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Abstract

Effective pandemic preparedness relies on anticipating viral mutations that are able
to evade host immune responses in order to facilitate vaccine and therapeutic de-
sign. However, current strategies for viral evolution prediction are not available early
in a pandemic – experimental approaches require host polyclonal antibodies to test
against and existing computational methods draw heavily from current strain preva-
lence to make reliable predictions of variants of concern. To address this, we developed
EVEscape, a generalizable, modular framework that combines fitness predictions from
a deep learning model of historical sequences with biophysical structural information.
EVEscape quantifies the viral escape potential of mutations at scale and has the
advantage of being applicable before surveillance sequencing, experimental scans, or
3D structures of antibody complexes are available. We demonstrate that EVEscape,
trained on sequences available prior to 2020, is as accurate as high-throughput experi-
mental scans at anticipating pandemic variation for SARS-CoV-2 and is generalizable
to other viruses including Influenza, HIV, and understudied viruses with pandemic
potential such as Lassa and Nipah. We provide continually updated escape scores for
all current strains of SARS-CoV-2 and predict likely additional mutations to forecast
emerging strains as a tool for ongoing vaccine development (evescape.org).

Thesis Supervisor: Debora Marks
Title: Professor of Systems Biology, Harvard University
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Chapter 1

Introduction

Viral diseases involve a complex interplay between immune detection in the host and

viral evasion, often leading to the evolution of viral antigenic proteins. Antibody

escape mutations affect viral reinfection rates and the duration of vaccine efficacy.

Therefore, anticipating viral variants that avoid immune detection with sufficient

lead time is key to developing optimal vaccines and therapeutics.

Ideally, we would be able to anticipate viral immune evasion by using experimental

methods such as pseudovirus assays[50, 64] and higher-throughput deep mutational

scans[19, 35, 32, 30, 31, 67, 66, 68, 78, 8, 9, 34, 29, 21, 18] (DMSs) that measure

the ability of viral variants to bind relevant antibodies. However, these experimental

methods require antibodies or sera representative of the aggregate immune selection

imposed on the virus, which only become available as large swaths of the population

are infected or vaccinated, limiting the impact for early prediction of immune escape.

In addition, since pandemic viruses can evolve rapidly (tens of thousands of new

SARS-CoV-2 variants are currently sequenced each month), systematically testing all

variants as they emerge is intractable, even without considering the effects of potential

mutations on currently circulating strains.

It is therefore of interest to build computational methods for predicting viral

escape that can be used to identify mutations that may emerge. An ideal model would

be able to assess escape likelihood for as-yet-unseen variation throughout the full

antigenic protein, would inform the design of targeted experiments, would be updated

9



with pandemic information, and would make predictions with sufficient lead time for

vaccine development (that is, before immune responses to the virus are observed).

However, previous computational methods for forecasting viral fitness or immune

escape depend critically on real-time sequencing or pandemic antibody structures,

limiting their ability to predict unseen variants and making them impractical for

vaccine development during the onset of a pandemic[49, 55, 57, 60, 4].

In this work, we introduce EVEscape, a flexible framework that addresses the

weaknesses of existing methods by combining a deep generative model trained on

historical viral sequences with structural and biophysical constraints. Unlike ex-

isting methods, EVEscape does not rely on recent pandemic sequencing or anti-

bodies, making it applicable both in the early stages of a viral outbreak and for

ongoing evaluation of emerging SARS-CoV-2 strains. By leveraging functional con-

straints learned from past evolution, as successfully demonstrated for predicting clin-

ical variant effects[26, 40, 59], EVEscape can capture relevant epistasis[74, 83] and

thereby predict mutant fitness within the context of any strain background. More-

over, EVEscape is adaptable to new viruses, as we demonstrate in both our validation

on SARS-CoV-2, HIV, and Influenza and in predictions for the understudied Nipah

and Lassa viruses. This approach enables advanced warning of concerning muta-

tions, facilitating the development of more effective vaccines and therapeutics. Such

an early warning system can guide public health decision-making and preparedness

efforts, ultimately minimizing the human and economic impact of a pandemic.

1.1 Overview of Thesis

In Chapter 2 we provide an overview of the EVEscape model. In Chapter 3, we

provide results for anticipating pandemic variation. In Chapter 4, we demonstrate

how the EVEscape framework can be adapted to pandemic data and new models.

In Chapter 5, we show two key applications of EVEscape: strain forecasting and

predictions for new viruses with pandemic potential. Lastly, our conclusion is in

Chapter 6.
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Chapter 2

Model

2.1 Overarching framework

Viral proteins that escape humoral immunity disrupt polyclonal antibody binding

while retaining protein expression, protein folding, host receptor binding, and other

properties necessary for viral infection and transmission[66]. We built a modeling

framework—EVEscape—that incorporates constraints from these different aspects of

viral protein function learned from different data sources. We express the probability

of a single amino acid substitution to lead to immune escape as the product of three

conditional probabilities (Figure 1A):

P(Mutation escapes immunity) = P(Mutation maintains fitness)

× P(Mutation accessible to antibody | fit)

× P(Mutation disrupts antibody binding | fit, accessible)

These components are amenable to pre-pandemic data sources, allowing for early

warning (Figure 1B). The EVEscape index estimates the log likelihood of escape as

per the above equation. The fitness factor is obtained via a deep generative model for

fitness prediction, while the accessibility and dissimilarity factors are features derived

respectively from the known 3D structures for the viral protein and chemical charac-

teristics of the amino acids involved in the mutation compared to the wild-type (see
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Figure 1: Early prediction of antibody escape from deep generative
sequence models, structural and biophysical constraints. EVEscape as-
sesses the likelihood of a mutation to escape the immune response based on the
probabilities of a given mutation to maintain viral fitness, to occur in an antibody
epitope, and to disrupt antibody binding. It only requires information available
early in a pandemic, before surveillance sequencing, antibody-antigen structures or
experimental mutational scans are broadly available.
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below for details). To support modularity and interpretability of the impact of each

component, each term is separately standardized and then fed into a temperature-

scaled logistic function:

P(Mutation escapes immunity) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐

(︂
1

𝑇𝑓𝑖𝑡𝑛𝑒𝑠𝑠

× 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒(𝐹𝑓𝑖𝑡𝑛𝑒𝑠𝑠)

)︂
× 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐

(︂
1

𝑇𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

× 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒(𝐹𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦)

)︂
× 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐

(︂
1

𝑇𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

× 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒(𝐹𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)

)︂

where the 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒(.) operator corresponds to standard scaling. We then take

the log transform of the product of the 3 terms to obtain the final EVEscape scores.

Factor-specific temperature scaling helps recalibrate probability estimates for each

term. We find that the fitness and accessibility components are already properly

calibrated (𝑇𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑇𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 1.0), while the dissimilarity component benefits

from being slightly rescaled (𝑇𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 2.0). We impute missing values of features

in EVEscape using the mean value of the feature across the target protein. More-

over, to make strain-level EVEscape predictions, we aggregate across combinations

of mutations by summing the EVEscape scores for each mutation.

2.2 Fitness

Firstly, we estimate the fitness effect of substitution mutations (subsequently re-

ferred to as mutations) using EVE[26], a deep variational autoencoder trained on

evolutionarily-related protein sequences (Table S1-S2) that learns constraints un-

derpinning structure and function for a given protein family. Consequently, EVE

considers dependencies across positions (epistasis), capturing the changing effects of

mutations as the dominant strain backgrounds diversify from the initial sequence[28,

69, 36].

Observed viral protein sequences reflect evolution under selection constraints for

functional and infectious viruses. Generative sequence models express the probability

15



that a sequence 𝑥 would be generated by this process as P(𝑥|𝜃), where the parameters

𝜃 capture the constraints describing functional variants. A generative model trained

on a Multiple Sequence Alignment (MSA) observed viral protein variants can then

be used to estimate the relative plausibility of a given mutant sequence as compared

to wild-type by using the log ratio of sequence likelihoods as a heuristic:

log
P(𝑥𝑚𝑢𝑡𝑎𝑛𝑡|𝜃)
P(𝑥𝑤𝑖𝑙𝑑𝑡𝑦𝑝𝑒|𝜃)

EVE (Evolutionary model of Variant Effects)[26] is a Bayesian variational au-

toencoder (VAE)[44], capable of capturing complex higher-order interactions across

sequence positions. The fitness of a given protein sequence is measured via the log like-

lihood ratio of the mutated sequence 𝑥 over that of the reference wild-type sequence

𝑤, which we define as the evolutionary index 𝐸(𝑥). Since an exact computation of

the log likelihood of a sequence is intractable, we approximate it with the Evidence

Lower Bound (ELBO) loss used to optimize the VAE:

𝐸𝐸𝑉 𝐸(𝑥) = − log
P(𝑥|𝜃)
P(𝑤|𝜃)

∼ ELBO(𝑤)− ELBO(𝑥)

The ELBO term itself is estimated via Monte Carlo sampling of the latent space,

since the integral over 𝑧 is intractable, using 20k samples from the approximate poste-

rior distribution 𝑞(𝑧|𝑥, 𝜑). These approximations have been shown to provide strong

results in practice[26]. Results are obtained by ensembling scores from 5 indepen-

dently trained EVE models with different random seeds.

We train the different models following the procedure from the original EVE paper

(see Frazer et al.[26], Supplementary Section 3.2), using similarly-sized EVE models

and with the same training hyperparameters. The only difference in our training

procedure is that we slightly relax the constraint on minimum column coverage for

sequences in the training MSAs (50% instead of 70%) as it led to superior fitness

prediction performance in our hyperparameter tuning analyses for the different viruses

modeled in our work. Due to biases in the our training MSAs from sampling and

phylogeny, we reweight each protein sequence 𝑠𝑖 by the reciprocal of the number of

16



sequences in the MSA (with a total of N sequences) that are within a Hamming

distance cutoff 𝑇 . Following prior work, we use a cutoff of 99% sequence identity

that has been shown to work well for viral proteins, due to the relatively limited

sequence diversity and an expectation that small difference is viral sequences wll

have comparatively large impacts on fitness constraints. This weight (𝜋𝑠𝑖) is therefore

calculated as:

𝜋𝑠𝑖 =

(︃
𝑁∑︁

𝑗=1,𝑗 ̸=𝑖

1[𝐷𝑖𝑠𝑡(𝑠𝑖, 𝑠𝑗) < 𝑇 ]

)︃−1

We showcase the efficacy of EVE by comparing model predictions and data from

mutational scanning experiments that measure multiple facets of fitness for thou-

sands of mutations to viral proteins[20, 84, 36, 62, 22, 70, 11, 25]. Model performance

approaches the correlation (𝜌) between experimental replicates, including viral repli-

cation for influenza[20] (𝜌 = 0.53) and HIV[36] (𝜌 = 0.48) (Figure S1-S2, Table S3).

For SARS-CoV-2, we trained EVE across broad pre-pandemic coronavirus sequences,

from sarbecoviruses like SARS-CoV-1 to "common cold" seasonal coronaviruses like

the Alphacoronavirus NL63 (Table S1), and compared predictions to measures of

expression (𝜌 = 0.45) and host receptor ACE2 binding[70] (𝜌 = 0.26) (Figure S1-

S3). We note that sites which express in the DMS experiments but are predicted

deleterious by EVE are frequently in contact with non-assayed domains of the Spike

protein or with the trimer interface- interactions not captured in the RBD yeast-

display experiment (Figure S3), suggesting that they are important for full Spike

expression but non-essential for RBD folding in the yeast-display system. Moreover,

EVE predictions are better correlated with ACE2 binding quantified using a full

Spike mammalian cell display assay [11], perhaps because this assay readout com-

bines expression with receptor binding. As a whole, EVE’s predictive performance

on viral replication experiments and our analysis of model correspondence with RBD

biochemical protein assays suggests that EVE captures a combination of the varied

constraints on viral protein function. EVE predictions may also complement DMS

studies that focus on biochemical protein assays by incorporating information about

17



non-assayed constraints.

2.3 Accessibility

The second model component, antibody accessibility, is motivated by the need to

identify potential antibody binding sites without prior knowledge of B cell epitopes.

Accessibility of each residue is computed from its negative weighted residue-contact

number across available 3D conformations (without antibodies), which captures both

protrusion from the core structure and conformational flexibility[77, 54, 37, 48] (Fig-

ure S4, Table S4). Accessibility plays a key role in identifying where antibodies are

most likely to contact a protein, and while relative solvent accessibility (RSA) and

weighted contact number (WCN) both reflect features of accessibility, we selected

WCN as this metric also captures protrusion from the core structure that corre-

sponds with where antibodies are known to bind proteins[37, 77, 54, 48] (Figure S4).

When computing antibody-binding likelihood metrics across different structural con-

formations (i.e., both open and closed structures for SARS-CoV-2 Spike) we used the

maximum accessibility (or minimum weighted contact numbers).

We computed weighted contact numbers[48] for each residue from structure as the

sum of the square of the reciprocal distance between residue 𝑖 and all other residues

in the full protein (i.e., the full Spike trimer for SARS-CoV-2):

𝑊𝐶𝑁𝑖 =
∑︁
𝑗 ̸=𝑖

1

𝑟2𝑖𝑗

where 𝑟𝑖𝑗 is the distance between the geometric centers of the residue 𝑖 and residue

𝑗 side chains. Weighted contact number, beyond capturing surface accessibility, cap-

tures protrusion from the core structure and conformational flexibility[77, 54, 37, 48].

By using squared distance, this value focuses on the degree of local interaction, and

acts as a measure of exposure to the local environment that would permit antibody

binding. It is both a simple and fast metric. We impute missing values in WCN

due to gaps in the protein structure using the mean of WCN values of the residues

18



preceding and following the gap.

We also explored RSA as a potential accessibility metric. To do so, we first

computed accessible surface area based on hypothetical exposure to solvent water

molecules using DSSP[42]. To calculate relative accessible surface area (RSA), we

divided accessible surface area by the residue maximum accessibilities determined

in Sander et al[63]. We impute missing values in RSA due to gaps in the protein

structure by using the mean of RSA values of the residues preceding and following

the gap (counting residues adjacent to the gap with RSA values >1 as part of the

gap).

2.4 Dissimilarity

Finally, to predict the likelihood of a given mutation displacing an antibody inter-

action, we used a charge-hydrophobicity based measure of functional dissimilarity

between the wild-type residue and the mutation residue. These are properties known

to impact protein-protein interactions[13, 46, 24]. This simple metric correlates with

experimentally measured within-site escape more than individual chemical properties,

BLOSUM substitution-matrix derived distance[38], or distance in the latent space of

the EVE model (Figure S5).

To compute a combined charge-hydrophobicity dissimilarity index, we standard-

scaled the charge and hydrophobicity differences and then took the sum of the scaled

differences. We use the Eisenberg-weiss hydrophobicity consensus scale[24] and amino

acid charge (as 1/0/-1) at physiological pH.

We compared our metric to other chemical properties: differences in size (side-

chain mass), hydrophobicity, and charge. We also compared to the BLOSUM62[38]

substitution matrix after dropping the null transition diagonal values. We explored

latent space differences by examining metric of mutation distance learned by the

EVE variational autoencoder. We calculated the L1 distance between the encoded

representations of the wild-type sequence and a given single-mutation sequence in the

latent space of the model, inspired by a similar approach from Hie et al.[39]
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Chapter 3

Results

3.1 Anticipating pandemic variation with pre-pandemic

data

Extensive surveillance sequencing and experimentation prompted by the COVID-

19 pandemic have presented a unique opportunity to assess EVEscape’s ability to

predict immune evasion before escape mutations are observed[43, 79]. To test the

model’s capacity to make early predictions, we carried out a retrospective study using

only information available before the pandemic (training on Spike sequences across

Coronaviridae available prior to January 2020; Table S1, Data S1). We then evaluated

the method by comparing predictions against what was subsequently learned about

SARS-CoV-2 Spike immune interactions and immune escape.

The top predicted escape mutations for the whole of Spike are strongly biased

towards the receptor-binding domain (RBD) and N-terminal domain (NTD), coinci-

dent with the bias for antigenic regions seen in the pandemic[56, 1] (Figures 2A-B,

Figure S6). Within these domains, EVEscape scores are biased towards neutralizing

regions—the receptor-binding motif of the RBD and the neutralizing supersite[10] in

the NTD (Figure 2C). EVEscape’s ability to identify the most immunogenic domains

of viral proteins without knowledge of specific antibodies or their epitopes could pro-

vide crucial information for early development of subunit vaccines in an emerging

21
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Figure 2: EVEscape identifies antigenic regions without antibody informa-
tion. a) EVEscape scores mapped onto a representative Spike 3D structure (PDB
identifier: 7BNN) highlight high-scoring regions with many observed pandemic vari-
ants, both in the RBD (receptor-binding domain) and NTD (N-terminal domain).
Spheres indicate sites with mutations observed more than 10,000 times in the GISAID
sequence database. b) The top decile of EVEscape predictions span diverse epitope
regions across Spike, but the majority of predictions are in the NTD and RBD, which
have a disproportionately high number of predicted EVEscape sites relative to their
sequence length (enrichment). The regions considered are NTD (sequence positions
14 - 306), RBD (319 - 542), S1* (543 - 685), and S2 (686 - 1273), where S1* refers
to the region in S1 between RBD and the S2. c) Neutralizing sub-regions – RBM
(receptor-binding motif, 438-506) and NTD supersite50 (14-20,140-158, 245-263) –
have significantly higher than average EVEscape scores, relative to a distribution
of 150 random contiguous regions of the same length within the RBD and NTD,
respectively.
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pandemic[80].

We next compare model predictions to mutations that were subsequently observed

in the pandemic as deposited in GISAID (Global Initiative on Sharing All Influenza

Data)[43], which contains over 500,000 unique sequences with over 12,000 missense

mutations to Spike. For this analysis we focus on the RBD of Spike as this domain

has been the most extensively studied due to its immunodominance[56, 1].

49% of our top RBD predictions were seen in the pandemic by December 2022

(Figure 3A, Figure S7; this proportion is robust to the threshold defining top escape

mutations). The more often a mutation occurred in the pandemic, the more likely

it is to be predicted by our method — 57% of high frequency observed substitutions

are in the top EVEscape predictions (Figures 3B-C). We expect that the highest

frequency mutations, seen in historical Variants of Concern (VOCs), will be enriched

for escape variants that provide a fitness advantage in an immune population (whilst

not expecting that all single substitutions in the VOCs will contribute to escape).

Not surprisingly, the fitness model component alone (here EVE[26]) is better that

the full EVEscape model at predicting mutations seen at low frequency in the pan-

demic – likely because these mutations retain viral function but do not necessarily

affect antibody binding or have a strong fitness advantage over other strains (Figures

S7-S8). This suggests that EVEscape’s immune-specific components reflect important

pandemic constraints and allow for mutation interpretability. For instance, VOC mu-

tations R190S and R408S, with high EVEscape but low EVE scores, are in hydropho-

bic pockets that may facilitate significant immune escape[2] (Figure S8). Meanwhile,

the few VOC mutations (i.e., A222V and T547K) with significant EVE—but not

EVEscape—scores have functional improvements such as monomer packing and RBD

opening but do not impact escape[27, 86] (Figure S8). We also see that the proportion

of EVEscape predictions seen during the pandemic increased over time—from 3% in

December 2020 to 49% in December 2022 (Figure 3A)—and should continue to in-

crease, an expected trend both as more variants are observed and as adaptive immune

pressure increases[45] with the growing vaccinated or previously infected population.

Similarly, the fraction of mutations in VOC strains with high EVEscape scores has
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Figure 3: Pre-pandemic EVEscape is as accurate as intra-pandemic exper-
imental scans at anticipating pandemic variation: retrospective analysis.
a) Percent of top decile predicted escape mutations by EVEscape, mutational scan
experiments (Bloom Set, Table S5), and a previous computational model[39] seen
over 100 times in GISAID by each date since the start of the pandemic. EVEscape
based on pre-pandemic sequences anticipates pandemic variation at least on par with
mutational scan experiments based on antibodies and sera available 10 or 17 months
into the pandemic. Analysis focuses only on nonsynonymous point mutations that
are a single nucleotide distance away from the Wuhan viral sequence. RBD is the
receptor-binding domain of the Spike protein. b) Percent of observed pandemic muta-
tions in top decile of escape predictions by observed frequency during the pandemic.
High-frequency mutations in particular are well-captured by EVEscape. c) The ma-
jority of RBD mutations observed in VOC strains have high EVEscape scores and
somewhat lower scores in the mutational scan experiments against pandemic sera.
d) EVEscape can predict escape mutations in the epitope of the former therapeu-
tic antibody bamlanivimab. E484 is involved in a salt bridge with R96 and R50
of bamlanivimab, which lost FDA Emergency Use Authorization due to Omicron’s
emergence, wherein E484A or E484K mutations (both predicted in the top 1% of
EVEscape Spike predictions) escape binding due to the loss of these salt bridges[73].
e) Precision-recall curve of RBD escape predictions of EVEscape, EVEscape fitness
component only (EVE model) and previous computational model[39] when compared
to DMS escape mutations (AUPRC reported with a comparison to a “null” model
where escape mutations are randomly predicted).
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also increased (Figure S7).

Our model also predicted escape mutations that were subsequently observed in the

pandemic in the epitopes of well-known therapeutic monoclonal antibodies under cur-

rent or former Emergency Use Authorization[79] (Figure S9), e.g., N440, E484A/K/Q,

and Q493R. These predictions demonstrate the interplay of our three model compo-

nents; for instance, the high accessibility as well as mutability of E484 results in 50%

of all possible mutations at this site in the top 2% of EVEscape predictions and in-

cludes E484A/K in the top 1%—notable for escape from bamlanivimab[73] (Figure

3D)—because of their high dissimilarity scores. We also identify candidate escape

mutations in these therapeutic epitopes that have not yet been observed at frequen-

cies higher than 10,000 – for instance variants to K444 and K417 (Figure S9), a subset

of which are beginning to appear. This result suggests that escape sites can be well

predicted before a pandemic and may have concrete applications for escape-resistant

therapeutic design and early warning of waning effectiveness.

EVEscape represents a significant improvement over past computational methods.

EVEscape is more than twice as predictive as prior unsupervised models[39], both at

predicting pandemic mutations (49% vs. 24% of top predictions observed in pandemic

and 57% vs. 9% of highest frequency mutations predicted) as well as experimental

measures of antibody escape (0.53 vs. 0.24 AUPRC) (Figures 3A-B, Figure 3E, Fig-

ure S7, Figures S10-S11, Figure S14, Table S5). All EVEscape components play a role

in these predictions, with fitness predictions and accessibility metrics identifying sites

of escape mutations while dissimilarity identifies amino acids that facilitate escape

within sites (Figure S12-13). Moreover, other computational methods[57, 4] focus on

near term prediction of strain dominance rather than longer term anticipation of im-

mune evasion as they rely on pandemic sequences, antibody-bound Spike structures,

or both, thereby hindering the ability to assess early predictive capacity. It is there-

fore notable that EVEscape outperforms even supervised approaches at predicting

mutations seen in the pandemic (Figure S7).
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3.2 Comparative accuracy of EVEscape and high-

throughput experiments

We contextualize the performance of EVEscape in comparison to deep mutational

scans (DMS), which have been invaluable in identifying and predicting viral variants

that may confer immune escape[35, 32, 30, 31, 67, 66, 68, 8, 9, 19, 78]. However, these

experiments require polyclonal or monoclonal antibodies from infected or vaccinated

people, limiting their early predictive capacity. For example, the DMS experiments

conducted by 17 months into the pandemic (using 36 antibodies and 55 sera samples)

are a third more predictive (46% vs. 34% observed) than the experiments conducted

7 months prior (using just 10 antibodies) (Figure 3A, Figure S7).

Despite being computed on sequences available more than 17 months earlier,

EVEscape is as good as, or better than, the latest DMS scans at anticipating pan-

demic variation (49% vs. 46% observed, respectively, when considering the top decile

of prediction) (Figure 3A). As we consider higher frequency mutations, EVEscape in-

creasingly predicts a greater portion of pandemic variation than experiments (Figure

3B) and predicts a higher fraction of mutations in VOC strains (Figure 3C).

Discrepancies between EVEscape and experiments shed light on the complemen-

tary strengths of these approaches. EVEscape and experiments miss 41 and 46 pan-

demic mutations, respectively, that are predicted by the other method (Figure 4A,

Figure 4D). These differences could indicate model inaccuracies or could reflect sparse

sampling of host sera response in DMS experiments as well as artifacts from exper-

iments testing only the RBD domain and missing the full set of in vivo constraints.

Indeed, as more antibodies are incorporated in experiments, the agreement between

EVEscape and experimental predictions increases (Figure S14). The majority of high

EVEscape predictions that are not observed in experimental predictions are in known

antibody epitopes (Figure 4B, Figure S13). By contrast, those mutations identified

by the experiments that are below the threshold in EVEscape predictions are of-

ten predicted to have low fitness due to high conservation in the alignment at those

positions.

26



EVEscape and experiments make distinct, complementary escape predictions
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cape predictions. a) Share of top decile of predicted escape mutations, predicted
using EVEscape or based on mutational scan experiments (Bloom Set, Table S5),
seen so far over 100 times in the pandemic. As the virus evolves further, more of the
predicted escape mutations are expected to appear. b) RBD site-averaged EVEscape
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The consensus between EVEscape and experiments is also of interest. We see that

agreement is especially strong for polyclonal patient sera (Figure S14); in fact, half

of the top 10% of EVEscape RBD sites are sera escape sites from experiments[29, 34,

30, 31, 32] (Figure 4C). These mutants are of particular interest since they escape

from the unique composition of antibodies produced by convalescent patients and are

thus crucial to considerations of reinfection and vaccine design. For instance, E484,

mutated in several VOCs, has the highest experimental sera binding and is the top

EVEscape predicted site.

28



Chapter 4

Adaptations

The modular design of our framework facilitates its adaptability to the specific char-

acteristics of a pandemic and to new data as it becomes available.

4.1 Insertions and Deletions

To consider the effects of insertions and deletions on SARS-CoV-2 Spike immune

escape[58], we replace the EVE fitness component with TranceptEVE[53] – a recently

developed protein large language model which has previously demonstrated state-

of-the-art performance for mutation effects prediction, including indels, which both

prior computational models and high-throughput experiments have been unable to

capture for SARS-CoV-2. When applied to the pandemic, this model captures the

most frequent single insertion and deletion, both at site 144, each in the top decile of

pandemic and random indel predictions (Figure S15).

Scores for indels utilize tranceptEVE as the fitness component, negative weighted

contact number as the accessibility component, and a maximized dissimilarity compo-

nent score. TranceptEVE is itself based off of two key components: 1) Tranception[52],

a family-agnostic autoregressive transformer trained on a large quantity of unaligned

protein sequences from Uniref100[72] from February 2022. 2) A family-specific EVE

model that is trained to score sequences for a family of interest, and which acts as a

prior distribution over amino acids at each sequence position. The predicted fitness for
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a given sequence is then obtained as a weighted average of the log likelihood assigned

by these two components – the weights depending on the depth of the alignment

used to train the underlying EVE model (deeper alignments implying a larger weight

assigned to the EVE log likelihood). We use the same ensemble of 5 EVE models as

described above, as well as the large Tranception model checkpoint (∼700M model

parameters) made available in Notin et al.[52] which was trained on Uniref100 (see

details of the training procedure in the corresponding paper in Appendix B.3).

4.2 Glycosylation

We also show that including glycosylation in the dissimilarity component for HIV Env,

where glycans play an important role in immune escape[51, 82, 16, 47], improves model

predictions of high-throughput experimental escape[18] (Area under the precision

recall curve raises 10% when including glycosylation for HIV; Figure S16). While

addition of glycosylation is also important for escape[51, 82, 16, 47], we focus here on

loss of glycosylation for simplicity. We adapt the model by maximizing the charge-

hydrophobicity dissimilarity term if a mutation is likely to result in loss of a surface

N-glycan site. We identified surface N-glycan sites as NxS/T sequons (where x is

any amino acid except proline) with the N residue having an RSA>0.2. We consider

that a mutation is likely to result in loss of glycosylation if the N or S/T is lost.

We note that this can be an important factor for real-world escape even when some

DMS experiments do not reflect the escape impacts of glycosylation loss, as is the

case for SARS-CoV-2 experiments that use yeast display, with glycans different than

in mammalian cells[35]. For HIV on the other hand, a significant portion of escape

mutations from DMS experiments are a result of escape effects of glycan gains and

loss[18].
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4.3 Pandemic Sequencing

Additionally, we retrain EVE models with the addition of 11 million new sequences

collected during the pandemic, which helps improve agreement with fitness DMS ex-

periments by 20% (Figures S1, S17). This model captures epistatic shifts between

Wuhan and BA.2, identifying changes in mutation fitness in the RBD and near BA.2

mutations and predicting positive epistatic shifts for known convergent omicron mu-

tations and likely-epistatic wastewater mutations[65] (Figure S18).
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Chapter 5

Utility

5.1 Strain forecasting with EVEscape

A key application of an escape prediction framework is to identify circulating strains

with high immune escape potential soon after their emergence, thus enabling the

deployment of targeted vaccines and therapeutics before their spread. While the

World Health Organization seeks to identify new high-risk variants as they arise, new

strains are occurring at an increasing rate with now tens of thousands of novel SARS-

CoV-2 strains each month, a scale infeasible for experimental risk assessment[71]. To

create strain-level escape predictions, we aggregated EVEscape predictions across all

individual Spike mutations in a strain. We evaluated EVEscape strain predictions

for their alignment with experimental measures of strain immune evasion as well as

their identification of known escape strains from pools of random sequences and from

other strains observed at the same pandemic timepoint.

First, we see that pre-pandemic EVEscape-strain scores correlate well with experi-

ments quantifying vaccinated sera neutralization of 21 strains[4] (𝜌 = 0.80; Figure 5A,

Data S5), better than an existing computational strain-scoring method (𝜌 = 0.77)[4]

even though that method uses 332 pandemic antibody-Spike structures for the predic-

tion. Second, we show that EVEscape-strain scores for VOCs are consistently higher

than random sequences at the same mutational depth, and in particular the Beta and

later Omicron BA.2, BA.4, BA.2.12.1, BA.2.75, and XBB strains are in the top 1% of
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EVEscape applications: Identifying strains with high escape potential and 
forecasting escape for future pandemics
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Figure 5: EVEscape applications: Identifying strains with high escape
potential and forecasting escape for future pandemics. a) Pre-pandemic
EVEscape scores computed for pandemic strains correlate with fold reduction in 50%
pseudovirus neutralization titer [4] for each strain relative to Wuhan (𝜌 = 0.80, 𝑛 =
21). Linear regression line shown with a 95% confidence interval. b) Distributions
of newly emerging EVEscape strain scores for non-VOCs (unique combinations of
mutations) throughout 12 periods of the pandemic, with counts of the number of
unique new strains per period. EVEscape strain scores increase throughout the pan-
demic. High frequency VOCs (occurring more than 5000 times) are shown in the first
period each emerged, depicting that new VOCs are predicted to have higher escape
scores than most strains in all previous time periods. c) Pandemic circulating strains
are grouped according to their EVEscape decile relative to other strains emerging in
the same non-overlapping two-week surveillance window. The relative prevalence of
each EVEscape decile over the course of the pandemic is plotted in a stacked line-
plot. The majority of circulating strains fall into the top 10% bin. Proportions do
not sum to 100% as strains that emerged before the surveillance period of 9/2020 -
3/2023 are not included. d) VOCs (dotted lines) are among the highest scoring of
hundreds or thousands of new strains (histograms) within their two-week window of
emergence, enabling EVEscape to forecast which strains will dominate as soon as they
appear after only a single observation. e) Site-wise maximum EVEscape scores on
Lassa Virus Glycoprotein structure (PDB: 7PUY). We show agreement between sites
of high EVEscape scores (in red) and escape mutations with experimental evidence
(shown with spheres).
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these generated sequences (Figure S19). EVEscape strain scores for these VOCs are

also in the top 2% against sequences composed only of mutations already known to

be favorable — those seen more than 100 times in GISAID, and even more strikingly,

against combinations of mutations sampled from other VOCs (Figure S19).

Lastly, we examine EVEscape’s ability to identify immune-evading strains as they

emerged in the pandemic. We see that EVEscape scores have increased throughout

the pandemic and that they are higher for more recent VOCs, reflecting their in-

creased propensity for immune escape (Figure 5B). Moreover, EVEscape scores for

newly emerging VOCs are higher than almost all strains in previous time periods

(Figure 5B). Taken together, these results suggest EVEscape’s promise as an early-

detection tool for picking out the most concerning variants from the large pool of

available pandemic sequencing data. We therefore examine EVEscape’s utility as a

tool to identify strains with high escape potential as they emerge in two-week surveil-

lance windows. We see that the majority of circulating strains were in the top decile

of EVEscape scores for their two-week window of emergence (Figure 5C). Moreover,

in the two-week windows where the VOC strains Alpha, Beta, Gamma, Omicron

BA.1, and Omicron BA.2.75 emerged, each VOC ranked in the top 5 of hundreds

or thousands of new strains (Figure 5D, Figure S19). This demonstrates the ability

of EVEscape to forecast which strains will dominate as soon as they appear after

only a single observation, even as experimental testing of all emerging strains has

become intractable. To enable real-time variant escape tracking, we make monthly

predictions (Data S5) available on our website (evescape.org), with EVEscape rank-

ings of newly occurring variants from GISAID and interactive visualizations of likely

future mutations to our top predicted strains. In sum, the EVEscape model captures

relative immune evasion of successful strains and can identify concerning strains from

pools of random combinations of mutations as well as from their temporal peers.
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5.2 EVEscape generalizes to other viral families with

pandemic potential

Most viruses with pandemic potential have far less surveillance and research than

SARS-CoV-2[75]. One of the main features of EVEscape is the ability to predict

viral antibody escape before a pandemic—without the consequent increase in data

during a pandemic—to narrow down vaccine sequences and therapeutics most likely

to provide lasting protection, to assess strains as they arise, and to provide a watch

list for mutations that might compromise any existing therapies. As one of the first

comprehensive analyses of escape in these viruses, we applied the EVEscape method-

ology to predict escape mutations to the Lassa virus and Nipah virus surface proteins;

these viruses cause sporadic outbreaks of Lassa hemorrhagic fever in West Africa and

highly lethal Nipah virus infection outbreaks in Bangladesh, Malaysia, and India.

Crucially, the three mutants present in the Lassa IV lineage that are known to escape

neutralizing antibodies[7] are all in the top 10% of EVEscape predictions, suggest-

ing that EVEscape captures features relevant for Lassa glycoprotein antibody escape

(Figure 5E). EVEscape predictions also identify 11 of 12 known escape mutants to

Nipah antibodies[6, 81, 85, 14, 15] (Figure S20).

Moreover, we demonstrate generalizability to Influenza Hemagglutinin[21] and

HIV Env[18] based on DMS evaluation (Figure S10, Data S3). Based on these find-

ings, we provide all single mutant escape predictions for these proteins (Data S5) to

inform active and ongoing vaccine development efforts with the goal of mitigating

future epidemic spread and morbidity.
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Chapter 6

Conclusion

One of the greatest obstacles for developing vaccines and therapeutics to contain a

viral epidemic is the high genetic diversity derived from viral mutation and recom-

bination, especially when under pressure from the host immune system. An early

sense of potential escape mutations could inform vaccine and therapeutic design to

better curb viral spread. Computational models can learn from the viral evolutionary

record available at pandemic-onset and are widely extensible to mutations and their

combinations. However, novel pandemic constraints (such as immunity) are unlikely

to be captured. To achieve early escape prediction, EVEscape combines a model

trained on historical viral evolution with a biologically informed strategy using only

protein structure and biophysical constraints to anticipate the effects of immune se-

lection. We demonstrate that EVEscape forecasts pandemic escape mutations and

can predict which emerging strains have high escape potential through a retrospective

analysis of the SARS-CoV-2 pandemic. This computational approach can preempt

predictions from experiments that rely on pandemic antibodies and sera by many

months while providing similar levels of accuracy.

EVEscape provides surprisingly accurate early predictions of prevalent escape mu-

tations but cannot anticipate all constraints unique to a new pandemic to determine

the precise trajectory of viral evolution. This method will be best leveraged in syn-

ergy with experiments developed to measure immune evasion and enhanced with

pandemic data as it becomes available. Early in a pandemic, EVEscape can predict
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likely escape mutations for prioritized experimental screening with the first available

sera samples – validated escape mutations could be strong candidates for multivalent

vaccines. EVEscape can also identify structural regions with high escape potential, so

therapeutic antibody candidates with few potential escape mutants in their binding

footprint may be accelerated. Later in a pandemic, EVEscape can rank emerging

strains, as well as mutants on top of prevalent strains, for their escape potential,

flagging concerning variants early on for rapid experimental characterization and in-

corporation into vaccine boosters. The model can also be augmented to leverage

current knowledge on virus-specific immune targeting and mutation tolerance from

experimental and pandemic surveillance data. In return, our computational frame-

work can inform this collective understanding by proposing escape variant libraries

for focused experimental investigations.

Each component of EVEscape may be independently refined over time as ad-

ditional information is collected during a pandemic. Firstly, the features driving

immune escape depend heavily on the regions of the virus targeted by adaptive im-

munity: as data becomes available about the specific epitopes targeted in vaccinated

and convalescent sera, EVEscape can be adapted to emphasize escape mutations at

these regions, including for SARS-CoV-2 regions throughout the full viral proteome.

Strain-level predictions may also be modified to evaluate the cumulative contribution

of variants to likely polyclonal escape. Secondly, structures of antibodies bound to

the viral glycoprotein can also provide specific insight on the types of mutants most

likely to displace known antibodies and result in successful escape. Lastly, pandemic

sequencing data can be incorporated alongside broader viral evolution to provide

fine-grained information about the new fitness constraints faced by a pandemic viral

species and enhance the ability of our model to extrapolate to new regions of sequence

space.

EVEscape is a modular, scalable, and interpretable probabilistic framework de-

signed to predict escape mutations early in a pandemic and to identify observed strains

and their mutants that are most likely to thrive in a populace with widespread pre-

existing immunity as the pandemic progresses. To this end, we provide EVEscape
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scores for all single mutation variants of SARS-CoV-2 Spike to Wuhan as well as

scores for all observed strains and predictions of single mutation effects on the most

concerning emerging strain backgrounds, with plans to continuously update with new

strains. As the framework is generalizable across viruses, EVEscape can be used from

the start for future pandemics as well as to better understand and prepare for emerg-

ing pathogens. To further accelerate broad and effective vaccine development, we

provide EVEscape mutation predictions for all single mutations to Influenza, HIV,

Lassa virus and Nipah virus surface proteins.
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Appendix A

Supplementary Methods

Data Acquisition

Training Data

Multiple sequence alignments for fitness models

For each viral protein, we construct multiple sequence alignments performing 5 it-

erations of the profile-HMM based homology search tool jackhmmer[41] against the

UniRef100 database[72]. As previously reported for EVE, DeepSequence, and EVcou-

plings, we generally keep sequences that align to at least 50% of the target sequence

and columns with at least 70% coverage, except in the case of SARS-CoV-2 Spike

where we use lower column coverage as needed (30-70%) to maximally cover exper-

imental positions and significant pandemic sites[40, 59, 26]. For our pre-pandemic

(pre-2020) alignment used as the primary model throughout this paper, we remove

pandemic sequences using the “date of creation” variable from UniRef. We optimize

search depth to maximize sequence coverage and the effective number of sequences

(Neff) included after re-weighting similar protein sequences in the alignment within

a Hamming distance cutoff (theta) of 0.01. To select sequence depth, we prioritized

alignments with coverage >0.7L and Neff/L>1, or if this was not attainable, relaxed

the requirements for Neff/L (Table S2).
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Alignments with pandemic sequences

We construct an “evolutionary alignment” with non-SARS-CoV-2 sequences as de-

scribed above using jackhmmer (with at least 50% sequence coverage, at least 30%

column coverage, and theta of 0.01). We extract the full sequences pulled into the jack-

hammer alignment and re-align the sequences using super5[23], then remove gapped

positions relative to the Wuhan sequence. We also construct a “pandemic alignment”

with all unique Spike sequences (with count >100) seen up until 11/27/21 (when

BA.2 first appeared in GISAID). We then concatenate that “pandemic alignment”

with the “evolutionary alignment” to create the final alignment.

Protein structures for accessibility calculation

For each viral surface protein, we selected crystal structures representing known struc-

tural states available to B-cell and antibody interactions (extracellular conformations)

(Table S4). All heteroatoms and protein chains not part of the multimeric viral sur-

face protein were removed.

Evaluation data

Antibody footprints

To identify known antibody footprints of viral surface proteins in the RCSB PDB[5],

we queried the database with the protein name and the word “antibody” and required

that the source organism contain both “Homo sapiens” and the given virus name.

Then for each structure we identified antibody and viral protein polymer entities and

computed the antibody footprint as any residue with any atom within 3.5Å of the

antibody. Finally, we mapped footprints to the target viral protein sequence by using

SIFTS to renumber all hits according to a UniProt ID, then used a MUSCLE multiple

sequence alignment of the different UniProt sequences to map those hits to the target

viral protein sequence. We use this same method to identify antibody footprints

for specific clinical antibodies. For experimental evidence of clinical antibody escape

susceptibility, we used the Stanford Coronavirus Antiviral & Resistance Database
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(CoV-RDB) susceptibility summary for monoclonal antibodies under emergency use

authorization[79].

Deep mutational scans

We benchmark our models on a series of viral protein deep mutational scans[19, 35,

30, 32, 34, 31, 29, 68, 67, 78, 66, 21, 18, 8, 36, 62, 22, 70, 11, 20, 84, 9, 25] (Table S3,

Table S5). For each viral mutational scan, we select the variable or variables of protein

fitness or antibody escape treated as primary in the publications. For mutants where

the result is provided as residue frequencies observed at a given site (such as results

expressed as preferences and processed by dms_tools2), we normalize the data at

each site by dividing by the value of the wild-type residue. For the HIV analysis, we

exclude antibody VRC34.01 due to its large spread of escape mutation distal to the

epitope[17]. For SARS-CoV-2 RBD, we use only antibodies/sera escape data from

the Wuhan sequence for our primary results. We also utilize data provided about

the antibodies tested for the SARS-CoV-2 escape DMS studies, including the class

of each antibody as well as the SARS-CoV-2 neutralization potency and sarbecovirus

binding breadth[66]. We use the RBD dimeric ACE2 binding and expression DMS

data for analysis[70].

Pandemic sequencing data

We downloaded data on Spike variants and their deposit dates in the Global Initiative

on Sharing All Influenza Data (GISAID) EpiCoV project database (www.gisaid.org)[43]

on 10/24/22. We further processed this data to get counts of combinations of mu-

tations, the date of emergence, and PANGO lineage, as well as to get the month of

emergence for each single mutation in Spike. We also downloaded consensus muta-

tions for each PANGO lineage on 10/31/22 and mutation frequencies on 10/26/22

from Covid-19 CG[12].
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Lassa virus and Nipah virus antibody escape data

We aggregated data on single mutations resulting in escape from known Lassa and

Nipah virus antibodies from literature studies with experimentally determined re-

duction in antibody binding, reduction in antibody neutralization, or emergence in

growth selection experiments[14, 15, 6, 81, 85, 7].

Epistasis mutation sets

Our convergent omicron mutation set is defining mutations in Omicron lineages at

sites 346, 444, 452, 460, and 486. This set is: L452R, N460K, F486V, K444N, L452M,

F486I, R346T, F490S, K444M, K444T. Our wastewater mutation set is the set of mu-

tations from Smyth et al.[65], which are mutations that were frequent in wastewater,

but had rarely been seen clinically (pre-Omicron, mid 2021), so may be likely epistatic.

This set is: Q493K, Q498Y, Q498H, T572N, H519N, H519Q.

Strain Neutralization data

We download neutralization data from Beguir et al.[4], which contains the observed

50% pseudovirus neutralization titer (pVNT50) for 21 SARS-CoV-2 S protein vari-

ants. The pVNT50 reduction is relative to Wuhan. Neutralization is measured for

n ≥ 12 sera collected after primary 2-dose vaccination by the Pfizer BioNTech vac-

cine (BNT162b2) and assessed against vesicular stomatitis virus (VSV)-based pseu-

doviruses with each S protein variant.

Evaluation

Comparison to functional assays

We compared model predictions to continuous experimental metrics of viral func-

tion using spearman’s rank correlation coefficient as our main evaluation metric, as

previously described[40, 59].
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Comparison to escape DMS

Data processing

As escape data is noisy at levels of low escape and a relatively low fraction of mutants

exhibit escape, we chose to treat the escape outcome variable as binary. We selected

a threshold for escape by fitting a gamma distribution to the data (combined across

all screened antibodies and sera) and selecting the threshold corresponding to a 5%

false discovery rate[18]. As the number of antibodies tested for RBD is much higher

than for Flu and HIV, we bootstrapped the RBD data selecting 8 antibodies 1000

times and fitting a gamma distribution to these samples, then selected the average

5% false discovery rate threshold. As these thresholds are subject to our choice of

a false discovery rate, we also plot performance for a range of thresholds (Figure

S11). We identified a mutant as “escape” if its maximum escape value across any

antibody tested exceeded the threshold — so a mutation for RBD is “escape” if it

exceeds the threshold for any antibodies/sera in the Bloom or the Xie datasets (Data

S3). We use thresholds of 0.57 for Bloom RBD, 0.9 for Xie RBD, 0.054 for Flu,

and 0.138 for HIV to make model comparisons; mutations designated as escape by

these experimental thresholds are almost all within 5Å of the antibody they escape

(Figure S11). Note that the downloaded RBD escape datasets were already filtered

using thresholds on expression and ACE2 binding of -1 and -2.35, respectively[33].

To define a site-wise escape value, we averaged across the maximum escape values for

each mutant at the site. For the antibody RBD DMS data, we define the antibody

class of each mutation/site by determining the maximum number of antibodies for a

given class that escape that mutation/site (Data S3). As the scales are different for

the Bloom and Xie datasets, we focus on the original Bloom RBD DMS data when we

need to consider the top fraction of escape mutations. We examine performance on

Flu and HIV as a secondary analysis to confirm generalizability, as fewer antibodies

have been tested and the distribution of these antibodies does not reflect known

immunodominant domains.
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Metrics

To compare computational model performance in classifying escape mutants, we com-

puted two metrics. We consider area under the receiver operating curve (AUROC)

and area under the precision-recall curve (AUPRC). A key feature of an escape mutant

predictor is the quality of its positive ‘escape’ predictions, as in practice, the positive

predictive value will influence costly experimental screening efforts and selection of a

limited number of variants for vaccine incorporation. To reflect this, we focus on the

area under the precision-recall curve (AUPRC) as a performance metric (reported

relative to the AUPRC of a “null” model), although other measures of overall statisti-

cal performance (e.g., AUROC) are provided in supplementary information. AUROC

summarizes the tradeoff between true positives and false positives over a range of

thresholds on the continuous model prediction score but is overly permissive in cases

of imbalanced datasets—although still suitable for assessing relative performance.

The AUPRC metric summarizes the tradeoff between capturing all escape mutants

(recall) and not incorrectly predicting escape mutants (precision). This approach is

suitable for evaluating classification of imbalanced datasets but penalizes false posi-

tive predictions. In the case of escape predictors, false positive predictions may be

due to insufficient sampling of the human antibody repertoire against the virus of

interest, so this penalization is potentially too stringent. We normalize AUPRC by

the “null” precision model AUPRC, which is equivalent to the fraction of escapes ob-

served in the mutations experimentally screened. Therefore, AUPRC values are not

comparable between viral proteins or subsets of DMS datasets with different fractions

of escape mutations.

Comparison to known antibody footprints

We also evaluated the model’s ability to predict sites of antibody binding, as quantified

by looking at antibody footprints in the RCSB PDB within a minimum all-atom

distance of 3.5Å. Note that this is not information that is available to the model

during training.
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Comparison to pandemic data

Data Processing

We evaluate the model against occurrence of single mutations and strains in GISAID.

In determining the set of Spike mutations to compare EVEscape scores to GISAID

data, we consider only those mutations that are a single RNA nucleotide mutation

distance from Wuhan. The date of lineage emergence is the 1st percentile of dates

for that variant (to avoid issues with outliers from GISAID data entry). Variants are

marked as high frequency VOCs if their count is greater than 5,000 and it occurs

in the first time period (pandemic divided into 12 periods) that any strain of that

PANGO lineage appears. We define PANGO lineages for the VOCs by the nonsyn-

onymous Spike consensus mutations for that strain from COVID-19 CG that occur

in greater than 90% of strain sequences, ignoring insertions and deletions. Number

of occurrences in the pandemic is defined by raw counts of GISAID records with a

given substitution or set of substitutions.

Metrics

We calculate the fraction of predicted mutations (top 10%) seen in the pandemic

over 100 times. We expect to see an increase in this fraction over the course of the

pandemic, as more variants are observed and adaptive immune pressure increases

with a growing vaccinated or previously infected population. We also calculate for

each observed pandemic frequency minimum threshold, the percentage of pandemic

mutants seen above that observed threshold that are predicted in the top 10%. We

do not expect all pandemic mutants to be captured in the top 10% of predictions,

because not all pandemic mutants are related to escape. Even amongst very frequent

pandemic mutations mostly present in Variants of Concern, which we expect to be

more enriched for high escape potential, we do not expect all of these mutations to

be related to escape as some instead influence ACE2 binding or structural changes.

To evaluate strain scores, we calculate the number of strains (and the corresponding

percentile) that would need to be tested to have detected selected VOCs from all new
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strains in the two-week window they emerged. Unique new strains are defined by

unique sets of Spike substitution mutations.

Escape within clinical antibody epitopes

We look at EVEscape predictions in the footprints (within 3.5Å) of six different

clinical antibody epitopes. We then notate which of these mutations have already

occurred in the pandemic (observed more than 10,000 times) and which have experi-

mental evidence of escape for those clinical antibodies as seen in CoV-RDB[79]. We

list all possible mutations, not just those a single nucleotide distance from Wuhan.

Comparison to strain neutralization

We show spearman correlation with experimental strain neutralization data as well

as the linear regression line shown with a 95% confidence interval. EVEscape scores

for these strains are calculated based on the mutations used in the experiment for

each strain, ignoring indels. We convert percent reduction in neutralization (x) to

fold reduction (1/1-x).

Regional Enrichment

We examine the distribution of EVEscape predictions throughout the Spike protein

and, within the RBD, between the known footprints of different antibody classes[3].

We analyze enrichment of regions by comparing the average EVEscape score for

the region to a distribution of the average EVEscape score of random regions. For

comparison to full Spike, we compare to the scores of 500 random contiguous regions

(of the same length as the region of interest) within Spike. For comparison to RBD,

we compare to scores of 100 contiguous regions, using the full Spike model. We

similarly compare scores of known neutralizing subregions to random regions in their

respective full regions. We also compare enrichment of number of sites in the top 15%

of EVEscape scores in each region relative to the length of the region. We consider

the regions: NTD (sequence positions 14 - 306), RBD (319 - 542), S1* (543 - 685),
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and S2 (686 - 1273), where S1* refers to the region in S1 between RBD and S2. NTD

and RBD are enriched in antibody sites. We also calculate the mutational tolerance

of each region, the average EVE fitness score.

Epistasis

We analyze epistasis by comparing EVE scores on a Wuhan full Spike model (using

a pre-pandemic alignment) and on an omicron (BA.2) full Spike model (using an

alignment with data up to BA.2). The BA.2 epistatic shift is the Wuhan linear

regression residual for a model fit to the two sets of EVE scores for all single mutations

to full Spike. We compare the epistatic shift of two subsets of mutations, convergent

omicron mutations and wastewater mutations[65], to the full set of single mutations

to full Spike. We also analyze the locations of the maximum epistatic shift, in relation

to the Spike structure and to the set of sites mutated within BA.2.

Comparison to other computational models

We compare published SARS-CoV-2 RBD and Spike models predictions[61, 57, 39, 4]

using metrics from above relevant to the intended purpose of each model (fitness or

escape of either single mutations, sites, or strains).
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Appendix B

Supplementary Figures
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Figure S1:Fitness effects of viral proteins predicted from evolutionary sequence 
models. a) EVE predictions are well correlated with a broad range of viral surface protein 
deep mutation scanning experiments surveying protein replication and function, SARS-
CoV-2 RBD35,36 and Mpro 37, H1N1 hemagglutinin31,32 and HIV env30,33,34. b) Site-averaged 
EVE predictions have similar correlations with site-averaged SARS-CoV-2 RBD DMS 
experiments as Potts model DCA85 or  EVmutation24. c) EVE predictions have higher 
correlations with Flu H1, HIV Env, and SARS-CoV-2 RBD DMS experiments than 
grammaticality in CSCS52.
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Figure S1: Fitness effects of viral proteins predicted from evolutionary
sequence models. a) EVE predictions are well correlated with a broad range of viral
surface protein deep mutation scanning experiments surveying protein replication and
function, SARS-CoV-2 RBD [70, 11] and Mpro [25], H1N1 hemagglutinin [20, 84]
and HIV env [36, 62, 22]. b) Site-averaged EVE predictions have similar correlations
with site-averaged SARS-CoV-2 RBD DMS experiments as Potts model DCA [61] or
EVmutation [40]. c) EVE predictions have higher correlations with Flu H1, HIV Env,
and SARS-CoV-2 RBD DMS experiments than grammaticality in CSCS [39].
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Figure S2: Comparison of effects of mutations from experiment and computation. 
Measurements of viral protein functions such as expression, replication and receptor 
binding in deep mutational scans versus predictions from  an independent model, 
EVmutation, and EVE model. 

Figure S2: Comparison of effects of mutations from experiment and com-
putation. Measurements of viral protein functions such as expression, replication and
receptor binding in deep mutational scans versus predictions from a site-independent
model, EVmutation, and EVE model.
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Figure S3: EVE captures constraints beyond RBD expression assay. a) Site-averaged 
EVE scores predict several sites that tolerate mutants in the yeast-display RBD expression 
assay35 to be deleterious (red box)–many of these mutants are located at the interface 
between RBD and the rest of Spike protein. Sites in the red box in scatterplot are shown as 
spheres on the Spike structure (PDB: 7CAB).  b) EVE prediction captures a combination of 
SARS-CoV-2 RBD yeast expression and ACE2 binding - features both necessary for 
successful immune escape (EVE spearman with expression = 0.45, EVE spearman with 
ACE2 binding = 0.38 when low expressed are removed)35 c) The mammalian-cell RBD 
expression and ACE2 binding experiments are highly correlated, likely due to the alternate 
FACS-binning strategy and metric used for this ACE2 binding experiment36. EVE predictions 
are correlated with both measures. 
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Figure S3: EVE captures constraints beyond RBD expression assay. a) Site-
averaged EVE scores predict several sites that tolerate mutants in the yeast-display
RBD expression assay [70] to be deleterious (red box)–many of these mutants are
located at the interface between RBD and the rest of Spike protein. Sites in the red
box in scatterplot are shown as spheres on the Spike structure (PDB: 7CAB). b) EVE
prediction captures a combination of SARS-CoV-2 RBD yeast expression and ACE2
binding - features both necessary for successful immune escape (EVE spearman with
expression = 0.45, EVE spearman with ACE2 binding = 0.38 when low expressed are
removed)35 c) The mammalian-cell RBD expression and ACE2 binding experiments
are highly correlated, likely due to the alternate FACS-binning strategy and metric
used for this ACE2 binding experiment [11]. EVE predictions are correlated with
both measures.
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Figure S4: Weighted contact number captures flexible regions. a) WCN and RSA 
values visualized on the SARS-CoV-2 Spike structures show different distributions, 
particularly in the RBD (PDB: 7BNN), as WCN captures protrusion from the core 
structure.38-41
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Figure S4: Weighted contact number captures flexible regions. a) WCN and
RSA values visualized on the SARS-CoV-2 Spike structures show different distribu-
tions, particularly in the RBD (PDB: 7BNN), as WCN captures protrusion from the
core structure. [77, 54, 37, 48]
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Figure S5: Charge-hydrophobicity metric captures residue dissimilarity relevant for 
loss of antibody binding. a) Within-site point biserial correlations between residue 
dissimilarity metrics and SARS-CoV-2 DMS escape data at escape sites (sites with 3-17 
escape mutations). More sites have a higher correlation for our charge-hydrophobicity 
metric than charge or hydrophobicity alone, BLOSUM62, residue size, or EVE latent 
space (L1) distance. b) Charge-hydrophobicity dissimilarity performance in key sites c) 
The L452 RBD site is an example of decrease in hydrophobicity displacing the proximal 
alanine in the RBD C110 antibody interaction. (PDB: 7K8V) d) Within-site correlations at 
RBD escape sites increase when considering only mutations where fitness is maintained 
(passes Bloom lab’s RBD expression and ACE2 binding cutoffs) e) Within-site 
correlations between residue dissimilarity and escape increase when more antibodies 
have escape mutations at that site. f) Within-site correlations between residue 
dissimilarity and escape increase when more mutations escape at site (and there can be 
no correlation with binarized escape when every mutation escapes).
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Figure S5: Charge-hydrophobicity metric captures residue dissimilarity
relevant for loss of antibody binding. a) Within-site point biserial correlations
between residue dissimilarity metrics and SARS-CoV-2 DMS escape data at escape
sites (sites with 3-17 escape mutations). More sites have a higher correlation for
our charge-hydrophobicity metric than charge or hydrophobicity alone, BLOSUM62,
residue size, or EVE latent space (L1) distance. b) Charge-hydrophobicity dissimi-
larity performance in key sites c) The L452 RBD site is an example of decrease in hy-
drophobicity displacing the proximal alanine in the RBD C110 antibody interaction.
(PDB: 7K8V) d) Within-site correlations at RBD escape sites increase when consid-
ering only mutations where fitness is maintained (passes Bloom lab’s RBD expression
and ACE2 binding cutoffs) e) Within-site correlations between residue dissimilarity
and escape increase when more antibodies have escape mutations at that site. f)
Within-site correlations between residue dissimilarity and escape increase when more
mutations escape at site (and there can be no correlation with binarized escape when
every mutation escapes).
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Figure S6: EVEscape enrichment in regions of SARS-CoV-2 Spike. a) RBD 
(particularly receptor binding motif (RBM)) and N-terminal domain (NTD) have significantly 
enriched average EVEscape scores, relative to a distribution of 500 random contiguous 
regions of the same length from full Spike. b) Average region EVEscape predictions are 
highest in RBD and NTD, though NTD is more mutationally tolerant with a higher average 
region EVE fitness score. c) EVEscape predictions cover diverse epitope regions across 
Spike and diverse RBD antibody classes84 (3D structure of RBD on the right), including 
known immunodominant sites (E484, K417, L452) (PDB ID: 7BNN). The regions 
considered are NTD (sequence positions 14 - 306), RBD (319 - 542), S1* (543 - 685), and 
S2 (686 - 1273), where S1* refers to the region in S1 between RBD and S2. d) EVEscape 
scores experimental escape mutants from narrow antibodies and broad neutralizing 
antibodies higher than those from broad, non-neutralizing antibodies. Sarbecovirus binding 
breath and neutralization from Starr et al.9
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Figure S6: EVEscape enrichment in regions of SARS-CoV-2 Spike. a) RBD
(particularly receptor binding motif (RBM)) and N-terminal domain (NTD) have sig-
nificantly enriched average EVEscape scores, relative to a distribution of 500 random
contiguous regions of the same length from full Spike. b) Average region EVEscape
predictions are highest in RBD and NTD, though NTD is more mutationally tolerant
with a higher average region EVE fitness score. c) EVEscape predictions cover di-
verse epitope regions across Spike and diverse RBD antibody classes [3] (3D structure
of RBD on the right), including known immunodominant sites (E484, K417, L452)
(PDB ID: 7BNN). The regions considered are NTD (sequence positions 14 - 306),
RBD (319 - 542), S1* (543 - 685), and S2 (686 - 1273), where S1* refers to the region
in S1 between RBD and S2. d) EVEscape scores experimental escape mutants from
narrow antibodies and broad neutralizing antibodies higher than those from broad,
non-neutralizing antibodies. Sarbecovirus binding breath and neutralization from
Starr et al. [66]
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Figure S7: EVEscape as accurate as experimental scans at anticipating pandemic variation: 
retrospective analysis. a) Fraction of RBD predictions in top 15% of EVEscape, DMS experiments 
(Bloom Set, Table S4), and prior models52 seen by each date over 100 times in GISAID (left). DMS 
experiments are separated into which studies were available by each starting date. EVEscape 
predictions for for full Spike and prior SpikePro model21 (right). b) Fraction of mutations seen 100, 1000, 
or 2 million times over different thresholds of top ranked predictions (Top) and share of predicted escape 
mutations in top decile of prediction based on their observed frequency (Bottom). c) Venn diagram of 
RBD sites seen in the top 10% (left) or top 20% (middle) of EVEscape and all DMS experimental 
predictions (Bloom Set Table S4), with markings for whether the site was seen over 100 times in GISAID 
over the full pandemic.  Venn diagram of full Spike sites seen in top 10% of EVEscape and seen >100 
times over the full pandemic (right). d) Comparison of  EVEscape computational model predictions (top 
panel, y axis EVEscape score) and DMS experimental predictions (bottom panel, y axis experimental 
score) to frequency of mutations. e) The majority of Spike mutations in VOC strains have high EVEscape 
scores. 
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Figure S7: EVEscape as accurate as experimental scans at anticipating
pandemic variation: retrospective analysis. a) Fraction of RBD predictions in
top 15% of EVEscape, DMS experiments (Bloom Set, Table S4), and prior models52
seen by each date over 100 times in GISAID (left). DMS experiments are separated
into which studies were available by each starting date. EVEscape predictions for for
full Spike and prior SpikePro model [60] (right). b) Fraction of mutations seen 100,
1000, or 2 million times over different thresholds of top ranked predictions (Top) and
share of predicted escape mutations in top decile of prediction based on their observed
frequency (Bottom). c) Venn diagram of RBD sites seen in the top 10% (left) or top
20% (middle) of EVEscape and all DMS experimental predictions (Bloom Set Table
S4), with markings for whether the site was seen over 100 times in GISAID over the
full pandemic. Venn diagram of full Spike sites seen in top 10% of EVEscape and seen
>100 times over the full pandemic (right). d) Comparison of EVEscape computa-
tional model predictions (top panel, y axis EVEscape score) and DMS experimental
predictions (bottom panel, y axis experimental score) to frequency of mutations. e)
The majority of Spike mutations in VOC strains have high EVEscape scores.

58



Figure S8: The role of EVEscape components in capturing pandemic variant 
mutations. a) EVEscape is more predictive than EVE alone at capturing frequent VOC 
mutations in full Spike. VOC mutations with high EVE scores and lower EVEscape scores 
(i.e., A222V and T547K) are known to impact structure and to not escape sera neutralization. 
Mutations with the highest EVEscape but low EVE scores (i.e., R190S and R408S) are in 
hydrophobic pockets that may promote antibody binding54. b) EVEscape is more predictive of 
high-frequency pandemic mutations than ablations of any of its 3 components. Notably, the 
ablation of the dissimilarity term leads to similar performance at identifying low-frequency 
mutations, but inferior performance at identifying high-frequency mutations. 
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Figure S8: The role of EVEscape components in capturing pandemic vari-
ant mutations. a) EVEscape is more predictive than EVE alone at capturing fre-
quent VOC mutations in full Spike. VOC mutations with high EVE scores and lower
EVEscape scores (i.e., A222V and T547K) are known to impact structure and to
not escape sera neutralization. Mutations with the highest EVEscape but low EVE
scores (i.e., R190S and R408S) are in hydrophobic pockets that may promote antibody
binding [2]. b) EVEscape is more predictive of high-frequency pandemic mutations
than ablations of any of its 3 components. Notably, the ablation of the dissimilarity
term leads to similar performance at identifying low-frequency mutations, but inferior
performance at identifying high-frequency mutations.
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Figure S9: Forecasting of clinical antibody epitope escape mutations. Forecasted 
mutations from the pre-pandemic model intersected with six clinical therapeutic monoclonal 
antibody epitopes. Epitopes are defined by sites within 3.5Å. Experimental evidence is from 
CoV-RDB47. All possible mutations are considered (not just those a nucleotide distance of 
one from Wuhan).
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Figure S9: Forecasting of clinical antibody epitope escape mutations. Fore-
casted mutations from the pre-pandemic model intersected with six clinical therapeu-
tic monoclonal antibody epitopes. Epitopes are defined by sites within 3.5Å. Exper-
imental evidence is from CoV-RDB [79]. All possible mutations are considered (not
just those a nucleotide distance of one from Wuhan).
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Figure S10: EVEscape performance on escape DMS data is generalizable across viruses. 
Precision-Recall (with AUPRC normalized by “null” model) (a) and AUROC (b) of predicting DMS 
escape mutations, for SARS-CoV-2 RBD, Flu H1, and HIV Env. 
Note: The “null” model AUPRC is equivalent to the fraction of observed escapes, and therefore 
AUPRC values are not comparable between viral proteins with different fractions of escape 
mutations (i.e. RBD and HIV Env). The fraction of observed escapes in the DMS experiments are 
0.19 for RBD, for 0.015 for Flu, and 0.006 for HIV – Flu and HIV data examined far fewer antibody 
and sera samples (Table S5).

Figure S10: EVEscape performance on escape DMS data is generalizable
across viruses. Precision-Recall (with AUPRC normalized by “null” model) (a)
and AUROC (b) of predicting DMS escape mutations, for SARS-CoV-2 RBD, Flu
H1, and HIV Env. Note: The “null” model AUPRC is equivalent to the fraction
of observed escapes, and therefore AUPRC values are not comparable between viral
proteins with different fractions of escape mutations (i.e. RBD and HIV Env). The
fraction of observed escapes in the DMS experiments are 0.19 for RBD, for 0.015 for
Flu, and 0.006 for HIV – Flu and HIV data examined far fewer antibody and sera
samples (Table S5).
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Figure S11: EVEscape performance is robust across data thresholds. a) Distribution of 
escape thresholds from bootstrapping 8 antibodies 1000 times and fitting a gamma distribution 
to each sample for Bloom and Xie RBD escape data (left) and gamma distributions to select 
Flu and HIV escape thresholds (right). b) Maximum escape values (over set of antibodies with 
PDB structures) for each mutation vs. the minimum distance to an antibody—most escape 
mutations (to the right of dashed line) are to residues with atoms  to within 5Å of any residue 
on the antibody. For HIV, this is true for the mutations that do not involve loss of glycosylation. 
c) Impact of choice of RBD expression and ACE2 binding thresholds (dashed line uses 
thresholds chosen by Bloom escape papers and our paper) on AUPRC (normalized by “null” 
model – fraction of observed escapes) and # of mutations considered as escape. d) Impact of 
choice of escape threshold on RBD (Bloom and Xie data separated), Flu, and HIV AUPRC 
(normalized) and # of escape mutations (dashed line uses escape threshold chosen by our 
paper). 
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Figure S11: EVEscape performance is robust across data thresholds. a)
Distribution of escape thresholds from bootstrapping 8 antibodies 1000 times and fit-
ting a gamma distribution to each sample for Bloom and Xie RBD escape data (left)
and gamma distributions to select Flu and HIV escape thresholds (right). b) Max-
imum escape values (over set of antibodies with PDB structures) for each mutation
vs. the minimum distance to an antibody—most escape mutations (to the right of
dashed line) are to residues with atoms to within 5Å of any residue on the antibody.
For HIV, this is true for the mutations that do not involve loss of glycosylation. c)
Impact of choice of RBD expression and ACE2 binding thresholds (dashed line uses
thresholds chosen by Bloom escape papers and our paper) on AUPRC (normalized by
“null” model – fraction of observed escapes) and number of mutations considered as
escape. d) Impact of choice of escape threshold on RBD (Bloom and Xie data sepa-
rated), Flu, and HIV AUPRC (normalized) and number of escape mutations (dashed
line uses escape threshold chosen by our paper).
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Figure S12: Surface accessibility metrics, mutation effect models, and dissimilarity 
provide complementary information for predicting antibody epitopes and escape 
mutations. a) All features of EVEscape contribute to performance in predicting RBD 
escape mutants. b) Sites with either high WCN accessibility or high EVE fitness predictions 
have a greater percent of escape mutants (upper). WCN and EVE predictions provide similar 
information about the location of Spike epitopes as represented in antibody-Spike crystal 
structures in RCSB PDB (lower). c) Density of standard-scaled EVEscape components differ 
for SARS-CoV-2 RBD escape (and antibody epitopes) and non-escape mutations. 
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Figure S12: Surface accessibility metrics, mutation effect models, and dis-
similarity provide complementary information for predicting antibody epi-
topes and escape mutations. a) All features of EVEscape contribute to perfor-
mance in predicting RBD escape mutants. b) Sites with either high WCN accessibility
or high EVE fitness predictions have a greater percent of escape mutants (upper).
WCN and EVE predictions provide similar information about the location of Spike
epitopes as represented in antibody-Spike crystal structures in RCSB PDB (lower).
c) Density of standard-scaled EVEscape components differ for SARS-CoV-2 RBD
escape (and antibody epitopes) and non-escape mutations.
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Figure S13: Top EVEscape predicted sites are known escape and in antibody 
footprints. Density of site-averaged EVEscape for SARS-CoV-2 full Spike (left) and RBD 
(right) shows success of EVEscape at distinguishing sites with observed escape 
mutations, as well as sites in known antibody epitopes, from sites with no evidence of 
antibody binding or escape. All but 2 sites in the top 20% of EVEscape scores are in 
known antibody footprints or have escape mutations in experiments.

Site in antibody epitope

Site not in antibody epitope

Figure S13: Top EVEscape predicted sites are known escape and in an-
tibody footprints. Density of site-averaged EVEscape for SARS-CoV-2 full Spike
(left) and RBD (right) shows success of EVEscape at distinguishing sites with ob-
served escape mutations, as well as sites in known antibody epitopes, from sites with
no evidence of antibody binding or escape. All but 2 sites in the top 20% of EVEscape
scores are in known antibody footprints or have escape mutations in experiments.
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Figure S14: EVEscape RBD performance is robust to antibody and sera samples and 
improves with more available data for validation. Precision-Recall (with AUPRC 
normalized by “null” model) (a) and AUROC (b) of predicting RBD DMS escape mutations, 
for Bloom and Xie antibodies and Bloom sera. c) Comparison of model performance 
(AUROC) between data from first escape DMS study (10 antibodies – Sept. 2020)4 and data 
available at present (338 antibodies, 55 sera samples). 
Note: The “null” model AUPRC is equivalent to the fraction of observed escapes, and 
therefore AUPRC values are not comparable between data samples with different fractions 
of escape mutations (i.e., Bloom sera vs. Bloom antibodies, Table S5). The fraction of 
observed escapes in the DMS experiments are 0.17 for Bloom Ab, 0.06 for Xie Ab, and 
0.003 for Bloom sera. 

b

c

Figure S14: EVEscape RBD performance is robust to antibody and sera
samples and improves with more available data for validation. Precision-
Recall (with AUPRC normalized by “null” model) (a) and AUROC (b) of predicting
RBD DMS escape mutations, for Bloom and Xie antibodies and Bloom sera. c)
Comparison of model performance (AUROC) between data from first escape DMS
study (10 antibodies – Sept. 2020)[35] and data available at present (338 antibodies,
55 sera samples).
Note: The “null” model AUPRC is equivalent to the fraction of observed escapes, and
therefore AUPRC values are not comparable between data samples with different
fractions of escape mutations (i.e., Bloom sera vs. Bloom antibodies, Table S5). The
fraction of observed escapes in the DMS experiments are 0.17 for Bloom Ab, 0.06 for
Xie Ab, and 0.003 for Bloom sera.
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Figure S15: EVEscape adapts to new transformer model of mutation fitness capable of 
scoring indels. The EVEscape fitness component can be substituted with a new generative 
model, Trancept-EVE59 that is capable of scoring substitutions as well as insertions and 
deletions. a) EVEscape using TranceptEVE as the fitness model performs equivalently to 
EVEscape using EVE at predicting substitutions from from deep mutational scans that escape 
antibody binding. b) Percent of predicted substitutions in top decile of prediction based on their 
observed frequency during the pandemic shows EVEscape with TranceptEVE is just as good 
as, or better than, EVEscape using EVE at predicting pandemic substitutions. c) Histogram of 
EVEscape scores with TranceptEVE as a fitness model for all single deletions to Spike. Single 
deletions seen in the pandemic more than 1000 times are predicted higher than most other 
single deletions, especially the very frequent pandemic deletion Y144- (seen more than a million 
times). 
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Figure S15: EVEscape adapts to new transformer model of mutation fit-
ness capable of scoring indels. The EVEscape fitness component can be sub-
stituted with a new generative model, Trancept-EVE59 that is capable of scoring
substitutions as well as insertions and deletions. a) EVEscape using TranceptEVE as
the fitness model performs equivalently to EVEscape using EVE at predicting substi-
tutions from from deep mutational scans that escape antibody binding. b) Percent of
predicted substitutions in top decile of prediction based on their observed frequency
during the pandemic shows EVEscape with TranceptEVE is just as good as, or better
than, EVEscape using EVE at predicting pandemic substitutions. c) Histogram of
EVEscape scores with TranceptEVE as a fitness model for all single deletions to Spike.
Single deletions seen in the pandemic more than 1000 times are predicted higher than
most other single deletions, especially the very frequent pandemic deletion Y144-
(seen more than a million times).
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Figure S16: Incorporating glycosylation in EVEscape improves performance on HIV 
Env. Precision-Recall (with AUPRC normalized by “null” model – fraction of observed 
escapes) (a) and AUROC (b) of EVEscape and EVEscape+Gly predicting DMS escape 
mutations for SARS-CoV-2 RBD, Flu H1, and HIV Env. c) Scatterplot of HIV Env maximum 
escape at each mutation vs. EVEscape predictions with and without glycosylation. Hue 
indicates mutations that cause cause loss of glycosylation. The majority of HIV Env escape 
mutations involve glycosylation loss, and EVEscape+Gly performs better on these 
mutations. 
Note: In the limited HIV Env dataset examining 8 antibodies, 50% of all escape mutations 
are likely due to removal of a glycan17. The effects of glycosylation changes may not be 
reflected in the SARS-CoV-2 Spike experiments as these experiments were conducted in a 
yeast system with different surface glycan types8. While SARS-CoV-2 Spike (22 
glycosylation sites) and Flu H1 (up to 11 glycosylation sites) are much less extensively 
glycosylated than HIV Env (up to 30 glycosylation sites), some glycosylation changes in 
these proteins facilitate escape60-63. 

Figure S16: Incorporating glycosylation in EVEscape improves perfor-
mance on HIV Env. Precision-Recall (with AUPRC normalized by “null” model –
fraction of observed escapes) (a) and AUROC (b) of EVEscape and EVEscape+Gly
predicting DMS escape mutations for SARS-CoV-2 RBD, Flu H1, and HIV Env. c)
Scatterplot of HIV Env maximum escape at each mutation vs. EVEscape predictions
with and without glycosylation. Hue indicates mutations that cause cause loss of
glycosylation. The majority of HIV Env escape mutations involve glycosylation loss,
and EVEscape+Gly performs better on these mutations.
Note: In the limited HIV Env dataset examining 8 antibodies, 50% of all escape
mutations are likely due to removal of a glycan17. The effects of glycosylation changes
may not be reflected in the SARS-CoV-2 Spike experiments as these experiments
were conducted in a yeast system with different surface glycan types8. While SARS-
CoV-2 Spike (22 glycosylation sites) and Flu H1 (up to 11 glycosylation sites) are
much less extensively glycosylated than HIV Env (up to 30 glycosylation sites), some
glycosylation changes in these proteins facilitate escape [51, 82, 16, 47].
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Figure S17: Incorporating pandemic data into EVE improves prediction of escape 
DMS. Incorporating pandemic sequences in EVE training data results in a greater distinction 
between escape and non-escape mutations with high EVE scores. 

Figure S17: Incorporating pandemic data into EVE improves prediction of
escape DMS. Incorporating pandemic sequences in EVE training data results in a
greater distinction between escape and non-escape mutations with high EVE scores.
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Figure S18: EVEscape captures the epistatic shift between Wuhan and BA.2.
a) Histogram of epistatic shift values between Wuhan and BA.2 EVE models for all single 
mutations, calculated as linear regression residuals. Convergent mutations that arise multiple 
times in Omicron lineages (mutations at sites 346, 444, 452, 460, and 486) highlighted on the 
left. Wastewater mutations seen mid-202164 that were rarely seen clinically in patients, and so 
likely epistatic (right).  b) Max epistatic shift magnitudes of mutations at sites in BA.2 shows high 
epistatic shifts concentrated in RBD. c) Large epistatic shifts for mutations on Wuhan and BA.2 
strains concentrated at sites proximal to BA.2 mutations.  
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Figure S18: EVEscape captures the epistatic shift between Wuhan and
BA.2. a) Histogram of epistatic shift values between Wuhan and BA.2 EVE models
for all single mutations, calculated as linear regression residuals. Convergent mu-
tations that arise multiple times in Omicron lineages (mutations at sites 346, 444,
452, 460, and 486) highlighted on the left. Wastewater mutations seen mid-2021 [65]
that were rarely seen clinically in patients, and so likely epistatic (right). b) Max
epistatic shift magnitudes of mutations at sites in BA.2 shows high epistatic shifts
concentrated in RBD. c) Large epistatic shifts for mutations on Wuhan and BA.2
strains concentrated at sites proximal to BA.2 mutations.
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Figure S19: EVEscape strains 
a) VOCs have high EVEscape scores compared to random mutations at the same mutation 
depth, particularly Beta and later Omicron strains. b) VOCs are among the highest scoring 
new strains for their two-week period of emergence using a pre-pandemic EVEscape 
model.
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Figure S19: EVEscape strains. a) VOCs have high EVEscape scores compared to
random mutations at the same mutation depth, particularly Beta and later Omicron
strains. b) VOCs are among the highest scoring new strains for their two-week period
of emergence using a pre-pandemic EVEscape model.
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Figure S20: EVEscape predictions for potential pandemics Site-maximum 
EVEscape scores on Nipah Virus fusion protein (left) and Glycoprotein (right) structures 
depict regions of high EVEscape scores and known escape mutations with experimental 
evidence68-72 (little is known for this understudied virus with pandemic potential) are 
highlighted with spheres. 
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High Max EVEscapeLow  Max EVEscape
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Experimental escape

Figure S20: EVEscape predictions for potential pandemics. Site-maximum
EVEscape scores on Nipah Virus fusion protein (left) and Glycoprotein (right) struc-
tures depict regions of high EVEscape scores and known escape mutations with ex-
perimental evidence [6, 81, 85, 14, 15] (little is known for this understudied virus with
pandemic potential) are highlighted with spheres.
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Appendix C

Supplementary Tables
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RBD (+pandemic) RBD Spike (+pandemic) Spike

SARS-CoV-2 1394 1 1292 1
SARS-CoV-1 37 24 27 23

Other SARS-like 110 101 108 99
MERS 305 265 293 259

Betacoronavirus 1 (OC43) 577 416 504 394

Alphacoronavirus 1 0 0 240 175

229E 0 0 131 95
NL63 0 0 52 47
HKU1 57 27 54 27
HKU15 0 0 212 141

Avian coronavirus 0 0 668 581

Porcine epidemic diarrhea virus 0 0 1800 1440

Other coronavirus 252 175 486 347
Other/unknown 0 0 1 0

Total 2732 1009 5868 3629

Table S1: Taxa of sequences in Spike and RBD training alignments. RBD
and Spike without pandemic data are the primary alignments used.
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Protein # Seqs Seq Length % Coverage N_eff

Flu H1 71463 565 97.0% 12238.5
HIV Env 109050 690 97.2% 48082.1

SARS-CoV-2 RBD (+pandemic) 2732 221 98.6% 277.7
SARS-CoV-2 RBD 1009 221 98.6% 195.4

SARS-CoV-2 Spike (+pandemic) 5868 1273 98.9% 1639.1
SARS-CoV-2 Spike 3629 1273 94.7% 1345.6
Lassa Glycoprotein 1093 491 99.8% 536.2
Nipah Glycoprotein 5036 602 88.7% 1328.1

Nipah Fusion Protein 6155 546 94.1% 1105.6

Table S2: EVE training alignment summary statistics.
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Virus Protein Study Strain Assay variable N Ind EVH EVE

Doud 2016 [20] A/WSN/1933 replication 10317 0.45 0.45 0.53Flu H1 Wu 2020 [84] H1 (strain) replication 10317 0.36 0.37 0.36
BG505 replication 12388 0.48 0.41 0.48Haddox 2018 [36] BF520 replication 12502 0.48 0.43 0.49

12483replication (human) 0.48 0.44 0.49Roop 2020 [62] BG505
replication (rhesus) 12483 0.43 0.40 0.44

HIV Env

Duenas-Decamp 2016 [22] BG505 replication 375 0.37 0.42 0.38
yeast expression (RBD) 3798 0.36 0.33 0.45Starr 2020[70] Wuhan-Hu-1 ACE2 binding 3802 0.23 0.16 0.26

Wuhan-Hu-1 human cell expression 3458 0.33 0.32 0.45Spike RBD
Chan 2021[11] ACE2 binding 3458 0.31 0.30 0.42

SARS2

Mpro Flynn 2022[25] Wuhan-Hu-1 yeast growth 5741 0.58 0.60 0.60

Table S3: Experimental details and EVE, EVmutation, and independent
model performance (spearman correlations) for DMS fitness

experiments.
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PDB ID Description

SARS-CoV-2 Spike 6VXX Spike (closed state)
6VYB Spike (open state)
7CAB Spike (closed state with higher sequence coverage)
7BNN Spike (open state with higher sequence coverage)

Flu H1 1RVX 1934 H1 Hemagglutinin (similar to Bloom DMS sequence)
HIV Env 5FYL BG505 SOSIP.664 Env (prefusion) [18]

7TFO BG505 SOSIP.664 Env (CD4-bound open state)
Lassa Glycoprotein 7PUY Lassa Virus Josiah Strain Glycoprotein

Nipah Fusion Protein 5EVM Nipah Fusion Protein (prefusion)
7TY0 Nipah Glycoprotein Malaysian StrainNipah Glycoprotein 7TXZ Nipah Glycoprotein Malaysian Strain

Table S4: PDB structures capturing diverse protein conformations used
for accessibility calculations.
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Papers Assay Details #Muts #Escape Muts # Ab/Sera

Bloom Lab:

Dong 2021 [19]

Greaney 2021 [35]

Greaney 2021 [32]

Greaney 2021 [31]

Starr 2021 [67]

Starr 2021 [66]

Tortorici 2021 [78]

Starr 2021 [68]

FACS-based yeast display, antibody binding 3819 635 36

Bloom Lab:

Greaney 2021 [32]

Greaney 2021 [30]

Greaney 2021 [31]

FACS-based yeast display, sera binding 3819 15 55

SARS2 RBD

(Wuhan-Hu-1)
Xie Lab:

Cao 2022 [8]
MACS-based yeast display, antibody binding 3819 227 247

Flu H1

(A/WSN/1933)
Doud 2018 [21] Viral cell entry with antibodies 10735 161 6

HIV Env

(BG505)
Dingens 2019 [18] Viral cell entry with antibodies 12730 76 8

Table S5: Escape DMS data used for EVEscape validation.
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