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Abstract

Passive localization and tracking of a mobile emitter, and the joint learning of its re-
verberant 3D environment, are important yet challenging tasks in the shallow-water
underwater acoustic setting. A typical application is the monitoring of submarines or
other man-made emitters with a small, surreptitiously-deployed receiver array. This
task can be rendered more difficult by obstacles such as seamounts or piers, which can
occlude the line of sight from the emitter to the receivers. Furthermore, the under-
water acoustic domain is complex and difficult to model, and a good signal-to-noise
ratio is not assured. We view these complexities as features that can be leveraged
for improved localization performance, using global optimization and neural network
methods. We develop a multi-stage optimization and tracking architecture that pre-
cisely maps the reflective boundaries in the environment, and thereby uses the non-
line of sight reflected arrivals for robust and accurate localization. Each stage of this
architecture establishes domain knowledge such as synchronization and occluder esti-
mation, which are inputs for the following stages of more refined algorithms. Within
this framework, we introduce a 2D neural network boundary estimation method that
outperforms the existing methods in the literature, and is robust to the large time
delay estimation errors that are common in the application domain. We analyze the
performance and reliability of this holistic framework, both in simulation and in real-
life reverberant watertank testbeds that model the shallow-water underwater acoustic
setting. The results are encouraging for the future development of better-performing
localization methods with novel capabilities, using data-driven learning algorithms.

Thesis Supervisor: Gregory W. Wornell
Title: Sumitomo Electric Industries Professor of Engineering
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Chapter 1

Introduction

In many kinds of applications in electrical engineering, recent breakthroughs in com-

putational resources and optimization methods has led to novel capabilities and large

performance gains in well-established fields. There is a current trend towards au-

tomated, data-driven solutions to problems that were previously handled by hand-

crafted or user-supervised algorithms. Such solutions can offer superior robustness

when expert knowledge is not available, or when there is no clear way to explic-

itly integrate domain knowledge into classical closed-form solutions. These develop-

ments encourage us to study underwater settings, specifically for sensing via acoustic

modalities, as a field where new capabilities could be leveraged to approach various

challenging localization and environment learning problems.

There is a long history of acoustic measurements being leveraged to reveal im-

portant information about underwater environments, with important civilian and

defense-related applications [5]. Familiar examples of such methods are the passive

time of arrival (TOA) localization and direction of arrival (DOA) estimation of acous-

tic sources, and side-scan sonar for the active imaging of the seabed. Traditionally,

such methods have focused on comparatively simple propagation environments, and

their associated analytically-tractable low-dimensional physical models. However,

with the advent of modern data-driven artificial intelligence and machine learning

methodologies, there is the potential to accommodate—and ultimately to exploit—

the more complex structures present in difficult environments. Rather than explicitly

21



encoding domain knowledge into the calibration of localization and environment learn-

ing methods, which can be difficult due to complexity of the physical models involved,

one can potentially use machine learning to implicitly incorporate this information

into such methods in an automated manner.

Broadly, our focus has been on developing this potential in underwater acoustic

sensing scenarios. In an illustrative example scenario that we consider throughout

this study, there is a radiating source in the environment, whose location we cannot

control, and a variety of unknown (non-radiating) structures in the environment, po-

tentially including surface vessels and submarines, rigs, pilings, and buoys. While we

would ideally like to have as many receivers as possible surrounding such an emitter,

the recent development of inexpensive, autonomous underwater vehicles encourages

us to accomplish with such a small receiver platform what could be done with a

large array. Traditionally, one might be interested in the locations of the radiating

sources, and view the non-radiating (but reflecting) structures in the environment

as complicating the problem. However, the view we take is that this structure is

also an important aspect of situational and environmental awareness, and thus it can

be valuable to recover both the locations of sources and as much detail about the

environment as possible. In essence, the source is effectively an acoustic ‘flashlight’

that illuminates the scene, allowing for a passive sensing of the broader environment.

Thus, one could potentially leverage the capabilities of active, bistatic sonar methods

within a passive setting.

To realize the application potentials of this example requires extensions to existing

underwater acoustic computational modeling tools, and developing a suitable data-

driven framework for signal processing and inference. Our development explicitly

takes into account that in typical applications of interest, it is often unrealistic to have

labeled data available for algorithm training. Even when the environment has been

mapped ahead of time, as is the case for the bathymetric profile of Scripps Canyon as

illustrated in Fig. 1-1, its inherent complexity poses major challenges for localization.

For example, while environment estimation applications often approximate reflective

surfaces as piecewise planar, the multipath setting that would be encountered is very
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(a) (b)

Figure 1-1: Scripps Canyon: a shallow-water environment which exemplifies the com-
plex seafloor profile that can be encountered in application settings (a); and a slice
of its seafloor (bathymetric) profile for better illustration of the setting’s scale (b)
(images obtained from [1]). Note that while the zones labeled as A and B in (a) can
roughly be approximated as planar surfaces, the rest of the environment could only
be considered piecewise and locally planar depending on the localization application
geometry.

different depending on where an emitter and receiver are situated. If we knew the

emitter and receiver positions, we could roughly predict the multipath signal profile

that we would encounter. However, when the emitter position is unknown in such a

complex environment, simultaneously localizing it and leveraging the environmental

structure becomes challenging. Ultimately, the goal is to develop data-driven and

physics-informed methods that scale to very large numbers of parameters, and are

thus capable of handling the kinds of natural complex structures that are frequently

encountered in ocean acoustic applications.

The complexities of the ocean environment often lead to the need to rigorously

train personnel who will fine-tune localization and estimation systems in real-time, or

will interpret the estimation results accurately. Automation is important to reduce

the operational burden and to streamline ocean operations. While the complexity

of ocean-specific phenomena can be leveraged for improved performance, the difficul-

ties posed by modeling such environments without trained human operators encour-

ages the development of domain-agnostic algorithms. Such algorithms could then be

adapted to work in different environments without expert knowledge.

Within the broad scope of underwater acoustic localization and environment es-
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Figure 1-2: A conceptual summary of a potential simultaneous localization and envi-
ronment estimation method. The sections with red outline the key steps where novel
developments can be required to handle challenging environments. More advanced
tracking algorithms could also be investigated in future work.

timation, we approach a more narrowly-defined problem that is amenable to the

leveraging of the complex reverberant setting for improved performance. Presented

with justifications further in the text are the following key features that are leveraged

by our proposed methods:

� A known speed of sound which is constant throughout the environment, with the

implicit assumption of short ranges and shallow seafloor depths for underwater

acoustic localization.

� A pulsed, periodic, mobile man-made emitter that broadcasts a known high-

frequency signal.

� Isotropic receiver hydrophones with accurately-known locations.

With the above features, we can conceptually approach the problem of simulta-

neous localization and environment estimation with a layered architecture such as

illustrated in Fig. 1-2. This type of architecture proposes to solve a series of prelim-

inary problems so that the overall ill-posed, non-linear and non-convex optimization

task can be rigorously approached with global optimization methods. In this thesis,

we will detail a specific architecture that we have designed to solve the localization

and environment estimation task in simulation and in real-life settings.
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Although we design and implement our methods for an underwater acoustic set-

ting with such restrictive and simplifying features, we ultimately observe that there

are novel capabilities and large performance gains that can be achieved over well-

established and state-of-the-art methods even in this relatively basic setting. Hence,

the algorithms that we modify or introduce could serve as building blocks of more

complex systems that tackle increasingly difficult ocean environments and applica-

tions.

1.1 Challenges Posed by Underwater Acoustic Envi-

ronments

The underwater acoustic setting is one of the most difficult and complex environments

for passive localization applications, and indeed for other fields such as wireless acous-

tic communications. To understand how such a localization task can be accomplished

with a realistically limited computational and experimental resources, we summarize

here some key considerations for underwater acoustic environments [6]. We ultimately

choose to design our methods to tackle a less challenging subset of underwater envi-

ronments where straight-ray acoustic propagation models can hold. In our work, we

ultimately observe that even this more amenable environment requires novel data-

driven optimization methods for successful localization and environment learning.

1.1.1 Highly-Variable Environmental Parameters

Spatial and temporal (including seasonal) variability is very significant in underwater

acoustics, and the basic channel parameters of a given setting depend on a wide range

of such variable environmental conditions. For example, the attenuation constant of

acoustic plane waves in the ocean can be modeled as a function of salinity, signal fre-

quency, water temperature, and pressure. A key difficulty is that underwater acoustic

channels are wideband in nature, due to the fact that the signal bandwidth is not

negligible with respect to the center frequency. This is the cause of many practical is-
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sues, such as when the Doppler shift can exceed the subcarrier frequencies of OFDM

communication signals. Furthermore, phenomena such as a rough sea surface can

cause significant frequency modulation. At the outset of our work, we therefore made

the choice of basing our proposed methods on time delay estimation, rather than ad-

ditional frequency-domain phenomena, due to the complexity of accurately modeling

and replicating some of these features. For our localization and environment estima-

tion methods, such issues as Doppler shifts are additional unmodeled sources of error

in time delay estimation, rather than posing fundamental operational difficulties.

A key issue in deep ocean environments is that, as illustrated in Fig. 1-3, there are

large variations in the speed of sound that can lead to the refraction of the emitted

signals. This variability is due to factors such as the change in temperature, pressure,

and salinity of the water column. Such variability of the speed of sound over large

swathes of the ocean can lead to ducting phenomena, rather than the straight-ray

propagation of acoustic waves. The realistic propagation models that incorporate such

phenomena include normal mode theory, which can also model elastic seafloor layers,

especially for low signal frequencies where such features have a more pronounced

effect [7]. However, it is difficult to formulate a fully 3D propagation mode analysis

model for general environments that can have additional reflective boundaries.

Since subtle changes in the soundspeed profile can cause large changes in the am-

plitudes of the received arrivals, it is unlikely that these amplitudes can be estimated

accurately, especially in near-surface waters. The phase of the received signal is also

difficult to predict due to scattering in shallow water. However, in comparison to these

challenges, the TOAs and DOAs are more accurately-measurable characteristics of the

received signal. Hence, a robust localization method can leverage such information

in its core algorithms, and potentially leverage other features of the received signal

to subsequently improve performance.

In practice, horizontal variations of the speed of sound are much smaller than

vertical (i.e., along depth) variations, so over short ranges it is valid to approximate

the horizontal speed of sound to be a constant. A variable soundspeed profile can

dramatically affect the observed emitter signature, especially when monitored over
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Figure 1-3: Representative depth-varying soundspeed profiles for underwater acoustic
environments; in this case, different glacial bays in the same area (image reproduced
with permission from [2]). Not only is the speed of sound highly variable with depth,
but different bodies of water in the same geographical region can have large variations
as well.

time and over geographic scale. Yet the spatially and temporally dense sounding of

this underwater soundspeed profile over a wide ocean region and over different depths

is a major operational challenge. In practice, if the ocean is sampled over a grid,

interpolation has to be performed to obtain the ocean parameters that lie between

the grid points. While such methods are active areas of oceanographic research, we

focus on short ranges that side-step some of these domain-specific issues.

1.1.2 Complex Natural Features and Noise

Complicated underwater terrain profiles pose a major challenge for passive underwa-

ter environment estimation methods. The seabed is an acoustic medium, and the

interactions of acoustic signals with the seafloor has to be treated as a propagation

problem in a heterogeneous medium in order to obtain effective attenuation coeffi-

cients for the reflected waves. The reflective properties of the boundaries, such as the

sediment soundspeed, have a strong effect on determining the magnitudes of different
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multipath reflections; but their effects on modifying the TOAs are less pronounced. If

we aim to leverage multipath for localization and environment learning, for example,

muddy seafloors present a greater challenge than sandy seafloors, as they cause the

reflections from the seafloor to be much weaker. In order to take such complexities

into account over a wide range of operating frequencies and distances, one can solve a

set of partial differential equations that describe acoustic propagation, and obtain the

range- and depth-dependent Green’s function [8]. When working with a narrowband

signal, the effect of reflections will only be a constant factor in the received ray; but if

the bandwidth is high, then the distortions due to the different absorption constants

at different frequencies can distort the emitted signal.

In the ocean, the noise picked up by the receivers will be non-stationary. This

is an additional complication in methods where parameters such as the noise power

are required to be known or estimated, as these features can change very rapidly.

For example, different multipath phenomena have different delay spreads which can

evolve rapidly over time. Furthermore, there can be entanglements between different

multipath arrivals, since they need not be uncorrelated due to various factors.

There are both natural and man-made sources of noise in the underwater envi-

ronment. Interference from marine mammals, i.e., whale and dolphin songs can be

significant in specific areas of the ocean. Schools of fish can also scatter or attenuate

sound, and critical ocean regions can feature high biological interference. Near the

shore, breaking waves can create a very noisy acoustic environment with high noise

power. In fact, this wave-breaking is the dominant source of naturally-occurring am-

bient sound. Phenomena such as rainfall and strong winds can also contribute to

producing a very different ambient soundscape. Rough seas lead to severe scatter-

ing phenomena and transmission losses. At lower frequencies, man-made sources of

noise such as distant shipping can be dominant. In fact, passively listening to the

soundscape of the open ocean, it is often difficult to correctly identify the source of

the various ambient noises. The forecasting and accurate modeling of such features

is very difficult.

This brief overview of the challenges of the ocean environment highlights the
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need for expert knowledge in general underwater acoustic settings, and why trained

operators are essential for many current localization and sensing systems. We now

study some of the current methods used to deal with these issues, and outline our

own approach to this problem.

1.2 Underwater Acoustic Localization and Environ-

ment Learning Methods

While we have limited our scope to the passive underwater acoustic localization and

tracking of a mobile emitter in dynamic shallow-water settings [9], and the joint

learning of its reverberant 3D acoustic environment, this task is still one of the most

important and challenging localization problems [10], [11]. The emitter to be localized

could be a surface vessel or underwater vehicle, and the receivers could be surrepti-

tiously placed for passively monitoring a body of water. This is a different application

setting compared to active localization modalities such as sonar, where multipath in

the reverberant environment also poses difficulties that are met by a variety of meth-

ods [12]. The use of such active methods, however, could alert other receivers in the

environment to the localization attempt, which encourages the deployment of passive

localization methods in defense applications. The receivers in such applications are

typically omnidirectional tethered hydrophones, but they could also be placed on a

set of mobile underwater vehicles or suspended from them as an array, as illustrated

in Fig. 1-4.

A representative scenario of our localization task is presented in Fig. 1-5, where

the goal is to estimate the unknown source position at each emission point along

a trajectory (red circles), in the presence of a large occluder, in a scaled model of

the shallow-water setting. This is an instance of a difficult problem that also arises

for indoor acoustic or radio-frequency localization [13], where the non-LOS (NLOS)

arrivals due to multipath reflections must be judiciously exploited rather than mit-

igated, typically by using a suite of convex optimization techniques [14]. Similarly,
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Figure 1-4: Typical shallow-water underwater acoustic localization problem setting;
the image is modified from the original in [3]; licensed under a Creative Commons
Attribution 4.0 International license.

the emitter’s mobility must be leveraged in order to obtain an unambiguous solution

of the unknown reverberant environment. Therefore, there is need for a robust pas-

sive localization method that can incorporate a wide range of side information from

features of the task that would typically be viewed as challenges.

Without some restrictions on the passive localization setting, such problems are

ill-posed and admit infinitely many solutions. Some of the important aspects of the lo-

calization setting are modeled as in Table 1.1; the limited information here leaves some

key parameters undetermined, so that it is natural to adopt a multistage approach

to first estimate them before using these estimates to solve the complete problem.

Accordingly, as one method pursued to tackle this problem, we can deploy a series

of localization and environment estimation steps sequentially. We call this architec-

ture Passive End-to-End Localization (PEEL) [15]. Each stage of PEEL produces

approximate solutions to different aspects of the overall localization and environment

estimation problem, which then become inputs for the following stages.

PEEL is described as an end-to-end method because it starts from received signals

that do not have a common clock with the emitter, and ultimately delivers a joint

estimate of the full emitter trajectory and the environment. The static nature of the

environment, and the spatial continuity in the trajectory of a moving emitter, are

key to unambiguous localization and environment estimation. We demonstrate that

PEEL can achieve strong performance, even when there is modeling mismatch that
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(a) (b)

Figure 1-5: Top-down sketch of the test environment with emitter’s trajectory (a),
and the photograph of this experimental setup (b). This is a 3D localization and
tracking problem with an occluding cylinder, and is more challenging than settings
where the receivers surround the emitter [4].

Table 1.1: Model of the localization and environment learning setting.

Problem Feature Modeling Assumptions
Speed of sound, 𝑣s Known, and constant within the environment

Environment Static; only the emitter position is changing
Reflectors, 𝜂𝑗 Planar, known number,

unknown position and orientation
Transmissions Periodic transmissions of deterministic pulses,

with known period
Receivers, pr,𝑖 At least 4 receivers deployed, with known positions

violates the assumptions in Table 1.1.

While there are many techniques for simultaneous localization and mapping in

active settings, to the best of our knowledge there is currently no such passive lo-

calization method for omnidirectional receivers. Critically, we leverage motion and

multipath, which are often seen as posing difficulties for localization, to improve per-

formance and to disambiguate the reverberant environment.

One of the most challenging tasks handled by PEEL is finding an initial estimate

of the reflective boundaries in the environment. This estimate is based on the known
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positions of the receivers, the estimated position of the emitter, and the estimated

times of arrival (TOAs) of the NLOS reflections. Note that we are not given which

NLOS arrival is produced by which boundary, which is an issue known as the echo la-

beling problem. If this combinatorial-complexity problem were to be solved correctly,

then existing algorithms such as least-squares (LS) or Euclidean distance matrices

(EDM) localization may be employed to estimate the boundaries [16], [17]. However,

these algorithms assume a high signal-to-noise ratio (SNR) to work well.

We propose a supervised learning method that performs image regression for 2D

boundary estimation, incorporating convolutional neural networks (CNNs) that are

trained on synthetic data, which we term COTANS-NN [18]. This CNN method out-

performs the LS and EDM algorithms in our experiments, especially when operating

outside of the high-SNR regime assumed by these alternative algorithms. A high-

SNR regime can be unattainable in practical applications [19], so this robustness of

COTANS-NN to noisy data is a critical advantage.

In PEEL, we deploy each of the algorithms discussed above in sequence, as de-

picted in Fig. 1-6. While we could conceptually solve the complete localization and

environment estimation problem with a single overall optimization algorithm, in prac-

tice, it is computationally and algorithmically more feasible to tackle individual tasks

as optimization sub-problems with well-justified initialization and re-iteration stages

as outlined here.

1.2.1 Prior Work in Localization

When the ocean environment is accurately known, state-of-the-art matched-field pro-

cessing (MFP) methods can be used for localization [20], [21], [22]. Such techniques

can be augmented by incorporating additional prior probabilities on the environment

[23], or by using adaptive algorithms [24]. The emission signatures of a variety of

sources in the underwater environment can also be leveraged as domain knowledge

that enhances MFP [25]. However, the standard MFP framework does not account

for the presence of man-made features such as pier pilings or anchored vessels as il-

lustrated in Fig. 1-7, or natural features such as unsurveyed reefs [26]. Depending
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Figure 1-6: The sequence of algorithms in the PEEL method. The sections with red
outlines incorporate novel developments or applications of those algorithms, which
will be detailed at length in this thesis.

on their positions, such large and potentially unknown objects can act as additional

reflective boundaries, or as occluders that block the line-of-sight (LOS) arrivals to re-

ceivers. MFP is sensitive to model mismatch [27], [28], so that additional algorithms

may need to be implemented to ensure robust performance [29]. These mismatches

may be caused by factors such as greater environmental variability [30], or source

motion [31]. A mismatch due to the presence of unmodeled objects could lead to

deteriorating MFP performance, which motivates our formulation of a localization

framework that incorporates their presence.

While there is currently no end-to-end passive localization method in the literature

such as our proposed PEEL architecture, similar frameworks have been designed for

different settings. Joint acoustic tracking and environment learning problems can be

solved using simultaneous localization and mapping (SLAM) methods [32], [33] in

active settings, or when the emitter and receivers form a network [34], [35], [36]. In

fact, there is a wide variety of probabilistic localization and tracking methods which

may be employed with sensor networks [37], [38], [39], [40], [41]. When there is a large

number of receivers in a regular array, simultaneous localization and environment

estimation is possible without any prior estimates of the boundaries or the emitter

location [42]. However, such methods may be unreliable in an environment with a few
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(a) (b)

Figure 1-7: Scripps Pier: an example of an underwater acoustic localization setting
with challenging natural and man-made features (a). Note the series of breaking
waves along the beachline, which is a major source of acoustic noise. When a receiver
array is suspended off the side of the pier (b), the pier pilings pictured here and
the nearby civilian vessels create additional difficulties for localization and tracking
applications.

irregularly-spaced isotropic receivers and potential occlusions of arrivals. While there

are time-difference-of-arrival (TDOA) [43], [44] and time-of-arrival (TOA) [45], [46],

[47] methods for localization, and the leveraging of reflective boundaries for improved

localization performance [48], these methods do not account for unknown occluders

as PEEL does.

In underwater acoustic applications, it is typically desirable to use as few receivers

as possible for localization. To this end, single-receiver localization in underwater

acoustic settings (a difficult challenge) has been the topic of ongoing research. This

problem has been solved in non-underwater settings with known reflective boundaries

[4]. Bearing estimates can be used in 2D underwater scenarios [49], and frequency-

domain knowledge can be exploited in general 3D settings [50] with only a single

receiver. While we have successfully performed single-receiver estimation with the

techniques that we develop here, our framework handles a broader set of problems

with an unknown environment and with unsynchronized emitters and receivers. For

this more difficult setting, more than one receiver is typically needed unless accurate

prior environment knowledge is available, and we have generally deployed 4-5 receivers

in our experiments.
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Neural network-based methods have been used in recent years for successful emit-

ter localization in a range of environments, including the underwater acoustic setting

[51], [52], and reverberant indoor environments [53]. These methods often involve

generating simulated environments using tools such as Bellhop [54], which are then

used to train NNs for localization. The successful application of NNs to the underwa-

ter setting builds on the success of other machine learning algorithms for localization

tasks [55]. There are also studies that have been performed for NN-based localiza-

tion in smaller model watertank settings, rather than the ocean [56]. An important

application setting where NNs offer promising capabilities is single-hydrophone local-

ization, where the LOS arrival and the NLOS surface reflection can be leveraged to

allow for localization despite using the minimum number of receivers [57]. Direction

of arrival estimation with NNs rather than conventional beamforming methods have

also been demonstrated for the ocean environment [58].

One of the key challenges in NN-based localization is to devise techniques that

are as agnostic to a specific setting as possible, to achieve broad applicability. A

data-driven methodology is adopted in order to avoid the rigorous, explicit modeling

of complex dynamic environments that can result in model mismatch. Collecting a

large underwater acoustic dataset is time-consuming and expensive, so it is vital that

realistic simulation results are employed for data augmentation in generating training

datasets for NNs.

1.2.2 Prior Work in Environment Estimation

We have briefly mentioned that LS or EDM localization may be used to estimate the

reflective boundary positions in the environment. An alternative boundary estimation

methodology is developed in [34], where reflective boundaries are observed to be

common tangents to ellipses (in 2D) or spheroids (in 3D) that are geometrically

defined by the NLOS path distances. By fitting tangent planes to these ellipses, we

can potentially estimate the boundaries while avoiding the error-prone echo labeling

procedure. This methodology relies on a mathematical transformation that generates

an image of overlapping curves from the NLOS TOAs. For convenience, we refer to the
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domain to which the NLOS arrivals are mapped as the common tangents to spheroids

(COTANS) domain, and refer to the transformation that maps to this domain as the

COTANS transform. We envision assuming an estimated emitter position as a known

ground truth, and using the NLOS arrivals to accurately estimate the boundaries,

after which further joint localization and environment learning can be carried out.

We adopted the COTANS methodology early in our work [34], but observed that

the methods in the literature had implementation difficulties that could be improved

on with a novel neural network (NN) approach. As originally proposed, COTANS

applies a user-defined heuristic smoothing filter to COTANS images and picks the

resulting maxima from overlapping smoothed curves. However, this method can be

fragile when applied to real data with estimation errors.

Fitting tangent planes to spheroids for boundary estimation, as in our COTANS-

NN method, is becoming increasingly widespread for indoor settings. This methodol-

ogy was proposed in [59], [60] as the common tangent (COTA) algorithm. A similar

approach [34] was used for joint localization and boundary estimation, using a method

inspired by the Hough transform rather than leveraging an analytical cost function

as in [59] (that assumed only small-scale errors). In [61], a Hough transform-inspired

methodology was used to estimate an indoor environment and to perform echo label-

ing, with provisions to reject incorrectly-chosen second-order echoes. Though these

techniques refer to the Hough domain, they do not fit planes to point clouds as the

Hough transform does [62]. Instead, they sample points from a spheroid’s surface,

then deduce the corresponding tangent plane at each point. To avoid conflating

this tangent plane-fitting method with the Hough transform, we refer to a COTANS

transform and COTANS domain instead.

Plane-fitting boundary estimation methods typically apply a smoothing filter to

COTANS images, followed by the extraction of maxima [34]. This local averaging

approach aims to estimate the boundaries when errors are present, which can prevent

the COTANS curves corresponding to the different NLOS arrivals from intersecting

at the correct boundary parameters. However, this hand-crafted filtering operation

is itself sub-optimal, and parameters such as filter sizes and kernels are manually
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tuned to specific settings. A multi-scale filtering approach that can handle a range

of different reverberant settings is needed. This difficulty is our main motivation

for pursuing a NN-based method that can automate and combine these filtering and

peak extraction tasks. If a NN is trained with a wide range of setting geometries

and realistic estimation errors from different levels of noise, it can potentially learn

the optimal inference rule, which can be viewed as joint (and implicit) filtering and

peak extraction. The resulting network can then be efficiently re-trained for different

environments. Thus, COTANS-NN is fundamentally different from other tangent-

fitting methods, instead of being a straightforward NN extension of past work.

Hand-crafted filters make the implementation of alternative methods more diffi-

cult, since boundary estimation tasks have different physical scales or domains (e.g.,

indoor or underwater acoustic). It can also be challenging to make a fair performance

comparison between these different methods, since implementation details such as fil-

ter sizes and kernels can be missing. In contrast, COTANS-NN can be re-trained in an

automated manner without having to modify any implementation-specific hyperpa-

rameters. Furthermore, it is not straightforward to incorporate domain knowledge or

prior information into a hand-crafted filter method, especially when considering that

COTANS transform results are synthetic images where image processing heuristics

are not necessarily applicable. Since COTANS-NN is a data-driven neural network

method, it is able to learn and leverage such domain knowledge.

Oceanographic data is typically sparse in time and space, so that there are difficul-

ties in using a sufficiently large dataset for a data-driven approach to localization and

environment learning. Hence, it is typical to augment real-life datasets with simula-

tion results, using tools such as Bellhop [54] or KRAKEN [63] for underwater acoustic

settings [64], [65]. By leveraging such simulators, NNs can potentially also solve a

range of associated estimation problems in environment learning. We have carried out

similar studies for NN-based localization in the ocean [66]; however, the incorporation

of tracking or occlusion to such a framework has not yet been attempted. The PEEL

architecture that we propose incorporates NNs to solve the particular sub-problem

of obtaining an initial estimate for the boundary locations, but it otherwise relies on
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global optimization and tracking rather than being a NN method.

1.3 Implementation and Applicability Considerations

This work will address a holistic, architecture-based approach to the localization

and environment learning tasks. Rather than considering various localization sub-

problems in isolation, we aim to perform a joint estimation so that our results are

reflective of a practical system that is as widely-applicable as possible.

We deploy global optimization algorithms and NN-based methods that were pro-

hibitively computationally expensive in the past. Even with the most advanced re-

sources for personal use, such as 1 TB of RAM and a 64-core processor in a single

computer, the prototyping stages of our methods were slow and featured day-long tri-

als. It is therefore not surprising that some of the solutions which we have developed,

do not seem to have been previously considered in the literature.

A running theme in our research has been solving localization and environment

estimation problems with minimal model requirements. Because localization is a

geometry-dependent task, it is possible to introduce unrealistic constraints that seem-

ingly improve accuracy tremendously. Thus, we need to justify our choices of param-

eters at every step. This type of justification is provided by implementing a complete

chain of estimation algorithms, which starts from a real raw received signal and esti-

mates the necessary parameters. We also limit our target settings to situations where

our models can be expected to hold; for example, we assume a short-range shallow

underwater acoustic setting, so that we can expect an almost constant speed of sound

through the water.

We present the signal and environment models that we use in our research in

Chapter 2, including the simulations and preliminary experiments that were used to

confirm the modeling assumptions. The design decisions, algorithms, and results for

the PEEL and COTANS-NN methods are given in Chapters 3 and 4, respectively.

We conclude with future directions in Chapter 5.
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Chapter 2

Signal and Environment Model

In this chapter, we introduce the notation and signal model, and present key geo-

metrical considerations that are necessary to frame the localization and environment

estimation problems. We specifically focus on how multipath arrivals can be mod-

eled and used to improve localization performance. We present our signal model in

Section 2.1, the planar 3D reflection model that underlines its development in Sec-

tion 2.2.1, and the considerations for whether occluders could act as scattering objects

in Section 2.2.2. Our real-life experiments were carried out with a scale watertank

testbed, as detailed in Section 2.2.3; and in Section 2.2.4, we present the results of the

simulation and calibration experiments that were performed in order to verify that

our models were valid for our underwater acoustic application setting.

Note that in our subsequent mathematical notation, lowercase bold variables such

as p denote vectors, uppercase bold variables such as P denote matrices, and upper-

case calligraphic characters such as 𝒫 denote sets.

2.1 Signal Model and Localization Principle: Ex-

ploiting Virtual Emitters and Receivers

The localization and boundary estimation methods which we develop generally rely on

triangulation using time-domain statistics. Triangulation is a standard localization
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(a)

(b)

Figure 2-1: Illustration of virtual receivers produced by reflective planar boundaries in
an occluder-free environment (a), and the corresponding noise-free simulated received
signal for this scenario (b). A NLOS TOF to the real receiver is equivalent to the
LOS TOF to a matching virtual receiver.

principle that models an emitter as the point of intersection of circles in 2D, or

spheres in 3D, of equal time-of-flight (TOF) from the emitter to each receiver. Since

the resulting TOF arcs do not perfectly intersect in practice (e.g., due to noise),

an estimation method has to be used to find an approximate point of intersection;

often, this method has to simultaneously solve an echo labeling problem [67]. When

the locations of reflective boundaries in the environment are known, the multipath

arrivals that they give rise to can be leveraged for better localization accuracy. These

boundaries can be interpreted as producing ‘virtual receivers’ as illustrated in Fig. 2-1,

which in this case corresponds to the structure of the scale watertank testbed setting

which we will detail in this chapter.

We make the simplification that reflective structures are (piecewise) approximated

as 𝑁 static planar boundaries [68], where 𝑁 is assumed to be known, and which are

characterized by the range 𝜌 ∈ R+, azimuth 𝜃 ∈ [0, 2𝜋), and elevation 𝜑 ∈ [0, 𝜋)

of their normal vector relative to the (arbitrarily-chosen) origin. Thus, the 𝑗-th

boundary is parametrized as the vector 𝜂𝑗 = [𝜌𝑗, 𝜃𝑗, 𝜑𝑗]
T, for all boundaries 𝑗 ∈ 𝒮𝑁 ,

where we denote 𝒮𝐾 ≜ {1, . . . , 𝐾} for some 𝐾 ∈ N. We denote the Cartesian
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coordinates of the emitter and the 𝑀 isotropic receiver positions as pe∈ R3 and pr,𝑖∈

R3, respectively, with 𝑖 ∈ 𝒮𝑀 .

The received signal at the 𝑖-th receiver, 𝑟𝑖(𝑡) ∈ R, is modeled as the sum of the LOS

arrival and the single-reflection NLOS arrivals, delayed by their respective TOAs. We

model the second-order reflections as heavily attenuated in the underwater acoustic

setting [66], as compared to the first-order reflections from boundaries such as the sea

surface and the seafloor. The LOS TOA 𝜏𝑖,0, is given by:

𝜏𝑖,0 =
‖pr,𝑖 − pe‖2

𝑣s
, ∀𝑖 ∈ 𝒮𝑀 , (2.1)

where 𝑣s is the speed of sound, approximated as a known constant. This approxima-

tion of 𝑣s can be a valid assumption for well-mixed shallow-water settings at short

ranges and high acoustic frequencies [69], [67].

Reflections can be interpreted as producing ‘virtual emitters’, and for the 𝑗-th

boundary, we obtain the virtual emitter location p𝑖,𝑗 by finding the corresponding

reflection of pe. The NLOS TOA at the 𝑖-th receiver from the 𝑗-th boundary, 𝜏𝑖,𝑗,

is equal to the TOA from the 𝑖-th receiver (pr,𝑖) to the corresponding 𝑗-th virtual

emitter (p𝑗):

𝜏𝑖,𝑗 =
‖pr,𝑖 − p𝑖,𝑗‖2

𝑣s
≜

𝑑𝑖,𝑗
𝑣s

, ∀𝑖 ∈ 𝒮𝑀 , ∀𝑗 ∈ 𝒮𝑁 . (2.2)

We denote a single copy of the periodically-emitted signal as 𝑠(𝑡), and we merge

the effects of attenuation and reflection as the equivalent attenuation coefficient 𝛼𝑖,𝑗

for each path. The received signal 𝑟𝑖(𝑡) at the 𝑖-th receiver is thus modeled by:

𝑟𝑖(𝑡) =
𝑁∑︁
𝑗=0

𝛼𝑖,𝑗𝑠 (𝑡− 𝜏𝑖,𝑗) + 𝜉𝑖(𝑡), (2.3)

where 𝑗 = 0 corresponds to the LOS path, and 𝜉𝑖(𝑡) is an unknown noise signal that

is a realization of a spectrally-flat Gaussian process. Note that 𝛼𝑖,𝑗 can be zero, as

when an occluder blocks a particular arrival, so Eq. (2.3) incorporates the potential

for occlusion. In practice, the environment can be reverberant, and can present

issues such as higher-order reflections and noise that may not be Gaussian [69], [70].
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Furthermore, the number of boundaries 𝑁 that is assumed known may actually be

inaccurate. A proposed localization method must therefore be robust to the resulting

discrepancies that can be encountered in real-life settings.

It is important to note that, while localization approaches that rely on virtual

emitters/receivers as we have discussed are useful and generalizable, there are other

models and corresponding algorithms that can be used in more specific cases. For

example, consider the case where we are given that in addition to an unoccluded

LOS arrival, there is only a single NLOS arrival from the sea surface. This type of

scenario can arise in the deep ocean, where reflections from the seafloor may be too

attenuated or arrive much later than the surface reflection, yielding a less reverberant

environment for localization. For such settings, cepstrum analysis is a useful tool

[71], with promising recent research being performed to implement it on shallow-

water settings as well [72]. We note this approach to highlight the potential for

using different methodologies to leveraging domain knowledge in underwater acoustic

localization.

As for the emitted signal in this localization setting, we model 𝑠(𝑡) as pulsed

and periodic, which limits our estimation scenarios to such man-made sources. This

model allows us to record 𝑠(𝑡) and to infer some key parameters: the approximate

(truncated) channel impulse response length 𝑇𝑐 [73], and the time period 𝑇𝑝 between

emissions. We require 𝑠(𝑡) to meet the following constraints in order to have accurate

estimates {𝜏 𝑖,𝑗} of the {𝜏𝑖,𝑗}. First, we define 𝑇𝑠 as the temporal duration of 𝑠(𝑡), so

that 𝑠(𝑡) is strictly zero outside the time interval 0 ≤ 𝑡 ≤ 𝑇𝑠. Next, we define 𝑇𝐴

to be the full width at half maximum (FWHM) of the autocorrelation function of

𝑠(𝑡), which is the time resolution of the matched-filtered emitted signal. Finally, we

define 𝑇𝑚 as the minimum time difference between the main multipath arrivals. The

operation modes for our localization methods are then as follows:

� If 𝑇𝑠 < 𝑇𝑚, we have a pulse that is shorter than the multipath separation, as

is the case with the Gaussian pulse in our experiments. Here, we do not need

to know 𝑠(𝑡) for localization; 𝑇𝑠 is short enough that the multipath arrivals are

roughly separable.
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� If 𝑇𝑠 > 𝑇𝑚 and 𝑇𝐴 < 𝑇𝑚, then after matched-filtering, the multipath peaks

are roughly separable. Now, we do in fact need to know 𝑠(𝑡) for this matched-

filtering step, so that we are able to identify the distinct arrivals and thereby

solve for the environment.

We also need 𝑇𝑝 > 𝑇𝑐 to avoid different periodic emissions being observed within the

received signal’s time interval. In practice, if 𝑇𝑝 > 𝑇𝑐, then 𝑇𝑝 can be estimated, but

this is an environment-specific problem, as is an estimation of 𝑇𝑚.

Deployments in the ocean environment can introduce additional sources of error

that are outside the scope of our methods, but which can be addressed by various

algorithms in the literature. For example, we model the receivers as being perfectly

synchronized with the same clock. While ensuring this condition was not an issue

in our experiments, in ocean deployments with autonomous receivers there will be

clock drift over time. There is a range of methods to address this difficulty using

self-synchronization algorithms [74]. Likewise, while we have assumed the use of

isotropic receivers in order to ensure the maximal applicability of our methods and the

greatest coverage of potential NLOS arrivals, ocean applications often use directional

receivers. Similar passive estimation methods that leverage ocean ambient noise can

be employed to ensure a more reliable ground truth for localization purposes for such

directional receivers [75].

With these introductory developments, we can rigorously develop our methods

for reliable localization and environment estimation. Before such methods can be

deployed, however, it is important to answer a number of questions that determine

their applicability for a given setting. With a given signal of a certain bandwidth,

and a given emitter and receiver placement, is it possible to resolve the individual

multipath arrivals? Will the propagating acoustic waves penetrate significantly into

seafloor and other boundaries, thereby being refracted and adding to the propagation

distance, or will they be reflected mirror-like back into the water with negligible

distortion? Will objects in the environment act as occluders, or scatterers? The

answers to such questions determine whether it is possible to effectively leverage the

NLOS arrivals for localization and boundary estimation. Hence, it is important to
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set up an accurate simulation environment to obtain an approximate typical channel

response, and to verify its validity with a series of real-life experiments. Such a

simulator and test environment is also very useful for calibration purposes, and to

verify the correct operation of the deployed equipment.

2.2 Verification of the Signal Model in Underwater

Acoustic Propagation Environments

In order to develop acoustic systems capable of accommodating and exploiting com-

plex ocean environments, it is important to have software tools that are capable of

accurately simulating such environments, and to have test environments to confirm

their operation. Indeed, packages such as Bellhop for simulating ocean acoustic prop-

agation phenomena have played an important role in facilitating the development of

existing systems; and the extensions of such packages to complex environments will

play a corresponding role in future systems development. Accordingly, our initial

investigations focused on the development of a simulation toolkit with which to test

the feasibility of our methods, and the construction of a small testbed to replicate

these simulation environments. These preliminary investigations ultimately verified

the validity of the various simplifications in our signal and environment model.

The goal of our simulations is to be able to model reflective boundaries and occlud-

ing and scattering objects, and to produce the resulting predicted impulse responses

for the given underwater acoustic channel. As discussed in Chapter 1.1, we assume

an isovelocity environment in our simulations and algorithms, which is necessary

for straightforward ray optics assumptions to hold. This requires the use of high

frequency signals, so that the straight-ray prropagation approximation is valid. A

modal solution that incorporates the derivation of the appropriate Green’s function

would be necessary at lower frequencies (<1000 Hz) [76], [77], but the more general

environment geometries that we work with make the derivations of such functions dif-

ficult. We limit our work to relatively short ranges in the shallow water environment,
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where we do not expect to observe complex waveguide propagation [78], [79].

Since we are operating at high frequencies, we adopt a ray propagation convention

[80]. This convention allows easy visualization of the acoustic arrivals in terms of

geometric raypaths. Volume absorption of the sound waves in the water is modeled

using the Francois-Garrison model [81]. The absorption of sound upon reflection at

the boundaries is modeled by making the reflection coefficients complex [80].

2.2.1 Planar 3D Environments

The modeling of 2D propagation in underwater environments has been studied exten-

sively, and many propagation models for channels bounded by the sea-surface and the

sediment bottom are available. Modeling of 3D environments also finds mention in the

literature [82], [83], [84], [85], but it is less-explored than the 2D case. Most of these

works focus on solving the well-studied wedge problem. To approach full 3D model-

ing capability, an 𝑁 × 2𝐷 version of Bellhop is available commercially [54]; however,

it is designed for forward propagation and cannot easily incorporate backscattering

from reflective surfaces. This is a very important extension for localization in our

applications, however. Although it was not featured in our publications, one of our

first simulations was a simple set of Bellhop trials with a sea surface and seafloor at

ranges of up to several hundred meters. These simulation results were used to verify

that straight-ray propagation assumptions were being met for our chosen operating

frequencies and ranges to the emitter, and that phenomena such as waveguide prop-

agation were not being observed. Hence, we could proceed with tackling the task of

introducing reflective boundaries to our simulated environments.

The modeling of environments whose geometry incorporates more than two reflect-

ing boundaries is quite complex, compared to the cases with two or fewer boundaries

(e.g., the water column or wedge geometries). This is because in the former case,

even in an isovelocity environment, the rays from the emitter are often not visible at

the receiver due to the geometry, thus creating the need for visibility checks for each

pair of emitter/receiver locations. Furthermore, the number of multipath arrivals of

significant amplitude increases considerably with the number of reflecting boundaries,
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Figure 2-2: A reflected signal can be conceptualized as a direct path from the emitter
to the mirror image of the receiver, or from the mirror image of the emitter to the
receiver, with the same path length.

and is exponential in the number of reflections from boundaries.

In [68], a broad framework is provided for enumerating the multipath arrivals

arising through different combinations of reflections at different boundaries. Here,

a visibility check is used to determine which raypaths are visible at the receivers,

and hence should be incorporated in modeling the recorded field. Once a simulated

impulse response is obtained based on the visible raypaths and their corresponding

path length-based attenuation coefficients, the emitted signal may be superimposed

on these arrivals to generate a simulated received signal. While this framework is

limited to the case where the reflecting boundaries are planar, it is a useful tool

to understand even more complex environments. Thus, our modeling is undertaken

based on [68]. We extend the visibility check approach to also account for reflections

from finite boundaries in the environment, such as a finite corner placed inside a

watertank. Visibility checks are more computationally expensive in these cases, but

can still be carried out.

Throughout the work in this thesis, we have used vector geometry, with vectors

expressed as arrays, to carry out operations such as reflections of points. Consider a

point pr∈ R3 as being the location of a receiver, with Cartesian coordinates [𝑥e 𝑦e 𝑧e]T.

Recall that if we wish to find its mirror image, which produces a ‘virtual receiver’

as illustrated Fig. 2-2, we also need a vector geometric description of the plane of

reflection.

It is convenient to define reflective boundaries as planes of infinite length, which
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can be uniquely described by any point pb on the boundary (a convenient choice

being a vertex or other such endpoint of the plane), and the unit normal vector nb

that points into the halfspace which contains the emitter and receiver in question.

With these two quantities, the plane is defined as the set of points p that satisfy the

equation:

nT
b (p− pb) = 0, (2.4)

based on the fact that the normal vector is by definition orthogonal to any set of

vectors (p− pb) that lie within the plane. Using this definition of reflective bound-

aries, the location of the virtual receiver pv produced by the particular boundary in

Eq. (2.4) is given by:

pv = pr + 2
(︁
(pb − pr)

T nb

)︁
nb. (2.5)

If a plane is of finite length, it is important to check whether it can give rise to

a valid reflection, i.e., whether it can serve as a reflective boundary for a particular

placement of an emitter and receiver. A geometric method (in 2D) for verifying the

validity of a mirror image is to check whether the ray from the emitter to the virtual

receiver (or from the virtual emitter to the receiver) intersects with the line segment

that serves as the plane of reflection. In 3D, the same methodology may be used

by first projecting the ray from the emitter to the virtual receiver onto the plane of

reflection, thus producing an equivalent 2D scenario.

To find the point of intersection pi on the reflective boundary of the line segment

from the emitter to the corresponding virtual receiver, we note that this point can be

defined as:

pi = pe + (pv − pe)𝑤, (2.6)

where 𝑤 > 0 is a constant to be determined. Eq. (2.6) simply expresses the fact that

the point of intersection lies somewhere in between the virtual receiver and the real

emitter. Since this point of intersection must also lie on the reflective boundary, it

must also satisfy the equation that defines the reflective plane (Eq. (2.4)), so that we

get:

nT
b (pe + (pv − pe)𝑤) = nT

bpb. (2.7)
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Therefore, solving this equation for 𝑤, we get:

𝑤 =
nT
bpb − nT

bpe

nT
b (pv − pe)

. (2.8)

For a given localization and environment learning task, it is an important design

choice to determine whether to use virtual emitters or receivers. Two key considera-

tions in this regard are whether the emitter or the receiver positions are reliable and

known ground truths, and whether either the emitter or receivers are mobile. For

example, in our PEEL localization and environment estimation method, we have sta-

tionary known receivers and an unknown moving emitter to be localized, so we make

use of virtual receivers. On the other hand, in our COTANS-NN boundary estimation

method, we have emitter and receiver locations that are both (at least approximately)

known, but we have only a single emitter and we have multiple receivers of potentially

varying number, so we chose to use virtual emitters for algorithmic simplicity.

2.2.2 Scattering From 3D Objects

The PEEL localization and environment estimation method is designed to compensate

for the presence of occluding objects in the environment. However, depending on

their sizes, acoustic properties, and the emitted signal, such objects could potentially

act as scattering objects rather than occluders. In this case, we would have an

unmodeled source of error in our experiment, as our algorithms work with LOS and

NLOS arrivals but do not currently account for strong scatterers. For example, in

our PEEL experiments, we use a wooden cylinder as an occluder, as objects that are

geometrically analogous to pier pilings. A key question that had to be answered was

whether such wooden cylinders could act as operationally significant scatterers, for

emitted Gaussian pulses with a high center frequency of 280 kHz.

Consider the case of vertical cylinders that extend from a flat bottom to a flat

water surface, as will be the case for our watertank experiments. The cylinders

scatter the incident field, generating a scattered field. In regions that are behind the

cylinders (with reference to the source), a shadow is formed at high frequencies due
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to destructive interference between the incident and the scattered field [86]. Cylinder

scattering in such cases has been studied in the literature since the 1950s [87], for

while it is rare to encounter an actual cylinder ocean, such an object serves as a

reasonable and tractable mathematical model. It is simplest to model the acoustic

scattering under the assumption that the incident waves have a planar wavefront,

which is a far-field assumption. The scattering of a plane wave incident obliquely

on an elastic cylindrical shell is discussed in [88]. Furthermore, the special cases

of a rigid body cylinder and pressure-release cylinder are incorporated based on the

expressions in [89], although these more complex models were ultimately not required

in our watertank experiments.

More concretely, at a frequency 𝑓 , the total acoustic field (including scattering

effects) at a hydrophone at a radial distance of 𝑟ℎ and depth 𝑧ℎ from the point of

incidence on the ellipse, and aligned at an azimuthal angle 𝜃ℎ with respect to direction

of propagation, is given by a summation over modes as [88]:

𝑝𝑠(𝑓, 𝑟ℎ, 𝜃ℎ, 𝑧ℎ) = 𝑝𝑖𝑒
𝑖𝑘 sin(𝛼)𝑧ℎ

∞∑︁
𝑛=0

𝐴𝑛𝐻𝑛(𝑘 cos(𝛼)𝑧ℎ𝑟ℎ) cos(𝑛𝜃ℎ), (2.9)

where 𝑝𝑖 is the complex incident wave amplitude, 𝛼 is the elevation angle of incidence

of the wave, 𝐻𝑛 is the Hankel function, and 𝑘 = 2𝜋𝑓
𝑣s

is the wavenumber, where 𝑣s is

the speed of sound. The expression for the modal coefficients 𝐴𝑛 is given in detail in

[88], and depends on the outer radius 𝑟a and inner radius 𝑟b of the cylindrical shell,

and on its elastic properties, among other parameters. In practice, it is sufficient to

restrict the summation to 𝑀 = 𝑘𝑟a+1 modes to get fairly reliable results [90]. Using

these basic building blocks of scattering theory, we can determine whether occluders

will cause significant scattering.

2.2.3 Experimental Verification Platforms: Watertank Testbeds

Having developed the basic reflection and scattering theory that is necessary to eval-

uate the validity of our signal model, we now discuss the experimental platforms that

allows us to verify that this body of theory is applicable to our localization setting.
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Firstly, we discuss the high frequency acoustic testbed (abbreviated as HiFAAT

for convenience) that we use for our PEEL experiments (Fig. 1-5(b)). This testbed

provides high frequency (200-400 kHz) acoustic data from a reverberant environment,

which is useful for carrying out experiments in a controlled setting and for testing

algorithms before planning larger-scale experiments. Since a testbed such as HiFAAT

uses reasonably accessible equipment, we provide its details here so that other users

are able to assemble an equivalent test environment.

HiFAAT is designed around a modified Ender 5 Plus 3D (E5P) printer as more

clearly seen in Fig. 2-3, which provides precise control of transducer placement and

rapid mapping of tank volumes. The E5P has a relatively large print volume of 35 cm

x 35 cm x 40 cm and precise, 0.1 mm carriage positioning. The tank volume (a plastic

tub in our case), selected to fit on the Ender 5 plus print table, is roughly 25 cm x 32

cm x 15 cm. Acoustic signals are transmitted and received using ITC 1089D spherical

ceramic crystals, which are useful in the 200-400 kHz frequency range. Signals for

the ITC1089D transducer are designed using Matlab and uploaded to a networked

Siglent SDG2042X arbitrary waveform generator. Received waveforms on the sec-

ond ITC1089D are amplified and filtered with Stanford Research Systems SIM910

and SIM965 modules before acquisition with an Agilent Technologies DSO5034A os-

cilloscope. Signal transmission and acquisition is controlled with custom National

Instrument LabVIEW software, which also positions the E5P carriage between trans-

mission/acquisition cycles using standard G-code printer commands sent over a vir-

tual serial interface.

The HiFAAT testbed is useful despite its small scale. The tank is roughly 70

wavelengths deep and 150 wavelengths wide in the horizontal direction. The most

unrealistic element in this setup is excessive reverberation from the tank side walls,

which will not be present in the ocean environment. Such reverberation can be

time-gated out of the data, but imposes limits on source-receiver ranges that can be

achieved without leading to unrealistically strong reverberation.

One of the important parameters to consider for our test environments is the

frequency-dependent absorption loss coefficient which causes attenuation of the emit-
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Figure 2-3: A picture of HiFAAT showing 2 ITC1089D transducers mounted between
2 vertical scattering cylinders. The center frequency of the pulse transmissions is 280
kHz with a wavelength of roughly 1.5 mm. The vertical source near the top tank
wall is mounted to the carriage of an Ender 5 Plus 3D printer, which provides 3-axis
computer-controlled movement for mapping out tank volumes.

ted signal, beyond the range-dependent free-space propagation attenuation. When

comparing the modeled received signal strength to the experimental results, not ac-

counting for this coefficient can lead to discrepancies. For our high-frequency pulses

through freshwater watertank experiments, we calculated an absorption loss coeffi-

cient of 0.9986, and therefore neglected this term in our modeling. For more general

emitted signals and over longer ranges, it is important to verify whether this term

can be omitted in modeling, or must be incorporated.

The magnitude of a real underwater acoustic received signal from HiFAAT (ob-

tained from an emitted Gaussian pulse) is given in Fig. 2-4(a); here, the most promi-

nent peaks are the LOS and the first reflection from the water surface. Note that

the LOS arrival has a smaller magnitude than the surface arrival for this particular

geometric placement of the emitter and receiver, because these hydrophones are not

perfectly isotropic. If we were given that there are 6 first-order reflections as is the

case here, it would be difficult to determine the corresponding peaks. The situation

is further complicated if an occluder blocks LOS as in Fig. 2-4(b). In this case,

algorithms that count on a strong LOS arrival would fail. One of the key motivations
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(a) (b)

Figure 2-4: Example of the magnitude of a received acoustic signal in the HiFAAT
watertank testbed when no occluder is present (a), and when an occluder obstructs
LOS (b).

of our proposed methods is to overcome such issues.

While the HiFAAT testbed allows us to conduct very precise localization ex-

periments, we also worked with a much larger-scale testbed: the Scripps Ocean-

Atmosphere Research Simulator (SOARS) wave tank facility in the Scripps Institu-

tion of Oceanography, which is depicted in Fig. 2-5. The length of this wave tank is

36 m, and its width and depth are 2.4 m. Hence, it can be used to approximate a

shallow-water ocean environment better than HiFAAT can. The temperature of the

water in the wave tank is modifiable as well in an automated manner. As the PEEL

method for localization and tracking had already been implemented on data from Hi-

FAAT by the time SOARS was accessible, the data that was collected at SOARS was

instead primarily used to test the performance of our neural network-based boundary

estimation method.

SOARS can be used to generate both winds and waves in a controlled manner, as

depicted in Fig. 2-6. The relevant aspect of this feature for our particular localization

scenarios is that, in future work, different sea surface conditions can be generated in

a precise manner, to test our methods in a wide range of simulated environmental

conditions.

The watertank experiments which we conduct take place in a controlled environ-
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Figure 2-5: Overview of the SOARS watertank facility at the Scripps Institution of
Oceanography.

ment with minimal ambient noise; when testing our algorithms, white Gaussian noise

was synthetically added to our received signals to simulate a range of noisy condi-

tions. In a real open-ocean environment, it is important to measure the ambient noise

over time, and to test localization methods under such conditions instead of potential

noise power levels that may be too low or too high than is realistic. There is a wide

range of algorithmic and experimental methods in the literature for such ocean am-

bient noise measurement [91]. For future work, we have collected ambient noise and

interference measurements from Scripps Pier, as illustrated in Fig. 2-7, which could

be synthetically added to our experimental signals in this fashion.

2.2.4 Watertank Testbed Experiments for Model Verification

We first discuss the verification of the validity of our 3D straight-ray propagation and

planar reflection model. Implementing the virtual emitter methodology of [68], we

benchmarked our code against ray-modeling results available in the literature for the

case of a 3D wedge [84]. Our simulated TOAs broadly agreed with the results in [84],

agreeing on the number of visible virtual emitters and differing only slightly from the
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Figure 2-6: The SOARS wave tank can be used to generate rough water surface
conditions with user-controlled wind and wave parameters. A transparent window
in the side of the tank allows us to monitor the experimental setup and the precise
height of the waves.

literature results. These slight differences in TOAs can be attributed to the fact that

[84] accounts for the more complex beam displacement effect that occurs when rays

are totally internally refracted at surface discontinuities [80]. However, for the sake

of simplicity, we have not included this effect, as it creates only minute differences

in TOAs for our experiments. Since the results from our model match those in the

literature within a reasonable degree of accuracy, we can proceed with further 3D

modeling in complex environments with multiple planar boundaries.

As a proof-of-concept test of the validity of this model, we carried out an exper-

iment in the HiFAAT watertank that is outlined in Fig. 2-8. Here, a corner-shaped

reflector made of metallic sheets is placed in the interior, and impulse responses are

recorded for different orientations of this wedge. The tank walls are modeled as plas-

tic (polyethylene/polypropylene mixture), with a density and compressive speed of

sound of 900 kg/m3 and 2000 m/s, respectively. The fact that the tank walls are

thin surfaces that border on air (even for the bottom, which is elevated) makes the

penetration of sound waves into the material negligible. If this were not the case,

we would have had to employ a more advanced model [83], and would have had to

account for phenomena such as beam displacement [92].
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Figure 2-7: Preparing for the deployment of an emitter and a vertical receiver array
at Scripps Pier. Note the weights being tied to the ends of the lines on which the
emitter and receivers have been attached, intended to prevent excessive swaying in
the wavy and windy ocean environment so close to the surf zone.

We compare the results from the watertank experiment to results obtained by our

simulator in Fig. 2-9. The simulation is carried out for rotation angles between 11∘

and 80∘, as our model predicts that there is no LOS ray observed for angles lower

than 11∘. We are able to capture some major features of the received signal using our

simulator, and good estimates of the TOAs. These include the first 2 stable arrivals,

the arc-like pattern in the data (corresponding to reflections from the corner pieces,

which are sensitive to the angle of the corner), and even some subsequent arrivals.

However, there seems to be some mismatch in the relative amplitudes predicted by

our model. This may have to do with the assumed acoustic parameters of the mate-

rials not matching their real properties. Our simulator also shows the reverberation

dying down rapidly after 3.5×10−4 seconds, whereas this is not observed in the data.

The later arrivals are stronger than expected, indicating that attenuation due to re-

flections is less than what the model indicates. Note that, if the angle of the corner is

roughly known, there is enough information in the NLOS arrivals at a single sensor for
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Figure 2-8: Experimental setup in the HiFAAT watertank to test whether reflections
from boundaries are being accurately modeled.

localization. Likewise, from multiple known emitter or receiver locations, unknown

corner boundaries could be mapped.

Next, we carry out a set of scattering experiments, where theoretical and practical

results demonstrate that this is not ultimately an issue for the HiFAAT testbed. For

the solid wooden cylinder used in our watertank experiments, we have 𝑟a = 0.01

m (a diameter of 2 cm), and 𝑟b = 0. The density, compressive acoustic speed and

shear acoustic speed of the wooden cylinder are assumed to be 600 kg/m3, 4150

m/s and 1050 m/s based on [93, 94]. In our particular experiments, the emitted

signal was a Gaussian pulse with a nominal center frequency of 280 kHz. Various

real-life calibration runs and simulations based on implementing Eq. (2.9) indicated

that scattering was negligible at such high frequencies. The occlusion of the cylinder

and the multipath from the reverberant environment were found to dominate the

results, so that we did not pursue more detailed scattering modeling. However, at

lower frequencies, it is strongly encouraged to confirm that scattering effects can
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(a) (b)

Figure 2-9: Normalized and model-predicted scattered field (in dB) for the watertank
experiment illustrated in Fig. 2-8 (a), compared against the real data recorded from
HiFAAT (b).

be neglected for a given set of occluder dimensions and material properties, with

modeling based on the reference literature provided here.

The closeness of the simulated and experimental results, and the ability to dis-

criminate the different NLOS TOAs, served as the critical proof-of-concept for our

subsequent localization and environment-learning experiments. The mismatches be-

tween these results would be even more pronounced in larger underwater acoustic

environments, especially in the dynamic ocean setting [95]. This encourages the de-

velopment of methods which are able to function robustly despite such discrepancies,

and which rely more on extracted TOA data than the amplitudes of the arrivals in

the received signals. Similarly, the discrepancies that were observed were more pro-

nounced for the predicted phases of the received arrivals than their magnitudes. This

feature of the experimental data encouraged us to pursue incoherent rather than co-

herent detection methods. These were general design directions that influenced the

implementation of our methods on underwater acoustic settings; hence, our approach

was to propose general modular frameworks to solve localization and environmental

estimation problems. For other application settings where modeling can be more ac-

curate and features like phase information can be reliably extracted, the proposed

frameworks could be augmented with additional modules for enhanced performance.
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Chapter 3

Joint Localization and Structure

Learning

In this chapter, we outline the PEEL method for joint localization and structure

learning. We present the theoretical and algorithmic development of this method

in Section 3.1, and detail the corresponding results that are achieved in the scale

watertank environment of Fig. 1-5 in Section 3.3. The main contribution which we

present here is an architecture for joint localization and environment learning. Among

other tools, PEEL makes use of:

� A global optimization method for joint boundary estimation and localization,

which does not need to be tuned to a specific problem.

� The mapping of unknown occluders after tracking, followed by iterations with

a refined optimization metric, which has not previously been implemented for

passive localization.

� Closed-form derivations for some key steps of a boundary estimation technique

[34], that improve computational efficiency and accuracy.

With the signal and environment model presented in Chapter 2, the localization

problem where the emitter and reflector locations are both unknown can theoretically

be disambiguated if there are multiple non-collinear emitter and receiver locations
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in 2D, and non-coplanar locations in 3D. In practice, however, obtaining a robust

fine-resolution solution for these emitter and receiver positions can be challenging.

The solution critically depends on the setting geometry, and interference between

multipath arrivals or their attenuation can lead to a poor localization result. The

impact of reflective boundary positions on overall localization performance is hard to

express in explicit functional form, and optimization algorithms are typically used to

obtain approximations to the true solution. Based on these caveats for the design of

practical localization methods, the sequence of algorithms that we deploy in PEEL

leads to a tightly constrained search space for the emitter position, and thereby eases

the computational load. This allows us to obtain accurate solutions for the localization

task.

3.1 PEEL Method for End-to-End Localization and

Structure Learning

In the PEEL method, we first use TDOA and TOA localization for initialization;

then obtain an initial estimate of the reflective boundary locations; and finally track

a moving emitter as we simultaneously learn the environment, as summarized in

Fig. 3-1. Each step in Fig. 3-1 is presented in sequential order.

3.1.1 Stage 1: Coarse Localization of the Emitter

We first describe a standard TDOA localization algorithm (which does not require

knowledge of {𝜂𝑗}) for synchronization with the emitter [96], and then a TOA al-

gorithm that leverages multipath from known boundaries {𝜂𝑗} after synchronization

[97], [98]. In general terms, the TDOA and TOA algorithms that are outlined here

produce ambiguity surfaces, which are plots of the likelihood of the emitter’s presence

at a certain location. Conceptually, TDOA localizes the emitter as the intersection

point of hyperbolae defined by equal time differences, as opposed to TOA which

examines the intersection of circles/spheres [99]. Both algorithms use a grid-search
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Figure 3-1: Conceptual flowchart for the proposed PEEL method.

for the emitter to obtain p̂e, where a set 𝒫 of grid points pcand is defined over the

target area. For example, in our HiFAAT watertank setting, the regularly-spaced

grid-squares were chosen to have lengths of 1 mm. Each pcand ∈ 𝒫 corresponds to a

potential emitter location, with an associated set of {𝜏𝑖,𝑗, cand} to the receivers pr,𝑖 and

the corresponding virtual receivers p𝑖,𝑗. Thus, each 𝜏𝑖,𝑗, cand is a function of pr,𝑖 and

of 𝜂𝑗. The results of the TDOA and TOA stages are used to initialize more refined

techniques in the later stages of PEEL.

TDOA does not require a common clock with the emitter, and is suitable to estab-

lish synchronization [100], [101]. Denoting the calculated cross-correlation between

the signals at receivers 𝑖1 and 𝑖2 as 𝑅𝑖1,𝑖2 (𝜏), the TDOA metric that we use is:

𝐶TDOA (𝜏cand (pcand)) ≜
∑︁
𝑖2 ̸=𝑖1

𝑀∑︁
𝑖1=1

|𝑅𝑖1,𝑖2 (𝜏𝑖1,cand (pr,𝑖1)− 𝜏𝑖2,cand (pr,𝑖2))| . (3.1)

Using the generalized cross-correlation with phase transform (GCC-PHAT) method

for better performance [102], which is a weighting of the cross-correlations used
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(a) (b)

Figure 3-2: A TDOA grid-search that localizes the emitter on real data (a), and a
grid-search that fails at a different location due to occlusion (b).

in TDOA to produce a sharper correlation peak, we estimate the emitter location

p̂e,TDOA as:

p̂e,TDOA = argmax
pcand∈𝒫

𝐶TDOA (𝜏cand (pcand)) . (3.2)

The average difference between the LOS peak delays and the expected TOFs from

TDOA is then used to establish synchronization; though we note that more sophisti-

cated methods for extracting the LOS peak or discriminating it from the NLOS peaks

could also be used [103], [104]. If there are no occluders in the environment, TDOA

could be sufficient to solve the main localization task, as demonstrated in Fig. 3-2(a).

However, since this method relies on the LOS being unoccluded, the occluder can

defeat this algorithm as in Fig. 3-2(b). Hence, while TDOA is important for time

synchronization in our framework, the subsequent algorithms are necessary to ensure

robust performance.

It is important to note a simple yet important caveat for localization illustrations

such as Fig. 3-2 that is easy to overlook: the equalization of the scales of plot axes.

Localization methods yield a variety of intersecting geometric objects such as circles,

spheres, ellipses, spheroids, and hyperbolae, depending on the specific algorithm and

whether it is implemented in 2D or 3D. Unless the plot axes have equal scales, such
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(a) (b)

Figure 3-3: A TOA grid-search that localizes the emitter on real data (a), and a grid-
search that fails at a different location due to the alternative arrival arc crossings (b),
at ∼36 dB SNR.

shapes will be distorted, making the results difficult to interpret and making errors

more difficult to debug.

Once synchronization has been established using TDOA localization, we can use

the more accurate TOA localization methodology. We define the additive TOA metric

𝐶TOA(𝜏cand(pcand)) as:

𝐶TOA (𝜏cand (pcand)) ≜
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=0

⃒⃒
𝑟𝑖
(︀
𝑡− 𝜏𝑖,𝑗,cand

(︀
pr,𝑖,𝜂𝑗

)︀)︀⃒⃒
, (3.3)

where the time indices
(︀
𝑡− 𝜏𝑖,𝑗,cand

(︀
pr,𝑖,𝜂𝑗

)︀)︀
are rounded to the nearest sample in a

discrete-time implementation. The estimate p̂e,TOA is then obtained as:

p̂e,TOA = argmax
pcand∈𝒫

𝐶TOA (𝜏cand (pcand)) . (3.4)

The heuristic metric in Eq. (3.3) is maximized when each 𝜏𝑖,𝑗 corresponds to a

peak location; such locations are the intersections of TOF arcs, as seen in Fig. 3-3(a).

When the {𝜂𝑗} are known, and therefore the virtual receivers are labeled correctly,

p̂e is obtained accurately.
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TDOA and TOA localization are more robust if the search space 𝒫 can be limited

to the vicinity of the correct location, pe. Consider the results in Fig. 3-3(a); although

pe is estimated accurately, there are many local maxima in the search space. These

can lead to large errors, as in Fig. 3-3(b). Confining 𝒫 to the vicinity of pe avoids

such ambiguities. With these theoretical and practical considerations in mind, we

summarize our TDOA and TOA localization algorithms in Algorithms 1 and 2.

Algorithm 1: TDOA localization for initialization.
Require: Unoccluded LOS arrivals at each receiver.
Input: 𝒫 , {𝑟𝑖 (𝑡)}𝑀𝑖=1, {pr,𝑖}𝑀𝑖=1

for pcand ∈ 𝒫 do
Calculate 𝐶TDOA (Eq. (3.1))
Get p̂e,TDOA(Eq. (3.2))
Result: p̂e,TDOA

Algorithm 2: TOA localization after initialization.
Require: Time synchronization after applying Algorithm 1; number of boundaries
𝑁 is known.
Input: 𝒫 , {𝑟𝑖 (𝑡)}𝑀𝑖=1, {pr,𝑖}𝑀𝑖=1,

{︀
𝜂𝑗

}︀𝑁

𝑗=1

for pcand ∈ 𝒫 do
Calculate 𝐶TOA (Eq. (3.3))
Get p̂e,TOA (Eq. (3.4))
Result: p̂e,TOA

One advantage of Algorithm 2 is that it is a heuristic weighting of the arrivals

based on their signal strengths. A localization method that is solely based on {𝜏 𝑖,𝑗}

will assign equal importance to each arrival, so that there will be no automatic com-

pensation for faulty TOF estimates. A TOF estimate is likelier to have high error

if the corresponding arrival is weak. In such cases, its contribution to the additive

metric 𝐶TOA in Algorithm 2 will be smaller, and its impact on p̂e,TOA in Eq. (3.4) will

be reduced. Note that Algorithm 2 does not require leveraging all of the boundaries

to yield an accurate result. The additional NLOS arrivals provide spatial diversity

that helps to increase localization accuracy and mitigate occlusion that causes loss of

LOS (pun intended).

64



Algorithm 2 also allows us to compare different hypothesized environments. Given

candidate boundaries {𝜂𝑗}cand, we can run Algorithm 2 for each {𝜂𝑗}cand, and pick

the maximum metric solution as our joint estimate of p̂e,TOA and {𝜂𝑗}. 𝐶TOA is

therefore a heuristic measure of the estimate’s goodness. Recall that the {𝜂𝑗} cannot

generally be assumed known; thus, we next propose a boundary estimation algorithm

to produce a suitable set of {𝜂𝑗}cand.

3.1.2 Stage 2: Preliminary Boundary Estimation

After TDOA and TOA localization, we have an initial estimate of the emitter’s po-

sition and have approximately established synchronization. To jointly estimate the

emitter and the environment in a computationally feasible manner, we need a good

initial estimate of reflective boundary positions, which ultimately yields a tight search

space for {𝜂𝑗}. As will be discussed in detail in Chapter 4, we first estimate a set of

unlabeled {𝜏 𝑖,𝑗}, though some of these estimated arrival times might have large er-

rors. We now develop a Hough transform-inspired method to estimate {𝜂𝑗} which is

robust to errors in {𝜏 𝑖,𝑗}, building on the algorithms presented in [34]. Our novel con-

tribution of the neural network-based COTANS-NN method to solve this problem is

detailed in Chapter 4; here, we present the techniques that were already established in

the literature, which we applied to data that was obtained from the HiFAAT testbed

detailed in Chapter 2. Since the COTANS-NN method is limited to 2D settings, we

implemented the existing COTANS transform method for 3D boundary estimation.

As some background context, Euclidean distance matrices (EDM) [13] and convex

optimization methods [14] have been used to solve for the virtual emitter positions and

thereby obtain boundary positions. These methods can suffer from large errors if an

arrival’s 𝜏 𝑖,𝑗 has been labeled incorrectly, and their performances are initialization-

sensitive. An alternative approach relies on the fact that in 2D, an NLOS arrival

(with an estimated time delay 𝜏 𝑖,𝑗) corresponds to a path distance of 𝑑NLOS that

defines an ellipse whose foci are the emitter and receiver location, denoted as pe

and pr, respectively, as in Fig. 3-4(a). In 3D, the NLOS arrival equivalently defines

a spheroid. By definition, points on the ellipse/spheroid have a total distance of
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(a)

(b)

Figure 3-4: The NLOS arrivals define ellipses/spheroids of equidistance, with an
emitter and receiver as their foci (a). In (b), we illustrate the ellipses defined by
{𝜏𝑖,𝑗} for our HiFAAT experimental setting (depicted in 2D for convenience). Each
boundary is a common tangent to a single ellipse due to each receiver, highlighted
here by matching colors. In such a rich multipath setting, solving the echo labeling
problem is difficult.

𝑑NLOS to the emitter and receiver, and the reflective boundary itself is a tangent

line/plane of this ellipse/spheroid. With multiple receivers, multiple spheroids are

defined by such NLOS arrivals, and the reflective boundary is their common tangent.

Therefore, by fitting common tangents to ellipses or spheroids, the boundaries can be

estimated while avoiding the echo labeling problem in multipath environments [34], as

illustrated in Fig. 3-4(b). Assigning ellipses to tangents is a problem of combinatorial

complexity, and is error-prone for inaccurate time-delay estimates [105]. Missing or

spurious arrivals in the received signals complicate the echo labeling, which motivates

the development of an estimation algorithm that bypasses this task altogether.

It is convenient to define a given reflective boundary 𝜂𝑗 by the spherical coor-

dinates of a vector from the origin (arbitrarily selected) that is orthogonal to the

boundary plane. Thus, each boundary is specified by a range 𝜌, azimuth 𝜃, and eleva-

tion 𝜑, where these local spherical coordinates correspond to a standard east-north-up

Cartesian coordinate system.

The transform method for boundary localization that was outlined in [34], which

for convenience we refer to as COTANS as previously explained in Section 1.2.2, is
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derived as follows. A boundary defined by 𝜌, 𝜃, and 𝜑 can be conceptualized as a

point (𝜌, 𝜃, 𝜑) in a COTANS transform domain; working out the (𝜌, 𝜃, 𝜑) expression

of a plane is to take the plane’s COTANS transform [106]. When the space 𝜌× 𝜃× 𝜑

is discretized as a 3-mode tensor, each hypothetical tangent plane has a finite set

of (𝜌, 𝜃, 𝜑) on which it may lie. Incrementing this ‘accumulator’ tensor over every

potential (𝜌, 𝜃, 𝜑) entry yields a COTANS-domain image (as in Fig. 3-6(a)), with

maxima at the true boundaries in the noiseless case.

Here, we extend the method of [34] to 3D, and we further derive a direct solution

for the tangents in the COTANS domain, which precludes the need for randomly

sampling points (𝜌, 𝜃, 𝜑) on the surface of an ellipse/spheroid. Our approach is to first

define a grid over the 𝜃- and 𝜑-coordinates, and then obtain the COTANS transform

for the tangents at each 𝜃 and 𝜑. In 2D, for a given 𝜃, we obtain the COTANS

transform’s 𝜌 in Appendix A.1 as:

𝜌 (𝜃) =
√︀
𝑎2 cos2 𝜃 + 𝑏2 sin2 𝜃, (3.5)

and in 3D, the result for a given 𝜃 and 𝜑 is calculated in Appendix A.2 as:

𝜌 (𝜃, 𝜑) =

√︁
𝑐2 cos2 𝜑+ 𝑎2 sin2 𝜑, (3.6)

where 𝑎, 𝑏 and 𝑐 are standard axes of spheroids calculated from the {𝜏 𝑖,𝑗}. This

result is obtained for an origin-centered spheroid. To move a point cloud of (𝜌, 𝜃, 𝜑)

centered on the origin to the true emitter and receiver positions, we rotate the points

to match the true spheroid’s orientation (adjusting their 𝜃 and 𝜑 to be some 𝜃rot and

𝜑rot), and then translate the points to the true spheroid’s position (yielding a final

𝜌COTANS, 𝜃COTANS, and 𝜑COTANS). This sequence of COTANS-domain operations is

illustrated in Fig. 3-5.

In practice, we first generate a set of points {(𝜌, 𝜃, 𝜑)} by defining an azimuth-

elevation grid, and obtaining the COTANS transforms for each of the corresponding

tangents. The resulting points {(𝜌, 𝜃, 𝜑)}COTANS are then rounded to a desired accu-

racy. For these specific PEEL experiments, we use a resolution of 0.1 mm for 𝜌 and
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(a)
(b)

(c)

Figure 3-5: Illustration of the steps to obtain the COTANS transform of a particular
tangent line (depicted in 2D). Description of one tangent line of a standard ellipse
(a); the rotation of this origin-centered ellipse and its tangent (b); and the translation
of this ellipse to its real position with the emitter and receiver as its foci (c).

0.1° for 𝜃 and 𝜑. We define a tensor over 𝜌, 𝜃, and 𝜑 with this resolution, and for each

rounded {(𝜌, 𝜃, 𝜑)}COTANS point, we increment the corresponding cell in the tensor by

1. We sum the tensors for each NLOS arrival at each receiver, to obtain a final tensor

of superimposed COTANS curves such as in Fig. 3-6(a). Each ellipse contributes a

curve; observe that the curves do not intersect at a single point because of errors in

{𝜏 𝑖,𝑗} and in the measured pe and pr, so we have multiple maxima. We therefore use

a smoothing filter to replace the tensor values with local averages. For our particular

HiFAAT experiments, we heuristically use a uniform averaging filter that is 3 mm

wide in 𝜌, and 3° wide in 𝜃 and 𝜑. Then, we extract the locations of as many maxima

as there are boundaries as in Fig. 3-6(b), where we set the neighborhood of each

maximum in the tensor to zero, to avoid picking the same boundary multiple times.

In this specific implementation, given a maximum of the accumulator result at some
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(a) (b)

Figure 3-6: The COTANS accumulator for inconsistent {𝜏 𝑖,𝑗} (a), and the resulting
boundary estimates (b). The image is periodic in azimuth, so the maximum near
360° is close to the correct location at 0°

(𝜌max, 𝜃max, 𝜑max), we zero out the 𝜃 and 𝜑 entries within ±15° of the maximum, and

all 𝜌 entries within this sector. The overall COTANS transform method for boundary

estimation is summarized in Algorithm 3. In Chapter 4, we will discuss in detail an

improved 2D neural network method for implementing Algorithm 3 without these

heuristic smoothing and maxima-extracting steps.

Algorithm 3: COTANS transform-based boundary estimation.
Require: Time synchronization from Algorithm 2; number of boundaries 𝑁 is
known.
Input: {𝜏 𝑖,𝑗}, {pr,𝑖}𝑀𝑖=1, p̂e,TDOA

for 𝜏 𝑖,𝑗 ∈ {𝜏 𝑖,𝑗} do
Calculate COTANS transform for spheroid, add to accumulator
(Appendix A)

Result: Apply smoothing to COTANS accumulator; its 𝑁 maxima are {�̂�𝑗}.

Modeling the environment as consisting of planar boundaries makes environment

learning more computationally tractable. Note that the virtual receiver model is

not limited to planar boundaries: the planar boundary estimates can be tangents

to a non-planar boundary. In this case, however, the boundary estimates will be

inaccurate for localization purposes when the emitter moves to a different position.

Therefore, rather than using the initial COTANS boundary estimates for the entire

emitter trajectory, we need evolving boundary estimates over time, utilizing the global

69



optimization method which we now discuss.

3.1.3 Stage 3: Joint Boundary Estimation and Emitter Local-

ization

At this stage, we have initial estimates of both the emitter position and the bound-

aries, allowing for simultaneous optimization over pe and {�̂�𝑗}. We assume candidate

boundaries {𝜂𝑗}cand that are in the vicinity of the {�̂�𝑗}, and then carry out TOA

localization (Algorithm 2) for each {𝜂𝑗}cand. These {𝜂𝑗}cand are drawn from a search

space 𝜌 ∈ [𝜌𝑗 − 𝜌0, 𝜌𝑗 + 𝜌0], 𝜃 ∈ [𝜃𝑗 − 𝜃0, 𝜃𝑗 + 𝜃0], 𝜑 ∈ [𝜑𝑗 − 𝜑0, 𝜑𝑗 + 𝜑0], where 𝜌𝑗, 𝜃𝑗

and 𝜑𝑗 are estimated from Algorithm 3, and 𝜌0, 𝜃0 and 𝜑0 are error margins obtained

as the typical maximum parameter estimation errors from COTANS, for a given set-

ting. The {�̂�𝑗} associated with the highest maximum metric 𝐶TOA (Eq. 3.3) yields

the most likely pe and {𝜂𝑗}. Interlacing this algorithm with tracking over the emit-

ter positions, we discover and map the occluders in the environment, and refine our

estimates for joint localization and environment learning.

In this simultaneous optimization problem with measurement errors, it is advanta-

geous to maintain multiple evolving estimates of the emitter and boundary locations,

for which we use particle swarm optimization (PSO) [107]. In this iterative, coop-

erative, and partially random heuristic global optimization algorithm, each {𝜂𝑗}cand
is termed a ‘particle’. Each particle is initialized at a random location and given

an initial ‘velocity’ in the search space. Algorithm 2 is carried out for each particle,

and the maximum 𝐶TOA and corresponding p̂e,cand is recorded. Particle velocities are

modified at each PSO iteration towards the global maximum metric particle (with

the maximum 𝐶TOA), and also to the maximum metric particle in a random ‘neigh-

borhood’ of particles, as detailed in Appendix B. Thus, particles explore the region

around the current best approximation.

PSO was used in PEEL because its metaparameters do not need to be adapted to

a specific physical setting, and because it can be run without re-initialization during

tracking. There are alternative global optimization algorithms that can also be used
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Figure 3-7: Flowchart for simultaneous boundary and emitter localization with PSO.

in PEEL, however, and it would be advantageous in an application setting to fine-tune

the metaparameters of PSO or another algorithm for that particular environment.

In order to be able to accommodate for occlusion, we rely on a tracking proce-

dure over the periodic transmissions of the moving emitter. Kalman tracking with a

constant-acceleration model, for example, can be applied, as detailed in Appendix B.1.

The p̂e obtained using PSO is used as the measurement vector to update the track-

ing. Critically, the grid-search is confined to a sufficiently small area 𝒫 around the

resulting prediction. This way, even if the emitter is temporarily occluded and the

underlying 𝐶TOA metric is erroneous, p̂e will still be close to the actual pe. Thus, if

the emitter enters an area that is unfavorable for localization, PEEL can potentially

mitigate the resulting estimation errors. Our algorithm for joint PSO localization and

boundary estimation is given in Fig. 3-7, and our overall approach is summarized in

Algorithm 4.

Algorithm 4: Joint PSO localization and Kalman tracking.

Input: {𝑟𝑖 (𝑡)}𝑀𝑖=1, {pr,𝑖}𝑀𝑖=1,
{︀
𝜂𝑗

}︀
cand

Require: Moving emitter, for tracking purposes.
for each emitter position in trajectory do
for pre-specified number of PSO iterations do
Perform PSO, get p̂e,PSO, {�̂�𝑗} (Fig. 3-7, Appendix B)

end for
Use p̂e,PSO to update Kalman tracking, get new 𝒫 for next iteration.

end for
Result: p̂e,PSO, {�̂�𝑗}

From the results of Algorithm 4, we can determine whether each LOS path to

receivers has been attenuated beyond expectation. Occlusion can be determined by
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assuming a 1/�̂� attenuation factor in the received signal magnitude, where �̂� is a given

estimated LOS range. Unoccluded arrivals allow for the estimation of the emitted

power, by scaling the corresponding LOS magnitudes by �̂�. If the received LOS

magnitude is substantially below the magnitude predicted by geometric spreading

(in our implementation, 70% below the predicted magnitude), we conclude that an

occluder is present. Volumetric intersection methods can then be used to map the

occluders [108]. With this type of approach, the volume of interest is discretized into

parallel planes (lines in 2D). The cones of occlusion are then projected onto each of the

parallel planes, followed by the occlusion-free cones of visibility being projected onto

the same planes. The areas that are left occluded form a discretized approximation

to the convex hulls of the occluders.

The accuracy of the occluder estimation procedure is dependent on the trajectory

of the emitter and the time interval between its transmissions. If the emitter does not

approximately move in an arc around the occluder and if the pulses are infrequent, the

estimate of the occluder will be correspondingly coarse and blocky. In the HiFAAT

watertank experiment, the trajectory, occluder position, and receiver positions have

been arranged to make a good occluder estimate possible, and thus to demonstrate

the full potential of this methodology.

After mapping the occluders, we re-run Algorithm 4. We now know which LOS

arrivals are blocked by the occluder, and we change the additive metric 𝐶TOA by

leaving blocked paths out of the sum in Eq. (3.3). Our flexible cost function thereby

allows us to compensate for model mismatch due to occlusion, and yields increasingly

improved performance.

3.2 Simulation Experiments for Feasibility Analysis

Before PEEL was implemented on real experimental data from HiFAAT, a set of

simulations was carried out to test the feasibility of joint boundary estimation and

localization with PSO. In a noise-free environment similar to the shallow-water chan-

nel with a flat sea surface and seafloor, and two other boundaries forming a 90∘
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(a) (b)

Figure 3-8: Top (a) and side (b) views of the simulated localization and environment
learning experiment, and its estimated results.

wedge behind closely-spaced receivers, a synthetic signal was simulated using the

mirror-image method detailed in Chapter 2. The simulation setting and the resulting

emitter and boundary estimates are presented in Fig. 3-8. Here, the environment has

a flat surface at depth 𝑧1 = 0 m, and a flat bottom at depth 𝑧2 = 30 m. The emitter is

located at (500, 50, 10) m, and the reference receiver position is at (0, 0, 5) m. There

are three other receiver positions at (2, 2, 6) m, (-1, 0.7, 4) m, and (-1.5, -1, 7) m,

simulating a small receiver array with irregular spacing. Since the receiver positions

are relatively close to each other, we only plot a single reference receiver position for

convenience.

The search space for the boundaries is assumed to be 𝑧1 ∈ [−2, 2] m, 𝑧2 ∈ [−28, 32]

m, 𝑟3 ∈ [20, 35] m, 𝜃3 ∈ [190, 225]°, and 𝑟4 ∈ [80, 110] m. These search spaces are

chosen to reflect relatively good knowledge of the surface and bottom locations, and

uncertainty in the distance and orientation of the corner behind the receiver. To

localize the emitter, we run 20,000 iterations of PSO with 128 particles. This is a

conservatively high number of computations, since we also achieved similarly good

results with 48 particles and 7000 iterations.

Over 10 trials of PSO, we consistently localize the emitter at the correct location,

while the boundary estimates can have small deviations from their correct positions,
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as in Fig. 3-8. This is because, with four NLOS arrivals to work with, we have more

than enough information for correct localization in this noise-free environment. Thus,

the correct emitter estimate is achieved before PSO converges to a perfect estimate

of the environment. This simulation result demonstrates the correct implementation

of key modules of PEEL, before applying these algorithms to the real HiFAAT data.

We include these simple simulation results to outline the methodology for imple-

menting and subsequently debugging the localization methods. To tackle the difficul-

ties of calibrating real electronic equipment in a noisy environment, it is essential to

first test the algorithms on simple simulated data. When modeling 3D scenarios with

vector geometry, it is easy to make simple coding errors that are difficult to detect,

such as degrees being used rather than radians, or sign errors when finding the mir-

ror images of points in space. Verifying the correct operation of the algorithms in a

noise-free simulation setting is very helpful in preparing for the challenges of real-life

data.

3.3 Experimental Results With Watertank Testbed

Data

We now evaluate our PEEL method for its passive localization and environment

learning capabilities, seeking to demonstrate and understand its performance and

robustness. For this purpose, we use the convenient setting of the HiFAAT watertank

depicted in Fig. 1-5, as was detailed in Section 2.2.3. We first test PEEL on real

data obtained from the watertank; then add synthetic noise to this data to analyze

PEEL’s performance as compared to other localization methods; and finally conduct

trials in a simulation setting (still corresponding to the HiFAAT environment) with

a wider range of localization scenarios.

In our experiments, we emit a high-frequency Gaussian pulse with a waveform

given by:

𝑠(𝑡) = 𝑒−𝑡2𝑓2
0 cos (2𝜋𝑓0𝑡) , (3.7)
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Figure 3-9: PEEL localization performance with no occluding cylinder present in the
environment.

where the center frequency 𝑓0 is set to 280 kHz, corresponding to a wavelength of 5

mm. The boundaries used for localization are the water surface, whose position is

known since the receiver depths are known; and the bottom and three plastic sides of

the tank, whose ranges to the origin and azimuths are respectively known to within

±5 mm and ±6°, as obtained using COTANS. One side-boundary is deliberately left

unaccounted-for, which presents the difficulty of having an unmodeled set of arrivals

in the data, so that we have 𝑁 = 5. We use 𝑀 = 4 receivers. The speed of sound

through water in the tank was measured as 1485 m/s.

For our PEEL implementation, we use 128 particles and 5000 PSO iterations for

each emitter position. At each PSO iteration, we use a grid 𝒫 of 0.5 mm resolution and

sides of 6 mm centered on the expected emitter location. We perform 10 experiments

for each localization scenario, and obtain the root mean square (RMS) localization

error. First, we run PEEL on a dataset where there is no occluding cylinder, to

obtain the best possible performance as a basis for comparison. The results in Fig. 3-

9 illustrate that the performance which is achieved in this case is within the margin

of measurement error of emitter and receiver positioning for this experimental setup.

Implementing our method on the case of an occluding cylinder being present in the

environment, the RMS error for the first-pass of PEEL is 3.9 mm, as seen in Fig. 3-10.

To put this into perspective, the average distance of the emitter from the receivers
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Figure 3-10: PEEL’s first-pass localization performance, with an occluding cylinder
present in the environment. The boundary that is unaccounted-for to introduce model
mismatch is the bottom boundary in these top-view figures.

for this trajectory is 93.5 mm, and the RMS error in this scenario is 4.2% of the mean

distance to the emitter. The final boundary estimates in Fig. 3-10 are obtained using

the full estimated trajectory, which leads to a more accurate solution compared to

the results obtained from using just one emitter position. Running PEEL’s second-

pass after estimating the occluder as in Fig. 3-11(a), we get the result in Fig. 3-

11(b), where the RMS error is reduced to 2.7 mm (2.9% of the mean distance). The

occluder is reconstructed with sufficient accuracy to improve our localization result.

To understand how much the unknown occluder’s presence affects the result, we

note that the experiment with the same scenario but with no occluder (in Fig. 3-9)

obtained an RMS error of 1.5 mm (1.6% of the mean distance), which is within our

margin of measurement accuracy. In these trials, occlusion and interference due to

reverberation are the key error factors; the SNR of unoccluded LOS arrivals is > 30

dB, so that noise was not a significant cause of localization errors.

If synchronization and an initial boundary estimate are given to us, single-receiver

localization using Algorithm 4 becomes feasible. In an experiment with a single

emitter at the origin and no occluder present, we get 2.1 mm of RMS error (2.2% of

the mean distance). This strong performance is surprisingly only slightly worse than

when we use 4 receivers.
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(a) (b)

Figure 3-11: Estimation of the occluder (a), and PEEL’s improved second-pass result,
using the modified metric obtained by taking the occluder into account (b).

In order to analyze the performances of the localization algorithms that we have

used in PEEL (TOA localization with known boundaries, and PSO), we carried out

localization trials with synthetic Gaussian noise added to experimental signals. For

the first position in the trajectory, where there is LOS to every receiver, the same

noise power in units of dBm was added to each recorded signal. In Fig. 3-12(a), we

compare PSO’s performance for different numbers of PSO iterations, versus that of

TOA localization with known boundaries. Because PSO optimizes for the boundary

locations as well, its high runtime led to us conduct 150 trials for each noise level,

while 5000 trials were carried out for TOA. There is a performance gap between PSO

and the ‘ground truth’ TOA result, which is smaller for higher noise levels. Longer

runtimes improve PSO’s performance and help close this gap.

We next evaluate the performance of environment learning by adding synthetic

Gaussian noise to the signals measured at the last position in the trajectory (where 2

LOS arrivals are occluded) and obtaining the RMS range error from the origin to all

the boundaries, averaged over trials and the number of boundaries. We conducted 100

such trials for each noise level and for three scenarios: in the absence of the occluding

cylinder as measured in a separate set of experiments, with the occluding cylinder

present but not accounted for, and with the occluded arrivals removed in the revised
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(a) (b)

Figure 3-12: Performance of PSO localization versus TOA with known boundaries,
highlighting better accuracy with more PSO iterations (a); and RMS boundary local-
ization error performances for experimental results with synthetic added noise (b).

metric (modeling PEEL’s second-pass). The results are given in Fig. 3-12(b), where

we observe a gap in performance caused by the occlusion, beyond the performance

deterioration caused by a lower effective SNR. Boundary estimation is improved by

compensating for the occluder, though this improvement is less dramatic than the

performance gains in emitter localization. Adding a noise power greater than 20

dBm causes much larger errors in the localization and boundary estimation tasks in

this setting, as the noise peaks have much greater magnitude than the NLOS arrivals.

To test PEEL’s performance on a wider range of experimental geometries, we gen-

erated synthetic data that modeled the HiFAAT watertank setting with randomized

receiver locations. We implemented a simulation setting as per [68] that modeled a

reverberant environment with higher-order reflections, producing synthetic received

signals with the mirror image method. In these trials, the emitter’s trajectory, the

boundary locations, the occluder, and the position of the receiver at the origin were

kept constant, and PEEL was run for 10 different deployments of the other 3 receivers.

These receivers were distributed uniformly over the region bounded by the positions

of receivers in the real experimental setting. We used the same Gaussian pulse that

was used in the watertank experiment, though the only distortion that these pulses
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underwent in simulation was attenuation. Ultimately, we obtained an RMS error of

2.6 mm over 10 trials, which was close to the watertank results.

Overall, we observed reliable performance across all of the trials for this particular

demonstration. Once the unknown occluder is compensated-for, we only observe

several millimeters of error, which is reasonable since there are already millimeter-

scale errors in the measured receiver positions. These results are summarized in Table

3.1.

Table 3.1: Localization experiment results.

Scenario RMS Error (mm)
4 receivers, no occluder 1.5

Single receiver, no occluder 2.1
4 receivers, occluder, first-pass 3.9
4 receivers, occluder, final result 2.7
Simulation, random receivers 2.6

3.4 Discussion of Experimental Results and Chal-

lenges

The trajectory to which PEEL was applied resulted in a difficult localization problem

which nevertheless proved to be solvable. However, the strong results that we have

presented from the HiFAAT watertank testbed were only obtained after intensive

calibration work, and several initial trials had to be carried out to meet unexpected

challenges. For future reference, it is important to illustrate some of the difficulties

that can be encountered in such scaled-down underwater acoustics experiments.

In many localization applications, it is standard to consider the emitter/receiver’s

physical dimensions as negligible. This is often a reasonable assumption: if the band-

width of the emitted signal only supports a distance estimation accuracy on the order

of meters or tens of centimeters, a small centimeter-scale hydrophone can be concep-

tualized as a point source/receiver. However, when using wideband pulses that allow

for millimeter-scale precision, this model no longer holds. The active element of a
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hydrophone is a ceramic sphere embedded within it, with the plastic sheath around

it being used to give the hydrophone structural integrity, and to protect the cables

and other electronics connected to this sphere. In an emitter/receiver pair, the true

distance traveled by a pulse is from the outer edge of one ceramic sphere to the

outer edge of the other. Hence, the radii of these spheres must be taken into account

and the nominal distances at which the hydrophones are placed must be modified

to compensate for such an offset. Since we were not in a position to break open

one of our cylindrical hydrophones to determine exactly where this ceramic sphere

was positioned along its length, we carried out calibration experiments specifically to

determine such parameters.

The millimeter-scale precision of the experiment setting also required care to setup

details that are similarly easy to overlook. Just as it is typical to consider the emit-

ter/receiver dimensions as negligible, it is typical to neglect the dimensions of the

attachment points of transceivers. When attaching a hydrophone to a rod and then

lowering it into the water, the resulting position offset must be taken into account in

high-precision experiments.

Another unexpected precision-related difficulty was the watertank sides in Hi-

FAAT not being perfect planar surfaces. Not only did this plastic watertank have

sides that were slightly angled, but they were also slightly concave, only perceptible at

a millimeter-scale that was difficult to observe without close examination. This con-

cavity meant that our planar boundary assumption only held approximately, and that

if a planar boundary ground truth were assumed, then the result would be large local-

ization errors at some emitter positions. This is where PEEL’s dynamic environment

estimation capabilities proved critical for strong performance: at each position, it

was imperative to re-calculate the planar boundary estimates for the watertank. The

resulting boundary estimates differed from the trigonometrically-measured ground

truth for the boundary positions, but led to better results. Until the complete PEEL

method was implemented, however, this feature of HiFAAT was a major source of dif-

ficulty for our calibration experiments until it was identified, since it led to unexpected

discrepancies in the TOAs of the NLOS arrivals.
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An unexpected challenge encountered in the localization task was the directional-

ity of the (approximately isotropic) emitter hydrophone. We have previously discussed

in Chapter 2 that the predicted and observed magnitudes of the received pulses had

large discrepancies due to environmental model mismatches, while their TOAs were

accurate. However, we found that unaccounted-for directionality also played an im-

portant role in such discrepancies. Most significantly from an operational perspective,

this directionality issue sometimes caused the surface-reflected NLOS arrival to have

a larger magnitude than the LOS arrival. Since the LOS arrival has the shortest path

length, it ought to have the smallest attenuation and thereby be the most significant

arrival in the received signal in the case of no occlusion being present. Since the larger

magnitude of the surface-reflection was an unexpected phenomenon, many tests had

to be carried out to confirm that the directionality of the emitter was the culprit, and

not another source of error or equipment failure.

Another complication caused by a NLOS arrival that is stronger than an unoc-

cluded LOS arrival, is that a more complex algorithm has to be used for the identi-

fication of the LOS. Normally, one could simply pick the highest-magnitude peak in

the matched-filtered received signals. When the LOS peak is not the highest, how-

ever, it will still be the earliest significant arrival, provided that it is unoccluded and

the emitter is roughly isotropic, even if imperfectly so. Hence, a simple method in an

application like HiFAAT (with relatively low noise power) is to set a threshold to e.g.,

50% of the magnitude of the highest peak in the matched-filtered signal, and then to

pick the earliest peak that exceeds this threshold as the LOS. Except for purposes of

time synchronization for initialization, PEEL does not specifically require the iden-

tification the LOS; hence, we did not require more sophisticated LOS-identification

algorithms at this stage.

Note that we do not require a complete deduction of the occluders for improved

localization performance. In this passive setting, a complete and accurate mapping

of the occluders requires the emitter to move in an arc around them, as is the case in

tomography applications. It is not guaranteed that occluders can be mapped in this

manner, since the emitter’s path is not under our control. In PEEL, however, as long
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as occlusion is detected, the potential errors from summing over these non-existent

arrivals in TOA localization are avoided.
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Chapter 4

Environment Estimation with

Machine Learning

In Chapter 3, we presented the COTANS transform method for boundary estimation

that was featured in the literature, and noted that we had developed a NN method

for 2D boundary estimation that was based on this transform. Focusing on reflective

boundary estimation for shallow-water underwater acoustic settings, we specifically

deal with problem geometries similar to that illustrated in Fig. 4-1. Our task is to

estimate the reflective boundaries using both known emitter and receiver locations;

the method that is designed for this task can then be embedded into the PEEL

method which has a larger scope. While there is typically some prior knowledge of

boundaries such as the sea surface and seafloor, we require more accurate knowledge

of their positions in order to make use of the corresponding NLOS arrivals. Recall

that over short ranges, we can approximate boundaries as planar, and can model

them as producing mirror images of the emitter as ‘virtual’ emitters, as per Snell’s

Law [68]. Euclidean distance matrices (EDM) [13] or other methods [14] can then

be used for boundary estimation through the localization of these virtual emitters.

For indoor settings, there is theoretical work and experimental demonstrations of

whether various arrangements of receivers can estimate rooms of varying numbers of

walls [109]. In underwater acoustics, however, we often have to deal with low signal-

to-noise ratios (SNRs) [19] and the model mismatch issues arising from a dynamic
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Figure 4-1: A general underwater acoustic setting, highlighting the typical reflective
boundaries, their NLOS arrivals, and the corresponding virtual emitters. Note that
for the COTANS boundary estimation task, the emitter location is known, and it is
the virtual emitter locations that are unknown since the problem is the estimation of
the unknown reflective boundary locations.

environment. To the best of our knowledge, existing methods generally do not address

these difficulties.

In light of these challenges, we propose a convolutional neural network-based

(CNN) regression method for boundary estimation through supervised learning. Our

data-driven method operates by parametrizing tangents to ellipses by the range (𝜌)

and azimuth (𝜃) values of their normal vectors [34], calling this (𝜌, 𝜃) space the com-

mon tangents to spheroids (COTANS) domain. This COTANS transform maps the

environment geometry and time-delay estimates to images in the (𝜌, 𝜃) space, trans-

forming the data into a more natural input representation for the CNN. The proposed

COTANS neural network (NN) method, termed COTANS-NN, incorporates a mod-

ified AlexNet [110] architecture. It is trained on a simulated dataset to estimate

reflective boundaries from unlabeled NLOS arrivals over a wide range of SNRs. The

resulting NN-based method can be used with both simulated and recorded data.

A key influence for our work was the successful recent use of NNs for emitter lo-

calization and environment learning, including the underwater acoustic setting [51],

[52] and reverberant indoor environments [53]. Although we target the short-range

shallow-water underwater acoustic setting, we propose a general-purpose boundary
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Figure 4-2: Summary of the COTANS-NN method’s presentation.

estimation method for any setting where straight-ray propagation holds, and which

outperforms its alternatives in simulation and in real-life experiments.

The main contributions detailed in this chapter are the following:

� A robust NN method for 2D boundary estimation that is superior to state-of-

the-art alternatives, and is straightforward to re-train for different environments.

� A study of the performance and stability of alternative boundary estimation

methods.

� A Cramér-Rao lower bound (CRLB) for boundary range estimation, which al-

lows us to verify that the boundary estimation methods have been implemented

correctly.

In the literature, the problems of time-delay estimation and localization are often

treated separately, with different error models. Here, we provide a unified framework

that establishes a common setting for these tasks, allowing for the study of COTANS-

NN and its alternatives under realistic conditions. Note that the method which we

develop considers the emitter location to be known; as a module of PEEL, the ‘known’

emitter location would be an estimate provided by previously-applied TDOA and

TOA algorithms.
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We develop COTANS-NN through the conceptual framework illustrated in Fig. 4-

2. In Section 4.2, we present an error model for distance estimates that is important

for generating a large realistic dataset for training and testing COTANS-NN. The

COTANS methodology and our NN method are formulated in Section 4.3. Alternative

methods are outlined in Section 4.4, and the CRLB for boundary range estimation is

derived in Section 4.5. We present our results in Section 4.6.

4.1 Problem Formulation for Reflective Boundary Es-

timation

We presented the notation, signal model, and environment geometry that frames

the 3D boundary estimation problem in Chapter 2. In the particular case of a 2D

environment, the 𝑁 planar boundaries are tangent lines, which are described by the

range 𝜌 ∈ R+ and azimuth 𝜃 ∈ [0, 2𝜋) of their normal vector relative to the origin.

Thus, the 𝑗-th boundary is parametrized as the vector 𝜂𝑗 = [𝜌𝑗 𝜃𝑗]
T. We assume a

single isotropic emitter in the environment at a known location pe = [𝑥e 𝑦e]
T, and 𝑀

isotropic receivers at known pr,𝑖 = [𝑥𝑖 𝑦𝑖]
T , 𝑖 ∈ 𝒮𝑀 , with isotropicity only needed for

every boundary to produce a NLOS arrival at every receiver.

Recall that given the known emitted waveform as 𝑠(𝑡), which will ultimately be

used to matched-filter the received signals, and equivalent attenuation coefficient 𝛼𝑖,𝑗

for each path, the received signal at the 𝑖-th receiver is modeled by:

𝑟𝑖(𝑡) =
𝑁∑︁
𝑗=0

𝛼𝑖,𝑗𝑠 (𝑡− 𝜏𝑖,𝑗) + 𝜉𝑖(𝑡), (4.1)

where 𝑗 = 0 corresponds to the LOS path, and 𝜉𝑖(𝑡) is a noise signal that is a real-

ization of a spectrally-flat Gaussian process. We work with a discrete-time sampled

version of Eq. (4.1) as 𝑟𝑖[𝑛] ≜ {𝑟𝑖(𝑡)|𝑡=𝑛𝑇s
}𝑛∈Z, where 𝑇s is the sampling period, and

the sampling frequency 𝑓s is assumed to be greater than twice the Nyquist rate for

the signals considered.
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Table 4.1: Model of the boundary estimation problem.

Problem Feature Modeling Assumptions
Speed of sound, 𝑣s Known, and constant within the environment

Environment Static
Reflectors, 𝜂𝑗 Planar, known number, unknown position
Emitter, pe Known position
Transmissions Known pulses (i.e., known waveforms for matched-filtering)
Receivers, pr,𝑖 Known positions

The geometric information for boundary estimation consists of the known pe and

{pr,𝑖}, and the unknown {𝜏𝑖,𝑗}. Hereafter, we assume that the NLOS TOAs are

estimated using an (at least asymptotically) optimal estimator. For example, these

estimates can be obtained by matched-filtering 𝑟𝑖[𝑛] with 𝑠[𝑛] ≜ 𝑠(𝑛𝑇s) and picking

the TOAs corresponding to the 𝑁 largest peaks in the result, after removing the LOS

arrival, as {𝜏 𝑖,𝑗}. The distance estimates {�̂�𝑖,𝑗 ≜ 𝑣s𝜏 𝑖,𝑗} (from Eq. (2.2)) are then used

for estimating the boundaries as {�̂�𝑗}𝑁𝑗=1, recalling that the environment is modeled

as per Table 4.1.

In many environment estimation methods, it is standard to model the {�̂�𝑖,𝑗} as

corrupted by Gaussian noise [16]. However, it is the received signals of Eq. (2.3) that

are in fact subject to Gaussian noise, and we thus require a more realistic error model

for {�̂�𝑖,𝑗}, as presented next.

4.2 NLOS Time-Delay Estimation Methods

Time-delay estimation is a topic that has been extensively studied in the literature

[111], [112]; here, we describe our measurement model for the time-delay estimates 𝜏 𝑖,𝑗.

We generate a wide range of time-delay errors in our dataset, modeling operational

conditions under both high and low SNR. For a given value of the SNR as 𝑆, we

obtain a corresponding error 𝜖𝑖,𝑗(𝑆) that is not necessarily additive or Gaussian.

In the boundary estimation problem, the NLOS arrivals from each boundary will

produce a received signal with multiple peaks as illustrated in Fig. 4-3, and we will be

picking a given number of the highest peaks from the matched-filtered {𝑟𝑖 (𝑡)} to ob-
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Figure 4-3: Example of a simulated received signal with two NLOS arrivals that
has been matched-filtered, with the two peaks with highest magnitudes yielding the
NLOS time-delay estimates. The emitted signal was a Gaussian pulse of 15.4 kHz
bandwidth, and synthetic additive white Gaussian noise was introduced to produce
this simulated signal.

tain the NLOS time-delays. This method yields the ML estimator for the time-delay

estimation of a single arrival. We assume that the multipath arrivals are typically suf-

ficiently separated, and the signal is of high enough bandwidth, so that after matched-

filtering they do not affect each other’s time-delay estimation performances through

interference. This model was observed to be valid for our particular experiments,

with noise and model mismatches posing much greater difficulties for performance

than interference. However, for settings where time delay estimation must take inter-

ference into account, we present the more advanced expectation-maximization (EM)

[113] and space-alternating generalized expectation-maximization (SAGE) TOA esti-

mation algorithms [114], [115], which are able to handle overlapping arrivals.

Time-delay estimation performance is specific to a given emitted signal, such as a

standard Gaussian pulse that we employ throughout:

𝑝 (𝑡) = 𝑒
− 2𝜋𝑡2

𝜏2𝑝 , (4.2)

with 𝜏𝑝 = 1/𝐵, where 𝐵 is the 3 dB bandwidth (in Hz). This pulse has energy

𝐸𝑝 =
∫︀
𝑝2 (𝑡) d𝑡. While Eq. (4.2)’s infinite-length signal is truncated in practice to

some finite length 𝜏d, the pulse exponentially decays to negligible magnitudes and the
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finite-length signal is functionally equivalent to its infinite-length formulation. We

assume that we have real additive white Gaussian noise1, with the one-sided power

spectral density of the noise 𝜉𝑖(𝑡) equal to 𝑁0. Thus, the SNR is defined as 𝐸𝑝/𝑁0. For

the sake of deriving consistent time-delay statistics, we assume that 𝑆 is the same at

each receiver, so that we can define an average error versus 𝑆 for assessing boundary

estimation performance. In practice, 𝑆 varies across receivers. Given a desired SNR

𝑆 in dB, we obtain 𝐸𝑝/𝑁0 = 10𝑆/10. For a sampling rate of 𝑓s, the average noise

power 𝑁avg is 𝑁avg = 𝑁0𝑓s. Thus, for a desired 𝑆, the required variance 𝜎2 of the

synthetic additive Gaussian noise is:

𝜎2 =
𝑓s𝐸𝑝

10𝑆/10
. (4.3)

4.2.1 Cramér-Rao Lower Bound for Time Delay Estimation

It is well-known that time-delay estimation has a performance profile that is character-

ized by a transition from a non-informative region at low SNRs, through a threshold

phenomenon, to a ‘small-errors’ regime at high SNRs. At high SNR, the Gaussian

noise added to the emitted pulse to produce 𝑟(𝑡) results in a Gaussian, small-scale

perturbation of 𝜏 , and a matched-filtering mean squared error (MSE) estimation per-

formance that asymptotically coincides with the CRLB for time-delay estimation,

which for a given 𝑆 has variance 𝜎2
C(𝑆) [116]. The resulting estimation error is called

a ‘local error’, with 𝜖𝑖,𝑗 ∼ 𝒩 (0, 𝜎2
C(𝑆)).

4.2.2 Ziv-Zakai Lower Bound for Time Delay Estimation

At lower SNRs, peaks of noise can have a greater magnitude than that of the true

arrival. Picking one of these spurious peaks results in a ‘global error’ that leads to a

drastic performance reduction; since the noise peaks are distributed uniformly in the

received signal, global errors cause 𝜏 to be distributed uniformly on the observation

time interval. Thus, if we examine 𝑟(𝑡) in the time interval [𝛿, 𝑇𝑝 + 𝛿], we have

1If complex signals are used, some constants are modified in the following results.
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𝜏 𝑖,𝑗 ∼ U(𝛿, 𝑇𝑝 + 𝛿), where U(𝑎, 𝑏) denotes a uniform random distribution within the

limits [𝑎, 𝑏]. As SNR is progressively reduced below a heuristic threshold, there is

a transition region where such global errors increasingly dominate the MSE. Note

that time-delay estimation performance is specific to a given channel, pulse, and

observation window.

Although we did not employ the ZZLB in our published research, it was an im-

portant step in designing our method. For a given emitted signal, the ZZLB helps

to rigorously identify the SNR threshold for global errors. Hence, it is a key first

step in studying the SNR performance in a particular localization or boundary es-

timation setting, and it is an aid for verifying the correct implementation of time

delay estimators. Empirical matched-filtering performances are expected to have an

SNR threshold below which they deteriorate significantly, that roughly corresponds

to the threshold indicated by the ZZLB. A discrepancy between the theoretical and

empirical thresholds could therefore highlight an implementation error.

4.2.3 Matched-Filtering Performance

In Fig. 4-4, we conduct a range estimation simulation with 10,000 realizations of the

simulated noise added to 𝑝(𝑡) in Eq. 4.2, per SNR value considered, and compare it to

the CRLB for time-delay estimation. These results illustrate the need for a boundary

estimation method that performs accurately when errors are small (local errors) and

robustly when they are large (global errors).

4.2.4 EM and SAGE Algorithms for Time Delay Estimation

The methodology of using matched-filtering to obtain TOA estimates fits the es-

tablished framework in localization for interpreting local and global errors. When

multipath interference is a greater issue for TOA estimation than noise, however,

matched-filtering is a suboptimal algorithm. Therefore, for conditions where the mul-

tipath arrivals can have significant overlap, we briefly summarize the EM and SAGE

algorithms that are designed to tackle this problem and can be deployed instead of
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Figure 4-4: The CRLB on the range estimation root-mean squared error (RMSE)
for a Gaussian pulse of 15.4 kHz bandwidth, and the simulated empirical matched-
filtering performance. The global error threshold for this particular signal is observed
to be 13.5 dB SNR, indicating that large errors can be encountered even at seemingly
high signal strengths.

matched-filtering.

The EM algorithm for time delay estimation has been demonstrated to achieve

the maximum likelihood estimation of the delay and amplitude parameters of NLOS

echoes, even when the pulses all overlap [113]. Recall that in our multipath setting,

a received signal given by:

𝑟𝑖(𝑡) =
𝑁∑︁
𝑗=0

𝛼𝑖,𝑗𝑠 (𝑡− 𝜏𝑖,𝑗) + 𝜉𝑖(𝑡), ∀𝑖 ∈ 𝒮𝑀 , ∀𝑗 ∈ 𝒮𝑁 , (4.4)

where the attenuation coefficients {𝛼𝑖,𝑗}, additive Gaussian noise realization 𝜉𝑖(𝑡),

and number of reflective surfaces 𝑁 are as detailed in Chapter 2. Given a copy of

the emitted signal 𝑠(𝑡) (which starts at time 𝑇i and lasts until time 𝑇f), and the fact

that there are 𝑁 + 1 arrivals, the EM algorithm identifies the amplitudes and delays

of the pulse copies in the received signal. Although we specifically focus on time

delay estimation, the amplitudes (and therefore the corresponding attenuations) of

the received arrivals is also potentially useful information.

At the initialization stage (iteration 𝑚 = 0), the EM algorithm randomly initial-

izes {𝛼(0)
𝑖,𝑗 } and {𝜏

(0)
𝑖,𝑗 }. Until a user-defined convergence criterion (which can simply

be a fixed number of steps), it first iterates through an E-step, where for a given 𝑖
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and for each 𝑗, it computes:

𝑥
(𝑚)
𝑖,𝑗 = 𝛼

(𝑚)
𝑖,𝑗 𝑠

(︁
𝑡− 𝜏

(𝑚)
𝑖,𝑗

)︁
+

1

𝑁 + 1

[︃
𝑟𝑖(𝑡)−

𝑁∑︁
𝑙=0

𝛼
(𝑚)
𝑖,𝑙 𝑠

(︁
𝑡− 𝜏

(𝑚)
𝑖,𝑙

)︁]︃
. (4.5)

Then, it carries out an M-step, where it computes:

{𝜏 (𝑚+1)
𝑖,𝑗 } = argmax

𝜏

⃒⃒⃒
𝑔
(𝑚)
𝑗 (𝜏)

⃒⃒⃒
, (4.6)

{𝛼(𝑚+1)
𝑖,𝑗 } =

𝑔
(𝑚)
𝑗

(︁
𝜏
(𝑚+1)
𝑖,𝑗

)︁
𝐸s

, (4.7)

where:

𝐸s ≜

𝑇f∫︁
𝑇i

|𝑠 (𝑡)|2 , (4.8)

is the emitted signal energy, and:

𝑔
(𝑚)
𝑗 (𝜏) ≜

𝑇f∫︁
𝑇i

𝑥𝑚
𝑖,𝑗 (𝑡) 𝑠

* (𝑡− 𝜏) d𝜏, (4.9)

is the matched-filtering result. With these iterative computations, we progressively

bring a best-guess synthetic signal 𝑥𝑖,𝑗 to match the real observed signal more closely.

One of the issues with this EM algorithm is that it does not prevent the selection of

the same pulse multiple times. For example, a pulse of amplitude 1 can be interpreted

as two identical and superimposed pulses with the same time delay, each with an

amplitude of 0.5. To counteract this problem, we use the SAGE algorithm [115].

Rather than carry out the E-step for all echoes and then the M-step for all echoes

separately, we simply compute the E- and M-step for a single echo, for each echo, and

repeat. This decoupling of the echo estimations leads to the algorithm’s convergence

to different TOAs, as desired.

Note that while we have detailed several TOA estimation algorithms with the ulti-

mate goal of boundary estimation, it is also possible to estimate the TDOAs from the

received signals [117]. In the PEEL framework, we envision using TDOA localization
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to obtain an estimate of the emitter location, followed by TOA localization. Hence,

when a boundary estimation is employed as part of a larger system, the TOA esti-

mation stage which we have presented here may potentially be preceded by a TDOA

estimation stage.

4.3 COTANS-NN for Boundary Estimation

Having defined the boundary estimation problem in Section 4.1, we present the

COTANS-NN method. Suppose that a set of {𝜏 𝑖,𝑗} has been estimated from {𝑟𝑖 (𝑡)},

and are unlabeled with respect to the corresponding boundaries. The goal is to es-

timate {𝜂𝑗} in a way that is robust to errors in {𝜏 𝑖,𝑗}. We first discuss how the

COTANS transform is used to generate images for a given geometry and set of {𝜏 𝑖,𝑗}

[34]. We then detail how COTANS-NN estimates the {𝜂𝑗} from these COTANS

images.

4.3.1 Additional Details of COTANS Image Generation

We previously summarized how COTANS images could be generated from time delay

estimates in Chapter 3. Here, we briefly summarize the notation for COTANS image

generation specifically for the 2D case, and present some additional details. Our focus

is on the generation of COTANS images over a wide range of SNRs and boundary

positions to create a large dataset, rather than just a specific instance from a specific

experiment.

In 2D, for a given geometry and {𝜏 𝑖,𝑗}, a boundary defined by 𝜌 and 𝜃 can be con-

ceptualized as a point (𝜌, 𝜃) in a COTANS transform domain; working out the (𝜌, 𝜃)

expression of a line is done by computing its COTANS transform [106]. Discretizing

the space 𝜌×𝜃 as a matrix and incrementing this accumulator array (instead of a ten-

sor as in 3D) over every potential (𝜌, 𝜃) for NLOS ellipses yields a COTANS-domain

image (e.g., as in Fig. 4-5), whose maxima are expected to be at the true boundaries

{(𝜌𝑗, 𝜃𝑗)} in the absence of errors. However, the time delay estimation errors that can

arise as discussed in Section 4.2 pose a major challenge for this approach.
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(a) (b)

Figure 4-5: Examples of COTANS images for the transition region at 12 dB SNR (a);
and for the high SNR region at 20 dB SNR (b), for an environment with two bound-
aries at (𝜌, 𝜃) = (3.5, 84) and (6.4, 258). The images are colored for convenience; the
original images are in grayscale.

We previously derived a mathematical solution for the COTANS transform which

precludes the need for randomly sampling points (𝜌, 𝜃) on the surface of an ellipse [34].

Recall that for a given 𝜃, we use vector geometry to obtain the COTANS transform’s

𝜌 for an origin-centered ellipse as:

𝜌 (𝜃) =
√︀
𝑎2 cos2 𝜃 + 𝑏2 sin2 𝜃, (4.10)

where 𝑎 = 𝑑NLOS/2, and:

𝑏 =
√︁

𝑑2NLOS − 𝑑2LOS/2, (4.11)

are the standard ellipse axes calculated from the {𝜏 𝑖,𝑗}. To move a collection of

{(𝜌, 𝜃)} centered on the origin to pe and pr in 2D, we rotate the points to match the

true ellipse’s orientation (adjusting 𝜃 to be some 𝜃rot), and then translate the points

(yielding a final 𝜌COTANS and 𝜃COTANS).

It is important to note that the COTANS image curves need not be continuous

between 0° and 360°. We observe such continuous curves in the vast majority of the

experiments that we performed in simulation and in real-life experiments. However,

this is mainly a result of our choice of the origin as located roughly in the center of
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Figure 4-6: Example of a COTANS image where the NLOS curves are not necessarily
continuous across the full range of azimuths.

the experimental setup, with the emitter on one side of the origin and the cluster of

receivers positioned on the other side, and the reflective boundaries located relatively

close by. In this case, the transformation steps in Fig. 3-5 typically yield a NLOS

ellipse that still contains the origin within its interior. Hence, the set of potential

tangent planes to this ellipse contain all azimuths in the interval [0°, 360°]. However,

the ellipse need not contain the origin; this can happen due to global errors in our

particular scenarios, but can happen in general for non-erroneous TOAs. In such

cases, not all azimuths will be represented at the end of the COTANS transform, as

exemplified in Fig. 4-6.

Discontinuous COTANS curves such as those observed in Fig. 4-6 are not an issue

for our COTANS-NN method; these are a natural feature of the COTANS transform.

However, they do rule out some algorithms that we considered for potentially en-

hanced performance, which traced the curves and exploited their continuity, or that

naively included a for-loop over each value of 𝜃. These discontinuities are also im-

portant to take into consideration when implementing a function that zooms into the

vicinity of a COTANS image sector in 𝜌 and 𝜃 via lookup tables, as we detail later.

When time-delay estimation errors are present, the COTANS curves do not exactly

intersect at the correct boundary locations, as seen in Fig. 3-6(a). In the literature,

a heuristic, hand-crafted smoothing filter is typically used for local averaging of the

image [34], followed by the selection of as many maxima as there are boundaries as in
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Fig. 3-6(b), where the neighborhood of each maximum is set to zero to avoid picking

the same boundary multiple times. Note that if we were given constraints such as

the environment being convex, we can rigorously select only the single-reflections as

COTANS inputs [61]. This smoothing methodology can introduce estimation errors

since it distorts the original COTANS image, and it only uses the information in a

small part of the image for estimation rather than exploiting other potential pat-

terns in the full image. Furthermore, the smoothing filter’s dimensions and kernel

are heuristically fine-tuned to specific environments and to specific COTANS image

resolutions, making this smoothing process difficult to generalize. We therefore in-

troduce a NN method for multi-scale filtering and peak extraction from COTANS

images, that is not constrained by the above limitations.

4.3.2 Detailed Explanation of the COTANS-NN Method

COTANS-NN uses CNNs for multi-output regression from COTANS images. We

re-purpose the 8-layer and 2-GPU AlexNet architecture [110] by replacing the final

classification layer with a regression layer, with MSE used as the cost function. Our

approach is guided by previous similar approaches that re-purpose AlexNet for re-

gression [118]. To work with color images, AlexNet has 3 channels; however, the

COTANS images are like grayscale images in that they only have a single value for

each pixel scaled to be within [0,1], so we modify AlexNet to only have 1 channel.

Our network inputs are COTANS images, and outputs are the boundary parameter

estimates [�̂�1 · · · �̂�𝑁 �̂�1 · · · �̂�𝑁 ]T. We use the correct parameters [𝜌1 · · · 𝜌𝑁 𝜃1 · · · 𝜃𝑁 ]T

as the targets for network training. Thus, our output layer size is 2𝑁 , and the NN

implements a function that projects COTANS images onto this 2𝑁 -dimensional space.

We use AlexNet as a building block for COTANS-NN because it does not incor-

porate any specific features for image classification, as we have an image regression

task instead. Thus, we replace the final classification layer with a regression layer and

modify the input image dimensions, thereby not extensively re-designing the NN. Our

NN training hyperparameters are given in Table 4.2; note that L2 regularization is

set to zero because the COTANS transform images themselves are not corrupted by
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Table 4.2: Training specifications for COTANS-NN.

Parameter Value
Optimizer Adam

Number of epochs 25
Mini batch size 50
L2 regularization 0
Initial learn rate 0.001

(a) (b)

Figure 4-7: Random geometries and the corresponding NLOS ellipses: the transition
region at 8 dB SNR (a); and the high SNR region at 20 dB SNR (b).

any noise, though the underlying acoustic data may be.

To use this architecture on COTANS images, we generate training image datasets

by simulating scenarios with randomized pe and {pr,𝑖}, and randomized boundary

positions, as in Fig. 4-7. We train COTANS-NN on 14 different SNRs in the 10 to

30 dB SNR range, fully covering the transition region of global errors. We generate

50,000 training and 3,000 validation images for each SNR. Since COTANS curves

for all receivers are all summed up into a single image, COTANS-NN does not need

modification to handle variable numbers of receivers.

Limited NN training times and computational memory lead to practical con-

straints on COTANS image dimensions, necessitating a trade-off between complexity

and bin resolutions. Thus, in order to plot the complete COTANS curves, we adopt

input dimensions of 101 pixels in 𝜌 and 360 pixels in 𝜃. The 𝜃-resolution is therefore

1°, while we use a 𝜌-resolution of 0.1 m, leading to a 𝜌-axis of 0 m to 10 m. This

range of 𝜌 is appropriate for our simulation and real experiment settings, but can be
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(a) (b)

Figure 4-8: A coarse-resolution COTANS image, with the region highlighted in red
centered on one of the Coarse-NN boundary estimates (a); and the resulting zoomed-
in image in stage 2 (b).

scaled or translated to a different interval for different applications, while keeping the

same image dimensions.

In order to surpass the performance limitations imposed by the resolution con-

straints on COTANS images, we design successive stages of COTANS-NN with finer

resolutions for refined performance. This leads to the multi-stage, multi-resolution

COTANS-NN method, as summarized in Fig. 4-2. A single NN, termed Coarse-NN,

forms the first stage which is trained on coarse-resolution, complete COTANS im-

ages. While this NN is a good overall first-pass estimator, its performance saturates

at high SNRs where the limited resolution can constrain performance. To overcome

this limitation, we zoom into the vicinities of Coarse-NN boundary estimates on the

full images, and perform further stages of estimation on these high-resolution images.

At each stage of zooming, we increase the 𝜌- and 𝜃-resolutions by a factor of ten, so

that the second stage in our particular implementation yields images with a resolu-

tion of (0.01 m, 0.1°) in (𝜌, 𝜃). The image dimensions are retained to be the same

at 101×360 pixels, so that the pre-training procedures used for the first stage can be

used for successive stages as well. This zooming approach is illustrated in Fig. 4-8,

where we have highlighted the vicinity of one of the two boundary estimates from

Coarse-NN.

98



Figure 4-9: Example of a second-stage zoomed COTANS image, where finding the
center of mass of the crossing lines is preferred to training a new NN.

To train a NN for fine-resolution images, we first generate a new set of 25,000

training and 1,500 validation coarse-resolution COTANS images for each SNR. We

then zoom into the 1 m × 3.6° image region around the Coarse-NN estimates of each

of the two boundaries, and generate two images within these regions, to obtain a

zoomed dataset of 50,000 training and 3,000 validation images. Training the same

NN architecture with this dataset yields a new NN which we call Fine-NN. Using

Coarse-NN and Fine-NN in sequence leads to better performance.

After using Fine-NN for estimation, further stages of zooming have diminishing

performance returns. These stages yield images featuring crisscrossing lines as in

Fig. 4-9, rather than intersecting curves. Therefore, we employ a basic weighted

averaging procedure for interpolating the estimates for these stages, instead of train-

ing any new stages of NNs. We threshold the image pixels to only retain the ones

with values ≥ 0.5, indicating the intersections of two or more lines. Recall that the

COTANS images are scaled so that the maximum intensity pixel, corresponding to

the maximum number of crossing curves, has a value of 1. Weighting every remaining

pixel by its value and finding the average pixel coordinates yields a refined boundary

estimate. This stage’s performance gain only becomes relevant at high SNRs.

COTANS-NN performs better when the image inputs to Coarse-NN are the echo-

labeled curves from a single boundary, rather than the sum of unlabeled curves from
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Figure 4-10: A COTANS image with curves from all the unlabeled NLOS arrivals, to
be used as an input to Coarse-NN.

all the boundaries. Such single-boundary images can have less-distorted maxima,

and the accuracy of successive stages of refinement is contingent on this Coarse-NN

performance. However, we do not attempt to solve the complete, combinatorial echo

labeling problem. Instead, we first carry out boundary estimation with Coarse-NN,

then use the resulting estimates to estimate the correct assignment of echoes. Each

boundary estimate corresponds to a set of NLOS TOAs 𝜏 𝑖,𝑗′ to each receiver, which

differ from the NLOS TOAs 𝜏 𝑖,𝑗 that were obtained by time-delay estimation. At each

receiver 𝑖, we make the echo assignment of 𝑗 to 𝑗′′ that minimizes
∑︀𝑁

𝑗=1 ‖𝜏 𝑖,𝑗′ − 𝜏 𝑖,𝑗‖.

We then generate separate new COTANS images for each 𝑗′′ from the sorted time-

delays 𝜏 𝑖,𝑗′′ , and use Coarse-NN for estimation. An example of this procedure is given

in the COTANS image of Fig. 4-10, which is used to generate the two COTANS images

in Fig. 4-11, which correspond to NLOS curves assigned to different boundaries. Note

that this procedure does not lead to a completely correct labeling when global errors

have been made; but the performance of Coarse-NN is strong enough that the labeling

of echoes with only local errors is generally accurate. The correct assignment of most

of the echoes to separate images is found to be sufficient to yield better performance.

In implementation, the zooming operations that we have outlined do not involve

simply generating higher-resolution complete COTANS-NN images and taking specific

regions of these images into consideration. For a large dataset, the memory require-

ments of progressively higher-resolution images become prohibitive. Instead, we main-
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(a) (b)

Figure 4-11: The NLOS arrivals in the COTANS image of Fig. 4-10 are partitioned
into those estimated to come from boundary 1 (a), and boundary 2 (b). The maxima
in the original image are distorted from the superposition of many NLOS curves, while
the cleaner images belonging to the different boundaries serve better for COTANS-
NN estimation.

tain a lookup table of the coarse-resolution azimuth transformations 𝜃 → 𝜃COTANS.

We generate the higher-resolution images by running the COTANS transformation

only on the relevant 𝜃-interval that yields the desired 𝜃COTANS-interval.

4.4 Existing Boundary Estimation Methods

In this section, we summarize the LS [16] and EDM [17] algorithms, which are the

state-of-the-art alternatives to COTANS-NN. LS and EDM are used to localize emit-

ters using LOS arrivals; they are similarly used for boundary estimation by localizing

virtual emitters using NLOS arrivals. While COTANS-NN is currently limited to

2D, LS and EDM have the advantage of being 3D estimation methods; but we will

observe that they assume a small-scale error regime, and require solving the echo

labeling problem that COTANS-NN bypasses.

4.4.1 Least-Squares Solution for Boundary Estimation

In LS localization, the objective is to solve for the variables 𝑥e and 𝑦e that define

the emitter’s location pe in Cartesian coordinates. Assuming a high-SNR regime, we
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have the Gaussian noise-corrupted range estimates {𝑟𝑖}𝑀𝑖=1 from the emitter to each

receiver as:

𝑟𝑖 = 𝑑𝑖 + 𝜉𝑖 =

√︁
(𝑥e − 𝑥𝑖)

2 + (𝑦e − 𝑦𝑖)
2 + 𝜉𝑖, 𝜉𝑖 ∼ 𝒩

(︀
0, 𝜎2

𝑟

)︀
. (4.12)

Introducing the variable 𝑟e ≜
√︀
𝑥2
e + 𝑦2e for the emitter’s range to the origin, the

resulting set of linear equations to be solved is given by:

Ax = b,

A =

⎡⎢⎢⎢⎣
𝑥1 𝑦1 −0.5
...

...
...

𝑥𝑀 𝑦𝑀 −0.5

⎤⎥⎥⎥⎦ , x =

⎡⎢⎢⎢⎣
𝑥e

𝑦e

𝑟2e

⎤⎥⎥⎥⎦ , b =
1

2

⎡⎢⎢⎢⎣
𝑥2
1 + 𝑦21 − 𝑟21

...

𝑥2
𝑀 + 𝑦2𝑀 − 𝑟2𝑀

⎤⎥⎥⎥⎦ . (4.13)

In the presence of additive white Gaussian noise, the LS solution for Eq. (4.13) is

given by:

x̂e = argmin
x̃

(Ax̃− b)T (Ax̃− b) , (4.14)

where x̃e =
[︀
�̃�e 𝑦e �̃�

2
e

]︀T
is the optimization variable vector. Note that in the pres-

ence of range estimate errors (i.e., time delay estimation errors), it is critical to also

introduce the nonlinear constraint:

�̃�2
e + 𝑦2e − �̃�2e = 0, (4.15)

and solving Eq. (4.14) constrained by Eq. (4.15) yields the LS algorithm for localiza-

tion.

To localize virtual emitters rather than the real emitter, we only need to re-

conceptualize our optimization variable vector as x̃v,𝑗 =
[︀
�̃�v,𝑗 𝑦v,𝑗 �̃�

2
v,𝑗

]︀T
for each

boundary 𝑗 = 1, . . . 𝑁 , and to use the NLOS range estimates 𝑟𝑖,𝑗. It is therefore

implicit in this formulation that the echo labeling problem has been solved correctly.

Going beyond the literature, inequality constraints on �̃�e or 𝑦e can also be added,

thus confining LS solutions to a region in which the emitter is known to be present,
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and thereby exploiting prior information on the environment, and in particular on

the area of interest.

4.4.2 Boundary Estimation with Euclidian Distance Matrices

EDM was designed with the insight that when matrices of squared distances between

nodes (receivers and virtual emitters) are given, the matrix with the correct permu-

tation of entries (i.e., with proper echo labeling) will have the lowest rank. Thus, if

localization is carried out on each combination of echoes, we would simultaneously

obtain the correct echo labeling and the correct virtual emitters [17]. In the presence

of noise, however, it is difficult to use this (sensitive) rank criterion, and a heuristic

metric and optimization method is applied instead.

EDM uses the ‘s-stress criterion’, where given the measured {𝑟𝑖,𝑗}, the objective

function to be minimized over �̃�v,𝑗 and 𝑦v,𝑗 is:

𝑠
(︀
�̃�v,𝑗, 𝑦v,𝑗

)︀
=

∑︁
𝑖

[︁
(�̃�v,𝑗 − 𝑥𝑖)

2 +
(︀
𝑦v,𝑗 − 𝑦𝑖

)︀2 − 𝑟2𝑖,𝑗

]︁2
. (4.16)

Ideally, Eq. (4.16) is minimized by the correct echo labeling. In our simulations,

however, we had difficulty in using the s-stress criterion for noisy echo labeling, with

the correct set of echoes not necessarily having the smallest s-stress. Therefore, in

our implementation of EDM, we chose to use the correctly echo-sorted results for

boundary estimation, as with LS. Thus, we give these methods an inherent advantage

here, of access to knowledge that needs to be inferred from the data in reality.

4.5 CRLB for Boundary Range Estimation

We now derive a theoretical benchmark for the performances of boundary estimation

algorithms given noisy range measurements as in Eq. (4.12), which enables us to

verify their correct implementation, as well as assess the fundamental limitation of

the asymptotic accuracy. Our starting point is the CRLB for emitter localization

performance [16], which we modify to obtain the CRLB for boundary estimation.
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The CRLB for estimating pe = [𝑥e 𝑦e]
T yields the Fisher information matrix:

I(pe) =

⎡⎣I1,1 I1,2

I1,2 I2,2

⎤⎦ , (4.17)

where:

I1,1 =
𝑀∑︁
𝑖=1

(𝑥e − 𝑥𝑖)
2

𝜎2
(︀
(𝑥e − 𝑥𝑖)

2 + (𝑦e − 𝑦𝑖)
2)︀ , (4.18)

I1,2 =
𝑀∑︁
𝑖=1

(𝑥e − 𝑥𝑖) (𝑦e − 𝑦𝑖)

𝜎2
(︀
(𝑥e − 𝑥𝑖)

2 + (𝑦e − 𝑦𝑖)
2)︀ , (4.19)

I2,2 =
𝑀∑︁
𝑖=1

(𝑦e − 𝑦𝑖)
2

𝜎2
(︀
(𝑥e − 𝑥𝑖)

2 + (𝑦e − 𝑦𝑖)
2)︀ . (4.20)

Inverting Eq. (4.17) yields a matrix with terms J1,1, J1,2, and J2,2. The CRLBs for

the coordinates of pe are:

CRLB (�̂�e) = J1,1 =
I2,2

I1,1I2,2 − I21,2
, (4.21)

CRLB (𝑦e) = J2,2 =
I1,1

I1,1I2,2 − I21,2
. (4.22)

We also have the cross-term:

J1,2 = −
I1,2

I1,1I2,2 − I21,2
. (4.23)

The CRLB on the range estimation error is then CRLB (�̂�e) + CRLB (𝑦e) [119]. For

virtual emitters, pv = [𝑥v 𝑦v]
T can be substituted into Eqs. (4.21) and (4.22).

We specify a given boundary by its 𝜌 and 𝜃, and use the RMSE range error as the

measure of performance of boundary estimation. Thus, we transform the CRLB for

p̂v into a CRLB for boundary range estimation.

Given pv, we obtain the orthogonal vector 𝜌v to the boundary, referring to Fig. 4-

12. First, note that nv pointing from the emitter to the virtual emitter has the same

direction as the unit normal n̂v from the origin to the boundary:
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Figure 4-12: A geometric reference for the transformation of the CRLB for virtual
emitter positions into the CRLB for boundary range estimation.

n̂v =

⎡⎢⎣ 𝑥v−𝑥e√
(𝑥v−𝑥e)

2+(𝑦v−𝑦e)
2

𝑦v−𝑦e√
(𝑥v−𝑥e)

2+(𝑦v−𝑦e)
2

⎤⎥⎦ . (4.24)

The vector from the origin, to the intersection point of the boundary and nv is given

by:

bv =

[︂
𝑥v + 𝑥e

2

𝑦v + 𝑦e
2

]︂T
. (4.25)

The orthogonal vector from the origin to the boundary, is then given by the

orthogonal projection of bv onto n̂v, i.e., by
(︀
bT
v n̂v

)︀
n̂v. We obtain this resulting

vector as:

𝜌v =

⎡⎢⎣ (𝑥v−𝑥e)(𝑥2
v−𝑥2

e+𝑦2v−𝑦2e)
2((𝑥v−𝑥e)

2+(𝑦v−𝑦e)
2)

(𝑦v−𝑦e)(𝑥2
v−𝑥2

e+𝑦2v−𝑦2e)
2((𝑥v−𝑥e)

2+(𝑦v−𝑦e)
2)

⎤⎥⎦ . (4.26)

Finally, the range to the boundary is given by the magnitude of 𝜌v, yielding the

resulting scalar as:

𝜌v =
|𝑥2

v − 𝑥2
e + 𝑦2v − 𝑦2e |

2
√︁

(𝑥v − 𝑥e)
2 + (𝑦v − 𝑦e)

2
. (4.27)

This set of operations is the same as those used to transform the LS and EDM

virtual emitter estimates into boundary estimates. Without loss of generality, we will

assume that 𝑥2
v − 𝑥2

e + 𝑦2v − 𝑦2e > 0 for our subsequent derivations.

We have now obtained the range as a function of 𝑥v and 𝑦v, with 𝑥e and 𝑦e being

known constants. The CRLBs for 𝑥v and 𝑦v can now be transformed into a CRLB
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for 𝜌v. We calculate the derivatives of 𝜌v with respect to 𝑥v and 𝑦v as:

𝜕𝜌v
𝜕𝑥v

=
2𝑥v

(︀
(𝑥v − 𝑥e)

2 + (𝑦v − 𝑦e)
2)︀− (𝑥v − 𝑥e) (𝑥

2
v − 𝑥2

e + 𝑦2v − 𝑦2e )

2
(︀
(𝑥v − 𝑥e)

2 + (𝑦v − 𝑦e)
2)︀3/2 , (4.28)

𝜕𝜌v
𝜕𝑦v

=
2𝑦v

(︀
(𝑥v − 𝑥e)

2 + (𝑦v − 𝑦e)
2)︀− (𝑦v − 𝑦e) (𝑥

2
v − 𝑥2

e + 𝑦2v − 𝑦2e )

2
(︀
(𝑥v − 𝑥e)

2 + (𝑦v − 𝑦e)
2)︀3/2 . (4.29)

The resulting CRLB for 𝜌v is obtained by the vector transformation of parameters

as:

CRLB(�̂�v) =
[︁
𝜕𝜌v
𝜕𝑥v

𝜕𝜌v
𝜕𝑦v

]︁⎡⎣I−1
1,1 I−1

1,2

I−1
1,2 I−1

2,2

⎤⎦⎡⎣ 𝜕𝜌v
𝜕𝑥v

𝜕𝜌v
𝜕𝑦v

⎤⎦ (4.30)

= I−1
1,1

(︂
𝜕𝜌v
𝜕𝑥v

)︂2

+ 2I−1
1,2

𝜕𝜌v
𝜕𝑥v

𝜕𝜌v
𝜕𝑦v

+ I−1
2,2

(︂
𝜕𝜌v
𝜕𝑦v

)︂2

. (4.31)

Hence,
√︀
CRLB(�̂�v) is the lower bound on the RMSE boundary range estimation

error.

4.6 Simulation and Experimental Results

We now study the performance of COTANS-NN as was presented in Section 4.3.2,

and compare it to its alternatives which were presented in Section 4.4. We evaluate

COTANS-NN in simulation, comparing its performance to LS and EDM, and also to

the CRLB derived in Section 4.5. After re-training COTANS-NN, we apply it to a

real-life underwater acoustic setting, where it outperforms LS. Finally, we conduct

simulations that demonstrate the robustness of COTANS-NN to model mismatch and

to reduced prior knowledge of the environment.

4.6.1 Simulated Performances

We test COTANS-NN on 𝐾 = 50,000 COTANS images per SNR value. One bound-

ary has its 𝜌 and 𝜃 parameters uniformly drawn from the intervals [3, 3.5] m and

[260, 280]°, respectively, while the other has parameters in [6, 6.5] m and [80, 100]°.
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These boundaries model a sea surface and a shallow seafloor as in Fig. 4-7 The varia-

tions in range/angles of the boundaries could arise from either surface wave motion in

the case of the sea surface, or bathymetric variations in the case of the seafloor. The

pe and {pr,𝑖} are uniformly drawn from the vicinities of two fixed points, (3.5, 0.5)

and (−2.5, 3.5), respectively. While we have conducted simulation experiments with

three boundaries as well, the resulting performance curves are qualitatively similar to

the two-boundary case, only differing in the performances at specific SNRs. Hence,

we only present the two-boundary results as being representative of the general per-

formance of COTANS-NN.

We first compare COTANS-NN to an ideal LS implementation, which is initialized

at the ground truth locations of the {pv,𝑗}, with correct echo labeling, and with virtual

emitter solutions constrained to lie within the same parameter space that COTANS-

NN is trained on. Our performance metric is the range RMSE (in m) over all 𝑁

reflective boundaries and all 𝐾 environment realizations for each SNR 𝑆, defined as:

𝜌RMSE(𝑆) ≜

⎯⎸⎸⎷∑︀𝑁
𝑗=1

∑︀𝐾
𝑘=1

(︁
𝜌
(𝑆)
𝑗,𝑘 − �̂�

(𝑆)
𝑗,𝑘

)︁2

𝑁𝐾
. (4.32)

Fig. 4-13(a) demonstrates that COTANS-NN and LS performances are nearly iden-

tical for SNR greater than 23 dB, a high-SNR operating regime where global errors

are rare and the {𝜏 𝑖,𝑗} are accurate due to small noise. Below 23 dB SNR, as global

errors become increasingly common, COTANS-NN outperforms LS by up to 6 dB

SNR. This performance advantage narrows at low SNRs, where accurate boundary

estimation becomes infeasible using either method.

In Fig. 4-13(a), it appears that COTANS-NN merely outperforms LS at SNR

less than 23 dB and has equivalent performance otherwise. In fact, in this plot,

LS sometimes suffers failures which are constrained to lie within a relatively narrow

parameter space, whenever global errors occur. We conduct the same experiment with

unconstrained LS solutions, and also apply EDM to obtain Fig. 4-13(b). COTANS-

NN outperforms LS and EDM by up to 9 dB SNR, and also marginally outperforms

them in the high-SNR regime as well. LS and EDM have similar performances,
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(a) (b)

Figure 4-13: COTANS-NN performance comparison to constrained LS (a), and to LS
and EDM (b).

Figure 4-14: Azimuth estimation performance of COTANS-NN performance, as com-
pared to constrained LS.

which arises from how they both minimize the squared error between measured and

estimated distances.

We present in Fig. 4-14 the azimuth estimates from the simulation results corre-

sponding to the scenario in Fig. 4-13(a). While the range estimation performances

were very close to each other in the high-SNR regime, the azimuth estimation per-

formances demonstrate a 2 dB advantage for LS over COTANS-NN. The absolute

performance advantage that this difference corresponds to is very small, however,

with azimuth estimation RMSE of 0.39°for LS as compared to 0.45°for COTANS-NN

at 24 dB SNR, for example. In the intermediate SNR regime, COTANS-NN outper-

forms LS by up to 6 dB SNR as was the case for the range estimates, indicating that

these estimation accuracies are consistent.
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Figure 4-15: The CRLB for single boundary range estimation, calculated for a fixed
scenario, and compared against the COTANS-NN and LS performances for the same
scenario.

Finally, we conduct simulations with different noise realizations and a fixed en-

vironment, allowing us to compare against the CRLB in Section 4.5 for a single

boundary present in the environment. Since LS localization performance approaches

the CRLB for emitter localization at high SNR, LS virtual emitter localization should

similarly approach the boundary range estimation CRLB. We observe that this is the

case in Fig. 4-15, confirming that the CRLB has been formulated correctly, and is a

benchmark for performance in the high-SNR regime as intended.

It is important to observe how the different stages of COTANS-NN contribute to

overall performance. In Fig. 4-16, we compare the performances of the Coarse-NN,

Fine-NN, and interpolation stages as previously outlined in Fig. 4-2. The performance

of Coarse-NN saturates at high SNR due to limited image resolutions; the subsequent

stage of Fine-NN improves this performance and avoids the saturation phenomenon

in this selected SNR range. The large performance improvement from Fine-NN,

even at intermediate SNRs, demonstrates that it is advantageous to always carry

out this refinement step. For this particular simulation, the interpolation stage does

provide a noticeable improvement in performance at high SNRs, albeit the gains of

this subsequent stage are limited with diminishing returns. Hence, whether to carry

out further refinements of COTANS-NN results after Fine-NN depends on particular

application scenarios and requirements.

Another key stage to analyze is the grouping of curves into separate images and
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(a) (b)

Figure 4-16: The performances of different stages of COTANS-NN (a), and a zoomed-
in comparison of the fine NN performance and the subsequent interpolation refinement
(b).

the application of Coarse-NN to each image, based on an initial first-pass estimate

using Coarse-NN. In Fig. 4-17, we observe a large performance improvement of up

to 4 dB SNR. A noticeable improvement takes place even in low- and medium-SNR

regimes, where the rough echo labeling carried out here is not completely accurate

due to global errors being present. Thus, the approximate grouping operation that

we implement is robust in delivering performance gains. Not only is this result a

major improvement in its own right over the first-pass application of Coarse-NN, but

this enhanced performance is essential for Fine-NN and the subsequent interpolation

stage to deliver large improvements as well, as opposed to these stages only having a

marginal effect. The improved performance carries over into the performance of each

of these sequential stages.

4.6.2 Underwater Acoustic Experiment Results

To verify that COTANS-NN performs well under realistic conditions, we perform

experiments in a controlled underwater acoustic setting. We use the Scripps Ocean-

Atmosphere Research Simulator (SOARS) wave tank facility in the Scripps Institution

of Oceanography (Fig. 4-18(a)), which was previously discussed in Section 2.2.3, with

the top-view of this particular experiment geometry set up as in Fig. 4-18(b). The
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Figure 4-17: The first-pass Coarse-NN performance, compared to the average perfor-
mance obtained by applying Coarse-NN to separate images in the second-pass.

hydrophones are suspended at the same depth so that we have a 2D estimation

problem for the side walls, located at y = -1.235 m and y = 1.235 m.

We re-train the COTANS-NN networks that were used to obtain the results in

Fig. 4-13(b) on a dataset that is similar to the geometric scenario of SOARS. We

then use the COTANS image generated from the SOARS experiment to estimate

the boundaries. The results with COTANS-NN and with LS are given in Table 4.3.

COTANS-NN achieves an accuracy on the order of centimeters in 𝜌 and a few degrees

in 𝜃. LS suffers a large error for one boundary, and is consistently outperformed by

COTANS-NN.

Table 4.3: SOARS estimation error magnitudes for boundary parameters, with drastic
errors highlighted in red.

Parameter COTANS-NN LS
𝜌1 0.083 m 0.134 m
𝜌2 0.019 m 0.025 m
𝜃1 0.7° 174°
𝜃2 2.4° 5.7°

4.6.3 COTANS-NN Robustness Analysis

We now present simulation results that study COTANS-NN’s robustness. A common

pitfall in NN design is to over-train on a particular dataset, yielding a network that

is fragile to model mismatch or one that only works with a narrow parameter space.
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(a) (b)

Figure 4-18: Emitter deployment in the SOARS watertank (a), and the top-view
schematic of the watertank illustrating the experiment geometry and the estimation
results (b).

A robust method will have a gradual performance decline under model mismatch

rather than abrupt deterioration, and will remain functional for difficult estimation

scenarios.

First, we explore the effect of model mismatch in the ranges of pe assumed in

generating the training data. We train COTANS-NN with pe drawn randomly from

a square 0.25 m wide, centered at (3.5, 0.5). We progressively shift the center of

this square by 0.25 m in the x- and y-directions, while continuing to use the original

COTANS-NN trained on source locations within the first square region. We thereby

obtain the results in Fig. 4-19, where COTANS-NN continues to be a stable method,

despite increasingly worse performance as model mismatch creates unaccounted-for

estimation biases.

In a different experiment, we relax the bounds on 𝜃 that the 𝜂𝑗 can have, so that

COTANS-NN handles a larger parameter space. We re-train COTANS-NN, originally

having a ±10° 𝜃-margin as in Sec. 4.6.1, with ±20° and ±30° 𝜃-margins as well. A

larger parameter space requires a correspondingly larger training set, but we instead

use 50,000 training images per SNR as before, to assess COTANS-NN’s robustness.

Our results in Fig. 4-20(a) indicate that COTANS-NN remains stable, despite being
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Figure 4-19: Performance of COTANS-NN as the average assumed emitter position
increasingly deviates from the true one.

(a)
(b)

Figure 4-20: COTANS-NN performance on progressively larger 𝜃-margins (a), and
performance on the same margin after being trained on different margins (b).

trained on harder scenarios.

To analyze the deterioration due to a larger parameter space, we re-train COTANS-

NN to operate on a ±20° 𝜃-margin, then test it on the same ±10° 𝜃-margin dataset

of the original network. The resulting performances in Fig. 4-20(b) indicate that by

sequentially using COTANS-NN modules on progressively smaller parameter spaces,

we could achieve greater accuracy.
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Chapter 5

Conclusion and Future Work

The overarching theme for this work has been the study of challenging problems

in localization and environment estimation, for which no framework existed that

provided the guarantee of a working computational approach. At the outset of this

study, we had in our view a variety of passive localization and sensing methods that

were individually well-defined, and for which theoretical guarantees of performance

were available. However, we could not discover a study that approached the task of

passive localization and environment learning in a general setting. Thus, although we

had an intuition that various techniques such as PSO and COTANS-NN would work

well enough, it was not obvious that they would yield good results on our particular

data or function successfully within a single overall architecture. It was therefore a

leap of faith to implement these methods on our real data, in an underwater acoustic

setting that they had not been originally designed for. The successful performance

of these methods in such challenging settings indicates that the tools which we have

designed are applicable for a wide range of environments, which could be much less

adversarial for localization tasks.

We developed a method for simultaneous localization and environment learning,

which was tested in a 3D reverberant underwater environment with occluding ob-

jects. Our PEEL method performed iteratively refined localization, with each so-

lution yielding results that served as assumed knowledge for the following more so-

phisticated algorithm stages. This multi-stage approach handled a complex problem
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where successively establishing synchronization, boundary estimation, emitter track-

ing, and occluder estimation, made solving the overall task computationally feasible.

Applying these stages separately is suboptimal as compared to a hypothetical joint

optimization over all of the aspects of the problem. However, PEEL breaks down the

localization task into sub-problems with well-posed solutions. We ultimately achieved

accurate simulation and experimental results in end-to-end localization.

The proposed COTANS-NN image regression method for 2D reflective boundary

estimation exploited the multi-scale filtering and domain adaptation capabilities of

CNNs. Our method leveraged prior knowledge of the environment to deliver robust

performance in both simulation and a real underwater acoustic setting despite model

mismatch, in part by avoiding separated sub-optimal echo labeling and filtering steps

that are fragile without high SNR. Simulations and a real watertank experiment

demonstrated that COTANS-NN consistently delivers accurate estimates even when

large errors are present in the time-delay estimates, outperforming alternative bound-

ary estimation methods in the literature.

As a continuation of our work, the next key task which we aim to accomplish is

to implement a NN approach that can perform 3D boundary estimation, now that

we have demonstrated our capabilities in 2D. We cannot trivially scale our current

architecture up to this task, however. COTANS-NN makes full use of the available

memory and runtime resources, and going from 2D to 3D inputs would require at least

an order of magnitude more computational power. While replacing the 2D convolu-

tional layers with 3D layers is a first step, the key difficulty is that 3D data increases

computational demands dramatically (the “curse of dimensionality"). Hence, it is im-

perative to redesign our NN architectures to deliver the same performance or better,

while simultaneously reducing computational costs.

In order to scale up to 3D, we ultimately need to design a custom neural network

that can solve the boundary estimation problem much more efficiently. We propose

to first devise a new and efficient architecture in 2D, which should hint at how a

more difficult 3D setting could be tackled. Perhaps the network could have two

sub-branches, one for range and the other for azimuth estimation, which are then
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combined in a set of fully-connected layers. There is a wide range of techniques that

have been used to adapt NNs to specific image classification tasks. There is a smaller

literature for image regression tasks, which makes this future study harder but also

makes it more significant from a research perspective.

5.1 Near-Term Avenues for Research

We wish to present some of our ideas for improving PEEL and COTANS-NN in detail,

as being relatively straightforward and near-term extensions of our current methods.

Some of these research avenues may yield a large improvement in performance or

computational efficiency, and would thereby enable the implementation of new ca-

pabilities such as robust and accurate NN-based 3D boundary estimation. Others

would serve to provide important insights into the operation of our algorithms, and

could thereby point to better conceptual methods for approaching the localization

and boundary estimation tasks.

5.1.1 Ocean Implementation of PEEL

When deploying PEEL in an open water setting, there are improvements that must

be made to cope with this more difficult environment. To use as general a model

as possible, we have used the simplest versions of each algorithm, such as GCC-

PHAT for TDOA, basic PSO for optimization, and a constant acceleration model

for Kalman tracking. Each of these algorithms can be enhanced if more domain

knowledge is available. Applying an algorithm that tracks the multipath arrivals

[120], [121], for example, can help to further refine the boundary estimates. The

underwater environment’s bathymetric profile or the presence of occluding objects

may already be known, and must then be taken into account. In a 2D slice of the ocean

environment, there are performance bounds on estimation accuracy with multipath-

aided localization [122]. The extension of such theoretical analysis to PEEL’s 3D

setting is an important future avenue of research as well.

117



5.1.2 Different Optimization Algorithms for PEEL

PEEL currently incorporates global optimization over the emitter position and the

locations of planar boundaries. A more sophisticated environmental model would

allow it to work robustly with the complex non-planar boundaries in real-life shallow-

water environments. In the literature, global optimization with simulated annealing

and genetic algorithms have been applied to MFP [123] for geoacoustic inversion,

using known emitters. Optimization over not just the locations of their boundaries

but their physical properties as well, while being more computationally expensive,

could potentially lead to improved results in field deployments. There are different

versions of the PSO optimization algorithm that could also be implemented, for po-

tentially improved performance and faster (or more reliable) convergence [124], [125].

The incorporation of particle filtering for localization and tracking [126] may also

be promising for PEEL’s enhancement. While we have used PEEL for only a single

emitter being present in the environment, other algorithms may also be incorporated

to handle the case of tracking multiple sources [127].

5.1.3 Different Cost Functions for COTANS-NN

In COTANS-NN, we currently use the MSE between the real and estimated boundary

ranges and azimuths (all scaled to the interval [0, 1]) as our cost function. This was

initially chosen for expediency, as it was the default regression layer setting in Matlab,

and was retained due to the achievement of strong performance. In practice, the mean

absolute error (MAE) and mean relative error (MRE) are alternative cost functions

that are also widely used in the literature [128]. We could also use a modified cost

function specifically for azimuth estimation. We have worked with boundaries whose

azimuths were not close to 0° or 360°; if a boundary is present near these extremes,

then the cost function has to be cyclic in order to give accurate answers at either

of these endpoints. These relatively simple changes could potentially lead to a large

improvement in convergence and performance. If a new error function allows for

faster and more reliable convergence in training, we could then reduce our training
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set sizes, which is critical for the future extension of COTANS-NN to 3D settings.

5.1.4 Error Analysis for COTANS-NN

The analysis of the boundary estimation cost surface itself may yield important in-

sights for our work. This type of analysis is best conducted for the case of only a single

boundary being present in the environment, as in this case, the cost will only be a

function of two parameters and can be easily visualized if the environment’s geometry

is fixed. For different cost functions, we could visualize how many local minima there

are and how easy optimization is in general. This analysis could also rigorously guide

a choice of cost function for our NNs, as compared to ad hoc experimentation with

different functions.

5.1.5 Analysis of Neural Networks in COTANS-NN

The detailed analysis of the neural networks employed in COTANS-NN will be impor-

tant for the future improvement of this method. There is a wide variety of tools for

analyzing NNs at present, allowing us to study the individual layers in order to gain

insight into what sort of function the NN actually learns over the course of training.

Such an analysis could lead to an overhaul of the NN architecture, since it would

provide insight into how the boundary estimation task could be approached more

effectively.

5.2 Longer-Term Research Tasks for PEEL and for

COTANS-NN

In the field of passive localization and environment learning, we encountered several

difficult problems over the course of our work, whose solutions could greatly enhance

estimation performance and provide novel capabilities. Ultimately, we wish to high-

light that a data-driven learning paradigm can be used to not only approach our

specific problem area, but in the broader field of sensing applications.
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5.2.1 Future Work for PEEL

There are broader questions in TOA localization that pertain to PEEL. Currently,

PEEL exploits the emission of deterministic, pulsed signals. In practice, other types

of emissions may arise, as with communications sources or vessel signatures. It would

be challenging to establish time-synchronization with such signals. Although we have

experimented with performance in increasing noise, it would also be of interest to ob-

tain a full bandwidth/noise characterization over different environments and signals.

An interesting direction would be combining our proposed methods with blind

identification and channel estimation methods [129], [130]. Research has already been

performed to utilize channel estimation methods in the shallow-ocean underwater

acoustic domain [131], where the presence of significant surface waves is a major

challenge. The multipath arrivals associated with scattering from such surface waves

fluctuates rapidly over time [132], and the sea surface roughness is typically modeled in

a probabilistic manner [133], [134]. Assessment of the delay-Doppler spread function

is important in such cases, since the Doppler shifts associated with the time-varying

surface can be approximately constant over an averaging time interval.

While we have focused on extracting the time delays from the received signal based

on either a known emitted pulse, or a replica of the LOS arrival, in an application

setting we may consider using a separate module for obtaining an estimate of the

channel impulse response. This could provide prior knowledge for our methods, to

help us to reject global errors and to improve our time delay estimation.

5.2.2 Future Work for COTANS-NN

One of the key tasks that can be investigated is that of model order selection. Cur-

rently, we have different NNs for different numbers of boundaries present in the en-

vironment. Ideally, we would have a single NN that simultaneously determines how

many boundaries there are, and also where these boundaries are. How this sort of

task is to be accomplished is an open question, and we propose first study how similar

problems are currently tackled in NN design. Perhaps we would have a classification
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network applied to the data first, whose output is the number of boundaries, followed

by the sort of regression network that we have already implemented. Alternatively,

we could have a regression network with a large number of outputs in its final layers

(e.g., for 6 boundaries), but then have additional output parameters that assigns a

likelihood score to whether the boundary is actually present. This type of network

design would require a much larger dataset of environment geometry examples than

at present, so we can only tackle this challenge once we succeed at greatly reducing

our existing dataset sizes. While the final layer of the NN currently only provides

the boundary location parameters, we could expand the network’s capabilities to la-

bel the arrivals, estimate the number of boundaries present, or produce a metric of

confidence in the estimation results. If the NLOS TOAs come from an underwater

acoustic simulator such as Bellhop [54] or Watermark [135], the training dataset would

be richer than our current signal model, potentially leading to better performance in

ocean deployments.

Model order selection is an important problem for PEEL’s robustness as well,

and the augmentation of COTANS-NN can yield better overall performance. In

cases where one is not confident about the assumption on the number 𝑁 of reflective

boundaries, we envisioned running several instances of PEEL in parallel with different

values of 𝑁 . A major discrepancy between the results of these instances would be

indicative of errors. This parallelization strategy for PEEL is also important for

handling adversarial scenarios that can defeat our method. The emitter may move

behind an occluder and come to a halt, for example; or it may take a sharp turn

which throws off the tracking algorithm. Parallelizing PEEL may help detect and

handle such conditions; however, a NN-aided estimation and tracking framework could

improve robustness much more reliably than such ad hoc algorithmic strategies.

The boundary estimation problem is amenable to further theoretical work. Our

derivation of the CRLB for this task, highlights how this problem is sufficiently self-

contained and well-defined, unlike the full joint localization and environment learning

problem. The CRLB for boundary range estimates could be extended to boundary

azimuth estimates as well, or could be derived for 3D settings as well as 2D. These
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results would offer additional means of verify the correct operation of boundary esti-

mation methods, and could help debug any potential implementation errors.

There are alternative ways of assembling the training data for boundary estima-

tion, such as incorporating attenuation coefficients by scaling each NLOS curve by its

magnitude in the COTANS images. It may also be possible to modify the network

inputs, providing this data to the NN in other formats than COTANS images, to

explore a wider range of estimation methods. COTANS-NN’s demonstration of the

feasibility and desirability of transform-based NN boundary estimation is encouraging

for these future studies.

A significant enhancement of COTANS-NN’s capabilities would be the incorpo-

ration of tracking in the presence of a moving emitter. At present, given multiple

known emitter positions, COTANS-NN can estimate the boundary positions with

greater accuracy, thanks to the spatial diversity provided by these different emitter

placements. One could also envision having an evolving estimate of the boundaries,

over different snapshots. There are methods in the literature for solving such prob-

lems, especially in SLAM, which do not require the use of NNs [136]. In the context of

COTANS, as an emitter moves, the curves in the COTANS images would also shift,

in a continuous way that incorporates information on the setting which is difficult to

express analytically but which could be learned by a NN. Implementing a NN-based

approach for tracking within COTANS-NN is an interesting open question, and one

that could lead to a re-design of the overall PEEL method.

In future work, we also envision connecting physics and machine learning for an

improved operational model of the ocean environment. Not all ocean variability is

acoustically significant, especially considering that there are different acoustic regimes

for different frequencies and environments. We may not know ahead of time which

features of the ocean will be operationally useful. While there is a massive number of

parameters to take into account when modeling the ocean, the number of parameters

is not necessarily the same as the number of degrees of freedom of the resulting

environment. For example, coupled parameters contribute to the same degree of

freedom. Hence, a machine learning method that can infer the key parameters in an
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automated manner can augment complex physical models, or implement them with

reduced computational complexity. The integration of such environmental priors to

machine learning is important for both improved performance and computational

efficiency.

5.2.3 Markov Chain Monte Carlo Methods for Environment

Estimation

In PEEL, we have focused on exploring passive localization and environment esti-

mation. There is a Markov chain Monte Carlo (MCMC) method for active settings,

however, which may be adaptable to our passive setting [137]. This methodology

has been used for the reconstruction of unknown indoor environments from NLOS

arrivals [138], and could potentially be used to work with random emitted signals

and more complex environments. The 3D structure to be recovered is modeled as

a point process [139], and reversible-jump MCMC (RJ-MCMC) moves are proposed

to sample the posterior distribution of interest [140]. This approach is an extension

of Metropolis-Hastings methods to a setting where the dimensionality is not known

ahead of time, such as with an unknown number of boundaries or occluding objects in

the environment. Here, we model the received data as drawn from a random process,

and find a parametric best-fit to the received signals.

In lidar scene reconstruction, the spatial function to be fit to the data is a point

cloud of partly-reflective voxels, or alternatively, a set of 2D rectangles that approxi-

mate planar surfaces. Observing the signal at each pixel of the camera, we obtain a

histogram of photon counts, that is modeled by a Poisson process. Each point in this

point cloud has an independent contribution to received signal. A probabilistic prior

is defined on this point cloud so that points tend to cluster together. RJ-MCMC is

then used to perturb the current configuration of points, by expanding or contract-

ing a neighborhood of points, or by adding or removing points to or from the cloud,

favoring their clustering. Thus, given a good initial guess of the scene, we iteratively

improve the point cloud’s conformity to objects in the scene.
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The advantage of such a Monte Carlo approach is that the estimation accuracy is

independent of the dimensions of the state space, and only depends on the number

of particles. The MCMC method may therefore be better scalable to a much larger

number of parameters, or to settings where there are multiple emitters [141].

PEEL currently deals with relatively low-dimensional data, through modeling the

reflective boundaries as piecewise planar. A more thorough model of the environment

which captures its real-life complexity, however, may have thousands of unknown pa-

rameters which must be determined. The key difficulty to be resolved before MCMC

methods can be used for our underwater acoustic environment for passive sensing is

the formulation of an appropriate probabilistic setting. While we have worked with

deterministic high-frequency pulses as the emitted signals under consideration, such

an MCMC method may be more amenable for estimation with probabilistic emitted

signals that can be modeled as a given distribution whose parameters are unknown.
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Appendix A

Derivation of the COTANS Transform

A.1 COTANS Transform for Tangent Lines to El-

lipses in 2D

We present the derivation of the COTANS transform of tangent lines to an ellipse in

2D. First, we derive the tangent line to a standard ellipse centered around the origin,

with a closed-form description in terms of the normal vector to the tangent. We then

consider this ellipse to be rotated and translated to its actual position in 2D, and

modify the normal-vector description of the corresponding rotated and translated

tangent. The final parametrization of the tangent in terms of its normal vector is

(𝜌COTANS, 𝜃COTANS); this is a point in {(𝜌, 𝜃)}-space, where 𝜌 is the length of the

vector and 𝜃 is its direction as measured with respect to the 𝑥-axis. This description

is by definition the COTANS transform of the tangent line.

First, we obtain a description of tangent lines to standard ellipses (as in Fig. 3-

4(a)). The equation for a standard ellipse centered on the origin is 𝑥2

𝑎2
+ 𝑦2

𝑏2
= 1, where

𝑎 and 𝑏 are its major and minor axes, respectively. Consider a point (𝑥0, 𝑦0) on the

ellipse, and note that this point can be parametrized as (𝑎 cos𝛼, 𝑏 sin𝛼), where the

angle 𝛼 is an intermediate parametrization. Differentiating the ellipse’s equation, the
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slope of a tangent line is:

2𝑥

𝑎2
+

2𝑦

𝑏2
𝑑𝑦

𝑑𝑥
= 0⇒ 𝑑𝑦

𝑑𝑥
= − 𝑏2𝑥

𝑎2𝑦
. (A.1)

From the fact that (𝑥0, 𝑦0) satisfies both
𝑥2
0

𝑎2
+

𝑦20
𝑏2

= 1 and the equation of the tangent’s

slope, we obtain the equation of the tangent line at (𝑥0, 𝑦0) as 𝑥𝑥0

𝑎2
+ 𝑦𝑦0

𝑏2
= 1.

Now, we obtain the COTANS transform of this tangent line, by parametrizing

it in terms of its Euclidean distance 𝜌 from the origin and the azimuth 𝜃 of the

normal line to the tangent going through the origin. Thus, a tangent to the ellipse at

(𝑎 cos𝛼, 𝑏 sin𝛼) will be expressed as a point (𝜌𝛼, 𝜃𝛼) in the COTANS domain. One

derivation of this COTANS transform result is as follows. Our method will obtain

𝜌 (𝜃), the distance to the origin of a given tangent plane as a function of azimuth.

The distance 𝜌𝛼 of the tangent line to the origin is the solution to:

min ‖x‖2

s.t. w𝑇
𝛼x = 1,

(A.2)

where x = [𝑥 𝑦]𝑇 is the point of intersection of the tangent line and its normal

through the origin, and w𝑇
𝛼 =

[︀
𝑥0

𝑎2
𝑦0
𝑏2

]︀
=

[︀
cos𝛼
𝑎

sin𝛼
𝑏

]︀
. 𝜌𝛼 can be found by using

Lagrange multipliers: technique, where:

ℒ (x, 𝜆) = 1

2
x𝑇x− 𝜆

(︀
w𝑇

𝛼x− 1
)︀
,

∇xℒ (x, 𝜆) = 0⇒ x− 𝜆w𝛼 = 0⇒ x = 𝜆w𝛼,

∇𝜆ℒ (x, 𝜆) = 0⇒ w𝑇
𝛼x = 1⇒ 𝜆 ‖w𝛼‖22 = 1⇒ 𝜆 =

1

‖w𝛼‖22
,

⇒ x = 𝜆w𝛼 =
w𝛼

‖w𝛼‖22
=

𝑎2𝑏2

𝑎2 sin2 𝛼 + 𝑏2 cos2 𝛼

[︂
cos𝛼

𝑎

sin𝛼

𝑏

]︂𝑇
,

⇒ 𝜌𝛼 = ‖x‖2 =
1

‖w𝛼‖2
=

𝑎𝑏√
𝑎2 sin2 𝛼 + 𝑏2 cos2 𝛼

. (A.3)

We now have 𝜌𝛼 in Eq. (A.3), but our goal is to eliminate 𝛼 and obtain 𝜌 (𝜃). From
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Eq. (A.1), we know that lines which are orthogonal to the tangent line have a slope

of 𝑎2𝑦
𝑏2𝑥

, so:

tan 𝜃 =
𝑎 sin𝛼

𝑏 cos𝛼
=

𝑎

𝑏
tan𝛼,

⇒ cos2 𝛼 =
1

1 + tan2 𝛼
=

1

1 + 𝑏2

𝑎2
tan2 𝜃

, (A.4)

sin2 𝛼 =
𝑏2

𝑎2
tan2 𝜃

1 + 𝑏2

𝑎2
tan2 𝜃

. (A.5)

Therefore, for a given 𝜃, the corresponding 𝜌 (𝜃) is obtained after substitution as:

𝜌 (𝜃) =
𝑎𝑏√

𝑎2 sin2 𝛼 + 𝑏2 cos2 𝛼
=

√︀
𝑎2 cos2 𝜃 + 𝑏2 sin2 𝜃. (A.6)

Eq. (A.6) allows us to obtain the set of points {(𝜌, 𝜃)} in the COTANS domain

for a standard ellipse, but we wish to obtain such points for a general ellipse whose

foci are pe and pr. We are given that the LOS distance between the emitter and

receiver is 𝑑LOS and that the distance of the NLOS reflection from a given boundary

is 𝑑NLOS. Our method is to first obtain (𝜌, 𝜃) for a standard ellipse with foci at

p′
r =

[︀
−𝑑LOS

2
0
]︀𝑇

and p′
e =

[︀
𝑑LOS
2

0
]︀𝑇
, with axes 𝑎 = 𝑑NLOS

2
, 𝑏 =

√
𝑑2
NLOS

−𝑑2
LOS

2
. One

example for such an ellipse is given in Fig. 3-5(a). The ellipse corresponding to the

true localization scenario is obtained by rotating this standard ellipse as in Fig. 3-

5(b), and then translating it to its correct position as in Fig. 3-5(c). The (𝜌, 𝜃) of the

tangent line must be correspondingly transformed to match the new position of the

rotated and translated tangent that yields the desired (𝜌COTANS, 𝜃COTANS).

To modify (𝜌, 𝜃) as per Fig. 3-5, first consider the azimuth of the vector pe − pr,

calling this angle 𝜃rot. To align the standard ellipse with the target ellipse, we replace

each (𝜌, 𝜃) with (𝜌, (𝜃 + 𝜃rot) mod 2𝜋) which we term (𝜌, 𝜃′′). This rotation leaves

the 𝜌-value of each tangent line unchanged, and only affects the azimuth, while the

new foci are at p
′′
e and p

′′
r . Next, we calculate a translation vector ptrans = pr − p′′

r ,

which would be added to any point on the rotated standard ellipse to obtain the

target ellipse. To obtain the resulting (𝜌COTANS, 𝜃COTANS) pairs, we first calculate the

dot product 𝜌proj = ptrans · �̂�, where �̂� = [cos 𝜃′′ sin 𝜃′′]𝑇 is the unit vector pointing
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towards the tangent line. Thus, we project the translation vector ptrans onto �̂�. If

𝜌proj ≥ 0, then we merely advance the tangent line in the same direction without

changing its azimuth, so we replace (𝜌, 𝜃′′) with (𝜌+ 𝜌proj, 𝜃
′′). If 𝜌proj < 0, then

we replace 𝜌 with |𝜌− |𝜌proj||. If 𝜌proj < 0, then we subtract the projection result

from 𝜌, thus replacing 𝜌 with |𝜌− |𝜌proj||, which ensures that 𝜌 is positive as per

definition. If |𝜌proj| < 𝜌 and 𝜌proj < 0, then we do not modify the azimuth 𝜃′′; else,

since the line has been translated past the origin and the direction of the �̂�-vector

has been flipped, we replace 𝜃′′ with (𝜃′′ + 𝜋) mod 2𝜋. Carrying out these operations

for each of the starting {(𝜌, 𝜃)} points, we obtain a final transformed set of points as

{(𝜌COTANS, 𝜃COTANS)}, rounded to a desired accuracy. We define an array over 𝜌 and

𝜃 with this resolution, and for each rounded point, increment the corresponding array

cell by 1.

A.2 COTANS Transform for Tangent Planes

to Spheroids in 3D

The equation of an origin-centered spheroid is 𝑥2

𝑎2
+ 𝑦2

𝑏2
+ 𝑧2

𝑐2
= 1. A point (𝑥0, 𝑦0, 𝑧0)

on its surface can be parametrized as (𝑎 cos𝛼 sin 𝛽, 𝑏 sin𝛼 sin 𝛽, 𝑐 cos 𝛽), where 𝛼 and

𝛽 are intermediate parameters. Similarly to 2D, the tangent plane at (𝑥0, 𝑦0, 𝑧0) is

𝑥𝑥0

𝑎2
+ 𝑦𝑦0

𝑏2
+ 𝑧𝑧0

𝑐2
= 1, and we have an optimization similar to Eq. (A.2), this time using

w𝑇
𝛼,𝛽 =

[︀
𝑥0

𝑎2
𝑦0
𝑏2

𝑧0
𝑐2

]︀
=

[︀
cos𝛼 sin𝛽

𝑎
sin𝛼 sin𝛽

𝑏
cos𝛽
𝑐

]︀
instead of w𝑇

𝛼 . A Lagrangian method

as in Eq. (A.3) yields:

𝜌𝛼,𝛽 =
1

‖w𝛼,𝛽‖2
=

1√︁
cos2 𝛼 sin2 𝛽

𝑎2
+ sin2 𝛼 sin2 𝛽

𝑏2
+ cos2 𝛽

𝑐2

, (A.7)

x =
w𝛼,𝛽

‖w𝛼,𝛽‖22
= 𝜌2𝛼,𝛽

[︂
cos𝛼 sin 𝛽

𝑎

sin𝛼 sin 𝛽

𝑏

cos 𝛽

𝑐

]︂𝑇
. (A.8)
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To eliminate 𝛼 and 𝛽 and express x in terms of the azimuth 𝜃 and elevation 𝜑, we

use:

x = 𝜌𝛼,𝛽 [cos 𝜃 sin𝜑 sin 𝜃 sin𝜑 cos𝜑]𝑇 . (A.9)

Firstly, noting that tan𝜑 = 𝑎
𝑏
tan𝛼, we have the same results of Eq. (A.4) for cos2 𝛼

and Eq. (A.5) for sin2 𝛼. Note that for the case of a spheroid where 𝑎 = 𝑏, we have

𝛼 = 𝜃, since the x-y cross-section of the ellipsoid is then a circle. To eliminate 𝛽, we

observe that:

tan2 𝜑 =
𝑐2

𝑎2
cos2 𝛼

cos2 𝜃
tan2 𝛽 =

𝑐2

𝑎2
tan2 𝛽,

⇒ cos2 𝛽 =
1

1 + 𝑎2

𝑐2
tan2 𝜑

, (A.10)

sin2 𝛽 =
𝑎2

𝑐2
tan2 𝜑

1 + 𝑎2

𝑐2
tan2 𝜑

. (A.11)

We substitute into Eq. (A.7) our results in Eq. (A.4), (A.5), (A.10), and (A.11) to

get:

𝜌 (𝜃, 𝜑) =

√︁
𝑐2 cos2 𝜑+ 𝑎2 sin2 𝜑. (A.12)

Note that because of symmetry around the z-axis, there is no 𝜃-dependence at this

stage.

Using Eq. (A.12), we can take the COTANS transform of tangent planes to a

standard spheroid with 𝑎 = 𝑏. We can rotate this spheroid and translate it, and

correspondingly transform the points (𝜌, 𝜃, 𝜑) that define the tangent planes. Our

operations are similar to those in the 2D case. We first define our standard spheroid

to have foci at p′
r =

[︀
0 0 − 𝑑LOS

2

]︀𝑇
and p′

e =
[︀
0 0 𝑑LOS

2

]︀𝑇
, with axes 𝑎 = 𝑏 =√

𝑑2
NLOS

−𝑑2
LOS

2
and 𝑐 = 𝑑NLOS

2
. We calculate the azimuth and elevation of the vector

pe − pr, and call these angles 𝜃rot and 𝜑rot, respectively. We rotate the spheroid by

𝜑rot with the y-axis as the axis of rotation (thereby obtaining the correct elevation),

then rotate the result by 𝜃rot with the z-axis as the axis of rotation (thereby obtaining

the correct azimuth), and finally we translate it to its correct position.

Rotating the spheroid by 𝜑rot will not change the 𝜌 of a given (𝜌, 𝜃, 𝜑) tangent

plane, but may affect its azimuth and elevation. The unit vector orthogonal to (𝜌, 𝜃, 𝜑)
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in Cartesian coordinates is given by �̂� = [cos 𝜃 sin𝜑 sin 𝜃 sin𝜑 cos𝜑]𝑇 . To rotate this

vector with the y-axis as the axis of rotation, we multiply it by the corresponding

rotation matrix to obtain:⎡⎢⎢⎢⎣
cos𝜑rot 0 sin𝜑rot

0 1 0

− sin𝜑rot 0 cos𝜑rot

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
cos 𝜃 sin𝜑

sin 𝜃 sin𝜑

cos𝜑

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cos𝜑rot cos 𝜃 sin𝜑+ sin𝜑rot cos𝜑

sin 𝜃 sin𝜑

− sin𝜑rot cos 𝜃 sin𝜑+ cos𝜑rot cos𝜑

⎤⎥⎥⎥⎦
(A.13)

The azimuth and elevation of the vector obtained in Eq. (A.13) are then substituted

as the new 𝜃 and 𝜑 values of the plane, 𝜃′′ and 𝜑′′. Next, we rotate the tangent plane

by 𝜃rot, which does not change 𝜌 or 𝜑′′ but replaces 𝜃′′ with (𝜃′′ + 𝜃rot) mod 2𝜋 = 𝜃′′′.

At this stage, the point corresponding to the transformed value of p′
r is a point p′′

r .

Finally, we calculate the translation vector ptrans = pr−p′′
r , and obtain 𝜌proj = ptrans·�̂�.

The transformation of the tangent plane in the COTANS domain is similar to the

2D case. If 𝜌proj ≥ 0, we replace (𝜌, 𝜃′′′, 𝜑′′) with (𝜌+ 𝜌proj, 𝜃
′′′, 𝜑′′). If 𝜌proj < 0,

then we subtract the projection result from 𝜌, thus replacing 𝜌 with |𝜌− |𝜌proj||. If

|𝜌proj| < 𝜌 and 𝜌proj < 0, then we do not modify the azimuth 𝜃′′′ or the elevation

𝜑′′; else, we replace 𝜃′′′ with (𝜃′′′ + 𝜋) mod 2𝜋 and 𝜑′′ with 𝜋 − 𝜑′′. Carrying out

this procedure for each of the starting {(𝜌, 𝜃, 𝜑)} points, we obtain a final set of

{(𝜌COTANS, 𝜃COTANS, 𝜑COTANS)} points in the 3D COTANS domain.
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Appendix B

Implementation of PSO Localization

and Environment Estimation

In the standard PSO algorithm [107], we define 𝑁 particles x
(𝑘)
𝑖 , corresponding to

points x
(𝑘)
𝑖 = [𝑥

(𝑘)
𝑖,1 . . . 𝑥

(𝑘)
𝑖,𝐷]

𝑇 in a 𝐷-dimensional search space at iteration 𝑘 of the

PSO algorithm. This search space is delimited by the boundaries [𝑥𝑗,min, 𝑥𝑗,max] for

each of the 𝑗 ∈ {1 . . . 𝐷} parameters that we optimize over. Each particle has a

velocity vector v
(𝑘)
𝑖 = [𝑣

(𝑘)
𝑖,1 . . . 𝑣

(𝑘)
𝑖,𝐷]

𝑇 , assigned randomly at initialization. Particles

remember their best locations p𝑖 in the search space over iterations 1 through 𝑘,

where their objective function 𝑓(p𝑖) was the largest. Finally, each particle is in a set

of 𝑀 randomly chosen neighbors, over which we determine the best location p𝑖𝑔 over

past iterations. The PSO update step for the velocity and position of each particle is

then given for each dimension 𝑑 by:

𝑣
(𝑘+1)
𝑖𝑑 ← 𝛼𝑣

(𝑘)
𝑖𝑑 + U (0, 𝛽)

(︁
𝑝𝑖𝑑 − 𝑥

(𝑘)
𝑖𝑑

)︁
+ U (0, 𝛽)

(︁
𝑝𝑖𝑔 − 𝑥

(𝑘)
𝑖𝑑

)︁
, (B.1)

𝑥
(𝑘+1)
𝑖𝑑 ← 𝑥

(𝑘)
𝑖𝑑 + 𝑣

(𝑘+1)
𝑖𝑑 , (B.2)

where 𝛼 and 𝛽 that define a particle’s inertia and acceleration for updating its velocity

(standard values are 0.7298 and 1.4986, respectively), and U(0, 𝛽) is a sample of the

uniform random variable. Particles that exit the boundaries of the search space are
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reflected back. Note that in the notation in this appendix, we have used a conventional

indexing from the PSO literature for ease of comparison, rather than the one which

we have developed for the PEEL framework.

The key user-defined parameter for PSO is the number of particles, which is

typically on the order of tens for relatively easy optimization problems and hundreds

for more challenging ones. We have been consistently successful with 128 particles

and 5000 iterations for each emitter position for our localization task.

B.1 Kalman Tracking Implementation Details

Kalman tracking is the only stage in our method that needs to be tuned to a particular

setting. While we use a constant acceleration model that is valid for a wide variety of

trajectories, the state error variance and the measurement noise variance parameters

have to be adjusted for each application.

We have assumed a process noise variance of 0.00052 on the velocity in the 𝑥- and

𝑦-directions in m/s, and a measurement noise variance of 0.0022, which takes into

account that our expected estimation errors in position and velocity are on the order

of millimeters. These parameters have to be tuned to the expected scale of emitter

motion, and the tracking method can be improved if more knowledge is available

about the trajectory. The extended Kalman filter (EKF) that assumes a constant

acceleration model is a standard extension of the method that we have used and has

been successful in underwater acoustic localization and tracking in the literature [142],

[143]; but we have obtained better performance with a standard Kalman filter in our

particular HiFAAT experiments. The position errors relative to the physical scale

of the experiment are often large enough to cause more sensitive tracking methods

to diverge, so care must be taken in using a robust tracker at this stage, before

attempting to use an EKF or other algorithmic improvement.
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