂
‖̂︀𝛽ℓ+1 − 𝛽‖1 ≤

𝛿ℓ
𝑥max

)︂
≥ 1− 2𝑑+𝑁

|𝐸ℓ|
− 𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂
.

Proof. Proof of Lemma B.2.1.

The proof of Lemma B.2.1 is inspired by Lemma EC.7.2 in [19], but here we made

substantial modiőcations to resolve the issues that arise when estimating 𝛽 in the

presence of corrupted bids submitted by buyers.

First, recall that the smallest eigenvalue 𝜆20 of the covariance matrix Σ of 𝑥 ∼ 𝒟 is

greater than 0. Since the second moment matrix E[𝑥𝑡𝑥⊤𝑡 ] = Σ + E[𝑥]E[𝑥]⊤, we know

that the smallest eigenvalue of E[𝑥𝑡𝑥⊤𝑡 ] is at least 𝜆20 > 0. We denote the design matrix

of all the features in phase 𝐸ℓ as 𝑋 ∈ R|𝐸ℓ|×𝑑, and 𝜖𝜏 =
∑︀

𝑖∈[𝑁 ] 𝜖𝑖,𝜏

𝑁
for ∀𝜏 ∈ 𝐸ℓ.

We őrst consider the case where the smallest eigenvalue of the second moment

matrix 𝜆min

(︀
𝑋⊤𝑋/|𝐸ℓ|

)︀
≥ 𝜆20/2, which implies that (𝑋⊤𝑋)−1 exists and (𝑋⊤𝑋)−1 =

(𝑋⊤𝑋)†. By the deőnition 𝑏𝑖,𝑡 = 𝑣𝑖,𝑡 − 𝑎𝑖,𝑡, and the deőnition of 𝑏̄𝜏 for any 𝜏 ∈ [𝑇 ] in
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Equation (3.8) we have

̂︀𝛽ℓ+1 =
(︀
𝑋⊤𝑋

)︀−1
𝑋⊤

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑏̄1

...

𝑏̄𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
(︀
𝑋⊤𝑋

)︀−1
𝑋⊤

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑︀
𝑖∈[𝑁 ] 𝑣𝑖,1−𝑎𝑖,1

𝑁

...

∑︀
𝑖∈[𝑁 ] 𝑣𝑖,𝑡−𝑎𝑖,𝑡

𝑁

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 𝛽 +
(︀
𝑋⊤𝑋

)︀−1
𝑋⊤

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑︀
𝑖∈[𝑁 ] 𝜖𝑖,1−𝑎𝑖,1

𝑁

...

∑︀
𝑖∈[𝑁 ] 𝜖𝑖,𝑡−𝑎𝑖,𝑡

𝑁

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 𝛽 +
(︀
𝑋⊤𝑋

)︀−1
𝑋⊤ (︀

ℰ̄ − 𝐴
)︀
, (B.39)

where ℰ̄ is the column vector consisting of all 𝜖𝜏 :=
∑︀

𝑖∈[𝑁 ] 𝜖𝑖,𝜏

𝑁
, and 𝐴 is the column

vector consisting of all 𝑎̄𝜏 :=
∑︀

𝑖∈[𝑁 ] 𝑎𝑖,𝜏

𝑁
for ∀𝜏 ∈ [𝑡]. Therefore,

‖̂︀𝛽ℓ+1 − 𝛽‖2 = ‖
(︀
𝑋⊤𝑋

)︀−1
𝑋⊤ (︀

ℰ̄ − 𝐴
)︀
‖2

≤ 1

|𝐸ℓ|𝜆20
(︀
‖𝑋⊤ℰ̄‖2 + ‖𝑋⊤𝐴‖2

)︀
. (B.40)

Denote 𝑋𝑗 as the 𝑗th column of 𝑋, i.e. the 𝑗th row of 𝑋⊤ for 𝑗 = 1, 2 . . . 𝑑, we now

bound ‖𝑋⊤ℰ̄‖2 and ‖𝑋⊤𝐴‖2 separately. First, since ‖𝑋⊤ℰ̄‖22 =
∑︀

𝑗∈[𝑑]
⃒⃒
ℰ̄⊤𝑋𝑗

⃒⃒2
, for

any 𝛾 > 0,

⋂︁

𝑗∈[𝑑]

{︂⃒⃒
ℰ̄⊤𝑋𝑗

⃒⃒
≤ |𝐸ℓ|𝜆20𝛾√

𝑑

}︂
⊆

{︂
1

|𝐸ℓ|𝜆20
· ‖𝑋⊤ℰ̄‖2 ≤ 𝛾

}︂
. (B.41)

We observe that ℰ̄⊤𝑋𝑗 =
∑︀

𝜏∈𝐸ℓ

∑︀
𝑖∈[𝑁 ] 𝜖𝑖,𝜏𝑋𝜏𝑗

𝑁
, where all 𝜖𝑖,𝜏𝑋𝜏𝑗 are 0-mean and 𝜖max𝑥max-

subgaussion random variables. Therefore by Hoeffding’s inequality, for any 𝛾 > 0

P
(︀⃒⃒
𝑁 ℰ̄⊤𝑋𝑗

⃒⃒
≤ 𝛾

)︀
≥ 1− 2 exp

(︂
− 𝛾2

2𝜖max
2𝑥2max|𝐸ℓ|𝑁

)︂
. (B.42)
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Replacing 𝛾 with 𝑁 |𝐸ℓ|𝜆20𝛾/
√
𝑑 and using Equation (B.41) yields:

P

(︂{︂
1

|𝐸ℓ|𝜆20
· ‖𝑋⊤ℰ̄‖2 ≤ 𝛾

}︂)︂
≥ P

⎛
⎝⋂︁

𝑗∈[𝑑]

{︂⃒⃒
ℰ̄⊤𝑋𝑗

⃒⃒
≤ |𝐸ℓ|𝜆20𝛾√

𝑑

}︂⎞
⎠

≥ 1−
∑︁

𝑗∈[𝑑]
P

(︂⃒⃒
ℰ̄⊤𝑋𝑗

⃒⃒
>
|𝐸ℓ|𝜆20𝛾√

𝑑

)︂

≥ 1− 2𝑑 exp

(︂
− 𝑁𝛾2𝜆40|𝐸ℓ|
2𝜖max

2𝑥2max𝑑

)︂
, (B.43)

where the őrst inequality follows from Equation (B.41), the second inequality applies

the union bound, and the last inequality follows from Equation (B.42).

In the following, we show a high probability bound for ‖𝑋⊤𝐴‖22 by using the fact

that |𝑎𝑖,𝑡| ≤ 1/|𝐸ℓ| for any 𝑡 ∈ 𝐸ℓ/𝒮𝑖,ℓ, where 𝒮𝑖,ℓ = {𝑡 ∈ 𝐸ℓ : |𝑎𝑖,𝑡| > 1/|𝐸ℓ|}, and

𝒮𝑖,ℓ ≤ 𝐿ℓ with high probability.

Recall the event 𝒢𝑖,ℓ = {|𝒮𝑖,ℓ| ≤ 𝐿ℓ}, and in Lemma 3.4.1 we showed that P
(︀
𝒢𝑐𝑖,ℓ

)︀
=

P (|𝒮𝑖,ℓ| > 𝐿ℓ) ≤ 1
|𝐸ℓ| . We now bound ‖𝑋⊤𝐴‖2 under the occurrence of 𝒢𝑖,ℓ for all 𝑖.

‖𝑋⊤𝐴‖22 =
∑︁

𝑗∈[𝑑]

⃒⃒
𝐴⊤𝑋𝑗

⃒⃒2
=

∑︁

𝑗∈[𝑑]

(︃∑︀
𝜏∈𝐸ℓ

∑︀
𝑖∈[𝑁 ] 𝑎𝑖,𝜏𝑋𝜏𝑗

𝑁

)︃2

≤
∑︁

𝑗∈[𝑑]

(︃∑︀
𝜏∈𝐸ℓ

∑︀
𝑖∈[𝑁 ] |𝑎𝑖,𝜏 |𝑥max

𝑁

)︃2

. (B.44)

For periods in 𝑆ℓ := ∪𝑖∈[𝑁 ]𝒮𝑖,ℓ, we have,

∑︀
𝜏∈𝑆ℓ

∑︀
𝑖∈[𝑁 ] |𝑎𝑖,𝜏 |𝑥max

𝑁
≤

∑︁

𝜏∈𝑆ℓ

𝑎max𝑥max ≤ 𝑁𝐿ℓ𝑎max𝑥max , (B.45)

where the last inequality holds because events 𝒢𝑖,ℓ occurs for all 𝑖. On the other hand,

recall that |𝑎𝑖,𝑡| ≥ 1/|𝐸ℓ| for any 𝑖 and 𝑡 ∈ 𝒮𝑖,ℓ. Hence, |𝑎𝑖,𝑡| ≤ 1/|𝐸ℓ| for periods in

𝐸ℓ/𝒮ℓ,
∑︀

𝜏∈𝐸ℓ/𝒮ℓ

∑︀
𝑖∈[𝑁 ] |𝑎𝑖,𝜏 |𝑥max

𝑁
≤

∑︁

𝜏∈𝐸ℓ/𝒮ℓ

𝑥max

|𝐸ℓ|
≤

∑︁

𝜏∈𝐸ℓ

𝑥max

|𝐸ℓ|
= 𝑥max . (B.46)
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Combining Equations (B.44), (B.45), and (B.46), we have

‖𝑋⊤𝐴‖2 ≤

⎯⎸⎸⎷𝑑

(︃∑︀
𝜏∈[𝑡]

∑︀
𝑖∈[𝑁 ] |𝑎𝑖,𝜏 |𝑥max

𝑁

)︃2

≤
√
𝑑 (𝑁𝐿ℓ𝑎max + 1) 𝑥max . (B.47)

Now it only remains to show 𝜆min

(︀
𝑋⊤𝑋/|𝐸ℓ|

)︀
≥ 𝜆20/2 with high probability, which

can be achieved by applying Lemma B.3.2. In the context of this lemma, we con-

sider the sequence of random matrices {𝑥𝜏𝑥⊤𝜏 /|𝐸ℓ|}𝜏∈[𝐸ℓ], and note that 𝑋⊤𝑋/|𝐸ℓ| =
∑︀

𝜏∈𝐸ℓ
(𝑥𝜏𝑥

⊤
𝜏 /|𝐸ℓ|). We őrst upper bound the maximum eigenvalue of 𝑥𝜏𝑥⊤𝜏 /|𝐸ℓ|,

namely 𝜆max

(︀
𝑥𝜏𝑥

⊤
𝜏 /|𝐸ℓ|

)︀
for any 𝜏 ∈ 𝐸ℓ by

𝜆max

(︂
𝑥𝜏𝑥

⊤
𝜏

|𝐸ℓ|

)︂
= max

‖𝑧‖2=1
𝑧⊤
𝑥𝜏𝑥

⊤
𝜏

|𝐸ℓ|
𝑧 ≤ 1

|𝐸ℓ|
max
‖𝑧‖2=1

(𝑥⊤𝑧)2 ≤ 𝑥2max

|𝐸ℓ|
.

This allows us to apply the matrix Chernoff bound in Lemma B.3.2 (setting 𝛾 = 1/2

in the lemma) and get

P

(︂
𝜆min

(︂
𝑋⊤𝑋

|𝐸ℓ|

)︂
≥ 𝜆20

2

)︂
≥ P

(︂
𝜆min

(︂
𝑋⊤𝑋

|𝐸ℓ|

)︂
≥ 1

2
𝜆min

(︂
E

[︂
𝑋⊤𝑋

|𝐸ℓ|

]︂)︂)︂

≥ 1− 𝑑 exp
(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂
, (B.48)

where the őrst inequality follows from the fact that 𝜆min

(︀
E[𝑋⊤𝑋/|𝐸ℓ|]

)︀
≥ 𝜆20.
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Putting everything together, we get

P

(︃
‖̂︀𝛽ℓ+1 − 𝛽‖1 ≤ 𝛾 +

√
𝑑 (𝑁𝐿ℓ𝑎max + 1) 𝑥max

|𝐸ℓ|𝜆20

)︃

≥ P

(︃
‖̂︀𝛽ℓ+1 − 𝛽‖2 ≤ 𝛾 +

√
𝑑 (𝑁𝐿ℓ𝑎max + 1) 𝑥max

|𝐸ℓ|𝜆20

)︃

≥ P
(︁{︁ 1

|𝐸ℓ|𝜆20
(︀
‖𝑋⊤ℰ̄‖2 + ‖𝑋⊤𝐴‖2

)︀
≤ 𝛾 +

√
𝑑 (𝑁𝐿ℓ𝑎max + 1) 𝑥max

|𝐸ℓ|𝜆20

}︁

⋂︁{︂
𝜆min

(︂
𝑋⊤𝑋

|𝐸ℓ|

)︂
≥ 𝜆20

2

}︂)︁

≥ P

⎛
⎝
{︂

1

|𝐸ℓ|𝜆20
‖𝑋⊤ℰ̄‖2 ≤ 𝛾

}︂ ⋂︁
⎛
⎝ ⋂︁

𝑖∈[𝑁 ]

𝒢𝑖,ℓ

⎞
⎠ ⋂︁ {︂

𝜆min

(︂
𝑋⊤𝑋

|𝐸ℓ|

)︂
≥ 𝜆20

2

}︂⎞
⎠

≥ 1− P

(︂{︂
1

|𝐸ℓ|𝜆20
‖𝑋⊤ℰ̄‖2 > 𝛾

}︂)︂
−

∑︁

𝑖∈[𝑁 ]

P
(︀
𝒢𝑐𝑖,ℓ

)︀
− P

(︂{︂
𝜆min

(︂
𝑋⊤𝑋

|𝐸ℓ|

)︂
≤ 𝜆20

2

}︂)︂

≥ 1− 2𝑑 exp

(︂
− 𝑁𝛾2𝜆40|𝐸ℓ|
2𝜖max

2𝑥2max𝑑

)︂
− 𝑁

|𝐸ℓ|
− 𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂
.

The őrst inequality follows from the fact that ‖𝑧‖1 ≤ ‖𝑧‖2 for any vector 𝑧; the second

inequality follows from Equation (B.40); the third inequality follows from Equation

(B.47) when the event ∩𝑖∈[𝑁 ]𝒢𝑖,ℓ occurs; the fourth inequality applies a simple union

bound; and the őnal inequality follows from Equations (B.43), (B.48) and Lemma

3.4.1.

Lemma B.2.2 (Bounding Estimation Error in 𝐹− and 𝐹+). Deőne 𝜎̃𝑡 to be the sigma

algebra generated by all {𝑥𝜏 , 𝑎𝑖,𝜏 , 𝜖𝑖,𝜏}𝑖∈[𝑁 ],𝜏∈[𝑡]. Then, for any 𝜎̃𝑡-measurable random

variable 𝑧 and 𝛾 > 0, we have

P
(︁⃒⃒
⃒ ̂︀𝐹−

ℓ+1(𝑧)− 𝐹−(𝑧)
⃒⃒
⃒ ≤ 2𝑁2𝑧ℓ

)︁

≥ 1− 4 exp
(︀
−2𝑁 |𝐸ℓ|𝛾2

)︀
− 4(𝑑+𝑁)

|𝐸ℓ|
− 2𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂

P
(︁⃒⃒
⃒ ̂︀𝐹+

ℓ+1(𝑧)− 𝐹+(𝑧)
⃒⃒
⃒ ≤ 𝑁𝑧ℓ

)︁

≥ 1− 4 exp
(︀
−2𝑁 |𝐸ℓ|𝛾2

)︀
− 4(𝑑+𝑁)

|𝐸ℓ|
− 2𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂
,
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where 𝑧ℓ := 𝛾 + 𝑐𝑓𝛿ℓ + (𝑐𝑓 + 𝐿ℓ)/|𝐸ℓ|, 𝑐𝑓 = sup𝑧∈[−𝜖max,𝜖max] 𝑓(𝑧), 𝛿ℓ is deőned in

Equation (B.6), and 𝐿ℓ = log (𝑣2max𝑁 |𝐸ℓ|4 − 1)/log(1/𝜂).

Proof. Proof of Lemma B.2.2. We őrst bound the error in the estimate of 𝐹 , namely⃒⃒
⃒ ̂︀𝐹ℓ+1(𝑧)− 𝐹 (𝑧)

⃒⃒
⃒. Then, we use the relationship 𝐹−(𝑧) = 𝑁𝐹𝑁−1(𝑧)− (𝑁 − 1)𝐹𝑁 (𝑧)

and 𝐹+(𝑧) = 𝐹𝑁 (𝑧), as well as the deőnition of ̂︀𝐹−
ℓ+1(𝑧) and ̂︀𝐹+

ℓ+1(𝑧) in Equation (3.9)

to show the desired probability bounds.

We őrst upper and lower bound ̂︀𝐹−
ℓ+1(𝑧) for any 𝑧 ∈ R. Recall the event 𝒮𝑖,ℓ =

{𝑡 ∈ 𝐸ℓ : |𝑎𝑖,𝑡| ≥ 1/|𝐸ℓ|} and in Lemma 3.4.1 we showed that P (|𝒮𝑖,ℓ| > 𝐿ℓ) ≤ 1/|𝐸ℓ|.
Hence, for any 𝑖 ∈ [𝑁 ], we have |𝑎𝑖,𝑡| ≤ 1/|𝐸ℓ| for all periods 𝜏 ∈ 𝐸ℓ/𝒮𝑖,ℓ, so

∑︁

𝜏∈𝐸ℓ

I
{︁
𝑏𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁

=

⎛
⎝ ∑︁

𝜏∈𝐸ℓ/𝒮𝑖,ℓ

I
{︁
𝑏𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁
+

∑︁

𝜏∈𝒮𝑖,ℓ

I
{︁
𝑣𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁
⎞
⎠

+

⎛
⎝ ∑︁

𝜏∈𝒮𝑖,ℓ

I
{︁
𝑏𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁
−

∑︁

𝜏∈𝒮𝑖,ℓ

I
{︁
𝑣𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁
⎞
⎠ . (B.49)

Consider the sum in őrst the parenthesis of Equation (B.49) and note that 𝑏𝑖,𝜏 =

𝑣𝑖,𝜏 − 𝑎𝑖,𝜏 = ⟨𝛽, 𝑥𝜏 ⟩+ 𝜖𝑖,𝜏 − 𝑎𝑖,𝜏 . Since |𝑎𝑖,𝜏 | ≤ 1/|𝐸ℓ| for any 𝑖 ∈ [𝑁 ] and 𝜏 ∈ 𝐸ℓ/𝒮𝑖,ℓ,

⟨𝛽, 𝑥𝜏 ⟩+ 𝜖𝑖,𝜏 −
1

|𝐸ℓ|
≤ 𝑏𝑖,𝜏 ≤ ⟨𝛽, 𝑥𝜏 ⟩+ 𝜖𝑖,𝜏 +

1

|𝐸ℓ|
, ∀𝜏 ∈ 𝐸ℓ/𝒮𝑖,ℓ . (B.50)

Now, assume that the event 𝜉ℓ+1 =
{︁
‖̂︀𝛽ℓ+1 − 𝛽‖1 ≤ 𝛿ℓ/𝑥max

}︁
holds. Therefore, we
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can upper bound the sum in őrst the parenthesis of Equation (B.49) as

∑︁

𝜏∈𝐸ℓ/𝒮𝑖,ℓ

I
{︁
𝑏𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁
+

∑︁

𝜏∈𝒮𝑖,ℓ

I
{︁
𝑣𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁

≤
∑︁

𝜏∈𝐸ℓ/𝒮𝑖,ℓ

I

{︂
𝜖𝑖,𝜏 ≤ 𝑧 + ⟨̂︀𝛽ℓ+1 − 𝛽, 𝑥𝜏 ⟩+

1

|𝐸ℓ|

}︂

+
∑︁

𝜏∈𝒮𝑖,ℓ

I

{︂
𝜖𝑖,𝜏 ≤ 𝑧 + ⟨̂︀𝛽ℓ+1 − 𝛽, 𝑥𝜏 ⟩+

1

|𝐸ℓ|

}︂

=
∑︁

𝜏∈𝐸ℓ

I

{︂
𝜖𝑖,𝜏 ≤ 𝑧 + ⟨̂︀𝛽ℓ+1 − 𝛽, 𝑥𝜏 ⟩+

1

|𝐸ℓ|

}︂

≤
∑︁

𝜏∈𝐸ℓ

I

{︂
𝜖𝑖,𝜏 ≤ 𝑧 + 𝛿ℓ +

1

|𝐸ℓ|

}︂
, (B.51)

where the őrst equality follows from 𝑣𝑖,𝜏 = ⟨𝛽, 𝑥𝜏 ⟩+ 𝜖𝑖,𝜏 and 𝑏𝑖,𝜏 = 𝑣𝑖,𝜏 − 𝑎𝑖,𝜏 ; the őrst

inequality follows Equation (B.50); and the őnal inequality is due to the occurrence

of the event 𝜉ℓ+1 =
{︁
‖̂︀𝛽ℓ+1 − 𝛽‖1 ≤ 𝛿ℓ/𝑥max

}︁
. Similarly, we can also lower bound the

sum in the őrst parenthesis of Equation (B.49):

∑︁

𝜏∈𝐸ℓ/𝒮𝑖,ℓ

I
{︁
𝑏𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁
+

∑︁

𝜏∈𝒮𝑖,ℓ

I
{︁
𝑏𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁

≥
∑︁

𝜏∈𝐸ℓ

I

{︂
𝜖𝑖,𝜏 ≤ 𝑧 − 𝛿ℓ −

1

|𝐸ℓ|

}︂
.

(B.52)

Furthermore, assuming events 𝒢𝑖,ℓ = {|𝒮𝑖,ℓ| ≤ 𝐿ℓ} hold for all 𝑖 ∈ [𝑁 ], we can simply

upper bound and lower bound the expression in the second parenthesis of Equation

(B.49):

−𝐿ℓ ≤
∑︁

𝜏∈𝒮𝑖,ℓ

I
{︁
𝑏𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁
−

∑︁

𝜏∈𝒮𝑖,ℓ

I
{︁
𝑣𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁
≤ 𝐿ℓ .

(B.53)

Combining Equations (B.49), (B.51), (B.52), (B.53), and using the deőnition

̂︀𝐹ℓ+1(𝑧) =
1

𝑁 |𝐸ℓ|
∑︁

𝑖∈[𝑁 ]

∑︁

𝜏∈𝐸ℓ

I
{︁
𝑏𝑖,𝜏 − ⟨̂︀𝛽ℓ+1, 𝑥𝜏 ⟩ ≤ 𝑧

}︁
,
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under the occurrence of events 𝜉ℓ+1, and 𝒢𝑖,ℓ for all 𝑖 ∈ [𝑁 ], we have

1

𝑁 |𝐸ℓ|
∑︁

𝑖∈[𝑁 ]

∑︁

𝜏∈𝐸ℓ

I

{︂
𝜖𝑖,𝜏 ≤ 𝑧 − 𝛿ℓ −

1

|𝐸ℓ|

}︂
− 𝐿ℓ

|𝐸ℓ|
≤ ̂︀𝐹ℓ+1(𝑧) and

̂︀𝐹ℓ+1(𝑧) ≤
1

𝑁 |𝐸ℓ|
∑︁

𝑖∈[𝑁 ]

∑︁

𝜏∈𝐸ℓ

I

{︂
𝜖𝑖,𝜏 ≤ 𝑧 + 𝛿ℓ +

1

|𝐸ℓ|

}︂
+

𝐿ℓ

|𝐸ℓ|
. (B.54)

Now, for any 𝛾 > 0,

P

(︂
𝐹

(︂
𝑧 − 𝛿ℓ −

1

|𝐸ℓ|

)︂
− ̂︀𝐹ℓ+1(𝑧) ≤ 𝛾 +

𝐿ℓ

|𝐸ℓ|

)︂

≥ P

⎛
⎝
{︂
𝐹

(︂
𝑧 − 𝛿ℓ −

1

|𝐸ℓ|

)︂
− ̂︀𝐹ℓ+1(𝑧) ≤ 𝛾 +

𝐿ℓ

|𝐸ℓ|

}︂ ⋂︁
𝜉ℓ+1

⋂︁
⎛
⎝ ⋂︁

𝑖∈[𝑁 ]

𝒢𝑖,ℓ

⎞
⎠
⎞
⎠

≥ P
(︁
⎧
⎨
⎩𝐹

(︂
𝑧 − 𝛿ℓ −

1

|𝐸ℓ|

)︂
− 1

𝑁 |𝐸ℓ|
∑︁

𝑖∈[𝑁 ]

∑︁

𝜏∈𝐸ℓ

I

{︂
𝜖𝑖,𝜏 ≤ 𝑧 − 𝛿ℓ −

1

|𝐸ℓ|

}︂
≤ 𝛾

⎫
⎬
⎭

⋂︁
𝜉ℓ+1

⋂︁
⎛
⎝ ⋂︁

𝑖∈[𝑁 ]

𝒢𝑖,ℓ

⎞
⎠

)︁

≥ P

⎛
⎝
⎧
⎨
⎩sup

𝑧∈R

⃒⃒
⃒⃒
⃒⃒𝐹 (𝑧)−

1

𝑁 |𝐸ℓ|
∑︁

𝑖∈[𝑁 ]

∑︁

𝜏∈𝐸ℓ

I {𝜖𝑖,𝜏 ≤ 𝑧}

⃒⃒
⃒⃒
⃒⃒ ≤ 𝛾

⎫
⎬
⎭

⋂︁
𝜉ℓ+1

⋂︁
⎛
⎝ ⋂︁

𝑖∈[𝑁 ]

𝒢𝑖,ℓ

⎞
⎠
⎞
⎠

≥ 1− P

⎛
⎝
⎧
⎨
⎩sup

𝑧∈R

⃒⃒
⃒⃒
⃒⃒𝐹 (𝑧)−

1

𝑁 |𝐸ℓ|
∑︁

𝑖∈[𝑁 ]

∑︁

𝜏∈𝐸ℓ

I {𝜖𝑖,𝜏 ≤ 𝑧}

⃒⃒
⃒⃒
⃒⃒ > 𝛾

⎫
⎬
⎭

⎞
⎠

− P
(︀
𝜉𝑐ℓ+1

)︀
−

∑︁

𝑖∈[𝑁 ]

P
(︀
𝒢𝑐𝑖,ℓ

)︀

≥ 1− 2 exp
(︀
−2𝑁 |𝐸ℓ|𝛾2

)︀
−

(︂
2𝑑+𝑁

|𝐸ℓ|
+ 𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂)︂
− 𝑁

|𝐸ℓ|

= 1− 2 exp
(︀
−2𝑁 |𝐸ℓ|𝛾2

)︀
− 2(𝑑+𝑁)

|𝐸ℓ|
− 𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂
, (B.55)

where the second inequality follows from Equation (B.54), the fourth inequality

uses the union bound, and the őnal inequality follows from the DKW inequality

(Theorem B.3.1), Lemma B.2.1, and Lemma 3.4.1. We note that we can apply the

DKW inequality because {𝜖𝑖,𝜏}𝜏∈𝐸ℓ,𝑖∈[𝑁 ] are 𝑁 |𝐸ℓ| i.i.d. realizations of noise variables.

According to the Lipschitz property of 𝐹 shown in Lemma B.2.5, |𝐹 (𝑧− 𝛿ℓ− 1/|𝐸ℓ|)−
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𝐹 (𝑧)| ≤ 𝑐𝑓(𝛿ℓ + 1/|𝐸ℓ|) for ∀𝑧 ∈ R. Hence, combining this with Equation (B.55),

yields

P

(︂
𝐹 (𝑧)− ̂︀𝐹ℓ+1(𝑧) ≤ 𝛾 + 𝑐𝑓

(︂
𝛿ℓ +

1

|𝐸ℓ|

)︂
+

𝐿ℓ

|𝐸ℓ|

)︂

≥ P

(︂
𝐹

(︂
𝑧 − 𝛿ℓ −

1

|𝐸ℓ|

)︂
− ̂︀𝐹ℓ+1(𝑧) ≤ 𝛾 +

𝐿ℓ

|𝐸ℓ|

)︂

≥ 1− 2 exp
(︀
−2𝑁 |𝐸ℓ|𝛾2

)︀
− 2(𝑑+𝑁)

|𝐸ℓ|
− 𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂
. (B.56)

Similarly, |𝐹 (𝑧 + 𝛿ℓ + 1/|𝐸ℓ|)− 𝐹 (𝑧)| ≤ 𝑐𝑓 (𝛿ℓ + 1/|𝐸ℓ|) for ∀𝑧 ∈ R, so we can show

P

(︂
̂︀𝐹ℓ+1(𝑧)− 𝐹 (𝑧) ≤ 𝛾 + 𝑐𝑓

(︂
𝛿ℓ +

1

|𝐸ℓ|

)︂
+

𝐿ℓ

|𝐸ℓ|

)︂

≥ P

(︂
̂︀𝐹ℓ+1(𝑧)− 𝐹

(︂
𝑧 + 𝛿ℓ +

1

|𝐸ℓ|

)︂
≤ 𝛾 +

𝐿ℓ

|𝐸ℓ|

)︂

≥ 1− 2 exp
(︀
−2𝑁 |𝐸ℓ|𝛾2

)︀
− 2(𝑑+𝑁)

|𝐸ℓ|
− 𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂
. (B.57)

Combining Equations (B.56) and (B.57) using a union bound yields

P

(︂⃒⃒
⃒ ̂︀𝐹ℓ+1(𝑧)− 𝐹 (𝑧)

⃒⃒
⃒ ≤ 𝛾 + 𝑐𝑓𝛿ℓ +

𝑐𝑓 + 𝐿ℓ

|𝐸ℓ|

)︂

≥ 1− 4 exp
(︀
−2𝑁 |𝐸ℓ|𝛾2

)︀
− 4(𝑑+𝑁)

|𝐸ℓ|
− 2𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂
. (B.58)

Finally, we now bound | ̂︀𝐹−
𝑡 (𝑧)− 𝐹−(𝑧)| and | ̂︀𝐹+

𝑡 (𝑧)− 𝐹+(𝑧)| using the fact that
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𝐹−(𝑧) = 𝑁𝐹𝑁−1(𝑧)− (𝑁 − 1)𝐹𝑁(𝑧) and 𝐹+(𝑧) = 𝐹𝑁(𝑧).

| ̂︀𝐹−
ℓ+1(𝑧)− 𝐹−(𝑧)| =

⃒⃒
⃒𝑁 ̂︀𝐹𝑁−1

ℓ+1 (𝑧)− (𝑁 − 1) ̂︀𝐹𝑁
ℓ+1(𝑧)−

(︀
𝑁𝐹𝑁−1(𝑧)− (𝑁 − 1)𝐹𝑁(𝑧)

)︀⃒⃒
⃒

≤ 𝑁
⃒⃒
⃒ ̂︀𝐹𝑁−1

ℓ+1 (𝑧)− 𝐹𝑁−1(𝑧)
⃒⃒
⃒+ (𝑁 − 1)

⃒⃒
⃒ ̂︀𝐹𝑁

ℓ+1(𝑧)− 𝐹𝑁(𝑧)
⃒⃒
⃒

= 𝑁

⃒⃒
⃒⃒
⃒
(︁
̂︀𝐹ℓ+1(𝑧)− 𝐹 (𝑧)

)︁(︃
𝑁−1∑︁

𝑛=1

(︁
̂︀𝐹ℓ+1(𝑧)

)︁𝑛−1

(𝐹 (𝑧))𝑁−1−𝑛

)︃⃒⃒
⃒⃒
⃒

+ (𝑁 − 1)

⃒⃒
⃒⃒
⃒
(︁
̂︀𝐹ℓ+1(𝑧)− 𝐹 (𝑧)

)︁(︃
𝑁∑︁

𝑛=1

(︁
̂︀𝐹ℓ+1(𝑧)

)︁𝑛−1

(𝐹 (𝑧))𝑁−𝑛

)︃⃒⃒
⃒⃒
⃒

≤ 𝑁(𝑁 − 1)
⃒⃒
⃒ ̂︀𝐹ℓ+1(𝑧)− 𝐹 (𝑧)

⃒⃒
⃒+ (𝑁 − 1)𝑁

⃒⃒
⃒ ̂︀𝐹ℓ+1(𝑧)− 𝐹 (𝑧)

⃒⃒
⃒

< 2𝑁2
⃒⃒
⃒ ̂︀𝐹ℓ+1(𝑧)− 𝐹 (𝑧)

⃒⃒
⃒ . (B.59)

The second equality uses 𝑎𝑚 − 𝑏𝑚 = (𝑎− 𝑏) (∑︀𝑚
𝑛=1 𝑎

𝑛−1𝑏𝑚−𝑛) for any integer 𝑚 ≥ 2.

The second inequality follows from ̂︀𝐹ℓ+1(𝑧), 𝐹 (𝑧) ∈ [0, 1] for ∀𝑧 ∈ R. Combining

Equations (B.58) and (B.59), we get

P

(︂⃒⃒
⃒ ̂︀𝐹−

ℓ+1(𝑧)− 𝐹−(𝑧)
⃒⃒
⃒ ≤ 2𝑁2

(︂
𝛾 + 𝑐𝑓𝛿ℓ +

𝑐𝑓 + 𝐿ℓ

|𝐸ℓ|

)︂)︂

≥ 1− 4 exp
(︀
−2𝑁 |𝐸ℓ|𝛾2

)︀
− 4(𝑑+𝑁)

|𝐸ℓ|
− 2𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂
.

The probability bound for
⃒⃒
⃒ ̂︀𝐹−

ℓ+1(𝑧)− 𝐹−(𝑧)
⃒⃒
⃒ can be shown in a similar fashion by not-

ing that similar to Equation (B.59) we can show | ̂︀𝐹+
ℓ+1(𝑧)−𝐹+(𝑧)| < 𝑁

⃒⃒
⃒ ̂︀𝐹ℓ+1(𝑧)− 𝐹 (𝑧)

⃒⃒
⃒.

Lemma B.2.3 (Bounding the Impact of Estimation Errors on Revenue). We assume

that the events

𝜉ℓ+1 =

{︂
‖̂︀𝛽ℓ+1 − 𝛽‖1 ≤

𝛿ℓ
𝑥max

}︂

𝜉−ℓ+1 =

{︂⃒⃒
⃒ ̂︀𝐹−

ℓ+1(𝑧)− 𝐹−(𝑧)
⃒⃒
⃒ ≤ 2𝑁2

(︂
𝛾ℓ + 𝑐𝑓𝛿ℓ +

𝑐𝑓 + 𝐿ℓ

|𝐸ℓ|

)︂}︂

𝜉+ℓ+1 =

{︂⃒⃒
⃒ ̂︀𝐹+

ℓ+1(𝑧)− 𝐹+(𝑧)
⃒⃒
⃒ ≤ 𝑁

(︂
𝛾ℓ + 𝑐𝑓𝛿ℓ +

𝑐𝑓 + 𝐿ℓ

|𝐸ℓ|

)︂}︂
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occur for some phase ℓ ≥ 1, where 𝑧 ∈ R, 𝛾ℓ =
√︀

log(|𝐸ℓ|)/
√︀

2𝑁 |𝐸ℓ|, and 𝛿ℓ is deőned

in Equation (B.6). Hence for any 𝑟 ∈ {𝑟⋆𝑡 , 𝑟𝑡} where 𝑡 ∈ 𝐸ℓ+1 we have the following:

(i) |𝜌𝑡(𝑟, 𝑦𝑡, 𝐹−, 𝐹+)− 𝜌𝑡(𝑟, ̂︀𝑦𝑡, 𝐹−, 𝐹+)| ≤ 3𝑟𝑐𝑓𝑁
2𝛿ℓ a.s.

(ii)
⃒⃒
⃒𝜌𝑡(𝑟, ̂︀𝑦𝑡, 𝐹−, 𝐹+)− 𝜌𝑡(𝑟, ̂︀𝑦𝑡, ̂︀𝐹−

ℓ+1,
̂︀𝐹+
ℓ+1)

⃒⃒
⃒ ≤ 3𝑟𝑁2

(︁
𝛾ℓ + 𝑐𝑓𝛿ℓ +

𝑐𝑓+𝐿ℓ

|𝐸ℓ|

)︁
a.s.

where 𝑦𝑡 = ⟨𝛽, 𝑥𝑡⟩, ̂︀𝑦𝑡 = ⟨̂︀𝛽ℓ+1, 𝑥𝑡⟩, ̂︀𝛽ℓ+1, ̂︀𝐹−
ℓ+1,

̂︀𝐹+
ℓ+1 are deőned in Equations (3.8) and

(3.9). The function 𝜌𝑡 is deőned in Equation (B.15).

Proof. Proof of Lemma B.2.3. Part (i) We consider the following:

⃒⃒
𝜌𝑡(𝑟, 𝑦𝑡, 𝐹

−, 𝐹+)− 𝜌𝑡(𝑟, ̂︀𝑦𝑡, 𝐹−, 𝐹+)
⃒⃒

=

⃒⃒
⃒⃒
∫︁ 𝑟

0

[︀
𝐹−(𝑧 − 𝑦𝑡)− 𝐹−(𝑧 − ̂︀𝑦𝑡)

]︀
𝑑𝑧 − 𝑟

[︀
𝐹+(𝑟 − 𝑦𝑡)− 𝐹+(𝑟 − ̂︀𝑦𝑡)

]︀⃒⃒⃒⃒

≤
∫︁ 𝑟

0

⃒⃒
𝐹−(𝑧 − 𝑦𝑡)− 𝐹−(𝑧 − ̂︀𝑦𝑡)

⃒⃒
𝑑𝑧 + 𝑟

⃒⃒
𝐹+(𝑟 − 𝑦𝑡)− 𝐹+(𝑟 − ̂︀𝑦𝑡)

⃒⃒

≤
∫︁ 𝑟

0

2𝑐𝑓𝑁
2|𝑦𝑡 − ̂︀𝑦𝑡|𝑑𝑧 + 𝑟𝑐𝑓𝑁 |𝑦𝑡 − ̂︀𝑦𝑡|

≤
∫︁ 𝑟

0

2𝑐𝑓𝑁
2
(︁
‖̂︀𝛽ℓ+1 − 𝛽‖1𝑥max

)︁
𝑑𝑧 + 𝑟𝑐𝑓𝑁‖̂︀𝛽ℓ+1 − 𝛽‖1𝑥max

≤ 3𝑟𝑐𝑓𝑁
2𝛿ℓ .

The őrst equality follows from deőnition of 𝜌𝑡 in Equation (B.15), and the second

inequality applies the Lipschitz property of 𝐹− and 𝐹+ using Lemma B.2.5. The

third inequality follows from Cauchy’s inequality: |𝑦𝑡 − ̂︀𝑦𝑡| = |⟨̂︀𝛽ℓ+1 − 𝛽, 𝑥𝑡⟩| ≤
‖̂︀𝛽ℓ+1 − 𝛽‖1𝑥max, and the last inequality follows from the occurrence of 𝜉ℓ+1 and

𝑁 ≥ 1.
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Part (ii) Similar to part (i), we have

⃒⃒
⃒𝜌𝑡(𝑟, ̂︀𝑦𝑡, 𝐹−, 𝐹+)− 𝜌𝑡(𝑟, ̂︀𝑦𝑡, ̂︀𝐹−

ℓ+1,
̂︀𝐹+
ℓ+1)

⃒⃒
⃒

=

⃒⃒
⃒⃒
∫︁ 𝑟

0

[︁
𝐹−(𝑧 − ̂︀𝑦𝑡)− ̂︀𝐹−

ℓ+1(𝑧 − ̂︀𝑦𝑡)
]︁
𝑑𝑧 − 𝑟

[︁
𝐹+(𝑟 − ̂︀𝑦𝑡)− ̂︀𝐹+

ℓ+1(𝑟 − ̂︀𝑦𝑡)
]︁⃒⃒
⃒⃒

≤
∫︁ 𝑟

0

⃒⃒
⃒𝐹−(𝑧 − ̂︀𝑦𝑡)− ̂︀𝐹−

ℓ+1(𝑧 − ̂︀𝑦𝑡)
⃒⃒
⃒ 𝑑𝑧 + 𝑟

⃒⃒
⃒𝐹+(𝑟 − ̂︀𝑦𝑡)− ̂︀𝐹+

ℓ+1(𝑟 − ̂︀𝑦𝑡)
⃒⃒
⃒

≤ 3𝑟𝑁2

(︂
𝛾ℓ + 𝑐𝑓𝛿ℓ +

𝑐𝑓 + 𝐿ℓ

|𝐸ℓ|

)︂
,

where the last inequality follows from the occurrence of events 𝜉−ℓ+1 and 𝜉+ℓ+1 and

𝑁 ≥ 1.

Lemma B.2.4 (Bounding probabilities). The probability that not all events 𝜉ℓ+1, 𝜉
−
ℓ+1

and 𝜉+ℓ+1 occur for some phase ℓ ≥ 1 is bounded as

P
(︀
𝜉𝑐ℓ+1 ∪

(︀
𝜉−ℓ+1

)︀𝑐 ∪
(︀
𝜉+ℓ+1

)︀𝑐)︀ ≤ 9𝑁 + 15𝑑+ 8

|𝐸ℓ|
,

where the events 𝜉ℓ+1, 𝜉
−
ℓ+1 and 𝜉+ℓ+1 are deőned in Equations (B.5), (B.7), and (B.8)

respectively.

Proof. Proof of Lemma B.2.4.

We őrst bound the probability of 𝜉𝑐ℓ+1, and then proceed to bound the the probability

of
(︀
𝜉−ℓ+1

)︀𝑐
and

(︀
𝜉+ℓ+1

)︀𝑐
.

Recall that 𝜉ℓ+1 =
{︁
‖̂︀𝛽ℓ+1 − 𝛽‖1 ≤ 𝛿ℓ

𝑥max

}︁
. Then,

P
(︀
𝜉𝑐ℓ+1

)︀
≤ 2𝑑+𝑁

|𝐸ℓ|
+ 𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂

≤ 2𝑑+𝑁

|𝐸ℓ|
+ 𝑑 exp

(︃
− log(|𝐸ℓ|)𝑇

1
4𝜆20

8𝑥2max

)︃

≤ 𝑁 + 3𝑑

|𝐸ℓ|
, (B.60)

where the őrst inequality follows from Lemma B.2.1 by taking 𝛾 =

√
2𝑑 log(|𝐸ℓ|)𝜖max𝑥max

𝜆2
0

√
𝑁 |𝐸ℓ|

;

the second inequality uses the fact that |𝐸ℓ| ≥ |𝐸1| =
√
𝑇 , 𝑇 ≥ max

{︂(︁
8𝑥2

max

𝜆2
0

)︁4

, 9

}︂
,
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which implies |𝐸ℓ| ≥ log(|𝐸ℓ|)
√︀
|𝐸ℓ| ≥ 𝑇

1
4 log(|𝐸ℓ|). Note that here we used the fact

that
√
𝑥 ≥ log(𝑥) for all 𝑥 ≥ 9.

We now bound the probability of
(︀
𝜉−ℓ+1

)︀𝑐
:

P
(︀(︀
𝜉−ℓ+1

)︀𝑐)︀ ≤ 4 exp

⎛
⎝−2𝑁 |𝐸ℓ| ·

(︃√︀
log(|𝐸ℓ|)√︀
2𝑁 |𝐸ℓ|

)︃2
⎞
⎠+

4(𝑑+𝑁)

|𝐸ℓ|
+ 2𝑑 exp

(︂
−|𝐸ℓ|𝜆20
8𝑥2max

)︂

≤ 2(2𝑁 + 3𝑑+ 2)

|𝐸ℓ|
, (B.61)

where the őrst inequality follows from Lemma B.2.2 by taking 𝛾 = 𝛾ℓ =
√︀

log(|𝐸ℓ|)/
√︀

2𝑁 |𝐸ℓ|,
and the last inequality again uses the fact that |𝐸ℓ| ≥ log(|𝐸ℓ|)

√︀
|𝐸ℓ| ≥ 𝑇

1
4 log(|𝐸ℓ|)

when 𝑇 ≥ max

{︂(︁
8𝑥2

max

𝜆2
0

)︁4

, 9

}︂
.

Similarly, we can bound the probability of
(︀
𝜉+ℓ+1

)︀𝑐
:

P
(︀(︀
𝜉+ℓ+1

)︀𝑐)︀ ≤ 2(2𝑁 + 3𝑑+ 2)

|𝐸ℓ|
, (B.62)

Finally, combining Equations (B.60), (B.61) and (B.62), we have

P
(︀
𝜉𝑐ℓ+1 ∪

(︀
𝜉−ℓ+1

)︀𝑐 ∪
(︀
𝜉+ℓ+1

)︀𝑐)︀ ≤ P
(︀
𝜉𝑐ℓ+1

)︀
+ P

(︀(︀
𝜉−ℓ+1

)︀𝑐)︀
+ P

(︀(︀
𝜉+ℓ+1

)︀𝑐)︀ ≤ 9𝑁 + 15𝑑+ 8

|𝐸ℓ|
.

Lemma B.2.5 (Lipschitz Property for 𝐹 , 𝐹− and 𝐹+). The following hold for any

𝑧1, 𝑧2 ∈ R:

(i) |𝐹 (𝑧1)− 𝐹 (𝑧2)| ≤ 𝑐𝑓 |𝑧1 − 𝑧2|.

(ii) |𝐹−(𝑧1)− 𝐹−(𝑧2)| ≤ 2𝑐𝑓𝑁
2|𝑧1 − 𝑧2|.

(iii) |𝐹+(𝑧1)− 𝐹+(𝑧2)| ≤ 𝑐𝑓𝑁 |𝑧1 − 𝑧2|.

Here, 0 < 𝑐𝑓 = sup𝑧∈[−𝜖max,𝜖max] 𝑓(𝑧).

Proof. Proof of Lemma B.2.5. Without loss of generality, we assume 𝑧1 < 𝑧2. Note

that 𝐹 (𝑧) = 0 for ∀𝑧 ∈ (−∞,−𝜖max], and 𝐹 (𝑧) = 1 for ∀𝑧 ∈ [𝜖max,∞).

Part (i) We consider the following cases:
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1. Case 1: (𝑧1 < 𝑧2 ≤ −𝜖max or 𝜖max ≤ 𝑧1 < 𝑧2): |𝐹 (𝑧2) − 𝐹 (𝑧1)| = 0 ≤ 𝑐𝑓 |𝑧2 −
𝑧1|.

2. Case 2: (−𝜖max < 𝑧1 < 𝑧2 < 𝜖max): By the mean value theorem, |𝐹 (𝑧2) −
𝐹 (𝑧1)| = 𝑓(𝑧)|𝑧2 − 𝑧1| < 𝑐𝑓 |𝑧2 − 𝑧1|, where 𝑧 ∈ (𝑧1, 𝑧2).

3. Case 3: (𝑧1 ≤ −𝜖max < 𝑧2 < 𝜖max): We have |𝑧2 − (−𝜖max)| = 𝑧2 − (−𝜖max) ≤
𝑧2−𝑧1 and 𝐹 (𝑧1) = 𝐹 (−𝜖max) = 0. Hence |𝐹 (𝑧2)−𝐹 (𝑧1)| = |𝐹 (𝑧2)−𝐹 (−𝜖max)| =
𝑓(𝑧)|𝑧2−(−𝜖max)| ≤ 𝑐𝑓 |𝑧2−𝑧1|, where 𝑧 ∈ (−𝜖max, 𝑧2) by the mean value theorem.

4. Case 4: (−𝜖max < 𝑧1 < 𝜖max ≤ 𝑧2): We have |𝜖max − 𝑧1| = 𝜖max − 𝑧1 ≤ 𝑧2 − 𝑧1
and 𝐹 (𝑧2) = 𝐹 (𝜖max) = 1 . Hence |𝐹 (𝑧2) − 𝐹 (𝑧1)| = |𝐹 (𝜖max) − 𝐹 (𝑧1)| =
𝑓(𝑧)|𝜖max − 𝑧1| ≤ 𝑐𝑓 |𝑧2 − 𝑧1|, where 𝑧 ∈ (𝑧1, 𝜖max) by the mean value theorem.

Part (ii) & (iii) We recall that 𝐹−(𝑧) = 𝑁𝐹𝑁−1(𝑧)− (𝑁 −1)𝐹𝑁 (𝑧) and 𝐹+(𝑧) =

𝐹𝑁(𝑧), so

|𝐹−(𝑧2)− 𝐹−(𝑧1)|

=
⃒⃒
𝑁𝐹𝑁−1(𝑧2)− (𝑁 − 1)𝐹𝑁(𝑧2)−

(︀
𝑁𝐹𝑁−1(𝑧1)− (𝑁 − 1)𝐹𝑁(𝑧1)

)︀⃒⃒

≤ 𝑁
⃒⃒
𝐹𝑁−1(𝑧2)− 𝐹𝑁−1(𝑧1)

⃒⃒
+ (𝑁 − 1)

⃒⃒
𝐹𝑁(𝑧2)− 𝐹𝑁(𝑧1)

⃒⃒

= 𝑁

⃒⃒
⃒⃒
⃒(𝐹 (𝑧2)− 𝐹 (𝑧1))

(︃
𝑁−1∑︁

𝑛=1

(𝐹 (𝑧2))
𝑛−1 (𝐹 (𝑧1))

𝑁−1−𝑛

)︃⃒⃒
⃒⃒
⃒

+ (𝑁 − 1)

⃒⃒
⃒⃒
⃒(𝐹 (𝑧2)− 𝐹 (𝑧1))

(︃
𝑁∑︁

𝑛=1

(𝐹 (𝑧2))
𝑛−1 (𝐹 (𝑧1))

𝑁−𝑛

)︃⃒⃒
⃒⃒
⃒

≤ 𝑁(𝑁 − 1) |𝐹 (𝑧2)− 𝐹 (𝑧1)|+ (𝑁 − 1)𝑁 |𝐹 (𝑧2)− 𝐹 (𝑧1)|

< 2𝑁2𝑐𝑓 |𝑧2 − 𝑧1| .

The second equality uses 𝑎𝑚 − 𝑏𝑚 = (𝑎 − 𝑏) (
∑︀𝑚

𝑛=1 𝑎
𝑛−1𝑏𝑚−𝑛) for any 𝑎, 𝑏 ∈ R and

integer 𝑚 ≥ 2. The second inequality follows from 𝐹 (𝑧) ∈ [0, 1] for ∀𝑧 ∈ R. The őnal

inequality follows from the Lipschitz property of 𝐹 shown in part (i). Following the

same arguments, we can also show that |𝐹+(𝑧2)− 𝐹+(𝑧1)| ≤ 𝑐𝑓𝑁 |𝑧2 − 𝑧1|.
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B.3 Supplementary lemmas

Lemma B.3.1 (Dvoretzky-Kiefer-Wolfowitz Inequality ([44])). Let 𝑍1, 𝑍2, . . . 𝑍𝑛 be

i.i.d. random variables with cumulative distribution function 𝐹 , and denote the

associated empirical distribution function as

̂︀𝐹 (𝑧) = 1

𝑛

𝑛∑︁

𝑖=1

I{𝑍𝑖 ≤ 𝑧} , 𝑧 ∈ R . (B.63)

Then, for any 𝛾 > 0,

P

(︂
sup
𝑧∈R

⃒⃒
⃒ ̂︀𝐹 (𝑧)− 𝐹 (𝑧)

⃒⃒
⃒ ≤ 𝛾

)︂
≥ 1− 2 exp

(︀
−2𝑛𝛾2

)︀
. (B.64)

Lemma B.3.2 (Matrix Chernoff Bound ([104])). Consider a őnite sequence of indepen-

dent, random matrices {𝑍𝑘 ∈ R𝑑}𝑘∈[𝐾]. Assume that 0 ≤ 𝜆min(𝑍𝑘) and 𝜆max(𝑍𝑘) ≤ 𝐵

for any 𝑘. Denote 𝑌 =
∑︀

𝑘∈[𝐾] 𝑍𝑘, 𝜇min = 𝜆min(E[𝑌 ]), and 𝜇max = 𝜆max(E[𝑌 ]). Then

for ∀𝛾 ∈ (0, 1),

P (𝜆min(𝑌 ) ≤ 𝛾𝜇min) ≤ 𝑑 exp

(︂
−(1− 𝛾)2𝜇min

2𝐵

)︂
.

Lemma B.3.3 (Multiplicative Azuma Inequality([78])). Let 𝑍1 =
∑︀

𝜏∈[̃︀𝑇 ] 𝑧1,𝜏 and

𝑍2 =
∑︀

𝜏∈[̃︀𝑇 ] 𝑧2,𝜏 be sums of non-negative random variables, where ̃︀𝑇 is a random

stopping time with a őnite expectation, and, for all 𝜏 ∈ [̃︀𝑇 ], |𝑧1,𝜏 − 𝑧2,𝜏 | ≤ 1 and

E
[︀
(𝑧1,𝜏 − 𝑧2,𝜏 )

⃒⃒ ∑︀
𝑠<𝜏 𝑧1,𝑠,

∑︀
𝑠<𝜏 𝑧2,𝑠

]︀
≤ 0. Let 𝛾 ∈ [0, 1] and 𝐴 ∈ R. Then,

P ((1− 𝛾)𝑍1 ≥ 𝑍2 + 𝐴) ≤ exp (−𝛾𝐴)
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Appendix C

Supplementary material for Chapter 4

C.1 Additional deőnitions

In this section, we introduce some additional deőnitions that will be used throughout

the appendices.

Deőnition C.1.1 (Threshold vectors). We say that an 𝑁 -dimensional vector 𝑥 ∈ R𝑁

is a threshold vector if it takes the form of 𝑥 = (1 . . . 1, 𝑞, 0 . . . 0), where the őrst

𝐽 ∈ {0, . . . 𝑁} entries are 1’s, followed by some number 𝑞 ∈ [0, 1), and trailing with

(𝑁 − 𝐽 − 1)+ 0’s.1 Any threshold vector is uniquely characterized by its dimension 𝑁 ,

as well as, a tuple (𝐽, 𝑞) ∈ {0, . . . 𝑁} × [0, 1), so we denote the vector as 𝜓(𝐽, 𝑞). In

the special case when 𝐽 = 𝑁 , take 𝑞 = 0.

For any two vectors 𝑎, 𝑏 ∈ R𝑛, let min{𝑎, 𝑏} = (min{𝑎𝑖, 𝑏𝑖})𝑖∈[𝑛] be the element-

wise minimum. We write 𝑎 ⪯ 𝑏 if and only if 𝑎𝑖 ≤ 𝑏𝑖 and 𝑎 ⪰ 𝑏 if and only if 𝑎𝑖 ≥ 𝑏𝑖

for all 𝑖 ∈ [𝑛].

C.2 Additional material for Section 4.3

C.2.1 Proof of Lemma 4.3.1

Here, we show a more detailed version of the lemma stated as followed:

1For the edge case of (1, . . . 1) ∈ R𝑁 , 𝐽 = 𝑁 and hence the number of trailing 0’s is (𝑁−𝐽−1)+ = 0.
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Theorem C.2.1 (Detailed version of Lemma 4.3.1). For a őxed price 𝑑, deőne

𝑟 = max
{︀
𝑛 ∈ [𝑁 ] :

∑︁

ℓ∈[𝑛]
𝑔ℓ (𝑉ℓ − 𝛾𝑑) ≥ 0

}︀
, 𝑞R =

∑︀
𝑘∈[𝑟] 𝑔𝑛 (𝑉𝑛 − 𝛾𝑑)
𝑔𝑟+1 · |𝑉𝑟+1 − 𝛾𝑑|

,

𝑏 = max
{︀
𝑛 ∈ [𝑁 ] : 𝑑

∑︁

ℓ∈[𝑛]
𝑔ℓ ≤ 𝜌

}︀
, and 𝑞B =

𝜌− 𝑑
∑︀

𝑘∈[𝑏] 𝑔𝑛

𝑔𝑏+1 · 𝑑
,

(C.1)

If we let 𝑥R = 𝜓(𝑟, 𝑞R) and 𝑥B = 𝜓(𝑏, 𝑞B) be two threshold vectors (see Deőnition

C.1.1), then 𝑥𝑑 = min {𝑥R,𝑥B} is the unique optimal solution to 𝑈(𝑑) in Equation

(4.3). Furthermore, 𝑥𝑑 is also a threshold vector characterized by tuple (𝐽, 𝑞) where

𝐽 = min{𝑟, 𝑏}, 𝑞 = 𝑥𝑑,𝐽+1 = min {𝑥B,𝐽+1, 𝑥R,𝐽+1} . (C.2)

Proof.

Our proof for Theorem C.2.1 consists of 3 steps:

• Step 1. We show that 𝑥B is the unique optimal solution to the łbudget constraint

onlyž problem:

P-Budget = max
𝑥∈[0,1]𝑁

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑉𝑛𝑥𝑛 s.t. 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑛 ≤ 𝜌 , (C.3)

• Step 2. We show that 𝑥R is the unique optimal solution the łROI constraint

onlyž problem:

P-ROI = max
𝑥∈[0,1]𝑁

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑉𝑛𝑥𝑛 s.t.
∑︁

𝑛∈[𝑁 ]

𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥𝑛 ≥ 0 , (C.4)

• Step 3. We show that 𝑥𝑑 = min{𝑥B,𝑥R} is feasible to 𝑈(𝑑). In other words,

we show 𝑥𝑑 is feasible to both P-Budget and P-ROI.

Step 1. We recognize that P-Budget is the linear program (LP) relaxation of a 0-1

knapsack problem, in which the items’ łvalue-to-cost ratiož, namely 𝑔𝑛𝑉𝑛

𝑑𝑔𝑛
= 𝑉𝑛

𝑑
are

ordered: 𝑉1

𝑑
> . . . 𝑉𝑁

𝑑
since 𝑉1 > . . . 𝑉𝑁 > 0. Therefore, it is a well known result that
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the unique optimal solution to P-Budget is exactly 𝑥B (a threshold vector) deőned

in the statement of Theorem C.2.1; see e.g. [32] for the optimal solution to the 0-1

knapsack LP relaxation.

Step 2. Let ̃︀𝑥 ∈ [0, 1]𝑁 be any optimal solution to P-ROI. Deőne 𝜅 = max{𝑛 ∈ [𝑁 ] :

𝑉𝑛 ≥ 𝛾𝑑} so that 𝑉𝑛 ≥ 𝛾𝑑 for all 𝑛 ≤ 𝜅. Then it is easy to see for any 𝑛 = 1 . . . 𝜅, we

have ̃︀𝑥𝑛 = 1. This is because if there exists some 𝑗 ≤ 𝜅 such that ̃︀𝑥𝑗 < 1, then the

solution 𝑥 = (̃︀𝑥1 . . . ̃︀𝑥𝑗−1, 1, ̃︀𝑥𝑗+1, . . . ̃︀𝑥𝑁 ) is feasible and yields a strictly larger objective

than ̃︀𝑥:

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑉𝑛𝑥𝑛 −
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑉𝑛̃︀𝑥𝑛 = 𝑉𝑗(1− ̃︀𝑥𝑗) > 0 . (C.5)

Hence, the optimal solution to P-ROI takes the form of ̃︀𝑥 = (1 . . . 1⏟  ⏞  
𝜅 1’s

, 𝑦𝜅+1, . . . 𝑦𝑁) ∈

[0, 1]𝑁 . Hence, we know that ̃︀𝑦 := (𝑦𝜅, . . . 𝑦𝑁) must satisfy

̃︀𝑦 ∈ arg max
𝑥∈[0,1]𝑁−𝜅

𝑁∑︁

𝑘=𝜅+1

𝑔𝑛𝑉𝑛𝑥𝑛 s.t.
𝑁∑︁

𝑘=𝜅+1

𝑔𝑛 (𝛾𝑑− 𝑉𝑛) 𝑥𝑛 ≤ ̃︀𝑐 , (C.6)

where we deőned ̃︀𝑐 =
∑︀

𝑛∈[𝜅] 𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) > 0. Note that we have 𝛾𝑑− 𝑉𝑛 > 0 for all

𝑘 = 𝜅+ 1 . . . 𝑁 , and hence the optimization problem in Equation (C.6) is again an

LP relaxation of the 0-1 knapsack problem. Thus similar to Step 1, we again consider

the łvalue-to-cost-ratiosž: for any 𝑖, 𝑗 ∈ {𝜅+ 1 . . . 𝑁}, we have

𝑉𝑖 > 𝑉𝑗 ⇐⇒
𝑔𝑖𝑉𝑖

𝑔𝑖 (𝛾𝑑− 𝑉𝑖)
>

𝑔𝑗𝑉𝑗
𝑔𝑗 (𝛾𝑑− 𝑉𝑗)

.

Hence the łvalue-to-cost-ratiosž 𝑔𝑛𝑉𝑛

𝑔𝑛(𝛾𝑑−𝑉𝑛)
decreases in 𝑛 for 𝑛 ∈ {𝜅+1 . . . 𝑁}. Therefore,

the optimal solution ̃︀𝑦 to the 0-1 knapsack LP relaxation in Equation (C.6) is again

unique, and is a threshold vector (again see [32]). Hence, the unique optimal solution

to P-ROIis a threshold vector, and following Step 1., it is easy to see this unique

optimal solution is 𝑥R deőned in the statement of Theorem C.2.1.
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Step 3. Since 𝑔𝑛𝑑 > 0 for all 𝑛 ∈ [𝑁 ] and 𝑥𝑑 = min{𝑥B,𝑥R} ⪯ 𝑥B, we can apply

Lemma C.2.3 (i) with 𝑎𝑛 = 𝑔𝑛𝑑, 𝑍 = 𝑥B and 𝑌 = 𝑥𝑑, which yields

𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑑,𝑛 ≤ 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥B,𝑛 ≤ 𝜌 ,

where the last inequality is due to the fact that 𝑥B is feasible to P-Budget. This

implies 𝑥𝑑 is also feasible to P-Budget.

On the other hand, again deőne 𝜅 = max{𝑛 ∈ [𝑁 ] : 𝑉𝑛 ≥ 𝛾𝑑} so that 𝑉𝑛 ≥ 𝛾𝑑

for all 𝑛 ≤ 𝜅. Then since 𝑥𝑑 = min{𝑥B,𝑥R} ⪯ 𝑥R, and since 𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) > 0 for

𝑛 = 1 . . . 𝜅 and 𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) < 0 for 𝑛 = 𝜅+ 1 . . . 𝑁 , we can apply Lemma C.2.3 (ii)

with 𝑏𝑛 = 𝑔𝑛 (𝑉𝑛 − 𝛾𝑑), 𝑍 = 𝑥R and 𝑌 = 𝑥𝑑, which shows

∑︁

𝑛∈[𝑁 ]

𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥R,𝑛
(𝑖)

≥ 0
(𝑖𝑖)
=⇒

∑︁

𝑛∈[𝑁 ]

𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥𝑑,𝑘 ≥ 0 ,

where (i) follows from the fact that 𝑥R is feasible to P-ROI and (ii) follows from the

őrst half of Lemma C.2.3 (ii). Hence 𝑥𝑑 is also feasible to P-ROI.

The rest of the proof is straightforward: P-Budget, P-ROI and 𝑈(𝑑) have the

same objectives, while each of P-Budget and P-ROI has one less constraint than 𝑈(𝑑),

respectively. So P-Budget ≥ 𝑈(𝑑) and P-ROI ≥ 𝑈(𝑑). If 𝑥𝑑 = 𝑥B, because from

Step 3. we know 𝑥𝑑 is feasible to 𝑈(𝑑), then P-Budget = 𝑈(𝑑) and 𝑥𝑑 is the optimal

solution to both P-Budget and 𝑈(𝑑). Similarly, when 𝑥𝑑 = 𝑥R, 𝑥𝑑 is the optimal

solution to both P-ROI and 𝑈(𝑑).

Finally, we argue 𝑥𝑑 is the unique optimal solution to 𝑈(𝑑). Assume by contradic-

tion there exists some other vector 𝑥 ∈ [0, 1]𝑁 that is an optimal solution to 𝑈(𝑑) and

𝑥𝑑 ≠ 𝑥. Then, again if 𝑥𝑑 = 𝑥B, we know that P-Budget = 𝑈(𝑑), and because both

𝑥𝑑,𝑥 achieve total value 𝑈(𝑑), then both 𝑥𝑑,𝑥 are optimal solutions to P-Budget,

which contradicts uniqueness of the optimal solution to P-Budget as argued in Step 1.

Similarly, we can again arrive at a contradiction for the case when 𝑥𝑑 = 𝑥R. Hence,

the optimal solution to 𝑈(𝑑) is unique.
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C.2.2 Proof of Proposition 4.3.2

The proof for this proposition consists of two steps. First, we show that the buyer’s

optimal hindsight problem w.r.t. a single price 𝑑, namely OPT(𝑑) in Equation

(4.3.1) is upper bounded by 𝑇 · 𝑈(𝑑), which is the single-period myopic optimization

problem denoted in Equation (4.3). Next, we show playing the threshold strategy

w.r.t. 𝑥𝑑 ∈ [0, 1]𝑁 (i.e. the optimal solution to 𝑈(𝑑)) every period, gives the buyer

a total value exactly 𝑇 · 𝑈(𝑑) while simultaneously satisfying both budget and ROI

constraints. Therefore playing the threshold strategy w.r.t. 𝑥𝑑 is the optimal value

maximizing strategy to the buyer under a őxed price across all periods.

Step 1. Recall the linear program (LP) in Equation (4.3) that denotes the buyer’s

single-period myopic optimization problem. It is easy to see the optimal value is

bounded and the LP is feasible (consider the solution with all entries set to be 0).

Then, strong duality holds, and therefore for any 𝑑, there exists corresponding optimal

dual variables (𝜆, 𝜇) ∈ R2
+ s.t.

𝑈(𝑑) = max
𝑥∈[0,1]𝑁

∑︁

𝑛∈[𝑁 ]

(𝑔𝑛(1 + 𝜆)𝑉𝑛 − (𝛾𝜆+ 𝜇)𝑑) 𝑥𝑛 + 𝜌𝜇

=
∑︁

𝑛∈[𝑁 ]

(𝑔𝑛(1 + 𝜆)𝑉𝑛 − (𝛾𝜆+ 𝜇)𝑑)+ + 𝜌𝜇
(C.7)

On the other hand, when the sequence of posted prices stays constant at 𝑑, we have

OPT(𝑑) ≤ max
𝑧∈[0,1]𝑇

∑︁

𝑡∈[𝑇 ]

E [((1 + 𝜆)𝑣𝑡 − (𝛾𝜆+ 𝜇)𝑑) 𝑧𝑡] + 𝑇𝜌𝜇

≤
∑︁

𝑡∈[𝑇 ]

E
[︀
((1 + 𝜆)𝑣𝑡 − (𝛾𝜆+ 𝜇)𝑑)+

]︀
+ 𝑇𝜌𝜇

= 𝑇

⎛
⎝ ∑︁

𝑛∈[𝑁 ]

𝑔𝑛 ((1 + 𝜆)𝑉𝑛 − (𝛾𝜆+ 𝜇)𝑑)+ + 𝜌𝜇

⎞
⎠

= 𝑇 · 𝑈(𝑑)

(C.8)
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Step 2. Let 𝑥𝑑 ∈ [0, 1]𝑁 be the optimal solution to 𝑈(𝑑) in Equation (4.3). Then,

the threshold strategy w.r.t 𝑥𝑑 (see Deőnition 4.3.1) can be represented as

𝑧*𝑡 =
∑︁

𝑛∈[𝑁 ]

𝑥𝑑,𝑛I{𝑣𝑡 = 𝑉𝑛} (C.9)

It is easy to see {𝑧*𝑡 }𝑡∈[𝑇 ] is feasible to the buyer’s optimal hindsight problem OPT(𝑑)

because:

E

⎡
⎣∑︁

𝑡∈[𝑇 ]

(𝑣𝑡 − 𝛾𝑑) 𝑧*𝑡

⎤
⎦ =

∑︁

𝑡∈[𝑇 ]

E

⎡
⎣(𝑣𝑡 − 𝛾𝑑)

∑︁

𝑛∈[𝑁 ]

𝑥𝑑,𝑛I{𝑣𝑡 = 𝑉𝑛}

⎤
⎦

=
∑︁

𝑡∈[𝑇 ]

∑︁

𝑛∈[𝑁 ]

𝑔𝑛(𝑉𝑛 − 𝛾𝑑)𝑥𝑑,𝑛
(𝑖)

≥ 0

(C.10)

and

E

⎡
⎣∑︁

𝑡∈[𝑇 ]

𝑑𝑧*𝑡

⎤
⎦ = 𝑑

∑︁

𝑡∈[𝑇 ]

𝐸

⎡
⎣ ∑︁

𝑛∈[𝑁 ]

𝑥𝑑,𝑛I{𝑣𝑡 = 𝑉𝑛}

⎤
⎦

= 𝑇 · 𝑑
∑︁

𝑡∈[𝑇 ]

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑑,𝑛

(𝑖𝑖)

≤ 𝜌𝑇

(C.11)

where both (i) and (ii) hold because 𝑥𝑑 is feasible to 𝑈(𝑑). Finally, the threshold

strategy yields a total value exactly 𝑇𝑈(𝑑) because

∑︁

𝑡∈[𝑇 ]

E [𝑣𝑡𝑧
*
𝑡 ] =

∑︁

𝑡∈[𝑇 ]

E

⎡
⎣𝑣𝑡

∑︁

𝑛∈[𝑁 ]

𝑥𝑑,𝑛I{𝑣𝑡 = 𝑉𝑛}

⎤
⎦ = 𝑇 ·

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑉𝑛𝑥𝑑,𝑛 = 𝑇 · 𝑈(𝑑) ,

(C.12)

where the őnal equality follows from the fact that 𝑥𝑑 is optimal to 𝑈(𝑑).

Therefore, in light of the upper bound shown in Equation (C.8), the threshold

strategy in Equation (C.9) is optimal to the buyer’s hindsight problem OPT(𝑑).

Finally, the seller’s revenue under the buyer’s optimal threshold strategy is
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𝑑
∑︀

𝑡∈[𝑇 ] 𝑧
*
𝑡 = 𝑇 · ∑︀𝑛∈[𝑁 ] 𝑔𝑛𝑥𝑑,𝑛 = 𝑇 · 𝜋(𝑑) where 𝜋(𝑑) is the per-period revenue

deőned in Equation (4.4).

C.2.3 Proof of Theorem 4.3.3

Our proof relies on the following proposition

Proposition C.2.2. If price 𝑑 is nonbinding, then the corresponding optimal solution

𝑥𝑑 to 𝑈(𝑑) is 𝑥𝑑 = (1 . . . 1) ∈ R𝑛
+.

Proof. We prove the claim via contradiction. Assume there is some index 𝑘 ∈ [𝑁 ]

such that 𝑥𝑑,𝑘 < 1. Then consider the solution 𝑥 = (𝑥𝑑,1 . . . 𝑥𝑑,𝑘−1, 𝑦, 𝑥𝑑,𝑘+1, . . . 𝑥𝑑,𝑛)

where we replaced the 𝑘’th entry of 𝑥𝑑 with

𝑦 = 𝑥𝑑,𝑘 + 𝜖, where 𝜖 := min

{︃
1− 𝑥𝑑,𝑘,

𝜌−∑︀
𝑛∈[𝑁 ] 𝑔𝑛𝑥𝑑,𝑛

𝑑𝑔𝑘
,

∑︀
𝑛∈[𝑁 ] (𝑉𝑛 − 𝛾𝑑) 𝑔𝑛𝑥𝑑,𝑛
|𝑉𝑘 − 𝛾𝑑| 𝑔𝑘

}︃
(𝑖)
> 0 ,

where (i) follows from the fact that 𝑥𝑑 is nonbinding, i.e. 𝜌 >
∑︀

𝑛∈[𝑁 ] 𝑔𝑛𝑥𝑑,𝑛 and
∑︀

𝑛∈[𝑁 ] (𝑉𝑛 − 𝛾𝑑) 𝑔𝑛𝑥𝑑,𝑛 > 0. Then

𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑛 = 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑑,𝑛 + 𝑑𝑔𝑘𝜖 ≤ 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑑,𝑛 +

⎛
⎝𝜌−

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑑,𝑛

⎞
⎠ = 𝜌 .

On the other hand, if 𝑉𝑘 − 𝛾𝑑 > 0, then

∑︁

𝑛∈[𝑁 ]

(𝑉𝑛 − 𝛾𝑑) 𝑔𝑛𝑥𝑑,𝑛 =
∑︁

𝑛∈[𝑁 ]

(𝑉𝑛 − 𝛾𝑑) 𝑔𝑛𝑥𝑑,𝑛 + (𝑉𝑘 − 𝛾𝑑) 𝑔𝑘𝜖 >
∑︁

𝑛∈[𝑁 ]

(𝑉𝑛 − 𝛾𝑑) 𝑔𝑛𝑥𝑑,𝑛 > 0 .

If 𝑉𝑘 − 𝛾𝑑 < 0, then

∑︁

𝑛∈[𝑁 ]

(𝑉𝑛 − 𝛾𝑑) 𝑔𝑛𝑥𝑑,𝑛 =
∑︁

𝑛∈[𝑁 ]

(𝑉𝑛 − 𝛾𝑑) 𝑔𝑛𝑥𝑑,𝑛 + (𝑉𝑘 − 𝛾𝑑) 𝑔𝑘𝜖

≥
∑︁

𝑛∈[𝑁 ]

(𝑉𝑛 − 𝛾𝑑) 𝑔𝑛𝑥𝑑,𝑛 + (𝑉𝑘 − 𝛾𝑑) ·
∑︀

𝑛∈[𝑁 ] (𝑉𝑛 − 𝛾𝑑) 𝑔𝑛𝑥𝑑,𝑛
|𝑉𝑘 − 𝛾𝑑|

= 0

where in the last equality we used |𝑉𝑛 − 𝛾𝑑| = − (𝑉𝑛 − 𝛾𝑑) since 𝑉𝑛 − 𝛾𝑑 < 0.
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The above shows 𝑥 is feasible to 𝑈(𝑑). On the other hand,
∑︀

𝑛∈[𝑁 ] 𝑉𝑛𝑔𝑛𝑥𝑑,𝑛 <
∑︀

𝑛∈[𝑁 ] 𝑉𝑛𝑔𝑛𝑥𝑛, so 𝑥 yields a strictly larger objective than 𝑥𝑑, contradicting the

optimality of 𝑥𝑑.

We now return to our proof for Theorem 4.3.3.

(1). When both 𝑑, ̃︀𝑑 are non-binding, Proposition C.2.2 implies 𝑥𝑑 = 𝑥̃︀𝑑 = (1 . . . 1).

rev(𝑑) = 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑑,𝑛 = 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛 < ̃︀𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛 = ̃︀𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥̃︀𝑑,𝑛 = rev(̃︀𝑑) .

(2). We prove this claim by contradiction. Assume ̃︀𝑑 is non-binding and ̃︀𝑑 > 𝑑

where 𝑑 is budget binding. Proposition C.2.2 states that 𝑥̃︀𝑑 = (1 . . . 1). Hence

𝜌 = rev(𝑑) = 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑑,𝑛 ≤ 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥̃︀𝑑,𝑛 <
̃︀𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥̃︀𝑑,𝑛
(𝑖)
< 𝜌 ,

where (i) follows from the deőnition that ̃︀𝑑 is non-binding. Hence we obtain a

contradiction, and ̃︀𝑑 cannot be non-binding. This means ̃︀𝑑 must be budget or ROI

binding.

(3). Here we show that if some price 𝑑 ∈ 𝒟 is ROI binding so that
∑︀

𝑛∈[𝑁 ](𝑉𝑛 −
𝛾𝑑)𝑔𝑛𝑥𝑑,𝑛 = 0, any price ̃︀𝑑 > 𝑑 must also be ROI binding. We őrst claim that 𝑥̃︀𝑑 ⪯ 𝑥𝑑.

To show this, we use a contradiction argument by assuming 𝑥̃︀𝑑 ⪰ 𝑥𝑑.

Let the threshold vector 𝑥𝑑 be characterized by 𝑥𝑑 = 𝜓(𝐽, 𝑞) (see deőnition of

threshold vectors in Deőnition C.1.1). Under Assumption 4.3.1, we note that 𝑥𝑑 cannot

have all 0 entries and hence 𝑥𝑑,1 > 0. However, since
∑︀

𝑛∈[𝑁 ](𝑉𝑛 − 𝛾𝑑)𝑔𝑛𝑥𝑑,𝑛 = 0,

it must be the case that 𝑉𝐽+1 − 𝛾𝑑 < 0. Now, applying the ordering property for

threshold vectors in the second half of Lemma C.2.3 (ii) by taking 𝑍 = 𝑥̃︀𝑑, 𝑌 = 𝑥𝑑,

and 𝑏𝑖 = 𝑉𝑖 − 𝛾𝑑 we have

0 =
∑︁

𝑛∈[𝑁 ]

(𝑉𝑛 − 𝛾𝑑)𝑔𝑛𝑥𝑑,𝑛 ≥
∑︁

𝑛∈[𝑁 ]

(𝑉𝑛 − 𝛾𝑑)𝑔𝑛𝑥̃︀𝑑,𝑛 >
∑︁

𝑛∈[𝑁 ]

(𝑉𝑛 − 𝛾 ̃︀𝑑)𝑔𝑛𝑥̃︀𝑑,𝑛 .

In the last inequality we used the fact that ̃︀𝑑 > 𝑑. Hence, this contradicts the feasibility
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of 𝑥̃︀𝑑, so we conclude that 𝑥̃︀𝑑 ⪯ 𝑥𝑑. This further implies

𝜌 ≥ 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑑,𝑛

⏟  ⏞  
=rev(𝑑)

(𝑖)
=

1

𝛾

∑︁

𝑛∈[𝑁 ]

𝑉𝑛𝑔𝑛𝑥𝑑,𝑛
(𝑖𝑖)
>

1

𝛾

∑︁

𝑛∈[𝑁 ]

𝑉𝑛𝑔𝑛𝑥̃︀𝑑,𝑛

(𝑖𝑖𝑖)

≥ ̃︀𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥̃︀𝑑,𝑛

⏟  ⏞  
=rev(̃︀𝑑)

,

where (i) follows from 𝑑 being ROI binding, i.e.
∑︀

𝑛∈[𝑁 ](𝑉𝑛−𝛾𝑑)𝑔𝑛𝑥𝑑,𝑛 = 0; (ii) follows

from 𝑥̃︀𝑑 ⪯ 𝑥𝑑; (iii) follows from feasibility of ̃︀𝑑 so that
∑︀

𝑛∈[𝑁 ](𝑉𝑛 − 𝛾 ̃︀𝑑)𝑔𝑛𝑥̃︀𝑑,𝑛 ≥ 0.

Therefore, 𝜌 ≥ rev(𝑑) > rev(̃︀𝑑).
Finally, 𝜌 > rev(̃︀𝑑) implies that ̃︀𝑑 is either non-binding or ROI binding. We

note that it is not possible for ̃︀𝑑 to be non-binding, because ̃︀𝑑 non-binding implies

𝑥̃︀𝑑 = (1 . . . 1) according Proposition C.2.2, contradicting 𝑥̃︀𝑑 ⪯ 𝑥𝑑 which we showed

earlier. Here we used the fact that 𝑥𝑑 ≠ (1 . . . 1) because 𝑥𝑑 is ROI binding and

Assumption 4.3.1 states for any 𝑑 ∈ 𝒟,
∑︀

𝑛∈[𝑁 ](𝑉𝑛 − 𝛾𝑑)𝑔𝑛 ̸= 0.

C.2.4 Additional lemmas for Section 4.3

Lemma C.2.3 (Ordering property for threshold vectors). Consider {𝑎𝑖}𝑖∈[𝑁 ] ⊆ R𝑁
+

and {𝑏𝑖}𝑖∈[𝑁 ] ⊆ R𝑁 where there exists some 𝑗 ∈ [𝑁 ] such that 𝑏𝑖 > 0 for all 𝑖 = 1 . . . 𝑗

and 𝑏𝑖 < 0 for all 𝑖 = 𝑗 + 1, . . .𝑚. Let 𝑍,𝑌 ∈ [0, 1]𝑁 be two threshold vectors (see

Deőnition C.1.1) such that 𝑌 = 𝜓(𝐽𝑌 , 𝑞𝑌 ), 𝑍 = 𝜓(𝐽𝑍 , 𝑞𝑍), and 𝑍 ⪰ 𝑌 . Then the

following hold:

(i)
∑︀

𝑖∈[𝑁 ] 𝑎𝑖𝑍𝑖 ≥
∑︀

𝑖∈[𝑁 ] 𝑎𝑖𝑌𝑖.

(ii) If
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑍𝑖 ≥ 0 then
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑌𝑖 ≥ 0. Furthermore, if 𝑏𝐽𝑌 +1 < 0, then
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑌𝑖 ≥
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑍𝑖 ≥ 0.

(iii) If
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑌𝑖 < 0 then
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑍𝑖 < 0.

Proof.

(i) Since 𝑎𝑖 > 0 for all 𝑖 ∈ [𝑁 ], and 𝑍 ⪰ 𝑌 (i.e. 𝑍𝑖 ≥ 𝑌𝑖 for all 𝑖 ∈ [𝑁 ]), it is easy

to see
∑︀

𝑖∈[𝑁 ] 𝑎𝑖𝑍𝑖 ≥
∑︀

𝑖∈[𝑁 ] 𝑎𝑖𝑌𝑖.
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(ii) By the deőnition of threshold vectors, we have 𝑌𝐽𝑌 +1 = 𝑞𝑌 while 𝑌𝑖 = 0 for all

𝑖 > 𝐽𝑌 + 1. We prove the claim by contradiction by assuming
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑌𝑖 < 0.

First, it is easy to see 𝑏𝐽𝑌 +1 < 0. This is because if 𝑏𝐽𝑌 +1 > 0, then 𝑏𝑖 > 0 for all

𝑖 = 1 . . . 𝐽𝑌 +1 by the deőnition of {𝑏𝑖}𝑖∈[𝑁 ], and hence
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑌𝑖 =
∑︀

𝑖∈[𝐽𝑌 +1] 𝑏𝑖𝑌𝑖 ≥ 0

contradicting our assumption that
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑌𝑖 < 0 .

Next, since
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑌𝑖 < 0 ≤∑︀
𝑖∈[𝑁 ] 𝑏𝑖𝑍𝑖, we have

∑︀
𝑖∈[𝑁 ] 𝑏𝑖(𝑍𝑖 − 𝑌𝑖) ≥ 0. On the

other hand,

∑︁

𝑖∈[𝑁 ]

𝑏𝑖(𝑍𝑖 − 𝑌𝑖)
(𝑖)
=

𝑁∑︁

𝑖=𝐽𝑌 +1

𝑏𝑖(𝑍𝑖 − 𝑌𝑖)
(𝑖𝑖)
< 0 .

Here, (i) follows from the deőnition of a threshold vector so that 𝑌𝑖 = 1 for all

𝑖 = 1 . . . 𝐽𝑌 and also 𝑍𝑖 = 1 for all 𝑖 = 1 . . . 𝐽𝑌 due to 𝑍 ⪰ 𝑌 . (ii) follows from the

fact that 𝑏𝐽𝑌 +1 < 0 so 𝑏𝑖 < 0 for all 𝑖 ≥ 𝐽𝑌 +1 due to the deőnition of {𝑏𝑖}𝑖∈[𝑁 ]. Hence,

we arrive at a contradiction, which allows us to conclude the őrst half of the claim, i.e.
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑍𝑖 ≥ 0 implies
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑌𝑖 ≥ 0.

We now show the second half of the claim i.e. 𝑏𝐽𝑌 +1 < 0 implies
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑌𝑖 ≥
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑍𝑖 ≥ 0. If 𝑏𝐽𝑌 +1 < 0, then 𝑏𝑖 < 0 for all 𝑖 = 𝐽𝑌 + 1 + . . . 𝐽𝑍 + 1, and hence

∑︁

𝑖∈[𝑁 ]

𝑏𝑖(𝑍𝑖 − 𝑌𝑖) = 𝑏𝐽𝑌 +1(𝑍𝐽𝑌 +1 − 𝑌𝐽𝑌 +1) +

𝐽𝑍+1∑︁

𝑖=𝐽𝑌 +2

𝑏𝑖𝑍𝑖

(𝑖)
< 0 .

Note that in the above inequality the summand
∑︀𝐽𝑍+1

𝑖=𝐽𝑌 +2 𝑏𝑖𝑍𝑖 does not exist if 𝐽𝑌 = 𝐽𝑍 ,

and in (i) we also used the fact that 𝑌𝑖 = 0 for all 𝑖 > 𝐽𝑌 + 1 using the deőnition of a

threshold veector.

(iii) We again use a contradiction argument by assuming
∑︀

𝑖∈[𝑁 ] 𝑏𝑖𝑍𝑖 ≥ 0, and the

rest of the proof is almost identical to that of (ii) so we will omit it here.
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C.3 Additional material for Section 4.4

C.3.1 Proof of Theorem 4.4.1

Deőne 𝐺 := min𝑑,̃︀𝑑∈𝒟:rev(𝑑) ̸=rev(̃︀𝑑)

⃒⃒
⃒rev(𝑑)− rev(̃︀𝑑)

⃒⃒
⃒ to be the minimum revenue gap for

all price pairs that do not yield the same revenue, where rev(𝑑) := 𝑑
∑︀

𝑛∈[𝑁 ] 𝑔𝑛𝑥𝑑,𝑛 for

any 𝑑 ∈ 𝒟 is the per-period average seller revenue deőned in Equation (4.4). Recall

ˆrev(𝐷ℎ) =
𝐷ℎ

|ℰℎ|
∑︀

𝑡∈ℰℎ 𝑧𝑡 is the estimate of rev(𝐷ℎ) for episode ℎ with őxed price 𝐷ℎ

(see Algorithm 4).

For any exploration episode ℰℎ whose length is |ℰℎ| = 𝑇 1−𝜉+𝜖, we have w.p. at

least 1− 1/𝑇

⃒⃒
⃒⃒ ˆrev(𝐷ℎ)

𝐷ℎ

− rev(𝐷ℎ)

𝐷ℎ

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒
⃒
1

|ℰℎ|
∑︁

𝑡∈ℰℎ

𝑧𝑡 −
rev(𝐷ℎ)

𝐷ℎ

⃒⃒
⃒⃒
⃒
(𝑖)

≤ 𝜑(|ℰℎ|)
|ℰℎ|

(𝑖𝑖)

≤ 𝜑(𝑇 )

𝑇 1−𝜉+𝜖

(𝑖𝑖𝑖)⇒ | ˆrev(𝐷ℎ)− rev(𝐷ℎ)| ≤
𝜑(𝑇 )

𝑇 1−𝜉+𝜖

(C.13)

where (i) is due to the deőnition of 𝜉-adaptive buyers in Deőnition 4.4.1; (ii) is due

to the fact that 𝜑 is an increasing function and the exploration episode lengths are

|ℰℎ| = 𝑇 1−𝜉+𝜖; (iii) is due to the fact that all prices are less than 1.

Since 𝜑(𝑇 ) = 𝒪(𝑇 1−𝜉), there exists some 𝑇𝜖 ∈ N such that when 𝑇 > 𝑇𝜖 we have

𝜑(𝑇 )

𝑇 1−𝜉+𝜖
<
𝐺

2
(C.14)

The rest of the proof relies on the following lemma:

Lemma C.3.1. Assume 𝑇 > 𝑇𝜖 s.t. Equation (C.14) holds. If ˆrev(𝐷𝑖) ≥ ˆrev(𝐷𝑗) for

some exploration episodes 𝑖, 𝑗 s.t. 𝑖 ≠ 𝑗, then w.p. at least 1− 1
𝑇
, rev(𝐷𝑖) ≥ rev(𝐷𝑗).

Furthermore, the following event 𝒢

𝒢 = { ˆrev(𝐷𝑖) ≥ ˆrev(𝐷𝑗) =⇒ rev(𝐷𝑖) ≥ rev(𝐷𝑗) for all exploration episodes 𝑖 ̸= 𝑗}
(C.15)

holds with probability at least 1− 𝐻(𝐻−1)
2𝑇

, where 𝐻 = ⌊log2(𝑀)⌋+ 1 is the maximum
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number of binary search iterations (i.e. number of episodes in the exploration phase).

Proof of Lemma C.3.1. Because ˆrev(𝐷𝑖) ≥ ˆrev(𝐷𝑗), applying Equation (C.13) for

episodes 𝑖, 𝑗 yields

rev(𝐷𝑖) +
𝜑(𝑇 )

𝑇 1−𝜉+𝜖
≥ ˆrev(𝐷𝑖) ≥ ˆrev(𝐷𝑗) ≥ rev(𝐷𝑗)−

𝜑(𝑇 )

𝑇 1−𝜉+𝜖
(C.16)

=⇒ 2𝜑(𝑇 )

𝑇 1−𝜉+𝜖
≥ rev(𝐷𝑗)− rev(𝐷𝑖) ,

Now, contrary to our claim, suppose that rev(𝐷𝑖) < rev(𝐷𝑗). We then have

2𝜑(𝑇 )

𝑇 1−𝜉+𝜖
≥ rev(𝐷𝑗)− rev(𝐷𝑖) ≥ min

𝑑,̃︀𝑑∈𝒟:rev(𝑑) ̸=rev(̃︀𝑑)

⃒⃒
⃒rev(𝑑)− rev(̃︀𝑑)

⃒⃒
⃒ := 𝐺 ,

which contradicts Equation (C.14) for 𝑇 > 𝑇𝜖. As there are 𝐻(𝐻 − 1)/2 pairs (𝑖, 𝑗)

such that 𝑖 ≠ 𝑗, a simple union bound shows event 𝒢 holds with probability at least

1− 𝐻(𝐻−1)
2𝑇

.

We now return to our proof of Theorem 4.4.1. We őrst show that under event 𝒢
(see Equation (C.15)),the őnal price in the exploitation phase 𝐷𝑚* is revenue-optimal,

i.e. max𝑑∈𝒟 rev(𝑑) = rev (𝐷𝑚*)

We use an induction argument that shows after each iteration of the binary search

procedure in the exploration phase of Algorithm 4, rev(𝐷𝑚) ≤ rev(𝐷𝑚*) for all 𝑚 ≤ L

and 𝑚 ≥ R. The base case is the őrst iteration, where we have L = 1, R = 𝑀 . If

𝑚* = L = 1, then under event 𝒢 we get

ˆrev(𝐷1) ≥ ˆrev(𝐷𝑀)
(𝑖)
=⇒ rev(𝐷1) ≥ rev(𝐷𝑀) .

Hence after the őrst iteration rev(𝐷𝑚) ≤ rev(𝐷𝑚*) for any 𝑚 ≤ L and 𝑚 ≥ R. The

case for 𝑚* = R follows from the same argument.

Now assume that the induction hypothesis holds, i.e. at the beginning of some

iteration with the tuple (L,R,𝑚*), we have rev(𝐷𝑚) ≤ rev(𝐷𝑚*) 𝑚 ≤ L and 𝑚 ≥ R.

According to Algorithm 4, we only need to show two cases in order to validate the

induction procedure.
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• Case 1. If ˆrev(𝐷med) < ˆrev(𝐷med+1), then we show rev(𝐷𝑚) ≤ rev(𝐷med+1) for

all 𝑚 = 1 . . .med + 1

• Case 2. If ˆrev(𝐷med) ≥ ˆrev(𝐷med+1), then we show rev(𝐷𝑚) ≥ rev(𝐷med) for all

𝑚 = med + 1 . . .𝑀

Note that under Case 1., med + 1 will be the new value of 𝑚* in the next iteration

(i.e. the next induction step). So by showing rev(𝐷𝑚) ≤ rev(𝐷med+1) for all 𝑚 =

1 . . .med + 1, we validate the induction hypothesis for the next induction step. A

similar argument holds for Case 2.

Case 1. When ˆrev(𝐷med) < ˆrev(𝐷med+1), under event 𝒢 (see Equation (C.15))

we have rev(𝐷med) ≤ rev(𝐷med+1). We claim that 𝐷med cannot be an ROI binding

price. Assume the contrary that 𝐷med is ROI binding. Then, part (3) of Theorem

4.3.3 states rev(𝐷med+1) < rev(𝐷med), leading to a contradiction. Hence 𝐷med must be

either a nonbinding price or a budget binding price. Applying part (1) of Theorem

4.3.3, we can then conclude that for any 𝑚 ≤ med, rev(𝐷𝑚) ≤ rev(𝐷med), so

rev(𝐷𝑚) ≤ rev(𝐷med) ≤ rev(𝐷med+1) ∀𝑚 = 1 . . .med .

At the end of the iteration, as we update 𝑚*+ = med + 1 (here we denote 𝑚*+ as

the updated value to distinguish from its initial value at the start of the iteration),

we have rev(𝐷𝑚*+) ≥ rev(𝐷med+1) ≥ rev(𝐷med) . . . rev(𝐷1). On the other hand, since

ˆrev(𝐷𝑚*+) = max𝑚∈{𝑚*,med+1} ˆrev(𝐷𝑚) ≥ ˆrev(𝐷𝑚*), event 𝒢 implies

rev(𝐷𝑚*+) ≥ rev(𝐷𝑚*)
(𝑖)

≥ rev(𝐷𝑚) ∀𝑚 = R . . .𝑀 ,

where (i) follows from the induction hypothesis. Therefore, we have

rev(𝐷𝑚*+) ≥ rev(𝐷𝑚) ∀𝑚 = R . . .𝑀 and 𝑚 = 1 . . .med + 1 ,

and by realizing the tuple (med + 1,R,𝑚*+) is the initial tuple for the next iteration

concludes the induction step.
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Case 2. The case when ˆrev(𝐷med) ≥ ˆrev(𝐷med+1) follows from an identical

argument, and we will omit the details. This concludes the induction proof.

The above implies that when the event

𝒢 = { ˆrev(𝐷𝑖) ≥ ˆrev(𝐷𝑗) =⇒ rev(𝐷𝑖) ≥ rev(𝐷𝑗) for all 𝑖, 𝑗 ∈ [𝐻]}

holds throughout the exploration phase, the above induction argument implies we

have rev(𝐷𝑚*) ≥ rev(𝐷𝑚)for all 𝑚 ∈ [𝑀 ]. Hence rev(𝐷𝑚*) = max𝑑∈𝒟 rev(𝑑) w.p. at

least 1− 𝐻(𝐻−1)
2𝑇

according to Lemma C.3.1 where 𝐻 = ⌊log2(𝑀)⌋+ 1.

Furthermore, we point out that in each iteration of the binary search procedure

the seller explores at most two prices. Hence the entire exploration phase, which

consists of all periods in exploration episodes and we denote as ℰ , has length at most

2𝐸 (⌊log2(𝑀)⌋+ 1) = 2𝑇 1−𝜉+𝜖 (⌊log2(𝑀)⌋+ 1) periods. Therefore, the seller’s regret

can be upper bounded as

Regsell

= 𝑇 max
𝑑∈𝒟

rev(𝑑)−
∑︁

𝑡∈[𝑇 ]

E [𝑑𝑡𝑧𝑡]

≤ |ℰ|+
𝑇∑︁

𝑡=|ℰ|+1

max
𝑑∈𝒟

rev(𝑑)− E [𝑑𝑡𝑧𝑡]

(𝑖)

≤ |ℰ|+
∑︁

𝑡∈[𝑇 ]/ℰ
E [(rev(𝐷𝑚*)−𝐷𝑚*𝑧𝑡) I {𝒢}] + (𝑇 − |ℰ|)P (𝒢𝑐)

≤ |ℰ|+𝐷𝑚*(𝑇 − |ℰ|) · E

⎡
⎣ rev(𝐷𝑚*)

𝐷𝑚*

− 1

𝑇 − |ℰ|
∑︁

𝑡∈[𝑇 ]/ℰ
𝑧𝑡

⎤
⎦+ (𝑇 − |ℰ|)P (𝒢𝑐)

(𝑖𝑖)

≤ |ℰ|+ 𝜑 (𝑇 − |ℰ|) + (𝑇 − |ℰ|) · P

⎛
⎝
⃒⃒
⃒⃒
⃒⃒
rev(𝐷𝑚*)

𝐷𝑚*

− 1

𝑇 − |ℰ|
∑︁

𝑡∈[𝑇 ]/ℰ
𝑧𝑡 >

𝜑(𝑇 − |ℰ|)
𝑇 − |ℰ|

⃒⃒
⃒⃒
⃒⃒

⎞
⎠

+ 𝑇P (𝒢𝑐)
(𝑖𝑖𝑖)

≤ |ℰ|+ 𝜑 (𝑇 − |ℰ|) + 1 + 𝑇P (𝒢𝑐)
(𝑖𝑣)

≤ 2 (⌊log2(𝑀)⌋+ 1) · 𝑇 1−𝜉+𝜖 + 𝜑 (𝑇 ) + (⌊log2(𝑀)⌋+ 1)2 /2 .
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In (i) we used the fact that max𝑑∈𝒟 rev(𝑑) = rev(𝐷𝑚*) under event 𝒢 and 𝑑𝑡 = 𝐷𝑚* for

all exploitation periods 𝑡 ∈ [𝑇 ]/ℰ ; in (ii) and (iii) we used the deőnition of 𝜉-adaptive

buyer algorithm (see Deőnition 4.4.1) so that for the exploitation phase [𝑇 ]/ℰ , the event⃒⃒
⃒ rev(𝐷𝑚* )

𝐷𝑚*
− 1

𝑇−|ℰ|
∑︀

𝑡∈[𝑇 ]/ℰ 𝑧𝑡

⃒⃒
⃒ ≤ 𝜑(𝑇−|ℰ|)

𝑇−|ℰ| holds with probability at least 1 − 1/𝑇 , and

also 𝜑 is an increasing function; In (iv), we used the fact that all periods in exploration

episodes ℰ , has length at most 2𝐸 (⌊log2(𝑀)⌋+ 1) = 2𝑇 1−𝜉+𝜖 (⌊log2(𝑀)⌋+ 1) periods,

and the fact that P (𝒢𝑐) ≤ (⌊log2(𝑀)⌋+1)·⌊log2(𝑀)⌋
2𝑇

according to Lemma C.3.1, so 1 +

𝑇P (𝒢𝑐) ≤ (⌊log2(𝑀)⌋+ 1)2 /2 given 𝑀 ≥ 2.

C.4 Additional material for Section 4.5

C.4.1 Proof of Lemma 4.5.1

Recall that when the buyer best responds, she adopts the threshold strategy w.r.t 𝑥𝑑

where 𝑥𝑑 ∈ [0, 1]𝑁 is the optimal solution to 𝑈(𝑑) in Equation (4.3); see Deőnition

4.3.2 for best response. Further, the threshold strategy can be represented as decision

𝑧*𝑡 =
∑︁

𝑛∈[𝑁 ]

𝑥𝑑,𝑛I{𝑣𝑡 = 𝑉𝑛} .

Then, for any exploration or exploitation episode ℰ (whose posted price we denote as

𝑑), for the best response decisions {𝑧𝑡}𝑡∈ℰ deőned above, we have for any 𝑡 ∈ ℰ

E[𝑑𝑧*𝑡 ] = 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑑,𝑛 = rev(𝑑)

where rev(𝑑) is the per-period expected revenue deőned in Equation (4.4). Hence, by

deőning

𝑌𝑡 = 𝑑𝑧*𝑡 − rev(𝑑)

we know that the sequence {𝑌𝑡}𝑡∈ℰ is a martingale difference sequence such that that

|𝑌𝑡| ≤ 𝑑 ≤ 1 for all 𝑡 ∈ ℰ . By Azuma Hoeffding’s inequality (see Lemma C.5.1) we
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have for any 𝛿 ∈ (0, 1)

P

(︃⃒⃒
⃒⃒
⃒𝑑

∑︁

𝑡∈ℰ
𝑧*𝑡 − |ℰ| · rev(𝑑)

⃒⃒
⃒⃒
⃒ >

√︀
2|ℰ| log (2/𝛿)

)︃
≤ 𝛿 .

Hence, by taking 𝛿 = 1/𝑇 and considering the increasing function 𝜑(𝑥) =
√︀

2𝑥 log (2𝑇 ) =

𝒪(𝑥1/2), for any exploration/exploitation episode ℰ (whose price we denote as 𝑑) we

have

⃒⃒
⃒⃒
⃒
𝑑

|ℰ|
∑︁

𝑡∈ℰ
𝑧*𝑡 − rev(𝑑)

⃒⃒
⃒⃒
⃒ ≤

𝜑(|ℰ|)
|ℰ|

with probability (w.p.) at least 1− 1/𝑇 . Therefore best responding is 1
2
-adaptive.

C.4.2 Proof of Theorem 4.5.2

For the seller, the regret upper bound is a direct result of Lemma 4.5.1 and Theorem

4.4.1.

On the other hand for the buyer, following the exact proof Step 2. in the proof

of Proposition 4.3.2 (see Appendix C.2.2), in particular Equations (C.9), (C.10) and

(C.11), we know that by best responding, the buyer’s budget and ROI constraints are

satisőed. Finally, we bound the buyer’s regret (see Deőnition in (4.7)) as followed:

Let 𝑑 be the posted price in the őnal exploitation episode (see Algorithm 4). Using

an argument similar to Step 1. in the proof of Proposition 4.3.2, for the linear program

(LP) 𝑈(𝑑) in Equation (4.3) that denotes the buyer’s single-period myopic optimization

problem, it is easy to see the optimal value is bounded and the LP is feasible (consider

the solution with all entries set to be 0). Then, strong duality holds, and there exists

corresponding optimal dual variables (𝜆, 𝜇) ∈ R2
+ w.r.t. the exploitation price 𝑑 s.t.

𝑈(𝑑) = max
𝑥∈[0,1]𝑁

∑︁

𝑛∈[𝑁 ]

𝑔𝑛 ((1 + 𝜆)𝑉𝑛 − (𝛾𝜆+ 𝜇)𝑑) 𝑥𝑛 + 𝜌𝜇

=
∑︁

𝑛∈[𝑁 ]

𝑔𝑛 ((1 + 𝜆)𝑉𝑛 − (𝛾𝜆+ 𝜇)𝑑)+ + 𝜌𝜇
(C.17)
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Similar to Equation (C.8), by denoting ℰ to be all periods within exploration

episodes, the buyer’s hindsight objective can be bounded as

OPT(𝑑1:𝑇 ) ≤ max
𝑧∈[0,1]𝑇

∑︁

𝑡∈[𝑇 ]

E [((1 + 𝜆)𝑣𝑡 − (𝛾𝜆+ 𝜇)𝑑) 𝑧𝑡] + 𝑇𝜌𝜇

≤
∑︁

𝑡∈[𝑇 ]

E
[︀
((1 + 𝜆)𝑣𝑡 − (𝛾𝜆+ 𝜇)𝑑)+

]︀
+ 𝑇𝜌𝜇

=
∑︁

𝑡∈[𝑇 ]

⎛
⎝ ∑︁

𝑛∈[𝑁 ]

𝑔𝑛 ((1 + 𝜆)𝑉𝑛 − (𝛾𝜆+ 𝜇)𝑑)+ + 𝜌𝜇

⎞
⎠

≤ (1 + 𝜆+ 𝜌𝜇) · |ℰ|+
∑︁

𝑡∈[𝑇 ]/ℰ

⎛
⎝ ∑︁

𝑛∈[𝑁 ]

𝑔𝑛 ((1 + 𝜆)𝑉𝑛 − (𝛾𝜆+ 𝜇)𝑑)+ + 𝜌𝜇

⎞
⎠

(𝑖)
= Θ(𝑇

1
2
+𝜖) + (𝑇 − |ℰ|)𝑈(𝑑) .

(C.18)

Here (i) follows from Equation (C.17) and the fact that there are at most 2 (⌊log2(𝑀)⌋+ 1)

exploration episodes, which implies in ℰ there are at most 2𝑇 1−𝜉+𝜖 (⌊log2(𝑀)⌋+ 1) =

Θ(𝑇
1
2
+𝜖) periods. The buyer’s regret can be thus bounded as followed

Regbuy = OPT(𝑑1:𝑇 )−
∑︁

𝑡∈[𝑇 ]

E [𝑣𝑡𝑧𝑡] ≤ Θ(𝑇
1
2
+𝜖) + (𝑇 − |ℰ|)𝑈(𝑑)−

∑︁

𝑡∈[𝑇 ]/ℰ
E [𝑣𝑡𝑧𝑡]

= Θ(𝑇
1
2
+𝜖)

where in the őnal equality, we used the fact that the buyer’s expected utility is

exactly 𝑈(𝑑) for each exploitation period when best responding as shown in Equation

(C.12).

C.4.3 Proof of Theorem 4.5.3

This proof consists of two parts, namely bounding seller’s regret, and bounding buyer’s

regret as well the łbalancež of buyer’s budget and ROI constraints.
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Part 1. Bounding seller’s regret. Here, we only need to show that the buyer’s

strategy is 𝜉-adaptive (see Deőnition in 4.4.1), and the rest of the proof follows from

Theorem 4.4.1.

For notation convenience, őx some exploration or exploitation episode ℰ , and

denote the corresponding price in the episode as 𝑑. In light of Lemma 4.3.1, we let

𝑥𝑑 ∈ [0, 1]𝑁 be the unique optimal threshold vector (see Deőnition C.1.1) solution to

𝑈(𝑑). According to the deőnition of the per-period seller expected revenue rev(𝑑) under

buyer best response in Equation (4.4), we can further write the seller’s per-period

expected revenue for episode ℎ as

rev(𝑑) = 𝑑
∑︁

𝑛∈[𝑁 ]

𝑥𝑑,𝑛𝑔𝑛 . (C.19)

Let ℱ𝑡 be the sigma algebra generated by {(𝑣𝜏 , 𝑑𝜏 , 𝑧𝜏 )}𝜏∈[𝑡], which characterizes all

randomness in the buyer and seller’s behavior up to period 𝑡. Recall 𝑥̂𝑡 is the optimal

solution to 𝑈(𝑑𝑡) of Equation (4.3) via replacing the true distribution 𝑔 ∈ ∆𝑁 with

the estimate 𝑔𝑡 ∈ ∆𝑁 . The buyer adopting a threshold strategy w.r.t. 𝑥̂𝑡 implies the

buyer’s decision to be

𝑧𝑡 =
∑︁

𝑛∈[𝑁 ]

𝑥̂𝑡,𝑛I{𝑣𝑡 = 𝑉𝑛} (C.20)

Since 𝑥̂𝑡 is ℱ𝑡−1-measurable, for 𝑡 ∈ ℰ we have

E
[︁
𝑧𝑡

⃒⃒
⃒ℱ𝑡−1

]︁
=

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥̂𝑡,𝑛

Thus, the by deőning

𝑌𝑡 =
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥̂𝑡,𝑛 − 𝑧𝑡 , (C.21)

we know that the sequence {𝑌𝑡}𝑡∈ℰ is a martingale difference sequence such that that

|𝑌𝑡| ≤ 1 for all 𝑡. By Azuma Hoeffding’s inequality (see Lemma C.5.1) we have for

232



any 𝛿 ∈ (0, 1)

P
(︁
̃︀𝒢
)︁
≥ 1− 𝛿 where ̃︀𝒢 :=

⎧
⎨
⎩

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑡∈ℰ

⎛
⎝ ∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥̂𝑡,𝑛 − 𝑧𝑡

⎞
⎠
⃒⃒
⃒⃒
⃒⃒ ≤

√︀
2|ℰ| log (2/𝛿)

⎫
⎬
⎭ . (C.22)

The remaining proof relies on the following lemma whose proof can be found in

Appendix C.4.5

Lemma C.4.1. Fix some price 𝑑 and deőne the following problem which is solved

by the approximate best response buyer with ML advice to obtain 𝑥̂𝑡 (see Deőnition

4.5.1):

𝑈̂𝑡(𝑑) = max
𝑥∈[0,1]𝑁

∑︁

𝑛∈[𝑁 ]

𝑔𝑡,𝑛𝑉𝑛𝑥𝑛 s.t.
∑︁

𝑛∈[𝑁 ]

𝑔𝑡,𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥𝑛 ≥ 0 and 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑡,𝑛𝑥𝑛 ≤ 𝜌 .

(C.23)

Here, recall 𝑔𝑡 ∈ ∆𝑁 is the ML advice obtained in period 𝑡 which is an estimate for

the true value distribution 𝑔 ∈ ∆𝑁 . Further, deőne the following values

(𝐴) =

⎛
⎝𝑈(𝑑)−

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑉𝑛𝑥̂𝑡,𝑛

⎞
⎠

+

, (𝐵) =

⎛
⎝−

∑︁

𝑛∈[𝑁 ]

𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥̂𝑡,𝑛

⎞
⎠

+

(𝐶) =

⎛
⎝𝑑

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥̂𝑡,𝑛 − 𝜌

⎞
⎠

+

,

(C.24)

where we recall 𝑈(𝑑) is deőned in Equation (4.3). Then, the values (𝐵), (𝐶) are upper

bounded by
√
𝑁‖𝑔 − 𝑔𝑡‖ for all 𝑡. Further, because the estimation error lim𝑡→∞ ℓ𝑡 = 0

there exists some 𝑇0 ∈ N s.t. ‖𝑔 − 𝑔𝑡‖ ≤ ℓ𝑡 <
𝑔1
2

for all 𝑡 > 𝑇0. Then, there exists an

absolute constant 𝐶 that only depends on buyer model primitives (𝑔,𝑉 , 𝜌, 𝛾) s.t. the

values (𝐴) and ‖𝑥𝑑 − 𝑥̂𝑡‖ are upper bounded by 𝐶
√
𝑁‖𝑔− 𝑔𝑡‖ for 𝑡 > 𝑇0, where 𝑥𝑑 is

the optimal solution to 𝑈(𝑑).

We now show a high probability bound for rev(𝑑)
𝑑
−∑︀

𝑡∈ℰ 𝑧𝑡. Assume event ̃︀𝒢
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(Equation (C.22)) holds, then

⃒⃒
⃒⃒
⃒
∑︁

𝑡∈ℰ

(︂
rev(𝑑)

𝑑
− 𝑧𝑡

)︂⃒⃒
⃒⃒
⃒ =

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑡∈ℰ

⎛
⎝ ∑︁

𝑛∈[𝑁 ]

𝑥𝑑,𝑛𝑔𝑛 − 𝑧𝑡

⎞
⎠
⃒⃒
⃒⃒
⃒⃒

≤

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑡∈ℰ

⎛
⎝ ∑︁

𝑛∈[𝑁 ]

𝑥̂𝑡,𝑛𝑔𝑛 − 𝑧𝑡

⎞
⎠
⃒⃒
⃒⃒
⃒⃒+

∑︁

𝑡∈ℰ

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑛∈[𝑁 ]

𝑥̂𝑡,𝑛𝑔𝑛 −
∑︁

𝑛∈[𝑁 ]

𝑥𝑑,𝑛𝑔𝑛

⃒⃒
⃒⃒
⃒⃒

(𝑖)

≤
√︀
2|ℰ| log (2𝑇 ) +

∑︁

𝑡∈ℰ
‖𝑥𝑑 − 𝑥̂𝑡‖ · ‖𝑔‖

(𝑖𝑖)

≤
√︀
2|ℰ| log (2𝑇 ) + 𝑇0 + 𝐶

√
𝑁

∑︁

𝑡∈ℰ:𝑡>𝑇0

ℓ𝑡

≤
√︀

2|ℰ| log (2𝑇 ) + 𝑇0 + 𝐶
√
𝑁

∑︁

𝑡∈ℰ
ℓ𝑡

(𝑖𝑖𝑖)

≤
√︀

2|ℰ| log (2𝑇 ) + 𝑇0 + 𝐶
√
𝑁 ̃︀𝜑(|ℰ|)

:= 𝜑(|ℰ|)

where in (i) we plugged in the Azuma-Hoeffding inequality result showed in Equation

(C.22) with 𝛿 = 1
𝑇
; in (ii) we applied Lemma C.4.1 and some constant absolute constant

𝐶 for 𝑡 > 𝑇0 (deőned in statement of Lemma C.4.1), and the fact that ‖𝑔‖ ≤ 1 since

𝑔 is a probability simplex; in (iii) we used the assumption that there exists some

increasing function ̃︀𝜑 s.t.
∑︀

𝑡∈ℰ ℓ𝑡 ≤ ̃︀𝜑(|ℰ|). Therefore w.p. at least 1− 1/𝑇 (since ̃︀𝒢
holds w.p. at least 1− 1/𝑇 when 𝛿 = 1/𝑇 ), we have

⃒⃒
⃒⃒
⃒
𝑑

|ℰ|
∑︁

𝑡∈ℰ
𝑧𝑡 − rev(𝑑)

⃒⃒
⃒⃒
⃒ ≤

𝜑(|ℰ|)
|ℰ|

Since ̃︀𝜑(𝑥) ≤ 𝒪(𝑥1−𝐿), we know that 𝜑(𝑥) = 𝒪(𝑥1−𝜉) for 𝜉 = min{1
2
, 𝐿}. Hence,

for large enough 𝑇 s.t. the exploration episode length 𝐸 = 𝑇 1−𝜉+𝜖 > 𝑇0, the buyer’s

approximate best responding with ML advice is 1− 𝜉-adaptive for 𝜉 = min{1
2
, 𝐿}.

Part 2. Bounds for the buyer. We őrst follow a similar approach as the proof of

Theorem 4.5.2 to upper bound the buyer regret.

Let 𝑑 be the posted price in the őnal exploitation episode (see Algorithm 4), and
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denote ℰ = Θ(𝑇 1−𝜉+𝜖) as all periods within exploration episodes. Then using the

same arguments as in Equations (C.17) and (C.18), we can show the buyer’s hindsight

objective can be bounded as

OPT(𝑑1:𝑇 ) ≤ Θ(𝑇 𝜉+𝜖) + (𝑇 − |ℰ|)𝑈(𝑑) .

Since the buyer approximately best responds w.r.t. 𝑥̂𝑡 which is the optimal solution

to the problem 𝑈̂𝑡(𝑑) Equation (C.23), recall the buyer’s decision 𝑧𝑡 can be written as

in Equation (C.20):

𝑧𝑡 =
∑︁

𝑛∈[𝑁 ]

𝑥̂𝑡,𝑛I{𝑣𝑡 = 𝑉𝑛}

Hence, E[𝑣𝑡𝑧𝑡|ℱ𝑡−1] =
∑︀

𝑛∈[𝑁 ] 𝑔𝑛𝑉𝑛𝑥̂𝑡,𝑛. Let 𝐶 and 𝑇0 be deőned as in Lemma C.4.1,

and thus the buyer’s regret can be thus bounded as followed

Regbuy = OPT(𝑑1:𝑇 )−
∑︁

𝑡∈[𝑇 ]

E [𝑣𝑡𝑧𝑡]

≤ Θ(𝑇 𝜉+𝜖) +
∑︁

𝑡∈[𝑇 ]/ℰ
E [(𝑈(𝑑)− 𝑔𝑛𝑥̂𝑡,𝑛)]

≤ Θ(𝑇 𝜉+𝜖) + 𝑇0 +
∑︁

𝑡∈[𝑇 ]/ℰ:𝑡>𝑇0

E [(𝑈(𝑑)− 𝑔𝑛𝑥̂𝑡,𝑛)]

(𝑖)

≤ Θ(𝑇 𝜉+𝜖) + 𝑇0 + 𝐶
√
𝑁

∑︁

𝑡∈[𝑇 ]/ℰ:𝑡>𝑇0

‖𝑔 − 𝑔𝑡‖

(𝑖𝑖)

≤ Θ(𝑇 𝜉+𝜖) + 𝑇0 + 𝐶
√
𝑁

∑︁

𝑡∈[𝑇 ]/ℰ
ℓ𝑡

(𝑖𝑖𝑖)

≤ Θ(𝑇 𝜉+𝜖) + 𝑇0 + 𝐶
√
𝑁 ̃︀𝜑(𝑇 − |ℰ|)

(𝑖𝑣)
= Θ(𝑇 𝜉+𝜖) .

In (i), we applied Lemma C.4.1 for the value (A) deőned in Equation (C.24); (ii)

follows from the deőnition of the estimation errors ℓ𝑡 ≥ ‖𝑔 − 𝑔𝑡‖; (iii) follows from

the assumption that for any exploration or exploitation episode ℰℎ, the total error
∑︀

𝑡∈ℰℎ ℓ𝑡 is upper bounded by ̃︀𝜑(𝑇 − |ℰ| where ̃︀𝜑 is an increasing function; (iv) follows
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from the fact that ̃︀𝜑(𝑥) ≤ 𝒪(𝑇 1−𝐿) ≤ 𝒪(𝑇 1−𝜉).

Now we show the buyer constraint violation is small, namely

1

𝑇
E

⎡
⎣∑︁

𝑡∈[𝑇 ]

(𝑣𝑡 − 𝛾𝑑𝑡) 𝑧𝑡

⎤
⎦ ≥ −Θ(𝑇−𝐿) and

1

𝑇
E

⎡
⎣∑︁

𝑡∈[𝑇 ]

𝑑𝑡𝑧𝑡

⎤
⎦ ≤ 𝜌+Θ(𝑇−𝐿) .

The proofs for both inequalities are very similar, so here we just show 1
𝑇
E
[︁∑︀

𝑡∈[𝑇 ] (𝑣𝑡 − 𝛾𝑑𝑡) 𝑧𝑡
]︁
≥

−Θ(𝑇−𝐿). Similar to the above where we bounded buyer’s regret, we have E[(𝑣𝑡 − 𝛾𝑑𝑡) 𝑧𝑡|ℱ𝑡−1] =
∑︀

𝑛∈[𝑁 ] 𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥̂𝑡,𝑛, and thus for all exploration and exploitation episodes ℰ1 . . . ℰ𝐻
(assuming there are 𝐻 episodes), we have

−E

⎡
⎣∑︁

𝑡∈[𝑇 ]

(𝑣𝑡 − 𝛾𝑑𝑡) 𝑧𝑡

⎤
⎦ =

∑︁

𝑡∈[𝑇 ]

E

⎡
⎣−

⎛
⎝ ∑︁

𝑛∈[𝑁 ]

𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥̂𝑡,𝑛

⎞
⎠
⎤
⎦

≤
∑︁

𝑡∈[𝑇 ]

E

⎡
⎣
⎛
⎝−

∑︁

𝑛∈[𝑁 ]

𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥̂𝑡,𝑛

⎞
⎠

+

⎤
⎦

(𝑖)

≤
√
𝑁

∑︁

𝑡∈[𝑇 ]

ℓ𝑡

=
√
𝑁

∑︁

ℎ∈[𝐻]

∑︁

𝑡∈ℰℎ

ℓ𝑡

(𝑖𝑖)

≤
√
𝑁

∑︁

ℎ∈[𝐻]

𝒪(|ℰℎ|1−𝐿)

= Θ(𝑇 1−𝐿)

where (i) follows from the upper bound of (B) (Equation (C.24)) in Lemma C.4.1; (ii)

follows from the assumption that for any exploration and exploitation episode ℰℎ the

errors {ℓ𝑡}𝑡 satisfy
∑︀

𝑡∈ℰℎ ℓ𝑡 ≤ ̃︀𝜑(|ℰℎ|) for some increasing function ̃︀𝜑 : R+ → R+ and

̃︀𝜑(𝑥) ≤ 𝒪(𝑥1−𝐿).

Finally, dividing both sides by 𝑇 yields the desired bound 1
𝑇
E
[︁∑︀

𝑡∈[𝑇 ] (𝑣𝑡 − 𝛾𝑑𝑡) 𝑧𝑡
]︁
≥

−Θ(𝑇−𝐿).
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C.4.4 Proof of Theorem 4.5.4

We know that the empirical estimates 𝑔𝑡 ∈ ∆𝑁 for the buyer’s value distribution

𝑔 ∈ ∆𝑁 deőned in Equation (4.8) follow a multinomial distribution, i.e. 𝑔𝑡 ∼
1
𝑡
Multinomial(𝑡, 𝑔). Therefore, applying Lemma C.5.3 by taking 𝛿 = 1/𝑇 2 , we have

w.p. at least 1− 1/𝑇 2 the following event holds

𝒢𝑡 :=
{︃
‖𝑔𝑡 − 𝑔‖ ≤ ℓ𝑡 :=

√︂
2𝑁 log(2𝑇 2)

𝑡

}︃
(C.25)

Here we used the fact that ‖𝑥‖ ≤ ‖𝑥‖1 for any vector 𝑥. Hence, using a simple union

bound, the event ∪𝑡∈[𝑇 ]𝒢𝑡 holds w.p. at least 1− 1/𝑇 . Further, for any exploration or

exploitation episode ℰ , we have

∑︁

𝑡∈ℰ
ℓ𝑡 ≤

∑︁

𝜏∈[|ℰ|]

√︂
2𝑁 log(2𝑇 2)

𝜏
≤ ̃︀𝜑(|ℰ|) (C.26)

for some increasing function ̃︀𝜑 s.t. ̃︀𝜑(𝑥) ≤ 𝒪(𝑥 1
2 ). Hence, w.p. at least 1 − 1/𝑇 ,

the estimation errors {ℓ𝑡}𝑡 deőned above satisfy the conditions in Theorem 4.5.3 for

large enough 𝑇 , i.e. lim𝑡→∞ ℓ𝑡 = 0 and
∑︀

𝑡∈ℰ ℓ𝑡 ≤ ̃︀𝜑(|ℰ|) for any any exploration or

exploitation episode ℰ where increasing function ̃︀𝜑 : R+ → R+ and ̃︀𝜑(𝑥) ≤ 𝒪(𝑥1−𝐿).

The rest of the proof directly follows from Theorem 4.5.3.

C.4.5 Proof of Lemma C.4.1

Consider the region

𝒞 =

⎧
⎨
⎩𝑥 ∈ [0, 1]𝑁 : −

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑉𝑛𝑥𝑛 ≤ −𝑈(𝑑),−
∑︁

𝑛∈[𝑁 ]

𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥𝑛 ≤ 0, 𝑑
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥𝑛 ≤ 𝜌

⎫
⎬
⎭

(C.27)

By Lemma 4.3.1, we know that 𝑥𝑑 is the unique optimal solution to 𝑈(𝑑), and hence

𝒞 consists of the single point 𝑥𝑑, namely 𝒞 = {𝑥𝑑}. Now consider the optimal solution
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𝑥̂𝑡 ∈ [0, 1]𝑁 to 𝑈̂𝑡(𝑑) in Equation (C.23), by the Hoffman bound (Lemma C.5.2), there

exists some constant 𝐻 > 0 that only depends on (𝑔,𝑉 ) s.t.

‖𝑥̂𝑡 − 𝑥𝑑‖

≤ 𝐻

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎝𝑈(𝑑)−

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑉𝑛𝑥̂𝑡,𝑛

⎞
⎠

+⏟  ⏞  
(𝐴)

+

⎛
⎝−

∑︁

𝑛∈[𝑁 ]

𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥̂𝑡,𝑛

⎞
⎠

+⏟  ⏞  
(𝐵)

+

⎛
⎝𝑑

∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑥̂𝑡,𝑛 − 𝜌

⎞
⎠

+⏟  ⏞  
𝐶

⎞
⎟⎟⎟⎟⎟⎠

(C.28)

where we used the inequality ‖(𝑦)+‖ ≤
∑︀

𝑛∈[𝑁 ](𝑦𝑛)+ for any vector 𝑦 ∈ R𝑁 . We now

bound (A), (B) and (C) respectively.

Bounding (A). Similar to the proof of Theorem 4.5.2, strong duality holds for the

LP 𝑈̂𝑡(𝑑), and hence there exists optimal dual variables 𝜆̂, 𝜇̂ ∈ R+ s.t.

𝑈̂𝑡(𝑑) =
∑︁

𝑛∈[𝑁 ]

𝑔𝑛𝑉𝑛𝑥̂𝑡,𝑛 = max
𝑥∈[0,1]𝑁

∑︁

𝑛∈[𝑁 ]

𝑔𝑡,𝑛

(︁
(1 + 𝜆̂)𝑉𝑛 − (𝛾𝜆̂+ 𝜇̂)𝑑

)︁
𝑥𝑛 + 𝜌𝜇̂ (C.29)

Since 𝑈̂𝑡(𝑑) ≤ 1, it is easy to see 𝜇̂ ∈ [0, 1/𝜌], and further by considering 𝑥 =

(1, 0 . . . 0) ∈ R𝑁 , we have

1 ≥ 𝑈̂𝑡(𝑑) ≥ 𝑔𝑡,1

(︁
(1 + 𝜆̂)𝑉1 − (𝛾𝜆̂+ 𝜇̂)𝑑

)︁

(𝑖)

≥ 𝑔𝑡,1𝜆̂(𝑉1 − 𝛾𝑑)− 𝜇̂𝑑
(𝑖𝑖)

≥ 𝑔1
2
· 𝜆̂(𝑉1 − 𝛾𝑑)−

1

𝜌

(𝑖𝑖𝑖)⇒ 𝜆̂ ≤ 2

(︂
1 +

1

𝜌

)︂
𝑉1 − 𝛾𝐷1

𝑔1
,

(C.30)

where in (i) we used the fact that 𝑔𝑡,1 ∈ [0, 1]; in (ii) we used the fact that |𝑔𝑡,1− 𝑔1| ≤
‖𝑔𝑡 − 𝑔‖ ≤ ℓ𝑡 <

𝑔1
2

for all 𝑡 > 𝑇0, and also 𝑑 ∈ [0, 1] as well as 𝜇̂ ∈ [0, 1/𝜌]; in (iii), we

used Assumption 4.3.1 s.t. 𝑉1 − 𝛾𝑑 > 0 for all 𝑑 ∈ 𝒟, and 𝑔1 > 0.

238



On the other hand, we have

𝑈(𝑑) ≤ max
𝑥∈[0,1]𝑁

∑︁

𝑛∈[𝑁 ]

𝑔𝑛

(︁
(1 + 𝜆̂)𝑉𝑛 − (𝛾𝜆̂+ 𝜇̂)𝑑

)︁
𝑥𝑛 + 𝜌𝜇̂

(𝑖)

≤ max
𝑥∈[0,1]𝑁

∑︁

𝑛∈[𝑁 ]

𝑔𝑡,𝑛

(︁
(1 + 𝜆̂)𝑉𝑛 − (𝛾𝜆̂+ 𝜇̂)𝑑

)︁
𝑥𝑛 + (1 + 𝜆̂)

∑︁

𝑛∈[𝑁 ]

|𝑔𝑡,𝑛 − 𝑔𝑛|+ 𝜌𝜇̂

(𝑖𝑖)

≤ max
𝑥∈[0,1]𝑁

∑︁

𝑛∈[𝑁 ]

𝑔𝑡,𝑛

(︁
(1 + 𝜆̂)𝑉𝑛 − (𝛾𝜆̂+ 𝜇̂)𝑑

)︁
𝑥𝑛 + 𝜌𝜇̂+ (1 + 𝜆̂)

√
𝑁‖𝑔𝑡 − 𝑔‖

(𝑖𝑖𝑖)
= 𝑈̂𝑡(𝑑) + 2

(︂
1 +

1

𝜌

)︂
𝑉1 − 𝛾𝐷1

𝑔1
·
√
𝑁‖𝑔𝑡 − 𝑔‖

(C.31)

In (i), we used the fact that for all 𝑛 ∈ [𝑁 ], 𝑥𝑛 ∈ [0, 1] and (1+ 𝜆̂)𝑉𝑛− (𝛾𝜆̂+ 𝜇̂)𝑑 ≤
(1 + 𝜆̂)𝑉𝑛 ≤ 1 + 𝜆̂ since all possible values 𝑉𝑛 ∈ [0, 1]; (ii) applies CauchyśSchwarz

inequality; (iii) plugs in Equation (C.29) and (C.30).

Therefore, if 𝑈̂𝑡(𝑑) =
∑︀

𝑛∈[𝑁 ] 𝑔𝑛𝑉𝑛𝑥̂𝑡,𝑛 ≥ 𝑈(𝑑), then (A) = 0, whereas if 𝑈̂𝑡(𝑑) =
∑︀

𝑛∈[𝑁 ] 𝑔𝑛𝑉𝑛𝑥̂𝑡,𝑛 < 𝑈(𝑑), Equation (C.31) implies

(𝐴) ≤ 2

(︂
1 +

1

𝜌

)︂
𝑉1 − 𝛾𝐷1

𝑔1

√
𝑁‖𝑔𝑡 − 𝑔‖ (C.32)

Bounding (B) and (C). The bounds for (B) and (C) are similar, and therefore we

only show that for (B).

(𝐵) =

⎛
⎝−

∑︁

𝑛∈[𝑁 ]

𝑔𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥̂𝑡,𝑛

⎞
⎠

+

(𝑖)

≤

⎛
⎝−

∑︁

𝑛∈[𝑁 ]

𝑔𝑡,𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥̂𝑡,𝑛

⎞
⎠

+

+

⃒⃒
⃒⃒
⃒⃒
∑︁

𝑛∈[𝑁 ]

(𝑔𝑡,𝑛 − 𝑔𝑛) (𝑉𝑛 − 𝛾𝑑) 𝑥̂𝑡,𝑛

⃒⃒
⃒⃒
⃒⃒

(𝑖𝑖)

≤
∑︁

𝑛∈[𝑁 ]

|𝑔𝑡,𝑛 − 𝑔𝑛|

(𝑖𝑖𝑖)

≤
√
𝑁‖𝑔𝑡 − 𝑔‖

(C.33)
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Here, (i) follows from the basic inequality sequence (𝑎+ 𝑏)+ ≤ (𝑎)++(𝑏)+ ≤ (𝑎)++ |𝑏|;
(ii) follows from the fact that 𝑥̂𝑡 is feasible to 𝑈̂𝑡(𝑑) so that

∑︀
𝑛∈[𝑁 ] 𝑔𝑡,𝑛 (𝑉𝑛 − 𝛾𝑑) 𝑥̂𝑡,𝑛 ≥

0, and also |𝑉𝑛 − 𝛾𝑑| ≤ 𝑉𝑛 ≤ 1 and 𝑥̂𝑡,𝑛 ∈ [0, 1]; (iii) follows from the CauchyśSchwarz

inequality.

We can similarly show

(𝐶) ≤
√
𝑁‖𝑔𝑡 − 𝑔‖ (C.34)

Finally, combining Equations (C.28), (C.32), (C.33), and (C.34) yields the desired

result.

C.5 Supplementary lemmas

Lemma C.5.1 (AzumaśHoeffding inequality). beLet 𝑌1 . . . 𝑌𝑛 be a martingale differ-

ence sequence with a uniform bound |𝑌𝑗| ≤ 1 for all 𝑗 ∈ [𝑛]. Then for any 𝛿 ∈ (0, 1/𝑒),

P

⎛
⎝
⃒⃒
⃒⃒
⃒⃒
∑︁

𝑗∈[𝑛]
𝑌𝑗

⃒⃒
⃒⃒
⃒⃒ >

√︀
2𝑛 log(2/𝛿)

⎞
⎠ ≤ 𝛿 .

Lemma C.5.2 (Hoffman bound [68]). Consider a non-empty linear region 𝒞 =

{𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏} for some 𝑏 ∈ R𝑛 and 𝐴 ∈ R𝑚×𝑛. Then, there exists some

constant 𝐻 > 0 that only depends on 𝐴 s.t. for any 𝑦 ∈ R𝑛 we have inf𝑧∈𝒞‖𝑧 − 𝑦‖ ≤
𝐻‖(𝐴𝑦 − 𝑏)+‖. Here (𝑦)+ is the vector that takes the positive parts for each entry in

𝑦, i.e. (𝑦)+ = ((𝑦1)+ . . . (𝑦𝑛)+).

Lemma C.5.3 (Empirical distribution concentration inequality [110]). Let 𝑔 ∈ ∆𝑁

be a 𝑁-dimensional probability simplex (𝑁 ≥ 2), and 𝑔𝑡 ∼ 1
𝑡
Multinomial(𝑡, 𝑔). Then

for any 𝛿 ∈ (0, 1), we have

P

(︃
‖𝑔𝑡 − 𝑔‖1 >

√︂
2𝑁 log(2/𝛿)

𝑡

)︃
≤ 𝛿

See also [98] Proposition 2. for a similar statement to that of Lemma C.5.3.
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Appendix D

Supplementary material for Chapter 5

D.1 Additional material for Section 5.2

Example D.1.1 (Personalized-reserve augmented VCG, GSP, GFP auctions). Con-

sider 𝑀 ≥ 2 parallel position auctions (𝒜𝑗)𝑗∈[𝑀 ] all of which take the form of VCG,

GSP or GFP auctions. Each auction 𝒜𝑗 is associated with 𝐿𝑗 ≥ 1 slots and CTRs

𝜇𝑗 = (𝜇𝑗(ℓ))ℓ∈𝐿𝑗
. Assume 𝑁 bidders submit bid proőle 𝑏𝑗 ∈ R𝑁

+ to auction 𝒜𝑗, where

̃︀𝑁𝑗 ≤ 𝑁 are cleared, i.e. greater than respective personalized reserve prices. Deőne

̃︀𝑏𝑗 ∈ R
̃︀𝑁𝑗

+ to be all łcleared bidsž, and let ̃︀𝑏(ℓ)𝑗 be the ℓth highest cleared bid. Then, in

𝒜𝑗 bidders who cleared their reserves are assigned slots according to the ranking of ̃︀𝑏𝑗,
whereas the bidders who do not clear their reserves never get allocated any slots. The

payment for a bidder 𝑖 who cleared her reserve and allocated slot ℓ𝑖,𝑗 ∈ [min{ ̃︀𝑁𝑗, 𝐿𝑗}]
is

• VCG: 𝑝𝑖,𝑗 =
∑︀min{ ̃︀𝑁𝑗 ,𝐿𝑗}

ℓ=ℓ𝑖,𝑗
(𝜇𝑗(ℓ)− 𝜇𝑗(ℓ+ 1) ·max{̃︀𝑏(ℓ+1)

𝑗 , 𝑟𝑖,𝑗} where ̃︀𝑏(ℓ)𝑗 = 0 when

ℓ > ̃︀𝑁𝑗.

• GSP: 𝑝𝑖,𝑗 = 𝜇𝑗(ℓ𝑖,𝑗) ·max{̃︀𝑏(ℓ𝑖,𝑗+1)
𝑗 , 𝑟𝑖,𝑗}.

• GFP: 𝑝𝑖,𝑗 = 𝜇𝑗(ℓ𝑖,𝑗) ·max{̃︀𝑏(ℓ𝑖,𝑗)𝑗 , 𝑟𝑖,𝑗}.

It is well known that for the same bid proőle 𝑏 and for any bidder 𝑖, the payment

under the GFP auction is greater than equal to that under GSP auction, and the
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payment under the GSP auction is greater than equal to that under VCG; see e.g.

[46].

D.2 Additional material for Section 5.4

D.2.1 Proof for Theorem 5.4.3

Theorem D.2.1 (Restatement of Theorem 5.4.3). Consider 2 bidders competing in

three SPA auctions whose values are indicated in the following table for any 𝛽 ∈ (0, 1)

and 𝑦 ≥ 0.

Auction 1 Auction 2 Auction 3 .

bidder 1 𝑦 𝑣 0

bidder 2 0 𝑣 − 𝜖 𝛾 + 1
1−𝛽
· 𝜖

Bidder 1’s multiplier is őxed to be 𝛼1 > 1, and consider 𝑣 = 1−𝛽
𝛼1−1

· 𝛾 for any 𝛾 > 0.

The reserve prices are set to be 𝑟𝑖,𝑗 = 𝛽𝑣𝑖,𝑗. Then, we have

min
𝑏∈ℱ

𝑊1(𝒳 (𝑏))
OPT1

= 1− 1− 𝛽
𝛼1 − 1

·
OPT−1 − 1

1−𝛽
· 𝜖

OPT1

(D.1)

Taking 𝜖→ 0 shows that bidder 1’s welfare is equal to the individual welfare guarantee

in Theorem 5.4.1.

Remark D.2.1. We remark that as 𝜖→ 0, OPT−𝑖

OPT𝑖
=

𝛼1−1
1−𝛽

𝑣

𝑦+𝑣
∈

[︁
0, 𝛼1−1

1−𝛽

]︁
, so by varying

𝑦 ∈ [0,∞), the above example demonstrates our individual welfare lower bound in

Theorem 5.4.1 is tight for any nontrivial market share ratio OPT𝑖

OPT−𝑖
∈

[︁
𝛼1−1
1−𝛽

,∞
)︁
.

Proof. Note that in any feasible outcome, bidder 1 must win auction 1, and bidder

2 must win auction 3. Hence for auction 2, we only need to consider the following

outcome:
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Bidder 1 loses auction 2, and suffers welfare loss 𝑣. This outcome can

be achieved by setting 𝛼2 such that 𝛼2(𝑣 − 𝜖) > 𝛼1𝑣. Bidder 2 accumulates value

𝑣+𝛾+
(︁

1
1−𝛽
− 1

)︁
𝜖. Her payment for auction 2 is max{𝛼1𝑣, 𝛽(𝑣− 𝜖)}, and for auction

3 is 𝛽
(︁
𝛾 + 1

1−𝛽
· 𝜖
)︁
. The following shows that her ROAS constraint is satisőed:

𝑣 + 𝛾 +

(︂
1

1− 𝛽 − 1

)︂
𝜖−max{𝛼1𝑣, 𝛽(𝑣 − 𝜖)} − 𝛽

(︂
𝛾 +

1

1− 𝛽 · 𝜖
)︂

(𝑎)
= 𝑣 + 𝛾 +

(︂
1

1− 𝛽 − 1

)︂
𝜖− 𝛼1𝑣 − 𝛽

(︂
𝛾 +

1

1− 𝛽 · 𝜖
)︂

= (1− 𝛼1) 𝑣 + (1− 𝛽)𝛾 +

(︂
1

1− 𝛽 − 1− 𝛽 · 1

1− 𝛽

)︂
𝜖

= 0 ,

where in (a) we used the fact 𝛽 ≤ 1 < 𝛼1 and 𝜖 → 0. In the őnal equality we used

the deőnition that 𝑣 = 1−𝛽
𝛼1−1

· 𝛾. On the other hand, bidder 1’s ROAS constraint is

apparently satisőed.

Under this outcome, denoting bidder 1’s welfare as 𝑊1 we have

𝑊1

𝑂𝑃𝑇1
= 1− 𝑣

𝑂𝑃𝑇1
= 1− 1− 𝛽

𝛼𝑖 − 1
· 𝛾

OPT𝑖

= 1− 1− 𝛽
𝛼𝑖 − 1

·
OPT−𝑖 − 1

𝛽
· 𝜖

OPT𝑖

D.2.2 Proof of Proposition 5.4.4

Proof. For simplicity, denote 𝛿𝑖,𝑗 = OPT𝑖,𝑗 −𝑊𝑖,𝑗(𝑥). Then,

OPT𝑖 −𝑊𝑖(𝑥) =
∑︁

𝑗∈[𝑀 ]:𝛿𝑖,𝑗>0

𝛿𝑖,𝑗 +
∑︁

𝑗∈[𝑀 ]:𝛿𝑖,𝑗=0

𝛿𝑖,𝑗 +
∑︁

𝑗∈[𝑀 ]:𝛿𝑖,𝑗<0

𝛿𝑖,𝑗

= loss𝑖(𝑥) +
∑︁

𝑗∈[𝑀 ]:𝑊𝑖,𝑗(𝑥)>OPT𝑖,𝑗

(OPT𝑖,𝑗 −𝑊𝑖,𝑗(𝑥)) ≤ loss𝑖(𝑥) ≤ 𝐵 .

Rearranging and dividing both sides by OPT𝑖 we get 𝑊𝑖(𝑥)
OPT𝑖

≥ 1− 𝐵
OPT𝑖

.

Here we remark that it is possible to have 𝑊𝑖,𝑗(𝑥) > OPT𝑖,𝑗 because bidders may

overbid, and therefore win auctions/slots that they would not have won under the
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efficient outcome.

D.2.3 Proof of Lemma 5.4.7

Proof. Recall there is ∆-separation in values. Fix a bidder 𝑖 and let 𝑣+𝑗 be the smallest

competitor value that is strictly greater than 𝑣𝑖,𝑗 in any auction 𝒜𝑗 where bidder 𝑖’s

value is not the largest, and by deőnition of ∆-separated values we have 𝑣+𝑗 ≥ ∆𝑣𝑖,𝑗.

Hence, by using any multiplier 𝛼𝑖 ∈ [1,∆) and assuming competitors bid truthfully,

the outcome of the auctions would be identical to that of everyone (including bidder

𝑖) bidding truthfully. And since truthful bidding is always feasible, we conclude that

𝑣−𝑖 ∈ ℱ𝑢
−𝑖(𝛼𝑖𝑣𝑖) for 𝛼𝑖 ∈ [1,∆).

D.3 Additional material for Section 5.5

D.3.1 Additional Deőnitions and Lemmas for Section 5.5

The following lemma shows that for anonymous and truthful auctions, the probability

of the lowest bidder winning a single auction is capped by a bound that decreases as

the number of bidders grow.

Lemma D.3.1 (Lemma 3 in [89]). In an anonymous and truthful auction for a

single item with 𝑁 bidders, the bidder who submits the lowest bid wins the item with

probability at most 1
𝑁

.

The following technical deőnition and lemma (i.e. Deőnition D.3.1 and Lemma

D.3.2) concerns the scenario where only one bidder participates in the auction (others

bid 0), and present an upper bound on the probability and cost respectively for the

single bidder to win the auction.

Deőnition D.3.1 (Single bidder purchase probability and bid threshold). For any

allocation-anonymous and truthful auction 𝒜, consider the setting with a single bidder
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who submits bid 𝑏 > 0 and deőne

𝜋𝒜 = lim
𝑏→∞

P(bidder wins item with bid 𝑏) , (D.2)

where the limit exists because in a truthful auction, P(bidder wins item with bid 𝑏)

increases in 𝑏 (see Deőnition 5.2.1 for truthful auctions). Assume this max probability

is reached at some bid threshold 𝑄𝒜, i.e.

𝑄𝒜 = min {𝑏 > 0 : P(bidder wins item with bid 𝑏) = 𝜋𝒜} . (D.3)

Note that in a deterministic single-slot auction that allocates to the highest bidder,

𝜋𝒜 = 1, and 𝑄𝒜 → 0. For example, in an SPA with no reserve, the single bidder can

win the auction with any arbitrarily small positive bid with probability 1.

Lemma D.3.2 (Lemma 4 in [89]). For any allocation-anonymous and truthful auction

𝒜 with single-bidder purchase probability 𝜋𝒜 and bid threshold 𝑄𝒜, the expected cost

for a single bidder for winning the item is at most 𝜋𝒜 ·𝑄𝒜.

D.3.2 Proof of Theorem 5.5.1

Theorem D.3.3 (Restatement of Theorem 5.5.1). For any auction 𝒜 that is allocation-

anonymous, truthful, and possibly randomized, 1 consider an autobidding problem

instance w.r.t. 𝒜 with 𝑀 = 2𝐾 + 1 auctions and 𝑁 = 𝐾 + 1 bidders. Fix bidder 0’s

bid multiplier to be 𝛼0 and some 𝛽 ∈ [0, 1). Consider the bidder values {𝑣𝑖,𝑗}𝑖∈[𝑁 ],𝑗∈[𝑀 ]

given in the following table.

1Here, we assume all auctions of interest are individually rational (IR), i.e. the payment of a
bidder is always less than her submitted bid.
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𝐴1 𝐴2 . . . 𝐴𝐾 𝐴𝐾+1 𝐴𝐾+2 . . . 𝐴2𝐾 𝐴2𝐾+1

𝐵1
𝛼0𝑣+𝜖

𝜌
𝛼0𝑣+2𝜖

𝜌
. . . 𝛼0𝑣+𝐾𝜖

𝜌
𝛾 0 . . . 0 0

𝐵2
𝛼0𝑣+2𝜖

𝜌
𝛼0𝑣+3𝜖

𝜌
. . . 𝛼0𝑣+𝜖

𝜌
0 𝛾 . . . 0 0

...
...

...
...

...
...

...
...

𝐵𝐾
𝛼0𝑣+𝐾𝜖

𝜌
𝛼0𝑣+𝜖

𝜌
. . . 𝛼0𝑣+(𝐾−1)𝜖

𝜌
0 0 . . . 𝛾 0

𝐵0 𝑣 𝑣 . . . 𝑣 0 0 . . . 0 𝑦

In the table, we let 𝛾 > 𝑄𝒜

𝛽
> 𝑄𝒜, 𝜖 = 𝑂(1/𝐾3) and 𝑣 = 1−𝛽

𝛼0−1
· 𝜋𝒜 · 𝛾. Let 𝜌, 𝑦 and a

large enough 𝐾 satisfy the following:

𝛼0 < 𝜌 <
𝛼0

𝛽
s.t.

𝛼0𝑣 +𝐾𝜖

𝜌
< 𝑣, and 𝑦 > max

{︂
𝑄𝒜
𝛼0

,
𝛼0𝑣

𝜋𝒜

}︂
, (D.4)

where 𝑄𝒜, 𝜋𝒜 are deőned in Deőnition D.3.1. Further, suppose the platform

enforces personalized reference prices 𝑟 ∈ R𝑁×𝑀
+ on top of auction 𝒜, where 𝑟𝑖,𝑗 = 𝛽𝑣𝑖,𝑗.

Then, letting the (possibly random) outcome be 𝑥 when bidders 1, ... K all adopt the

bid multiplier 𝜌, the ROAS constraints for all bidders are satisőed when 𝐾 →∞ and

𝜌→ 𝛼0, and for bidder 0 we have

lim
𝐾→∞

E𝒜 [𝑊0(𝑥)]

E𝒜 [OPT0]
≤ 1− 1− 𝛽

𝛼0 − 1
· lim
𝐾→∞

E𝒜 [OPT−0]

E𝒜 [OPT0]
(D.5)

where E𝒜 is taken w.r.t. the randomness in outcome 𝑥 due to randomness in the

auction 𝒜.

Proof. First note that bidder 0 only has competition in auctions 𝐴1...𝐴𝐾 , and hence
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can only incur a loss (that contributes to loss0(𝑥) deőned in Equations (5.6)) within

these auctions. Hence E𝒜[loss0(𝑥)] = 𝑣
∑︀

𝑗∈[𝐾] P(bidder 0 loses auction 𝑗). Then we

consider the following:

E𝒜[loss0(𝑥)] = 𝑣
∑︁

𝑗∈[𝐾]

P(bidder 0 loses auction 𝑗)

= 𝑣
∑︁

𝑗∈[𝐾]

(1− P(bidder 0 wins auction 𝑗))

(𝑎)

≥ 𝑣 · 𝐾2

𝐾 + 1
=

1− 𝛽
𝛼0 − 1

· 𝛾 · 𝜋𝒜 ·
𝐾2

𝐾 + 1

(𝑏)
=

1− 𝛽
𝛼0 − 1

· E𝒜 [OPT−0] ·
𝐾

𝐾 + 1
.

(D.6)

Here (a) holds because bidder 0 bids 𝛼0𝑣 for any auction in 1,2...K, which is strictly

less than all other bidders’ bids as they all adopt multipliers 𝜌 in these auctions,

so from Lemma D.3.1, we have P(bidder 0 wins auction 𝑗) ≤ 1
𝐾+1

; in (b) we used

the fact that E𝒜 [OPT−0] =
∑︀2𝐾

𝑗=𝐾+1 E𝒜 [𝛾] = 𝛾 ·𝐾 · 𝜋𝒜 since there is only a single

non-zero bidder in auctions 𝐴𝐾+1 . . . 𝐴2𝐾 and each bidder submits a bid 𝜌𝛾 > 𝜌 > 𝑄𝒜

(see Deőnition D.3.1).

Therefore we have

lim
𝐾→∞

E𝒜 [𝑊0(𝑥)]

E𝒜 [OPT0]

(𝑎)
= 1− lim

𝐾→∞

E𝒜 [loss0(𝑥)]

E𝒜 [OPT0]
≤ 1− 1− 𝛽

𝛼0 − 1
lim

𝐾→∞

E𝒜 [OPT−0]

E𝒜 [OPT0]
, (D.7)

where (a) follows from the fact that in our constructed autobidding instance, bidder

0’s acquired value in each auction cannot exceed that under the efficient allocation,

and hence can only incur loss in welfare.

Now it only remains to show that the multiplies (𝛼0, 𝜌, . . . 𝜌) ∈ (1,∞)𝐾+1 yields a

feasible outcome, i.e. the ROI constraints of each bidder is satisőed in expectation.

Let 𝑉𝑖,𝑗 and 𝐶𝑖,𝑗 be the expected value and cost of bidder 𝑖 in auction 𝐴𝑗 , respectively.

1. Showing bidder 0’s ROI constraint is satisőed. We show by the following:

bidder 0 only incurs a non-zero expected cost in auctions 𝐴1 . . . 𝐴𝐾 and 𝐴2𝐾+1, and

we will show that the expected value 𝑉0,2𝐾+1 is lower bounded by the expected costs
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𝐶0,2𝐾+1 +
∑︀

𝑗∈[𝐾]𝐶0,𝑗.

Since 𝛼0𝑦 > 𝑄𝒜, the deőnition of the single-bidder purchasing probability in

Deőnition D.3.1 implies that bidder 0 acquires an expected value from auction 𝐴2𝐾+1

of 𝑉0,2𝐾+1 = 𝜋𝒜𝑦. Further, since bidder 0 is submits the lowest bids in auctions

𝐴1 . . . 𝐴𝐾 under bid multiplier proőle (𝛼0, 𝜌 . . . 𝜌) ∈ (0,∞)𝐾+1, from Lemma D.3.1,

we have P(bidder 0 wins auction 𝑗) ≤ 1
𝐾+1

for all 𝑗 ∈ [𝐾]. Since the payment of a

bidder in an auction is at most her submitted bid (as the auction is IR), we know

that
∑︀

𝑗∈[𝐾]𝐶0,𝑗 ≤ 𝐾 · 𝛼0𝑣
𝐾+1

< 𝜋𝒜𝑦 = 𝑉0,2𝐾+1, where the inequality follows from the

deőnition of 𝑦 in Equation (D.4) such that 𝑦 > max
{︁

𝑄𝒜

𝛼0
, 𝛼0𝑣
𝜋𝒜

}︁
. This implies bidder

0’s ROI constraint is satisőed.

2. Showing bidder 𝑖’s ROI constraint is satisőed for any 𝑖 = 1, 2 . . . 𝐾.

We show this by considering the following: bidder 𝑖 only incurs a non-zero expected

cost in auctions 𝐴1 . . . 𝐴𝐾 and 𝐴𝐾+𝑖, and we will show that the expected values

𝑉𝑖,𝐾+𝑖 +
∑︀

𝑘∈[𝐾] 𝑉𝑖,𝑗 is lower bounded by the expected costs 𝐶𝑖,𝐾+𝑖 +
∑︀

𝑗∈[𝐾]𝐶𝑖,𝑗.

• Calculate cost 𝐶𝑖,𝐾+𝑖: For auction 𝐴𝐾+𝑖, bidder 𝑖’s bid is 𝜌𝛾 > 𝛾 > 𝑄𝒜 from

the deőnition of 𝛾, so by Deőnition D.3.1, the probability of 𝑖 winning the item

in auction 𝐴𝐾+𝑖 is 𝜋𝒜, and the expected cost is

𝐶𝑖,𝐾+𝑖 ≤ 𝜋𝒜 ·max {𝑟𝑖,𝐾+𝑖, 𝑄𝒜} ≤ 𝜋𝒜 · 𝛽𝛾 , (D.8)

where the őnal inequality follows from the deőnition 𝑟𝑖,𝐾+𝑖 = 𝛽𝛾

• Upper bound costs
∑︀

𝑗∈[𝐾]𝐶𝑖,𝑗: For auctions [𝐾] = 1 . . . 𝐾, bidder 𝑖’s total

expected cost can be bounded as

∑︁

𝑗∈[𝐾]

𝐶𝑖,𝑗 ≤ 𝜌
∑︁

𝑗∈[𝐾]

𝑣𝑖,𝑗P (bidder 𝑖 wins auction 𝐴𝑗)

= 𝛼0𝑣
∑︁

𝑗∈[𝐾]

P (bidder 𝑖 wins auction 𝐴𝑗) +
(𝐾 + 1)𝐾

2
𝜖 .

(D.9)

where the őrst inequality follows from a bidder’s payment is at most her submitted

bid since the auction is IR.
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• Calculate 𝑉𝑖,𝐾+𝑖: Considering auction 𝐴𝐾+𝑖, bidder 𝑖 is the only bidder, and

since 𝜌𝛾 > 𝛾 > 𝑄𝒜, the deőnition of the single-bidder purchasing probability

in Deőnition D.3.1 implies that bidder 𝑖’s acquires an expected value from this

auction of

𝑉𝑖,𝐾+𝑖 = 𝜋𝒜 · 𝛾 . (D.10)

• Lower bound
∑︀

𝑘∈[𝐾] 𝑉𝑖,𝑗:

∑︁

𝑘∈[𝐾]

𝑉𝑖,𝑗 ≥
𝛼0𝑣

𝜌

∑︁

𝑗∈[𝐾]

P (bidder 𝑖 wins auction 𝑗) . (D.11)

Combining Equations (D.8),(D.9),(D.10) and (D.11), we get

∑︁

𝑗∈[𝐾]

𝑉𝑖,𝑗 + 𝑉𝑖,𝐾+𝑖 −

⎛
⎝∑︁

𝑗∈[𝐾]

𝐶𝑖,𝑗 + 𝐶𝑖,𝐾+𝑖

⎞
⎠

≥ 𝜋𝒜 · 𝛾 +
𝛼0𝑣

𝜌
·
∑︁

𝑗∈[𝐾]

P (bidder 𝑖 wins auction 𝑗)

−

⎛
⎝𝜋𝒜 · 𝛽𝛾 + 𝛼0𝑣 ·

∑︁

𝑗∈[𝐾]

P (bidder 𝑖 wins auction 𝑗) +
(𝐾 + 1)𝐾

2
𝜖

⎞
⎠

= 𝜋𝒜 · (1− 𝛽)𝛾 −
(︂
𝛼0 −

𝛼0

𝜌

)︂
𝑣 ·

∑︁

𝑗∈[𝐾]

P (bidder 𝑖 wins auction 𝑗)− (𝐾 + 1)𝐾

2
𝜖

(𝑎)
= (𝛼0 − 1)𝑣 −

(︂
𝛼0 −

𝛼0

𝜌

)︂
𝑣 ·

∑︁

𝑗∈[𝐾]

P (bidder 𝑖 wins auction 𝑗)− (𝐾 + 1)𝐾

2
𝜖

(𝑏)

≥ (𝛼0 − 1)𝑣 −
(︂
𝛼0 −

𝛼0

𝜌

)︂
𝑣 − (𝐾 + 1)𝐾

2
𝜖

,

(D.12)

where (a) follows from the deőnition 𝑣 = 1−𝛽
𝛼0−1

· 𝜋𝒜 · 𝛾; In (b) we used the fact

that 𝜌 > 𝛼0 > 1 and
∑︀

𝑗∈[𝐾] P (bidder 𝑖 wins auction 𝐴𝑗) ≤ 1 due to the following:
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Consider the set of bid values ℬ = {𝛼0𝑣, 𝛼0𝑣+ 𝜖, 𝛼0𝑣+2𝜖 . . . 𝛼0𝑣+𝐾𝜖} ⊆ R>0, and we

recognize that any bid value 𝑏𝑘 ∈ ℬ exceeds the maximim reserve price 𝛽𝑣 in auctions

𝐴1...𝐴𝐾 . Therefore the constructed reserve prices do not affect allocation, and hence

by anonymity of auction 𝒜 there exists probabilities 𝑞(ℬ) = (𝑞0(ℬ), 𝑞1(ℬ) . . . 𝑞𝐾(ℬ)) ∈
[0, 1]𝐾+1 where

𝑞𝑘(ℬ) = P(bid value 𝑏𝑘 wins auction 𝒜 given competing bids 𝑏−𝑘) and
𝐾∑︁

𝑘=0

𝑞𝑘(ℬ) ≤ 1.

We recognize that in each auction 𝐴1 . . . 𝐴𝐾 , under bid multipliers (𝛼0, 𝜌, . . . 𝜌) ∈
(1,∞)𝐾+1 the submitted bid proőle is a cyclic permutation of ℬ. Therefore we know

that

∑︁

𝑗∈[𝐾]

P (bidder 𝑖 wins auction 𝑗) =
𝐾∑︁

𝑘=1

𝑞𝑘(ℬ) ≤ 1− 𝑞0(ℬ) ≤ 1

Finally, by taking 𝜌 → 𝛼0 and 𝐾 → ∞ in Equation (D.12), and utilizing 𝜖 =

𝑂(1/𝐾3) we have

lim
𝜌→𝛼0

lim
𝐾→∞

∑︁

𝑗∈[𝐾]

𝑉𝑖,𝑗 + 𝑉𝑖,𝐾+𝑖 −

⎛
⎝∑︁

𝑗∈[𝐾]

𝐶𝑖,𝑗 + 𝐶𝑖,𝐾+𝑖

⎞
⎠ ≥ 0 .

This shows that bidder 𝑖’s ROI constraint is satisőed.

D.4 Additional material for Section 5.6

D.4.1 Proof of Theorem 5.6.2

Proof. For convenience, deőne 𝛿 = 2 − 1
Δ

, so ∆ > 1 implies 𝛿 ∈ (1, 2), and further

1 > 𝛽 > Δ
2Δ−1

implies 1
𝛿
< 𝛽 < 1.

Fix a bidder 𝑖 ∈ [𝐾] and any feasible competing bid proőle 𝑏 ∈ 𝒰 . Denote the

corresponding outcome as 𝑥 = 𝒳 (𝑏), where 𝑥 = (𝑥1...𝑥𝑀) where 𝑥𝑗 ∈ {0, 1}𝑁×𝐿𝑗 is

the outcome vector in auction 𝒜𝑗. Note that by deőnition of 𝒰 which is the set of

250



undominated and feasible bids, under the outcome 𝑥 all bidders’ ROAS constraints

are satisőed. Denote ℓ𝑘,𝑗, ℓ*𝑘,𝑗 to be the position of bidder 𝑘 ∈ [𝑁 ] in auction 𝑗 ∈ [𝑀 ]

under outcome 𝑥 and the efficient outcome, respectively.

Recall in Eq.(5.8) the deőnition for the set of all łcoveringsž for bidder 𝑖, denoted

as 𝒞𝑖(𝑥):

ℬ𝑖(𝑘;𝑥) =
{︀
𝑗 ∈ [𝑀 ] : OPT𝑖,𝑗 > 0, 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗 and ℓ𝑘,𝑗 ≤ ℓ*𝑖,𝑗 < ℓ𝑖,𝑗

}︀

𝒞𝑖(𝑥) = {𝒞 ⊆ [𝑁 ]/{𝑖} : (ℬ𝑖(𝑘;𝑥))𝑘∈𝒞 is a maximal set cover of ℒ𝑖(𝑥)}

where ℒ𝑖(𝑥) = {𝑗 ∈ [𝑀 ] : 𝑊𝑖,𝑗(𝑥) < OPT𝑖,𝑗} is the set of auctions in which bidder

𝑖’s acquired welfare is less than that of her welfare under the efficient outcome; see

Deőnition 5.4.1.

Denote 𝑝𝑘,𝑗 as the payment of any bidder 𝑘, and 𝑏̂ℓ,𝑗 as the ℓth largest bid in any

auction 𝑗 ∈ [𝑀 ]. Similar to the proof of Theorem 5.4.1, őx any covering 𝒞 ⊆ 𝒞𝑖(𝑥),
and any bidder 𝑘 ∈ 𝒞, such that in some auction 𝑗 ∈ ℬ𝑖(𝑘;𝑥), we have 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗 but

ℓ𝑘,𝑗 ≤ ℓ*𝑖,𝑗 < ℓ𝑖,𝑗. Thus following a similar deduction as Eq. (5.12) in the proof of
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Theorem 5.4.1, bidder 𝑘’s payment is lower bounded as follows: for 𝑗 ∈ ℬ𝑖(𝑘;𝑥),

𝑝𝑘,𝑗
(𝑎)

≥
𝐿𝑗∑︁

ℓ=ℓ𝑘,𝑗

(𝜇(ℓ)− 𝜇(ℓ+ 1)) 𝑏̂ℓ+1,𝑗 =

ℓ𝑖,𝑗−1∑︁

ℓ=ℓ𝑘,𝑗

(𝜇(ℓ)− 𝜇(ℓ+ 1)) 𝑏̂ℓ+1,𝑗 + 𝑝𝑖,𝑗

(𝑏)

≥ 𝛽 (𝜇(ℓ𝑘,𝑗)− 𝜇(ℓ𝑖,𝑗)) 𝑣𝑖,𝑗 + 𝛽 · 𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

= 𝛽𝜇(ℓ𝑘,𝑗) · 𝑣𝑖,𝑗

= 𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗 +

(︂
𝛽 − 1

𝛿

)︂(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗 − (1− 𝛽) · 𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

− (1− 𝛽)𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗 +
(︂
1

𝛿
− 𝛽

)︂
𝜇(ℓ*𝑖,𝑗)𝑣𝑖,𝑗 +

(︂
1− 1

𝛿

)︂
𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

(𝑐)

≥ 𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗 +

(︂
𝛽 − 1

𝛿

)︂(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗 − (1− 𝛽) · 𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

−
(︂
1− 1

𝛿

)︂
𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗 +

(︂
1− 1

𝛿

)︂
𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

=

(︂
𝛽 − 1

𝛿

)︂(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗 − (1− 𝛽) · 𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

+
1

𝛿
𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗 +

(︂
1− 1

𝛿

)︂
𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

(D.13)

Here , (a) follows from the fact that for a őx bid proőle, the payment of GSP or GFP for

each bidder in an auction dominates that of VCG (see Example D.1.1 and discussions

thereof); (b) follows from 𝑏̂ℓ,𝑗 ≥ 𝑏𝑖,𝑗 for ℓ ≤ ℓ𝑖,𝑗, and since 𝑏 ∈ 𝒰 ⊆ R𝑁×𝑀
+ is an

undominated bid proőle, Lemma 5.6.1 applies and 𝑏𝑖,𝑗 ≥ 𝛽𝑣𝑖,𝑗. Also 𝑝𝑖,𝑗 ≥ 𝑟𝑖,𝑗 ≥ 𝛽𝑣𝑖,𝑗

be the deőnition of 𝛽-approximate reserves; (c) follows from the fact that 𝛽 > 1
𝛿

and

𝜇(ℓ*𝑖,𝑗) ≤ 𝜇(ℓ𝑘,𝑗) since ℓ𝑘,𝑗 ≤ ℓ*𝑖,𝑗 for any 𝑘 ∈ 𝒞 ⊆ 𝒞𝑖(𝑥) and 𝑗 ∈ ℬ𝑖(𝑘;𝑥); see deőnition

in Eq. (5.8).

On the other hand, we have

∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝑝𝑘,𝑗 +
∑︁

𝑗 /∈ℬ𝑖(𝑘;𝑥)

𝑝𝑘,𝑗 ≤
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 +
∑︁

𝑗 /∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗

𝑝𝑘,𝑗 ≥ 𝛽 · 𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 ∀𝑗 ∈ [𝑀 ] ,

where the őrst inequality follows from bidder 𝑘’s ROAS constraint; the second inequality

follows from the fact that any winning bidder’s payment must be greater than her
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𝛽-approximate reserves.

Combining the above inequalities and rearranging we get

∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝑝𝑘,𝑗 ≤
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 + (1− 𝛽) ·
∑︁

𝑗 /∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 , (D.14)

Summing Eq.(D.13) over all 𝑗 ∈ ℬ𝑖(𝑘;𝑥) and combining with Eq. (D.14), we get

(︂
𝛽 − 1

𝛿

)︂
·

∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗

≤ (1− 𝛽) ·

⎛
⎝ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗 +
∑︁

𝑗 /∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗

⎞
⎠

+
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 −
1

𝛿

∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗 −
(︂
1− 1

𝛿

)︂ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

⏟  ⏞  
𝑌

.

(D.15)
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We now upper bound 𝑌 :

∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 −
1

𝛿

∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗 −
(︂
1− 1

𝛿

)︂ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

=

(︂
1− 1

𝛿

)︂ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 −
1

𝛿

∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗) (𝑣𝑖,𝑗 − 𝑣𝑘,𝑗)

−
(︂
1− 1

𝛿

)︂ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗

=

(︂
1− 1

𝛿

)︂ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗) (𝑣𝑘,𝑗 − 𝑣𝑖,𝑗)−
1

𝛿

∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗) (𝑣𝑖,𝑗 − 𝑣𝑘,𝑗)

+

(︂
1− 1

𝛿

)︂ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

(𝜇(ℓ𝑘,𝑗)− 𝜇(ℓ𝑖,𝑗)) 𝑣𝑖,𝑗

=

(︂
1− 1

𝛿

)︂ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗) (𝑣𝑘,𝑗 − 𝑣𝑖,𝑗)

+
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗
𝛿

(︂
(𝛿 − 1)

(︂
1− 𝜇(ℓ𝑖,𝑗)

𝜇(ℓ𝑘,𝑗)

)︂
−

(︂
1− 𝑣𝑘,𝑗

𝑣𝑖,𝑗

)︂)︂

(𝑎)

≤
(︂
1− 1

𝛿

)︂ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗) (𝑣𝑘,𝑗 − 𝑣𝑖,𝑗) +
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗
𝛿

(︂
(𝛿 − 1)−

(︂
1− 𝑣𝑘,𝑗

𝑣𝑖,𝑗

)︂)︂

=

(︂
1− 1

𝛿

)︂ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗) (𝑣𝑘,𝑗 − 𝑣𝑖,𝑗) +
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗
𝛿

(︂
(𝛿 − 2) +

𝑣𝑘,𝑗
𝑣𝑖,𝑗

)︂

(𝑏)

≤
(︂
1− 1

𝛿

)︂ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗) (𝑣𝑘,𝑗 − 𝑣𝑖,𝑗)

(𝑐)

≤ (1− 𝛽)
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗) (𝑣𝑘,𝑗 − 𝑣𝑖,𝑗) .

(D.16)

where in (a) we recall 𝛿 > 1 and ℓ𝑘,𝑗 < ℓ𝑖,𝑗 for any 𝑘 ∈ 𝒞 and 𝑗 ∈ ℬ𝑖(𝑘;𝑥) so that

𝜇(ℓ𝑘,𝑗) > 𝜇(ℓ𝑖,𝑗); (b) follows from the fact that values are 𝛿-separated, so 𝑣𝑖,𝑗 > 𝑣𝑘,𝑗 for

𝑘 ∈ 𝒞 and 𝑗 ∈ ℬ𝑖(𝑘;𝑥) implies 𝑣𝑘,𝑗
𝑣𝑖,𝑗
≤ 1

Δ
= 2− 𝛿; in (c) we used the fact that 𝛽 > 1

𝛿
so

1− 𝛽 < 1− 1
𝛿
, and the fact that 𝑣𝑘,𝑗 < 𝑣𝑖,𝑗 for any 𝑘 ∈ 𝒞 and 𝑗 ∈ ℬ𝑖(𝑘;𝑥).
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Combining Equations (D.15) and (D.16) we get

(︂
𝛽 − 1

𝛿

)︂
·

∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗

≤ (1− 𝛽) ·

⎛
⎝ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗 +
∑︁

𝑗 /∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 +
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗) (𝑣𝑘,𝑗 − 𝑣𝑖,𝑗)

⎞
⎠

= (1− 𝛽) ·

⎛
⎝ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗 +
∑︁

𝑗∈[𝑀 ]

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 −
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑘,𝑗)𝑣𝑖,𝑗

⎞
⎠

(𝑎)

≤ (1− 𝛽) ·

⎛
⎝ ∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ𝑖,𝑗)𝑣𝑖,𝑗 +
∑︁

𝑗∈[𝑀 ]

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗 −
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

𝜇(ℓ*𝑖,𝑗)𝑣𝑖,𝑗

⎞
⎠ .

=⇒
∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗 ≤

1− 𝛽
1− 1

𝛿

∑︁

𝑗∈[𝑀 ]

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗

(D.17)

where (a) follows from 𝜇(ℓ*𝑖,𝑗) ≤ 𝜇(ℓ𝑘,𝑗) due to the fact that ℓ𝑘,𝑗 < ℓ𝑖,𝑗 for any 𝑘 ∈ 𝒞
and 𝑗 ∈ ℬ𝑖(𝑘;𝑥).

Summing the above over all 𝑘 ∈ 𝒞, and following the same arguments as in

Eq.(5.10) of the proof of Theorem 5.4.1, we have

loss𝑖(𝑥) =
∑︁

𝑗∈ℒ𝑖(𝑥)

(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗

≤
∑︁

𝑘∈𝒞

∑︁

𝑗∈ℬ𝑖(𝑘;𝑥)

(︀
𝜇(ℓ*𝑖,𝑗)− 𝜇(ℓ𝑖,𝑗)

)︀
𝑣𝑖,𝑗

≤ 1− 𝛽
1− 1

𝛿

∑︁

𝑘∈𝒞

∑︁

𝑗∈[𝑀 ]

𝜇(ℓ𝑘,𝑗)𝑣𝑘,𝑗

=
1− 𝛽
1− 1

𝛿

∑︁

𝑘∈𝒞
𝑊𝑘(𝑥)

≤ 1− 𝛽
1− 1

𝛿

𝑊−𝑖(𝑥)

≤ 1− 𝛽
1− 1

𝛿

(OPT−𝑖 + loss𝑖(𝑥)) .

(D.18)

Rearranging we get loss𝑖(𝑥) ≤ 1−𝛽

𝛽− 1
𝛿

OPT−𝑖 = 1−𝛽

𝛽− Δ
2Δ−1

OPT−𝑖. Finally, applying
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Proposition 5.4.4 w.r.t. upper bound of loss𝑖(𝑥) and using the fact that the competing

bid proőle is arbitrary, we obtain the desired welfare guarantee lower bound.
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