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Abstract

Multitask inference offers an efficient approach to bringing together multiple sources
of information to train a surrogate model to predict chemical properties. In this thesis,
we explore the task of inferring probability distributions on quantities of interest when
we have access to a limited amount of highly accurate CCSD(T) data as well as data
obtained using a range of approximations to the exchange-correlation functional in
Density Functional Theory (DFT). A CCSD(T) calculation can incur 1000 to one
million times the computational cost of a DFT calculation, so an inference model
which leverages both types of predictions can benefit from the accuracy of CCSD(T)
and the relative efficiency of DFT. We specifically focus on inference methods based
on Gaussian process (GP) regression. One example of such an approach, the delta
method, uses GP regression to model the difference between two observation data
sets, in our case CCSD(T) and DFT. The multitask method, by contrast, models
a regression problem for each observation data set and assumes some relationship
between the problems so that all relevant data sets can support the primary regression
task.

We test the performance of the delta and multitask methods in the tasks of pre-
dicting the ionization potential of small organic molecules and the interaction energies
of water dimers. The delta method outperforms the multitask approach for data sets
where it can be applied, but this approach requires CCSD(T) and DFT data sets to
correspond to the same set of molecules and must have access to DFT data for target
molecules to make final predictions. The multitask method can use information from
CCSD(T) and DFT data sets which correspond to different molecules and can be
applied without any DFT insight into the target molecule. For a given training set
generation cost, the multitask method produces more accurate predictions than a GP
regression model trained only on CCSD(T). The true training set generation cost may
be smaller than the listed cost since the flexibility of the multitask method allows it
to make use of already existing data sets. Additionally, we find that we can increase
accuracy at low computational cost by increasing the number of DFT observation
data sets used to inform the model.
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Finally, we consider the accuracy of the variances of the distributions predicted
by GP inference methods as uncertainty indicators for the models. Though these
indicators can capture uncertainty due to limited data set size and extrapolation, they
are not designed to capture the impact of the disparity between modeling assumptions
and reality. Future work may seek to better understand and represent this reality.

Thesis Supervisor: Youssef Marzouk
Title: Professor
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Chapter 1

Introduction

An abundance of electronics structure methods may be used to calculate proper-

ties of a molecule, but it is generally not clear how best to leverage the resulting

data for new predictions and to relate these quantities to the truth. Predictions

of molecular properties are used in a number of scientific and engineering pursuits

including the simulation of molecular dynamics and the screening of new materials

for target characteristics. Density Functional Theory (DFT) is an electronics struc-

tures method which strikes the right balance between accuracy and computational

efficiency for many researchers [34, 26]. To make DFT predictions, an approximation

to the exchange-correlation (XC) functional must be selected, but in many cases, the

best choice of approximation is unclear and the amount of error that the approxima-

tion introduces to subsequent calculations is hard to determine [8, 14]. In complex

chemical settings, the ground truth is inaccessible, but practitioners often use DFT

in place of ground truth, neglecting uncertainty in the calculations. Additionally, for

simulation at the molecular scale and beyond, the cost of DFT becomes prohibitive.

This work investigates how surrogate models can draw from DFT and other methods

to make accurate predictions under a restricted computational budget and to explore

prediction uncertainty.

We focus on using variants of Gaussian process regression to infer probability dis-

tributions on quantities of interest (QOI) for target molecular configurations. For

each approximation to the XC functional in our data set, as well as for some highly
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accurate CCSD(T) calculations, we define a regression task. By imposing structure

between these tasks according to a multitask framework, we use the DFT data to

support predictions at the level of accuracy of CCSD(T). We demonstrate that the

multitask approach outperforms a conventional GP model trained on only CCSD(T)

data for the task of predicting ionization potential of small organic molecules as well

as the task of predicting the interaction energies of water dimers. Since CCSD(T)

calculations can exceed the cost of DFT by factors of 1000 to one million, multitask

models can produce significant computational savings. Additionally, because these

predictions are made at the level of CCSD(T), they offer an avenue for evaluating or

correcting the accuracy of DFT predictions made with various XC approximations.

Further, GP regression methods are designed so that in a well-specified setting the

variance of a predicted distribution represents the statistical model’s certainty. By

evaluating how this promise holds up for models trained with quantum chemistry

data, we can gain insight into how inference models behave in complicated applica-

tions that fall short of the models’ underlying assumptions.

Other variants of GP inference have been applied to materials science applications.

Bartok et al. introduced Gaussian Approximation Potentials (GAP) which use GP

regression to fit potential energy surfaces to energy and force data [3, 1]. Both Pilania

et al. and Batra et al. have explored the use of Multifidelity GP models to predict

chemical properties based off a training data set informed by high and low fidelity

implementations of DFT though they restrict their consideration to two fidelities

[28, 5]. Batra et al. also consider the Δ method: using a GP model to predict

the difference between two levels of theory, then adding that difference to a lower

level prediction for the target to produce a high level prediction. They remark that

the data set requirements of the Δ method are rigid, since we must have both low

and high level data for each training input and low level data for each target input.

By contrast, multitask GP models have the flexibility to relate training data from

different levels of theory which do not share the same inputs. It is therefore possible

to apply the multitask method to a “dataset of opportunity”, by bringing together

existing data sets to train the model, rather than expending the computational time
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to generate new data.

The outline of this thesis is to explore details of the application before delving

into modeling choices and numerical results. Chapter 2 first provides general back-

ground for Density Functional Theory before describing the variety of available ap-

proximations to the exchange-correlation functional. Chapter 3 focuses on statistical

modeling, beginning with conventional frameworks for probabilistic regression, and

advancing to variants which incorporate multi-axes data sets. The remaining chapters

cover specific applications of statistical models to data from Density Functional The-

ory approximations. Chapter 4 sets up the main examples of this work by describing

how molecules are represented and related to one another and how the training data

sets are structured. Finally, in Chapters 5 and 6, we evaluate the accuracy of the

means of the distributions predicted by the multitask method and the relationship to

model error of the variance of the predicted distributions.
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Chapter 2

Application: Quantum Chemistry

Predictions

2.1 Kohn Sham Density Functional Theory

Consider a system containing N electrons. The system’s ground state energy is the

smallest eigenvalue, 𝐸, of

𝐻Ψ = 𝐸Ψ

which is a linear eigenvalue problem. 𝐻 is the Hamiltonian operator. The solution

can be found by minimizing the variational formulation over the space of all 3N

dimensional anti-symmetric wave functions, Ψ [34, 32, 13]:

𝐸 = min
Ψ∈R3𝑁 , ⟨Ψ|Ψ⟩=1

∫︁
Ψ(𝑟) 𝐻 Ψ(𝑟) 𝑑𝑟 (2.1)

Unfortunately, the objective of this optimization problem is an integral over 3𝑁 di-

mensional space. Even for a relatively small system, this integral can be prohibitively

expensive [34, 16]. To borrow an example from [16], consider a system of two silicon

atoms, 𝑁 = 28. Even if we restrict to only two quadrature points per dimension and
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a leap forward in computing ability makes it possible to evaluate a quadrature point

every 1.5 attoseconds, it would still take a year to complete a single computation of

the objective function of (2.1). For reference, at peak theoretical performance, the

top ranked supercomputer of November 2022 can perform less than two floating point

operations every attosecond [18].

By contrast, the ground state energy of a two silicon atom system can be found by

Kohn Sham Density Functional Theory (DFT) in under a minute. The Kohn Sham

equations are obtained by reformulating the variational principle as the minimization

of a functional of the electron density, 𝜌. Crucially, the problem can be written

in terms of N one body wave functions, {𝜓𝑖}𝑁𝑖=1, rather than the many body wave

function, Ψ [34, 32, 36, 30, 13]. The result is a system of eigenvalue problems

𝐻𝐾𝑆[𝜌] 𝜓𝑖(𝑟) = 𝜀𝑖 𝜓𝑖(𝑟), 𝑖 = 1, . . . , 𝑁

𝐻𝐾𝑆[𝜌] =
(︁
− 1

2
∇2

𝑟 + 𝑉𝑛𝑒[𝜌](𝑟) + 𝑉𝐻𝑥𝑐[𝜌](𝑟)
)︁ (2.2)

where 𝐻𝐾𝑆[𝜌] is the Kohn Sham Hamiltonian. Its first additive component is a kinetic

energy operator, 𝑉𝑛𝑒[𝜌](𝑟) represents the nuclei-electron interaction potential, and

𝑉𝐻𝑥𝑐[𝜌](𝑟) is the Hartree-exchange-correlation potential. Different approximations to

exchange-correlation lead to a wide range of DFT methods.

The set of eigenproblems is nonlinear because the Kohn Sham Hamiltonian de-

pends on the density, 𝜌, which in turn depends on the eigenfunctions corresponding

to occupied orbitals, {𝜓𝑖}𝑛𝑜𝑐𝑐
𝑖=1 . For simplicity, we assume the Aufbau principle that

the occupied orbitals, 1, . . . , 𝑛𝑜𝑐𝑐, correspond to the 𝑛𝑜𝑐𝑐 smallest eigenvalues of the

Hamiltonian [34]. The relationship between the eigenfunctions and the electron den-

sity is

𝜌(𝑟) = 2
𝑛𝑜𝑐𝑐∑︁
𝑖=1

|𝜓𝑖(𝑟)|2 (2.3)

where the factor of 2 accounts for spin multiplicity in non-magnetic systems [30].

The nonlinear eigenvalue problem is solved through self-consistent field (SCF)
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iteration [34]. We alternate between computing a new approximation for the density

from the previous approximation of the potential and obtaining a new approximation

of the potential from a previous approximation of the density:

𝑉0 → 𝜌1 → 𝑉1 → 𝜌2 → · · · → 𝜌𝑛 → 𝑉𝑛

The process ends when the quantities are self consistent—that is, when there is no

change in consecutive approximations to the potential. The major computational ex-

pense is the solution of a linear eigenvalue problem for a sequence of estimates of the

Kohn Sham Hamiltonian. Thus, the computational cost scales cubically with N, the

number of electrons in the system. This baseline cost is a major factor in DFT’s

popularity for electronics structure calculations [34, 36]. By contrast, CCSD(T)

calculations—though more accurate—have computational cost 𝒪(𝑁7) [15]. Recall

our example of two silicon atoms. For this system, 𝑁3 = 21, 952 while𝑁7 = 1.3×1010.

2.2 The Exchange-Correlation Functional

In this work, we use different implementations of DFT resulting from different approx-

imations to the exchange-correlation functional, 𝐸𝑥𝑐[𝜌](𝑟). This functional is used to

express the Hartree exchange-correlation potential in (2.2):

𝑉𝐻𝑥𝑐[𝜌](𝑟) =
𝛿𝐸𝐻𝑥𝑐[𝜌](𝑟)

𝛿𝜌(𝑟)

𝐸𝐻𝑥𝑐[𝜌](𝑟) = 𝐸𝐻 [𝜌](𝑟) + 𝐸𝑥𝑐[𝜌](𝑟)

The exchange-correlation functional represents the many body effects that one

body wave functions are not capable of capturing, but the true form of this func-

tional is unknown [23, 26]. Hundreds of approximations to the functional have been

developed, through both empirical fitting techniques and the use of asymptotic phys-

ical constraints [32]. For convenience, the density functional approximations (DFAs)

are often sorted according to their inputs. This framework has been christened “Ja-

23



cob’s Ladder” because each step up the ladder corresponds to a class of DFAs with

an additional input type, and we have hope that once we reach the top of the lad-

der we can make accurate chemical predictions [26]. That is to say, we will be in

Heaven. Figure 2-1 shows the framework—the rungs are labeled with the new input

information incorporated on each level, and the arrows label the DFA type.

The next two paragraphs will provide a simplified overview of the functional ap-

proximation types represented by Jacob’s Ladder. Local-Density Approximations

(LDAs) use local information about the electron density, 𝜌(𝑟), to approximate the

exchange-correlation energy density of our system with the same value for a Uniform

Electron Gas which also has density 𝜌(𝑟). These methods have no mechanism to cap-

ture dispersion interactions, but favorable error cancellation allows them to perform

surprisingly well for solid-state systems [32, 23]. The next two rungs—corresponding

to Generalized Gradient Approximations (GGAs) and meta-GGAs—add semi-local

information through ∇𝜌(𝑟) and ∇2𝜌(𝑟), respectively. Both classes improve on LDAs,

in general, though GGAs remain vulnerable to self-interaction and static-correlation

errors. Meta-GGAs can be designed so that self-interaction errors vanish in the

representation of exchange, but these errors remain an issue for the correlation rep-

resentation [32].

The fourth and fifth rungs both aim to minimize self-interaction error by intro-

ducing other electronic structure methods to balance local and non local input from

the electron density. On rung four, single hybrid approximations are constructed

by mixing Hartree-Fock (HF) exchange energy with GGA or meta GGA exchange

representations to increase local emphasis on the 𝜌(𝑟). This approach is equivalent

to adding occupied orbitals, {𝜓𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑
𝑖 }, as inputs to our approximation. The frac-

tion of HF exchange energy that can be used in a single hybrid approximations is

limited. Thus, on rung five, double hybrid approximations take the additional step

of mixing second-order Møller–Plesset (MP2) correlation energy with GGA or meta

GGA correlation energy, yielding an approximation in terms of occupied and virtual

orbitals. This technique makes it possible to increase the fraction of HF energy mixed

with the exchange energy. Both classes of hybrid approximations make large steps in
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Figure 2-1: The Jacob’s Ladder representation of different classes of density functional
approximation [26]

reducing self-interaction error at the cost of increased risk of static-correlation errors

when representing systems with small HOMO-LUMO gaps [32].

Because approximation formulations become more complex as we move up Jacob’s

ladder, higher rung DFAs are more computationally expensive than their lower rung

counterparts, but accuracy trends are more complicated. It can be hazardous to gen-

eralize about the performance of density functional approximations. While for a wide

range of benchmarks, the average performance of a class of DFAs is better the higher

up that class sits on the ladder, the story for individual DFAs within those classes can

be different [14]. As the previous summary of DFA classes demonstrates, trade offs

are made when constructing and fitting approximations. DFAs will generally perform

well for some categories of molecular systems and poorly for others [14].

Consequently, ranking the applicability of DFAs to a given problem setting is

nontrivial. Civalleri et al. consider ten statistics for evaluating the performance of
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DFAs and Hartree Fock on bandgap prediction and find ten different recommenda-

tions for the best approach. These “best” recommendations include Hartree Fock and

representatives from rungs two, four, and five of Jacob’s Ladder. Furthermore, some

DFAs which give the best result for one statistic demonstrate mediocre performance

for another [8]. Researchers commonly select DFAs that are popularly used or that

perform well on benchmarks for a test quantity of interest, traditionally atomization

energy. Unfortunately, Goerigkab and Grimme report that B3LYP—a popular hybrid

DFA—had worse average performance than all 22 other hybrid DFAs considered for

a wide range of chemically relevant benchmarks. They also find that the performance

of DFAs on atomization energy correlates only weakly with performance on other

quantities of interest [14].

There is significant need both for guidance on which DFAs are most appropriate

to a given problem and for representation of the uncertainty these approximations

introduce to DFT calculations. Lejaeghere reports that error introduced by the choice

of density functional approximation typically exceeds error from numerical approxi-

mations in DFT by an order of magnitude [23]. Some approaches to reducing error

and modeling uncertainty have been proposed. Lejaeghere describes an approach

that distinguishes between systematic, correctable error and random error. The re-

lationship between experimental data and DFT predictions is modeled by a linear

regression function with stochastic additive noise. The regression coefficients and

noise variance are iteratively fit with a weighted least squares algorithm and used to

represent systematic and random error, respectively [23]. This approach is limited by

the simplicity of the linear regression function and the need for sufficient experimental

data.

The Bayesian Error Estimation Functional (BEEF) is another approach to un-

certainty estimation which begins by fitting a new DFA through a semi-empirical

procedure [24]. In existing work, the structure of the model has been related to a

GGA and the parameters are estimated by minimizing a cost function informed by

reference datasets. Once the optimal parameters are identified, a probability distribu-

tion on the model parameters is constructed to represent the inadequacy of the DFA
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model in representing the reference data set. BEEF error estimation aims to assume

as little as possible about this distribution and therefore supposes that it is the distri-

bution which maximizes the entropy: the Boltzmann distribution. The temperature

of this distribution is chosen so that its variance will be equal to the average deviation

of the BEEF functional approximation predictions from the reference data [7, 24, 33].

When using multiple data sets to fit the BEEF DFA, this constraint can be satisfied

only approximately. Furthermore, this approach only provides uncertainty informa-

tion for the BEEF functional approximation, so there remains a need to investigate

the uncertainty introduced by other choices of density functional approximation.

The work presented in this thesis is part of an investigation into the use of an en-

semble of DFT predictions made using different functional approximations to inform

probabilistic models with the goal of improving prediction accuracy and representing

uncertainty under a limited budget.
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Chapter 3

Statistical Model: Multitask

Gaussian Process Inference

3.1 Bayesian Linear Regression

Consider a multivariate linear regression function

𝑓(X) = 𝛽𝑇X

We wish to learn distributions on the model coefficients from data. Noisy obser-

vations of 𝑓(X) are related to the covariates through the expression

𝑌𝑖 =
∑︁
ℎ

𝛽ℎ𝑋𝑖ℎ + 𝜀𝑖

𝜀𝑖 ∼ 𝒩
(︁
0, 𝜎2

)︁ (3.1)

Above, we have assumed that each observation’s noise is additive and follows a cen-

tered normal distribution with variance 𝜎2. We also assume that the noise of a given

observation is not dependent on the noise of any other. Thus, 𝜀1, . . . , 𝜀𝑛 are iid,

independent and identically distributed. Because we also assume each 𝑋𝑖ℎ is a deter-

ministic quantity, the observations are independent of each other, and we write their
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likelihood function as

Y
⃒⃒
X,𝛽, 𝜎 ∼ 𝒩

(︁∑︁
ℎ

𝛽ℎXℎ, 𝜎
2
I

)︁
≡ P

(︀
Y
⃒⃒
X,𝜃

)︀
where I is the identity matrix, X is the design matrix with 𝑋𝑖ℎ at the 𝑖𝑡ℎ row and

ℎ𝑡ℎ column, and 𝜃 = [𝛽, 𝜎]𝑇 are the model parameters. We can use our existing

knowledge of the parameters to choose a prior distribution, P(𝜃), and make use of

Bayes’ Law:

P
(︀
𝜃|Y,X

)︀
=

P
(︀
Y|X,𝜃

)︀
P(𝜃)

P
(︀
Y|X

)︀
We obtain a distribution on our model parameters conditioned on our observations.

Provided that our assumptions are appropriate to our application, this distribution

can be used to construct an approximation 𝑓(𝑋;𝛽) and to characterize its uncertainty.

3.2 Gaussian Process Regression

Gaussian process (GP) regression is an example of nonparametric regression which

shifts the focus from inferring a probability distribution on the finite parameters of

a regression function to inferring a distribution on regression functions. As before,

we have a likelihood distribution on our observations though we now choose a prior

distribution for our regression function. We treat the regression function as infinite

realizations of a random variable, 𝑓(X). In GP regression, these variables are re-

alizations of a Gaussian process, so every finite sample, {𝑓(X𝑖)}𝑛𝑖 , is a multivariate

Gaussian random variable. Our selection of a prior covariance function for this ran-

dom variable controls the smoothness of the regression function and encapsulates our

assumptions about the relationships between any 𝑓(X𝑖) and 𝑓(X𝑗) [29].

We are interested in a latent function, 𝑓 , which relates each X𝑖 to a noisy obser-

vation 𝑌𝑖. When we assume independent and homoscedastic Gaussian noise, we have

the model
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𝑌𝑖 = 𝑓(X𝑖) + 𝜀𝑖

𝜀𝑖 ∼ 𝒩
(︁
0, 𝜎2

)︁
For each observation, 𝑌𝑖, there is some corresponding function value 𝑓(X𝑖). We collect

these in the vector f. We are interested in inferring the values the function takes on

at target X*, and we collect these values in f*. Using this notation, we assign a joint

Gaussian process prior

𝑓(X) ∼ 𝒢𝒫
(︁
𝜇(X), 𝑘(X,X′)

)︁
The method can be extended to cases with nonzero mean. For the above set up,

the joint prior of the function values for the observations and targets is

⎡⎣ f

f*

⎤⎦ ∼ 𝒩

⎛⎝𝜇,

⎡⎣𝐾𝑓𝑓 𝐾𝑓*

𝐾𝑇
𝑓* 𝐾**

⎤⎦⎞⎠ (3.2)

and the likelihood distribution is

Y
⃒⃒
f ∼ 𝒩

(︀
f, 𝜎2

I
)︀

We apply Bayes’ law to find the joint posterior distribution

P(f, f*
⃒⃒
Y) =

P(f, f*)P(Y
⃒⃒
f)

P(Y)
(3.3)

and marginalize to find the distribution for the target function realizations

P(f*
⃒⃒
Y) =

∫︁
P(f, f*

⃒⃒
Y)𝑑f

=
1

P(Y)

∫︁
P(f, f*)P(Y

⃒⃒
f)𝑑f

= 𝒩
(︁
𝜇 + 𝐾𝑇

𝑓*(𝐾𝑓𝑓 + 𝜎2
I)−1

(︀
Y − 𝜇

)︀
, 𝐾** − 𝐾𝑇

𝑓*(𝐾𝑓𝑓 + 𝜎2
I)−1𝐾𝑓*

)︁
(3.4)
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Thus, GP regression with a Gaussian likelihood has an analytical solution. The next

subsection will discuss this distribution in more detail. Then, the following several

subsections will describe modifications to this approach which allow us to incorporate

observations generated by multiple methods, perhaps with varying levels of accuracy.

3.2.1 The Posterior Distribution

The interpretation of the posterior distribution strongly relies on our assumption

that our choice of kernel function and features accurately represent the relationships

between observations and targets. For example, to obtain the posterior mean, we

derive a correction to the prior mean as the linear combination of each observation’s

deviance from the prior mean, weighted by how strongly the observation is correlated

to the value we want to predict. Note that the deviation of the observations from the

prior mean is modeled as

(︀
Y − 𝜇

)︀
∼ 𝒩

(︁
0, 𝐾𝑓𝑓 + 𝜎2

I

)︁
Consider the Cholesky factorization of the covariance: 𝐾𝑓𝑓 + 𝜎2

I = 𝑅𝑇𝑅. The

deviation of the observations can be rescaled and corrected for correlation

𝑅−𝑇
(︀
Y − 𝜇

)︀
∼ 𝒩

(︀
0, I
)︀

Similarly, the product

𝐾𝑇
𝑓*𝑅

−1

is a rescaling of the estimated covariance between the target and the observations.

We can say that these covariances are estimates of the relevance of each observation

to our predictions. Once these estimates are in the same coordinate system as the

deviation of the observation from the prior mean, we can calculate the correction to

the prior mean.
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𝜇 + 𝐾𝑇
𝑓*(𝐾𝑓𝑓 + 𝜎2

I)−1
(︀
Y − 𝜇

)︀
= 𝜇 +

[︁
𝐾𝑇

𝑓*𝑅
−1
]︁ [︁
𝑅−𝑇

(︀
Y − 𝜇

)︀]︁
Likewise, we derive a correction to our prior estimate of the target’s covariance

by determining how informative our observations are about the target values in the

context of the spread of the observation data.

The target’s covariance is initially estimated as 𝐾**. Inference corrects this esti-

mate by subtracting 𝐾𝑇
𝑓*(𝐾𝑓𝑓 + 𝜎2

I)−1𝐾𝑓* from 𝐾**. This correction is the square

of the Mahalanobis distance of the point 𝐾𝑓* from the origin in a coordinate system

defined by the eigendecomposition of 𝐾𝑓𝑓 + 𝜎2
I.

In one dimension, 𝐾𝑓𝑓 + 𝜎2
I is a scalar. The correction to 𝐾** reduces to the

covariance between 𝑓* and Y divided by the standard deviation of Y. Analogously,

in multiple dimensions, the factor (𝐾𝑓𝑓 + 𝜎2
I)−1 functions to correct the covariance

between the target and the observations for correlation between the observations and

to rescale by the standard deviation in each direction. Thus, we obtain a sense of

whether 𝐾𝑓* is typical or unusual with respect to the spread of the observation data.

In the next subsections, we will investigate different ways of modeling the re-

lationships between observations and targets within a Gaussian process regression

approach.

3.2.2 Δ Learning

The profusion of approximations to the exchange-correlation functional beg some

consideration over the best choice of observation set {𝑌𝑖}𝑛𝑖=1 to inform a Gaussian

process regression model. For example, we may opt to construct our observation set

using the popular and relatively cheap PBE approximation or we may expend the

computational resources to predict with a high rung, double hybrid approximation.

Ultimately, though, we are interested in a method that can use both the PBE and

the double hybrid data, as well as higher level information from CCSD(T).
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We must determine some approach to leverage a multi-axis observation set,
{︀
𝑌𝑖𝑗
}︀𝑛,𝑚
𝑖=1,𝑗=1

,

where we have data for molecular configurations 𝑖 = 1, . . . , 𝑛 and electronics struc-

ture methods 𝑗 = 1, . . . ,𝑚. A simple “pooling” approach may put all observations

into one vector and proceed with inference via Equation (3.4). If we allow both Y𝑖𝑗1

and Y𝑖𝑗2 to share feature X𝑖, the Gaussian process model will suffer from a low rank

covariance matrix. To avoid this problem, the features must have some dependence

on 𝑗. Thus, if we have a DFT prediction and a CCSD(T) prediction for the same

molecule, we must define a feature that reflects both the molecule and the prediction

method. This approach would require a model for how differences in electronic struc-

tures methods map to differences in their predictions. Alternatively, we may directly

model the difference between these predictions.

Figure 3-1: Visualization of observation data obtained by two different prediction
methods as well as the Δ between the methods.

One approach—the Δ method—performs Gaussian process regression to predict

differences between observations, Δ𝑖, obtained with two different methods for a given

X𝑖. Figure 3-1 provides a visual of observations obtained from two prediction methods
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and the Δ𝑖 between each pair. If we retain our assumption that noise follows an i.i.d.

Gaussian distribution, we have the model

𝑌𝑖𝑗1 − 𝑌𝑖𝑗2 ≡ Δ𝑖 = 𝑓
(︀
X𝑖

)︀
+ 𝜀

𝜀 ∼ 𝒩
(︀
0, 𝜎2

)︀
𝑓 ∼ 𝒢𝒫

(︀
𝜇Δ, 𝑘Δ(X,X′)

)︀
where 𝑗1 and 𝑗2 indicate two prediction methods. An application of (3.4) yields a

distribution on the regression function for Δ. Suppose our ultimate interest is to

predict Y at X𝑖* . Within the Δ framework, we can supply an observation from one

method, say 𝑌𝑖*𝑗2 , in order to make a prediction for the value from the other method:

𝑌𝑖*𝑗1 ≈ Δ𝑖 + 𝑌𝑖*𝑗2

Thus, the Δ method is suited to settings where calculations by method 𝑗1 are

both more accurate and more time consuming than calculations that use 𝑗2. Then,

for a given computational budget, we are able to inform our statistical model with a

larger data set than would be possible if we applied conventional Gaussian process

regression only to observation data from method 𝑗1. Furthermore, this approach

has an advantage when the true Δ has smaller average magnitude than the raw

observations or the observation data sets have common modes of variation which

cancel under subtraction. In these cases, use of the Δ method with relatively little

data can demonstrate lower absolute error than some more data rich implementations

of Gaussian process regression for a high fidelity prediction method.

For electronics structure calculation methods, there is generally a clear hierarchy

in cost, but there is only a clear hierarchy in model fidelity for select chemical and

numerical settings. For instance, Batra et al. consider the Δ method when fitting

a model for dopant formation energy of hafnia with high and low fidelity data sets

constructed from DFT at different numerical settings. Bartók et al. use a version of

the Δ method to learn one- and two-body corrections for systems of water molecules
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[2]. Their two-body correction is informed by three levels of electronic structure

theory. The Δ method can be extended to make use of more than two prediction

methods by choosing some baseline method, 𝑗𝑘 and fitting multiple Δ models, each

stepping between a pair of prediction methods, which sum to a correction for 𝑗𝑘 to

the highest fidelity level, 𝑗1. The final prediction is

𝑌𝑖*𝑗1 ≈ 𝑌𝑖*𝑗𝑘 + Δ𝑖*(𝑗𝑘 → 𝑗𝑘−1) + . . . + Δ𝑖*(𝑗2 → 𝑗1)

The approach is most appropriate to cases where there is a clear ordering of the

prediction methods.

3.2.3 Multifidelity Fusion

Models of disparity are useful tools for leveraging multiple observation data sets to

train a Gaussian process regression model. The version of this approach provided by

the Δ method can be limited by its inability to use an observation from one set, 𝑌𝑖𝑗1 ,

unless we also have an observation from the second set, 𝑌𝑖𝑗2 , which corresponds to the

same X𝑖. Thus, to use a DFT prediction for a molecule X𝑖 to train a Δ model between

CCSD(T) and DFT, we also require a CCSD(T) prediction for the same molecule.

We may consider alternative approaches that model disparities but allow us to use all

available observations. One such approach is multifidelity Gaussian process inference,

introduced by Kennedy and O’Hagan [19].

This approach defines two latent functions: 𝑓𝑝—representing the predictions from

some high fidelity model—and 𝑓𝑠—representing a low fidelity model. We assume the

relationships

𝑌𝑖𝑝 = 𝑓𝑝
(︀
X𝑖

)︀
+ 𝜀𝑝𝑖 = 𝜌𝑓𝑠

(︀
X𝑖

)︀
+ 𝛿𝑝𝑠 + 𝜀𝑝𝑖

𝑌𝑖𝑠 = 𝑓𝑠
(︀
X𝑖

)︀
+ 𝜀𝑠𝑖

(3.5)

The term 𝛿𝑝𝑠 captures the difference between the low fidelity model, scaled by pa-

rameter 𝜌, and the high fidelity model. This disparity is endowed with a Gaussian
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process prior, as is the latent function, 𝑓𝑠:

𝛿𝑝𝑠
(︀
X
)︀

∼ 𝒢𝒫
(︂
𝜇𝛿

(︀
X
)︀
, 𝑘𝛿

(︀
X,X′)︀)︂

𝑓𝑠
(︀
X
)︀

∼ 𝒢𝒫
(︂
𝜇𝑠

(︀
X
)︀
, 𝑘𝑠

(︀
X,X′)︀)︂

As before, we assume the additive noise terms, 𝜀𝑖𝑝 or 𝜀𝑖𝑠, are iid and are drawn from a

centered Gaussian distribution. Now, suppose we want to predict our targets f* at the

high fidelity level. We can determine that the joint distribution of our observations

and targets is

⎡⎢⎢⎢⎣
Y𝑝

Y𝑠

f*

⎤⎥⎥⎥⎦ ∼ 𝒩

⎛⎜⎜⎜⎜⎜⎝0,

⎡⎢⎢⎢⎢⎢⎣
𝜌2𝐾𝑠

𝑝𝑝 +𝐾𝛿
𝑝𝑝 + 𝜎2

I 𝜌𝐾𝑠
𝑝𝑠 𝜌2𝐾𝑠

𝑝* +𝐾𝛿
𝑝*

𝜌𝐾𝑠
𝑠𝑝 𝐾𝑠

𝑠𝑠 + 𝜎2
I 𝜌𝐾𝑠

𝑠*

𝜌2𝐾𝑠
*𝑝 +𝐾𝛿

*𝑝 𝜌𝐾𝑠
*𝑠 𝜌2𝐾𝑠

** +𝐾𝛿
**

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
where 𝜎2 is the variance of the noise distribution. The superscript of each covariance

matrix, K, indicates which kernel function was used in its construction, and the

subscripts indicate the pairs of features that are compared. Bayesian inference yields

an analytical posterior distribution, analogous to (3.4).

In the realm of DFT predictions, the Pilania et al. apply this multifidelity approach

to predict bandgaps of elpasolite compounds [28]. For their high fidelity model, they

consider DFT with a hybrid functional approximation, HSE06, while for their low

fidelity model, they use a Generalized Gradient Approximation, PBE. They report

that the prediction accuracy of the multifidelity approach is comparable to DFT with

HSE06, and that performance improves when they add new training data to the high

fidelity set as well as when they add new data to the low level set [28]. In their

investigation of dopant formation energies in hafnia, Batra et al. find similar results
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for the multifidelity approach and recommend it for its flexibility compared to the Δ

method [5].

To incorporate more than two levels in our training data, we may consider per-

forming sequential Gaussian process regression to map one observation data set to the

next, eventually producing a prediction for the primary observations. This approach

is based off the modification to Deep GP introduced by [27] and further discussed in

[21]. These works aim to combine predictions from models of increasing fidelity to es-

timate predictions from the highest fidelity model. Like the Δ method, this approach

assumes some ordering on the available observation data sets.

Deep GP methods compose multiple Gaussian process priors. Suppose the avail-

able models are indexed 𝑗 = 1, . . . ,𝑚 with 1 indicating the highest fidelity, and the

prediction by the 𝑗𝑡ℎ model corresponding to a feature X is 𝑓𝑗(X). The Deep GP

approach to multifidelity information fusion is

𝑓𝑗(X) = 𝜌𝑗+1𝑓𝑗+1(X) + 𝛿𝑗+1(X)

𝛿𝑗(X) ∼ 𝒢𝒫
(︁
𝜇𝛿𝑗(X), 𝑘𝛿𝑗(X,X

′)
)︁

𝑓𝑚(X) ∼ 𝒢𝒫
(︁
𝜇𝑚(X), 𝑘𝑚(X,X′)

)︁
Computation of the covariance matrix to make predictions for the highest fidelity

requires information from models on all fidelity levels and can be expensive. Perdikaris

et al. modify the approach by using the posterior predictions of level 𝑗 + 1 to inform

the predictions on level 𝑗 [27]. The revised model is formulated

𝑓𝑗(X) = 𝑔𝑗

(︁
X, 𝑓𝑗+1(X)

)︁
𝑔𝑗 ∼ 𝒢𝒫

(︁
0, ℸ𝑡𝜌(X,X

′)ℸ𝑡𝑓

(︀
𝑓𝑗+1(X), 𝑓𝑗+1(X)′

)︀
+ ℸ𝑡𝛿(X,X

′)
)︁

𝑓𝑚(X) ∼ 𝒢𝒫
(︁
𝜇𝑚(X), 𝑘𝑚(X,X′)

)︁
and allows for nonlinear mappings between predictions at level 𝑗 + 1 and 𝑗. Each

kernel function which contributes to the covariance matrix has a unique set of param-
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eters. An analytical solution will generally be intractable, and [27] and [21] suggest

approximating the posterior with Monte Carlo integration.

3.2.4 Symmetric Multitasking

“Multitasking” refers to a category of methods which consider several Gaussian process

regression tasks and assume some relationship between these tasks. As with the Δ

method or multifidelity fusion, multitasking can allow us to incorporate a larger

dataset into our inference problem without just pooling the data into one observation

vector. For instance, we can define a regression problem trained on CCSD(T) data

as well as one trained on each DFA we consider. By modeling correlation between

regression functions, we can use the DFA regression tasks to support prediction in

the CCSD(T) task.

In this subsection, we will describe a “symmetric” approach to multitask regression

due to Bonilla et al., and the next section will cover the “asymmetric” approach of

Leen et al. [6, 22]. In general, the formulations assume that there are m tasks, and

for each task, 𝑗, we have observational data, Y𝑗 ∈ R𝑛. In practice, the method can

be modified, so that different input sets of different sizes are used for different tasks.

Suppose that the observations for task 𝑗 can be modeled as

𝑌𝑖𝑗 = 𝑓𝑗(𝑋𝑖𝑗) + 𝜀𝑖𝑗

𝜀𝑖𝑗 ∼ 𝒩
(︁
0, 𝜎2

𝑖𝑗

)︁
We assume that the data for all tasks can be described by a multivariate normal

distribution defined by the Gaussian process prior

𝑓𝑗 ∼ 𝒢𝒫
(︁
𝜇, 𝑘𝑖

(︀
X𝑖, X′

𝑖

)︀
𝑘𝑗
(︀
X𝑗,X′

𝑗

)︀)︁
The covariance between functions for two tasks is the product of an input specific

component, 𝑘𝑖(·, ·), and a task specific component, 𝑘𝑗(·, ·). We let X𝑖 be the entries of

X𝑖𝑗 which identify the input and X𝑗 be the task specific entries. Typically, the input
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kernel will be a Squared Exponential kernel or a close variant. Bonilla et al. model

the task kernel as the free form matrix K𝑡𝑎𝑠𝑘 so that K𝑡𝑎𝑠𝑘
𝑎𝑏 = 𝑘𝑗(X𝑎,X𝑏) and learn

each entry from data [6]. They note that this matrix could also be used to represent

known similarity relationships between classes.

Observational noise is taken into account as

𝑌𝑖𝑗 ∼ 𝒩
(︁
𝑓𝑗(X𝑖), 𝜎

2
𝑖𝑗

)︁
and the mean of the posterior prediction for a target * and given task 𝑗 is

𝑓𝑗(X*𝑗) =
(︀
k𝑡𝑎𝑠𝑘
𝑗 ⊗ k𝑖*

)︀𝑇
Σ−1

(︀
Y − 𝜇

)︀
Σ = K𝑡𝑎𝑠𝑘 ⊗ 𝑘𝑖(X,X′) + D⊗ I

where k𝑡𝑎𝑠𝑘
𝑗 is the column of K𝑡𝑎𝑠𝑘 that corresponds to task 𝑗, and D is a diagonal

matrix containing the variance of the noise for each task. Then, if we assume identical

noise variance, 𝜎2

Σ =

⎡⎢⎢⎢⎣
K𝑡𝑎𝑠𝑘

11 𝑘𝑖(X,X′) + 𝜎2
I . . . K𝑡𝑎𝑠𝑘

1𝑚 𝑘𝑖(X,X′)
... . . . ...

K𝑡𝑎𝑠𝑘
𝑚1 𝑘𝑖(X,X

′) . . . K𝑡𝑎𝑠𝑘
𝑚𝑚𝑘𝑖(X,X

′) + 𝜎2
I

⎤⎥⎥⎥⎦
The Kronecker product, k𝑡𝑎𝑠𝑘

𝑗 ⊗ k𝑖* is defined similarly.

3.2.5 Asymmetric Multitasking

In many cases, the goal is to perform regression for a primary task, and all other tasks

may be considered secondary tasks which provide data that may be useful in learning

the primary task. For our own setting, CCSD(T) is a natural choice of data for the

primary regression task because we would like to make predictions which match this

method in accuracy. Each set of DFT predictions made using a different DFA could
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inform a secondary regression task which supports the primary task. Since it can be

challenging to justify a hierarchy of DFAs—particularly when two or more share a

rung of Jacob’s ladder—we are interested in a model which does not require us to

order all observation sets, the way we must in order to use the Δ method or Deep

multifidelity GP regression. Rather, we consider a two level hierarchy. At the top is

the primary task, p, which is either the task we are most interested in or for which we

have the most accurate data. In our setting, this task will be informed by CCSD(T)

data. All other tasks, 𝑠1, . . . , 𝑠𝑚, are treated on an equal footing. For us, these will

be the tasks informed by different DFAs. With this structure in mind, Leen et al.

describe an asymmetrical model in which secondary tasks are related through the

primary task [22].

Suppose Y𝑝 ∈ R𝑛𝑝 is the observation data for the primary task and Y𝑠𝑗 ∈ R𝑛𝑗 is

the data for the 𝑠𝑡ℎ𝑗 secondary task. As before, we assume that each task has its own

regression function

Y𝑖𝑝 = 𝑓𝑝(X𝑖) + 𝜀𝑖𝑝

Y𝑖𝑠𝑗 = 𝑓𝑠𝑗(X𝑖) + 𝜀𝑖𝑠𝑗 ∀𝑗 = 1, . . . ,𝑚

where each noise term is Gaussian iid, with some prescribed variance parameter.

We now model a shared structure in the regression functions based on the primary

function:

𝑓𝑠𝑗(X𝑖) = 𝜌𝑠𝑗𝑓𝑝(X𝑖) + 𝛿𝑠𝑗(X𝑖) ∀𝑗 = 1, . . . ,𝑚 (3.6)

Leen et al. use the specific component, 𝛿𝑠𝑗 , of the secondary function to “ex-

plain away” behavior that is not captured by the shared component, 𝑓𝑝 [22]. Both

the correlation parameter, 𝜌𝑠𝑗 and the specific component aim to mitigate negative

transfer—learning behavior from secondary tasks that is not representative of the

primary task. We make the prior assumption that
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𝑓𝑝
(︀
X
)︀

∼ 𝒢𝒫
(︂
𝜇𝑝

(︀
X
)︀
, 𝑘𝑝

(︀
X,X′)︀)︂

𝛿𝑠𝑗
(︀
X
)︀

∼ 𝒢𝒫
(︂
𝜇𝛿𝑗

(︀
X
)︀
, 𝑘𝛿𝑗

(︀
X,X′)︀)︂ ∀𝑗 = 1, . . . ,𝑚

For a given secondary function, 𝑠𝑗, the specific component, 𝛿𝑗, is modeled both

as independent from all shared components, 𝑓𝑝, and independent of other functions’

specific components. Then, when we write the covariance between two regression

functions, the covariance due to the specific component is a block matrix with zeros

corresponding to the covariance of specific functions for different tasks. Call this block

matrix 𝐾𝑠𝑝𝑒𝑐. We also define 𝜇𝑠 =
[︀
(𝜌𝑠1𝜇𝑝+𝜇𝛿1)

𝑇 . . . (𝜌𝑠𝑚𝜇𝑝+𝜇𝛿𝑚)
𝑇
]︀𝑇 as the vector

collecting the prior mean for each secondary observation and a diagonal matrix

𝑅 =

⎡⎢⎢⎢⎣
𝜌1

. . .

𝜌𝑚

⎤⎥⎥⎥⎦
where 𝜌𝑗 = 𝜌𝑠𝑗I ∈ R𝑛𝑗×𝑛𝑗 .This matrix collects the appropriate correlation parameter

for each secondary observation.

We can now write the joint distribution on our observations and targets:

⎡⎢⎢⎢⎣
Y𝑝

Y𝑠

f*

⎤⎥⎥⎥⎦ ∼ 𝒩

(︃⎡⎢⎢⎢⎣
𝜇𝑝

𝜇𝑠

𝜇𝑝

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣
𝐾𝑝

𝑝𝑝 + 𝜎2
I 𝐾𝑝

𝑝𝑠𝑅 𝐾𝑝
𝑝*

𝑅𝐾𝑝
𝑠𝑝 𝑅𝐾𝑝

𝑠𝑠𝑅+𝐾𝑠𝑝𝑒𝑐 + 𝜎2
I 𝑅𝐾𝑝

𝑠*

𝐾𝑝
*𝑝 𝐾𝑝

*𝑠𝑅 𝐾𝑝
**

⎤⎥⎥⎥⎥⎥⎦
)︃

(3.7)

The superscript, p, indicates that a matrix was created with the primary kernel, and

the matrix subscripts indicate the features that are compared. Inference proceeds as

42



described in Section 3.2.

The assumed relationship between regression functions in asymmetric multitasking—

given by (3.6)—is structurally reminiscent of the assumption made in multifidelity

fusion—(3.5). Both assume that the regression function of one dataset is related to

the regression function of another by a scaling parameter, 𝜌, and an additive disparity

function, 𝛿.

For only one secondary model, 𝑠1, the relationships between the regression func-

tions posited by both methods are mathematically equivalent for both approaches,

but computationally, our choice of which quantities to explicitly model may be influ-

ential. For example, it may make a difference if we choose a covariance function for

𝑓𝑝 rather than 𝑓𝑠.

Asymmetric multitasking diverges more significantly from the multifidelity method

when more than two models are considered. In the multifidelity approach, model hi-

erarchy is reflected in a nested relationship between the functions

𝑓𝑠1(X) = 𝜌𝑝𝑓𝑝(X) + 𝛿𝑝(X)

...

𝑓𝑠𝑗(X) = 𝜌𝑠𝑗−1
𝑓𝑠𝑗−1

(X) + 𝛿𝑠𝑗−1
(X)

whereas in the asymmetric approach, all functions share the same relationship to the

primary function

𝑓𝑠1(𝑋) = 𝜌𝑠1𝑓𝑝(X) + 𝛿𝑠1(X)

...

𝑓𝑠𝑗(𝑋) = 𝜌𝑠𝑗𝑓𝑝(X) + 𝛿𝑠𝑗(X)

Thus, compared to multifidelity fusion, the asymmetric multitasking approach

more naturally accomodates a reasonably large number of regression tasks, and relates

each closely to the primary task of interest. This structure lends itself well to our goal
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of using several DFT data sets to support prediction at a higher level of accuracy.

Unlike the Δ method, we are not required to assume an ordering of all DFT methods,

nor do we need different methods to supply predictions for the same molecules. In

Chapters 5 and 6, we will examine the posterior mean and variance predictions made

by asymmetric multitasking. We will also provide comparisons to the Δ method

and basic GP regression. In the next chapter, we will examine additional logistics

for designing and training a statistical model with data from electronics structure

calculations.
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Chapter 4

Design: Statistical Inference in the

Quantum Chemical Setting

4.1 Molecular Features

The success of regression techniques relies on a reasonable choice of feature set,

{X𝑖}𝑛𝑖=1, to distinguish the observations (and the targets as well). In our setting,

we intend to train a model using a set of predictions for a given quantity of interest,{︀
{𝑌𝑖𝑗}𝑛𝑖=1

}︀𝑚
𝑗=1

, where 𝑖 indicates some molecular system and 𝑗 indicates an electronics

structures method. Consequently, we require features that can describe molecular sys-

tems, and depending on our choice of statistical model, we may also welcome features

that can distinguish between electronic structures methods.

Much work has been done to design features for molecular systems, often for the

purpose of fitting potential energy surfaces [25, 10]. In general, a mapping from

molecular space to feature space should be injective and well-defined. Inputs describ-

ing each molecular system are given as a list of elements and corresponding Cartesian

coordinates for atomic locations. The output of the featurization map should be the

same even if we swap the order of entries in the list, or provide new coordinates

for the same system after translation or rotation. In this work, we consider Smooth

Overlap of Atomic Positions (SOAP) features which have been successfully used to

fit interatomic potentials in a Gaussian process based approach [3, 2, 1, 5].
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The SOAP feature is constructed from the power spectrum of a local environment

model for each atom in the molecular system. Each local environment model has been

projected onto the unit sphere, and the power spectrum of this projection represents

the amount it fluctuates per angular scale. SOAP design involves a sequence of

modeling choices, and we will discuss hyperparameter selection later in this section.

First, we define a neighborhood model for each atom 𝑖 by summing over Gaussian

representations of all other atoms within some cutoff radius.

𝜌𝑖(𝑟) ≡
neigh.∑︁

𝑖

exp

(︃
−|𝑟 − 𝑟𝑖𝑗|2

2𝜎2
𝑎𝑡𝑜𝑚

)︃

where 𝑟 is projected onto the unit sphere and 𝑟𝑖𝑗 is the vector from the position of

atom 𝑖 to atom 𝑗. Next, we expand each neighborhood using spherical harmonics 𝑌𝑙𝑚

and a radial basis set 𝑔𝑛

𝜌𝑖(𝑟) =
∑︁
𝑛𝑙𝑚

𝑐
(𝑖)
𝑛𝑙𝑚𝑔𝑛(𝑟)𝑌𝑙𝑚(𝑟)

and use the coefficients of expansion to compute a power spectrum

𝑝
(𝑖)
𝑛𝑛′𝑙 =

1

2𝑙 + 1
𝑐
(𝑖)
𝑛𝑙𝑚(𝑐

(𝑖)
𝑛𝑙𝑚)

*

To fix reasonable values for parameters required by SOAP (𝑟𝑐𝑢𝑡, 𝜎𝑎𝑡𝑜𝑚, 𝑛𝑚𝑎𝑥, 𝑙𝑚𝑎𝑥),

we turn both to conventional wisdom and experimentation. The cutoff radius, 𝑟𝑐𝑢𝑡

controls the size of each local neighborhood, and a small value may lead to lost

geometric insight. Unfortunately, a large cutoff radius does not necessarily provide

proportionate insight: Deringer et al. report that increasing radii larger than 6-8 Å

is rarely if ever useful [10]. Similarly, Musil et al. state that 5 Å is a relatively large

choice of 𝑟𝑐𝑢𝑡, and 2 Å may perform better given limited data [25].

Our choice of 𝜎𝑎𝑡𝑜𝑚 also influences our model of each atom’s neighborhood: it
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determines the lengthscale of the Gaussians placed on each of the surrounding atoms.

The larger our choice of 𝜎𝑎𝑡𝑜𝑚, the more chance that Gaussian tails will slip passed

the 𝑟𝑐𝑢𝑡 border. Deringer et al. indicate that the best practice when working with the

first three rows of the periodic table is to use 𝜎𝑎𝑡𝑜𝑚 = 0.3 Å for systems with hydrogen

and 𝜎𝑎𝑡𝑜𝑚 = 0.5 Å for systems without [10]. Finally, we choose the parameters 𝑛𝑚𝑎𝑥

and 𝑙𝑚𝑎𝑥 to control the size of our expansions of the local neighborhoods. According

to Deringer et al. choosing 𝑛𝑚𝑎𝑥 = 12 with 𝑙𝑚𝑎𝑥 = 6 is sufficient for high accuracy

[10]. In practice, the best values for 𝑛𝑚𝑎𝑥 and 𝑙𝑚𝑎𝑥 will be sensitive to the choice of

radial basis set.

Following the guidance of Deringer et al. and Musil et al., we select candidate

values for each SOAP parameter and test the performance of the resultant features

in Gaussian process regression. All features for this work were calculated using the

DScribe Python package [17]. Our training and test sets consist of small organic

molecules from the ANI-1x data set [31]. For more detail on molecule selection, see

Duan et al.’s description in [11]. We consider both conventional GP regression and

multitask regression to predict two quantities of interest: the ionization potential and

electron affinity of a given molecule. To train our models, we pair the SOAP feature

representing each training molecule, 𝑋𝑖, with a prediction for the quantity of interest,

𝑌𝑖𝑗, calculated at level of theory, 𝑗. The levels of theory we consider include DFT

functional approximations PBE and PBE0 as well as a higher level method: Coupled

Cluster Singles, Doubles, and Perturbative Triples, CCSD(T).

Figure 4-1 shows the mean absolute error (MAE) obtained with different SOAP

parameters when GP regression trained with PBE level data is used to predict Ioniza-

tion potential (IP). Additional results are included in Appendix A. Our tests include

all combinations of 𝑟𝑐𝑢𝑡 ∈ {3, 4, 5} , 𝜎𝑎𝑡𝑜𝑚 ∈ {0.3, 0.4, 0.5}, 𝑙𝑚𝑎𝑥 ∈ {2, 4, 6, 8}, and

𝑛𝑚𝑎𝑥 ∈ {6, 8, 10, 12}. Units for 𝑟𝑐𝑢𝑡 and 𝜎𝑠𝑡𝑜𝑚 are Å. We find that our accuracy is

comparable to probabilistic predictions of IP found in literature [9]. Of the SOAP

parameters, the choice of 𝜎𝑎𝑡𝑜𝑚 has the largest impact of predictive performance. This

behavior was observed across all tests we conducted on SOAP parameters. For our

experiments later in this work, we fix 𝜎𝑎𝑡𝑜𝑚 = 0.4 Å because this choice demonstrated
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Figure 4-1: Example of inference results for a range of SOAP parameters. The
colorbar gives the mean absolute error of predictions made for the ionization potential
of small organic molecules.

the best overall performance across our tests. The other parameters are chosen to

balance reasonable accuracy and cost. Throughout the remaining tests, we fix both

𝑙𝑚𝑎𝑥 and 𝑛𝑚𝑎𝑥 at 8, and in general, we use 𝑟𝑐𝑢𝑡 = 4 Å. The exception to the latter

are cases where the representation of a particular molecular system benefits from a

larger neighborhood cutoff radius. For example, in Chapter 5, we featurize water

dimers using the difference between the SOAP representation of the dimer and the

SOAP representation of its constituent monomers. For some systems, when the cutoff

radius is set to 4, the dimer representation is identical to the concatenation of the

monomer representations, so we increase the cutoff radius to 7 to better capture the

dimer structure.

When using SOAP to compare two molecular systems, we must also make mod-

eling choices to standardize our representation of entire systems. SOAP features are
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constructed based on the neighborhood of each atom in a system, so challenges arise

when two systems contain different numbers of constituent atoms of elements. De et

al. propose a few strategies for constructing “global” features to capture entire sys-

tems [9]. The simplest approach is to average the SOAP features for each atom in the

system. When using this strategy, researchers should keep in mind that it is heuristic,

and the loss of information from averaging may reduce our ability to distinguish be-

tween the features of similar molecular systems. A variation to this approach averages

the local features corresponding to each element contained in a molecular system. If

we wish to compare systems A and B, and system B contains more elements than A,

we insert SOAP features corresponding to isolated atoms of those excess elements in

the representation of A. This model suggests that an atom of such an element does

not interact with the rest of the system. De et al. also introduce the Regularized

entropy match (REMatch) strategy for constructing global features. This approach

solves a regularized optimization problem to find the match between the sets of local

features for each molecular system which maximizes information entropy [9].

Figure 4-2: Correlation between different methods of constructing global features
when calculating the distance between molecule pairs. [9]

With the same set of small organic molecules which we use to test SOAP param-

eters, we investigate how well the global features constructed by different approaches

agree. For pairs of molecules, we construct global features using each of the three

approaches outlined in the previous paragraph. We represent difference between each
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pair by squaring an inner product of their features. This procedure is the same as

using a polynomial kernel of degree 2; kernel functions will be discussed in more detail

in the next section. By comparing the output of the kernel for different featurization

strategies, we determine whether the strategies generally agree about which molecules

are similar.

Figure 4-2 shows the correlation in kernel outputs corresponding to each pair of

molecules for different global featurization strategies. Pearson’s correlation coefficient

(𝜌) is reported for each comparison. Consistently, in our tests, we find strong corre-

lation (𝜌 > 0.99) between the REMatch features and features computed by averaging

all local representations. Additional results are included in Appendix A. These two

strategies are also both positively correlated with the “Average by Species” approach

which produces an averaged feature for each element in the system and inserts iso-

lated atoms to represent elements not including the system, but these correlations are

not as strong as that between the REMatch and totally averaged features. We may

see this result because the REMatch and totally averaged features share the same di-

mension, n, whereas features that are constructed by species specific averaging have

dimension of 2n to 4n in the cases we considered.

Because averaging features is much more computationally efficient than construct-

ing REMatch features, we use this approach to represent small organic molecules. In

later parts of this work, we also consider energy difference between water dimers and

monomers. In these cases, a totally averaged features can be insufficient to distinguish

between systems, so we represent these systems using features that are averaged by

element type. We are not required to insert any isolated atoms into the water repre-

sentations because systems contain only oxygen and hydrogen.

SOAP features are a useful tool for our investigation of different inference models

applied to DFT data because they can represent molecule geometry in enough detail

to produce reasonable accuracy in mean predictions, but this design choice has lim-

itations. We have several goals: prediction of some quantity of interest for a given

molecular system, evaluation of our confidence in our own prediction, and indica-

tion of how accurately DFT can predict the quantity of interest. From (3.4), we see

50



that when we employ a Gaussian process inference approach, our posterior mean and

variance predictions rely strongly on how we construct our features, {𝑋𝑖}𝑛𝑖=1. SOAP

features capture the location of different atoms relative to each other but may neglect

relevant information encapsulated in the electron density of the system, the true in-

put to Density Functional Theory. Additionally, SOAP features will not include any

information about a particular density functional approximation. Thus, they may not

be able to represent subtleties which make particular molecular systems challenging

for particular DFAs to capture accurately.

We also face challenges when interpreting the feature space that results from

SOAP. Even for small molecules, SOAP features have dimension on the order of

1000. Our statistical models rely on kernel functions to represent the distance be-

tween features, and the high dimension of SOAP vectors can cause challenges for

choosing appropriate kernel functions and evaluating how well their representations

match reality. When we use inference models, prediction confidence and accuracy

are generally lower when we extrapolate than when we interpolate, and the high

dimensionality of SOAP feature space makes it challenging to classify these cases.

Here, we investigate the performance of inference models when we choose a SOAP

feature representation, but there is certainly room in future work for considerable in-

vestigation into appropriate features to inform probabilistic inference and uncertainty

quantification.

4.2 Kernel Functions

We must choose some kernel function to compute the similarity between feature

representations of molecular systems. GP inference models use these similarity values

to weight the relevance of our observation data points in order to make new predictions

and to estimate the variance of the posterior distribution. Equation (3.4) shows the

influence of kernel functions in GP regression predictions, as do the formulations of

the Δ, multifidelity, and multitask models.

There are many standard choices of kernel function. Most applications of Gaussian
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process inference to materials modeling use low order polynomial kernels [10]. These

functions have the form

𝑘𝑃𝐾

(︀
𝑋,𝑋 ′)︀ =

(︀
𝑋𝑇𝑋 ′)︀𝜉 (4.1)

One appeal of this function is that it only introduces one new parameter, 𝜉, which

is typically set to 2 or 4 for materials applications. Additionally, the inner product

can offer a useful route for mapping the high dimensional SOAP features to scalars

though it risks loss of fine scale characteristics of the feature.

In practice, inference models that rely on polynomial kernels generally make poste-

rior mean predictions with low mean absolute error, and this ability is a major reason

for practitioners to use these functions. Unfortunately, accuracy in posterior mean

prediction does not imply accuracy in posterior variance prediction. For a molecule

with feature 𝑋*, GP inference yields a posterior variance given by

(︀
𝑋𝑇

* 𝑋*
)︀𝜉 −

(︀
𝑋𝑇

* X𝑓

)︀𝜉(︂
𝐾𝑓𝑓 + 𝜎2

I

)︂−1(︀
X𝑇

𝑓𝑋*
)︀𝜉

where X𝑓 is a matrix with columns corresponding to the features of training molecules

and exponents of 𝜉 are applied element-wise. Thus, our prior guess of the variance for

prediction of the quantity of interest for molecule * is an exponentiated inner product

of *’s SOAP feature. The prior is then corrected with an estimate of how much knowl-

edge we have gained from our observations based of our estimate of closeness of the

observations to *, calculated with the polynomial kernel. The magnitude of the inner

product of SOAP features increases for larger molecules and for SOAP parameter

settings that allow for more detailed representations of these molecules. In general,

this quantity does not correlate with error or uncertainty. Thus, by construction,

we have limited expectation that the posterior variance obtained with a polynomial

kernel can be a good indicator of error or uncertainty of the posterior mean predic-

tion. Multifidelity and multitask methods also produce posterior variance estimates

which are structured as some correction to this prior variance. It may be tempting
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to augment the feature with additional entries that do correlate to uncertainty. To

be successful with this approach, however, we would require a reliable method for

indicating uncertainty, exactly what we wished for from our probabilistic model.

As an alternative, we may consider the Squared Exponential (SE) kernel for mul-

tidimensional features. This kernel is widely used in Gaussian process literature and

takes the form

𝑘𝑆𝐸
(︀
𝑋,𝑋 ′)︀ = 𝑣 exp

(︃
−

𝑀∑︁
𝛼=1

(𝑋𝛼 −𝑋 ′
𝛼)

2

2ℓ2𝛼

)︃
(4.2)

This function introduces variance, 𝑣, and lengthscale, ℓ, parameters. We may choose

ℓ to be a scalar or to have dimension to match the feature, 𝑋. The latter choice

presents interesting possibilities for magnifying important components in the feature,

but also can translate to a tricky parameter estimation problem, particularly when

working with SOAP features which have thousands of entries. Estimating ℓ via a fully

Bayesian approach is intractable [4], so we instead obtain point estimates of the both

ℓ and 𝜎2 by maximizing the log likelihood. Note that this approach easily extends

to multifidelity and multitask cases by treating 𝑌𝑖𝑗 − 𝜌𝑖𝑌𝑖1 as the 𝑖𝑡ℎ observation, as

demonstrated by Forrester et al. [12]. If tasks 1 and 𝑗 do not have data for the same

set of features, a conventional GP regression model may be used to fill in missing

data for task 𝑗. Estimating unique components of ℓ corresponding to each SOAP

component tends to be more computationally expensive than it is accurate, so for

our investigation we restrict ℓ to be a scalar. We also choose to use the mean of our

training data as our prior mean estimate, as this value performed better in practice

than the estimate obtained from optimization.

In contrast to the Polynomial kernel, the SE kernel is isotropic—it depends only

on the absolute difference between features, not the individual features or the direc-

tion of difference. Both kernels may be limited in their ability to pick up patterns

within features, but in practice both kernels lead to posterior mean predictions with

reasonable mean absolute error (MAE). Figure 4-3 compares the performance of the

two kernels when used in a GP inference model trained with CCSD(T) predictions
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of the ionization potential for small organic molecules. We see that MAE decreases

at a similar rate for both kernels as the number of training data points increases.

Furthermore, an SE kernel with unoptimized parameters (set to a default value of

1) generally produces smaller MAE than the polynomial kernel, and the SE kernel

with optimized parameters in turn produces smaller MAE than the unoptimized SE

kernel.

Figure 4-3: The performance of GP regression for a polynomial kernel with degree 2
as well as a squared exponential kernel with and without optimized parameters.

We can also compare the posterior variance produced by the two kernels. For GP

regression, the SE variance is

𝑣1 − 𝐾𝑇
𝑓*

(︂
𝐾𝑓𝑓 + 𝜎2

I

)︂−1

𝐾𝑓*
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where 1 is a vector of 1s with appropriate dimension. Note that each diagonal element

of each K matrix is also equal to v. Thus, the SE kernel sets the prior variance to its

variance hyper parameter, which is optimized with observational data. This value is

a more reasonable initial estimate of uncertainty than the inner product of the SOAP

feature of the target, but it is not specific to any given target molecule. We rely on the

correction term introduced by inference to differentiate our uncertainty predictions

for each molecule. By introducing a multifidelity or multitask scheme, we may have

different prior variances for different tasks and levels, but differentiation within tasks

is still limited. Consequently, to obtain reasonable uncertainty indicators from the

posterior variance, the SE kernel’s computation of distance between features must

correspond to a reasonable relationship between molecules. The ideal measurement

of distance would characterize DFT’s ability to accurately describe each molecule.

We will use the SE kernel in our experiments, and we will discuss the challenges of

representing uncertainty in this setting further in Chapter 6.

4.3 Dataset Construction

The training data set for our statistical models will include predictions from CCSD(T)

as well as from each DFT method we consider. There are many choices that can be

made in designing the training data set. For example, given a computational budget

for data generation, we might choose between computing 100 training data points

each from four different DFT methods or 200 training data points from two methods.

We must also choose whether we should generate data for the same set of molecular

configurations with each quantum chemistry method or if we should make predictions

for different configurations with different methods to cover a wider region of chemical

space. We may also want to leverage the ability of the multitask method to train a

model using DFT data corresponding to the molecules for which we want to make

predictions at CCSD(T) level accuracy. This section will describe how we construct

a variety of data sets to investigate the two examples which the remainder of this

thesis focuses on: the organic molecules case study and the water case study.
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Figure 4-4: Distribution of the number of electrons in molecular configurations used
in the organic molecules case study.

In both case studies, we will use CCSD(T) calculations as our primary level of

theory. All other levels of theory will correspond to different density functional ap-

proximations. For the organic molecules case study, we will consider up to four DFAs:

PBE, BLYP, PBE0, and PBE0_DH. For each level of theory, our data set consists of

predictions of the ionization potential of small organic molecular configurations. The

set contains a total of 3,165 molecular configurations, combinations of 479 different

molecules and 7 configuration options. This selection of these molecular configura-

tions from the ANI-1 data set is described by Duan et al. [11]. They contain only

elements from the set {𝐻,𝐶,𝑁,𝑂}, and the distribution of the number of electrons

in the configurations is shown in Figure 4-4.

We assign the molecular configurations to three sub data sets—Core (C), Supple-

mental (S), and Target (T)—referred to in Figure 4-5. Shading in the figure indicates
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Figure 4-5: Small Organic Molecules Case. Example data set structure. The
supplemental set, S, contains only DFT predictions, and in this case the S sets for
different DFA do not overlap. That is, the predictions for different DFAs are for
entirely diferent molecules. The target predictions are on the CCSD(T) level and are
highlighted in green. All other predictions are used for training.

when configurations are available at a given level of theory. Black indicates availabil-

ity to the training set, and green indicates membership of the testing set. All subsets

are randomly drawn from the full set of molecular configurations. The C set contains

all configurations that the model can train on at a CCSD(T) level. In the example

given by Figure 4-5, we can train on these configurations at a DFT level as well. The

S set contains all configurations that the model can train on only at DFT levels of

theory. Figure 4-5 shows a case where different levels of theory do not have molecular

configurations in common, but we may also consider cases where different levels in

the S set overlap partially or completely. For the results reported in Chapters 5 and

6, we iteratively change the sizes of the C and S set from 16 to 512 configurations.

Finally, the T set contains the configurations we will use to test our inference

model. We will make predictions for the ionization potential of these molecules at

the highest level of theory and compare our accuracy to a held out set of CCSD(T)

calculations. The configurations that we test on are green in Figure 4-5. When we

draw on multiple levels of theory to train our model, we may also include lower level

predictions of target molecules in our training set—represented by the black shading

in the T column of Figure 4-5. Note that to apply the Δ method, we must have these

low level target predictions to add to our predicted disparity to make a full prediction

of the quantity of interest. The multifidelity and multitask methods do not require

low level target predictions, but we will see in Chapter 5 that including them in the
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training set generally produces improved accuracy. For the organic molecules case

study, we construct a T set of 500 molecules. Our testing framework is designed so

that models trained with DFT target data can readily be compared with equivalent

models that do not train on this data. Since target predictions can be made one by

one, for each target molecule we train a new model using the C set, S set, and the

DFT prediction for only that target molecule. While in practice this training process

would be inefficient, by comparing each of these models to the corresponding model

trained on only the C and S sets, we can isolate the effect of the DFT level target

data on prediction performance.

For our second case study, we test the performance of our statistical models when

predicting the interaction energies of water dimer configurations. Dimers consist of

a pair of weakly bonded molecules (called monomers), and their interaction energy

is the difference between the total energy of the system and the sum of the energies

of isolated copies of the constituent molecules. Different water dimers are distin-

guished by the different distances between the constituent monomers, different OH

bond lengths, and different HOH angles. To train and test our models, we draw from

a set of 70,000 calculations on the CCSD(T)/CBS level of theory [35].

We support our primary inference task using DFT predictions for the interaction

energies of water dimers. For this work, we computed 1000 dimer interaction energies

on the PBE0/aug-cc-pvtz and PBE/aug-cc-pvtz levels. Counterpoise correction was

performed to ameliorate basis set superposition error. For additional investigation of

our model’s variance predictions, we also compute 6000 energies of water monomers

at the CCSD(T)/aug-cc-pvtz level. To complete the water dataset, we use PBE0/aug-

cc-pv5z and PBE/aug-cc-pv5z level energy calculations for the same 6000 molecules,

obtained from [2]. It is worth emphasizing that multitask modeling can leverage data

sets compiled from multiple sources.

Recall that when we train our inference models, we pair each data point, 𝑌𝑖𝑗 with

some feature 𝑋𝑖. In our case, we use SOAP features which represent the geometry

of molecular systems. We are interested in a strategy of representation that can

be applied to energy difference between a dimer and its constituent monomers as
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well as energy difference between two monomers. To this end, we construct the

full SOAP feature for each atom in each system and take the difference between

corresponding atoms in the two systems. We then compute one average of the vectors

corresponding to H atoms and a second average of the vectors correspond to O atoms

and concatenate the two.

Figure 4-6: Water Dimers Case. Example data set structure. Here, the S sets are
shown to partially overlap for different levels of theory, indicating that the data set
includes predictions by different DFA for some of the same molecules. The testing
data set is highlighted in green.

As in the organic molecules case, we can construct various training sets by parti-

tioning our data into Core, Supplemental, and Target sets. The definitions of the sets

are as before. Figure 4-6 provides an example schematic. The partially overlapping

shaded region in the S columns of Figure 4-6 indicate a case where our predictions for

different levels of theory have some molecular systems in common but not all. We will

also consider cases with complete overlap or no overlap between levels of theory in the

S set. When training models with multiple levels of theory, we iteratively construct

C and S sets containing up to 320 dimers.

In the following chapters of the work, we will use abbreviations such as "CS" or

"CST" to indicate what DFT level data is included in the training set. It is assumed

that CCSD(T) data from the C set is always included the training data. Note that

CCSD(T) level data from the T set is strictly reserved for testing, and never included

in the training data set.
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Chapter 5

Strengths of the Multitask Approach:

Efficient Mean Prediction

This chapter demonstrates that multitask and Δ inference can produce more accurate

predictions than conventional Gaussian process models for a given computational

budget. All inference models that we consider make predictions in the form of a joint

normal distribution on some quantity of interest where each marginal corresponds to

a target molecule. Within this chapter, we evaluate accuracy by comparing the mean

predictions of these marginals to CCSD(T) predictions of the quantity of interest for

the target molecules.

We consider two examples: prediction of the ionization potential of small organic

molecules and prediction of the interaction energies of water dimers. These cases

are described in more detail in Chapter 4. Appendix B also provides some summary

statistics for the data sets considered. In the organic molecules case, our data set

contains systems with between 20 and 50 electrons, so the computational cost of

quantum chemistry calculations to build our training set is variable. To estimate cost

in these cases, we assume that a CCSD(T) calculation is 1000 times more expensive

than a DFT calculation. This assumption is fairly conservative; DFT scales like 𝑁3

and CCSD(T) scales like 𝑁7 where N is the number of electrons in the molecular

configuration. For systems in our data set, the ratio between the costs of CCSD(T)

and DFT for a given molecule will exceed 1000. For each prediction, we report
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the estimated cost of generating the statistical model’s training data in units of the

number of CCSD(T) calculations—that is, we convert DFT calculation cost to a

fraction of CCSD(T) calculations and add this quantity to the CCSD(T) cost. We

will compare multitask models to GP models trained only on CCSD(T) for a given

cost estimate. By assuming a conservative cost ratio, we estimate the multitask

models to be more expensive than they actually are in comparison to the CCSD(T)

GP models. Thus, we expect true performance of the multitask models per cost to

be even better than shown in our results.

For the water dimers case, we estimate data set generation cost based on the ex-

pense of our own calculations of the interaction energies of water dimers and energies

of water monomers. The order of the costs are given in Table 5.1, and in our results,

we report cost in units of seconds. Note that computational cost scales with the

number of electrons in the system, so a greater gap between CCSD(T) and DFT cost

is expected for water n-mers with 𝑛 > 2.

System QOI Method Cost [s]
Water Dimer Interaction Energy CCSD(T) ≈ 3700
Water Dimer Interaction Energy DFT ≈ 42

Water Monomer Energy CCSD(T) ≈ 25
Water Monomer Energy DFT ≈ 3.1

Table 5.1: Water Dimer Case. The order of cost for CCSD(T) and DFT compu-
tations to generate the training data set

The following two subchapters examine the performance of the multitask method

for the organic molecules example and the water dimers example, respectively. The

final subchapter highlights the relative strengths of the Δ and multitask methods.

5.1 Multitask Method: Organic Molecules Case

We will examine the impact of statistical model design on the accurate prediction of

ionization potential for 500 target small organic molecules. See Chapter 4 for details

on how different training sets can be constructed by dividing data into Core (C),
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Supplementary (S), and Target (T) categories; Figure 4-5 provides a visualization

of a data set used to train and test a multitask inference model for the organic

molecules example. Figure 5-1 reports results for models constructed with only two

rows of data from Figure 4-5; that is, the model considers one primary task (regression

on CCSD(T) data) and one secondary task (regression on DFT data). Each scatter

point on the left subfigure corresponds to an inference model where PBE was used as

the density functional approximation (DFA) to generate the secondary training data,

and each scatter point on the right subfigure corresponds to a model where PBE0 was

used to generate secondary data. The colors of the points indicate what combination

of C, S, and T the secondary training set includes. The black line marks the results

of a conventional GP inference model trained only on CCSD(T) data. Cost is given

in units of CCSD(T) calculations as described at the beginning of this Chapter, and

the error is the MAE that results from predicting 500 target ionization potentials,

averaged over three random constructions of C, S, and T.

Each multitask model represented in Figure 5-1 performs at least as well as the

GP reference. For many constructions of the training data set, the multitask method

performs substantially better than the GP method. In particular, inclusion of DFT

level data for target molecules (the T set) when the overall training set is relatively

small can enable the multitask method to exhibit accuracy comparable with a GP

model an order of magnitude more expensive. Performance of the multitask method is

similar for both DFAs considered, but PBE0 demonstrates a slight edge in accuracy.

In both cases, Figure 5-1 shows clear stratification in the performance of models

trained with secondary training sets constructed from the C, CS, and CST data.

There is a clear advantage to adding low level data for additional molecules (the S

set) compared to merely using DFT to duplicate predictions we have on the CCSD(T)

level (the C set). There is an additional advantage to training on DFT level data for

the target molecule (the T set).

The two subplots also show six clear groupings of points with steep slope. This

effect is a consequence of the high cost of CCSD(T) relative to DFT. Each of the six

groupings corresponds to a different size of the C set. Since we also consider six sizes
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Figure 5-1: Organic Molecules Case. A comparison of different choices of levels
of theory as well as the inclusion of different sets (C,S,T) in the training set for the
multitask approach. The left plot shows the mean absolute error of an inference model
trained with CCSD(T) and PBE produced data, and the right plot shows MAE of a
model trained with CCSD(T) and PBE0. The indigo points correspond to inference
models trained on only molecules from the core set, the gold points correspond to
models trained on both C and S sets, and the teal points correspond to models trained
on molecules from the C, S, and T sets. The GP inference results for a training set
of CCSD(T) only are plotted as a black line.

for the S set, each grouping contains one C result, six CS results, and six CST results.

The C results demonstrate no significant improvement on the reference GP model

while CS results show steady improvement as the size of the S set increases. This

behavior suggests that for the multitask method to be beneficial, secondary training

data must cover molecular space that is not included in the CCSD(T) training data.

It may also be possible that the abilities of our C tests are limited by our decision to

use features dependent only on molecular systems as well as our assumptions about

the relationships between regression functions for different tasks. The models trained

on DFT data from the T set outperform CS models of comparable cost. Note that

for the CST cases, increasing the size of S does not produce the steady improvement

in error seen in the CS cases. It appears that the advantage gained by including T

dominates the advantage offered by increasing S.
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Complete Overlap in S

Partial Overlap in S

No Overlap in S

(a) Trained without DFT data from Target Set (b) Trained with DFT data from Target Set

Figure 5-2: Organic molecules case. For different numbers of levels of theory
(indicated by color), plots show MAE versus cost. The top row corresponds to a
fully overlapping S set, the second to a partially overlapping set, and the bottom to
a non-overlapping set.
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We can also consider the impact of low level data from the target set when we

extend to multitask implementations with more than two tasks. Figure 5-2 compares

the results for the two task implementations of multitask inference from Figure 5-1 to

implementations with three and five tasks. The three task case includes predictions

by both PBE0 and PBE as secondary tasks, and the five task case additionally uses

predictions by the PBE0_DH and BLYP DFAs. This latter case includes exactly the

five tasks represented in Figure 4-5. The first column of subplots presents models with

a CS construction of the secondary training sets, and the second column corresponds

to a CST construction of secondary training sets. Note that for models with multiple

secondary tasks, a design choice can be made about how much of the S set is included

for each secondary task. Figure 4-5 represents a case where there is no intersection

in the part of the S set accessed by each secondary task. Such cases are considered in

the bottom row of Figure 5-2. The middle row considers cases where there is partial

overlap in the S set for each secondary task. To illustrate the set up, suppose we have

secondary tasks W, V, and U; then, V would share half of the molecules in its S set

with W, and the other half with U. Models represented by the top row of Figure 5-2

have complete overlap in the S set for each secondary task. Each subfigure reports

accuracy for a given training set generation cost, where accuracy is the average MAE

obtained from three random constructions of C, S, and T.

Figure 5-2 indicates that there is a benefit to training an inference model with

a larger number of tasks for a given budget. On each subfigure, for each of the six

groupings corresponding to difference sizes of the C set, the distribution of error of

the three and five task models dips lower than the distribution of error of the two

task models. This effect is larger both when there is a greater degree in overlap in S

sets for different secondary tasks and when models are trained on low level data from

the target set. Thus, the five task implementation has the greatest lead on other

approaches in the top right plot, the plot corresponding to models with complete

overlap in the S set for secondary tasks and a CST training set construction. These

results are useful for determining how best to generate new data sets to train multitask

inference models, given a fixed budget, but they also indicate that there are many
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ways to construct a training data set and achieve reasonable accuracy. The multitask

method can be a tool for bringing together multiple existing data sets for inference,

effectively using a “data set of opportunity” to inform regression.

5.2 Multitask Method: Water Dimers Case

The multitask method also performs well compared to a conventional GP model when

we predict the interaction energies of water dimers. There are some distinctions to

make between this example and the case of predicting interaction energies for or-

ganic molecules. While the median CCSD(T) prediction for ionization potential of

the organic molecules data set is 9.409 eV, the absolute median of the CCSD(T) pre-

dictions for dimer interaction energy is 0.0028 eV. Consequently, we expect smaller

absolute prediction error for interaction energies. For more information on the statis-

tics of these data sets, see Appendix B. Furthermore, in the small organic molecules

examples, we built data sets both from different molecules and from different configu-

rations, and in this example our entire data set corresponds to different configurations

of water dimers. Finally, we construct inputs to our model from the difference be-

tween the SOAP feature for the dimer and the concatenation of SOAP features for its

constituent monomers. We then average the vectors corresponding to O atoms and

the vectors corresponding to H atoms before concatenating the two averages. This

construction is motivated by its utility for future tests on data sets which include

energy differences of n-mers where n varies.

Figure 5-3 shows that with only 5 CCSD(T) predictions, the multitask method

can achieve MAE comparable with a GP model trained on a CCSD(T) data set

which costs an order of magnitude more to generate. Subfigure (a) presents the

results of multitask models which use a CS structure for the secondary training set

while subfigure (b) presents results for a CST training structure. The target data set

contains 200 dimer configurations, and the C and S sets are allowed to vary in size

from 5 to 320 configurations. See Figure 4-6 for more detail on the C and S sets. The

colors of the scatter points indicate the number of CCSD(T) calculations in the C
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(a) No target DFT data

(b) Target DFT data

Figure 5-3: Water Dimers Case. Scatter points show the performance of different
implementations of the multitask model for a given cost. Color indicates the number
of CCSD(T) data points used to train models, and all multitask models are trained
with supplemental DFT data. The black line marks the accuracy of a GP model
trained only on CCSD(T) for a given cost. All accuracy statistics are based on the
average of six tests with different random assignments of dimers to data sets.
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set. The line marks the performance of a GP model trained only on CCSD(T) data.

We report the average MAE value obtained by six random assignments of each data

set. As in the organic molecules case, the multitask models perform at least as well

as the CCSD(T) only model at each cost. When the S set is sufficiently large or DFT

data for the target dimers is included in the training set, the multitask model can

perform significantly better than the CCSD(T) only model.

Note that as the number of CCSD(T) calculations used to train the multitask

models increases, the improvement from increasing the size of the S set seems to

decrease. This effect is likely caused by the size of S relative to the size of C (the

number of CCSD(T) in the multitask training set). We consider S sets ranging in

size from 5 to 320 for each C set size. Therefore, when we train with 5 CCSD(T)

data points, the maximum S set size is 64 times larger than the C set size. When we

train with 320 CCSD(T) data points, the maximum S is exactly the C set size. More

significant improvement in accuracy may be possible if the maximum size of the S

set scaled with the size of the C set. While more angles of this example are left to be

explored, the results here demonstrate that patterns of performance of the multitask

model found in the organic molecules case can also be found in different data sets.

5.3 Comparison of the Multitask and Δ Methods

For many of the data sets we have considered, we can also perform inference with the

Δ method. Figure 5-4 compares the two methods for several iterations of the CST

data set, and finds that the Δ method outperforms the multitask predictions. The left

subfigure plots the average MAE of the multitask model—taken over three random

assignments of molecules to the CST sets—against the average MAE of the Δ method.

The right subfigure reports correlation between the true CCSD(T) predictions and the

final predictions of the two inference methods, measured by three different coefficients.

In this setting, the Δ method’s treatment of disparities is its advantage, but the

data set structure this treatment requires is its disadvantage. The Δ method directly

models the difference between two levels of theory which can be an advantage when
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Figure 5-4: Organic Molecules Case. Comparison of accuracy of the multitask
method and the Δ method applied to the same training data set. The left subfigure
compares mean absolute error averaged over three random draws of the C, S, and
T sets. Indigo points correspond to training sets with partial overlap of molecules
used to train different secondary models in the S set, and gold points correspond to
complete overlap in the S set. The right subfigure compares correlation coefficients
between predictions and CCSD(T) calculations for the target set. Gold corresponds
to Pearson’s 𝜌, indigo to Spearman’s 𝜌, and teal to Kendall’s 𝜏 .
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(a) (b)

Figure 5-5: Organic Molecules Case. (a) The scatter points plot the accuracy of a
multitask model with a CS secondary training set against the corresponding multitask
model which drops the C molecular configurations from the secondary training set.
The green line is 𝑥 = 𝑦. The black line shows the accuracy of a GP model trained
on CCSD(T) at the cost of the multitask model errors reported. (b) The set up of
this subfigure is analogous to (a), but a comparison is made between a CST trained
model and the corresponding ST trained model. All MAE values are averaged over
three random data set assignments.

these levels are highly correlated and only a small correction to the lower level is

necessary to obtain higher level accuracy—as is the case for CCSD(T) and the DFAs

we test. By contrast, the multitask approach models the highest level of theory as

well as the difference between all secondary levels and a scaled version of the model

for the highest level. This tactic involves more modeling choices per level and does

not make much explicit use of the difference models. The advantage of the multitask

method is that it can train on a “data set of opportunity” which brings together

data from different levels of theory that do not necessarily correspond to the same

molecular configurations. To apply the Δ method, we must have corresponding data

for multiple levels as well as a low level prediction for our target.

Figure 5-5 demonstrates that the multitask method performs well even when the

training data for different tasks do not have any molecules in common. The scatter
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points in the figure compare the MAE of multitask models trained with DFT data

from both the C and S molecule sets (depicted in Figure 4-5) to the MAE of cor-

responding multitask models trained on the same data, except that all DFT data

from the C set is excluded. All of the models considered here use only two tasks, so

excluding DFT data from the C set yields a training data set with no overlap in the

molecules used to train each task. We will call these training sets “disjoint” to contrast

with an “overlapping” training data set. The multitask models considered in subfigure

(b) also train on DFT data for target molecules while the models in subfigure (a) do

not. The green (lower) line plots 𝑥 = 𝑦, and the black (upper) line shows the MAE

of a GP model trained only on CCSD(T) data for the same cost which was necessary

for a multitask model to achieve the MAE reported on the x axis. While we find that

the multitask models trained on disjoint sets do not have the same accuracy as their

counterparts with additional DFT data which overlaps with primary training data,

their accuracy is reasonably close, especially in subfigure (a). All multitask models

with disjoint training sets also outperform the the CCSD(T) trained reference model

at comparable costs.

Note that the gap in performance between ST and CST models is larger than

between S and CS models. One possible explanation is that including both primary

and secondary training data for C provides the model with implicit information about

disparity between levels of theory which allows it to benefit more from the inclusion

of low level target data, compared to the ST model.

Another challenge of the Δ method is the imposition of hierarchy in levels of

theory. When more than two levels of theory are used for training, a decision must

be made on which pairs of levels to train difference models on. In many cases, it

is not obvious how to order levels of theory, but as Figure 5-6 shows, even when a

reasonable ordering exists, it may not produce the best outcome. In both subfigures,

we compare MAE versus cost for a Δ model which assumes a hierarchy that is rea-

sonable based on the Jacob’s ladder framework as well as the structural relationship

of the DFAs and a model based on a scrambled version of the hierarchy. The left

subfigure uses PBE→PBE0→CCSD(T) as the conventional hierarchy and switches
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(a) (b)

Figure 5-6: Organic Molecules Case. Comparison of implementations of the Δ
method which use a “conventional” model ordering (gold) compared to a scrambled
version of the ordering (indigo). The error bars are standard error computed based
off three draws of the data set.

the order of PBE and PBE0 to create a scrambled alternative. The right subfig-

ure takes PBE→PBE0→PBE0_DH→CCSD(T) to be a conventional hierarchy and

scrambles this into PBE0_DH→PBE→PBE0→CCSD(T). Bars on each data point

show standard error from three tests where molecular configurations where randomly

assigned to training and target sets.

In both cases, the implementation with a scrambled hierarchy displays a clear

lead over the conventional version. Because absolute error of the final prediction

depends only on absolute error of the predicted difference, the lead in performance

of the scrambled ordering is not a consequence of adding the difference model to a

more accurate baseline. For more insight on the data sets used for these results see

Appendix B. Additionally, note that the results for the Δ method in its comparison

with the multitask method in Figure 5-4 are produced with the scrambled ordering

to show the method at its best.

While the Δ method offers performance advantages in this setting, its rigidity

may make it impossible to apply to a given training data set or may lead to less than
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optimal results. A practitioner should seek to use both methods to their advantage,

and developers may pursue models which combine these advantages.
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Chapter 6

Challenges for Multitask Approach:

Variance Prediction

We now turn our attention to variance predictions of Gaussian process based inference

models. In a well-specified setting, the posterior 𝜎2 describes how far true realizations

of the quantity of interest will generally deviate from the posterior mean. When we

use GP inference models to predict deterministic quantities—such as a CCSD(T)

calculation for a given molecule—the posterior represents how far the fixed truth

may reasonably be from the predicted mean. The model determines 𝜎2 from an initial

estimate of the uncertainty that it corrects based on how informative the training data

is judged to be for a particular prediction task. Evaluation of uncertainty depends

highly on kernel parameter estimation and feature construction. Ideally, uncertainty

indicators accurately describe when a prediction can be trusted.

To assess the reliability of uncertainty indicators, we may consider their relation-

ship to the error of the posterior mean against target data. Figure 6-1 (a) shows

the distribution of Pearson’s correlation coefficient between error in the prediction of

500 target ionization potentials and the corresponding posterior standard deviation

predictions by a single task conventional GP model, the Δ method, and the mul-

titask method. These distributions result from different constructions of C, S, and

T (as defined in Figure 4-5) obtained by varying the sizes of C and S and by using

three different random assignments of molecules to the C, S, and T sets. Though the
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(a) (b)

Figure 6-1: Organic Molecules Case. Relationship of posterior 𝜎 to absolute
error of posterior mean. (a) The distribution of Pearson’s correlation coefficient be-
tween prediction error and posterior 𝜎 for various iterations of C, S, and, T. Indigo
corresponds to a model trained on CCSD(T) only, gold represents the results of the Δ
method, and light blue represents the multitask approach. (b) Posterior 𝜎 for target
molecular configurations plotted against data. The color scale corresponds to the
magnitude of the inner product of the SOAP feature of the molecular configuration.

three distributions show a slight positive bias, there is no evidence of a significant

correlation between posterior 𝜎 and inference model prediction error. The correla-

tion coefficients of the Δ method tend to be smaller than those of the other two

approaches, and the construction of the method for more than two levels of theory

may explain this lag. An inference model is trained for each pair of levels, and a final

prediction is made by summing pair predictions. Since we can expect all levels of

theory to be correlated, we cannot expect the variance of the sum of pair predictions

to be the sum of pair variances.

Pearson’s correlation coefficient is limited to the detection of linear correlations.

An uncertainty indicator can still be useful if it can be mapped to a nontrivial upper

bound to error. If such an indicator is below some threshold, we can trust that

our posterior mean predictions have low error, otherwise we ought to retrain our
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model because there is risk of high error. We qualitatively check the behavior of

posterior 𝜎 predictions in Figure 6-1 (b) by plotting them against the absolute error of

posterior mean predictions for individual target molecular configurations. Coloration

corresponds to the magnitude of the inner product of each configuration’s SOAP

descriptor. By our construction, it is no surprise that darker blue corresponds to

larger 𝜎. In general, we see that as error increases, the minimum corresponding

posterior 𝜎 value increases, but there are several points in the lower right hand side

triangle of this plot which make it challenging to map posterior 𝜎 to a useful upper

bound on error. This result is representative of various implementations of GP based

inference models that we have tested. Posterior 𝜎 values are not robust indicators of

uncertainty.

Sources of uncertainty and error in our system can be categorized into design in-

adequacy and data limitations. The former category deals with mispecified modeling

assumptions: the joint Gaussianity of the training and target quantities of interest,

the kernel and parameters of the covariance model, the feature representation of in-

puts, and the homoscedastic noise model. These assumptions are too simplistic to

fully capture the behavior of electronics structure calculations. For the GP based

models discussed in this work, the posterior 𝜎 has no mechanism for translating the

error caused by these assumptions into uncertainty indicators.

Uncertainty due to data limitations includes remaining parameter estimation error

after parameter design inadequacy is taken into account and insufficient training data

coverage of our targets. We may consider representing the former separately by

methods designed for parameter estimation uncertainty quantification or by a fully

Bayesian approach to parameter inference. The question of whether training data

coverage is “sufficient” depends on whether our feature representation can determine

if our target data is far from our training data. We expect greater uncertainty if we

must interpolate sparse data or if we must extrapolate. Provided that our feature

representation is reasonable, the posterior variance is designed to capture this type

of uncertainty.

Figure 6-1 (b) suggests that the posterior 𝜎 predictions are not without meaning

77



Figure 6-2: Organic Molecules Case. The left plot shows MAE versus cost for
a multitask method, trained on CCSD(T) and PBE. The right plot compares mean
posterior 𝜎 to cost for the same tests which appear in the left plot. The indigo
points correspond to inference models trained on only molecules from the core set,
the gold points correspond to models trained on both C and S sets, and the teal
points correspond to models trained on molecules from the C, S, and T sets. The GP
inference results for a training set of CCSD(T) only are plotted as a black line.

since the majority of points cluster in the upper left corner, the behavior we would

expect of an upper bound in error. To find the extent of their meaning, we must look to

their design. The comparison in Figure 6-2 shows that the average posterior 𝜎 values

for models with different training set constructions (right subfigure) qualitatively

match the trends of the mean absolute error of the models (left subfigure). Each point

on the subfigures corresponds to the average result of three random assignments of the

training data set for a multitask model with one secondary task informed by PBE, and

the color indicates what combination of C, S, and T informed the secondary training

set. The line provides the average MAE from three implementations of a single task

GP model at each cost. Both plots show the same stratification of performance by

training set structure: C trained models perform as well as the GP models but worse

than the CS models which in turn perform worse than the CST models.

Part of the reason that the average over multiple posterior 𝜎 for a given model

works as an uncertainty indicator for that model is that averaging smooths over
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difficult points that prevent 𝜎 from functioning as an uncertainty indicator on a

molecule by molecule basis. The difficult points in question would be the predictions

in Figure 6-1 (b) where the uncertainty is smaller than the error. It is also important

to note that Figure 6-2 compares models with different training set sizes. The more

data that a model has to make an inference, the narrower its predicted posterior

distributions will be. This rule clearly does not account for all behavior in Figure 6-2:

we can note that C trained models use training sets twice as large as the single task

cases with comparable cost, yet for a given cost, these models have nearly the same

accuracy and average posterior 𝜎. Furthermore, many CST trained models have

error and posterior standard deviation lower than C and CS trained models with

larger training sets. The explanation may be our choice of features and covariance

function. Both DFT and CCSD(T) predictions for the same molecular configuration

are paired with the same SOAP feature. The covariance structure for secondary task

data is distinct from but correlated with the covariance structure for the primary

task, as shown by (3.7). Consequently, secondary C data is judged by the model

to be minimally informative, and secondary T data—with a feature matching our

target configuration—is very informative. The design of multitask model contributes

to the ability of the average posterior 𝜎 to distinguish the uncertainty resulting from

different training data set constructions.

We can also demonstrate that posterior 𝜎 can identify outliers in chemical space.

As it can be difficult to define an outlier in our small organic molecules data set, we

consider an alternate data set with clear geometric descriptors—specifically, we train

a GP model on energy differences between water monomers, all with an HOH angle of

108∘ and with a range of OH distances from 0.7 Å to 1.8 Å. We define the “monomer

stretch” as

(︀
𝑂𝐻1(𝐵)−𝑂𝐻1(𝐴)

)︀
+
(︀
𝑂𝐻2(𝐵)−𝑂𝐻2(𝐴)

)︀
where 𝑂𝐻𝑖(A) is the 𝑖𝑡ℎ OH distance of monomer A. Thus, we can put all monomers
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Figure 6-3: Water Monomers Case. Comparison of absolute error and posterior 𝜎
for an extrapolation task. Statistical models are trained to predict energy differences
between two water monomers and the x axis gives the stretch between monomers for
a given prediction task. Training molecules are drawn only from the shaded region of
each plot. Indigo points represent the predicted 𝜎, and gold points represent absolute
error.

on a one dimensional continuum. For more details on the construction of these tests,

see Appendix C.

Figure 6-3 shows the impact on posterior mean and 𝜎 when a model is trained

on half of the continuum. In both subfigures, training configurations are drawn only

from the shaded region, and target molecules are drawn from the entire continuum.

For each target, the absolute prediction error is plotted against the monomer stretch

as a gold triangle, and the posterior 𝜎 is plotted as an indigo diamond. On both

subfigures, as we move from the interpolation region to the extrapolation region,

prediction error increases, and posterior 𝜎 marks the monomer stretch where error

begins to increase. Note that when monomer stretch is large, our quantity of interest

is the energy difference between a monomer with relative long OH bond lengths and

one with small OH bond lengths. By contrast, when monomer stretch is small, we are
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interested in the energy difference between monomers that both have relatively small

OH bond lengths. This observation might explain the empirical observation that it is

a more challenging task to predict energy differences corresponding to large monomer

stretches than small ones. When the training region includes only small monomer

stretches, error prediction error increases as monomer stretch becomes large, even

before entering the extrapolation region. Conversely, when we train on large monomer

stretches, error remains small even in some portions of the extrapolation region close

the interpolation region. The posterior 𝜎 marks both of these trends. In Appendix

C, we find these general trends also exist when relative absolute error is considered.

It is not surprising to find that a GP inference model can identify outliers, but it is

useful to confirm this ability for a particular application and model design. In cases of

extreme model mispecification, posterior 𝜎 may not give any meaningful uncertainty

information. From Figure 6-3, we can argue that the relationship between training

and target configurations represented by SOAP features is relevant to uncertainty.

Additionally, SOAP feature space can capture certain difficult interpolation cases—

as in the top subfigure—and easier extrapolation cases—as in the bottom subfigure.

Further research can contribute to a fuller understanding of the behavior of these pos-

terior 𝜎 uncertainty indicators for applications which suffer from design inadequacy.

Such work could ultimately determine how to use the uncertainty captured by these

indicators and account for the uncertainty missed.

81



82



Chapter 7

Conclusion

Multitask inference offers an efficient, flexible approach to regression on highly accu-

rate primary data supported by multiple secondary data sets without clear hierarchy.

Such a method is well-suited to the challenge of leveraging a suite of quantum chem-

istry calculations to produce new predictions for target molecules. We apply this

method to the prediction of the ionization potential of small organic molecules and

the interaction energies of water dimers. In both cases, we find that for a given cost

the mean absolute error of the multitask method is less than that of a single task

GP trained only on the most accurate electronic structure calculations. Furthermore,

there is an accuracy benefit to increasing the number of secondary tasks used for

training. While in the cases tested, the multitask method falls short of the accuracy

of a Δ method for comparable data sets, the multitask method can be applied to data

sets where the Δ method is impossible. It can make use of already existing “data sets

of opportunity” where there is no overlap in the molecules represented in the primary

and various secondary training sets.

These test cases also provide us with insight into variance prediction by GP based

methods when training data sets fall short of modeling assumptions. Ideally, the pos-

terior variance would represent a GP model’s uncertainty, but we find that predictions

do not reliably map to an upper bound GP absolute prediction error, the functionality

we want from an uncertainty indicator. Averages of the variance predicted for models

trained with different data set constructions do capture trends in mean absolute error
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of these models, and the variance can successfully indicate clear cases of predictive

extrapolation. The posterior variance retains some ability to identify the sources of

uncertainty it was designed to capture, and a question remains of how best to amplify

and augment these abilities.
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Appendix A

Feature and Kernel Design

This appendix provides additional results from tests described in Chapter 4.

A.1 SOAP Construction

Figures A-1 and A-2 show results from SOAP parameter tests similar to those per-

formed to create Figure 4-1. The three figures are distinguished only by the level of

theory used to train the GP models. Data from the PBE functional approximation

was used for 4-1 while A-1 and A-2 are produced with CCSD(T) and PBE0 data,

respectively. These are the three levels of theory that results in the text rely on most

heavily. Together, the figures demonstrate that prediction performance is most sen-

sitive to the SOAP 𝜎𝑎𝑡𝑜𝑚 parameter, and that 𝜎𝑎𝑡𝑜𝑚 = 0.4 Å provides the best results

on average.

The next set of figures corroborate our claim that global SOAP features obtained

by averaging local SOAP features perform comparably to features computed through

the REMatch approach [9]. In Chapter 4, Figure 4-2 demonstrated that distances

computed between pairs of molecules by the averaging approach are highly correlated

to those computed with the REMatch method when we choose SOAP parameters

𝜎𝑎𝑡𝑜𝑚 = 0.4 Å and 𝑟𝑐𝑢𝑡 = 4 Å. Because the size of the molecular systems that

we consider may motivate us to change the SOAP cutoff radius, here we present

comparisons between the globalization methods for when 𝑟𝑐𝑢𝑡 = 3 Å (Figure A-3)
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Figure A-1: Organic Molecules Case. The impact of SOAP parameters on per-
formance of a GP model trained on CCSD(T) data. The color bar reports mean
absolute error.

and 𝑟𝑐𝑢𝑡 = 5 Å (Figure A-4). We find more evidence that the average features and

REMatch features produce results with strong linear correlation, while global features

constructed from species-based averages are less correlated to the other approaches.

A.2 Prediction Calibration of Kernels

In Chapter 4, Figure 4-3 provides a comparison of the impact of the Polynomial and

Squared Exponential kernels on the accuracy of the posterior mean predictions of

GP models. The chapter also includes some discussion on the role of these kernels

in posterior variance prediction based on their mathematical construction. We can

also empirically compare the accuracy of the posterior variances predicted by both

kernels. We refer to the concept of distribution calibration described by Kuleshov et
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Figure A-2: Organic Molecules Case. The impact of SOAP parameters on per-
formance of a GP model trained on PBE0 data. The color bar reports mean absolute
error.

Figure A-3: Comparison of strategies for constructing global SOAP features. The
cutoff radius is set to 3 Å.

al. which tests whether predicted distributions have reasonable width on average over

the observation data set [20].
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Figure A-4: Comparison of strategies for constructing global SOAP features. The
cutoff radius is set to 5 Å.

Let 𝑝 ∈ [0, 1]. Suppose {𝑌𝑖}𝑛𝑖=1 is our observation data set. Define

𝑅(𝑝) =

∑︀𝑛
𝑖=1 1

(︂
𝑌𝑖 ≤ 𝐹−1

𝑖 (𝑝)

)︂
𝑛

If 𝐹𝑖 is the distribution function of 𝑌𝑖, then P
(︀
𝑌𝑖 ≤ 𝐹−1

𝑖 (𝑝)
)︀
= 𝑝. We expect

𝑅(𝑝) −−−→
𝑛→∞

𝑝

For our data set of ionization potentials for small organic molecules and 𝑛 = 1000,

we compute 𝑅(𝑝) at 0 ≤ 𝑝 ≤ 1, and plot the results in Figure A-5. We find that

𝑅(𝑝) values corresponding to the Squared Exponential kernel are generally closer to

𝑝 than those calculated for the polynomial kernel. Additionally, the steep slope near

𝑝 = 0.5 of the 𝑅(𝑝) curve of the polynomial kernel indicates that this kernel generally

predicts distributions that are too wide. Likely, this behavior is due to the dependence

of the polynomial kernel’s posterior variance predictions on the magnitudes of SOAP

features, as described in Chapter 4. By contrast, the 𝑅(𝑝) curve of the Squared

Exponential kernel demonstrates the largest slope near 𝑝 = 0 and 𝑝 = 1, indicating

that predicted distributions tend to be too narrow. This issue may be addressed

through the kernel’s hyperparameter optimization procedure.
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Figure A-5: Organic Molecules Case. Comparison between Polynomial and
Squared Exponential kernels with respect to the calibration indicator R(p). A result
closer to the reference line is better.
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Appendix B

Posterior Mean

This appendix expands on the results of Chapter 5.

B.1 Data Set Statistics

Table B.1 presents a comparison of summary statistics describing the CCSD(T) data

sets used for our inference examples. All statistics are performed on the absolute

value of the CCSD(T) calculations. Ionization potentials are computed for the small

organic molecules represented by Figure 4-4, interaction energies are computed for

water dimer configurations, and energy differences are taken between 1000 randomly

selected pairs of water monomers. The scale of each data set impacts our expectations

for successful mean absolute error predictions.

|Ionization |Interaction |Energy
Potentials| Energies| Differences|

[eV] [eV] [eV]

Minimum 5.894 1.6×10−7 0.0014
Median 9.296 0.0028 1.908

Maximum 15.23 0.2871 6.650
Mean 9.409 0.0076 1.992
𝜎 0.9446 0.0150 1.338

Table B.1: CCSD(T) Data Set Statistics
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CCSD(T) CCSD(T) CCSD(T) PBE0_DH PBE0_DH PBE0
vs. PBE0_DH vs. PBE0 vs. PBE vs. PBE0 vs. PBE vs. PBE

Pearson’s 𝜌 0.9727 0.9616 0.9380 0.9966 0.9725 0.9845
Spearman’s 𝜌 0.9640 0.9509 0.9135 0.9950 0.9548 0.9744
Kendall’s 𝜏 0.8694 0.8371 0.7618 0.9433 0.8232 0.8674

Table B.2: Organic Molecules Case. Correlation coefficients between pairs of
observation data sets.

CCSD(T) CCSD(T) PBE0
vs. PBE0 vs. PBE vs. PBE

Pearson’s 𝜌 0.9985 0.9978 0.9998
Spearman’s 𝜌 0.9955 0.9950 0.9994
Kendall’s 𝜏 0.9875 0.9876 0.9914

Table B.3: Water Dimers Case. Correlation coefficients between pairs of obser-
vation data sets.

|CCSD(T) |CCSD(T) |CCSD(T) | PBE0_DH |PBE0_DH |PBE0
− PBE0_DH| − PBE0| − PBE| − PBE0| − PBE| − PBE|

Minimum 2.7×10−4 3.8×10−4 1.6×10−4 0.0019 4.576e-5 0.0010
Median 0.1181 0.1154 0.3197 0.1381 0.3899 0.2486

Maximum 2.491 2.586 2.808 0.6482 1.319 0.9130
Mean 0.1534 0.1677 0.3817 0.1570 0.4227 0.2666
𝜎 0.1694 0.2048 0.2895 0.0794 0.2208 0.1495

Table B.4: Organic Molecules Case. Summary statistics on the pairwise absolute
differences of observation data sets.

Tables B.2, B.3, and B.4 give some insight into the relationships between ob-

servation data sets. Two of these tables report correlation coefficients between the

predictions of various pairs of electronic structures methods. Table B.2 lists Pearson’s

𝜌, Spearman’s 𝜌, and Kendall’s 𝜏 for CCSD(T) and DFA calculations of the ionization

potential of small organic molecules. The same correlation coefficients for the water

dimers data set can be found in Table B.3. Predictions by different methods are in

general highly correlated, and different DFAs are more correlated to each other than

to CCSD(T). The correlation coefficients reported for the water dimer data sets are

larger than those reported for the ionization potential sets—in fact, these coefficients
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are very close to 1. This strong correlation may be because all calculations in these

data sets correspond to different configurations of only one molecular system.

In Chapter 5, we discuss the Δ method’s sensitivity to the ordering of observation

data sets. For instance, when data sets computed with CCSD(T), PBE0, and PBE

were used for inference, the method performed better when it learned difference mod-

els Δ(𝐶𝐶𝑆𝐷(𝑇 ), 𝑃𝐵𝐸) and Δ(𝑃𝐵𝐸,𝑃𝐵𝐸0) as opposed to Δ(𝐶𝐶𝑆𝐷(𝑇 ), 𝑃𝐵𝐸0)

and Δ(𝑃𝐵𝐸0, 𝑃𝐵𝐸). From Table B.2, we can see that CCSD(T) is less correlated

with PBE than PBE0. From the correlation coefficients alone, it remains unclear why

the PBE0→PBE→CCSD(T) ordering performs better. We can also consider Table

B.4 which provides summary statistics on the absolute values of differences between

predictions by various pairs of methods. Unfortunately, a clear indicator for why

one ordering of observation data sets yields better performance than another remains

elusive. Future work may undertake more detailed analyses to determine why this

effect occurs and how widespread it may be.

B.2 Water Dimers Case

Figure B-1 demonstrates the accuracy of multitask models trained on CCSD(T) and

PBE0 calculations to predict interaction energies of water dimer configurations. The

example is summarized in Section 5.2 where Figure 5-3 shows how multitask models

perform when trained on CCSD(T) and PBE data. When Figures 5-3 and B-1 are

compared, it is apparent that their results are nearly identical. This finding is be-

lievable given the high correlation between PBE0 and PBE data sets given in Table

B.3.
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(a) No target DFT data

(b) Target DFT data

Figure B-1: Water Dimers Case. Scatter points correspond to implementations
of the multitask method with a range of data set sizes. The black line shows the
accuracy of a GP model trained only on CCSD(T) data. All results are the average
MAE values obtained from six random assignments of the data sets.
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Appendix C

Posterior Variance

Here, we provide additional results relevant to the discussion in Chapter 6.

C.1 Posterior Distribution and Error

Figure C-1 continues the search for possible patterns in posterior 𝜎 behavior initiated

by Figure 6-1. It plots posterior mean predictions of the ionization potential of

the target molecules against posterior 𝜎 predictions and colors these predictions by

their absolute error. In the plot, the maximum posterior 𝜎 is scaled to 1, and when

this maximum is achieved, corresponding posterior mean predictions are close to 9.5.

We expect that the prior mean is close to this value because for the posterior 𝜎

to reflect maximum uncertainty, the GP model must judge that observation data is

uninformative for a given target. If the data is uninformative, the posterior mean will

be the same as the prior. Additionally, the prior mean is set to the average of the

training data, and consultation with Table B.1 indicates that the overall average of

the CCSD(T) predictions for ionization potential is 9.4.

Table B.1 also tells us that the true range of ionization potential values which

appears in our data set is wider than the range of posterior mean predictions in Figure

C-1. It is more challenging for the model to capture the extreme points in the target

data set. While Figure C-1 visualizes the behavior of the GP model’s predictions, it

does not suggest a staightforward transformation of the posterior mean and 𝜎 that
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would result in a prediction of absolute error. It is likely that more information would

need to be considered alongside these predictions to draw a meaningful conclusion

about error.

Figure C-1: Organic Molecules Case. Mean versus standard deviation predictions
of a Gaussian process model. Darker blue points have greater absolute error.

C.2 Extrapolation

The final series of figures supply details for the example of predicting the energy dif-

ferences between water monomers, introduced by Figure 6-3. The quantity “monomer

stretch” is defined in Chapter 6 to simplify visualization of predictions for energy dif-

ferences between two monomers, one stretched relative to another. This single axis

representation leaves out some complexities of the data set. For instance, suppose
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that {𝐴𝑖, 𝐵𝑖}𝑛𝑖=1 are the set of monomer pairs for which we compute 𝑛 energy differ-

ences. 𝐴𝑖 and 𝐵𝑖 each have two OH bonds, and the lengths of all four of these are

allowed to vary in our data set. The only restriction is that the bond lengths of 𝐵𝑖

must be stretched relative to 𝐴𝑖. Consequently, the true energy differences are not

a function of monomer stretch—multiple energy differences may correspond to the

same stretch value. The truth also does not vary monotonically as monomer stretch

increases.

The lowest subfigures of C-2 and C-3 show the true absolute energy differences

for the target monomer pairs when we train on low and high stretch cases, respec-

tively. We can compare these values to the absolute error and posterior 𝜎 predictions

displayed in Chapter 6 as well as in the top subfigures of these plots. The middle

subfigures show the magnitude of relative error in each case. Note that the vertical

axes of the plots have different scales. Additionally, two outlying relative error values

were left out of C-2 and one was excluded from C-3 so that the vertical axis scales

need not be excessively large. Both figures show that relative error tends to be el-

evated in the same regions where absolute error is elevated. Both plots also show

several points with unexpectedly high relative error, for instance, the scatter points

with monomer stretch ≈ 0.6 Å in C-3. Likely, these points correspond to monomer

pairs with low true absolute energy difference though more work may be necessary

to understand the details of this behavior.

Finally, we can again observe that when the GP model is trained on monomer

pairs exhibiting large “stretch” it can perform well predicting many cases with small

stretch. One explanation may be that this model is trained with energy differences

between one monomer with relatively long OH bonds lengths and another with short

bond lengths, then use to predict the energy differences between two monomers with

relatively short bond lengths. Since the training set has some information about

monomers with relatively short bond lengths, this task is a less extreme extrapolation

than the reverse.
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Figure C-2: Water Monomers Case. GP model error and posterior 𝜎 predictions
for energy differences of monomer pairs. Training data is drawn from the shaded
region. The lowest subfigure shows the true energy differences.
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Figure C-3: Water Monomers Case. Prediction of energy differences of monomer
pairs by a GP model trained on pairs exhibiting large monomer stretch. The true
energy differences are reported in the bottom subfigure.
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