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Abstract

The generation of data by machine learning models is a powerful concept that has im-
pacted the field of Artificial Intelligence in the past few years. In this thesis, we focus
on building a software library to facilitate the workflow, evaluation, and analysis of
generative models. Our work is primarily aimed at helping a specialty chemicals com-
pany use a state of the art molecule generation model for their specific applications.
We reference the body of work containing the model as DEG, short for Data-Efficient
Graph Grammar Learning for Molecular Generation [16]. DEG is capable of creating
synthesizable molecules from small amounts of data, making it quite attractive for
companies looking for practical methods to explore new molecules. As an overarching
goal, we will design our library to incorporate other types of generative models and
become a tool that the field can benefit from.
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Chapter 1

Thesis

1.1 Introduction

A general issue with AI applications is that adapting research-tailored codebases for

a new domain or application is often difficult. The code is normally designed in the

context of the research, and the API’s are made to handle situations within that

context.

This issue is readily visible in the case of the chemicals company we work with.

They would like to use the algorithms developed in DEG to create graph grammars

that can generate synthesizable molecules. However, they do not want to be restricted

by the limitations of the research codebase and have asked us to extend it to allow

for different use cases. For example, one desired extension they would like to have

is the ability to optimize the learned grammars with different objective functions, or

metrics, as they are called in DEG. Theoretically, they could go into the code and do

this themselves, but they would need to read line-by-line to see where to make the

change and ensure the new code does not break any of the existing logic. Figuring

this out would then require an understanding of how the entire codebase works. And

if the code does not have proper abstractions and structure to begin with, a future

change might require modifying what they have already changed before, creating a

maintainability problem. In general, software should be designed such that its users

can use the features that interest them without needing to delve into the code nor
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modify it [3]. It should also be implemented with scalability in mind, ensuring that

future additions will not break the current version nor require major refactoring [6].

In this thesis, we dive into the motivation, design, and implementation of DEG2.0,

a software library made to facilitate the use of DEG for our customer (the chemicals

company). We also frame the discussion within the context of a secondary goal, gen-

eralizing the library to work with other types of generative models, focusing initially

on expanding DEG to different domains.

We begin by introducing some of the background needed to appreciate the im-

portance of generative models and establish the context of the specific problem we

tackled.

1.1.1 Generative Models

The goal of generative models is to compress the underlying distribution of data such

as natural images, audio waveforms, or text, into a set of parameters that can be

used to generate new data. They can take many forms, such as Generative Adversar-

ial Networks (GAN) [15], Variational Autoencoders (VAE) [21], and Autoregressive

Models [25]. These models have important applications in real-world problems such

as denoising images and generating synthetic data. They have even gained popular-

ity within the art community through the unique images generated by models like

Google’s BigGAN [4] and OpenAI’s DALL-E [29].

Given the potential generative models have to attack a variety of problems, de-

signing flexible software to leverage their implementations is an important task.

1.1.2 Molecule Generation

When it comes to designing molecules to meet a specific goal, chemists often rely on

their intuition of what types of molecules could be useful for their given problem [23].

Having a computer compactly learn the distribution of useful molecules and sample

from it would allow chemists to focus on synthesizing and testing molecules rather

than designing them from scratch. Generative models are a natural solution for this.
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There are many aspects that make this problem difficult and interesting, making it

an important research topic within the field.

Most approaches for generating molecules are based on deep neural networks.

Deep learning is a data hungry approach and requires large datasets for training

(in the order of 10s of thousands). The issue with this is that in practice, acquiring

chemical data is too difficult to build datasets of that magnitude [36]. Even if the data

was available, there is no guarantee that the generated molecules are synthesizable.

Another possible approach is to generate molecules from a "formal grammar". A

formal grammar can be thought of as a set of rules from which to build a language.

In our case, this language is a language of molecules (details in the following section).

With grammar approaches, one can make some assumptions about the ouputs since

they are constrained by the grammar rules. Also, less data is required to reach good

performance since the approach moves away from deep learning and instead uses a

smaller, grammar-based model. Unfortunately, an issue with this approach is that

creating the grammar can be difficult. Some experts have tried to manually specify

it, but this is not scalable since the grammar would need to be re-created each time

the training data changes and humans are prone to making mistakes [8].

DEG deals with all of these issues and adds additional contributions. By learn-

ing a graph grammar from the training data, the model generates molecules that

are automatically in the training set distribution. By using a grammar approach, it

reaches competitive performance with significantly less data (in the order of 10s of

samples). Also, compared to its most similar counterpart [20], it does better at cap-

turing distribution-specific properties (e.g. molecular class substructures) by learning

sub-graphs rather than individual atoms. A key contribution from DEG is the ability

to optimize a grammar with respect to provided metrics. For example, by optimizing

the grammar with respect to the distance between the training set and the gener-

ated set, DEG can generate molecules that are different from the training set. These

metrics allow users of DEG to optimize grammars with respect to different objective

functions, which is one of the key features our customer is interested in.

For more background on formal grammars and graph grammars in the context of
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DEG, read the following two sections.

1.1.3 Formal Grammar

Similar to how the English language has a specific set of rules for combining words into

sentences, rules can be defined for generating a subset of all molecules. These rules

form the grammar that DEG tries to learn. Below, we describe a formal grammar in

the case of strings.

A formal grammar 𝐺 = (𝑁,Σ, 𝑃,𝑋) has a finite set of non-terminal symbols 𝑁 ,

a finite set of terminal symbols Σ, a set of production rules 𝑃 , and an initial symbol

𝑋. It describes how to build strings from a language’s alphabet starting from 𝑋 and

using rules 𝑝𝑖 ∈ 𝑃 where 𝑝𝑖 : LHS → RHS (left-hand side to right-hand side). When a

non-terminal symbol matches the LHS of a rule 𝑝𝑖, then the symbol is replaced with

𝑝𝑖’s RHS. This process keeps going until there are no more non-terminal symbols left

in the string.

1.1.4 Graph Grammar

In the case of molecule generation, this grammar is a graph grammar. The concept

is the same, except the grammar involves molecule graphs instead of strings. These

graphs follow naturally from real representations of molecules, with each atom being

a node and bonds being hyperedges. Both sides of each rule 𝑝𝑖 are a subgraph of the

molecule graph. In order to determine which rule to apply, subgraph matching [14]

is used to check whether the current graph has a component equivalent to the rule’s

LHS.
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Figure 1-1: DEG Training Pipeline: the middle image shows how rules are extracted

from the training data and how they map to molecule sub-graphs. These rules are

then used to generate new molecules, shown on the right-most image

1.2 Related Work

In this section, we will highlight previous work done in developing software libraries

for generative model applications.

1.2.1 GT4SD

GT4SD, short for Generative Toolkit for Scientific Discovery, is an open-source plat-

form for making generative models easier to use [37]. It is written in Python, the

same language as DEG and DEG2.0, and can be used through a command-line API.

GT4SD’s main responsibilities are training and evaluating models and generating

data from them. It has a list of supported models one can quickly play with. Our

approach differs from GT4SD in two main areas: functionality and supported models.

Our immediate use case with the chemicals company will require making a library

that can work with different datasets and a varying experiment workflow, leading to

a different library that can do more than just training and evaluating models. Also,

given that we must support DEG’s model, our architecture is tailored for the use of

DEG and may require some changes to support the variety of models found in GT4SD

in the future.
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1.2.2 TorchGAN

TorchGAN is a framework for simple and efficient training of GANs based on Py-

Torch [26]. PyTorch is one of the top machine learning frameworks, so it provides

great inspiration for us to build from [27]. Some differences between TorchGAN and

DEG2.0 is that TorchGAN is specifically made for General Adversarial Networks,

focusing on using existing models and designing new ones. With our library, we aim

to support more types of generative models, focusing on grammars first. Also, by

placing less emphasis on the design of new models, we may be able to provide better

support/functionality for existing ones.

1.3 Customer Requirements

To get the project started, our customer sent us a list of requirements outlining

what they were looking for. These were not necessarily hard requirements, but they

provided some context and served as guidance throughout the project. Ultimately,

they wanted us to make a library that would facilitate their experiment workflow.

Their initial requirements can be summarized as two main points:

1. Turn DEG into an easy-to-use Python library that can set up and run different

experiments quickly and scalably.

2. Create an architecture that enables DEG to run remotely within containers

using a standardized API.

These points are naturally general and open-ended, leading to many discussions

within the team about the reasons why the original implementation of DEG was

difficult to use and about the ways we could ’standardize’ the API while keeping

it consistent between local and remote workflows. Guided by these requirements,

software engineering best practices, and our knowledge of what AI applications should

look like, we got started.
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1.4 Original Codebase

Before beginning to change anything, we took the time to understand the original

implementation of DEG.

To use DEG, one can clone https://github.com/gmh14/data_efficient_grammar

into one’s local machine and follow the instructions in the README. The README walks

through the initial setup and installation, and asks to activate the main Conda envi-

ronment [2].

conda activate DEG

Once the environment is activated, one can run DEG with the following line:

python main.py --training_data=./datasets/**dataset_path**

Running this command in a terminal is the only predefined way to interact with

the code. The command runs the main.py file with the training_data flag specifying

the training dataset path. This is one of many flags that can be used to change the

default parameters that DEG runs with. Other flag examples are max_epochs and

learning_rate which set parameters for the learning algorithm. One can see all the

possible flags within main.py between lines 178-191 .

The entry-point of main.py takes care of parsing the flags given in the command

and runs a function called learn(). This function is the main workhorse of DEG.

It learns a grammar from a training dataset by iteratively generating and evaluating

molecules, optimizing the production rules that make the grammar. The details of

this function can be seen visually in figure 1-2.

The blocks at the top of figure 1-2 show the different Python files that are used

within the function. On the top left we can see the block for main.py and its connec-

tion to learn(). One could read through the diagram step-by-step to get a full under-

standing of what the function is doing, but for now, I will highlight only the important

pieces. We can see that each piece of the function is labeled with an ID number. Near

the bottom left, we see IDs 20 and 21 labeling the workflows evaluate_grammar and
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Figure 1-2: DEG Training Sequence Diagram
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generate_random_samples. I say "workflows" rather than functions because the

diagram is high-level, so the naming does not necessarily correspond to real func-

tions in the code. The evaluate_grammar workflow takes in a new_grammar and uses

molecules from generate_random_samples to compute an evaluation of how good

the grammar is in that current iteration. This rating is computed with respect to

hard-coded metrics which get activated through stacked if/else statements checking

which metrics are currently in use. Based on this evaluation, the algorithm computes

a loss and tries to minimize it.

The rest of the blocks are helpers for learn(). grammar_generaton.py contains

tools for making a grammar, such as processing the training data and making a graph

from it. private.utils has, among other files, the graph convolutional network used

for feature extraction (GCN) and a file named grammar.py where the code for the

ProductionRule object lies. fuseprop.chemutils deals with the chemistry side of

things such as converting SMILES (Simplified Molecular Input Line Entry System)

strings to molecules and vice versa. agent holds the function estimator for the edge

weights in the production rule graph.

These are the files and objects that are directly imported into main.py, but there

is more code in DEG outside of main.py that also helps out in the learning process.

An important example of this is the retro_star package. retro_star is a package

that takes in generated molecules and decides how synthesizable they are. It is used

for computing the evaluation of the Retro Star metric. In DEG, one has to run this

package in a separate terminal as a separate process:

conda activate retro_star_env
bash retro_star_listener.sh **num_processes**

The bash script retro_star_listener.sh launches a num_processes amount of

retro_star_listener.py’s. Each one takes about 5Gb of memory since the entire

model is copied each time. This is an inefficiency that caps the number of processes

one can run depending on the machine being used. This script reads from a file that

is written to by learn() in main.py. When running the Retro Star metric during

evaluation, learn() will write generated molecules as strings to a "sender file" and
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retro_star will read these molecule strings, convert them to molecule objects, com-

pute how synthesizable they are, and write these evaluations back to a "receiver file"

which learn() is reading. This enables parallelization in the Retro Star evaluation

process which speeds up the learning algorithm. The more processes, the faster these

evaluations run.

All of these pieces fit together to make the DEG codebase. In Figure 1-3, we

can see a visual representation of everything mentioned above. Arrows display the

dependencies among different units of codebase. If an arrow points from block 𝐴 to

block 𝐵, then block 𝐴 uses block 𝐵.

Figure 1-3: DEG Package Diagram
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1.5 Initial Ideas

Now that we have an overall idea of how the code works, we can begin talking about

the initial thoughts we had during the brainstorming phase of the project. It is

worth reiterating that DEG was made for a specific purpose, to perform the science

needed to publish a research paper, and it did very well at achieving this. Though the

following sections motivate future changes to DEG, these changes are most valuable

in the context of a library meant to be more general-purpose, so it makes sense for

the authors of DEG to not have considered them. With this being said, we start by

exploring DEG with a more critical eye.

1.5.1 Modules

As mentioned in the introduction, we focus on two different goals. The main goal

is to make a library that meets our customer’s requirements. The secondary goal is

to generalize the library and extend it to new domains. Simply meeting all of the

customer’s requirements can lead to a library that is very specific to the use case

they immediately want. This can be dangerous because they do not fully know what

they want and are expecting their requirements to change in the future. Due to this,

thinking through the design of the library through the lens of the secondary goal is

actually beneficial to the main goal.

A good first step for accomplishing this is to try to separate the code into individ-

ual modules. We can think of a module as a block of code one can easily plug-and-play

into different workflows. For this section, it will be helpful to reference figure 1-2 again.

Looking at learn(), one can begin to see pieces that could naturally form individual

modules. The evaluate_grammar and generate_random_samples workflows could

be their own functions and one could call them without needing to run learn(). This

would enable the user to evaluate multiple grammars and generate molecules flexibly

without running extraneous code. IDs 3, 4, 23, and 25 show the need of having a

logging module to keep track of training artifacts such as performance and grammar

checkpoints. ID 5 motivates a data processing module, 6 motivates an edge-weight,
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function-estimator module, and 15 motivates an MCMC sampling module. Digging

a little deeper into evaluate_grammar, we see that it makes the evaluation based on

some metrics. Redesigning this process such that metrics can be used interchange-

ably would allow our client to optimize grammars with respect to different objectives.

This motivates a metrics module.

In DEG, some of these modules actually live as functions in separate "units"

already. For example, the suggested data processing and MCMC modules are imple-

mented as functions (data_processing() and MCMC_sampling()) in grammar_gener-

-ation.py. Others might simply be if/else statements, like the metrics. The ac-

tual implementation of the modules is not as important as whether or not they form

individual logical units. If they do, we can implement the code blocks as objects or

functions to design an API that reaps from flexibility benefits similar to the example

given above about the evaluate and generate functions.

1.5.2 Abstractions

Very little from the DEG code is actually abstracted from the user. Other than the

command-line call to main.py, there is no API for interacting with the code. The

only way to get anything to happen other than a call to learn() is to move existing

code around or write new code. In general, software should be designed with the

target user in mind. It should have the proper levels of abstraction to allow users

to quickly understand the workflow and use it to complete their responsibilities [32].

The target user should never need to edit the "business logic" code of the library. In

the case that they want to write new code, as is the case with our customer when it

comes to metrics, the API should provide a template and the library should be robust

to mistakes in the new code.

As described above, abstractions play an important role when it comes to de-

termining how users interact with software. Another place where abstractions are

important is within the code itself. In Object Oriented Programming, this is done

through inheritance [22]. Before implementing the new library, we took the time

to make as many code abstractions as possible. This thought process is similar to
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modularizing the code, except it is more oriented towards pieces that naturally fit as

objects. Thinking through these abstractions was a key step towards designing for

the secondary goal of the project. An example of an abstraction that would facilitate

transitions to a new domain is a grammar abstraction. When evaluating a grammar,

the evaluation function could be very similar for any type of grammar, whether the

grammar is for molecules or for a different domain. We could pass a molecule gram-

mar or a circuit grammar into the function as long as both objects are grammars.

There are many more potential abstractions that could be used in DEG. Figure 1-4

shows the variety of abstractions we came up with during the brainstorming phase of

the project.

Figure 1-4: DEG Potential Abstractions

1.5.3 Limitations

In the sections above, we introduced two overarching ideas which, at a high level,

motivate much of the work done in the project. Before talking about the design

and implementation of the new library, we summarize the conversation above into
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a concise list highlighting the limitations of DEG. The following section focuses on

our solutions to these limitations, so one could use this list as a reference point while

reading.

• Design Issues

1. No general API abstracting business logic from user workflow

2. No API for doing evaluation or molecule generation using existing grammar

3. Minimal modularity within code

4. Minimal flexibility in possible experiments

5. No scalable way for creating and using metrics

6. Minimal persistence for tracking experiments

7. No remote containerized workflow

• Engineering Issues

1. If using Retro Star metric, user has to run a shell script for evaluation in

a separate terminal before learn() can be run. This also requires manual

cleanup after run finishes

2. File transfer is used to speed up Retro Star metric

3. Two separate Conda environment installations needed

4. Manual installations of Python packages from source

1.6 Design and Implementation

In this section, we dive into the details of DEG2.0. DEG2.0 was designed to work in

both local and remote cases, as requested by our customer. Although much of the

work done in this project focuses on the local implementation, we will see throughout

this section how the decisions we make keep in mind the future transition towards the

remote version. We begin by describing DEG2.0 at a high-level, showing the package
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diagram and explaining the API, and then go into the details of the main components

in the following subsections.

1.6.1 Package Diagram

Figure 1-5: DEG2.0 Package Diagram

1.6.2 API

API stands for Application Programming Interface. An API is basically a contract

that defines how programs talk to each other [17]. To meet our customer’s require-

ments, we needed the API to function in both local and remote cases. To accomplish

this, we built an architecture inspired by REST APIs [24]. REST is an architectural

style for providing standards between computer systems on the web. Some key terms

27



used to describe REST APIs are client, resource, and server. A client is the program

using the API. The client makes requests to the API in order to retrieve information

or change something within the application. In our case, the client is the program the

customer is exposed to. A resource is any piece of information the API can provide

the client. A server is a computer or program used by the application that receives

client requests. The server contains resources that the client wants. It sends these

resources as responses without giving the client direct access to the content stored

in its database. Other terms for client and server are "front-end" and "back-end".

These are commonly used when talking about full-stack development.

Figure 1-6: REST API Structure

To benefit from the functionality that REST provides, APIs must follow the fol-

lowing six requirements: client-server separation, uniform interface, stateless, layered

system, cacheable, and code on demand [19]. We focus mostly on the first four require-

ments since the last two are less relevant for our application. Client-server separation

refers to the ways the client and server interact. Under REST architecture, the client

and server can only interact through requests sent by the client and responses sent

by the server. All interactions are initiated by the client. Uniform interface means

that requests and responses must follow a common protocol. For most REST APIs,

this common protocol is HTTP, the Hyper-Text Transfer Protocol used in the inter-

net. Stateless means that every interaction with the API is independent, with each

request and response containing all the information necessary to complete the interac-

tion. Finally, layered system means that no matter how the server side is structured,
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messages between the client and the target server should always be formatted and

processed the same way. This allows server systems to be modified without affecting

the core request-response behavior.

These guidelines provide a good model for the workflow our customer wants. Their

first requirement calls for an easy-to-use, scalable library. Following client-server sep-

aration allows us to make a client that can flexibly run experiments without needing

to change the business logic. As we saw in section 1.4, DEG only has one workflow

which is parameterized with some command-line flags. Running an additional work-

flow, such as evaluating molecules, would require adding code to DEG’s client side

(the main() function in main.py) and integrating the code to the server side (the rest

of DEG). Instead, we focus on building a client that allows for all the possible work-

flows the user may need so that they never have to worry about the server side. Also,

this separation gives us the liberty to abstract the client program as much as we want

depending on how high-level we want the user’s workflow to be. The third guideline,

keeping the system stateless, ensures DEG2.0 is predictable and understandable for

the user since the actions done in the server are determined by the information passed

in the current request. The second and fourth guidelines, uniform interface and ro-

bustness to layering, ensure the library is scalable since future changes to either the

client or the server should not break the system as long as the guidelines are met.

By following the REST API structure, we were able to decouple the design and

implementation of the library from the compute resource used to run it. Note that in

local implementations of REST APIs, the client and server live on the same machine

and are only separated structurally. This means that the requests made by the

client do not need to travel through the internet and can instead simply run on the

same machine. So the local version does not need to follow REST guidelines to

function. However, making the local API RESTful facilitates the transition to the

remote version. All we would need to do to make a remote version is route the requests

to remote endpoints where the code runs. Designing the API following REST enabled

us to focus mostly on the local version for the first release of DEG2.0 knowing we

would be able to use a lot of the same code for the remote version.
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The overall information flow we designed is the following. In the client, the user

builds a "spec" defining the "job" he or she would like to run. The client sends this

spec to the server where it is parsed through a package called jobify. Jobify runs

a spec checker ensuring the client inputted everything correctly, and if so, creates a

job and runs it. In the local version, this job runs on the same machine as the client

(the user’s computer for example). In the remote version, the job runs in a container.

In both versions, the specs can be defined in a Jupyter notebook or in files. This

structure can be seen in figures 1-7 and 1-8. In the following sections, we go through

the details of these individual pieces, as well as important design and implementation

choices made to allow this to work.

Figure 1-7: DEG2.0 Local
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Figure 1-8: DEG2.0 Remote

1.6.3 Jobs

As we saw in section 1.4, DEG has three main responsibilities: the learning of gram-

mars, the evaluation of grammars, and the generation of molecules from learned

grammars. In DEG2.0, we restructured the codebase such that these three responsi-

bilities could be accomplished with individual functions, train(), evaluate(), and

generate() (note train() is the equivalent to DEG’s learn()). In principle, each

function should only worry about completing its specific task, so the logic of how to

run its task should be determined elsewhere [18].

For example, if a user wants to generate molecules using a grammar, they should

be able to call generate(grammar, num_samples) where grammar is some learned

grammar object and num_samples is the number of molecules to generate. This

seems simple enough, but there are a number of issues with this approach. Making

this the primary way of interacting with the library means the user would have to

write actual Python code, initializing a grammar object, passing it to the function,

and deciding what to do with the outputs. We could solve one of these problems

by loading the grammar within the function, having the user specify a file name
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which would only require typing a string into a function. This would be one level of

abstraction higher when compared to initializing the object, so we would improve on

that front. However, this approach means the grammar input would have to change

to a file name and generate() would have the additional responsibility of reading

from a file which is not a natural requirement for generating molecules. Also, part of

the algorithm for learning grammars involves generating and evaluating molecules. It

would be inefficient if the learning algorithm saved the learned grammar into a file to

then load it within the generate function. The functions generate() and evaluate()

should be kept modular enough to function within the learning algorithm and also

for handling client requests without needing to duplicate any code. To do this, we

made sure the functions only took in what they truly needed as parameters and only

outputted the natural result of their calculations.

The examples above illustrate the trade-offs between a few competing design prin-

ciples. We wish to abstract as much of the business logic as we can from the client,

maximize the flexibility in interacting with the library, and keep the business logic as

modular as possible. To deal with these trade-offs, we chose to introduce the concept

of "jobs." In addition to the train(), evaluate(), and generate() functions, we

created train, evaluate, and generate jobs.

Referring back to the DEG2.0 package diagram, we see the code for different jobs

lies in the jobs package within deg. For each job, we created an individual script

jobs/train.py, jobs/evaluate.py, and jobs/generate.py. In each of these scripts

we have a class called $JOBTYPESpec and a function called run_$JOBTYPE_job()

where $JOBTYPE is either "train", "evaluate", or "generate", depending on the script

it is defined in. $JOBTYPESpec extends a base class called JobSpec. This is an

abstraction that promotes scalability when it comes to spec checking, which we talk

about in the next section. run_$JOBTYPE_job() gathers the necessary data, converts

it to the right format, and runs the individual train(), evaluate(), or generate()

function. Each run_$JOBTYPE_job() function is registered to a JOB_REGISTRY which

is implemented in the jobify package. Registries (which we talk about in detail in

1.6.5) also promote scalability. Train, evaluate, and generate jobs are all jobs, so they
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all have a function that runs them. As mentioned in 1.6.2, a spec gets turned to a

job and the job is run. With a registry, the specific run_$JOBTYPE_job() function

to run can be found from the job type given in the spec. If new jobs need to be

created in the future, developers can simply focus on the code for the individual job

without needing to touch the code that runs the job from the spec. In other words,

they can focus on ’what’ to run rather than ’how’ to run. Also, the code that runs

the jobs does not need any conditioning. As long as the jobs are registered, the code

dynamically gets the correct run_$JOBTYPE_job() function from the job type in the

spec and runs it. This can be one line of code instead of many if/else statements

conditioned on the job type to decide which run_$JOBTYPE_job() to run.

Within each job script, there are three responsibilities: defining the spec checker,

defining run_$JOBTYPE_job(), and running one of the main functions. The following

code snippet shows an outline for the code in each of the job scripts:

@jobify.register_job_spec($JOBTYPE)

class $JOBTYPESpec(JobSpec):

# define the spec outline and spec validation functions

@jobify.register_job($JOBTYPE)

def run_$JOBTYPE_job(spec: $JOPTYPESpec, io_manager: IOManager) ->

$JOBTYPEResult:

# initialize/prepare necessary parameters

results = $JOBTYPE(parameters)

# log results if needed

We talk about spec checking in 1.6.4, so below we only mention the details in each

run_$JOBTYPE_job() function.

Train Job

The train job is responsible for running train(). This is what the declaration of

train() looks like:
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def train(

agent: Agent,

feature_extractor: GNNFeatureExtractor,

metric_specs: List[TrainMetricSpec],

training_data: Path,

hparams: HyperParameters,

save_history: bool = False,

save_artifacts: bool = True,

artifact_callbacks: Optional[List[Callable]] = None,

metrics_callbacks: Optional[List[Callable]] = None,

**kwargs,

) -> TrainResult:

Referring back to the API, we know that all the user provides is a spec. run_train_job()

is responsible for filling in the parameters needed by train() from the spec. It does

this by initializing the agent and the feature_extractor from the details in the

spec and defining the callback functions. It also has a check for whether this train

job should resume from a checkpoint. If so, it initializes the agent weights to the

weights from that checkpoint. Finally, the train job saves the results from train()

if prompted to do so in the spec.

Evaluate Job

The evaluate job is responsible for running evaluate(). The evaluate() declaration

looks like this:

def evaluate(metrics: List[Metric], data: Dict[str, Any]) ->

List[MetricResult]:

evaluate() needs a list of metrics and a data dictionary. The evaluate job takes the

metrics given in the specs and initializes them, putting them into a list. The data

dictionary is contains different information depending on what metrics the user wants

to run. Metrics may need molecule samples, grammar objects, or neither. Having
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a data dictionary allows developers to define metrics assuming all the information

needed to run the metrics will be gathered by run_evaluate_job() and passed to

evaluate() within data. Same as above, the evaluate job saves the results from

evaluate() if told to do so.

Generate Job

The generate job is responsible for running generate(). The generate() declaration

looks like this:

def generate(

grammar: ProductionRuleCorpus,

num_samples: int,

) -> List[str]:

generate() needs a grammar object and a number of samples. The number of sam-

ples can come straight from the spec but the grammar object needs to be initialized

within run_generate_job() before passing it to generate(). The generate job can

also save the results from generate().

1.6.4 Specs

We have mentioned the spec many times already without fully explaining what it is.

In this section, we define what specs are, motivate them, and provide examples.

Formart

A spec is a JSON or YAML file containing all the information necessary for running

a job. DEG2.0 supports both JSON and YAML, but to avoid repeating ourselves, we

focus the conversation on JSON. The reason we use JSON is because JSON objects

are serializable, meaning they can be converted to a series of bytes which can be

transmitted across a network. This makes JSON the standard request-response data

type for RESTful APIs [5]. JSON objects get serialized into bytes when sent as

requests and deserialized from bytes when received as responses. This is easy to do in
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Python with the built-in package json. JSON is also human-readable which makes

defining and interpreting specs easy for human users. Specs can be defined as Python

dictionaries too, as long as the dictionaries can be converted to JSON. When defining

specs as dictionaries, the specs can only contain the following basic Python objects

to ensure they can be converted: dict, list, tuple, str, int, long, float, True,

False, None. Custom objects such as a Grammar object cannot be converted to JSON,

so if jobs need custom objects to run, they must build them in the back-end based

on the information given in the spec, as was described in the previous sections.

JSON is not the only way to serialize data. Custom Python objects can be sent

over a network by using the third party pickle package [10]. This package serializes

and deserializes objects by "pickling" and "unpickling" them. There are a few reason

why we chose JSON over Pickle. The first reason is that Pickle only makes sense

if the user wants to send and receive custom objects. We did not design for this

possibility for two reasons: it assumes the user knows how to program in Python

and it requires having additional files in the client to initialize the objects. The

former is not an assumption we should make when minimizing the difficulty in using

a library. The latter is less obvious, but one can imagine the user wanting to send

the agent neural network rather than the instructions for making it. In this case,

the PyTorch code that defines the neural network would have to live in the client.

This is undesirable because clients should be lightweight and the code needed to run

jobs should be protected from user modifications. We can make the same argument

for not initializing other objects such as grammars in the client. The second reason

for not using Pickle is that it is not secure. One can construct malicious pickle data

which will execute arbitrary code during unpicking. We do not want users to have the

power of running arbitrary code in the back-end since this could break the system.

I want to quickly note that the arguments above are not very strong in the context

of the local version. In the local version, all of DEG2.0 is in the same machine as

the client, so the comments on security do not apply here. The user could change

anything in the code if they wanted. However, it is still valuable to design the local

version with these things in mind because they matter for the remote version. If

36



you have many users using the same server and one of them breaks the server, then

the application stops working for all the users. Also, these patterns lower the client’s

complexity and establish a workflow that does not require dealing with business logic,

which is desirable based on the customer’s requirements.

Spec Types

Same as jobs, there are three types of specs: train, evaluate, and generate. When

the user defines a spec, they are defining what type of job they want to run and

what parameters they want the job to run with. The subsections for 1.6.3 showed the

parameters each of the primary functions take. In the specs, users can define what

they want these parameters to be. This means users can run the same job in various

ways by simply changing the spec definition. And since JSON is readable and can be

made from normal text, users have the option of not touching any Python code to

run jobs. They could simply write a JSON file and use the command line:

degrammar train --config configs/train_spec.json

In this example, the user would be running a train job using the spec defined in

train_spec.json. Another way to define specs is to make Python dictionaries. If

the user opts to do it this way, they can define the spec in a Jupyter notebook, turn

it to a JSON string, and send it to the back-end.

import json

spec = dict{"my_custom_job_spec": data} # not a real spec

json_string = json.dumps(spec)

# send to back-end

Spec Examples

We provide default specs that the user can use for running canonical jobs. Below we

see examples for the three different specs:
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Figure 1-9: Train Spec Figure 1-10: Evaluate Spec Figure 1-11: Generate Spec

There are many parameters in each spec that the user can define to create custom

jobs. Our customer wanted more flexibility in their experiment workflow. With specs,

changing the evaluation metrics in the training algorithm is as simple as adding or

deleting lines of text under the metric_specs field. The agent neural network can

be fully determined from the spec. If users want to test performance across different

networks, they can just create a few different specs with different parameters and run

those jobs. Before, they would have needed to edit metrics and network parameters

within the code.

To further simplify things, the user does not need to provide all of the values

seen above when defining specs from scratch. For example, if job names are not

provided, DEG2.0 creates a unique job name and returns it in the response. If the

hyperparameters for agent are not provided in the train spec, the train job initializes

agent with default parameters. Users should only need to specify configurations

that differ from the defaults to avoid unnecessary typing. Here are examples of the

simplest specs the user could provide:
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job_type: train

training_data:

path/to/training_data.txt

job_type: evaluate job_type: generate

num_samples: 10

grammar_path:

path/to/grammar.json

Every value not directly specified in these short specs has a default value written

in the spec object definitions (details below).

Spec Checking

So far we have been talking about specs as JSON files or objects. In the client,

specs are no more than that. However, once specs are received in the back-end,

they are turned into spec objects. We have three main spec objects: TrainSpec,

EvaluateSpec, and GenerateSpec. These are all defined within the jobs package in

the files train.py, evaluate.py, and generate.py, as we saw in the 1.6.3 section.

These three classes are abstracted by a parent class called JobSpec which extends a

class called BaseModel. This means that the three spec classes are all instances of

BaseModel. BaseModel is a class from a third-party Python packaged called pydantic

which we use for spec checking. Pydantic is widely used in industry for data validation

and settings management using Python type annotations [7]. It enforces type hints

at runtime and provides user friendly errors when data is invalid. By inheriting from

BaseModel, we can use Pydantic types and validators for ensuring specs are input

correctly by the user.

Type Checking At runtime, spec objects are built from the inputted specs. The

spec objects have attributes corresponding to the different elements in the spec. These

attributes are tied to Pydantic types. For example, the job_name of each job has to

be a str, so it is given the Pydantic type StrictStr. If the user were to send a spec

that has an int for job_name, Pydantic would return an error telling the user that

job_name has to be a str. Pydantic was designed to be intuitive, so seeing the actual

code for how we define the main spec objects may be helpful for understanding how
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the checking works:

Job Spec :

class JobSpec(BaseModel):

job_name: StrictStr = Field(default_factory=lambda: generate_slug(2))

job_type: Optional[StrictStr]

job_id: StrictStr = ""

ts: Optional[datetime] = Field(default_factory=datetime.now)

save_artifacts: StrictBool = True

Train Spec Object :

class TrainSpec(JobSpec):

job_type: Literal["train"] = "train"

training_data: Path

hparams: HyperParameters = Field(default_factory=HyperParameters)

agent_spec: List[Dict] = Field(

default_factory=lambda: [

{

"type": "Linear",

"kwargs": {

"in_features": 302,

"out_features": 128,

},

},

{"type": "Dropout", "kwargs": {"p": 0.5}},

{"type": "ReLU", "kwargs": {}},

{"type": "Linear", "kwargs": {"in_features": 128,

"out_features": 2}},

{"type": "Softmax", "kwargs": {"dim": 1}},

]

)
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gnn_model_path: Path = "./models/GCN/supervised_contextpred.pth"

resume_path: Optional[Path] = None

metric_specs: List[TrainMetricSpec] = Field(

default_factory=lambda: [

TrainMetricSpec(name="diversity", weight=1),

]

)

save_history: StrictBool = False

Evaluate Spec Object :

class EvaluateSpec(JobSpec):

job_type: Literal["evaluate"] = "evaluate"

job_name: StrictStr = Field(default_factory=lambda: generate_slug(2))

grammar_path: Optional[

Path

]

samples: Optional[Union[Path, List]]

metric_specs: List[EvaluateMetricSpec] = Field(

default_factory=lambda: [

EvaluateMetricSpec(name="diversity"),

]

)

Generate Spec Object :

class GenerateSpec(JobSpec):

job_type: Literal["generate"] = "generate"

num_samples: PositiveInt

grammar_path: Path

Looking at these spec object definitions, one can quickly see the overall pattern:
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attribute : PydanticType = default_value

This pattern is the same for all of the type checking. We also take advantage

of Pydantic’s functionality by defining custom types. The custom types are simply

new classes that extend BaseModel, same as the main spec objects. The reason we

say main spec objects is because these custom types are spec objects too, but they

are only used for type checking within the main spec objects. The custom types

let us make more complex checks than the StrictStr example we mentioned for

job_name. For example, in TrainSpec the metric_specs attribute has to be a list of

TrainMetricSpec, a custom Pydantic type that does the spec checking for metrics.

The hparams attribute is another example of this, mapping to the HyperParameters

type. Defining custom types lets us implement multiple layers of spec checking while

keeping the code readable and modular.

Validators For more sophisticated spec checking, Pydantic offers the ability of

defining validation functions. Since we only have a few of these, we can mention all of

them. Within TrainSpec we have validate_metric_specs(), validate_hparams(),

and validate_agent(). validate_metric_specs() makes sure that train jobs that

want to use the Diversity metric have a value greater than 1 for hparams.num_genera-

te_samples. If the user tries to run a train job using the Diversity metric but also sets

hparams.num_generated_samples < 2, then the back-end will send a MetricSpecErr-

or to the client saying "there must be more than 1 sample provided for ’diversity’

metric to work". validate_hparams() ensures the specified optimizer to use for

agent is valid, otherwise an OptimizerSpecError is returned. validate_agent()

ensures the given neural network parameters can yield a valid PyTorch module. This

function does a lot of checks so we will not mention all of them. Some of the checks

make sure the user inputted valid names for the PyTorch modules and module layers,

for example. Any errors are returned as AgentSpecErrors with corresponding mes-

sages. Within EvaluateSpec we have another version of validate_metric_specs().

It makes sure that if the evaluate job wants to run a Diversity, Num Samples, or Retro

Star metric, a list of samples must be provided. Same as in the train spec, if running
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the Diversity metric, the sample list must have more than one sample. And finally,

if running the Num Rules metric, a grammar must be specified. The reason we have

separate metric validators for the evaluate spec and the train spec is because there are

some guarantees about the data available at runtime when running a train job that

we do not have for evaluate jobs. For example, train() will always make a grammar,

so the grammar does not need to be specified by the user in the train spec for the

Num Rules metric to run. Lastly, GenerateSpec does not have any validators.

Remarks Using Pydantic types and validator functions for spec checking is an-

other example of a decision made to facilitate the user workflow and improve the

maintainability of the library. Spec checking provides a clear contract for client-

server communication. Specs have to be inputted following the rules given in the

spec object definitions. If not, concise errors are returned letting the user know what

to change. If more validator checks need to be added in the future, we have an array

of custom error types as shown above which can be reused. Again, this makes the

code more readable and scalable.

1.6.5 Metrics

In this section, we talk about another important piece of refactoring done in DEG2.0.

We have alluded to metrics many times already. The role of metrics in DEG is to

evaluate grammars while they are learned. They make up the objective function of

the learning algorithm. It is worthwhile to see how metrics were implemented in DEG

to get a better understanding for why we refactored them. Here is the block of code

where metrics live in the original codebase:

for _metric in metrics:

assert _metric in [’diversity’, ’num_rules’, ’num_samples’, ’syn’]

if _metric == ’diversity’:

diversity = div.get_diversity(generated_samples)

eval_metrics[_metric] = diversity

elif _metric == ’num_rules’:
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eval_metrics[_metric] = grammar.num_prod_rule

elif _metric == ’num_samples’:

eval_metrics[_metric] = idx

elif _metric == ’syn’:

eval_metrics[_metric] = retro_sender(generated_samples, args)

else:

raise NotImplementedError

Concerns This code is found within DEG’s evaluate(). There are a number of

things to note here. First, the logic involves if/else. This is undesirable because it

makes the code less maintainable. Each time a new metric is created, a new condition

must be added. Also, using if and elif means that only one metric can run at a time

which could be a limitation. Second, there is no shared structure between metrics.

Even though Diversity, Num Rules, Num Samples, and Syn are all "metrics," each

one of them runs differently. Diversity uses a function from an object called div, Num

Rules is computed in-line using a grammar, Num Samples (not obvious from just this

snippet of code) uses a variable that is summed while molecules are generated within

evaluate(), and Syn calls a function that writes to the sender file we described in

section 1.4 and reads from the receiver file. Third, there is no template to follow

to create new metrics. One could basically put anything into the eval_metrics list

without a warning in the IDE. The code would have to run before realizing something

was coded incorrectly. Lastly, there is no way for a user to run metrics other than

creating the metrics list in the code.

Solutions We address all of these points with the metrics package of DEG2.0.

Taking inspiration from the Command Design Pattern [34], we define all the metrics

in metrics.py. The Command Design Pattern is a behavioral design pattern in which

an object is used to encapsulate all the information needed to perform an action or

trigger an event at a later time. We define an abstract class called Metric which

takes an unspecified number of keyword arguments in the constructor and has one

function called compute(). compute() takes in data and returns a MetricResult.
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class Metric(ABC):

def __init__(self, **kwargs):

pass

@abstractmethod

def compute(self, data) -> MetricResult:

pass

This class is the equivalent of the "Command Interface" in the Command Design

Pattern. We extend this class with individual classes for all of the metrics mentioned

above, naming them DiversityMetric, NumRulesMetric, NumSamplesMetric, and

RetroStarMetric (instead of Syn). Placing the @abstractmethod decorator above

compute() means that all classes that extend Metric must implement compute()

with the same parameters and return type. Here is an example of the code for a

simple metric, NumSamplesMetric:

@register_metric("num_samples")

class NumSamplesMetric(Metric):

def compute(self, data):

return MetricResult(name="num_samples",

value=len(data["smiles_samples"]))

This metric does not need any keyword arguments to set attributes, so we can use

the parent constructor. With this design, we have created a template and a shared

structure among metrics, solving the second and third concerns listed above. All new

metrics must extend the parent Metric class and implement the compute() function.

When evaluating grammars, we should be able to just run compute() for each metric

instead of doing different things for each. To see how this design solves the first and

last concerns, we need to talk about the decorator @register_metric.

Registries We briefly mentioned registries in section 1.6.3. Registries allow us

to use the Python Registry Pattern [31]. This pattern is useful in several situations.

An example situation is when you want to streamline a factory class (see Factory
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Design Pattern [33]), which takes an input label, like the name of a class, and creates

an object of that type. This is exactly the situation we have. Ideally, we could use

the metric specs given in the job specs to create metric objects when needed. Metric

specs contain the names of the metrics the user wants to use in a train or evaluate

job. Adding the decorator @register_metric(metric_name) to a metric class puts

that class into the METRIC_REGISTRY. We can use this object to map metric_name to

metric class. We do the fetching of metric classes from the registry with a function

called get_metric():

def get_metric(metric_name: str) -> Type["Metric"]:

if metric_name not in METRIC_REGISTRY:

raise ValueError(f"Metric {metric_name} not found in registry.")

return METRIC_REGISTRY[metric_name]

And the creating of metrics in a factory function called create_metric():

def create_metric(metric_spec: MetricSpec) -> Metric:

metric_cls = get_metric(metric_spec.name)

return metric_cls(**metric_spec.dict())

With get_metric(), create_metric(), and the METRIC_REGISTRY, we resolve the

first and last concerns. Now, whenever we run evaluate(), we pass it a list of metrics

created by running:

metrics = [create_metric(m) for m in spec.metric_specs]

Then, inside evaluate(), we run compute() for each of these metrics. This design

simplifies not only the block of code used for DEG’s metric implementation, but the

entirety of the old evaluate() function into just this one line:

return [metric.compute(data) for metric in metrics]

There is no longer a need for if/else nor for editing the evaluate() function. This

makes the code more maintainable for developers since they can focus on adding new

metric classes rather than editing business logic and easier to use for users since they
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can just choose what metrics to run within the spec rather than within the code.

1.6.6 Data Logging

All the refactoring done for DEG2.0 would be useless without an easy way to see job

results. In DEG, the Python logging package [11] was used to output training results

to the console. Though this is simple, it may not encapsulate everything a user might

want to see from an experiment. It is also not persistent, so if users wanted to check

on an experiment they ran in the past, they would not be able to. It would be up to

them to save results into files or databases and to remember the configurations they

used for different experiments.

IOManager

We implement the io_manager package to deal with this. This package has a file called

io_manager.py which defines an abstract class named IOManager with a number of

abstract methods. Here is a UML representation for what the class looks like:

Figure 1-12: IOManager Class

As seen in section 1.6.5, defining an abstract class as a template for other classes

makes the code readable, maintainable, and simple. This class is extended by FileIO-
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Manager, defined within file.py also in the io_manager package. FileIOManager is

an IOManager which implements all of the abstract methods such that logging hap-

pens on the local disk. Following this pattern, developers could define a DatabaseIOMan-

ager in a file called database.py to implement the abstract methods for logging to

databases. Since FileIOManager and DatabaseIOManager are both IOManagers im-

plementing the same methods, they can be used interchangeably in the rest of the

code. Though we only implemented FileIOManager, we can see how the structure of

this package is designed to quickly transition into a remote version using databases.

Artifacts

As shown in the code snippet in section 1.6.3, each job’s run_$JOBTYPE_job() func-

tion takes in an io_manager which is an IOManager object. Depending on the type

of job, a number of artifacts may be generated and the user has the option whether

to store those artifacts or not. Artifacts are just the outputs of a job. These options

are provided in the job spec, so each job can determine what calls to make with the

io_manager by parsing the spec. Here we list the artifacts each job could log:

Train Artifacts: job spec, logs, agent network weights, grammar checkpoints, check-

points for MCMC sampler input graph, Tensorboard logs for policy loss and grammar

evaluation per epoch [1]

Evaluate Artifacts: job spec, logs, evaluation results

Generate Artifacts: job spec, logs, generated molecules

Excluding the job spec and the run log, the user has the option to turn off artifact

logging for each job. For an evaluate or generate job, the user may specify a boolean

parameter called save_artifacts in the spec to turn the artifact logging on or off.

For a train job, the user has the option to either store all of the artifacts generated

in train() or just opt for the best ones (best agent weights, best grammar). We

do this to maximize flexibility. If the user is running quick experiments, they may

not want to waste disk space saving all of the artifacts of a train job. The relevant

configurations are shared below in figures 1-13 through 1-15.
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Figure 1-13: All Artifacts
Across Training

Figure 1-14: Best Artifacts
Across Training

Figure 1-15: No Artifacts

File Structure

For this release, we did not implement databases for the remote version, so all the

logging happens on the local disk. The artifacts are stored inside a folder named runs

by default. The file structure in this folder is the following:

Figure 1-16: File Structure

train-cyber-woodlouse-hyNeUT8h is the train job that was run. We can see it

was run for two epochs. Each folder within runs/ has sub-folders for each job that
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created and saved that specific artifact. This way, users can search for the artifacts

they need and filter by job. Also, if they need to reference the spec used to run that

specific job or the logs created at runtime, they can find them in runs/jobs/ and

runs/logs/.

1.6.7 Jobify

We have now talked about the main components in the design of DEG2.0, so we can

finally take a step back and talk about the details of the package that brings them

all together, jobify. Jobify is the package that actually creates and runs jobs. The

workflow, as mentioned in section 1.6.2, starts from a spec which jobify receives,

converts to a JobSpec object, and runs the job. Here, we share the details behind

how this works.

Recall the two ways of running jobs in DEG2.0 are through the command line or

through a Jupyter notebook. The command line call makes a call to a function within

jobify/jobs.py named run_job(). This function takes in a spec and a run_dir.

The spec is either a dictionary of a file path and run_dir is a string specifying the

root folder for logging (default values is "runs/"). Running through Jupyter works

similarly, one would just need load the spec from a JSON or YAML file or from a

dictionary defined within the notebook and run the run_job() function.

We have been making this distinction between the front-end and the back-end

throughout much of the thesis without being specific about where the separation lies

within the code. Although there is technically no real separation in the local version

given all the code lives in the same machine, the library is still designed for separation.

And we can finally point at it. In the remote version, we can place all of the code

we have described so far into a server and give the client a single responsibility,

making specs. These specs would get sent as HTTP requests to the server, where

they are deserialized into Python dictionaries that get passed to run_job(). This

makes jobify the entry point for the server side. All the client side would need is the

ability to make JSON objects and send HTTP requests. Though we would have to

make a few other changes, such as extending IOManager with a remote logging class,
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the general workflow between the finished local version and the projected remote

version is virtually identical, meaning our design works.

Back to Jobify. run_job() creates the job spec object from the spec and makes

a JobRunner object called job_runner. It uses the job type given in the spec

to index into the JOB_SPEC_REGISTRY and get the corresponding job spec class.

Then it uses the class to make either a train, evaluate, or generate job spec object.

During the initialization of the spec object, Pydantic runs all of the spec check-

ing and validation and returns errors if the spec was specified incorrectly. Then,

run_job() runs the line job_runner.run(job_spec). This function uses the job

type to get the corresponding run_$JOBTYPE_job() function with the following line

job = get_job(job_spec.job_type). Then it does a few things to initialize the log-

ging and concludes with the simple line return job(job_spec, self.io_manager)

which actually runs the job and returns its results.

Notice how the design of DEG2.0 enabled making a jobify package that creates

and runs jobs without a single job type check. Because of the things we have talked

about, job design, spec design, spec checking, metrics, registries, loggers, Jobify will

work for any job you give it, even new ones that could be created in the future,

without needing to change any code. This adheres to several software engineering

principles we have been alluding to such as the open-closed, single-responsibility, and

separation of concerns principles [13].

1.6.8 Engineering Choices

Multi Processing

The Retro Star metric is the heaviest metric in DEG2.0 so far. As mentioned in

section 1.4, it was implemented using file sharing and separate shell processes. This

is not ideal for a number of reasons. Running Retro Star in separate shell processes

means that each process needs a copy of the model which leads to each one taking

around 5Gb of memory. This creates a bottleneck when running jobs using the Retro

Star metric locally, since local computers have relatively small memory limits. Also,
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file operations (lock, unlock, read, and write) are slow compared to operations done

in memory. Lastly, all of these individual processes had to run in different terminal

windows and had to be cleaned up manually after execution, which is cumbersome

for users to do.

To deal with these issues, we explored two solutions, Celery [35] and multiproce-

ssing [12]. Celery is an asynchronous task queue or job queue based on distributed

message passing. Task queues are used as a mechanism to distribute work across

threads or machines. Their input is a unit of work called a task. Dedicated worker

processes constantly monitor task queues for new work to perform. Celery commu-

nicates via messages, usually using a broker to mediate between clients and workers.

To initiate a task, the client adds a message to the queue and the broker delivers

that message to a worker. A Celery system can consist of multiple workers and bro-

kers, giving way to high availability and horizontal scaling. This tool sounds quite

similar to the way our API is set up, with a client sending messages (job specs), a

broker dealing with them (Jobify), and workers running them (train(), evaluate(),

and generate()). This made Celery an attractive option to run jobs, specially for

jobs including the Retro Star metric given Celery’s ability to distribute tasks across

multiple workers.

Multiprocessing is a package that supports spawning multiple Python processes.

It offers both local and remote concurrency, effectively side-stepping the Global Inter-

preter Lock [30] by using subprocesses instead of threads. It has a Pool object which

offers a convenient means of parallelizing the execution of a function across multiple

input values, distributing the input data across processes (data parallelism). Using

the Pool object, we can solve the problem of needing to copy the Retro Star model

across processes, since they can share the model. We tried both approaches and com-

pared their performance, shown in table 1-1. We can see that the best performing

option is multiprocessing. The issue with Celery is that it is designed for distributed

workflows. This means it would be a great option for the remote application but

proves to be too heavy for the local version. Running Celery on the local version

requires creating a Redis server to communicate with the Celery client. This commu-
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Samples Multiprocessing (sec) File Handling (sec) Celery (sec)

5 49 97 123
10 73 107 156
20 168 253 295
40 350 392 582
80 525 559 795
160 1381 1366 1681
320 2678 2829 2988

Table 1.1: Time to run Retro Star across different sample amounts using 5 processes

nication is slow and not necessary if the data is all on the same machine. Showing

that Celery can be used and that it fits well with our API was a good proof-of-concept

for the remote version, but for the local version, we chose multiprocessing.

Poetry

In section 1.5.3 we mentioned the need for two separate Conda environments for

installation of DEG and a few installations from source. This is undesirable as it

slows down the setup process and introduces additional complexity for the user. We

leverage Poetry, a tool for dependency management and packaging in Python, to

solve these issues [28]. Using Poetry we can declare the libraries our project depends

on and Poetry will take care of managing them (installing and updating the correct

versions) and configuring the environment. The list of dependencies can be found

within pyproject.toml. After DEG2.0 is cloned into one’s computer and Poetry is

installed, setting up the environment is as simple as running these two commands in

the root directory of the project:

poetry install
poetry shell

1.6.9 Remote Version

We have mentioned the remote version many times in the prior sections, motivating

design and implementation choices with the idea that code should be reused between
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the local and remote versions without large architecture changes. Although the re-

mote version was not fully completed within my time at the lab, we were able to

deliver a release that could run the Retro Star metric remotely in a Docker container

[9]. The only additional work this required was setting up a Docker container and con-

necting to it, validating our design. We only focused on containerizing the Retro Star

metric since this is the bottleneck of the training process in DEG2.0. Jobs that do

not run Retro Star are relatively light-weight, making it less valuable to containerize

them for the first release of the library.

1.7 Future Work

There is plenty of work that could be done in the future to improve DEG2.0. An

immediate next step would be to complete the remote version, containerizing all jobs

and polishing the workflow. Other next steps would be informed by the feedback

from the customer company. There is a chance they love what we have done and

would like to keep things as they are, but there is also a chance they end up needing

significant changes. In any case, as they scale their work, they will likely want to

see support for more metrics, more datasets, different types of logging, other types of

generative models, tools to automate comparison and analyses of different models, a

web application for the client, capacity to distribute jobs among many servers, and a

variety of additional features that could make DEG2.0 more capable. Unfortunately,

my time at the lab was short-lived, so I could only form part of the first iteration of

DEG2.0. It will be nice to see what developments happen in the future.

1.8 Generalizing to Other Domains

We allude to the secondary goal of generalizing to other domains many times through-

out the thesis. Due to time restrictions, we chose to focus on only one domain, gen-

erating molecules, to ensure we could deliver a product to the customer before my

internship was over. However, as mentioned throughout our work, this secondary
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goal influenced many of the decisions we made. Much of the work behind creating

abstractions and maintainable code went hand-in-hand with the secondary goal. This

effort proved to be valuable in the months following my internship. My former team-

mates Aditya and John, along with the researchers behind DEG, began a new project

focused on using circuit data to train a grammar to generate circuits. The thought

process, abstractions, and code developed during the DEG2.0 project have been used

to facilitate the transition to this new domain. This project is currently being worked

on in the lab and has shown promising results.

1.9 Conclusion

Our first goal for this project was to make an easy-to-use, capable library with a

standard API that could work locally and remotely. Our second goal was to generalize

the library as much as possible. Throughout the thesis, we have given many examples

of choices made to make the library easier to use and understand, capable of running

diverse experiments, and transferable between local and remote versions. Each of

these choices has considered the second goal, which is shown by the abstractions and

modularity created in both the architecture and the implementation of DEG2.0.

Though it is difficult to quantity objectives such as ease-of-use and generalization,

we provide proxies for these objectives by alluding to customer requirements, software

engineering principles, and common AI workflows. Rather than providing hard num-

bers for our improvements, we support them through examples such as plug-and-play

metrics, and through comparisons to DEG such as the ability for persistent logging

which was previously nonexistent.

Overall, this has been an amazing project to work on. I have learned a great

amount about software engineering for AI applications and am glad I was able to do

it for a real-world use case. Once again, thank you to MIT, IBM, and to everyone

who has supported me during these unforgettable 6 years as an MIT student.
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