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Abstract
This thesis presents a novel framework for global localization and guided relocaliza-
tion of a vehicle in an unstructured environment. Compared to existing methods, this
pipeline does not rely on cues from urban fixtures (e.g., lane markings, buildings),
nor does it make assumptions that require the vehicle to be navigating on a road
network. Instead, localization is achieved in both urban and non-urban environments
by robustly associating and registering the vehicle’s local semantic object map with
a compact semantic reference map, potentially built from other viewpoints, time pe-
riods, or modalities. Robustness to noise, outliers, and missing objects is achieved
through the graph-based data association algorithm. Further, the guided relocaliza-
tion capability of the pipeline mitigates drift inherent in odometry-based localization
after the initial global localization. The pipeline is evaluated on two publicly-available,
real-world datasets to demonstrate its effectiveness at global localization in both non-
urban and urban environments. The Katwijk Beach Planetary Rover dataset [17] is
used to exemplify the pipeline’s ability to perform accurate global localization in un-
structured environments at as low as 0.58m accuracy. Demonstrations on the KITTI
dataset [15] achieve an average pose error of 3.8m across all 35 localization events on
Sequence 00 when localizing in a reference map created from aerial images. Compared
to existing works, this pipeline is more generalizable because it can perform global
localization in unstructured environments using maps built from different viewpoints
and dates.

Thesis Supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Global localization is the process of determining a vehicle’s pose (i.e., position and

orientation) in its environment without an initial estimate. While global navigation

satellite system (GNSS) based methods have traditionally been used to provide global

positioning in open settings with good satellite visibility, positioning quality quickly

degrades in the presence of occlusion, multipath, or spoofing (e.g., in urban canyons,

underground, or adversarial settings). To solve this problem, methods have been

proposed that leverage onboard measurements to localize a vehicle within a reference

map.

Current frameworks typically approach global localization with the assumption

that the vehicle is on a road in an urban environment [23]. Many methods localize a

vehicle using OpenStreetMap (OSM) [5,8,12,55,61,63], which is freely-available and

memory efficient, but is limited to urban settings and requires significant effort to map

a new area. Methods using semantics often begin with a non-uniform prior, assuming

the vehicle is beginning on a road [33, 56] and focus primarily on structures existing

only in urban environments (e.g., lane markings, traffic signs, and road structure [5,18,

36,56]). In practice however, applications such as military reconnaissance missions or

search and rescue missions cannot make these assumptions. Global localization in an

unstructured environment requires localizing with minimal data because information

13



Figure 1-1. The pipeline can localize the ground rover of the Katwijk dataset [17] in an unstruc-
tured environment with a ground truth reference map of small, medium, and large rocks. This is
accomplished by creating a vehicle object map of the rocks observed while driving (identified by the
yellow bounding boxes in image) and registering them with the rocks in the reference map. With a
reference map spanning roughly 1 km, 0.68m accuracy has been achieved on the Katwijk dataset.

such as road structure and lane markings is not present. The environment in Figure 1-

1 is an example of an unstructured, non-urban environment. The search space also

increases because the vehicle could be in any pose within the reference map, not just

on a road.

Changes in the environment such as lighting differences, seasonal changes, or ob-

jects being created, moved, or removed cause discrepancies between reference and

vehicle maps, which is challenging for current methods. High-density maps are high-

quality and can lead to very low position errors, but they are expensive to generate and

prone to becoming outdated [14]. Furthermore, map size becomes increasingly im-

portant when considering sharing information between vehicles or a central database.

Reference maps created from a different viewpoint than the vehicle (e.g., localizing

a ground vehicle in an aerial map or using maps built from opposing ground views) is

important because the available reference maps may not be from the same viewpoint

as the vehicle (e.g., localizing a ground vehicle in satellite imagery). However, image-

based methods which use descriptors, such as visual bag of words [13], suffer from

viewpoint changes. These methods may fail when localizing a ground vehicle driving

14



north in a reference map built from a ground vehicle driving south in the same

area [29].

In light of these issues, this framework is capable of globally localizing a vehi-

cle in an unstructured environment using a reference map created from an arbitrary

viewpoint. Correspondences between objects in the local vehicle map and in the

reference map are made by exploiting the geometric consistency of potential associa-

tions [30]. Informed by object semantics, the space of potential object associations is

reduced, allowing efficient identification of the largest set of geometrically consistent

associations using a maximum clique solver [42]. The vehicle’s pose is then found by

registering the objects in the local vehicle map with their associated reference map ob-

jects. Importantly, leveraging geometric consistency in a graph-based manner enables

the pipeline to achieve localization in unstructured maps from various viewpoints and

with robustness against outliers in both the vehicle and reference maps. Thus, as long

as objects can be identified and reconstructed in each map, global localization can be

achieved. While globally localizing in an unstructured environment is a challenging

problem due to decreased amount of available data, an increased search space, and

potentially-outdated maps, this pipeline has been specifically designed to succeed in

these environments.

1.2 Contributions

In summary, the contributions of this thesis are:

• A global localization framework robust to outliers and viewpoint changes due

to its graph-based object association formulation and use of compact semantic

maps.

• A framework capable of localizing in unstructured environments. With no prior

assumptions on the existence of an urban setting, the same pipeline has been

demonstrated to successfully localize in unstructured environments such as the

Katwijk Beach Planetary Rover dataset [17].

15



• A guided relocalization mode to continually correct the pose estimate after

global localization in order to reduce effects of drift.

• A demonstration of successful localization and guided relocalization achieving

state-of-the-art performance on real data from the KITTI dataset [15] using

a reference map from aerial images captured on a different date with many

outliers.

1.3 Thesis Outline

This thesis focuses on the global localization and guided relocalization of a ground

vehicle in a reference map. Specifically, the developed pipeline is designed to work in

both urban and non-urban settings, with outdated reference maps, and from maps

built from extreme viewpoint differences.

Chapter 2 of this thesis discusses similar literature in the areas of global local-

ization, long-term localization, place recognition, and loop closure detection. The

current literature focuses on urban environments and assumes that the vehicle being

localized is on a road. This pipeline, however, is more generalizable to different appli-

cations than similar methods because it is able to work in unstructured environments

with no assumption of the vehicle driving on a road.

The pipeline is detailed in Chapter 3, as are the experimental setups on the

Katwijk Beach Planetary Rover dataset [17] and the KITTI dataset [15]. The fo-

cus of this chapter is on the details of each component of the framework and the

experimental setup.

Experiments are conducted to demonstrate the four primary characteristics of this

pipeline: global localization in unstructured and structured environments, robustness

to outliers, view-invariance, and drift reduction. The experiments and results are

presented in Chapter 4.

Chapter 5 concludes the thesis, providing a summary of contributions and direc-

tions for future work.
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Chapter 2

Literature Review

2.1 Related Work

2.1.1 Global Localization, Place Recognition, and Loop Clo-

sure Detection

Global localization has close ties to literature on loop closure detection, place recogni-

tion, long-term localization, and image retrieval. Before discussing the related works,

it is important to understand the difference between global localization, loop clo-

sure detection, place recognition, and long-term localization. While there are many

similarities in these concepts (i.e., they can all be used to identify the location of a

vehicle), there are subtle yet important differences in the specific question they are

answering.

Global localization determines where a vehicle is inside of a reference map. The

vehicle knows it is somewhere inside of a reference map and it must explore the area

to determine and continually update its current location. Place recognition asks if

the vehicle is currently in a place it has seen before. A vehicle begins with some

database of locations and must identify at which location within the database it is

currently located. Loop closure detection leverages place recognition to determine

the transformation between the current pose and the place it has previously seen. As

a vehicle explores the environment, it will build a database of places it has been and
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continually checks if it has revisited a location and if so, adjusts the trajectory appro-

priately. Long-term localization focuses on aligning two maps using descriptors and

data association when the two maps have been created at a different time. Generally,

the maps are created on different dates, in different seasons, or with different lighting

conditions.

A primary difference between global localization and loop closure detection/place

recognition is the concept of a reference map. While global localization is looking

for the vehicle’s location within some other map, loop closure detection and place

recognition search for the vehicle’s location across some finite database of locations

(e.g., keyframes within the past trajectory). Additionally, there is always an answer

to the global localization problem, assuming the vehicle stays within the bounds of

the reference map. In place recognition and loop closure, the answer may simply be

that the vehicle has not visited its current location previously.

2.1.2 Image-Based Methods

Appearance-based methods use images for localization by finding the most visually

similar image in the reference database to the locally captured image [29]. Visual simi-

larity is typically assessed based on low-level information such as color and reflectance

values [51,54] or visual features and descriptors [34,44]. Early works such as [7,26] use

local feature descriptors to compare and match images taken from different perspec-

tives. Majdik et al. [31] use such features with simulated images from Google Street

View to match against images from a quadrotor flying through an urban environment.

Methods based on low-level features are impacted the most by changes in the envi-

ronment such as illumination or seasonal changes and, more importantly, many fail

under extreme viewpoint difference between the vehicle and reference images (e.g.,

aerial-ground).

20



2.1.3 Cross-View Methods

Cross-view methods, which localize a ground vehicle in aerial or satellite imagery,

have been specifically developed to handle extreme viewpoint differences. Current

state-of-the-art methods [40, 45, 57] are learning-based and use a Siamese network

architecture [20, 50] to return a coarse localization (accuracy of hundreds of meters)

across a very large area (e.g., city-wide). When coupled with particle filters, these

techniques can provide a higher accuracy (tens of meters) in geo-tracking applica-

tions [10]. Cross-view algorithms are typically designed for the extreme air-ground

viewpoint difference, but may not be directly applicable for other viewpoint variations

(e.g., ground-ground viewed from opposite directions). Air-ground localization can

also be achieved by other techniques, such as [2,14,60], which can obtain centimeter-

level localization by exploiting a high-definition point cloud map of the environment.

While accurate, these methods do not work with image maps and they require dense

point clouds.

2.1.4 Semantic-Aided Methods

Semantic-aided methods leverage semantic information to assist with localization.

Some methods compactly identify objects, their location, and potentially other char-

acteristics to create reference and vehicle maps and then ultimately localize within

each other [28, 47, 56]. Other methods use image segmentation [22, 33], semantic

lidar point cloud matching [11,46], general vertical structures [24,56, 58], lane mark-

ings [18, 36], or buildings [32, 43, 49]. Semantic maps are often summarized with

descriptors such as random walk descriptors [27, 28], histograms [64], or structural

appearance descriptors [21], allowing the vehicle’s local observations to be compared

with previously seen objects in the reference map more efficiently. Other semantic-

aided methods use OpenStreetMap, which is readily available and requires little mem-

ory. These methods compare observed roads [5,12,63], buildings [8,55], or both [61] to

determine where the vehicle is inside the reference map. Overall, most semantic-aided

methods are restricted to working only in urban or suburban settings.
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2.1.5 Non-Urban Environments

Most works within global localization, long-term localization, place recognition, and

loop closure detection are not suited for non-urban settings due their rigid reliance on

urban semantic information (e.g., buildings, roads, lane markings) or their need for

rich features within images (e.g., appearance-based methods). There have been works

which address the difficulty in successfully running a SLAM system in non-urban

environments due to the lack of features and roughness in the road [19, 62]. Specific

to localization, works have used topological maps [35], wheel odometry combined

with visual orientation tracking [16], or lidar point clouds [39] in order to refine a

GPS estimate. Global localization in GPS-denied environments has been achieved

by methods using lidar [14], stationary anchors within the region [48], and binary

ground-nonground distinction [52,53]. Despite success with global localization, these

methods are either restricted by the size of dense point clouds, have requirements for

external hardware in the field (e.g., anchors), are not robust to structural changes, or

assume the vehicle is on an off-road trail.

2.2 Placement of This Work

This thesis presents a pipeline within the category of semantic-aided global localiza-

tion methods. The primary goal is to identify objects as the vehicle explores the

area, then match the identified objects to their corresponding object in the reference

map in order to estimate the pose of the vehicle. Long-term localization methods

such as [56, 59, 64] are similar to this pipeline because they, too, match local map

objects to their corresponding global map object. However, long-term localization

works focus on the core tools to align maps (e.g., descriptors and data association

algorithms), whereas this pipeline consists of a full implementation of mapping and

data association in order to continually estimate the pose of a vehicle throughout the

entire trajectory. Additionally, long-term localization works use descriptors, whereas

this pipeline does not. While descriptors are beneficial for increasing the scalability of

a pipeline, they often constrain the problem to a certain environment. For example,
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the descriptors in [56] encode the direction of roadlines, thus constraining the problem

to an urban setting.

Table 2.1 illustrates how this framework compares to other global localization

frameworks. The second column lists characteristics with several state-of-the-art

works which use the KITTI dataset [15] in their analysis. The third column compares

against Viswanathan et al. [53], which is a global localization method for unstruc-

tured environments. One primary difference between this pipeline and all of the

compared pipelines is that this pipeline begins with a uniform prior, meaning there

is no assumption that the vehicle is on a road or trail. Additionally, the methods

used for comparison have only been demonstrated to localize a ground vehicle in

aerial data whereas this work tests the same aerial-ground configuration in addition

to experiments localizing a ground vehicle in ground data.

This work uses semantic object maps and geometric consistency in order to be

view-invariant and robust to structural changes in the environment. The generality of

the classes being used and assumptions being made (i.e., no reliance on roads) allow

this framework to successfully operate in unstructured environments. Furthermore,

this method addresses the issue of relocalization after global localization to mitigate

effects of drift.

2.3 Conclusion

The pipeline presented in this thesis is a semantic-aided method for global localization

in a GPS-denied environment. Most of the similar works span global localization,

long-term localization, place recognition, and loop closure detection, and operate

exclusively in urban environments. This framework, however, is capable of localizing

a vehicle in non-urban environments. Additionally, it is view-invariant, robust to

outliers, and frequently refines the pose estimate as more information is received.

The next chapter details the pipeline’s structure and the experimental setup.
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Table 2.1. A comparison of characteristics for several global localization methods. The second
column describes all methods against which this pipeline is compared in Table 4.5. The third
column, Viswanathan [53], is a state-of-the-art method for global localization in non-urban scenarios
the using only onboard sensors and satellite images. All methods are semantic-aided. A dash (−)
implies that this characteristic has not been demonstrated on the given pipeline.

Characteristic
Miller, Yan,

Brubaker, Floros
( [33], [61], [5], [12])

Viswanathan
[53] This Pipeline

Uniform prior*
Semantic Objects

Non-urban Environments
Urban Environments

Robustness to Env Changes
Ground-ground

Drift reduction after GL

No
No
No
Yes
−
−

Yes

No
No
Yes
−

Yes
−
−

Yes
Yes
Yes
Yes
Yes
Yes
Yes

*Uniform prior implies the pipeline does not make any assumption that the vehicle
is on a road (this primarily affects the size of the search space).
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Chapter 3

Localization Framework

This section describes the pipeline in detail as well as the experimental setups when

testing with the Katwijk Beach Planetary Rover dataset [17] and the KITTI dataset [15].

3.1 Pipeline Overview

3.1.1 System Overview

Figure 3-1 illustrates the primary components of the pipeline. In this framework, a

vehicle explores the environment and creates a vehicle map ℳveh of objects detected

and reconstructed by using onboard sensors. The vehicle mapℳveh and reference map

ℳref consist of objects 𝑜𝑖 = (𝑢𝑖, 𝑐𝑖), represented by their 3D centroid 𝑢𝑖 ∈ R3 and a

class, 𝑐𝑖 ∈ 𝒞, where 𝒞 is a set of classes known a priori. Drift in the trajectory estimate

contributes to object reconstruction inaccuracies, so registration is performed on only

the 𝑟 most recently seen objects, denoted ℳ𝑟
veh ⊆ ℳveh. Objects in ℳ𝑟

veh are then

associated with their corresponding objects in a the reference map using a maximum

clique algorithm. The candidate transformations 𝑇 i
cand provided by the maximum

clique algorithm are analyzed and either accepted or rejected. If a transformation

has been accepted at any point, the pose of the vehicle is estimated using the most

recently accepted transformation, 𝑇cur. Variables defined throughout this section are

listed in Table 3.1 and Table 3.2.
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When identifying and analyzing candidate transformations between the vehicle

and reference maps, the pipeline leverages two operating modes: global localiza-

tion and guided relocalization. The pipeline begins in the global localization mode,

wherein the vehicle searches for its global pose within a provided reference map. It

is emphasized that in this mode, no prior information is leveraged (e.g., no initial

guess and no assumption that the vehicle is restricted to roads). Once a candi-

date transformation between the vehicle’s local observations and reference map is

accepted (see Section 3.1.5), global localization is achieved and the pipeline switches

to guided relocalization. The guided relocalization mode continually updates the ac-

cepted transformation by leveraging past information in order to reduce the drift of

the SLAM system (see Section 3.1.6). The difference between the two modes are

illustrated in Figure 3-2 and detailed in Section 3.1.5 and Section 3.1.6.

Sensors

Full Reference 
Map

SLAM

Filter

GL: Split in N 
submaps

GR: Restrict to 
area of interest

Maxclique
Classifier

Object 
Map

Check candidate 
transformation(s) 

for GL or GR

Localization with
transformation

Pose 
Estimate

Figure 3-1. Sensors onboard the vehicle are inputs for the SLAM system and the classifier. The
output trajectory, point cloud, and bounding boxes are then used to create a vehicle map, which is
filtered and prepared before being fed into the maximum clique algorithm. The full reference map is
either prepared into several submaps (global localization) or restricted to the area of interest (guided
relocalization). The maximum clique algorithm produces candidate registration(s) by aligning these
maps. If a transformation has been accepted, the pose of the vehicle is estimated using the current
transformation.

3.1.2 Reference Map

The reference map can either be constructed offline or be updating in real-time. As

the pipeline searches over the entire reference map during global localization, the

reference map is split into 𝑘 submaps to increase computational efficiency. Given a
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Table 3.1. Variables describing the vehicle and reference maps as well as candidate and accepted
transformations as discussed in Section 3.1.

Parameter Description
𝑀veh The full vehicle map containing all objects seen by the vehicle
𝑀 r

veh A subset of the full vehicle map containing the most recent 𝑟
objects seen by the vehicle

𝑀 r′
veh A subset of the full vehicle map containing the most recent 𝑟′

objects seen by the vehicle
𝑀ref The full reference map containing all objects
𝑀 i

ref A subset of the full reference map containing objects in submap 𝑖
(used for global localization)

𝑀 res
ref The restricted reference map is a subset of the full reference map

used during guided relocalization
𝑇cand A candidate transformation
𝑇 i
cand The candidate transformation corresponding to submap 𝑖 (used

during global localization)
𝑇cur The most recently accepted registration

Guided RelocalizationGlobal Localization

Figure 3-2. (Left) In the global localization mode, the vehicle is localized in the entire reference
map, split into 𝑘 submaps. Thus, 𝑘 candidate transformations are identified. (Right) In the guided
relocalization mode, the vehicle map is localized in a portion of the reference map constrained to
the areas of interest. Thus, there is only one candidate transformation.
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split reference map, with some probability, the true location of the vehicle map may

span multiple submaps, so the 𝑘 submaps have a specified level of overlap 𝛽. In order

for global localization to succeed, the correct transformation must be identified by

the maximum clique algorithm and accepted by the global localization criteria despite

possibly spanning multiple maps. The latter is handled in Section 3.1.5, while the

former is handled by choosing appropriate parameters. Candidate transformations

causing the vehicle map to span multiple submaps is unlikely to be identified because

only few inliers will be identified within each submap. To mitigate this risk, 𝑘 should

be chosen such that each submap is at least large enough to contain an estimated

size of ℳ𝑟
veh, and 𝛽 should be chosen to be sufficiently large. All of the resulting

submaps, ℳ𝑖
ref ⊂ℳref , 𝑖 = 1, . . . , 𝑘, are input into the maximum clique registration

module.

In contrast, after global localization is achieved and the pipeline switches to the

guided relocalization mode, the reference map is strategically constrained to objects

within distance 𝑑reloc of objects in the vehicle map, based on the current transforma-

tion. This restricted reference map ℳres
ref is input into the registration module.

3.1.3 Construction of the Vehicle Map

The pipeline constructs ℳveh online by detecting objects and reconstructing their

centroids. Sensors onboard the vehicle (e.g., stereo cameras, lidar sensors, IMU)

must provide a scaled trajectory as well as enable the classification of objects and

the reconstruction of their centroids. A SLAM system takes the data from onboard

sensors as input and provides a scaled trajectory and a sparse point cloud at each

timestep. The onboard camera images are input into a classifier, which is expected to

provide bounding boxes, in pixels, around objects in each frame along with the class

of each identified object. In order to minimize false positives, the bounding boxes are

required to be of a minimum height 𝑝h and width 𝑝w in pixels.

At each timestep, objects are classified, and their centroids are reconstructed

in real-time. For each timestep, the point cloud is projected onto the image and

the points that lie within each bounding box are said to correspond to that object.
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The distance to each object is chosen to be the median distance to the 3D points

corresponding to that object. The median distance is used because it is assumed

some points may lie in the background or foreground of the bounding box, not on

the object itself. The set of valid objects in this frame is said to be the objects

identified by a bounding box which have at least one corresponding point cloud point

and a distance from the camera of less than 𝑑obj. The final 3D centroid estimate of

each valid object is taken to be the center of the bounding box projected into 3D

space by the estimated distance to the object. After the valid objects at timestep

𝑡𝑛 are reconstructed, they are compared to all objects seen in the previous timesteps

𝑡 = 𝑡0, . . . , 𝑡𝑛−1. All objects of the same class within a radius 𝜖fus are fused together

and all objects which have been reconstructed at minimum 𝜏sight times are added to

ℳveh. As previously mentioned, over long distances, the trajectory drift skews the

object centroid estimates in ℳveh, so the 𝑟 most recently seen objects are used to

createℳ𝑟
veh, which is input into the data association algorithm.

3.1.4 Registration

Robust registration is a core component of the proposed framework. A graph-based

formulation is used to solve the registration problem by finding the largest set of

geometrically consistent objects that match between each reference submap and the

vehicle map. Denoting the association that matches the points 𝑝𝑖 and 𝑞𝑖 by 𝑎𝑖 =

(𝑝𝑖, 𝑞𝑖), two associations 𝑎𝑖 and 𝑎𝑗 are considered geometrically consistent if and only

if the distance between the points is preserved (i.e., ‖𝑝𝑖−𝑝𝑗‖ = ‖𝑞𝑖−𝑞𝑗‖). In practice,

due to noise and inaccuracies, a threshold 𝜖 is set and associations are considered

consistent when 𝑑(𝑎𝑖, 𝑎𝑗)
def
= | ‖𝑝𝑖 − 𝑝𝑗‖ − ‖𝑞𝑖 − 𝑞𝑗‖ | < 𝜖. Now, by denoting the set

of associations between objects of the same class in the reference and vehicle maps

as 𝐴 def
= {(𝑜𝑖, 𝑜𝑗) : (𝑢𝑖, 𝑐𝑖) ∈ℳref , (𝑢𝑗, 𝑐𝑗) ∈ℳ𝑟

veh, 𝑐𝑖 = 𝑐𝑗}, the problem of finding the
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𝑎
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Figure 3-3. Maximum clique formulation for registration. (Left) Points 𝑝 and 𝑞 are matched by
associations 𝑎. (Right) Graph with nodes representing associations and edges indicating their con-
sistency (i.e., associations with (nearly) identical distances between their endpoints). The largest
clique 𝐴*

c = {𝑎1, 𝑎2, 𝑎4} is the largest set of consistent associations.

largest set of consistent associations, 𝐴*
c, can be defined formally as

maximize
𝐴c⊂𝐴

|𝐴c|

subject to 𝑑(𝑎𝑖, 𝑎𝑗) < 𝜖, ∀𝑎𝑖,𝑎𝑗∈𝐴c .
(3.1)

Problem (3.1) can be modeled as a graph whose vertices represent associations and

edges represent consistent associations. The optimal solution is equivalent to the

maximum clique of the graph, as illustrated in Figure 3-3. Although typically NP-

hard, finding the maximum clique can be solved relatively quickly for sparse graphs

(resulting from many inconsistent associations created by an all-to-all scheme) using

the parallel maximum clique (PMC) algorithm [42].

The pipeline uses this maximum clique method for data association between the

reference and vehicle maps, but with an extra constraint compared to Problem (3.1).

In addition to the geometric consistency constraint 𝑑(𝑎𝑖, 𝑎𝑗) < 𝜖, for two associations

to be valid, the distance between the two points in both the reference map and the

vehicle map must be larger than a distance 𝑑in. Thus, Problem (3.1) becomes

maximize
𝐴c⊂𝐴

|𝐴c|

subject to 𝑑(𝑎𝑖, 𝑎𝑗) < 𝜖, ∀𝑎𝑖,𝑎𝑗∈𝐴c

‖𝑝𝑖 − 𝑞𝑖‖ ≥ 𝑑in

‖𝑝𝑗 − 𝑞𝑗‖ ≥ 𝑑in.

(3.2)
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The additional constraints in Problem (3.2) protect against finding registrations

which have many inliers in a region of the vehicle map with dense objects. While

these registrations contain many inliers, they are often incorrect, as regions dense

with objects are sometimes created by inaccurate centroid reconstructions and these

regions often result in many incorrect associations. Thus, the threshold for distances

between associations increases the likelihood that the data association algorithm will

find the correct registration.

To find candidate transformations, the registration module periodically solves

Problem (3.2) by registeringℳ𝑟
veh to each of the reference map submaps (ℳ𝑖

ref during

global localization or ℳres
ref during guided relocalization). During global localization,

an all-to-all association scheme within objects of the same class is used. In other

words, an object in each reference submap is initially associated to every object in

the vehicle map of the same class. During guided relocalization, previously identi-

fied associations from the last relocalization event are leveraged by restricting these

objects to be associated only with each other. The remaining objects are associated

using an all-to-all association scheme to allow additional associations to be identified.

Solving (3.2) provides the maximum set of valid associations despite many outlier

associations generated by the all-to-all association scheme. These associations are

then used in the least-square fitting of matched objects via Arun’s method [1], which

gives the optimal transformation 𝑇cand ∈ SE(3) that registers ℳ𝑟
veh toℳref .

3.1.5 Global Localization

The data and decision making flow of this pipeline is detailed in Figure 3-4. During

global localization, candidate registrations {𝑇 𝑖
cand}𝑘𝑖=1 are identified for each of the 𝑘

submaps {ℳ𝑖
ref}𝑘𝑖=1. For a given candidate registration 𝑇 𝑖

cand, the number of inlier

associations identified by Problem (3.2) is denoted as 𝑎𝑖. Because registrations with

few associations are less likely to be reliable (e.g., due to perceptual symmetries

or the anticipation of a changed environment), candidates with less than 𝜏in inlier

associations are rejected. The set of candidates which pass the inlier association

threshold are denoted by V.
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𝑒cand < 1.1 𝑒cur

Guided Relocalization

Figure 3-4. Flow chart for accepting or rejecting a new registration in the global localization and
guided relocalization modes.

The quality of the 𝑖-th registration is evaluated using the root-mean-square error

(RMSE), denoted 𝑒𝑖, which measures the average distance between objects in the full

vehicle map and their nearest neighbor object of the same class in the reference map.

This value provides insight into how well the vehicle map as a whole aligns with the

reference map, as opposed to only considering how well the objects associated using

𝐴*
𝑐 are matched. An RMSE threshold 𝜏RMSE is used to check that there is at least

one candidate transform of sufficient quality. Importantly, 𝜏RMSE(𝑑t) is a piece-wise

function of distance traveled, 𝑑t specified by

𝜏RMSE(𝑑t) = 𝜏RMSE,0 + 𝛼RMSEfloor(𝑑t/𝑑RMSE,GL) (3.3)

where 𝜏RMSE,0 is the initial value for 𝜏RMSE(𝑑t) and 𝑑RMSE is the required traveled

distance before the threshold increases by 𝛼RMSE. The threshold increases as the

distance traveled increases to account for the distortion in the map due to drift in the

trajectory estimate.

If none of the candidate registrations meet both the 𝜏in and 𝜏RMSE(𝑑t) thresholds,

the pipeline waits for new candidate transformations and repeats the process. If, how-

ever, at least one candidate registration passes these thresholds, the best registration
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is selected by

𝑖* = argmax
𝑖∈V

𝑎𝑖

subject to 𝑒𝑖 ≤ (1 + 𝛼) 𝑒,
(3.4)

where 𝑒 = min𝑗∈1,...,𝑘{𝑒𝑗 : 𝑎𝑗 ≥ 𝜏in} ≤ 𝜏RMSE is the best RMSE value in the set of

valid transformations and 0 < 𝛼 ≪ 1. Thus, the result of Equation (3.4) is the

candidate transformation with the most associations, provided that the RMSE value

is close to the best RMSE value. In simpler words, if multiple transformations have

similar RMSE near or below the threshold, the number of inliers is the best indicator

of which transformation is accurate. Figure 3-5 illustrates the benefit of the RMSE

heuristic in discerning if a candidate registration is of high or low quality.

Once a registration is accepted, it is stored as the current transformation 𝑇cur ←

𝑇 𝑖*

cand. Then, the pipeline switches to the guided relocalization mode where 𝑇cur will

be frequently updated.

Figure 3-5. The blue points represent objects in the aerial reference map for KITTI Sequence 00.
Two copies of the vehicle map are shown in yellow, each transformed by a candidate registration.
Despite same number of inliers, the RMSE value allows the registration circled in red to be identified
as incorrect and the registration in green to be accepted.
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3.1.6 Guided Relocalization

Guided relocalization is used to frequently update 𝑇cur, the current transformation

between the local and global coordinate frames. These updates are important because

as the vehicle moves, the trajectory estimation process accumulates drift. The criteria

for accepting the candidate transformation 𝑇cand is detailed in the right of Figure 3-4.

Note that there is only one candidate transformation 𝑇cand for guided relocalization

at any given time because only the restricted reference map ℳres
ref (as opposed to 𝑘

submaps) is being input into the data association algorithm.

During guided relocalization, a candidate registration is compared to the current

registration 𝑇cur to determine if the candidate registration will be accepted. Unlike the

global localization criteria, the new candidate registration does not have a required

number of inlier associations because the framework is already confident in the ap-

proximate transformation between coordinate frames. The RMSE value is calculated

for both the current accepted registration (𝑒cur) and the candidate registration (𝑒cand).

These values are calculated as defined in Section 3.1.5, but using the 𝑟′ ≥ 𝑟 most re-

cently seen objects in the vehicle map such thatℳ𝑟
veh ⊆ℳ𝑟′

veh. Calculating the RMSE

values with more vehicle map objects than were used to find the candidate transfor-

mation provides a better assessment of the quality of each transformation. To accept

𝑇cand, the two RMSE values must be sufficiently different (|𝑒cand − 𝑒cur| > 𝛿RMSE)

and the candidate registration’s value must be similar or smaller than the current

registration’s value (𝑒cand ≤ (1 + 𝛼) 𝑒cur).

The final criteria to accept the candidate transformation is that 𝑇cand must be

similar enough to 𝑇cur in both translation and orientation. The requirements are

||𝑡cand − 𝑡cur|| ≤ 𝛿T(𝑑
′
t)

cos−1(|𝑞cand · 𝑞cur|) ≤ 𝛿𝜃(𝑑
′
t)

(3.5)

where 𝑇cand = (𝑞cand, 𝑡cand) and 𝑇cur = (𝑞cur, 𝑡cur) and 𝑑
′
t is the distance traveled since

the last accepted registration. Similar to relaxing 𝜏RMSE based on distance traveled

for global localization, the transformation similarity requirements loosen to account
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Figure 3-6. Reference map and trajectories for Traverses 1 and 2 (left) and for Traverse 3 (right) of
the Katwijk dataset [17]. Ground truth locations for all small, medium, and large rocks are labeled.

for drift as the distance traveled since the last accepted registration increases. These

thresholds 𝛿T(𝑑
′
t) and 𝛿T(𝑑

′
t) change according to

𝛿T(𝑑
′
t) = 𝛿T,0 + 𝛼Tfloor(𝑑

′
t/𝑑RMSE,GR)

𝛿𝜃(𝑑
′
t) = 𝛿𝜃,0 + 𝛼𝜃floor(𝑑

′
t/𝑑RMSE,GR).

(3.6)

If the candidate transformation is accepted, 𝑇cur ← 𝑇cand and the process begins

again when the next candidate registration is provided by the registration module.

3.2 Experiment Setup

3.2.1 Katwijk Beach Planetary Rover Experiment Setup

The Katwijk Beach dataset [17] provides a challenging scenario to test global lo-

calization. A rover was used to collect data while driving on a beach where small,

medium, and large artificial rocks were placed in arbitrary locations along its route

(see Figure 3-6). The pipeline localizes the rover in the reference map by identifying
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and classifying rocks by size and registering the rocks seen by the rover to rocks in

the reference map.

Due to the challenging nature of the Katwijk dataset, off-the-shelf visual odometry

packages (e.g., ORB-SLAM3 [6]) fail to estimate the robot’s trajectory. In addition,

the dataset does not provide a ground truth trajectory, so coarse ground truth poses

for each camera frame are generated by interpolating the high-precision RTK GPS

measurements. For this reason, the generated ground truth is used in this pipeline

and the experiments focus on testing the global localization capability only.

Rock classification and bounding box construction is done offline, saved in ROS

bags, and played back in real time during the experiments. To identify rocks, a 3D

point cloud is reconstructed using stereo camera data (LocCam) captured onboard

the rover. The ground plane is removed and the 3D points are clustered together

in groups of at least 100 points using density-based spatial clustering of applications

with noise (DBSCAN). Clusters with a maximum height of less than 0.15m (half the

height of the small rocks) are removed, and the remaining clusters are classified as

either small, medium, or large rocks, based on the maximum height of the 3D cluster

associated with that object. The size of potential rocks is known a priori. The 3D

clusters corresponding to each object are projected back onto the left stereo image

and rectangular bounding boxes are constructed around each rock. The 3D point

cloud with the ground layer removed and the bounding boxes are saved in a ROS bag

file.

As the pipeline runs in real-time, the 3D non-ground point cloud and bounding

boxes are used as described in Section 3.1.3. In addition to the minimum width and

height for bounding boxes (𝑝𝑤 and 𝑝ℎ), there are two additional requirements for the

bounding boxes in order to include the object in the vehicle map. The method of

identifying rocks resulted in many false positives, often in very wide bounding boxes

using points which were incorrectly retained after removing the ground plane. Thus,

the height-to-width ratio must be larger than 0.25. Second, as large and medium

rocks were half-in and half-out of the camera frame, many were labeled as a smaller

class of rocks because the maximum height of the rock was not in view. To correct
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for this effect, any bounding boxes completely contained in the leftmost 200 pixels or

rightmost 200 pixels of the image are removed.

Within the dataset, there are three Traverses, broken into 8, 6, and 5 5-minute

segments, respectively. Algorithm parameters are tuned on Traverse 1, Part 1 and

the same values are used for other sequences. The parameters used are provided in

Table 3.2. In particular, the object map is built of objects less than 𝑑obj = 12m

away which have been seen in at least 𝜏sight = 20 frames (defined in 3.1.3). The

fusion radius for objects across frames is 𝜖fus = 1.0m. In particular, a threshold of

𝜖reg = 1.5m is used for registration (defined in Section 3.1.4) and the initial RMSE

threshold value is set to 𝜏RMSE,0 = 2m. The size of the vehicle object map is not

restricted (i.e., ℳ𝑟
veh =ℳveh) given how few rocks the vehicle sees in each segment.

For all segments of Traverses 1 and 2, a minimum of 𝜏in = 8 inliers are required.

However, this parameter is loosened to 𝜏in = 6 for Traverse 3, as it is possible to

achieve high confidence of an accurate registration with less inliers because of the

significantly lower number of objects in the reference map (45 objects in Traverse 3

as opposed to 212 objects in Traverses 1 and 2).

3.2.2 KITTI Experiment Setup

Experiments on the KITTI dataset demonstrate of the pipeline’s robustness to outliers

and enable the pipeline to be compared to other methods. For each sequence, two

reference maps are considered. One is built by a ground-view lidar scan and the

other by an aerial-view image. The SemanticKITTI [3] semantically labeled point

cloud from the lidar sensor onboard the KITTI vehicle is used to create the lidar

reference map. For each object identified by SemanticKITTI, the median values of

the associated point cloud points is used to estimate the centroid. The centroids of the

lidar reference maps are in 3D, and all associated errors from experiment localizing

in the lidar maps are reported in 3D. The aerial reference map is created by manually

annotating Google Satellite images using QGIS [37]. It is possible to automate the

annotation by using classifiers trained for aerial images (see Section 5.2.5). The aerial

reference map is in two dimensions. When localizing in the aerial reference maps, the
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Figure 3-7. Reference object maps corresponding to KITTI Sequence 00 constructed using lidar
scans (ground view), and Google Satellite georeferenced images (aerial view). Each square represents
a semantic object such as a parking space or traffic sign. The bottom image is for reference.

vehicle map is projected into a 2D plane and the 2D version of Arun’s method is used

to identify 𝑇cand ∈ SE(3). The aerial reference map is larger than the lidar map for

each sequence because the aerial images used to create the reference map span a larger

area than the roads driven by the KITTI vehicle. Additionally, the aerial reference

map contains more outliers when compared to the vehicle map. The data from the

lidar scan is collected at the same time as the stereo images used to create the vehicle

map, whereas the aerial reference map is created using images taken years apart from

the KITTI dataset creation. The aerial and lidar reference maps for Sequence 00 can

be seen in Figure 3-7.

Parking spaces and traffic signs are the only object classes used for global local-

ization and guided relocalization, though the vast majority of the objects are parking

spaces. To demonstrate robustness to outliers, the classifier identifies parking spaces

by identifying cars. Using cars as a proxy for parking spaces leads to noisy estimates

because not every parking space is occupied by a car and not every car is located in

a parking space. Furthermore, since the parking spots occupied by cars change over

time, using semantic object maps from different dates further stresses the algorithm’s

robustness to outliers. It is important to not that identifying cars and traffic signs in

Google Satellite images to create the aerial reference map is challenging due to oc-

clusion and lighting, as depicted in Figure 3-8. Furthermore, traffic signs are difficult

to identify from an aerial view because they are very narrow (see Figure 3-9).
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Figure 3-8. Occlusion (left) and lighting (right) in Google Satellite images make identifying cars
and traffic signs difficult.

Figure 3-9. Shadows can be used to identify traffic signs in the Google Satellite images. This,
however, is unreliable due to lighting and occlusion (see Figure 3-8). Additionally, the difference
between traffic signs and street lights is subtle. The traffic sign candidate pointed out by the green
arrow is a traffic sign, whereas the candidate identified by the red arrow is not.

39



When localizing in each reference map, the vehicle’s object map is built using the

stereo implementation of ORB-SLAM3 [6] for odometry estimation and YOLO [4,38]

for object detection. The tracked ORB features from ORB-SLAM create the sparse

point cloud used for the 3D reconstruction of objects.

Sequences 00, 02, 06, 07, and 09 of the KITTI dataset are tested due to the

number of semantic objects and the lack of symmetry. For each of these sequences,

SemanticKITTI [3] identifies greater than 100 stationary cars and traffic signs and the

objects in the reference map do not contain high levels of symmetry, as symmetry in

surrounding areas leads to failure in global localization (see Section 4.5). Sequences

05 and 08 contain more than 100 stationary cars as identified by SemanticKITTI, but

are not included in experiments because of symmetry in the surrounding area. This

pipeline succeeds in localizing these sequences in the lidar reference map, but fails in

the larger aerial reference maps.

Algorithm parameters are tuned on Sequence 00 and reported in Table 3.2. Specif-

ically, the vehicle map is created using objects within 𝑑obj = 20m from the vehicle

and uses a fusion radius of 𝜖fus = 3m. The restricted vehicle map ℳ𝑟
veh contains

up to 𝑟 = 75 objects. No submaps are used for the lidar reference maps, but the

aerial reference maps are split into either 𝑘 = 2 or 𝑘 = 4 submaps with no overlap,

depending on the total number of reference map objects. Reference maps split into

two submaps (Sequences 02, 06, and 09) are split in half along the y-axis, and the

remaining sequences (Sequences 00 and 07) are split in half along each axis. Candi-

date registrations must contain at least 𝜏in = 12 inliers which are all at a minimum

𝑑in = 10m apart and the threshold to consider associations geometrically consis-

tent is 𝜖reg = 2.5m. The RMSE threshold begins at 𝜏RMSE,0 = 6m, but increases

by 𝛼RMSE = 2m for every 𝑑RMSE = 500m traveled since the last localization event

in order to account for drift. Additionally, the RMSE value is calculated using only

parking space objects because the sparsity of traffic signs leads to large RMSE values.

Successfully localized trajectories are visualized in Figure 3-10.
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Figure 3-10. The vehicle map and trajectory (red squares and lines) have been successfully localized
in reference maps (blue squares) created from Google Satellite images for KITTI Sequences 00 (left)
and 02 (right). The background images are provided for reference.

3.3 Conclusion

This pipeline localizes a vehicle in a reference map by geometrically aligning the ref-

erence map and the vehicle map. Experiments are conducted using the KITTI bench-

mark and the Katwijk Beach Planetary Rover dataset in order to demonstrate the

pipeline’s ability to localize in unstructured environments, view-invariance, robust-

ness to outliers, and drift reduction. The results of these experiments are reported

and discussed in Chapter 4.
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Table 3.2. Parameter values for experiments with the Katwijk and KITTI datasets. All parameters
are described in Section 3.1.

Parameter Description Katwijk KITTI
𝑝w Min bounding box width [𝑝𝑖𝑥𝑒𝑙𝑠] 20* 0
𝑝h Min bounding box height [𝑝𝑖𝑥𝑒𝑙𝑠] 20* 0
𝑑obj Maximum distance to object to add to vehicle

map [𝑚]
12 15

𝜖fus Fusion radius for vehicle map [𝑚] 1 3
𝜏sight Min sightings [#] 20 1
𝑟 Max number of objects in vehicle map [#] − 75
𝑘 Number of submaps [#] 1 Various†

𝛽 Percent overlap [%] − 0
𝑑reloc Required distance between reference and vehicle

map objects in guided relocalization [𝑚]
− 10

𝜖reg Threshold for considering two associations
geometrically consistent [𝑚]

1.5 2.5

𝑑in Minimum distance between inliers [𝑚] 0 10
𝜏in Minimum number of inliers [#] 8** 12

𝜏RMSE,0 Initial RMSE threshold for RMSE check [𝑚] 2 6
𝛼RMSE Increment to increase RMSE threshold after every

𝑑RMSE traveled [𝑚]
0 2

𝑑RMSE Required distance traveled to loosen threshold for
RMSE check [𝑚]

− 500

𝛼 Ratio tolerance of smallest RMSE value 0.1 0.1
𝑟′ Maximum number of objects in vehicle map to

calculate RMSE for guided relocalization [#]
− 150

𝛿RMSE Minimum difference between candidate and
current transformations RMSE for guided
relocalization [𝑚]

0.05 0.05

𝛿T,0 Initial maximum difference in translation between
candidate and current transformations RMSE for
guided relocalization [𝑚]

15 15

𝛿𝜃,0 Initial maximum difference in rotation between
candidate and current transformations RMSE for
guided relocalization [∘]

15 15

𝑑
′ Required distance traveled between localization

events to loosen transformation similarity
requirements [𝑚]

500 500

𝛼T Increase to 𝛿T for every 𝑑
′ traveled [𝑚] 15 15

𝛼𝜃 Increase to 𝛿𝜃 for every 𝑑
′ traveled [∘] 15 15

*The bounding boxes were additionally required to have a height-to-width ratio of less
than 0.25 and to contain some area of the image outside the leftmost and rightmost 200

pixels (see Section 3.2.1).
**Traverse 3 only required 6 inliers due to the reduced size of the reference map.

†Lidar reference maps have only one submap. Aerial reference maps with less than 750
objects have two submaps, otherwise they have four (see Section 3.2.2).
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Chapter 4

Results

Each of the four claims regarding this pipeline are tested and analyzed with real

data. Global localization is achieved on both the Katwijk Beach Planetary Rover

dataset [17] and the KITTI dataset [15] in order to demonstrate success in both urban

and non-urban environments (see Section 4.1). Experiments in Section 4.2 test the

pipeline’s robustness to outliers by localizing and relocalizing in the KITTI dataset

using two different reference maps with highly different outlier ratios. Further, tests

on the Katwijk dataset demonstrate the view-invariance characteristic of the pipeline

(see Section 4.3). Drift reduction is the final claim which is demonstrated on the

KITTI dataset and reported in Section 4.4.

4.1 Unstructured and Structured Environments

This pipeline can successfully globally localize in structured and unstructured envi-

ronments alike. The Katwijk dataset was chosen to exemplify the pipeline’s capability

in unstructured environments because it does not contain structure typical of urban

environments (e.g., roads, traffic signs, lane markings). It is demonstrated that the

geometry of the small, medium, and large rocks are sufficient to globally localize in

an unstructured environment. Traverses 1, 2, and 3 of the Katwijk dataset are split

into 8, 6, and 5 five-minute segments, respectively. Each of these segments is treated

as a trial to test the ability to globally localize in the reference map. The five most
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Table 4.1. Error statistics describing the pipeline’s global localization performance in unstructured
environments on the Katwijk dataset. Errors are reported in 2D.

Traverse Part
Global Loc
Position
Error [m]

Objects to
Localize [#]

Objects in
Ref Map [#]

Length of Ref
Map [m]

1
1
3
3
3

1
8
1
2
4

0.68
0.97
0.65
1.4
0.58

8
9
9
12
7

212
212
45
45
45

1000
1000
110
110
110

Figure 4-1. Left and right stereo images in Traverse 3, Part 3 of the Katwijk dataset. Sunlight
causes glares in the images which makes detection of rocks difficult.

accurate global localizations are reported in Table 4.1. Seven segments do not achieve

global localization because the rover does not see a sufficient number of rocks and

two additional segments do not achieve global localization because the rover does not

identify a sufficient number of inliers. Two segments (Traverse 1, Part 7 and Traverse

3, Part 3) fail (achieve an incorrect global localization) because of misclassifications

due to harsh lighting (see Figure 4-1). Despite these challenges, the registration error

for global localization is as low as 0.58m on Traverse 3, Part 4, when localizing in

a reference map with 45 objects spanning approximately 110m. When looking at a

larger reference map with 212 objects spanning roughly 1 km, global localization on

Traverse 1, Part 1 achieves sub-meter level accuracy of 0.68m. In Traverse 1, Parts 1

and 8, the rover only needed to identify 8 and 9 objects in order to localize in a map

of 212 objects.

46



In addition to achieving global localization in unstructured environments, the

pipeline also successfully globally localizes in structured environments, as demon-

strated by experiments with the KITTI dataset. As described in Section 3.2.2, exper-

iments using the KITTI dataset were conducted on Sequences 00, 02, 06, 07, and 09

using two different reference maps. One reference map was created using ground-view

lidar scans and the other was created by hand-labeling aerial georeferenced images.

Localization in each reference map is achieved using parking spots reconstructed by

identifying cars and traffic signs. Table 4.2 reports the global localization accuracy for

each of the tested sequences. It is important to note that while the guided relocaliza-

tion mode is tested on the KITTI dataset, Table 4.2 reports only global localization

accuracy in order to compare the pipeline’s performance with the Katwijk dataset.

Table 4.2. Error statistics describing the pipeline’s global localization performance in structured
environments on the KITTI dataset using an aerial reference map created from Google Satellite
images. Errors are reported in 2D.

KITTI
Seq.
[#]

Global Loc
Position
Error [m]

Objects to
Localize [#]

Objects in
Ref Map [#]

Size of Ref
Map [km2]

00
02
06
07
09

7.1
1.3
4.1
2.8
8.8

60
68
65
69
115

942
471
741
942
493

0.73
0.43
0.5
0.73
0.70

KITTI Sequence 02 has the lowest global localization error of 1.3m and the lowest

number of objects in the reference map, but Sequence 09 has the highest global

localization error of 8.8m and a very similar number of objects in the reference map.

Thus, the number of objects in the reference map is not the primary contributor of

the global localization error. Instead, the accuracy of the vehicle map and the amount

of symmetry in the reference map contribute more heavily to the size of localization

error.

In order to globally localize in KITTI Sequence 09, 115 objects are seen by the

ground vehicle, as compared to the 60-69 objects seen in the four other sequences.
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This occurs for two reasons. First, the trajectory spans the two submaps used for

global localization, so it takes time for sufficient number of inliers to be found with

just one of the two reference submaps. Second, there are a few objects identified by

the vehicle which are not in the reference map and are located a significant distance

from the other objects in the reference map. Thus, the RMSE value is not within the

threshold early in the trajectory.

When comparing the global localization error statistics for the Katwijk dataset and

the KITTI dataset, the Katwijk dataset clearly requires fewer objects to localize and

achieves more accurate global localization. There are two primary causes. First, the

Katwijk rover moves significantly slower than the KITTI ground vehicle and sees fewer

objects in each frame, which leads to more accurate 3D reconstruction of the objects.

Second, the parameters for the KITTI dataset make the pipeline more conservative

in accepting a registration because outliers and symmetry are anticipated. Overall,

testing on these two datasets demonstrate the pipeline’s ability to localize in both

structured and unstructured environments.

4.2 Robustness to Outliers

The KITTI dataset was chosen to demonstrate the pipeline’s robustness to outliers.

The robustness to outliers is quantified by comparing localization accuracy between

localizing the KITTI ground vehicle in a reference map created by a lidar scan and

a reference map created from a satellite image taken years apart. Traffic signs and

parking spaces are the only two classes used to localize the vehicle in a reference

map. Parking spots, however, are identified by reconstructing 3D centroids of cars,

which provides a noisy estimate of parking spot locations. More details about the

experiment setup are in Section 3.2.2. The reference map created from an outdated

Google Satellite image poses a more challenging problem than the reference map

created from a lidar scan taken at the same time as the stereo images were created.

This is both due to the larger size of the aerial map as well as the number of outliers.

To compare the two maps, there are two different object outlier measurements:
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reference map object outliers and vehicle map object outliers. The vehicle map ob-

ject outlier percentage is the percentage of objects in the vehicle map created from

ground truth (i.e., no drift) which do not have corresponding objects in the reference

map when using the ground truth transformation. The reference map object out-

lier percentage is the percentage of objects in the reference map which do not have

corresponding objects in the vehicle map created from ground truth when using the

ground truth transformation. For two objects to correspond, they must be within

𝜖reg = 2.5m (defined in Table 3.2) of each other and each object can correspond to at

most one object. For the five tested KITTI sequences, the vehicle map object outlier

percentage ranges from 42-64% for the lidar reference map (see Table 4.3). Given

that the 360-degree lidar sensor and front-facing stereo cameras are on the same ve-

hicle and drive the same trajectory, the lidar sensor will see all of the cars which the

stereo cameras see and additional cars which may be beside or behind the vehicle. In

other words, the vehicle map outliers with respect to the lidar reference map are due

to misclassifications and reconstruction errors. For each KITTI sequence, the vehicle

map object outlier percentage is higher with respect to the aerial reference map than

with respect to the lidar reference map, ranging from 66-82 % (see Table 4.3). These

outliers are due to misclassifications and reconstruction errors as well as changes in

the environment.

The reference map outlier percentages indicate the scale of the reference map com-

pared to the scale of the vehicle map in addition to the map errors and environment

changes. The reference map object outlier percentage is as high as 97 % and all values

are above 87 % for the aerial maps (see Table 4.4). In other words, the registration

module can accurately identify accurate associations even though as few as 3 % of the

objects in the reference map are viewed by the vehicle along the entire trajectory.

To compare the performance of localization in each reference map, the quality of

accepted registrations is considered by plotting the pose estimate error of all localiza-

tion events in Figure 4-2. It can be observed that Sequences 00 and 07 have the lowest

registration error with averages of 4.4m and 2.5m when localizing in the aerial refer-

ence map. These errors are smaller than the average position error for [61] and [12]
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Table 4.3. Error statistics for localizing the KITTI ground vehicle in aerial and lidar reference
maps using only parking spaces and traffic signs as semantic objects. The reported position and
orientation errors are in 2D for the aerial case and 3D for the lidar case to mirror the dimension of
the reference maps.

KITTI
Seq.
[#]

Average
Position
Error [m]

Average
Orientation
Error [deg]

Distance to
Localize

[m]

Trajectory
Length
[m]

Veh Map.
Object
Outliers

[%]

Ref Map.
Object
Outliers

[%]

Objects in
Ref. Map

[#]

ae
ri
al

re
f.

m
ap 00 5.7 1.4 276 3724 80 87 942

02 10.7 0.7 845 5067 82 90 471

06 7.1 0.7 975 1233 66 97 741

07 1.9 1.2 373 695 81 96 942

09 11.8 0.8 1362 1705 80 94 493

lid
ar

re
f.

m
ap 00 4.3 2.1 233 3724 52 47 543

02 10.9 1.3 717 5067 42 52 315

06 6.9 0.7 941 1233 55 71 119

07 3.7 1.5 153 695 51 53 180

09 10.1 1.0 956 1705 64 68 167

by a factor of 10 (see Table 4.5), though methods such as [33] and [5] have superior

accuracy on the KITTI dataset. In addition to highly accurate average registration

error, tight bounds on the error for Sequences 00, 06, 07, and 09 demonstrate that

the registrations are consistently accurate as a whole. Table 4.4, discussed further in

Section 4.4, provides more details on the average, median, and standard deviation of

relocalization events for each sequence and each reference map. Sequence 02, how-

ever, does contain many relocalization error outliers and demonstrates generally lower

accuracy. This is attributed to a large amount of drift in the trajectory, as the objects

are less dense and so the prepared vehicle map,ℳ𝑟
veh as defined in Section 3.1.3, itself

contains large amounts of drift.

Table 4.3 and Figure 4-2 combined compare performance on the KITTI dataset

using each of the reference maps. When analyzing these error statistics, it is important

to understand two key differences between the aerial and lidar maps, apart from the

viewpoint difference and number of outliers. First, since Google Satellite only provides

2D data, error statistics corresponding to the aerial reference map are reported in
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Figure 4-2. Registration accuracy of each KITTI sequence and each reference map (aerial and
lidar). Registration accuracy is defined as the pose estimate error at each localization event. Errors
are comparable across reference map cases, illustrating the framework’s robustness to outliers and
viewpoints. Errors are reported in 2D for the aerial case and 3D for the lidar case to mirror the
dimension of the reference maps.

2D whereas error statistics corresponding to the lidar reference map are reported in

3D. Second, the time to localize is different across each reference map for the same

sequence. Therefore, the number of relocalization events are different across each

reference map and the portion of the trajectory considered in the average position

error statistic differs in length. Thus, it is possible that a region of the trajectory

which is more challenging for the SLAM pipeline is included in the average error

statistics for one of the reference maps, but not the other, therefore skewing the error

statistics.

Comparing localization accuracy of each sequence across each reference map pro-

vides a method to quantify the effects of outliers on the pipeline. The average position

errors recorded in Table 4.3 demonstrate how similarly the pipeline performs on the

lidar and aerial reference maps. The pipeline performs most similarly across each ref-

erence map for Sequences 00 and 07. The difference in average position error between

the two maps is 0.2m for each sequence. Sequences 00, 07, and 09 have differences

in error between each reference map of between 1.4 and 1.8m. Specifically looking

at Sequences 07 and 09, global localization in the lidar map occurs 220 and 406m

earlier than localizing in the aerial reference map. All of the other sequences localize

in the aerial map within 4 to 128m of localization in the lidar map. This difference in
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localization time affects the final average position error. Additionally, the Sequence

09 trajectory has large vertical gain, as the vehicle is driving on a hill. Inaccuracies

due to projecting the vehicle map onto a 2D-plane in order to align with the 2D aerial

reference map can cause larger position error. It is expected that the remainder of

the difference in accuracy is due to the configuration of the object outliers, which may

be skewing the transformation by associating cars which are not in the same parking

spot. Despite these differences, the pipeline performs similarly when localizing in the

aerial reference map or the lidar reference map.

4.3 Viewpoint Variations

The use of semantic maps and a maximum clique data association algorithm make the

pipeline view-invariant. In other words, the reference and vehicle maps can be created

from any perspective, as long as objects are still identifiable and can be reconstructed.

This is exemplified by both the KITTI dataset and the Katwijk dataset.

The two reference maps considered by the KITTI dataset differ in modality (li-

dar vs Google Satellite images) and viewpoint (ground and aerial). As discussed in

Section 4.2, the pipeline successfully localizes in each of these reference maps for all

of the tested KITTI sequences. While Section 4.2 focuses on the difference in outlier

ratios, these two reference maps also differ in modality and viewpoint.

The trials for the Katwijk dataset described in Section 4.1 use a ground truth

reference map created from GPS and provided by the dataset. These reference maps

cannot be said to be built from a specific viewpoint. However, in addition to localizing

in the ground truth reference map, Katwijk Traverse 3 was used to create a reference

map from the extreme opposite viewpoint of the vehicle’s view. Given that Traverse 3

is an “out-and-back” trajectory (see Figure 3-6), the first half of the traverse (Parts 1,

2, and 3) is used to create a reference map into which the second half is localized. In

other words, the two halves of the traverse see the same objects, but from an extreme

difference in viewpoint. This scenario is challenging to image-based methods, which

are likely to fail due to sensitivity to viewpoint [29].
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In this pipeline, the object map representation and maximum clique-based associ-

ation formulation cause the framework to be view-invariant and enables it to localize

with 1.2m accuracy within a reference map spanning approximately 110m. The error

is from inaccuracies in the trajectory and object centroid reconstruction.

4.4 Drift Reduction

This pipeline effectively mitigates error due to drift by using a guided relocalization

mode to update pose estimates. The framework’s ability to relocalize and reduce

effects of drift is demonstrated using the KITTI dataset.

There are two primary sources of error in the pipeline: noisy object maps and noisy

registrations. Inaccuracies in the object maps are caused by errors during 3D centroid

reconstruction and local pose estimates. The 3D centroid reconstructions are either

hand-labeled and prone to human error (aerial reference map) or estimated using

point clouds generated by either lidar sensors (lidar reference map) or ORB-SLAM3

tracked features (vehicle map). The accuracy of vehicle pose estimates depends on

various factors such as sensors, number of loop closures, and drift from the SLAM

module. Incorrect pose estimates distort the vehicle map and directly influence the

localization accuracy in the pipeline. In order to increase accuracy of the pipeline,

relocalization events (i.e., receiving pose corrections) must be frequent and accurate.

After global localization, infrequent relocalizations would allow drift to accumulate

between events and contribute toward inaccurate pose estimates across the entire

sequence.

To quantify the benefit of guided relocalization, the position error of the full

pipeline and the position error using only the global localization transformation are

compared. Stated simply, the pipeline is run with and without guided relocalization.

Qualitatively, Figure 4-3 illustrates the position error over distance traveled for each

of the sequences and each of the reference maps. Due to the length of Sequence

00 and Sequence 02, the effects of using guided relocalization can clearly be seen.

In Sequence 00, large spikes in error around 2700m are due to error in the SLAM
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(a) Sequence 00, Aerial (b) Sequence 00, Lidar

(c) Sequence 02, Aerial (d) Sequence 02, Lidar

(e) Sequence 06, Aerial (f) Sequence 06, Lidar

(g) Sequence 07, Aerial (h) Sequence 07, Lidar

(i) Sequence 09, Aerial (j) Sequence 09, Lidar

Figure 4-3. Estimated pose error with and without guided relocalization when localizing the KITTI
ground vehicle in the aerial and lidar reference maps for each of the tested KITTI sequences. The
black line demonstrates the full ability of the pipeline whereas the green line is calculated as if the
only accepted transformation is the initial global localization transformation. The error due to drift
accumulated after global localization is most obvious on Sequences 00 and 02 because they are the
longest sequences.
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system due to a sharp turn. For each of the sequences and reference maps, Figure 4-3

illustrates how the position error with guided relocalization is consistently lower than

the position error when only using global localization. There are a few instances

at which the error with guided relocalization is larger than that without it. These

instances generally occur when, by chance, the drift in the trajectory is in such a

direction that it makes the global localization transformation more accurate, but the

most recently accepted guided relocalization transformation worse. A few of these

instances may occur because of a poor accepted registration which is soon corrected.

The estimated and ground truth trajectories after global localization for KITTI

Sequences 00, 02, and 09 using the lidar reference map are illustrated in Figure 4-4.

The effects of the updated transformations in guided relocalization can be seen in this

figure. Most clearly, in Sequence 09, the ground vehicle is traveling to the southwest

and at roughly (𝑥, 𝑦) = (75, 0), there is an accepted transformation which makes the

estimated trajectory (in orange) align better with the ground truth trajectory (in

blue). Similar occurrences can be seen in Sequence 00 and Sequence 02.

Error statistics for drift reduction are reported in Table 4.4. Figure 4-5 illustrates

the correlation between the frequency of relocalization events and the average position

error over the entire sequence. There is a clear correlation that sequences with a

low frequency of localization events have high average error. There may be a lower

frequency of relocalization events for a couple reasons. For example, large amounts of

drift skewing the vehicle map or symmetry in the restricted reference map will make

it difficult to find an acceptable registration. Alternatively, the vehicle may not see

many objects for a significant period of time and, therefore, will not be able to find

an updated transformation, but will continue to accumulate drift. Sequence 00 and

Sequence 09 have the highest average error (see Table 4.3). For these sequences, the

accepted transformations occur at the lowest rate, which allows for large amounts of

drift to be introduced into the pose estimate. For this reason, the correcting effects

of newly accepted transformations are most pronounced for these sequences in the

trajectory illustrations in Figure 4-4.

The longest sequences, Sequences 00 and 02, unsurprisingly demonstrate the high-
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(a) Sequence 00 (b) Sequence 02

(c) Sequence 09

Figure 4-4. Ground truth poses (blue) are plotted with pose estimates localizing in the lidar refer-
ence map (orange) at every timestep after global localization for KITTI Sequences 00, 02, and 09.
Accumulation of drift over time and the removal of drift after a new relocalization event is most
pronounced in Sequences 02 and 09. For example, in Sequence 09, the vehicle moves southwest and
accumulates drift until the relocalization event around (𝑥, 𝑦) = (75, 0) makes the estimated pose
align significantly better with the ground truth pose.
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Table 4.4. Performance statistics of guided relocalization for the KITTI ground vehicle. Guided
relocalization successfully removes drift in 9 of the 10 trials. As the frequency of relocalization events
increases, the average position error with guided relocalization decreases.

KITTI
Seq.
[#]

Avg.
Position

Error with
GR
[m]

Avg.
Position

Error w/o
GR
[m]

Percent
of Drift

Removed
by GR
[%]

Avg.
Reloc.
Error
[m]

Median
Reloc.
Error
[m]

Std
Reloc.
Error
[m]

Avg. Dist
between
Reloc.
Events
[m]

ae
ri
al

re
f.

m
ap 00 5.7 11.1 48.6 4.4 4.0 2.3 59.5

02 10.8 13.9 22.6 9.6 8.0 6.5 103.0

06 7.1 6.6 −7.1 8.6 3.3 4.8 85.6

07 1.9 2.4 20.7 2.5 2.7 0.90 46.0

09 11.8 12.0 1.7 10.4 8.8 2.4 171.5

lid
ar

re
f.

m
ap 00 4.3 6.3 31.2 3.8 3.3 1.7 41.6

02 10.9 22.0 50.5 12.0 9.7 6.8 92.6

06 6.9 7.2 4.1 4.2 3.3 2.0 73.1

07 3.7 3.9 5.9 3.7 2.9 1.8 45.2

09 10.1 12.7 20.5 9.6 8.5 3.1 68.1
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Figure 4-5. Average position error versus average distance between relocalization events for each of
the five tested KITTI sequences and each of the two reference maps. The line of best fit is included
to demonstrate the positive correlation between the two variables.
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est percentage of drift removed by guided relocalization. The percentage of drift re-

moved is negative for Sequence 06 when localizing in the aerial map. In this case,

guided relocalization made the pose estimates worse. This is likely due to the short

distance the vehicle traveled after global localization (258m) and the first localiza-

tion being more accurate than the following. For this case, only 3 localization and

relocalization events occurred.

The accuracy of each individual localization event is highest for Sequence 00 and

Sequence 09 for each reference map, as is the standard deviation. In general, the

median relocalization event error is lower than the average relocalization event error.

This implies that the majority of relocalization events are highly accurate, but there

are often a few less accurate accepted registrations for each sequence which increase

the average.

The quantitative results in Table 4.4 and qualitative results in Figure 4-3 and

Figure 4-4 demonstrate the high effectiveness of the guided relocalization mode, es-

pecially on longer trajectories.

4.5 Discussion

Table 4.5 lists evaluation results of localizing the KITTI ground vehicle in an aerial

reference map compared to prior art which similarly tests air-ground localization

on the KITTI benchmark. The 2D localization error for each of the five tested

sequences is reported twice: once using stereo odometry and once using ground truth

odometry. Using ground truth odometry provides the maximum achievable accuracy

of the pipeline. Overall, while prior art achieves good accuracy, these methods are

restricted to urban environments. This pipeline was designed to work in both urban

and non-urban environments and therefore makes no assumptions about roads or

lane markings. As a result, the pipeline leverages less information than competing

approaches.

The achieved accuracy is competitive to prior art in structured environments. This

pipeline outperforms Floros et al. [12] on Sequences 00 and 02, and Yan et al. [61] on
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Table 4.5. Aerial-ground localization comparison on the KITTI benchmark for position error and
localization time. Dashed line “−” indicates not reported or not localized successfully.

KITTI
Seq.
[#]

Metric Miller
[33]

Yan
[61]

Brubaker
[5]

Floros
[12]

Ours
(GT)

Ours
(stereo)

00 Error [m] 2.0 >10 2.1 >10 3.9 5.7
Time [s] 54.6 − 22 − 42 39

02 Error [m] 9.1 − 4.1 >20 3.9 10.8
Time [s] 71.5 − 26 − 75 75

06 Error [m] − >10 − − 2.2 7.1
Time [s] − − − − 84 90

07 Error [m] − >10 1.8 − 2.6 1.9
Time [s] − − 26 − 60 57

09 Error [m] 7.2 >10 4.2 − 2.0 11.8
Time [s] 75 − 24 − 75 135

Sequences 00, 06, and 07. While in Sequences 00, 02, and 09, the accuracy using stereo

SLAM does not surpass Brubaker et al. [5] or Miller et al. [33], these methods assume

an urban structure. These error statistics demonstrate the comparable accuracy to

other methods regardless of the strict and practical assumption of an unstructured

environment.

In general, symmetry in reference maps is challenging for this pipeline. If the

geometry of objects in different regions of the reference map look similar, the pipeline

may globally localize to the wrong pose. It is the symmetry in the geometry of

objects, not the symmetry in road structure, which affects the algorithm’s success.

Sequence 06 exemplifies this idea, as the symmetry of the road structure makes this

sequence highly challenging [5]. However, despite this symmetry, the framework is

able to successfully localize because there was little symmetry in parking space and

traffic sign locations.

4.6 Conclusion

Experiments on the KITTI and Katwijk datasets demonstrate the four primary char-

acteristics of this pipeline: the ability to localize in urban and non-urban environments

alike, view-invariance, robustness to changes in the environment, and the ability to
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reduce effects drift. Overall, the pipeline demonstrates comparable accuracy in ur-

ban environments to other state-of-the-art global localization methods. The following

chapter concludes this thesis and discusses ideas to increase scalability and general-

izability of the pipeline in the future.
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Chapter 5

Conclusion

5.1 Summary of Contributions

The current state of the art global localization, long-term localization, place recog-

nition, and loop closure detection focus on achieving localization in structured GPS-

denied environments. Few methods consider non-urban environments, but are limited

by either dense point clouds, external hardware, or rely on the vehicle being located

on non-urban roads (see Section 2.1.5). As localization technologies are brought

into applications such as search-and-rescue or military reconnaissance missions, these

methods will be required to localize a vehicle in unstructured environments with few

features and no roads. The assumption of an unstructured environment produces a

challenging problem because the search space of the algorithm increases and informa-

tion available in urban settings is no longer present. Because of these real applica-

tions, this pipeline is presented for global localization and guided relocalization using

potentially-outdated semantic maps created from various viewpoints. Specifically,

the semantic map representation and maximum clique data association algorithm

enable the view-invariance characteristic, robustness to outliers, and the ability to

localize in unstructured settings. Experiments with the Katwijk dataset [17] and the

KITTI benchmark [15] demonstrate these three properties of the pipeline as well as

the relocalization technique to reduce drift after global localization has been achieved.
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5.2 Future Work

Future directions of work could focus on increasing the efficiency of the pipeline such

that the pipeline can globally localize within a larger region, in less time, and in more

generic settings with fewer semantic objects. The following sections detail potential

ideas to leverage in order to increase the pipeline’s scalability and generalization.

5.2.1 Descriptors

Experiments with the Katwijk dataset demonstrate localization within a map of a 1km

stretch of artificial rocks along the beach. Tests on the KITTI dataset demonstrate

localization within a semantic reference maps spanning up to 0.73km2. In order for

the pipeline to efficiently localize in a larger reference map, additional adjustments

are needed. Descriptors are one way to increase the scalability of this pipeline.

Currently, when executing the data association algorithm in the global localization

mode, an all-to-all association scheme is used within each class (see Section 3.1.4). In

order to decrease the run time of the maximum clique algorithm, it would be useful

to begin with fewer initial associations than this all-to-all scheme. In order to do so,

descriptors can be leveraged. For example, [28] and [27] use random walk descriptors

and [64] uses histogram descriptors encoding distance to nearby objects of specific

classes in order to prune potential associations early in the data association phase of

the frameworks.

To test this idea, histogram descriptors were implemented in the pipeline. The

following details how these descriptors were created. For each object in the vehicle

map and each object in the reference map, objects within a radius 𝑟 in the same map

are considered. In the creation of the descriptors, the class of the object and nearby

objects are ignored. For each of the 𝑛 objects within 𝑟 meters from the object in

consideration, define the location of object 𝑖 to be 𝑝𝑖 and the location of the object

in consideration to be 𝑝cur. Let 𝑣i,cur be the vector from 𝑝cur to 𝑝𝑖. Starting with

an arbitrarily chosen object as 𝑝1, order the remaining objects 𝑝2, . . . , 𝑝n in order of

increasing clockwise angles between 𝑣1,cur and 𝑣i,cur.
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Figure 5-1. The blue and black points represent the 2D locations of objects in a reference map.
The histogram descriptor is being created for the black point. A dashed circle of radius 𝑟 is drawn
around the object of interest and the angles between the dark blue objects inside of this boundary
are calculated and described by the histogram to the right. The number of bins in the histogram
and radius 𝑟 are parameters which can be tuned.

After the ordering of the nearby objects, the angles between 𝑣i,cur and 𝑣i+1,cur are

represented as a normalized histogram with 𝑛bin equal-sized bins dividing 0 to 180

degrees. The descriptor for object 𝑜𝑖 is represented by a vector and is denoted by 𝐻ref
𝑖

if 𝑜𝑖 is in the reference map and 𝐻veh
𝑖 if 𝑜𝑖 is in the vehicle map. Figure 5-1 illustrates

an example descriptor.

As the pipeline runs, the descriptors are continually created and updated for ev-

ery object in the reference and vehicle maps. During the data association algorithm,

within each class, objects in the vehicle map are associated with objects in the ref-

erence map that have the most similar descriptors. The similarity level between

descriptors is defined as the 2-norm between the two descriptors, ||𝐻veh
𝑖 −𝐻veh

𝑗 ||. The

initial associations for each object in the vehicle map are taken to be the most similar

𝛼 percent of objects in the reference map.

Tests with this definition of descriptors on KITTI Sequence 00 demonstrated that

this formulation is not useful (and sometimes slightly harmful) to the global con-

vergence. With a large enough alpha, the pipeline performed as usual, but with no
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efficiency advantage. As 𝛼 decreases, the majority of the correct associations are

kept in the initial associations, but enough are lost that pipeline will not reliably

find the correct registration and recognize that it is the correct registration (e.g., the

correct registration may be a candidate registration, but will be thrown out for too

few inliers).

While the discussed histogram of angles has been demonstrated to not be an effec-

tive descriptor for the pipeline, a different descriptor may prove useful in increasing

scalability. For example, a histogram of distances to nearby objects or the number

and class of nearby objects may prove useful.

5.2.2 Approximate Maximum Clique Algorithm

The pipeline assumes the data association method is a maximum clique algorithm.

All experiments are run and parameters are tuned for the Parallel Maximum Clique

(PMC) [42], which provides the exact maximum clique solution to the given graph

formulation of the problem. In order to reduce computation time and therefore in-

crease scalability, an approximate maximum clique algorithm, CLIPPER [30], can be

used. CLIPPER takes the same inputs as PMC, but estimates the maximum clique

in the graph whereas PMC is guaranteed to find the largest maximum clique. Thus,

while CLIPPER can become stuck in local minima, the computational time compared

to PMC is much lower, especially as the number of objects in each map increases.

As in PMC (see Section 3.1.4), pairs of potential associations are evaluated based

on geometric consistency. A consistency graph is constructed using potential associa-

tions as nodes, then edges between two associations are added if the two associations

are geometrically consistent. In the CLIPPER algorithm, the edges of the graph are

weighted using a predetermined function which encodes the quality of the geometric

consistency. More specifically, the weight of the edge between two geometrically con-

sistent associations 𝑎𝑖 and 𝑎𝑗 is a function of 𝑑(𝑎𝑖, 𝑎𝑗) as defined in Section 3.1.4. An

affinity matrix, 𝑀 , is then created such that entry (𝑖, 𝑗) of 𝑀 is the edge weight be-

tween association 𝑖 and association 𝑗 in the consistency graph. If the two associations

are not geometrically consistent (i.e., there is no edge connecting the two associations
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in the graph), the entry in 𝑀 is set to zero. The optimal solution can be found using

maximize
𝑢∈{0,1}𝑛

𝑢⊤𝑀 𝑢

𝑢⊤𝑢

subject to 𝑢𝑖 𝑢𝑗 = 0 if 𝑀(𝑖, 𝑗) = 0, ∀𝑖,𝑗,
(5.1)

where 𝑢 is a binary vector of the chosen associations. However, CLIPPER has a

significantly faster runtime by relaxing this problem in order to estimate the maximum

clique. The relaxed formulation of Equation (5.1) solved by the CLIPPER algorithm

is

maximize
𝑢∈R𝑛

+

𝐹 (𝑢)
def
= 𝑢⊤𝑀𝑑 𝑢

subject to ‖𝑢‖ ≤ 1
(5.2)

where R+ is the set of non-negative reals, ‖ · ‖ is the ℓ2 vector norm, and

𝑀𝑑(𝑖, 𝑗)
def
=

⎧⎨⎩ 𝑀(𝑖, 𝑗) if 𝑀(𝑖, 𝑗) ̸= 0

−𝑑 if 𝑀(𝑖, 𝑗) = 0
(5.3)

where 𝑑 > 0 is a positive scalar [30].

CLIPPER was implemented in this pipeline and tested on KITTI Sequence 00,

but it was observed that CLIPPER was unable to find the correct registration, de-

spite testing a various number of submaps 𝑘 and overlap ratios 𝛽 (as defined in

Table 3.2). However, with an initial association scheme using fast point feature his-

tograms (FPFH) descriptors as opposed to an all-to-all scheme, CLIPPER often, but

not always, found the correct solution for KITTI Sequence 00. With appropriate

parameters and an appropriate descriptor, the pipeline may succeed with an approx-

imate maximum clique algorithm and, thus, increase scalability of the pipeline.

5.2.3 Map Representation

Both the vehicle and reference maps are represented by objects 𝑜𝑖 = (𝑢𝑖, 𝑐𝑖), defined

by their 3D centroid 𝑢𝑖 ∈ R3 and a class, 𝑐𝑖 ∈ 𝒞 (described in Section 3.1.3). In many

67



practical applications such as military reconnaissance and search-and-rescue missions,

there may be fewer objects which can appropriately be represented as a point. For

example, from an aerial viewpoint, a standalone tree can be well-represented by a

point, whereas a clump of trees may be better represented by a polygon. Similarly,

while a building may be well-represented by a point, a road may be better represented

by a line. Thus, an extension of the map representation to include points, lines, and

polygons is a natural next step.

Implementation of this concept takes two steps. First, the vehicle and reference

map creation must be able to estimate the points, lines, and polygons. Second, the

maximum clique data association algorithm must be able to determine geometric

consistency for points, edges, and polygons. For simplicity, consider two classes:

roads and clumps of trees, represented by edges and polygons, respectively.

A ground vehicle exploring the area to create either the reference or vehicle map

must be able to stitch together lines and polygons across frames. To estimate a

road as a line, the vehicle must be able to estimate a line, perhaps using image

segmentation, which represents any road viewable by the ground vehicle. Like points,

the line estimates for the roads can be fused together across frames if they are within

some small fusion distance of each other, and the edge must grow as the vehicle can

see more of the road. Polygons are likely more challenging. For example, a stereo

camera on the ground vehicle will be able to reconstruct a polygon of a clump of trees

in the yz-plane. However, if the reference map is created from an aerial perspective,

the polygon will be created in the xy-plane. Perhaps, to create a polygon of a clump

of trees, from a ground perspective, the vehicle can identify individual trees as points

by identifying tree trunks, and then the map can fuse nearby trees together into a

polygon.

To create a semantic map from an aerial perspective, image segmentation is the

most reasonable solution. Current methods which use image segmentation from an

aerial perspective overtrain the classifier on the satellite images to be used in the

experiments [33]. Many variations of the U-net algorithm [41] have been developed

to work on satellite images. The biggest challenge to get an aerial image segmentation
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neural network to work for this pipeline is the time-consuming work of annotating

relevant data and then training the network on this data.

After the maps incorporate edges and polygons, the data association algorithm

must be able to determine geometric consistency for each of the object representations.

Denote the midpoint of an edge 𝑝𝑖 as 𝑚𝑝𝑖 and denote an association matching two

edge objects 𝑝𝑖 and 𝑞𝑖 by 𝑎𝑖 = (𝑝𝑖, 𝑞𝑖). Two associations 𝑎𝑖 and 𝑎𝑗 can be considered

geometrically consistent if |∢𝑝𝑖𝑝𝑗−∢𝑞𝑖𝑞𝑗| ≤ 𝜖1 and ||(𝑚𝑝𝑖−𝑚𝑝𝑗)− (𝑚𝑞𝑖−𝑚𝑞𝑗)|| ≤ 𝜖2.

The first condition ensures the angle between lines are preserved and the second

condition ensures the distance between lines are preserved.

Polygons pose a more challenging geometric consistency problem. One option is to

treat the polygon as a collection of edges, and so the geometric consistency definition

developed for edges would be required to hold for all of the edges of the polygon.

However, if the reference and vehicle maps have chosen to represent the same object

with a different number of edges, this method would fail. The area encompassed by

the polygon and the centroid could factor into the definition geometric consistency.

Although, more issues arise if the vehicle can only see a portion of the entire polygon,

whereas the reference map contains the entire polygon. All in all, extending the

semantic maps to include different representations other than points is vital to the

generalization of this pipeline to real-world off-road scenarios, though it brings with

it many new challenges.

5.2.4 Adaptive Vehicle Map

The prepared vehicle map 𝑀 r
veh as defined in Table 3.1 is a subset of the full vehicle

map, containing the 𝑟 most recently observed objects. It is important to use a subset

of the full vehicle map in order to reduce the size of the data association problem.

The subset of the vehicle map is chosen is by using the objects most recently seen by

the vehicle in order to reduce the effects of drift on the vehicle map. However, there

are other methods with which the prepared vehicle map could be chosen.

In order to test the idea of an adaptive vehicle map, experiments were conducted

with a prepared vehicle map consisting of a combination of objects which were asso-
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ciated with reference map objects in the most recently accepted registration and the

most recently seen objects. First, if there were 𝑛 inliers in the most recently accepted

registration, these 𝑛 objects in the vehicle map were chosen and put into the prepared

vehicle map. Then, the most recently seen 𝑟−𝑛 objects which are unique from the 𝑛

inlier objects are added to the prepared vehicle map as well. The purpose of choosing

this scheme was to minimize chances of having unusable candidate transformations

during the guided relocalization phase. It is important to note that these experiments

were conducted when the guided relocalization mode localized in the full reference

map, not the restricted reference map.

The results of these trials demonstrated that the adaptive vehicle map was some-

times harmful to the pipeline. For example, sometimes the most recently accepted

registration was of poor quality, but had a high number of inliers. The vehicle map

would then include the older objects which were inliers for this poor quality registra-

tion made the pipeline continually produce the same poor registration. Additionally,

keeping a significant amount of older objects hurt the pipeline’s ability to correct for

drift. Overall, the pipeline would often become stuck using a poor quality registration

due to the large number of inliers and to the number of old objects in the vehicle

map.

While this scheme did not prove useful to the pipeline, other constructions of

a adaptive vehicle map may increase the effectiveness of guided relocalization and

global localization. For example, if the pipeline is in the global localization mode and

the localizing vehicle has seen an object of a rare class (e.g., traffic signs in the KITTI

dataset were rare compared to parking spaces), this object may be disproportionately

useful in localizing the vehicle compared to any one car. Thus, it may be useful to

keep this object in the prepared vehicle map for a longer period of time, even if it

is not one of the 𝑟 most recently seen objects. With more time, a better method of

preparing the vehicle map for the data association module could likely be found.
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5.2.5 Aerial Reference Map Automation

The aerial reference map used in KITTI experiments is created by hand-labeling the

identifiable cars and traffic signs from Google Satellite images. This process consists

of importing the Google Satellite layer into QGIS [37] and clicking on each car and

traffic sign, then importing this data into a text file to be loaded in the pipeline as a

reference map. Given the size of the reference maps (see Table 4.3), this process is

time-consuming.

Ideally, the process of creating a reference map from a satellite image would be

automated using an image segmentation neural network trained on satellite images.

Several recent works have focused on aerial classifiers [9,25] and there are many open

source versions of the U-Net algorithm [41] trained for satellite images in urban en-

vironments. However, these algorithms may not classify the desired semantic objects

or work on unstructured datasets. Additionally, implementing these neural networks

are not trivial because the network likely must be retrained to handle satellite im-

ages similar to the images used for any specific dataset. Collecting and annotating

relevant data and then retraining the neural network is time-consuming. After the

neural network is retrained, the masks must be processed to create a reference map

in the desired representation. Thus, while automating the creation of a reference

map from satellite images would reduce time in the long run, implementing this is

time-intensive in the short-term.

5.3 Conclusion

This thesis presented a pipeline for global localization and guided relocalization of a

vehicle’s pose in unstructured environments using semantic object maps created from

various viewpoints. Experiments with the Katwijk dataset and the KITTI bench-

mark demonstrate the pipeline’s view-invariant property, robustness to outliers, and

capability of localizing in unstructured environments.
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