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Abstract
Advances in the fabrication of large-scale integrated silicon photonics have sparked in-
terest in optical systems that process information at high speeds with ultra-low energy
consumption. Photonic systems, which have historically been used for optical telecom-
munications, have recently been demonstrated to accelerate tasks in quantum simulation,
artificial intelligence, and combinatorial optimization.

This thesis reports work towards the goal of realizing large-scale programmable pho-
tonic systems for information processing: 1) we develop deterministic error correction
algorithms for programmable photonic systems, whose capabilities are believed to be lim-
ited by fabrication error, showing that these systems can be programmed to implement
accurate linear matrix processing suitable for deep neural networks at scales of up to hun-
dreds of channels; 2) we describe a new paradigm for coupling large numbers of optical
channels to photonic circuits with exceptionally high alignment tolerance, enabling the use
of high-volume, low-precision electronic pick-and-place equipment for photonic assembly;
and 3) we design, fabricate, and demonstrate the first single-chip, end-to-end photonic
processor for deep neural networks. This fully-integrated coherent optical neural network
(FICONN), which monolithically integrates multiple optical processor units for matrix
algebra and nonlinear activation functions into a single chip, implements single-shot co-
herent optical processing of a deep neural network with sub-nanosecond latency. On-chip,
in situ training of a deep neural network is demonstrated on this system, obtaining high
accuracies on a vowel classification task comparable to that of a digital system. Our
results open the path towards integrated, large-scale photonic processors for low-latency
inference and training of deep neural networks.

Thesis Supervisor: Dirk R. Englund
Title: Associate Professor of Electrical Engineering and Computer Science
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1
Introduction

The end of Dennard scaling
For most of the history of the semiconductor industry, exponential growth in transistor
counts has directly correlated to exponential growth in computing power. This can be
explained through Dennard’s law [1], which observed that with each successive technology
node:

• Each dimension d of the transistor reduces by
√
2, reducing the total area A = d2

by a factor of 2.

• As a result, the capacitance C of the device, which is 𝜖A/d , reduces by a factor of√
2.

• A constant electric field E across the device necessitates reducing the voltage V =
E/d by a factor of

√
2.

• As circuit delay is proportional to 1/d , the clock frequency f can increase by a
factor of

√
2.

• Thus, the total power dissipation CV 2f reduces by a factor of 1/2.

In other words, even though transistor density has doubled, the total power dissipation will
remain constant. This advantageous scaling fueled rapid increases in computing power
for over thirty years.

However, as of 2005, this scaling has greatly slowed down. Figure 1-1 shows his-
torical trends in transistor count, clock frequency, single-thread performance and power
dissipation over the last fifty years [2]. Note that while transistor count continues to in-
crease, clock frequency, single-thread performance and power consumption have flatlined.
Thermal limits have bottlenecked the continual scaling of microprocessors; as transistor
sizes decrease, leakage currents due to tunneling and other quantum-mechanical effects
greatly increase power dissipation across the chip. As a result, operating voltages have
not continued to scale with transistor size, slowing improvements in energy efficiency with
each progressive technology node.
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Figure 1-1: Historical trends in microprocessor performance over the last fifty years. Data
sourced from ref. [2].

Table 1.1: Computation and communication energies for modern digital processors. Values
sourced from ref. [3].

Operation Energy/bit
Switching CMOS gate 50 aJ-3 fJ
Energy in DRAM cell 10 fJ

Floating point operation 100 fJ
Communicating across chip 600 fJ

Data link multiplexing and timing circuits 2 pJ
Reading DRAM 5 pJ

Communicating off chip 1-20 pJ
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Figure 1-2: Example architecture of a four-layer deep neural network. Each neuron is connected
to a neuron in the following layer through a series of synaptic connections represented by a linear
matrix.

Moreover, as shown in Table 1.1, the vast majority of energy consumed in modern
microprocessors is consumed not for logic, which is on the order of single fJ per CMOS
gate, but communications, which can consume anywhere from hundreds of fJ to tens of
pJ per bit [3]. As the physical dimensions of the metal wires in a CMOS chip shrink, the
interconnect capacitance stays roughly constant or can increase [3]. Since communicat-
ing across a transmission line requires charging the line capacitance up to the signaling
voltage V , interconnect capacitance Cinterconnect does not scale with geometry, and op-
erating voltage V has stopped decreasing with progressive transistor nodes, the energy
consumption CinterconnectV

2/2 of communication on-chip remains bottlenecked to about
∼ 1 pJ/bit. The upshot of this is that while power dissipation for computation continues
to drop, the end-to-end system power dissipation is decreasing far more gradually1.

Deep neural networks and application-specific computing
At the same time as growth in computing power is slowing down, the demands of compu-
tation continue to grow. Deep neural networks have revolutionized computing, realizing
state-of-the-art performances in tasks ranging from image classification [5, 6], natural
language processing [7], signal processing, game playing [8, 9], chip design [10], and
engineering.

A simplified architecture of a deep neural network (DNN) is shown in Figure 1-2. Input
neurons are connected to output neurons through a set of synaptic connections, which can
be represented as a linear matrix transformation. After each layer, a nonlinear activation
function, emulating the firing threshold of a biological neuron, is applied to each output
neuron. These results are then fed into the following layer and the process continues
to realize a deep network. This combination of linear and nonlinear mappings between

1In order to continue scaling computational power, the industry has moved to integrating multiple logical
cores on chip, as shown in Figure 1-1. However, as there still remains a fixed thermal design power
(TDP) that can be dissipated on chip, not all cores can be used at the same time and vast sections of
the circuitry may be off at a given time. This design strategy has been termed “dark silicon” [4].
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Figure 1-3: Reported performances on the ImageNet task vs. parameter size (data sourced from
ref. [12], which aggregates results reported in the literature). State-of-the-art performances on
ImageNet require model sizes exceeding 109 parameters.

neurons renders DNNs extremely powerful computationally; theoretically, a DNN with an
infinite number of layers, i.e. infinitely deep, or with an infinite number of neurons, i.e.
infinitely wide, can be mathematically proven to be a universal function approximator [11].

While the idea of deep neural networks has been around for decades, it is only recently
that they have become the state-of-the-art in computing. This is directly tied to the
exponential increase in the size of these models, and the growth in computing power that
has enabled this trend. Figure 1-3 shows performance on the ImageNet classification task
as a function of model parameters across 590 papers reported in the literature [12]. A clear
trend can be observed where state-of-the-art performance is correlated with parameter
number and classification accuracies exceeding 90% require model sizes on the order of
109 weights2.

The size of DNN models has also grown exponentially with time. Figure 1-4 shows the
size of state-of-the-art models vs. year they were first reported. At the time this thesis
was written, the newest language processing models such as GPT-3 and Megatron-Turing
NLG required over 100 billion parameters3.

The growing demands on computation has led both researchers and the industry to
start developing systems for application-specific computing. A typical microprocessor,
such as a CPU, is general-purpose. However, from the perspective of processing a deep
neural network, the CPU includes a great deal of bells and whistles that are not only com-
pletely unnecessary, but drive up the power consumption and bottleneck the computation.
This was recognized in the early 2000s, when the first graphical processing units (GPUs)
were being re-purposed specifically to accelerate linear algebra processing for DNNs. The

2In other words, the model requires about 1 GB of storage assuming each weight is an 8-bit integer.
3Or 100 GB.
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Figure 1-4: The size of state-of-the-art DNN models for image classification and natural
language processing vs. the year they were first reported.

transition in the industry to application-specific processors accelerated the advances made
in the early 2010s in machine learning.

However, a GPU is still not truly application-specific. They are optimized for graphics
processing on computers; while many of the features of these systems make them ideal
for parallel matrix processing, a truly optimized application-specific integrated circuit for
DNNs could realize further speedups. In 2017, Google announced the development of
the tensor processing unit, or TPU, which was specifically designed to accelerate matrix
processing for artificial intelligence [13]. Impressively, this system realized an order-of-
magnitude performance gain over state-of-the-art GPUs, representing a landmark result
for the field of application-specific computing.

While the tensor processing unit showed the potential of a fully-optimized digital
computer for matrix processors, it had certain limitations endemic to digital systems.
The designers found that although their compute unit was highly efficient, the overall
system performance was bottlenecked by access to and from memory—in other words,
the interconnect problem discussed earlier. This ultimately limited the energy efficiency
of the system to be ≈ 1 pJ/OP4.

Optics for computing?
The bottlenecks inherent to digital systems has motivated interest in alternative archi-
tectures for computing. One of the most exciting areas of research in recent years has
been optical systems for computation. While modern electronic processors for DNNs are
bottlenecked by the power dissipation of interconnects, optical systems are particularly

4Although recent research results [14] in digital systems has improved this to 100 fJ/OP.
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well-suited for addressing the problem of data movement. In electronic interconnects,
energy consumption scales with link length; as a result, fetching data over long distances
from memory is energetically quite expensive. Optical interconnects, however, exhibit a
length-independent scaling in energy consumption originating only from the expense of
electrical-to-optical conversion and back.

Optical systems are also exceptional at particular forms of computation—in particular,
linear operations. While linear matrix operations can consume significant amounts of
energy in digital processors, a carefully-designed optical architecture can perform matrix
processing passively and with speed-of-light limited latencies. Other important linear
functions, such as fanout, where we copy a single signal and distribute it to N nodes,
also consume immense amounts of energy in digital systems and are trivial to realize in
optics5.

Linear processing is the key computation for deep neural networks and consumes
the vast majority of the power dissipation. Given that linear matrix operations can be
performed passively in optics, the idea of application-specific optical systems for DNNs
suddenly starts to make a lot of sense. When I started graduate school, a set of landmark
results in optical processing of DNNs, including one from our group [15, 16, 17, 18],
had begun to be reported. In a series of proof-of-principle demonstrations, these groups
leveraged key advantages of optics to realize computation of DNNs, namely:

• Unlike electronics, optics can realize massively parallel data processing — mul-
tiplexing across spatial, polarization, and wavelength modes, enabling potentially
high throughput [17, 18]. Fiber optical communications leverages this today to
achieve datarates exceeding terabits per second.

• Passive linear matrix operations–the bulk of DNN computation–performed “for
free” [15, 17].

• Optical matrix processing that is time-of-flight limited in latency, i.e. clockless
processing of data [15, 18, 17].

• Matrix processing of coherent optical data [15].
While optics is fantastic for linear processing, there remain many challenges for realzing
an end-to-end optical DNN processor. For example:

• Optical systems require careful, sub-micron alignment and extraordinary stability.
While many benchtop optical setups in the lab are on the order of tens to hundreds
of components, realizing accurate optical computation at useful scales will require
the ability to stabilize millions of optical components.

• Moreover, we need to be able to interface large numbers of channels in and out
of these optical systems to scale to useful model sizes.

• The computation is analog. Analog computation is notorious for being low-precision,
as errors in these systems cascade. Novel error correction algorithms will be
needed to scale these systems.

5For example with a diffractive optical element.
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• The computational power of DNNs originates from the combination of both linear
and nonlinear transformations in the function. While performing linear operations
in DNNs is well understood, realizing efficient nonlinear operations in optics
remains quite difficult.

• Training deep neural networks in digital systems is well understood. However,
it is an open question as to what are the most efficient algorithms for training
computational models on photonic hardware.

Scaling up optical systems for artificial intelligence will eventually require surmounting all
of these challenges.

What this thesis is about
This thesis describes the work I did in my PhD to tackle some of these emerging chal-
lenges at the intersection of optics and computing. In particular, I have focused on
programmable silicon photonic systems, which enable dense integration of photonic com-
puting units, rapid reconfigurability, and complex interferometric processing of optical
signals for deep neural networks.

• In Chapter 2, I introduce the key components of an integrated, programmable
photonic processor for deep neural networks, which include waveguides for rout-
ing high-bandwidth optical signals, linear optical components for interferometric
processing, and high-speed modulators and photodetectors for efficient electrical-
to-optical interfaces.

• Chapter 3 addresses the obstacle of increasing component error in programmable
photonic processors. We report the development of the first deterministic, gate-
by-gate error correction algorithm for programmable photonics, whose scaling was
previously believed to be limited by fabrication error. We show that this algorithm
enables scaling of photonic processors for DNNs to commercially relevant sizes.

• A key obstacle to realizing end-to-end photonic processors for deep neural networks,
which will require hundreds of optical channels, is the high cost and low yield of
photonic packaging. We report in Chapter 4 the development of a novel paradigm
for photonic interconnects that is highly tolerant to alignment error, realizing tol-
erances that are significantly higher than conventional interconnects and enabling
the use of low-precision, high-volume assembly tools for photonic packaging.

• In Chapter 5 we report the experimental realization of the first chip-scale system
for end-to-end, photonic processing of deep neural networks. Our system, which
monolithically integrates optical processing units for matrix algebra and nonlinear
functions into a single silicon photonic chip, performs both inference and training
of deep neural networks entirely in the optical domain.

• Finally, in Chapter 6, we summarize the main results of this thesis and discuss
future research directions towards the ultimate goal of realizing end-to-end photonic
systems for computing.
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2
Programmable photonic processors

2.1 Introduction

An outstanding goal of the optics research community has been dense integration of optical
components on-chip for enabling complex systems, similar to advances in very-large scale
integration (VLSI) in the 20th century that enabled the fabrication of processors with
millions of transistors on a single die. A number of promising platforms for achieving this
integration have been studied by the academic community, including lithium niobate [19],
gallium arsenide [20], indium phosphide [21], aluminum nitride [22], and many others.

Silicon photonics has emerged over the last decade as the state-of-the-art platform
for large-scale integrated optical circuits. Part of the reason for this is economics: silicon
is inexpensive, billions of dollars have been invested worldwide in the CMOS platform,
providing for a highly mature infrastructure for fabrication, and optics fabricated on silicon
could potentially be co-integrated with electronics within the same process.

In addition to its advantageous economics, silicon possesses a high-quality native oxide
suitable for cladding, has excellent thermal and electrical properties, and is transparent at
telecommunications wavelengths used in fiber optics. Moreover, the silicon-on-insulator
(SOI) platform that uses silicon dioxide as the cladding has exceptionally high index
contrast (nSi = 3.5 and noxide = 1.44) relative to competing platforms, allowing for
waveguide dimensions on the order of hundreds of nanometers and bend radii as small as
5 𝜇m [23], permitting dense component integration. This has enabled the realization of
complex optical processors in the silicon platform, with applications ranging from quantum
information processing [24, 25, 26] to telecommunications [27] to signal processing [28]
to artificial intelligence [15].

In this section, we introduce the key elements of the silicon photonic platform. We
then discuss their application to programmable photonic circuits [29], an emerging class
of integrated optical systems that are promising for reconfigurable signal processing in the
optical domain.
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2.2 Waveguides

The most fundamental component in an integrated photonics platform is the waveguide,
which consists of a high refractive-index “core” surrounded by a lower index “cladding.”
The waveguide confines light in two spatial dimensions (x and y), while permitting propa-
gation in the third (z); thus, they serve as optical “wires” in a circuit, transporting optical
signals from component to component for further processing.

Optical propagation in a waveguide can be described by a set of “modes”, which refer
to electromagnetic fields within the structure that do not vary in spatial profile as they
propagate. Due to the translational invariance of the waveguide structure along the prop-
agation (z) direction, the field distribution between two points E (x , y , z) and E (x ′, y ′, z ′)
in a waveguide can be related by a phase factor E (x ′, y ′, z ′) = E (x , y , z)e i𝛽(z

′−z), where 𝛽
denotes the propagation constant of the mode [30]. One can calculate the electromagnetic
modes of a structure with Maxwell’s equations:

∇ · (𝜖(r)E(r, t)) = 0 (2.1)
∇ · H(r, t) = 0 (2.2)

∇ × E(r, t) = −𝜇0
𝜕H(r, t)

𝜕t
(2.3)

∇ × H(r, t) = 𝜖0𝜖(r)
𝜕E(r, t)

𝜕t
(2.4)

Here, we modify the equations to assume that 𝜖, the dielectric constant of the medium,
can be a function of position. The general propagating solution to these equations are
plane waves of the form H(r, t) = vH(x , y) exp(i(kz −𝜔t)), where k is the wavenumber,

Figure 2-1: The silicon-on-insulator platform. Waveguides are defined in a 220 nm silicon layer
and cladded by silicon dioxide. Insets show the fundamental (TE) modes of a ridge (left) and
strip-loaded (right) waveguide.
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𝜔 is the frequency, and v is the direction of the magnetic field H [31]. The use of
complex exponentials simplifies the underlying mathematics; the physical magnetic field
can be obtained by taking the real part of the expression, and the electric field can be
found by substituting the solution into equation (4). More complicated modes can be
described by expanding them as a weighted sum of plane waves

H(r, t) =
∑︁
k

vHk(x , y) exp(i(kz − 𝜔(k)t)) (2.5)

We can find a mode satisfying equations (1) and (2) by ensuring that v is orthogonal
to r, making the modes calculated tranverse to the direction of propagation. We satisfy
equations (3) and (4) by taking the curl of both sides of equation (4):

∇ ×
(︃

1

𝜖(r)
∇ × H(r, t)

)︃
= ∇ × 𝜖0

𝜕E(r, t)

𝜕t
(2.6)

=
𝜕

𝜕t
[∇ × 𝜖0E(r, t))] (2.7)

=
𝜕

𝜕t

[︃
−𝜖0𝜇0

𝜕H(r, t)

𝜕t

]︃
(2.8)

= − 1

c2
𝜕2H(r, t)

𝜕t2
(2.9)

Now substituting our plane wave solution H(r, t) = vH(x , y) exp(i(kz − 𝜔t)), we find

∇ ×
(︃

1

𝜖(r)
∇ × H(r, t)

)︃
=
(︂
𝜔

c

)︂2

H(r, t) (2.10)

where we have replaced 𝜖0𝜇0 with 1/c2.
We can rewrite the left side as a Hermitian operator Θ̂ = ∇ ×

(︁
1
𝜖(r)

∇×
)︁
, such that

the above equation is Θ̂H =
(︁
𝜔
c

)︁2
H [31]. This equation has now taken the form of an

eigenvalue problem whose solutions will be the modes of the structure. The eigenvalues
correspond to the propagation constant k , which can be related to the vacuum frequency
𝜔0 through 𝜔0 = ck/neff. neff, referred to as the effective index, is an important parameter
of waveguide modes that describes the phase velocity of light in the structure.

For a waveguide, one can find the propagating modes by defining a two-dimensional
cross section with separate dielectric constants 𝜖(r) defined for the core and cladding
regions and then solving the above continuous eigenvalue problem. Solving the problem
analytically, however, is quite challenging; in practice, the problem is solved computation-
ally by discretizing the region into a space of sub-wavelength sized cells and then solving
the problem numerically with approaches such as finite-element methods (FEM), the finite
difference time domain (FDTD) method, the boundary integral and resonant mode expan-
sion (BI-RME) method, or the Lanczos method [32]. For a waveguide, pictured in Figure
2-1, one will find modes corresponding to polarizations along the two transverse axes of
the structure; by convention, the x-polarized mode is labeled “TE” and the y-polarized
mode is labeled “TM.” In most (but not all) situations, the waveguide will be designed
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Figure 2-2: Footprint comparison between a 5 𝜇m radius bend (left), common for dense routing
in silicon photonics, vs. a 50 𝜇m radius bend (right) required for routing on lower index platforms
such as lithium niobate and silicon nitride.

such that there is only one solution to the eigenvalue problem above; such “single-mode”
waveguides allow the device designer to presume that any light coupled into the structure
will be in the waveguide’s fundamental mode. Thus, the device designer will know at any
point along the waveguide exactly what the transverse field profile will be.

A key advantage of the silicon photonic platform is the high index contrast between
core and cladding, which results in strong modal confinement that enables dense routing
with bend radii of < 5 𝜇m [23]. This is in contrast to lower-index platforms such as
silicon nitride and lithium niobate, which require bend radii on the order of 50 𝜇m. To
give a sense of the scale, in Figure 2-2 we show the footprint occupied by a 5 𝜇m bend
compared to one that is 50 𝜇m.

2.3 Fiber-to-chip interfaces
Eventually, light on chip will need to interface to the outside world. This requires efficient
interfaces between waveguides on chip and optical fiber. Figure 2-3 shows two common
approaches to achieving this interface:

• An edge coupler is comprised of a waveguide that adiabatically tapers to expand
the size of the optical mode. Once the mode has been expanded, it is launched into
free space and end-fire coupled into the optical fiber.

A key challenge for edge coupling is the difficulty of converting the waveguide mode,
which has a spot size of < 1 𝜇m diameter, to the 10 𝜇m mode-field diameter that
is used in standard single mode fiber. Several approaches have been pursued to
tackle this problem, including metamaterial designs [33] and “trident” couplers that
construct a supermode using multiple waveguides [34].
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Figure 2-3: Photonic de-
vices on chip are typically
interfaced to optical fiber
through edge coupling (top)
or grating coupling (bottom).

• Grating couplers realize a periodic waveguide structure that can diffract incident
light from a waveguide mode into free space. Here, the idea is to realize a waveguide
period that matches the Bragg condition [30]:

neff − nc sin 𝜃 =
𝜆

Λ
(2.11)

where neff is the effective index of the waveguide mode, nc is the cladding index, 𝜃
is the diffraction angle from the vertical, 𝜆 is the wavelength, and Λ is the grating
period.

As grating couplers diffract light vertically, they can be placed anywhere on a pho-
tonic circuit. This makes circuit design simpler than using edge couplers, which
must be placed at the chip edge.

The main disadvantage of grating coupling is the higher insertion loss, due to low
diffraction efficiency, and the limited bandwidth–as neff will vary with 𝜆, the Bragg
condition will only be realized for a limited range of wavelengths.
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Figure 2-4: 2 × 2 couplers are realized in silicon photonics using either a directional coupler
(left) or a multimode interferometer (right).

A key metric for both types of devices is the mode overlap, which determines the coupling
efficiency 𝜂 to fiber [35]:

𝜂 =
|
∫︀
E *
1E2 dA|2∫︀

|E1|2 dA
∫︀

|E2|2 dA
(2.12)

Misalignment in the fiber reduces the mode overlap and therefore the coupling efficiency
𝜂.

2.4 2 × 2 Couplers

Programmable photonic systems require the ability to coherently split and re-combine
light. A fundamental component of these systems is the 50-50 beamsplitter, which applies
to two input optical modes a0, a1 the coherent matrix operation:

1√
2

[︃
1 i
i 1

]︃
(2.13)

For an optical field input into a single port, i.e. input vector [1, 0], this device applies an
amplitude transmission of 1/

√
2 to each output port, corresponding to 50-50 splitting in

power. These devices can be used to implement reconfigurable beamsplitters on chip, as
we describe later in this chapter.

In photonic platforms, 2 × 2 couplers are realized using either directional couplers or
multimode interferometers. In a directional coupler, two waveguides are perturbatively
coupled through the interaction of the evanescent field of each waveguide mode. This
interaction results in two hybridized modes that are even (in phase) and odd (in anti-
phase) [36]. Assuming a constant coupling 𝜅, the coupled mode equations describing the
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system are:
i
d

dz

[︃
a0
a1

]︃
=

[︃
𝛽 𝜅
𝜅 𝛽

]︃ [︃
a0
a1

]︃
(2.14)

When light is input into a single port, i.e. a0 = 1; a1 = 0, these equations can be solved
to find that:

a0(z) = cos (𝜅z) (2.15)
a1(z) = sin (𝜅z) (2.16)

For two identical waveguides, 𝜅 can be computed as:

𝜅 =
𝜋(neven − nodd)

𝜆
(2.17)

where neven, nodd are the effective indices of the even and odd supermodes of the structure.
Directional couplers are extremely low loss (< 0.1 dB) and can reach nearly ideal 50-50

splitting behavior. For this reason, they are the splitter of choice in most programmable
photonic circuits. However, they are strongly wavelength dependent, as the effective
index neff, and therefore Δn, will vary with 𝜆. This makes it difficult to use programmable
circuits built with directional couplers over a wide wavelength range.

Alternatively, multimode interference (MMI) couplers can be used to realize 50-
50 splitting. In these devices, two waveguides interface to a multimode region in which
interference takes place. At specific self-imaging lengths, this device can realize a 2 × 2
splitting operation identical to a directional coupler.

The self-imaging length depends on the difference in effective indices between the TE0
and TE1 modes of the waveguide. This usually depends less on wavelength, making MMI
couplers ideal for broadband behavior. The tradeoff is that coupling in and out of the
multimode region efficiently is challenging, and thus these devices typically have higher
insertion loss than directional couplers.

2.5 Optical resonators
In silicon photonics, optical microcavities are frequently implemented using ring res-
onators, which comprise a loop of waveguide that is evanescently coupled to an external
bus waveguide. Resonances occur whenever the mode constructively interferes after a
round-trip in the loop, i.e. when:

m𝜆 = neffL (2.18)
where m is an integer, neff is the effective index, and L is the round-trip length around
the ring. The spacing between resonances in wavelength, i.e. the free spectral range, can
be computed as:

FSR =
𝜆2

ngL
(2.19)

where ng = neff − 𝜆(dneff/d𝜆) is the group index of the waveguide.
In an all-pass ring resonator, as shown in Figure 2-5, input light is coupled from the

bus to the resonator with amplitude transmission i𝜅. An optical field coupled into the ring
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Figure 2-5: Top: an all-pass ring res-
onator on the silicon photonic platform.
Bottom: Transmission of an all-pass ring
resonator when the device is critically cou-
pled, i.e. t = a.

will make a round-trip around the cavity, accumulate 𝜑 = 2𝜋neffL/𝜆 in phase, attenuate
by an amplitude transmission a corresponding to the round-trip loss in the cavity, and
then couple back to the bus with probability i𝜅. Assuming a lossless coupler with a
pass-through transmission t, i.e. |t|2 + |𝜅|2 = 1, we can compute the output field as:

Eout = tEin +
(︁
(i𝜅)2ae i𝜑 + (i𝜅)2t(ae i𝜑)2 + (i𝜅)2t2(ae i𝜑)3 + ...

)︁
Ein (2.20)

= tEin − 𝜅2ae i𝜑
∞∑︁
n=0

(tae i𝜑)nEin (2.21)

= tEin − 𝜅2ae i𝜑

1 − tae i𝜑
Ein (2.22)

=
(1 − tae i𝜑)t − 𝜅2ae i𝜑

1 − tae i𝜑
Ein (2.23)

=
t − t2ae i𝜑 − 𝜅2ae i𝜑

1 − tae i𝜑
Ein (2.24)

=
t − ae i𝜑

1 − tae i𝜑
Ein (2.25)

The amplitude transfer function is therefore:

Eout

Ein
=

t − ae i𝜑

1 − tae i𝜑
(2.26)
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This expression is plotted in Figure 2-5. At resonance, i.e. 𝜑 = 2𝜋m, the ring drops a
substantial amount of power to the loss mode. At critical coupling, i.e. when t = a, all
of the power is lost and the through-port transmission will drop to zero.

At resonance, the feedback introduced by constructive resonance greatly increases
the effective path-length, as light travels around the ring many times. Resonators are
therefore useful for enhancing weak optical effects, such as nonlinear interactions or high-
speed, carrier-based modulation (which typically is rather inefficient and requires long
device lengths). The degree of enhancement can be related to the finesse F [37], which
is roughly the number of times light travels around the ring:

F =
𝜋

√
ta

1 − ta
(2.27)

A related quantity is the quality factor (or Q-factor), which also quantifies the width
of the resonance:

Q =
Δ𝜆

𝜆
=

𝜋
√
ta

1 − ta

(︃
ngL

𝜆res

)︃
(2.28)

This is related to the photon lifetime 𝜏 by Q = 𝜔0𝜏 . The photon lifetime quantifies how
long, in time, optical power “lives” within the cavity. When designing modulators, high Q
can reduce the modulation voltage as the finesse is increased. However, it also diminishes
the bandwidth fBW = 1/(2𝜋𝜏), as each cycle requires the optical field within the cavity
to be fully charged and discharged.

2.6 Phase shifters
Reconfigurability in a photonic circuit requires the ability to actively tune photonic ele-
ments. An important degree of freedom in optics is the phase; thus, programmable control
over the phase of an optical field is of paramount importance in these systems.

Phase shifters in silicon photonics make use of the thermo-optic effect. At room
temperature, the thermo-optic coefficient of silicon dn/dT = 1.8× 10−4 K−1. Increasing
the local temperature T of a waveguide of length L will induce a phase shift:

Δ𝜑 =
2𝜋

𝜆

(︃
dn

dT

)︃
(ΔT )L (2.29)

Thermal tuning is typically realized using resistive heating, where a current is driven into
an on-chip resistor to generate Joule heating through I 2R dissipation. This process can
be remarkably efficient, particularly when the resistor is integrated into the waveguide;
for instance, in ref. [38], the silicon waveguide itself is weakly p-doped and connected
to metal contacts. As the waveguide itself is a resistor, driving a current into the device
produces local heating that efficiently overlaps with the optical mode. Efficient tuning
over more than 2𝜋 in phase can therefore be realized over relatively short device lengths
of ∼ 200 𝜇m.

The main drawbacks of thermal tuning are: 1) its relatively high power dissipation
(usually ∼25 mW); and 2) its low response speed, as tuning is realized by introducing and
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depleting heat from the structure. Lower tuning powers on the order of ∼ 1 mW have
been realized by undercutting the waveguide [39], thereby improving the thermal isolation
of the waveguide and minimizing heat loss to parasitic sinks such as the silicon substrate.
However, as the structure traps heat more efficiently, the bandwidth is reduced even
further. This makes thermal tuners ideal for devices on-chip that are tuned infrequently,
but unsuitable for high-speed input and output of optical data.

2.7 Electrical-to-optical interfaces
End-to-end, photonic signal processing systems will require the ability to communicate
with electronic microprocessors. Therefore, realizing photonic processors for computing
will require high-speed interfaces between electrical and optical signals.

2.7.1 Modulators
Electrical-to-optical conversion requires modulators that “imprint” an electrical signal
onto either the amplitude or phase of an optical field. In many platforms, such as lithium
niobate, this modulation is performed using the Pockels effect, which produces an electric-
field induced change in the refractive index n. This effect, which originates from the
second-order nonlinear susceptibility 𝜒(2) and is extremely fast, enables direct transduction
of voltage signals onto the optical field at datarates exceeding tens of Gbit/s.

Unfortunately, silicon is centrosymmetric, prohibiting second-order nonlinear interac-
tions. Initially, the lack of a viable high-speed modulation mechanism greatly impeded
progress in silicon as a photonic problem. In 1987, however, Soref and Bennett showed
that injection or depletion of carriers in silicon will modulate the local refractive index
[40].

This phenomenon, dubbed the plasma dispersion effect, is the basis of high-speed
(GHz+) modulators implemented today in the silicon photonics platform. These devices
are realized by transforming a silicon waveguide into a diode: by p- and n-doping regions
of a waveguide, one can fabricate an effective p-i-n diode in a waveguide that can produce
large changes in carrier concentration with relatively low applied biases at high speeds [30].
The mechanism, however, is not ideal; an injection of carriers will also incur optical loss
due to free carrier absorption, and thus phase modulation will also induce amplitude chirp
[40].

These modulators can be operated in injection where the diode is forward biased. This
can produce remarkably strong modulation, as the carrier concentration in the waveguide
can increase exponentially. The main drawback of this strategy is the strong amplitude
modulation coupled with the phase, due to free carrier absorption. Moreover, injection
modulators are typically limited to < 1 GHz bandwidth, as the reset time is limited by
carrier recombination lifetimes in silicon, which are about 1 ns [41].

Alternatively, these modulators can be operated in depletion mode, where the diode
is driven in reverse bias. Here, increasing the reverse bias widens the depletion region
of the junction, removing carriers from the waveguide and inducing an index change.
This is the preferred mode for high-speed modulators used in telecommunications, as the
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bandwidth is limited by the RC -time constant of the junction, which can exceed 10 GHz.
While there is still some residual amplitude modulation, it is far less than in injection
mode as the waveguide is largely depleted of carriers. The tradeoff is that as there are
few carriers to begin with in the depletion region, the modulation efficiency is relatively
weak, although it is still comparable to Pockels modulators. These modulators have been
successfully used to demonstrate high-speed, traveling-wave modulators suitable for use
in optical transceivers [42].

2.7.2 Photodiodes
Efficient optical-to-electrical conversion is performed with high-speed photodiodes that
absorb the optical field to generate a photocurrent. Fortunately, most CMOS foundries
incorporate germanium into the process flow, enabling the implementation of hybrid SiGe
photodiodes on chip.

Typically, these devices are realized by epitaxially growing germanium onto a sili-
con waveguide to realize a p-i -n photodiode. The optical field is absorbed within the
germanium, generating a photocurrent that is collected by the metal contacts. As the
photodetector is waveguide integrated, the quantum efficiency of these devices is usually
quite high (over 80%). The small footprint of these detectors further minimizes RC -delay,
with some devices reporting transit-time limited bandwidths on the order of tens of GHz.

Consequently, photodetectors today in silicon photonics perform exceptionally well and
can realize nearly unity photon-to-electron conversion. Research in these devices today
mostly focuses on improving the bandwidth to support higher datarate communications1,
lowering dark current2, and improving power handling3.

2.8 Mach-Zehnder interferometers
Having discussed the key elements of the silicon photonic platform, we now proceed to
motivating the development of programmable photonic systems. The fundamental unit
cell of these systems is the Mach-Zehnder interferometer, which comprises a pair of 2× 2
couplers and a voltage-controllable phase shifter, such as a thermal tuner.

Figure 2-6 shows a Mach-Zehnder interferometer on the silicon platform. It consists
of two 50-50 splitters, realized with directional couplers, and two electrically-contacted
phase shifters–one on the input (conventionally referred to as 𝜑) and one between the
two couplers (conventionally referred to as 𝜃).

This device is a reconfigurable beamsplitter that performs the 2 × 2 operation:

Tij(𝜃,𝜑) =
1

2

[︃
1 i
i 1

]︃ [︃
e i𝜃 0
0 1

]︃ [︃
1 i
i 1

]︃ [︃
e i𝜑 0
0 1

]︃
1In 2021, IHP reported the realization of photodiodes in their silicon photonic platform with 265 GHz
bandwidth [43].

2The dark current of SiGe photodiodes is notoriously poor, largely originating from defects at the epitaxial
interface.

3At high optical powers, charge screening in the germanium can deteriorate responsivity. Evanescently
coupling the optical mode to a germanium slab has been shown to greatly reduce this problem [44].
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Figure 2-6: A Mach-Zehnder interferometer in a silicon photonic circuit. Each MZI consists of
two 50-50 splitters, implemented using a directional coupler, and two electrically-programmable
thermal phase shifters.

= ie i𝜃/2
[︃
e i𝜑 sin(𝜃/2) cos(𝜃/2)
e i𝜑 cos(𝜃/2) − sin(𝜃/2)

]︃

where 𝜃,𝜑 are single-mode phase shifts on the top arm. When inputting optical power
into a single input, the output power in each port is:

Pcross = cos2(𝜃/2) (2.30)

Pbar = sin2(𝜃/2) (2.31)
Thus, an MZI can realize arbitrary splitting of an optical input by programming 𝜃. How-
ever, more generally, this device can implement coherent matrix processing on optical
fields; specifically, by tuning 𝜃 and 𝜑 electrically, one can realize any arbitrary 2 × 2
unitary operation on a pair of optical modes.

2.9 Towards fully-reconfigurable photonics
The vast majority of photonic circuits today are fabricated for a specific application–often
for optical communications. Recently, however, interest has grown in a special class of
photonic circuits that are flexibly programmable post-fabrication to implement different
functions. This flexible control is realized through electrically tunable beamsplitters, i.e.
a Mach-Zehnder interferometer unit cell [29]. In these circuits, each MZI functions effec-
tively as an analog 2× 2 gate on optical fields, and they can be tiled into larger networks
to realize complex operations on a set of optical modes a0, a1, ..., aN .

Figure 2-7 shows two implementations of universal, feedforward programmable pho-
tonic meshes. Feedforward circuits, where light propagates only in a single direction in
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Figure 2-7: Universal architectures for programmable photonic matrix processors. Rectangular
(a) and triangular (b) configurations of MZIs can be used to implement arbitrary unitary op-
erations on optical modes with the Clements [45] and Reck [46] decompositions, respectively.
Each MZI, consisting of an internal phase shift 𝜃 and an external phase shift 𝜑, can perform an
arbitrary 2 × 2 operation on a pair of optical fields.

the mesh, can implement arbitrary matrix-vector operations directly on the optical field.
This is essential for quantum information processing in the photon basis [47, 25, 26], real-
time mode demultiplexing (for instance from a multimode fiber) [48], and reconfigurable
network switches.

Reck and Zeilinger in 1994 [46] showed that any arbitrary unitary operation can be
realized on a set of optical fields through the triangular arrangement of reconfigurable
beamsplitters shown in Figure 2-7a. This kicked off a decades-long effort within the
optical community to realize such a system. However, stabilizing such a system on an
optical benchtop proved to be extremely challenging, and it was not until 2014 that
Carolan et al. [47] realized the first fully reconfigurable mesh on a photonic integrated
circuit.

This landmark demonstration sparked a resurgence of interest in the notion of fully
programmable optics on chip. Within the next few years, there were two more landmark
results that established the importance of programmable integrated optics:

• In 2016, Clements et al. [45] showed that reconfigurable unitary operations could
also be realized in a rectangular network of MZIs as shown in Figure 2-7a. A major
practical impediment to the Reck architecture is that the triangular configuration is
not compact (a significant drawback when chip area is expensive) and that different
paths through the circuit travel through variable numbers of MZIs, and therefore
incur variable loss (deteriorating the fidelity of the unitary realized). The rectangular
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configuration reported by Clements demonstrated a far more scalable and practical
approach to realizing these systems.

• In 2017, Shen and Harris et al. [15] demonstrated the first coherent photonic inte-
grated circuit for matrix-vector products in DNNs. This system, which computed
the linear weighting layers for a deep neural network through passive interference
in optics, demonstrated the potential for photonics to accelerate next-generation
systems for artificial intelligence.

Progress in the field has rapidly advanced since then. Experimental demonstrations of
these circuits have already shown working systems that operate on a few modes, which
have been used to accelerate tasks in quantum simulation [24, 49, 26, 25], mode unscram-
bling [48, 50] and combinatorial optimization [51].

Scaling up the next generation of these systems, however, will require addressing new
challenges in error correction, packaging, algorithms, calibration, and control. In this
thesis, I discuss my work to address some of these questions.
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3
Error correction for programmable photonics

This chapter is adapted from work1 published in ref. [58].

3.1 A manufacturing problem
In the previous chapter, we outlined why there is such massive interest in programmable
integrated photonic systems. The field programmable gate array, or FPGA, enabled the
advent of post-fabrication, reconfigurable digital electronics. Seminal papers by Reck [46],
Clements [45], and Miller [59], which showed how to realize arbitrary linear operations in
optics, introduced the possibility of realizing a similarly reconfigurable “optical FPGA” on
chip.

There is, however, a critical difference between a programmable photonic processor and
an FPGA: photonic systems are analog. Naturally, any practical use of such a system will
require scaling them to hundreds or thousands of modes. State-of-the-art digital ASICs
for machine learning will compute at 8 bits of accuracy; emulating similar accuracies
in photonics, however, will require precise fabrication of tens of thousands of optical
interferometers. This is incredibly challenging to do at scale, especially with volume
manufacturing techniques such as photolithography. Realistically, due to variations in
wafer thickness, etch depth, and myriad other process parameters, the performance of a
photonic component will differ across a chip within some range of variability. In electronic
circuits, this variability is not a problem as these circuits are digital and we can make
use of digital error correction; in a photonic system, however, static component errors
induced by process variation will introduce errors that rapidly add up. The decomposition
[46, 45] algorithms for these circuits assume that all of the components are ideal; thus, any
component errors result in a programming of the wrong operation, rendering the system
useless.

1This work was conducted in close collaboration with Dr. Ryan Hamerly, a visiting scientist from NTT
Research. The ideas developed in this paper, published in Optica, sparked a highly productive research
effort in our group to develop error correction algorithms for programmable optics, leading to two patent
applications [52, 53], many conference talks, and further publications in Physical Review Applied [54, 55],
Nanophotonics [56], and Nature Communications [57].
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Figure 3-1: Simulated variation of the splitting behavior of a directional coupler across a 40x40
mm2 reticle. An ideal splitter is 50-50; there are some local correlations, but across a reticle
the splitting can vary quite significantly. Here, we assume the splitting varies with a standard
deviation 𝜎 = 2.1% and a correlation length of 5 mm. We obtain these results using the
procedure outlined in ref. [65] for simulating layout-dependent correlations in manufacturing.

Component imprecision therefore has serious implications for the future of these sys-
tems. The community was quickly discovering this early in my PhD; for example, beam-
splitter variation as small as 2%, which is a typical wafer-level variance [60], was found
in simulation to degrade accuracy by nearly 50% for a relatively simple image classifier
implemented on a photonic circuit [61]. This is not a problem isolated to neuromorphic
systems; other photonic signal processing architectures are similarly susceptible. For exam-
ple, recirculating lattices of MZIs are being pursued for implementing RF signal processing
in the optical domain [62, 63, 28]. These devices were similarly found to be extremely
sensitive to manufacturing error [64].

Thus, scaling these systems up to commercially relevant sizes will become an increas-
ingly intractable control problem. When we started working on this, a few proposals
existed for confronting this issue with numerical optimization. Some early work focused
on using gradient-free, global optimizers [66, 67, 68, 69], including some work from our
own group [70]. These optimizers, however, converge slowly, and their runtimes rapidly
scale with the number of parameters. Gradient descent can be employed to efficiently
direct this process, as proposed in [71]; unfortunately, there is no native way to compute
these gradients in hardware and thus the method is mainly limited to optimizing simulated
devices.

The most promising optimization approaches employ progressive algorithms making
use of local feedback [72, 73]. Here, the idea is that by using a well-chosen set of optical
input fields, a photonic processor can be programmed, or “self-configured,” to implement
an arbitrary operation by locally optimzing one MZI at a time. This is a neat and elegant
solution to programming a photonic circuit with high accuracy, as it reduces an 2N2-
dimensional optimization problem to a sequence of 2N2 single variable optimizations.
The problem, however, is that this method requires the ability to measure the optical
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power at every point in the chip; i.e., every MZI on chip will require a tap photodiode
with accompanying readout and feedback electronics.

For a mesh network, this resource overhead scales as O(N2), greatly increasing the
number of electrical lines and overall power consumption of the system. As a result, there
have been relatively few experimental demonstrations of such a system [50]. Moreover,
such a procedure will limit the reconfiguration speed of the circuit.

During the early stage of my PhD, we began to think about ways we could correct
component errors in these devices deterministically2. In many optical architectures for
information processing, error correction can become intractable as device errors will add
in quadrature and quickly compound. However, programmable circuits of Mach-Zehnder
interferometers turn out to be quite special among photonic computing architectures–in
particular, they possess certain unique attributes that present an opportunity to mitigate
device errors:

1. It is already known how to obtain a desired unitary operation in these systems de-
terministically assuming ideal components. If a unitary operation is realizable by an
imperfect photonic circuit, it should not require optimization to deduce the required
settings; rather, a small perturbation in the device behavior due to component devi-
ation should translate directly to a small perturbation in the interferometer’s phase
settings to recover the original unitary.

2. A programmable photonic circuit is composed of a discrete set of 2x2 MZIs, which
function effectively as optical “gates.” The self-configuration scheme [74, 59] dis-
cussed earlier cleverly leverages this fact to reduce the task of programming to
optimizing one MZI at a time. An error correction algorithm should also take ad-
vantage of this feature of the architecture–as the scale of these systems grow, we
should still be able to apply corrections gate-by-gate, even if the total number of
hardware parameters grow nonlinearly.

3. The computation is coherent. Most photonic computing architectures are inco-
herent, and thus errors add in quadrature. Coherent architectures for computing,
however, introduce the opportunity to undo errors coherently as they arise in the
circuit.

In this chapter, we develop a local approach that corrects hardware errors one at a
time within each optical gate composing the circuit. Our approach, which was the first
deterministic error correction algorithm for photonic processors, outperformed previous
approaches in several key respects:

1. It is flexible, requiring only a one time device calibration to directly compute the
hardware settings for any given unitary;

2. For sufficiently low hardware errors the computed settings yield the exact unitary
desired;

2I would like to thank Professor David A. B. Miller and Dr. Sunil Pai, both from Stanford University, for
many valuable discussions on correcting errors in these systems.
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Figure 3-2: While we typically model the MZI as an ideal device when developing algorithms
for photonic computation, in practice manufacturing variations 𝛼,𝛽 in the directional couplers
produce errors in the gate operation. The effect of these hardware errors is to left- and right-
multiply each programmable 2 × 2 unitary Tij(𝜃,𝜑) implemented by an MZI by error matrices
𝛽ij ,𝛼ij(𝜑). Applying the standard decomposition for ideal components to these imperfect optical
gates will not produce the correct gate operation.

3. Our approach requires minimal overhead and does not make use of additional in-
terferometers or internal detectors within every device.

Moreover, unlike other algorithms, it is the only one that does not assume any particular
structure to the circuit and can be generalized to any programmable architecture making
use of interferometers. Thus, it is relevant to many architectures being considered for
optical information processing, including feedforward circuits for neuromorphic computing
and recirculating waveguide meshes for RF photonic signal processing.

3.2 Hardware Error Correction
The central idea here is that if we know all of the relevant component parameters, we can
coherently undo their effect on the circuit “locally,” i.e. one MZI at a time. Local error
correction thereofre requires characterization of each phase shifter and passive splitter
in the photonic circuit. The calibration is performed once with the results stored in a
lookup table; any arbitrary function can then be programmed by computing the settings
for an ideal set of MZIs and converting them, one by one, to the corresponding settings
for an imperfect device. In the Supplementary Information of ref. [58], we developed a
protocol to calibrate these errors using detectors only at the circuit outputs. Assuming
these parameters are known, we can then deterministically correct circuit errors.

As discussed in the previous chapter, the fundamental optical unit cell of a pro-
grammable photonic circuit is a 2 × 2 Mach-Zehnder interferometer (MZI) composed
of an external phase shifter on one input, two 50-50 beamsplitters, and an internal phase
shifter on one of the modes between the splitters. This device is an electrically pro-
grammable beamsplitter capable of performing a 2 × 2 unitary operation Tij(𝜃,𝜑) on
optical modes i , j parameterized by the external phase shift 𝜑 and the internal phase shift
𝜃.
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Figure 3-3: Fabrication-induced errors within each MZI can be corrected by applying local
corrections 𝜃 → 𝜃′, 𝜑 → 𝜑′ to the device. We first correct 𝜃 to set the magnitudes of the
elements of Tij equal to T ′

ij . Once the amplitude terms are set correctly, we apply phase
corrections to the input and outputs of the device to correct phase errors between Tij and T ′

ij .

On an integrated photonics platform, the 50-50 splitters can be realized by a direc-
tional coupler or multimode interferometer (MMI); the operation of these splitters can be
described by a 2 × 2 matrix:[︃

cos(𝜋/4 + 𝛼) i sin(𝜋/4 + 𝛼)
i sin(𝜋/4 + 𝛼) cos(𝜋/4 + 𝛼)

]︃
(3.1)

where 𝛼 describes the deviation from an ideal 50-50 splitting behavior. For an ideal splitter
𝛼 = 0, this matrix reduces to:

1√
2

[︃
1 i
i 1

]︃
(3.2)

The overall operation Tij(𝜃,𝜑) performed by a single ideal MZI is therefore:

Tij(𝜃,𝜑) =
1

2

[︃
1 i
i 1

]︃ [︃
e i𝜃 0
0 1

]︃ [︃
1 i
i 1

]︃ [︃
e i𝜑 0
0 1

]︃

= ie i𝜃/2
[︃
e i𝜑 sin(𝜃/2) cos(𝜃/2)
e i𝜑 cos(𝜃/2) − sin(𝜃/2)

]︃

where 𝜃,𝜑 are single-mode phase shifts on the top arm.

Higher dimensional matrix operations can be implemented with this unit cell by ap-
plying the Clements [45] and Reck [46] decompositions (Fig. 2-7). These algorithms
decompose an arbitrary N-dimensional unitary U into a product of N(N − 1)/2 two-
dimensional unitaries computed by interference between nearest-neighbor optical modes,
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followed by phase shifts on the output modes corresponding to a diagonal matrix D:

U = D
∏︁

Tij(𝜃,𝜑) (3.3)

So far, we have spoken in abstract terms of a set of “perfect” photonic components.
Now, however, let’s examine the impact of fabrication error on these systems. If the
MZI has imperfect splitters with errors 𝛼, 𝛽, the operation of the MZI must now be
parameterized with four variables T ′

ij(𝜃,𝜑,𝛼, 𝛽) (Fig. 3-2):

ie i𝜃/2

⎡⎢⎢⎢⎢⎣
e i𝜑(cos(𝛼− 𝛽) sin(𝜃/2) +
i sin(𝛼 + 𝛽) cos(𝜃/2))

cos(𝛼 + 𝛽) cos(𝜃/2) +
i sin(𝛼− 𝛽) sin(𝜃/2)

e i𝜑(cos(𝛼 + 𝛽) cos(𝜃/2) −
i sin(𝛼− 𝛽) sin(𝜃/2))

− cos(𝛼− 𝛽) sin(𝜃/2) +
i sin(𝛼 + 𝛽) cos(𝜃/2)

⎤⎥⎥⎥⎥⎦ (3.4)

=

[︃
cos 𝛽 i sin 𝛽
i sin 𝛽 cos 𝛽

]︃
T̂ (𝜃,𝜑)

[︃
cos𝛼 ie−i𝜑 sin𝛼

ie i𝜑 sin𝛼 cos𝛼

]︃
(3.5)

In the limit 𝛼, 𝛽 → 0, the second term of each entry in the matrix T ′
ij(𝜃,𝜑,𝛼, 𝛽) drops out

and we recover the expected transformation for an ideal device. It should be no surprise
that implementing the usual decomposition on these imperfect devices will not yield the
desired unitary:

D
∏︁

T ′
ij(𝜃,𝜑,𝛼, 𝛽) ̸= D

∏︁
Tij(𝜃,𝜑) (3.6)

Notice, however, that the impact of errors 𝛼 and 𝛽 is to perform coherent rotations of the
optical state relative to the desired programming. If we wanted to correct these errors, one
could in principle program T̂ (𝜃,𝜑) taking these coherent errors into account. To program
into an imperfect circuit a desired unitary U =

∏︀
Tij(𝜃,𝜑), we apply local corrections

𝜃 → 𝜃′,𝜑 → 𝜑′ to each device such that T ′
ij(𝜃

′,𝜑′,𝛼, 𝛽) = Tij(𝜃,𝜑).
Our approach is illustrated in Figure 3-3. We begin by finding 𝜃′ such that the

magnitudes of the entries of T ′
ij(𝜃

′,𝜑′,𝛼, 𝛽) equal those of Tij(𝜃,𝜑). The correction 𝜃 → 𝜃′

can be derived by requiring that the magnitude of the upper left entry of T ′
ij(𝜃

′,𝜑′,𝛼, 𝛽)
equal that of Tij(𝜃,𝜑). For a 2 × 2 unitary matrix U , the unitarity condition UU† = I
implies that setting the magnitudes of one term in both matrices to be equal is sufficient
to set the magnitudes of all terms in the matrices to be equal. This condition produces
an expression relating 𝜃′ to 𝜃:

cos2(𝛼− 𝛽) sin2(𝜃′/2) + sin2(𝛼 + 𝛽) cos2(𝜃′/2) = sin2(𝜃/2) (3.7)

Solving for 𝜃′, we find that:

sin2(𝜃′/2) =
sin2(𝜃/2) − sin2(𝛼 + 𝛽)

cos2(𝛼− 𝛽) − sin2(𝛼 + 𝛽)
(3.8)

𝜃′ = 2 arcsin

⎯⎸⎸⎷ sin2(𝜃/2) − sin2(𝛼 + 𝛽)

cos2(𝛼− 𝛽) − sin2(𝛼 + 𝛽)
(3.9)
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Figure 3-4: The corrections 𝜑′−𝜑, 𝜃−𝜃′, 𝜓1, 𝜓2 applied to an MZI with two 52-48 beamsplitters
(𝛼 = 𝛽 = 0.02). The arrows on the plot indicate which vertical axis each curve corresponds to.

Since 𝛼, 𝛽 are small, the denominator of the expression for 𝜃′ will always be posi-
tive. This expression therefore has a solution only when the numerator is positive, i.e.
sin2(𝜃/2) > sin2(𝛼+ 𝛽), and when the argument in the arcsin function is less than 1, i.e.
sin2 𝜃/2 − sin2(𝛼 + 𝛽) < cos2(𝛼 − 𝛽) − sin2(𝛼 + 𝛽). These conditions yield the range
over which 𝜃 is physically realizable:

2|𝛼 + 𝛽| < 𝜃 < 𝜋 − 2|𝛼− 𝛽| (3.10)

If the matrix decomposition requires 𝜃 outside this range, we can minimize the error by
setting 𝜃′ = 0 (if 𝜃 < 2|𝛼 + 𝛽|) or 𝜃′ = 𝜋 (if 𝜃 > 𝜋 − 2|𝛼− 𝛽|).

Assuming we can physically implement the required value of 𝜃′, the magnitudes of the
elements of T ′

ij(𝜃
′,𝜑′,𝛼, 𝛽) and Tij(𝜃,𝜑) are now the same, but each element of T ′

ij will
have an undesired extraneous phase 𝜉a, 𝜉b, 𝜉c , 𝜉d relative to the corresponding term in Tij

that must be corrected. We can therefore rewrite T ′
ij(𝜃

′,𝜑′,𝛼, 𝛽) as

T ′
ij = ie i𝜃

′/2

[︃
e i𝜑

′
e i𝜉a sin(𝜃/2) e i𝜉b cos(𝜃/2)

e i𝜑
′
e i𝜉c cos(𝜃/2) −e i𝜉d sin(𝜃/2)

]︃
(3.11)

= ie i𝜃
′/2

[︃
e i𝜉b 0
0 e i𝜉d

]︃ [︃
e i(𝜑

′+𝜉a−𝜉b) sin(𝜃/2) cos(𝜃/2)
e i(𝜑

′+𝜉a−𝜉b) cos(𝜃/2) − sin(𝜃/2)

]︃
(3.12)

where the simplification in the second line originates from unitarity requiring that 𝜉a+𝜉d =
𝜉b + 𝜉c . We correct the phase errors in T ′

ij by setting 𝜑′ = 𝜑 + 𝜉b − 𝜉a and by applying
additional phases 𝜓1 = −𝜉b + (𝜃 − 𝜃′)/2, 𝜓2 = −𝜉d + (𝜃 − 𝜃′)/2 to the top and bottom
output modes, respectively. Applying these corrections will set T ′

ij(𝜃
′,𝜑′,𝛼, 𝛽) exactly

equal to Tij(𝜃,𝜑).
Expressions for the phase errors 𝜉a, 𝜉b, 𝜉d can be constructed by setting the complex

arguments of the elements of Tij equal to those of T ′
ij(𝜃

′,𝜑′,𝛼, 𝛽). From this, we find
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Figure 3-5: The procedure for programming a unitary with hardware errors on a 4×4 rectangular
unitary circuit. We first program each MZI to the (𝜃,𝜑) setting obtained with the standard
decomposition in [45]. Each MZI is then converted Tij → T ′

ij to the settings for an imperfect
device one column at a time. At each step we propagate the output phase shifts 𝜓1,𝜓2 forward
in the circuit until the entire network is corrected.

that:

𝜑′ = 𝜑+ arctan

[︃
sin(𝛼− 𝛽)

cos(𝛼 + 𝛽)
tan(𝜃′/2)

]︃
(3.13)

− arctan

[︃
sin(𝛼 + 𝛽)

cos(𝛼− 𝛽)
cot(𝜃′/2)

]︃
(3.14)

𝜓1 = − arctan

[︃
sin(𝛼− 𝛽)

cos(𝛼 + 𝛽)
tan(𝜃′/2)

]︃
+ (𝜃 − 𝜃′)/2 (3.15)

𝜓2 = arctan

[︃
sin(𝛼 + 𝛽)

cos(𝛼− 𝛽)
cot(𝜃′/2)

]︃
+ (𝜃 − 𝜃′)/2 (3.16)

The errors 𝜃− 𝜃′,𝜑′ −𝜑,𝜓1,𝜓2 as a function of 𝜃 for an example MZI with two 52-48
(𝛼 = 𝛽 = 0.02) splitters are shown in Figure 3-4. While the corrections to 𝜃 and 𝜓1 are
small (∼ 0.1 rad), the errors for 𝜑 and 𝜓2 are quite substantial. In particular, for low
device reflectivities (𝜃 ≈ 0), the phase corrections required can exceed 1 rad.

Generally, we cannot apply the auxiliary phases 𝜓1,𝜓2 locally to the device being
corrected, since the output modes do not have phase shifters. In most cases, one of the
two can be incorporated into the external phase shifter setting of an MZI in the subsequent
column. The other phase can be applied by observing that:

Tij(𝜃,𝜑)

[︃
e i𝜓1 0
0 e i𝜓2

]︃
=

[︃
e i𝜓2 0
0 e i𝜓2

]︃
Tij(𝜃,𝜑+ 𝜓1 − 𝜓2) (3.17)

Using this fact, we can propagate the auxiliary phases forward, through all of the columns
of the network, out to the phase shifters D located on the output modes of the circuit.
This procedure, illustrated in Figure 3-5, produces a modified output phase screen D ′ such
that:

U = D
∏︁

Tij(𝜃,𝜑) = D ′∏︁T ′
ij(𝜃

′,𝜑′,𝛼, 𝛽) (3.18)
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Depending on the component imperfections and the required value of 𝜃, we may also
be able to program 𝜃′ such that |T ′

ij(𝜃
′,𝜑′,𝛼, 𝛽)| = |Tij(𝜃,𝜑)| if the condition in equation

(3.10) is satisfied. If every MZI in the circuit satisfies the condition in equation (3.10),
we can recover the exact unitary desired. However, if some MZIs in the circuit cannot
realize the required splitting, that exact unitary is not physically realizable by the device.
In this case, correcting the phases 𝜑′,𝜓1,𝜓2 and setting 𝜃′ as close to the required value
as possible minimizes the gate error ‖Tij − T ′

ij‖.
We can summarize the algorithm for programming of a matrix U as follows:

1. Calibrate all phase shifters and splitter errors 𝛼, 𝛽 and store in lookup table.

2. Calculate the required values for 𝜃,𝜑 assuming ideal components, using the proce-
dure described by Reck [46] or Clements [45].

3. For each device, set 𝜃 → 𝜃′ using the expression in equation (3.9). If 𝜃 < 2|𝛼+ 𝛽|,
set 𝜃′ = 0; if 𝜃 > 𝜋 − 2|𝛼− 𝛽|, set 𝜃′ = 𝜋.

4. Apply phase corrections 𝜑′,𝜓1,𝜓2 as given in equations 3.14-3.16. Propagate 𝜓1,𝜓2

forward to the output phase screen D with the expression in equation (3.17).

3.3 What we’ve learned so far

In the last section, we developed an algorithm that enables high-accuracy (potentially zero
error) matrix computation on photonic hardware. The derivation presented appears fairly
straightforward; however, it masks what is actually a rather surprising finding.

Recall that this is a system of noisy photonic components we are attempting to perform
computation on. In a run-of-the-mill photonic processor, these errors add up in quadrature
and the result will be useless. One would expect that this architecture would be no
different; however, because the entire computation (and the main sources of error) are
coherent, we can coherently undo errors as they arise! Moreover, because the circuit
structure is composed of discrete, optical “gates,” i.e. 2 × 2 MZIs, errors can always be
corrected “locally”, making the problem of error correction far more manageable as circuit
sizes scale up.

We have illustrated this procedure for the example of feedforward unitary circuits,
but the same principles apply for other architectures. Each optical gate within any pro-
grammable circuit can be corrected to the required 2 × 2 unitary operation Tij with the
aforementioned procedure. The expressions provided assume a specific form for the MZI
(Fig. 2-7), but they can be easily modified to apply to other designs. For example, recir-
culating architectures often use the dual-drive tunable basic unit (TBU), which has two
individually controllable phase shifters on the arms of the MZI [75]; the expressions above
can be applied to such an architecture with some simple modifications.
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Figure 3-6: Matrix error 𝜖 before and after correction for 100 random unitaries implemented
on 100 random circuits with varying beamsplitter statistics.

3.4 Hardware Performance

The performance of this algorithm was benchmarked using a custom simulation package
for programmable photonic circuits with fabrication imperfections. This package is writ-
ten in Python, mainly using NumPy [76], but performance-critical sections are compiled
to C using Cython. This package started as a relatively simple script I wrote at the start
of graduate school to help me gain intuition with these circuits. Over the course of the
project, however, it rapidly expanded in complexity to account for myriad practical issues
with these chips, including beamsplitter errors, device losses, variable photodiode respon-
sivities, thermal crosstalk, cross-wafer correlations originating from errors in lithography,
and quantization error from finite DAC resolution.

All of the results in this work were produced using Monte Carlo simulations of photonic
circuits with random component errors. While our original work neglected the role of loss,
in the next section I describe our findings when we account for non-uniform loss through
the chip.

Figure 3-6 shows the matrix error 𝜖 = (
∑︀

ij |Uhardware,ij − Uij |2/N)1/2 for 100 Haar
random unitaries implemented on 100 randomly generated N = 32-mode unitary circuits
with mean beamsplitter transmission 𝜂 = (50 ± 𝜎BS)%. This metric, known as the
Frobenius norm, can be interpreted as an average relative error per entry of the matrix
U . This is particularly relevant for a system implementing a neural network, as it would
correspond to the average relative error per weight.

The beamsplitter errors in these simulations are independently sampled from a Gaus-
sian distribution, although we found that for large N , the distribution shape will not greatly
affect the results. Remarkably, error correction reduces 𝜖 significantly, sometimes by more
than an order of magnitude. This improvement is larger for circuits with small splitting
errors, as they are more likely to satisfy equation (3.10) and program the required 𝜃′ for
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Figure 3-7: Matrix error 𝜖 before and after correction for N = {64, 128, 256} with a beamsplitter
variation 𝜎BS = 2%.

all devices within the circuit. However, even for circuits with large 𝜎BS, where many MZIs
may not be programmable to the required 𝜃, the improvement in 𝜖 is substantial as all
errors in 𝜑,𝜓1,𝜓2 can always be corrected.

In Figure 3-7, we show 𝜖 with and without error correction for circuit sizes N =
{64, 128, 256}. For these simulations, we chose a beamsplitter variation of 𝜎BS = 2%,
which is a typical wafer-level variance [60]. While the improvement in 𝜖 diminishes for
larger N , we still find substantial improvement gained in our approach for up to 256
modes.

Why does the improvement in 𝜖 diminish with larger N? It turns out this is related
to the statistics of unitary circuits; for large unitary circuits most MZIs need to be pro-
grammed to reflectivities close to 𝜃 ≈ 0 [77]. Physically, this can be understood by
considering that for an “average” unitary, inputting light into a single mode will equally
distribute it to all N outputs. For light input into mode 1, the only way to reach output
N is to cross the main diagonal, and so these MZIs need to be programmed close to the
cross (𝜃 = 0) state. As the circuit grows larger, more and more devices in proximity to
the main diagonal will need to be programmed to 𝜃 ≈ 0. Since the minimum 𝜃 realizable
for a device is |𝛼+ 𝛽|, as N increases a larger fraction of devices cannot be programmed
to the required splitting. Even in this case, however, there is always some improvement
in 𝜖, as any phase errors introduced by the components can be corrected.

3.5 Can we correct errors in neuromorphic hardware?
While we have established that our protocol reduces the Frobenius norm of the error, this
tells us very little about how it will work for a realistic application. For neuromorphic
systems, the Frobenius norm corresponds to an average error per model parameter. How-
ever, it is not clear how errors in any given model parameter, or weight, will impact the
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Figure 3-8: Trajectory of light when input into the top-most port of a 64 × 64 circuit pro-
grammed to a Haar random unitary. Note that optical power is equally distributed to all outputs,
requiring the main diagonal to be programmed close to the cross (𝜃 = 0) state.

performance of a realistic photonic processors for neural networks.
In order to better understand this, we applied this approach to simulations of a two-

layer photonic neural network performing image classification. The architecture of the
neural network is similar to that studied in [15, 73, 61], where forward inference is optically
computed through passive interference within a unitary photonic circuit coupled with an
electrical or electro-optic nonlinearity [78].

The initial parameters for the optical neural networks were trained using the Neurophox
package. Images of handwritten digits from the MNIST task are pre-processed with a
Fourier transform and truncated to a

√
N ×

√
N center window for a dimension N unitary

circuit. We assume a fixed amount of optical power is available to the circuit; each input
vector corresponding to an image is normalized to unit length, so that all images are en-
coded into the neural network with the same amount of optical power. This normalization
can be realized optically with a diagonal line of MZIs, as depicted in Figure 3-9d.

The activation function is realized electro-optically with a tap photodiode coupled to
a Mach-Zehnder modulator [78] (Fig. 3-9b). The activation function taps off 10% of the
input power to the photodiode, while the remainder is directed to the modulator. The
photocurrent drives the modulator through a transimpedance amplifier (TIA), resulting in
a nonlinear modulation of the electric field.

The nonlinearity implements the activation function [78]:

f (E ) = (
√
1 − 𝛼)e−i(g |E |2/2+𝜑/2−𝜋/2) cos(g |E |2/2 + 𝜑/2)E (3.19)

where 𝛼 = 0.1 is the fractional power tapped off to the photodiode and g = 𝜋/20 is the
modulator phase induced when 1 mW is incident upon the nonlinearity (prior to the tap).
For typical electro-optic modulator drive voltages of < 8 V [80, 81] and a photodiode
responsivity of 1 A/W [82], the required TIA gain for these parameters is roughly 36
dBΩ. The modulator is biased so that no transmission occurs when E = 0; as shown in
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Figure 3-9: a) The MNIST data set was pre-processed with a Fourier transform and truncated
to a

√
N ×

√
N center window for a N-mode unitary circuit [73]. b) The activation function

architecture as described in [78]. A small fraction 𝛼 of the input signal is tapped off to a photo-
diode driving a Mach-Zehnder modulator. c) The activation function f (E ) for the parameters
used in the simulation. Since the hidden layers operate on electric field amplitudes, we plot the
square root of the optical power in units

√
mW. Technically, f (E ) is non-monotonic for high

optical powers, as the Mach-Zehnder interferometer will produce a cos(|E |2) modulation. How-
ever, the input optical powers in our simulations are chosen to ensure the activation function
operates only in the modReLU-like region. d) The input vectors into the neural network were
normalized to unit length, which can be realized optically with a diagonal line of MZIs.

Figure 3-9c, for optical powers < 20 mW f (E ) approximates a modReLU function [79].
As the network size N increases, the average power within a waveguide drops as

1/N ; for this reason, we assumed the total optical power input into the circuit increased
commensurately to ensure the activation function could still be triggered. The N =
{36, 64} networks were trained with 20 mW of optical power, the N = 144 network was
trained with 40 mW, and the N = 256 network was trained with 60 mW of optical power.
All of the neural networks were trained to minimize the mean squared error between the
L2 normalized output power and the one hot encoding of the correct image.

Using the Neurophox package, we trained two-layer neural networks with up to 256
neurons per layer to recognize low-frequency Fourier features of handwritten digits from
the MNIST task. Figure 3-11 shows the median classification accuracy for 300 randomly
generated circuits as a function of the beamsplitter statistics 𝜂 = (50 ± 𝜎BS)%. The
smaller circuits (N = 36, 64) exhibit roughly 95 − 96% accuracy after training, while the
larger circuits (N = 144, 256) exhibit a slightly higher model accuracy of ∼ 97%. The
larger circuits, however, are less resilient to errors; without error correction classification
accuracy drops to below 90% for all circuit sizes at a splitter variation as low as ∼ 3%.

Hardware error correction extends this cutoff to more than 6%, which is well beyond
modern-day process tolerances [60]. Moreover, without correction classification accuracy
drops significantly at even typical wafer-level variances (2%). However, with error cor-
rection there is almost no drop in accuracy at these variances and less than 1% accuracy
loss for beamsplitter variations as high as 4%. We expect this margin for fabrication error
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Figure 3-10: Architecture of the simulated two-layer optical neural network for the MNIST task.
Matrix-vector products are calculated optically in the photonic circuit, and modReLU-like acti-
vation functions are implemented electro-optically [79, 78]. The output signal is photodetected
and L2 normalized to generate a quasi-probability distribution for the classification.

will prove important as optical neural networks scale up. These results suggest that error
correction in programmable photonics can enable high-accuracy neural networks of up to
hundreds of modes within current-day process tolerances.

3.6 Hardware error correction for photonic signal pro-
cessing

While our analysis has focused on feedforward programmable photonic meshes, our results
can also be applied to recirculating architectures useful in RF and optical signal processing.
These recirculating meshes, which are usually configured in hexagonal or triangular lattices,
enable implementation of finite impulse response (FIR) and infinite impulse response (IIR)
filters by configuring waveguides into asymmetric MZIs and ring resonators, respectively
[28, 63, 62]. Unlike the feedforward architectures, the programming of these structures
usually cannot be determined analytically and must be found through optimization [67,
68, 69]. Since optimization can be time-consuming for complex systems, error correction
can enable optimizing these circuit parameters on idealized models and then porting them
over to hardware without retraining. As an example, we simulated the performance of
an IIR filter functioning as a tunable dispersion compensator (TDC) on a hexagonal
waveguide lattice [63]. TDC modules are of interest for numerous applications, including
compensating chromatic dispersion in optical communication links [83] and enabling high-
dimensional quantum key distribution (QKD) with temporal modes [84].

We implemented the TDC using an architecture similar to the tunable-coupling ring
array described in [85]. Programmable dispersion is achieved by individually tuning the
coupling and resonance of each ring in a chain of 15 resonators coupled serially to one
another. Each ring is implemented with a single MZI (often referred to as the tunable
basic unit, or TBU) in a hexagonal mesh acting as the coupler, while five other TBUs are
programmed to the bar state to implement feedback. For simplicity we do not simulate
routing within the hexagonal mesh, but instead simulate the transfer function of each
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Figure 3-11: Median accuracy for 300 unitary circuits as a function of 𝜎BS with and without
correction for a photonic image classifier for the MNIST task with N = {36, 64, 144, 256}
neurons. Error correction significantly improves the fabrication tolerance of the neural network
to beyond current-day process tolerances, even for systems with hundreds of modes. As the
inset shows, even circuits with 4% splitter error preserve the baseline performance within 1%.

individual filter implemented using TBUs with fabrication imperfections.
The transfer function Ti(𝜔) of a single tunable coupling ring can be derived with

Mason’s gain formula [86, 87]:

Ti(𝜔) =
aloopatopabot(𝜏1𝜏2 + 𝜅1𝜅2)e

i(k(2z1+z2)+𝜃+𝜑) − abot𝜏1𝜏2e
ikz1 + atop𝜅1𝜅2e

i(kz1+𝜃)

aloopatop𝜏1𝜏2e i(k(z1+z2)+𝜃+𝜑) − aloopabot𝜅1𝜅2e i(k(z1+z2)+𝜑) − 1
(3.20)

where k = n(𝜔)𝜔/c , 𝜏1 = asplitter,1 cos(𝜋/4 + 𝛼), 𝜏2 = asplitter,2 cos(𝜋/4 + 𝛽), 𝜅1 =
asplitter,1 sin(𝜋/4 + 𝛼), 𝜅2 = asplitter,2 cos(𝜋/4 + 𝛽), z1 is the interferometer arm length, z2
is the length of the feedback loop, and asplitter,1, asplitter,2, aloop, atop, abot are the amplitude
transmissions of the first and second splitters, the feedback loop, top arm of the tunable
coupler, and bottom arm of the tunable coupler, respectively. (Fig. 3-13).

The transfer function Ti(𝜔) for each ring was individually computed and multiplied
to yield the overall system response T (𝜔) =

∏︀
i Ti(𝜔). From this result we found the

group delay of the system 𝜏(𝜔) = −d/d𝜔[argT (𝜔)]. The group delay dispersion was
calculated with a least squares linear fit to the group delay profile. Using the constrained
optimization by linear approximations (COBYLA) routine in SciPy [88, 89], we trained
the TBU parameters on an idealized model to implement a group delay dispersion of −85
ps/nm over the bandwidth of a 50 GHz ITU channel.

Figure 3-14 shows the group delay 𝜏 profiles for 500 randomly generated TDC modules
implemented using TBUs with 𝜎BS = {2, 4}% before (top) and after (bottom) error
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Figure 3-12: A tunable dispersion compensator (TDC) can be implemented on a recirculating
waveguide mesh with 15 tunable-coupling ring resonators coupled serially to one another.

Figure 3-13: Model for tunable coupling ring. The ring coupling is set by an MZI with errors
𝛼,𝛽 and internal phase 𝜃, and the resonance is set with a phase setting 𝜑. The coupler is
assumed to be lossless and the feedback loop is assumed to have a round-trip transmission a.

correction. Similar to optical neural networks, precise implementation of a TDC requires
accurate phase control throughout the circuit. Fabrication errors introduce spurious phases
at each resonance, which results in significant variation of the dispersion profile for even
slight component errors. As our results show, correcting the parameters of each TBU
locally is sufficient to restore the desired dispersion profile.

While we can correct the coupling and phase parameters for each ring, we cannot
correct for errors in the closed feedback loop, which is implemented by programming each
TBU to the bar state. Any error 𝛼 ̸= 𝛽 will introduce some loss at each TBU programmed
to the bar state, as the bar transmission is reduced to cos2(𝛼− 𝛽). The remainder of the
light is directed into unused couplers in the circuit, effectively incurring loss. This alters
the critical coupling condition, resulting in the slight spread in the corrected dispersion
profile observed in our simulations for 𝜎BS = 4%. Our simulations assume 𝛼, 𝛽 are
independent, Gaussian random variables; in practice, however, 𝛼, 𝛽 for a single device
are strongly correlated [90, 65] and the bar state will be nearly perfect. Therefore, our
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Figure 3-14: After training the mesh parameters to implement a fixed linear group delay dis-
persion on an ideal model, small beamsplitter errors will introduce variations in the implemented
group delay 𝜏 profile. Plotted are the group delay profiles for 500 randomly generated circuits
before and after correction. Correcting the settings of each TBU restores the desired perfor-
mance, eliminating the need to retrain on the hardware. Also displayed is the distribution of the
group delay dispersion before and after correction.

simulations likely overestimate the loss incurred at each TBU programmed to the bar
state.

3.7 Modeling hardware errors from insertion loss

The intrepid experimentalist will notice that through this entire discussion, we have ignored
the effect of device loss. Device loss is not inherently an obstacle for the work we have
done so far; suppose that the photonic chip exhibits a uniform loss c through all paths of
the mesh. If this were the case, c is a global constant we can factorize out of the matrix
and everything we discuss above still applies.

In practice, the loss of each component in the chip forms a distribution that results in
interfering paths having slightly different transmissivities, resulting in the circuit’s transfer
matrix being non-unitary. This constitutes an additional source of error we do not consider;
in this section, we reproduce our earlier results taking into account variable device loss.

For feedforward circuits, loss modeling requires a slight correction to the error metric
in equation (3.22). Two matrices U and cU , where c is a scalar constant 0 < c < 1, are
identical from the perspective of hardware performance, but have a Frobenius distance of
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1 − c . We correct for this by modifying equation (3.22) as follows:

𝜖 =
1√
N

min
c∈[0,1]

⎡⎢⎣
⎛⎝∑︁

ij

|Uhardware,ij − cUij |2
⎞⎠1/2

⎤⎥⎦ (3.21)

This expression returns 𝜖 = 0 for two matrices (U , cU). For two unitary matrices
(U ,Uhardware,ij), this expression is minimized at c = 1 and reproduces equation (3.22).
In other cases, the error will be minimized at a value c corresponding roughly to the
average transmission through all paths in the circuit.

We now require a model for the loss within a programmable circuit. Phase shifters in
the SOI platform have sufficiently improved to induce no excess insertion loss beyond the
waveguide propagation loss; this has been observed for semimetal (TiN) heaters suspended
over the waveguide [91], where the TiN is placed sufficiently distant from the waveguide to
not interact with the optical mode, and also recently for nano-optical electromechanical
(NOEM) phase shifters [92]. We can therefore model the insertion loss of each phase
shifter as the waveguide propagation loss and the variable optical loss as originating from
the wafer-scale distribution of waveguide loss. For the phase shifters, we assume a 400
um long actuation region.

Our simulations assume three possible loss distributions:

• A “conservative” loss distribution based on [38], where efficient thermo-optic tuning
is realized by driving a current directly into the waveguide to induce Joule heating.
The authors characterized a wafer scale loss distribution of 0.23 ± 0.13 dB per
heater. This is a relatively high loss per phase shifter, as dopants are introduced
directly into the waveguide and interact with the optical mode. We choose an
exponentially modified Gaussian distribution as it better fits the histogram shown
in Figure 3 of [38].

• A “typical” loss distribution assuming a titanium nitride (TiN) heater suspended
over the waveguide. The TiN can be placed sufficiently distant from the waveguide
to not interact with the optical mode, as described in [91]. These devices can be
optimized to be as efficient as those in [38], but the loss per device will be limited by
the waveguide propagation loss. For waveguide loss, we use the wafer-level statistics
described in [93] for a ridge (fully-etched) waveguide (2.1 ± 0.25 dB/cm). Assuming
a 400 um long thermal tuner, the loss per heater is 0.084 ± 0.01 dB. We note this
is a conservative estimate of the loss variation for our simulations, as the data in
[93] is reported over the wafer-scale, not the die-scale. For these simulations, we
assume the distribution to be Gaussian.

• A “state-of-the-art” loss distribution based on the improved waveguide loss and
uniformity obtained in [93] by H2 thermal annealing the waveguides. We assume
the circuit uses rib waveguides, which exhibit a reduced loss of 0.1 ± 0.04 dB/cm.
This corresponds to a thermal tuner loss of 0.004 ± 0.0016 dB.

For the directional coupler, we assume the loss to originate from waveguide propa-
gation. Assuming a propagation length of 100 um to ensure the waveguide bends are
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adiabatic, the loss per coupler would be 0.021 ± 0.0025 dB for the conservative and
typical distributions, and 0.001 ± 0.0004 dB for the state-of-the-art.

Figure 3-15 shows the matrix error 𝜖 before and after correction for circuits with variable
optical loss. For all loss distributions, we find that hardware error correction improves 𝜖,
and the state-of-the-art reproduces closely the results presented earlier for unitary circuits.
However, typical loss distributions exhibit a reduced benefit to 𝜖 from error correction, and
a more significant penalty is observed for the conservative distribution. We attribute this
drop in performance to non-unitary (loss-induced) errors that cannot be corrected for
by adjusting the parameters of each MZI. To confirm this, we attempted to numerically
optimize each MZI’s phase shifter settings after applying hardware error correction, but
found only marginal improvements in 𝜖 of less than 1%.

Upon first look, this data would suggest that error correction is not useful for any
realistic device, as the improvement in 𝜖 is quite small. However, as we noted before, 𝜖
is an abstract metric of “error.” To truly understand the impact of non-unitary errors, we
need to benchmark on a useful application, such as the optical neural network studied
earlier. The results of these simulations are shown in Figure 3-16; remarkably, the neural
network performance for the typical and state-of-the-art distributions are indistinguishable
from those for unitary circuits. Moreover, circuits drawn from the conservative distribution
perform nearly as well following error correction. These circuits are slightly less robust
to error, but can still preserve over 90% accuracy when 𝜎BS = 5%, which is well above
typical foundry tolerances.

Finally, for completeness, we repeated our simulations for a tunable dispersion compen-
sator (TDC) implemented in a recirculating mesh. These results are shown in Figure 3-17,
and the typical and state-of-the-art distributions match well with the lossless results pre-
sented earlier. For the conservative distribution, there still remains significant variation
in the group delay profile after correction; however, as the histogram shows, optical loss
appears to introduce only a static group delay and does not affect the group delay disper-
sion. This is likely due to the changes in resonator coupling induced by device loss, and
is particularly significant for the conservative case, where an average of 0.23 dB insertion
loss per phase shifter would imply an additional ∼1 dB loss in the feedback loop. However,
even for this case, the error in the group delay dispersion is greatly reduced.

Our results suggest that despite the apparent increase in 𝜖 due to optical loss, the
benefits of error correction for optical neural networks are nearly unaffected. Interestingly,
it implies that “coherent” errors, such as those introduced by imperfect beamsplitters,
are more likely to cause problems for classification tasks than “incoherent” errors. This
suggests that hardware error correction can greatly improve the performance of both
feedforward and recirculating circuits, even for devices with relatively high optical losses.
As fabrication processes improve, the effect of these losses on circuit performance will
diminish further. Moreover, it has recently been shown that arbitrary feedforward circuits
can be programmed using MZIs that omit the external phase shifter 𝜑 and instead program
both internal arms of the interferometer [94]. This effectively halves the circuit depth and
would further reduce the impact of device losses on circuit error.
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Figure 3-15: a) Matrix error 𝜖 for 100 random unitaries implemented on 100 random circuits
for N = 32 assuming different loss distributions. The typical and state-of-the-art distributions
overlap very closely. b) Matrix error 𝜖 as a function of N for 𝜎BS = 2% and different loss
distributions.
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Figure 3-16: MNIST classification accuracy for a two layer optical neural network with a) 36; b) 64; c) 144; and d) 256 modes assuming
variable optical loss. The results for a unitary circuit presented earlier are plotted for comparison. The typical (orange) and state-of-the-art
(red) results overlap very closely with the results for unitary circuits.
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Figure 3-17: Simulations of a tunable dispersion compensator (TDC) implemented on a recirculating waveguide mesh assuming state-of-
the-art, typical, and conservative device losses. The top plots show the group delay profile implemented before and after correction, while
the bottom histograms show the group delay dispersion. For all loss distributions hardware error correction obtains the desired group delay
dispersion, albeit with some additional spread introduced by the loss within the devices. While the group delay profiles for circuits drawn from
the conservative distribution appear to show little effect from error correction, it still recovers the required group delay dispersion with high
accuracy.
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3.8 Scaling to larger circuits

This chapter has presented a local error correction algorithm for programmable photonic
circuits and, through Monte Carlo simulations of hardware, demonstrated that it greatly
improves the accuracy of these systems under realistic conditions of manufacturing error.

Monte Carlo simulations, however, are generally unsatisfying–we can empirically esti-
mate how our approach scales, but it doesn’t lend us any insight into what the ultimate
limits of our approach are. Claiming a true improvement over existing devices requires
some quantitative analysis of the system; to this end, near the latter stages of the project,
we began developing analytical expressions for error scaling in programmable photonics.

We start with the Frobenius norm 𝜖, which is how we benchmarked matrix error. The
hardware error 𝜖 between a desired unitary matrix U and the implemented matrix Uhardware
can be quantified by the Frobenius norm:

𝜖 =
1√
N

⎛⎝∑︁
ij

|Uhardware,ij − Uij |2
⎞⎠1/2

(3.22)

Unitary circuits decompose arbitrary matrices into a product of unitary matrices Tij :

U = D
∏︁
ij

Tij(𝜃,𝜑,𝛼, 𝛽) (3.23)

Let’s isolate the contribution of a single imperfect beamsplitter in the circuit. The matrix
error induced by a single beamsplitter error 𝛼 can be computed as:

𝜖 =
1√
N

⎛⎝∑︁
ij

|Tij(𝜃,𝜑,𝛼 = 0, 𝛽 = 0) − Tij(𝜃,𝜑,𝛼, 𝛽 = 0)|2
⎞⎠1/2

(3.24)

The Frobenius norm is unitarily invariant, which originates from the cylic property of the
trace; thus, only the unitary matrix corresponding to the beamsplitter error needs to be
considered in the calculation of 𝜖:

𝜖2(𝛼) =
1

N

∑︁
ij

|H1,ij(𝜑,𝛼) − H1,ij(𝜑, 0)|2 (3.25)

=
1

N

∑︁
ij

Tr
[︁
(H1,ij(𝜑,𝛼) − H1,ij(𝜑, 0))

†(H1,ij(𝜑,𝛼) − H1,ij(𝜑, 0))
]︁

(3.26)

=
1

N
Tr
[︁
2I − H1,ij(𝜑,𝛼)

†H1,ij(𝜑, 0) − H1,ij(𝜑, 0)
†H1,ij(𝜑,𝛼)

]︁
(3.27)

=
1

N

(︁
2N − 2Re

[︁
Tr
[︁
H1,ij(𝜑,𝛼)

†H1,ij(𝜑, 0)
]︁]︁)︁

(3.28)

=
1

N
(2N − 2 (2 cos𝛼 + N − 2)) (3.29)

=
4

N
(1 − cos𝛼) ≈ 2𝛼2

N
(3.30)
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Figure 3-18: Equations (3.33) and (3.49) for the uncorrected and corrected beamsplitter errors
as a function of circuit size N. The scatter plot shows the median error for 12 simulations,
showing excellent agreement with the derived expressions.

Repeating this calculation for 𝛽 yields the same result.
In a unitary circuit with N(N − 1)/2 interferometers, the average error is therefore:

⟨𝜖⟩ =
√︃
N(N − 1)

2
(⟨𝜖2(𝛼)⟩ + ⟨𝜖2(𝛽)⟩) (3.31)

=
√︁
(N − 1) (⟨𝛼2⟩ + ⟨𝛽2⟩) (3.32)

=
√︁
2 (N − 1)𝜎BS (3.33)

Figure 3-18 shows the expression in Equation (3.33) plotted against simulation results;
they show excellent agreement with the derived expression.

If we can correct all errors in 𝜃, then 𝜖corrected → 0. We can therefore estimate the
expected 𝜖corrected by computing the fraction of MZIs that cannot be programmed to the
required splitting value, i.e. the condition in equation (3.10).

Consider a device for which we can correct 𝜑,𝜓1,𝜓2, but are unable to correct 𝜃.
Any unitary U can be decomposed into a product of matrices U = D

∏︀
Tij , where D is

diagonal and Tij is a N × N block matrix with non-trivial entries:[︃
e i𝜓1 0
0 e i𝜓2

]︃ [︃
sin(𝜃/2) cos(𝜃/2)
cos(𝜃/2) − sin(𝜃/2)

]︃ [︃
e i𝜑 0
0 1

]︃
(3.34)

An error 𝜃 → 𝜃 +Δ produces a contribution to 𝜖corrected of:

𝜖2(Δ) =
1

N
(2N − 2(2 cos(Δ/2) + N − 2)) (3.35)
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Figure 3-19: The probability density function of the internal phase shifter setting 𝜃 for N =
{32, 64, 128}. As N increases, ⟨𝜃⟩ is further biased towards 0.

=
8

N
sin2(Δ/4) ≈ Δ2

2N
(3.36)

On average, given 𝜃 cannot be realized, ⟨Δ2⟩ = 2(⟨𝛼2⟩ + ⟨𝛽2⟩) = 4𝜎2
BS and the error

per device will be ⟨𝜖2(Δ)⟩ = 2𝜎2
BS/N . The total error for the circuit is therefore:

⟨𝜖corrected⟩ =
√︁
(N − 1)𝜎2

BSP(𝜃 < 2|𝛼 + 𝛽|) (3.37)

where P(𝜃 < 2|𝛼 + 𝛽|) is the probability that a device in the circuit needs to be pro-
grammed to a splitting that cannot be realized.

The distribution of internal phase shifter settings 𝜃 for a unitary circuit can be deter-
mined from the Haar measure. For a given MZI, ref. [77] shows that:

pn,i(𝜃) = (n − i) sin(𝜃/2) cos2(n−i)−1(𝜃/2) (3.38)

where n ∈ [2,N], i ∈ [1,N − n + 1] are indices denoting the position of the MZI in the
network (see [77] for the mapping). The distribution of 𝜃 over the entire circuit can
therefore be written as (Fig. 3-19):

p(𝜃) =
N−1∑︁
k=1

2(N − k)

N(N − 1)
k sin(𝜃/2) cos2k−1(𝜃/2) (3.39)

Integrating this expression yields the fraction of beamsplitters with a required splitting
below 𝜉:

P(𝜃 < 𝜉) =
N−1∑︁
k=1

2(N − k)

N(N − 1)

∫︁ 𝜉

0
k sin(𝜃/2) cos2k−1(𝜃/2) d𝜃 (3.40)
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Figure 3-20: The probability an MZI must be programmed to a splitting 𝜃 < 𝜉, 𝜃 > 𝜋 − 𝜉 for
N = {32, 64, 128}. P(𝜃 > 𝜋 − 𝜉) is orders of magnitude smaller than P(𝜃 < 𝜉); thus, we can
neglect it when computing the expected corrected hardware error.

=
N−1∑︁
k=1

2(N − k)

N(N − 1)

(︁
1 − cos2k(𝜉/2)

)︁
(3.41)

=
N + 1

N − 1
−

4
(︁
N + cot2 (𝜉/2)

(︁
cos2N (𝜉/2) − 1

)︁)︁
N(N − 1)(1 − cos 𝜉)

(3.42)

For small device errors, equation (3.41) can be Taylor expanded to:

N−1∑︁
k=1

2(N − k)

N(N − 1)

(︃
k𝜉2

4

)︃
=

N + 1

12
𝜉2 =

2(N + 1)

3
𝜎2
BS (3.43)

On the other hand, the probability that 𝜃 > 𝜋 − 2|𝛼− 𝛽| is:

P(𝜃 > 𝜋 − 2|𝛼− 𝛽|) =
N−1∑︁
k=1

2(N − k)

N(N − 1)

∫︁ 𝜋

𝜋−2|𝛼−𝛽|
k sin(𝜃/2) cos2k−1(𝜃/2) d𝜃 (3.44)

=
N−1∑︁
k=1

2(N − k)

N(N − 1)
cos2k

(︂
𝜋

2
− |𝛼− 𝛽|

)︂
(3.45)

≈
N−1∑︁
k=1

2(N − k)

N(N − 1)
2k𝜎2k

BS ≈ 4𝜎2
BS
N

(3.46)

For moderately large N , this quantity is order of magnitudes smaller than P(𝜃 < 2|𝛼+𝛽|);
we can therefore disregard it when estimating the average corrected error (Fig. 3-20).
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Figure 3-21: ⟨𝜖⟩, ⟨𝜖corrected⟩ as a function of circuit size N for 𝜎BS = {1.2, 2, 4}%.

The average corrected error is therefore:

⟨𝜖corrected⟩ =
√︁
(N − 1)𝜎2

BSP(𝜃 < 2|𝛼 + 𝛽|) (3.47)

=

⎯⎸⎸⎷(N − 1)𝜎2
BS

(︃
2(N + 1)

3
𝜎2
BS

)︃
(3.48)

= 𝜎2
BS

√︃
2(N2 − 1)

3
(3.49)

This expression is plotted in Figure 3-18 and also shows excellent agreement with simu-
lation results.

We find that error correction effectively reduces the hardware error from 𝜖 to ≈
(1/

√
6)𝜖2. The expected error improvement is:

⟨𝜖⟩
⟨𝜖corrected⟩

≈
√
3

𝜎BS
√
N + 1

(3.50)

⟨𝜖⟩ and ⟨𝜖corrected⟩ as a function of N are plotted in Figure 3-21. We consider 𝜎BS =
1.2%, which is the state-of-the-art reported in [60], as well as more relaxed tolerances
𝜎BS = {2, 4}%. For 𝜎BS as high as 4%, error correction produces at least a factor of
two (and often more) improvement in the error for circuits as large as N = 500. We
therefore expect our approach to have wide applicability in the near term as the size of
programmable photonic circuits scale up.
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Figure 3-22: The relative error contributions from beamsplitter error, thermal drift, and quan-
tization error as a function of circuit size N. If the component errors are left uncorrected, then
even small beamsplitter variations produce errors significantly larger than those produced by
dynamic effects. Hardware error correction suppresses these component errors to a point where
dynamic effects begin to play an important role, particularly if the DAC resolution is low.

3.9 What about other types of errors?

Our analysis so far has considered beamsplitter imperfections and loss. There are other
practical errors, however, that we must contend with when using programmable photonics
for signal processing. In this section, we consider some of these other sources of error; we
find that, in practice, they are far smaller sources of error than beamsplitter variation.

There can also be errors in the phase shifter settings; however, the primary source of
these errors is a static error originating from microscopic changes in waveguide geometry
between the interferometer arms [90]. This static error is calibrated out in the first step
of the characterization protocol.

This calibration cannot account for dynamic errors, however. Potential sources of
dynamic phase errors include thermal drift, thermal crosstalk between phase shifters, and
quantization error. In this section, we show that the contribution of these effects to the
hardware error is significantly smaller than the static errors considered earlier.

To start, we find that any error Δ induced in a single phase setting by these effects
can be computed to be:

𝜖2(Δ) =
1

N

(︁
2N − 2Re

[︁
Tr
[︁
H2,ij(𝜃 +Δ, 0)†H2,ij(𝜃, 0)

]︁]︁)︁
(3.51)

=
1

N
(2N − 2 (cosΔ + N − 1)) (3.52)

=
1

N
(2 − 2 cosΔ) (3.53)
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≈ Δ2

N
(3.54)

We now consider the error induced by each of these effects.

• Thermal drift: Typical thermo-electric cooling (TEC) systems can maintain chip
temperature stabilities better than < 0.01∘ C [95]. The thermo-optic coefficient
dn/dT of silicon is 1.8 × 10−4 K−1 [96]; for an L = 200 𝜇m long phase shifter, a
temperature gradient of < 0.01∘ C induces a phase error of 2𝜋(dn/dT )L(ΔT )/𝜆 ≈
1.5 × 10−3 at 𝜆 = 1550 nm, which is an order of magnitude smaller than the
expected beamsplitter error.

• Thermal crosstalk: Thermal crosstalk is largely deterministic and dominated by
the nearest-neighbor crosstalk, which can be accounted for in the phase shifter char-
acterization. Additionally, crosstalk can be suppressed by spacing interferometers
sufficiently apart on the chip [38]; a spacing of 135 𝜇m, for instance, has been mea-
sured to generate a crosstalk with the neighboring MZI of less than 0.02 rad/rad
[91]. Since thermal crosstalk decays with increasing separation, we expect with
careful design this effect should not dominate hardware error.

• Quantization error: Quantization error originates from the digital-to-analog con-
verters (DACs) used to program voltages into the phase shifters. Consider an N-bit
DAC whose 2N codewords range from zero voltage to the voltage V2𝜋 required for
a 2𝜋 phase shift. Programming the M-th (0 ≤ M ≤ 2N −1) codeword will produce
a voltage sampled uniformly over the distribution:

VM =
V2𝜋

2N

(︂
M +

1

2

)︂
± V2𝜋

2N+1⏟  ⏞  
N bits

(3.55)

In a thermo-optic phase shifter, relative phase is a function of the voltage squared;
the phase setting for the M-th codeword is therefore:

𝜑M =
2𝜋

22N

(︂
M +

1

2
± 1

2

)︂2

(3.56)

≈ 2𝜋

22N

(︂
M +

1

2

)︂2

± 2𝜋

22N

(︂
M +

1

2

)︂
(3.57)

The uncertainty in 𝜑 is maximum at M = 2N − 1, where the phase setting is:

𝜑 ≈ 2𝜋 ± 2𝜋

2N⏟ ⏞ 
N−1 bits

(3.58)

which is one fewer bit of accuracy than for the voltage setting.
The square-law dependence of phase on voltage therefore results in an N-bit DAC
setting the phase to roughly N − 1 bits of accuracy. A 12-bit DAC will suppress
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Figure 3-23: Wavelength vs. cross coupling for the optimally tolerant directional coupler design
reported in [60].

worst-case quantization error per phase shifter to ≈ 9 × 10−4, and 16 bits are
sufficient to suppress error to below 6 × 10−5.

In Figure 3-22 we plot the relative error contributions of these effects compared to
static beamsplitter error. These estimates suggest that uncorrected component impre-
cision dominates the hardware error in programmable photonic circuits. However, once
component errors are corrected, dynamic effects play a more significant role in the total
hardware error. Accounting for these errors, now that we can resolve static hardware
errors, would be an interesting area of future research.

3.10 Improving the bandwidth of photonic signal pro-
cessing

A key advantage of optics for signal processing is its inherent parallelism. For instance
photonic components, which can exhibit broadband performance over tens of nanometers
in wavelength, correspond to intrinsic bandwidths of tens of terahertz. In comparison,
digital signal processors struggle to reach clock rates exceeding a few gigahertz, due
to the high insertion losses in these frequencies and the immense energy consumption
required to charge and discharge a transmission line so quickly. Consequently, it would
be a great advantage to have a photonic signal processor parallel processing data across
many wavelength channels simultaneously. A typical digital ASIC for machine learning
can reach throughputs of hundreds of TOPS (tera-operations per second); a comparable
photonic system, multiplexing across the hundred wavelengths in the DWDM (dense
wavelength-division multiplexing) standard, could reach throughputs of tens of petaops
per second. The issue, however, is that in photonic circuits even slight differences in
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Figure 3-24: Average circuit error as a function of wavelength for N = {64, 128, 256} using
the optimal directional coupler design in [60].

component behavior, such as wavelength dependence, can produce significant disparities
in performance across wavelength channels. This problem is particularly acute for the
directional couplers that make up the 2 × 2 splitters in these circuits, which are strongly
wavelength dependent.

We found that the 𝜖 → 𝜖2 gain of error correction greatly improves the optical band-
width of these systems. Since directional couplers are highly wavelength sensitive (Fig-
ure 3-23), dense wavelength-division multiplexing (DWDM) requires re-fabricating the
same circuit with components optimized at each wavelength channel. Our approach,
however, enables the use of the same hardware across a wide wavelength range. In Fig-
ure 3-24 we show the expected hardware errors for large circuits across a 100 nm bandwidth
using the optimal splitter (𝜎BS = 1.2%) design in [60]. We find that the corrected error
for an N = 256 circuit across a 60 nm bandwidth (1520-1580 nm) will be lower than
the uncorrected error at the design wavelength 𝜆 = 1550 nm. Even lower errors could
be achieved using multimode interference (MMI) couplers; these devices have large band-
widths but often suffer from static splitting imbalances [97], i.e., 𝛼, 𝛽 are invariant to
wavelength, but ⟨𝛼⟩, ⟨𝛽⟩ ≠ 0. A circuit with large-bandwidth MMI couplers can thus use
error correction to achieve a large instantaneous bandwidth, for instance to compute over
many parallel wavelength channels.

3.11 Can this scale?
The results in Figure 3-21 suggest a fundamental error bound achievable with local correc-
tion for unitary circuits. Our approach yields comparable results to those achieved with
self-configuration procedures [74, 73] but does not require a specific structure for the
circuit or photodiodes within each device. If the condition in equation (3.10) is satisfied,
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Figure 3-25: Alternate MZI unit cells with superior error scaling. (a), which incorporates
an extra phase shifter, can guarantee zero error for splitting errors as high as 70-30. (b) and
(c), which incorporate an additional 50-50 splitter and waveguide crossing, respectively, realize
“asymptotic fault tolerance,” where the error diminishes with increasing circuit size N.

local correction obtains 𝜖corrected = 0 in O(1) time. If this condition is not satisfied, we
empirically found that it is sometimes possible to achieve a larger reduction in error with
a global optimization approach, for instance with gradient descent [66, 71].

The problem is that these approaches, which require photodiodes within each de-
vice or output measurements whose number scale nonlinearly with the number of modes,
become increasingly inaccessible experimentally as N scales up. For example, in situ back-
propagation is quite challenging to realize on these photonic meshes with high accuracy
and requires internal photodiodes/TIAs/ADCs at every MZI. Nonlinear optimization al-
gorithms have even worse scaling behavior. Optimizing on a matrix error, for instance,
requires N measurements per iteration to reconstruct the matrix, and most nonlinear op-
timization routines then require at minimum N2 function evaluations per iteration. This
means that optimization without internal detectors scales as O(N3) measurements per
iteration. Some methods, such as Powell’s methods, can have scaling as poor as O(N5),
since each line search can require up to an additional N2 function evaluations. Certain
heuristic approaches, such as the Nelder-Mead method, do require only a few measure-
ments per iteration. However, Nelder-Mead is believed to be inefficient for large numbers
of parameters, is sensitive to the initial simplex, and has no guarantee of convergence.
The advantage of local correction is that it requires minimal overhead and can guarantee
a minimum error given certain guarantees on the component performance, making it ideal
for standardizing performance across large numbers of chips.

Also, this error bound applies only to feedforward, unitary circuits with no redundant
devices. 𝜖 lower than this bound can be achieved by incorporating additional, redundant
MZIs; for instance, one can implement “perfect” optical gates by incorporating an addi-
tional phase shifter into the MZI, as shown in Figure 3-25a. This device can be trained
with optimization to implement any desired unitary Tij(𝜃,𝜑) perfectly [98, 99]. The er-
ror correction formalism enables calculation of these settings analytically. One of the two
constituent splitters is a passive component with error 𝛽, while the other splitter is an MZI
that implements a tunable error 𝛼(𝜃𝛼). Any desired 2×2 unitary with a required splitting
𝜃 can then be implemented by setting 𝜃𝛼 such that 2|𝛼(𝜃𝛼) + 𝛽| < 𝜃 < 2|𝛼(𝜃𝛼)− 𝛽| and
correcting the resultant phase errors. For recirculating meshes the phase shifter settings
are not constrained by the Haar measure, and so the benefit gained from error correction
is not expected to diminish with increasing N . Error correction can play an important role
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in scaling up the size of these circuits as well.
We do not necessarily even require redundant active components. In later work [57]

we found that simple changes to the MZI unit cell, such as adding an extra 50-50 splitter
on the input (Fig. 3-25b) or a waveguide crossing (Fig. 3-25c), produced an error scaling
that decreased with N . In other words, as N → ∞, the error 𝜖corrected → 0. This surprising
find, which we termed asymptotic fault tolerance, resolved the scaling issues we unearthed
in this work.

3.12 Conclusion
In conclusion, we have presented a protocol to correct for hardware errors in programmable
photonic circuits. Unlike optimization-based approaches, our protocol utilizes a one-time
calibration procedure to flexibly implement any desired functionality up to the limits of the
hardware. We find that applying our approach to key application areas of programmable
photonics, such as optical neural networks and programmable coupled-ring systems, en-
ables resilience to fabrication errors well beyond modern-day process tolerances. Error
correction also greatly reduces the overhead for programmable photonics that require op-
timization to deduce the hardware settings, as it eliminates the need to retrain for each
individual set of hardware with unknown fabrication errors. Current process tolerances
suggest that our approach enables improved functionality for systems of up to hundreds
of modes, providing a new avenue for scaling up programmable photonics.
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4
Alignment-free photonic interconnects

This chapter is adapted from work1 reported in ref. [100].

4.1 Introduction
An early motivation for integrated photonics was the high cost of packaging. Early pho-
tonic systems comprised multiple discrete optical components co-packaged together; in-
tegrating as many of these components together onto a single chip would greatly reduce
the cost per unit to the end user, improving scalability and adoption [101].

Today, the cost of integrated photonic systems is still dominated by the cost of the
photonic packaging. Much of this originates from the need to align optical fibers to the
chip for external input/output (I/O) [101]. As anyone who has worked with photonic chips
in the lab will know, fiber coupling in and out of these devices is a slow, finicky process,
requiring careful alignment to sub-micron accuracy. This is an entirely different paradigm
from electronics packaging, which requires much more relaxed alignment tolerances of
±10 𝜇m that can be assembled by high-volume, automated pick-and-place tools capable
of packaging hundreds of thousands of components per hour [101]. Optical alignment is
far slower, requiring specialized, high-precision tools with far lower throughputs2.

Moreover, during my PhD, a new set of trends emerged in the photonics community
that made the packaging problem even more urgent:

• Hybrid and heterogeneous integration: While the goal of integrating all pho-
tonic components on a single chip continues to be pursued, it is becoming in-
creasingly apparent that there is no photonic platform that can meet all possible
requirements. Silicon photonics is the state-of-the-art for volume manufacturing,
high-density integration, and compatibility with CMOS electronics. It however, lacks

1I thank Dr. Carlos Errando Herranz, Dr. Mohamed ElKabbash, Dr. Genevieve Clark, and Dr. Alexander
Sludds for useful discussions.

2This problem is acutely felt in the photonics industry today, with major industry players frequently
announcing new technologies for photonic coupling. For example, a few months before this thesis was
written, in late 2022, Intel demoed live at their Innovation Day a new pluggable connector for interfacing
fiber directly to bare die [102].
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easy integration of light sources and a second-order nonlinearity (useful for Pockels
modulation and nonlinear optics). While there has been a great deal of interest in
academia on new platforms, such as lithium niobate, they lack the inherent scal-
ability of silicon photonics, both in terms of manufacturability and the ability to
densely integrate components.

The solution the community has converged upon is integrating photonic components
from multiple material platforms together into a single chip. Examples abound in
the literature–for instance, integrating a light source fabricated in indium phosphide
onto a silicon photonic chip [103], coupling an external laser into a silicon nitride
PIC [104], integrating diamond single photon sources onto an aluminum nitride PIC
[105], or wafer bonding a lithium niobate film onto a silicon photonic chip [106].

• Growing channel counts: Nearly all commercial silicon products today are on the
order of a few optical channels. However, future information processing systems in
photonics could require the ability to interface tens to hundreds of optical chan-
nels. Scalable, alignment-tolerant photonic interfaces are critical to realizing such
systems.

• Increasing demands on performance: As the depth of photonic circuits increase,
coupling light in and out of these systems will have more stringent requirements on
insertion loss, bandwidth, and alignment tolerance. A photonic coupler that is
theoretically rated for no insertion loss is not useful if it cannot be feasibly aligned
to in a scalable fashion.

As a result, progress in scaling photonic systems has been held back by a lack of reliable
and easy-to-align photonic interconnects between components at the inter-chip and intra-
chip levels. We confront this issue on a daily basis in our group, which led us to begin
working on new approaches for optical interconnects.

The desired attributes in optical interconnects are:

• Single mode propagation: single mode systems are often far simpler to control
and design for than multimode devices.

• Low loss: Insertion loss is critical for scaling to large circuit depths and especially
when heterogeneously integrating multiple photonic platforms together.

• Ease of manufacturing: Scalable packaging will require compatibility with existing
high-volume assembly tools.

• Compatibility with high-density electrical interconnects: Photonic systems
will not exist in isolation, but will need to easily interface to CMOS electronic
systems.

Tapered adiabatic couplers [107, 108, 109] are a common choice for interfacing to waveg-
uides on a photonic integrated circuit (PIC), but at the expense of high demands on
nanofabrication, wavelength-scale and mostly manual alignment, and difficult scaling. Al-
ternative approaches have been proposed, including photonic “wirebonds” that connect
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PICs through flexible polymer waveguides [110, 111, 112], integrated optical microlenses
[113, 114], pitch-reducing interposers and fiber arrays [115, 116], and bulk optical com-
ponents such as parabolic reflectors microfabricated into polymer films [117, 118, 119].
Small numbers of PICs can be also be connected by conventional fiber with edge coupling
[120] or grating coupling [121, 122], but scaling to tens of channels becomes extremely
challenging.

In this chapter, we introduce a photonic interconnect technology that is largely insen-
sitive to misalignment. Our approach relies on the interaction between two waveguides
crossing at an angle, which is optimized for efficient evanescent coupling at their in-
tersection. This coupler is invariant to translational misalignment, as the intersection
between two lines is invariant to any in-plane translation Δr||. In addition to transla-
tional invariance, the coupling efficiency is far more insensitive to angular misalignment
Δ𝜃 than conventional approaches such as edge coupling. Furthermore, we analyze this
approach to photonic coupling and demonstrate alignment tolerance that is fundamentally
impossible to achieve with edge or grating couplers, which exhibit a fundamental tradeoff
(Δr||Δ𝜃)3 dB = 𝜆/𝜋n, where 𝜆/n is the wavelength in an effective index n.

4.2 Photonic circuit boards
As a particular use case enabled by our approach, we introduce a “self-aligning pho-
tonic circuit board” (SAPCB) that unifies photonic integrated circuits, microchiplets,
and electronics onto a single optoelectronic substrate. Similar to other optical PCBs
[107, 108, 114, 118, 119], the SAPCB’s waveguides are made of polymer, making them
easy and scalable to fabricate. However, unlike other optical PCBs, which typically require
defining complex waveguide routing in polymer to carry signals between components, the
SAPCB consists solely of a linear array of waveguides, making it far easier to manufacture.
By fabricating an array of waveguides with variable widths, one can create a universal con-
nector to match PIC waveguides of varying materials or dimensions, thereby facilitating
the assembly of diverse photonic and electronic components into high-density systems.

Figure 4-1 illustrates potential applications of the alignment-free coupler. We envision
an SAPCB comprising a polymer-laminate film bonded to an electrical PCB onto which
the photonic chips are placed. The polymer film incorporates a closely-spaced, linear array
of single-mode waveguides used for optical interconnections between PICs. Waveguides
on the polymer film are evanescently coupled to those on the PIC over a vertical gap g .

The critical requirement of the SAPCB architecture is a board-to-PIC coupler with
high efficiency and alignment tolerance. Approaches such as adiabatic coupling or edge
coupling have demanding requirements (< 5 𝜇m) for alignment precision [107, 108, 109];
moreover, the strict alignment tolerance requires that the photonic circuit and substrate
be co-designed to ensure the placement of the polymer waveguides are matched to those
of the PICs with micron-scale precision.

To solve these problems, we introduce the alignment-free, “hockey stick” coupler
illustrated in Fig 4-1(i). These devices consist of a PIC waveguide that runs parallel to
the polymer film until taking a turn to intersect the polymer waveguides at an angle 𝜃
and length L. The angle 𝜃 is chosen to efficiently transfer optical power through the
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Figure 4-1: The SAPCB consists of a polymer-laminate film bonded onto an electrical PCB.
PICs are flip-chip bonded to the polymer film, which includes a linear, closely-spaced array of
single-mode waveguides that carry signals between chips. i): The SAPCB consists of efficient,
board-level optical interconnects by making use of an alignment-free “hockey stick” coupler
that intersects the polymer waveguides at an angle 𝜃. This approach makes the efficiency of
our architecture insensitive to in-plane displacements and permits coupling over a wide range
of waveguide pitches. Additionally, intersecting the two waveguides at an angle eliminates
the requirement to place PICs onto the SAPCB with sub-micron placement accuracy. ii) The
alignment-free coupler also simplifies “pick-and-place” integration of microchiplets into PICs,
which enables the introduction of gain, detectors, and single-photon sources into a single chip.
iii): Electrical connections can be made in our architecture by punching holes through the
polymer film, which permits bump bonding to pads on the electrical PCB.

interaction of their evanescent fields. Off-axis alignment is usually considered undesirable
for optical coupling; here, our approach intentionally applies it to achieve one critical
benefit: this geometry is invariant to any longitudinal displacement Δx and any transverse
displacement Δy < L sin 𝜃. Moreover, the transverse displacement tolerance can be
increased arbitrarily by increasing the length of the coupler L.

Angled coupling introduces other benefits during assembly. Suppose the polymer
and PIC waveguides have differing pitches P , p, respectively. No matter their respective
pitches, as long as the two waveguides are coarsely aligned within L sin 𝜃, they will always
intersect at some point with no transmission penalty. The SAPCB could therefore serve as
an off-the-shelf, universal connector interfacing PICs of different designs and with differing
port locations. The only restriction on the polymer waveguide pitch is that P must be
smaller than L sin 𝜃, which ensures that no waveguide on the PIC couples to more than
one polymer waveguide.

In addition to board-level assembly, the alignment-free coupler also enables simplified

78



Figure 4-2: The alignment-free coupler can be modeled as two waveguides weakly coupled
vertically by an evanescent interaction strength 𝜅 to one another at an off-axis angle 𝜃. At an
arbitrary point z along the propagation, the coupling constant 𝜅 will decay exponentially by the
vertical offset z tan 𝜃 with a characteristic decay length 𝛾, i.e. 𝜅(z) = 𝜅0e

−𝛾|z| tan 𝜃.

“pick-and-place” integration of microchiplets into photonic circuits. Microchiplets, which
are miniaturized photonic chips integrated into larger circuits, have recently drawn interest
as an approach for integrating gain [123, 124, 125, 126], photodetectors [127, 128], or
single-photon sources [105] into PICs. This integration is illustrated in Figure 4-1(ii),
where the PIC backbone has windows etched into the cladding for coupling chiplets to the
circuit. Finally, the SAPCB is also compatible with state-of-the-art electrical interconnect
technologies such as flip-chip bonding. We illustrate this compatibility in Figure 4-1(iii),
which shows how holes can be punched in the polymer film to enable bump bonding
between the PIC and PCB.

4.3 Theory
We begin by analyzing the dynamics of the alignment-free coupler using a coupled mode
theory approach [36, 129] (Fig. 4-2). Consider two waveguides weakly coupled vertically
to one another at an off-axis angle 𝜃 and intersecting at z = 0. When the two waveguides
intersect one another, their interaction can be described by a coupling constant per unit
length 𝜅 and a wavevector mismatch Δk . At an arbitrary z , Δk remains unchanged, but
𝜅 exponentially decays with the transverse offset |z | tan 𝜃 [30]. The waveguide coupling
can therefore be modeled as 𝜅(z) = 𝜅e−𝛾|z| tan 𝜃 = 𝜅e−𝛾′|z|, where 𝛾′ = 𝛾 tan 𝜃 describes
the decay of 𝜅 with transverse offset per unit length.

The coupled mode equations describing the system are therefore:

d

dz

[︃
a0
a1

]︃
=

[︃
−i𝛽0 −i𝜅e−𝛾|z|

−i𝜅e−𝛾|z| −i𝛽1

]︃ [︃
a0
a1

]︃
= C

[︃
a0
a1

]︃
(4.1)
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Figure 4-3: The theoretical power transfer efficiency 𝜂 of the alignment-free coupler vs. 𝜃 for
varying values of 𝜅/𝛾. At small values of 𝜃, 𝜂 will oscillate rapidly from minimum to maximum
power transfer. The alignment-free coupler should not be used in this regime and it is omitted
from the plot for clarity.

C = −i𝛽I+ i

[︃
Δ −𝜅e−𝛾|z|

−𝜅e−𝛾|z| −Δ

]︃
(4.2)

The first term in C is a trivial phase evolution, which we disregard. We can iteratively
solve the mode coupling for small displacements Δz as:[︃

a0(z +Δz)
a1(z +Δz)

]︃
= exp(C(z) · Δz)

[︃
a0(z)
a1(z)

]︃
(4.3)

Now assume that the two waveguides have the same effective modal index, i.e. Δ = 0.
In this case, the above expression simplifies to:[︃

a0(z +Δz)
a1(z +Δz)

]︃
= exp(C(z) · Δz)

[︃
a0(z)
a1(z)

]︃
(4.4)

=

[︃
cos𝜅Δz −i sin𝜅Δz

−i sin𝜅Δz cos𝜅Δz

]︃ [︃
a0(z)
a1(z)

]︃
(4.5)

This is a rotation matrix, which has the convenient property that:[︃
cos𝜅1Δz −i sin𝜅1Δz

−i sin𝜅1Δz cos𝜅1Δz

]︃ [︃
cos𝜅2Δz −i sin𝜅2Δz

−i sin𝜅2Δz cos𝜅2Δz

]︃
(4.6)

=

[︃
cos(𝜅1 + 𝜅2)Δz −i sin(𝜅1 + 𝜅2)Δz

−i sin(𝜅1 + 𝜅2)Δz cos(𝜅1 + 𝜅2)Δz

]︃
(4.7)
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Therefore: [︃
a0(z2)
a1(z2)

]︃
=

[︃
cos

∫︀ z2
z1
𝜅(z) dz −i sin

∫︀ z2
z1
𝜅(z) dz

−i sin
∫︀ z2
z1
𝜅(z) dz cos

∫︀ z2
z1
𝜅(z) dz

]︃ [︃
a0(z1)
a1(z1)

]︃
(4.8)

For initial conditions a0(−∞) = 1, a1(−∞) = 0, we get that:

|a1(∞)|2 = sin2
(︂∫︁ ∞

−∞
𝜅e−𝛾|z| dz

)︂
= sin2

(︃
2𝜅

𝛾

)︃
= sin2

(︃
2𝜅

𝛾′ tan 𝜃

)︃
(4.9)

Figure 4-3 plots the theoretical transmission efficiency 𝜂 vs. angle 𝜃 for varying values
of 𝜅/𝛾. In addition to potentially arbitrary lateral tolerance, depending on the value of
L, the alignment-free coupler has high angular tolerance. This coupling scheme therefore
has two major advantages over conventional optical couplers:

• High angular tolerance: The 1/ tan 𝜃 dependence of 𝜂 produces a large angular
tolerance Δ𝜃 = (4/3)𝜃opt. Moreover, 𝜂 has a long tail that ensures modest coupling
even at very large angular errors, greatly simplifying initial alignment. Coupling the
waveguides more strongly (increasing 𝜅/𝛾) further increases Δ𝜃.

• Robust design: no matter the values of 𝜅, 𝛾, the coupling efficiency reaches unity
at some angle. Fabrication-induced variation in 𝜅 can therefore always be corrected
during alignment. No matter the design, the angled coupler allows efficient power
transfer by rotating one waveguide relative to the other. By contrast, errors in 𝜅 from
the designed value reduce the efficiency of conventional adiabatic and directional
couplers, and these errors cannot be corrected after fabrication.

4.4 Mismatched couplers: what’s the efficiency?
We assumed in the derivation above that the two waveguides have identical effective in-
dices, and thus that they are phase-matched, i.e. Δ = 0. This behavior can be analogized
to resonant driving of a two-level system; however, in practice, the two waveguides might
have slightly different effective indices due to fabrication error. This is even more likely
to be the case when the two waveguides are fabricated in different photonic platforms. In
this section, we analyze the efficiency when Δ ̸= 0.

To solve this, we borrow a strategy from time-dependent perturbation theory in quan-
tum mechanics. The matrix C above can be analogized to the Hamiltonian of a two-level
system, which can be separated into spatially-independent and dependent components:

Ĥ = Ĥ0 + Ĥ(z) =

[︃
𝛽0 0
0 𝛽1

]︃
+

[︃
0 𝜅e−𝛾|z|

𝜅e−𝛾|z| 0

]︃
(4.10)

The dynamics of the system are governed by:

i
d

dz
|a(z)⟩ = (Ĥ0 + Ĥ(z)) |a(z)⟩ (4.11)
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Figure 4-4: Angular dependence of coupling efficiency for varying levels of Δ when 𝜅 = 0.05;
𝛾 = 1.

and the state evolves as e iĤz |a(z)⟩, which is identical to the coupled mode formulation
presented earlier.

Now suppose the system is initialized at z = −∞, where the coupling between waveg-
uides is zero, into one of the eigenstates of H0̂—namely a0 = 1, a1 = 0. We can switch
to the interaction picture:

|ã(z)⟩ = e iH0̂z |a(z)⟩ (4.12)
which simplifies the equation of evolution to:

i
d

dz
|ã(z)⟩ = H̃(z) |ã(z)⟩ (4.13)

where:
H̃(z) = e iH0̂zH(z)e−iH0̂z =

[︃
0 e−2iΔz𝜅e−𝛾|z|

e2iΔz𝜅e−𝛾|z| 0

]︃
(4.14)

From this, if we expand |ã(z)⟩ into the uncoupled basis a0, a1, we get the coupled
equations:

i
d

dz
a0(z) = 𝜅e−2iΔz−𝛾|z|a1(z) (4.15)

i
d

dz
a1(z) = 𝜅e2iΔz−𝛾|z|a0(z) (4.16)

Now, we apply a perturbative expansion by introducing a unit-free parameter 𝜆, such
that:

Ĥ = Ĥ0 + 𝜆Ĥ(z) (4.17)

i
d

dz
|ã(z)⟩ = 𝜆H̃(z) |ã(z)⟩ (4.18)
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Figure 4-5: Phase-matching bandwidth of angular (solid line) and directional (dashed line)
coupler for varying levels of 𝜅

We expand |ã(z)⟩ in powers of the parameter 𝜆:

|ã(z)⟩ = |ã(0)(z)⟩ + 𝜆 |ã(1)(z)⟩ + 𝜆2 |ã(2)(z)⟩ + ... (4.19)

Substituting into equation (4.18), we get that:

i𝜕z |ã(0)(z)⟩+i𝜕z𝜆 |ã(1)(z)⟩+i𝜕z𝜆
2 |ã(2)(z)⟩+... = 𝜆H̃(z) |ã(0)(z)⟩+𝜆2H̃(z) |ã(1)(z)⟩+...

(4.20)
Equating terms with the same power of 𝜆, we find that:

i𝜕z |ã(0)(z)⟩ = 0 (4.21)

i𝜕z |ã(1)(z)⟩ = H̃(z) |ã(0)(z)⟩ (4.22)
i𝜕z |ã(2)(z)⟩ = H̃(z) |ã(1)(z)⟩ (4.23)

and so on. Now, since the coupling is “off” at z = −∞, we know that:

|a(−∞)⟩ = |ã(−∞)⟩ = |ã(0)(−∞)⟩ + 𝜆 |ã(1)(−∞)⟩ + 𝜆2 |ã(2)(−∞)⟩ + ... (4.24)

which provides the initial conditions:

|ã(0)(−∞)⟩ = |a(−∞)⟩ (4.25)

|ã(1)(−∞)⟩ = 0 (4.26)
|ã(2)(−∞)⟩ = 0 (4.27)
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We found earlier that |ã(0)⟩ is spatially-independent; therefore:

|ã(0)(z)⟩ = |ã(0)(−∞)⟩ = |a(−∞)⟩ (4.28)

Using this result, we can solve for |ã(1)⟩:

i𝜕z |ã(1)(z)⟩ = H̃(z) |a(−∞)⟩ (4.29)

|ã(1)(z)⟩ =
∫︁ z

−∞
−iH̃(z) |a(−∞)⟩ dz (4.30)

|ã(2)⟩ can then be found with a nested integral expression, as can all higher-order terms:

|ã(2)(z)⟩ =
∫︁ z

−∞
−iH̃(z2)

(︂∫︁ z2

−∞
−iH̃(z1) |a(−∞)⟩ dz1

)︂
dz2 (4.31)

We are looking for a coupling efficiency, which can be analogized to a transition
probability from eigenstate 0 → 1. This is:

𝜂 = P0→1(z) = |⟨1|a(z)⟩|2 = |⟨1|e−iH0̂z ã(z)⟩|2 = |⟨1|ã(z)⟩|2 (4.32)
= |⟨1| (|ã(0)(z)⟩ + |ã(1)(z)⟩ + |ã(2)(z)⟩ + ...)|2 (4.33)
= |⟨1|ã(1)(z)⟩ + ⟨1|ã(2)(z)⟩ + ...|2 (4.34)

We can now explicitly compute the expansion of |ã(z)⟩:

|ã(0)(z)⟩ = |0⟩ (4.35)

|ã(1)(z)⟩ =

⎧⎨⎩− ie(2iΔ+𝛾)z

2iΔ+𝛾
𝜅 |1⟩ if z < 0(︁

1−e(2iΔ−𝛾)z

i𝛾+2Δ
− i

2iΔ+𝛾

)︁
𝜅 |1⟩ if z > 0

(4.36)

|ã(1)(∞)⟩ = − 2i𝛾𝜅

𝛾2 + 4Δ2
|1⟩ (4.37)

|ã(2)(∞)⟩ = −2𝜅2(𝛾 + iΔ)

𝛾(𝛾 + 2iΔ)2
|0⟩ (4.38)

|ã(3)(∞)⟩ = 12i𝛾𝜅3

40𝛾2Δ2 + 9𝛾4 + 16Δ4
|1⟩ (4.39)

We can keep expanding terms to obtain a better approximation. The conversion
efficiency is therefore:

𝜂 =

(︃
2𝛾𝜅

𝛾2 + 4Δ2
− 12𝛾𝜅3

40𝛾2Δ2 + 9𝛾4 + 16Δ4
+ ...

)︃2

(4.40)

Recall that we define 𝛾 = 𝛾′ tan 𝜃, where 𝛾′ is the decay parameter of the material
system. To first order, the coupling efficiency is 𝜂 = 4𝛾2𝜅2/(𝛾2+4Δ2)2. Notice that this
corresponds to the first term of the Taylor expansion of 𝜂 = sin2(2𝜅/𝛾) when Δ = 0.
This is an excellent estimate when Δ > 𝜅 or when the transfer efficiency is low, but is
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less accurate for high coupling efficiency. Including higher order terms will improve the
accuracy of the estimate.

Figures 4-4 and 4-5 show the phase matching bandwidth calculated using up to the
seventh-term of the expansion. Note that in general, the phase-matching bandwidth is
narrower for an angled coupler relative to a conventional directional coupler. By more
strongly coupling the waveguides, we can increase the phase-matching bandwidth and
reduce the fabrication dependence.

The theory here suggests that we can couple two optical modes with exceptionally
high alignment tolerance–in principle unlimited lateral tolerance, and fairly high angular
tolerance. The price we pay, however, is a more stringent requirement on the fabrica-
tion tolerance of the waveguide. Practically speaking, however, it is preferable to trade
fabrication tolerance for alignment tolerance. Optical alignment is quite imprecise–on
the order of single 𝜇m for typical photonic assembly tools, and potentially tens of 𝜇m if
we wish to transition to high-volume pick and place tools. Photonic fabrication, using
photolithography, however, can be extremely precise–especially waveguide layers, which
need to be precise on the order of tens to hundreds of nanometers to maintain uniform
component performance across a wafer. Thus, our approach shifts the burden of high
precision to tools that are already capable of reaching these requirements, while relaxing
precision requirements for the high-volume tools required later in the assembly process.

4.5 Simulation
To validate this approach, we conducted 3D finite-difference time-domain simulations
(Ansys Lumerical FDTD) of an example implementation of the SAPCB shown in Figure
4-6 and using the parameters in Table 4.1. These simulations assumed high-index single-
mode polymer core SAPCB waveguides embedded in a low-index fluoropolymer cladding,
and silicon nitride (SiN) PIC waveguides in silicon dioxide cladding. SiN is a high-index
contrast waveguide platform transparent over the visible and infrared and is available in
most silicon photonics and CMOS foundries [130]. The simulations assumed a wavelength
𝜆 = 1550 nm, and the optimized design exhibits less than 0.2 dB insertion loss.

Figure 4-6a plots the effective mode index mismatch Δn = nSAPCB −nPIC as a function
of the SiN and polymer waveguide widths. Efficient mode transfer between the waveg-
uides requires matching their propagation constants by engineering their geometry. This
requirement dominates the fabrication-induced error. Figures 4-6b-f plot the effect on
transmission caused by errors in SiN width (b), SiN height (c), coupling gap (d), wave-
length (e), and temperature (f). The coupler is remarkably robust to changes in all of
these parameters, exhibiting less than 0.5 dB penalty for a ± 20 nm variation in waveguide
dimensions and lower than 0.3 dB excess loss for a ± 100 nm change in the coupling gap
g . Moreover, it has a 1-dB optical bandwidth in excess of 180 nm and exhibits less than
0.5 dB temperature sensitivity over a range of 80∘ C. We obtained the results in Figure
4-6 from FDTD simulations of the full structure. Fig. 4-7g shows these simulations for the
parameters of Table 4.1, illustrating the power transfer from the SiN waveguide, through
the alignment-free coupler, and into the polymer waveguide. Cross sectional field intensity
plots along the structure are shown underneath.
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Table 4.1: Simulation parameters for the alignment-free photonic coupler.

Polymer core n [131] 1.575
Polymer cladding n [132] 1.34

Polymer core dn/dT [131] −1.1 × 10−4 /∘C

Polymer cladding dn/dT [132] −5 × 10−5 /∘C

PIC waveguide core n [133] 2
PIC waveguide cladding n [133] 1.445

PIC core dn/dT [133] 2.51 × 10−5 /∘C

PIC cladding dn/dT [133] 9.6 × 10−6 /∘C

SiN width 462.5 nm
Polymer width 1.6 𝜇m

SiN height 300 nm
Polymer height 1 𝜇m

Gap (g) 1 𝜇m
Length (L) 100 𝜇m

𝜃opt 4.4∘

Wavelength (𝜆) 1550 nm

Figure 4-8 plots 𝜂 vs. 𝜃 for the same structure. The waveguide intersection causes a
scattering loss of ∼0.2 dB at the optimal coupling angle 𝜃. Upon correcting for this loss,
𝜂 agrees well with the expression in Eq. 4.9 around this region and exhibits an angular
alignment (3 dB) tolerance Δ𝜃 > 5 degrees. Additionally, 𝜂 rolls off slowly for 𝜃 > 𝜃opt,
permitting modest coupling efficiencies at even large angular errors. This greatly simplifies
initial alignment and relaxes the required precision of alignment during packaging.

The scattering loss shown in Figure 4-8 results primarily from a faster-than-adiabatic
transition at the waveguide intersection and increases with 𝜃 as the transition into the
hybridized modes becomes more abrupt [134, 135]. The scattering loss drops with increas-
ing g , which makes the transition more adiabatic. Increasing g introduces two tradeoffs,
however: the angular tolerance Δ𝜃 will drop, and the transmission will be more sensitive
to errors in Δk . If higher insertion losses are acceptable, the waveguides can be coupled
more strongly, which improves Δ𝜃. We also show in Figure 4-8 such an example, where
we decreased g to 500 nm. 𝜅/𝛾, and therefore the tolerance, Δ𝜃, nearly doubles, but
at the expense of a higher insertion loss of 1 dB. The tradeoffs between insertion loss,
robustness to fabrication error, and Δ𝜃 bound an optimal range for 𝜅 and therefore g .
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Figure 4-6: a) Effective mode index mismatch Δn = nSAPCB − nPIC as a function of the PIC (SiN) waveguide width and the SAPCB
(polymer) waveguide width. The two waveguide geometries should be engineered such that their modes have equal propagation constants, i.e.
Δk = 2𝜋Δn/𝜆 = 0. b-f) Power transfer efficiency as a function of the PIC waveguide width (b), PIC waveguide height (c), coupling gap (d),
wavelength (e), and temperature (f) for the design with parameters in Table I.
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Figure 4-7: The field profile of the alignment-free coupler with parameters in Table I. The
insets below show the cross-sectional field profile at varying points along the propagation.

Figure 4-8: Power transfer efficiency 𝜂 vs 𝜃 for designs with coupling gap g = 1 𝜇m and
g = 0.5 𝜇m. The solid lines indicate FDTD simulation results, while the dotted lines are fit to
equation (4.9).

Insertion losses can also be reduced by employing higher-index platforms that enable
stronger vertical confinement of the optical mode. Figure 4-9 shows such an example,
where we design a coupler to interface a 500 × 220 nm silicon photonic waveguide to a
640 × 300 nm indium phosphide (InP) waveguide (g = 150 nm) for hybrid integration
of gain. Silicon and InP have much higher refractive indices (nSi = 3.47; nInP = 3.17)
and therefore confine the optical mode more strongly; as a result, the optical mode is
significantly less perturbed by the introduction of the other waveguide at the intersection.
As Figure 4-9a shows, this enables efficient mode transfer with no insertion loss; moreover,
we find a near-exact fit to theory. Additionally, despite the high index contrast of both
the Si and InP photonic platforms, which would imply they are strongly dispersive, we find
that our optimized coupler has a 1-dB optical bandwidth exceeding 230 nm (Fig. 4-9b).
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Figure 4-9: a) Transmission vs. 𝜃 for an alignment-free coupler designed to interface a 640
× 300 nm InP gain microchiplet to a 500 × 220 nm silicon photonic waveguide. The strong
mode confinement in both materials eliminates scattering loss at the intersection, permitting
mode transfer with no insertion loss. As a result, the transmission characteristic reproduces
nearly perfectly equation (4.9). b) The transmission efficiency as a function of wavelength. The
coupler has a 1-dB bandwidth exceeding 230 nm.

4.6 Discussion

In Figure 4-10, we compare the lateral and angular alignment tolerance of the alignment-
free coupler to a 10 𝜇m inverse tapered edge coupler and a tapered adiabatic coupler.
For each approach, we compare the 1-dB coupling efficiency contour in the 𝛿r||-𝛿𝜃 plane
to that of the alignment-free coupler.

Optical coupling is typically non-perturbative: an optical beam is launched into free
space from the end facet of a fiber, where it is then coupled into an inverse waveguide
taper or grating coupler designed to be mode-matched to the beam. Mode-matching
imposes strict requirements on the relative position of the coupler and the fiber facet, as
the coupling efficiency is directly related to the overlap integral between the two modes.
We assume perfect mode-matching, i.e. perfect alignment yields unity coupling.

The electric field of a Gaussian beam propagating in z with waist w0 can be written
as [136]:

E(x , y , z) = E0
1√︂

1 + z2

z2R

exp

⎛⎜⎜⎝− x2 + y 2

w 2
0

(︂
1 + z2

z2R

)︂
⎞⎟⎟⎠×
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exp

⎛⎜⎜⎝−i

⎛⎜⎜⎝kz + k
x2 + y 2

2z
(︂
1 +

z2R
z2

)︂ − arctan
z

zR

⎞⎟⎟⎠
⎞⎟⎟⎠ (4.41)

where zR is the Rayleigh length 𝜋w 2
0n/𝜆. The mode overlap integral is conventionally

[35]:
𝜂 =

|
∫︀
E *
1E2 dA|2∫︀

|E1|2 dA
∫︀

|E2|2 dA
(4.42)

As the output at the fiber facet is located at the beam waist (i.e. z = 0), the
expression above simplifies to:

E(x , y , z) = E0 exp

(︃
−x2 + y 2

w 2
0

)︃
(4.43)

Suppose we have a lateral misalignment 𝛿x of one beam relative to the other. The
mode overlap integral 𝜂 can be easily calculated to be:

𝜂(𝛿x) = exp

(︃
−𝛿x2

w 2
0

)︃
(4.44)

We find a lateral tolerance Δx = w0.
Now consider an angular misalignment 𝛿𝜃. Suppose, without loss of generality, that the

rotation of the fiber is about the y -axis at x = 0. If 𝛿𝜃 is small, such that x tan 𝛿𝜃/zR ≪ 1,
we can neglect amplitude distortion and phase induced by the beam curvature. We then
find that:

E(x , y , z) = E0 exp

(︃
−x2 + y 2

w 2
0

)︃
exp

(︃
−i

(︃
kx tan 𝛿𝜃 − arctan

x tan 𝛿𝜃

zR

)︃)︃
(4.45)

≈ E0 exp

(︃
−x2 + y 2

w 2
0

)︃
exp

(︃
−i

(︃
kx tan 𝛿𝜃 − x tan 𝛿𝜃

zR

)︃)︃
(4.46)

Having made these simplifications, the overlap integral is now tractable:

𝜂(𝛿𝜃) = exp

(︃
−w 2

0 tan
2(𝛿𝜃)(kzR − 1)2

4z2R

)︃
(4.47)

The angular tolerance, if we approximate tan 𝛿𝜃 ≈ 𝛿𝜃, is therefore:

Δ𝜃 =
2zR

w0(kzR − 1)
(4.48)

We observe that there is a tradeoff between lateral and angular tolerance:

ΔxΔ𝜃 =
2zR

kzR − 1
(4.49)

In practice, kzR = 2𝜋2(nw0/𝜆)
2 ≫ 1. Simplifying further, the tradeoff is revealed to
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Figure 4-10: Lateral and angular alignment tolerance of the alignment-free coupler compared
to inverse tapered edge couplers and tapered adiabatic couplers. The lines indicate the 1-dB
coupling efficiency contour as a function of in-plane displacement 𝛿r|| and angular displacement
𝛿𝜃. The alignment-free coupler has a combined alignment tolerance Δr||Δ𝜃 that exceeds current
approaches.

be fundamental:
ΔxΔ𝜃 =

2zR
kzR − 1

≈ 2zR
kzR

=
𝜆

𝜋n
(4.50)

This tradeoff does not apply to the alignment-free coupler, which has both a high an-
gular tolerance and an arbitrarily high lateral tolerance that can be increased by increasing
L. As a result, the combined lateral and angular tolerance Δr||Δ𝜃 of our approach exceeds
the fundamental limit on alignment tolerances for edge coupling. Expanding or contract-
ing the beam size improves the alignment tolerance of edge coupling in one dimension at
the expense of the other; thus, no possible edge coupler can have both superior lateral
and superior angular tolerance to that of an alignment-free coupler.

Adiabatic couplers, on the other hand, taper one or both waveguides to induce an
avoided crossing between the two eigenmodes, which adiabatically transfers power from
one waveguide to the other [36, 137]. This adiabatic transition makes the devices robust to
variation in Δk , which has led to them being favored in many photonic platforms for their
resilience to fabrication error. This robustness comes at the cost of alignment tolerance,
however, as small lateral or angular errors render the interaction non-adiabatic, resulting
in little or no power transfer. To compare relative tolerances, we designed an adiabatic
coupler to transfer power from SiN to the polymer waveguide; our coupler linearly tapers
the SiN waveguide width from 550 to 320 nm over a length of 200 𝜇m (g = 1 𝜇m)
and achieves an efficiency of 96%, which is comparable to our optimized alignment-free
coupler.

Figure 4-10 shows the transmission penalty of the adiabatic coupler as a function of
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misalignment 𝛿r||, 𝛿𝜃; while Δ𝜃 is comparable to an alignment-free coupler of the same
length, Δr|| is far smaller. For sufficiently long tapers, it is also possible to achieve high
coupling efficiency at a large angular error 𝛿𝜃, where the taper acts effectively as an
alignment-free coupler. We omit this region in Figure 4-10, as the coupling in this regime
is non-adiabatic. Moreover, as the adiabatic coupler is tapered, unlike the alignment-free
coupler, the lateral tolerance Δr|| in this regime is far smaller.

Our results show that the combined lateral and angular tolerance Δr||Δ𝜃 of our ap-
proach is higher than that of conventional optical couplers. We achieve this by making use
of evanescent coupling, which does not suffer from a fundamental limitation on Δr||Δ𝜃,
and by intentionally engineering a system largely invariant to lateral displacements. This
lateral tolerance is maximized by choosing both waveguides to not be tapered; as a result,
Δr|| can be arbitrarily high. While our approach does require the effective indices of the
waveguides to be matched, our simulation results suggest that the dimensional tolerances
needed to achieve this are well below what is realizable in current fabrication processes.

4.7 System Integration and Outlook
We show in Figure 4-11 two possible applications of the SAPCB for system-level inte-
gration. In Figure 4-11a, we consider interfacing two photonic circuits with different
waveguide pitches and process stacks. As the alignment-free coupler interfaces with the
polymer waveguides at an angle, the off-axis intersection guarantees that both waveguides
can couple into the same waveguide on the board. The two PICs may also not have the
same process stack; for instance, one process may require a larger oxide layer, resulting in
a larger coupling gap g to the polymer waveguide. This can be addressed in our approach
by simply modifying the coupling angle 𝜃 to preserve efficient power transfer.

Figure 4-11b demonstrates another advantage originating from the need for Δk ≈ 0
for efficient coupling. Suppose a waveguide on a PIC needs to be routed over a polymer
waveguide with minimal crosstalk. By engineering the dimensions of the PIC waveguide,
one can ensure a strong wavevector mismatch Δk with the polymer waveguide, allowing
for crosstalk-free transmission of signals over many photonic components on a board.

We envision that the alignment-free coupler would be defined on the PIC, where
advanced photolithography processes define the required waveguide geometry and angle
precisely. This frees the SAPCB to consist only of linear arrays of polymer waveguides, with
no bends or tapering required. The simple layout of the polymer board could potentially
allow it to be fabricated by fiber pulling approaches from a preform, rather than more
costly lithography processes. Additionally, polymer waveguides have a wide transparency
window, making the SAPCB applicable to photonics operating in both the visible and
near-infrared.

4.8 Conclusion
We have presented a self-aligning photonic circuit board capable of serving as a univer-
sal connector for optoelectronic system integration. The critical element of the SAPCB
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Figure 4-11: a) The
alignment-free coupler can
interface photonic circuits
with differing waveguide
pitches and process stacks.
As the waveguides interact
at an angle, precise matching
of the waveguide pitch is
not necessary. By varying
the coupling angle 𝜃, one
can easily optimize the
transmission for any coupling
gap g . b) The requirement
for phase-matching permits
simplified routing with min-
imal crosstalk. By tapering
the waveguide to ensure
Δk ≫ 0, waveguides can be
routed over one another with
negligible crosstalk.

is the alignment-free coupler, which engineers a laterally invariant system insensitive to
the exact location of waveguides on the photonics, and which also exhibits high angular
tolerance and arbitrarily high lateral tolerance. Our approach is robust to variations in
the device geometry, and we show its combined lateral and angular tolerance exceeds that
of conventional optical coupling approaches. The SAPCB allows for system integration
with minimal design and alignment requirements, enabling a wide range of photonic com-
ponents to interface with one another and simplifying the assembly of complex optical
systems.
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5
Single chip photonic neural network processors

This chapter is adapted from work1 reported in ref. [138].

5.1 Introduction
Deep neural networks (DNNs) have revolutionized machine learning, enabling state-of-
the-art performance on computation ranging from image classification [5, 6], natural
language processing [7], games [8, 9], and chip design [10]. However, as these models
scale to trillions of parameters, energy consumption and throughput have begun to emerge
as major bottlenecks in digital electronics.

This is problematic, as a primary reason why the latest DNNs perform so well is their
massive size. Further performance gains in machine learning will therefore depend on
hardware that is able to scale with the size of these models. This has driven a search for
new hardware architectures that are specially optimized for artificial intelligence, including
electronic systolic arrays such as the Google tensor processing unit (TPU) [13], memristor
crossbar arrays [139], and photonic accelerators.

As we have discussed in earlier chapters, optical systems are particularly promising
for DNN accelerators. DNNs require massive amounts of computation that is mostly
comprised of linear algebra. Optical systems can perform linear matrix operations at ex-
ceptionally high rate and efficiency [140], motivating recent demonstrations of low latency
linear algebra [15, 141, 18, 17, 142] and optical energy consumption [143] below a photon
per multiply-accumulate operation.

A system that processes a deep neural network entirely in optics would be particularly
optimal for applications that require processing data natively in the optical domain and
with ultra-low latency. While current electronic accelerators can achieve high throughput,
they often do so through techniques such as batching that increase the inference latency
(i.e. time between an input to the DNN and the output), making them unsuitable for
applications that require real-time inference. Such applications can include:

1This was a major experimental effort that benefitted from the contributions of many talented collabora-
tors. I will acknowledge their contributions throughout this chapter.
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• Self-driving cars, which making split-second decisions by processing from LiDAR
sensor data; [144]

• Scientific research in astronomy [145, 146] and particle physics [147], which generate
massive amounts of data that require near-instantaneous classification; and

• “Smart” optical transceivers that rely on machine learning to receive, process, and
route data at line rates exceeding hundreds of gigabits per second [148].

Applications such as these, which are latency-constrained, would benefit from real-time
inference and training directly on optical signals, eliminating the need for slow and
energetically-expensive optical-to-electrical conversions. While mapping matrix opera-
tions to optical hardware has been relatively straightforward [15], implementing all of the
computation (both linear and nonlinear operations) for DNNs in optics has proven far
more difficult. As a result, co-integrating optical linear and nonlinear computing units
into an end-to-end photonic DNN processor has remained an outstanding challenge.

In this chapter, we report the realization of this goal in a fully-integrated, coherent
optical neural network (FICONN) that performs coherent optical inference and training
of DNNs on a single chip. Our system, which was fabricated in a commercial CMOS
process, integrates multiple reconfigurable optical processing units for matrix algebra and
nonlinear functions on-chip to implement a three-layer DNN. The system latency, limited
by time-of-flight, is less than 500 ps, unlocking new applications that require ultra-fast,
coherent processing of optical signals.

5.2 Architecture
Figure 5-1 shows the architecture of a coherent optical deep neural network processor2.
Input data for classification is modulated onto the optical field by a bank of transmitter
channels. Each layer of the device optically computes matrix-vector products, representing
synaptic connections in the nural network, and then applies an optical nonlinear activation
function, representing the action potential (firing threshold) of a neuron.

In principle, matrix-vector products can be computed passively through optical inter-
ference in a programmable photonic circuit (which applies a defined unitary weight matrix
U). Following the computation of the first layer, the optical output signals are trans-
mitted directly into the following layer. Each layer of the circuit feeds directly into the
following layer, implementing a deep neural network entirely in optics and with ultra-low
latency limited by the time-of-flight through the system. The output of the system can be

2An integrated photonic system that processes an entire DNN in optics was proposed by Shen and
Harris in 2017 in ref. [15]. That experiment, which was performed on a first-generation programmable
nanophotonic processor (PNP) developed within our group, showed that matrix-vector products for
DNNs could be computed with high accuracy in coherent silicon photonics.

Following that paper, our group started work on realizing the full system proposed in that paper,
where an entire DNN is optically processed in a single silicon photonic chip. The early development and
validation of this architecture was led by Dr. Nicholas Harris and Dr. Darius Bunandar.
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Figure 5-1: A coherent optical deep neural network processor processes the entire model in
optics, including linear algebra and nonlinear functions. Each layer directly feeds the optical
outputs into the next, enabling processing of an entire DNN with ultra-low latency.

converted back to the electrical domain using a coherent receiver array that photodetects
the optical field at each channel.

This architecture has the following advantages over conventional DNN processors:

• In a photonic circuit, which can densely integrate optical components together into
a small footprint, the latency can be on the order of nanoseconds, which is several
orders of magnitude lower than existing digital processors.

• The energy consumption of photonic links is dominated by optical-to-electrical
(O/E) conversion. Performing the entire DNN in optics, and performing O/E con-
version only at the input and output of the system, minimizes expensive O/E/O
conversions at each layer.

• For digital systems, the energy per operation (OP) scales as O(N2) for a neural
network with N neurons. As we discuss later in this chapter, the energy per operation
of this architecture scales as O(N).

• Memory access, for instance to fetch weights and program them onto the hardware,
dominates the energy consumption of modern DNN processors. Many electrical
and optical systems for DNN processing repeatedly stream weights to/from mem-
ory onto the hardware, introducing excess energy consumption and latency. While
this enables quick scaling to large model sizes, the power consumption and latency
of these systems will ultimately be bottlenecked by expensive memory access3.

3Google, for instance, has noted that their first generation tensor processing unit (TPU) was limited
by memory access, not compute [13]. While later iterations increased the memory bandwidth, high-
bandwidth memory (HBM) continues to be quite expensive, limiting the amount that can be realistically
integrated on chip.
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Figure 5-2: Architecture of the fully-integrated coherent optical neural network (FICONN).
Inference is conducted entirely in the optical domain, without readout or amplification between
layers. Light is fiber coupled into a single input on the chip and fanned out to the six channels of
the transmitter (i). Each channel encodes the amplitude and phase of one element of the input
x(j) into the optical field a

(1)
(j) with a Mach-Zehnder modulator and an external phase shifter.

The coherent matrix multiplication unit (ii), consisting of a Mach-Zehnder interferometer mesh,
implements linear transformations. Programmable nonlinear optical function units (iii) realize
activation functions a

(n+1)
(j) = f (b

(n)
(j) ) by tapping off part of the signal to a photodiode, which

drives a cavity off-resonance by injecting carriers into the waveguide. An integrated coherent
receiver (iv) reads out the DNN output by homodyning the output field with a local oscillator.

In this architecture, once the weights are programmed onto the hardware, they
stay there. There is an upfront cost to fetch the model parameters from memory
and program them into the phase shifters; once they are programmed, however, an
arbitrary number of inferences can be performed.

5.3 A fully-integrated coherent optical neural network
We experimentally realized a coherent optical architecture for DNN processing in a cus-
tom application-specific photonic integrated circuit. This PIC was fabricated in a com-
mercial silicon photonic foundry process incorporating low-loss fiber-to-chip couplers and
waveguides, efficient phase shifters, and high-speed modulators and waveguide integrated
photodiodes4.

4I am immensely grateful to our collaborators at Elenion Technologies, with whom we worked to design
and fabricate this circuit. I would particularly like to thank Dr. Michael Hochberg and Dr. Matthew
Streshinsky, who gave invaluable input on the design of this system and for many useful discussions
throughout the course of this project.
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Figure 5-3: The fabricated photonic integrated circuit. This circuit, which consumes a footprint
of 6 × 5.7 mm2, implements an end-to-end photonic DNN processor and was fabricated in a
commercial CMOS foundry.

The implemented architecture, which is monolithically integrated into a single chip, is
shown in Figure 5-2. We optically process a deep neural network through the following
stages:

1. The transmitter (TX) maps input vectors x(j) to an optical field vector a(1)(j) by
splitting an input laser field into MZI modulators, each of which encode one element
of the vector into the amplitude and phase of the optical field.

2. The coherent matrix multiplication unit (CMXU), consisting of a programmable
photonic mesh of Mach-Zehnder interferometers [29, 15, 149], implements the linear
transformation a(1) → b(1) = U (1)a(1) through passive optical interference.

3. The programmable nonlinear optical function unit (NOFU) implements the activa-
tion function to yield the input to the next layer, a(2) = f (b(1)). Following the
input layer, the PIC directly inputs the optically-encoded signal into a hidden layer,
composed of another CMXU and six NOFUs, that applies the optical transformation
a(3) = f (U (2)a(2)). The final layer U (3), realized using a third CMXU, maps a(3) to
the output b(3). Inference therefore proceeds entirely in the optical domain without
photodiode readout, amplification, or digitization between layers.

4. An integrated coherent receiver (ICR), shown in Figure 5-2(iv), reads out the am-
plitude and phase of the DNN output by homodyning each element of the output
field b(3) with a common local oscillator field ELO. The DNN output is read out
by transimpedance amplifiers that convert the photocurrent vector iPD to a voltage
vector VPD . VPD is digitized and then normalized by the sum of voltages measured
across all channels ∑︀VPD to yield a quasi-probability distribution Vnorm for a clas-
sification task. Each sample x(i) is assigned the label corresponding to the highest
probability, i.e. argmax(Vnorm).

The fabricated PIC, shown in Figure 5-3, requires simultaneous control of 169 active
devices, implements computation through 90 layers of optical devices, and comprises over
2,000 optical components.
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Figure 5-4: The printed circuit board interfacing on-chip electronics to the drivers.

5.4 System Packaging, Characterization, and Control
In this section, we discuss the custom evaluation board designed to demonstrate the FI-
CONN, the constituent subsystems and their characterization, and the custom electronics
designed for the system control.

5.4.1 Evaluation board
Testing the PIC required stable optical coupling and individual access to 169 electrical
channels, which control the on-chip transmitter, receiver, and model parameters. More-
over, the package must be thermally stabilized, as data is processed coherently in inter-
ferometric circuits and temperature gradients can impact the system’s performance.

We designed a custom printed circuit board (PCB) in a high-resolution (50 𝜇m min-
imum feature size) manufacturing process to interface to the electrical devices on chip.
The PCB, shown in Figure 5-4, is designed to map each pad on the PIC to a corresponding
pad on the evaluation board with a 1:1 pitch. Each channel is then routed to a 50-channel,
flexible ribbon cable (FFC) that interfaces to the control electronics. Including ground
pad connections, the device requires five FFC ribbon cables to interface to the electronics.
Electrical interconnections to the PIC are made through wirebonding.

Light is coupled into the chip from a tunable infrared laser using a single channel of a
polarization-maintaining fiber array. In order to ensure stable optical coupling, the fiber
array is permanently attached to the chip facet using index-matching epoxy. Over two
years of use, we observed less than 1% variation in the optical coupling to the circuit,
which was likely induced by temperature and humidity variations in the lab. No light is
coupled out of the chip, as all readout is done on chip with the coherent receiver.

We measured an end-to-end loss for our system of 10 dB, including 2.5 dB fiber-to-chip
coupling loss. As the depth of our system is 91 layers of optical components from input
to readout, the end-to-end loss implies a per-component insertion loss of less than 0.1
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Figure 5-5: Fully-assembled evaluation board for the PIC with wirebonding, PCB, and fiber
attach on mechanical chassis.

dB, enabling single-shot inference across all DNN layers without optical re-amplification.
Thermal stabilization was implemented using a custom mechanical chassis. The PIC is

epoxied to a metal pad on the PCB, which is thermally shorted to a corresponding pad on
the opposite side through copper vias. On the opposite end of the chassis we attached a
copper thermal block that makes contact with the thermal pad on the PCB and functions
as a large heatsink. A Peltier unit, connected to a feedback controller (Arroyo Instruments)
and a second heatsink, is used to actively stabilize the PIC temperature to within 0.004∘

C.
The evaluation board with wirebonded PIC is shown in Figure 5-5.

5.4.2 Control electronics
Most of the devices on chip were electrically controlled through a 192-channel software
programmable current source (Qontrol Systems Q8iv). Each channel sources up to 24 mA
of current with 16 bits of precision, corresponding to approximately 0.4 mrad precision in
our system.

Unfortunately, as this system is controlled through a serial connection to a digital
computer, its update rate was quite slow (tens of Hertz). This is fine for most of the
phase shifters on chip, which encode weights and do not change frequently. However,
faster electronics are required for the transmitter and receiver on chip, which input data
into the system and read out the classification result.

For faster transmission of input vectors into the DNN, we designed a custom 16-bit
current driver system that used a microcontroller to buffer the training set in memory,
which enabled training at the maximum DAC speed rather than the speed of the serial
connection to the computer5.

5As we use thermal phase shifters at the transmitter, the drivers are designed to be current sources.
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Figure 5-6: Schematic of a single channel of the transmitter board, which implements the
Howland current pump architecture.

The schematic of a single channel of the current driver is shown in Figure 5-6. We use a
Howland current pump architecture, where the input voltage is set by a high-precision (16-
bit) digital-to-analog converter (DAC). Analog feedback in the circuit ensures a constant
output current regardless of the output load. Mismatched resistances in the circuit can
introduce some dependence of the output current on the load resistance; to minimize
this, we use an amplifier integrated with on-chip resistors to maximize the common-mode
rejection ratio.

Output signals from the coherent receiver are read out using a custom receiver board.
This board amplifies output photocurrents with a transimpedance amplifier. The output
signal is then digitized using a high-precision, 18-bit analog-to-digital converter (ADC).

The transmitter and receiver boards are jointly interfaced to through a single microcon-
troller (Teensy 4.0). Both the DAC and ADC modules communicate to the microcontroller
through a serial peripheral interface (SPI), which enables interfacing to all the ADC and
DAC units with a minimal number of data buses.

For the in situ training experiments we discuss later in the chapter, the training set
is locally buffered in the microcontroller memory. Each epoch during training iterates
through the training set on chip and locally stores the output signals from the coherent
receiver. All of the data is then batched together and communicated to the computer
running the experiment; this enables training to proceed at the maximum speed of the
electronics, rather than the relatively slow serial connection between the computer and
microcontroller.

In Figure 5-7, we show the test setup in the lab, with evaluation board, custom
transmitter and receiver board, and the 192-channel current source used to set model
parameters on chip.

Voltage sources produce significant electrical crosstalk in these systems due to parasitic resistances to
the ground plane, as has been discussed extensively in ref. [51].
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Figure 5-7: Test setup in the lab, including evaluation board, custom transmitter and receiver
boards, and driver electronics.

5.4.3 Transmitter

The light coupled into the chip is first split with an MZI into a local oscillator (LO) path,
which is directed to the coherent receiver, and a signal path, which is fanned out to six
channels through an MMI splitting tree. Each channel of the transmitter comprises an
MZI, which programs the amplitude of one element of a(1)(j) , and a phase shifter on the
output that encodes the phase, enabling inference on complex-valued input signals. The
drop port of each channel includes an on-chip photodiode, simplifying characterization of
the transmitter bank.

Characterization

Recall that a Mach-Zehnder interferometer (MZI) performs the programmable 2×2 unitary
operation:

U(𝜃1, 𝜃2) = ie i𝜃1/2
[︃
e i𝜃2 sin(𝜃1/2) e i𝜃2 cos(𝜃1/2)
cos(𝜃1/2) − sin(𝜃1/2)

]︃
(5.1)

To characterize a single MZI, we first input light into one port of the device and measure
the output transmission T (𝜃1) = Pout/Pin. For an ideal device, the output transmission
at the bar port is

Tbar(𝜃1) = sin2
(︃
𝜃1
2

)︃
(5.2)
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Figure 5-8: Typical fitting procedure for an MZI on the PIC.

and at the cross port:
Tcross(𝜃1) = cos2

(︃
𝜃1
2

)︃
(5.3)

In a fabricated MZI, 𝜃1 is determined by the total dissipated power I × V (I ), where
I is the programmed current and V (I ) is the voltage dropped across the device. To
characterize a device in the transmitter, where the cross port of each channel has a
photodiode, we sweep I and measure the voltage V (I ) and output transmission T (I ). We
fit the expressions:

V (I ) = a4I
4 + a3I

3 + a2I
2 + a1I (5.4)

Tcross = A+ B cos

(︃
IV (I )

P𝜋
𝜋 + p0

)︃
(5.5)

where a4, a3, a2, a1,A,B ,P𝜋, p0 are fitting parameters. Here, P𝜋 is the total dissipated
power required to induce a 𝜋 phase shift, p0 is the static phase difference between the two
interferometer arms, and 1/(A−B) is the interferometer extinction ratio. We found that a
fourth-order polynomial was required to fit the voltage-current relationship of the heaters,
which became non-Ohmic at high currents due to self-heating and velocity saturation of
the carriers. If we measured T (I ) at the bar port, the latter expression would instead be:

Tbar = A − B cos

(︃
IV (I )

P𝜋
𝜋 + p0

)︃
(5.6)
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This yields a mapping between the current I and the programmed phase 𝜃1(I ) of the form:

𝜃1(I ) = p4I
4 + p3I

3 + p2I
2 + p1I + p0 (5.7)

In Figure 5-8, we show the typical fitting for a single MZI. As the results show, a
typical channel realizes more than 40 dB of extinction, enabling programming of input
vectors with more than 13 bits of precision.

Thermal crosstalk correction

As we use thermal phase shifters for programming the transmitter, thermal crosstalk
between devices will also impact the performance. To correct for this, we directly measured
the 12×6 crosstalk matrix M , where Mij denotes the crosstalk on channel i produced by an
aggressor channel j . This quantity was measured by driving channel i and measuring the
output transmission T at different current settings for channel j . For each measurement,
we fit equation 5.5 to the data to extract the static phase p0. Thermal crosstalk will
cause p0 to vary as a function of the settings in channel j due to parasitic heating; we fit
a linear expression to this data to extract the crosstalk coefficient Mij.

Figure 5-9a shows an example of this procedure, where we extracted the crosstalk
on channel 1 produced by channel 2. Having obtained M , we can now obtain the phase
settings Φ for a desired programming Φ′ by computing:

Φ = M−1(Φ′ − Φ0) +Φ0 (5.8)

where Φ0 is the static phase for each channel. We neglected crosstalk on the external
phase shifters of the transmitter, which program the phase of the input a(1), as we did
not have coherent detection directly at the transmitter output.

In order to benchmark the correction protocol for each transmitter channel we repeat-
edly attempted to program 𝜃1 = 𝜋/2 while setting all other channels to a random phase
setting. Shown in Figure 5-9b is the phase setting actually implemented by the transmit-
ter channel for 500 such experiments, which we extracted by measuring the transmission
T and computing 2 arccos

√
T . Thermal crosstalk correction greatly improves both the

accuracy and repeatability of each channel; for example, the measured phase on channel
2 improves from 0.493 ± 0.015 to 0.501 ± 0.003 following correction.

5.4.4 Coherent matrix multiplication unit
Linear transformations on chip are computed with the coherent matrix multiplication
unit (CMXU), which is comprised of a programmable photonic mesh [29] of 15 MZIs
connected in the Clements configuration [45]. This device implements an arbitrary 6 × 6
unitary operation U (1) on the optical fields a(1). Unitary weighting, which redistributes
light between optical modes but does not attenuate it, minimizes optical losses and enables
single-shot DNN inference without re-amplification or readout between layers. Training
unitary layers has also been shown to avoid the vanishing gradient problem, improving
optimization of deep and recurrent neural networks [150].
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Figure 5-9: a) To determine the elements of the thermal crosstalk matrix M, we drive an
aggressor channel j while characterizing the static phase p0 of channel i . As an example, here
we characterize M12 by plotting the static phase of channel 1 as a function of the phase setting
of channel 2. We fit a linear function to this data to find a crosstalk coefficient of M12 =
−0.00735. b) We benchmark the effectiveness of thermal crosstalk correction by repeatedly
trying to program a channel to 𝜃1 = 𝜋/2, while setting all other channels to random values.
We then determine the actual phase implemented by measuring the output transmission T
and computing 2 arccos

√
T . As an example, here we show the results for channel 2, where

over 500 random experiments thermal crosstalk correction greatly improves the repeatability of
programming a channel to a desired phase.
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Figure 5-10: Calibration procedure for internal phase shifters in the CMXU. The devices along
the main diagonal and antidiagonal are calibrated first. Once these devices are characterized,
the remainder of the phase shifters can be calibrated by programming devices along the main
diagonal.

Characterization of internal phase shifters

The procedure for characterizing the CMXU is sketched in Figure 5-106. We use the
photodiodes at the output of each matrix processor; for the first two layers, we use
the photodiode at each nonlinear optical function unit (NOFU), while the last layer is
calibrated with the system’s receiver.

In an uncalibrated mesh, light will scatter randomly through the circuit as p0 is random
for each device. To characterize the circuit, we first input light into the top input (input
1) of the mesh and measure the transmission at the bottom output (output 6). We then
optimize the internal phase shifters along the main diagonal in a round robin fashion to
maximize the signal at output 6. This procedure deterministically initializes the main
diagonal to the cross state (𝜃1 = 0), as there is only one possible path between input 1
and output 6. Having initialized the diagonal, we can then calibrate each device along it
by sweeping the phase shifter 𝜃1, measuring T at output 6, and fitting equation 5.5 to
the data. The antidiagonal, connecting input 6 to output 1, is calibrated in the same way.

Having characterized the main diagonals, the remainder of the devices can be calibrated
in a similar fashion. For instance, inputting light into mode 1 and setting the top left
MZI in the circuit, which is already calibrated, to the bar state provides access to the first
subdiagonal. The uncalibrated devices can then be characterized with the same procedure
as was used for the main diagonal. We show the full calibration sequence in Figure 5-10.

Characterization of external phase shifters

The protocol above calibrates all internal phase shifters 𝜃1 in a matrix processor. The
external phase shifters 𝜃2 are calibrated using “meta-MZIs,” as shown in Figure 5-11.
A “meta-MZI” consists of two MZIs in columns i − 1, i + 1 that are programmed to
implement a 50-50 beamsplitter (𝜃1 = 𝜋/2). This subcircuit now functions as an effective
MZI, where the relative phase difference between two external phase shifters 𝜃2,a, 𝜃2,b is
equivalent to the setting of the internal phase shifter in a discrete device.

6I’d like to thank Dr. Ryan Hamerly, who I collaborated with on photonic mesh error correction techniques,
for many useful discussions on calibrating these systems.
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Figure 5-11: “Meta-MZI” for calibrating external phase shifters. Two phase shifters in columns
i − 1, i + 1 are set to implement a 50-50 beamsplitter. The output transmission of this meta-
interferometer, which functions exactly like a discrete MZI, is dependent on the phase difference
between the external phase shifters Δ𝜑 = 𝜃2,b − 𝜃2,a.

We fix one of the two external phase shifters to I = 0, sweep the current programmed
into the other, and measure the output transmission T . Fitting the data to equations 5.5,
5.6, depending on the port T is measured out of, calibrates the static phase difference
Δ𝜑(I = 0) = 𝜃2,b(I = 0)− 𝜃2,a(I = 0). Repeating this procedure for all devices produces
a linear system of equations that can be inverted to find the static phase p0 for each
external heater. More details on this procedure can be found in [51].

Thermal crosstalk correction

Correcting for thermal crosstalk in the CMXU is more challenging. As the CMXU is a mesh
of interferometers, changing the programming of aggressor channels can introduce phases
and redirect light through the circuit in unexpected ways. These effects are challenging to
disentangle from pure thermal crosstalk when the circuit also has other component errors,
such as beamsplitter imperfections and device loss, making it difficult to directly measure
M .

To address this, we instead developed a digital model of the hardware, which modeled
in software the response of a device with known beamsplitter errors, waveguide losses,
and thermal crosstalk. As the effects of all of these imperfections are known a priori for
Mach-Zehnder interferometer meshes [58, 54], we can fit a software model, where these
imperfections are initially unknown model parameters, to data taken on the real device.
If the software model can accurately reproduce measurements from the hardware, the
parameters found to describe the device imperfections can be used to deterministically
correct errors on the real hardware.

As a note, our approach is not a “black-box” or neural network model of the device.
Our model is based on the physics of how Mach-Zehnder interferometer meshes behave,
and thus the parameters we find are realistic and correspond to true physical attributes
of the device, such as the error for a particular directional coupler. Similar to the earlier
work on hardware error correction, our approach here efficiently corrects for component
errors, as no real-time optimization is done on the hardware. However, fitting the device
response to a software model eliminates the need to calibrate component errors one at a
time.

We fit the model to a dataset obtained by programming 300 random unitary matrices
into the chip and measuring the response to 100 randomly selected input vectors. Our
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Figure 5-12: Measured fidelity of 500 arbitrary unitary matrices implemented on a single layer
using a “direct” approach (orange) and an approach that takes into account hardware errors
and thermal crosstalk (blue).

software model, which is written in JAX for auto-differentiability, is fit to the measured
data using the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm.
We found that our software model was able to predict hardware outputs with an average
fidelity F = Tr[U†

measuredUsoftware]/N of 0.969 ± 0.023.

Benchmarking

We benchmarked the matrix accuracy of the CMXU by programming 500 random 6 × 6
unitary matrices sampled from the Haar measure into the device and measuring the fidelity
F = Tr[U†

programmedUmeasured]/6. To measure the fidelity on chip, we sequentially transmit
the columns of U†

programmed to compute the metric F = Tr[U†
programmedUhardware]/N . As

the inverse of a unitary matrix is its adjoint, for a perfect hardware implementation of
Uprogrammed the quantity F should equal 1.

In the histogram in Figure 5-12, we show the measured fidelity obtained with a “direct”
programming, where we algorithmically decompose the phase shifter settings as outlined
in [45], and using a modified programming that corrects for hardware errors, losses, and
thermal crosstalk [58, 54, 55]. While a direct programming only achieves a matrix fidelity
of ⟨F ⟩ = 0.900 ± 0.031, correcting for hardware non-idealities improves this value to
⟨F ⟩ = 0.987 ± 0.007 for the CMXU.

5.5 Nonlinear optical function unit
It is the combination of linear and nonlinear transformations that make DNNs universal
function approximators7. Therefore, a key requirement for a coherent optical DNN pro-
cessor is realizing fast, energy-efficient nonlinearities that can be integrated into photonic
circuits.

7Several linear layers cascaded in series is equivalent to one linear transformation!
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Figure 5-13: Circuit diagram of resonant EO nonlinearity. The photocurrent Ip directly drives
a pn-doped resonant modulator. No amplifier stage is required between the two and the devices
are directly connected on chip. By adjusting the bias voltage VB , the nonlinearity can be
operated in forward or reverse bias.

This is an ongoing problem in the photonic computing community. Optical material
nonlinearities, such as the second-order susceptibility, are notoriously weak and require
watts of optical power to activate. The early demonstration by Shen and Harris [15]
proposed realizing an optical nonlinearity using saturable absorbtion. There are two ob-
stacles to using such a nonlinearity in realistic system, however: (1) they are difficult to
monolithically integrate; and (2) response is linear at low optical powers and only exhibits
nonlinearity at high incident powers. Since optical power is progressively lost through the
circuit, it will become increasingly challenging to trigger the nonlinearity for very deep
networks. Preferably, we should have a nonlinearity that triggers at low optical powers8.

A more viable approach is to make use of an intermediate electrical conversion, as
electrical devices can realize extremely strong nonlinearities. Here, the idea is to pho-
todetect part or all of the optical signal, convert the photocurrent to a voltage through a
transimpedance conversion, and use the generated voltage to drive an optical modulator
that re-encodes onto a new signal. This strategy, often referred to as an optical-electrical-
optical (or OEO) nonlinearity, has been explored previously by other groups [151, 78, 142].
However, these devices have been relatively inefficient, either requiring absorbing all of the
optical signal and converting it to the electrical domain, or integrating with the system
an off-chip, high-gain electronic amplifier to boost the modulation voltage.

Neither of these strategies emulate a true optical nonlinearity, which would entail the
optical signal coherently modulating itself. Although not strictly necessary, such a device
would also be programmable to realize different types of nonlinear functions9.

In order to implement such a function, we developed the resonant electro-optical
nonlinearity shown schematically in Figure 5-2iii)10. This device directs a fraction 𝛽 of the
incident optical power |b|2 into a photodiode by programming the phase shift 𝜃 in an MZI.

8Such a nonlinearity could approximate a rectified linear unit, or ReLU function, which is an extremely
popular activation function for today’s DNNs.

9As we discovered later, this also enabled the exciting possibility of training the nonlinearity.
10Many of the characterization experiments presented in this section on the nonlinear unit were performed

in collaboration with Dr. Alexander Sludds.
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Figure 5-14: Left: Detuning of the cavity resonance at various incident optical powers when
operated in carrier injection mode (VB > 0). Right: Cavity detuning in carrier depletion mode
(VB < 0). Our system realizes close to a linewidth detuning without the use of any amplifier,
improving energy consumption and latency of the nonlinearity. A full linewidth detuning can be
realized by further engineering the cavity finesse.

The photodiode is electrically connected to a pn-doped resonant microring modulator, and
the resultant photocurrent (or photovoltage) detunes the resonance by either injecting (or
depleting) carriers from the waveguide. The remainder of the incident signal field passes
into the microring resonator; the nonlinear modulation of the electric field b by the cavity,
which is dependent on the incident optical power |b|2, results in a coherent nonlinear
optical function for DNNs. Setting the detuning of the cavity and the fraction of optical
power tapped off to the photodiode determines the implemented function.

The electrical circuit for the NOFU is shown in Figure 5-13. Incident light generates
a reverse current in the photodiode; depending on the bias voltage VB , this either injects
carriers into the modulator or generates a photovoltage that depletes the modulator of
carriers. Figure 5-14 shows the device response in injection (left) and depletion modes
(right). In injection mode, optical power modulates both the loss and phase of the
resonator, producing a strong nonlinear response to the incident field b. In depletion
mode, we observe nearly a linewidth detuning when the incident light is switched on vs.
off, which is induced by the voltage produced by the photodiode.

The phase response and round-trip attenuation a as a function of the photocurrent I
are shown in Figure 5-15. Assuming a photodiode responsivity of ∼ 1 A/W, we find that
about 75 𝜇W is sufficient to detune the NOFU by a linewidth. As we bias the device to
0.8 V in our experiment, the power consumption during operation is therefore ∼ 60 𝜇W.

Compared to prior approaches [78, 142], the NOFU directly drives the modulator
through the photodiode and eliminates the amplifier stage between them. This greatly
improves the latency and energy efficiency of the device, as high speed transimpedance
amplifiers can consume up to hundreds of milliwatts of power [152]. For our device,
incorporating such an amplifier would have increased the power consumption by about
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Figure 5-15: a) Phase shift Δ𝜑 in cavity vs. incident photocurrent. b) Round-trip amplitude
loss a as a function of incident photocurrent. As photocurrent increases more carriers are injected
into the waveguide, increasing the loss of the optical signal inside the resonator.
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Figure 5-16: Activation functions measured on chip. Programmable function shapes can be
realized by adjusting the cavity detuning Δ𝜆 and fraction of light 𝛽 tapped off to the photodiode.

two orders of magnitude. Our design, which eliminates intermediate amplifier circuitry
and is therefore “receiverless” [3], is not only more energy-efficient, but also eliminates
the latency introduced by the amplifier.

In Figure 5-16, we show several of the activation functions measured on chip. The
programmability of the device enables a wide range of nonlinear optical functions to be
realized. By tuning the fraction of power tapped off to the photodiode and the relative
detuning of the cavity, we can not only program the form of the nonlinear function, but
also train it during model optimization.

5.6 Optically accelerating training
A central challenge in machine learning is the efficient training of model parameters.
In particular, a critical bottleneck for model training is forward inference, as it requires
many evaluations of the model on a large training set to optimize weight parameters.
In situ training on photonic hardware can take advantage of near-instantaneous DNN
inference, lowering the latency and power consumption of model training. Moreover,
learning weights in real time can benefit applications that natively process optical data,
such as LiDAR systems [144], optical transceivers [148], and federated learning for edge
devices [153, 154].

Previous work on in situ training has focused on developing optical implementations
of “backpropagation,” which is the standard for training electronic DNNs [155, 156].
However, these approaches train only the linear layers of a photonic system and require
evaluating gradients of activation functions on a digital system, thereby limiting the opti-
cal acceleration obtained by computing a multi-layer DNN in a single shot. Alternatively,
genetic algorithms have been used to optimize weights on chip [157], but they are chal-
lenging to scale to large model sizes and require many generations to converge.

We trained the model parameters of the FICONN in situ, including those of the
activation functions, by evaluating the derivatives of those parameters directly on the

113



Figure 5-17: a) A multivariate cost function ℒ(Θ) can be minimized by computing the direc-
tional derivative of the function along a random direction (black). This directs the optimization
along the component of the gradient (red) parallel to the search direction. Over multiple itera-
tions, the steps taken along random directions average to follow the direction of steepest descent
to the minimum. b) In situ training procedure. At every iteration, the directional derivative of
the cost function ℒ(Θ) is computed in hardware along a randomly chosen direction Δ in the
search space. Δ is chosen from a Bernoulli distribution to be ±𝛿. The weights Θ are then
updated by the measured derivative following a learning rate 𝜂 chosen as a hyperparameter of
the optimization.

114



Figure 5-18: In situ training of a photonic DNN for vowel classification. We obtain 92.5%
accuracy on a test set, which is comparable to the performance (92.5%) obtained on a digital
model with the same number of weights. Despite not having direct access to gradients, our
approach produces a training curve similar to those produced by standard gradient descent
algorithms.

hardware11. Our approach, which is based on prior work on in situ optimization of analog
VLSI neural networks [158, 159], is robust to noise, performs gradient descent on average,
and is guaranteed to converge to a local minimum. Moreover, it is not limited to our
specific system, but can be generalized to any hardware architecture for photonic DNNs.

A direct approach to computing the gradient on hardware would be to perturb the
model parameters Θ = [Θ1, Θ2, ..., ΘN ] one weight at a time and repeatedly batch the
training set through the system [15]. This procedure produces a forward difference esti-
mate of the loss gradient ∇ℒ(Θ) with respect to all weights. Moreover, since the deriva-
tives are evaluated directly on chip, this procedure extends to other hardware parameters,
such as the detuning and fraction of power tapped off in the NOFU. The drawback to
this approach is that for N parameters, it requires batching the training set through the
hardware 2N times.

Our approach varies all model parameters Θ simultaneously. Figure 5-17 sketches the
optimization procedure. Instead of perturbing the parameters one weight at a time, during
training the system perturbs all parameters towards a random direction Δ in search space,
i.e. Θ → Θ+Δ = Θ+ [𝛿1, 𝛿2, ..., 𝛿N ]. At each iteration the system then computes the
directional derivative:

∇Δℒ(Θ) =
ℒ(Θ+Δ) − ℒ(Θ − Δ)

2||Δ||
(5.9)

As in standard gradient descent, the weights Θ are then updated to Θ → Θ−𝜂∇Δℒ(Θ)Δ,
where 𝜂 is a learning rate chosen as a hyperparameter of the system.

Compared to the forward difference approach outlined earlier, our approach requires
batching the training set through the hardware only twice per iteration. Moreover, we
obtain true estimates of the cost function ℒ and the derivative ∇Δℒ(W), ensuring that
component errors or errors in calibration do not affect the accuracy of training. Unlike

11I would like to thank Prof. Stefan Krastanov for many useful discussions on the training experiments.
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Figure 5-19: Performance of the digital model on the vowel classification task. The model
overfits the training set, achieving 100% accuracy, but performance on the test set is comparable
to the accuracy achieved by our system (92.5% on the digital model vs. 92.5% on the FICONN).

other derivative-free optimization methods, our approach will always track the direction
of steepest descent, as errors in the gradient direction average out to zero over multiple
epochs [158, 159].

We implemented in situ training of Θ, which includes weights and nonlinear function
parameters, for a standard vowel classification task (dataset available at [160]). At each
epoch, we batched a training set of 540 samples into the system and implemented the
optimization loop described in Figure 5-17b with a learning rate 𝜂 = 0.002. We reserved
part of the data (N = 294) to evaluate the trained model on inputs it had not seen before.

The top plot of Figure 5-18 shows the classification accuracy of both datasets during
training. Our system achieves over 96% accuracy on the training set, and over 92%
accuracy on the test set. When training a digital system, we found it also obtained similar
accuracy on the test set. Each epoch batches the training set only three times through the
system; two times to evaluate the derivative ∇Δℒ(Θ) and once more to evaluate ℒ(Θ) at
the current parameter set Θ. We observed that the system quickly trained to an accuracy
exceeding 80%, and then slowly asymptoted to a training accuracy of 96%. This behavior
resembles the optimization trajectories of other first-order methods for training DNNs in
electronics, such as stochastic gradient descent. Moreover, our system successfully trains
using only 16-bit accuracies for the weights. Lower precision weights reduce memory
requirements for training; however, digital systems are challenging to train with fewer
than 32 bits due to numerical errors in gradients accumulating during backpropagation
[161].

We also trained a digital model on the vowel classification task to benchmark the
performance of in situ training on our system. The two models had the same number of
neurons (3× 62 = 108), but the weights of the digital model, unlike those of our system,
were unconstrained and could be arbitrary real matrices. We trained the system with a
tanh nonlinearity, as we obtained very poor performance on the test set using a ReLU
function. When training, we normalized the output with a softmax function and used the
categorical cross-entropy loss function, as we did in the in situ training experiment.
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The performance of the digital model is shown in Figure 5-19. The performance on
the test set is similar to that obtained by our system. However, the digital model is
significantly overfit, achieving perfect (100%) accuracy on the training set. One possible
explanation for why our system does not overfit as much is the presence of analog noise,
which has been suggested to function as regularization during DNN training [162].

5.7 Why does training work?

It may seem a bit surprising that our training algorithm, which is stochastically searching
the parameter space, converges so efficiently to a high accuracy. Unlike other derivative-
free optimizers, however, the advantage of the stochastic optimization approach we use
is that it performs gradient descent on average. Here we illustrate this by adapting the
proof provided in [158].

Suppose we are optimizing a DNN with model parameters Θ and error functional
ℒ(Θ). Gradient descent iteratively optimizes the parameters with the update rule:

ΔΘ = −𝜂 𝜕ℒ
𝜕Θ

(5.10)

Assuming 𝜂 > 0 and is sufficiently small, this update rule will converge to a local minimum
of ℒ(Θ). Finite difference methods for analog hardware attempt to compute 𝜕ℒ/𝜕Θ by
perturbing one parameter at a time in the system. Each epoch therefore requires 2N
evaluations of the model on the training set for N model parameters.

Alternatively, one could perturb all model parameters at once by a random vector
Π = [𝜋1, 𝜋2, ...,𝜋N ], where the elements of Π are randomly and independently chosen
from an N-dimensional hypercube. The update rule here is:

ΔΘ = −𝜇ℒ(Θ+Π) − ℒ(Θ − Π)

2||Π||
Π (5.11)

= − 𝜇

2|𝜋|
√
N
[ℒ(Θ+Π) − ℒ(Θ − Π)]Π (5.12)

where 𝜇 is the learning rate. Assuming that the elements of Π are independently drawn
from a Bernoulli distribution as ±𝜋, we can substitute ||Π|| as |𝜋|

√
N . We note here that

𝜇 ̸= 𝜂, and in practice 𝜇 can be much larger than 𝜂 while preserving stable convergence.
We Taylor expand the expression [ℒ(Θ+Π) − ℒ(Θ − Π)] as:

2
∑︁
i

𝜕ℒ
𝜕𝜃i

𝜋i (5.13)

Substituting this into the update rule, we get:

ΔΘ = − 𝜇

|𝜋|
√
N

(︃∑︁
i

𝜕ℒ
𝜕𝜃i

𝜋i

)︃
Π (5.14)
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= − 𝜇

|𝜋|
√
N

(︃∑︁
i

𝜕ℒ
𝜕𝜃i

𝜋i

)︃
[𝜋1, 𝜋2, ...,𝜋N ] (5.15)

Since the 𝜋i are independently chosen, E[𝜋i𝜋j ] = 0 if i ̸= j . Therefore, the expected
parameter update E[ΔΘ] is:

E[ΔΘ] = − 𝜇

|𝜋|
√
N

(︃∑︁
i

𝜕ℒ
𝜕𝜃i

E[𝜋2
i ]x̂ i

)︃
(5.16)

= − 𝜇

|𝜋|
√
N

(︃∑︁
i

𝜕ℒ
𝜕𝜃i

|𝜋|2x̂ i
)︃

(5.17)

= −𝜇|𝜋|√
N

𝜕ℒ
𝜕Θ

(5.18)

We therefore find that, on average, this procedure performs gradient descent with an
effective learning rate 𝜂 = 𝜇|𝜋|/

√
N .

5.8 Discussion
An important DNN metric is the latency 𝜏latency of inference, i.e. the time delay between
input of a vector and the DNN output. For the FICONN, 𝜏latency is dominated by the
optical propagation delay, which we can estimate from the propagation length on chip to
be ∼435 ps.

The FICONN’s power consumption is dominated by the thermal phase shifters, which
require ∼25 mW of electrical power to produce a 𝜋 phase shift. Replacing these devices
with low-power quasi-static phase shifters, and integrating high-speed modulators [163]
at the transmitter, could push total energy consumption to ∼ 10 fJ/OP for large systems,
while maintaining ns latencies and throughputs of thousands of TOPS. As a point of
comparison, electronic systolic arrays such as the tensor processing unit (TPU) require at
minimum N + 1 clock cycles for a single N × N matrix-vector multiplication. A three-
layer DNN with 256 neurons would therefore require ∼1 𝜇s to compute at a 700 MHz
clock speed [13], which is more than two orders of magnitude longer than in a photonic
processor.

Low inference latency in the FICONN could be used to improve the speed of model
training, which consumes significant power [164] and has motivated work on more efficient
scheduling algorithms [165]. In situ training could also ultimately improve the general-
ization of DNN models, as training with noise has been suggested to regularize models,
preventing overfitting [162] and improving adversarial robustness [166] to small pertur-
bations in the input. Training in situ can implement this regularization automatically by
leveraging quantum noise in hardware. We observed this effect in our own experiments;
while both the FICONN and a digital system obtained similar performance on the test set
for the classification task studied, the digital system overfit the model, achieving perfect
accuracy on the training set. Lastly, our implementation of in situ training, which does
not require a digital system for computing gradients, is compatible with feedback-based
“self-learning” photonic devices [16, 167], enabling fast, autonomous training of models
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without any required external input.
The FICONN architecture, which was implemented in a foundry-fabricated photonic

integrated circuit, could be scaled to larger sizes with current-day technologies. Silicon
photonic foundries have already produced functional systems of up to tens of thousands of
components [168]. Spectral multiplexing, for instance through integration of microcomb
sources with silicon photonics [169], can enable classification of data simultaneously across
many wavelength channels, further reducing energy consumption and increasing through-
put. The system’s energy consumption would further improve by optimization of the
NOFU; while our implementation makes use of microring resonators, photonic crystal
modulators [170], microdisks [163], or hybrid integration of lithium niobate [171, 172]
can further reduce the optical power required to trigger the nonlinearity. While our im-
plementation of the FICONN makes use of feedforward unitary circuits, which implement
fully-connected layers in a DNN, this architecture can also be generalized to other types
of neural networks. For example, temporal or frequency data may be classified using
recirculating waveguide meshes [69], which can implement feedback and resonant filters.
Such a system, where phase shifter settings are trained in situ [69, 173], could be used
for intelligent processing of microwave signals in the optical domain.

5.9 Scaling
The FICONN architecture with N modes and M layers performs 2MN2 + 2(M − 1)N
operations per inference, where the first term accounts for linear matrix operations and
the second term refers to the nonlinear activation function. For large N the first term
dominates and we approximate the total number of operations as 2MN2.

The total energy consumption per operation of the system for a single inference can
therefore be approximated as 𝜏latencyPtotal/(2MN2), where Ptotal is the total power con-
sumption of the photonics, drivers, and readout electronics and 𝜏latency is the time re-
quired for a single inference. The system requires MN2 phase shifters, N transmitters, N
receivers, and MN nonlinear optical function units, making the total power consumption
Ptotal = MN2PPS+MNPNOFU+N(PTX+PICR). Dividing the FICONN’s energy consumed
during 𝜏latency by NOPS upper-bounds the energy-per-operation as

EOP ≈ 𝜏latency

2

[︃
PPS +

PNOFU

N
+

PTX + PICR

MN

]︃
, (5.19)

Our device performs 2MN2 + 2(M − 1)N = 240 operations per inference, where
M = 3 and N = 6. The phase shifters require about 25 mW per 𝜋 phase shift; as
the internal phase shifters only require up to 𝜋 phase shift, while the external phase
shifters require up to 2𝜋, we assume the average power consumption per phase shifter
is 18.75 mW. The phase shifter contribution to the energy per operation is therefore
144 × (18.75 mW) × (435 ps)/(240 OPs) = 4.9 pJ/OP, where we include phase shifters
for both model parameters and the transmitter. This energy requirement would reduce
substantially with the use of undercut thermal phase shifters [39], which reduce power
dissipation by an order of magnitude, or MEMS-actuated devices [92, 174], both of which
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are available in silicon photonic foundries. The nonlinear optical function unit consumes
60 𝜇W of power, which contributes about 12 × (60 𝜇W) × (435 ps)/(240 OPs) = 1.3
fJ/OP to this total.

In principle, PPS could be zero through the use of nonvolatile phase shifters, such as
phase change materials, or even through ultra-low power phase shifters such as MEMS
devices, which exhibit static power dissipations on the order of fW [174]. As a result,
larger system sizes would have an asymptoptic decrease in the energy/OP as 1/N .

This is fundamentally a different paradigm from digital systems, which have a fixed
energy cost of 100-1000 fJ/OP regardless of the model size. Here, the energy cost for
O(N2) operations scales as O(N); thus, very large system sizes could potentially realize
energy consumptions at the attojoule/OP level.

5.10 Conclusion
In this chapter, we discussed the demonstration of a coherent optical DNN on a single chip
that performs both inference and in situ training. The FICONN system introduces inline
nonlinear activation functions based on modulators driven by “receiverless” photodection,
eliminating the latency and power consumption introduced by optical-to-electrical conver-
sion between DNN layers and preserving phase information for optical data to be processed
coherently. The system fabrication relied entirely on commercial foundry photolithography,
potentially enabling scaling to wafer-level systems.

Moreover, we have demonstrated in situ training of DNNs by estimating derivatives
of model parameters directly on hardware. Our approach is also generalizable to other
photonic DNN hardware being currently studied. In situ training, which takes advantage
of the optically-accelerated forward pass enabled by receiverless hardware, opens the path
to a new generation of devices that learn in real time for sensing, autonomous driving,
and telecommunications.
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6
The road ahead

6.1 Introduction
Programmable silicon photonic systems show promise to be a flexible, scalable platform
for accelerating tasks in computation. In this thesis, we have focused on several key
challenges for building up these systems, including addressing analog hardware errors,
realizing scalable packaging, and control, calibration, and algorithms for realizing end-to-
end, photonic processing of deep neural networks. However, many challenges remain; in
this section, I conclude by discussing key research questions to be addressed in the future.

6.2 Scalable, error-corrected photonic meshes
In Chapter 3, we reported the development of the first deterministic, gate-by-gate error
correction algorithm for programmable photonic meshes. Our algorithm, which is gen-
eralizable to any programmable architecture of Mach-Zehnder interferometers, enables
scalable, accurate optical computation in photonic systems of up to hundreds of channels.
As we move forward in scaling these systems, future questions to consider include:

• Our work focused primarily on coherent errors introduced by beamsplitter imper-
fections. While we found device loss to have little effect on accuracy once error
correction is applied, this may not hold true for extremely large circuits. Are there
algorithms that can correct for the incoherent errors introduced by device loss?

• Following our work on local error correction, we developed self-configuration algo-
rithms that can progressively error correct a rectangular mesh using feedback only
from the circuit output. Are there ways to apply these algorithms to generic circuit
architectures?

• As these systems scale up, increasing numbers of devices will not be programmable
to the correct setting due to the Haar distribution. Are there ways to prune these
devices or replace them with passive components to improve computation accuracy?
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• Are there neural network architectures that are particularly robust to error in these
systems? Importantly, will they exhibit performances comparable to state-of-the-art
DNN architectures today?

6.3 Large-scale, multi-chip photonic modules
Chapter 4 reported the development of a novel, “alignment-free” paradigm for chip-to-chip
photonic interconnects. This approach greatly relaxes the alignment tolerances required
for photonic assembly, potentially enabling the use of high-volume, low-precision packaging
tools. Here, future questions to consider include:

• The main tradeoff we make to realize alignment tolerance is the increased demands
on fabrication tolerance. Are there strategies to relax this tolerance, perhaps by
making use of ideas from adiabatic coupling?

• While we developed an analytical formalism, we found in practice when designing
experimental devices that it still required tedious, finite-difference time-domain sim-
ulations. Can we further extend our analytical theory, perhaps using ideas from
eigenmode expansion (EME), to simplify device design?

• Efficient coupling between two different material platforms requires the interconnect
waveguides have the same effective index. This may be challenging for material
systems that have dramatically different refractive indices. Are there ways to simplify
the mode-matching process for these cases?

• There is a tradeoff between angular tolerance and insertion loss, as a sudden, non-
adiabatic intersection between the waveguides produces radiation loss. Are there
strategies to relax this tolerance, perhaps by adiabatically varying the intersection
angle?

6.4 Energy-efficient, high-speed photonic nonlineari-
ties

A key element of the demonstration in Chapter 5 was the realization of an in-line, coherent
optical nonlinearity that enabled programmable activation functions for DNNs. Future
work in developing these systems may consider:

• We realize extremely efficient optical nonlinearities by making use of carrier injection.
The main drawback here is that it is difficult to realize bandwidths exceeding 1 GHz
due to recombination lifetimes. Are there alternative ways to realize higher speeds?

• Can we further reduce activation energies for these devices, perhaps with closer
integration (thereby reducing device capacitances) or more efficient resonators (such
as photonic crystal devices)?
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• The nonlinear function unit we report is dependent on the instantaneous optical
signal incident on the device. Are there ways to incorporate hysteresis or memory
into such a device? Such a device would have applications for emerging classes of
AI models, such as recurrent neural networks (RNNs) and transformer models used
in natural language processing.

• Our results in Chapter 5 show that we can realize functions that emulate nonlinear-
ities used in DNN training, such as the rectified linear unit (ReLU) function. Are
there ways to realize sharper nonlinear functions or true bistabilities? For example,
is it possible to realize a true, all-optical comparator that can implement a ReLU
function?

6.5 Optically accelerated neural network training
This work reported in this thesis culminated with the demonstration, in Chapter 5, of end-
to-end photonic training of deep neural networks. We obtained accuracies comparable to
digital system by evaluating gradients of model parameters directly on the hardware.
Future research directions in this area might include:

• We used a “parallel perturbation” scheme that can be shown to estimate gradient
descent. However, there is an algorithmic slowdown relative to true gradient descent.
How does this slowdown scale, and are there more efficient algorithms for training
in optics that do not suffer from this drawback?

• While inference in our system was clockless, our training still operated on an effective
“clock,” as each cycle required: 1) perturbing the weights; 2) computing the error
function; and 3) updating the model parameters. Are there ways to make use of
fast analog feedback to realize truly clockless, “speed-of-light-limited” training of
neural networks?

• Backpropagation is the de facto standard for digital training of DNNs. While some
work has been done in realizing these systems in optics, it has several drawbacks,
including: 1) low precision, making scaling to deep networks challenging; 2) requiring
evaluation of activation gradients on digital hardware; and 3) requiring multiple
evaluations of the training set on the hardware per epoch. Are there ways to
implement effective gradient descent without these limitations? Recent work on
frequency-multiplexed gradient descent in analog hardware suggests this is possible.

• Do we need to backpropagate for efficient training? Recent work on direct feedback
alignment (DFA) suggests this may not be needed. Are there ways to map such an
algorithm to a single-shot, deep photonic neural network?
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