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Abstract

In recent years, increasingly powerful machine learning models have shown remark-
able performance on a wide variety of tasks and thus their use is becoming more and
more prevalent, including deployment in high stakes settings such as for medical and
legal applications. Because these models are complex, their decision process is hard
to understand, suggesting a need for model interpretability. Interpretability can be
deceptively challenging. First, explanations for a model’s decision on example inputs
may appear understandable. However, if the underlying explanation method is not in-
terpretable, more care must be taken before making a claim about the interpretability
of the explanation method. Second, it can be difficult to use interpretability tech-
niques efficiently on large models with many parameters.

Through the lens of the first challenge, we examine neural rationale models, which
are popular for interpretable predictions of natural language processing (NLP) tasks.
In these, a selector extracts segments of the input text, called rationales, and passes
these segments to a classifier for prediction. Since the rationale is the only information
accessible to the classifier, it is plausibly defined to be the explanation. However,
through both philosophical perspectives and empirical studies, we argue rationale
models may be less interpretable than expected. We call for more rigorous evaluations
of these models to ensure desired properties of interpretability are indeed achieved.
Through the lens of the second challenge, we study influence functions which explain
a model’s output by tracing the model decision process back to the training data.
Given a test point, influence functions compute an influence score for each training
point representing how influential it is on the model’s decision with the test point
as input. While expensive to compute on large models with many parameters, we
aim to gain intuition on influence functions in low dimensional settings and develop
simple, cheap to compute heuristics which are competitive with influence functions.

Thesis Supervisor: Julie Shah
Title: H.N. Slater Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

While complex machine learning models such as deep neural networks achieve excep-

tional performance on a wide variety of tasks, as these models are being deployed in

high stakes settings, understanding the prediction process for these models becomes

more and more important. Techniques in interpretable machine learning aim to make

the model outputs understandable to humans, giving not just the output, but also

why the model chose the output that it did on a certain input. As many complex,

high performing machine learning models are notorious for picking up signals in the

form of complicated correlations, it is necessary to understand how the model chose

its output to make fair and ethical decisions. For example, consider a model forecast-

ing crime rates in different neighbors to help decide how to optimally allocate police

officers. Even if the model performs with a high accuracy, interpretability is necessary

for detecting if racial biases are present in the training data and whether the model

has learned to make predictions based on these biases (Lipton, 2018). Additionally,

model interpretability can be important for the human user of the model. It can

help the user understand why the model gave a certain output by, for example, high-

lighting important regions of the input, or important training examples, which were

considered most in the process of determining the output. Consider a model which

takes as input a medical scan of a patient and outputs a diagnosis. If a doctor using

this model sees an input where the model predicts the patient has a certain disease,

but the highlighted regions of the image look very different from what is typical in a
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patient with the disease, the doctor now knows to proceed with extra caution before

using the model’s diagnosis (Ahmad et al., 2018).

There are two main approaches for explaining a model’s output on a given input:

feature attribution methods and training data based explanation. For a given input,

feature attribution methods work by highlighting a subset of features of that input

which are most important to the model’s output on that input, for some definition

of important. On the other hand, training based explanation methods specify which

training instances are most influential on the model’s prediction for a given input.

Both feature attribution and training based explanation are examples of post-hoc

interpretability methods, which provide explanation after the model of interest is

trained (Molnar, 2022).

While model interpretability is important in many practical settings, it is decep-

tively hard to achieve. First off, a model explanation method might be misleadingly

deemed interpretable if the explanation method’s outputs appear to be understand-

able to a human, but the underlying explanation method isn’t in fact interpretable.

Examples of such an explanation method would include if the method is either not

faithful to the model and training data, or if the method is entirely a black box process

itself. In fact, while various saliency based interpretability methods (which are a type

of feature attribution method) appear to highlight important features in the input,

they have been shown to be independent of both the data and the model and thus

misleading and not truly faithful to the model’s decision making process (Adebayo

et al., 2018). Thus, interpretability needs to be approached with care. A second chal-

lenge is that large and complex models with many parameters which are frequently

used in practice, such as deep neural networks, inherently have complicated decision

making processes. Thus, it can be difficult to provide an interpretable explanation

for this process in a tractable manner.

In this thesis, we examine the two challenges mentioned above through studies of

two methods in interpretable machine learning. We begin by analyzing neural ratio-

nale models and investigate how the challenge of ensuring the underlying explanation

method is interpretable applies. Neural rationale models use a similar idea to fea-
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ture attribution, but instead of post-hoc interpretability, they aim to be “inherently

interpretable” via a two part architecture. First, a selector model extracts segments

of the input text, called rationales. The selector model then passes these rationales

to a classifier model which use these rationales for prediction. Since the rationale

is the only information accessible to the classifier, it is deemed the explanation. Is

such a characterization unconditionally correct? We argue to the contrary, with both

philosophical perspectives and empirical evidence suggesting that rationale models

are, perhaps, less rational and interpretable than expected. To ensure desired prop-

erties of interpretability are achieved, more rigorous evaluations of these models are

required.

Next, we study influence functions through the lens of the second challenge men-

tioned above: making model interpretability techniques more efficient to compute.

To this end, we aim to gain intuition on influence functions, which is one type of

training based explanation. The influence score of a training point with respect to a

test point is defined as how much the model’s prediction confidence on that test point

changes when the training point is removed from the training set and the model is

retrained. The training points with the smallest (most negative) influence scores are

said to have the most influence on the prediction confidence of the test point. The

theory of influence functions make assumptions which may not necessarily hold in

practice. Influence functions also use several approximations for not only computing

influence, but also approximating the influence of a group of training points through

the combination of the influences of the individual points in the group. Finally, influ-

ence functions are expensive to compute in practice. Thus, we aim to gain intuition

on how influence functions behave in low dimensional settings on logistic regression

models and develop cheap heuristic algorithms which perform competitively with in-

fluence functions. We leave to future work extending the intuition and heuristics to

more complex models and higher dimensional data.

15
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Chapter 2

Neural Rationale Models

Neural rationale models are a popular for interpretable predictions of NLP tasks.

They are made up of a two part framework. A selector model extracts segments of

the input text, called rationales, which it passes to a classifier for prediction. The

selector and classifier models are typically both implemented as neural networks and

trained jointly. While the rationale is deemed the explanation and may be a humanly

understandable subset of the input text (e.g. all the positive phrases in the input on a

positive prediction in a sentiment analysis task), the underlying explanation method

is via the selector model which is a neural network (and thus still a black box). Before

we discuss neural rationale models in more detail, we first motivate their potential

utility by discussing post-hoc interpretability.

2.1 Post-hoc Interpretability

Most interpretability efforts focus on post-hoc interpretation. For a specific input,

these methods generate an explanation by analyzing model behaviors such as gradient

(Simonyan et al., 2013; Sundararajan et al., 2017; Smilkov et al., 2017; Selvaraju

et al., 2017; Shrikumar et al., 2017; Chattopadhay et al., 2018; Bykov et al., 2022) or

prediction on perturbed (Ribeiro et al., 2016; Lundberg and Lee, 2017; Chang et al.,

2018; Covert et al., 2021) or reduced (Feng et al., 2018) inputs. However, evaluations

of these methods highlight various problems. For example, Adebayo et al. (2018)
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showed that many methods can generate seemingly reasonable explanations even for

random neural networks. Kindermans et al. (2019) show several of these methods are

not reliable when a transformation on the input data with no effect on the model,

such as a constant shift, is introduced. Zhou et al. (2022a) found that many methods

fail to identify features known to be used by the model. Zhou et al. (2022b) share the

same principles as us, but also focus on general post-hoc interpretations of arbitrary

black-box models, while we focus on neural rationale models.

2.2 Neural Rationale Models

With no resolution in sight for explaining black box models, inherently interpretable

models, which self-explain while making decisions, are often favored. Neural rationale

models, shown in Figure 2-1 (top), are the most popular in NLP (Lei et al., 2016;

Bastings et al., 2019; Yu et al., 2019; Jain et al., 2020): in them, a selector processes

the input text, extracts segments (i.e. rationale) from it, and sends only the rationale

to the predictor. Since the rationale is the only information accessible to the predictor,

it arguably serves as the explanation for the prediction.

While the bottleneck structure in rationale models defines a causal relationship

between rationale and prediction, we caution against equating this structure with

inherent interpretability without additional constraints. Notably, if both the selector

and the classifier are sufficiently flexible function approximators (e.g. neural net-

works), the bottleneck structure provides no intrinsic interpretability as the selector

and classifier may exploit imperceptible messages, as shown in Figure 2-1 (bottom).

We perform a suite of empirical analyses to demonstrate how rationales lack in-

terpretability. Specifically, we present modes of instability of the rationale selection

process under minimal and meaning-preserving sentence perturbations on the Stan-

ford Sentiment Treebank (SST, Socher et al., 2013) dataset. Through a user study,

we further show that this instability is poorly understood by people—even those with

advanced machine learning knowledge. We find that the exact form of interpretabil-

ity induced by neural rationale models, if any, is not clear. As a community, we
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Figure 2-1: Top: an honest neural rationale model. We seek to understand the
selector’s process (the bold arrow), which should select words and phrases as rationale
in an unbiased way, leaving the prediction to the classifier which receives this rationale.
Bottom: a failure case of neural rationale models. As discussed in Section 2.4, an
unrestricted selector may be able to make its own (relatively accurate) prediction,
and “pass” it to the classifier via encoding it in the selected rationale.

must critically reflect on the interpretability of these models, and perform rigorous

evaluations about any and all claims of interpretability going forward.

2.3 Related Work

Neural rationale models are largely deemed inherently interpretable and thus do not

require post-hoc analysis. At a high level, a model has a selector and a classifier.

For an input sentence, the selector first calculates the rationale as excerpts of the

input, and then the classifier makes a prediction from only the rationale. Thus, the

rationale is often defined as the explanation due to this bottleneck structure. The

non-differentiable rationale selection prompts people to train the selector using policy

gradient (Lei et al., 2016; Yu et al., 2019) or continuous relaxation (Bastings et al.,
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2019), or directly use a pre-trained one (Jain et al., 2020).

While rationale models have mostly been subject to less scrutiny, some evaluations

have been carried out. Yu et al. (2019) proposed the notions of comprehensiveness

and sufficiency for rationales, advocated as standard evaluations in the ERASER

(DeYoung et al., 2019) dataset. Zhou et al. (2022a) noted that training difficulty,

especially due to policy gradient, leads to selection of words known to not influence the

label in the data generative model. Complementing these evaluations and criticisms,

we argue from additional angles to be wary of interpretability claims for rationale

models, and present experiments showing issues with existing models.

Most related to our work, Jacovi and Goldberg (2020) mention a Trojan explana-

tion and dominant selector as two failure modes of rationale models. We pinpoint the

same root cause of a non-understandable selector in Section 2.4. However, they favor

rationales generated after the prediction, while we will argue for rationales being gen-

erated prior to the prediction. Also, in their discussion of contrastive explanations,

their proposed procedure runs the model on out-of-distribution data (sentence with

some tokens masked), potentially leading to arbitrary predictions due to extrapola-

tion, a criticism also argued by Hooker et al. (2018).

2.4 Philosophical Perspectives

In neural rationale models, the classifier prediction causally results from the selector

rationale, but does this property automatically equate rationale with explanation?

We first present a “failure case.” For a binary sentiment classification, we first train

a (non-interpretable) classifier 𝑐′ that predicts on the whole input. Then we define a

selector 𝑠′ that selects the first word of the input if the prediction is positive, or the

first two words if the prediction is negative. Finally, we train a classifier 𝑐 to imitate

the prediction of 𝑐′ but from the rationale. The 𝑐′ → 𝑠′ → 𝑐 model should achieve

best achievable accuracy, since the actual prediction is made by the unrestricted

classifier 𝑐′ with full input access. Can we consider the rationale as explanation?

No, because the rationale selection depends on, and is as (non-)interpretable as, the
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black-box 𝑐′. This failure case is shown in Figure 2-1 (bottom). Recently proposed

introspective training (Yu et al., 2019) could not solve this problem either, as the

selector can simply output the comprehensive rationale along with the original cue

of first one or two words, with only the latter used by the classifier1. In general, a

sufficiently powerful selector can make the prediction at selection time, and then pass

this prediction via some encoding in the selected rationale for the classifier to use.

To hide the “bug,” consider now 𝑠′ selecting the three most positive or negative

words in the sentence according to the 𝑐′ prediction (as measured by embedding

distance to a list of pre-defined positive/negative words). This model would seem

very reasonable to a human, yet it is non-interpretable for the same reason. To

recover a “native” neural model, we could train a selector 𝑠 to imitate 𝑐′ → 𝑠′ via

teacher-student distillation (Hinton et al., 2015), and the innocent-looking 𝑠 → 𝑐

rationale model remains equally non-interpretable.

Even without the explicit multi-stage supervision above, a sufficiently flexible

selector 𝑠 (e.g. a neural network) can implicitly learn the 𝑐′ → 𝑠′ model and essentially

control the learning of the classifier 𝑐, in which case the bottleneck of succinct rationale

affords no benefits of interpretability. So why does interpretability get lost (or fail to

emerge)? The issue arises from not understanding the rationale selection process, i.e.

selector 𝑠. If it is well-understood, we could determine its true logic to be 𝑐′ → 𝑠′ and

reject it. Conversely, if we cannot understand why a particular rationale is selected,

then accepting it (and the resulting prediction) at face value is not really any different

from accepting an end-to-end prediction at face value.

In addition, the selector-classifier decomposition suggests that the selector should

be an “unbiased evidence collector”, i.e. scanning through the input and highlighting

all relevant information, while the classifier should deliberate on the evidence for each

class and make the decision. Verifying this role of the selector would again require

its interpretability.

Finally, considering the rationale model as a whole, we could also argue that the

rationale selector should be interpretable. It is already accepted that the classifier
1In fact, the extended rationale helps disguise the problem by appearing as much more reasonable.
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can remain a black-box. If the selector is also not interpretable, then exactly what

about the model is interpretable?

Architecturally, we can draw an analogy between the rationale in rationale models

and the embedding representation in a typical end-to-end classifier produced at the

penultimate layer. A rationale is a condensed feature extracted by the selector and

used by the classifier, while, for example in image models, the image embedding is

the semantic feature produced by the feature extractor and used by the final layer

of linear classifier. Furthermore, both of them exhibit some interpretable properties:

rationales represent the “essence” of the input, while the image embedding space also

seems semantically organized (e.g. Figure 2-2 showing ImageNet images organized

in the embedding space). However, this embedding space is rarely considered on its

own as the explanation for a prediction, exactly because the feature extractor is a

black-box. Similarly, the rationales by default should not qualify as the explanation

either, despite its textual nature.

Finally, from a practical perspective, explanations should help humans understand

the model’s input-output behavior. Such a purpose is fulfilled when the human under-

stands not only why an explanation leads to an output, but also how the explanation

is generated from the input in the first place. Our emphasis on understanding the

rationale selection process fulfills the latter requirement. Such a perspective is also

echoed by Pruthi et al. (2020a), who argued that the practical utility of explanations

depends crucially on human’s capability of understanding how they are generated.

2.5 Empirical Investigation

As discussed above, truly interpretable rationale models require an understanding of

the rationale selection process. However, since the selector is a sequence-to-sequence

model, for which there is no standard methods for interpretability, we focus on a

“necessary condition” setup of understanding the input-output behavior of the model

in our empirical investigation. Specifically, we investigate rationale selection changes

in response to meaning-preserving non-adversarial perturbation of individual words
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Figure 2-2: Embedding space visualization of an ImageNet classifier. Image from
https://cs.stanford.edu/people/karpathy/cnnembed/.

in the input sentence.

2.5.1 Setup

On the 5-way SST dataset (Socher et al., 2013), we trained two rationale models,

a continuous relaxation (CR) model (Bastings et al., 2019) and a policy gradient

(PG) model (Lei et al., 2016). The PG model directly generates binary (i.e. hard)

rationale selection. The CR model uses a [0, 1] continuous value to represent selection

and scales the word embedding by this value. Thus, we consider a word being selected

as rationale if this value is non-zero. Our CR model achieves 47.3% test accuracy

with 24.9% rationale selection rate (i.e. percentage of words in the input selected as

rationale), and PG model 43.3% test accuracy with 23.1% rationale selection rate,

23
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consistent with those obtained by Bastings et al. (2019, Figure 4). Additional details

are in Appendix A.1.

2.5.2 Sentence Perturbation Procedure

The perturbation procedure changes a noun, verb, or adjective as parsed by NLTK2

(Loper and Bird, 2002) with two requirements. First, the new sentence should be

natural (e.g., “I observed a movie” is not). Second, its meaning should not change

(e.g. adjectives should not be replaced by antonyms).

For the first requirement, we [MASK] the candidate word and use the pre-trained

BERT (Devlin et al., 2019) to propose 30 new choices. For the second requirement,

we compute the union of words in the WordNet synset associated with each definition

of the candidate words (Fellbaum, 1998). If the two sets share no common words, we

mark the candidate invalid. Otherwise, we choose the top BERT-predicted word as

the replacement.

We run this procedure on the SST test set, and construct the perturbed dataset

from all valid replacements of each sentence. Table 2.1 lists some example pertur-

bations (more in Appendix A.2). Table 2.2 shows the label prediction distribution

on the original test set along with changes due to perturbation in parentheses, and

confirms that the change is overall very small. Finally, a human evaluation checks

the perturbation quality, detailed in Appendix A.3. For 100 perturbations, 91 were

rated to have the same sentiment value. Furthermore, on all 91 sentences, the same

rationale is considered adequate to support the prediction after perturbation as well.

A pleasurably jacked-up piece/slice of action
moviemaking .

The use/usage of CGI and digital ink-and-paint
make the thing look really slick .

Table 2.1: Sentence perturbation examples, with the original word in bold replaced
by the word in italics.

2i.e. NN, NNS, VB, VBG, VBD, VBN, VBP, VBZ, and JJ
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0 1 2 3 4

CR 8.0 (-0.6) 41.5 (+1.5) 8.9 (-0.4) 28.6 (+1.0) 13.0 (-1.5)
PG 8.6 (-1.6) 40.7 (-1.3) 1.6 (-0.2) 33.9 (+5.0) 15.2 (-1.9)

Table 2.2: The percentage of predicted labels on the original test set, as well as the
differences to that on the perturbation sentences in parentheses.

2.5.3 Results

Now we study the effects of perturbation on rationale selection change (i.e. an origi-

nally selected word getting unselected or vice versa). We use only perturbations that

maintain the model prediction, as in this case, the model is expected to use the same

rationales according to human evaluation.

Qualitative Examples Table 2.3 shows examples of rationale changes under per-

turbation (more in Appendix A.4). Indeed, minor changes can induce nontrivial ra-

tionale change, sometimes far away from the perturbation location. Moreover, there

is no clear relationship between the words with selection change and the perturbed

word.

PG The story/narrative loses its bite in a last-minute
happy ending that ’s even less plausible than the
rest of the picture .

PG A pleasant ramble through the sort of idoosyncratic
terrain that Errol Morris has/have often dealt with
... it does possess a loose , lackadaisical charm .

CR I love the way that it took chances and really asks
you to take these great/big leaps of faith and pays
off .

CR Legendary Irish writer/author Brendan Behan ’s
memoir , Borstal Boy , has been given a loving
screen transferral .

Table 2.3: Rationale change example. Words selected in the original only, perturbed
only, and both are shown in red, blue, and green, respectively.
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Figure 2-3: Scatter plots showing three quartiles of distance between indirect rationale
change to perturbation, grouped by sentence length.

Rationale Change Freq. Quantitatively, we first study how often rationales change.

Table 2.4 shows the count frequency of selection changes. Around 30% (non-adversarial)

perturbations result in rationale change (i.e. non-zero number of changes). Despite

better accuracy, the CR model is less stable and calls for more investigation into its

selector.

# Change 0 1 2 3 4 ≥ 5

CR 66.5% 25.5% 6.8% 1.0% 0.1% 0.1%
PG 77.4% 21.4% 1.1% 0.1% 0% 0%

Table 2.4: Frequency of number of selection changes.

Locations of Selection Change Where do these changes occur? 29.6% and 78.3%

of them happen at the perturbed word for the CR and PG models respectively. For

the CR model, over 70% of rationale changes are due to replacements of other words;

this statistic is especially alarming. For these indirect changes, Figure 2-3 shows

the quartiles of distances to the perturbation for varying sentence lengths. They

are relatively constant throughout, suggesting that the selection uses mostly local
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Figure 2-4: Locations of all selection changes, with each one shown as a dot.

information. However, the “locality size” for CR is about twice as large, and changes

often occur five or more words away from the perturbation.

We also compute the (absolute) location of the rationale changes, as plotted in Fig-

ure 2-4, where each dot represents an instance. The rationale changes are distributed

pretty evenly in the sentence, making it hard to associate particular perturbation

properties to the resulting selection change location.

Sentence-Level Stability Are all the rationale changes concentrated on a few sen-

tences for which every perturbation is likely to result in a change, or are they spread

out across many sentences? We measure the stability of a sentence by the number of

perturbations inducing rationale changes. Obviously, a sentence with more valid per-

turbations is likely to also have more change-inducing ones, so we plot the frequency

of sentences with a certain stability value separately for different total numbers of

perturbations in Figure 2-5. There are very few highly unstable sentences, suggesting

that the selection change is a common phenomenon to most of the sentences, further

adding to the difficulty of a comprehensive understanding of the selector.

Part of Speech Analysis Our final automated analysis studies the part-of-speech

(POS) composition of selection changes. As Table 2.5 shows, adjectives and adverbs
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Figure 2-5: For sentences with a certain number of valid perturbations, the corre-
sponding column of bar chart shows the count frequency of perturbations that result
in any rationale change.

POS (frequency) noun (19.2%) verb (14.3%) adj. (10.1%) adv. (5.8%) proper n. (4.4%) pron. (4.9%) other (41.3%)

CR change / all 37.1% / 34.3% 21.9% / 16.0% 14.2% / 24.8% 8.9% / 11.3% 3.5% / 5.8% 2.5% / 1.0% 11.9% / 6.8%
PG change / all 42.7% / 33.6% 30.2% / 16.6% 20.6% / 30.6% 2.4% / 12.9% 1.8% / 3.4% 0.4% / 0.5% 1.9% / 2.4%

Table 2.5: Part of speech (POS) statistics. The top row shows the POS composition
of the test set sentences. The bottom two rows show POS composition for changed
rationale words and for all rationale words.

are relatively stable, as expected because they encode most sentiments. By contrast,

nouns and verbs are less stable, probably because they typically represent factual

“content” that is less important for prediction. The CR model is especially unstable

for other POS types such as determiner and preposition. Overall, the instability

adds to the selector complexity and could even function as subtle “cues” described in

Section 2.4.

User Study on Selector Understanding While the automated analyses reveal

potential obstacles to selector understanding, ultimately the problem is the lack of

understanding by users. The most popular way to understand a model is via input-
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output examples (Ribeiro et al., 2020; Booth et al., 2021), and we conduct a user

study in which we ask participants (grad students with ML knowledge) to match

rationale patterns with sentences before and after perturbation on 20 instances, after

observing 10 true model decisions (details in Appendix A.5). Unsurprisingly, par-

ticipants get 45 correct out of 80 pairs, basically at the random guess level, even as

some participants use reasons related to grammar and atypical word usage (which are

apparently ineffective), along with “lots of guessing”. This result confirms the lack of

selector understanding even under minimal perturbation, indicating more severity for

completely novel inputs.

29



30



Chapter 3

Influence Functions

Influence functions are a type of explanation method for arbitrary models which are

trained with data. They provide insight into the model’s prediction process on a

specified test instance by tracing the prediction back to the most influential training

instances. While the theory of influence functions is mathematically sound under cer-

tain conditions, several of these conditions do not typically hold in practical settings.

Additionally, to make the computation of influence functions run fast enough to be

useful in practice, several approximations must be used, potentially compromising

the accuracy of these computations. Even with these approximations, computing

influence functions is still quite expensive.

Influence functions have been used in the past for not only model understanding,

but a variety of other tasks such as training a model which is robust to adversarial

inputs, debugging domain mismatches, and fixing mislabeled data (Koh and Liang,

2017), however they have since been shown to be unstable and fragile (K and Søgaard,

2021; Basu et al., 2020). Additionally, while influence functions have been used as

a means of model understanding on large models with many parameters, such as

natural language processing tasks (Han et al., 2020; Zhang et al., 2021a; Zylberajch

et al., 2021), their effectiveness has been questioned (Kocijan and Bowman, 2020).

We aim to gain an intuition on influence functions by studying their behavior in

low dimensions on both synthetic and tabular data. We also develop heuristic algo-

rithms which are simpler and less expensive to compute, which perform competitively
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with influence functions when used for finding influential groups of points.

3.1 Influence Function Theory

Influence functions, as introduced by Koh and Liang (2017), are given as follows.

Suppose we have a prediction problem with input space 𝒳 and output space 𝒴 . Given

a list of training points 𝑍train = {𝑧1, 𝑧2, . . . , 𝑧𝑛} where 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖) with 𝑥𝑖 ∈ 𝒳 , 𝑦𝑖 ∈ 𝒴 ,

we can train a parametric model with parameter class Θ with respect to a certain

loss function 𝐿 by finding the model parameters 𝜃 ∈ Θ which minimize the empirical

risk, which is given by 𝑅(𝜃) ≜ 1
𝑛

∑︀𝑛
𝑖=1 𝐿(𝑧𝑖, 𝜃). Namely, the model training process is

equivalent to finding

𝜃 = argmin
𝜃∈Θ

𝑅(𝜃) = argmin
𝜃∈Θ

1

𝑛

𝑛∑︁
𝑖=1

𝐿(𝑧𝑖, 𝜃) (3.1)

Note that we fold any regularization term into 𝐿. Then, given a test instance

𝑧𝑡, we define the influence of training instance 𝑧 on 𝑧𝑡 as the change in prediction

probability for the predicted class of the model on input 𝑧𝑡 when 𝑧 is removed from

𝑍train and the model is retrained. While retraining is expensive in general, we can

approximate this by considering an upweighting of the loss term corresponding to 𝑧

by 𝜖 and considering the optimal parameters of this upweighted loss

𝜃𝜖,𝑧 = argmin
𝜃∈Θ

1

𝑛

𝑛∑︁
𝑖=1

𝐿(𝑧𝑖, 𝜃) + 𝜖𝐿(𝑧, 𝜃) (3.2)

First, we will compute the change in these parameters with respect to 𝜖, which is

given by 𝑑𝜃𝜖,𝑧
𝑑𝜖

⃒⃒⃒
𝜖=0

. Since 𝜃𝜖,𝑧 minimizes the upweighted empirical risk, we have

∇𝑅(𝜃𝜖,𝑧) + 𝜖∇𝐿(𝑧, 𝜃𝜖,𝑧) = 0 (3.3)

We define ∆𝜖 ≜ 𝜃𝜖,𝑧− 𝜃. Performing a first order Taylor expansion of equation 3.3

at 𝜃 (noting that lim𝜖→0 𝜃𝜖,𝑧 = 𝜃) gives

32



(︁
∇𝑅(𝜃) + 𝜖∇𝐿(𝑥, 𝜃)

)︁
+
(︁
∇2𝑅(𝜃) + 𝜖∇2𝐿(𝑥, 𝜃)

)︁
∆𝜖 ≈ 0 =⇒

(3.4)

∆𝜖 ≈ −
(︁
∇2𝑅(𝜃) + 𝜖∇2𝐿(𝑥, 𝜃)

)︁−1 (︁
∇𝑅(𝜃) + 𝜖∇𝐿(𝑥, 𝜃)

)︁
≈ −∇2𝑅(𝜃)−1∇𝐿(𝑧, 𝜃)𝜖

(3.5)

where the last (approximate) equality comes from dropping 𝑜(𝜖) terms and using the

fact that ∇𝑅(𝜃) = 0 (as 𝜃 minimizes 𝑅). Using this, we can compute

𝑑𝜃𝜖,𝑧
𝑑𝜖

⃒⃒⃒
𝜖=0

=
𝑑∆𝜖,𝑧

𝑑𝜖

⃒⃒⃒
𝜖=0

= −∇2𝑅(𝜃)−1∇𝐿(𝑧, 𝜃) = −𝐻−1

𝜃
∇𝜃𝐿(𝑧, 𝜃) (3.6)

where 𝐻𝜃 = 1
𝑛

∑︀𝑛
𝑖=1∇2

𝜃𝐿(𝑧𝑖, 𝜃) is the empirical Hessian matrix. Assuming 𝑅 is

twice-differentiable and strongly convex in 𝜃, 𝐻𝜃 will be positive definite and thus

invertible. Note that the first equality in equation 3.6 comes from the fact that 𝜃

does not depend on epsilon. To get the final form of the influence function, which is

the derivative of the loss on the test point 𝑧𝑡 with respect to 𝜖 at 𝜖 = 0, we apply the

chain rule

Inf(𝑧, 𝑧𝑡) =
𝑑𝐿(𝑧𝑡, 𝜃𝜖,𝑧)

𝑑𝜖

⃒⃒⃒
𝜖=0

= ∇𝜃𝐿(𝑧𝑡, 𝜃)
⊤𝑑𝜃𝜖,𝑧

𝑑𝜖

⃒⃒⃒
𝜖=0

= −∇𝜃𝐿(𝑧𝑡, 𝜃)
⊤𝐻−1

𝜃
∇𝜃𝐿(𝑧, 𝜃)

(3.7)

3.2 Influence Function are Approximations

While influence functions aim to measure a model’s prediction change on a test point

when a training point is removed, they are ultimately an approximation. Influence

functions drop several smaller order terms, make convergence assumptions, and also

approximate group effects by directly combining individual effects.
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3.2.1 Dropping Smaller Order Terms and Convergence As-

sumptions

There are several areas of approximation when using influence functions. First, in-

fluence functions use a first order Taylor expansion which drops both 𝑜(∆𝜖) and 𝑜(𝜖)

terms as given in equation (3.4). Additionally, computing the influence function uses

the empirical risk minimizer 𝜃. In practice, many models are trained using iterative

algorithms, such as gradient descent based algorithms, and it is not guaranteed that

the parameters returned from such a training procedure is the true 𝜃. Finally, the

derivation of the influence function in Section 3.1 assumes that the empirical risk is

strongly convex in 𝜃. While Koh and Liang (2017) show that computing the influence

function using 𝜃 near 𝜃 and on a non-convex objective still gives meaningful results

in practice, their theoretical analysis introduces more approximations of dropping

smaller order terms.

3.2.2 Approximating Group Effects

In addition to finding individual training points which are most influential on a test

point for a given model, one may be interested in finding a group of training points

of a certain size which, taken altogether, are the most influential on a test point (i.e.

when removed and the model is retrained, the prediction confidence on the test point

decreases the most). Searching over all such groups is intractable for most datasets

and group sizes of practical interest, and Koh et al. (2019) investigate the use of

influence functions on individual points to approximate a group effect. While the

authors show empirically that influence function computations for groups of points

is correlated with their actual effect, their theoretical analysis also shows that this

correlation may not hold in general.
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3.3 Related Work

Koh and Liang (2017) describe the assumptions and mathematical guarantees of in-

fluence functions, and a practical approximate way to implement them. To make the

computation of influence tractable, they use the quadratic Taylor expansion approx-

imation, which leads to the expression in equation 3.7. Additionally, if the empirical

risk is not convex, or the parameters found in the model training process have not

fully converged to the minimizer 𝜃 in equation 3.1 (e.g. if a training procedure such

as stochastic gradient descent is used with an early stopping), then the derivation of

equation 3.7 may not hold. In this non-convex or not yet converged case, the authors

demonstrate empirical results which show influence functions still give meaningful

results in practice. However, we believe that such a case may require more scrutiny.

Finally, the inverse empirical Hessian matrix 𝐻−1

𝜃
is impractical to compute for large

models with many parameters, and thus the authors result to stochastic estimation.

Schioppa et al. (2021) use a trick to speed up the inverse Hessian calculation at the

cost of using additional approximations.

Pruthi et al. (2020b) describe a method to compute influence of training instance

𝑧𝑖 on test instance 𝑧 by adding up the change in loss of 𝑧 between iteration 𝑡+1 and

iteration 𝑡 for all time steps 𝑡 for which the training instance 𝑧𝑖 is used. However, to

make this implementation practical, the authors result to an approximate computa-

tion which uses evenly spaced checkpoints, using the next iteration where 𝑧𝑖 is used if

it is not used at one of the checkpoints. It has been shown that this method, as well

as the one used by Koh and Liang (2017), are unstable and very sensitive to factors

such as initialization, training data order, and batch size (K and Søgaard, 2021), and

are also fragile (Basu et al., 2020).

Most aligned with our work are works which use heuristics to speed up computa-

tion of approximate influence. Guo et al. (2021) use k-nearest neighbors as a heuristic

to reduce the search space before applying more expensive influence function compu-

tations while Rajani et al. (2020) directly uses k-nearest neighbors in the embedding

space of language models such as BERT and RoBERTa based systems to heuristically
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find the most influential training points on a given input instance for natural language

tasks. Instead, we study logistic regression models trained on low dimensional data to

develop geometric intuition and heuristics which can be used as cheaper alternatives

to influence functions. We leave it to future work to extend this intuition to more

complex models and higher dimensional data.

3.4 Developing Heuristics

We restrict our study to logistic regression models on binary classification tasks.

We present several heuristics which can be used in place of influence functions for

finding influential groups. While we do not prove any theoretical guarantees on these

heuristics, we show empirically that their performance is competitive with influence

functions both on synthetic and real world tabular data.

3.4.1 Developing Intuition

Greedy Algorithm for finding Influential Sets

As previously mentioned, finding the exact most influential set requires searching over

all subsets of training points of the desired size, which is computationally infeasible

for most datasets of practical interest. Thus, we use a beam search given in algo-

rithm 1 to greedily build our approximately most influential set. We did not observe

any differences for a beam size of up to 10 on our synthetic data, and increasing the

beam size significantly increases the computation time of the search. Thus for com-

putational reasons, we use a beam size of 1, which is equivalent to a simple greedy

algorithm of, at each step, picking the training point which when combined with the

current set, decrease the prediction confidence of the test point the most when these

points are removed and the model is retrained. Note that the greedy algorithm is not

a feasible approach to use over influence functions in practice due to computational

reasons, as it requires retraining the model 𝑂(𝑛𝑘) times, where 𝑛 is the size of the

training set and 𝑘 is the desired size of the influential set.

36



Algorithm 1: Beam Search for Most Positively Influential Points
Data: training set 𝑍, beam size 𝑏, group size 𝑘, test point 𝑧

1 𝐵 ← ∅;
2 for 𝑖 = 1, . . . , 𝑘 do
3 𝐵′ ← ∅;
4 for 𝑆 ∈ 𝐵 do
5 for 𝑧′ ∈ 𝑍 ∖ 𝑆 do
6 𝑆 ′ ← 𝑆 ∪ {𝑧′};
7 if |𝐵′| < 𝑏 then
8 𝐵′ ← 𝐵′ ∪ {𝑆 ′}
9 else

10 𝑆* ← min𝑇∈𝐵′ 𝑠𝑐𝑜𝑟𝑒(𝑇 ) ; /* 𝑠𝑐𝑜𝑟𝑒(𝑇 ) = 𝑀𝑧(𝑍 ∖ 𝑇 )−𝑀𝑧(𝑍)
where 𝑀(𝐷) denotes the model’s prediction for 𝑧
when trained on data 𝐷. */

11 if 𝑠𝑐𝑜𝑟𝑒(𝑆 ′) > 𝑠𝑐𝑜𝑟𝑒(𝑆*) then
12 𝐵′ ← 𝐵 ∖ {𝑆*};
13 𝐵′ ← 𝐵 ∪ {𝑆 ′};
14 𝐵 ← 𝐵′;
15 return B

Maximal Rotation Intuition

We begin our investigation with a two dimensional Gaussian synthetic dataset 𝑍 =

{𝑧1, . . . , 𝑧𝑛}. For 1 ≤ 𝑖 ≤ 𝑛
2
, we have 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑙𝑖) where 𝑥𝑖, 𝑦𝑖 are drawn indepen-

dently from 𝑁(2, 𝜎2) and the label is 𝑙𝑖 = 1. For 𝑛
2
< 𝑖 ≤ 𝑛, we have 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑙𝑖)

where 𝑥𝑖, 𝑦𝑖 are drawn independently from 𝑁(−2, 𝜎2) and the label is 𝑙𝑖 = 0. We

train a logistic regression model on this data. Applying algorithm 1 to this data, we

see that a good heuristic for searching for a set of maximally influential points seems

to be inducing a maximal rotation on the decision boundary toward the test point,

with a further center of rotation being better (see figure 3-1 for an example of this).

This intuition aligns with the fact that, assuming a fixed magnitude of coefficients,

a logistic regression model’s prediction probability on a (correctly predicted) data

point is monotonically increasing in the distance of that data point to the model’s

decision boundary. In other words, if the data point is further from the decision

boundary (and on the correct side), the logistic regression model will give a higher

probability for the predicted label. To constrain the magnitude of the coefficients, we
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Figure 3-1: Scatter plot showing the most positively influential points selected by
algorithm 1 with 𝑏 = 1 and 𝑘 = 5 for a logistic regression model trained on the
data generated as described above with 𝜎2 = 1 and a negatively labeled test point
generated from the same distribution as the training data.

add a regularization term to our model. Regularization is also helpful in general for

logistic regression models, especially when the training data is linearly separable, as

otherwise the weights will blow up when attempting to minimizing the cross entropy

loss.

3.4.2 Heuristics

Nearest Neighbors of Projection onto Decision Boundary

With the intuition described in section 3.4.1 in mind, a simple heuristic for selecting

an influential group of 𝑘 points is taking the 𝑘 nearest training points to the projection

of the test point onto the decision boundary which share the same label as the test

point. Call the test point 𝑥𝑡, its projection 𝑝𝑡, and the original model’s decision

boundary 𝐵, which is a vector. This heuristic will select points near the decision

boundary, as well as points near 𝑥𝑡 in the direction along the decision boundary. As

38



points near the decision boundary will incur higher losses, their removal will help

induce a rotation in the decision boundary better than points far away from the

decision boundary. Additionally, intuitively in the two dimensional case, the removal

of the most extreme points the direction along either 𝐵 or −𝐵, depending on where

𝑥𝑡 is relative to the training data, will help induce a center of rotation furthest away

from 𝑝𝑡. We will explore this intuition more in section 3.4.2. For now, we can see

that using the nearest neighbors to 𝑝𝑡 is a simple heuristic which will give a trade-off

between these two competing pieces of intuition.

Failure of Influence Functions to Capture Group Effects

Consider the case where training data 𝑍 is symmetrically distributed around 𝑥𝑡.

Then, if we use influence functions to find a positively influential set, we will be

ambivalent in picking the points in the 𝐵 direction and the −𝐵 direction (as two

points which are equally extreme in both these directions could have equal influence

scores). However, picking points in both directions will not have as strong of a group

effect as picking only points in one direction, as this will induce more of a rotation

on the decision boundary. In this case, the marginal effects attributed to the training

points by influence functions fail to completely capture an optimal group effect.

Perpendicular Post-processing in Two Dimensions

As mentioned in section 3.4.2, one heuristic is to consider the most extreme training

points along either 𝐵 or −𝐵, depending on where 𝑥𝑡 is relative to the training data.

This is because removing the most extreme points in the 𝐵 direction will move the

center of rotation further in the −𝐵 direction, and vice versa. Thus choosing to

remove the most extreme points in the 𝐵 or −𝐵 direction comes down to whether

𝑥𝑡 is closer to the extreme along 𝐵 or −𝐵 with respect to the training data. As a

simple proxy metric for this, we pick which direction to use based on which side of

𝐵′ has more training points, where 𝐵′ is the perpendicular to 𝐵 through 𝑥𝑡.

Putting these ideas into a heuristic post processing algorithm, we first run the

nearest neighbors to projection heuristic described in section 3.4.2, which returns a
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set of training points 𝑃 . Then, we compute a set of candidate training points 𝐶 by

taking all points in 𝑍 on the side of 𝐵′ with less training points which also share the

same label as 𝑥𝑡 and are closer to the decision boundary than the furthest point from

the decision boundary in 𝑃 . We then iteratively try to replace the furthest points

in 𝑃 from the decision boundary with the most extreme points along 𝐵 (or −𝐵,

depending on which side of 𝐵′ has less points in 𝑍). See algorithm 2 for details. See

figure 3-2 (right) for an example of this heuristic, and how it improves upon figure

3-2 (left).

Algorithm 2: Post-processing for Most Positively Influential Points Based
on Distance to Decision Boundary
Data: training set 𝑍, selected points 𝑃 , decision boundary 𝐵, test point 𝑧

1 𝑃 ′ ← copy of 𝑃 ;
2 𝐵′ ← line through 𝑧.𝑥 perpendicular to 𝐵;
3 sort 𝑝 ∈ 𝑃 by 𝑑𝑖𝑠𝑡(𝑝.𝑥,𝐵) in descending order;
4 𝑚← min𝑝∈𝑃 𝑑𝑖𝑠𝑡(𝑝.𝑥,𝐵);
5 𝐶 ← {};
6 𝑠← side of 𝐵′ containing less points in 𝑍;
7 for 𝑝 ∈ 𝑍 do
8 if 𝑑𝑖𝑠𝑡(𝑝.𝑥,𝐵) ≤ 𝑚 and 𝑠𝑖𝑑𝑒(𝑝.𝑥,𝐵) = 𝑠 and 𝑝.𝑦 = 𝑧.𝑦 and 𝑝 /∈ 𝑃 then
9 𝐶 ← 𝐶 ∪ {𝑝};

10 sort 𝑝 ∈ 𝐶 by 𝑑(𝑝,𝐵′) in descending order;
11 𝑖, 𝑗 ← 0, 0;
12 while 𝑖 < |𝑃 | and 𝑗 < |𝐶| do
13 if 𝑑𝑖𝑠𝑡(𝐶[𝑗].𝑥, 𝐵) < 𝑑𝑖𝑠𝑡(𝑃 [𝑖].𝑥, 𝐵) then
14 𝑃 ′ ← 𝑃 ′ ∖ {𝑃 [𝑖]};
15 𝑃 ′ ← 𝑃 ′ ∪ {𝐶[𝑗]};
16 𝑖← 𝑖+ 1;
17 𝑗 ← 𝑗 + 1;
18 return 𝑃 ′

Parallel Post-processing in Two Dimensions

The post-processing procedure described in section 3.4.2 may be too conservative

in some settings. For example, suppose that we want to pick extreme points in

the 𝐵 direction. If the most extreme points in the 𝐵 direction are all further from

the decision boundary than the furthest point in our current influential set (before
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Figure 3-2: Scatter plot showing the most positively influential points selected by
running algorithm 2 with selected points input 𝑃 as the set returned from running
the projection heuristic described in section 3.4.2. The data is generated according
to a Gaussian mixture distribution described in section 3.5.1 with a training size of
100, influential set size of 10, and 𝜎2 = 1.

post-processing) is from the decision boundary, then we will not select any of these

points. Another post-processing perspective is to replace points on the undesired

side of 𝑥𝑡 with the most extreme training points on the desired side of 𝑥𝑡 whenever

possible. Details of this post-processing algorithm are given in algorithm 3. Because

this algorithm, as given, does not prevent training points very far from the decision

boundary to be chosen, we also consider a variant which only considers points which

are closer to the decision boundary than the test point is in the post-processing step.

See figure 3-3 for an example.

Same Side Choice

When dealing with data which is not linearly separable, it may be beneficial to con-

strain the points selected by the heuristics we presented above. Thus, we also consider

variants of each of the heuristics presented in the above sections where we only con-

sider training points on the same side of the decision boundary as 𝑥𝑡 for potential

inclusion in a positively influential set. For some intuition behind this, consider the

following scenario. Test point 𝑥𝑡 is negatively labeled and the decision boundary

correctly places it on the negative side. There is a set of several negatively labeled

points 𝑁 near the decision boundary but far from each other, and correctly classified
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Algorithm 3: Post-processing for Most Positively Influential Points Based
on Distance Along Decision Boundary
Data: training set 𝑍, selected points 𝑃 , decision boundary 𝐵, test point 𝑧

1 𝐵′ ← line through 𝑧.𝑥 perpendicular to 𝐵;
2 𝑚← min𝑝∈𝑃 𝑑𝑖𝑠𝑡(𝑝.𝑥,𝐵);
3 𝑠← side of 𝐵′ containing less points in 𝑍;
4 𝑄← {};
5 for 𝑝 ∈ 𝑃 do
6 if 𝑠𝑖𝑑𝑒(𝑝.𝑥,𝐵) ̸= 𝑠 then
7 𝑄← 𝑄 ∪ {𝑝};
8 sort 𝑝 ∈ 𝑄 by 𝑑(𝑝,𝐵′) in descending order;
9 𝐶 ← {};

10 for 𝑝 ∈ 𝑍 do
11 if 𝑠𝑖𝑑𝑒(𝑝.𝑥,𝐵) = 𝑠 and 𝑝.𝑦 = 𝑧.𝑦 and 𝑝 /∈ 𝑃 then
12 𝐶 ← 𝐶 ∪ {𝑝};
13 sort 𝑝 ∈ 𝐶 by 𝑑(𝑝,𝐵′) in descending order;
14 𝑖, 𝑗 ← 0, 0;
15 𝑃 ′ ← copy of 𝑃 ;
16 while 𝑖 < |𝑄| and 𝑗 < |𝐶| do

/* Variant: Only update 𝑃 ′ if 𝑑𝑖𝑠𝑡(𝐶[𝑗], 𝐵) < 𝑑𝑖𝑠𝑡(𝑧.𝑥,𝐵) */
17 𝑃 ′ ← 𝑃 ′ ∖ {𝑄[𝑖]};
18 𝑃 ′ ← 𝑃 ′ ∪ {𝐶[𝑗]};
19 𝑖← 𝑖+ 1;
20 𝑗 ← 𝑗 + 1;
21 return 𝑃 ′

(i.e. on the correct side of the decision boundary). Now, say there is one more nega-

tively labeled point 𝑝 which is on the positive side of the decision boundary, but near

𝑁 . Even though 𝑝 may be selected by our heuristic algorithms (or picked up during

post-processing), its removal may not help much in inducing a rotation of the decision

boundary toward 𝑥𝑡, if at all, as a rotation would move the decision boundary closer

to 𝑁 , which would increase the loss incurred by the points in 𝑁 .

Extension to Higher Dimensions

The nearest neighbors of projection onto decision boundary heuristic, as described in

section 3.4.2, extends easily into higher dimensions. However, the rotation intuition

becomes more complicated. We leave exploring geometric intuition for this heuristic

in higher dimensions to future work. While the post-processing heuristics only make
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Figure 3-3: Scatter plot showing the most positively influential points selected by
running algorithm 3 (the variant only considering candidates closer to the decision
boundary than the test point) with selected points input 𝑃 as the set returned from
running the projection heuristic described in section 3.4.2. The data is generated
according to a Gaussian mixture distribution described in section 3.5.1 with a training
size of 100, influential set size of 10, and 𝜎2 = 1.

sense in two dimensions, we can still apply these heuristics in the case of binary

classification on higher dimensional data by first mapping the data to two dimensions

using a linear dimensionality reduction method such as principal component analysis

(PCA). We can then train a logistic regression model on the reduced two dimensional

data and apply the post-processing heuristics. Because PCA is a linear dimensionality

reduction method, the maximal rotation intuition carries over, but projected onto the

two principal components of the original data.

Run Time Comparison

Computing the influence function for a given test point takes 𝑂(𝑛𝑝2 + 𝑝3) where 𝑛

is the number of training points and 𝑝 is the number of features. In comparison, the

projection heuristic discussed in section 3.4.2 takes 𝑂(𝑛𝑝) time to compute. When

𝑝 = 2, both of these are 𝑂(𝑛). Additionally, each of the post-processing algorithms

also run in 𝑂(𝑛) when 𝑝 = 2 as we are iterating through each training point at most

once, and in each iteration we do a constant number of comparisons. In general,

as mentioned above, using the post-processing algorithms requires an initial PCA to

map the data to two dimensions, which takes 𝑂(max(𝑛, 𝑝)2 · min(𝑛, 𝑝)) using a full
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singular value decomposition (SVD) solver, but this is is reduced to 𝑂(max(𝑛, 𝑝)2)

using a randomized solver (Pedregosa et al.). See table 3.1 for a comparison of the

run times of the different approaches.

Using the Best of Multiple Heuristics

Each of the heuristics mentioned above may work better in certain cases, depending on

the data. Thus, we also consider running each of the heuristics, and trying each of the

influential sets we get to see which one’s removal maximally decreases the prediction

confidence of a test point of interest. Because each post-processing heuristic has the

same run time, and we try a constant number of them, using the best of multiple

heuristics will not increase the asymptotic run time. Note that the time to retrain the

model must also be factored into this, but since training a logistic regression model

takes 𝑂(𝑛𝑝) time, it does not increase the asymptotic run time of using the best of

multiple heuristics.

Influence Function 𝑂(𝑛𝑝2 + 𝑝3)
Projection Heuristic 𝑂(𝑛𝑝)

Best of Heuristics in 2D using PCA 𝑂(max(𝑛, 𝑝)2)
Best of Heuristics and Influence Function in 2D using PCA 𝑂(max(𝑛, 𝑝)2)

Table 3.1: Asymptotic run times of different approaches in the general case. The
run times of the two approaches using PCA use the run time of the randomized SVD
solver.

3.5 Heuristic Experiments and Results

We compare the performance of influence functions, the greedy algorithm, and the

heuristics described in section 3.4 on synthetic and tabular datasets.
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3.5.1 Datasets

Gaussian Data

As described in section 3.4.1, the first dataset we look at is Gaussian data where

the positively labeled points are generated via 𝑥1, 𝑥2
iid∼ 𝑁(2, 𝜎2) and the negatively

labeled points are generated via 𝑥1, 𝑥2
iid∼ 𝑁(−2, 𝜎2). We set 𝜎2 = 1 to get a linearly

separable dataset and 𝜎2 = 2 to get a dataset which is not linearly separable. We

generate a balanced training set of size 400 and test point from the same distribution

(with probability 1
2

of being from each class), and compute the prediction drop of the

test point when the influential sets of size 40 (10% of the training set size), as found

by the greedy approach, influence function approach, and heuristic approaches, are

removed and the model is retrained. We average this prediction drop over 100 trials

(where we regenerate both the training data and test data in each trial).

Gaussian Mixture Data

Next, we consider Gaussian mixture data. We generate positively labeled points as

follows. First generate 𝑝 ∼ Bernoulli(1
2
). Then we generate 𝑥1,∼ 𝑁(4, 𝜎2), 𝑥2,∼

𝑁(0, 𝜎2) if 𝑝 = 0 and 𝑥1,∼ 𝑁(0, 𝜎2), 𝑥2,∼ 𝑁(4, 𝜎2) if 𝑝 = 1. To generate nega-

tively labeled points, we again generate 𝑝 ∼ Bernoulli(1
2
). Then we generate 𝑥1,∼

𝑁(−4, 𝜎2), 𝑥2,∼ 𝑁(0, 𝜎2) if 𝑝 = 0 and 𝑥1,∼ 𝑁(0, 𝜎2), 𝑥2,∼ 𝑁(−4, 𝜎2) if 𝑝 = 1.

Again, we set 𝜎2 = 1 to get a linearly separable dataset and 𝜎2 = 2 to get a dataset

which is not linearly separable. We again generate a balanced training set of size

400 and test point from the same distribution (with probability 1
2

of being from each

class), and compute the prediction drop of the test point when the influential sets

of size 40 (10% of the training set size), as found by the greedy approach, influence

function approach, and heuristic approaches, are removed and the model is retrained.

We also average this prediction drop over 100 trials (where we regenerate both the

training data and test data in each trial).
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Banknote Authentication Dataset

The banknote authentication dataset is a tabular dataset consisting of binary labeled

data (representing if the note is genuine or forged) with four real, continuous features

(Dua and Graff, 2017). We take a training set size of 400 randomly selected samples

and a test set size of 100 randomly selected samples. We compute the prediction

drop of each test point when the influential sets of size 40 (10% of the training set

size), as found by the greedy approach, influence function approach, and heuristic

approaches, are removed and the model is retrained. We average this prediction drop

over all 100 test samples and compare results. We also compare approaches on a two

dimensional version of the banknote authentication dataset, where we first project

the entire dataset into two dimensions using PCA.

Wine Quality Dataset

The wine quality dataset is a tabular dataset consisting of 11 classes (quality score

from 0 to 10) with 11 real, continuous features (Cortez et al., 2009; Dua and Graff,

2017). The dataset contains data for both red and white wine. For both wine types,

we turn the tasks into binary classification by removing all data with quality 6 and

predicting quality ≤ 5 against quality ≥ 7. We then balance the dataset by randomly

selecting 1000 samples per class. Next, we take a training set size of 400 randomly

selected samples and a test set size of 100 randomly selected samples. We compute

the prediction drop of each test point when the influential sets of size 40 (10% of

the training set size), as found by the greedy approach, influence function approach,

and heuristic approaches, are removed and the model is retrained. We average this

prediction drop over the 100 test samples and compare results.

3.5.2 Results

The results of the best performing heuristics, as well as from influence function and

greedy, are given in table 3.2. We also compare to a baseline heuristic, which is simply

taking the nearest points to the decision boundary with the same label as the test
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point. Note that for the post-processing heuristics (perp. and par. columns) on the

banknote data, we first project to two dimensions using PCA and then run these

heuristics to find the influential set. We obtain the prediction drop by retraining a

model on the full data with this influential set removed (where we map back to the

full data). In case of the two dimensional data, as well as in the case of the banknote

data, the difference in prediction drops between the influence function and the best

of heuristics is never more than 0.6%. In the case of the wine data, this difference is

bigger, but still does not exceed 4%. This suggests that the heuristics are competitive

with the influence function, especially in the lower dimensional settings.

Near to Bound. Proj. Perp. Par. (cutoff at test pt) Best Inf. Func. Greedy

Gaussian Separable -4.29% -4.39% -4.44% -4.18% -4.44% -4.45% -4.48%
Gaussian Non-separable -6.29% -7.85% -8.35% -8.21% -8.45% -8.49% -9.01%

Mixture Separable -4.34% -6.35% -6.57% -6.25% -6.58% -6.59% -6.75%
Mixture Non-separable -6.04% -9.15% -10.3% -9.68% -10.3% -10.5% -11.2%
Banknote 2D (via PCA) -5.59% -10.5% -11.3% -11.1% -12.8% -13.4% -14.1%

Banknote -3.30% -9.03% -7.31% -8.17% -11.8% -12.3% -13.2%
Red Wine -5.95% -9.03% -9.64% -9.83% -16.8% -18.7% -21.7%

White Wine -6.05% -11.0% -10.6% -12.7% -17.0% -20.9% -22.2%

Table 3.2: Comparison of different heuristics with influence function and greedy. For
postprocessing, we take the best performance of whether or not to use only training
points on the same side of the decision boundary as the test point. For the banknote,
red wine, and white wine data, the postprocessing is done by projecting the data into
two dimensions using PCA before running the heuristics on the two dimensional data.
In these cases, the best column considers the two dimensional influence function as
well (as the influence functions are cheap to compute on the two dimensional data
compared to the full data).
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Chapter 4

Conclusion

In this thesis, we explore two types of model interpretability techniques. First, we take

a closer look at neural rationale models, which use of a selector and classifier frame-

work, with the selector extracting a segment of the input text to pass to the classifier.

As the extracted segment serves as a bottleneck containing the only information the

classifier uses, they have been claimed to be “inherently interpretable”. However, we

argue against the commonly held belief that rationale models are inherently inter-

pretable by design. We present several reasons, including a counter-example showing

that a reasonable-looking model could be as non-interpretable as a black-box. These

reasons imply that the missing piece is an understanding of the rationale selection

process (i.e. the selector). We also conduct a (non-adversarial) perturbation-based

study to investigate the selector of two rationale models, in which automated analy-

ses and a user study confirm that they are indeed hard to understand. In particular,

the higher-accuracy model (CR) fares worse in most aspects, possibly hinting at the

performance-interpretability trade-off (Gunning and Aha, 2019). These results point

to a need for more rigorous analysis of interpretability in neural rationale models.

Next, we turn our focus to influence functions, which are a type of training based

explanation method. Unlike rationale models which have a specific architecture con-

taining a selector and classifier with the selector’s output serving as an explanation,

training based explanation methods provide explanation for an arbitrary model’s out-

put on a given test point by finding a set of most influential training points for that
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test point. In the case of influence functions, influence of a training point is measured

by (approximately) computing the model’s prediction difference on the test point

when the training point is removed and the model is retrained. We present several

cheap to compute heuristics based on geometric intuition in the case of a logistic

regression model on two dimensional binary classification to find sets of influential

training points. While the geometric intuition is based on two dimensional settings,

we extend the heuristics to higher dimensional tabular data via PCA. Finally, we

show via experiments on both synthetic data and tabular data, our heuristics per-

form competitively with influence functions. Future directions involve searching for a

set of mathematical rules based on the shape of the training data to determine which

heuristic to use, which would prevent the need from trying all heuristics to find the

best performing one for a given training set and test point. Future directions also in-

clude extending geometric intuition to higher dimensions more directly (e.g. without

having to use a dimension reduction method), and extending heuristics to nonlinear

classifiers such as neural networks.
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Appendix A

Neural Rationale Experiment Details

A.1 Additional Details on the Experimental Setup

A.1.1 Training

The models we train are as implemented in (Bastings et al., 2019). The hyperpa-

rameters we use are 30 percent for the word selection frequency when training the

CR model and 𝐿0 penalty weight 0.01505 when training the PG model. Training

was done on a MacBook Pro with a 1.4 GHz Quad-Core Intel Core i5 processor and

8 GB 2133 MHz LPDDR3 memory. The training time for each model was around

15 minutes. There are a total of 7305007 parameters in the CR model and 7304706

parameters in the PG model. The hyperparameter for the CR model is the word

selection frequency, ranging from 0% to 100%, whereas the hyperparameter for the

PG model is the 𝐿0 penalty weight which is a nonnegative real number (for penalizing

gaps in selections).

These hyperparameter were configured with the goal that both models would

select a similar fraction of total words as rationale. This was done manually. Only

one CR model was trained (with the word selection frequency set to 30 percent).

Then, a total of 7 PG models were trained, with 𝐿0 penalty weight ranging from

0.01 to 0.025. Then, the closest matching result to the CR model in terms of word

selection fraction, which was an 𝐿0 penalty of 0.01505, was used.
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The CR model (with 30% word selection frequency) achieves a 47.3% test accuracy

with a 24.9% rationale selection rate, and the PG model (with 𝐿0 penalty of 0.01505)

achieves a 43.3% test accuracy with a 23.1% selection rate, consistent with those

obtained by Bastings et al. (2019, Figure 4). The CR model achieves a validation

accuracy of 46.0% with a 25.1% rationale selection rate, and the PG model achieves a

41.1% validation accuracy with a 22.9% selection rate, comparable to the test results.

A.1.2 Dataset

We use the Stanford Sentiment Treebank (SST, Socher et al., 2013) dataset with

the exact same preprocessing and train/validation/test split as given by Bastings

et al. (2019). There are 11855 total entries (each are single sentence movie reviews

in English), split into a training size of 8544, a validation size of 1101, and a test size

of 2210. The label distribution is 1510 sentences of label 0 (strongly negative), 3140

of label 1 (negative), 2242 of label 2 (neutral), 3111 of label 3 (positive), and 1852 of

label 4 (strongly positive). We use this dataset as is, and no further pre-processing

is done. The dataset can be downloaded from the code provided by Bastings et al.

(2019).

A.1.3 Sentence Perturbation

The data perturbation was done on the same machine with specs described in Ap-

pendix A.1. This procedure was done once and took around an hour. This perturba-

tion was an automated procedure using the BERT and WordNet synset intersection

as a heuristic for word substitutions. As a result, we did not collect any new data

which requires human annotation or other work.
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A.2 Additional Examples of Sentence Perturbation

Table A.1 shows ten randomly sampled perturbations.

There are weird resonances between actor and role/character here , and they ’re not exactly flattering .

A loving little/short film of considerable appeal .

The film is really not so much/often bad as bland .

A cockamamie tone poem pitched precipitously between swoony lyricism and violent catastrophe ... the most
aggressively nerve-wracking and screamingly neurotic romantic comedy in cinema/film history .

Steve Irwin ’s method is Ernest Hemmingway at accelerated speed and volume/mass .

The movie addresses a hungry need for PG-rated , nonthreatening family movies/film , but it does n’t go too
much further .

... the last time I saw a theater full of people constantly checking their watches/watch was during my SATs .

Obvious politics and rudimentary animation reduce the chances/chance that the appeal of Hey Arnold !

Andy Garcia enjoys one of his richest roles in years and Mick Jagger gives his best movie/film performance since
, well , Performance .

Beyond a handful of mildly amusing lines ... there just is/be n’t much to laugh at .

Table A.1: Ten randomly sampled sentence perturbation examples given in a user
study, with the original word shown in bold replaced by the word in italics.

A.3 Description of the Human Evaluation of Data

Perturbation

We recruited five graduate students with ML experience (but no particular experience

with interpretable ML or NLP), and each participant was asked to answer questions

for 20 sentence perturbations, for a total of 100 perturbations. An example question

is shown below:
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The original sentence (a) and the perturbed sentence (b), as well as

the selected rationale on the original sentence (in bold) are:

a There are weird resonances between actor and role here ,

and they ’re not exactly flattering .

b There are weird resonances between actor and character here

, and they ’re not exactly flattering .

The original prediction is: negative.

1. Should the prediction change, and if so, in which way:

2. If yes:

(a) Does the changed word need to be included or removed

from the rationale?

(b) Please highlight the new rationale in red directly on the

new sentence.

The study takes less than 15 minutes, is conducted during normal working hours with

participants being grad students on regular stipends, and is uncompensated.
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A.4 Additional Rationale Change Examples

Table A.2 shows additional rationale change examples.

PG This delicately observed story/tale , deeply felt and masterfully stylized , is a triumph for
its maverick director.

PG Biggie and Tupac is so single-mindedly daring , it puts/put far more polished documentaries
to shame.

PG Somewhere short of Tremors on the modern B-scene : neither as funny nor as clever , though
an agreeably unpretentious way to spend/pass ninety minutes .

PG The film overcomes the regular minefield of coming-of-age cliches with potent/strong doses
of honesty and sensitivity .

PG As expected , Sayles ’ smart wordplay and clever plot contrivances are as sharp as ever ,
though they may be overshadowed by some strong/solid performances .

CR The animated subplot keenly depicts the inner struggles/conflict of our adolescent heroes
- insecure , uncontrolled , and intense .

CR Funny and , at times , poignant , the film from director George Hickenlooper all takes/take
place in Pasadena , “ a city where people still read . ”

CR It would be hard to think of a recent movie that has/have worked this hard to achieve this
little fun.

CR This road movie gives/give you emotional whiplash , and you ’ll be glad you went along for
the ride .

CR If nothing else , this movie introduces a promising , unusual kind/form of psychological
horror .

Table A.2: Additional rationale change example. Words selected in the original only,
perturbed only, and both are shown in red, blue, and green, respectively.

A.5 Description of the User Study on Rationale Change

Participants were first given 10 examples of rationale selections (shown in bold) on

the original and perturbed sentence pair made by the model, with one shown below:

orig: Escapism in its purest form .

pert: Escapism in its purest kind .

Then, they were presented with 20 test questions, where each question had two ratio-

nale assignments, one correct and one mismatched, and they were asked to determine

which was the correct rationale assignment. An example is shown below:
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a orig: Benefits from a strong performance from Zhao , but it

’s Dong Jie ’s face you remember at the end .

pert: Benefits from a solid performance from Zhao , but it ’s Dong

Jie ’s face you remember at the end

b orig: Benefits from a strong performance from Zhao , but it ’s

Dong Jie ’s face you remember at the end .

pert: Benefits from a solid performance from Zhao , but it ’s

Dong Jie ’s face you remember at the end

In your opinion, which pair (a or b) shows the actual rationale se-

lection by the model?

In the end, we ask the participants the following question for any additional feedback.

Please briefly describe how you made the decisions (which could

include guessing), and your impression of the model’s behavior.

The study takes less than 15 minutes, is conducted during normal working hours with

participants being grad students on regular stipends, and is uncompensated.
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