
Applications of Large Language Models for Robot
Navigation and Scene Understanding

by

William Chen

S.B., Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (2022)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 William Chen. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored By: William Chen
Department of Electrical Engineering and Computer Science
May 12, 2023

Certified by: Luca Carlone
Associate Professor, Department of Aeronautics and Astronautics
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Applications of Large Language Models for Robot Navigation and

Scene Understanding

by

William Chen

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Common-sense reasoning is a key challenge in robot navigation and 3D scene understand-
ing. Humans tend to reason about their environments in abstract terms, with a wealth of
common sense on object and spatial relations to back up such inferences. Thus, if robots
are to see widespread deployment, they must also be able to reason with such knowledge
to support tasks specified in such terms. As modern language models trained on large
text corpora encode much worldly knowledge, we thus investigate methods for extracting
common sense from such models for use in non-linguistic semantically grounded robotics
tasks. We start by examining how language models can be used for attaching abstract room
classes to locations based on visual percepts and lower-level object classes, commonly gen-
erated by spatial perception systems. We detail three language-only approaches (zero-shot,
embedding-based, and structured language) as well as two vision-and-language approaches
(zero-shot and fine-tuned), finding that language-leveraging systems outperform both stan-
dard pure-vision and scene graph neural classifiers while yielding impressive generaliza-
tion and transfer abilities. We then consider a simple robot semantic navigation task to see
how an agent can act upon prior knowledge encoded within language models in order to
find goal objects by reasoning about where such objects can be found. Our framework,
Language Models as Probabilistic Priors (LaMPP), uses the language model to fill in pa-
rameters of standard probabilistic graphical models. We also touch upon use cases outside
of robotics, namely semantic segmentation and video action segmentation. Lastly, we show
how common-sense knowledge can be extracted from language models and encoded in ab-
stract spatial ontology graphs. We measure how well language model scores align with
human common sense judgements regarding object and spatial relationships. Ultimately,
we hope this work paves the way for more advanced robot semantic scene understanding
and navigation algorithms that leverage language models.

Thesis Supervisor: Luca Carlone
Title: Associate Professor, Department of Aeronautics and Astronautics

3

4

Acknowledgments

First and foremost: I would like to thank my advisor, Luca Carlone – for guiding me

through this thesis; for teaching me research skills, both technical and communicative;

for giving me the chance to help teach the best class at MIT; for helping me uncover my

passion for robotics and natural language processing; and, most of all, for answering my

Slack messages at weird hours of the night. I’m sure I could continue this list for a lot

longer, but all those words still would not adequately communicate my gratitude.

I’d also like to thank Jacob Andreas for both supervising the LaMPP project and being

an invaluable source of mentorship and knowledge of natural language processing and

its connections to robotics, autonomy, and decision-making. Your classes, advice, and

discussions have really helped me shape my research interests, both throughout this project

and going forward.

Next, I want to thank my paper collaborators and co-authors: Siyi Hu, Rajat Talak,

Belinda Shi, Pratyusha Sharma, Jared Strader, and Nathan Hughes. These projects would

not have been possible without all of your boundless talent and understanding. A big thank-

you to the rest of SPARK Lab and the LINGO group as well.

Outside of my research colleagues, I want to thank all the friends, classmates, and

professors I’ve met at MIT. Thank you all for constantly inspiring me to learn new things,

face new challenges, and improve myself. The road ahead is still long, but I’ll be sure to

hold onto the lessons you all have taught me.

Finally, I’d like to thank my plush wolf, Steven Derpwolf, for his constant love and

support. Gonna need a lot more of that for the adventures that await.

5

6

Contents

1 Introduction 15

1.1 The Path Towards Everyday Robots . 15

1.2 Language Models and Robotics . 16

1.3 Scene Understanding . 17

1.4 Robot Navigation . 17

1.5 Large-scale Spatial Ontology . 18

1.6 Thesis Structure . 19

2 Scene Understanding 21

2.1 Related Works . 21

2.2 Language-only Methods . 23

2.2.1 Query Strings and Informativeness 23

2.2.2 Zero-shot Approach . 25

2.2.3 Embedding-based Approach . 25

2.2.4 Structured-data Approach . 25

2.3 Vision-and-Language Methods . 27

2.3.1 Zero-shot Approach . 27

2.3.2 Fine-tuning Approach . 27

2.4 Experimental Setup . 28

2.4.1 Datasets . 28

2.4.2 Baselines . 29

2.4.3 Language-only Trial Specifications 29

2.4.4 Vision-and-Language Trial Specifications 30

7

2.4.5 Additional Trials . 31

2.5 Results . 31

2.5.1 Language-only Results . 32

2.5.2 Vision-and-Language Results . 35

2.5.3 Building Trial Results . 37

2.5.4 Real 3D Scene Graph Results . 37

2.6 Conclusion . 38

3 Robot Navigation 41

3.1 Related Works . 43

3.2 Methods . 44

3.3 LaMPP for Navigation . 46

3.3.1 Problem Statement . 46

3.3.2 Methods . 47

3.3.3 Experiments . 49

3.3.4 Evaluation & Results . 50

3.4 Other Applications of LaMPP . 51

4 Large-scale Spatial Ontology 55

4.1 Related Works . 56

4.2 Methods . 57

4.2.1 The Spatial Ontology . 57

4.2.2 Constructing the Ontology Graph 57

4.2.3 Generating Ontology Weights . 59

4.2.4 Binarizing Ontology Edges via Thresholding 60

4.2.5 Direct Generation of Binary Ontology Edges 61

4.3 Experiments and Evaluation . 61

4.3.1 Querying for Language Model Scores 61

4.3.2 Querying for Direct Generation of Binary Ontology Edges 62

4.3.3 Evaluating Human Judgement Alignment 62

4.4 Discussion . 68

8

4.4.1 Key Takeaways . 68

4.4.2 Possible Evaluation Concerns . 69

4.5 Future Works . 70

4.5.1 Further Automation of Ontology Construction 70

4.5.2 Use of Ontology in Spatial Perception 72

5 Future Works and Conclusions 73

5.1 Current Work Extensions . 73

5.2 What Comes Next? . 74

5.3 Conclusion . 76

A Robot Scene Understanding Implementation Details 79

A.1 Converting Matterport3D to Scene Graphs 79

A.2 Embedding-based Bootstrapping Method 81

A.3 Structured-language Query Details . 81

A.4 Vision and Language Dataset Generation 81

A.5 Training Details . 82

A.6 Building Embedding-based Data Generation Details 82

B LaMPP Baseline Details 85

B.1 Model Chaining Navigation Baseline . 85

C Ontology Construction Proofs 87

C.1 Sorted CMF Parameter Tuning with Human Data 87

C.2 Proof of Equivalence of Hierarchical Graphs and Directed Acyclic Graphs . 87

C.3 Analysis of the Approximate Maximum Acyclic Subgraph Algorithm . . . 88

C.4 Longest Path Hierarchy Partition Algorithm 90

9

10

List of Figures

2-1 3D scene graph example. We use (V)LMs to attach high-level labels to

nodes using lower-level information. 22

2-2 Zero-shot accuracies on all data for all conditions, by room label. 34

2-3 Inferred and actual room labels on a real 3D scene graph created by Hydra

[36]. Purple regions show the bottoms of room bounding boxes. 38

3-1 A general illustration of how to apply LaMPP to the probabilistic gener-

ative framing of a task. The language model provides probabilistic priors

connecting auxiliary and target variables. 45

3-2 The generative structure used in the navigation task. We wish to find loca-

tions that maximize the probability of y being true (i.e., the goal object g

being nearby) based on observations x and latent room variables r. 47

4-1 Example of how a subgraph of a probabilistic ontology can be binarized

via sorted cumulative mass function thresholding. The weights (thickness)

of outgoing edges of “sink” define a conditional distribution which can be

turned into a sCMF function. After thresholding, only admitted relations’

edges are kept in the binarized ontology. 60

4-2 ConceptNet p@k ontology weights generated from GPT-J (with various

queries) or GPT-3. Each subplot represents a different query type. x-axis

represents N and the color of bar indicates k = 5,10 for blue and orange

respectively. 64

11

4-3 Average percentile of ontology scores of human relation judgements by

rating for GPT-J (with various queries) and GPT-3. Error bars are one

standard deviation. 65

12

List of Tables

2.1 Test-split accuracies for all language-only approaches. Methods that do not

require training have full dataset accuracy reported in parentheses. Structured-

language yields the highest test split accuracies (bolded). 32

2.2 Test-split room- and image-wise accuracies for all language and vision ap-

proaches. Methods that do not require training have full dataset accuracy

reported in parentheses. 33

2.3 Test accuracies for rooms containing each holdout object. 34

2.4 Test accuracies of building inference approaches. 37

3.1 Zero-shot navigation results. We report class-averaged (over goals) and

frequency-averaged (over episodes) success rates for all baselines and our

LaMPP agent. We also report the classes with the best and worst change in

success rate for the MC and LaMPP agents, relative to the base model. . . . 50

3.2 In- and out-of-distribution semantic segmentation results. We report mean

intersection-over-union for all conditions and models. We also report the

classes with the best and worst change in intersection-over-union relative

to the base model for LaMPP. 51

3.3 Zero-shot and out-of-distribution video action segmentation results. We

report class- and frequency-averaged recall for all conditions and models. . 52

4.1 Best GPT-J and GPT-3 sCMF thresholds per-hierarchy level when optimiz-

ing for classification accuracy on the human judgements dataset. Layers

contain: (0) objects; (1) rooms; (2) buildings, transportation infrastructure,

and small structures; and (3) institutions or groups of buildings. 66

13

4.2 Classification accuracy and confusion matrix metrics of various binary on-

tology production methods when evaluated on human relation judgement

data. Bolded values are best score per metric (higher is better for accuracy

and true classifications, lower for false classifications). 67

A.1 Room label frequencies in pre-processed Matterport3D dataset. 80

14

Chapter 1

Introduction

1.1 The Path Towards Everyday Robots

Recent advances in artificial intelligence and machine learning have allowed robots to see

a surge in deployment in both the domestic and industrial domains. Robots are now being

used to monitor factories, fulfill shipping orders, and vacuum homes, among a myriad of

other applications. However, there are still many obstacles to overcome. If robots are to

see widespread adoption, then they must be able to not only map and localize in many

environments, but also have a semantic understanding of said environments and the entities

within them. Subsequently, they should also have the ability to act upon this understanding.

For example, if a robot is told to “fetch a spoon,” it should know that spoons are typically

found within kitchens, which contain things like refrigerators and stoves. Then, based on

this knowledge, it should be able to find its way to locations that are likely to be kitchens

(for instance, based on an internal map representation).

These aspects are typically inferred using metric-semantic simultaneous localization

and mapping (SLAM) algorithms, wherein a robotic agent maps its environment, deter-

mines its location within it, and annotates the map with semantic and spatial information

[12]. Modern spatial perception systems, like Kimera [76] and Hydra [36], arrange this

data in 3D scene graphs – data structures wherein nodes represent locations and entities

(e.g., buildings, rooms, and objects), while edges represent spatial relationships.

Nodes can hold geometric information (like position and bounding box) for entities

15

and places in the scene. However, attaching semantic labels to these nodes still remains

a major open obstacle, especially for nodes corresponding to high-level spatial concepts,

like rooms and buildings. To label a room node, the system must consider what objects are

in the room (e.g., if it contains a stove, the room is likely a kitchen). This necessitates a

“common-sense” mechanism to provide such knowledge.

1.2 Language Models and Robotics

One largely unexplored candidate method for imparting this common sense is by using

language models. As they are trained on large text corpora, they capture some of the se-

mantic information within said datasets – e.g., a language model may learn that the sentence

“Bathrooms contain .” is better finished with “toilets” rather than “stoves,” thereby con-

taining some of the common sense needed for scene understanding. Furthermore, being

what [94, 19] famously called an “infinite use of finite means,” language allows arbitrary

common-sense queries to be compactly made and evaluated, including ones with novel

concepts and entities. This is important for spatial perception, as deployed robots will nat-

urally come across many objects that engineers did not expect during development. Being

able to do inference over novel object types would thus be highly beneficial.

We thus explore a variety of ways for doing object- and visual-percept-driven room

and building classification using pre-trained large language models. We consider each

approach’s strengths, failure-cases, and data requisites in order to see what language model-

leveraging approaches are most appropriate to robot perception.

Once a semantically rich representation of the environment is made available to a robot,

it now must have a way to act on this knowledge, integrating its semantic understanding

into its decision-making process. We showcase a simple method for extracting common-

sense probabilistic priors on object-room co-occurrences from language models and how

such information can be made actionable in embodied household object-finding tasks.

Lastly, we demonstrate the scalability of such language model methods in scene under-

standing by constructing an abstract representation of plausible spatial relations between

different objects and locations. We discuss how this data structure can be automatically

16

generated and its possible uses in supplementing downstream learning tasks.

We now motivate each of the above directions in more detail.

1.3 Scene Understanding

While significant advances have been made in spatial perception, robots are still far from

having the common-sense knowledge about household objects and locations of an average

human. We would like them to have such understanding, as many tasks one might want

a robot to do are either best specified in terms of an abstract location label (“Go clean

the bedroom.”) or would be aided by knowledge of such labels and what said locations

typically contain.

We thus investigate the use of large language models to impart common sense for scene

understanding in Chapter 2. Specifically, we introduce three paradigms for leveraging lan-

guage for classifying rooms in indoor environments based on their contained objects: (i)

a zero-shot approach, (ii) a feed-forward classifier approach, and (iii) a contrastive clas-

sifier approach. These methods operate on 3D scene graphs produced by modern spa-

tial perception systems. We then analyze each approach, demonstrating notable zero-shot

generalization and transfer capabilities stemming from their use of language. Finally, we

show these approaches also apply to inferring building labels from contained rooms and

demonstrate our zero-shot approach on a real environment. All code can be found at

https://github.com/MIT-SPARK/llm_scene_understanding.

1.4 Robot Navigation

As with scene understanding, robot navigation is likewise made more efficient with the

aid of common-sense prior knowledge, especially in structured household environments.

Rather than using this common sense for constructing internal representations of the envi-

ronment that are conducive to relevant inference tasks, in Chapter 3, we investigate how

common sense from language models can be used for decision-making. That is, we look

at how this knowledge can be integrated with lower-level robot control policies to improve

17

https://github.com/MIT-SPARK/llm_scene_understanding

their performance on semantic navigation tasks.

The specific task we consider is the ObjectNav challenge, held in the Habitat AI sim-

ulator – a yearly competition wherein teams build and train agents to find goal objects in

virtual home environments (constructed from 3D scans of actual homes) [98, 59, 90]. We

alter the task to provide the robot with the high-level labels of rooms. With this abstract

map information, we show how the agent can leverage language model judgements regard-

ing which objects are often found in each location to more accurately and efficiently locate

specified target objects.

This work was done as part of a wider project to investigate methods for extracting and

using probabilistic priors on common-sense facts and relations distilled within large lan-

guage models. This broad paradigm, which we call Language Model Probabilistic Priors

(or LaMPP), allows for the principled insertion of prior knowledge from language mod-

els into domain-specific generative probabilistic models. We show how such methods can

similarly be applied to image semantic segmentation and video-action segmentation – all

grounded tasks that language models do not receive direct exposure to. While we briefly

cover these topics in Chapter 3, we primarily focus on LaMPP’s applications to embod-

ied/robotic navigation.

1.5 Large-scale Spatial Ontology

The first two works attempt to extract and distill scene common sense present within lan-

guage models on the problem of room and building classification while the latter showcases

how these models can provide actionable priors that improve robot navigation tasks. How-

ever, these are both still relatively small-scale instantiations of language models’ possible

uses in providing worldly common sense. Humans can reason about a much larger set of

objects and locations, including outdoor ones that are of much grander scale.

We therefore investigate methods of creating large data structures that represent common-

sense object-location relationships with the help of language models. In particular, we de-

velop a spatial ontology – a graph structure wherein nodes represent abstract object and

location concepts and edges represent common spatial relations between these concepts.

18

All such components are ungrounded in any particular scene; they describe how locations

and things are usually related, as understood by human common sense.

We investigate how such information can be extracted from language models in a man-

ner akin to how LaMPP’s probabilistic priors are extracted. We then consider how this data

can be parsed into our desired data structure, developing numerical tests to both measure

and ensure that the ontology’s representations are aligned with human judgements. We

also consider the use of some recent advances in instruction-following language models,

tuned with reinforcement learning with human feedback (RLHF) for the same ontology-

construction task. Finally, we discuss some future works in this area: namely, (i) how

to actually leverage this ontology for learning to perform abstract scene understanding on

grounded scenes and (ii) how to further automate the ontology construction process.

1.6 Thesis Structure

In this thesis, we present each of the aforementioned works. Specifically, in Chapter 2,

we discuss the use of language for abstract scene understanding. In Chapter 3, we look at

its use case in robot navigation. Lastly, in Chapter 4, we consider how common sense in

language models can be used to construct spatial ontologies.

As they are all heavily intertwined, we start each chapter off by discussing how the work

ties into both the ones before it and the overall theme of using language models to guide

robotics tasks that require abstract common sense. Then, we discuss related works in each

areas. Last, we discuss the methods, experimental specifics, and results, as well as any im-

plications or findings in the three works. Said projects have a lot of additional information

or details, which we document in the appendices (which are referenced throughout).

After the projects, we conclude with a few remarks on future works, providing some

thoughts on upcoming directions for language and robotics research in Chapter 5.

19

20

Chapter 2

Scene Understanding

In this work, we consider ways to leverage pre-trained language models for abstract robot

scene understanding tasks – specifically, room classification. We show how such models

provide useful priors that allow for efficient zero-shot or fine-tuned performance. We find

that a structured-language approach wherein a language model is fine-tuned for room clas-

sification based on strings detailing spatial and low-level semantic object information out-

performs similar language-based approaches that only consider object labels (and discards

quantitative spatial information, due to it being difficult to express in natural language).

These experiments only reason about language descriptions, discarding visual informa-

tion. However, such features still provide a useful semantic signal, so we also consider

methods for using modern visual language models for robot scene understanding. We

find that visual-linguistic approaches achieve better performance when combining vision

with object labels in comparison to vision-only methods (while maintaining minimal hand-

engineering effort). We therefore argue that combining modern semantic spatial perception

systems with the common-sense priors found in pre-trained (visual) language models en-

ables effective abstract scene understanding.

2.1 Related Works

Metric-Semantic SLAM: As high-level semantic understanding is vital for human-robot

interaction and planning, there has been significant interest in combining classical methods

21

Figure 2-1: 3D scene graph example. We use (V)LMs to attach high-level labels to nodes
using lower-level information.

with deep learning for metric-semantic SLAM. Such works generally focus on low-level

representations, such as object-centric approaches [12, 23, 66, 67], dense approaches [7,

29, 77], or a hybrid of the two [50, 61]. However, these methods generally disregard

higher-level semantic labeling which are needed for many planning and reasoning tasks.

Hierarchical Mapping: An alternative approach is to consider hierarchical maps,

which represent the robot’s environment at different levels of abstraction. Works like

[78, 26] divide robot knowledge into spatial and semantic information, then anchoring the

former to the latter. Our work focuses on scene graphs as a hierarchical map representation.

Such data structures were first commonly used for visual relation tasks [56, 39], but have

since been generalized to 3D, where they have found success in robotics [5, 75, 76, 36].

Nevertheless, anchoring semantics to spatial information in 3D scene graphs remains diffi-

cult, motivating us to look towards language models.

Language and Robotics: Using language models for robotics has been a rapidly-

expanding area of research. Papers like [92, 82, 58, 83, 44, 34, 60, 1] have mainly leveraged

language for communicating goals or instructions to a robot to plan around or execute,

often using language models as intuitive priors over appropriate actions, rewards, or dy-

namics. For scene understanding, [35] use occupancy maps with language embeddings

attached, while [42, 79] connect such information to neural radiance fields. These works

focus on lower-level semantics, compared to the more abstract semantics considered here.

Past approaches for room classification use an explicit Bayesian probabilistic framework

22

for determining room labels based on detected objects [16]. However, such methods remain

hard to generalize to new rooms and objects. To address these shortcomings, we explore

the ability for large language models to be used as common-sense mechanisms for robot

scene understanding.

2.2 Language-only Methods

Modern language models (LMs) are generally transformers [93] that learn distributions

over strings. We write

Λ(W)≈ log p(W) (2.1)

to be a LM’s estimated log probability score for string W . Recently, decoder-only causal

language models have seen particular success. Said LMs decompose the above probability

via the chain rule such that each subsequent token is conditioned on the ones before it:

Λ(W) = Λ(w1)+
|W |

∑
i=2

Λ(wi | w1:i−1)≈ log p(w1)+
|W |

∑
i=2

log p(wi | w1:i−1) (2.2)

where wi is the i-th token of W .

LMs are also typically able to embed texts into semantically-meaningful vectors, which

can be useful for fine-tuning in down-stream tasks. When pre-trained on large data corpora,

all these models’ outputs can reflect common world knowledge [49]. We thus make use of

these capabilites for scene understanding.

2.2.1 Query Strings and Informativeness

If we want to use LMs to reason about a room’s class, we first need to project its semantic

features (e.g., contained objects) into language. We thus start by building query strings

describing a given room whose label we wish to infer. For this, we assume access to a list

of objects within. This list can be inferred by existing mapping techniques [76, 36]. For

our experiments, we use ground truth object labels from our considered dataset.

Putting all objects in a room into the query may result in poor performance, as the

23

queries may be dominated by uninformative, ubiquitous objects (e.g., lights). We thus draw

from Grice’s conversational maxims and rational speech acts [28, 27]. In this framework,

a pragmatic speaker chooses an utterance based on how a listener would interpret a literal

speaker. E.g., a literal speaker might describe a bedroom as “containing chairs,” which is

true, but ambiguous to a listener who is trying to discern the room’s label. A pragmatic

speaker would thus instead say the room contains a bed, which is much more informative

and disambiguating.

To implement this in our queries, we only include the k objects most informative for

room classification, noting that objects which appear in fewer room types are more infor-

mative, as their presence heavily implies certain rooms. Quantitatively, these objects have

more non-uniform distributions p(r | o), where o ∈ LO is the object label, r ∈ LR is the

room label, and LO,R are the sets of all possible objects/rooms respectively. We compute

these conditional probabilities in two ways:

• Using ground-truth co-occurrences. When using these empirical conditionals, we

apply Laplace smoothing. We note this requires task-specific data.

• Using proxy co-occurrence probabilities by querying language models. Specifi-

cally:

p(r | o)≈
expΛ(Wo,r)

∑r′∈LR expΛ(Wo,r)
(2.3)

where Wo,r is the query string “A room containing o is called a(n) r.”

With p(r | o) available, a natural measure of its non-uniformity (and thus informativeness)

is entropy:

Ho =− ∑
r∈LR

p(r | o) log p(r | o) (2.4)

Entropy is maximized when p(r | o) is uniform and minimized when one-hot, so more

informative objects have lower Ho. Thus, to pick objects for the queries, we take the k

different lowest-entropy present objects:

Obest = argmin_k
o∈O

[Ho] (2.5)

where O is the set of all object labels contained within the considered room. We thus now

24

have a set of k objects Obest which can be used to infer the room label.

2.2.2 Zero-shot Approach

For the zero-shot approach, we construct |LR| query strings, one per room label:

Wr = “A room containing o1, o2, ... and ok

is called a(n) r.” ∀r ∈ LR

(2.6)

where o1...k ∈ Obest are ordered by ascending entropy. All these queries are scored via lan-

guage model, with the final estimated room label r̂ being whichever one yields the highest

query sentence probability:

r̂ = argmax
r

Λ(Wr) (2.7)

We note that this can similarly be done by prompting the LM to generate its inferred room

type. However, for evaluative purposes, we follow works like [1] and opt for this scoring

approach to constrain the LM to our considered labels.

2.2.3 Embedding-based Approach

For our embedding-based fine-tuning approach, we create a query of the form:

W = “This room contains o1, o2, ... and ok.” (2.8)

This string is then fed into a LM to produce a summary embedding vector. Finally, the em-

bedding is fed into a trained classifier, which produces |LR| prediction logits corresponding

to the room labels, with the inferred room label corresponding to the maximum logit. We

choose this network to be a shallow multi-layer perceptron.

2.2.4 Structured-data Approach

The above approaches limit LM inputs to natural language queries. This is restrictive, as

robot perception systems tend to detect spatial features, like room size, object poses, and

25

bounding boxes, that are not commonly expressed in natural language. Humans tend to de-

scribe spatial relations qualitatively (e.g., “to the left of” or “on top of”), so numeric spatial

features may not be processed well via pre-trained LMs. These features are nonetheless

useful for room classification: e.g., hallways are often characterized by being long.

We thus consider a structured-data approach wherein an entire LM is fine-tuned to ac-

cept description strings that can easily express spatial features, but are not in the realm of

common natural language. This way, the inputs are more expressive, but we still capital-

ize on the LM’s common-sense semantic understanding when linking objects to associated

rooms. We use an encoder-decoder LM to encode structured data strings containing the

room axis-aligned dimensions and each contained object’s label, count, and position (rela-

tive to the center of the room):

Room Size:

x [x room bounding box length]

y [y room bounding box length]

z [z room bounding box length]

Object Locations:

[object 1 label]

x [x position relative to room center]

y [y position relative to room center]

z [z position relative to room center]

[object 2 label]

x [x position relative to room center]

y [y position relative to room center]

z [z position relative to room center]

(repeat for all other objects in the room)

The LM’s decoder then computes probabilities for each possible room label string condi-

tioned on the structured description, with the highest-scoring one being the inferred label.

26

2.3 Vision-and-Language Methods

When dealing with grounded tasks, LMs require observations be projected into string

space. Some features are invariably lost in this process. In our case, we only use ob-

ject labels and spatial features, while visual features like color or texture go unused. Such

data is still useful: e.g., bathrooms often have white tiles that other rooms do not have, so

detecting such features aids in room classification.

We thus look to visual language models (VLMs): pretrained models that connect text

and language. For instance, [72] uses a contrastive objective to learn a shared embedding

space for vision and language, allowing one to match images with text. Other approaches

generate text conditioned on input images and text prompts, usually for visual question

answering (VQA) or captioning [51, 52]. We try to use such models to classify locations

based on previously-available object information and egocentric room images.

2.3.1 Zero-shot Approach

We consider a VLM equivalent to the language-only zero-shot approach. For contrastive

VLMs, we follow the standard zero-shot classification technique [72] and embed both room

label strings and images from the considered room. The inferred label is whichever room

string best matches the images in embedding space (as determined by cosine distance).

For generative VLMs, we input the images and a prompt (“What type of room is this?”

for VQA models and “This room is a(n) r.” for captioners). Such prompts can be prepended

with object descriptions – an advantage they have over the contrastive VLMs. The model

then follows up the prompt with each possible room label, with the highest-probability

label being the inferred one.

2.3.2 Fine-tuning Approach

This approach is the same as the zero-shot VLM approach, but with the model fine-tuned

to output room labels. We train a captioning VLM to correctly generate the room r in the

prompt sentence “This room is a(n) r.” when given images of said room. Again, at inference

27

time, the inferred room label is whichever one yields the highest probability when plugged

into the end of the prompt.

Note that, for both these approaches, we use VLMs that perform captioning/VQA on

a single image at a time. We detail how to get an overall room classification from many

images in Section 2.4.4. Our approach can be easily generalized to VLMs that accept

multiple input images, like [2]. Due to computation limits, we leave such experiments to

future work.

2.4 Experimental Setup

2.4.1 Datasets

We evaluate our algorithms on scene graphs produced from the Matterport3D dataset [15],

which is commonly used in robot navigation tasks [59, 98, 90]. This dataset can rapidly

render rooms and contained objects, each with labels, pose, and bounding boxes that we

use to create scene graphs. Objects are assigned labels from two label spaces: mpcat40

(35 labels) and nyuClass (201 labels) [84]. In total, there are ∼ 1870 rooms, each with

one of 23 room labels. See Appendix A.1 for scene graph construction details. We now

consider how datasets are constructed for pure-language and vision-language approaches

respectively.

Language-only: We divide the buildings into a 50/20/30 train/validation/test split for

each label space. To produce queries for our embedding-based approach, we bootstrap

subsets of the most informative objects per room to put into the query. We generate four

such datasets by varying object label space (nyuClass/mpcat40) and co-occurrences used

for object selection (ground truth/proxy). We use RoBERTa-large as our LM embedder

[54]. See Appendix A.2 for more details. For the structured-language dataset, for each

room, we create structured language strings summarizing the room dimensions and object

positions and labels (for a given label space). Unlike the zero-shot/embedding approaches,

said strings contain all objects in a given room. See Appendix A.3 for some additional

minor details.

28

Each dataset for a certain label space is produced from the same splits. All approaches

and baselines are tested on the same test split. For completeness, approaches that do not

require training are also evaluated on the entire dataset.

Vision-and-Language Datasets: For each room, we sample and save images from 100

random freespace camera poses (see Appendix A.4). For methods that require training, we

divide the rooms into a 40/20/40 train/validation/test split. Note that (i) all images for a

given room belong to the same group and (ii) this is a different divide than for language-

only, as it includes rooms with no objects (as visual features can still be extracted from

them).

2.4.2 Baselines

We consider three baselines. First, we use ground-truth co-occurrence data for a statistical

baseline. We approximate the probability of a room label as the product of the conditional

probabilities of the room given each object individually:

p(r | O)≈ ∏
oi∈O

p(r | oi) (2.9)

where the conditionals p(r | oi) are empirically estimated from the dataset. The inferred la-

bel is thus argmaxr p(r | O). Second, we train a GraphSage graph neural network baseline

[31] to predict rooms given objects using the language-only dataset splits.

Finally, as a baseline for vision-based methods, we use the vision-and-language dataset

splits to train a ResNet-50 [33] model to predict room label logits given images from the

room. We do this from scratch and starting from the pre-trained weights. See Appendix

A.5 for details.

2.4.3 Language-only Trial Specifications

Zero-shot: We vary the ground truth/proxy object-room co-occurrences (when computing

object entropy) and the object label spaces for four total conditions. We choose k = 3

objects per room to create the corresponding queries (or all if the room contains fewer than

29

three objects). For all trials, we use the GPT-J language model [95] for both inference and

generating proxy co-occurences. Due to hardware limitations, we use the half-precision

release of the model.

Embedding-based: We train head networks on each of the four embedding datasets.

See Appendix A.5 for more details. We also run two generalization experiments. First,

we train the network while holding out all nyuClass rooms whose query strings contain

chairs, sinks, toilets, beds, and washing machines, then we test on these held out datapoints.

This is done with ground-truth co-occurrences. Second, we train models on mpcat40 data

while testing on nyuClass data in order to see if they can accommodate and generalize

to a different, larger input label space. In this case, we divide the mpcat40 dataset using

a 40/60 training/validation split, use the entire nyuClass dataset for testing, and vary the

co-occurrence type (ground truth and proxy).

Structured-language: We fine-tune a pre-trained T5 LM to encode structured-language

strings and decode (score) room labels [73]. We train for 5 epochs and test on the weights

with highest validation accuracy. See Appendix A.5 for more details. We also run some

ablation trials, removing the room bounding box dimensions, object positions, or both.

2.4.4 Vision-and-Language Trial Specifications

Zero-shot: We test CLIP, BLIP, and BLIP-2’s zero-shot visual room classification abilities

[72, 51, 52]. Of these models, CLIP is contrastive while the BLIP models are generative,

so we adopt the VQA and captioning approaches detailed in Sec. 2.3.1 respectively.

As each room has many images, we measure both the portion of individual images and

overall rooms classified correctly as image-wise and room-wise accuracies, respectively. A

room is classified correctly if, when the scores for each label are summed over all images

from said room, the correct label has the highest total score. This is different than a plu-

rality vote system wherein the most-predicted room label (out of all image predictions) is

the room label, as our method incorporates model uncertainties by using the output logit-

s/scores.

Fine-tuning: We fine-tune the BLIP VQA VLM to decode room labels based on im-

30

ages and descriptions [51]. The setup is the same as the zero-shot case, but with the

introduction of fine-tuning. The model itself is an encoder-decoder VLM that performs

bi-directional self-attention on the question prompt in conjunction with cross-attention on

input image features before decoding an answer with causal self-attention while cross at-

tending to image and question embeddings. See Appendix A.5 for more training details.

Again, we measure image- and room-wise accuracies with the same maximum score metric

as above.

2.4.5 Additional Trials

Building Trial Specifications: We extend the above language-only formulations to also

perform inference of a building’s label ∈ LB = {house, office complex, spa resort} based

on the rooms within. We consider three approaches: (i) the GraphSage baseline, but trained

to predict buildings based on known objects and rooms; (ii) the zero-shot approach with

k = 4 and using ground-truth co-occurrences; and (iii) the embedding-based approach with

output size |LB|= 3 and stochastically bootstrapped training data. We present (ii) and (iii)’s

accuracies on the same test split our GNN is tested on for comparison. For completeness,

we also present (ii)’s accuracy on the entire Matterport3D dataset. For more details, see

Appendix A.6.

Real Scene Graph Trial Specifications: We run the zero-shot approach to label rooms

on dynamic scene graphs generated using the Hydra spatial perception system [36]. We

consider three environments: a dormitory, an apartment, and an office. The object labels

are noisily inferred using a fine-tuned HRNet [96] that classifies household objects into 23

labels. We consider six room labels (kitchen, bathroom, hallway, lounge, stairwell, and

bedroom) while using proxy co-occurrencies to pick query objects. All rooms with at least

one object are evaluated.

2.5 Results

We present all results for language-only and vision-and-language (as well as associated

baselines) trials in Tables 2.1 and 2.2 respectively, with parenthesized values indicating

31

Baselines Zero-shot

Statistical GraphSage GT Proxy

nyuClass 57.7%
(50.6%) 64.2%

52.2%
(53.6%)

27.2%
(28.2%)

mpcat40 44.7%
(46.9%) 59.1%

48.9%
(50.1%)

27.5%
(27.3%)

Embedding-based Structured-language

RoBERTa With Position No Position

GT Proxy With Bbox No Bbox With Bbox No Bbox

nyuClass 65.5% 57.6% 69.1% 68.7% 67.3% 67.7%
mpcat40 63.9% 58.5% 68.3% 67.7% 63.9% 63.7%

Table 2.1: Test-split accuracies for all language-only approaches. Methods that do not
require training have full dataset accuracy reported in parentheses. Structured-language
yields the highest test split accuracies (bolded).

evaluation accuracy on the entire dataset (for approaches that do not require training).

2.5.1 Language-only Results

Zero-shot: As shown in the top half of Table 2.1, the zero-shot trials yield room classi-

fication accuracies of 27.3− 52.6% when run on the entire dataset. The ground-truth co-

occurrence trials perform better than the statistical baseline evaluated on the whole dataset,

which also uses ground truth frequencies. No trial outperforms the GraphSage baseline,

but said baseline requires training and cannot be easily extended to additional labels, un-

like our approach; by virtue of being zero-shot, the only step needed to adopt the large

label space was to compute the informativeness metric for the new objects. This approach

also achieves high accuracies for several common household rooms (bathroom, bedroom,

kitchen, and living room). For the best performing trial, accuracies for these key rooms

range from 79.2−97.1% (see Figure 2-2). There also are two trends for when a room will

not be classified correctly:

• Room lacks disambiguating objects: Bathrooms and bedrooms have objects almost

exclusive to them (e.g., toilets and beds), but rooms like lobbies and family rooms

only contain more ubiquitous ones (e.g., tables and chairs), and so are harder to

identify.

32

Zero-shot

CLIP BLIP VQA BLIP-2 Captioner

None None nyuClass mpcat40 None nyuClass mpcat40

Room-
wise

36.5%
(32.7%)

37.8%
(36.2%)

37.0%
(36.6%)

37.1%
(37.5%)

47.5%
(45.7%)

47.9%
(45.7%)

48.0%
(46.2%)

Image-
wise

26.5%
(25.9%)

30.1%
(28.8%)

35.6%
(34.9%)

34.4%
(34.3%)

40.1%
(39/3%)

45.0%
(43.1%)

44.5%
(43.0%)

Baseline Fine-tuning

ResNet-50 BLIP VQA

From Pretrained From Scratch None nyuClass mpcat40

Room-
wise 51.1% 26.2% 53.2% 68.6% 65.3%

Image-
wise 36.8% 22.6% 47.0% 67.9% 64.1%

Table 2.2: Test-split room- and image-wise accuracies for all language and vision ap-
proaches. Methods that do not require training have full dataset accuracy reported in paren-
theses.

• Room is not “standard”: Bars, libraries, and spas all more commonly refer to build-

ings, not rooms. We note this could likely be fixed with further prompt tuning and

few-shot examples.

For the other rooms, the language model shows the desired common sense when classify-

ing them. Our approach also demonstrates generalization, handling the smaller, 35-object

label space (mpcat40) and the much larger, 201-object label space (nyuClass). In fact, the

nyuClass trials result in higher accuracies than their mpcat40 counterparts, as nyuClass’s

labels are more specific and informative. This benefit is best shown in the following cases:

• Kitchens & laundry rooms: Both rooms are characterized by appliances. While

nyuClass provides fine-grained labels (e.g., washing machine vs. stoves), mpcat40

groups all those objects under the broad and ambiguous category of “appliances,”

making differentiation of the two room labels difficult.

• Game rooms & garages: Game rooms are characterized by recreational objects,

like ping-pong/foosball tables. Both appear in nyuClass, but are just “tables” in

mpcat40, making these rooms easier to identify with the former. Likewise, garage

doors (nyuClass) are just called “doors” in mpcat40.

33

Figure 2-2: Zero-shot accuracies on all data for all conditions, by room label.

Finally, all trials take∼ 1.2 seconds to infer a room’s label, with most of the overhead being

language model evaluations.

Embedding-based: The embedding-based approach achieves 57.6−65.4% test accu-

racy, beating the statistical baseline (46.9− 52.7%) and the zero-shot approach (27.2−

52.2%) in all conditions (see bottom left of Table 2.1). Notably, unlike for the zero-shot

case, this is even true for the conditions using proxy co-occurrences, so the model does not

explicitly need ground-truth co-occurrences for picking out objects to achieve high perfor-

mance (though some is learned in training). Trials using ground-truth co-occurrences yield

slightly higher accuracies than corresponding GraphSage baselines, while the proxy trials

are still competitive. Finally, RoBERTa has 20× fewer parameters than GPT-J (used for

zero-shot), meaning this approach requires less compute, memory, and time to run infer-

ence.

Holdout Trial Room Accuracies
Washing
Machine Chair Sink Toilet Bed

14.6% 40.0% 64.2% 77.6% 83.5%

Table 2.3: Test accuracies for rooms containing each holdout object.

Embedding-based Transfer: Using language models to embed the query room de-

scriptions enables some generalization to novel object classes. The approach does well for

some objects in the holdout object trials (see Table 2.3). Even when held out in training,

it correctly classifies rooms whose queries contain sinks, toilets, and beds 64.2−83.5% of

34

the time. The networks likely learns to extract essential information on room labels from

query embeddings containing only non-held out objects that generalizes to the held out

ones. E.g., while toilets are held out, related objects like bathtubs are not. Due to their

relatedness, the embeddings for observed queries (“This room contains bathtubs.”) may be

similar to that of unobserved ones (“This room contains toilets.”), so the network classifies

the latter correctly too. As there are no objects related to washing machines in nyuClass,

rooms containing them have comparatively low accuracy. Still, as most rooms have several

characteristic objects, holding out a subset of them (or, equivalently, introducing more of

them) is generally not an issue.

Regardless, our approach shows promising generalization and transferability. When

trained on mpcat40 and tested on nyuClass, it yields 47.1% and 56.6% accuracy for proxy

and ground-truth co-occurrences respectively, comparable to the best accuracy for the zero-

shot approach (52.57%) and some non-transfer fine-tuning conditions.

Structured Language: We intuitively expect the structured-language approach to do

as well or better than the embedding approach, as the information contained within the

structured language string should be a superset of that of the embedding-based inputs.

Sure enough, all structured-language approaches have test accuracies from 63.69−69.12%,

being comparable to or better than all other approaches (see bottom right of Table 2.1). We

note that ablating room bounding box information does not degrade performance much, but

removing object positions is more impactful (especially for mpcat40 trials). Nevertheless,

all changes from ablations are relatively small; generally, structured language of any type

seems to be the best overall language-only approach for room classification.

2.5.2 Vision-and-Language Results

Zero-shot: The BLIP-2 trials have the highest zero-shot room- and image-wise accuracies,

comparable to that of the fine-tuned ResNet-50 baseline, despite having no task-specific

training (see top of Table 2.2). Adding object labels (from either label space) to the prompt

improves image-wise accuracy, likely because it aids in the classification of uninforma-

tive images (e.g., ones that face walls) by providing non-visible room-wise information on

35

contained objects. However, it surprisingly does not improve room-wise accuracy, perhaps

because the improved image classifications are already for rooms that are visually distinct

and thus can be classified from just the good images.

We find that the BLIP-2 approach has slightly lower accuracy than the best language-

only zero-shot trial (45.66%− 46.16% vs. 52.57%), though very slightly higher than the

second-best trial. However, the former requires (i) less prompt engineering and (ii) no

ground-truth co-occurrence data (which is needed to pick objects for the query template in

the language-only case), so is overall easier to implement and use.

Fine-tuning: All vision approaches that involve training/fine-tuning are presented at

the bottom of Table 2.2. The fine-tuning approach yields similar accuracies to the structured-

language approach. Notably, in contrast to the zero-shot equivalents, the fine-tuned models’

image- and room-wise accuracies benefit from object labels in the prompt. This suggests

that, unlike with zero-shot, the fine-tuned models both use the object labels to correctly

classify aforementioned uninformative images specifically for rooms that would otherwise

not be correctly predicted – it is not just correcting uninformative images in rooms whose

other images are easily correctly classifiable.

Moreover, we see that the fine-tuned trial that does not have object labels achieves a

room-wise accuracy of 53.16%, compared to the pre-trained ResNet-50 vision-only base-

line accuracy of 51.05%. These values are similar and both higher than the from-scratch

ResNet-50 baseline trial, suggesting that pre-training (be it visual or visual-linguistic) aids

in transfer to the room classification domain.

However, both pre-trained ResNet-50 and the fine-tuned no-label trials fail to beat any

of the approaches that use fine-tuning in conjunction with object labels (including the

language-only approaches). This suggests that, even when trained on domain-specific data,

it is difficult for vision alone to classify rooms from arbitrary images within.

It is thus appropriate to supplement such inferences with room-wise object information,

especially if such data is already available via a robot metric-semantic spatial perception

system. In such a case, we find that (visual) language models can easily incorporate said ob-

ject labels into their subsequent abstract room label inferences, leveraging their pre-trained

common-sense understanding of such object-room relations to improve room classification

36

accuracy.

2.5.3 Building Trial Results

Building
Labels

Statistical
Baseline

GraphSage
Baseline

Zero-shot
Approach

Embedding-based
Approach

Total in
Dataset

House 27 26.6 25 25 27

Office
Complex 0 0.4 2 2 2

Spa Resort 0 0 1 0 4

Total 27 (81.8%) 27 (81.8%) 28 (84.8%) 27 (81.8%) 33

Table 2.4: Test accuracies of building inference approaches.

All building-labeling approaches yield similar test accuracies (Table 2.5.3). The statis-

tical baseline only identifies houses correctly, as the dataset (and thus co-occurrencies) is

dominated by houses. The zero-shot and embedding-based approaches successfully clas-

sify both office complexes, while GraphSage identifies only 0.4 on average over five trials.

All approaches do not identify spa resorts well. For our approaches, we suspect this is due

to spa resorts being a non-standard building (the term often refers to entire campuses) and

information on resorts’ contained rooms (other than spas) not being commonly found in

text corpora datasets. This shows a flaw with language models: while humans can reason

that resorts contain rooms like offices and lobbies, texts will not usually describe these

second-order facts explicitly.

When evaluated on the entire dataset, the zero-shot approach labels 70/81 (86.41%)

buildings correctly, again mainly failing with resorts. While future work should consider

more robust building-labeling benchmarks, our results show that our language-leveraging

approaches can generalize to scene understanding tasks beyond room labeling.

2.5.4 Real 3D Scene Graph Results

The zero-shot approach succeeds at labeling rooms on real 3D scene graphs. However, like

on the Matterport3D data, it tends to work best on rooms that had disambiguating objects

(bedrooms, stairwells, and kitchens), though the presence of those objects in rooms they

37

Figure 2-3: Inferred and actual room labels on a real 3D scene graph created by Hydra
[36]. Purple regions show the bottoms of room bounding boxes.

are typically not found in also throws off predictions. This is shown in Figure 2-3, where

bedrooms are identified correctly but the kitchen and office are not (due to the lack of appli-

ances and the presence of counters respectively). Interactive visualizations and inferred la-

bels for all environments can be found at https://github.com/MIT-SPARK/llm_

scene_understanding#real-scene-graph-labeling-visualization.

2.6 Conclusion

We show the applicability of large pre-trained LMs and VLMs to the problem of abstract

robot scene understanding, particularly in the domain of room classification. We explore an

array of different approaches to this problem: zero-shot, embedding-based, and structured-

language for language-only and zero-shot and fine-tuning for vision and language. We

compare such methods with standard statistical and learned baseline approaches, showing

that using LMs yields higher overall performance while also having good generalization

to held-out objects and transferability to new label spaces. Our results show that these

paradigms are promising avenues of development for scalable, sample-efficient, and gen-

eralizable robot spatial perception systems.

38

https://github.com/MIT-SPARK/llm_scene_understanding#real-scene-graph-labeling-visualization
https://github.com/MIT-SPARK/llm_scene_understanding#real-scene-graph-labeling-visualization

Limitations

Our primary limitation is compute. We ran all language model inference experiments on

a single RTX 3080 GPU, which vastly constrains the size of model (and thus the resulting

experiments) we could use. In particular, while not quantitatively reported, we find that the

zero-shot approach empirically benefits greatly from using larger models trained on more

data; smaller equivalent models like GPT-Neo [9] or GPT-2 [71] yield very poor zero-shot

results. We found that the six billion parameter GPT-J was the largest such model we could

reliably load, but still had to use the half-precision release due to memory constraints.

Likewise, our structured language approach only includes room dimensions, object labels,

and object positions; some spatial/geometric information, like object pose, is still lost, as

they do not fit in our smaller models’ token counts (or, even if they do, would take up too

much memory).

We thus detail some additional research directions that would be possible with larger

compute budgets. We suspect that newer, larger models (on the scale of 10− 100 billion

parameters) would improve performance even more, especially when combined with recent

advances in instruction and human preference-based tuning. For the VLM experiments,

newer models explictly trained for embodied visual-linguistic reasoning [24] would also

likely perform very well for our scene understanding tasks. Finally, many common-sense

visual understanding problems have shown to work well with Socratic model [101] setups,

wherein multiple models (typically covering multiple modalities) interface with each other

in natural language.

However, these constraints do also reflect a real challenge if such systems are deployed

on real mobile robots – such autonomous systems generally do not have the hardware re-

quired to load the latest and largest language models on them locally. It is therefore promis-

ing that, even with somewhat older, smaller models (which could feasibly be deployed on

a robotic platform), we still achieve relatively good performance in our considered tasks.

It thus would be exciting to see both how one could get the most out of the limited

compute of a mobile robot and how our scene understanding approaches could be made

more effective when the limitation is relaxed.

39

Ethics Statement

When applying large pre-trained models to robotics, it is very important to recognize how

the risks associated with such models can be amplified when given embodiment [11]. We

focus on the relatively innocuous use case of scene understanding/abstract location classi-

fication, but even still, the biases captured within our considered models may be reflected

in their performance on such tasks. For instance, we evaluate on the Matterport3D dataset,

which contains scans of domestic environments. It is safe to say this data represents the

homes of a narrow intersection of wealth, class, and culture. It is possible that homes of

certain demographics may not conform to the prototypical conceptualization of such loca-

tions present within our (visual) language models, and that our evaluative metrics do not

detect such biases (again, as our testing data is not diverse enough).

Thus, we believe it is important for such data to be diverse and transparently/ethically

sourced (while maintaining proper privacy), especially when used to train general-purpose

household robots. In addition, we encourage research into more advanced scene under-

standing techniques that allow for interpretability of inferences and adaptability to a wider

range of environments.

40

Chapter 3

Robot Navigation

As shown in Chapter 2, common-sense priors are a vital part of performing inference in

the real world. Abstract contextual information can help with tasks like visual recognition.

For instance, a large white box in a household environment might be an oven or a washing

machine. However, if one sees this object accompanied by a refrigerator and sink, then

one can easily infer that the room is a kitchen and that the object is an oven. Such prior

expectations and top-down understanding are omnipresent in human reasoning for tasks

like object recognition (such as in the example) and written text interpretation [45, 63].

Contrastingly, modern machine learning tends to learn from vast amounts of bottom-

up raw sensory input without the supervision of common sense. Thus, they (i) require

specialized simulation environments or large amounts of (often annotated) data and (ii)

reflect the biases, correlations, or distibutional quirks of their training datasets, even when

undesirable or illogical [10, 46]. When training a model, it remains difficult to expose it to

data corresponding to all the scenarios it is likely to encounter in real-world deployment.

As correcting these faults is difficult (if not intractable), we turn to language. There

is evidence that humans benefit from linguistic supervision when learning common-sense

knowledge that is difficult to glean from experience [70]. This is computationally reflected

in the recent successes of large language models in various language processing tasks.

Language models have been used as sources of common sense and domain knowledge for

question-answering [91], scripting text games/stories [3, 4], and probabilistic programming

[48].

41

With the development of more advanced multi-modal models that use text, these mod-

els have also seen success in grounded and embodied tasks. We call one popular approach

model chaining (MC) [1, 101], as it involves interfacing models with text by projecting ob-

servations, task specifications, and decisions into natural language. However, this approach

is naturally limited by the difficulty of expressing and using certain features (e.g., numeric

quantifications of uncertainty) in the natural language “thoughts” of the model ensemble.

This motivates our current work. We present a method for extracting common-sense

knowledge from language models in the form of probabilistic priors, which can then be

integrated with probabilistic formulations of inference tasks. As many standard machine

learning tasks can be framed as probabilistic graphical inference, this approach offers flexi-

ble opportunities for language model knowledge to be inserted – the model can provide pri-

ors over labels, decisions, or even parameters. We call this approach LaMPP, for Language

Models as Probabilistic Priors.

While the full paper [49] shows LaMPP’s applicability to a range of tasks, for this

chapter, we focus on how such a method is useful for robot navigation specifically. In par-

ticular, we apply it to a modified version of the Habitat Challenge ObjectNav task [98],

which has the task objective of developing an agent to find, identify, and move to a spec-

ified target object based on visual sensor readings as quickly as possible in an unfamiliar

simulated household environment (drawn from the Habitat dataset [74, 59, 90], just as the

experiments in Chapter 2).

In Section 3.2, we present LaMPP as a general framework for querying language mod-

els for relevant probabilistic priors and inserting those outputs into domain models. Then,

in Section 3.3, we see how LaMPP can be used for robot navigation in the previously-

mentioned task. Lastly, Section 3.4 briefly touches upon the insights gained from applying

LaMPP in non-robotics contexts – specifically, image semantic segmentation and video

action recognition.

Overall, we hope to highlight how language can be a valuable source of common sense

for robot control and decision-making, as opposed to just inference (as shown in both our

discussions on scene understanding and in the other domains where we apply LaMPP).

Moreover, we show the importance of composing linguistic information with existing prob-

42

abilistic inference techniques in a principled manner, as opposed to techniques that purely

work in string space (which may lack inductive biases critical to considered tasks).

3.1 Related Works

Model Chaining: There has been much recent work in combining and composing the func-

tionality of various models entirely in string space. For instance, the Socratic model frame-

work proposes chaining together models operating over different modalities by converting

outputs from each into text [101]. Zero-shot inter-model interactions are then entirely fa-

cilitated by natural language. For example, for image captioning, a visual language model

might detect high-level features (locations, objects, etc) which are inserted in a template

prompt that a generative language model completes with possible captions. These can then

be fed back into visual language models to see which text is best grounded in the image.

While these methods have yielded good results in a variety of tasks, like egocentric

perception and robot manipulation [1, 85], they are fundamentally limited by the expres-

sivity of their string-space interfaces. Models often output useful features that cannot be

easily expressed in language, such as probabilistic uncertainty (like in a traditional image

classifier). Even if such information is written in string form, there is no guarantee that

language models will correctly use it for formal symbolic reasoning – e.g., if a language

model is told p(A) = 0.1 and p(B | A) = 0.5 in an input string, when prompted for p(A,B),

it often will not output the correct value of 0.1×0.5 = 0.05 [99]. This motivates our use of

language models not as an oracle decision-maker, as [1, 85] do, but as explicit probabilis-

tic priors that can be combined with domain models that operate over or output relevant

probabilities.

Concurrent to the present work is [18]. While they similarly uses language model scores

as a source of common-sense prior information for other decision-making tasks (feature

selection, reward shaping, and causal inference), they likewise do not make use of explicit

priors for probabilistic models.

Language Models and Probabilistic Graphical Models: There is a long history of

language modeling itself being interpreted as probabilistic graphical inference [81]. How-

43

ever, recently, more abstract tasks that leverage language models have also been viewed

in this way. Methods like chain-of-thought question-answering [97], thought verification

[20], and bootstrapped rationale-generation [100] may all be interpreted as probabilistic

programs encoded as repeated language model queries, dubbed “language model cascades”

[22]. However, this analysis exclusively considers language tasks; to the best of our knowl-

edge, this is the first work to specifically connect language model evaluations to probabilis-

tic graphical models in non-language domains, including for robotics.

3.2 Methods

We consider two broad classes of problem formulation, which many machine learning tasks

can be interpreted as. A basic formulation is presented as follows.

First, in prediction tasks, we try to model p(y | x), where y is some set of labels and x

is an observation. This can be factorized as:

p(y | x) ∝ p(y) · p(x | y) (3.1)

where p(y) is a prior over labels (which can be learned or extracted from an external source

– in this case, language models) and p(x | y) is a generative observation model. This equa-

tion provides a simple way of combining priors with domain-specific pretrained models’

outputs.

Note that, oftentimes, tasks cannot be framed so easily. It often helps to also introduce

auxiliary latent variables y′, which can then be related to labels y and observations x. This

is done in our navigation task, as discussed in the next section.

Second, in learning tasks, we have some generative probabilistic graphical model

whose parameters θ are (i) interpretable and (ii) learned from data D . For example, in our

video action recognition task, we consider a hidden Markov model (HMM) as one such

case. The task this time is to find the parameters that best fit the data, argmaxθ p(θ | D),

44

Figure 3-1: A general illustration of how to apply LaMPP to the probabilistic generative
framing of a task. The language model provides probabilistic priors connecting auxiliary
and target variables.

which factorizes in the following way:

p(θ | D) ∝ p(D | θ) · p(θ)

⇒ argmax
θ

p(θ | D) = argmax
θ

p(D | θ) · p(θ)

= argmax
θ

∏
{x,y}∼D

[p(x,y | θ)] · p(θ)

= argmax
θ

∏
{x,y}∼D

[p(y | x,θ) · p(x | θ)] · p(θ)

= argmax
θ

∏
{x,y}∼D

[p(y | x,θ)] · p(θ)

(3.2)

where p(θ) is a prior over parameters (e.g., contributed via regularization). For the last

line in this derivation, we assume the model parameters have no effect on the distribution

of input data (i.e., p(x | θ) = p(x)) and that we have a uniform prior over dataset inputs (i.e.,

p(x) is constant). As with the prediction tasks, it is often helpful to introduce non-learned

hyperparameters α which can be related to θ (which may otherwise be learned).

With these two broad problem structures in place, we thus provide a general step-by-

step guide to applying LaMPP. Refer to Figure 3-1 for an illustration.

1. Choose a domain model of p(x | y) or p(y | x;θ). For instance, the former could be

a pre-trained image classification or semantic segmentation neural network.

2. Design a label space, which could just be the labels/parameters of interest or any

auxiliary latent variables that can be related to observations/values of interest, as

discussed above.

45

3. Query the language model for probabilistic scores on relations between variables

by expressing said relations in natural language. We use GPT-3 as our scorer for all

experiments [13].

4. Perform inference by using the scores in conjunction with the base model with any

appropriate probabilistic compositions.

In Sections 3.3 and 3.4, we show how this framework behaves in three tasks, focusing in

particular on the navigation task. These tasks also have different generalization conditions:

1. Zero-shot: p(x | y) is known and encoded in the domain-specific observation model,

but there is no explicit information on p(y) without LaMPP.

2. Out-of-distribution: The dataset is biased/distributionally shifted compared to the

domain model, with some cases being over-/under-represented. This can be manually

induced with adverserial data splits.

3. In-distribution: The test and training distributions are the same, but the model is

still deficient for some predictive purposes (e.g., on labeling rare classes).

The types of generalization condition considered for each task depends largely on the task

specifics (e.g., what data is available, ease of manipulating data splits, what types of exist-

ing pretrained models are available). Navigation focuses primarily on zero-shot general-

ization, as discussed next.

3.3 LaMPP for Navigation

3.3.1 Problem Statement

As mentioned prior, we consider the ObjectNav task in the Habitat simulation environ-

ment [98]. In this task, the agent must find the nearest instance of a specified object in an

unfamiliar household environment in as few steps as possible. The agent receives virtual

egocentric RGBD camera images and 2D position1/compass readings (i.e., relative hori-

zontal displacement and yaw to the starting pose). With these observations, the agent must
1Referred to in ObjectNav literature as GPS readings.

46

Figure 3-2: The generative structure used in the navigation task. We wish to find locations
that maximize the probability of y being true (i.e., the goal object g being nearby) based on
observations x and latent room variables r.

operate around a policy with an action space consisting of four commands: move forward,

turn left, turn right, and stop. The last command should be executed only when the agent

thinks it has found the object.

We modify this challenge slightly by providing a high-level map of the environment

with room labels. As this information is not available in the version of the Habitat dataset

that ObjectNav uses, we manually annotate rooms with labels from a small set of common

household locations. This map does not include object locations; the agent must rely on

its observation model and top-down knowledge of sensible object-room co-occurrences to

efficiently and accurately find its goal. Such a modification simplifies the task, but also

helps highlight the usefulness of language models at providing top-down priors in the zero-

shot regime.

3.3.2 Methods

We now describe how we apply LaMPP to this modified ObjectNav challenge. Note the

connections between the following section and the four general steps to our method de-

scribed in Section 3.2, as well as how the navigation probabilistic structure in Figure 3-2 is

a specific instantiation of Figure 3-1.

Base Model. We assume access to a low-level controller that, given a specified (x,y)

position, can output actions that move the robot to that location based on the Habitat simu-

lator’s provided sensor signals. We specifically choose to use the STUBBORN agent [57].

47

Normally, this agent would have to construct a map of its environment via exploration, but

due to our task modification, it does not do this. In each state, the agent also outputs a

scalar score of whether or not the goal object is nearby. Thus, this controller also acts as

our noisy observation model.

High-level Policy and Label Space. Our agent has two types of general high-level

behavior.

1. Navigation: The agent picks a room r to go to, based on how likely the language

model judges that room to contain the goal object. Upon reaching that room, the

agent explores around for a fixed number of steps.

2. Selection: Each time the agent gets an observation, it can also decide to stop if it

believes the goal object to be nearby.

We define a latent variable y to be an indicator of whether or not the agent is near the

desired object g in a given state/location. The task of the navigation step is thus to go to

the location that maximizes p(y = 1 | r,g) – that is, figure out and go to the room that most

likely contains the goal object. In this case, the room is a latent auxiliary variable that

relates to the variable of interest g. A full discussion of the probabilistic story for this task

is present in [49].

Language Model Queries. This distribution is the prior knowledge that LaMPP fills

in for this task, relating latent auxiliary variable r with considered task variable y, all con-

ditioned upon the goal object g. We thus query the language model with the following

string:

W plaus/implaus
r,g = “A(n) [r] has a [g]: [plausible/implausible].” (3.3)

Softmaxing over the scores for the prompts finished by plausible and implausible yields a

proxy for the desired distribution encoding prior knowledge, p(y | r,g):

p(y = 1 | r,g)≈
expΛ

(
W plaus

r,g

)
expΛ

(
W plaus

r,g

)
+ expΛ

(
W implaus

r,g

) (3.4)

Where Λ is the log probability estimator function of a language model, as defined in Chap-

48

ter 2. This can be done for all room and goal object combinations.

Inference. With these priors available, we now define the exact policy used in both

high-level behaviors.

1. Navigation: The agent chooses the room maximizing p(y | r,g), out of the rooms it

has not yet visited. As these rooms have not been observed yet, the optimal policy

should move to the room most likely to contain the goal a priori. The low-level

control for this step is done by STUBBORN.

2. Selection: The agent chooses to stop if p(y | x,r,g)> τ , where τ ∈ [0,1] is a thresh-

olding parameter. Note that we can choose the distributional structure of p(y | x,r,g).

We choose to make a simple independence assumption and decompose it as

p(y | x,r,g)≈ p(y | x) · p(y | r,g) (3.5)

i.e., the product of the observation model from STUBBORN and the language model

priors.

3.3.3 Experiments

We run the above policy on the ObjectNav test set as the LaMPP agent. Additionally, we

run three baselines. First, the STUBBORN agent base model, which does not use high-

level map information at all (and thus we expect to do worse than our agent). Next, we also

run a uniform prior baseline, which assumes that the object is equally likely to appear in

any single room type:

p(y = 1 | r,g) = 1
number of room types in environment

(3.6)

Finally, we create a model chaining (MC) baseline, taking inspiration from [1, 101]. At

a high level, it works by querying the language model for the order it should explore the

rooms in, rather than treating object-room relations probabilistically. A full discussion can

be found in [49]. For details of the MC baseline, see Appendix B.

49

Model Success Rate Per Class Change in Success Rate

Class-
Averaged

Frequency-
Averaged Best Worst

Base Model 52.7% 53.8% -
Uniform Prior 52.1% 51.7% -

Model Chaining 61.2% 65.3% Toilet (+20.9%) TV Monitor (-4.2%)
LaMPP (ours) 66.5% 65.9% TV Monitor (+33.0%) Plant (-0.0%)

Table 3.1: Zero-shot navigation results. We report class-averaged (over goals) and
frequency-averaged (over episodes) success rates for all baselines and our LaMPP agent.
We also report the classes with the best and worst change in success rate for the MC and
LaMPP agents, relative to the base model.

3.3.4 Evaluation & Results

Results for all agents are shown in Table 3.1. LaMPP outperforms both the base model and

uniform prior baselines, while yielding comparable (but slightly better) results compared

to the model chaining case. Notably, LaMPP requires significantly fewer language model

queries than MC, as the former generates reusable and precomputable room-object co-

occurence probabilities in p(y | r,g), whereas the latter needs new queries during each

episode.

As a further comparison of the LaMPP and model chaining baseline, we note the im-

portance of the room-object co-occurrence probability in the decomposed selection model.

That is, in the navigation step, both LaMPP and MC visit rooms in a similar order – either

directly prompting the language model to rate the order in which rooms should be visited

or generating and sorting probabilistic priors both yield similar results. However, there

is a big difference in the selection step. The MC baseline effectively exclusively uses the

bottom-up observation model’s stop selection criteria to determine when it has found goal

g, whereas LaMPP needs both the observation model and the prior to agree to stop in order

to satisfy

p(y | x,r,g)≈ p(y | x) · p(y | r,g)> τ (3.7)

Indeed, in additional ablation studies where we remove this part of the LaMPP agent’s se-

lection policy, we observe significantly degraded performance compared to the MC base-

line. It is thus the integration of top-down language model common-sense priors with the

50

Condition Model mIoU Per Class Change in IoU

Best Worst

In-
distribution

Base Model 47.8% -
LaMPP 48.3% Shower Curtain (+18.9%) Desk (-2.16%)

Out-of-
distribution

Base Model 33.8% -
LaMPP 34.0% Nightstand (+8.92%) Sofa (-2.50%)

Table 3.2: In- and out-of-distribution semantic segmentation results. We report mean
intersection-over-union for all conditions and models. We also report the classes with the
best and worst change in intersection-over-union relative to the base model for LaMPP.

domain-specific observation model that both yields the best overall performance and the

best language model query efficiency.

3.4 Other Applications of LaMPP

We will now cover applications of LaMPP in non-robotics domains. As these tasks are

less aligned with this thesis’s domain of interest, these discussions shall be comparatively

brief. Nevertheless, the insights provided by these case studies are still applicable to robot

navigation and scene understanding. Again, full details for both these tasks can be found

in [49].

LaMPP for Semantic Segmentation. We examine how LaMPP can improve object

segmentation in images of household environments by providing priors on (i) the room type

being depicted and (ii) what objects look like other objects (and thus are commonly con-

fused by a standard feed-forward semantic segmentation neural network). We use RedNet

[38] as a base model, investigating how LaMPP changes performance on the SUN RGB-D

dataset [86]. We evaluate on two experimental conditions: in-distribution, where the base

model is trained on a standard SUN RGB-D train split, and out-of-distribution, where the

base model is trained on a train split that intentionally holds out a certain common ob-

ject pair co-occurrence (specifically, images that contain both beds and nightstands). We

consider the mean and class-specific intersection-over-union (IoU) of both the base model

alone as well as the base model supplemented with LaMPP. Values are reported in Table

3.2.

51

Condition Model Step Recall
Class-average Frequency-averaged

Zero-shot Base Model 44.4% 46.0%
LaMPP 45.7% 47.9%

Out-of-distribution Base Model 37.6% 40.9%
LaMPP 38.1% 41.2%

Table 3.3: Zero-shot and out-of-distribution video action segmentation results. We report
class- and frequency-averaged recall for all conditions and models.

For the in-distribution condition, we see that LaMPP performs slightly better than the

baseline. However, we note the best change in IoU (+18.9%) is dramatically larger than

the worst degradation (−2.16%). We see this is because the most-improved object label,

shower curtains, are often confused with regular window curtains by the base model, de-

spite having seen shower curtains in the training set. On the other hand, with LaMPP, the

system infers that, due to the presence of things like toilets and sinks, the room is likely

a bathroom. Moreover, it now has priors stating that (window) curtains look like shower

curtains. Thus, by giving priors on both room label context and objects’ visual similari-

ties, LaMPP is able to handily fix this deficiency, resolving the uncertainty present even in

models that are trained on data reflecting the test distribution.

This shower curtain fix occurs in the out-of-distribution condition too, albeit not as

dramatically. Instead, the biggest improvement occurs with nightstands, one of the two

items in the holdout set. We see that the base model often misclassifies nightstands as

tables or cabinets. However, by inferring that the image is of a bedroom and noting that

tables and cabinets look like nightstands, LaMPP is again able to somewhat mitigate this

distributional shift’s adverse effects.

LaMPP for Video Action Recognition. Lastly, we look at a case wherein LaMPP

provides priors over model parameters. We consider the CrossTask dataset [102], which

contains instructional videos on various tasks (e.g., make pancakes) that are annotated into

actions (e.g., add egg). The objective is to order actions according to a given instructional

video for a specified task. For a base model, we consider [25], which trains a hidden

Markov model (HMM) to both identify how latent variables (actions) (i) give rise to certain

video observations and (ii) are locally ordered. We consider two conditions: zero-shot,

52

where we assume no action transition information in the training set (each action is equally

likely to lead to any other, so the base model must rely on bottom-up information from

the observation model with no temporal transition probabilities), and out-of-distribution,

where we hold out all training examples containing a certain action transition.

In this case, the HMM learns transition probabilities for each pair of actions (y,y′).

Normally, the best such estimate of the probability would be the proportion of the time that

said action transition occurs (plus some smoothing term):

p(Next action is y′ | Current action is y) = θy→y′ =
#(y→ y′)+αy→y′−1
#(y)+∑y′′ αy→y′−|Y |

(3.8)

This imposes a Dirichlet prior on the parameters:

p(θ) = ∏
i

θ
αi−1
i (3.9)

Intutively, larger αy→y′ means a particular transition should be more likely. For the base

model, all such α values are set equal – no transition is weighted more a priori. LaMPP

provides an estimate of these parameter values by querying the language model for a score

of how likely it thinks a given transition is.

Following [25], we evaluate step recall of both the base model and LaMPP in both

conditions. Sure enough, as seen in Table 3.3, LaMPP does slightly better than the base

model in both cases, demonstrating that the language model has a good sense of the local

order of actions to complete a given task, fixing both curated deficiencies in the training

data (for out-of-distribution) and nonexistent transition information altogether (for zero-

shot).

53

54

Chapter 4

Large-scale Spatial Ontology

LaMPP shows that the language modeling objective yields good approximate priors over

common-sense facts when applied to strings describing those facts. This allows for the

automated extraction of probabilistic priors over large sets of common relations, provided

they can be programmatically expressed in natural language.

This is very useful for robot spatial perception tasks that require richer, more abstract

semantic information, such as supplementing 3D scene graphs considered in Chapter 2.

For instance, as described prior, existing spatial perception systems like [36] attach object-

level labels, while generating representations of rooms by dilating occupancy grids to find

enclosed areas of free space. However, many robotic applications necessitate spatial map-

ping and perception in indoor and outdoor environments. Such scenes, while less spatially

structured than rooms, still have useful abstract structure, generally arranged hierarchically:

e.g., a grouping of residential buildings and small stores is likely a neighborhood, which

is similarly part of a city or town. More natural environments similarly have this kind of

structure: low-level perceivable objects, like water, sand, and trees imply the higher-level

label of beach or bay.

We thus consider methods for extending scene-graph-based spatial perception to these

kinds of richer outdoor environments. Specifically, we wish to use language models to con-

struct a spatial ontology: a hierarchical organization of objects and locations (collectively

referred to as concepts) and their spatial relations with each other. Such an organization is

ungrounded – a concept node in the representation does not refer to a specific instance of

55

the concept found in the real world. Rather, it describes common-sense relations between

these abstract concepts, e.g., where a given concept might be/is often found. This can then

be used for subsequent learning or inference purposes that are applied to actual grounded

scenes. For the purposes of this thesis, we will primarily consider the construction and

evaluation of these data structures. While we will briefly discuss how they can be used for

downstream tasks, we leave extensive analysis of such methods to future works.

4.1 Related Works

Language and Robot Scene Representations: A majority of works applying language

models to robot spatial perception have focused on object-level understanding, albeit with

different internal mapping representations. For instance, [35] uses a voxel-based occupancy

map wherein cells also have language embeddings attached, while [42, 79] connect such

information to neural radiance fields. As in Chapter 2, we consider the use of scene graph

representations [5]. [80] connects similar graph representations (albeit lacking hierarchy)

to visual-language features for navigation tasks, converting spatially-grounded traversal

instructions in language into path search over said graphs.

All these works focus on connecting language to visual observations of the scene. As

such, they work with visually-perceivable spatial concepts, as opposed to more abstract

ones that require “common sense” to identify. We decide to encode said knowledge (which

we extract from pre-trained language models) into an ontology – a type of graph that relates

concepts together.

Common-sense Ontologies and Taxonomies: Such tasks are common benchmarks in

natural language processing. In particular, several works attempt to construct such rela-

tional graphs to both measure how well language models capture such common sense and

how coherent the understanding is. [17] tries to construct WordNet [62] taxonomic sub-

trees, using a fine-tuned language model to score possible hypernym relations, then uses a

maximum spanning tree algorithm to choose which relations to keep while enforcing a tree

structure.

Likewise, [30] measures if language models can create relational graphs of components

56

of everyday objects. They also consider how (i) how consistent the relations are (e.g., if A

is inside B, B should not be inside A) and (ii) how to enforce relational consistency via a

satisfaction solver. We take inspiration from these works in terms of how we attach weights

to/prune our ontology graph and how construction of our ontology graph can be automated

while maintaining consistency (see Section 4.5.1).

4.2 Methods

4.2.1 The Spatial Ontology

We consider how to construct a spatial ontology of common places and objects. We choose

to represent this knowledge as a graph, wherein nodes represent concepts (objects or loca-

tions at varying levels of abstraction) and edges represent spatial relations that pairs of

concepts often have. To simplify the problem, we only consider the containment relation,

wherein a directed edge from A to B means that the former is found in the latter. We also

distinguish between two types of spatial ontologies: probabilistic (or “fuzzy”) and binary

(or “true”). In the former, graph edges have associated weights, wherein higher weights

represent that a given containment relation is more common or intuitive – e.g., one would

expect that the weight of the edge from “toilet” to “bathroom” would be high, while “toi-

let” to “forest” would be much lower. In the latter, edges are accordingly unweighted and

indicate that a lower-level concept can be found in a higher one (said relation is either

present or not, hence binary). We discuss methods for creating both these ontology types,

including a method for converting the former into the latter.

4.2.2 Constructing the Ontology Graph

For both probabilistic and binary ontologies, we first need to construct the spatial ontology

graph. The method for doing so is a design choice that is up to the discretion of the user.

For this work, we choose to use an off-the-shelf knowledge base to provide preliminary

objects, locations, and spatial relations. After curating a list of objects that a pre-trained

semantic segmentation network can detect, we query ConceptNet [87] to provide a list of

57

locations said objects can be found in by querying for the atLocation relation. We then

query ConceptNet for the locations of the initial list of locations as well, thereby yielding

more locations at higher levels of abstraction. From here, we now have a list of concepts

that will act as the nodes in our ontology graph.

We manually divide these concepts into six groups, listed in ascending level of abstrac-

tion: (0) objects; (1) rooms; (2) buildings, transportation infrastructure (e.g., roads and bus

stops), and small man-made/natural structures; (3) institutions or groups of buildings; (4)

large-scale nature or settlements; and (5) world (consisting of a single world node). We

assume that a node in a given level could be connected to/found in a node in any higher-

abstraction group.1 We thus procedurally generate directed edges from each node to all

nodes in all higher-level groups. This naturally means some non-sensical containment

relations will be generated, but said relations will ideally be assigned low weights (as de-

scribed in the next section). These can either be kept (in the probabilistic case) or filtered

out (in the binary case).

Note that this approach for constructing the ontology graph still requires significant

hand-design. This is largely due to deficiencies with ConceptNet – when querying for

locations, we note many typos, disjoint or one-off synonyms (e.g., “garden” and “flower

garden” are disjoint concepts), and non-sensical/incorrect location concepts. Additionally,

the relation edges in ConceptNet are sparse, with the attached weights simply being concept

“relatedness.” There is no clear canonical interpretation of these values in the context of

scene understanding. Altogether, of the ∼ 600 concepts yielded from calling atLocation in

ConceptNet, we pruned ∼ 400 for being nonsensical or irrelevant to spatial ontology con-

struction. Then, of the 221 remaining concepts, we manually merged synonyms, yielding

128 unique concepts.

1It does not make sense to limit nodes to only connect to the next highest level of abstraction. For example,
an umbrella (0: object) could be in a house (2: building) or on a beach (4: large-scale nature). We cannot
have beach and house on the same level of abstraction, since a house can likewise be found on a beach. This
necessitates our “skip connections.”

58

4.2.3 Generating Ontology Weights

With the considered concepts and edges chosen, we now move on to an automated way

of assigning weights to the containment relations. We decide to compute these scores

via autoregressive language models, which learn to assign probabilities over text strings.

Formally, let Λ : W → R be the language model function mapping from arbitrary-length

strings of tokens W = {W1,W2, ...WN} to the (log) probability of the string, as decomposed

by the chain rule:

Λ(W)≈ log p(W) = log p(W1)+
N

∑
i=2

log p(Wi |W1...i−1) (4.1)

This should assign higher scores to more semantically- and grammatically-likely sentences.

We use the probability of a string WA→B expressing “A is found in B.” to be a proxy for the

probability of being located in B given the presence of A. For each directed edge (A→ B),

we set the weight wA→B as:

wA→B =
exp{Λ(WA→B)/k}

∑B′ exp{Λ(WA→B′)/k}
(4.2)

where the softmax is over all nodes B′ in a higher level than A (i.e., all nodes that A has

an outgoing edge to) and k ∈ (0,∞] is the Boltzmann temperature parameter. This score

can be informally interpreted as p(in B | A present) (shorthanded to p(B | A)), meaning the

weights for all outgoing edges for any A sum to 1. Note that this is similar to the approach

taken with LaMPP, as discussed in Chapter 3.

Such scores are computed for each edge in the ontology graph. This produces the full

probabilistic ontology: a graph wherein each node represents a concept label in one of the

six hierarchical layers (described in Section 4.2.2) and has outgoing edges to all higher-

level nodes, each with an edge weight computed from language model evaluations (and are

normalized per source node).

59

Figure 4-1: Example of how a subgraph of a probabilistic ontology can be binarized via
sorted cumulative mass function thresholding. The weights (thickness) of outgoing edges
of “sink” define a conditional distribution which can be turned into a sCMF function. After
thresholding, only admitted relations’ edges are kept in the binarized ontology.

4.2.4 Binarizing Ontology Edges via Thresholding

Once the probabilistic ontology has been created, it can be converted into a binary ontology.

A naive method for doing this is by probability thresholding: include all edges with weight

(probability) above some threshold. This method has two main problems. First, nodes in

lower layers have more outgoing edges than ones in higher layers, meaning it is possible

that the lower node’s edges tend to have lower probabilities (on account of the distribution

supporting a larger set). Thus, a probability considered high for edges from the lower layer

can be considered low for edges originating in a higher one – a single threshold cannot

accommodate this. This can easily be solved by assigning different thresholds for different

layers, with lower layers having lower thresholds.

Second, this technique does not consider the relative magnitude of edge weights for a

single node. For example, consider two nodes on the same level, each with 10 outgoing

edges. If one node’s outgoing edge weights are [0.85,0.12,0.01,0.01, ...] while the other’s

are all around 0.1, it intuitively seems like the first node should only have the highest-

weight edge post-binarization (on account of it having much higher weight than all others)

while the second should have many of its edges included.

This cannot be done with pure probability thresholding, so we consider another bina-

rization technique that we call sorted cumulative mass function (sCMF) thresholding. For

each node A, we sort its outgoing edges by descending weight p(B | A). Then, we com-

pute the cumulative mass function for these edges in said order. We binarize by iterating

through the sorted edges and keeping all of the ones up to and including the edge whose

60

CMF exceeds some threshold.2 This method still requires we choose different thresholds

for different layers. However, by considering the sorted CMF, if a single edge weight dom-

inates the rest, only it will be included (while flatter distributions over possible target nodes

will include more of the corresponding edges). See Figure 4-1 for an example.

4.2.5 Direct Generation of Binary Ontology Edges

Alternatively, one can directly generate binary edges via a generative language model. For

instance, one can ask a large generative language model trained for instruction-following

via reinforcement learning for human feedback (RLHF) [69] to output locations where a

given concept can be found.

4.3 Experiments and Evaluation

4.3.1 Querying for Language Model Scores

We experiment with different query prompts and strategies for generating ontology weights

using GPT-J [95]. Once local evaluations resulted in sufficiently good results, we query for

a final set of weights from the 175 billion parameter iteration of GPT-3 [13] to investigate

if increased training and model size impact results. We find that the resulting probabilities

p(B | A) tend to have much lower entropy than other models (perhaps due to the signifi-

cantly higher parameter counts enabling the model to learn much “spikier” distributions),

so we set the Boltzmann temperature parameter to k = 10 in order to smooth them out.

We test five query structures, most of which use few-shot prompting [13]:

1. Default: Just the considered relation string, “[concept 1] is found in [concept 2].”

2. Prompt 1: Three fixed positive examples of containment relations followed by the

considered relation.

2We include the one that exceeds the threshold so that all nodes have at least one outgoing edge. Other-
wise, if the first edge’s probability is very high, the only way to include it would be if the threshold were set
even higher than that, which might mean that other nodes have too many edges included.

61

3. Prompt 2: Same as Prompt 1, but with a prefix describing the task: “Please tell me

where common objects and locations can be found.”

4. Prompt 3: Same as Prompt 2, but with 8 few-shot examples instead of 3.

5. Prompt CN: Same as Prompt 2, but few-shot examples are drawn from where Con-

ceptNet says [concept 1] can be found.

4.3.2 Querying for Direct Generation of Binary Ontology Edges

We construct a binary ontology via direct-generation by querying ChatGPT [68] with

prompts of the following form: “Consider the following locations: [List of higher-level

concepts]. Of these locations, where can I find a [consider concept]? Please answer with

a list of locations.” This is done for each concept in the ontology, with each one yielding a

structured list of locations a given concept can be found.

Note that this method requires some post-processing. While ChatGPT empirically al-

most always returns a list of concepts as requested, said lists often contain (i) extraneous

prefixes, suffixes, and element-wise explanations and (ii) hallucinated location concepts

(ones that are not in the specified list of considered higher-level concepts). These prob-

lems can generally be fixed programmatically (e.g., removing all text before and after the

list, removing all text following list elements that follow colons or are in parentheses, and

removing list elements that are not in the list of higher-level concepts). However, the hal-

lucinations can often yield incorrect list elements as well. This is a known limitation of

contemporary language models [37] – there is little way of dealing with this other than by

treating such relations as noise.

4.3.3 Evaluating Human Judgement Alignment

Probabilistic Ontologies

We provide two metrics for measuring how well human judgements on concept relations

are reflected by language model scores in probabilistic ontologies (relative to one another).

62

ConceptNet Precision at k: First, we consider the containment relations acquired from

ConceptNet. While said relations are both too sparse for our purposes and only contain

positive samples, if the language model scores are reasonable, they should rate the Con-

ceptNet relations highly. We measure this by computing the average precision at k (p@k)

of all ConceptNet containment relations between concepts in our ontology. For each such

relation “A is located in B,” we check if wA→B is within the top k highest scores of A’s

outgoing edges, {wA→B′,∀B′ of higher level than A}, reporting what portion of all such re-

lations from ConceptNet fit this criteria.

However, we note that certain concepts have many atLocation relations according to

ConceptNet – sometimes more than k, meaning it would be impossible for all such rela-

tions to the be in the top-k language model scores for said concept (so average p@k could

never be 1). Moreover, many atLocation relations in ConceptNet are non-sensical or irrel-

evant, even when between concepts in our ontology. To fix these problems, we note that

a concept’s atLocation relations are ordered. The ones earlier in the list tend to be more

intuitive or correct. Thus, we also measure average p@k for the top N ≤ k atLocation rela-

tions per object, thus only considering more sensible ConceptNet relations while making a

perfect average p@k (or 1) achievable again.

We report the values in Figure 4-2. We note that all three fixed-prompt few-shot queries

(Prompt 1, 2, and 3) all yield very similar results, with Prompt 2 being slightly higher

than the rest. The adaptive ConceptNet prompts do worse than these three query types

in all metrics. All query types yield universally better scores than the zero-shot default,

indicating the importance of few-shot examples.

Coarse Human Judgement Evaluation: As ConceptNet relations are sparse, strictly

positive, and often low-quality, we hand-annotate containment relations as being likely,

plausible/sometimes-occurring, or unlikely, in accordance with human intuition on infer-

ring high-level location information given the presence of low-level concepts. That is, the

annotations reflect human estimations of the distribution p(in B | A present) discussed in

Section 4.2.3.3

3For example, we judge the statement “A toilet is found in a university” as “plausible/sometimes-
occurring” instead of “likely” because the presence of a toilet only weakly implies one might be in a university
(while strongly implying one is in a bathroom), not because only some universities have toilets (which we

63

Figure 4-2: ConceptNet p@k ontology weights generated from GPT-J (with various
queries) or GPT-3. Each subplot represents a different query type. x-axis represents N
and the color of bar indicates k = 5,10 for blue and orange respectively.

Due to annotator constraints, we annotate 15 containment relations per concept (or

as many as possible, if the concept has < 15 possible locations). In particular, for each

concept A, we look at the 5 top-, middle-, and bottom-scored relations wA→B from GPT-

J. This way, we get a diverse sampling of positive (or plausible) and negative relations

based on language model judgements. Note that, while annotating, it is unknown which

of these three groups a given relation is from; the annotator thus labels based off their

own intuition, unbiased by what the language model might say. After removing relations

with unclear label, the dataset contains 2444 containment relations and associated human

judgements.

With this data, we divide the relations by label (likely/plausible/unlikely). For each

group, we compute the average percentile of the score for each relation A→ B relative to

all possible A→B′ (i.e., a relation A→B is in the 100th percentile if it is scored more highly

than all other A→ B′ for given A). For a language model to match human judgements, we

expect the “likely” group’s relations to have a high average percentile, “plausible” to have

semi-high/mid-range average percentile, and “unlikely” to have low average percentile.

very much so hope is not the case).

64

Figure 4-3: Average percentile of ontology scores of human relation judgements by rating
for GPT-J (with various queries) and GPT-3. Error bars are one standard deviation.

We present these evaluations in Figure 4-3. As with the ConceptNet p@k metric, fixed

few-shot prompts yield the best results, with all variations of said strategy being similar in

performance. As expected, likely and plausible relations tend to have significantly higher

average percentile than unlikely ones. Nevertheless, the unlikely percentile is still consis-

tently above 30%, likely because there are more unlikely relations than not (so they must

occupy a larger range of percentiles). This is the case for all three ratings, as indicated by

the significant percentile variances.

GPT-3 Querying and Evaluation: Ultimately, while all Prompt 1, 2, and 3 yielded

similar results and beat Prompt CN and Default, Prompt 2 consistently yielded slightly

better values than the others (while not using as many tokens as Prompt 3). We thus query

GPT-3 for ontology weights using this query type. The resulting probabilistic ontology has

very similar (or even slightly worse) performance to its GPT-J equivalent’s, as shown in the

final subplot in Figures 4-2 and 4-3.

Binary Ontologies

Our coarse human evaluations also enable us to both tune and evaluate our binary ontolo-

gies. A highly-aligned binary ontology should have edges representing relations deemed

65

Model Level Best
Threshold Accuracy True Positive True Negative False Positive False Negative

GPT-J

0 0.3646 86.80% 79.37% 92.23% 7.77% 20.63%
1 0.1325 85.56% 76.67% 89.76% 10.24% 23.33%
2 0.4096 86.79% 80.06% 91.56% 8.44% 19.94%
3 0.4375 78.51% 62.00% 90.14% 9.86% 38.00%

GPT-3

0 0.3905 86.27% 74.58% 94.82% 5.18% 25.42%
1 0.3072 85.83% 76.67% 90.16% 9.74% 23.33%
2 0.5705 86.54% 83.04% 89.03% 10.97% 16.96%
3 0.5742 81.82% 68.00% 91.55% 8.45% 32.00%

Table 4.1: Best GPT-J and GPT-3 sCMF thresholds per-hierarchy level when optimizing for
classification accuracy on the human judgements dataset. Layers contain: (0) objects; (1)
rooms; (2) buildings, transportation infrastructure, and small structures; and (3) institutions
or groups of buildings.

by humans as feasible (likely or plausible) while not containing edges for relations judged

infeasible (unlikely). As such, the evaluative metric of interest is classification accuracy of

these relation groupings by the presence of edges in the binary ontology.

Tuning Binarization Parameters: The human data aids in tuning binarization param-

eters. We do this for the sCMF method by finding what sCMF threshold value ∈ [0,1] (for

each concept abstraction level) yields the best feasible/infeasible classification accuracy on

the relations in the human judgement dataset. Note that this is simply one natural choice

of optimization objective. Other objectives can also be used (for example, a weighted sum

of true positive and true negative, wherein weights reflect whether accuracy on feasible or

infeasible relations is more important to the user). For more details on this tuning method,

see Appendix C.1.

We present the tuning results for GPT-J and GPT-3 in Table 4.1. We note two points

of interest regarding the values. First, a general trend is that edges originating in higher

levels of abstraction require higher sCMF threshold values. This agrees with the reasoning

discussed in Section 4.2.4, wherein low-level concepts have more outgoing edges (and thus

on average have lower weight edges), meaning a lower sCMF threshold can be used to

admit a comprehensive valid binarized edge set.

The only exception to this trend is for edges originating from the object layer. This

leads to the second point: the object-level optimal computed threshold does not admit

empirically good relations – in practice, it admits too many relations. We suspect this is

66

Binary Relations Accuracy True Positive True Negative False Positive False Negative

ConceptNet 69.89% 25.96% 99.66% 0.34% 74.04%

GPT-J w/ sCMF 83.04% 68.76% 92.71% 7.29% 31.24%
GPT-3 w/ sCMF 82.63% 70.18% 91.07% 8.93% 29.82%

ChatGPT w/
direct-generation 78.86% 71.70% 83.71% 16.29% 28.30%

Table 4.2: Classification accuracy and confusion matrix metrics of various binary ontology
production methods when evaluated on human relation judgement data. Bolded values are
best score per metric (higher is better for accuracy and true classifications, lower for false
classifications).

because all concepts only have ∼ 15 ground truth evaluations associated with them. Thus,

it does not adequately reflect all possible relations represented by object nodes’ outgoing

edges (of which there are over 100 per node). We therefore expect significant error between

the true optimal threshold and the one computed here. The only way to lower this error is

to acquire more human judgements for said relations. As higher-level concepts have fewer

outgoing edges, this is less of a problem.

Thus, we binarize the probabilistic ontologies generated via GPT-J/3 by using the

optimal-accuracy thresholds shown in Table 4.1 for all levels except the edges originating

from object nodes. For that, we set the sCMF threshold to 0.1,0.2 for GPT-J/3 respectively

instead, which empirically seems to admit most feasible relations while rejecting infeasible

ones. Further, note that edges starting in level 4 are always admitted, as level 4 nodes are

always only connected to the single level 5 world node.

Evaluating Binary Ontologies: Once binary ontologies have been created (via any

method), they can be evaluated on the human judgement dataset too. In this case, we

measure both overall classification accuracy (wherein ground truth feasible relations are

correctly classified if a corresponding edge is in the binary ontology whereas infeasible

ones are not) and standard confusion matrix metrics. We do this for our GPT-J and GPT-3

sCMF thresholding and ChatGPT direct-generation binary ontologies. We also evaluate

ConceptNet’s atLocation relations against the human dataset.

These results are shown in Table 4.2. They indicate that ConceptNet yields worse ac-

curacy than all other methods. This is because of its sparsity – after pruning and merges,

67

it has 678 feasible containment relations, compared to GPT-3’s 1878 or ChatGPT’s 4634.

Thus, it classifies a vast majority of ground truth relations as infeasible/negative. This is

shown in the significant false negative rate (74.04%).4 Of the relations it does classify as

feasible, very few of them are incorrect (0.34% false positive rate), so ConceptNet’s posi-

tive classifications tend to be valid and aligned with human judgement, but due to sparsity,

it only achieves 25.96% true positive rate. Overall, this sparsity (in conjunction with the

significant amount of manual refinement needed to make ConceptNet usable) affirms the

fact that ConceptNet is impractical for use as a spatial ontology out of the box.

As for the language model approaches, it seems like the sCMF ontologies from GPT-J

and GPT-3 are extremely similar, with the former yielding slightly better results. Further

parameter tuning may change this, but with just the human data tuning described prior,

GPT-3’s magnitudes-larger model size does not seem to make a significant performance

impact. Likewise, when comparing between sCMF and direct-generation, both ChatGPT

and GPT-3/J yield similar performances. The primary difference seems to be that, unlike

ConceptNet, ChatGPT’s ontology has many edges (i.e., many positive/feasible classifica-

tions). This tendency to overpredict positive relations leads to the best true positive and

false negative performance, but likewise causes degraded true negative and false positive

rates. In turn, because the dataset is mostly negative relations, GPT-3/J’s higher true nega-

tive rate yields overall higher accuracy.

4.4 Discussion

4.4.1 Key Takeaways

We cover some key qualitative takeaways, both from our evaluation data and from experi-

mental experience.

First, ConceptNet is far too sparse to cover the broad spectrum of human spatial ontol-

ogy judgements, so other tools should be used to provide denser judgements. Based on the

4While worse than other methods’, the ConceptNet overall accuracy is still relatively high (70%) because
most ground truth datapoints are negative relations, so the negative over-prediction caused by sparsity actually
is often correct (as shown by the 99.66% true negative rate). As the dataset consists of ∼ 60% infeasible
relations, a classifer that exclusively outputs “infeasible” would get 60% accuracy.

68

above results, all our language model ontology-construction methods seem fairly aligned

with human judgements, and are thus a suitable candidate for supplementing knowledge

base data. In terms of binary ontologies, direct-generation via ChatGPT and sorted CMF

thresholding of relationship probabilities with GPT-3 yield similar performance on human

judgement evaluation metrics.

The decision of which method to use therefore must consider the following practical

trade-offs. Direct-generation just involves passing queries to a language model and us-

ing its generated text to construct the ontology. Thus, it is much easier to use than sCMF

thresholding, which requires much more parameter tuning. However, direct-generation

also requires some data post-processing to turn semi-unstructured strings into symbolic

ontology representations. Said post-processing should account for general problems with

modern generative autoregressive models, such as hallucinations, occasional misinterpre-

tation of/sensitivity toward prompts,5 and incorrect/useless outputs.

On the other hand, sCMF thresholding’s parameters can also be a strength: one can

use supplementary data for tuning, thereby leading to more-alignment and better perfor-

mance. Additionally, its paradigm of evaluating small “relation fact” strings allows for

reusable and expandable ontology data; when new concepts are added, one can simply

evaluate new possible relations via the language model while keeping existing evaluations.

Direct-generation instead requires re-querying the language model to regenerate the whole

ontology with the updated prompt, which is much more (financial and compute) resource-

intensive.

4.4.2 Possible Evaluation Concerns

One concern with the binary ontology evaluation is that our methods are both tuned and

tested on the same human judgements dataset. We claim this is actually not a problem.

The main use of held-out training splits for learned models is to show that said model

5E.g., it seems like ChatGPT tended to predict concepts at the start or end of the list of possible concepts
more often than ones in the middle. This tendency aligns with human psychology as well [64]. For instance,
most of the rooms were close to the front of the list except for bathroom, which was in the middle. Said other
rooms are often reliably and correctly predicted, but bathroom was more inconsistent, even for objects that
nearly exclusively appear there, like showers or bathtubs.

69

generalizes to new (usually in-distribution) data, rather than over-fitting to and memorizing

the training set. The key difference of our problem is that human judgement datapoints are

not sampled from a distribution – they instead reflect a subset of (assumed-ground truth)

relations present in some underlying “true” spatial ontology.

For example, if the ground truth says chairs can feasibly be found in classrooms, that

relation is present in the “true” ontology; one would not be able to sample another true

ontology relation that says that chairs aren’t feasibly found in classrooms. Critically, this

is different from saying that grounded scenes must always obey these ontology relations –

just because some particular sampled classroom does not have chairs does not change the

ontological fact that, in general, chairs are feasibly found in classrooms.

Memorization of the ground truth relations is thus not only harmless, but actively ben-

eficial. If any data is held out to show that the created ontology can generalize to it, said

ontology can always be improved by incorporating that split into the tuning set and having

the ontology fit to it.

4.5 Future Works

We now discuss further ways of extending the automatic spatial ontology construction pro-

cess and actual applications of the data structure.

4.5.1 Further Automation of Ontology Construction

There are several points in the above methods that require significant human hand-design.

Namely, at the start, we (i) pick out concepts to include in the ontology and (ii) arrange

them into a hierarchy. We now outline a process for automating the second point. Note that

the following method can be seen as an extension of the approach in [17].

Two simple starting points are (i) using a language model to evaluate all possible con-

cept pairs’ containment relations p(B | A) and keeping some subset of relations that form

the node hierarchy and (ii) asking a generative language model to list possible locations for

a given concept out of the list of all other concepts. We call these two methods LaMPP

70

evaluations (as we treat language probabilities as proxies for relation priors, as we do in

Chapter 3) and direct-generation respectively.

Of course, neither of these resulting graphs are necessarily hierarchical, which we for-

mally define as a multipartite directed graph wherein (i) the node partitions have some order

and (ii) edges from nodes in one partition can only point to nodes in later partitions. This

definition of hierarchy is equivalent to the ontology being a directed acyclic graph (DAG).

For a simple proof, see Appendix C.2. Thus, we require a way to make an automatically-

generated ontology graph into a DAG (which then gets turned into a hierarchy), as there

is no guarantee that either aforementioned method’s graph is a DAG (with the LaMPP

evaluation approach yielding a fully-connected graph).

To assist with the conversion, assume all edges in the initially-generated graph have

associated probability weights. Direct-generation does not produce these weights, so sim-

ply apply LaMPP evaluation to all the relations the generative model produced. Now, we

note that, since non-sensical relations tend to have lower language probabilities, the result-

ing DAG should get rid of low-scoring edges; conversely, it should keep the high-scoring

edges.

This is therefore a suitable example of the maximum acyclic subgraph problem: given

a directed graph with edge weights, produce a subgraph that is acyclic and of maximum

possible total weight. This problem is NP-hard [41], but approximations exist [8, 32]. One

simple 1
2 -approximation [32] with runtime O(|E|) is presented with proofs of correctness

and complexity in Appendix C.3.

This algorithm can further be improved by running it multiple times with different ran-

dom permutations of the vertices ∈V , then taking the produced subgraph with the highest

total weight. If run k times, the runtime is O(k|E|). Better approximations can be found by

choosing the permutation carefully [32], but we consider this simple case for now. More-

over, any sorts of sparsification of the initial graph aids in the approximation – a simple

source would be to remove all edges u→ v with lower weight than v→ u, but if any other

edges are known to not be possible or reasonable, they can be removed too.

We thus have a method for constructing a hierarchy out of (possibly cyclic) weighted

ontologies. Given such a graph (e.g., produced via LaMPP evaluation or direct-generation),

71

run the above randomized algorithm to produce some 1
2 -approximate DAG (V,E ′) in O(k|E|)

time. Then, produce a corresponding topological ordering with an efficient topological sort,

e.g., with time complexity O(|V |+|E|) [21]. Lastly, use the topological ordering to com-

pute the longest directed path (in terms of edge counts, not weights) from some node with

no incoming edges to each node in O(|V |+|E|) time. This assigns an integer longest path

distance to each concept node, which can then be used as its hierarchy partition number. We

note that, in practice, this should be done after some additional sparsification – otherwise,

the longest paths from source nodes may be too long.

See Appendix C.4 for the full algorithm and associated proofs. With this hierarchy

created, one can either treat it as a probabilistic ontology or binarize it (e.g., via sCMF

thresholding or, if initially created via direct-generation, by simply removing all weights).

4.5.2 Use of Ontology in Spatial Perception

Once the spatial ontology has been created, it can be used for downstream learning tasks.

In particular, we consider the use of the Logic Tensor Network (LTN) [6] framework for

training graph neural networks to make predictions in accordance to ontology relations.

The LTN encodes logic rules that the classifier should obey. Of particular relevance is the

inclusion predicate, which enforces that a low-level node contained in a higher-level one

should both have labels that represent a feasible relation (i.e., the spatial ontology says the

low-level label can feasibly be found in the high-level location).

At training time, the neural network tries to output predictions that satisfy the collection

of predicates as well as possible. In effect, this is a loosening of standard neural maximum

likelihood class prediction: instead of just learning to output the exact labels seen at train

time (which might be noisy anyway), the class predictions should simply be feasible/con-

sistent with the spatial ontology’s common sense.

72

Chapter 5

Future Works and Conclusions

5.1 Current Work Extensions

In this thesis, we considered how language models can provide abstract common sense for

robot navigation and scene understanding tasks. In particular, we introduced (i) a variety of

language-leveraging methods for room classification, including ones that leverage vision,

(ii) a framework for using language model evaluations as priors in probabilistic graphical

models, with particular applications to robot navigation, and (iii) a method for automat-

ically extracting and codifying language models’ common sense on object and location

relations in a spatial ontology.

Each of these works still have many avenues to explore:

1. Scene understanding: Due to compute limitations, we were heavily restricted in

terms of both the types of language models we could load and the types of ap-

proaches we could evaluate. Given a higher compute budget, we can try some of the

experiments detailed in the Chapter 2 Limitations section: namely, more advanced

language model techniques, like chain-of-thought prompting (asking the language

model to describe a room before making a final classification) or Socratic models

(having a VLM describe a room, then using a separate language model take in those

descriptions and reason about them to classify the room). Even just experimenting

with larger models could yield improved results. We thus would like to see how

73

improved compute could change our findings, even if our current results are quite

promising.

2. Navigation: LaMPP adopts a simplified version of the ObjectNav challenge. It

would be interesting to see how we could apply it to the original problem, wherein

the map and room labels are unknown. In this case, it would have to perform internal

mapping in conjunction with using the language model priors, possibly extending the

probabilistic graphical model we currently adopted to account for unknown rooms.

Additionally, as one of our LaMPP experiments evaluated how it could be used for

semantic segmentation, another possible extension is to combine the navigation and

segmentation LaMPP frameworks, e.g., to correct for mis-identifications of objects

of interest.

3. Ontology: We are currently in the process of extending the ontology work to see

how the data structure can be used for actual downstream learning, as mentioned

in Section 4.5. The further automation methods listed there are also possible future

research paths.

5.2 What Comes Next?

There are many other use cases for language models’ common sense in robotics, beyond

just navigation and scene understanding. As an example, we consider the problem of giving

robots natural language feedback or corrections.

Currently, the primary approaches are to either train an end-to-end generative trans-

former to correct robot trajectories conditioned on language [14] or to learn mappings from

language to shaped rewards [82], which can then yield policies via model-predictive control

[65] or reinforcement learning.

The former approach seems much less scalable and reliable – one has to just trust

the outputted trajectory is sensible and in-distribution. The latter seems more promising,

though a standard supervised language-to-reward mapping may still be inefficient. Rather,

by using language models’ common sense, there may be a clever way of inferring the prag-

74

matics behind a piece of feedback or correction – that is, the underlying reason (or featural

dependence) for why said feedback is received.

Indeed, linguistic feedback is generally viewed as providing partial policies or reward

functions to a decision-maker; a teacher can tell the agent what to do in certain situations or

the underlying value behind a state, with the latter being generally more useful in longer-

horizon/lower-supervision tasks [88].

However, this distinction is not solid; even partial policies can yield underlying reward

information [53]. In doing so, we would intuitively expect to improve sample efficiency

of robot feedback: if a robot is told to avoid carrying a glass of water over a laptop, it

might understand that this is because the laptop is an expensive electronic device, and thus

generalize its avoidant trajectory behavior to other objects that should be treated in the same

way (e.g., phones or tablet computers).

Such inferences could rely on language models’ common sense. They likely capture

information on the fact that laptops and phones are expensive and susceptible to water

damage, so the language models can be a source of rich, non-obvious features for scene

elements. Naturally, numerical judgement alignment tests (akin to the ones in Chapter 4)

should be employed to determine how well such features and understanding match that of

humans.

Going even beyond that, there has been recent success in bootstrapping desirable lan-

guage model assistant behaviors from a small sample of examples and guiding principles

[89]. This strategy could also be applied to pragmatic robot corrections, e.g., pick a few

sample corrections (and maybe associated underlying reasons behind the feedback) and

have the LM generate more, based on either the same pragmatic reasons or other intu-

itively viable ones. Such corrections can then either be applied for reward shaping (as with

[82, 65]) or even to train a policy network with the guiding principles engrained within, as

is done with the language model in [89].

75

5.3 Conclusion

In this work, we present an overview of methods for leveraging language models in robot

navigation tasks and for scene understanding on both small and large scales. In doing so, we

thoroughly examined the strengths and deficiencies of modern language models – they are

a useful and versatile source of common-sense prior knowledge which is both actionable

and aligned with human judgements, but also suffer from standard language model failure

cases, like hallucinations, uncalibratedness, and prompt sensitivity. Moreover, as this work

shows, using language models for robotics introduces its own host of challenges: how does

one project observation or state information into string space while only keeping relevant

information, if one should do so at all? How do we ground language in real scene elements,

or, perhaps even harder, actions of robots and humans?

We do not have answers to these questions, and, quite frankly, it would be boring if

we did. However, overall, a theme of both the above discussion and the research presented

in this thesis is that current language models seem to work well as intuition instead of

pure, logical/formal reasoners. As such, we argue they should be used in conjunction with

symbolic or formal systems as a sort of common-sense guidance. We do this in all three

projects to some extent:

1. Scene understanding: The LM takes in symbolic object labels and spatial geometry

data from a spatial perception system (possibly in conjunction with images) to exceed

the performance of pure-vision or GNNs operating on just the symbols alone.

2. Navigation: LaMPP fills in probabilistic graphical model parameters or relations

with LM scores.

3. Ontology: The LM fills in relations between symbols in the ontology graph, whose

relations are then engrained in LTN training.

Such an admittedly broad framework is attractive due to how language models and

formal symbolic systems complement each other: symbolic systems operate on rigid rules,

enabling so-called “system 2” cognition, but lack scalability and generalization. Language

models (and many other neural methods) encode and operate on “fuzzy” knowledge, which

76

can operate on a wide array of concepts, but does not have built-in formal guarantees as

to how these concepts are connected; they are akin to “system 1” thinking [40]. Likewise,

there are situations wherein one wants a robot to act rigidly and precisely. On the other

hand, there are domains wherein it is difficult to write down formal/logical rules for robot

behavior. Through this lens, successful integration of language models into robotics can be

summed up as finding the right balance of these qualities.

Regardless, we have demonstrated some early successes in language in robot scene

understanding and navigation. It is a good and exciting time to see what comes next in this

disciplinary intersection.

77

78

Appendix A

Robot Scene Understanding

Implementation Details

A.1 Converting Matterport3D to Scene Graphs

To convert semantic meshes from Matterport3D into scene graphs, we create a node for

each region and object [15]. Then, we connect all object nodes assigned to a region to that

region’s room node. We also filter out some regions. While Matterport3D contains outdoor

regions as well (“yard,” “balcony,” and “porch”), we do not perform inference over them,

since they are not true rooms and thus would require an alternate query string structure. In

addition to outdoor regions, we also remove all rooms with no objects within or with the

label “none.”

Each object is assigned labels from several label spaces. We consider the original labels

used by Matterport3D (mpcat40) and the labels used by NYU (nyuClass) [84]. For both,

we filter out nodes belonging to the mpcat40 categories “ceiling,” “wall,” “floor,” “miscel-

laneous,” “object,” and any other unlabeled nodes. We remove these categories because

they are either not objects within the room or they are ambiguous to the point of being

semantically uninformative. However, for nyuClass, we do not reject objects classified by

mpcat40 as “object,” since nyuClass has many more fine-grained and semantically-rich cat-

egories which all are mapped to this category. After pre-processing the label spaces in this

way, mpcat40 has 35 object labels and nyuClass has 201. Both datasets share a room label

79

space with 23 labels. See Table A.1 for a breakdown of room label frequencies.

Room Label Bar Bathroom Bedroom Classroom Closet
Conference
Auditorium

Occurrences 3 365 251 2 99 16
Percentage 0.16% 19.43% 13.37% 0.11% 5.27% 0.85%

Room Label Dining
Room

Family
Room Game Room Garage Gym Hallway

Occurrences 74 61 17 14 16 326
Percentage 3.94% 3.25% 0.91% 0.75% 0.85% 17.36%

Room Label Kitchen
Laundry

Room Library
Living
Room Lobby Lounge

Occurrences 78 35 1 71 62 64
Percentage 4.15% 1.86% 0.05% 3.78% 3.30% 3.41%

Room Label Office Spa Staircase
Television

Room
Utility
Room Total

Occurrences 98 44 152 13 16 1878
Percentage 5.22% 2.34% 8.09% 0.69% 0.85% 100%

Table A.1: Room label frequencies in pre-processed Matterport3D dataset.

We perform a few additional dataset pre-processing steps to produce the final scene

graph dataset with 1878 rooms. First, since some objects are assigned an incorrect region

(e.g., toilets are assigned to living rooms, despite (i) that being non-sensible and (ii) the

toilet not being within the bounding box of the living room), we check to see if each object

is within the bounding box of its assigned region. If not, then it is re-assigned to whichever

region’s bounding box contains it, and the corresponding scene-graph connection is also

made. Second, nyuClass has some misspelled labels (e.g., “refridgerator” instead of “re-

frigerator”), so we correct all of those too. Lastly, sometimes, a single nyuClass label may

be erroneously assigned to multiple mpcat40 labels. This is most problematic when one of

the mpcat40 labels is rejected and the other is not. To address this, we use the first mpcat40

label for each nyuClass label that is not rejected (e.g., nyuClass label “stairs” is mapped

to mpcat40 “miscellaneous,” which is rejected, and “stairs,” which is not, so we keep the

latter). However, this means some labels which should be rejected are not rejected, so we

also manually filter out all nyuClass object labels that are the same as those of rejected

80

mpcat40 labels: “ceiling,” “floor,” and “wall”.

A.2 Embedding-based Bootstrapping Method

To generate training data for the embedding-based method, we take the n most informative

objects in each room and find all k-object permutations, producing Pn
k query datapoints per

room of the form in Eq. 2.8, all of which correspond to the room’s label. We do this for

(k,n) ∈ {(1,2),(2,3),(3,4)}. Models trained on this data will thus be invariant to object

order and number in the query, and can also handle less informative object labels.

A.3 Structured-language Query Details

To fit hardware memory constraints, we omit rooms with over 100 objects and round all

values to three decimal places. Note that a given room might have different objects de-

pending on which object label space is considered, as nyuClass includes labels that would

be just classified as “object” by mpcat40 (which we reject).

A.4 Vision and Language Dataset Generation

To construct a dataset of room images for our vision and language methods, we use Matter-

port3D’s Pathfinder functionality to generate a top-down occupancy grid map of freespace

for a considered height (which we set to the height of a considered room). A single map

pixel’s length is set to 0.1 meters. We find all pixels that fall within a given room’s bound-

ing box, masking out the rest. To avoid sampling points that are too close to walls and

objects, we dilate occupied cells with a 3× 3 convolutional filter. Then, we uniformly

sample (without replacement) 100 unoccupied cell positions (or as many as possible, if

the room has fewer than 100 open cells). Each one is assigned a yaw uniformly at ran-

dom. Finally, we set the camera to each of those poses, saving the viewed images and

corresponding room label.

81

A.5 Training Details

For the GraphSage baseline, we train for 500 epochs with a learning rate of 5e−3, weight

decay of 1e−4, hidden state dimension of 16, dropout of 0.2, and 2 iterations of message-

passing.

For the embedding-based approach, we train each network for 200 epochs with a batch

size of 512 using cross entropy loss via the Adam optimizer with a learning rate of 1e−4,

β1,β2 = 0.9,0.999, weight decay of 1e− 3, and a StepLR scheduler with step size of 10

and γ = 0.5 [43].

For the structured-language approach, we train the T5 LM for 5 epochs with a batch

size of 2 (due to memory constraints) and the AdamW optimizer with learning rate of

1e−4, smoothing term ε = 1e−8, and no weight decay [55].

For the ResNet baseline, we train for 10 epochs using the SGD optimizer with a learning

rate of 1e−3, a batch size of 128, and momentum of 0.9. We load the checkpoint weights

with the highest validation image-wise accuracy.

For the fine-tuned VLM approach, we train a BLIP-2 model for 5 epochs with the

AdamW optimizer with a learning rate of 5e− 6, batch size of 8 images (due to memory

constraints), weight decay of 0.01, and smoothing term of 1e−8.

In trials training with the vision and language dataset, we pick 16 random images per

room (as many as possible if there are fewer than 16). Additionally, for both validation

and testing, we take every fourth image. Both these choices are to reduce the training and

evaluation time – more images can be used for a more complete evaluation.

A.6 Building Embedding-based Data Generation Details

To generate data for inferring building labels via the feed-forward approach, for each build-

ing in the train set, we sample (without replacement) and shuffle k = 4 rooms out of the

present ones, subsequently putting them into query strings, which we then embed via lan-

guage model. The probability of choosing each room is proportional to the number of

times that room appears in the building. We do this 1000 times total for each room, mean-

82

ing the training dataset label distribution has the same ratios as the training dataset used by

GraphSage.

83

84

Appendix B

LaMPP Baseline Details

B.1 Model Chaining Navigation Baseline

We develop a model chaining baseline to compare against LaMPP, akin to [1]. Given a list

of room labels and counts for the current environment, we query the language model to

autoregressively fill in the string:

W =“The house has [list of rooms with counts].

You want to find [g]. First, go to each [r0].

If not found, go to each [r1].

If not found, ...”

(B.1)

where r0,1,... are room labels in the list of all present rooms (with no repetitions). The agent

visits all r0 in order of proximity. If goal object g was not found, then it visits all r1 in the

same way. This repeats until all rooms have been visited or the agent thinks it detected the

desired object..

85

86

Appendix C

Ontology Construction Proofs

C.1 Sorted CMF Parameter Tuning with Human Data

We discuss specifics of how we tuned GPT-3’s sCMF binary ontology parameters. For

each layer of our hierarchy, we compute sCMF values for all outgoing edges of nodes in

that level. We then sort all such edge relations (i.e., of all nodes in the layer) by ascending

sCMF. Edges with smaller sCMF are ones that have relatively higher probability (of the

outgoing edges for a particular node). Thus, they (i) should be kept post-binarization and

(ii) can be kept with lower sCMF thresholds.

We then iterate through this sorted list of sCMF values for candidate thresholds. We

compute what percent of the relations originating at the current level in the ground truth

dataset would be correctly classified by a given threshold, i.e., feasible relations should

have sCMF lower than the candidate threshold while infeasible ones should be higher. This

allows us to find the candidate threshold that maximizes accuracy for each level. We then

use this information to inform our layer-wise threshold choices.

C.2 Proof of Equivalence of Hierarchical Graphs and Di-

rected Acyclic Graphs

We prove that a hierarchy is equivalent to a DAG with the following argument.

87

A hierarchy can trivially be converted into a topological ordering by iterating through

the partitions in order and numbering the nodes in each partition in any desired order. When

considering the subsequent partition, begin the numbering where it ended for the previous

partition (e.g., if some partition’s last node was numbered with n, the next partition’s first

node should be numbered n+1). Doing this for all nodes in all partitions yields a topolog-

ical ordering: by definition of hierarchy, nodes can only have edges pointing to nodes in

later partitions. Since nodes in earlier partitions were numbered before ones in later parti-

tions, this means that all edges are from nodes with lower number to higher number, thus

showing the ordering is topological.

Now to show the reverse. A topological ordering can easily be converted into a hierar-

chy by setting the number of partitions equal to the number of nodes and putting each node

in the partition of number equal to its place in the topological ordering. This trivially sat-

isfies the definition of a hierarchy – each partition only consists of one node (so the graph

is multipartite) and only connects to nodes in later partitions (as their partition number is

their topological ordering number, i.e., larger than the considered nodes).

This shows equivalence of hierarchical graphs and ones with topological orderings. We

then know that graphs with topological orderings are equivalent to DAGs – topological

orderings trivially disallow cycles (as it would involve an edge going “backwards” in the

ordering) and topological orderings for a DAG can be produced via any topological sorting

algorithm [21].

Thus, by the transitive property, since hierarchical graphs are equivalent to topologi-

cally ordered graphs and topologically ordered graphs are equivalent to DAGs, hierarchical

graphs are equivalent to DAGs.

C.3 Analysis of the Approximate Maximum Acyclic Sub-

graph Algorithm

The simple 1
2 -approximation for maximum acyclic subgraph is:

Given G = {V = {v1,...,N},E}

88

E ′←{}

for i = 1,2, ...,N−1 do

V ′←{vi+1,...,N}

if w({vi→V ′})> w({vi←V ′}) then

E ′← E ′∪{vi→V ′}

else

E ′← E ′∪{vi←V ′}

return (V, E’)

where E contains weighted directed edges, {a→ B} is the set of edges from a to nodes in

set B (vice-versa for {a← B}) and w(·) is the total weight of a set of edges.

This algorithm always returns an acyclic subgraph. This can be shown by contradiction.

Suppose the returned graph was cyclic. Now consider the nodes in the cycle. This particular

subgraph was produced from some fixed ordering/permutation of the nodes. Thus, there

must be some node in the cycle such that all other nodes in the cycle come after it in the

ordering. As the node is part of a cycle, it must therefore have both an incoming and

outgoing edge, both connected to nodes that are later in the permutation. However, this

cannot be the case for any subgraph returned by our algorithm, as in any given step, all

edges added to E ′ are exclusively incoming or outgoing for the considered node and the

ones after it in the ordering. The included edges from any node and the ones after it in

the ordering must all must be incoming or outgoing – no mix of the two. This results in a

contradiction, so (V,E ′) returned by the algorithm must be acyclic.

This algorithm is also a 1
2 -approximation, as all graphs (V,E ′) it yields must satisfy

w(E ′) ≥ 1
2w(E) ≥ 1

2w(E∗), where E∗ are the edges of the optimal subgraph. This is be-

cause E ′ is comprised of the union of {vi→{vi+1,...,N}} and {vi←{vi+1,...,N}} (whichever

has higher weight for each value of i ∈ 1, ...,N − 1). The union of these 2(N − 1) non-

overlapping sets is E, and since E ′ contains sets who each have higher weight than unique

members of the set of rejected edge sets, w(E ′) must at least half w(E), as desired.

Finally, this algorithm considers each edge’s weight once (i.e., all the calls of w(·) are,

again, for non-overlapping sets whose unions are E), so assuming O(1) time complexity

of accessing each incoming/outgoing edge for a particular vertex, it has overall runtime

89

O(|E|).

We do not attempt to show any connectedness guarantees, but note that if the resulting

subgraph is not weakly-connected, it can be made so by introducing an auxiliary node

(equivalent to the “world” node) and adding edges from all nodes with no outgoing edges

to it1.

C.4 Longest Path Hierarchy Partition Algorithm

The longest path problem is known to be NP-hard for general graphs [41], but has a well-

known linear-time dynamic programming solution for DAGs [47]. For such graphs, the

longest path must always start at a source node (one with no incoming edges), as if it does

not, then the path start node has at least one incoming edge, so the path can be extended.

Thus, this problem is equivalent to finding the longest distance of all nodes in a DAG to

(any) source node. Note that we consider longest path by edge count, which is a special

case of the longest path by edge weight, but with all weights are set to 1. The algorithm is

as follows: First, topologically sort the DAG G, if it has not been already. Call this order

top_order(G). Then, execute the following:

for v ∈ top_sort(G) do

if v.incoming = /0 then

v.dist← 0

else

v.dist← 1+maxu{u.dist | ∀(u,v) ∈ v.incoming}

Thus, if v has no incoming edges (i.e., it is a source node), then it has 0 assigned as its

distance. However, if it has incoming edges, then its maximum distance to a source node

must be the maximum over all its incoming edges’ origin nodes’ distances plus an addi-

tional edge. This maximum can be efficiently computed because all of the nodes with edges

pointing to the considered v must have already had their distances computed, on account

1Although less easy to implement, one can also add rejected edges from the original graph to connect
disconnected subgraphs until they are all weakly connected. This improves the total weight of the resulting
graph while not introducing any cycles (e.g., if only a single edge is introduced to connect each disconnected
subgraph to the “main” subgraph).

90

of going through the graph in topological ordering. The distance of subsequent nodes like-

wise cannot affect the current v’s maximum distance, as they cannot have edges pointing

to v (or any path to nodes that do have such edges), once again due to topological sorting.

Thus, the assigned distance to each node is its true longest path to a source node, prov-

ing the algorithm’s correctness. In terms of runtime, the algorithm iterates through each

node once. For each one, it takes a maximum over parent nodes’ distance scores, of which

there are |v.incoming|. Thus, the maximums look at each edge once, yielding a runtime of

O(|V |+|E|). The topological sort has the same complexity, so the overall runtime does not

change from it.

These distances are easily proved to be a valid hierarchy partitioning: nodes of the

same distance cannot have edges between them (as the distance scores of a pair of nodes

connected via an edge must differ by at least 1). Nodes’ outgoing edges also definitely point

to nodes in higher partitions, as an edge (u,v) necessarily means v’s distance is greater than

u’s.

Finally, this strategy minimizes the number of partitions. To prove this, consider that

this strategy produces k partitions, where k is the number of nodes in the longest directed

path in G. If there were fewer than k partitions, by the pigeonhole principle, at least two of

the nodes in that directed path must be in the same partition. As there is a path starting from

one of those nodes to the other, this violates the fact that this is a hierarchical partition, as

the nodes in later partitions would connect back to nodes in an earlier one.

91

92

Bibliography

[1] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu,
K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian,
D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor,
J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng. Do as
i can and not as i say: Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022.

[2] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Men-
sch, K. Millican, M. Reynolds, R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong,
S. Samangooei, M. Monteiro, J. Menick, S. Borgeaud, A. Brock, A. Nematzadeh,
S. Sharifzadeh, M. Binkowski, R. Barreira, O. Vinyals, A. Zisserman, and K. Si-
monyan. Flamingo: a visual language model for few-shot learning. 2022.

[3] P. Ammanabrolu, W. Cheung, W. Broniec, and M. O. Riedl. Automated storytelling
via causal, commonsense plot ordering. In AAAI Conference on Artificial Intelli-
gence, 2020.

[4] P. Ammanabrolu, J. Urbanek, M. Li, A. Szlam, T. Rocktäschel, and J. Weston. How
to motivate your dragon: Teaching goal-driven agents to speak and act in fantasy
worlds. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages
807–833, Online, June 2021. Association for Computational Linguistics. doi: 10.
18653/v1/2021.naacl-main.64. URL https://aclanthology.org/2021.
naacl-main.64.

[5] I. Armeni, Z. He, J. Gwak, A. Zamir, M. Fischer, J. Malik, and S. Savarese. 3D
scene graph: A structure for unified semantics, 3D space, and camera. In Intl. Conf.
on Computer Vision (ICCV), pages 5664–5673, 2019.

[6] S. Badreddine, A. d’Avila Garcez, L. Serafini, and M. Spranger. Logic tensor net-
works. Artificial Intelligence, 303:103649, 2022.

[7] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall.
SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences.
In Intl. Conf. on Computer Vision (ICCV), 2019.

93

https://aclanthology.org/2021.naacl-main.64
https://aclanthology.org/2021.naacl-main.64

[8] B. Berger and P. W. Shor. Approximation alogorithms for the maximum acyclic
subgraph problem. In ACM-SIAM Symposium on Discrete Algorithms, 1990.

[9] S. Black, L. Gao, P. Wang, C. Leahy, and S. Biderman. GPT-Neo: Large Scale Au-
toregressive Language Modeling with Mesh-Tensorflow, Mar. 2021. URL https:
//doi.org/10.5281/zenodo.5297715. If you use this software, please cite
it using these metadata.

[10] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai. Man is to
computer programmer as woman is to homemaker? debiasing word embeddings. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper/2016/file/
a486cd07e4ac3d270571622f4f316ec5-Paper.pdf.

[11] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S.
Bernstein, J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card,
R. Castellon, N. Chatterji, A. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Don-
ahue, M. Doumbouya, E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-
Fei, C. Finn, T. Gale, L. Gillespie, K. Goel, N. Goodman, S. Grossman, N. Guha,
T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu, J. Huang, T. Icard,
S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani, O. Khattab,
P. W. Koh, M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee,
T. Lee, J. Leskovec, I. Levent, X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning,
S. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan, D. Narayanan,
B. Newman, A. Nie, J. C. Niebles, H. Nilforoshan, J. Nyarko, G. Ogut, L. Orr, I. Pa-
padimitriou, J. S. Park, C. Piech, E. Portelance, C. Potts, A. Raghunathan, R. Reich,
H. Ren, F. Rong, Y. Roohani, C. Ruiz, J. Ryan, C. Ré, D. Sadigh, S. Sagawa, K. San-
thanam, A. Shih, K. Srinivasan, A. Tamkin, R. Taori, A. W. Thomas, F. Tramèr, R. E.
Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M. Xie, M. Yasunaga, J. You, M. Zaharia,
M. Zhang, T. Zhang, X. Zhang, Y. Zhang, L. Zheng, K. Zhou, and P. Liang. On the
opportunities and risks of foundation models, 2022.

[12] S. Bowman, N. Atanasov, K. Daniilidis, and G. Pappas. Probabilistic data associa-
tion for semantic SLAM. In IEEE Intl. Conf. on Robotics and Automation (ICRA),
pages 1722–1729, 2017.

[13] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Win-
ter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-
guage models are few-shot learners. In H. Larochelle, M. Ranzato, R. Had-
sell, M. Balcan, and H. Lin, editors, Advances in Neural Information Pro-
cessing Systems (NIPS), volume 33, pages 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

94

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[14] A. Bucker, L. Figueredo, S. Haddadin, A. Kapoor, S. Ma, S. Vemprala, and R. Bon-
atti. Latte: Language trajectory transformer, 2022.

[15] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song,
A. Zeng, and Y. Zhang. Matterport3d: Learning from rgb-d data in indoor envi-
ronments. International Conference on 3D Vision (3DV), 2017.

[16] D. Chaves, J. Ruiz-Sarmiento, N. Petkov, and J. González-Jiménez. From object
detection to room categorization in robotics. pages 1–6, 01 2020. doi: 10.1145/
3378184.3378230.

[17] C. Chen, K. Lin, and D. Klein. Constructing taxonomies from pretrained language
models. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, 2021.

[18] K. Choi, C. Cundy, S. Srivastava, and S. Ermon. LMPriors: Pre-trained language
models as task-specific priors. In NeurIPS 2022 Foundation Models for Deci-
sion Making Workshop, 2022. URL https://openreview.net/forum?id=
U2MnmJ7Sa4.

[19] N. Chomsky. Aspects of the Theory of Syntax. The MIT
Press, Cambridge, 1965. URL http://www.amazon.com/
Aspects-Theory-Syntax-Noam-Chomsky/dp/0262530074.

[20] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert,
J. Tworek, J. Hilton, R. Nakano, C. Hesse, and J. Schulman. Training verifiers
to solve math word problems, 2021.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. 3 edition, 2009.

[22] D. Dohan, W. Xu, A. Lewkowycz, J. Austin, D. Bieber, R. G. Lopes, Y. Wu,
H. Michalewski, R. A. Saurous, J. Sohl-dickstein, K. Murphy, and C. Sutton. Lan-
guage model cascades. In International Conference on Machine Learning, 2022.

[23] J. Dong, X. Fei, and S. Soatto. Visual-Inertial-Semantic scene representation for
3D object detection. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017.

[24] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid,
J. Tompson, Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth,
S. Levine, V. Vanhoucke, K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch,
and P. Florence. Palm-e: An embodied multimodal language model, 2023.

[25] D. Fried, J.-B. Alayrac, P. Blunsom, C. Dyer, S. Clark, and A. Nematzadeh.
Learning to segment actions from observation and narration. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics,

95

https://openreview.net/forum?id=U2MnmJ7Sa4
https://openreview.net/forum?id=U2MnmJ7Sa4
http://www.amazon.com/Aspects-Theory-Syntax-Noam-Chomsky/dp/0262530074
http://www.amazon.com/Aspects-Theory-Syntax-Noam-Chomsky/dp/0262530074

pages 2569–2588, Online, July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.231. URL https://aclanthology.org/
2020.acl-main.231.

[26] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. Fernández-Madrigal, and
J. González. Multi-hierarchical semantic maps for mobile robotics. In IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages 3492–3497, 2005.

[27] N. D. Goodman and M. C. Frank. Pragmatic language interpretation as probabilistic
inference. Trends in Cognitive Sciences, 20(11):818–829, 2016. ISSN 1364-6613.
doi: https://doi.org/10.1016/j.tics.2016.08.005.

[28] H. P. Grice. Logic and conversation. In Syntax and Semantics: Vol. 3: Speech Acts,
pages 41–58. Academic Press, 1975.

[29] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Siegwart, and J. Ni-
eto. Volumetric Instance-Aware Semantic Mapping and 3D Object Discovery. IEEE
Robotics and Automation Letters, 4(3):3037–3044, 2019.

[30] Y. Gu, B. D. Mishra, and P. Clark. Do language models have coherent mental models
of everyday things?, 2022.

[31] W. L. Hamilton., R. Ying, and J. Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems (NIPS), page
1025–1035, Dec. 2017.

[32] R. Hassin and S. Rubinstein. Approximations for the maximum acyclic subgraph
problem. Information Processing Letters, 51(3):133–140, 1994.

[33] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
pages 770–778, 2016.

[34] T. M. Howard, S. Tellex, and N. Roy. A natural language planner interface for mobile
manipulators. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 6652–6659, 2014. doi: 10.1109/ICRA.2014.6907841.

[35] C. Huang, O. Mees, A. Zeng, and W. Burgard. Visual language maps for robot
navigation. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2023.

[36] N. Hughes, Y. Chang, and L. Carlone. Hydra: a real-time spatial perception engine
for 3D scene graph construction and optimization. In Robotics: Science and Systems
(RSS), 2022. (pdf).

[37] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and
P. Fung. Survey of hallucination in natural language generation. ACM Computing
Surveys, 55(12):1–38, mar 2023.

96

https://aclanthology.org/2020.acl-main.231
https://aclanthology.org/2020.acl-main.231
https://arxiv.org/pdf/2201.13360.pdf

[38] J. Jiang, L. Zheng, F. Luo, and Z. Zhang. Rednet: Residual encoder-decoder net-
work for indoor rgb-d semantic segmentation, 2018. URL https://arxiv.
org/abs/1806.01054.

[39] J. Johnson, A. Gupta, and L. Fei-Fei. Image generation from scene graphs. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[40] D. Kahneman. Thinking, Fast and Slow. New York, 2011.

[41] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. 1972.

[42] J. Kerr, C. M. Kim, K. Goldberg, A. Kanazawa, and M. Tancik. Lerf: Language
embedded radiance fields. 2023.

[43] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

[44] T. Kollar, S. Tellex, D. K. Roy, and N. Roy. Toward understanding natural language
directions. In HRI 2010, 2010.

[45] K. Kveraga, A. Ghuman, and M. Bar. Top-down predictions in the cognitive brain.
Brain and Cognition, 65(2):145–168, 2007.

[46] O. Lang, Y. Gandelsman, M. Yarom, Y. Wald, G. Elidan, A. Hassidim, W. T. Free-
man, P. Isola, A. Globerson, M. Irani, and I. Mosseri. Explaining in style: Training
a gan to explain a classifier in stylespace. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 673–682, 2021.

[47] Y. T. Lee. Cse 421: Dynamic programming - longest path in a dag, 2018.

[48] A. K. Lew, M. H. Tessler, V. K. Mansinghka, and J. B. Tenenbaum. Leveraging un-
structured statistical knowledge in a probabilistic language of thought. Proceedings
of the Annual Conference of the Cognitive Science Society, 2020.

[49] B. Z. Li, W. Chen, P. Sharma, and J. Andreas. Lampp: Language models as proba-
bilistic priors for perception and action. 2023.

[50] C. Li, H. Xiao, K. Tateno, F. Tombari, N. Navab, and G. D. Hager. Incremental
scene understanding on dense SLAM. In IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pages 574–581, 2016.

[51] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation, 2022.

[52] J. Li, D. Li, S. Savarese, and S. Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models, 2023.

[53] J. Lin, D. Fried, D. Klein, and A. Dragan. Inferring rewards from language in con-
text. 2022.

97

https://arxiv.org/abs/1806.01054
https://arxiv.org/abs/1806.01054

[54] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov. RoBERTa: A robustly optimized BERT pretraining ap-
proach. arXiv, 2019. doi: 10.48550/ARXIV.1907.11692. URL https://arxiv.
org/abs/1907.11692.

[55] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

[56] C. Lu, R. Krishna, M. Bernstein, and F.-F. Li. Visual relationship detection with
language priors. In European Conference on Computer Vision, pages 852–869, 2016.

[57] H. Luo, A. Yue, Z.-W. Hong, and P. Agrawal. Stubborn: A strong baseline for indoor
object navigation, 2022.

[58] C. Lynch and P. Sermanet. Language conditioned imitation learning over un-
structured data. arXiv, 2020. doi: 10.48550/ARXIV.2005.07648. URL https:
//arxiv.org/abs/2005.07648.

[59] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao, E. Wijmans,
B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra. Habitat: A
Platform for Embodied AI Research. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

[60] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox. Learning to Parse
Natural Language Commands to a Robot Control System, pages 403–415.
Springer International Publishing, Heidelberg, 2013. ISBN 978-3-319-00065-7.
doi: 10.1007/978-3-319-00065-7_28. URL https://doi.org/10.1007/
978-3-319-00065-7_28.

[61] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger. Fusion++:
Volumetric object-level SLAM. In Intl. Conf. on 3D Vision (3DV), pages 32–41,
2018.

[62] G. A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):
39–41, Nov. 1995. ISSN 0001-0782. doi: 10.1145/219717.219748. URL https:
//doi.org/10.1145/219717.219748.

[63] J. Mirault, J. Snell, and J. Grainger. You that read wrong again! a transposed-word
effect in grammaticality judgments. Psychological Science, 29:095679761880629,
10 2018. doi: 10.1177/0956797618806296.

[64] B. B. Murdock. The serial position effect of free recall. Journal of Experimental
Psychology, 64:482–488, 1962.

[65] S. Nair, E. Mitchell, K. Chen, B. Ichter, S. Savarese, and C. Finn. Learning language-
conditioned robot behavior from offline data and crowd-sourced annotation, 2021.

[66] L. Nicholson, M. Milford, and N. Sünderhauf. QuadricSLAM: Dual quadrics from
object detections as landmarks in object-oriented SLAM. IEEE Robotics and Au-
tomation Letters, 4:1–8, 2018.

98

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/2005.07648
https://doi.org/10.1007/978-3-319-00065-7_28
https://doi.org/10.1007/978-3-319-00065-7_28
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748

[67] K. Ok, K. Liu, and N. Roy. Hierarchical object map estimation for efficient and
robust navigation. In 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1132–1139, 2021. doi: 10.1109/ICRA48506.2021.9561225.

[68] OpenAI. Introducing chatgpt. https://openai.com/blog/chatgpt, 2022.

[69] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,
S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller,
M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe. Train-
ing language models to follow instructions with human feedback, 2022.

[70] C. Painter. Learning Through Language in Early Childhood. Continuum Collection.
Bloomsbury Publishing, 2005. ISBN 9781847143945. URL https://books.
google.com/books?id=4sB0i-DfT0MC.

[71] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language
models are unsupervised multitask learners. 2019.

[72] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transfer-
able visual models from natural language supervision. arXiv, 2021. doi: 10.48550/
ARXIV.2103.00020. URL https://arxiv.org/abs/2103.00020.

[73] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

[74] S. K. Ramakrishnan, A. Gokaslan, E. Wijmans, O. Maksymets, A. Clegg, J. M.
Turner, E. Undersander, W. Galuba, A. Westbury, A. X. Chang, M. Savva, Y. Zhao,
and D. Batra. Habitat-matterport 3d dataset (HM3d): 1000 large-scale 3d envi-
ronments for embodied AI. In Thirty-fifth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track (Round 2), 2021. URL https:
//openreview.net/forum?id=-v4OuqNs5P.

[75] A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone. 3D dynamic scene graphs:
Actionable spatial perception with places, objects, and humans. In Robotics: Sci-
ence and Systems (RSS), 2020. doi: 10.15607/RSS.2020.XVI.079. URL http:
//news.mit.edu/2020/robots-spatial-perception-0715. (pdf),
(media), (video).

[76] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi, A. Gupta, and
L. Carlone. Kimera: from SLAM to spatial perception with 3D dynamic scene
graphs. Intl. J. of Robotics Research, 40(12–14):1510–1546, 2021. arXiv preprint:
2101.06894, (pdf).

[77] R. Rosu, J. Quenzel, and S. Behnke. Semi-supervised semantic mapping through
label propagation with semantic texture meshes. Intl. J. of Computer Vision, 06
2019.

99

https://books.google.com/books?id=4sB0i-DfT0MC
https://books.google.com/books?id=4sB0i-DfT0MC
https://arxiv.org/abs/2103.00020
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=-v4OuqNs5P
https://openreview.net/forum?id=-v4OuqNs5P
http://news.mit.edu/2020/robots-spatial-perception-0715
http://news.mit.edu/2020/robots-spatial-perception-0715
https://arxiv.org/pdf/2002.06289.pdf
http://news.mit.edu/2020/robots-spatial-perception-0715
https://www.youtube.com/watch?v=SWbofjhyPzI&feature=youtu.be
https://arxiv.org/pdf/2101.06894.pdf

[78] J.-R. Ruiz-Sarmiento, C. Galindo, and J. Gonzalez-Jimenez. Building multiversal
semantic maps for mobile robot operation. Knowledge-Based Systems, 119:257–
272, 2017.

[79] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. Szlam. Clip-fields:
Weakly supervised semantic fields for robotic memory, 2022.

[80] D. Shah, B. Osinski, B. Ichter, and S. Levine. Robotic Navigation with Large Pre-
Trained Models of Language, Vision, and Action. 2022.

[81] C. E. Shannon. Prediction and entropy of printed english. The Bell System Technical
Journal, 30(1):50–64, 1951. doi: 10.1002/j.1538-7305.1951.tb01366.x.

[82] P. Sharma, B. Sundaralingam, V. Blukis, C. Paxton, T. Hermans, A. Torralba, J. An-
dreas, and D. Fox. Correcting robot plans with natural language feedback. arXiv,
2022. doi: 10.48550/ARXIV.2204.05186. URL https://arxiv.org/abs/
2204.05186.

[83] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic
manipulation. arXiv, 2021. doi: 10.48550/ARXIV.2109.12098. URL https:
//arxiv.org/abs/2109.12098.

[84] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support
inference from rgbd images. In European Conf. on Computer Vision (ECCV), 2012.

[85] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thoma-
son, and A. Garg. Progprompt: Generating situated robot task plans using large
language models. In Second Workshop on Language and Reinforcement Learning,
2022. URL https://openreview.net/forum?id=aflRdmGOhw1.

[86] S. Song, S. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d scene understanding bench-
mark suite. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 567–576. IEEE Computer Society, 2015. doi: 10.1109/CVPR.2015.
7298655. URL https://doi.ieeecomputersociety.org/10.1109/
CVPR.2015.7298655.

[87] R. Speer, J. Chin, and C. Havasi. ConceptNet 5.5: an open multilingual graph of
general knowledge. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI’17, page 4444–4451. AAAI Press, 2017.

[88] T. R. Sumers, R. D. Hawkins, M. K. Ho, T. L. Griffiths, and D. Hadfield-Menell.
Linguistic communication as (inverse) reward design, 2022.

[89] Z. Sun, Y. Shen, Q. Zhou, H. Zhang, Z. Chen, D. Cox, Y. Yang, and C. Gan.
Principle-driven self-alignment of language models from scratch with minimal hu-
man supervision, 2023.

100

https://arxiv.org/abs/2204.05186
https://arxiv.org/abs/2204.05186
https://arxiv.org/abs/2109.12098
https://arxiv.org/abs/2109.12098
https://openreview.net/forum?id=aflRdmGOhw1
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298655
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298655

[90] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre,
M. Mukadam, D. Chaplot, O. Maksymets, A. Gokaslan, V. Vondrus, S. Dharur,
F. Meier, W. Galuba, A. Chang, Z. Kira, V. Koltun, J. Malik, M. Savva, and D. Batra.
Habitat 2.0: Training home assistants to rearrange their habitat. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

[91] A. Talmor, O. Yoran, R. L. Bras, C. Bhagavatula, Y. Goldberg, Y. Choi, and J. Berant.
CommonsenseQA 2.0: Exposing the limits of AI through gamification. In Thirty-
fifth Conference on Neural Information Processing Systems Datasets and Bench-
marks Track (Round 1), 2021. URL https://openreview.net/forum?id=
qF7FlUT5dxa.

[92] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J. Teller, and
N. Roy. Understanding natural language commands for robotic navigation and
mobile manipulation. In AAAI, 2011. URL http://www.aaai.org/ocs/
index.php/AAAI/AAAI11/paper/view/3623.

[93] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is All you Need. In Advances in Neural Information
Processing Systems (NIPS), volume 30. Curran Associates, Inc., 2017.

[94] W. von Humboldt, P. Heath, and H. Aarsleff. On Language: The Diversity of Human
Language-Structure and its Influence on the Mental Development of Mankind. Texts
in German Philosophy. Cambridge University Press, 1988. ISBN 9780521315135.
URL https://books.google.com/books?id=0CXEQwAACAAJ.

[95] B. Wang and A. Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Au-
toregressive Language Model. https://github.com/kingoflolz/
mesh-transformer-jax, May 2021.

[96] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan,
X. Wang, W. Liu, and B. Xiao. Deep high-resolution representation learning for vi-
sual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(10):3349–3364, 2021. doi: 10.1109/TPAMI.2020.2983686.

[97] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and
D. Zhou. Chain of thought prompting elicits reasoning in large language models. In
A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Infor-
mation Processing Systems, 2022. URL https://openreview.net/forum?
id=_VjQlMeSB_J.

[98] K. Yadav, S. K. Ramakrishnan, J. Turner, A. Gokaslan, O. Maksymets, R. Jain,
R. Ramrakhya, A. X. Chang, A. Clegg, M. Savva, E. Undersander, D. S. Chap-
lot, and D. Batra. Habitat challenge 2022. https://aihabitat.org/
challenge/2022/, 2022.

101

https://openreview.net/forum?id=qF7FlUT5dxa
https://openreview.net/forum?id=qF7FlUT5dxa
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3623
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3623
https://books.google.com/books?id=0CXEQwAACAAJ
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://aihabitat.org/challenge/2022/
https://aihabitat.org/challenge/2022/

[99] X. Ye and G. Durrett. The unreliability of explanations in few-shot prompting for
textual reasoning. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[100] E. Zelikman, Y. Wu, J. Mu, and N. D. Goodman. STar: Bootstrapping reasoning
with reasoning. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Ad-
vances in Neural Information Processing Systems, 2022.

[101] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari,
A. Purohit, M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke, and P. Florence. Socratic
models: Composing zero-shot multimodal reasoning with language. In Submitted
to The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=G2Q2Mh3avow. under review.

[102] D. Zhukov, J.-B. Alayrac, R. G. Cinbis, D. Fouhey, I. Laptev, and J. Sivic. Cross-
task weakly supervised learning from instructional videos. In Computer Vision and
Pattern Recognition, 2019.

102

https://openreview.net/forum?id=G2Q2Mh3avow

	Introduction
	The Path Towards Everyday Robots
	Language Models and Robotics
	Scene Understanding
	Robot Navigation
	Large-scale Spatial Ontology
	Thesis Structure

	Scene Understanding
	Related Works
	Language-only Methods
	Query Strings and Informativeness
	Zero-shot Approach
	Embedding-based Approach
	Structured-data Approach

	Vision-and-Language Methods
	Zero-shot Approach
	Fine-tuning Approach

	Experimental Setup
	Datasets
	Baselines
	Language-only Trial Specifications
	Vision-and-Language Trial Specifications
	Additional Trials

	Results
	Language-only Results
	Vision-and-Language Results
	Building Trial Results
	Real 3D Scene Graph Results

	Conclusion

	Robot Navigation
	Related Works
	Methods
	LaMPP for Navigation
	Problem Statement
	Methods
	Experiments
	Evaluation & Results

	Other Applications of LaMPP

	Large-scale Spatial Ontology
	Related Works
	Methods
	The Spatial Ontology
	Constructing the Ontology Graph
	Generating Ontology Weights
	Binarizing Ontology Edges via Thresholding
	Direct Generation of Binary Ontology Edges

	Experiments and Evaluation
	Querying for Language Model Scores
	Querying for Direct Generation of Binary Ontology Edges
	Evaluating Human Judgement Alignment

	Discussion
	Key Takeaways
	Possible Evaluation Concerns

	Future Works
	Further Automation of Ontology Construction
	Use of Ontology in Spatial Perception

	Future Works and Conclusions
	Current Work Extensions
	What Comes Next?
	Conclusion

	Robot Scene Understanding Implementation Details
	Converting Matterport3D to Scene Graphs
	Embedding-based Bootstrapping Method
	Structured-language Query Details
	Vision and Language Dataset Generation
	Training Details
	Building Embedding-based Data Generation Details

	LaMPP Baseline Details
	Model Chaining Navigation Baseline

	Ontology Construction Proofs
	Sorted CMF Parameter Tuning with Human Data
	Proof of Equivalence of Hierarchical Graphs and Directed Acyclic Graphs
	Analysis of the Approximate Maximum Acyclic Subgraph Algorithm
	Longest Path Hierarchy Partition Algorithm

