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Abstract

Machine learning-based protein language models (PLMs) have proven to be suc-
cessful in a variety of structure and function-prediction contexts. However, foun-
dational PLMs (those trained on the corpus of all proteins) rely on evolutionary
co-conservation of protein sub-sequences, but this distributional hypothesis does not
hold for antibody hypervariable regions. Consequently, methods like AlphaFold 2
have relatively weak performance on antibody sequences. In this work, we propose
AbMAP (Antibody Mutagenesis-Augmented Processing), a new transfer learning
framework that fine-tunes foundational models specifically for antibody-sequence in-
puts by supervising on examples of antibody structure and binding specificity. We
demonstrate how our feature representations can be applied to the accurate prediction
of an antibody’s local and global 3D structures, mutational effects on antigen binding
specificity, as well as identification of its paratope. The scalability of AbMAP newly
enables large-scale analysis of human antibody repertoires. We find that the AbMAP
representations of individual repertoires have remarkable overlap, more so than can
be discerned by sequence analysis. Our findings provide robust evidence in support of
the hypothesis that antibody repertoires across individuals converge towards similar
structural and functional coverage. We anticipate AbMAP will accelerate efficient and
effective design and modeling of antibodies and expedite antibody-based therapeutics
discovery.
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Chapter 1

Introduction

In modern therapeutics, antibodies have been some of the most promising drug candi-

dates [25]. This therapeutic success has been due to the remarkable structural diver-

sity of antibodies, allowing them to recognize an extremely wide variety of potential

targets. This diversity originates from their hypervariable regions which are critical to

the functional specificity of antibodies. Experimental design of an antibody against a

target of interest has historically been done by approaches like immunization or with

directed evolution techniques like phage display selection [42]. However, the genera-

tion and screening process is slow and expensive. It also does not systematically ex-

plore the possible structural space, potentially leading to candidates with suboptimal

binding characteristics. Furthermore, downstream considerations (e.g., developability

or function-specific engineering) can not be easily accommodated [44]. There is thus

a need for computational methods that can design a new antibody from scratch for

a given target [27] or more efficiently refine a small set of experimentally-determined

candidates. General protein structure-prediction techniques (e.g., AlphaFold 2 [19])

can struggle to predict antibody structures since the latter’s hypervariable regions

(also known as the complementarity determining regions, CDRs) display evolution-

arily novel structure patterns. One direction towards this has been to model the 3D

structure of the entire antibody, or just its CDRs [35, 17], but these have had lim-

ited accuracy. They are also slow and require many minutes per antibody (or CDR)

structure, making it infeasible to perform large-scale computational exploration or
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analyze an individual’s antibody repertoire, which may contain millions of sequences.

More recently, machine learning techniques used in natural language processing

have been applied to generate high-dimensional protein representations [34, 2, 11, 29].

Protein language models (PLMs) capture structural features implicitly and also enable

protein-property prediction. In the context of antibodies, one approach is to simply

use PLMs trained on the corpus of all proteins (e.g., ESM-1b [34]). We refer to these

as “foundational” PLMs, the machine learning term for broad, general-purpose models

[3]. However, the CDRs of antibodies explicitly violate the distributional hypothesis

underlying foundational PLMs: sequence variability in CDRs is not evolutionarily

constrained. Indeed, the corresponding lack of high-quality multiple sequence align-

ments (MSAs) for antibodies is a key reason why AlphaFold 2 works less well on

them than regular proteins [19]. Therefore, another set of approaches (e.g., AntiB-

ERTa [21], IgLM [40]) has been proposed: these train the PLM just on antibody

and B-cell receptor sequence repertoires. While these approaches better address the

CDRs’ hypervariability, they have the disadvantage of not being trained on the di-

verse corpus of all protein sequences and thus can not access the substantial insights

available from foundational PLMs [2, 34, 11]. Moreover, existing approaches like

AntiBERTa expend valuable explanatory power on modeling also the non-CDRs of

the antibody, which are not very diverse and substantially less crucial to antibody

binding-specificity. Lastly, neither set of approaches takes advantage of the 3D struc-

tures available for over 6,700 antibodies in the PDB. Here, we argue that a more

effective approach is to combine the strengths of the two approaches. We present

a transfer learning approach that starts with a foundational PLM but adapts it for

improved accuracy on the hypervariable regions by training on antibody-specific cor-

pora. Such training lets us take advantage of available antibody structures as well

as high-throughput single-cell assays of antibody binding specificity. Moreover, this

approach can also easily be ported to new foundational PLMs as they are introduced

(e.g., ESM-2 [24] instead of ESM-1b).

We introduce AbMAP (Antibody Mutagenesis-Augmented Processing), a scalable

transfer-learning framework that is applicable to any foundational PLM, and unlocks
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greater accuracy in the prediction of an antibody’s structure and its key biochemical

properties. Our broad conceptual advance is to address the weakness of foundational

PLMs on antibody hypervariable regions by a supervised learning approach that is

trained on antibody structure and binding-specificity profiles. Specifically, we in-

troduce three key advances: a) maximally leverage available data by focusing the

learning task only on antibody hypervariable regions; b) a contrastive augmentation

approach to refine the baseline PLM’s hypervariable region embeddings so that they

better capture antibody structure and function; and c) a multi-task supervised learn-

ing formulation that considers antibody protein structure as well binding specificity to

supervise the representation. Since the function of an antibody is determined primar-

ily by its hypervariable region, we focus on modeling this region (and its immediate

framework neighborhood) rather than the full sequence. Furthermore, decades of

research has culminated in the identification of reliable CDR signatures in antibody

structures, making it computationally easy to identify such regions in an antibody

sequence [28, 49]. A model like AntiBERTa [21] may expend significant portion of its

capacity on attempting to re-discover such signatures during training. In contrast,

we can better leverage the available data by focusing our model’s capacity on just

the residues within antibody CDRs (we include two flanking residues on each side of

a CDR to also capture some framework information).

Our contrastive augmentation approach is designed to hone in on the subspace of

foundational PLM embeddings most relevant to an antibody. Consider the embedding

of a CDR residue from a foundational PLM: it captures information about the residue

and its overall context. However, this context was learned from the corpus of all pro-

teins while the hypervariability in an antibody CDR implies a different distributional

context. We therefore generate new sequences by in silico mutagenesis in the CDRs

of the original sequence and obtain foundational PLM embeddings for these mutants.

In photo-editing, the “contrast” operation increases the intensity of color differences.

Analogously, to intensify the relative PLM contribution of the CDR residues, we sub-

tract the mean of mutated embeddings from the original wild-type embedding. By

subtracting away the non-CDR context, we accentuate the CDR-specific context and
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the contribution of the original residues.

We apply AbMAP representations to a number of downstream tasks: identifying

structural templates, predicting the binding energy changes (ddG) resulting from mu-

tations, and identifying the antibody’s paratope. We formulate structure prediction

with AbMAP as a template-search task where, for a query antibody, we search a tem-

plate database of AbMAP antibody embeddings. Even without template refinement,

our model is able to outperform many of the state-of-the-art structure prediction

techniques, both general (e.g., AlphaFold 2 [19]) and antibody-specific (e.g., DeepAb

[35]). It especially excels on the prediction of individual CDR structures, which is

critical for accurate design. For ddG prediction, we compare the performance of

foundational PLM embeddings against their AbMAP-adjusted embeddings. Using

AbMAP improves on prediction accuracy overall, achieving especially high precision

in its top hits. On paratope prediction, AbMAP compares favorably with founda-

tional PLMs as well ParaPred [23], despite having a smaller representation with fewer

degrees of freedom. Finally, we also applied AbMAP to identify antibodies that can

neutralize more than one SARS-CoV-2 variant; its predictions are substantially more

accurate than those gleaned from ProtBert or ESM-1b directly.

AbMAP unlocks a deeper understanding of the diversity and similarity in antibody

repertoires across individuals. An advantage of AbMAP’s CDR-focused representa-

tion is that isotype switching in the human body (where a heavy chain’s constant

region is replaced while preserving its hypervariable region) makes such a representa-

tion more appropriate for characterizing antigen specificity in a repertoire. Analyzing

Briney et al.’s data on the antibody repertoires of multiple individuals, we observe

substantial diversity within each individual’s repertoire, as has been previously re-

ported [4]. However, we find that repertoires across individuals are remarking similar

in the AbMAP embedding space, in contrast to marked sequence-level variations

across individuals. This suggests that, despite sequence diversity, similar binding

profiles are being activated in each individual. We also document that antibodies

that have entered clinical trials appear in a specific region of the embedding space,

one that also corresponds to a high density of native human antibodies. Thus, our
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method can help evaluate candidate antibody sequences for druggability before ex-

pensive in vitro and pre-clinical trials are performed.
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Chapter 2

Methods

2.1 Datasets

2.1.1 SAbDab

SAbDab (Structural Antibody Database) [10] is a database of antibody structures

where each structure is paired with various metadata including the heavy and light

chains of antibodies in the PDB complex. Limiting ourselves to PDB entries where

both the heavy and light chains were available, we obtained 3,785 pairs of heavy

and light chain antibody sequences and PDB structures from SAbDab. We divided

them into 3,000 pairs for train and 785 pairs for evaluation. From the 3,000 anti-

bodies selected for training, we randomly sampled 100,000 pairs of antibodies and

computed the pairwise similarity scores using their PDB structural data. For each

of the sampled 100,000 SAbDab antibody pairs, we computed the TM-Scores of the

pairs of antibodies (separately for heavy and light chains), and used them as the

ground-truth label when supervised against the predicted similarity score from our

model. We used TM-Score as the similarity metric as it is length-independent and

is a standard metric used in well-known protein structure prediction tasks such as

CASP [51].
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2.1.2 LIBRA-Seq

To train the model concurrently on the functionality of antibodies in addition to

their structural properties, we used LIBRA-seq, which maps 4,644 B-cell receptor

sequences to their antigen specificity [38]. The antibody sequences were divided into

3,715 and 929 antibodies for train and evaluation, respectively. The 4,644 antibody

sequences, each with a heavy and a light chain, were paired with three scores that

indicate the binding specificity to the surface proteins from three different antigens:

BG505, CZA97, and H1-A/New Caledonia/20/1999 [15, 36, 47, 33]. For each anti-

body, this set of three scores (each standardized to 𝜇 = 0, 𝜎 = 1) serves as its binding

specificity vector. For a pair of antibodies in the LIBRA-seq dataset, we scored their

functional similarity as the dot-product of their vector representations. From the

3,715 antibodies for training, we randomly sampled 100,000 pairs of antibodies and

computed these pairwise similarity scores. Similar to the structural similarity pre-

diction mentioned above, these scores were then used as ground-truth labels for the

supervised training of our model’s functional similarity prediction task.

2.1.3 CoV-AbDab

CoV-AbDab is a database of all published/patented antibody sequences (7,964 se-

quences in total as of July 19, 2022) that are capable of binding to coronaviruses

including SARS-CoV-2, SARS-CoV-1, and MERS-CoV [30]. To evaluate our trained

model, we selected from these the 2,077 sequences that bind to wild-type SARS-CoV-

2. On these, we assessed the model’s ability to predict if the antibody could also

neutralize at least one SARS-CoV-2 variant (alpha, beta, omicron, etc.), using only

the antibody sequence information.

2.1.4 Thera-SAbDab

Thera-SAbDab is a set of antibodies (547 in total) collected from the PDB that con-

tain immunotherapeutic variable domain sequences [31]. Each of these sequences were

labeled with data such as the highest clinical trial passed (Phase-I, Phase-II, etc.).
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We used our language model to compare the distribution of therapeutic antibodies

against the human antibody repertoire.

2.1.5 Human Antibody Repertoire

The Briney et al. (2019) dataset contains over 3 billion B-Cell antibody sequence

reads across 9 human subjects [4]. For our experiments, we sampled non-unique

100,000 antibody sequence reads from each subject, where we labelled each unique

antibody with the read count within each sample population.

2.1.6 Datasets for Labeled Antibody Mutants

The dataset provided in Desautels et al. (2020) was used to validate our antibody

language model through ddG score predictions [8]. They used a machine learning

model to search the mutational combinatorial space of the m396 antibody, and calcu-

lated the binding propensity of these mutants against the SARS-CoV-2 spike protein’s

receptor binding domain. They applied five standard software packages to score the

physicochemical characteristics of the mutant’s binding, including STATIUM, FoldX

and Rosetta [5, 37, 20]. To validate our model, we used these pre-computed scores to

formulate regression-based property prediction tasks, with only the mutant sequence

as input.

2.2 Embedding Generation Using Mutational Aug-

mentation

Given a heavy or a light chain sequence of length 𝑛 of an antibody, we created

its CDR-specific embedding by performing the following set of operations. We first

create an R𝑛×𝑑 embedding using an foundational protein language model such as

the Bepler & Berger [2], ESM-1b [34], or ProtBert [11], where 𝑑 = 2200 (Bepler &

Berger), 1280 (ESM-1b), or 1024 (ProtBert). We note that Bepler & Berger has 6165

dimensions across three layers but we used only the last layer’s weights. Then, using
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ANARCI [9], we number the amino acid residues in the input sequence using the

Chothia scheme [1]. Then, we identify parts of the embedding that correspond to

the CDRs based on the numbering scheme. Next, we generate 𝑘 (here, 𝑘 = 100) new

antibody sequences through in silico mutagenesis of the original sequence, where the

mutation is performed (sampling from a uniform distribution over all amino acids)

with certain probability (here, 0.5) for each residue in the identified CDRs. This

procedure is repeated 𝑘 times for the original sequence, generating 𝑘 new sequences

which are then embedded using a foundational PLM as in step 1. Then, each of 𝑘

new embeddings is subtracted from the embedding of the original sequence, and these

adjusted embeddings are averaged. Finally, we extract and concatenate parts of the

averaged difference embedding that belong to the CDRs as determined previously by

ANARCI, creating an R𝑛′×𝑑 CDR-specific embedding. The length 𝑛′ usually ranges

between 20 to 30.

2.3 Language Model Refinement with a Multi-task

Architecture

Once we generate a CDR-specific embedding for a given antibody sequence, we use

it as input to our model which outputs a fixed-length feature that can be used for

further downstream task-specific similarity prediction. We curated two datasets for

pairs of antibodies, one labeled with their 3D structure similarity, and the other with

functional similarity (with regards to antigen binding profiles) to train the model. The

overall pipeline as well as the diagram of our antibody language model is shown in Fig.

3-1. Our model consists of an MLP projection module whose parameters are shared

across the training of each task (structure and function). This projection module

reduces the dimension of the input embedding (R𝑛′×𝑑 → R𝑛′×𝑑′ , 𝑑′ < 𝑑) so that the

language model is forced to retain as much information about the antibody sequence

as possible while trying to execute downstream prediction tasks. For example, when

using the Bepler & Berger language model as the foundational PLM, the input CDR-
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specific embedding is R𝑛′×2200 and our model’s projection module outputs a R𝑛′×256

embedding.

Then, the embedding with reduced dimensions, outputted by the projection mod-

ule is fed into two separate PyTorch (v1.11.0) Transformer Encoder modules, one

each for a downstream similarity score prediction task (structure and function) [45].

We add sinusoidal positional encodings to the input embeddings in order to inject

information about the relative positions of amino acid residues in each sequence. The

representations for each residue in the embedding outputted by this Transformer En-

coder module now incorporate antibody-related structural and functional information

by leveraging attention from other residues in the CDR.

In a multi-task training framework such as our setting, it is important that the

calculated losses from each task is combined carefully so that the shared parameters in

our model is correctly optimized. Rather than using a set ratio to weigh the two MSE

losses, we assigned a new learnable parameter 𝛼 for weighing the losses. The overall

MSE loss 𝐿𝑀𝑆𝐸 is calculated as a weighted sum of the losses calculated for structural

similarity prediction (𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) and functional similarity prediction (𝐿𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛):

𝐿𝑀𝑆𝐸 = 𝛼𝐿𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 +
1

𝛼
𝐿𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (2.1)

where 𝛼 is updated iteratively through gradient calculations.

2.4 Fixed-length Embeddings

In addition to the per-residue embeddings (variable length) focusing on the CDRs

of an antibody’s sequence, our model can also generate fixed-length embeddings by

performing pooling operations on the variable length embedding outputted by the

Transformer Encoder along the sequence dimension. Specifically, we use the Log-

SumExp (LSE) operation, defined as:

𝐿𝑆𝐸(𝑥) = log

[︂ 𝑛∑︁
𝑗=1

𝑒𝑥𝑝(𝑥𝑗)

]︂
(2.2)
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where 𝑥 = (𝑥1, ..., 𝑥𝑛), to compute a smooth maximum over the sequence embedding.

We also use mean pooling to generate another fixed length embedding of same length.

The two are then concatenated into a single representation. Overall, the variable

length feature in space R𝑛′×𝑑′ is transformed into a fixed length feature in space R𝑞,

where 𝑞 = 2𝑑′ (here, 𝑞 = 512). This fixed-length vector for each input antibody

sequence is then used for similarity score prediction using the cosine distance metric.

2.5 Max-Entropy Regularization

In order to prevent the learned representations being overfit to the datasets used for

supervision, we include a regularization loss adapted from Shannon entropy [39]:

𝐻(𝑋) = −
𝑛∑︁

𝑖=1

𝑃 (𝑥𝑖) log𝑃 (𝑥𝑖) (2.3)

The regularization is applied to the antibody’s 𝐿2-normalized fixed-length feature

of length 𝑞, which is outputted by the task-specific Transformer Encoder module

following the nonlinear projection module. The square of each entry in the fixed-

length feature is treated as the probability of an arbitrary discrete random variable

𝑋, corresponding to 𝑃 (𝑥𝑖) in the above equation. To induce a regularizing effect,

we want the squared entries in the feature to form a uniform distribution. For each

𝐿2-normalized feature, the squared entries are non-negative and sum to 1, like a

probability distribution. We therefore set the regularization loss in a max-entropy

formulation as:

𝐿𝑟𝑒𝑔(𝑢) =

𝑞∑︁
𝑖=1

𝑢2
𝑖 log 𝑢

2
𝑖 (2.4)

where 𝑢 = [𝑢1, 𝑢2, ..., 𝑢𝑞] is a task specific feature of length 𝑞.

Therefore, with a regularization parameter 𝜆, the total loss computed during a

single feed-forward step is:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑀𝑆𝐸 + 𝜆𝐿𝑟𝑒𝑔 (2.5)
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where 𝜆 was empirically determined as 0.0005, and was used throughout our training.

2.6 Alignment of Raw Antibody Sequences

We used the Needleman-Wunsch algorithm [26] to compute the per-residue similarity

of two protein (antibody) sequences using the implementation of the algorithm in

BioPython (v1.69). We set the match (identical character) and mismatch scores to 1

and 0, respectively, and did not assign gap penalties.
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Chapter 3

Biological Property Predictions

For a given antibody sequence, we start from an embedding generated by a foun-

dational PLM and refine it with AbMAP. There are three main steps in our refine-

ment: identification of CDR regions, augmenting the foundational PLM embeddings

to focus on the CDRs, and an attention-based fine-tuning of the embedding to bet-

ter capture antibody structure and function. We first apply ANARCI [9], a hidden

Markov model approach, to demarcate the boundaries of CDR regions. ANARCI

leverages well-known canonical patterns of antibody structure (e.g., a disulfide bond

that spans CDR-H1 and CDR-H2 [28], a Tryptophan residue located immediately af-

ter CDR-L1 [49] etc.) to identify CDR regions with high confidence. We extend each

ANARCI-reported segment by two residues on either side, allowing us to compensate

for potential errors in ANARCI’s inference and also include the bounding framework

residues. A similar design choice was made by Liberis et al. in Parapred [23]. Next,

we apply a procedure that we term “contrastive augmentation”: we perform in-silico

mutagenesis in the CDR regions by randomly replacing a CDR residue with another

amino acid and generate foundational PLM embeddings for each mutant. We then

compute the augmented embedding as the difference between the embeddings of the

original sequence and the average over mutants. Our augmentation aims to subtract

away the sub-space of the embedding that does not correspond to the CDR regions

and, akin to masked language modeling, it highlights the contribution to embed-

ding of a specific amino acid by contrasting it against potential replacements. We
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Figure 3-1: Overview of AbMAP embedding generation and its architecture.
A) Given an input antibody sequence, our pipeline generates an embedding that can
be applied for various downstream tasks including structure/property prediction as
well as antibody repertoire analysis. B) AbMAP architecture comprises a projection
module that applies contrastive augmentation and reduces the dimensionality of the
input foundational PLM embedding to generate a variable length embedding, and a
Transformer Encoder module that creates a {structure/function}-specific fixed-length
embedding.
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then optimize this augmented embedding with a Siamese neural network architec-

ture with a single transformer layer that takes pairs of antibody sequences as inputs

and seeks a final representation for each antibody where Euclidean distances capture

structural/functional information (Methods). Our approach can be applied to any

foundational PLM. Here, we have applied it on Bepler & Berger, ESM-1b [34], and

ProtBert [11] foundational PLMs, producing AbMAP representations that we denote

as AbMAP-(B, E, P) respectively.

3.1 Effective fine-tuning of antibody embeddings

We first assessed the effectiveness of our refinement and fine-tuning approach. Af-

ter a random selection of 785 antibodies with available structures that were not in

AbMAP’s training or validation set, we generated from them 10,000 random pairs

and assessed how pairwise structural similarity correlated with representation sim-

ilarity. We chose to evaluate structural similarity over the whole Fv, rather than

just the CDR fragments, since we thought it to be a stricter test of the thesis that

CDR-specific drivers are the primary determinants of overall structural variability

across Fv structures. We evaluated representations from the baseline foundational

PLM and each step of our refinement scheme: a) baseline (i.e., foundational) PLM

representation for the whole protein, b) baseline PLM just for CDRs, c) with con-

trastive augmentation on CDRs and, d) also with the supervised transformer layer

(residue-wise averaging for a-c). For each representation, we grouped the antibody

pairs into 20 bins by cosine similarity and, in each bin, computed the distribution of

TM-scores of structural similarity between the pairs.

We assessed the embedding–structure relationship on consistency (measured as

the Spearman rank correlation between average TM-score and cosine similarity across

bins), as well as discriminative power (measured as the TM-score difference between

the first and last bin). We show the results of AbMAP-B, (i.e. our method applied

to the Bepler & Berger embedding) on heavy chain antibodies in Fig. 3-2. While

the baseline foundational PLM is quite powerful on its own, it has somewhat limited
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Figure 3-2: Average ground truth TM-scores antibody pairs in each of the 20
cosine similarity score bins. The embeddings used for cosine distance are A) raw
PLM embeddings B) raw PLM embeddings on CDRs C) mutation-adjusted raw PLM
embeddings on CDRs D) AbMAP fixed-length embeddings. Higher monotonicity in
the plot implies that the model has successfully captured 3D structural information.
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consistency, especially on pairs with lower representation similarity. The CDR-specific

embedding and contrastive augmentation improve the consistency (with Spearman

correlation increasing from 0.94 to 0.98), while the final supervised layer is crucial

to achieving strong discriminative power, with the TM-score separation between the

first and last bin increasing by 375%. Thus, applying a CDR-specific representation,

augmenting it contrastively, and fine-tuning it in a supervised setting can accentuate

antibody structural features more comprehensively and accurately than raw whole-

protein PLM representations.

3.2 Antibody Structure Prediction

We approached structure prediction with AbMAP as a template-matching task: we

searched through a database of antibody templates to find the example that we expect

to be closest in structure to a query antibody. The template can later be refined

(e.g., the Evoformer module [19]), a direction we hope to explore in future work

(Discussion). For benchmarking purposes, the AbMAP template quality is itself

an indication of the method’s ability to recapitulate structure. We constructed the

template database from the set of SAbDab structures during AbMAP’s training; re-

using these examples allowed us to evaluate on the remaining structures in SABDab.

We first applied CD-HIT [22, 14] to remove any template entries with greater than

70% sequence identity of test entries (our results are robust to this threshold as shown

in Fig. B-2). Using fixed-length AbMAP representations, we obtained the 𝑘 (here,

𝑘 = 10) templates closest to the query embedding by Euclidean distance (Methods).

The medoid of these 𝑘 representations (in the Euclidean space) was reported as the

matching template. Choosing the medoid instead of the very closest template offers

some robustness to variability in embedding quality across queries and templates. As

the underlying foundational PLMs improve, we expect this 𝑘 could be lowered. We

applied this process to generate templates from each foundational PLM as well as

its AbMAP variants. For the former, the fixed-length embedding was obtained by

taking the mean over the residues of the sequence’s PLM embedding. In addition to
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Model Metric Chain CDR 1 CDR 2 CDR 3 Whole Fv
AbMAP-B TM-Score H 0.62 ± 0.007 0.67 ± 0.006 0.54 ± 0.007 0.86 ± 0.006
ProtBert TM-Score H 0.33± 0.003 0.31± 0.003 0.28± 0.003 0.69± 0.005
ESM-lb TM-Score H 0.49± 0.007 0.51± 0.006 0.44± 0.007 0.79± 0.004
DeepAb TM-Score H 0.51± 0.008 0.55± 0.008 0.24± 0.004 0.54± 0.005

OmegaFold TM-Score H 0.61± 0.007 0.67 ± 0.006 0.34± 0.005 0.79± 0.005
AlphaFold2 TM-Score H 0.28± 0.003 0.30± 0.003 0.30± 0.004 0.65± 0.004
AbMAP-B TM-Score L 0.62± 0.007 0.76 ± 0.007 0.65 ± 0.007 0.89 ± 0.004
ProtBert TM-Score L 0.34± 0.003 0.60± 0.007 0.52± 0.010 0.80± 0.005
ESM-1b TM-Score L 0.41± 0.005 0.61± 0.007 0.39± 0.005 0.82± 0.004
DeepAb TM-Score L 0.40± 0.006 0.66± 0.009 0.38± 0.006 0.52± 0.005

OmegaFold TM-Score L 0.63 ± 0.006 0.69± 0.006 0.58± 0.006 0.83± 0.005
AlphaFold2 TM-Score L 0.27± 0.003 0.36± 0.007 0.31± 0.003 0.58± 0.004

AbMAP-B RMSD H 0.43± 0.016 0.38± 0.013 0.43 ± 0.025 2.11± 0.082
ProtBert RMSD H 1.40± 0.030 1.21± 0.028 0.64± 0.031 3.07± 0.078
ESM-1b RMSD H 0.54± 0.017 0.76± 0.022 0.50± 0.023 2.69± 0.063
DeepAb RMSD H 0.56± 0.016 0.55± 0.015 0.81± 0.031 0.72 ± 0.028

OmegaFold RMSD H 0.35 ± 0.013 0.37 ± 0.013 0.75± 0.035 2.39± 0.067
AlphaFold2 RMSD H 0.70± 0.032 0.37 ± 0.030 1.24± 0.063 4.40± 0.077
AbMAP-B RMSD L 0.41± 0.015 0.18± 0.006 0.44 ± 0.022 1.42± 0.044
ProtBert RMSD L 1.39± 0.041 0.15 ± 0.008 0.64± 0.044 0.76 ± 0.012
ESM-1b RMSD L 0.68± 0.022 0.22± 0.008 0.65± 0.028 2.38± 0.062
DeepAb RMSD L 0.72± 0.021 0.32± 0.011 0.84± 0.030 1.16± 0.084

OmegaFold RMSD L 0.40 ± 0.016 0.17± 0.007 0.46± 0.017 2.31± 0.076
AlphaFold2 RMSD L 1.13± 0.046 0.24± 0.024 0.64± 0.033 4.79± 0.084

Table 3.1: Comparison of AbMAP-B and other models for antibody structure predic-
tion using both RMSD (C-alpha) and TM-Score as metrics. For AbMAP-B, ProtBert,
and ESM-1b, the predicted template structure was selected from a set of antibodies
whose sequence identity is below 0.7. Structure prediction was conducted on both
individual CDR fragments and the whole Fv chain.
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the foundational PLMs, we compared the performance of AbMAP against DeepAb,

OmegaFold, and AlphaFold, some of the state-of-the-art deep learning-based methods

for antibody structure prediction [35, 48, 19]. To quantify the similarity between

the predicted and ground truth structures, we computed the TM-scores and RMSD

(Root Mean Square Deviation) between the predicted and ground-truth Fv structures.

While we consider both metrics, we believe TM-score is more appropriate since it is

robust to variations in protein size, unlike RMSD. Since an antibody’s CDRs play

crucial roles in its function, it is important that structure prediction models achieve

high local accuracy on CDR structures. Accordingly, we also evaluated the methods

on their predictions of specific CDRs. For individual CDR structure prediction, we

prepared our embeddings separately, supervising with similarity scores for each CDR

(H1-3, L1-3) instead of the whole structure.

Overall, as shown in Fig. 3.1, AbMAP (we show its -B variant here, with others

reported in Table A.1) is able to achieve high accuracy in structure prediction, despite

no further refinement of the reported template. Compared to their respective foun-

dational PLMs, each of the corresponding AbMAP variants performed substantially

better. Overall, AbMAP-B performed better than other variants, possibly because

the underlying foundation model is trained on both sequence and structure. Notably,

AbMAP also improved over dedicated structure-prediction methods broadly. In par-

ticular, AlphaFold 2 performed substantially worse than others. This is consistent

with reports of it underperforming on targets (like antibodies) where high-quality

multiple sequence alignments are not available [50]. AbMAP was also competitive

with the language model-based OmegaFold, outperforming it on the TM-score metric

and being roughly equivalent with it on the RMSD metric. On both metrics, the

relative performance of AbMAP was especially strong on the crucial CDR-H3 region,

suggesting that our generated embeddings may contain rich information about the

CDRs that contribute the most to the antibody’s activity and specificity.

While the structures predicted by AbMAP can certainly be used for downstream

tasks, we recommend directly using the PLM itself for downstream property-prediction

tasks like paratope or ddG prediction. Historically, explicit elucidation of the atomic
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coordinates of the antibody structure has been viewed as a prerequisite for such down-

stream tasks since they are informed by the structure’s physicochemical properties.

However, we believe that the implicitness of representations encoded in a PLM like

AbMAP allows a task-specific neural network greater power in marginalizing over

unknowns and uncertainties in the structure (e.g., conformational flexibility); this

implicit richness is lost when resorting to a single, fixed 3-D structure. Moreover,

AbMAP offers the choice between a fixed-length embedding for property-prediction

tasks and a per-residue variable-length embedding for tasks like in-silico mutagenesis;

either embedding may be used as desired by the user.

3.3 Mutational Variation Prediction

A key application of computational antibody modeling is low-N antibody design and

optimization: the task is to computationally extrapolate the effect of combinatorial

mutations starting from a small training set of antibodies to a broad set of anti-

body candidates, using the results to guide the next round of assays. PLM-based

in silico mutagenesis can play a key role in speeding up the design and develop-

ment of antibody-based therapeutics. We assessed the generalization performance of

AbMAP in estimating the binding efficacy of m396 mutants to SARS-CoV-2. The

original wild-type variant of m396 targets the receptor binding domain (RBD) of the

SARS-CoV-1 spike protein. During the pandemic, Desautels et al. sought to adapt

this antibody to target the RBD of the SARS-CoV-2 spike protein. They generated

90,000 mutant in silico and estimated each mutant’s binding efficacy by computing its

ddG scores from five energy functions (FoldX Whole, FoldX Interface Only, Statium,

Rosetta Flex, Rosetta Total Energy) [37, 20, 5]. The effort required substantial high-

performance computing resources from the Lawrence Livermore National Laboratory,

and needed over 200,000 hours of CPU time [8]. We sought to predict the ddG scores

for these set of mutants after training on as little as 0.5% of the examples. We eval-

uated two prediction architectures: i) using AbMAP’s variable-length embedding as

input to a transformer layer followed by a two-layer feed-forward network (averaged
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Figure 3-3: A) Chart of average Spearman’s rank scores for ddG scores prediction of
different models with various train/test splits. B) Chart of average overlap of top-
𝑘1, 𝑘2 ddG scores for different 𝑘1, 𝑘2 values. (train: 0.02, test: 0.98 for this chart).

over residues), and ii) using AbMAP’s fixed-length embedding as input to a ridge

regression. The target variable in both cases was Desautels et al.’s binding efficacy

score for the mutant. The first architecture offers greater explanatory capacity while

the second architecture can be applied even with very limited training data. We

trained these architectures using embeddings from AbMAP-B/E/P as well as their

corresponding foundational PLMs. We also used a simple baseline embedding that

uses a one-hot encoding of the amino acids. The intuition behind this baseline is that,

given sufficiently many examples, the one-hot encoding can be leveraged effectively

by the downstream predictor but its usefulness would diminish when fewer training

examples are available. We trained the different models for 100 epochs each, and

varied the train/test split ratio to examine how the performance degrades as fewer

training examples are provided.

In our evaluations, we assessed both the overall accuracy of AbMAP-based pre-

dictions as well as its ability to recapitulate the top ground-truth hits. For the overall

analysis, we computed the Spearman rank correlation between predicted and ground-

truth scores, averaging these correlations over the five energy-function categories. As

shown in Fig. 3-3a, with just 20% of the examples (i.e., train/test split of 0.2),

AbMAP-E and AbMAP-P’s representations both achieve Spearman rank correlation

of 0.94, indicating that AbMAP can effectively generalize from a limited training set,
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thus reducing experimental and computational expenses. In contrast, the raw PLMs

perform substantially worse. Indeed, for the largest training set size (0.2 split), the

lower-dimensional one-hot encoding performs better than the foundational PLMs.

The performance comparison for AbMAP-B and the foundational Bepler & Berger

PLM are shown in Fig. B-3. Furthermore, the performance of AbMAP embeddings is

more robust to smaller training set sizes than the baseline PLMs. The relative outper-

formance of AbMAP becomes more substantial as the number of training examples

decreases. With just 0.5% of the examples (i.e., train/test split of 0.005), AbMAP is

able to achieve high accuracy (Spearman rank correlations of 0.71 and 0.63 with the

AbMAP-E and -P models, respectively). Notably, the ridge regression-based formula-

tion starts to outperform the more complex model as the number of training examples

decrease, as would be expected. High accuracy in such few-shot settings is crucial

since they enable a small set of experimentally-assayed binding specificity/strength

measurements to be extrapolated more broadly.

We also examined the early precision of our model, i.e., its ability to correctly

prioritize mutants with high ground-truth scores. We checked how many sequences in

the top 𝑘1% (𝑘1 = 1, 10) of ground-truth scores overlapped with those in the top 𝑘2%

(𝑘2 = 1, 10) of the model’s predicted scores. Even at high cutoffs, when comparing

the top 1% of predicted and ground truth scores by magnitude, there is 38% and 36%

overlap when using AbMAP-E and AbMAP-P embeddings, respectively (Fig. 3-3b).

Altogether, AbMAP-P/E are able to robustly predict mutational performance, both

broadly and for the top hits. Crucially, they are able to operate much more effectively

with limited training data, compared to the foundational PLM embeddings or one-hot

encodings.

3.4 Paratope Prediction

An important antibody sub-structure is the paratope– the region that recognizes

and binds to an antigen. In particular, each residue on the antibody backbone can be

assigned a binary label indicating if it belongs to the antibody’s paratope. We applied
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Embedding Dimension Predictor Accuracy AUPRC AUROC

AbMAP-B 256 1-layer
transformer 0.798 0.653 0.830

ProtBert 1024 1-layer
transformer 0.797 0.646 0.842

One-hot +
Physicochemical 28 Parapred 0.621 0.639 0.838

Table 3.2: Comparison of our model and ProtBert’s representations for antibody
paratope prediction by training a separate predictor using the representations as
input. The performance of our model’s representations was also compared against
Parapred.

AbMAP-B to the paratope prediction task, comparing it against a dedicated machine

learning method, Parapred [23], as well the ProtBert foundational PLM. Acquiring

all SABDab heavy chain entries with at least one CDR in contact with an antigen,

we labeled a residue as part of the paratope if it was within 5Å of the antigen. To

avoid data snooping, we re-used AbMAP’s training set for this task-specific training

(1195 entries), and evaluated on the remaining test set of entries (312 entries).

For paratope prediction, we specified a simple architecture that uses the per-

residue, variable-length representation of AbMAP: a single transformer layer followed

by two linear layers. Predictions from ProtBert were made using the same archi-

tecture. Notably, the ProtBert model has more parameters because the ProtBert

embedding dimension (1024) is four times as large as AbMAP’s (256). The Parapred

model takes individual CDR fragment strings as input, and we applied it separately

on the three heavy chain CDRs. We calculated per-residue performance and report

the overall statistics in Table 3.2. AbMAP-B achieves the highest overall accuracy for

per-residue paratope prediction. The performance of Parapred reported here may be

a slight overestimate since we use the trained model made available by Leem et al.’s

PyTorch implementation [18]; their training may have utilized some of the examples

that we use here in the test set. While ProtBert has similar accuracy to AbMAP, it

uses many more model parameters due to the larger embedding dimensionality.
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Chapter 4

Revealing Shared Landscapes Across

Antibody Repertoires

The scalability of our approach, along with its fidelity in capturing structure and func-

tion, enables systematic analyses of large antibody repertoires. Existing approaches

are ill-suited to such analyses: while structure-prediction methods can not scale to

large repertoires, purely sequence similarity-based analyses [4] will not be sensitive to

structural/functional similarities between antibodies with different sequences. While

PLMs directly address this concern, language models that learn the full antibody’s

representation (e.g., AntiBERTa [21]) may misemphasize the framework diversity at

the expense of CDR diversity, with the latter being the key determinants of antibody

specificity.

4.1 LIBRA-Seq Cell Line Identification

As a preliminary evaluation, we assessed AbMAP on Setliff et al.’s LIBRA-seq study

that profiled B-cell receptor (BCR) binding specificity against a panel of HIV and

influenza-related antigens. We wondered if AbMAP is able to recover the cell of

origin of the BCR. While we had used a subset of this dataset in AbMAP’s multi-

task training, we note that no cell-of-origin information was provided during training.

Furthermore, we evaluated on a subset of BCRs held out during training.
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Figure 4-1: A) 2D-PCA of LIBRA-Seq dataset. Each antibody is colored by its
source (donor) ID. B) KDE plot of 2D PCA for fixed-length embeddings of antibody
repertoire sequences sampled from all 9 human subjects. C) Swarm plot of the ratio
of sequences for each subject where the most similar sequence was from the same
subject. The hit ratios for sequence alignment are more spread apart compared to
that of AbMAP’s embedding distance. D) 2D PCA plot of 547 antibodies from Thera-
SAbDab. The PCA and KDE plots seem to show a general clustering at the bottom
right corner on the projection space.
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For consistent visualization across analyses, we first standardized a 2-dimensional

representation of the overall antibody space. Using the sketching algorithm Hop-

per [7], we selected 1,000 diverse antibodies from the SABDab training set. The

farthest-first sampling approach of Hopper is motivated by the vertex k-center prob-

lem, and allows us to identify a set of antibodies that cover the entire space. We then

computed a 2D reduction by mapping the fixed-length AbMAP-B representations of

these antibodies to the top two principal components. In all analyses that follow,

AbMAP fixed-length embeddings are reduced to 2D space by this specific mapping,

enabling us to visualize different datasets (e.g., in Figures 4-1a-c) on the same axes.

In most plots, we mark the 1,000 “anchor” antibodies as gray dots in the background,

to help contextualize the visualization.

We computed AbMAP-B embeddings for 887 LIBRA-seq BCR sequences that

were not part of the training set. As shown in Fig. 4-1a, our model representation

was able to differentiate whether BCRs originated from engineered B-cell lines or real

human donors. Furthermore, our model was able to discern the two different types

of BCRs within the engineered cell lines: VRC01, a CD4 binding-site-directed HIV-1

bNAb (broadly neutralizing antibody), and Fe53, a bNAb recognizing the stem of

group-1 influenza hemagglutinins (Fig. 4-1a). We note that there is some clonal

diversity within each cell line, with cells in the line sharing the same lineage but

having diversified through antigen exposure and somatic mutation [16].

4.2 The Landscape of Human Antibody Repertoires

We analyzed the human antibody datasets from the Briney et al.’s study of BCR

repertoires across multiple individuals. As part of this analysis, we ask two key

questions:

• Is the set of BCRs uniformly distributed over the embedding space, or does the

distribution display “hotspots” of clustering? In case the latter is true, we also

wondered if antibody drug candidates that have successfully passed pre-clinical

evaluations were more likely to cluster in these hotspots.
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• While an extraordinary sequence diversity of BCRs has been reported across

individual repertoires [4], multiple analyses have suggested that these diverse

repertoires converge to similar structure/function [6, 12, 32]. We wondered if

such similarities across individuals would be more evident in our representation

space than in the raw sequence space.

Recently, machine learning and experimental approaches have suggested a con-

vergence of structure and function across human BCR repertoires [6, 12, 32]. Addi-

tionally, Friedensohn et al. reported a deep learning approach that shows extensive

convergent selection in antibody repertoires of mice for a range of protein antigens

and immunization conditions [13]. AbMAP-based embeddings enable us to beyond

previous approaches in providing a large-scale, principled approach to systematically

quantifying the structural/functional convergence across individual repertoires. While

previous work has primarily been focused on convergence in sequence fragments, our

embedding-based approach encompasses convergence also in “paratope structural sig-

natures” [32]. We therefore hypothesized that incorporating AbMAP representations

in repertoire analysis could more accurately reveal the extent of structural/functional

convergence across individuals.

We acquired 100,000 randomly-chosen BCR sequences from 9 individuals each,

filtering out identical sequences from an individual. Because of assay limitations in

the original study, many of the sequences were truncated on one or both ends. This

would be a challenge for language models that need to consider the full antibody;

however, our focus on just the CDRs enabled us to recover embeddings for the vast

majority (𝑛 = 885, 422) of these BCRs. We applied AbMAP-B on these sequences

and visualized their 2D reduction as described above. We found the distribution to be

highly clustered, with a kernel density estimator of the distribution being unimodal

(Fig. 4-1b). Notably, the human cell lines from the LIBRA-seq data overlap very

well with the Briney dataset. Interestingly, while the VRC01 cell line falls within

the high-occupancy region, the Fe53 cell line is well out of it. While both cell lines

are engineered human B cell lines (Ramos) [46], they express distinct BCRs that

neutralize different antigens (VRC01 antibody neutralizes HIV-1 while Fe53 antibody
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neutralizes influenza).

We next assessed if the antibody repertoires across individuals were similar. In

the original study, Briney et al. had observed substantial cross-individual diversity.

While this makes sense given the vast space of possible antibody sequences, it is

also somewhat puzzling— ultimately, most individuals need antibody-based protec-

tion from similar antigens (e.g., the flu, environmental stressors etc.). Indeed, when

we visualized each individual’s repertoire in our embedding space, we found that

the distributions looked remarkably similar (Fig. B-4), suggesting that each reper-

toire had similar structural/functional coverage. For a more systematic assessment of

cross-individual overlaps, we sampled 5,000 sequences from each subject (i.e., 45,000

sequences in total) and performed all-vs.-all pairwise comparisons, using either the

raw sequence1 or the AbMAP-B representation (Methods). From these pairwise

comparisons, we obtained the nearest neighbor of each antibody across all individu-

als and computed the frequency with which this neighbor hails from the same indi-

vidual. If the per-individual repertoires are independent and identically distributed

(i.i.d.) samples from the same underlying distribution, the fraction of cases where

the nearest neighbor is from the same individual should be 1
9

(=11.1%). When us-

ing AbMAP-B embeddings to compute similarities, we found that this to nearly be

the case (Fig. 4-1c): per-individual fractions averaged 0.14 ± 0.013, with very little

variation across individuals. In contrast, when using the sequence similarity metric,

the average per-individual fraction was substantially higher (0.22±0.087), with much

greater variability across individuals. Thus, while per-individual repertoires seem to

differ substantially when only sequence similarity is concerned, these repertoires are

revealed to be much more similar in their structure/function coverage when repre-

sented by AbMAP.

We wondered if the distribution pattern of human antibody representations is ther-

apeutically useful. Towards that, we mapped 547 antibodies from Thera-SABDab, a

dataset of immunotherapeutic antibodies that have entered clinical trials [31]. Our

hypothesis was that even if an antibody drug candidate is effective in vitro, it may not

1The global alignment for sequence pairs was computed with no match or gap penalties
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Figure 4-2: PCA plot of SAbDab Training Set Abs (gray) and CoVAbDab Abs (rest)
A) using our model’s fixed length embedding, B) using the top 𝑘 = 50 features from
embeddings in A) determined with Schema.

have drug-like properties (e.g., low toxicity) unless it falls solidly within the realm

of native-like antibodies. As Fig. 4-1d indicates, this does seem to be the case –

the set of antibodies in Thera-SABDab are located in the high-occupancy region of

the embedding space. Thus, a general drug-discovery recommendation we make is to

sample candidate antibody drugs primarily from this region of the embedding space.

4.3 Predicting SARS-CoV-2 Variant Neutralization

Ability

We also examined AbMAP’s capability on the prediction of antibody efficacy on neu-

tralizing SARS-CoV-2 variants. This analysis also demonstrates how AbMAP could

be applied in a low-N setting to optimize an existing panel of antibodies to address

incremental mutations in the target. From CoV-AbDab, a dataset of coronavirus-

binding antibodies, we obtained the set of 2,077 antibodies that were reported to neu-

tralize the wild-type strain of SARS-CoV-2; we then computed fixed-length AbMAP-

B embeddings for these. Setting aside 522 (approx 25%) randomly chosen antibodies,

we plotted the rest (=1,555) on the 2D visualization described above (Fig. 4-2a). The

set of wild-type neutralizing antibodies span a fairly large part of the overall space,

suggesting that a substantial diversity of antibody structures is capable of neutral-
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Embedding Dimension Mean Accuracy Balanced Accuracy F1 Score AUROC
AbMAP-B 50 0.752 0.631 0.227 0.638
ProtBert 1024 0.767 0.565 0.155 0.602
ESM-1b 1280 0.775 0.550 0.169 0.555

Table 4.1: Results for 5-fold cross validation on neutralization prediction task using
logistic regression for different models.

izing SARS-CoV-2 (we note that these antibodies vary in their reported viral target

protein).

Seeking to further hone in on the variant neutralization capabilities of these anti-

bodies, we applied Schema [41] to extract a linear projection of AbMAP-B embeddings

that accentuates the difference between CoV-AbDab antibodies and a baseline set of

3,000 antibodies (the SAbDab subset used to train AbMAP). Schema computes a low-

distortion linear projection of an embedding such that distances in the projected space

better capture a user-specified co-variate; here, membership in CoV-AbDab (Fig. 4-

2b). By applying Schema, we are able to enrich the SARS-CoV-2 relevant signal in

the embedding so that a simple model, working with relatively limited training data,

can capture the desired biological intuition. On the held-out set of 522 CoV-AbDab

antibodies, we annotated each antibody with a binary label indicating if it neutral-

izes at least one SARS-CoV-2 variant (Alpha, Beta, Delta, Gamma, Omicron). We

then applied logistic regression to predict this label from the Schema-projected rep-

resentation. We evaluated the results as per 5-fold cross validation, also comparing

fixed-length embeddings derived from ProtBert and ESM-1b (Table 4.1). AbMAP-

based representation, even though it is of much lower dimensionality (50 compared to

ESM-1b’s 1,280) has substantially higher balanced-accuracy and F1 score, indicating

that our transfer learning approach is more effectively able to hone in on the subspace

relevant to SARS-CoV-2 neutralization.
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Chapter 5

Discussion and Conclusion

We presented AbMAP, a transfer learning framework to adapt any foundational PLM

(i.e., one trained on the broad corpus of protein sequences) to antibodies, whose hy-

pervariable regions violate the evolutionary conservation that PLMs typically rely

on. Our framework refines the raw PLM embedding by in silico mutation-based con-

trastive augmentation. To further shape the augmented embedding, we supervise its

non-linear projection to a lower dimensional space such that Euclidean distances in the

projected space better capture antibody structural (from PDB) and functional (from

Setliff et al.’s LIBRA-seq [38]) similarity. In an ablation study, we found that training

on just structural data recapitulated function but not vice-versa (Table A.2). Corre-

spondingly, our multi-task formulation learned a higher weight for the structural task.

To maximally leverage the limited structural data on antibodies, AbMAP focuses

its capacity on the complementarity-determining regions (CDRs) and their flanking

residues, these being the key drivers of antibody specificity. We present AbMAP-E,

AbMAP-P, and AbMAP-B, adaptations of the ESM-1b, ProtBert, and the Bepler &

Berger PLMs, respectively. The choice of foundational PLM may depend on the type

of downstream prediction task using the resulting AbMAP embedding (e.g. AbMAP-

B for structure prediction, and AbMAP-E/P for function/property prediction). Our

transfer learning framework can be adapted to any new PLM, and we make both the

training data and code available for doing so.

AbMAP represents a conceptual advance to language model design for antibodies.
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Currently, two broad approaches have been espoused. One, embodied in techniques

like OmegaFold [48], is to essentially focus on improving the general PLM, with the

expectation that gains will accrue to antibodies as well. The other, represented by

methods such as AntiBERTa [21], AbLang [43], and IgLM [40], is to essentially treat

antibodies as an entirely new language-modeling task and train solely on corpora of

antibody sequences. AbMAP represents a new middle path. We propose a transfer

learning approach that can adapt to any foundational PLM and hence benefit from

innovations in the underlying PLMs. Since antibody hypervariable regions are not

evolutionarily conserved, foundational PLMs will likely remain weaker at modeling

antibodies than regular proteins. On the other hand, the framework regions (which

comprise ∼90% of the sequence) have limited diversity across antibodies. Language

models focused specifically on antibodies thus do not benefit from the full diversity

of protein sequences that foundational PLMs access. Our approach starts from infor-

mative foundational PLMs and then adapts them to be more accurate on antibody

structure and function. We additionally make the choice to focus AbMAP’s explana-

tory capacity on the CDRs and their flanking residues. This is an inductive bias,

allowing us to limit the model complexity of the transfer learning layer (one layer of

transformer) and enabling robustness as well as accuracy.

We expect AbMAP to be applicable in a variety of cases, e.g., property prediction

and antigen binding. We now appraise some of AbMAP’s strengths in the context of

structure prediction, as the problem is relatively well-studied and there exist methods

focused solely on antibody structure prediction. Our implementation of structure pre-

diction with AbMAP is as a template-finding task, and we leave the task of template

refinement to future work. Even unrefined, however, AbMAP performs remarkably

well, outperforming AlphaFold 2 and being competitive with OmegaFold in most

cases. It outperforms the latter on the functionally-crucial CDR-H3 region. We won-

dered if our template-finding approach was biasing the results in AbMAP’s favor,

and re-evaluated it at progressively lower levels of sequence homology (Fig. )B-2; we

also compared AbMAP-{B,E,P} with their respective foundational PLM baselines.

AbMAP’s performance did not decline meaningfully at lower sequence homologies
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and it substantially outperformed its foundational PLM baselines. Notably, the lat-

ter did not compare as favorably with OmegaFold or AlphaFold2, suggesting that it

is our transfer learning innovations, rather than the template-based approach, that

offers the gains.

AbMAP’s design is compatible with a variety of foundational PLM architectures.

Here the three foundational models we use differ substantially in their approach: the

Bepler & Berger model was training in a multi-task setting and uses protein structure

information, the ProtBert model adapts the existing BERT architecture, and the

ESM-1b model creates a transformer-based architecture from scratch. Across a variety

of applications, the corresponding AbMAP variants outperform their foundational

baselines. We believe this is due to our focus on a) CDRs, b) contrastive augmentation

that accentuates the residues in the CDRs, and c) a modular architecture with the

fine-tuning layer cleanly separated from the foundational PLM. Of these, we believe

the last to play the most important role (Fig. 3-2). In our fine-tuning layer, we

apply a single transformer layer to adapt contrastively-augmented representations

into final AbMAP embeddings; we found that additional layers did not meaningfully

increase performance in terms of test set loss and Spearman’s rank (Table A.3). The

contrastive augmentation step, though it improves performance and lead to more

stable results, also requires multiple invocations of the baseline PLM (one for each

mutant). In situations where speed is crucial, this step can be removed for greater

efficiency. Towards this, we offer two sets of pre-trained models: one with, and the

other without, contrastive augmentation. While it is faster to train AbMAP without

contrastive augmentation, the resulting representation space is less consistent with

ground truth structural properties (Fig. B-1).

The design of AbMAP represents an explicit focus on the hypervariable region of

the antibody at the expense of the framework region. We believe our design choice

enables more accurate analysis of human repertoires. Due to the phenomenon on im-

munoglobulin class (i.e. isotype) switching, constant regions may be replaced while

preserving hypervariable regions; this preserves antigen specificity while enabling dif-

ferent effector molecules to bind for downstream effects. Thus, our CDR-focused
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approach more representatively captures the diversity of antigen-binding profiles in

an individual repertoire. Nonetheless, in some cases of therapeutic antibody design,

the framework region may play an important role. To address this, we followed Liberis

et al. [23] and expanded the standard Chothia delineation of a CDR to also include

two flanking residues on each end. Furthermore, as more antibody datasets become

available (e.g., those measuring binding or functional specificity in diverse contexts),

the additional training data may enable us to leverage more complex models that

effectively capture both the framework and hypervariable regions.

The exploration of human immune repertoires, as well as the design and develop-

ment of large-molecule therapeutics, require a deep understanding of antibody struc-

ture and function, and an ability to efficiently manipulate it in silico. In parallel,

stunning advances in general-purpose modeling of proteins do not easily translate to

antibodies because of their unique hypervariability. The transfer learning approach

of AbMAP represents a general technique to adapt foundational PLMs for specific

protein sets of interest – rather than training a dedicated language model for the sub-

set, we argue it is more effective to leverage the fast-moving advances in foundational

PLMs and fine-tune for the subset. We believe the scalable and accurate modeling of

antibodies enabled by AbMAP will unlock a better understanding of the behavior of

antibodies and empower the discovery of novel therapeutic biologics.
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Appendix A

Tables

Model Metric Chain CDR 1 CDR 2 CDR 3 Whole
AbMAP-P TM-Score H 0.59± 0.007 0.61± 0.006 0.47± 0.006 0.81± 0.005
AbMAP-E TM-Score H 0.61± 0.007 0.64± 0.006 0.51± 0.007 0.85± 0.004
AbMAP-P TM-Score L 0.58± 0.007 0.71± 0.007 0.57± 0.007 0.84± 0.005
AbMAP-E TM-Score L 0.60± 0.007 0.74± 0.007 0.61± 0.007 0.88± 0.004

AbMAP-P RMSD H 0.44± 0.017 0.45± 0.014 0.54± 0.031 2.16± 0.068
AbMAP-E RMSD H 0.40± 0.013 0.40± 0.013 0.50± 0.037 1.71± 0.057
AbMAP-P RMSD L 0.47± 0.018 0.18± 0.007 0.50± 0.020 2.05± 0.061
AbMAP-E RMSD L 0.41± 0.014 0.18± 0.006 0.51± 0.028 1.67± 0.051

Table A.1: Structure prediction scores for AbMAP-P and AbMAP-E. Similar to
AbMAP-B, ProtBert, and ESM-1b in Fig. 3.1, the predicted template structure was
selected from a set of antibodies whose sequence identity is below 0.7. Structure
prediction was conducted on both individual CDR fragments and the whole chain.

53



Model Train Data Test Data Spearman’s 𝜌

AbMAP-B SAbDab LIBRA-Seq 0.57
AbMAP-B LIBRA-Seq SAbDab 0.028
AbMAP-E SAbDab LIBRA-Seq 0.60
AbMAP-E LIBRA-Seq SAbDab 0.049

Table A.2: Test set Spearman’s rank scores computed for AbMAP-B,E when using
different datasets for train and test (i.e. we evaluated the prediction of functional
similarity using embeddings trained on structure data, and vice versa). While em-
beddings trained solely on structure data perform quite well when predicting function,
embeddings trained only on function data can infer far less about antibody structure.

num. transformer layers 1 2 3
Mean Loss 0.272 0.281 0.279

Spearman’s 𝜌 0.826 0.805 0.817

Table A.3: Test set mean loss and Spearman’s rank scores computed for AbMAP-
B when using different number of Transformer Encoder layers in its architecture.
Increase in number of layers did not necessarily show improvement in model perfor-
mance.
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Appendix B

Figures

Figure B-1: Average ground truth TM-scores antibody pairs in each of the 20 cosine
similarity score bins using AbMAP representations with raw PLM embeddings (CDRs
only) as input; i.e. no contrastive augmentation. Monotonicity is noticeably lower
when using raw PLM embeddings as input to AbMAP compared to using contrastively
augmented PLM embeddings.
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TM Score (higher is better) RMSD (lower is better)

Figure B-2: Comparison of AbMAP-B and sequence alignment at different sequence
identity thresholds for template search in antibody structure prediction. Columns
from left to right (TM-Score Chain H, TM-Score Chain L, RMSD Chain H, RMSD
Chain L). Rows from top to bottom (Sequence identity: 0.9, 0.8, 0.7, 0.6, 0.5). For
a pair of antibodies, AbMAP-B uses the cosine distance of fixed length sequence
embeddings and sequence alignment uses the pairwise global sequence alignment score
as a similarity metric.

56



Figure B-3: (Left) Chart of average Spearman’s rank scores for ddG scores prediction
of Bepler & Berger based models (AbMAP and raw) with various train/test splits.
(Right) Chart of average overlap of top-𝑘1, 𝑘2 ddG scores for different 𝑘1, 𝑘2 values.
This experiment was conducted for different train/test splits (train: 0.02, test: 0.98
for this chart). While the raw embeddings are comparable to augmented embeddings
at higher splits, their performance notably drops at lower training set sizes.
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Figure B-4: KDE plot: 2D PCA of AbMAP embeddings for antibody repertoire from
each human subject.
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