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Abstract

In Chapter 1, I and coauthors study the problem of predicting the product return rate
using the products’ visual information. In online channels, products are returned at high
rates. Shipping, processing, and refurbishing are so costly that a retailer’s profit is extremely
sensitive to return rates. Using a large dataset from a European apparel retailer, we observe
that return rates for fashion items bought online range from 13% to 96%, with an average
of 53% – many items are not profitable. Because fashion seasons are over before sufficient
data on return rates are observed, retailers need to anticipate each item’s return rate prior
to launch. We use product images and traditional measures available prelaunch to predict
individual item return rates and decide whether to include the item in the retailer’s assort-
ment. We complement machine-based prediction with automatically extracted image-based
interpretable features. Insights suggest how to select and design fashion items that are less
likely to be returned. Our illustrative machine-learning models predict well and provide
face-valid interpretations – the focal retailer can improve profit by 8.3% and identify items
with features less likely to be returned. We demonstrate that other machine-learning models
do almost as well, reinforcing the value of using prelaunch images to manage returns.

In Chapter 2, I consider customer search and product returns on the individual level.
Previous research has focused on linking customers’ purchase and return decisions. How-
ever, online retailers have access to the information which precedes the purchase decision
– customer search. I demonstrate that customer search information provides important in-
sights about product returns. Using data from a large European apparel retailer, I propose
and estimate a joint model of customer search, purchase, and return decisions. I then provide
theory and data indicating that using search filters, viewing multiple colors of a product,
spending more time, and purchasing the last item searched are negatively associated with
the probability of a return. Finally, I use the proposed model to optimize the product display
order on the retailer’s website.

Chapter 3 extends and reinforces the results obtained from previous Chapters. In the
paper, I study the assortment planning problem in presence of frequent product returns. I
develop a deep-learning model of customer search, purchase, and return. The model is based
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on a transformer framework and allows the recovery of important relations in the data. I use
the estimated model to demonstrate that retailers could identify successful and unsuccessful
products and modify the assortment. The modified assortment would increase the retailer’s
sales and at the same time decrease returns. Lastly, I provide qualitative insights on which
products are most likely to be unsuccessful in online retail.

Thesis Supervisor: John R. Hauser
Title: Kirin Professor of Marketing, Professor of Marketing
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Chapter 1

Leveraging the Power of Images in

Managing Product Return Rates

1.1 Introduction

1Online retailers are challenged by the high cost of product returns. Processing and

refurbishing the returned item is so costly that large retailers such as Amazon and Walmart

allow customers to keep the item, because it often costs more to ship and process the returned

product than the product is worth (The Wall Street Journal, 2022). Nick Robertson, founder

of the UK’s largest fashion retailer, ASOS, stated that a 1% drop in ASOS’ return rate could

increase the firm’s bottom line by an impressive 30% (Emma Thomasson, 2013).

In the $500 billion fashion industry, return rates are high, and vary greatly by item. The

products upon which we focus are fashion items. For our focal retailer, a large European

apparel retailer, we observe item return rates averaging 53% ranging from 13% to as high

1Joint work with Daria Dzyabura, Siham El Kihal and John Hauser
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as 96% for some items. This is in contrast with the 3% return rate in the same retailer’s

offline channel, with the same set of items. Even with high margins, the items on the higher

end of this return-rate spectrum generate a net loss for the firm’s online store. In fashion,

as in many industries, the product return rate is key input into any product management

strategy. The problem in the fashion industry is that fashion seasons are short and return

deadlines are generous. By the time an item’s return rate is observed, the fashion season

is well underway or almost over. To effectively manage item assortment in light of returns,

it is critical that the retailer is able to predict item return rates using only data available

prelaunch.

In this paper, we address this problem by leveraging image processing methods. We

demonstrate that item images improve predictions of return rates, that policies based on

predictions can improve profit, and that data-based insights are face valid, internally con-

sistent, and suggest which items are returned at high and low rates. To do so, we develop

a modeling framework to predict and interpret how product images relate to their return

rates. Machine learning models produce accurate predictions of an item’s return rate based

on features of the product image and other characteristics available prelaunch. For example,

including deep-learning image features in gradient-boosted regression trees (GBRT) predicts

13.5% better than a model based on traditional features alone. Using this model and the

derived policy to decide on which items to display results in a profit improvement net of

returns by 8.3% relative to displaying all items in the online channel. SHAP values (that

relate automatically-interpretable image-based features to return rates) suggest how the firm

might design (or otherwise source) items less likely to be returned.

We tested a variety of alternative machine-learning models and features to suggest which

18



do well and which do not on our data. Among those tested are deep-learning features, human-

coded features, hand-crafted automated pattern and color features, and automatically-generated

image-based interpretable features. We find that many machine-learning models do well on

our data providing evidence for the value of item images for managing item assortments.

Our contribution is to show that incorporating item images into models helps a firm

decide, prior to launch, which products to include in its online store based on profitability

net of returns. The approach is fully automated, scalable, and implementable prior to

product launch, and an improvement on current practice that does not incorporate product

images. The approach has the advantage that it can be easily implemented by a retailer for

each fashion collection.

The remainder of the paper is organized as follows. We begin by reviewing relevant liter-

ature on managing product returns and leveraging image data (Section 1.2). Section 1.3 de-

scribes the data and provides empirical (model-free) evidence that image data predict returns.

Section 1.4 demonstrates that image-based features improve predictions, explores alternative

models, and develops a model-based policy for selecting which items to display/not-display in

the online store. Section 1.5 complements the predictive model with automatically-generated

image-based interpretable features which provide insights on how to source and design items.

We conclude with a summary, limitations, and suggested future research (Section 1.6).

1.2 Related Literature

We build on and contribute to two streams of literature: managing product returns and

leveraging image data.
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1.2.1 Managing Product Returns

A rich literature in marketing and operations investigates firm strategies for managing

product returns. One such strategy is to manage returns by optimizing the leniency of

the return policy (such as fees, prices, or deadlines). Anderson et al. (2009) develop an

individual-level model of purchase and return and use it to optimize the return costs for

customers. Moorthy and Srinivasan (1995) suggest that a return policy is a signal of item

quality. Shulman et al. (2011) show that the optimal policy (strict vs. lenient) balances

sales and returns. See also Davis et al. (1998); Wood (2001); Bower and Maxham III (2012);

Janakiraman et al. (2016).

Another approach for managing returns focuses on managing customers and understand-

ing their return behavior. For example, Petersen and Kumar (2009, 2015) describe customer

return behavior and how it affects future spending and how this can be accounted for in

lifetime value calculations to target more profitable customers. Sahoo et al. (2018) study

how product reviews decrease return rates by reducing consumers’ uncertainty. Other stud-

ies link product returns to factors such as prices and price discounts, marketing instruments,

free shipping promotions, the use of an app, or even the weather (e.g., Conlin et al. (2007);

El Kihal et al. (2021); Narang and Shankar (2019); Petersen and Kumar (2010); Shehu et al.

(2020); El Kihal and Shehu (2022). Other than at the broad category level (Hong and

Pavlou, 2014), the literature has not explored the characteristics of products related to high

return rates.

Rather than focusing on return policies, managing (and "firing") customers, or prices

and marketing strategies, our research focuses on the products (items) themselves. Not only
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is this a gap in the literature, but it is clearly complementary to return policies, managing

customers, prices, and marketing strategies. We focus on which items to display/not-display

and item features that lead to high or low return rates. Not displaying an item is mathemat-

ically equivalent to charging an infinite price. With new data, future research might explore

softer strategies such as setting a very high price. Pricing research is not feasible with our

data and beyond the scope of this paper. We observe prices and use prices as traditional

product features, but we do not observe the demand curve and cannot optimize prices.

1.2.2 Leveraging Image Data

Images have always been an important part of firms’ marketing efforts. Over the past

two decades, technical advances and the rise of digital platforms have created an abundance

of visual data. Together with the development of image processing tools and advanced

modeling techniques, these data have created unique research opportunities in marketing.

For example, researchers have analyzed images in consumer reviews (Zhang and Luo, 2023),

user-generated digital content (Hartmann et al., 2021; Liu and Toubia, 2018; Klostermann

et al., 2018; Dzyabura et al., 2021), firm logos (Dew et al., 2022), and seller images on digital

platforms (Zhang et al., 2021). For a detailed review of published and ongoing research, see

Dzyabura et al. (2021).

He and McAuley (2016); Lynch et al. (2016); McAuley et al. (2015) demonstrated by

example that images are valuable for making recommendations regarding clothing styles,

substitutes, and personalized rankings. Shi et al. (2021) use machine learning to identify

garments and classify fashion-item features from street snapshots, runway photos, and on-
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line stores. They use these tools to interpret fashion dynamics and conclude that machine

learning can identify fashion features not discussed in fashion magazines. They do not use

the fashion features to predict item sales or item returns.

The literature supports that images contain valuable information in many product cat-

egories, and specifically in fashion. Although images have not been used to forecast return

rates for specific items, they have been proven valuable for other tasks. The literature also

suggests that machine learning can identify independent variables ("features") that are used

to forecast dependent variables (in our case return rates for each item).

1.3 Data Description and Empirical Evidence that Image-

based Data Predict Return Rates

To study product returns, we chose an industry that is particularly challenged by high

return rates – women’s apparel. We obtain transaction data from a major European mono-

brand retailer-manufacturer. We augment the transaction data with a study in which human

judges label images from the retailer’s two largest categories (dresses and shirts).

1.3.1 Retailer Transaction Data

The women’s apparel retailer has a network of 39 retail stores in Germany complemented

by a large online operation that accounts for 30.5% of its sales. All items appear in both

channels and are always sold for the same price in the two channels. The retailer has a

lenient return policy mandated by law: customers can return any purchased item for any
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reason within 14 days, without providing the reason. By the retailer’s policy, items must be

returned in the same channel in which they were purchased.

We use data on 1,231,055 transactions, including sales and returns, that occurred in

online channels during the observation period from September 1st, 2014 until August 31st,

2016 (two full consecutive years). We exclude non-apparel items such as perfume, gift cards,

or accessories. We observe returns for all orders made within the observation period. The

data also include offline sales but returns are rare in the offline channel (with a 3% offline

return rate for the focal retailer).

For each transaction, we observe the date, the channel (online/offline), item identifiers,

and which items were returned. For each item, we observe the category (e.g., dresses),

price, and four-to-six images. The images were taken by the same studio, using standardized

procedures, resulting in consistent image quality. In our primary analysis, we include only

the front image of each item, which is the most informative and always the first image

displayed to the customer on the retailer’s website. (A model using all images performs only

marginally better – Appendix A) The images display the item by itself (not on a model or

a manikin) against a white background. We include only items for which we have images

(97% of items) and which were sold at least 20 times (Varying this threshold did not change

our findings – Appendix A). On average, an Item fills 55% of the image (standard deviation

13%). The fill-rate mostly depends on the item category (for example, dresses are likely to

be larger than shirts). Among all the item images, 99% have the same size (2200 x 1530

pixels). Figure 1-1 contains example images of four items.

The resulting data contain 4,585 distinct items from fifteen different apparel categories,

as categorized by the retailer. Return rates for items sold via the online channel lie within
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Figure 1-1. Examples of Images of Four items

(a) (b) (c) (d)

13–96% (56% average for this subsample, slightly above the overall average of 53%). These

rates are well above return rates in the offline channel (3%) where consumers can touch,

feel, and try on items. The processing and refurbishing costs of returns from the online

channel, our focus, is well above returns from the offline channel (return-cost data are pro-

prietary). For the interested reader, data on consumer characteristics complement our focus

on displaying/not-displaying and designing items. For example, evening shoppers return

more than morning and daytime shoppers; middle of the week shoppers return less than

beginning and end-of-the-week shoppers; and price discounts are positively related to return

rates. These data are only observed postlaunch and cannot be used to manage item returns

prelaunch, hence postlaunch data are not used by our models. For completeness we provide

these data in Appendix A.

1.3.2 Data Augmentation with Human-Coded Features (HCF)

The number of items per fashion season is large and fashion seasons change rapidly.

We seek an automated way for the firm to manage assortments. It would be prohibitively

expensive, and the firm may not have the time between fashion seasons, to ask humans
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to code the item images. Nonetheless, to explore whether or not image data are sufficient

without human-coded data, we asked human judges to code illustrative fashion features in

the two largest categories. These data provide evidence that image features are predictive

of return rates and provide a benchmark with which to evaluate the predictive ability of

the automatically-generated image-based interpretable features studied in Section 1.5. The

automatically-generated fashion features are curated to apply across categories and, hope-

fully, subsume many specific fashion features such as the human-coded features for dresses

and shirts.

We conducted a study in which human judges labeled 2,392 images from the largest two

categories of items (dresses and shirts). Four independent judges, blind to the purposes of the

study, labeled each clothing item with respect to symmetry (symmetric vs. asymmetric), pat-

tern (solid, floral, striped, geometric/abstract), and additional details (text, metallic/sequin,

graphic, lace). Three of the judges coded sleeve length (short, medium, long, sleeveless), and

the presence of belts and/or zippers. The human-based label for an image is equal to 1

if the majority of the judges indicate attribute presence, and equal to 0 otherwise. Ties

were uncommon and broken by across-item percentages. On average, judges agreed with the

majority vote for 91.7% of the judgments.

1.3.3 Model-Free Motivation: Observable Variables and Image Data

Relate to Return Rates

Non-image variables. Return rates are related to observable variables. For example,

return rates vary by category as illustrated by Figure 1-2a. Dresses, the largest category in
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our data, are returned on average 72% of the time while cardigans are returned 37% of the

time. Seasonality and price are the other variables used by the retailer that are related to

returns (evidence in Appendix A).

Color. A minimal use of images is the color of the item. For example, consumers can

more easily imagine themselves in common conservative colors such as blacks, blues, and

greys, but often want to try fashion colors such as pinks, purples, and pastel colors. To

examine whether return rates vary by image data, we begin with the color labels (twelve

color bins) that the retailer uses to categorize each item. The bins are not perfect, for

example, "pink" includes many shades of pink and a single color does not fully summarize

multi-colored patterns or highlights. Nonetheless, Figure 1-2b suggests that color labels are

related to return rates.

We will show that color labels augment traditional models based on category, price, and

seasonality. We will also demonstrate that we can do even better with more comprehensive

image features and models that account for interactions and non-linearities (and that are

regularized).

Human-coded features (HCFs). HCFs are not designed to be scalable to all items

in all categories for every fashion season. But they are valuable as indicators that image

features are related to return rates. Figure 1-3 displays the correlations of the HCFs with

return rates. Asymmetrical items are associated with a higher return rate, compared with

symmetrical items. Items with patterns (floral, striped, or geometric/abstract) have a lower

return rate compared with items without a pattern (solid items). Among the additional

details, lace details, metallic/sequin details and belts seem to be associated with higher

return rates, while the presence of a zipper and text or graphic details is associated with
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Figure 1-2. Online Return Rates by Category and Color – Retailer’s Traditional Classifications

(a) Return Rates by Category Label (b) Return Rates by Color

lower return rates. Finally, the length of sleeves is negatively correlated with the return rate.

When we regress the item return rate on the HCFs features, we get similar insights. Details

are in Appendix A.

Figure 1-3 motivates the hypothesis that image-based features relate to return rates.

Likely the relationship is more complex than simple correlations – the HCFs likely inter-

act with each other and with the traditional measures such as fashion category. In the

next section, we explore models to handle complex interactions. Because the HCFs do not

scale, Section 1.5 develops more general and more comprehensive automatically-generated

image-based interpretable features. Model-free evidence, Section 1.5.2, confirms that the in-

terpretable features are correlated with return rates. Section 1.5 also explores model-based

methods, called SHAP values, that relate the interpretable features to return rates.
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Figure 1-3. Relationship between the Human-coded Features (HCFs) and Return Rates

1.4 Prediction: Using Image Data to Predict Return Rates

The previous section suggests that images (image features) augment traditional measures

when predicting return rates. We seek a good predictive model to support the retailer’s

decisions on which items to sell in its online store (display/not-display). For the retailer’s

policy, we focus on the profitability of individual items rather than the number of units per

se. If an item is not profitable, then the retailer’s decision whether or not to sell it does not

depend upon the forecasted number of units sold. Consistently with the managerial goal, we

summarize return behavior by a return rate for each item. The return rate per item varies

between 0% and 100%.

Let 𝑟𝑖 be item 𝑖’s return rate, defined as the ratio of the number of returned units
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(𝑁 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑
𝑖 ) to the number of purchased units of the item (𝑁𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑

𝑖 ):

𝑟𝑖 =
𝑁 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑
𝑖

𝑁𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑
𝑖

(1.1)

To manage product returns using predictions of 𝑟𝑖 we make three modeling decisions.

The first decision is which features to extract from the images. The second decision is which

model to use to predict 𝑟𝑖 as a function of the image features and the traditional variables.

The third decision is the display/not-display policy used by the retailer – we show the policy

is a function of the return rate and the model’s predictive ability. We begin by defining the

criteria we use to evaluate predictive models. In Section 1.4.6 we argue that our primary

criterion is appropriate for the data-and-model based policy that the retailer can use to

decide which items to display and which items not to display in its online store.

1.4.1 Criteria to Evaluate Predictive ability

Our primary criterion is the out-of-sample 𝑅2, calculated on all items (𝑖) in our sample

(𝐾𝑎𝑙𝑙). For ease of presentation, we multiply 𝑅
2 by 100.

𝑅2
𝑚𝑜𝑑𝑒𝑙 = 1−

∑︀
𝑖∈𝐾𝑎𝑙𝑙

(𝑟𝑖 − ̂︀𝑟𝑚𝑜𝑑𝑒𝑙𝑖 )2∑︀
𝑖∈𝐾𝑎𝑙𝑙

(𝑟𝑖 − ̂︀𝑟𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖 )2
(1.2)

where ̂︀𝑟𝑚𝑜𝑑𝑒𝑙𝑖 is the out-of-sample item return rate predicted by our model. We use twenty-

fold cross-validation to generate out-of-sample predictions for each point in a sample. We

randomly divided our sample into twenty non-overlapping folds, where we used 75% of folds

to train the model, 20% to validate the model (optimized over a set of hyperparameters,
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Appendix A), and the remaining 5% to compute out-of-sample predictions. By assigning

different folds to training, validating, and testing the model, the cross-validation procedure

allows us to construct out-of-sample predictions for all points in the sample.

To ensure reliable estimates of item return rates, we exclude items that were sold fewer

than twenty times. We obtain the same results if we screen the data to require a minimum

threshold of either 10 or 30 unit sales. The retailer’s decisions are item-by-item because in

the online store items are displayed singly and interactions are uncommon. This is one way

in which managerial decisions differ from the offline store where items are displayed together

and interactions are common. However, the number of purchases for each item does affect

the precision of each 𝑟𝑖. The models do not improve when we use 𝑁𝑝𝑢𝑟𝑐ℎ𝑎𝑒𝑠𝑒𝑑
𝑖 to weight the

data for each item. Details are in Appendix A.

Because other policies might depend on other criteria, we examine the robustness of

our methods to different performance measures: we supplement 𝑅2
𝑚𝑜𝑑𝑒𝑙 with mean absolute

deviation (MAD) and 𝑈2
𝑚𝑜𝑑𝑒𝑙. 𝑈

2
𝑚𝑜𝑑𝑒𝑙 is a common measure used in marketing that is based on

information theory (and probabilities) and measures the amount of (Shannon’s) information

explained by the model relative to that explainable by perfect predictions (Hauser, 1978).

Although derived for classification (0 vs. 1), 𝑈2
𝑚𝑜𝑑𝑒𝑙 applies to more continuous measures

such as 𝑟𝑖. It differs from 𝑅2
𝑚𝑜𝑑𝑒𝑙 and MAD because it uses logarithms rather than squared

or absolute error. Although derived from information theory, 𝑈2
𝑚𝑜𝑑𝑒𝑙 is sometimes called a

pseudo-𝑅2 . Other classification metrics, such as area under the curve (AUC), are derived

for a 0 vs. 1 outcome. The extension of AUC to continuous measures is proportional to MSE

and would be redundant with 𝑅2
𝑚𝑜𝑑𝑒𝑙 (Hernández-Orallo (2013), Theorem 7 & Corollary 8).
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1.4.2 Baseline Predictions (Item’s Category, Seasonality, and

Price)

Before we explore the use of images to manage returns, we explore non-image baseline

predictions that use information routinely collected by the retailer. For each item in its

inventory, the retailer observes the seasonality (month), the item category (e.g., dresses),

and price. For price, we use the average price at which the item was sold. Other measures,

such as price relative to average category price, do not improve predictions. For the purposes

of this analysis, we treat price as exogenous to the decision on whether or not to display an

item in the online store. Our data do not contain sufficient information on the demand curve

to optimize price. We demonstrate that profitability is improved when price is exogenous.

Future research with improved data could include price optimization in policies to improve

profitability further.

We can choose a variety of prediction models with which to predict return rates as a

function of image and non-image features. These methods vary from simple regression to

highly nonlinear functions obtained with machine learning. In our data, we obtain the

best predictive ability using gradient boosted regression trees (GBRTs). Bagging methods

(random forest) and LASSO do not predict as well as a GBRT, although image-feature-based

models using these methods provide incremental predictive ability relative to models based

on non-image features alone. Details are in Appendix A.

Table 1.1 reports the predictive ability of the baseline model. To address the variance in

the estimated 𝑅2
𝑚𝑜𝑑𝑒𝑙 due to randomness of the division into folds, we generated twenty-five

different sets of cross-validation folds (each set including twenty folds); we report the average
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Table 1.1. Baseline and Color-Label-Model Predictions.

Model
Non-Image
features

Image
features

U2 MAD R2 R2 % change
vs. baseline

Non-Image
Baseline

Category,
seasonality,

price
None

52.75
(0.27)

8.59
(0.01)

41.31
(0.18)

–

Color-labels
added to
baseline

Category,
seasonality,
price, and
color labels

None
53.56
(0.28)

8.48
(0.01)

42.50
(0.20)

+2.88%

Note: Models use LightGBM and differ only with respect to the set of features included. Standard
deviations are reported in parentheses. Perfromance measures multiplied by 100 and computed out
of sample.

and standard deviations of the estimated 𝑅2
𝑚𝑜𝑑𝑒𝑙

1.4.3 Improving Predictions with Images (Baseline Plus Color

Labels)

Empirical model-free evidence in Section 1.3.3 suggests that color labels are related to

return rates. Color labels are minimal image-based features and can be used without image-

processing. Table 1.1 shows that color labels improve predictions slightly relative to the

baseline. While the improvement is small, the color-label model is further evidence that

there is information in images. We show next that deep-learning image features improve

predictions substantially beyond predictions obtainable with the retailer’s color labels.

1.4.4 Predictions Using Deep-Learning Image Features

Images are more than just color. Consider the three items in Table 1.2 . The first item,

the white top, is easily categorized and a common color; the color-label model does well.
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Table 1.2. Return Rates and Color-Label Predictions for Three Apparel Items

Actual Return Rate minus
Color-label Prediction

+1.0% -12.0% +15.2%

Note: Actual return rates are not included for confidentiality reasons.

The second item, the top with stripes, is multicolored and hard to categorize by color; the

color-label model does less well. The third item, the dress, is readily categorized as pink,

but the color-label model does not do well, likely because the pink is not a prototypical pink

and because the dress’s shape does not work well for everyone.

To improve upon the color-label-based benchmark, we examine image-processing features

identified with a convolutional neural network (CNN). In our data, CNN-based features

predict best of all tested image-based features. We examine the predictive ability of other

image-based features in Section 1.4.5 and more interpretable automatically-generated image-

based features in Section 1.5.

Apparel images are often more complex as illustrated by the shape of the pink dress in

Table 1.2. Other dresses might feature floral patterns or complex geometric shapes. Deep-

learning algorithms have the advantage that they learn feature representations automatically

and can be modified for particular applications. To explore the potential of deep learning

for image-based predictions of apparel return rates, we use an established CNN. Through

a series of nonlinear filters and transformations, the CNN learns highly complex nonlinear
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transformations to map an image to a set of deep-learning features. The tradeoff is that,

while good for prediction, the CNN features are difficult to interpret. The CNN features

likely capture the information provided by more-specific features (including the HCFs), but

without interpretability, we do not gain insight into which features are associated with high

return rates. For greater detail on each transformation and for an application of a CNN to

unstructured marketing data, see Zhang et al. (2021).

Our 4,585 images are not sufficient to train a deep CNN from scratch, thus we use the

second-to-last pre-output layer of the Residual Neural Network (ResNet; He et al. (2016)).

ResNet won the 2015 ImageNet Large Scale Visual Recognition Challenge and was trained

on the ImageNet data set (1.3 million images in roughly 1,000 categories). The ResNet

network has 152 layers, making it one of the deepest networks yet presented on ImageNet.

The second-to-last layer of the network contains 2,048 features. (The last layer is the output

layer.) The 2,048 deep-learning features were used directly in the GBRT.

In Table 1.3, we see substantial improvement when using deep-learning features relative

to the baseline and color-label models. This improvement in predictive ability leads to

a substantial improvement in profit when using the derived display/not-display strategy

(Section 1.4.6). Because the 2,048 deep-learned features are likely to encode well the image

information, we expect little or no improvement when we add other machine-learned features

to the deep-learning features (see next section). Returning to the images in Table 1.2, the

GBRT based on deep-learning features predicts return rates better for the hard-to-predict

items. The GBRT/CNN model predicts a return rate for the striped top within 4.7% of the

true rate (color-label predictions are within 12%), and a return rate within 5.6% for the pink

dress (color-label predictions are within 15.2%).
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Table 1.3. Predictions Using Deep Learning Image-Processing Features.

Model
Non-Image
features

Image
features

U2 MAD R2 R2 % change
vs. baseline

Non-Image
Baseline

Category,
seasonality,

price
None

52.75
(0.27)

8.59
(0.01)

41.31
(0.18)

–

CNN Features

Category,
seasonality,
price, and
color labels

Deep
-learning

56.70
(0.26)

8.15
(0.02)

46.88
(0.19)

+13.48%

Note: Models use LightGBM and differ only with respect to the set of features included. Standard
deviations are reported in parentheses. Perfromance measures multiplied by 100 and computed out
of sample.

The ResNet CNN is not the only image-processing model that does well on our data,

but it is the best of those tested. For example, the VGG19 CNN does almost as well with

an 𝑅2
𝑚𝑜𝑑𝑒𝑙 = 46.84%. This and the robustness analyses (Section 1.4.5) suggest that the

𝑅2
𝑚𝑜𝑑𝑒𝑙 = 46.84% from ResNet CNN is hard to beat. If sufficient data were available, future

research might try a custom deep-learning model to squeeze out slightly more predictive

ability.

The results in Table 1.3 represent the performance of the model estimated on the entire

data set including all product categories. We also explored per-category models for cate-

gories with sufficiently many sales and found that predictions in all five largest categories

benefit from images, e.g., predictions in "Shirts" improves from 𝑅2
𝑚𝑜𝑑𝑒𝑙 = 14.78% to 24.08%;

predictions in "Dresses" improves from 𝑅2
𝑚𝑜𝑑𝑒𝑙 = 28.11% to 31.13%. All per-category models

are in Appendix A. Machine-learning models are notoriously data hungry – the best predic-

tions are obtained with a model that merges data from all categories. Overall, per-category

models reinforce the value of images, but the most managerially-relevant results come from
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a model that uses the entire data set to train the machine-learning models.

1.4.5 Robustness of Incremental Predictive Ability Due to Image

Features

Robustness of the basic hypothesis. Our basic hypothesis is that automated image-

based features improve predictions and enable retailers to make more profitable display/not-

display decisions. Table 1.3 is based on a particular set of image-based features (CNN) and a

particular predictive model (GBRT). We have already summarized that for our data (1) the

GBRT predicts best, but other machine-learning models are feasible, (2) alternative deep-

learned image-based features are feasible, (3) the results are robust to evaluative criteria, (4)

robust to precision weighting by the number of units purchased per item and (5) alternative

data screening (minimum threshold of 10 or 30 rather than 20 items). The basic insights

also hold for (6) dimensionality reduction of the 2,048 CNN features with various forms of

principal component analysis (PCA) and (7) measures of uniqueness and distance from prior

fashion seasons – details in Appendix A.

(Black box) automated pattern & color features. We test one more level of

robustness. Researchers in machine learning often use automated pattern & color features

as an alternative to deep-learning image-based features. Such color & pattern features might

improve return-rate predictions. RGB color histograms provide one popular automated color

feature. Figure 1-4 Illustrates an RGB coding of the color of an example fashion item as

heavily based on red, but with mid-level peaks in green and blue. The number of bins

in Figure 1-4, 256 × 256 × 256 ≃ 16 million, is too large for a GBRT. For feasibility we
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Figure 1-4. Example RGB Color Histogram Encoding of an Apparel Item

use 5 × 5 × 5 = 125 bins. To capture pattern, we use Gabor filters. Gabor filters use

frequency-domain transforms to isolate the periodicity and the direction of that periodicity

with sinusoidal waves (Manjunath and Ma, 1996). Although Gabor filters are difficult to

interpret, they might improve prediction. See Liu et al. (2020) for an application.

These automated pattern & color features do not predict as well as CNN-based features

𝑅2
𝑚𝑜𝑑𝑒𝑙 = 45.28%). Adding these features to a model based on CNN features and color

labels is redundant (does not improve predictions, 𝑅2
𝑚𝑜𝑑𝑒𝑙 = 46.84%). Alternative automated

color features (HSV features, ORB features) do not change the basic message – details in

Appendix A. Although automated pattern & color features provide an alternative to CNN

features in the predictive model, they do not greatly enhance interpretability. We examine

more interpretable features in Section 1.5.

Results for human-coded features (HCF). The HCFs improve predictions relative to

the non-image baseline (6.85% for dresses and shirts), but do not predict as well as the models

with automated CNN-based features (9.92% dresses and shirts)2. Given the added time and

cost of HCFs, the CNN features appear to be a better choice for the predictive model. The

2We re-estimated all models for the two categories for which HCFs were coded (dresses and shirts). The
absolute predictive ability, but not the relation among models, varies when we limit the data to the two
largest categories.
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interpretable features in Section 1.5 are curated to generalize the HCFs. Section 1.5 suggests

they predict better than the HCFs.

Summary of robustness tests. The GBRT/CNN model appears to be robust to al-

ternative predictive models, alternative deep-learning image-processing features, alternative

performance metrics, alternative data cleaning, dimensionality reduction, and the use of

automated pattern & color features. The GBRT/CNN model appears to be a reasonable

proof-of-concept. Its predictive ability does not seem to be due to chance. It is of course

possible that some retailers will adopt alternative models or image-based features for rea-

sons outside our analysis. The performance of many alternative models reinforces the basic

hypothesis that image-based features help manage returns.

1.4.6 The Relationship between a Model’s Predictive Accuracy and

Profitability

Because all items are already inventoried for the bricks-and-mortar stores (Section 1.3.1),

the marginal fixed costs for displaying the items online are minimal. As long as we do

not compromise overall variety, we can consider removing (not displaying) items that have

negative expected profits based on the predicted return rate, ̂︀𝑟𝑚𝑜𝑑𝑒𝑙𝑖 , and a measure of the

uncertainty in ̂︀𝑟𝑚𝑜𝑑𝑒𝑙𝑖 . For the remainder of this section, we simplify notation and use ̂︀𝑟𝑖 as
shorter notation for ̂︀𝑟𝑚𝑜𝑑𝑒𝑙𝑖 . 𝑟𝑖 continues to denote the true return rate.

We make online display/not-display decisions item by item. Because our estimate,̂︀𝑟𝑚𝑜𝑑𝑒𝑙𝑖 ,

is independent of the number of items sold, 𝑁𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑
𝑖 , and because fixed costs are negligible

for displaying an item, we focus on profit per item sold.
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This section evaluates whether we should not display items with negative expected profit

per sale or whether we should take the precision of the model into account. For example,

perhaps we should be more aggressive with a model that predicts better. On the other hand,

if predictions were no better than random noise, perhaps we should be more cautious about

not displaying any items.

There are inventory costs for carrying an item, but those are well-studied, present no

new insight, and can easily be added to the profit-maximizing model. The firm’s allowable-

return policies are set by law and considered fixed for this analysis. To a first order, we ignore

interactions among items and assume that the small percentage of items removed does not

affect the demand for the remaining items. Fortunately, our derived policy removes a small

fraction of items, but it is a boundary condition of the policy. To the extent that removing

some items increases demand for other items, the increased demand improves profits further.

To the extent that removing some items decreases overall demand for the online store, profits

might decrease – an issue we do not have the data to address.

Naïve policy that ignores uncertainty in predictions. The return costs for returned

items consist of two components: a flat processing cost for shipping and handling the return

(𝑐𝑓𝑖𝑥) and a cost that is proportional to price of the item (𝑐𝑣𝑎𝑟) because returned items must

be discounted or discarded if they are damaged or out of season. Let 𝑝𝑖 be the price of item

𝑖 and 𝑐𝑖 be its cost. If 𝑟𝑖 were predicted perfectly, the profitability of item 𝑖, 𝜋𝑖, would be

given by:

𝜋𝑖 = (1− 𝑟𝑖)(𝑝𝑖 − 𝑐𝑖)− 𝑟𝑖(𝑐𝑓𝑖𝑥 + 𝑝𝑖𝑐𝑣𝑎𝑟) (1.3)

The retailer’s exact costs are proprietary. For illustration, we used a fixed return cost
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Figure 1-5. Distribution of Items’ Profitability in Our Data

𝑐𝑓𝑖𝑥 of 5.31¿ (iBusiness 2016) and a variable return cost 𝑐𝑣𝑎𝑟 of 13.1% of an item’s price

(Asdecker, 2015). The naïve policy using these illustrative costs would imply that 27.2%

of the items in our data are unprofitable. The naïve policy would remove these items.

However, the predicted profit from the naïve policy is not achievable because our predictions

are uncertain. The naïve policy would overestimate true profits as a 25% improvement.

The naïve policy would also violate the assumption that a small percentage of items is not

displayed. Figure 1-5 illustrates this naïve policy. "Profitable" products are retained (shown

as blue in Figure 1-5) and the "unprofitable" products not displayed (shown as pink in

Figure 1-5).

Policy taking uncertainty into account. Our empirical model produces imperfect

predictions of the return rates, ̂︀𝑟𝑖. We assume that ̂︀𝑟𝑖 is unbiased. This implies that our

estimate of profitability ̂︀𝜋𝑖 has a mean equal to the true profits with a variance based on the

uncertainty in the predicted return rate. In symbols, ̂︀𝜋𝑖|𝜋𝑖 ∼ 𝒩 (𝜋, 𝜎2
1). We examine whether
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the retailer’s decision depends on the ability of the model to accurately predict return rates,

that is, we examine whether the policy depends on 𝜎2
1.

Because decisions are made for each item, 𝑖, we temporarily drop the item subscript, 𝑖.

We assume the retailer’s prior beliefs about profits are normally distributed across items:

𝜋𝑖 ∼ 𝒩 (𝜇0, 𝜎
2
0). Let 𝒫 be a policy such that the retailer displays the item if 𝒫 = 1 and does

not display the item if 𝒫 = 0. Let 𝜑 = (̂︀𝜋, 𝜇0, 𝜎
2
0, 𝜎

2
1), then the uncertainty-dependent policy

is based on solving the following mathematical problem:

max
𝒫(𝜑)∈[0,1]

E[𝒫 · 𝜋 + (1− 𝒫) · 0] (1.4)

The policy that maximizes the mathematical expression in Equation (1.4) is a threshold

policy given by Equation (1.5). Equation (1.5) yields intuitive policies as 𝜎2
0 and 𝜎

2
1 approach

zero (perfect information) or infinity (no information) and that expected profits using the

policy decrease in 𝜎2
1
3.

𝒫(𝜑) =

⎧⎪⎪⎨⎪⎪⎩
1 if ̂︀𝜋 ≥ 𝜇0

𝜎2
1

𝜎2
0

0 if ̂︀𝜋 < 𝜇0
𝜎2
1

𝜎2
0

(1.5)

Assuming that the retailer has positive priors, we added the thresholds for uncertainty-

based policies to Figure 1-5. (1) For perfect predictions (𝜎2
1 = 0), launch all items for which

̂︀𝜋 > 0. (2) For good predictions (𝜎2
1 small), launch only items for which ̂︀𝜋 > 0 exceeds

the threshold. And (3), when predictions are extremely noisy (𝜎2
1 large), launch almost all

items even those with expected negative profits. As predictive uncertainty 𝜎2
1 increases,

the uncertainty-based policy screens out fewer items and achievable profits decline. The

3Derivation of the threshold policy, a proof that expected profits decrease in 𝜎2
1 , and limiting cases as 𝜎2

0

and 𝜎2
1 approach zero or infinity are provided in Appendix A
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Table 1.4. Expected Profit Improvement Using Different Predictive Models

Model Features
Percent
Items not
Launched

Profit % change
vs. Launch
All Items

Non-Image Baseline
Category, seasonality,

and price
5.98%
(0.11)

6.81%
(0.18)

Color labels added to
baseline

Category, seasonality,
price, and color labels

6.26%
(0.13)

7.16%
(0.19)

CNN Features
Category, seasonality,
price, CNN from image

7.13%
(0.12)

8.29%
(0.23)

dependency on 𝜎2
1 motivates MSE and 𝑅2

𝑚𝑜𝑑𝑒𝑙 as appropriate criteria with which to judge the

predictive model. The better the 𝑅2
𝑚𝑜𝑑𝑒𝑙, the better is the achievable profit.

Using our data, we simulate the model-based policies (see Table 1.4). When the GBRT/CNN

model is used to determine the data-based display/not-display policy, the retailer chooses not

to launch 7.13% of the items. The expected profits increase by 8.29% relative to launching

all the items. Even compared with the non-image baseline, the improvement in profits is im-

portant to fashion retailers with many items in many categories over many fashion seasons.

This is especially true for fashion items that are high-priced and high-volume. The potential

for profit improvement is even greater if retailers were able to source and/or improve items

at the design stage. To that end, we next examine interpretable features, both image and

non-image, that are associated with high and low return rates.

1.5 Generating Interpretable Insights

The retailer might improve its profits further if it were to use information available in im-

ages to make decisions when sourcing or designing new fashion items. To help the retailer’s
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buyers source items and to help the retailer’s designers design new items, we complement the

predictive model with an interpretable model that identifies item features that are linked to

high and low return rates. To deal with large assortments and rapid fashion seasons, we seek

automatically-extracted image-based interpretable features that do not require consumer

tests, surveys, or experiments. When the retailer can invest in HCFs, the HCFs enhance

interpretability to the extent they help buyers and designers visualize the image-based fea-

tures.

1.5.1 Automatically-extracted Image-based Interpretable

Features

Each of the proposed image-based features is based on insights, experience, and expec-

tations from the fashion industry. We seek features that are interpretable by the retailer’s

buyers and designers but can be generated at scale automatically. Automatic generation al-

lows the retailer to use the features for large assortments in every fashion season. We extract

features related to color (color clusters, color dominance, brightness, horizontal and vertical

color asymmetry), pattern (pattern direction, pattern complexity), shape (shape asymmetry,

shape ratio, shape triangularity), and item uniqueness (uniqueness). These features are cho-

sen to be as general as feasible and, hopefully, subsume more specific image-based features

such as the HCFs. We describe each of these features in detail below and provide examples

in Figure 1-6. These features illustrate the type of automatically-generated features that

are feasible. At the end of this section, we examine whether this set of features captures

sufficient variation in return rates.
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Color clusters. To visualize the basic color composition of an item, we use weighted

K-means clusters in RGB-pixel space. For each item’s image, we calculate the proportion

of pixels closest to the mean of the color cluster (thirty clusters in our data). Unlike the

retailer’s color labels, the color clusters are more-nuanced and data-driven.

Color dominance. Some items have many colors but none dominate; other items have

a dominant color with patterns, say flowers, of different colors. Color dominance is the

maximum value of a color share for the item.

Brightness. The perceived brightness of an apparel item affects sales and return rates.

Brightness might be partially redundant with color clusters, but that is an empirical question.

Brightness is defined as the average intensity of the image after converting it to greyscale.

Brightness varies over a garment. For example, if an item has a uniform color, the brightness

variation is close to zero; if the item has a complex pattern of light and dark stripes, the

brightness variation is larger. Computationally, we use the standard deviation. Both

brightness and brightness variation are allowed to enter the model. Figure 1-6a illustrates

fashion items with low and high brightness and brightness variation.

Pattern direction. Gabor pattern features had moderate success in predicting returns

(Section 1.4.5), but they are very difficult to interpret. Pattern direction and pattern com-

plexity are more interpretable. Pattern direction is summarized by applying a Sobel filter

to each direction (X for horizontal and Y for vertical) to the greyscale images Gonzales and

Woods (2018). This is equivalent to a partial derivative with respect to movement orthogo-

nally along either the horizontal or vertical axis. For example, horizontal stripes have a high

derivative in the vertical direction and vertical stripes a high derivative in the horizontal

direction (see Figure 1-6b).
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Figure 1-6. Examples of Automatically-extracted Image-based Interpretable Features

(a) Illustration of Items with High and Low Brightness and Brightness Variation

Item with high
brightness

Item with low
brightness

Item with high
brightness variation

Item with low
brightness variation

(b) Illustration of Pattern Direction (Sobel X-
and Y- Directions) (c) Illustration of Pattern Complexity

Item with high
pattern complexity

Item with low
pattern complexity

(d) Illustration of Shape Ratio

Dress with high
Shape ratio

Dress with low Shape
ratio

Shirt with high
Shape ratio

Shirt with low Shape
ratio
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Pattern complexity. Some apparel items have checkered patterns (high derivative in

both the horizontal and vertical directions), while others have more complex patterns. To

represent pattern complexity, we extract edges from the image using the Canny edge detector

and we extract straight lines using Hough transformations (Duda and Hart, 1972). Each line

is represented by the orthogonal distance from the top left corner of the image to the line

and by the angle of the line relative to the X-axis. Two features are extracted: pattern

complexity is the standard deviation of the angles of the extracted lines; the other feature is

the number of extracted lines. Pattern complexity is extracted if there are more than twenty

lines, otherwise it is set to zero. All such meta-parameters are tuned. Figure 1-6c illustrates

(a) an item with high pattern complexity (lines of varying angles) and (b) an item with low

pattern complexity (horizontal stripes with a zero angle).

Asymmetry. The HCF analysis suggests that asymmetric items have higher return

rates (review Figure 1-3). Shape asymmetry, horizontal color asymmetry, and vertical color

asymmetry are likely to affect return rates. Dresses, shirts, and other apparel items are nat-

urally asymmetric vertically. To extract shape asymmetry, we compare the left half of the

image to the mirror image of the right half of the image. The percentage of non-overlapping

pixels indicates shape asymmetry. For example, if the item is perfectly symmetric horizon-

tally, then there will be no non-overlapping pixels; if the fashion item is highly asymmetric,

there will be many non-overlapping pixels. To extract horizontal color asymmetry, we use

KL-divergence to compare the RGB histograms for the right and left halves of the image.

Vertical color asymmetry compares the top and bottom halves.

Geometric shape. In fashion, the shape of an item is likely to be important in predicting

return rates. For example, long dresses are often bought for more formal wear where fashion
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fit might be extremely important, while shorter dresses are bought for more casual wear

where the consumer is less discerning. Shape ratio, the ratio of median width to the median

height, captures both sleeveless and item-length phenomena. Because the GBRT allows

interactions between the shape ratio and category, the impact of this variable can vary by

category such as dresses (length matters more) versus shirts (sleeves matter more). Figure 1-

6d provides examples of high and low shape ratios for dresses and shirts. Shape triangularity,

the ratio of the median width of the bottom 25% of the item to the median width of the

top 25% of the item, differentiates many fashion items. For example, an A-line dress has

high shape triangularity while a pencil dress has a shape triangularity close to 1. Because

triangularity is easy to visualize, for brevity we do not provide examples in Figure 1-6.

Uniqueness. Uniqueness might contain information not otherwise captured by the

automatically-extracted image-based interpretable features. For consistency with the GBRT

/CNN model, we define uniqueness as the Euclidean distance between the CNN-learned fea-

tures of the item and the category mean of the CNN-learned features. Although uniqueness

did not improve the GBRT/CNN predictive ability, the lack of improvement may have been

because the CNN features already contain a (black-box) measure that captures uniqueness.

1.5.2 Model-Free Evidence Motivates the Use of Interpretable

Features

Before we examine formal models, we examine whether or not the proposed automatically-

extracted image-based interpretable features are related to return rates. Figure 1-7a reports

the correlations between return rates and the interpretable features (other than color clus-
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Figure 1-7. Model-Free Evidence: Correlations of Return Rates and Interpretable Image-based
Features

(a) Correlations of Return Rate and features (b) Return Rate by Color Clusters

ters). Figure 1-7b reports the return rates for the top five and bottom five color clusters.

These model-free analyses motivate a more-complex machine-learning model4.

1.5.3 Summarizing the Marginal Effect of the Interpretable

Features

Our analyses in Section 1.4 suggest that features (image and non-image) interact and

that a GBRT (or another machine-learning model) is a good model with which to predict

return rates. For comparison to the CNN-based predictive model, we estimate a GBRT

model with automatically-extracted image-based interpretable features added to non-image

features. Interpreting the impact of features in a tree-based model with hundreds of trees

is challenging. The machine-learning literature uses the SHAP (SHapley Additive exPlana-

tions) framework to interpret the marginal impact of each feature on the predicted target

variable (Lundberg and Lee, 2017). The SHAP value is based on Shapley values from game

theory and enables us to interpret feature impacts in an arbitrary black-box model. The

4Note: For illustration, we use in (b) the largest color cluster present in the product image.
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SHAP value for feature 𝑗 for item 𝑖 (denoted as 𝜑𝑖𝑗) indicates the marginal change in the

predicted return rate ̂︀𝑟𝑖 due to a change in the value of interpretable feature 𝑗 while taking

into account all other features in the model. Mathematically, the predicted value ̂︀𝑟𝑖 of the
model for item 𝑖 could be decomposed as ̂︀𝑟𝑖 = 𝑟+

∑︀
𝑗 𝜑𝑖𝑗 (where 𝑟 is the average return rate

for all items). By computing SHAP values for all items, we obtain a sample of SHAP values

that can interpreted as the marginal impact on predicted ̂︀𝑟𝑖 given a random set of all feature

values.

To determine the relative importance of each interpretable image feature, we use the

mean absolute SHAP value, 𝐹𝑗 = 𝐼−1
∑︀

𝑖 |𝜑𝑖𝑗|, where 𝐼 is the number of items and we sum

𝜑𝑖𝑗 over all items 𝑖 for feature 𝑗. Intuitively, 𝐹𝑗 measures how far on average the given feature

𝑗 pushes the predicted value of ̂︀𝑟𝑖 from the sample mean 𝑟. For ease of interpretation, we

use Pareto charts that rank the features by 𝐹𝑗 and display the most impactful features first.

To illustrate the use of SHAP values, Figure 1-8 ranks the color cluster centers by their

impact on the predicted return rate, 𝐹𝑗, from highest to lowest, measured by the average

absolute SHAP value within the cluster. Figure 1-8 provides more nuanced interpretations

on an item’s color composition than do retailer pre-defined color labels. For example, pro-

totypical red has a high impact, but other shades of red have a low impact. Some shades of

blues have a high impact, but the prototypical blue has a low impact.

1.5.4 Automatically-Extracted Image Features and Return Rates

Figure 1-9 provides the Pareto Chart for the automatically-extracted image-based in-

terpretable features. We address non-image features in Section 1.5.6. Figure 1-9 reports
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Figure 1-8. The Effect of Color Clusters on Return Rates (Clusters Ranked by 𝐹𝑗)

mean-absolute SHAP values for all features. We aggregate the impact of color clusters by

the sum of their SHAP values. Appendix A provides more detail on color clusters.

The 𝐹𝑗 do not indicate the direction of the impact of a feature, nor do the 𝐹𝑗 illustrate

variation across items. For example, a feature may have the same 𝐹𝑗 value if it is high

on a few items and low on many, or just moderate for all items. Figure 1-9 complements

𝐹𝑗 with the correlation between SHAP values and standardized feature values to indicate

the direction of impact on predicted return rate and to suggest whether the feature affects

many items (high correlation) or just a few items (low correlation). See Appendix A for the

directionality and variation of impact of color clusters.

Consistent with experience in fashion apparel, color clusters have the greatest impact on

return rates. Shape ratios are the next most important and the direction is as expected.

More formal items (lower shape ratio) have higher return rates than more casual items

(higher shape ratio). As expected, shape ratio has different interpretations for different
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Figure 1-9. Pareto Chart of SHAP Values for the Automatically-Extracted Image Features

categories (captured in Figure 1-10 below). Sleeveless dresses (lower shape ratio) are returned

more often, consistent with the implications of the HCFs (see Section 1.3.2). Interestingly,

horizontal stripes are important and are associated with low return rates, while vertical

stripes are much less important. Pattern complexity is important and positively correlated

with return rates, while uniqueness is negatively correlated with return rates. Uniqueness

was redundant with the CNN features in the predictive model (Section 1.4.5), but provides

incremental predictive ability in a model with interpretable features (Figure 1-9).

The brightness features are less important, likely because some brightness information

is extracted by the color clusters. However, bright products have higher return rates while

products with a high variation of brightness (many contrasting colors) have lower return

rates. Interestingly, brightness has low impact on predicted return rate, but high correlation.

When we examine variation among items (Figure 1-10), this is explained because the SHAP

values tend to be small in magnitude, but consistent in their impact on return rates.
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To provide further insight to buyers and designers about the variation in SHAP values

within items, we use a method known as "bee-swarm charts" to visualize the SHAP values,

𝜑𝑖𝑗 for all items 𝑖 for all features 𝑗. A bee-swarm chart details, for each item, the impact

on return rate predictions of high vs. low values of the feature. Features are ranked by the

mean absolute SHAP values, 𝐹𝑗.

Figure 1-10 provides the variation in impact (bee-swarm chart) for the automatically-

extracted interpretable image-based features. For example, on average items with higher

values of the shape ratio are less likely to be returned, but this relation is not homogeneous.

Buyers and designers can examine the detailed points, each of which corresponds to an item,

to determine the impact of that item’s shape ratio for that item. This can be done for any

of the automatically-extracted interpretable image-based features, including color clusters.

(Appendix A provides bee-swarm charts for color clusters.)

1.5.5 Using the Interpretable Features to Source or Design

Fashion Items

By combining the insights from Figures 1-6 to 1-10, we can predict items that are likely

or not likely to be returned. For example, shirts with higher shape ratios, horizontal stripes,

and darker colors (red dots to the left in the bee-swarm chart) are less likely to be returned.

Shirts with lower shape ratios, solid colors (no horizontal stripes or patterns), and a pinkish

color (cluster 24) are more likely to be returned (blue dots to the right in the bee-swarm

chart). Examples of such shirts and dresses are shown in Figure 1-11. For confidentiality,

we do not provide the predicted or actual return rates, but they are consistent with the
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Figure 1-10. The Impact of Automatically-Extracted Interpretable Image-based Features (Bee-
swarm chart)

expectations from the interpretable model.

1.5.6 Non-image Features and Return Rates

Item category, price, and seasonality are all important features. With mean absolute

SHAP values of 2.89, 2.78, and 1.37, respectively, they are, on average, more impactful

than the automatically-generated image-based interpretable features. Non-image features are

best included in the GBRT model from which SHAP values are computed, both as controls

and because of their interactions with the automatically-extracted image-based interpretable

features. The non-image features also provide valuable diagnostic information. Appendix A

provides greater detail on the non-image features, e.g., sales and return rates by category.
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Figure 1-11. Illustration of Combining Interpretable Image Features on Expected Return Rates

(a) Shirt with low
predicted return rate

(b) Shirt with low
predicted return rate

(c) Dress with low
predicted return rate

(d) Dress with high
predicted return rate

1.5.7 Comparison of Predictive Models: Deep-learned vs. Inter-

pretable Features

Recognizing the tradeoff between predictive ability and interpretability, we expect an

interpretable-feature GBRT model to predict better than either the non-image baseline or

the color-label model, but we do not expect the model to predict as well as the GBRT/CNN

model. This is indeed the case: a GBRT model based on the automatically-extracted image-

based interpretable features has an 𝑅2
𝑚𝑜𝑑𝑒𝑙 = 45.81 which is less than that the 𝑅2

𝑚𝑜𝑑𝑒𝑙 = 46.88

for the GBRT/CNN model. Both predictive abilities are well above the non-image baseline

and the rudimentary image (color-label) model. Predictive ability is slightly better than the

more-difficult-to-interpret automated-pattern-&-color-features model (Table 1.1) and better

than the model based on HCFs (Section 1.4.5).

Our automatically-generated image-based interpretable features were curated carefully

to provide insight while predicting return rates, but such choices are not unique. Retailers

and researchers may wish to explore other interpretable features or combinations of HCFs

and interpretable features.
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1.6 Discussion and Further Research

Product returns generate considerable costs for online retailers – a large and growing

retail channel. We propose that images, available prior to a fashion season, enable retailers

to select which fashion-items to display online. We demonstrate, by example, that image-

based features in a machine-learning model provide substantial incremental predictive ability

relative to models based on traditional measures available to the retailer prior to launch. The

predictive ability appears to be robust to a large number of variations. The display policy

depends on the accuracy of the predictions and demonstrates that increased profits are

feasible.

We augment predictions with automatically-extracted image-based interpretable features

that can be used quickly and repeatedly for every fashion season and that scale to large

assortments and many categories of items. The interpretable model sacrifices a small amount

of predictive ability to provide diagnostic information valuable to the retailer’s buyers and

designers. Both the predictive and interpretable models, once developed and trained, run

quickly and scale well.

Our application focuses on fashion-item returns in the apparel industry. This industry

is important by itself, but we expect the approach to apply more broadly. Incorporating

product images has the potential to improve predictive accuracy prior to product launch

and generate important insights for design in industries such as hospitality, furniture, real

estate, and even groceries.

Our analyses are illustrative and ceteris paribus. Researchers might explore (1) policies
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in which items are displayed online but not offline, (2) the implications on overall demand

(online and offline) of not displaying items online, (3) interactions among items, (4) policies

in which online items can be returned offline and thus increase offline traffic, (5) analyses

that combine prelaunch features with postlaunch features, (6) how item features and prices

jointly affect return rates, and (7) models that predict and provide insight jointly about sales

and returns.
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Chapter 2

Customer Search and Product Returns

2.1 Introduction

Online retailers are challenged by frequent product returns. Product returns often sig-

nificantly decrease the profits of the firm by reducing the revenue (the firm must refund the

returned product) and increasing the cost (backward logistics, dry cleaning, etc.)1. Return

costs are so high that major online retailers such as Amazon and Walmart have begun to

allow customers to keep the item because it sometimes costs less to refund the purchase price

than bear the return costs (Wall Street Journal 2022). Zara announced it would be charging

online shoppers for returns unless the items are returned to the physical store (BBC 2022).

Managing product returns is critical to retailers’ profitability. For example, L.L. Bean spent

$50 million per year on returns costs, amounting to about 30% of the retailer‘s annual profits

(Abbey et al., 2018).

Product returns are typically studied in a “purchase/return” framework where researchers

1According to the Wall Street Journal (2022), online returns can cost $10 to $20 per returned item,
excluding freight.
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assume the product purchase event as the starting point of the customer journey. In the

purchase/return framework, research has established that product characteristics jointly af-

fect the probability of purchase and return because the option to return a product has value

to the customer and impacts purchase decisions. From a managerial perspective, research

suggests that changes in the return policy (for example, towards a more lenient policy) would

impact customers’ purchase behavior.

I extend (1) purchase/return frameworks and (2) search/purchase frameworks to a unified

search/purchase/return framework. Online retailing allows me to track the customer journey

from the moment the customer starts looking for a product (pre-purchase), to the decision

to purchase or not, and then to the decision on whether to keep or return the product (post-

purchase). I seek to understand better the more-complete customer journey and gain insight

on whether observing customer’s search (pre-purchase) explains data-based stylized facts and

illuminates mechanisms by which search and returns are related. Improved understanding

provides insights about the customer journey and informs product return management.

Data on the entire search/purchase/return journey are rare. Using browsing sessions

linked to data on purchasing and returning items at a major European apparel online retailer,

demonstrate data-based stylized facts connecting search, purchase, and returns. The stylized

facts motivate a rational model of the customer journey. However, the extended rational

model presents challenges for parameter estimation. I discuss alternative strategies, some

of which are not feasible, and I demonstrate a practical estimation strategy. The data and

analysis suggest strategies by which a retailer can maximize its profits.

The focus of the paper is on understanding the search/purchase/return customer journey.

By grounding a formal model empirically, I gain a deeper understanding of the mechanisms
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throughout the journey and identify opportunities such as targeted strategies that depend

upon observed search. Although improved return-probability prediction is not the primary

goal, improved insight improves prediction and enhances a firm’s ability to manage backward

logistics.

To motivate the value of including customer search when managing returns, consider

Nelly and Wendy, who both purchased the same pair of jeans. Nelly kept the jeans while

Wendy returned them for a full refund. From the purchase data, these customers are indis-

tinguishable, however, search data might reveal that Nelly used search refinement tools (e.g.,

filtering products by color), searched many colors of the chosen option, and spent consider-

able time reviewing the product webpage – I will show that all of these observations reveal

that Nelly will have a lower return probability. Wendy, on the other hand, purchased jeans

from the front page without using filters, nor spending much time searching. Both Nelly

and Wendy made rational decisions based on their needs, but such decisions provide insights

about their subsequent behavior. The use of filters is not causal – we should not force Wendy

to use filters, rather the use of filters tells us about Nelly’s likelihood of returning an item.

The use of filters, the number of options searched, and search time reveal aspects of

customers’ underlying costs and benefits. Knowing these costs and benefits, the firm might

develop policies to alter costs and benefits so that Wendy searches more and more efficiently

and is then more likely to find a good apparel “match” and less likely to return the apparel

item. Because the model is empirically grounded, policy simulations based on the model

and the estimated parameters provide an initial test of strategies such as refinement tools,

incentives to evaluate more colors, to search longer, and better website layouts that make

it easier to search many items. In future research, such strategies can be subjected to A/B
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testing. As an example of how the empirically-grounded model might be used, I demonstrate

an example policy simulation to evaluate the implications of targeted reductions in search

costs. Policy development with a search/purchase/return model, combined with A/B testing,

are particularly important in countries such as those in Western Europe that dictate return

policies but do not dictate low-cost changes to website design. Similarly, I use the model

to explore the changes on the retailer’s website: the product display order on the retailer’s

website.

2.2 Related Literature

This paper synthesizes two fields of research: product returns and customer search. Re-

search on product returns has been both theoretical and empirical. Theoretically, researchers

demonstrate that the option to return products serves as a risk-reducing mechanism that

encourages the customer to experience the product (Che (1996); also studied empirically in

Petersen and Kumar (2015)) or as a signal of item quality (Moorthy and Srinivasan, 1995).

Empirical research has focused on the optimization of return policies by firms. Researchers

recognize the tradeoff between higher demand and higher return rates when firms use lenient

policies and suggest that the optimal return policy must be balanced (Davis et al., 1998;

Bower and Maxham III, 2012; Abbey et al., 2018) because overly strict return policies lead

to a decrease in purchases (Bechwati and Siegal, 2005). Janakiraman et al. (2016) provide

an extensive review of the effect of return policy leniency on purchases and returns.

Anderson et al. (2009) propose a structural model where the option to return is embed-

ded in a customer purchase decision – the customer learns private information only after
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purchasing the product. Other empirical studies demonstrate that a variety of factors affect

the probability of product returns including price, discounts, marketing instruments (e.g.,

free shipping), or the truthfulness of product reviews (Petersen and Kumar, 2009, 2010;

Sahoo et al., 2018; Shehu et al., 2020; El Kihal and Shehu, 2022). Empirical studies have

focused on concrete instruments, such as visualization systems and online product forums.

These instruments decrease product uncertainty in the match of the product to the cus-

tomer and, therefore, product returns (Hong and Pavlou, 2014). Recent research has used

machine learning to accurately predict returns and identify product-related features to be

considered when selecting and designing fashion items for the retailer’s website (Cui et al.,

2020; Dzyabura et al., 2019)

The second field of research, customer search, is an established and mature field of re-

search both empirically and theoretically. The literature typically follows either sequential

(Weitzman, 1979) or simultaneous (Stigler, 1961) approaches. In both approaches, the cus-

tomer knows the distribution of the rewards and searches to fully resolve uncertainty. For

example, Weitzman shows that the optimal (dynamic programming) search strategy for

some relatively simple search problems is an index strategy. Most of the literature focuses

on sequential search buttressed by Bronnenberg et al. (2016) who report strong evidence to

support sequential search. Recent papers allow for flexible preference heterogeneity (Moro-

zov et al., 2021), add learning (Ke et al., 2016; Branco et al., 2012; Dzyabura and Hauser,

2019), multiple attributes (Kim et al., 2010), intermediaries (Dukes and Liu, 2016), search

duration (Ursu et al., 2020), and search fatigue (Ursu et al., 2023). Like many of these mod-

els I assume the customer searches optimally as if the customer solves a dynamic program

that anticipates acting optimally for the remainder of the customer journey – in this case,
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subsequent search, purchase, and potential returns.

The availability of click-stream data has enabled researchers to study empirically cus-

tomer search behavior (Bronnenberg et al., 2016; Chen and Yao, 2017; Ursu et al., 2020) and

provide detailed insights on search-to-purchase customer behavior. For example, Bronnen-

berg et al. (2016) examine consumer search behavior for cameras and show that early search

is highly predictive of consumer purchase and that the first-time discovery of the purchased

alternative happens towards the end of the search. Chen and Yao (2017) show that refine-

ment tools significantly impact consumer behavior and the market structure. Ursu et al.

(2020) study search duration, quantify consumer preferences and search costs, and develop

insights on how much information to provide on a platform. The data enable us to build on

these insights to examine the full customer journey.

The product returns literature focuses on the purchase-to-return portion and the search

literature on the search-to-purchase portion. The research expands the focus by considering

both the pre-purchase and post-purchase customer journey in online retailing – search-to-

purchase-to-return. In doing so, the paper links the two fields of research, contribute to both,

and investigate new phenomena. First, I embed the “pre-purchase” events in a traditional

“purchase/post-purchase” framework studied in returns literature. I seek to improve the

knowledge on why product returns happen and how the retailer could manage them. Second,

the model extends the existing search models by accounting for returns. The analyses in the

fashion industry generalize directly to cancellations in the travel industry, such as for hotels,

Airbnbs, airlines, cruise ships, and resorts. I demonstrate that the option to return impacts

the way customers search for the product. By modeling the search-to-purchase-to-return

customer journey, I gain insight on customer behavior in the full customer journey with
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implications of how to manage the entire process more profitably. Not only do search patterns

help predict returns, but nudging search might influence net purchases after accounting for

returns.

2.3 Data and Model-Free Evidence

2.3.1 Descriptive Statistics

I sought and obtained online-channel individual-level data from a large apparel retailer

in Western Europe. I focus on the online channel because (1) most returns are through the

online channel (the retailer has in total 53% of sold items being returned – typical for the Eu-

ropean apparel industry) and (2) the online channel is an ideal situation in which to observe

search, purchases, and returns for each customer. Ultimately, insights from online shopping

should be relevant to offline shopping, but I leave that to future research. I preprocessed

data by removing noise and outliers (for example, extremely short/long sessions). In this

paper, I focus on orders which had at most one product purchased. This focus isolates the

impact of search on product returns by excluding situations when the customer purchases

several colors or variations of a product with an intention to keep only one. The model-free

evidence suggests that qualitative behavior of customers does not change for situations in

which multiple products are purchased. I leave the extension to multiple-item orders for

future research. A detailed description of data pre-processing can be found in Appendix B.1.

The retailer sells medium-priced fashion products for women, men, and children. (The

retailer sells mostly adult apparel, which compromises 95% of the purchases.) As is typical
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for Europe, the retailer has a generous return policy, where items can be returned for free,

for a full refund, within 60 days after the purchase with or without providing a reason.

The data include both mobile and desktop usage and consist of three main components:

� Search records the sequence of actions made by the customer during the browsing

session. I observe products listed on the website for the customer and the set of

products considered (clicked to view the detailed product page), as well as the sequence

of these clicks. I also observe all actions (e.g., clicking on a product, sorting by price)

and the timing between the different actions, allowing us to observe how much time a

customer spends on a specific product page.

� Purchases includes the products purchased (if any) by the customer during browsing

sessions. These data include product characteristics such as price, category, fabric,

size, brand, color, and product image. I also observe each product’s base price and can

infer whether it was sold with a discount.

� Returns contains information on whether the purchased product was kept or returned

by the customer. The data also include the date and stated reason for the return.

All three components of the data are matched by a unique identifier. For each session,

I observe the complete customer journey from opening the retailer’s website to deciding

whether to keep a fashion item. This allows us to build and estimate the model which

combines customer search, purchase, and return decisions. The observation period is between

1 October 2019 and 15 May 2020. Over this period, in the final dataset I observe 482,962

search sessions, of which 54,585 (11.3%) result in a purchase. In 32.5% of these single-

item cases, customers decide to return the product purchased. As anticipated, the return
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rate for the single-item subsample is lower (32.5%) than the return rate for the multiple-

item subsample (53%), but the qualitative implications remain intact. Figure 2-1 provides

summary statistics for the data.

Search Descriptives. Customers can access the retailer’s website through desktop or

a mobile device (61.1% access through a mobile device in the data). On the website, the

customer observes a product list, which displays an image of the product, its price, category,

and a small front view picture of the product. Customers can use search refinement tools to

select a more specific product list. The website offers two types of refinement tools: filtering

and sorting. Customers can filter by brand, color, products on sale, new products, or product

size. They can sort the product list by price (ascending or descending), new products, or top

sellers. When the customer clicks on a specific product, further information is revealed on

the product page, such as more (and higher quality) product images, and detailed product

description. Amongst the 54,585 search sessions, median length of customer search is 263

seconds before purchasing or leaving the retailer’s website. On average, they browse 5.5

product pages, spending 46.7 seconds per page (Figure 2-1). 45% of customers use at least

one refinement search tool (Figure 2-1).

Purchase Descriptives. Out of the 482,962 search sessions, 54,585 ended with a pur-

chase. Customers choose among 16 product categories, as predefined by the retailer (e.g.,

jeans, blouses, dresses, coats, shoes). The most popular purchased product categories are

“jackets and coats” (26.6%) and jeans (16.3%).

Return Descriptives. Dresses and jumpsuits have the highest probability of return

(46.4% and 47.9% respectively) and t-shirts have the lowest return rate (11.1%).
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Figure 2-1. Summary Statistics of Data

(a) (b)

(c) (d)

(e)
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2.3.2 Model-Free Evidence

Before I turn to the model of rational behavior throughout the purchase journey, I provide

illustrative model-free evidence. The probability of returning a product is linked to different

aspects of customers search journey (Figure 2-2). The difficulty with search data comes from

the facts is that it is very unstructured and in empirical setting could not be summarized

into one variable "search". To address this issue I compute aggregate statistics of customer

related to different aspects of customer search plot their relation with returns.

First, I look at the number of products on which the customer clicked to reveal additional

information during the search session. In Figure 2-2a, I observe a strong positive correlation

between the number of products clicks and the probability of return. Customers who browse

more products return on average more frequently.

Actions which precede product views (or clicks) are also related to product returns.

Specifically, customers who use tools to refine their search experience (for example, filtering

product by price, size, color, etc.) are less likely to return the purchased product. Figure 2-

2b relates the number of filters applied by the customer to return probability. Moreover,

the way customers review the product page is also related to product returns. Figure 2-2c

suggests that customers who spend more time reviewing the product page are less likely to

return the product.

The results in Figures 2-2a to 2-2c demonstrate the relation of customer search and

probability of returns. However, all these measure ignore an important aspect of customer

search – which products the customer was clicking. For example, consider two customers

who both clicked on five products during their browsing session. However, the first one was
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Figure 2-2. Informativeness of Search on Product Returns

(a) (b)

(c)

(d) (e)
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clicking only at similar T-shirts, while the second customer clicked on two T-shirts, two

pairs of jeans and dress. Their search is very different and these customer would likely have

a different return behavior (the first one is more focused and knows what he or she looking

for). Notice that Figure 2-2a would treat them as the same customers.

Figure 2-2d and Figure 2-2e address this issue by shedding light on the type of product

the customer searches. First, customers whose click set mostly consists of different color

varieties of purchased product are less likely to return the product (Figure 2-2d). While at

the same, customers who click at products from many different product categories are more

likely to return the product (Figure 2-2e). These two results demonstrate the difference

between the deep search (looking for something specific) and the broad search (casually

browsing the website). The former are less likely to return the product after the purchase

as they purchase is more informed and less impulsive. In Appendix B.2 I use deep learning

product embedding to demonstrate that customer who look high-variety products are more

inclined to return the product.

2.4 Model

Building on the literatures in search-to-purchase and on purchase-to-returns, I model

search as sequential and rational – customers act as if they solve a dynamic program. Con-

sider a customer 𝑖, who is searching for a product on the retailer’s website. When visiting

the website, the customer observes products on the website from which to choose (or click)2.

The total number of products available to customer 𝑖 is 𝑆𝑖. Each product view from this list

2Starting here, I use product click to describe the event when a customer views the product page by
clicking on it from the list on the website.
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contains information about the product (for example, product category, price, etc.). After

evaluating these products, the customer may choose to click on a product to reveal addi-

tional information. For instance, a click on a product page could reveal a detailed image of

the product or additional information such as the fabric. I capture this by assuming that

the customer observes characteristics of the product 𝑥𝑖𝑗, before customer 𝑖 clicks on product

𝑗, and receives a signal 𝜓𝑖𝑗 after clicking on the product. This signal is a noisy estimate

of how much the customer would like the product when it arrives home. I assume that

the customer pays search costs to reveal the signal 𝜓𝑖𝑗 (mental costs, mouse navigation, or

time costs). Unlike many, but not all, search models, e.g., Weitzman, search reveals a signal

(noisy information) about the product rather than product quality or final utility.

After evaluating a clicked product, the customer has two options: continue the search by

clicking on the next product or stop the search. In case of stopping the search, the customer

purchases one of the previously clicked products (or chooses the outside option). In case

the customer decided to purchase a product, the customer must wait until the product

arrives at home before receiving additional information about the product. At home, the

customer receives this additional information and decides whether to keep the product or

return it to the retailer. I assume that the product inspection at home reveals a true

customer’s individual preference shock 𝜖𝑖𝑗 for the product, which captures all the product

information revealed to the customer upon physical product evaluation (for example, the

customer understands the physical fit of the product, its expected use, or simply how close

it is to the customer’s fashion taste). Returns are costly. The customer pays return costs

𝑅𝑖. Despite the “free” returns policy return, return costs include printing the return label,

bringing the package to the postal office, mental costs, and time spent returning the item.
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Figure 2-3. Sequence of Customer Actions and Observed Information in the Search, Purchase,
and Return/Keep Stages

In Section 2.4.1 I specify the utility of the customer and the effect of the returns option.

I elaborate search costs in Section 2.4.2. I examine the optimal search rules under the

availability of returns in Section 2.4.3. Figure 2-3 illustrates the timing of the customer

search-purchase-return journey as well as all the information in each stage.

2.4.1 Utility and Returns

For ease of notation without loss of generality, I number products such that 𝑗 is the index

of a sequence in which customer 𝑖 searches (𝑗 = 1 implies the first clicked product). The

customer utility of purchasing the product 𝑗 from the website could take of three possible

forms in Equation (2.1). Search costs are paid prior to the realization of this utility.

71



𝑢𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜇𝑢(𝑥𝑖𝑗) + 𝜖𝑖𝑗 if customer purchases product 𝑗 ̸= 0 and keeps it

−𝑅𝑖 if customer purchases product 𝑗 ̸= 0 and returns it

0 if customer chooses the outside option 𝑗 = 0

(2.1)

where 𝑥𝑖𝑗 is a vector of product characteristics (e.g., category, color, brand, etc.); 𝜖𝑖𝑗 ∼

𝒩 (0, 𝜎𝜖𝑖𝑗) is the individual preference shock; and 𝑅𝑖 return costs (e.g., shipping fee, travel

time to the postal office, etc.). Because 𝑗 is an index of a sequence, 𝑥𝑖𝑗 takes on different

values for different customers. Without loss of generality, I set the utility of the outside

option to zero and specify 𝜇𝑢(𝑥𝑖𝑗) to have a nonzero intercept.

As outlined in Figure 2-3, 𝑥𝑖𝑗 represents information readily available on the website

before starting the search and 𝜓𝑖𝑗 represents information revealed after the customer clicks

on the product page (additional information about the product like reviews, high-quality

pictures, etc.); 𝜖𝑖𝑗 is revealed after the customer makes a purchase decision (for example,

at home the customer tries the received product and evaluates the product as an addition

to the customer’s wardrobe). To understand how the return option impacts the search,

remember that the customer observes 𝜖𝑖𝑗 only after receiving the product, therefore the

customer must make a purchase decision without knowing 𝜖𝑖𝑗, but anticipating that 𝜖𝑖𝑗 will

be revealed. Clicking on the product on the website only reveals 𝜓𝑖𝑗 which is a noisy signal

of the individual preference shock 𝜖𝑖𝑗, which could be expressed as:

𝜓𝑖𝑗 = 𝜂𝑖𝑗 + 𝜖𝑖𝑗 (2.2)

72



where 𝜂𝑖𝑗 ∼ 𝒩 (0, 𝜎𝜂𝑖𝑗) is the noise of the signal. I assume that 𝜂𝑖𝑗 and 𝜖𝑖𝑗 are independently

distributed and that the customer knows the distribution of 𝜂𝑖𝑗 and 𝜖𝑖𝑗 before search as well

as all model parameters.

Because the customer knows the distribution of 𝜓𝑖𝑗|𝜖𝑖𝑗, it is feasible to compute for each

clicked product the expected utility, 𝑣𝑖𝑗, given the signal 𝜓𝑖𝑗 (see Appendix B.3 for details):

𝑣𝑖𝑗

=E𝜖𝑖𝑗
[︀
(𝜇𝑢𝑖𝑗 + 𝜖𝑖𝑗) · ℐ(𝜇𝑢𝑖𝑗 + 𝜖𝑖𝑗 ≥ −𝑅𝑖) + (−𝑅𝑖) · ℐ(𝜇𝑢𝑖𝑗 + 𝜖𝑖𝑗 < −𝑅𝑖)|𝜓𝑖𝑗

]︀
=𝜎𝑣𝑖𝑗 · 𝑇

(︃
𝜇𝑢𝑖𝑗 + 𝜖𝑖𝑗

𝜎𝑣𝑖𝑗
+
𝜓𝑖𝑗 · 𝜎𝑣𝑖𝑗
𝜎2
𝜂𝑖𝑗

)︃
−𝑅𝑖

𝜎𝑣𝑖𝑗

√︃
𝜎𝜖𝑖𝑗 · 𝜎𝜂𝑖𝑗
𝜎2
𝜖𝑖𝑗

+ 𝜎2
𝜂𝑖𝑗

(2.3)

where 𝑇 (𝑥) = Φ(𝑥) · 𝑥+ 𝜙(𝑥); Φ(𝑥) and 𝜙(𝑥) are standard normal cdf and pdf respectively

and ℐ(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = 1 if 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is 𝑇𝑟𝑢𝑒

Equation (2.3) demonstrates how the return option impacts customer search – because 𝑣𝑖𝑗

depends on the random variable 𝜓𝑖𝑗 that is unobservable before search (or click), the return

option changes the distribution of the reward from search. One can show that 𝑇 (𝑥) ≥ 𝑥 and

thus 𝑣𝑖𝑗 ≥ 𝜇𝑢𝑖𝑗 +
𝜎2
𝜖𝑖𝑗

𝜎2
𝜖𝑖𝑗

+𝜎2
𝜂𝑖𝑗

𝜓𝑖𝑗. This implies that for any product characteristics, the option

to return improves the customer’s expected search utility. Intuitively, by the principle of

optimality, having the option, but not the obligation, to return a product is weakly better

than a strategy of “always keep the product.”
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2.4.2 Search Costs

Each additional search (or click) requires the customer to pay a search cost. For example,

search cost might include mental or physical effort of reviewing the additional information,

or clicking/moving mouse. I denote the search costs, 𝑐𝑖𝑗 , and model its relationship to the

search environment by:

log 𝑐𝑖𝑗 = 𝜇𝑐(𝑧𝑖𝑗) + 𝜉𝑖𝑗 = 𝑧′𝑖𝑗𝛽
𝑐 + 𝜉𝑖𝑗 = 𝜇𝑐𝑖𝑗 + 𝜉𝑖𝑗 (2.4)

where 𝑧𝑖𝑗 is a vector of search-object characteristics affecting the search costs (position

on page, device, page number, age, etc.), 𝛽𝑐 are levels of search costs coefficients, and

𝜉𝑖𝑗 ∼ 𝒩 (0, 𝜎𝜉𝑖𝑗) is an individual product-level shock on search costs that follows a nor-

mal distribution. The search-object characteristics are important for understanding how

website design interacts with the customer journey. Changing these characteristics changes

costs and affects the optimal search.

I assume that the customer observes both 𝑧𝑖𝑗 and 𝜉𝑖𝑗 before the search (or before clicking

on the product). In Section 2.5.2, I explain that the assumption of heterogeneous search

costs is essential for model parameter estimation.

2.4.3 Optimal Search Strategy when Returns are Available

Because the return option changes the distribution of the reward, the decision rules

common in the search literature must be updated. Conceptually, the selection, stopping,

and purchase rules retain the property of maximum expected utility, but the rules anticipate
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more, are much more complicated, and they equations change. I summarize these decision

rules below and provide derivations in Appendix B.4:

� Selection rule. If the customer is going to search (or click), the click would be the op-

tion with the highest reservation utility 𝜔𝑖𝑗 derived from the system in Equation (2.5).

𝑐𝑖𝑗 = 𝜎𝑣𝑖𝑗

∫︀
+∞

𝜃
𝑇

(︂
𝜇𝑢𝑖𝑗+𝑅𝑖

𝜎𝑣𝑖𝑗
+

𝜓𝑖𝑗 ·𝜎𝑣𝑖𝑗
𝜎2
𝜂𝑖𝑗

)︂
− 𝑇

(︂
𝜇𝑢𝑖𝑗+𝑅𝑖

𝜎𝑣𝑖𝑗
+

𝜃·𝜎𝑣𝑖𝑗
𝜎2
𝜂𝑖𝑗

)︂
𝑑𝐹 (𝜓𝑖𝑗)

𝜔𝑖𝑗 = 𝜎𝑣𝑖𝑗𝑇

(︂
𝜇𝑢𝑖𝑗+𝑅𝑖

𝜎𝑣𝑖𝑗
+

𝜃·𝜎𝑣𝑖𝑗
𝜎2
𝜂𝑖𝑗

)︂
−𝑅𝑖

(2.5)

Notice that the second equation is a 1-to-1 mapping 𝜃 → 𝜔𝑖𝑗 and thus, to find 𝜔𝑖𝑗, I

need only solve the first equation for 𝜃

� Stopping rule. The customer continues to search until the customer’s maximal ex-

pected utility of searched options (Equation (2.3)) exceeds the maximal reservation

utilities of unsearched options. This stopping rule is conceptually similar to most of

the search literature; the manner in which it is computed is changed.

� Purchase rule. When the stopping rule is reached, the customer purchases either the

option from the set of searched ones, which yields the highest expected utility, or the

outside option.

Equation (2.5) illustrates the difference between the standard search model and the model

with a return option. Specifically, by changing the reward distribution, the return option

changes the reservation utilities for the customer. These changes are substantial: the return

option could change the order in which the customer searches products and could change

the stopping rule. The option to return also changes the purchase rule, as in this case the

customer would compare 𝑣𝑖𝑗(𝜓𝑖𝑗) rather than 𝜇
𝑢
𝑖𝑗(𝑥𝑖𝑗) + 𝜖𝑖𝑗. For face validity, it is helpful to
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compare Equation (2.5) with a classic case of “no returns allowed”. When 𝑅𝑖 → +∞ and

𝜎𝑣𝑖𝑗→0, Equation (2.5) converges to the standard equation for reservation utilities.

2.5 Empirical Specification and Estimation Strategy

In this section, I describe in detail the estimation strategy and empirical specification.

Because the return option complicates Equation (2.5), estimation becomes more difficult.

2.5.1 Utility

I assume that the utility of customer 𝑖’s purchase of product 𝑗 is in Equation (2.3) a linear

function of product characteristics. To focus on search and returns and not overparameter-

ize the model, I assume that customers have homogeneous preference vectors for product

characteristics:

𝜇𝑢(𝑥𝑖𝑗) + 𝜖𝑖𝑗 = 𝑥′𝑖𝑗𝛽
𝑢 + 𝜖𝑖𝑗 (2.6)

where 𝑥𝑖𝑗 is a vector of product characteristics; 𝛽
𝑢 is a vector of the customer’s sensitivity to

product attributes; and 𝜖𝑖𝑗 ∼ 𝒩 (0, 𝜎𝜖𝑖𝑗) follows i.i.d. standard normal distribution. Without

loss of generality, because utility is unique only to a positive linear transformation, I set

𝜎𝜖𝑖𝑗 = 𝜎𝜖 = 1.

Recall that the customer receives a noisy signal 𝜓𝑖𝑗 before purchase. In Equation (2.7),

I assume that the noisy signal is normally distributed 𝜂𝑖𝑗 ∼ 𝒩 (0, 𝜎𝜂𝑖𝑗) and that this signal

depends upon the product and session characteristics. Specifically,

log 𝜎𝜂𝑖𝑗 = 𝑦′𝑖𝑗𝛽
𝜂 (2.7)
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where 𝑦𝑖𝑗 is a vector of product/session characteristics which could affect the quality of the

signal; 𝛽𝜂 is a vector of weights for the strength of signal quality. The vector, 𝑦𝑖𝑗 enables

us to model website design (and the product itself) affect the quality of the signal that the

customer receives.

From Equations (2.5) to (2.7), it follows that the expected purchase utility under the

return option is a function of model parameters 𝛽𝑢, 𝛽𝜂, 𝑅 (return cost); observable variables

𝑥𝑖𝑗, 𝑦𝑖𝑗 and the unobservable shock 𝜓𝑖𝑗. For ease of notation for the remainder of the paper,

I make this dependency explicit:

𝑣𝑖𝑗 = 𝑣𝑖𝑗(𝛽
𝑢, 𝛽𝜂, 𝑅, 𝑥𝑖𝑗, 𝑦𝑖𝑗, 𝜓𝑖𝑗) (2.8)

2.5.2 Search Costs

I capture heterogeneity in search costs with the vector of search-object characteristics

𝑦𝑖𝑗 that depends upon both the search object 𝑗 and the customer 𝑖. For identification, I set

𝜎𝜉𝑖𝑗 = 𝜎𝜉 = 1. The random cost assumption is important because without it, the likelihood

function could be equal to zero for some customers. To see why the model would collapse,

consider the case when the costs are not random. Constant costs imply that the reservation

utilities in Equation (2.5) would be deterministic. For a given list of products, all products

would have the same fixed reservation utilities for every consumer. Therefore, given the

optimal search rules, all customers viewing this list would click on products in the same order

which contradicts of data. Mathematically, the observed data would make infeasible the set

of constraints regarding the search order (Equation (2.11) left part). Without randomness
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in costs, there is no combination of values of model parameters such that there is a non-zero

probability of observing data where the search-purchase varies among consumers.

2.5.3 Likelihood

Let 𝑆𝑖 denote the number of products presented to the customer (for example, the number

of products the customer sees on the main page of the website). From this set of products, the

customer searches (clicks) on 𝐶𝑖 products according to optimal search rules in Section 2.4.3.

Recall that the index 𝑗 represents the order in which the customer searches for the prod-

uct (e.g., 𝑗 = 2 denotes the second searched/clicked product and 𝑗 = 𝐶𝑖 denotes the last

searched/clicked product). Notice that this notation implies that the customer did not click

on products with 𝑗 > 𝐶𝑖 and thus I can enumerate non-clicked products randomly.

The customer acts as if the customer’s actions were described by knowing all parameters

of the model, as well as observing the shocks 𝜖𝑖𝑗, 𝜓𝑖𝑗, 𝜉𝑖𝑗, which are not observable by the

researcher. Because data enable us to observe all other information that is available to the

customer, I use the optimal search rules from Section 2.4.3 to write constraints on model

parameters.

Consider a customer who searched for 𝐶𝑖 products; purchased a product with index 𝑏 and

decided to keep it. In (Equations (2.9) to (2.12), the following constraints on the customer

parameters are implied where ℐ(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = 1 if the condition is satisfied.

Return. The customer keeps a purchased product 𝑏 if the product utility is greater than

the negative return costs 𝑅:

ℐ(𝑥′𝑖𝑏𝛽𝑢 + 𝜖𝑖𝑏 ≥ 𝑅) (2.9)
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Purchase. The customer purchases the product if its expected utility from Equa-

tion (2.3) is greater than the expected utility of all other products in the consideration

set (𝑗 = 0 is the outside option).

ℐ(𝑣𝑖𝑏 ≥ max
𝑠=0..𝐶𝑖

𝑣𝑖𝑠) (2.10)

Search continuation. After searching option 𝑗, the customer continues the search if

the best option on hand, max𝑠=0..𝑗 𝑣𝑖𝑠, is worse than the value of searching the unsearched

options. The customer would choose the option with maximal reservation utility 𝜔𝑖𝑗:

∀𝑗 < 𝐶𝑖 ℐ(𝜔𝑖𝑗+1 ≥ max
𝑠=𝑗+2..𝑆𝑖

𝜔𝑖𝑠) · ℐ(max
𝑠=0..𝑗

𝑣𝑖𝑠 ≤ max
𝑠=𝑗+1..𝑆𝑖

𝜔𝑖𝑠) (2.11)

Search stopping. The customer stops searching when the maximal expected utility of

searched options is higher than the value of searching the remaining options:

ℐ(𝜔𝑖𝐶𝑖
≥ max

𝑠=𝐶𝑖+1..𝑆𝑖

𝜔𝑖𝑠) · ℐ( max
𝑠=0..𝐶𝑖

𝑣𝑖𝑠 ≥ max
𝑠=𝐶𝑖+1..𝑆𝑖

𝜔𝑖𝑠) (2.12)

Equations (2.9) to (2.12) define the set of constraints that must be satisfied to observe the

given search sequence. Multiplication of these equations produces a binary variable𝑊𝑖 which

takes 1 if and only if all constraints are satisfied. The case when the customer decides to

return a product (or chooses the outside option) closely follows derivations in Equations (2.9)

to (2.12). In Appendix B.6, I show that the variable 𝑊𝑖 can be rewritten in a more compact
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way3:

𝑊𝑖 = 𝑊𝑖(𝛽
𝑢, 𝛽𝑐, 𝛽𝜂, 𝑅, 𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝜖𝑖, 𝜓𝑖, 𝜉𝑖) =

=

[︃
𝐶𝑖−1∏︁
𝑗=1

ℐ(𝜔𝑖𝑗 ≥ 𝜔𝑖𝑗+1)

]︃
· ℐ(𝜔𝑖𝐶𝑖

≥ max
𝑗=𝐶𝑖+1..𝑆𝑖

𝜔𝑖𝑗)×

×

[︃
𝐶𝑖−1∏︁
𝑗=0

ℐ(𝑣𝑖𝑗 ≤ min{𝜔𝑖𝐶𝑖
, 𝑣𝑖𝑏})

]︃
· ℐ(𝑣𝑖𝐶𝑖

≤ 𝑣𝑖𝑏) · ℐ(𝑣𝑖𝑏 ≥ max
𝑗=𝐶𝑖+1..𝑆𝑖

𝜔𝑖𝑗)×

× ℐ(𝑥′𝑖𝑏𝛽𝑢 + 𝜖𝑖𝑏 ≥ −𝑅)

(2.13)

Because the researcher does not observe 𝜖𝑖, 𝜓𝑖, 𝜉𝑖, I obtain the probability of observing

the given search sequence of customer 𝑖 by integrating out these variables:

𝑃𝑖 = 𝑃𝑖(𝛽
𝑢, 𝛽𝑐, 𝛽𝜂, 𝑅, 𝑥𝑖, 𝑦𝑖, 𝑧𝑖) =

∫︁
· · ·
∫︁
𝑊𝑖 · 𝑑𝐹 (𝜖𝑖, 𝜓𝑖, 𝜉𝑖) (2.14)

Given this probability for each observation in a sample, I compute the log-likelihood

function:

𝐿𝐿(𝛽𝑢, 𝛽𝑐, 𝛽𝜂, 𝑅) =
𝑁∑︁
𝑖=1

log𝑃𝑖(𝛽
𝑢, 𝛽𝑐, 𝛽𝜂, 𝑅, 𝑥𝑖, 𝑦𝑖, 𝑧𝑖) (2.15)

2.5.4 Estimation

Variables 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 are observable ∀𝑖, thus, if computations were feasible, I would find

the estimate of the parameter vector 𝛽 = (𝛽𝑢, 𝛽𝑐, 𝛽𝜂, 𝑅) by maximizing the log-likelihood

function in Equation (2.15). Unfortunately, this maximization is not feasible for two reasons.

First, the reservation utilities 𝜔𝑖𝑗 from Equation (2.5) are not computed directly because

3I drop the product index for compactness. For example, 𝑥𝑖 should be read as a set of variables for all
products in the search set {𝑥𝑖𝑗 ; 𝑗 ∈ 0..𝑆𝑖}
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they are defined through implicit functions. Without further simplification and approxi-

mation, solving for the maximum-likelihood estimates would not be feasible with today’s

computers. (Working from simplified problems, I estimate it would take more than 1,000

years.) To make computation feasible, I approximate the function 𝜔𝑖𝑗(𝜇𝑖𝑗 +𝑅, 𝜎𝜂𝑖𝑗 , 𝑐𝑖𝑗) with

interpolation techniques. Details are given in Appendix B.4.

Second, when integrating over unobserved shocks 𝜖𝑖, 𝜓𝑖, 𝜉𝑖, there is no known closed-

form solution for this integral. I must approximate the integral. I considered the following

approximations for integration.

Accept-reject simulator (Chen and Yao, 2017). An accept-reject simulator replaces

the true probability 𝑃𝑖 with a simulated probability ̂︀𝑃𝑖. In this approach, for given parameter

estimates, I simulate 𝐵 random draws of shocks from corresponding distributions and calcu-

late the share of draws in which𝑊𝑖 = 1 (all constraints in Equation (2.13) are satisfied). The

parameter vector corresponding to the largest share of draws is the maximum-likelihood es-

timator. The challenge with this approach is that the nature of search data makes 𝑃𝑖 close to

zero and thus requires large values of 𝐵 with a correspondingly substantial increase in com-

putation time. Compounding the computational limit is the fact that this approach produces

a non-smooth objective function which requires the use of non-gradient optimization meth-

ods (e.g., Nelder-Mead method). Such methods are substantially slower. In Appendix B.9

I demonstrate that this approach is not feasible for data because this approach produces

highly imprecise estimates.

Accept-reject simulator with smoothing (Honka and Chintagunta, 2017; Ursu, 2018).

I considered replacing the sharp constraints in accept-reject simulation, such as ℐ(𝑎 < 𝑏),

with a continuous function of differences 𝑏 − 𝑎. This approach punishes large violations of
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the constraint but allows small differences. While this approach is often feasible, it is not

feasible when the full customer journey is modeled. First, most of constraints of the form

ℐ(𝑎 < 𝑏) have arguments 𝑎 and 𝑏 bounded from below (for example, 𝑣𝑖𝑗 is bounded below

by −𝑅 because 𝑇 (𝑥) → if 𝑥 → ∞). Because of these bounds, the difference 𝑏 − 𝑎 does

not translate well into a probability that the constraint was violated. Second, returns are

represented by a single constraint and I observe returns only for the searches that ended

with a purchase (approximately, 10% of the sample). This implies that the “returns con-

straints” constitute a small proportion of all the constraints in the model. Thus, violation

of the “return constraints” would have a much lower impact on the final objective func-

tion. Artificially, the optimal solution to Equation (2.13) would rely almost exclusively on

the “non-return constraints” and accept solutions that violate the “return constraints.” Be-

cause of this imbalance, smoothing of all constrains poses threats to the estimation quality,

especially on the critical parameters related to returns.

Partly closed form integration. The third approach to feasibility recognizes that

some, but not all variables, in the constraints can be integrated out, at least theoretically.

For example, the return constraint ℐ(𝑥′𝑖𝑏𝛽𝑢 + 𝜖𝑖𝑏 ≥ −𝑅) could be replaced with probability

1 − Φ

(︂
−(𝑥′𝑖𝑏𝛽

𝑢 +𝑅) ·
√︂

𝜎2
𝜖𝑖𝑏

+𝜎2
𝜂𝑖𝑏

𝜎2
𝜖𝑖𝑏

·𝜎2
𝜂𝑖𝑏

− 𝜎𝜖𝑖𝑏/𝜎𝜂𝑖𝑏√
𝜎2
𝜖𝑖𝑏

+𝜎2
𝜂𝑖𝑏

· 𝜓𝑖𝑏
)︂

by integrating out the shock 𝜖𝑖𝑏|𝜓𝑖𝑏. In

Appendix B.7, I prove that I can rewrite the binary variable 𝑊𝑖 as:

̃︁𝑊𝑖 = ℐ(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1) · P[𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2] (2.16)

where 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 are constraints which cannot be integrated out and thus represented by

binary variable; 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2 are constraints which could be integrated out and represented
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by continuous variable from 0 to 1.

In Appendix B.7, I demonstrate that 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛1 has only one sharp constraint that

cannot be integrated out. Hence, the requirement on the number of draws for the sharp

constrain is significantly smaller than it would be if all constraints were simulated.

To mitigate the concern that the optimal solution might ignore the returns data due to

imbalance of the number of constraints, I implement a two-stage approach:

� In the first stage, I estimate only the purchase-return model.

𝑊 𝐹𝑆
𝑖 = 𝑊 𝐹𝑆

𝑖 (𝛽𝑢, 𝛽𝜂, 𝑅, 𝑥𝑖, 𝑦𝑖, 𝜖𝑖, 𝜓𝑖)

=

[︃
𝐶𝑖∏︁
𝑗=0

ℐ(𝑣𝑖𝑗 ≤ 𝑣𝑖𝑏)

]︃
· ℐ(𝑥′𝑖𝑏𝛽𝑢 + 𝜖𝑖𝑏 ≥ −𝑅)

(2.17)

� In the second stage, I fix the parameters related to product returns (𝑅 and 𝛽𝜂) and

estimate all other parameters by simulating the variable from Equation (2.17).

The two-stage approach is an approximation that works well with partly-closed-form in-

tegration, but it is an approximation. To examine the implications of the approximation,

I create synthetic data with known parameters and apply the three alternative methods.

In Section 2.6 I demonstrate that the two-stage approach with partly-closed-form integra-

tion achieves the highest accuracy and recovers the values of parameters quite well for the

synthetic data. See Appendix B.9.
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2.6 Parameter Identification and Monte Carlo

Simulations

2.6.1 Parameter Identification

In Section 2.5 I introduced the empirical specification of the model and demonstrated

that it depends on six groups of parameters: 𝛽𝑢, 𝜎𝜖𝑖𝑗 , 𝛽
𝜂, 𝜎𝜉𝑖𝑗 , 𝑅𝑖. To assure that critical

parameters can be uniquely recovered from empirical data, I follow a standard approach in

search and purchase models; I normalize the variance of individual unobserved product fit 𝜎𝜖𝑖𝑗

to 1 and the variance of individual search costs 𝜎𝜉𝑖𝑗 to 1 for each customer 𝑖 and product 𝑗.

For the analyses, I set the return costs 𝑅𝑖 to be constant between customers. Extending the

model to include heterogeneity in return costs when a retailer multiple browsing sessions for

each customer, is straightforward. Considering these constraints, I summarize in Table 2.1

the parameters that need to be estimated.

From Table 2.1 it follows that in addition to the classical search model parameters (𝛽𝑢

and 𝛽𝑐), the model also has the parameters 𝛽𝜂 and 𝑅, which are identifiable from the

customer return transactions data. Prior research has argued that parameters 𝛽𝑢 and 𝛽𝑐

can be identified from search data. I need only argue that product returns data allows us to

identify additional parameters 𝛽𝜂 and 𝑅 without compromising identification of 𝛽𝑢 and 𝛽𝑐.

In classical models, 𝛽𝑢 is identified from the purchase data. Similarly, for the model 𝛽𝑢,

𝛽𝜂, and 𝑅 identified from purchase and return data. However, I need to impose additional

constraints on 𝛽𝜂 similar to the model considered by Anderson et al. (2009). Specifically, the
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Table 2.1. Parameters to be Estimated

Par. Intuition Example §

𝛽𝑢
Customer’s sensitivity
of mean utility to
product attributes

Customers may prefer
on average products
made of natural fabric

Section 2.5.1

𝛽𝜂

Vector of weights for the
strength of signal quality,
revealed to the customer
upon product clicking

A simple white T-shirt might
be easier to evaluate online
than a nuanced night dress

Section 2.5.1

𝛽𝑐
Levels of search
costs coefficients

Clicking on the product at
the top of the website requires
less movement of the mouse,
scrolling, or reading

Section 2.4.2

𝑅
Return costs paid
by the customer

Customer need to spend
time packaging the item
and posting it

Section 2.4.1

set of features on which depends, must exclude the intercept. Intuitively, I need to assume

that the variance of the signal 𝑦𝑖 the baseline product category has signal variance equal to

1; the signal variances of the other categories represent the relative quality of the signal in

comparison to the baseline category.

To illustrate how 𝛽𝑢, 𝛽𝜂, and 𝑅 are identified from purchase and returns data, consider the

most simplified example. Assume, that the retailer’s assortment contains only one product

and thus the customer has only three options: choose the outside option; choose a product

and keep it; choose a product and return it. In this case, the model would be described by

two parameters: the constant mean utility of choosing a product 𝛽𝑢0 and the return costs 𝑅

(notice that since I have only one product category its variance of signal quality is normalized

to 1). In Appendix B.8 I provide a formal proof that 𝛽𝑢0 and 𝑅 are identified, but intuitively,

I use the two observed probabilities (choosing outside option/choosing product and returning

it) to estimate two model parameters.
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Next, consider adding to this assortment one additional product and assume that the

customer randomly gets one product to purchase or choose outside option. In this case,

customer utility would depend on two parameters: 𝛽𝑢0 + 𝛽𝑢1 · 𝑥𝑖𝑗 (𝑥𝑖𝑗 ∈ 0, 1 indicator of new

product). The signal variance would depend on one parameter: 𝑒𝛽
𝜂
1 ·𝑥𝑖𝑗 (the old product is

used as baseline and hence its signal variance is normalized to 1). Returns costs depend

on one parameter 𝑅. In this case I identify 𝛽𝑢0 and 𝑅 by using the part of the data which

involves only the baseline product as discussed in the previous paragraph. Similarly, I use

the data containing the new product to identify 𝛽𝑢1 and 𝛽𝜂1 . Adding more products in the

assortment repeats the reasoning above, while taking into account the choice set leads to

more restrictions and adds more information at the same time. Thus, 𝛽𝑢, 𝛽𝜂, and 𝑅 are

identified from purchase and returns data.

In Section 2.6.2, I demonstrate that the two-stage approach discussed in Section 2.5.4

allows to recover the true parameter values from synthetic data supporting the identification

of the model. In Appendix B.9, I use the same synthetic data to demonstrate that maximizing

the likelihood function via the one-stage approach allows us to recover the true parameters.

I also compare the approach to other popular approaches used in existing literature to justify

the choice of the estimation procedure.

2.6.2 Synthetic Data (Monte Carlo Simulations)

I use synthetic data (Monte Carlo simulations) to examine the feasibility of model es-

timation, its properties, and identification. Synthetic data analyses demonstrate that the

likelihood in Equation (2.17) enables us to recover the true parameters of the model. Syn-
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Table 2.2. Simulation Data Summary

Variable Simulation Specification §

Product mean utility 𝜇𝑢(𝑥𝑖𝑗) 𝜇𝑢(𝑥𝑖𝑗) = 𝛽𝑢0 + 𝛽𝑢1 · 𝑥𝑖𝑗 Section 2.5.1

Variance of fit signal quality 𝜎𝜂𝑖𝑗 log 𝜎𝜂𝑖𝑗 = 𝛽𝜂1 · 𝑥𝑖𝑗 Section 2.5.1

Product mean search cost 𝜇𝑐(𝑧𝑖𝑗) 𝜇𝑐(𝑧𝑖𝑗) = 𝛽𝑐0 + 𝛽𝑐1 · 𝑧𝑖𝑗 Section 2.4.2

Return cost paid by customer 𝑅𝑖 𝑅𝑖 = 𝑅 Section 2.4.1

thetic data also enable us to compare the estimated parameters of the purchase journey

model to classical models of customer search (without a return option). These compar-

isons illustrate how the option to return products modifies parameter estimates, i.e., some

parameter estimates are biased if the model does not allow returns.

I simulated 10,000 synthetic customers according to the search model described in Sec-

tion 2.4. So that the synthetic data are relevant, I chose parameters that closely mimic the

real data. Specifically, the synthetic data have the same marginal probabilities of purchase

and return as the real data. I assume that the retailer has two product categories (𝑥𝑖𝑗 ∈ 0, 1

is dummy coded product category). The retailer provides the customer with the list of 20

products on the website (𝑧𝑖𝑗 ∈ 1, 2, . . . , 20 is the position of the product on the website

where lower number represents higher position on the listing on the website). I summarize

the specification of the simulation in Table 2.2.

The simulation has six parameters to be estimated from the synthetic data. In Ap-

pendix B.9, I describe in detail the parameters of the synthetic data. For models with

returns and without returns, I use the zero vector as a starting point. The results of the

estimation with the two-stage approach are shown in Table 2.3.

Table 2.3 demonstrates that the search-purchase-return model, and the model without

returns, can be estimated using the two-stage approach and that the true parameters can
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Table 2.3. Results of Model Estimation on Simulated Data

Par.
True parameter

value
Estimates of the model

with returns
Estimates of the model

without returns

𝛽𝑢0 −1.4 −1.347 −1.568

𝛽𝑢1 −0.3 −0.280 −0.099

𝛽𝜂1 −0.5 −0.443 –

𝛽𝑐0 −4.0 −3.944 −3.360

𝛽𝑐1 0.3 0.312 0.312

𝑅 −1.4 −1.427 –

be recovered well for the search-purchase-return model. I expect precision to improve with

a larger sample of synthetic customers – precision improves from 5,000 to 10,000 synthetic

customers. I tried alternative approaches discussed in Section 2.5.4. Partially closed form

integration provided the most precise estimates and required fewer computational resources

and time. Alternative estimation strategies performed substantially worse. Details are pro-

vided in Appendix B.9.

Table 2.3 compares models with and without modeling returns. For the chosen synthetic

data, not modeling returns (a) overestimates the utility of a product, (b) underestimates the

absolute value of a category dummy, and (c) slightly underestimates search costs. Naturally,

when returns are not modeled, there is no estimate of return costs. These differences are in-

tuitive. Returns have an option value. If they are not modeled, this option value is absorbed

in the base utility. Also, when returns are not modeled, it appears to the researcher that

search is less costly because the return option makes it more attractive to search. Underes-

timation of the absolute value of the category dummy is due to the particular parameters

of the simulation. Specifically, category decreases the expected utility directly (−0.3 is less

than zero) but also increases the utility by providing better signal quality (−0.5 is less than
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zero). As a result, the customer would purchase this product more frequently because the

customer would expect to keep it. As a result, the no-return model would overestimate the

absolute value of the utility of this product.

2.7 Estimation Results

Having demonstrated that I can recover known parameters from synthetic data, I proceed

to the actual data. Table B.2 reports the estimation results for the model. The first column

reports the sensitivity to attributes of the mean utility 𝛽𝑢 from Equation (2.6), the second

reports sensitivity of the variance of the signal 𝛽𝜂 from Equation (2.7), and the estimates of

search costs 𝛽𝑐 from Equation (2.4). The return costs are at the end of the table.

Table B.2 suggests variation in mean product utilities and quality of the signals across

categories. For example, the category “Dresses” has a substantially higher variance of the

signal than “Polo Shirts.” This difference is not surprising (based on fashion experts) because

the choice of a dress is more nuanced than choosing a polo shirt. Customers need more

information to make a correct purchase decision. Consistently with Dzyabura et al. (2021),

colorful items are harder to evaluate than black and blue items, resulting in a higher return

rate online. Interestingly, apparel products made from natural fabrics provide a better signal

of the customer preference shock. Likely, synthetic fabrics look attractive based on the online

images, but, for some customers, look less attractive when the customer inspects the product

at home. Natural fabrics, on the other hand, look more consistently attractive online and in

the home.

Table B.2 suggests that the product position on the website affects the search costs
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substantially. Specifically, a product in the middle of the list has 8.8% higher search costs

compared with a product at the beginning of the list. The result is qualitatively consistent

with the results in Ursu (2018), where the position of the product on the website affects the

search costs in a randomized setting. This implies, for a given set of product characteristics,

customers are more likely to click on the first displayed item. Interestingly, mobile device

users have lower search costs implying that either it is easier for customers to navigate the

website through a mobile device or that those customers are more experienced with search.

This is an interesting finding that retailers could use to implement different policies for

different versions of the website (desktop vs. mobile).

2.8 Model Implications

2.8.1 Insights Obtained from the Estimated Search-Purchase-Return

Model and Comparisons with Data

In Section 2.3.2 I introduced model-free evidence that customer search and product re-

turns are related. These model-free relationships are valuable, but I must not over-interpret

them. Some relationships are valuable in the sense that if I observe a type of search behavior,

the product is less likely to be returned (selection of customers), others could have causal

interpretation. The analytical model and the parameter estimates clarify the qualitative in-

sights about the interrelation between search and returns because the relationships are tied

to the underlying parameters about product quality, the quality of the signals, and search-

object characteristics. The underlying parameters shed light on the mechanism behind the
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model-free relationships. By focusing on the underlying parameters, the retailer could use

the model to develop potential policies that can be evaluated with policy simulations. As

in every model, assumptions were made in developing the model, I recognize that the firm

needs A/B tests to confirm the superiority of any proposed policy.

For example, consider the following insight: if the last-clicked product is purchased (the

product whose product page the customer viewed prior to purchase), then it is less likely

to be returned. This is a description of an empirical relationship in the data. The last

click does not cause a lower return, but rather, if I observe that the last-clicked product

is purchased, then I observe a lower probability of return. Because of the nature of the

purchase journey model, the net utility of the last clicked product is above all non-clicked

products; the customer likely found a hidden-gem that matched the customer’s tastes. In the

model-free evidence, I observe that if the customer searches a variety of colors, the customer

is less likely to return the product. A partial explanation of this data-based observation is

likely due to idiosyncratic customer characteristics, but part of the explanation is due to

empirical search costs, which are lower for additional colors than for additional products.

Table 2.4 summarizes the insights of the model and model-free correlational evidence

from Section 2.3.2. For each correlational insights from Section 2.3.2 I provide intuition

from the theoretical search-purchase-return model and discuss it in detail in corresponding

paragraph in Section 2.8.1. Furthermore, I use counterfactual simulations in Section 2.8.2

to test potential policies that the retailer could use to better manage product returns.

Customers who purchase the last clicked product are less likely to return it.

This implies that the customer decided to purchase a product right after viewing it and did

not need to look at additional items afterwards. Intuitively, this means that the customer
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Table 2.4. Summary of Model Insights on Customer Search and Product Returns

Search Variable
Corr.
sign

Model explanation

Last Viewed Item
Purchased

– Customer finds a perfect match product and
stop search to make a purchase

# of Product Clicks
(Figure 2-2a)

+ Customer struggles to find a good product
and need to look at many alternatives

# of Search Refinement
Tools (Figure 2-2b)

– Customer likes a particular attribute and can
search products with that attribute quickly

Time Spent on Product
Page (Figure 2-2c)

– Customer extracts a lot of information about
the product by consuming the information

# of Product Colors
Clicks(Figure 2-2d)

– Customer likes the overall product style
and searches for best color fit

# of unique Product
Categories (Figure 2-2e)

+ Customer browsing the website
without particular goal

found a product that matched well the customer’s preferences (for example, a “dream dress”).

The customer does not want to continue the search as it would only drain valuable time.

Having a perfect-match purchase results in a lower return probability. I now provide formal

motivation.

Recall that 𝐶𝑖 is the index of the last product clicked (viewed) and imagine customer

𝑖 purchased this product. Thus, from Equation (2.13), I write down all constraints which

involve the utility of a purchased product 𝑣𝑖𝐶𝑖
(𝜓𝑖𝐶𝑖

) which is an increasing function of the

signal 𝜓𝑖𝐶𝑖
received after click (Equation (2.3) for reference):

[︃
𝐶𝑖−1∏︁
𝑗=0

ℐ(𝑣𝑖𝑗 ≤ min{𝜔𝑖𝐶𝑖
, 𝑣𝑖𝐶𝑖

})

]︃
· ℐ(𝑣𝑖𝐶𝑖

≥ max
𝑗=𝐶𝑖+1..𝑆𝑖

𝜔𝑖𝑗) · ℐ(𝑥′𝑖𝑏𝛽𝑢 + 𝜖𝑖𝑏 ≥ −𝑅) (2.18)

All constraints in Equation (2.18) bound the value of 𝑣𝑖𝐶𝑖 from below but do not impose

any upper bounds. Similarly, from the same Equation (2.13) it follows that the customer
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who did not purchase the last item viewed would have the expected purchase utility 𝑣𝑖𝑏

bounded from above by 𝜔𝑖𝐶𝑖
(𝑏 ̸= 𝐶𝑖).

From Equation (2.3) it follows that 𝑣𝑖𝑏(𝜓𝑖𝑏) is an increasing function of 𝜓𝑖𝑏, thus 𝜓𝑖𝑏

is bounded from above only if 𝑏 ̸= 𝐶𝑖. Therefore, customers who purchase the last item

viewed (𝑏 = 𝐶𝑖) received on average higher value of the signal 𝜓𝑖𝑏. Because the signal 𝜓𝑖𝑏

is positively correlated with product fit 𝜖𝑖𝑏, same customers would have on average a higher

value of product fit 𝜖𝑖𝑏 and would be less likely to return the product. Practically, this implies

that the information about whether the last clicked product was purchased allows the firm

to identify customers who received a very good signal and hence are consequently less likely

to return the product.

Customers who make more clicks prior to purchase are more likely to return

the product. Intuitively, the customer who clicks on many products is hesitating between

different options and does not have a strong preference for any of them. For example, imagine

a customer who cannot find an item he or she likes, but ends up purchasing the item with

a utility just above the outside option.

More formally, recall the simplified equivalent constraints explaining the search behavior

of the customer in Equation (2.13). After dropping the less relevant constrains, I get:

[︃
𝐶𝑖−1∏︁
𝑗=1

ℐ(𝜔𝑖𝑗 ≥ 𝜔𝑖𝑗+1)

]︃[︃
𝐶𝑖−1∏︁
𝑗=0

ℐ(𝑣𝑖𝑗 ≤ min{𝜔𝑖𝐶𝑖
, 𝑣𝑖𝑏})

]︃
(2.19)

The right set of constraints implies that all the clicked options’ expected purchase utilities

(except the last one) are bounded from above by at least 𝜔𝑖𝐶𝑖
. At the same time the left set

of constraints implies that the 𝜔𝑖𝑗 is a decreasing function of option order click 𝑗 (according
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to optimal search rules in Section 2.4.2 customer clicks options in a decreasing order of

their reservation utilities). Therefore, on average 𝜔𝑖𝐶𝑖
is a decreasing function of number of

searched options 𝐶𝑖 (Recall that 𝐶𝑖 is the index of the last product clicked). Thus, using the

same logic as in discussion of previous insight, a customer, who searched longer (or made

more clicks), would likely have a lower upper bound 𝜔𝑖𝐶𝑖
and hence a lower purchase utility

with consequent higher return probability.

The retailer observes this information online and may implement policies which would

reduce the need to search additional options, say by a recommendation system based on

observed search costs. The retailer could also reduce the return rate by showing additional

random products for the customer at zero search costs. I explore this policy in Section 2.8.2.

Customers who apply search refining tools have a lower probability of return.

Intuitively, consider two customers (A and B) looking for a dress. Customer A does not

have particular preferences while B wants a black dress made of a natural fabric. Customer

B applies search filter to narrow the search while Customer A is content to search from the

default website. Suppose both customers buy the same dress. Customer B is more likely

to find the correct match to Customer B’s preference and is thus less likely to return the

product. Customer A is less likely to find the best match.

More formally, by using search filters, the customer changes the distribution from which

to sample the products (for example, browse only products made of natural fabrics). Typi-

cally, the application of search filters requires paying an additional search cost beyond those

estimated in Table B.2 (for example, navigating through the menu, reading, clicking). This

implies that the customer faces a tradeoff: sample from a better distribution by paying ad-

ditional search costs or sample from the default distribution for free. The model suggests
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that reducing these additional search costs of applying filters might result in a decrease in

returns and an increase in purchases. This change could be tested by the retailer through

A/B tests, for example, by encouraging customers to use filter tools with a pop-up window

on the website.

Customers who spend substantial time reviewing the product page are less

likely to return the product. Intuitively, consider the scenario when a customer opened

the product page and started to explore information about products. The customer reads

the descriptions, looks at pictures, inspects at the patterns, etc. If the customer searches for

a long time, then it is likely that the customer obtained a substantial amount of information

about the product – enough to be confident that the product will match customer’s needs.

Thus, I expect customers who spend on average more time reviewing the products are less

likely to return the product.

Mathematically, by consuming each unit of information, the customer gets a signal 𝜓Δ

about the variance of noise quality 𝜎𝜂Δ for the cost of 𝑐Δ. The customer could choose how

many of these signals to obtain before he or she makes a purchase decision. For example,

each signal 𝜓Δ might be an additional picture or an additional line of item description. If the

customer receives 𝑇 signals, then the final signal would be 𝜓 =
∑︀

𝑡 𝜓Δ𝑡/𝑇 =
∑︀

𝑡 𝜂Δ𝑡/𝑇 = 𝜂+𝜖

Because 𝜂 ∼ 𝒩 (0, 𝜎𝜂Δ/𝑇 ) the variance of the noise of the final signal is a decreasing function

of time spent. Thus, more time spent leads to higher overall quality of the signal and thus

lower return probability.

Customers who browse many colors of the purchased product are less likely

to return the product. Intuitively, the customer already likes the style of the product, say

a dress, and is now searching for the best color match.
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Although the model assumes homogeneous customers, I still can model this scenario by

assuming homogeneity in preferences for all characteristics except for color, where I assume

heterogeneous preferences. Formally, I assume other characteristics are identical (e.g., shape,

style, etc.) and I can write the product utility as the sum of non-color and color sub-utilities

𝑢𝑓𝑖𝑛𝑎𝑙 = 𝑢𝑛𝑐 + 𝑢𝑐. The fact that the customer clicked on different colors of the product

implies that the expected utility of these different colors was higher than other products.

Because the non-color-related characteristics are identical, it is likely that 𝑢𝑛𝑐 is high and

the customer tried to maximize 𝑢𝑐.

Although the data and model suggest a relationship that may or may not be causal, the

theoretical model suggests that the retailer may enhance purchase and reduce returns by

reducing the search costs of alternative colors of a chosen product (increase 𝑢𝑐 and 𝑢𝑓𝑖𝑛𝑎𝑙).

For example, subject to experimental A/B tests, the retailer might suggest alternative colors

to the customer at the time of search or at the checkout.

Customers who browse many colors of the purchased product are less likely

to return the product. Intuitively, the customer already likes the style of the product, say

a dress, and is now searching for the best color match.

Although the model assumes homogeneous customers, I still can model this scenario by

assuming homogeneity in preferences for all characteristics except for color, where I assume

heterogeneous preferences. Formally, I assume other characteristics are identical (e.g., shape,

style, etc.) and I can write the product utility as the sum of non-color and color sub-utilities

𝑢𝑓𝑖𝑛𝑎𝑙 = 𝑢𝑛𝑐 + 𝑢𝑐. The fact that the customer clicked on different colors of the product

implies that the expected utility of these different colors was higher than other products.

Because the non-color-related characteristics are identical, it is likely that 𝑢𝑛𝑐 is high and
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the customer tried to maximize 𝑢𝑐.

Although the data and model suggest a relationship that may or may not be causal, the

theoretical model suggests that the retailer may enhance purchase and reduce returns by

reducing the search costs of alternative colors of a chosen product (increase 𝑢𝑐 and 𝑢𝑓𝑖𝑛𝑎𝑙).

For example, subject to experimental A/B tests, the retailer might suggest alternative colors

to the customer at the time of search or at the checkout.

Customers who click on products from many different categories are more

likely to return the product. Intuitively, the customer does not have a particular product

in mind that he or she wants to purchase, therefore the customer would browse the website

hoping to find something interesting.

As with the color the explanation requires heterogeneous customers, however, with the

small update to a homogeneous model I can provide an intuitive mechanism. Customers

with a particular product in mind would have a high preference for a particular type of

product (for example, short sleeve T-shirts). At the same time, the "uncertain" customer

would have more uniform preferences.

Given the same set of products in the search set the former customer would be more likely

to click on the products of the preferable category, making the number of unique clicked

categories smaller. Moreover, because this customer on average has a higher preference

towards this category than the average customer his or her return probability would be

lower. Intuitively, customer search helps to infer the preferences of the customer which in

turn affect the probability of return. Appendix B.2 extends the empirical result beyond the

product category.
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2.8.2 Policy Simulations: Implications for Retailer Actions

Explanations of the stylized model-free evidence are based mostly on the structure of

the theoretical model, although in some cases the relative size of the estimated parameters.

However, other policies represent tradeoffs. Whether or not these policies are profitable

depends upon the specific estimate parameters.

Caveats: The data are observations of customers searching in the empirical retail envi-

ronment. Although the retailer has indicated that it has not designed its website to influence

returns, the data are not policy experiments and could be subject to the unobserved retailer’s

actions. By fitting the search-purchase-return model to the data and estimating underlying

parameters of search-object costs, signal variances, and product utilities, I hope that the

parameters are close to those which would be obtained if I could have taken the retailer’s

website design decisions into account. As a result, all of the policy simulations indicative

and subject to future A/B empirical tests.

With these caveats, I use the counterfactual simulations to evaluate what would happen

if the search environment was changed by the retailer (‘what if” simulations) in a manner

that affects the estimated parameters of the customer journey model. I assume that the

new customer visiting the website would behave according to the estimated model discussed

in Section 2.4 and Section 2.5. I sample randomly sets of unobserved (for the researcher)

shocks 𝜖𝑖𝑗, 𝜓𝑖𝑗, 𝜉𝑖𝑗 from corresponding distributions and let the “modeled customer” search

for the product.

First, I simulate customers with default parameters of the model, compute average values

for the variables of interest (for example, overall return/purchase rate or profit), and use these
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Table 2.5. Summary of Policy Simulation Results

Policy Main Findings

Improving the website design to
decrease customer search costs

Increase in purchase rate and
decrease in return rate

Modifying the effort and time to return
a product in the online channel

Increase in purchase rate and
increase in return rate

Changing the product ranking
on the webpage

Order of displaying product
impacts the return rate

as the baseline. Next, I tweak the model parameters (as indicators of changes in the website)

and evaluate how this change in parameters affects the average values for the variables of

interest compared with the baseline.

Table 2.5 summarizes the results of three illustrative policy simulations. In brief, in

each policy simulation, I change a specific aspect of the retailer’s website (as reflected in

model parameters) and observe the resulting (simulated) customer behavior. I present these

recommendations as hypotheses consistent with the data and analytic model, recognizing

that I have not fully modeled, nor do I have the data to explore, endogenous retailer decisions.

Some of these implications are intuitive and make sense independently of the model, e.g.,

website design enhances sales. Others are relatively new – website design can decrease return

rates as can reordering the display of products. The latter is important in Europe. Many

return policies are dictated by regulation, but not website design. Other implications are

intuitive, but the estimated parameters provide a means to evaluate competing interests. For

example, lowering the effort to return a product will clearly increase returns at the margin

and increase sales at the margin (option value of a return). The model quantifies the effects

sufficiently so that managers and judge whether or not the net effect will be profitable.

Improving the website design to decrease customer search costs. The retailer
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may invest in modifying the website to decrease customer search costs. I consider a hypo-

thetical scenario where the retailer can modify the website to reduce fixed search costs by 5%.

Policy simulations predict that lower search costs would benefit both for the customer and

the retailer. Specifically, a 5% decrease in search costs results in 9.1% increase in purchase

probability and an increase of 1.9% in customer surplus.

Moreover, the model provides additional insights on the positive effect of decreasing

search costs. It shows that decreasing the search costs would lead to a decrease in the return

rate via allowing the customer to choose a better option. To test this, I assume that the

retailer could make the search costs for 1 random product equal to 0 (for example, through

a recommendation system). This implies that the customer can always make an additional

cost-free click on the product shown. Adding this one additional searched product leads to

a 3.8% decrease in the return rate.

Modifying the time and effort to return a product in the online channel. In

many countries, product returns are mandated by law and customers have the right to return

any product within a specified deadline. However, even in strictly regulated environments,

the retailer can make the returns process harder or easier for customers. For example,

the retailer may make customers print the label themselves, complete a complicated return

form, or require customers to return to a bricks-and-mortar store (as recently implemented

by major retailer Zara, BBC 2022).

In the returns literature, it is well documented that the return option (and how lenient

or strict it is) affects both the purchase and the return decision of the customer. The model

supports and extends these insights. Specifically, the model allows us to distinguish between

two reasons for a change in purchase probability. One reason is the improved expected
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utility of the product as well documented in Anderson et al. (2009). A second reason is

that decreased return costs improve the reservation utilities of products and encourage the

customer to click on more products. Specifically, a 10% decrease in return costs leads to

an 7.8% increase in the number of clicks which translates into a 6.3% increased purchase

probability. In the data, the model shows that 37.4% of the total purchase probability

increase is explained by the second reason – greater search.

Changing the product ranking on the webpage. From Table B.2 it follows that

the customer is more likely to click on products displayed at the top of the website because

the search costs are an increasing function of product position. This implies that changing

the order in which the retailer displays products on the website could substantially impact

customer’s search behavior and, by implication, returns. One way to encourage customers

to click on a higher-utility products is a greedy algorithm: rank the products based on their

mean utility. In this case, the products which are liked by customers are displayed at the top

of the website, allowing customers to browse these more easily and thus improve the customer

surplus (Ursu, 2018). However, such a greedy product ranking might have a negative effect

on product returns.

I use the estimates of the model from Table B.2 to rank products according to their

estimated mean product utility without considering returns. The policy simulation suggests

that, although the purchase probability increases substantially (by 11.7%), the customer

surplus increases only by 0.4%. However, ranking on mean product utility increases the

return rate by impressive 9.6% and may negate the revenue improvement.

I can likely do better by taking returns into account. Unfortunately, reservation utili-

ties (considering returns) are nonlinear functions of parameters negating a simple approach.
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Figure 2-4. Policy Simulation – Changing the Product Ranking

Brute force is also not feasible because the number of rankings is factorial in the number

of products. The retailer has 48 products per page on its website, resulting in 48! ≃ 1061

possible combinations. Exhaustive exhaustive enumeration is infeasible with current com-

putational power.

To illustrate the potential improvement that is possible with alternative rankings, I ran-

domly selected 48 products and plotted in Figure 2-4 the purchase and return probabilities

for 10,000 different rankings of these products. Figure 2-4 illustrates the potential improve-

ment. For this set of 48 products, I observe that the P[𝑟𝑒𝑡𝑢𝑟𝑛] ranges within [37%, 42%]

and P[𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒] within [7%, 9.5%]. Without knowing the retailers profit margins and re-

turn costs, I cannot choose the optimal ranking from this set. As a further illustration I

consider a simple metric, P[𝑟𝑒𝑡𝑢𝑟𝑛] · (1 − P[𝑟𝑒𝑡𝑢𝑟𝑛]), which maximizes sales net of returns.

I plot P[𝑟𝑒𝑡𝑢𝑟𝑛] · (1 − P[𝑟𝑒𝑡𝑢𝑟𝑛]) = 𝑐𝑜𝑛𝑠𝑡 in Figure 2-4 for different value of the 𝑐𝑜𝑛𝑠𝑡. In

Appendix B.10, a greedy algorithm based on this metric and applied to 100 random product

sets increases this metric by 6.4% relative to a random ranking. Optimization, which is be-

yond the scope of this paper, would increase the metric even more. Based on these results, I
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expect that, for any metric the retailer uses to balance purchases and returns, I can improve

profits, as evaluated with policy simulations, with a greedy algorithm based on that metric.

This improvement is easily achievable and could be optimized. Furthermore, the revised

ranking is relatively easy to evaluate with A/B testing vs. ranking by utility alone.

2.9 Conclusions and Future Research

Managing product returns is highly relevant but also challenging. Online retailers, par-

ticularly fashion retailers, face high return rates and high return costs. Improving how a

retailer can manage product returns has a direct and considerable impact on the firm’s

bottom line. To the best of my knowledge, retailers and researchers have not investigated

the complete search-to-purchase-to-return customer journey to generate insights and suggest

strategies by which a retailer can maximize profits. Modeling the customer journey reveals

mechanisms by which search, purchase, and returns are related and provides insights that

help retailers develop profit improving strategies. Such strategies may not be obvious, or

would be evaluated incorrectly, if the entire purchase journey were not modeled.

Using an empirical-theoretical framework, I developed a rational model of customer search

in the presence of a return option. I obtained data from a major European apparel online

retailer to estimate the model and demonstrate the importance of modeling search and

returns jointly. The data and analysis suggest insights on the interrelationship of search,

purchase, and returns and suggest strategies by which a retailer can maximize its profits. The

model provides explanations of model-free evidence on how search, purchase, and returns

are related. More specifically, the model shows that purchasing the last clicked product,
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browsing multiple product colors, searching more, and using refinement tools are linked to a

lower return probability. The retailer’s data provide supportive evidence for these insights.

In policy simulations, I illustrate strategies to help the retailer better manage product

returns. Some of these strategies such as improving some aspects of the website design are

relatively low-cost in comparison to changes in the return policy. In countries with strong

customer protection legislation, it is impossible to change the return policy but, generally,

firms are not limited in the way they design their websites. I show that reducing the search

costs through a more efficient website design decreases the return rate, while increasing the

purchase rate. Policy simulations also show that rank-ordering products on the website based

on their mean utility increases purchase probabilities, but also return probabilities. The

empirical data and estimated parameters enable us to simulate the sizes of effects individually

and assess whether, based on prices and profit margins, specific rank-ordering enhances.

Future research. Data on the complete purchase journey are rare. This paper illustrates

what can be done with a formal model combined with such data. Hopefully, other researchers

will obtain purchase journey data in other product categories and explore implications fur-

ther. Although the retailer claims it did not design its website to minimize returns, the

insights of the model suggest that such designs are feasible. Future research might model

the retailers’ decisions as endogenous and enable estimation in such data regimes.
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Chapter 3

Online Assortment Planning in Presence

of Frequent Product Returns

3.1 Introduction

Assortment planning is a major problem for a fashion retailer. The successful assort-

ment must balance various customer needs: excite customers by providing a high variety of

products; follow the fashion and seasonal trends; prevent the stock-out in a period of high

demand; provide a wide range of available sizes, etc. All of these should be addressed under

the physical constraints of the store size and the massive assortments of the retailer.

Given that the total number of active products could reach up to 20,000 and growing

(Quelch and Kenny, 1994), choosing which products to put on the website is a very chal-

lenging problem. The offline retailer typically cannot precisely know which products the

customer was considering during the store visit – thus it is hard to identify whether the

product with low sales does not match customers’ needs or customers just can’t find it on
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the shelf. A/B testing with assortment is barely feasible. For example, if the retailer wants to

remove one product from the assortment it not only has to remove all units from the shelves

but also fill the empty shelves with alternative products substantially increasing the price of

the experiment. This situation becomes even more complicated given the huge assortments

and interrelation between products in the assortment (removing the product from the shelf

could negatively impact complementary products).

In online channels the situation is different. The retailer is not constrained by the physical

characteristics of the store and can put any number of products on its website. Indeed, many

retailers tend to put all available products on online websites. However, due to a large number

of products, customers typically review only a small subset of the assortment (for example,

the user searches on average 164 products, while making on average 2.834 clicks in my data)1.

This implies that online retailer is constrained not by the physical characteristics of the store

but by the customer’s willingness to spend time on the website. The latter is endogenous

(customer’s decision) and could depend on the assortment itself.

Moreover, the online retailer observes an important part of the customer journey – search

for a product. Typically, retailers store all the browsing data and know exactly, which

product the customer viewed, which areas of the webstie the customer clicked, and the

order. This means that the retailer could distinguish between” low sales because a product

does not serve customer needs” and "low sales because the product is hard to find." This

information could be crucial in assortment planning.

The online channel is more flexible and randomized experiments with assortment are

1By searched product I imply any product which appeared on the customers web screen (see Figure 3-1a);
by clicked product I imply any product which the customer clicked on to reveal additional information (see
Figure 3-1b)
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substantially more feasible. Specifically, to test the new assortment the retailer may just

remove the product link from the online website without any impact on the physical prod-

uct. Moreover, the firm can conduct an experiment on the customer level by manipulating

assortment individually. Offline only store level policies are possible. This implies that the

online retailer has lower costs and risks associated with experimenting with the assortment

as all changes are completely reversible.

Lastly, knowing the exact customer history would allow the retailer to design a new

approach to assortment planning infeasible in offline channels, for example, personalized

assortments.

Finally, online the customers’ journey typically does not end with a purchase. Indeed, in

online after a purchase, customers return products with a very high probability (for example,

55% online vs. 3% offline). These frequent product returns could substantially negatively

impact the retailer’s profit due to the costs associated with product returns (dry cleaning,

return label, damage to product, shipping, restocking). Therefore, the retailer must take

into account the possibility of returns in assortment planning.

In this paper, I combine the advantages and challenges of online channels and propose

a deep-learning-based solution to the online assortment planning problem in presence of

product returns. Specifically, I develop a predictive model of the customer search-to-return

journey which models how customers would make their click/purchase/return decisions given

the structure of the website. Further, I use this model to quantify the changes in the retailer’s

assortment and give recommendations on whether to keep a product in the online assortment

or not. Lastly, I give qualitative insights on which products are the least successful on the

website.
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3.2 Related Literature

In Section 1.1 and Chapter 2 I discuss customer search and product returns literature in

detail. This section provides a brief overview of product assortment planning literature. An

extensive review of the field could be found in Kök et al. (2009) and Mantrala et al. (2009).

Assortment planning is a mature multidisciplinary field. Scholars and practitioners rec-

ognize the impact of an assortment on the firm’s well-being. Methodologically, product

assortment planning is studied both from a static and dynamic perspective. Static mod-

els consider the problem as a single period, and based on a different variation of customer

choice models (Mahajan and van Ryzin, 1999; Kök and Xu, 2011) The main challenge of

these models is the discrete nature of the problem with a huge set of possible combinations

(2𝑀 where 𝑀 is the total number of products). Thus, the authors propose various ap-

proximations and heuristics to make the solution feasible. The dynamic model extends the

finding from static models by allowing the firm to change the assortment between periods

and learning customer demand (Chen et al., 2021; Sauré and Zeevi, 2013; Caro and Gallien,

2007). Typically, these models focus on customer purchase behavior and ignore customer

search and product returns. However, Cachon et al. (2005) demonstrates that ignoring the

customer search in assortment planning could lead to reduced profit and unnecessary narrow

assortments. Wang and Sahin (2018) considers the assortment model with customer search

costs. Alptekinoğlu and Grasas (2014) shows that firms’ product return policy would impact

the optimal assortment. Recent empirical research utilizes advances in machine learning and

provides a data-driven solution to assortment optimization problem (Chen et al., 2023). In
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Rooderkerk and Kök (2019) authors discuss the challenges faced by an omni-channel retailer

with regard to assortment planning.

This paper contributes to assortment planning literature by providing a deep learning

framework that takes into account three stages of the customer journey – search, purchase,

and returns, and allows us to evaluate how changes in the assortment would affect the

retailer’s well-being.

3.3 Data and Model-Free Evidence

3.3.1 Data Used in the Paper

To train and test the model I obtained individual-level data from a large European apparel

retailer that distributed products through online and offline channels. In accordance with

the goal of this paper, I focus exclusively on the online channel. The retailer specialized in

mid-price fashion products for men and women2. It has a generous return policy typical for

Western Europe – each product could be returned by the customer without a fee within 60

days after the purchase. Data capture detailed information about customer search-to-return

journey and consists of three main parts:

� Click stream data captures a sequence of actions made by the customer during

the browsing session. It includes the list of products that customers view during the

browsing session as well as products’ positions on the webpage Figure 3-1a); the order

of customer product clicks to reveal additional information (see Figure 3-1b); time

2The firm also sells apparel for kids and bedroom accessories. However, the share of these products is
approximately 1% of total sales.
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Figure 3-1. Example of Information Observed by a Customer Visiting the Website

(a) Listing of products (b) Detailed product page

spent reviewing each product page; tools used to reinforce the search (filter/sort by

price, category).

� Transaction data captures products purchased by the customer and identificator if

the customer returned the product to the retailer. It is matched to the Click stream

data via the unique identifier.

� Product reference data captures product level information and includes category,

price, size, color, and product image as it is displayed on the website.

The observation period for this dataset is from 1 October 2019 to 29 February 20203. The

original dataset was prepossessed to remove outliers (for example, sessions without product

views and longer than 3 hours were excluded from the observation). The final dataset

includes 2,897,667 unique browsing sessions, where customers were presented with 11,523

unique products to choose from. The customer purchased at least one product in 142,302

(5.63%) cases and among these transactions, the customer returned at least one product in

78,563 (55.21%) of cases. This high number of product returns is consistent with the existing

3The retailer provided us with the data up until 15 May, however, due to the Covid-19 pandemic I
excluded all months after February
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Figure 3-2. Summary Statistics of Search-Purchase-Return

(a) Listings and clicks (b) Clicks and purchases

(c) Purchases and returns (d) Clicks and returns

literature.

Figure 3-2 provides additional information about the data used in the paper. As we can

see half of the customers view less than three product listings (approximately 144 products)4.

Figures 3-2b to 3-2d highlight the importance of modeling the entire search-to-return journey.

Specifically, the figures demonstrate that information observed on one stage (for example,

search) could be relevant to the subsequent stages. For example, customers who purchase

many products are substantially more likely to return the product (Figure 3-2c. Therefore,

the successful model of the customer journey must take into account the set of products the

customer purchased but not look at purchased products as independent events.

4The retailer’s website layout places 48 unique products in one product listing using the 3x12 grid.
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3.3.2 Model-Free Evidence

Figure 3-2 provides the summary statistics on the session (or individual) level and sug-

gests that search, purchase, and return stages are interdependent. However, assortment

planning is typically a product-level policy. Therefore, in order to plan the assortment there

must be enough heterogeneity between products. For example, consider an extreme scenario

when all products in the assortment are identical. In this case, there is no possible im-

provement to the assortment due to all products being identical. However, it is still possible

that customers who purchase several (identical) products would have a higher probability to

return any of these products.

To see that there is enough variation between products consider three product-level sum-

mary statistics, each corresponding to one of the stages in the customer journey:

� Click rate – the share of the customers who click on the product to review additional

information about the product after they see it in a product listing

� Purchase rate – the share of customers who purchased the product after they clicked

on the product page 5

� Return rate – the share of customers who returned the product after the purchase

for a full refund

These three measures correspond to the quality of the product at different stages of the

customer journey. Click rate demonstrates how ”catchy” the product is on the website, the

purchase rate illustrates how good the product is after the revealing of additional information,

and the return rate summarizes whether the product serves the customers’ needs after the

5For this paper I assume that the purchase could happen only after the click. The extension to fast-
checkout case is straightforward and only constrained by the computational capabilities of the machine.
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Figure 3-3. Summary Statistics of Product-Level Characteristics

(a) Click rate (b) Purchase rate (c) Return rate

(d) Click and purchase rate (e) Purchase and return rate (f) Click and return rate

customer experiences the product. For display, all measures are all normalized to the [0,1]

interval and could be interpreted as efficiencies (for example, efficiency of converging the

customer from view to click or click to purchase)

Figure 3-3 presents the distribution of each outcome. The variation in these summary

statistics is quite high, indicating the potential improvements of removing some products

from the assortment. For example, the return rate ranges from 10% to 90% which is consis-

tent with the previous research.

Finally, it could be tempting to concentrate all optimization efforts on one outcome or

consider only a one-stage search model. For example, one may think that the retailer should

just remove the products which are not popular among customers (have a low Click rate).

Such a focused optimization effort assumes that all three variables should be highly correlated

– a good product might attract many clicks, be purchased frequently, and be rarely returned.
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But these measures and not highly correlated. The empirical results in Figures 3-3d to 3-3f

demonstrate that looking only at the search component is not enough. Removing low-click

products would cause the retailer to lose many high-sale (and low-return) products.

3.4 Deep Learning Model of Customer Search, Purchase,

and Return

3.4.1 Model Overview

This paper considers a three-stage process of the customer journey: search, purchase, and

return. The search stage starts when the customer visits the website. On the website, the

customer observes the sequence of product listings each containing 48 products Figure 3-1a).

The customer may click on any of the products in the listing to obtain additional infor-

mation about the product (for example, a high-quality image of the product, or a detailed

description, seesee Figure 3-1b. After the customer finishes the clicks on the products, the

customer decides which products to purchase from the list of clicked products. The customer

may purchase any number of products from the set of clicked products. Finally, when the

customer receives all products at home he or she makes a decision about which products to

return back to the retailer.

he described journey suggests that the predictive model should have three components

that would mimic each stage of the customer journey. Figure 3-2; Figure 3-3 and established

research suggest all of these blocks are interrelated (Ibragimov, 2023; Petersen and Kumar,

2009). A good predictive model should share information from different stages. The high-
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Figure 3-4. The Structure of the Predictive Model

level structure of the model is shown in Figure 3-4.

The model consists of three blocks (yellow) and outputs three sets of variables (red) –

click, purchase, and return sets of products. The input of the model (green) depends on

whether the model is trained (dashed arrows) or used for modeling (solid arrows).

During the training process, for example, the purchase block has access to the true click

set and thus was predicting the purchase set given the true click set. Notice that the true

click set is unobservable to the model during the inference stage as it is one of the outputs

and formally should not be used as input. Indeed, theoretically, we can use only the true

input and generate three sets of variables, and simply compare those with the true sets (for

example, exact match). However, such approach would be prone to error propagation as

errors in generating the click set would result in bigger errors in generating the purchase set.
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Therefore, it is important to use all the available information during training.

Search block. he search block takes as input the list of product listings observed by the

customer (each product listing contains at most 48 products). The block has two outputs:

(1) an ordered list of products on which the customer clicks during the browsing session; (2)

embeddings of the product listings viewed by the customer.

The block structure is based on transformer models (Vaswani et al., 2017) which were

successfully used in machine translation problems. In these tasks, the machine is required

to transform the ordered sequence of words from the language ℐ to the ordered sequence of

words from language 𝒪. Notice the similarity of the translation problem to the prediction

of the click set. The customer views the product on the website in batches – product

listings (Figure 3-1a). From each product listing the customer can clicks on any on the

products. Intuitively, the machine must ”translate” the ordered sequence of product listings

(language ℐ) to the ordered list of customer-clicked products (language 𝒪). As in classical

translation problems clicks could have long dependencies both on the viewed product listings

and previous clicks (for example, if a customer clicked several times on a T-shirt he may

be looking for a T-shirt and thus probability of clicking in this category would be higher).

The paper considers the listings-to-clicks translation to better reflect the customer search

process on the provided data and correspond to a more general case. The model could be

straightforwardly updated to the case when the customer observes all products at once (or

“one-by-one” design). by making each product listing size one. Practically, many retailers

prefer to split the product into product listings to help customer navigation.

The main idea behind the transformer model is the attention mechanism. This mech-

anism automatically learns the relevance of each input word in a very flexible manner.
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The module itself operates on three important components: key, query, and value. Each

of these components represents a mapping (typically linear) from the embedding space to

key/query/value spaces respectively. These mappings are applied to each input word and

thus the sentence with five words would be represented by five key/query/value combina-

tions. The output of the attention module is represented as a weighted sum of values, where

the weights are some increasing function of the similarity between key and query. The ad-

vantage of this approach is that it (1) allows propagating the relevant information both

within the input by mapping input to key/query/value (self-attention); (2) extracts relevant

information between two inputs by mapping input one to value/key and input two to query.

Combining multiple attention blocks allows us to learn different relevancies and approximate

the output.

Although the transformer approach performs extremely well on machine translation tasks

it could not be directly implemented in the customer click set prediction problem due to the

number of unique product listings the customer observes. Specifically, in the data customers

visited 7,083,413 unique product pages, while typically the machine translation literature

works with vocabulary sizes of 20,0006. This huge size of unique-product vocabulary results

in a very sparse input sequence and an enormous number of parameters. To address this

issue, I notice that the product listing is an ordered list of products or in translation terms –

each word in the language ℐ is an ordered list of words from language 𝒪. This implies that

there exists a structural dependence between different product listing embeddings. Instead of

learning this structural relation in a model-free way, we can implement those in the structure

6Note that the product listing is an ordered list of products – different order of the same set of products
would result in the different product page.
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of the model. For example, if two product listings are different only in one product on the

last position, it is very likely that their impact on the model would be very similar. A good

model would learn these relations with infinite data, however, due to sparsity it could be

hard on finite data. Therefore, we can help the model learn the dependencies by preserving

the structure of the relations. This would substantially reduce sparsity and the number of

parameters.

To preserve and learn the relation between product within one product listings I use an

additional attention mechanism to construct the product listing embedding. This approach

allows one to learn the dependencies of products on the product listing (for example, the

variety of products) and helps to preserve the information on product position on the web

page. In contrast, consider averaging the product embedding within the product listing – in

this case, all the products have equal weight and all information about the product position

is lost.

Purchase block. The purchase block takes as input the ordered sequence of customer

clicks and product listing embedding. It has two outputs: (1) probability of each product

being purchased by the customer; (2) embedding of customer click set.

The structure of this block is substantially simpler and reminds the classical prediction

problem. Specifically, for each clicked product the model predicts the probability with which

the customer would purchase this product. As in the click prediction, the decision to pur-

chase the product may depend on any of the clicked products. Therefore, I implement an

additional attention mechanism on the click set embeddings to preserve and learn the distant

information.

Return block. The return block takes as input the set of purchased products by the cus-
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tomer clicks and clicks set embeddings. It outputs the probability with which each purchased

product would be returned.

The return block copies the structure of the purchase block except that it has fewer

parameters due to the fewer data (only 3.82% sessions results in a purchase).

3.4.2 Model Training

The three-block structure of the model poses additional challenges to estimating the

model. Firstly, the model has three different outputs each of which has its own loss func-

tion. Secondly, each block has a different efficient size of the data which could be used for

estimation. For example, the customer makes at least one click only in 68.50% of cases, and

purchases approximately in 3.82% of cases with at least one product click. This substantially

decreases the efficient sample sizes for purchase and return blocks (for example, before the

return decision the customer should first click and then purchase a product).

These two reasons imply that simply minimizing the sum of losses would allow the model

to ignore parameters that lead to smaller changes in the total loss, or in our case, the

parameters needed for smaller parts of the data. This could lead to the situation when

the model, in order to marginally increase the performance on predicting customer clicks,

would completely ignore the accuracy of predicting the return probability. Moreover, the

convergence speed of different blocks could be different, and thus an optimal number of

epochs could vary depending on the block.

To address these issues I estimate models sequentially. First, estimate the click model

using the data on customer search. Fix the weights of the search block and estimate the
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purchase block on a subset of the data where the customer made at least one click. Finally,

fix the weights of the search and purchase blocks and estimate the returns block on the subset

of data where the customer made at least one click. In this case, each step involves only one

loss function and thus the estimation is straightforward. During the training, I did only one

pass of the whole model training (however, each block has multiple epochs of training). This

was done to increase the generalizability (out-of-sample performance) of the model, however,

the framework could be straightforwardly extended to multiple-pass training.

Notice that despite the model blocks being estimated separately it is still a joint model.

The subsequent block still takes as input one output of the previous block (for example, click

set embedding for returns block). The only difference is that the previous block information

is fixed for each customer during the training but still used as input. Moreover, product

embedding vectors are fixed at the click stage and used by all blocks.

Individual-level prediction is a hard problem. The situation is even worse as in our case

the set outcome is very imbalanced: the most frequent click option is the outside option

(stop search); the most frequent purchase option is no purchase (leave a website without

a purchase). This imbalance substantially shrinks the predictions towards outside options,

making the simulations very short (customer clicks on fewer products). Shrinkage makes the

search sessions substantially shorter. Given the consecutive block structure of the model,

the next section is impacted by the previous one. As a result, if the modeled customer

would make fewer clicks, then the modeled customer would have a small choice set and thus

the transaction probability would be much smaller. To address this issue I implement the

label smoothing technique (Vaswani et al., 2017), where we replace the binary outcome of

the correct product with the probability distribution over possible products. Intuitively, it
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Figure 3-5. Train and Validation Loss

(a) Click block (b) Purchase block (c) Return block

prevents the model from becoming misleadingly confident about the predictions and helps

the model learn the dependencies more uniformly. To evaluate model training, I report both

smoothed and true loss functions and show that the model improves on both.

During the training, the data were split into 3 parts: training, validation, and testing.

The training (estimation of the parameters) was done on the training data, the validation

data was used to stop the training process. All simulations and model evaluations are made

on the testing data.

Figure 3-5 plots the performance of the model on training and validation data as a

function of training time. Because the performance of the model in all three cases has a

form of a U-shape for validation loss, we stop the training when the performance on the

validation sample started to decrease.

3.4.3 Model Performance

The estimated model was able to extract relevant information from data. Table 3.1

reports the results of the model estimation with the smoothed and true performance mea-

sures. In Table 3.1 the uniform benchmark represents the customer who chooses each product

randomly with equal probability except for the outside option which is chosen with the prob-
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Table 3.1. Performance of the Model

Click block Purchase block Return Block
Uniform benchmark 3.331 0.100 0.704
Model (% of uniform benchmark) 81.97% 93.20% 94.39%
Model (smoothed outcome) 2.008 – –
Model (smoothed outcome, %) 79.92% – –

Note: first and third rows represent the negative loglikelihood (the smaller the better),
while the second and fourth represent the share of loglikelihood remained unexplained by
the model (the smaller the better).

ability observed on the data (this benchmark performed better than a completely random

choice model)

The model successfully improves in all blocks indicating that the model successfully recov-

ered important relations in the data. Table 3.1 demonstrates that optimizing the smoothed

likelihood function does not hurt the performance measured by a true likelihood.

From Table 3.1 it follows that the performance on the individual level is far from perfect.

This observation is not surprising as click/purchase/return prediction on an individual level

is particularly hard due to individual-level unobserved preference shocks. This makes the

behavior of the customer not completely deterministic. Contrast this to natural language

models, where the language rules make the problem deterministic with a very limited number

of ground truth possibilities (given the input sentence there are typically a couple of correct

translations). To see how the model performs on average, I put the aggregated summary

statistics in Table 3.2 as well as their true values on the test data7.

The results in Table 3.2 demonstrate that, on average, the model improves predictions in

comparison to random mode. Interestingly, the model captures non-trivial relationships in

the data as plotted in Figure 3-6, replicating the observations on the true data in Figure 3-28.

7The 𝑅2 is measured as weighted sum according to the denominator. For example, for a return rate
higher contribution to 𝑅2 would give products with higher sales

8Note that the dependencies represent per item value. For example, in Figure 3-6c the y-axis demonstrate

122



Table 3.2. Aggregate Performance of the Model

Validation Prediction True Value
Average Number of Clicks 2.91 2.834
Purchase Rate 3.67% 3.74%
Return rate 48.71% 49.45%
Product click rate 𝑅2 71.50% –
Product purchase rate 𝑅2 61.87% –
Product return rate 𝑅2 26.68% –

Figure 3-6. Customer Level Relation between Clicks, Purchases and Returns

(a) Number of clicks and
predicted purchase probability

(b) Number of clicks and
predicted return probability

(c) Number of clicks and
predicted return probability

3.5 Simulation Results

3.5.1 Modeling Changes in the Assortment

Our model allows us to describe customer behavior from the visit to the website to the

return of the product. We now use the model to address the optimization of assortment.

I implement a counterfactual simulation approach. I simulate customer behavior accord-

ing to the trained model to evaluate what would happen if the retailer would change the

assortment of products on the website. The data provided by the retailer does not have

randomized variation in the assortments which poses threats to the external validity of the

results. To address this issue I consider only a very small deviation from the trained model,

which is unlikely to cause major disruption in the customer journey. Under the assumption

that in sessions with multiple products purchased the probability of return for each product would be higher.
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that the model describes the customer journey accurately within minor changes to the web-

site, we can implement ‘what if” simulations. Further research would address the outlined

issue by, for example, randomly changing the assortment for customers and introducing an

exogenous source of variation.

The procedure used in the paper is (see Figure 3-7 for visualization):

1. Using the simulation results on the validation sample, compute product-level click,

purchase, and return rates.

2. Split all products in the assortment into 7×7 equally sized bins based on predicted

purchase × return rates. Denote all products in bin 𝑏 as 𝒮𝑏.

3. Remove products in set 𝒮𝑏 from the website by hiding them from products that could

be viewed by the customer(Figure 3-7b). However, to keep the models comparable,

I replace the removed product with a random product from the list of kept products

(Figure 3-7c)

4. Simulate customers on the updated website. Compute average values for variables of

interest (for example, overall return/purchase rate or profit).

5. Repeat (1)-(4) for each bin 𝑏.

6. Simulate customers visiting the default version of the website (for example, if the web-

site has four products on the web page, then the customer sees Figure 3-7a). Compute

baseline values for variables in (4)

7. Compare values in (4) with corresponding values in (6)

There are several important observations with regard to the procedure discussed above.

First, notice that the simulation tries to evaluate the past decision of the retailer to add

products to the website. That is, in (4) I obtain the value for the website with old assortment
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Figure 3-7. Example of Changing the Assortment Online

(a) Original website viewed by
the customer

(b) Forth product removed
from the website

(c) Empty position replaced
with the random product

while in (6) for full assortment after the retailer launched some products. Intuitively, I want

to understand with which products the retailer made a mistake, or which products have

a negative impact on the retailer’s well-being. The more practical approach would be to

evaluate which products the retailer should remove from the website. In this case, the

interpretation is more involved while the identified products are the same. I put the details

in Appendix C.1.

Second, in each simulation, the customer sees the same number of products on the website

and each simulation removes a small portion of the assortment (approximately 2% given 49

bins). This insures the change to the website is minor and is unlikely to cause structural

changes in the customer journey. This is supported by the literature where Boatwright and

Nunes (2001) found that reducing the assortment does not cause reduction in perceived

variety (see also Broniarczyk et al. (1998)).

Third, the decision on which products to remove is based on the validation sample,

making the simulation out-of-sample. This is done to reduce the impact of the size of the
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validation data on the quality of estimating the purchase and return rate. Moreover, with a

small modification to the product embedding mechanism the retailer would be able to test

how adding a new product to the assortment would impact future sales and returns. The

criteria to remove the products does not depend on the product characteristics thus avoiding

the problem of excluding the whole category (for example, dresses) from the website. Lastly,

the choice to remove the products based on their predicted purchase/return rates is arbitrary

and could be substituted by any other procedure (for example, if the retailer has access

to costs it may simulate the exclusion of the least profitable products from the website).

In Appendix C.2 I provide alternative results where instead of predicted value I use true

purchase and return rate estimate on combination of train and validation data.

I plot the results of the simulation in Figure 3-8. Each point in the graph represents how

adding the product group to the assortment changed the variables of interest9.

In Figure 3-8, the products are split into four groups depending on the quadrant. Each

of these groups has different practical implications for the retailer.

� Quadrants I and III, upper right and lower left, demonstrate that there is a

tradeoff between sales and returns for some products. That is some products might

be sold frequently, but at the cost of having high returns. Adding these products

(lower left) means the remaining products are sold less, but also returned less. For

these products, and for the products in the upper right there is no clear conclusion on

whether they should be kept or removed from the website. The retailer needs further

information such as costs of selling and costs of returns to make a decision.

9Notice that all are small ( 1%). Therefore, we can use the following approximation for the relative
change: Δ𝑥/𝑥1 ≃ Δ𝑥/𝑥2. Thus, impact of adding product to the website is equivalent to a negative impact
of removing product from the current version of the website.
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Figure 3-8. Results of Assortment Simulation

� Quadrant II, lower right , represents the ”best” products. These are the products

that are sold frequently and are returned rarely. Adding them means higher sales and

smaller return rates. The retailer should definitely keep those in the assortment.

� Quadrant IV, upper left, represents products that are clearly unprofitable for the

retailer. Adding these products to the website made the retailer worse off. Specifically,

the retailer suffers from lower sales and higher product returns. Intuitively these are

the products that are cursed with a double whammy, they are not sufficiently attractive

to be sold at high rates, but, when sold, they do not deliver on their promise. When

these products are introduced to the website on the website they take the space on the

webpage, thus increasing the search costs for other better products. It is recommended

to avoid adding products from Quadrant IV to the website.

The results in Figure 3-8 demonstrate the three types of products, however, it does

not provide intuition on the characteristics of these products. To answer this question,
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I consider an auxiliary prediction problem to visualize the characteristics of the products

which lie within Quadrants II and IV. These segments represent two extremes and imply a

clear planning decision.

Notice that in the simulation I split the product into 49 groups to reduce the compu-

tational burden. This implies that for each product within one group, the prediction and

recommendation would be identical. Moreover, it is possible that some products appeared

in the corresponding segment arbitrarily due to the noise in the data. This implies that it is

infeasible to plot “Top-N” products from each segment as it won’t be possible to distinguish

between products within the group.

To produce different product level predictions I extract the product embedding from

the model and predict the probability that the product belongs to each of these quadrants.

Heterogeneity in product features (embeddings) would produce the variance for product-

level predictions. Moreover, regularization would reduce the impact of “incorrectly” classified

products. In Figure 3-9, I put examples of these products for top-9 categories based on total

sales. Specifically, each row represents one of the nine product categories and the product

most likely to be in Quadrant II/IV respectively (most likely is equivalent to having the

highest of out-of-sample predicted probability). Further research could extend the analysis

and provide more interpretable insight, for example, by using the interpretable characteristics

(both quantitative and visual) and SHAP values.

Interestingly, even without precise quantitative analysis, it is clear from Figure 3-9 that

products in Quadrant II and IV are substantially different. Specifically, products on the

left include much more ”non-standard” colors (pink, yellow, green). This may indicate that

these colors draw attention from the customers and thus they are more likely to click on these
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Figure 3-9. Top-5 Most Likely to be in Quadrant II and IV Products for Different Categories

(a) Quadrant IV (b) Quadrant II
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products, however, customers are reluctant to purchase these high-risk products. Moreover,

in the rare case of the purchase the customer is not satisfied with the product and eventually

returns it back to the retailer. In Appendix C.3 I demonstrate that the products ranked solely

on transaction data would be different indicating that the search component is important.

Intuitively, the “worst” product is not only the product with low sales and high returns, but

also the product is very noticeable by the customer and drags their attention from more

successful products.

3.6 Conclusion

Assortment planning in online channels is a highly relevant but challenging problem. In

comparison to classical retail, online retailers have more flexibility in designing the assortment

due to the lack of physical constraints of the store. Moreover, most online retailers have access

to customer search data and know precisely which product the customer was considering.

However, online retailer faces different challenges – high product return rates. Therefore,

the successful assortment should take into account the advantages (search data) and solve

challenges (product returns) jointly.

In this paper, I propose a deep-learning solution to the assortment planning problem in

the presence of frequent product returns. Specifically, I develop a model that approximates

the customer journey from the moment he or she visits the website to the decision if the

customer likes the product and wants to keep it.

I demonstrate that the model based on the transformer framework can extract relevant

information about customer behavior. I use the model in counterfactual analysis to show
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that the retailer could identify both problematic and successful products. Finally, I unveil

the black box by providing qualitative information on which characteristics are shared by

the most/least successful products.
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Appendix A

Appendix for Chapter 1

A.1 Tuning of Hyperparameters of the GBRT Model

We tuned the hyperparameters of the GBRT model with a grid search over the set of

parameters presented in Table A.1. The criterion was predictive ability in the validation

sample. The model was then tested using the held-out out-of-sample predictions. For each

iteration of the grid search, we stopped adding additional regression trees after the accuracy

on the validation sample did not improve for twenty-five consecutive trees.

A.2 Profit-Maximizing Policy

Result 1. Suppose (1) the firm’s prior on the profitability of an item, 𝜋, is normally

distributed, 𝜋 ∼ 𝒩 (𝜇0, 𝜎
2
0), (2) the firm observes an estimate of profitability ̂︀𝜋|𝜋 ∼ 𝒩 (𝜋, 𝜎2

1),

and (3) the firm seeks a policy to decide whether to put an item online or not. Then the

profit maximizing policy, 𝒫(𝜑), is a threshold policy:
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Table A.1. Grid for the GBRT Hyperparameters

LightGBM
parameter name

Set of tested
values

Parameter Description

n_estimators [3000]
Maximum number of
boosting trees

learning_rate [0.01,0.025,0.1]
Shrinkage
rate

max_depth [7,9,11]
Maximum depths of
the regression tree

num_leaves [32,48]
Maximum number of leaves in
one regression tree

reg_lambda [0,5]
Weight of L2
regularization

reg_alpha [0,5]
Weight of L1
regularization

colsample_bytree [0.5]
Random subset of features to be
used in one regression tree

Note: Parameters not listed in the table take default values in LightGBM package.

𝒫(𝜑) =

⎧⎪⎪⎨⎪⎪⎩
1 if ̂︀𝜋 ≥ 𝜇0

𝜎2
1

𝜎2
0

0 if ̂︀𝜋 < 𝜇0
𝜎2
1

𝜎2
0

(A.1)

The policy in Equation (A.1) is intuitive. For example,

� If predictions are perfect, then 𝜎2
1 = 0 and the policy reverts to that of perfect predic-

tions; launch those items for which ̂︀𝜋 ≥ 0

� If the model has no predictive ability, then 𝜎1 → ∞ and the policy reverts to the prior

mean, 𝜇0; launch all items if and only if the prior mean is positive.

� If there is no uncertainty in the prior, then 𝜎1 → 0 and the policy again reverts to the

prior mean; launch all items if and only if the prior mean is positive.

� For finite values of 𝜎1 and 𝜎0, the ratio, 𝜎2
1/𝜎

2
0, modifies the amount by which the
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predicted profits must exceed prior beliefs in order to launch.

Proof of the threshold policy: The firm solves the following optimization problem:

max
𝒫(𝜑)∈[0,1]

E[𝒫(𝜑) · 𝜋 + (1− 𝒫)(𝜑) · 0] = max
𝒫(𝜑)(𝜑)∈[0,1]

E[𝒫(𝜑) · 𝜋] (A.2)

where 𝜑 = (̂︀𝜋, 𝜋, 𝜎1, 𝜎0) is the set of all known parameters; ̂︀𝜋|𝜋 ∼ 𝒩 (𝜋, 𝜎2
1) and 𝜋 ∼ 𝒩 (𝜇0, 𝜎

2
0)

Using the law of iterative expectations, we rewrite the initial maximization problem

Equation (A.2) as:

max
𝒫(𝜑)(𝜑)∈[0,1]

E[𝒫(𝜑) · 𝜋] = max
𝒫(𝜑)(𝜑)∈[0,1]

E[𝒫(𝜑) · E[𝜋|𝜑]] = max
𝒫(𝜑)(𝜑)∈[0,1]

E[𝒫(𝜑) · E[𝜋|̂︀𝜋]] (A.3)

The last step relies on the assumption that (𝜋, 𝜎1, 𝜎0) are observable.

Because E[𝜋|𝜑] is a function of observables, 𝜑, we can denote E[𝜋|𝜑] = 𝑓(𝜑). Equa-

tion (A.3) is rewritten as:

max
𝒫(𝜑)(𝜑)∈[0,1]

E[𝒫(𝜑)𝑓(𝜑))] (A.4)

Equation (A.4) implies that the optimal policy 𝒫⋆(𝜑) has the following form (ℐ(·) is an

indicator function):

𝒫⋆(𝜑) = ℐ(𝑓(𝜑) ≥ 0) = E[𝜋|𝜑] ≥ 0) (A.5)

We show in the following that, for the case of normal priors, this policy would have a

threshold form1.

Because ̂︀𝜋 is normally distributed conditionally on 𝜋 and since the prior is also normally

1Note that the optimal policy in Equation (A.5) does not depend on the normality assumption profitabil-
ity; the policy is easily generalized to other distributions.
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distributed, the posterior is normally distributed. Using standard formulae, we write:

𝜋|̂︀𝜋 ∼ 𝒩
(︂̂︀𝜋𝜎2

0 + 𝜇0𝜎
2
1

𝜎2
0 + 𝜎2

1

,
𝜎2
0𝜎

2
1

𝜎2
0 + 𝜎2

1

)︂
and ̂︀𝜋 ∼ 𝒩 (𝜇0, 𝜎

2
0 + 𝜎2

1) (A.6)

From Equation (A.6), it follows that:

E[𝜋|𝜑] = ̂︀𝜋𝜎2
0 + 𝜇0𝜎

2
1

𝜎2
0 + 𝜎2

1

⇒ 𝒫⋆(𝜑) = ℐ
(︂̂︀𝜋 ≥ −𝜇0 ·

𝜎2
1

𝜎2
0

)︂
(A.7)

which is the threshold policy.

Result 2. Under the assumptions of Result 1, the optimal expected profit is:

Π⋆ = (1− Φ(−𝜇0/𝜎𝜈)) · 𝜇0 + 𝜎𝜈 · 𝜙(−𝜇0/𝜎𝜈) (A.8)

where Φ(·) and 𝜙(·) are the standard normal CDF and PDF respectively, and 𝜎𝜈 = 𝜎2
0/
√︀
𝜎2
0 + 𝜎2

1

Proof: By substituting the optimal policy from Equation (A.7) and conditional expec-

tation from Equation (A.7) to Equation (A.2), we rewrite the expected optimal profit as:

Π⋆ = E
[︂
ℐ
(︂̂︀𝜋 ≥ −𝜇0 ·

𝜎2
1

𝜎2
0

)︂
· ̂︀𝜋𝜎2

0 + 𝜇0𝜎
2
1

𝜎2
0 + 𝜎2

1

]︂
= E[ℐ(𝜈 ≥ 0)𝜈] = P[𝜈 ≥ 0] · E[𝜈|𝜈 ≥ 0]

(A.9)

where 𝜈 =
̂︀𝜋𝜎2

0+𝜇0𝜎
2
1

𝜎2
0+𝜎

2
1

∼ 𝒩
(︁ ̂︀𝜋𝜎2

0+𝜇0𝜎
2
1

𝜎2
0+𝜎

2
1

;
𝜎4
0

(𝜎2
0+𝜎

2
1)

2 (𝜎
2
0 + 𝜎2

1)
)︁

𝒩 (𝜇0, 𝜎
4
0/(𝜎

2
0 + 𝜎2

1)) ∼ 𝒩 (𝜇0, 𝜎
2
𝜈)

Because 𝜈 is normally distributed, Equation (A.9) can be rewritten using the formula for
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the expectation of the truncated normal distribution:

Π⋆ = (1− Φ(−𝜇0/𝜎𝜈)) · 𝜇0 + 𝜎𝜈 · 𝜙(−𝜇0/𝜎𝜈) (A.10)

Result 3. The expected profit under the optimal policy is a decreasing function of 𝜎2
1.

Proof: Taking the derivative of Equation (A.10) with respect to 𝜎2
1:

− 𝜇0 · 𝜑(−𝜇0/𝜎𝜈)

(︂
− 𝜇0

2𝜎2
0(𝜎

2
0 + 𝜎2

1)
1/2

)︂
− 𝜎2

0

2(𝜎2
0 + 𝜎2

1)
3/2

· 𝜑(−𝜇0/𝜎𝜈)

+
𝜎2
0

(𝜎2
0 + 𝜎2

1)
1/2
𝜑′(−𝜇0/𝜎𝜈)

(︂
− 𝜇0

2𝜎2
0(𝜎

2
0 + 𝜎2

1)
1/2

)︂
=

(︂
𝜇2
0

2𝜎2
0(𝜎

2
0 + 𝜎2

1)
1/2

− 𝜎2
0

2(𝜎2
0 + 𝜎2

1)
3/2

+

(︂
𝜇0(𝜎

2
0 + 𝜎2

1)
1/2

𝜎2
0

)︂
−𝜇0

2(𝜎2
0 + 𝜎2

1)

)︂
× 𝜑

(︂
−𝜇0

𝜎𝜈

)︂
= − 𝜎2

0

2(𝜎2
0 + 𝜎2

1)
3/2
𝜑

(︂
−𝜇0

𝜎𝜈

)︂
(A.11)

Because 𝜑(·) > 0 and − 𝜎2
0

2(𝜎2
0+𝜎

2
1)

3/2 the expected profitability is decreasing function of 𝜎2
1

and therefore an increasing function of model accuracy.

A.3 Supporting Tables and Figures

137



Table A.2. Improvement in Predictive Accuracy Varying Minimum Threshold on Online Sales

Model
Non-Image
features

Image
features

R2 Improvement
over baseline

CNN Features with 10 as
threshold for online sales

Category, seasonality,
price, color labels

Deep
learning

43.14
(0.20)

+12.75%

CNN Features with 20 as
threshold for online sales

Category, seasonality,
price, color labels

Deep
learning

46.88
(0.19)

+13.48%

CNN Features with 30 as
threshold for online sales

Category, seasonality,
price, color labels

Deep
learning

51.23
(0.17)

+12.08%

Note: Improvements are calculated for baseline models estimated on the corresponding samples.
Standard deviations are reported in parentheses. Out-out-sample performance reported.

Table A.3. Tests of Uniqueness, Precision (variance of 𝑁𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒
𝑖 ), and Distance from Prior Col-

lections

Model
Non-Image
features

Image
features

R2 Improvement
over baseline

CNN Features
Category, seasonality,
price, color labels

Deep
learning

46.88
(0.19)

+0.00%

CNN Features
(including
uniqueness)

Category, seasonality,
price, color labels
image uniqueness

Deep
learning

46.82
(0.23)

-0.13%

CNN Features
(including vs.
last year)

Category, seasonality,
price, color labels
image distance

Deep
learning

44.55
(0.39)

-0.60%

CNN Features
(precision
weighting))

Category, seasonality,
price, color labels
variance weighting

Deep
learning

46.77
(0.26)

-0.23%

Note: The sample of items included when estimating the last-year model exclude products sold
only in the first year of the data. A GBRT/CNN model for the same items yields 44.85 (0.33). The
–2.8% is relative to this model. Standard deviations are reported in parentheses. Out-out-sample
performance reported.
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Table A.4. Improvement in Predictive Accuracy Using Alternative Prediction Models

Model
Non-Image
features

Image
features

R2 Improvement
over baseline

GBRT
(CNN Features)

Category, seasonality,
price, color labels

Deep-learning
46.88
(0.19)

+13.48%

Bagging Methods
(CNN Features)

Category, seasonality,
price, color labels

Deep-learning
45.35
(0.14)

+9.78%

LASSO
(CNN Features)

Category, seasonality,
price, color labels

Deep-learning
44.11
(0.32)

+6.78%

Note: Standard deviations are reported in parentheses. Out-out-sample performance reported.

Table A.5. Predictions for the two Largest Categories (Dresses and Shirts)

Model
Non-Image
features

Image
features

R2 Improvement
over baseline

Non-Image
Baseline

Category, seasonality,
price

None
57.94
(0.27)

–

Color-labels
Category, seasonality,
price, color labels

None
59.79
(0.24)

+3.19%

Automated
Color Features

Category, seasonality,
price, color labels

RGB
60.86
(0.22)

+5.04%

Automated
Color and
Patterns

Category, seasonality,
price, color labels

RGB+ Gabor
61.91
(0.31)

+6.85%

Human-coded
features

Category, seasonality,
price, color labels

Human Coded
61.91
(0.27)

+6.85%

CNN
Features

Category, seasonality,
price, color labels

Deep
learning

63.69
(0.19)

+9.92%

Note: Standard deviations are reported in parentheses. Out-out-sample performance reported.

Table A.6. Improvement in Predictive Accuracy Using an Alternative CNN

Model
Non-Image
features

Image
features

R2 Improvement
over baseline

ResNet CNN
(this paper)

Category, seasonality,
price, color labels

Deep
learning

46.88
(0.19)

+13.48%

VGG-19 CNN
(this paper)

Category, seasonality,
price, color labels

Deep
learning

46.84
(0.18)

+13.39%

Note: Standard deviations are reported in parentheses. Out-out-sample performance reported.
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Table A.7. Improvement in Predictive Accuracy Using PCA (nonlinear and linear tested; linear
shown)

Model
Non-Image
features

Image
features

R2 Improvement
over baseline

Color
Features

Category, seasonality,
price, color labels

RGB
43.48
(0.18)

+5.25%

Color and
Patterns

Category, seasonality,
price, color labels

Gabor
41.37
(0.33)

+0.15%

CNN
Features

Category, seasonality,
price, color labels

Deep
learning

46.55
(0.21)

+12.68%

Note: Standard deviations are reported in parentheses. Out-out-sample performance reported.

Table A.8. Predictions Using Automated Pattern & Color Image-Processing Features

Model
Non-Image
features

Image
features

R2 Improvement
over baseline

Non-Image
Baseline

Category, seasonality,
price

None
41.31
(0.18)

–

Color
Features

Category, seasonality,
price, color labels

RGB
44.06
(0.20)

+6.66%

Pattern
Features

Category, seasonality,
price, color labels

Gabor
44.34
(0.23)

+7.33%

Color and
Patterns

Category, seasonality,
price, color labels

RGB +
Gabor

45.28
(0.18)

+9.61%

CNN Features
Category, seasonality,
price, color labels

Deep
learning

46.88
(0.19)

+13.48%

CNN Features
(all images)

Category, seasonality,
price, color labels

Deep
learning

47.48
(0.22)

+14.93%

Note: Standard deviations are reported in parentheses. Out-out-sample performance reported.
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Table A.9. Improvement in Predictive Accuracy Using Alternative Image-Feature Extraction
Methods

Model
Non-Image
features

Image
features

R2 Improvement
over baseline

RGB
Features

Category, seasonality,
price, color labels

RGB
44.04
(0.20)

+6.61%

HSV
Features

Category, seasonality,
price, color labels

HSV
44.30
(0.14)

+7.24%

ORB
Features

Category, seasonality,
price, color labels

ORB
43.53
(0.25)

+5.37%

Note: Standard deviations are reported in parentheses. Out-out-sample performance reported.

Figure A-1. Return Rate by Postlaunch Time of Purchase, Day of the Week and Month
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Table A.10. Online Sales and Return rates, Offline Sales and Return Rates, and Model-Predicted
Online Return Rates by Product Category (based on all sales). Models estimated for
color-label categories with at least 400 items with ≥20 sales.

Category
On.
Sal.

On.
Ret.

On.
Ret.
Rate

Off.
Sal.

Off.
Ret.

Off.
Ret.
Rate

#
≥ 20
Sales

R2

(Base)
R2

(Main)

Dresses 96,754 69,626 71.96% 45,923 1,615 3.52% 759
28.11
(0.65)

31.13
(0.83)

Shirts 80,586 39,379 48.87% 299,313 7,007 2.34% 1,213
14.78
(0.59)

24.08
(0.77)

Blouses 43,413 23,292 53.65% 104,778 2,667 2.55% 687
4.33
(0.96)

15.78
(1.00)

Pants 36,183 21,209 58.62% 103,353 3,264 3.16% 496
-1.10
(1.16)

-0.17
(1.25)

Knit 31,893 15,708 49.25% 137,227 3,889 2.83% 511
1.80
(1.24)

17.35
(1.13)

Jackets 21,304 12,228 57.40% 24,385 876 3.59% 302
–
–

–
–

Blazer 13,190 7,627 57.82% 27,748 993 3.58% 166
–
–

–
–

Cardigans 11,315 4,167 36.83% 16,462 507 3.08% 69
–
–

–
–

Skirts 9,252 5,259 56.84% 26,884 746 2.77% 135
–
–

–
–

Coats 5,170 3,238 62.63% 1,299 49 3.77% 88
–
–

–
–

Bolero 4,867 3,367 69.18% 0 0 0.00% 41
–
–

–
–

Sweatshirts 3,862 2,170 56.19% 6,126 191 3.12% 56
–
–

–
–

Jumpsuits 1,902 1,303 68.51% 462 10 2.16% 27
–
–

–
–

Top 1,543 728 47.18% 0 0 0.00% 27
–
–

–
–

Leather 614 287 46.74% 809 34 4.20% 8
–
–

–
–

Note: Standard deviations are reported in parentheses. Out-out-sample performance reported.
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Table A.11. Online Sales and Return rates, Offline Sales and Return Rates, and Model-Predicted
Online Return Rates by Color Labels. Models estimated for color-label categories
with at least 400 items with ≥20 sales.

Category
On.
Sal.

On.
Ret.

On.
Ret.
Rate

Off.
Sal.

Off.
Ret.

Off.
Ret.
Rate

#
≥ 20
Sales

R2

(Base)
R2

(Main)

Blue 84,947 49,054 57.75% 217,457 5,658 2.60% 1,056
45.28
(0.28)

50.06
(0.47)

Grey 67,381 39,320 58.35% 92,119 2,787 3.02% 951
34.06
(0.58)

36.36
(0.54)

White 48,751 26,913 55.21% 118,060 3,154 2.67% 743
23.25
(0.6)

23.79
(0.87)

Red 42,708 25,749 60.29% 81,625 2,294 2.81% 542
45.80
(0.62)

50.90
(0.79)

Brown 41,540 23,557 56.71% 84,227 2,446 2.90% 590
19.09
(0.77)

24.72
(0.95)

Black 32,444 19,305 59.50% 67,663 2,028 3.00% 411
41.01
(0.53)

42.57
(0.83)

Green 10,550 6,581 62.38% 19,815 466 2.35% 144
–
–

–
–

Pink 3,539 2,118 59.85% 8,588 249 2.90% 53
–
–

–
–

Orange 3,054 1,865 61.07% 7,701 202 2.62% 53
–
–

–
–

Yellow 1,670 1,017 60.90% 2,356 64 2.72% 23
–
–

–
–

Violet 938 617 65.78% 2,273 66 2.90% 14
–
–

–
–

Several 318 151 47.48% 84,314 2,224 2.66% 5
–
–

–
–

Note: Standard deviations are reported in parentheses. Out-out-sample performance reported.
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Figure A-2. Impact of Color Clusters on Return Rates

Figure A-3. The Impact of Non-Image Features

(a) Price and Category (b) Seasonality
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Table A.12. Product Return Rates and Price Discounts

Model 1 Model 2 Model 3 Model 4

Proportion discounted 0.080*** 0.086*** 0.088*** 0.078***
(0.008) (0.007) (0.007) (0.007)

Price (log10) 0.228*** 0.221*** 0.214*** 0.279***
(0.012) (0.012) (0.012) (0.008)

Intercept -0.156*** -0.113*** -0.083*** 0.028***
(0.044) (0.041) (0.041) (0.015)

Category Controls Yes Yes Yes No
Color Controls Yes Yes No No
Seasonality Controls Yes No No No
Number observations 4585 4585 4585 4585
Adjusted R-squared 0.434 0.414 0.403 0.258

Note: Standard errors are heteroskedasticity robust (⋆𝑝 ≤ 0.1, ⋆⋆𝑝 ≤ 0.05, ⋆⋆⋆𝑝 ≤ 0.01). R-squared
is in-sample
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Table A.13. Interpreting the Effect of Human-coded features (HCF) on Item Return Rates

Regression Model SHAP Values

Asymmetric 0.022*** 0.92
(0.008)

Floral -0.038*** -0.90
(0.010)

Striped -0.063*** -0.95
(0.009)

Geometric/abstract -0.020*** -0.89
(0.007)

Lace details 0.010 0.85
(0.008)

Metallic/sequin details 0.008 0.82
(0.006)

Graphic details 0.008 0.34
(0.013)

Text details 0.036* 0.69
(0.021)

Short Sleeves -0.020*** -0.81
(0.006)

Medium Sleeves -0.032*** -0.84
(0.008)

Long Sleeves -0.032*** -0.87
(0.007)

Belt 0.025*** 0.88
(0.010)

Zipper -0.027** -0.80
(0.012)

Intercept 0.039 –
(0.026)

Price (log10) 0.256*** –
(0.014)

Category Controls Yes Yes
Color Controls Yes Yes
Seasonality Controls Yes Yes
Number observations 1,972 1,972
Adjusted R-squared 0.628 –

Note: Standard errors are heteroskedasticity robust (⋆𝑝 ≤ 0.1, ⋆⋆𝑝 ≤ 0.05, ⋆⋆⋆𝑝 ≤ 0.01). R-squared
is in-sample
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Appendix B

Appendix for Chapter 2

B.1 Data Preprocessing and Additional Summary Statis-

tics

In the paper, I preprocessed the data to obtain better estimates of the model parameters.

I took the following steps in the preprocessing:

1. Remove non-fashion products (e.g. linen, towels) and kid’s apparel. These products

constitute a small proportion of the data and are not the focus of the retailer.

2. Remove sessions without product page views. This could happen if the customer comes

to the website from the third-party website and lands directly on the product page.

These sessions do not represent the true search process and I are not able to recover

the set of products from which the customer was choosing.

3. Remove sessions that do not have any clicked products after a page view and sessions

which have clicked products before a page view. This implies that I keep only sessions
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with the clean search process: the customer views the product page and selects the

product to click. The alternative could happen if the customer found a product through

an alternative means (from a third-party website) and in this case, it is impossible to

infer the set of products from which he or she was choosing.

4. Remove 0.5% of longest/shortest sessions based on time spent. This includes accident

clicks and long-tail outliers, for example, if a customer forgot to close the website.

B.2 Analysis with Deep Learning Embedding

Figure B-1. Breadth of Search and Product Returns

In Section 2.3.2 I provided a model free evidence that customer search and returns are

related. In Figure B-1 I extend the analysis to demonstrate how variety of search and

product returns are related. I implement the product embedding approach – by using the

model from Chapter 3 I assign to each product a numerical vector representing this product.

The property of these vectors is that similar product would have a similar embeddings,

therefor by computing summary statistics of the embeddings I can quantify which products

the customer was clicking. By taking the variance within the session I characterize the depth

search search – low variance vs. high variance. The results are plotted in Figure B-1 and
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we can see that the customer with high variance are substantially more likely to return the

product. Notably Figure B-1 captures similarities and differences between products on more

granular level enhancing the results in Figure 2-2d and Figure 2-2e.

B.3 Derivation of Expected Purchase Utility

Without loss of generality, I drop all indices and subscripts in this section to preserve

readability. Remember 𝜖 ∼ 𝒩 (0, 𝜎𝜖), 𝜂 ∼ 𝒩 (0, 𝜎𝜂) where 𝜖 and 𝜂 are independent. Thus, 𝜖

and 𝜂 have a joint normal distribution with diagonal variance-covariance matrix. From the

properties of joint normal distribution, it follows that variable 𝜓 = 𝜖+𝜂 and 𝜖 also have a joint

normal distribution. Hence, one can find the conditional distribution 𝜖|𝜂 ∼ 𝒩 ( 𝜎2
𝜖

𝜎2
𝜖+𝜎

2
𝜂
𝜓,

𝜎2
𝜖𝜎

2
𝜂

𝜎2
𝜖+𝜎

2
𝜂
)

In Section 2.4.1 I wanted to find the purchase expected utility as:

𝑣 = E𝜖 [(𝜇𝑢 + 𝜖)ℐ(𝜇𝑢 + 𝜖 ≥ −𝑅) + (−𝑅) · ℐ(𝜇𝑢 + 𝜖 < −𝑅)|𝜓] =

= E𝜖 [(𝜇𝑢 + 𝜖+𝑅)ℐ(𝜇𝑢 + 𝜖+𝑅 ≥)|𝜓]−𝑅 =

= E𝜁 [𝜁 · ℐ(𝜁 ≥ 0)|𝜓]−𝑅

(B.1)

where 𝜁 = 𝜇𝑢 + 𝜖 + 𝑅. Because 𝜖|𝜓 is normally distributed then 𝜁|𝜓 is also normally

distributed and thus I can compute the expectation above as:
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𝑣 =
1√
2𝜋𝜎𝜁

∫︁ ∞

0

𝑡𝑒
−

(𝑡−𝜇𝜁)
2

2𝜎2
𝜁 𝑑𝑡−𝑅 =

=
1√
2𝜋𝜎𝜁

∫︁ ∞

0

(𝑡− 𝜇𝜁)𝑒
−

(𝑡−𝜇𝜁)
2

2𝜎2
𝜁 𝑑𝑡+

𝜇𝜁√
2𝜋𝜎𝜁

∫︁ ∞

0

𝑡𝑒
−

(𝑡−𝜇𝜁)
2

2𝜎2
𝜁 𝑑𝑡−𝑅 =

= 𝜎𝜁𝜙

(︂
𝜇𝜁
𝜎𝜁

)︂
+ 𝜇𝜁Φ

(︂
𝜇𝜁
𝜎𝜁

)︂
−𝑅 = 𝜎𝜁

(︂
𝜙

(︂
𝜇𝜁
𝜎𝜁

)︂
+
𝜇𝜁
𝜎𝜁

Φ

(︂
𝜇𝜁
𝜎𝜁

)︂)︂
−𝑅

= 𝜎𝜁𝑇

(︂
𝜇𝜁
𝜎𝜁

)︂
−𝑅

(B.2)

where 𝜇𝜁 = 𝜇𝑢 +𝑅 + 𝜎2
𝜖

𝜎2
𝜖+𝜎

2
𝜂
𝜓; 𝜎𝜁 =

√︁
𝜎2
𝜖𝜎

2
𝜂

𝜎2
𝜖+𝜎

2
𝜂
and 𝑇 (𝑥) = 𝑥Φ(𝑥) + 𝜙(𝑥)

B.4 Derivation of Reservation Utilities for Model with

Product Returns

In the original paper, Weitzman (1979) demonstrated that the reservation utility 𝑧 for

a product could be found from Equation (B.3) where I drop the individual (𝑖) and product

(𝑗) indices for compactness

𝑐 =

∫︁ ∞

𝑧

(𝑢− 𝑧)𝑑𝐹 (𝑢) (B.3)

I demonstrated in Section 2.4.1 that the return option changes the distribution of the

reward and thus, in this case, I need to find the distribution of the expected purchase

utility from Equation (B.2). Notice that the randomness comes from the signal of customer

preference 𝜓 while all other parameters are fixed and known to the customer.
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𝐹 (𝑢) = P[𝑣(𝜓) ≤ 𝑢] = P [𝜎𝜁𝑇 (𝜇𝜁/𝜎𝜁)−𝑅 ≤ 𝑢] = P
[︂
𝑇 (𝜇𝜁/𝜎𝜁) ≤

𝑢+𝑅

𝜎𝜁

]︂
=

= P
[︂
𝜇𝜁/𝜎𝜁 ≤ 𝑇−1

(︂
𝑢+𝑅

𝜎𝜁

)︂]︂
= P

[︂
𝜇𝜁 ≤ 𝜎𝜁𝑇

−1

(︂
𝑢+𝑅

𝜎𝜁

)︂]︂
=

= P
[︂
𝜇𝑢 +𝑅 +

𝜎2
𝜖

𝜎2
𝜖 + 𝜎2

𝜂

𝜓 ≤ 𝜎𝜁𝑇
−1

(︂
𝑢+𝑅

𝜎𝜁

)︂]︂
=

= P

[︃
𝜓√︀

𝜎2
𝜖 + 𝜎2

𝜂

≤
√︀
𝜎2
𝜖 + 𝜎2

𝜂

𝜎2
𝜖

(︂
𝜎𝜁𝑇

−1

(︂
𝑢+𝑅

𝜎𝜁

)︂
− 𝜇𝑢 −𝑅

)︂]︃
=

= Φ

[︃√︀
𝜎2
𝜖 + 𝜎2

𝜂

𝜎2
𝜖

(︂
𝜎𝜁𝑇

−1

(︂
𝑢+𝑅

𝜎𝜁

)︂
− 𝜇𝑢 −𝑅

)︂]︃
(B.4)

Next, I plug-in the distribution from Equation (B.4) into Equation (B.3) and obtain:

𝑐 =

∫︁
∞

√
𝜎2
𝜖+𝜎2

𝜂

𝜎2
𝜖

(︂
𝜎𝜁𝑇

−1

(︂
𝑢+𝑅
𝜎𝜁

)︂
−𝜇𝑢−𝑅

)︂ 𝜎𝜁𝑇
⎛⎜⎝𝜇𝑢 +𝑅 + 𝜎2

𝜖√
𝜎2
𝜖+𝜎

2
𝜂

𝑡

𝜎𝜁

⎞⎟⎠−𝑅− 𝑧 𝑑Φ(𝑡) =

= 𝜎𝜁

∫︁
∞

𝜃

𝑇

⎛⎜⎝𝜇𝑢 +𝑅 + 𝜎2
𝜖√

𝜎2
𝜖+𝜎

2
𝜂

𝑡

𝜎𝜁

⎞⎟⎠− 𝑇

⎛⎜⎝𝜇𝑢 +𝑅 + 𝜎2
𝜖√

𝜎2
𝜖+𝜎

2
𝜂

𝜃

𝜎𝜁

⎞⎟⎠ 𝑑Φ(𝑡)

(B.5)

where I used the substitution 𝑧 = 𝑇

⎛⎝𝜇𝑢+𝑅+
𝜎2
𝜖√

𝜎2
𝜖+𝜎2

𝜂

𝜃

𝜎𝜁

⎞⎠

B.5 Approximating the Solution to the Equation

In the paper, I made an identifying assumption that 𝜎𝜖 = 1. Thus, from Equation (B.5)

it could be seen that the reservation utility is a function of three parameters: 𝑧⋆ = 𝑓(𝜇𝑢 +
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𝑅, 𝜎𝜂, 𝑐) = 𝑓(𝑥1, 𝑥2, 𝑥3). During the optimization algorithm – finding this function for each

customer-product combination is not feasible as it involves many integration steps.

To circumvent the computational burden, I used trilinear interpolation technique. Specif-

ically, for three-dimensional variable (𝑥1, 𝑥2, 𝑥3), I constructed a grid of values and computed

the exact reservation utilities for each element of the grid. Notice that in this case, the space

of possible values of (𝑥1, 𝑥2, 𝑥3) is divided into 3-dimensional cubes. For each of these cubes,

I know the exact values of reservation utilities in eight vertices. For any vector within the

cube, I approximate the reservation utility function 𝑓(𝑥1, 𝑥2, 𝑥3) as:

𝑓𝑡𝑟𝑢𝑒(𝑥1, 𝑥2, 𝑥3) ≃ 𝑓𝑎𝑝𝑝𝑟𝑜𝑥(𝑥1, 𝑥2, 𝑥3)

=𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥1𝑥2 + 𝛼5𝑥2𝑥3 + 𝛼6𝑥1𝑥3 + 𝛼7𝑥1𝑥2𝑥3

(B.6)

where I require 𝑓𝑎𝑝𝑝𝑟𝑜𝑥(𝑥1, 𝑥2, 𝑥3) = 𝑓𝑡𝑟𝑢𝑒(𝑥1, 𝑥2, 𝑥3) at the grid (or cube vertices) points.

Because 𝑓𝑎𝑝𝑝𝑟𝑜𝑥(𝑥1, 𝑥2, 𝑥3) has eight parameters and eight constraints, the linear system has

a unique solution for each cell.

B.6 Derivation of Equivalent Set of Constraints on

Model Parameters

After combining Equations (2.9) to (2.10), I can compute the variable 𝑊𝑖 from Equa-

tion (2.16). For compactness and without loss of generality, I drop customer index 𝑖:
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𝑊𝑖 =

[︃
𝐶−1∏︁
𝑗=0

ℐ(𝜔𝑗+1 ≥ max
𝑠=𝑗+2..𝑆

𝜔𝑠) · ℐ(max
𝑠=0..𝑗

𝑣𝑠 ≤ max
𝑠=𝑗+1..𝑆

𝜔𝑠)

]︃

× ℐ(𝜔𝐶 ≥ max
𝑠=𝐶+1..𝑆

𝜔𝑠) · ℐ(max
𝑠=0..𝐶

𝑣𝑠 ≥ max
𝑠=𝐶+1..𝑆

𝜔𝑠)

× ℐ(𝑣𝑏 ≥ max
𝑠=0..𝐶

𝑣𝑠) · ℐ(𝑥′𝑏𝛽𝑢 + 𝜖𝑏 ≥ 𝑅)

(B.7)

Consider the first part of the equation:

𝑃1 =

[︃
𝐶−1∏︁
𝑗=0

ℐ(𝜔𝑗+1 ≥ max
𝑠=𝑗+2..𝑆

𝜔𝑠)

]︃
· ℐ(𝜔𝐶 ≥ max

𝑠=𝐶+1..𝑆
𝜔𝑠)

=

[︃
𝐶−1∏︁
𝑗=0

[︃
𝑆∏︁

𝑠=𝑗+1

ℐ(𝜔𝑗+1 ≥ 𝜔𝑠)

]︃]︃
· ℐ(𝜔𝐶 ≥ max

𝑠=𝐶+1..𝑆
𝜔𝑠)

=

[︃
𝐶−1∏︁
𝑗=1

ℐ(𝜔𝑗 ≥ 𝜔𝑗+1)

]︃
· ℐ(𝜔𝐶 ≥ max

𝑗=𝐶+1..𝑆
𝜔𝑗)

(B.8)

Notice that Equation (B.7) is a necessary condition for 𝑊 = 1. Thus, I can assume that

these inequalities hold in further derivations. Specifically, it follows that max𝑠=𝑗+1..𝑆 𝜔𝑠 =

𝜔𝑗+1 and I can rewrite the part of the equation as:

𝑃2 =
𝐶−1∏︁
𝑗=0

ℐ(max
𝑠=0..𝑗

𝑣𝑠 ≤ max
𝑠=𝑗+1..𝑆

𝜔𝑠) =
𝐶−1∏︁
𝑗=0

ℐ(max
𝑠=0..𝑗

𝑣𝑠 ≤ 𝜔𝑗+1)

=
𝐶−1∏︁
𝑗=0

[︃
𝑗∏︁
𝑠=0

ℐ(𝑣𝑠 ≤ 𝜔𝑗+1)

]︃
=

𝐶−1∏︁
𝑗=0

ℐ(𝑣𝑗 ≤ 𝜔𝐶)

(B.9)

Similarly, I find that:
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𝑃3 = ℐ(max
𝑠=0..𝐶

𝑣𝑠 ≥ max
𝑠=𝐶+1..𝑆

𝜔𝑠) · ℐ(𝑣𝑏 ≥ max
𝑠=0..𝐶

𝑣𝑠)

= ℐ(𝑣𝑏 ≥ max
𝑠=𝐶+1..𝑆

𝜔𝑠) ·
𝐶∏︁
𝑗=0

ℐ(𝑣𝑗 ≤ 𝑣𝑏)

(B.10)

Finally, combining all Equations (B.8) to (B.10) and adding the returns inequality, I find

the equivalent simplified form of the inequality constraints:

𝑊 =

[︃
𝐶−1∏︁
𝑗=1

ℐ(𝜔𝑗 ≥ 𝜔𝑗+1)

]︃
· ℐ(𝜔𝐶 ≥ max

𝑗=𝐶+1..𝑆
𝜔𝑗)

×

[︃
𝐶−1∏︁
𝑗=0

ℐ(𝑣𝑗 ≤ min{𝜔𝐶 , 𝑣𝑏})

]︃
· ℐ(𝑣𝐶 ≤ 𝑣𝑏) · ℐ(𝑣𝑏 ≥ max

𝑗=𝐶+1..𝑆
𝜔𝑗)

× ℐ(𝑥′𝑏𝛽𝑢 + 𝜖𝑏 ≥ −𝑅)

(B.11)

B.7 Derivation of Semi-Closed Form Likelihood

As in the previous sections, I drop the customer related index 𝑖 for compactness. Recall

the set of constraints in simplified form from Equation (2.13)

𝑊 =

[︃
𝐶−1∏︁
𝑗=1

ℐ(𝜔𝑗 ≥ 𝜔𝑗+1)

]︃
· ℐ(𝜔𝐶 ≥ max

𝑗=𝐶+1..𝑆
𝜔𝑗)

×

[︃
𝐶−1∏︁
𝑗=0

ℐ(𝑣𝑗 ≤ min{𝜔𝐶 , 𝑣𝑏})

]︃
· ℐ(𝑣𝐶 ≤ 𝑣𝑏) · ℐ(𝑣𝑏 ≥ max

𝑗=𝐶+1..𝑆
𝜔𝑗)

× ℐ(𝑥′𝑏𝛽𝑢 + 𝜖𝑏 ≥ −𝑅)

(B.12)
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where 𝑣𝑗 is a function of unobservable shock 𝜓𝑗; 𝜔𝑗 is a function of unobserved shock 𝜉𝑗 and

unobserved shock 𝜖𝑏. To compute the likelihood, I need to integrate out all these unobserved

shocks. In Equation (B.13) I use the fact that all 𝜓𝑗 and 𝜉𝑗 are independent by assumption,

while 𝜖𝑏 and 𝜓𝑏 are dependent.

∫︁
· · ·
∫︁
𝑊𝑑𝐹

=

∫︁
· · ·
∫︁
𝑊

𝐶∏︁
𝑗=1,𝑗 ̸=𝑏

𝑑𝐹𝜓𝑗
(𝜓𝑗)

𝑆∏︁
𝑗=1

𝑑𝐹𝜉𝑗(𝜉𝑗)𝑑𝐹𝜓𝑏,𝜖𝑏(𝜓𝑏, 𝜖𝑏)

=

∫︁
· · ·
∫︁
𝑊

𝐶∏︁
𝑗=1,𝑗 ̸=𝑏

𝑑𝐹𝜓𝑗
(𝜓𝑗)

𝑆∏︁
𝑗=1

𝑑𝐹𝜉𝑗(𝜉𝑗)𝑑𝐹𝜖𝑏|𝜓𝑏
(𝜖𝑏|𝜓𝑏)𝑑𝐹𝜓𝑏

(𝜓𝑏)

(B.13)

The distribution 𝐹𝜖𝑏|𝜓𝑏
(𝜖𝑏|𝜓𝑏) is known from Appendix B.4 and thus I can integrate out

the variable 𝜖𝑏 as only one constraint depends on it.

∫︁
ℐ(𝑥′𝑏𝛽𝑢 + 𝜖𝑏 ≥ −𝑅)𝑑𝐹𝜖𝑏|𝜓𝑏

(𝜖𝑏|𝜓𝑏) =

1− Φ

⎡⎣−𝑅 + 𝑥′𝑏𝛽
𝑢 + 𝜎2

𝜖

𝜎2
𝜖+𝜎

2
𝜂
𝜓𝑏√︁

𝜎2
𝜖𝜎

2
𝜂

𝜎2
𝜖+𝜎

2
𝜂

⎤⎦ = 𝑅𝑃𝑏(𝜓𝑏)

(B.14)

Next, I notice that 𝜉𝑗 : 𝑗 = 𝐶 + 1..𝑆 appear only in two constraints which could be sim-

plified to:

155



∫︁
· · ·
∫︁

ℐ(𝜔𝐶 ≥ max
𝑗=𝐶+1..𝑆

𝜔𝑗)ℐ(𝑣𝐶 ≤ 𝑣𝑏) · ℐ(𝑣𝑏 ≥ max
𝑗=𝐶+1..𝑆

𝜔𝑗)
𝑆∏︁

𝑗=𝐶+1

𝑑𝐹𝜉𝑗(𝜉𝑗)

=

∫︁
· · ·
∫︁

ℐ(min{𝑣𝑏, 𝜔𝐶} ≥ max
𝑗=𝐶+1..𝑆

𝜔𝑗)
𝑆∏︁

𝑗=𝐶+1

𝑑𝐹𝜉𝑗(𝜉𝑗)

=

∫︁
· · ·
∫︁ 𝑆∏︁

𝑗=𝐶+1

ℐ(min{𝑣𝑏, 𝜔𝐶} ≥ 𝜔𝑗)
𝑆∏︁

𝑗=𝐶+1

𝑑𝐹𝜉𝑗(𝜉𝑗)

=
𝑆∏︁

𝑗=𝐶+1

∫︁
ℐ(min{𝑣𝑏, 𝜔𝐶} ≥ 𝜔𝑗)𝑑𝐹𝜉𝑗(𝜉𝑗)

(B.15)

Notice that 𝜔𝑗(𝜉𝑗) is an inversible function for each 𝑗. (Equation (2.5) implies that this

function would be different depending on product characteristics and costs). Thus, I can

compute:

𝑆∏︁
𝑗=𝐶+1

∫︁
ℐ(min{𝑣𝑏, 𝜔𝐶} ≥ 𝜔𝑗(𝜉𝑗))𝑑𝐹𝜉𝑗(𝜉𝑗)

=
𝑆∏︁

𝑗=𝐶+1

∫︁
ℐ
(︀
𝜔−1
𝑗 (min{𝑣𝑏, 𝜔𝐶}) ≤ 𝜉𝑗

)︀
𝑑𝐹𝜉𝑗(𝜉𝑗)

=
𝑆∏︁

𝑗=𝐶+1

[︀
1− 𝐹𝜉𝑗

(︀
𝜔−1
𝑗 (min{𝑣𝑏, 𝜔𝐶})

)︀]︀
(B.16)

Next, I modify constraints related to purchase decision. However, in this case I consider

three separate cases: choosing the outside option, choosing the last searched option, all else:
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[︃
𝐶−1∏︁
𝑗=0

ℐ(𝑣𝑗 ≤ min{𝜔𝐶 , 𝑣𝑏})

]︃
· ℐ(𝑣𝐶 ≤ 𝑣𝑏) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[︁∏︀𝐶−1
𝑗=1 ℐ(𝑣𝑗 ≤ min{𝜔𝐶 , 𝑣0})

]︁
· ℐ(𝑣𝐶 ≤ 𝑣0) · ℐ(𝑣0 ≤ 𝜔𝐶) 𝑏 = 0[︁∏︀𝐶−1

𝑗=1 ℐ(𝑣𝑗 ≤ min{𝜔𝐶 , 𝑣𝐶})
]︁
· ℐ(𝑣0 ≤ min{𝜔𝐶 , 𝑣𝐶}) 𝑏 = 𝐶[︁∏︀𝐶−1

𝑗=1,𝑗 ̸=𝑏 ℐ(𝑣𝑗 ≤ min{𝜔𝐶 , 𝑣𝑏})
]︁
ℐ(𝑣𝐶 ≤ 𝑣𝑏 ≤ 𝜔𝐶 , 𝑣0 ≤ min{𝜔𝐶 , 𝑣𝑏}) other

(B.17)

Notice that all other inequalities except those in Equation (B.17) do not depend on the

unobserved shocks {𝜓𝑗 : 𝑗 = 1..𝐶, 𝑗 ̸= 𝑏} and thus could be integrated out. Because 𝑣𝑗(𝜓𝑗) is

an inversible function for each 𝑗 (Equation (2.3) implies that this function would be different

depending on product characteristics and costs). Consider integration of different cases from

Equation (B.17) and remember that in case the customer chose the non-outside option, I

should keep the result from Equation (B.14) as return probability 𝑅𝑃𝑏(𝜓𝑏) depends on 𝜓𝑏.

Choice of outside option or 𝑏 = 0∫︁
· · ·
∫︁ [︃𝐶−1∏︁

𝑗=1

ℐ(𝑣𝑗 ≤ min{𝜔𝐶 , 𝑣0})

]︃
· ℐ(𝑣𝐶 ≤ 𝑣0) · ℐ(𝑣0 ≤ 𝜔𝐶)

𝐶∏︁
𝑗=1

𝑑𝐹𝜓𝑗
(𝜓𝑗)

=

∫︁
· · ·
∫︁ [︃𝐶−1∏︁

𝑗=1

ℐ
(︀
𝜓𝑗 ≤ 𝑣−1

𝑗 (min{𝜔𝐶 , 𝑣0})
)︀]︃

· ℐ(𝜓𝐶 ≤ 𝑣−1
𝐶 (𝑣0)) · ℐ(𝑣0 ≤ 𝜔𝐶)

×
𝐶∏︁
𝑗=1

𝑑𝐹𝜓𝑗
(𝜓𝑗) = ℐ(𝑣0 ≤ 𝜔𝐶)

[︃
𝐶−1∏︁
𝑗=1

𝐹𝜓𝑗

(︀
𝑣−1
𝑗 (min{𝜔𝐶 , 𝑣0})

)︀]︃
𝐹𝜓𝐶

(︀
𝑣−1
𝐶 (𝑣0)

)︀
(B.18)
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Choice of last clicked option or 𝑏 = 𝐶∫︁
· · ·
∫︁
𝑅𝑃𝐶(𝜓𝐶)

[︃
𝐶−1∏︁
𝑗=1

ℐ(𝑣𝑗 ≤ min{𝜔𝐶 , 𝑣𝐶})

]︃
ℐ(𝑣0 ≤ min{𝜔𝐶 , 𝑣𝐶})

×
𝐶∏︁
𝑗=1

𝑑𝐹𝜓𝑗
(𝜓𝑗) =

∫︁
· · ·
∫︁
𝑅𝑃𝐶(𝜓𝐶)

[︃
𝐶−1∏︁
𝑗=1

ℐ
(︀
𝜓𝑗 ≤ 𝑣−1

𝑗 (min{𝜔𝐶 , 𝑣𝐶})
)︀]︃

×ℐ(𝑣0 ≤ 𝑣𝐶)ℐ(𝑣0 ≤ 𝜔𝐶)
𝐶∏︁
𝑗=1

𝑑𝐹𝜓𝑗
(𝜓𝑗) = ℐ(𝑣0 ≤ 𝜔𝐶)

×
∫︁
𝑅𝑃𝐶(𝜓𝐶)

[︃
𝐶−1∏︁
𝑗=1

𝐹𝜓𝑗

(︀
𝑣−1
𝑗 (min{𝜔𝐶 , 𝑣𝐶})

)︀]︃
ℐ(𝑣0 ≤ 𝑣𝐶)𝑑𝐹𝜓𝐶

(𝜓𝐶)

=ℐ(𝑣0 ≤ 𝜔𝐶)

∫︁ ∞

𝑣−1
𝐶 (𝑣0)

𝑅𝑃𝐶(𝜓𝐶)
𝐶−1∏︁
𝑗=1

𝐹𝜓𝑗

(︀
𝑣−1
𝑗 (min{𝜔𝐶 , 𝑣𝐶})

)︀
𝑑𝐹𝜓𝐶

(𝜓𝐶)

(B.19)

Choice of other option or 0 < 𝑏 < 𝐶∫︁
· · ·
∫︁
𝑅𝑃𝐵(𝜓𝑏)

[︃
𝐶−1∏︁

𝑗=1,𝑗 ̸=𝑏

ℐ(𝑣𝑗 ≤ min{𝜔𝐶 , 𝑣𝑏})

]︃
ℐ(𝑣𝐶 ≤ 𝑣𝑏 ≤ 𝜔𝐶)

×ℐ(𝑣0 ≤ min{𝜔𝐶 , 𝑣𝑏})
𝐶∏︁
𝑗=1

𝑑𝐹𝜓𝑗
(𝜓𝑗) =

∫︁
· · ·
∫︁
𝑅𝑃𝐵(𝜓𝑏)

×

[︃
𝐶−1∏︁

𝑗=1,𝑗 ̸=𝑏

ℐ(𝑣𝑗 ≤ min{𝜔𝐶 , 𝑣𝑏})

]︃
ℐ(𝜓𝐶 ≤ 𝑣−1

𝐶 (𝑣𝑏))(𝑣0 ≤ 𝑣𝑏 ≤ 𝜔𝐶)

×
𝐶∏︁
𝑗=1

𝑑𝐹𝜓𝑗
(𝜓𝑗) = ℐ(𝑣0 ≤ 𝜔𝐶)

=

∫︁ 𝑣−1
𝑏 (𝜔𝐶)

𝑣−1
𝑏 (𝑣0)

𝑅𝑃𝑏(𝜓𝑏)

[︃
𝐶−1∏︁

𝑗=1,𝑗 ̸=𝑏

𝐹𝜓𝑗

(︀
𝑣−1
𝑗 (min{𝜔𝐶 , 𝑣𝑏})

)︀]︃
𝐹𝜓𝐶

(𝑣−1
𝐶 (𝑣0))𝑑𝐹𝜓𝑏

(𝜓𝑏)

(B.20)

Notice that after combining Equations (B.18) to (B.20) and recalling Equation (B.14)

and Equation (B.16), I can rewrite the original integral in Equation (B.13) as:
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∫︁
· · ·
∫︁
𝑊𝑑𝐹 (𝜖, 𝜓, 𝜉)∫︁

· · ·
∫︁

ℐ(𝑣0 ≤ 𝜔𝐶)
𝐶−1∏︁
𝑗=1

ℐ(𝜔𝑗 ≥ 𝜔𝑗+1)

∫︁ 𝜓𝑏

𝜓𝑏

𝐵(𝜉𝐶 , 𝜓𝑏)𝑑𝐹𝜓𝑏
(𝜓𝑏)

𝐶∏︁
𝑗=1

𝑑𝐹𝜉𝑗(𝜉𝑗)

(B.21)

where 𝐵(·, ·) is a function which depends only on two unobserved shocks 𝜉𝐶 through 𝜔𝐶 and

𝜓𝑏 through 𝑣𝑏.

Next, notice that only 𝜔𝐶(𝜉𝐶) depends on 𝜉𝐶 , therefore, Equation (B.21) could be rewrit-

ten as:

∫︁
· · ·
∫︁
𝑊𝑑𝐹 (𝜖, 𝜓, 𝜉)

=

∫︁ +∞

−∞

∫︁ 𝜓𝑏

𝜓𝑏

ℐ(𝑣0 ≤ 𝜔𝐶)𝐵(𝜉𝐶 , 𝜓𝑏)𝐷(𝜉𝐶)𝑑𝐹𝜓𝑏
(𝜓𝑏)𝑑𝐹𝜉𝐶 (𝜉𝐶)

𝐷(𝜉𝐶) =

∫︁
· · ·
∫︁ 𝐶−1∏︁

𝑗=1

ℐ(𝜔𝑗 ≥ 𝜔𝑗+1)
𝐶−1∏︁
𝑗=1

𝑑𝐹𝜉𝑗(𝜉𝑗)

(B.22)

Notice that in Equation (B.22), I need to simulate only 𝐶+1 random shocks in comparison

with 𝑆 + 𝐶 + 1 in Equation (B.12). Because typically 𝑆 >> 𝐶 (number of viewed prod-

ucts is much higher than number of clicks), this is already a large improvement. However,∏︀𝐶−1
𝑗=1 ℐ(𝜔𝑗 ≥ 𝜔𝑗+1) could have quite many sharp constraints in longer sessions, which may

result in a higher chance of having zero-valued integral approximation in Equation (B.22).

Also, as discussed in the paper, the reservation utility 𝜔𝑗 → ∞ if search costs 𝑐𝑗 → 𝑐𝑗, where

𝑐𝑗 is an upper bound on costs and could be found from Equation (B.5) by making 𝜃 → −∞.

This implies that I can consider only values of the parameters which keep the search costs
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for clicked products lower than their corresponding upper bounds.

I notice that
∏︀𝐶−1

𝑗=1 ℐ(𝜔𝑗 ≥ 𝜔𝑗+1) has a chain-like structure. Thus, I can sample random

shocks iteratively. Let’s assume I sampled some value of 𝜉𝐶 with 𝜉𝑔𝐶 being a realization of this

random variable (thus, 𝜔𝑔𝐶 = 𝜔𝐶(𝜉
𝑔
𝐶) also sampled). In this case, I may sample 𝜉𝐶−1 in a way

that 𝜔𝐶−1 ≥ 𝜔𝐶 (or 𝜉𝐶−1 ≤ min{𝜔−1
𝐶−1 (𝜔𝐶(𝜉

𝑔
𝐶)) , 𝑐𝐶−1}) for random shock itself), however, I

should adjust for probability of such event 𝐹𝜉𝐶−1

(︀
min{𝜔−1

𝐶−1 (𝜔𝐶(𝜉
𝑔
𝐶)) , 𝑐𝐶−1}

)︀
. Notice that

after generating 𝜉𝑔𝐶−1, I can repeat this procedure for 𝜉𝐶−2 and so on.

After recursively applying of the procedure discussed in the previous paragraph for each 𝑗,

I obtain the random sample (𝜉𝑔1 , .., 𝜉
𝑔
𝐶) such that

∏︀𝐶−1
𝑗=1 ℐ(𝜔𝑗 ≥ 𝜔𝑗+1) = 1 but the probability

needs to be adjusted by:

𝐶−1∏︁
𝑗=1

𝐹𝜉𝑗
(︀
min{𝜔−1

𝑗

(︀
𝜔𝑗+1(𝜉

𝑔
𝑗+1)

)︀
, 𝑐𝑗}

)︀
(B.23)

Therefore, by using the recursive shock generation I can eliminate
∏︀𝐶−1

𝑗=1 ℐ(𝜔𝑗 ≥ 𝜔𝑗+1)

from Equation (B.21). Finally, notice that I can eliminate ℐ(𝑣0 ≤ 𝜔𝐶) from Equation (B.21)

by sampling 𝜉𝐶 from distribution such that 𝑣0 ≤ 𝜔𝐶 holds and adjust the probability by

𝐹𝜉𝐶
(︀
min{𝜔−1

𝐶 (𝑣0), 𝑐𝐶}
)︀
.

At the end, I summarize the procedure which I used to compute the objective function

as follows:

1. Set the probability 1 → 𝑊 𝑔

2. Generate random shock 𝜉𝑔𝐶 from truncated 𝐹𝜉𝐶 |𝜉𝐶≤min{𝜔−1
𝐶 (𝑣0),𝑐𝐶} and set

𝑊 𝑔 · 𝐹𝜉𝐶 |𝜉𝐶≤min{𝜔−1
𝐶 (𝑣0),𝑐𝐶} → 𝑊 𝑔
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3. If customer chose the non-outside option – generate random shock 𝜓𝑔𝑏 from truncated

𝐹𝜓𝑏|𝜓𝑏≥𝜓𝑏
and set 𝑊 𝑔 · (1 − 𝐹𝜓𝑏

(𝜓𝑏)) → 𝑊 𝑔, where 𝜓𝑏 could be found from Equa-

tion (B.19) and Equation (B.20)

4. Compute 𝐵(𝜉𝑔𝐶 , 𝜓
𝑔
𝑏 ) from Equations (B.14) to (B.20) and set 𝑊 𝑔 ·𝐵(𝜉𝑔𝐶 , 𝜓

𝑔
𝑏 ) → 𝑊𝐺

5. Generate recursively random shocks (𝜉𝑔1 , .., 𝜉
𝑔
𝐶−1) discussed in this subsection. Set 𝑊 𝑔 ·∏︀𝐶−1

𝑗=1 𝐹𝜉𝑗
(︀
min{𝜔−1

𝑗

(︀
𝜔𝑗+1(𝜉

𝑔
𝑗+1)

)︀
, 𝑐𝑗}

)︀
→ 𝑊 𝑔

6. If customer did not purchase the last option clicked, the set

𝑊 𝑔 · ℐ [𝑣𝑏(𝜓
𝑔
𝑏 ) ≤ 𝜔𝐶(𝜉

𝑔
𝐶)] → 𝑊 𝑔

7. Repeat steps (1-6) 𝐺 times with different random seed. The estimate of likelihood for

one individual would be ̂︀𝑃 =
∑︀

𝑔𝑊
𝑔/𝐺

B.8 Identification

Consider the setting which closely follows the original model described in detail in Sec-

tion 2.4.1. Assume the retailer has only one product in assortment. The customer 𝑖 visiting

the website receives the signal 𝜓𝑖 = 𝜂𝑖 + 𝜖𝑖 (𝜂𝑖 and 𝜖𝑖 have standard normal distribution and

independent of each other) and has an option to buy the product or leave the website with

utility 0. In case of a purchase the customer receives the unobserved preference shock 𝜖𝑖 and

can return the product by paying 𝑅 or keep it and receive utility 𝛽𝑢0 + 𝜖𝑖.

In this setting given the purchase and return data the retailer (or researcher) could

identify parameters 𝛽𝑢0 and 𝑅. Firstly, notice that the expected purchase utility which takes

into account the return option is simply Equation (2.3) with 𝜎𝜖𝑖𝑗 = 𝜎𝜂𝑖𝑗 = 1 and 𝜇𝑢𝑖𝑗 = 𝛽𝑢0
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𝑣𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒(𝜓𝑖) =
1√
2
· 𝑇
(︂√

2(𝛽𝑢0 +𝑅) +
𝜓𝑖√
2

)︂
−𝑅 (B.24)

where 𝑇 (𝑥) = Φ(𝑥)·𝑥+𝜙(𝑥); Φ(𝑥) and 𝜙(𝑥) are standard normal cdf and pdf respectively and

ℐ(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = 1 if 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is 𝑇𝑟𝑢𝑒. 𝑣𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒(𝜓𝑖) depends on 𝜓𝑖 which is unknown to the

researcher but known to the customer at the moment of purchase. Given the Equation (B.24)

I can compute the probability that the customer chooses the outside option as:

P[choose outside] = P[𝑣𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒(𝜓) < 0] =

=P
[︂

1√
2
· 𝑇
(︂√

2(𝛽𝑢0 +𝑅) +
𝜓𝑖√
2
< 0

)︂
−𝑅

]︂
=P
[︂
𝜓𝑖√
2
< 𝑇−1(

√
2𝑅)−

√
2(𝛽𝑢0 +𝑅)

]︂
= Φ

[︁
𝑇−1(

√
2𝑅)−

√
2(𝛽𝑢0 +𝑅)

]︁ (B.25)

Similarly, I can compute the probability of event when the customer makes a purchase

and returns the product:

P[choose product, return it] = P[𝑣𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒(𝜓) ≥ 0, 𝛽𝑢0 + 𝜖𝑖 ≤ −𝑅] =

=E𝜓𝑖,𝜖𝑖 [ℐ(𝑣𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒(𝜓) ≥ 0) · ℐ(𝛽𝑢0 + 𝜖𝑖 ≤ −𝑅)]

=E𝜓𝑖
[ℐ(𝑣𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒(𝜓) ≥ 0) · E𝜖𝑖 [ℐ(𝛽𝑢0 + 𝜖𝑖 ≤ −𝑅)|𝜓𝑖]]

(B.26)

Given the assumptions on 𝜖𝑖 and 𝜓 I conclude that these variables have a join normal

distribution and thus 𝜖𝑖|𝜓 ∼ 𝒩 (1
2
𝜓𝑖,

1
2
) thus I can find:
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E𝜖𝑖 [ℐ(𝛽𝑢0 + 𝜖𝑖 ≤ −𝑅)|𝜓𝑖] = P[𝜖𝑖 ≤ −𝑅− 𝛽𝑢0 |𝜓𝑖]

=P
[︂
𝜖𝑖 − 𝜓𝑖/2

1/
√
2

≤ −𝑅− 𝛽𝑢0 − 𝜓𝑖/2

1/
√
2

|𝜓𝑖
]︂
= Φ

(︂
−𝑅− 𝛽𝑢0 − 𝜓𝑖/2

1/
√
2

)︂ (B.27)

Substituting Equation (B.27) in Equation (B.26) yields:

P[choose product, return it]

=E𝜓𝑖

[︂
ℐ(𝑣𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒(𝜓) ≥ 0) · Φ

(︂
−𝑅− 𝛽𝑢0 − 𝜓𝑖/2

1/
√
2

)︂]︂
=E𝜓𝑖

[︂
ℐ
(︂
𝜓𝑖√
2
< 𝑇−1(

√
2𝑅)−

√
2(𝛽𝑢0 +𝑅)

)︂
· Φ
(︂
−𝑅− 𝛽𝑢0 − 𝜓𝑖/2

1/
√
2

)︂]︂ (B.28)

In empirical setting the retailer could estimate on the data both P[choose outside] and

P[choose product, return it] via event frequency ratios. I denote the estimates of these prob-

abilities as ̂︀𝑃0 and ̂︀𝑃1 respectively. To find the estimates of the parameters 𝛽𝑢0 and 𝑅 the

retailer could solve the system of equations:

̂︀𝑃0 = Φ
[︁
𝑇−1(

√
2𝑅)−

√
2(𝛽𝑢0 +𝑅)

]︁
̂︀𝑃1 = E𝜓𝑖

[︂
ℐ
(︂
𝜓𝑖√
2
≥ 𝑇−1(

√
2𝑅)−

√
2(𝛽𝑢0 +𝑅)

)︂
· Φ
(︂
−𝑅− 𝛽𝑢0 − 𝜓𝑖/2

1/
√
2

)︂]︂ (B.29)

Notice that the first equation could be substituted into the second one and I get:
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̂︀𝑃1 = E𝜓𝑖

[︂
ℐ
(︂
𝜓𝑖√
2
≥ Φ−1( ̂︀𝑃0)

)︂
· Φ
(︂
−𝑅− 𝛽𝑢0 − 𝜓𝑖/2

1/
√
2

)︂]︂
(B.30)

From Equation (B.30) if follows that I can make a substitution and solve the Equa-

tion (B.30) for parameter 𝛼 = 𝑅 + 𝛽𝑢0 . Given that 𝜈𝑖 = 𝜓𝑖/
√
2 has a standard normal

distribution:

̂︀𝑃1 = E𝜈𝑖
[︂
ℐ
(︁
𝜈𝑖 ≥ Φ−1( ̂︀𝑃0)

)︁
· Φ
(︂
− 𝛼

1/
√
2
− 𝜈𝑖

)︂]︂
=

∫︁ ∞

Φ−1( ̂︀𝑃0)

Φ(−𝛼
√
2− 𝜈𝑖)𝜙(𝜈𝑖)𝑑𝜈𝑖 = 𝐵(𝛼)

(B.31)

Notice that the integration range does not depend on parameters and because Φ(𝑡) is an

increasing function of 𝑡 I have that 𝐵(𝛼) is a decreasing function of 𝛼. Thus, I can conclude

that the estimate of 𝛼 could be found as ̂︀𝛼 = 𝐵−1( ̂︀𝑃1) = 𝑄( ̂︀𝑃0, ̂︀𝑃1), where I emphasize that

it would depend on both estimates of probabilities ̂︀𝑃0 and ̂︀𝑃1. Given the estimate ̂︀𝛼 I can

use the first equation from Equation (B.29) to estimate 𝑅 and 𝛽𝑢0 as:

̂︀𝑅 =
1√
2
𝑇
(︁
Φ−1( ̂︀𝑃0) + ̂︀𝛼√2

)︁
̂︁𝛽𝑢𝑜 = ̂︀𝛼− ̂︀𝑅 (B.32)

Equation (B.32) concludes the derivations and demonstrates that given the assumptions

of the model the parameters of the model are identified.
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Table B.1. Comparison with Alternative Estimation Methods

Variable
True

parameter
values

Paper
approach

Simulated
maximum
likelihood

Smoothed
simulated
maximum
likelihood

Maximizing
the true
likelihood

𝛽𝑢0 -1.4 -1.347 -0.285 -2.246 -1.267
𝛽𝑢1 -0.3 -0.280 0.204 1.988 -0.269
𝛽𝜂1 -0.5 -0.443 -0.093 2.365 -0.379
𝛽𝑐0 -4 -3.944 -0.155 -8.666 -3.841
𝛽𝑐1 0.3 0.312 0.047 0.261 0.311
𝑅 -1.5 -1.427 -0.556 1.302 -1.091

Computation
time, min

0 5 173 72 11

Relative
memory usage

0 1 500 50 1

B.9 Additional Analysis on Synthetic Data

In Section 2.5 I discussed the estimation on simulated data. In this subsection, I compare

the method with the methods that are widely used in literature discussed in Section 2.5.4.

The results of the simulations are in Table B.1

Table B.1 demonstrates that the method provides the best accuracy and takes the least

time to converge. The main efficiency gains come from the fact that the approach allows

approximating the likelihood well with a very small number of random shocks (∼20) while

the SML method fails to give a correct estimation even with 10,000 random shocks. The

smoothed SML method provides an even worse quality for the reasons discussed in the main

paper.

Next, I compare the two-stage approach in the paper with the direct maximization of the

likelihood in Equation (B.3). First, I observe that the true likelihood maximization recovers

parameters better than all other methods and the estimates are comparable with the true
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parameters. This supports the identifiability of the model. Second, I see that the parameters

related to returns (3rd and 6th rows) have the worst accuracy and are shrunk towards zero.

This observation supports the justification that the returns data is underweighted in the full

maximization. Notice that this argument is even stronger on the real data which have longer

sessions than in simulated data – this implies that the share of return constraints is even

smaller. Finally, I note that by increasing the sample size, the true likelihood maximization

improves the accuracy.

B.10 Description of the Greedy Algorithm for Ranking

Optimization

Let’s denote Ω a list of 𝐾 ordered products. Assume this list ordered randomly and

without loss of generality Ω = {𝑥1, 𝑥2, ...𝑥𝐾}, where 𝑥𝑖 characteristics of the 𝑖𝑡ℎ product in

a list. Next, assume 𝒱(·) is a function which takes as input an ordered list of products Ω

and returns the number representing the “performance” of Ω. For example, in the paper 𝒱(·)

would be a procedure which simulates the behavior of customers who face some ordered list

of products Ω on the website. In Section 2.8.2 the returning value of this function is the

probability that the customer purchases a product and keeps it, however, any other value

function is possible.

The algorithm which was used in Section 2.8.2 could be summarized as follows:

1. For each 𝑘 ∈ {1..𝐾} repeat:

For each 𝑗 ∈ {𝑘..𝐾} repeat:
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Construct Ω𝑗𝑘 by switching positions of product 𝑗 and 𝑘 in a list Ω𝑘

Compute and store 𝜈𝑗𝑘 = 𝒱(Ω𝑗𝑘)

Choose the index 𝑗⋆ which maximizes 𝜈𝑗𝑘

Store Ω𝑘 = Ω𝑗⋆𝑘

2. Return Ω𝐾 as the greedy-optimal ranking

Intuitively, I iteratively (one-by-one) optimize each position of the list while taking into

account that products chosen as best on previous iterations remain on the same spot. It is

straightforward to show that this algorithm requires ∼ 𝐾2 evaluations of function 𝒱(·) which

could be very slow to compute. Thus, it provides a feasible approximation to the complex

problem of finding the best ranking.

B.11 Model Estimation Results
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Table B.2. Results of Model Estimation on Real Data

Variable Mean Utility Signal Variance

Utility constant -1.447 –

Relative Price -0.003 –

Blouses -0.191 -0.213

Pants -0.046 0.012

Jackets and coats 0.014 0.105

Jeans -0.054 -0.029

Dresses 0.080 0.242

Shoes -0.166 -0.185

Polo Shirts -0.376 -0.814

Tops -0.319 -0.494

Knit -0.223 -0.319

Sweat -0.259 -0.416

Shorts -0.293 -0.339

Skirts -0.006 0.119

Blazer -0.078 -0.026

Classic shirts -0.272 -0.484

Brand: Denim -0.009 0.019

Brand: Menplus -0.025 0.012

Proportion of natural fabric -0.08 -0.165

Color: Blue -0.031 -0.057

Color: Gray -0.020 -0.039

Color: White 0.047 0.123

Color: Green 0.019 -0.009

Color: Yellow 0.028 0.003

Color: Red 0.059 0.098

Search performed on a desktop 0.072 0.005

(not mobile)

Search Costs Parameters

Fixed Mean Search Costs -4.092 –

Variable Position Search Costs (log) 0.303 –

Variable Page Search Costs 0.100 –

Search performed on a desktop 0.231 –

(not mobile)

Return Costs Parameters

Return Costs (log) -1.3472 –
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Appendix C

Appendix for Chapter 3

C.1 Simulation of Removing the Product from the As-

sortment

In Section 3.5 I discussed the results of “evaluating” the past decisions of the retailer or

how the retailer’s well-being would change if it would add some product to the assortment.

However, a more practical problem is to evaluate the well-being after removing some product

from the current assortment or, in other words, identify, which products are driving the

profit/loss.

Figure Figure C-1 illustrates the results of the simulation of removing products from the

assortment. In the figure, each point represents the change in the retailer’s purchase and

return rates after it would remove some products from the website.

The results look qualitatively similar to Figure 3-8, however, the segment interpretation

would change. For example, Quadrant IV, lower right, represents the ”best” products, as
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Figure C-1. Replication of the main result by removing products from the assortment.

removing these products results in higher sales and lower return rates. Similarly, Quadrant

II, upper left, would represent the products that induce losses.

C.2 Alternative Criteria to Remove Products from the

Website

In Section 3.5 the products were grouped based on their predicted return and purchase

rates. This was done to prevent the model to rely on the noisy estimates of return rate and

allow it to be extended to adding a completely new product to the assortment (for example,

a new fashion season). In this section, I split the products into groups based on their true

purchase and return rate evaluated on the combination of train and validation data (to ensure

reliable estimates). Figure C-2 replicates Figure 3-8 with alternative splitting criteria.

The results are qualitatively the same. Ultimately, the criterion is a less important step
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Figure C-2. Alternative Product Splitting Criteria

as the retailer potentially could run the simulation on the per product level – each product

bin has exactly one product. For the paper, computing per product figure is infeasible as it

would require simulating approximately 10,000 times. This would take approximately 138

days to compute. Moreover, due to the smaller changes to the website, it would require

increasing the number of the simulated customer within a simulation further increasing the

computation time. Practically, the criterion discussed in the paper could be used to rank or

preselect products for per-product simulation. Further research would identify the optimal

algorithm.

C.3 Alternative Scoring of the Products

Figure C-3 replicates the results in Figure 3-9 from Section 3.5. However, instead of

using the results of the model, I rank the products based on the efficient purchase score

P[𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒] · (1 − P[𝑟𝑒𝑡𝑢𝑟𝑛]). I define the efficient purchase score as and intuitively it
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demonstrates how likely the product would end up at customer’s hands. Figure C-3 top-5

highest/lowest score products within each category.

Firstly, Figure C-3 demonstrate the visual differences between the best and worst prod-

ucts based on the score, which in turn supports the findings in the paper. Although, Fig-

ure C-3 and Figure 3-9 share some characteristics (left picture has more non-standard colors)

they are noticeable different. This observation implies that the search step of the model is

important as the “worst” product is not only the product with low sales and high returns,

but also the product is very noticeable by the customer and drags their attention from more

successful products.
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Figure C-3. Highest and Lowest Ranked Products within Category Based on P[𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒] · (1 −
P[𝑟𝑒𝑡𝑢𝑟𝑛])

(a) Low score. (b) High score.
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